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Introduction 

1.1 Overview 

The C language is a general-purpose programming language well known for 
its efficiency, economy, and portability. While these advantages make it a 
good choice for almost any kind of programming, C has proved to be espe­
cially useful in systems programming because it allows programmers to 
write fast and compact programs and to transport those programs to other 
systems. In many cases, well-written C programs are comparable in speed 
to assembly-language programs, and they offer the advantages of easier 
maintenance and greater readability. 

C combines efficiency and power in a relatively small language. C does 
not include built-in functions to perform tasks such as input and output, 
storage allocation, screen manipulation, and process control. Instead, C 
programmers rely on run-time libraries to perform such tasks. 

This design contributes to C's adaptability and compactness. Because the 
language is relatively confined, it does not assume or impose a particular 
programming model. Run-time routines provide support as needed, allow­
ing the programmer to minimize their use, if desired, or to tailor run-time 
routines for special purposes. 

The design also helps to isolate language features from processor-specific 
features in a particular C implementation, thus aiding programmers who 
want to write portable code. The strict definition of the language makes it 
independent of any particular operating system or machine; at the same 
time, programmers can easily add system-specific routines to take advan­
tage of a particular machine's efficiencies. 

Some of the significant features of the C language are as follows: 

• C provides a full set of loop, conditional, and transfer statements to 
control program flow logically and efficiently and to encourage 
structured programming. 

• C offers an unusually large set of operators. Many of C's operators 
correspond to common machine instructions, allowing a direct 
translation into machine code. The variety of operators lets the 
programmer specify different kinds of operations clearly and with a 
minimum of code. 

• C's data types include several sizes of integers, as well as single- and 
double-precision floating-point types. The programmer can design 
more complex data types, such as arrays and data structures, to 
suit specific program needs. 
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• C programmers can declare "pointers" to variables and functions. 
A pointer to an item corresponds to the machine address of that 
item. Using pointers wisely can increase program efficiency consid­
erably, since pointers let the programmer refer to items in the same 
way the machine does. C also supports pointer arithmetic, allowing 
the programmer both to access and manipulate memory addresses 
directly. 

• The C preprocessor, a text processor, acts on the text of files before 
compilation. Among its most useful applications for C programs 
are the definition of program constants, the substitution of function 
calls with faster macro look-alikes, and conditional compilation. 
The preprocessor is not limited to processing C files; it can be used 
on any text file. 

• C is a flexible language, leaving much of the decision making up to 
the programmer. In keeping with this attitude, C imposes few re­
strictions in matters such as type conversion. While this is often an 
asset, C programmers must know the language well to understand 
how their programs will behave. 

1.2 About This Manual 

The Microsoft® C Compiler Language Reference defines the C language as 
implemented by Microsoft Corporation. It is intended as a reference for 
programmers who have experience in C or in another programming 
language. Knowledge of programming fundamentals is assumed. 

Note 

If you want a quick overview of how Microsoft C compares with the 
definition of C found in Appendix A of The C Programming Language, 
by Brian W. Kernighan and Dennis M. Ritchie, turn to Appendix A of 
this manual. Appendix B of this manual summarizes the syntax of the 
C language as defined by Microsoft. 

The run-time library functions available for use in Microsoft C programs 
are discussed in a separate library reference manual. 
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Introduction 

Consult your system documentation for an explanation of how to compile 
and link C programs on your system. Your system documentation also con­
tains information specific to the implementation of C on your system. 

This manual is organized as follows: 

Chapter 2, "Elements of C," describes the letters, numbers, and symbols 
that can be used in C programs and the combinations of characters that 
have special meanings to the C compiler. 

Chapter 3, "Program Structure," discusses the components and structure of 
C programs and explains how C source files are organized. 

Chapter 4, "Declarations," describes how to specify the attributes of C 
variables, functions, and user-defined types. C provides a number of 
predefined data types and allows the programmer to declare aggregate 
types and pointers. 

Chapter 5, "Expressions and Assignments," describes the operands and 
operators that form C expressions and assignments. The chapter also 
discusses the type conversions and side effects that may accompany the 
evaluation of expressions. 

Chapter 6, "Statements," describes C statements. Statements control the 
flow of program execution. 

Chapter 7, "Functions," discusses features of C functions. In particular, 
this chapter explains how to define, declare, and call a function and 
describes function parameters and return values. 

Chapter 8, "Preprocessor Directives and Pragmas," describes the instruc­
tions recognized by the C preprocessor. The C preprocessor is a text proces­
sor automatically invoked before compilation. This chapter also introduces 
pragmas, which are instructions to the compiler that are placed in the 
source file. 

Appendix A, "Differences," lists the differences between Microsoft C and the 
description of the C language found in Appendix A of The C Programming 
Language by Brian W. Kernighan and Dennis M. Ritchie. 

Appendix B, "Syntax Summary," summarizes the syntax of the C language 
as implemented by Microsoft. 
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The remainder of this chapter describes the notational conventions used 
throughout the manual. 

1.3 Notational Conventions 

This manual uses the following notational conventions: 

Convention 

Bold 

Italics 

Examples 

6 

Meaning 

Bold type indicates text that must be typed 
exactly as shown. Text that is shown in bold 
type includes C keywords, such as goto and 
char, and operators, such as the addition opera­
tor (+) and the multiplication operator (*). 

Italicized terms mark the places in syntax 
specifications and in the text where specific 
terms appear in an actual C program. For 
example, in 

goto name; 

name is italicized to show that this is a general 
form for the goto statement. In an actual pro­
gram statement, the user supplies a particular 
identifier for the placeholder name. 

Occasionally, italics are used to emphasize par­
ticular words in the text. 

Examples of C programs and program elements 
appear in a special typeface to look similar to 
listings on the screen or the output of commonly 
used computer printers: 

int x, y; 

swap (&X, &y); 



Ellipsis dots 

[Double brackets] 

Introduction 

Ellipsis dots may be vertical or horizontal. In 
the following example, the vertical ellipsis dots 
indicate that zero or more declarations, followed 
by one or more statements, may appear between 
the braces: 

{ 
[ declaration] 

statement 
[statement] 

} 

Vertical ellipsis dots are also used in program 
examples to indicate that a portion of the pro­
gram has been omitted. For instance, in the fol­
lowing excerpt, two program lines are shown. 
The ellipsis dots between the lines indicate that 
intervening program lines occur but are not 
shown: 

int x, y; 

swap (&x, &y); 

Horizontal ellipsis dots following an item indi­
cate that more items having the same form may 
appear. For instance, 

= { expression [, expression] ... } 

indicates that one or more expressions separated 
by commas may appear between the braces ({ l). 

Double brackets enclose optional items in syntax 
specifications. For example, 

return [expression]; 

is a syntax specification showing that expression 
is an optional item in the return statement. 
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"Quotation 
marks" 

SMALL CAPITALS 

Quotation marks set off terms defined in the 
text. For example, the term "token" appears in 
quotation marks when it is defined. 

Some C constructs, such as strings, require quo­
tation marks. Quotation marks required by the 
language have the form "" rather than" ". For 
example, 

"abc" 

is a C string. 

Names of special key combinations, such as 
CONTROlrZ, appear in small capital letters. 
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Elements of C 

2.1 Introduction 

This chapter describes the elements of the C programming language. The 
elements of the language are the names, numbers, and characters used to 
construct a C program. In particular, this chapter describes the following: 

• Character sets 

• Constants 

• Identifiers 

• Keywords 

• Comments 

• Tokens 

2.2 Character Sets 

Two character sets are defined for use in C programs: the C character set 
and the representable character set. The C character set consists of the 
letters, digits, and punctuation marks that have a specific meaning to the C 
compiler. C programs are constructed by combining the characters of the 
C character set into meaningful statements. 

The C character set is a subset of the representable character set. The 
representable character set consists of all letters, digits, and symbols that a 
user can represent graphically with a single character. The extent of the 
representable character set depends on the type of terminal, console, or 
character device being used. 

A C program can contain only characters from the C character set, with the 
exceptions of string literals, character constants, and comments, which can 
use any representable character. Each character in the C character set has 
an explicit meaning to the C compiler. The compiler generates error mes­
sages when it encounters misused characters or characters not belonging to 
the C character set. 

The following sections describe the characters and symbols of the C charac­
ter set and explain how and when to use them. 

11 
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2.2.1 Letters and Digits 

The C character set includes the uppercase and lowercase letters of the 
English alphabet and the 10 decimal digits of the Arabic number system: 

• Uppercase English letters 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

• Lowercase English letters 

abcdefghijklmnopqrstuvwxyz 

• Decimal digits 

0123456789 

These letters and digits can be used to form the constants, identifiers, and 
keywords described later in this chapter. 

The C compiler treats uppercase and lowercase letters as distinct charac­
ters. If a lowercase a is specified in a given item, you cannot substitute an 
uppercase A in its place; you must use the lowercase letter. 

2.2.2 White-Space Characters 

Space, tab, line-feed, carriage-return, form-feed, vertical-tab, and new-line 
characters are called white-space characters because they serve the same 
purpose as the spaces between words and lines on a printed page. These 
characters separate user-defined items, such as constants and identifiers, 
from other items within a program. 

A CONTROL-Z character is treated as an end-of-file indicator. The compiler 
disregards any text following the CONTROL-Z mark. 

The C compiler ignores white-space characters unless they are used as 
separators or as components of character constants or string literals. This 
means you can use extra white-space characters to make a program more 
readable. Comments are also treated as white space (see Section 2.6). 

2.2.3 Punctuation and Special Characters 

The punctuation and special characters in the C character set are used for 
a variety of purposes, from organizing the text of a program to defining the 
tasks to be carried out by the compiler or by the compiled program. Table 
2.1 lists these characters. 
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Table 2.1 

Punctuation and Special Characters 

Character Name Character Name 

Comma Exclamation mark 

Period Vertical bar 

Semicolon / Forward slash 

Colon \ Backslash 

? Question mark Tilde 

Single quotation Underscore 

" Double quotation # Number sign 

( Left parenthesis % Percent sign 

) Right parenthesis & Ampersand 

[ Left bracket Caret 

] Right bracket * Asterisk 

{ Left brace Minus sign 

} Right brace - Equal sign 

< Left angle bracket + Plus sign 

> Right angle bracket 

These characters have special meaning to the C compiler; their use in the C 
language is described throughout this manual. Punctuation characters in 
the representable character set that do not appear in this list can be used 
only in string literals, character constants, and comments. 

2.2.4 Escape Sequences 

Escape sequences are special character combinations that represent white­
space and nongraphic characters in strings and character constants. They 
are typically used to specify actions such as carriage returns and tab move­
ments on terminals and printers and to provide literal representations of 
characters that normally have special meanings, such as the double quote 
(") character. An escape sequence consists of a backslash followed by a 
letter or combination of digits. Table 2.2 lists the C language escape 
sequences. 
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Table 2.2 

Escape Sequences 

Escape Sequence 

\n 
\t 
\v 
\b 
\r 
\f 
\a 
\' 
\" 
\\ 
\ ddd 

\xdd 

Name 

New line 

Horizontal tab 

Vertical tab 

Backspace 

Carriage return 

Form feed 

Bell (alert) 

Single quote 

Double quote 

Backslash 

ASCII character 
in octal notation 

ASCII character 
in hexadecimal notation 

If the backslash precedes a character not included in the list above, the 
backslash is ignored and that character is represented literally. For ex­
ample the pattern \c represents the character c in a string literal or 
character constant. 

The sequences \ ddd and \xdd allow any character in the ASCII (American 
Standard Code for Information Interchange) character set to be given as a 
three-digit octal or a two-digit hexadecimal character code. For example, 
the backspace character can be given as \010 or \x08. The ASCII null 
character can be given as \0 or \xO. 

Only the digits 0 through 7 can appear in an octal escape sequence, and at 
least one digit must appear. However, fewer than three digits can be 
specified. For example, the backspace character can be given in octal nota­
tion as \10. Similarly, a hexadecimal escape sequence must contain at 
least one digit, but the second digit can be omitted. Thus, the hexadecimal 
escape sequence for the backspace character can be given either as \x08 or 
as \x8. 

14 
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Note 

When using octal and hexadecimal escape sequences in strings, it is 
safest to give all digits of the escape sequence (three digits for octal 
and two digits for hexadecimal escape sequences). Otherwise, if the 
character immediately following the escape sequence happens to be an 
octal or hexadecimal digit, it is interpreted as part of the sequence. For 
example, if the string \x7Bell were printed, the result would be {ell 
because \x7B is interpreted as the ASCII left brace character ({). The 
string \x07Bell (note the 0) is the correct way to represent the bell 
character followed by the word Bell. 

Escape sequences allow nongraphic control characters to be sent to a 
display device. For example, the escape character, \033, is often used as 
the first character of a control command for a terminal or printer. 

Nongraphic characters should always be represented by escape sequences 
because using a nongraphic character in a C program has unpredictable 
results. 

The backslash character (\) used to introduce escape sequences also func­
tions as a continuation character in strings and in preprocessor definitions. 
When a new-line character follows the backslash, the new line is disre­
garded, and the next line is treated as part of the previous line. 

2.2.5 Operators 

Operators are special character combinations that specify how values are to 
be transformed and assigned. The compiler interprets each of these charac­
ter combinations as a single unit, called a "token" (see Section 2.7). 

Table 2.3 lists the characters that form C operators and gives the name of 
each operator. Operators must be specified exactly as they appear in the 
tables, with no white space between the characters of multi character opera­
tors. The sizeof operator is not included in this table; it consists of a key­
word (sizeof) rather than a symbol. 
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Table 2.3 

Operators 

Operator 

+ 

* 
/ 
% 
« 
» 
< 
<= 
> 
>= 

!= 
& 

&& 
II 

" , 
?: 

++ 

+= 

*= 

/= 
%= 
»= 

Name 

Logical NOT 

Bitwise complement 

Addition 

Subtraction, arithmetic negation 

Multiplication, indirection 

Division 

Remainder 

Left shift 

Right shift 

Less than 

Less than or equal 

Greater than 

Greater than or equal 

Equality 

Inequality 

Bitwise AND, address of 

Bitwise inclusive OR 

Bitwise exclusive OR 

Logical AND 

Logical OR 

Sequential evaluation 

Conditionala 

Increment 

Decrement 

Simple assignment 

Addition assignment 

Subtraction assignment 

Multiplication assignment 

Division assignment 

Remainder assignment 

Right-shift assignment 
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Table 2.3 (continued) 

Operator 

«= 
&= 

Name 

Left-shift assignment 

Bitwise AND assignment 

Bitwise inclusive OR assignment 

Bitwise exclusive OR assignment 

a The conditional operator is a ternary operator, not a multicharacter 
operator. The form of a conditional expression is the following: 
expression? expression: expression 

For a complete description of each operator, see Chapter 5, "Expressions 
and Assignments." 

2.3 Constants 

A constant is a number, a character, or a string of characters that can be 
used as a value in a program. The value of a constant does not change from 
execution to execution. 

The C language has four kinds of constants: integer constants, floating­
point constants, character constants, and string literals. The following sec­
tions define the format and use of each. 

2.3.1 Integer Constants 

An integer constant is a decimal, octal, or hexadecimal number that 
represents an integer value. A decimal constant has the form 

digits 

where digits is one or more decimal digits (0 through 9). 

An octal constant has the form 

o o digits 

17 
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where odigits is one or more octal digits (0 through 7). The leading 0 is 
required. 

A hexadecimal constant has one of the following forms: 

Oxhdigits 
OXhdigits 

where hdigits is one or more hexadecimal digits (0 through 9 and either 
uppercase or lowercase "a" through "f"). The leading 0 is required and 
must be followed by x or X. 

No white-space characters can appear between the digits of an integer con­
stant. Table 2.4 illustrates the form of integer constants. 

Table 2.4 

Examples of Integer Constants 

Decimal Constants 

10 
132 
32179 

Octal Constants 

012 
0204 
076663 

Hexadecimal Constants 

Oxa or OxA 
Ox84 
Ox7dB3 or Ox7DB3 

Integer constants always specify positive values. If negative values are 
required, the minus sign (-) can be placed in front of the constant to form a 
constant expression with a negative value. The minus sign is treated as an 
arithmetic operator. 

Every integer constant is given a type based on its value. A constant's type 
determines what conversions must be performed when the constant is used 
in an expression or when the minus sign (-) is applied. Decimal constants 
are considered signed quantities and are given int type, or long type if the 
size of the value requires it. 

Octal and hexadecimal constants are given int, unsigned int, long, or 
unsigned long type depending on the size of the constant. If the constant 
can be represented as an int, it is given int type. If it is larger than the 
maximum positive value that can be represented by an int, but small 
enough to be represented in the same number of bits as an int, it is given 
unsigned int type. Similarly, a constant that is too large to be 
represented as an unsigned int is given long type, or unsigned long type, 
if necessary. 

18 



Elements of C 

Table 2.5 shows the ranges of values and the corresponding types for octal 
and hexadecimal constants on a machine where the int type is 16 bits long. 

Table 2.5 

Types Assigned to Octal and Hexadecimal Constants 

Hexadecimal Range 

OxO - Ox7FFF 
Ox8000 - OxFFFF 
Ox10000 - Ox7FFFFFFF 
Ox80000000 - OxFFFFFFFF 

Octal Range 

0-077777 
0100000 - 0177777 
0200000 - 017777777777 
020000000000 - 030000000000 

Type 

int 
unsigned int 
long 
unsigned long 

The consequence of the above typing rules is that hexadecimal and octal 
constants are not sign-extended when they are converted to longer types. 
(For a discussion of type conversions, see Chapter 5, "Expressions and 
Assignments." ) 

The programmer can force any integer constant to be given long type by 
appending the letter "I" or "L" to the end of the constant. Table 2.6 illus­
trates long integer constants. 

Table 2.6 

Examples of Long Integer Constants 

Decimal Constants Octal Constants Hexadecimal Constants 

10L 012L OxaL or OxAL 
791 01151 Ox4f1 or Ox4F1 

Types are described in Chapter 4, "Declarations," and conversions are 
described in Chapter 5, "Expressions and Assignments." 

2.3.2 :F'loating-Point Constants 

A floating-point constant is a decimal number representing a signed real 
number. The value of a signed real number includes an integer portion, a 
fractional portion, and an exponent. Floating-point constants have the 
form 
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[ digits] [. digits] [E [-] digits] 

where digits is one or more decimal digits (0 through 9), and E (or e) is the 
exponent symbol. Either the digits before the decimal point (the integer 
portion of the value) or the digits after the decimal point (the fractional 
portion) can be omitted, but not both. The decimal point can be omitted 
only when an exponent is given. 

The exponent consists of the exponent symbol followed by a possibly nega­
tive constant integer value. No white-space characters can separate the 
digits or characters of the constant. 

Floating-point constants always specify positive values. If negative values 
are required, the minus sign (-) can be placed in front of the constant to 
form a constant floating-point expression with a negative value. The minus 
sign is treated as an arithmetic operator. 

The following examples illustrate some of the forms of floating-point con­
stants and expressions: 

15.75 
1.575E1 
1575e-2 
-0.0025 
-2.5e-3 
25E-4 

The integer portion of the floating-point constant can be omitted, as shown 
in the following examples: 

.75 

.0075e2 
-.125 
-.175E-2 

All floating-point constants have type double. 

2.3.3 Character Constants 

A character constant is a letter, digit, punctuation character, or escape 
sequence enclosed in single quotation marks. The value of a character con­
stant is the numerical representation of the character. Character constants 
consisting of more than one character or escape sequence are not allowed. 

20 



Elements of C 

A character constant has the form 

'char' 

where char can be any character from the representable character set 
(including any escape sequence) except a single quotation mark ('), a 
backslash (\), or a new-line character. To use a single quotation mark or 
backslash character as a character constant, precede it with a backslash, as 
shown in Table 2.7. To represent a new-line character, use the escape 
sequence '\ n'. 

Table 2.7 

Examples of Character Constants 

Constant 

'a' 
'?' 
'\ b' 

,\xlB' 

'\ " 
'\ \' 

Value 

Lowercase a 

Question mark 

Backspace 

ASCII escape character 

Single quotation mark 

Backslash 

Character constants have type int and consequently are sign extended in 
type conversions (see Section 5.7 of Chapter 5, "Expressions and 
Assignments" ). 

2.3.4 String Literals 

A string literal is a sequence of letters, digits, and symbols enclosed in 
double quotation marks. A string literal is treated as an array of charac­
ters; each element of the array is a single character value. 

The form of a string literal is 

" characters" 

where characters is zero or more characters from the representable charac­
ter set, excluding the double quotation mark ("), the backslash (\), and the 
new-line character. To use the new-line character in a string, type a 
backslash immediately followed by a new-line character. The backslash 
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causes the new-line character to be ignored, allowing the programmer to 
form string literals that occupy more than one line. For example, the string 
literal 

"Long strings can be bro\ 
ken into two pieces." 

is identical to the string 

"Long strings can be broken into two pieces." 

To use the double quotation mark or backslash character within a string 
literal, precede it with a backslash, as shown in the following examples: 

"This is a string literal." 
"Enter a number between 1 and 100 \n or press Return" 
"First\\Second" 
"\"Yes, I do,\" she said." 
"The following line shows a null string:" 
"" 

Note that escape sequences (such as \ \ and \") can appear in string 
literals. Each escape sequence counts as a singfe character. 

The characters of a string are stored in order at contiguous memory loca­
tions. A null character (\ 0) is automatically appended to mark the end of 
the string. Each string in a program is considered to be a distinct item; if 
two identical strings appear in a program, they each receive distinct storage 
space. 

String literals have type char []. This means a string is an array whose 
elements have type char. The number of elements in the array is the 
number of characters in the string literal plus one, since the null character 
stored after the last character counts as an array element. 

2.4 Identifiers 

Identifiers are the names you supply for the variables, functions, and labels 
used in a given program. You create an identifier by declaring it with the 
associated variable or function. You can then use the identifier in later 
statements within the program to refer to the given item. (Declarations are 
described in Chapter 4, "Declarations.") 
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An identifier is a sequence of one or more letters, digits, or underscores (_) 
that begins with a letter or underscore. Any number of characters are 
allowed in a given identifier, but only the first 31 characters are significant 
to the compiler. (Other programs that read the compiler output, such as 
the linker, may use fewer characters.) Use leading underscores with care; 
identifiers beginning with an underscore can conflict with the names of hid­
den system routines and produce errors. 

The following are examples of identifiers: 

j 
ent 
templ 
topofpage 
skip12 

The C compiler considers uppercase and lowercase letters to be separate 
and distinct characters. Therefore, you can create distinct identifiers that 
have the same spelling but different cases for one or more of the letters. 
For example, each of the following identifiers is unique: 

add 
ADD 
Add 
aDD 

The C compiler does not allow an identifier that has the same spelling and 
case as a C language keyword. Keywords are described in Section 2.5. 

Note 

The linker may further restrict the number and type of characters for 
globally visible symbols, and, unlike the compiler, the linker may not 
distinguish between uppercase and lowercase letters. Consult your 
linker documentation for information on naming restrictions imposed 
by the linker. 
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2.5 Keywords 

Keywords are predefined identifiers that have special meaning to the C 
compiler. They can be used only as defined. The names of program items 
cannot conflict with the keywords listed below: 

auto double int struct 
break else long switch 
case enum register typedef 
char extern return union 
const float short unsigned 
continue for signed void 
default goto sizeof while 
do if static volatile 

Keywords cannot be redefined. However, you can specify text to be substi­
tuted for keywords before compilation by using C preprocessor directives 
(see Chapter 8, "Preprocessor Directives and Pragmas"). 

The const and volatile keywords are reserved for future use but have not 
yet been implemented. 

The following identifiers may be keywords in some implementations. See 
your system documentation for more information. 

cdecl 
far 
fortran 
huge 
near 
pascal 

2.6 Comments 

A comment is a sequence of characters that is treated as a single white­
space character by the compiler, but is otherwise ignored. A comment has 
the following form: 

/ * characters * / 

Here characters can be any combination of characters from the represent­
able character set, including new-line characters but excluding the 
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combination", /. This means that comments can occupy more than one 
line, but they cannot be nested. 

Comments can appear anywhere a white-space character is allowed. The 
compiler ignores the characters of the comment, so keywords can appear in 
comments without producing errors. Since the compiler treats the com­
ment as a single white-space character, comments cannot appear within a 
token. 

The following examples illustrate some comments: 

/* Comments can separate and document 
lines of a program. */ 

/* Comments can contain keywords such as for 
and while. */ 

/***************************************** 
Comments can occupy several lines. 

*****************************************/ 

Since comments cannot contain nested comments, the following example 
causes an error: 

/* You cannot /* nest */ comments */ 

The compiler recognizes the first */, after the word nest, as the end of the 
comment. The compiler attempts to process the remaining text and pro­
duces an error when it cannot do so. 

To suppress compilation of a large portion of a program or a program 
segment that contains comments, use the #if preprocessor directive 
instead of comments (see Section 8.4 of Chapter 8, "Preprocessor Directives 
and Pragmas"). 

2.7 Tokens 

When the compiler processes a program, it breaks the program down into 
groups of characters known as "tokens." A token is a unit of progranl text 
that has meaning to the compiler and that cannot be broken down further. 
The operators, constants, identifiers, and keywords described in this chap­
ter are examples of tokens. Punctuation characters such as brackets ([ J), 
braces (t J), angle brackets « », parentheses, and commas are also 
tokens. 
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Tokens are delimited by white-space characters and by other tokens, such 
as operators and punctuation symbols. To prevent the compiler from 
breaking an item down into two or more tokens, white-space characters are 
prohibited between the characters of identifiers, multicharacter operators, 
and keywords. 

When the compiler interprets tokens, it incorporates as many characters as 
possible into a single token before moving on to the next token. Because of 
this behavior, tokens not separated by white space may not be interpreted 
as expected. 

For example, consider the following expression: 

i+++j 

In the above example, the compiler first makes the longest possible operator 
(++) from the three plus signs, and then processes the remaining plus sign 
as an addition operator (+). This expression is interpreted as (i + + ) + 
( j ) ,not (i) + ( + + j ). Use white space and parentheses to clarify your 

intent in such cases. 
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3.1 Introduction 

This chapter describes the structure of C language source programs and 
defines terms used later in this manual to describe the C language. It pro­
vides an overview of C language features that are described in detail in 
other chapters. The syntax and meaning of declarations and definitions are 
discussed in Chapter 4, "Declarations," and Chapter 7, "Functions." The C 
preprocessor and pragmas are described in Chapter 8, "Preprocessor Direc­
tives and Pragmas." 

3.2 Source Program 

A C source program is a collection of one or more directives, pragmas, 
declarations, and/or definitions. "Directives" instruct the C preprocessor 
to perform specific actions on the text of the program prior to compilation. 
"Pragmas" are instructions to the compiler that are carried out at 
compile time. 

"Declarations" establish the names and attributes of variables, functions, 
and types used in the program. "Definitions" are declarations that also 
define variables and functions. A variable definition gives the initial value 
of the declared variable, in addition to its name and type. The definition 
causes storage to be allocated for the variable. A function definition 
specifies the function body, which is a compound statement containing the 
declarations and statements that constitute the function. The function 
definition also gives the function name, formal parameters, and return type. 

A source program can have any number of directives, pragmas, declara­
tions, and definitions. Each must have the appropriate syntax as described 
in this manual, and each can appear in any order in the program (subject to 
the rules outlined throughout this manual), although the order affects how 
variables and functions can be used in the program (see Section 3.5, "Life­
time and Visibility"). 

A nontrivial program always contains at least one definition, a function 
definition. The function defines the action to be taken by the program. 
The following example illustrates a simple C source program: 
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Example 

int x 1; 
int y = 2; 

/* Variable definitions */ 

extern int printf(char *, ... ) ;/* Function declaration */ 

main () 

{ 

} 

int z; 
int w; 

/* Function definition 
for main function */ 

/* Variable declarations */ 

z = y + x; /* Executable statements */ 
w = y - x; 
printf("z= %d \nw= %d \n", z, w); 

This source program defines the function named main and declares the 
function pr int f. The variables x and yare defined with variable 
definitions; the variables z and ware just declared. 

3.3 Source Files 

Source programs can be divided into one or more source files. A C source 
file is a text file that contains all or part of a C source program; it may, for 
example, contain just a few of the functions needed by the program. When 
the source program is compiled, the individual source files that make up the 
program must be compiled individually and then linked. Separate source 
files can also be combined to form larger source files before compilation by 
using the # include directive, discussed in Chapter 8, "Preprocessor Direc­
tives and Pragmas." 

A source file can contain any combination of complete directives, pragmas, 
declarations, and definitions. Items such as function definitions or large 
data structures cannot be split between source files. 

A source file need not contain any executable statements. It is sometimes 
useful to place variable definitions in one source file and then declare refer­
ences to these variables in other source files that use them. This makes the 
definitions easy to find and modify, if necessary. For the same reason, man­
ifest constants and macros (discussed in Chapter 8, "Preprocessor Direc­
tives and Pragmas") are often organized into separate "include" files and 
inserted into source files where required. 
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Directives in a source file apply to that source file and its include files only. 
Moreover, each directive applies only to the portion of the file following the 
directive. If a common set of directives is to be applied to a source program, 
then all source files in the program must contain these directives. 

Pragmas usually take effect over a specific region of a source file. However, 
the specific compiler action that is defined by a pragma is determined by 
the implementation. For a discussion of the effects of particular pragmas, 
see your system documentation. 

The following is an example of a C source program contained in two source 
files. The main and max functions are assumed to be in separate files, and 
execution of the program is assumed to begin with the main function. 

Example 

/************************************************************ 
Source file 1 - main function 

************************************************************/ 

#define ONE 1 
#define TWO 2 
#define THREE 3 

extern int max (int, int); 

main () 
{ 

} 

int w = ONE, x 
int z = 0; 
z max(x,y); 
w = max(z,w); 

/* Function declaration */ 

/* Function definition */ 

TWO, Y = THREE; 

/************************************************************ 
Source file 2 - max function 

************************************************************/ 

int max (a, b) 
int a, b; 
{ 

if a > b ) 
return (a); 

else 
return (b); 

} 

/* Function definition */ 
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In the first source file, the function max is declared without being defined. 
This is known as a "forward declaration." The function definition for main 
includes function calls to max. 

The lines beginning with a number sign (#) are preprocessor directives. 
These directives instruct the preprocessor to replace the identifiers ONE, 
TWO, and THREE with the specified number in the first source file. The 
directives do not apply to the second source file. 

The second source file contains the function definition for max. This 
definition satisfies the calls to max in the first source file. Once the source 
files are compiled, they can be linked and executed as a single program. 

3.4 Program Execution 

Every program has a primary (main) program function. In C, the primary 
program function must be named main. The main function serves as the 
starting point for program execution and usually controls execution of the 
program by directing the calls to other functions in the program. A pro­
gram usually stops executing at the end of the main function, although 
it can stop at other points in the program, depending on the execution 
environment. 

The source program usually has more than one function, each designed 
to perform one or more specific tasks. The main function can call these 
functions to perform the tasks. When a function is called, execution be­
gins at the first statement in the called function. The function returns con­
trol when a return statement is executed or the end of the function is 
encountered. 

All functions, including the IDain function, can be declared to have param­
eters. Functions called by other functions receive values for the parameters 
from the calling functions. Parameters of the IDain function can be 
declared to receive values passed to the main function from outside the 
program. For example, they can receive values from the command line 
when the program is executed. 

When the main function takes parameters, C requires the first two parame­
ters to be named argc and argv. The argc parameter is declared to hold 
the total number of arguments passed to the main function. The argv 
parameter is declared as an array of pointers, each element of which points 
to a string representation of an argument passed to the main function. 
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Traditionally, the third parameter to the main function (if there is a third 
parameter) is given the name envp. The C language does not require this 
name, however. The envp parameter is a pointer to a table of string values 
that set up the environment in which the program executes. 

