MICRESSOFT

About the Microsoft C Compiler

Welcome to the Microsofte C Compiler for MS-DOSe. Microsoft C is a full
implementation of the C language, a language known for its efficiency,
economy, and portability.

Some of the major features and strengths of this 4.0 release of the Microsoft
C Compiler are listed below:

Advanced optimization capabilities. Optimization is performed au-
tomatically whenever you compile. Command-line options are
available to select alternative optimization procedures or to turn off
optimization in the early stages of program development.

Compatibility with both the 286 XENIX® operating system and the
developing American National Standards Institute (ANSI) C stan-
dard.

The Microsoft CodeViewn window-oriented symbolic debugger that
includes such features as popup menus, mouse support and single-
keystroke commands.

MAKE, the Microsoft Program Maintenance Utility, which

automatically maintains high-level-language programs.

Use of all available memory for the symbol table, allowing the com-
pilation of much larger programs.

Implementation of register variables to optimize processing.

Five memory models—small, compact, medium, large, and huge—
that let you set up your program in the most efficient way, taking
advantage of the segmented architecture of the Intele 8086 family of
processors.

The ability to combine features from different memory models in
“mixed-model” programs.

More than 200 run-time library routines to provide you with an ex-
tensive base of built-in functions for use in your C programs. The
MS-DOS C run-time library is designed to make writing portable
programs easier by providing compatibility with the XENIX run-
time library for 80286 systems, most of the UNIXw System V li-
brary, and increased support of the forthcoming ANSI standard.

A simple command structure with a flexible set of options to accom-
modate all levels of programming experience.

Linking of C routines with object files created with Microsoft FOR-
TRAN (versions 3.3 and later), Microsoft Pascal (versions 3.3 and
later) or Microsoft Macro Assembler. This allows you to mix these
different languages to get the best features of each.

Three math libraries that allow you to generate in-line 8087 /80287
instructions or floating-point calls.

Inclusion of C start-up code to allow modification of initial values.
Support for MS-DOS path names and input/output redirection.

Support for file sharing and record/file locking. This gives you MS-
DOS network support and IBM local area network support.

A broad range of numbered error and warning messages to help you
locate errors and potential problems. A special command-line op-
tion lets you adjust the level of warning messages to suit your own
needs.

Package Contents

Your Microsoft C Compiler package contains the following programs,
stored on floppy disks:

The compiler software

LINK, the Microsoft Overlay Linker utility
CODEVIEW, a symbolic debugger

LIB, the Microsoft Library Manager utility

MAKE, the Microsoft Program Maintenance Utility
EXEPACK, the Microsoft EXE file compression utility
EXEMOD, the Microsoft EXE file header utility
SETENYV, the Microsoft environment expansion utility

Three documentation binders are included with the package.

System Requirements

To use the Microsoft C Compiler, your machine must run MS-DOS Version
2.0 or later. You must have at least two double-sided disk drives and a
minimum of 260K (kilobytes) of available memory (the available user
memory can be determined using the MS-DOS CHKDSK utilityf; a hard
disk is recommended for this product. You must use Microsoft LINK Ver-
sion 3.0 or later (included in this package). You cannot use earlier versions
of Microsoft LINK with the compiler.

About These Manuals

The three documentation binders in your Microsoft C Compiler package
hold the four manuals listed below:

o Microsoft C Compiler User’s Guide

The Microsoft C Compiler User’s Guide gives you the information
you need to set up and operate the Microsoft C Compiler and ex-
plains how to compile, link, and run your C programs. Refer to the
Microsoft C Compiler User’s Guide when you have questions about
invoking the compiler and linker or about this particular implemen-
tation of C on MS-DOS.

o Microsoft C Compiler Language Reference

The Microsoft C Compiler Language Reference defines the C
language as implemented by Microsoft. . Use the Microsoft C
Compiler Language Reference when you have questions about the
rules or behavior of the C language.

o Microsoft C Compiler Run-Time Library Reference

The Microsoft C Compiler Run-Time Library Reference describes the
run-time library routines provided for use in your C programs. The
first part of the Microsoft C Compiler Run- Time Library Reference
gives an overview of the run-time library, while the second section
presents the routines in alphabetical order for quick reference.

o Microsoft CodeView

Microsoft CodeView explains how to use the CodeView window-
oriented, source-level symbolic debugger, to examine your programs
and locate program errors.

Microsoft. C Compiler

for the MS-DOS. Operating System

User’s Guide

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de-
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser’s personal use.

© Copyright Microsoft Corporation, 1984, 1985, 1986

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen-
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS, MS-DOS, and XENIX are registered trademarks of Microsoft
Corporation. CodeView and The High Performance Software are trademarks of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

Document Number 410840001-400-R03-0486
Part Number 048-014-034

Contents

1 Introduction 1

Overview 3

About This Manual 4

New Features 6
Notational Conventions 9
Learning More About C 11
Reporting Problems 12

P
S U WD =

2 Getting Started 15

Introduction 17

Backing Up Your Disks 17

Disk Contents 18

Quick Hard-Disk Setup Procedure 22
Quick Floppy-Disk Setup Procedure 25
Understanding the Compiler Software 30
Setting Up the Environment 34

Setting Up Your CONFIG.SYS File 38
Using an 8087 or 80287 Coprocessor 39
Using an 80186, 80188, or 80286 Processor 40
Converting Existing C Programs 40
Organizing Your Software 40

Practice Session 41

Using Batch Files 46

PR
Pt et ek e ek €O 00 ST OO U A QO R

N =O

3 Compiling 49

3.1 Introduction 51

3.2 Running the Compiler 52

3.3 Listing the Compiler Options 62
3.4 Naming the Object File 63

3.5 Producing Listing Files 64

3.6 Controlling the Preprocessor 70

.oe
111

Contents

Syntax Checking 76

Selecting Floating-Point Options 79

Using 80186, 80188, or 80286 Processors 84
Understanding Error Messages 85
Preparing for Debugging 89

Optimizing 90

Compiling Large Programs 92

bk e ek ek 0O Q0 =3

WK = O

4 Linking 95

Introduction 97

Running the Linker 97

Linking C Program Files 105
Listing-File Format 107

Using Overlays 109

Using Options to Control the Linker 111
How the Linker Works 123

il el i ad o
NoUth W~

5 Running C Programs on MS-DOS 129

5.1 Introduction 131

5.2 Passing Command-Line Data to a Program 131
5.3 Returning an Exit Code 136

5.4 Suppressing Null-Pointer Checks 137

6 Managing Libraries 139

6.1 Introduction 141

6.2 Overview of LIB Operation 142
6.3 Running LIB 143

6.4 Library Tasks 150

7 Maintaining Programs with MAKE 157

Introduction 159
Using MAKE 159
Maintaining a Program: an Example 167

-1 =3 ~3
D) DN =

.
v

Contents

8 Working with Memory Models 169

8.1 Introduction 171

8.2 Using the Standard Memory Models 173
8.3 Using the near, far, and huge Keywords 177
8.4 Creating Customized Memory Models 185

9 Advanced Topics 191

Introduction 193

Disabling Special Keywords 193

Packing Structure Members 193
Restricting Length of External Names 194
Labeling the Object File 195

Suppressing Default-Library Selection 195
Changing the Default char Type 196
Controlling Stack and Heap Allocation 197
Controlling Floating-Point Operations 198
Advanced Optimizing 201

Controlling the Function-Calling Sequence 203
Controlling Binary and Text Modes 205
Setting the Data Threshold 206

Naming Modules and Segments 207
Compiling for Windows Applications 209

©OLOOLOOOLLOLLOLLDD
e et e et €O 00 ST O UT R QO R

T W =O

10 Interfaces with Other Languages 211

10.1 Introduction 213
10.2 Assembly-Language Interface 213
10.3 Mixed-Language Programming 229

Appendixes 267

A ASCII Character Codes 269

Contents

B

vi

Command Summary 271

B.1 Introduction 273

B.2 Compiler Summary 273
B.3 Linker Summary 280

B.4 LIB Summary 283

B.5 MAKE Summary 284

B.6 EXEPACK Summary 286
B.7 EXEMOD Summary 287
B.8 SETENV Summary 288

The CL. Command 289

Introduction 291

Command Syntax and Options 291
Linking with the CL Command 294
Additional Options 296
XENIX-Compatible Options 297

U QO BN =

Using EXEPACK, EXEMOD, and SETENV

~ Introduction 303
The EXEPACK Utility 303
The EXEMOD Utility 304
The SETENV Utility 307

i=lels
0 DD -

Using Exit Codes 309

Introduction 311
Exit Codes with MAKE 311
Exit Codes with MS-DOS Batch Files 311
Exit Codes for Programs
in the C Compiler Package 312

=
0 BN

Converting from Previous

Versions of the Compiler 31

F.1 Introduction 319
F.2 Differences between Versions 3.0 and 4.0 319
F.3

Differences Between Version 4.0
and Versions Prior to 3.0 324

301

G W
G.1
G.2
G.3
G.4
G.5
G.6
G.7

H

£ I B
Nelo JBLN o 1) ST-NEJU

Index

r

iting Portable Programs 345

Introduction 347

Program Portability 348
Machine Hardware 348
Compiler Differences 354
Environment Differences 358
Portability of Data 359
Byte-Ordering Summary 360

Error Messages 363

Introduction 365

Run-Time Error Messages 365
Compiler Error Messages 371

LINK Error Messages 410
Library-Manager Error Messages 417
MAKE Error Messages 421
EXEPACK Error Messages 423
EXEMOD Error Messages 424
SETENV Error Messages 425

427

Contents

vii

Figures

Figure 10.1
Figure F.1
Figure F.2
Figure F.3
Figure F.4

soe
Vil

Segment Setup in C Programs 214
Version 2.03 Stack Frame Setup 338
Version 3.0 Stack Frame Setup 339
Version 2.03 Layout for the S and P Models
Layouts for the 3.0 and 4.0 Versions 343

343

Tables

Table 5.1
Table 8.1

Table 9.1
Table 9.2
Table 10.1

Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6

Table 10.7

Table 10.8

Table 10.9

Table 10.10
Table 10.11
Table 10.12
Table 10.13
Table 10.14
Table 10.15
Table 10.16
Table 10.17
Table 10.18
Table 10.19

Argument Variables 132
Addressing of Code and Data

Declared with near, far, and huge 178
Using the check_stack Pragma 202
Segment-Naming Conventions 208
Segments, Groups, and Classes

for Standard Memory Models 217

C Return Value Conventions 223
Specifying Calling Conventions 231

232

Passing Parameters With Pascal Calling Conventions

Passing Parameters With C Calling Conventions
234

Passing Parameters With
FORTRAN Calling Conventions

245
246

246
247

247

234
Signed 1-Byte Integers
Unsigned 1-Byte Integers
Signed 2-Byte Integers
Unsigned 2-Byte Integers
Signed 4-Byte Integers
248
248

Single-Precision Real Numbers

Boolean Types

Character Types
250
Double-Precision Real Numbers 250

String and Array Types 252

Strings 252
Near Pointers 254
Far Pointers 254

ix

Table 10.20
Table 10.21
Table 10.22
Table 10.23
Table 10.24
Table 10.25
Table 10.26
Table 10.27
Table B.1

Table B.2

Table B.3
Table C.1
Table C.2
Table C.3
Table G.1
Table G.2
Table H.1
Table H.2

Procedure Pointers 255

Arrays (Lower Bound of Pascal Array Is 0) 258

Arrays (Lower Bound of Pascal Array Is Nonzero) 258

Super Array Pointers 259

Single-Precision Complex Numbers 260
Double-Precision Complex Numbers 260
Two-Byte LOGICAL Values 261

Four-Byte LOGICAL Values 261

Text and Data Segments in Standard Memory Models

Pointer and Integer Sizes
in Standard Memory Models 279

Segment, Names in Standard Memory Models 279
Summary of —F Options 292

Arguments to —F Options 293

XENIX Options Accepted by the CL Command 297
Byte Ordering for Short Types 360

Byte Ordering for Long Types 361

Program Limits at Run Time 371

Limits Imposed by the C Compiler 409

278

Chapter 1

Introduction

1.1 Overview 3

1.2 About This Manual 4

1.3 New Features 6

1.4 Notational Conventions 9
1.5 Learning More About C 11
1.6 Reporting Problems 12

Introduction

1.1 Overview

The C language is a powerful general-purpose programming language that
can generate efficient, compact, and portable code. The Microsofte C Com-
piler for the MS-DOSe operating system is a full implementation of the C
language as defined by its authors, Brian W. Kernighan and Dennis M.
Ritchie, in The C Programming Language. Microsoft Corporation is ac-
tively involved in the development of the ANSI (American National Stan-
dards Institute) standard for the C language; this version of Microsoft C
attempts to anticipate and conform to the forthcoming standard.

Microsoft C offers several important features to help you increase the
efficiency of your C programs. You can choose between five standard
memory models (small, medium, compact, large, and huge) to set up the
combination of data and code storage that best suits your program. For
flexibility and even greater efficiency, the Microsoft C Compiler allows you
to “mix” memory models by using special declarations in your program.

The C language does not provide such standard features as input and out-
put capabilities and string-manipulation features. These capabilities are
provided as part of the run-time library of functions that accompanies the
C installation. Because the functions that require interaction with the
operating system (for example, input and output) are logically separate
from the language itself, the C language is especially suited for producing
portable code.

The portability of your Microsoft C programs is increased by the use of a
common run-time library for MS-DOS and XENIXe installations. Using the
routines in this library, you can transport programs easily from a XENIX
development environment to an MS-DOS machine, or vice versa. See the
Microsoft C Compiler Run- Time Library Reference (included in this pack-
age) for more information on the common library for MS-DOS and XENIX.

Note

Since MS-DOS and PC-DOS are essentially the same operating system,
Microsoft manuals use the term MS-DOS to include both systems, ex-
cept in those cases where a utility (such as SETENV) is guaranteed to
work only under PC-DOS; in those cases, the term PC-DOS is used
explicitly.

Microsoft C Compiler User’s Guide

Compared to other programming languages, C is extremely flexible con-
cerning data conversions and nonstandard constructions. The Microsoft C
Compiler offers several levels of warnings to help you control this flexibility.
Programs in an early stage of development can be processed using the full
warning capabilities of the compiler to catch mistakes and unintentional
data conversions. The experienced C programmer can use a lower warning
level for programs that contain intentionally nonstandard constructions.

1.2 About This Manual

This manual explains how to use the Microsoft C Compiler to compile, link,
and run C programs on your MS-DOS system. The manual assumes that
you are familiar with the C language and with MS-DOS, and that you know
how to create and edit a C language source file on your system. If you have
questions about the C language, turn to the Microsoft C Compiler Language
Reference, included in this package. The Microsoft C Compiler Run- Time
Library Reference documents the run-time library routines you can use in
your C programs. For more information about C, refer to Section 1.5,
“Learning More About C.” A brief description of the remaining chapters of
the Microsoft C Compiler User’s Guide is given below.

Chapter 2, “Getting Started,” covers installation and organization of the
compiler software. This chapter explains how to set up an operating en-
vironment for the compiler by defining environment variables, and includes
a practice session to acquaint you with the Microsoft C Compiler.

Chapter 3, “Compiling,” discusses the process of compiling a program using
the basic compiler command MSC. This chapter contains a detailed
description of the options most commonly used to control preprocessing,
compilation, and output of files. The chapter also discusses standard
memory models (small, medium, compact, large, and huge).

Chapter 4, “Linking,” describes the Microsoft Overlay Linker (LINK) and
the options available to control its operation. This chapter includes a dis-
cussion of the special requirements that apply when linking C program files.

Chapter 5, “Running C Programs on MS-DOS,” explains how to run your
executable program file, and discusses features specific to the MS-DOS im-
plementation of C. The chapter tells how to pass data from MS-DOS to a
program at execution time, and how to return an exit code from your pro-

gram to MS-DOS.

Introduction

Chapter 6, “Managing Libraries,” describes the Microsoft Library Manager
(LIB). This utility enables you to create and maintain your own function li-
braries. You can use these libraries to customize the run-time support avail-
able to your programs.

Chapter 7, “Maintaining Programs with MAKE,” describes the Microsoft,
Program Maintenance Utility (MAKE). This utility automates the process
of maintaining programs by carrying out the tasks needed to update a pro-
gram after one or more of its component files have been changed.

Chapter 8, “Working with Memory Models,” describes methods of manag-
ing memory models. These methods are useful for writing large programs
that use more than 64K of code or data. This chapter also discusses
“mixed-model” programming (combining features from the five standard
memory models).

Chapter 9, “Advanced Topics,” describes additional command-line options
for the experienced programmer and gives the technical information neces-
sary to use them.

Chapter 10, “Interfaces with Other Languages,” covers two main topics:
the interface between assembly-language routines and C routines, and
mixed-language programming using Microsoft’s FORTRAN, Pascal, and C
compilers.

Appendix A, “ASCII Character Codes,” gives the decimal, octal, and hexa-
decimal equivalents for ASCII (American Standard Code for Information In-
terchange) characters.

Appendix B, “Command Summary,” provides a complete list of command
line options for the MSC command and summarizes characteristics of the
small, medium, compact, large, and huge memory models. It also summa-
rizes command characters and options for LINK, LIB, MAKE,
EXEPACK, EXEMOD, and SETENV.

Appendix C, “The CL Command,” describes an alternative command for
invoking the compiler, the CL command. This command provides an inter-
face that is similar to the XENIX and UNIXw cc command.

Appendix D, “Using EXEPACK, EXEMOD, and SETENV,” tells how to use
three special-purpose utilities that are included with the Microsoft C Com-
piler package.

Microsoft C Compiler User’s Guide

Appendix E, “Using Exit Codes,” lists the exit codes produced by each of
the programs in the Microsoft C Compiler package. The chapter also briefly
discusses how exit codes are used in MAKE description files and in batch
files.

Appendix F, “Converting from Previous Versions of the Compiler,”
summarizes the differences between Version 4.0 of the Microsoft C Compiler
and previous versions. This appendix gives instructions for converting
programs written for versions prior to 4.0 to the format accepted by Ver-
sion 4.0.

Appendix G, “Writing Portable Programs,” lists some of the C language
features that are implementation dependent, and offers suggestions for in-
creasing program portability.

Appendix H, “Error Messages,” lists and describes the error messages gen-
erated by the C Compiler and by the other programs in the Microsoft C
Compiler package. It also lists and explains run-time error messages pro-
duced by executable programs written in C.

1.3 New Features

Several useful new features have been added to Version 4.0 of the Microsoft
C Compiler. This section summarizes features added since Version 3.0. For

information about differences between Version 4.0 and versions prior to 3.0,
see Appendix F, “Converting from Previous Versions of the Compiler.”

The new features include the following:
Feature Description

Compact model The compact memory model allows pro-
grams to access more than one segment of data
while limiting code to a single segment. A new
compact-model library is provided to support
this memory model. See Section 3.13, “Compil-
ing Large Programs.”

Huge model The huge memory model allows programs to
have multiple code segments, multiple data seg-
ments, and single arrays that are larger than

huge keyword

CodeView
debugger

MAKE utility

SETENYV utility

Source listings

Numbered errors

New MSC and
CL options

Introduction

64K. The huge memory model is supported
through the large-model library. See Section
3.13, “Compiling Large Programs.”

The huge keyword allows declarations of indivi-
dual arrays that are larger than 64K. See Section
8.3, “Using the near, far, and Huge Keywords,”
in Chapter 8, “Working with Memory Models.”

The Codeview symbolic debugger is provided
with the C compiler. This powerful debugger has
a window interface that allows interactive
debugging of C programs. See the separate
Microsoft CodeView manual.

The Microsoft Program Maintenance Utility,
MAKE, is provided with the C compiler. See
Chapter 7, “Maintaining Programs with
MAKE.”

The SETENYV utility allows you to enlarge the
PC-DOS environment variable table. See Appen-
dix D, “Using EXEPACK, EXEMOD, and
SETENV.”

The MSC and CL commands can produce
source listings showing source lines, errors
encountered during compilation, and local and
global symbol information. A source listing can
be produced either with an MSC prompt or
command line, or with the new /F's option. See
Section 3.2.5 for more information.

Compiler and run-time error messages are now
numbered. See Appendix H, “Error Messages.”

Option Action

JHELP Lists many of the more commonly
used options. This option is not
case sensitive: any combination of
uppercase and lowercase letters is
acceptable; for example, /hELp.

Microsoft C Compiler User’s Guide

New keywords

pragmas

/Fs Creates a source-listing file.

/Ge Causes compiler to use function
entry/exit sequence used by the
Microsoft FORTRAN and Microsoft

Pascal compilers.

/J Makes the char type unsigned by
default,
/Zi Produces full symbolic debugging

information for use with the Code-
View symbolic debugger.

See Chapter 3, “Compiling,” and Chapter 9,
“Advanced Topics,” for descriptions of these
options.

Keyword Description

signed Usage is similar to unsigned; used
with the /J compiler option

huge Allows you to to create arrays larger
than 64K (as well as pointers to
those arrays) in any memory model

cdecl Similar in usage to the keywords
fortran and pascal; useful in con-
junction with the /Ge option;
enables C function entry/exit
sequence and naming convention,
thus allowing functions (including
standard library functions) to have
an arbitrary number of parameters,
even in the presence of the /Ge
option

The # pragma directive has been added, in
accordance with the developing ANSI C stan-
dard. (The # pragma directive is discussed in
Chapter 8 of the Microsoft C Compiler Language
Reference.) The only pragma implemented in
Version 4.0 is the check_stack pragma, dis-
cussed in Section 9.10.1, “Removing Stack
Probes.”

New LINK

options

Language changes

New library
routines

Introduction

Option Action

/HELP Displays a list of LINK
options

/EXEPACK Packs executable files during
linking

/CO Prepares executable files with

the symbolic information
needed by the CodeView
debugger

See sections 4.6.1, 4.6.3, and 4.6.6 for more
information.

The C language syntax and semantics have been
modified in certain cases to correspond with
recent updates to the ANSI standard for the C
language. See Appendix F, “Converting from
Previous Versions of the Compiler,” and Appen-
dix A of the Microsoft C Compiler Language
Reference.

A number of library routines have been added,
and some existing routines have been modified
and enhanced. See Appendix F, “Converting
from Previous Versions of the Compiler,” and
the Microsoft C Compiler Run- Time Library
Reference.

1.4 Notational Conventions

The following notational conventions are used throughout this manual:

Convention

Bold

Meaning

Bold type indicates text that must be typed as
shown. Text that is normally shown in bold type
includes operators, keywords, library functions,
commands, options, and preprocessor directives.
Examples are shown below:

Microsoft C Compiler User’s Guide

BOLD
CAPITALS

Ttalics

Examples

User input

Ellipsis dots

10

4= if defined() int
if Fa fopen
main sizeof

Bold capital letters are used for the names of execut-
able files and files provided with the product, environ-
ment variables, manifest constants, and macros. Com-
mands typed at the MS-DOS level are also capitalized.
These commands include built-in MS-DOS commands
such as SET, as well as programs names such as MSC,
LINK, and LIB. However, you are not required to use
capital letters when you actually enter these com-
mands.

Italics mark the places in command-line and option
specifications and in the text where specific terms
appear in an actual command. Consider the following
option line:

/W number

Note that number is italicized to indicate that it
represents a general form for the /W option. In an
actual command, the user supplies a particular number
for the placeholder number.

Occasionally, italics are also used to emphasize particu-
lar words in the text.

Programming examples are displayed in a special
typeface so that they resemble the output on your
screen or the output of commonly used computer
printers.

Some examples show both program output and user
input; in these cases, input is shown in a darker font.

Vertical ellipsis dots are used in program examples to
indicate that a portion of the program is omitted. For
instance, in the following excerpt, the ellipsis dots
between the statements indicate that intervening pro-
gram lines occur but are not shown:

count = O;

*pc++ M

Double
rackets]

“Quotation
marks”

SMALL CAPITALS

Introduction

Double brackets enclose optional fields in command-
line and option specifications. Consider the following
option specification:

/D identifier[=[string]]

The placeholder identifier indicates that you must sup-
ply an identifier when you use the /D option. The
outer brackets indicate that you are not required to
supply an equal sign (=) and a string following the
identifier. The inner brackets indicate that you are not
required to enter a string following the equal sign, but
if you do supply a string, you must also supply the
equal sign.

Single brackets are used to indicate brackets used by
C-language array declarations and subscript expres-
sions. For instance, a [10] is an example of brackets
in a C subscript expression.

Quotation marks set off terms defined in the text. For
example, the term “far” appears in quotation marks
the first time it is defined.

Quotation marks are also used to refer to command-
line prompts. For example, LINK prompts you for the
name of the object files; this prompt is called the
“Object, Modules” prompt.

Some C constructs require quotation marks. Quotation
marks required by the language have the form ""
rather than “”. For example, a C string used in an
example would be shown in the following form:

" "

abc

Small capital letters are used for the names of keys and
key sequences, such as RETURN and CONTROL-C.

1.5 Learning More About C

The manuals in this documentation package provide a complete
programmer’s reference for Microsoft C. They do not, however, teach you
how to program in C. If you are new to C or to programming, you may
want to familiarize yourself with the language by reading one or more of

the following books:

11

Microsoft C Compiler User’s Guide

Hancock, Les, and Morris Krieger. The C Primer. New York: McGraw-
Hill Book Co., Inc., 1982.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

Kochan, Stephen. Programming in C. Hasbrouck Heights, New Jersey:
Hayden Book Company, Inc., 1983.

Plum, Thomas. Learning to Program in C. Cardiff, New Jersey: Plum
Hall, Inc., 1983.

Schustack, Steve. Variations in C. Bellevue, Washington: Microsoft
Press, 1985.

This is by no means an exhaustive list of the books available for learning C;
any book’s inclusion in this list should not be taken as a recommendation
by Microsoft over other books on the same subject.

1.6 Reporting Problems

If you encounter a problem or you feel you have discovered a problem in the
software, please provide the following information to help us in locating the
problem:

The compiler version number (from the logo that is printed when
you invoke the compiler with MSC or CL

The version of MS-DOS you are running (use the MS-DOS VER
command)

Your system configuration (type of machine you are using and its
total memory, total free memory at compiler execution time, as well
as any other information you think might be useful)

The command line used in the compilation

A preprocessed listing of the program (produced with the /E, /P,
or /EP option?, or if the problem appears to be in the preprocessor,
the C source file or files and all include files referenced

Any nonstandard object files or libraries needed to link, in addition
to the standard object files or libraries you linked with at the time
of the problem

If your program is very large, please try to reduce its size to the smallest
possible program still producing the problem.

12

Introduction
Use the Software Problem Report at the back of this manual to send this
information to Microsoft.
If you have comments or suggestions regarding any of the manuals accom-

" panying this product, please use the Documentation Feedback Card at the
back of this manual.

13

Chapter 2
Getting Started

2.1
2.2
2.3
24
2.5
2.6
2.6.1
2.6.2
263
2.64
2.7
2.8
2.9
2.10

2.11
2.12
2.13
2.14

Introduction 17

Backing Up Your Disks 17

Disk Contents 18

Quick Hard-Disk Setup Procedure 22

Quick Floppy-Disk Setup Procedure 25
Understanding the Compiler Software 30

Executable Files 30

Include Files 31

Library Files 31

Other Files 33
Setting Up the Environment 34
Setting Up Your CONFIG.SYS File 38
Using an 8087 or 80287 Coprocessor 39

Using an 80186,
80188, or 80286 Processor 40

Converting Existing C Programs 40
Organizing Your Software 40
Practice Session 41

Using Batch Files 46

16

Getting Started

2.1 Introduction

This chapter explains how to install the compiler software and set up an
operating environment for the compiler. It describes the files that consti-
tute your compiler package and suggests methods for organizing the files.

Several MS-DOS procedures are mentioned in this chapter. In particular,
the MS-DOS SET and PATH commands are used to give values to “en-
vironment.variables,” which control the compiler environment. If you are
unfamiliar with the SET and PATH commands, or with other MS-DOS
procedures mentioned in this chapter, consult your operating system man-
ual for instructions.

This chapter includes a sample disk setup for your files and a practice ses-
sion to introduce you to the process of compiling and linking a program
with the Microsoft C Compiler and Microsoft Overlay Linker (LINK). The
practice session, while not required, allows you to confirm that your files
are set up properly and provides a quick overview of the MSC and LINK
commands.

To get your C compiler up and running, we suggest the following steps:

1. Back up your disks (see Section 2.2).
2. Check the contents of the disks (see Section 2.3).

3. Read the README.DOC file to learn about changes and addi-
tions made to the compiler after this manual was printed.

4. Use the “Quick Setup Procedure” applicable to your system (floppy
or hard disk) to create directories and copy files from the system
disks (see Section 2.4 or Section 2.5).

2.2 Backing Up Your Disks

The first thing you should do after you have unwrapped your system disks
is make working copies, using the MS-DOS COPY command or the
DISKCOPY utility. Save the original disks for backup.

17

Microsoft C Compiler User’s Guide

2.3 Disk Contents

When you first open your compiler package, you may want to verify that
you have a complete set of software. You should find the following files on
your disks:

Executable Files

File Name

MSC.EXE
C1.EXE
C2.EXE
C3.EXE

LINK.EXE
LIB.EXE
EXEPACK.EXE
EXEMOD.EXE
SETENV.EXE
CV.EXE

MAKE.EXE
CL.EXE

Include Files

18

File Name

ASSERT.H
CONIO.H
CTYPE.H
DIRECT.H

Description

Control program for the compiler
Preprocessor and language parser
Code generator

Optimizer, link text emitter, and assembly-
listing generator

Microsoft Overlay Linker

Microsoft Library Manager

Microsoft EXE File Compression Utility
Microsoft EXE File Header Utility
Microsoft Environment, Expansion Utility

Microsoft CodeView Window-Oriented
Debugger

Microsoft Program Maintenance Utility

Alternate control program for the compiler

Description

Defines assert macro
Declares console I/O functions
Defines character-classification macros

Declares directory-control functions

DOS.H

ERRNO.H
FCNTL.H
FLOAT.H

I0.H

LIMITS.H

MALLOC.H
MATH.H

MEMORY.H
PROCESS.H

SEARCH.H
SETJMP.H

SHARE.H
SIGNAL.H

STDARG.H

STDDEF.H

STDIO.H

STDLIB.H

STRING.H

Getting Started

Defines data types and macros for MS-DOS
interface functions and declares MS-DOS
interface functions

Defines system-wide error numbers
Defines flags used in open functions

Defines values used in floating-point opera-
tions

Declares functions that work on file handles
(“low-level” functions)

Defines upper and lower limits for various
numeric types

Declares memory-allocation functions

Declares math functions and defines related
constants

Declares buffer-manipulation functions

Declares process-control functions and
defines flags for spawn functions

Declares searching and sorting functions

Declares and sets up storage for setjmp
and longjmp functions

Defines flags for file sharing

Declares signal function and defines related
constants

Defines macros for handling variable-length
argument lists (as outlined in draft of ANSI
C standard)

Defines standard values such as NULL and
errno

Declares stream functions and defines re-
lated macros, constants, and types

Declares all functions from the C run-time
library that are not declared in other in-
clude files

Declares string-manipulation functions

19

Microsoft C Compiler User’s Guide

TIME.H

VARARGS.H

V2TOV3.H

SYS\LOCKING.H
SYS\STAT.H
SYS\ TIMEB.H
SYS\TYPES.H

SYS\UTIME.H

Library Files

20

File Name

SLIBC.LIB
SLIBFP.LIB
SLIBFA.LIB
MLIBC.LIB
MLIBFP.LIB
MLIBFA.LIB
CLIBC.LIB
CLIBFP.LIB
CLIBFA.LIB
LIBH.LIB
LLIBC.LIB

Declares time functions and defines struc-
ture types used by time functions

Defines macros for handling variable-length
argument lists (similar to STDARG.H,
but XENIX compatible)

Defines macros to aid in converting pro-
grams from Microsoft C versions 2.03 and
earlier

Defines flags for file locking

Declares stat and fstat functions and
defines stat structure type and related
constants

Declares ftime function and defines the
timeb structure type

Defines types used for file status and time
information

Declares utime function and defines the
utimbuf structure type

Description

Small-model standard C library
Small-model floating-point math library
Small-model alternate math library
Medium-model standard C library
Medium-model floating-point math library
Medium-model alternate math library
Compact-model standard C library
Compact-model floating-point math library
Compact-model alternate math library
Model-independent code-helper library
Large-model standard C library

LLIBFP.LIB
LLIBFA.LIB
EM.LIB

87.LIB

Other Files
File Name

BINMODE.OBJ
SSETARGV.OBJ

MSETARGV.OBJ
CSETARGV.OBJ

LSETARGV.OBJ

SVARSTCK.OBJ

CVARSTCK.OBJ
MVARSTCK.OBJ
LVARSTCK.OBJ

EMOEM.ASM

CV.HLP
DEMO.C
README.DOC

Getting Started

Large-model floating-point math library
Large-model alternate math library

Model-independent emulator floating-point
library

Model-independent 8087 /80287 floating-point
library

Description

Routine for processing binary data.

Small-model routine for processing wild-card
characters.

Medium-model routine for processing wild-
card characters.

Compact-model routine for processing wild-
card characters.

Large-model routine for processing wild-card
characters.

Small-model routine for allowing dynamic
heap allocation out of unused stack space.

Compact-model routine for allowing dynamic
heap allocation out of unused stack space.

Medium-model routine for allowing dynamic
heap allocation out of unused stack space.

Large-model routine for allowing dynamic
heap allocation out of unused stack space.

Module for customizing floating-point
software.

Help file for the CodeView debugger.
Sample C program.

Documentation of changes and additions not
appearing in these manuals. If you see files on
your disks that do not appear in the above
list, they will be explained in the
README.DOGC file. Your release of the

21

Microsoft C Compiler User’s Guide

software may not include a README.DOC
file, so don’t be alarmed if you are unable to
find this file on your disks.

Start-up sources A group of assembler routines and include files
comprising basic start-up code for C pro-
grams; sece README.DOC for a complete
list of these files.

There may be additional sample C programs on the disk. If so, they will be
listed in the README.DOC file.

2.4 Quick Hard-Disk Setup Procedure

The following sample setup is suitable for a hard-disk system. The setup
includes only the small-model library files. If all your programs are small
model, or if you are not concerned with memory models at all, then the
small-model library files are the only ones you need. However, if you use
more than one memory model in your programming, you will probably
want to add the appropriate library files from Disk 4, “Libraries Disk
(Medium Model and Compact Model),” or Disk 5, “Libraries Disk (Large
Model),” to the LIB directory.

The 8087 /80287 floating-point library and the alternate math library are
not included in the sample setup because you do not need both the regular
floating-point library and the other floating-point libraries at the same
time. If you want to use one of the other floating-point libraries, you can
substitute it or add it to the LIB directory. Similarly, only the MSC.EXE
control program is included in this setup. If you prefer to use CL.EXE,
add it to the BIN directory or substitute it for MSC.EXE.

Note

The following procedure assumes your hard disk is Drive C, and that
you begin with C: as your current drive and directory.

1. With your system power on, and the MS-DOS prompt showing,
enter the following commands (these set the environment variables
so the compiler will look for the necessary executable files, libraries,
and include files in the directories you will create in Step 2):

22

Getting Started

PATH C:\BIN

SET INCLUDE=C:\INCLUDE
SET LIB=C:\LIB

SET TMP=C:\

Note that the TMP setting simply specifies the root directory of
Drive C. The temporary files created by the compiler are removed
by the time processing is completed, so you don’t need to create a
separate directory to store them. (MSC.EXE deletes the temporary
files automatically; you are not responsible for removing them.)

To save the time it takes to enter these settings, you can place these
commands in a batch file and set up the environment variables by
entering the name of the file (see Section 2.14, “Using Batch Files”).

Enter the following commands in the order shown, following the
MS-DOS prompt (these create the directories in which you will store
compiler files, libraries, and include files; if you already have any
directories named BIN, LLIB, INCLUDE, or INCLUDE\SYS on your
hard disk, you should skip the commands that create those direc-
tories):

CD \

MD BIN

MD LIB

MD INCLUDE

MD INCLUDE\SYS

Insert Disk 1, “C Compiler Disk,” in Drive A and type the following
command at the MS-DOS prompt:

COPY A:+.% \BIN

Replace the disk in Drive A with Disk 2, “Utilities Disk,” and enter
the following command at the MS-DOS prompt:

COPY A:x.EXE \BIN

Replace Disk 2 with Disk 3, “Include Files and Libraries Disk (Small
Model),” and type this command following the MS-DOS prompt:
COPY A:LINK.EXE \BIN

Type

CD \BIN
DIR

at the MS-DOS prompt to verify that the following files are now in
your BIN directory:

23

Microsoft C Compiler User’s Guide

EXEMOD.EXE MSC.EXE
EXEPACK.EXE Cl.EXE
CV.EXE C2.EXE
LIB.EXE C3.EXE
LINK.EXE SETENV.EXE
MAKE . EXE

7. With Disk 3 still in Drive A, enter these commands following the
MS-DOS prompt:

COPY A:*.H \INCLUDE
COPY A:\SYS*.H \INCLUDE\SYS

8. After the MS-DOS prompt, type the commands
CD \INCLUDE

DIR

to verify that the following files have been copied to your INCLUDE
directory:

ASSERT.H FLOAT.H SEARCH.H STDLIB.H
CONIO.H I0.H SETJIJMP .H STRING.H
CIYPE.H LIMITS.H SHARE .H TIME.H
DIRECT.H MALLOC.H SIGNAL.H V2TOV3.H

DOS.H MATH.H STDARG.H VARARGS .H
ERRNO.H MEMORY .H STDDEF .H

FCNTL.H PROCESS.H STDIO.H

9. Next, type these two commands after the MS-DOS prompt:

CD SYS
DIR

This confirms that these additional include files have been copied to
the INCLUDE directory:

LOCKING.H
STAT.H
TIMEB.H
TYPES.H
UTIME .H

10. With Disk 3 still in Drive A, enter the following commands at the
MS-DOS prompt:

COPY A:SLIBC.LIB \LIB
COPY A:SLIBEP.LIB \LIB
COPY A:EM.LIB \LIB
COPY A:LIBH.LIB \LIB

24

Getting Started

11. Enter

CD \LIB
DIR

to verify that the four files from the preceding step were copied to
your LIB directory.

With this sample setup, you can run the compiler and linker (in fact, any of
the .EXE files you have just copied) from any directory or disk.

If you use one of the following object files in your program, you can place
the file either in your C program file directory or in the LIB directory:

File Use

SETARGV.OBJ Enables wild-card expansion

tVARSTCK.OBJ Enables stack /heap competition, where z is S,
C,M,orL

BINMODE.OBJ Changes the default text-processing mode

Note, however, that the LIB environment variable is not used to find the
tSETARGY or BINMODE file; if it is not in your current working direc-
tory you must specify a path name at link time.

2.5 Quick Floppy-Disk Setup Procedure

You will need at least three floppy disks to set up the files so that you can
run the compiler. The sample setup given below uses two disks and assumes
the following:

¢ You will swap the two disks named “Compiler” and
“Linker /Utilities/Libraries” in and out of Drive A as necessary.

e You will develop your programs and create listing files on a separate
disk named “Include/Source Files” in Drive B.

e You will run the compiler from Drive B, so that B is the default
drive for output files (the object file, listing file, map file, and exe-
cutable program file).

This sample setup includes only the small-model library files. You can save

space by keeping only one set of library files on a disk, since any given pro-
gram uses only one set (small-, medium-, compact-, or large-model set). If

25

Microsoft C Compiler User’s Guide

all your programs are small model, or if you will not use memory models,
then the small-model library files are the only ones you need.

The 8087 /80287 floating-point library and the alternate math library are
not included in this sample setup because you do not need both the regular
floating-point library and the other floating-point libraries at the same
time. If you want to use one of the other floating-point libraries, you can
substitute it. Similarly, only the MSC.EXE control program is included in
this setup. If you prefer to use CL.EXE instead, substitute it for
MSC.EXE.

Each disk drive must have a capacity of 360K for this sample setup pro-
cedure to work.

1. With your system power on, and the MS-DOS prompt showing,
enter the following commands (these change the current drive to
Drive A, and set the environment variables so the compiler will look
for the necessary executable files, libraries, and include files in the
directories you will create in the steps that follow):

A:

PATH A:\;A:\BIN

SET INCLUDE=B:\INCLUDE
SET LIB=A:\LIB

SET TMP=B:\

Note that the TMP setting simply specifies the root directory of
Drive B. The temporary files created by the compiler are removed
by the time processing is completed, so you don’t need to create a
separate directory to store them. (MSC.EXE deletes the temporary
files automatically; you are not responsible for removing them.)

To save the time it takes to enter these settings, you can place these
commands in a batch file and set up the environment variables by
entering the name of the file (see Section 2.14, “Using Batch Files”).

2. Insert Disk 1, “C Compiler Disk,” in Drive B, and a formatted disk

in Drive A.

3. Type the following command following the MS-DOS prompt:
COPY Bi:x.+

4. Type
DIR

following the MS-DOS prompt to verify that the following files have
been copied to your disk in Drive A:

26

Getting Started

MSC.EXE
Cl.EXE
C2.EXE
C3.EXE

Remove the disk in Drive A, label it “Compiler,” and replace it with
another formatted disk.

Replace the disk in Drive B with Disk 2, “Utilities Disk.”

After the MS-DOS command, type the following commands, in se-
quence:

MD BIN

CD BIN

COPY B:LIB.EXE
COPY B:MAKE.EXE
COPY B:EXEPACK.EXE
COPY B:EXEMOD.EXE
COPY B:SETENV.EXE

Replace Disk 2 in Drive B with Disk 3, “Include Files and Libraries
Disk (Small Model),” then type these commands, in sequence:

COPY B:LINK.EXE
D\

MD LIB

CD LIB

COPY B:SLIBC.LIB
COPY B:SLIBFP.LIB
COPY B:EM.LIB
COPY B:LIBH.LIB

Type
DIR

to confirm that the following library files have been copied to the
LIB directory on the disk in Drive A:

SLIBC.LIB
SLIBFP.LIB
EM.LIB
LIBH.LIB

Next, enter

CD \BIN
DIR

to confirm that the following utilities have been copied to your BIN
directory:

27

Microsoft C Compiler User’s Guide

LINK.EXE EXEPACK.EXE
MAKE . EXE EXEMOD.EXE
LIB.EXE SETENV.EXE

9. Remove the disk in Drive A, label it “Linker/Utilities/Libraries,”
and replace it with another formatted disk.

10. Type the following commands, in the order shown, after the MS-

DOS prompt:
MD INCLUDE
CD INCLUDE
COPY B:INCLUDE\«*.H

11. Type
DIR
to confirm that the following files were copied to your INCLUDE
directory:
ASSERT.H FLOAT.H SEARCH.H STDLIB.H
CONIO.H I0.H SETJMP .H STRING.H
CTYPE .H LIMITS.H SHARE.H TIME.H
DIRECT.H MALLOC.H SIGNAL.H V2TOV3.H
DOS.H MATH.H STDARG.H VARARGS .H
ERRNO.H MEMORY .H STDDEF .H
FCNTL.H PROCESS.H STDIO.H

12. Type
MD SYS

to create the SYS subdirectory in INCLUDE.

13. Type the following commands, in the order shown:
CD S8YS
COPY B:\INCLUDE\SYS*.H
14. Type
DIR
to verify that the following files were copied to SYS:

LOCKING.H
STAT.H
TIMEB.H
TYPES.H
UTIME.H

15. Remove the disk in Drive A and label it “Include/Source Files.”

28

Getting Started

If you use one of the zZSETARGV.OBJ, zVARSTCK.OBJ, or
BINMODE.OBJ files (all of which are described in Section 2.4,

“Quick Hard-Disk Setup Procedure”), you can place the file either in the
directory with your C program files or in the LIB directory. Note, however,
that the LIB environment variable is not used to find the zSETARGYV or
BINMODE file; when it is not in your current working directory, you must
specify a path name at link time.

If you use more than one memory model in your programming, you will
probably want to set up a separate library disk for each model. Note that
the files stored on your “Compiler” and “Include/Source Files” disks (the
compiler passes and the include files) do not change with the memory
model, so you can use the same disks in the compiling stage for all five
models.

On each separate library disk you will have the library files for that model,
plus a copy of the LINK and LIB utilities, as well as any other utilities you
are using. Although the LINK and LIB utilities do not change with the
memory model, it is convenient to have a copy on each disk so you can in-
voke LINK and LIB without changing to your small-model disk.

Use the same directory structure on all four disks (small, medium, compact,
and large) so you will not have to change the values of your environment
variables when you change disks. For example, to process a medium-model
program using the alternate math library instead of the emulator, you
could set up a disk in the following manner to be used in Drive A:

BIN\LINK.EXE
BIN\LIB.EXE

LIB\MLIBC.LIB
LIB\MLIBFA.LIB

This organization is identical to the setup for the “Linker/Utilities/
Libraries” disk given earlier, except that the medium-model standard li-
brary file replaces the small-model file, and the medium-model alternate
math library (MLIBFA.LIB) is used instead of EM.LIB and SLIBFP.LIB.
The PATH setting (A:\BIN) and TMP setting (B:\) used above are valid for
this disk as well, since it is organized with the same directory structure.
Note that you must use the same disk drive, Drive A, when you change
from the small-model disk to the medium-model disk. Otherwise, your en-
vironment settings become invalid.

29

Microsoft C Compiler User’s Guide
2.6 Understanding the Compiler Software

The software for the Microsoft C Compiler consists of three main categories
of files: executable files, include files, and library files. These files are listed
in Section 2.3, “Disk Contents.” Sections 2.6.1, 2.6.2, and 2.6.3, respective-
ly, describe each of the three file categories in more detail. A number of ad-
ditional files do not fall into the three main categories and are discussed
separately in Section 2.6.4, “Other Files.”

2.6.1 Executable Files

Executable files have an .EXE extension. MSC.EXE, the control program
for the compiler, is an executable file. To run the compiler, invoke
MSC.EXE by typing MSC or msec.

C1.EXE, C2.EXE, and C3.EXE are the three stages, or “passes,” of the
compiler. They are executed in order when you process a file using the com-

piler control program (MSC.EXE or CL.EXE).

Note

Version 3.0 of the Microsoft C Compiler had four passes. Pass 0, the
preprocessor, and pass 1, the language parser, have been combined in
Version 4.0.

The file LINK.EXE is the linker utility. Invoke the linker by typing
LINK after you have compiled a file or files. The linker produces an exe-
cutable program file from your compiled files.

The library-manager program, LIB.EXE, is used to create and organize li-
braries of object modules. Invoke this utility by typing LIB.

