

Microsoft C Compiler
Language Reference

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1984, 1985, 1986

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen­
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS, MS-DOS, and XENIX are registered trademarks of
Microsoft Corporation. CodeView and The High Performance Software are trademarks of
Microsoft Corporation.

Document Number 410840018-400-ROI-0486

Contents

1 Introduction 1

1.1 Overview 3
1.2 About This Manual 4
1.3 Notational Conventions 6

2 Elements of C 9

2.1 Introduction 11
2.2 Character Sets 11
2.3 Constants 17
2.4 Identifiers 22
2.5 Keywords 24
2.6 Comments 24
2.7 Tokens 25

3 Program Structure 27

3.1 Introduction 29
3.2 Source Program 29
3.3 Source Files 30
3.4 Program Execution 32
3.5 Lifetime and Visibility 33
3.6 Naming Classes 36

4 Declarations 39

4.1 In trod uction 41
4.2 Type Specifiers 42
4.3 Declarators 46
4.4 Variable Declarations 53
4.5 Function Declarations 65
4.6 Storage Classes 68
4.7 Initialization 75
4.8 Type Declarations 80
4.9 Type Names 83

iii

5 Expressions and Assignments 85

5.1 Introduction 87
5.2 Operands 87
5.3 Operators 96
5.4 Assignment Operators 116
5.5 Precedence and Order of Evaluation 120
5.6 Side Effects 123
5.7 Type Conversions 124

6 Statements 133

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

,6.10
6.11
6.12
6.13

Introduction 135
The break Statement 137
The Compound Statement 138
The continue Statement 140
The do Statement 141
The Expression Statement 142
The for Statement 143
The goto and Labeled Statements
The if Statement 146
The Null Statement 148
The return Statement 149
The switch Statement 151
The while Statement 154

7 Functions 155

7.1 Introduction 157
7.2 Function Definitions 157
7.3 Function Declarations 164
7.4 Function Calls 166

8 Preprocessor Directives
and Pragmas 175

8.1 Introduction 177

145

8.2 Manifest Constants and Macros 178
8.3 Include Files 183
8.4 Conditional Compilation 184
8.5 Line Control 189
8.6 Pragmas 190

iv

Appendixes 191

A Differences 193

B Syntax Summary 199

B.1 Tokens 201
B.2 Expressions 205
B.3 Declarations 207
B.4 Statements 210
B.5 Definitions 211
B.6 Preprocessor Directives 211
B.7 Pragmas 212

Index 213

v

Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 2.7

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 5.1

Table 5.2

Table 5.3

Table 5.4

vi

Punctuation and Special Characters 13

Escape Sequences 14

Operators 16

Examples of Integer Constants 18

Types Assigned to Octal and Hexadecimal Constants

Examples of Long Integer Constants 19

Examples of Character Constants 21

Summary of Lifetime and Visibility 35

Fundamental Types 42

Type Specifiers and Abbreviations 43

Storage and Range of Values for Fundamental Types

Precedence and Associativity of C Operators 120

Conversions from Signed Integral Types 125

Conversions from Unsigned Integral Types 126

Conversions from Floating-Point Types 128

19

44

Chapter 1

Introduction

1.1 Overview 3
1.2 About This Manual 4
1.3 Notational Conventions 6

1

Introduction

1.1 Overview

The C language is a general-purpose programming language well known for
its efficiency, economy, and portability. While these advantages make it a
good choice for almost any kind of programming, C has proved to be espe­
cially useful in systems programming because it allows programmers to
write fast and compact programs and to transport those programs to other
systems. In many cases, well-written C programs are comparable in speed
to assembly-language programs, and they offer the advantages of easier
maintenance and greater readability.

C combines efficiency and power in a relatively small language. C does
not include built-in functions to perform tasks such as input and output,
storage allocation, screen manipulation, and process control. Instead, C
programmers rely on run-time libraries to perform such tasks.

This design contributes to C's adaptability and compactness. Because the
language is relatively confined, it does not assume or impose a particular
programming model. Run-time routines provide support as needed, allow­
ing the programmer to minimize their use, if desired, or to tailor run-time
routines for special purposes.

The design also helps to isolate language features from processor-specific
features in a particular C implementation, thus aiding programmers who
want to write portable code. The strict definition of the language makes it
independent of any particular operating system or machine; at the same
time, programmers can easily add system-specific routines to take advan­
tage of a particular machine's efficiencies.

Some of the significant features of the C language are as follows:

• C provides a full set of loop, conditional, and transfer statements to
control program flow logically and efficiently and to encourage
structured programming.

• C offers an unusually large set of operators. Many of C's operators
correspond to common machine instructions, allowing a direct
translation into machine code. The variety of operators lets the
programmer specify different kinds of operations clearly and with a
minimum of code.

• C's data types include several sizes of integers, as well as single- and
double-precision floating-point types. The programmer can design
more complex data types, such as arrays and data structures, to
suit specific program needs.

3

Microsoft C Compiler Language Reference

• C programmers can declare "pointers" to variables and functions.
A pointer to an item corresponds to the machine address of that
item. Using pointers wisely can increase program efficiency consid­
erably, since pointers let the programmer refer to items in the same
way the machine does. C also supports pointer arithmetic, allowing
the programmer both to access and manipulate memory addresses
directly.

• The C preprocessor, a text processor, acts on the text of files before
compilation. Among its most useful applications for C programs
are the definition of program constants, the substitution of function
calls with faster macro look-alikes, and conditional compilation.
The preprocessor is not limited to processing C files; it can be used
on any text file.

• C is a flexible language, leaving much of the decision making up to
the programmer. In keeping with this attitude, C imposes few re­
strictions in matters such as type conversion. While this is often an
asset, C programmers must know the language well to understand
how their programs will behave.

1.2 About This Manual

The Microsoft® C Compiler Language Reference defines the C language as
implemented by Microsoft Corporation. It is intended as a reference for
programmers who have experience in C or in another programming
language. Knowledge of programming fundamentals is assumed.

Note

If you want a quick overview of how Microsoft C compares with the
definition of C found in Appendix A of The C Programming Language,
by Brian W. Kernighan and Dennis M. Ritchie, turn to Appendix A of
this manual. Appendix B of this manual summarizes the syntax of the
C language as defined by Microsoft.

The run-time library functions available for use in Microsoft C programs
are discussed in a separate library reference manual.

4

Introduction

Consult your system documentation for an explanation of how to compile
and link C programs on your system. Your system documentation also con­
tains information specific to the implementation of C on your system.

This manual is organized as follows:

Chapter 2, "Elements of C," describes the letters, numbers, and symbols
that can be used in C programs and the combinations of characters that
have special meanings to the C compiler.

Chapter 3, "Program Structure," discusses the components and structure of
C programs and explains how C source files are organized.

Chapter 4, "Declarations," describes how to specify the attributes of C
variables, functions, and user-defined types. C provides a number of
predefined data types and allows the programmer to declare aggregate
types and pointers.

Chapter 5, "Expressions and Assignments," describes the operands and
operators that form C expressions and assignments. The chapter also
discusses the type conversions and side effects that may accompany the
evaluation of expressions.

Chapter 6, "Statements," describes C statements. Statements control the
flow of program execution.

Chapter 7, "Functions," discusses features of C functions. In particular,
this chapter explains how to define, declare, and call a function and
describes function parameters and return values.

Chapter 8, "Preprocessor Directives and Pragmas," describes the instruc­
tions recognized by the C preprocessor. The C preprocessor is a text proces­
sor automatically invoked before compilation. This chapter also introduces
pragmas, which are instructions to the compiler that are placed in the
source file.

Appendix A, "Differences," lists the differences between Microsoft C and the
description of the C language found in Appendix A of The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie.

Appendix B, "Syntax Summary," summarizes the syntax of the C language
as implemented by Microsoft.

{)

Microsoft C Compiler Language Reference

The remainder of this chapter describes the notational conventions used
throughout the manual.

1.3 Notational Conventions

This manual uses the following notational conventions:

Convention

Bold

Italics

Examples

6

Meaning

Bold type indicates text that must be typed
exactly as shown. Text that is shown in bold
type includes C keywords, such as goto and
char, and operators, such as the addition opera­
tor (+) and the multiplication operator (*).

Italicized terms mark the places in syntax
specifications and in the text where specific
terms appear in an actual C program. For
example, in

goto name;

name is italicized to show that this is a general
form for the goto statement. In an actual pro­
gram statement, the user supplies a particular
identifier for the placeholder name.

Occasionally, italics are used to emphasize par­
ticular words in the text.

Examples of C programs and program elements
appear in a special typeface to look similar to
listings on the screen or the output of commonly
used computer printers:

int x, y;

swap (&X, &y);

Ellipsis dots

[Double brackets]

Introduction

Ellipsis dots may be vertical or horizontal. In
the following example, the vertical ellipsis dots
indicate that zero or more declarations, followed
by one or more statements, may appear between
the braces:

{
[declaration]

statement
[statement]

}

Vertical ellipsis dots are also used in program
examples to indicate that a portion of the pro­
gram has been omitted. For instance, in the fol­
lowing excerpt, two program lines are shown.
The ellipsis dots between the lines indicate that
intervening program lines occur but are not
shown:

int x, y;

swap (&x, &y);

Horizontal ellipsis dots following an item indi­
cate that more items having the same form may
appear. For instance,

= { expression [, expression] ... }

indicates that one or more expressions separated
by commas may appear between the braces ({ l).

Double brackets enclose optional items in syntax
specifications. For example,

return [expression];

is a syntax specification showing that expression
is an optional item in the return statement.

7

Microsoft C Compiler Language Reference

8

"Quotation
marks"

SMALL CAPITALS

Quotation marks set off terms defined in the
text. For example, the term "token" appears in
quotation marks when it is defined.

Some C constructs, such as strings, require quo­
tation marks. Quotation marks required by the
language have the form "" rather than" ". For
example,

"abc"

is a C string.

Names of special key combinations, such as
CONTROlrZ, appear in small capital letters.

Chapter 2

Elements of C

2.1 Introduction 11
2.2 Character Sets 11
2.2.1 Letters and Digits 12
2.2.2 White-Space Characters 12
2.2.3 Punctuation and Special Characters
2.2.4 Escape Sequences 13
2.2.5 Operators 15
2.3 Constants 17
2.3.1 Integer Constants 17
2.3.2 Floating-Point Constants 19
2.3.3 Character Constants 20
2.3.4 String Literals 21
2.4 Identifiers 22
2.5 Keywords 24
2.6 Comments 24
2.7 Tokens 25

12

9

Elements of C

2.1 Introduction

This chapter describes the elements of the C programming language. The
elements of the language are the names, numbers, and characters used to
construct a C program. In particular, this chapter describes the following:

• Character sets

• Constants

• Identifiers

• Keywords

• Comments

• Tokens

2.2 Character Sets

Two character sets are defined for use in C programs: the C character set
and the representable character set. The C character set consists of the
letters, digits, and punctuation marks that have a specific meaning to the C
compiler. C programs are constructed by combining the characters of the
C character set into meaningful statements.

The C character set is a subset of the representable character set. The
representable character set consists of all letters, digits, and symbols that a
user can represent graphically with a single character. The extent of the
representable character set depends on the type of terminal, console, or
character device being used.

A C program can contain only characters from the C character set, with the
exceptions of string literals, character constants, and comments, which can
use any representable character. Each character in the C character set has
an explicit meaning to the C compiler. The compiler generates error mes­
sages when it encounters misused characters or characters not belonging to
the C character set.

The following sections describe the characters and symbols of the C charac­
ter set and explain how and when to use them.

11

Microsoft C Compiler Language Reference

2.2.1 Letters and Digits

The C character set includes the uppercase and lowercase letters of the
English alphabet and the 10 decimal digits of the Arabic number system:

• Uppercase English letters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

• Lowercase English letters

abcdefghijklmnopqrstuvwxyz

• Decimal digits

0123456789

These letters and digits can be used to form the constants, identifiers, and
keywords described later in this chapter.

The C compiler treats uppercase and lowercase letters as distinct charac­
ters. If a lowercase a is specified in a given item, you cannot substitute an
uppercase A in its place; you must use the lowercase letter.

2.2.2 White-Space Characters

Space, tab, line-feed, carriage-return, form-feed, vertical-tab, and new-line
characters are called white-space characters because they serve the same
purpose as the spaces between words and lines on a printed page. These
characters separate user-defined items, such as constants and identifiers,
from other items within a program.

A CONTROL-Z character is treated as an end-of-file indicator. The compiler
disregards any text following the CONTROL-Z mark.

The C compiler ignores white-space characters unless they are used as
separators or as components of character constants or string literals. This
means you can use extra white-space characters to make a program more
readable. Comments are also treated as white space (see Section 2.6).

2.2.3 Punctuation and Special Characters

The punctuation and special characters in the C character set are used for
a variety of purposes, from organizing the text of a program to defining the
tasks to be carried out by the compiler or by the compiled program. Table
2.1 lists these characters.

12

Elements of C

Table 2.1

Punctuation and Special Characters

Character Name Character Name

Comma Exclamation mark

Period Vertical bar

Semicolon / Forward slash

Colon \ Backslash

? Question mark Tilde

Single quotation Underscore

" Double quotation # Number sign

(Left parenthesis % Percent sign

) Right parenthesis & Ampersand

[Left bracket Caret

] Right bracket * Asterisk

{ Left brace Minus sign

} Right brace - Equal sign

< Left angle bracket + Plus sign

> Right angle bracket

These characters have special meaning to the C compiler; their use in the C
language is described throughout this manual. Punctuation characters in
the representable character set that do not appear in this list can be used
only in string literals, character constants, and comments.

2.2.4 Escape Sequences

Escape sequences are special character combinations that represent white­
space and nongraphic characters in strings and character constants. They
are typically used to specify actions such as carriage returns and tab move­
ments on terminals and printers and to provide literal representations of
characters that normally have special meanings, such as the double quote
(") character. An escape sequence consists of a backslash followed by a
letter or combination of digits. Table 2.2 lists the C language escape
sequences.

13

Microsoft C Compiler Language Reference

Table 2.2

Escape Sequences

Escape Sequence

\n
\t
\v
\b
\r
\f
\a
\'
\"
\\
\ ddd

\xdd

Name

New line

Horizontal tab

Vertical tab

Backspace

Carriage return

Form feed

Bell (alert)

Single quote

Double quote

Backslash

ASCII character
in octal notation

ASCII character
in hexadecimal notation

If the backslash precedes a character not included in the list above, the
backslash is ignored and that character is represented literally. For ex­
ample the pattern \c represents the character c in a string literal or
character constant.

The sequences \ ddd and \xdd allow any character in the ASCII (American
Standard Code for Information Interchange) character set to be given as a
three-digit octal or a two-digit hexadecimal character code. For example,
the backspace character can be given as \010 or \x08. The ASCII null
character can be given as \0 or \xO.

Only the digits 0 through 7 can appear in an octal escape sequence, and at
least one digit must appear. However, fewer than three digits can be
specified. For example, the backspace character can be given in octal nota­
tion as \10. Similarly, a hexadecimal escape sequence must contain at
least one digit, but the second digit can be omitted. Thus, the hexadecimal
escape sequence for the backspace character can be given either as \x08 or
as \x8.

14

Elements of C

Note

When using octal and hexadecimal escape sequences in strings, it is
safest to give all digits of the escape sequence (three digits for octal
and two digits for hexadecimal escape sequences). Otherwise, if the
character immediately following the escape sequence happens to be an
octal or hexadecimal digit, it is interpreted as part of the sequence. For
example, if the string \x7Bell were printed, the result would be {ell
because \x7B is interpreted as the ASCII left brace character ({). The
string \x07Bell (note the 0) is the correct way to represent the bell
character followed by the word Bell.

Escape sequences allow nongraphic control characters to be sent to a
display device. For example, the escape character, \033, is often used as
the first character of a control command for a terminal or printer.

Nongraphic characters should always be represented by escape sequences
because using a nongraphic character in a C program has unpredictable
results.

The backslash character (\) used to introduce escape sequences also func­
tions as a continuation character in strings and in preprocessor definitions.
When a new-line character follows the backslash, the new line is disre­
garded, and the next line is treated as part of the previous line.

2.2.5 Operators

Operators are special character combinations that specify how values are to
be transformed and assigned. The compiler interprets each of these charac­
ter combinations as a single unit, called a "token" (see Section 2.7).

Table 2.3 lists the characters that form C operators and gives the name of
each operator. Operators must be specified exactly as they appear in the
tables, with no white space between the characters of multi character opera­
tors. The sizeof operator is not included in this table; it consists of a key­
word (sizeof) rather than a symbol.

16

Microsoft C Compiler Language Reference

16

Table 2.3

Operators

Operator

+

*
/
%
«
»
<
<=
>
>=

!=
&

&&
II

" ,
?:

++

+=

*=

/=
%=
»=

Name

Logical NOT

Bitwise complement

Addition

Subtraction, arithmetic negation

Multiplication, indirection

Division

Remainder

Left shift

Right shift

Less than

Less than or equal

Greater than

Greater than or equal

Equality

Inequality

Bitwise AND, address of

Bitwise inclusive OR

Bitwise exclusive OR

Logical AND

Logical OR

Sequential evaluation

Conditionala

Increment

Decrement

Simple assignment

Addition assignment

Subtraction assignment

Multiplication assignment

Division assignment

Remainder assignment

Right-shift assignment

Elements of C

Table 2.3 (continued)

Operator

«=
&=

Name

Left-shift assignment

Bitwise AND assignment

Bitwise inclusive OR assignment

Bitwise exclusive OR assignment

a The conditional operator is a ternary operator, not a multicharacter
operator. The form of a conditional expression is the following:
expression? expression: expression

For a complete description of each operator, see Chapter 5, "Expressions
and Assignments."

2.3 Constants

A constant is a number, a character, or a string of characters that can be
used as a value in a program. The value of a constant does not change from
execution to execution.

The C language has four kinds of constants: integer constants, floating­
point constants, character constants, and string literals. The following sec­
tions define the format and use of each.

2.3.1 Integer Constants

An integer constant is a decimal, octal, or hexadecimal number that
represents an integer value. A decimal constant has the form

digits

where digits is one or more decimal digits (0 through 9).

An octal constant has the form

o o digits

17

Microsoft C Compiler Language Reference

where odigits is one or more octal digits (0 through 7). The leading 0 is
required.

A hexadecimal constant has one of the following forms:

Oxhdigits
OXhdigits

where hdigits is one or more hexadecimal digits (0 through 9 and either
uppercase or lowercase "a" through "f"). The leading 0 is required and
must be followed by x or X.

No white-space characters can appear between the digits of an integer con­
stant. Table 2.4 illustrates the form of integer constants.

Table 2.4

Examples of Integer Constants

Decimal Constants

10
132
32179

Octal Constants

012
0204
076663

Hexadecimal Constants

Oxa or OxA
Ox84
Ox7dB3 or Ox7DB3

Integer constants always specify positive values. If negative values are
required, the minus sign (-) can be placed in front of the constant to form a
constant expression with a negative value. The minus sign is treated as an
arithmetic operator.

Every integer constant is given a type based on its value. A constant's type
determines what conversions must be performed when the constant is used
in an expression or when the minus sign (-) is applied. Decimal constants
are considered signed quantities and are given int type, or long type if the
size of the value requires it.

Octal and hexadecimal constants are given int, unsigned int, long, or
unsigned long type depending on the size of the constant. If the constant
can be represented as an int, it is given int type. If it is larger than the
maximum positive value that can be represented by an int, but small
enough to be represented in the same number of bits as an int, it is given
unsigned int type. Similarly, a constant that is too large to be
represented as an unsigned int is given long type, or unsigned long type,
if necessary.

18

Elements of C

Table 2.5 shows the ranges of values and the corresponding types for octal
and hexadecimal constants on a machine where the int type is 16 bits long.

Table 2.5

Types Assigned to Octal and Hexadecimal Constants

Hexadecimal Range

OxO - Ox7FFF
Ox8000 - OxFFFF
Ox10000 - Ox7FFFFFFF
Ox80000000 - OxFFFFFFFF

Octal Range

0-077777
0100000 - 0177777
0200000 - 017777777777
020000000000 - 030000000000

Type

int
unsigned int
long
unsigned long

The consequence of the above typing rules is that hexadecimal and octal
constants are not sign-extended when they are converted to longer types.
(For a discussion of type conversions, see Chapter 5, "Expressions and
Assignments.")

The programmer can force any integer constant to be given long type by
appending the letter "I" or "L" to the end of the constant. Table 2.6 illus­
trates long integer constants.

Table 2.6

Examples of Long Integer Constants

Decimal Constants Octal Constants Hexadecimal Constants

10L 012L OxaL or OxAL
791 01151 Ox4f1 or Ox4F1

Types are described in Chapter 4, "Declarations," and conversions are
described in Chapter 5, "Expressions and Assignments."

2.3.2 :F'loating-Point Constants

A floating-point constant is a decimal number representing a signed real
number. The value of a signed real number includes an integer portion, a
fractional portion, and an exponent. Floating-point constants have the
form

19

Microsoft C Compiler Language Reference

[digits] [. digits] [E [-] digits]

where digits is one or more decimal digits (0 through 9), and E (or e) is the
exponent symbol. Either the digits before the decimal point (the integer
portion of the value) or the digits after the decimal point (the fractional
portion) can be omitted, but not both. The decimal point can be omitted
only when an exponent is given.

The exponent consists of the exponent symbol followed by a possibly nega­
tive constant integer value. No white-space characters can separate the
digits or characters of the constant.

Floating-point constants always specify positive values. If negative values
are required, the minus sign (-) can be placed in front of the constant to
form a constant floating-point expression with a negative value. The minus
sign is treated as an arithmetic operator.

The following examples illustrate some of the forms of floating-point con­
stants and expressions:

15.75
1.575E1
1575e-2
-0.0025
-2.5e-3
25E-4

The integer portion of the floating-point constant can be omitted, as shown
in the following examples:

.75

.0075e2
-.125
-.175E-2

All floating-point constants have type double.

2.3.3 Character Constants

A character constant is a letter, digit, punctuation character, or escape
sequence enclosed in single quotation marks. The value of a character con­
stant is the numerical representation of the character. Character constants
consisting of more than one character or escape sequence are not allowed.

20

Elements of C

A character constant has the form

'char'

where char can be any character from the representable character set
(including any escape sequence) except a single quotation mark ('), a
backslash (\), or a new-line character. To use a single quotation mark or
backslash character as a character constant, precede it with a backslash, as
shown in Table 2.7. To represent a new-line character, use the escape
sequence '\ n'.

Table 2.7

Examples of Character Constants

Constant

'a'
'?'
'\ b'

,\xlB'

'\ "
'\ \'

Value

Lowercase a

Question mark

Backspace

ASCII escape character

Single quotation mark

Backslash

Character constants have type int and consequently are sign extended in
type conversions (see Section 5.7 of Chapter 5, "Expressions and
Assignments").

2.3.4 String Literals

A string literal is a sequence of letters, digits, and symbols enclosed in
double quotation marks. A string literal is treated as an array of charac­
ters; each element of the array is a single character value.

The form of a string literal is

" characters"

where characters is zero or more characters from the representable charac­
ter set, excluding the double quotation mark ("), the backslash (\), and the
new-line character. To use the new-line character in a string, type a
backslash immediately followed by a new-line character. The backslash

21

Microsoft C Compiler Language Reference

causes the new-line character to be ignored, allowing the programmer to
form string literals that occupy more than one line. For example, the string
literal

"Long strings can be bro\
ken into two pieces."

is identical to the string

"Long strings can be broken into two pieces."

To use the double quotation mark or backslash character within a string
literal, precede it with a backslash, as shown in the following examples:

"This is a string literal."
"Enter a number between 1 and 100 \n or press Return"
"First\\Second"
"\"Yes, I do,\" she said."
"The following line shows a null string:"
""

Note that escape sequences (such as \ \ and \") can appear in string
literals. Each escape sequence counts as a singfe character.

The characters of a string are stored in order at contiguous memory loca­
tions. A null character (\ 0) is automatically appended to mark the end of
the string. Each string in a program is considered to be a distinct item; if
two identical strings appear in a program, they each receive distinct storage
space.

String literals have type char []. This means a string is an array whose
elements have type char. The number of elements in the array is the
number of characters in the string literal plus one, since the null character
stored after the last character counts as an array element.

2.4 Identifiers

Identifiers are the names you supply for the variables, functions, and labels
used in a given program. You create an identifier by declaring it with the
associated variable or function. You can then use the identifier in later
statements within the program to refer to the given item. (Declarations are
described in Chapter 4, "Declarations.")

22

Elements of C

An identifier is a sequence of one or more letters, digits, or underscores (_)
that begins with a letter or underscore. Any number of characters are
allowed in a given identifier, but only the first 31 characters are significant
to the compiler. (Other programs that read the compiler output, such as
the linker, may use fewer characters.) Use leading underscores with care;
identifiers beginning with an underscore can conflict with the names of hid­
den system routines and produce errors.

The following are examples of identifiers:

j
ent
templ
topofpage
skip12

The C compiler considers uppercase and lowercase letters to be separate
and distinct characters. Therefore, you can create distinct identifiers that
have the same spelling but different cases for one or more of the letters.
For example, each of the following identifiers is unique:

add
ADD
Add
aDD

The C compiler does not allow an identifier that has the same spelling and
case as a C language keyword. Keywords are described in Section 2.5.

Note

The linker may further restrict the number and type of characters for
globally visible symbols, and, unlike the compiler, the linker may not
distinguish between uppercase and lowercase letters. Consult your
linker documentation for information on naming restrictions imposed
by the linker.

23

Microsoft C Compiler Language Reference

2.5 Keywords

Keywords are predefined identifiers that have special meaning to the C
compiler. They can be used only as defined. The names of program items
cannot conflict with the keywords listed below:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof while
do if static volatile

Keywords cannot be redefined. However, you can specify text to be substi­
tuted for keywords before compilation by using C preprocessor directives
(see Chapter 8, "Preprocessor Directives and Pragmas").

The const and volatile keywords are reserved for future use but have not
yet been implemented.

The following identifiers may be keywords in some implementations. See
your system documentation for more information.

cdecl
far
fortran
huge
near
pascal

2.6 Comments

A comment is a sequence of characters that is treated as a single white­
space character by the compiler, but is otherwise ignored. A comment has
the following form:

/ * characters * /

Here characters can be any combination of characters from the represent­
able character set, including new-line characters but excluding the

24

Elements of C

combination", /. This means that comments can occupy more than one
line, but they cannot be nested.

Comments can appear anywhere a white-space character is allowed. The
compiler ignores the characters of the comment, so keywords can appear in
comments without producing errors. Since the compiler treats the com­
ment as a single white-space character, comments cannot appear within a
token.

The following examples illustrate some comments:

/* Comments can separate and document
lines of a program. */

/* Comments can contain keywords such as for
and while. */

/***
Comments can occupy several lines.

***/

Since comments cannot contain nested comments, the following example
causes an error:

/* You cannot /* nest */ comments */

The compiler recognizes the first */, after the word nest, as the end of the
comment. The compiler attempts to process the remaining text and pro­
duces an error when it cannot do so.

To suppress compilation of a large portion of a program or a program
segment that contains comments, use the #if preprocessor directive
instead of comments (see Section 8.4 of Chapter 8, "Preprocessor Directives
and Pragmas").

2.7 Tokens

When the compiler processes a program, it breaks the program down into
groups of characters known as "tokens." A token is a unit of progranl text
that has meaning to the compiler and that cannot be broken down further.
The operators, constants, identifiers, and keywords described in this chap­
ter are examples of tokens. Punctuation characters such as brackets ([J),
braces (t J), angle brackets « », parentheses, and commas are also
tokens.

25

Microsoft C Compiler Language Reference

Tokens are delimited by white-space characters and by other tokens, such
as operators and punctuation symbols. To prevent the compiler from
breaking an item down into two or more tokens, white-space characters are
prohibited between the characters of identifiers, multicharacter operators,
and keywords.

When the compiler interprets tokens, it incorporates as many characters as
possible into a single token before moving on to the next token. Because of
this behavior, tokens not separated by white space may not be interpreted
as expected.

For example, consider the following expression:

i+++j

In the above example, the compiler first makes the longest possible operator
(++) from the three plus signs, and then processes the remaining plus sign
as an addition operator (+). This expression is interpreted as (i + +) +
(j) ,not (i) + (+ + j). Use white space and parentheses to clarify your

intent in such cases.

26

Chapter 3

Progralll Structure

3.1 Introduction 29
3.2 Source Program 29
3.3 Source Files 30
3.4 Program Execution 32
3.5 Lifetime and Visibility 33
3.6 Naming Classes 36

27

Program Structure

3.1 Introduction

This chapter describes the structure of C language source programs and
defines terms used later in this manual to describe the C language. It pro­
vides an overview of C language features that are described in detail in
other chapters. The syntax and meaning of declarations and definitions are
discussed in Chapter 4, "Declarations," and Chapter 7, "Functions." The C
preprocessor and pragmas are described in Chapter 8, "Preprocessor Direc­
tives and Pragmas."

3.2 Source Program

A C source program is a collection of one or more directives, pragmas,
declarations, and/or definitions. "Directives" instruct the C preprocessor
to perform specific actions on the text of the program prior to compilation.
"Pragmas" are instructions to the compiler that are carried out at
compile time.

"Declarations" establish the names and attributes of variables, functions,
and types used in the program. "Definitions" are declarations that also
define variables and functions. A variable definition gives the initial value
of the declared variable, in addition to its name and type. The definition
causes storage to be allocated for the variable. A function definition
specifies the function body, which is a compound statement containing the
declarations and statements that constitute the function. The function
definition also gives the function name, formal parameters, and return type.

A source program can have any number of directives, pragmas, declara­
tions, and definitions. Each must have the appropriate syntax as described
in this manual, and each can appear in any order in the program (subject to
the rules outlined throughout this manual), although the order affects how
variables and functions can be used in the program (see Section 3.5, "Life­
time and Visibility").

A nontrivial program always contains at least one definition, a function
definition. The function defines the action to be taken by the program.
The following example illustrates a simple C source program:

29

Microsoft C Compiler Language Reference

Example

int x 1;
int y = 2;

/* Variable definitions */

extern int printf(char *, ...) ;/* Function declaration */

main ()

{

}

int z;
int w;

/* Function definition
for main function */

/* Variable declarations */

z = y + x; /* Executable statements */
w = y - x;
printf("z= %d \nw= %d \n", z, w);

This source program defines the function named main and declares the
function pr int f. The variables x and yare defined with variable
definitions; the variables z and ware just declared.

3.3 Source Files

Source programs can be divided into one or more source files. A C source
file is a text file that contains all or part of a C source program; it may, for
example, contain just a few of the functions needed by the program. When
the source program is compiled, the individual source files that make up the
program must be compiled individually and then linked. Separate source
files can also be combined to form larger source files before compilation by
using the # include directive, discussed in Chapter 8, "Preprocessor Direc­
tives and Pragmas."

A source file can contain any combination of complete directives, pragmas,
declarations, and definitions. Items such as function definitions or large
data structures cannot be split between source files.

A source file need not contain any executable statements. It is sometimes
useful to place variable definitions in one source file and then declare refer­
ences to these variables in other source files that use them. This makes the
definitions easy to find and modify, if necessary. For the same reason, man­
ifest constants and macros (discussed in Chapter 8, "Preprocessor Direc­
tives and Pragmas") are often organized into separate "include" files and
inserted into source files where required.

30

Program Structure

Directives in a source file apply to that source file and its include files only.
Moreover, each directive applies only to the portion of the file following the
directive. If a common set of directives is to be applied to a source program,
then all source files in the program must contain these directives.

Pragmas usually take effect over a specific region of a source file. However,
the specific compiler action that is defined by a pragma is determined by
the implementation. For a discussion of the effects of particular pragmas,
see your system documentation.

The following is an example of a C source program contained in two source
files. The main and max functions are assumed to be in separate files, and
execution of the program is assumed to begin with the main function.

Example

/**
Source file 1 - main function

**/

#define ONE 1
#define TWO 2
#define THREE 3

extern int max (int, int);

main ()
{

}

int w = ONE, x
int z = 0;
z max(x,y);
w = max(z,w);

/* Function declaration */

/* Function definition */

TWO, Y = THREE;

/**
Source file 2 - max function

**/

int max (a, b)
int a, b;
{

if a > b)
return (a);

else
return (b);

}

/* Function definition */

31

Microsoft C Compiler Language Reference

In the first source file, the function max is declared without being defined.
This is known as a "forward declaration." The function definition for main
includes function calls to max.