The operating system supplies values for the argc, argv, and envp param­
eters, and the user supplies the actual arguments to the main function. 
The argument-passing convention in use on a particular system is deter­
mined by the operating system rather than by the C language. For more 
information, see your system documentation. 

Formal parameters to functions must be declared when the function is 
defined. Function definitions are described in more detail in Section 7.2 of 
Chapter 7, "Functions." Function declarations are discussed in Section 4.5 
of Chapter 4, "Declarations." 

3.5 Lifetime and Visibility 

Two concepts, "lifetime" and "visibility," are important in understanding 
the structure of a C program. The lifetime of a variable or function can be 
either "global" or "local." An item with a global lifetime has storage and a 
defined value throughout the duration of the program; an item with a local 
lifetime is allocated new storage each time the "block" in which it is defined 
or declared is entered. When the block is exited, the local item loses its 
storage, and hence its value. Blocks are defined and discussed below. 

An item is said to be "visible" in a block or source file if the type and name 
of the item are known in the block or source file. An item can also be "glo­
bally visible," which means that it is visible, or can be made visible through 
appropriate declarations, throughout all the source files that constitute the 
program. Visibility between source files (also known as "linkage") is dis­
cussed in greater detail in Section 4.6 of Chapter 4, "Declarations." 

A block is a compound statement. Compound statements consist of declara­
tions and statements, as described in Section 6.3 of Chapter 6, "State­
ments." The bodies of C functions are compound statements. Blocks can 
be nested; function bodies frequently contain blocks, which in turn can con­
tain other blocks. 

Declarations and definitions within blocks occur at the "internal level." 
Declarations and definitions outside all blocks occur at the "external level." 
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Both variables and functions can be declared at the external level or at the 
internal level. Variables can also be defined at the internal level, but func­
tions can only be defined at the external level. 

All functions have global lifetimes, regardless of where they are declared. 
Variables declared at the external level always have global lifetimes. Vari­
ables declared at the internal level usually have local lifetimes; however, the 
storage-class specifiers static and extern can be applied to declare global 
variables or references to global variables within a block. See Section 4.6 of 
Chapter 4, "Declarations," for a discussion of these options. 

Variables declared or defined at the external level are visible from the point 
at which they are declared or defined to the end of the source file. These 
variables can be made visible in other source files with appropriate declara­
tions, as described in Section 4.6, "Storage Classes." However, variables 
that are given static storage class at the external level are visible only 
within the source file in which they are defined. 

In general, variables declared or defined at the internal level are visible 
from the point at which they are first declared or defined to the end of the 
block in which the definition or declaration appears. These variables are 
called local variables. If a variable declared inside a block has the same 
name as a variable declared at the external level, the block definition super­
sedes the external level definition of the variable for the duration of the 
block. The visibility of the external level variable is restored when the 
block is exited. 

Block visibility can nest. This means that a block nested inside another 
block can contain declarations that redefine variables declared in the outer 
block. The redefinition of the variable holds in the inner block, but the ori­
ginal definition is restored when control returns to the outer block. Vari­
ables from outer blocks are visible inside all inner blocks, as long as they 
are not redefined in the inner blocks. 

Functions with static storage class are visible only in the source file in 
which they are defined. All other functions are globally visible. For more 
information on function declarations, see Section 4.5 of Chapter 4, 
"Declarations. " 

Table 3.1 summarizes the main factors that determine the lifetime and visi­
bility of functions and variables. The table is not, however, intended to 
cover all cases. Refer to the above discussion and to Section 4.6, "Storage 
Classes," for more information. 
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Table 3.1 

SUIDIDary of LifetiIDe and Visibility 

Storage 
Class 

Level Item Specifier Lifetime Visibility 

External Variable static Global Restricted 
declaration to single 

source file 

Variable extern Global Remainder 
declaration of source file 

Function static Global Restricted 
declaration to single 
or definition source file 

Function extern Global Remainder 
declaration of source file 
or definition 

Internal Variable extern or Global Block 
definition or static 
declaration 

Variable auto or Local Block 
definition or register 
declaration 

The following program example illustrates blocks, nesting, and visibility of 
variables: 

Example 

/* i defined at external level */ 
int i = 1; 

/* main function defined at external level */ 
main () 
{ 

/* prints 1 (value of external level i) */ 
printf ("%d\n", i); 

/* first nested block */ 
{ 

/* i and j defined at internal level */ 
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} 

int i = 2, j = 3; 

/* prints 2, 3 */ 
printf ("%d\n%d\n" 1 i , j); 

/* second nested block */ 
{ 

/* i is redefined */ 
int i = 0; 

/* prints 0 , 3 */ 
printf ("%d\n%d\n" 1 i , j); 

/* end of second nested block */ 
} 

/* prints 2 (outer definition restored) */ 
printf("%d\n", i); 

/* end of first nested block */ 
} 

/* prints 1 (external level definition restored) */ 
printf ("%d\n" 1 i); 

In this example, there are four levels of visibility: the external level and 
three block levels. Assuming that the function pr int f is defined elsewhere 
in the program, the main function prints out the values 1, 2, 3, 0, 3, 2, 1. 

3.6 Naming Classes 

In any C program, identifiers are used to refer to many different kinds of 
items. When you write a C program, you provide identifiers for the func­
tions, variables, formal parameters, union members, and other items the 
program uses. C allows you to use the same identifier for more than one 
program item, as long as you follow the rules outlined in this section. 

The compiler sets up "naming classes" to distinguish between the 
identifiers for different kinds of items. The names within each class must 
be unique to avoid conflict, but an identical name can appear in one or 
more naming classes. This means that you can use the same identifier for 
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two or more different items if the items are in different naming classes. The 
context of a given identifier in the program allows the compiler to resolve 
the reference without ambiguity. 

The kinds of items you can name in C programs, and the rules for naming 
them, are described as follows: 

Items 

Variables and functions 

Formal parameters 

Enumeration constants 

typedef names 

Naming Class 

The names of variables and functions are 
in a naming class with formal parameters 
and enumeration constants. Variable 
and function names must, therefore, be 
distinct from other names in this class 
with the same visibility. 

However, variable names can be redefined 
within program blocks, as described in 
Section 3.5, "Lifetime and Visibility." 
Function names can also be redefined in 
this manner. 

The names of formal parameters to a 
function are grouped with the names of 
the function's variables, so the formal 
parameter names should be distinct from 
the variable names. Redeclaring formal 
parameters within the function causes an 
error. 

Enumeration constants are in the same 
naming class as variable and function 
names. This means that names of 
enumeration constants must be distinct 
from all variable and function names 
with the same visibility, and distinct 
from the names of other enumeration 
constants with the same visibility. How­
ever, like variable names, the names of 
enumeration constants have nested visi­
bility, meaning that they can be rede­
fined within blocks. See Section 3.5, 
"Lifetime and Visibility." 

The names of types defined with typedef 
are in a naming class with variable and 
function names. They must, therefore, 
be distinct from all variable and function 
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Tags 

Members 

Statement labels 

Example 

struct student { 
char student[20J; 
int class; 
int id; 
} student; 

names with the same visibility, and also 
from the names of formal parameters and 
enumeration constants. Like variable 
names, names used for typedef types can 
be redefined within program blocks. See 
Section 3.5, "Lifetime and Visibility." 

Enumeration, structure, and union tags 
are grouped together in a single naming 
class. Each enumeration, structure, or 
union tag must be distinct from other 
tags with the same visibility. Tags do 
not conflict with any other names. 

The members of each structure and union 
form a naming class. The name of a 
member must, therefore, be unique 
within the structure or union, but it does 
not have to be distinct from any other 
name in the program, including names of 
members of different structures and 
unIOns. 

Statement labels form a separate naming 
class. Each statement label must be dis­
tinct from all other statement labels in 
the same function. Statement labels do 
not have to be distinct from any other 
names or from label names in other 
functions. 

Structure tags, structure members, and variable names are in three 
different naming classes, so no conflict occurs among the three items named 
student in the above example. The compiler determines how to interpret 
each occurrence of student by its context in the program. For example, 
when student appears after the struct keyword, it is known to be a 
structure tag. When student appears after a member-selection operator 
(-> or .), the name refers to the structure member. In other contexts, the 
identifier student refers to the structure variable. 
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Declarations 

4.1 Introduction 

This chapter describes the form and constituents of C declarations for vari­
ables, functions, and types. C declarations have the form 

[sc-specifier] [type-specifier] declarator[ =initializer] [, declarator[ =initializer] ... ] 

where sc-specifier is a storage-class specifier, type-specifier is the name of a 
defined type, declarator is an identifier that can be modified to declare a 
pointer, array, or function, and initializer gives a value or sequence of 
values to be assigned to the variable being declared. 

All C variables must be explicitly declared before they are used. C func­
tions can be declared explicitly in a function declaration or implicitly by 
calling the function before it is declared or defined. 

The C language defines a standard set of data types. You can add to 
that set by declaring new data types based on types already defined. You 
can declare arrays, data structures, and pointers to both variables and 
functions. 

C declarations require one or more declarators. A declarator is an identifier 
that can be modified with brackets ([ ]), asterisks (*), or parentheses to de­
clare an array, pointer, or function type. When you declare simple vari­
ables (such as character, integer, and floating-point values), or structures 
and unions of simple variables, the declarator is just an identifier. 

Four storage-class specifiers are defined in C: auto, extern, register, and 
static. The storage-class specifier of a declaration affects how the declared 
item is stored and initialized and which portions of a program can reference 
it. The location of the declaration within the source program and the pres­
ence or absence of other declarations of the variable are also important fac­
tors in determining the visibility of variables. 

Function declarations are presented in Section 4.5. For information on 
function definitions, see Section 7.2. 
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4.2 Type Specifiers 

The C language provides definitions for a set of basic data types, called 
"fundamental" types. Their names are listed in Table 4.1. 

Table 4.1 

Fundamental Types 

Integral Typesa 

signed char 

signed int 

signed short int 

signed long int 

unsigned char 

unsigned int 

unsigned short int 

unsigned long int 

Floating-Point 
Typesa Other 

float voidb 

double (also called 
long float) 

a Used to declare variables and function return types 

b Used only to declare function return types 

Enumeration types are also considered fundamental types. Type specifiers 
for enumeration types are discussed in Section 4.8.1. The signed char, 
signed int, signed short int, and signed long int types, together with 
their unsigned counterparts, are called "integral" types. The float and 
double type specifiers refer to "floating-point" types. Variable and func­
tion declarations can use any of the integral or floating-point type 
specifiers. 

The void type can be used only to declare functions that return no value. 
Function types are discussed in Section 4.5, "Function Declarations." 

You can create additional type specifiers with typedef declarations, dis­
cussed in Section 4.8.2. 
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Type specifiers are commonly abbreviated, as shown in Table 4.2. Integral 
types are signed by default. Thus, if the unsigned keyword is omitted from 
the type specifier, the integral type is signed, even if the signed keyword is 
not specified. 

In some implementations, a compiler option may be available to change the 
default for the char type from signed to unsigned type. When such an 
option is in effect, the abbreviation char has the same meaning as 
unsigned char, and the signed keyword must be used to declare a signed 
character value. 

Table 4.2 

Type Specifiers and Abbreviations 

Type Specifier 

signed charR 

signed int 

signed short int 

signed long int 

unsigned char b 

unsigned int 

unsigned short int 

unsigned long int 

float 

long float 

Abbreviations 

char 

signed, int 

short, signed short 

long, signed long 

unsigned 

unsigned short 

unsigned long 

double 

a When the char type is made unsigned by default (through 
the use of a compiler option), signed char cannot be 
abbreviated. 

b When the char type is made unsigned by default (through 
the use of a compiler option), unsigned char can be 
abbreviated as char. 
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Note 

This manual generally uses the abbreviated forms listed in Table 4.2 
rather than the long forms of the type specifiers and assumes that the 
char type is signed by default. Therefore, throughout this manual, 
char stands for signed char. 

Table 4.3 summarizes the storage associated with each fundamental type 
and gives the range of values that can be stored in a variable of each type. 
Since the void type does not apply to variables, it is not included in the 
table. 

Table 4.3 

Storage and Range of Values for Fundamental Types 

Range of Values 
Type Storage (Internal) 

char 1 byte -128 to 127 

int imp lemen tation 
dependent 

short 2 bytes - 32768 to 32767 

long 4 bytes - 2,147,483,648 to 2,147,483,647 

unsigned char 1 byte o to 255 

unsigned implemen tation 
dependent 

unsigned short 2 bytes o to 65535 

unsigned long 4 bytes o to 4,294,967,295 

float 4 bytes IEEE standard notation; 
discussed below 

double 8 bytes IEEE standard notation; 
discussed below 

The char type is used to store a letter, digit, or symbol from the represent­
able character set. The integer value of a character is the ASCII code 
corresponding to that character. Since the char type is interpreted as a 
signed I-byte integer, values in the range -128 to 127 are permitted for 
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char variables, although only the values from 0 to 127 have character 
equivalents. Similarly, the unsigned char type can store values in the 
range 0 to 255. 

Note that the storage and range associated with the int and unsigned int 
types are not defined by the C language. Instead, the size of an int (signed 
or unsigned) corresponds to the natural size of an integer on a given 
machine. For example, on a 16-bit machine the int type is usually 16 bits, 
or 2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes. 
Thus, the int type is equivalent either to the short int or the long int 
type, depending on the implementation. Similarly, the unsigned int type is 
equivalent either to the unsigned short or unsigned long type. 

The int and unsigned int type specifiers are widely used in C programs 
because they allow a particular machine to handle integer values in the 
most efficient way for that machine. However, since the size of the int and 
unsigned int types varies, programs that depend on a specific int size may 
be nonportable. Expressions involving the sizeof operator (discussed in 
Section 5.3.4) can be used in place of hard-coded data sizes to increase the 
portability of the code. 

The type specifiers int and unsigned int (or simply unsigned) are used to 
define certain features of the C language (tor instance, for defining the 
enum type later in Section 4.8.1). In these cases, the definition of int and 
unsigned int for a particular implementation determines the actual 
storage. 

Range of Values 

The range of values for a variable lists the minimum and maximum values 
that can be represented internally in a given number of bits. However, 
because of C's conversion rules (discussed in detail in Chapter 5, "Expres­
sions and Assignments"), it is not always possible to use the maximum or 
minimum for a constant of a given type in an expression. 

For example, the constant expression -32768 consists of the arithmetic 
negation operator (-) applied to the constant value 32768. Since 32768 is 
too large to represent as a short, it is given long type, and the constant 
expression -32768 consequently has long type. The value -32768 can only 
be represented as a short by type casting it to the short type. No infor­
mation is lost in the type cast, since -32768 can be represented internally in 
2 bytes of storage space. 
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Similarly, a value such as 65000 can only be represented as an 
unsigned short by type casting the value to unsigned short type or by 
giving the value in octal or hexadecimal notation. The value 65000 in 
decimal notation is considered a signed constant, and is given long type 
because 65000 does not fit into a short. This long value can then be cast 
to the unsigned short type without loss of information, since 65000 will fit 
into 2 bytes of storage space when it is stored as an unsigned number. 

Octal and hexadecimal constants may have either signed or unsigned type, 
depending on their size (see Section 2.3.1 for more information). However, 
the method used for assigning types to these constants ensures that they 
always behave like unsigned integers in type conversions. 

Floating-point numbers use the IEEE (Institute of Electrical and Electron­
ics Engineers, Inc.) format. Values with float type have 4 bytes, consisting 
of a sign bit, a 7-bit excess 127 binary exponent, and a 24-bit mantissa. The 
mantissa represents a number between 1.0 and 2.0. Since the high-order bit 
of the mantissa is always 1, it is not stored in the number. This representa­
tion gives a range of approximately 3.4E-38 to 3.4E+38. 

Values with double type have 8 bytes. The format is similar to the float 
format, except that the exponent is 11 bits excess 1023, and the mantissa 
has 52 bits, plus the implied high-order 1 bit. This gives a range of approxi­
mately 1.7E-308 to 1.7E+308. 

4.3 I>eclarators 

Syntax 

identifier 
declarator[ ] 
declarator[ constant-expression] 
... declarator 
declarator{ ) 
declarator{ arg-type-list) 
( declarator) 

C allows the programmer to declare arrays of values, pointers to values, and 
functions returning values of specified types. To declare these items, you 
must use a declarator. 
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A declarator is an identifier, possibly modified with brackets ([ ]), 
parentheses, and asterisks (lie), to declare an array, pointer, or function 
type. Declarators appear in the pointer, array, and function declarations 
described in later sections of this chapter (Sections 4.4.6, 4.4.5, and 4.5, 
respectively). This section discusses the rules for forming and interpreting 
declarators. 

4.3.1 Pointer, Array, and Function Declarators 

When a declarator consists of an unmodified identifier, the item being 
declared has an unmodified type. Asterisks (lie) can appear to the left of an 
identifier, modifying it to a pointer type. If the identifier is followed by 
brackets ([ ]), the type is modified to an array type. If the identifier is fol­
lowed by parentheses, the type is modified to a function returning type. 

A declarator does not constitute a complete declaration; a type specifier 
must be included as well. The type specifier gives the type of the elements 
for an array type, the type of object addressed by a pointer type, and the 
return type of a function. 

The sections on pointer, array, and function declarations later in this 
chapter discuss each type of declaration in detail (see Sections 4.4.6, 4.4.5, 
and 4.5, respectively). The following examples illustrate the simplest forms 
of declarators: 

Examples 

int list[20J; /* Example 1 */ 

char h::p; /* Example 2 */ 

double func(void); /* Example 3 */ 

The above examples declare the following: 

1. An array of int values (list) 

2. A pointer to a char value (cp) 

3. A function with no arguments returning a double value (func) 
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4.3.2 Complex Declarators 

Any declarator can be enclosed in parentheses. Parentheses are typically 
used to specify a particular interpretation of a "complex" declarator, as 
discussed below. A "complex" declarator is an identifier qualified by more 
than one array, pointer, or function modifier. 

Various combinations of the array, pointer, and function modifiers can be 
applied to a single identifier. Some combinations are illegal. An array can­
not be composed of functions, and a function cannot return an array or a 
function. 

In interpreting complex declarators, brackets and parentheses (to the right 
of the identifier) take precedence over asterisks (to the left of the identifier). 
Brackets and parentheses have the same precedence and associate left to 
right. The type specifier is applied as the last step, when the declarator has 
been fully interpreted. Parentheses can be used to override the default 
association order in a way that forces a particular interpretation. 

A simple rule that can be helpful in interpreting complex declarators is to 
read them "from the inside out." Start with the identifier and look to the 
right for brackets or parentheses. Interpret these (if any), then look to the 
left for asterisks. If you encounter a right parenthesis at any stage, go back 
and apply these rules to everything within the parentheses before proceed­
ing. As the last step, apply the type specifier. To illustrate this rule, the 
steps are numbered in order in the following example: 

char * (* (*var) ()) [10] ; 
~ ~ ~ ~ -

7 642 1 3 5 

1. The identifier var is declared as 

2. a pointer to 

3. a function returning 

4. a pointer to 

5. an array of 10 elements, which are 

6. pointers to 

7. char values. 

The following examples provide further illustration and show how 
parentheses can affect the meaning of a declaration: 
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Examples 

/******************** Example 1 ********************/ 

/* array of pointers to int values */ 
int *var[5J; 

/******************** Example 2 ********************/ 

/* pointer to array of int values */ 
int (*var) [5J; 

/******************** Example 3 ********************/ 

/* function returning pointer to long */ 
long *var(long/long); 

/******************** Example 4 ********************/ 

/* pointer to function returning long */ 
long (*var) (long , long); 

/******************** Example 5 ********************/ 

/* array of pointers to functions 
returning structures */ 

struct both { 
int a; 
char b; 
} ( *var [5J ) ( struct both , struct both); 

/******************** Example 6 ********************/ 

/* function returning pointer 
to an array of 3 double values */ 

daub 1 e ( * v a r ( daub 1 e ( *) [3 J ) ) [3 J ; 

/******************** Example 7 ********************/ 

/* array of arrays of pointers 
to pointers to unions */ 

union sign { 
int x; 
unsigned y; 
} **var [5J [5J ; 

/******************** Example 8 ********************/ 

/* array of pointers to arrays 
of pointers to unions */ 

union sign * (*var [5J ) [5J ; 
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Example 

1 

2 

3 

4 

5 

6 

60 

Description 

In the first example, the array modifier has higher prior­
ity than the pointer modifier, so var is declared to be an 
array. The pointer modifier applies to the type of the 
array elements; the elements are pointers to int values. 

In the second example, parentheses alter the meaning of 
the declaration in the first example. Now the pointer 
modifier has higher priority than the array modifier, and 
var is declared to be a pointer to an array of five int 
values. 

Function modifiers also have higher priority than 
pointer modifiers, so the third example declares var 
to be a function returning a pointer to a long value. 
The function is declared to take two long values as 
arguments. 

The fourth example is similar to the second example. 
Parentheses give the pointer modifier higher priority 
than the function modifier, and var is declared to be a 
pointer to a function returning a long value. Again, the 
function takes two long arguments. 

The elements of an array cannot be functions, but the 
fifth example demonstrates how to declare an array of 
pointers to functions instead. In this example, var is 
declared to be an array of five pointers to functions 
returning structures with two members. The arguments 
to the functions are declared to be two structures with 
the same structure type, both. Note that the 
parentheses surrounding *var [5] are required. 
Without them, the declaration is an illegal attempt to 
declare an array of functions, as shown below: 

/* ILLEGAL */ 
struct both *var[5] ( struct both, struct both ); 

The sixth example shows how to declare a function 
returning a pointer to an array, since functions return­
ing arrays are illegal. Here var is declared to be a func­
tion returning a pointer to an array of three double 
values. The function var takes one argument; the argu­
ment, like the return value, is a pointer to an array of 
three double values. The argument type is given by a 
complex abstract declarator. The parentheses around 
the asterisk in the argument type are required; without 
them, the argument type would be an array of three 
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pointers to double values. For a discussion and ex­
amples of abstract declarators, see Section 4.9, "Type 
Names." 

7 A pointer can point to another pointer, and an array can 
contain array elements, as the seventh example shows. 
Here var is an array of five elements. Each element is a 
five-element array of pointers to pointers to unions with 
two members. 

8 The eighth example shows how the placement of 
parentheses alters the meaning of the declaration. In 
this example, var is a five-element array of pointers to 
five-element arrays of pointers to unions. 

4.3.3 Declarators with Special Keywords 

Your implementation of Microsoft C may include the following special 
keywords: 

cdecl 
far 
fortran 
huge 
near 
pascal 

These keywords are used to modify the meaning of variable and function 
declarations. See your system documentation for a full discussion of the 
effects of these special keywords. 

When a special keyword occurs in a declarator, it modifies the item immedi­
ately to the right of the keyword. More than one special keyword can be 
applied to the same item. For example, a function identifier might be 
modified with both the far and pascal keywords. The order of the key­
words in this case does not matter (that is, far pascal and pascal far have 
the same effect). 

Two or more special keywords can be used in different parts of the declara­
tion to modify the meaning of the declaration. For example, the following 
declaration contains two occurrences of the far keyword: 

int far * pascal far func(void); 

The function identifier fune is modified with the pascal and far keywords. 
The return value of fune is declared to be a far pointer to an int value. 
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As in any C declaration, parentheses can be used to override the default 
interpretation of the declaration. The rules governing complex declarators 
(discussed in the previous section) apply to declarations using the special 
keywords as well. 

The following examples show the use of special keywords in declarations: 

Examples 

/******************** Example 1 ********************/ 

int huge database[65000]; 

/******************** Example 2 ********************/ 

char * far * x; 

/******************** Example 3 ********************/ 

double near cdecl calc(double,double); 
double cdecl near calc(double,double); 

/******************** Example 4 ********************/ 

char far fortran initlist[INITSIZE]; 
char far *nextchar, far *prevchar, far *currentchar; 

/******************** Example 5 ********************/ 

char far * (far *getint) (int far *); 

6 5 2 1 3 4 

Example 1 declares a huge array named database with 65000 int ele­
ments. The huge keyword modifies the array declarator. 

In Example 2, the far keyword modifies the asterisk to its right, making x a 
far pointer to a pointer to char. The declaration could be expressed 
equivalently in the following manner: 

char * (far *x); 

Example 3 shows two equivalent declarations. Both declare ca 1 c as a 
function with the near and cdecl attributes. 
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Example 4 also shows two declarations: the first declares a far fortran 
array of characters named ini tlist, and the second declares three far 
pointers named nextchar, prevchar, and currentchar. The pointers 
might be used to store the addresses of characters in the ini tl ist array. 
Note that the far keyword must be repeated before each declarator. 

Example 5 shows a more complex declaration with several occurrences of 
the far keyword. The steps in interpreting this declaration are as follows: 

1. The identifier getint is declared as a 

2. far pointer to 

3. a function taking 

4. a single argument that is a far pointer to an int value 

5. and returning a far pointer to a 

6. char value. 

Note that the far keyword always modifies the item immediately to its 
right. 

4.4 Variable Declarations 

This section describes the form and meaning of variable declarations. In 
particular, it explains how to declare the following: 

Type of Variable 

Simple variables 

Enumeration variables 

Structures 

Unions 

Description 

Single-value variables with integral or 
floating-point type. 

Simple variables with integral type that 
hold one value from a set of named integer 
constants. 

Variables composed of a collection of values 
that may have different types. 

Variables composed of several values of 
different types occupying the same storage 
space. 
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Arrays 

Pointers 

Variables composed of a collection of ele­
ments with the same type. 

Variables that point to other variables. 
These variables contain variable locations 
(in the form of addresses) instead of values. 

The variable declarations discussed in this section have the general form 

Usc-specifier] type-specifier declarator [, declarator ... ] 

where type-specifier gives the data type of the variable and declarator is the 
variable's name, possibly modified to declare an array or a pointer type. 
More than one variable can be defined in the declaration by giving multiple 
declarators, separated by commas. 

The se-specifier gives the storage class of the variable. In some contexts, 
variables can be initialized when they are declared. For information on 
storage classes and initialization, see Sections 4.6 and 4.7, respectively. 

4.4.1 Simple Variable Declarations 

Syntax 

type-specifier identifier [, identifier ... ]; 

A declaration for a simple variable defines the variable's name and 
type; it can also define the variable's storage class, as described in Section 
4.6. The variable's name is the identifier given in the declaration. The 
type-specifier gives the name of a defined data type, as described below. 

You can define several variables in the same declaration by giving a list of 
identifiers separated by commas (,). Each identifier in the list names a vari­
able. All variables defined in the declaration have the same type. 

Examples 

int x; /* Example 1 */ 

unsigned long reply, flag; /* Example 2 */ 

double order; /* Example 3 */ 
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The first example defines a simple variable x. This variable can hold any 
value in the set defined by the int type in a particular implementation. 

The second example defines two variables, reply and flag. Both vari­
ables have unsigned long type and hold unsigned integer values. 

The third example defines a variable order that has double type. 
Floating-point values can be assigned to this variable. 

4.4.2 Enumeration Declarations 

Syntax 

enum [tag] {enum-list} identifier [, identifier ... ]; 
enum tag identifier [, identifier ... ]; 

An enumeration declaration gives the name of the enurp.eration variable 
and defines a set of named integer constants (the "enumeration set"). A 
variable declared to have enumeration type stores anyone of the vafues of 
the enumeration set defined by that type. The integer constants of the 
enumeration set have int type; thus, the storage associated with an 
enumeration variable is the storage required for a single int value. 

Enumeration declarations begin with the enurn keyword and have two 
forms, as shown above. In the first form, the values and names of the 
enumeration set are specified in the enum-list, described in detail below. 
The optional tag is an identifier that names the enumeration type defined 
by the enum-list. The identifier names the enumeration variable. More than 
one enumeration variable can be defined in the declaration. 

The second form uses an enumeration tag to refer to an enumeration type. 
The enum-list does not appear in this type of declaration because the 
enumeration type is defined elsewhere. An error is generated if the given 
tag does not refer to a defined enumeration type or if the named type is not 
currently visible. 

An enum-list has the following form: 

identifier [ = constant-expression] 
[, identifier [ = constant-expression] ] 
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Each identifier names a value of the enumeration set. By default, the first 
identifier is associated with the value 0, the next identifier is associated 
with the value 1, and so on through the last identifier appearing in the 
declaration. The name of an enumeration constant is equivalent to its 
value. 

The phrase "= constant-expression" overrides the default sequence of 
values. An identifier followed by the phrase "= constant-expression" is asso­
ciated with the value given by constant-expression. The constant-expression 
must have int type and can be negative. The next identifier in the list is 
associated with the value of "constant-expression + 1", unless it is explicitly 
given another value. 

An enumeration set can contain duplicate constant values, but each 
identifier in an enumeration list must be unique; that is, it must be dif­
ferent from all other enumeration identifiers with the same visibility. For 
example, the value ° could be given to two different identifiers, nu 11 and 
zero, in the same set. The identifiers in the list must also be distinct from 
other identifiers with the same visibility, including ordinary variable names 
and identifiers in other enumeration lists. Enumeration tags must be 
distinct from other enumeration, structure, and union tags with the same 
visibility. 

Examples 

/******************** Example 1 ********************/ 

enum day { 
saturday, 
sunday = 0, 
monday, 
tuesday, 
wednesday, 
thursday, 
friday 
} workday; 

/******************** Example 2 ********************/ 

enum day today = wednesday; 

The first example defines an enumeration type named day and declares a 
variable named workday with that enumeration type. The value ° is asso­
ciated with saturday by default. The identifier sunday is explicitly set 
to o. The remaining identifiers are given the values 1 through 5 by default. 
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In the second example, a value from the set is assigned to the variable 
today. Note that the name of the enumeration constant is used to assign 
the value. Since the day enumeration type was previously declared, only 
the enumeration tag is necessary in this declaration. 

4.4.3 Structure Declarations 

Syntax 

struct [tag] {member-declaration-list} declarator [, declarator ... ]; 
struct tag declarator [, declarator ... ]; 

A structure declaration defines the name of the structure variable and 
specifies a sequence of variable values (called "members" of the structure) 
that can have different types. A variable with structure type holds the 
entire sequence defined by that type. 

Structure declarations begin with the struct keyword and have two forms, 
as shown above. In the first form, the types and names of the structure 
members are specified in the member-declaration-list, described in detail 
below. The optional tag is an identifier that names the structure type 
defined by the member-declaration-list. 

Each declarator gives the name of a structure variable. The declarator may 
also modify the type of the variable to a pointer to the structure type, an 
array of structures, or a function returning a structure. 

The second form uses a structure tag to refer to a structure type. The 
member-declaration-list does not appear in this type of declaration because 
the structure type is defined elsewhere. The structure type definition must 
be visible for a tag declaration to be used, and the definition must appear 
prior to the tag declaration, unless the tag is used to declare a pointer vari­
able or a typedef structure type. These declarations can use a structure 
tag before the structure type is defined, as long as the structure definition is 
visible to the declaration. 

A member-declaration-list is a list of one or more variable or bit-field 
declarations. Each variable declared in the member-declaration-list is 
defined as a member of the structure type. Variable declarations within 
member declaration lists have the same form as the variable declarations 
discussed in this chapter, except that the declarations do not contain 
storage-class specifiers or initializers. The structure members can have any 
variable type: fundamental, array, pointer, union, or structure. 
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A member cannot be declared to have the type of the structure in which it 
appears. However, a member can be declared as a pointer to the structure 
type in which it appears, allowing you to create linked lists of structures. 

