

About the Microsoft C Compiler

Welcome to the Microsoft® C Compiler for MS-DOS\:§:. Microsoft C is a full
implementation of the C language, a language known for its efficiency,
economy, and portability.

Some of the major features and strengths of this 4.0 release of the Microsoft
C Compiler are listed below:

• Advanced optimization capabilities. Optimization is performed au­
tomatically whenever you compile. Command-line options are
available to select alternative optimization procedures or to turn off
optimization in the early stages of program development.

• Compatibility with both the 286 XENIX® operating system and the
developing American National Standards Institute (ANSI) C stan­
dard.

• The Microsoft Code ViewlM window-oriented symbolic debugger that
includes such features as popup menus, mouse support and single­
keystroke commands.

• MAKE, the Microsoft Program Maintenance Utility, which
automatically maintains high-level-language programs.

• Use of all available memory for the symbol table, allowing the com­
pilation of much larger programs.

• Implementation of register variables to optimize processing.

• Five memory models-small, compact, medium, large, and huge--­
that let you set up your program in the most efficient way, taking
advantage of the segmented architecture of the Intel~' 8086 family of
processors.

• The ability to combine features from different memory models in
"mixed-model" programs.

• More than 200 run-time library routines to provide you with an ex­
tensive base of built-in functions for use in your C programs. The
MS-DOS C run-time library is designed to make writing portable
programs easier by providing compatibility with the XENIX rUIl­

time library for 80286 systems, most of the UNIXTM System V li­
brary, and increased support of the forthcoming ANSI standard.

• A simple command structure with a flexible set of options to accom­
modate all levels of programming experience.

• Linking of C routines with object files created with Microsoft FOR­
TRAN (versions 3.3 and later), Microsoft Pascal (versions 3.3 and
later) or Microsoft Macro Assembler. This allows you to mix these
different languages to get the best features of each.

• Three math libraries that allow you to generate in-line 8087/80287
instructions or floating-point calls.

• Inclusion of C start-up code to allow modification of initial values.

• Support for MS-DOS path names and input/output redirection.

• Support for file sharing and record/file locking. This gives you MS­
DOS network support and IBM local area network support.

• A broad range of numbered error and warning messages to help you
locate errors and potential problems. A special command-line op­
tion lets you adjust the level of warning messages to suit your own
needs.

Package Contents

Your Microsoft C Compiler package contains the following programs,
stored on floppy disks:

• The compiler software

• LINK, the Microsoft Overlay Linker utility

• CODEVIEW, a symbolic debugger

• LIB, the Microsoft Library Manager utility

• MAKE, the Microsoft Program Maintenance Utility

• EXEP ACK, the Microsoft EXE file compression utility

• EXEMOD, the Microsoft EXE file header utility

• SETENV, the Microsoft environment expansion utility

Three documentation binders are included with the package.

System Requirements

To use the Microsoft C Compiler, your machine must run MS-DOS Version
2.0 or later. You must have at least two double-sided disk drives and a
minimum of 260K (kilobytes) of available memory (the available user
memory can be determined using the MS-DOS CHKDSK utility); a hard
disk is recommended for this product. You must use Microsoft LiNK Ver­
sion 3.0 or later (included in this package). You cannot use earlier versions
of Microsoft LINK with the compiler.

About These Manuals

The three documentation binders in your Microsoft C Compiler package
hold the four manuals listed below:

• Microsoft C Compiler User's Guide

The Microsoft C Compiler User's Guide gives you the information
you need to set up and operate the Microsoft C Compiler and ex­
plains how to compile, link, and run your C programs. Refer to the
Microsoft C Compiler User's Guide when you have questions about
invoking the compiler and linker or about this particular implemen­
tation of C on MS-DOS.

• Microsoft C Compiler Language Reference

The Microsoft C Compiler Language Reference defines the C
language as implemented by Microsoft .. Use the Microsoft C
Compiler Language Reference when you have questions about the
rules or behavior of the C language.

• Microsoft C Compiler Run- Time Library Reference

The Microsoft C Compiler Run- Time Library Reference describes the
run-time library routines provided for use in your C programs. The
first part of the Microsoft C Compiler Run- Time Library Reference
gives an overview of the run-time library, while the second section
presents the routines in alphabetical order for quick reference.

• Microsoft Code View

Microsoft Code View explains how to use the Code View window­
oriented, source-level symbolic debugger, to examine your programs
and locate program errors.

Microsoft® C Compiler
for the MS-DOS® Operating System

User's Guide

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreemen t. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1984, 1985, 1986

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen­
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS, MS-DOS, and XENlX are registered trademarks of Microsoft
Corporation. CodeView and The High Performance Software are trademarks of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

UNIX is a trademark of .LA~T&T Bell Laboratories.

Document Number 410840001- 400-R03-0486
Part Number 048-014-034

Contents

1 Introduction 1

1.1 Overview 3
1.2 About This Manual 4
1.3 New Features 6
1.4 Notational Conventions 9
1.5 Learning More About C 11
1.6 Reporting Problems 12

2 Getting Started 15

2.1 Introduction 17
2.2 Backing Up Your Disks 17
2.3 Disk Contents 18
2.4 Quick Hard-Disk Setup Procedure 22
2.5 Quick Floppy-Disk Setup Procedure 25
2.6 Understanding the Compiler Software 30
2.7 Setting Up the Environment 34
2.8 Setting Up Your CONFIG.SYS File 38
2.9 Using an 8087 or 80287 Coprocessor 39
2.10 Using an 80186, 80188, or 80286 Processor 40
2.11 Converting Existing C Programs 40
2.12 Organizing Your Software 40
2.13 Practice Session 41
2.14 Using Batch Files 46

3 Compiling 49

3.1 Introduction 51
3.2 Running the Compiler 52
3.3 Listing the Compiler Options 62
3.4 Naming the Object File 63
3.5 Producing Listing Files 64
3.6 Controlling the Preprocessor 70

iii

Contents

3.7
3.8
3.9
3.10
3.11
3.12
3.13

Syntax Checking 76
Selecting Floating-Point Options 79
Using 80186, 80188, or 80286 Processors
Understanding Error Messages 85
Preparing for Debugging 89
Optimizing 90
Compiling Large Programs 92

4 Linking 95

4.1 Introduction 97
4.2 Running the Linker 97
4.3 Linking C Program Files 105
4.4 Listing-File Format 107
4.5 Using Overlays 109
4.6 Using Options to Control the Linker 111
4.7 How the Linker Works 123

84

5 Running C Programs on MS-DOS 129

5.1 Introduction 131
5.2 Passing Command-Line Data to a Program 131
5.3 Returning an Exit Code 136
5.4 Suppressing Null-Pointer Checks 137

6 Managing Libraries 139

6.1 Introduction 141
6.2 Overview of LIB Operation 142
6.3 Running LIB 143
6.4 Library Tasks 150

7 Maintaining Programs with MAKE 157

7.1 Introduction 159
7.2 Using MAKE 159
7.3 wlaintaining a Program: an Example 167

iv

Contents

8 Working with Memory Models 169

8.1 Introduction 171
8.2 Using the Standard Memory Models 173
8.3 Using the near, far, and huge Keywords 177
8.4 Creating Customized Memory Models 185

9 Advanced Topics 191

9.1 Introduction 193
9.2 Disabling Special Keywords 193
9.3 Packing Structure Members 193
9.4 Restricting Length of External Names 194
9.5 Labeling the Object File 195
9.6 Suppressing Default-Library Selection 195
9.7 Changing the Default char Type 196
9.8 Controlling Stack and Heap Allocation 197
9.9 Controlling Floating-Point Operations 198
9.10 Advanced Optimizing 201
9.11 Controlling the Function-Calling Sequence 203
9.12 Controlling Binary and Text Modes 205
9.13 Setting the Data Threshold 206
9.14 Naming Modules and Segments 207
9.15 Compiling for Windows Applications 209

10 Interfaces with Other Languages 211

10.1 Introduction 213
10.2 Assembly-Language Interface 213
10.3 Mixed-Language Programming 229

Appendixes 267

A ASCn Character Codes 269

v

Contents

B Command Summary 271

B.l Introduction 273
B.2 Compiler Summary 273
B.3 Linker Summary 280
B.4 LIB Summary 283
B.5 MAKE Summary 284
B.6 EXEP ACK Summary 286
B.7 EXEMOD Summary 287
B.8 SETENV Summary 288

C The CL Command 289

C.l Introduction 291
C.2 Command Syntax and Options 291
C.3 Linking with the CL Command 294
C.4 Additional Options 296
C.5 XENIX-Compatible Options 297

DUsing EXEP ACK, EXEMOD, and SETENV 301

D.1
D.2
D.3
D.4

Introduction 303
The EXEPACK Utility
The EXEMOD Utility
The SETENV Utility

303
304

307

E Using Exit Codes 309

E.1 Introduction 311
E.2 Exit Codes with MAKE 311
E.3 Exit Codes with MS-DOS Batch Files 311
EA Exit Codes for Programs

in the C Compiler Package 312

F Converting from Previous
Versions of the Compiler

F.1 Introduction 319
F.2 Differences between Versions 3.0 and 4.0 319
F.3 Differences Between Version 4.0

and Versions Prior to 3.0 324

vi

Contents

G Writing Portable Programs 345

G.1 Introduction 347
G.2 Program Portability 348
G.3 Machine Hardware 348
GA Compiler Differences 354
G.5 Environment Differences 358
G.6 Portability of Data 359
G.7 Byte-Ordering Summary 360

H Error Messages 363

H.l Introduction 365
H.2 Run-Time Error Messages 365
H.3 Compiler Error Messages 371
HA LINK Error Messages 410
H.5 Library-Manager Error Messages 417
H.6 MAKE Error Messages 421
H.7 EXEP ACK Error Messages 423
H.8 EXEMOD Error Messages 424
H.9 SETENV Error Messages 425

Index 427

vii

Figures

Figure 10.1 Segment Setup in C Programs 214

Figure F.1 Version 2.03 Stack Frame Setup 338

Figure F.2

Figure F.3

Figure F.4

viii

Version 3.0 Stack Frame Setup 339

Version 2.03 Layout for the Sand P Models

Layouts for the 3.0 and 4.0 Versions 343

343

Tables

Table 5.1

Table 8.1

Table 9.1

Table 9.2

Table 10.1

Argument Variables 132

Addressing of Code and Data
Declared with near, far, and huge

Using the check_ stack Pragma

Segment-Naming Conventions

Segments, Groups, and Classes
for Standard Memory Models

178

202

208

217

Table 10.2 C Return Value Conventions 223

Table 10.3 Specifying Calling Conventions 231

Table 10.4 Passing Parameters With C Calling Conventions 232

Table 10.5 Passing Parameters With Pascal Calling Conventions 234

Table 10.6 Passing Parameters With
FORTRAN Calling Conventions 234

Table 10.7 Signed I-Byte Integers 245

Table 10.8 Unsigned I-Byte Integers 246

Table 10.9 Signed 2-Byte Integers 246

Table 10.10 Unsigned 2-Byte Integers 247

Table 10.11 Signed 4-Byte Integers 247

Table 10.12 Boolean Types 248

Table 10.13 Character Types 248

Table 10.14 Single-Precision Real Numbers 250

Table 10.15 Double-Precision Real Numbers 250

Table 10.16 String and Array Types 252

Table 10.17 Strings 252

Table 10.18 Near Pointers 254

Table 10.19 Far Pointers 254

ix

Table 10.20 Procedure Pointers 255

Table 10.21 Arrays (Lower Bound of Pascal Array Is 0) 258

Table 10.22 Arrays (Lower Bound of Pascal Array Is Nonzero) 258

Table 10.23 Super Array Pointers 259

Table 10.24 Single-Precision Complex Numbers 260

Table 10.25 Double-Precision Complex Numbers 260

Table 10.26 Two-Byte LOGICAL Values 261

Table 10.27 Four-Byte LOGICAL Values 261

Table B.1

Table B.2

Text and Data Segments in Standard Memory Models

Table B.3

Table C.1

Table C.2

Table C.3

Table G.1

Table G.2

Table H.1

Table H.2

x

Pointer and Integer Sizes
in Standard Memory Models 279

Segment Names in Standard Memory Models

Summary of -F Options 292

Arguments to -F Options 293

XENIX Options Accepted by the CL Command

Byte Ordering for Short Types 360

Byte Ordering for Long Types 361

Program Limits at Run Time 371

Limits Imposed by the C Compiler 409

279

297

278

Chapter 1

Introduction

1.1 Overview 3
1.2 About This Manual
1.3 New Features 6
1.4 Notational Conventions
1.5 Learning More About C
1.6 Reporting Problems

4

9
11

12

1

Introd uctio n

1.1 Overview

The C language is a powerful general-purpose programming language that
can generate efficient, compact, and portable code. The Microsoft@ C Com­
piler for the MS-DOS@ operating system is a full implementation of the C
language as defined by its authors, Brian W. Kernighan and Dennis M.
Ritchie, in The C Programming Language. Microsoft Corporation is ac­
tively involved in the development of the ANSI (American National Stan­
dards Institute) standard for the C language; thIS version of Microsoft C
attempts to anticipate and conform to the forthcoming standard.

Microsoft C offers several important features to help you increase the
efficiency of your C programs. You can choose between five standard
memory models (small, medium, compact, large, and huge) to set up the
combination of data and code storage that best suits your program. For
flexibility and even greater efficiency, the Microsoft C Compiler allows you
to "mix" memory models by using special declarations in your program.

The C language does not provide such standard features as input and out­
put capabilities and string-manipulation features. These capabilities are
provided as part of the run-time library of functions that accompanies the
C installation. Because the functions that require interaction with the
operating system (for example, input and output) are logically separate
from the language itself, the C language is especially suited for producing
portable code.

The portability of your Microsoft C programs is increased by the use of a
common run-time library for MS-DOS and XENIX® installations. Using the
routines in this library, you can transport programs easily from a XENIX
development environment to an MS-DOS machine, or vice versa. See the
Microspft C Compiler Run- Time Library Reference (included in this pack­
age) for more information on the common library for MS-DOS and XENIX.

Note

Since MS-DOS and PC-DOS are essentially the same operating system,
Microsoft manuals use the term MS-DOS to include both systems, ex­
cept in those cases where a utility (such as SETENV) is guaranteed to
work only under PC-DOS; in those cases, the term PC-DOS is used
explicitly.

3

Microsoft C Compiler User's Guide

Compared to other programming languages, C is extremely flexible con­
cerning data conversions and nonstandard constructions. The Microsoft C
Compiler offers several levels of warnings to help you control this flexibility.
Programs in an early stage of development can be processed using the full
warning capabilities of the compiler to catch mistakes and unintentional
data conversions. The experienced C programmer can use a lower warning
level for programs that contain intentionally nonstandard constructions.

1.2 About This Manual

This manual explains how to use the Microsoft C Compiler to compile, link,
and run C programs on your MS-DOS system. The manual assumes that
you are familiar with the C language and with MS-DOS, and that you know
how to create and edit a C language source file on your system. If you have
questions about the C language, turn to the Microsoft C Compiler Language
Reference, included in this package. The Microsoft C Compiler Run- Time
Library Reference documents the run-time library routines you can use in
your C programs. For more information about C, refer to Section 1.5,
"Learning More About C." A brief description of the remaining chapters of
the Microsoft C Compiler User's Guide is given below.

Chapter 2, "Getting Started," covers installation and organization of the
compiler software. This chapter explains how to set up an operating en­
vironment for the compiler by defining environment variables, and includes
a practice session to acquaint you with the Microsoft C Compiler.

Chapter 3, "Compiling," discusses the process of compiling a program using
the basic compiler command MSC. This chapter contains a detailed
description of the options most commonly used to control preprocessing,
compilation, and output of files. The chapter also discusses standard
memory models (small, medium, compact, large, and huge).

Chapter 4, "Linking," describes the Microsoft Overlay Linker (LINK) and
the options available to control its operation. This chapter includes a dis­
cussion of the special requirements that apply when linking C program files.

Chapter 5, "Running C Programs on MS-DOS," explains how to run your
executable program file, and discusses features specific to the MS-DOS im­
plementation of C. The chapter tells how to pass data from MS-DOS to a
program at execution time, and how to return an exit code from your pro­
gram to MS-DOS.

4

Introduction

Chapter 6, "Managing Libraries," describes the Microsoft Library Manager
(LIB). This utility enables you to create and maintain your own function li­
braries. You can use these libraries to customize the run-time support avail­
able to your programs.

Chapter 7, "Maintaining Programs with MAKE," describes the Microsoft
Program Maintenance Utility (MAKE). This utility automates the process
of maintaining programs by carrying out the tasks needed to update a pro­
gram after one or more of its component files have been changed.

Chapter 8, "Working with Memory Models," describes methods of manag­
ing memory models. These methods are useful for writing large programs
that use more than 64K of code or data. This chapter also discusses
"mixed-model" programming (combining features from the five standard
memory models).

Chapter 9, "Advanced Topics," describes additional command-line options
for the experienced programmer and gives the technical information neces­
sary to use them.

Chapter 10, "Interfaces with Other Languages," covers two main topics:
the interface between assembly-language routines and C routines, and
mixed-language programming using Microsoft's FORTRAN, Pascal, and C
compilers.

Appendix A, "ASCII Character Codes," gives the decimal, octal, and hexa­
decimal equivalents for ASCII (American Standard Code for Information In­
terchange) characters.

Appendix B, "Command Summary," provides a complete list of command
line options for the MSC command and summarizes characteristics of the
small, medium, compact, large, and huge memory models. It also summa­
rizes command characters and options for LINK, LIB, MAKE,
EXEPACK, EXEMOD, and SETENV.

Appendix C, "The CL Command," describes an alternative command for
invoking the compiler, the CL command. This command provides an inter­
face that is similar to the XENIX and UNIXTM cc command.

Appendix D, "Using EXEPACK, EXEMOD, and SETENV," tells how to use
three special-purpose utilities that are included with the Microsoft C Com­
piler package.

{)

Microsoft C Compiler User's Guide

Appendix E, "Using Exit Codes," lists the exit codes produced by each of
the programs in the Microsoft C Compiler package. The chapter also briefly
discusses how exit codes are used in MAKE description files and in batch
files.

Appendix F, "Converting from Previous Versions of the Compiler,"
summarizes the differences between Version 4.0 of the Microsoft C Compiler
and previous versions. This appendix gives instructions for converting
programs written for versions prior to 4.0 to the format accepted by Ver­
sion 4.0.

Appendix G, "Writing Portable Programs," lists some of the C language
features that are implementation dependent, and offers suggestions for in­
creasing program portability.

Appendix H, "Error Messages," lists and describes the error messages gen­
erated by the C Compiler and by the other programs in the Microsoft C
Compiler package. It also lists and explains run-time error messages pro­
duced by executable programs written in C.

1.3 New Features

Several useful new features have been added to Version 4.0 of the Microsoft
C Compiler. This section summarizes features added since Version 3.0. For
information about differences between Version 4.0 and versions prior to 3.0,
see Appendix F, "Converting from Previous Versions of the Compiler."

The new features include the following:

Feature

Compact model

Huge model

6

Description

The compact memory model allows pro-
grams to access more than one segment of data
while limiting code to a single segment. A new
compact-model library is provided to support
this memory model. See Section 3.13, "Compil­
ing Large Programs."

The huge memory model allows programs to
have multiple code segments, multiple data seg­
ments, and single arrays that are larger than

huge keyword

CodeView
debugger

MAKE utility

SETENV utility

Source listings

Numbered errors

NewMSC and
CL options

Introd uetio n

64K. The huge memory model is supported
through the large-model library. See Section
3.13, "Compiling Large Programs."

The huge keyword allows declarations of indivi­
dual arrays that are larger than 64K. See Section
8.3, "Using the near, far, and Huge Keywords,"
in Chapter 8, "Working with Memory Models."

The Codeview symbolic debugger is provided
with the C compiler. This powerful debugger has
a window interface that allows interactive
debugging of C programs. See the separate
Microsoft Code View manual.

The Microsoft Program Maintenance Utility,
MAKE, is provided with the C compiler. See
Chapter 7, "Maintaining Programs with
MAKE."

The SETENV utility allows you to enlarge the
PC-DOS environment variable table. See Appen­
dix D, "Using EXEPACK, EXEMOD, and
SETENV."

The MSC and CL commands can produce
source listings showing source lines, errors
encountered during compilation, and local and
global symbol information. A source listing can
be produced either with an MSC prompt or
command line, or with the new /Fs option. See
Section 3.2.5 for more information.

Compiler and run-time error messages are now
numbered. See Appendix H, "Error Messages."

Option

/HELP

Action

Lists many of the more commonly
used options. This option is not
case sensitive: any combination of
uppercase and lowercase letters is
acceptable; for example, /hELp.

7

Microsoft C Compiler User's Guide

New keywords

pragmas

8

IFs

IGc

IJ

IZi

Creates a source-listing file.

Causes compiler to use function
entry / exit sequence used by the
Microsoft FORTRAN and Microsoft
Pascal compilers.

Makes the char type unsigned by
default.

Produces full symbolic debugging
information for use with the Code-
View symbolic debugger.

See Chapter 3, "Compiling," and Chapter 9,
"Advanced Topics," for descriptions of these
options.

Keyword Description

signed

huge

cdecl

Usage is similar to unsigned; used
with the I J compiler option

Allows you to to create arrays larger
than 64K (as well as pointers to
those arrays) in any memory model

Similar in usage to the keywords
fortran and pascal; useful in con­
junction with the I Gc option;
enables C function entry/exit
sequence and naming convention,
thus allowing functions (including
standard library functions) to have
an arbitrary number of parameters,
even in the presence of the I Gc
option

The # pragma directive has been added, in
accordance with the developing ANSI C stan­
dard. (The # pragma directive is discussed in
Chapter 8 of the Microsoft C Compiler Language
Reference.) The only pragma implemented in
Version 4.0 is the check_ stack pragma, dis­
cussed in Section 9.10.1, "Removing Stack
Probes."

New LINK
options

Language changes

New library
routines

Option

IHELP

IEXEPACK

leo

Introduction

Action

Displays a list of LINK
options

Packs executable files during
linking

Prepares executable files with
the symbolic information
needed by the Code View
debugger

See sections 4.6.1,4.6.3, and 4.6.6 for more
information.

The C language syntax and semantics have been
modified in certain cases to correspond with
recent updates to the ANSI standard for the C
language. See Appendix F, "Converting from
Previous Versions of the Compiler," and Appen­
dix A of the Microsoft C Compiler Language
Reference.

A number of library routines have been added,
and some existing routines have been modified
and enhanced. See Appendix F, "Converting
from Previous Versions of the Compiler," and
the Microsoft C Compiler Run- Time Library
Reference.

1.4 Notational Conventions

The following notational conventions are used throughout this manual:

Convention

Bold

Meaning

Bold type indicates text that must be typed as
shown. Text that is normally shown in bold type
includes operators, keywords, library functions,
commands, options, and preprocessor directives.
Examples are shown below:

9

Microsoft C Compiler User's Guide

BOLD
CAPITALS

Italics

Examples

User input

Ellipsis dots

10

+=
if
main

if defined()
/Fa
sizeof

int
fopen

Bold capital letters are used for the names of execut­
able files and files provided with the product, environ­
ment variables, manifest constants, and macros. Com­
mands typed at the MS-DOS level are also capitalized.
These commands include built-in MS-DOS commands
such as SET, as well as programs names such as MSC,
LINK, and Lm. However, you are not required to use
capital letters when you actually enter these com­
mands.

Italics mark the places in command-line and option
specifications and in the text where specific terms
appear in an actual command. Consider the following
option line:

/W number

Note that number is italicized to indicate that it
represents a general form for the /W option. In an
actual command, the user supplies a particular number
for the placeholder number.

Occasionally, italics are also used to emphasize particu­
lar words in the text.

Programming examples are displayed in a special
typeface so that they resemble the output on your
screen or the output of commonly used computer
printers.

Some examples show both program output and user
input; in these cases, input is shown in a darker font.

Vertical ellipsis dots are used in program examples to
indicate that a portion of the program is omitted. For
instance, in the following excerpt, the ellipsis dots
between the statements indicate that intervening pro­
gram lines occur but are not shown:

count = 0;

*pc++;

[Double
brackets]

"Quotation
marks"

SMALL CAPITALS

Introduction

Double brackets enclose optional fields in command­
line and option specifications. Consider the following
option specification:

/D identifier[=[stringllll

The placeholder identifier indicates that you must sup­
ply an identifier when you use the /D option. The
outer brackets indicate that you are not required to
supply an equal sign (=) and a string following the
identifier. The inner brackets indicate that you are not
required to enter a string following the equal sign, but
if you do supply a string, you must also supply the
equal sign.

Single brackets are used to indicate brackets used by
C-Ianguage array declarations and subscript expres­
sions. For instance, a [10J is an example of brackets
in a C subscript expression.

Quotation marks set off terms defined in the text. For
example, the term "far" appears in quotation marks
the first time it is defined.

Quotation marks are also used to refer to command­
line prompts. For example, LINK prompts you for the
name of the object files; this prompt is called the
"Object Modules" prompt.

Some C constructs require quotation marks. Quotation
marks required by the language have the form ""
rather than" ". For example, a C string used in an
example would be shown in the following form:

"abc"

Small capital letters are used for the names of keys and
key sequences, such as RETURN and CONTROL-C.

1.5 Learning More About C

The manuals in this documentation package provide a complete
programmer's reference for Microsoft C. They do not, however, teach you
how to program in C. If you are new to C or to programming, you may
want to familiarize yourself with the language by reading one or more of
the following books:

11

Microsoft C Compiler User's Guide

Hancock, Les, and Morris Krieger. The C Primer. New York: McGraw­
Hill Book Co., Inc., 1982.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

Kochan, Stephen. Programming in C. Hasbrouck Heights, New Jersey:
Hayden Book Company, Inc., 1983.

Plum, Thomas. Learning to Program in C. Cardiff, New Jersey: Plum
Hall, Inc., 1983.

Schustack, Steve. Variations in C. Bellevue, Washington: Microsoft
Press, 1985.

This is by no means an exhaustive list of the books available for learning 0;
any book's inclusion in this list should not be taken as a recommendation
by Microsoft over other books on the same subject.

1.6 Reporting Problems

If you encounter a problem or you feel you have discovered a problem in the
software, please provide the following information to help us in locating the
problem:

•

•

•

•
•

•

The compiler version number (from the 10&0 that is printed when
you invoke the compiler with MSC or CL)

The version of MS-DOS you are running (use the MS-DOS VER
command)

Your system configuration (type of machine you are using and its
total memory, total free memory at compiler execution time, as well
as any other information you think might be useful)

The command line used in the compilation

A preprocessed listing of the program (produced with the IE, IP,
or IEP option), or if the problem appears to be in the preprocessor,
the C source file or files and all include files referenced

Any nonstandard object files or libraries needed to link, in addition
to the standard object files or libraries you linked with at the time
of the problem

If your program is very large, please try to reduce its size to the smallest
possible program still producing the problem.

12

Introduction

Use the Software Problem Report at the back of this manual to send this
information to Microsoft.

If you have comments or suggestions regarding any of the manuals accom­
panying this product, please use the Documentation Feedback Card at the
back of this manual.

13

Chapter 2

Getting Started

2.1 Introduction 17
2.2 Backing Up Your Disks 17
2.3 Disk Contents 18
2.4
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4

Quick Hard-Disk Setup Procedure
Quick Floppy-Disk Setup Procedure
Understanding the Compiler Software

Executable Files 30
Include Files 31
Library Files 31
Other Files 33

2.7 Setting Up the Environment 34

22
25

30

2.8 Setting Up Your CONFIG.SYS File 38
2.9 Using an 8087 or 80287 Coprocessor 39
2.10 Using an 80186,

80188, or 80286 Processor 40
2.11 Converting Existing C Programs 40
2.12 Organizing Your Software 40
2.13 Practice Session 41
2.14 Using Batch Files 46

16

Getting Started

2.1 Introduction

This chapter explains how to install the compiler software and set up an
operating environment for the compiler. It describes the files that consti­
tute your compiler package and suggests methods for organizing the files.

Several MS-DOS procedures are mentioned in this chapter. In particular,
the MS-DOS SET and PATH commands are used to give values to "en­
vironment.variables," which control the compiler environment. If you are
unfamiliar' with the SET and PATH commands, or with other MS-DOS
procedures mentioned in this chapter, consult your operating system man­
ual for instructions.

This chapter includes a sample disk setup for your files and a practice ses­
sion to introduce you to the process of compiling and linking a program
with the Microsoft C Compiler and Microsoft Overlay Linker (LINK). The
practice session, while not required, allows you to confirm that your files
are set up properly and provides a quick overview of the MSC and LINK
commands.

To get your C compiler up and running, we suggest the following steps:

1. Back up your disks (see Section 2.2).

2. Check the contents of the disks (see Section 2.3).

3. Read the README.DOC file to learn about changes and addi­
tions made to the compiler after this manual was printed.

4. Use the "Quick Setup Procedure" applicable to your system (floppy
or hard disk) to create directories and copy files from the system
disks (see Section 2.4 or Section 2.5).

2.2 Backing Up Your Disks

The first thing you should do after you have unwrapped your system disks
is make working copies, using the MS-DOS COpy command or the
DISKCOPY utility. Save the original disks for backup.

17

Microsoft C Compiler User's Guide

2.3 Disk Contents

When you first open your compiler package, you may want to verify that
you have a complete set of software. You should find the following files on
your disks:

Executable Files

File Name

MSC.EXE

C1.EXE

C2.EXE

C3.EXE

LINK.EXE

LIB.EXE

EXEP ACK.EXE

EXEMOD.EXE

SETENV.EXE

CV.EXE

MAKE.EXE

CL.EXE

Include Files

18

File Name

ASSERT.H

CONIO.H

CTYPE.H

DIRECT.H

Description

Control program for the compiler

Preprocessor and language parser

Code generator

Optimizer, link text emitter, and assembly­
listing generator

Microsoft Overlay Linker

Microsoft Library Manager

Microsoft EXE File Compression Utility

Microsoft EXE File Header Utility

Microsoft Environment Expansion Utility

Microsoft Code View Window-Oriented
Debugger

Microsoft Program Maintenance Utility

Alternate control program for the compiler

Description

Defines assert macro

Declares console I/O functions

Defines character-classification macros

Declares directory-control functions

DOS.H

ERRNO.H

FCNTL.H

FLOAT.H

IO.H

LIMITS.H

MALLOC.H

MATH.H

MEMORY.H

PROCESS.H

SEARCH.H

SETJMP.H

SHARE.H

SIGNAL.H

STDARG.H

STDDEF.H

STDIO.H

STDLIB.H

STRING.H

Getting Started

Defines data types and macros for MS-DOS
interface functions and declares MS-DOS
interface functions

Defines system-wide error numbers

Defines flags used in open functions

Defines values used in floating-point opera­
tions

Declares functions that work on file handles
("low-level" functions)

Defines upper and lower limits for various
numeric types

Declares memory-allocation functions

Declares math functions and defines related
constants

Declares buffer-manipulation functions

Declares process-control functions and
defines flags for spawn functions

Declares searching and sorting functions

Declares and sets up storage for setjrnp
and longjrnp functions

Defines flags for file sharing

Declares signal function and defines related
constants

Defines macros for handling variable-length
argument lists (as outlined in draft of ANSI
C standard)

Defines standard values such as NULL and
errno

Declares stream functions and defines re­
lated macros, constants, and types

Declares all functions from the C run-time
library that are not declared in other in­
clude files

Declares string-manipulation functions

19

Microsoft C Compiler User's Guide

TIME.H

VARARGS.H

V2TOV3.H

SYS\LOCKING.H

SYS\STAT.H

SYS\ TIMEB.H

SYS\ TYPES.H

SYS\ UTIME.H

Library Files

20

File Name

SLIBC.LIB

SLIBFP.LIB

SLIBFA.LIB

MLIBC.LIB

MLIBFP.LIB

MLIBFA.LIB

CLIBC.LIB

CLIBFP.LIB

CLIBFA.LIB

LIBH.LIB

LLIBC.LIB

Declares time functions and defines struc­
ture types used by time functions

Defines macros for handling variable-length
argument lists (similar to STDARG.H,
but XENIX compatible)

Defines macros to aid in converting pro­
grams from Microsoft C versions 2.03 and
earlier

Defines flags for file locking

Declares stat and fstat functions and
defines stat structure type and related
constants

Declares ftime function and defines the
timeb structure type

Defines types used for file status and time
information

Declares utime function and defines the
utimbuf structure type

Description

Small-model standard C library

Small-model floating-point math library

Small-model alternate math library

Medium-model standard C library

Medium-model floating-point math library

Medium-model alternate math library

Compact-model standard C library

Compact-model floating-point math library

Compact-model alternate math library

Model-independent code-helper library

Large-model standard C library

LLIBFP.LIB

LLIBFA.LIB

EM. LIB

87.LIB

Other Files

File Name

BINMODE.OBJ

SSETARGV.OBJ

MSETARGV.OBJ

CSETARGV.OBJ

LSETARGV.OBJ

SV ARSTCK.OBJ

CVARSTCK.OBJ

MVARSTCK.OBJ

LV ARSTCK.OBJ

EMOEM.ASM

CV.HLP

DEMO.C

README.DOC

Getting Started

Large-model floating-point math library

Large-model alternate math library

Model-independent emulator floating-point
library

Model-independent 8087/80287 floating-point
library

Description

Routine for processing binary data.

Small-model routine for processing wild-card
characters.

Medium-model routine for processing wild­
card characters.

Compact-model routine for processing wild­
card characters.

Large-model routine for processing wild-card
characters.

Small-model routine for allowing dynamic
heap allocation out of unused stack space.

Compact-model routine for allowing dynamic
heap allocation out of unused stack space.

Medium-model routine for allowing dynamic
heap allocation out of unused stack space.

Large-model routine for allowing dynamic
heap allocation out of unused stack space.

Module for customizing floating-point
software.

Help file for the Code View debugger.

Sample C program.

Documentation of changes and additions not
appearing in these manuals. If you see files on
your disks that do not appear in the above
list, they will be explained in the
README.DOC file. Your release of the

21

Microsoft C Compiler User's Guide

Start-up sources

software may not include a README.DOC
file, so don't be alarmed if you are unable to
find this file on your disks.

A group of assembler routines and include files
comprising basic start-up code for C pro­
grams; see README.DOC for a complete
list of these files.

There may be additional sample C programs on the disk. If so, they will be
listed in the README.DOC file.

2.4 Quick Hard-Disk Setup Procedure

The following sample setup is suitable for a hard-disk system. The setup
includes only the small-model library files. If all your programs are small
model, or if you are not concerned with memory models at all, then the
small-model library files are the only ones you need. However, if you use
more than one memory model in your programming, you will probably
want to add the appropriate library files from Disk 4, "Libraries Disk
(Medium Model and Compact Model)," or Disk 5, "Libraries Disk (Large
Model)," to the LIB directory.

The 8087/80287 floating-point library and the alternate math library are
not included in the sample setup because you do not need both the regular
floating-point library and the other floating-point libraries at the same
time. If you want to use one of the other floating-point libraries, you can
substitute it or add it to the LIB directory. Similarly, only the MSC.EXE
control program is included in this setup. If you prefer to use CL.EXE,
add it to the BIN directory or substitute it for MSC.EXE.

Note

22

The following procedure assumes your hard disk is Drive C, and that
you begin with c: as your current drive and directory.

1. With your system power on, and the MS-DOS prompt showing,
enter the following commands' (these set the environment variables
so the compiler will look for the necessary executable files, libraries,
and include files in the directories you will create in Step 2):

PATH C:\BIN
SET INCLUDE=C:\INCLUDE
SET LIB=C:\LIB
SET TMP=C:\

Getting Started

Note that the TMP setting simply specifies the root directory of
Drive C. The temporary files created by the compiler are removed
by the time processing is completed, so you don't need to create a
separate directory to store them. (MSC.EXE deletes the temporary
files automatically; you are not responsible for removing them.)

To save the time it takes to enter these settings, you can place these
commands in a batch file and set up the environment variables by
entering the name of the file (see Section 2.14, "Using Batch Files").

2. Enter the following commands in the order shown, following the
MS-DOS prompt (these create the directories in which you will store
compiler files, libraries, and include files; if you already have any
directories named BIN, LIB, INCLUDE, or INCLUDE\SYS on your
hard disk, you should skip the commands that create those direc­
tories):

CD \
MD BIN
MD LIB
MD INCLUDE
MD INCLUDE\SYS

3. Insert Disk 1, "C Compiler Disk," in Drive A and type the following
command at the MS-DOS prompt:

COPY A:*.* \BIN

4. Replace the disk in Drive A with Disk 2, "Utilities Disk," and enter
the following command at the MS-DOS prompt:

COPY A:*.EXE \BIN

5. Replace Disk 2 with Disk 3, "Include Files and Libraries Disk (Small
Model)," and type this command following the MS-DOS prompt:

COPY A:LINK.EXE \BIN

6. Type

CD \BIN
DIR

at the MS-DOS prompt to verify that the following files arc now in
your BIN directory:

23

Microsoft C Compiler User's Guide

24

EXEMOD.EXE
EXEPACK.EXE
CV.EXE
LIB.EXE
LINK.EXE
MAKE.EXE

MSC.EXE
Cl.EXE
C2.EXE
C3.EXE
SETENV.EXE

7. With Disk 3 still in Drive A, enter these commands following the
MS-DOS prompt:

COPY A:*.H \INCLUDE
COPY A:\SYS*.H \INCLUDE\SYS

8. After the MS-DOS prompt, type the commands

CD \INCLUDE
DIR

to verify that the following files have been copied to your INCLUDE
directory:

ASSERT.H
CONIO.H
CTYPE.H
DIRECT.H
DOS.H
ERRNO.H
FCNTL.H

FLOAT.H
IO.H
LIMITS.H
MALLOC.H
MATH.H
MEMORY.H
PROCESS.H

SEARCH.H
SETJMP.H
SHARE.H
SIGNAL.H
STDARG.H
STDDEF.H
STDIO.H

STDLIB.H
STRING.H
TIME.H
V2TOV3.H
VARARGS.H

9. Next, type these two commands after the MS-DOS prompt:

CD SYS
DIR

This confirms that these additional include files have been copied to
the I NCLUDE directory:

LOCKING.H
STAT.H
TIMEB.H
TYPES.H
UTIME.H

10. With Disk 3 still in Drive A, enter the following commands at the
MS-DOS prompt:

COpy A:SLIBC.LIB \LIB
COpy A:SLIBFP.LIB \LIB
COpy A:EM.LIB \LIB
COpy A:LIBH.LIB \LIB

Getting Started

11. Enter

CD \LIB
DIR

to verify that the four files from the preceding step were copied to
your LIB directory.

With this sample setup, you can run the compiler and linker (in fact, any of
the .EXE files you have just copied) from any directory or disk.

If you use one of the following object files in your program, you can place
the file either in your C program file directory or in the LIB directory:

File Use

Enables wild-card expansion xSETARGV.OBJ

xVARSTOK.OBJ Enables stack/heap competition, where x is S,
0, M, or L

BINMODE.OBJ Changes the default text-processing mode

Note, however, that the LIB environment variable is not used to find the
xSETARGV or BINMODE file; if it is not in your current working direc­
tory you must specify a path name at link time.

2.5 Quick Floppy-Disk Setup Procedure

You will need at least three floppy disks to set up the files so that you can
run the compiler. The sample setup given below uses two disks and assumes
the following:

• You will swap the two disks named "Compiler" and
"Linker /Utilities/Libraries" in and out of Drive A as necessary.

• You will develop your programs and create listing files on a separate
disk named "Include/Source Files" in Drive B.

• You will run the compiler from Drive B, so that B is the default
drive for output files (the object file, listing file, map file, and exe­
cutable program file).

This sample setup includes only the small-model library files. You can save
space by keeping only one set of library files on a disk, since any given pro­
gram uses only one set (small-, medium-, compact-, or large-model set). If

25

Mierosoft C Compiler User's Guide

all your programs are small model, or if you will not use memory models,
then the small-model library files are the only ones you need.

The 8087/80287 floating-point library and the alternate math library are
not included in this sample setup because you do not need both the regular
floating-point library and the other floating-point libraries at the same
time. If you want to use one of the other floating-point libraries, you can
substitute it. Similarly, only the MSC.EXE control program is included in
this setup. If you prefer to use CL.EXE instead, substitute it for
MSC.EXE.

Each disk drive must have a capacity of 360K for this sample setup pro­
cedure to work.

26

1. With your system power on, and the MS-DOS prompt showing,
enter the following commands (these change the current drive to
Drive A, and set the environment variables so the compiler will look
for the necessary executable files, libraries, and include files in the
directories you will create in the steps that follow):

A:
PATH A:\;A:\BIN
SET INCLUDE=B:\INCLUDE
SET LIB=A:\LIB
SET TMP=B:\

Note that the TMP setting simply specifies the root directory of
Drive B. The temporary files created by the compiler are removed
by the time processing is completed, so you don't need to create a
separate directory to store them. (MSC.EXE deletes the temporary
files automatically; you are not responsible for removing them.)

To save the time it takes to enter these settings, you can place these
commands in a batch file and set up the environment variables by
entering the name of the file (see Section 2.14, "Using Batch Files").

2. Insert Disk 1, "C Compiler Disk," in Drive B, and a formatted disk
in Drive A.

3. Type the following command following the MS-DOS prompt:

COpy B:*.*

4. Type

DIR

following the MS-DOS prompt to verify that the following files have
been copied to your disk in Drive A:

Getting Started

MSC.EXE
Cl.EXE
C2.EXE
C3.EXE

5. Remove the disk in Drive A, label it "Compiler," and replace it with
another formatted disk.

6. Replace the disk in Drive B with Disk 2, "Utilities Disk."

7. After the MS-DOS command, type the following commands, in se­
quence:

MD BIN
CD BIN
COPY B:LIB.EXE
COPY B:MAKE.EXE
COPY B:EXEPACK.EXE
COPY B:EXEMOD.EXE
COPY B:SETENV.EXE

8. Replace Disk 2 in Drive B with Disk 3, "Include Files and Libraries
Disk {Small Model)," then type these commands, in sequence:

COPY B:LINK.EXE
CD \
MD LIB
CD LIB
COpy B:SLIBC.LIB
COPY B:SLIBFP.LIB
COPY B:EM.LIB
COPY B:LIBH.LIB

Type

DIR

to confirm that the following library files have been copied to the
L1 B directory on the disk in Drive A:

SLIBC.LIB
SLIBFP.LIB
EM. LIB
LIBH.LIB

Next, enter

CD \BIN
DIR

to confirm that the following utilities have been copied to your B1 N
directory:

27

Microsoft C Compiler User's Guide

28

LINK.EXE
MAKE.EXE
LIB.EXE

EXEPACK.EXE
EXEMOD.EXE
SETENV.EXE

9. Remove the disk in Drive A, label it "Linker/Utilities/Libraries,"
and replace it with another formatted disk.

10. Type the following commands, in the order shown, after the MS­
DOS prompt:

MD INCLUDE
CD INCLUDE
COPY B:INCLUDE*.H

11. Type

DIR

to confirm that the following files were copied to your INCLUDE
directory:

ASSERT.H
CONIO.H
CTYPE .H
DIRECT.H
DOS.H
ERRNO.H
FCNTL.H

12. Type

MD SYS

FLOAT.H
IO.H
LIMITS.H
MALLOC.H
MATH.H
MEMORY.H
PROCESS.H

SEARCH.H
SETJMP.H
SHARE.H
SIGNAL.H
STDARG.H
STDDEF.H
STDIO.H

to create the SYS subdirectory in INCLUDE.

STDLIB.H
STRING.H
TIME.H
V2TOV3.H
VARARGS.H

13. Type the following commands, in the order shown:

CD SYS
COPY B:\INCLUDE\SYS*.H

14. Type

DIR

to verify that the following files were copied to SYS:

LOCKING.H
STAT.H
TIMEB.H
TYPES.H
UTIME.H

15. Remove the disk in Drive A and label it "Include/Source Files."

Getting Started

If you use one of the xSETARGV.OBJ, xV ARSTCK.OBJ, or
BINMODE.OBJ files (all of which are described in Section 2.4,
"Quick Hard-Disk Setup Procedure"), you can place the file either in the
directory with your C program files or in the LIB directory. Note, however,
that the LIB environment variable is not used to find the xSETARGV or
BINMODE file; when it is not in your current working directory, you must
specify a path name at link time.

If you use more than one memory model in your programming, you will
probably want to set up a separate library disk for each model. Note that
the files stored on your "Compiler" and "Include/Source Files" disks (the
compiler passes and the include files) do not change with the memory
model, so you can use the same disks in the compiling stage for all five
models.

On each separate library disk you will have the library files for that model,
plus a copy of the LINK and LIB utilities, as well as any other utilities you
are using. Although the LINK and LIB utilities do not change with the
memory model, it is convenient to have a copy on each disk so you can in­
voke LINK and LIB without changing to your small-model disk.

Use the same directory structure on all four disks (small, medium, compact,
and large) so you will not have to change the values of your environment
variables when you change disks. For example, to process a medium-model
program using the alternate math library instead of the emulator, you
could set up a disk in the following manner to be used in Drive A:

BIN\LINK.EXE
BIN\LIB.EXE

LIB\MLIBC.LIB
LIB\MLIBFA.LIB

This organization is identical to the setup for the "Linker fUtilities/
Libraries" disk given earlier, except that the medium-model standard li­
brary file replaces the small-model file, and the medium-model alternate
math library (MLI Bf A. LI B) is used instead of EM. LI Band SLI BfP . LI B.
The PATH setting (A: \BIN) and TMP setting (B: \) used above are valid for
this disk as well, since it is organized with the same directory structure.
Note that you must use the same disk drive, Drive A, when you change
from the small-model disk to the medium-model disk. Otherwise, your en­
vironment settings become invalid.

29

Microsoft C Compiler User's Guide

2.6 Understanding the Compiler Software

The software for the Microsoft C Compiler consists of three main categories
of files: executable files, include files, and library files. These files are listed
in Section 2.3, "Disk Contents." Sections 2.6.1,2.6.2, and 2.6.3, respective­
ly, describe each of the three file categories in more detail. A number of ad­
ditional files do not fall into the three main categories and are discussed
separately in Section 2.6.4, "Other Files."

2.6.1 Executable Files

Executable files have an .EXE extension. MSC.EXE, the control program
for the compiler, is an executable file. To run the compiler, invoke
MSC.EXE by typing MSC or msc.

Cl.EXE, C2.EXE, and C3.EXE are the three stages, or "passes," of the
compiler. They are executed in order when you process a file using the com­
piler control program (MSC.EXE or CL.EXE).

Note

Version 3.0 of the Microsoft C Compiler had four passes. Pass 0, the
preprocessor, and pass 1, the language parser, have been combined in
Version 4.0.

The file LINK.EXE is the linker utility. Invoke the linker by typing
LINK after you have compiled a file or files. The linker produces an exe­
cutable program file from your compiled files.

The library-manager program, LIB.EXE, is used to create and organize li­
braries of object modules. Invoke this utility by typing LIB.

EXEP ACK.EXE and EXEMOD.EXE are special programs you can use
to modify your executable program files. SETENV.EXE is a utility to
modify the size of the DOS environment table. These functions are dis­
cussed in Appendix D, "Using EXEPACK, EXEMOD, and SETENV."

30

Getting Started

CL.EXE is an alternate control program for the cOlnpiler. It is provided
for those users who are familiar with the cc command from XENIX or
UNIX systems. Like MSC.EXE, CL.EXE invokes the three passes of the
compiler for you. You can also invoke the linker through CL.EXE.

2.6.2 Include Files

Include files are text files you can incorporate into your program by using
the C preprocessor directive # include. These files contain definitions used
by run-time library routines.

By convention, some include files are stored in a subdirectory named SYS.
This convention originated with the practice of storing files that define
"system-level" constants and types in a separate "system" subdirectory on
UNIX and XENIX systems. However, not all the include files that are tradi­
tionally stored in the SYS subdirectory contain system-level definitions,
and some of the include files not in the SYS subdirectory contain system­
level definitions. Since many programs, particularly those created under
the XENIX and UNIX operating systems, rely on the SYS subdirectory con­
vention, Microsoft continues to recognize this convention to maintain com­
patibility with existing programs.

2.6.3 Library Files

Library files contain compiled run-time library routines to be linked
with your program. Four separate sets of library files are included: small­
model library files, medium-model library files, compact-model library files,
and large-model library files. Huge-model programs use the large-modelli­
brary files. The terms "small model," "medium model," "compact model,"
"large model," and "huge model" refer to the standard memory models you
can choose for your program, based on its storage requirements for code
and data.

You do not have to choose a memory model in order to process and run
your program. The small model is appropriate for most programs, and the
compiler uses the small model and the small-model library files by default.

Three additional library files, EM.LIB, LIBH.LIB, and 87.LIB, are model
independent; they can be used with all five memory models. EM.LIB is the
floating-point emulator, used to perform floating-point operations.
LIBH.LIB is a library of model-independent "compiler helper" functions;
the compiler generates references to these functions to handle complex
operations such as 32-bit multiplication and division. 87.LIB is the

31

Microsoft C Compiler User's Guide

8087/80287 floating-point library. This library provides minimal floating­
point support and can only be used when an 8087 or 80287 coprocessor is
present. The compiler uses the emulator (EM.LIB) by default, but you can
override the default to use 87.LIB (if you have a coprocessor) or the alter­
nate math library described below. Floating-point options are described in
more detail in Section 3.8, "Selecting Floating-Point Options," in Chapter
3, "Compiling," and in Section 9.9 "Controlling Floating-Point Opera­
tions," in Chapter 9, "Advanced Topics."

The library files beginning with S belong to the small-model library set.
SLIBC.LIB is the standard run-time library. SLIBC.LIB contains all the
routines included in the Microsoft C run-time library except math routines
that require floating-point support.

SLIBC.LIB also contains an object module named CRTO.OBJ, which is
the start-up routine for small-model programs. The start-up routine per­
forms several important tasks. It allocates the stack for your program and
initializes the segment registers. It sets up the argv, argc, and envp vari­
ables to allow command-line arguments and environment settings to be
passed to the program. The start-up routine is responsible for setting up
and maintaining the operating environment for the program. The start-up
routine also initializes the emulator, if loaded.

SLIBFP .LIB is the floating-point math library. It is required whenever
your program uses EM.LIB or 87.LIB.

SLIBFA.LIB is the alternate floating-point library. You can use
SLIBF A.LIB instead of EM.LIB and SLIBFP .LIB when speed is more
important than precision in floating-point calculations. See the discussion
of floating-point operations in Section 3.8, "Selecting Floating-Point Op­
tions," in Chapter 3, "Compiling," and in Section 9.9, "Controlling
Floating-Point Operations," in Chapter 9, "Advanced Topics," for details
on this option.

When you compile a source file using MSC.EXE or CL.EXE, the compiler
places the names of the standard library (SLIBC.LIB), the code-helper li­
brary (LIBH.LIB), and the floating-point libraries (EM.LIB and
SLIBFP .LIB are the default) in the object file for the linker. Thus LINK
is able to link these libraries with your program automatically. If you com­
pile using one of the /FP options, you can control which floating-point li­
braries are specified in the object files. You can also override the default at
link time by substituting the name of a different floating-point library for
the library name in the object file. These options are discussed in Section
3.8 of Chapter 3, "Compiling," and in Section 9.9 of Chapter 9, "Advanced
Topics."

32

Getting Sta.rted

The files beginning with Mare medium-model library files, the files begin­
ning with Care compact-model library files, and the files beginning with L
are large-model library files. The organization and content of these files are
analogous to that of the small-model library set. CLIBC.LIB,
LLIBC.LIB, and MLIBC.LIB, like SLIBe.LIB, each contain a start-up
routine named CRTO.OBJ.

Note

Throughout the remainder of this manual, the convention xLIBC.LIB
or xLIBFP .LIB, where x is S, C, M,or L, will be used to refer to the
standard library (small, compact, medium, or large) that is appropriate
for the memory model chosen by the user.

This convention will also be used for other files that are supplied in sets
of four, such as xSETARGV.OBJ, in order to handle the five stan­
dard memory models in Microsoft C.

If you specify the medium, compact, or large model when you process your
program, the compiler uses the appropriate standard library (xLIBC.LIB),
floating-point libraries (by default, EM.LIB plus xLIBFP .LIB), and the
code-helper library (LIBH.LIB) when placing information in the object file
for the linker. Otherwise, the compiler uses the small-model files.

2.6.4 Other Files

The object file BINMODE.OBJ is provided for modifying the default
mode for data files from text mode to binary mode. The same file can be
used with all five memory models (see Section 9.12, "Controlling Binary and
Text Modes," of Chapter 9, "Advanced Topics," for details on
BINMODE.OBJ).

The xSETARGV.OBJ files provide a routine that expands the MS-DOS
wild-card characters? and * in file-name arguments passed to C programs
from the command line. Wild-card expansion is performed only if you ex­
plicitly link with the appropriate SETARGV file. See Section 5.2, "Pass­
ing Command-Line Data to a Program," for more information.

33

Microsoft C Compiler User's Guide

Linking with the xV ARSTCK.OBJ files allows the heap to compete with
the stack for memory space. In this way, the heap can allocate memory
from unused stack space. See Section 9.8, "Controlling Stack and Heap Al­
location," in Chapter 9, "Advanced Topics," for more information about
the xVARSTCK.OBJ files.

The EMOEM.ASM allows you to customize floating-point software. See
Section 3.8.3, "If Your Computer Is Not IBM Compatible," in Chapter 3,
"Compiling. "

The CV.HLP file is a help file for the CodeView symbolic debugger. The
COUNT .• files are used in the practice session for the debugger (see your
Microsoft Code View manual for more information about these files).

The README.DOC file, if present, contains documentation of recent
changes that may not be included in this manual, as well as documentation
of the sources for the C start-up routines. If a README.DOC file is in­
cluded on your disks, be sure to read the file before trying to use the
software, since the file may contain information that affects how the com­
piler operates. In case of conflict between the manual and the
README.DOC file, the README.DOC file takes precedence.

DEMO.C, which is discussed in Section 2.13, "Practice Session," is a sam­
ple C program. Other demonstration programs may be included on your
distribution disks. If so, they will be described in the README.DOC file.

2., 7 Setting Up the Environment

Before you compile and link a program using MSC.EXE and LINK.EXE,
you must make sure that the programs can locate all the files they need to
process your program. The required files are listed below:

Files

Executable files

34

Purpose

These are the files the control program executes
as it processes your program. The names of these
files are C1.EXE, C2.EXE, and C3.EXE.
When using CL.EXE, the alternate control pro­
gram, LINK.EXE may also be executed by the
control program. Note that MSC.EXE and
CL.EXE are also executable files.

Include files

Library files

Getting Started

If your program uses the preprocessor directive
include, the compiler attempts to find the
given text file and include it in your program at
compile time. Your program cannot be compiled
if the given include file is not found.

At link time, LINK.EXE attempts to find the
library files that are specified in the object file or
on the link command line and link them with
your program.

When you invoke the compiler or linker, it determines whether or not you
have defined certain "standard places" to search for the necessary files.
You can define these places by using environment variables. Environment
variables are defined at the MS-DOS command level using the MS-DOS
commands SET and PATH. (They are called environment variables be­
cause they are effective throughout the environment in which a program is
executed.)

Although environment variables are usually helpful, you are not required to
set them. If you do not set these variables, the current working directory is
used to search for files and to create temporary files. If you do set these
variables, the compiler still searches the current working directory first.
Then, if it does not find the file or files in the current working directory, it
checks the appropriate environment variable for the path to the file. Ex­
ceptions to this sequence are # include files enclosed in angle brackets (<
». (See Section 8.3, "Include Files," in Chapter 8, "Preprocessor Direc­
tives and Pragmas," of the Microsoft C Compiler Language Reference.) An
error is produced if the files are not found or if insufficient space is available
in the specified directory or directories to create temporary files.

MSC.EXE looks for three environment variables: PATH, INCLUDE,
and TMP. LINK.EXE uses one environment variable, LIB. (Like
the compiler, LINK also checks the current working directory first for
the libraries it needs, unless a library is specified with an absolute path
name.) The alternate control program, CL.EXE, uses all four environment
variables.

PATH tells the compiler and the operating system where to look for exe­
cutable files, and INCLUDE tells them where to look for include files. The
LIB environment variable tells LINK.EXE where to find any library files
it needs.

The TMP environment variable has a slightly different function. The com­
piler creates a number of temporary files as it processes a program. The
TMP environment variable tells the compiler and the operating system
where to create these files. The temporary files are removed by the time the

35

Microsoft C Compiler User's Guide

compiler finishes processing. The space required for the temporary files is
typically double the size of the source file. It is often helpful to create the
temporary files on another disk to avoid running out of space on your de­
fault disk.

Note

If you have a memory-based disk emulator, commonly referred to as a
"RAM disk," you can expedite processing by assigning that path to the
TMP variable.

To define the environment variables INCLUDE, LIB, and TMP, use the
SET command to assign a directory specification or specifications to the
variable. You must set PATH, INCLUDE, and TMP before invoking the
compiler if you want the variables to be effective while the compiler is run­
ning. Similarly, you must set LIB before the linking stage.

Whereas the TMP variable can be assigned only one path name, the
INCLUDE, PATH, and LIB variables can each contain more than one
path name. Each path name is separated from the next path name by a
semicolon (;). The compiler or linker searches through all directories
specified, in order of their appearance, until it finds the file it needs. This
means that include files, executable files, and library files can be separated
and placed in different directories.

For example, you can tell the compiler where to look for include files by set­
ting the INCLUDE variable, as the following shows:

SET INCLUDE=B:\INCLUDE;B:\CUSTOM

First the compiler willloolc for include files on Drive B in the directory
named INCLUDE; then, if necessary, the compiler will search the CUSTOM
directory.

Use the PATH command instead of the SET command to define the
PATH variable. (Although it is permissible to define the PATH variable
with the SET command, using this method under versions of MS-DOS ear­
lier than 3.0 can cause the PATH variable to work incorrectly for some

36

Getting Started

directory specifications using lowercase letters.) To define the PATH vari­
able using the PATH command, simply give the PATH command fol­
lowed by a space (or an equal sign) and one or more directory specifications
separated by semicolons. For example, you might use the following com­
mand line:

PATH A:\BIN;A:\LINKER

This tells the compiler and the operating system to search for executable
files on Drive A in the directory named BIN, then, if necessary, in the
LINKER directory.

Note

The environment table is 160 bytes by default. If you want to set up a
complex environment, this may not be enough space. You can use the
SETENV program to increase the size of the environment table. See
Section DA for more information.

MSC searches the current working directory, then all directories specified
in the PATH command, in order of their appearance, until it finds the exe­
cutable file it needs. Thus, executable files can be separated and placed in
different directories, as long as the path name of each directory containing
an executable file appears in the PATH specification.

The MS-DOS operating system also uses the PATH setting to locate exe­
cutable files. For example, when you invoke MSC.EXE (by typing MSC),
the MS-DOS system locates MSC.EXE by looking in your default di­
rectory and in the directories specified in the PATH setting. If you include
the path name of the directory containing MSC.EXE (or CL.EXE) in
your PATH setting, you can execute the control program from any direc­
tory.

Once you have set an environment variable, it remains effective until you
reset it to a different value (or to an empty value) or until you turn off the
machine. If you frequently set up your compiler files in a standard way, you
should place SET and PATH commands in your AUTOEXEC.BAT file.
Then you will be ready to use the compiler each time you boot your
machine.

37

Microsoft C Compiler User's Guide

You can also use SET and PATH commands in an MS-DOS batch file to
define the environment for a particular program or programs. If you fre­
quently switch between different environments, you can save time by
setting up batch files that contain the SET and PATH commands for each
environment, thus allowing you to simply execute a batch file each time you
want to switch to a new environment.