EXEPACK.EXE and EXEMOD.EXE are special programs you can use
to modify your executable program files. SETENV.EXE is a utility to
modify the size of the DOS environment table. These functions are dis-
cussed in Appendix D, “Using EXEPACK, EXEMOD, and SETENV.”

30

Getting Started

CL.EXE is an alternate control program for the compiler. It is provided
for those users who are familiar with the cc command from XENIX or
UNIX systems. Like MSC.EXE, CL.EXE invokes the three passes of the
compiler for you. You can also invoke the linker through CL.EXE.

2.6.2 Include Files

Include files are text files you can incorporate into your program by using
the C preprocessor directive # include. These files contain definitions used
by run-time library routines.

By convention, scme include files are stored in a subdirectory named SYS.
This convention originated with the practice of storing files that define
“system-level” constants and types in a separate “system” subdirectory on
UNIX and XENIX systems. However, not all the include files that are tradi-
tionally stored in the SYS subdirectory contain system-level definitions,
and some of the include files not in the SYS subdirectory contain system-
level definitions. Since many programs, particularly those created under
the XENIX and UNIX operating systems, rely on the SYS subdirectory con-
vention, Microsoft continues to recognize this convention to maintain com-
patibility with existing programs.

2.6.3 Library Files

Library files contain compiled run-time library routines to be linked

with your program. Four separate sets of library files are included: small-
model library files, medium-model library files, compact-model library files,
and large-model library files. Huge-model programs use the large-model li-
brary files. The terms “small model,” “medium model,” “compact model,”
“large model,” and “huge model” refer to the standard memory models you
can choose for your pregram, based on its storage requirements for code
and data.

You do not have to choose a memory model in order to process and run
your program. The small model is appropriate for most programs, and the
compiler uses the small model and the small-model library files by default.

Three additional library files, EM.LIB, LIBH.LIB, and 87.LIB, are model
independent; they can be used with all five memory models. EM.LIB is the
floating-point emulator, used to perform floating-point operations.
LIBH.LIB is a library of model-independent “compiler helper” functions;
the compiler generates references to these functions to handle complex
operations such as 32-bit multiplication and division. 87.LIB is the

31

Microsoft C Compiler User’s Guide

8087/80287 floating-point library. This library provides minimal floating-
point support and can only be used when an 8087 or 80287 coprocessor is
present. The compiler uses the emulator (EM.LIB) by default, but you can
override the default to use 87.LIB (if you have a coprocessor) or the alter-
nate math library described below. Floating-point options are described in
more detail in Section 3.8, “Selecting Floating-Point Options,” in Chapter
3, “Compiling,” and in Section 9.9 “Controlling Floating-Point Opera-
tions,” in Chapter 9, “Advanced Topics.”

The library files beginning with S belong to the small-model library set.
SLIBC.LIB is the standard run-time library. SLIBC.LIB contains all the
routines included in the Microsoft C run-time library except math routines
that require floating-point support.

SLIBC.LIB also contains an object module named CRT0.0OBJ, which is
the start-up routine for small-model programs. The start-up routine per-
forms several important tasks. It allocates the stack for your program and
initializes the segment registers. It sets up the argv, arge, and envp vari-
ables to allow command-line arguments and environment settings to be
passed to the program. The start-up routine is responsible for setting up
and maintaining the operating environment for the program. The start-up
routine also initializes the emulator, if loaded.

SLIBFP.LIB is the floating-point math library. It is required whenever
your program uses EM.LIB or 87.LIB.

SLIBFA.LIB is the alternate floating-point library. You can use
SLIBFA.LIB instead of EM.LIB and SLIBFP.LIB when speed is more
important than precision in floating-point calculations. See the discussion
of floating-point operations in Section 3.8, “Selecting Floating-Point Op-
tions,” in Chapter 3, “Compiling,” and in Section 9.9, “Controlling
Floating-Point Operations,” in Chapter 9, “Advanced Topics,” for details
on this option.

When you compile a source file using MSC.EXE or CL.EXE, the compiler
places the names of the standard library (SLIBC.LIB), the code-helper li-
brary (LIBH.LIB), and the floating-point libraries (EM.LIB and
SLIBFP.LIB are the default) in the object file for the linker. Thus LINK
is able to link these libraries with your program automatically. If you com-
pile using one of the /FP options, you can control which floating-point li-
braries are specified in the object files. You can also override the default at
link time by substituting the name of a different floating-point library for
the library name in the object file. These options are discussed in Section
3.8 of Chapter 3, “Compiling,” and in Section 9.9 of Chapter 9, “Advanced
Topics.”

32

Getting Started

The files beginning with M are medium-model library files, the files begin-
ning with C are compact-model library files, and the files beginning with L
are large-model library files. The organization and content of these files are
analogous to that of the small-model library set. CLIBC.LIB,
LLIBC.LIB, and MLIBC.LIB, like SLIBC.LIB, each contain a start-up
routine named CRTO0.0OBJ.

Note

Throughout the remainder of this manual, the convention zL.LIBC.LIB
or 2LIBFP.LIB, where zis S, C, Mor L, will be used to refer to the
standard library (small, compact, medium, or large) that is appropriate
for the memory model chosen by the user.

This convention will also be used for other files that are supplied in sets
of four, such as zZSETARGV.OBJ, in order to handle the five stan-
dard memory models in Microsoft C.

If you specify the medium, compact, or large model when you process your
program, the compiler uses the appropriate standard library}mLIBC.LIB),
floating-point libraries (by default, EM.LIB plus zLIBFP.LIB), and the
code-helper library (LIBH.LIB) when placing information in the object file
for the linker. Otherwise, the compiler uses the small-model files.

2.6.4 Other Files

The object file BINMODE.OBJ is provided for modifying the default
mode for data files from text mode to binary mode. The same file can be
used with all five memory models (see Section 9.12;, “Controlling Binary and
Text Modes,” of Chapter 9, “Advanced Topics,” for details on
BINMODE.OBJ).

The :SETARGV.OBJ files provide a routine that expands the MS-DOS
wild-card characters ? and * in file-name arguments passed to C programs
from the command line. Wild-card expansion is performed only if you ex-
plicitly link with the appropriate SETARGY file. See Section 5.2, “Pass-
ing Command-Line Data to a Program,” for more information.

33

Microsoft C Compiler User’s Guide

Linking with the zVARSTCK.OBJ files allows the heap to compete with
the stack for memory space. In this way, the heap can allocate memory
from unused stack space. See Section 9.8, “Controlling Stack and Heap Al-
location,” in Chapter 9, “Advanced Topics,” for more information about

the zVARSTCK.OBJ files.

The EMOEM.ASM allows you to customize floating-point software. See
Section 3.8.3, “If Your Computer Is Not IBM Compatible,” in Chapter 3,
“Compiling.”

The CV.HLP file is a help file for the CodeView symbolic debugger. The
COUNT.* files are used in the practice session for the debugger (see your
Microsoft CodeView manual for more information about these files).

The README.DOC file, if present, contains documentation of recent
changes that may not be included in this manual, as well as documentation
of the sources for the C start-up routines. If a README.DOC file is in-
cluded on your disks, be sure to read the file before trying to use the
software, since the file may contain information that affects how the com-
piler operates. In case of conflict between the manual and the

README.DOC file, the README.DOC file takes precedence.

DEMO.C, which is discussed in Section 2.13, “Practice Session,” is a sam-
ple C program. Other demonstration programs may be included on your
distribution disks. If so, they will be described in the README.DOC file.

2.7 Setting Up the Environment

Before you compile and link a program using MSC.EXE and LINK.EXE,
you must make sure that the programs can locate all the files they need to
process your program. The required files are listed below:

Files Purpose

Executable files These are the files the control program executes
as it processes your program. The names of these
files are C1.EXE, C2.EXE, and C3.EXE.
When using CL.EXE, the alternate control pro-
gram, LINK.EXE may also be executed by the
control program. Note that MSC.EXE and
CL.EXE are also executable files.

34

Getting Started

Include files If your program uses the preprocessor directive
#include, the compiler attempts to find the
given text file and include it in your program at
compile time. Your program cannot be compiled
if the given include file is not found.

Library files At link time, LINK.EXE attempts to find the
library files that are specified in the object file or
on the link command line and link them with
your program.

When you invoke the compiler or linker, it determines whether or not you
have defined certain “standard places” to search for the necessary files.
You can define these places by using environment variables. Environment
variables are defined at the MS-DOS command level using the MS-DOS
commands SET and PATH. (They are called environment variables be-
cause they are effective throughout the environment in which a program is
executed.)

Although environment variables are usually helpful, you are not required to
set them. If you do not set these variables, the current working directory is
used to search for files and to create temporary files. If you do set these
variables, the compiler still searches the current working directory first.
Then, if it does not find the file or files in the current working directory, it

- checks the appropriate environment variable for the path to the file. Ex-
ceptions to this sequence are #include files enclosed in angle brackets (<
>). (See Section 8.3, “Include Files,” in Chapter 8, “Preprocessor Direc-
tives and Pragmas,” of the Microsoft C Compiler Language Reference.) An
error is produced if the files are not found or if insufficient space is available
in the specified directory or directories to create temporary files.

MSC.EXE looks for three environment variables: PATH, INCLUDE,
and TMP. LINK.EXE uses one environment variable, LIB. (Like

the compiler, LINK also checks the current working directory first for

the libraries it needs, unless a library is specified with an absolute path
name.) The alternate control program, CL.EXE, uses all four environment
variables.

PATH tells the compiler and the operating system where to look for exe-
cutable files, and INCLUDE tells them where to look for include files. The
LIB environment variable tells LINK.EXE where to find any library files

it needs.

The TMP environment variable has a slightly different function. The com-
piler creates a number of temporary files as it processes a program. The
TMP environment variable tells the compiler and the operating system
where to create these files. The temporary files are removed by the time the

38b

Microsoft C Compiler User’s Guide

compiler finishes processing. The space required for the temporary files is
typically double the size of the source file. It is often helpful to create the
temporary files on another disk to aveid running out of space on your de-

fault disk.

Note

If you have a memory-based disk emulator, commonly referred to as a
“RAM disk,” you can expedite processing by assigning that path to the
TMP variable.

To define the environment variables INCLUDE, LIB, and TMP, use the
SET command to assign a directory specification or specifications to the
variable. You must set PATH, INCLUDE, and TMP before invoking the
compiler if you want the variables to be effective while the compiler is run-
ning. Similarly, you must set LIB before the linking stage.

Whereas the TMP variable can be assigned only one path name, the
INCLUDE, PATH, and LIB variables can each contain more than one
path name. Each path name is separated from the next path name by a
semicolon (;). The compiler or linker searches through all directories
specified, in order of their appearance, until it finds the file it needs. This
means that include files, executable files, and library files can be separated
and placed in different directories.

For example, you can tell the compiler where to look for include files by set-
ting the INCLUDE variable, as the following shows:

SET INCLUDE=B:\INCLUDE;B:\CUSTOM

First the compiler will look for include files on Drive B in the directory
named INCLUDE; then, if necessary, the compiler will search the CUSTOM
directory.

Use the PATH command instead of the SET command to define the
PATH variable. (Although it is permissible to define the PATH variable
with the SET command, using this method under versions of MS-DOS ear-
lier than 3.0 can cause the PATH variable to work incorrectly for some

36

Getting Started

directory specifications using lowercase letters.) To define the PATH vari-
able using the PATH command, simply give the PATH command fol-
lowed by a space (or an equal sign) and one or more directory specifications
separated by semicolons. For example, you might use the following com-
mand line:

PATH A:\BIN:A:\LINKER

This tells the compiler and the operating system to search for executable
files on Drive A in the directory named BIN, then, if necessary, in the
LINKER directory.

Note

The environment table is 160 bytes by default. If you want to set up a
complex environment, this may not be enough space. You can use the
SETENYV program to increase the size of the environment table. See
Section D.4 for more information.

MSC searches the current working directory, then all directories specified
in the PATH command, in order of their appearance, until it finds the exe-
cutable file it needs. Thus, executable files can be separated and placed in
different directories, as long as the path name of each directory containing
an executable file appears in the PATH specification.

The MS-DOS operating system also uses the PATH setting to locate exe-
cutable files. For example, when you invoke MSC.EXE (by typing MSC),
the MS-DOS system locates MSC.EXE by looking in your default di-
rectory and in the directories specified in the PATH setting. If you include
the path name of the directory containing MSC.EXE (or CL.EXE) in
your PATH setting, you can execute the control program from any direc-
tory.

Once you have set an environment variable, it remains effective until you
reset it to a different value (or to an empty value) or until you turn off the
machine. If you frequently set up your compiler files in a standard way, you
should place SET and PATH commands in your AUTOEXEC.BAT file.
Then you will be ready to use the compiler each time you boot your
machine.

87

Microsoft C Compiler User’s Guide

You can also use SET and PATH commands in an MS-DOS batch file to
define the environment for a particular program or programs. If you fre-
quently switch between different environments, you can save time by
setting up batch files that contain the SET and PATH commands for each
environment, thus allowing you to simply execute a batch file each time you
want to switch to a new environment.

Certain command-line options available with the compiler override the
effect of environment variables. For example, the /X option (described in
Section 3.6.6 of Chapter 3, “Compiling”) tells the compiler not to automat-
ically search the standard places for include files. The result is that the
compiler does not search for include files in the directories specified by the
INCLUDE variable.

2.8 Setting Up Your CONFIG.SYS File

Before you can run the compiler you must make sure that your
CONFIG.SYS file allows the compiler to open at least 15 files. Check this
by looking in your CONFIG.SYS file for the following line:

files=number

If number is less than 15, edit CONFIG.SYS to set number to an integer
between 15 and 20. (Setting a number higher than 20 has no effect on the
number of files per process. See your Microsoft MS-DOS Programmer’s
Reference Manual for more information.) If you do not currently have a
CONFIG.SYS file, create a file by that name on your system disk (or root
directory if you have a bootable hard disk) and insert the following line:

files=15

38

Getting Started

Note

If you do not specify enough files in the CONFIG.SYS file, you may
see one of the following fatal error messages during compilation:

Cannot open compiler intermediate file — no more files
or

Cannot find 'includefile'

It is recommended, though not required, that you also set the number of
buffers allowed in your CONFIG.SYS file. Check your CONFIG.SYS
for the following line:

buf fers=number
If number is not already set, 10 is a reasonable number.

After you have edited or created your CONFIG.SYS file, reboot the sys-
tem so the new settings will take effect.

2.9 Using an 8087 or 80287 Coprocessor

If you have an 8087 or 80287 coprocessor, you should read Section 3.8,
“Selecting Floating-Point Options,” in Chapter 3, “Compiling.” With an
8087 or 80287, you can perform fast, efficient floating-point operations. You
may want to select one of the 8087 options described in Section 3.8.1, “If
You Have an 8087 or 80287 Coprocessor,” to take maximum advantage of
your processor’s capabilities.

39

Mierosoft C Compiler User’s Guide

2.10 Using an 80186,
80188, or 80286 Processor

You can use the compiler with an 80186, 80188, or 80286 processor without
taking any special steps. However, to take advantage of your processor’s
capabilities you will probably want to use the /G1 or /G2 option when
you compile your programs. These options enable the instruction set for the
80186/80188 and 80286 processors, respectively (see Section 3.9 of Chapter
3, “Compiling”).

2.11 Converting Existing C Programs

If you are using an earlier version of the Microsoft C Compiler, or if you
have programs written for such a compiler, turn to Appendix F, “Convert-
ing from Previous Versions of the Compiler,” for a discussion of differences
between this compiler and earlier versions. Some programs may need
modification to compile correctly on Version 4.0.

2.12 Organizing Your Software

Before you begin using the compiler, you will probably want to spend some
time organizing the files on your disks. The optimal arrangement of files
depends on your specific needs and on how you most frequently use the
compiler, as well as your machine configuration. You can also take advan-
tage of the compiler’s use of environment variables to determine search
paths for various pieces of the software.

It is recommended that you create a separate directory for each type of file:
executable, include, and library. (See Section 2.4, “Quick Hard-Disk Setup
Procedure,” and Section 2.5, “Quick Floppy-Disk Setup Procedure,” for ex-
amples of how to create these directories.) The “system-level” include files
are conventionally placed in a separate subdirectory of the include file
directory named SYS, but this is not required.

If you use the SYS subdirectory convention, you should give the subdirec-

tory name with the file name when you use a “system-level” include file in
your program. For example, if you want the compiler to find and use the

40

Getting Started

include file TIMEB.H from the subdirectory SYS in the directory specified
by the INCLUDE variable, use the following line in your program:

#include <sys\timeb.h>

On the other hand, if you do not use the SYS convention, the following line
is sufficient:

#include <timeb.h>

Note that, although case is significant within C programs, case is not
significant to MS-DOS. The names sys and SYS are equivalent when used
as MS-DOS directory names, unlike the XENIX operating system, where
these two names would not be equivalent.

Sample setups for hard-disk systems and floppy-disk systems are given in
Sections 2.4 and 2.5. Refer to the section that applies to your system.

2.13 Practice Session

This section shows you the steps involved in compiling and linking a pro-
gram using the Microsoft C Compiler. By following these steps you can
produce and run an executable program file.

The source file used for this practice session is the sample source file
DEMO.C, which is included with your compiler software. DEMO.C is a
very simple C program that contains only one function, the main function.
The main function is designed to print on your terminal any command-line
arguments you pass to the program at execution time. It will also print the
current value of environment settings. You can examine the DEMO.C
source file to see how this is done. For a full discussion of passing
command-line data to programs, accessing the program environment from
within a program, and declaring the arge, argv, and envp parameters, see
Chapter 5, “Running C Programs on MS-DOS.”

This practice session assumes that you are using the sample disk setup and
environment that is appropriate for your system. See Section 2.4, “Quick
Hard-Disk Setup Procedure,” or Section 2.5, “Quick Floppy-Disk Setup
Procedure,” for examples of how to set up your disks.

41

Microsoft C Compiler User’s Guide

The first thing you should do is verify that the compiler environment is set
up correctly. You can do this by typing SET. When you give the SET
command without an argument, it lists all environment variables and their
current settings. Make sure the PATH, INCLUDE, TMP, and LIB vari-
ables are in the list and that they are set appropriately for your system, as
shown below:

Hard-Disk Settings Floppy-Disk Settings
PATH=C:\BIN PATH=A:\;A:\BIN
INCLUDE=C:\INCLUDE INCLUDE=B:\INCLUDE
LIB=C:\LIB LIB=A:\LIB

TMP=C: \ TMP=B:\

If your settings do not match the above settings, turn back to Section 2.4
or 2.5 to review the disk setup and environment settings relevant to your
system.

Once you have set up the environment, you are ready to begin processing
DEMO.C. Follow steps 1-14 below:

1. First, set up a directory to hold program files. The directory can be
on the hard disk or on the floppy disk named “Include/Source Files”
created in Section 2.5. You can give the directory any name you
like; for this session, the name PROG will be used. Next, copy
DEMO. C from Disk 3, “Include Files and Libraries Disk (Small
Model),” into the PROG directory.

Important

If you are using a floppy-disk setup, the disk containing the
compiler executable files (“Compiler” from Section 2.5) should
now be in Drive A.

2. Now you are ready to begin compiling. Make sure that the PROG
directory is your current working directory (use the CD command
to change directories, if necessary). Then type this command:

MSC

42

Getting Started

The MSC command invokes MSC.EXE, the compiler control pro-
gram. MSC.EXE displays prompts on your screen to guide you
through the compiling process.

The first message to appear on your screen is

Microsoft (R) C Compiler Version 4.00
Copyright (C) Microsoft Corp 1984, 1985, 1986. All rights reserved.
Source file name [.C]:

Following the “Source file name” prompt, specify the name of the
file or files to be compiled. (If you don’t include the file-name exten-
sion when responding to this prompt, MSC.EXE assumes that the
extension is .C. For this reason, your source file must have the file
extension .C or .c.) Type

DEMO

in response to this prompt.

The next prompt is
Object file name [DEMO.OBJ]:

This prompt allows you to supply a name for the object file. In-
stead of typing a name, respond to this prompt by pressing the
RETURN key, causing MSC.EXE to use the default response for the
prompt. The default response for the “Object file name” prompt is
to name the object file DEMO.OBJ. The object file is created in the
current working directory, which is the PROG directory.

The next prompt is
Source listing [NUL.LST]:

This prompt lets you create a source listing containing the source
code on numbered lines and a table of symbols in the program. If er-
rors are encountered during compilation, they will be shown im-
mediately following the source lines that caused the error. Type

DEMO

in response to this prompt. MSC.EXE appends the default exten-
sion .LST and creates a listing named DEMO.LST. The listing file
is created in the current working directory (PROG).

The next prompt is

Object listirng [NUL.COD]:

This prompt lets you create a listing of your object file, containing
the machine instructions that correspond to your C instructions.

43

Microsoft C Compiler User’s Guide

Type
DEMO

in response to this prompt. MSC.EXE appends the default exten-
sion .COD and creates a listing named DEMO.COD. The listing file
is created in the current working directory (PROG).

7. MSC.EXE now begins to compile your program. If your program
has errors, they will be displayed as the compiler operates. (DEMO.C
does not have errors.) When the compilation process is finished, the
MS-DOS prompt reappears.

You now have an object file named DEMO . OBJ, a source-listing file
named DEMO.LST, and an object-listing file named DEMO. COD in
your current working directory.

8. Next, you need to link your program.

Note

If you are using a floppy-disk setup, you should change the disk
in Drive A at this point. Remove the disk containing the com-

piler files, then insert the disk containing the LINK utility and
the library files (“Linker/Utilities/Libraries” from Section 2.5).

To link your file, simply type
LINK

The LINK command invokes the linker. You will see the following
message On your screen:

Microsoft (R) Overlay Linker Version 3.50

Copyright (C) Microsoft Corp 1983, 1984, 1985, 1986. All rights reserved.
9. The first linker prompt is

Object Modules [.0OBJ]:

You have only one object file to link, so just type

DEMO

in response to this prompt. LINK appends the .OBJ extension to
find your file on the disk. Since the file is in the current working
directory, you do not have to specify a path name to enable LINK
to find it.

44

10.

11.

12.

13.

Getting Started

The next prompt is
Run File [DEMO.EXE]:

This prompt lets you name the executable program file. Press the
RETURN key in response to this prompt. If you don’t supply a
different name for the executable file, the linker uses the default
name shown in brackets. The executable file is created in the
current working directory (PROG).

The next prompt is
List File [NUL.MAP]:

If you give a file name following this prompt, the linker creates a
map file listing all the external symbols in your program and their
locations. Type the following response:

DEMO /MAP

This response tells the linker to create a listing file named

DEMO .MAP. The .MAP extension is used because you did not sup-
ply your own extension. The map file is created in the PROG direc-
tory by default. The /MAP option causes global symbols to be listed
at the end of DEMO.MAP.

The final prompt is
Libraries [.LIB]:

The names of the standard C and floating-point libraries are pro-
vided in the object file, and the LIB environment variable tells the
linker where to find the given library files. Therefore, you do not
need to give any library names following this prompt. Just press
the RETURN key.

LINK now proceeds to link your file. If any errors are found, they
are displayed on your screen. When the MS-DOS system prompt
reappears, the linker has finished processing your file. You now
have an executable file named DEMO.EXE in your directory, plus an
object listing named DEMO . MAP.

You may want to examine the object listing (DEMO.COD) and map
file (DEMO. MAPE to familiarize yourself with their formats. These
files are especially useful for debugging programs. However, the
listing and map files are not required for running the program, so
you can delete them if you like.

45

Microsoft C Compiler User’s Guide

14.

You can also delete the object file (DEMO.OBJ); since you have the
executable program file, it is no longer needed. Chapter 6, “Manag-
ing Libraries,” discusses how to use the Microsoft Library Manager,
LIB, to organize object files into libraries of useful functions.

You can run the sample program by simply typing DEMO. However,
since the sample program is designed to take command-line argu-
ments and print them, you will probably want to give command-line
arguments when you run the program. For instance, you can run
the program and pass three arguments by typing:

DEMO ONE TWO THREE

The program name is displayed on your screen, followed by the ar-
guments ONE, TWO, and THREE and a listing of all current environ-
ment settings. The environment settings include PATH, LIB,
INCLUDE, and TMP, as well as any other settings that are currently
in effect (whether or not they apply to the C program or to the com-
pilation and linking processes).

Note

Under versions of MS-DOS earlier than 3.0, the program name is
not available and will not be displayed.

This practice session used the simplest form of the MSC and LINK
commands to show you their basic operation. The chapters that follow
describe alternate forms and explain how to specify options with the MSC,
LINK, and LIB commands. Note that the CL command, described in Ap-
pendix C, “The CL Command,” can be used to perform the same tasks as
MSC and LINK.

2.14 Using Batch Files

You can create an MS-DOS batch file to set up the compiler environment
and invoke the compiler. Creating and using batch files is discussed more
fully in your MS-DOS manual. This section is intended only to demonstrate
a few of the possible uses of the MSC command in a batch file.

46

Getting Started

A batch file is a text file containing a series of executable MS-DOS com-
mands. Batch files always have the extension .BAT. You execute a batch
file by typing the file name without the .BAT extension. This causes MS-
DOS to execute the series of commands the file contains.

Batch files are especially useful with the MSC command because they allow
you to set up an environment before using the command. The examples
below use the command-line method of invoking MSC and LINK. The
command-line method lets you give all responses to the prompts on a single
line instead of waiting for the individual prompts. This method is discussed
in Section 3.2.9 of Chapter 3, “Compiling,” and in Section 4.2.9 of Chapter
4, “Linking.”

For example, the following batch file, MYCOMP . BAT, could be used to create
a program from a C source file in an environment set up for that purpose.

SET INCLUDE=B:\TOP\MYINC
MSC %1:
IF NOT ERRORLEVEL 1 LINK %1,,%l:

The value given to INCLUDE in the first line alters the environment for the
MSC command. Since no value is given for PATH, TMP, or LLIB, their
current values, if set, are unaffected by the batch file.

The symbol %1 tells MS-DOS to look for an argument on the command line
when you execute the batch file. To run the batch file, type the following
line:

MYCOMP THIS

The file name THIS is substituted for %1, and THIS.C is compiled, produc-
ing the object file THIS.OBJ.

The second line of the batch file ensures that linking is only at-

tempted if the source file was successfully compiled. The MSC and CL
control programs return an exit code to allow testing for successful compi-
lation. The exit code O indicates success; for information on other exit
codes, see Appendix E, “Using Exit Codes.” The MS-DOS batch command
IF ERRORLEVEL is used to test whether the exit code is 1 or greater.
See your MS-DOS documentation for more on this command.

If compilation is successful, the object file THIS. OBJ is linked to produce
THIS.EXE (the default name, since none is supplied). The name THIS is
also supplied (by means of the symbol %1) for the map file prompt, so a
map file named THIS .MAP is produced.

47

Microsoft C Compiler User’s Guide

Note that the value given to INCLUDE when you execute the batch file
remains in effect until you explicitly change it or until you reboot your
machine. To restore your usual environment settings, you can create a
batch file that resets the environment variables to the directories you most
frequently use. For example, the following lines might be placed in a file
called RESET . BAT, to be executed by typing RESET whenever you want to
restore your usual environment settings:

PATH A:\BIN

SET INCLUDE=A:\INCLUDE
SET LIB=A:\LIB

SET TMP=B:\

48

Chapter 3
Compiling

3.1 Introduction 51

3.2 Running the Compiler 52

3.2.1 File-Name Conventions 53

3.2.2 Special File Names 54

3.2.3 “Source file name” Prompt 55
3.2.4 “Object file name” Prompt 55
3.2.5 “Source listing” Prompt 55

3.2.6 “Object listing” Prompt 56

3.2.7 Selecting Default Responses 57
3.2.8 Swapping Disks 57

3.2.9 Using the Command Line 57
3.2.10 Options 60

3.3 Listing the Compiler Options 62

3.4 Naming the Object File 63

3.5 Producing Listing Files 64

3.6 Controlling the Preprocessor 70
3.6.1 Defining Constants and Macros 71
3.6.2 Predefined Identifiers 72

3.6.3 Removing Definitions of Predefined Identifiers
3.6.4 Producing a Preprocessed Listing 74
3.6.5 Preserving Comments 75

3.6.6 Searching for Include Files 75

73

49

3.7 Syntax Checking 76

3.7.1 Identifying Syntax Errors 77

3.7.2 Generating Function Declarations 77

3.8 Selecting Floating-Point Options 79

3.8.1 If You Have an 8087 or 80287 Coprocessor 80
3.8.2 If You Don’t Have a Coprocessor 81

3.8.3 If Your Computer is not IBM Compatible 82
3.8.4 Compatibility Between Floating-Point Options 83
3.9 Using 80186, 80188, or 80286 Processors 84
3.10 Understanding Error Messages 85

3.10.1 C Compiler Messages 86

3.10.2 Setting the Warning Level 88

3.11 Preparing for Debugging 89

3.12 Optimizing 90

3.13 Compiling Large Programs 92

50

Compiling

3.1 Introduction

You need only one basic command, MSC, to compile your C source files
with the Microsoft C Compiler. The MSC command executes the three
compiler passes for you.

With the large set of MSC options, you can control and modify the tasks
performed by the command. For example, you can direct MSC to create an
object-listing file or a preprocessed listing. Options also let you give infor-
mation that applies to the compilation process; you can specify the
definitions for manifest (symbolic) constants and macros, and the kinds of
warning messages you want to see.

Note

The options available with MSC are documented extensively in this
chapter, as well as Chapter 8, “Working with Memory Models,”
Chapter 9, “Advanced Topics,” and Appendix B, “Command Sum-
mary.” For a quick overview of the more commonly used options, type

MSC /HELP

after the MS-DOS prompt. The /HELP option is described in greater
detail in Section 3.3, “Listing the Compiler Options.”

The MSC command automatically optimizes your program. You never
have to give an optimizing instruction unless you either want to change the
way MSC optimizes or disable optimization altogether. See Section 3.12,
“Optimizing,” for more on these choices.

This chapter explains how to run the compiler using the MSC command
and discusses commonly used MSC options in detail.

Additional MSC options are covered in Chapter 9, “Advanced Topics.”

A summary of the MSC command and all available options is provided in
Section B.2 of Appendix B, “Command Summary.” Appendix C, “The Cl,
Command,” is a summary of the CL command, an alternative to the MSC
command. CL is similar to the e¢ command on XENIX and UNIX systems,
and is included for users who are accustomed to the XENIX cec command.

61

Microsoft C Compiler User’s Guide

This chapter assumes that you know how to create, edit, and debug C pro-
gram files on your system. For questions relating to the definition of the C
language, see the Microsoft C Compiler Language Reference. For questions
relating to debugging C programs, see the Microsoft CodeView manual.

3.2 Running the Compiler

MSC requires two types of input: a command to start the compiler and
responses to command prompts. Start the compiler by typing the following
command at the MS-DOS command level:

MSC

MSC prompts for the input it needs by displaying the following four mes-
sages, one at a time:

Source file name [.C]:

Object file name [basename.OBJ]:
Source listing [NUL.LST]:
Object listing [NUL.COD]:

where basename is the response (minus the .C extension - if any) you make
to the first prompt.

The responses you make to each prompt are explained in the sections that
follow.

If you want to stop a compiling session for any reason, type CONTROL-C.
You will be returned to the MS-DOS command level, where you can start
MSC from the beginning. If after doing this you discover new files begin-
ning with 00 or 01 in the directory specified by the TMP environment
variable, you can safely delete them; these are temporary compiler files that
were not deleted because the compiling session was interrupted.

b2

Compiling

Note

Certain nonstandard MS-DOS environments (including some commonly
used networks) often intercept some or all of the MS-DOS system calls
and handle the calls themselves to provide additional or different capa-
bilities. When running the compiler under such environments, the
different operation of the system calls may cause some MSC functions
to differ from their documented behavior. For example, compiler tem-
porary files may not always be removed when you use CONTROL-C to ter-
minate a compilation.

3.2.1 File-Name Conventions

You can use uppercase letters, lowercase letters, or a combination of both
for the file names you give in response to the prompts. For example, the fol-
lowing three file names are equivalent:

abcde. fgh
AbCJE .EgH
ABCDE. fgh

You can include spaces before or after file names, but not within them. Op-
tions (see Section 3.2.10) can appear anywhere spaces can appear.

MSC uses the default file extensions .C, .OBJ, .LST, and .COD when
you do not supply extensions with your file names. You can override the de-
fault extension for a particular prompt by specifying a different extension.
To enter a file name that has no extension, type the name followed by a
period. For example, typing ABC. in response to a prompt tells MSC that
the specified file has no extension, while typing just ABC tells MSC to use
the default extension for that prompt.

You can override any defaults by typing all or part of the name. For ex-
ample, if the currently logged drive is B and you want the output file to be
written to the disk in Drive A, type A: in response to the prompt. The out-
put file is written on Drive A with the default file name.

Note that if you type any part of a legal path name following the “Source
listing” prompt, MSC produces a source-listing file. The default name is
the base name of the source file with the extension .LLST. The base name
of a file is the portion of the name preceding the period {.). For example, if

b3

Microsoft C Compiler User’s Guide

you compile a file named TEST. C and type A: following the “Source list-
ing” prompt, MSC produces a listing file on Drive A with the name
A:TEST.LST.

MSC handles your response to the “Object listing” prompt in the same
manner, using the extension .COD in place of .LST for the object listing.

3.2.2 Special File Names

You can use the following MS-DOS device names as file names with the
MSC command. This allows you to direct files to your terminal or to a
printer. Note that you cannot use these names for ordinary file names.

Name Device

AUX Refers to an auxiliary device (usually the same as COM1).

CON Refers to the console (terminal).

PRN Refers to the printer device (usually the same as LPT1).

NUL Specifies a “null” (nonexistent) file. Giving NUL as a file
name means that no file is created.

Even if you add device designations or file-name extensions to these special
file names, they remain associated with the devices listed above. For ex-
ample, A: CON. XXX still refers to the console and is not the name of a disk
file.

Notes

Object files contain machine code and are not printable. When
responding to the “Object file name” prompt, do not give a file name
that refers to a printer or console.

When using device names, do not follow them with a colon. The Micro-
soft C Compiler does not recognize the colon. For example, use CON or
PRN, not CON: or PRN:, in your responses to MSC prompts.

b4

Compiling

3.2.3 “Source file name” Prompt

Following the “Source file name” prompt, give the name of the source file
you want to compile. If you do not supply an extension, MSC automati-
cally looks for a file with the .C extension.

Path names are allowed with the source-file name. Therefore, you can
specify the path name of a source file in another directory or on another
disk.

You may compile only one file at a time, so only one response to this
prompt is allowed. There is no default response; MSC displays an error
message if you do not supply a source-file name.

3.2.4 “Object file name” Prompt

Following the “Object file name” prompt, you can supply a name for the
object file produced when you compile a source file. You are free to give any
name and any extension you like. However, using the conventional .OBJ
extension simplifies operation of LINK and LIB, both of which use .OBJ
as the default extension when processing object files.

If you supply only a drive or directory specification following the “Object
file name” prompt, MSC creates the object file in the given drive or direc-
tory and uses the default file name. You can use this option to create the
object file in another directory or on another disk. When you give only a
directory specification, the directory specification must end with a
backslash (\) so that MSC can distinguish between a directory
specification and a file name.

The default name supplied for the object file is the base name of the source
file with an .OBJ extension. If no path name is supplied, the object file is
created in the current working directory.

3.2.5 “Source listing” Prompt

If you supply a file name following the “Source listing” prompt, MSC
creates a source listing, using the file name you supply. By convention,
these listings are given the extension .LST, but you are free to choose any
extension you like. If you do not supply a file name, the default is the spe-
cial name NUL.LST, which tells MSC not to create a listing.

b5

Microsoft C Compiler User’s Guide

Note

Source listings were not available in Microsoft C Version 3.0, and the
“Source listing” prompt and its corresponding place in the command
line did not exist. If you are upgrading from Version 3.0, command lines
in batch files or MAKE description files may need to be revised slightly
to work correctly with Microsoft C Version 4.0. Specifically, if a Version
3.0 command line specifies an object listing, it will produce a source
listing instead with versions 4.0 and higher.

Specifying a source listing at the “Source listing” prompt has the same
effect as using the /Fs option. See Section 3.5, “Producing Listing Files.”

3.2.6 “Object listing” Prompt

By supplying a file name following the “Object listing” prompt, you can tell
MSC to create an object listing for the compiled file. The object listing
contains the machine instructions and assembler code for your program.

If you supply a file name following this prompt, MSC creates an object list-
ing, using the file name you supply. By convention, these listings are given
the extension .COD, but you are free to choose any extension you like.

If you do not supply a file name, the default is the special name
NUL.COD, which tells MSC not to create an object listing.

An object listing (unlike a source listing) can only be produced if the source
file is compiled with no errors. The MSC command optimizes by default, so
the object listing reflects the optimized code. Since optimization may in-
volve rearrangement of code, the correspondence between your source file
and the machine instructions may not be clear. To produce a listing
without optimizing, use the /Od option, discussed in Section 3.11,
“Preparing for Debugging.”

Specifying an object listing at the “Object listing” prompt has the same
effect as using the /F1 option. See Section 3.5, “Producing Listing Files,”
for more information and an example of listing files. Section 3.5 also tells
how to produce two variations of the object-listing file: assembly listings,
and combined source and assembly listings.

56

Compiling

3.2.7 Selecting Default Responses

To select the default response to the current prompt, press the RETURN key
without giving any other response. The next prompt will appear.

To select default responses to all remaining prompts, use a single semicolon
(;) to terminate the line. Once the semicolon has been entered you cannot
respond to any of the remaining prompts for that compiling session. Any
text following the semicolon (Ssuch as an option) is ignored. Use the semi-
colon to save time when the default responses are acceptable.

There is no default for the first prompt, “Source file name.” You must enter
a source-file name. The default for the “Object file name” is the base name
of the source file with an .OBJ extension. The default for the “Source list-
ing” prompt is the special name NUL.LST| which tells MSC not to create
a source-listing file. The default for the “Object listing” prompt is the spe-
cial name NUL.COD, which tells MSC not to create an object-listing file.

3.2.8 Swapping Disks

MSC suspends execution and displays a prompt whenever it cannot find
one or more of the executable files that constitute the compiler: C1.EXE,
C2.EXE, and C3.EXE. This behavior lets you store the compiler files on
different disks, if necessary, and swap disks when MSC prompts you.

If you respond to the “Source file name” prompt with a nonexistent file
name, or to the “Object file name,” “Source listing,” or “Object listing”
prompt with an invalid path name, MSC displays an error message and
terminates. You must restart MSC with the correct information.

3.2.9 Using the Command Line

Once you understand how the MSC prompts and responses work, you can
use the command-line method of running the compiler. With this method
you type all the file names on the line used to start MSC. The command-
line method has the following form:

MSC sourcefile [,[objectfile] [,[sourcelistfile][,[objectlistfile]]]] [options] [;]
You can include spaces before or after file names, but not within them. Op-

tions (described in Section 3.2.10) can appear anywhere spaces can appear
in the command line.

57

Microsoft C Compiler User’s Guide

You can leave the objectfile, sourcelistfile, and objectlistfile fields blank

to cause MSC to select the default file names. The semicolon (;) character
has the same effect on the command line as it does with the MSC

prompts. When MSC sees a semicolon on the command line, it uses the de-
fault responses to the remaining prompts. Any text after the semicolon is
ignored.

The comma (,) serves as a separator and also has a special function in the
command line. If you place a comma after the objectfile field in the com-
mand line (whether or not objectfile is actually given), the default for the
source-listing field is changed from NUL.LST to the base name of the
source file plus .LST. Similarly, if a comma follows the source-listing field,
the default for the object-listing field is changed from NUL.COD to the
base name of the source file plus .COD. For example, the following com-
mand lines are equivalent:

MsSC TEST, TEST, TEST, TEST:
MSC TEST,

In the first command line, the name TEST is explicitly specified for all three
prompts, so TEST.C is compiled and three files are produced: TEST.0OBJ,
TEST.LST, and TEST.COD.

In the second command line, only the source-file name is supplied. The de-
fault name TEST.OBJ is used for the object-file name, since none is speci-
fied. The comma following the object-file-name field causes the default for
the listing files to be changed to TEST.LST and TEST.COD. Since no name
is provided for the source and object listings, the default files are created.

The following line has a different effect:
MSC TEST;

This command creates an object file named TEST . OBJ, but does not create
listing files, since no comma is present in the command line to change the
defaults.

You can combine the prompt method and command-line methods by giving
MSC a partial command line. It prompts you for the fields you do not sup-
ply. You can end a partial command line with any of the items listed below:

Entry Result
Semicolon (;) MSC uses the default responses for the remaining
prompts.

b8

Compiling

file name MSC prompts you for the remaining responses, if
any.
Comma () If you give just a source-file name followed by a

comma, MSC prompts for the object-file name,
source-listing name, and object-listing name, as usual.
However, if you supply both a source-file name and an
object-file name, and then terminate the command
line with a comma, MSC changes the default source-
listing name from NUL .LST to the base name of the
source file plus .LST. MSC then prompts you for an
object-listing name to allow you to override the de-
fault. (You can give the name NUL.LST to suppress
the creation of a source listing.) The default object-
listing name is changed in a similar fashion if the
command line ends with a source-listing name fol-
lowed by a comma.

Options can also appear at the end of a partial command line, as discussed
in the next section. The following examples demonstrate partial command
lines:

Examples

MSC ASK.C, TELL.OBJ

MSC ASK, TELL;

MSC ASK.C, TELL.OBJ,

MSC ASK

The first example causes MSC to prompt with
Source listing[NUL.LST]

since you supplied the source-file name and object-file name but not the
source- or object-listing file names.

Note the difference between the first example and the second example,

which tells MSC to use the default response (no file) for the source and ob-
ject listings. No further prompts appear in this case.

b9

Microsoft C Compiler User’s Guide

In the third example, the trailing comma (after TELL.0BJ) has a special
meaning. It causes MSC to prompt as follows:

Source listing[TELL.LST]:

Note that the default name in brackets is TELL .LST rather than
NUL.LST. In this case a source listing is created by default, unless you
override the default to specify a different listing name (or the name
NUL.LST, to suppress the listing).

In the final example, MSC starts prompting with the “Object file name”
prompt, since only the source-file name is supplied.

3.2.10 Options

The MSC command offers a large number of command options to control
and modify the compiler’s operation. Options begin with the forward slash
character (/) and contain one or more letters. The dash character (Z—) can
be used instead of the forward slash, if you prefer. For example, /Zg and
—Zg are both acceptable forms of the Zg option.

Note

Although file names can be given in either uppercase or lowercase
letters, options must be given exactly as shown in this manual. For ex-
ample, /W and /w are two different options.

Options can appear anywhere a space can appear when you give the MSC
command, except that options following a semicolon are ignored. Thus, op-
tions can go before or after any of the four file names (source-file name,
object-file name, source listing, and object listing). The options apply to
the entire compilation process, not just to the line on which they appear.

Some options take arguments, such as file names, strings, or numbers. In
most cases, spaces are allowed between the option letter and the argument.
For example, these are both acceptable forms of the /W option:

/W 3
/W3

60

Compiling

With the /NM, /NT, and /ND options (discussed in greater detail in Sec-
tion 9.14, “Naming Modules and Segments,” in Chapter 9, “Advanced
Topics”), a space is required between the option and its argument. For ex-
ample, /NM testmodule is acceptable, but /NMtestmodule is not, and
will produce a command-line error.

The /Gt option and /F family of options (/Fs, /Fa, /Fc, /Fl, and /Fo,
plus /Fe and /Fm with the CL command) are the only exceptions to al-
lowing or requiring spaces between options and their arguments. The /Gt
option accepts an optional numerical argument, while the /F options ac-
cept an optional path-name argument or partial path-name argument.
When you supply an argument to one of these options, no spaces can ap-
pear between the option and the argument. For example, /FcMINGLE is ac-
ceptable, but /Fc MINGLE is not.

Some options consist of more than one letter. For example, the /F options
mentioned above are two-letter options. No spaces are allowed between the
letters of an option. Thus /F cMINGLE would also be an unacceptable
form for the preceding option.

The order of the options is not important, and they can be given following
any prompt or in any command-line field. The default for the prompt is
still used if you supply an option without a file name in response to the
prompt.

The compiler options and the tasks they perform are discussed in the
remainder of this chapter, in Chapter 8, “Working with Memory Models,”
and in Chapter 9, “Advanced Topics.” The command-line form of the MSC
command is used for the examples of options in this manual. Remember,
you can use options with the prompts as well, as shown below.

Examples

MSC

Source filename [.C]: A:\LOAD.C
Object filename [LOAD.OBJ]: OUT
Source listing [NUL.LST]: LOAD.SRC
Object listing [NUL.COD}: /Oas /Fc

The prompts and responses above produce exactly the same effect as the
following command line:

MSC A:\LOAD.C /Oas /FoOUT /FsLOAD.SRC /Ec:

61

Microsoft C Compiler User’s Guide

In each case, the source file LOAD. C on Drive A is compiled, the object file
is named OUT.OBRJ and the source listing is named LOAD.SRC. The /Fc
option produces a combined source- and assembly-code listing; since no ar-
gument was given with the /Fc option, the listing is given the default name
LOAD.COD, formed by appending .COD to the base name of the source file.
The object file, source listing, and combined listing are created on the de-
fault drive, since no drive was specified. The /Oas option tells the compiler
how to optimize the object file. The /Fe¢, /Fs, and /Oas options are dis-
cussed in detail in Section 3.5, “Producing Listing Files,” and Section 3.12,
“Optimizing.”

3.3 Listing the Compiler Options

Option

JHELP
/help

This option prints on the console a list of the most commonly used compiler
options. You can specify /HELP or /help as part of the MSC command
line, or as part of the response to an MSC prompt. In either case, MSC
processes all information on the line containing the /help option, prints
the command list, and then, if needed, reissues the current prompt for
further input. Note that all input you have given up to this point has been
processed. For example, if you have typed a file name followed by /help,
that file name will appear as the default value when the prompt is reissued.

The only exception to these rules concerns source-file names. If you type
the source-file name with /help, the source-file prompt is not reissued. In-
stead, the object-file prompt is displayed following the command list.

This option is not case sensitive: any combination of uppercase and lower-
case letters is acceptable; for example, /hELp.

62

Compiling
3.4 Naming the Object File

Option
/Foobjectfile

You can name the object file produced by compiling your source file using
the /Fo option. Using this option has the same effect as giving a file name
at the “Object file name” prompt. When using the /Fo option, the
objectfile argument must appear immediately after the option, with no in-
tervening spaces.