Bit Fields 

A bit-field declaration has the following form: 

type-specifier [identifier] : constant-expression; 

The bit field consists of the number of bits specified by constant-expression. 
The type-specifier for a bit-field declaration must specify an unsigned 
integral type, and the constant-expression must be a non-negative integer 
value. Arrays of bit fields, pointers to bit fields, and functions returning bit 
fields are not allowed. The optional identifier names the bit field. An 
unnamed bit field whose width is specified as 0 has a special function: it 
guarantees that storage for the member following it in the declaration list 
begins on an int boundary. 

The identifiers in the structure declaration list must be unique within that 
list. It is not necessary for the identifiers in the list to be distinct from ordi­
nary variable names or from identifiers in other structure declaration lists. 
Structure tags must be distinct from other structure, union, and enumera­
tion tags having the same visibility. 

Storage 

Structure members are stored sequentially in the same order in which they 
are declared: the first member has the lowest memory address and the last 
member the highest. The storage for each member begins on a memory 
boundary appropriate to its type. Therefore, unnamed blanks can occur 
between the members of a structure in memory. 

Bit fields are not stored across boundaries of their declared type. For 
example, a bit field declared with unsigned int type is either packed into 
the space remaining in the previous unsigned int or it begins a new 
unsigned into 
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Examples 

/******************** Example 1 ********************/ 

struct { 
float x,y; 

} complex; 

/******************** Example 2 ********************/ 

struct employee { 

} temp; 

char name[20J; 
int id; 
long class; 

/******************** Example 3 ********************/ 

struct employee student, faculty, staff; 

/******************** Example 4 ********************/ 

struct sample { 

} x; 

char c; 
float *pf; 
struct sample *next; 

/******************** Example 5 ********************/ 

struct { 
unsigned icon : 8; 
unsigned color : 4; 
unsigned underline : 1; 
unsigned blink : 1; 

} screen [25J [80J ; 

The first example defines a structure variable named complex. This struc­
ture has two members with float type, x and y. The structure type is not 
named. 

The second example defines a structure variable named temp. The struc­
ture has three members: name, id, and class. The name member is a 
20-element array and id and cl ass are simple members with int and long 
type, respectively. The identifier employee is the structure tag. 
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The third example defines three structure variables: student, facul ty, 
and sta f f. Each structure has the same list of three members. The 
members are declared to have the structure type employee, defined in the 
previous example. 

The fourth example defines a structure variable named x. The first two 
members of the structure are a char variable and a pointer to a float 
value. The third member, next, is declared as a pointer to the structure 
type being defined (sample). 

The fifth example defines a two-dimensional array of structures 
named screen. The array contains 2000 elements, and each element is an 
individual structure containing four bit-field members: icon, color, 
underline, and blink. 

4.4.4 Union Declarations 

Syntax 

union [tag] {member-declaration-list} declarator [, declarator ... ]; 
union tag declarator[, declarator ... ]; 

A union declaration defines the name of the union variable and specifies a 
set of variable values, called "members" of the union, that can have 
different types. A variable with union type stores any single value defined 
by that type. 

Union declarations have the same forms as structure declarations except 
that they begin with the union keyword instead of the struct keyword. 
The same rules govern structure and union declarations, except that bit­
field members are not allowed in unions. 

The storage associated with a union variable is the storage required for the 
longest member of the union. When a smaller member is used, the union 
variable may contain unused memory space. All members are stored in the 
same memory space and start at the same address. The stored value is 
overwritten each time a value is assigned to a different member. 
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Examples 

/******************** Example 1 ********************/ 

union sign { 
int svar; 
unsigned uvar; 

} number; 

/******************** Example 2 ********************/ 

union { 
char *a, b; 
float f[20J; 

} jack; 

/******************** Example 3 ********************/ 

union { 
struct { 

char icon; 
unsigned color : 4; 

} windowl, window2, window3, window4; 
} screen [25J [80J ; 

The first example defines a union variable named number that has two 
members: svar, a signed integer, and uvar, an unsigned integer. This 
declaration allows the current value of number to be stored as either a 
signed or an unsigned value. The union type is named sign. 

The second example defines a union variable named jack. The members of 
the union are, in order of their declaration, a pointer to a char value, a 
char value, and an array of float values. The storage allocated for jack is 
the storage required for the 20-element array f, since f is the longest 
member of the union. The union type is unnamed. 

The third example defines a two-dimensional array of unions named 
screen. The array contains 2000 elements. Each element is an individual 
union with four members: windowl, window2, window3, and window4, 
where each member is a structure. At any given time, each union element 
holds one of the four possible structure members. Thus, the screen vari­
able is a composite of up to four different "windows." 
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4.4.5 Array Declarations 

Syntax 

type-specifier declarator [constant-expression]; 
type-specifier declarator [ ]; 

A declaration for an array defines the name of the array and the type of 
each element. It can also define the number of elements in the array. A 
variable with array type is considered a pointer to the type of the array ele­
ments, as described in Section 5.2.2, "Identifiers." 

Array declarations have two forms, as shown above. The declarator 
~ives the variable name, and may modify the variable's type. The brackets 
l [ ]) following the declarator modify the declarator to array type. The 
constant-expression inside the brackets defines the number of elements in 
the array. Each element has the type given by the type-specifier, which can 
specify any type except void and function types. 

The second form omits the constant-expressz'on in brackets. This form 
can be used only if the array is initialized, declared as a formal parameter, 
or declared as a reference to an array explicitly defined elsewhere in the 
program. 

Arrays of arrays, or "multidimensional" arrays, are defined by giving a list 
of bracketed constant-expressz'ons following the array declarator: 

type-specifier declarator[ constant-expression] [constant-expression] ... 

Each constant-expression in brackets defines the number of elements 
in a given dimension: two-dimensional arrays have two bracketed expres­
sions, three-dimensional arrays have three, and so on. When a multidimen­
sional array is declared within a function, the first constant-expression can 
be omitted if the array is initialized, declared as a formal parameter, or 
declared as a reference to an array explicitly defined elsewhere in the 
program. 

Arrays of pointers to various types can be defined by using complex 
declarators, as described earlier in Section 4.3.2. 

The storage associated with an array type is the storage required for all of 
its elements. The elements of an array are stored in contiguous and increas­
ing memory locations, from the first element to the last. No blanks occur 
between the elements of an array in storage. 
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Arrays are stored by row. For example, the following array consists of two 
rows with three columns each: 

char A [2J [3J ; 

The three columns of the first row are stored first, followed by the three 
columns of the second row. This means that the last subscript varies most 
quickly. 

To refer to an individual element of an array, use a subscript expression, 
discussed in Section 5.2.5. 

Examples. 

/******************** Example 1 ********************/ 

int scores [10J, game; 

/******************** Example 2 ********************/ 

float matrix [10J [15J ; 

/******************** Example 3 ********************/ 

struct { 
float x,y; 
} complex[100J; 

/******************** Example 4 ********************/ 

char *name[20J; 

The first example defines an array variable named scores with 10 ele­
ments, each of which has int type. The variable named game is declared as 
a simple variable with int type. 

The second example defines a two-dimensional array named matr ix. The 
array has 150 elements, each having float type. 

The third example defines an array of structures. This array has 100 ele­
ments; each element is a structure containing two members. 

The fourth example defines an array of pointers. The array has 20 ele­
ments, each of which is a pointer to a char value. 
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4.4.6 Pointer Declarations 

Syntax 

type-specifier *declarator; 

A pointer declaration defines the name of the pointer variable and the type 
of the object to which the variable points. The declarator defines the 
variable's name, and may modify its type. The type-specifier gives the type 
of the object, which can be any fundamental, structure, or union type. 

Pointer variables can also point to functions, arrays, and other pointers. 
For information on declaring more complex pointer types, refer to Section 
4.3.2, "Complex Declarators." 

A pointer to a structure or union type can be declared before the structure 
or union type is defined, as long as the pointer is not used before the type is 
defined. Such declarations are allowed because the compiler does not need 
to know the size of the structure or union to allocate space for the pointer 
variable. The pointer is declared by using the structure or union tag (see 
the fourth example below). 

A variable declared as a pointer holds a memory address. The amount of 
storage required for an address and the meaning of the address depend on 
the given implementation of the compiler. Pointers to different types are 
not guaranteed to have the same length. 

In some implementations, the special keywords near, far, and huge are 
available to modify the size of a pointer. Declarations using special key­
words are described in Section 4.3.3. See your system documentation for 
more information on the meaning and use of these keywords. 

Examples 

char *message; /* Example 1 */ 

int *pointers[10J /* Example 2 */ 

int (*pointer) [10J ; /* Example 3 */ 

struct list *next , *previous; /* Example 4 */ 

struct list { /* Example 5 */ 
char *token; 
int count; 
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struct list *next; 
} line; 

struct id { 
unsigned int id_no; 
struct name *pname; 

} record; 

/* Example 6 */ 

The first example defines a pointer variable named message. It points to a 
variable with char type. 

The second example defines an array of pointers named pointers. The 
array has 10 elements; each element is a pointer to a variable with int type. 

The third example defines a pointer variable named pointer; it points to 
an array with 10 elements. Each element in this array has int type. 

The fourth example defines two pointer variables that point to the struc­
ture type 1 ist. This declaration can appear before the definition of the 
list structure type (see the next example), as long as the list type 
definition has the same visibility as the declaration. 

The fifth example declares the variable 1 ine to have the structure type 
named 1 ist. The 1 ist structure type is defined to have three members; 
the first member is a pointer to a char value, the second is an int value, 
and the third is a pointer to another 1 ist structure. 

The sixth example declares the variable record to have the structure type 
id. Note that pname is declared as a pointer to another structure type 
name. This declaration can occur before the name type is defined. 

4.5 Function Declarations 

Syntax 

[type-specifier] declarator([ arg-type-list]) [, declarator ... ]; 

A function declaration defines the name and return type of a function, and 
possibly establishes the types and number of arguments to the function. 
Function declarations, also called forward declarations, do not define the 
function body or parameters; instead, they permit the attributes of the 
function to be known before the function is defined. Function definitions 
are described in detail in Section 7.2. 
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The declarator of the function declaration names the function, and the 
type-specifier gives the function's return type. If the type-specifier is omit­
ted from a function declaration, the return type of the function is assumed 
to be into 

Function declarations may include either the extern or the static storage­
class specifier. Storage-class specifiers are discussed in Section 4.6. 

Argument-Type List 

The arg-type-list establishes the number and types of the arguments to the 
function, and has the following form: 

type-name-list[, ••• ] 

The type-name-list is a list of one or more type names. Each type-name is 
separated from the next by a comma. The first type-name gives the type of 
the first argument to the function, the second type-name gives the type of 
the second argument, and so on. If the arg-type-list ends with a comma fol­
lowed by three periods (, ••• ), the number of arguments to the function is 
variable. However, the function is expected to have at least as many argu­
ments as there are type-names preceding the last comma. 

If the arg-type-list contains only three periods ( •.• ), the number of argu­
ments to the function is variable and may be zero. 

Note 

To maip.tain compatibility with previous versions, the compiler will also 
accept the comma character, without the trailing periods, at the end of 
the arg-type-list to indicate a variable number of arguments. A single 
comma can also be used instead of three periods to form the arg-type­
list of a function taking zero or more arguments. Use of the comma is 
supported only for compatibility; using the three periods is recom­
mended for new code. 

A type-name for a fundamental, structure, or union type consists 
of the type specifier for that type (such as int). The type-names for 
pointers, arrays, and functions are formed by combining a type specifier 
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with an "abstract declarator"; that is, a declarator without an identifier. 
Section 4.9, "Type Names," explains how to form and interpret abstract 
declarators. 

The special keyword void can be used in place of the arg-type-list to declare 
a function that has no arguments. The compiler produces a warning mes­
sage if a call to the function or a call to the function definition specifies 
arguments. 

One other special construction is allowed in the arg-type-list. The phrase 
void * specifies an argument of any pointer type. This phrase can be used 
in the arg-type-list as if it were a type-name. 

The arg-type-list may be omitted. In this case the parentheses after the 
function identifier are still required, but they are empty. In this form the 
function declaration establishes neither the number nor the types of argu­
ments to the function. When this information is omitted, the compiler does 
not perform any type checking between the actual arguments in a function 
call and the formal parameters of the function definition. See Section 7.4, 
"Function Calls," for more information. 

Return Type 

Functions can return values of any type except arrays and functions. 
Therefore, the type-specifier of a function declaration can specify any fun­
damental, structure, or union type. The function identifier can be modified 
with one or more asterisks (*) to declare a pointer return type. 

Although functions are not allowed to return arrays and functions, they can 
return pointers to arrays and functions. Functions that return pointers to 
array or function types are declared by modifying the function identifier 
with asterisks (*), brackets ([ ]), and parentheses to form a complex 
declarator. Forming and interpreting complex declarators is discussed in 
Section 4.3.2. 

Examples 

int add(int, int); /* Example 1 */ 

double calc () ; /* Example 2 */ 

char *strfind(char *, ... ) ; /* Example 3 */ 

void draw (void) ; /* Example 4 */ 
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double (*sum (double I double) ) [3J ; /* Example 5 */ 

int (*select (void)) (int) ; /* Example 6 */ 

char *p; /* Example 7 */ 
short *q; 
int prt(void *) ; 

The first example declares a function named add that takes two int argu­
ments and returns an int value. 

The second example declares a function named calc that returns a 
double value. No argument-type list is given. 

The third example declares a function named str find, which returns a 
pointer to a char value. The function takes at least one argument, a 
pointer to a char value. The argument-type list ends with a comma 
followed by three periods, indicating that the function may take more 
arguments. 

The fourth example declares a function with void return type (returning no 
value). The argument-type-list is also void, meaning no arguments are 
expected for this function. 

In the fifth example, sum is declared as a function returning a pointer to an 
array of three double values. The sum function takes two arguments, each 
a double value. 

In the sixth example, the function named select is declared to take no 
arguments and return a pointer to a function. The pointer return value 
points to a function taking one int argument and returning an int value. 

In the seventh example, the function prt is declared to take a pointer argu­
ment of any type and return an into Either the char pointer p or the 
short pointer q could be passed as an argument to prt without producing 
a type-mismatch warning. 

4.6 Storage Classes 

The storage class of a variable determines whether the item has a 
"global" or "local" lifetime. An item with a global lifetime exists and 
has a value throughout the duration of the program. All functions have 
global lifetimes. 
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Variables with local lifetimes are allocated new storage each time execution 
control passes to the block in which they are defined. When execution con­
trol passes out of the block, the variables no longer have meaningful values. 

Although C defines only two types of storage classes, four storage-class 
specifiers are available. They are as follows: 

auto 
register 
static 
extern 

Items with auto and register class have local lifetimes. The static and 
extern specifiers refer to items with global lifetimes. 

The four storage-class specifiers have distinct meanings because storage­
class specifiers affect the visibility of functions and variables, as well as 
their storage class. The term "visibility" refers to the portion of the source 
program in which the variable or function can be referenced. An item with 
a global lifetime exists throughout the execution of the source program, but 
it may not be "visible" in all parts of the program. Visibility and the 
related concept of lifetime are discussed in Section 3.5. 

The placement of variable or function declarations within source files also 
affects storage class and visibility. Declarations outside all function 
definitions are said to occur at the "external level" ; declarations within 
function definitions occur at the "internal level." 

The exact meaning of each storage-class specifier depends on whether the 
declaration occurs at the external or internal level and whether the item 
declared is a variable or a function. The following sections describe the 
meaning of storage-class specifiers in each kind of declaration; they also 
explain the default behavior when the storage-class specifier is omitted 
from a variable or function declaration. 

4.6.1 Variable Declarations at the External Level 

Variable declarations at the external level use the static and extern 
storage-class specifiers or omit the storage-class specifier entirely. The 
auto and register storage-class specifiers are not allowed at the external 
level. 
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Variable declarations at the external level are either definitions of variables 
or references to variables defined elsewhere. An external variable declara­
tion that also initializes the variable (implicitly or explicitly) is a definition 
of the variable. Definitions at the external level can take several forms: 

• A variable can be defined at the external level by declaring it with 
the static storage-class specifier. The static variable can be ex­
plicitly initialized with a constant expression, as described in Sec­
tion 4.7. If the initializer is omitted, the variable is automatically 
initialized to zero at compile time. Thus, static int k = 16; 
and static int k; are both considered definitions. 

• A variable is defined when it is explicitly initialized at the external 
level. For example, int j = 3; is a variable definition. 

Once a variable is defined at the external level, it is visible throughout the 
remainder of the source file in which it appears. The variable is not visible 
above its definition in the same source file, nor is it visible in other source 
files of the program, unless a reference is declared to make it visible, as 
described below. 

A variable can be defined at the external level only once within a source file. 
If the static storage-class specifier is given, another variable with the same 
name can be defined with the static storage-class specifier in a different 
source file. Since each static definition is visible only in its own source file, 
no conflict occurs. 

The extern storage-class specifier is used to declare a reference to a vari­
able defined elsewhere. These declarations can be used to make a defini­
tion in another source file visible or to make a variable visible above its 
definition in the same source file. Once a reference to the variable is 
declared at the external level, the variable is visible throughout the 
remainder of the source file in which the declared reference occurs. 

Declarations that use the extern storage-class specifier are not allowed to 
contain initializers, since they refer to variables whose values are already 
defined. 

For an extern reference to be valid, the variable to which it refers must be 
defined once, and only once, at the external level. The definition can be in 
any of the source files that form the program. 
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One special case is not covered by the rules outlined above. You can omit 
both the storage-class specifier and the initializer from a variable declara­
tion at the external level; for example, the declaration int n; is a valid 
external declaration. This declaration can have one of two different mean­
ings, depending on the context: 

1. If a variable by the same name is defined at the external level else­
where in the program, the declaration is taken to be a reference to 
that variable, exactly as if the extern storage-class specifier had 
been used in the declaration. 

2. If no such definition is present, the declared variable is allocated 
storage at link time and initialized to O. If more than one such 
declaration appears in the program, storage is allocated for the 
largest size declared for the variable. For example, if a program 
contains two uninitialized declarations of i at the external level, 
int i; and char i;, storage space for an int is allocated for i at 
link time. 

Uninitialized variable declarations at the external level are not recom­
mended for any file that might be placed in a library. 

Example 

/********************************************************** 
SOURCE FILE ONE 

**********************************************************/ 

extern int i; 

main () 
{ 

i++; 
printf ("%d\n", 
next 0 ; 

} 

int i 3 . , 

next () 
{ 

i++; 
printf ("%d\n", 
other(); 

} 

i) ; 

i) ; 

/* reference to i, 
defined below */ 

/* i equals 4 */ 

/* definition of i */ 

/* i equals 5 */ 
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/********************************************************** 
SOURCE fILE TWO 

**********************************************************/ 

extern int i; 

other 0 
{ 

} 

i++; 
printf ("%d\n" I i); 

/* reference to l In 
first source file */ 

/* i equals 6 */ 

The two source files contain a total of three external declarations of i. 
Only one declaration contains an initialization; that declaration, int i 
3; , defines the global variable i with initial value 3. The extern declara­
tion of i at the top of the first source file makes the global variable visible 
above its definition in the file. Without the extern declaration, the main 
function could not reference the global variable i. The extern declaration 
of i in the second source file makes the global variable visible in that 
source file. 

All three functions perform the same task: they increase i and print it. 
(Assume that the pr int f function is defined elsewhere in the program.) 
The values printed are 4, 5, and 6. 

If the variable i had not been initialized, it would have been automatically 
set to 0 at link time. The values printed in this case would be 1, 2, and 3. 

4.6.2 Variable Declarations at the Internal Level 

Any of the four storage-class specifiers can be used for variable declarations 
at the internal level. When the storage-class specifier is omitted from a 
variable declaration at the internal level, the default storage class is auto. 

The auto storage-class specifier declares a variable with a local lifetime. 
The variable is visible only in the block in which it is declared. Declarations 
of auto variables can include initializers, as discussed later in this chapter. 
Variables with auto storage class are not initialized automatically, so they 
should be explicitly initialized when declared or assigned initial values in 
statements within the block. If not initialized, the values of auto variables 
are undefined. 
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The register storage-class specifier tells the compiler to give the variable 
storage in a register, if possible. Register storage usually results in faster 
access time and smaller code size. Variables declared with register storage 
class have the same visibility as auto variables. 

The number of registers that can be used for variable storage is machine 
dependent. If no registers are available when the compiler encounters the 
register declaration, the variable is given auto storage class and stored in 
memory. The compiler assigns register storage to variables in exactly the 
same order in which the declarations appear in the source file. Register 
storage, if available, is only guaranteed for int and pointer types. 

A variable declared at the internal level with the static storage-class 
specifier has a global lifetime, and is visible only within the block in which 
it is declared. Unlike auto variables, variables declared as static retain 
their values when the block is exited. 

A static variable can be initialized with a constant expression. If not expli­
citly initialized, a static variable is automatically set to O. Initialization is 
performed once, at compile time. The static variable is not reinitialized 
each time the block is entered. 

A variable declared with the extern storage-class specifier is a reference to 
a variable with the same name defined at the external level in any of the 
source files of the program. The purpose of the internal extern declaration 
is to make the external-level variable definition visible within the block. 
The internal extern declaration does not change the visibility of the global 
variable in any other part of the program. 

Example 

int i = 1; 

main () 
{ /* reference to i, defined above */ 

extern int i; 

/* initial value is zero; a is 
visible only within main */ 

static int a; 

/* b is stored in a register, if possible */ 
register int b = 0; 
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} 

other () 
{ 

} 

/* default storage class is auto */ 
int c = 0; 

/* values printed are 1, 0, 0, 0 */ 
printf ("%d\n%d\n%d\n%d\n", i, a, b, c); 
other(); 

/* i is redefined */ 
int i = 16; 

/* this a is visible only within other */ 
static int a = 2; 

a += 2; 
/* values printed are 16, 4 */ 
pr int f ("%d\n%d\n", i, a); 

The variable i is defined at the external level with initial value 1. A refer­
ence to the external-level i is declared in the main function with an extern 
declaration. The static variable a is automatically set to 0, since the ini­
tializer is omitted. The call to pr int f (assuming the pr int f function is 
defined elsewhere in the source program) prints out the values 1, 0, 0, 0. 

In the other function, the variable i is redefined as a local variable with 
initial value 16. This does not affect the value of the external-level i. The 
variable a is declared as a static variable and initialized to 2. This a does 
not conflict with the a in main, since the visibility of static variables at 
the internal level is restricted to the block in which they are declared. 

The variable a is increased by 2, giving 4 as the result. If the other func­
tion were called again in the same program, the initial value of a would be 
4. Internal static variables retain their values when the block in which they 
are declared is exited and reentered. 

4.6.3 Function Declarations 
at the External and Internal Levels 

Function declarations can use either the static or the extern storage-dass 
specifier. Functions always have global lifetimes. 
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The visibility rules for functions are slightly different from the rules for 
variables. Function declarations at the internal level have the same mean­
ing as function declarations at the external level. This means that func­
tions cannot have block visibility, and the visibility of functions cannot be 
nested. A function declared to be static is visible only within the source 
file in which it is defined. Any function in the same source file can call the 
static function, but functions in other source files cannot. Another static 
function by the same name can be declared in a different source file without 
conflict. 

Functions declared as extern are visible throughout all the source files that 
constitute the program (unless they are later redeclared as static). Any 
function can call an extern function. 

Function declarations that omit the storage-class specifier default to 
extern. 

4.7 Initialization 

A variable can be set to an initial value by applying an initializer to the 
declarator in the variable declaration. The value or values of the initializer 
are assigned to the variable. The initializer is preceded by an equal sign 
(=), as shown below: 

= initializer 

Variables of any type can be initialized, with the restrictions outlined 
below. Functions do not take initializers. 

Declarations that use the extern storage-class specifier cannot contain 
ini tializers. 

Variables declared at the external level can be initialized; if not explicitly 
initialized, they are set to 0 at compile time. Any variable declared with 
the static storage-class specifier can be initialized with a constant expres­
sion. Initializations of static variables are performed once, at compile time. 
If not explicitly initialized, static variables are automatically set to o. 

Initializations of auto and register variables are performed each time exe­
cution control passes to the block in which they are declared. If the initial­
izer is omitted from the declaration of an auto or register variable, the 
initial value of the variable is undefined. 

75 



Microsoft C Compiler Language Reference 

Initializations of auto aggregate types (arrays, structures, and unions) are 
prohibited. Only static aggregates and aggregates declared at the external 
level can be initialized. 

The initial values for external variable declarations and for all static vari­
ables, whether external or internal, must be constant expressions. Constant 
expressions are described in Section 5.2.10. Automatic and register vari­
ables can be initialized with either constant or variable values. 

Sections 4.7.1 and 4.7.2 describe how to initialize variables of fundamental, 
pointer, and aggregate types. 

4.7.1 Fundamental and Pointer Types 

Syntax 

= expression 

The value of expression is assigned to the variable. The conversion rules for 
assignment apply. 

Examples 

int x = 10; /* Example 1 */ 

register int *px = 0; /* Example 2 */ 

int c = (3 * 1024); /* Example 3 */ 

int *b = &x; /* Example 4 */ 

In the first example, x is initialized to the constant expression 10. In 
the second example, the pointer px is initialized to 0, producing a "null" 
pointer. The third example uses a constant expression to initialize c. The 
fourth example initializes the pointer b with the address of another vari­
able, x. 
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4.7.2 Aggregate Types 

Syntax 

= { initializer-list} 

An initializer-list is a list of initializers separated by commas. Each initial­
izer in the list is either a constant expression or an initializer-list. Therefore, 
a brace-enclosed list can appear within another initializer-list. This is use­
ful for initializing aggregate members of an aggregate, as shown in the ex­
amples below. 

For each initializer-list, the values of the constant expressions are assigned 
in order to the members of the aggregate variable. When a union is initial­
ized, the initializer-list must be a single constant expression. The value of 
the constant expression is assigned to the first member of the union. 

If there are fewer values in an initializer-list than there are in the aggregate 
type, the remaining members or elements are initialized to O. Giving too 
many initial values for the aggregate type causes an error. These rules 
apply to each embedded initializer-list, as well as to the aggregate as a 
whole. 

For example, 

int P[4] [3] = { 
{ 1, 1, 1 }, 
{ 2, 2, 2 }, 
{ 3, 3, 3,}, 
{ 4, 4, 4,}, 

}; 

declares P as a 4-by-3 array and initializes the elements of its first row to 1, 
the elements of its second row to 2, and so on through the fourth row. Note 
that the initializer-list for the third and fourth rows contains commas after 
the last constant expression. The last initializer-list ({ 4 I 4 I 4 I }) is also 
followed by a comma. These extra commas are permitted but are not 
required; the required commas are those that separate constant expressions 
and initializer-lists. 
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If there is no embedded initializer list for an aggregate member, values are 
simply assigned, in order, to each member of the subaggregate. Therefore, 
the above initialization is equivalent to the following: 

int P [4] [3] = { 
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4 

}; 

Braces can also appear around individual initializers in the list. 

When initializing aggregate variables, care must be taken to use braces and 
initializer lists properly. The following example illustrates in more detail 
the compiler's interpretation of braces: 

typedef struct { 
int n1, n2, n3; 

} triplet; 

triplet nlist [2] [3J { 

}; 

{{ 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }, 
{ { 10,11,12 }, { 13,14,15 }, { 15,16,17 } } 

/* Line 1 */ 
/* Line 2 */ 

In the above example, nl ist is declared as a 2-by-3 array of structures, 
each structure having three members. Line 1 of the initialization assigns 
values to the first row of nl ist, as follows: 

1. The first left brace on Line 1 signals the compiler that initialization 
of the first aggregate member of nlist is beginning (that is, 
nlist [OJ). 

2. The second left brace indicates that initialization of the first aggre­
gate member of nl ist [OJ is beginning (that is, the structure at 
nl i st [OJ [OJ). 

3. The first right brace ends initialization of the structure 
nl ist [OJ [OJ; the next left brace starts initialization of 
nlist[OJ [lJ. 

4. The process continues to the end of the line, where the closing right 
brace ends initialization of n 1 is t [0 J • 

Similarly, Line 2 assigns values to the second row of nl ist. 

Note that the outer sets of braces enclosing the initializers on Line 1 and on 
Line 2 are required. The following construction, which omits the outer 
braces, would cause an error: 
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/* THIS CAUSES AN ERROR */ 
triplet nlist [2J [3J = { 

}; 

{ I, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 }, 
{ 10,11,12 },{ 13,14,15 },{ 16,17,18 } 

Declarations 

/* Line 1 */ 
/* Line 2 */ 

In the above construction, the first left brace on Line 1 starts the initializa­
tion of nl ist [OJ, which is an array of three structures. The values 1, 2, 
and 3 are assigned to the three members of the first structure. When the 
next right brace is encountered (after the value 3), initialization of 
nl ist [OJ is complete, and the two remaining structures in the three­
structure array are automatically initialized to O. Similarly, { 4, 5, 6 } 
initializes the first structure in the second row of nlist, and the remaining 
two structures of nlist [lJ are set to O. When the compiler encounters 
the next initializer list ({ 7, 8, 9 }), it attempts to initialize nl ist [2 J . 
Since nl ist has only two rows, this produces an error. 

Examples 

/******************** Example 1 ********************/ 

struct list { 
int i, j, k; 
float m [2J [3J ; 
} x = { 

}; 

L 
2, 
3, 
{4.0, 4.0, 4.0} 

/******************** Example 2 ********************/ 

union { 
char x [2J [3J ; 
int i, j, k; 
} Y = { 

}; 

{'I'}, 
{'4'} 

In the first example, the three int members of x are initialized to 1, 2, and 
3, respectively. The three elements in the first row of m are initialized to 
4.0; the elements of the remaining row of m are initialized to 0 by default. 
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In the second example, the union variable y is initialized. The first element 
of the union is an array, so the initializer is an aggregate initializer. The 
initializer list { I 1 I } gives values to the first row of the array. Since only 
one value appears in the list, the element in the first column is initialized to 
the character 1, and the remaining two elements in the row are initialized 
to 0 (the null character), by default. Similarly, the first element of the 
second row of x is initialized to the character 4, and the remaining two ele­
ments in the row are initialized to O. 

4.7.3 String Initializers 

An array can be initialized with a string literal. For example, 

char code[ ] = "abc"; 

initializes code as a four-element array of characters. The fourth element 
is the null character that terminates all string literals. 

If the array size is specified and the string is longer than the specified size of 
the array, the extra characters are simply discarded. The following 
declaration initializes code as a three-element character array: 

char code[3] = "abed"; 

Only the first three characters of the initializer are assigned to code. The 
character d and the null character are discarded. 

If the string is shorter than the specified size of the array, the remaining 
elements of the array are initialized to 0 (the null character). 

4.8 Type Declarations 

A type declaration defines the name and members of a structure or union 
type, or the name and enumeration set of an enumeration type. The name 
of a declared type can be used in variable or function declarations to refer 
to that type. This is useful if many variables and functions have the same 
type. 

A typedef declaration defines a type specifier for a type. These declara­
tions are used to construct shorter or more meaningful names for types 
already defined by C or for types declared by the user. 
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4.8.1 Structure, Union, and Enumeration Types 

Declarations of structure, union, and enumeration types have the same gen­
eral form as variable declarations of those types. In type declarations the 
variable identifier is omitted, since no variable is declared. The tag is man­
datory; it names the structure, union, or enumeration type. The member­
declaration-list or enum-list defining the type must appear in the type 
declaration; the abbreviated form of variable declarations, in which a tag 
refers to a type defined elsewhere, is not legal for type declarations. 

Examples 

/******************** Example 1 ********************/ 

enum status { 
loss = -I, 
bye, 
tie = 0, 
win 
}; 

/******************** Example 2 ********************/ 

struct student { 
char name[20J; 
int id, class; 
}; 

The first example declares an enumeration type named status. The name 
of the type can be used in declarations of enumeration variables. The 
identifier loss is explicitly set to -1. Both bye and tie are associated 
with the value 0, and win is given the value 1. 