Certain command-line options available with the compiler override the
effect of environment variables. For example, the IX option (described in
Section 3.6.6 of Chapter 3, "Compiling") tells the compiler not to automat­
ically search the standard places for include files. The result is that the
compiler does not search for include files in the directories specified by the
INCLUDE variable.

2.8 Setting Up Your CONFIG.SYS File

Before you can run the compiler you must make sure that your
CONFIG.SYS file allows the compiler to open at least 15 files. Check this
by looking in your CONFIG.SYS file for the following line:

files=number

If number is less than 15, edit CONFIG.SYS to set number to an integer
between 15 and 20. (Setting a number higher than 20 has no effect on the
number of files per process. See your Microsoft MS-DOS Programmer's
Reference Manual for more information.) If you do not currently have a
CONFIG.SYS file, create a file by that name on your system disk (or root
directory if you have a bootable hard disk) and insert the following line:

files=15

38

Getting Started

Note

If you do not specify enough files in the CONFIG.SYS file, you may
see one of the following fatal error messages during compilation:

Cannot open compiler intermediate file - no more files

or

Cannot find 'includefite'

It is recommended, though not required, that you also set the number of
buffers allowed in your CONFIG.SYS file. Check your CONFIG.SYS
for the following line:

buffers=number

If number is not already set, 10 is a reasonable number.

After you have edited or created your CONFIG.SYS file, reboot the sys­
tem so the new settings will take effect.

2.9 Using an 8087 or 80287 Coprocessor

If you have an 8087 or 80287 coprocessor, you should read Section 3.8,
"Selecting Floating-Point Options," in Chapter 3, "Compiling." With an
8087 or 80287, you can perform fast, efficient floating-point operations. You
may want to select one of the 8087 options described in Section 3.8.1, "If
You Have an 8087 or 80287 Coprocessor," to take maximum advantage of
your processor's capabilities.

39

Microsoft C Compiler User's Guide

2.10 Using an 80186,
80188, or 80286 Processor

You can use the compiler with an 80186, 80188, or 80286 processor without
taking any special steps. However, to take advantage of your processor's
capabilities you will probably want to use the / G 1 or / G2 option when
you compile your programs. These options enable the instruction set for the
80186/80188 and 80286 processors, respectively (see Section 3.9 of Chapter
3, "Compiling").

2.11 Converting Existing C Programs

If you are using an earlier version of the Microsoft C Compiler, or if you
have programs written for such a compiler, turn to Appendix F, "Convert­
ing from Previous Versions of the Compiler," for a discussion of differences
between this compiler and earlier versions. Some programs may need
modification to compile correctly on Version 4.0.

2.12 Organizing Your Software

Before you begin using the compiler, you will probably want to spend some
time organizing the files on your disks. The optimal arrangement of files
depends on your specific needs and on how you most frequently use the
compiler, as well as your machine configuration. You can also take advan­
tage of the compiler's use of environment variables to determine search
paths for various pieces of the software.

It is recommended that you create a separate directory for each type of file:
executable, include, and library. (See Section 2.4, "Quick Hard-Disk Setup
Procedure," and Section 2.5, "Quick Floppy-Disk Setup Procedure," for ex­
amples of how to create these directories.) The "system-level" include files
are conventionally placed in a separate subdirectory of the include file
directory named SYS, but this is not required.

If you use the SYS subdirectory convention, you should give the subdirec­
tory name with the file name when you use a "system-level" include file in
your program. For example, if you want the compiler to find and use the

40

Getting Started

include file TIMEB.H from the subdirectory SYS in the directory specified
by the INCLUDE variable, use the following line in your program:

#include <sys\timeb.h>

On the other hand, if you do not use the SYS convention, the following line
is sufficient:

#include <timeb.h>

Note that, although case is significant within C programs, case is not
significant to MS-DOS. The names sys and SYS are equivalent when used
as MS-DOS directory names, unlike the XENIX operating system, where
these two names would not be equivalent.

Sample setups for hard-disk systems and floppy-disk systems are given in
Sections 2.4 and 2.5. Refer to the section that applies to your system.

2.13 Practice Session

This section shows you the steps involved in compiling and linking a pro­
gram using the Microsoft C Compiler. By following these steps you can
produce and run an executable program file.

The source file used for this practice session is the sample source file
DEMO.C, which is included with your compiler software. DEMO.C is a
very simple C program that contains only one function, the main function.
The main function is designed to print on your terminal any command-line
arguments you pass to the program at execution time. It will also print the
current value of environment settings. You can examine the DEMO.C
source file to see how this is done. For a full discussion of passing
command-line data to programs, accessing the program environment from
within a program, and declaring the argc, argv, and envp parameters, see
Chapter 5, "Running C Programs on MS-DOS."

This practice session assumes that you are using the sample disk setup and
environment that is appropriate for your system. See Section 2.4, "Quick
Hard-Disk Setup Procedure," or Section 2.5, "Quick Floppy-Disk Setup
Procedure," for examples of how to set up your disks.

41

Microsoft C Compiler User's Guide

The first thing you should do is verify that the compiler environment is set
up correctly. You can do this by typing SET. When you give the SET
command without an argument, it lists all environment variables and their
current settings. Make sure the PATH, INCLUDE, TMP, and LIB vari­
ables are in the list and that they are set appropriately for your system, as
shown below:

Hard-Disk Settings

PATH=C:\BIN

INCLUDE=C:\INCLUDE

LIB=C:\LIB

TMP=C:\

Floppy-Disk Settings

PATH=A:\;A:\BIN

INCLUDE=B:\INCLUDE

LIB=A:\LIB

TMP=B:\

If your settings do not match the above settings, turn back to Section 2.4
or 2.5 to review the disk setup and environment settings relevant to your
system.

Once you have set up the environment, you are ready to begin processing
DEMO.C. Follow steps 1-14 below:

42

1. First, set up a directory to hold program files. The directory can be
on the hard disk or on the floppy disk named "Include/Source Files"
created in Section 2.5. You can give the directory any name you
like; for this session, the name PROG will be used. Next, copy
DEMO. C from Disk 3, "Include Files and Libraries Disk {Small
Model)," into the PROG directory.

Important

If you are using a floppy-disk setup, the disk containing the
compiler executable files ("Compiler" from Section 2.5) should
now be in Drive A.

2. Now you are ready to begin compiling. Make sure that the PROG
directory is your current working directory (use the CD command
to change directories, if necessary). Then type this command:

MSC

Getting Started

The MSC command invokes MSC.EXE, the compiler control pro­
gram. MSC.EXE displays prompts on your screen to guide you
through the compiling process.

3. The first message to appear on your screen is

Microsoft (R) C Compiler Version 4.00
Copyright (C) Microsoft Corp 1984, 1985, 1986. All rights reserved.
Source file name [.C]:

Following the "Source file name" prompt, specify the name of the
file or files to be compiled. (If you don't include the file-name exten­
sion when responding to this prompt, MSC.EXE assumes that the
extension is .C. For this reason, your source file must have the file
extension • C or .c.) Type

DEMO

in response to this prompt.

4. The next prompt is

Object file name [DEMO.OBJ]:

This prompt allows you to supply a name for the object file. In­
stead of typing a name, respond to this prompt by pressing the
RETURN key, causing MSC.EXE to use the default response for the
prompt. The default response for the "Object file name" prompt is
to name the object file DEMO. OBJ. The object file is created in the
current working directory, which is the PROG directory.

5. The next prompt is

Source listing [NUL.LST]:

This prompt lets you create a source listing containing the source
code on numbered lines and a table of symbols in the program. If er­
rors are encountered during compilation, they will be shown im­
mediately following the source lines that caused the error. Type

DEMO

in response to this prompt. MSC.EXE appends the default exten­
sion .LST and creates a listing named DEMO. LST. The listing file
is created in the current working directory (PROG).

6. The next prompt is

Object listi~g [NUL. COD] :

This prompt lets you create a listing of your object file, containing
the machine instructions that correspond to your C instructions.

43

Microsoft C Compiler User's Guide

44

Type

DEMO

in response to this prompt. MSC.EXE appends the default exten­
sion .COD and creates a listing named DEMO. COD. The listing file
is created in the current working directory (PROG).

7. MSC.EXE now begins to compile your program. If your program
has errors, they will be displayed as the compiler operates. (DEMO. C
does not have errors.) When the compilation process is finished, the
MS-DOS prompt reappears.

You now have an object file named DEMO. OBJ, a source-listing file
named DEMO. LST, and an object-listing file named DEMO. COD in
your current working directory.

8. Next, you need to link your program.

Note

If you are using a floppy-disk setup, you should change the disk
in Drive A at this point. Remove the disk containing the com­
piler files, then insert the disk containing the LINK utility and
the library files ("Linker/Utilities/Libraries" from Section 2.5).

To link your file, simply type

LINK

The LINK command invokes the linker. You will see the following
message on your screen:

Microsoft (R) Overlay Linker Version 3.50
Copyright (C) Microsoft Corp 1983, 1984, 1985, 1986. All rights reserved.

9. The first linker prompt is

Object Modules [.OBJ]:

You have only one object file to link, so just type

DEMO

in response to this prompt. LINK appends the .OBJ extension to
find your file on the disk. Since the file is in the current working
directory, you do not have to specify a path name to enable LINK
to find it.

10. The next prompt is

Run File [DEMO. EXE] :

Getting Started

This prompt lets you name the executable program file. Press the
RETURN key in response to this prompt. If you don't supply a
different name for the executable file, the linker uses the default
name shown in brackets. The executable file is created in the
current working directory (PROC).

11. The next prompt is

List File [NUL.MAP]:

If you give a file name following this prompt, the linker creates a
map file listing all the external symbols in your program and their
locations. Type the following response:

DEMO /MAP

This response tells the linker to create a listing file named
DEMO. MAP. The.MAP extension is used because you did not sup­
ply your own extension. The map file is created in the PROC direc­
tory by default. The lMAP option causes global symbols to be listed
at the end of DEMO. MAP.

12. The final prompt is

Libraries [.LIB]:

The names of the standard C and floating-point libraries are pro­
vided in the object file, and the LIB environment variable tells the
linker where to find the given library files. Therefore, you do not
need to give any library names following this prompt. Just press
the RETURN key.

13. LINK now proceeds to link your file. If any errors are found, they
are displayed on your screen. When the MS-DOS system prompt
reappears, the linker has finished processing your file. You now
have an executable file named DEMO. EXE in your directory, plus an
object listing named DEMO. MAP.

You may want to examine the object listing (DEMO. COD) and map
file (DEMO. MAP) to familiarize yourself with their formats. These
files are especially useful for debugging programs. However, the
listing and map files are not required for running the program, so
you can delete them if you like.

46

Microsoft C Compiler User's Guide

You can also delete the object file (DEMO. OBJ); since you have the
executable program file, it is no longer needed. Chapter 6, "Manag­
ing Libraries," discusses how to use the Microsoft Library Manager,
LIB, to organize object files into libraries of useful functions.

14. You can run the sample program by simply typing DEMO. However,
since the sample program is designed to take command-line argu­
ments and print them, you will probably want to give command-line
arguments when you run the program. For instance, you can run
the program and pass three arguments by typing:

DEMO ONE TWO THREE

The program name is displayed on your screen, followed by the ar­
guments ONE, TWO, and THREE and a listing of all current environ­
ment settings. The environment settings include PATH, LI B,
INCLUDE, and TMP, as well as any other settings that are currently
in effect (whether or not they apply to the C program or to the com­
pilation and linking processes).

Note

Under versions of MS-DOS earlier than 3.0, the program name is
not available and will not be displayed.

This practice session used the simplest form of the MSC and LINK
commands to show you their basic operation. The chapters that follow
describe alternate forms and explain how to specify options with the MSC,
LINK, and LIB commands. Note that the CL command, described in Ap­
pendix C, "The CL Command," can be used to perform the same tasks as
MSC and LINK.

2.14 Using Batch Files

You can create an MS-DOS batch file to set up the compiler environment
and invoke the compiler. Creating and using batch files is discussed more
fully in your MS-DOS manual. This section is intended only to demonstrate
a few of the possible uses of the MSC command in a batch file.

46

Getting Started

A batch file is a text file containing a series of executable MS-DOS com­
mands. Batch files always have the extension .BAT. You execute a batch
file by typing the file name without the .BAT extension. This causes MS­
DOS to execute the series of commands the file contains.

Batch files are especially useful with the MSC command because they allow
you to set up an environment before using the command. The examples
below use the command-line method of invoking MSC and LINK. The
command-line method lets you give all responses to the prompts on a single
line instead of waiting for the individual prompts. This method is discussed
in Section 3.2.9 of Chapter 3, "Compiling," and in Section 4.2.9 of Chapter
4, "Linking."

For example, the following batch file, MYCOMP . BAT, could be used to create
a program from a C source file in an environment set up for that purpose.

SET INCLUDE=B:\TOP\MYINC
MSC %1;
IF NOT ERRORLEVEL 1 LINK %1,,%1;

The value given to INCLUDE in the first line alters the environment for the
MSC command. Since no value is given for PATH, TMP, or LI B, their
current values, if set, are unaffected by the batch file.

The symbol %1 tells MS-DOS to look for an argument on the command line
when you execute the batch file. To run the batch file, type the following
line:

MYCOMP THIS

The file name THIS is substituted for %1, and THIS. C is compiled, produc­
ing the object file THI S . OBJ.

The second line of the batch file ensures that linking is only at-
tempted if the source file was successfully compiled. The MSC and CL
control programs return an exit code to allow testing for successful compi­
lation. The exit code 0 indicates success; for information on other exit
codes, see Appendix E, "Using Exit Codes." The MS-DOS batch command
IF ERRORLEVEL is used to test whether the exit code is 1 or greater.
See your MS-DOS documentation for more on this command.

If compilation is successful, the object file THI S . OBJ is linked to produce
THI S . EXE (the default name, since none is supplied). The name THI S is
also supplied (by means of the symbol %1) for the map file prompt, so a
map file named THI S. MAP is produced.

47

Microsoft C Compiler User's Guide

Note that the value given to INCLUDE when you execute the batch file
remains in effect until you explicitly change it or until you reboot your
machine. To restore your usual environment settings, you can create a
batch file that resets the environment variables to the directories you most
frequently use. For example, the following lines might be placed in a file
called RESET. BAT, to be executed by typing RESET whenever you want to
restore your usual environment settings:

PATH A:\BIN
SET INCLUDE=A:\INCLUDE
SET LIB=A:\LIB
SET TMP=B:\

48

Chapter 3

Compiling

3.1 Introduction 51
3.2 Running the Compiler 52
3.2.1 File-Name Conventions 53
3.2.2 Special File Names 54
3.2.3 "Source file name" Prompt 55
3.2.4 "Object file name" Prompt 55

"Source listing" Prompt 55
"Object listing" Prompt 56
Selecting Default Responses 57
Swapping Disks 57
Using the Command Line 57
Options 60

Listing the Compiler Options 62
Naming the Object File 63
Producing Listing Files 64
Controlling the Preprocessor 70

Defining Constants and Macros
Predefined Identifiers 72

71

3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6

Removing Definitions of Predefined Identifiers
Producing a Preprocessed Listing 74
Preserving Comments 75
Searching for Include Files 75

73

49

3.7 Syntax Checking 76
3.7.1 Identifying Syntax Errors 77
3.7.2 Generating Function Declarations 77
3.8 Selecting Floating-Point Options 79
3.8.1 If You Have an 8087 or 80287 Coprocessor 80
3.8.2 If You Don't Have a Coprocessor 81
3.8.3 If Your Computer is not IBM Compatible 82
3.8.4 Compatibility Between Floating-Point Options 83
3.9 Using 80186, 80188, or 80286 Processors 84
3.10 Understanding Error Messages 85
3.10.1 C Compiler Messages 86
3.10.2 Setting the Warning Level 88
3.11 Preparing for Debugging 89
3.12 Optimizing 90
3.13 Compiling Large Programs 92

60

CompiJing

3.1 Introduction

You need only one basic command, MSC, to compile your C source files
with the Microsoft C Compiler. The MSC command executes the three
compiler passes for you.

With the large set of MSC options, you can control and modify the tasks
performed by the command. For example, you can direct MSC to create an
object-listing file or a preprocessed listing. Options also let you give infor­
mation that applies to the compilation process; you can specify the
definitions for manifest (symbolic) constants and macros, and the kinds of
warning messages you want to see.

Note

The options available with MSC are documented extensively in this
chapter, as well as Chapter 8, "Working with Memory Models,"
Chapter 9, "Advanced Topics," and Appendix B, "Command Sum­
mary." For a quick overview of the more commonly used options, type

MSC /HELP

after the MS-DOS prompt. The /HELP option is described in greater
detail in Section 3.3, "Listing the Compiler Options."

The MSC command automatically optimizes your program. You never
have to give an optimizing instruction unless you either want to change the
way MSC optimizes or disable optimization altogether. See Section 3.12,
"Optimizing," for more on these choices.

This chapter explains how to run the compiler using the MSC command
and discusses commonly used MSC options in detail.

Additional MSC options are covered in Chapter 9, "Advanced Topics."
A summary of the MSC command and all available options is provided in
Section B.2 of Appendix B, "Command Summary." Appendix C, "The CL
Command," is a summary of the CL command, an alternative to the MSC
command. CL is similar to the cc command on XENIX and UNIX systems,
and is included for users who are accustomed to the XENIX cc command.

51

Microsoft C Compiler User's Guide

This chapter assumes that you know how to create, edit, and debug C pro­
gram files on your system. For questions relating to the definition of the C
language, see the Microsoft C Compiler Language Reference. For questions
relating to debugging C programs, see the Microsoft Code View manual.

3.2 Running the Compiler

MSC requires two types of input: a command to start the compiler and
responses to command prompts. Start the compiler by typing the following
command at the MS-DOS command level:

MSC

MSC prompts for the input it needs by displaying the following four mes­
sages, one at a time:

Source file name [.C]:
Object file name [basename.OBJ]:
Source listing [NUL. LST] :
Object listing [NUL. COD] :

where basename is the response (minus the. C extension - if any) you make
to the first prompt.

The responses you make to each prompt are explained in the sections that
follow.

If you want to stop a compiling session for any reason, type CONTROlrC.
You will be returned to the MS-DOS command level, where you can start
MSC from the beginning. If after doing this you discover new files begin­
ning with 00 or 01 in the directory specified by the TMP environment
variable, you can safely delete them; these are temporary compiler files that
were not deleted because the compiling session was interrupted.

62

Compiling

Note

Certain nonstandard MS-DOS environments (including some commonly
used networks) often intercept some or all of the MS-DOS system calls
and handle the calls themselves to provide additional or different capa­
bilities. When running the compiler under such environments, the
different operation of the system calls may cause some MSC functions
to differ from their documented behavior. For example, compiler tem­
porary files may not always be removed when you use CONTROL-C to ter­
minate a compilation.

3.2.1 File-Name Conventions

You can use uppercase letters, lowercase letters, or a combination of both
for the file names you give in response to the prompts. For example, the fol­
lowing three file names are equivalent:

abcde.fgh
AbCdE .FgH
ABCDE.fgh

You can include spaces before or after file names, but not within them. Op­
tions (see Section 3.2.10) can appear anywhere spaces can appear.

MSC uses the default file extensions .C, .OBJ, .LST, and .COD when
you do not supply extensions with your file names. You can override the de­
fault extension for a particular prompt by specifying a different extension.
To enter a file name that has no extension, type the name followed by a
period. For example, typing ABC. in response to a prompt tells MSC that
the specified file has no extension, while typing just ABC tells MSC to use
the default extension for that prompt.

You can override any defaults by typing all or part of the name. For ex­
ample, if the currently logged drive is B and you want the output file to be
written to the disk in Drive A, type A: in response to the prompt. The out­
put file is written on Drive A with the default file name.

Note that if you type any part of a legal path name following the "Source
listing" prompt, MSC produces a source-listing file. The default name is
the base name of the source file with the extension .LST. The base name
of a file is the portion of the name preceding the period (.). For example, if

53

Microsoft C Compiler User's Guide

you compile a file named TEST. C and type A: following the "Source list­
ing" prompt, MSC produces a listing file on Drive A with the name
A:TEST.LST.

MSC handles your response to the "Object listing" prompt in the same
manner, using the extension .COD in place of .LST for the object listing.

3.2.2 Special File Names

You can use the following MS-DOS device names as file names with the
MSC command. This allows you to direct files to your terminal or to a
printer. Note that you cannot use these names for ordinary file names.

Name

AUX

CON

PRN
NUL

Device

Refers to an auxiliary device (usually the same as COMl).

Refers to the console (terminal).

Refers to the printer device (usually the same as LPTl).

Specifies a "null" (nonexistent) file. Giving NUL as a file
name means that no file is created.

Even if you add device designations or file-name extensions to these special
file names, they remain associated with the devices listed above. For ex­
ample, A: CON. XXX still refers to the console and is not the name of a disk
file.

Notes

64

Object files contain machine code and are not printable. When
responding to the "Object file name" prompt, do not give a file name
that refers to a printer or console.

When using device names, do not follow them with a colon. The Micro­
soft C Compiler does not recognize the colon. For example, use CON or
PRN, not CON: or PRN:, in your responses to MSC prompts.

Compiling

3.2.3 "Source file name" Prompt

Following the "Source file name" prompt, give the name of the source file
you want to compile. If you do not supply an extension, MSC automati­
cally looks for a file with the .C extension.

Path names are allowed with the source-file name. Therefore, you can
specify the path name of a source file in another directory or on another
disk.

You may compile only one file at a time, so only one response to this
prompt is allowed. There is no default response; MSC displays an error
message if you do not supply a source-file name.

3.2.4 "Object file name" Prompt

Following the "Object file name" prompt, you can supply a name for the
object file produced when you compile a source file. You are free to give any
name and any extension you like. However, using the conventional .DBJ
extension simplifies operation of LINK and LIB, both of which use .DBJ
as the default extension when processing object files.

If you supply only a drive or directory specification following the "Object
file name" prompt, MSC creates the object file in the given drive or direc­
tory and uses the default file name. You can use this option to create the
object file in another directory or on another disk. When you give only a
directory specification, the directory specification must end with a
backslash (\) so that MSC can distinguish between a directory
specification and a file name.

The default name supplied for the object file is the base name of the source
file with an .DBJ extension. If no path name is supplied, the object file is
created in the current working directory.

3.2.5 "Source listing" Prompt

If you supply a file name following the "Source listing" prompt, MSC
creates a source listing, using the file name you supply. By convention,
these listings are given the extension .LST, but you are free to choose any
extension you like. If you do not supply a file name, the default is the spe­
cial name NUL.LST, which tells MSC not to create a listing.

66

Microsoft C Compiler User's Guide

Note

Source listings were not available in Microsoft eVersion 3.0, and the
"Source listing" prompt and its corresponding place in the command
line did not exist. If you are upgrading from Version 3.0, command lines
in batch files or MAKE description files may need to be revised slightly
to work correctly with Microsoft eVersion 4.0. Specifically, if a Version
3.0 command line specifies an object listing, it will produce a source
listing instead with versions 4.0 and higher.

Specifying a source listing at the "Source listing" prompt has the same
effect as using the IFs option. See Section 3.5, "Producing Listing Files."

3.2.6 "Object listing" Prompt

By supplying a file name following the "Object listing" prompt, you can tell
MSC to create an object listing for the compiled file. The object listing
contains the machine instructions and assembler code for your program.

If you supply a file name following this prompt, MSC creates an object list­
ing, using the file name you supply. By convention, these listings are given
the extension .COD, but you are free to choose any extension you like.

If you do not supply a file name, the default is the special name
NUL. COD, which tells MSC not to create an object listing.

An object listing (unlike a source listing) can only be produced if the source
file is compiled with no errors. The MSC command optimizes by default, so
the object listing reflects the optimized code. Since optimization may in­
volve rearrangement of code, the correspondence between your source file
and the machine instructions may not be clear. To produce a listing
without optimizing, use the lad option, discussed in Section 3.11,
"Preparing for Debugging."

Specifying an object listing at the "Object listing" prompt has the same
effect as using the IFl option. See Section 3.5, "Producing Listing Files,"
for more information and an example of listing files. Section 3.5 also tells
how to produce two variations of the object-listing file: assembly listings,
and combined source and assembly listings.

66

Compiling

3.2.7 Selecting Default Responses

To select the default response to the current prompt, press the RETURN key
without giving any other response. The next prompt will appear.

To select default responses to all remaining prompts, use a single semicolon
(;) to terminate the line. Once the semicolon has been entered you cannot
respond to any of the remaining prompts for that compiling session. Any
text following the semicolon (such as an option) is ignored. Use the semi­
colon to save time when the default responses are acceptable.

There is no default for the first prompt, "Source file name." You must enter
a source-file name. The default for the "Object file name" is the base name
of the source file with an .OBJ extension. The default for the "Source list­
ing" prompt is the special name NUL.LST, which tells MSC not to create
a source-listing file. The default for the "Object listing" prompt is the spe­
cial name NUL. COD, which tells MSC not to create an object-listing file.

3.2.8 Swapping Disks

MSC suspends execution and displays a prompt whenever it cannot find
one or more of the executable files that constitute the compiler: Cl.EXE,
C2.EXE, and C3.EXE. This behavior lets you store the compiler files on
different disks, if necessary, and swap disks when MSC prompts you.

If you respond to the "Source file name" prompt with a nonexistent file
name, or to the "Object file name," "Source listing," or "Object listing"
prompt with an invalid path name, MSC displays an error message and
terminates. You must restart MSC with the correct information.

3.2.9 Using the Command Line

Once you understand how the MSC prompts and responses work, you can
use the command-line method of running the compiler. With this method
you type all the file names on the line used to start MSC. The command­
line method has the following form:

MSC sourcefile [,[objectfile] [,[sourcelistfile][,[objectlistfile]]]] [options] [;]

You can include spaces before or after file names, but not within them. Op­
tions (described in Section 3.2.10) can appear anywhere spaces can appear
in the command line.

67

Microsoft C Compiler User's Guide

You can leave the objectfile, sourcelistfile, and obJ'ectlistfile fields blank
to cause MSC to select the default file names, The semicolon (;) character
has the same effect on the command line as it does with the MSC
prompts, When MSC sees a semicolon on the command line, it uses the de­
fault responses to the remaining prompts. Any text after the semicolon is
ignored.

The comma (,) serves as a separator and also has a special function in the
command line. If you place a comma after the objectfile field in the com­
mand line (whether or not objectfile is actually given), the default for the
source-listing field is changed from NUL.LST to the base name of the
source file plus .LST. Similarly, if a comma follows the source-listing field,
the default for the object-listing field is changed from NUL. COD to the
base name of the source file plus .COD. For example, the following com­
mand lines are equivalent:

MSC TEST, TEST, TEST, TEST;
MSC TEST, , , ;

In the first command line, the name TE ST is explicitly specified for all three
prompts, so TEST. C is compiled and three files are produced: TEST. OBJ,
TEST. LST, and TEST. COD.

In the second command line, only the source-file name is supplied. The de­
fault name TEST. OBJ is used for the object-file name, since none is speci­
fied. The comma following the object-file-name field causes the default for
the listing files to be changed to TEST. LST and TEST. COD. Since no name
is provided for the source and object listings, the default files are created.

The following line has a different effect:

MSC TEST;

This command creates an object file named TEST. OBJ, but does not create
listing files, since no comma is present in the command line to change the
defaults.

You can combine the prompt method and command-line methods by giving
MSC a partial command line. It prompts you for the fields you do not sup­
ply. You can end a partial command line with any of the items listed belQw:

68

Entry

Semicolon (;)

Result

MSC uses .thedefault responses for the remaining
prompts.

file 'name

Comma (,)

Compiling

MSC prompts you for the remaining responses, if
any.

If you give just a source-file name followed by a
comma, MSC prompts for the object-file name,
source-listing name, and object-listing name, as usual.
However, if you supply both a source-file name and an
object-file name, and then terminate the command
line with a comma, MSC changes the default source­
listing name from NUL. LST to the base name of the
source file plus .LST. MSC then prompts you for an
object-listing name to allow you to override the de­
fault. (You can give the name NUL. LST to suppress
the creation of a source listing.) The default object­
listing name is changed in a similar fashion if the
command line ends with a source-listing name fol­
lowed by a comma.

Options can also appear at the end of a partial command line, as discussed
in the next section. The following examples demonstrate partial command
lines:

Examples

MSC ASK.C, TELL.OBJ

MSC ASK, TELL;

MSC ASK.C, TELL.OBJ,

MSC ASK

The first example causes MSC to prompt with

Source listing[NUL.LST]

since you supplied the source-file name and object-file name but not the
source- or object-listing file names.

Note the difference between the first example and the second example,
which tells MSC to use the default response (no file) for the source and ob­
ject listings. No further prompts appear in this case.

69

Microsoft C Compiler User's Guide

In the third example, the trailing comma (after TELL. OBJ) has a special
meaning. It causes MSC to prompt as follows:

Source listing[TELL.LST]:

Note that the default name in brackets is TELL. LST rather than
NUL. LST. In this case a source listing is created by default, unless you
override the default to specify a different listing name (or the name
NUL. LST, to suppress the listing).

In the final example, MSC starts prompting with the "Object file name"
prompt, since only the source-file name is supplied.

3.2.10 Options

The MSC command offers a large number of command options to control
and modify the compiler's operation. Options begin with the forward slash
character (/) and contain one or more letters. The dash character (-) can
be used instead of the forward slash, if you prefer. For example, /Zg and
-Zg are both acceptable forms of the Zg option.

Note

Although file names can be given in either uppercase or lowercase
letters, options must be given exactly as shown in this manual. For ex­
ample, /W and /w are two different options.

Options can appear anywhere a space can appear when you give the MSC
command, except that options following a semicolon are ignored. Thus, op­
tions can go before or after any of the four file names (source-file name,
object-file name, source listing, and object listing). The options apply to
the entire compilation process, not just to the line on which they appear.

Some options take arguments, such as file names, strings, or numbers. In
most cases, spaces are allowed between the option letter and the argument.
For example, these are both acceptable forms of the /W option:

/W 3
/W3

60

Compiling

With the /NM, /NT, and /ND options (discussed in greater detail in Sec­
tion 9.14, "Naming Modules and Segments," in Chapter 9, ((Advanced
Topics"), a space is required between the option and its argument. For ex­
ample, INM testmodul e is acceptable, but INMtestmodul e is not, and
will produce a command-line error.

The /Gt option and /F family of options (/Fs, /Fa, /Fc, /FI, and /Fo,
plus /Fe and /Fm with the CL command) are the only exceptions to al­
lowing or requiring spaces between options and their arguments. The / Gt
option accepts an optional numerical argument, while the IF options ac­
cept an optional path-name argument or partial path-name argument.
When you supply an argument to one of these options, no spaces can ap­
pear between the option and the argument. For example, IF cMI NGLE is ac­
ceptable, but If c MI NGLE is not.

Some options consist of more than one letter. For example, the /F options
mentioned above are two-letter options. No spaces are allowed between the
letters of an option. Thus IF cMINGLE would also be an unacceptable
form for the preceding option.

The order of the options is not important, and they can be given following
any prompt or in any command-line field. The default for the prompt is
still used if you supply an option without a file name in response to the
prompt.

The compiler options and the tasks they perform are discussed in the
remainder of this chapter, in Chapter 8, ((Working with Memory Models,"
and in Chapter 9, ((Advanced Topics." The command-line form of the MSC
command is used for the examples of options in this manual. Remember,
you can use options with the prompts as well, as shown below.

Examples

MSC
Source filename [.C]: A:\LOAD.C
Object filename [LOAD.OBJ]: OUT
Source listing [NUL.LST]: LOAD.SRC
Object listing [NUL. COD] : IOas /Fe

The prompts and responses above produce exactly the same effect as the
following command line:

MSC A:\LOAD.C IOas IFoOUT IFsLOAD.SRC IFc;

61

Microsoft C Compiler User's Guide

In each case, the source file LOAD. C on Drive A is compiled, the object file
is named OUT. 0 BJ and the source listing is named LOAD. SRC. The IF c
option produces a combined source- and assembly-code listing; since no ar­
gument was given with the /Fc option, the listing is given the default name
LOAD. COD, formed by appending .COD to the base name of the source file.
The object file, source listing, and combined listing are created on the de­
fault drive, since no drive was specified. The /Oas option tells the compiler
how to optimize the object file. The /Fc, /Fs, and /Oas options are dis­
cussed in detail in Section 3.5, "Producing Listing Files," and Section 3.12,
"Optimizing."

3.3 Listing the Compiler Options

Option

/HELP
/help

This option prints on the console a list of the most commonly used compiler
options. You can specify /HELP or /help as part of the MSC command
line, or as part of the response to an MSC prompt. In either case, MSC
processes all information on the line containing the /help option, prints
the command list, and then, if needed, reissues the current prompt for
further input. Note that all input you have given up to this point has been
processed. For example, if you have typed a file name followed by /help,
that file name will appear as the default value when the prompt is reissued.

The only exception to these rules concerns source-file names. If you type
the source-file name with /help, the source-file prompt is not reissued. In­
stead, the object-file prompt is displayed following the command list.

This option is not case sensitive: any combination of uppercase and lower­
case letters is acceptable; for example, /hELp.

62

Compiling

3.4 Naming the Object File

Option

/FoobJectfile

You can name the object file produced by compiling your source file using
the /Fo option. Using this option has the same effect as giving a file name
at the "Object file name" prompt. When using the /Fo option, the
objectfile argument must appear immediately after the option, with no in­
tervening spaces.

You are free to supply any name and any extension you like for the
obJ'ectfile. However, it is recommended that you use the conventional .OBJ
extension because it simplifies operation of LINK and LIB, both of which
use .OBJ as the default extension when processing object files, If you give
an object-file name without an extension, MSC automatically appends the
.OBJ extension.

If you give only a drive or directory specification following the /Fo option,
MSC creates the object file on the given drive or directory and uses the de­
fault file name (the base name of the source file plus .OBJ), You can use
this option to create the object file in another directory or on another disk.
When you give only a directory specification, the directory specification
must end with a backslash (\) so that MSC can distinguish between a
directory specification and a file name.

If you give a name following the "Object file name" prompt and also use
the /Fo option, the name you give after the /Fo option overrides the name
you give following the prompt,

Examples

MSC THIS, B:\OBJECT\;

MSC THIS /FoB:\OBJECT\;

The two examples above produce exactly the same effect. The source file
THI S . C is compiled; the resulting object file is named THI S . OBJ (by de­
fault). The directory specification B: \OBJECT\ tells MSC to create
THI S . OBJ in the given directory on Drive B.

63

Mierosoft C Compiler User's Guide

3.5 Producing Listing Files

Options

/Fs[listJile]
/Ft [listJile]
/Fa[listJile]
/Fc[listJile]

Prod uces source listing
Produces object listing
Produces assembly listing
Produces mixed source and assembly listing

In addition to the command-prompt method of creating listing files, you
can use options to create source and object listings. You can also use op­
tions to create two kinds of listings that are not available through prompts:
assembly listings and mixed source and assembly listings.

When using the /Fs, /Fa, /Fc, and /FI options, the listfile, if given, must
follow the option immediately, with no intervening spaces. The listfile can
be anyone of the items listed in the first column below. The second column
describes the results. If the listfile does not include an extension, the default
extension is used. The default extension is .LST for the /Fs option, .COD
for the /Fc and /FI options, and .ASM for the /Fa option.

The list below shows the kinds of entries that can follow one of the listing
file options:

Entry

File name

Directory specification

Omitted

64

Result

MSC uses the given file name, appending
the default extension if the file name has
no extension. The file name can include a
path to tell MSC where to create the
listing.

MSC creates the listing in the given
directory, using the default listing name,
which is formed by appending the default
extension to the base name of the source
file. The directory specification must end
with a backslash (\) so that MSC can
distinguish between a directory
specification and a file name.

When no listfile is given, MSC uses the
default listing name (base name of the
source file plus the default extension) and
creates the listing in the current working
directory.

Compiling

At most, one source-listing file and one variation of the object listing is pro­
duced each time you compile. Therefore, if you use both the /Fa and the
/FI options in one command line, only one file will be produced. The /Fc
option overrides other listing options; whenever you use /Fc a combined
listing is produced. If you give conflicting names for a listing file (for ex­
ample, one following the prompt and one with the option), the last name
specified has precedence.

The /Fs option produces a source-listing file. The information in the
source listing is helpful in debugging programs as they are being developed,
and is also useful for documenting the structure of a finished program. The
source listing contains the numbered source-code lines, embedded error
messages, and symbol tables. Error messages appear in the listing after the
line that caused the error. The line number given in the error message
corresponds to the number of the source line immediately above the mes­
sage in the source listing. Include files are not expanded in the source list­
ing; any errors detected in an include file are placed in the source listing im­
mediately following the # include directive for that file.

The example below shows a section of code from a source listing:

8 FILE *infile;
9 char *name, line[100J;

10 int nlines;
11
12 if (argc > 1) {
13 nane = argv[argc - 1J;

***** count.C(13) : error 65: 'nane' : undefined
14 if ((infile = fopen (name, "r")) == NULL) {
15 fprintf (stderr, "%s couldn't open file %s\n" I

16 argv[OJ,name);
17 exit(l);
18 }
19 }

The error message shows that the variable nane was used without being
defined in line 27 of the source file COUNT. C. From the context, it is ap­
parent that the variable name was intended, but typed incorrectly.

If the source file compiles with no errors more serious than warning errors,
tables of segments, local symbols, and global symbols will be included in
the source listing. Symbol tables will not be included if the compiler is Ull­

able to finish compilation.

65

Microsoft C Compiler User's Guide

At the end of each function, a table of local symbols is given, as shown
below for the function main:

main Local Symbols

Name

name ..
line.
infile. .
nlines.
argc.
argv ..

Class

.. auto
· auto

.... auto
· auto
· param

. . param

Offset

-006a
-0068
-0004
-0002
0004
0006

Register

The Name column lists the name of each local symbol in the function. The
Class column contains either auto if the symbol is a nonstatic local vari­
able, or param if the symbol is a formal parameter. The Offset column
shows the symbol's offset address relative to the frame pointer (that is, the
BP register). The Offset number is positive for param symbols and nega­
tive for auto symbols with auto storage class. The Register column is
blank unless the variable is stored in a register. If the variable is in a regis­
ter, the column indicates the register (SI or DI).

At the end of the source code, a table of global symbols is given, as shown
below:

Global Symbols

Name Type Size Class Offset

- iob. struct/array 160 extern ***
exit. near function *** extern ***
fdopen. near function *** extern ***
fgets near function *** extern ***
fopen . near function *** extern ***
fprintf near function *** extern ***
main. near function *** global 0000
printf. near function *** extern ***

The Name column lists each global symbol, external symbol, and statically
allocated variable declared in the source file.

The Type column shows a simplified version of the symbol's type as de­
clared in the source file. The Type entry for a function is either near
function or far function, depending on the memory model and how
the function was declared. The Type entry for a pointer is near
pointer, far pointer, or huge pointer. For enumeration variables,
the Type entry is into For structures, unions, and arrays, the Type entry
is struct/array.

66

Compiling

The Size column is only used for variables. This column specifies the
number of bytes of storage allocated for the variable. Note that the amount
of storage allocated for an external array may not be known, so its Size
field may be undefined.

The Class column contains either global, common, extern, or static,
depending on how the symbol was defined in the source file.

The 0 f fset column is only used for symbols with an entry of gl oba 1 or
static in the Class field. For variables, the Offset field gives the rela­
tive offset of the variable's storage in the logical data segment for the pro­
gram file being compiled. Since the linker will, in general, combine several
logical data segments into a physical segment, this number is useful only
for determining the relative position of storage of variables. For functions,
the 0 f fset field gives the relative offset of the start of the function in the
logical code segment. For small-model programs, logical code segments
from different program files are combined into a single physical segment by
the linker, so the 0 f fset field is again useful, primarily to determine the
relative positions of different functions defined in the same source file. How­
ever, for medium-, large-, and huge-model programs, each logical code seg­
ment becomes a unique physical segment. In these cases, the 0 f fset field
gives the actual offset of the function in its run-time code segment.

The last table in the source listing shows the segments used and their size,
as shown below:

Code size
Data size
Bss size

0095 (149)
003c (60)
0000 (0)

The byte size of each segment is given first in hexadecimal, and then in
decimal (in parentheses). See Section 10.2.1 "Segment Model," in Chapter
10, "Interfaces with Other Languages," for a description of the segment
model.

The IFI option produces an object-listing file. The object listing contains
the machine instructions and assembly code for your program, as shown in
the sample below:

Line 12
*** OOOOOa 83 7e 04 01 cmp WORD PTR [bp+4] ,1 ;argc
*** OOOOOe 7e 44 j1e $165

Line 13
*** 000010 8b 76 04 mav si, [bp+4] ; argc
*** 000013 d1 e6 sh1 si,l
*** 000015 8b 5e 06 mav bx, [bp+6] ; argv
*** 000018 8b 40 fe mav ax, [bx-2] [siJ
*** 00001b 89 46 96 mav [bp-106] , ax ;name

67

Microsoft C Compiler User's Guide

Line 14
*** 00001e b8 00 00 mov aX,OFFSET DGROUP:$SG67
*** 000021 50 push ax
*** 000022 ff 76 96 push WORD PTR [bp-106 J ; name
*** 000025 e8 00 00 call _fopen
*** 000028 83 c404 add sp,4
*** 00002b 89 46 fc mov [bp-4J,ax;infile
*** 00002e Ob cO or aX,ax
*** 000030 75 32 jne $170

The line numbers are shown in the listing as comments. The machine in­
structions are on the left and assembly code on the right.

The /Fa listing produces an assembly listing of your program. The assem­
bly listing contains the assembly code corresponding to your C file, as
shown below:

Line 12
cmp WORD PTR [bp+4J ,1 ;argc
jle $165

Line 13
mov si, [bp+4J ;argc
shl si,l
mov bx, [bp+6J ;argv
mov ax, [bx-2J [siJ
mov [bp-106 J ' ax ;name

Line 14
mov aX,OFFSET DGROUP:$SG67
push ax
push WORD PTR [bp-106] ;name
call _fopen
add sp,4
mov [bp-4J ' ax ; infile
or aX,ax
jne $170

Note that the sample shows the same code as in the object listing sample,
except that the machine instructions are omitted. This is to ensure the list­
ing will be suitable as input for the Microsoft Macro Assembler (MASM).

To produce a listing that shows your source program along with the assem­
bly code, use the /Fc option. This option produces a line-by-line combined
source- and assembly-code listing, showing one line of your source program
followed by the corresponding line (or lines) of machine instructions, as
shown below:

; 1 * * * if (argc > 1) {
; Line 12

*** OOOOOa 83 7e 04 01 cmp
*** OOOOOe 7e 44 j Ie

; 1*** name = argv[argc - 1J;
; Line 13

68

WORD PTR [bp+4J,1 ;argc
$165

Compiling

*** 000010 8b 76 04 mov si, [bp+4] ; argc
*** 000013 d1 e6 shl si,l
*** 000015 8b 5e 06 mov bx, [bp+6] ;argv
*** 000018 8b 40 fe mov ax, [bx-2] [si]
*** 00001b 89 46 96 mov [bp-106] , ax ;name

; 1*** if ((infile fopen (name, "r")) == NULL) {
Line 14

*** 00001e b8 00 00 mov aX,OFFSET DGROUP:$SG67
*** 000021 50 push ax
*** 000022 ff 76 96 push WORD PTR [bp-106] ;name
*** 000025 e8 00 00 call _fopen
*** 000028 83 c4 04 add sp,4
*** 00002b 89 46 fc mov [bp-4],ax;infile
*** 00002e Ob cO or aX,ax
*** 000030 75 32 jne $170

Note that this sample is like the object listing sample, except that the C
source line is provided in addition to the line number.

When you examine a listing file, you will notice that the names of globally
visible functions and variables begin with an underscore, as shown below
(this part of the listing is the same for all three kinds of listings):

PUBLIC
PUBLIC
PUBLIC
PUBLIC
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

_by tee aunt
ehareaunt
wardeaunt
lineeaunt

fread:NEAR
_fapen:NEAR
_gets:NEAR

ehkstk:NEAR
_printf:NEAR
_perrar:NEAR

The Microsoft C Compiler automatically prefixes an underscore to all glo­
bal names to preserve compatibility with XENIX C compilers. If you write
assembly-language routines to interface with your C program, this naming
convention is important; see Section 10.2.7 of Chapter 10, "Interfaces with
Other Languages."

The listing may also contain names that begin with more than one
underscore (for example, __ chkstk in the sample). Identifiers with more
than one leading underscore are reserved for internal use by the compiler,
and should not be used in your programs, except for those documented in
the Microsoft C Compiler Run- Time Library Reference, such as _ psp,
_ 8Illblksiz, and _ fpreset(). Moreover, you should avoid creating global
names that begin with an underscore in your C source files. Since the com­
piler automatically adds another leading underscore, these names will have
two leading underscores and might conflict with the names reserved by the
compiler.

69

Microsoft C Compiler User's Guide

The MSC command optimizes by default, so listing files reflect the opti­
mized code. Since optimization may involve rearrangement of code, the
correspondence between your source file and the machine instructions may
not be clear, especially when you use the /Fc option to mingle the source
and assembly codes. To produce a listing without optimizing, use the /Od
option (discussed in Section 3.12, "Optimizing") with the listing option.

Examples

MSC HELLO.C /FsHELLO.SRC /FcHELLO.CMB;

MSC HELLO /FsHELLO.SRC, ,HELLO.LST, HELLO.COD;

In the first example, MSC creates a source listing called HELLO. SRC and a
combined source and assembly listing called HELLO. CMB. The object file
has the default name HELLO. OBJ.

The second example produces a source listing called HELLO. LST rather
than HELLO. SRC, since the last name provided has precedence. This ex­
ample also produces an object-listing file named HELLO. COD. The object
file in this example has the default name HELLO. OBJ.

3.6 Controlling the Preprocessor

The MSC command provides several options that give you control over the
operation of the C preprocessor. You can define macros and manifest (sym­
bolic) constants from the command line, change the search path for include
files, and stop compilation of a source file after the preprocessing stage to
produce a preprocessed source-file listing. The options that perform these
tasks are described below.

The C preprocessor recognizes only preprocessor directives. It treats the
source file as a text file, processing substitutions and definitions as directed.
The preprocessor can be run on a file at any stage of development, whether
or not the file is a complete C source file. In fact, the preprocessor is not
restricted to processing C files; it can be run on any kind of file. See the
Microsoft C Compiler Language Reference for a complete discussion of C
preprocessor directives.

70

Compiling

3.6.1 Defining Constants and Macros

Option

/Didenti/ier[=[string]]

The /D option lets you define a constant or macro used in your source file.
The identifier is the name of the constant or macro and the string is its
value or meaning.

If you leave out both the equal sign and the string, the given constant or
macro is assumed to be defined, and its value is set to 1. For example,
/DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or macro
is considered defined; its definition is the empty string. This definition
effectively removes all occurrences of the identifier from the source file. For
example, to remove all occurrences of regi ster, use the following option:

/Dregister=

Note that the identifier register is still considered to be defined.

The effect of using the /D option is the same as using a preprocessor
define directive at the beginning of your source file: the identifier is
defined throughout the source file being compiled.

You can supply a command-line definition for an identifier that is also
defined within the source file. The command-line definition remains in effect
until the identifier is redefined in the source file.

Up to 16 definitions may appear on the command line, each preceded by the
/D option. If you need to define more than 16 identifiers, see the discussion
of the /U and /u options in Section 3.6.3, "Removing Definitions of
Predefined Identifiers."

Example

MSC MAIN.C /D NEED=2;

The example defines the manifest constant NEED in the source file MAl N . C.
Note that spaces are permitted (but not required) between /D and the
identifier. This definition is equivalent to placing the directive

71

Mierosoft C Compiler User's Guide

#define NEED 2

at the top of the source file.

The /D option is especially useful with the # if directive. You can use the
option to control compilation of statements in the source file. For example,
suppose a source file named OTHER. C contains the following fragment:

#if defined (NEED)

#endif

Suppose further that OTHER. C does not explicitly define NEED (that is, no
define directive for NEED is present). Then all statements between the
if and the # endif directives are compiled only if you supply a definition
of NEED by using /D. For instance, the command

MSC MAIN.C /DNEED;

is sufficient to compile all statements following the # if directive. Note that
NEED does not have to be set to a specific value to be considered defined.
The following command, in contrast, causes the statements in the # if
block to be ignored (not compiled):

MSC MAIN.C;

3.6.2 Predefined Identifiers

The compiler defines four identifiers that are useful in writing portable pro­
grams. You can use these identifiers to conditionally compile code sections,
depending on the processor and operating system being used. The pre­
defined identifiers and their functions are listed below:

Identifier

MSDOS

M-I86

M-I86xM

72

Function

Always defined. Identifies target operating sys­
tem as MS-DOS.

Always defined. Identifies target machine as a
member of the 186 family.

Always defined. Identifies memory model,
where x is either S (small model), C (compact
model), M (medium model), L (large model),
or H (huge model). Small model is the default.

NO_EXT_KEYS

Compiling

Memory models are discussed in Chapter 8,
"Working with Memory Models."

"No Extended Keywords." Defined only when
the I Za switch is given, thus disabling special
keywords such as far and fortran. See Sec­
tion 9.2, "Disabling Special Keywords," in
Chapter 9, "Advanced Topics."

3.6.3 Removing Definitions of Predefined Identifiers

Options

IU identifier

lu
The IU (for "undefine") option can be used to turn off the definition of one
or more of the predefined identifiers discussed in the previous section. The
lu option turns off all four definitions.

These options are useful if you want to give more than 16 definitions on the
command line, or if you have other uses for the predefined identifiers. For
each definition of a predefined identifier you remove, you can substitute a
definition of your own on the command line. When the definitions of all
four predefined identifiers are removed, you can specify up to 20 command
line definitions.

Example

MSC /U MSDOS /U M_I86 /U M_I86SM WORK.C;

This example removes the definitions of three predefined identifiers. Note
that the /u option must be given three times to do this.

73

Microsoft C Compiler User's Guide

3.6.4 Producing a Preprocessed Listing

Options

/P
/E
/EP

The /P, /E, and /EP options produce listings of preprocessed files. These
options allow you to examine the output of the C preprocessor.

The preprocessed listing file is identical to the original source file except
that all preprocessor directives are carried out, macro expansions are per­
formed, and comments are removed. All three options suppress compila­
tion; no object file or listing is produced, even if you supply a name follow­
ing the "Object file name" or "Object listing" prompt.

The /P option writes the preprocessed listing to a file with the same base
name as the source file, but with a .1 extension.

The /E option copies the preprocessed listing to the standard output (usu­
ally your terminal), and places a #line directive in the output at the begin­
ning and end of each included file, and also around lines removed by condi­
tional compilation preprocessor commands. You can save this output by
redirecting it to a file, using the MS-DOS redirection symbol> or > >
(see your MS-DOS manual for a description of these symbols).

The /E option is useful when you want to resubmit the preprocessed listing
for compilation. The # line directives renumber the lines of the prepro­
cessed file so that errors generated in later stages of processing refer to the
original source file rather than the preprocessed file.

Using the /EP option combines features of the /E and /P options; the file
is preprocessed and copied to the standard output, but no # line directives
are added.

Examples

MSC MAIN.C IP;

MSC ADD.C IE; > PREADD.C

MSC ADD.C IEP ;

74

Compiling

The first example creates the preprocessed file MAl N . I from the source file
MAl N . c. The second command creates a preprocessed file with inserted
line directives from the source file ADD. C. The output is redirected to
the file PREADD . C. The third command produces the same preprocessed
output as the second example without the # line directives. The output
appears on the screen.

3.6.5 Preserving Comments

Option

Ie

Normally, comments are stripped from a source file in the preprocessing
stage, since they do not serve any purpose in later stages of compiling. The
IC (for "comment") option preserves comments during preprocessing. The
I C option is valid only when the IE, IP, or IEP option is also used.

Example

MSC SAMPLE.C IP IC;

The example produces a listing named SAMPLE. 1. The listing file contains
the original source file, including comments, with all preprocessor directives
expanded or replaced.

3.6.6 Searching for Include Files

Options

IIdirectory
IX
The II and IX options temporarily override or change the effects of the
environment variable INCLUDE. These options let you give a particular
file special handling without changing the compiler environment you nor­
mally use. (See Section 2.7, "Setting Up the Environment," of Chapter 2,
"Getting Started," for a discussion of environment variables.)

76

Microsoft C Compiler User's Guide

You can add to the list of directories searched for include files by using the
/1 (for "include") option. This option causes the compiler to search the
directory or directories you specify before searching the standard places
given by the INCLUDE environment variable. You can add more than one
include directory by giving the /1 option more than once in the MSC com­
mand. The directories are searched in order of their appearance in the com­
mand line.

The directories are searched only until the specified include file is found. If
the file is not found in the given directories or the standard places, the com­
piler prints an error message and stops processing. When this occurs, you
must restart compilation with a corrected directory specification.

You can prevent the C preprocessor from searching the standard places for
include files by using the /X (for "exclude") option. When MSC sees the
IX option, it considers the list of standard places to be empty. This option
IS often used with the /1 option to define the location of include files that
have the same names as include files found in other directories, but that
contain different definitions. See the second example below.

Examples

MSC MAIN.C II A:\INCLUDE IIB:\MY\INCLUDE;

MSC MAIN.C IX II B:\ALT\INCLUDE;

In the first example, MSC looks for the include files requested by MAIN. C
in the following order: first in the directory A: \INCLUDE, then in the direc­
tory B: \MY\INCLUDE, and finally in the directory or directories assigned
to the INCLUDE environment variable.

In the second example, the compiler looks for include files only in the direc­
tory B: \ALT\INCLUDE. First the /X option tells MSC to consider the list
of standard places empty; then the /1 option specifies one directory to be
searched.

3.7 Syntax Checking

The options described in this section are useful in the early stages of pro­
gram development. With the /Zs option, you can quickly check your pro­
gram for syntax errors; with the / Zg option, you can automatically gen­
erate function declarations, which can then be used to enhance the syntax­
checking capabilities of the compiler.

76

Compiling

3.7.1 Identifying Syntax Errors

Option

/Zs

The /Zs option causes the compiler to perform a syntax check only. No
code is generated and no object file is produced. If the source file has syntax
errors, error messages will be displayed.

This option provides a quick way to locate and correct syntax errors before
attempting to compile a source file.

Example

MSC /Zs PRELIM.C;

This command causes the compiler to perform a syntax check on
PRELIM. C, displaying messages about any errors it finds.

3.7.2 Generating Function Declarations

Option

/Zg

The / Zg option generates a function declaration for each function defined
in the source file. The function declaration includes the function return
type and an argument-type list created from the types of the formal param­
eters of the function. Any function declarations already present in the
source file are ignored.

The generated list of declarations is written to the standard output. It can
be saved in a file using the MS-DOS redirection symbol> or > >.

When the /Zg option is used, the source file is not compiled. As a result, no
object file or listing is produced.

77

Microsoft C Compiler User's Guide

The list of declarations is helpful for verifying that actual arguments and
formal parameters of a function are compatible. You can save the list and
include it in your source file to cause the compiler to perform type check­
ing. The presence of a declared argument-type list for a function "turns on"
the compiler's type checking between actual arguments to a function (given
in the function call) and the formal parameters of a function.

This type checking can be a helpful feature in writing and debugging C pro­
grams, especially when working with older C programs. Argument type
checking is a recent addition to the C language, so many existing C pro­
grams will not have argument-type lists. See the Microsoft C Compiler
Language Reference for details on function declarations and argument-type
lists.

You can use the / Zg option even if your source program already contains
some function declarations. The compiler accepts more than one occurrence
of a function declaration, as long as the declarations do not conflict. No
conflict occurs when one declaration has an argument-type list and another
declaration of the same function does not, as long as the declarations are
otherwise identical.

Note

If you use the / Zg option and your program contains formal parame­
ters that have structure, enumeration, or union type (or pointers to
such types), then the declaration for each struct, ellum, or union must
have a tag. For example, use the following form:

struct tagA {

} A;

Your program can include calls to Microsoft C run-time library routines.
The include files provided with the Microsoft C run-time library contain
function declarations so that you can enable type checking on library calls.
The declarations are enclosed in preprocessor # ifdefined() blocks and are
included only if you define the special identifier LINT_ARCS. You can
define LI NT_ARCS either by placing a # define directive before any
include directives in your program, or by using the /D option when you
compile.

78

Compiling

Example

MSC FILE.C /Zg >FILE.DEC;

The above command causes the compiler to generate argument-type lists
for functions defined in fILE. C. The list of declarations is redirected to
fILE. DEC.

3.8 Selecting Floating-Point Options

Option

/FPa

/FPc

/FPc87

/FPi

/FPi87

Action

Generates floating-point calls; selects alternate
math library

Generates floating-point calls; selects emulator
library

Generates floating-point calls; selects 8087/80287
library

Generates in-line instructions; selects emulator
library (default)

Generates in-line instructions; selects 8087 /80287
library

The Microsoft C Compiler offers several methods of handling floating-point
operations. This section provides an overview of the floating-point options
available and discusses the default floating-point behavior. For more
detailed information on the floating-point libraries, plus a discussion of
overriding floating-point options at link time and using the N087 environ­
ment variable, see Section 9.9, "Controlling Floating-Point Operations," in
Chapter 9, "Advanced Topics."

The Microsoft C Compiler can use an 8087 or 80287 coprocessor if one is
present and can emulate 8087 operation through the use of an emulator
library if an 8087/80287 is not present. The emulator library (EM.LIB)
provides a large subset of the functions of an 8087/80287 in software. The
emulator can perform basic operations to the same degree of accuracy as an
8087/80287. However, the emulator routines used for transcendental math
functions differ slightly from the corresponding 8087/80287 functions, caus­
ing a slight difference (usually within 2 bits) in the results of these opera­
tions when performed with the emulator instead of with an 8087/80287.

79

Microsoft C Compiler User's Guide

By default, the Microsoft C compiler handles floating-point operations by
generating in-line 8087/80287 instructions (this is the /FPi option). The
emulator library is loaded, but if an 8087 or 80287 coprocessor is present at
run time, the coprocessor will be used instead of the emulator. This
method of handling floating-point operations always works, whether or not
you have a coprocessor installed. Therefore, you do not have to give a
floating-point option at compile time unless you want to use one of the
other options described below.

When you compile a source file using one of the floatint?-point options, the
name of the required floating-point library (or libraries) is placed in the
object file. At link time, the linker refers to the names in the object file to
determine which libraries it will link with. You can override the library
name given in the object file at link time and link with a different library
instead; see Section 9.9.1, "Changing Libraries at Link Time," in Chapter
9, "Advanced Topics," for details. The only restriction on overriding at
link time is that you are not allowed to change to the alternate math
library after you have compiled using the /FPi or /FPi87 option.

3.8.1 If You Have an 8087 or 80287 Coprocessor

The /FPi87 option is the fastest and smallest option available for
floatmg-point operations. It generates in-line instructions for an
8087/80287 coprocessor and selects the 8087/80287 library (87.LIB), plus
xLIBFP .LIB, where x indicates the memory model chosen. An 8087 or
80287 must be present at run time if the /FPi87 option is used.

The /FPc87 option generates function calls to routines in the 8087/80287
library (87.LIB) that perform the corresponding 8087/80287 instructions.
It selects the 8087/80287 library (87.LIB) and xLIBFP .LIB. The /FPc87
option is slower than /FPi87 because it makes function calls instead of
using in-line instructions, but /FPc87 is more flexible. Using the /FPc87
option allows you to change your mind at link time (without recompiling
the file) and use either the emulator or the alternate math library instead
of relying on an 8087/80287 coprocessor. This is possible because the calls
to 8087/80287 instructions are interchangeable with calls to the emulator
and the alternate math library. See Section 9.9.1 for instructions on chang­
ing libraries at link time.