You are free to supply any name and any extension you like for the
objectfile. However, it is recommended that you use the conventional .OBJ
extension because it simplifies operation of LINK and LIB, both of which
use .OBJ as the default extension when processing object files. If you give
an object-file name without an extension, MSC automatically appends the
.OBJ extension.

If you give only a drive or directory specification following the /Fo option,
MSC creates the object file on the given drive or directory and uses the de-
fault file name (the base name of the source file plus .OBJ). You can use
this option to create the object file in another directory or on another disk.
When you give only a directory specification, the directory specification
must end with a backslash (\) so that MSC can distinguish between a
directory specification and a file name.

If you give a name following the “Object file name” prompt and also use
the /Fo option, the name you give after the /Fo option overrides the name
you give following the prompt.

Examples
MSC THIS, B:\OBJECT\;
MSC THIS /FoB:\OBJECT\:

The two examples above produce exactly the same effect. The source file
THIS.C is compiled; the resulting object file is named THIS.OBJ (by de-
fault). The directory specification B: \OBJECT\ tells MSC to create
THIS.OBJ in the given directory on Drive B.

63

Microsoft C Compiler User’s Guide

3.5 Producing Listing Files

Options

/Fslistfile] Produces source listing

JF1[listfile] Produces object listing

/Fallistfile] Produces assembly listing

JFe]listfile] Produces mixed source and assembly listing

In addition to the command-prompt method of creating listing files, you
can use options to create source and object listings. You can also use op-
tions to create two kinds of listings that are not available through prompts:
assembly listings and mixed source and assembly listings.

When using the /Fs, /Fa, /Fc, and /Fl options, the lstfile, if given, must
follow the option immediately, with no intervening spaces. The listfile can
be any one of the items listed in the first column below. The second column
describes the results. If the listfile does not include an extension, the default
extension is used. The default extension is .LST for the /Fs option, .COD
for the /Fe and /F1 options, and .ASM for the /Fa option.

The list below shows the kinds of entries that can follow one of the listing
file options:

Entry Result

File name MSC uses the given file name, appending
the default extension if the file name has
no extension. The file name can include a
path to tell MSC where to create the
listing.

Directory specification MSC creates the listing in the given
directory, using the default listing name,
which is formed by appending the default
extension to the base name of the source
file. The directory specification must end
with a backslash (\) so that MSC can
distinguish between a directory
specification and a file name.

Omitted When no lLstfile is given, MSC uses the
default listing name (base name of the
source file plus the default extension) and
creates the listing in the current working
directory.

64

Compiling

At most, one source-listing file and one variation of the object listing is pro-
duced each time you compile. Therefore, if you use both the /Fa and the
/F1 options in one command line, only one file will be produced. The /Fe
option overrides other listing options; whenever you use /Fc a combined
listing is produced. If you give conflicting names for a listing file (for ex-
ample, one following the prompt and one with the option), the last name
specified has precedence.

The /Fs option produces a source-listing file. The information in the
source listing is helpful in debugging programs as they are being developed,
and is also useful for documenting the structure of a finished program. The
source listing contains the numbered source-code lines, embedded error
messages, and symbol tables. Error messages appear in the listing after the
line that caused the error. The line number given in the error message
corresponds to the number of the source line immediately above the mes-
sage in the source listing. Include files are not expanded in the source list-
ing; any errors detected in an include file are placed in the source listing im-
mediately following the # include directive for that file.

The example below shows a section of code from a source listing;:
8 FILE *infile;

9 char #*name, 1ine[100]:
10 int nlines;

11
12 if (arge > 1) {
13 nane = argv[argc - 1]:
x%xkxx count.C(13) : error 65: 'nane' : undefined
14 if ((infile = fopen (name, "r")) == NULL) {
15 fprintf (stderr,"Y%s couldn't open file %s\n",
16 argv [0] , name) ;
17 exit (1):
18 }
19 }

The error message shows that the variable nane was used without being
defined in line 27 of the source file COUNT.C. From the context, it is ap-
parent that the variable name was intended, but typed incorrectly.

If the source file compiles with no errors more serious than warning errors,
tables of segments, local symbols, and global symbols will be included in
the source listing. Symbol tables will not be included if the compiler is un-
able to finish compilation.

656

Microsoft C Compiler User’s Guide

At the end of each function, a table of local symbols is given, as shown
below for the function main:

main Local Symbols

Name Class Offset Register
NABME. .« + + « o+ + +« + +» « +» » » auto -006a
line. auto -0068
infile. auto -0004
nlines. auto -0002
argC. .+« + + « + s+ s + 4+ 4 .+ . . param 0004
Argv. +« + « « + +« 4« 4 + « .+ . . param 0006

The Name column lists the name of each local symbol in the function. The
Class column contains either auto if the symbol is a nonstatic local vari-
able, or param if the symbol is a formal parameter. The Offset column
shows the symbol’s offset address relative to the frame pointer (that is, the
BP register). The Of fset number is positive for param symbols and nega-
tive for auto symbols with auto storage class. The Register column is
blank unless the variable is stored in a register. If the variable is in a regis-
ter, the column indicates the register (SI or DI).

At the end of the source code, a table of global symbols is given, as shown
below:

Global Symbols

Name Type Size Class Offset
_iob. struct/array 160 extern * kK
exit. near function *kk extern * kK
fdopen. near function * kK extern * Kk k
fgets near function * Kk extern * k%
fopen near function *k K extern *k ok
fprintf near function * kK extern * % %
main. near function * kK global 0000
printf. near function * kK extern kkk

The Name column lists each global symbol, external symbol, and statically
allocated variable declared in the source file.

The Type column shows a simplified version of the symbol’s type as de-
clared in the source file. The Type entry for a function is either near
function or far function, depending on the memory model and how
the function was declared. The Type entry for a pointer is near

peinter, far pointer, or huge pointer. For enumeration variables,
the Type entry is int. For structures, unions, and arrays, the Type entry
is struct/array.

66

Compiling

The Size column is only used for variables. This column specifies the
number of bytes of storage allocated for the variable. Note that the amount
of storage allocated for an external array may not be known, so its Size
field may be undefined.

The Class column contains either global, common, extern, or static,
depending on how the symbol was defined in the source file.

The Of fset column is only used for symbols with an entry of global or
static in the Class field. For variables, the Of fset field gives the rela-
tive offset of the variable’s storage in the logical data segment for the pro-
gram file being compiled. Since the linker will, in general, combine several
logical data segments into a physical segment, this number is useful only
for determining the relative position of storage of variables. For functions,
the Of fset field gives the relative offset of the start of the function in the
logical code segment. For small-model programs, logical code segments
from different program files are combined into a single physical segment by
the linker, so the Of fset field is again useful, primarily to determine the
relative positions of different functions defined in the same source file. How-
ever, for medium-, large-, and huge-model programs, each logical code seg-
ment becomes a unique physical segment. In these cases, the Of fset field
gives the actual offset of the function in its run-time code segment.

The last table in the source listing shows the segments used and their size,
as shown below:

Code size = 0095 (149)
Data size = 003c (60)
Bss size = 0000 (O)

The byte size of each segment is given first in hexadecimal, and then in
decimal (in parentheses). See Section 10.2.1 “Segment Model,” in Chapter
10, “Interfaces with Other Languages,” for a description of the segment
model.

The /F1 option produces an object-listing file. The object listing contains
the machine instructions and assembly code for your program, as shown in
the sample below:

; Line 12
**x 00000a 83 7e 04 01 cmp WORD PTR [bp+4],1 argc
* %+ 00000e Te 44 jle $165
; Line 13
*+x 000010 8b 76 04 mov si, [bp+4] argc
*++% 000013 dl e6 shl si,1
*** 000015 8b 5e 06 mov bx, [bp+6] ;argv
**x+ 000018 8b 40 fe mov ax, [bx-2] [si]
** % 00001b 89 46 96 mov [bp-106], ax ;name

67

Microsoft C Compiler User’s Guide

; Line 14
*x%x O000le b8 00 00 mov ax,OFFSET DGROUP: $38G67
**+ 000021 50 push ax
*+% 000022 ff 76 96 push WORD PTR [bp-106] ;name
*++x 000025 e8 00 00 call _fopen
+xx 000028 83 c4 04 add sp.4
*+%x 00002b 89 46 fc mov [bp-4],ax;infile
*x+ 00002e Ob cO or ax,ax
*x+ 000030 75 32 jne $I170

The line numbers are shown in the listing as comments. The machine in-
structions are on the left and assembly code on the right.

The /Fa listing produces an assembly listing of your program. The assem-
bly listing contains the assembly code corresponding to your C file, as
shown below:

, Line 12
cmp WORD PTR [bp+4].1 ;argce
jle $I65

; Line 13
mov si, [bp+4] ;argc
shl si,1
mov bx, [bp+6] ;argv
mov ax, [bx-2] [si]
mov [bp-106] , ax ;name

Line 14

mov ax,OFFSET DGROUP:$SG67
push ax
push WORD PTR [bp-106] ,name
call _fopen
add sp.4
mov [bp-4] . ax ;infile
or ax,ax
jne $170

Note that the sample shows the same code as in the object listing sample,
except that the machine instructions are omitted. This is to ensure the list-
ing will be suitable as input for the Microsoft Macro Assembler (MASM).

To produce a listing that shows your source program along with the assem-
bly code, use the /Fc option. This option produces a line-by-line combined
source- and assembly-code listing, showing one line of your source program
followed by the corresponding line (or lines) of machine instructions, as
shown below:

R if (argc > 1) {
; Line 12
x*xx 00000a 83 7e 04 01 cmp WORD PTR [bp+4]},1 ;argc
* %+ 00000e Te 44 jle $165
R name = argv[argc - 17;
Line 13

68

Compiling

**x 000010 8b 76 04 mov si, (bp+4] ;argc

*++ 000013 dl e6 shl si, 1

*x+ 000015 8b 5e 06 mov bx, [bp+6] ;argv

*** 000018 8b 40 fe mov ax, [bx-2] [si]

*x % 00001b 89 46 96 mov [bp-106], ax ;name
AR if ((infile = fopen(name,'r")) == NULL) {
; Line 14

*+x+% 00001le b8 00 00 mov ax, OFFSET DGROUP:$SG67

*+%x 000021 50 push ax

**x 000022 ff 76 96 push WORD PTR [bp-106] ;name

**x*x 000025 e8 00 00 call _fopen

* %% 000028 83 c4 04 add sp.4

*** 00002b 89 46 fc mov [bp-4].ax;infile

**x 00002e Ob cO or ax, ax

*%x*x 000030 75 32 jne $I70

Note that this sample is like the object listing sample, except that the C
source line is provided in addition to the line number.

When you examine a listing file, you will notice that the names of globally
visible functions and variables begin with an underscore, as shown below
(this part of the listing is the same for all three kinds of listings):

PUBLIC _bytecount
PUBLIC _charcount
PUBLIC _wordcount
PUBLIC _linecount
EXTRN _fread:NEAR
EXTRN _fopen:NEAR
EXTRN _gets:NEAR
EXTRN __chkstk:NEAR
EXTRN _printf:NEAR
EXTRN _perror:NEAR

The Microsoft C Compiler automatically prefixes an underscore to all glo-

bal names to preserve compatibility with XENIX C compilers. If you write
assembly-language routines to interface with your C program, this naming
convention is important; see Section 10.2.7 of Chapter 10, “Interfaces with
Other Languages.”

The listing may also contain names that begin with more than one
underscore (for example, __chkstk in the sample). Identifiers with more
than one leading underscore are reserved for internal use by the compiler,
and should not be used in your programs, except for those documented in
the Microsoft C Compiler Run- Ttme Library Reference, such as — psp,
—amblksiz, and _ fpreset(). Moreover, you should avoid creating global
names that begin with an underscore in your C source files. Since the com-
piler automatically adds another leading underscore, these names will have
two leading underscores and might conflict with the names reserved by the
compiler.

69

Microsoft C Compiler User’s Guide

The MSC command optimizes by default, so listing files reflect the opti-
mized code. Since optimization may involve rearrangement of code, the
correspondence between your source file and the machine instructions may
not be clear, especially when you use the /Fc option to mingle the source
and assembly codes. To produce a listing without optimizing, use the /Od
option (discussed in Section 3.12, “Optimizing”) with the listing option.

Examples
MSC HELLO.C /FsHELLO.SRC /FcHELLO.CMB;

MsC HELLO /EsHELLO.SRC, ,HELLO.LST, HELLO.COD:

In the first example, MSC creates a source listing called HELTLO.SRC and a
combined source and assembly listing called HELLO .CMB. The object file
has the default name HELLO.OBJ.

The second example produces a source listing called HELLO.LST rather
than HELLO . SRC, since the last name provided has precedence. This ex-
ample also produces an object-listing file named HELLO.COD. The object
file in this example has the default name HELLO.OBJ.

3.6 Controlling the Preprocessor

The MSC command provides several options that give you control over the
operation of the C preprocessor. You can define macros and manifest (sym-
bolic) constants from the command line, change the search path for include
files, and stop compilation of a source file after the preprocessing stage to
produce a preprocessed source-file listing. The options that perform these
tasks are described below.

The C preprocessor recognizes only preprocessor directives. It treats the
source file as a text file, processing substitutions and definitions as directed.
The preprocessor can be run on a file at any stage of development, whether
or not the file is a complete C source file. In fact, the preprocessor is not
restricted to processing C files; it can be run on any kind of file. See the
Microsoft C Compiler Language Reference for a complete discussion of C
preprocessor directives.

70

Compiling
3.6.1 Defining Constants and Macros

Option
/Didentifier[=[string]]]

The /D option lets you define a constant or macro used in your source file.
The identifier is the name of the constant or macro and the string is its
value or meaning,.

If you leave out both the equal sign and the string, the given constant or
macro is assumed to be defined, and its value is set to 1. For example,
/DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or macro
is considered defined; its definition is the empty string. This definition
effectively removes all occurrences of the identifier from the source file. For
example, to remove all occurrences of register, use the following option:

/Dregister=
Note that the identifier register is still considered to be defined.

The effect of using the /D option is the same as using a preprocessor
define directive at the beginning of your source file: the identifier is
defined throughout the source file being compiled.

You can supply a command-line definition for an identifier that is also
defined within the source file. The command-line definition remains in effect
until the identifier is redefined in the source file.

Up to 16 definitions may appear on the command line, each preceded by the
D option. If you need to define more than 16 identifiers, see the discussion

of the /U and /u options in Section 3.6.3, “Removing Definitions of
Predefined Identifiers.”

Example
MSC MAIN.C /D NEED=2:
The example defines the manifest constant NEED in the source file MAIN.C.

Note that spaces are permitted (but not required) between /D and the
identifier. This definition is equivalent to placing the directive

71

Microsoft C Compiler User’s Guide

#define NEED 2
at the top of the source file.

The /D option is especially useful with the #if directive. You can use the
option to control compilation of statements in the source file. For example,
suppose a source file named OTHER . C contains the following fragment:

#if defined (NEED)

#endif

Suppose further that OTHER . C does not explicitly define NEED (that is, no
define directive for NEED is present). Then all statements between the
#if and the # endif directives are compiled only if you supply a definition
of NEED by using /D. For instance, the command

MSC MAIN.C /DNEED;

is sufficient to compile all statements following the #if directive. Note that
NEED does not have to be set to a specific value to be considered defined.
The following command, in contrast, causes the statements in the #if
block to be ignored (not compiled):

MSC MAIN.C;

3.6.2 Predefined Identifiers

The compiler defines four identifiers that are useful in writing portable pro-
grams. You can use these identifiers to conditionally compile code sections,
depending on the processor and operating system being used. The pre-
defined identifiers and their functions are listed below:

Identifier Function

MSDOS Always defined. Identifies target operating sys-
tem as MS-DOS.

M_186 Always defined. Identifies target machine as a
member of the 186 family.

M_186:M Always defined. Identifies memory model,

where z is either S (small model), C (compact
model), M (medium model), L Hlarge model),
or H (huge model). Small model is the default.

72

Compiling

Memory models are discussed in Chapter 8,
“Working with Memory Models.”

NO_EXT_KEYS “No Extended Keywords.” Defined only when
the /Za switch is given, thus disabling special
keywords such as far and fortran. See Sec-
tion 9.2, “Disabling Special Keywords,” in
Chapter 9, “Advanced Topics.”

3.6.3 Removing Definitions of Predefined Identifiers

Options

/Utdentifier
/u

The /U (for “undefine”) option can be used to turn off the definition of one
or more of the predefined identifiers discussed in the previous section. The
/u option turns off all four definitions.

These options are useful if you want to give more than 16 definitions on the
command line, or if you have other uses for the predefined identifiers. For
each definition of a predefined identifier you remove, you can substitute a
definition of your own on the command line. When the definitions of all
four predefined identifiers are removed, you can specify up to 20 command
line definitions.

Example
MSC /U MSDOS /U M_I86 /U M_I86SM WORK.C;

This example removes the definitions of three predefined identifiers. Note
that the /U option must be given three times to do this.

73

Microsoft C Compiler User’s Guide
3.6.4 Producing a Preprocessed Listing

Options

/P
/E
/EP

The /P, /E, and /EP options produce listings of preprocessed files. These
options allow you to examine the output of the C preprocessor.

The preprocessed listing file is identical to the original source file except
that all preprocessor directives are carried out, macro expansions are per-
formed, and comments are removed. All three options suppress compila-
tion; no object file or listing is produced, even if you supply a name follow-
ing the “Object file name” or “Object listing” prompt.

The /P option writes the preprocessed listing to a file with the same base
name as the source file, but with a .I extension.

The /E option copies the preprocessed listing to the standard output (usu-
ally your terminal), and places a #line directive in the output at the begin-
ning and end of each included file, and also around lines removed by condi-
tional compilation preprocessor commands. You can save this output by
redirecting it to a file, using the MS-DOS redirection symbol > or > >
(see your MS-DOS manual for a description of these symbols).

The /E option is useful when you want to resubmit the preprocessed listing
for compilation. The #line directives renumber the lines of the prepro-
cessed file so that errors generated in later stages of processing refer to the
original source file rather than the preprocessed file.

Using the /EP option combines features of the /E and /P options; the file
is preprocessed and copied to the standard output, but no #line directives
are added.

Examples
MSC MAIN.C /P;
MSC ADD.C /E : > PREADD.C

MSC ADD.C /EP

74

Compiling

The first example creates the preprocessed file MAIN. I from the source file
MAIN.C. The second command creates a preprocessed file with inserted
#line directives from the source file ADD.C. The output is redirected to
the file PREADD.C. The third command produces the same preprocessed
output as the second example without the #line directives. The output
appears on the screen.

3.6.5 Preserving Comments

Option

/C

Normally, comments are stripped from a source file in the preprocessing
stage, since they do not serve any purpose in later stages of compiling. The

C (for “comment”) option preserves comments during preprocessing. The
P

/C option is valid only when the /E, /P, or /EP option is also used.

Example
MSC SAMPLE.C /P /C:

The example produces a listing named SAMPLE . I. The listing file contains
the original source file, including comments, with all preprocessor directives
expanded or replaced.

3.6.6 Searching for Include Files

Options

[Idirectory
/X

The /I and /X options temporarily override or change the effects of the
environment variable INCLUDE. These options let you give a particular
file special handling without changing the compiler environment you nor-
mally use. (See Section 2.7, “Setting Up the Environment,” of Chapter 2,
“Getting Started,” for a discussion of environment variables.)

76

Mierosoft C Compiler User’s Guide

You can add to the list of directories searched for include files by using the
/I (for “include”) option. This option causes the compiler to search the
directory or directories you specify before searching the standard places
given by the INCLUDE environment variable. You can add more than one
include directory by giving the /I option more than once in the MSC com-
mand. The directories are searched in order of their appearance in the com-
mand line.

The directories are searched only until the specified include file is found. If
the file is not found in the given directories or the standard places, the com-
piler prints an error message and stops processing. When this occurs, you
must restart compilation with a corrected directory specification.

You can prevent the C preprocessor from searching the standard places for
include files by using the /X (for “exclude”) option. When MSC sees the
/X option, it considers the list of standard places to be empty. This option
1s often used with the /I option to define the location of include files that
have the same names as include files found in other directories, but that
contain different definitions. See the second example below.

Examples
MSC MAIN.C /I A:\INCLUDE /IB:\MY\INCLUDE;
MSC MAIN.C /X /I B:\ALT\INCLUDE:

In the first example, MSC looks for the include files requested by MAIN.C
in the following order: first in the directory A:\INCLUDE, then in the direc-
tory B:\MY\INCLUDE, and finally in the directory or directories assigned
to the INCLUDE environment variable.

In the second example, the compiler looks for include files only in the direc-
tory B:\ALT\INCLUDE. First the /X option tells MSC to consider the list
of standard places empty; then the /I option specifies one directory to be
searched.

3.7 Syntax Checking

The options described in this section are useful in the early stages of pro-
gram development. With the /Zs option, you can quickly check your pro-
gram for syntax errors; with the /Zg option, you can automatically gen-
erate function declarations, which can then be used to enhance the syntax-
checking capabilities of the compiler.

76

Compiling
3.7.1 Identifying Syntax Errors

Option

/Zs

The /Zs option causes the compiler to perform a syntax check only. No
code is generated and no object file is produced. If the source file has syntax

errors, error messages will be displayed.

This option provides a quick way to locate and correct syntax errors before
attempting to compile a source file.

Example
MSC /Zs PRELIM.C;

This command causes the compiler to perform a syntax check on
PRELIM.C, displaying messages about any errors it finds.

3.7.2 Generating Function Declarations

Option

/Zg

The /Zg option generates a function declaration for each function defined
in the source file. The function declaration includes the function return
type and an argument-type list created from the types of the formal param-
eters of the function. Any function declarations already present in the
source file are ignored.

The generated list of declarations is written to the standard output. It can
be saved in a file using the MS-DOS redirection symbol > or > >.

When the /Zg option is used, the source file is not compiled. As a result, no
object file or listing is produced.

77

Microsoft C Compiler User’s Guide

The list of declarations is helpful for verifying that actual arguments and
formal parameters of a function are compatible. You can save the list and
include it in your source file to cause the compiler to perform type check-
ing. The presence of a declared argument-type list for a function “turns on”
the compiler’s type checking between actual arguments to a function (given
in the function call} and the formal parameters of a function.

This type checking can be a helpful feature in writing and debugging C pro-
grams, especially when working with older C programs. Argument type
checking is a recent addition to the C language, so many existing C pro-
grams will not have argument-type lists. See the Microsoft C Compiler
Language Reference for details on function declarations and argument-type
lists.

You can use the /Zg option even if your source program already contains
some function declarations. The compiler accepts more than one occurrence
of a function declaration, as long as the declarations do not conflict. No
conflict occurs when one declaration has an argument-type list and another
declaration of the same function does not, as long as the declarations are
otherwise identical.

Note

If you use the /Zg option and your program contains formal parame-
ters that have structure, enumeration, or union type (or pointers to
such types), then the declaration for each struct, enum, or union must
have a tag. For example, use the following form:

struct tagA {

} A

Your program can include calls to Microsoft C run-time library routines.
The include files provided with the Microsoft C run-time library contain
function declarations so that you can enable type checking on library calls.
The declarations are enclosed in preprocessor # ifdefined() blocks and are
included only if you define the special identifier LINT_ARGS. You can
define LTNT_ARGS either by placing a # define directive before any
#include directives in your program, or by using the /D option when you
compile.

78

Compiling

Example
MSC FILE.C /Zg >FILE.DEC:
The above command causes the compiler to generate argument-type lists

for functions defined in FILE.C. The list of declarations is redirected to
FILE.DEC.

3.8 Selecting Floating-Point Options

Option Action

/FPa Generates floating-point calls; selects alternate
math library

/FPc Generates floating-point calls; selects emulator
library

/FPc87 Generates floating-point calls; selects 8087 /80287
library

/FPi Generates in-line instructions; selects emulator
library (default)

/FPi87 Generates in-line instructions; selects 8087/80287
library

The Microsoft C Compiler offers several methods of handling floating-point
operations. This section provides an overview of the floating-point options
available and discusses the default floating-point behavior. For more
detailed information on the floating-point libraries, plus a discussion of
overriding floating-point options at link time and using the NO87 environ-
ment variable, see Section 9.9, “Controlling Floating-Point Operations,” in
Chapter 9, “Advanced Topics.”

The Microsoft C Compiler can use an 8087 or 80287 coprocessor if one is
present and can emulate 8087 operation through the use of an emulator
library if an 8087/80287 is not present. The emulator library (EM.LIB)
provides a large subset of the functions of an 8087/80287 in software. The
emulator can perform basic operations to the same degree of accuracy as an
8087,/80287. However, the emulator routines used for transcendental math
functions differ slightly from the corresponding 8087/80287 functions, caus-
ing a slight difference (usually within 2 bits) in the results of these opera-
tions when performed with the emulator instead of with an 8087 /80287.

79

Microsoft C Compiler User’s Guide

By default, the Microsoft C compiler handles floating-point operations by
generating in-line 8087 /80287 instructions (this is the /FPi option). The
emulator library is loaded, but if an 8087 or 80287 coprocessor is present at
run time, the coprocessor will be used instead of the emulator. This
method of handling floating-point operations always works, whether or not
you have a coprocessor installed. Therefore, you do not have to give a
floating-point option at compile time unless you want to use one of the
other options described below.

When you compile a source file using one of the floating-point options, the
name of the required floating-point library (or libraries% is placed in the
object file. At link time, the linker refers to the names in the object file to
determine which libraries it will link with. You can override the library
name given in the object file at link time and link with a different library
instead; see Section 9.9.1, “Changing Libraries at Link Time,” in Chapter
9, “Advanced Topics,” for details. The only restriction on overriding at
link time is that you are not allowed to change to the alternate math
library after you have compiled using the /FPi or /FPi87 option.

3.8.1 If You Have an 8087 or 80287 Coprocessor

The / FPi87 option is the fastest and smallest option available for
floating-point operations. It generates in-line instructions for an

8087 /80287 coprocessor and selects the 8087/80287 library (87.LIB), plus
zLIBFP.LIB, where z indicates the memory model chosen. An 8087 or
80287 must be present at run time if the /FPi87 option is used.

The /FPc87 option generates function calls to routines in the 8087/80287
library (87.LIB) that perform the corresponding 8087 /80287 instructions.
It selects the 8087/80287 library (87.LIB) and zLIBFP.LIB. The /FPc87
option is slower than /FPi87 because it makes function calls instead of
using in-line instructions, but /FP¢87 is more flexible. Using the /FPc87
option allows you to change your mind at link time (without recompiling
the file) and use either the emulator or the alternate math library instead
of relying on an 8087 /80287 coprocessor. This is possible because the calls
to 8087 /80287 instructions are interchangeable with calls to the emulator
and the alternate math library. See Section 9.9.1 for instructions on chang-
ing libraries at link time.

Both the /FPi87 and /FPc87 options select the 8087/80287 library
(87.LIB), which provides minimal floating-point support. Whenever
87.LIB i1s used, an 8087 or 80287 coprocessor must be present at run time.
If no coprocessor is present, the program will not run and the following
message will appear:

80

Compiling

Floating point not loaded

The /FPi option generates in-line instructions for an 8087/80287 and
selects the emulator library (EM.LIB) and zLIBFP.LIB. If an 8087/80287
coprocessor 1s present at run time, it is used; if one is not present, the emu-
lator is used.

Loading the emulator requires approximately 7K of additional space, so
programs that use the /FPi option are larger than programs that use
FPi87. However, /FPi is a particularly useful option when you do not
now in advance whether an 8087 or 80287 coprocessor will be available at
run time.

In some cases, you may not want to use an 8087 or 80287 coprocessor, even
though one is present. For example, you may be developing programs to
run on systems that lack coprocessors. Conversely, you may want to write
programs that can take advantage of an 8087/80287 at run time, even
though you don’t have one installed. There are several ways to control the
use of an 8087 or 80287:

1. Use the /FPi (default) or /FPc option to specify use of an
8087 /80287 if present, and use of the emulator if not. To use the
emulator even when an 8087 or 80287 is present, set the NO87
environment variable, as discussed in Section 9.9.2 of Chapter 9,
“Advanced Topics.”

2. Use the /FPc87 or /FPi87 option if you always want to use a
coprocessor. Programs compiled with these options will fail if a
coprocessor is not present at run time.

3.8.2 If You Don’t Have a Coprocessor

You have several options for generating floating-point calls without an
8087/80287 coprocessor. You can use the emulator library (EM.LIB) either
with in-line instructions (/FP1i), or with function calls (/FPc). Or you can
use one of the alternate math libraries (/FPa). If you use the emulator
library, the 8087/80287 coprocessor will be used if one is present at run
time; if not, the emulator library will mimic the operation of an 8087. If
you use the alternate math library, the 8087/80287 will be ignored if
present.

The /FP1i option is the default when you do not specify a floating-point
option. It generates in-line instructions for an 8087 /80287 coprocessor and
selects the emulator library (EM.LIB) and zLIBFP.LIB. Because this
option uses in-line instructions, it is the most efficient way to get maximum
precision in floating-point operations without a coprocessor.

81

Mierosoft C Compiler User’s Guide

The /FPc option generates floating-point calls to the emulator library and
selects the emulator library (EM.LIB) and zLIBFP.LIB. The /FPc
option is slower than /FPi because it makes function calls instead of using
in-line instructions, but /FPc is more flexible than /FPi: the /FPc option
allows you to change your mind at link time (without recompiling the file)
and use an 8087 /80287 coprocessor or the alternate math library instead of
using the emulator. This is possible because the same function call interface
is provided in all three libraries: the 8087/80287 library, the alternate math
library, and the emulator library. See Section 9.9.1 for instructions on
changing libraries at link time.

The /FPa option generates floating-point calls and selects the alternate
math library (zLIBFA.FP). The alternate math library uses a subset of
the IEEE (Institute of Electrical and Electronics Engineers, Inc.) standard
format numbers, sacrificing some accuracy for speed and simplicity.
(Infinities, NANSs, and denormal numbers are not used.) Calls to this library
provide the fastest and smallest option if you do not have an 8087 or 80287
coprocessor. With this option, as with the /FPc option, you can change
your mind at link time and use the emulator or an 8087/80287 instead; see
Section 9.9.1, “Changing Libraries at Link Time,” for details.

In some cases, you may want to write programs that will be able to take
advantage of an 8087 or 80287 at run time, even though you don’t have one
installed. See Section 3.8.1, “If You Have an 8087 or 80287 Coprocessor,”
for a description of the appropriate options.

3.8.3 If Your Computer is not IBM Compatible

The exception handler in the libraries for 8087 or 80287 floating-point cal-
culations (EM.LIB and 87.LIB) are designed to work without modification
on the IBM PC family of computers, and on closely compatible computers,
including the Wang PC, the AT&T 6300, and the Olivetti personal comput-
ers. The libraries also need not be modified for the Texas Instruments Pro-
fessional Computer, even though it is not compatible. Any machine that
uses nonmaskable interrupts (NMI) for 8087 exceptions should work with
the unmodified libraries. However, if your computer is not one of these, and

if you are not sure if it is completely compatible, you may need to modify
the 8087 libraries.

All Microsoft languages that support the 8087 intercept 8087 exceptions in
order to produce accurate results and properly detect error conditions.

82

Compiling

In order to make the libraries work correctly on noncompatible machines,
you can modify the libraries. To make this easier, an assembly-language
source file, EMOEM.ASM, is included on the distribution disk. Any
machine that sends the 8087 exception to an 8259 Priority Interrupt Con-
troller (master or master/slave) should be easily supported by a simple
table change to the EMOEM.ASM module. The source file contains fur-
ther instructions on how to modify EMOEM.ASM and patch libraries and
executable files.

3.8.4 Compatibility Between Floating-Point Options

Each time you compile a source file, you can specify a floating-point option.
When you link two or more source files together to produce an executable
program file, you are responsible for ensuring that floating-point operations
are handled in a consistent way and that the environment is set up properly
to allow the linker to find the required libraries. See Chapter 4, “Linking,”
for a detailed discussion of linking.

Note

If you are building libraries of C routines that contain floating-point
operations, the /FPc floating-point option is recommended for all com-
pilations. The /FPc option offers the greatest flexibility.

Whenever a file is compiled using the /FPi or /FPi87 option, in-line
instructions are generated. In the case of the /FPi87 option, the library
files 87.LIB and zLIBFP.LIB must be present at link time, and an
8087,/80287 coprocessor must be present at run time. For /FP4i, the emula-
tor library (EM.LIB) plus zLIBFP.LIB must be present at link time, and
either the emulator or an 8087 /80287 must be present at run time. As long
as these requirements are satisfied, object files produced using the /FPi
and /FPi87 options can be linked together without compatibility prob-
lems. Such object files can also be linked with object files produced using
/FPa, /FPc, or /FPc87.

Whenever a file is compiled with the /FPa, /FP¢, or /FPc87 option,
floating-point function calls are generated. Each option places the name of
the appropriate library file or files in the object file. However, when linking
several such object files together, you must be aware of the process used to
resolve the function calls.

83

Microsoft C Compiler User’s Guide

Since floating-point calls to the emulator, the alternate math library, and
8087/80287 coprocessor instructions are interchangeable, only one library is
used at link time to resolve the calls. In other words, you must choose one
of these libraries per program; the same program cannot make calls to more
than one library.

You can control which library is used, in one of two ways:

1. At link time, as the first name in the list of object files to be linked,
give an object file that contains the name of the desired library.
For example, if you want to use the alternate math library, give the
name of an object file compiled using the /FPa option. All
floating-point calls will refer to the alternate math library.

2. At link time, give the /NOD (no default library search) option and
then give the name of the floating-point library file or files you want
to use in the “Libraries” field. This library overrides the names in
the object files, and all floating-point calls will refer to the named
library. Since the /INOD option causes all default libraries to be
ignored, you must also specify the name of the standard C library
(zLIBC.LIB), as well as the code-helper library, LIBH.LIB.
Always give the names of the floating-point libraries before the
names of other libraries in the “Libraries” field.

3.9 Using 80186, 80188, or 80286 Processors

Options

/GO
/G1
/G2

If you have an 80186, 80188, or 80286 processor, you can use the /G1 or
/G2 option to enable the instruction set for your processor. Use /G1 for
the 80186 and 80188 processors; use /G2 for the 80286. Although it is usu-
ally advantageous to enable the appropriate instruction set, you are not
required to do so. If you have an 80286 processor, for example, but you
want your code to be able to run on an 8086, you should not use the
80186,/80188 or 80286 instruction set.

84

Compiling

The /GO option enables the instruction set for the 8086/8088 processor.
You do not have to specify this option explicitly, since the 8086/8088
instruction set is used by default. Programs compiled this way will also run
on the machines with the 80186, 80188, or 80286 processor.

3.10 Understanding Error Messages

The C compiler generates a broad range of error and warning messages to
help you locate errors and potential problems in programs. The following
sections describe the form and meaning of the compiler error messages and
warning messages you may encounter while using the MSC command. For
a list of actual error messages, see Appendix H, “Error Messages.”

Error messages produced by the compiler are sent to the standard output,
which is usually your terminal. You can redirect the messages to a file or
printer by using an MS-DOS redirection symbol, > or >>. (For more
information on redirection, see your Microsoft MS-DOS Programmer’s
Reference Manual.) This is especially useful in batch-file processing. For
example, the following command redirects error messages to the printer
device (designated by PRN):

MSC RM.C; > PRN

The following command redirects error messages to the file RM. ERR:

MSC RM.C; > RM.ERR

Note that only output ordinarily sent to the console screen is redirected.

Example
Contents of RM. C:

#include <stdio.h>

main (argc, argv)

int argc:
char argv[}:
{

register int 1i:
char *name;

85

Microsoft C Compiler User’s Guide

for (1 = 1; 1 < arg; ++1i)
if (unlink (name = argv[i])) {

printf ("couldn't delete Ys ", name) :
perror (""):
+
Contents of error-message file RM. ERR:
rm.c(1l) : error 65: 'arg' : undefined
rm.c(12) : warning 47: '=' : different levels of indirection
Corrected version of RM. C:
#include <stdio.h>
main(argc, argv)
int argc:
char *argv([]:
{
register int 1i;
char *name:
for (1 = 1; 1 < argc; ++1)
if (unlink(name = argv[i])) {
printf ("couldn't delete ¥s ", name) :

perror ("");

3.10.1 C Compiler Messages

The C compiler displays messages about syntactic and semantic errors in a
source file, such as misplaced punctuation, illegal use of operators, and
undeclared variables. It also displays warning messages about statements
containing potential problems caused by data conversions or the mismatch
of types. If you give invalid or incompatible command-line options, the
compiler will notify you of the error.

The error messages produced by the C compiler fall into five categories:

warning messages, fatal error messages, compilation error messages,
command-line messages, and compiler internal error messages.

86

Compiling

Warning messages are for your information only; they do not prevent com-
pilation and linking. These messages alert you to potential problems such
as type mismatches, data conversions, redeclarations, and overflow condi-
tions. The conditions described by warning messages are not necessarily
illegal or undesirable, but you should examine the messages carefully to
verify that your program produces these conditions intentionally. Other-
wise, your program may not operate as you expect. You can control the
level of warnings generated by the compiler by using the /W option, as
described in Section 3.10.2.

Fatal error messages indicate a severe problem, one that prevents the com-
piler from processing your program. Fatal errors can be caused by prob-
lems such as insufficient disk space or malformed preprocessor commands.
After printing a message about the fatal error, the compiler terminates
without producing an object file or checking for further errors. A source
listing is produced if one was requested, but it will not contain a symbol
table.

Compilation error messages identify actual program errors. No object file is
produced for a source file that has such errors. A source listing is produced
if one was requested, but it will not contain a symbol table. When the com-
piler encounters a nonfatal program error, it attempts to recover from the

error. If possible, the compiler continues to process the source file and pro-
duce error messages. If errors are too numerous or too severe, the compiler
terminates processing.

Command-line messages give you information about invalid or inconsistent
command-line options. If possible, the compiler continues operation, print-
ing a warning message to indicate which command-line options are in effect
and which are disregarded. A source listing is produced if one was re-
quested, but it will not contain a symbol table. In some cases, command-
line errors are fatal, and the compiler terminates processing without pro-
ducing an object file, a source listing, or an object listing,.

Compiler internal error messages indicate an error on the part of the com-
piler rather than your program. If you get one of these messages, note the
conditions of the error and notify Microsoft, using the Software Problem
Report at the back of this manual.

Error messages of all types have the following basic form:
filename(linenumber) : messagetype number: message
In this syntax, filename is the name of the source file being compiled

and linenumber identifies the line of the source file containing the error.
The messagetype will be one of the following: error, warning, fatal, or

87

Microsoft C Compiler User’s Guide

Command line. The number is the number of the error and message is a
self-explanatory description of the error.

The messages for each category are listed by number in Appendix H, “Error
Messages.”

In addition to error messages, the MSC control program returns an exit
code that indicates the status of the compilation. Exit codes are useful
with the MS-DOS batch command IF ERRORLEVEL and with the
MAKE utility. They allow you to test for the success or failure of the com-
pilation before proceeding with other tasks. Exit codes are discussed in
more detail in Appendix E, “Using Exit Codes.”

3.10.2 Setting the Warning Level

Option

/W number
/w

You can set the level of warning messages produced by the compiler by
using the /W (for “warning”) option. This option directs the compiler to
display messages about statements that may not be compiled as the pro-
grammer intends. Warnings indicate potential problems rather than actual
errors.

To use the /W option, choose one of the warning levels described below
and specify the corresponding number after the option. The /w option pro-
vides a shorter way to say /W 0, and has the same effect.

Level ‘Warning
0 Suppresses all warning messages. Only messages about

actual syntactic or semantic errors are displayed.

1 Warns about potentially missing statements, unsafe
conversions, and other structural problems. Also, warns
about overt type mismatches.

2 Warns about automatic data conversions, missing returns
in function definitions.

3 Currently equivalent to warning level 2. Reserved for
future releases.

88

Compiling

The default is level 1, so you do not need to give the /W option when you
want level 1.

The higher option levels are especially useful in the earlier stages of pro-
gram development when messages about potential problems are most help-
ful. The lower levels are best for compiling programs whose questionable
statements are intentionally designed.

Examples
MSC /W 2 MAIN.C;
MSC /w MAIN.C;

The first example directs the compiler to perform the highest level of check-
ing, and produce the greatest number of warning messages. The second
command causes MAIN.C to be compiled at the lowest level of checking,
with no warning messages. Note that the /w option in the second example
has the same effect as the following command:

MSC /W O MAIN.C:

3.11 Preparing for Debugging

Options

/Zd
/Zi
/0d

The /Zd option produces an object file containing line-number records
corresponding to the line numbers of the source file. The /Zd option is use-
ful when you want to pass an object file to the SYMDEB symbolic
debugger, available with other Microsoft products. The debugger can use
the line numbers to refer to program locations; however, only global
symbol-table information is available with this product.

The /Zi option produces an object file containing full symbolic-debugging

information for use with the CodeView symbolic debugger. This object file
includes full symbol-table information and line numbers.

89

Microsoft C Compiler User’s Guide

The /Od option tells the compiler not to perform complex optimizations
involving code rearrangement; peephole optimizations and other simple
optimizations are still performed. (Without the /Od option, the default is
to optimize.) You may want to use this option when you plan to use a
symbolic debugger with your object file, since optimization can involve
rearrangement of instructions that make it difficult for you to recognize
and correct your code when debugging. However, turning off optimizations
when your program is close to the size limits may increase the size of the
code generated to the point where it might not be possible to link your pro-
gram.

Other optimization options are discussed in Section 3.12, “Optimizing.”

Example
MSC TEST.C, /Zi /Od, TEST:

This command produces an object file named TEST.OBJ that contains line
numbers corresponding to the line numbers of TEST.C. A source-listing
file, TEST.LST, is also created. Limited optimization is performed.

3.12 Optimizing

Option
/Ostring

The optimizing procedures available with the Microsoft C Compiler can
reduce the storage space and execution time required for a compiled pro-
gram by eliminating unnecessary instructions and rearranging code. The
compiler performs some optimization by default. You can use the /O (for
“optimize”) options to exercise greater control over the optimizations per-
formed. Some additional advanced optimizing procedures are discussed in
Section 9.10 of Chapter 9, “Advanced Topics.”

90

Compiling
The string after the /O option lets you choose how the compiler performs
optimization. The string is formed from the following characters:
Character Optimizing Procedure

Favor code size during optimization
Favor execution time during optimization (the default)

Disable optimization

P o ow

Relax alias checking

The letters can appear in any order: /Oat and /Ota have the same effect.
The letter x is also available with the /O option to perform maximum
optimization, as discussed in Section 9.10.2 of Chapter 9, “Advanced
Topics.”

When you do not give an /O option to the MSC command, it automati-
cally uses /Ot, meaning that program execution speed is favored in the
optimization. Wherever the compiler has a choice between producing
smaller (but perhaps less efficient) and larger (but perhaps more efficient)
code, the compiler chooses to generate more efficient code. To cause the
compiler to favor code size instead, use the /Os option.

The /Od option turns off optimizations that involve code rearrangement.
This option is useful in the early stages of program development to avoid
optimizing code that will later be changed. Because optimization may
involve rearrangement of instructions, you may also want to specify the
/Od option when you use a debugger with your program or when you want
to examine an object-file listing. If you optimize before debugging, it can
be difficult to recognize and correct your code.

The a option letter can be used with either the s or the t option letter to
relax alias checking. The compiler performs alias checking to make sure
that it does not eliminate instructions incorrectly when you refer to the
same memory location by more than one name. You should include the a
option letter only when you are sure that your program does not use
aliases.

91

Microsoft C Compiler User’s Guide

For example, consider the following code fragment:

int count, *pc:
pc = &count:
count = O;

(*pc) ++:

count = O;

The reference to count through a pointer, *pc, is known as an “alias” for
count because it provides another way to access the same memory loca-
tion. When the compiler performs alias checking, it detects the indirect
reference to count through pc and does not eliminate the second instruc-
tion that assigns 0 to count.

When you use the a option letter, you are telling the compiler that your
program does not use aliases. Therefore, the compiler does not check for
indirect references, such as the reference to count through a pointer. It
would be an error to use the a option letter with the example above. The
compiler would see only that the same value, 0, is assigned to count twice,
without any intervening assignments that change its value. The second
assignment would be considered redundant and would be eliminated in the
optimization stage, possibly causing the program to produce incorrect
results.

Example

MSC FILE.C /Osa:

This command tells the compiler to relax alias checking and to optimize for
smaller code size when it compiles FILE .C.

3.13 Compiling Large Programs

If you are compiling a program or file with more than 64K of data or with
more than 64K of code, you may want to use one of the memory models
described in Chapter 8, “Working with Memory Models.” You can use map
files to determine data and code sizes for each individual program file.

92

Compiling

The compiler uses a small-memory model by default. The small-memory
model allocates one segment each, up to 64K in size, for the code and data
of your program. (The code segment of a program may also be referred to
as the “text” segment.) MSC produces an error message such as the follow-
ing if an individual file exceeds these limits:

filename : error 27: DGROUP data allocation exceeds 64K

Even if no individual file exceeds the small-model restrictions, you may
exceed the 64K limit when you link several compiled files together to form a
large program. If this occurs you must recompile the files using a larger
memory model. Using a medium memory model allows you to create pro-
grams with more than 64K of code (the 64K restriction on data still
applies). Using a compact memory model allows you to create programs
with more than 64K of data (the 64K restriction on code still applies). In
large- and huge-model programs, code and data can both exceed 64K
(altl;ough in large-model programs no single data item can be larger than
64K).

If your program exceeds the 64K limit on data or code, you may also want
to use the far (for data or code) or huge (for data only) keyword to selec-

tively move items to a new segment. See Section 8.3 of Chapter 8, “Work-
ing with Memory Models,” for a discussion of these options.

No matter which memory model you use, you cannot exceed the limit of
64K of code per program file compiled. The total code size for the program
may be greater than 64K, but each individual program file {or “compiland”)
must contain less than 64K of code.