The second example declares a structure type named student. A declar­
tion such as struct student employee; can be used to declare a 
structure variable with student type. 
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4.8.2 Typedef Declarations 

Syntax 

typedef type-specifier declarator [, declarator ... ]; 

A typedef declaration is analogous to a variable declaration except that 
the typedef keyword replaces a storage-class specifier. The declaration is 
interpreted in the same way as variable and function declarations, but the 
identifier, instead of assuming the type specified by the declaration, 
becomes a synonym for the type. 

A typedef declaration does not create types. It creates synonyms for exist­
ing types, or names for types that could be specified in other ways. Any 
type can be declared with typedef, including pointer, function, and array 
types. A typedef name for a pointer to a structure or union type can be 
declared before the structure or union type is defined, as long as the 
definition has the same visibility as the declaration. 

Examples 

/******************** Example 1 ********************/ 

typedef int WHOLE; 

/******************** Example 2 ********************/ 

typedef struct club { 
char name[30J; 
int size , year; 
} GROUP ; 

/******************** Example 3 ********************/ 

typedef GROUP *PG; 

/******************** Example 4 ********************/ 

typedef void DRAWF(int, int); 

The first example declares WHOLE to be a synonym for into 
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The second example declares CROUP as a structure type with three 
members. Since a structure tag, cl ub, is also specified, either the typedef 
name (CROUP) or the structure tag can be used in declarations. 

The third example uses the previous typedef name to declare a pointer 
type. The type PC is declared as a pointer to the CROUP type, which in 
turn is defined as a structure type. 

The final example provides the type DRAWF for a function returning no 
value and taking two int arguments. This means, for example, that the 
declaration DRAWF box; is equivalent to the declaration void box (inti 
int) ; . 

4.9 Type Names 

A "type name" specifies a particular data type. Type names are used in 
three contexts: in the argument-type lists of function declarations, in type 
casts, and in sizeof operations. Argument-type lists are discussed in Sec­
tion 4.5, "Function Declarations." Type casts and sizeof operations are dis­
cussed in sections 5.7.2 and 5.3.4, respectively. 

The type names for fundamental, enumeration, structure, and union types 
are simply the type specifiers for those types. 

A type name for a pointer, array, or function type has the following form: 

type-specifier abstract-declarator 

An abstract-declarator is a declarator without an identifier, consisting of 
one or more pointer, array, or function modifiers. The pointer modifier (*) 
always appears before the identifier in a declarator, while array (r 1) and 
function (( )) modifiers appear after the identifier. It is thus possIble to 
determine where the identifier would appear in an abstract declarator and 
interpret the declarator accordingly. 

Abstract declarators can be complex. Parentheses in a complex abstract 
declarator specify a particular interpretation, just as they do for the com­
plex declarators in declarations. 

The abstract declarator consisting of a set of empty parentheses, ( ), is not 
allowed because it is ambiguous. It is impossible to determine whether the 
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implied identifier belongs inside the parentheses, in which case it is an 
unmodified type, or before the parentheses, in which case it is a function 
type. 

The type specifiers established through typedef declarations also qualify as 
type names. 

Examples 

long * 

int (*) [5J 

int (*) (void) 

/* Example 1 */ 

/* Example 2 */ 

/* Example 3 */ 

The first example gives the type name for "pointer to long" type. 

The second and third examples show how parentheses modify complex 
abstract declarators. Example 2 gives the type name for a pointer to an 
array of five int values. Example 3 names a pointer to a function taking no 
arguments and returning an into 
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5.1 Introduction 

This chapter describes how to form expressions and make assignments in 
the C language. An expression is a combination of operands and operators 
that yields ("expresses") a single value. An operand is a constant or vari­
able value that is manipulated in the expression. Each operand of an ex­
pression is also an expression, since it represents a single value. Operators 
specify how the operand or operands of the expression are manipulated. 

In C, assignments are considered expressions. An assignment yields a 
value; its value is the value being assigned. In addition to the simple as­
signment operator (-), C offers complex assignment operators that both 
transform and assign their operands. 

The value resulting from an expression's evaluation depends on the relative 
precedence of operators in the expression and on side effects, if present. 
The precedence of operators determines the grouping of operands in an ex­
pression. Side effects are changes caused by the evaluation of an expres­
sion. In an expression with side effects, the evaluation of one operand can 
affect the value of another. With some operators, the order in which 
operands are evaluated also affects the result of the expression. 

The value represented by each operand in an expression has a type, which 
may be converted to a different type in certain contexts. Type conversions 
occur in assignments, type casts, function calls, and operations. 

5.2 Operands 

A C operand is a constant, an identifier, a string, a function call, a sub­
script expression, a member-selection expression, or a more complex expres­
sion formed by combining operands with operators or enclosing operands in 
parentheses. Any operand that yields a constant value is called a "constant 
expression." 

Every operand has a type. The following sections discuss the type of value 
each kind of operand represents. An operand can be cast from its original 
type to another type by means of a "type-cast" operation. A type-cast ex­
pression can also form an operand of an expression. 
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5.2.1 Constants 

A constant operand has the value and type of the constant value it 
represents. A character constant has int type. An integer constant has 
int, long, unsigned int, or unsigned long type, depending on the 
integer's size and how the value is specified. Floating-point constants al­
ways have double type. String literals are considered arrays of characters 
and are discussed in Section 5.2.3. 

5.2.2 Identifiers 

An identifier names a variable or function. Every identifier has a type, 
which is established when the identifier is declared. The value of an 
identifier depends on its type, as follows: 

88 

• Identifiers of integral and floating-point types represent values of 
the corresponding type. 

• An identifier of enum type represents one constant value of a set of 
constant values. The value of the identifier is the constant value. Its 
type is int, by definition of the enum type. 

• An identifier of struct or union type represents a value of the 
specified struct or union type. 

• An identifier declared as a pointer represents a pointer to the 
specified type. 

• An identifier declared as an array represents a pointer whose value 
is the address of the first element of the array. The type addressed 
by the pointer is the type of the elements of the array. For ex­
ample, if ser ies is declared to be a lO-element integer array, the 
identifier ser ies expresses the address of the array, while the sub­
script expression ser ies [5] refers to a variable integer element of 
ser ies. Subscript expressions are discussed in Section 5.2.5. 

The address of an array does not change during the execution of the 
program, although the values of the individual elements can change. 
The pointer value represented by an array identifier is not a vari­
able, and an array identifier cannot form the left-hand operand of 
an assignment operation. 

• An identifier declared as a function represents a pointer whose value 
is the address of the function. The type addressed by the pointer is 
a function returning a value of a specified type. The address of a 
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function does not change during the execution of a program; only 
the return value varies. Thus, function identifiers cannot be left­
hand operands in assignment operations. 

5.2.3 Strings 

A string literal consists of a list of characters enclosed in double quotes, as 
shown below: 

" string" 

A string literal is stored as an array of elements with char type. The string 
literal represents the address of the first element of the array. The address 
of the string's first element is a constant, so the value represented by a 
string expression is a constant. 

Since string literals are effectively pointers, they can be used in contexts 
that allow pointer values, and they are subject to the same restrictions as 
pointers. String literals have one additional restriction: they are not vari­
ables and cannot be left-hand operands in assignment operations. 

The last character of a string is always the null character, \ o. The null 
character is not visible in the string expression, but it is added as the last 
element when the string is stored. Therefore, the string "abc" actually 
has four characters rather than three. 

5.2.4 Function Calls 

Syntax 

expression (expression-list) 

A function call consists of an expression followed by an expression-list in 
parentheses, where expression evaluates to a function address (for example, 
a function identifier), and expression-list is a list of expressions (separated 
by commas) whose values, the actual arguments, are passed to the function. 
The expression-list can be empty. 

A function-call expression has the value and type of the function's return 
value. If the function's return type is void, the function-call expression also 
has void type. If control returns from the called function without execu­
tion of a return statement, the value of the function call is undefined. See 
Section 7.4 for more information about function calls. 
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5.2.5 Subscript Expressions 

Syntax 

expres8ionl [ expre88ion2] 

A subscript expression represents the value at the address that is 
expression2 positions beyond expression1. Expressionl is any pointer 
value, such as an array identifier, and expression2 is an integral value. 
Expression2 must be enclosed in brackets ([ D. 
Subscript expressions are generally used to refer to array elements, but a 
subscript can be applied to any pointer. 

The subscript expression is evaluated by adding the integral value 
(expression2) to the pointer value ( expressionl), then applying the indirec­
tion operator (*) to the result. (See Section 5.3.3 for a discussion of the 
indirection operator.) In effect, for a one-dimensional array, the following 
four expressions are equivalent, assuming that a is a pointer and b is an 
integer. 

a [bJ 
*(a + b) 
* (b + a) 
b [a] 

According to the conversion rules of the addition operator (see Section 
5.3.6), the integral value is converted to an address offset by multiplying it 
by the length of the type addressed by the pointer. 

For example, suppose the identifier 1 ine refers to an array of int values. 
To evaluate the expression 1 ine [i), the integer value i is multiplied by the 
length of an into The converted value of i represents i int positions. This 
converted value is added to the original pointer value (1 ine) to yield an 
address that is offset i int positions from 1 ine. 

As the last step in evaluating the subscript expression, the indirection 
operator is applied to the new address. The result is the value of the array 
element at that position (intuitively, 1 ine[ i D. 
Note that the subscript expression 

line [0] 

represents the value of the first element of 1 ine, since the offset from the 
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address represented by 1 ine is O. Similarly, an expression such as 

line[5] 

refers to the element offset five positions from 1 ine, or the sixth element of 
the array. 

Multidimensional-Array References 

A subscript expression can be subscripted, as follows: 

expressionl [expression2] [expressionS] ... 

Subscript expressions associate left to right. The leftmost subscript expres­
sion, expressionl [expression2], is evaluated first. The address that results 
from adding expressionl and expression2 forms the pointer expression to 
which expressionS is added. The indirection operator (* ) is applied after 
the last subscripted expression is evaluated. However, the indirection 
operator is not applied if the final pointer value addresses an array type 
(see the third example below). 

Expressions with multiple subscripts refer to elements of multidimensional 
arrays. A multidimensional array is an array whose elements are arrays. 
The first element of a three-dimensional array, for example, is an array 
with two dimensions. 

Examples 

int prop [3] [4] [6] ; 
int i, *ip, (* ipp) [6] ; 

i prop [0] [OJ [lJ ; /* Example 1 */ 

i = prop [2] [1] [3] ; /* Example 2 */ 

ip = prop [2] [1] ; /* Example 3 */ 

ipp = prop[2]; /* Example 4 */ 

The array named prop has 3 elements, each of which is a 4-by-6 array of 
int values. 

91 



Microsoft C Compiler Language Reference 

Example 1 shows how to refer to the second individual int element of 
prop. Arrays are stored by row, so the last subscript varies the most 
quickly; the expression prop [OJ [OJ [2J refers to the next (third) element 
in the array, and so on. 

The second example shows a more complex reference to an individual ele­
ment of prop. The expression is evaluated as follows: 

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array 
and added to the pointer value prop. The result points to the third 
4-by-6 array of prop. 

2. Next, the second subscript, 1, is multiplied by the size of the 
6-element int array and added to the address represented by 
prop[2J. 

3. Each element of the 6-element array is an int value, so the final 
subscript, 3, is multiplied by the size of an int before it is added to 
prop [2J [lJ. The resulting pointer addresses the fourth element 
of the 6-element array. 

4. The last step in evaluating the expression prop [2J [lJ [3J is 
applying the indirection operator to the pointer value. The result is 
the int element at that address. 

Examples 3 and 4 show cases where the indirection operator is not applied. 
In Example 3, the expression prop [2J [lJ is a valid reference to the 
three-dimensional array prop; it refers to a 6-element array. Since the 
pointer value addresses an array, the indirection operator is not applied. 
Similarly, the result of the expression prop [2J in Example 4 is a pointer 
value addressing an array with two dimensions. 

5.2.6 Member-Selection Expressions 

Syntax 

expression. identifier 
expression-> identifier 

Member-selection expressions refer to members of structures and unions. A 
member-selection expression has the value and type of the selected member. 
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In the first form, expression. identifier, expression represents a value of 
struct or union type, and the identifier names a member of the specified 
structure or union. 

In the second form, expression- > identifier, expression represents a pointer 
to a structure or union, and the identifier names a member of the specified 
structure or union. 

The two forms of member-selection expressions have similar effects. In fact, 
expressions involving the pointer selection operator (- » are shorthand 
versions of expressions using the period (.) in cases in which the expression 
before the period consists of the indirectIOn operator ( lie) applied to a 
pointer value. (The indirection operator is discussed in Section 5.3.3.) 
Therefore, 

expression-> identifier 

is equivalent to 

(* expression). identifier 

when expression is a pointer value. 

Examples 

struct pair { 
int a; 
int b; 

item.sp 

struct pair *sp; 
} item, list[10]; 

&item; 

(item.sp)->a = 24; 

list [8] .b = 12; 

/* Example 1 */ 

/* Example 2 */ 

/* Example 3 */ 

In the first example, the address of the i tern structure is assigned to the 
sp member of the structure. This means that i tern contains a pointer to 
itself. 

In the second example, the pointer expression i tern. sp is used with the 
pointer selection operator (- > ) to assign a value to the member a. 
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The third example shows how to select an individual structure member 
from an array of structures. 

5.2.7 Expressions with Operators 

Expressions with operators can be unary, binary, or ternary expressions. 
A unary expression consists of an operand prefixed by a unary operator 
("unop") or an operand enclosed in parentheses and preceded by the sizeof 
keyword: 

unop operand 
sizeof (operand) 

A binary expression consists of two operands joined by a binary operator 
("binop"): 

operand binop operand 

A ternary expression consists of three operands joined by the ternary (? :) 
operator: 

operand? operand: operand 

Assignment expressions use unary or binary assignment operators. The 
unary assignment operators are the increment (++) and decrement (--) 
operators; the binary assignment operators are the simple assignment 
operator (=) and the compound assignment operators (referred to as 
"compound-assign-ops"). Each compound assignment operator is a combi­
nation of another binary operator with the simple assignment operator. 
The forms of assignment expressions are as follows: 

operand++ 
operand- -
++operand 
- - operand 
operand = operand 
operand compound-assignment-op operand 
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5.2.8 Expressions in Parentheses 

Any operand can be enclosed in parentheses; they have no effect on the type 
or value of the enclosed expression. For example, in the expression 

(10 + 5) / 5 

the parentheses around 10 + 5 mean that the value of 10 + 5 is the left 
operand of the division U) operator. The result of (10 + 5) / 5 is 3. 
Without the parentheses, 10 + 5 / 5 would evaluate to 11. 

Although parentheses affect the way operands are grouped in an expression, 
they cannot guarantee a particular order of evaluation for the expression. 

5.2.9 Type-Cast Expressions 

A type-cast expression has the following form: 

(type-name) operand 

Type-cast conversions are discussed in Section 5.7.2; type names are dis­
cussed in Section 4.9. 

5.2.10 Constant Expressions 

A constant expression is any expression that evaluates to a constant. The 
operands of a constant expression can be integer constants, character con­
stants, floating-point constants, enumeration constants, type casts to 
integral and floating-point types, and other constant expressions. The 
operands can be combined and modified using operators, as described in 
Section 5.2.7, with some restrictions. 

Constant expressions cannot use assignment operators (see Section 5.4) or 
the binary sequential evaluation operator (,). The unary address-of opera­
tor (&) can be used only in certain initializations (see the last paragraph of 
this section, 5.2.10). 

Constant expressions used in preprocessor directives are subject to addi­
tional restrictions, and are consequently known as restricted-constant­
expressions. A restricted-constant-expression cannot contain sizeof expres­
sions, enumeration constants, or type casts to any type. It can, however, 
contain the special constant expression defined( identifier). See Section 
8.2.1, "The # define Directive," for more information. 
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These additional restrictions also apply to constant expressions used to ini­
tialize variables at the external level. However, such expressions are 
allowed to apply the unary address-of operator (&) to other external-level 
variables with fundamental, structure, and union types and to external­
level arrays subscripted with a constant expression. In these expressions, a 
constant expression not involving the address-of operator can be added to 
or subtracted from the address expression. 

5.3 Operators 

C operators take one operand (unary operators), two operands (binary 
operators), or three operands (the ternary operator). Assignment operators 
are unary or binary operators; the assignment operators are described in 
Section 5.4. 

Unary operators prefix their operand and associate right to left. C's unary 
operators are as follows: 

SYInbol 

- ! 

* & 
sizeof 

Complement operators 

Indirection and address-of operators 

Size operator 

Binary operators associate left to right. The binary operators are as 
follows: 
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* / % 
+-
« » 
< > <= 
& I A 

I 

&& II 
II 

>= -- != 

NaIne 

Multiplicative operators 

Additive operators 

Shift operators 

Relational operators 

Bitwise operators 

Logical operators 

Sequential-evaluation operator 



Expressions and Assignments 

C has one ternary operator, the conditional operator (7 :). It associates 
right to left. 

5.3.1 Usual Arithmetic Conversions 

Most C operators perform type conversions to bring the operands 
of an expression to a common type or to extend short values to the integer 
size used in machine operations. The conversions performed by C operators 
depend on the specific operator and the type of the operand or operands. 
However, many operators perform similar conversions on operands of 
integral and floating-point types. These conversions are known as "arith­
metic" conversions because they apply to the types of values ordinarily 
used in arithmetic. 

The arithmetic conversions summarized below are called the "usual arith­
metic conversions." The discussion of each operator in the following sec­
tions specifies whether or not the operator performs the usual arithmetic 
conversions. It also specifies the additional conversions, if any, the operator 
performs. 

The specific path of each type of conversion is outlined in Section 5.7. 

The usual arithmetic conversions proceed in the following order: 

1. Any operands of float type are converted to double type. 

2. If one operand has double type, the other operand is converted to 
double. 

3. Any operands of char or short type are converted to into 

4. Any operands of unsigned char or unsigned short type are con­
verted to unsigned int type. 

5. If one operand is of type unsigned long, the other operand is con­
verted to unsigned long. 

6. If one operand is of type long, the other operand is converted to 
long. 

7. If one operand is of type unsigned int, the other operand is con­
verted to unsigned into 
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5.3.2 Complement Operators 

Arithmetic Negation (-) 

The arithmetic-negation operator (-) produces the negative (two's comple­
ment) of its operand. The operand must be an integral or floating-point 
value. The usual arithmetic conversions are performed. 

Bitwise Complement (-) 

The bitwise-complement operator (-) produces the bitwise complement of 
its operand. The operand must be of integral type. The usual arithmetic 
convers~ons are performed; the result has the type of the operand after 
converSIOn. 

Logical-NOT (!) 

The logical-NOT operator (!) produces the value 0 if its operand is true 
(nonzero) and the value 1 if Its operand is false (0). The result has int type. 
The operand must be an integral, floating-point, or pointer value. 

Examples 

/******************** Example 1 ********************/ 
short x = 987; 

x = -x; 

/******************** Example 2 ********************/ 
unsigned short y = Oxaaaa; 

y = Ny; 

/******************** Example 3 ********************/ 
if ( ! (x < y)); 

In the first example, the new value of x is the negative of 987, or - 987. 

In the second example; the new value assigned to y is the one's complement 
of the unsigned value Oxaaaa, or Ox5555. 

In the third example, if x is greater than or equal to y, the result of the 
expression is 1 (true). If x is less than y, the result is 0 (false). 
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5.3.3 Indirection and Address-of Operators 

Indirection (* ) 

The indirection operator (*) accesses a value indirectly, through a pointer. 
The operand must be a pointer value. The result of the operation is the 
value to which the operand points. The result type is the type addressed by 
the pointer operand. If the pointer value is null, the result is unpredictable. 

Address-of (&) 

The address-of operator (&) takes the address of its operand. The operand 
can be any value that can appear as the left-hand value of an assignment 
operation. (Assignment operations are discussed in Section 5.4.) The result 
of the address operation is a pointer to the operand. The type addressed by 
the pointer is the type of the operand. 

The address-of operator cannot be applied to a bit-field member of a struc­
ture, nor can it be applied to an identifier declared with the register 
storage-class specifier. 

Examples 

int *pa, x' , 
int a [20J ; 
double d; 

pa = &a[5J; /* Example 1 */ 

x = *pa; /* Example 2 */ 

if (x == *&x) /* Example 3 */ 
printf ("True\n") ; 

d = * (double *) (&x) ; /* Example 4 */ 

In the first example, the address-of operator (&) takes the address 
of the sixth element of the array a. The result is stored in the pointer 
variable pa. 

The indirection operator ( *) is used in the second example to access the 
int value at the address stored in pa. The value is assigned to the integer 
variable x. 
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In Example 3, the word True would be printed. This example demon­
strates that the result of applying the indirection operator to the address of 
x is the same as x. 

Example 4 shows a useful application of the rule shown in Example 3. The 
address of x is converted by a type cast to a pointer to a double; the 
indirection operator is then applied, and the result of the expression is a 
double value. 
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5.3.4 The sizeof Operator 

The sizeof operator determines the amount of storage associated with an 
identifier or a type. A sizeof expression has the form 

sizeof( name) 

where name is either an identifier or a type name. The type name may not 
be void. The value of a sizeof expression is the amount of storage, in 
bytes, associated with the named identifier or type. 

When the sizeof operator is applied to an array identifier, the result is the 
size of the entire array in bytes rather than the size of the pointer 
represented by the array identifier. 

When the sizeof operator is applied to a structure or union type name, or 
to an identifier of structure or union type, the result is the actual size in 
bytes of the structure or union, which may include internal and trailing 
padding used to align the members of the structure or union on memory 
boundaries. Thus, the result may not correspond to the size calculated by 
adding up the storage requirements of the members. 

Example 

buffer = calloc(lOO, sizeof (int) ); 

With the sizeof operator you can avoid specifying machine-dependent data 
sizes in your program. The above example uses the sizeof operator to pass 
the size of an int, which varies across machines, as an argument to a func­
tion named call ac. The value returned by the function is stored in 
buffer. 
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5.3.5 Multiplicative Operators 

The multiplicative operators perform multiplication (lie), division (/), and 
remainder (%) operations. The operands of the remainder operator (%) 
must be integral; the multiplication (lie) and division (/) operators take 
integral and floating-point operands. The types of the operands can be 
different. The multiplicative operators perform the usual arithmetic 
conversions on the operands. The type of the result is the type of the 
operands after conversion. 

The conversions performed by the multiplicative operators make no provi­
sion for overflow or underflow conditions. Information is lost if the result 
of a multiplicative operation cannot be represented in the type of the 
operands after conversion. 

Multiplication (lie ) 

The multiplication operator (lie) specifies that its two operands are to be 
multiplied. 

Division (/) 

The division operator (/) specifies that its first operand is to be divided by 
the second. When two integers are divided, the result, if not an integer, is 
truncated. If both operands are positive or unsigned, the result is trun­
cated toward o. The direction of truncation when either operand is nega­
tive may be either toward or away from 0, depending on the implementa­
tion. Division by 0 gives unpredictable results. 

Remainder (%) 

The result of the remainder operator (%) is the remainder when the first 
operand is divided by the second. 

102 



Expressions and Assignments 

Examples 

int i = 10, j 3, n; 
double x = 2.0, y; 

y x * i; /* Example 1 */ 

n i / j; /* Example 2 */ 

n = i % j ; /* Example 3 */ 

In the first example, x is multiplied by i to give the value 20.0. The result 
has double type. 

In the second example, 10 is divided by 3. The result is truncated toward 0, 
yielding the integer value 3. 

In the third example, n is assigned the integer remainder 1 when 10 is 
divided by 3. 
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5.3.6 Additive Operators 

The additive operators perform addition (+) and subtraction (-). The 
operands can be integral or floating-point values; some additive operations 
can also be performed on pointer values, as outlined under the discussion of 
each operator. The usual arithmetic conversions are performed on integral 
and floating-point operands. The type of the result is the type of the 
operands after conversion. 

The conversions performed by the additive operators make no provision for 
overflow or underflow conditions. Information is lost if the result of an 
additive operation cannot be represented in the type of the operands after 
conversion. 

Addition ( + ) 
The addition operator (+) specifies addition of its two operands. The 
operands can have integral or floating-point types, as described previously, 
or one operand can be a pointer and the other an integer. When an integer 
is added to a pointer, the integer value (i) is converted by multiplying it by 
the length of the value addressed by the pointer. After conversion, the 
integer value represents i memory positions, where each position has the 
length specified by the pointer type. When the converted integer value is 
added to the pointer value, the result is a new pointer value expressing the 
address i positions from the original address. The new pointer value 
addresses the same type as the original pointer value. 

Subtraction (-) 

The subtraction operator (-) subtracts its second operand from the first. 
The operands can be integral or floating-point values, as described earlier. 
The subtraction operator also allows the subtraction of an integer from a 
pointer value and the subtraction of two pointer values. 

When an integer value is subtracted from a pointer value, the same conver­
sions occur as with addition of a pointer and integer. The subtraction 
operator converts the integer value with respect to the type addressed by 
the pointer value. The result is the memory address i positions before the 
original address, where i is the integer value and each position is the length 
of the type addressed by the pointer value. The new pointer points to the 
type addressed by the original pointer value. 
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Two pointer values can be subtracted if they point to the same type. The 
difference between the two pointers is cOIlverted to a signed integer value 
by dividing the difference by the length of the type the pointers address. 
The result represents the number of memory positions of that type between 
the two addresses. The result is only guaranteed to be meaningful for two 
elements of the same array, as discussed next. 

Pointer Arithmetic 

Additive operations involving a pointer and an integer generally give mean­
ingful results only when the pointer operand addresses an array member 
and the integer value produces an offset within the bounds of the same 
array. The conversion of the integer value to an address offset assumes 
that only memory positions of the same size lie between the original address 
and the address plus offset. 

The preceding assumption is valid for array members. An array is by 
definition a series of values of the same type; its elements reside in contigu­
ous memory locations. Storage for any types except array elements is not 
guaranteed to be completely filled. That is, blanks can occur between 
memory positions, even positions of the same type. Adding to or subtract­
ing from addresses referring to any values but array elements gives 
unpredictable results. 

Similarly, the conversion involved in the subtraction of two pointer values 
assumes that only values of the same type, with no blanks, lie between the 
two addresses given by the operands. 

Additive operations between pointer and integer values on machines with 
segmented architecture (such as the 8086/8088) may not be valid in some 
cases. See your system documentation for more information. 

Examples 

int i = 4, j: 
float x[lO]: 
float *px: 

px = &x[4] + i: 

j = &x[iJ - &x[i-2]; 

/* Example 1 */ 

/* Example 2 */ 

In the first example, the integer operand i is added to the address of the 
fifth element of x. The value of i is multiplied by the length of a float and 
added to &x [4]. The resulting pointer value is the address of x [8] . 
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In the second example, the address of the third element of x (given by 
x [i - 2] ) is subtracted from the address of the fifth element of x (given by 
x [i J). The difference is divided by the length of a float; the result is the 
integer value 2. 
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5.3.7 Shift Operators 

The shift operators shift their first operand left ( < <) or right (> > ) by 
the number of positions the second operand specifies. Both operands must 
be integral values. The usual arithmetic conversions are performed; the 
type of the result is the type of the left operand after conversion. 

For leftward shifts, the vacated right bits are set to o. In a rightward shift, 
the method of filling left bits depends on the type, after conversion, of the 
first operand. If the type is unsigned, vacated left bits will be set to o. 
Otherwise, vacated left bits are filled with copies of the sign bit. 

The result of a shift operation is undefined if the second operand is 
negative. 

The conversions performed by the shift operators make no provision for 
overflow or underflow conditions. Information is lost if the result of a shift 
operati<.>n cannot be represented in the type of the first operand after 
converSIOn. 

Example 

unsigned int x, y, z; 

x = OxOOaa; 
y Ox5500; 

z = (x « 8) + (y » 8); 

In the above example, x is shifted left by eight positions and y is shifted 
right eight positions. The shifted values are added, giving Oxaa55, and 
assigned to z. 
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5.3.8 Relational Operators 

The binary relational operators test their first operand against the second 
to determine if the relationship specified by the operator holds true. The 
result of a relational expression is 1 if the tested relationship holds and 0 if 
it does not. The type of the result is into The relational operators test the 
following relationships: 

Operator 

< 
> 
<= 
>= 

!= 

Relationship Tested 

First operand less than second operand 

First operand greater than second operand 

First operand less than or equal to second operand 

First operand greater than or equal to second operand 

First operand equal to second operand 

First operand not equal to second operand 

The operands can have integral, floating-point, or pointer type. The types 
of the operands can be different. The usual arithmetic conversions are per­
formed on integral and floating-point operands. 

One or both operands of the equality (==) and inequality (!-) operators 
can have enum type; an enUIn value IS converted in the same manner as an 
int value. 

The operands of any relational operator can be two pointers to the same 
type. For the equality (==) and inequality (!=) operators, the result of 
the comparison reflects whether or not the two pointers address the same 
memory location. The result of pointer comparisons involving the other 
operators «, >, <=, >=) reflects the relative position of two memory 
addresses. 

Since the address of a given value is arbitrary, comparisons between the 
addresses of two unrelated values are generally meaningless. Comparisons 
between the addresses of different elements of the same array can be useful, 
however, since array elements are guaranteed to be stored in order from the 
first element to the last. The address of the first array element is "less 
than" the address of the last element. 

A pointer value can be compared for equality (= =) or inequality (!=) to 
the constant value o. A pointer with a value of 0 does not point to a 
memory location: it is called a "null" pointer. A pointer value is equal to 0 
only if it is explicitly given that value through assignment or initialization. 
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Examples 

int x = 0, y 0; 

x < y /* Example 1 */ 

x > y /* Example 2 */ 

x <= y /* Example 3 */ 

x >= y /* Example 4 */ 

x -- y /* Example 5 */ 

x != y /* Example 6 */ 

When x and yare equal, expressions 3, 4, and 5 have the value 1 and 
expressions 1, 2, and 6 have the value O. 
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5.3.9 Bitwise Operators 

The bitwise operators perform bitwise-AND (&), inclusive-OR (I), and 
exclusive-OR (A) operations. The operands of bitwise operators must have 
integral type, but their types can be different. The usual arithmetic conver­
sions ar.e performed; the type of the result is the type of the operands after 
converSIOn. 

Bitwise AND (&) 

The bitwise-AND (&) operator compares each bit of its first operand to the 
corresponding bit of the second operand. If both bits are 1, the correspond­
ing bit of the result is set to 1; otherwise, the corresponding result bit is set 
to O. 

Bitwise Inclusive OR (I) 

The bitwise-inclusive-OR (I) operator compares each bit of its first operand 
to the corresponding bit of the second operand. If either of the compared 
bits is a 1, the corresponding bit of the result is set to 1. Otherwise, both 
bits are 0, and the corresponding result bit is set to O. 

Bitwise Exclusive OR (A) 

The bitwise-exclusive-OR (A) operator compares each bit of its first operand 
to the corresponding bit of the second operand. If one of the compared bits 
is a 0 and the other bit is a 1, the corresponding bit of the result is set to 1; 
otherwise, the corresponding result bit is set to O. 

Examples 

short i = OxabOO; 
short j = Oxabcd; 
short n; 

n = i & j; /* Example 1 */ 

n = i j; /* Example 2 */ 

n = i ~ 

j; /* Example 3 */ 
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The result assigned to n in the first example is the same as i (ABOO hexa­
decimal). The bitwise inclusive OR in the second example results in the 
value ABCD (hexadecimal), while the bitwise exclusive OR in the third 
example produces CD (hexadecimal). 
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5.3.10 Logical Operators 

The logical operators perform logical-AND (&&) and logical-OR fl D opera­
tions. The operands of the logical operators must have integral, ftoating­
point, or pointer type. The types of the operands can be different. 