The lines beginning with a number sign (#) are preprocessor directives.
These directives instruct the preprocessor to replace the identifiers ONE,
TWO, and THREE with the specified number in the first source file. The
directives do not apply to the second source file.

The second source file contains the function definition for max. This
definition satisfies the calls to max in the first source file. Once the source
files are compiled, they can be linked and executed as a single program.

3.4 Program Execution

Every program has a primary (main) program function. In C, the primary
program function must be named main. The main function serves as the
starting point for program execution and usually controls execution of the
program by directing the calls to other functions in the program. A pro­
gram usually stops executing at the end of the main function, although
it can stop at other points in the program, depending on the execution
environment.

The source program usually has more than one function, each designed
to perform one or more specific tasks. The main function can call these
functions to perform the tasks. When a function is called, execution be­
gins at the first statement in the called function. The function returns con­
trol when a return statement is executed or the end of the function is
encountered.

All functions, including the IDain function, can be declared to have param­
eters. Functions called by other functions receive values for the parameters
from the calling functions. Parameters of the IDain function can be
declared to receive values passed to the main function from outside the
program. For example, they can receive values from the command line
when the program is executed.

When the main function takes parameters, C requires the first two parame­
ters to be named argc and argv. The argc parameter is declared to hold
the total number of arguments passed to the main function. The argv
parameter is declared as an array of pointers, each element of which points
to a string representation of an argument passed to the main function.

32

Program Structure

Traditionally, the third parameter to the main function (if there is a third
parameter) is given the name envp. The C language does not require this
name, however. The envp parameter is a pointer to a table of string values
that set up the environment in which the program executes.

The operating system supplies values for the argc, argv, and envp param­
eters, and the user supplies the actual arguments to the main function.
The argument-passing convention in use on a particular system is deter­
mined by the operating system rather than by the C language. For more
information, see your system documentation.

Formal parameters to functions must be declared when the function is
defined. Function definitions are described in more detail in Section 7.2 of
Chapter 7, "Functions." Function declarations are discussed in Section 4.5
of Chapter 4, "Declarations."

3.5 Lifetime and Visibility

Two concepts, "lifetime" and "visibility," are important in understanding
the structure of a C program. The lifetime of a variable or function can be
either "global" or "local." An item with a global lifetime has storage and a
defined value throughout the duration of the program; an item with a local
lifetime is allocated new storage each time the "block" in which it is defined
or declared is entered. When the block is exited, the local item loses its
storage, and hence its value. Blocks are defined and discussed below.

An item is said to be "visible" in a block or source file if the type and name
of the item are known in the block or source file. An item can also be "glo­
bally visible," which means that it is visible, or can be made visible through
appropriate declarations, throughout all the source files that constitute the
program. Visibility between source files (also known as "linkage") is dis­
cussed in greater detail in Section 4.6 of Chapter 4, "Declarations."

A block is a compound statement. Compound statements consist of declara­
tions and statements, as described in Section 6.3 of Chapter 6, "State­
ments." The bodies of C functions are compound statements. Blocks can
be nested; function bodies frequently contain blocks, which in turn can con­
tain other blocks.

Declarations and definitions within blocks occur at the "internal level."
Declarations and definitions outside all blocks occur at the "external level."

33

Microsoft C Compiler Language Reference

Both variables and functions can be declared at the external level or at the
internal level. Variables can also be defined at the internal level, but func­
tions can only be defined at the external level.

All functions have global lifetimes, regardless of where they are declared.
Variables declared at the external level always have global lifetimes. Vari­
ables declared at the internal level usually have local lifetimes; however, the
storage-class specifiers static and extern can be applied to declare global
variables or references to global variables within a block. See Section 4.6 of
Chapter 4, "Declarations," for a discussion of these options.

Variables declared or defined at the external level are visible from the point
at which they are declared or defined to the end of the source file. These
variables can be made visible in other source files with appropriate declara­
tions, as described in Section 4.6, "Storage Classes." However, variables
that are given static storage class at the external level are visible only
within the source file in which they are defined.

In general, variables declared or defined at the internal level are visible
from the point at which they are first declared or defined to the end of the
block in which the definition or declaration appears. These variables are
called local variables. If a variable declared inside a block has the same
name as a variable declared at the external level, the block definition super­
sedes the external level definition of the variable for the duration of the
block. The visibility of the external level variable is restored when the
block is exited.

Block visibility can nest. This means that a block nested inside another
block can contain declarations that redefine variables declared in the outer
block. The redefinition of the variable holds in the inner block, but the ori­
ginal definition is restored when control returns to the outer block. Vari­
ables from outer blocks are visible inside all inner blocks, as long as they
are not redefined in the inner blocks.

Functions with static storage class are visible only in the source file in
which they are defined. All other functions are globally visible. For more
information on function declarations, see Section 4.5 of Chapter 4,
"Declarations. "

Table 3.1 summarizes the main factors that determine the lifetime and visi­
bility of functions and variables. The table is not, however, intended to
cover all cases. Refer to the above discussion and to Section 4.6, "Storage
Classes," for more information.

34

Program Structure

Table 3.1

SUIDIDary of LifetiIDe and Visibility

Storage
Class

Level Item Specifier Lifetime Visibility

External Variable static Global Restricted
declaration to single

source file

Variable extern Global Remainder
declaration of source file

Function static Global Restricted
declaration to single
or definition source file

Function extern Global Remainder
declaration of source file
or definition

Internal Variable extern or Global Block
definition or static
declaration

Variable auto or Local Block
definition or register
declaration

The following program example illustrates blocks, nesting, and visibility of
variables:

Example

/* i defined at external level */
int i = 1;

/* main function defined at external level */
main ()
{

/* prints 1 (value of external level i) */
printf ("%d\n", i);

/* first nested block */
{

/* i and j defined at internal level */

35

Microsoft C Compiler Language Reference

}

int i = 2, j = 3;

/* prints 2, 3 */
printf ("%d\n%d\n" 1 i , j);

/* second nested block */
{

/* i is redefined */
int i = 0;

/* prints 0 , 3 */
printf ("%d\n%d\n" 1 i , j);

/* end of second nested block */
}

/* prints 2 (outer definition restored) */
printf("%d\n", i);

/* end of first nested block */
}

/* prints 1 (external level definition restored) */
printf ("%d\n" 1 i);

In this example, there are four levels of visibility: the external level and
three block levels. Assuming that the function pr int f is defined elsewhere
in the program, the main function prints out the values 1, 2, 3, 0, 3, 2, 1.

3.6 Naming Classes

In any C program, identifiers are used to refer to many different kinds of
items. When you write a C program, you provide identifiers for the func­
tions, variables, formal parameters, union members, and other items the
program uses. C allows you to use the same identifier for more than one
program item, as long as you follow the rules outlined in this section.

The compiler sets up "naming classes" to distinguish between the
identifiers for different kinds of items. The names within each class must
be unique to avoid conflict, but an identical name can appear in one or
more naming classes. This means that you can use the same identifier for

36

Program Structure

two or more different items if the items are in different naming classes. The
context of a given identifier in the program allows the compiler to resolve
the reference without ambiguity.

The kinds of items you can name in C programs, and the rules for naming
them, are described as follows:

Items

Variables and functions

Formal parameters

Enumeration constants

typedef names

Naming Class

The names of variables and functions are
in a naming class with formal parameters
and enumeration constants. Variable
and function names must, therefore, be
distinct from other names in this class
with the same visibility.

However, variable names can be redefined
within program blocks, as described in
Section 3.5, "Lifetime and Visibility."
Function names can also be redefined in
this manner.

The names of formal parameters to a
function are grouped with the names of
the function's variables, so the formal
parameter names should be distinct from
the variable names. Redeclaring formal
parameters within the function causes an
error.

Enumeration constants are in the same
naming class as variable and function
names. This means that names of
enumeration constants must be distinct
from all variable and function names
with the same visibility, and distinct
from the names of other enumeration
constants with the same visibility. How­
ever, like variable names, the names of
enumeration constants have nested visi­
bility, meaning that they can be rede­
fined within blocks. See Section 3.5,
"Lifetime and Visibility."

The names of types defined with typedef
are in a naming class with variable and
function names. They must, therefore,
be distinct from all variable and function

37

Microsoft C Compiler Language Reference

Tags

Members

Statement labels

Example

struct student {
char student[20J;
int class;
int id;
} student;

names with the same visibility, and also
from the names of formal parameters and
enumeration constants. Like variable
names, names used for typedef types can
be redefined within program blocks. See
Section 3.5, "Lifetime and Visibility."

Enumeration, structure, and union tags
are grouped together in a single naming
class. Each enumeration, structure, or
union tag must be distinct from other
tags with the same visibility. Tags do
not conflict with any other names.

The members of each structure and union
form a naming class. The name of a
member must, therefore, be unique
within the structure or union, but it does
not have to be distinct from any other
name in the program, including names of
members of different structures and
unIOns.

Statement labels form a separate naming
class. Each statement label must be dis­
tinct from all other statement labels in
the same function. Statement labels do
not have to be distinct from any other
names or from label names in other
functions.

Structure tags, structure members, and variable names are in three
different naming classes, so no conflict occurs among the three items named
student in the above example. The compiler determines how to interpret
each occurrence of student by its context in the program. For example,
when student appears after the struct keyword, it is known to be a
structure tag. When student appears after a member-selection operator
(-> or .), the name refers to the structure member. In other contexts, the
identifier student refers to the structure variable.

38

Chapter 4

Declarations

4.1 Introduction 41
4.2 Type Specifiers 42
4.3 Declarators 46
4.3.1 Pointer, Array, and Function Declarators
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.5
4.6
4.6.1
4.6.2
4.6.3

4.7
4.7.1
4.7.2
4.7.3
4.8

Complex Declarators 48
Declarators with Special Keywords

Variable Declarations 53
Simple Variable Declarations
Enumeration Declarations
Structure Declarations
Union Declarations 60
Array Declarations 62
Pointer Declarations 64

Function Declarations 65
Storage Classes 68

57

54
55

51

Variable Declarations at the External Level
Variable Declarations at the Internal Level
Function Declarations
at the External and Internal Levels 74

Initialization 75
Fundamental and Pointer Types 76
Aggregate Types 77
String Initializers 80

Type Declarations 80

47

69
72

39

4.8.1
4.8.2
4.9

40

Structure, Union, and Enumeration Types 81
Typedef Declarations 82

Type Names 83

Declarations

4.1 Introduction

This chapter describes the form and constituents of C declarations for vari­
ables, functions, and types. C declarations have the form

[sc-specifier] [type-specifier] declarator[=initializer] [, declarator[=initializer] ...]

where sc-specifier is a storage-class specifier, type-specifier is the name of a
defined type, declarator is an identifier that can be modified to declare a
pointer, array, or function, and initializer gives a value or sequence of
values to be assigned to the variable being declared.

All C variables must be explicitly declared before they are used. C func­
tions can be declared explicitly in a function declaration or implicitly by
calling the function before it is declared or defined.

The C language defines a standard set of data types. You can add to
that set by declaring new data types based on types already defined. You
can declare arrays, data structures, and pointers to both variables and
functions.

C declarations require one or more declarators. A declarator is an identifier
that can be modified with brackets ([]), asterisks (*), or parentheses to de­
clare an array, pointer, or function type. When you declare simple vari­
ables (such as character, integer, and floating-point values), or structures
and unions of simple variables, the declarator is just an identifier.

Four storage-class specifiers are defined in C: auto, extern, register, and
static. The storage-class specifier of a declaration affects how the declared
item is stored and initialized and which portions of a program can reference
it. The location of the declaration within the source program and the pres­
ence or absence of other declarations of the variable are also important fac­
tors in determining the visibility of variables.

Function declarations are presented in Section 4.5. For information on
function definitions, see Section 7.2.

41

Microsoft C Compiler Language Reference

4.2 Type Specifiers

The C language provides definitions for a set of basic data types, called
"fundamental" types. Their names are listed in Table 4.1.

Table 4.1

Fundamental Types

Integral Typesa

signed char

signed int

signed short int

signed long int

unsigned char

unsigned int

unsigned short int

unsigned long int

Floating-Point
Typesa Other

float voidb

double (also called
long float)

a Used to declare variables and function return types

b Used only to declare function return types

Enumeration types are also considered fundamental types. Type specifiers
for enumeration types are discussed in Section 4.8.1. The signed char,
signed int, signed short int, and signed long int types, together with
their unsigned counterparts, are called "integral" types. The float and
double type specifiers refer to "floating-point" types. Variable and func­
tion declarations can use any of the integral or floating-point type
specifiers.

The void type can be used only to declare functions that return no value.
Function types are discussed in Section 4.5, "Function Declarations."

You can create additional type specifiers with typedef declarations, dis­
cussed in Section 4.8.2.

42

Declarations

Type specifiers are commonly abbreviated, as shown in Table 4.2. Integral
types are signed by default. Thus, if the unsigned keyword is omitted from
the type specifier, the integral type is signed, even if the signed keyword is
not specified.

In some implementations, a compiler option may be available to change the
default for the char type from signed to unsigned type. When such an
option is in effect, the abbreviation char has the same meaning as
unsigned char, and the signed keyword must be used to declare a signed
character value.

Table 4.2

Type Specifiers and Abbreviations

Type Specifier

signed charR

signed int

signed short int

signed long int

unsigned char b

unsigned int

unsigned short int

unsigned long int

float

long float

Abbreviations

char

signed, int

short, signed short

long, signed long

unsigned

unsigned short

unsigned long

double

a When the char type is made unsigned by default (through
the use of a compiler option), signed char cannot be
abbreviated.

b When the char type is made unsigned by default (through
the use of a compiler option), unsigned char can be
abbreviated as char.

43

Microsoft C Compiler Language Reference

Note

This manual generally uses the abbreviated forms listed in Table 4.2
rather than the long forms of the type specifiers and assumes that the
char type is signed by default. Therefore, throughout this manual,
char stands for signed char.

Table 4.3 summarizes the storage associated with each fundamental type
and gives the range of values that can be stored in a variable of each type.
Since the void type does not apply to variables, it is not included in the
table.

Table 4.3

Storage and Range of Values for Fundamental Types

Range of Values
Type Storage (Internal)

char 1 byte -128 to 127

int imp lemen tation
dependent

short 2 bytes - 32768 to 32767

long 4 bytes - 2,147,483,648 to 2,147,483,647

unsigned char 1 byte o to 255

unsigned implemen tation
dependent

unsigned short 2 bytes o to 65535

unsigned long 4 bytes o to 4,294,967,295

float 4 bytes IEEE standard notation;
discussed below

double 8 bytes IEEE standard notation;
discussed below

The char type is used to store a letter, digit, or symbol from the represent­
able character set. The integer value of a character is the ASCII code
corresponding to that character. Since the char type is interpreted as a
signed I-byte integer, values in the range -128 to 127 are permitted for

44

Declarations

char variables, although only the values from 0 to 127 have character
equivalents. Similarly, the unsigned char type can store values in the
range 0 to 255.

Note that the storage and range associated with the int and unsigned int
types are not defined by the C language. Instead, the size of an int (signed
or unsigned) corresponds to the natural size of an integer on a given
machine. For example, on a 16-bit machine the int type is usually 16 bits,
or 2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes.
Thus, the int type is equivalent either to the short int or the long int
type, depending on the implementation. Similarly, the unsigned int type is
equivalent either to the unsigned short or unsigned long type.

The int and unsigned int type specifiers are widely used in C programs
because they allow a particular machine to handle integer values in the
most efficient way for that machine. However, since the size of the int and
unsigned int types varies, programs that depend on a specific int size may
be nonportable. Expressions involving the sizeof operator (discussed in
Section 5.3.4) can be used in place of hard-coded data sizes to increase the
portability of the code.

The type specifiers int and unsigned int (or simply unsigned) are used to
define certain features of the C language (tor instance, for defining the
enum type later in Section 4.8.1). In these cases, the definition of int and
unsigned int for a particular implementation determines the actual
storage.

Range of Values

The range of values for a variable lists the minimum and maximum values
that can be represented internally in a given number of bits. However,
because of C's conversion rules (discussed in detail in Chapter 5, "Expres­
sions and Assignments"), it is not always possible to use the maximum or
minimum for a constant of a given type in an expression.

For example, the constant expression -32768 consists of the arithmetic
negation operator (-) applied to the constant value 32768. Since 32768 is
too large to represent as a short, it is given long type, and the constant
expression -32768 consequently has long type. The value -32768 can only
be represented as a short by type casting it to the short type. No infor­
mation is lost in the type cast, since -32768 can be represented internally in
2 bytes of storage space.

45

Microsoft C Compiler Language Reference

Similarly, a value such as 65000 can only be represented as an
unsigned short by type casting the value to unsigned short type or by
giving the value in octal or hexadecimal notation. The value 65000 in
decimal notation is considered a signed constant, and is given long type
because 65000 does not fit into a short. This long value can then be cast
to the unsigned short type without loss of information, since 65000 will fit
into 2 bytes of storage space when it is stored as an unsigned number.

Octal and hexadecimal constants may have either signed or unsigned type,
depending on their size (see Section 2.3.1 for more information). However,
the method used for assigning types to these constants ensures that they
always behave like unsigned integers in type conversions.

Floating-point numbers use the IEEE (Institute of Electrical and Electron­
ics Engineers, Inc.) format. Values with float type have 4 bytes, consisting
of a sign bit, a 7-bit excess 127 binary exponent, and a 24-bit mantissa. The
mantissa represents a number between 1.0 and 2.0. Since the high-order bit
of the mantissa is always 1, it is not stored in the number. This representa­
tion gives a range of approximately 3.4E-38 to 3.4E+38.

Values with double type have 8 bytes. The format is similar to the float
format, except that the exponent is 11 bits excess 1023, and the mantissa
has 52 bits, plus the implied high-order 1 bit. This gives a range of approxi­
mately 1.7E-308 to 1.7E+308.

4.3 I>eclarators

Syntax

identifier
declarator[]
declarator[constant-expression]
... declarator
declarator{)
declarator{ arg-type-list)
(declarator)

C allows the programmer to declare arrays of values, pointers to values, and
functions returning values of specified types. To declare these items, you
must use a declarator.

46

Declarations

A declarator is an identifier, possibly modified with brackets ([]),
parentheses, and asterisks (lie), to declare an array, pointer, or function
type. Declarators appear in the pointer, array, and function declarations
described in later sections of this chapter (Sections 4.4.6, 4.4.5, and 4.5,
respectively). This section discusses the rules for forming and interpreting
declarators.

4.3.1 Pointer, Array, and Function Declarators

When a declarator consists of an unmodified identifier, the item being
declared has an unmodified type. Asterisks (lie) can appear to the left of an
identifier, modifying it to a pointer type. If the identifier is followed by
brackets ([]), the type is modified to an array type. If the identifier is fol­
lowed by parentheses, the type is modified to a function returning type.

A declarator does not constitute a complete declaration; a type specifier
must be included as well. The type specifier gives the type of the elements
for an array type, the type of object addressed by a pointer type, and the
return type of a function.

The sections on pointer, array, and function declarations later in this
chapter discuss each type of declaration in detail (see Sections 4.4.6, 4.4.5,
and 4.5, respectively). The following examples illustrate the simplest forms
of declarators:

Examples

int list[20J; /* Example 1 */

char h::p; /* Example 2 */

double func(void); /* Example 3 */

The above examples declare the following:

1. An array of int values (list)

2. A pointer to a char value (cp)

3. A function with no arguments returning a double value (func)

47

Microsoft C Compiler Language Reference

4.3.2 Complex Declarators

Any declarator can be enclosed in parentheses. Parentheses are typically
used to specify a particular interpretation of a "complex" declarator, as
discussed below. A "complex" declarator is an identifier qualified by more
than one array, pointer, or function modifier.

Various combinations of the array, pointer, and function modifiers can be
applied to a single identifier. Some combinations are illegal. An array can­
not be composed of functions, and a function cannot return an array or a
function.

In interpreting complex declarators, brackets and parentheses (to the right
of the identifier) take precedence over asterisks (to the left of the identifier).
Brackets and parentheses have the same precedence and associate left to
right. The type specifier is applied as the last step, when the declarator has
been fully interpreted. Parentheses can be used to override the default
association order in a way that forces a particular interpretation.

A simple rule that can be helpful in interpreting complex declarators is to
read them "from the inside out." Start with the identifier and look to the
right for brackets or parentheses. Interpret these (if any), then look to the
left for asterisks. If you encounter a right parenthesis at any stage, go back
and apply these rules to everything within the parentheses before proceed­
ing. As the last step, apply the type specifier. To illustrate this rule, the
steps are numbered in order in the following example:

char * (* (*var) ()) [10] ;
~ ~ ~ ~ -

7 642 1 3 5

1. The identifier var is declared as

2. a pointer to

3. a function returning

4. a pointer to

5. an array of 10 elements, which are

6. pointers to

7. char values.

The following examples provide further illustration and show how
parentheses can affect the meaning of a declaration:

48

Declarations

Examples

/******************** Example 1 ********************/

/* array of pointers to int values */
int *var[5J;

/******************** Example 2 ********************/

/* pointer to array of int values */
int (*var) [5J;

/******************** Example 3 ********************/

/* function returning pointer to long */
long *var(long/long);

/******************** Example 4 ********************/

/* pointer to function returning long */
long (*var) (long , long);

/******************** Example 5 ********************/

/* array of pointers to functions
returning structures */

struct both {
int a;
char b;
} (*var [5J) (struct both , struct both);

/******************** Example 6 ********************/

/* function returning pointer
to an array of 3 double values */

daub 1 e (* v a r (daub 1 e (*) [3 J)) [3 J ;

/******************** Example 7 ********************/

/* array of arrays of pointers
to pointers to unions */

union sign {
int x;
unsigned y;
} **var [5J [5J ;

/******************** Example 8 ********************/

/* array of pointers to arrays
of pointers to unions */

union sign * (*var [5J) [5J ;

49

Microsoft C Compiler Language Reference

Example

1

2

3

4

5

6

60

Description

In the first example, the array modifier has higher prior­
ity than the pointer modifier, so var is declared to be an
array. The pointer modifier applies to the type of the
array elements; the elements are pointers to int values.

In the second example, parentheses alter the meaning of
the declaration in the first example. Now the pointer
modifier has higher priority than the array modifier, and
var is declared to be a pointer to an array of five int
values.

Function modifiers also have higher priority than
pointer modifiers, so the third example declares var
to be a function returning a pointer to a long value.
The function is declared to take two long values as
arguments.

The fourth example is similar to the second example.
Parentheses give the pointer modifier higher priority
than the function modifier, and var is declared to be a
pointer to a function returning a long value. Again, the
function takes two long arguments.

The elements of an array cannot be functions, but the
fifth example demonstrates how to declare an array of
pointers to functions instead. In this example, var is
declared to be an array of five pointers to functions
returning structures with two members. The arguments
to the functions are declared to be two structures with
the same structure type, both. Note that the
parentheses surrounding *var [5] are required.
Without them, the declaration is an illegal attempt to
declare an array of functions, as shown below:

/* ILLEGAL */
struct both *var[5] (struct both, struct both);

The sixth example shows how to declare a function
returning a pointer to an array, since functions return­
ing arrays are illegal. Here var is declared to be a func­
tion returning a pointer to an array of three double
values. The function var takes one argument; the argu­
ment, like the return value, is a pointer to an array of
three double values. The argument type is given by a
complex abstract declarator. The parentheses around
the asterisk in the argument type are required; without
them, the argument type would be an array of three

Declarations

pointers to double values. For a discussion and ex­
amples of abstract declarators, see Section 4.9, "Type
Names."

7 A pointer can point to another pointer, and an array can
contain array elements, as the seventh example shows.
Here var is an array of five elements. Each element is a
five-element array of pointers to pointers to unions with
two members.

8 The eighth example shows how the placement of
parentheses alters the meaning of the declaration. In
this example, var is a five-element array of pointers to
five-element arrays of pointers to unions.

4.3.3 Declarators with Special Keywords

Your implementation of Microsoft C may include the following special
keywords:

cdecl
far
fortran
huge
near
pascal

These keywords are used to modify the meaning of variable and function
declarations. See your system documentation for a full discussion of the
effects of these special keywords.

When a special keyword occurs in a declarator, it modifies the item immedi­
ately to the right of the keyword. More than one special keyword can be
applied to the same item. For example, a function identifier might be
modified with both the far and pascal keywords. The order of the key­
words in this case does not matter (that is, far pascal and pascal far have
the same effect).

Two or more special keywords can be used in different parts of the declara­
tion to modify the meaning of the declaration. For example, the following
declaration contains two occurrences of the far keyword:

int far * pascal far func(void);

The function identifier fune is modified with the pascal and far keywords.
The return value of fune is declared to be a far pointer to an int value.

61

Microsoft C Compiler Language Reference

As in any C declaration, parentheses can be used to override the default
interpretation of the declaration. The rules governing complex declarators
(discussed in the previous section) apply to declarations using the special
keywords as well.

The following examples show the use of special keywords in declarations:

Examples

/******************** Example 1 ********************/

int huge database[65000];

/******************** Example 2 ********************/

char * far * x;

/******************** Example 3 ********************/

double near cdecl calc(double,double);
double cdecl near calc(double,double);

/******************** Example 4 ********************/

char far fortran initlist[INITSIZE];
char far *nextchar, far *prevchar, far *currentchar;

/******************** Example 5 ********************/

char far * (far *getint) (int far *);

6 5 2 1 3 4

Example 1 declares a huge array named database with 65000 int ele­
ments. The huge keyword modifies the array declarator.

In Example 2, the far keyword modifies the asterisk to its right, making x a
far pointer to a pointer to char. The declaration could be expressed
equivalently in the following manner:

char * (far *x);

Example 3 shows two equivalent declarations. Both declare ca 1 c as a
function with the near and cdecl attributes.

62

Declarations

Example 4 also shows two declarations: the first declares a far fortran
array of characters named ini tlist, and the second declares three far
pointers named nextchar, prevchar, and currentchar. The pointers
might be used to store the addresses of characters in the ini tl ist array.
Note that the far keyword must be repeated before each declarator.

Example 5 shows a more complex declaration with several occurrences of
the far keyword. The steps in interpreting this declaration are as follows:

1. The identifier getint is declared as a

2. far pointer to

3. a function taking

4. a single argument that is a far pointer to an int value

5. and returning a far pointer to a

6. char value.

Note that the far keyword always modifies the item immediately to its
right.

4.4 Variable Declarations

This section describes the form and meaning of variable declarations. In
particular, it explains how to declare the following:

Type of Variable

Simple variables

Enumeration variables

Structures

Unions

Description

Single-value variables with integral or
floating-point type.

Simple variables with integral type that
hold one value from a set of named integer
constants.

Variables composed of a collection of values
that may have different types.

Variables composed of several values of
different types occupying the same storage
space.

63

Microsoft C Compiler Language Reference

Arrays

Pointers

Variables composed of a collection of ele­
ments with the same type.

Variables that point to other variables.
These variables contain variable locations
(in the form of addresses) instead of values.

The variable declarations discussed in this section have the general form

Usc-specifier] type-specifier declarator [, declarator ...]

where type-specifier gives the data type of the variable and declarator is the
variable's name, possibly modified to declare an array or a pointer type.
More than one variable can be defined in the declaration by giving multiple
declarators, separated by commas.

The se-specifier gives the storage class of the variable. In some contexts,
variables can be initialized when they are declared. For information on
storage classes and initialization, see Sections 4.6 and 4.7, respectively.

4.4.1 Simple Variable Declarations

Syntax

type-specifier identifier [, identifier ...];

A declaration for a simple variable defines the variable's name and
type; it can also define the variable's storage class, as described in Section
4.6. The variable's name is the identifier given in the declaration. The
type-specifier gives the name of a defined data type, as described below.

You can define several variables in the same declaration by giving a list of
identifiers separated by commas (,). Each identifier in the list names a vari­
able. All variables defined in the declaration have the same type.

Examples

int x; /* Example 1 */

unsigned long reply, flag; /* Example 2 */

double order; /* Example 3 */

64

Declarations

The first example defines a simple variable x. This variable can hold any
value in the set defined by the int type in a particular implementation.

The second example defines two variables, reply and flag. Both vari­
ables have unsigned long type and hold unsigned integer values.

The third example defines a variable order that has double type.
Floating-point values can be assigned to this variable.

4.4.2 Enumeration Declarations

Syntax

enum [tag] {enum-list} identifier [, identifier ...];
enum tag identifier [, identifier ...];

An enumeration declaration gives the name of the enurp.eration variable
and defines a set of named integer constants (the "enumeration set"). A
variable declared to have enumeration type stores anyone of the vafues of
the enumeration set defined by that type. The integer constants of the
enumeration set have int type; thus, the storage associated with an
enumeration variable is the storage required for a single int value.

Enumeration declarations begin with the enurn keyword and have two
forms, as shown above. In the first form, the values and names of the
enumeration set are specified in the enum-list, described in detail below.
The optional tag is an identifier that names the enumeration type defined
by the enum-list. The identifier names the enumeration variable. More than
one enumeration variable can be defined in the declaration.

The second form uses an enumeration tag to refer to an enumeration type.
The enum-list does not appear in this type of declaration because the
enumeration type is defined elsewhere. An error is generated if the given
tag does not refer to a defined enumeration type or if the named type is not
currently visible.

An enum-list has the following form:

identifier [= constant-expression]
[, identifier [= constant-expression]]

66

Microsoft C Compiler Language Reference

Each identifier names a value of the enumeration set. By default, the first
identifier is associated with the value 0, the next identifier is associated
with the value 1, and so on through the last identifier appearing in the
declaration. The name of an enumeration constant is equivalent to its
value.

The phrase "= constant-expression" overrides the default sequence of
values. An identifier followed by the phrase "= constant-expression" is asso­
ciated with the value given by constant-expression. The constant-expression
must have int type and can be negative. The next identifier in the list is
associated with the value of "constant-expression + 1", unless it is explicitly
given another value.

An enumeration set can contain duplicate constant values, but each
identifier in an enumeration list must be unique; that is, it must be dif­
ferent from all other enumeration identifiers with the same visibility. For
example, the value ° could be given to two different identifiers, nu 11 and
zero, in the same set. The identifiers in the list must also be distinct from
other identifiers with the same visibility, including ordinary variable names
and identifiers in other enumeration lists. Enumeration tags must be
distinct from other enumeration, structure, and union tags with the same
visibility.

Examples

/******************** Example 1 ********************/

enum day {
saturday,
sunday = 0,
monday,
tuesday,
wednesday,
thursday,
friday
} workday;

/******************** Example 2 ********************/

enum day today = wednesday;

The first example defines an enumeration type named day and declares a
variable named workday with that enumeration type. The value ° is asso­
ciated with saturday by default. The identifier sunday is explicitly set
to o. The remaining identifiers are given the values 1 through 5 by default.

66

Declarations

In the second example, a value from the set is assigned to the variable
today. Note that the name of the enumeration constant is used to assign
the value. Since the day enumeration type was previously declared, only
the enumeration tag is necessary in this declaration.

4.4.3 Structure Declarations

Syntax

struct [tag] {member-declaration-list} declarator [, declarator ...];
struct tag declarator [, declarator ...];

A structure declaration defines the name of the structure variable and
specifies a sequence of variable values (called "members" of the structure)
that can have different types. A variable with structure type holds the
entire sequence defined by that type.

Structure declarations begin with the struct keyword and have two forms,
as shown above. In the first form, the types and names of the structure
members are specified in the member-declaration-list, described in detail
below. The optional tag is an identifier that names the structure type
defined by the member-declaration-list.

Each declarator gives the name of a structure variable. The declarator may
also modify the type of the variable to a pointer to the structure type, an
array of structures, or a function returning a structure.

The second form uses a structure tag to refer to a structure type. The
member-declaration-list does not appear in this type of declaration because
the structure type is defined elsewhere. The structure type definition must
be visible for a tag declaration to be used, and the definition must appear
prior to the tag declaration, unless the tag is used to declare a pointer vari­
able or a typedef structure type. These declarations can use a structure
tag before the structure type is defined, as long as the structure definition is
visible to the declaration.

A member-declaration-list is a list of one or more variable or bit-field
declarations. Each variable declared in the member-declaration-list is
defined as a member of the structure type. Variable declarations within
member declaration lists have the same form as the variable declarations
discussed in this chapter, except that the declarations do not contain
storage-class specifiers or initializers. The structure members can have any
variable type: fundamental, array, pointer, union, or structure.