93

Chapter 4
Linking

4.1 Introduction 97

4.2 Running the Linker 97

4.2.1 File-Name Conventions 98

4.2.2 “Object Modules” Prompt 98

4.2.3 “Run File” Prompt 99

4.2.4 “List File” Prompt 99

4.2.5 “Libraries” Prompt 100

4.2.6 Separating Entries 101

4.2.7 Selecting Default Responses 101
4.2.8 Terminating the Link Session 102
4.2.9 Using a Command Line 102

4.2.10 Using a Response File 103

4.2.11 The Temporary File 104

4.3 Linking C Program Files 105

4.3.1 The “main” Function 105

4.3.2 Default Libraries and the Library Search Path
4.3.3 Changing the Default Libraries 107
4.3.4 LINK Options to Avoid 107

4.4 Listing-File Format 107

4.5 Using Overlays 109

4.5.1 Restrictions 110

4.5.2 Overlay Manager Prompts 110

4.6 Using Options to Control the Linker 111
4.6.1 Viewing the Options List 112

106

95

4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16

Pausing During Linking 112
Packing Executable Files 113
Listing Public Symbols 114
Including Line Numbers in the List File
Preparing for Debugging 115
Preserving Case Sensitivity 116
Ignoring Default Libraries 116
Controlling Stack Size 117

Setting the Maximum Allocation Space
Controlling Segments 119

Setting the Overlay Interrupt 120
Ordering Segments 120

Controlling Data Loading 121
Controlling Run-File Loading 122
Preserving Compatibility = 122

4.7 How the Linker Works 123

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6

96

Alignment of Segments 123
Frame Number 124

Order of Segments 124
Combined Segments 125
Groups 125

Fix-ups 126

114

118

Linking

4.1 Introduction

The Microsoft Overlay Linker (LINK) is used to combine object files into a
single executable run file. It can be used with object files compiled or assem-
bled on 8086/8088 machines. The format of input to the linker is a subset
of the Intele object module format standard.

The output file (the executable file) from LINK is not bound to specific
memory addresses. It can, therefore, be loaded and executed by the operat-
ing system at any convenient address. LINK can produce executable files
containing up to one megabyte of code and data.

4.2 Running the Linker

LINK requires two types of input:
1. A command to start LINK

2. Responses to command prompts

Start LINK by typing the following command at the MS-DOS command
level:

LINK

LINK prompts you for the input it needs by displaying the following four
lines, one at a time:

Object Modules [.0OBJ}]:
Run File [basename.EXE]:
List File [NUL.MAP]:
Libraries [.LIB]:

LINK waits for you to respond to each prompt before printing the next
one. The responses you can make to each prompt are explained in sections
4.2.1 through 4.2.7.

Once you understand the LINK prompts and operations, you can use the
two alternate methods of running LINK: command line and response file.
The command-line method (discussed in Section 4.2.9) lets you type all

commands, options, and file names on the line used to start LINK. With

97

Microsoft C Compiler User’s Guide

the response-file method (discussed in Section 4.2.10), you create a file that
contains all the necessary commands, then tell LINK where to find that
file.

You can also invoke LINK through the CL command. See Section C.3 of
Appendix C, “The CL Command.”

4.2.1 File-Name Conventions

You can use either uppercase letters, lowercase letters, or a combination of
both for the file names you give in response to the prompts. For example,
the following three file names are considered equivalent:

abcde. fgh
AbCdE .FgH
ABCDE. fgh

LINK uses the default file extensions .OBJ, .EXE, . MAP, and .LIB when
you do not supply extensions with your file names. You can override the de-
fault extension for a particular prompt by specifying a different extension.
To enter a file name that has no extension, type the name followed by a
period. For example, consider the following two responses to prompts:

ABC.
ABC

If you typed the first line in response to a prompt, LINK would assume
that the given file has no extension; if you typed the second line, LINK
would use the default extension for that prompt.

4.2.2 “Object Modules” Prompt

At the “Object Modules” prompt, list the names of the object files you
want to link. For C programs, one (and only one) of the object files must
contain a “main” function to serve as the entry point for the program. You
must respond to this prompt. There is no default.

LINK automatically supplies the .OBJ extension when you give a file

name without an extension. If your object file has a different extension, you
must give the full name, with the extension, for the file to be found.

98

Linking

Path names are allowed with the object-file names. This means that you
can give LINK the path name of an object file in another directory or on
another disk. If LINK cannot find a given object file, it displays a message
and waits for you to change disks.

Each object-file name must be separated from the next by one or more
blank spaces or by a plus sign (—1—) If a plus sign is the last character typed
on the line, the “Object Modules” prompt reappears on the next line, allow-
ing you to include more object files.

4.2.3 “Run File” Prompt

The “Run File” prompt lets you supply a name for the executable program
file. You can give any file name you like; however, if you are specifying an
extension, you should always use .EXE, since MS-DOS expects executable
files to have this extension Sor the .COM extension). (If you do not supply
an extension, .EXE is supplied.)

You are allowed to skip this prompt by typing a carriage return without
giving a name. By default LINK gives the executable file the base name of
the first .OBJ file listed at the previous prompt. The .EXE extension then
replaces the .OBJ extension of the object file.

4.2.4 “List File” Prompt

At the “List File” prompt you can tell LINK to create a listing file. A list-
ing file contains the names of all segments, in order of their appearance in
the load module. By adding the /MAP option (discussed in Section 4.6.4)
you can also include in the listing all public symbols and their addresses.

If you give a file name without an extension, LINK provides the .MAP ex-
tension. The .MAP extension is not required, so you can give another ex-
tension if you like. LINK creates the listing file in the current working
directory unless you give a different path name.

You can skip this prompt by typing a carriage return without giving a

name. The default response is the special file name NUL.MAP, which tells
LINK not to create a listing file.

99

Microsoft C Compiler User’s Guide

4.2.5 “Libraries” Prompt

Following the “Libraries” prompt you can give zero or more entries; each
entry is separated from the others either by one or more blank spaces or by
a plus sign (+). If the plus sign is the last character typed, the “Libraries”
prompt reappears on the next line, allowing you to type additional entries.
Each entry can be either a path specification or a library name. A path
specification can be one of two things: a drive specification, in which case it
ends with a colon ((}, or a directory specification, in which case it ends with
a backslash (\). A directory specification must end with a backslash (\) so
that LINK can distinguish the directory names from the library names.
When you give a path specification or specifications, LINK uses the
specifications to search for the default libraries, as well as any other li-
braries given in response to the “Libraries” prompt without paths. You can
specify up to 16 different paths; more than that are ignored. However,
LINK will not return any error messages if you do have more than 16 path
specifications.

To locate the default libraries, LINK searches in the following order:

In the current working directory

2. In the paths listed following the “Libraries” prompt (in the same
order in which they are listed)

3. In the directories specified by the LIB environment variable

When you give a library name, LINK searches for the given library and
links it with your program. If the library name includes a directory
specification, LINK searches only that directory for the library. If just a li-
brary name is given (no directory specification), LINK uses the search path
described above to locate the given library file.

You can give any combination of directory specifications and library names.
Note that you are not required to give any entries; in this case your pro-
gram will be linked only with the default libraries, and LINK will search
for the default libraries in the current working directory and in the direc-
tories specified by the LIB variable.

LINK automatically supplies the .LIB extension if you omit it from a li-
brary file name. If you want to link a library file with a different extension,
be sure to specify the extension.

LINK searches all libraries in order of their appearance on the line and
searches only until the first definition of a symbol is found. The default

100

Linking

libraries are searched after libraries given on the command line are
searched. The default floating-point library or libraries are searched before
the standard C library.

If you do not want to link with the default floating-point library, you can
give the name of a different floating-point library instead, provided that
you compiled with one of the following options: /FPc, /FPc87, or
/FPa). See Section 3.8 of Chapter 3, “Compiling,” for a discussion of
floating-point options. If you do not want to link with the standard C li-
brary, you must use the /NOD option, discussed in Section 4.6.8.

4.2.6 Separating Entries

Use the plus sign (4) or one or more space characters to separate file-name
entries in a list of object files or libraries. To extend a line, type the plus
sign (+) as the last character of a line to be continued. {This is valid only
for the “Object Files” and “Libraries” prompts.) The prompt will reappear
on the next line, and you can add more entries. Do not type the plus sign in
the middle of a file-name entry; the plus sign can be used only after com-
plete file names.

Example
LINK

Object Modules [.0BJ]: FUN TEXT TABLE CARE+
Object Modules [.0BJ]: YOYO+FLIPFLOP+JUNQUE+
Object Modules [.0BJ]: CORSAIR

Run File [FUN.EXE]:

4.2.7 Selecting Default Responses

To select the default response to the current prompt, type a carriage return
without giving a file name. The next prompt will appear.

To select default responses to the current prompt and all remaining
prompts, use a semicolon (;) followed immediately by a carriage return.
Once the semicolon has been entered, you cannot respond to any of the
remaining prompts for that link session. Use this option to save time when
the default responses are acceptable. Note, however, that the semicolon
character is not allowed with the “Object Modules” prompt, because there
is no default response for that prompt.

101

Microsoft C Compiler User’s Guide

Defaults for the other linker prompts are shown below:

1. The default for the “Run File” prompt is the name of the first ob-
ject file submitted for the previous prompt, with the .EXE exten-
sion replacing the .OBJ extension.

2. The default for the “List File” prompt is the special file name
NUL.MAP, which tells LINK not to create a listing file.

3. The default for the “Libraries” prompt is no libraries; in this case,
the default libraries are those encoded in the object module. (See
Section 4.3.2, “Default Libraries and the Library Search Path.”)

4.2.8 Terminating the Link Session

To terminate the link session, press CONTROL-C while entering responses or
while LINK is working. If you realize that you entered an incorrect
response at a previous prompt, you should press CONTROL-C to exit LINK
and begin again. You can use the normal MS-DOS editing keys to correct
entries at the current prompt.

4.2.9 Using a Command Line

To invoke the linker with a command line, give your responses to the com-
mand prompts on a single line following the LINK command. The
responses to the prompts must be separated by commas, as shown below:

LINK objectfiles [,[[executablefile] [,[mapfile] [,[icbraryfiles]]]][options] [3]

Here objectfiles are object-module names, separated by plus signs or spaces.
The executablefile is the name of the file to receive the executable output.
The mapfile is the name of the file containing a symbol map listing. The
libraryfiles are libraries and directories to be searched, separated by plus
signs or spaces.

You do not have to give any options when you run the linker. If you specify
options, you can put them anywhere on the command line. The options
available with LINK are described in Section 4.6.

You can select the default response for any prompt by omitting the file

name or names before the comma. The only exception to this is the default
for the listing file: if you use a comma as a placeholder for the listing file on

102

Linking
the command line, LINK will create a listing file. This file has as its base
the base of the run file. For example, the command line
LINK FUN,,:
produces the listing file FUN.MAP; in contrast, the command lines

LINK EUN, ;
LINK EUN;

do not produce a listing file.

You can also select default responses by using the semicolon. The semicolon
tells LINK to use the default responses for all remaining prompts.

Example

LINK FUN+TEXT+TABLE+CARE, ,FUNLIST, COBLIB.LIB

LINK loads and links the object modules FUN.OBJ, TEXT.OBJ,

TABLE . 0BJ, and CARE . OBJ, searching for unresolved references in the li-
brary file COBLIB.LIB. By default, the executable file produced is named
FUN.EXE. A map file called FUNLIST.MAP is also produced.

4.2.10 Using a Response File

To operate the linker with a response file, you must set up the response file
and then type the following:

LINK @ filename

Here filename gives the name of the response file, possibly preceded by a
path specification. You can name the response file anything you like;
LINK does not impose any naming restrictions for the response file.

A response file contains responses to the LINK prompts. Options may be
appended to any of the responses or given on a separate line or lines. The
responses must be in the same order as the LINK prompts discussed above.
Each new response begins with a new line or a comma; however, you can ex-
tend long responses across more than one line by typing a plus sign (+) as
the last character of each incomplete line.

103

Microsoft C Compiler User’s Guide

You can also enter the name of a response file after any of the linker
prompts, or at any position in a command line. The input from the
response file will be treated exactly as if it had been entered after prompts
or in command lines, with a carriage-return-line-feed combination in the
response file treated the same as a RETURN key in response to a prompt, or
a comma in a command line.

Options and command characters are used in the response file in the same
way they are used for responses typed at the keyboard. For example, if you
type a semicolon on the line of the response file corresponding to the “Run
File” prompt, LINK uses the default responses for the executable file and
for the remaining prompts.

When you give the LINK command with a response file, each LINK
prompt is displayed on your screen with the corresponding response from
your response file. If the response file does not contain answers for all the
prompts (in the form of file names, the semicolon command character, or
carriage returns), LINK displays the missing prompts and waits for you to
enter responses. When you type an acceptable response, LINK continues
the link session.

Example

FUN TEXT TABLE CARE
/PAUSE /MAP

FUNLIST

GRAF.LIB

This response file tells LINK to load the four object modules FUN, TEXT,
TABRLE, and CARE. The executable file, FUN.EXE, and the map file,
FUNLIST.MAP, are produced. The /PAUSE option causes LINK to pause
before producing the executable file. This permits you to swap disks if
necessary. The /MAP option tells LINK to include public symbols and ad-
dresses in the map file. LINK also links any needed routines from the Ii-
brary file, GRAF .LIB. See the discussion of the /PAUSE and /MAP op-
tions in Section 4.6, “Using Options to Control the Linker,” for more on
these options.

4.2.11 The Temporary File

LINK uses available memory for the link session. If the files to be linked
create an output file that exceeds available memory, LINK creates a tem-
porary disk file to serve as memory. If the linker is running on DOS Version
3.0 or later, it uses a DOS system call to create a temporary file with a

104

Linking

unique name in the current working directory. If the linker is running on a
version of DOS prior to 3.0, it creates a temporary file named VM. TMP.
When this happens, you will see the message

Temporary file tempfilename has been created.
Do not change diskette in drive, letter

where tempfilename is “.\” followed by either a DOS-generated name or
VM.TMP, and letter is the current drive. After this message appears, you
must not remove the disk from the drive specified by letter until the link
session ends. If the disk is removed, the operation of LINK is unpredict-
able. You may see the following message:

Unexpected end-of-file on scratch file
When this happens, you must rerun the link session. The temporary file

created by LINK is a working file only. LINK deletes it at the end of the
link session.

Note
Do not give any of your own files the name VM.TMP. The LINK utili-

ty will display an error message if it encounters an existing file with this
name.

4.3 Linking C Program Files

Several special considerations that should be kept in mind when using

LINK with C files are discussed in sections 4.3.1 through 4.3.4.

4.3.1 The “main” Function

When linking C programs, one (and only one) of the object files you submit
to LINK must have a function named main. The start-up object module
in the standard C library contains a call to the main function to begin pro-
gram execution. If none of the object, files you submit contains a main
function, LINK will display an error message informing you that the refer-
ence to main is unresolved or that the program has no starting address.

106

Microsoft C Compiler User’s Guide

4.3.2 Default Libraries and the Library Search Path

Object files created using the Microsoft C Compiler are encoded with the
names of the default C libraries for the appropriate memory model. The
default C libraries are the standard C library and the floating-point library
or libraries selected at compile time. This encoded information enables
LINK to search for the default library files and link them with your C
program.

You do not have to give the names of the default library files when you
link. However, you must give a path specification showing where the library
files reside. (A path specification is a directory name, a drive letter, or a
drive letter followed by a directory name.) You can do this by giving path
specifications following the LINK “Libraries” prompt, by setting the LIB
environment variable, or by combining the two methods.

You can give zero or more path specifications following the LINK “Li-
braries” prompt. Each path specification must end with a backslash (\) so
LINK can recognize the specification as a directory name (rather than a li-
brary name) unless the path specification is just a drive letter, in which case
it would end with a colon (3).

The LIB variable can contain one or more path specifications. See Section
2.7 of Chapter 2, “Getting Started,” for a detailed discussion of environ-
ment variables.

To locate library files, LINK goes through the following procedure:

The current working directory is searched.

2. If the library files have not been found, LINK searches any paths
specified following the LINK “Libraries” prompt. The directories
are searched in order of their appearance on the line.

3. If the library files have not been found, LINK searches the libraries
specified by the LIB environment variable. The directories are
searched in order until the given libraries are found.

Note that you can separate the library files and store them in different
directories, since LINK searches as many of the specified directories as
necessary to find the files.

If you want to link with additional libraries, give the library names follow-
ing the “Libraries” prompt. LINK uses the same procedure to search for
additional libraries as it does for the default libraries. However, if you give
a library name that includes a path name, LINK searches just that path
narme for the library; no other directory specifications apply.

106

Linking

4.3.3 Changing the Default Libraries

If you use the /FPa, /FP¢87, or /FPc option when you compile, you are
allowed to switch to a different floating-point library at link time. You can
do this by giving the name of the library or libraries you want to use fol-
lowing the “Libraries” prompt. See Section 9.9.1 of Chapter 9, “Advanced
Topics,” for details.

If you do not want to use the standard C library (zLIBC.LIB), you must
give the /NOD (for “no default library”) option when you link. This op-
tion tells LINK to ignore the encoded information in the C object files.
This option should be used with caution; see the discussion of the /NOD
option in Section 4.6.8 for details.

4.3.4 LINK Options to Avoid

Some of the options available with LINK are not suitable for use
with Microsoft C programs. They include the /HIGH option, the
/NOGROUPASSOCIATION option, and the /DSALLOCATE
option. Overlays are permitted with C programs, but the
/OVERLAYINTERRUPT option (to change the default inter-
rupt number) should not be used.

These options are documented in this chapter with the other LINK options
because you may need them if you use LINK to link files written in other
languages. The discussion of each option that is not suitable for C pro-
grams includes a warning note to that effect.

Using the /DOSSEG option with C programs is not prohibited, but it is
never necessary. The segment order specified by the /DOSSEG option is
the default segment order for C programs, so the option has no effect.

4.4 Listing-File Format

You can tell LINK to produce a listing file by responding to the “List File”
prompt. A listing file contains a list of segments in order of their appear-
ance within the load module. An example is shown below:

Start Stop Length Name Class
OOOOCH ©0172CH O172DH _TEXT CODE
OL730H OlE19H OC6EAH _DATA DATA

107

Microsoft C Compiler User’s Guide

The information in the Start and Stop columns shows the 20-bit address
(in hexadecimal) of each segment, relative to the beginning of the load
module. The load module begins at location zero. The LLength column
gives the length of the segment in bytes. The Name column gives the name
of the segment, and the Class column gives information about the seg-
ment type.

The starting address and name of each group is listed at the end of the file.
A sample group listing is shown below:

Origin Group
0173:0 DGROUP

In this example, DGROUP is the name of the data group. DGROUP is
the only group used by programs compiled with the Microsoft C Compiler,
Version 4.0. Version 3.0 uses IGROUP for code segments.

If you use the /MAP option (see Section 4.6.4), LINK appends two lists of
global symbols to the listing file. The first list 1s alphabetical by symbol
name and the second is sorted by symbol address. An example is shown
below:

Address Publics by Name
0000:01dB _chkstk
0173:0035 _fac

0000:1567 _brk

0000:1696 _chmod

0000_131C _clearerr
Address Publics by Value
0000: 0035 __chkln
0000:01D2 __fptrap
0000:01DB __chkstk
0000:023F _main

0000:025A __exit

The addresses of the external symbols are in the “frame:offsef” format,
showing the location of the symbol relative to zero (the beginning of the
load module).

108

Linking

When you examine a map file, you will notice that the names of globally
visible functions and variables begin with an underscore. The Microsoft C
Compiler automatically prefixes an underscore to all global names to
preserve compatibility with XENIX C compilers. If you write assembly-
language routines to interface with your C program, this naming conven-
tion is important; see Section 10.2.7 of Chapter 10, “Interfaces with Other
Languages.”

In the listing file, you may also see names that begin with more than one
underscore. Identifiers with more than one leading underscore are reserved
for internal use by the compiler. You should not attempt to use these
identifiers in your program. Moreover, you should avoid creating global
names that begin with an underscore. Since the compiler automatically
adds another leading underscore, these names will have two leading under-
scores, and might conflict with the names reserved by the compiler.

4.5 Using Overlays

You can direct Microsoft LINK to create an overlaid version of your pro-
gram; parts of your program will only be loaded if and when they are need-
ed, and will share the same space in memory. Programs that use overlays
are usually smaller and require less memory, but they run more slowly be-
cause of the time needed to read and reread the code from disk into
memory.

You specify overlays by enclosing them in parentheses in the list of modules
that you submit to the linker. Each parenthetical list represents one over-
lay. For example, you could give the following response to the “Object
Modules” prompt:

Object Modules [.0BJ]: a + (btc) + (e+f) + g + (1)

In this example, the modules (b+c), (e+f), and (i) are overlays. The
remaining modules, and any drawn from the run-time libraries, constitute
the resident part (or root) of your program. Overlays are loaded into the
same region of memory, so only one can be resident at a time. Duplicate
names in different overlays are not supported, so each module can occur
only once in a program.

The linker will replace calls from the root to an overlay and calls from an

overlay to another overlay with an interrupt (followed by the module
identifier and offset). The interrupt number is 63 (3F hexadecimal).

109

Microsoft C Compiler User’s Guide

4.5.1 Restrictions

You can only overlay modules to which control is transferred and returned
by a standard 8086 long (32-bit) call /return instruction. With C programs,
long calls are the default only in medium-, large-, and huge-model pro-
grams. See Chapter 8, “Working with Memory Models,” for details on the
standard memory models.

You cannot use long jumps (using the longjmp library function) or indirect
calls (through a function pointer) to pass control to an overlay. When a
function is called through a pointer, the called function must be in the
same overlay or in the root.

4.5.2 Overlay Manager Prompts

The overlay manager is part of the C run-time library. If you specify over-
lays during linking, the code for the overlay manager is automatically
linked with the other modules of your program. When the executable file is
run, the overlay manager searches for that file whenever another overlay
needs to be loaded. The overlay manager first searches for the file in the
current directory; then, if it does not find the file, the manager searches the
directories listed in the PATH environment variable. When it finds the file,
the overlay manager extracts the overlay modules specified by the root pro-
gram. If the overlay manager cannot find an overlay file when needed, it
prompts the user to enter the file name.

Note

Even with overlays, the linker produces only one .EXE file. This file is
opened again and again, as long as the overlay manager needs to ex-
tract new overlay modules.

For example, assume an executable program called PAYROLL . EXE, which
does not exist in either the current directory or the directories specified by
PATH, uses overlays. If the user runs it by entering a complete path
specification, the overlay manager will display the following message when
it attempts to load overlay files:

Cannot find PAYROLL.EXE
Please enter new program spec:

110

Linking

The user can then enter the drive and/or directory where PAYROLL . EXE is
located. For example, if the file is located in directory \EMPLOYEE\DATA\
on Drive B, the user could enter B: \EMPLOYEE\DATA\ or simply
\EMPLOYEE\DATAN\ if the current drive is B.

If the user later removes the disk in Drive B and the overlay manager needs
to access the overlay again, it will not find PAYROLL . EXE, and will display
the following message:

Please insert diskette containing B:\EMPLOYEE\DATA\PAYROLL.EXE
in drive B: and strike any key when ready.

After the overlay file has been read from the disk, the overlay manager will
display the following message:

Please restore the original diskette.
Strike any key when ready.

4.6 Using Options to Control the Linker

This section explains how to use linker options to specify and control the
tasks performed by the linker. All options begin with the linker option
character, the forward slash (/). Options may be placed at the end of any
LINK response.

When more than one option is given, the options can be grouped at the
end of a single response or distributed among several responses. Every op-
tion begins with the slash character, even if other options precede it on the
same line.

When you use the command-line method to invoke LINK, options can ap-
pear at the end of the line or after individual responses on the line, but
must be before the comma separating each response from the next item. In
a response file, options can occur alone or following individual responses on
one of the prompt lines.

The options are named according to their function, with the result

that some names are quite long. You can abbreviate the options to

save space and effort. Be sure that your abbreviation is unique so that the
linker can determine which option you want. Since several options begin
with the letters NO, abbreviations for those options must be longer

than NO to be unique. For example, NO is an illegal abbreviation for the
/NOIGNORECASE option, since LINK would not be able to tell which

111

Microsoft C Compiler User’s Guide

of the options beginning with NO you intended. The shortest legal abbrevia-
tion for this option is NOT.

Abbreviations must be sequential from the first letter of the option through
the last letter typed. No gaps or transpositions are allowed. Some linker op-
tlons take numeric arguments. A numerical argument can be any of the
following:

e A decimal number from 0 to 65535.

¢ An octal number from 0 to 0177777. A number is interpreted as oc-
tal if it starts with a zero. For example, the number 10 is a decimal
number, but the number 010 is an octal number, equivalent to 8 in
decimal.

¢ A hexadecimal number from 0 to OxFFFF. A number is interpreted
as hexadecimal if it starts with Ox. For example, 0x10 is a hexa-
decimal number, equivalent to 16 in decimal.

4.6.1 Viewing the Options List

Option
/HELP
The /HELP option causes LINK to write a list of the available options to

the screen. This gives you a convenient reminder of the available options.
You should not give a file name when using the /HELP option.

4.6.2 Pausing During Linking

Option
/PAUSE

Unless you instruct it otherwise, LINK performs the linking session

from beginning to end without stopping. The /PAUSE option tells LINK
to pause in the link session before writing the executable file to disk. This
option allows you to swap disks before LINK outputs the executable
(.EXE) file.

112

Linking
If the /PAUSE option is given, LINK displays the following message
before creating the run file:

About to generate .EXE file
Change diskette in drive letter and press <ENTER>

The letter corresponds to the current drive. LINK resumes processing
when you press the ENTER key.

Note

Do not remove the disk that will receive the list file or the disk used for
the temporary file, if one has been created (see Section 4.2.11). If the
temporary-disk-file message appears when you have specified the
/PAUSE option, you should press CONTROL-C to terminate the LINK
session. Rearrange your files so that the temporary file and the execut-
able file can be written to the same disk. Then try again.

4.6.3 Packing Executable Files

Option
J/EXEPACK

The /EXEPACK option directs LINK to remove sequences of repeated
bytes (typically nullsﬁ and optimize the load-time relocation table before
creating the executable file. Executable files linked with this option may be
smaller, and thus load faster, than files linked without this option. How-
ever, you cannot use the SYMDEB or CODEVIEW symbolic debuggers
with packed files; EXEPACK strips symbolic information from the input
file, and notifies you of this with the following message:

exepack: (warning) omitting debug data from output file

The /EXEPACK option will not always give a significant savings in disk
space (and may sometimes actually increase file size). Programs that have a
large number of load-time relocations (about 500 or more) and long streams
of repeated characters will usually be shorter if packed. If you’re not sure if
yourl program meets these conditions, link it both ways and compare the
results.

113

Microsoft C Compiler User’s Guide
4.6.4 Listing Public Symbols

Option
/MAP

You can list all public (global) symbols defined in an object file or files by
using the /MAP option. The /MAP option causes LINK to create a list-
ing file (also known as a “map file”). The following list describes the effects
of this option when used with the prompt and command-line methods:

e Command-line method:

/MAP causes LINK to create a listing file, even if no file is
specified in the command line. By default, this listing file is given
the same base name as the executable file, plus the extension
MAP. You can override this default name by giving a name on the
command line.

e Prompt method:

If /MAP appears before the “List File” prompt, it creates a listing
file, even if you do not type a file name at the “List File” prompt.
By default, the file is given the same base name as the executable
file, plus the extension MAP. You can override the default name
by responding to the “List File” prompt.

If the /MAP option appears after the “List File” prompt, the
option takes effect only if you have already explicitly created a list-
ing file by giving a name at the “List File” prompt.

You must specify the /MAP option if you intend to debug your program

using SYMDEB, the symbolic debugger provided with some versions of
Microsoft languages.

4.6.5 Including Line Numbers in the List File

Option
/LINENUMBERS

You can include the line numbers and associated addresses of your source
program in the map file by using the /LINENUMBERS option. Ordi-
narily the map file does not contain line numbers.

114

Linking

To produce a map file with line numbers, you must give LINK an

object file (or files) with line-number information. With the C compiler you
can use the /Zd option to produce line numbers in the object file. If you
give LINK an object file without line-number information, the

/LINENUMBERS option has no effect.

You must specify the /JLINENUMBERS option if you intend to do
source-level debugging of your program using SYMDEB, the symbolic
debugger provided with some versions of Microsoft languages.

The /LINENUMBERS option forces LINK to create a map file, even if
no map file is specified in the LINK command line or at the “List File”
prompt. By default, the file is given the same base name as the executable
file, plus the extension MAP. You can override the default name by
responding to the “List File” prompt.

4.6.6 Preparing for Debugging

Option
/CO

The /CO option is used to prepare for debugging with the CodeView
debugger, the symbolic debugger provided with Version 4.0 of the Microsoft
C Compiler. This option tells the linker to prepare a special executable file
containing symbolic data and line-number information.

You can run this executable file outside the CodeView debugger; the extra
data in the file will be ignored. However, to keep file size to a minimum, you
will probably want to use the special-format executable file for debugging
only, and link a separate version without the /CO option after the pro-
gram is debugged.

The /CO option can write this information to the executable file only if
you used the /Zi option when compiling. /Zi also disables a number of
optimizations; you can remove all optimizing with the /Od option. For
example, to debug the C program TEST.C, you could use the following
command lines:

MsC /Zi TEST,,:

LINK /CO TEST,,:
CODEVIEW TEST.EXE

115

Microsoft C Compiler User’s Guide
4.6.7 Preserving Case Sensitivity

Option
/NOIGNORECASE

By default, LINK treats uppercase letters and lowercase letters as
equivalent. Thus ABC, abc, and Abc are considered the same name. When
you use the /NOIGNORECASE option (usually abbreviated /NOI), the
linker distinguishes between uppercase letters and lowercase letters, and
considers ABC, abc, and Abc as three separate names.

The C language is case sensitive: two names are identical only if they have
exactly the same letters in the same case. If your C programs rely on this
behavior, you should always link with the /NOI option. The CL control
program uses the /NOI option by default, but you must give it specifically
if you use MSC and LINK.

Remember that some programs, such as assemblers and other language
compilers, may not make case distinctions. If you want to link such pro-
grams with your C programs, it is best to give each identifier a unique spell-
ing to avoid conflicts.

4.6.8 Ignoring Default Libraries

Option
/NODEFAULTLIBRARYSEARCH

The /NODEFAULTLIBRARYSEARCH option (usually abbreviated to
/INOD) tells LINK not to search the default library, if there is one, to
resolve external references. With C files this has the effect of telling LINK
to ignore the information in the object files that gives the names of the
standard C library and selected floating-point library.

Most C programs will not work correctly without the standard C library, so
if you use the /NOD option you should explicitly specify the name of the
standard library, as well as any floating-point libraries needed by the pro-
gram. If you do not use the standard library, you must provide your own
start-up routine, or extract the start-up routine from the standard library
and link it with your program. (See the README.DOC file included in
your software for a list of the files comprising the start-up routines.)

116

Linking

When using the /NOD option with C programs, always use the following
order to specify libraries:

1. Any libraries other than the standard C library or floating-point
libraries
The floating-point library or libraries
The standard C library
The code-helper library, LIBH.LIB

4.6.9 Controlling Stack Size

Option
/STACK:number

The /STACK option allows you to specify the size of the stack for your
program. The number is any positive value (decimal, octal, or hexadecimal)
up to 65536 (decimal). It represents the size, in bytes, of the stack.

All compilers and assemblers should provide information in the object
modules that tells the linker how to set up the stack. For C programs, the
default stack size is 2K. The default stack size is set by the start-up rou-
tine (CRT0.0OBJ) in the standard C library.

If your program has a large amount of local data or is heavily recursive, you
may get a stack overflow message. In this case you need to increase the size
of the stack. In contrast, if your program uses very little local data, you
may achieve some space savings by decreasing the stack size.

If LINK cannot find the stack information it needs, it displays the follow-
ing error message:

WARNING: NO STACK SEGMENT

Since the start-up file provides stack information, this message usually
means that the start-up file is not being linked with your program.

117

Microsoft C Compiler User’s Guide

Note

The EXEMOD utility (described in Appendix D, “Using EXEPACK,
EXEMOD, and SETENV”) can also be used to change the default stack
size for C program files. The format of the executable file header that is
changed by this option is discussed in the Microsoft MS-DOS
Programmer’s Reference Manual and in some other reference books on

MS-DOS.

4.6.10 Setting the Maximum Allocation Space

Option
/CPARMAXALLOC:number

The /CPARMAXALLOC option (usually abbreviated to /CP) sets the
maximum number of 16-byte paragraphs needed by the program when it is
loaded into memory. This number is used by the operating system when
allocating space for the program prior to loading it. The option is useful
when you want to execute another program from within your program and
you need to reserve space for the executed program.

LINK normally sets the maximum number of paragraphs to 65535. Since
this represents all available memory, the operating system always denies
the request and allocates the largest contiguous block of memory it can
find. If the /CP option is used, the operating system will allocate no more
space than given by this option. This means any additional space in
memory is free for other programs.

The number can be any integer value in the range 1 to 65535. If number is
less than the minimum number of paragraphs needed by the program,
LINK ignores your request and sets the maximum value equal to the
minimum. The minimum number of paragraphs needed by a program is
never less than the number of paragraphs of code and data in the program.
To free more memory for programs compiled in the compact, medium, and
ilarge memory models, link with /CP:1; this leaves no space for the “near”
eap.

118

Linking

Note

You can also change the maximum allocation after linking with the
EXEMOD utility. See Section D.3 of Appendix D, “Using EXEPACK,
EXEMOD, and SETENV.” The format of the executable file header
that is changed by this option is discussed in the Microsoft MS-DOS
Programmer’s Reference Manual and in some other reference books on

MS-DOS.

4.6.11 Controlling Segments

Option
/SEGMENTS:number
The /SEGMENTS option (usually abbreviated to SE) controls the

number of segments the linker allows a program to have. The default is
128, but number can be set to any value (decimal, octal, or hexadecimal) in
the range 1 to 1024 (decimal).

For each segment, the linker must allocate some space to keep track of seg-
ment information. By using a relatively low segment limit as a default
(128), the linker avoids having to allocate a large amount of storage space
for all programs.

When you set the segment limit higher than 128, the linker allocates

more space for segment information. This option allows you to raise the
segment limit for programs with a large number of segments. For programs
with fewer than 128 segments, you can keep the storage requirements of the
linker at the lowest level possible by setting the segment number to reflect
the actual number of segments in the program.

If the number of segments allocated is too many for the amount of memory
LINK has available to it, you will see the following error message:

Segment limit too high

Set a lower limit and relink.

119

Microsoft C Compiler User’s Guide
4.6.12 Setting the Overlay Interrupt

Option
/OVERLAYINTERRUPT:number

By default, the interrupt number used for passing control to overlays is 63
(3F hexadecimal). The overlay interrupt option allows the user to select a
different interrupt number. The number can be a decimal number from 0 to
255, an octal number from 0 to 0377, or a hexadecimal number from 0 to
O0xFF. Numbers that conflict with MS-DOS interrupts are not prohibited,
but their use is not advised.

In general, you should not use / OVERLAYINTERRUPT with C rou-
tines. The exception to this guideline would be a C program using overlays
that spawns another C program using overlays; in this case, each program
should use a separate overlay interrupt number, meaning at least one of the

programs should be compiled with /OVERLAYINTERRUPT.
4.6.13 Ordering Segments

Option

/DOSSEG

The /DOSSEG option forces segments to be ordered as follows:
1. All segments with a class name ending in CODE.
2. All other segments outside DGROUP.

3. DGROUP segments, in the following order:

e Any segments of class BEGDATA (this class name is reserved
for Microsoft use)

e Any segments not of class BEGDATA BSS, or STACK
o Segments of class BSS
e Segments of class STACK

120

Linking

C programs always use this order by default, so you never need to use this
option. See Section 9.14, “Naming Modules and Segments,” for a discus-
sion of the segment names used by the C compiler.

4.6.14 Controlling Data Loading

Option
/DSALLOCATE

By default, LINK loads all data starting at the low end of the data seg-
ment. At run time, the DS (data segment) register is set to the lowest pos-
sible address to allow the entire data segment to be used.

Use the /DSALLOCATE option to tell LINK to load all data starting at
the high end of the data segment, instead. In this case the DS register is
set at run time to the lowest data segment address that contains program
data.

The /DSALLOCATE option is typically used with the /HIGH option,
discussed in the next section, to take advantage of unused memory within
the data segment. The user can allocate any available memory below the
area specifically allocated for DGROUP, using the same DS register.

Warning

Do not use the /DSALLOCATE option with C programs. It should
only be used with assembly-language programs.

121

Microsoft C Compiler User’s Guide

4.6.15 Controlling Run-File Loading

Option
/HIGH

The run file can be placed either as low or as high in memory as possible.
Use of the /HIGH option causes LINK to place the run file as high as pos-
sible in memory. Without the /HIGH option, LINK places the run file as

low as possible.

Note

Do not use the /HIGH option with C programs. It should only be used
with assembly-language programs.

4.6.16 Preserving Compatibility

Option
/NOGROUPASSOCIATION
The /NOGROUPASSOCIATION option causes the linker to ignore

group associations when assigning addresses to data and code items. It is
provided primarily for compatibility with previous versions of the linker
(versions 2.02 and earlier) and other Microsoft language compilers.

Note
Do not use the /NOGROUPASSOCIATION option with C pro-

grams. This option exists strictly for compatibility with older versions
of FORTRAN and Pascal (Microsoft versions 3.13 and earlier, or IBM
versions prior to 2.0). The /NOGROUPASSOCIATION option
should never be used except to link with object files produced by those
compilers, or with the run-time libraries that accompany the old com-
pilers.

122

Linking
4.7 How the Linker Works

LINK performs the following steps to combine object modules and produce
a run file:

Reads the object modules you submit

3]

Searches the given libraries, if necessary, to resolve external
references

Assigns addresses to segments

Assigns addresses to public symbols

Reads data in the segments

Reads all relocation references in object modules

Performs fix-ups

W I & G W

Outputs a run file (executable image and relocation information)

The “executable image” contains the code and data that constitute the exe-
cutable file. The “relocation information” is a list of references, relative to

the start of the program, each of which changes when the executable image
is loaded into memory and an actual address for the entry point is assigned.

You can control the way LINK combines a program’s segments by

using command-line options with the Microsoft C Compiler, or by using
SEGMENT and GROUP directives in the Microsoft Macro Assembler
(MASM). See Section 10.2.1 of Chapter 10, “Interfaces with Other
Languages,” for a discussion of the segment model for C programs and for a
listing of class names, align types, and combine types.

The following sections explain the process LINK uses to concatenate seg-
ments and resolve references to items in memory. You do not need to
understand this information to use the linker, but it may be helpful for
advanced users who want to link C routines with assembly routines.

4.7.1 Alignment of Segments

LINK uses a segment’s alignment type to set the starting address for the
segment. The alignment types are BYTE, WORD, PARA, and PAGE.
These correspond to starting addresses at byte, word, paragraph, and page
boundaries, representing addresses that are multiples of 1, 2, 16, and 256,
respectively. The default alignment is PARA.

1238

Microsoft C Compiler User’s Guide

When LINK encounters a segment, it checks the alignment type before
copying the segment to the executable file. If the alignment is WORD,
PARA, or PAGE, LINK checks the executable image to see if the last
byte copied ends at an appropriate boundary. If not, LINK pads the image
with extra null bytes.

The C compiler automatically assigns alignment types to segments. Table
10.1 of Chapter 10, “Interfaces with Other Languages,” shows the align
types of the segments used by each of the standard memory models.

4.7.2 Frame Number

LINK computes a starting address for each segment in a program. The
starting address is based on a segment’s alignment and the sizes of the seg-
ments already copied to the executable file. The address consists of an offset
and a “canonical frame number.” The canonical frame number specifies the
address of the first paragraph in memory that contains one or more bytes of
the segment. A frame number is always a multiple of 16 (a paragraph
address). The offset is the number of bytes from the start of the paragraph
to the first byte in the segment. For BYTE and WORD alignments, the
offset may be nonzero. The offset is always zero for PARA and PAGE
alignments.

The frame number of a segment can be obtained from the map file created
by LINK when linking the segment. The frame number is the first five hex-
adecimal digits of the “Start” address specified for the segment.

4.7.3 Order of Segments

LINK copies segments to the executable file in the same order that it
encounters them in the object files. This order is maintained throughout
the program unless LINK encounters two or more segments having the
same class name. Segments having identical class names belong to the same
class type, and are copied as a contiguous block to the executable file.

The C compiler automatically assigns class types to segments. Table 10.1 in
Chapter 10, “Interfaces with Other Languages,” shows the class types of
the segments used by each of the standard memory models.

The Microsoft C Compiler, versions 3.0 and later, and the Microsoft FOR-
TRAN and Pascal compilers, versions 3.3 and later, use the segment order-
ing specified by the /DOSSEG linker option. This imposes additional con-
straints on the segment-loading order. See the discussion of the /DOSSEG
option in Section 4.6.13, “Ordering Segments.”

124

Linking

4.7.4 Combined Segments

LINK uses combine types to determine whether or not two or more seg-

ments sharing the same segment name should be combined into one large
segment. The valid combine types are PUBLIC, STACK, COMMON,
MEMORY, and PRIVATE.

If a segment has combine type PUBLIC, LINK will automatically com-
bine it with any other segments having the same name and belonging to the
same class. When LINK combines segments, it ensures that the segments
are contiguous and that all addresses in the segments can be accessed using
an offset from the same frame address. The result is the same as if the seg-
ment were defined as a whole in the source file.

LINK preserves each individual segment’s alignment type. This means that,
even though the segments belong to a single, large segment, the code and
data in the segments do not lose their original alignment. If the combined
segments exceed 64K, LINK displays an error message.

If a segment has combine type STACK, LINK carries out the same com-
bine operation as for PUBLIC segments. The only exception is that
STACK segments cause LINK to copy an initial stack pointer value to
the executable file. This stack pointer value is the offset to the end of the
first stack segment (or combined stack segment) encountered.

If a segment has combine type COMMON, LINK automatically combines
it with any other segments having the same name and belonging to the
same class. When LINK combines common segments, however, it places
the start of each segment at the same address, creating a series of overlap-
ping segments. The result is a single segment no larger than the largest seg-
ment combined.

A segment has combine type PRIVATE only if no explicit combine type is
defined for it in the source file. LINK does not combine private segments.

The C compiler automatically assigns combine types to segments. Table
10.1 in Chapter 10, “Interfaces with Other Languages,” shows the combine
types of the segments used by each of the standard memory models.

4.7.5 Groups

Groups let segments that are not contiguous and do not belong to the same
class be addressable relative to the same frame address. When LINK
encounters a group, it adjusts all memory references to items in the group
so that they are relative to the same frame address.

125

Microsoft C Compiler User’s Guide

Segments in a group do not have to be contiguous, do not have to belong to
the same class, and do not have to have the same combine type. The only
requirement is that all segments in the group fit within 64K.

Groups do not affect the order in which the segments are loaded. Unless you
use class names and enter object files in the right order, there is no guaran-
tee that the segments will be contiguous. In fact, LINK may place seg-
ments that do not belong to the group in the same 64K of memory.
Although LINK does not explicitly check that all segments in a group fit
within 64K of memory, LINK is likely to encounter a fix-up overflow error
if this requirement is not met.

The C compiler uses a group called DGROUP for data segments. For more
information on how the Microsoft C Compiler uses groups, see Section
10.2.1.2 in Chapter 10, “Interfaces with Other Languages.”

4.7.6 Fix-ups

Once the starting address of each segment in a program is known and all
segment combinations and groups have been established, LINK can “fix
up” any unresolved references to labels and variables. To fix up unresolved
references, LINK computes an appropriate offset and segment address and
replaces the temporary values generated by the assembler with the new
values.

LINK carries out fix-ups for four different references:

e Short
o Near Self-Relative
e Near Segment-Relative

e Long

The size of the value to be computed depends on the type of reference. If
LINK discovers an error in the anticipated size of a reference, it displays a
fix-up overflow message. This can happen, for example, if a program
attempts to use a 16-bit offset to reach an instruction in a segment having a
different frame address. It can also occur if all segments in a group do not
fit within a single 64K block of memory.

A short reference occurs in JMP instructions that attempt to pass control
to labeled instructions in the same segment or group. The target instruc-
tion must be no more than 128 bytes from the point of reference. LINK
computes a signed, 8-bit number for this reference. It displays an error

126

Linking

message if the target instruction belongs to a different segment or group
(has a different frame address), or the target is more than 128 bytes distant
in either direction.

A near self-relative reference occurs in instructions that access data relative
to the same segment or group. LINK computes a 16-bit offset for this refer-
ence. It displays an error if the data is not in the same segment or group.

A near segment-relative reference occurs in instructions that attempt to
access data in a specified segment or group, or relative to a specified seg-
ment register. LINK computes a 16-bit offset for this reference. It displays
an error message if the offset of the target within the specified frame is
greater than 64K or less than 0, or if the beginning of the canonical frame
of the target is not addressable.

A long reference occurs in CALL instructions that attempt to access an
instruction in another segment or group. LINK computes a 16-bit frame
address and 16-bit offset for this reference. LINK displays an error message
if the computed offset is greater than 64K or less than 0, or if the beginning
of the canonical frame of the target is not addressable.

127

Chapter 5
Running C Programs

on MS-DOS

5.1 Introduction 131

5.2 Passing Command-Line Data to a Program 131
5.2.1 Expanding Wild-Card Arguments 134

5.2.2 Suppressing Command-Line Processing 135
5.3 Returning an Exit Code 136

5.4 Suppressing Null-Pointer Checks 137

129

Running C Programs on MS-DOS

5.1 Introduction

After compiling a program with the Microsoft C Compiler and linking with
the linker, you will have an executable file with the extension .EXE that
can be run from the MS-DOS prompt.

MS-DOS uses the PATH environment variable to find executable files. You
can execute your program from any directory, as long as the executable
program file is either in your current working directory or in one of the
directories on the path set in the PATH environment variable.

Your program can also be executed by other programs, or you can write it
so that it will be capable of executing other programs or MS-DOS internal
commands. The spawn, exec, and system routines provided in the Micro-
soft C Run-Time Library allow your program to execute other programs
and MS-DOS commands. See the Microsoft C Compiler Run- Time Library
Reference for a description of these routines.

MS-DOS has several other unique capabilities that your program can use if
you write the program to take advantage of them. Among these capabilities
are the following:

e Receiving arguments from MS-DOS

o Reading data that were previously passed to the MS-DOS environ-
ment table

e Sending a message to MS-DOS by returning an exit code

These features are not a part of the C language, but rather a part of
Microsoft’s MS-DOS implementation of C. They either don’t exist in other
operating systems or are handled differently. This chapter explains how to
write programs to take advantage of special MS-DOS features, and how to
use those features once your program is completed.

5.2 Passing Command-Line Data to a Program

Your C program can access data from a command line or from the environ-
ment table. You can use the MS-DOS SET or PATH command to place
data in the environment table. See Section 2.7, “Setting Up the Environ-
ment,” in Chapter 2, “Getting Started,” for a discussion of environment
variables. Command-line data are arguments that appear on the same line
as the program name when you execute the program.