The operands of logical-AND and logical-OR expressions are evaluated left 
to right. If the value of the first operand is sufficient to determine the 
result of the operation, the second operand is not evaluated. 

Logical operators do not perform the standard arithmetic conversions. 
Instead, they evaluate each operand in terms of its equivalence to zero. A 
pointer has a value of 0 only if it is explicitly set to 0 through assignment 
or initialization. 

The result of a logical operation is either 0 or 1, as described next. The 
type of the result is into 

Logical AND (&&) 

The logical-AND operator (&&) produces the value 1 if both operands have 
nonzero values. If either operand is equal to 0, the result is o. If the first 
operand of a logical-AND operation has a value of 0, the second operand is 
not evaluated. 

Logical OR c: D 
The logical-OR operator (I') performs an inclusive OR on its operands. It 
produces the value 0 if bot~ operands have 0 values; if either operand has a 
nonzero value, the result is 1. If the first operand of a logical-OR operation 
has a nonzero value, the second operand is not evaluated. 

Examples 

int x, y; 

if (x < y && y < z) /* Example 1 */ 
printf ("x is less than z\n"); 

if (x == y I I x == z) /* Example 2 */ 
printf ("x is equal to either y or z\n"); 
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In the first example, the pr int f function is called to print a message if x is 
less than y and y is less than z. If x is greater than y, the second operand 
(y < z) is not evaluated and nothing is printed. Note that this could 
cause problems in cases where the second operand contains side effects. 

In the second example, a message is printed if x is equal to either y or z. If 
x is equal to y, the second operand (x == z) is not evaluated. 
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5.3.11 Sequential-Evaluation Operator 

The sequential-evaluation operator (,) evaluates its two operands sequen­
tially from left to right. The result of the operation has the value and type 
of the right operand. The types of the operands are unrestricted. No 
conversions are performed. 

The sequential-evaluation operator (also called the "comma" operator) is 
typically used to evaluate two or more expressions in contexts that allow 
only one expression to appear. 

Examples 

/******************** Example 1 ********************/ 

for ( i = j = 1; i + j < 20; i += i, j--); 

/******************** Example 2 ********************/ 

func_one(x, y + 2, z); 
func_two((x--, y + 2), z); 

In the first example, each operand of the for statement's third expression is 
evaluated independently. The left operand, i += i, is evaluated first, 
then j - - is evaluated. 

As shown in Example 2, the comma character is used in other contexts as a 
separator. In the function call to func_one, three arguments, separated 
by commas, are passed to the called function: x, y + 2 and z. The use of 
the comma character as a separator must not be confused with its use as an 
operator; the two uses are completely different. 

In the function call to func_ two, parentheses force the compiler to inter­
pret the first comma as the sequential-evaluation operator. This function 
call passes two arguments to func_ two. The first argument is the result 
of the sequential-evaluation operation (x- - / Y + 2), which has the 
value and type of the expression y + 2; the second argument is z. 
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5.3.12 Conditional Operator 

C has one ternary operator, the conditional operator (? :). Its form is as 
follows: 

operandi? operand2 : operandS 

The expression operandi is evaluated in terms of its equivalence to 0. It 
must have integral, floating-point, or pointer type. If operandi has a 
nonzero value, operand2 is evaluated and the result of the expression is the 
value of operand2. If operandi evaluates to 0, operandS is evaluated, and 
the result of the expression is the value of operandS. Note that either 
operand2 or operandS is evaluated, but not both. 

The type of the result depends on the types of the second and third 
operands, as follows: 

1. If the second and third operands have integral or floating-point type 
(their types can be different), the usual arithmetic conversions are 
perfor~ed. The type of the result is the type of the operands after 
converSIOn. 

2. The second and third operands can have the same structure, union, 
or pointer type. The type of the result is the same structure, union, 
or pointer type. 

3. One of the second or third operands can be a pointer and the other 
a constant expression with the value 0. The type of the result is the 
pointer type. 

Example 

j = (i < 0) ? (- i) : (i); 

The above example assigns the absolute value of i to j. If i is less than 0, 
- i is assigned to j. If i is greater than or equal to 0, i is assigned to j. 

115 



Microsoft C Compiler Language Reference 

5.4 Assignment Operators 

C's assignment operators can both transform and assign values in a single 
operation. Using a compound-assignment operator to replace two separate 
operations can reduce code size and improve program efficiency. The 
assignment operators are as follows: 

Operator 

++ 

*= 

/= 
%= 
+= 

«= 
»= 
&= 

Operation PerforIned 

Unary increment 

Unary decrement 

Simple assignment 

Multiplication assignment 

Division assignment 

Remainder assignment 

Addition assignment 

Subtraction assignment 

Left-shift assignment 

Righ t-shift assign men t 

Bi twise-AND assignment 

Bitwise-inclusive-OR assignment 

Bitwise-exclusive-OR assignment 

In assignment, the type of the right-hand value is converted to the type of 
the left-hand value. The specific path of the conversion depends on the two 
types and is outlined in detail in Section 5.7. 

5.4.1 Lvalue Expressions 

An assignment operation specifies that the value of the right-hand operand 
is to be assigned to the storage location named by the left-hand operand. 
Therefore, the left-hand operand of an assignment operation (or the single 
operand of a unary assignment expression) must be an expression referring 
to a memory location. Expressions that refer to memory locations are called 
"lvalue" expressions. A variable name is such an expression: the name of 
the variable denotes a storage location, while the value of the variable is 
the value residing at that location. 
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The following C expressions may be lvalue expressions: 

• Identifiers of character, integer, floating-point, pointer, enumera­
tion, structure, or union type 

• Subscript ([ ]) expressions, except when a subscript expression 
evaluates to a pointer to an array or a pointer to a function 

• Member-selection expressions (- > and.), if the selected member is 
one of the aforementioned expressions 

• Unary-indirection (*) expressions, except when such expressions 
refer to arrays or functions 

• Type casts to pointer types, as long as the size of the object does 
not change 

• An lvalue expression in parentheses 

5.4.2 Unary IncreIllent and DecreIllent 

The unary assignment operators (++ and - - ) increment and decrement 
their operand, respectively. The operand must have integral, floating-point, 
or pointer type, and must be an lvalue expression. 

Operands of integral or floating-point type are incremented or decremented 
by the integer value 1. The type of the result is the type of the operand. 
An operand of pointer type is incremented or decremented by the size of the 
object it addresses. An incremented pointer points to the next object; a 
decremented pointer points to the previous object. 

An increment (++) or decrement (- - ) operator can appear either be­
fore or after its operand. When the operator prefixes its operand, the 
operand is incremented or decremented and its new value is the result of 
the expression. When the operator postfixes its operand, the immediate 
result of the expression is the value of the operand before it is incremented 
or decremented. After that result is noted in context, the operand is incre­
mented or decremented. 

Examples 

/******************** Example 1 ********************/ 

if (pos++ > 0) 
*ptt = *qtt; 
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/******************** Example 2 ********************/ 

if (line[--iJ != '\n') 
return; 

In the first example, the variable pas is compared to 0, then incremented. 

In the second example, the variable i is decremented before it is used as a 
subscript to 1 ine . 

5.4.3 Simple Assignment 

The simple assignment operator (=) performs assignment. The right 
operand is assigned to the left operand; the conversion rules for assignment 
apply (see Section 5.7.1). 

Example 

double x; 
int y; 

x = y; 

The value of y is converted to double type and assigned to x. 

5.4.4 Compound Assignment 

The compound assignment operators consist of the simple assignment 
operator combined with another binary operator. Compound assignment 
operators perform the operation specified by the additional operator, then 
assign the result to the left operand. A compound assignment expression 
such as 

expressionl += expression2 

can be understood as 

expressionl = expressionl + expression2 

However, the compound assignment expression is not equivalent to the 
expanded version because the compound assignment expression evaluates 
expressionl only once, while in the expanded version expressionl is 
evaluated twice: in the addition operation and in the assignment operation. 
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Each compound assignment operator performs the conversions that the 
corresponding binary operator performs, and restricts the types of its 
operands accordingly. The result of a compound assignment operation has 
the value and type of the left operand. 

Example 

#define MASK Oxffff 

n 1= MASK; 

In this example a bitwise-inclusive-OR operation is performed on nand 
MASK, and the result is assigned to n. The manifest constant MASK is 
defined with a # define preprocessor directive, discussed in Section 8.2.1. 
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5.5 Precedence and Order of Evaluation 

The precedence and associativity of C operators affect the grouping and 
evaluation of operands in expressions. An operator's precedence is mean­
ingful only in the presence of other operators having higher or lower pre­
cedence. Expressions with higher-precedence operators are evaluated first. 

Table 5.1 summarizes the precedence and associativity of C operators, list­
ing them in order of precedence from highest to lowest. Where several 
operators appear together in a line or large brace, they have equal pre­
cedence and are evaluated according to their associativity. 

Table 5.1 

Precedence and Associativity of C Operators 

Syrnbola 

() [] . -> 
- - ! * & } ++ sizeof casts 

* / % 
+ -
« » 
< > <= >= 

& 

&& 

" " ? : 

!= 

- *= /= %= } += -= «= »= 
&= 1= A 

Type of Operation 

Expression 

Unaryb 

Multiplicative 

Additive 

Shift 

Relational (inequality) 

Relational (equality) 

Bitwise-AND 

Bitwise-exclusive-OR 

Bitwise-inclusive-OR 

Logical AND 

Logical OR 

Conditional 

Simple and 
compound 
assignmentC 

~Aflll An tll:11 AVl:Illll:1 tlf)n 
~_'1.'l.&,._".LV""'fLAI"" _, 1LN ........ 'LAoOv ... _ ...... 

Associativity 

Left to right 

Righ t to left 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Right to left 