67

Microsoft C Compiler Language Reference

A member cannot be declared to have the type of the structure in which it
appears. However, a member can be declared as a pointer to the structure
type in which it appears, allowing you to create linked lists of structures.

Bit Fields

A bit-field declaration has the following form:

type-specifier [identifier] : constant-expression;

The bit field consists of the number of bits specified by constant-expression.
The type-specifier for a bit-field declaration must specify an unsigned
integral type, and the constant-expression must be a non-negative integer
value. Arrays of bit fields, pointers to bit fields, and functions returning bit
fields are not allowed. The optional identifier names the bit field. An
unnamed bit field whose width is specified as 0 has a special function: it
guarantees that storage for the member following it in the declaration list
begins on an int boundary.

The identifiers in the structure declaration list must be unique within that
list. It is not necessary for the identifiers in the list to be distinct from ordi­
nary variable names or from identifiers in other structure declaration lists.
Structure tags must be distinct from other structure, union, and enumera­
tion tags having the same visibility.

Storage

Structure members are stored sequentially in the same order in which they
are declared: the first member has the lowest memory address and the last
member the highest. The storage for each member begins on a memory
boundary appropriate to its type. Therefore, unnamed blanks can occur
between the members of a structure in memory.

Bit fields are not stored across boundaries of their declared type. For
example, a bit field declared with unsigned int type is either packed into
the space remaining in the previous unsigned int or it begins a new
unsigned into

68

Declarations

Examples

/******************** Example 1 ********************/

struct {
float x,y;

} complex;

/******************** Example 2 ********************/

struct employee {

} temp;

char name[20J;
int id;
long class;

/******************** Example 3 ********************/

struct employee student, faculty, staff;

/******************** Example 4 ********************/

struct sample {

} x;

char c;
float *pf;
struct sample *next;

/******************** Example 5 ********************/

struct {
unsigned icon : 8;
unsigned color : 4;
unsigned underline : 1;
unsigned blink : 1;

} screen [25J [80J ;

The first example defines a structure variable named complex. This struc­
ture has two members with float type, x and y. The structure type is not
named.

The second example defines a structure variable named temp. The struc­
ture has three members: name, id, and class. The name member is a
20-element array and id and cl ass are simple members with int and long
type, respectively. The identifier employee is the structure tag.

69

Microsoft C Compiler Language Reference

The third example defines three structure variables: student, facul ty,
and sta f f. Each structure has the same list of three members. The
members are declared to have the structure type employee, defined in the
previous example.

The fourth example defines a structure variable named x. The first two
members of the structure are a char variable and a pointer to a float
value. The third member, next, is declared as a pointer to the structure
type being defined (sample).

The fifth example defines a two-dimensional array of structures
named screen. The array contains 2000 elements, and each element is an
individual structure containing four bit-field members: icon, color,
underline, and blink.

4.4.4 Union Declarations

Syntax

union [tag] {member-declaration-list} declarator [, declarator ...];
union tag declarator[, declarator ...];

A union declaration defines the name of the union variable and specifies a
set of variable values, called "members" of the union, that can have
different types. A variable with union type stores any single value defined
by that type.

Union declarations have the same forms as structure declarations except
that they begin with the union keyword instead of the struct keyword.
The same rules govern structure and union declarations, except that bit­
field members are not allowed in unions.

The storage associated with a union variable is the storage required for the
longest member of the union. When a smaller member is used, the union
variable may contain unused memory space. All members are stored in the
same memory space and start at the same address. The stored value is
overwritten each time a value is assigned to a different member.

60

Declarations

Examples

/******************** Example 1 ********************/

union sign {
int svar;
unsigned uvar;

} number;

/******************** Example 2 ********************/

union {
char *a, b;
float f[20J;

} jack;

/******************** Example 3 ********************/

union {
struct {

char icon;
unsigned color : 4;

} windowl, window2, window3, window4;
} screen [25J [80J ;

The first example defines a union variable named number that has two
members: svar, a signed integer, and uvar, an unsigned integer. This
declaration allows the current value of number to be stored as either a
signed or an unsigned value. The union type is named sign.

The second example defines a union variable named jack. The members of
the union are, in order of their declaration, a pointer to a char value, a
char value, and an array of float values. The storage allocated for jack is
the storage required for the 20-element array f, since f is the longest
member of the union. The union type is unnamed.

The third example defines a two-dimensional array of unions named
screen. The array contains 2000 elements. Each element is an individual
union with four members: windowl, window2, window3, and window4,
where each member is a structure. At any given time, each union element
holds one of the four possible structure members. Thus, the screen vari­
able is a composite of up to four different "windows."

61

Microsoft C Compiler Language Reference

4.4.5 Array Declarations

Syntax

type-specifier declarator [constant-expression];
type-specifier declarator [];

A declaration for an array defines the name of the array and the type of
each element. It can also define the number of elements in the array. A
variable with array type is considered a pointer to the type of the array ele­
ments, as described in Section 5.2.2, "Identifiers."

Array declarations have two forms, as shown above. The declarator
~ives the variable name, and may modify the variable's type. The brackets
l []) following the declarator modify the declarator to array type. The
constant-expression inside the brackets defines the number of elements in
the array. Each element has the type given by the type-specifier, which can
specify any type except void and function types.

The second form omits the constant-expressz'on in brackets. This form
can be used only if the array is initialized, declared as a formal parameter,
or declared as a reference to an array explicitly defined elsewhere in the
program.

Arrays of arrays, or "multidimensional" arrays, are defined by giving a list
of bracketed constant-expressz'ons following the array declarator:

type-specifier declarator[constant-expression] [constant-expression] ...

Each constant-expression in brackets defines the number of elements
in a given dimension: two-dimensional arrays have two bracketed expres­
sions, three-dimensional arrays have three, and so on. When a multidimen­
sional array is declared within a function, the first constant-expression can
be omitted if the array is initialized, declared as a formal parameter, or
declared as a reference to an array explicitly defined elsewhere in the
program.

Arrays of pointers to various types can be defined by using complex
declarators, as described earlier in Section 4.3.2.

The storage associated with an array type is the storage required for all of
its elements. The elements of an array are stored in contiguous and increas­
ing memory locations, from the first element to the last. No blanks occur
between the elements of an array in storage.

62

Declarations

Arrays are stored by row. For example, the following array consists of two
rows with three columns each:

char A [2J [3J ;

The three columns of the first row are stored first, followed by the three
columns of the second row. This means that the last subscript varies most
quickly.

To refer to an individual element of an array, use a subscript expression,
discussed in Section 5.2.5.

Examples.

/******************** Example 1 ********************/

int scores [10J, game;

/******************** Example 2 ********************/

float matrix [10J [15J ;

/******************** Example 3 ********************/

struct {
float x,y;
} complex[100J;

/******************** Example 4 ********************/

char *name[20J;

The first example defines an array variable named scores with 10 ele­
ments, each of which has int type. The variable named game is declared as
a simple variable with int type.

The second example defines a two-dimensional array named matr ix. The
array has 150 elements, each having float type.

The third example defines an array of structures. This array has 100 ele­
ments; each element is a structure containing two members.

The fourth example defines an array of pointers. The array has 20 ele­
ments, each of which is a pointer to a char value.

63

Microsoft C Compiler Language Reference

4.4.6 Pointer Declarations

Syntax

type-specifier *declarator;

A pointer declaration defines the name of the pointer variable and the type
of the object to which the variable points. The declarator defines the
variable's name, and may modify its type. The type-specifier gives the type
of the object, which can be any fundamental, structure, or union type.

Pointer variables can also point to functions, arrays, and other pointers.
For information on declaring more complex pointer types, refer to Section
4.3.2, "Complex Declarators."

A pointer to a structure or union type can be declared before the structure
or union type is defined, as long as the pointer is not used before the type is
defined. Such declarations are allowed because the compiler does not need
to know the size of the structure or union to allocate space for the pointer
variable. The pointer is declared by using the structure or union tag (see
the fourth example below).

A variable declared as a pointer holds a memory address. The amount of
storage required for an address and the meaning of the address depend on
the given implementation of the compiler. Pointers to different types are
not guaranteed to have the same length.

In some implementations, the special keywords near, far, and huge are
available to modify the size of a pointer. Declarations using special key­
words are described in Section 4.3.3. See your system documentation for
more information on the meaning and use of these keywords.

Examples

char *message; /* Example 1 */

int *pointers[10J /* Example 2 */

int (*pointer) [10J ; /* Example 3 */

struct list *next , *previous; /* Example 4 */

struct list { /* Example 5 */
char *token;
int count;

64

Declar a tio ns

struct list *next;
} line;

struct id {
unsigned int id_no;
struct name *pname;

} record;

/* Example 6 */

The first example defines a pointer variable named message. It points to a
variable with char type.

The second example defines an array of pointers named pointers. The
array has 10 elements; each element is a pointer to a variable with int type.

The third example defines a pointer variable named pointer; it points to
an array with 10 elements. Each element in this array has int type.

The fourth example defines two pointer variables that point to the struc­
ture type 1 ist. This declaration can appear before the definition of the
list structure type (see the next example), as long as the list type
definition has the same visibility as the declaration.

The fifth example declares the variable 1 ine to have the structure type
named 1 ist. The 1 ist structure type is defined to have three members;
the first member is a pointer to a char value, the second is an int value,
and the third is a pointer to another 1 ist structure.

The sixth example declares the variable record to have the structure type
id. Note that pname is declared as a pointer to another structure type
name. This declaration can occur before the name type is defined.

4.5 Function Declarations

Syntax

[type-specifier] declarator([arg-type-list]) [, declarator ...];

A function declaration defines the name and return type of a function, and
possibly establishes the types and number of arguments to the function.
Function declarations, also called forward declarations, do not define the
function body or parameters; instead, they permit the attributes of the
function to be known before the function is defined. Function definitions
are described in detail in Section 7.2.

66

Microsoft C Compiler Language Reference

The declarator of the function declaration names the function, and the
type-specifier gives the function's return type. If the type-specifier is omit­
ted from a function declaration, the return type of the function is assumed
to be into

Function declarations may include either the extern or the static storage­
class specifier. Storage-class specifiers are discussed in Section 4.6.

Argument-Type List

The arg-type-list establishes the number and types of the arguments to the
function, and has the following form:

type-name-list[, •••]

The type-name-list is a list of one or more type names. Each type-name is
separated from the next by a comma. The first type-name gives the type of
the first argument to the function, the second type-name gives the type of
the second argument, and so on. If the arg-type-list ends with a comma fol­
lowed by three periods (, •••), the number of arguments to the function is
variable. However, the function is expected to have at least as many argu­
ments as there are type-names preceding the last comma.

If the arg-type-list contains only three periods (•.•), the number of argu­
ments to the function is variable and may be zero.

Note

To maip.tain compatibility with previous versions, the compiler will also
accept the comma character, without the trailing periods, at the end of
the arg-type-list to indicate a variable number of arguments. A single
comma can also be used instead of three periods to form the arg-type­
list of a function taking zero or more arguments. Use of the comma is
supported only for compatibility; using the three periods is recom­
mended for new code.

A type-name for a fundamental, structure, or union type consists
of the type specifier for that type (such as int). The type-names for
pointers, arrays, and functions are formed by combining a type specifier

66

Declarations

with an "abstract declarator"; that is, a declarator without an identifier.
Section 4.9, "Type Names," explains how to form and interpret abstract
declarators.

The special keyword void can be used in place of the arg-type-list to declare
a function that has no arguments. The compiler produces a warning mes­
sage if a call to the function or a call to the function definition specifies
arguments.

One other special construction is allowed in the arg-type-list. The phrase
void * specifies an argument of any pointer type. This phrase can be used
in the arg-type-list as if it were a type-name.

The arg-type-list may be omitted. In this case the parentheses after the
function identifier are still required, but they are empty. In this form the
function declaration establishes neither the number nor the types of argu­
ments to the function. When this information is omitted, the compiler does
not perform any type checking between the actual arguments in a function
call and the formal parameters of the function definition. See Section 7.4,
"Function Calls," for more information.

Return Type

Functions can return values of any type except arrays and functions.
Therefore, the type-specifier of a function declaration can specify any fun­
damental, structure, or union type. The function identifier can be modified
with one or more asterisks (*) to declare a pointer return type.

Although functions are not allowed to return arrays and functions, they can
return pointers to arrays and functions. Functions that return pointers to
array or function types are declared by modifying the function identifier
with asterisks (*), brackets ([]), and parentheses to form a complex
declarator. Forming and interpreting complex declarators is discussed in
Section 4.3.2.

Examples

int add(int, int); /* Example 1 */

double calc () ; /* Example 2 */

char *strfind(char *, ...) ; /* Example 3 */

void draw (void) ; /* Example 4 */

67

Microsoft C Compiler Language Reference

double (*sum (double I double)) [3J ; /* Example 5 */

int (*select (void)) (int) ; /* Example 6 */

char *p; /* Example 7 */
short *q;
int prt(void *) ;

The first example declares a function named add that takes two int argu­
ments and returns an int value.

The second example declares a function named calc that returns a
double value. No argument-type list is given.

The third example declares a function named str find, which returns a
pointer to a char value. The function takes at least one argument, a
pointer to a char value. The argument-type list ends with a comma
followed by three periods, indicating that the function may take more
arguments.

The fourth example declares a function with void return type (returning no
value). The argument-type-list is also void, meaning no arguments are
expected for this function.

In the fifth example, sum is declared as a function returning a pointer to an
array of three double values. The sum function takes two arguments, each
a double value.

In the sixth example, the function named select is declared to take no
arguments and return a pointer to a function. The pointer return value
points to a function taking one int argument and returning an int value.

In the seventh example, the function prt is declared to take a pointer argu­
ment of any type and return an into Either the char pointer p or the
short pointer q could be passed as an argument to prt without producing
a type-mismatch warning.

4.6 Storage Classes

The storage class of a variable determines whether the item has a
"global" or "local" lifetime. An item with a global lifetime exists and
has a value throughout the duration of the program. All functions have
global lifetimes.

68

Declarations

Variables with local lifetimes are allocated new storage each time execution
control passes to the block in which they are defined. When execution con­
trol passes out of the block, the variables no longer have meaningful values.

Although C defines only two types of storage classes, four storage-class
specifiers are available. They are as follows:

auto
register
static
extern

Items with auto and register class have local lifetimes. The static and
extern specifiers refer to items with global lifetimes.

The four storage-class specifiers have distinct meanings because storage­
class specifiers affect the visibility of functions and variables, as well as
their storage class. The term "visibility" refers to the portion of the source
program in which the variable or function can be referenced. An item with
a global lifetime exists throughout the execution of the source program, but
it may not be "visible" in all parts of the program. Visibility and the
related concept of lifetime are discussed in Section 3.5.

The placement of variable or function declarations within source files also
affects storage class and visibility. Declarations outside all function
definitions are said to occur at the "external level" ; declarations within
function definitions occur at the "internal level."

The exact meaning of each storage-class specifier depends on whether the
declaration occurs at the external or internal level and whether the item
declared is a variable or a function. The following sections describe the
meaning of storage-class specifiers in each kind of declaration; they also
explain the default behavior when the storage-class specifier is omitted
from a variable or function declaration.

4.6.1 Variable Declarations at the External Level

Variable declarations at the external level use the static and extern
storage-class specifiers or omit the storage-class specifier entirely. The
auto and register storage-class specifiers are not allowed at the external
level.

69

Microsoft C Compiler Language Reference

Variable declarations at the external level are either definitions of variables
or references to variables defined elsewhere. An external variable declara­
tion that also initializes the variable (implicitly or explicitly) is a definition
of the variable. Definitions at the external level can take several forms:

• A variable can be defined at the external level by declaring it with
the static storage-class specifier. The static variable can be ex­
plicitly initialized with a constant expression, as described in Sec­
tion 4.7. If the initializer is omitted, the variable is automatically
initialized to zero at compile time. Thus, static int k = 16;
and static int k; are both considered definitions.

• A variable is defined when it is explicitly initialized at the external
level. For example, int j = 3; is a variable definition.

Once a variable is defined at the external level, it is visible throughout the
remainder of the source file in which it appears. The variable is not visible
above its definition in the same source file, nor is it visible in other source
files of the program, unless a reference is declared to make it visible, as
described below.

A variable can be defined at the external level only once within a source file.
If the static storage-class specifier is given, another variable with the same
name can be defined with the static storage-class specifier in a different
source file. Since each static definition is visible only in its own source file,
no conflict occurs.

The extern storage-class specifier is used to declare a reference to a vari­
able defined elsewhere. These declarations can be used to make a defini­
tion in another source file visible or to make a variable visible above its
definition in the same source file. Once a reference to the variable is
declared at the external level, the variable is visible throughout the
remainder of the source file in which the declared reference occurs.

Declarations that use the extern storage-class specifier are not allowed to
contain initializers, since they refer to variables whose values are already
defined.

For an extern reference to be valid, the variable to which it refers must be
defined once, and only once, at the external level. The definition can be in
any of the source files that form the program.

70

DeclaratIons

One special case is not covered by the rules outlined above. You can omit
both the storage-class specifier and the initializer from a variable declara­
tion at the external level; for example, the declaration int n; is a valid
external declaration. This declaration can have one of two different mean­
ings, depending on the context:

1. If a variable by the same name is defined at the external level else­
where in the program, the declaration is taken to be a reference to
that variable, exactly as if the extern storage-class specifier had
been used in the declaration.

2. If no such definition is present, the declared variable is allocated
storage at link time and initialized to O. If more than one such
declaration appears in the program, storage is allocated for the
largest size declared for the variable. For example, if a program
contains two uninitialized declarations of i at the external level,
int i; and char i;, storage space for an int is allocated for i at
link time.

Uninitialized variable declarations at the external level are not recom­
mended for any file that might be placed in a library.

Example

/**
SOURCE FILE ONE

**/

extern int i;

main ()
{

i++;
printf ("%d\n",
next 0 ;

}

int i 3 . ,

next ()
{

i++;
printf ("%d\n",
other();

}

i) ;

i) ;

/* reference to i,
defined below */

/* i equals 4 */

/* definition of i */

/* i equals 5 */

71

Microsoft C Compiler Language Reference

/**
SOURCE fILE TWO

**/

extern int i;

other 0
{

}

i++;
printf ("%d\n" I i);

/* reference to l In
first source file */

/* i equals 6 */

The two source files contain a total of three external declarations of i.
Only one declaration contains an initialization; that declaration, int i
3; , defines the global variable i with initial value 3. The extern declara­
tion of i at the top of the first source file makes the global variable visible
above its definition in the file. Without the extern declaration, the main
function could not reference the global variable i. The extern declaration
of i in the second source file makes the global variable visible in that
source file.

All three functions perform the same task: they increase i and print it.
(Assume that the pr int f function is defined elsewhere in the program.)
The values printed are 4, 5, and 6.

If the variable i had not been initialized, it would have been automatically
set to 0 at link time. The values printed in this case would be 1, 2, and 3.

4.6.2 Variable Declarations at the Internal Level

Any of the four storage-class specifiers can be used for variable declarations
at the internal level. When the storage-class specifier is omitted from a
variable declaration at the internal level, the default storage class is auto.

The auto storage-class specifier declares a variable with a local lifetime.
The variable is visible only in the block in which it is declared. Declarations
of auto variables can include initializers, as discussed later in this chapter.
Variables with auto storage class are not initialized automatically, so they
should be explicitly initialized when declared or assigned initial values in
statements within the block. If not initialized, the values of auto variables
are undefined.

72

Declarations

The register storage-class specifier tells the compiler to give the variable
storage in a register, if possible. Register storage usually results in faster
access time and smaller code size. Variables declared with register storage
class have the same visibility as auto variables.

The number of registers that can be used for variable storage is machine
dependent. If no registers are available when the compiler encounters the
register declaration, the variable is given auto storage class and stored in
memory. The compiler assigns register storage to variables in exactly the
same order in which the declarations appear in the source file. Register
storage, if available, is only guaranteed for int and pointer types.

A variable declared at the internal level with the static storage-class
specifier has a global lifetime, and is visible only within the block in which
it is declared. Unlike auto variables, variables declared as static retain
their values when the block is exited.

A static variable can be initialized with a constant expression. If not expli­
citly initialized, a static variable is automatically set to O. Initialization is
performed once, at compile time. The static variable is not reinitialized
each time the block is entered.

A variable declared with the extern storage-class specifier is a reference to
a variable with the same name defined at the external level in any of the
source files of the program. The purpose of the internal extern declaration
is to make the external-level variable definition visible within the block.
The internal extern declaration does not change the visibility of the global
variable in any other part of the program.

Example

int i = 1;

main ()
{ /* reference to i, defined above */

extern int i;

/* initial value is zero; a is
visible only within main */

static int a;

/* b is stored in a register, if possible */
register int b = 0;

73

Microsoft C Compiler Language Reference

}

other ()
{

}

/* default storage class is auto */
int c = 0;

/* values printed are 1, 0, 0, 0 */
printf ("%d\n%d\n%d\n%d\n", i, a, b, c);
other();

/* i is redefined */
int i = 16;

/* this a is visible only within other */
static int a = 2;

a += 2;
/* values printed are 16, 4 */
pr int f ("%d\n%d\n", i, a);

The variable i is defined at the external level with initial value 1. A refer­
ence to the external-level i is declared in the main function with an extern
declaration. The static variable a is automatically set to 0, since the ini­
tializer is omitted. The call to pr int f (assuming the pr int f function is
defined elsewhere in the source program) prints out the values 1, 0, 0, 0.

In the other function, the variable i is redefined as a local variable with
initial value 16. This does not affect the value of the external-level i. The
variable a is declared as a static variable and initialized to 2. This a does
not conflict with the a in main, since the visibility of static variables at
the internal level is restricted to the block in which they are declared.

The variable a is increased by 2, giving 4 as the result. If the other func­
tion were called again in the same program, the initial value of a would be
4. Internal static variables retain their values when the block in which they
are declared is exited and reentered.

4.6.3 Function Declarations
at the External and Internal Levels

Function declarations can use either the static or the extern storage-dass
specifier. Functions always have global lifetimes.

74

Declarations

The visibility rules for functions are slightly different from the rules for
variables. Function declarations at the internal level have the same mean­
ing as function declarations at the external level. This means that func­
tions cannot have block visibility, and the visibility of functions cannot be
nested. A function declared to be static is visible only within the source
file in which it is defined. Any function in the same source file can call the
static function, but functions in other source files cannot. Another static
function by the same name can be declared in a different source file without
conflict.

Functions declared as extern are visible throughout all the source files that
constitute the program (unless they are later redeclared as static). Any
function can call an extern function.

Function declarations that omit the storage-class specifier default to
extern.

4.7 Initialization

A variable can be set to an initial value by applying an initializer to the
declarator in the variable declaration. The value or values of the initializer
are assigned to the variable. The initializer is preceded by an equal sign
(=), as shown below:

= initializer

Variables of any type can be initialized, with the restrictions outlined
below. Functions do not take initializers.

Declarations that use the extern storage-class specifier cannot contain
ini tializers.

Variables declared at the external level can be initialized; if not explicitly
initialized, they are set to 0 at compile time. Any variable declared with
the static storage-class specifier can be initialized with a constant expres­
sion. Initializations of static variables are performed once, at compile time.
If not explicitly initialized, static variables are automatically set to o.

Initializations of auto and register variables are performed each time exe­
cution control passes to the block in which they are declared. If the initial­
izer is omitted from the declaration of an auto or register variable, the
initial value of the variable is undefined.

75

Microsoft C Compiler Language Reference

Initializations of auto aggregate types (arrays, structures, and unions) are
prohibited. Only static aggregates and aggregates declared at the external
level can be initialized.

The initial values for external variable declarations and for all static vari­
ables, whether external or internal, must be constant expressions. Constant
expressions are described in Section 5.2.10. Automatic and register vari­
ables can be initialized with either constant or variable values.

Sections 4.7.1 and 4.7.2 describe how to initialize variables of fundamental,
pointer, and aggregate types.

4.7.1 Fundamental and Pointer Types

Syntax

= expression

The value of expression is assigned to the variable. The conversion rules for
assignment apply.

Examples

int x = 10; /* Example 1 */

register int *px = 0; /* Example 2 */

int c = (3 * 1024); /* Example 3 */

int *b = &x; /* Example 4 */

In the first example, x is initialized to the constant expression 10. In
the second example, the pointer px is initialized to 0, producing a "null"
pointer. The third example uses a constant expression to initialize c. The
fourth example initializes the pointer b with the address of another vari­
able, x.

76

Declarations

4.7.2 Aggregate Types

Syntax

= { initializer-list}

An initializer-list is a list of initializers separated by commas. Each initial­
izer in the list is either a constant expression or an initializer-list. Therefore,
a brace-enclosed list can appear within another initializer-list. This is use­
ful for initializing aggregate members of an aggregate, as shown in the ex­
amples below.

For each initializer-list, the values of the constant expressions are assigned
in order to the members of the aggregate variable. When a union is initial­
ized, the initializer-list must be a single constant expression. The value of
the constant expression is assigned to the first member of the union.

If there are fewer values in an initializer-list than there are in the aggregate
type, the remaining members or elements are initialized to O. Giving too
many initial values for the aggregate type causes an error. These rules
apply to each embedded initializer-list, as well as to the aggregate as a
whole.

For example,

int P[4] [3] = {
{ 1, 1, 1 },
{ 2, 2, 2 },
{ 3, 3, 3,},
{ 4, 4, 4,},

};

declares P as a 4-by-3 array and initializes the elements of its first row to 1,
the elements of its second row to 2, and so on through the fourth row. Note
that the initializer-list for the third and fourth rows contains commas after
the last constant expression. The last initializer-list ({ 4 I 4 I 4 I }) is also
followed by a comma. These extra commas are permitted but are not
required; the required commas are those that separate constant expressions
and initializer-lists.

77

Microsoft C Compiler Language Reference

If there is no embedded initializer list for an aggregate member, values are
simply assigned, in order, to each member of the subaggregate. Therefore,
the above initialization is equivalent to the following:

int P [4] [3] = {
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4

};

Braces can also appear around individual initializers in the list.

When initializing aggregate variables, care must be taken to use braces and
initializer lists properly. The following example illustrates in more detail
the compiler's interpretation of braces:

typedef struct {
int n1, n2, n3;

} triplet;

triplet nlist [2] [3J {

};

{{ 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } },
{ { 10,11,12 }, { 13,14,15 }, { 15,16,17 } }

/* Line 1 */
/* Line 2 */

In the above example, nl ist is declared as a 2-by-3 array of structures,
each structure having three members. Line 1 of the initialization assigns
values to the first row of nl ist, as follows:

1. The first left brace on Line 1 signals the compiler that initialization
of the first aggregate member of nlist is beginning (that is,
nlist [OJ).

2. The second left brace indicates that initialization of the first aggre­
gate member of nl ist [OJ is beginning (that is, the structure at
nl i st [OJ [OJ).

3. The first right brace ends initialization of the structure
nl ist [OJ [OJ; the next left brace starts initialization of
nlist[OJ [lJ.

4. The process continues to the end of the line, where the closing right
brace ends initialization of n 1 is t [0 J •

Similarly, Line 2 assigns values to the second row of nl ist.

Note that the outer sets of braces enclosing the initializers on Line 1 and on
Line 2 are required. The following construction, which omits the outer
braces, would cause an error:

78

/* THIS CAUSES AN ERROR */
triplet nlist [2J [3J = {

};

{ I, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 },
{ 10,11,12 },{ 13,14,15 },{ 16,17,18 }

Declarations

/* Line 1 */
/* Line 2 */

In the above construction, the first left brace on Line 1 starts the initializa­
tion of nl ist [OJ, which is an array of three structures. The values 1, 2,
and 3 are assigned to the three members of the first structure. When the
next right brace is encountered (after the value 3), initialization of
nl ist [OJ is complete, and the two remaining structures in the three­
structure array are automatically initialized to O. Similarly, { 4, 5, 6 }
initializes the first structure in the second row of nlist, and the remaining
two structures of nlist [lJ are set to O. When the compiler encounters
the next initializer list ({ 7, 8, 9 }), it attempts to initialize nl ist [2 J .
Since nl ist has only two rows, this produces an error.

Examples

/******************** Example 1 ********************/

struct list {
int i, j, k;
float m [2J [3J ;
} x = {

};

L
2,
3,
{4.0, 4.0, 4.0}

/******************** Example 2 ********************/

union {
char x [2J [3J ;
int i, j, k;
} Y = {

};

{'I'},
{'4'}

In the first example, the three int members of x are initialized to 1, 2, and
3, respectively. The three elements in the first row of m are initialized to
4.0; the elements of the remaining row of m are initialized to 0 by default.

79

Microsoft C Compiler Language Reference

In the second example, the union variable y is initialized. The first element
of the union is an array, so the initializer is an aggregate initializer. The
initializer list { I 1 I } gives values to the first row of the array. Since only
one value appears in the list, the element in the first column is initialized to
the character 1, and the remaining two elements in the row are initialized
to 0 (the null character), by default. Similarly, the first element of the
second row of x is initialized to the character 4, and the remaining two ele­
ments in the row are initialized to O.

4.7.3 String Initializers

An array can be initialized with a string literal. For example,

char code[] = "abc";

initializes code as a four-element array of characters. The fourth element
is the null character that terminates all string literals.

If the array size is specified and the string is longer than the specified size of
the array, the extra characters are simply discarded. The following
declaration initializes code as a three-element character array:

char code[3] = "abed";

Only the first three characters of the initializer are assigned to code. The
character d and the null character are discarded.

If the string is shorter than the specified size of the array, the remaining
elements of the array are initialized to 0 (the null character).

4.8 Type Declarations

A type declaration defines the name and members of a structure or union
type, or the name and enumeration set of an enumeration type. The name
of a declared type can be used in variable or function declarations to refer
to that type. This is useful if many variables and functions have the same
type.

A typedef declaration defines a type specifier for a type. These declara­
tions are used to construct shorter or more meaningful names for types
already defined by C or for types declared by the user.

80

Declarations

4.8.1 Structure, Union, and Enumeration Types

Declarations of structure, union, and enumeration types have the same gen­
eral form as variable declarations of those types. In type declarations the
variable identifier is omitted, since no variable is declared. The tag is man­
datory; it names the structure, union, or enumeration type. The member­
declaration-list or enum-list defining the type must appear in the type
declaration; the abbreviated form of variable declarations, in which a tag
refers to a type defined elsewhere, is not legal for type declarations.

Examples

/******************** Example 1 ********************/

enum status {
loss = -I,
bye,
tie = 0,
win
};

/******************** Example 2 ********************/

struct student {
char name[20J;
int id, class;
};

The first example declares an enumeration type named status. The name
of the type can be used in declarations of enumeration variables. The
identifier loss is explicitly set to -1. Both bye and tie are associated
with the value 0, and win is given the value 1.

The second example declares a structure type named student. A declar­
tion such as struct student employee; can be used to declare a
structure variable with student type.

81

Microsoft C Compiler Language Reference

4.8.2 Typedef Declarations

Syntax

typedef type-specifier declarator [, declarator ...];

A typedef declaration is analogous to a variable declaration except that
the typedef keyword replaces a storage-class specifier. The declaration is
interpreted in the same way as variable and function declarations, but the
identifier, instead of assuming the type specified by the declaration,
becomes a synonym for the type.

A typedef declaration does not create types. It creates synonyms for exist­
ing types, or names for types that could be specified in other ways. Any
type can be declared with typedef, including pointer, function, and array
types. A typedef name for a pointer to a structure or union type can be
declared before the structure or union type is defined, as long as the
definition has the same visibility as the declaration.

Examples

/******************** Example 1 ********************/

typedef int WHOLE;

/******************** Example 2 ********************/

typedef struct club {
char name[30J;
int size , year;
} GROUP ;

/******************** Example 3 ********************/

typedef GROUP *PG;

/******************** Example 4 ********************/

typedef void DRAWF(int, int);

The first example declares WHOLE to be a synonym for into

82

Declarations

The second example declares CROUP as a structure type with three
members. Since a structure tag, cl ub, is also specified, either the typedef
name (CROUP) or the structure tag can be used in declarations.

The third example uses the previous typedef name to declare a pointer
type. The type PC is declared as a pointer to the CROUP type, which in
turn is defined as a structure type.

The final example provides the type DRAWF for a function returning no
value and taking two int arguments. This means, for example, that the
declaration DRAWF box; is equivalent to the declaration void box (inti
int) ; .