131

Microsoft C Compiler User’s Guide

To pass data to your program on the command line, give one or more argu-
ments after the program name when you execute the program. Each argu-
ment must be separated from the arguments around it by one or more
spaces or tab characters, and may be enclosed in quotation marks ("). If
you want to give a single argument that includes spaces or tab characters,
you must enclose the argument in quotation marks. For example, if your C
program is called TEST.EXE, you might give it the following command
line:

TEST 42 "de f" 16

In this case, the program will be executed and three arguments will be
passed: 42, de f, and 16.

MS-DOS stores the command-line arguments in the MS-DOS program
header. The C run-time library (which becomes part of your program dur-
ing linking) in turn stores each argument from the program header as a
null-terminated string in an array of strings. MS-DOS limits the combined
length of all arguments on the command line (including the program name)
to 128 bytes. If you provide a longer command line, additional characters
will be ignored.

In order for a C program to read and use the data from the command line
or from the environment table, the program should declare three variables
as arguments to the main function. These three variables and their con-
tents are listed in Table 5.1.

Table 5.1
Argument Variables

Variable Contents

arge Number of arguments passed
argv Array of strings containing arguments
envp Pointer to environment table

By declaring these variables as arguments to main, you make them avail-
able as local variables in the main function. The example below illustrates
how to declare these arguments:

Running C Programs on MS-DOS

main (argc, argv, envp)
int argc:

char *argv[]:

char xenvp[]:

You do not have to declare all three arguments. However, you must declare
the arguments in the order shown above. Therefore, if you want to use the
envp arguments, you must declare arge and argv, even if you do not use
them.

The number of arguments appearing on the command line is passed as the
integer variable arge, and the command line is passed to the program as
the array of strings pointed to by argv.

The first argument of any command line is the name of the program to be
executed. Therefore, the program name is the first string stored in argv, at
argv[0]. Since a program name must be given in order to run the program,
the integer value of argc is always at least 1. Therefore, if you pass two
arguments to your program, arge will have a value of 3 (two arguments
and the program name%.

The first argument following the program name is stored at argv[1], the
second is stored at argv[2], and so on, to the last argument.

Note

Under versions of MS-DOS earlier than 3.0, the program name normally
stored in argv]-[)(g is not available. References to argv[0] yield the string
C. Under MS-DOS versions 3.0 and later, references to argv[0] give the
program name.

The third argument passed to the main function, envp, is a pointer to the
environment table. You can access the value of environment settings
through this pointer. However, the putenv and getenv routines from the C
run-time library accomplish the same task, and are easier and safer to use.
Using the putenv routine may change the location of the environment
table in memory, depending on memory requirements. Therefore, the value
given to envp at the beginning of the program execution may not be valid
throughout the program’s execution. In contrast, the putenv and getenv
routines access the environment table properly, even when its location
changes. These routines use the global variable environ (described in the
Microsoft C Compiler Run-Time Library Reference), which always points to
the correct table location.

133

Microsoft C Compiler User’s Guide

Example
MYPROG ABC "abc e" 3 8

This command line executes the program named MYPROG and passes the
four command-line arguments to the main function. The arguments are
stored as null-terminated strings, and the number of arguments is stored in
arge. To access the last argument, for example, you would use an expres-
sion like the following:

argv[argc - 1]

Since the value of argc is 5 (counting the program name as an argument),
this expression is equivalent to argv [4], or the fifth string of the array.

5.2.1 Expanding Wild-Card Arguments

You can use the MS-DOS wild-card characters, the question mark (?) and
the asterisk (#), to specify file-name and path-name arguments on the com-
mand line. To prepare for using wild cards, you must link your object file
with one of the zSETARGV.OBJ object files gwhere the value of «
depends on the memory model you have selected)

These object files are included with your compiler software. If you don’t
link with one of these, your program will not expand wild-card characters
on the command line, interpreting them instead as literal question marks
and asterisks.

The :SETARGV.OBJ files expand the wild-card characters in the same
manner as MS-DOS. (See your MS-DOS documentation if you are unfami-
liar with these characters.) Enclosing an argument in quotation marks

(" ") suppresses the wild-card expansion. Within quoted arguments, you
can represent quotation marks literally within an argument by preceding
the double-quotation character with a backslash (\).

If no matches are found for the wild-card argument, the argument is passed
literally. For example, if the argument B:\ x.C is given, but no files with
the extension .C are found in the root directory of Drive B, the argument is
passed as the string B:\ «.C.

If your programs frequently expand wild-card characters, you may want to
put the wild-card routines (zSETARGYV.OBJ) in the appropriate stan-
dard C libraries (zLIBC.LIB) so they will be linked with your program
automatically. To do this, use the Microsoft Library Manager (LIB) to
extract the module named stdargv from the library (the module name is

134

Running C Programs on MS-DOS

the same in all four libraries) and insert 28SETARGYV. When you replace
stdargv with the appropriate routine, wild-card expansions will always be
performed on command-line arguments. LIB is described in Chapter 6,
“Managing Libraries.”

Example

LINK BETA+\LIB\SSETARGV;
BETA *.INC "WHY?" \"HELLO\"

In this example, SSETARGV . 0BJ, which is in the directory \LIB, is linked
with BETA.OBJ, producing the executable file BETA.EXE. When

BETA . EXE is executed, the wild-card character is expanded, causing all
file names with the extension . INC in the current working directory to be
passed as arguments to the BETA program. The second command-line argu-
ment, WHY ?, is enclosed in quotation marks, so expansion of the wild-card
character ? is suppressed and the argument WHY? is passed literally. In
the third argument, the backslashes cause the quotation marks to be
represented literally, so the argument "HELLO" (including the quotation
marks) is passed.

5.2.2 Suppressing Command-Line Processing

If your program does not take command-line arguments, you can achieve a
small space saving by suppressing use of the library routine that performs
command-line processing. This routine is called _setargv. To suppress its
use, define a routine that does nothing in the same file that contains the
main function, and name it _setargv. The call to _setargv will be
sat'iisﬁed by your definition of _setargv, and the library version will not be
loaded.

Similarly, if you never access the environment table through the envp
argument, you can provide your own empty routine to be used in place of
_setenvp, the environment-processing routine.

If your program makes calls to the spawn or exec routines in the C run-
time library, you should not suppress the environment-processing routine,
since this routine is used to pass an environment from the parent process to
the child process.

135

Microsoft C Compiler User’s Guide

Example

_setargv ()
{
>

_setenvp ()

b

The example above shows how to define the _setargv and _setenvp func-
tions to suppress command-line and environment processing. It is recom-
mended that you place these definitions in the file containing the main
function.

5.3 Returning an Exit Code

Your program can return an exit code (sometimes called a return code) as a
means of leaving a message for MS-DOS. The exit code can then be used by
MS-DOS batch files or other programs that test exit codes (MAKE, for
example). Exit codes and their uses are discussed in more detail in Appen-
dix E, “Using Exit Codes.”

Exit codes are returned through the main function. This function, like any
other C function, can return a value. The value is of int type, and is passed
to MS-DOS as the exit code of the executed program. This exit code can be
checked with the IF ERRORLEVEL command in MS-DOS batch files.
(See your MS-DOS user’s guide for more information on using batch files.)

To cause the main function to return a specific value to MS-DOS, you
should use a return statement or exit function to specify the value to be
returned. For example, if the main function in a program terminates with
either the statement return (6); orexit (6) ; the value 6 will be
returned to MS-DOS. If neither of these methods is used, the return code is
undefined.

136

Running C Programs on MS-DOS

Example

#define TRUE 1
#define FALSE O

int error = FALSE;

main ()

{

if (error) return (1):
else return (O):

}

In the example above, the value 1 would be returned if the variable error
were set to TRUE somewhere within the body of the program. Otherwise, 0
would be returned to MS-DOS. The example program follows the conven-
tion of returning 0 if the program is successful, and some larger number if
an error is encountered.

5.4 Suppressing Null-Pointer Checks

When you execute your C program, a special error-checking routine is
automatically invoked after your program has terminated to determine
whether the contents of the NULL segment have changed, and display the
following error message if they have:

Null pointer assignment

The NULL segment is a special location in low memory that is not nor-
mally used. If the contents of the NULL segment change during a
program’s execution, it means that the program has written to this area,
usually by an inadvertent assignment through a null pointer. Note that
your program can contain null pointers without generating this message;
the message appears only when you write to a memory location through the
null pointer.

This error does not cause your program to terminate; the error is detected

and the error message is printed following the normal termination of the
program.

137

Microsoft C Compiler User’s Guide

Note

The message
Null pointer assignment

reflects a potentially serious error in your program. Although a program
that produces this error may appear to operate correctly, it is likely to
cause problems in the future and may fail to run in a different operating
environment.

The library routine that performs the null-pointer check is named
—nullecheck. You can suppress the null-pointer check for a particular pro-
gram by defining your own routine named — nullcheck that does nothing.
The call to —nullcheck will be satisfied by your definition of _nullcheck,
and the library version will not be loaded. It is recommended that you place
the _nullcheck definition in the file containing the main function.

To suppress the null-pointer check for all programs, you can replace the
corresponding error-checking routine in the standard C library. The rou-
tine is stored in a module called chksum in all four standard libraries
(zLIBC.LIB). Do not remove the routine entirely or there will be an
unresolved reference in your program. Instead, use LIB (described in
Chapter 6, “Managing Libraries”) to replace the chksum module with a
module containing the empty definition of _ nullecheck. This replacement
will satisfy the call to — nullcheck and null-pointer checking will not be
performed.

Chapter 6
Managing Libraries

6.1 Introduction 141

6.2 Overview of LIB Operation 142

6.3 Running LIB 143

6.3.1 “Library name” Prompt 144

6.3.2 “Operations” Prompt 144

6.3.3 “List file” Prompt 146

6.3.4 “Output library” Prompt 146

6.3.5 Using the Command Line 147

6.3.6 Using a Response File 148

6.3.7 Extending Lines 149

6.3.8 Terminating the Library Session 150
6.3.9 Selecting Default Responses to Prompts 150
6.4 Library Tasks 150

6.4.1 Creating a Library File 150

6.4.2 Modifying a Library File 151

6.4.3 Adding Library Modules 151

6.4.4 Deleting Library Modules 152

6.4.5 Replacing Library Modules 152

6.4.6 Copying Library Modules 152

6.4.7 Moving Library Modules 153

6.4.8 Combining Libraries 153

6.4.9 Creating a Cross-Reference Listing 153
6.4.10 Performing Consistency Checks 154
6.4.11 Setting the Library-Page Size 154

139

Managing Libraries

6.1 Introduction

The Microsoft Library Manager (LIB) is a utility designed to help you
create, organize, and maintain run-time libraries. Run-time libraries are
collections of compiled or assembled functions that provide a common set
of useful routines. Any program can call a run-time routine, exactly as if
the function were included in the program. The program is linked with the
run-time library file and the call to the run-time routine is resolved by
finding the routine in the library file.

Run-time libraries are created by combining separately compiled object files
into one library file. Library files are usually identified by their .LIB exten-
sion, although other extensions are allowed.

In addition to accepting MS-DOS object files and library files, LIB can read
the contents of 286 XENIX archives and Intel-style libraries and combine
their contents with MS-DOS libraries. You can add the contents of a 286
XENIX archive or an Intel-style library to an MS-DOS library by using the
add operator (+).

Once an object file is incorporated into a library, it becomes an object
“module.” LIB makes a distinction between object files and object

modules: an object “file” exists as an independent file, while an object
“module” is part of a larger library file. An object file can have a full path
name, including a drive designation, directory path name, and file-name ex-
tension (usually .OBJ). Object modules have only a name. For example,
B:\RUN\SORT.OBJ is an object-file name, while SORT is the corresponding
object-module name.

Using LIB, you can create a new library file, add object files to an existing
library, delete library modules, replace library modules, and create object

files from library modules. LIB also lets you combine the contents of two

libraries into one library file.

The command syntax is straightforward, and LIB prompts you for
responses. Once you have learned how LIB works and what its prompts
mean, you can use one of the alternative methods of invoking LIB,
described in sections 6.3.5 and 6.3.6. The alternative methods let you give
LIB commands without waiting for the LIB prompts.

141

Microsoft C Compiler User’s Guide
6.2 Overview of LIB Operation

You can perform a number of library management functions with LIB, in-
cluding the following tasks:

o Create a library file

¢ Delete modules

o [Extract a module and place it in a separate object file
e Extract a module and delete it

e Append an object file as a module of a library, or append the con-
tents of a library

e Replace a module in the library file with a new module

e Produce a listing of all public symbols in the library modules

For each library session, LIB reads and interprets the user’s commands. It
determines whether a new library is being created or an existing library is
being examined or modified.

Deletion and exiraction commands (1f any] are the first commands pro-
cessed. LIB does not actually delete modules from the existing file. In-
stead, it marks the selected modules for deletion, creates a new library
file, and copies only the modules not marked for deletion into the new li-
brary file.

Next, LIB processes any addition commands. Like deletions, additions are
not performed on the original library file. Instead, the additional modules
are appended to the new library file. (If there were no deletion or extrac-
tion commands, a new library file is created in the addition stage by copy-
ing the original library file.)

As LIB carries out these commands, it reads the object modules in the
library, checks them for validity, and gathers the information necessary to
build a library index and a listing file. The library index is used by the
linker to search the library.

The listing file contains a list of all public symbols in the index and the

names of the modules in which they are defined. LIB produces the listing
file only if you ask for it during the library session.

142

Managing Libraries

LIB never makes changes to the original library; it copies the library and
makes changes to the copy. Therefore, when you terminate LIB for any rea-
son, you do not lose your original file. It also means that when you run
LIB, enough space must be available on your disk for both the original li-
brary file and the copy.

When you modify a library file, LIB gives you the option of specifying a
different name for the file containing the modifications. If you use this op-
tion, the modified library is stored under the name you give, and the origi-
nal, unmodified version is preserved under its own name. If you choose not
to give a new name, LIB gives the modified file the original library name,
but keeps a backup copy of the original library file. This copy has the ex-
tension .BAK instead of .LIB.

6.3 Running LIB

LIB requires two types of input: a command to start LIB and responses to
command prompts. Start LIB at the MS-DOS command level by typing
LIB. LIB prompts you for the input it needs by displaying the following
four messages, one at a time. LIB waits for you to respond to each prompt,
then prints the next prompt.

Library name:
Operations:
List file:
Output library:

The responses you can make to each prompt are explained in the following
four sections.

Once you understand the LIB prompts and operations, you may want to
use one of the two alternate methods of running LIB. The command-line
method lets you type all commands, options, and file names on the line used
to start LIB. With the response-file method, you create a file that contains
all the necessary commands, then tell LIB to use the responses in that file.
You may find it easier to use the prompt method until you become comfort-
able with the LIB commands and operations.

143

Microsoft C Compiler User’s Guide

6.3.1 “Library name” Prompt

At the “Library name” prompt, give the name of the library file you want.
You can also specify a page size at this prompt using the /PAGESIZE
option.

Usually library files are named with the .LIB extension. You can omit the
.LIB extension when you give the library-file name since LIB assumes that
the file-name extension is .LIB. If your library file does not have the .LIB
extension, be sure to include the extension when you give the library-file
name. Otherwise, LIB cannot find the file.

Path names are allowed with the library-file name. You can give LIB the
path name of a library file in another directory or on another disk.

Since LIB manages only one library file at a time, only one file name is al-
lowed in response to this prompt. There is no default response. LIB pro-
duces an error message if you do not give a file name.

If you give the name of a library file that does not exist, LIB displays the
following prompt:

Tibrary file does not exist. Creatc?

Type y to create the library file, or n to terminate LIB. If you type a
library-file name and follow it immediately with a semicolon (;), LIB per-
forms only a consistency check on the given library. A consistency check
tells you whether all the modules in the library are in usable form. LIB
prints a message only if it finds an invalid object module; no message ap-
pears if all modules are intact.

If you wish to set the library-page size, you must enter the /PAGESIZE
option at the “Library name” prompt. It must follow the library name. See
Section 6.4.11, “Setting the Library-Page Size,” for details.

6.3.2 “Operations” Prompt

At the “Operations” prompt, you can type one of the command symbols for
manipulating modules (4, —, —+, *, or —*), followed immediately by a
module name or an object-file name. You can specify more than one opera-
tion at this prompt, in any order. The default for the “Operations” prompt,
is no change.

144

Managing Libraries

When you have a large number of modules or files to manipulate (more
than can be typed on one line), type an ampersand (&) as the last symbol
on the line, then press the RETURN key. The ampersand must follow a file
name; you cannot give an operator as the last character on a line to be con-
tinued. The ampersand causes LIB to repeat the “Operations” prompt, al-
lowing you to specify more operations and names.

The following list describes the command symbols and their meanings and

uses:
Symbols
+

Meaning

The plus sign makes an object file the last
module in the library file. Immediately follow-
ing the plus sign, give the name of the object
file. You can use path names for the object
file. LIB automatically supplies the .OBJ ex-
tension, so you can omit the extension from
the object-file name.

You can also use the plus sign to combine two
libraries. When you give a library name fol-
lowing the plus sign, a copy of the contents of
the given library is added to the library file
being modified. You must include the .LIB
extension when you give a library-file name.
Otherwise, LIB uses the default .OBJ exten-
sion when it looks for the file.

The minus sign deletes a module from the li-
brary file. Immediately following the minus
sign, give the name of the module to be delet-
ed. A module name has no path name and no
extension.

Type a minus sign followed by a plus sign to
replace a module in the library. Following the
replacement symbol, give the name of the
module to be replaced. Module names have no
path names and no extensions.

To replace a module, LIB deletes the given
module, then appends the object file having
the same name as the module. The object file
is assumed to have an .OBJ extension and to
reside in the current working directory.

145

Microsoft C Compiler User’s Guide

* Type an asterisk followed by a module name
to copy a module from the library file into an
object file of the same name. The module
remains in the library file. When LIB copies
the module to an object file, it adds the .OBJ
extension and the drive designation and path
name of the current working directory to the
module name to form a complete object-file
name. You cannot override the .OBJ exten-
sion, drive designation, or path name given to
the object file, but you can later rename the
file or copy it to whatever location you like.

—% Use the minus sign followed by an asterisk to
move an object module from the library file to
an object file. This operation is equivalent to
copying the module to an object file, as
described above, then deleting the module
from the library.

6.3.3 “List file” Prompt

At the “List file” prompt, you can give a file name for a cross-reference list-
ing file. You can specify a full path name for the listing file to cause it to be
created outside your current working directory. You can give the listing file
any name and any extension. LIB does not supply a default extension if
you omit the extension.

A cross-reference listing file contains two lists. The first is an alphabetical
listing of all public symbols in the library. Each symbol nane is followed by
the name of the module in which it is referenced.

The second list consists of the modules in the library. Under each module
name is an alphabetical listing of the public symbols defined in that
module. The default when you omit the response to this prompt is the spe-
cial file name NUL, which tells LIB not to create a listing file.

6.3.4 “Output library” Prompt

At the “Output library” prompt you can give the name of a new library file
that will have the specified modifications. This prompt appears only if you
specify modifications to the library at the “Operations” prompt. The de-
fault is the current library-file name. If you do not specify a new library-file

146

Managing Libraries

name, the original, unmodified library is saved in a library file with the
same name but with a .BAK extension replacing the .ILIB extension.

6.3.5 Using the Command Line

The command-line method of starting LIB has the following form:

LIB oldizbrary [/PAGESIZE:number] [commands]| [,[lstfile] [,[newlibrary]]] [;]

The entries following LIB correspond to responses to the LIB command
prompts. The newlibrary entry and the optional number for the
/PAGESIZE option correspond to the “Library name” prompt. If

you want LIB to perform a consistency check on the library, follow the
newlibrary entry with a semicolon (j).

The commands entries are any of the commands allowed at the “Opera-
tions” prompt. The listfile entry, if you include it, tells LIB to create a list-
ing file with the given name. The newlibrary entry, if it appears, is the
name of the revised library.

If you want to create a cross-reference listing, the name of the listing file
must be separated from the last commands entry by a comma. If you give a
file name in the new library field, the library name must be separated from
the listing-file name or the last commands entry by a comma.

To tell LIB to use the default responses for the remaining entries, use a
semicolon after any entry except the first. The semicolon should be the last
character on the command line.

Examples

LIB LANG-+HEAP;

LIB LANG-HEAP+HEAP:
LIB LANG+HEAP-HEAP;
LIB C;

LIB LANG,LCROSS.PUB

LIB FIRST -+STUEE *MORE, ,SECOND

147

Microsoft C Compiler User’s Guide

The first three examples have the same effect. The first example uses the
replace command (—+) to instruct LIB to replace the HEAP module in the
library LANG.LIB. LIB deletes the HEAP module from the library, then
appends the object file HEAP . OBJ as a new module in the library. The
semicolon at the end of the command line tells LIB to use the default
responses for the remaining prompts. This means that no listing file is
created and that the changes are written to the original library file instead
of creating a new library file.

The next two examples do the same thing, but in two separate operations,
using the add (+) and delete () commands. The effect is the same for the
second and third examples because delete operations are always carried out
before added operations, regardless of the order of the operations in the
command line. This order of execution prevents confusion when a new ver-
sion of a module replaces an old version in the library file.

The fourth example causes LIB to perform a consistency check of the li-
brary file C.LIB. No other action is performed. LIB displays any con-
sistency errors it finds and returns to the operating-system level.

The fifth example tells LIB to perform a consistency check of the library
file LANG.LIB, then create a cross-reference listing file named
LCROSS.PUB.

The last example instructs LIB to move the module STUEFF from the library
FIRST.LIB to an object file called STUFF .0BJ. The module STUFEF is re-
moved from the library in the process. The module MORE is copied from the
library to an object file called MORE . OBJ. It remains in the library. The re-
vised library is called SECOND.LIB. It contains all the modules in
FIRST.LIB except STUFF, which was removed by the move (—*) com-
mand. The original library, FIRST.LIB, remains unchanged.

6.3.6 Using a Response File

The command to start LIB with a response file has the following form:
LIB @ filename

The filename is the name of a response file. The response-file name can be

qualified with a drive and directory specification to name a response file
from a directory other than the current working directory.

Managing Libraries

You can also enter the name of a response file after any of the linker
prompts, or at any position in a command line. The input from the
response file will be treated exactly as if it had been entered after prompts
or in command lines, with a carriage-return-line-feed combination in the
response file treated the same as a RETURN key in response to a prompt, or
a comma in a command line.

Before you use this method, you must set up a response file containing
answers to the LIB prompts. This method lets you conduct the library ses-
sion without typing responses at the keyboard.

A response file has one text line for each prompt. Responses must appear
in the same order as the command prompts appear. Use command symbols
in the response file the same way you would use responses typed on the
keyboard.

When you run LIB with a response file, the prompts are displayed with the
responses from the response file. If the response file does not contain
answers for all the prompts, LIB uses the default responses.

Example

SLIBC
+CURSOR+HEAP -HEAP*FOIBLES
CROSSLST

This response file causes LIB to: delete the module HEAP from the
SLIBC.LIB library file; extract the module FOIBLES and place it in an ob-
ject file named FOIBLES.OBRJ; and append the object files CURSOR . OBJ
and HEAP . OBJ as the last two modules in the library. Finally, LIB creates
a cross-reference file named CROSSLST.

6.3.7 Extending Lines

If you have many operations to perform during a library session, use the

ampersand (&) command symbol to extend the operations line. Give the

ampersand symbol after an object module or object-file name; do not put
the ampersand between an operations symbol and a name.

If you use the ampersand with the prompt method of invoking LIB, the
ampersand will cause the “Operations” prompt to be repeated, allowing
you to type more operations. With the response-file method, you can use
the ampersand at the end of a line and continue typing operations on the
next line.

149

Microsoft C Compiler User’s Guide

6.3.8 Terminating the Library Session

You can press CONTROL-C at any time during a library session to terminate
the session and return to MS-DOS. If you notice that you have entered an
incorrect response at a previous prompt, you should press CONTROL-C to
exit LIB and begin again. You can use the normal MS-DOS editing keys to
correct errors at the current prompt.

6.3.9 Selecting Default Responses to Prompts

After any entry but the first, use a single semicolon (;) followed immedi-
ately by a carriage return to select default responses to the remaining
prompts. You can use the semicolon command symbol with the command-
line and response-file methods of invoking LIB, but it is not really neces-
sary, since LIB supplies the default responses wherever you omit responses.

The default response for the “Operations” prompt is no operation. The
library file is unchanged.

The default response for the “List file” prompt is the special file name
NUL, which tells LIB not to create a listing file.

The default response for the “Output library” file is the current library

name. This prompt appears only if you specify at least one operation at the
“Operations” prompt.

6.4 Library Tasks

This section summarizes the library-management tasks you can perform
with LIB.

6.4.1 Creating a Library File

To create a new library file, give the name of the library file you want to
create at the “Library name” prompt. LIB supplies the .LIB extension.

The name of the new library must not be the name of an existing file. If it
is, LIB will assume you want to modify the existing file. When you give the
name of a library file that does not currently exist, LIB displays the follow-
ing prompt:

150

Managing Libraries

Library file does not exist. Create?
Type vy to create the file, or n to terminate the library session.

You can specify a page size for the library when you create it. The default
page size is 16 bytes. See the Section 6.4.11, “Setting the Library-Page
Size,” for a discussion of this option.

Once you have given the name of the new library file, you can insert object
modules into the library by using the add operation (+) at the “Opera-
tions” prompt. You can also add the contents of another library, if you
wish. These options are discussed in Section 6.4.3, “Adding Library
Modules,” and Section 6.4.8, “Combining Libraries.”

6.4.2 Modifying a Library File

You can modify an existing library file by giving the name of the library file
at the “Library name” prompt. All operations you specify at the “Opera-
tions” prompt are performed on that library.

However, LIB lets you keep both the unmodified library file and the newly
modified version, if you like. You can do this by giving the name of a new
library file at the “Output library” prompt. The modified library file is
stored under the new library-file name, while the original library file
remains unchanged.

If you don’t give a file name at the “Output library” prompt, the modified
version of the library file replaces the original library file. Even in this case,
LIB saves the original, unmodified library file with the extension .BAK
instead of .LIB. Thus at the end of the session you have two library files:
the modified version with the .LIB extension and the original, unmodified
version with the .BAK extension.

6.4.3 Adding Library Modules

Use the plus sign (+) at the “Operations” prompt to add an object module
to a library. Give the name of the object file to be added, without the
.OBJ extension, immediately following the plus sign.

Microsoft C Compiler User’s Guide

LIB strips the drive designation and the extension from the object-file
specification, leaving only the base name. This becomes the name of the
object module in the library. For example, if the object file B: \CURSOR is
added to a library file, the name of the corresponding object module is
CURSOR.

Object modules are always added to the end of a library file.

6.4.4 Deleting Library Modules

Use the minus sign (~) at the “Operations” prompt to delete an object
module from a library. Following the minus sign, give the name of the
module to be deleted. A module name has no path name and no extension;
it is simply a name, such as CURSOR.

6.4.5 Replacing Library Modules

Use a minus sign followed by a plus sign (—+) to replace a module in the
library. Following the replacement symbol (—+), give the name of the
module to be replaced. Remember that module names have no path names
and no extensions.

To replace a module, LIB deletes the given module, then appends the
object file having the same name as the module. The object file is assumed
to have an .OBJ extension and to reside in the current working directory.

6.4.6 Copying Library Modules

Use an asterisk (*) followed by a module name to copy a module from the
library file into an object file of the same name. The module remains in the
library file. When LIB copies the module to an object file, it adds the .OBJ
extension and the drive designation and path name of the current working
directory to the module name to form a complete object-file name. You
cannot override the .OBJ extension, drive designation, or path name given
to the object file, but you can later rename the file or copy it to whatever
location you like.

162

Managing Libraries

6.4.7 Moving Library Modules

Use the minus sign followed by an asterisk (—*) to move an object module
from the library file to an object file. This operation is equivalent to copy-
ing the module to an object file, then deleting the module from the library.

6.4.8 Combining Libraries

You can add the contents of a library to another library by using the plus
sign (+) with a library-file name instead of an object-file name. At the
“Operations” prompt, give the plus sign (+) followed by the name of the
library whose contents you wish to add to the library being modified. When
you use this option you must include the .LIB extension of the library-file
name. Otherwise, LIB assumes that the file is an object file and looks for
the file with an .OBJ extension.

In addition to allowing MS-DOS libraries as input, LIB also accepts 286
XENIX archives and Intel-format libraries. Therefore, you can use LIB to
convert libraries from either of these formats to the Microsoft format.

LIB adds the modules of the library to the end of the library being
modified. Note that the added library still exists as an independent library.
LIB copies the modules without deleting them.

Once you have added the contents of a library or libraries, you can save the
new, combined library under a new name by giving a new name at the
“Output library” prompt. If you omit the “Output library” response, LIB
saves the combined library under the name of the original library being
modified. The original library is saved with the extension .BAK.

6.4.9 Creating a Cross-Reference Listing

Create a cross-reference listing by giving a name for the listing file at the
“List file” prompt. If you omit the response to this prompt, LIB uses the
special file name NUL, which means that no listing file is created.

You can give the listing file any name and any extension. To cause the list-
ing file to be created outside your current working directory, you can
specify a full path name, including drive designation. LIB does not supply
a default extension if you omit the extension.

163

Microsoft C Compiler User’s Guide

A cross-reference listing file contains two lists. The first is an alphabetical
listing of all public symbols in the library. Each symbol name is followed by
the name of the module in which it is referenced.

The second list is an alphabetical list of the modules in the library. Under
each module name is an alphabetical listing of the public symbols refer-
enced in that module.

6.4.10 Performing Consistency Checks

When you give only a library name followed by a semicolon at the “Library
name” prompt, LIB performs a consistency check, displaying messages
about any errors it finds. No changes are made to the library. This option is
not usually necessary, since LIB automatically checks object files for con-
sistency before adding them to the library.

To produce a cross-reference listing with a consistency check, use the
command-line method of invoking LIB. Give the library name followed by
a semicolon, then give the name of the listing file. LIB performs the con-
sistency check, then creates the cross-reference listing.

6.4.11 Setting the Library-Page Size

You can set the library-page size by adding a page-size option after the
library-file name in the LIB command line or after the new library-file
name at the “Library name” prompt. The option has the following form:

/PAGESIZE: number

The number specifies the new page size. It must be an integer value
representing a power of 2 between the values 16 and 32768. The option
name can be abbreviated to /P:number.

The page size of a library affects the alignment of modules stored in the
library. Modules in the library are aligned to always start at a position that
is a multiple of the page size (in bytes) from the beginning of the file. The
default page size is 16 bytes for a new library or the current page size for an
existing library.

1b4

Managing Libraries

Note

Because of the indexing technique used by LIB, a library with a large
page size can hold more modules than a library with a smaller page size.
However, for each module in the library, an average of number/2 bytes
of storage space is wasted (where number is the page size). In most
cases, a small page size is advantageous; you should use a small page
size unless you need to put a very large number of modules in a library.

Another consequence of this indexing technique is that the page size
determines the maximum possible size of the .LIB file. Specifically, this
limit is number * 65536. For example, /P:16 means that the .LIB file
has to be smaller than 1 megabyte (16 * 65536 bytes).

1656

Chapter 7

Maintaining Programs

with MAKE

7.1 Introduction 159

7.2 Using MAKE 159

7.2.1 Creating a MAKE Description File 159
7.2.2 Starting MAKE 161

7.2.3 Using MAKE Options 162

7.2.4 Using Macro Definitions 163

7.2.5 Nesting Macro Definitions 164

7.2.6 Using Special Macros 165

7.2.7 Inference Rules 165

7.3 Maintaining a Program: an Example 167

1567

Maintaining Programs with MAKE

7.1 Introduction

The Microsoft Program Maintenance Utility (MAKE) automates the pro-
cess of maintaining high-level-language programs. MAKE automatically
carries out all tasks needed to update a program after one or more of its
source files has been changed.

Unlike many batch-processing programs, MAKE compares the last
modification date of the file or files that may need updating with the
modification dates of files on which these target files depend. MAKE then
carries out the given task only if a target file is out of date. MAKE does
not compile and link all files just because one file has been updated. This
can save time when creating programs that have many source files or take
several steps to complete.

The rest of this chapter explains how to use MAKE and illustrates how to
maintain a sample C program.

7.2 Using MAKE

To use MAKE, you must create a MAKE description file that defines the
tasks you wish to accomplish and specifies the files on which these tasks
depend. Once the description file exists, invoke MAKE and supply the file
name as a parameter. MAKE then reads the contents of the file and car-
ries out the requested tasks.

The following sections explain how to create a MAKE description file and
start MAKE.

7.2.1 Creating a MAKE Description File

You can create a MAKE description file with a text editor. A MAKE
description file consists of one or more target/dependent descriptions. Each
description has the following general form:

targetfile : dependentfiles [# comment]
[# comment]
command [[# comment]
[[COT"]’L(]JLdH [[# CU"I;T’L(Z?’IJ]]

159

Microsoft C Compiler User’s Guide

In this format, targetfile is the name of a file that may need updating,
dependentfiles are the names of any files on which the target file de-
pends, and command is the name of an executable file or MS-DOS internal
command.

The targetfile and dependentfile must be valid file names. A path name must
be provided for any file that is not on the same drive and directory as the
description file.

Any number of dependent files can be given, but only one target name is al-
lowed. Dependent-file names must be separated by at least one space. If you
have more dependent files than can fit on one line, you can continue the
names on the next line by typing a backslash (\) followed by a new line.

The command can be any valid MS-DOS command line consisting of an
executable-file name or an MS-DOS internal command. Any number of com-
mands can be given, but each must begin on a new line and must be pre-
ceded by a TAB, or by at least one space. The commands are carried out
only if one or more of the dependent files has been modified since the target
file was created.

One way to remember the MAKE description file format is to think of it as
an “if-then” statement in the following format: If a dependentfile is older
than the targetfile, or a dependentfile does not exist, then do commands.

You can give any number of target/dependent descriptions in a description
file. You must make sure, however, that the last line in one description is
separated from the first line of the next description by at least one blank
line.

The number sign (#) is a comment character. All characters on the same
line that follow the comment character are ignored. When comments
appear in a command lines section, the comment character (#) must be the
first character on the line (no leading white space). On any other lines, the
comment character can appear anywhere.

160

Maintaining Programs with MAKE

Note

The order in which you place the target/dependent descriptions is
important. MAKE examines each description in turn and makes its
decision to carry out a given task based on the file’s current
modification date. If a command in a later description modifies a file,
MAKE has no way to return to the description in which that file is a
target.

Example

STARTUP.OBJ: STARTUP.C
MSC STARTUP, , STARTUP:;

PRINT.OBJ: PRINT.C #Comment allowed after dependent
#Comment before command must start in first column
MSC PRINT, ,PRINT: #Comment allowed after command

PRINT.EXE: STARTUP.OBJ PRINT.OBJ
LINK STARTUP+PRINT,PRINT, PRINT;

This example defines the actions to be carried out to create three target
files. Each file has at least one dependent file and one command. The target
descriptions are given in the order in which the target files will be created.
Thus STARTUP.0OBJ and PRINT.OBJ are examined and created, if neces-
sary, before PRINT . EXE.

Note that a comment can appear on the same line as the target/dependent
description line and the command line. However, when the comment

appears on a separate line, the comment character (#) must be the first
character on the line.

7.2.2 Starting MAKE

MAKE must be started with a command line. You cannot use prompts.
The MAKE command line has the following form:

MAKE [options] [macrodefinitions] filename

The options are one or more of the options described in Section 7.2.3. The
macrodefinitions are one or more macro definitions, as described in Section
7.2.4. The filename is the name of a MAKE description file. By convention,

161

Microsoft C Compiler User’s Guide

a MAKE description file has the same file name (but with no extension) as
the program it describes; however, filename can be any valid file name you
choose.

Once you start MAKE, it examines each target description in turn. If a
given target file is out of date with respect to its dependent file, or if the file
does not exist, MAKE executes the given command or commands. Other-
wise, it skips to the next target/dependent description.

When MAKE finds an out-of-date dependent file, it displays the command
or commands from the target/dependent description, then executes the
commands. If MAKE cannot find a specified file, it displays a message
informing you that the file was not found. If the missing file is a target file,
MAKE continues execution, since the missing file will, in many cases, be
created by subsequent commands.

If the missing file is a dependent file or command file, MAKE stops execu-
tion of the description file. MAKE also stops execution and displays the
exit code if the command returns an error.

When MAKE executes a command, it uses the same environment used to

invoke MAKE. Thus environment variables such as PATH are available
for these commands.

7.2.3 Using MAKE Options

The options available with the MAKE command modify its behavior as
described below:

Option Action

/D Displays the last modification date of each file as the file is
scanned
/1 Ignores exit codes (also called return or “errorlevel” codes)

returned by programs called from the MAKE description
file; MAKE continues execution of the subsequent lines of
the description file despite the errors

/N Displays commands that would be executed by a descrip-
tion file, but does not execute the commands

/S Executes in “silent” mode; that is, lines are not displayed
as they are executed

162

Maintaining Programs with MAKE

7.2.4 Using Macro Definitions

Macro definitions let you associate a symbolic name with a particular value.
By using macro definitions, you can change values used in the description
file without having to edit every line that uses a particular value.

The form of a macro definition is:
name=value

The form for using a previously defined macro definition is:
$(name)

Occurrences of the pattern $(name) in the description file are replaced with
the specified value. The name is converted to uppercase; flags and
FLAGS are equivalent. If you define a macro name but leave the value
blank, the value will be a null string.

Macro definitions can be placed in the MAKE description file or given on
the MAKE command line. A name is also considered defined if it has a
definition in the current environment. For example, if the environment vari-
able PATH is defined in the current environment, occurrences of

$ (PATH) in the description file will be replaced with the PATH value.

In the MAKE description file, each macro definition must appear on a
separate line. Any white space (tab and space characters) between name
and the equal sign (=) or between the equal sign and value is ignored.
Any other white space is considered part of value. To include white space
in a macro definition on the command line, enclose the entire definition in
double quotation marks (" ").

If the same name is defined in more than one place, the following order of
precedence applies:

1. Command line definition
2. Description file definition

3. Environment definition

163

Microsoft C Compiler User’s Guide

Example

base=ARBC
warn="/W 2"

$ (base) .OBJ: $ (base) .C
MSC & (base) $ (warn), s (base),$ (base):

% (base) .exe: $ (base) .obj \lib\math.lib
LINK $ (base),$ (base), $ (base):

The sample MAKE description file above shows macro definitions for the
names base and warn. MAKE replaces each occurrence of ¢ (base) with
ABC. If the description file is called COMPILE, you can give the following
command:

MAKE base=DEEF compile

This command line enables you to override the definition of base in the
description file, causing DEF to be compiled and linked instead of ABC.

If you want to override the warning level 2 specified by the macro warn in
the MAKE description file and use the MSC default (warning level 1)
instead, you could start MAKE with the following command line:

MAKE warn= COMPILE

Since the value for warn is blank, it will be treated as a null string. Since
the null string was given from the command line, which has higher pre-

cedence than the definition in the description file, warn will be expanded to
a null string and no option will be passed in the MSC command line.

7.2.5 Nesting Macro Definitions

Macro definitions can be nested. In other words, a macro definition can
include another macro definition. For example, you could have the follow-
ing macro definition in the MAKE description file PTCTURE:

LIBS=$ (DLIB)\MATH.LIB $ (DLIB)\GRAPHICS.LIB

You could then start MAKE with the following command line:

MAKE DLIB=D:\LIB PICTURE

In this case, every occurrence of the macro LIBS in the description file
would be expanded to the following;:

164

Maintaining Programs with MAKE

D:\LIB\MATH.LIB D:\LIB\GRAPHICS.LIB
Be careful to avoid infinitely recursive macros such as the following:
A

B
C

i

7.2.6 Using Special Macros

MAKE recognizes three special macro names and will automatically sub-
stitute a value for each. The special names and their values are as follows:

Name Value Substituted

§ Base name portion of the target (without the extension)
$@ Complete target name

o Complete list of dependencies

These macro names can be used in description files, as shown in the follow-
ing example.

Example

TEST.EXE: MOD1.0BJ MOD2.0BJ MOD3.0BJ
LINK $x+, 3@:
S

The example above is equivalent to the following:

TEST:EXE: MOD1.0BJ MOD2.0BJ MOD3.0BJ
LINK MOD1.0BJ MODZ2.0BJ MOD3.0BJ, TEST.EXE:
TEST

7.2.7 Inference Rules

MAKE allows you to create inference rules that specify commands for
target/dependent descriptions even when there is no explicit command in
the MAKE description file. An inference rule is a way of telling MAKE
how to produce a file with one type of extension from a file with the same
base name and another type of extension.

1656

Microsoft C Compiler User’s Guide

For example, if you define a rule for producing .OBJ files from .C files,
then the actual commands do not have to be repeated in the description file
for each target/dependent description.

Inference rules take the following form:

.dependenteztension.targetextension :
command
[command]

For lines that do not have explicit commands, MAKE looks for a rule that
matches both the target’s extension and the dependent’s extension. If it
finds such a rule, MAKE performs the commands given by the rule.

MAKE looks first for dependency rules in the current description file, but
if it does not find an appropriate rule, it will search for TOOLS.INI, the
tools-initialization file. MAKE looks for TOOLS.INI on the current
drive and directory, then searches any directories specified with the MS-
DOS PATH command.

If MAKE finds TOOLS.INI, it looks through the file for a line beginning
with the tag [make], which must come at the beginning of the line. Infer-
ence rules following this line will be applied if appropriate.

Example

[make]
.C.0BJ:
MsSC $x.C,,,:

TEST1.0BJ: TEST1.C

TEST2.0BJ: TEST2.C
MSC TESTz.C:

In the sample description file above, an inference rule is defined in the first
line. The file name in the rule is specified with the special macro name $ »

so that the rule will apply to any base name. When MAKE encounters the
dependency for files TEST1.0BJ and TEST1.C it looks first for commands

166

Maintaining Programs with MAKE

on the next line. When it does not find any, MAKE checks for a rule that
may apply and finds the rule defined in the first lines of the description file.
MAKE applies the rule, replacing the $+ macro with TEST1 when it exe-
cutes the command, producing the following message:

MSC TEST1.C,,,:

When MAKE reaches the second dependency for the TEST2 files, it does
not search for a dependency rule, since a command is explicitly stated for
this target/dependent description.

7.3 Maintaining a Program: an Example

MAXKE is especially useful for programs in development, because it offers a
quick way to recreate a modified program after small changes.

Consider a test program called WORK . EXE that is made from two source
files, WORK1.C and WORK2.C. Both source files use an include file called
WORK .H, and both modules must be linked with routines in a library file
called MATH.LIB. During development, you will often want to compile and
link to create WORK.EXE, but you won’t always want to recompile all the
files. You only want to recompile the source files that have changed.

The following target/dependent descriptions copied to the MAKE descrip-
tion file WORK will carry out the appropriate tasks:

WORK.EXE: WORK.H
MSC /Zi WORKL,,,:
MSC /Zi WORK2,,,:

WORK1.OBJ: WORKL.C
MSC /Zi WORK1,,,:

WORKZ.0BJ: WORK2.C
MSC /Zi WORK2,,,:

WORK.EXE : WORK1.0BJ WORK2.0BJ \LIB\MATH.LIB
LINK WORK1+WORK2,WORK, WORK, \LIB\MATH.LIB /CO

After each session of debugging and editing source files, start MAKE with
the following command line:

MAKE WORK

167

Microsoft C Compiler User’s Guide

MAKE carries out the following steps:

1. Checks to see if WORK.H has been changed since the last time
WORK . EXE was created by the linker. If the include module has
been changed, then both source files must be recompiled. If the
include module was not changed, MAKE skips to the next
dependency.

2. Checks to see if WORK1.C has been changed since the last time
WORK1 .0BJ was created by the compiler. If so, WORK1.C will be
recompiled.

3. Checks WORK2.C in the same way WORK1.C was checked in step 2.
Note that if only one of the source files has been changed, only that
file will be recompiled. However, if both source files have been
recompiled in step 1, then they are not recompiled in this step.

4. Checks to see if either of the object files have been changed since
the last time the modules were linked. If one or both of the files
were recompiled, the program will be relinked. The program will
also be relinked if the library file MATH.TL.IB has been changed since
the last time the program was linked.

When the source files are created, MAKE compiles and links both

source files, since none of the target files exists. If you invoke MAKE again
without changing any of the dependent files, all commands will be skipped.
If you change one of the source files, that file will be recompiled and the
program will be relinked. If you change the library file MATH.LIB, but
make no other changes, MAKE will skip the commands in the first three
dependencies, but will relink the program as specified in the last depen-
dency.

168

Chapter 8
Working with Memory Models

8.1

8.2

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.3

8.3.1
8.3.2
8.3.3
8.3.4
8.4

8.4.1
8.4.2
8.4.3
8.4.4

Introduction 171
Using the Standard Memory Models 173

Creating Small-Model Programs 174
Creating Medium-Model Programs 175
Creating Compact-Model Programs 175
Creating Large-Model Programs 176
Creating Huge-Model Programs 176

Using the near, far, and huge Keywords 177

Library Support for near, far, and huge 179
Declaring Data with near, far, and huge 179
Declaring Functions with near and far 181
Pointer Conversions 183

Creating Customized Memory Models 185

Code Pointers 187
Data Pointers 187
Setting Up Segments 188

Library Support for
Customized Memory Models 189

169

Working with Memory Models

8.1 Introduction

You can gain greater control over how your program uses memory by speci-
fying the memory model for the program. If you do not specify a memory
model, MSC uses the small memory model by default. The small memory
model is sufficient for most programs.

You cannot use the small memory model if your program satisfies one or
more of the following three conditions:

Your program has more than 64K of code.
2. Your program has more than 64K of data.

3. Your program contains individual arrays that need to be larger
than 64K.

Advanced programmers may have other reasons for using a model other
than the small memory model.

If you decide that the small memory model will not be adequate for your
program, you have four options for larger memory models:

1. You can specify one of the other standard memory models (medium,
compact, large, or huge) using the /Aletter option.

2. You can create a mixed-model program using the near, far, and
huge keywords.

3. You can create your own customized memory model using the
/Astring option.

4. Method 2 can be combined with either method 1 or method 3.
The terms “near,” “far,” and “huge” are crucial to understanding the con-
cept of memory models. These terms indicate how data can be accessed in
the segmented architecture of the 8086 family of microprocessors.