Righ t to left 

T .Aft. to l"luht. 
~~~v V~ ~~O'~v 

a Operators are listed in descending order of precedence. Where several operators appear in the 
same line or in a large brace, they have equal precedence. 

b All unary operators have equal precedence. 

C All simple and compound assignment operators have equal precedence. 
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As Table 5.1 shows, operands consisting of a constant, an identifier, a 
string, a function call, a subscript expression, a member-selection expres­
sion, or a parenthetical expression have highest precedence and associate 
left to right. Type-cast conversions have the same precedence and associa­
tivity as the unary operators. 

An expression can contain several operators with equal precedence. When 
several such operators appear at the same level in an expression, evaluation 
proceeds according to the associativity of the operator, either right to left 
or left to right. The result of expressions involving multiple occurrences of 
multiplication (lie), addition (+), or binary bitwise (& I A) operators at the 
same level is indifferent to the direction of evaluation. The compiler is free 
to evaluate such expressions in any order, even when parentheses in the 
expression appear to specify a particular order. 

Important 

Only the sequential-evaluation operator (,) and the logical-AND 
(&&) and logical-OR (II) operators guarantee a particular order of 
evaluation for the operands. The sequential-evaluation operator (,) is 
guaranteed to evaluate its operands from left to right. (Note that 
the comma separating arguments in a function call is not the same as 
the sequential-evaluation operator and does not provide any such 
guarantee. ) 

The logical operators also guarantee evaluation of their operands left to 
right. However, the logical operators evaluate the minimum number of 
operands necessary to determine the result of the expression. Thus, some 
operands of the expression may not be evaluated. For example, in the 
expression x && y+ +, the second operand, y+ +, is evaluated only if x is 
true (nonzero). Thus y is not incremented when x is false (0). 
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The examples below show the default groupings for several expressions: 

Expression 

a & b II c 

a - b II c 

q && r II s--

Default Grouping 

(a & b) II c 

a = (b I I c) 

(q && r) I I s - -

In the first example, the bitwise-AND operator (&) has higher precedence 
than the logical-OR operator (I I), so a & b forms the first operand of the 
logical-OR operation. 

In the second example, the logical-OR o~erator (II) has higher precedence 
than the simple assignment operator (= , so b I I c is grouped as the 
right-hand operand in the assignment. ote that the value assigned to a is 
either 0 or 1. 

The third example shows a correctly formed expression that may pro-
duce an unexpected result. The logical-AND operator (&&) has higher pre­
cedence than the logical-OR operator (11), so q && r is grouped as an 
operand. Since the logical operators guarantee evaluation of operands from 
left to right, q && r is evaluated before s- -. However, if q && r evalu­
ates to a nonzero value, s - - is not evaluated, and s is not decremented. 
To correct this problem, s - - should appear as the first operand of the 
expression or should be decremented in a separate operation. 

The following example shows an illegal expression that produces a program 
error: 

Illegal Expression Default Grouping 

p == 0 ? P += 1: p += 2 (p == 0 ? P += 1 : p) += 2 

In this example, the equality operator (==) has the highest precedence, so 
p == 0 is grouped as an operand. The ternary operator (7 :) has the next­
highest precedence. Its first operand is p == 0 and its second operand is 
p += 1. However, the last operand of the ternary operator is considered 
to be p rather than p += 2, since this occurrence of p binds more closely 
to the ternary operator than it does to the compound assignment operator. 
A syntax error occurs because += 2 does not have a left-hand operand. 
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To prevent errors of this kind, and to produce more readable code, the use 
of parentheses is recommended. The preceding example can be corrected 
and clarified through the use of parentheses, as shown below: 

(p == 0) ? (p + = 1) : (p + = 2 ) 

5.6 Side Effects 

"Side effects" are changes in the state of the machine that occur as a result 
of evaluating an expression. They occur whenever the value of a variable is 
changed. Any assignment operation has side effects, and any call to a func­
tion that contains assignment operations has side effects. 

The order of evaluation of side effects is implementation dependent, except 
where the compiler guarantees a particular order of evaluation, as outlined 
in Section 5.5. 

For example, side effects occur in the following function call: 

add (i + 1, i = j + 2) 

The arguments of a function call can be evaluated in any order. The 
expression i + 1 may be evaluated before i = j + 2, or vice versa, with 
different results in each case. 

Unary increment and decrement operations involve assignment and can 
cause side effects, as shown in the following example: 

d 0; 
a = b++ = c++ = d++; 

The value of a is unpredictable. The value of d (initially 0) could be 
assigned to c, then to b, and then to a before any of the variables are incre­
mented. In this case a would be equal to o. 

A second method of evaluating this expression begins by evaluating the 
operand c++ = d++. The value of d (initially 0) is assigned to c, and then 
both d and c are incremented. Next, the value of c, which is now 1, is 
assigned to band b is incremented. Finally, the incremented value of b is 
assigned to a; in this case, the final value of a is 2. 
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Since the C language does not define the order of evaluation of side effects, 
both of these evaluation methods are correct and either can be imple­
mented. Statements that depend on a particular order of evaluation for 
side effects produce nonportable and unclear code. 

5.7 Type Conversions 

Type conversions occur when a value is assigned to a variable of a different 
type, when a value is explicitly cast to another type, when an operator con­
verts the type of its operand or operands before performing an operation, 
and when a value is passed as an argument to a function. The rules govern­
ing each kind of conversion are outlined next. 

5.7.1 Assignment Conversions 

In assignment operations, the type of the value being assigned is converted 
to the type of the variable receiving the assignment. C allows conversions 
by assignment between integral and floating-point types, even when the 
conversion entails loss of information. The methods of carrying out the 
conversions depend upon the type, as follows. 

5.7.1.1 Conversions from Signed Integral Types 

A signed integer is converted to a shorter signed integer by truncating the 
high-order bits, and is converted to a longer signed integer by sign exten­
sion. Conversion of signed integers to floating-point values takes place 
without loss of information, except that some precision can be lost when a 
long value is converted to a Hoat. In converting a signed integer to an 
unsigned integer, the signed integer is converted to the size of the unsigned 
integer and the result is interpreted as an unsigned value. 

Conversions from signed integral types are summarized in Table 5.2. This 
table assumes that the char type is signed by default. If a compile-time 
option is used to change the default for the char type to unsigned, the 
conversions for the unsigned char type given in Table 5.3 apply. 
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Table 5.2 

Conversions from Signed Integral Types 

From To Method 

char a short Sign extend 

char long Sign extend 

char unsigned char Preserve pattern; high-order bit loses function as 
sign bit 

char unsigned short Sign extend to short; convert short to unsigned 
short 

char unsigned long Sign extend to long; convert long to unsigned 
long 

char float Sign extend to long; convert long to float 

char double Sign extend to long; convert long to double 

short char Preserve low-order byte 

short long Sign extend 

short unsigned char Preserve low-order byte 

short unsigned short Preserve bit pattern; high-order bit loses function 
as sign bit 

short unsigned long Sign extend to long; convert long to unsigned 
long 

short float Sign extend to long; convert long to float 

short double Sign extend to long; convert long to double 

long char Preserve low-order byte 

long short Preserve low-order word 

long unsigned char Preserve low-order byte 

long unsigned short Preserve low-order word 

long unsigned long Preserve bit pattern; high-order bit loses function 
as sign bit 

long float Represent as float; if long cannot be represented 
exactly, some loss of precision occurs 

long double Represent as double; if long cannot be 
represented exactly as a double, some loss of 
precision occurs 

a All char entries assume that the char type is signed by default. 
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Note 

The int type is equivalent either to the short type or to the long type, 
depending on the implementation. Conversion of an int value proceeds 
as for a short or a long, whichever is appropriate. 

5.7.1.2 Conversions from 
Unsigned Integral Types 

An unsigned integer is converted to a shorter unsigned or signed integer by 
truncating the high-order bits. An unsigned integer is converted to a longer 
unsigned or signed integer by zero extending. Unsigned values are con­
verted to floating-point values by converting first to a signed integer of the 
same size, then converting that signed value to a floating-point value. 

When an unsigned integer is converted to a signed integer of the same size, 
no change in the bit pattern occurs. However, the value it represents 
changes if the sign bit is set. 

Conversions from unsigned integral types are summarized in Table 5.3. 

Table 5.3 

Conversions from Unsigned Integral Types 

From 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 
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To 

char 

short 

long 

unsigned short 

unsigned long 

float 

Method 

Preserve bit pattern; high-order bit 
becomes sign bit 

Zero extend 

Zero extend 

Zero extend 

Zero extend 

Convert to long; convert long to 
float 
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Table 5.3 (continued) 

From To Method 

unsigned char double Convert to long; convert long to 
double 

unsigned short char Preserve low-order byte 

unsigned short short Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned short long Zero extend 

unsigned short unsigned char Preserve low-order byte 

unsigned short unsigned long Zero extend 

unsigned short float Convert to long; convert long to 
float 

unsigned short double Convert to long; convert long to 
double 

unsigned long char Preserve low-order byte 

unsigned long short Preserve low-order word 

unsigned long long Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned long unsigned char Preserve low-order byte 

unsigned long unsigned short Preserve low-order word 

unsigned long float Convert to long; convert long to 
float 

unsigned long double Convert to long; convert long to 
double 

Note 

The unsigned int type is equivalent either to the unsigned short type 
or to the unsigned long type, depending on the implementation. 
Conversion of an unsigned int value proceeds as for an unsigned 
short or an unsigned long, whichever is appropriate. 
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5.7.1.3 Conversions from Floating-Point Types 

A float value converted to a double undergoes no change in value. A 
double converted to a float is represented exactly, if possible. If the value 
is too large to fit into a float, precision is lost. 

A floating-point value is converted to an integer value by converting to a 
long. Conversions to other integer types occur as for a long. The decimal 
portion of the floating-point value is discarded in the conversion to a long; 
if the result is still too large to fit into a long, the result of the conversion 
is undefined. 

Conversions from floating-point types are summarized in Table 5.4. 

Table 5.4 

Conversions from Floating-Point Types 

From 

float 

float 

float 

float 

float 

float 

double 

double 

double 

double 

double 

double 
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To 

char 

short 

long 

unsigned short 

unsigned long 

double 

char 

short 

long 

unsigned short 

unsigned long 

float 

Method 

Convert to long; convert long to char 

Convert to long; convert long to short 

Truncate at decimal point; if result is too large to 
be represented as long, result is undefined 

Convert to long; convert long to unsigned short 

Convert to long; convert long to unsigned long 

Change internal representation 

Convert to float; convert float to char 

Convert to float; convert float to short 

Truncate at decimal point; if result is too large to 
be represented as long, result is undefined 

Convert to long; convert long to unsigned short 

Convert to long; convert long to unsigned long 

Represent as a float. If double value cannot 
be represented exactly as float, loss of precision 
occurs; if value is too large to be represented 
as float, the result is undefined 
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5.7.1.4 Conversions to and from Pointer Types 

A pointer to one type of value can be converted to a pointer to a different 
type. The result may be undefined, however, because of the alignment 
requirements and sizes of different types in storage. 

In some implementations, the special keywords near, far, and huge are 
available to modify the size of pointers within a program. A pointer can be 
converted to a pointer of a different size; the path of the conversion is 
implementation dependent. For example, on an 8086 processor, the com­
piler might use a segment-register value to convert a 16-bit pointer to a 
32-bit pointer. See your system documentation for information on pointer 
conversions. 

A pointer value can be converted to an integral value. The path of the 
conversion depends on the size of the pointer and the size of the integral 
type, as follows: 

• If the pointer is the same size as or larger than the integral type, 
the pointer behaves like an unsigned value in the conversion, except 
that it cannot be converted to a floating-point value. 

• If the pointer is smaller than the integral type, the pointer is first 
converted to a pointer with the same size as the integral type, then 
converted to the integral type. The method of converting a pointer 
to a longer pointer is implementation dependent; see your system 
documentation for information on pointer conversions. 

An integral type can be converted to a pointer type. If the integral type is 
the same size as the pointer type, the conversion simply causes the integral 
value to be treated as a pointer (an unsigned integer). If the size of the 
integral type is different from the size of the pointer type, the integral type 
is first converted to the size of the pointer, using the conversion paths given 
in Tables 5.2 and 5.3. It is then treated as a pointer value. 

If the special keywords near, far, and huge are implemented, implicit 
conversions may be made on pointer values. In particular, the compiler 
may make assumptions about the default size of pointers and convert 
passed pointer values accordingly, unless a forward declaration is present to 
override the implicit conversion. See your system documentation for infor­
mation on pointer conversions. 
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5.7.1.5 Conversions from Other Types 

An enum value is an int value, by definition of the enum type. Conver­
sions to and from an enum value proceed as for the int type. An int is 
equivalent to either a short or a long, depending on the implementation. 

No conversions between structure or union types are allowed. 

The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, nor can any value be converted to void by assign­
ment. A value can be explicitly cast to void, however, as discussed in 
Section 5.7.2. 

5.7.2 Type-Cast Conversions 

Explicit type conversions can be made by means of a type cast. A type cast 
has the form 

( type-name)operand 

where type-name specifies a particular type and operand is a value to be 
converted to the specified type. (Type names are discussed in Section 4.9.) 

The conversion of operand occurs as though it had been assigned to a 
variable of the named type. The conversion rules for assignments (outlined 
in Section 5.7.1) apply to type casts as well. The type name void can be 
used in a cast operation, but the resulting expression cannot be assigned to 
any item. 

5.7.3 Operator Conversions 

The conversions performed by C operators depend on the operator and on 
the type of the operand or operands. Many operators perform the "usual 
arithmetic conversions," which are outlined in Section 5.3.1. 

C permits some arithmetic with pointers. In pointer arithmetic, integer 
values are converted to express memory positions; see the discussions of 
additive operators (Section 5.3.6) and subscript expressions (Section 5.2.5) 
for information. 
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5.7.4 Function-Call Conversions 

The type of conversion performed on the arguments in a function call 
depends on whether a forward declaration with declared argument types is 
present for the called function. 

If a forward declaration is present, and it includes declared argument types, 
the compiler performs type checking. The type-checking process is outlined 
in detail in Section 7.4.1, "Actual Arguments." 

If no forward declaration is present, or if the forward declaration omits the 
argument-type list, the only conversions performed on the arguments in the 
function call are the usual arithmetic conversions. These conversions are 
performed independently on each argument in the call. This means that a 
float value is converted to a double; a char or short value is converted to 
an inti and an unsigned char or unsigned short is converted to an 
unsigned into 

If the special keywords near, far, and huge are implemented, implicit 
conversions may also be made on pointer values passed to functions. These 
implicit conversions can be overridden by providing argument-type lists to 
allow the compiler to perform type checking. See your system documenta­
tion for information on pointer conversions. 
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Statements 

6.1 Introduction 

The statements of a C program control the flow of program execution. In 
C, as in other programming languages, several kinds of statements are 
available to perform loops, to select other statements to be executed, and 
to transfer control. This chapter describes C statements in alphabetical 
order, as follows: 

break statement 

compound statement 

continue statement 

do statement 

expression statement 

for statement 

goto statement 

if statement 

null statement 

return statement 

switch statement 

while statement 

C statements consist of keywords, expressions, and other statements. The 
following keywords appear in C statements: 

break 
case 
continue 

default 
do 
else 

for 
goto 
if 

return 
switch 
while 

The expressions in C statements are the expressions discussed in Chapter 5, 
"Expressions and Assignments." Statements appearing within C statements 
may be any of the statements discussed in this chapter. A statement that 
forms a component of another statement is called the "body" of the enclos­
ing statement. Frequently the statement body is a "compound" statement; 
that is, a single statement composed of one or more statements. 

The compound statement is delimited by braces; all other C statements end 
with a semicolon. 
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Any C statement may be prefixed with an identifying label consisting of a 
name and a colon. Statement labels are recognized only by the goto state­
ment and are therefore discussed in Section 6.8, "The goto and Labeled 
Statements. " 

When a C program is executed, its effect is the same as execution of the 
statements in order of their appearance in the program, except where a 
statement explicitly transfers control to another location. 
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6.2 The break Statement 

Syntax 

break; 

Execution 

The break statement terminates the execution of the smallest enclosing 
do, for, switch, or while statement in which it appears. Control passes to 
the statement following the terminated statement. A break statement 
appearing outside any do, for, switch, or while statement causes an error. 

Within nested statements, the break statement terminates only the do, 
for, switch, or while statement immediately enclosing it. To transfer con­
trol out of the nested structure, a return or goto statement can be used. 

Example 

for (i 0; i < LENGTH - 1; i++) { 

} 

for (j = 0; j < WIDTH - 1; j++) { 
if (lines[i] [j] == '\0') { 

lengths[i] = j; 
break; 

} 
} 

The above example processes an array of variable-length strings stored in 
1 ines. The break statement causes an exit from the interior for loop 
after the terminating null character ( \ 0) of each string is found and stored 
in lengths [iJ. Control then returns to the outer for loop. The variable 
i is incremented and the process is repeated until i is greater than or equal 
to LENGTH. 
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6.3 The Compound Statement 

Syntax 

{ 
[ declaration] 

statement 
[statement] 

} 

Execution 

The effect of a compound statement's execution is that of the execution of 
its statements in order of their appearance, except where a statement expli­
citly transfers control to another location. The form and meaning of the 
declarations that can appear at the head of a compound statement are 
described in Chapter 4, "Declarations." 

Example 

if (i > 0) { 

} 

line[i] x; 
x++; 
i--; 

A compound statement typically appears as the body of another statement, 
such as the if statement. In the above example, if i is greater than 0, all of 
the statements in the compound statement are executed in order. 
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Labeled Statements 

Like other C stateinents, any of the statements in a compound statement 
can carry a label. Transfer into the compound statement by means of a 
goto is therefore possible. However, transferring into a compound state­
ment is dangerous when the compound statement includes declarations that 
initialize variables. Declarations in a compound statement precede the exe­
cutable statements, so transferring directly to an executable statement 
within the compound statement bypasses the initializations. The results are 
unpredictable. 
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6.4 The continue Statement 

Syntax 

continue; 

Execution 

The continue statement passes control to the next iteration of the do, for, 
or while statement in which it appears, bypassing any remaining state­
ments in the do, for, or while statement body. Within a do or a while 
statement, the next iteration begins with the reevaluation of the do or 
while statement's expression. Within a for statement, the next iteration 
starts with the evaluation of the for statement's loop expression. It 
proceeds with the evaluation of the conditional expression and subsequent 
termination or reiteration of the statement body. 

Example 

while (i-- > 0) { 

} 

x = f (i) ; 
if (x == 1) 

continue; 
y = x * x; 

The statement body is executed if i is greater than o. First f (i) is 
assigned to Xi then, if X is equal to 1, the continue statement is executed. 
The rest of the statements in the body are ignored, and execution resumes 
at the top of the loop with the evaluation of i - - > o. 
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6.5 The do Statement 

Syntax 

do 
statement 

while (expression); 

Execution 

Statements 

The body of a do statement is executed one or more times until expression 
becomes false (0). First, the statement body is executed; then expression is 
evaluated. If expression is false, the do statement terminates and control 
passes to the next statement in the program. If expression is true (non­
zero), the statement body is executed again, and expression is tested again. 
The statement body is executed repeatedly until expression becomes false. 

The do statement may also terminate with the execution of a break, goto, 
or return statement within the statement body. 

Example 

do { 
y = f(x); 
x--; 

} while (x > 0); 

The two statements y = f (x) ; and x- -; are executed, regardless of the 
initial value of x. Then x > 0 is evaluated. If x is greater than 0, the 
statement body is executed again and x > 0 is reevaluated. The state­
ment body is executed repeatedly as long as x remains greater than O. Exe­
cution of the do statement terminates when x becomes 0 or negative. 
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6.6 The Expression Statement 

Syntax 

expre8820n; 

Execution 

The expression is evaluated, according to the rules outlined in Chapter 5, 
"Expressions and Assignments." 

Examples 

x = (y + 3); /* Example 1 */ 

x++; /* Example 2 */ 

f (x) ; /* Example 3 */ 

In C, assignments are expressions; the value of the expression is the value 
being assigned (sometimes called the "right-hand value"). In the first 
example, x is assigned the value of y + 3. In the second example, x is 
incremented. 

The third example shows a function-call expression. The value of the 
expression is the value, if any, returned by the function. If a function 
returns a value, the expression statement usually incorporates an assign­
ment to store the returned value when the function is called. If the return 
value is not assigned, as in the example, the function call is executed but 
the return value, if any, is not used. 
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6.7 The for Statement 

Syntax 

for ( [init-expression ]; [ cond-expression ]; [loop-expression] ) 
statement 

Execution 

The body of a for statement is executed zero or more times until the 
optional cond-expression becomes false. The init-expression and loop­
expression are optional expressions that can be used to initialize and modify 
values during the for statement's execution. 

The first step in the execution of the for statement is the evaluation of 
init-expression, if present. Next, cond-expression is evaluated, with three 
possible results: 

1. If the conditional expression is true (nonzero), the statement body is 
executed; then loop-expression, if present, is evaluated. The process 
then begins again with the evaluation of cond-expression. 

2. If the conditional expression is omitted, the conditional expression 
is considered true, and execution proceeds exactly as described 
above. A for statement lacking cond-expression terminates only 
upon the execution of a break, goto, or return statement within 
the statement body. 

3. If the conditional expression is false, execution of the for statement 
terminates and control passes to the next statement in the program. 

A for statement may also terminate with the execution of a break, 
return, or goto statement within the statement body. 

Example 

for (i space = tab = 0; i < MAX; i++) { 
if (line[iJ == '\x20') 

} 

space++; 
if (line[i] == '\t') { 

tab++ ; 
line[iJ ='\x20'; 

} 
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The above example counts space (I \x20 I) and tab (I \ t I) characters in 
the array of characters named 1 ine and replaces each tab character with a 
space. First i, space, and tab are initialized to O. Then i is compared to 
the constant MAX; if i is less than MAX, the statement body is executed. 
Depending on the value of line[i], the body of one or neither of the if 
statements is executed. Then i is incremented and tested against MAX; the 
statement body is executed repeatedly as long as i is less than MAX. 
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6.8 The goto and Labeled Statements 

Syntax 

goto name; 

name: statement 

Execution 

The goto statement transfers control directly to the statement specified by 
name. The labeled statement is executed immediately after the goto state­
ment is executed. An error results if no statement with the given label 
resides in the same function or if an identical label appears before more 
than one statement in the same function. 

A statement label is meaningful only to a goto statement; when a labeled 
statement is encountered in any other context, the statement is executed 
without regard to the label. 

Example 

if (errorcode > 0) 
goto exit; 

exit: 
return (errorcode); 

In the example, a goto statement transfers control to the point labeled 
exi t when an error occurs. 

Forming Labels 

A label name is simply an identifier, formed by following the same rules 
that govern the construction of identifiers (see Section 2.4). Each state­
ment label must be distinct from other statement labels and identifiers in 
the same function. 
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6.9 The if Statement 

Syntax 

if (expression) 
statementl 

[ else 
statement2 TI 

Execution 

The body of an if statement is executed selectively, depending on the value 
of expression. First, expression is evaluated. If expression is true (nonzero), 
the statement immediately following it is executed. If expression is false, 
the statement following the else keyword is executed. If expression is false 
and the else clause is omitted, the statement following expression is 
ignored. Control then passes from the if statement to the next statement in 
the program. 

Example 

if (i > 0) 
Y xli: 

else { 
x = i; 
Y f (x) ; 

} 

In the example, the statement y = xli; is executed if i is greater than O. 
If i is less than or equal to 0, i is assigned to x and f (x) is assigned to y. 
Note that the statement forming the if clause ends with a semicolon. 

Nesting 

C does not offer an "else if" statement, but the same effect is achieved by 
nesting if statements. An if statement may be nested in either the if clause 
or the -else clause of another if statement. ~ 

When nesting if statements and else clauses, use braces to group the state­
ments and clauses into compound statements that clarify your intent. In 
the absence of braces, the compiler resolves ambiguities by pairing each 
else with the most recent if lacking an else. 
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Examples 

/******************** Example 1 ********************/ 

if (i > 0) /* Without braces */ 
if (j > i) 

x j; 
else 

x = i' I 

/******************** Example 2 ********************/ 

if (i > 0) { /* With braces */ 
if (j > i) 

x = j; 
} 
else 

x = i; 

In the first example, the else is associated with the inner if statement. If i 
is less than or equal to 0, no value is assigned to x. 

In the second version, the braces surrounding the inner if statement make 
the else clause part of the outer if statement. If i is less than or equal to 
0, i is assigned to x. 
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6.10 The Null Statement 

Syntax 

Execution 

A null statement is a statement containing only a semicolon; it may appear 
wherever a statement is expected. Nothing happens when a null statement 
is executed. 

Example 

for (i = 0; i < 10; line[i++] = 0) 

Statements such as do, for, if, and while require that an executable state­
ment appear as the statement body. The null statement satisfies the syn­
tax requirement in cases that do not need a substantive statement body. In 
the above example, the third expression of the for statement initializes the 
first 10 elements of 1 ine to O. The statement body is a null statement, 
since no further statements are necessary. 

Labeling a Null Statement 

The null statement, like any other C statement, may be prefixed by an 
identifying label. To label an item that is not a statement, such as the clos­
ing brace of a compound statement, you can insert and label a null state­
ment immediately preceding the item to get the same effect. 
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6.11 The return Statement 

Syntax 

return [expression]; 

Execution 

The return statement terminates the execution of the func.tion in which it 
appears and returns control to the calling function. Execution resumes in 
the calling function at the point immediately following the call. The value 
of expression, if present, is returned to the calling function. If expression is 
omitted, the return value of the function is undefined. 

EX8IDpie 

main () 
{ 

} 

void draw(int/int); 
long sq(int); 

Y = sq(x); 
draw(x i y); 

long sq (x) 
int x; 
{ 

} 
return (x * x); 

void draw(x/y) 
int x, y; 
{ 

return; 
} 
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The main function calls two functions, sq and draw. The sq function 
returns the value of x * x to main; the return value is assigned to y. The 
draw function is declared as a void function and does not return a value. 
An attempt to assign the return value of draw would cause an error. 

By convention, parentheses enclose the expression of the return statement, 
as shown above. The language does not require the parentheses. 

Omitting the Return Statement 

If no return statement appears in a function definition, control auto­
matically returns to the calling function after the last statement of the 
called function. The return value of the called function is undefined. If a 
return value is not required, the function should be declared to have void 
return type. 
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6.12 The switch Statement 

Syntax 

switch (expression) { 
[ declaration] 

} 

[case constant-expression:] 

[statement] 

[default: 
statement] 

[case constant-expression:] 

[ statement] 

Execution 

Statements 

The switch statement transfers control to a statement within its body. The 
statement receiving control is the statement whose case constant-expression 
matches the value of the expression in parentheses. Execution of the state­
ment body begins at the selected statement and proceeds through the end 
of the body or until a statement transfers control out of the body. 

The default statement is executed if no case constant-expression is equal 
to the value of the switch expression. If the default statement is omitted, 
and no case match is found, none of the statements in the switch body is 
executed. 
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The switch expression is an integral value that must be the size of an int 
or shorter. It can also be an enUIn value. If the expression is shorter than 
an int, it is widened to an int value. Each case constant-expression is then 
cast to the type of the switch expression. The value of each case 
constant-expression must be unique within the statement body. 

The case and default labels of the switch statement body are significant 
only in the initial test that determines the starting point for execution of 
the statement body. All statements appearing between the statement 
where execution starts and the end of the body are executed regardless of 
their labels, unless a statement transfers control out of the body entirely. 

Declarations may appear at the head of the compound statement forming 
the switch body, but initializations included in the declarations are not 
performed. The effect of the switch statement is to transfer control directly 
to an executable statement within the body, bypassing the lines that con­
tain initializations. 

EX8Inples 

/******************** Example 1 ********************/ 

switch (c) { 

} 

case 'A': 
capa++ ; 

case 'a': 
lettera++; 

default 
total++; 

/******************** Example 2 ********************/ 

switch (i) { 
case -1: 

case 0 

case 1 

} 

n++; 
break; 

z++; 
break; 

p++; 
break; 

In the first example, all three statements of the switch body are executed if 
c is equal to 'A'. Execution control is transferred to the first statement 
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(capa++;) and continues in order through the rest of the body. If c is 
equal to 'a', lettera and total are incremented. Only total is incre­
mented if c is not equal to 'A' or 'a'. 

In the second example, a break statement follows each statement of the 
switch body. The break statement forces an exit from the switch after 
one statement in the body is executed. If i is equal to -1, only n is incre­
mented. The break following the statement n + +; causes execution control 
to pass out of the switch body, bypassing the remaining statements. Simi­
larly, if i is equal to 0, only z is incremented; if i is equal to 1, only p is 
incremented. The final break statement is not strictly necessary, since 
control will pass out of the body at the end of the compound statement, 
but it is included for consistency. 

Multiple Labels 

A statement may carry multiple case labels, as the following example 
shows: 

case 'a' 
case 'b' 
case 'e' 
case 'd' 
case 'e' 
case 'f' hexevt(e) ; 

Although any statement within the body of the switch statement may be 
labeled, no statement is required to carry a label. Statements without 
labels may be intermingled freely with labeled statements. Keep in mind, 
however, that once the switch statement passes control to a statement 
within the body, all succeeding statements in the block are executed, 
regardless of their labels. 

153 



Microsoft C Compiler Language Reference 

6.13 The while Statement 

Syntax 

while (expression) 
statement 

Execution 

The body of a while statement is executed zero or more times until 
expression becomes false (0). First, expression is evaluated. If the 
expression is initially false, the body of the while statement is never 
executed, and control passes from the while statement to the next state­
ment in the program. If expression is true (nonzero), the body of the state­
ment is executed. Following each execution of the statement body, expres­
sion is reevaluated; the body is executed repeatedly as long as expression 
remains true. 

The while statement may also terminate with the execution of a break, 
goto, or return within the statement body. 

Example 

while (i >= 0) { 
stringl [i] 
i--; 

} 

string2[i]; 

The above example copies characters from str ing2 to str ingl. If i is 
greater than or equal to 0, string2 [iJ is assigned to stringl [iJ and i 
is decremented. When i reaches or falls below 0, execution of the while 
statement terminates. 
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Functions 

7.1 Introduction 

A function is an independent collection of declarations and statements, usu­
ally designed to perform a specific task. C programs have at least one func­
tion, the main function, and they may have other functions. The sections 
of this chapter describe how to define, declare, and call C functions. 

A function definition specifies the name of the function, its formal parame­
ters, and the declarations and statements that define its action. The func­
tion definition can also give the return type of the function and its storage 
class. 

A function declaration establishes the name, return type, and storage class 
of a function whose explicit definition is given at another point in the pro­
gram. The number and types of arguments to the function can also be 
specified in the function declaration. This allows the compiler to compare 
the types of the actual arguments and the formal parameters of a function. 
Function declarations are optional for functions whose return type is into 
To ensure correct behavior, functions with other return types must be de­
clared before they are called. 

A function call passes execution control from the calling function to the 
called function. The actual arguments, if any, are passed by value to the 
called function. Execution of a return statement in the called function re­
turns control and possibly a value to the calling function. 

7.2 Function Definitions 

A function definition specifies the name, formal parameters, and body of a 
function. It may also define the function's return type and storage class. A 
function definition has the following form: 

[ sc-specifier ] [ type-specifier] declarator ( [ parameter-list] ) 
[parame te r-decl arations] 
function-body 

The sc-specifier gives the function's storage class, which must be either 
static or extern. The type-specifier and declarator together specify the 
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function's return type and name. The parameter-list is a list (possibly 
empty) of formal parameters to be used by the function. The parameter­
declarations establish the types of the formal parameters. The function­
body is a compound statement containing local variable declarations and 
statements. The following sections describe in detail the parts of the func­
tion definition. 

7.2.1 Storage Class 

The storage-class specifier in a function definition gives the function either 
static or extern storage class. A function with static storage class is 
visible only in the source file in which it is defined. All other functions, 
whether they are given extern storage class explicitly or implicitly, are visi­
ble throughout all the source files that constitute the program. 

When the storage-class specifier is omitted from a function definition, the 
storage class defaults to extern. The extern storage-class specifier can be 
explicitly specified in the function definition, but it is not required. 

The storage-class specifier is required in a function definition in only one 
case: when the function is declared elsewhere in the same source file with 
the static storage-class specifier. 

The static storage-class specifier can also be used when defining a function 
previously declared in the same source file without a storage-class specifier. 
Normally, a function declared without a storage-class specifier defaults to 
the extern class. However, if the function definition explicitly specifies the 
static class, the function is given static class instead. 

7.2.2 Return Type 

The return type of a function defines the size and type of value returned by 
the function. The type declaration has the form 

[ type-specifier] declarator 

where type-specifier, together with the declarator, defines the function's 
return type and name. If no type-specifier is given, the return type int is 
assumed. 

The type-specifier can specify any fundamental, structure, or union type. 
The declarator consists of the function identifier, possibly modified to de­
clare a pointer type. Functions cannot return arrays or functions, but they 
can return pointers to any type, including arrays and functions. 
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The return type given in the function definition must match the return type 
in declarations of the function elsewhere in the program. Functions with 
int return type do not have to be declared before they are called; functions 
with other return types cannot be called before they are either defined or 
declared. 

A function's return value type is used only when the function returns a 
value, which occurs when a return statement containing an expression is 
executed. The expression is evaluated, converted to the return value type if 
necessary, and returned to the point of call. If no return statement is exe­
cuted, or if the executed return statement does not contain an expression, 
the return value of the function is undefined. If the calling function expects 
a return value, the behavior of the program is also undefined. 

Examples 

/******************** Example 1 ********************/ 

/* return type is int */ 
static add (x, y) 
int x, y; 
{ 

return (x+y); 
} 

/********************* Example 2 *********************/ 

typedef struct { 
char name[20J; 
int id; 
long class; 

} STUDENT; 

{ 

} 

/* return type is STUDENT */ 
STUDENT sortstu (a, b) 
STUDENT a, b; 

return ( (a.id < b.id) ? a b); 
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/********************* Example 3 *********************/ 

/* return type is char pointer */ 
char *smallstr(sl , s2) 
char sl [J I s2 [J ; 
{ 

} 

int i; 

i=O; 
while ( sl[iJ != '\0' && s2[iJ != '\0' ) 

i++; 
if ( sl[iJ == '\0' ) 

return (sl); 
else 

return (s2); 

In the first example, the return type of add is int by default. The function 
has static storage class, which means it can be called only by functions in 
the same source file. 

The second example defines the STUDENT type with a typedef declaration 
and defines the function sortstu to have STUDENT return type. The func­
tion selects and returns one of its two structure arguments. 

The third example defines a function returning a pointer to an array of 
characters. The function takes two character arrays (strings) as arguments 
and returns a pointer to the shorter of the two strings. A pOInter to an ar­
ray points to the type of the array elements; thus, the return type of the 
function is a pointer to char. 

7.2.3 Formal Parameters 

Formal parameters are variables that receive values passed to a function by 
a function call. The formal parameters are declared in a parameter list at 
the beginning of the function declaration. The parameter list defines the 
names of the parameters and the order in which they take on values in the 
function call. 

The parameter list consists of zero or more identifiers, separated by com­
rr:as. The list must be enclosed in parentheses, even if no identifiers are 
gIven. 
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A comma followed by three periods (, •.• ) can appear after the last identifier 
in the parameter list, indicating that the number of arguments to the func­