4.9 Type Names

A "type name" specifies a particular data type. Type names are used in
three contexts: in the argument-type lists of function declarations, in type
casts, and in sizeof operations. Argument-type lists are discussed in Sec­
tion 4.5, "Function Declarations." Type casts and sizeof operations are dis­
cussed in sections 5.7.2 and 5.3.4, respectively.

The type names for fundamental, enumeration, structure, and union types
are simply the type specifiers for those types.

A type name for a pointer, array, or function type has the following form:

type-specifier abstract-declarator

An abstract-declarator is a declarator without an identifier, consisting of
one or more pointer, array, or function modifiers. The pointer modifier (*)
always appears before the identifier in a declarator, while array (r 1) and
function (()) modifiers appear after the identifier. It is thus possIble to
determine where the identifier would appear in an abstract declarator and
interpret the declarator accordingly.

Abstract declarators can be complex. Parentheses in a complex abstract
declarator specify a particular interpretation, just as they do for the com­
plex declarators in declarations.

The abstract declarator consisting of a set of empty parentheses, (), is not
allowed because it is ambiguous. It is impossible to determine whether the

83

Microsoft C Compiler Language Reference

implied identifier belongs inside the parentheses, in which case it is an
unmodified type, or before the parentheses, in which case it is a function
type.

The type specifiers established through typedef declarations also qualify as
type names.

Examples

long *

int (*) [5J

int (*) (void)

/* Example 1 */

/* Example 2 */

/* Example 3 */

The first example gives the type name for "pointer to long" type.

The second and third examples show how parentheses modify complex
abstract declarators. Example 2 gives the type name for a pointer to an
array of five int values. Example 3 names a pointer to a function taking no
arguments and returning an into

84

Chapter 5

Expressions and Assignments

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11

Introduction 87
Operands 87

Constants 88
Identifiers 88
Strings 89
Function Calls 89
Subscript Expressions 90
Member-Selection Expressions 92
Expressions with Operators 94
Expressions in Parentheses 95
Type-Cast Expressions 95
Constant Expressions 95

Operators 96
Usual Arithmetic Conversions 97
Complement Operators 98
Indirection and Address-of Operators
The sizeof Operator 101
Multiplicative Operators 102
Additive Operators 104
Shift Operators 107
Relational Operators 108
Bitwise Operators 110
Logical Operators 112
Sequential-Evaluation Operator 114

99

86

5.3.12 Conditional Operator 115
5.4 Assignment Operators 116
5.4.1 Lvalue :Expressions 116
5.4.2 Unary Increment and Decrement 117
5.4.3 Simple Assignment 118
5.4.4 Compound Assignment 118
5.5 Precedence and Order of Evaluation 120
5.6 Side Effects 123
5.7 Type Conversions 124
5.7.1 Assignment Conversions 124
5.7.1.1 Conversions from Signed Integral Types 124
5.7.1.2 Conversions from

Unsigned Integral Types 126
5.7.1.3 Conversions from Floating-Point Types 128
5.7.1.4
5.7.1.5
5.7.2

Conversions to and from Pointer Types
Conversions from Other Types 130

Type-Cast Conversions 130
5.7.3 Operator Conversions 130
5.7.4 Function-Call Conversions 131

86

129

Expressions and Assignments

5.1 Introduction

This chapter describes how to form expressions and make assignments in
the C language. An expression is a combination of operands and operators
that yields ("expresses") a single value. An operand is a constant or vari­
able value that is manipulated in the expression. Each operand of an ex­
pression is also an expression, since it represents a single value. Operators
specify how the operand or operands of the expression are manipulated.

In C, assignments are considered expressions. An assignment yields a
value; its value is the value being assigned. In addition to the simple as­
signment operator (-), C offers complex assignment operators that both
transform and assign their operands.

The value resulting from an expression's evaluation depends on the relative
precedence of operators in the expression and on side effects, if present.
The precedence of operators determines the grouping of operands in an ex­
pression. Side effects are changes caused by the evaluation of an expres­
sion. In an expression with side effects, the evaluation of one operand can
affect the value of another. With some operators, the order in which
operands are evaluated also affects the result of the expression.

The value represented by each operand in an expression has a type, which
may be converted to a different type in certain contexts. Type conversions
occur in assignments, type casts, function calls, and operations.

5.2 Operands

A C operand is a constant, an identifier, a string, a function call, a sub­
script expression, a member-selection expression, or a more complex expres­
sion formed by combining operands with operators or enclosing operands in
parentheses. Any operand that yields a constant value is called a "constant
expression."

Every operand has a type. The following sections discuss the type of value
each kind of operand represents. An operand can be cast from its original
type to another type by means of a "type-cast" operation. A type-cast ex­
pression can also form an operand of an expression.

87

Microsoft C Compiler Language Reference

5.2.1 Constants

A constant operand has the value and type of the constant value it
represents. A character constant has int type. An integer constant has
int, long, unsigned int, or unsigned long type, depending on the
integer's size and how the value is specified. Floating-point constants al­
ways have double type. String literals are considered arrays of characters
and are discussed in Section 5.2.3.

5.2.2 Identifiers

An identifier names a variable or function. Every identifier has a type,
which is established when the identifier is declared. The value of an
identifier depends on its type, as follows:

88

• Identifiers of integral and floating-point types represent values of
the corresponding type.

• An identifier of enum type represents one constant value of a set of
constant values. The value of the identifier is the constant value. Its
type is int, by definition of the enum type.

• An identifier of struct or union type represents a value of the
specified struct or union type.

• An identifier declared as a pointer represents a pointer to the
specified type.

• An identifier declared as an array represents a pointer whose value
is the address of the first element of the array. The type addressed
by the pointer is the type of the elements of the array. For ex­
ample, if ser ies is declared to be a lO-element integer array, the
identifier ser ies expresses the address of the array, while the sub­
script expression ser ies [5] refers to a variable integer element of
ser ies. Subscript expressions are discussed in Section 5.2.5.

The address of an array does not change during the execution of the
program, although the values of the individual elements can change.
The pointer value represented by an array identifier is not a vari­
able, and an array identifier cannot form the left-hand operand of
an assignment operation.

• An identifier declared as a function represents a pointer whose value
is the address of the function. The type addressed by the pointer is
a function returning a value of a specified type. The address of a

Expressions and Assignments

function does not change during the execution of a program; only
the return value varies. Thus, function identifiers cannot be left­
hand operands in assignment operations.

5.2.3 Strings

A string literal consists of a list of characters enclosed in double quotes, as
shown below:

" string"

A string literal is stored as an array of elements with char type. The string
literal represents the address of the first element of the array. The address
of the string's first element is a constant, so the value represented by a
string expression is a constant.

Since string literals are effectively pointers, they can be used in contexts
that allow pointer values, and they are subject to the same restrictions as
pointers. String literals have one additional restriction: they are not vari­
ables and cannot be left-hand operands in assignment operations.

The last character of a string is always the null character, \ o. The null
character is not visible in the string expression, but it is added as the last
element when the string is stored. Therefore, the string "abc" actually
has four characters rather than three.

5.2.4 Function Calls

Syntax

expression (expression-list)

A function call consists of an expression followed by an expression-list in
parentheses, where expression evaluates to a function address (for example,
a function identifier), and expression-list is a list of expressions (separated
by commas) whose values, the actual arguments, are passed to the function.
The expression-list can be empty.

A function-call expression has the value and type of the function's return
value. If the function's return type is void, the function-call expression also
has void type. If control returns from the called function without execu­
tion of a return statement, the value of the function call is undefined. See
Section 7.4 for more information about function calls.

89

Microsoft C Compiler Language Reference

5.2.5 Subscript Expressions

Syntax

expres8ionl [expre88ion2]

A subscript expression represents the value at the address that is
expression2 positions beyond expression1. Expressionl is any pointer
value, such as an array identifier, and expression2 is an integral value.
Expression2 must be enclosed in brackets ([D.
Subscript expressions are generally used to refer to array elements, but a
subscript can be applied to any pointer.

The subscript expression is evaluated by adding the integral value
(expression2) to the pointer value (expressionl), then applying the indirec­
tion operator (*) to the result. (See Section 5.3.3 for a discussion of the
indirection operator.) In effect, for a one-dimensional array, the following
four expressions are equivalent, assuming that a is a pointer and b is an
integer.

a [bJ
*(a + b)
* (b + a)
b [a]

According to the conversion rules of the addition operator (see Section
5.3.6), the integral value is converted to an address offset by multiplying it
by the length of the type addressed by the pointer.

For example, suppose the identifier 1 ine refers to an array of int values.
To evaluate the expression 1 ine [i), the integer value i is multiplied by the
length of an into The converted value of i represents i int positions. This
converted value is added to the original pointer value (1 ine) to yield an
address that is offset i int positions from 1 ine.

As the last step in evaluating the subscript expression, the indirection
operator is applied to the new address. The result is the value of the array
element at that position (intuitively, 1 ine[i D.
Note that the subscript expression

line [0]

represents the value of the first element of 1 ine, since the offset from the

90

Expressions and Assignments

address represented by 1 ine is O. Similarly, an expression such as

line[5]

refers to the element offset five positions from 1 ine, or the sixth element of
the array.

Multidimensional-Array References

A subscript expression can be subscripted, as follows:

expressionl [expression2] [expressionS] ...

Subscript expressions associate left to right. The leftmost subscript expres­
sion, expressionl [expression2], is evaluated first. The address that results
from adding expressionl and expression2 forms the pointer expression to
which expressionS is added. The indirection operator (*) is applied after
the last subscripted expression is evaluated. However, the indirection
operator is not applied if the final pointer value addresses an array type
(see the third example below).

Expressions with multiple subscripts refer to elements of multidimensional
arrays. A multidimensional array is an array whose elements are arrays.
The first element of a three-dimensional array, for example, is an array
with two dimensions.

Examples

int prop [3] [4] [6] ;
int i, *ip, (* ipp) [6] ;

i prop [0] [OJ [lJ ; /* Example 1 */

i = prop [2] [1] [3] ; /* Example 2 */

ip = prop [2] [1] ; /* Example 3 */

ipp = prop[2]; /* Example 4 */

The array named prop has 3 elements, each of which is a 4-by-6 array of
int values.

91

Microsoft C Compiler Language Reference

Example 1 shows how to refer to the second individual int element of
prop. Arrays are stored by row, so the last subscript varies the most
quickly; the expression prop [OJ [OJ [2J refers to the next (third) element
in the array, and so on.

The second example shows a more complex reference to an individual ele­
ment of prop. The expression is evaluated as follows:

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array
and added to the pointer value prop. The result points to the third
4-by-6 array of prop.

2. Next, the second subscript, 1, is multiplied by the size of the
6-element int array and added to the address represented by
prop[2J.

3. Each element of the 6-element array is an int value, so the final
subscript, 3, is multiplied by the size of an int before it is added to
prop [2J [lJ. The resulting pointer addresses the fourth element
of the 6-element array.

4. The last step in evaluating the expression prop [2J [lJ [3J is
applying the indirection operator to the pointer value. The result is
the int element at that address.

Examples 3 and 4 show cases where the indirection operator is not applied.
In Example 3, the expression prop [2J [lJ is a valid reference to the
three-dimensional array prop; it refers to a 6-element array. Since the
pointer value addresses an array, the indirection operator is not applied.
Similarly, the result of the expression prop [2J in Example 4 is a pointer
value addressing an array with two dimensions.

5.2.6 Member-Selection Expressions

Syntax

expression. identifier
expression-> identifier

Member-selection expressions refer to members of structures and unions. A
member-selection expression has the value and type of the selected member.

92

Expressions and Assignments

In the first form, expression. identifier, expression represents a value of
struct or union type, and the identifier names a member of the specified
structure or union.

In the second form, expression- > identifier, expression represents a pointer
to a structure or union, and the identifier names a member of the specified
structure or union.

The two forms of member-selection expressions have similar effects. In fact,
expressions involving the pointer selection operator (- » are shorthand
versions of expressions using the period (.) in cases in which the expression
before the period consists of the indirectIOn operator (lie) applied to a
pointer value. (The indirection operator is discussed in Section 5.3.3.)
Therefore,

expression-> identifier

is equivalent to

(* expression). identifier

when expression is a pointer value.

Examples

struct pair {
int a;
int b;

item.sp

struct pair *sp;
} item, list[10];

&item;

(item.sp)->a = 24;

list [8] .b = 12;

/* Example 1 */

/* Example 2 */

/* Example 3 */

In the first example, the address of the i tern structure is assigned to the
sp member of the structure. This means that i tern contains a pointer to
itself.

In the second example, the pointer expression i tern. sp is used with the
pointer selection operator (- >) to assign a value to the member a.

93

Microsoft C Compiler Language Reference

The third example shows how to select an individual structure member
from an array of structures.

5.2.7 Expressions with Operators

Expressions with operators can be unary, binary, or ternary expressions.
A unary expression consists of an operand prefixed by a unary operator
("unop") or an operand enclosed in parentheses and preceded by the sizeof
keyword:

unop operand
sizeof (operand)

A binary expression consists of two operands joined by a binary operator
("binop"):

operand binop operand

A ternary expression consists of three operands joined by the ternary (? :)
operator:

operand? operand: operand

Assignment expressions use unary or binary assignment operators. The
unary assignment operators are the increment (++) and decrement (--)
operators; the binary assignment operators are the simple assignment
operator (=) and the compound assignment operators (referred to as
"compound-assign-ops"). Each compound assignment operator is a combi­
nation of another binary operator with the simple assignment operator.
The forms of assignment expressions are as follows:

operand++
operand- -
++operand
- - operand
operand = operand
operand compound-assignment-op operand

94

Expressions and Assignments

5.2.8 Expressions in Parentheses

Any operand can be enclosed in parentheses; they have no effect on the type
or value of the enclosed expression. For example, in the expression

(10 + 5) / 5

the parentheses around 10 + 5 mean that the value of 10 + 5 is the left
operand of the division U) operator. The result of (10 + 5) / 5 is 3.
Without the parentheses, 10 + 5 / 5 would evaluate to 11.

Although parentheses affect the way operands are grouped in an expression,
they cannot guarantee a particular order of evaluation for the expression.

5.2.9 Type-Cast Expressions

A type-cast expression has the following form:

(type-name) operand

Type-cast conversions are discussed in Section 5.7.2; type names are dis­
cussed in Section 4.9.

5.2.10 Constant Expressions

A constant expression is any expression that evaluates to a constant. The
operands of a constant expression can be integer constants, character con­
stants, floating-point constants, enumeration constants, type casts to
integral and floating-point types, and other constant expressions. The
operands can be combined and modified using operators, as described in
Section 5.2.7, with some restrictions.

Constant expressions cannot use assignment operators (see Section 5.4) or
the binary sequential evaluation operator (,). The unary address-of opera­
tor (&) can be used only in certain initializations (see the last paragraph of
this section, 5.2.10).

Constant expressions used in preprocessor directives are subject to addi­
tional restrictions, and are consequently known as restricted-constant­
expressions. A restricted-constant-expression cannot contain sizeof expres­
sions, enumeration constants, or type casts to any type. It can, however,
contain the special constant expression defined(identifier). See Section
8.2.1, "The # define Directive," for more information.

95

Microsoft C Compiler Language Reference

These additional restrictions also apply to constant expressions used to ini­
tialize variables at the external level. However, such expressions are
allowed to apply the unary address-of operator (&) to other external-level
variables with fundamental, structure, and union types and to external­
level arrays subscripted with a constant expression. In these expressions, a
constant expression not involving the address-of operator can be added to
or subtracted from the address expression.

5.3 Operators

C operators take one operand (unary operators), two operands (binary
operators), or three operands (the ternary operator). Assignment operators
are unary or binary operators; the assignment operators are described in
Section 5.4.

Unary operators prefix their operand and associate right to left. C's unary
operators are as follows:

SYInbol

- !

* &
sizeof

Complement operators

Indirection and address-of operators

Size operator

Binary operators associate left to right. The binary operators are as
follows:

96

SYInbol

* / %
+-
« »
< > <=
& I A

I

&& II
II

>= -- !=

NaIne

Multiplicative operators

Additive operators

Shift operators

Relational operators

Bitwise operators

Logical operators

Sequential-evaluation operator

Expressions and Assignments

C has one ternary operator, the conditional operator (7 :). It associates
right to left.

5.3.1 Usual Arithmetic Conversions

Most C operators perform type conversions to bring the operands
of an expression to a common type or to extend short values to the integer
size used in machine operations. The conversions performed by C operators
depend on the specific operator and the type of the operand or operands.
However, many operators perform similar conversions on operands of
integral and floating-point types. These conversions are known as "arith­
metic" conversions because they apply to the types of values ordinarily
used in arithmetic.

The arithmetic conversions summarized below are called the "usual arith­
metic conversions." The discussion of each operator in the following sec­
tions specifies whether or not the operator performs the usual arithmetic
conversions. It also specifies the additional conversions, if any, the operator
performs.

The specific path of each type of conversion is outlined in Section 5.7.

The usual arithmetic conversions proceed in the following order:

1. Any operands of float type are converted to double type.

2. If one operand has double type, the other operand is converted to
double.

3. Any operands of char or short type are converted to into

4. Any operands of unsigned char or unsigned short type are con­
verted to unsigned int type.

5. If one operand is of type unsigned long, the other operand is con­
verted to unsigned long.

6. If one operand is of type long, the other operand is converted to
long.

7. If one operand is of type unsigned int, the other operand is con­
verted to unsigned into

97

Microsoft C Compiler Language Reference

5.3.2 Complement Operators

Arithmetic Negation (-)

The arithmetic-negation operator (-) produces the negative (two's comple­
ment) of its operand. The operand must be an integral or floating-point
value. The usual arithmetic conversions are performed.

Bitwise Complement (-)

The bitwise-complement operator (-) produces the bitwise complement of
its operand. The operand must be of integral type. The usual arithmetic
convers~ons are performed; the result has the type of the operand after
converSIOn.

Logical-NOT (!)

The logical-NOT operator (!) produces the value 0 if its operand is true
(nonzero) and the value 1 if Its operand is false (0). The result has int type.
The operand must be an integral, floating-point, or pointer value.

Examples

/******************** Example 1 ********************/
short x = 987;

x = -x;

/******************** Example 2 ********************/
unsigned short y = Oxaaaa;

y = Ny;

/******************** Example 3 ********************/
if (! (x < y));

In the first example, the new value of x is the negative of 987, or - 987.

In the second example; the new value assigned to y is the one's complement
of the unsigned value Oxaaaa, or Ox5555.

In the third example, if x is greater than or equal to y, the result of the
expression is 1 (true). If x is less than y, the result is 0 (false).

98

Expressions and Assignments

5.3.3 Indirection and Address-of Operators

Indirection (*)

The indirection operator (*) accesses a value indirectly, through a pointer.
The operand must be a pointer value. The result of the operation is the
value to which the operand points. The result type is the type addressed by
the pointer operand. If the pointer value is null, the result is unpredictable.

Address-of (&)

The address-of operator (&) takes the address of its operand. The operand
can be any value that can appear as the left-hand value of an assignment
operation. (Assignment operations are discussed in Section 5.4.) The result
of the address operation is a pointer to the operand. The type addressed by
the pointer is the type of the operand.

The address-of operator cannot be applied to a bit-field member of a struc­
ture, nor can it be applied to an identifier declared with the register
storage-class specifier.

Examples

int *pa, x' ,
int a [20J ;
double d;

pa = &a[5J; /* Example 1 */

x = *pa; /* Example 2 */

if (x == *&x) /* Example 3 */
printf ("True\n") ;

d = * (double *) (&x) ; /* Example 4 */

In the first example, the address-of operator (&) takes the address
of the sixth element of the array a. The result is stored in the pointer
variable pa.

The indirection operator (*) is used in the second example to access the
int value at the address stored in pa. The value is assigned to the integer
variable x.

99

Microsoft C Compiler Language Reference

In Example 3, the word True would be printed. This example demon­
strates that the result of applying the indirection operator to the address of
x is the same as x.

Example 4 shows a useful application of the rule shown in Example 3. The
address of x is converted by a type cast to a pointer to a double; the
indirection operator is then applied, and the result of the expression is a
double value.

100

Expressions and Assignments

5.3.4 The sizeof Operator

The sizeof operator determines the amount of storage associated with an
identifier or a type. A sizeof expression has the form

sizeof(name)

where name is either an identifier or a type name. The type name may not
be void. The value of a sizeof expression is the amount of storage, in
bytes, associated with the named identifier or type.

When the sizeof operator is applied to an array identifier, the result is the
size of the entire array in bytes rather than the size of the pointer
represented by the array identifier.

When the sizeof operator is applied to a structure or union type name, or
to an identifier of structure or union type, the result is the actual size in
bytes of the structure or union, which may include internal and trailing
padding used to align the members of the structure or union on memory
boundaries. Thus, the result may not correspond to the size calculated by
adding up the storage requirements of the members.

Example

buffer = calloc(lOO, sizeof (int));

With the sizeof operator you can avoid specifying machine-dependent data
sizes in your program. The above example uses the sizeof operator to pass
the size of an int, which varies across machines, as an argument to a func­
tion named call ac. The value returned by the function is stored in
buffer.

101

Microsoft C Compiler Language Reference

5.3.5 Multiplicative Operators

The multiplicative operators perform multiplication (lie), division (/), and
remainder (%) operations. The operands of the remainder operator (%)
must be integral; the multiplication (lie) and division (/) operators take
integral and floating-point operands. The types of the operands can be
different. The multiplicative operators perform the usual arithmetic
conversions on the operands. The type of the result is the type of the
operands after conversion.

The conversions performed by the multiplicative operators make no provi­
sion for overflow or underflow conditions. Information is lost if the result
of a multiplicative operation cannot be represented in the type of the
operands after conversion.

Multiplication (lie)

The multiplication operator (lie) specifies that its two operands are to be
multiplied.

Division (/)

The division operator (/) specifies that its first operand is to be divided by
the second. When two integers are divided, the result, if not an integer, is
truncated. If both operands are positive or unsigned, the result is trun­
cated toward o. The direction of truncation when either operand is nega­
tive may be either toward or away from 0, depending on the implementa­
tion. Division by 0 gives unpredictable results.

Remainder (%)

The result of the remainder operator (%) is the remainder when the first
operand is divided by the second.

102

Expressions and Assignments

Examples

int i = 10, j 3, n;
double x = 2.0, y;

y x * i; /* Example 1 */

n i / j; /* Example 2 */

n = i % j ; /* Example 3 */

In the first example, x is multiplied by i to give the value 20.0. The result
has double type.

In the second example, 10 is divided by 3. The result is truncated toward 0,
yielding the integer value 3.

In the third example, n is assigned the integer remainder 1 when 10 is
divided by 3.

103

Microsoft C Compiler Language Reference

5.3.6 Additive Operators

The additive operators perform addition (+) and subtraction (-). The
operands can be integral or floating-point values; some additive operations
can also be performed on pointer values, as outlined under the discussion of
each operator. The usual arithmetic conversions are performed on integral
and floating-point operands. The type of the result is the type of the
operands after conversion.

The conversions performed by the additive operators make no provision for
overflow or underflow conditions. Information is lost if the result of an
additive operation cannot be represented in the type of the operands after
conversion.

Addition (+)
The addition operator (+) specifies addition of its two operands. The
operands can have integral or floating-point types, as described previously,
or one operand can be a pointer and the other an integer. When an integer
is added to a pointer, the integer value (i) is converted by multiplying it by
the length of the value addressed by the pointer. After conversion, the
integer value represents i memory positions, where each position has the
length specified by the pointer type. When the converted integer value is
added to the pointer value, the result is a new pointer value expressing the
address i positions from the original address. The new pointer value
addresses the same type as the original pointer value.

Subtraction (-)

The subtraction operator (-) subtracts its second operand from the first.
The operands can be integral or floating-point values, as described earlier.
The subtraction operator also allows the subtraction of an integer from a
pointer value and the subtraction of two pointer values.

When an integer value is subtracted from a pointer value, the same conver­
sions occur as with addition of a pointer and integer. The subtraction
operator converts the integer value with respect to the type addressed by
the pointer value. The result is the memory address i positions before the
original address, where i is the integer value and each position is the length
of the type addressed by the pointer value. The new pointer points to the
type addressed by the original pointer value.

104

Expressions and Assignments

Two pointer values can be subtracted if they point to the same type. The
difference between the two pointers is cOIlverted to a signed integer value
by dividing the difference by the length of the type the pointers address.
The result represents the number of memory positions of that type between
the two addresses. The result is only guaranteed to be meaningful for two
elements of the same array, as discussed next.

Pointer Arithmetic

Additive operations involving a pointer and an integer generally give mean­
ingful results only when the pointer operand addresses an array member
and the integer value produces an offset within the bounds of the same
array. The conversion of the integer value to an address offset assumes
that only memory positions of the same size lie between the original address
and the address plus offset.

The preceding assumption is valid for array members. An array is by
definition a series of values of the same type; its elements reside in contigu­
ous memory locations. Storage for any types except array elements is not
guaranteed to be completely filled. That is, blanks can occur between
memory positions, even positions of the same type. Adding to or subtract­
ing from addresses referring to any values but array elements gives
unpredictable results.

Similarly, the conversion involved in the subtraction of two pointer values
assumes that only values of the same type, with no blanks, lie between the
two addresses given by the operands.

Additive operations between pointer and integer values on machines with
segmented architecture (such as the 8086/8088) may not be valid in some
cases. See your system documentation for more information.

Examples

int i = 4, j:
float x[lO]:
float *px:

px = &x[4] + i:

j = &x[iJ - &x[i-2];

/* Example 1 */

/* Example 2 */

In the first example, the integer operand i is added to the address of the
fifth element of x. The value of i is multiplied by the length of a float and
added to &x [4]. The resulting pointer value is the address of x [8] .

106

Microsoft C Compiler Language Reference

In the second example, the address of the third element of x (given by
x [i - 2]) is subtracted from the address of the fifth element of x (given by
x [i J). The difference is divided by the length of a float; the result is the
integer value 2.

106

Expressions and Assignments

5.3.7 Shift Operators

The shift operators shift their first operand left (< <) or right (> >) by
the number of positions the second operand specifies. Both operands must
be integral values. The usual arithmetic conversions are performed; the
type of the result is the type of the left operand after conversion.

For leftward shifts, the vacated right bits are set to o. In a rightward shift,
the method of filling left bits depends on the type, after conversion, of the
first operand. If the type is unsigned, vacated left bits will be set to o.
Otherwise, vacated left bits are filled with copies of the sign bit.

The result of a shift operation is undefined if the second operand is
negative.

The conversions performed by the shift operators make no provision for
overflow or underflow conditions. Information is lost if the result of a shift
operati<.>n cannot be represented in the type of the first operand after
converSIOn.

Example

unsigned int x, y, z;

x = OxOOaa;
y Ox5500;

z = (x « 8) + (y » 8);

In the above example, x is shifted left by eight positions and y is shifted
right eight positions. The shifted values are added, giving Oxaa55, and
assigned to z.

107

Mierosoft C Compiler Language Referenee

5.3.8 Relational Operators

The binary relational operators test their first operand against the second
to determine if the relationship specified by the operator holds true. The
result of a relational expression is 1 if the tested relationship holds and 0 if
it does not. The type of the result is into The relational operators test the
following relationships:

Operator

<
>
<=
>=

!=

Relationship Tested

First operand less than second operand

First operand greater than second operand

First operand less than or equal to second operand

First operand greater than or equal to second operand

First operand equal to second operand

First operand not equal to second operand

The operands can have integral, floating-point, or pointer type. The types
of the operands can be different. The usual arithmetic conversions are per­
formed on integral and floating-point operands.

One or both operands of the equality (==) and inequality (!-) operators
can have enum type; an enUIn value IS converted in the same manner as an
int value.

The operands of any relational operator can be two pointers to the same
type. For the equality (==) and inequality (!=) operators, the result of
the comparison reflects whether or not the two pointers address the same
memory location. The result of pointer comparisons involving the other
operators «, >, <=, >=) reflects the relative position of two memory
addresses.

Since the address of a given value is arbitrary, comparisons between the
addresses of two unrelated values are generally meaningless. Comparisons
between the addresses of different elements of the same array can be useful,
however, since array elements are guaranteed to be stored in order from the
first element to the last. The address of the first array element is "less
than" the address of the last element.

A pointer value can be compared for equality (= =) or inequality (!=) to
the constant value o. A pointer with a value of 0 does not point to a
memory location: it is called a "null" pointer. A pointer value is equal to 0
only if it is explicitly given that value through assignment or initialization.

108

Expressions and Assignments

Examples

int x = 0, y 0;

x < y /* Example 1 */

x > y /* Example 2 */

x <= y /* Example 3 */

x >= y /* Example 4 */

x -- y /* Example 5 */

x != y /* Example 6 */

When x and yare equal, expressions 3, 4, and 5 have the value 1 and
expressions 1, 2, and 6 have the value O.

109

Microsoft C Compiler Language Reference

5.3.9 Bitwise Operators

The bitwise operators perform bitwise-AND (&), inclusive-OR (I), and
exclusive-OR (A) operations. The operands of bitwise operators must have
integral type, but their types can be different. The usual arithmetic conver­
sions ar.e performed; the type of the result is the type of the operands after
converSIOn.

Bitwise AND (&)

The bitwise-AND (&) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1, the correspond­
ing bit of the result is set to 1; otherwise, the corresponding result bit is set
to O.

Bitwise Inclusive OR (I)

The bitwise-inclusive-OR (I) operator compares each bit of its first operand
to the corresponding bit of the second operand. If either of the compared
bits is a 1, the corresponding bit of the result is set to 1. Otherwise, both
bits are 0, and the corresponding result bit is set to O.

Bitwise Exclusive OR (A)

The bitwise-exclusive-OR (A) operator compares each bit of its first operand
to the corresponding bit of the second operand. If one of the compared bits
is a 0 and the other bit is a 1, the corresponding bit of the result is set to 1;
otherwise, the corresponding result bit is set to O.

Examples

short i = OxabOO;
short j = Oxabcd;
short n;

n = i & j; /* Example 1 */

n = i j; /* Example 2 */

n = i ~

j; /* Example 3 */

110

Expressions and Assignments

The result assigned to n in the first example is the same as i (ABOO hexa­
decimal). The bitwise inclusive OR in the second example results in the
value ABCD (hexadecimal), while the bitwise exclusive OR in the third
example produces CD (hexadecimal).

111

Mierosoft C Compiler Language Referenee

5.3.10 Logical Operators

The logical operators perform logical-AND (&&) and logical-OR fl D opera­
tions. The operands of the logical operators must have integral, ftoating­
point, or pointer type. The types of the operands can be different.

The operands of logical-AND and logical-OR expressions are evaluated left
to right. If the value of the first operand is sufficient to determine the
result of the operation, the second operand is not evaluated.

Logical operators do not perform the standard arithmetic conversions.
Instead, they evaluate each operand in terms of its equivalence to zero. A
pointer has a value of 0 only if it is explicitly set to 0 through assignment
or initialization.

The result of a logical operation is either 0 or 1, as described next. The
type of the result is into

Logical AND (&&)

The logical-AND operator (&&) produces the value 1 if both operands have
nonzero values. If either operand is equal to 0, the result is o. If the first
operand of a logical-AND operation has a value of 0, the second operand is
not evaluated.

Logical OR c: D
The logical-OR operator (I') performs an inclusive OR on its operands. It
produces the value 0 if bot~ operands have 0 values; if either operand has a
nonzero value, the result is 1. If the first operand of a logical-OR operation
has a nonzero value, the second operand is not evaluated.

Examples

int x, y;

if (x < y && y < z) /* Example 1 */
printf ("x is less than z\n");

if (x == y I I x == z) /* Example 2 */
printf ("x is equal to either y or z\n");

112

Expressions and Assignments

In the first example, the pr int f function is called to print a message if x is
less than y and y is less than z. If x is greater than y, the second operand
(y < z) is not evaluated and nothing is printed. Note that this could
cause problems in cases where the second operand contains side effects.

In the second example, a message is printed if x is equal to either y or z. If
x is equal to y, the second operand (x == z) is not evaluated.

113

Microsoft C Compiler Language Reference

5.3.11 Sequential-Evaluation Operator

The sequential-evaluation operator (,) evaluates its two operands sequen­
tially from left to right. The result of the operation has the value and type
of the right operand. The types of the operands are unrestricted. No
conversions are performed.

The sequential-evaluation operator (also called the "comma" operator) is
typically used to evaluate two or more expressions in contexts that allow
only one expression to appear.