The MS-DOS operating system loads the code and data allocated by your
program into “segments” in physical memory. Each segment is up to 64K
long. Since separate segments are always allocated for the program code
and data, the minimum number of segments allocated for a program is two;
these two segments, required for every program, are called the default seg-
ments. The small memory model uses only the two default segments. The
other memory models discussed in this chapter allow more than one code
segment and /or data segment per program.

171

Microsoft C Compiler User’s Guide

In the 8086/80286 family of microprocessors, all memory addresses consist
of two parts:

1. A 16-bit number that represents the base address of a memory seg-
ment

2. Another 16-bit number that gives an offset within that segment

The architecture of the 8086 microprocessor is such that code can be ac-
cessed within the default code or data segment using just the 16-bit offset
value. This is possible because the segment addresses for the default seg-
ments are always known. This 16-bit offset value is called a “near” ad-
dress,; and can be accessed with a “near” pointer. Since only 16-bit arith-
metic is required to access any near item, near references to code or data
are smaller and more efficient.

When data or code lie outside the default segments, the address must use
both the segment and offset values. Such addresses are called “far” ad-
dresses, and can be accessed by using “far” pointers in a C program. Ac-
cessing far data or code items is more expensive in terms of program speed
and size, but their use allows your programs to address all memory, rather
than just a 64K piece.

There is a third type of address in Microsoft C, the “huge” address. A huge
address is similar to a far address in that both consist of a segment value
and an offset value but they differ in the way address arithmetic is per-
formed on pointers. Because items (both code and data) referenced by far
pointers are still assumed to lie completely within the segment in which
they start, pointer arithmetic is done only on the offset portion of the ad-
dress. This gain in pointer arithmetic efficiency is achieved, however, by
limiting the size of any single item to 64K. With data items, huge pointers
overcome this size limitation: pointer arithmetic is performed on all 32 bits
of the data item’s address, thus allowing data items referenced by huge
pointers to span more than one segment, provided they adhere to the limi-
tations outlined in Section 8.2.5, “Creating Huge-Model Programs.”

The rest of this chapter deals with the various methods you can use to

control whether your program makes far, near, or huge calls to access code
or data.

172

Working with Memory Models

8.2 Using the Standard Memory Models

The Microsoft C Compiler package includes four standard libraries that
support five standard memory models. Using the standard memory models
is the simplest way to control how your program accesses code and data in
mermory.

When you use the standard memory models, the compiler handles library
support for you. The library corresponding to the memory model you spec-
ify is used automatically. Each memory model has its own library, except
for the the huge memory model, which uses the large-model library.

The advantage of using standard models for your programs is simplicity. In
the standard models, memory management, is specified by compiler options;
since the standard models do not require the use of extended keywords,
they are the best way to write code that can be ported to other systems
(particularly systems that do not use segmented architectures).

The disadvantage of using standard memory models exclusively is that they
may not produce the most efficient code. For example, if you have an
otherwise small-model program containing a large array that pushes the
total data size for your program over the 64K limit for small model, it may
be to your advantage to declare the one array with the far keyword, while
keeping the rest of the program small model, as opposed to using the stan-
dard compact memory model for the entire program. For maximum flexi-
bility and control over how your program uses memory, you can combine
the standard-memory-model method with the near, far, and huge key-
words described in Section 8.3.

The /Aletter option for MSC (or CL) is used to specify one of the five

standard memory models (small, medium, compact, large, or huge) at com-
pile time. These options are discussed in the next five sections.

173

Microsoft C Compiler User’s Guide

Note

In the following sections, which describe in detail the different memory-
model addressing conventions, it is important to keep in mind two com-
mon features of all five models:

No single source module can generate 64K or more of code.

2. No single data item can exceed 64K, unless it appears in a
huge-model program, or it has been declared with the huge
keyword.

8.2.1 Creating Small-Model Programs

Option
JAS

The small-model option tells the compiler to create a program that occu-
pies the two default segments: one for code and one for data.

Small-model programs are typically C programs that are short or have a
limited purpose. Since code and data for these programs are each limited to
64K, the total size of a small-model program can never exceed 128K. Most
programs fit easily into this model.

The default in small-model programs is that both code and data items are
accessed with near addresses. You can override the default for data by
using the far or huge keywords, and the default for code by using the far
keyword (huge is relevant only for data items-specifically, arrays and
pointers to arrays).

The compiler creates small-model programs by default when you do not

specify a program model. The /AS option is provided for completeness; you
need never give it explicitly.

174

Working with Memory Models
8.2.2 Creating Medium-Model Programs

Option
/AM

The medium-model option provides a single segment for program data, and
multiple segments for program code. Each source module is given its own
code segment.

Medium-model programs are typically C programs that have a large
number of program statements (more than 64K of code), but a relatively
small amount of data (less than 64K). Program code can occupy any
amount of space and is given as many segments as needed; total program
data cannot be greater than 64K. The medium model provides a useful
trade-off between speed and space, since most programs refer more fre-
quently to data items than to code.

8.2.3 Creating Compact-Model Programs

Option
JAC

The compact-model option directs the compiler to allow multiple
segments for the data of the program. Only one segment is created for the
program code.

Compact-model programs are typically C programs that have a large
amount of data, but a relatively small number of program statements. Pro-
gram data can occupy any amount of space and are given as many segments
as needed.

The default in compact-model programs is that code items are accessed
with near addresses and data items are accessed with far addresses. You
can override the default by using the near and huge keywords for data,
and the far keyword for code.

1756

Miecrosoft C Compiler User’s Guide
8.2.4 Creating Large-Model Programs

Option
/AL

The large-model option allows the compiler to create multiple segments as
needed for both code and data.

Large-model programs are typically very large C programs that use a large
amount of data storage during normal processing.

The default in large-model programs is that both code and data items are
accessed with far addresses. You can override the default by using the near
and huge keywords for data, and the near keyword for code.

8.2.5 Creating Huge-Model Programs

Option
/AH

The huge-model option is similar to the large-model option, except that the
restriction on the size of individual data items is removed for arrays.

Some size restrictions apply to elements of huge arrays where the array is
larger than 64K, however. To provide efficient addressing, array elements
are not permitted to cross segment boundaries. This has the following
implications:

1. No array element can be larger than 64K.

2. For any array larger than 128K, all elements must have a size in
bytes equal to a power of 2 (for example, 2 bytes, 4 bytes, 8 bytes,
16 bytes, and so on). However, if the array is 128K or smaller, its
elements may be any size, up to and including 64K.

176

Working with Memory Models

In huge-model programs, care must be taken when using the sizeof opera-
tor or when subtracting pointers. The C language defines the value
returned by the sizeof operator to be an int value, but the size in bytes of
a huge array is a long int value. To solve this discrepancy, the Microsoft C
Compiler produces the correct size of a huge array when the following type
cast is used:

(long)sizeof (huge_item)

Similarly, the C language defines the result of subtracting two pointers as
an int value. When subtracting two huge pointers, however, the result may
be a long int value. The Microsoft C Compiler gives the correct result
when the following type cast is used:

(long) (huge_ptrl - huge_ptr2)

8.3 Using the near, far, and huge Keywords

One limitation of the predefined memory-model structure is that, when you
change memory models, all data and code address sizes are subject to
change. However, the Microsoft C Compiler lets you override the default
addressing convention for a given memory model and access items with
either a near, far, or huge pointer. This is done with the near, far, or huge
keywords. These special type modifiers can be used with a standard
memory model to overcome addressing limitations for particular items
(either data or code) without changing the addressing conventions for the
program as a whole. Table 8.1 explains how the use of these keywords
affects the addressing of code or data, or pointers to code or data.

177

Microsoft C Compiler User’s Guide

Table 8.1
Addressing of Code and Data Declared with near, far, and huge
Pointer
Keyword Data Function Arithmetic
near Resides in default Assumed to be in Uses 16 bits
data segment; current code
referenced with 16-bit segment; referenced
address (pointer to with 16-bit address
data is 16 bits) (pointer to function
is 16 bits)
far May be anywhere in Not assumed to be Uses 16 bits
memory, not assumed in current code
to reside in current segment; referenced
data segment; with 32-bit address
referenced with 32-bit (pointer to function
address (pointer to is 32 bits)
data is 32 bits)
huge May be anywhere in Not applicable to Uses 32 bits for
memory, not assumed code data

to reside in current
data segment;
individual data items
(arrays) can exceed
64K in size; referenced
with 32-bit address
(pointer to data is 32
bits)

The near, far, and huge keywords are not a standard part of the C
language; they are meaningful only for systems that use a segmented archi-
tecture similar to that of the 8086 family of microprocessors. Keep this in
mind if you want your code to be ported to other systems.

In the Microsoft C Compiler, the near, far, and huge keywords are
enabled by default. To treat these keywords as ordinary identifiers, you
must give the /Za option at compile time. This option is useful if you are
concerned with porting C programs from environments in which these are
not keywords; for instance, a program might have been written using one of
these words as a label.

178

Working with Memory Models

8.3.1 Library Support for near, far, and huge

When using the near, far, and huge keywords to modify addressing con-
ventions for particular items, you can usually use one of the standard
libraries (small, compact, medium, or large) with your program. The large-
model libraries are also appropriate for use with huge-model programs.
However, you must use care when calling library routines; in general, you
cannot pass far pointers, or addresses of far data items, to a small-model
library routine (some exceptions to this statement are the library routines
halloc, hfree, and the printf family).

You can, of course, always pass the value of a far item to a small-model
library routine. For example:

long far time_val:

time (&time_val); /+ Illegal */
printf ("%1d\n", time_val): /* Legal x/

If you use the near, far, or huge keywords, it is recommended that you use
function declarations with argument-type lists to ensure that pointers are
passed to functions correctly (see Section 8.3.1, “Pointer Conversions”).

For more information on library routines and memory models, see Section
2.11, “Using Huge Arrays with Library Functions,” in Chapter 2, “Using C
Library Routines,” of the Microsoft C Compiler Run- Time Library Refer-
ence.

8.3.2 Declaring Data with near, far, and huge

The near, far, and huge keywords modify either objects or pointers to
objects. When using them to declare data or code (or pointers to data or
code), keep the following rules in mind:

e The keyword always modifies the object or pointer immediately to
its right. In complex declarators such as char fars xp; think of
the far keyword and the item to its right as being a single unit. In
this case, p is a pointer to a far pointer to char (the size of p
depends on the memory model being used). See the Microsoft C
Compiler Language Reference for complete rules for using special
keywords in complex declarations.

e If the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item will be allocated in the

179

Microsoft C Compiler User’s Guide

default data segment (near) or a separate data segment (far or
huge). For example,

char far a:
allocates a as an item of type char with a far address.

e If the item immediately to the right of the keyword is a pointer, the
keyword determines whether the pointer will hold a near address
(16 bits), a far address (32 bits), or a huge address (also 32 bits).

For example,
char far »*p:
allocates p as a far pointer (32 bits) to an item of type char.

The following examples show data declarations using the near, far, and
huge keywords:

Examples

char a[3000]; /* Example 1: small-model program #/
char far b[30000] ; /* Example 2: small-model program x/
char a[3000]:; /* Example 3: large-model program x/
char near b[3000]: /* Example 4: large-model program */
char huge a[70000] /* Example 5: small-model program x/
char huge #pa:; /* Example 6: small-model program */
char +*pa;: /* Example 7: small-model program #/
char far +*pb; /+* Example 8: small-model program x/
char far * xpa:; /* Example 9: small-model program x/
char far * xpa; /* Example 10: large-model program */
char far * near +pb: /* Example 11: any model x/

char far x far #*pb; /* Example 12: any model x/

The declaration in the first example allocates the array a in the default seg-
ment; in contrast, the array b in the second example may be allocated in
any segment. Since these declarations are made in a small-model program,
array a would probably represent frequently used data that was deli-
berately placed in the default segment for fast access, while array b would
probably represent seldom used data that might make the data segment
exceed 64K and force the programmer to use a larger memory model if it
were not declared with the far keyword. The second example uses a large
array, because it is more likely that a programmer would want to specify
the address allocation size for items of substantial size.

180

Working with Memory Models

In Example 3, the speed of access would probably not be critical for array
a; even though it may or may not be allocated to the default data segment,
it is always referenced with a 32-bit address. In Example 4, array b is
explicitly allocated near to improve speed of access in this memory model

(large).

In Example 5, a must be declared as huge because it is larger than 64K.
Using the huge keyword instead of the standard huge memory model
means that the price for using huge data is only paid for this one large
item. Other data can be accessed quickly within the default segment. The
pointer pa in Example 6 could be used to point to a. Any pointer arith-
metic done with pa (such as pa++), would be done using 32-bit arithmetic.

In Example 7, pa is declared as a near pointer to char. The pointer is near
by default since the example is in a small-model program. In contrast, pb in
Example 8 is allocated as a far pointer to char; pb could be used to point
to, and step through, an array of characters that has been stored in a seg-
ment other than the default data segment. For example, pa might be used
to point to the array a in Example 1, while pb might be used to point to
the array b in Example 2.

The pointer declarations in examples 9 and 10 show the interaction
between the memory model chosen and the near and far keywords:
although the declarations for pa in these two examples are identical, Ex-
ample 9 declares pa as a near pointer to an array of far pointers to type
char, while Example 10 declares pa as a far pointer to an array of far
pointers to type char.

In Example 11, pb is declared as a near pointer to an array of far pointers
to type char; in Example 12, pb is declared as a far pointer to an array of
far pointers to type char. Note that, in these final two examples, the inclu-
sion of the far and near keywords overrides the model-specific addressing
conventions shown in examples 9 and 10; the declarations for pb would
have the same effect, regardless of the memory model.

8.3.3 Declaring Functions with near and far

The rules for using the near and far keywords for functions are similar to
those for using them with data:

o The keyword always modifies the function or pointer immediately
to its right. See Section 4.3.3, “Declarators with Special Keywords,”
of the Microsoft C Compiler Language Reference for more informa-
tion about rules for evaluating complex declarations.

181

Microsoft C Compiler User’s Guide

o If the item immediately to the right of the keyword is a function,
then the keyword determines whether the function will be allocated
as near or far. For example, char far fun() defines fun as a
function called with a 32-bit address and returning type char.

o If the item immediately to the right of the keyword is a pointer to a
function, then the keyword determines whether the function will be
called using a near (16-bit) or far (32-bit) address. For example,

char (far * pfun) ():

defines p fun as a far pointer (32 bits) to a function returning type
char.

e Function declarations must match function definitions.

¢ The huge keyword cannot be appliéd to functions.

Examples

char far fun(): /* Example 1: small model x/
char far fun()

{

+
static char far x near fun(): /% Example 2: large model x/
static char far % near fun()

{

+
void far fun(): /* Example 3: small model x/
voild (far * pfun) () = fun;

double far x (far fun) (): /* Example 4: compact model */
double far * (far xpfun) () = fun:

In the first example, fun is declared as a function returning type char.

The far keyword in the declaration means that fun must be called with a
32-bit call.

182

Working with Memory Models

In the second example, fun is declared as a near function that returns a far
pointer to type char. Such a function might be seen in a large-model pro-
gram as a helper routine that is used frequently, but only by the routines in
its own module. Since all routines in a given module share the same code
segment, the function could always be accessed with a near call. However,
you could not pass a pointer to fun as an argument to another function
outside the module in which fun was declared.

The third example declares pfun as a far pointer to a function that has a
void return type, and then assigns the address of fun to pfun. In fact,

p fun could be used to point to any function accessed with a far call. Note
that if the function pointed to by pfun has not been declared far, or if it is
not far by default, then calling that function through p fun would cause
the program to fail. '

The fourth example declares p fun as a far pointer to a function that
returns a far pointer to type double, and then assigns the address of fun
to pfun. This might be used in a compact-model program for a function
that is not used frequently and thus does not need to be in the default code
segment. Both the function and the pointer to the function must be
declared as far.

8.3.4 Pointer Conversions

Passing pointers as arguments to functions may cause automatic conver-
sions in the size of the pointer argument, since passing a pointer to a func-
tion forces the pointer size to the larger of the following two sizes:

e The default pointer size for that type, as defined by the memory
model used during compilation.

For example, in medium-model programs, data pointer arguments
are near by default and code pointer arguments are far by default.

o The type of the argument.

If the forward declaration of a function includes declared argument

types, the compiler performs type checking and enforces the conversion of
actual arguments to the declared type of the corresponding formal argu-
ment. However, if no declaration is present or the argument-type list is
empty, the compiler will convert pointer arguments automatically to the
larger of the default type or the type of the argument. To avoid
mismatched arguments, you should always specifically give the argument
types in a forward declaration.

183

Microsoft C Compiler User’s Guide

Example

/* This program produces unexpected results in compact-,
*%x large-, or huge-model programs.

*/
main()

{

int near x*x:
char far »*y:
int z = 1;

test_fun(x, y. z): /* x will be coerced to far
** pointer in compact, large,
x* or huge model
*/

b

int test_fun (ptrl, ptr2, a)
int near *ptrl:
char far *ptr2:;
int a:

{
printf ("Value of a = %d\n", a):
b

If the preceding example is compiled as a small-model program (no memory
model options or /AS on MSC command line) or medium-model program
(/AM option), the size of pointer argument x is 16 bits, the size of pointer
argument vy is 32 bits, and the value printed for a is 1. However, if the
preceding example is compiled with the /AC, /AL, or /AH option, both x
and vy are automatically converted to far pointers when they are passed to
test_fun. Since ptr1l, the first parameter of test_fun, is defined as a
near pointer argument, it takes only 16 bits of the 32 bits passed to it. The
next parameter, ptr2, takes the remaining 16 bits passed to ptr1, plus 16
bits of the 32 bits passed to it. Finally, the third parameter, a, takes the
left-over 16 bits from ptr 2, instead of the value of z in the main function.
This shifting process does not generate an error message, since both the
function call and the function definition are legal, but in this case the pro-
gram does not work as intended, since the value assigned to a is not the
value intended.

To pass ptrl as a near pointer, you should include a forward declaration

that specifically declares this argument for test_fun as a near pointer, as
shown below:

184

‘Working with Memory Models

/* First, declare test_fun so the compiler knows in advance
** about the near pointer argument:

*/

int test_fun (int near*, char far x, int):
main()

{

int near *x:
char far »*y:

int z = 1;

test_fun(x, y, z): /* now, x will not be coerced
** to a far pointer; it will be
xx passed as a near pointer,
** no matter what memory
** model is used
*/

+

int test_fun(ptrl, ptr2, a)
int near #*ptrl;
char far *ptr2:
int a:

{
printf("Value of a = 4d\n", a):
+

Note that it would not be sufficient to reverse the definition order for
test_fun and main in the first example to avoid pointer coercions; the
pointer arguments must be declared in a forward declaration, as in the
second example.

8.4 Creating Customized Memory Models

A third method of managing memory models is to combine features of the
standard memory models to create your own customized memory model.
You should have a thorough understanding of C memory models and the
8086 architecture before creating your own nonstandard memory models,
since there is no library support — other than the C start-up routines —
for any of the options that follow.

1856

Microsoft C Compiler User’s Guide

The /Astring option lets you change the attributes of the standard memory
models to create your own memory models. The three fields of the string
correspond to the code pointer size, the data pointer size, and the stack and
data segment setup. The letters allowed in each field are unique, so you can
give them in any order after /A. All three letters must be present.

The standard-memory-model options (/AS, /AM, /AC, /AL, and /AH)
can be specified in the /Astring form. As an example of how to construct
memory models, the standard-memory-model options are listed below with
their /Astring equivalents:

Standard Custom Equivalent
/AS /Asnd

JAM /Alnd

JAC /Asfd

/AL /Alfd

JAH /Alhd

As an example of the use of customized models, you might want to create a
huge-compact model. This model would allow huge data items, but only
one code segment. The option for specifying this model would be /Ashd.

An even more common use of customized models is to set up segments (see
Section 8.4.3 for more information).

Note

For the purposes of the descriptions that follow, the letters 1 for
(“long”) and s for (“short”) are used for code pointers to distinguish
them in the memory-model string from the letters for data pointers.
The terms “short” and “long” are equivalent to “near” and “far,”
respectively.

186

‘Working with Memory Models
8.4.1 Code Pointers

Options

/Aszz
/Alzz

The letter s tells the compiler to generate near (16-bit) pointers and
addresses for all code items. This is the default for small- and compact-
model programs.

The letter 1 means that far (32-bit) pointers and addresses are used to
address all code items. Far pointers are the default for medium-, large-, and
huge-model programs.

8.4.2 Data Pointers

Options

/Anzz
/Afzz
/Ahzz

Three sizes are available for data pointers: near, far, and huge. The letter n
tells the compiler to use near (16-bit) pointers and addresses for all data.
This is the default for small- and medium-model programs.

The letter f specifies that all data pointers and addresses are far (32-bit).
This is the default for compact- and large-model programs.

The letter h specifies that all data pointers and addresses are far (32-bit).
This is the default for huge-model programs.

When far data pointers are used, no single data item may be larger than a
segment (64K) because address arithmetic is performed only on 16 bits (the
offset portion) of the address. When huge data pointers are used, indivi-
dual data items can be larger than a segment (64K) because address arith-
metic is performed on the entire 32 bits of the address.

187

Microsoft C Compiler User’s Guide
8.4.3 Setting Up Segments

Options

/Adzz
/Auzz
/Awzz

The letter d tells the compiler that SS equals DS; that is, the stack seg-
ment and the default data segment are combined into a single segment.
This is the default for all programs. In small- and medium-model programs,
the stack and all data combined must occupy less than 64K; thus, any data
item is accessed with only a 16-bit offset from the segment address in the
SS and DS registers.

In compact-, large-, and huge-model programs, initialized global and static
data are placed in the default segment. The address of this segment is
stored in the DS and S8 registers. All pointers to data, including pointers
to local data (the stack), are full 32-bit addresses. This is important to
remember when passing pointers as arguments in large-model programs.
Although you may have more than 64K of total data in these models, there
can be no more than 64K of data in the default segment. The /Gt and
/IND options can be used to control allocation of items in the default data
segment if a program exceeds this limit. (See Section 9.13, “Setting the
Data Threshold,” and Section 9.14, “Naming Modules and Segments,” for
more information about these options.)

The letter u allocates different segments for the stack and the data seg-
ments. Each object file {module) is allocated its own segment for global and
static data items. When the letter u is specified, the address in the DS
register is saved upon entry to each function, and the new DS value for the
module in which the function was defined is loaded into the register. The
previous DS value is restored on exit from the function. Therefore, only one
data segment is accessible at any given time.

A single segment must be allocated for the stack, and its address stored in
the stack register. The stack cannot be placed in a data segment since it
must be available throughout the entire program.

The letter w, like the letter u, sets up a separate stack segment, but does
not automatically load the DS register at each module entry point. This
option is typically used when writing application programs that interface
with an operating system or with a program running at the operating-
system level. The operating system or the program running under the
operating system actually receives the data intended for the application

188

‘Working with Memory Models

program and places it in a segment; then it must load the DS register with
the segment address for the application program.

Even though u and w set up a separate segment for the stack, the stack’s
size is still fixed at the default size unless this is overridden with the /Fc
compiler option (CL only), or the /STACK linker option.

8.4.4 Library Support for Customized Memory Models

Most, C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard memory models
(small, medium, compact, large, and huge) through four separate run-time
libraries (huge and large models both use the large library). When you write
mixed-model programs, you are responsible for determining which library
(if any) is suitable for your program and for ensuring that the appropriate
library is used.

Library support is not guaranteed for programs using a customized memory
model, and you will probably need to create a customized library to be used
with your customized memory model. You should use the /NOD (for no
default library search) option when linking, and specify the library files and
object files you want to use. Be sure to use the correct start-up routine for
your memory model; for example, if the source file containing the main
function is compiled with far code pointers and near data pointers as the
default, you should use the start-up file from the medium-model library.

In general, library functions do not support customized memory models,

since a particular run-time routine may in turn call another library routine
that conflicts with your customized model.

189

Chapter 9
Advanced Topics

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.9.1
9.9.2

Introduction 193

Disabling Special Keywords 193

Packing Structure Members 193

Restricting Length of External Names 194

Labeling the Object File 195

Suppressing Default-Library Selection 195

Changing the Default char Type 196

Controlling Stack and Heap Allocation 197

Controlling Floating-Point Operations 198
Changing Libraries at Link Time 198

Using the NO87 Environment Variable 200

9.10 Advanced Optimizing 201

9.10.1
9.10.2

9.11

9.12
9.13
9.14
9.15

Removing Stack Probes 201
Maximum Optimization 203

Controlling the
Function-Calling Sequence 203

Controlling Binary and Text Modes 205
Setting the Data Threshold 206

Naming Modules and Segments 207
Compiling for Windows Applications 209

191

Advanced Topics

9.1 Introduction

The Microsoft C Compiler offers a number of advanced programming op-
tions that give you control over the compilation process and the final form
of the executable program. This chapter describes the advanced options.

9.2 Disabling Special Keywords

Option
/Za

The Microsoft C Compiler has been enhanced to consider the identifiers in
the list that follows as keywords when processing a given file:

cdecl
far
fortran
huge
near
pascal

If you are concerned with porting C programs from other systems in which
these are not keywords, use the /Za option to tell the compiler to treat
these words as ordinary identifiers. When this option is given, the compiler
automatically defines the identifier NO_EXT_KEYS. In the include files
provided with the C Run-Time Library, this identifier is used with #ifndef
to conditionally compile blocks of text containing the keyword cdecl. For
an example of this conditional compilation, see the file stdio.h.

9.3 Packing Structure Members

Option

/Zp

When storage is allocated for structures, structure members larger than a
char are ordinarily stored beginning at an int boundary. To conserve

193

Microsoft C Compiler User’s Guide

space, you may want to store structures more compactly. The /Zp
option causes structure data to be “packed” tightly into memory. This op-
tion is also useful when you want to read existing packed structures from a

data file.

When you give the /Zp option, each structure member (after the
first) is stored beginning at the first available byte, without regard to int
boundaries.

On most processors, using the /Zp option results in slower program execu-
tion because of the time required to unpack structure members when they
are accessed. This option also reduces efficiency when a program accesses
16-bit members (with int type) that begin on odd boundaries.

Example
MSC /Zp PROG.C;

This command causes all structures in the program PROG. C to be stored
without extra space for alignment of members on int boundaries.

9.4 Restricting Length of External Names

Option
JHnumber

The MSC command allows you to restrict the length of external (public)
names by using the /H option. The number is an integer specifying the
maximum number of significant characters in external names.

When you use the /H option, the compiler considers only the first number
characters of external names used in the program. The program may con-
tain external names longer than number characters; the extra characters are
simply ignored.

The /H option is typically used to conserve space or to aid in creating port-
able programs. The Microsoft C Compiler imposes no restrictions on the
length of external names (although it uses only the first 31 characters), but
other compilers or linkers may produce errors when they encounter names
longer than a predetermined limit.

194

Advanced Topics

9.5 Labeling the Object File

Option

[/ V" string"

Use the /V (for “version”) option to imbed a given text string into an ob-
ject file. The quotation marks surrounding the string may be omitted if the
string does not contain white-space characters.

Object files are machine readable but are not easily read and understood by

humans. A typical use of the /V option is to label an object file with a ver-
sion number or copyright notice.

Example

MSC MAIN.C, /V'"Microsoft C Compiler Version 4.0";
The above command places the string

Microsoft C Compiler Version 4.0

in the object file MAIN.ORJ.

9.6 Suppressing Default-Library Selection

Option
/21

Ordinarily the compiler places the names of the default libraries (the stan-
dard C library, the helper library LIBH.LIB, plus the selected floating-
point library or libraries) in the object file for the linker to read. This al-
lows the default libraries to be linked with a program automatically.

The /Z1 option suppresses the selection of default libraries. No library

names are placed in the object file; as a result, the object file is slightly
smaller.

195

Microsoft C Compiler User’s Guide

The /Z1 option is useful when you are building a library of routines. It is
not necessary for every routine in the library to contain the default-library
information. Although the /Z] option saves only a small amount of space
for a single object file, the total space savings is significant in a library con-
taining many object modules. When you link a library of object modules
created with the /Z1 option with a C program file compiled without the /Z1
option, the default-library information is supplied by the program file.

Example

MSC ONE.C;
MsC /Z1 TWO.C:
LINK ONE+TWO;

The first two commands create an object file named ONE . OBJ that contains
the names of the standard C library (SLIBC.LIB) plus the emulator li-
brary and floating-point math library (EM.LIB and SLIBFP.LIB) and an
object file named TWO.OBJ that contains no default-library information.
When ONE .OBJ and TWO.OBJ are linked, the default-library information
in ONE . OBJ causes the given libraries to be searched for any unresolved
references in either ONE . 0BJ or TWO.OBJ.

9.7 Changing the Default char Type

Option

/J

In Microsoft C, the char type is signed by default, so if a char value is
widened to an int, the result will be sign extended. You can change this
default to unsigned with the /J option, causing the char type to be zero
extended when widened to an int. However, if a char value is explicitly de-
clared signed, the /J option does not affect it, and the value is sign extend-
ed when widened to an int.

196

Advanced Topics

9.8 Controlling Stack and Heap Allocation

You can change the model used to allocate heap space by linking your pro-
gram with one of the zZVARSTCK.OBJ object files (where z is the first
letter of the library you choose). These files are the small-; medium-,
compact-, and large-model versions of a routine that allows the memory al-
location functions (malloc, calloc, _expand, — fmalloc, _ nmalloc, and
realloc) to allocate items in unused stack space if they run out of other
memory.

Programs compiled and linked under Microsoft C run with a fixed stack
size (the default size is 2048 bytes). The stack resides above static data and
the heap uses whatever space is left above the stack. However, for some
programs a fixed-stack model may not be ideal; 2 model where the stack
and heap compete for space is more appropriate. Linking with the
tVARSTCK.OBJ object files gives you such a model: when the heap runs
out of memory, it tries to use available stack space until it runs into the -
top of the stack. When the allocated space in the stack is freed, it is once
again made available to the stack. Note that the stack cannot grow beyond
the last allocated heap item in the stack or, if there are no heap items in
the stack, beyond the size it was given at link time. Note also that while
the heap can use unused stack space, the reverse is not true: the stack can-
not use unused heap space.

When you link your program with one of the zVARSTCK.OBJ files, you
should be wary of suppressing stack checking with the check_stack
pragma, or the /Gs or /Ox option; this is because stack overflow can occur
more easily in programs that use this option, possibly causing errors that
would be difficult to detect. (See Section 9.10.1, “Removing Stack Probes,”
and Section 9.10.2, “Maximum Optimization,” for more information on
suppression of stack checking.)

Example

MSC TEST.C:
LINK TEST+SVARSTCK:

These command lines compile TEST . C and then link the resulting object

module with SVARSTCK . OBJ, the variable-stack object file for small-model
programs.

197

Microsoft C Compiler User’s Guide
9.9 Controlling Floating-Point Operations

By default, the compiler handles floating-point operations by using calls to
an emulator library, which emulates the operation of an 8087 or 80287
coprocessor. If an 8087 or 80287 coprocessor is present at run time, it will
be used. The floating-point (/FP) options give you a choice of five different
methods of handling floating-point operations.

The advantages and disadvantages of each of the five /FP options are
described in Section 3.8 of Chapter 3, “Compiling.” You should read the
discussion of floating-point options before reading this section. This sec-
tion discusses two additional ways to control floating-point operations:
by changing libraries at link time and by using the NO87 environment
variable.

9.9.1 Changing Libraries at Link Time

When you compile using one of the floating-point options, the name

of the corresponding library or libraries is placed in the object file for the
linker to use. You can cause the linker to use a different floating-point li-
brary instead by using the /NOD (for no default library search) option at
link time and specifying the name of a different library or libraries. The
floating-point library names you can give on the link command line are the
following:

1. EM.LIB (the emulator) plus zLIBFP.LIB, where z depends on the

memory model
. 87.LIB (the 8087/80287 library) plus zLIBFP.LIB
3. LIBFA.LIB

The 8087/80287 library (87.LIB) provides only minimal floating-point sup-
port. When you specify this library, an 8087 or 80287 coprocessor must be
present at run time or the program will fail.

When you compile using the /FPa, /FPc, or /FPc87 option, you can
specify any of the above libraries at link time. However, when you compile
using the /FPi or /FPi87 option, you are not allowed to specify the alter-
nate math library (zLIBFA.LIB) at link time; if you want to override the
default library at link time, you must use either the emulator library or the
8087/80287 library, as appropriate.

198

Advanced Topies

When you use the /NOD option, the linker ignores all default-library in-
formation in the object file. This means at link time you must give the
name of the standard C library (2LIBC.LIB) and the name of the helper li-
brary (LIBH.LIB) as well as the names of floating-point libraries. Always
give the name of the floating-point library or libraries on the command line
before the name of the standard C library or the helper library.

Examples

MSC /AM CALC:
LINK CALC+ANOTHER+SUM /NOD,,,87+MLIBFP+MLIBC+LIBH:

MSC /FPa CALC;
LINK CALC+ANOTHER+SUM /NOD, , , EM+SLIBFP+SLIBC+LIBH;

MSC /FPc87 CALC:
LINK CALC+ANOTHER+SUM /NOD,,,SLIBFA.LIB+SLIBC.LIB+LIBH.LIB;

In the first example, the program CALC.C is compiled with the medium-
model option (/AM). No floating-point option is specified so the default,
/EP1, is used. /FP1 generates 8087/80287 instructions and specifies the
emulator (EM.LIB) plus MLIBEP.LIB in the object file. In the LINK com-
mand line, the /NOD option is specified and the names of the 8087,
floating-point, code-helper, and standard C libraries are given in the “Li-
braries” field. This forces the program to use an 8087 coprocessor; it will
fail if none is present. Note that the medium-model libraries (MLIBEP.LIB
and MLIBC.LIB) must be used.

In the second example, CALC. C is compiled as small model (by default) and
with the alternate math option (/FPa). The LINK command line specifies
the /NOD option and gives the names EM.LIB, SLIBFP.LIB, SLIBC.LIB,
and LIBH.LIB in the “Libraries” field, causing all floating-point calls to
refer to the emulator library instead of the alternate math library.

In the third example, CALC. C is compiled with the /FPc87 option, which
places the library names 87.LIB and SLIBFP.LIB in the object file. The
LINK command line overrides this default-library specification by giving
the /NOD option and the names of the alternate math library
(SLIBFA.LIB), the standard library (SLIBC.LIB), and the code-helper li-
brary (LIBH.LIB).

199

Microsoft C Compiler User’s Guide

9.9.2 Using the NO87 Environment Variable

Programs compiled using the /FPc or /FPi option will automatically use
an 8087 /80287 coprocessor at run time if one is installed. You can override
this and force the use of the emulator instead by setting an environment
variable named NO87. (See Section 2.7 of Chapter 2, “Getting Started,” or
your MS-DOS documentation for a discussion of environment variables.)

If NOS8Y7 is set to any value when the program is executed, use of the
8087/80287 coprocessor is suppressed. The value of the NOS87 setting is
printed on the standard output as a message. The message is printed only
if an 8087 /80287 is present and suppressed; if no coprocessor is present, no
message appears. If you don’t want a message to be printed, set NO87
equal to one or more spaces.

Note that only the presence or absence of the NO87 definition is important
in suppressing use of the coprocessor. The actual value of the NO87 set-
ting is used only for printing the message.

The NOS87 variable takes effect with any program linked with the emulator

library (EM.LIB). It has no effect on programs linked with 87.LIB, or pro-
grams linked with any of the alternate math libraries (zLIBFA.LIB).

Examples

SET NO87=Use of coprocessor suppressed
SET NO87=space

The first example causes the message
Use of coprocessor suppressed

to appear on the screen when a program that uses an 8087 or 80287 is exe-
cuted, and an 8087 or 80287 is present.

The second example sets the NO87 variable to the space character. Use of
the coprocessor is still suppressed, but no message is displayed.

200

Advanced Topics

9.10 Advanced Optimizing

This section describes additional optimizing procedures that can be used
with the optimizing options described in Section 3.12 of Chapter 3, “Com-
piling,” to create more efficient programs from your code.

9.10.1 Removing Stack Probes

Options

/Gs
pragma check_ stack[+]
pragma check_stack[-]

You can reduce the size of a program and speed up execution slightly by re-
moving stack probes. You can do this either with the /Gs option, or with
the check_stack pragma.

A stack probe is a short routine called on entry to a function to verify that
there is enough room in the program stack to allocate local variables re-
quired by the function. The stack probe routine is called at every function
entry point. Ordinarily, the stack probe routine generates a stack overflow
message when it determines that the required stack space is not available.
When stack checking is turned off, the stack probe routine is not called,
and stack overflow can occur without being diagnosed (i.e., no message is
printed).

In general, use the /Gs option when you want to turn off stack checking for
an entire module. This is useful when a program is known not to exceed the
available stack space. For example, stack probes may not be needed for
programs that make very few function calls, or that have only modest local
variable requirements. In the absence of the /Gs option, stack checking

is on.

Use the check_stack pragma when you want to turn stack checking on or
off only for selected routines, leaving the default (as determined by the
presence or absence of the /Gs option) for the rest. When you want to turn
off stack checking, put the following line before the definition of the func-
tion you don’t want to check:

#pragma check_stack-

201

Microsoft C Compiler User’s Guide

Note that the preceding line disables stack checking for all routines that
follow it, not just the routines on the same line. To reinstate stack check-
ing, insert the following line:

#pragma check_stack+

If the trailing + or — is left off the check_stack pragma, stack checking is
disabled if the /Gs option is present, and enabled if it is not. The interac-
tion of the check_stack pragma with the /Gs option is explained in
greater detail in Table 9.1.

Table 9.1
Using the check_stack Pragma

Syntax Compiled with Action
/Gs Option?
pragma check_stack yes Turns off stack checking
for routines that follow
pragma check_ stack no Turns on stack checking
for routines that follow
pragma check_stack+ yes Turns on stack checking

for routines that follow

pragma check_ stack-+ no Turns on stack checking
- for routines that follow

pragma check_ stack- yes Turns off stack checking
for routines that follow

pragma check_ stack— no Turns off stack checking
for routines that follow

Although the /Gs option, combined with the /Osa option, described with
the /Ostring options in Section 3.12, “Optimizing,” makes the smallest
possible program, it should be used with great care. Removing stack probes
from a program means that some execution errors may not be detected.

Example

MSC FILE.C /Ota /Cs:

This example optimizes the file FILE . C by removing stack probes with the
/Cs option and relaxing alias checking with the /Ota option. The letter ¢

202

Advanced Topics

in the Ota option tells the compiler to favor execution time over code size
in the optimization. If you wanted stack checking for only a few functions
in FILE.C, you could use the check_stack pragma surrounding the
definitions of functions you wanted to check.

9.10.2 Maximum Optimization

Option
/Ox

The /Ox option is a shorthand way to combine optimizing options to pro-
duce the fastest possible program. Its effect is the same as using the follow-
ing options on the same command line:

/Oat /Gs

Thus, the /Ox option removes stack probes, relaxes alias checking, and
favors execution time over code size.

9.11 Controlling the
Function-Calling Sequence

Options

/Ge
fortran
pascal
cdecl

The fortran, pascal and cdecl keywords, and the /Gc option, allow you
to control the function call/return sequence and naming convention, so
your C programs can call and be called by functions written in FORTRAN
and Pascal.

Because C, unlike other languages such as Microsoft Pascal and Microsoft
FORTRAN, allows the user to write functions that take a variable number
of arguments, it must handle function calls differently. Languages such as
Pascal and FORTRAN normally push actual parameters to a function in
left-to-right order, with the last argument in the list being the last one

2038

Microsoft C Compiler User’s Guide

pushed. In contrast, C functions do not know the number of actual param-
eters, so they must push their arguments from right to left, with the first
argument in the list being the last one pushed. Additionally, the calling
function must remove the arguments from the stack in C (rather than hav-
ing the called function do it, as in Pascal and FORTRAN). If the code for
removing arguments is in the function definition (as in Pascal and FOR-
TRAN), it appears only once; if it is in the calling function (as in C), it
appears every time there is a function call. Since function calls are more
numerous than function definitions, the Pascal/FORTRAN method is often
slightly smaller and more efficient.

The Microsoft C Compiler has the ability to generate the Pascal/
FORTRAN call/return sequence in one of several ways. The first is through
the use of the pascal and fortran keywords. These keywords, when
applied to functions or pointers to functions, indicate a corresponding Pas-
cal or FORTRAN function; therefore, the correct call/return sequence must
be used. In the following example, sort is declared as a function using the
alternative call /return sequence:

short pascal sort(char *, char x):

The pascal and fortran keywords can be used interchangeably. Use them
when you want to use the left-to-right calling sequence for selected func-
tions only.

The second method for generating the Pascal/FORTRAN call/return
sequence is to use the /Gc option. If you use the /Ge option, the entire
module will be compiled using the alternative call/return sequence. You
might use this method to make it possible to call all the functions in a C
module from another language, or to gain the performance and size
improvement provided by this call/return sequence. However, if you use the
/Ge option, you cannot call or define functions that take variable numbers
of parameters, nor can you call functions such as the C library functions
that use the C calling sequence. Moreover, when you use /Gc to compile a
module, the compiler assumes that all functions called from that module
use the Pascal/[FORTRAN call/return sequence, even if the functions are
defined outside that module.

To overcome these restrictions, the edecl keyword has been added to
Microsoft C. When applied to a function or function pointer, it indicates
that the associated function is to be called using the normal C call/return
sequence. This allows you to write C programs which take advantage of the
more efficient call /return sequence while still having access to the entire C
library, other C objects, and even user-defined functions that can take
variable-length argument lists.

204

Advanced Topics

For convenience, the edecl keyword has already been applied to run-time
library function declarations in the include files distributed with this
compiler.

Use of the pascal and fortran keywords, or the /Ge option, also affects
the naming convention for the associated item (or, in the case of /Ge, all
items): the name is converted to uppercase (capital letters), and the leading
underscore that C normally prefixes is not added. The pascal and fortran
keywords can be applied to data items and pointers, as well as functions;
when applied to data items or pointers, these keywords force the naming
convention described above for that item or pointer.

The pascal, fortran, and edecl keywords, like the near, far, and huge
keywords, are disabled by use of the /Za option. If this option is given,
these names will be treated as ordinary identifiers, rather than keywords.

Example
int cdecl var_print{char*,...):

In the preceding example, var_print is allowed to have a variable number
of arguments by declaring it as a function using the normal right-to-left C
function call /return sequence and naming conventions; the cdec1 keyword
overrides the left-to-right calling sequence set by use of the /Gc option
when compiling the source file in which this declaration appears; if this file
is compiled without the /Ge option, cdec1 will have no effect since it is
the same as the default C convention.

For more information on mixed-language programming, see Chapter 10,
“Interfaces with Other Languages.”

9.12 Controlling Binary and Text Modes

Most C programs use one or more data files for input and output. Under
MS-DOS, data files are ordinarily processed in “text” mode. In text mode,
carriage-return-line-feed combinations (CR-LF) are translated into a single
line-feed (LF) character on input. Line-feed characters are translated to
carriage-return-line-feed combinations on output.

2056

Microsoft C Compiler User’s Guide

In some cases you may want to process files without making these transla-
tions. In binary mode, carriage-return-line-feed translations are suppressed.

Standard library routines such as fopen or open give you the option of
overriding the default mode when you open a particular file. You can also
change the default mode for an entire program from text to binary mode.
Do this by linking your program with the file BINMODE.OBJ, which is
supplied as part of your C compiler software. Simply add the path name
of BINMODE.OBJ to the list of object file names when you link your

program.

When you link with BINMODE.OBJ, all files opened in your program
default to binary mode, with the exceptions of stdin, stdout, and stderr.
However, linking with BINMODE.OBJ does not force you to process all
data files in binary mode. You still have the option to override the default
mode when you open the file.

Use the setmode library function when you want to change the default
mode of stdin, stdout, or stderr from text to binary, or the default mode
of stdaux or stdprn from binary to text. The setmode function can
change the current mode for any file and is primarily used for changing the
modes of stdin, stdout, stderr, stdaux, and stdprn, which are not expli-
citly opened by users.

9.13 Setting the Data Threshold

Option
/ Gt[number]

By default, the compiler allocates all static and global data items to the
default data segment in the small and medium memory models. In
compact-, large-, and huge-model programs, only initialized static and glo-
bal data items are assigned to the default data segment. The /Gt option
causes all data items whose size is greater than or equal to number bytes to
be allocated to a new data segment. When number is specified, it must fol-
low the /Gt option immediately, with no intervening spaces. When number
is omitted, the default threshold value is 256.

You can only use the /Gt option with compact-, large-, and huge-model
programs, since small- and medium-model programs have only one data

segment. The option is particularly useful with programs that have more
than 64K of initialized static and global data in small data items.

206

Advanced Topies

9.14 Naming Modules and Segments

Options

/NM modulename
/NT textsegmentname
/ND datasegmentname

Note the space between each preceding option and the following name; this
space is required. “Module” is another name for an object file created by
the C compiler. Every module has a name. The compiler uses this name in
error messages if problems are encountered during processing. The module
name is usually the same as the source-file name. You can change this name
using the /NM (for “name module”) option. The new modulename can be
any combination of letters and digits.

A “segment” is a contiguous block of binary information (code or data) pro-
duced by the C compiler. Every module has at least two segments: a text
segment containing the program instructions, and a data segment contain-
ing the program data. Each segment in every module has a name. This
name is used by the linker to define the order in which the segments of the
program appear in memory when loaded for execution. (Note that the seg-
ments in the group named DGROUP are an exception; see Section 10.2,
“Assembly-Language Interface.”)

Text and data segment names are normally created by the C compiler.
These default names depend on the memory model chosen for the program.
For example, in small-model programs the text segment is named _TEXT
and the data segment is named _DATA. These names are the same for all
small-model modules, so all text segments from all modules are loaded as
one contiguous block, and all data segments from all modules form another
contiguous block.

In medium-model programs, the text from each module is placed in a
separate segment with a distinct name, formed by using the module base

name along with the suffix _TEXT. The data segment is named _DATA,

as in the small model.

In compact-model programs, the data from each module is placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix _DATA. The exception to this is initialized
global and static data, which are put in the default data segment, _DATA.
The code segment is named _TEX'T, as in the small model.

207

Microsoft C Compiler User’s Guide

In large- and huge-model programs, the text and data from each module are
loaded into separate segments with distinct names. Each text segment is
given the name of the module plus the suffix _"TEXT. The data from each
segment are placed in a private segment with a unique name (except for
initialized global and static data placed in the default data segment). The
naming conventions for text and data segments are summarized in Table
9.2.