tion is variable. However, the function is expected to have at least as many 
parameters as there are identifiers before the last comma. 

A ~a~a~eter list can also consist of three periods ( ••• ) and !l0 i.denti~ers. 
ThIs IndIcates that the number of parameters to the functIOn IS varIable 
and may be zero. 

Note 

To maintain compatibility with previous versions, the compiler will also 
accept the comma character, without the trailing periods, at the end of 
the parameter list to indicate a variable number of arguments. A single 
comma can also be used instead of three periods to form the parameter 
list of a function taking zero or more arguments. Use of the comma is 
supported only for compatibility; using the three periods is recom­
mended for new code. 

Parameter declarations define the type and size of values stored in the for­
mal parameters. These declarations have the same form as other variable 
declarations (see Section 4.4). A formal parameter can have any fundamen­
tal, structure, union, pointer, or array type. 

A parameter can only have auto or register storage class. If no storage 
class is given, auto storage is assumed. If a formal parameter is named in 
the parameter list but is not declared, the parameter is assumed to have int 
type. Formal parameters can be declared in any order. 

The identifiers of the formal parameters are used in the function body to 
refer to the values passed to the function. These identifiers cannot be used 
for variable declarations within the function body. 

Only identifiers that appear in the parameter list can be declared as formal 
parameters. If the function has a variable number of arguments, the pro­
grammer is responsible for determining the number of arguments passed, 
and for retrieving additional arguments from the stack within the body of 
the function. See your system documentation for information on macros 
that can be used to do this in a portable way. 
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The type of each formal parameter should correspond to the type of the 
actual argument and to the type of the corresponding argument in the 
argument-type list for the function, if such a list is present. The compiler 
performs the usual arithmetic conversions independently on each formal 
parameter and on each actual argument, if necessary. After conversion, no 
formal parameter is shorter than an int, and no formal parameter has float 
type. This means, for example, that declaring a formal parameter as a 
char has the same effect as declaring it as an into 

If the near, far, and huge keywords are implemented, the compiler may 
also perform conversions on any pointer arguments to a function. The 
conversions performed depend on the default size of pointers in the pro­
gram and the presence or absence of an argument-type list for the function. 
See yOU! system documentation for specific information on pointer 
converSIOns. 

The converted type of each formal parameter determines how the 
arguments placed on the stack by the function call are interpreted. A type 
mismatch between an actual and a formal parameter can cause the argu­
ments on the stack to be misinterpreted. For example, if a 16-bit pointer is 
passed as an actual argument, then declared as a long formal parameter, 
the first 32 bits on the stack are interpreted as a long formal parameter. 
This error creates problems not only with the long formal parameter, but 
with any formal parameters that follow it. Errors of this kind can be 
detected through diligent use of argument-type lists in function 
declarations. 

Example 

struct student { 
char name[20]; 
int id; 
long class; 
struct student *nextstu; 

} student; 

main 0 
{ 

int match ( struct student *, char * ); 
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if (match (student.nextstu , student. name) > 0) { 

} 
} 

match ( r , n ) 
struct student *r; 
char *n; 
{ 

} 

int i 0; 

while r->name[i] == n[i] ) 
if ( r->name[i++] == '\0' 

return (r->id); 
return (0); 

The example contains a structure type declaration, a forward declaration of 
the function match, a call to match, and the definition of the match func­
tion. Note that the same name, student, can be used without conflict 
both for the structure tag and for the structure variable name. 

The match function is declared to have two arguments, the first a pointer 
to the student structure type and the second a pointer to a char type. 

The two formal parameters of the match function are rand n. The 
parameter r is declared as a pointer to the student structure type; the 
parameter n is declared as a pointer to a char type. 

The function is called with two arguments, both members of the student 
structure. Because there is a forward declaration of ma tch, the compiler 
performs type checking between the actual arguments and the argument­
type list and between the actual arguments and the formal parameters. 
Since the types match, no warnings or conversions are necessary. 

Note that the array name given as the second argument in the call evalu­
ates to a char pointer. The corresponding formal parameter is also 
declared as a char pointer, and is used in subscripted expressions as though 
it were an array identifier. Since an array identifier evaluates to a pointer 
expression, the effect of declaring the formal parameter as char * n is the 
same as declaring it char n [ J. 

Within the function, the local variable i is defined and used to monitor the 
current position in the array. The function returns the id structure 
member if the name member matches the array n; otherwise, it returns O. 

163 



:Microsoft C Compiler Language Reference 

7.2.4 Function Body 

The function body is simply a compound statement. The compound state­
ment contains the statements that define the function's action and can also 
contain declarations of variables used by these statements. See Section 6.3 
of Chapter 6, "Statements," for a discussion of compound statements. 

All variables declared in the function body have auto storage type unless 
otherwise specified. When the function is called, storage space for the local 
variables is created and local initializations are performed. Execution con­
trol passes to the first statement in the compound statement and continues 
sequentially until a return statement or the end of the function body is 
encountered. Control then returns to the point of call. 

A return statement containing an expression must be executed if the func­
tion is to return a value. The return value of a function is undefined if no 
return statement is executed or if the return statement does not include 
the optional expression. 

7.3 Function Declarations 

A function declaration defines the name, return type, and storage class of a 
given function, and may establish the type of some or all of the function's 
arguments. See Chapter 4, "Declarations," for a detailed description of the 
syntax of function declarations. 

Functions can be declared implicitly or with forward declarations. The 
return type of a function declared either implicitly or with a forward 
declaration must agree with the return type specified in the function 
definition. 

An implicit declaration occurs whenever a function is called without being 
previously defined or declared. The C compiler implicitly declares the 
called function to have int return type. By default, the function is declared 
to have extern storage class; the function definition can redefine the 
storage class to static, provided the function definition is given later in the 
same source file. 

A forward declaration establishes the attributes of a function, allowing the 
declared function to be called before it is defined or allowing it to be called 
from another source file. If the storage-class specifier static is given in a 
forward declaration, the function has static class. The function definition 
must also specify the static class. If the storage-class specifier is extern or 
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is omitted, the function has extern class. However, the function definition 
can redefine the storage class as static, provided the function definition 
appears below the declaration in the same source file. 

Forward declarations have several important uses. They establish the 
return type for functions that return any type of value but into (Functions 
that return int values can also have forward declarations, but do not 
require them.) If a function with non-int return type is called before it is 
declared or defined, the results are unpredictable. 

Forward declarations can be used to establish the types of arguments 
expected in a function call. The optional argument-type list of a forward 
declaration gives the type and number of arguments expected. (The 
number of arguments can vary.) The argument-type list is a list of type 
names corresponding to the expression list in the function call. 

If no argument-type list is supplied, no type checking is performed. Type 
mismatches between actual arguments and formal parameters are silently 
accepted. Type checking is discussed further in Section 704.1, "Actual 
Arguments." 

Forward declarations are also used to declare pointers to functions before 
the functions are defined. 

Example 

main () 
{ 

} 

int a = 0, b = 1; 
float x = 2.0, Y = 3.0; 
double realadd(double, double); 

a intadd (a, b); 
x = realadd(x, y); 

intadd(a, b) 
int a, b; 
{ 

} 

double 
double 
{ 

} 

return (a + b); 

realadd(x, y) 
x, y; 

return (x + y); 
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In the example, the function intadd is implicitly declared to return 
an int value, since it is called before it is defined. The compiler does not 
check the types of the arguments in the call because no argument-type list 
is available. 

The function rea 1 add returns a double value instead of an into 
The forward declaration of realadd in the main function allows the 
rea 1 add function to be called before it is defined. Note that the definition 
of rea 1 add matches the forward declaration by specifying the double 
return type. 

The forward declaration of rea 1 add also establishes the types of its two 
arguments; the actual arguments match the types given in the forward 
declaration and also match the types of the formal parameters. 

7.4 Function Calls 

A function call is an expression that passes control and zero or more actual 
arguments to a function. A function call has the form 

expression([ expression-list]) 

where expression evaluates to a function address and expression-list is a list 
of expressions (separated by commas) whose values, the actual arguments, 
are passed to the function. The expression-list can be empty. 

When the function call is executed, the expressions in the function expres­
sion list are copied, converted as necessary, and then passed to formal 
parameters of the called function. The first expression in the list always 
corresponds to the first formal parameter of the function, the second 
expression corresponds to the second formal parameter, and so on through 
the end of the list. Since the called function works with copies of the actual 
arguments, any changes it makes to the arguments are not reflected in the 
original values from which the copies were made. 

Execution control then passes to the first statement in the function. The 
execution of a return statement in the body of the function returns control 
and possibly a value to the calling function. If no return statement is exe­
cuted, control returns to the caller after the last statement of the called 
function is executed, and the return value is undefined. 

166 



Functions 

Important 

The expressions in the function call's expression list can be evaluated 
in any order, so expressions with side effects have unpredictable results. 
The only guarantee the compiler makes is that all side effects in the 
expression list are evaluated before control passes to the called 
function. 

The only requirement in calling a function is for the expression before the 
parentheses to evaluate to a function address. This means that a function 
can be called through any function-pointer expression. It may be helpful to 
remember that a function is called in the same manner in which it is 
declared. For instance, when declaring a function, the name of the function 
is given, followed by an argument-type list in parentheses. To call the 
function, only the name of the function is required, followed by an expres­
sion list in parentheses. The indirection operator (*) is not required to call 
the function because the name of the function evaluates to the function 
address. 

The same principle applies when calling a function through a pointer. For 
example, suppose a function pointer is declared as follows: 

int (*fpointer) (int, int); 

The identifier fpo inter is declared to point to a function taking two int 
arguments ::md returning an int value. A function call through fpointer 
might look like this: 

(*fpointer) (3,4) 

The indirection operator (*) is used to obtain the address of the function 
Lo which fpointer points. The function address is then used to call the 
function. 
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Examples 

/********************* Example 1 *********************/ 

double *realcomp(double, double); 
double a, b, *rp; 

rp = realcomp(a, b); 

/********************* Example 2 *********************/ 

168 

main () 
{ 

} 

long lift (int), step (int) , drop (int) ; 
void work (int, long (*)(int»; 
int select, count; 

select = 1; 
switch ( select) { 

} 

case 1: work (count, lift); 
break; 

case 2: work (count, step); 
break; 

case 3: work (count, drop); 

default: 
break; 

void work ( n, func 
int n; 
long (* func) (int) ; 
{ 

} 

int i; 
long j; 

for (i j 0; i < n; i++) 
j += ('I< fune) (i) ; 
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In the first example, the rea 1 comp function is called in the statement 
rp = rea 1 comp (a I b);. Two double arguments are passed to the 
realcomp function; the return value, a pointer to a double, is assigned 
to rp. 

In the second example, the function call 

work (count, lift); 

in main passes an integer variable and the address of the function 1 i ft to 
the function work. Note that the function address is passed simply by giv­
ing the function identifier, since a function identifier evaluates to a pointer 
expression. To use a function identifier in this way, the function must be 
declared or defined before the identifier is used; otherwise, the identifier is 
not recognized. In this case, a forward declaration for work is given at the 
beginning of the main function. 

The formal parameter func in work is declared to be a pointer to a func­
tion taking one int argument and returning a long. The parentheses 
around the parameter name are required; without them, the declaration 
would specify a function returning a pointer to a long. 

The function work calls the selected function by using the following func­
tion call: 

(* func) (i) ; 

One argument, i, is passed to the called function. 

7.4.1 Actual Arguments 

An actual argument can be any value with fundamental, structure, union, 
or pointer type. Although arrays and functions cannot be passed as param­
eters, pointers to these items can be passed. 

All actual arguments are passed by value. A copy of the actual argument is 
assigned to the corresponding formal parameter. The function uses this 
copy without affecting the variable from which it was originally derived. 
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Pointers provide a way to access a value by reference from a function. 
Since a pointer to a variable holds the address of the variable, the function 
can use this address to access the value of the variable. Pointer arguments 
allow a function to access arrays and functions, even though arrays and 
functions cannot be passed as arguments. 

The expressions in a function call are evaluated and converted as follows: 

• If an argument-type list is present, then for each actual argument in 
the function call, the usual arithmetic conversions are performed 
independently on the corresponding type in the argument-type list, 
and the actual argument is converted to that type. Next, the con­
verted expression is compared with the type of the formal parame­
ter that has the same place in the parameter list that the expression 
has in the expression list. (The formal parameters also undergo the 
usual arithmetic conversions before the comparison.) No conver­
sions are performed, but the compiler produces warning messages as 
if the expressions were assigned to the formal parameters. 

• If no argument-type list is present, or if there are more actual 
arguments than there are type names in the argument-type list, the 
usual arithmetic conversions are performed independently on each 
actual argument that lacks a corresponding type name. 

If the near, far, and huge keywords are implemented, implementation­
dependent conversions on pointer arguments may also be performed. See 
your system documentation for information on pointer conversions. 

The number of expressions given in the expression list must match the 
number of formal parameters, unless the function's forward declaration and 
possibly its definition explicitly specify a variable number of arguments. In 
this case, the compiler checks as many arguments as there are type names 
in the argument-type list and converts them, if necessary, as described 
above. 

If the argument-type list contains the special type name void, the compiler 
expects zero actual arguments in the function call and zero formal parame­
ters. It produces a warning message if it finds otherwise. 

The type of each formal parameter also undergoes the usual arithmetic 
conversions. The converted type of each formal parameter determines how 
the arguments on the stack are interpreted; if the type of the formal 
parameter does not match the type of the actual argument, the data on the 
stack can be misinterpreted. 
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Note 

Type mismatches between actual and formal parameters can produce 
serious errors, particularly when the mismatches entail size differences. 
Keep in mind that these errors are not detected unless an argument­
type list is given in the forward declaration of the function. 

Example 

main () 
{ 

} 

void swap (int *, int *); 
int x, y; 

swap (&x, &y); 

void swap (a, b) 
int *a, *b; 
{ 

} 

int t; 

t = *a; 
*a *b; 
*b = t; 

In the above example, the swap function is declared in main to have two 
arguments, both pointers to integers. The formal parameters a and bare 
also declared as pointers to integer variables. In the function call 

swap (&x, &y) 

the address of x is stored in a and the address of y is stored in b. Now two 
names, or "aliases," exist for the same location. References to * a and * b in 
swap are effectively references to x and y in main. The assignments within 
swap change the contents of x and y. 

The compiler performs type checking on the arguments to swap because an 
argument-type list is present in the forward declaration of swap. The 
types of the actual arguments match both the argument-type list and the 
formal parameters. 
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7.4.2 Calls with a Variable Number of Arguments 

To call a function with a variable number of arguments, the programmer 
simply gives any number of arguments in the function call. In the forward 
declaration of the function (if there is one), a variable number of arguments 
is specified by placing a comma followed by three periods (, .•. ) at the end of 
the argument-type list (see Section 4.5 of Chapter 4, "Declarations"). One 
argument must be present in the function call for each type name specified 
in the argument-type list. If only the three periods (but no type names) are 
given, no arguments are required when calling the function. 

Similarly, the parameter list in the function definition can end with a 
comma followed by three periods (, ..• ) to indicate a variable number of 
arguments. If the parameter list contains only three periods ( .•. ), the 
number of parameters is variable and may be zero. See Section 7.2, "Func­
tion Definitions," for more information on the form of the parameter list. 

Note 

To maintain compatibility with previous versions, the compiler will also 
accept the comma character, without the trailing periods, at the end of 
the argument-type list or parameter list to indicate a variable number 
of arguments. A single comma can also be used instead of three periods 
to form the argument-type list or parameter list of a function taking 
zero or more arguments. Use of the comma is supported only for com­
patibility; use of the three periods is recommended for new code. 

All the arguments given in the function call are placed on the stack. 
The number of formal parameters declared for the function determines 
how many of the arguments are taken from the stack and assigned to the 
formal parameters. The programmer is responsible for retrieving any 
additional arguments from the stack and for determining how many argu­
ments are present. See your system documentation for information about 
macros that can be used to handle a variable number of arguments in a 
portable way. 
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7.4.3 Recursive Calls 

Any function in a C program can be called recursively. A function can 
therefore call itself. The C compiler allows any number of recursive calls 
to a function. On each call, new storage is allocated for the formal para­
meters and for the auto and register variables so that their values in pre­
vious, unfinished calls are not overwritten. Previous parameters are inac­
cessible to all versions of the function except the version in which they were 
created. 

Note that variables declared with global storage do not require new storage 
with each recursive call. Their storage exists for the lifetime of the pro­
gram. Each reference to such a variable accesses the same storage area. 

Although the C compiler defines no limit for the number of times a function 
can be called recursively, the operating environment may impose a practical 
limit. Since each recursive call requires additional stack memory, too many 
recursive calls can cause a stack overflow. 
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Preprocessor Directives and Pragmas 

8.1 Introduction 

A "preprocessor directive" is an instruction intended for the C preproces­
sor. The C preprocessor is a text processor used to manipulate the text of a 
source file as the first phase of compilation. The compiler ordinarily in­
vokes the preprocessor in its first pass, but the preprocessor can also be in­
voked separately to process text without compiling. 

Preprocessor directives are typically used to make source programs easy to 
modify and to compile in different execution environments. Directives in 
the source file instruct the preprocessor to perform specific actions. For ex­
ample, the preprocessor can replace tokens in the text, insert the contents 
of other files into the source file, and suppress compilation of a portion of 
the file by removing sections of text. 

The C preprocessor recognizes the following directives: 

# define 
#elif 
# else 
#endif 

#if 
#ifdef 
#ifndef 
# include 

# line 
#undef 

The number sign (# ) must be the first non-white-space character on the 
line containing the directive; white-space characters can appear between 
the number sign and the first letter of the directive. Some directives are 
followed by arguments or values, as described below. Directives can appear 
anywhere in a source file, but they apply only to the remainder of the 
source file in which they appear. 

A "pragma" is a "pragmatic," or practical, instruction to the C compiler. 
Pragmas are embedded in C source files and are typically used to control 
the actions of the compiler in a particular portion of a program without 
affecting the program as a whole. Section 8.6 describes the syntax for prag­
mas. However, the particular pragmas that are available, and their mean­
ings, are defined by the implementation. See your system documentation 
for information on the use and effects of pragmas. 
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8.2 Manifest Constants and Macros 

The # define directive is typically used to associate meaningful identifiers 
with constants, keywords, and commonly used statements or expressions. 
Identifiers that represent constants are called "manifest constants." 
Identifiers that represent statements or expressions are called "macros." 

Once an identifier is defined, it cannot be redefined to a different value 
without first removing the definition. However, the identifier can be 
redefined with exactly the same definition. Thus, a program is allowed to 
contain more than one occurrence of the same definition. 

The #undef directive removes the definition of an identifier. Once the 
definition has been removed, the identifier can be redefined to a different 
value. Sections 8.2.1 and 8.2.2 discuss the # define and # undef direc­
tives, respectively. 

Macros can be defined to look and act like function calls. Because macros 
do not generate actual function calls, replacing function calls with macros 
can improve execution time. However, macros create problems if they are 
not defined and used with care. Macro definitions with arguments may 
require the use of parentheses to preserve the proper precedence in an 
expression. In addition, macros may not correctly handle expressions with 
side effects. See the examples in Section 8.2.1 for more information. 

8.2.1 The # define Directive 

Syntax 

# define identifier text 
# define identifier(parameter-list) text 

The # define directive substitutes the given text for subsequent occurrences 
of the specified identifier in the source file. The identifier is replaced only 
when it forms a token. (Tokens are described in Chapter 2, "Elements of 
C," and in Appendix B, "Syntax Summary.") For instance, the identifier is 
not replaced when it occurs within a string or as part of a longer identifier. 

If a parameter-list appears after the identifier, the # define directive 
replaces each occurrence of identifier(parameter-list) with a version of text 
modified by substituting actual arguments for formal parameters. 
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The text consists of a series of tokens, such as keywords, constants, or com­
plete statements. One or more white-space characters must separate the 
text from the identifier (or from the closing parenthesis of the parameter­
list). If the text is longer than one line, it can be continued onto the next 
line by preceding the new-line character with a backslash (\). 

The text can also be empty. The effect of this option is to remove instances 
of the given identifier from the source file. The identifier is still considered 
defined, however, and yields the value 1 when tested with the #if directive 
(discussed in Section 8.4.1). 

The parameter-list, when given, consists of one or more formal parameter 
names separated by commas. Each name in the list must be unique, and 
the list must be enclosed in parentheses. No spaces between the identifier 
and the opening parenthesis are allowed. 

Formal parameter names appear in text to mark the places where actual 
values will be substituted. Each parameter name can occur more than once 
in the text, and the names can appear in any order. 

The actual arguments following an instance of the identifier in the source 
file are matched to the formal parameters of the parameter-list, and the text 
is modified by replacing each formal parameter with the corresponding 
actual argument. The actual argument list and the formal parameter-list 
must have the same number of arguments. 

Arguments with side effects sometimes cause macros to produce unexpected 
results. A macro definition may contain more than one occurrence of a 
given formal parameter, and if that formal parameter is replaced by an 
expression with side effects, the expression, with its side effects, is evaluated 
more than once (see Example 4 below). 

Examples 

/******************** Example 1 ********************/ 

#define WIDTH 
#define LENGTH 

80 
(WIDTH + 10) 

/******************** Example 2 ********************/ 

#define FILEMESSAGE "Attempt to create file \ 
failed because of insufficient space" 
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/******************** Example 3 ********************/ 

#define REGl 
#define REG2 
#define REG3 

register 
register 

/******************** Example 4 ********************/ 

#define MAX(X/y) ((X) > (y)) 7 (x) : (y) 

/******************** Example 5 ********************/ 

#define MULT(a/b) 

Example 

1 

2 

3 
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( (a) * (b)) 

Description 

The first example defines the identifier WIDTH as 
the integer constant 80, and defines LENGTH in 
terms of WI DTH and the integer constant 10. Each 
occurrence of LENGTH is replaced with (WIDTH + 
10), which is in turn replaced with the expression 
(80 + 10). The parentheses around WIDTH + 10 
are important because they control the interpreta­
tion in a statement such as the following: 

var = LENGTH * 20; 

After the preprocessing stage the statement 
becomes 

var = (80 + 10) * 20; 

or 1800. Without parentheses, the result is 

var = 80 + 10 * 20; 

which evaluates to 280 because the multiplication 
operator ( * ) has higher precedence than the addi­
tion operator (+). 
The second example defines the identifier 
fILEMESSAGE. The definition is extended 
to a second line by using the backslash escape 
character (\). 

The third example defines three identifiers, REG1, 
REG2, and REG3. REGl and REG2 are defined as 
the keyword register. The definition of REG3 is 
empty, so each occurrence of REG3 is removed from 
the source file. These directives can be used to 
ensure that the program's most important 
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variables (declared with REGI and REG2) are given 
register storage. See the discussion of the # if 
directive in Section 8.4.1 for an expanded version of 
this example. 

The fourth example defines a macro named MAX. 
Each occurrence of the identifier MAX following the 
definition in the source file is replaced. by the 
expression ((x) > (y» ? (x) (y) , where 
actual values replace the parameters x and y. For 
example, the occurrence 

MAX(l,2) 

is replaced with 

((1) > (2» ? (1) (2) 

and the occurrence 

MAX (i, s [i] ) 

is replaced with 

((i) > (s[i]»? (i) : (s[i]) 

This macro is easier to read than the corresponding 
expression, making the source program easier to 
understand. 

Note that arguments with side effects may cause 
this macro to produce unexpected results. For 
example, the occurrence MAX (i / s [i + + J) is 
replaced with (( i) > (s [i + + ] ) ? (i) 
(s [i + + ] ). The expression (s [i + + J) is 

evaluated twice, so by the time the ternary expres­
sion has been fully evaluated, i has increased by 2. 
The result of the ternary expression is unpredict­
able, since the operands of the ternary expression 
can be evaluated in any order, and the value of i 
varies depending on the evaluation order. 

The fifth example defines the macro MUL T. Once 
the macro is defined, an occurrence such as 
MUL T ( 3 / 5) is replaced by (3) * ( 5). The 
parentheses around the parameters are important 
because they control the interpretation when com­
plex expressions form the arguments to the macro. 
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For instance, the occurrence MULT (3 + 4/ 5 + 
6) is replaced by (3 + 4) * (5 + 6),which 
evaluates to 77. Without the parentheses, the 
result is 3 + 4 * 5 + 6, which evaluates to 29 
because the multiplication operator (*) has higher 
precedence than the addition operator (+). 

8.2.2 The #undef Directive 

Syntax 

# undef identifier 

The # undef directive removes the current definition of identifier. The 
preprocessor ignores subsequent occurrences of identifier. To remove a 
macro definition using # undef, give only the macro identifier; do not give 
a parameter list. 

The # undef directive can also be applied to an identifier that has no pre­
vious definition. This ensures that the identifier is undefined. 

The # undef directive is typically paired with a # define directive to 
create a region in a source program in which an identifier has a special 
meaning. For example, a specific function of the source program can use 
manifest constants to define environment-specific values that do not affect 
the rest of the pn'gram. The # undef directive also works with the # if 
directive (see Section 8.4.1) to control compilation of portions of the source 
program. 

Example 

#define WIDTH 
#define ADD (X/Y) 

#undef WIDTH 
#undef ADD 

80 
(X) + (Y) 

In this example, the # undef directive removes definitions of a manifest 
constant and a macro. Note that only the identifier of the macro is given. 
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Syntax 

# include "pathname" 
# include <pathname> 

Preprocessor Directives and Pragmas 

The # include directive adds the contents of a given "include file" to 
another file. Constant and macro definitions can be organized into include 
files and added to any source file by using # include directives. Include 
files are also useful for incorporating declarations of external variables and 
complex data types. The types need only be defined and named once in an 
include file created for that purpose. 

The #include directive tells the preprocessor to treat the contents of the 
named file as if they appeared in the source program at the point of the 
directive. The new text can also contain preprocessor directives. The 
preprocessor carries out directives in the new text, then continues process­
ing the original text of the source file. 

The pathname is a file name optionally preceded by a directory specifi­
cation. It must name an existing file. The syntax of the file specification 
depends on the specific operating system on which the program is compiled. 

The preprocessor uses the concept of a "standard" directory or directories 
to search for included files. The location of the standard directories for 
include files depends on the implementation and the operating system. See 
your system documentation for a definition of the standard directories. 

The preprocessor stops searching as soon as it finds a file with the 
given name. If a complete, unambiguous path name for the include file is 
given, either in double quotation marks (" ") or in angle brackets « », 
the preprocessor searches only that path name and ignores the standard 
directories. 

If the file specification does not give a complete path name, and the file 
specification is enclosed in double quotation marks, the preprocessor first 
searches for the file in the same directory as the including file (the "current 
working directory"). The preprocessor then searches directories specified in 
the compiler command line and finally searches the standard directories. 

If the file specification is enclosed in angle brackets, the preprocessor does 
not search the current working directory. It begins by searching for the file 
in directories specified in the compiler command line and then searches the 
standard directories. 
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An # include directive can be nested; in other words, the directive can 
appear in a file named by another # include directive. When the preproces­
sor encounters the nested # include directive, it processes the named file 
and inserts it into the current file. The preprocessor uses the same search 
procedures outlined above in searching for nested include files. 

The new file can also contain # include directives. Nesting can continue up 
to 10 levels. Once the nested #include is processed, the preprocessor con­
tinues to insert the enclosing include file into the original source file. 

Examples 

#include <stdio.h> /* Example 1 */ 

#include "defs.h" /* Example 2 */ 

The first example adds the contents of the file named stdio. h to the 
source program. The angle brackets cause the preprocessor to search the 
standard directories for stdio. h, after searching directories specified in 
the command line. 

The second example adds the contents of the file specified by de fs . h to 
the source program. The double quotation marks mean that the directory 
containing the current source file is searched first. 

8.4 Conditional Compilation 

This section describes the syntax and use of directives that control "condi­
tional compilation." These directives allow for suppressing compilation of 
portions of a source file by testing a constant expression or identifier to 
determine which text blocks are passed on to the compiler and which are 
removed from the source file in the preprocessing stage. 
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8.4.1 The #if, #elif, leIse, and #endif Directives 

Syntax 

# if restricted-constant-expression 
[ text] 

[ # elif restricted-constant-expression 
text] 

[ # elif restricted-constant-expression 
text] 

[ # else 
text] 

#endif 

The # if directive, together with the # elif, # else, and # endif directives, 
controls compilation of portions of a source file. Each # if directive in a 
source file must be matched by a closing # endif directive. Zero or more 
# elif directives can appear between the # if and # endif directives, but at 
most one # else directive is allowed. The # else directive, if present, must 
be the last directive before # endif. 

The preprocessor selects one of the given blocks of text for further process­
ing. A text block is any sequence of text. It can occupy more than one line. 
Usually the text block is program text that has meaning to the compiler or 
the preprocessor. However, this is not a requirement; the preprocessor can 
be used to process any kind of text. 

The selected text is processed by the preprocessor and passed to the com­
piler. If the text contains preprocessor directives, those directives are car­
ried out. 

Any text blocks not selected by the preprocessor are removed from the file 
in the preprocessing stage and are therefore not compiled. 

The preprocessor selects a single text block by evaluating the restricted­
constant- expressions following each # if or # elif directive until a true 
(nonzero) restricted-constant-expression is found. All text between the first 
true restricted-constant-expression and the next number sign (# ) is 
selected. 
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If no restricted-constant-expression is true, or if there are no # elif direc­
tives, the preprocessor selects the text after the # else clause. If the # else 
clause is omitted, and no restricted-constant-expression in the #if block is 
true, no text is selected. 

Each restricted-constant-expression follows the rules for restricted constant 
expressions discussed in Section 5.2.10 of Chapter 5, "Expressions and 
Assignments." Such expressions cannot contain sizeof expressions, type 
casts, or enumeration constants, but they can contain the special constant 
expression defined( identifier). This constant expression is considered true 
(nonzero) if the given identifier is currently defined; otherwise, the condi­
tion is false (0). An identifier defined as empty text is considered defined. 

The # if, # elif, # else, and # endif directives can nest in the text portions 
of other # if directives. When nested, each # else, # elif, and # endif 
directive belongs to the closest preceding # if directive. 

Examples 

/******************** Example 1 ********************/ 

#if defined(CREDIT) 
credit 0 ; 

#elif defined(DEBIT) 
debit () ; 

#else 
printerror () ; 

#endif 

/******************** Example 2 ********************/ 

#if DLEVEL > 5 
#define SIGNAL 1 
#if STACKUSE 1 

#define STACK 200 
#else 

#define STACK 100 
#endif 

#else 
#define SIGNAL 0 
#if STACKUSE 1 

#define STACK 100 
#else 

#define STACK 50 
#endif 

#endif 
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/******************** Example 3 ********************/ 

#if DLEVEL == 0 
#define STACK 0 

#elif DLEVEL == 1 
#define STACK 100 

#elif DLEVEL > S 
display ( debugptr ); 

#else 
#define STACK 200 

#endif 

/******************** Example 4 ********************/ 

#define REGl 
#define REG2 

register 
register 

#if defined(ML86) 
#define REG3 
#define REG4 
#define REGS 

#else 
#define REG3 register 
#if defined(M_68000) 

#define REG4 
#define REGS 

#endif 
#endif 

register 
register 

In the first example, the # if and # endif directives control compila-
tion of one of three function calls. The function call to credi t is compiled 
if the identifier CREDIT is defined. If the identifier DEBIT is defined, the 
function call to debi t is compiled. If neither identifier is defined, the call 
to pr interror is compiled. Note that CREDIT and credi t are distinct 
identifiers in C because their cases are different. 

The next two examples assume a previously defined manifest constant, 
DLEVEL. The second example shows two sets of nested # if, # else, 
and # endif directives. The first set of directives is processed only if 
DLEVEL > 5 is true. Otherwise, the second set is processed. 

In the third example, # elif and # else directives are used to make one of 
four choices, based on the value of DLEVEL. The manifest constant STACK 
is set to 0, 100, or 200, depending on the definition of DLEVEL. If DLEVEL 
is greater than 5, di sp 1 ay (debugptr) ; is compiled and STACK is not 
defined. 
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The fourth example uses preprocessor directives to control the meaning of 
register declarations in a portable source file. The compiler assigns regis­
ter storage to variables in the same order in which the register declara­
tions appear in the source file. If a program contains more register decla­
rations than the machine can accommodate, the compiler honors earlier 
declarations over later ones. Loss of efficiency can occur if the variables 
declared later are more heavily used. 

The definitions listed above can be used to give priority to the most impor­
tant register declarations. REGI and REG2 are defined as the register key­
word to declare register storage for the two most important variables in 
the program. For example, in the following fragment, band c have higher 
priority than a or d. 

func (a) 

REG3 int a' 

{ 

} 

REGl int b; 
REG2 int c; 
REG4 int d; 

When M_86 is defined, the preprocessor removes the REG3 identifier from 
the file by replacing it with empty text; this prevents a from receiving 
register storage at the expense of band c. When M_68000 is defined, all 
four variables are declared to have register storage. When neither M_86 
nor M_68000 is defined, a, b, and c are declared with register storage. 

8.4.2 The #ifdef and #ifndef Directives 

Syntax 

# ifdef identifier 
# ifndef identifier 

The # ifdef and # ifndef directives accomplish the same task as the # if 
directive used with defined( identifier). These directives can be used any­
where # if can be used, and are provided only for compatibility with previ­
ous versions of the language. The defined( identifier) constant expression 
used with the # if directive is preferred. 
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When the preprocessor encounters an # ifdef directive, it checks to see 
whether the identifier is currently defined. If so, the condition is true 
(nonzero); otherwise, the condition is false (0). 

The # ifndef directive checks for the opposite condition checked by 
# ifdef. If the identifier has not been defined (or its definition has been 
removed with # un de f) , the condition is true (nonzero). Otherwise, the con­
dition is false (0). 

8.5 Line Control 

Syntax 

# line constant IT "filename" ] 

The # line directive instructs the preprocessor to change the compiler's 
internally stored line number and file name to a given line number and file 
name. The compiler uses the internally stored line number and file name to 
refer to errors encountered during compilation. The line number normally 
refers to the current input line; the file name refers to the current input file. 
The line number is increased after each line is processed. 

Changing the line number and file name causes the compiler to ignore the 
previous values and to continue processing with the new values. The # line 
directive is typically used by program generators to cause error messages to 
refer to the original source file instead of the generated program. 

The constant value in the # line directive is any integer constant. The 
filename can be any combination of characters and must be enclosed in 
double quotation marks (" "). If filename is omitted, the previous file 
name remains unchanged. 

The current line number and file name are always available through the 
predefined identifiers _~INE __ and __ F~E __ . The _.-LINE __ and 
_.J'~E __ identifiers can be used to insert self-descriptive error messages 
into the program text. 

The __ F~E __ identifier contains a string representing the file name, sur­
rounded by double quotation marks (" "). Thus, it is not necessary to 
enclose the __ F~E __ identifier in quotation marks when using it as a 
string. 
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Examples 

/******************** Example 1 ********************/ 

#line 151 "copy.c" 

/******************** Example 2 ********************/ 

#define ASSERT (cond) if(!cond)\ 
{printf("assertion error line %d, file(%s)\n", \ 
__ LINE __ , __ FILE __ );} else; 

In the first example, the internally stored line number is set to 151 and the 
file name is changed to copy. c. 

In the second example, the macro ASSERT uses the predefined identifiers 
_.-LINE __ and __ FlLE __ to print an error message about the source file 