Examples

/******************** Example 1 ********************/

for (i = j = 1; i + j < 20; i += i, j--);

/******************** Example 2 ********************/

func_one(x, y + 2, z);
func_two((x--, y + 2), z);

In the first example, each operand of the for statement's third expression is
evaluated independently. The left operand, i += i, is evaluated first,
then j - - is evaluated.

As shown in Example 2, the comma character is used in other contexts as a
separator. In the function call to func_one, three arguments, separated
by commas, are passed to the called function: x, y + 2 and z. The use of
the comma character as a separator must not be confused with its use as an
operator; the two uses are completely different.

In the function call to func_ two, parentheses force the compiler to inter­
pret the first comma as the sequential-evaluation operator. This function
call passes two arguments to func_ two. The first argument is the result
of the sequential-evaluation operation (x- - / Y + 2), which has the
value and type of the expression y + 2; the second argument is z.

114

Expressions and Assignments

5.3.12 Conditional Operator

C has one ternary operator, the conditional operator (? :). Its form is as
follows:

operandi? operand2 : operandS

The expression operandi is evaluated in terms of its equivalence to 0. It
must have integral, floating-point, or pointer type. If operandi has a
nonzero value, operand2 is evaluated and the result of the expression is the
value of operand2. If operandi evaluates to 0, operandS is evaluated, and
the result of the expression is the value of operandS. Note that either
operand2 or operandS is evaluated, but not both.

The type of the result depends on the types of the second and third
operands, as follows:

1. If the second and third operands have integral or floating-point type
(their types can be different), the usual arithmetic conversions are
perfor~ed. The type of the result is the type of the operands after
converSIOn.

2. The second and third operands can have the same structure, union,
or pointer type. The type of the result is the same structure, union,
or pointer type.

3. One of the second or third operands can be a pointer and the other
a constant expression with the value 0. The type of the result is the
pointer type.

Example

j = (i < 0) ? (- i) : (i);

The above example assigns the absolute value of i to j. If i is less than 0,
- i is assigned to j. If i is greater than or equal to 0, i is assigned to j.

115

Microsoft C Compiler Language Reference

5.4 Assignment Operators

C's assignment operators can both transform and assign values in a single
operation. Using a compound-assignment operator to replace two separate
operations can reduce code size and improve program efficiency. The
assignment operators are as follows:

Operator

++

*=

/=
%=
+=

«=
»=
&=

Operation PerforIned

Unary increment

Unary decrement

Simple assignment

Multiplication assignment

Division assignment

Remainder assignment

Addition assignment

Subtraction assignment

Left-shift assignment

Righ t-shift assign men t

Bi twise-AND assignment

Bitwise-inclusive-OR assignment

Bitwise-exclusive-OR assignment

In assignment, the type of the right-hand value is converted to the type of
the left-hand value. The specific path of the conversion depends on the two
types and is outlined in detail in Section 5.7.

5.4.1 Lvalue Expressions

An assignment operation specifies that the value of the right-hand operand
is to be assigned to the storage location named by the left-hand operand.
Therefore, the left-hand operand of an assignment operation (or the single
operand of a unary assignment expression) must be an expression referring
to a memory location. Expressions that refer to memory locations are called
"lvalue" expressions. A variable name is such an expression: the name of
the variable denotes a storage location, while the value of the variable is
the value residing at that location.

116

Expressions and Assignments

The following C expressions may be lvalue expressions:

• Identifiers of character, integer, floating-point, pointer, enumera­
tion, structure, or union type

• Subscript ([]) expressions, except when a subscript expression
evaluates to a pointer to an array or a pointer to a function

• Member-selection expressions (- > and.), if the selected member is
one of the aforementioned expressions

• Unary-indirection (*) expressions, except when such expressions
refer to arrays or functions

• Type casts to pointer types, as long as the size of the object does
not change

• An lvalue expression in parentheses

5.4.2 Unary IncreIllent and DecreIllent

The unary assignment operators (++ and - -) increment and decrement
their operand, respectively. The operand must have integral, floating-point,
or pointer type, and must be an lvalue expression.

Operands of integral or floating-point type are incremented or decremented
by the integer value 1. The type of the result is the type of the operand.
An operand of pointer type is incremented or decremented by the size of the
object it addresses. An incremented pointer points to the next object; a
decremented pointer points to the previous object.

An increment (++) or decrement (- -) operator can appear either be­
fore or after its operand. When the operator prefixes its operand, the
operand is incremented or decremented and its new value is the result of
the expression. When the operator postfixes its operand, the immediate
result of the expression is the value of the operand before it is incremented
or decremented. After that result is noted in context, the operand is incre­
mented or decremented.

Examples

/******************** Example 1 ********************/

if (pos++ > 0)
*ptt = *qtt;

117

Microsoft C Compiler Language Reference

/******************** Example 2 ********************/

if (line[--iJ != '\n')
return;

In the first example, the variable pas is compared to 0, then incremented.

In the second example, the variable i is decremented before it is used as a
subscript to 1 ine .

5.4.3 Simple Assignment

The simple assignment operator (=) performs assignment. The right
operand is assigned to the left operand; the conversion rules for assignment
apply (see Section 5.7.1).

Example

double x;
int y;

x = y;

The value of y is converted to double type and assigned to x.

5.4.4 Compound Assignment

The compound assignment operators consist of the simple assignment
operator combined with another binary operator. Compound assignment
operators perform the operation specified by the additional operator, then
assign the result to the left operand. A compound assignment expression
such as

expressionl += expression2

can be understood as

expressionl = expressionl + expression2

However, the compound assignment expression is not equivalent to the
expanded version because the compound assignment expression evaluates
expressionl only once, while in the expanded version expressionl is
evaluated twice: in the addition operation and in the assignment operation.

118

Expressions and Assignments

Each compound assignment operator performs the conversions that the
corresponding binary operator performs, and restricts the types of its
operands accordingly. The result of a compound assignment operation has
the value and type of the left operand.

Example

#define MASK Oxffff

n 1= MASK;

In this example a bitwise-inclusive-OR operation is performed on nand
MASK, and the result is assigned to n. The manifest constant MASK is
defined with a # define preprocessor directive, discussed in Section 8.2.1.

119

Microsoft C Compiler Language Reference

5.5 Precedence and Order of Evaluation

The precedence and associativity of C operators affect the grouping and
evaluation of operands in expressions. An operator's precedence is mean­
ingful only in the presence of other operators having higher or lower pre­
cedence. Expressions with higher-precedence operators are evaluated first.

Table 5.1 summarizes the precedence and associativity of C operators, list­
ing them in order of precedence from highest to lowest. Where several
operators appear together in a line or large brace, they have equal pre­
cedence and are evaluated according to their associativity.

Table 5.1

Precedence and Associativity of C Operators

Syrnbola

() [] . ->
- - ! * & } ++ sizeof casts

* / %
+ -
« »
< > <= >=

&

&&

" " ? :

!=

- *= /= %= } += -= «= »=
&= 1= A

Type of Operation

Expression

Unaryb

Multiplicative

Additive

Shift

Relational (inequality)

Relational (equality)