Table 9.2

Segment-Naming Conventions

Model Text Data Module
Small _TEXT _DATA filename
Medium module. TEXT _DATA filename
Compact _ TEXT _DATA! filename
Large module_ TEXT _DATA! filename
Huge module_ TEXT _DATA'! filename

! Name of default data segment; other data segments have unique
private names

You can override the default names used by the C compiler (thus over-
riding the default loading order) by using the /NT (for “name text”) and
/ND (for “name data”) options. These options set to a given name the
names of the text and data segments in each module being compiled. The
textsegmentname used with the /NT option and datasegmentname used
with the /ND option can be any combination of letters and digits.

If you use the /ND option to change the name of the default data segment,
your program can no longer assume that the address contained in the stack
segment register (SS) is the same as the address in the data segment regis-
ter (DS). You must therefore compile your program with the long form of
the memory-model option and the u flag, as in the following example:

MSC PROG1 /Ausn /ND DATAL:
Use of the /Auzz options forces the compiler to generate code to load DS
with the correct data-segment value on entry to the code. See Section 8.4,

“Creating Customized Memory Models,” for more information on the
/Astring options.

208

Advanced Topics

9.15 Compiling for Windows Applications

Options

[Awzz
/Gw

The /Awazz option controls the segment setup, and should be used for C
programs that interface with the Microsoft Windows operating system. For
more information on this option, see Section 8.4.3, “Setting Up Segments.”

You should use the /Gw option for developing applications to run on the

Windows environment. See your Microsoft Windows Software Development
Kt for details on how and when to use this option.

209

Chapter 10
Interfaces with Other Languages

10.1 Introduction 213
10.2 Assembly-Language Interface 213

10.2.1
10.2.1.1
10.2.1.2
10.2.1.3
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9

Segment Model 213

Segments 214

Groups 216

Classes 217
The C Calling Sequence 219
The Pascal [FORTRAN Calling Sequence 221
Entering an Assembly Routine 221
Return Values 222
Exiting a Routine 224
Naming Conventions 224
Register Considerations 225
Program Example 226

10.3 Mixed-Language Programming 229

10.3.1
10.3.2
10.3.2.1
10.3.2.2
10.3.3
10.3.4

10.3.5

Memory Models 230
Choosing a Calling Convention 230
Passing Parameters by Reference or Value 231
Using Varying Numbers of Parameters 236
Naming Conventions 236

Writing Interfaces
to Pascal or C from FORTRAN 238

Calling Procedures
in Pascal or C from FORTRAN 240

211

10.3.6

10.3.7

10.3.8

10.3.9

10.3.10
10.3.10.1
10.3.10.2
10.3.10.3
10.3.10.4
10.3.10.5
10.3.10.6
10.3.10.7
10.3.10.8
10.3.10.9
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15

212

Writing Interfaces
to FORTRAN or C from Pascal

Calling Procedures
in FORTRAN or C from Pascal

Writing Interfaces
to FORTRAN or Pascal from C

Calling Procedures
in FORTRAN or Pascal from C

Data Types 243

Using the Equivalent Data Types Tables

Integers 244

Boolean and Character Types
Real Numbers 248
Passing Strings 250
Pointers 254

Arrays, Super Arrays and Huge Arrays

Records and Structs 259
Procedural Parameters 262
Return Values 262
Sharing Data 262
Input and Output 264
Compiling and Linking 264
Error Messages 265

241

241

242

243

248

243

256

Interfaces with Other Languages

10.1 Introduction

The Microsoft C Compiler can be used to prepare modules for use by other
languages, and modules prepared with other languages can be used with C
programs.

This chapter first tells how to mix assembly-language modules with C
modules. This is a powerful technique for preparing assembly-language li-
braries for C, or for using C routines (including those from the standard li-
brary) in assembly-language programs.

The chapter also discusses mixing modules created with Microsoft C, Micro-

soft FORTRAN, and Microsoft Pascal.

10.2 Assembly-Language Interface

This section explains how to use 8086/8088 assembly-language routines
with C language programs and functions. In particular, it outlines the seg-
ment model used by the Microsoft C Compiler and explains how to call
assembly-language routines from C language programs and vice versa. This
assembly-language interface is especially useful for those assembly-language
programmers who want to use the functions of the standard C library and
other C libraries.

If you have assembly-language programs that were written to work with
Microsoft C Compiler versions 2.03 or earlier, turn to Section F.3.3 of Ap-
pendix F, “Converting from Previous Versions of the Compiler,” for a dis-
cussion of differences between the assembly-language interface for this com-
piler and earlier versions.

10.2.1 Segment Model

This section describes the run-time structure of Microsoft C programs.
Memory on the 8086/8088 processor is divided into segments, each contain-
ing up to 64K. When a program is linked, the segments are organized into
groups and classes. The segments, groups, and classes of Microsoft C pro-
grams are described below.

213

Microsoft C Compiler User’s Guide

10.2.1.1 Segmments

Figure 10.1 shows the order of primary segments of a C program in
memory, from the highest memory location to the lowest. When you look
at a map file produced by linking a C program, you may notice other seg-
ments in addition to the names listed below. These additional segments
have specialized uses for Microsoft languages and should not be used by
other programs.

The /DOSSEG option available with Microsoft LINK produces the order
shown here. Since this is the default order for C programs, you do not need
to use /DOSSEG with C programs, but you may find it useful when link-
ing assembly-language routines.

HIGH MEMORY
Space for dynamic allocation (heap)

STACK

_BSS and c_common

CONST

_DATA

NULL

Data segments

_TEXT

LOW MEMORY

Figure 10.1 Segment Setup in C Programs

The “heap” is the area of unallocated memory that is available for dynamic
allocation by the program. Its size varies, depending on the program’s other
storage requirements.

214

Interfaces with Other Languages

The segment contents are listed below:

Segment

STACK

_BSS

c_common

CONST

_DATA

NULL

Contents

The STACK segment contains the user’s stack,
which is used for all local data items.

The _BSS segment contains all uninitialized static
data items except those that are explicitly declared as
far or huge items in the source file.

The ¢_common segment contains all uninitialized
global data items for small- and medium-model pro-
grams. In compact- or large-model programs, this
type of data item is placed in a data segment with
class FAR_BSS.

The CONST segment contains all constants that can
only be read. These include floating-point constants,
as well as segment values for data items declared far
or huge in the source file, or data items that are
forced into their own segment by use of the /Gt
option.

Writing to string literals is allowed in C. Therefore,
strings are stored in the _"DATA segment rather than
the CONST segment.

The _DATA segment is the default data segment.

All initialized global and static data reside in this seg-
ment for all memory models, except for data explicitly
declared far or huge, or data forced into different
segments by use of the /Gt option.

The NULL segment is a special-purpose segment, that
occurs at the beginning of DGROUP. The NULL
segment contains the compiler copyright notice. This
segment is checked before and after the program exe-
cutes. If the contents of the NULL segment change in
the course of program execution, it means that the
program has written to this area, usually by an inad-
vertent assignment through a null pointer. The error
message Null pointer assignment at program
termination is displayed to notify the user. Although
a program may appear to run correctly when this hap-
pens, it may not run under other environments.

2156

Microsoft C Compiler User’s Guide

Data segments Initialized static and global far /huge data items are
always placed in their own segments with class name
FAR_DATA. This allows the linker to combine
these items so that they precede DGROUP. Unini-
tialized static and global far data items are placed in
segments that have class FAR_BSS. Again, this al-
lows the linker to place these items between the
TEXT segment or segments and DGROUP. Unini-
tialized huge items are placed in segments with class
HUGE_BSS. In large- and huge-model programs,
global uninitialized data are treated as though de-
clared far (unless specifically declared near) and
given class FAR_BSS.

_TEXT The _TEXT segment is the code segment. In small-
and compact-model programs, the code for all
modules is combined in this segment. In medium-,
large-, and huge-model programs, each module is allo-
cated its own text segment. The segments are not
combined, so there are multiple text segments in
medium- and large-model programs. Each segment in
a medium- or large-model program is given the name
of the module plus the suffix _TEXT.

When implementing an assembly-language routine to call or be called from
a C program, you will probably refer to the "TEXT and _DATA segments
most frequently. The code for the assembly-language routine should be
placed in the _"TEXT segment (or modulename_TEXT for medium-,
large-, and huge-model programs). Data should be placed in the segment
appropriate for their use, as described above. Usually this is the default
data segment, _DATA.

10.2.1.2 Groups

All segments with the same group name must fit into a single physical seg-
ment, which is up to 64K long. This allows all segments in a group to be ac-
cessed through the same segment register. The Microsoft C Compiler
defines one group named DGROUP.

The NULL, _DATA, CONST, BSS, ¢_common, and STACK segments
are grouped together in this data group. This allows the compiler to gen-
erate code for accessing data in each of these segments without constantly
loading the segment values or using many segment overrides on instruc-
tions. DGROUP is addressed using the DS or SS segment register. DS
and SS contain the same value unless the u or w flag of the /A option is
used.

216

Interfaces with Other Languages

In compact-, large-, and huge-model programs, or small- and medium-
model programs using far data declarations, DS may be temporarily
changed to a different value to allow the program to access data outside the
default data segment. The ES register may also be used in these cases.

SS is never changed; its segment registers always contain abstract “seg-
ment values” and the contents are never examined or operated on. Its pur-
pose is to provide compatibility with the Intel 80286 processor.

In small-model programs, there is only one text segment, named _TEXT.
In medium- and large-model programs, the names of all text segments must
end with the suffix "TEXT. The text segments are not grouped.

10.2.1.3 Classes
Table 10.1 gives the align type, combine class, class name, and group for

each segment discussed above. All segments with the same class name are
loaded next to each other.

Table 10.1
Segments, Groups, and Classes for Standard Memory Models

Memory Segment Align Combine Class
Model Name Type Class Name Group
Small _TEXT byte public CODE
Data segments' para private FAR_DATA
Data segments® para public FAR_BSS
NULL para public BEGDATA DGROUP
_DATA word public DATA DGROUP
CONST word public CONST DGROUP
_BSS word public BSS DGROUP
STACK para stack STACK DGROUP

Medium module TEXT byte public CODE

Data segments’ para private FAR_DATA
Data segments® para public FAR_BSS

217

Microsoft C Compiler User’s Guide

Table 10.1 (continued)

Memory Segment Align Combine Class
Model Name Type Class Name Group
NULL para public BEGDATA DGROUP
_DATA word public DATA DGROUP
CONST word public CONST DGROUP
_BSS word public BSS DGROUP
STACK para stack STACK DGROUP
Compact _TEXT byte public CODE
Data segments® para private FAR_DATA
Data segments® para public FAR_BSS
NULL para public BEGDATA DGROUP
_DATA word publie DATA DGROUP
CONST word public CONST DGROUP
_BSS word public BSS DGROUP
STACK para stack STACK DGROUP
Large module_ TEXT byte public CODE
Data segments® para private FAR_DATA
Data segments® para public FAR_BSS
NULL para public BEGDATA DGROUP
_DATA word public DATA DGROUP
CONST word public CONST DGROUP
_BSS word public BSS DGROUP
STACK para stack STACK DGROUP
Huge module_ TEXT byte publie CODE
Data segments® para private FAR_DATA
Data segments® para public FAR_BSS

218

Interfaces with Other Languages

Table 10.1 (continued)

Memory Segment Align Combine Class

Model Name Type Class Name Group
NULL para public BEGDATA DGROUP
_DATA word public DATA DGROUP
CONST word public CONST DGROUP
_BSS word public BSS DGROUP
STACK para stack STACK DGROUP

! Segment(s) for initialized far or huge data

Segment(s) for uninitialized far or huge data
3 Segment(s) for initialized global and static data
4 Segment(s) for uninitialized global and static data

10.2.2 The C Calling Sequence

To receive values from C-language function calls or to pass values to C
functions, assembly-language routines must follow the C argument-passing
conventions. C-language function calls pass their arguments to the given
functions by pushing the value of each argument onto the stack. The call
pushes the value of the last argument first and the first argument last. If
an argument is an expression, the call computes the expression’s value
before pushing it onto the stack.

Arguments with char, short, int, signed char, signed short, signed int,
unsigned char, unsigned short, or unsigned int type occupy a single
word (16 bits) on the stack. Arguments with long or unsigned long type
occupy a double word (32 bits); the value’s high-order word is pushed first.
Arguments with float type are converted to double type (64 bits). Note
that unless the /J option is given when compiling, char type arguments
are sign extended to int type before being pushed onto the stack; if the /J
option is given, char arguments are zero extended to unsigned int. In
either case, unsigned char type arguments are always zero extended, and
signed char type arguments are always sign extended.

Pointers occupy either 16 or 32 bits, depending on the memory model, the
type of item addressed (code or data), and whether the pointer is modified
with a near or far declaration. The segment value of far pointers is pushed
first, then the offset. In the memory models (compact, large, and huge)
where the default pointer size is far, function arguments that are data
pointers are automatically coerced to far pointers, unless there is a function
declaration preceding the function call that declares the arguments as near

219

Microsoft C Compiler User’s Guide

pointers. For example, if the following program is compiled in compact,
large, or huge model, it will not print “1” as expected; this is because the
value of a is not where test_fun expects it to be. Instead, the value con-
tained in a consists of the extra bytes pushed on the stack for the pointer
argument ptr.

main()

{
int near *x:
int vy = 1;

/* x will be coerced to far pointer, in spite
x of its declaration as near: x/

test_fun(x, vy):

+

int test_fun (ptr. a)
int near #*ptr:
int a;

{

/* The value printed for a will not be 1: #/
printf ("Value of a = %d\n", a):
¥

The correct way to use this function is as follows:

/* First, declare test_fun so the compiler knows in advance
** about the near pointer argument:
*/

int test_fun{int nearx, int):
main()

{

int near #x:
int y = 1;

/* Now, x will be passed as the near pointer: x/
test_fun(x, y):

)

220

Interfaces with Other Languages

int test_fun(ptr, a)
int near #*ptr;
int a;

{
/* Value of a =1 x/

printf ("Value of a = %d\n", a):
}

If an argument is a structure, the function call pushes the last word of the
structure first and each successive word in turn until the first word is
pushed. Arrays are passed by reference; the array identifier evaluates to the
array address, which is used to access the array.

After a function returns control to a routine, the calling routine is respon-
sible for removing arguments from the stack.

10.2.3 The Pascal/FORTRAN Calling Sequence

The Pascal /FORTRAN calling convention, enabled for an entire module by
use of the /Ge option, or for individual functions within a module with the
fortran or pascal keywords, causes functions to use calls in which function
arguments are pushed onto the stack left to right (i.e., the last argument is
the last argument pushed). When this alternative calling sequence is
enabled, the called function is responsible for removing the arguments from
the stack. Also, use of /Ge means that it is not possible to have functions
with variable-length argument lists, unless they are explicitly declared with
the cdecl keyword. (See Section 9.11, “Controlling the Function-Calling
Sequence,” for more information about the /Ge option and the fortran
and pascal keywords.)

10.2.4 Entering an Assembly Routine

Assembly-language routines that receive control from C function calls
should preserve the contents of the BP, SI, and DI registers and set the
BP register to the current SP register value before proceeding with their
tasks. (It is not necessary to preserve the contents of SI and DI if the
assembly-language routine does not modify them.)

If the assembly routine modifies the contents of the SS (stack segment), DS
(data segment), and CS (code segment) registers, their values should be
saved on entry and restored at exit. The values of 8S and DS are always
equal in C programs unless the u or w flag of the /A option is specified to
set up separate stack and data segments.

221

Microsoft C Compiler User’s Guide

The following example illustrates the recommended instruction sequence for
entry to an assembly-language routine:

ENTRY : push bp ;save caller's frame pointer (BP)
mov bp,sp ;frame pointer points to old BP
sub sp,8 ;allocate local variable space on stack
push di ;required only if routine changes di
push si ;required only if routine changes si

This is the same sequence used by the C compiler; in fact, you can generate
an assembly-language listing such as that above by compiling your C pro-
gram with the /Fa or /Fc option (see Section 3.5, “Producing Listing
Files,” for more information). If this sequence is used, the last argument
pushed by the function call (which is also the first argument given in the
call’s argument list) is at address [bp+4] for a near function call, and
[bp+6] for a far function call. Subsequent arguments begin at [bp+6],
[bp+8], or [bp+10], depending on the size of the first argument and
whether the function call is near or far. If the first argument is a single
word and the function call is near, the next argument starts at [op+67]. If
the first argument is a single word and the function call is far, or the first
argument is a double word and the function call is near, the next argument,
starts at [bp+8]. If the first argument is a double word and the function
call is far, the next argument starts at [bp+10].

Note that the push instructions in the above sequence are not necessary if
the assembly-language routine does not modify the contents of the SI and
DI registers, which are used by the compiler to store register variables.

It is a good idea to write macros to distinguish between near and far func-

tion calls and returns. Such macros make the code more readable and can
help to insulate a program from changes in the calling sequence.

10.2.5 Return Values

In order for assembly-language routines to return values to a C-language
program or receive return values from C functions, they must follow the C
return value conventions. The conventions are shown in Table 10.2.

222

Table 10.2

Interfaces with Other Languages

C Return Value Conventions

Return Value Type Register
char AX
short AX
int AX
signed char AX
signed short AX
signed int AX
unsigned char AX
unsigned short AX
unsigned int AX

long
unsigned long

struet or union

float or double

near pointer

far pointer

high-order word in DX
low-order word in AX

high-order word in DX
low-order word in AX

address of value in AX;
value must be constant,
or static or global value

address of value in AX;
value must be constant,
or static or global value

AX

segment selector in DX

offset in AX

223

Microsoft C Compiler User’s Guide

10.2.6 Exiting a Routine

Assembly-language routines that return control to C programs should
restore the values of the BP, SI, and DI registers before returning control.
(The contents of the SI and DI registers do not have to be restored if the
entry sequence did not push them.) The following example illustrates the
recommended instruction sequence for exiting a routine called by a small-
model program:

EXIT: pop si srequired only if si saved on entry
pop di ;required only if di saved on entry
mov sp,bp ;remove local variable space
pop bp ;restore caller's frame pointer
ret sappropriate to type of call

This sequence does not change the AX, BX, CX| or DX register or any of
the segment registers. The sequence does not remove arguments from the
stack; this is the responsibility of the calling routine.

Note

If the module from which the assembly-language routine is called has
been compiled with the /Ge option, or if the external declaration of the
assembly-language routine contains the pascal or fortran keyword,
then the assembler routine must remove its own arguments from the
stack before returning to the calling routine. In this case, the ret
instruction at the end of the preceding example should be replaced with
the retnum instruction (return and pop num bytes off the stack, where
num is the size in bytes of all arguments).

Note that the pop instructions for SI and DI in the above sequence are not
necessary if the contents of the SI and DI registers are not modified by the
assembly-language routine and were not saved on entry.

10.2.7 Naming Conventions

An assembly-language routine can access globally visible items (data or
functions) in a C program by prefixing the item name with an underscore
(_)- (C items declared as static cannot be accessed.) For example, a C
function named add can be accessed in an assembly-language program by
declaring the name _add as external.

224

Interfaces with Other Languages

For a C program to access an assembly-language routine or data item, the
name of the assembly-language item must begin with an underscore (_).
The C program refers to the assembly-language item without the under-
score. For example, a C program could call a publicly defined assembly-
language routine named _MIX with the following declaration:

extern MIX():

If the assembly-language name does not begin with an underscore, it cannot
be accessed in a C program.

The C compiler reserves some identifiers beginning with two underscores for
internal use. You should avoid using identifiers with two leading under-
scores in your assembly routines, and identifiers with one leading under-
score in your C source files, as these identifiers may conflict with internal
names.

Some assemblers translate all lowercase letters to uppercase, or vice versa.
Since the C language is case sensitive, this can pose problems. Check your
assembler documentation for information on this topic. The Microsoft
Macro Assembler, versions 3.0 and later, offers an option to control case
sensitivity.

10.2.8 Register Considerations

The SI and DI registers are used to store the values of variables given
register storage in a C program. An assembly-language routine that
changes the SI and DI registers is responsible for saving their contents on
entry and restoring them before exiting.

The C compiler assumes that the direction flag is always cleared. If your
assembly routine sets the direction flag, be sure to clear it (using the CLD
instruction) before returning.

If the assembly routine modifies the contents of the SS (stack segment), DS
(data segment), and CS (code segment) registers, their values should be
saved on entry and restored at exit. The values of SS and DS are always
equal in C programs unless the u or w flag of the /A option is specified to
set up separate stack and data segments.

225

Microsoft C Compiler User’s Guide

10.2.9 Program Example

To illustrate the assembly-language interface, the two functions mul and
main from the small-model C program in Example 1 are written as
assembly-language routines in Examples 2 and 3.

Example 1
int a =2, b =7, ¢ = 0;
main ()
{
c = mul(a,b):
}
int mul (i, j) /* Performs multiplication by repeated
*x additions
*/
int 1,3
{
register int k, sum:
sum = O;
for (k = 1; k <= j; k++)
sum += 1;
return (sum) ;
Example 2

This example replaces the mul function in Example 1 with an assembly-
language routine called by main (you can obtain a similar assembly listing
by compiling the mul function with the /Fa or /Fec option on the MSC
command line).

TITLE mulbyadd

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS

DGROUP GROUP CONST, _BSS, _DATA
ASSUME Cs: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGKOUP

226

_TEXT S

PUBL
_mul PROC

(I

: J

push
mov

sub

regi
regi
push
push

sub

mov

Jmp
$loop:

add

inc
Stest:

cmp

jge

mov

pop
pop
mov
pop
ret

ENDP
ENDS

_mul
_TEXT
END

EGMENT

IC _mul
NEAR

4
6

bp

bp.sp

sp.4
ster di = sum
ster si = k

di

si

di,di
si,1l
SHORT stest

di, [bp+4]
si

[bp+6] , si
Sloop
ax,di

si
di
sp, bp
bp

Interfaces with Other Languages

save si,di

0;

c
(1=

()|
=)

sum +=i;

1++;

j>=k 2

yes, loop again
no, return sum

restore si,di

Note that this routine must save the proper registers, retrieve the argu-
ments from the stack, do its calculations, place the return value in the AX
register, restore the registers, and return control to the calling function.
Also, if the assembly routine were written to work with a medium- or
large-model C program, the _mul procedure would be declared FAR
instead of NEAR.

227

Microsoft C Compiler User’s Guide

Example 3

This example replaces the main function in Example 1 with an assembly-
language routine that calls mul (you can obtain a similar assembly listing
by compiling the main function with the /Fa or /Fc option).

DGROUP

EXTRN

_DATA

_main
_TEXT
END

GROUP _DATA

ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP

_mul : NEAR
SEGMENT WORD PUBLIC 'DATA'
PUBLIC _a
DW O2H
PUBLIC _b
DW O7H
PUBLIC _c
DW OCH
ENDS

SEGMENT BYTE PUBLIC 'CODE'

PUBLIC _main

PROC NEAR
push bp
mov bp, sp
push _b
push _a
call _mul
add sp, 4
mov _c,ax
mov sp. bp
pop bp
ret

ENDP

ENDS

mul (a,b)
; pop arguments off stack
: store result in c

Note that this routine must contain instructions that push the arguments
on the stack in the proper order, call the function, and clear the stack. It
may then use the return value in the AX register.

228

Interfaces with Other Languages

10.3 Mixed-Language Programming

Microsoft FORTRAN and Pascal (versions 3.3 and later) and Microsoft C
(versions 3.0 and later) provide support for programiners who use more
than one of these languages.

Note

Microsoft C for XENIX does not include the fortran and pascal
keywords described in this document. Therefore, if you want your MS-
DOS C programs to be compatible with XENIX, you cannot call FOR-
TRAN and Pascal from the XENIX version of C unless you use the C

calling conventions.

FORTRAN and C programmers, please note: throughout this section,
the term “procedure” is used instead of “subroutine” or “function,” and
the term “parameter” is used instead of “argument.” This is the termi-
nology used in Pascal.

Mixed-language programming offers several advantages:

1.

You can use libraries of procedures written in different languages.

For example, you can access the Microsoft C library from programs
written in FORTRAN or Pascal. There are also many proprietary
libraries available for use with Microsoft FORTRAN which you can
access from Microsoft Pascal and C.

To use a library written for a particular language, you must have
the library supplied with that language’s compiler. To use a
proprietary FORTRAN library from C, for example, you need the
library supplied with the FORTRAN compiler, as well as the
proprietary library itself. This is because programs written in
Microsoft Pascal, C, or FORTRAN contain calls to their respective

run-time libraries.

You can use features not available in your language.

It is hard to write bit-manipulation procedures in FORTRAN,
for example, but it is easy in C or Pascal. Also, some interfaces,
such as those that use C or Pascal structures, are not compatible

with FORTRAN.

229

Microsoft C Compiler User’s Guide

3. If you write your own libraries, you can now produce one library
that is compatible with all three languages.

Of course, to ensure compatibility, you must pay close attention to
the guidelines given in this section.

10.3.1 Memory Models

The current versions of Pascal and FORTRAN do not offer a choice of
memory models; they are compatible only with large-model C. Some com-
ponents of the C library are referenced from the other languages’ libraries.
If you use the library for the wrong memory model, these interfaces will be
incorrect. Therefore, if you use C procedures that call, or are called by,
Pascal or FORTRAN routines, you must compile your C code with the
large model. Use the /AL option to specify large model.

10.3.2 Choosing a Calling Convention
FORTRAN, Pascal, and C each have conventions for passing parameters.

The languages differ in the order in which parameters are pushed onto the
stack. Microsoft Pascal and Microsoft FORTRAN push parameters onto
the stack in the order in which they appear in the procedure declaration. C
pushes its parameters in the reverse order.

The languages also differ in whether code telling how to restore the stack
when a procedure returns is in the calling procedure or in the called pro-
cedure. In the FORTRAN/Pascal convention, this code is in the called pro-
cedure; in the C language, this code follows the procedure call.

The FORTRAN/Pascal convention is slightly faster and produces less code.
The C convention allows you to use a variable number of parameters
(because the first parameter is always the last one pushed, it is always on
top of the stack, and always has the same address relative to the start of
the frame). These conventions are incompatible.

Finally, the languages differ in which parameters they pass by reference and
by value. Section 10.3.2.1, “Passing Parameters by Reference or Value,”
discusses these differences.

If you control both the calling and the called code, you can choose which
calling convention to use. If you intend to pass variable numbers of param-
eters, you must use the C calling convention. For more information, see
Section 10.3.2.2, “Using Varying Numbers of Parameters.” Otherwise, you

230

Interfaces with Other Languages

may want to use the convention of the language that you use most often, so
that you can usually use the default calling convention.

To make calls from one language to another, you must tell the compiler
which convention to use. Microsoft C, Pascal, and FORTRAN all provide
ways of specifying which convention you are using, both when you call an
external procedure and when you define a public procedure. Table 10.3
indicates how to specify calling conventions from each language.

Table 10.3
Specifying Calling Conventions

Calling Language Attributes/Keywords
Convention Calling From to Use
C Pascal C attribute on procedure
declaration
FORTRAN C attribute on INTERFACE
statement
C Default or cdecl keyword with
/Ge option
FORTRAN Pascal FORTRAN attribute on
procedure declaration
FORTRAN Default
C fortran keyword on procedure

declaration, or /Ge option

Pascal Pascal Default
FORTRAN PASCAL attribute on
INTERFACE statement
C pascal keyword on procedure

declaration, or /Ge option

10.3.2.1 Passing Parameters by Reference or Value

When a parameter is passed by reference, the address of the parameter is
passed. Procedures access the parameter’s value through the address; any
changes to the parameter affect the stored value. When a parameter is
passed by value, a copy of the parameter is placed on the stack when the
procedure is called. The procedure can change the value of the parameter
without affecting the original value from which the copy was taken.

231

Microsoft C Compiler User’s Guide

For each parameter, you must decide whether to pass by value or by refer-
ence. If you pass by reference, you also have to choose whether to pass a
long address (segment and offset) or a short address (offset only).

If the called procedure needs to change the actual value in the variable as a
way of returning a result, you have to pass by reference. Passing by value
protects against accidental updating and, for variables smaller than about
4 bytes, can be more efficient.

The following list describes the defaults for each language:

¢ FORTRAN passes all parameters by reference (including constants
and expressions), but passing by value can be specified. If a pro-
cedure is given the C or Pascal attribute, the default is changed: all
parameters for that procedure are passed by value unless otherwise
specified.

e C always passes arrays by reference, and passes all other parameters
by value. In C, you can pass pointers as parameters; the procedure
can use the pointers to modify stored values, producing the same
effect as passing by reference.

e Pascal passes by value, but passing by reference can be specified.

If you do not choose the default case, you have to specify certain keywords,
attributes, or pointer types. These will vary, according to the calling con-
ventions you are using. See tables 10.4 through 10.6.

If you are passing parameters when using C calling conventions, use the
constructs described in Table 10.4 when declaring paraineters.

Table 10.4

Passing Parameters With C Calling Conventions

Parameter C Pascal FORTRAN
Long Pointer to VARS REFERENCE
address type keyword attribute
Short near VAR REFERENCE,
address pointer keyword NEAR

to type attributes
Value Default Default Default

232

Interfaces with Other Languages

For example, assume that you are using the C calling conventions. Table
10.3 shows what attributes and keywords are necessary to use the C calling
conventions. When calling from Pascal, specify the C attribute on the pro-
cedure declaration. When calling from FORTRAN, specify the C attribute
on the INTERFACE statement. When calling from C, the C calling con-
ventions are the default, unless your program has been compiled with the

/ Ge option, or the function your program is calling has been declared with
the fortran or pascal keyword (see Section 9.11, “Controlling the Funec-
tion Calling Sequence”).

Assume that you want to pass an integer parameter, x, using a long
address. Compatibility of data types is discussed in Section 10.3.10;

for now, assume that the C int type, the Pascal integer type, and the
FORTRAN INTEGER type are equivalent. Table 10.4 shows that when
declaring the parameter x in your C procedure, you should use a pointer (a
far pointer, the default) of the appropriate type (in this case, int). The fol-
lowing is the C declaration:

int *x:

When declaring the parameter x in your Pascal procedure, use the VARS
keyword:

VARS x:INTEGER:

For the FORTRAN procedure, specify this reference attribute:

INTEGER X[REFERENCE]

If you want to pass using a short address instead, use these declarations:
int near *x:

VAR x:INTEGER:

INTEGER X [REFERENCE, NEAR]

You follow the same steps when declaring parameters even if you are using
other calling conventions. If you are passing parameters using Pascal or
FORTRAN calling conventions, use the constructs described in Tables 10.5
and 10.6 when declaring parameters.

233

Microsoft C Compiler User’s Guide

Table 10.5

Passing Parameters With Pascal Calling Conventions

Parameter C Pascal FORTRAN
Long Pointer VARS REFERENCE
address to type keyword attribute
Short near VAR REFERENCE,
address pointer keyword NEAR

to type attributes
Value Default Default Default
Table 10.6

Passing Parameters With
FORTRAN Calling Conventions

Parameter C Pascal FORTRAN
Long Pointer VARS Default
address to type keyword
Short near VAR NEAR attribute
address pointer keyword

to type
Value Default Default VALUE attribute

If you are not writing both the called procedure and the calling procedure,
you must pass the parameter as declared in the existing procedure’s
definition. If you are not experienced with the language you are accessing,
it is not always easy to determine if a parameter is being passed by value or
by reference. The following lists indicate how to tell the difference.

The following kinds of parameters are passed by value:

o In Pascal, any parameter declared except VAR, CONST, VARS,

and CONSTS parameters

e In C, any parameter declared except arrays
e In FORTRAN, a parameter declared with the VALUE attribute

234

Interfaces with Other Languages

In FORTRAN, a parameter in a procedure when that pro-
cedure is declared with the C or PASCAL attribute (unless the
REFERENCE attribute is specified)

The following kinds of parameters are passed by reference with a short
(2-byte, offset only) address:

In Pascal, a formal parameter declared as VAR or CONST.

In Pascal, a variable passed by passing a pointer to that variable.
The pointer itself is passed by value. (It 1s not recommended that
you use pointers in this way; the correspondence between pointers
and machine addresses is implementation dependent.)

In Pascal, a variable passed by passing ADR variable. The address
itself (as with pointers) is passed by value.

In C, a parameter passed by passing a near pointer to the param-
eter. (The pointer is passed by value.)

In C, an array declared with the keyword near.

In FORTRAN, in procedures without the C or PASCAL attribute,
a parameter with the NEAR attribute.

In FORTRAN, in procedures with the C or PASCAL attribute, a
parameter with the NEAR and REFERENCE attributes.

In FORTRAN, a variable passed by short address by taking
LOCNEAR(variable), then passing the result as an INTEGER#2,
by value.

The following kinds of parameters are passed by reference with a long
(4-byte, segmented) address:

In Pascal, ADS variable. (The address is passed by value.)

In Pascal, parameters declared with the VARS or CONSTS
keywords.

In C, a parameter passed by passing a far pointer to the parameter.
(The pointer is passed by value.) Note that in large-model C pro-
grams, far pointers are the default pointer type.

In C, arrays not declared with the keyword near.

In FORTRAN, any parameter of a FORTRAN-protocol routine,
except those declared with the NEAR or VALUE attribute.

235

Microsoft C Compiler User’s Guide

[]

In FORTRAN, a variable passed by long address by taking
LOC(variable) or LOCFAR(variable), then passing the result as an
INTEGER#4, by value.

10.3.2.2 Using Varying Numbers of Parameters

If you are going to use varying numbers of parameters, remember the fol-
lowing factors:

The number of actual parameters must be less than or equal to the
number of formal parameters (if the called procedure is written in

FORTRAN or Pascal).

In Pascal and FORTRAN there is no easy way to access parameters
that have not been formally defined. However, you can use the
VARYING attribute to pass fewer arguments than are defined.

You must use the C and VARYING attributes on your
FORTRAN INTERFACE statement or Pascal procedure declara-

tion.

The VARYING attribute tells the FORTRAN or Pascal compiler
not to check if there are more or fewer actual parameters than for-
mal parameters. However, actual parameters for which a formal
parameter is specified will be checked for type compatibility, accord
ing to the usual rules of the calling procedure’s language.

10.3.3 Naming Conventions

If you follow these two rules, the Microsoft Pascal, FORTRAN, and C com-
pilers handle all the necessary adjustments in names:

If you are using any FORTRAN routines, all identifiers (names)
should be six characters or less in length.

Avoid using uppercase characters in C identifiers. If you must use
uppercase characters, do nof use the /INOIGNORECASE option,
and do not use other identifiers that have the same spelling as the
uppercase or mixed-case C identifier. (For example, if one C
identifier is AnExample, don’t use anexample, ANEXAMPLE, or
AnExAmP1E as an identifier.)

If you cannot follow those two rules, you must make certain adjustments
yourself. The remainder of this section explains the default naming conven-
tions of each language, and how certain attributes and keywords affect

236

Interfaces with Other Languages

those naming conventions. This information should allow you to solve any
special problems in naming.

In all three languages, names appear differently in the object and source
files. There are differences in the following three elements of the naming
conventions used by the three languages:

Element Differences

Case In FORTRAN and Pascal, any lowercase letters in a
public identifier are changed to uppercase before the
name is inserted in the object file. By default, no such
transformation is done on C names, but at link time
you can specify that case distinctions are to be
ignored.

Length In FORTRAN, by default, names are truncated to six
significant characters.

Underscores In C, public names are always prefixed with an under-
score character (-) before they are inserted in the
object file.

These differences in naming conventions mean that default FORTRAN and
Pascal public names will not correspond to default C public names. Cer-
tain attributes and keywords can help make names correspond.

If you want FORTRAN or Pascal identifiers to follow the C conventions,
specify the C attribute on the following specifiers:

e Names of public or external procedures, or data objects in Pascal

o Names of procedures, interfaces, or named common blocks in

FORTRAN

The name is changed to lowercase and a leading underscore is added.
FORTRAN identifiers will still be truncated to six characters. To specify a
longer name, or to specify external C routines that have uppercase letters
in their identifiers, you can use the ALIAS in FORTRAN. There is no
ALTAS feature in Pascal; to refer to a C object with uppercase letters in its
identifier, you must not link with the /NOIGNORECASE option, and all
your C identifiers must have unique spellings.

237

Microsoft C Compiler User’s Guide

If you use the pascal or fortran keyword in C, the name is changed to
uppercase and the leading underscore is not added to the name. All such
names must have unique spellings.

Note that in FORTRAN, if an INTERFACE and the subprogram referred
to in that INTERFACE are in the same unit of compilation, the same
names must be used for parameters in each. An error message is generated
if you violate this rule.

10.3.4 Writing Interfaces
to Pascal or C from FORTRAN

To declare external procedures in C or Pascal from FORTRAN, FORTRAN
provides the INTERFACE statement.

Suppose, for example, that you want to access the procedure time in the C
library. There are three basic steps:

1. Find the declaration of the C procedure.

2. Build an INTERFACE program unit to determine the following:
e The attributes and type for the procedure
o The attributes and types for the parameters

3. Add the INTERFACE to the program.
The final step, calling the C procedure, is described in Section 10.3.5.
For this example, the declaration of the C procedure time looks like this:

long time (tloc)
long *tloc:;

The first step in building the INTERFACE is to determine what attri-
butes and type to use for the procedure. First, determine what FORTRAN
type is equivalent to the type of the procedure time. The first word in the
C procedure declaration, long time (tloc); shows that time has type
long. Referring to Table 10.11, “Signed 4-Byte Integers,” in Section
10.3.10.2, “Integers,” you can see that the FORTRAN INTEGER#*4 type
is equivalent to the C long type. This gives enough information to write
the following statement:

INTERFACE TO INTEGERx*4 FUNCTION TIME

238

interfaces with Other Languages

Second, decide which calling convention to use. Since you have no control
over the C procedure, you must use the calling conventions that it uses. To
specify the C calling conventions, use the C attribute as follows:

INTERFACE TO INTEGER#*4 EUNCTION TIME [C]

Now determine what attributes and data types to use for the parameters.
In this case, there is just one parameter, tloc. Therefore, you can write
the following;:

INTERFACE TO INTEGER+4 FUNCTION TIME [C]
+ (TLOC)

Note, however, that in the second line of the C procedure declaration, tloc
is preceded by an asterisk, indicating that a pointer is being passed. You
can pass a pointer from FORTRAN using the LOCFAR or LOC pro-
cedure, or you can pass the argument itself by reference. For now, assume
that you want to pass by reference. FORTRAN normally defaults to pass-
ing by reference, but the procedure time is qualified by the C attribute, so
tloc will default to being passed by value. To specify passing by refer-
ence, add the REFERENCE attribute, as shown below:

INTERFACE TO INTEGER#4 FUNCTION TIME [C]
+ (TLOC [REFERENCE])

The type of the parameter t1oc is indicated by the first word in the second
line of the C procedure declaration, 1ong#*tloc. Since the FORTRAN
INTEGER#4 type is equivalent to the C long type, you can finish the
INTERFACE unit as follows:

INTERFACE TO INTEGER+4 EUNCTION TIME [C]
+ (TLOC [REFERENCE])

INTEGER+*4 TLOC

END

If you decide to pass a pointer to t1loc instead of passing it by reference,
you proceed, in the same manner, to this point:

INTERFACE TO INTEGER+4 FUNCTION TIME [C]
+ (TLOC)

Pointers are passed by value, so do not specify the REFERENCE attri-
bute. Since pointers are normally 4-byte segmented addresses, the result of
LOC is a 4-byte integer, and therefore you must declare the parameter
tloc to be a 4-byte integer:

INTERFACE TO INTEGER*4 FUNCTION TIME [C]

239

Microsoft C Compiler User’s Guide

+ (TLOC)
INTEGER*4 TLOC
END

Step number three, adding the INTERFACE unit to your program, is
identical for both cases. The only rule is that the INTERFACE must
occur before any references to the procedure are made. It is usually easiest
to put all INTERFACE statements at the beginning of the compiland.

The final step, calling the procedure, is different for the REFERENCE
and pointer cases, as described in Section 10.3.5.

10.3.5 Calling Procedures
in Pascal or C from FORTRAN

Once you have declared a procedure, you can call it in your program just as
if it were in the same language as your calling procedure. Note that when
calling from FORTRAN, you must always declare the procedure in the pro-
gram units that use it.

For the example discussed in Section 10.3.4, start writing the calling rou-
tine like this:

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC

Don’t forget to declare the procedure, as in the following line:
INTEGER+4 TIME
Now, if you passed t1loc by reference, you can complete the call as follows:

SUBROUTINE CLOCK
INTEGER+4 TIME
INTEGER#4 TLOC

WRITE (#,#) TIME (TLOC)
END

If you passed a pointer, your procedure call looks like this:

SUBROUTINE CLOCK
INTEGER#4 TIME

INTEGER+4 TLOC

WRITE (%, +) TIME (LOC (TLOC))
END

240

Interfaces with Other Languages

You could substitute the LOCFAR procedure for the LOC procedure. In

this implementation they are identical.

Note that if time were a subroutine instead of a function, you could call
that subroutine with the FORTRAN CALL statement.

10.3.6 Writing Interfaces
to FORTRAN or C from Pascal

From Pascal, attach the fortran or ¢ attribute to an EXTERN procedure
declaration to interface with procedures written in FORTRAN or C.

10.3.7 Calling Procedures
in FORTRAN or C from Pascal

Once you have declared a procedure, you can call it in your program just as
if it were in the same language as your main program.

For example, the following Pascal program fragment calls time, passing
tloc by reference:

FUNCTION time (VARS tloc:INTEGERA4) :INTEGER4([C]:
EXTERN:
PROCEDURE clock;
VAR tloc: INTEGER4:
BEGIN
WRITELN (time (tloc))
END;

If you pass a pointer by value, the program fragment looks like this:

FUNCTION time (tloc:ADSMEM):INTEGER4 [C]; EXTERN;
PROCEDURE clock:
VAR tloc:INTEGER4:;
BEGIN
WRITELN (time (ADS tloc))
END;

241

Microsoft C Compiler User’s Guide

10.3.8 Writing Interfaces
to FORTRAN or Pascal from C

From C, the fortran and pascal keywords can be used to declare

selected procedures written in, or compatible with, FORTRAN and Pascal.
These keywords, which are enabled by default by the Microsoft C Compiler,
imply changes in external naming, calling conventions, and return variable
conventions.

If you want all procedures in your C program to be compatible with
FORTRAN or Pascal, use the /Ge option when compiling.

FORTRAN and Pascal procedures are declared in the same manner as C
procedures: you specify the procedure identifier, the return type, and the
type and number of parameters to the procedure. (See the Microsoft C
Compiler Language Reference for a complete discussion of the syntax of pro-
cedure declarations.)

The following additional rules apply when you use the fortran and pascal
keywords:

1. Whenever a fortran or pascal keyword is used in a declaration, the
types of parameters must be declared with a parameter-type list.

2. The fortran and pascal keywords modify the item immediately to
the right in a declaration.

3. The special near and far keywords can be used with the fortran
and pascal keywords in declarations. The sequences far fortran
and fortran far are equivalent.

Complex declarators are allowed in pascal and fortran declarations, just
as in C procedure declarations. The examples below illustrate the syntax of
pascal and fortran declarations.

Examples

short pascal thing(short, short): /* Example 1 x/
long (pascal xthing) (void): /* Example 2 x/
short near pascal thing(short); /* Example 3 %/
short pascal near thing(short): /* Example 4 x/

242

Interfaces with Other Languages

Example 1 declares thing to be a Pascal procedure taking two short
parameters and returning a short value.

In Example 2, thing is declared as a pointer to a Pascal procedure that
takes no parameters and returns a long value. Note that void is used to
indicate that there is no return value.

Examples 3 and 4 are equivalent. Both declare thing to be a near Pascal
procedure. The procedure takes one short parameter and returns a short
value.

10.3.9 Calling Procedures
in FORTRAN or Pascal from C

To call a Pascal or FORTRAN procedure from C, you must declare that
procedure external, as in the following declaration:

extern void fortran m(long):
Note that void is used to indicate that there are no parameters.

Once you have declared a procedure, you can call it in your program just as
if the procedure were in C.

10.3.10 Data Types

FORTRAN, Pascal, and C each have a variety of data types. Some are
completely compatible; others require manipulation to work between
languages. Sections 10.3.10.1 through 10.3.10.8 explain how specific data
types differ in each language. Tables 10.7 through 10.27 show equivalent
data types for each language.

10.3.10.1 Using the Equivalent Data Types Tables

To use tables 10.7-10.27 to pass parameters, you also have to refer to
tables 10.4-10.6.

For example, suppose that you want to pass an INTEGER=*2 variable
from FORTRAN to C. First, you have to choose a calling convention, as
explained in Section 10.3.2, “Choosing a Calling Convention.” Assume that
you want to use the C calling conventions. Refer to Table 10.4, “Passing
Parameters With C Calling Conventions.”

243

Microsoft C Compiler User’s Guide

Second, decide whether to pass the parameter by reference or by value.

Assume that you want to pass the parameter by reference, using a short
address. Table 10.4 shows that you use the REFERENCE and NEAR
attributes in FORTRAN, and a near pointer of the appropriate type in C.

Third, determine what data type in C is equivalent to the INTEGER %2
type in FORTRAN. Find the table that lists signed, 2-byte integers: Table
10.9. Note that INTEGER#*2 is listed as an appropriate FORTRAN data
type. Check the “Notes” column to see if there is anything to be careful of
when using INTEGER %2,

Now, look at the “C” row. You can choose between short and int, but the
“Notes” column shows that int is machine dependent. For maximum porta-
bility, choose the C short type. Finally, apply the appropriate attributes
and keywords to the data types, as follows:

INTEGER*2 X [REFERENCE, NEAR]

This statement in a FORTRAN INTERFACE declared with the C attri-
bute is equivalent to a C parameter declared as

short near x x

Note that using a REFERENCE parameter in FORTRAN corresponds to
using a pointer type in C.

10.3.10.2 Integers

In C, any integral parameters shorter than an int (such as char) are con-
verted to int type before being passed by value. Unsigned integral types
shorter than an unsigned int (such as unsigned char) are converted to
unsigned int type.

To ensure that your FORTRAN or Pascal routine handles C parameters
correctly, you have two options:

1. You can allow for the C conversions when you declare parameters to
the FORTRAN or Pascal procedure. This means, for example, that
all integer parameters must be declared to have the size correspond-
lng to a C int, or long int, for integer parameters larger than an
int.

2. You can pass pointers to the parameters instead of the values them-

selves (passing by reference). In the FORTRAN or Pascal routine,
declare the passed parameters as a pointer to or reference

244

Interfaces with Other Languages

parameter of the appropriate type, then use the pointer to access
the value indirectly.