Both the /FPi87 and /FPc87 options select the 8087/80287 library
(87.LIB), which provides minimal floating-point support. Whenever
87.LIB is used, an 8087 or 80287 coprocessor must be present at run time.
If no coprocessor is present, the program will not run and the following
message will appear:

80

Compiling

floating point not loaded

The /FPi option generates in-line instructions for an 8087/80287 and
selects the emulator library (EM.LIB) and xLIBFP .LIB. If an 8087/80287
coprocessor is present at run time, it is used; if one is not present, the emu­
lator is used.

Loading the emulator requires approximately 7K of additional space, so
programs that use the /FPi option are larger than programs that use
/FPi87. However, /FPi is a particularly useful option when you do not
know in advance whether an 8087 or 80287 coprocessor will be available at
run time.

In some cases, you may not want to use an 8087 or 80287 coprocessor, even
though one is present. For example, you may be developing programs to
run on systems that lack coprocessors. Conversely, you may want to write
programs that can take advantage of an 8087/80287 at run time, even
though you don't have one installed. There are several ways to control the
use of an 8087 or 80287:

1. Use the /FPi (default) or/FPc option to specify use of an
8087/80287 if present, an use of the emulator if not. To use the
emulator even when an 8087 or 80287 is present, set the N087
environment variable, as discussed in Section 9.9.2 of Chapter 9,
"Advanced Topics."

2. Use the /FPc87 or /FPi87 option if you always want to use a
coprocessor. Programs compiled with these options will fail if a
coprocessor is not present at run time.

3.8.2 If You Don't Have a Coprocessor

You have several options for generating floating-point calls without an
8087/80287 coprocessor. You can use the emulator library (EM.LIB) either
with in-line instructions (/FPi), or with function calls (/FPc). Or you can
use one of the alternate math lIbraries (/FPa). If you use the emulator
library, the 8087/80287 coprocessor will be used if one is present at run
time; if not, the emulator library will mimic the operation of an 8087. If
you use the alternate math library, the 8087/80287 will be ignored if
present.

The /FPi option is the default when you do not specify a floating-point
option. It generates in-line instructions for an 8087/80287 coprocessor and
selects the emulator library (EM.LIB) and xLIBFP .LIB. Because this
option uses in-line instructions, it is the most efficient way to get maximum
precision in floating-point operations without a coprocessor.

81

Microsoft C Compiler User's Guide

The /FPc option generates floating-point calls to the emulator library and
selects the emulator library (EM.LIB) and xLIBFP .LIB. The /FPc
option is slower than /FPi because it makes function calls instead of using
in-line instructions, but /FPc is more flexible than /FPi: the /FPc option
allows you to change your mind at link time (without recompiling the file)
and use an 8087/80287 coprocessor or the alternate math library instead of
using the emulator. This is possible because the same function call interface
is provided in all three libraries: the 8087/80287 library, the alternate math
library, and the emulator library. See Section 9.9.1 for instructions on
changing libraries at link time.

The /FPa option generates floating-point calls and selects the alternate
math library (xLIBF A.FP). The alternate math library uses a subset of
the IEEE (Institute of Electrical and Electronics Engineers, Inc.) standard
format numbers, sacrificing some accuracy for speed and simplicity.
(Infinities, NANs, and denormal numbers are not used.) Calls to this library
provide the fastest and smallest option if you do not have an 8087 or 80287
coprocessor. With this option, as with the /FPc option, you can change
your mind at link time and use the emulator or an 8087/80287 instead; see
Section 9.9.1, "Changing Libraries at Link Time," for details.

In some cases, you may want to write programs that will be able to take
advantage of an 8087 or 80287 at run time, even though you don't have one
installed. See Section 3.8.1, "If You Have an 8087 or 80287 Coprocessor,"
for a description of the appropriate options.

3.8.3 If Your Computer is not IBM Compatible

The exception handler in the libraries for 8087 or 80287 floating-point cal­
culations (EM.LIB and 87.LIB) are designed to work without modification
on the IBM PC family of computers, and on closely compatible computers,
including the Wang PC, the AT&T 6300, and the Olivetti personal comput­
ers. The libraries also need not be modified for the Texas Instruments Pro­
fessional Computer, even though it is not compatible. Any machine that
uses nonmaskable interrupts (NMI) for 8087 exceptions should work with
the unmodified libraries. However, if your computer is not one of these, and
if you are not sure if it is completely compatible, you may need to modify
the 8087 libraries.

All Microsoft languages that support the 8087 intercept 8087 exceptions in
order to produce accurate results and properly detect error conditions.

82

Compiling

In order to make the libraries work correctly on noncompatible machines,
you can modify the libraries. To make this easier, an assembly-language
source file, EMOEM.ASM, is included on the distribution disk. Any
machine that sends the 8087 exception to an 8259 Priority Interrupt Con­
troller (master or master Islave) should be easily supported by a simple
table change to the EMOEM.ASM module. The source file contains fur­
ther instructions on how to modify EMOEM.ASM and patch libraries and
executable files.

3.8.4 Compatibility Between Floating-Point Options

Each time you compile a source file, you can specify a floating-point option.
When you link two or more source files together to produce an executable
program file, you are responsible for ensuring that floating-point operations
are handled in a consistent way and that the environment is set up properly
to allow the linker to find the required libraries. See Chapter 4, "Linking,"
for a detailed discussion of linking.

Note

If you are building libraries of C routines that contain floating-point
operations, the /FPc floating-point option is recommended for all com­
pilations. The /FPc option offers the greatest flexibility.

Whenever a file is compiled using the /FPi or /FPi87 option, in-line
instructions are generated. In the case of the /FPi87 option, the library
files 87.LIB and xLIBFP .LIB must be present at link time, and an
8087/80287 coprocessor must be present at run time. For /FPi, the emula­
tor library (EM.LIB) plus xLIBFP .LIB must be present at link time, and
either the emulator or an 8087/80287 must be present at run time. As long
as these requirements are satisfied, object files produced using the /FPi
and /FPi87 options can be linked together without compatibility prob­
lems. Such object files can also be linked with object files produced using
/FPa, /FPc, or /FPc87.

Whenever a file is compiled with the /FPa, /FPc, or /FPc87 option,
floating-point function calls are generated. Each option places the name of
the appropriate library file or files in the object file. However, when linking
several such object files together, you must be aware of the process used to
resolve the function calls.

83

Microsoft C Compiler User's Guide

Since floating-point calls to the emulator, the alternate math library, and
8087/80287 coprocessor instructions are interchangeable, only one library is
used at link time to resolve the calls. In other words, you must choose one
of these libraries per program; the same program cannot make calls to more
than one library.

You can control which library is used, in one of two ways:

1. At link time, as the first name in the list of object files to be linked,
give an object file that contains the name of the desired library.
For example, if you want to use the alternate math library, give the
name of an object file compiled using the /FPa option. All
floating-point calls will refer to the alternate math library.

2. At link time, give the /NOD (no default library search) option and
then give the name of the floating-point library file or files you want
to use in the "Libraries" field. This library overrides the names in
the object files, and all floating-point calls will refer to the named
library. Since the /NOD option causes all default libraries to be
ignored, you must also specify the name of the standard C library
(xLIBC.LIB), as well as the code-helper library, LIBH.LIB.
Always give the names of the floating-point libraries before the
names of other libraries in the "Libraries" field.

3.9 Using 80186, 80188, or 80286 Processors

Options

/GO
/G!
/G2

If you have an 80186,80188, or 80286 processor, you can use the /Gl or
/G2 option to enable the instruction set for your processor. Use /G 1 for
the 80186 and 80188 processors; use / G2 for the 80286. Although it is usu­
ally advantageous to enable the appropriate instruction set, you are not
required to do so. If you have an 80286 processor, for example, but you
want your code to be able to run on an 8086, you should not use the
80186/80188 or 80286 instruction set.

84

Compiling

The /GO option enables the instruction set for the 8086/8088 processor.
You do not have to specify this option explicitly, since the 8086/8088
instruction set is used by default. Programs compiled this way will also run
on the machines with the 80186, 80188, or 80286 processor.

3.10 Understanding Error Messages

The C compiler generates a broad range of error and warning messages to
help you locate errors and potential problems in programs. The following
sections describe the form and meaning of the compiler error messages and
warning messages you may encounter while using the MSC command. For
a list of actual error messages, see Appendix H, "Error Messages."

Error messages produced by the compiler are sent to the standard output,
which is usually your terminal. You can redirect the messages to a file or
printer by using an MS-DOS redirection symbol, > or > >. (For more
information on redirection, see your Microsoft MS-DOS Programmer's
Reference Manual.) This is especially useful in batch-file processing. For
example, the following command redirects error messages to the printer
device (designated by PRN):

MSC RM.C; > PRN

The following command redirects error messages to the file RM. ERR:

MSC RM.C; > RM.ERR

Note that only output ordinarily sent to the console screen is redirected.

Example

Contents of RM. C:

#include <stdio.h>

main (argc, argv)
int argc;
char argv[J;

{
register int i;
char *name;

85

Microsoft C Compiler User's Guide

for (i = 1; i < arg; ++i)

}

if (unlink (name = argv[iJ)) {
printf("couldn't delete %s
perror("");
}

Contents of error-message file RM. ERR:

undefined

II name) ;

rm. c (11) error 65: 'arg'
rm.c(12) : warning 47: '=' different levels of indirection

Corrected version of RM . c:

#include <stdio.h>

main (argc, argv)
int argc;
char *argv[J;

{
register int i;
char *name;

for (i = 1; i < argc; ++i)

}

if (unlink (name = argv[iJ)) {
printf("couldn't delete %s
perror("");
}

3.10.1 C Compiler Messages

II name) ;

The C compiler displays messages about syntactic and semantic errors in a
source file, such as misplaced punctuation, illegal use of operators, and
undeclared variables. It also displays warning messages about statements
containing potential problems caused by data conversions or the mismatch
of types. If you give invalid or incompatible cOlnmand-line options, the
compiler will notify you of the error.

The error messages produced by the C compiler fall into five categories:
warning messages, fatal errol' messages, compilation error messages,
command-line messages, and compiler internal error messages.

86

Compiling

Warning messages are for your information only; they do not prevent com­
pilation and linking. These messages alert you to potential problems such
as type mismatches, data conversions, redeclarations, and overflow condi­
tions. The conditions described by warning messages are not necessarily
illegal or undesirable, but you should examine the messages carefully to
verify that your program produces these conditions intentionally. Other­
wise, your program may not operate as you expect. You can control the
level of warnings generated by the compiler by using the /W option, as
described in Section 3.10.2.

Fatal error messages indicate a severe problem, one that prevents the com­
piler from processing your program. Fatal errors can be caused by prob­
lems such as insufficient disk space or malformed preprocessor commands.
After printing a message about the fatal error, the compiler terminates
without producing an object file or checking for further errors. A source
listing is produced if one was requested, but it will not contain a symbol
table.

Compilation error messages identify actual program errors. No object file is
produced for a source file that has such errors. A source listing is produced
if one was requested, but it will not contain a symbol table. When the com­
piler encounters a nonfatal program error, it attempts to recover from the
error. If possible, the compiler continues to process the source file and pro­
duce error messages. If errors are too numerous or too severe, the compiler
terminates processing.

Command-line messages give you information about invalid or inconsistent
command-line options. If possible, the compiler continues operation, print­
ing a warning message to indicate which command-line options are in effect
and which are disregarded. A source listing is produced if one was re­
quested, but it will not contain a symbol table. In some cases, command­
line errors are fatal, and the compiler terminates processing without pro­
ducing an object file, a source listing, or an object listing.

Compiler internal error messages indicate an error on the part of the com­
piler rather than your program. If you get one of these messages, note the
conditions of the error and notify Microsoft, using the Software Problem
Report at the back of this manual.

Error messages of all types have the following basic form:

filename(linenumber) : messagetype number: message

In this syntax, filename is the name of the source file being compiled
and linenumber identifies the line of the source file containing the error.
The messagetype will be one of the following: error, warning, fatal, or

87

Microsoft C Compiler User's Guide

Command 1 ine. The number is the number of the error and message is a
self-explanatory description of the error.

The messages for each category are listed by number in Appendix H, "Error
Messages."

In addition to error messages, the MSC control program returns an exit
code that indicates the status of the compilation. Exit codes are useful
with the MS-DOS batch command IF ERRORLE"VEL and with the
MAKE utility. They allow you to test for the success or failure of the com­
pilation before proceeding with other tasks. Exit codes are discussed in
more detail in Appendix E, "Using Exit Codes."

3.10.2 Setting the Warning Level

Option

/W number
/w

You can set the level of warning messages produced by the compiler by
using the /W (for "warning") option. This option directs the compiler to
display messages about statements that may not be compiled as the pro­
grammer intends. Warnings indicate potential problems rather than actual
errors.

To use the /W option, choose one of the warning levels described below
and specify the corresponding number after the option. The /w option pro­
vides a shorter way to say /W 0, and has the same effect.

Level

o

1

2

3

88

Warning

Suppresses all warning messages. Only messages about
actual syntactic or semantic errors are displayed.

Warns about potentially missing statements, unsafe
conversions, and other structural problems. Also, warns
about overt type mismatches.

Warns about automatic data conversions, missing returns
in function definitions.

Currently equivalent to warning level 2. Reserved for
future releases.

Compiling

The default is level 1, so you do not need to give the /W option when you
want level 1.

The higher option levels are especially useful in the earlier stages of pro­
gram development when messages about potential problems are most help­
ful. The lower levels are best for compiling programs whose questionable
statements are intentionally designed.

Examples

MSC /W 2 MAIN.C;

MSC /w MAIN.C;

The first example directs the compiler to perform the highest level of check­
ing, and produce the greatest number of warning messages. The second
command causes MAl N . C to be compiled at the lowest level of checking,
with no warning messages. Note that the /w option in the second example
has the same effect as the following command:

MSC /W 0 MAIN.C;

3.11 Preparing for Debugging

Options

/Zd
/Zi
/Od

The / Zd option produces an object file containing line-number records
corresponding to the line numbers of the source file. The / Zd option is use­
ful when you want to pass an object file to the SYMDEB symbolic
debugger, available with other Microsoft products. The debugger can use
the line numbers to refer to program locations; however, only global
symbol-table information is available with this product.

The / Zi option produces an object file containing full symbolic-debugging
information for use with the Code View symbolic debugger. This object file
includes full symbol-table information and line numbers.

89

Microsoft C Compiler User's Guide

The /Od option tells the compiler not to perform cOlnplex optimizations
involving code rearrangement; pee~hole optimizations and other simple
optimizations are still performed. t Without the /Od option, the default is
to optimize.) You may want to use this option when you plan to use a
symbolic debugger with your object file, since optimization can involve
rearrangement of instructions that make it difficult for you to recognize
and correct your code when debugging. However, turning off optimizations
when your program is close to the size limits may increase the size of the
code generated to the point where it might not be possible to link your pro­
gram.

Other optimization options are discussed in Section 3.12, "Optimizing."

Example

MSC TEST.C, IZi IOd, TEST;

This command produces an object file named TEST. OBJ that contains line
numbers corresponding to the line numbers of TEST. C. A source-listing
file, TEST. LST, is also created. Limited optimization is performed.

3.12 Optimizing

Option

/Ostring

The optimizing procedures available with the Microsoft C Compiler can
reduce the storage space and execution time required for a compiled pro­
gram by eliminating unnecessary instructions and rearranging code. The
compiler performs some optimization by default. You can use the /0 (for
"optimize") options to exercise greater control over the optimizations per­
formed. Some additional advanced optimizing procedures are discussed in
Section 9.10 of Chapter 9, "Advanced Topics."

90

Compiling

The string after the /0 option lets you choose how the compiler performs
optimization. The string is formed from the following characters:

Character Optimizing Procedure

s Favor code size during optimization

t

d

Favor execution time during optimization (the default)

Disable optimization

a Relax alias checking

The letters can appear in any order: / Oat and /Ota have the same effect.
The letter x is also available with the /0 option to perform maximum
optimization, as discussed in Section 9.10.2 of Chapter 9, "Advanced
Topics."

When you do not give an /0 option to the MSC command, it automati­
cally uses /Ot, meaning that program execution speed is favored in the
optimization. Wherever the coml?iler has a choice between producing
smaller (but perhaps less efficient) and larger (but perhaps more efficient)
code, the compiler chooses to generate more efficient code. To cause the
compiler to favor code size instead, use the / Os option.

The /Od option turns off optimizations that involve code rearrangement.
This option is useful in the early stages of program development to avoid
optimizing code that will later be changed. Because optimization may
involve rearrangement of instructions, you may also want to specify the
/Od option when you use a debugger with your program or when you want
to examine an object-file listing. If you optimize before debugging, it can
be difficult to recognize and correct your code.

The a option letter can be used with either the s or the t option letter to
relax alias checking. The compiler performs alias checking to make sure
that it does not eliminate instructions incorrectly when you refer to the
same memory location by more than one name. You should include the a
option letter only when you are sure that your program does not use
aliases.

91

Microsoft C Compiler User's Guide

For example, consider the following code fragment:

int count, *pc;
pc = &count;
count = 0;

count = 0;

The reference to count through a pointer, *pc, is known as an "alias" for
count because it provides another way to access the same memory loca­
tion. When the compiler performs alias checking, it detects the indirect
reference to count through pc and does not eliminate the second instruc­
tion that assigns ° to count.

When you use the a option letter, you are telling the compiler that your
program does not use aliases. Therefore, the compiler does not check for
indirect references, such as the reference to count through a pointer. It
would be an error to use the a option letter with the example above. The
compiler would see only that the same value, 0, is assigned to count twice,
without any intervening assignments that change its value. The second
assignment would be considered redundant and would be eliminated in the
optimization stage, possibly causing the program to produce incorrect
results.

Example

MSC FILE.C jOsa;

This command tells the compiler to relax alias checking and to optimize for
smaller code size when it compiles FILE. c.

3.13 Compiling Large Programs

If you are compiling a program or file with more than 64K of data or with
more than 64K of code, you may want to use one of the memory models
described in Chapter 8, "Working with Memory Models." You can use map
files to determine data and code sizes for each individual program file.

92

Compiling

The compiler uses a small-memory model by default. The small-memory
model allocates one segment each, up to 64K in size, for the code and data
of your program. (The code segment of a program may also be referred to
as the "text" segment.) MSC produces an error message such as the follow­
ing if an individual file exceeds these limits:

fuename : error 27: DGROUP data allocation exceeds 64K

Even if no individual file exceeds the small-model restrictions, you may
exceed the 64K limit when you link several compiled files together to form a
large program. If this occurs you must recompile the files using a larger
memory model. Using a medium memory model allows you to create pro­
grams with more than 64K of code (the 64K restriction on data still
applies). Using a compact memory model allows you to create programs
with more than 64K of data (the 64K restriction on code still applies). In
large- and huge-model programs, code and data can both exceed 64K
(although in large-model programs no single data item can be larger than
64K).

If your program exceeds the 64K limit on data or code, you may also want
to use the far (for data or code) or huge (for data only) keyword to selec­
tively move items to a new segment. See Section 8.3 of Chapter 8, "Work­
ing with Memory Models," for a discussion of these options.

No matter which memory model you use, you cannot exceed the limit of
64K of code per program file compiled. The total code size for the program
may be greater than 64K, but each individual program file (or "compiland")
must contain less than 64K of code.

93

Chapter 4

Linking

4.1 Introduction 97
4.2
4.2.1
4.2.2
4.2.3

Running the Linker 97
File-Name Conventions
"Object Modules" Prompt
"Run File" Prompt 99

98
98

4.2.4 ''List File" Prompt 99
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.5
4.5.1
4.5.2
4.6
4.6.1

''Libraries'' Prompt 100
Separating Entries 101
Selecting Default Responses
Terminating the Link Session
Using a Command Line 102
Using a Response File 103
The Temporary File 104

Linking C Program Files 105
The "main" Function 105

101
102

Default Libraries and the Library Search Path
Changing the Default Libraries 107
LINK Options to Avoid 107

Listing-File Format 107
Using Overlays 109

Restrictions 110
Overlay :Manager Prompts 110

Using Options to Control the Linker 111
Viewing the Options List 112

106

95

4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
4.7

Pausing During Linking 112
Packing Executable Files 113
Listing Public Symbols 114
Incl uding Line Numbers in the List File
Preparing for Debugging 115
Preserving Case Sensitivity 116
Ignoring Default Libraries 116
Controlling Stack Size 117
Setting the :Maximum Allocation Space
Controlling Segments 119
Setting the Overlay Interrupt 120
Ordering Segments 120
Controlling Data Loading 121
Controlling Run-File Loading 122
Preserving Compatibility 122

How the Linker Works 123
4.7.1 Alignment of Segments 123
4.7.2 Frame Number 124
4.7.3 Order of Segments 124
4.7.4 Combined Segments 125
4.7.5 Groups 125
4.7.6 Fix-ups 126

96

114

118

Linking

4.1 Introduction

The Microsoft Overlay Linker (LINK) is used to combine object files into a
single executable run file. It can be used with object files compiled or assem­
bled on 8086/8088 machines. The format of input to the linker is a subset
of the Intel® object module format standard.

The output file (the executable file) from LINK is not bound to specific
memory addresses. It can, therefore, be loaded and executed by the operat­
ing system at any convenient address. LINK can produce executable files
containing up to one megabyte of code and data.

4.2 Running the Linker

LINK requires two types of input:

1. A command to start LINK

2. Responses to command prompts

Start LINK by typing the following command at the MS-DOS command
level:

LINK

LINK prompts you for the input it needs by displaying the following four
lines, one at a time:

Object Modules [.OBJ]:
Run File [basename. EXE] :
List File [NUL.MAP]:
Libraries [.LIB]:

LINK waits for you to respond to each prompt before printing the next
one. The responses you can make to each prompt are explained in sections
4.2.1 through 4.2.7.

Once you understand the LINK prompts and operations, you can use the
two alternate methods of running LINK: command line and response file.
The command-line method (discussed in Section 4.2.9) lets you type all
commands, options, and file names on the line used to start LINK. With

97

Microsoft C Compiler User's Guide

the response-file method (discussed in Section 4.2.10), you create a file that
contains all the necessary commands, then tell LINK where to find that
file.

You can also invoke LINK through the CL command. See Section C.3 of
Appendix C, "The CL Command."

4.2.1 File-Name Conventions

You can use either uppercase letters, lowercase letters, or a combination of
both for the file names you give in response to the prompts. For example,
the following three file names are considered equivalent:

abcde.fgh
AbCdE .FgH
ABCDE.fgh

LINK uses the default file extensions .DBJ, .EXE, . MAP , and .LIB when
you do not supply extensions with your file names. You can override the de­
fault extension for a particular prompt by specifying a different extension.
To enter a file name that has no extension, type the name followed by a
period. For example, consider the following two responses to prompts:

ABC.
ABC

If you typed the first line in response to a prompt, LINK would assume
that the given file has no extension; if you typed the second line, LINK
would use the default extension for that prompt.

4.2.2 "Object Modules" Prompt

At the "Object Modules" prompt, list the names of the object files you
want to link. For C programs, one (and only one) of the object files must
contain a "main" function to serve as the entry point for the program. You
must respond to this prompt. There is no default.

LINK automatically supplies the .DBJ extension when you give a file
name without an extension. If your object file has a different extension, you
must give the full name, with the extension, for the file to be found.

98

Linking

Path names are allowed with the object-file names. This means that you
can give LINK the path name of an object file in another directory or on
another disk. If LINK cannot find a given object file, it displays a message
and waits for you to change disks.

Each object-file name must be separated from the next by one or more
blank spaces or by a plus sign (+). If a plus sign is the last character typed
on the line, the "Object Modules" prompt reappears on the next line, allow­
ing you to include more object files.

4.2.3 "Run File" Prompt

The "Run File" prompt lets you supply a name for the executable program
file. You can give any file name you like; however, if you are specifying an
extension, you should always use .EXE, since MS-DOS expects executable
files to have this extension (or the .COM extension). (If you do not supply
an extension, .EXE is supplied.)

You are allowed to skip this prompt by typing a carriage return without
giving a name. By default LINK gives the executable file the base name of
the first .OBJ file listed at the previous prompt. The .EXE extension then
replaces the .OBJ extension of the object file.

4.2.4 "List File" Prompt

At the "List File" prompt you can tell LINK to create a listing file. A list­
ing file contains the names of all segments, in order of their appearance in
the load module. By adding the /MAP option (discussed in Section 4.6.4)
you can also include in the listing all public symbols and their addresses.

If you give a file name without an extension, LINK provides the .MAP ex­
tension. The .MAP extension is not required, so you can give another ex­
tension if you like. LINK creates the listing file in the current working
directory unless you give a different path name.

You can skip this prompt by typing a carriage return without giving a
name. The default response is the special file name NUL.MAP, which tells
LINK not to create a listing file.

99

Microsoft C Compiler User's Guide

4.2.5 "Libraries" Prompt

Following the "Libraries" prompt you can give zero or more entries; each
entry is separated from the others either by one or more blank spaces or by
a plus sign (+). If the plus sign is the last character typed, the "Libraries"
prompt reappears on the next line, allowing you to type additional entries.
Each entry can be either a path specification or a library name. A path
specification can be one of two things: a drive specification, in which case it
ends with a colon (:); or a directory specification, in which case it ends with
a backslash (\). A directory specification must end with a backslash (\) so
that LINK can distinguish the directory names from the library names.
When you give a path specification or specifications, LINK uses the
specifications to search for the default libraries, as well as any other li­
braries given in response to the "Libraries" prompt without paths. You can
specify up to 16 different paths; more than that are ignored. However,
LINK will not return any error messages if you do have more than 16 path
specifications.

To locate the default libraries, LINK searches in the following order:

1. In the current working directory

2. In the paths listed following the "Libraries" prompt (in the same
order in which they are listed)

3. In the directories specified by the LIB environment variable

When you give a library name, LINK searches for the given library and
links it with your program. If the library name includes a directory
specification, LINK searches only that directory for the library. If just a li­
brary name is given (no directory specification), LINK uses the search path
described above to locate the given library file.

You can give any combination of directory specifications and library names.
Note that you are not required to give any entries; in this case your pro­
gram will be linked only with the default libraries, and LINK will search
for the default libraries in the current working directory and in the direc­
tories specified by the LIB variable.

LINK automatically supplies the .LIB extension if you omit it from a li­
brary file name. If you want to link a library file with a different extension,
be sure to specify the extension.

LINK searches all libraries in order of their appearance on the line and
searches only until the first definition of a symbol is found. The default

100

Linking

libraries are searched after libraries given on the command line are
searched. The default floating-point library or libraries are searched before
the standard C library.

If you do not want to link with the default floating-point library, you can
give the name of a different floating-point library instead, provided that
you compiled with one of the following options: /FPc, /FPc87, or
/FPa). See Section 3.8 of Chapter 3, "Compiling," for a discussion of
floating-point options. If l.:0u do not want to link with the standard C li­
brary, you must use the / NOD option, discussed in Section 4.6.8.

4.2.6 Separating Entries

Use the plus sign (+) or one or more space characters to separate file-name
entries in a list of object files or libraries. To extend a line, type the plus
sign (+) as the last character of a line to be continued. (This is valid only
for the "Object Files" and "Libraries" prompts.) The prompt will reappear
on the next line, and you can add more entries. Do not type the plus sign in
the middle of a file-name entry; the plus sign can be used only after com­
plete file names.

Example

LINK

Object Modules [.OBJ]: FUN TEXT TABLE CARE+
Object Modules [.OBJ]: YOYO+FLIPFLOP+JUNQUE+
Object Modules [.OBJ]: CORSAIR
Run File [FUN.EXE]: ;

4.2.7 Selecting Default Responses

To select the default response to the current prompt, type a carriage return
without giving a file name. The next prompt will appear.

To select default responses to the current prompt and all remaining
prompts, use a semicolon (;) followed immediately by a carriage return.
Once the semicolon has been entered, you cannot respond to any of the
remaining prompts for that link session. Use this option to save time when
the default responses are acceptable. Note, however, that the semicolon
character is not allowed with the "Object Modules" prompt, because there
is no default response for that prompt.

101

Microsoft C Compiler User's Guide

Defaults for the other linker prompts are shown below:

1. The default for the "Run File" prompt is the name of the first ob­
ject file submitted for the previous prompt, with the .EXE exten­
sion replacing the .OBJ extension.

2. The default for the "List File" prompt is the special file name
NUL. MAP , which tells LINK not to create a listing file.

3. The default for the "Libraries" prompt is no libraries; in this case,
the default libraries are those encoded in the object module. (See
Section 4.3.2, "Default Libraries and the Library Search Path.")

4.2.8 Terminating the Link Session

To terminate the link session, press CONTROL-C while entering responses or
while LINK is working. If you realize that you entered an incorrect
response at a previous prompt, you should press CONTROL-C to exit LINK
and begin again. You can use the normal MS-DOS editing keys to correct
entries at the current prompt.

4.2.9 Using a Command Line

To invoke the linker with a command line, give your responses to the com­
mand prompts on a single line following the LINK command. The
responses to the prompts must be separated by commas, as shown below:

LINK objectjiles [,[executablejilell [,[mapjilell [,[libraryji1esllllllll [optionsll [;ll

Here objectfiles are object-module names, separated by plus signs or spaces.
The executablefile is the name of the file to receive the executable output.
The mapfile is the name of the file containing a symbol map listing. The
l~braryfiles are libraries and directories to be searched, separated by plus
sIgns or spaces.

You do not have to give any options when you run the linker. If you specify
options, you can put them anywhere on the command line. The options
available with LINK are described in Section 4.6.

You can select the default response for any prompt by omitting the file
name or names before the comma. The only exception to this is the default
for the listing file: if you use a comma as a placeholder for the listing file on

102

Linking

the command line, LINK will create a listing file. This file has as its base
the base of the run file. For example, the command line

LINK FUN, , ;

produces the listing file fUN. MAP; in contrast, the command lines

LINK FUN, ;
LINK FUN;

do not produce a listing file.

You can also select default responses by using the semicolon. The semicolon
tells LINK to use the default responses for all remaining prompts.

Example

LINK FUN+TEXT+TABLE+CARE, ,FUNLIST, COBLIB.LIB

LINK loads and links the object modules fUN. OBJ, TEXT. OBJ,
TABLE. OBJ, and CARE. OBJ, searching for unresolved references in the li­
brary file COBLI B. LI B. By default, the executable file produced is named
fUN. EXE. A map file called fUNLI ST. MAP is also produced.

4.2.10 Using a Response File

To operate the linker with a response file, you must set up the response file
and then type the following:

LINK (a) filename

Here filename gives the name of the response file, possibly preceded by a
path specification. You can name the response file anything you like;
LINK does not impose any naming restrictions for the response file.

A response file contains responses to the LINK prompts. Options may be
appended to any of the responses or given on a separate line or lines. The
responses must be in the same order as the LINK prompts discussed above.
Each new response begins with a new line or a comma; however, you can ex­
tend long responses across more than one line by typing a plus sign (+) as
the last character of each incomplete line.

103

Microsoft C Compiler User's Guide

You can also enter the name of a response file after any of the linker
prompts, or at any position in a command line. The input from the
response file will be treated exactly as if it had been entered after prompts
or in command lines, with a carriage-return-line-feed combination in the
response file treated the same as a RETURN key in response to a prompt, or
a comma in a command line.

Options and command characters are used in the response file in the same
way they are used for responses typed at the keyboard. For example, if you
type a semicolon on the line of the response file corresponding to the "Run
File" prompt, LINK uses the default responses for the executable file and
for the remaining prompts.

When you give the LINK command with a response file, each LINK
prompt is displayed on your screen with the corresponding response from
your response file. If the response file does not contain answers for all the
prompts (in the form of file names, the semicolon command character, or
carriage returns), LINK displays the missing prompts and waits for you to
enter responses. When you type an acceptable response, LINK continues
the link session.

Example

FUN TEXT TABLE CARE
/PAUSE /MAP
FUNLIST
GRAF.LIB

This response file tells LINK to load the four object modules FUN, TEXT,
TABLE, and CARE. The executable file, FUN. EXE, and the map file,
FUNLI ST. MAP, are produced. The /PAUSE option causes LINK to pause
before producing the executable file. This permits you to swap disks if
necessary. The /MAP option tells LINK to include public symbols and ad­
dresses in the map file. LINK also links any needed routines from the li­
brary file, GRAF . LI B. See the discussion of the /P AUSE and /MAP op­
tions in Section 4.6, "Using Options to Control the Linker," for more on
these options.

4.2.11 The Temporary File

LINK uses available memory for the link session. If the files to be linked
create an output file that exceeds available memory, LINK creates a tem­
porary disk file to serve as memory. If the linker is running on DOS Version
3.0 or later, it uses a DOS system call to create a temporary file with a

104

Linking

unique name in the current working directory. If the linker is running on a
version of DOS prior to 3.0, it creates a temporary file named VM. TMP.
When this happens, you will see the message

Temporary fi 1e tempfilename has been created.
Do not change diskette in drive I letter

where tempfilename is ". \" followed by either a DOS-generated name or
VM. TMP, and letter is the current drive. After this message appears, you
must not remove the disk from the drive specified by letter until the link
session ends. If the disk is removed, the operation of LINK is unpredict­
able. You may see the following message:

Unexpected end-of-file on scratch file

When this happens, you must rerun the link session. The temporary file
created by LINK is a working file only. LINK deletes it at the end of the
link session.

Note

Do not give any of your own files the name VM. TMP. The LINK utili­
ty will display an error message if it encounters an existing file with this
name.

4.3 Linking C Program Files

Several special considerations that should be kept in mind when using
LINK with C files are discussed in sections 4.3.1 through 4.3.4.

4.3.1 The "main" Function

When linking C programs, one (and only one) of the object files you submit
to LINK must have a function named main. The start-up object module
in the standard C library contains a call to the main function to begin pro­
gram execution. If none of the object files you submit contains a main
function, LINK will display an error message informing you that the refer­
ence to main is unresolved or that the program has no starting address.

105

Microsoft C Compiler User's Guide

4.3.2 Default Libraries and the Library Search Path

Object files created using the Microsoft C Compiler are encoded with the
names of the default C libraries for the appropriate memory model. The
default C libraries are the standard C library and the floating-point library
or libraries selected at compile time. This encoded information enables
LINK to search for the default library files and link them with your C
program.

You do not have to give the names of the default library files when you
link. However, you must give a path specification showing where the library
files reside. (A path specification is a directory name, a drive letter, or a
drive letter followed by a directory name.) You can do this by giving path
specifications following the LINK "Libraries" prompt, by setting the LIB
environment variable, or by combining the two methods.

You can give zero or more path specifications following the LINK "Li­
braries" prompt. Each path specification must end with a backslash (\) so
LINK can recognize the specification as a directory name (rather than a li­
brary name) unless the path specification is just a drive letter, in which case
it would end with a colon (:).

The LIB variable can contain one or more path specifications. See Section
2.7 of Chapter 2, "Getting Started," for a detailed discussion of environ­
ment variables.

To locate library files, LINK goes through the following procedure:

1. The current working directory is searched.

2. If the library files have not been found, LINK searches any paths
specified following the LINK "Libraries" prompt. The directories
are searched in order of their appearance on the line.

3. If the library files have not been found, LINK searches the libraries
specified by the LIB environment variable. The directories are
searched in order until the given libraries are found.

Note that you can separate the library files and store them in different
directories, since LINK searches as many of the specified directories as
necessary to find the files.

If you want to link with additional libraries, give the library names follow­
ing the "Libraries" prompt. LINK uses the same procedure to search for
additional libraries as it does for the default libraries. However, if you give
a library name that includes a path name, LINK searches just that path
name for the library; no other directory specifications apply.

106

Linking

4.3.3 Changing the Default Libraries

If you use the /FPa, /FPc87, or /FPc option when you compile, you are
allowed to switch to a different floating-point library at link time. You can
do this by giving the name of the library or libraries you want to use fol­
lowing the "Libraries" prompt. See Section 9.9.1 of Chapter 9, "Advanced
Topics," for details.

If you do not want to use the standard C library (xLIBC.LIB), you must
give the /NOD (for "no default library") option when you link. This op­
tion tells LINK to ignore the encoded information in the C object files.
This option should be used with caution; see the discussion of the /NOD
option in Section 4.6.8 for details.

4.3.4 LINK Options to Avoid

Some of the options available with LINK are not suitable for use
with Microsoft C programs. They include the /HIGH option, the
/NOGROUPASSOCIATION option, and the /DSALLOCATE
option. Overlays are permitted with C programs, but the
/OVERLA YINTERRUPT option (to change the default inter­
rupt number) should not be used.

These options are documented in this chapter with the other LINK options
because you may need them if you use LINK to link files written in other
languages. The discussion of each option that is not suitable for C pro­
grams includes a warning note to that effect.

Using the /DOSSEG option with C programs is not prohibited, but it is
never necessary. The segment order specified by the /DOSSEG option is
the default segment order for C programs, so the option has no effect.

4.4 Listing-File Format

You can tell LINK to produce a listing file by responding to the "List File"
prompt. A listing file contains a list of segments in order of their appear­
ance within the load module. An example is shown below:

Start
OOOOOH
01730H

Stop
0172CH
OlE19H

Length
0172DH
006EAH

Name
TEXT
DATA

Class
CODE
DATA

107

Microsoft C Compiler User's Guide

The information in the Start and Stop columns shows the 20-bit address
(in hexadecimal) of each segment, relative to the beginning of the load
module. The load module begins at location zero. The Length column
gives the length of the segment in bytes. The Name column gives the name
of the segment, and the Cl ass column gives information about the seg­
ment type.

The starting address and name of each group is listed at the end of the file.
A sample group listing is shown below:

Origin Group
0173:0 DGROUP

In this example, DGROUP is the name of the data group. DGROUP is
the only group used by programs compiled with the Microsoft C Compiler,
Version 4.0. Version 3.0 uses IGROUP for code segments.

If you use the /MAP option (see Section 4.6.4), LINK appends two lists of
global symbols to the listing file. The first list IS alphabetical by symbol
name and the second is sorted by symbol address. An example is shown
below:

Address
OOOO:OldB
0173:0035
0000:1567
0000:1696
0000_131C

Address
0000:0035
0000:01D2
OOOO:OlDB
0000:023F
0000:025A

Publics by Name
chkstk
fac

_brk
chmod
clearerr

Publics by Value
chkln

__ fptrap
chkstk

_main
exit

The addresses of the external symbols are in the "frame: oJJsef' format,
showing the location of the symbol relative to zero (the beginning of the
load module).

108

Linking

When you examine a map file, you will notice that the names of globally
visible functions and variables begin with an underscore. The Microsoft C
Compiler automatically prefixes an underscore to all global names to
preserve compatibility with XENIX C compilers. If you write assembly­
language routines to interface with your C program, this naming conven­
tion is important; see Section 10.2.7 of Chapter 10, "Interfaces with Other
Languages. "

In the listing file, you may also see names that begin with more than one
underscore. Identifiers with more than one leading underscore are reserved
for internal use by the compiler. You should not attempt to use these
identifiers in your program. Moreover, you should avoid creating global
names that begin with an underscore. Since the compiler automatically
adds another leading underscore, these names will have two leading under­
scores, and might conflict with the names reserved by the compiler.

4.5 Using Overlays

You can direct Microsoft LINK to create an overlaid version of your pro­
gram; parts of your program will only be loaded if and when they are need­
ed, and will share the same space in memory. Programs that use overlays
are usually smaller and require less memory, but they run more slowly be­
cause of the time needed to read and reread the code from disk into
memory.

You specify overlays by enclosing them in parentheses in the list of modules
that you submit to the linker. Each parenthetical list represents one over­
lay. For example, you could give the following response to the "Object
Modules" prompt:

Object Modules [.OBJ]: a + (b+c) + (e+f) + 9 + (i)

In this example, the modules (b+c), (e+ f) , and (i) are overlays. The
remaining modules, and any drawn from the run-time libraries, constitute
the resident part (or root) of your program. Overlays are loaded into the
same region of memory, so only one can be resident at a time. Duplicate
names in different overlays are not supported, so each module can occur
only once in a program.

The linker will replace calls from the root to an overlay and calls from an
overlay to another overlay with an interrupt (followed by the module
identifier and offset). The interrupt number is 63 (3F hexadecimal).

109

Microsoft C Compiler User's Guide

4.5.1 Restrictions

You can only overlay modules to which control is transferred and returned
by a standard 8086 long (32-bit) call/return instruetion. With C programs,
long calls are the default only in medium-, large-, and huge-model pro­
grams. See Chapter 8, "Working with Memory Models," for details on the
standard memory models.

You cannot use long jumps (using the longjrnp library function) or indirect
calls (through a function pointer) to pass control to an overlay. When a
function is called through a pointer, the called function must be in the
same overlay or in the root.

4.5.2 Overlay Manager Prompts

The overlay manager is part of the C run-time library. If you specify over­
lays during linking, the code for the overlay manager is automatically
linked with the other modules of your program. When the executable file is
run, the overlay manager searches for that file whenever another overlay
needs to be loaded. The overlay manager first searches for the file in the
current directory; then, if it does not find the file, the manager searches the
directories listed in the PATH environment variable. When it finds the file,
the overlay manager extracts the overlay modules specified by the root pro­
gram. If the overlay manager cannot find an overlay file when needed, it
prompts the user to enter the file name.

Note

Even with overlays, the linker produces only one .EXE file. This file is
opened again and again, as long as the overlay manager needs to ex­
tract new overlay modules.

For example, assume an executable program called PAYROLL. EXE, which
does not exist in either the current directory or the directories specified by
PATH, uses overlays. If the user runs it by entering a complete path
specification, the overlay manager will display the following message when
it attempts to load overlay files:

Cannot find PAYROLL.EXE
Please enter new program spec:

110

Linking

The user can then enter the drive and/or directory where PAYROLL. EXE is
located. For example, if the file is located in directory \EMPLOYEE\DATA \
on Drive B, the user could enter B: \EMPLOYEE\DATA \ or simply
\EMPLOYEE\DATA \ if the current drive is B.

If the user later removes the disk in Drive B and the overlay manager needs
to access the overlay again, it will not find PAYROLL. EXE, and will display
the following message:

Please insert diskette containing B:\EMPLOYEE\DATA\PAYROLL.EXE
in drive B: and strike any key when ready.

After the overlay file has been read from the disk, the overlay manager will
display the following message:

Please restore the original diskette.
Strike any key when ready.

4.6 Using Options to Control the Linker

This section explains how to use linker options to specify and control the
tasks performed by the linker. All options begin with the linker option
character, the forward slash (/). Options may be placed at the end of any
LINK response.

When more than one option is given, the options can be grouped at the
end of a single response or distributed among several responses. Every op­
tion begins with the slash character, even if other options precede it on the
same line.

When you use the command-line method to invoke LINK, options can ap­
pear at the end of the line or after individual responses on the line, but
must be before the comma separating each response from the next item. In
a response file, options can occur alone or following individual responses on
one of the prompt lines.

The options are named according to their function, with the result
that some names are quite long. You can abbreviate the options to
save space and effort. Be sure that your abbreviation is unique so that the
linker can determine which option you want. Since several options begin
with the letters NO, abbreviations for those options must be longer
than NO to be unique. For example, NO is an illegal abbreviation for the
INOIG NORECASE option, since LINK would not be able to tell which

111

Microsoft C Compiler User's Guide

of the options beginning with NO you intended. The shortest legal abbrevia­
tion for this option is NOI.

Abbreviations must be sequential from the first letter of the option through
the last letter typed. No gaps or transpositions are allowed. Some linker op­
tions take numeric arguments. A numerical argument can be any of the
following:

• A decimal number from 0 to 65535.

• An octal number from 0 to 0177777. A number is interpreted as oc­
tal if it starts with a zero. For example, the number lOis a decimal
number, but the number 010 is an octal number, equivalent to 8 in
decimal.

• A hexadecimal number from 0 to OxFFFF. A number is interpreted
as hexadecimal if it starts with Ox. For example, OxlO is a hexa­
decimal number, equivalent to 16 in decimal.

4.6.1 Viewing the Options List

Option

/HELP

The /HELP option causes LINK to write a list of the available options to
the screen. This gives you a convenient reminder of the available options.
You should not give a file name when using the /HELP option.

4.6.2 Pausing During Linking

Option

/PAUSE

Unless you instruct it otherwise, LINK performs the linking session
from beginning to end without stopping. The /P AUSE option tells LINK
to pause in the link session before writing the executable file to disk. This
option allows you to swap disks before LINK outputs the executable
(.EXE) file.

112

Linking

If the IP AUSE option is given, LINK displays the following message
before creating the run file:

About to generate .EXE file
Change diskette in drive letter and press <ENTER>

The letter corresponds to the current drive. LINK resumes processing
when you press the ENTER key.

Note

Do not remove the disk that will receive the list file or the disk used for
the temporary file, if one has been created (see Section 4.2.11). If the
temporary-disk-file message appears when you have specified the
IP AUSE option, you should press CONTROlrC to terminate the LINK
session. Rearrange your files so that the temporary file and the execut­
able file can be written to the same disk. Then try again.

4.6.3 Packing Executable Files

Option

/EXEPACK

The IEXEP ACK option directs LINK to remove sequences of repeated
bytes (typically nulls) and optimize the load-time relocation table before
creating the executable file. Executable files linked with this option may be
smaller, and thus load faster, than files linked without this option. How­
ever, you cannot use the SYMDEB or CODEVIEW symbolic debuggers
with packed files; EXEP ACK strips symbolic information from the input
file, and notifies you of this with the following message:

exepack: (warning) omitting debug data from output file

The IEXEP ACK option will not always give a significant savings in disk
space (and may sometimes actually increase file size). Programs that have a
large number of load-time relocations (about 500 or more) and long streams
of repeated characters will usually be shorter if packed. If you're not sure if
your program meets these conditions, link it both ways and compare the
results.

113

Microsoft C Compiler User's Guide

4.6.4 Listing Public Symbols

Option

/MAP

You can list all public (global) symbols defined in an object file or files by
using the /MAP option. The /MAP option causes LINK to create a list­
ing file (also known as a "map file"). The following list describes the effects
of this option when used with the prompt and command-line methods:

• Command-line method:

/MAP causes LINK to create a listing file, even if no file is
specified in the command line. By default, this listing file is given
the same base name as the executable file, plus the extension
. MAP . You can override this default name by giving a name on the
command line.

• Prompt method:

If /MAP appears before the "List File" prompt, it creates a listing
file, even if you do not type a file name at the "List File" prompt.
By default, the file is given the same base name as the executable
file, plus the extension . MAP . You can override the default name
by responding to the "List File" prompt.

If the /MAP option appears after the "List File" prompt, the
option takes effect only if you have already explicitly created a list­
ing file by giving a name at the "List File" prompt.

You must specify the /MAP option if you intend to debug your program
using SYMDEB, the symbolic debugger provided with some versions of
Microsoft languages.

4.6.5 Including Line Numbers in the List File

Option

/LINENUMBERS

You can include the line numbers and associated addresses of your source
program in the map file by using the /LINENUMBERS option. Ordi­
narily the map file does not contain line numbers.

114

Linking

To produce a map file with line numbers, you must give LINK an
object file (or files) with line-number information. With the C compiler you
can use the IZd option to produce line numbers in the object file. If you
give LINK an object file without line-number information, the
ILINENUMBERS option has no effect.

You must specify the ILINENUMBERS option if you intend to do
source-level debugging of your program using SYMDEB, the symbolic
debugger provided with some versions of Microsoft languages.

The ILINENUMBERS option forces LINK to create a map file, even if
no map file is specified in the LINK command line or at the "List File"
prompt. By default, the file is given the same base name as the executable
file, plus the extension • MAP . You can override the default name by
responding to the "List File" prompt.

4.6.6 Preparing for Debugging

Option

/eo

The leo option is used to prepare for debugging with the CodeView
debugger, the symbolic debugger provided with Version 4.0 of the Microsoft
C Compiler. This option tells the linker to prepare a special executable file
containing symbolic data and line-number information.

You can run this executable file outside the Code View debugger; the extra
data in the file will be ignored. However, to keep file size to a minimum, you
will probably want to use the special-format executable file for debugging
only, and link a separate version without the I CO option after the pro­
gram is debugged.

The I CO option can write this information to the executable file only if
you used the IZi option when compiling. IZi also disables a number of
optimizations; you can remove all optimizing with the 10d option. For
example, to debug the C program TEST. C, you could use the following
command lines:

Mse IZi TEST I I ;

LINK leo TEST I I ;

eODEVIEW TEST.EXE

116

Microsoft C Compiler User's Guide

4.6.7 Preserving Case Sensitivity

Option

/NOIGNORECASE

By default, LINK treats uppercase letters and lowercase letters as
equivalent. Thus ABC, abc, and Abc are considered the same name. When
you use the INOIGNORECASE option (usually abbreviated INOI), the
linker distinguishes between uppercase letters and lowercase letters, and
considers ABC, abc, and Abc as three separate names.

The C language is case sensitive: two names are identical only if they have
exactly the same letters in the same case. If your C programs rely on this
behavior, you should always link with the INOI option. The CL control
program uses the INOI option by default, but you must give it specifically
if you use MSC and LINK.

Remember that some programs, such as assemblers and other language
compilers, may not make case distinctions. If you want to link such pro­
grams with your C programs, it is best to give each identifier a unique spell­
ing to avoid conflicts.

4.6.8 Ignoring Default Libraries

Option

/NODEF AUL TLIBRARYSEARCH

The !NODEFAULTLIBRARYSEARCH option (usually abbreviated to
INOD) tells LINK not to search the default library, if there is one, to
resolve external references. With C files this has the effect of telling LINK
to ignore the information in the object files that gives the names of the
standard C library and selected floating-point library.

Most C programs will not work correctly without the standard C library, so
if you use the INOD option you should explicitly specify the name of the
standard library, as well as any floating-point libraries needed by the pro­
gram. If you do not use the standard library, you must provide your own
start-up routine, or extract the start-up routine from the standard library
and link it with your program. (See the README.DOC file included in
your software for a list of the files comprising the start-up routines.)

116

Linking

When using the /NOD option with C programs, always use the following
order to specify 1ibraries:

1. Any libraries other than the standard C library or floating-point
libraries

2. The floating-point library or libraries

3. The standard C library

4. The code-helper library, LIBH.LIB

4.6.9 Controlling Stack Size

Option

/STACK:nurnber

The /STACK option allows you to specify the size of the stack for your
program. The number is any positive value (decimal, octal, or hexadecimal)
up to 65536 (decimal). It represents the size, in bytes, of the stack.

All compilers and assemblers should provide information in the object
modules that tells the linker how to set up the stack. For C programs, the
default stack size is 2K. The default stack size is set by the start-up rou­
tine (CRTO.OBJ) in the standard C library.

If your program has a large amount of local data or is heavily recursive, you
may get a stack overflow message. In this case you need to increase the size
of the stack. In contrast, if your program uses very little local data, you
may achieve some space savings by decreasing the stack size.

If LINK cannot find the stack information it needs, it displays the follow­
Ing error message:

WARNING: NO STACK SEGMENT

Since the start-up file provides stack information, this message usually
means that the start-up file is not being linked with your program.

117

Microsoft C Compiler User's Guide

Note

The EXEMOD utility (described in Appendix D, "Using EXEP ACK,
EXEMOD, and SETENV") can also be used to change the default stack
size for C program files. The format of the executable file header that is
changed by this option is discussed in the Microsoft MS-DOS
Programmer's Reference Manual and in some other reference books on
MS-DOS.

4.6.10 Setting the Maximum Allocation Space

Option

/CPARMAXALLOC:number

The IOPARMAXALLOO option (usually abbreviated to lOP) sets the
maximum number of 16-byte paragraphs needed by the program when it is
loaded into memory. This number is used by the operating system when
allocating space for the program prior to loading it. The option is useful
when you want to execute another program from within your program and
you need to reserve space for the executed program.

LINK normally sets the maximum number of paragraphs to 65535. Since
this represents all available memory, the operating system always denies
the request and allocates the largest contiguous block of memory it can
find. If the lOP option is used, the operating system will allocate no more
space than given by this option. This means any additional space in
memory is free for other programs.

The number can be any integer value in the range 1 to 65535. If number is
less than the minimum number of paragraphs needed by the program,
LINK ignores your request and sets the maximum value equal to the
minimum. The minimum number of paragraphs needed by a program is
never less than the number of paragraphs of code and data in the program.
To free more memory for programs compiled in the compact, medium, and
large memory models, link with lOP:!; this leaves no space for the "near"
heap.

118

Linking

Note

You can also change the maximum allocation after linking with the
EXEMOD utility. See Section D.3 of Appendix D, "Using EXEP ACK,
EXEMOD, and SETENV." The format of the executable file header
that is changed by this option is discussed in the Microsoft MS-DOS
Programmer's Reference Manual and in some other reference books on
MS-DOS.

4.6.11 Controlling Segments

Option

jSEGMENTS: number

The jSEGMENTS option (usually abbreviated to SE) controls the
number of segments the linker allows a program to have. The default is
128, but number can be set to any value (decimal, octal, or hexadecimal) in
the range 1 to 1024 (decimal).

For each segment, the linker must allocate some space to keep track of seg­
ment information. By using a relatively low segment limit as a default
(128), the linker avoids having to allocate a large amount of storage space
for all programs.

When you set the segment limit higher than 128, the linker allocates
more space for segment information. This option allows you to raise the
segment limit for programs with a large number of segments. For programs
with fewer than 128 segments, you can keep the storage requirements of the
linker at the lowest level possible by setting the segment number to reflect
the actual number of segments in the program.

If the number of segments allocated is too many for the amount of memory
LINK has available to it, you will see the following error message:

Segment limit too high

Set a lower limit and relink.

119

Microsoft C Compiler User's Guide

4.6.12 Setting the Overlay Interrupt

Option

/OVERLAYINTERRUPT:number

By default, the interrupt number used for passing control to overlays is 63
(3F hexadecimal). The overlay interrupt option allows the user to select a
different interrupt number. The number can be a decimal number from 0 to
255, an octal number from 0 to 0377, or a hexadecimal number from 0 to
OxFF. Numbers that conflict with MS-DOS interrupts are not prohibited,
but their use is not advised.

In general, you should not use jOVERLAYINTERRUPT with C rou­
tines. The exception to this gUIdeline would be a C program using overlays
that spawns another C program using overlays; in this case, each program
should use a separate overlay interrupt number, meaning at least one of the
programs should be compiled with /OVERLAYINTERRUPT.

4.6.13 Ordering Segments

Option

/DOSSEG

The /DOSSEG option forces segments to be ordered as follows:

1. All segments with a class name ending in CODE.

2. All other segments outside DGROUP.

3. DGROUP segments, in the following order:

• Any segments of class BEGDATA (this class name is reserved
for Microsoft use)

• Any segments not of class BEGDATA, BSS, or STACK

• Segments of class BSS

• Segments of class STACK

120

Linking

C programs always use this order by default, so you never need to use this
option. See Section 9.14, "Naming Modules and Segments," for a discus­
sion of the segment names used by the C compiler.

4.6.14 Controlling Data Loading

Option

/DSALLOCATE

By default, LINK loads all data starting at the low end of the data seg­
ment. At run time, the DS (data segment) register is set to the lowest pos­
sible address to allow the entire data segment to be used.

Use the /DSALLOCATE option to tell LINK to load all data starting at
the high end of the data segment, instead. In this case the DS register is
set at run time to the lowest data segment address that contains program
data.

The /DSALLOCATE option is typically used with the /RIGR option,
discussed in the next section, to take advantage of unused memory within
the data segment. The user can allocate any available memory below the
area specifically allocated for DGROUP, using the same DS register.

Warning

Do not use the /DSALLOCATE option with C programs. It should
only be used with assembly-language programs.

121

Microsoft C Compiler User's Guide

4.6.15 Controlling Run-File Loading

Option

/HIGH

The run file can be placed either as low or as high in memory as possible.
Use of the IRIGR option causes LINK to place the run file as high as pos­
sible in memory. Without the IRIGR option, LINK places the run file as
low as possible.

Note

Do not use the IRIGR option with C programs. It should only be used
with assembly-language programs.

4.6.16 Preserving Compatibility

Option

/NOGROUPASSOCIATION

The /NOGROUPASSOCIATION option causes the linker to ignore
group associations when assigning addresses to data and code items. It is
provided primarily for compatibility with previous versions of the linker
(versions 2.02 and earlier) and other Microsoft language compilers.

Note

122

Do not use the /NOGROUP ASSOCIATION option with C pro­
grams. This option exists strictly for compatibility with older versions
of FORTRAN and Pascal (Microsoft versions 3.13 and earlier, or IBM
versions prior to 2.0). The /NOGROUP ASSOCIATION option
should never be used except to link with object files produced by those
compilers, or with the run-time libraries that accompany the old com­
pilers.

Linking

4.7 How the Linker Works

LINK performs the following steps to combine object modules and produce
a run file:

1. Reads the object modules you submit

2. Searches the given libraries, if necessary, to resolve external
references

3. Assigns addresses to segments

4. Assigns addresses to public symbols

5. Reads data in the segments

6. Reads all relocation references in object modules

7. Performs fix-ups

8. Outputs a run file (executable image and relocation information)

The "executable image" contains the code and data that constitute the exe­
cutable file. The "relocation information" is a list of references, relative to
the start of the program, each of which changes when the executable image
is loaded into memory and an actual address for the entry point is assigned.

You can control the way LINK combines a program's segments by
using command-line options with the Microsoft C Compiler, or by using
SEGMENT and GROUP directives in the Microsoft Macro Assembler
(MASM). See Section 10.2.1 of Chapter 10, "Interfaces with Other
Languages," for a discussion of the segment model for C programs and for a
listing of class names, align types, and combine types.

The following sections explain the process LINK uses to concatenate seg­
ments and resolve references to items in memory. You do not need to
understand this information to use the linker, but it may be helpful for
advanced users who want to link C routines with assembly routines.

4.7.1 Alignment of Segments

LINK uses a segment's alignment type to set the starting address for the
segment. The alignment types are BYTE, WORD, PARA, and PAGE.
These correspond to starting addresses at byte, word, paragraph, and page
boundaries, representing addresses that are multiples of 1, 2, 16, and 256,
respectively. The default alignment is PARA.

123

Mierosoft C Compiler User's Guide

When LINK encounters a segment, it checks the alignment type before
copying the segment to the executable file. If the alignment is WORD,
PARA, or PAGE, LINK checks the executable image to see if the last
byte copied ends at an appropriate boundary. If not, LINK pads the image
with extra null bytes.

The C compiler automatically assigns alignment types to segments. Table
10.1 of Chapter 10, "Interfaces with Other Languages," shows the align
types of the segments used by each of the standard memory models.

4.7.2 Frame Number

LINK computes a starting address for each segment in a program. The
starting address is based on a segment's alignment and the sizes of the seg­
ments already copied to the executable file. The address consists of an offset
and a "canonical frame number." The canonical frame number specifies the
address of the first paragraph in memory that contains one or more bytes of
the segment. A frame number is always a multiple of 16 (a paragraph
address). The offset is the number of bytes from the start of the paragraph
to the first byte in the segment. For BYTE and WORD alignments, the
offset may be nonzero. The offset is always zero for PARA and PAGE
alignments.

The frame number of a segment can be obtained from the map file created
by LINK when linking the segment. The frame number is the first five hex­
adecimal digits of the "Start" address specified for the segment.

4.7.3 Order of Segments

LINK copies segments to the executable file in the same order that it
encounters them in the object files. This order is maintained throughout
the program unless LINK encounters two or more segments having the
same class name. Segments having identical class names belong to the same
class type, and are copied as a contiguous block to the executable file.

The C compiler automatically assigns class types to segments. Table 10.1 in
Chapter 10, "Interfaces with Other Languages," shows the class types of
the segments used by each of the standard memory models.

The Microsoft C Compiler, versions 3.0 and later, and the Microsoft FOR­
TRAN and Pascal compilers, versions 3.3 and later, use the segment order­
ing specified by the /DOSSEG linker option. This imposes additional con­
straints on the segment-loading order. See the discussion of the /DOSSEG
option in Section 4.6.13, "Ordering Segments."