Bitwise-AND

Bitwise-exclusive-OR

Bitwise-inclusive-OR

Logical AND

Logical OR

Conditional

Simple and
compound
assignmentC

~Aflll An tll:11 AVl:Illll:1 tlf)n
~_'1.'l.&,._".LV""'fLAI"" _, 1LN 'LAoOv ... _

Associativity

Left to right

Righ t to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Righ t to left

T .Aft. to l"luht.
~~~v V~ ~~O'~v 

a Operators are listed in descending order of precedence. Where several operators appear in the 
same line or in a large brace, they have equal precedence. 

b All unary operators have equal precedence. 

C All simple and compound assignment operators have equal precedence. 

120 



Expressions and Assignments 

As Table 5.1 shows, operands consisting of a constant, an identifier, a 
string, a function call, a subscript expression, a member-selection expres­
sion, or a parenthetical expression have highest precedence and associate 
left to right. Type-cast conversions have the same precedence and associa­
tivity as the unary operators. 

An expression can contain several operators with equal precedence. When 
several such operators appear at the same level in an expression, evaluation 
proceeds according to the associativity of the operator, either right to left 
or left to right. The result of expressions involving multiple occurrences of 
multiplication (lie), addition (+), or binary bitwise (& I A) operators at the 
same level is indifferent to the direction of evaluation. The compiler is free 
to evaluate such expressions in any order, even when parentheses in the 
expression appear to specify a particular order. 

Important 

Only the sequential-evaluation operator (,) and the logical-AND 
(&&) and logical-OR (II) operators guarantee a particular order of 
evaluation for the operands. The sequential-evaluation operator (,) is 
guaranteed to evaluate its operands from left to right. (Note that 
the comma separating arguments in a function call is not the same as 
the sequential-evaluation operator and does not provide any such 
guarantee. ) 

The logical operators also guarantee evaluation of their operands left to 
right. However, the logical operators evaluate the minimum number of 
operands necessary to determine the result of the expression. Thus, some 
operands of the expression may not be evaluated. For example, in the 
expression x && y+ +, the second operand, y+ +, is evaluated only if x is 
true (nonzero). Thus y is not incremented when x is false (0). 

121 



Microsoft C Compiler Language Reference 

The examples below show the default groupings for several expressions: 

Expression 

a & b II c 

a - b II c 

q && r II s--

Default Grouping 

(a & b) II c 

a = (b I I c) 

(q && r) I I s - -

In the first example, the bitwise-AND operator (&) has higher precedence 
than the logical-OR operator (I I), so a & b forms the first operand of the 
logical-OR operation. 

In the second example, the logical-OR o~erator (II) has higher precedence 
than the simple assignment operator (= , so b I I c is grouped as the 
right-hand operand in the assignment. ote that the value assigned to a is 
either 0 or 1. 

The third example shows a correctly formed expression that may pro-
duce an unexpected result. The logical-AND operator (&&) has higher pre­
cedence than the logical-OR operator (11), so q && r is grouped as an 
operand. Since the logical operators guarantee evaluation of operands from 
left to right, q && r is evaluated before s- -. However, if q && r evalu­
ates to a nonzero value, s - - is not evaluated, and s is not decremented. 
To correct this problem, s - - should appear as the first operand of the 
expression or should be decremented in a separate operation. 

The following example shows an illegal expression that produces a program 
error: 

Illegal Expression Default Grouping 

p == 0 ? P += 1: p += 2 (p == 0 ? P += 1 : p) += 2 

In this example, the equality operator (==) has the highest precedence, so 
p == 0 is grouped as an operand. The ternary operator (7 :) has the next­
highest precedence. Its first operand is p == 0 and its second operand is 
p += 1. However, the last operand of the ternary operator is considered 
to be p rather than p += 2, since this occurrence of p binds more closely 
to the ternary operator than it does to the compound assignment operator. 
A syntax error occurs because += 2 does not have a left-hand operand. 

122 



Expressions and Assignments 

To prevent errors of this kind, and to produce more readable code, the use 
of parentheses is recommended. The preceding example can be corrected 
and clarified through the use of parentheses, as shown below: 

(p == 0) ? (p + = 1) : (p + = 2 ) 

5.6 Side Effects 

"Side effects" are changes in the state of the machine that occur as a result 
of evaluating an expression. They occur whenever the value of a variable is 
changed. Any assignment operation has side effects, and any call to a func­
tion that contains assignment operations has side effects. 

The order of evaluation of side effects is implementation dependent, except 
where the compiler guarantees a particular order of evaluation, as outlined 
in Section 5.5. 

For example, side effects occur in the following function call: 

add (i + 1, i = j + 2) 

The arguments of a function call can be evaluated in any order. The 
expression i + 1 may be evaluated before i = j + 2, or vice versa, with 
different results in each case. 

Unary increment and decrement operations involve assignment and can 
cause side effects, as shown in the following example: 

d 0; 
a = b++ = c++ = d++; 

The value of a is unpredictable. The value of d (initially 0) could be 
assigned to c, then to b, and then to a before any of the variables are incre­
mented. In this case a would be equal to o. 

A second method of evaluating this expression begins by evaluating the 
operand c++ = d++. The value of d (initially 0) is assigned to c, and then 
both d and c are incremented. Next, the value of c, which is now 1, is 
assigned to band b is incremented. Finally, the incremented value of b is 
assigned to a; in this case, the final value of a is 2. 

123 



Microsoft C Compiler Language Reference 

Since the C language does not define the order of evaluation of side effects, 
both of these evaluation methods are correct and either can be imple­
mented. Statements that depend on a particular order of evaluation for 
side effects produce nonportable and unclear code. 

5.7 Type Conversions 

Type conversions occur when a value is assigned to a variable of a different 
type, when a value is explicitly cast to another type, when an operator con­
verts the type of its operand or operands before performing an operation, 
and when a value is passed as an argument to a function. The rules govern­
ing each kind of conversion are outlined next. 

5.7.1 Assignment Conversions 

In assignment operations, the type of the value being assigned is converted 
to the type of the variable receiving the assignment. C allows conversions 
by assignment between integral and floating-point types, even when the 
conversion entails loss of information. The methods of carrying out the 
conversions depend upon the type, as follows. 

5.7.1.1 Conversions from Signed Integral Types 

A signed integer is converted to a shorter signed integer by truncating the 
high-order bits, and is converted to a longer signed integer by sign exten­
sion. Conversion of signed integers to floating-point values takes place 
without loss of information, except that some precision can be lost when a 
long value is converted to a Hoat. In converting a signed integer to an 
unsigned integer, the signed integer is converted to the size of the unsigned 
integer and the result is interpreted as an unsigned value. 

Conversions from signed integral types are summarized in Table 5.2. This 
table assumes that the char type is signed by default. If a compile-time 
option is used to change the default for the char type to unsigned, the 
conversions for the unsigned char type given in Table 5.3 apply. 

124 



Expressions and Assignments 

Table 5.2 

Conversions from Signed Integral Types 

From To Method 

char a short Sign extend 

char long Sign extend 

char unsigned char Preserve pattern; high-order bit loses function as 
sign bit 

char unsigned short Sign extend to short; convert short to unsigned 
short 

char unsigned long Sign extend to long; convert long to unsigned 
long 

char float Sign extend to long; convert long to float 

char double Sign extend to long; convert long to double 

short char Preserve low-order byte 

short long Sign extend 

short unsigned char Preserve low-order byte 

short unsigned short Preserve bit pattern; high-order bit loses function 
as sign bit 

short unsigned long Sign extend to long; convert long to unsigned 
long 

short float Sign extend to long; convert long to float 

short double Sign extend to long; convert long to double 

long char Preserve low-order byte 

long short Preserve low-order word 

long unsigned char Preserve low-order byte 

long unsigned short Preserve low-order word 

long unsigned long Preserve bit pattern; high-order bit loses function 
as sign bit 

long float Represent as float; if long cannot be represented 
exactly, some loss of precision occurs 

long double Represent as double; if long cannot be 
represented exactly as a double, some loss of 
precision occurs 

a All char entries assume that the char type is signed by default. 

125 



Microsoft C Compiler Language Reference 

Note 

The int type is equivalent either to the short type or to the long type, 
depending on the implementation. Conversion of an int value proceeds 
as for a short or a long, whichever is appropriate. 

5.7.1.2 Conversions from 
Unsigned Integral Types 

An unsigned integer is converted to a shorter unsigned or signed integer by 
truncating the high-order bits. An unsigned integer is converted to a longer 
unsigned or signed integer by zero extending. Unsigned values are con­
verted to floating-point values by converting first to a signed integer of the 
same size, then converting that signed value to a floating-point value. 

When an unsigned integer is converted to a signed integer of the same size, 
no change in the bit pattern occurs. However, the value it represents 
changes if the sign bit is set. 

Conversions from unsigned integral types are summarized in Table 5.3. 

Table 5.3 

Conversions from Unsigned Integral Types 

From 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

unsigned char 

126 

To 

char 

short 

long 

unsigned short 

unsigned long 

float 

Method 

Preserve bit pattern; high-order bit 
becomes sign bit 

Zero extend 

Zero extend 

Zero extend 

Zero extend 

Convert to long; convert long to 
float 



Expressions and Assignments 

Table 5.3 (continued) 

From To Method 

unsigned char double Convert to long; convert long to 
double 

unsigned short char Preserve low-order byte 

unsigned short short Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned short long Zero extend 

unsigned short unsigned char Preserve low-order byte 

unsigned short unsigned long Zero extend 

unsigned short float Convert to long; convert long to 
float 

unsigned short double Convert to long; convert long to 
double 

unsigned long char Preserve low-order byte 

unsigned long short Preserve low-order word 

unsigned long long Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned long unsigned char Preserve low-order byte 

unsigned long unsigned short Preserve low-order word 

unsigned long float Convert to long; convert long to 
float 

unsigned long double Convert to long; convert long to 
double 

Note 

The unsigned int type is equivalent either to the unsigned short type 
or to the unsigned long type, depending on the implementation. 
Conversion of an unsigned int value proceeds as for an unsigned 
short or an unsigned long, whichever is appropriate. 

127 



Microsoft C Compiler Language Reference 

5.7.1.3 Conversions from Floating-Point Types 

A float value converted to a double undergoes no change in value. A 
double converted to a float is represented exactly, if possible. If the value 
is too large to fit into a float, precision is lost. 

A floating-point value is converted to an integer value by converting to a 
long. Conversions to other integer types occur as for a long. The decimal 
portion of the floating-point value is discarded in the conversion to a long; 
if the result is still too large to fit into a long, the result of the conversion 
is undefined. 

Conversions from floating-point types are summarized in Table 5.4. 

Table 5.4 

Conversions from Floating-Point Types 

From 

float 

float 

float 

float 

float 

float 

double 

double 

double 

double 

double 

double 

128 

To 

char 

short 

long 

unsigned short 

unsigned long 

double 

char 

short 

long 

unsigned short 

unsigned long 

float 

Method 

Convert to long; convert long to char 

Convert to long; convert long to short 

Truncate at decimal point; if result is too large to 
be represented as long, result is undefined 

Convert to long; convert long to unsigned short 

Convert to long; convert long to unsigned long 

Change internal representation 

Convert to float; convert float to char 

Convert to float; convert float to short 

Truncate at decimal point; if result is too large to 
be represented as long, result is undefined 

Convert to long; convert long to unsigned short 

Convert to long; convert long to unsigned long 

Represent as a float. If double value cannot 
be represented exactly as float, loss of precision 
occurs; if value is too large to be represented 
as float, the result is undefined 



Expressions and Assignments 

5.7.1.4 Conversions to and from Pointer Types 

A pointer to one type of value can be converted to a pointer to a different 
type. The result may be undefined, however, because of the alignment 
requirements and sizes of different types in storage. 

In some implementations, the special keywords near, far, and huge are 
available to modify the size of pointers within a program. A pointer can be 
converted to a pointer of a different size; the path of the conversion is 
implementation dependent. For example, on an 8086 processor, the com­
piler might use a segment-register value to convert a 16-bit pointer to a 
32-bit pointer. See your system documentation for information on pointer 
conversions. 

A pointer value can be converted to an integral value. The path of the 
conversion depends on the size of the pointer and the size of the integral 
type, as follows: 

• If the pointer is the same size as or larger than the integral type, 
the pointer behaves like an unsigned value in the conversion, except 
that it cannot be converted to a floating-point value. 

• If the pointer is smaller than the integral type, the pointer is first 
converted to a pointer with the same size as the integral type, then 
converted to the integral type. The method of converting a pointer 
to a longer pointer is implementation dependent; see your system 
documentation for information on pointer conversions. 

An integral type can be converted to a pointer type. If the integral type is 
the same size as the pointer type, the conversion simply causes the integral 
value to be treated as a pointer (an unsigned integer). If the size of the 
integral type is different from the size of the pointer type, the integral type 
is first converted to the size of the pointer, using the conversion paths given 
in Tables 5.2 and 5.3. It is then treated as a pointer value. 

If the special keywords near, far, and huge are implemented, implicit 
conversions may be made on pointer values. In particular, the compiler 
may make assumptions about the default size of pointers and convert 
passed pointer values accordingly, unless a forward declaration is present to 
override the implicit conversion. See your system documentation for infor­
mation on pointer conversions. 

129 



Microsoft C Compiler Language Reference 

5.7.1.5 Conversions from Other Types 

An enum value is an int value, by definition of the enum type. Conver­
sions to and from an enum value proceed as for the int type. An int is 
equivalent to either a short or a long, depending on the implementation. 

No conversions between structure or union types are allowed. 

The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, nor can any value be converted to void by assign­
ment. A value can be explicitly cast to void, however, as discussed in 
Section 5.7.2. 

5.7.2 Type-Cast Conversions 

Explicit type conversions can be made by means of a type cast. A type cast 
has the form 

( type-name)operand 

where type-name specifies a particular type and operand is a value to be 
converted to the specified type. (Type names are discussed in Section 4.9.) 

The conversion of operand occurs as though it had been assigned to a 
variable of the named type. The conversion rules for assignments (outlined 
in Section 5.7.1) apply to type casts as well. The type name void can be 
used in a cast operation, but the resulting expression cannot be assigned to 
any item. 

5.7.3 Operator Conversions 

The conversions performed by C operators depend on the operator and on 
the type of the operand or operands. Many operators perform the "usual 
arithmetic conversions," which are outlined in Section 5.3.1. 

C permits some arithmetic with pointers. In pointer arithmetic, integer 
values are converted to express memory positions; see the discussions of 
additive operators (Section 5.3.6) and subscript expressions (Section 5.2.5) 
for information. 

130 



Expressions and Assignments 

5.7.4 Function-Call Conversions 

The type of conversion performed on the arguments in a function call 
depends on whether a forward declaration with declared argument types is 
present for the called function. 

If a forward declaration is present, and it includes declared argument types, 
the compiler performs type checking. The type-checking process is outlined 
in detail in Section 7.4.1, "Actual Arguments." 

If no forward declaration is present, or if the forward declaration omits the 
argument-type list, the only conversions performed on the arguments in the 
function call are the usual arithmetic conversions. These conversions are 
performed independently on each argument in the call. This means that a 
float value is converted to a double; a char or short value is converted to 
an inti and an unsigned char or unsigned short is converted to an 
unsigned into 

If the special keywords near, far, and huge are implemented, implicit 
conversions may also be made on pointer values passed to functions. These 
implicit conversions can be overridden by providing argument-type lists to 
allow the compiler to perform type checking. See your system documenta­
tion for information on pointer conversions. 

131 





Chapter 6 

Statements 

6.1 Introduction 135 
6.2 The break Statement 137 
6.3 The Compound Statement 138 
6.4 The continue Statement 140 
6.5 The do Statement 141 
6.6 The Expression Statement 142 
6.7 The for Statement 143 
6.8 The goto and Labeled Statements 
6.9 The if Statement 146 
6.10 The Null Statement 148 
6.11 The return Statement 149 
6.12 The switch Statement 151 
6.13 The while Statement 154 

145 

133 





Statements 

6.1 Introduction 

The statements of a C program control the flow of program execution. In 
C, as in other programming languages, several kinds of statements are 
available to perform loops, to select other statements to be executed, and 
to transfer control. This chapter describes C statements in alphabetical 
order, as follows: 

break statement 

compound statement 

continue statement 

do statement 

expression statement 

for statement 

goto statement 

if statement 

null statement 

return statement 

switch statement 

while statement 

C statements consist of keywords, expressions, and other statements. The 
following keywords appear in C statements: 

break 
case 
continue 

default 
do 
else 

for 
goto 
if 

return 
switch 
while 

The expressions in C statements are the expressions discussed in Chapter 5, 
"Expressions and Assignments." Statements appearing within C statements 
may be any of the statements discussed in this chapter. A statement that 
forms a component of another statement is called the "body" of the enclos­
ing statement. Frequently the statement body is a "compound" statement; 
that is, a single statement composed of one or more statements. 

The compound statement is delimited by braces; all other C statements end 
with a semicolon. 

135 



Microsoft C Compiler Language Reference 

Any C statement may be prefixed with an identifying label consisting of a 
name and a colon. Statement labels are recognized only by the goto state­
ment and are therefore discussed in Section 6.8, "The goto and Labeled 
Statements. " 

When a C program is executed, its effect is the same as execution of the 
statements in order of their appearance in the program, except where a 
statement explicitly transfers control to another location. 

136 



Statements 

6.2 The break Statement 

Syntax 

break; 

Execution 

The break statement terminates the execution of the smallest enclosing 
do, for, switch, or while statement in which it appears. Control passes to 
the statement following the terminated statement. A break statement 
appearing outside any do, for, switch, or while statement causes an error. 

Within nested statements, the break statement terminates only the do, 
for, switch, or while statement immediately enclosing it. To transfer con­
trol out of the nested structure, a return or goto statement can be used. 

Example 

for (i 0; i < LENGTH - 1; i++) { 

} 

for (j = 0; j < WIDTH - 1; j++) { 
if (lines[i] [j] == '\0') { 

lengths[i] = j; 
break; 

} 
} 

The above example processes an array of variable-length strings stored in 
1 ines. The break statement causes an exit from the interior for loop 
after the terminating null character ( \ 0) of each string is found and stored 
in lengths [iJ. Control then returns to the outer for loop. The variable 
i is incremented and the process is repeated until i is greater than or equal 
to LENGTH. 

137 



Microsoft C Compiler Language Reference 

6.3 The Compound Statement 

Syntax 

{ 
[ declaration] 

statement 
[statement] 

} 

Execution 

The effect of a compound statement's execution is that of the execution of 
its statements in order of their appearance, except where a statement expli­
citly transfers control to another location. The form and meaning of the 
declarations that can appear at the head of a compound statement are 
described in Chapter 4, "Declarations." 

Example 

if (i > 0) { 

} 

line[i] x; 
x++; 
i--; 

A compound statement typically appears as the body of another statement, 
such as the if statement. In the above example, if i is greater than 0, all of 
the statements in the compound statement are executed in order. 

138 



Statements 

Labeled Statements 

Like other C stateinents, any of the statements in a compound statement 
can carry a label. Transfer into the compound statement by means of a 
goto is therefore possible. However, transferring into a compound state­
ment is dangerous when the compound statement includes declarations that 
initialize variables. Declarations in a compound statement precede the exe­
cutable statements, so transferring directly to an executable statement 
within the compound statement bypasses the initializations. The results are 
unpredictable. 

139 



Microsoft C Compiler Language Reference 

6.4 The continue Statement 

Syntax 

continue; 

Execution 

The continue statement passes control to the next iteration of the do, for, 
or while statement in which it appears, bypassing any remaining state­
ments in the do, for, or while statement body. Within a do or a while 
statement, the next iteration begins with the reevaluation of the do or 
while statement's expression. Within a for statement, the next iteration 
starts with the evaluation of the for statement's loop expression. It 
proceeds with the evaluation of the conditional expression and subsequent 
termination or reiteration of the statement body. 

Example 

while (i-- > 0) { 

} 

x = f (i) ; 
if (x == 1) 

continue; 
y = x * x; 

The statement body is executed if i is greater than o. First f (i) is 
assigned to Xi then, if X is equal to 1, the continue statement is executed. 
The rest of the statements in the body are ignored, and execution resumes 
at the top of the loop with the evaluation of i - - > o. 

140 



6.5 The do Statement 

Syntax 

do 
statement 

while (expression); 

Execution 

Statements 

The body of a do statement is executed one or more times until expression 
becomes false (0). First, the statement body is executed; then expression is 
evaluated. If expression is false, the do statement terminates and control 
passes to the next statement in the program. If expression is true (non­
zero), the statement body is executed again, and expression is tested again. 
The statement body is executed repeatedly until expression becomes false. 

The do statement may also terminate with the execution of a break, goto, 
or return statement within the statement body. 

Example 

do { 
y = f(x); 
x--; 

} while (x > 0); 

The two statements y = f (x) ; and x- -; are executed, regardless of the 
initial value of x. Then x > 0 is evaluated. If x is greater than 0, the 
statement body is executed again and x > 0 is reevaluated. The state­
ment body is executed repeatedly as long as x remains greater than O. Exe­
cution of the do statement terminates when x becomes 0 or negative. 

141 



Microsoft C Compiler Language Reference 

6.6 The Expression Statement 

Syntax 

expre8820n; 

Execution 

The expression is evaluated, according to the rules outlined in Chapter 5, 
"Expressions and Assignments." 

Examples 

x = (y + 3); /* Example 1 */ 

x++; /* Example 2 */ 

f (x) ; /* Example 3 */ 

In C, assignments are expressions; the value of the expression is the value 
being assigned (sometimes called the "right-hand value"). In the first 
example, x is assigned the value of y + 3. In the second example, x is 
incremented. 

The third example shows a function-call expression. The value of the 
expression is the value, if any, returned by the function. If a function 
returns a value, the expression statement usually incorporates an assign­
ment to store the returned value when the function is called. If the return 
value is not assigned, as in the example, the function call is executed but 
the return value, if any, is not used. 

142 



Statements 

6.7 The for Statement 

Syntax 

for ( [init-expression ]; [ cond-expression ]; [loop-expression] ) 
statement 

Execution 

The body of a for statement is executed zero or more times until the 
optional cond-expression becomes false. The init-expression and loop­
expression are optional expressions that can be used to initialize and modify 
values during the for statement's execution. 

The first step in the execution of the for statement is the evaluation of 
init-expression, if present. Next, cond-expression is evaluated, with three 
possible results: 

1. If the conditional expression is true (nonzero), the statement body is 
executed; then loop-expression, if present, is evaluated. The process 
then begins again with the evaluation of cond-expression. 

2. If the conditional expression is omitted, the conditional expression 
is considered true, and execution proceeds exactly as described 
above. A for statement lacking cond-expression terminates only 
upon the execution of a break, goto, or return statement within 
the statement body. 

3. If the conditional expression is false, execution of the for statement 
terminates and control passes to the next statement in the program. 

A for statement may also terminate with the execution of a break, 
return, or goto statement within the statement body. 

Example 

for (i space = tab = 0; i < MAX; i++) { 
if (line[iJ == '\x20') 

} 

space++; 
if (line[i] == '\t') { 

tab++ ; 
line[iJ ='\x20'; 

} 

143 



Microsoft C Compiler Language Reference 

The above example counts space (I \x20 I) and tab (I \ t I) characters in 
the array of characters named 1 ine and replaces each tab character with a 
space. First i, space, and tab are initialized to O. Then i is compared to 
the constant MAX; if i is less than MAX, the statement body is executed. 
Depending on the value of line[i], the body of one or neither of the if 
statements is executed. Then i is incremented and tested against MAX; the 
statement body is executed repeatedly as long as i is less than MAX. 

144 



Statements 

6.8 The goto and Labeled Statements 

Syntax 

goto name; 

name: statement 

Execution 

The goto statement transfers control directly to the statement specified by 
name. The labeled statement is executed immediately after the goto state­
ment is executed. An error results if no statement with the given label 
resides in the same function or if an identical label appears before more 
than one statement in the same function. 

A statement label is meaningful only to a goto statement; when a labeled 
statement is encountered in any other context, the statement is executed 
without regard to the label. 

Example 

if (errorcode > 0) 
goto exit; 

exit: 
return (errorcode); 

In the example, a goto statement transfers control to the point labeled 
exi t when an error occurs. 

Forming Labels 

A label name is simply an identifier, formed by following the same rules 
that govern the construction of identifiers (see Section 2.4). Each state­
ment label must be distinct from other statement labels and identifiers in 
the same function. 

145 



Microsoft C Compiler Language Reference 

6.9 The if Statement 

Syntax 

if (expression) 
statementl 

[ else 
statement2 TI 

Execution 

The body of an if statement is executed selectively, depending on the value 
of expression. First, expression is evaluated. If expression is true (nonzero), 
the statement immediately following it is executed. If expression is false, 
the statement following the else keyword is executed. If expression is false 
and the else clause is omitted, the statement following expression is 
ignored. Control then passes from the if statement to the next statement in 
the program. 

Example 

if (i > 0) 
Y xli: 

else { 
x = i; 
Y f (x) ; 

} 

In the example, the statement y = xli; is executed if i is greater than O. 
If i is less than or equal to 0, i is assigned to x and f (x) is assigned to y. 
Note that the statement forming the if clause ends with a semicolon. 

Nesting 

C does not offer an "else if" statement, but the same effect is achieved by 
nesting if statements. An if statement may be nested in either the if clause 
or the -else clause of another if statement. ~ 

When nesting if statements and else clauses, use braces to group the state­
ments and clauses into compound statements that clarify your intent. In 
the absence of braces, the compiler resolves ambiguities by pairing each 
else with the most recent if lacking an else. 

146 



Statements 

Examples 

/******************** Example 1 ********************/ 

if (i > 0) /* Without braces */ 
if (j > i) 

x j; 
else 

x = i' I 

/******************** Example 2 ********************/ 

if (i > 0) { /* With braces */ 
if (j > i) 

x = j; 
} 
else 

x = i; 

In the first example, the else is associated with the inner if statement. If i 
is less than or equal to 0, no value is assigned to x. 

In the second version, the braces surrounding the inner if statement make 
the else clause part of the outer if statement. If i is less than or equal to 
0, i is assigned to x. 

147 



Microsoft C Compiler Language Reference 

6.10 The Null Statement 

Syntax 

Execution 

A null statement is a statement containing only a semicolon; it may appear 
wherever a statement is expected. Nothing happens when a null statement 
is executed. 

Example 

for (i = 0; i < 10; line[i++] = 0) 

Statements such as do, for, if, and while require that an executable state­
ment appear as the statement body. The null statement satisfies the syn­
tax requirement in cases that do not need a substantive statement body. In 
the above example, the third expression of the for statement initializes the 
first 10 elements of 1 ine to O. The statement body is a null statement, 
since no further statements are necessary. 

Labeling a Null Statement 

The null statement, like any other C statement, may be prefixed by an 
identifying label. To label an item that is not a statement, such as the clos­
ing brace of a compound statement, you can insert and label a null state­
ment immediately preceding the item to get the same effect. 

148 



Statements 

6.11 The return Statement 

Syntax 

return [expression]; 

Execution 

The return statement terminates the execution of the func.tion in which it 
appears and returns control to the calling function. Execution resumes in 
the calling function at the point immediately following the call. The value 
of expression, if present, is returned to the calling function. If expression is 
omitted, the return value of the function is undefined. 

EX8IDpie 

main () 
{ 

} 

void draw(int/int); 
long sq(int); 

Y = sq(x); 
draw(x i y); 

long sq (x) 
int x; 
{ 

} 
return (x * x); 

void draw(x/y) 
int x, y; 
{ 

return; 
} 

149 



Microsoft C Compiler Language Reference 

The main function calls two functions, sq and draw. The sq function 
returns the value of x * x to main; the return value is assigned to y. The 
draw function is declared as a void function and does not return a value. 
An attempt to assign the return value of draw would cause an error. 

By convention, parentheses enclose the expression of the return statement, 
as shown above. The language does not require the parentheses. 

Omitting the Return Statement 

If no return statement appears in a function definition, control auto­
matically returns to the calling function after the last statement of the 
called function. The return value of the called function is undefined. If a 
return value is not required, the function should be declared to have void 
return type. 

150 



6.12 The switch Statement 

Syntax 

switch (expression) { 
[ declaration] 

} 

[case constant-expression:] 

[statement] 

[default: 
statement] 

[case constant-expression:] 

[ statement] 

Execution 

Statements 

The switch statement transfers control to a statement within its body. The 
statement receiving control is the statement whose case constant-expression 
matches the value of the expression in parentheses. Execution of the state­
ment body begins at the selected statement and proceeds through the end 
of the body or until a statement transfers control out of the body. 

The default statement is executed if no case constant-expression is equal 
to the value of the switch expression. If the default statement is omitted, 
and no case match is found, none of the statements in the switch body is 
executed. 

161 



Microsoft C Compiler Language Reference 

The switch expression is an integral value that must be the size of an int 
or shorter. It can also be an enUIn value. If the expression is shorter than 
an int, it is widened to an int value. Each case constant-expression is then 
cast to the type of the switch expression. The value of each case 
constant-expression must be unique within the statement body. 

The case and default labels of the switch statement body are significant 
only in the initial test that determines the starting point for execution of 
the statement body. All statements appearing between the statement 
where execution starts and the end of the body are executed regardless of 
their labels, unless a statement transfers control out of the body entirely. 

Declarations may appear at the head of the compound statement forming 
the switch body, but initializations included in the declarations are not 
performed. The effect of the switch statement is to transfer control directly 
to an executable statement within the body, bypassing the lines that con­
tain initializations. 

EX8Inples 

/******************** Example 1 ********************/ 

switch (c) { 

} 

case 'A': 
capa++ ; 

case 'a': 
lettera++; 

default 
total++; 

/******************** Example 2 ********************/ 

switch (i) { 
case -1: 

case 0 

case 1 

} 

n++; 
break; 

z++; 
break; 

p++; 
break; 

In the first example, all three statements of the switch body are executed if 
c is equal to 'A'. Execution control is transferred to the first statement 

162 



Statements 

(capa++;) and continues in order through the rest of the body. If c is 
equal to 'a', lettera and total are incremented. Only total is incre­
mented if c is not equal to 'A' or 'a'. 

In the second example, a break statement follows each statement of the 
switch body. The break statement forces an exit from the switch after 
one statement in the body is executed. If i is equal to -1, only n is incre­
mented. The break following the statement n + +; causes execution control 
to pass out of the switch body, bypassing the remaining statements. Simi­
larly, if i is equal to 0, only z is incremented; if i is equal to 1, only p is 
incremented. The final break statement is not strictly necessary, since 
control will pass out of the body at the end of the compound statement, 
but it is included for consistency. 

Multiple Labels 

A statement may carry multiple case labels, as the following example 
shows: 

case 'a' 
case 'b' 
case 'e' 
case 'd' 
case 'e' 
case 'f' hexevt(e) ; 

Although any statement within the body of the switch statement may be 
labeled, no statement is required to carry a label. Statements without 
labels may be intermingled freely with labeled statements. Keep in mind, 
however, that once the switch statement passes control to a statement 
within the body, all succeeding statements in the block are executed, 
regardless of their labels. 

153 



Microsoft C Compiler Language Reference 

6.13 The while Statement 

Syntax 

while (expression) 
statement 

Execution 

The body of a while statement is executed zero or more times until 
expression becomes false (0). First, expression is evaluated. If the 
expression is initially false, the body of the while statement is never 
executed, and control passes from the while statement to the next state­
ment in the program. If expression is true (nonzero), the body of the state­
ment is executed. Following each execution of the statement body, expres­
sion is reevaluated; the body is executed repeatedly as long as expression 
remains true. 

The while statement may also terminate with the execution of a break, 
goto, or return within the statement body. 

Example 

while (i >= 0) { 
stringl [i] 
i--; 

} 

string2[i]; 

The above example copies characters from str ing2 to str ingl. If i is 
greater than or equal to 0, string2 [iJ is assigned to stringl [iJ and i 
is decremented. When i reaches or falls below 0, execution of the while 
statement terminates. 

164 



Chapter 7 
Functions 

7.1 Introduction 157 
7.2 Function Definitions 157 
7.2.1 Storage Class 158 
7.2.2 Return Type 158 
7.2.3 Formal Parameters 160 
7.2.4 Function Body 164 
7.3 Function Declarations 164 
7.4 Function Calls 166 
7.4.1 Actual Arguments 169 
7.4.2 Calls with a Variable Number of Arguments 
7.4.3 Recursive Calls 173 

172 

166 





Functions 

7.1 Introduction 

A function is an independent collection of declarations and statements, usu­
ally designed to perform a specific task. C programs have at least one func­
tion, the main function, and they may have other functions. The sections 
of this chapter describe how to define, declare, and call C functions. 

A function definition specifies the name of the function, its formal parame­
ters, and the declarations and statements that define its action. The func­
tion definition can also give the return type of the function and its storage 
class. 

A function declaration establishes the name, return type, and storage class 
of a function whose explicit definition is given at another point in the pro­
gram. The number and types of arguments to the function can also be 
specified in the function declaration. This allows the compiler to compare 
the types of the actual arguments and the formal parameters of a function. 
Function declarations are optional for functions whose return type is into 
To ensure correct behavior, functions with other return types must be de­
clared before they are called. 

A function call passes execution control from the calling function to the 
called function. The actual arguments, if any, are passed by value to the 
called function. Execution of a return statement in the called function re­
turns control and possibly a value to the calling function. 

7.2 Function Definitions 

A function definition specifies the name, formal parameters, and body of a 
function. It may also define the function's return type and storage class. A 
function definition has the following form: 

[ sc-specifier ] [ type-specifier] declarator ( [ parameter-list] ) 
[parame te r-decl arations] 
function-body 

The sc-specifier gives the function's storage class, which must be either 
static or extern. The type-specifier and declarator together specify the 

157 



Microsoft C Compiler Language Reference 

function's return type and name. The parameter-list is a list (possibly 
empty) of formal parameters to be used by the function. The parameter­
declarations establish the types of the formal parameters. The function­
body is a compound statement containing local variable declarations and 
statements. The following sections describe in detail the parts of the func­
tion definition. 

7.2.1 Storage Class 

The storage-class specifier in a function definition gives the function either 
static or extern storage class. A function with static storage class is 
visible only in the source file in which it is defined. All other functions, 
whether they are given extern storage class explicitly or implicitly, are visi­
ble throughout all the source files that constitute the program. 

When the storage-class specifier is omitted from a function definition, the 
storage class defaults to extern. The extern storage-class specifier can be 
explicitly specified in the function definition, but it is not required. 

The storage-class specifier is required in a function definition in only one 
case: when the function is declared elsewhere in the same source file with 
the static storage-class specifier. 

The static storage-class specifier can also be used when defining a function 
previously declared in the same source file without a storage-class specifier. 
Normally, a function declared without a storage-class specifier defaults to 
the extern class. However, if the function definition explicitly specifies the 
static class, the function is given static class instead. 

7.2.2 Return Type 

The return type of a function defines the size and type of value returned by 
the function. The type declaration has the form 

[ type-specifier] declarator 

where type-specifier, together with the declarator, defines the function's 
return type and name. If no type-specifier is given, the return type int is 
assumed. 

The type-specifier can specify any fundamental, structure, or union type. 
The declarator consists of the function identifier, possibly modified to de­
clare a pointer type. Functions cannot return arrays or functions, but they 
can return pointers to any type, including arrays and functions. 

158 



Functions 

The return type given in the function definition must match the return type 
in declarations of the function elsewhere in the program. Functions with 
int return type do not have to be declared before they are called; functions 
with other return types cannot be called before they are either defined or 
declared. 

A function's return value type is used only when the function returns a 
value, which occurs when a return statement containing an expression is 
executed. The expression is evaluated, converted to the return value type if 
necessary, and returned to the point of call. If no return statement is exe­
cuted, or if the executed return statement does not contain an expression, 
the return value of the function is undefined. If the calling function expects 
a return value, the behavior of the program is also undefined. 

Examples 

/******************** Example 1 ********************/ 

/* return type is int */ 
static add (x, y) 
int x, y; 
{ 

return (x+y); 
} 

/********************* Example 2 *********************/ 

typedef struct { 
char name[20J; 
int id; 
long class; 

} STUDENT; 

{ 

} 

/* return type is STUDENT */ 
STUDENT sortstu (a, b) 
STUDENT a, b; 

return ( (a.id < b.id) ? a b); 

169 



Microsoft C Compiler Language Reference 

/********************* Example 3 *********************/ 

/* return type is char pointer */ 
char *smallstr(sl , s2) 
char sl [J I s2 [J ; 
{ 

} 

int i; 

i=O; 
while ( sl[iJ != '\0' && s2[iJ != '\0' ) 

i++; 
if ( sl[iJ == '\0' ) 

return (sl); 
else 

return (s2); 

In the first example, the return type of add is int by default. The function 
has static storage class, which means it can be called only by functions in 
the same source file. 

The second example defines the STUDENT type with a typedef declaration 
and defines the function sortstu to have STUDENT return type. The func­
tion selects and returns one of its two structure arguments. 

The third example defines a function returning a pointer to an array of 
characters. The function takes two character arrays (strings) as arguments 
and returns a pointer to the shorter of the two strings. A pOInter to an ar­
ray points to the type of the array elements; thus, the return type of the 
function is a pointer to char. 

7.2.3 Formal Parameters 

Formal parameters are variables that receive values passed to a function by 
a function call. The formal parameters are declared in a parameter list at 
the beginning of the function declaration. The parameter list defines the 
names of the parameters and the order in which they take on values in the 