Also, note that the C int type is machine specific. For the 8086 family of
microprocessors, the C int type is equivalent to the following types:

¢ INTEGER2 in Pascal

¢ INTEGER#2 in FORTRAN

o INTEGERC in Pascal

e INTEGER|[C]in FORTRAN

For any given processor and operating system, variables defined with the
last two types are equivalent to variables of the C int type as defined by
the Microsoft C Compiler for the same system. The last two types are
therefore more portable than the first two.

Tables 10.7 through 10.11 show integer data types and-their equivalents in
Pascal, C, and FORTRAN.

Table 10.7
Signed 1-Byte Integers

Language Data Type Notes

Pascal x:sint
x:wa..b For ¢ >=-127 and b
<=127
C char x When passed by reference
struct { When passed by value
char x;} x

FORTRAN None

245

Table 10.8

Microsoft C Compiler User’s Guide

Unsigned 1-Byte Integers

Language Data Type Notes
Pascal x:byte
x:wrd(a)..wrd(d) For0 <=a<=b
For b <= 255
x:{a,b,..n) For ord (n) < 256
C unsigned char x When passed by reference
struct { When passed by value
unsigned char x;}
X
FORTRAN CHARACTER#*1X FORTRAN has no unsigned
types, so you must use
CHARACTER*1; use the
ICHAR and CHAR
functions to transfer values.
Do not pass negative values.
Table 10.9

Signed 2-Byte Integers

Language Data Type Notes
Pascal x:integer2
x:integerc
x:integer If SINTEGER:2 (the
default) is in effect
C short x
int x Machine dependent
FORTRAN INTEGER=#*2X
INTEGER[C] X
INTEGER X If $STORAGE:2 is in

effect

246

Table 10.10
Unsigned 2-Byte Integers

Interfaces with Other Languages

Language Data Type Notes
Pascal x:word
x:wrd(a)..wrd(b) For b > 255
x:(a,b,..n) For ord (n) > 255
C unsigned short x
unsigned int x Machine dependent
FORTRAN INTEGER=*2 X FORTRAN has no unsigned

types, so you must use
INTEGER*2. Do not pass
negative values or values
greater than 32767. Note that
many unsigned operations can
be performed safely on
INTEGER*2 values.

Table 10.11
Signed 4-Byte Integers

Language Data Type Notes
Pascal x:integerd
x:integer If $SINTEGER:4 is in
effect
C long x
FORTRAN INTEGER#*4 X
INTEGER X If $STORAGE:4 (the

default) is in effect

C also has unsigned 4-byte integers. FORTRAN and Pascal do not. How-
ever, many unsigned arithmetic operations can be performed on signed vari-
ables, and will yield correct results. This level of type equivalence may be
sufficient for some applications.

247

Microsoft C Compiler User’s Guide

10.3.10.3 Boolean and Character Types

For Pascal Boolean values, the integer one (1) means true. Zero (0) means
false.

Tables 10.12 and 10.13 show how Boolean and character types, respec-
tively, are represented in Pascal, C, and FORTRAN.

Table 10.12
Boolean Types

Language Data Type Notes
Pascal x:boolean
C unsigned char x

FORTRAN CHARACTER=*1 X Use as for unsigned 1-byte
integers; 1=false and
O0=true. FORTRAN
LOGICAL types are not
equivalent. See tables 10.24
and 10.25 for FORTRAN
LOGICAL types.

Table 10.13
Character Types

Language Data Type

Pascal x:char
C unsigned char x
FORTRAN CHARACTER X

10.3.10.4 Real Numbers
C passes all real parameters by value and as double-precision values. To

ensure that your FORTRAN or Pascal routine handles C parameters
correctly, you have the following three options:

248

Interfaces with Other Languages

1. You can allow for the C conversions when you declare parameters to
the FORTRAN or Pascal procedure. This means that you must
declare all floating-point parameters as double-precision parameters

REAL#8 in FORTRAN, real8 in Pascal), and specify the
ALUE attribute in FORTRAN.

2. You can pass pointers to the parameters instead of the parameters
themselves. In the FORTRAN or Pascal routine, declare the passed
parameters as a pointer to the appropriate type, then dereference
the pointer to access the value.

3. To avoid expansion of a float value to a double, you can pass the
value as a structure. The members of structures do not undergo
type conversion when the structure is passed as a parameter. For
example, the following declaration defines a structure variable, arg,
with a single float member:

struct fptype {float a;} arg:

The structure variable arg can then be passed as a parameter.
Passing such a struct as a parameter in C is equivalent to pushing a

REAL#*4 in FORTRAN (except that FORTRAN normally passes

by reference) or a real4 value in Pascal.

Floating-point values returned to C from Pascal or FORTRAN are handled
as structured values.

Tables 10.14 and 10.15 show equivalent real types in Pascal, C, and
FORTRAN.

249

Microsoft C Compiler User’s Guide

Table 10.14

Single-Precision Real Numbers

Language Data Type Notes

Pascal x:reald
x:real If $real:4 (the default) is in effect
C float x
struct { When passed by value
float x;} x

FORTRAN REALX
REAL*4 X

Table 10.15

Double-Precision Real Numbers

Language Data Type Notes
Pascal x:real8
x:real If $real:8 is in effect
C double x
FORTRAN REAL*8 X or
DOUBLE
PRECISION X

10.3.10.5 Passing Strings

Pascal, FORTRAN, and C each store character strings in memory in a
different way. In order to pass strings from one language to another, you
must give the computer the appropriate information about how the string

is set up.

C strings are considered arrays of characters. The null (zero-value) charac-
ter marks the end of the string and is the last character of the array. For

example, the string

String of text

250

Interfaces with Other Languages

is indicated in C as
unsigned char str[]="String of text”

This is stored in memory as a 15-byte array: 14 bytes of significant text
(i-e., the string itself) and 1 null character that marks the end of the string:

[slefr[i]n]e] [olf] [e]e]x]t]w]

FORTRAN strings do not, have delimiters in memory. The length of the
string is determined in advance. The above string is written in FORTRAN
as

STR="'String of text'

It is stored in memory as 14 bytes of text:

[s[tlr]i[nfe] Joff] [tle[x]t]

Pascal has two forms of string: a fixed-length string type, STRING, which
is the same as the FORTRAN string type; and a variable-length string
type, LSTRING. Using LSTRING, the string above is designated as fol-

lows:

VAR STR: LSTRING (14):
STR := 'String of text':

It is stored in memory as 15 bytes. The first byte indicates the number of
bytes allocated in memory for the string; the remaining 14 bytes are the
string itself:

pe[s[elr]ine] Jolr] [t]e[x]¢]

Table 10.16 summarizes how each language handles string and array types.
The placeholder a in the table is a constant, and each type occupies a bytes.

261

Microsoft C Compiler User’s Guide

Table 10.16
String and Array Types

Language Type

Pascal ¢:STRING(a)
¢:ARRAY/[L..c| OF CHAR;
cLSTRING(a-1);

FORTRAN CHARACTER=*aC
CHARACTER=*1 C(a)

C unsigned char c[a]
struct cstr { unsigned char c[d];} ¢

Table 10.17 shows equivalent string types in each language.

Table 10.17

Strings

Language Data Type Notes

Pascal x:array[l..n] of char

C char x|n}; |

FORTRAN CHARACTER=*n x Not equivalent in future

releases of FORTRAN.

Not recomnmended.

INTEGER x ((n+ 1)/2) Can be equivalenced to a
CHARACTER variable
to allow access to
individual bytes. This
option will be equivalent
in future releases, as well
as in the present release.

Sections 10.3.10.5.1 through 10.3.10.5.3 explain how to pass strings from
one language to another.

252

Interfaces with Other Languages

10.8.10.5.1 Passing FORTRAN Strings to C and Pascal

FORTRAN strings have the same format in memory as Pascal STRINGs, so
you may pass them directly.

To pass FORTRAN strings to C, use the new C string feature. When a
standard FORTRAN string constant is followed by the character C, that
string is then interpreted as a C string constant. A null character is
automatically appended to the end of the string, and backslashes (\) are
treated as escapes. See the Microsoft FORTRAN Compiler User’s Guide for

information on the new C string feature.

Note

In subsequent releases of Microsoft FORTRAN, strings will be passed
differently. In versions 3.3 and all earlier versions, the length of a string
is not passed with the string. In later versions, the length of a string
will be passed with the string as a super-array type. These two methods
are incompatible.

If you are calling FORTRAN from C or Pascal and you are using
strings, your calling code may have to be changed for a later version of

Microsoft FORTRAN.

10.8.10.5.2 Passing Pascal Strings to C and FORTRAN

Since Pascal strings and FORTRAN strings have the same format in
memory, you can pass them directly.

To pass Pascal STRING types to C, use concatenation to add an extra
null byte to the end of the string. For example, if strg is a variable of type
STRING, the null byte can be added as follows:

strg:"String of text'"*CHR (0) ;

Then strg can be passed to any C function that expects a string argu-
ment.

To pass variables of type LSTRING to C and FORTRAN, you must con-
vert them to type STRING and handle the length byte yourself.

263

Microsoft C Compiler User’s Guide

10.8.10.5.8 Passing C Strings to Pascal and FORTRAN

To FORTRAN and Pascal, C strings are just arrays. When passing C
strings to Pascal and FORTRAN; allow room for the null byte at the end of
the string.

10.3.10.8 Pointers

Tables 10.18 through 10.20 show equivalent pointer types for each
language.

Table 10.18

Near Pointers

Language Data Type Notes

Pascal x:"t Machine dependent
ADR ¢

C t near * x

FORTRAN T OBJECT
INTEGER#*2 X

X=LOCNEAR(OBJECT)

Table 10.19

Far Pointers

Language Data Type

Pascal ADS t
C t % x
t far * x

FORTRAN T OBJECT
INTEGER*4 X
X=LOC(OBJECT)

T OBJECT
INTEGER*4 X
X=LOCFAR(OBJECT)

254

Interfaces with Other Languages

Table 10.20

Procedure Pointers

Language Data Type Notes

Pascal x:adsproc You must declare the
procedure publie so that

x:adsfune the ADS operator can get a
far address. The compiler
gives near addresses for
local routines.

o £(e))
FORTRAN T PROC EXTERNAL must be

EXTERNAL used if the procedure name

PROC is used other than to invoke

INTEGER=*4 X the function (in this

X=LOC(PROC) example, the address of the

T PROC procedure is taken).

EXTERNAL Otherwise, FORTRAN will

PROC create a new variable (with

INTEGER#*4 X the same name) and take

X=LOCFAR(PROC) the address of that variable,
rather than that of the
procedure.

When using procedure pointers and calling a FORTRAN or Pascal routine
from C with the C calling convention, use the following syntax to declare

the procedure pointers in the argument declaration section of your C pro-
cedure:

returntype (* z)(typeslist)

The returntype is the C type of the return value. The typeslist is given with
the same syntax used to declare the argument list of a pascal or fortran
routine from C. When using the Pascal calling convention, use the follow-
ing syntax:

returntype (pascal * z)(typeslist)

And when using the FORTRAN calling convention, use the following syn-
tax:

returntype (fortran * z)(typeslist)

265

Microsoft C Compiler User’s Guide

For example, you could pass a Pascal ADSPROC to the following C rou-
tine:

f(x)
short (pascal * x) (short):

In this example, x is a pointer to a pascal routine that takes a short and
returns a short.

10.3.10.7 Arrays, Super Arrays and Huge Arrays

FORTRAN arrays are allocated in column order. A (2, 1), for example, is
followed by A (3, 1). C and Pascal arrays are allocated in row order.
A(2,1), for example, is followed by A (2, 2).

The lower bound of indices to a C array is always 0. For FORTRAN, it is
always 1. For Pascal it can be any value.

For example, if you define a C array x[6] [3], an equivalent array in
FORTRAN would be X (3,6). An equivalent Pascal array would be
x:array[0..5,0..2]. If you specify element x[5, O] in Pascal, or ele-
ment x [5] [0] in C, the equivalent FORTRAN element is X (1,6).

Or, if you define a Pascal array as
x:array[2..6,2..3] of integer2
the equivalent FORTRAN array is
INTEGER*2 X (2,5)

The equivalent C array is

short x[5] [2]

FORTRAN large arrays (arrays specified with the HUGE attribute or the
$LARGE metacommand) cannot be used from Pascal or C.

In C, arrays are always passed by reference. If you use the C attribute from
FORTRAN, arrays are passed by value, like C structs. That is, the entire
array is laid out on the stack. To pass an array as an array (from
FORTRAN to C), you must use the REFERENCE attribute, or pass the
result of LOC, LOCNEAR, or LOCFAR.

2566

Interfaces with Other Languages

Following are the two methods for using C arrays of two or more dimen-
sions in FORTRAN or Pascal procedures:

1. Use the typedef statement to define a synonym, name, for the
array type [m][n]..., as follows:
typedef type name[m] [n]...:
Declare the FORTRAN or Pascal procedure as
extern void fortran f (name):
or use
extern void pascal £ (name)

In your main program, declare a variable of the type you have
defined (name), then use that variable as the argument of the
FORTRAN or Pascal procedure, as follows:

name X:
f(x);

2. Declare the FORTRAN or Pascal procedure as
extern void fortran f (fype[m][n]...):
or use
extern void pascal f (type[m][n]...):
In your main program, declare a variable as follows:
type x[m] [n]:

Then use that variable as the argument of the FORTRAN or Pascal
procedure, as follows:

£(x):

For example, using Method 1 above to pass a two-dimensional array, first
define the synonym shortarraytype as follows:

typedef short shortarraytypel2][2]:

The type shortarraytype is now equivalent to short [2] [2]. Declare
the Pascal procedure p by entering

extern void pascal p (shortarraytype):

In your main program, use the following to declare a variable x of type
shortarraytype, then use x as the argument to the procedure p:

267

Microsoft C Compiler User’s Guide

main ()
shortarraytype x:
p(x):
}

Tables 10.21 and 10.22 show equivalent array types for Pascal, C, and
FORTRAN.

Table 10.21
Arrays (Lower Bound of Pascal Array Is 0)

Language Data Type Notes

Pascal x:array
[0..,0..m] of
type

C type x[j+1][m+1] When passed by reference
struct { When passed by value

type
x[j-zll-li][m-l—l];} X

FORTRAN type x(m+1,j+1)

Table 10.22
Arrays (Lower Bound of Pascal Array Is Nonzero)

Language Data Type Notes
Pascal x:array [i.J,k..m] of
type
C type x[j-i+1][m-k+1] When passed by reference

struct { When passed by value
ty (ax'[j-i-i—l][m-
k—i—lT;} X

FORTRAN type x(m-k-+1,j-i+1)

258

Interfaces with Other Languages

A super array pointer is a near pointer to the start of an array, followed by
the upper bounds (in the same order as they are declared). Table 10.23
indicates how to specify a super array pointer from each language.

Table 10.23
Super Array Pointers

Language Data Type Notes
Pascal type v=super
array [0..%,0..%]
of
type
x:"v
C struct { type Set a equal to (Lst-dimension-of-
near *ptr; target — 1).
short a; Set b equal to (2nd-dimension-of-
short b;} x: target — 1).

FORTRAN None

10.3.10.8 Records and Structs

Pascal record types and C structs correspond fairly well. Variant records
are more difficult, but can be used if you declare the tag field as a structure
member, then build a union of all the variant parts.

In FORTRAN you can simulate a single instance of a record by using
EQUIVALENCE, but there is no way to replicate the instance or apply
such a structure to a parameter. If the record or struct contains only fields
of the same size, you can use an array. Otherwise, you need to define an
equivalence “group” with variables equivalenced so that they map to the
appropriate elements of the struct. If the whole structure is less than 127
bytes, you can use a character variable to represent the whole structure.
This means that you can assign a parameter with a single statement. This
approach results in inefficient code and programs that are difficult to fol-
low. It is recommended that you use Pascal and C to write interface pro-
cedures where possible. These could, for example, transiate the structure
into separate variables and scalars, which are easier to use with

FORTRAN.

259

Microsoft C Compiler User’s Guide

Note that you cannot pass a Pascal set type to FORTRAN.

Use Pascal records and C structs to correspond to FORTRAN COMPLEX
data types, as shown in Tables 10.24 and 10.25.

Table 10.24

Single-Precision Complex Numbers

Language Data Type

Pascal x:record
re, im:real;
end;

C struct

complex8 {
float re,im;} x

FORTRAN COMPLEXX

Table 10.25

Double-Precision Complex Numbers

Language Data Type

Pascal x:record
re, im:real8;
end;

C struct complex16

~ double re,im;} x

FORTRAN COMPLEX=*16 X

Pascal records and C structs can also be used to pass FORTRAN logical
values. For FORTRAN logical values, the integer one (1) means true. Zero
%Og)means false. Tables 10.26 and 10.27 give examples of passing

RTRAN logical values.

260

Interfaces with Other Languages

Table 10.26
Two-Byte LOGICAL Values

Language Data Type Notes

Pascal x:record
logical:boolean;
pad:

array[0..0] of
byte;
end;

C struct {
char logical;
char pad[1];
b %

FORTRAN LOGICAL=*2X

LOGICAL If $STORAGE:2 is
in effect

Table 10.27
Four-Byte LOGICAL Values

Language Data Type

Pascal x:record
logical:boolean;
pad:

array|(0..2] of
byte;
end;

C struct {
char logical;
char pad(3];

b x

FORTRAN LOGICAL=*4 X

261

Microsoft C Compiler User’s Guide

10.3.10.9 Procedural Parameters

Formal procedural arguments in Pascal and FORTRAN are compatible.
They are not compatible with procedure pointers in C.

However, Pascal and FORTRAN procedure arguments can be represented
by a C struct that mimics the Pascal/FORTRAN sequence.

If you are calling C from Pascal or FORTRAN, it is recommended that you
use C procedure pointers. If you want to pass a procedure to a Pascal or
FORTRAN procedure, you must use Pascal arguments, since neither Pascal
nor FORTRAN can call through procedure pointers. See Table 10.20 for
equivalent procedure-pointer types.

10.3.11 Return Values

FORTRAN and Pascal routines can return values to a C program. For the
C program to handle the return values correctly, the programmer must
understand the correspondence between data types in the different
languages.

The C compiler performs conversions on return values before they are actu-
ally returned to the calling procedure. These conversions are the same as
those given for parameters. Integral values shorter than an int are
expanded to int size, and float values are converted to double. These
types are discussed in sections 10.3.10.2, “Integers,” and 10.3.10.4, “Real
Numbers.”

The C compiler detects structured return values that are 4 bytes or less in
length and returns them as integers of the appropriate size.

10.3.12 Sharing Data

Pascal and C can refer to each other’s public data items, as long as you
specify appropriate attributes to use the correct naming conventions and
keywords to ensure correct storage allocation. (All Pascal static variables
should be declared with the near keyword in C.) FORTRAN COMMON
blocks are public data areas and can be referenced as external data objects
in C and Pascal. You can use the COMMON block names as the names of
struct variables in C or record variables in Pascal, for example. To access a
common block from Pascal, however, the common block must have the
NEAR attribute. Blank common has the public namme COMMQQ.
FORTRAN cannot access C data objects.

262

Interfaces with Other Languages

Alternatively, you can use the LOC procedures in FORTRAN to give the
address of a common block, pass the address to a C or Pascal procedure,
then use that address from C or Pascal. The following example shows how
this could be done:

INTERFACE TO SUBROUTINE CFUNC[C] (EXTP)
INTEGER*4 EXTP

END

COMMON/EXT/I,J

CALL CFUNC (LOC(I))

END

void cfunc (ext)
struct {long 1i,]j;}*ext

ext->1 = ext ->j;

}

You can use the following method when you have several common blocks to
set up:

SUBROUTINE SETADS (ADSEXT, ADSPAR, ADSBL)
INTEGER#4 ADSEXT, ADSPAR, ADSBL
COMMON/EXT/T1

COMMON/PAR /1 2

COMMON 13

ADSEXT=LOCEAR (I1)

ADSPAR=LOCFAR (I2)

ADSBL=LOCEAR (I3)

END

long *ext, #*par, *blank;
void fortran setads(long *#%, long *+, long **):
main()

{

long dummy;

setads (&ext, &par, &blank):

263

Microsoft C Compiler User’s Guide

ext [0] = 100000; /* Set FORTRAN common variable
*% I1 to 100000
*/

}

10.3.13 Input and Output

A given file can be opened by only one language at a time, except for the
standard output channel when that channel refers to the terminal. In this
case, each FORTRAN WRITE statement that refers to the terminal
should be followed by

WRITE (*, %)

if there is a possibility that a C or Pascal routine might write to the termi-
nal immediately thereafter. This will clear the carriage-control character.

10.3.14 Compiling and Linking

The order in which modules are linked is important. You must make sure
that you link them as follows:

1. If you are linking with the C floating-point library, it must be
specified first.

2. If you are using Pascal or FORTRAN, their math libraries must be
specified second. The math libraries for Pascal and FORTRAN are
identical, and need be specified only once when you are mixing
Pascal and FORTRAN.

3. If you are using Pascal or FORTRAN, their language libraries must
be specified third.

4. If you are using the C-language library, it must be specified last,
along with the code-helper library, LIBH.LIB.

264

Interfaces with Other Languages

10.3.15 FError Messages

Errors that occur during compile time are generated by the compiler for the
language in which the error occurs. Most run-time errors come from the
language in which the part of the program causing the error was written.
On the other hand, floating-point errors may come from any of the
languages used in the program. For Pascal and FORTRAN, these errors
are identical, However, for C, floating-point error messages are slightly
different, and there is no message number.

265

Appendixes

— o =|m gaQwe

ASCII Character Codes 269
Command Summary 271
The CL Command 289

Using EXEPACK, EXEMOD,
and SETENV 301

Using Exit Codes 309

Converting from Previous
Versions of the Compiler 317

Writing Portable Programs 345
Error Messages 363

267

Appendix A

ASCII Character Codes

Dec

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

Oct

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

Hex

00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
O0BH
0CH
O0DH
OEH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH

Chr

SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
Gs
RS
UsS

Dec

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

Oct

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

Hex

20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH

Chr

wn
]

1 - 4+ = V@oﬁ%:ﬂ: 3 -

OO N TR N O

A

Dec=Decimal, Oct=0ctal, Hex=Hexadecimal(H), Chr=Character, LF=Line feed

FF=Form feed, CR=Carriage return, DEL=Delete

269

Microsoft C Compiler User’s Guide

Appendix A (continued)

Dec

064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095

Oct

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

Hex

40H
41H
42H
43H
44H
45H
46H
47TH
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH

Chr

NN E <R IO TOZZ T RS IQEECQWR R

Dec

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Oct

140
141
142
143
144
145
146
147
150
151
152
1563
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Hex

60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
7TH
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH

Chr

’

TN W K g < e TN RATY O R g RS DR RO A6 o

DEL

Dec=Decimal, Oct=0ctal, Hex=Hexadecimal(H), Chr=Character, LF=Line feed

FF=Form feed, CR=Carriage return, DEL=Delete

Appendix B

Command Summary

B.1 Introduction 273

B.2 Compiler Summary 273

B.2.1 MSC Options 274

B.2.2 Pragmas 278

B.2.3 Standard Memory Models 278
B.2.4 Pointer and Integer Sizes 278
B.2.5 Segment Names 279

B.3 Linker Summary 280

B.3.1 Linker Command Characters 280
B.3.2 Linker Options 280

B4 LIB Summary 283

B.5 MAKE Summary 284

B.5.1 MAKE Description Files 284
B.5.2 MAKE Options 285

B.5.3 Macro Definitions with MAKE 285
B.5.4 MAKE Inference Rules 286

B.6 EXEPACK Summary 286

B.7 EXEMOD Summary 287

B.8 SETENV Summary 288

271

Command Summary

B.1 Introduction

This appendix summarizes the commands and options available with MSC
and the following Microsoft utilities: LINK, LIB, MAKE, EXEPACK,
EXEMOD, and SETENV.

B.2 Compiler Summary

Command Line
MSC sourcefile [,[objectfile] [,[sourcelistfile] [,[objectlistfile][]] [options] [5]

The compiler is invoked with the MSC command. Type MSC to be
prompted for responses, or use the command-line method to give informa-
tion to MSC. If you don’t give MSC all the information it needs on the
command line, it will prompt you for the remaining responses.

With the command-line method, sourcefile is the name of the C source file
and objectfile is the name of the object file produced by the compiler. The
optional sourcelistfile is a listing file showing numbered source lines, error
messages if encountered, and symbol-table information. The objectlistfile is
a listing file showing the object code. The options appear anywhere a space
can appear in the command line.

MSC uses three environment variables to locate the files it needs. Before
invoking MSC, use the MS-DOS PATH and SET commands to assign a

path name or names to the following variables:

Variable Types of Files:

PATH Executable compiler files
INCLUDE Include files

T™P Temporary files

LIB Library files

273

Microsoft C Compiler User’s Guide

B.2.1 MSC Options

The MSC options are listed in alphabetical order in this section. The dash
(~) can be used in place of the forward slash (/) to introduce the option if
you prefer. Some additional options are available with the CL command;

see Section C.4 of Appendix C, “The CL Command.”
Option Task

JAletter Sets the program configuration. The letter
may be S, M, C, L, or H, standing for
“small,” “medium,” “compact,” “large,”
and “huge” models, respectively. The de-
fault is /AS.

/Astring Sets the program configuration. The string
consists of three characters in any order,
one from each of the following groups:

Group Code Description

Small
Large

Code pointer size

Near
Far
Huge

SS equal to DS
SS not equal

to DS, DS loaded
for each module

SS not equal to
DS, DS fixed

Data pointer size

ca e e

Segment setup

2

/C Preserves comments when preprocessing a

file (use only with /E, /P, or /EP).

/Didentifier[=]string]] Defines identifier to the preprocessor. The
value is string or empty.

JE Preprocesses the source file, copying the
result to the standard output and inserting
#line directives.

/EP Preprocesses the source file, copying the

result to the standard output without
#line directives.

274

/Falfilename]
JFec]filename]
/F1[filename]
/Fofilename
JFs[filename]
/FPa

JFPec
JFPe8T
JFPi
/FPis7
/GO
/G1

/G2
/Ge

/Gs
/ Gt[[number]

Command Summary

Produces assembly listing.

Produces combined source-assembly listing.
Produces object listing.

Names the object file.

Produces the source-listing file.

Generates floating-point calls and selects
alternate math library.

Generates floating-point calls and selects
emulator (uses 8087 /80287 if one is
present).

Generates floating-point calls and selects
8087 /80287 library (requires an 8087 or
80287 at run time).

Generates in-line 8087 /80287 instructions
and selects emulator (uses 8087 or 80287 if
one is present).

Generates in-line 8087/80287 instructions
and selects 8087 /80287 library (requires an
8087 or 80287 at run time).

Generates 8086/8088 instructions.
Generates 80186/80188 instructions.
Generates 80286 instructions.
Generates the alternative
(FORTRAN/Pascal style) call/return
sequence and naming convention for an
entire module.

Removes calls to stack-probe routine.
Places data items greater than number
bytes in new segment (256 bytes is the

default); relevant only in compact-, large-,
and huge-model programs.

275

Microsoft C Compiler User’s Guide

/Gw

/Hnumber

JHELP

/Idirectory

/J

/ND datasegmentname
/NM modulename
JNT textsegmentname

/ Ostring

/P

276

Generates Windows applications informa-
tion Ssee your Microsoft Windows Software
Development Kit for more information).

Restricts significant characters of external
names to number characters.

Lists the most common MSC options to the
standard output. Any combination of
uppercase and lowercase letters will work
with this option; for example, (help or
/HelP would work equally well.

Adds directory to the top of the list of
directories to be searched for include files.

Changes the default for char type from
signed to unsigned.

Sets the data segment name.
Sets the module name.
Sets the text segment name.

Controls optimization. The string consists
of one or more of the following characters:

Code Description

d Disables optimization

a Relaxes alias checking

s Favors code size

t Favors execution time (default)
b Maximizes optimization

(equivalent to /Oas /Gs)
The default is /Ot.
Preprocesses the source file and sends out-

put to file with the base name of the source
file and the extension .1

/u

/Utdentifier

[Vstring

/w
[/ Wnumber

/X

/Za

/Zd

/Ze

/Zg

/Zi

/21

/Zp
/Zs

Command Summary

Removes definitions of all four predefined
identifiers (MS_DOS, M_188,
M_186:M, and NO_EXT_KEYS).

Removes definition of the given predefined
identifier.

Copies string to the object file.
Suppresses compiler warning messages.

Sets the output level (number = 0, 1, 2, or
3) for compiler warning messages.

Ignores the list of “standard places” in the
search for include files.

Disables language extensions. These include
cdecl, far, fortran, huge, near, pascal,
and other capabilities.

Includes line-number and limited symbolic
information in object file.

Enables language extensions. These include
cdecl, far, fortran, huge, near, pascal,
and other extensions. This option is the
default.

Generates function declarations from func-
tion definitions and writes declarations to
standard output.

Enables full symbolic information for use
with the Microsoft CodeView symbolic
debugger.

Removes default library information from
object file.

Packs structure members.

Performs syntax check only.

277

Microsoft C Compiler User’s Guide

B.2.2 Pragmas
The Microsoft C Compiler supports the check_ stack pragma; this pragma

instructs the compiler to turn stack checking on or off for selected routines,
as explained in Section 9.10.1, “Removing Stack Probes.”

B.2.3 Standard Memory Models

Table B.1 defines the number of text and data segments for small, medium,
compact, large, and huge memory models.

Table B.1
Text and Data Segments in Standard Memory Models

Model Text Segments Data Segments

Small One One
Medium One per module One
Compact One One default data segment
Large One per module One default data segment*
Huge One per module One default data segment*

* The number of additional data segments depends on the program
requirements.

B.2.4 Pointer and Integer Sizes

Table B.2 defines the sizes (in bits) of data pointers, text pointers, and
integers (int type) in the three standard memory models.

278

Command Summary

Table B.2

Pointer and Integei' Sizes
in Standard Memory Models

Model Data Pointer Text Pointer Integer
Small 16 16 16
Medium 16 32 16
Compact 32 16 16
Large 32 32 16
Huge 32 32 16

B.2.5 Segment Names

Table B.3 lists the default text and data segment names in the standard
memory models. The default modulename is the file name.

Table B.3

Segment Names in Standard Memory Models

Model Text Data
Small - TEXT -DATA
Medium modulename_ TEX'T ~-DATA
Compact _TEXT _DATA"
Large modulename_ TEXT _DATA’
Huge modulename_ TEXT _DATA"

* Name of default data segment; other data segments have unique, private
names

279

Microsoft C Compiler User’s Guide
B.3 Linker Summary

Command Line

LINK objectfiles [,[ezecutablefile] {[,[mapfile] [,[lsbraryfiles][]] [options] [;]

The Microsoft Overlay Linker, LINK, recognizes the command characters
and options listed in this section. The files to be linked can be given either
in response to prompts, in a command line, or in a response file.

If you use a command line, objectfiles are the names of object files, and
ezxecutablefile is the executable program file produced by LINK. The
optional mapfile is a listing of the names and addresses of segments, and
optionally, public symbols. The optional libraryfiles are library files con-
taining modules that must be linked with the object files. The options can
appear anywhere in the command line.

LINK uses the environment variable LIB to locate library files. Before
invoking LINK, use the MS-DOS SET command to assign a path name or
names to the LIB variable.

B.3.1 Linker Command Characters
Character Task

+ Use the plus sign (+) to separate entries and to extend
the current line in response to the “Object Modules” and
“Libraries” prompts.

To select default responses to the remaining prompts,
use a single semicolon (;) followed immediately by a
RETURN any time after the first prompt.

CONTROL-C Type CONTROL-C to interrupt the link session and return
to MS-DOS.

B.3.2 Linker Options

Options control various linker functions. Options must be typed at the end
of a prompt response, regardless of which method is used to start LINK.
Options may be grouped at the end of any response, or may be scattered at
the end of several responses. If more than one option is typed at the end of
a response, each option must be preceded by a forward slash (/).

280

Command Summary

All options may be abbreviated. The only restrictions are that an abbrevia-
tion must be sequential from the first through the last letter typed and
must uniquely identify the option.

Some linker options take numerical arguments. A numerical argument can
be any of the following:

e A decimal number from 0 to 65535,

e An octal number from 0 to 0177777. A number is interpreted as
octal if it starts with a zero. For example, the number 10 is a
decimal number, but the number 010 is an octal number,
equivalent to 8 in decimal notation.

e A hexadecimal number from 0 to OxFFFF. A number is interpreted
as hexadecimal if it starts with Ox. For example, 0x10 is a hexa-
decimal number, equivalent to 16 in decimal notation.

The linker options are listed in alphabetical order below. The options are
abbreviated to the minimum length that distinguishes them from other
LINK options:

Option Task
/CO Links a special-format executable file containing the

symbolic information needed by the Microsoft Code-
View debugger.

/ CP:number Sets the maximum memory allocation of program to
number.
/DO Enforces the following loading order:

1. All segments with a class name ending with
CODE.

2. All other segments outside of DGROUP.

3. GROUP segments, in this order: (a) any seg-
ments of class BEGDATA (this class name is
reserved for Microsoft use); (b) any segments not
of class BEGDATA, BSS, or STACK; (c) seg-
ments of class BSS; (d) segments of class

STACK.

281

Microsoft C Compiler User’s Guide

282

/DS

JE
JHE
JHI

/L
/M

/NOD
J/NOG

JNOI

/O:number

/P
/SE:number

/ST :number

Tells LINK to load all data at the high end of the
data segment. Do not use this option with C
programs.

Packs the executable file during linking.
Lists all LINK options to standard output.

Causes the run file to be placed as high as possible in
memory. Do not use this option with C programs.

Includes in the list file the line numbers and addresses
of the source statements in the input modules.

Creates a listing file containing all public (global)
symbols defined in the input modules.

Causes default libraries to be ignored.

Provides compatibility with previous versions of
LINK. Do not use this option with C programs.

Causes the linker to distinguish between uppercase
and lowercase letters.

Sets the overlay interrupt number to number. In gen-
eral, you should not use this option with C programs,
with the exceptions outlined in Section 4.6.12, “Set-
ting the Overlay Interrupt.”

Causes LINK to pause in the link session so you can
change disks.

Sets the number of segments the linker allows a pro-
gram to have. The default is 128.

Sets the stack size to number, which may be any posi-
tive value up to 65536 bytes. The default for C pro-
grams is 2K (2048 bytes).

Command Summary

B.4 LIB Summary

Command Line

LIB oldlibrary [/PAGESIZE:number] [commands] [,[listfile] [,[newltbrary]]] [5]

In the LIB command line, oldlibrary is the name of the library file to be
processed, and commands are the commands indicating operations to be
performed on the library file. The /PAGESIZE option can be used to
change the page size (16 bytes by default). The listfile is a listing of modules
and symbols within the library, and newlibrary is the name for a new library
if you want to create one.

The following commands are recognized by the Microsoft Library Manager,
LIB:

Command Task

+ Appends an object file or library file to the given library

— Deletes a module from the library

—t Replaces a module by deleting a module and appending
an object file with the same name

* Extracts a module from the library and saves it in an
object file

— Extracts a module from the library and deletes it from
the library after saving it in an object file

; Uses default responses to remaining prompts

& Extends current physical line; repeats command prompt

CONTROL-C Terminates library session

283

Microsoft C Compiler User’s Guide
B.5 MAKE Summary

Command Line

MAKE [options] [macrodefinitions] makefilename

The MAKE utility automates the process of updating program files. In the
command line, options are one or more of the options described in Section
B.5.2. The macrodefinitions are one or more macro definitions, as described
in Section B.5.3. The makefilename is the name of a MAKE description
file. A MAKE description file, by convention, has the same file name (but
with no extension) as the program it describes. Although any file name can
be used, this convention is preferred.

B.5.1 MAKE Description Files

A MAKE description file consists of one or more target/dependent descrip-
tions. Each description has the following general form:

targetfile : dependentfiles [# comment]
[# comment]
command [# comment]
[command]] [# comment]

The targetfile is the name of a file that may need updating, dependentfile is
the name of a file on which the target file depends, and command is the
name of an executable file or an MS-DOS internal command. If a comment
is on a separate line, the comment specifier (#) must be the first character
on the line.

One way to remember the MAKE description format is to think of it as an

“if-then” statement in the following format: if a dependentfile is older than
the targetfile, or a dependentfile does not exist, then do commands.

284

Command Summary

B.5.2 MAKE Options

The options available with the MAKE command modify its behavior as
follows:

Option Effect

/D Displays the last modification date of each file as the file
is scanned

/1 Ignores exit codes returned by programs called from the

MAKE description file; MAKE continues execution of
the next lines of the description file despite the errors

/N Displays commands that would be executed by a descrip-
tion file, but does not execute the commands

/S Executes in “silent” mode; lines are not displayed as
they are executed

B.5.3 Macro Definitions with MAKE

Macro definitions let you associate a symbolic name with a particular value.
The form of a macro definition is as follows:

name=value

The form for using a previously defined macro definition is as follows:
$ (name)

Occurrences of the pattern $(name) in the description file are replaced with
the specified value. The name is converted to uppercase letters. If you define
a macro name but leave value blank, value will be a null string. In the
MAKE description file, each macro definition must appear on a separate
line. Any white space (tab and space characters) between name and the
equal sign (=), or between the equal sign and value, is ignored. Any other
white space is considered part of value. To include white space in a macro
definition on the command line, enclose the entire definition in double quo-
tation marks (").

If the same name is defined in more than one place, the following order of
precedence applies:

2856

Microsoft C Compiler User’s Guide

1. Command-line definition
2. Description-file definition

3. Environment definition

MAKE recognizes the following special macro names and will automati-
cally substitute a value for each:

Narme Value Substituted

§ % Base-name portion of the target (without the extension)
f@ Complete target name

§ e Complete list of dependencies

B.5.4 MAKE Inference Rules

Inference rules take the following form:

.dependenteztension.targetestension
command
[command]

For lines that do not have explicit commands, MAKE looks for a rule that
matches both the targetextension and the dependentextension. If it finds
such a rule, MAKE performs the commands given by the rule.

B.6 EXEPACK Summary

Command Line

EXEPACK ezecutablefile outputfile
The EXEPACK utility compresses sequences of identical characters from

the given executablefile and optimizes the relocation table. The compressed
file is written to the oufputfile, and the original file is unmodified.

286

Command Summary

B.7 EXEMOD Summary

Command Line

EXEMOD ezecutablefile [/H] [/STACK num] [/MIN num] [/MAX num]

The EXEMOD utility modifies fields in the header according to instruc-
tions given on the command line. To display the header fields without
modifying them, give the executablefile without any options.

Option
/STACK num

/MIN num

/MAX num

/H

Task

Allows you to set the size of the stack for your
program by setting the initial SP (stack pointer)
value to num, where num is a hexadecimal value
in bytes. The minimum allocation value is
adjusted upward if necessary. This has the same
effect as the /STACK option for the linker,
except that with EXEMOD the file is already
linked.

Sets the minimum allocation value to num,
where num is a hexadecimal value in paragraphs.
The actual value set may be different from the
requested value if adjustments are necessary to
accommodate the stack.

Sets the maximum allocation to num, where num
is a hexadecimal value in paragraphs. The max-
imum allocation value must be greater than or
equal to the minimum allocation value.

Displays the current status of the MS-DOS pro-
gram header. This has the same effect as entering
EXEMOD without any options. The /H option
should not be used with other options.

287

Microsoft C Compiler User’s Guide
B.8 SETENY Summary

Command Line

SETENYV filename [environmentsize]

The SETENYV utility is used to modify COMMAND.COM in order to
increase the size of the environment table. Normally, filename specifies
COMMAND.COM. It must be a valid, unmodified copy of
COMMAND.COM, though it could have a different name if you renamed
it. The optional environmentsize is a decimal number specifying the size in
bytes of the new allocation. COMMAND.COM normally allocates 10
paragraphs (160 bytes). The specified environmentsize will be rounded up to
the nearest paragraph multiple.

If environmentsize is not given, SETENYV will report the value that the
COMMAND.COM file is currently allocating for the environment table.

288

Appendix C
The CL Command

C1
C.2
C.3
C.4
C.5

Introduction 291

Command Syntax and Options 291
Linking with the CL. Command 294
Additional Options 296
XENIX-Compatible Options 297

289

The CL Command

C.1 Introduction

This appendix summarizes the CL command. The CL command can be
used instead of the MSC and LINK commands to invoke the compiler and
linker. It is similar to the ce interface used on XENIX and UNIX systems;
therefore, it may be familiar to some users.

CL uses four environment variables to locate the files it needs. Before in-
voking CL, use the MS-DOS PATH and SET commands to assign a path

name or names to the following variables:

Variable Types of Files

PATH Executable compiler files
INCL.UDE Include files

TMP Temporary files

LIB Library files

C.2 Command Syntax and Options

Command Line
CL [[[options] filenames [~link libraryfield]]

Each option in the command line is a command option, and each filename
specifies a file to be processed. You can give more than one option or file
name, but you must set off each item with one or more spaces. The ~link
option allows you to pass information to the linker; see Section C.3, “Link-
ing with the CL. Command,” for a description of the kinds of data you can
pass in the libraryfield.

If you give the CL: command with no arguments, CL displays a summary of
the CL command-line syntax. If you provide arguments, each filename
must be the name of a C-language source file or an object file. If the file
name is for a source file, the file name must include the extension .c or .C.
When CL processes the file, it looks at the file-name extension to determine
whether it should start processing at the compiling or linking stage. Any
files ending with .c or .C are compiled; files with any other extension or no
extension are assumed to be object files.

291

Microsoft C Compiler User’s Guide

You can use the MS-DOS “wild card” characters (? and *) in file names

on the CL command line. The CL command expands these characters in
the same manner that MS-DOS does. See your MS-DOS documentation for
details.

An option consists of a dash () followed by a combination of one or more
letters that have special meaning to CL. You can use a forward slash (/)
instead of the dash as an option character if you prefer. The dash is used in
this chapter for XENIX compatibility. All options available with the MSC
command are also available with CL.

Since you can process more than one file at a time with the CL command,
the order in which you give listing options (the —F group of options) is im-
portant. The —Fa, —F¢, ~F1, —F's, and —Fo options available with the
MSC command are also available with CL. In addition, you can use the
~Fe option to name the executable file produced in the linking stage, and
the —F'm option to create a map file. The —F options that can be used with
the CL command are summarized in Table C.1. Some additional rules that
apply to arguments of the —F options when used with the CL command are
given in Table C.2.

Table C.1

Summary of —F Options
Default Default

Option Task File Name Extension

-Fs Produces source listing Base name of source file LST
plus .LST

~Fa Produces assembly listing ~ Base name of source file .ASM
plus .ASM

-Fe Produces combined Base name of source file .COD

source-assembly listing plus .COD

~Fe Names the executable file Base name of first source EXE
or object file on
command line plus .EXE

-F1 Produces object listing Base name of source file .COD
plus .COD

~Fm Creates map file Base name of first source MAP

292

or object file on the
command line plus

.MAP

Table C.1 (continued)

The CL Command

Default Default
Option Task File Name Extension
~Fo Names object file Base name of source file .OBJ

plus .OBJ

* The default file name for the ~Fs,~Fa,~Fe¢,-F], and -Fm options is used when the option is
given with no argument or with a directory name as argument. The default file name for the
—Fe and ~Fo options is used when the option is not given, or when a directory name is given
as the argument to the option.

Table C.2

Arguments to —F Options

File-Name Path-Name No
Options Argument Argument Argument
~Fa, —Fe, -Fl, Creates a listing Creates listings Creates listings
-Fs for next source in the given in the default
file on command directory for directory for
line; uses default every source file every source file
extension if no listed after the listed after the
extension is option on the option on the
supplied command line; command line;
uses default uses default
names names
~Fe Uses given file Creates Not applicable;
name for the executable file in argument is
executable file; the given required
uses default directory; uses
extension if no default name
extension is
supplied
—Fm Uses given file Creates map file Uses default

name for the
map file; uses
default
extension if no
extension is
supplied

in the given
directory; uses
default name

name

293

Microsoft C Compiler User’s Guide

Table C.2 (continued)

File-Name Path-Name No
Options Argument Argument Argument
-Fo Uses given file Creates object Not applicable;

name as the files in the given argument is

object-file name directory for required

for the next every source file

source file on listed after the

command line; option on the

uses default command line;

extension if no uses default

extension is names

supplied
Important

No spaces are allowed between the option and the argument (if any) for

any of the —Fz options.

Unlike the MSC command, the CL command invokes the linker as well as
the compiler. By default, CL automatically performs linking; you can over-
ride this with the —c option, described in Section C.4, “Additional
Options.” You can also pass your own arguments to the linker, in addition
to the default arguments given by CL. This is described in Section C.3,
“Linking with the CL. Command.”

C.3 Linking with the CL. Command

By default, the CL command invokes the linker after compiling. You can
override the default and cause CL to stop after compiling by giving the —c
(compile only) option.

The CL Command

The CL command uses the response-file method of invoking the linker. By
default, it builds the following response file:

LINK objectfiles [[/CO]J
basename /NOI
NUL;

Note that, by default, the “Libraries” field is not given. The names of the
default libraries (the standard C library of the appropriate memory model,
plus the appropriate floating-point library as determined by the floating-
point option used) are encoded in the object file. The linker searches for the
default libraries in the current working directory, then in the directories
specified in the LIB environment variable, if any.

The objectfiles are all object files produced in the compiling stage of the CL
command, plus any object files specified on the CL command line. The
/CO option (for the Microsoft CodeView symbolic debugger) is added to
the first line of the response file if the —Zi option is given on the CL com-
mand line. The /NOI option tells the linker not to ignore case; uppercase
and lowercase letters are considered different. By default, basename is the
name supplied for the executable file; it corresponds to the base name of the
first source or object file on the CL command line. However, you can pro-
vide a different name by using the —Fe option. By default, no map file is
produced, since the name NUL is provided in the third field. Note, how-
ever, that the —Fm option can be used in the CL command to override the
default and produce a map file. A map file is also produced when the —Zd
option is given on the CL command line; with —~Zd, CL builds the follow-
ing response file:

LINK objectfiles [[/LI]
basename /NOI

basename;

You can supply your own responses for the “Libraries” field by using the
~link option. This option, if included, must be the last item on the CL
command line. Any libraries specified in the libraryfield are searched before
the default libraries.

The lLibraryfield can contain one or more of the following:

e A path name

The linker searches the given path name for the default libraries
before searching directories given by the LIB variable.

295

Microsoft C Compiler User’s Guide

e Additional or alternate library names

If a path name is included with the library name, only that path
name is searched. Otherwise, the linker uses the standard library
search path.

e Floating-point library or libraries
Any floating-point cal