124

Linking

4.7.4 Combined Segments

LINK uses combine types to determine whether or not two or more seg­
ments sharing the same segment name should be combined into one large
segment. The valid combine types are PUBLIC, STACK, COMMON,
MEMORY, and PRIVATE.

If a segment has combine type PUBLIC, LINK will automatically com­
bine it with any other segments having the same name and belonging to the
same class. When LINK combines segments, it ensures that the segments
are contiguous and that all addresses in the segments can be accessed using
an offset from the same frame address. The result is the same as if the seg­
ment were defined as a whole in the source file.

LINK preserves each individual segment's alignment type. This means that
even though the segments belong to a single, large segment, the code and
data in the segments do not lose their original alignment. If the combined
segments exceed 64K, LINK displays an error message.

If a segment has combine type STACK, LINK carries out the same com­
bine operation as for PUBLIC segments. The only exception is that
STACK segments cause LINK to copy an initial stack pointer value to
the executable file. This stack pointer value is the offset to the end of the
first stack segment (or combined stack segment) encountered.

If a segment has combine type COMMON, LINK automatically combines
it with any other segments having the same name and belonging to the
same class. When LINK combines common segments, however, it places
the start of each segment at the same address, creating a series of overlap­
ping segments. The result is a single segment no larger than the largest seg-­
ment combined.

A segment has combine type PRIVATE only if no explicit combine type is
defined for it in the source file. LINK does not combine private segments.

The C compiler automatically assigns combine types to segments. Table
10.1 in Chapter 10, "Interfaces with Other Languages," shows the combine
types of the segments used by each of the standard memory models.

4.7.5 Groups

Groups let segments that are not contiguous and do not belong to the same
class be addressable relative to the same frame address. When LINK
encounters a group, it adjusts all memory references to items in the group
so that they are relative to the same frame address.

126

Microsoft C Compiler User's Guide

Segments in a group do not have to be contiguous, do not have to belong to
the same class, and do not have to have the same combine type. The only
requirement is that all segments in the group fit within 64K.

Groups do not affect the order in which the segments are loaded. Unless you
use class names and enter object files in the right order, there is no guaran­
tee that the segments will be contiguous. In fact, LINK may place seg­
ments that do not belong to the group in the same 64K of memory.
Although LINK does not explicitly check that all segments in a group fit
within 64K of memory, LINK is likely to encounter a fix-up overflow error
if this requirement is not met.

The C compiler uses a group called DGROUP for data segments. For more
information on how the Microsoft C Compiler uses groups, see Section
10.2.1.2 in Chapter 10, "Interfaces with Other Languages."

4.7.6 Fix-ups

Once the starting address of each segment in a program is known and all
segment combinations and groups have been established, LINK can "fix
up" any unresolved references to labels and variables. To fix up unresolved
references, LINK computes an appropriate offset and segment address and
replaces the temporary values generated by the assembler with the new
values.

LINK carries out fix-ups for four different references:

• Short

• Near Self-Relative

• Near Segment-Relative

• Long

The size of the value to be computed depends on the type of reference. If
LINK discovers an error in the anticipated size of a reference, it displays a
fix-up overflow message. This can happen, for example, if a program
attempts to use a 16-bit offset to reach an instruction in a segment having a
different frame address. It can also occur if all segments in a group do not
fit within a single 64K block of memory.

A short reference occurs in JMP instructions that attempt to pass control
to labeled instructions in the same segment or group. The target instruc­
tion must be no more than 128 bytes from the point of reference. LINK
computes a signed, 8-bit number for this reference. It displays an error

126

Linking

message if the target instruction belongs to a different segment or group
(has a different frame address), or the target is more than 128 bytes distant
in either direction.

A near self-relative reference occurs in instructions that access data relative
to the same segment or group. LINK computes a 16-bit offset for this refer­
ence. It displays an error if the data is not in the same segment or group.

A near segment-relative reference occurs in instructions that attempt to
access data in a specified segment or group, or relative to a specified seg­
ment register. LINK computes a 16-bit offset for this reference. It displays
an error message if the offset of the target within the specified frame is
greater than 64K or less than 0, or if the beginning of the canonical frame
of the target is not addressable.

A long reference occurs in CALL instructions that attempt to access an
instruction in another segment or group. LINK computes a 16-bit frame
address and 16-bit offset for this reference. LINK displays an error message
if the computed offset is greater than 64K or less than 0, or if the beginning
of the canonical frame of the target is not addressable.

127

Chapter 5

Running C Prograllls
on MS-DOS

5.1 Introduction 131
5.2
5.2.1
5.2.2
5.3
5.4

Passing Command-Line Data to a Prograrn
Expanding Wild-Card Arguments 134
Suppressing Command-Line Processing

Returning an Exit Code 136
Suppressing Null-Pointer Checks 137

131

135

129

Running C Programs on MS-DOS

5.1 Introduction

After compiling a program with the Microsoft C Compiler and linking with
the linker, you will have an executable file with the extension .EXE that
can be run from the MS-DOS prompt.

MS-DOS uses the PATH environment variable to find executable files. You
can execute your program from any directory, as long as the executable
program file is either in your current working directory or in one of the
directories on the path set in the PATH environment variable.

Your program can also be executed by other programs, or you can write it
so that it will be capable of executing other programs or MS-DOS internal
commands. The spawn, exec, and system routines provided in the Micro­
soft C Run-Time Library allow your program to execute other programs
and MS-DOS commands. See the Microsoft C Compiler Run- Time Library
Reference for a description of these routines.

MS-DOS has several other unique capabilities that your program can use if
you write the program to take advantage of them. Among these capabilities
are the following:

• Receiving arguments from MS-DOS

• Reading data that were previously passed to the MS-DOS environ­
ment table

• Sending a message to MS-DOS by returning an exit code

These features are not a part of the C language, but rather a part of
Microsoft's MS-DOS implementation of C. They either don't exist in other
operating systems or are handled differently. This chapter explains how to
write programs to take advantage of special MS-DOS features, and how to
use those features once your program is completed.

5.2 Passing Command-Line Data to a Program

Your 0 program can access data from a command line or from the environ­
ment table. You can use the MS-DOS SET or PATH command to place
data in the environment table. See Section 2.7, "Setting Up the Environ­
ment," in Chapter 2, "Getting Started," for a discussion of environment
variables. Command-line data are arguments that appear on the same line
as the program name when you execute the program.

131

Microsoft C Compiler User's Guide

To pass data to your program on the command line, give one or more argu­
ments after the program name when you execute the program. Each argu­
ment must be separated from the arguments around it by one or more
spaces or tab characters, and may be enclosed in quotation marks (" "). If
you want to give a single argument that includes spaces or tab characters,
you must enclose the argument in quotation marks. For example, if your C
program is called TEST. EXE, you might give it the following command
line:

TEST 42 "de f" 16

In this case, the program will be executed and three arguments will be
passed: 42, de f, and 16.

MS-DOS stores the command-line arguments in the MS-DOS program
header. The C run-time library (which becomes part of your program dur­
ing linking) in turn stores each argument from the program header as a
null-terminated string in an array of strings. MS-DOS limits the combined
length of all arguments on the command line (including the program name)
to 128 bytes. If you provide a longer command line, additional characters
will be ignored.

In order for a C program to read and use the data from the command line
or from the environment table, the program should declare three variables
as arguments to the main function. These three variables and their con­
tents are listed in Table 5.1.

Table 5.1

Argument Variables

Variable

argc

argv

envp

Contents

Number of arguments passed

Array of strings containing arguments

Pointer to environment table

By declaring these variables as arguments to main, you make them avail­
able as local variables in the main function. The example below illustrates
how to declare these arguments:

132

main (argc , argy, envp)
int argc;
char *argv[J;
char *envp [J;

Running C Programs on MS-DOS

You do not have to declare all three arguments. However, you must declare
the arguments in the order shown above. Therefore, if you want to use the
envp arguments, you must declare argc and argv, even if you do not use
them.

The number of arguments appearing on the command line is passed as the
integer variable argc, and the command line is passed to the program as
the array of strings pointed to by argv.

The first argument of any command line is the name of the program to be
executed. Therefore, the program name is the first string stored in argv, at
argv[O]. Since a program name must be given in order to run the program,
the integer value of argc is always at least 1. Therefore, if you pass two
arguments to your pro~ram, argc will have a value of 3 (two arguments
and the program name).

The first argument following the program name is stored at argv [1], the
second is stored at argv [2], and so on, to the last argument.

Note

Under versions of MS-DOS earlier than 3.0, the program name normally
stored in argv[Ol is not available. References to argv[O] yield the string
C. Under MS-DOS versions 3.0 and later, references to argv[O] give the
program name.

The third argument passed to the main function, envp, is a pointer to the
environment table. You can access the value of environment settings
through this pointer. However, the putenv and getenv routines from the C
run-time library accomplish the same task, and are easier and safer to use.
Using the putenv routine may change the location of the environment
table in memory, depending on memory requirements. Therefore, the value
given to envp at the beginning of the program execution may not be valid
throughout the program's execution. In contrast, the putenv and getenv
routines access the environment table properly, even when its location
changes. These routines use the global variable environ (described in the
Microsoft C Compiler Run-Time Library Reference), which always points to
the correct table location.

133

Microsoft C Compiler User's Guide

Example

MYPROG ABC "abc e" 3 8

This command line executes the program named MYPROG and passes the
four command-line arguments to the main function. The arguments are
stored as null-terminated strings, and the number of arguments is stored in
argc. To access the last argument, for example, you would use an expres­
sion like the following:

argv [argc - 1J

Since the value of argc is 5 (counting the program name as an argument),
this expression is equivalent to argv [4J , or the fifth string of the array.

5.2.1 Expanding Wild-Card Arguments

You can use the MS-DOS wild-card characters, the question mark (?) and
the asterisk (lie), to specify file-name and path-name arguments on the com­
mand line. To prepare for using wild cards, you must link your object file
with one of the xSETARGV.OBJ object files (where the value of x
depends on the memory model you have selected).

These object files are included with your compiler software. If you don't
link with one of these, your program will not expand wild-card characters
on the command line, interpreting them instead as literal question marks
and asterisks.

The xSETARGV.OBJ files expand the wild-card characters in the same
manner as MS-DOS. (See your MS-DOS documentation if you are unfami­
liar with these characters.) Enclosing an argument in quotation marks
(" ") suppresses the wild-card expansion. Within quoted arguments, you
can represent quotation marks literally within an argument by preceding
the double-quotation character with a backslash (\).

If no matches are found for the wild-card argument, the argument is passed
literally. For example, if the argument B: \ * . c is given, but no files with
the extension . C are found in the root directory of Drive B, the argument is
passed as the string B: \ * . C.

If your programs frequently expand wild-card characters, you may want to
put the wild-card routines (xSETARGV.OBJ) in the appropriate stan­
dard C libraries (iLIBC.LIB) so they will be linked with your program
automatically. To do this, use the Microsoft Library Manager (LIB) to
extract the module named stdargv from the library (the module name is

134

Running C Programs on MS-DOS

the same in all four libraries) and insert xSETARGV. When you replace
stdargv with the appropriate routine, wild-card expansions will always be
performed on command-line arguments. LIB is described in Chapter 6,
"Managing Libraries."

Example

LINK BETA+\LIB\SSETARGV;
BETA *.INC "WHY?" \"HELLO\"

In this example, SSETARGV. OBJ, which is in the directory \LI B, is linked
with BETA. OBJ, producing the executable file BETA. EXE. When
BETA. EXE is executed, the wild-card character * is expanded, causing all
file names with the extension . I NC in the current working directory to be
passed as arguments to the BETA program. The second command-line argu­
ment, WHY?, is enclosed in quotation marks, so expansion of the wild-card
character? is suppressed and the argument WHY? is passed literally. In
the third argument, the backslashes cause the quotation marks to be
represented literally, so the argument "HELLO" (including the quotation
marks) is passed.

5.2.2 Suppressing Command-Line Processing

If your program does not take command-line arguments, you can achieve a
small space saving by suppressing use of the library routine that performs
command-line processing. This routine is called _setargv. To suppress its
use, define a routine that does nothing in the same file that contains the
main function, and name it _setargv. The call to _setargv will be
satisfied by your definition of _setargv, and the library version will not be
loaded.

Similarly, if you never access the environment table through the envp
argument, you can provide your own empty routine to be used in place of
_setenvp, the environment-processing routine.

If your program makes calls to the spawn or exec routines in the C run­
time library, you should not suppress the environment-processing routine,
since this routine is used to pass an environment from the parent process to
the child process.

135

Microsoft C Compiler User's Guide

Example

_setargv ()
{
}

_setenvp ()
{
}

The example above shows how to define the _setargv and _setenvp func­
tions to suppress command-line and environment processing. It is recom­
mended that you place these definitions in the file containing the main
function.

5.3 Returning an Exit Code

Your program can return an exit code (sometimes called a return code) as a
means of leaving a message for MS-DOS. The exit code can then be used by
MS-DOS batch files or other programs that test exit codes (MAKE, for
example). Exit codes and their uses are discussed in more detail in Appen­
dix E, "Using Exit Codes."

Exit codes are returned through the main function. This function, like any
other C function, can return a value. The value is of int type, and is passed
to MS-DOS as the exit code of the executed program. This exit code can be
checked with the IF ERRORLEVEL command in MS-DOS batch files.
(See your MS-DOS user's guide for more information on using batch files.)

To cause the main function to return a specific value to MS-DOS, you
should use a return statement or exit function to specify the value to be
returned. For example, if the main function in a program terminates with
either the statement return (6); or exi t (6); the value 6 will be
returned to MS-DOS. If neither of these methods is used, the return code is
undefined.

136

Example

#define TRUE 1
#define FALSE 0

int error = FALSE;

main ()
{

if (error) return (1);
else return (0);
}

Running C Programs on MS-DOS

In the example above, the value 1 would be returned if the variable error
were set to TRUE somewhere within the body of the program. Otherwise, 0
would be returned to MS-DOS. The example program follows the conven­
tion of returning 0 if the program is successful, and some larger number if
an error is encountered.

5.4 Suppressing Null-Pointer Checks

When you execute your C program, a special error-checking routine is
automatically invoked after your program has terminated to determine
whether the contents of the NULL segment have changed, and display the
following error message if they have:

Null pointer assignment

The NULL segment is a special location in low memory that is not nor­
mally used. If the contents of the NULL segment change during a
program's execution, it means that the program has written to this area,
usually by an inadvertent assignment through a null pointer. Note that
your program can contain null pointers without generating this message;
the message appears only when you write to a memory location through the
null pointer.

This error does not cause your program to terminate; the error is detected
and the error message is printed following the normal termination of the
program.

137

Microsoft C Compiler User's Guide

Note

The message

Null pointer assignment

reflects a potentially serious error in your program. Although a program
that produces this error may appear to operate correctly, it is likely to
cause problems in the future and may fail to run in a different operating
environment.

The library routine that performs the null-pointer check is named
_ nullcheck. You can suppress the null-pointer check for a particular pro­
gram by defining your own routine named _ nullcheck that does nothing.
The call to _ nullcheck will be satisfied by your definition of _ nullcheck,
and the library version will not be loaded. It is recommended that you place
the _ nullcheck definition in the file containing the main function.

To suppress the null-pointer check for all programs, you can replace the
corresponding error-checking routine in the standard C library. The rou­
tine is stored in a module called chksum in all four standard libraries
(xLIBC.LIB). Do not remove the routine entirely or there will be an
unresolved reference in your program. Instead, use LIB (described in
Chapter 6, "Managing Libraries") to replace the chksum module with a
module containing the empty definition of _ nullcheck. This replacement
will satisfy the call to _ nullcheck and null-pointer checking will not be
performed.

138

Chapter 6

Managing Libraries

6.1 Introduction 141
6.2 Overview of LIB Operation 142
6.3 Running LIB 143
6.3.1 ''Library name" Prompt 144
6.3.2 "Operations" Prompt 144
6.3.3 ''List file" Prompt 146
6.3.4 "Output library" Prompt 146
6.3.5 Using the Command Line 147
6.3.6 Using a Response File 148
6.3.7 Extending Lines 149
6.3.8 Terminating the Library Session 150
6.3.9 Selecting Default Responses to Prompts
6.4 Library Tasks 150
6.4.1 Creating a Library File 150
6.4.2 Modifying a Library File 151
6.4.3 Adding Library Modules 151
6.4.4 Deleting Library Modules 152
6.4.5 Replacing Library Modules 152
6.4.6 Copying Library Modules 152
6.4.7 Moving Library Modules 153
6.4.8 Combining Libraries 1f)~3

6.4.9 Creating a Cross-Reference Listing 153
6.4.10 Performing Consistency Checks 154
6.4.11 Setting the Library-Page Size 154

150

139

Managing Libraries

6.1 Introduction

The Microsoft Library Manager (LIB) is a utility designed to help you
create, organize, and maintain run-time libraries. Run-time libraries are
collections of compiled or assembled functions that provide a common set
of useful routines. Any program can call a run-time routine, exactly as if
the function were included in the program. The program is linked with the
run-time library file and the call to the run-time routine is resolved by
finding the routine in the library file.

Run-time libraries are created by combining separately compiled object files
into one library file. Library files are usually identified by their .LIB exten­
sion, although other extensions are allowed.

In addition to accepting MS-DOS object files and library files, LIB can read
the contents of 286 XENIX archives and Intel-style libraries and combine
their contents with MS-DOS libraries. You can add the contents of a 286
XENIX archive or an Intel-style library to an MS-DOS library by using the
add operator (+).

Once an object file is incorporated into a library, it becomes an object
"module." LIB makes a distinction between object files and object
modules: an object "file" exists as an independent file, while an object
"module" is part of a larger library file. An object file can have a full path
name, including a drive designation, directory path name, and file-name ex­
tension (usually .OBJ). Object modules have only a name. For example,
B: \RUN\SORT . OBJ is an object-file name, while SORT is the corresponding
object-module name.

Using LIB, you can create a new library file, add object files to an existing
library, delete library modules, replace library modules, and create object
files from library modules. LIB also lets you combine the contents of two
libraries into one library file.

The command syntax is straightforward, and LIB prompts you for
responses. Once you have learned how LIB works and what its prompts
mean, you can use one of the alternative methods of invoking LIB,
described in sections 6.3.5 and 6.3.6. The alternative methods let you give
LIB commands without waiting for the LIB prompts.

141

Microsoft C Compiler User's Guide

6.2 Overview of LID Operation

You can perform a number of library management functions with LIB, in­
cluding the following tasks:

• Create a library file

• Delete modules

• Extract a module and place it in a separate object file

• Extract a module and delete it

• Append an object file as a module of a library, or append the con­
tents of a library

• Replace a module in the library file with a new module

• Produce a listing of all public symbols in the library modules

For each library session, LIB reads and interprets the user's commands. It
determines whether a new library is being created or an existing library is
being examined or modified.

Deletion and extraction commands (if any) are the first commands pro­
cessed. LIB does not actually delete modules from the existing file. In­
stead, it marks the selected modules for deletion, creates a new library
file, and copies only the modules not marked for deletion into the new li­
brary file.

Next, LIB processes any addition commands. Like deletions, additions are
not performed on the original library file. Instead, the additional modules
are appended to the new library file. (If there were no deletion or extrac­
tion commands, a new library file is created in the addition stage by copy­
ing the original library file.)

As LIB carries out these commands, it reads the object modules in the
library, checks them for validity, and gathers the information necessary to
build a library index and a listing file. The library index is used by the
linker to search the library.

The listing file contains a list of all public symbols in the index and the
names of the modules in which they are defined. LIB produces the listing
file only if you ask for it during the library session.

142

Managing Libraries

LIB never makes changes to the original library; it copies the library and
makes changes to the copy. Therefore, when you terminate LIB for any rea­
son, you do not lose your original file. It also means that when you run
LIB, enough space must be available on your disk for both the original li­
brary file and the copy.

When you modify a library file, LIB gives you the option of specifying a
different name for the file containing the modifications. If you use this op­
tion, the modified library is stored under the name you give, and the origi­
nal, unmodified version is preserved under its own name. If you choose not
to give a new name, LIB gives the modified file the original library name,
but keeps a backup copy of the original library file. This copy has the ex­
tension .BAK instead of .LIB.

6.3 Running LID

LIB requires two types of input: a command to start LIB and responses to
command prompts. Start LIB at the MS-DOS command level by typing
LIB. LIB prompts you for the input it needs by displaying the following
four messages, one at a time. LIB waits for you to respond to each prompt,
then prints the next prompt.

Library name:
Operations:
List file:
Output library:

The responses you can make to each prompt are explained in the following
four sections.

Once you understand the LIB prompts and operations, you may want to
use one of the two alternate methods of running LIB. The command-line
method lets you type all commands, options, and file names on the line used
to start LIB. With the response-file method, you create a file that contains
all the necessary commands, then tell LIB to use the responses in that file.
You may find it easier to use the prompt method until you become comfort­
able with the LIB commands and operations.

143

Microsoft C Compiler User's Guide

6.3.1 "Library name" Prompt

At the "Library name" prompt, give the name of the library file you want.
You can also specify a page size at this prompt using the /P AGESIZE
option.

Usually library files are named with the .LIB extension. You can omit the
.LIB extension when you give the library-file name since LIB assumes that
the file-name extension is .LIB. If your library file does not have the .LIB
extension, be sure to include the extension when you give the library-file
name. Otherwise, LIB cannot find the file.

Path names are allowed with the library-file name. You can give LIB the
path name of a library file in another directory or on another disk.

Since LIB manages only one library file at a time, only one file name is al­
lowed in response to this prompt. There is no default response. LIB pro­
duces an error message if you do not give a file name.

If you give the name of a library file that does not exist, LIB displays the
following prompt:

Library file does not exist, Creo.tc?

Type y to create the library file, or n to terminate LIB. If you type a
library-file name and follow it immediately with a semicolon (;), LIB per­
forms only a consistency check on the given library. A consistency check
tells you whether all the modules in the library are in usable form. LIB
prints a message only if it finds an invalid object module; no message ap­
pears if all modules are intact.

If you wish to set the library-page size, you must enter the /P AGESIZE
option at the "Library name" prompt. It must follow the library name. See
Section 6.4.11, "Setting the Library-Page Size," for details.

6.3.2 "Operations" Prompt

At the "Operations" prompt, you can type one of the command symbols for
manipulating modules (+, -, -+, lie, or -lie), followed immediately by a
module name or an object-file name. You can specify more than one opera­
tion at this prompt, in any order. The default for the "Operations" prompt
is no change.

144

Managing Libraries

When you have a large number of modules or files to manipulate (more
than can be typed on one line), type an ampersand (&) as the last symbol
on the line, then press the RETURN key. The ampersand must follow a file
name; you cannot give an operator as the last character on a line to be con­
tinued. The ampersand causes LIB to repeat the "Operations" prompt, al­
lowing you to specify more operations and names.

The following list describes the command symbols and their meanings and
uses:

Symbols

+

Meaning

The plus sign makes an object file the last
module in the library file. Immediately follow­
ing the plus sign, give the name of the object
file. You can use path names for the object
file. LIB automatically supplies the .OBJ ex­
tension, so you can omit the extension from
the object-file name.

You can also use the plus sign to combine two
libraries. When you give a library name fol­
lowing the plus sign, a copy of the contents of
the given library is added to the library file
being modified. You must include the .LIB
extension when you give a library-file name.
Otherwise, LIB uses the default .OBJ exten­
sion when it looks for the file.

The minus sign deletes a module from the li­
brary file. Immediately following the minus
sign, give the name of the module to be delet­
ed. A module name has no path name and no
extension.

Type a minus sign followed by a plus sign to
replace a module in the library. Following the
replacement symbol, give the name of the
module to be replaced. Module names have no
path names and no extensions.

To replace a module, LIB deletes the given
module, then appends the object file having
the same name as the module. The object file
is assumed to have an .OBJ extension and to
reside in the current working directory.

146

Microsoft C Compiler User's Guide

* Type an asterisk followed by a module name
to copy a module from the library file into an
object file of the same name. The module
remains in the library file. When LIB copies
the module to an object file, it adds the .OBJ
extension and the drive designation and path
name of the current working directory to the
module name to form a complete object-file
name. You cannot override the .OBJ exten­
sion, drive designation, or path name given to
the object file, but you can later rename the
file or copy it to whatever location you like.

-* Use the minus sign followed by an asterisk to
move an object module from the library file to
an object file. This operation is equivalent to
copying the module to an object file, as
described above, then deleting the module
from the library.

6.3.3 "List file" Prompt

At the "List file" prompt, you can give a file name for a cross-reference list­
ing file. You can specify a full path name for the listing file to cause it to be
created outside your current working directory. You can give the listing file
any name and any extension. LIB does not supply a default extension if
you omit the extension.

A cross-reference listing file contains two lists. The first is an alphabetical
listing of all public symbols in the library. Each symbol name is followed by
the name of the module in which it is referenced.

The second list consists of the modules in the library. Under each module
name is an alphabetical listing of the public symbols defined in that
module. The default when you omit the response to this prompt is the spe­
cial file name NUL, which tells LIB not to create a listing file.

6.3.4 "Output library" Prompt

At the "Output library" prompt you can give the name of a new library file
that will have the specified modifications. This prompt appears only if you
specify modifications to the library at the "Operations" prompt. The de­
fault is the current library-file name. If you do not specify a new library-file

146

Managing Libraries

name, the original, unmodified library is saved in a library file with the
same name but with a .BAK extension replacing the .LIB extension.

6.3.5 Using the Command Line

The command-line method of starting LIB has the following form:

LIB oldlibrary [/PAGESIZE:numberll [commandsll [,[listjilell [,[newlibraryllllll [;ll

The entries following LIB correspond to responses to the LIB command
prompts. The newlibrary entry and the optional number for the
/P AGESIZE option correspond to the "Library name" prompt. If
you want LIB to perform a consistency check on the library, follow the
newlibrary entry with a semicolon (;).

The commands entries are any of the commands allowed at the "Opera­
tions" prompt. The listfile entry, if you include it, tells LIB to create a list­
ing file with the given name. The newlibraryentry, if it appears, is the
name of the revised library.

If you want to create a cross-reference listing, the name of the listing file
must be separated from the last commands entry by a comma. If you give a
file name in the new library field, the library name must be separated from
the listing-file name or the last commands entry by a comma.

To tell LIB to use the default responses for the remaining entries, use a
semicolon after any entry except the first. The semicolon should be the last
character on the command line.

Examples

LIB LANG-+HEAP;

LIB LANG-HEAP+HEAP;

LIB LANG+HEAP-HEAP;

LIB C;

LIB LANG,LCROSS.PUB

LIB fIRST -*STUff *MORE, ,SECOND

147

Microsoft C Compiler User's Guide

The first three examples have the same effect. The first example uses the
replace command (-+) to instruct LIB to replace the HEAP module in the
library LANG. LI B. LiB deletes the HEAP module from the library, then
appends the object file HEAP. OBJ as a new module in the library. The
semicolon at the end of the command line tells LIB to use the default
responses for the remaining prompts. This means that no listing file is
created and that the changes are written to the original library file instead
of creating a new library file.

The next two examples do the same thing, but in two separate operations,
using the add (+) and delete (-) commands. The effect is the same for the
second and third examples because delete operations are always carried out
before added operations, regardless of the order of the operations in the
command line. This order of execution prevents confusion when a new ver­
sion of a module replaces an old version in the library file.

The fourth example causes LIB to perform a consistency check of the li­
brary file C . LI B. No other action is performed. LIB displays any con­
sistency errors it finds and returns to the operating-system level.

The fifth example tells LIB to perform a consistency check of the library
file LANG. LI B, then create a cross-reference listing file named
LCROSS . PUB.

The last example instructs LIB to move the module STUFf from the library
FIRST. LI B to an object file called STUFF. OBJ. The module STUFF is re­
moved from the library in the process. The module MORE is copied from the
library to an object file called MORE. OBJ. It remains in the library. The re­
vised library is called SECOND. LI B. It contains all the modules in
FIRST. LI B except STUFF, which was removed by the move (-*) com­
mand. The original library, FIRST. LI B, remains unchanged.

6.3.6 Using a Response File

The command to start LIB with a response file has the following form:

LIB Cd; filename

The filename is the name of a response file. The response-file name can be
qualified with a drive and directory specification to name a response file
from a directory other than the current working directory.

148

Managing Libraries

You can also enter the name of a response file after any of the linker
prompts, or at any position in a command line. The input from the
response file will be treated exactly as if it had been entered after prompts
or in command lines, with a carriage-return-line-feed combination in the
response file treated the same as a RETURN key in response to a prompt, or
a comma in a command line.

Before you use this method, you must set up a response file containing
answers to the LIB prompts. This method lets you conduct the library ses­
sion without typing responses at the keyboard.

A response file has one text line for each prompt. Responses must appear
in the same order as the command prompts appear. Use command symbols
in the response file the same way you would use responses typed on the
keyboard.

When you run LIB with a response file, the prompts are displayed with the
responses from the response file. If the response file does not contain
answers for all the prompts, LIB uses the default responses.

Example

SLIBC
+CURSOR+HEAP-HEAP*FOIBLES
CROSSLST

This response file causes LIB to: delete the module HEAP from the
SLI BC. LI B library file; extract the module FOI BLES and place it in an ob­
ject file named FOIBLES. OBJ; and append the object files CURSOR. OBJ
and HEAP. OBJ as the last two modules in the library. Finally, LIB creates
a cross-reference file named CROSSLST.

6.3.7 Extending Lines

If you have many operations to perform during a library session, use the
ampersand (&) command symbol to extend the operations line. Give the
ampersand symbol after an object module or object-file name; do not put
the ampersand between an operations symbol and a name.

If you use the ampersand with the prompt method of invoking LIB, the
ampersand will cause the "Operations" prompt to be repeated, allowing
you to type more operations. With the response-file method, you can use
the ampersand at the end of a line and continue typing operations on the
next line.

149

Microsoft C Compiler User's Guide

6.3.8 Terminating the Library Session

You can press CONTROlrC at any time during a library session to terminate
the session and return to MS-DOS. If you notice that you have entered an
incorrect response at a previous prompt, you should press CONTROlrC to
exit LIB and begin again. You can use the normal MS-DOS editing keys to
correct errors at the current prompt.

6.3.9 Selecting Default Responses to Prompts

After any entry but the first, use a single semicolon (;) followed immedi­
ately by a carriage return to select default responses to the remaining
prompts. You can use the semicolon command symbol with the command­
line and response-file methods of invoking LIB, but it is not really neces­
sary, since LIB supplies the default responses wherever you omit responses.

The default response for the "Operations" prompt is no operation. The
library file is unchanged.

The default response for the "List file" prompt is the special file name
NUL, which tells LIB not to create a listing file.

The default response for the "Output library" file is the current library
name. This prompt appears only if you specify at least one operation at the
"Operations" prompt.

6.4 Library Tasks

This section summarizes the library-management tasks you can perform
with LIB.

6.4.1 Creating a Library File

To create a new library file, give the name of the library file you want to
create at the "Library name" prompt. LIB supplies the .LIB extension.

The name of the new library must not be the name of an existing file. If it
is, LIB will assume you want to modify the existing file. When you give the
name of a library file that does not currently exist, LIB displays the follow­
ing prompt:

160

Managing Libraries

Library file does not exist. Create?

Type y to create the file, or n to terminate the. library session.

You can specify a page size for the library when you create it. The default
page size is 16 bytes. See the Section 6.4.11, "Setting the Library-Page
Size," for a discussion of this option.

Once you have given the name of the new library file, you can insert object
modules into the library by using the add operation (+) at the "Opera­
tions" prompt. You can also add the contents of another library, if you
wish. These options are discussed in Section 6.4.3, "Adding Library
Modules," and Section 6.4.8, "Combining Libraries."

6.4.2 Modifying a Library File

You can modify an existing library file by giving the name of the library file
at the "Library name" prompt. All operations you specify at the "Opera­
tions" prompt are performed on that library.

However, LIB lets you keep both the unmodified library file and the newly
modified version, if you like. You can do this by giving the name of a new
library file at the "Output library" prompt. The modified library file is
stored under the new library-file name, while the original library file
remains unchanged.

If you don't give a file name at the "Output library" prompt, the modified
version of the library file replaces the original library file. Even in this case,
LIB saves the original, unmodified library file with the extension .BAK
instead of .LIB. Thus at the end of the session you have two library files:
the modified version with the .LIB extension and the original, unmodified
version with the .BAK extension.

6.4.3 Adding Library Modules

Use the plus sign (+) at the "Operations" prompt to add an object module
to a library. Give the name of the object file to be added, without the
.OBJ extension, immediately following the plus sign.

161

Microsoft C Compiler User's Guide

LIB strips the drive designation and the extension from the object-file
specification, leaving only the base name. This becomes the name of the
object module in the library. For example, if the object file B: \CURSOR is
added to a library file, the name of the corresponding object module is
CURSOR.

Object modules are always added to the end of a library file.

6.4.4 Deleting Library Modules

Use the minus sign (-) at the "Operations" prompt to delete an object
module from a library. Following the minus sign, give the name of the
module to be deleted. A module name has no path name and no extension;
it is simply a name, such as CURSOR.

6.4.5 Replacing Library Modules

Use a minus sign followed by a plus sign (-+) to replace a module in the
library. Following the replacement symbol (-+), give the name of the
module to be replaced. Remember that module names have no path names
and no extensions.

To replace a module, LIB deletes the given module, then appends the
object file having the same name as the module. The object file is assumed
to have an .DBJ extension and to reside in the current working directory.

6.4.6 Copying Library Modules

Use an asterisk (lie) followed by a module name to copy a module from the
library file into an object file of the same name. The module remains in the
library file. When LIB copies the module to an object file, it adds the .OBJ
extension and the drive designation and path name of the current working
directory to the module name to form a complete object-file name. You
cannot override the .DBJ extension, drive designation, or path name given
to the object file, but you can later rename the file or copy it to whatever
location you like.

162

Managing Libraries

6.4.7 Moving Library Modules

Use the minus sign followed by an asterisk (-*) to move an object module
from the library file to an object file. This operation is equivalent to copy­
ing the module to an object file, then deleting the module from the library.

6.4.8 Combining Libraries

You can add the contents of a library to another library by using the plus
sign (+) with a library-file name instead of an object-file name. At the
"Operations" prompt, give the plus sign (+) followed by the name of the
library whose contents you wish to add to the library being modified. When
you use this option you must include the .LIB extension of the library-file
name. Otherwise, LIB assumes that the file is an object file and looks for
the file with an .OBJ extension.

In addition to allowing MS-DOS libraries as input, LIB also accepts 286
XENIX archives and Intel-format libraries. Therefore, you can use LIB to
convert libraries from either of these formats to the Microsoft format.

LIB adds the modules of the library to the end of the library being
modified. Note that the added library still exists as an independent library.
LIB copies the modules without deleting them.

Once you have added the contents of a library or libraries, you can save the
new, combined library under a new name by giving a new name at the
"Output library" prompt. If you omit the "Output library" response, LIB
saves the combined library under the name of the original library being
modified. The original library is saved with the extension .BAK.

6.4.9 Creating a Cross-Reference Listing

Create a cross-reference listing by giving a name for the listing file at the
"List file" prompt. If you omit the response to this prompt, LIB uses the
special file name NUL, which means that no listing file is created.

You can give the listing file any name and any extension. To cause the list­
ing file to be created outside your current working directory, you can
specify a full path name, including drive designation. LIB does not supply
a default extension if you omit the extension.

153

Microsoft C Compiler User's Guide

A cross-reference listing file contains two lists. The first is an alphabetical
listing of all public symbols in the library. Each symbol name is followed by
the name of the module in which it is referenced.

The second list is an alphabetical list of the modules in the library. Under
each module name is an alphabetical listing of the public symbols refer­
enced in that module.

6.4.10 Performing Consistency Checks

When you give only a library name followed by a semicolon at the "Library
name" prompt, LIB performs a consistency check, displaying messages
about any errors it finds. No changes are made to the library. This option is
not usually necessary, since LIB automatically checks object files for con­
sistency before adding them to the library.

To produce a cross-reference listing with a consistency check, use the
command-line method of invoking LIB. Give the library name followed by
a semicolon, then give the name of the listing file. LIB performs the con­
sistency check, then creates the cross-reference listing.

6.4.11 Setting the Library-Page Size

You can set the library-page size by adding a page-size option after the
library-file name in the LIB command line or after the new library-file
name at the "Library name" prompt. The option has the following form:

/PAGESIZE:number

The number specifies the new page size. It must be an integer value
representing a power of 2 between the values 16 and 32768. The option
name can be abbreviated to /P:number.

The page size of a library affects the alignment of modules stored in the
library. Modules in the library are ali&ned to always start at a position that
is a multiple of the page size (in bytes) from the beginning of the file. The
default page size is 16 bytes for a new library or the current page size for an
existing library.

164

Managing Libraries

Note

Because of the indexing technique used by LIB, a library with a large
page size can hold more modules than a library with a smaller page size.
However, for each module in the library, an average of number/2 bytes
of storage space is wasted (where number is the page size). In most
cases, a small page size is advantageous; you should use a small page
size unless you need to put a very large number of modules in a library.

Another consequence of this indexing technique is that the page size
determines the maximum possible size of the .LIB file. Specifically, this
limit is number lie 65536. For example, /P: 16 means that the .LIB file
has to be smaller than 1 megabyte (16 lie 65536 bytes).

155

Chapter 7

Maintaining Programs
with MAKE

7.1 Introduction 159
7.2 Using MAKE 159
7.2.1 Creating a MAKE Description File
7.2.2 Starting MAKE 161
7.2.3 Using MAKE Options 162
7.2.4 Using Macro Definitions 163
7.2.5 Nesting Macro Definitions 164
7.2.6 Using Special Macros 165
7.2.7 Inference Rules 165
7.3 Maintaining a Program: an Example

159

167

167

Maintaining Programs with MAKE

7.1 Introduction

The Microsoft Program Maintenance Utility (MAKE) automates the pro­
cess of maintaining high-level-language programs. MAKE automatically
carries out all tasks needed to update a program after one or more of its
source files has been changed.

Unlike many batch-processing programs, MAKE compares the last
modification date of the file or files that may need updating with the
modification dates of files on which these target files depend. MAKE then
carries out the given task only if a target file is out of date. MAKE does
not compile and link all files just because one file has been updated. This
can save time when creating programs that have many source files or take
several steps to complete.

The rest of this chapter explains how to use MAKE and illustrates how to
maintain a sample C program.

7.2 Using MAKE

To use MAKE, you must create a MAKE description file that defines the
tasks you wish to accomplish and specifies the files on which these tasks
depend. Once the description file exists, invoke MAKE and supply the file
name as a parameter. MAKE then reads the contents of the file and car­
ries out the requested tasks.

The following sections explain how to create a MAKE description file and
start MAKE.

7.2.1 Creating a MAKE Description File

You can create a MAKE description file with a text editor. A MAKE
description file consists of one or more target/dependent descriptions. Each
description has the following general form:

targetfile : dependentfiles [# comment]
[# comment]

command [# comment]
[command] [# comment]

169

Microsoft C Compiler User's Guide

In this format, targetfile is the name of a file that may need updating,
dependentfiles are the names of any files on which the target file de-
pends, and command is the name of an executable file or MS-DOS internal
command.

The targetfile and dependentfile must be valid file names. A path name must
be provided for any file that is not on the same drive and directory as the
d€scription file.

Any number of dependent files can be given, but only one target name is al­
lowed. Dependent-file names must be separated by at least one space. If you
have more dependent files than can fit on one line, you can continue the
names on the next line by typing a backslash (\) followed by a new line.

The command can be any valid MS-DOS command line consisting of an
executable-file name or an MS-DOS internal command. Any number of com­
mands can be given, but each must begin on a new line and must be pre­
ceded by a TAB, or by at least one space. The commands are carried out
only if one or more of the dependent files has been modified since the target
file was created.

One way to remember the MAKE description file format is to think of it as
an "if-then" statement in the following format: If a dependentfile is older
than the targetfile, or a dependentfile does not exist, then do commands.

You can give any number of target/ dependent descriptions in a description
file. You must make sure, however, that the last line in one description is
separated from the first line of the next description by at least one blank
line.

The number sign (#) is a comment character. All characters on the same
line that follow the comment character are ignored. When comments
appear in a command lines section, the comment character (#) must be the
first character on the line (no leading white space). On any other lines, the
comment character can appear anywhere.

160

Maintaining Programs with MAKE

Note

The order in which you place the target/dependent descriptions is
important. MAKE examines each description in turn and makes its
decision to carry out a given task based on the file's current
modification date. If a command in a later description modifies a file,
MAKE has no way to return to the description in which that file is a
target.

Example

STARTUP.OBJ: STARTUP.C
MSC STARTUP, ,STARTUP;

PRINT.OBJ: PRINT.C #Comment allowed after dependent
#Comment before command must start in first column

MSC PRINT, ,PRINT; #Comment allowed after command

PRINT.EXE: STARTUP.OBJ PRINT.OBJ
LINK STARTUP+PRINT,PRINT,PRINT;

This example defines the actions to be carried out to create three target
files. Each file has at least one dependent file and one command. The target
descriptions are given in the order in which the target files will be created.
Thus STARTUP. OBJ and PRINT. OBJ are examined and created, if neces­
sary, before PRINT. EXE.

Note that a comment can appear on the same line as the target/ dependent
description line and the command line. However, when the comment
appears on a separate line, the comment character (#) must be the first
character on the line.

7.2.2 Starting MAKE

MAKE must be started with a command line. You cannot use prompts.
The MAKE command line has the following form:

MAKE [options] [macrodefinitions] filename

The options are one or more of the options described in Section 7.2.3. The
macro definitions are one or more macro definitions, as described in Section
7.2.4. The filename is the name of a MAKE description file. By convention,

161

Microsoft C Compiler User's Guide

a MAKE description file has the same file name (but with no extension) as
the program it describes; however, filename can be any valid file name you
choose.

Once you start MAKE, it examines each target description in turn. If a
given target file is out of date with respect to its dependent file, or if the file
does not exist, MAKE executes the given command or commands. Other­
wise, it skips to the next target/dependent description.

When MAKE finds an out-of-date dependent file, it displays the command
or commands from the target/dependent description, then executes the
commands. If MAKE cannot find a specified file, it displays a message
informing you that the file was not found. If the missing file is a target file,
MAKE continues execution, since the missing file will, in many cases, be
created by subsequent commands.

If the missing file is a dependent file or command file, MAKE stops execu­
tion of the description file. MAKE also stops execution and displays the
exit code if the command returns an error.

When MAKE executes a command, it uses the same environment used to
invoke MAKE. Thus environment variables such as PATH are available
for these commands.

7.2.3 Using MAKE Options

The options available with the MAKE command modify its behavior as
descri bed below:

Option

ID

II

IN

IS

162

Action

Displays the last modification date of each file as the file is
scanned

Ignores exit codes (also called return or "errorlevel" codes)
returned by programs called from the MAKE description
file; MAKE continues execution of the subsequent lines of
the description file despite the errors

Displays commands that would be executed by a descrip­
tion file, but does not execute the commands

Executes in "silent" mode; that is, lines are not displayed
as they are executed

Maintaining Programs with MAKE

7.2.4 Using Macro Definitions

Macro definitions let you associate a symbolic name with a particular value.
By using macro definitions, you can change values used in the description
file without having to edit every line that uses a particular value.

The form of a macro definition is:

name=value

The form for using a previously defined macro definition is:

$ (name)

Occurrences of the pattern $(name) in the description file are replaced with
the specified value. The name is converted to uppercase; f1 ags and
fLAGS are equivalent. If you define a macro name but leave the value
blank, the value will be a null string.

Macro definitions can be placed in the MAKE description file or given on
the MAKE command line. A name is also considered defined if it has a
definition in the current environment. For example, if the environment vari­
able PATH is defined in the current environment, occurrences of
$ (PATH) in the description file will be replaced with the PATH value.

In the MAKE description file, each macro definition must appear on a
separate line. Any white space (tab and space characters) between name
and the equal sign (=) or between the equal sign and value is ignored.
Any other white space is considered part of value. To include white space
in a macro definition on the command line, enclose the entire definition in
double quotation marks (" ").

If the same name is defined in more than one place, the following order of
precedence applies:

1. Command line definition

2. Description file definition

3. Environment definition

163

Microsoft C Compiler User's Guide

Example

base=ABC
warn="/W 2"

$ (base) . OBJ: $ (base) . C
MSC $ (base) $(warn),$(base),$(base);

$ (base) .exe: $ (base) .obj \lib\math.lib
LINK $(base),$(base),$(base);

The sample MAKE description file above shows macro definitions for the
names base and warn. MAKE replaces each occurrence of $ (base) with
ABC. If the description file is called COMPILE, you can give the following
command:

MAKE base=DEF compile

This command line enables you to override the definition of base in the
description file, causing DEF to be compiled and linked instead of ABC.

If you want to override the warning level 2 specified by the macro warn in
the MAKE description file and use the MSC default (warning levell)
instead, you could start MAKE with the following command line:

MAKE warn= COMPILE

Since the value for warn is blank, it will be treated as a null string. Since
the null string was given from the command line, which has higher pre­
cedence than the definition in the description file, warn will be expanded to
a null string and no option will be passed in the MSC command line.

7.2.5 Nesting Macro Definitions

Macro definitions can be nested. In other words, a macro definition can
include another macro definition. For example, you could have the follow­
ing macro definition in the MAKE description file PICTURE:

LIBS=$(DLIB)\MATH.LIB $ (DLIB)\GRAPHICS.LIB

You could then start MAKE with the following command line:

MAKE DLIB=D:\LIB PICTURE

In this case, every occurrence of the macro LI BS in the description file
would be expanded to the following:

164

Maintaining Programs with MAKE

D:\LIB\MATH.LIB D:\LIB\GRAPHICS.LIB

Be careful to avoid infinitely recursive macros such as the following:

A $ (B)
B $ (C)
C $ (A)

7.2.6 Using Special Macros

MAKE recognizes three special macro names and will automatically sub­
stitute a value for each. The special names and their values are as follows:

Name Value Substituted

Base name portion of the target (without the extension)

Complete target name

Complete list of dependencies

These macro names can be used in description files, as shown in the follow­
ing example.

Example

TEST.EXE: MOD1.OBJ MOD2.0BJ MOD3.0BJ
LINK $**, $@;
$*

The example above is equivalent to the following:

TEST:EXE: MOD1.OBJ MOD2.0BJ MOD3.0BJ
LINK MOD1.OBJ MOD2.0BJ MOD3.0BJ, TEST.EXE;
TEST

7.2.7 Inference Rules

MAKE allows you to create inference rules that specify commands for
target/ dependent descriptions even when there is no explicit command in
the MAKE description file. An inference rule is a way of telling MAKE
how to produce a file with one type of extension from a file with the same
base name and another type of extension.

166

Microsoft C Compiler User's Guide

For example, if you define a rule for producing .OBJ files from .0 files,
then the actual commands do not have to be repeated in the description file
for each target/dependent description.

Inference rules take the following form:

• dependentextension. targetextension :
command
[command]

For lines that do not have explicit commands, MAKE looks for a rule that
matches both the target's extension and the dependent's extension. If it
finds such a rule, MAKE performs the commands given by the rule.

MAKE looks first for dependency rules in the current description file, but
if it does not find an appropriate rule, it will search for TOOLS.INI, the
tools-initialization file. MAKE looks for TOOLS.INI on the current
drive and directory, then searches any directories specified with the MS­
DOS PATH command.

If MAKE finds TOOLS.INI, it looks through the file for a line beginning
with the tag [make], which must come at the beginning of the line. Infer­
ence rules following this line will be applied if appropriate.

Example

[make]
.C.OBJ:

MSC $*.C,,/;

TEST1.OBJ: TEST1.C

TEST2.0BJ: TEST2.C
MSC TEST2.C;

In the sample description file above, an inference rule is defined in the first
line. The file name in the rule is specified with the special macro name $ *
so that the rule will apply to any base name. When MAKE encounters the
dependency for files TESTl .OBJ and TESTl . C it looks first for commands

166

Maintaining Programs with MAKE

on the next line. When it does not find any, MAKE checks for a rule that
may apply and finds the rule defined in the first lines of the description file.
MAKE applies the rule, replacing the $ * macro with TESTI when it exe­
cutes the command, producing the following message:

MSC TEST1. C, , , ;

When MAKE reaches the second dependency for the TEST2 files, it does
not search for a dependency rule, since a command is explicitly stated for
this target/dependent description.

7.3 Maintaining a Program: an Example

MAKE is especially useful for programs in development, because it offers a
quick way to recreate a modified program after small changes.

Consider a test program called WORK. EXE that is made from two source
files, WORKI . C and WORK2 . C. Both source files use an include file called
WORK. H, and both modules must be linked with routines in a library file
called MATH. LI B. During development, you will often want to compile and
link to create WORK. EXE, but you won't always want to recompile all the
files. You only want to recompile the source files that have changed.

The following target/dependent descriptions copied to the MAKE descrip­
tion file WORK will carry out the appropriate tasks:

WORK.EXE: WORK.H
Mse /Zi WORK1",;
Mse /Zi WORK2" , ;

WORK1.OBJ: WORK1.e
Mse /Zi WORK1",;

WORK2.0BJ: WORK2.e
Mse /Zi WORK2, , , ;

WORK.EXE: WORK1.OBJ WORK2.0BJ \LIB\MATH.LIB
LINK WORK1+WORK2,WORK,WORK,\LIB\MATH.LIB /eo

After each session of debugging and editing source files, start MAKE with
the following command line:

MAKE WORK

167

Microsoft C Compiler User's Guide

MAKE carries out the following steps:

1. Checks to see if WORK. H has been changed since the last time
WORK. EXE was created by the linker. If the include module has
been changed, then both source files must be recompiled. If the
include module was not changed, MAKE skips to the next
dependency.

2. Checks to see if WORKl . C has been changed since the last time
WORKl . OBJ was created by the compiler. If so, WORKl . C will be
recompiled.

3. Checks WORK2 . C in the same way WORKl . C was checked in step 2.
Note that if only one of the source files has been changed, only that
file will be recompiled. However, if both source files have been
recompiled in step 1, then they are not recompiled in this step.

4. Checks to see if either of the object files have been changed since
the last time the modules were linked. If one or both of the files
were recompiled, the program will be relinked. The program will
also be relinked if the library file MATH. LI B has been changed since
the last time the program was linked.

When the source files are created, MAKE compiles and links both
source files, since none of the target files exists. If you invoke MAKE again
without changing any of the dependent files, all commands will be skipped.
If you change one of the source files, that file will be recompiled and the
program will be relinked. If you change the library file MATH. LI B, but
make no other changes, MAKE will skip the commands in the first three
dependencies, but will relink the program as specified in the last depen­
dency.

168

Chapter 8

Working with Memory Models

8.1 Introduction 171
8.2 Using the Standard Memory Models 173
8.2.1 Creating Small-Model Programs 174
8.2.2 Creating Medium-Model Programs 175
8.2.3 Creating Compact-Model Programs 175
8.2.4 Creating Large-Model Programs 176
8.2.5 Creating Huge-Model Programs 176
8.3 Using the near, far, and huge Keywords 177
8.3.1 Library Support for near, far, and huge 179
8.3.2 Declaring Data with near, far, and huge 179
8.3.3 Declaring Functions with near and far 181
8.3.4 Pointer Conversions 183
8.4 Creating Customized Memory Models 185
8.4.1 Code Pointers 187
8.4.2
8.4.3
8.4.4

Data Pointers 187
Setting Up Segments 188
Library Support for
Customized Memory Models 189

169

Working with Memory Models

8.1 Introduction

You can gain greater control over how your program uses memory by speci­
fying the memory model for the program. If you do not specify a memory
model, MSC uses the small memory model by default. The small memory
model is sufficient for most programs.

You cannot use the small memory model if your program satisfies one or
more of the following three conditions:

1. Your program has more than 64K of code.

2. Your program has more than 64K of data.

3. Your program contains individual arrays that need to be larger
than 64K.

Advanced programmers may have other reasons for using a model other
than the small memory model.

If you decide that the small memory model will not be adequate for your
program, you have four options for larger memory models:

1. You can specify one of the other standard memory models (medium,
compact, large, or huge) using the / Aletter option.

2. You can create a mixed-model program using the near, far, and
huge keywords.

3. You can create your own customized memory model using the
/ Astring option.

4. Method 2 can be combined with either method 1 or method 3.

The terms "near," "far," and "huge" are crucial to understanding the con­
cept of memory models. These terms indicate how data can be accessed in
the segmented architecture of the 8086 family of microprocessors.

The MS-DOS operating system loads the code and data allocated by your
program into "segments" in physical memory. Each segment is up to 64K
long. Since separate segments are always allocated for the program code
and data, the minimum number of segments allocated for a program is two;
these two segments, required for every program, are called the default seg­
ments. The small memory model uses only the two default segments. The
other memory models discussed in this chapter allow more than one code
segment and/or data segment per program.

171

Microsoft C Compiler User's Guide

In the 8086/80286 family of microprocessors, all memory addresses consist
of two parts:

1. A 16-bit number that represents the base address of a memory seg­
ment

2. Another 16-bit number that gives an offset within that segment

The architecture of the 8086 microprocessor is such that code can be ac­
cessed within the default code or data segment using just the 16-bit offset
value. This is possible because the segment addresses for the default seg­
ments are always known. This 16-bit offset value is called a "near" ad­
dress,' and can be accessed with a "near" pointer. Since only 16-bit arith­
metic is required to access any near item, near references to code or data
are smaller and more efficient.

When data or code lie outside the default segments, the address must use
both the segment and offset values. Such addresses are called "far" ad­
dresses, and can be accessed by using "far" pointers in a C program. Ac­
cessing far data or code items is more expensive in terms of program speed
and size, but their use allows your programs to address all memory, rather
than just a 64K piece.

There is a third type of address in Microsoft C, the "huge" address. A huge
address is similar to a far address in that both consist of a segment value
and an offset value but they differ in the way address arithmetic is per­
formed on pointers. Because items (both code and data) referenced by far
pointers are still assumed to lie completely within the segment in which
they start, pointer arithmetic is done only on the offset portion of the ad­
dress. This gain in pointer arithmetic efficiency is achieved, however, by
limiting the size of any single item to 64K. With data items, huge pointers
overcome this size limitation: pointer arithmetic is performed on all 32 bits
of the data item's address, thus allowing data items referenced by huge
pointers to span more than one segment, provided they adhere to the limi­
tations outlined in Section 8.2.5, "Creating Huge-Model Programs."

The rest of this chapter deals with the various methods you can use to
control whether your program makes far, near, or huge calls to access code
or data.

172

Working with Memory Models

8.2 Using the Standard Memory Models

The Microsoft C Compiler package includes four standard libraries that
support five standard memory models. Using the standard memory models
is the simplest way to control how your program accesses code and data in
memory.

When you use the standard memory models, the compiler handles library
support for you. The library corresponding to the memory model you spec­
ify is used automatically. Each memory model has its own library, except
for the the huge memory model, which uses the large-model library.

The advantage of using standard models for your programs is simplicity. In
the standard models, memory management is specified by compiler options;
since the standard models do not require the use of extended keywords,
they are the best way to write code that can be ported to other systems
(particularly systems that do not use segmented architectures).

The disadvantage of using standard memory models exclusively is that they
may not produce the most efficient code. For example, if you have an
otherwise small-model program containing a large array that pushes the
total data size for your program over the 64K limit for small model, it may
be to your advantage to declare the one array with the far keyword, while
keeping the rest of the program small model, as opposed to using the stan­
dard compact memory model for the entire program. For maximum flexi­
bility and control over how your program uses memory, you can combine
the standard-memory-model method with the near, far, and huge key­
words described in Section 8.3.

The I Aletter option for MSC (or CL) is used to specify one of the five
standard memory models (small, medium, compact, large, or huge) at com­
pile time. These options are discussed in the next five sections.

173

Microsoft C Compiler User's Guide

Note

In the following sections, which describe in detail the different memory­
model addressing conventions, it is important to keep in mind two com­
mon features of all five models:

1. No single source module can generate 64K or more of code.

2. No single data item can exceed 64K, unless it appears in a
huge-model program, or it has been declared with the huge
keyword.

8.2.1 Creating Small-Model Programs

Option

lAS

The small-model option tells the compiler to create a program that occu­
pies the two default segments: one for code and one for data.

Small-model programs are typically C programs that are short or have a
limited purpose. Since code and data for these programs are each limited to
64K, the total size of a small-model program can never exceed 128K. Most
programs fit easily into this model.

The default in small-model programs is that both code and data items are
accessed with near addresses. You can override the default for data by
using the far or huge keywords, and the default for code by using the far
keyword (huge is relevant only for data items-specifically, arrays and
pointers to arrays).

The compiler creates small-model programs by default when you do not
specify a program model. The / AS option is provided for completeness; you
need never give it explicitly.

174

Working with Memory Models

8.2.2 Creating Medium-Model Programs

Option

JAM

The medium-model option provides a single segment for program data, and
multiple segments for program code. Each source module is given its own
code segment.

Medium-model programs are typically C programs that have a large
number of program statements (more than 64K of code), but a relatively
small amount of data (less than 64K). Program code can occupy any
amount of space and is given as many segments as needed; total program
data cannot be greater than 64K. The medium model provides a useful
trade-off between speed and space, since most programs refer more fre­
quently to data items than to code.

8.2.3 Creating Compact-Model Programs

Option

JAC

The compact-model option directs the compiler to allow multiple
segments for the data of the program. Only one segment is created for the
program code.

Compact-model programs are typically C programs that have a large
amount of data, but a relatively small number of program statements. Pro­
gram data can occupy any amount of space and are given as many segments
as needed.

The default in compact-model programs is that code items are accessed
with near addresses and data items are accessed with far addresses. You
can override the default by using the near and huge keywords for data,
and the far keyword for code.

175

Microsoft C Compiler User's Guide

8.2.4 Creating Large-Model Programs

Option

/AL

The large-model option allows the compiler to create multiple segments as
needed for both code and data.

Large-model programs are typically very large C programs that use a large
amount of data storage during normal processing.

The default in large-model programs is that both code and data items are
accessed with far addresses. You can override the default by using the near
and huge keywords for data, and the near keyword for code.

8.2.5 Creating Huge-Model Programs

Option

/AH

The huge-model option is similar to the large-model option, except that the
restriction on the size of individual data items is removed for arrays.

Some size restrictions apply to elements of huge arrays where the array is
larger than 64K, however. To provide efficient addressing, array elements
are not permitted to cross segment boundaries. This has the following
implications:

176

1. No array element can be larger than 64K.

2. For any array larger than 128K, all elements must have a size in
bytes equal to a power of 2 (for example, 2 bytes, 4 bytes, 8 bytes,
16 bytes, and so on). However, if the array is 128K or smaller, its
elements may be any size, up to and including 64K.

Working with Memory Models

In huge-model programs, care must be taken when using the sizeof opera­
tor or when subtracting pointers. The C language defines the value
returned by the sizeof operator to be an int value, but the size in bytes of
a huge array is a long int value. To solve this discrepancy, the Microsoft C
Compiler produces the correct size of a huge array when the following type
cast is used:

(long)sizeof(huge_item)

Similarly, the C language defines the result of subtracting two pointers as
an int value. When subtracting two huge pointers, however, the result may
be a long int value. The Microsoft C Compiler gives the correct result
when the following type cast is used:

(long) (huge_ptrl - huge_ptr2)

8.3 Using the near, far, and huge Keywords

One limitation of the predefined memory-model structure is that, when you
change memory models, all data and code address sizes are subject to
change. However, the Microsoft C Compiler lets you override the default
addressing convention for a given memory model and access items with
either a near, far, or huge pointer. This is done with the near, far, or huge
keywords. These special type modifiers can be used with a standard
memory model to overcome addressing limitations for particular items
(either data or code) without changing the addressing conventions for the
program as a whole. Table 8.1 explains how the use of these keywords
affects the addressing of code or data, or pointers to code or data.