function call. 

The parameter list consists of zero or more identifiers, separated by com­
rr:as. The list must be enclosed in parentheses, even if no identifiers are 
gIven. 

160 



Functions 

A comma followed by three periods (, •.• ) can appear after the last identifier 
in the parameter list, indicating that the number of arguments to the func­
tion is variable. However, the function is expected to have at least as many 
parameters as there are identifiers before the last comma. 

A ~a~a~eter list can also consist of three periods ( ••• ) and !l0 i.denti~ers. 
ThIs IndIcates that the number of parameters to the functIOn IS varIable 
and may be zero. 

Note 

To maintain compatibility with previous versions, the compiler will also 
accept the comma character, without the trailing periods, at the end of 
the parameter list to indicate a variable number of arguments. A single 
comma can also be used instead of three periods to form the parameter 
list of a function taking zero or more arguments. Use of the comma is 
supported only for compatibility; using the three periods is recom­
mended for new code. 

Parameter declarations define the type and size of values stored in the for­
mal parameters. These declarations have the same form as other variable 
declarations (see Section 4.4). A formal parameter can have any fundamen­
tal, structure, union, pointer, or array type. 

A parameter can only have auto or register storage class. If no storage 
class is given, auto storage is assumed. If a formal parameter is named in 
the parameter list but is not declared, the parameter is assumed to have int 
type. Formal parameters can be declared in any order. 

The identifiers of the formal parameters are used in the function body to 
refer to the values passed to the function. These identifiers cannot be used 
for variable declarations within the function body. 

Only identifiers that appear in the parameter list can be declared as formal 
parameters. If the function has a variable number of arguments, the pro­
grammer is responsible for determining the number of arguments passed, 
and for retrieving additional arguments from the stack within the body of 
the function. See your system documentation for information on macros 
that can be used to do this in a portable way. 

161 



Microsoft C Compiler Language Reference 

The type of each formal parameter should correspond to the type of the 
actual argument and to the type of the corresponding argument in the 
argument-type list for the function, if such a list is present. The compiler 
performs the usual arithmetic conversions independently on each formal 
parameter and on each actual argument, if necessary. After conversion, no 
formal parameter is shorter than an int, and no formal parameter has float 
type. This means, for example, that declaring a formal parameter as a 
char has the same effect as declaring it as an into 

If the near, far, and huge keywords are implemented, the compiler may 
also perform conversions on any pointer arguments to a function. The 
conversions performed depend on the default size of pointers in the pro­
gram and the presence or absence of an argument-type list for the function. 
See yOU! system documentation for specific information on pointer 
converSIOns. 

The converted type of each formal parameter determines how the 
arguments placed on the stack by the function call are interpreted. A type 
mismatch between an actual and a formal parameter can cause the argu­
ments on the stack to be misinterpreted. For example, if a 16-bit pointer is 
passed as an actual argument, then declared as a long formal parameter, 
the first 32 bits on the stack are interpreted as a long formal parameter. 
This error creates problems not only with the long formal parameter, but 
with any formal parameters that follow it. Errors of this kind can be 
detected through diligent use of argument-type lists in function 
declarations. 

Example 

struct student { 
char name[20]; 
int id; 
long class; 
struct student *nextstu; 

} student; 

main 0 
{ 

int match ( struct student *, char * ); 

162 



Functions 

if (match (student.nextstu , student. name) > 0) { 

} 
} 

match ( r , n ) 
struct student *r; 
char *n; 
{ 

} 

int i 0; 

while r->name[i] == n[i] ) 
if ( r->name[i++] == '\0' 

return (r->id); 
return (0); 

The example contains a structure type declaration, a forward declaration of 
the function match, a call to match, and the definition of the match func­
tion. Note that the same name, student, can be used without conflict 
both for the structure tag and for the structure variable name. 

The match function is declared to have two arguments, the first a pointer 
to the student structure type and the second a pointer to a char type. 

The two formal parameters of the match function are rand n. The 
parameter r is declared as a pointer to the student structure type; the 
parameter n is declared as a pointer to a char type. 

The function is called with two arguments, both members of the student 
structure. Because there is a forward declaration of ma tch, the compiler 
performs type checking between the actual arguments and the argument­
type list and between the actual arguments and the formal parameters. 
Since the types match, no warnings or conversions are necessary. 

Note that the array name given as the second argument in the call evalu­
ates to a char pointer. The corresponding formal parameter is also 
declared as a char pointer, and is used in subscripted expressions as though 
it were an array identifier. Since an array identifier evaluates to a pointer 
expression, the effect of declaring the formal parameter as char * n is the 
same as declaring it char n [ J. 

Within the function, the local variable i is defined and used to monitor the 
current position in the array. The function returns the id structure 
member if the name member matches the array n; otherwise, it returns O. 

163 



:Microsoft C Compiler Language Reference 

7.2.4 Function Body 

The function body is simply a compound statement. The compound state­
ment contains the statements that define the function's action and can also 
contain declarations of variables used by these statements. See Section 6.3 
of Chapter 6, "Statements," for a discussion of compound statements. 

All variables declared in the function body have auto storage type unless 
otherwise specified. When the function is called, storage space for the local 
variables is created and local initializations are performed. Execution con­
trol passes to the first statement in the compound statement and continues 
sequentially until a return statement or the end of the function body is 
encountered. Control then returns to the point of call. 

A return statement containing an expression must be executed if the func­
tion is to return a value. The return value of a function is undefined if no 
return statement is executed or if the return statement does not include 
the optional expression. 

7.3 Function Declarations 

A function declaration defines the name, return type, and storage class of a 
given function, and may establish the type of some or all of the function's 
arguments. See Chapter 4, "Declarations," for a detailed description of the 
syntax of function declarations. 

Functions can be declared implicitly or with forward declarations. The 
return type of a function declared either implicitly or with a forward 
declaration must agree with the return type specified in the function 
definition. 

An implicit declaration occurs whenever a function is called without being 
previously defined or declared. The C compiler implicitly declares the 
called function to have int return type. By default, the function is declared 
to have extern storage class; the function definition can redefine the 
storage class to static, provided the function definition is given later in the 
same source file. 

A forward declaration establishes the attributes of a function, allowing the 
declared function to be called before it is defined or allowing it to be called 
from another source file. If the storage-class specifier static is given in a 
forward declaration, the function has static class. The function definition 
must also specify the static class. If the storage-class specifier is extern or 

164 



Functions 

is omitted, the function has extern class. However, the function definition 
can redefine the storage class as static, provided the function definition 
appears below the declaration in the same source file. 

Forward declarations have several important uses. They establish the 
return type for functions that return any type of value but into (Functions 
that return int values can also have forward declarations, but do not 
require them.) If a function with non-int return type is called before it is 
declared or defined, the results are unpredictable. 

Forward declarations can be used to establish the types of arguments 
expected in a function call. The optional argument-type list of a forward 
declaration gives the type and number of arguments expected. (The 
number of arguments can vary.) The argument-type list is a list of type 
names corresponding to the expression list in the function call. 

If no argument-type list is supplied, no type checking is performed. Type 
mismatches between actual arguments and formal parameters are silently 
accepted. Type checking is discussed further in Section 704.1, "Actual 
Arguments." 

Forward declarations are also used to declare pointers to functions before 
the functions are defined. 

Example 

main () 
{ 

} 

int a = 0, b = 1; 
float x = 2.0, Y = 3.0; 
double realadd(double, double); 

a intadd (a, b); 
x = realadd(x, y); 

intadd(a, b) 
int a, b; 
{ 

} 

double 
double 
{ 

} 

return (a + b); 

realadd(x, y) 
x, y; 

return (x + y); 

166 



Microsoft C Compiler Language Reference 

In the example, the function intadd is implicitly declared to return 
an int value, since it is called before it is defined. The compiler does not 
check the types of the arguments in the call because no argument-type list 
is available. 

The function rea 1 add returns a double value instead of an into 
The forward declaration of realadd in the main function allows the 
rea 1 add function to be called before it is defined. Note that the definition 
of rea 1 add matches the forward declaration by specifying the double 
return type. 

The forward declaration of rea 1 add also establishes the types of its two 
arguments; the actual arguments match the types given in the forward 
declaration and also match the types of the formal parameters. 

7.4 Function Calls 

A function call is an expression that passes control and zero or more actual 
arguments to a function. A function call has the form 

expression([ expression-list]) 

where expression evaluates to a function address and expression-list is a list 
of expressions (separated by commas) whose values, the actual arguments, 
are passed to the function. The expression-list can be empty. 

When the function call is executed, the expressions in the function expres­
sion list are copied, converted as necessary, and then passed to formal 
parameters of the called function. The first expression in the list always 
corresponds to the first formal parameter of the function, the second 
expression corresponds to the second formal parameter, and so on through 
the end of the list. Since the called function works with copies of the actual 
arguments, any changes it makes to the arguments are not reflected in the 
original values from which the copies were made. 

Execution control then passes to the first statement in the function. The 
execution of a return statement in the body of the function returns control 
and possibly a value to the calling function. If no return statement is exe­
cuted, control returns to the caller after the last statement of the called 
function is executed, and the return value is undefined. 

166 



Functions 

Important 

The expressions in the function call's expression list can be evaluated 
in any order, so expressions with side effects have unpredictable results. 
The only guarantee the compiler makes is that all side effects in the 
expression list are evaluated before control passes to the called 
function. 

The only requirement in calling a function is for the expression before the 
parentheses to evaluate to a function address. This means that a function 
can be called through any function-pointer expression. It may be helpful to 
remember that a function is called in the same manner in which it is 
declared. For instance, when declaring a function, the name of the function 
is given, followed by an argument-type list in parentheses. To call the 
function, only the name of the function is required, followed by an expres­
sion list in parentheses. The indirection operator (*) is not required to call 
the function because the name of the function evaluates to the function 
address. 

The same principle applies when calling a function through a pointer. For 
example, suppose a function pointer is declared as follows: 

int (*fpointer) (int, int); 

The identifier fpo inter is declared to point to a function taking two int 
arguments ::md returning an int value. A function call through fpointer 
might look like this: 

(*fpointer) (3,4) 

The indirection operator (*) is used to obtain the address of the function 
Lo which fpointer points. The function address is then used to call the 
function. 

167 



Microsoft C Compiler Language Reference 

Examples 

/********************* Example 1 *********************/ 

double *realcomp(double, double); 
double a, b, *rp; 

rp = realcomp(a, b); 

/********************* Example 2 *********************/ 

168 

main () 
{ 

} 

long lift (int), step (int) , drop (int) ; 
void work (int, long (*)(int»; 
int select, count; 

select = 1; 
switch ( select) { 

} 

case 1: work (count, lift); 
break; 

case 2: work (count, step); 
break; 

case 3: work (count, drop); 

default: 
break; 

void work ( n, func 
int n; 
long (* func) (int) ; 
{ 

} 

int i; 
long j; 

for (i j 0; i < n; i++) 
j += ('I< fune) (i) ; 



Functions 

In the first example, the rea 1 comp function is called in the statement 
rp = rea 1 comp (a I b);. Two double arguments are passed to the 
realcomp function; the return value, a pointer to a double, is assigned 
to rp. 

In the second example, the function call 

work (count, lift); 

in main passes an integer variable and the address of the function 1 i ft to 
the function work. Note that the function address is passed simply by giv­
ing the function identifier, since a function identifier evaluates to a pointer 
expression. To use a function identifier in this way, the function must be 
declared or defined before the identifier is used; otherwise, the identifier is 
not recognized. In this case, a forward declaration for work is given at the 
beginning of the main function. 

The formal parameter func in work is declared to be a pointer to a func­
tion taking one int argument and returning a long. The parentheses 
around the parameter name are required; without them, the declaration 
would specify a function returning a pointer to a long. 

The function work calls the selected function by using the following func­
tion call: 

(* func) (i) ; 

One argument, i, is passed to the called function. 

7.4.1 Actual Arguments 

An actual argument can be any value with fundamental, structure, union, 
or pointer type. Although arrays and functions cannot be passed as param­
eters, pointers to these items can be passed. 

All actual arguments are passed by value. A copy of the actual argument is 
assigned to the corresponding formal parameter. The function uses this 
copy without affecting the variable from which it was originally derived. 

169 



Microsoft C Compiler Language Reference 

Pointers provide a way to access a value by reference from a function. 
Since a pointer to a variable holds the address of the variable, the function 
can use this address to access the value of the variable. Pointer arguments 
allow a function to access arrays and functions, even though arrays and 
functions cannot be passed as arguments. 

The expressions in a function call are evaluated and converted as follows: 

• If an argument-type list is present, then for each actual argument in 
the function call, the usual arithmetic conversions are performed 
independently on the corresponding type in the argument-type list, 
and the actual argument is converted to that type. Next, the con­
verted expression is compared with the type of the formal parame­
ter that has the same place in the parameter list that the expression 
has in the expression list. (The formal parameters also undergo the 
usual arithmetic conversions before the comparison.) No conver­
sions are performed, but the compiler produces warning messages as 
if the expressions were assigned to the formal parameters. 

• If no argument-type list is present, or if there are more actual 
arguments than there are type names in the argument-type list, the 
usual arithmetic conversions are performed independently on each 
actual argument that lacks a corresponding type name. 

If the near, far, and huge keywords are implemented, implementation­
dependent conversions on pointer arguments may also be performed. See 
your system documentation for information on pointer conversions. 

The number of expressions given in the expression list must match the 
number of formal parameters, unless the function's forward declaration and 
possibly its definition explicitly specify a variable number of arguments. In 
this case, the compiler checks as many arguments as there are type names 
in the argument-type list and converts them, if necessary, as described 
above. 

If the argument-type list contains the special type name void, the compiler 
expects zero actual arguments in the function call and zero formal parame­
ters. It produces a warning message if it finds otherwise. 

The type of each formal parameter also undergoes the usual arithmetic 
conversions. The converted type of each formal parameter determines how 
the arguments on the stack are interpreted; if the type of the formal 
parameter does not match the type of the actual argument, the data on the 
stack can be misinterpreted. 

170 



Functions 

Note 

Type mismatches between actual and formal parameters can produce 
serious errors, particularly when the mismatches entail size differences. 
Keep in mind that these errors are not detected unless an argument­
type list is given in the forward declaration of the function. 

Example 

main () 
{ 

} 

void swap (int *, int *); 
int x, y; 

swap (&x, &y); 

void swap (a, b) 
int *a, *b; 
{ 

} 

int t; 

t = *a; 
*a *b; 
*b = t; 

In the above example, the swap function is declared in main to have two 
arguments, both pointers to integers. The formal parameters a and bare 
also declared as pointers to integer variables. In the function call 

swap (&x, &y) 

the address of x is stored in a and the address of y is stored in b. Now two 
names, or "aliases," exist for the same location. References to * a and * b in 
swap are effectively references to x and y in main. The assignments within 
swap change the contents of x and y. 

The compiler performs type checking on the arguments to swap because an 
argument-type list is present in the forward declaration of swap. The 
types of the actual arguments match both the argument-type list and the 
formal parameters. 

171 



Microsoft C Compiler Language Reference 

7.4.2 Calls with a Variable Number of Arguments 

To call a function with a variable number of arguments, the programmer 
simply gives any number of arguments in the function call. In the forward 
declaration of the function (if there is one), a variable number of arguments 
is specified by placing a comma followed by three periods (, .•. ) at the end of 
the argument-type list (see Section 4.5 of Chapter 4, "Declarations"). One 
argument must be present in the function call for each type name specified 
in the argument-type list. If only the three periods (but no type names) are 
given, no arguments are required when calling the function. 

Similarly, the parameter list in the function definition can end with a 
comma followed by three periods (, ..• ) to indicate a variable number of 
arguments. If the parameter list contains only three periods ( .•. ), the 
number of parameters is variable and may be zero. See Section 7.2, "Func­
tion Definitions," for more information on the form of the parameter list. 

Note 

To maintain compatibility with previous versions, the compiler will also 
accept the comma character, without the trailing periods, at the end of 
the argument-type list or parameter list to indicate a variable number 
of arguments. A single comma can also be used instead of three periods 
to form the argument-type list or parameter list of a function taking 
zero or more arguments. Use of the comma is supported only for com­
patibility; use of the three periods is recommended for new code. 

All the arguments given in the function call are placed on the stack. 
The number of formal parameters declared for the function determines 
how many of the arguments are taken from the stack and assigned to the 
formal parameters. The programmer is responsible for retrieving any 
additional arguments from the stack and for determining how many argu­
ments are present. See your system documentation for information about 
macros that can be used to handle a variable number of arguments in a 
portable way. 

172 



Functions 

7.4.3 Recursive Calls 

Any function in a C program can be called recursively. A function can 
therefore call itself. The C compiler allows any number of recursive calls 
to a function. On each call, new storage is allocated for the formal para­
meters and for the auto and register variables so that their values in pre­
vious, unfinished calls are not overwritten. Previous parameters are inac­
cessible to all versions of the function except the version in which they were 
created. 

Note that variables declared with global storage do not require new storage 
with each recursive call. Their storage exists for the lifetime of the pro­
gram. Each reference to such a variable accesses the same storage area. 

Although the C compiler defines no limit for the number of times a function 
can be called recursively, the operating environment may impose a practical 
limit. Since each recursive call requires additional stack memory, too many 
recursive calls can cause a stack overflow. 

173 





Chapter 8 

Preprocessor Directives 
and Pragrnas 

8.1 Introduction 177 
8.2 
8.2.1 
8.2.2 
8.3 
8.4 
8.4.1 
8.4.2 
8.5 
8.6 

Manifest Constants and Macros 178 
The # define Directive 178 
The # undef Directive 182 

Include Files 183 
Conditional Compilation 184 

The # if, # elif, # else, and # endif Directives 
The #ifdef and #ifndef Directives 188 

Line Control 189 
Pragmas 190 

185 

176 





Preprocessor Directives and Pragmas 

8.1 Introduction 

A "preprocessor directive" is an instruction intended for the C preproces­
sor. The C preprocessor is a text processor used to manipulate the text of a 
source file as the first phase of compilation. The compiler ordinarily in­
vokes the preprocessor in its first pass, but the preprocessor can also be in­
voked separately to process text without compiling. 

Preprocessor directives are typically used to make source programs easy to 
modify and to compile in different execution environments. Directives in 
the source file instruct the preprocessor to perform specific actions. For ex­
ample, the preprocessor can replace tokens in the text, insert the contents 
of other files into the source file, and suppress compilation of a portion of 
the file by removing sections of text. 

The C preprocessor recognizes the following directives: 

# define 
#elif 
# else 
#endif 

#if 
#ifdef 
#ifndef 
# include 

# line 
#undef 

The number sign (# ) must be the first non-white-space character on the 
line containing the directive; white-space characters can appear between 
the number sign and the first letter of the directive. Some directives are 
followed by arguments or values, as described below. Directives can appear 
anywhere in a source file, but they apply only to the remainder of the 
source file in which they appear. 

A "pragma" is a "pragmatic," or practical, instruction to the C compiler. 
Pragmas are embedded in C source files and are typically used to control 
the actions of the compiler in a particular portion of a program without 
affecting the program as a whole. Section 8.6 describes the syntax for prag­
mas. However, the particular pragmas that are available, and their mean­
ings, are defined by the implementation. See your system documentation 
for information on the use and effects of pragmas. 

177 



Microsoft C Compiler Language Reference 

8.2 Manifest Constants and Macros 

The # define directive is typically used to associate meaningful identifiers 
with constants, keywords, and commonly used statements or expressions. 
Identifiers that represent constants are called "manifest constants." 
Identifiers that represent statements or expressions are called "macros." 

Once an identifier is defined, it cannot be redefined to a different value 
without first removing the definition. However, the identifier can be 
redefined with exactly the same definition. Thus, a program is allowed to 
contain more than one occurrence of the same definition. 

The #undef directive removes the definition of an identifier. Once the 
definition has been removed, the identifier can be redefined to a different 
value. Sections 8.2.1 and 8.2.2 discuss the # define and # undef direc­
tives, respectively. 

Macros can be defined to look and act like function calls. Because macros 
do not generate actual function calls, replacing function calls with macros 
can improve execution time. However, macros create problems if they are 
not defined and used with care. Macro definitions with arguments may 
require the use of parentheses to preserve the proper precedence in an 
expression. In addition, macros may not correctly handle expressions with 
side effects. See the examples in Section 8.2.1 for more information. 

8.2.1 The # define Directive 

Syntax 

# define identifier text 
# define identifier(parameter-list) text 

The # define directive substitutes the given text for subsequent occurrences 
of the specified identifier in the source file. The identifier is replaced only 
when it forms a token. (Tokens are described in Chapter 2, "Elements of 
C," and in Appendix B, "Syntax Summary.") For instance, the identifier is 
not replaced when it occurs within a string or as part of a longer identifier. 

If a parameter-list appears after the identifier, the # define directive 
replaces each occurrence of identifier(parameter-list) with a version of text 
modified by substituting actual arguments for formal parameters. 

178 



Preprocessor Directives and Pragmas 

The text consists of a series of tokens, such as keywords, constants, or com­
plete statements. One or more white-space characters must separate the 
text from the identifier (or from the closing parenthesis of the parameter­
list). If the text is longer than one line, it can be continued onto the next 
line by preceding the new-line character with a backslash (\). 

The text can also be empty. The effect of this option is to remove instances 
of the given identifier from the source file. The identifier is still considered 
defined, however, and yields the value 1 when tested with the #if directive 
(discussed in Section 8.4.1). 

The parameter-list, when given, consists of one or more formal parameter 
names separated by commas. Each name in the list must be unique, and 
the list must be enclosed in parentheses. No spaces between the identifier 
and the opening parenthesis are allowed. 

Formal parameter names appear in text to mark the places where actual 
values will be substituted. Each parameter name can occur more than once 
in the text, and the names can appear in any order. 

The actual arguments following an instance of the identifier in the source 
file are matched to the formal parameters of the parameter-list, and the text 
is modified by replacing each formal parameter with the corresponding 
actual argument. The actual argument list and the formal parameter-list 
must have the same number of arguments. 

Arguments with side effects sometimes cause macros to produce unexpected 
results. A macro definition may contain more than one occurrence of a 
given formal parameter, and if that formal parameter is replaced by an 
expression with side effects, the expression, with its side effects, is evaluated 
more than once (see Example 4 below). 

Examples 

/******************** Example 1 ********************/ 

#define WIDTH 
#define LENGTH 

80 
(WIDTH + 10) 

/******************** Example 2 ********************/ 

#define FILEMESSAGE "Attempt to create file \ 
failed because of insufficient space" 

179 



Microsoft C Compiler Language Reference 

/******************** Example 3 ********************/ 

#define REGl 
#define REG2 
#define REG3 

register 
register 

/******************** Example 4 ********************/ 

#define MAX(X/y) ((X) > (y)) 7 (x) : (y) 

/******************** Example 5 ********************/ 

#define MULT(a/b) 

Example 

1 

2 

3 

180 

( (a) * (b)) 

Description 

The first example defines the identifier WIDTH as 
the integer constant 80, and defines LENGTH in 
terms of WI DTH and the integer constant 10. Each 
occurrence of LENGTH is replaced with (WIDTH + 
10), which is in turn replaced with the expression 
(80 + 10). The parentheses around WIDTH + 10 
are important because they control the interpreta­
tion in a statement such as the following: 

var = LENGTH * 20; 

After the preprocessing stage the statement 
becomes 

var = (80 + 10) * 20; 

or 1800. Without parentheses, the result is 

var = 80 + 10 * 20; 

which evaluates to 280 because the multiplication 
operator ( * ) has higher precedence than the addi­
tion operator (+). 
The second example defines the identifier 
fILEMESSAGE. The definition is extended 
to a second line by using the backslash escape 
character (\). 

The third example defines three identifiers, REG1, 
REG2, and REG3. REGl and REG2 are defined as 
the keyword register. The definition of REG3 is 
empty, so each occurrence of REG3 is removed from 
the source file. These directives can be used to 
ensure that the program's most important 



4 

5 

Preprocessor Directives and Pragmas 

variables (declared with REGI and REG2) are given 
register storage. See the discussion of the # if 
directive in Section 8.4.1 for an expanded version of 
this example. 

The fourth example defines a macro named MAX. 
Each occurrence of the identifier MAX following the 
definition in the source file is replaced. by the 
expression ((x) > (y» ? (x) (y) , where 
actual values replace the parameters x and y. For 
example, the occurrence 

MAX(l,2) 

is replaced with 

((1) > (2» ? (1) (2) 

and the occurrence 

MAX (i, s [i] ) 

is replaced with 

((i) > (s[i]»? (i) : (s[i]) 

This macro is easier to read than the corresponding 
expression, making the source program easier to 
understand. 

Note that arguments with side effects may cause 
this macro to produce unexpected results. For 
example, the occurrence MAX (i / s [i + + J) is 
replaced with (( i) > (s [i + + ] ) ? (i) 
(s [i + + ] ). The expression (s [i + + J) is 

evaluated twice, so by the time the ternary expres­
sion has been fully evaluated, i has increased by 2. 
The result of the ternary expression is unpredict­
able, since the operands of the ternary expression 
can be evaluated in any order, and the value of i 
varies depending on the evaluation order. 

The fifth example defines the macro MUL T. Once 
the macro is defined, an occurrence such as 
MUL T ( 3 / 5) is replaced by (3) * ( 5). The 
parentheses around the parameters are important 
because they control the interpretation when com­
plex expressions form the arguments to the macro. 

181 



Microsoft C Compiler Language Reference 

For instance, the occurrence MULT (3 + 4/ 5 + 
6) is replaced by (3 + 4) * (5 + 6),which 
evaluates to 77. Without the parentheses, the 
result is 3 + 4 * 5 + 6, which evaluates to 29 
because the multiplication operator (*) has higher 
precedence than the addition operator (+). 

8.2.2 The #undef Directive 

Syntax 

# undef identifier 

The # undef directive removes the current definition of identifier. The 
preprocessor ignores subsequent occurrences of identifier. To remove a 
macro definition using # undef, give only the macro identifier; do not give 
a parameter list. 

The # undef directive can also be applied to an identifier that has no pre­
vious definition. This ensures that the identifier is undefined. 

The # undef directive is typically paired with a # define directive to 
create a region in a source program in which an identifier has a special 
meaning. For example, a specific function of the source program can use 
manifest constants to define environment-specific values that do not affect 
the rest of the pn'gram. The # undef directive also works with the # if 
directive (see Section 8.4.1) to control compilation of portions of the source 
program. 

Example 

#define WIDTH 
#define ADD (X/Y) 

#undef WIDTH 
#undef ADD 

80 
(X) + (Y) 

In this example, the # undef directive removes definitions of a manifest 
constant and a macro. Note that only the identifier of the macro is given. 

182 



8.3 Include Files 

Syntax 

# include "pathname" 
# include <pathname> 

Preprocessor Directives and Pragmas 

The # include directive adds the contents of a given "include file" to 
another file. Constant and macro definitions can be organized into include 
files and added to any source file by using # include directives. Include 
files are also useful for incorporating declarations of external variables and 
complex data types. The types need only be defined and named once in an 
include file created for that purpose. 

The #include directive tells the preprocessor to treat the contents of the 
named file as if they appeared in the source program at the point of the 
directive. The new text can also contain preprocessor directives. The 
preprocessor carries out directives in the new text, then continues process­
ing the original text of the source file. 

The pathname is a file name optionally preceded by a directory specifi­
cation. It must name an existing file. The syntax of the file specification 
depends on the specific operating system on which the program is compiled. 

The preprocessor uses the concept of a "standard" directory or directories 
to search for included files. The location of the standard directories for 
include files depends on the implementation and the operating system. See 
your system documentation for a definition of the standard directories. 

The preprocessor stops searching as soon as it finds a file with the 
given name. If a complete, unambiguous path name for the include file is 
given, either in double quotation marks (" ") or in angle brackets « », 
the preprocessor searches only that path name and ignores the standard 
directories. 

If the file specification does not give a complete path name, and the file 
specification is enclosed in double quotation marks, the preprocessor first 
searches for the file in the same directory as the including file (the "current 
working directory"). The preprocessor then searches directories specified in 
the compiler command line and finally searches the standard directories. 

If the file specification is enclosed in angle brackets, the preprocessor does 
not search the current working directory. It begins by searching for the file 
in directories specified in the compiler command line and then searches the 
standard directories. 

183 



Microsoft C Compiler Language Reference 

An # include directive can be nested; in other words, the directive can 
appear in a file named by another # include directive. When the preproces­
sor encounters the nested # include directive, it processes the named file 
and inserts it into the current file. The preprocessor uses the same search 
procedures outlined above in searching for nested include files. 

The new file can also contain # include directives. Nesting can continue up 
to 10 levels. Once the nested #include is processed, the preprocessor con­
tinues to insert the enclosing include file into the original source file. 

Examples 

#include <stdio.h> /* Example 1 */ 

#include "defs.h" /* Example 2 */ 

The first example adds the contents of the file named stdio. h to the 
source program. The angle brackets cause the preprocessor to search the 
standard directories for stdio. h, after searching directories specified in 
the command line. 

The second example adds the contents of the file specified by de fs . h to 
the source program. The double quotation marks mean that the directory 
containing the current source file is searched first. 

8.4 Conditional Compilation 

This section describes the syntax and use of directives that control "condi­
tional compilation." These directives allow for suppressing compilation of 
portions of a source file by testing a constant expression or identifier to 
determine which text blocks are passed on to the compiler and which are 
removed from the source file in the preprocessing stage. 

184 



Preprocessor Directives and Pragmas 

8.4.1 The #if, #elif, leIse, and #endif Directives 

Syntax 

# if restricted-constant-expression 
[ text] 

[ # elif restricted-constant-expression 
text] 

[ # elif restricted-constant-expression 
text] 

[ # else 
text] 

#endif 

The # if directive, together with the # elif, # else, and # endif directives, 
controls compilation of portions of a source file. Each # if directive in a 
source file must be matched by a closing # endif directive. Zero or more 
# elif directives can appear between the # if and # endif directives, but at 
most one # else directive is allowed. The # else directive, if present, must 
be the last directive before # endif. 

The preprocessor selects one of the given blocks of text for further process­
ing. A text block is any sequence of text. It can occupy more than one line. 
Usually the text block is program text that has meaning to the compiler or 
the preprocessor. However, this is not a requirement; the preprocessor can 
be used to process any kind of text. 

The selected text is processed by the preprocessor and passed to the com­
piler. If the text contains preprocessor directives, those directives are car­
ried out. 

Any text blocks not selected by the preprocessor are removed from the file 
in the preprocessing stage and are therefore not compiled. 

The preprocessor selects a single text block by evaluating the restricted­
constant- expressions following each # if or # elif directive until a true 
(nonzero) restricted-constant-expression is found. All text between the first 
true restricted-constant-expression and the next number sign (# ) is 
selected. 

185 



Microsoft C Compiler Language Reference 

If no restricted-constant-expression is true, or if there are no # elif direc­
tives, the preprocessor selects the text after the # else clause. If the # else 
clause is omitted, and no restricted-constant-expression in the #if block is 
true, no text is selected. 

Each restricted-constant-expression follows the rules for restricted constant 
expressions discussed in Section 5.2.10 of Chapter 5, "Expressions and 
Assignments." Such expressions cannot contain sizeof expressions, type 
casts, or enumeration constants, but they can contain the special constant 
expression defined( identifier). This constant expression is considered true 
(nonzero) if the given identifier is currently defined; otherwise, the condi­
tion is false (0). An identifier defined as empty text is considered defined. 

The # if, # elif, # else, and # endif directives can nest in the text portions 
of other # if directives. When nested, each # else, # elif, and # endif 
directive belongs to the closest preceding # if directive. 

Examples 

/******************** Example 1 ********************/ 

#if defined(CREDIT) 
credit 0 ; 

#elif defined(DEBIT) 
debit () ; 

#else 
printerror () ; 

#endif 

/******************** Example 2 ********************/ 

#if DLEVEL > 5 
#define SIGNAL 1 
#if STACKUSE 1 

#define STACK 200 
#else 

#define STACK 100 
#endif 

#else 
#define SIGNAL 0 
#if STACKUSE 1 

#define STACK 100 
#else 

#define STACK 50 
#endif 

#endif 

186 



Preprocessor Directives and Pragmas 

/******************** Example 3 ********************/ 

#if DLEVEL == 0 
#define STACK 0 

#elif DLEVEL == 1 
#define STACK 100 

#elif DLEVEL > S 
display ( debugptr ); 

#else 
#define STACK 200 

#endif 

/******************** Example 4 ********************/ 

#define REGl 
#define REG2 

register 
register 

#if defined(ML86) 
#define REG3 
#define REG4 
#define REGS 

#else 
#define REG3 register 
#if defined(M_68000) 

#define REG4 
#define REGS 

#endif 
#endif 

register 
register 

In the first example, the # if and # endif directives control compila-
tion of one of three function calls. The function call to credi t is compiled 
if the identifier CREDIT is defined. If the identifier DEBIT is defined, the 
function call to debi t is compiled. If neither identifier is defined, the call 
to pr interror is compiled. Note that CREDIT and credi t are distinct 
identifiers in C because their cases are different. 

The next two examples assume a previously defined manifest constant, 
DLEVEL. The second example shows two sets of nested # if, # else, 
and # endif directives. The first set of directives is processed only if 
DLEVEL > 5 is true. Otherwise, the second set is processed. 

In the third example, # elif and # else directives are used to make one of 
four choices, based on the value of DLEVEL. The manifest constant STACK 
is set to 0, 100, or 200, depending on the definition of DLEVEL. If DLEVEL 
is greater than 5, di sp 1 ay (debugptr) ; is compiled and STACK is not 
defined. 

187 



Microsoft C Compiler Language Reference 

The fourth example uses preprocessor directives to control the meaning of 
register declarations in a portable source file. The compiler assigns regis­
ter storage to variables in the same order in which the register declara­
tions appear in the source file. If a program contains more register decla­
rations than the machine can accommodate, the compiler honors earlier 
declarations over later ones. Loss of efficiency can occur if the variables 
declared later are more heavily used. 

The definitions listed above can be used to give priority to the most impor­
tant register declarations. REGI and REG2 are defined as the register key­
word to declare register storage for the two most important variables in 
the program. For example, in the following fragment, band c have higher 
priority than a or d. 

func (a) 

REG3 int a' 

{ 

} 

REGl int b; 
REG2 int c; 
REG4 int d; 

When M_86 is defined, the preprocessor removes the REG3 identifier from 
the file by replacing it with empty text; this prevents a from receiving 
register storage at the expense of band c. When M_68000 is defined, all 
four variables are declared to have register storage. When neither M_86 
nor M_68000 is defined, a, b, and c are declared with register storage. 

8.4.2 The #ifdef and #ifndef Directives 

Syntax 

# ifdef identifier 
# ifndef identifier 

The # ifdef and # ifndef directives accomplish the same task as the # if 
directive used with defined( identifier). These directives can be used any­
where # if can be used, and are provided only for compatibility with previ­
ous versions of the language. The defined( identifier) constant expression 
used with the # if directive is preferred. 

188 



Preprocessor Directives and Pragmas 

When the preprocessor encounters an # ifdef directive, it checks to see 
whether the identifier is currently defined. If so, the condition is true 
(nonzero); otherwise, the condition is false (0). 

The # ifndef directive checks for the opposite condition checked by 
# ifdef. If the identifier has not been defined (or its definition has been 
removed with # un de f) , the condition is true (nonzero). Otherwise, the con­
dition is false (0). 

8.5 Line Control 

Syntax 

# line constant IT "filename" ] 

The # line directive instructs the preprocessor to change the compiler's 
internally stored line number and file name to a given line number and file 
name. The compiler uses the internally stored line number and file name to 
refer to errors encountered during compilation. The line number normally 
refers to the current input line; the file name refers to the current input file. 
The line number is increased after each line is processed. 

Changing the line number and file name causes the compiler to ignore the 
previous values and to continue processing with the new values. The # line 
directive is typically used by program generators to cause error messages to 
refer to the original source file instead of the generated program. 

The constant value in the # line directive is any integer constant. The 
filename can be any combination of characters and must be enclosed in 
double quotation marks (" "). If filename is omitted, the previous file 
name remains unchanged. 

The current line number and file name are always available through the 
predefined identifiers _~INE __ and __ F~E __ . The _.-LINE __ and 
_.J'~E __ identifiers can be used to insert self-descriptive error messages 
into the program text. 

The __ F~E __ identifier contains a string representing the file name, sur­
rounded by double quotation marks (" "). Thus, it is not necessary to 
enclose the __ F~E __ identifier in quotation marks when using it as a 
string. 

189 



Microsoft C Compiler Language Reference 

Examples 

/******************** Example 1 ********************/ 

#line 151 "copy.c" 