if a given "assertion" is not true. Note that no quotation marks are neces­
sary around __ FlLE __ . 

8.6 Pragmas 

Syntax 

# pragma character-sequence 

A # pragma is an implementation-defined instruction to the compiler. It 
has the general form given above, where character-sequence is a series of 
characters giving a specific compiler instruction and arguments, if any. 
The number sign (#) must be the first non-white-space character on the 
line containing the pragma; white-space characters can appear between the 
number sign and the word pragma. 

See your system documentation for information about the pragmas avail­
able in your compiler implementation. 
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Appendix A 

Differences 

This appendix summarizes differences between Microsoft C and the descrip­
tion of the C language found in Appendix A of The C Programming 
Language by Brian W. Kernighan and Dennis M. Ritchie, published in 1978 
by Prentice-Hall, Inc. The following is a list of the differences, with cross­
references to the corresponding section numbers in The C Programming 
Language: 

Section Number in 
Kernighan and Ritchie 

2.2 

2.3 

2.4.1 

Microsoft C 

Identifiers (including those used in 
preprocessor directives) are 
significant to 31 characters. External 
identifiers are also significant to 31 
characters. 

The identifiers asm and entry are no 
longer keywords. New keywords are 
const, volatile, enum, signed, and 
void. (The const and volatile key­
words are not yet implemented but 
are reserved for future use.) The 
identifiers cdecl, far, fortran, huge, 
near, and pascal may be keywords, 
depending on whether or not the 
corresponding options are enabled 
when a program is compiled (see your 
system documentation). 

As a result of the method used for as­
signing types to hexadecimal and oc­
tal constants, these constants always 
act like. unsigned illtegers ill type 
converSIOns. 
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2.4.3 

2.6 

4 

194 

Hexadecimal bit patterns consisting 
of a backslash (\), the letter x, and 
up to two hexadecimal digits are per­
mitted as character constants (for ex­
ample, \x12). 

Microsoft C defines three additional 
escape sequences: \ v represents a 
vertical tab (VT), \" represents the 
double-quote character, and \a 
represents the bell (also called alert). 

Character constants always have 
type int, with the result that they 
are sign extended in type conversions. 

The short type is always 16 bits in 
length, the long type 32 bits. The 
size of an int is machine dependent. 
On 8086/8088, 80186, and 80286 pro­
cessors an int is 16 bits long, and on 
80386 and 68000 machines it is 32 
bits. 

The char type is signed by default, 
with the result that a char value is 
sign extended in type conversions. 
(In some implementations, the de­
fault for the char type can be 
chan!?ed to unsigned at compile 
time.) 

Two additional unsigned types 
are supported: unsigned char and 
unsigned long. 

The keyword unsigned or signed 
can be applied as an adjective to an 
integer type. When unsigned ap­
pears alone it means unsigned int; 
similarly, when signed appears 
alone, it means int, 

Microsoft C offers an additional fun­
damental type, the enum (enumera­
tion) type. The void type is defined 
as the return type of functions that 
do not return a value. 



6.4 

6.6 

7.2 

7.14 

8.2 

Differences 

If the near, far, and huge keywords 
are enabled, pointers of different sizes 
may occur in a program. Operations 
with pointers of different sizes may 
cause conversion of pointers; the path 
of the conversion is implementation 
dependent. 

The arithmetic conversions carried 
out by the Microsoft C Compiler are 
outlined in Sections 5.3.1 and 5.7 of 
Chapter 5, "Expressions and Assign­
ments." Although compatible with 
the Kernighan and Ritchie conver­
sions, the Microsoft C conversions are 
described in greater detail, including 
the spe~ific path for each type of 
converSIOn. 

In addition to the usual arithmetic 
conversions, conversions between 
pointers of different sizes may be rou­
tinely carried out when the near, 
far, and huge keywords are enabled. 
The path of the pointer conversions 
is implementation dependent. 

In connection with the sizeof opera­
tor, a byte is defined as an 8-bit 
quantity. 

A structure can be assigned to 
another structure of the same type. 

The keywords enum and void are 
additional type specifiers. The key­
word signed or unsigned can serve 
either as a type specifier or as an ad­
jective modifying an integer type. 
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8.4 

8.5 

8.6 

9.7 

10.1 

196 

Therefore, the following additional 
combinations are acceptable: 

signed char 
signed short 
signed short int 
signed long 
signed long int 
unsigned char 
unsigned short 
unsigned short int 
unsigned long 
unsigned long int 

Optional argumen t- type lists can be 
included in function declarations to 
notify the compiler of the number 
and types of arguments expected in a 
function call. 

Bit fields must be declared unsigned. 

The names of structure and union 
members are not required to.be dis­
tinct from structure and union tags 
or from the names of other variables. 

No relationship exists between the 
members of two different structure 
types. 

Unions can be initialized by giving 
a value for the first member of the 
unIOn. 

The expression of a switch is an in­
tegral expression that is the size of an 
int or shorter. An expression with 
enum type is permitted. Each of the 
case constant expressions is cast to 
the type of the expression. 

The parameter list in a function 
definition can end with a comma fol­
lowed by three periods (,000) or just a 
comma (,) to indicate that the 
number of parameters is variable. A 



12 

12.3 

14.1 

17 

Differences 

parameter list containing only three 
periods ( ••• ) or a comma (,) indicates 
that the function can take zero or 
more parameters. 

The number sign (#) introduc-
ing the preprocessor directive can be 
preceded by any combination of 
white-space characters. White space 
can also occur between the number 
sign and the preprocessor keyword. 

In addition to preprocessor directives, 
the source file can also contain prag­
mas. Pragmas, like directives, are in­
troduced by a number sign as the 
first non-white-space character in a 
line. The action defined by a particu­
lar pragma is implementation depen­
dent. 

The new combination # if 
defined( identifier) is intended to sup­
plant the #ifdef and #ifndef direc­
tives. Use of the latter directives is 
discouraged. 

The new directive # elif (else-if) is 
designed for use in # if and # if 
defined blocks. 

A structure or union can be assigned 
to another structure or union of the 
same type. Structures and unions 
can be passed by value to functions 
and returned by functions. 

In expressions involving - >, the ex­
pression preceding the arrow must 
have the same type (or be cast to the 
same type) as the structure to which 
the member on the right-hand side of 
the arrow belongs. 

The listed anachronisms are not 
recognized. 
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B.l Tokens 

keyword 
identifier 
constant 
string 
operator 
separator 

B.l.l Keywords 

auto 
break 
case 
char 
const* 
continue 
default 
do 

* Not yet implemented 

double 
else 
enum. 
extern 
float 
for 
goto 
if 

int 
long 
register 
return 
short 
signed 
sizeof 
static 

Syntax Summary 

struct 
switch 
typedef 
union 
unsigned 
void 
volatile* 
while 

The following identifiers may be keywords in some implementations. See 
your system documentation for information. 

cdecl 
far 
fortran 
huge 
near 
pascal 

B.l.2 Identifiers 

identifier: 
letter 
underscore 
identifier letter 
identifier underscore 
identifier digit 
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letter-one of the following: 
abcdefghijklm 
nopqrstuvwxyz 
ABCDEFGHIJKLM 
NOPQRSTUVWXYZ 

underscore: 

digit-one of the following: 
0123456789 

B.l.3 Constants 

constant: 
integer-constant 
long-constant 
floating-paint-constant 
char-constant 
enum-constant 

integer-constant: 
o 
de cimal- canst ant 
oelal-constant 
hexadecimal-constant 

decimal- constant: 
nonzero-digit 
decimal-constant digit 

nonzero-digit-one of the following: 
123456789 

octal-constant: 
Ooctal-digit 
octal-constant octal-digit 

octal-digit-one of the following: 
01234567 

hexadecimal- constant: 
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Oxhexadecimal-digit 
OXhexadecimal- digit 
hexadecimal- constant hexadecimal- digit 



hexadecimal-digit-one of the following: 
0123456789 
abcdef 
ABCDEF 

long-constant: 
integer-constant 1 
integer-constant L 

flo ating-p oint- constant: 
fractional-constant exponent 
fractional- constant 
digit-seq exponent 

fractional-constant: 
digit-seq. digit-seq 
. digit-seq 
digit-seq. 

digit-seq: 
digit 
digit-seq digit 

exponent: 
e sign digit-seq 
E sign digit-seq 
e digit-seq 
E digit-seq 

szgn: 

+ 

char-constant: 
'char' 

char: 
rep-char 
escape-sequence 

Syntax Summary 
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rep-char: 
Any single representable character except the single quote 
('), 
backslash (\), or new-line character 

escape-se~uence-one of the following: 
\' .\" \\ \ddd \xddd \a 
\b \f \n \r \t \v 

enum-constant: 
identifier 

B.l.4 Strings 

string-literal: 
"" 
" char-seq" 

char-seq: 
char 
char-seq char 

B.l.5 Operators 

operator-one of the following: 
! - ++ 

lie / % 
» < <= > 

!= , & -- , 
&& " += 
*= L= %= »= 
&= ,- ?: - ,-
[ ] ( ) -> 
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« 
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B.l.6 Separators 

separator-one of the following: 
[ ] () (} 

# lie 

B.2 Expressions 

expresszon: 
identifier 
constant 
string 
expressionfexpression-list) 
expression ) 
expression expression] 
expression. identifier 
expression-> fdentifier 
unary-expresszon 
binary- expression 
ternary- expression 
assignm~nt- exp r essio n 
( expresszon) 
(type-name ) expression 
constant- expression 

expression-~ist: 
expresszon 
expression-list, expression 

unary- expresszon: 
unop expresswn 
sizeof( expression) 

unop-one of the following: 
- ! lie & 

{value: 
identifier 
express~on[ express~on] 
expresszon. expresszon 
expression- > expression 
lie expression 
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(type-name) expression 
( lvalue) 

type-name: 
See Section B.3, "Declarations." 

binary- expression: 
expression binop expression 

binop-one of the following: 
lie 

« 
>= 

/ % + 
» < > 
-- != & 

II 
II && 

ternary- expression: 

<= 
I 
I 

expression? expression: expression 

assignment- expression: 
lvalue++ 
lvalue-­
++lvalue 
--lvalue 
lvalue assignment-op expression 

assignment- op-one of the followi~: 
- 1Ie- /- 0-- - - -
«= »= &= 1= 

consta nt- expression: 
identifier 
constant 
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ternary- expression 
( constant-expression) 
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B.3 Declarations 

declaration: 
sc-specifier type-specifier declarator-list; 
type-specifier declarator-list; 
sc-specifier declarator-list; 
type-specifier; 
typedef type-specifier declarator-list; 

sc-specifier: 
auto 
extern 
register 
static 

type-specifier: 
char 
double 
enum-specifier 
float 
int 
long 
long int 
short 
short int 
struct-speczjier 
typedef-name 
union-specifier 
unsigned 
unsigned char 
unsigned int 
unsigned long 
unsigned long int 
unsigned short 
unsigned short int 
signed 
signed char 
signed int 
signed long 
signed long int 
signed short 
signed short int 

enum-specifier: 
enum tag l enum-listJ 
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tag: 

enum{ enum-list} 
enum tag -

identifier 

enum-list: 
enumerator 
enum-list, enumerator 

enumerator: 
identifier 
identifier = constant-expression 

struct-specifier: 
struct tag { member-declaration-list} 
struct{ member-declaration-list} 
struct tag 

member-declaration-list: 
member- declaration 
member- declaration-list member- declaration 

member- declaration: 
type-specifier declarator-list; 
type-specifier identifier: constant-expression; 
type-specifier: constant-expression; 

declarator-list: 
declarator 
declarator = initializer 
declarator-list, declarator 

declarator: 
identifier 
range-modzjier identifier 
declarator[ ] 
declarator[ constant-expression] 
lie declarator 
~ec~ara~or~), ,. ., 
aectarawrt arg-,;ype-lZSlj 
( declarator) 

arg-type-list: 
type-name 
arg-type-list, type-name 
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arg-type-list, ••• 
arg- type-list, 
void 
void. 

type-name: 
type-specifier 
type-specifier abstract-declarator 

abstract- declarator: 
• 
range-modifier. 

t lrg-type-list) 
• abstract-declarator 
abstract-declarator. 
abstract-declarator[ ] 
abstract-declarator[ constant-expression] 
[ ] abstract- declarator 
[constant-expression] abstract-declarator 
abstract- declarator( ) 
abstract-declarator( arg-type-list) 
( abstract- declarator) 

initializer: 
expresswn 
{ initializer-listl 

initializer-list: 
initializer 
initializer-list, initializer 

typedef-name: 
identifier 

union-specifier: 
union tag { member-declaration-list} 
union { member-declaration-lz'st} 
union tag 

range-modifier: 
cdecl 
far 
fortran 
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huge 
near 
pascal 

B.4 Statements 

statement: 
break; 
case constant-expression: statement 
compound-statement 
continue; 
default : statement 
do stat~ment while( expression); 
expresszon; 
for ([ expression]; [expression]; [expression]) statement; 
goto identifier; 
identifier: statement 
if (expression) statement [else statement] 
; 
return IT expression]; 
switch (expression J statement 
while (expression) statement 

compound-statement: . 
{ [declaration-list] [statement-list] } 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 
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B.5 Definitions 

definition: 
fu nc tio n- de finitio n 
data-definition 

function-definition: 
[sc-specifier] [type-specifier] declarator ([parameter­

list]) [parameter-decs] compound-statement 

parameter-list: 
fixed-parameter-list 
variable-parameter-list 

fixed-parameter-list: 
identifier 
parameter-list, identifier 

variable-parameter-list: 
fixed-parameter-list, ••• 
fixed-parameter-list, 

parameter-decs: 
declaration 
declaration-list declaration 

data-definition: 
declaration 

B.6 Preprocessor Directives 

directive: 
# 
# define identifier [([parameter-list])] [token-seq] 
# elif restricted-constant-expression 
# else 
#endif 
# if restricted-constant-expression 
# ifdef identifier 
# ifndef identifier 
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# include .. string" 
#include <string> 
# line digit-seq 
# line digit-seq string 
# undef identifier 

token-seq: 
token 
token-seq token 

restricted- constant- expression: 
defined (identifier) 
Any constant-expression except for sizeof 
expressions, casts, and enumeration constants 

B. 7 Pragrnas 

pragma: 
# pragma char-seq 
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! (logical-NOT) operator, 98 
!= (inequality) operator, 108 
"" (quotation marks) 

See also Double-quote escape 
sequence; Single-quote escape 
sequence 

# include directives, used in, 183 
notational conventions, 7 
representation, 14, 192 

# (number sign), 177 
% (remainder) operator, 102 
& (address-of) operator, 99 
& (bitwise-AND) operator, 110 
&& (logical-AN[)) operator, 112 o (parentheses) 

complex declarators, used in, 48 
expressions, used in, 95 
function calls, used in, 89 
function declarators, used in, 47, 65 
macros, used in, 181 

* lin direction ) operator, 99 
* multiplication) operator, 102 
* pointer modifier), 47, 64 
+ taddition) operator, 104 
++ (increment) operator, 117 
, (comma) 

argument-type list, used in, 66 
declarations, used in, 54, 65 
function calls, used in, 89, 166 
initialization, used in, 77 
sequential-evaluation operator, 114 

- (arithmetic negation) operator, 98 
- (subtraction) operator, 104 
-- (decrement) operator, 117 
- > (arrow) in member-selection 

expressions, 92 
-> (member-selection) operator, 92, 

195 
. (member-selection) operator, 92 
... (three periods), 66 
/ (division) operator, 102 
< (less-than) operator, 108 
< < (left-shift) operator, 107 
< = (less-than-or-equal-to) operator, 

108 

< > (angle brackets), 183 
= (simple assignment) operator, 118 
== (equality) operator, 108 
> (greater-than) operator, 108 
> > (right-shift) operator, 107 
>= (greater-than-or-equal-to) 

operator, 108 
? : (conditional) operator, 115 
[ ] (brackets) 

array declarators, used in, 47, 62 
subscript expressions, used in, 90, 91 

[n (double brackets), 7 
" lbitwise-exclusive-OR) operator, 110 
_ (underscore), 23 
{} (braces) 

compound statement, used in, 135, 
138 

initialization, used in, 77 
I (bitwise-inclusive-OR) operator, 110 
Ii (logical-OR) operator, 112 
- (bitwise-complement) operator, 98 

Abstract declarators, 83 
Actual arguments 

conversion, 170 
macro, 179, 181 
order of evaluation, 167 
passing, 169 
pointer, 167, 170 
side effects, 167 
type checking, 170 
variable number, 172 

Addition operator (+), 104 
Address-of operator (&), 99 
Aggregate types 

array, 62 
initialization, 76, 77 
structure, 57 
union, 60 

Anachronisms, 195 
AND operators 

bitwise (&) 110 
logical (&&) 112 

Angle brackets ( < > ), 183 
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Apostrophe. See Single-quote escape 
sequence 

argc parameter, 32 
Argument type checking, 67, 165, 170 

formal parameters, 161 
function calls, 170 

Arguments 
See also Parameters 
actual 

conversion, 170 
evaluation, order of, 167 
macro, 179, 181 
passing, 169 
pointer, 167, 170 
side effects, 167 
type checking, 170 
variable number, 172 

command line, 32 
formal. See Formal parameters 
main function, 32 
variable number, 66, 172 

Argument-type lists, 66, 165 
abstract declarator, used with, 83 
pointer arguments, used with, 67 
void *, used with, 67 
void keyword, used with, 67 

argv parameter, 32 
Arithmetic conversions, 97, 193 
Arithmetic negation operator (-), 98 
Array modifier ([ )), 47, 62 
Arrays 

declaration, 47, 62 
elemen ts, 90 
identifiers, 88 
initialization, 76, 77, 80 
multidimensional, 62, 91 
references to, 88, 90 
storage, 62, 92 
subscripts, 90 

asm keyword, 191 
Assignment 

See also Initialization 
conversions, 124 
described, 87 
;:1t.VTyrAQC;ATlC OA 
~.~ r ~ ~~~~~~~~, ~ ~ 

operators, 116 
Associativity 

modifiers, 48 
operators, 120 

auto storage class, 69, 72, 75 
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Backslash character (\), 13, 14 
Backspace escape sequence, 14 
Bell character, 14, 192 
Binary 

expressions, 94 
operators, 96 

Bit fields, 58, 194 
Bitwise-AND operator (&), 110 
Bitwise-complement operator C), 98 
Bitwise-exclusive-OR operator ~"), 110 
Bitwise-inclusive-OR operator (,), 110 
Block, 33 
Braces ({} ) 

compound statement, used in, 135, 
138 

initialization, used in, 77 
Brackets 

array declarators, used in, 47, 62 
double ([ D), 7 
subscript expressions, used in, 90, 91 

Branch statements, 146, 151 
break statement, 137 
Byte, size of, 193 

C character set, 11 
Call by reference. See Pass by reference 
Call by value. See Pass by value 
Calls. See Calls, function 
Carriage-return escape sequence, 14 
case keyword, 151 
Case sensitivity, 12, 23 
Casts. See Type casts 
cdecl keyword, 51, 191 
char type 

conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

Character constants 
See also Escape sequences 
differences from Kernighan & 

Ritchie, 192 
form, 20 
type, 21 

Character sets, 11 
Characters 

backslash (\), 13, 14, 15 
backspace escape sequence, 14 



Characters (continued) 
bell, 14, 192 
carriage-return escape sequence, 14 
case, 12, 23 
continuation (\), 15 
CONTROL-Z, 12 
differences from Kernighan & 

Ritchie, 192 
digits, 12 
double-quote escape sequence, 14 
end of file, 12 
escape sequences, 13 
form-feed escape sequence, 14 
hexadecimal escape sequence, 14 
horizontal-tab escape sequence 14 
letters, 12 
new-line escape sequence, 14 
octal escape sequence, 14 
punctuation, 12 
single-quote escape sequence, 14 
special, 12 
vertical-tab escape sequence, 14 
white space, 12, 13 

Comma (,) 
argument-type list, used in, 66 
declarations, used in, 54, 65 
function calls, used in, 89, 166 
initialization, used in, 77 
operator, 114 

Command-line arguments, 32 
Comments, 24 
Comparison operators. See Relational 

operators 
Compilation, conditional, 184 
Complem~nt operators, 98 
Complex declarators, 48, 51 
Compound assignment operators, 118 
Compound statements, 138 
Conditional compilation, 184 
Conditional operator (1:), 115 
Conditional statements, 146, 151 
const keyword, 191 
Constant expressions 

case, 151 
conversion, 45 
defined(identifier), 186 
described, 87 
directives, used in, 95, 186 
form, 95 
initializers, 95 
restricted, 95, 186 
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Constant expressions (continued) 
switch statement, used in, 151 

Constants 
character 

See also Escape sequences 
differences from Kernighan & 

Ritchie, 192 
form, 20 
type, 21 

conversion, 45 
decimal integer, 17, 18 
described, 17 
enumeration, 56 
floating-point, 19, 20, 46 
integer 

differences from Kernighan & 
Ritchie, 191 

form, 17 
hexadecimal 

conversion, 19, 46 
form, 17 
type, 18 

long, 19 
negative, 18 

manifest, 178, 182 
octal 

conversion, 19, 46 
form, 17 
type, 18 

string. See String literals 
summarized, 200 
type, 88 

Continuation character (\), 15 
continue statement, 140 
CONTROL-Z character, 12 
Conventions, notational, 6 
Conversions 

actual arguments, 170 
assignment, 124 
constant expressions, 45 
constan ts, 45 
enumeration types, 130 
floating-point types, 128 
formal parameters, 162, 170 
function call, 131,170 
hexadecimal constants, 46 
implicit, 129 
integral types, 129 
octal constan ts, 46 
operator, 130 
pointer types, 129 
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Conversions (continued) 
range of values, effects on, 45 
signed integral types, 124 
structure types, 130 
type cast, 130 
union types, 130 
unsigned integral types, 126, 129 
usual arithmetic, 97, 193 
void type, 130 

Data types. See Types 
Decimal integer constants, 17, 18 
Declarations 

arguments 
none, 67 
pointer, 67 
variable number, 66 

form, 41 
formal parameters, 160, 161 
forward. See Declarations, function 
function 

default return type, 66 
default storage class, 75 
described, 29, 65, 157, 164 
differences from Kernighan & 

Ritchie, 194 
form, 65 
implicit, 164 
return type, 65, 164 
return value, 164 
storage class, 74, 164 
visibility, 75, 164 

pointer, 47, 64, 165 
summarized, 205 
type, 80, 81 
typedef, 80, 82 
variable 

array, 62 
default storage class, 70 
described, 29 
enumeration, 55 
external, 69 
form, 53 
internal, 69, 72 
multidimensional arrays, 62 
pointer, 64 
simple, 54 
structure, 57 
union, 60 
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Declarators 
abstract, 83 
array, 47 
complex, 48 
described, 46 
function, 47 
parentheses, enclosed in, 48 
pointer, 47 
special keywords, used with, 51 

Decrement operator (--),117 
default keyword, 151 
Default 

return type, 66 
storage class 

external variable declarations, 70 
function declarations, 75 
internal variable declarations 73 

# define directive, 178 
defined (identifier) constant expression, 

186 
Definitions 

function 
described, 29, 157 
storage class, 158 
summarized, 209 
visibility, 158 

variable 
described, 29, 70 
storage class, 70 
summarized, 209 
visibility, 70, 73 

Digits, 12 
Dimensions. See Multidimensional 

arrays 
Directives 

constant expressions, used in, 95, 186 
# define, 178 
described, 29, 177 
differences from Kernighan & 

Ritchie, 195 
# elif 

described, 185 
differences from Kernighan & 

Ritchie, 195 
nestine:. 186 

# else, 185, 186 
# endif, 185, 186 
# if, 185, 186, 195 
# ifdef, 188, 195 
# ifndef, 188, 195 
# include, 183 



Directives (continued) 
lifetime, 31 
# line, 189 
restricted constant expressions, 95 
summarized, 209 
# undef, 182 

Division operator U), 102 
do statement 

described, 141 
execution, continuation of, 140 
execution, termination of, 137 

Double brackets ([ ~), 7 
Double quote. See Quotation marks 
double type 

conversion, 128 
described, 42 
internal representation, 46 
range of values, 44 
storage, 44 

Double-quote escape sequence, 14 

\ (backslash), 13, 14, 15 
Elements, referring to, 90, 91 
# elif directive 

described, 185 
differences from Kernighan & 

Ritchie, 195 
nesting, 186 

Ellipsis dots, 6 
# else directive, 185, 186 
else keyword, 146 
# endif directive, 185, 186 
End-of-file character, 12 
entry keyword, 191 
enum type specifier, 55, 191 
Enumeration constants, 37, 56 
Enumeration expressions, 88 
Enumeration set, 55 
Enumeration types 

conversion, 130 
declaration, 55, 81 
described, 42 
differences from Kernighan & 

Ritchie, 192 
iden tifiers, 88 
range of values, 44 
storage, 44, 55 
tags 

type declarations, 81 
variable declarations, 55 
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tags (continued) 
naming class, 38 

envp parameter, 33 
Equality operator (==), 108 
Escape sequences 

\" escape sequence, 14 
\ ' escape sequence, 14 
\ \ escape sequence, 14 
\ a escape sequence, 14 
\ b escape sequence, 14 
\ f escape sequence, 14 
\ n escape sequence, 14 
\ r escape sequence, 14 
\ t escape sequence, 14 
\ v escape sequence, 14 
described, 13 
differences from Kernighan & 

Ritchie, 192 
Evaluation order, 112, 121 
Execution. See Program execution 
Exit from functions, 149 
Exponents, 19 
Expression list, 89 
Expressions 

assignment, 94 
binary, 94 
case constant, 151 
constant. See Constant expressions 
described, 87 
enumeration, 88 
evaluation, order of, 121 
floating point, 88 
function call, 89 
grouping, 120 
in tegral, 88 
lvalue, 116 
member selection, 92, 195 
operators, used in, 94 
parentheses, enclosed in, 95 
pointer, 88 
side effects, 123 
statements, 142 
string literal, 89 
structure, 88 
subscript, 90, 91 
summarized, 203 
switch, 151, 194 
ternary, 94 
type cast, 95 
unary, 94 
union, 88 
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extern storage class 
described, 69 
function 

declarations, 74, 164 
definitions, 158 

variables 
external, 69 
internal, 73 

External declarations 
described, 69 
function, 74 
variable, 69 

far keyword 
conversions, 170 
described, 51 
differences from Kernighan & 

Ritchie, 191 
Fields. See Bit fields 
__ FILE __ identifier, 189 
Files 

changing names of, 189 
inclusion of, 183 
nesting of, 184 

float type 
conversion, 128 
described, 42 
internal representation, 46 
range of values, 44 
storage, 44 

Floating-poin t 
constants 

form, 19 
internal representation, 46 
negative, 20 

expressions, 88 
identifiers, 88 
types 

conversion, 128 
described, 42 
internal representation, 46 

for statement 
continuation of execution, 140 
described, 143 
termination of execution, 137 

Formal parameters 
conversion, 162, 170 
declaration, 161 
described, 160 
identifiers, 161 
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Formal parameters (continued) 
macros, 179 
naming class, 37 
storage class, 161 
type checking, 161, 170 

Form-feed escape sequence, 14 
fortran keyword, 51, 191 
Forward declarations. See Function 

declarations 
Function 

body, 158,164 
calls 

argument type checking, 170 
arguments, variable number of, 

172 
conversions, 131, 170 
described, 157 
form, 89, 166 
indirect, 167 
pointers, use of, 167 
recursive, 173 

declarations 
arguments, 66, 67 
default return type, 66 
default storage class, 75 
described, 29, 65, 157, 164 
differences from Kernighan & 

Ritchie, 194 
implicit, 164 
return type, 67, 164 
return value, 164 
storage class, 74, 75, 164 
visibility, 75, 164 

definitions 
described, 157 
return type, 158 
storage class, 158 
summarized, 209 
visibility, 158 

modifier ( ), 47 
names. See Identifiers 
pointers, 165, 167 
return type. See Return type 

Function-call conversions, 131, 170 
Function-call expressIons, 89 
Function prototypes. See Argument-

type lists 
Function type. See Return type 
Functions 

definitions, described, 29 
exit from, 149 



Functions (continued) 
identifiers, 88 
main, 32 
naming class, 37 
return value, 149 

Global 
lifetime, 33, 68 
variables 

described, 34 
initialization, 75 
references to, 73 

visibility, 33 
goto statement, 145 
Greater-than operator (> ), 108 
Greater-than-or-equal- to operator 

(>=),108 
Grouping, 120 

Hexadecimal 
constants 

conversion, 19, 46 
differences from Kernighan & 

Ritchie, 191 
form, 17 
type, 18 

escape sequences, 14, 192 
Horizontal-tab escape sequence, 14 
huge keyword 

conversions, 170 
described, 52 
differences from Kernighan & 

Ritchie, 191 

Identifiers 
array, 88 
characters allowed in, 22 
differences from Kernighan & 

Ritchie, 191 
enumeration, 88 
__ FILE __ , 189 
floating point, 88 
formal parameters, 161 
function, 88 
integral, 88 
length, 23 
__ LINE __ , 189 
modified, 47 
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Identifiers (continued) 
naming classes, 36 
pointer, 88 
structure, 88 
summarized, 199 
union, 88 

# if directive, 185, 186, 195 
if statement, 146 
# ifdef directive, 188, 195 
# ifndef directive, 188, 195 
# include directive, 183 
Include files, 183, 184 
Increment operator (++), 117 
Indirection operator (*), 99 
Inequality operator (!=), 108 
Initialization 

arrays, 76, 77, 80 
auto storage class, 75 
constant expressions, 95 
differences from Kernighan & 

Ritchie, 194 
fundamental types, 76 
global variables, 75 
link time, 71 
pointers, 76 
register storage class, 75 
restrictions, 75 
static variables, 75 
string literals, 80 
structure variables, 76, 77 
union variables, 76, 77 

Insertion of files, 183 
int type 

conversion, 126 
described, 42 
differences from Kernighan & 

Ritchie, 192 
portability, 45 
range of values, 44, 45 
storage, 44 

Integer constants 
decimal, 17, 18 
differences from Kernighan & 

Ritchie, 191 
hexadecimal, 17, 18, 19 
long, 19 
negative, 18 
octal, 17, 18, 19 

Integral 
expressions, 88 
identifiers, 88 
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Integral (continued) 
types 

conversion, 124, 126, 129 
described, 42 

Internal declarations, 69, 72, 73 
Internal representation, 45, 46 
Italics, 6 
Iterative statements 

do, 141 
for, 143 
while, 154 

Keywords 
differences from Kernighan & 

Ritchie, 191, 193 
listed, 24, 199 
notational conventions, 6 
special, 51, 64 
statements, used in, 135 

Labeled statements, 145 
Labels 

See also Identifiers 
case, 151 
default, 151 
described, 136 
form, 145 
naming class, 38 

Left-shift operator « <), 107 
Less-than operator ( <), 108 
Less-than-or-equal-to operator «=), 

108 
Letters. See Characters 
Lifetime 

described, 33 
directives, 30 
global, 33, 68 
local, 33, 68 

Line control, 189 
# line directive, 189 
__ LINE __ identifier, 189 
Lines, continuation, 15 
T ~~+~ 1:~ lr~...l 1::0 
.1..1.1;:)";:), .l.l.l1.1\.~U, o.}o 

Local 
lifetime, 33, 68 
variables, 34, 164 

Logical-AND operator (&&), 112 
Logical-NOT operator (!), 98 
Logical-OR operator C::J, 112 
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long float type, 42 
long type 

conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

Loops 
do statement, 141 
for statement, 143 
while statement, 154 

Lvalue expressions, 116 

~acros, 178, 179, 181, 182 
~ain function, 32 
~anifest constants, 178, 182 
~ember-selection expressions, 92, 195 
~ember-selection operators (- > and .), 

92, 195 
~embers, bit fields, 58 
~embers 

naming class, 38 
referring to, 92 
structure, 57 
union, 60 

~odifiers 
array, 47, 62 
associativity, 48 
function, 47 
pointer, 47, 64 
precedence, 48 

~ultidimensional arrays, 62, 91 
~ultiplication operator (*), 102 

Names. See Identifiers 
Naming classes, 36, 194 
near keyword 

conversions, 170 
described, 52 
differences from Kernighan & 

Ritchie, 191 
Negation, 98 
Nested visibility, 34 
New-line escape sequence, 14 
Nongraphic escape sequences, 15, 192 
NOT operator (!), 98 
Notational conventions, 6 
Null statement, 148 



Number sign (# ), 177 

Octal 
constants 

conversion, 19, 46 
differences from Kernighan & 

Ritchie, 191 
form, 17 
type, 18 

escape sequences, 14 
One's complement operator C), 98 
Operands, 87 
Operators 

addition (+), 104 
address of (&), 99 
arithmetic negation (-), 98 
assignment 

compound, 118 
listed, 116 
simple (=), 118 

associativIty, 120 
binary, 96 
bitwise AND (&), 110 
bitwise complement C) 98 
bitwise exclusive OR ("'), 110 
bitwise inclusive OR (i), 110 
complement, 98 
compound assignment, 118 
conditional (?:), 115 
conversions, 130 
decrement (--), 117 
differences from Kernighan & 

Ritchie, 195 
division (J), 102 
equality (==), 108 
expressions, used in, 94 
increment (++), 117 
indirection (*), 99 
inequality (!=), 108 
left-shift « <), 107 
listed, 16, 202 
logical AND (&&), 112 
logical 

described, 112 
evaluation, order of, 112 

logical NOT (!), 98 
logical OR C:J, 112 
multiplication (*), 102 
one's complement C), 98 
precedence, 120 
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Operators {continued} 
relational (>,<,<=,>=),108 
remainder (%), 102 
right shift (> », 107 
sequential evaluation (,), 114 
shift « < and> »,107 
simple assignment (=), 118 
sizeof, 101 
subtraction (-), 104 
ternary (? :), 96, 115 
unary, 96 

OR operators 
bitwise exclusive ("), 110 
bitwise inclusive CD, 110 
logical (::), 112 

Order of evaluation, 112, 121 
Overview, 3 

Parameter lists, 160 
Parameters 

actual. See Actual arguments 
argc, 32 
argv, 32 
envp 33 
formal 

conversion, 162, 170 
declaration, 161 
described, 160 
identifiers, 161 
naming class, 37 
storage class, 161 
type checking, 161, 170 

macro, 179 
main function, 32 

Parentheses in 
complex declarators, 48 
expressions, 95 
function calls, 89 
function declarators, 47, 65 
macros, 181 

pascal keyword, 51, 191 
Pass by 

reference, 170 
value, 166, 169 

Pointer modifier (*), 47, 64 
Pointers 

adding, 105 
arithmetic, 105 
comparison, 108 
conversion, 129 
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Pointers (continued) 
declaration, 47, 64, 165 
differences from Kernighan & 

Ritchie, 193 
expressions, 88 
function, 165, 167 
function calls through, 167 
identifiers, 88 
implicit conversion, 129 
initialization, 76 
storage, 64 
structure, 64 
subtraction, 105 
union, 64 

Portability, 45 
Pound sign (# ). See Number sign 
Pragmas 

described, 29, 177 
differences from Kernighan & 

Ritchie, 195 
form, 190 
summarized, 210 

Precedence 
modifiers, 48 
operators, 120 

Predefined identifiers, 189 
Preprocessor directives. See Directives 
Program execution, 32 
Program structure, 29 
Prototypes. See Argument-type lists 
Punctuation characters, 12 

Quotation marks 
See also Double-quote escape 

sequence; Single-quote escape 
sequence 

# include directives, used in, 183 
notational conventions, 7 
representation, 14, 192 

Range of values, 44, 45 
Recursion, 173 
Reierence, passing by, 170 
References to global variables, 70, 73 
register storage class 

described, 73 
initialization, 75 
internal variables, 72 
lifetime, 69 
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Relational operators (>,<,<=,>=), 
108 

Remainder operator (%), 102 
Removing definitions, 182 
Representable character set, 11 
Representation, internal, 45, 46 
Reserved words. See Keywords 
Restricted constant expressions, 95, 

186 
return statement, 149 
Return type 

declaration, 164 
default, 66 
described, 67, 158 
implicit, 164 

Return value, 149, 164 
Returning control, 149 
Right-shift operator (> », 107 

Search path for include files, 183 
Selection statements, 146, 151 
Separators, 203 
Sequential-evaluation operator (,), 114 
Shift operators ( < < and> », 107 
short type 

conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

Side effects, 123, 179, 181 
signed char type. See also char type 
signed char type, 42, 194 
signed int type. See also int type 
signed int type, 42 
signed keyword, 43, 192 
signed long int type. See also long type 
signed long int type, 194 
signed long type. See also long type 
signed long type, 42, 194 
signed short int type. See also short 

type 
signed short int type, 42, 194 
signed short type. See also short type 
signed short type, 42, 194 
signed type. See also int type 
signed type, 42, 192 
Simple assignment operator (=), 118 
Simple variable declarations, 54 



Single-quote escape sequence, 14 
sizeof operator, 101 
Source files, 30 
Special characters, 12 
Special keywords 

conversions, 170 
declarators, used with, 64 
differences from Kernighan & 

Ritchie, 191 
Standard directories, 183 
Statement labels 

described, 136 
form, 145 
naming class, 38 

Statements 
body of, 135 
break, 137 
compound, 138 
continue, 140 
do, 141 
expression, 142 
for, 143 
form, 135 
goto, 145 
if, 146 
keywords, used in, 135 
labeled, 136, 145 
listed, 135 
null, 148 
return, 149 
summarized, 208 
switch, 151 
while, 154 

static storage class 
described, 69 
function 

declarations, 74, 164 
definitions, 158 

initialization, 75 
variables 

external, 69 
internal, 73 

Storage-class specifiers 
auto, 69, 72 
extern 

described, 69 
function declarations, 74, 164 
function definitions, 158 

variables 
external, 69 
internal, 73 
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Storage-class specifiers (continued) 
listed, 69 
register, 69, 73 
static 

described, 69 
function declarations, 74, 164 
function definitions, 158 
variables, external, 69 
variables, internal, 73 

Storage classes 
described, 68 
formal parameters, 161 
function declarations, 75, 164 
function definitions, 158 
variable declarations 

external, 70 
internal, 73 

Storage 
array types, 62, 92 
bit fields, 58 
char type, 44 
double type, 44 
enumeration types, 44, 55 
Hoat type, 44 
global, 68 
int type, 44, 45 
local, 68 
long type, 44 
pointer types, 64 
short type, 44 
structure types, 58 
union types, 60 
unsigned char type, 44 
un~gnedinttype,44,45 
unsigned long type, 44 
unsigned short type, 44 
void type, 44 

String literals 
form, 21, 89 
initializers, 80 
length, 22, 89 
storage, 22 
type, 22 

Strings 
See also String literals 
sUIIlmarized, 202 

struct type specifier, 57 
Structures 

conversion, 130 
declaration, 57, 81 
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Structures (continued) 
differences from Kernighan & 

Ritchie, 193, 194, 195 
expressions, 88 
identifiers, 88 
initialization, 76, 77 
members 

bit field, 58 
described, 57 
naming class, 38 
referring to, 92 

poin ters to, 64 
storage, 58 
tags 

naming class, 38 
type declarations, 81 
variable declarations, 57 

Subscript expressions, 90, 91 
Subtraction operator (-), 104 
switch statement 

constant expressions, used in, 151 
described, 151 
differences from Kernighan & 

Ritchie, 194 
termination of execution, 137 

Symbolic constants. See Manifest 
constants 

Syntax conventions. See Notational 
conventions 

Syn tax summary, 199 

Tab escape sequence, 14 
Tags 

enumeration, 55, 81 
naming class, 38 
structure, 57, 81 
union, 81 

Ternary expressions, 94 
Ternary operator (?:), 96, 115 
Tokens, 25, 199 
Transfer statements 

break, 137 
continue, 140 
goto, 145 
labeled statements, 145 

Two's complement operator, 98 
Type 

casts, 130 
checking. See Argument type 

checking 
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Type (continued) 
declarations, 80 
names 

argument-type lists, used in, 66 
described, 83 
sizeof, used with, 101 
void, 170 

specifiers 
abbreviations, 43 
differences from Kernighan & 

Ritchie, 192, 193 
enum, 42, 55 
fundamental types, 42 
struct, 57 
union, 60 

Type-cast expressions, 95 
typedef declarations, 80, 82 
typedeftypes,37,82 
Types 

array 
declaration, 47, 62 
initialization, 76, 77, 80 
multidimensional, 62 
storage, 62, 92 

char 
described, 42 
storage, 44 

conversions. See Conversions 
differences from Kernighan & 

Ritchie, 192, 193 
double, 42,44,46, 128 
enumeration 

conversion, 130 
declaration, 55, 81 
described, 42 
differences from Kernighan & 

Ritchie, 192 
identifiers, 88 
range of values, 44 
storage, 44, 55 
tags, 38, 55, 81 

Hoat 
conversion, 128 
described, 42 

fioating-poin t 
conversion, 128 
described, 42 
internal representation, 46 

Hoat 
internal representation, 46 
range of values, 44 



float (continued) 
storage, 44 

function. See Return type 
fundamental 

declaration, 54 
described, 42 
differences from Kernighan & 

Ritchie, 192 
initialization, 76 
listed, 42 
range of values, 44 
storage, 44 

int 
conversion, 126 
described, 42 
differences from Kernighan & 

Ritchie, 192 
integral 

conversion, 124, 126, 129 
described, 42 

int 
portability, 45 
range of values, 44, 45 
storage, 44 

long 
conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

pointer 
conversion, 129 
declaration, 47, 64 
implicit conversion, 129 
initialization, 76 
storage, 64 

short, 44 
conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 

signed char, 42, 193, 194 
signed int, 42 
signed long, 42 
signed short, 42 
structure 

conversion, 130 
declaration, 57, 81 
initialization, 76, 77 
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structure (continued) 
pointers to, 64 
storage, 58 

type names, 83 
typedef, 37, 82 
union 

conversion, 130 
declaration, 60, 81 
initialization, 76, 77 
pointers to, 64 
storage, 60 

unsigned char 
conversion, 126 
described, 42 
differences from Kernighan & 

Ritchie, 192, 193, 194 
range of values, 44 
storage, 44 

unsigned in t 
conversion, 127 
described, 42 
portability, 45 
range of values, 44, 45 
storage, 44 

unsigned long 
conversion, 127 
described, 42 
differences from Kernighan & 

Ritchie, 192, 194 
range of values, 44 
storage, 44 

unsigned short 
conversion, 127 
described, 42 
differences from Kernighan & 

Ritchie, 194 
range of values, 44 
storage, 44 

user defined, 80, 81, 82 
void, 42, 44 

Unary 
expressions, 94 
operators, 96 

# undef directive, 182 
Underscore character (_ ), 23 
Union declarations 

types, 81 
variables, 60 

union type specifier, 60 
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Unions 
conversion, 130 
declaration, 60, 81 
differences from Kernighan & 

Ritchie, 194, 195 
expressions, 88 
identifiers, 88 
initialization, 76, 77 
members 

described, 60 
naming class, 38 
referring to, 92 

poin ters to, 64 
storage, 60 
tags, 38, 81 

unsigned char type 
conversion, 126 
described, 42 
differences from Kernighan & 

Ritchie, 192, 193, 194 
range of values, 44 
storage, 44 

unsigned int type 
conversion, 127 
described, 42 
portability, 45 
range of values, 44, 45 
storage, 44 

unsigned keyword, 43, 192 
unsigned long int type. See also 

unsigned long type 
unsigned long int type, 42, 194 
unsigned long type 

conversion, 127 
described, 42 
differences from Kernighan & 

Ritchie, 192, 194 
range of values, 44 
storage, 44 

unsigned short int type. See also 
unsigned short type 

unsigned short int type, 42, 194 
unsigned short type 

conversion, 127 
described, 42 
differences from Kernighan & 

Ritchie, 194 
range of values, 44 
storage, 44 

unsigned type, 42, 192 
User-defined types, 80, 81, 82 
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Usual arithmetic conversions, 97, 193 

Value, passing by, 166, 169 
Variable names. See Identifiers 
Variable 

declarations 
array, 47, 62 
described, 29 
enumeration, 55 
external, 69, 70 
form, 53 
fundamental types, 54 
internal, 69, 72, 73 
multidimensional arrays, 62 
pointer, 64 
simple, 54 
structure, 57 
summarized, 205 
union, 60 
visibility, 69 

definitions 
described, 29, 70 
summarized, 209 
visibility, 70, 73 

Variables 
array 

declaration, 62 
initialization, 77, 80 
storage, 62 

auto, 69, 72, 75 
communal, 70 
enumeration, 55 
extern, 70, 73 
fundamental types, 54, 76 
global, 34, 70, 73, 75 
local, 34, 164 
multidimensional arrays, 62, 91 
naming class, 37, 194 
pointer, 64, 76 
register, 73, 75 
simple, 54 
static, 70, 73, 75 
structure, 57, 58, 77 
union, 60, 77 
visibility, 69 

Vertical-tab escape sequence, 14, 192 
Visibility 

described, 33 
function declarations, 75, 164 
function definitions, 158 



Visibility (continued) 
global, 33 
nested, 34 
variable declarations, 69 
variable definitions, 70, 73 

void 
argument-type list, 66, 67 
function-return type, 67 
keyword, 191 
type name, 170 

void *,67 
void type 

conversion, 130 
described, 42 
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void type (continued) 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

volatile keyword, 191 

while statement 
continuation of execution, 140 
described, 154 
termination of execution, 137 

White-space characters, 12, 13, 192 
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Software 
Problem Report 

Name ______________________________________________ __ 

Street ______________________________________________ __ 

City _____________________ State _____ Zip _____ _ 

Phone ________________ Date _______ __ 

Instructions 

Use this form to report software bugs, documentation errors, or suggested 
enhancements. Mail the form to Microsoft. 

Category 

__ Software Problem 

__ Software Enhancement 

Software Description 

Microsoft Product __ 

__ Documentation Problem 
(Document# ________ _ 

__ Other 

Rev. __ _ Registration # _______________ _ 

Operating System 

Rev. _____ _ _ Supplier __________________________ _ 

Other Software Used ___________________________________ _ 

Rev. ______ Suppl ier ____________________________ _ 

Hardware Description 

Manufacturer _______ CPU _________ Memory _____ KB 

Disk Size ____ If Density: Sides: 

Single__ Single __ 

Double__ Double __ 

Peri pherals _______________________________________ _ 



Problem Description 

Describe the problem. (Also describe how to reproduce it, and your 
diagnosis and suggested correction.) Attach a listing if available. 