177

Microsoft C Compiler User's Guide

Table 8.1

Addressing of Code and Data Declared with near, far, and huge

Keyword

near

far

huge

Data

Resides in default
data segment;
referenced with 16-bit
address (pointer to
data is 16 bits)

May be anywhere in
memory, not assumed
to reside in current
data segment;
referenced with 32-bit
address (pointer to
data is 32 bits)

May be anywhere in
memory, not assumed
to reside in current
data segment;
individual data items
(arrays) can exceed
64K in size; referenced
with 32-bit address
(pointer to data is 32
bits)

Function

Assumed to be in
current code
segment; referenced
with 16-bit address
(pain ter to function
is 16 bits)

Not assumed to be
in current code
segment; referenced
with 32-bit address
(pointer to function
is 32 bits)

Not applicable to
code

Pointer
Arithmetic

Uses 16 bits

Uses 16 bits

Uses 32 bits for
data

The near, far, and huge keywords are not a standard part of the C
language; they are meaningful only for systems that use a segmented archi­
tecture similar to that of the 8086 family of microprocessors. Keep this in
mind if you want your code to be ported to other systems.

In the Microsoft C Compiler, the near, far, and huge keywords are
enabled by default. To treat these keywords as ordinary identifiers, you
must give the /Za option at compile time. This option isuseful if you are
concerned with porting C programs from environments in which these are
not keywords; for instance, a program might have been written using one of
these words as a label.

178

Working with Memory Models

8.3.1 Library Support for near, far, and huge

When using the near, far, and huge keywords to modify addressing COIl­

ventions for particular items, you can usually use one of the standard
libraries (small, compact, medium, or large) with your program. The large­
model libraries are also appropriate for use with huge-model programs.
However, you must use care when calling library routines; in general, you
cannot pass far pointers, or addresses of far data items, to a small-model
library routine (some exceptions to this statement are the library routines
halloc, hfree, and the printf family).

You can, of course, always pass the value of a far item to a small-model
library routine. For example:

long far time_val;

time (&time_val) ;
printf ("%ld\n", time_val);

/* Illegal */
/* Legal */

If you use the near, far, or huge keywords, it is recommended that you use
function declarations with argument-type lists to ensure that pointers are
passed to functions correctly (see Section 8.3.1, "Pointer Conversions").

For more information on library routines and memory models, see Section
2.11, "Using Huge Arrays with Library Functions," in Chapter 2, "Using C
Library Routines," of the Microsoft C Compiler Run- Time Library Refer­
ence.

8.3.2 Declaring Data with near, far, and huge

The near, far, and huge keywords modify either objects or pointers to
objects. When using them to declare data or code (or pointers to data or
code), keep the following rules in mind:

• The keyword always modifies the object or pointer immediately to
its right. In complex declarators such as char far * *p; think of
the far keyword and the item to its right as being a single unit. In
this case, p is a pointer to a far pointer to char (the size of p
depends on the memory model being used). See the Microsoft C
Compiler Language Reference for complete rules for using special
keywords in complex declarations.

• If the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item will be allocated in the

179

Microsoft C Compiler User's Guide

default data segment (near) or a separate data segment (far or
huge). For example,

char far a;

allocates a as an item of type char with a far address.

• If the item immediately to the right of the keyword is a pointer, the
keyword determines whether the pointer will hold a near address
(16 bits), a far address (32 bits), or a huge address (also 32 bits).
For example,

char far *p;

allocates p as a far pointer (32 bits) to an item of type char.

The following examples show data declarations using the near, far, and
huge keywords:

Exalllples

char a [3000] ; /* Example 1: small-model program
char far b[30000]; /* Example 2 : small-model program

char a[3000]; /* Example 3: large-model program
char near b[3000]; /* Example 4: large-model program

char huge a [70000] ; /* Example 5: small-model program
char huge *pa; /* Example 6: small-model program

char *pa; /* Example 7: small-model program
char far *pb; /* Example 8: small-model program

char far * *pa; /* Example 9: small-model program
char far * *pa; /* Example 10: large-model program

char far * near *pb; /* Example 11: any model */
char far * far *pb; /* Example 12: any model */

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

The declaration in the first example allocates the array a in the default seg­
ment; in contrast, the array b in the second example may be allocated in
any segment. Since these declarations are made in a small-model program,
array a would probably represent frequently used data that was deli­
berately placed in the default segment for fast access, while array b would
probably represent seldom used data that might make the data segment
exceed 64K and force the programmer to use a larger memory model if it
were not declared with the far keyword. The second example uses a large
array, because it is more likely that a programmer would want to specify
the address allocation size for items of substantial size.

180

Working with Memory Models

In Example 3, the speed of access would probably not be critical for array
a; even though it mayor may not be allocated to the default data segment,
it is always referenced with a 32-bit address. In Example 4, array b is
explicitly allocated near to improve speed of access in this memory model
(large).

In Example 5, a must be declared as huge because it is larger than 64K.
Using the huge keyword instead of the standard huge memory model
means that the price for using huge data is only paid for this one large
item. Other data can be accessed quickly within the default segment. The
pointer pa in Example 6 could be used to point to a. Any pointer arith­
metic done with pa (such as pa + +), would be done using 32-bit arithmetic.

In Example 7, pa is declared as a near pointer to char. The pointer is near
by default since the example is in a small-model program. In contrast, pb in
Example 8 is allocated as a far pointer to char; pb could be used to point
to, and step through, an array of characters that has been stored in a seg­
ment other than the default data segment. For example, pa might be used
to point to the array a in Example 1, while pb might be used to point to
the array b in Example 2.

The pointer declarations in examples 9 and 10 show the interaction
between the memory model chosen and the near and far keywords:
although the declarations for pa in these two examples are identical, Ex­
ample 9 declares pa as a near pointer to an array of far pointers to type
char, while Example 10 declares pa as a far pointer to an array of far
pointers to type char.

In Example 11, pb is declared as a near pointer to an array of far pointers
to type char; in Example 12, pb is declared as a far pointer to an array of
far pointers to type char. Note that, in these final two examples, the inclu­
sion of the far and near keywords overrides the model-specific addressing
conventions shown in examples 9 and 10; the declarations for pb would
have the same effect, regardless of the memory model.

8.3.3 Declaring Functions with near and far

The rules for using the near and far keywords for functions are similar to
those for using them with data:

• The keyword always modifies the function or pointer immediately
to its right. See Section 4.3.3, "Declarators with Special Keywords,"
of the Microsoft C Compiler Language Reference for more informa­
tion about rules for evaluating complex declarations.

181

Microsoft C Compiler User's Guide

• If the item immediately to the right of the keyword is a function,
then the keyword determines whether the function will be allocated
as near or far. For example, char far fun (); defines fun as a
function called with a 32-bit address and returning type char.

• If the item immediately to the right of the keyword is a pointer to a
function, then the keyword determines whether the function will be
called using a near (16-bit) or far (32-bit) address. For example,

char (far * pfun) ();

defines p fun as a far pointer (32 bits) to a function returning type
char.

• Function declarations must match function definitions.

• The huge keyword cannot be applied to functions.

Examples

char far fun ();
char far fun ()

{

}

/* Example 1: small model */

static char far * near fun (); /* Example 2: large model */
static char far * near fun ()

{

}

void far fun ();
void (far * pfun) () = fun;

doubl e far * (far fun) ();
double far * (far *pfun) ()

/* Example 3: small model */

/* Example 4: compact model */
fun;

In the first example, fun is declared as a function returning type char.
The far keyword in the declaration means that fun must be called with a
32-bit call.

182

Working with Memory Models

In the second example, fun is declared as a near function that returns a far
pointer to type char. Such a function might be seen in a large-model pro­
gram as a helper routine that is used frequently, but only by the routines in
its own module. Since all routines in a given module share the same code
segment, the function could always be accessed with a near call. However,
you could not pass a pointer to fun as an argument to another function
outside the module in which fun was declared.

The third example declares p fun as a far pointer to a function that has a
void return type, and then assigns the address of fun to p fun. In fact,
p fun could be used to point to any function accessed with a far call. Note
that if the function pointed to by p fun has not been declared far, or if it is
not far by default, then calling that function through p fun would cause
the program to fail.

The fourth example declares p fun as a far pointer to a function that
returns a far pointer to type double, and then assigns the address of fun
to p fun. This might be used in a compact-model program for a function
that is not used frequently and thus does not need to be in the default code
segment. Both the function and the pointer to the function must be
declared as far.

8.3.4 Pointer Conversions

Passing pointers as arguments to functions may cause automatic conver­
sions in the size of the pointer argument, since passing a pointer to a func­
tion forces the pointer size to the larger of the following two sizes:

• The default pointer size for that type, as defined by the memory
model used during compilation.

For example, in medium-model programs, data pointer arguments
are near by default and code pointer arguments are far by default.

• The type of the argument.

If the forward declaration of a function includes declared argument
types, the compiler performs type checking and enforces the conversion of
actual arguments to the declared type of the corresponding formal argu­
ment. However, if no declaration is present or the argument-type list is
empty, the compiler will convert pointer arguments automatically to the
larger of the default type or the type of the argument. To avoid
mismatched arguments, you should always specifically give the argument
types in a forward declaration.

183

Microsoft C Compiler User's Guide

Example

/* This program produces unexpected results in compact-,
** large-, or huge-model programs.
*/

main ()

{
int near *x;
char far *y;
int z = 1;

test_fun (x, y, z);

}

int test_fun (ptr1, ptr2, a)
int near *ptr1;
char far *ptr 2;
int a;

{

/* x will be coerced to far
** pointer in compact, large,
** or huge model
*/

printf ("Value of a = %d\n", a);
}

If the preceding example is compiled as a small-model program (no memory
model options or lAS on MSC command line) or medium-model program
(I AM option), the size of pointer argument x is 16 bits, the size of pointer
argument y is 32 bits, and the value printed for a is 1. However, if the
preceding example is compiled with the lAC, I AL, or I AH option, both x
and yare automatically converted to far pointers when they are passed to
test_fun. Since ptrl, the first parameter of test_fun, is defined as a
near pointer argument, it takes only 16 bits of the 32 bits passed to it. The
next parameter, ptr2, takes the remaining 16 bits passed to ptrl, plus 16
bits of the 32 bits passed to it. Finally, the third parameter, a, takes the
left-over 16 bits from ptr 2, instead of the value of z in the main function.
This shifting process does not generate an error message, since both the
function call and the function definition are legal, but in this case the pro­
gram does not work as intended, since the value assigned to a is not the
value intended.

To pass ptr 1 as a near pointer, you should include a forward declaration
that specifically declares this argument for test_ fun as a near pointer, as
shown below:

184

Working with Memory Models

/* First, declare test_fun so the compiler knows in advance
** about the near pointer argument:
*/
int test_fun (int near*, char far *, int);

main ()

{
int near *x;
char far *y;
int z = 1;

test_fun (x, y, z); /* now, x will not be coerced
** to a far pointer: it will be
** passed as a near pointer,

}

int test_fun (ptr1, ptr2, a)
int near *ptr1;
char far *ptr 2:
int a·

{

** no matter what memory
** model is used
*/

printf ("Value of a = %d\n", a);
}

Note that it would not be sufficient to reverse the definition order for
test_ fun and main in the first example to avoid pointer coercions; the
pointer arguments must be declared in a forward declaration, as in the
second example.

8.4 Creating Customized Memory Models

A third method of managing memory models is to combine features of the
standard memory models to create your own customized memory model.
You should have a thorough understanding of C memory models and the
8086 architecture before creating your own nonstandard memory models,
since there is no library support - other than the C start-up routines-­
for any of the options that follow.

185

Microsoft C Compiler User's Guide

The / Astring option lets you change the attributes of the standard memory
models to create your own memory models. The three fields of the string
correspond to the code pointer size, the data pointer size, and the stack and
data segment setup. The letters allowed in each field are unique, so you can
give them in any order after / A. All three letters must be present.

The standard-nlemory-model options (/ AS, / AM, / AC, / AL, and / AB)
can be specified in the / A13tring form. As an example of how to construct
memory models, the standard-memory-model options are listed below with
their / A13tring equivalents:

Standard

JAS

JAM
JAC

jAL

JAB

Custom Equivalent

/Asnd

/Alnd

jAsfd

jAlfd

/Alhd

As an example of the use of customized models, you might want to create a
huge-compact model. This model would allow huge data items, but only
one code segment. The option for specifying this model would be / Ashd.

An even more common use of customized models is to set up segments (see
Section 8.4.3 for more information).

Note

186

For the purposes of the descriptions that follow, the letters I for
("long") and s for ("short") are used for code pointers to distinguish
them in the memory-model string from the letters for data pointers.
The terms "short" and "long" are equivalent to "near" and "far,"
respectively.

Working with Memory Models

8.4.1 Code Pointers

Options

/Asxx
/Alxx

The letter s tells the compiler to generate near (16-bit) pointers and
addresses for all code items. This is the default for small- and compact­
model programs.

The letter 1 means that far (32-bit) pointers and addresses are used to
address all code items. Far pointers are the default for medium-, large-, and
huge-model programs.

8.4.2 Data Pointers

Options

/Anxx
/Afxx
/Ahxx

Three sizes are available for data pointers: near, far, and huge. The letter n
tells the compiler to use near (16-bit) pointers and addresses for all data.
This is the default for small- and medium-model programs.

The letter f specifies that all data pointers and addresses are far (32-bit).
This is the default for compact- and large-model programs.

The letter h specifies that all data pointers and addresses are far (32-bit).
This is the default for huge-model programs.

When far data pointers are used, no single data item may be larger than a
segment (64K) because address arithmetic is performed only on 16 bits (the
offset portion) of the address. When huge data pointers are used, indivi­
dual data items can be larger than a segment (64K) because address arith­
metic is performed on the entire 32 bits of the address.

187

Microsoft C Compiler User's Guide

8.4.3 Setting Up Segments

Options

/Adxx
/Auxx
/Awxx

The letter d tells the compiler that SS equals DS; that is, the stack seg­
ment and the default data segment are combined into a single segment.
This is the default for all programs. In small- and medium-model programs,
the stack and all data combined must occupy less than 64K; thus, any data
item is accessed with only a 16-bit offset from the segment address in the
SS and DS registers.

In compact-, large-, and huge-model programs, initialized global and static
data are placed in the default segment. The address of this segment is
stored in the DS and SS registers. All pointers to data, including pointers
to local data (the stack), are full 32-bit addresses. This is important to
remember when passing pointers as arguments in large-model programs.
Although you may have more than 64K of total data in these models, there
can be no more than 64K of data in the default segment. The j Gt and
jND options can be used to control allocation of items in the default data
segment if a program exceeds this limit. (See Section 9.13, "Setting the
Data Threshold," and Section 9.14, "Naming Modules and Segments," for
more information about these options.)

The letter u allocates different segments for the stack and the data seg­
ments. Each object file (module) is allocated its own segment for global and
static data items. When the letter u is specified, the address in the DS
register is saved upon entry to each function, and the new DS value for the
module in which the function was defined is loaded into the register. The
previous DS value is restored on exit from the function. Therefore, only one
data segment is accessible at any given time.

A single segment must be allocated for the stack, and its address stored in
the stack register. The stack cannot be placed in a data segment since it
must be available throughout the entire program.

The letter w, like the letter u, sets up a separate stack segment, but does
not automatically load the DS register at each module entry point. This
option is typically used when writing application programs that interface
with an operating system or with a program running at the operating­
system level. The operating system or the program running under the
operating system actually receives the data intended for the application

188

Working with Memory Models

program and places it in a segment; then it must load the DS register with
the segment address for the application program.

Even though u and w set up a separate segment for the stack, the stack's
size is still fixed at the default size unless this is overridden with the /Fc
compiler option (CL only), or the /STACK linker option.

8.4.4 Library Support for Customized Memory Models

Most C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard memory models
(small, medium, compact, large, and huge) through four separate run-time
libraries (huge and large models both use the large library). When you write
mixed-model programs, you are responsible for determining which library
(if any) is suitable for your program and for ensuring that the appropriate
library is used.

Library support is not guaranteed for programs using a customized memory
model, and you will probably need to create a customized library to be used
with your customized memory model. You should use the /NOD (for no
default library search) option when linking, and specify the library files and
object files you want to use. Be sure to use the correct start-up routine for
your memory model; for example, if the source file containing the main
function is compiled with far code pointers and near data pointers as the
default, you should use the start-up file from the medium-model library.

In general, library functions do not support customized memory models,
since a particular run-ti me routine may in turn call another library routine
that conflicts with your customized model.

189

Chapter 9

Advanced Topics

9.1 Introduction 193
9.2 Disabling Special Keywords 193
9.3 Packing Structure Members 193
9.4 Restricting Length of External Names 194
9.5 Labeling the Object File 195
9.6 Suppressing Default-Library Selection 195
9.7 Changing the Default char Type 196
9.8 Controlling Stack and Heap Allocation 197
9.9 Controlling Floating-Point Operations 198
9.9.1 Changing Libraries at Link Time 198
9.9.2 Using the N087 Environment Variable 200
9.10 Advanced Optimizing 201
9.10.1 Removing Stack Probes 201
9.10.2 Maximum Optimization 203
9.11 Controlling the

Function-Calling Sequence 203
9.12 Controlling Binary and Text Modes 205
9.13 Setting the Data Threshold 206
9.14 Naming Modules and Segments 207
9.15 Compiling for Windows Applications 209

191

Advanced Topics

9.1 Introduction

The Microsoft C Compiler offers a number of advanced programming op­
tions that give you control over the compilation process and the final form
of the executable program. This chapter describes the advanced options.

9.2 Disabling Special Keywords

Option

/Za

The Microsoft C Compiler has been enhanced to consider the identifiers in
the list that follows as keywords when processing a given file:

cdecl
far
fortran
huge
near
pascal

If you are concerned with porting C programs from other systems in which
these are not keywords, use the I Za option to tell the compiler to treat
these words as ordinary identifiers. When this option is given, the compiler
automatically defines the identifier NO_ EXT_ KEYS. In the include files
provided with the C Run-Time Library, this identifier is used with # ifndef
to conditionally compile blocks of text containing the keyword cdecl. For
an example of this conditional compilation, see the file stdio.h.

9.3 Packing Structure Members

Option

/Zp

When storage is allocated for structures, structure members larger than a
char are ordinarily stored beginning at an int boundary. To conserve

193

Microsoft C Compiler User's Guide

space, you may want to store structures more compactly. The IZp
option causes structure data to be "packed" tightly into memory. This op­
tion is also useful when you want to read existing packed structures from a
data file.

When you give the I Zp option, each structure member (after the
first) is stored beginning at the first available byte, without regard to int
boundaries.

On most processors, using the IZp option results in slower program execu­
tion because of the time required to unpack structure members when they
are accessed. This option also reduces efficiency when a program accesses
16-bit members (with int type) that begin on odd boundaries.

Example

MSC /Zp PROG.C;

This command causes all structures in the program PROG . C to be stored
without extra space for alignment of members on int boundaries.

9.4 Restricting Length of External Names

Option

/Hnumber

The MSC command allows you to restrict the length of external (public)
names by using the IH option. The number is an integer specifying the
maximum number of significant characters in external names.

When you use the IH option, the compiler considers only the first number
characters of external names used in the program. The program may con­
tain external names longer than number characters; the extra characters are
simply ignored.

The IH option is typically used to conserve space or to aid in creating port­
able programs. The Microsoft C Compiler imposes no restrictions on the
length of external names (although it uses only the first 31 characters), but
other compilers or linkers may produce errors when they encounter names
longer than a predetermined limit.

194

Advanced Topics

9.5 Labeling the Object File

Option

IV" string"

Use the IV (for "version") option to imbed a given text string into an ob­
ject file. The quotation marks surrounding the string may be omitted if the
string does not contain white-space characters.

Object files are machine readable but are not easily read and understood by
humans. A typical use of the IV option is to label an object file with a ver­
sion number or copyright notIce.

Example

MSC MAIN.C, /V"Microsoft C Compiler Version 4.0";

The above command places the string

Microsoft C Compiler Version 4.0

in the object file MAl N . OBJ.

9.6 Suppressing Default-Library Selection

Option

/Zl

Ordinarily the compiler places the names of the default libraries (the stan­
dard C library, the helper library LIBH.LIB, plus the selected floating­
point library or libraries) in the object file for the linker to read. This al­
lows the default libraries to be linked with a program automatically.

The I Zl option suppresses the selection of default libraries. No library
names are placed in the object file; as a result, the object file is slightly
smaller.

196

Microsoft C Compiler User's Guide

The / Zl option is useful when you are building a library of routines. It is
not necessary for every routine in the library to contain the default-library
information. Although the / Zl option saves only a small amount of space
for a single object file, the total space savings is significant in a library con­
taining many object modules. When you link a library of object modules
created with the / Zl option with a C program file compiled without the / Zl
option, the default-library information is supplied by the program file.

Example

MSC ONE.C;
MSC /Zl TWO.C;
LINK ONE+TWO;

The first two commands create an object file named ONE. OBJ that contains
the names of the standard C library (SLIBC.LIB) plus the emulator li­
brary and floating-point math library (EM.LIB and SLIBFP .LIB) and an
object file named TWO. OBJ that contaIns no default-library information.
When ONE. OBJ and TWO. OBJ are linked, the default-library information
in ONE. OBJ causes the given libraries to be searched for any unresolved
references in either ONE. OBJ or TWO. OBJ.

9.7 Changing the Default char Type

Option

/J

In Microsoft C, the char type is signed by default, so if a char value is
widened to an int, the result will be sign extended. You can change this
default to unsigned with the / J option, causing the char type to be zero
extended when widened to an into However, if a char value is explicitly de­
clared signed, the / J option does not affect it, and the value is sign extend­
ed when widened to an into

196

Advanced Topics

9.8 Controlling Stack and Heap Allocation

You can change the model used to allocate heap space by linking your pro­
gram with one of the xV ARSTCK.OBJ object files (where x is the first
letter of the library you choose). These files are the small-, medium-,
compact-, and large-model versions of a routine that allows the memory al­
location functions (malloe, ealloe, _ expand, _ fmalloe, _ nmalloe, and
realloe) to allocate items in unused stack space if they run out of other
memory.

Programs compiled and linked under Microsoft C run with a fixed stack
size (the default size is 2048 bytes). The stack resides above static data and
the heap uses whatever space is left above the stack. However, for some
programs a fixed-stack model may not be ideal; a model where the stack
and heap compete for space is more appropriate. Linking with the
xV ARSTCK.OBJ object files gives you such a model: when the heap runs
out of memory, it tries to use available stack space until it runs into the
top of the stack. When the allocated space in the stack is freed, it is once
again made available to the stack. Note that the stack cannot grow beyond
the last allocated heap item in the stack or, if there are no heap items in
the stack, beyond the size it was given at link time. Note also that while
the heap can use unused stack space, the reverse is not true: the stack can­
not use unused heap space.

When you link your program with one of the xV ARSTCK.OBJ files, you
should be wary of suppressing stack checking with the eheck_ stack
pragma, or the / Gs or / Ox option; this is because stack overflow can occur
more easily in programs that use this option, possibly causing errors that
would be difficult to detect. (See Section 9.10.1, "Removing Stack Probes,"
and Section 9.10.2, "Maximum Optimization," for more information on
suppression of stack checking.)

Example

MSC TEST.C;
LINK TEST+SVARSTCK;

These command lines compile TEST. C and then link the resulting object
module with SVARSTCK. OBJ, the variable-stack object file for small-model
programs.

197

Microsoft C Compiler User's Guide

9.9 Controlling Floating-Point Operations

By default, the compiler handles floating-point operations by using calls to
an emulator library, which emulates the operation of an 8087 or 80287
coprocessor. If an 8087 or 80287 coprocessor is present at run time, it will
be used. The floating-point (/FP) options give you a choice of five different
methods of handling floating-point operations.

The advantages and disadvantages of each of the five /FP options are
described in Section 3.8 of Chapter 3, "Compiling." You should read the
discussion of floating-point options before reading this section. This sec­
tion discusses two additional ways to control floating-point operations:
by changing libraries at link time and by using the N087 environment
variable.

9.9.1 Changing Libraries at Link Time

When you compile using one of the floating-point options, the name
of the corresponding library or libraries is placed in the object file for the
linker to use. You can cause the linker to use a different floating-point li­
brary instead by using the /NOD (for no default library search) option at
link time and specifying the name of a different library or librafles. The
floating-point library names you can give on the link command line are the
following:

1. EM.LIB (the emulator) plus xLIBFP .LIB, where x depends on the
memory model

2. 87.LIB (the 8087/80287 library) plus xLIBFP .LIB

3. xLIBFA.LIB

The 8087/80287 library (87 .LIB) provides only minimal floating-point sup­
port. When you specify this library, an 8087 or 80287 coprocessor must be
present at run time or the program will fail.

When you compile using the /FPa, /FPc, or /FPc87 option, you can
specify any of the above libraries at link time. However, when you compile
using the /FPi or jFPi87 option, you are not allowed to specify the aUA~r­
nate math library ~ xLIBF A.LIB) at link time; if you want to override the
default library at lInk time, you must use either the emulator library or the
8087/80287 library, as appropriate.

198

Advanced Topics

When you use the /NOD option, the linker ignores all default-library in­
formation in the object file. This means at link time you must give the
name of the standard C library (xLIBC.LIB) and the name of the helper li­
brary (LIBH.LIB) as well as the names of floating-point libraries. Always
give the name of the floating-point library or libraries on the command line
before the name of the standard C library or the helper library.

Examples

MSC /AM CALC;
LINK CALC+ANOTHER+SUM /NOD, , ,87+MLIBFP+MLIBC+LIBH;

MSC /FPa CALC;
LINK CALC+ANOTHER+SUM /NOD, , ,EM+SLIBFP+SLIBC+LIBH;

MSC /FPc87 CALC;
LINK CALC+ANOTHER+SUM /NOD, , ,SLIBFA.LIB+SLIBC.LIB+LIBH.LIB;

In the first example, the program CALC. C is compiled with the medium­
model option (I AM). No floating-point option is specified so the default,
IFP i, is used. IFP i generates 8087/80287 instructions and specifies the
emulator (EM. L1 B) plus ML1 BFP . L1 B in the object file. In the LINK com­
mand line, the /NOD option is specified and the names of the 8087,
floating-point, code-helper, and standard C libraries are given in the "Li­
braries" field. This forces the program to use an 8087 coprocessor; it will
fail if none is present. Note that the medium-model libraries (ML1 BFP . L1 B
and ML1 BC. L1 B) must be used.

In the second example, CALC. C is compiled as small model (by default) and
with the alternate math option (/FP a). The LINK command line specifies
the INOD option and gives the names EM. L1 B, SLI BFP. LIB, SLI BC. LI B,
and LI BH. LI B in the "Libraries" field, causing all floating-point calls to
refer to the emulator library instead of the alternate math library.

In the third example, CALC. C is compiled with the IFPc87 option, which
places the library names 87 . L1 Band SLI BFP . LI B in the object file. The
LINK command line overrides this default-library specification by giving
the INOD option and the names of the alternate math library
(SLIBFA.LIB), the standard library (SL1BC.LIB), and the code-helper li­
brary (L1 BH. LI B).

199

Microsoft C Compiler User's Guide

9.9.2 Using the N087 Environment Variable

Programs compiled using the /FPc or /FPi option will automatically use
an 8087/80287 coprocessor at run time if one is installed. You can override
this and force the use of the emulator instead by setting an environment
variable named N087. (See Section 2.7 of Chapter 2, "Getting Started," or
your MS-DOS documentation for a discussion of environment variables.)

If N087 is set to any value when the program is executed, use of the
8087/80287 coprocessor is suppressed. The value of the N087 setting is
printed on the standard output as a message. The message is printed only
if an 8087/80287 is present and suppressed; if no coprocessor is present, no
message appears. If you don't want a message to be printed, set N087
equal to one or more spaces.

Note that only the presence or absence of the N087 definition is important
in suppressing use of the coprocessor. The actual value of the N087 set­
ting is used only for printing the message.

The N087 variable takes effect with any program linked with the emulator
library (EM.LIB). It has no effect on programs linked with 87.LIB, or pro­
grams linked with any of the alternate math libraries (xLIBF A.LIB).

Examples

SET N087=Use of coprocessor suppressed
SET N087=space

The first example causes the message

Use of coprocessor suppressed

to appear on the screen when a program that uses an 8087 or 80287 is exe­
cuted, and an 8087 or 80287 is present.

The second example sets the N087 variable to the space character. Use of
the coprocessor is still suppressed, but no message is displayed.

200

Advanced Topics

9.10 Advanced Optimizing

This section describes additional optimizing procedures that can be used
with the optimizing options described in Section 3.12 of Chapter 3, "Com­
piling," to create more efficient programs from your code.

9.10.1 Removing Stack Probes

Options

IGs
pragma check_ stack[+]
pragma check_ stack[-]

You can reduce the size of a program and speed up execution slightly by re­
moving stack probes. You can do this either with the I Gs option, or with
the check_ stack pragma.

A stack probe is a short routine called on entry to a function to verify that
there is enough room in the program stack to allocate local variables re­
quired by the function. The stack probe routine is called at every function
entry point. Ordinarily, the stack probe routine generates a stack overflow
message when it determines that the required stack space is not available.
When stack checking is turned off, the stack probe routine is not called,
and stack overflow can occur without being diagnosed (i.e., no message is
printed).

In general, use the I Gs option when you want to turn off stack checking for
an entire module. This is useful when a program is known not to exceed the
available stack space. For example, stack probes may not be needed for
programs that make very few function calls, or that have only modest local
yariable requirements. In the absence of the I Gs option, stack checking
IS on.

Use the check_ stack pragma when you want to turn stack checking on or
off only for selected routines, leaving the default (as determined by the
presence or absence of the IGs option) for the rest. When you want to turn
off stack checking, put the following line before the definition of the func­
tion you don't want to check:

#pragma check_stack-

201

:Microsoft C Compiler User's Guide

Note that the preceding line disables stack checking for all routines that
follow it, not just the routines on the same line. To reinstate stack check­
ing, insert the following line:

#pragma check_stack+

If the trailing + or - is left off the check_ stack pragma, stack checking is
disabled if the IGs option is present, and enabled if it is not. The interac­
tion of the check_ stack pragma with the I Gs option is explained in
greater detail in Table 9.1.

Table 9.1

Using the check_stack Pragma

Syntax

pragma check_ stack

pragma check_ stack

pragma check_stack+

pragma check_stack+

pragma check_stack-

pragma check_ stack-

Compiled with
/Gs Option?

yes

no

yes

no

yes

no

Action

Turns off stack checking
for routines that follow

Turns on stack checking
for routines that follow

Turns on stack checking
for routines that follow

Turns on stack checking
for routines that follow

Turns off stack checking
for routines that follow

Turns oif stack checking
for routines that follow

Although the I Gs option, combined with the IOsa option, described with
the IOstring options in Section 3.12, "Optimizing," makes the smallest
possible program, it should be used with great care. Removing stack probes
from a program means that some execution errors may not be detected.

Example

MSC fILE.C IOta /Gs;

This example optimizes the file fILE. C by removing stack probes with the
IGs option and relaxing alias checking with the IOta option. The letter t

202

Advanced Topics

in the Ota option tells the compiler to favor execution time over code size
in the optimization. If you wanted stack checking for only a few functions
in FILE. C, you could use the check_ stack pragma surrounding the
definitions of functions you wanted to check.

9.10.2 Maximum Optimization

Option

lOx

The / Ox option is a shorthand way to combine optimizing options to pro­
duce the fastest possible program. Its effect is the same as using the follow­
ing options on the same command line:

/Oat /Gs

Thus, the / Ox option removes stack probes, relaxes alias checking, and
favors execution time over code size.

9.11 Controlling the
Function-Calling Sequence

Options

IGc
fortran
pascal
cdecl

The fortran, pascal and edeel keywords, and the / Ge option, allow you
to control the function call/return sequence and naming convention, so
your C programs can call and be called by functions written in FORTRAN
and Pascal.

Because C, unlike other languages such as Microsoft Pascal and Microsoft
FORTRAN, allows the user to write functions that take a variable number
of arguments, it must handle function calls differently. Languages such as
Pascal and FORTRAN normally push actual parameters to a function in
left-to-right order, with the last argument in the list being the last one

203

Microsoft C Compiler User's Guide

pushed. In contrast, C functions do not know the number of actual param­
eters, so they must push their arguments from right to left, with the first
argument in the list being the last one pushed. Additionally, the calling
function must remove the arguments from the stack in C (rather than hav­
ing the called function do it, as in Pascal and FORTRAN). If the code for
removing arguments is in the function definition (as in Pascal and FOR­
TRAN), it appears only once; if it is in the calling function (as in C), it
appears every time there is a function call. Since function calls are more
numerous than function definitions, the Pascal/FORTRAN method is often
slightly smaller and more efficient.

The Microsoft C Compiler has the ability to generate the Pascali
FORTRAN call/return sequence in one of several ways. The first is through
the use of the pascal and fortran keywords. These keywords, when
applied to functions or pointers to functions, indicate a corresponding Pas­
calor FORTRAN function; therefore, the correct call/return sequence must
be used. In the following example, sort is declared as a function using the
alternative call/return sequence:

short pascal sort(char *, char *);

The pascal and fortran keywords can be used interchangeably. Use them
when you want to use the left-to-right calling sequence for selected func­
tions only.

The second method for generating the Pascal/FORTRAN call/return
sequence is to use the /Gc option. If you use the /Gc option, the entire
module will be compiled using the alternative call/return sequence. You
might use this method to make it possible to call all the functions in a C
module from another language, or to gain the performance and size
improvement provided by this call/return sequence. However, if you use the
jGc option, you cannot call or define functions that take variable numbers
of parameters, nor can you call functions such as the C library functions
that use the C calling sequence. Moreover, when you use / Gc to compile a
module, the compiler assumes that all functions called from that module
use the Pascal/FORTRAN call/return sequence, even if the functions are
defined outside that module.

To overcome these restrictions, the cdecl keyword has been added to
Microsoft C. When applied to a function or function pointer, it indicates
that the associated function is to be called using the normal C call/return
sequence. This allows you to write C programs which take advantage of the
more efficient call/return sequence while still having access to the entire C
library, other C objects, and even user-defined functions that can take
variable-length argument lists.

204

Advanced Topics

For convenience, the cdecl keyword has already been applied to run-time
library function declarations in the include files distributed with this
compiler.

Use of the pascal and fortran keywords, or the / Gc option, also affects
the naming convention for the associated item (or, in the case of / Gc, all
items): the name is converted to uppercase (capital letters), and the leading
underscore that C normally prefixes is not added. The pascal and fortran
keywords can be applied to data items and pointers, as well as functions;
when applied to data items or pointers, these keywords force the naming
convention described above for that item or pointer.

The pascal, fortran, and cdecl keywords, like the near, far, and huge
keywords, are disabled by use of the / Za option. If this option is given,
these names will be treated as ordinary identifiers, rather than keywords.

Example

int cdecl var_print(char*, ...);

In the preceding example, var _pr int is allowed to have a variable number
of arguments by declaring it as a function using the normal right-to-Ieft C
function call/return sequence and naming conventions; the cdec 1 keyword
overrides the left-to-right calling sequence set by use of the I Gc option
when compiling the source file in which this declaration appears; if this file
is compiled without the / Gc option, cdec 1 will have no effect since it is
the same as the default C convention.

For more information on mixed-language programming, see Chapter 10,
"Interfaces with Other Languages."

9.12 Controlling Binary and Text Modes

Most C programs use one or more data files for input and output. Under
MS-DOS, data files are ordinarily processed in "text" mode. In text mode,
carriage-return-line-feed combinations (CR-LF) are translated into a single
line-feed (LF) character on input. Line-feed characters are translated to
carriage-return-line-feed combinations on output.

205

Microsoft C Compiler User's Guide

In some cases you may want to process files without making these transla­
tions. In binary mode, carriage-return-line-feed translations are suppressed.

Standard library routines such as ropen or open give you the option of
overriding the default mode when you open a particular file. You can also
change the default mode for an entire program from text to binary mode.
Do this by linking your program with the file BINMODE.OBJ, which is
supplied as part of your C compiler software. Simply add the path name
of BINMODE.OBJ to the list of object file names when you link your
program.

When you link with BINMODE.OBJ, all files opened in your program
default to binary mode, with the exceptions of stdin, stdout, and stderr.
However, linking with BINMODE.OBJ does not force you to process all
data files in binary mode. You still have the option to override the default
mode when you open the file.

Use the setrnode library function when you want to change the default
mode of stdin, stdout, or stderr from text to binary, or the default mode
of stdaux or stdprn from binary to text. The setrnode function can
change the current mode for any file and is primarily used for changing the
modes of stdin, stdout, stderr, stdaux, and stdprn, which are not expli­
citly opened by users.

9.13 Setting the Data Threshold

Option

/Gt[number]

By default, the compiler allocates all static and global data items to the
default data segment in the small and medium memory models. In
compact-, large-, and huge-model programs, only initialized static and glo­
bal data items are assigned to the default data segment. The I Gt option
causes all data items whose size is greater than or equal to number bytes to
be allocated to a new data segment. When number is specified, it must fol­
low the IGt option immediately, with no intervening spaces. When number
is omitted, the default threshold value is 256.

You can only use the I Gt option with compact-, large-, and huge-model
programs, since small- and medium-model programs have only one data
segment. The option is particularly useful with programs that have more
than 64K of initialized static and global data in small data items.

206

9.14 Naming Modules and Segments

Options

/NM module name
/NT textsegmentname
/ND datasegmentname

Advanced Topics

Note the space between each preceding option and the following name; this
space is required. "Module" is another name for an object file created by
the C compiler. Every module has a name. The compiler uses this name in
error messages if problems are encountered during processing. The module
name is usually the same as the source-file name. You can change this name
using the jNM (for "name module") option. The new modulename can be
any combination of letters and digits.

A "segment" is a contiguous block of binary information (code or data) pro­
duced by the C compiler. Every module has at least two segments: a text
segment containing the program instructions, and a data segment contain­
ing the program data. Each segment in every module has a name. This
name is used by the linker to define the order in which the segments of the
program appear in memory when loaded for execution. (Note that the seg­
ments in the group named DGROUP are an exception; see Section 10.2,
"Assembly-Language Interface.")

Text and data segment names are normally created by the C compiler.
These default names depend on the memory model chosen for the program.
For example, in small-model programs the text segment is named _TEXT
and the data segment is named _DATA. These names are the same for all
small-model modules, so all text segments from all modules are loaded as
one contiguous block, and all data segments from all modules form another
contiguous block.

In medium-model programs, the text from each module is placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix _TEXT. The data segment is named _DATA,
as in the small model.

In compact-model programs, the data from each module is placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix _DATA. The exception to this is initialized
global and static data, which are put in the default data segment, _DATA.
The code segment is named _TEXT, as in the small model.

207

Microsoft C Compiler User's Guide

In large- and huge-model programs, the text and data from each module are
loaded into separate segments with distinct names. Each text segment is
given the name of the module plus the suffix _TEXT. The data from each
segment are placed in a private segment with a unique name (except for
initialized global and static data placed in the default data segment). The
naming conventions for text and data segments are summarized in Table
9.2.

Table 9.2

Segrnent-N arning Conventions

Model Text Data Module

Small _TEXT _DATA filename

Medium module_ TEXT _DATA filename

Compact __ TEXT _DATAl filename

Large module_ TEXT _DATAl filename

Huge module_ TEXT _DATAl filename

1 Name of default data segment; other data segments have unique
private names

You can override the default names used by the C compiler (thus over­
riding the default loading order) by using the /NT (for "name text") and
/ND (for "name data") options. These options set to a given name the
names of the text and data segments in each module being compiled. The
textsegmentname used with the /NT option and datasegmentname used
with the /ND option can be any combination of letters and digits.

If you use the /ND option to change the name of the default data segment,
your program can no longer assume that the address contained in the stack
segment register (SS) is the same as the address in the data segment regis­
ter (DS). You must therefore compile your program with the long form of
the memory-model option and the u flag, as in the following example:

MSC PROGl /Ausn /ND DATAl;

Use of the / Au xx options forces the compiler to generate code to load DS
with the correct data-segment value on entry to the code. See Section 8.4,
"Creating Customized Memory Models," for more information on the
/ Astring options.

208

Advanced Topics

9.15 Compiling for Windows Applications

Options

/Awxx
/Gw

The / Awxx option controls the segment setup, and should be used for C
programs that interface with the Microsoft Windows operating system. For
more information on this option, see Section 8.4.3, "Setting Up Segments."

You should use the / Gw option for developing applications to run on the
Windows environment. See your Microsoft Windows Software Development
Kit for details on how and when to use this option.

209

Chapter 10

Interfaces with Other Languages

10.1 Introduction 213
10.2 Assembly-Language Interface 213
10.2.1 Segment Model 213
10.2.1.1 Segments 214
10.2.1.2 Groups 216
10.2.1.3 Classes 217
10.2.2 The C Calling Sequence 219
10.2.3 The Pascal/FORTRAN Calling Sequence
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9
10.3
10.3.1
10.3.2

Entering an Assembly Routine 221
Return Values 222

Exiting a Routine 224
Naming Conventions 224
Register Considerations 225
Program Example 226

Mxed-Language Programming 229
Memory Models 230
Choosing a Calling Convention 230

221

10.3.2.1
10.3.2.2
10.3.3
10.3.4

Passing Parameters by lleference or Value 231
UsingV2rying Numbers of Pararneters 236

Naming Conventions 236
Writing Interfaces
to Pascal or C from FORTRAN 238

10.3.5 Calling Procedures
in Pascal or C from FORTRAN 240

211

10.3.6 Writing Interfaces
to FORTRAN or C from Pascal 241

10.3.7 Calling Procedures
in FORTRAN or C from Pascal 241

10.3.8 Writing Interfaces
to FORTRAN or Pascal from C 242

10.3.9 Calling Procedures
in FORTRAN or Pascal from C 243

10.3.10 Data Types 243
10.3.10.1 Using the Equivalent Data Types Tables 243
10.3.10.2 Integers 244
10.3.10.3 Boolean and Character Types 248
10.3.JO.4 Real Numbers 248
10.3.10.5 Passing Strings 250
10.3.10.6 Pointers 254
10.3.10.7 Arrays, Super Arrays and I-Iuge Arrays 256
10.3.10.8 Records and Structs 259
10.3.10.9 Procedural Parameters 262
10.3.11 Return Values 262
10.3.12 Sharing Data 262
10.3.13 Input and Output 264
10.3.14 Compiling and Linking 264
10.3.15 Error Messages 265

212

Interfaces with Other Languages

10.1 Introduction

The Microsoft C Compiler can be used to prepare modules for use by other
languages, and modules prepared with other languages can be used with C
programs.

This chapter first tells how to mix assembly-language modules with C
modules. This is a powerful technique for preparing assembly-language li­
braries for C, or for using C routines (including those from the standard li­
brary) in assembly-language programs.

The chapter also discusses mixing modules created with Microsoft C, Miero­
soft FORTRAN, and Microsoft Pascal.

10.2 Assembly-Language Interface

This section explains how to use 8086/8088 assembly-language routines
with C language programs and functions. In particular, it outlines the seg­
ment model used by the Microsoft C Compiler and explains how to call
assembly-language routines from C language programs and vice versa. This
assembly-language interface is especially useful for those assembly-language
programmers who want to use the functions of the standard C library and
other C libraries.

If you have assembly-language programs that were written to work with
Microsoft C Compiler versions 2.03 or earlier, turn to Section F .3.3 of Ap­
pendix F, "Converting from Previous Versions of the Compiler," for a dis­
cussion of differences between the assembly-language interface for this com­
piler and earlier versions.

10.2.1 Segment Model

This section describes the run-time structure of Microsoft C programs.
Memory on the 8086/8088 processor is divided into segments, each contain­
ing up to 64K. When a program is linked, the segments are organized into
groups and classes. The segments, groups, and classes of Microsoft C pro­
grams are described below.

213

Microsoft C Compiler User's Guide

10.2.1.1 Segments

Figure 10.1 shows the order of primary segments of a C program in
memory, from the highest memory location to the lowest. When you look
at a map file produced by linking a C program, you may notice other seg­
ments in addition to the names listed below. These additional segments
have specialized uses for Microsoft languages and should not be used by
other programs.

The /DOSSEG option available with Microsoft LINK produces the order
shown here. Since this is the default order for C programs, you do not need
to use /DOSSEG with C programs, but you may find it useful when link­
ing assembly-language routines.

HIGH MEMORY
Space for dynamic allocation (heap)

STACK

~SS and c_common

CONST

_DATA

NULL

Data segments

_TEXT
LOW MEMORY

Figure 10.1 Segment Setup in C Programs

The "heap" is the area of unallocated memory that is available for dynamic
allocation by the program. Its size varies, depending on the program's other
storage requirements.

214

Interfaces with Other Languages

The segment contents are listed below:

Segment

STACK

c_common

CONST

NULL

Contents

The STACK segment contains the user's stack,
which is used for all local data items.

The _BSS segment contains all uninitialized static
data items except those that are explicitly declared as
far or huge items in the source file.

The c_common segment contains all uninitialized
global data items for small- and medium-model pro­
grams. In compact- or large-model programs, this
type of data item is placed in a data segment with
class F AR_BSS.

The CONST segment contains all constants that can
only be read. These include floating-point constants,
as well as segment values for data items declared far
or huge in the source file, or data items that are
forced into their own segment by use of the I Gt
option.

Writing to string literals is allowed in C. Therefore,
strings are stored in the _DATA segment rather than
the CONST segment.

The _DATA segment is the default data segment.
All initialized global and static data reside in this seg­
ment for all memory models, except for data explicitly
declared far or huge, or data forced into different
segments by use of the IGt option.

The NULL segment is a special-purpose segment that
occurs at the beginning of DGROUP. The NULL
segment contains the compiler copyright notice. This
segment is checked before and after the program exe­
cutes. If the contents of the NULL segment change in
the course of program execution, it means that the
program has written to this area, usually by an inad­
vertent assignment through a null pointer. The error
message Null pointer assignment at program
termination is displayed to notify the user. Although
a program may appear to run correctly when this hap­
pens, it may not run under other environments.

216

Microsoft C Compiler User's Guide

Data segments Initialized static and global far jhuge data items are
always placed in their own segments with class name
FAR_DATA. This allows the linker to combine
these items so that they precede DGROUP. Unini­
tialized static and global far data items are placed in
segments that have class F AR_BSS. Again, this al­
lows the linker to place these items between the
TEXT segment or segments and DGROUP. Unini­
tialized huge items are placed in segments with class
HUGE_ BSS. In large- and huge-model programs,
global uninitialized data are treated as though de­
clared far (unless specifically declared near) and
given class F AR_BSS.

_TEXT The _TEXT segment is the code segment. In small­
and compact-model programs, the code for all
modules is combined in this segment. In medium-,
large-, and huge-model programs, each module is allo­
cated its own text segment. The segments are not
combined, so there are multiple text segments in
medium- and large-model programs. Each segment in
a medium- or large-model program is given the name
of the module plus the suffix _TEXT.

When implementing an assembly-language routine to call or be called from
a C program, you will probably refer to the _TEXT and _DATA segments
most frequently. The code for the assembly-language routine should be
placed in the _TEXT segment (or modulename_TEXT for medium-,
large-, and huge-model programs). Data should be placed in the segment
appropriate for their use, as described above. Usually this is the default
data segment, _DATA.

10.2.1.2 Groups

All segments with the same group name must fit into a single physical seg­
ment, which is up to 64K long. This allows all segments in a group to be ac­
cessed through the same segment register. The Microsoft C Compiler
defines one group named DGROUP.

The NULL, _DATA, CONST, BSS, c_common, and STACK segments
are grouped together in this data group. This allows the compiler to gen­
erate code for accessing data in each of these segments without constantly
loading the segment values or using many segment overrides on instruc­
tions. DGROUP is addressed using the DS or SS segment register. DS
and SS contain the same value unless the u or w flag of the j A option is
used.

216

Interfaces with Other Languages

In compact-, large-, and huge-model programs, or small- and medium­
model programs using far data declarations, DS may be temporarily
changed to a different value to allow the program to access data outside the
default data segment. The ES register may also be used in these cases.

SS is never changed; its segment registers always contain abstract "seg­
ment values" and the contents are never examined or operated on. Its pur­
pose is to provide compatibility with the Intel 80286 processor.

In small-model programs, there is only one text segment, named _TEXT.
In medium- and large-model programs, the names of all text segments must
end with the suffix _TEXT. The text segments are not grouped.

10.2.1.3 Classes

Table 10.1 gives the align type, combine class, class name, and group for
each segment discussed above. All segments with the same class name are
loaded next to each other.

Table 10.1

Segments, Groups, and Classes for Standard Memory Models

Memory
Model

Small

Medium

Segment
Name

_TEXT

Data segments!

Data segments 2

NULL
_DATA

CONST
_BSS

STACK

module_ TEXT

Data segments!

Data segments2

Align
Type

byte
para

para

para

word

word

word

para

byte

para

para

Combine
Class

public
private

public

public

public

public

public

stack

public

private

public

Class
Name Group

CODE
FAR_DATA

FAR_BSS

BEGDATA DGROUP

DATA DGROUP

CONST DGROUP

BSS DGROUP

STACK DGROUP

CODE

217

Microsoft C Compiler User's Guide

Table 10.1 (continued)

Memory
Model

Compact

Large

Huge

218

Segment
Name

NULL
_DATA

CONST
_BSS

STACK

_TEXT

Data segmenti

Data segments4

NULL

_DATA

CONST

_BSS

STACK

module_ TEXT

Data segmenti

Data segments4

NULL

_DATA

CONST
_BSS

STACK

module_ TEXT

Data segmenti

Data segments4

Align
Type

para

word

word

word

para

byte
para

para

para

word

word

word

para

byte

para

para

para

word

word

word

para

byte

para

para

Combine
Class

public

public

public

public

stack

public
private

public

public

public

public

public

stack

public

private

public

public

public

public

public

stack

public

private

public

Class
Name Group

BEGDATA DGROUP

DATA DGROUP

CONST DGROUP

BSS DGROUP

STACK DGROUP

CODE
FAR_DATA

FAR_BSS

BEGDATA DGROUP

DATA DGROUP

CONST DGROUP

BSS DGROUP

STACK DGROUP

CODE

FAR_DATA

FAR_BSS

BEGDATA DGROUP

DATA DGROUP

CONST DGROUP

BSS DGROUP

STACK DGROUP

CODE

Interfaces with Other Languages

Table 10.1 (continued)

Memory Segment Align Combine Class
Model Name Type Class Name Group

NULL para public BEGDATA DGROUP

_DATA word public DATA DGROUP

CONST word public CONST DGROUP

_BSS word public BSS DGROUP

STACK para stack STACK DGROUP

1 Segment s for initialized far or huge data
2 Segment s for uninitialized far or huge data
3 Segment s for initialized global and static data
4 Segment s for uninitialized global and static data

10.2.2 The C Calling Sequence

To receive values from C-Ianguage function calls or to pass values to C
functions, assembly-language routines must follow the C argument-passing
conventions. C-Ianguage function calls pass their arguments to the given
functions by pushing the value of each argument onto the stack. The call
pushes the value of the last argument first and the first argument last. If
an argument is an expression, the call computes the expression's value
before pushing it onto the stack.

Arguments with char, short, int, signed char, signed short, signed int,
unsigned char, unsigned short, or unsigned int type occupy a single
word (16 bits) on the stack. Arguments with long or unsigned long type
occupy a double word (32 bits); the value's high-order word is pushed first.
Arguments with float type are converted to double type (64 bits). Note
that unless the / J option is given when compiling, char type arguments
are sign extended to int type before being pushed onto the stack; if the / J
option is given, char arguments are zero extended to unsigned into In
either case, unsigned char type arguments are always zero extended, and
signed char type arguments are always sign extended.

Pointers occupy either 16 or 32 bits, depending on the memory model, the
type of item addressed (code or data), and whether the pointer is modified
with a near or far declaration. The segment value of far pointers is pushed
first, then the offset. In the memory models (compact, large, and huge)
where the default pointer size is far, function arguments that are data
pointers are automatically coerced to far pointers, unless there is a function
declaration preceding the function call that declares the arguments as near

219

Microsoft C Compiler User's Guide

pointers. For example, if the following program is compiled in compact,
large, or huge model, it will not print "1" as expected; this is because the
value of a is not where test_fun expects it to be. Instead, the value con­
tained in a consists of the extra bytes pushed on the stack for the pointer
argument ptr.

main ()

{
int near *x;
int y = 1;

/* x will be coerced to far pointer, in spite
** of its declaration as near: */
test_fun (x, y);
}

int test_fun (ptr, a)
int near *ptr;
int a;

{
/* The value printed for a will not be 1: */
printf("Value of a = %d\n", a);
}

The correct way to use this function is as follows:

/* First, declare test_fun so the compiler knows in advance
** about the near pointer argument:
*/
int test_fun(int near*, int);

main ()

220

{
int near *x;
int y = 1;

/* Now, x will be passed as the near pointer: */
test_fun (x, y);
}

Interfaces with Other Languages

int test_fun (ptr, a)
int near *ptr;
int a;

{
/* Value of a = 1 */
printf ("Value of a = %d\n", a);
}

If an argument is a structure, the function call pushes the last word of the
structure first and each successive word in turn until the first word is
pushed. Arrays are passed by reference; the array identifier evaluates to the
array address, which is used to access the array.

After a function returns control to a routine, the calling routine is respon­
sible for removing arguments from the stack.

10.2.3 The Pasc~l/FORTRAN Calling Sequence

The Pascal/FORTRAN calling convention, enabled for an entire module by
use of the I Gc option, or for individual functions within a module with the
fortran or pascal keywords, causes functions to use calls in which function
arguments are pushed onto the stack left to right (i.e., the last argument is
the last argument pushed). When this alternative calling sequence is
enabled, the called function is responsible for removing the arguments from
the stack. Also, use of IGc means that it is not possible to have functions
with variable-length argument lists, unless they are explicitly declared with
the cdecl keyword. (See Section 9.11, "Controlling the Function-Calling
Sequence," for more information about the IGc option and the fortran
and pascal keywords.)

10.2.4 Entering an Assembly Routine

Assembly-language routines that receive control from C function calls
should preserve the contents of the BP, SI, and DI registers and set the
BP register to the current SP register value before proceeding with their
tasks. (It is not necessary to preserve the contents of SI and DI if the
assembly-language routine does not modify them.)

If the assembly routine modifies the contents of the SS (stack segment), DS
(data segment), and OS (code segment) registers, their values should be
saved on entry and restored at exit. The values of SS and DS are always
equal in C programs unless the u or w flag of the I A option is specified to
set up separate stack and data segments.

221

Microsoft C Compiler User's Guide

The following example illustrates the recommended instruction sequence for
entry to an assembly-language routine:

ENTRY: push bp ;save caller's frame pointer (BP)
mov bp,sp ; frame pointer points to old BP
sub sp,8 ;allocate local variable space on stack
push di ;required only if routine changes di
push si ;required only if routine changes si

This is the same sequence used by the C compiler; in fact, you can generate
an assembly-language listing such as that above by compiling your C pro­
gram with the /Fa or /Fc option (see Section 3.5, "Producing Listing
Files," for more information). If this sequence is used, the last argument
pushed by the function call (which is also the first argument given in the
call's argument list) is at address [bp+4J for a near function call, and
[bp+6J for a far function call. Subsequent arguments begin at [bp+6J,
[bp + 8] ,or [bp + 10] , depending on the size of the first argument and

whether the function call is near or far. If the first argument is a single
word and the function call is near, the next argument starts at [bp+6J. If
the first argument is a single word and the function call is far, or the first
argument is a double word and the function call is near, the next argument
starts at [bp+ 8]. If the first argument is a double word and the function
call is far, the next argument starts at [bp+10J.

Note that the push instructions in the above sequence are not necessary if
the assembly-language routine does not modify the contents of the SI and
DI registers, which are used by the compiler to store register variables.

It is a good idea to write macros to distinguish between near and far func­
tion calls and returns. Such macros make the code more readable and can
help to insulate a program from changes in the calling sequence.

10.2.5 Return Values

In order for assembly-language routines to return values to a C-Ianguage
program or receive return values from C functions, they must follow the C
return value conventions. The conventions are shown in Table 10.2.

222

Interfaces with Other Languages

Table 10.2

C Return Value Conventions

Return Value Type

char

short

int

signed char

signed short

signed int

unsigned char

unsigned short

unsigned int

long

unsigned long

struct or union

float or double

near pointer

far pointer

Register

AX

AX

AX

AX

AX

AX

AX

AX

AX

high-order word in DX;
low-order word in AX

high-order word in DX;
low-order word in AX

address of value in AX;
value must be constant,
or static or global value

address of value in AX;
value must be constant,
or static or global value

AX

segment selector in DX;
offset in AX

223

Microsoft C Compiler User's Guide

10.2.6 Exiting a Routine

Assembly-language routines that return control to C programs should
restore the values of the BP, SI, and DI registers before returning control.
(The contents of the SI and DI registers do not have to be restored if the
entry sequence did not push them.) The following example illustrates the
recommended instruction sequence for exiting a routine called by a small­
model program:

EXIT: pop si ; required only if si saved on entry
pop di ; required only if di saved on entry

mov sp/bp ; remove local variable space
pop bp ;restore caller's frame pointer
ret ; appropriate to type of call

This sequence does not change the AX, BX, ex, or DX register or any of
the segment registers. The sequence does not remove arguments from the
stack; this is the responsibility of the calling routine.

Note

If the module from which the assembly-language routine is called has
been compiled with the / Gc option, or if the external declaration of the
assembly-language routine contains the pascal or fortran keyword,
then the assembler routine must remove its own arguments from the
stack before returning to the calling routine. In this case, the ret
instruction at the end of the preceding example should be replaced with
the retnum instruction (return and pop num bytes off the stack, where
num is the size in bytes of all arguments).

Note that the pop instructions for SI and DI in the above sequence are not
necessary if the contents of the SI and DI registers are not modified by the
assembly-language routine and were not saved on entry.

10.2.7 Naming Conventions

An assembly-language routine can access globally visible items (data or
functions) in a C program by prefixing the item name with an underscore
(_). (C items declared as static cannot be accessed.) For example, a C
function named add can be accessed in an assembly-language program by
declaring the name _add as external.

224

Interfaces with Other Languages

For a C program to access an assembly-language routine or data item, the
name of the assembly-language item must begin with an underscore (_).
The C program refers to the assembly-language item without the under­
score. For example, a C program could call a publicly defined assembly­
language routine named -.MIX with the following declaration:

extern MIX();

If the assembly-language name does not begin with an underscore, it cannot
be accessed in a C program.

The C compiler reserves some identifiers beginning with two underscores for
internal use. You should avoid using identifiers with two leading under­
scores in your assembly routines, and identifiers with one leading under­
score in your C source files, as these identifiers may conflict with internal
names.

Some assemblers translate all lowercase letters to uppercase, or vice versa.
Since the C language is case sensitive, this can pose problems. Check your
assembler documentation for information on this topic. The Microsoft
Macro Assembler, versions 3.0 and later, offers an option to control case
sensitivity.

10.2.8 Register Considerations

The SI and DI registers are used to store the values of variables given
register storage in a C program. An assembly-language routine that
changes the SI and DI registers is responsible for saving their contents on
entry and restoring them before exiting.

The C compiler assumes that the direction flag is always cleared. If your
assembly routine sets the direction flag, be sure to clear it (using the OLD
instruction) before returning.

If the assembly routine modifies the contents of the SS (stack segment), DS
(data segment), and OS (code segment) registers, their values should be
saved on entry and restored at exit. The values of SS and DS are always
equal in C programs unless the u or w flag of the / A option is specified to
set up separate stack and data segments.

225

Mierosoft C Compiler User's Guide

10.2.9 Program Example

To illustrate the assembly-language interface, the two functions mul and
main from the small-model C program in Example 1 are written as
assembly-language routines in Examples 2 and 3.