/******************** Example 2 ********************/ 

#define ASSERT (cond) if(!cond)\ 
{printf("assertion error line %d, file(%s)\n", \ 
__ LINE __ , __ FILE __ );} else; 

In the first example, the internally stored line number is set to 151 and the 
file name is changed to copy. c. 

In the second example, the macro ASSERT uses the predefined identifiers 
_.-LINE __ and __ FlLE __ to print an error message about the source file 
if a given "assertion" is not true. Note that no quotation marks are neces­
sary around __ FlLE __ . 

8.6 Pragmas 

Syntax 

# pragma character-sequence 

A # pragma is an implementation-defined instruction to the compiler. It 
has the general form given above, where character-sequence is a series of 
characters giving a specific compiler instruction and arguments, if any. 
The number sign (#) must be the first non-white-space character on the 
line containing the pragma; white-space characters can appear between the 
number sign and the word pragma. 

See your system documentation for information about the pragmas avail­
able in your compiler implementation. 

190 



Language Reference Appendixes 

A Differences 193 
B Syntax Summary 199 

191 





Appendix A 

Differences 

This appendix summarizes differences between Microsoft C and the descrip­
tion of the C language found in Appendix A of The C Programming 
Language by Brian W. Kernighan and Dennis M. Ritchie, published in 1978 
by Prentice-Hall, Inc. The following is a list of the differences, with cross­
references to the corresponding section numbers in The C Programming 
Language: 

Section Number in 
Kernighan and Ritchie 

2.2 

2.3 

2.4.1 

Microsoft C 

Identifiers (including those used in 
preprocessor directives) are 
significant to 31 characters. External 
identifiers are also significant to 31 
characters. 

The identifiers asm and entry are no 
longer keywords. New keywords are 
const, volatile, enum, signed, and 
void. (The const and volatile key­
words are not yet implemented but 
are reserved for future use.) The 
identifiers cdecl, far, fortran, huge, 
near, and pascal may be keywords, 
depending on whether or not the 
corresponding options are enabled 
when a program is compiled (see your 
system documentation). 

As a result of the method used for as­
signing types to hexadecimal and oc­
tal constants, these constants always 
act like. unsigned illtegers ill type 
converSIOns. 

193 



Microsoft C Compiler Language Reference 

2.4.3 

2.6 

4 

194 

Hexadecimal bit patterns consisting 
of a backslash (\), the letter x, and 
up to two hexadecimal digits are per­
mitted as character constants (for ex­
ample, \x12). 

Microsoft C defines three additional 
escape sequences: \ v represents a 
vertical tab (VT), \" represents the 
double-quote character, and \a 
represents the bell (also called alert). 

Character constants always have 
type int, with the result that they 
are sign extended in type conversions. 

The short type is always 16 bits in 
length, the long type 32 bits. The 
size of an int is machine dependent. 
On 8086/8088, 80186, and 80286 pro­
cessors an int is 16 bits long, and on 
80386 and 68000 machines it is 32 
bits. 

The char type is signed by default, 
with the result that a char value is 
sign extended in type conversions. 
(In some implementations, the de­
fault for the char type can be 
chan!?ed to unsigned at compile 
time.) 

Two additional unsigned types 
are supported: unsigned char and 
unsigned long. 

The keyword unsigned or signed 
can be applied as an adjective to an 
integer type. When unsigned ap­
pears alone it means unsigned int; 
similarly, when signed appears 
alone, it means int, 

Microsoft C offers an additional fun­
damental type, the enum (enumera­
tion) type. The void type is defined 
as the return type of functions that 
do not return a value. 



6.4 

6.6 

7.2 

7.14 

8.2 

Differences 

If the near, far, and huge keywords 
are enabled, pointers of different sizes 
may occur in a program. Operations 
with pointers of different sizes may 
cause conversion of pointers; the path 
of the conversion is implementation 
dependent. 

The arithmetic conversions carried 
out by the Microsoft C Compiler are 
outlined in Sections 5.3.1 and 5.7 of 
Chapter 5, "Expressions and Assign­
ments." Although compatible with 
the Kernighan and Ritchie conver­
sions, the Microsoft C conversions are 
described in greater detail, including 
the spe~ific path for each type of 
converSIOn. 

In addition to the usual arithmetic 
conversions, conversions between 
pointers of different sizes may be rou­
tinely carried out when the near, 
far, and huge keywords are enabled. 
The path of the pointer conversions 
is implementation dependent. 

In connection with the sizeof opera­
tor, a byte is defined as an 8-bit 
quantity. 

A structure can be assigned to 
another structure of the same type. 

The keywords enum and void are 
additional type specifiers. The key­
word signed or unsigned can serve 
either as a type specifier or as an ad­
jective modifying an integer type. 

195 



Microsoft C Compiler Language Reference 

8.4 

8.5 

8.6 

9.7 

10.1 

196 

Therefore, the following additional 
combinations are acceptable: 

signed char 
signed short 
signed short int 
signed long 
signed long int 
unsigned char 
unsigned short 
unsigned short int 
unsigned long 
unsigned long int 

Optional argumen t- type lists can be 
included in function declarations to 
notify the compiler of the number 
and types of arguments expected in a 
function call. 

Bit fields must be declared unsigned. 

The names of structure and union 
members are not required to.be dis­
tinct from structure and union tags 
or from the names of other variables. 

No relationship exists between the 
members of two different structure 
types. 

Unions can be initialized by giving 
a value for the first member of the 
unIOn. 

The expression of a switch is an in­
tegral expression that is the size of an 
int or shorter. An expression with 
enum type is permitted. Each of the 
case constant expressions is cast to 
the type of the expression. 

The parameter list in a function 
definition can end with a comma fol­
lowed by three periods (,000) or just a 
comma (,) to indicate that the 
number of parameters is variable. A 



12 

12.3 

14.1 

17 

Differences 

parameter list containing only three 
periods ( ••• ) or a comma (,) indicates 
that the function can take zero or 
more parameters. 

The number sign (#) introduc-
ing the preprocessor directive can be 
preceded by any combination of 
white-space characters. White space 
can also occur between the number 
sign and the preprocessor keyword. 

In addition to preprocessor directives, 
the source file can also contain prag­
mas. Pragmas, like directives, are in­
troduced by a number sign as the 
first non-white-space character in a 
line. The action defined by a particu­
lar pragma is implementation depen­
dent. 

The new combination # if 
defined( identifier) is intended to sup­
plant the #ifdef and #ifndef direc­
tives. Use of the latter directives is 
discouraged. 

The new directive # elif (else-if) is 
designed for use in # if and # if 
defined blocks. 

A structure or union can be assigned 
to another structure or union of the 
same type. Structures and unions 
can be passed by value to functions 
and returned by functions. 

In expressions involving - >, the ex­
pression preceding the arrow must 
have the same type (or be cast to the 
same type) as the structure to which 
the member on the right-hand side of 
the arrow belongs. 

The listed anachronisms are not 
recognized. 

197 





Appendix B 

Syntax Summary 

B.1 Tokens 201 
B.1.1 Keywords 201 
B.1.2 Identifiers 201 
B.1.3 Constants 202 
B.1.4 Strings 204 
B.1.5 Operators 204 
B.1.6 Separators 205 
B.2 Expressions 205 
B.3 Declarations 207 
B.4 Statements 210 
B.5 Definitions 211 
B.6 Preprocessor Directives 
B.7 Pragmas 212 

211 

199 





B.l Tokens 

keyword 
identifier 
constant 
string 
operator 
separator 

B.l.l Keywords 

auto 
break 
case 
char 
const* 
continue 
default 
do 

* Not yet implemented 

double 
else 
enum. 
extern 
float 
for 
goto 
if 

int 
long 
register 
return 
short 
signed 
sizeof 
static 

Syntax Summary 

struct 
switch 
typedef 
union 
unsigned 
void 
volatile* 
while 

The following identifiers may be keywords in some implementations. See 
your system documentation for information. 

cdecl 
far 
fortran 
huge 
near 
pascal 

B.l.2 Identifiers 

identifier: 
letter 
underscore 
identifier letter 
identifier underscore 
identifier digit 

201 



Microsoft 0 Oompiler Language Reference 

letter-one of the following: 
abcdefghijklm 
nopqrstuvwxyz 
ABCDEFGHIJKLM 
NOPQRSTUVWXYZ 

underscore: 

digit-one of the following: 
0123456789 

B.l.3 Constants 

constant: 
integer-constant 
long-constant 
floating-paint-constant 
char-constant 
enum-constant 

integer-constant: 
o 
de cimal- canst ant 
oelal-constant 
hexadecimal-constant 

decimal- constant: 
nonzero-digit 
decimal-constant digit 

nonzero-digit-one of the following: 
123456789 

octal-constant: 
Ooctal-digit 
octal-constant octal-digit 

octal-digit-one of the following: 
01234567 

hexadecimal- constant: 

202 

Oxhexadecimal-digit 
OXhexadecimal- digit 
hexadecimal- constant hexadecimal- digit 



hexadecimal-digit-one of the following: 
0123456789 
abcdef 
ABCDEF 

long-constant: 
integer-constant 1 
integer-constant L 

flo ating-p oint- constant: 
fractional-constant exponent 
fractional- constant 
digit-seq exponent 

fractional-constant: 
digit-seq. digit-seq 
. digit-seq 
digit-seq. 

digit-seq: 
digit 
digit-seq digit 

exponent: 
e sign digit-seq 
E sign digit-seq 
e digit-seq 
E digit-seq 

szgn: 

+ 

char-constant: 
'char' 

char: 
rep-char 
escape-sequence 

Syntax Summary 

203 



Microsoft C Compiler Language Reference 

rep-char: 
Any single representable character except the single quote 
('), 
backslash (\), or new-line character 

escape-se~uence-one of the following: 
\' .\" \\ \ddd \xddd \a 
\b \f \n \r \t \v 

enum-constant: 
identifier 

B.l.4 Strings 

string-literal: 
"" 
" char-seq" 

char-seq: 
char 
char-seq char 

B.l.5 Operators 

operator-one of the following: 
! - ++ 

lie / % 
» < <= > 

!= , & -- , 
&& " += 
*= L= %= »= 
&= ,- ?: - ,-
[ ] ( ) -> 

204 

+ 
« 
>= 
A 

«= 



B.l.6 Separators 

separator-one of the following: 
[ ] () (} 

# lie 

B.2 Expressions 

expresszon: 
identifier 
constant 
string 
expressionfexpression-list) 
expression ) 
expression expression] 
expression. identifier 
expression-> fdentifier 
unary-expresszon 
binary- expression 
ternary- expression 
assignm~nt- exp r essio n 
( expresszon) 
(type-name ) expression 
constant- expression 

expression-~ist: 
expresszon 
expression-list, expression 

unary- expresszon: 
unop expresswn 
sizeof( expression) 

unop-one of the following: 
- ! lie & 

{value: 
identifier 
express~on[ express~on] 
expresszon. expresszon 
expression- > expression 
lie expression 

Syntax Summary 

205 



Microsoft C Compiler Language Reference 

(type-name) expression 
( lvalue) 

type-name: 
See Section B.3, "Declarations." 

binary- expression: 
expression binop expression 

binop-one of the following: 
lie 

« 
>= 

/ % + 
» < > 
-- != & 

II 
II && 

ternary- expression: 

<= 
I 
I 

expression? expression: expression 

assignment- expression: 
lvalue++ 
lvalue-­
++lvalue 
--lvalue 
lvalue assignment-op expression 

assignment- op-one of the followi~: 
- 1Ie- /- 0-- - - -
«= »= &= 1= 

consta nt- expression: 
identifier 
constant 

206 

( type-name)co.nstant-expression 
unary-expresszon 
binary- expression 
ternary- expression 
( constant-expression) 

+= -= 



B.3 Declarations 

declaration: 
sc-specifier type-specifier declarator-list; 
type-specifier declarator-list; 
sc-specifier declarator-list; 
type-specifier; 
typedef type-specifier declarator-list; 

sc-specifier: 
auto 
extern 
register 
static 

type-specifier: 
char 
double 
enum-specifier 
float 
int 
long 
long int 
short 
short int 
struct-speczjier 
typedef-name 
union-specifier 
unsigned 
unsigned char 
unsigned int 
unsigned long 
unsigned long int 
unsigned short 
unsigned short int 
signed 
signed char 
signed int 
signed long 
signed long int 
signed short 
signed short int 

enum-specifier: 
enum tag l enum-listJ 

Syntax Summary 

207 



Microsoft C Compiler Language Reference 

tag: 

enum{ enum-list} 
enum tag -

identifier 

enum-list: 
enumerator 
enum-list, enumerator 

enumerator: 
identifier 
identifier = constant-expression 

struct-specifier: 
struct tag { member-declaration-list} 
struct{ member-declaration-list} 
struct tag 

member-declaration-list: 
member- declaration 
member- declaration-list member- declaration 

member- declaration: 
type-specifier declarator-list; 
type-specifier identifier: constant-expression; 
type-specifier: constant-expression; 

declarator-list: 
declarator 
declarator = initializer 
declarator-list, declarator 

declarator: 
identifier 
range-modzjier identifier 
declarator[ ] 
declarator[ constant-expression] 
lie declarator 
~ec~ara~or~), ,. ., 
aectarawrt arg-,;ype-lZSlj 
( declarator) 

arg-type-list: 
type-name 
arg-type-list, type-name 

208 



arg-type-list, ••• 
arg- type-list, 
void 
void. 

type-name: 
type-specifier 
type-specifier abstract-declarator 

abstract- declarator: 
• 
range-modifier. 

t lrg-type-list) 
• abstract-declarator 
abstract-declarator. 
abstract-declarator[ ] 
abstract-declarator[ constant-expression] 
[ ] abstract- declarator 
[constant-expression] abstract-declarator 
abstract- declarator( ) 
abstract-declarator( arg-type-list) 
( abstract- declarator) 

initializer: 
expresswn 
{ initializer-listl 

initializer-list: 
initializer 
initializer-list, initializer 

typedef-name: 
identifier 

union-specifier: 
union tag { member-declaration-list} 
union { member-declaration-lz'st} 
union tag 

range-modifier: 
cdecl 
far 
fortran 

Syntax Summary 

209 



Microsoft C Compiler Language Reference 

huge 
near 
pascal 

B.4 Statements 

statement: 
break; 
case constant-expression: statement 
compound-statement 
continue; 
default : statement 
do stat~ment while( expression); 
expresszon; 
for ([ expression]; [expression]; [expression]) statement; 
goto identifier; 
identifier: statement 
if (expression) statement [else statement] 
; 
return IT expression]; 
switch (expression J statement 
while (expression) statement 

compound-statement: . 
{ [declaration-list] [statement-list] } 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 

210 



B.5 Definitions 

definition: 
fu nc tio n- de finitio n 
data-definition 

function-definition: 
[sc-specifier] [type-specifier] declarator ([parameter­

list]) [parameter-decs] compound-statement 

parameter-list: 
fixed-parameter-list 
variable-parameter-list 

fixed-parameter-list: 
identifier 
parameter-list, identifier 

variable-parameter-list: 
fixed-parameter-list, ••• 
fixed-parameter-list, 

parameter-decs: 
declaration 
declaration-list declaration 

data-definition: 
declaration 

B.6 Preprocessor Directives 

directive: 
# 
# define identifier [([parameter-list])] [token-seq] 
# elif restricted-constant-expression 
# else 
#endif 
# if restricted-constant-expression 
# ifdef identifier 
# ifndef identifier 

Syntax Summary 

211 



Microsoft C Compiler Language Reference 

# include .. string" 
#include <string> 
# line digit-seq 
# line digit-seq string 
# undef identifier 

token-seq: 
token 
token-seq token 

restricted- constant- expression: 
defined (identifier) 
Any constant-expression except for sizeof 
expressions, casts, and enumeration constants 

B. 7 Pragrnas 

pragma: 
# pragma char-seq 

212 



Language Reference Index 

! (logical-NOT) operator, 98 
!= (inequality) operator, 108 
"" (quotation marks) 

See also Double-quote escape 
sequence; Single-quote escape 
sequence 

# include directives, used in, 183 
notational conventions, 7 
representation, 14, 192 

# (number sign), 177 
% (remainder) operator, 102 
& (address-of) operator, 99 
& (bitwise-AND) operator, 110 
&& (logical-AN[)) operator, 112 o (parentheses) 

complex declarators, used in, 48 
expressions, used in, 95 
function calls, used in, 89 
function declarators, used in, 47, 65 
macros, used in, 181 

* lin direction ) operator, 99 
* multiplication) operator, 102 
* pointer modifier), 47, 64 
+ taddition) operator, 104 
++ (increment) operator, 117 
, (comma) 

argument-type list, used in, 66 
declarations, used in, 54, 65 
function calls, used in, 89, 166 
initialization, used in, 77 
sequential-evaluation operator, 114 

- (arithmetic negation) operator, 98 
- (subtraction) operator, 104 
-- (decrement) operator, 117 
- > (arrow) in member-selection 

expressions, 92 
-> (member-selection) operator, 92, 

195 
. (member-selection) operator, 92 
... (three periods), 66 
/ (division) operator, 102 
< (less-than) operator, 108 
< < (left-shift) operator, 107 
< = (less-than-or-equal-to) operator, 

108 

< > (angle brackets), 183 
= (simple assignment) operator, 118 
== (equality) operator, 108 
> (greater-than) operator, 108 
> > (right-shift) operator, 107 
>= (greater-than-or-equal-to) 

operator, 108 
? : (conditional) operator, 115 
[ ] (brackets) 

array declarators, used in, 47, 62 
subscript expressions, used in, 90, 91 

[n (double brackets), 7 
" lbitwise-exclusive-OR) operator, 110 
_ (underscore), 23 
{} (braces) 

compound statement, used in, 135, 
138 

initialization, used in, 77 
I (bitwise-inclusive-OR) operator, 110 
Ii (logical-OR) operator, 112 
- (bitwise-complement) operator, 98 

Abstract declarators, 83 
Actual arguments 

conversion, 170 
macro, 179, 181 
order of evaluation, 167 
passing, 169 
pointer, 167, 170 
side effects, 167 
type checking, 170 
variable number, 172 

Addition operator (+), 104 
Address-of operator (&), 99 
Aggregate types 

array, 62 
initialization, 76, 77 
structure, 57 
union, 60 

Anachronisms, 195 
AND operators 

bitwise (&) 110 
logical (&&) 112 

Angle brackets ( < > ), 183 

213 



Language Reference Index 

Apostrophe. See Single-quote escape 
sequence 

argc parameter, 32 
Argument type checking, 67, 165, 170 

formal parameters, 161 
function calls, 170 

Arguments 
See also Parameters 
actual 

conversion, 170 
evaluation, order of, 167 
macro, 179, 181 
passing, 169 
pointer, 167, 170 
side effects, 167 
type checking, 170 
variable number, 172 

command line, 32 
formal. See Formal parameters 
main function, 32 
variable number, 66, 172 

Argument-type lists, 66, 165 
abstract declarator, used with, 83 
pointer arguments, used with, 67 
void *, used with, 67 
void keyword, used with, 67 

argv parameter, 32 
Arithmetic conversions, 97, 193 
Arithmetic negation operator (-), 98 
Array modifier ([ )), 47, 62 
Arrays 

declaration, 47, 62 
elemen ts, 90 
identifiers, 88 
initialization, 76, 77, 80 
multidimensional, 62, 91 
references to, 88, 90 
storage, 62, 92 
subscripts, 90 

asm keyword, 191 
Assignment 

See also Initialization 
conversions, 124 
described, 87 
;:1t.VTyrAQC;ATlC OA 
~.~ r ~ ~~~~~~~~, ~ ~ 

operators, 116 
Associativity 

modifiers, 48 
operators, 120 

auto storage class, 69, 72, 75 

214 

Backslash character (\), 13, 14 
Backspace escape sequence, 14 
Bell character, 14, 192 
Binary 

expressions, 94 
operators, 96 

Bit fields, 58, 194 
Bitwise-AND operator (&), 110 
Bitwise-complement operator C), 98 
Bitwise-exclusive-OR operator ~"), 110 
Bitwise-inclusive-OR operator (,), 110 
Block, 33 
Braces ({} ) 

compound statement, used in, 135, 
138 

initialization, used in, 77 
Brackets 

array declarators, used in, 47, 62 
double ([ D), 7 
subscript expressions, used in, 90, 91 

Branch statements, 146, 151 
break statement, 137 
Byte, size of, 193 

C character set, 11 
Call by reference. See Pass by reference 
Call by value. See Pass by value 
Calls. See Calls, function 
Carriage-return escape sequence, 14 
case keyword, 151 
Case sensitivity, 12, 23 
Casts. See Type casts 
cdecl keyword, 51, 191 
char type 

conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

Character constants 
See also Escape sequences 
differences from Kernighan & 

Ritchie, 192 
form, 20 
type, 21 

Character sets, 11 
Characters 

backslash (\), 13, 14, 15 
backspace escape sequence, 14 



Characters (continued) 
bell, 14, 192 
carriage-return escape sequence, 14 
case, 12, 23 
continuation (\), 15 
CONTROL-Z, 12 
differences from Kernighan & 

Ritchie, 192 
digits, 12 
double-quote escape sequence, 14 
end of file, 12 
escape sequences, 13 
form-feed escape sequence, 14 
hexadecimal escape sequence, 14 
horizontal-tab escape sequence 14 
letters, 12 
new-line escape sequence, 14 
octal escape sequence, 14 
punctuation, 12 
single-quote escape sequence, 14 
special, 12 
vertical-tab escape sequence, 14 
white space, 12, 13 

Comma (,) 
argument-type list, used in, 66 
declarations, used in, 54, 65 
function calls, used in, 89, 166 
initialization, used in, 77 
operator, 114 

Command-line arguments, 32 
Comments, 24 
Comparison operators. See Relational 

operators 
Compilation, conditional, 184 
Complem~nt operators, 98 
Complex declarators, 48, 51 
Compound assignment operators, 118 
Compound statements, 138 
Conditional compilation, 184 
Conditional operator (1:), 115 
Conditional statements, 146, 151 
const keyword, 191 
Constant expressions 

case, 151 
conversion, 45 
defined(identifier), 186 
described, 87 
directives, used in, 95, 186 
form, 95 
initializers, 95 
restricted, 95, 186 

Language Reference Index 

Constant expressions (continued) 
switch statement, used in, 151 

Constants 
character 

See also Escape sequences 
differences from Kernighan & 

Ritchie, 192 
form, 20 
type, 21 

conversion, 45 
decimal integer, 17, 18 
described, 17 
enumeration, 56 
floating-point, 19, 20, 46 
integer 

differences from Kernighan & 
Ritchie, 191 

form, 17 
hexadecimal 

conversion, 19, 46 
form, 17 
type, 18 

long, 19 
negative, 18 

manifest, 178, 182 
octal 

conversion, 19, 46 
form, 17 
type, 18 

string. See String literals 
summarized, 200 
type, 88 

Continuation character (\), 15 
continue statement, 140 
CONTROL-Z character, 12 
Conventions, notational, 6 
Conversions 

actual arguments, 170 
assignment, 124 
constant expressions, 45 
constan ts, 45 
enumeration types, 130 
floating-point types, 128 
formal parameters, 162, 170 
function call, 131,170 
hexadecimal constants, 46 
implicit, 129 
integral types, 129 
octal constan ts, 46 
operator, 130 
pointer types, 129 

215 



Language Reference Index 

Conversions (continued) 
range of values, effects on, 45 
signed integral types, 124 
structure types, 130 
type cast, 130 
union types, 130 
unsigned integral types, 126, 129 
usual arithmetic, 97, 193 
void type, 130 

Data types. See Types 
Decimal integer constants, 17, 18 
Declarations 

arguments 
none, 67 
pointer, 67 
variable number, 66 

form, 41 
formal parameters, 160, 161 
forward. See Declarations, function 
function 

default return type, 66 
default storage class, 75 
described, 29, 65, 157, 164 
differences from Kernighan & 

Ritchie, 194 
form, 65 
implicit, 164 
return type, 65, 164 
return value, 164 
storage class, 74, 164 
visibility, 75, 164 

pointer, 47, 64, 165 
summarized, 205 
type, 80, 81 
typedef, 80, 82 
variable 

array, 62 
default storage class, 70 
described, 29 
enumeration, 55 
external, 69 
form, 53 
internal, 69, 72 
multidimensional arrays, 62 
pointer, 64 
simple, 54 
structure, 57 
union, 60 

216 

Declarators 
abstract, 83 
array, 47 
complex, 48 
described, 46 
function, 47 
parentheses, enclosed in, 48 
pointer, 47 
special keywords, used with, 51 

Decrement operator (--),117 
default keyword, 151 
Default 

return type, 66 
storage class 

external variable declarations, 70 
function declarations, 75 
internal variable declarations 73 

# define directive, 178 
defined (identifier) constant expression, 

186 
Definitions 

function 
described, 29, 157 
storage class, 158 
summarized, 209 
visibility, 158 

variable 
described, 29, 70 
storage class, 70 
summarized, 209 
visibility, 70, 73 

Digits, 12 
Dimensions. See Multidimensional 

arrays 
Directives 

constant expressions, used in, 95, 186 
# define, 178 
described, 29, 177 
differences from Kernighan & 

Ritchie, 195 
# elif 

described, 185 
differences from Kernighan & 

Ritchie, 195 
nestine:. 186 

# else, 185, 186 
# endif, 185, 186 
# if, 185, 186, 195 
# ifdef, 188, 195 
# ifndef, 188, 195 
# include, 183 



Directives (continued) 
lifetime, 31 
# line, 189 
restricted constant expressions, 95 
summarized, 209 
# undef, 182 

Division operator U), 102 
do statement 

described, 141 
execution, continuation of, 140 
execution, termination of, 137 

Double brackets ([ ~), 7 
Double quote. See Quotation marks 
double type 

conversion, 128 
described, 42 
internal representation, 46 
range of values, 44 
storage, 44 

Double-quote escape sequence, 14 

\ (backslash), 13, 14, 15 
Elements, referring to, 90, 91 
# elif directive 

described, 185 
differences from Kernighan & 

Ritchie, 195 
nesting, 186 

Ellipsis dots, 6 
# else directive, 185, 186 
else keyword, 146 
# endif directive, 185, 186 
End-of-file character, 12 
entry keyword, 191 
enum type specifier, 55, 191 
Enumeration constants, 37, 56 
Enumeration expressions, 88 
Enumeration set, 55 
Enumeration types 

conversion, 130 
declaration, 55, 81 
described, 42 
differences from Kernighan & 

Ritchie, 192 
iden tifiers, 88 
range of values, 44 
storage, 44, 55 
tags 

type declarations, 81 
variable declarations, 55 

Language Reference Index 

tags (continued) 
naming class, 38 

envp parameter, 33 
Equality operator (==), 108 
Escape sequences 

\" escape sequence, 14 
\ ' escape sequence, 14 
\ \ escape sequence, 14 
\ a escape sequence, 14 
\ b escape sequence, 14 
\ f escape sequence, 14 
\ n escape sequence, 14 
\ r escape sequence, 14 
\ t escape sequence, 14 
\ v escape sequence, 14 
described, 13 
differences from Kernighan & 

Ritchie, 192 
Evaluation order, 112, 121 
Execution. See Program execution 
Exit from functions, 149 
Exponents, 19 
Expression list, 89 
Expressions 

assignment, 94 
binary, 94 
case constant, 151 
constant. See Constant expressions 
described, 87 
enumeration, 88 
evaluation, order of, 121 
floating point, 88 
function call, 89 
grouping, 120 
in tegral, 88 
lvalue, 116 
member selection, 92, 195 
operators, used in, 94 
parentheses, enclosed in, 95 
pointer, 88 
side effects, 123 
statements, 142 
string literal, 89 
structure, 88 
subscript, 90, 91 
summarized, 203 
switch, 151, 194 
ternary, 94 
type cast, 95 
unary, 94 
union, 88 

217 



Language Reference Index 

extern storage class 
described, 69 
function 

declarations, 74, 164 
definitions, 158 

variables 
external, 69 
internal, 73 

External declarations 
described, 69 
function, 74 
variable, 69 

far keyword 
conversions, 170 
described, 51 
differences from Kernighan & 

Ritchie, 191 
Fields. See Bit fields 
__ FILE __ identifier, 189 
Files 

changing names of, 189 
inclusion of, 183 
nesting of, 184 

float type 
conversion, 128 
described, 42 
internal representation, 46 
range of values, 44 
storage, 44 

Floating-poin t 
constants 

form, 19 
internal representation, 46 
negative, 20 

expressions, 88 
identifiers, 88 
types 

conversion, 128 
described, 42 
internal representation, 46 

for statement 
continuation of execution, 140 
described, 143 
termination of execution, 137 

Formal parameters 
conversion, 162, 170 
declaration, 161 
described, 160 
identifiers, 161 

218 

Formal parameters (continued) 
macros, 179 
naming class, 37 
storage class, 161 
type checking, 161, 170 

Form-feed escape sequence, 14 
fortran keyword, 51, 191 
Forward declarations. See Function 

declarations 
Function 

body, 158,164 
calls 

argument type checking, 170 
arguments, variable number of, 

172 
conversions, 131, 170 
described, 157 
form, 89, 166 
indirect, 167 
pointers, use of, 167 
recursive, 173 

declarations 
arguments, 66, 67 
default return type, 66 
default storage class, 75 
described, 29, 65, 157, 164 
differences from Kernighan & 

Ritchie, 194 
implicit, 164 
return type, 67, 164 
return value, 164 
storage class, 74, 75, 164 
visibility, 75, 164 

definitions 
described, 157 
return type, 158 
storage class, 158 
summarized, 209 
visibility, 158 

modifier ( ), 47 
names. See Identifiers 
pointers, 165, 167 
return type. See Return type 

Function-call conversions, 131, 170 
Function-call expressIons, 89 
Function prototypes. See Argument-

type lists 
Function type. See Return type 
Functions 

definitions, described, 29 
exit from, 149 



Functions (continued) 
identifiers, 88 
main, 32 
naming class, 37 
return value, 149 

Global 
lifetime, 33, 68 
variables 

described, 34 
initialization, 75 
references to, 73 

visibility, 33 
goto statement, 145 
Greater-than operator (> ), 108 
Greater-than-or-equal- to operator 

(>=),108 
Grouping, 120 

Hexadecimal 
constants 

conversion, 19, 46 
differences from Kernighan & 

Ritchie, 191 
form, 17 
type, 18 

escape sequences, 14, 192 
Horizontal-tab escape sequence, 14 
huge keyword 

conversions, 170 
described, 52 
differences from Kernighan & 

Ritchie, 191 

Identifiers 
array, 88 
characters allowed in, 22 
differences from Kernighan & 

Ritchie, 191 
enumeration, 88 
__ FILE __ , 189 
floating point, 88 
formal parameters, 161 
function, 88 
integral, 88 
length, 23 
__ LINE __ , 189 
modified, 47 

Language Reference Index 

Identifiers (continued) 
naming classes, 36 
pointer, 88 
structure, 88 
summarized, 199 
union, 88 

# if directive, 185, 186, 195 
if statement, 146 
# ifdef directive, 188, 195 
# ifndef directive, 188, 195 
# include directive, 183 
Include files, 183, 184 
Increment operator (++), 117 
Indirection operator (*), 99 
Inequality operator (!=), 108 
Initialization 

arrays, 76, 77, 80 
auto storage class, 75 
constant expressions, 95 
differences from Kernighan & 

Ritchie, 194 
fundamental types, 76 
global variables, 75 
link time, 71 
pointers, 76 
register storage class, 75 
restrictions, 75 
static variables, 75 
string literals, 80 
structure variables, 76, 77 
union variables, 76, 77 

Insertion of files, 183 
int type 

conversion, 126 
described, 42 
differences from Kernighan & 

Ritchie, 192 
portability, 45 
range of values, 44, 45 
storage, 44 

Integer constants 
decimal, 17, 18 
differences from Kernighan & 

Ritchie, 191 
hexadecimal, 17, 18, 19 
long, 19 
negative, 18 
octal, 17, 18, 19 

Integral 
expressions, 88 
identifiers, 88 

219 



Language Reference Index 

Integral (continued) 
types 

conversion, 124, 126, 129 
described, 42 

Internal declarations, 69, 72, 73 
Internal representation, 45, 46 
Italics, 6 
Iterative statements 

do, 141 
for, 143 
while, 154 

Keywords 
differences from Kernighan & 

Ritchie, 191, 193 
listed, 24, 199 
notational conventions, 6 
special, 51, 64 
statements, used in, 135 

Labeled statements, 145 
Labels 

See also Identifiers 
case, 151 
default, 151 
described, 136 
form, 145 
naming class, 38 

Left-shift operator « <), 107 
Less-than operator ( <), 108 
Less-than-or-equal-to operator «=), 

108 
Letters. See Characters 
Lifetime 

described, 33 
directives, 30 
global, 33, 68 
local, 33, 68 

Line control, 189 
# line directive, 189 
__ LINE __ identifier, 189 
Lines, continuation, 15 
T ~~+~ 1:~ lr~...l 1::0 
.1..1.1;:)";:), .l.l.l1.1\.~U, o.}o 

Local 
lifetime, 33, 68 
variables, 34, 164 

Logical-AND operator (&&), 112 
Logical-NOT operator (!), 98 
Logical-OR operator C::J, 112 

220 

long float type, 42 
long type 

conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

Loops 
do statement, 141 
for statement, 143 
while statement, 154 

Lvalue expressions, 116 

~acros, 178, 179, 181, 182 
~ain function, 32 
~anifest constants, 178, 182 
~ember-selection expressions, 92, 195 
~ember-selection operators (- > and .), 

92, 195 
~embers, bit fields, 58 
~embers 

naming class, 38 
referring to, 92 
structure, 57 
union, 60 

~odifiers 
array, 47, 62 
associativity, 48 
function, 47 
pointer, 47, 64 
precedence, 48 

~ultidimensional arrays, 62, 91 
~ultiplication operator (*), 102 

Names. See Identifiers 
Naming classes, 36, 194 
near keyword 

conversions, 170 
described, 52 
differences from Kernighan & 

Ritchie, 191 
Negation, 98 
Nested visibility, 34 
New-line escape sequence, 14 
Nongraphic escape sequences, 15, 192 
NOT operator (!), 98 
Notational conventions, 6 
Null statement, 148 



Number sign (# ), 177 

Octal 
constants 

conversion, 19, 46 
differences from Kernighan & 

Ritchie, 191 
form, 17 
type, 18 

escape sequences, 14 
One's complement operator C), 98 
Operands, 87 
Operators 

addition (+), 104 
address of (&), 99 
arithmetic negation (-), 98 
assignment 

compound, 118 
listed, 116 
simple (=), 118 

associativIty, 120 
binary, 96 
bitwise AND (&), 110 
bitwise complement C) 98 
bitwise exclusive OR ("'), 110 
bitwise inclusive OR (i), 110 
complement, 98 
compound assignment, 118 
conditional (?:), 115 
conversions, 130 
decrement (--), 117 
differences from Kernighan & 

Ritchie, 195 
division (J), 102 
equality (==), 108 
expressions, used in, 94 
increment (++), 117 
indirection (*), 99 
inequality (!=), 108 
left-shift « <), 107 
listed, 16, 202 
logical AND (&&), 112 
logical 

described, 112 
evaluation, order of, 112 

logical NOT (!), 98 
logical OR C:J, 112 
multiplication (*), 102 
one's complement C), 98 
precedence, 120 

Language Reference Index 

Operators {continued} 
relational (>,<,<=,>=),108 
remainder (%), 102 
right shift (> », 107 
sequential evaluation (,), 114 
shift « < and> »,107 
simple assignment (=), 118 
sizeof, 101 
subtraction (-), 104 
ternary (? :), 96, 115 
unary, 96 

OR operators 
bitwise exclusive ("), 110 
bitwise inclusive CD, 110 
logical (::), 112 

Order of evaluation, 112, 121 
Overview, 3 

Parameter lists, 160 
Parameters 

actual. See Actual arguments 
argc, 32 
argv, 32 
envp 33 
formal 

conversion, 162, 170 
declaration, 161 
described, 160 
identifiers, 161 
naming class, 37 
storage class, 161 
type checking, 161, 170 

macro, 179 
main function, 32 

Parentheses in 
complex declarators, 48 
expressions, 95 
function calls, 89 
function declarators, 47, 65 
macros, 181 

pascal keyword, 51, 191 
Pass by 

reference, 170 
value, 166, 169 

Pointer modifier (*), 47, 64 
Pointers 

adding, 105 
arithmetic, 105 
comparison, 108 
conversion, 129 

221 



Language Reference Index 

Pointers (continued) 
declaration, 47, 64, 165 
differences from Kernighan & 

Ritchie, 193 
expressions, 88 
function, 165, 167 
function calls through, 167 
identifiers, 88 
implicit conversion, 129 
initialization, 76 
storage, 64 
structure, 64 
subtraction, 105 
union, 64 

Portability, 45 
Pound sign (# ). See Number sign 
Pragmas 

described, 29, 177 
differences from Kernighan & 

Ritchie, 195 
form, 190 
summarized, 210 

Precedence 
modifiers, 48 
operators, 120 

Predefined identifiers, 189 
Preprocessor directives. See Directives 
Program execution, 32 
Program structure, 29 
Prototypes. See Argument-type lists 
Punctuation characters, 12 

Quotation marks 
See also Double-quote escape 

sequence; Single-quote escape 
sequence 

# include directives, used in, 183 
notational conventions, 7 
representation, 14, 192 

Range of values, 44, 45 
Recursion, 173 
Reierence, passing by, 170 
References to global variables, 70, 73 
register storage class 

described, 73 
initialization, 75 
internal variables, 72 
lifetime, 69 

222 

Relational operators (>,<,<=,>=), 
108 

Remainder operator (%), 102 
Removing definitions, 182 
Representable character set, 11 
Representation, internal, 45, 46 
Reserved words. See Keywords 
Restricted constant expressions, 95, 

186 
return statement, 149 
Return type 

declaration, 164 
default, 66 
described, 67, 158 
implicit, 164 

Return value, 149, 164 
Returning control, 149 
Right-shift operator (> », 107 

Search path for include files, 183 
Selection statements, 146, 151 
Separators, 203 
Sequential-evaluation operator (,), 114 
Shift operators ( < < and> », 107 
short type 

conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

Side effects, 123, 179, 181 
signed char type. See also char type 
signed char type, 42, 194 
signed int type. See also int type 
signed int type, 42 
signed keyword, 43, 192 
signed long int type. See also long type 
signed long int type, 194 
signed long type. See also long type 
signed long type, 42, 194 
signed short int type. See also short 

type 
signed short int type, 42, 194 
signed short type. See also short type 
signed short type, 42, 194 
signed type. See also int type 
signed type, 42, 192 
Simple assignment operator (=), 118 
Simple variable declarations, 54 



Single-quote escape sequence, 14 
sizeof operator, 101 
Source files, 30 
Special characters, 12 
Special keywords 

conversions, 170 
declarators, used with, 64 
differences from Kernighan & 

Ritchie, 191 
Standard directories, 183 
Statement labels 

described, 136 
form, 145 
naming class, 38 

Statements 
body of, 135 
break, 137 
compound, 138 
continue, 140 
do, 141 
expression, 142 
for, 143 
form, 135 
goto, 145 
if, 146 
keywords, used in, 135 
labeled, 136, 145 
listed, 135 
null, 148 
return, 149 
summarized, 208 
switch, 151 
while, 154 

static storage class 
described, 69 
function 

declarations, 74, 164 
definitions, 158 

initialization, 75 
variables 

external, 69 
internal, 73 

Storage-class specifiers 
auto, 69, 72 
extern 

described, 69 
function declarations, 74, 164 
function definitions, 158 

variables 
external, 69 
internal, 73 

Language Reference Index 

Storage-class specifiers (continued) 
listed, 69 
register, 69, 73 
static 

described, 69 
function declarations, 74, 164 
function definitions, 158 
variables, external, 69 
variables, internal, 73 

Storage classes 
described, 68 
formal parameters, 161 
function declarations, 75, 164 
function definitions, 158 
variable declarations 

external, 70 
internal, 73 

Storage 
array types, 62, 92 
bit fields, 58 
char type, 44 
double type, 44 
enumeration types, 44, 55 
Hoat type, 44 
global, 68 
int type, 44, 45 
local, 68 
long type, 44 
pointer types, 64 
short type, 44 
structure types, 58 
union types, 60 
unsigned char type, 44 
un~gnedinttype,44,45 
unsigned long type, 44 
unsigned short type, 44 
void type, 44 

String literals 
form, 21, 89 
initializers, 80 
length, 22, 89 
storage, 22 
type, 22 

Strings 
See also String literals 
sUIIlmarized, 202 

struct type specifier, 57 
Structures 

conversion, 130 
declaration, 57, 81 

223 



Language Reference Index 

Structures (continued) 
differences from Kernighan & 

Ritchie, 193, 194, 195 
expressions, 88 
identifiers, 88 
initialization, 76, 77 
members 

bit field, 58 
described, 57 
naming class, 38 
referring to, 92 

poin ters to, 64 
storage, 58 
tags 

naming class, 38 
type declarations, 81 
variable declarations, 57 

Subscript expressions, 90, 91 
Subtraction operator (-), 104 
switch statement 

constant expressions, used in, 151 
described, 151 
differences from Kernighan & 

Ritchie, 194 
termination of execution, 137 

Symbolic constants. See Manifest 
constants 

Syntax conventions. See Notational 
conventions 

Syn tax summary, 199 

Tab escape sequence, 14 
Tags 

enumeration, 55, 81 
naming class, 38 
structure, 57, 81 
union, 81 

Ternary expressions, 94 
Ternary operator (?:), 96, 115 
Tokens, 25, 199 
Transfer statements 

break, 137 
continue, 140 
goto, 145 
labeled statements, 145 

Two's complement operator, 98 
Type 

casts, 130 
checking. See Argument type 

checking 

224 

Type (continued) 
declarations, 80 
names 

argument-type lists, used in, 66 
described, 83 
sizeof, used with, 101 
void, 170 

specifiers 
abbreviations, 43 
differences from Kernighan & 

Ritchie, 192, 193 
enum, 42, 55 
fundamental types, 42 
struct, 57 
union, 60 

Type-cast expressions, 95 
typedef declarations, 80, 82 
typedeftypes,37,82 
Types 

array 
declaration, 47, 62 
initialization, 76, 77, 80 
multidimensional, 62 
storage, 62, 92 

char 
described, 42 
storage, 44 

conversions. See Conversions 
differences from Kernighan & 

Ritchie, 192, 193 
double, 42,44,46, 128 
enumeration 

conversion, 130 
declaration, 55, 81 
described, 42 
differences from Kernighan & 

Ritchie, 192 
identifiers, 88 
range of values, 44 
storage, 44, 55 
tags, 38, 55, 81 

Hoat 
conversion, 128 
described, 42 

fioating-poin t 
conversion, 128 
described, 42 
internal representation, 46 

Hoat 
internal representation, 46 
range of values, 44 



float (continued) 
storage, 44 

function. See Return type 
fundamental 

declaration, 54 
described, 42 
differences from Kernighan & 

Ritchie, 192 
initialization, 76 
listed, 42 
range of values, 44 
storage, 44 

int 
conversion, 126 
described, 42 
differences from Kernighan & 

Ritchie, 192 
integral 

conversion, 124, 126, 129 
described, 42 

int 
portability, 45 
range of values, 44, 45 
storage, 44 

long 
conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

pointer 
conversion, 129 
declaration, 47, 64 
implicit conversion, 129 
initialization, 76 
storage, 64 

short, 44 
conversion, 125 
described, 42 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 

signed char, 42, 193, 194 
signed int, 42 
signed long, 42 
signed short, 42 
structure 

conversion, 130 
declaration, 57, 81 
initialization, 76, 77 

Language Reference Index 

structure (continued) 
pointers to, 64 
storage, 58 

type names, 83 
typedef, 37, 82 
union 

conversion, 130 
declaration, 60, 81 
initialization, 76, 77 
pointers to, 64 
storage, 60 

unsigned char 
conversion, 126 
described, 42 
differences from Kernighan & 

Ritchie, 192, 193, 194 
range of values, 44 
storage, 44 

unsigned in t 
conversion, 127 
described, 42 
portability, 45 
range of values, 44, 45 
storage, 44 

unsigned long 
conversion, 127 
described, 42 
differences from Kernighan & 

Ritchie, 192, 194 
range of values, 44 
storage, 44 

unsigned short 
conversion, 127 
described, 42 
differences from Kernighan & 

Ritchie, 194 
range of values, 44 
storage, 44 

user defined, 80, 81, 82 
void, 42, 44 

Unary 
expressions, 94 
operators, 96 

# undef directive, 182 
Underscore character (_ ), 23 
Union declarations 

types, 81 
variables, 60 

union type specifier, 60 

225 



Language Reference Index 

Unions 
conversion, 130 
declaration, 60, 81 
differences from Kernighan & 

Ritchie, 194, 195 
expressions, 88 
identifiers, 88 
initialization, 76, 77 
members 

described, 60 
naming class, 38 
referring to, 92 

poin ters to, 64 
storage, 60 
tags, 38, 81 

unsigned char type 
conversion, 126 
described, 42 
differences from Kernighan & 

Ritchie, 192, 193, 194 
range of values, 44 
storage, 44 

unsigned int type 
conversion, 127 
described, 42 
portability, 45 
range of values, 44, 45 
storage, 44 

unsigned keyword, 43, 192 
unsigned long int type. See also 

unsigned long type 
unsigned long int type, 42, 194 
unsigned long type 

conversion, 127 
described, 42 
differences from Kernighan & 

Ritchie, 192, 194 
range of values, 44 
storage, 44 

unsigned short int type. See also 
unsigned short type 

unsigned short int type, 42, 194 
unsigned short type 

conversion, 127 
described, 42 
differences from Kernighan & 

Ritchie, 194 
range of values, 44 
storage, 44 

unsigned type, 42, 192 
User-defined types, 80, 81, 82 

226 

Usual arithmetic conversions, 97, 193 

Value, passing by, 166, 169 
Variable names. See Identifiers 
Variable 

declarations 
array, 47, 62 
described, 29 
enumeration, 55 
external, 69, 70 
form, 53 
fundamental types, 54 
internal, 69, 72, 73 
multidimensional arrays, 62 
pointer, 64 
simple, 54 
structure, 57 
summarized, 205 
union, 60 
visibility, 69 

definitions 
described, 29, 70 
summarized, 209 
visibility, 70, 73 

Variables 
array 

declaration, 62 
initialization, 77, 80 
storage, 62 

auto, 69, 72, 75 
communal, 70 
enumeration, 55 
extern, 70, 73 
fundamental types, 54, 76 
global, 34, 70, 73, 75 
local, 34, 164 
multidimensional arrays, 62, 91 
naming class, 37, 194 
pointer, 64, 76 
register, 73, 75 
simple, 54 
static, 70, 73, 75 
structure, 57, 58, 77 
union, 60, 77 
visibility, 69 

Vertical-tab escape sequence, 14, 192 
Visibility 

described, 33 
function declarations, 75, 164 
function definitions, 158 



Visibility (continued) 
global, 33 
nested, 34 
variable declarations, 69 
variable definitions, 70, 73 

void 
argument-type list, 66, 67 
function-return type, 67 
keyword, 191 
type name, 170 

void *,67 
void type 

conversion, 130 
described, 42 

Language Reference Index 

void type (continued) 
differences from Kernighan & 

Ritchie, 192 
range of values, 44 
storage, 44 

volatile keyword, 191 

while statement 
continuation of execution, 140 
described, 154 
termination of execution, 137 

White-space characters, 12, 13, 192 

227 





MICRE 3S0FT® 
16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717 

Software 
Problem Report 

Name ______________________________________________ __ 

Street ______________________________________________ __ 

City _____________________ State _____ Zip _____ _ 

Phone ________________ Date _______ __ 

Instructions 

Use this form to report software bugs, documentation errors, or suggested 
enhancements. Mail the form to Microsoft. 

Category 

__ Software Problem 

__ Software Enhancement 

Software Description 

Microsoft Product __ 

__ Documentation Problem 
(Document# ________ _ 

__ Other 

Rev. __ _ Registration # _______________ _ 

Operating System 

Rev. _____ _ _ Supplier __________________________ _ 

Other Software Used ___________________________________ _ 

Rev. ______ Suppl ier ____________________________ _ 

Hardware Description 

Manufacturer _______ CPU _________ Memory _____ KB 

Disk Size ____ If Density: Sides: 

Single__ Single __ 

Double__ Double __ 

Peri pherals _______________________________________ _ 



Problem Description 

Describe the problem. (Also describe how to reproduce it, and your 
diagnosis and suggested correction.) Attach a listing if available. 