Example 1

int a 2, b
main ()

{
c =
}

int mul (L j)

int i/j;
{

= 7, c = 0;

mUl(a/b) ;

/* Performs mUltiplication by repeated
** additions
*/

register int k, sum;

sum = 0;
for (k = 1; k <= j; k++)

sum += i·
return (sum) ;
}

Example 2

This example replaces the mul function in Example 1 with an assembly­
language routine called by main (you can obtain a similar assembly listing
by compiling the mul function with the /Fa or /Fc option on the MSC
command line).

TITLE mulbyadd

TEXT SEGMENT BYTE PUBLIC 'CODE'
TEXT ENDS
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

CaNST SEGMENT WORD PUBLIC 'CaNST'
CaNST ENDS

BSS SEGMENT WORD PUBLIC 'BSS'
BSS ENDS

DGROUP GROUP CONST , _BSS , - DATA
ASSUME CS: _TEXT 1 DS: DGROUP , ss: DGROUP , ES: DG.l:<.OUP

226

TEXT

mul

$loop:

$test:

mul
TEXT

END

SECf,1ENT

PUBLIC mul
PROC NEAR

i 4
j 6

push
mov
sub
register
register
push
push

sub
mov
jmp

bp
bp, sp
sp,4
di
si

di
si

di,di
si,l
SHORT

sum
k

$test

add di, [bp+4]
inc si

cmp [bp+6] , si
jge $loop
mov aX,di

pop si
pop di
mov sp,bp
pop bp
ret

ENDP
ENDS

Interfaces with Other Languages

save si,di

sum = 0;
k = 1·

sum +=i;
i++;

j >= k ?
yes, loop again
no, return sum

rest01~e si, di

Note that this routine must save the proper registers, retrieve the argu­
ments from the stack, do its calculations, place the return value in the AX
register, restore the registers, and return control to the calling function.
Also, if the assembly routine were written to work with a medium- or
large-model C program, the ~ul procedure would be declared FAR
instead of NEAR.

227

Microsoft C Compiler User's Guide

Example 3

This example replaces the main function in Example 1 with an assembly­
language routine that calls mu 1 (you can obtain a similar assembly listing
by compiling the main function with the /Fa or /Fc option).

DGROUP GROUP DATA
ASSUME CS: _TEXT, DS:DGROUP, SS:DGROUP

EXTRN mul : NEAR -

DATA SEGMENT WORD PUBLIC 'DATA'
PUBLIC a

a DW 02H
PUBLIC b -

b DW 07H
PUBLIC c

c DW OOB
DATA ENDS

TEXT SEGMENT BYTE PUBLIC 'CODE'

PUBLIC main
main PROC NEAR -

push bp
mov bp,sp

push - b
push a
call - mul mul(a,b) ;
add sp,4 pop arguments off stack
mov _c,ax store result in c

mov sp,bp
pop bp
ret

main ENDP -
TEXT ENDS

END

Note that this routine must contain instructions that push the arguments
on the stack in the proper order, call the function, and clear the stack. It
may then use the return value in the AX register.

228

Interfaces with Other Languages

10.3 Mixed-Language Programming

Microsoft FOR.TRAN and Pascal (versions 3.3 and later) and Microsoft C
(versions 3.0 and later) provide support for programmers who use more
than one of these languages.

Note

Microsoft C for XENIX does not include the fortran and pascal
keywords described in this document. Therefore, if you want your MS­
DOS C programs to be compatible with XENIX, you cannot call FOR­
TRAN and Pascal from the XENIX version of C unless you use the C
calling conventions.

FORTRAN and C programmers, please note: throughout this section,
the term "procedure" is used instead of "subroutine" or "function," and
the term "parameter" is used instead of "argument." This is the termi­
nology used in Pascal.

Mixed-language programming offers several advantages:

1. You can use libraries of procedures written in different languages.

For example, you can access the Microsoft C library from programs
written in FORTRAN or Pascal. There are also many proprietary
libraries available for use with Microsoft FORTRAN which you can
access from Microsoft Pascal and C.

To use a library written for a particular language, you must have
the library supplied with that language's compiler. To use a
proprietary FORTRAN library from C, for example, you need the
library supplied with the FORTRAN compiler, as well as the
proprietary library itself. This is because programs written in
Microsoft Pascal, C, or FORTRAN contain calls to their respective
run-time libraries.

2. You can use features not available in your language.

It is hard to write bit-manipulation procedures in FORTR.AN,
for example, but it is easy in C or Pascal. Also, some interfaces,
such as those that use C or Pascal structures, are not compatible
with FORTRAN.

229

Microsoft C Compiler User's Guide

3. If you write your own libraries, you can now produce one library
that is compatible with all three languages.

Of course, to ensure compatibility, you must pay close attention to
the guidelines given in this section.

10.3.1 Memory Models

The current versions of Pascal and FORTRAN do not offer a choice of
memory models; they are compatible only with large-model C. Some com­
ponents of the C library are referenced from the other languages' libraries.
If you use the library for the wrong memory model, these interfaces will be
incorrect. Therefore, if you use C procedures that call, or are called by,
Pascal or FORTRAN routines, you must compile your C code with the
large model. Use the / AL option to specify large model.

10.3.2 Choosing a Calling Convention

FORTRAN, Pascal, and C each have conventions for passing parameters.

The languages differ in the order in which parameters are pushed onto the
stack. Microsoft Pascal and Microsoft FORTRAN push parameters onto
the stack in the order in which they appear in the procedure declaration. C
pushes its parameters in the reverse order.

The languages also differ in whether code telling how to restore the stack
when a procedure returns is in the calling procedure or in the called pro­
cedure. In the FORTRAN/Pascal convention, this code is in the called pro­
cedure; in the C language, this code follows the procedure call.

The FORTRAN/Pascal convention is slightly faster and produces less code.
The C convention allows you to use a variable number of parameters .
(because the first parameter is always the last one pushed, it is always on
top of the stack, and always has the same address relative to the start of
the frame). These conventions are incompatible.

Finally, the languages differ in which parameters they pass by reference and
by value. Section 10.3.2.1, "Passing Parameters by Reference or Value,"
discusses these differences.

If you control both the calling and the called code, you can choose which
calling convention to use. If you intend to pass variable numbers of param­
eters, you must use the C calling convention. For more information, see
Section 10.3.2.2, "Using Varying Numbers of Parameters." Otherwise, you

230

Interfaces with Other Languages

may want to use the convention of the language that you use most often, so
that you can usually use the default calling convention.

To make calls from one language to another, you must tell the compiler
which convention to use. Microsoft C, Pascal, and FORTRAN all provide
ways of specifying which convention you are using, both when you call an
external procedure and when you define a public procedure. Table 10.3
indicates how to specify calling conventions from each language.

Table 10.3

Specifying Calling Conventions

Calling
Convention

c

FORTRAN

Pascal

Language
Calling From

Pascal

FORTRAN

c

Pascal

FORTRAN
C

Pascal

FORTRAN

c

Attri butes IKeywords
to Use

C attribute on procedure
declaration

C attribute on INTERFACE
statement

Default or cdecl keyword with
IGc option

FORTRAN attribute on
procedure declaration

Default

fortran keyword on procedure
declaration, or I Gc option

Default

PASCAL attribute on
INTERF ACE statement

pascal keyword on procedure
declaration, or IGc option

10.3.2.1 Passing Parameters by Reference or Value

When a parameter is passed by reference, the address of the parameter is
passed. Procedures access the parameter's value through the address; any
changes to the parameter affect the stored value. When a parameter is
passed by value, a copy of the parameter is placed on the stack when the
procedure is called. The procedure can change the value of the parameter
without affecting the original value from which the copy was taken.

231

Microsoft C Compiler User's Guide

For each parameter, you must decide whether to pass by value or by refer­
ence. If you pass by reference, you also have to choose whether to pass a
long address (segment and offset) or a short address (offset only).

If the called procedure needs to change the actual value in the variable as a
way of returning a result, you have to pass by reference. Passing by value
protects against accidental updating and, for variables smaller than about
4 bytes, can be more efficient.

The following list describes the defaults for each language:

• FORTRAN passes all parameters by reference (including constants
and expressions), but passing by value can be specified. If a pro­
cedure is given the C or Pascal attribute, the default is changed: all
parameters for that procedure are passed by value unless otherwise
specified.

• C always passes arrays by reference, and passes all other parameters
by value. In C, you can pass pointers as parameters; the procedure
can use the pointers to modify stored values, producing the same
effect as passing by reference.

• Pascal passes by value, but passing by reference can be specified.

If you do not choose the default case, you have to specify certain keywords,
attributes, or pointer types. These will vary, according to the calling con­
ventions you are using. See tables lOA through 10.6.

If you are passing parameters when using C calling conventions, use the
constructs described in Table lOA when declaring parameters.

Table 10.4

Passing Parameters With C Calling Conventions

Parameter C Pascal FORTRAN

Long Pointer to VARS REFERENCE
address type keyword attribute

Short near VAR REFERENCE,
address pointer keyword NEAR

to type attributes

Value Default Default Default

232

Interfaces with Other Languages

For example, assume that you are using the C calling conventions. Table
10.3 shows what attributes and keywords are necessary to use the C calling
conventions. When calling from Pascal, specify the C attribute on the pro­
cedure declaration. When calling from FORTRAN, specify the C attribute
on the INTERFACE statement. When calling from C, the C calling con­
ventions are the default, unless your program has been compiled with the
/ Gc option, or the function your program is calling has been declared with
the fortran or pascal keyword (see Section 9.11, "Controlling the Func­
tion Calling Sequence").

Assume that you want to pass an integer parameter, x, using a long
address. Compatibility of data types is discussed in Section 10.3.10;
for now, assume that the C int type, the Pascal integer type, and the
FORTRAN INTEGER type are equivalent. Table lOA shows that when
declaring the parameter x in your C procedure, you should use a pointer (a
far pointer, the default) of the appropriate type (in this case, int). The fol­
lowing is the C declaration:

int *x;

When declaring the parameter x in your Pascal procedure, use the V ARS
keyword:

VARS x: INTEGER;

For the FORTRAN procedure, specify this reference attribute:

INTEGER X[REfERENCE]

If you want to pass using a short address instead, use these declarations:

int near *x;

VAR x: INTEGER;

INTEGER X[REfERENCE,NEAR]

You follow the same steps when declaring parameters even if you are using
other calling conventions. If you are passing parameters using Pascal or
FORTRAN calling conventions, use the constructs described in Tables 10.5
and 10.6 when declaring parameters.

233

Microsoft C Compiler User's Guide

Table 10.5

Passing Parameters With Pascal Calling Conventions

Parameter C Pascal FORTRAN

Long Pointer VARS REFERENCE
address to type keyword attribute

Short near VAR REFERENCE,
address pointer keyword NEAR

to type attributes

Value Default Default Default

Table 10.6

Passing Parameters With
FORTRAN Calling Conventions

Parameter C Pascal FORTRAN

Long Pointer VARS Default
address to type keyword

Short near VAR NEAR attribute
address pointer keyword

to type

Value Default Default V ALUE attribute

If you are not writing both the called procedure and the calling procedure,
you must pass the parameter as declared in the existing procedure's
definition. If you are not experienced with the language you are accessing,
it is not always easy to determine if a parameter is being passed by value or
by reference. The following lists indicate how to tell the difference.

The following kinds of parameters are passed by value:

234

• In Pascal, any parameter declared except V AR, CONST, V ARS,
and CONSTS parameters

• In C, any parameter declared except arrays

• In FORTRAN, a parameter declared with the VALUE attribute

Interfaces with Other Languages

• In FORTRAN, a parameter in a procedure when that pro­
cedure is declared with the C or PASCAL attribute (unless the
REFERENCE attribute is specified)

The following kinds of parameters are passed by reference with a short
(2-byte, offset only) address:

• In Pascal, a formal parameter declared as V AR or CONST.

• In Pascal, a variable passed by passing a pointer to that variable.
The pointer itself is passed by value. (It is not recommended that
you use pointers in this way; the correspondence between pointers
and machine addresses is implementation dependent.)

• In Pascal, a variable passed by passing ADR variable. The address
itself (as with pointers) is passed by value.

• In C, a parameter passed by passing a near pointer to the param­
eter. (The pointer is passed by value.)

• In C, an array declared with the keyword near.

• In FORTRAN, in procedures without the C or PASCAL attribute,
a parameter with the NEAR attribute.

• In FORTRAN, in procedures with the C or PASCAL attribute, a
parameter with the NEAR and REFERENCE attributes.

• In FORTRAN, a variable passed by short address by taking
LOCNEAR(variable), then passing the result as an INTEGER*2,
by value.

The following kinds of parameters are passed by reference with a long
(4-byte, segmented) address:

• In Pascal, ADS variable. (The address is passed by value.)

• In Pascal, parameters declared with the V ARS or CONSTS
keywords.

• In C, a parameter passed by passing a far pointer to the parameter.
(The pointer is passed by value.) Note that in large-model C pro­
grams, far pointers are the default pointer type.

• In C, arrays not declared with the keyword near.

• In FORTRAN, any parameter of a FORTRAN-protocol routine,
except those declared with the NEAR or V.ALUE attribute.

235

Microsoft C Compiler User's Guide

• In FORTRAN, a variable passed by long address by taking
LOC(variable) or LOCF AR(variable), then passing the result as an
INTEGER*4, by value.

10.3.2.2 Using Varying Numbers of Parameters

If you are going to use varying numbers of parameters, remember the fol­
lowing factors:

• The number of actual parameters must be less than or equal to the
number of formal parameters (if the called procedure is written in
FORTRAN or Pascal).

In Pascal and FORTRAN there is no easy way to access parameters
that have not been formally defined. However, you can use the
V ARTING attribute to pass fewer arguments than are defined.

• You must use the C and V ARTING attributes on your
FORTRAN INTERFACE statement or Pascal procedure declara­
tion.

The VARYING attribute tells the FORTRAN or Pascal compiler
not to check if there are more or fewer actual parameters than for­
mal parameters. However, actual parameters for which a formal
parameter is specified will be checked for type compatibility, accord­
ing to the usual rules of the calling procedure's language.

10.3.3 Naming Conventions

If you follow these two rules, the Microsoft Pascal, FORTRAN, and C com­
pilers handle all the necessary adjustments in names:

• If you are using any FORTRAN routines, all identifiers (names)
should be six characters or less in length.

• Avoid using uppercase characters in C identifiers. If you must use
uppercase characters, do not use the INOIG NORECASE option,
and do not use other identifiers that have the same spelling as the
uppercase or mixed-case C identifier. (For example, if one C
identifier is AnExample, don't use anexample, ANEXAMPLE, or
AnExAmPIE as an identifier.)

If you cannot follow those two rules, you must make certain adjustments
yourself. The remainder of this section explains the default naming conven­
tions of each language, and how certain attributes and keywords affect

236

Interfaces with Other Languages

those naming conventions. This information should allow you to solve any
special problems in naming.

In all three languages, names appear differently in the object and source
files. There are differences in the following three elements of the naming
conventions used by the three languages:

Element

Case

Length

Underscores

Differences

In FORTRAN and Pascal, any lowercase letters in a
public identifier are changed to uppercase before the
name is inserted in the object file. By default, no such
transformation is done on C names, but at link time
you can specify that case distinctions are to be
ignored.

In FORTRAN, by default, names are truncated to six
significant characters.

In C, public names are always prefixed with an under­
score character (_) before they are inserted in the
object file.

These differences in naming conventions mean that default FORTRAN and
Pascal public names will not correspond to default C public names. Cer­
tain attributes and keywords can help make names correspond.

If you want FORTRAN or Pascal identifiers to follow the C conventions,
specify the C attribute on the following specifiers:

• Names of public or external procedures, or data objects in Pascal

• Names of procedures, interfaces, or named common blocks in
FORTRAN

The name is changed to lowercase and a leading underscore is added.
FORTRAN identifiers will still be truncated to six characters. To specify a
longer name, or to specify external C routines that have uppercase letters
in their identifiers, you can use the ALIAS in FORTRAN. There is no
ALIAS feature in Pascal; to refer to a C object with uppercase letters in its
identifier, you must not link with the INOIG NORECASE option, and all
your C identifiers must have unique spellings.

237

Microsoft C Compiler User's Guide

If you use the pascal or fortran keyword in C, the name is changed to
uppercase and the leading underscore is not added to the name. All such
names must have unique spellings.

Note that in FORTRAN, if an INTERFACE and the subprogram referred
to in that INTERFACE are in the same unit of compilation, the same
names must be used for parameters in each. An error message is generated
if you violate this rule.

10.3.4 Writing Interfaces
to Pascal or C from FORTRAN-

To declare external procedures in C or Pascal from FORTRAN, FORTRAN
provides the INTERFACE statement.

Suppose, for example, that you want to access the procedure time in the C
library. There are three basic steps:

1. Find the declaration of the C procedure.

2. Build an INTERFACE program unit to determine the following:

• The attributes and type for the procedure

• The attributes and types for the parameters

3. Add the INTERFACE to the program.

The final step, calling the C procedure, is described in Seetion 10.3.5.

For this example, the declaration of the C procedure time looks like this:

long time (tloc)
long *tloc;

The first step in building the INTERFACE is to determine what attri­
butes and type to use for the procedure. First, determine what FORTRAN
type is equivalent to the type of the procedure time. The first word in the
C procedure declaration, long time (tloc); shows that time has type
long. Referring to Table 10.11, "Signed 4-Byte Integers," in Section
10.3.10.2, "Integers," you can see that the FORTRAN IN-TEGER*4 type
is equivalent to the C long type. This gives enough information to write
the following statement:

INTERFACE TO INTEGER*4 FUNCTION TIME

238

Interf'aces with Other Languages

Second, decide which calling convention to use. Since you have no control
over the C procedure, you must use the calling conventions that it uses. To
specify the C calling conventions, use the C attribute as follows:

INTERFACE TO INTEGER*4 FUNCTION TIME[C]

Now determine what attributes and data types to use for the parameters.
In this case, there is just one parameter, tloc. Therefore, you can write
the following:

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+ (TLOC)

Note, however, that in the second line of the C procedure declaration, tloc
is preceded by an asterisk, indicating that a pointer is being passed. You
can pass a pointer from FORTRAN using the LOCF AR or LOC pro­
cedure, or you can pass the argument itself by reference. For now, assume
that you want to pass by reference. FORTRAN normally defaults to pass­
ing by reference, but the procedure time is qualified by the C attribute, so
t 1 oc will default to being passed by value. To specify passing by refer­
ence, add the REFERENCE attribute, as shown below:

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+ (TLOC[REFERENCE])

The type of the parameter t 1 oc is indicated by the first word in the second
line of the C procedure declaration, 1 ong*tl oc. Since the FORTRAN
INTEGER*4 type is equivalent to the C long type, you can finish the
INTERFACE unit as follows:

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+ (TLOC[REFERENCE])

INTEGER*4 TLOC
END

If you decide to pass a pointer to t 1 oc instead of passing it by reference,
you proceed, in the same manner, to this point:

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+ (TLOC)

Pointers are passed by value, so do not specify the REFERENCE attri­
bute. Since pointers are normally 4-byte segmented addresses, the result of
LOC is a 4-byte integer, and therefore you must declare the parameter
t 1 oc to be a 4-byte integer:

INTERFACE TO INTEGER*4 FUNCTION TIME[C]

239

Microsoft C Compiler User's Guide

+ (TLOC)
INTEGER*4 TLOC
END

Step number three, adding the INTERFACE unit to your program, is
identical for both cases. The only rule is that the INTERFACE must
occur before any references to the procedure are made. It is usually easiest
to put all INTERFACE statements at the beginning of the compiland.

The final step, calling the procedure, is different for the REFERENCE
and pointer cases, as described in Section 10.3.5.

10.3.5 Calling Procedures
in Pascal or C from FORTRAN

Once you have declared a procedure, you can call it in your program just as
if it were in the same language as your calling procedure. Note that when
calling from FORTRAN, you must always declare the procedure in the pro­
gram units that use it.

For the example discussed in Section 10.3.4, start writing the calling rou­
tine like this:

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC

Don't forget to declare the procedure, as in the following line:

INTEGER*4 TIME

Now, if you passed tloc by reference, you can complete the call as follows:

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC
WRITE (*,*) TIME (TLOC)
END

If you passed a pointer, your procedure call looks like this:

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC
WRITE(*,*) TIME (LOC(TLOC»
END

240

Interfaces with Other Languages

You could substitute the LOCF AR procedure for the LOC procedure. In
this implementation they are identical.

Note that if time were a subroutine instead of a function, you could call
that subroutine with the FORTRAN CALL statement.

10.3.6 Writing Interfaces
to FORTRAN or C from Pascal

From Pascal, attach the fortran or c attribute to an EXTERN procedure
declaration to interface with procedures written in FORTRAN or C.

10.3.7 Calling Procedures
in FORTRAN or C from Pascal

Once you have declared a procedure, you can call it in your program just as
if it were in the same language as your main program.

For example, the following Pascal program fragment calls time, passing
tloc by reference:

FUNCTION time (VARS tloc:INTEGER4) :INTEGER4[C];
EXTERN;

PROCEDURE clock;
VAR tloc: INTEGER4;
BEGIN

WRITELN (time(tloc))
END;

If you pass a pointer by value, the program fragment looks like this:

FUNCTION time (tloc:ADSMEM) :INTEGER4 [C]; EXTERN;
PROCEDURE clock;

VAR tloc:INTEGER4;
BEGIN

WRITELN(time(ADS tloc))
END;

241

Microsoft C Compiler User's Guide

10.3.8 Writing Interfaces
to FORTRAN or Pascal from C

From C, the fortran and pascal keywords can be used to declare
selected procedures written in, or eompatible with, FORTRAN and Paseal.
These keywords, which are enabled by default by the Microsoft C Compiler,
imply changes in external naming, calling conventions, and return variable
eonventions.

If you want all procedures in your C program to be eompatible with
FORTRAN or Pascal, use the I Gc option when compiling.

FORTRAN and Pascal procedures are dedared in the same manner as C
procedures: you specify the procedure identifier, the return type, and the
type and number of parameters to the procedure. (See the Microsoft C
Compiler Language Reference for a complete discussion of the syntax of pro­
eedure dedarations.)

The following additional rules apply when you use the fortran and pascal
keywords:

1. Whenever a fortran or pascal keyword is used in a dedaration, the
types of parameters must be dedared with a parameter-type list.

2. The fortran and pascal keywords modify the item immediately to
the right in a dedaration.

3. The special near and far keywords can be used with the fortran
and pascal keywords in dedarations. The sequences far fortran
and fortran far are equivalent.

Complex dedarators are allowed in pascal and fortran dedarations, just
as in C procedure dedarations. The examples below illustrate the syntax of
pascal and fortran dedarations.

Examples

short pascal thing (short, short) ; /* Example 1 */

long (pascal *thing) (void) ; /* Example 2 */

short near pascal thing (short) ; /* Example 3 */

short pascal near thing (short) ; /* Example 4 */

242

Interfaces with Other Languages

Example 1 declares thing to be a Pascal procedure taking two short
parameters and returning a short value.

In Example 2, thing is declared as a pointer to a Pascal procedure that
takes no parameters and returns a long value. Note that void is used to
indicate that there is no return value.

Examples 3 and 4 are equivalent. Both declare thing to be a near Pascal
procedure. The procedure takes one short parameter and returns a short
value.

10.3.9 Calling Procedures
in FORTRAN or Pascal from C

To call a Pascal or FORTRAN procedure from C, you must declare that
procedure external, as in the following declaration:

extern void fortran m(long);

Note that void is used to indicate that there are no parameters.

Once you have declared a procedure, you can call it in your program just as
if the procedure were in C.

10.3.10 Data Types

FORTRAN, Pascal, and C each have a variety of data types. Some are
completely compatible; others require manipulation to work between
languages. Sections 10.3.10.1 through 10.3.10.8 explain how specific data
types differ in each language. Tables 10.7 through 10.27 show equivalent
data types for each language.

10.3.10.1 Using the Equivalent Data Types Tables

To use tables 10.7-10.27 to pass parameters, you also have to refer to
tables 1004-10.6.

For example, suppose that you want to pass an INTEGER*2 variable
from FORTRAN to C. First, you have to choose a calling convention, as
explained in Section 10.3.2, "Choosing a Calling Convention." Assume that
you want to use the C calling conventions. Refer to Table lOA, "Passing
Parameters With C Calling Conventions."

243

Microsoft C Compiler User's Guide

Second, decide whether to pass the parameter by reference or by value.
Assume that you want to pass the parameter by reference, using a short
address. Table lOA shows that you use the REFERENCE and NEAR
attributes in FORTRAN, and a near pointer of the appropriate type in C.

Third, determine what data type in C is equivalent to the INTEGER*2
type in FORTRAN. Find the table that lists signed, 2-byte integers: Table
10.9. Note that INTEGER*2 is listed as an appropriate FORTRAN data
type. Check the "Notes" column to see if there is anything to be careful of
when using INTEGER*2.

Now, look at the "C" row. You can choose between short and int, but the
"Notes" column shows that int is machine dependent. For maximum porta­
bility, choose the C short type. Finally, apply the appropriate attributes
and keywords to the data types, as follows:

INTEGER*2 X [REFERENCE,NEAR]

This statement in a FORTRAN INTERFACE declared with the C attri­
bute is equivalent to a C parameter declared as

short near * x

Note that using a REFERENCE parameter in FORTRAN corresponds to
using a pointer type in C.

10.3.10.2 Integers

In C, any integral parameters shorter than an int (such as char) are con­
verted to int type before being passed by value. Unsigned integral types
shorter than an unsigned int (such as unsigned char) are converted to
unsigned int type.

To ensure that your FORTRAN or Pascal routine handles C parameters
correctly, you have two options:

244

1. You can allow for the C conversions when you declare parameters to
the FORTRAN or Pascal procedure. This means, for example, that
all integer parameters must be declared to have the size correspond­
ing to a C int, or long int, for integer parameters larger than an
into

2. You can pass pointers to the parameters instead of the values them­
selves (passing by reference). In the FORTRAN or Pascal routine,
declare the passed parameters as a pointer to or reference

Interfaces with Other Languages

parameter of the appropriate type, then use the pointer to access
the value indirectly.

Also, note that the C int type is machine specific. For the 8086 family of
microprocessors, the C int type is equivalent to the following types:

• INTEGER2 in Pascal

• INTEGER*2 in FORTRAN

• INTEGERC in Pascal

• INTEGER[C] in FORTRAN

For any given processor and operating system, variables defined with thf'
last two types are equivalent to variables of the C int type as defined by
the Microsoft C Compiler for the same system. The last two types are
therefore more portable than the first two.

Tables 10.7 through 10.11 show integer data types and their equivalents in
Pascal, C, and FORTRAN.

Table 10.7

Signed I-Byte Integers

Language

Pascal

c

Data Type

x:sint

x:a .. b

char x

struct {
char x;} x

FORTRAN None

Notes

For a >=-127 and b
<=127

When passed by reference

When passed by value

245

Microsoft C Compiler User's Guide

Table 10.8

Unsigned I-Byte Integers

Language

Pascal

c

FORTRAN

Table 10.9

Data Type

x:byte

x:wrd(a) .. wrd(b)

x:(a,b, .. n)

unsigned char x

struct {
unsigned char x;}

x

Signed 2-Byte Integers

Language

Pascal

c

FORTRAN

246

Data Type

x:integer2

x:integerc

x:integer

short x

int x

INTEGER*2X
INTEGER[C] X
INTEGER X

Notes

For 0 <= a <= b
For b <= 255

For ord (n) < 256

When passed by reference

When passed by value

FORTRAN has no unsigned
types, so you must use
CHARACTER*l; use the
ICHAR and CHAR
functions to transfer values.
Do not pass negative values.

Notes

If $INTEGER:2 (the
default) is in effect

Machine dependent

If $ STORAGE:2 is in
effect

Table 10.10

Unsigned 2-Byte Integers

Language

Pascal

c

FORTRAN

Table 10.11

Data Type

x:word

x:wrd(a) .. wrd(b)
x:(a,b, .. n)

unsigned short x

unsigned int x

Signed 4-Byte Integers

Language

Pascal

c

FORTRAN

Data Type

x:integer4

x:integer

long x

INTEGER*4X

INTEGER X

Interfaces with Other Languages

Notes

For b > 255

For ord (n) > 255

Machine dependent

FORTRAN has no unsigned
types, so you must use
INTEGER*2. Do not pass
negative values or values
greater than 32767. Note that
many unsigned operations can
be performed safely on
INTEGER*2 values.

Notes

If $INTEGER:4 is in
effect

If $ STORAGE:4 (the
default) is in effect

C also has unsigned 4-byte integers. FORTRAN and Pascal do not. How­
ever, many unsigned arithmetic operations can be performed on signed vari­
ables, and will yield correct results. This level of type equivalence may be
sufficient for some applications.

247

Microsoft C Compiler User's Guide

10.3.10.3 Boolean and Character Types

For Pascal Boolean values, the integer one (1) means true. Zero (0) means
false.

Tables 10.12 and 10.13 show how Boolean and charader types', respec­
tively, are represented in Pascal, C, and FORTRAN.

Table 10.12

Boolean Types

Language

Pascal

C

FORTRAN

Data Type

x:boolean
unsigned char x

CHARACTER*l X

Table 10.13

Character Types

Language Data Type

Pascal x:char

Notes

Use as for unsigned I-byte
integers; l=false and
O=true. FORTRAN
LOGICAL types are not
equivalent. See tables 10.24
and 10.25 for FORTRAN
LOGICAL types.

C

FORTRAN
unsigned char x

CHARACTER X

10.3.10.4 Real Numbers

C passes all real parameters by value and as double-precision values. To
ensure that your FORTRAN or Pascal routine handles C parameters
correctly, you have the following three options:

248

Interfaces with Other Languages

1. You can allow for the C conversions when you declare parameters to
the FORTRAN or Pascal procedure. This means that you must
declare all floating-point parameters as double-precision parameters
(REAL*8 in FORTRAN, real8 in Pascal), and specify the
VALUE attribute in FORTRAN.

2. You can pass pointers to the parameters instead of the parameters
themselves. In the FORTRAN or Pascal routine, declare the passed
parameters as a pointer to the appropriate type, then dereference
the pointer to access the value.

3. To avoid expansion of a float value to a double, you can pass the
value as a structure. The members of structures do not undergo
type conversion when the structure is passed as a parameter. For
example, the following declaration defines a structure variable, arg,
with a single float member:

struct fptype {float a;} arg;

The structure variable arg can then be passed as a parameter.
Passing such a struct as a parameter in C is equivalent to pushing a
REAL*4 in FORTRAN (except that FORTRAN normally passes
by reference) or a real4 value in Pascal.

Floating-point values returned to C from Pascal or FORTRAN are handled
as structured values.

Tables 10.14 and 10.15 show equivalent real types in Pascal, C, and
FORTRAN.

249

Microsoft C Compiler User's Guide

Table 10.14

Single-Precision Real Numbers

Language

Pascal

c

FORTRAN

Table 10.15

Data Type

x:real4

x:real

float x

struct {
float x;} x

Notes

If $ real:4 (the default) is in effect

When passed by value

Double-Precision Real Numbers

Language

Pascal

C

FORTRAN

Data Type

x:real8
x:real

double x

REAL*8Xor
DOUBLE
PRECISION X

10.3.10.5 Passing Strings

Notes

If $ real: 8 is in effect

Pascal, FORTRAN, and C each store character strings in memory in a
different way. In order to pass strings from one language to another, you
must give the computer the appropriate information about how the string
is set up.

C strings are considered arrays of characters. The null (zero-value) charac­
ter marks the end of the string and is the last character of the array. For
example, the string

String of text

250

Interfaces with Other Languages

is indicated in C as

unsigned char str[]="String of text"

This is stored in memory as a 15-byte array: 14 bytes of significant text
(i.e., the string itself) and 1 null character that marks the end of the string:

FORTRAN strings do not have delimiters in memory. The length of the
string is determined in advance. The above string is written in FORTRAN
as

STR='String of text'

It is stored in memory as 14 bytes of text:

Pascal has two forms of stril1g: a fixed-length string type, STRING, which
is the same as the FORTRAN string type; and a variable-length string
type, LSTRING. Using LSTRING, the string above is designated as fol­
lows:

VAR STR: LSTRING(14);
STR := 'String of text';

It is stored in memory as 15 bytes. The first byte indicates the number of
bytes allocated in memory for the string; the remaining 14 bytes are the
string itself:

Table 10.16 summarizes how each language handles string and array types.
The placeholder a in the table is a constant, and each type occupies a bytes.

251

Mic.rosoft C Compiler User's Guide

Table 10.16

String and Array Types

Language

Pascal

FORTRAN

C

Type

c:STRING(a)
c:ARRA Y[l..a] OF CHAR;

c:LSTRING(a-I);

CHARACTER*a C

CHARACTER*l C(a)

unsigned char c [a]

struct cstr {unsigned char c[a];} c

Table 10.17 shows equivalent string types in each language.

Table 10.17

Strings

Language

Pascal

C

FORTRAN

Data Type

x:array[l..n] of char

char x[n];

CHARACTER*n x

INTEGER x ((n + 1)/2)

Notes

Not equivalent in future
releases of FORTRAN.
Not recommended.

Can be equivalenced to a
CHARACTER variable
to allow access to
individual bytes. This
option will be equivalent
in future releases, as well
as in the present release.

Sections 10.3.10.5.1 through 10.3.10.5.3 explain how to pass strings from
one language to another.

262

Interfaces with Other Languages

10.3.10.5.1 Passing FORTRAN Strings to C and Pascal

FORTRAN strings have the same format in memory as Pascal STRINGs, so
you may pass them directly.

To pass FORTRAN strings to 0, use the new C string feature. When a
standard FORTRAN string constant is followed by the character 0, that
string is then interpreted as a 0 string constant. A null character is
automatically appended to the end of the string, and backslashes (\) are
treated as escapes. See the Microsoft FORTRAN Compiler User's Guide for
information on the new 0 string feature.

Note

In subsequent releases of Microsoft FORTRAN, strings will be passed
differently. In versions 3.3 and all earlier versions, the length of a string
is not passed with the string. In later versions, the length of a string
will be passed with the string as a super-array type. These two methods
are incompatible.

If you are calling FORTRAN from C or Pascal and you are using
strings, your calling code may have to be changed for a later version of
Microsoft FORTRAN.

10.3.10.5.2 Passing Pascal Strings to C and FORTRAN

Since Pascal strings and FORTRAN strings have the same format in
memory, you can pass them directly.

To pass Pascal STRING types to 0, use concatenation to add an extra
null byte to the end of the string. For example, if strg is a variable of type
STRING, the null byte can be added as follows:

strg: "String of text"*Cl-]R (0);

Then strg can be passed to any C function that expects a string argu­
ment.

To pass variables of type LSTRING to C and FORTRAN, you must con­
vert them to type STRING and handle the length byte yourself.

253

Microsoft C Compiler User's Guide

10.3.10.5.3 Passing C Strings to Pascal and FOR TRAN

To FORTRAN and Pascal, C strings are just arrays. When passing C
strings to Pascal and FORTRAN, allow room for the null byte at the end of
the string.

10.3.10.6 Pointers

Tables 10.18 through 10.20 show equivalent pointer types for each
language.

254

Table 10.18

Near Pointers

Language Data Type

Pascal x:"t
ADRt

C

FORTRAN
t near * x

T OBJECT
INTEGER*2X
X=LOCNEAR(OBJECT)

Table 10.19

Far Pointers

Language

Pascal

c

FORTRAN

Data Type

ADS t

t * x
tfar*x

TOBJECT
INTEGER*4X
X=LOC(OBJECT)

Notes

Machine dependent

T OBJECT
INTEGER*4X
X=LOCF AR(OBJECT)

Table 10.20

Procedure Pointers

Language

Pascal

c

FORTRAN

Data Type

x:adsproc

x:adsfunc

TPROC
EXTERNAL
PROC
INTEGER*4X
X=LOC(PROC)
TPROC
EXTERNAL
PROC
INTEGER*4X
X=l,OCF AR(PROC)

Interfaces with Other Languages

Notes

You must declare the
procedure public so that
the ADS operator can get a
far address. The compiler
gives near addresses for
local routines.

EXTERNAL must be
used if the procedure name
is used other than to invoke
the function (in this
example, the address of the
procedure is taken).
Otherwise, FORTRAN will
create a new variable (with
the same name) and take
the address of that variable,
rather than that of the
procedure.

When using procedure pointers and calling a FORTRAN or Pascal routine
from C with the C calling convention, use the following syntax to declare
the procedure pointers in the argument declaration section of your C pro­
cedure:

returntype (* x)(typeslist)

The returntype is the C type of the return value. The typeslist is given with
the same syntax used to declare the argument list of a pascal or fortran
routine from C. When using the Pascal calling convention, use the follow­
ing syntax:

returntype (pascal * x)(typeslist)

And when using the FORTRAN calling convention, use the following syn­
tax:

returntype (fortran * x)(typeslist)

255

Microsoft C Compiler User's Guide

For example, you could pass a Pascal ADSPROC to the following C rou­
tine:

f(x)
short (pascal * x) (short) ;

In this example, x is a pointer to a pascal routine that takes a short and
returns a short.

10.3.10.7 Arrays, Super Arrays and Huge Arrays

FORTRAN arrays are allocated in column order. A (2/ 1) , for example, is
followed by A (3/1). C and Pascal arrays are allocated in row order.
A (2/1) , for example, is followed by A (2/2).

The lower bound of indices to a C array is always O. For FORTRAN, it is
always 1. For Pascal it can be any value.

For example, if you define a C array x [6 J [3J, an equivalent array in
FORTRAN would be X (3/ 6). An equivalent Pascal array would be
x: array [0 .. 5/0 .. 2J. If you specify element x [5/ OJ in Pascal, or ele­
ment x [5J [OJ in C, the equivalent FORTRAN element is X (1/ 6).

Or, if you define a Pascal array as

x:array[2 .. 6,2 .. 3J of integer2

the equivalent FORTRAN array is

The equivalent C array is

short x [5J [2J

FORTRAN large arrays (arrays specified with the HUGE attribute or the
$LARGE metacommand) cannot be used from Pascal or C.

In C, arrays are always passed by reference. If you use the C attribute from
FORTRAN, arrays are passed by value, like C structs. That is, the entire
array is laid out on the stack. To pass an array as an array (from
FORTRAN to C), you must use the REFERENCE attribute, or pass the
result of LOC, LOCNEAR, or LOCF AR.

266

Interfaces with Other IJanguages

Following are the two methods for using C arrays of two or lllore dimen­
sions in FORTRAN or Pascal procedures:

1. Use the ty~edef statement to define a synonym, name, for the
array type lm][n] ... , as follows:

typedef type name [m] [n] ••• ;

Declare the FORTRAN or Pascal procedure as

extern void fortran f(name);

or use

extern void pascal f(name);

In your main J?rogram, declare a variable of the type you have
defined (name), then use that variable as the argument of the
FORTRAN or Pascal procedure, as follows:

name x;
f (x) ;

2. Declare the FORTRAN or Pascal procedure as

extern void fortran f (type [m] [n] •..) ;

or use

extern void pascal f (type [m] [n] ...) ;

In your main program, declare a variable as follows:

type x [m] [n] ;

Then use that variable as the argument of the FORTRAN or Pascal
procedure, as follows:

f (x) ;

For example, using Method 1 above to pass a two-dimensional array, first
define the synonym shortarraytype as follows:

typedef short shortarraytype[2J [2J;

The type shortarraytype is now equivalent to short [2J [2J. Declare
the PascaJ procedure p by entering

extern void pascal p(shortarraytype);

In your rnain program, use the following to declare a variable x of type
shortarraytype, then use x as the argument to the procedure p:

267

Microsoft C Compiler User's Guide

main 0
{
shortarraytype x;
p (x) ;
}

Tables 10.21 and 10.22 show equivalent array types for Pascal, C, and
FORTRAN.

258

Table 10.21

Arrays (Lower Bound of Pascal Array Is 0)

Language

Pascal

c

FORTRAN

Table 10.22

Data Type

x:array
[O .. j,O .. m] of
type

type x[j+1][m+1]
struct {

type
x[j+1][m+1];} x

type x(m+1,j+1)

Notes

When passed by reference

When passed by value

Arrays (Lower Bound of Pascal Array Is Nonzero)

Language

Pascal

c

FORTRAN

Data Type

x:array [i .. j,k .. m] of
type

type x[j-i+ 1][m-k+ 1]

struct \
type xlj-i+ l][m­

k+1];} x

type x(m-k+ 1,j-i+ 1)

Notes

When passed by reference

When passed by value

Interfaces with Other Languages

A super array pointer is a near pointer to the start of an array, followed by
the upper bounds (in the same order as they are declared). Table 10.23
indicates how to specify a super array pointer from each language.

Table 10.23

Super Array Pointers

Language

Pascal

c

FORTRAN

Data Type

type y=super
array [0 .. *,0 .. *1
of

type
x:"y

struct { type
near *ptr;

short a;
short b;} x:

None

10.3.10.8 Records and Structs

Notes

Set a equal to (lst-dimension-of­
target - 1).
Set b equal to (2nd-dimension-of­
target - 1).

Pascal record types and C structs correspond fairly well. Variant records
are more difficult, but can be used if you declare the tag field as a structure
member, then build a union of all the variant parts.

In FORTRAN you can simulate a single instance of a record by using
EQUIVALENCE, but there is no way to replicate the instance or apply
such a structure to a parameter. If the record or struct contains only fields
of the same size, you can use an array. Otherwise, you need to define an
equivalence "group" with variables equivalenced so that they map to the
appropriate elements of the struct. If the whole structure is less than 127
bytes, you can use a character variable to represent the whole structure.
This means that you can assign a parameter with a single statement. This
approach results in inefficient code and programs that are difficult to fol­
low. It is recommended that you use Pascal and C to write interface pro­
cedures where possible. These could, for example, translate the structure
into separate variables and scalars, which are easier to use with
FORTRAN.

269

Microsoft C Compiler User's Guide

Note that you cannot pass a Pascal set type to FORTRAN.

Use Pascal records and C structs to correspond to FORTRAN COMPLEX
data types, as shown in Tables 10.24 and 10.25.

Table 10.24

Single-Precision Complex Numbers

Language

Pascal

c

FORTRAN

Table 10.25

Data Type

x:record
re, im:real;
end;

struct
complex8 {

float re,imj} x

COMPLEX X

Double-Precision Complex Numbers

Language

Pascal

c

FORTRAN

Data Type

x:record
re, im:real8j
end;

struct complex16
{

double re,im;J x

cOMPLEX*16 X

Pascal records and C structs can also be used to pass FORTRAN logical
values. For FORTRAN logical values, the integer one (1) means true. Zero
(0) means false. Tables 10.26 and 10.27 give examples of passing
FORTRAN logical values.

260

Table 10.26

Two-Byte LOGICAL Values

Language

Pascal

c

FORTRAN

Data Type

x:record
logical:boolean;
pad:

array[O .. O] of
byte;

end;

struct {
char logical;
char pad[l];
} X;

LOGICAL*2X
LOGICAL

Table 10.27

Interfaces with Other Languages

Notes

If $ STORAGE:2 is
in effect

Four-Byte LOGICAL Values

Language

Pascal

c

FORTRAN

Data Type

x:record
logical: boolean;
pad:

array[O.,2] of
byte;

end;

struct {
char logical;
char pad[3];
} X;

LOGICAL*4X

261

Microsoft C Compiler User's Guide

10.3.10.9 Procedural Parameters

Formal procedural arguments in Pascal and FORTRAN are compatible.
They are not compatible with procedure pointers in C.

However, Pascal and FORTRAN procedure arguments can be represented
by a C struct that mimics the Pascal/FORTRAN sequence.

If you are calling C from Pascal or FORTRAN, it is recommended that you
use C procedure pointers. If you want to pass a procedure to a Pascal or
FORTRAN procedure, you must use Pascal arguments, since neither Pascal
nor FORTRAN can call through procedure pointers. See Table 10.20 for
equivalent procedure-pointer types.

10.3.11 Return Values

FORTRAN and Pascal routines can return values to a C program. For the
C program to handle the return values correctly, the programmer must
understand the correspondence between data types in the different
languages.

The C compiler performs conversions on return values before they are actu­
ally returned to the calling procedure. These conversions are the same as
those given for parameters. Integral values shorter than an int are
expanded to int size, and float values are converted to double. These
types are discussed in sections 10.3.10.2, "Integers," and 10.3.10.4, "Real
Numbers."

The C compiler detects structured return values that are 4 bytes or less in
length and returns them as integers of the appropriate size.

10.3.12 Sharing Data

Pascal and C can refer to each other's public data items, as long as you
specify appropriate attributes to use the correct naming conventions and
keywords to ensure correct storage allocation. (All Pascal static variables
should be declared with the near keyword in C.) FORTRAN COMMON
blocks are public data areas and can be referenced as external data objects
in C and Pascal. You can use the COMMON block names as the names of
struct variables in C or record variables in Pascal, for example. To access a
common block from Pascal, however, the common block must have the
NEAR attribute. Blank common has the public name COMMQQ.
FORTRAN cannot access C data objects.

262

Interf'aces with Other Languages

Alternatively, you can use the LOC procedures in FORTRAN to give the
address of a common block, pass the address to a C or Pascal procedure,
then use that address from C or Pascal. The following example shows how
this could be done:

INTERFACE TO SUBROUTINE CFUNC[C] (EXTP)
INTEGER*4 EXTP
END
COMMON/EXT/I/J
CALL CFUNC (LOC{I))

END

void cfunc (ext)
struct {long i/j;}*ext

{
ext->i = ext ->j;
}

You can use the following method when you have several common blocks to
set up:

SUBROUTINE SETADS (ADSEXT , ADSPAR , ADSBL)
INTEGER*4 ADSEXT/ADSPAR/ADSBL
COMMON/EXT/II
COMMON/PAR/I 2
COMMON 13
ADSEXT=LOCFAR(II)
ADSPAR=LOCFAR(I2)
ADSBL=LOCFAR(I3)
END

long *ext , *par , *blank;
void fortran setads (long * * I long * * I long * *) ;

main ()
{
long dummy;

setads(&ext , &par, &blank);

263

Microsoft C Compiler User's Guide

ext [0] = 100000;

}

/* Set FORTRAN common variable
** 11 to 100000
*/

10.3.13 Input and Output

A given file can be opened by only one language at a time, except for the
standard output channel when that channel refers to the terminal. In this
case, each FORTRAN WRITE statement that refers to the terminal
should be followed by

if there is a possibility that a C or Pascal routine might write to the termi­
nal immediately thereafter. This will clear the carriage-control character.

10.3.14 Compiling and Linking

The order in which modules are linked is important. You must make sure
that you link them as follows:

264

1. If you are linking with the C floating-point library, it must be
specified first.

2. If you are using Pascal or FORTRAN, their math libraries must be
specified second. The math libraries for Pascal and FORTRAN are
identical, and need be specified only once when you are mixing
Pascal and FORTRAN.

3. If you are using Pascal or FORTRAN, their language libraries must
be specified third.

4. If you are using the C-Ianguage library, it must be specified last,
along with the code-helper library, LIBH.LIB.

Interfaces with Other Languages

10.3.15 Error Messages

Errors that occur during compile time are generated by the compiler for the
language in which the error occurs. Most run-time errors come from the
language in which the part of the program causing the error was written.
On the other hand, floating-point errors may come from any of the
languages used in the program. For Pascal and FORTRAN, these errors
are identical. However, for C, floating-point error messages are slightly
different, and there is no message number.

265

Appendixes

A ASCII Character Codes 269
B Command Summary 271
C The CL Command 289
DUsing EXEP ACK, EXEMOD,

and SETENV 301
E Using Exit Codes 309
F Converting from Previous

Versions of the Compiler 317
G Writing Portable Programs 345
H Error Messages 363

267

Appendix A

ASCII Character Codes

Dec Oct Hex Chr Dec Oct Hex Chr
000 000 OOH NUL 032 040 20H SP
001 001 01H SOH 033 041 21H !
002 002 02H STX 034 042 22H "
003 003 03H ETX 035 043 23H #
004 004 04H EOT 036 044 24H $
005 005 05H ENQ 037 045 25H %
006 006 06H ACK 038 046 26H &
007 007 07H BEL 039 047 27H ,
008 010 08H BS 040 050 28H
009 011 09H HT 041 051 29H
010 012 OAH LF 042 052 2AH * 011 013 OBH VT 043 053 2BH +
012 014 OCH FF 044 054 2CH
013 015 ODH CR 045 055 2DH
014 016 OEH SO 046 056 2EH
015 017 OFH S1 047 057 2FH /
016 020 10H DLE 048 060 30H 0
017 021 llH DC1 049 061 31H 1
018 022 12H DC2 050 062 32H 2
019 023 13H DC3 051 063 33H 3
020 024 14H DC4 052 064 34H 4
021 025 15H NAK 053 065 35H 5
022 026 16H SYN 054 066 36H 6
023 027 17H ETB 055 067 37H 7
024 030 18H CAN 056 070 38H 8
025 031 19H EM 057 071 39H 9
026 032 1AH SUB 058 072 3AH
027 033 1BH ESC 059 073 3BH ;
028 034 1CH FS 060 074 3CH <
029 035 1DH as 061 075 3DH
030 036 1EH RS 062 076 3EH >
031 037 1FH US 063 077 3FH ?

Dec=Decimal, Oct=Octal, Hex=Hexadecimal(H), Chr=Character, LF=Line feed
FF=Form feed, CR=Carriage return, DEL=Delete

269

Microsoft C Compiler User's Guide

Appendix A (continued)

Dec Oct Hex Chr Dec Oct Hex Chr

064 100 40H G'~ q, 096 140 60H
065 101 41H A 097 141 61H a
066 102 42H B 098 142 62H b
067 103 43H C 099 143 63H c
068 104 44H D 100 144 64H d
069 105 45H E 101 145 65H e
070 106 46H F 102 146 66H f
071 107 47H G 103 147 67H g
072 110 48H H 104 150 68H h
073 111 49H I 105 151 69H
074 112 4AH J 106 152 6AH j
075 113 4BH K 107 153 6BH k
076 114 4CH L 108 154 6CH I
077 115 4DH M 109 155 6DH m
078 116 4EH N 110 156 6EH n
079 117 4FH 0 111 157 6FH 0

080 120 50H P 112 160 70H p
081 121 51H Q 113 161 71H q
082 122 52H R 114 162 72H r
083 123 53H S 115 163 73H s
084 124 54H T 116 164 74H t
085 125 55H U 117 165 75H u
086 126 56H V 118 166 76H v
087 127 57H W 119 167 77H w
088 130 58H X 120 170 78H x
089 131 59H Y 121 171 79H y
090 132 5AH Z 122 172 7AH z
091 133 5BH ~

123 173 7BH f
I

092 134 5CH 124 174 7CH I
I

093 135 5DH 1 125 175 7DH L
094 136 5EH 126 176 7EH
095 137 5FH 127 177 7FH DEL

Dec=Decimal, Oct=Octal, Hex=Hexadecimal(H), Chr=Character, LF=Line feed
FF=Form feed, CR=Carriage return, DEL=Delete

270

Appendix B

Command Summary

B.1 Introduction 273
B.2 Compiler Summary 273
B.2.1 MSC Options 274
B.2.2 Pragmas 278
B.2.3 Standard Memory Models 278
B.2.4 Pointer and Integer Sizes 278
B.2.5 Segment Names 279
B.3 Linker Summary 280
B.3.1 Linker Command Characters 280
B.3.2 Linker Options 280
B.4 LIB Summary 283
B.5 MAKE Summary 284
B.5.1
B.5.2
B.5.3
B.5.4
B.6
B.7
B.8

MAKE Description Files 284
MAKE Options 285
Macro Definitions with MAKE
MAKE Inference Rules 286

EXEP ACK Summary 286
EXEMOD Summary 287
SETENV Summary 288

285

271

Command Summary

B.l Introduction

This appendix summarizes the commands and options available with MSC
and the following Microsoft utilities: LINK, LIB, MAKE, EXEP ACK,
EXEMOD, and SETENV.

B.2 Compiler Summary

COUlUland Line

MSC sourcefile [,[objectfile] [,[sourcelistfile] [,[objectlistfile]]]] [options] [;]

The compiler is invoked with the MSC command. Type MSC to be
prompted for responses, or use the command-line method to give informa­
tion to MSC. If you don't give MSC all the information it needs on the
command line, it will prompt you for the remaining responses.

With the command-line method, sourcefile is the name of the C source file
and objectfile is the name of the object file produced by the compiler. The
optional sourcelistfile is a listing file showing numbered source lines, error
messages if encountered, and symbol-table information. The objectlistfile is
a listing file showing the object code. The options appear anywhere a space
can appear in the command line.

MSC uses three environment variables to locate the files it needs. Before
invoking MSC, use the MS-DOS PATH and SET commands to assign a
path name or names to the following variables:

Variable

PATH

INCLUDE

TMP

LIB

Types of Files:

Executable compiler files

Include files

Temporary files

Library files

273

Microsoft C Compiler User's Guide

B.2.1 MSC Options

The MSC options are listed in alphabetical order in this section. The dash
(-) can be used in place of the forward slash (I) to introduce the option if
you prefer. Some additional options are available with the CL command;
see Section C.4 of Appendix C, "The CL Command."

Option

IAletter

IAstring

IC

ID identifier[=[string]]

IE

IEP

274

Task

Sets the program configuration. The letter
may be S, M, C, L, or H, standing for
"small," "medium," "compact," "large,"
and "hu!?e" models, respectively. The de­
fault is / AS.

Sets the program configuration. The string
consists of three characters in any order,
one from each of the following groups:

Group Code Description

Code pointer size s Small
I Large

Data pointer size n Near
f Far
h Huge

Segment setup d SS equal to DS
u SS not equal

to DS, DS loaded
for each module

w SS not equal to
DS, DS fixed

Preserves comments when preprocessing a
file (use only with IE, IP, or IEP).

Defines identifier to the preprocessor. The
value is string or empty.

Preprocesses the source file, copying the
result to the standard output and inserting
line directives.

Preprocesses the source file, copying the
result to the standard output wlthout
line directives.

/Fa[filename~

/Fc[filename~

/FI[filename~

/Fofilename

/Fs[filename~

/FPa

/FPc

/FPc87

/FPi

/FPi87

/GO

/G1

/G2

/Gc

/Gs

/Gt[number~

Command Summary

Produces assembly listing.

Produces combined source-assembly listing.

Produces object listing.

Names the object file.

Produces the source-listing file.

Generates floating-point calls and selects
alternate math library.

Generates floating-point calls and selects
emulator (uses 8087/80287 if one is
present).

Generates floating-point calls and selects
8087/80287 library (requires an 8087 or
80287 at run time).

Generates in-line 8087/80287 instructions
and selects emulator (uses 8087 or 80287 if
one is present).

Generates in-line 8087/80287 instructions
and selects 8087/80287 library (requires an
8087 or 80287 at run time).

Generates 8086/8088 instructions.

Generates 80186/80188 instructions.

Generates 80286 instructions.

Generates the alternative
(FORTRAN/Pascal style) call/return
sequence and naming convention for an
entire module.

Removes calls to stack-probe routine.

Places data items greater than number
bytes in new segment (256 bytes is the
default); relevant only in compact-, large-,
and huge-model programs.

275

Microsoft C Compiler User's Guide

IGw

IHnumber

IHELP

IIdirectory

IJ

IND datasegmentname

INM modulename

INT textsegmentname

IOstring

Generates Windows applications informa­
tion (see your Microsoft Windows Software
Development Kit for more information).

Restricts significant characters of external
names to number characters.

Lists the most common MSC options to the
standard output. Any combination of
uppercase and lowercase letters will work
with this option; for example, /help or
IHelP would work equally wefl.

Adds directory to the top of the list of
directories to be searched for include files.

Changes the default for char type from
signed to unsigned.

Sets the data segment name.

Sets the module name.

Sets the text segment name.

Controls optimization. The string consists
of one or more of the following characters:

Code

d

a

s

t

Description

Disables optimization

Relaxes alias checking

Favors code size

x

Favors execution time (default)

Maximizes optimization
(equivalent to IOas I Gs)

IP

276

The default is lOt.

Preprocesses the source file and sends out­
put to file with the base name of the source
file and the extension .1.

/u

/U identifier

/Vstring

/w

/Wnumber

/X

/Za

/Zd

/Ze

/Zg

/Zi

/Zl

/Zp

/Zs

Command Summary

Removes definitions of all four predefined
identifiers (MS_ DOS, M-186,
M-186xM, and NO_EXT_KEYS).

Removes definition of the given predefined
iden tifier.

Copies string to the object file.

Suppresses compiler warning messages.

Sets the output level (number = 0, 1, 2, or
3) for compiler warning messages.

Ignores the list of "standard places" in the
search for include files.

Disables language extensions. These include
cdecl, far, fortran, huge, near, pascal,
and other capabilities.

Includes line-number and limited symbolic
information in object file.

Enables language extensions. These include
cdecl, far, fortran, huge, near, pascal,
and other extensions. This option is the
default.

Generates function declarations from func­
tion definitions and writes declarations to
standard output.

Enables full symbolic information for use
with the Microsoft Code View symbolic
debugger.

Removes default library information from
object file.

Packs structure members.

Performs syntax check only.

277

Microsoft C Compiler User's Guide

B.2.2 Pragmas

The Microsoft C Compiler supports the check_ stack pragma; this pragma
instructs the compiler to turn stack checking on or off for selected routines,
as explained in Section 9.10.1, "Removing Stack Probes."

B.2.3 Standard Memory Models

Table B.1 defines the number of text and data segments for small, medium,
compact, large, and huge memory models.

Table B.1

Text and Data Segments in Standard Memory Models

Model Text Segments Data Segments

Small One One

Medium One per module One

Compact One One default data segment*

Large One per module One default data segment *

Huge One per module One default data segment *

* The number of additional data segments depends on the program
requiremen ts.

B.2.4 Pointer and Integer Sizes

Table B.2 defines the sizes (in bits) of data pointers, text pointers, and
integers (int type) in the three standard memory models.

278

Command Summary

Table B.2

Pointer and Integer Sizes
in Standard Memory Models

Model Data Pointer Text Pointer Integer

Small 16 16 16
Medium 16 32 16
Compact 32 16 16
Large 32 32 16
Huge 32 32 16

B.2.5 Segment Names

Table B.3 lists the default text and data segment names in the standard
memory models. The default modulename is the file name.

Table B.3

Segment Names in Standard Memory Models

Model Text Data

Small _TEXT _DATA

Medium modulename_ TEXT _DATA

Compact _TEXT _DATAic

Large module name_ TEXT _DATA*

Huge module name_ TEXT _DATA*

* Name of default data segment; other data segments have unique, private
names

279

Microsoft C Compiler User's Guide

B.3 Linker Summary

Command Line

LINK objectfiles [,[executablefile] [,[mapfile] [,[libraryfiles]]]] [options] [;]

The Microsoft Overlay Linker, LINK, recognizes the command characters
and options listed in this section. The files to be linked can be given either
in response to prompts, in a command line, or in a response file.

If you use a command line, objectfiles are the names of object files, and
executablefile is the executable program file produced by LINK. The
optional mapfile is a listing of the names and addresses of segments, and
optionally, public symbols. The optional libraryfiles are library files con­
taining modules that must be linked with the object files. The options can
appear anywhere in the command line.

LINK uses the environment variable LIB to locate library files. Before
invoking LINK, use the MS-DOS SET command to assign a path name or
names to the LIB variable.

B.3.1 Linker Command Characters

Character Task

+ Use the plus sign (+) to separate entries and to extend
the current line in response to the "Object Modules" and
"Libraries" prompts.

To select default responses to the remaining prompts,
use a single semicolon (;) followed immediately by a
RETURN any time after the first prompt.

CONTROL-C Type CONTROL-C to interrupt the link session and return
to MS-DOS.

B.3.2 Linker Options

Options control various linker functions. Options must be typed at the end
of a prompt response, regardless of which method is used to start LINK.
Options may be grouped at the end of any response, or may be scattered at
the end of several responses. If more than one option is typed at the end of
a response, each option must be preceded by a forward slash (j).

280

Command Summary

All options may be abbreviated. The only restrictions are that an abbrevia­
tion must be sequential from the first through the last letter typed and
must uniquely identify the option.

Some linker options take numerical arguments. A numerical argument can
be any of the following:

• A decimal number from 0 to 65535.

• An octal number from 0 to 0177777. A number is interpreted as
octal if it starts with a zero. For example, the number 10 is a
decimal number, but the number 010 is an octal number,
equivalent to 8 in decimal notation.

• A hexadecimal number from 0 to OxFFFF. A number is interpreted
as hexadecimal if it starts with Ox. For example, Ox10 is a hexa­
decimal number, equivalent to 16 in decimal notation.

The linker options are listed in alphabetical order below. The options are
abbreviated to the minimum length that distinguishes them from other
LINK options:

Option

ICO

ICP:number

IDO

Task

Links a special-format executable file containing the
symbolic information needed by the Microsoft Code­
View debugger.

Sets the maximum memory allocation of program to
number.

Enforces the following loading order:

1. All segments with a class name ending with
CODE.

2. All other segments outside of DGROUP.

3. GROUP segments, in this order: (a) any seg­
ments of class BEGDATA (this class name is
reserved for Microsoft use); (b) any segments not
of class BEGDATA, BSS, or STACK; (c) seg­
ments of class BSS; (d) segments of class
STACK.

281

Microsoft C Compiler User's Guide

282

JDS

jE

JHE

JHI

jL

jM

jNOD

jNOG

JNOI

jO:number

jP

jSE:number

jST:number

Tells LINK to load all data at the high end of the
data segment. Do not use this option with C
programs.

Packs the executable file during linking.

Lists all LINK options to standard output.

Causes the run file to be placed as high as possible in
memory. Do not use this option with C programs.

Includes in the list file the line numbers and addresses
of the source statements in the input modules.

Creates a listing file containing all public (global)
symbols defined in the input modules.

Causes default libraries to be ignored.

Provides compatibility with previous versions of
LINK. Do not use this option with C programs.

Causes the linker to distinguish between uppercase
and lowercase letters.

Sets the overlay interrupt number to number. In gen­
eral, you should not use this option with C programs,
with the exceptions outlined in Section 4.6.12, "Set­
ting the Overlay Interrupt."

Causes LINK to pause in the link session so you can
change disks.

Sets the number of segments the linker allows a pro­
gram to have. The default is 128.

Sets the stack size to number, which may be any posi­
tive value up to 65536 bytes. The default for C pro­
grams is 2K (2048 bytes).

Command Summary

B.4 LID Summary

Command Line

LIB oldlibrary [/P AGESIZE:number] [commands] [,[listfile] [, [newlibrary]]] [;]

In the LIB command line, oldlibrary is the name of the library file to be
processed, and commands are the commands indicating operations to be
performed on the library file. The /P AGESIZE option can be used to
change the page size (16 bytes by default). The listfile is a listing of modules
and symbols within the library, and newlibrary is the name for a new library
if you want to create one.

The following commands are recognized by the Microsoft Library Manager,
LIB:

Command Task

+ Appends an object file or library file to the given library

Deletes a module from the library

-+

*

&

CONTROL-C

Replaces a module by deleting a module and appending
an object file with the same name

Extracts a module from the library and saves it in an
object file

Extracts a module from the library and deletes it from
the library after saving it in an object file

Uses default responses to remaining prompts

Extends current physical line; repeats command prompt

Terminates library session

283

Microsoft C Compiler User's Guide

B.5 MAKE Summary

Command Line

MAKE [options] [macrodefinitions] makefilename

The MAKE utility automates the process of updating program files. In the
command line, options are one or more of the options described in Section
B.5.2. The macrodefinitions are one or more macro definitions, as described
in Section B.5.3. The makefilename is the name of a MAKE description
file. A MAKE description file, by convention, has the same file name (but
with no extension) as the program it describes. Although any file name can
be used, this convention is preferred.

B.5.1 MAKE Description Files

A MAKE description file consists of one or more target/dependent descrip­
tions. Each description has the following general form:

targetfile : dependentfiles [# comment]
[# comment]

command [# comment]
[command] [# comment]

The targetfile is the name of a file that may need updating, dependentfile is
the name of a file on which the target file depends, and command is the
name of an executable file or an MS-DOS internal command. If a comment
is on a separate line, the comment specifier (#) must be the first character
on the line.

One way to remember the MAKE description format is to think of it as an
"if-then" statement in the following format: if a dependentfile is older than
the targetfile, or a dependentfile does not exist, then do commands.

284

Command Summary

B.5.2 MAKE Options

The options available with the MAKE command modify its behavior as
follows:

Option

ID

II

IN

IS

Effect

Displays the last modification date of each file as the file
is scanned

Ignores exit codes returned by programs called from the
MAKE description file; MAKE continues execution of
the next lines of the description file despite the errors

Displays commands that would be executed by a descrip­
tion file, but does not execute the commands

Executes in "silent" mode; lines are not displayed as
they are executed

B.5.3 Macro Definitions with MAKE

Macro definitions let you associate a symbolic name with a particular value.
The form of a macro definition is as follows:

name=value

The form for using a previously defined macro definition is as follows:

$ (name)

Occurrences of the pattern $(name) in the description file are replaced with
the specified value. The name is converted to uppercase letters. If you define
a macro name but leave value blank, value will be a null string. In the
MAKE description file, each macro definition must appear on a separate
line. Any white space (tab and space characters) between name and the
equal sign (=), or between the equal sign and value, is ignored. Any other
white space is considered part of value. To include white space in a macro
definition on the command line, enclose the entire definition in double quo­
tation marks (" ").

If the same name is defined in more than one place, the following order of
precedence applies:

285

Microsoft C Compiler User's Guide

1. Command-line definition

2. Description-file definition

3. Environment definition

MAKE recognizes the following special macro names and will automati­
cally substitute a value for each:

Name Value Substituted

Base-name portion of the target (without the extension)

Complete target name

Complete list of dependencies

B.5.4 MAKE Inference Rules

Inference rules take the following form:

• dependentextension. targetextension :
command
[command]

For lines that do not have explicit commands, MAKE looks for a rule that
matches both the targetextension and the dependentextension. If it finds
such a rule, MAKE performs the commands given by the rule.

B.6 EXEPACK Summary

Command Line

EXEP ACK executable/ile output/ile

The EXEP ACK utility compresses sequences of identical characters from
the given executablefile and optimizes the relocation table. The compressed
file is written to the outputfile, and the original file is unmodified.

286

Command Summary

B.7 EXEMOD Summary

Command Line

EXEMOD executablefile [/H] [/STACK num] [/MIN num] [/MAX num]

The EXEMOD utility modifies fields in the header according to instruc­
tions given on the command line. To display the header fields without
modifying them, give the executablefile without any options.

Option

/STACK num

/:MIN num

/MAXnum

/H

Task

Allows you to set the size of the stack for your
program by setting the initial SP (stack pointer)
value to num, where num is a hexadecimal value
in bytes. The minimum allocation value is
adjusted upward if necessary. This has the same
effect as the /STACK option for the linker,
except that with EXEMOD the file is already
linked.

Sets the minimum allocation value to num,
where num is a hexadecimal value in paragraphs.
The actual value set may be different from the
requested value if adjustments are necessary to
accommodate the stack.

Sets the maximum allocation to num, where num
is a hexadecimal value in paragraphs. The max­
imum allocation value must be greater than or
equal to the minimum allocation value.

Displays the current status of the MS-DOS pro­
gram header. This has the same effect as entering
EXEMOD without any options. The /H option
should not be used with other options.

287

Microsoft C Compiler User's Guide

B.8 SETENV Summary

Command Line

SETENV filename IT environmentsize]

The SETENV utility is used to modify COMMAND.COM in order to
increase the size of the environment table. Normally, filename specifies
COMMAND.COM. It must be a valid, unmodified copy of
COMMAND.COM, though it could have a different name if you renamed
it. The optional environmentsize is a decimal number specifying the size in
bytes of the new allocation. COMMAND.COM normally allocates 10
paragraphs (160 bytes). The specified environmentsize will be rounded up to
the nearest paragraph multiple.

If environmenlsize is not given, SETENV will report the value that the
COMMAND.COM file is currently allocating for the environment table.

288

Appendix C

The CL Command

C.1 Introduction 291
C.2 Command Syntax and Options 291
C.3 Linking with the CL Command 294
C.4 Additional Options 296
C.5 XENlX-Compatihle Options 297

289

The CL Command

C.1 Introduction

This appendix summarizes the CL command. The CL command can be
used instead of the MSC and LINK commands to invoke the compiler and
linker. It is similar to the cc interface used on XENIX and UNIX systems;
therefore, it may be familiar to some users.

CL uses four environment variables to locate the files it needs. Before in­
voking CL, use the MS-DOS PATH and SET commands to assign a path
name or names to the following variables:

Variable

PATH

INCLUDE

TMP

LIB

Types of Files

Executable compiler files

Include files

Temporary files

Library files

C.2 Command Syntax and Options

Command Line

CL [[options] filenames [-link libraryfield]]

Each option in the command line is a command option, and each filename
specifies a file to be processed. You can give more than one option or file
name, but you must set off each item with one or more spaces. The -link
option allows you to pass information to the linker; see Section C.3, "Link­
ing with the CL Command," for a description of the kinds of data you can
pass in the libraryfield.

If you give the CL command with no arguments, CL displays a summary of
the CL command-line syntax. If you provide arguments, each filename
must be the name of a C-Ianguage source file or an object file. If the file
name is for a source file, the file name must include the extension .c or .C.
When CL processes the file, it looks at the file-name extension to determine
whether it should start processing at the compiling or linking stage. Any
files ending with .c or .C are compiled; files with any other extension or no
extension are assumed to be object files.

291

Microsoft C Compiler User's Guide

You can use the MS-DOS "wild card" characters (? and *) in file names
on the CL command line. The CL command expands these characters in
the same manner that MS-DOS does. See your MS-DOS documentation for
details.

An option consists of a dash (-) followed by a combination of one or more
letters that have special meaning to CL. You can use a forward slash (/)
instead of the dash as an option character if you prefer. The dash is used in
this chapter for XENIX compatibility. All options available with the MSC
command are also available with CL.

Since you can process more than one file at a time with the CL command,
the order in which you give listing options (the -F group of options) is im­
portant. The -Fa, -Fe, -FI, -Fs, and -Fa options available with the
MSC command are also available with CL. In addition, you can use the
-Fe option to name the executable file produced in the linking stage, and
the -Fm option to create a map file. The -F options that can be used with
the CL command are summarized in Table C.l. Some additional rules that
apply to arguments of the -F options when used with the CL command are
given in Table C.2.

Table C.1

Summary of -F Options

Option

-Fs

-Fa

-Fe

-Fe

-Fl

-Fm

292

Task

Produces source listing

Produces assembly listing

Produces combined
source-assembly listing

Names the executable file

Produces object listing

Creates map file

Default
File Name·

Base name of source file
plus .LST

Base name of source file
plus .ASM

Base name of source file
plus .COD

Base name of first source
or object file on
command line plus .EXE
Base name of source file
plus .COD

Base name of first source
or object file on the
command line plus
.MAP

Default
Extension

.LST

.ASM

.COD

.EXE

.COD

.MAP

Table C.1 (continued)

Option Task

-Fo Names object file

Default
File Name·

Base name of source file
plus .OBJ

The CL Command

Default
Extension

.OBJ

* The default file name for the -Fs,-Fa,-Fc,-FI, and --Fm options is used when the option is
given with no argument or with a directory name as argument. The default file name for the
-Fe and -Fo options is used when the option is not given, or when a directory name is given
as the argument to the option.

Table C.2

Arguments to -F Options

File-Name Path-Name No
Options Argument Argument Argument

-Fa, -Fe, -FI, Creates a listing Creates listings Creates listings
-Fs for next source in the given in the default

file on command directory for directory for
line; uses default every source file every source file
extension if no listed after the listed after the
extension is option on the option on the
supplied command line; command line;

uses default uses default
names names

-Fe Uses given file Creates Not applicable;
name for the executable file in argument is
executable file; the given required
uses default directory; uses
extension if no default name
extension is
supplied

-Fm Uses given file Creates map file Uses default
name for the in the given name
map file; uses directory; uses
default default name
extension if no
extension is
supplied

293

Microsoft C Compiler User's Guide

Table C.2 (continued)

Options

-Fo

Important

File-Name
Argument

Uses given file
name as the
object-file name
for the next
source file on
command line;
uses default
extension if no
extension is
supplied

Path-Name
Argument

Creates object
files in the given
directory for
every source file
listed after the
option on the
command line;
uses default
names

No
Argument

Not applicable;
argument is
required

No spaces are allowed between the option and the argument (if any) for
any of the -Fx options.

Unlike the MSC command, the CL command invokes the linker as well as
the compiler. By default, CL automatically performs linking; you can over­
ride this with the -c option, described in Section CA, "Additional
Options." You can also pass your own arguments to the linker, in addition
to the default arguments given by CL. This is described in Section C.3,
"Linking with the CL Command."

C.3 Linking with the CL Command

By default, the CL command invokes the linker after compiling. You can
override the default and cause CL to stop after compiling by giving the -c
(compile only) option.

294

The CL Command

The CL command uses the response-file method of invoking the linker. By
default, it builds the following response file:

LINK obfectfiles [/CO]
basename INOI
NUL;

Note that, by default, the "Libraries" field is not given. The names of the
default libraries (the standard C library of the appropriate memory model,
plus the appropriate floating-point library as determined by the floating­
point option used) are encoded in the object file. The linker searches for the
default libraries in the current working directory, then in the directories
specified in the LIB environment variable, if any.

The objectfiles are all object files produced in the compiling stage of the CL
command, plus any object files specified on the CL command line. The
ICO option (for the Microsoft CodeView symbolic debugger) is added to
the first line of the response file if the -Zi option is given on the CL com­
mand line. The INOI option tells the linker not to ignore case; uppercase
and lowercase letters are considered different. By default, basename is the
name supplied for the executable file; it corresponds to the base name of the
first source or object file on the CL command line. However, you can pro­
vide a different name by using the -Fe option. By default, no map file is
produced, since the name NUL is provided in the third field. Note, how­
ever, that the -Flll option can be used in the CL command to override the
default and produce a map file. A map file is also produced when the -Zd
option is given on the CL command line; with -Zd, CL builds the follow­
ing response file:

LINK obfectfiles [ILl]
basename INOI
basename;

You can supply your own responses for the "Libraries" field by using the
-link option. This option, if included, must be the last item on the CL
command line. Any libraries specified in the libraryfield are searched before
the default libraries.

The libraryfield can contain one or more of the following:

• A path name

The linker searches the given path name for the default libraries
before searching directories given by the LIB variable.

295

Microsoft C Compiler User's Guide

• Additional or alternate library names

If a path name is included with the library name, only that path
name is searched. Otherwise, the linker uses the standard library
search path.

• Floating-point library or libraries

Any floating-point calls in your program refer to the given floating­
point library instead of the default floating-point library.

• Options

You can give any of the linker options described in Chapter 4,
"Linking."

See Chapter 4, "Linking," for more details on default libraries (sections
4.3.2 and 4.3.3), the library search path (Section 4.3.2), and linker options
(sections 4.3.4 and 4.6).

C.4 Additional Options

In addition to the MSC options summarized in Section B.2.1, "Command
Summary," the CL command reco&nizes the options listed below. The
options are shown with the dash (-) character for XENIX compatibility,
but can be given with the forward slash (/) character if you prefer.

Op~ion

-c

-F hexnumber

-Feprogramname

-Fm.[mapname]

-link libraryfield

296

Task

Creates an object file for each source file on
the command line; suppresses linking

Forces stack size to be set to hexnumber bytes;
space required between -F and hexnumber

Names the executable program file as
programname

Creates a map file

Passes the specified libraryfield to the linker

The CL Command

0.5 XENIX-Oompatihle Options

To provide as much compatibility as possible with XENIX C compilers, the
OL command also accepts the options recognized by the cc command on
XENIX systems. Many of these options are identical to the MSC and CL
options given in this manual; others have identical functions but different
names. The complete list of XENIX options accepted by the CL command
is given in Table C.3. The other XENIX options not specifically listed in
Table C.3 are not supported by either OL or MSC.

Table 0.3

XENIX Options Accepted by the CL Command

XENIX Option Task MSC / CL Option

-c Creates a linkable object Same; CL only
file for each source file;
disables the link step

-C Preserves comments when Same
preprocessing a file (only
when -P or -E).

-dos Performs cross-compilation Same ~eaningful only
to create DOS-executable on XE IX)
file

-D name[=string] Defines name to the
preprocessor. The value is

Same

string or 1.

-E Preprocesses each source Same
file, copying the result to
the standard output.

-EP Same as for -E, except does Same
not put # line directives in
output.

-F number Sets the size of the program Same; CL only
stack. The given size must
be a hexadecimal number.

-I pathname Adds pathname to the list of Same
directories to be searched
for # include files.

-K Removes stack probes from -Gs
a program

297

Microsoft C Compiler User's Guide

Table 0.3 (continued)

XENIX Option Task MSC/CL Option

-L Creates an object-listing file -FI -c; CL only
containing assembled object
code and suppresses linking

-Mstring Sets the program -Me is equivalent to
configuration. The string -Ze.
may be any combination of -M2 is equivalent to
s (small model), m (medium -G2.
model), c (compact model), -Mt!numll is equivalent
1 (large model), h (huge to - t[numll.
model), e (enables far, -Mb has no equivalent.
near, huge, fortran, -Ms is equivalent to
pascal, and cdecl -AS.
keywords), 2 (enables 286 -Mm is equivalent to
code generation), b -AM.
(reverses word order for -Mc is equivalent to
items of type long), t[numll -AC.
(sets data threshold for -Md is equivalent to
largest item in a segment), -Axxu.
and d (compiles program so -MI is equivalent to
that stack segment not -AL.
equal to data segment). The -Mh is equivalent to
s, m, c, 1, and h options are -AH.
mutually exclusive.

-m name Creates a map file No equivalent in MSC;
equivalent to -Fmname
in CL

-nlnum Sets the maximum length of -Hnum
external symbols

-ND name Sets the data-segment name Same

-NM name Sets the module name Same

-NT name Sets the text-segment name Same

-0 filename Makes filename the name of -Fofilename
the final executable
program

-0 Invokes the object-code -Ot (default)
optimizer

-p Preprocesses source files Same
and sends output to files
with the extension .i

298

The CL Command

Table 0.3 (continued)

XENIX Option Task M8C/CL Option

-8 Creates an assembly source -Fa -C; CL only
listing and suppresses
linking

-V string Copies string to the object Same
file

-w Suppresses compiler Same
warning messages

-W number Sets the output level for Same
compiler warning messages

-X Removes the standard Same
directories from the list of
directories to be searched
for # include files

299

Appendix D
Using EXEP ACK,
EXEMOD, and SETENV

D.l Introduction 303
D.2 The EXEP ACK Utility 303
D.3 The EXEMOD Utility 304
D.4 The SETENV Utility 307

301

Using EXEPACK, EXEMOD, and SETENV

D.l Introduction

The Microsoft EXE File Compression Utility, EXEP ACK, and the Micro­
soft EXE File Header Utility, EXEMOD, supplied with the Microsoft C
Compiler, allow you to modify executable program files. The Microsoft En­
vironment Utility, SETENV, enlarges the MS-DOS environment table.

EXEP ACK compresses executable files by removing sequences of repeated
characters from the file and by optimizing the relocation table. EXEMOD
allows you to examine and modify file-header information. SETENV al­
lows you to use more and larger environment variables. The following sec­
tions explain how to use the EXEP ACK, EXEMOD, and SETENV
programs.

D.2 The EXEP ACK Utility

EXEP ACK compresses sequences of identical characters from a speci­
fied executable file and optimizes the relocation table. Using EXEP ACK,
you can reduce the size of some files and decrease the time required to load
them.

EXEP ACK will not always give a significant savings in disk space, and
may sometimes actually increase file size because of an enhanced .EXE
loader. Programs that have a large number of load-time relocations (about
500 or more) and long streams of repeated characters will usually be shorter
if packed.

The EXEP ACK program has exactly the same function as the LINK
/EXEP ACK option, except that EXEP ACK works on files that have al­
ready been linked. One use for this utility is to pack the executable files
provided with the Microsoft C Compiler. Some of the programs are already
packed on your distribution disk. If you have floppy disks, you may want to
pack all programs in order to make more room on your disks.

The EXEP ACK command-line format is as follows:

EXEP ACK executablefile packedfile

The executablefile is the file to be packed and packedfile is the name for the
packed file. The packedfile should have a different name or be on a different
drive or directory, since EXEP ACK will not pack a file onto itself.

303

Microsoft C Compiler User's Guide

Do not try to get around the rule against packing a file onto itself by speci­
fying the same file in a different way. You may be able to fool EXEPACK,
but the result will be a damaged file. If you want the packed file to replace
the original, you should use a separate name for the packed file, then delete
the original and rename the packed copy.

When using EXEP ACK to pack an executable overlay file or a file that
calls overlays, the packed file should always be renamed with the original
name to avoid the overlay manager prompt (see Section 4.5.2, "Overlay
Manager Prompts").

Note

Using EXEP ACK on a file containing symbolic debug information will
remove that information from the file.

Example

EXEPACK WORK.EXE WORK.TMP
DEL WORK.EXE
RENAME WORK.TMP WORK.EXE

In this example, the executable file WORK. EXE is packed to a temporary
file. The original is then deleted and the new packed version is renamed
with the original name.

D.3 The EXEMOD Utility

EXEMOD modifies fields in the MS-DOS file header. In order to use this
utility, you need to understand the MS-DOS conventions for file headers.
They are explained in the Microsoft MS-DOS Programmer's Reference
Manual and in some other reference books on MS-DOS.

Some of the options available with EXEMOD are the same as LINK op­
tions, except that they work on files that have already been linked. Unlike
the LINK options, the EXEMOD options require that values be specified
in hexadecimal.

304

Using EXEPACK, EXEMOD, and SETENV

To display the current status of the header fields, type the following:

EXEMOD executablefile

To modify one or more of the fields in the file header, type the following:

EXEMOD executablefile [/H] : [/STACK num] [/MIN num] [/MAX num]

EXEMOD expects the executablefile to be the name of an existing file
with the .EXE extension. If the file name is given without an extension,
EXEMOD appends .EXE and searches for that file. If you supply a file
with an extension other than .EXE, EXEMOD displays an error message.

The options in examples are shown with the forward slash (/) option desig­
nator, but a dash (-) may also be used. Options can be given in either
upper- or lowercase, but they cannot be abbreviated. The options and their
effects are described in the following list:

Option

/STACK num

j:M1N num

/MAXnum

/H

Effect

Allows you to set the size of the stack for your
program by setting the initial SP (stack pointer)
value to num, where num is a hexadecimal value
setting the number of bytes. The minimum allo­
cation value is adjusted upward, if necessary.
This option has the same effect as the LINK
/STACK option, except that it works on files
that are already linked.

Sets the minimum allocation value to num,
where num is a hexadecimal value setting the
number of paragraphs. The actual value set may
be different from the requested value if adjust­
men ts are necessary to accommodate the stack.

Sets the maximum allocation to num, where num
is a hexadecimal value setting the number of
paragraphs. The maximum allocation value must
be greater than or equal to the minimum alloca­
tion value. This option has the same effect as the
LINK /CPARMAXALLOC option.

Displays the current status of the MS-DOS pro­
gram header. Its effect is the same as entering
EXEMOD with an executablefile but no options.
The /H option should not be used with other
options.

305

Microsoft C Compiler User's Guide

Note

The /STACK option can be used on programs assembled with MASM
or programs compiled with the Microsoft C Compiler versions 3.0 and
later, the Microsoft Pascal Compiler versions 3.3 and later, or the
Microsoft FORTRAN Compiler versions 3.3 and later. Use of the
/STACK option on programs developed with other compilers may
cause the programs to fail, or EXEMOD may return an error message.

EXEMOD works on packed files. When it recognizes a packed file, it will
print the following message:

exemod: (warning) packed file

It will then continue to modify the file header.

When packed files are loaded, they are expanded to their unpacked state in
memory. If the EXEMOD /STACK option is used on a packed file, the
value changed is the value that SP will have after expansion. If either the
/MIN or /STACK option is used, the value will be corrected as necessary
to accommodate unpacking of the modified stack. The /MAX option
operates as it would for unpacked files.

If the header of a packed file is displayed, the CS:IP and SS:SP values are
displayed as they will be after expansion, which is not the same as the ac­
tual values in the header of the packed file.

Examples

EXEMOD TEST. EXE
TEST.EXE

Minimum load size (bytes)
Overlay number
Initial CS:IP
Initial SS:SP
Minimum allocation (para)
Maximum allocation (para)
Header size (para)
Relocation table offset
Relocation entries

306

(hex) (dec)

419D 16797
0 0

0403:0000
0000:0000 0

0 0
FFFF 65535

20 32
IE 30

1 1

Using EXEPACK, EXEMOD, and SETENV

The first example shows the file header for file TEST. EXE. The following
command line shows how to modify the header:

EXEMOO TEST.EXE /STACK FF /MIN FF /MAX FFF

The following example shows a display of values after the modification:

EXEMOD TEST. EXE
TEST.EXE (hex) (dec)

Minimum load size (bytes) 5280 20877
Overlay number 0 0
Initial CS: IP 0403:0000
Initial SS:SP OOOO:OOFF 256
Minimum allocation (para) FF 256
Maximum allocation (para) FFF 4095
Header size (para) 20 32
Relocation table offset lE 30
Relocation entries 1 1

D.4 The SETENV Utility

The SETENV utility allows you to allocate more environment space to
MS-DOS by modifying a copy of COMMAND.COM.

Normally, MS-DOS versions 2.0 and later allocate 160 bytes (10 para­
graphs) for the environment table. This may not be enough if you want to
set numerous environment variables using the SET or PATH command.
For example, if you have a hard disk with several levels of subdirectories, a
single environment variable might take 40 or 50 characters. Since each
character uses 1 byte, you could easily require more than 160 bytes, if you
wanted to set several environment variables.

Note

SETENV is guaranteed to work only with PC-DOS versions 2.0, 2.1,
3.0, and 3.1. SETENV mayor may not work with other versions of
MS-DOS. Moreover, you should not use SETENV with versions of
MS-DOS later than Version 3.1. Consult your MS-DOS manual for
information on how to increase environment size in these later versions.

307

Microsoft C Compiler User's Guide

To enlarge the evironment table, you must use SETENV to modify a copy
of COMMAND.COM. Make sure you work on a copy and retain an
unmodified version of COMMAND.COM for backup.

The command line for modifying the environment table is as follows:

SETENV filename [environmentsize]

Normally filename specifies COMMAND.COM. It must be a valid,
unmodified copy of COMMAND.COM, though it could have a different
name if you renamed it. The optional environmentsize is a decimal number
specifying the size in bytes of the new allocation; environmentsize must be a
number greater than or equal to 160, and less than or equal to 65520. The
specified environmentsize will be rounded up to the nearest multiple of 16
(the size of a paragraph).

If environmentsize is not given, SETENV will report the value that the
COMMAND.COM file is currently allocating.

After modifying COMMAND.COM, you must reboot so that the environ­
ment table will be set to the new size.

Examples

SETENV COMMAND. COM
Microsoft (R) Environment Expansion Utility Version 2.00
Copyright (C) Microsoft Corp 1985. All rights reserved.

command.com: Environment allocation = 160

In the first example, no environment size is specified, so SETENV reports
the current size of the environment table.

SETENV COMMAND. COM 60S

In the second example, an environment size of 605 bytes is requested. Since
605 bytes is not on a paragraph boundary (a multiple of 16), SETENV
rounds the request up to 608 bytes. COMMAND.COM is modified so
that it will automatically set an environment table of 608 bytes (38 para­
graphs). You must reboot to set the new environment-table size.

308

Appendix E

Using Exit Codes

E.1 Introduction 311
E.2 Exit Codes with MAKE 311
E.3 Exit Codes with MS-DOS Batch Files 311
E.4 Exit Codes for Programs

in the C Compiler Package 312
E.4.1 Compiler Exit Codes 312
E.4.2 LINK Exit Codes 313
E.4.3 CodeView Exit Codes 313
E.4.4 LIB Exit Codes 314
E.4.5
E.4.6
E.4.7
E.4.8

MAKE Exit Codes
EXEP ACK Exit Codes
EXEMOD Exit Codes
SETENV Exit Codes

314
314

314
315

309

Using Exit Codes

E.l Introduction

All the programs in the Microsoft C Compiler package return an exit code
(sometimes called an "errorlevel" code) that can be used by MS-DOS bateh
files or other programs such as MAKE. If the program finishes without er­
rors, it returns a code of O. The code returned varies if the program en­
counters an error. This appendix discusses several uses for exit codes, and
lists the exit code numbers that can be returned by each program in the
Microsoft C Compiler package.

E.2 Exit Codes with MAKE

MAKE automatically stops execution if a program executed by one of the
commands in the MAKE description file encounters an error. The exit code
is displayed as part of the error message.

For example, assume the MAKE description file TEST contains the follow­
ing lines:

TEST.OBJ : TEST.C
MSC TEST;

If the source code in TEST. C contains a program error (but not if it con­
tains a warning error), you would see the following message the first time
you use MAKE with the MAKE description file TEST:

make: MSC TEST; - error 2

This error message indicates that the command MSC TE ST; in the
MAKE description file returned code 2.

E.3 Exit Codes with MS-DOS Batch Files

If you prefer to use MS-DOS batch files instead of MAKE description files,
you can test the code returned with the IF ERRORLEVEL command.
The sample batch file following, called COMP I LE . BAT, illustrates how:

311

M:ierosoft C Compiler User's Guide

MSC %1;
IF NOT ERRORLEVEL 1 LINK %1;
IF NOT ERRORLEVEL 1 %1

You can execute this sample batch file with the following command:

COMPILE TEST

MS-DOS then executes the first line of the batch file, substituting TEST for
the parameter %1, as in the following command line:

MSC TEST;

It returns a code of 0 if the compilation is successful, or a higher code if the
compiler encounters an error. In the second line, MS-DOS tests to see if the
code returned by the previous line is 1 or higher. If it is not (that is, if the
code is 0), MS-DOS executes the following command:

LINK TEST;

LINK also returns a code, which will be tested by the third line.

E.4 Exit Codes for Programs
in the C Compiler Package

An exit code of 0 always indicates execution of the program with no fatal
errors. Warning errors also return exit code O. Some programs can return
various codes indicating different kinds of errors, while other programs re­
turn only 1 to indicate that an error occurred. The exit codes for each pro­
gram are listed in sections EA.1 through EA.8.

E.4.1 Compiler Exit Codes

312

Code Meaning

o No fatal error

2 Program error

4 System level error (such as out of disk space or compiler
internal error)

Using Exit Codes

E.4.2 LINK Exit Codes

Code Meaning

o No error

1 All LINK fatal errors not listed below

16 Data record too large

32 No object modules specified

33 Cannot open list file

66 Common area longer than 65536 bytes

96 Too many libraries

144 Invalid object module

145 Too many TYPDEFs

146 Too many group, segment, and/or class names in one module

147 Too many segments, or too many segments in one module

148 Too many overlays

149 Segment size exceeds 64K

150 Too many groups or too many GRPDEFs in one module

151 Too many external symbols in one module

177 Group larger than 64K

E.4.3 Code View Exit Codes

The Microsoft CodeView debugger does not return exit codes. However, it
does display return codes returned by programs run within the debugger.
For example, if you run an executable file called TEST. EXE from within the
CodeView debugger and the program encounters an error that returns 1,
you will see the following line:

Program terminated normally (1)

313

Microsoft C Compiler User's Guide

E.4.4 LIB Exit Codes

Code Meaning

o No error

1 All LIB fatal errors not listed below

4 Internal error

13 Too many symbols

16 Page size too small

E.4.5 MAKE Exit Codes

Code Meaning

o No error

1 Any MAKE fatal error

If a program called by a command in the MAKE description file produces
an error, the exit code will be displayed in the MAKE error message.

E.4.6 EXEP ACK Exit Codes

Code Meaning

0 No error

1 Any EXEPACK fatal error

E.4.7 EXEMOD Exit Codes

Code Meaning

0 No error

1 Any EXEMOD fatal error

314

Using Exit Codes

E.4.8 SETENV Exit Codes

Code Meaning

o No error

1 Any SETENV fatal error

315

Appendix F
Converting from Previous
Versions of the Compiler

F.1 Introduction 319
F.2 Differences between Versions 3.0 and 4.0 319
F.2.1 Enhancements and Additions

to the Compiler Software 320
F.2.2 Changes in the Language Syntax 320
F.2.3 New Features for the MS-DOS

Implementation of C 322
F.2.4 New Library Routines and Include Files 323
F.2.5 Changes in Library-Routine Syntax 324
F.3 Differences Between Version 4.0

and Versions Prior to 3.0 324
F.3.1 Language-Definition Differences 325
F.3.2 Run-Time-Library Differences 330
F.3.2.1 abs 331
F.3.2.2 creat 332
F.3.2.3 f open, freopen 333
F.3.2.4 iscsym, iscsymf 333
F.3.2.5 max 333
F.3.2.6 rmn 334
F.3.2.7 movmem 334
F.3.2.8 open 334
F.3.2.9 setrnem 335
F.3.2.10 setnbuf 335

317

F.3.2.11 stcis, stcisn, stclen, stpbrk, stpchr, stscmp 335
F.3.3 Differences in

Assembly-Language Interface 336
F.3.3.1 Register-Usage Conventions 336
F.3.3.2 Stack Setup and Subroutine Entry jExit Code 338
F.3.3.3 Global-Variable Naming Conventions 341
F.3.3.4 Segment Usage and Naming 342

318

Converting from Previous Versions of the Compiler

F.l Introduction

This appendix describes differences between Version 4.0 of the Microsoft C
Compiler and earlier versions of the Microsoft C Compiler. If you have an
earlier version of the compiler, or if you have written programs for an ear­
lier version, this chapter can help you convert your previous source code.
The actions necessary to convert source code depend on which earlier ver­
sion you have.

Version 4.0 is an update of Version 3.0. Generally, the two versions are
compatible: your C source code written for Version 3.0 should compile
without change on the Version 4.0 compiler, although there are cases of er­
roneous C constructs allowed in Version 3.0 that are not allowed in Version
4.0, and changes in the emerging ANSI C standard may force changes in the
treatment of octal and hexadecimal constants (for more information, see
the Microsoft C Compiler Language Reference). In some cases you may be
able to enhance your programs by revising them to take advantage of new
library routines and other features available with Version 4.0.

On the other hand, the compiler in versions prior to 3.0 is completely
different from the compiler in versions 3.0 and 4.0. Source code for these
versions may require significant changes. The differences fall into three
categories: language definition differences, run-time-library differences, and
assembly-language-interface differences.

F.2 Differences between Versions 3.0 and 4.0

The Microsoft C Compiler, Version 4.0, has been enhanced to provide more
flexible programming and to match the emerging ANSI standard for the C
language. Changes fall into the following categories:

• Enhancements and additions to the compiler software to allow for
more flexible programming, improved code generation, and in­
creased support for the developing ANSI standard

• Changes in the language syntax

• New language features specific to the MS-DOS implementation

• New library routines and include files

These features and the changes required to take advantage of them are dis­
cussed in the next few sections.

319

Microsoft C Compiler User's Guide

F.2.1 Enhancements and Additions
to the Compiler Software

The compiler software has been enhanced to make it easier to use.
Enhancements include the following:

• New options for MSC and LINK

• Improved code optimization

• New memory models (compact and huge)

• Source listings

• Numbered error messages

• Huge arrays, allowing a single array to be larger than 64K

• Three new utilities: MAKE, SETENV, and CODEVIEW

These changes should have no effect on your source code, but you may need
to revise existing batch files or MAKE description files to make them work
correctly with Version 4.0.

See Chapter 3, "Compiling," for information on changes to the syntax of
the MSC command line.

F.2.2 Changes in the Language Syntax

Some changes have been made to the C language syntax to make it conform
more closely to the new ANSI standard. Most of these changes do not affect
source code written for the Version 3.0 compiler. The changes are summar­
ized below:

320

• The \a escape sequence now represents the bell (or alert) character.
You can make your source code more portable by using \ a instead
of \x7. See Section 2.24, "Escape Sequences," of the Microsoft C
Compiler Language Reference.

• The signed keyword has been added. The signed keyword can be
used to specify signed items. This keyword is particularly useful for
declaring signed char types in programs compiled with the 1 J op­
tion (I J changes the default mode for the char type to unsigned).
See Section 4.2, "Type Specifiers," of the Microsoft C Compiler
Language Reference. .

Converting from Previous Versions of the Compiler

• The syntax for making function calls with a variable number of ar­
guments has changed. The following two declarations contrast the
old form and the new form:

int func (int,) ; 1* Forward declaration in

** old syntax
*1

int func (int, ...) ; 1* Forward declaration in

** new syntax
*1

This change was made to conform to changes in the ANSI standard
for the C language. Both forms are supported in Version 4.0 of the
Microsoft C Compiler, so you do not have to change existing source
code. Microsoft recommends the use of the new form in all pro­
grams.

• The compiler formerly allowed arbitrary strings of characters after
a syntactically correct preprocessor command. To conform to the
new ANSI standard, this is no longer allowed, and causes the com­
piler to generate the following warning message:

#endif Block ends here

Such strings must now be enclosed in comment delimiters, as in the
following example:

#endif 1* Block ends here *1

• Names of types defined with typedef are no longer considered key­
words, as they were in Version 3.0. These names are now in the
same naming class as names of functions and variables, and can be
redefined in a nested block. See Section 3.6, "Naming Classes," of
the Microsoft C Compiler Language Reference.

• The # pragma directive is now supported. A "pragma" is an in­
struction to the compiler. Its syntax is similar to the syntax of
preprocessor directives, but its purpose is different. The syntax is as
follows:

pragma charstring

The only pragma instruction supported in the Microsoft C Com­
piler, Version 4.0, is the check_ stack pragma. This pragma is
specific to MS-DOS, and is discussed in greater detail in Section
9.10.1, "Removing Stack Probes."

321

Microsoft C Compiler User's Guide

• Hexadecimal and octal integer constants are handled differently in
Version 4.0 than in Version 3.0. See the Microsoft C Compiler
Language Reference for more information.

• The extended keywords fortran, pascal, cdecl, far, near, and
huge are enabled by default in Version 4.0. They can be disabled by
giving the / Za option on the command line.

• Two new reserved words, const and volatile, will be implemented
in future releases.

• In Version 3.0, when a short pointer is converted to type long int,
it is first converted to type short int, then to long inti as a result,
in Version 3.0 the expression in the if statement evaluates as true in
the following fragment:

char *ptr = NULL:
long i:

i = (long) ptr:
if (i == OL) {

}

In Version 4.0, the conversion of short pointers to long integers has
been changed so it conforms to the order in which the compiler does
all other conversions that increase the length of a variable, namely,
first the size, then the mode. (For example, the compiler converts a
variable with type char to type unsigned long by first converting
it to signed long, then to unsigned long.) Because of this change,
the preceding code now converts ptr to a far pointer by loading the
appropriate segment register value, then changing that to a long in­
teger. The expression following the if statement would most likely
be false in Version 4.0, since the segment registers do not usually
contain zero.

F.2.3 New Features for the MS-DOS
Implementation of C

The MS-DOS implementation of the C compiler has been enhanced to in­
clude the following features:

322

Converting from Previous Versions of the Compiler

• Two new memory models: huge and compact

• The huge, signed, and cdecl keywords

• A pragma (check_ stack) to control stack checking

• The / J option to change the default mode for the char type to
unsigned

• The /Gc option to specify the alternate call/return sequence and
naming conventions used in Microsoft Pascal and Microsoft
FORTRAN

All these features are discussed in Chapter 8, "Working with Memory
Models," and Chapter 9, "Advanced Topics." In most cases, they will not
affect existing source code. However, you may be able to improve your ex­
isting programs by modifying them to take advantage of the new memory
models or the huge keyword.

F.2.4 New Library Routines and Include Files

New library routines and include files have been added to Version 4.0 of the
Microsoft C Compiler. In some cases you may wish to modify existing
source code to take advantage of new library routines and include files. The
new library routines are listed below:

alloca fmsbintoieee _nmalloc strnicmp
_clear87 _fmsize _nmsize strstr
_contro187 _fpreset onexit strtod
dieeetoms bin _freect remove strtol
difftime halloc rmtmp tempnam
dms bintoieee hfree setvbuf tmpfile
execlpe lfind spawnlpe tmpnam
execvpe lsearch spawnvpe vfprintf
_expand _memavl stackavail vprintf
_ffree memiemp _status87 vsprintf
fieeetoms bin _msize strerror
_fmalloc _nfree stricmp

The new include files are listed below:

File

float.h

limits.h

Purpose

Defines values used in floating-point operations

Defines upper and lower limits for various types

323

Microsoft C Compiler User's Guide

stdarg.h

stddef.h

varargs.h

Defines a complete set of typedefs and macros that
can be used to write portable programs that can
handle functions with variable-length argument
lists; designed to be compatible with the proposed
ANSI standard for C

Defines standard values such as NULL and errno

Defines a complete set of typedefs and macros that
can be used to write portable programs that can
handle functions with variable-length argument
lists; designed to be compatible with UNIX System
V

For more information about the new library routines and include files, see
the Microsoft C Compiler Library Reference.

F.2.5 Changes in Library-Routine Syntax

In order to conform to the developing ANSI standard, the order of the
parameters in the rename function has been changed. The syntax for Ver­
sion 3.0 is as follows:

rename{ newname, oldname)

The following is the syntax for Version 4.0:

rename{ oldname, newname)

F.3 Differences Between Version 4.0
and Versions Prior to 3.0

The changes made since Version 3.0 are designed to conform to the ANSI
standard for the C language (still under development), and to the original
language definition. Some features of versions 2.03 and earlier were not
compatible with these standards; such features were eliminated or changed
in Version 3.0. The changes in versions 3.0 and later also provide greater
portability of source code, particularly in the run-time library.

324

Converting from Previous Versions of the Compiler

An include file, v2tov3.h, accompanies your compiler software to help you
run Microsoft C programs developed with versions prior to Version 3.0
under more recent versions of the compiler.

The following sections describe language, run-time-library, and assembly­
language differences in detail, and outline strategies for converting existing
programs.

F.3.1 Language-Definition Differences

This section lists differences in the definition of the C language between
versions 3.0 and later, and prior versions. The differences are listed by sec­
tion number from Appendix A of The C Programming Language, by Brian
Kernighan and Dennis Ritchie, published in 1978 by Prentice-Hall.

Section Number
Kernighan and Ritchie

2.1

2.2

2.4.3

Differences in
Versions of Microsoft C

Comments do not nest in versions 3.0
and later. Versions 2.03 and earlier per­
mitted nesting of comments, unless nest­
ing was deliberately turned off with a
command-line option. Code containing
nested comments will not compile
correctly under versions 3.0 and later. In
versions 3.0 and later, you can suppress
compilation of program sections that
contain comments by using a preproces­
sor directive (# if).

Under versions 3.0 and later, identifiers
must begin with a letter of the alphabet
(uppercase or lowercase) or the under­
score character (_). The same characters
plus the digits 0-9 are allowed for the
rest of the identifier. Versions 2.03 and
earlier also allow the dollar sign charac­
ter ($) in identifiers. This is no longer
permitted; code containing dollar signs in
identifiers will not compile correctly
under versions 3.0 and later.

Multicharacter char constants are
allowed under versions 2.03 and earlier,
but are not permitted under versions 3.0

325

Microsoft C Compiler User's Guide

2.5

4

7.1

326

and later. Code containing multicharac­
ter char constants will not compile
correctly under versions 3.0 and later.

Every C string is unique. A string can ini­
tialize an array and can be modified at
run time. Versions 3.0 and later give
every string separate storage, whether or
not a string is identical to another string
in the program. Versions 2.03 and earlier
detect whether or not two strings are the
same and store only one instance of the
string. Existing programs that depend
on common storage for identical string
literals will not run properly under ver­
sions 3.0 and later.

Versions 3.0 and later implement the
char type as a signed quantity, and pro­
vide the unsigned char type to
represent unsigned quantities of the same
size. Versions 2.03 and earlier treat the
char type as unsigned. Programs that
depend on the char type being unsigned
will not run properly under versions 3.0
and later.

Versions 3.0 and later implement the
unsigned long type, a feature not pro­
vided in previous versions.

The enumeration type is also provided in
versions 3.0 and later. Previous versions
did not offer this feature.

In versions 3.0 and later, an array or
function identifier is considered an
address: a constant pointer to the named
array or procedure. You can express the
address of the array or function simply
by giving the identifier. Under versions
2.03 and earlier, the address-of operator
(&) must be applied to an array or func­
tion name to express the address of the
array or function. Expressions that use
this convention will produce unexpected
results under versions 3.0 and later.

7.2

7.6-7.7

8.5

11.2

Converting from Previous Versions of the Compiler

In versions 3.0 and later, the name of a
structure or union variable represents the
value of that structure or union. In ver­
sions 2.03 and earlier, the name of a
structure or union represents the address
of the structure or union. Expressions
that depend on this convention will pro­
duce unexpected results under versions
3.0 and later.

In versions 3.0 and later, casting a value
to a pointer type produces an lvalue.
This was not true in previous versions.

The relational and equality operators
perform the usual arithmetic conversions
in versions 3.0 and later. In versions 2.03
and earlier, the right operand is con­
verted to the type of the left operand.

Versions 3.0 and later allocate bit fields
low order to high order, whereas versions
2.03 and earlier allocate bit fields high
order to low order.

Versions 3.0 and later differ from earlier
versions in their treatment of uninitial­
ized variables declared outside functions
(at the external level). A variable
declaration at the external level that
lacks both a storage-class specifier and
initializer is treated either as a reference
to a definition of the variable elsewhere
in the program, or, if no definition
appears, as a "communal" variable that
is allocated storage by the linker and is
initialized to 0 when the program is
loaded. In previous versions, the variable
was allocated storage and initialized at
compile time.

327

Microsoft C Compiler User's Guide

12

14.1

14.3

328

Versions 3.0 and later add several
new features to the C preprocessor.
The special constant expression
defined(identifier) can follow any # if or
elif directive. For example, the follow­
ing two lines have the same effect:

#if defined (ANYTHING)

#ifdef ANYTHING

The new # elif directive allows for "else­
if" clauses in # if blocks.

In versions 3.0 and later, the number sign
(#) introducing the preprocessor direc­
tive can be preceded on the same line by
any combination of tabs and spaces. In
previous versions, the number sign had to
be the first character of the line.

Macro definitions can occupy more than
one line in versions 3.0 and later. The
new-line character is preceded by a
backslash (\) to indicate continuation.
Earlier versions do not allow continua­
tion.

Under versions 3.0 and later, structures
and unions can be assigned values,
passed as arguments to functions, and
returned from functions. Earlier versions
do not support these features.

Versions 3.0 and later allow you to check
array limits by comparing pointer values
against the address just beyond the end
of the array. Earlier versions also allow
this, but they warn that you have
exceeded the array bounds. For example,
the following code fragment checks for
the bounds of an array:

15

Miscellaneous

Converting from Previous Versions of the Compiler

int a [MAX] ;
proc ()

{
int *p;

if (p < &a[MAX]) {

}
}

Versions 3.0 and later accept this con­
structi?n, while earlier versions generate
a warmng message.

The logical-AND and -OR operators (&&
and ::, respectively) can be used in con­
stant expressions. These operators were
inadvertently omitted from the language
reference in previous versions.

Versions 3.0 and later make conservative
assumptions about aliases through
pointer variables. This means that, in the
optimizing stage, the compiler assumes
that a memory location referenced
indirectly through a pointer variable may
also be referenced directly, by another
name. The possibility that a program
uses aliases (references to the same loca­
tion by different names) restricts some of
the compiler's optimizing procedures.
You can use a command-line option with
versions 3.0 and later to override the con­
servative assumptions, allowing the com­
piler greater freedom in optimization.

Earlier versions do not make any
assumptions about aliases and do not
restrict optimization.

329

Mierosoft C Compiler User's Guide

F.3.2 Run-Time-Library Differences

Many of the library routines documented in versions 2.03 and earlier will
run without change under versions 3.0 and later. However, some routines
are supported in versions 3.0 and later under a different function name or
syntax. These routines are described in detail below. The changes to the
routines are designed to provide greater compatibility with UNIX and
XENIX standard libraries.

The include file v2tov3.h provided with your compiler software allows you
to use the modified routines in their original form under versions 3.0 and
later. In many cases, you can convert your programs by including
v2tov3.h, without having to change your source code.

Some routines supported under Version 2.03 are not supported under ver­
sions 3.0 and later. The following routines from Version 2.03 are not sup­
ported in any form under versions 3.0 and later:

330

Version 2.03 Routines

allmem

getmem

peek

poke

rlsmem

rbrk

repmem

rstmem

sizmem

stearg

stccpy

stcd_i

stch_i

stci_ d

stcpam

stcpm

Definition

Level-2 memory allocation

Level-2 memory allocation

Utility

Utility

Level-2 memory allocation

Level-l memory allocation

Utility

Level-2 memory allocation

Level-2 memory allocation

String manipulation

String manipulation

String manipulation

String manipulation

String manipulation

String manipulation

String manipulation

Converting from Previous Versions of the Compiler

stcu_d

stpblk

stpsym

stptok

stspfp

String manipulation

String manipulation

String manipulation

String manipulation

String manipulation

If your program uses any of the above routines, you must provide your own
definition of the routine or alter the code to remove the call to the routine.

The following functions and macros are supported in versions 3.0 and later
in a slightly different manner than in previous versions. The routines are
listed under their Version 2.03 names; the sections that follow describe the
differences between the versions.

abs
creat
fopen
freopen

iscsym
iscsymf
max
min

movmem
open
setmem
setnbuf

steis
steisn
stclen
stpbrk

stpchr
stscmp

Use the include file v2tov3.h, or the appropriate definitions from
v2tov3.h, if your program calls any of the above routines. The remain­
der of this section summarizes the cnanges to each of the above routines,
and lists the corresponding definition from v2tov3.h that provides com­
patibility.

F.3.2.1 abs

The macro abs is defined in the include file v2tov3.h as follows:

#define abs(a,b) (((a) < 0)) ? -(a) : (a))

If abs is not defined as a macro, it will be interpreted as a call to the stan­
dard math library function abs.

In previous versions, the abs, min, and max macros were defined in
stdio.h.

331

Microsoft C Compiler User's Guide

F .3.2.2 creat

The previous version of this function differs from the versions 3.0 and later
in two ways. In versions 3.0 and later, the permission bits specified in the
mode argument control access to the created file. For example, if a file is
opened for reading, an attempt to write to the file causes an error. Versions
2.03 and earlier do not guarantee this interpretation of the permission bits.

Versions 2.03 and earlier allow the user to create a file in binary mode
by giving the O_RA W flag in the creat call. The flag can be joined with
the permission-setting arguments through the use of the bitwise-OR opera­
tor C).

Versions 3.0 and later maintain a distinction between the permission set­
ting of a file and the file-translation mode. You can specify the permis-
sion setting of a file when you create it using the creat routine, but you
cannot join the translation flag with the file-permission setting. The creat
routine creates a file in the current default mode, whether that is text mode
or binary mode. You can change the default mode for a single file with the
setmode function, or change the default mode for all opened files from text
mode to binary mode by linking with BINMODE.OBJ. The
BINMODE.OBJ file is discussed in Section 9.12, "Controlling Binary and
Text Modes."

You can also control the translation mode of a particular file by giving an
appropriate flag when you open the file. See the discussion of open later in
this section.

The O_RA W flag is renamed to O_BINARY in versions 3.0 and later;
v2tov3.h can be included to define O_RAW as O_BINARY. However,
the user is responsible for removing the O_RA W flag from calls to creat
and for providing appropriate calls to open instead.

Example

int infile;
/* VERSIONS 2.03 AND EARLIER */

infile = creat("test.dat", O---.RAW);

/* EQUIVALENT CALL IN VERSIONS 3.0 AND LATER */
infile open ("test.dat",

(O_CREAT I O_TRUNC I O_BINARY I O-RDWR) ,
(S_IREAD I S_IWRITE));

This example shows a call to creat in Version 2.03 and an equivalent call
in versions 3.0 and later. The call to open specifies the O_CREAT and

332

Converting from Previous Versions of the Compiler

o_TRUNe flags, thus accomplishing the same task as the creat call. Using
open, rather than creat, is recommended for new code.

F .3.2.3 fopen, freopen

In versions 3.0 and later, when a file is opened for appending ("a" or
"at" type), all write operations occur at the end of the file. Although
the file pointer can be repositioned using fseek or rewind, the file pointer
is always returned to the end of the file before any write operation is car­
ried out.

In versions 2.03 and earlier, when a file is opened for appending, the file
pointer is initially positioned at the end of the file. All write operations
occur at the current position of the file pointer; if the file pointer is reposi­
tioned (using fseek or rewind), any write operations will be carried out at
the new position.

F.3.2.4 iscsym, iscsymf

These macros are extensions to the character-classification (ctype) macros.
Versions 3.0 and later do not include the iscsym and iscsymf macros in
the ctype set, but you can continue to use them by including the file
v2tov3.h along with the ctype.h file.

The v2tov3.h file defines these macros as follows:

#define iscsyrn(c)
#define iscsyrnf(c)

(isalnurn (c) I I ((c) == I _ I))

(isalpha(c) II ((c) == I_I))

The Version 3.0 definition of iscsYInf produces a slightly different result
than produced by previous versions, since versions 3.0 and later do not
allow the dollar sign ($) as a character in identifiers. Note that if the argu­
ment c has side effects, the results of these macros are unpredictable.

F.3.2.5 max

The macro max is defined in the include file v2tov3.h as follows:

#define max(a,b) (((a) > (b)) ? (a) : (b))

In previous versions, the abs, min, and max macros were defined in
stdio.h.

333

Microsoft C Compiler User's Guide

F .3.2.6 min

The macro min is defined in the include file v2tov3.h as follows:

#define min (a,b) (((a) < (b» ? (a) : (b»

In previous versions, the abs, min, and max macros were defined in
stdio.h.

F.3.2.7 movmem

This routine copies a specified number of characters from a given source
string to a given destination string. The movmem routine handles the
transfer correctly in cases where the source and destination strings overlap.

The Version 3.0 routine memcpy performs the same task as the movmem
routine, but the arguments are given in a different order. The include file
v2tov3.h defines movmem as follows:

#define movmem(sl d , n) memcpy(d , s, n)

F .3.2.8 open

The open routine has the same basic form and function in versions 3.0 and
later as it does in earlier versions, with the following two exceptions:

1. The flag for binary mode is named O_BINARY instead of
O~W.

2. The pmode argument is required when 0_ CREAT is specified.

To process a program that uses the O_RA W flag in the call to open,
include v2tov3.h or the following definition in your program:

#define o~w

The Version 3.0 open routine takes a third argument. The third argument
gives the permission setting of the file; it is optional except when using the
O_CREAT flag to create a new file.

334

Converting from Previous Versions of the Compiler

F.3.2.9 setnnenn

This routine sets a specified number of bytes in a buffer to a given charac­
ter. The Version 3.0 routine nnennset performs the same task as the
setnnenn routine, but the arguments are given in a different order. The
include file v2tov3.h defines setnnenn as follows:

#define setmem(p, n, c) memset(p, c, n)

F .3.2.10 setnbuf

The setnbuf routine sets up an empty buffer and is equivalent to the fol­
lowing call:

setbuf (stream, NULL):

Versions 3.0 and later support the setnbuf routine through the following
definition in v2tov3.h:

#define setnbuf(stream) setbuf(stream, NULL)

F .3.2.11 steis, steisn, stclen, stpbrk, stpchr, stscnnp

These routines are renamed in versions 3.0 and later, but otherwise func­
tion the same as in versions 2.03 and earlier. The names in versions 3.0 and
later are as follows:

Version 2.03 Nanne

steis

stcisn

stclen

stpbrk

stpchr

stscnnp

Version 3.0 Nanne

strspn

strcspn

strlen

strpbrk

strchr

strcnnp

336

Microsoft C Compiler User's Guide

You can continue using these routines under their Version 2.03 names by
including v2tov3.h or the following definitions in your program:

#define stcis(sl, s2)
#define stcisn(sl, s2)
#define stclen(s)
#define stpbrk(s, b)
#define stpchr(s, c)
#define stscmp(sl, s2)

strspn(sl, s2)
strcspn(sl, 32)
strlen(s)
strpbrk(s, b)
strchr(s, c)
strcmp(sl, s2)

F .3.3 Differences in
Assembly-Language Interface

This section covers the basics of converting assembly-language routines
written for versions 2.03 and earlier to run with versions 3.0 and later.
Much of the information in this section is also presented in Section 10.2,
"Assembly-Language Interface"; this discussion attempts to consolidate the
information to make the task of conversion easier. For additional
assembly-language information not found below, see Section 10.2.

Assembly-language routines that are compatible with versions 2.03 and ear­
lier differ from Version 3.0-compatible routines in the following five basic
areas:

1. Register-usage conventions

2. Local variable access (stack setup)

3. Subroutine entry/exit code

4. Global variable naming conventions

5. Segment usage and naming

Each of these areas is discussed in detail below.

F .3.3.1 Register-Usage Conventions

The S- and P-model programs of Version 2.03 correspond to the small- and
medium-mo"del programs of versions 3.0 and later. In S- and P-model pro­
grams under Version 2.03, ES is always assumed to point to the same seg­
ment as SS and DS. However, the "mixed-model" programming supported
by versions 3.0 and later allows data in segments outside DS to be
accessed. In mixed-model programs, the compiler uses ES to reference data
outside the data segment (DS). Therefore, ES may not always contain the

336

Converting from Previous Versions of the Compiler

same value as SS and DS. (Note that SS and DS always contain the same
value in Version 3.0 small- and medium-model programs, unless specifically
overridden with the u or w flag in the / A option.)

Versions 3.0 and later also expect the direction flag of the 8086/8088 pro­
cessor to be cleared at all times. Therefore, if the assembly routine sets the
direction flag, it must clear it (using the OLD instruction) before calling or
returning to a C function. This is not required in Version 2.03.

Versions 3.0 and later implement register variables. These were not avail­
able in previous versions. The Version 4.0 (and 3.0) compilers allow up to
two register variables per function. (More than two may be declared, but
the extra register requests will be ignored.)

The compiler uses the SI and DI registers to store any register variables.
This means that any routine that uses either the SI or DI register must
save the register contents upon entry to the subroutine and must restore
the original contents before exiting. The compiler handles this automati­
cally for 0 routines, but the user is responsible for providing the necessary
instructions in assembly routines. Any assembly routine called from a C
function that uses either or both of the SI and DI registers should I?ush the
values of the registers onto the local stack (after the stack is set up) and
pop them off the stack before returning to the calling routine.

In the reverse case, where an assembly routine calls a C function, these
instructions are not necessary, since the C function automatically saves and
restores SI and DI. Since the assembly routine can rely on the values in
these registers being preserved across calls to C routines, the registers may
not need to be reloaded as often. This assumption may allow more efficient
register usage in the assembly routine. See Section F.3.3.2 for an example.

337

Microsoft C Compiler User's Guide

F .3.3.2 Stack Setup and Subroutine Entry /Exit Code

All versions of the C compiler use BP as a "frame pointer." Local variables
and parameters (also called the "stack frame") are always accessed using
offsets from the :SP register. However, versions 3.0 and later differ from
earlier versions of the compiler in the entry/exit sequences for subroutines
and in the setup of the local stack for subroutine calls.

Figures F.1 and F.2 show the stack frame setups under Version 2.03 and
Version 3.0, respectively.

HIGH MEMORY
Caller's stack frame

-Caller's BP

Parameters, if any

Return address (2 or 4 bytes)

Saved value of caller's BP 1-

Local variables and temporaries, if any
LOW MEMORY ... SP, new BP

Figure F.l Version 2.03 Stack Frame Setup

338

Converting from Previous Versions of the Compiler

HIGH MEMORY
Caller's stack frame ...
Parameters, if any

Return address (2 or 4 bytes)

Saved value of caller's BP
NewBP

Local variables and temporaries, if any

Saved values of SI and DI, if needed
LOW MEMORY -- SP

Figure F.2 Version 3.0 Stack Frame Setup

The differences in these two setups are reflected in the entry and exit code
sequences for subroutine calls and in the locations for local variables and
parameters.

In versions 3.0 and later, parameter references are positive offsets from BP.
Local variable references are negative offsets from BP. The first parameter
occurs at either [BP+4] or [BP+6]., depending on whether the routine was
called using a near call (2-byte address) or a far call (4-byte address).

In Version 2.03, all parameters and local variables are referenced via posi­
tive offsets from the BP register. The offset to the first parameter can be
calculated as (n+4) or (n+6), depending on whether the routine is accessed
by a near or far call. The value n is the number of bytes of local storage
allocated following the saved caller's frame pointer. Frequently n is zero, in
which case parameter offsets in versions 2.03 and 3.0 are identical.

The versions also differ in the handling of stack checking and stack alloca­
tion for local variables other than parameters. In Version 2.03, when stack­
overflow checking is enabled, the number of bytes of local storage desired
(which should be a positive even number in all cases) is subtracted from the
stack pointer (SP). The resulting value is compared to a predefined limit
value. If the value is less than the limit, a routine named XCOVF is called
to report the stack-overflow error and terminate the program. If stack
checking is disabled, the number of bytes is subtracted from the stack
pointer and no overflow checking is performed.

339

Microsoft C Compiler User's Guide

Versions 3.0 and later use the _chkstk routine for stack checking. (The
_chkstk routine was chosen to help ensure compatibility with XENIX C
compilers.) The _chkstk routine performs stack checking and produces an
error message when appropriate. If stack-overflow checking is enabled (the
default), the number of bytes of stack space desired is stored in the AX
register and the _chkstk routine is called. The _chkstk routine deter­
mines if the request will cause the stack to overflow. If so, _chkstk pro­
duces an error message to this effect and terminates the program. Other­
wise the routine subtracts the given value from the stack pointer and
returns. If stack checking is disabled (using the / Gs or / Ox option or the
check_ stack pragma), the compiler simply subtracts the requested
number of bytes from the stack pointer and continues.

Because of the differences in stack setups, exit sequences for versions 3.0
and later also differ from previous versions. In versions 3.0 and later, the
called routine sets SP to the same value as BP. This has the effect of
removing local variables from the stack and causing SP to point to the
location where the caller's BP was stored. The called routine then pops the
caller's saved frame pointer back into BP and returns. The calling routine
is responsible for readjusting SP by adding the number of bytes of argu­
ments that were pushed.

In Version 2.03 the called routine adds the number of bytes of local vari­
ables and temporaries to SP, thus causing SP to point to the location of
the saved caller's frame pointer. Then the called routine pops the saved
frame pointer into BP and returns. After the return, the calling routine
must restore the stack pointer by copying the value of BP into SP.

The examples below show typical entry/exit sequences for versions 2.03 and
3.0. Both examples assume that stack checking is disabled and that 8 bytes
is the amount of local-variable space required.

The following is the entry/exit sequence for Version 2.03:

ENTRY: push bp ;save caller's frame pointer (BP)

EXIT:

340

sub sp / 8 ;allocate local-variable space on stack
mov bp/sp ;new frame pointer points to bottom

add sp / 8
pop bp
ret

of stack

;deallocate local-variable space
;restore caller's frame pointer
;appropriate to type of call

Converting from Previous Versions of the Compiler

The following is the entry/exit sequence for Version 3.0:

ENTRY:

EXIT:

push bp
mov bp,sp
sub sp,8
push di
push si

pop si
pop di

mov sp,bp
pop bp
ret

;save caller's frame pointer (SP)
; frame pointer points to old BP
;allocate local-variable space on stack
;required only if routine changes di
;required only if routine changes si

; required only if si saved on entry
; required only if di saved on entry

; remove local-variable space
;restore caller's frame pointer

Despite the differences listed above, it is not strictly necessary to change
the entry/exit sequence of your assembly routines from Version 2.03 to Ver­
sion 4.0 (or 3.0) unless your routines attempt to check for stack overflow or
use the 81 and DI registers. For all other contexts, the setup of the local
stack is irrelevant. The parameters are pushed onto the stack in the same
way in both versions; the local-variable access method is always defined by
the routine itself, so any method can be used. The exit sequences of both
versions work in essentially the same manner and return to the calling rou­
tine with the stack pointer in the same position.

However, changing your code to conform to the Version 3.0 format is still
recommended. Debugging will be much easier if your programs consistently
use one stack format instead of two.

F .3.3.3 Global-Variable Naming Conventions

In versions 2.03 and earlier, a global name such as XYZ causes a public
definition of the name XYZ to be put in the object module. In versions 3.0
and later, for reasons of compatibility with XENIX compilers, an under­
score is added to the beginning of the global name when the public
definition is put in the object module. For example, the global name XYZ
in the source file produces a public definition for the name .-XYZ in the
object module.

The underscore convention in versions 3.0 and later means that the name of
any assembly routine called from a Version 4.0 (or 3.0) program must be
defined with a leading underscore in the assembly routine. The C program
calls the assembly routine without the leading underscore, since the under­
score is automatically added by the compiler. For example, the name of an

341

Microsoft C Compiler User's Guide

assembly routine might be defined as _strdo; the corresponding call in the
C program would be strdo (...).

Another difference between the compilers arises in the area of case sensi­
tivity. In Version 2.03, external names are not case sensitive; in versions 3.0
and later, they are. However, when invoking the linker directly (through
the LINK command) with a Version 4.0 (or 3.0) program, case is ignored
by default. You can take advantage of this behavior when linking programs
from versions 2.03 and earlier. By contrast, the Version 4.0 (or 3.0)
compiler-control program CL.EXE, which can be used to invoke the
linker, automatically tells the linker not to ignore case.

Some assemblers are not sensitive to the case of external names, so care
must be taken when defining the name of an assembly routine in a C source
program.

F .3.3.4 Segment Usage and Naming

The structure of a Version 4.0 (or 3.0) program in memory differs slightly
from the Version 2.03 structure. Versions 3.0 and later have the same struc­
ture in all memory models. In Version 2.03 there are two different memory
layouts, depending on the memory model used. The Sand P models in Ver­
sion 2.03, which correspond to the small and medium models in versions 3.0
and later, use a different layout from Version 3.0. The Version 2.03 D and
L models use essentially the same layout as do Version 4.0 (or 3.0) pro­
grams, with the following two exceptions:

1. There is no equivalent to the Version 4.0 (or 3.0) segment for far
data.

2. In versions 2.03 and earlier, SS always points to the stack segment
base instead of DS. This is similar to specifying the letter u with
the memory-model (/ A) option in versions 3.0 and later.

The Version 2.03 S- and P-modellayouts and the Version 4.0 (or 3.0) layout
are shown in figures F.3 and FA, respectively.

342

Converting from Previous Versions of the Compiler

HIGH MEMORY .----------------, ~ SP (initial)

Stack

Dynamic memory

Static/global data

I--------------l ~ DS, SS, ES

Code
LOW MEMORY '---------------I~ CS

Figure F.3 Version 2.03 Layout for the Sand P Models

HIGH MEMORY
Dynamic memory

I---------------l ~ SP (initial)

Stack

Static/global data

I--------------l ~ DS, SS

Far static/global data

Code
LOW MEMORY '--__________ ---1 ~ CS

Figure F.4 Layouts for the 3.0 and 4.0 Versions

There are two main differences between the layouts shown above. First, in
Version 2.03, the stack resides above dynamic. memory. In versions 3.0 and
later, it resides below dynamic memory. The Version 3.0 layout means that
a program that uses little or no dynamic allocation requires much less space
for execution.

The second difference is more important for assembly programmers. Tn ver­
sions 3.0 and later, ES does not necessarily contain the same value as DS.
Versions 3.0 and later support the concept of "far" data in small- and
medium-model programs, while Version 2.03 does not. When far data items
are referenced, ES is used to hold the segment value for the far item. Since
the compiler has no way of knowing in advance that no far data will occur

343

Microsoft C Compiler User's Guide

in the program, it does not rely on ES being the same as DS. Instead, the
compiler loads ES whenever it is needed.

Assembly routines written to run with Version 2.03 S- and P-model pro­
grams may have relied on ES being the same as DS. Under versions 3.0 and
later, they must load DS into ES to be safe.

Some additional differences between the compilers in the naming of seg­
ments and classes are as follows:

e In Version 2.03, the code segments in an S-model program are all
given class PROG. In versions 3.0 and later, all code segments have
class CODE. In small model (Version 3.0 and Version 4.0) and
compact model (Version 4.0 only), the code segments are all named
_ TEXT by default; in medium and large models, each compiland
forms a segment named modulename_TEXT.

• In Version 2.03 S-model programs, the code segment is placed in a
group named PGROUP. In small-model (Version 3.0 and Version
4.0) and compact-model programs (Version 4.0 only), the code seg­
ment is not grouped.

Both versions use DGROUP to group the DATA and STACK segments
in all models.

The general rules and methods for accessing segments in both versions are
the same. Usually, the programmer should only be accessing the CODE,
_DATA, BSS, c_common, and STACK segments. (Other data segments
with class FAR_DATA or FAR_BSS can be useful in some cases.) See
Section 10.2.1, "Segment Model," in Chapter 10, "Interfaces with Other
Languages," for more information on what kinds of data items are stored in
each of the segments.

344

Appendix G
Writing Portable Programs

G.1 Introduction 347
G.2 Program Portability 348
G.3 l\1achine Hardware 348
G.3.1 Byte Length 348
G.3.2 Word Length 349
G.3.3 Storage Alignment 349
G.3.4 Byte Order in a Word 350
G.3.5 Bit Fields 351
G.3.6 Pointers 352
G.3.7 Address Space 353
G.3.8 Character Set 353
G.4
G.4.1
G.4.2
G.4.3
G.4.4
G.4.5
G.4.6

G.4.7
G.5
G.6

Compiler Differences 354
Signed/Unsigned char and Sign Extension
Shift Operations 354
Identifier Length 355
Register Variables 355
Type Conversion 356
Functions with a Variable
Number of Arguments 357
Side Effects and Evaluation Order 357

Environment Differences 358
Portability of Data 359

G.7 Byte-Ordering Sumrnary 360

354

345

Writing Portable Programs

G.l Introduction

The standard definition of the C programming language leaves many de­
tails to be decided in specific implementations of the language. These
unspecified features of the language detract from its portability and must
be studied when attempting to write portable C code.

Most of the issues affecting C portability arise from differences in either
target-machine hardware or compilers. C was designed to compile efficient
code for the target machine (initially a PDP-11), so many of the language
features not precisely defined are those that reflect a particular machine's
hardware characteristics.

This appendix highlights the various aspects of C that may not be portable
across different machines .and ,compHers. It ,also briefly discusses the porta­
bility of a C program in terms of its environment. The environment is
determined by the system calls and library routines a program uses during
execution, file path names it requires, and other items not guaranteed to be
constant across different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from small 8-bit microprocessors
to large mainframes. This appendix is concerned with the portability of C
code in the MS-DOS and XENIX programming environments. This is a
more restricted problem to consider, since all MS-DOS and XENIX operat­
ing systems to date run on hardware with the following basic characteris­
tics:

• ASCII character set

• 8-bit bytes

• 2-byte or 4-byte integers

• Two's complement arithmetic

These features are not formally defined for the language and may not be
found in all implementations of C. However, the remainder of this appendix
is devoted to those systems where these basic assumptions hold.

The C language definitio.n contains no specification of how input and out­
put are performed. These specifications are left to system calls and library
routines on individual systems. Within XENIX systems there are system
calls and library routines that can be considered portable. This version of
the Microsoft C Compiler includes system calls and library routines that

347

Microsoft C Compiler User's Guide

can be considered portable across XENIX and MS-DOS systems. The run­
time library for the Microsoft C Compiler for MS-DOS is composed primar­
ily of XENIX-compatible routines. By restricting the use of XENIX routines
to those included in the MS-DOS library, the XENIX programmer can
develop MS-DOS programs in the XENIX environment; C programs written
on MS-DOS are easily portable to XENIX.

This appendix is not intended as a C-Ianguage primer. It is assumed that
the reader is familiar with C, and with the basic architecture of common
microprocessors.

G.2 Program Portability

A program is portable if it can be compiled and run successfully on different
machines without alteration. There are many ways to write portable pro­
grams. The first is to avoid using inherently nonportable language
features. The second is to isolate any nonportable interactions with the
environment, such as I/O to nonstandard devices. For example, programs
should avoid hard-coded path names unless a path name is common to all
systems.

Files required at compile time (such as include files) may also introduce
nonportability if the path names used are not the same on all machines. In
some cases, include files containing machine-specific definitions can be used
to make the source code itself portable.

G.3 Machine Hardware

Differences in the hardware of the various target machines and differences
in the corresponding C compilers cause the greatest number of portability
problems. This section lists problems commonly encountered.

G.3.1 Byte Length

By definition, the char data type in C must be large enough to hold as
positive integers all members of a machine's character set. For the
machines described in this appendix, the char size is exactly an 8-bit byte.

348

Writing Portable Programs

G.3.2 Word Length

The size of the basic data types for a given implementation are not formally
defined in the C language. Thus they often follow the most natural size for
the underlying machine. It is safe to assume that short is no longer than
long. Beyond that, no assumptions are portable. For example, on some
machines short is the same length as int, whereas on others long is the
same length as into

Programs that need to know the size of a particular data type should avoid
hard-coded constants where possible. Such information can usually be writ­
ten in a fairly portable way. For example, the maximum positive integer (on
a two's complement machine) can be obtained with the following:

#define MAXPOS ((int) (((unsigned) -1) » 1»

This is preferable to the following code:

#ifdef PDP11
#define MAXPOS 32767
#else

#endif

To find the number of bytes in an int, use sizeof(int) rather than 2, 4, or
some other nonportable constant.

G.3.3 Storage Alignment

The C language defines no particular layout for storage of data items rela­
tive to each other. The layout for storage of elements of structures, or
unions within the structure or union, is also left undefined by the language.

Some processors require that data types longer than one byte be aligned on
even byte address boundaries. Others, such as the 8086/8088, have no such
hardware restriction. However, even with these machines, most compilers
generate code that aligns words, structures, arrays, and long words on even
addresses or on even long-word addresses. Therefore, the following code
sequence may give different results, depending on specific alignment
requirements on different machines:

349

Microsoft C Compiler User's Guide

struct stag {
char c;
int i;
};

printf("%d\n",sizeof(struct stag));

The principal implications of this variation in data storage are that data
accessed as nonprimitive data types are not portable, and code that makes
use of knowledge of the layout on a particular machine is not portable.

Therefore, unions containing structures are nonportable if the union is used
to access the same data in different ways. Unions are only likely to be port­
able if they are used only to store different data in the same space at
different times. For example, if the following union were used to obtain 4
bytes from a long word, the code would not be portable:

union {
char c[4];
long lw;
} u;

The sheof operator should always be used when reading and writing struc­
tures, as follows:

struct s_tag st;

write(fd, &st, sizeof(st));

Using the sizeof operator ensures portability of the source code, but does
not produce a portable data file. Portability of data is discussed in a later
section.

G.3.4 Byte Order in a,Word

The variation in byte order in a word affects the portability of data more
than the portability of source code. However, any program that makes use
of knowledge of the internal byte order in a word is not portable. For ex­
ample, on some XENIX systems there is an include file misc.h that contains
the following structure declaration:

360

1* * structure to access an
* integer in bytes
*1
struct {

char lobyte;
char hibyte;
};

Writing Portable Programs

With certain less restrictive compilers, this declaration could be used to
access the high- and low-order bytes of an integer separately and in a com­
pletely nonportable way. The correct way to do this is to use mask and
shift operations to extract the required byte.

#define LOBYTE (i) (i & Oxff)
#define HI BYTE (i) ((i» 8) & Oxff)

These definitions provide a portable way to extract the least-significant and
the next-least-significant bytes of an integer. Since the int type can be
either 2 or 4 bytes, depending on the machine, even these definitions do not
provide a completely portable way to access the bytes of an into

One result of the byte-ordering problem is that the following code sequence
will not always perform as intended:

int c = 0;

read(fd, &c, 1);

On machines where the low-order byte is stored first, the value of c is the
byte value read. On other machines, the byte is read into some byte other
than the low-order one, so the value of c is different.

G.3.5 Bit Fields

Bit fields are not implemented in all C compilers. The Microsoft C Com­
piler implements bit fields and allows them to have any length up to the
size of a long. However, in many implementations no bit field may be
larger than an int, and no bit field can overlap an int boundary. If neces­
sary, the compiler will leave gaps and move to the next int boundary. To
ensure portability no individual field should exceed 16 bits.

The C language makes no guarantees about whether bit fields are assigned
left to right or right to left. Therefore, while bit fields may be useful for
storing flags and other small data items, their use in unions to dissect bits
from other data is definitely nonportable.

351

Microsoft C Compiler User's Guide

G.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to
the extent that most compilers will not object to nonportable pointer
operations. A common nonportable use of pointers is the use of casts to
assign one pointer to another pointer of a different data type. This practice
almost always makes some assumption about the internal byte ordering
and layout of the data type, and is therefore nonportable. In the following
code, the byte order in the given array is not portable:

char c[4];
long *lp;

lp = (long *)&c[OJ;
*lp = Ox12345678L;

Code like this is very rarely necessary or valid. It is acceptable, however,
when using the rnalloc function to allocate space for variables that do not
have char type. The routine is declared as type char Ifc, and the return
value is cast to the type to be stored in the allocated memory. If this type is
not char Ifc, then a compiler may issue a warning concerning illegal type
conversion. In addition, the rnalloc function is designed always to return a
starting address suitable for storing all types of data. A compiler may not
know this, so it may give an additional warning about possible data align­
ment problems. In the following example, rnalloc is used to obtain memory
for an array of 50 integers:

extern char *malloc();
int *ip;

ip = (int *)malloc(50);

This example will elicit a warning message from some compilers.

The Microsoft C Compiler Language Reference states that a pointer can be
assigned (or cast) to an integer large enough to hold it. Note that the size
of the int type depends on the given machine and implementation. This
type is a long on some machines, and a short on others. The size may also
be modified by near and far declarations. In general, do not assume that
the following statement will always be true:

sizeof(char *) == sizeof(int)

362

Writing Portable Programs

For example, the following construction is nonportable, assuming that the
function identifier fune is not previously declared:

int p;
p = (char *)func();

This example assumes that a c'har pointer has the same length as an into

In most implementations, the null pointer value NULL is defined to be the
int value O. The length of the zero value can lead to problems for functions
that expect pointer arguments longer than an into For portable code,
always use the following form to pass a NULL value of the correct size:

func ((char *) NULL) ;

G.3.7 Address Space

The address space available to a program varies considerably from system
to system. Some small processors allow only 64K for program text and data
combined. Others allow up to 64K of data and 64K of program text. Larger
machines may allow considerably more text and possibly more data as well.

Large programs, or programs that require large data areas, may have por­
tability problems on small machines.

G.3.8 Character Set

The C language does not require the use of the ASCII character set. In fact,
the only character-set requirements are that all characters must fit in the
char data type, and all characters must have positive values.

In the ASCII character set, all characters have values between 0 and 127
and thus can be represented in 7 bits. On an 8-bits-per-byte machine they
are all positive, regardless of whether char is treated as signed or unsigned.

A set of character-classification macros is included as part of the run-time
library for the Microsoft C Compiler. These macros should be used for most
tests on character quantities. The macros are defined in the include file
CTYPE.H, and described in the Microsoft C Compiler Run- Time Library
Reference. They appear on the pages headed isalnum-isascii and iscntrl­
isxdigit.

363

Microsoft C Compiler User's Guide

The character-classification macros provide insulation from the internal
structure of the character set. In addition, the names of the macros are
often more meaningful than the equivalent line of code. Compare the fol­
lowing two lines:

if (isupper (c))

if ((c >= I A I) && (c <= I Z I))

With some of the other macros, such as isxdigit to test for a hexadecimal
digit, the advantage is even greater. Also, the internal implementation of
the macros makes them more efficient than an explicit test with an if
statement.

G.4 Compiler Differences

There are a number of C compilers running under various operating sys­
tems. The main areas of differences between compilers are outlined in this
section.

G.4.1 Signed/Unsigned char and Sign Extension

The current state of the signed versus unsigned char problem is best
described as unsatisfactory. The sign-extension problem is a serious barrier
to writing portable C, and the best solution at present is to write defensive
code that does not rely on particular implementation features.

G.4.2 Shift Operations

The left-shift operator (< <) shifts its operand a number of bits left, filling
vacated bits with zeros. This is called a logical shift. The right-shift opera­
tor (> >) when applied to an unsigned quantity, performs a logical-shift
operation, but when it is applied to a signed quantity, the vacated bits may
be filled with zeros (logical shift) or with sign bits (arithmetic shift). The
decision is implementation dependent, and code that uses knowledge of a
particular implementation is nonportable.

With compilers that use arithmetic right shift, it is necessary to shift and
mask the appropriate number of high-order bits to avoid sign extension, as
follows:

364

Writing Portable Programs

char c;

c = (c » 3) & Oxlf;

You can also avoid sign extension by using the divide operator (/), as fol­
lows:

char c·

C ::--= C / 8;

G.4.3 Identifier Length

The use of long symbols and identifier names will cause portability prob­
lems with some compilers. To avoid these problems, a program should keep
the following symbols as short as possible:

• C preprocessor symbols

• C local symbols

• C external symbols

Some loaders also place restrictions on the number of unique characters in
C external symbols. Symbols unique in the first six characters are unique
to most C-Ianguage processors.

In some C implementations, uppercase and lowercase letters are not dis­
tinct in identifiers.

G.4.4 Register Variables

The number and type of register variables in a function depend on the
machine hardware and the compiler. Excess and invalid register declara­
tions are treated as non register declarations and should not cause a porta­
bility problem. On an 8086 or 8088 processor, up to two register declara­
tions are significant, and they must be applied to types of size int or
smaller.

Since the compiler ignores excess variables of register type, the most impor­
tant register type variables should be declared first. Therefore, if any are
ignored, they will be the least important ones.

366

Microsoft C Compiler User's Guide

G.4.5 Type Conversion

The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is
a potential problem whenever something of type char is compared with
an into

The following example will never evaluate true on a machine that sign­
extends char types but treats hexadecimal numbers as unsigned:

char c;

if(c Ox80) {

}

The following construction is also nonportable:

char c;
unsigned int u;

if (u (unsigned) c) {

}

Two problems can arise in the preceding example:

1. The char type may be considered either signed or unsigned,
depending on the implementation.

2. For implementations that consider the char type to be signed, two
different methods of carrying out the conversion are possible: the
char value may be sign extended to int type first, then converted to
unsigned type; or the char type may be converted to an unsigned
type of the same size, then zero extended to int length.

The only safe comparison between char type and an int is the following:

366

Writing Portable Programs

int c;

if(c 'x') {

}

This comparison is reliable because C guarantees all character constants to
be positive.

Type conversion also occurs when arguments are passed to functions. Types
char and short become into Extending the char type can produce unex­
pected results. For example, the following program gives -128 on some
machines:

char c = 128;
printf ("%d\n" I c) ;

The unexpected negative value is produced because c is converted to int
when it is passed to the printf function. The function itself has no
knowledge of the original type of the argument and is expecting an into
The correct way to handle this situation is to code defensively and allow for
the possibility of sign extension, as in the following example:

char c = 128;
printf ("%d\n" I c & Oxff);

G.4.6 Functions with a Variable
Number of Arguments

Functions with a variable number of arguments present a particular porta­
bility problem if the type of the arguments is also variable. In such cases
the code is dependent on the size of various data types. For portability,
these cases should be avoided.

G.4.7 Side Effects and Evaluation Order

The C language makes few guarantees about the order of evaluation of
operands in an expression or arguments to a function call. Therefore, the
following statement is almost never portable:

func (i + + I i + +) ;

357

Microsoft C Compiler User's Guide

Even the following statement is unwise if fune is ever likely to be replaced
by a macro, since the macro may use i more than once:

fune (i++);

Certain XENIX-compatible macros commonly appear in user programs;
some of these use their argument only once, and therefore can safely be
called with a side-effect argument. To determine whether a macro handles
side effects correctly, examine the code for that macro to see whether or not
the argument is evaluated more than once.

Operands to the following operators are guaranteed to be evaluated left to
right:

&& II ?

Note that the comma operator here is a separator for two C statements. A
list of items separated by commas in a declaration list is not guaranteed to
be processed left to right. Therefore, the following declaration on an 8086
or 8088 processor, where only two register variables may be declared,
could give any two of the four variables register type, depending on the
compiler:

register int a, b, c, d;

To give register storage to the most important variables, use separate
declaration statements and declare the most important variables first. The
order of processing of individual declaration statements is guaranteed to be
sequential in the following statements:

register int a;
register int b;
register int e;
register int d;

G.5 Environment Differences

Most programs make system calls and use library routines for various ser­
vices. This section indicates some of those routines that are not always
portable and those that particularly aid portability.

358

Writing Portable Programs

System calls specific to an operating system are not portable if they
are not present on all other operating-system implementations of C. Most
of the system calls defined in the Microsoft MS-DOS run-time library are
compatible with XENIX system calls and are thus portable to a XENIX
environment.

Any program that contains hard-coded path names to files or directories, or
that contains user identifier numbers, log-in names, terminal lines or other
system-dependent parameters, is nonportable. These types of constants
should be in header files, passed as command-line arguments, or obtained
from the environment.

Note that the members of the printf family of functions, including fprintf,
fscanf, printf, sprintf, scanf, vfprintf, vprintf, vsprintf, and sscanf,
have evolved in several ways, and some features are not completely port­
able. Some of the format-conversion characters have changed their mean­
ings, in particular those relating to uppercase and lowercase in the output
of hexadecimal numbers and the specification of long integers on 16-bit
word machines. The Microsoft C specifications for these routines are given
in the Microsoft C Compiler Run- Time Library Reference.

G.6 Portability of Data

Data files are almost always nonportable across different central­
processing-unit (CPU) architectures. As mentioned above, structures,
unions, and arrays have varying internal layout and padding requirements
on different machines. In addition, byte ordering within words and actual
word length may differ.

The only way to achieve data-file portability is to write and read data files
as one-dimensional character arrays. trhis procedure prevents alignment
and padding problems if the data is written and read as characters, and
interpreted that way. Thus ASCII text files can usually be moved between
different machine types without significant problems.

359

Microsoft C Compiler User's Guide

G.7 Byte-Ordering Summary

Tables G.l and G.2 summarize byte ordering for short and long types,
respectively. The following conventions are used in these tables:

1. The lowest physically-addressed byte of the data item is aO; al has
the byte address aO + 1, and so on.

2. The least-significant byte of the data item is bO; bl is the next­
least-significant, and so on.

Since byte ordering is machine specific, any program that actually makes
use of the following information is guaranteed to be nonportable:

Table G.l

Byte Ordering for Short Types

CPU Byte Order

aO al
8086 hO hI
80286 hO hI
PDP-ll hO hI
VAX-II hO hI
M68000 hI hO
Z8000 hI hO

360

Writing Portable Programs

Table G.2

Byte Ordering for Long Types

CPU Byte Order

aO al a2 a3
8086 bO bi b2 b3
80286 bO bi b2 b3
PDP-ll b2 b3 bO bi
VAX-ll bO bi b2 b3
M68000 b3 b2 bi bO
Z8000 b3 b2 bi bO

361

Appendix H

Error Messages

H.1 Introduction 365
H.2
H.2.1
H.2.2
H.2.3

Run-Time Error Messages 365
Run-Time-Library Error Messages
Floating-Point Exceptions 368
Run-Time Limits 370

366

H.3 Compiler Error Messages 371
H.3.1 Warning Error Messages 373
H.3.2 Fatal Error Messages 382
H.3.3 Compilation Error Messages 387
H.3.4 Command-Line Error Messages 404
H.3.5 Compiler Limits 409
H.4 LINK Error Messages 410
H.5 Library-Manager Error Messages 417
H.6 MAKE Error Messages 421
H.7 EXEP ACK Error Messages 423
H.8 EXEMOD Error Messages 424
H.9 SETENV Error Messages 425

363

Error Messages

H.I Introduction

This appendix lists error messages you may encounter as you develop a
program, and gives a brief description of actions you can take to correct the
errors. The first section lists run-time errors. Run-time errors are errors
that may be encountered when running an executable file developed with
the C compiler.

The remaining sections describe errors generated by the following
programs:

• The Microsoft C Compiler

• The Microsoft Overlay Linker (LINK)

• The Microsoft Library Manager (LIB)

• The Microsoft Program Maintenance Utility (MAKE)

• The Microsoft EXE File Compression Utility (EXEP ACK)

• The Microsoft EXE File Header Utility (EXEMOD)

• The Microsoft Environment Manager (SETENV)

H.2 Run-Time Error Messages

Run-time error messages fall into four categories:

1. Error messages generated by the run-time library to notify you of
serious errors. These messages are listed and described below.

2. Floating-point exceptions generated by the 8087/80287 hardware or
the emulator. These exceptions are listed and described in Section
H.2.2.

3. Error messages generated by program calls to error-handling rou­
tines in the C run-time library (the abort, assert, and perror rou­
tines). These routines print an error message to standard error
whenever the program calls the given routine. For a description of
these routines and the corresponding error messages, see the Micro­
soft C Compiler Run- Time Library Reference.

365

Microsoft C Compiler User's Guide

4. Error messages generated by calls to math routines in the C run­
time library. On error, the math routines return an error value and
some print a message to the standard error. See the Microsoft C
Compiler Run- Time Library Reference for a description of the math
routines and corresponding error messages.

H.2.1 Run-Time-Library Error Messages

The following messages may be generated at run time when your program
has serious errors:

Number

2000

2001

366

Run-Time-Library Error Message

Stack overflow

Your program has run out of stack space. This can occur
when a program uses a large amount of local data or is
heavily recursive. The program is terminated with an exit
code of 255. To correct the problem, relink using the linker
/STACK option to allocate a large stack, or modify the
stack information in the executable-file header by using the
EXEMOn program.

Null pointer assignment

The contents of the NULL segment have changed in the
course of program execution. The NULL segment is a spe­
ciallocation in low memory that is not normally used. If
the contents of the NULL segment change during a
program's execution, it means that the program has written
to this area, usually by an inadvertent assignment through a
null pointer. Note that your program can contain null
pointers without generating this message; the message
appears only when you access a memory location through
the null pointer.

This error does not cause your program to terminate; the
error message is printed following the normal termination of
the program.

This message reflects a potentially serious error in your pro­
gram. Although a program that produces this error may
appear to operate correctly, it is likely to cause problems in
the future and may fail to run in a different operating
environment.

Number

2002

2003

2004

2005

2006

2007

Error Messages

Run-Time-Library Error Message

floating point not loaded

Your program needs the floating-point library, but the
library was not loaded. The error causes the program to be
terminated with an exit status of 255. This occurs in two
situations:

1. A format string for one of the routines in the printf
or seanf families contains a floating-point format
specification and there are no floating-point values
or variables in the program. The C compiler
attempts to minimize the size of a program by load­
ing floating-point support only when necessary.
Floating-point format specifications within format
strings are not detected, so the necessary floating­
point routines are not loaded. To correct this error
use a floating-point argument to correspond to the
floating-point format specification. This causes
floating-point support to be loaded.

2. The xLIBFP .LIB or xLIBF A.LIB library (where x
is S, M, C, L, or H, depending on the memory
model) was specified after xLIBC.LIB in the linking
stage. You must relink the program with the correct
library specification.

Integer divide by 0

An attempt was made to divide an integer by 0, giving an
undefined result.

DOS 2.0 or later required

The C compiler cannot run on versions of MS-DOS prior to
2.0.

Not enough memory on exec

Bad format on exec

Bad environment on exec

Errors 2005 through 2007 occur when a child process
spawned by one of the exec library routines fails, and MS­
DOS is unable to return control to the parent process.

367

Microsoft C Compiler User's Guide

Number

2008

2009

2011

2100

Run-Time-Library Error Message

Not enough space for arguments

See explanation under error 2009.

Not enough space for environment

Errors 2008 and 2009 both occur at start-up if there is
enough memory to load the program, but not enough room
for the argv and/or envp vectors. To avoid this problem,
you can rewrite the _ setargv or _ setenvp routines (see
Section 5.2.2, "Suppressing Command-Line Processing," for
more information).

Unknown error

Note the circumstances of the failure and notify Microsoft
Corporation using the Software Problem Report at the back
of this manual.

Floating point error: message

This error message is generated whenever a floating-point
exception occurs. The message describes the particular
floating-point exception that occurred. The messages that
can appear with this error are listed and described in the
next section.

H.2.2 Floating-Point Exceptions

The error messages listed below correspond to exceptions generated
by the 8087/80287 hardware. These messages appear with error 2100,
"Floating point error," as described in the previous section. Refer to the
Intel documentation for your processor for a detailed discussion of
hardware exceptions.

Using C's default 8087/80287 control-word settings, the following excep­
tions are masked and do not occur:

368

Exception

Denormal

Underflow

Inexact

Default Masked Action

Exception masked

Result goes to 0.0

Exception masked

Error Messages

For information on how to change the floating-point control word, see the
reference pages for _control87 in the Microsoft C Compiler Run- Time
Library Reference Manual.

The following errors do not occur with code generated by the Microsoft C
Compiler or provided in the Microsoft C Run-Time Library:

Square root
Stack underflow
Unemulated

The floating-point exceptions are listed and described below.

Floating point error: Denormal

A very small floating-point number was generated, which may no longer
be valid due to loss of significance. Denormals are normally masked,
causing them to be trapped and operated on.

Floating point error: Divide by 0

An attempt was made to divide by zero.

Floating point error: Integer overflow

Overflow on assigning a floating-point value to an integer.

Floating point error: Invalid

Invalid operation; usually involves operating on NANs or infinities.

Floating point error: Overflow

Overflow in floating-point operation.

Floating point error: Precision

Loss of precision occurred in a floating-point operation. This exception
is normally masked, since almost any floating-point operation can cause
loss of precision.

369

Microsoft C Compiler User's Guide

Floating point error: Stack overflow

A floating-point expression has used too many stack levels on the
8087/80287 or emulator. (Stack-overflow exceptions are trapped up to a
limit of seven additional levels beyond the eight levels normally sup­
ported by the 8087/80287 processor.)

Floating point error: Stack underflow

A floating-point operation resulted in a stack underflow on the
8087/80287 or emulator.

Floating point error: Square root

The operand in a square-root operation was negative. (Note: the sqrt
function in the C run-time library checks the argument before perform­
ing the operation and returns an error value if the operand is negative;
see the Microsoft C Compiler Run- Time Library Reference for details
on sqrt.)

Floating point error: Underflow

Underflow in a floating-point operation. (An underflow is normally
masked so that the operation yields the result 0.0.)

Floating point error: Unemulated

An attempt was made to execute an invalid 8087/80287 instruction or
an 8087/80287 instruction not supported by the emulator.

H.2.3 Run-Time Limits

Table H.1 summarizes the limits that apply to programs at run time. If
your program exceeds one of these limits, an error message will inform you
of the problem.

370

Error Messages

Table H.l

Program Limits at Run Time

Item Description

Files Maximum file size

Limit

232_1 bytes
(4 gigabytes)

Maximum number 20&

Command Line

Environment
Table

of open files (streams)

Maximum number of
characters (including
program name)

Maximum size

128

32K

a Five streams are opened automatically (stdin, stdout, stderr, stdaux, and
stdprn), leaving 15 files available for the program to open.

H.3 Compiler Error Messages

The error messages produced by the C compiler fall into five categories:

1. Warning messages

2. Fatal error messages

3. Compilation error messages

4. Command-line error messages

5. Compiler internal error messages

Warning messages are informational only; they do not prevent compilation
and linking. You can control the level of warnings generated by the
compiler by using the /W option, described in Chapter 3, "Compiling."
The list of warning messages in Section H.3.1 includes a number for each
message indicating the minimum level that must be set for the message to
appear.

Fatal error messages indicate a severe problem, one that prevents the
compiler from processing your program. After printing a message about
the fatal error, the compiler terminates without producing an object file or
checking for further errors.

371

Microsoft C Compiler User's Guide

Compilation error messages identify actual program errors. No object file is
produced for a source file that has such errors. When the compiler
encounters a nonfatal program error, it attempts to recover from the error.
If possible, the compiler continues to process the source file and produce
error messages. If errors are too numerous or too severe, the compiler
terminates processing.

Command-line messages give you information about invalid or inconsistent
command-line options. If possible, the compiler continues operation,
printing a warning message to indicate which command-line options are in
effect and which are disregarded. In some cases, command-line errors are
fatal, and the compiler terminates processing.

Compiler internal error messages indicate an error on the part of the
compiler rather than your program. These messages should not appear no
matter what your source program contains. If they do, please report the
condition to Microsoft, using the Software Problem Report at the back of
this manual. The following messages indicate internal compiler errors:

warning 0: UNKNOWN WARNING
Contact Microsoft Technical Support

fatal error 0: UNKNOWN FATAL ERROR
Contact Microsoft Technical Support

fatal error 1: Internal Compiler- Error
(compi ler fi Ie 'filename' / line linenumber)
Contact Microsoft Technical Support

error 0: UNKNOWN ERROR
Contact Microsoft Technical Support

error 124: CODE GENERATION ERROR
Contact Microsoft Technical Support

command line error 0: UNKNOWN COMMAND LINE ERROR
Contact Microsoft Technical Support

These messages are described in more detail in their respective sections.

Error messages in the warning-, fatal-, and compilation-error categories
have the same basic format, as follows:

filename (linenumber): message type errornumber: message

372

Error Messages

In this format, filename is the name of the source file being compiled. The
linenumber identifies the line of the file containing the error, and
messagetype is one of the following: warning, fat a 1 error, or err or
(for compilation errors). The errornumber is the number of the error and
message is a description of the error or warning.

Command-line error messages have a similar format, but they do not
contain references to file names or line numbers; their messagetype is
Command line error.

The messages for each category are listed below in numerical order, with a
brief explanation of each error. To look up an error message, first determine
the message category, then find the error number.

Section H.3.5, "Compiler Limits," summarizes limits imposed by the
Microsoft C Compiler (for example, the maximum size of a macro
defini tion).

H.3.1 Warning Error Messages

The messages listed in this section indicate potential problems but do not
hinder compilation and linking. The number in parentheses at the end of
each error-message description gives the minimum warning level that must
be set for the message to appear.

Number

o

1

2

Warning Error Message

UNKNOWN WARNING

Contact Microsoft Technical Support. An unknown error
condition has been detected by the compiler. Please report
this condition to Microsoft, using the Software Problem
Report form at the back of this manual.

macro 'identifier' requi res parameter s

The given identifier was defined as a macro taking one or
more arguments, but the identifier is used in the program
without arguments. (1)

too many actual parameters for macro
, identifier'

The number of actual arguments specified with an identifier
is greater than the number of formal parameters given in
the macro definition of the identifier. (1)

373

Microsoft C Compiler User's Guide

Number

3

4

5

6

9

11

13

14

15

374

Warning Error Message

not enough actual parameters for macro
, identifier'

The number of actual arguments specified with an identifier
is less than the number of formal parameters given in the
macro definition of the identifier. (1)

missing close parenthesis after 'defined'

The closing parenthesis is missing from an # if defined
phrase. (1)

'identifier' : redefinition

The given identifier is redefined. (1)

#undef expected an identifier

The name of the identifier whose definition is to be removed
must be given with the # undef directive.

string too big, trailing chars truncated

A string exceeds the compiler limit on string size. To correct
this problem, you must break the string into two or more
strings. (1)

identi fier truncated to 'identifier'

Only the first 31 characters of an identifier are significant.
(1)

constant too big

Information is lost because a constant value is too large to
be represented in the type to which it is assigned. (1)

'identifier' : bit field type must be unsigned

Bit fields must be declared as unsigned integral types. A
conversion has been supplied. (1)

'identifier' : bitfield type must be integral

Bit fields must be declared as unsigned integral types. A
conversion has been supplied. (1)

Number

16

17

20

21

22

24

25

Error Messages

Warning Error Message

, identifier' : no function return type [2]

Function identifier has not yet been declared or defined, so
no return type is known. The default return type (int) will
be assumed. (2)

cast of int expression to far pointer

A far pointer represents a full segmented address. On an
8086/8088 processor, casting an int value to a far pointer
may produce an address with a meaningless segment value.
(1)

too many actual parameters

The number of arguments specified in a function call is
greater than the number of parameters specified in the
argument-type list or in the function definition. (1)

too few actual parameters

The number of arguments specified in a function call is less
than the number of parameters specified in the argument­
type list or in the function definition. (1)

pointer mismatch: parameter n

The given parameter has a different pointer type than is
specified in the argument-type list or the function definition.
(1)

di fferent types : parameter n

The type of the given parameter in a function call does not
agree with the argument-type list or the function definition.
(1)

function declaration specified variable args

The argument-type list in a function declaration ends with a
comma, or a comma followed by ellipsis dots (, ...), indicat­
ing that the function can take a variable number of argu­
ments, but no formal parameters for the function are
declared. (1)

375

Microsoft C Compiler User's Guide

Number

26

27

28

29

30

31

32

376

Warning Error Message

function was declared with formal arguments

The function was declared to take arguments, but the func­
tion definition does not declare formal paralneters. (1)

function was declared without formal
argument list

The function was declared to take no argument (the
argument-type list consists of the word void) but formal
parameters are declared in the function definition or argu­
ments are given in a call to the function. (1)

parameter n declaration different

The type of the given parameter does not agree with the
corresponding type in the argument-type list or with the
corresponding formal parameter. (1)

declared parameter list different from
definition

The argument-type list given in a function declaration does
not agree with the types of the formal parameters given in
the function definition. (1)

first parameter list is longer than the
second

A function is declared more than once and the argument­
type lists in the declarations differ. (1)

second parameter list is longer than the
first

A function is declared more than once, and the argument­
type lists in the declarations differ. (1)

unnamed struct/union as parameter

The structure or union type being passed as an argument is
not named, so the declaration of the formal parameter can­
not use the name and must declare the type. (1)

Number

33

34

35

36

37

38

39

40

Error Messages

Warning Error Message

function must return a value

A function is expected to return a value unless it is declared
as void. (2)

sizeof returns 0

The sizeof operator is applied to an operand that yields a
size of zero. (1)

no return value

A function declared to return a value does not do so. (2)

unexpected formal parameter list

A formal parameter list is given in a function declaration
and is ignored. (1)

, identifier' : formal parameters ignored

Formal parameters appeared in a function declaration, as in
the following example:

The formal parameters are ignored. (1)

'identifier' : formal parameter has bad storage
class

Formal parameters must have auto or register storage
class. (1)

'identifier' : function used as an argument

A formal parameter to a function is declared to be a func­
tion, which is illegal. The formal parameter is converted to a
function pointer. (1)

near / far /huge on 'identifier' ignored

The near or far keyword has no effect in the declaration of
the given identifier and is ignored. (1)

377

Microsoft C Compiler User's Guide

Number

41

42

43

44

45

46

47

378

Warning Error Message

formal parameter 'identifier' is redefined

The given formal parameter is redefined in the function
body, making the corresponding actual argument unavail­
able in the function. (1)

'identifier' : has bad storage class

The specified storage class cannot be used in this context
(for example, function parameters cannot be given extern
class). The default storage class for that context is used in
place of the illegal class. (1)

, identifier' : void type changed to int

Only functions may be declared to have void type. (1)

huge on 'identifier' ignored, must be an array

The huge keyword can only be used in array declarations.
(1)

, identifier' : ar r ay bounds over flow

Too many initializers are present for the given array. The
excess initializers are ignored. (1)

'&' on function/array, ignored

You cannot apply the address-of operator to a function or
array identifier. (1)

'operator': different levels of indirection

An expression involving the specified operator has incon­
sistent levels of indirection, as in the following examples: (1)

char **p;
char *q;

p q;

Number

48

49

51

52

53

54

56

57

58

59

Error Messages

Warning Error Message

array's declared subscripts different

An array is declared twice with differing sizes. The larger
size is used. (1)

'operator' : indirection to di fferent types

The indirection operator (lie) is used in an expression to
access values of different types. (1)

data conversion

Two data items in an expression had different types, causing
the type of one item to be converted. (2)

different enum types

Two different enum types are used in an expression. (1)

at least one void operand

An expression with type void is used as an operand. (1)

, operator' : illegal wi th enums

You may not use the given operator with an enum value.
The enum value is converted to int type. (1)

overflow in constant arithmetic

The result of an operation exceeds Ox7FFFFFFF. (1)

overflow in constant multiplication

The result of an operation exceeds Ox7FFFFFFF. (1)

address of frame variable taken, DS != SS

Program was compiled with the default data segment (DS)
not equal to the stack segment (SS) and user attempted to
point to a frame variable with a near pointer. (1)

conversion lost segment

The conversion of a far pointer (a full segmented address)
to a near pointer (a segment offset) results in the loss of the
segment address. (1)

379

Microsoft C Compiler User's Guide

Number

60

61

62

63

64

65

380

Warning Error Message

conversion of a long address to a short
address

The conversion of a long address (a 32-bit pointer) to a
short address (a 16-bit pointer) results in the loss of the seg­
ment address. (1)

long/short mismatch in arguments: conversion
supplied

Actual and formal arguments of a function differ in base
type; actual argument will be converted to type of formal
parameter. (1)

near/far mismatch in arguments: conversion
supplied

Actual and formal arguments of a function differ in pointer
size; actual argument will be converted to size of formal
parameter. (1)

function 'identifier' too large for post­
optimizer

The named function was not optimized because insufficient
space was available. To correct this problem, reduce the
size of the function by dividing it into two or more smaller
functions. (0)

procedure too large- / skipping description
optimization and continuing

Some optimizations for a function are skipped because
insufficient space is available for optimization. To correct
this problem, reduce the size of the function by dividing it
into two or more smaller functions. The description in this
message may be any of the following: (0)

loop inversion
branch sequence
cross jump

recoverable heap overflow
in post optimizer - some optimizations may
be missed

Number

66

67

68

69

72

Error Messages

Warning Error Message

Some optimizations are skipped because insufficient space is
available for optimization. To correct this problem, reduce
the size of the function by dividing it into two or more
smaller functions. (0)

local symbol table overflow - some local
symbols may be missing in listings

Listing generator ran out of heap space for local variables,
so source listing may not contain symbol-table information
for all local variables.

unexpected characters following 'identifier'
directive - newline expected

There are extra characters following a preprocessor direc­
tive, such as the following:

#endif

This is accepted in Version 3.0, but not in 4.0; Version 4.0
requires comment delimiters, such as the following:

#endif

unknown pragma

The pragma used is unrecognized and ignored by the
compiler.

conversion of near pointer to long integer

A near pointer is being converted to a long integer, which
involves first extending the high-order word with the current
data-segment value, not 0, as in Version 3.0.

missing semi-colon

Mi~sing a semicolon following last member of structure or
unIOn.

381

Microsoft C Compiler User's Guide

H.3.2 Fatal Error Messages

The following messages identify fatal errors. The compiler cannot recover
from a fatal error; it terminates after printing the error message. EX ON

Number

o

1

2

3

4

382

Fatal Error Message

UNKNOWN FATAL ERROR
Contact Microsoft Technical Support

An unknown error condition has been detected by the com­
piler. Please report this condition to Microsoft, using the
Software Problem Report at the back of this manual.

Internal Compiler Error
(compiler file 'filename', line linenumber)
Contact Microsoft Technical Support

Compiler has detected internal inconsistency; please report
condition to Microsoft using the Software Problem Report
at the back of this manual. Please include the filename and
linenumber in this report; note that filename refers to an
internal compiler file, not your source file.

out of heap space

The compiler has run out of dynamic memory space. This
usually means that your program has many symbols and/or
complex expressions. To correct the problem, divide the file
into several smaller source files, or break expressions into
smaller subexpressions.

error count exceeds n; stopping compilation

Errors in the program are too numerous or too severe to
allow recovery, and the compiler must terminate.

unexpected EOF

This message appears when you have insufficient space on
the default disk drive for the compiler to create the tem­
porary files it needs. The space required is approximately
two times the size of the source file. This message can also
occur when a comment does not have a closing delimiter
(* I), or when an # if directive occurs without a correspond­
ing closing # endif directive.

6

7

9

10

11

12

13

14

Error Messages

write error on compiler intermediate file

The compiler is unable to create the intermediate files used
in the compilation process. The exact reason is unknown,
although the following are two common causes:

1. Too few files in the

files=number

line (the compiler requires number to be at least 15)

2. Not enough space on a device containing a compiler
intermediate file

unrecognized fl ag 'string' in 'option'

The given string in the command line option is not a valid
option.

compiler limit
possibly a recursively defined macro

The expansion of a macro exceeds the available space.
Check to see if the macro is recursively defined, or if the
expanded text is too large.

compiler limit
macro expansion too big

The expansion of a macro exceeds the available space.

recursively defined macro 'identifier'

The given identifier is defined recursively.

bad parenthesis nesting - missing 'character'

The parentheses in a preprocessor directive are not
matched; character is either a left or right parenthesis.

cannot open 'filename'

The given file cannot be opened.

too many include files

Nesting of # include directives exceeds the limit of ten
levels.

383

Microsoft C Compiler User's Guide

15

16

17

18

19

20

21

22

26

384

cannot find 'filename'

The given file does not exist or cannot be found. Make sure
your environment settings are valid and that you have given
the correct path name for the file.

#if[n]def expected an identifier

You must specify an identifier with the # ifdef and # ifndef
directives.

constant term expected

The expression in an # if directive must evaluate to a
constant.

unexpected '#elif'

The # elif directive is legal only when it appears within an
if, # ifdef, or # ifndef directive.

unexpected '#else'

The # else directive is legal only when it appears within an
if, # ifdef, or # ifndef directive.

unexpected '#endif'

An # endif directive appears without a matching # if,
ifdef, or # ifndef directive.

bad preprocessor command 'string'

The characters following the number sign (#) do not form a
valid preprocessor directive.

expected '#endif'

An # if, # ifdef, or # ifndef directive was not terminated
with an # endif directive.

parser stack overflow, please simplify your
program

Your program cannot be processed because the space
required to parse the program causes a stack overflow
in the compiler. To solve this problem, try to simplify your
program.

27

32

33

34

35

36

37

39

40

Error Messages

DGROUP data allocation exceeds 64K

Allocation of variables to the default segment exceeds 64K;
in compact, medium, or huge models, use the IGT option
to move items into separate segments.

cannot open listing file 'filename'

cannot open assembly-language output file
'filename'

cannot open source file 'filename'

For error messages 32, 33, 34, 36, and 37, one of the follow­
ing statements about the file name or path name given
(filename) is true:

1. The given name is not valid.

2. The file with the given name cannot be opened for
lack of space.

3. A read-only file with the given name already exists.

expression too complex, please simplify

The compiler cannot generate code for a complex ex­
pression; break the expression into simpler subexpressions
and recompile.

cannot open source-listing file 'fikname'

See note under error message 34.

cannot open object file 'filename'

See note under error message 34.

unrecoverable heap overflow in P3

Postoptimizer has overflowed heap and cannot continue; try
recompiling with IOd option (see Section 3.12, "Optimiz­
ing"), or breaking up function containing the line causing
the error.

Unexpected EOf in source fi le 'filename'

Compiler detected unexpected end-or-file while creating
source listing or mingled source/object listing. Probable
cause: source file edited during compilation. (This error

386

Microsoft C Compiler User's Guide

41

42

43

44

45

46

386

would be most likely to occur on a multitasking system,
where the compilation could be done as a "background"
process.)

cannot open compiler intermediate file -
no more files .

The compiler is unable to create intermediate files used in
the compilation process because no more file handles are
available. This can usually be corrected by changing the
FILES=number line in CONFIG.SYS to allow a larger
number of open files (20 is the recommended setting).

cannot open compiler intermediate file -
no such file or directory'

The compiler is unable to create intermediate files used in
the compilation process because the TMP environment vari­
able is set to an invalid directory or path.

cannot open compiler intermediate file

The compiler is unable to create intermediate files used in
the compilation process. The exact reason is unknown.

out of disk space for compiler intermediate
file

The compiler is unable to create intermediate files used in
the compilation process because no more space is available.
To correct the problem, make more space available on the
disk and recompile.

floating point overflow

The compiler has generated a floating-point exception while
doing constant arithmetic on floating-point items at compile
time, as in the following example:

float fp_val = 1.0e100;

In this case, the double-precision constant 1. Oe100 exceeds
the maximum allowable value for a floating-point data item.

bad option flag, would overwri te 'stringl' wi th
, string2'

The specified option has been given more than once, with
conflicting arguments stringl and string2.

47

48

Error Messages

too many option flags, 'string'

There were too many occurrences of the given option; string
contains the occurrence of option causing the error.

Unknown option 'character' in 'optionstring'

The specified character is not a valid letter for optionstring.

49 invalid numerical argument 'string'

A numerical argument was expected instead of string.

H.3.3 Compilation Error Messages

The messages listed below indicate that your program has errors. When the
compiler encounters any of the errors listed in this section, it continues
parsing the program (if possible) and outputs additional error messages.
However, no object file is produced.

Number

o

1

2

3

Compilation Error Message

UNKNOWN ERROR
Contact Microsoft Technical Support

An unforeseen error condition has been detected by the com­
piler. Please report this condition to Microsoft, using the
Software Problem Report at the back of this manual.

newline in constant

A new-line character in a character or string constant must
be in the escape sequence format (\n).

out of macro actual parameter space

Arguments to preprocessor macros may not exceed 256
bytes.

Missing open parenthesis after keyword
'defined'

Parentheses must surround the identifier to be checked in an
if directive.

387

Microsoft C Compiler User's Guide

Number

4

5

6

7

8

9

10

11

12

13

388

Compilation Error Message

expected 'defined(id)'

An #if directive has a syntax error.

#line expected a line number

A # line directive lacks the mandatory line-number
specification.

#include expected a file name

An # include directive lacks the mandatory file-name
specification.

#define syntax

A # define directive has a syntax error.

'character' : unexpected in macro definition

A macro definition uses a character incorrectly.

reuse 0 f macro formal 'identifier'

The parameter list in a macro definition contains two
occurrences of the same identifier.

'character' : unexpected in formal list

The list of formal parameters in a macro definition uses
character incorrectly.

'identifier' : definition too big

Macro definitions may not exceed 256 bytes.

missing name following '<'

An # include directive lacks the mandatory file-name
specification.

missing '>'

The closing angle bracket (>) is missing from an # include
directive.

Number

14

15

16

17

18

19

20

21

22

Error Messages

Compilation Error Message

preprocessor command must start as first
non-whitespace

Non-white-space characters appear before the number sign
(#) of a preprocessor directive on the same line.

too many chars in constant

A character constant is limited to a single character or
escape sequence. (Multi character character constants are
not supported.)

no closing single quote

A character constant must be enclosed in single quotation
marks.

illegal escape sequence

The character or characters after the escape character (\)
do not form a valid escape sequence.

unknown character 'Oxn'

The given hexadecimal number does not correspond to a
character.

expected preprocessor command, found
, character'

The character following a number sign (#) is not the first
letter of a preprocessor directive.

bad octal number 'n'

The character n is not a valid octal digit.

expected exponent value, not 'character'

The exponent of a floating-point constant is not a valid
number.

'n' : too big for char

The number n is too large to be represented as a character.

389

Microsoft C Compiler User's Guide

Number

23

24

25

26

27

28

390

Compilation Error Message

divide by 0

The second operand in a division operation (/) evaluates to
zero, giving undefined results.

mod by 0

The second operand in a remainder operation (%) evaluates
to zero, giving undefined results.

, identifier' : enum/struct/union type
redefinition

The given identifier has already been used for an enumera­
tion, structure, or union tag.

, identifier' : member 0 f enum rede fini tion

The given identifier has already been used for an enumera­
tion constant, either within the same enumeration type or
within another enumeration type with the same visibility.

compiler limit : struct/union nesting

Nesting of structure and union definitions may not exceed
five levels.

struct/union member needs to be inside a
struct/union

Structure and union members must be declared within the
structure or union; likely cause: an enumeration declaration
contains a declaration of a structure member, as in the fol­
lowing example:

enum a {
january,
february,
int march;

};

/* structure declaration:
** illegal
*/

Number

29

30

31

32

33

34

35

36

Error Messages

Compilation Error Message

, identifier' fields only in structs

Only structure types may contain bit fields,

struct/union member redefinition

The same identifier was used for more than one member of
the same struct or union.

, identifier'
member

function cannot be struct/union

A function cannot be a member of a structure; use a pointer
to a function instead.

, identifier' : base type wi th near/far/huge not
allowed

Declarations of structure and union members cannot use the
near, far, and huge keywords.

'identifier' : field has indirection

The bit field is declared as a pointer (*), which is not
allowed.

'identifier' : field type too small for number
of bits

The number of bits specified in the bit-field declaration
exceeds the number of bits in the given base type,

struct/union 'identifier' : unknown size

Structure or union has an undefined size.

left of 'member' must have struct/union type

In this message member will be a menlber designator in one
of the following forms:

- >identifier
. '/,'dentifier

The expression before the member-selection operator "- >"
is not a pointer to a structure or union type, or the expres­
sion before the member-selection operator "." does not
evaluate to a structure or union.

391

Microsoft C Compiler User's Guide

Number

37

38

39

40

41

42

43

44

45

392

Compilation Error Message

left of '->' or '.' specifies undefined
struct/union 'identifier'

The expression before the member-selection operator "->"
or "." identifies a structure or union type that is not defined.

, identifier' : not struct/uni on member

The given identifier is used in a context that requires a
structure or union member.

'->' requires struct/union pointer

The expression before the member-selection operator "->"
is a structure or union name, not a pointer to a structure or
union as expected.

, .' requires struct/union name

The expression before the member-selection operator "." is a
pointer to a structure or union, not a structure or union
name as expected.

keyword 'enum' illegal

The enum keyword appears in a structure or union declara­
tion, or an enum type definition is not formed correctly.

keyword 'enum' required

The enum keyword is required in declarations of enumera­
tion types.

illegal break

A break statement is legal only when it appears within a
do, for, while, or switch statement.

illegal continue

A continue statement is legal only when it appears within a
do, for, or while statement.

'identifier' : label redefined

The given identifier appears before more than one statement
in the same function.

Number

46

47

48

49

50

51

52

53

54

55

Error Messages

Compilation Error Message

illegal case

The case keyword may only appear within a switch
statement.

illegal default

The default keyword may only appear within a switch
statement.

more than one default

A switch statement contains too many default labels (only
one is allowed).

cast has illegal formal parameter list

A formal parameter list is given in a type-cast expression.

non-integral switch expression

Switch expressions must be integral.

case expression not constant

Case expressions must be integral constants.

case expression not integral

Case expressions must be integral constants.

case va 1 ue n a 1 ready used

The case value n has already been used in this switch
statement.

expected I (I to follow I identzJier I

The context requires parentheses after the function
identifier.

expected formal parameter list, not a type
list

An argument-type list appears in a function definition
instead of a formal parameter list.

393

Microsoft C Compiler User's Guide

Number

56

57

58

59

60

61

62

63

64

65

394

Compilation Error Message

illegal expression

An expression is illegal because of a previous error. (The
previous error may not have produced an error message.)

expected constant expression

The context requires a constant expression.

constant expression is not integral

The context requires an integral constant expression.

syntax error : 'token'

The given token caused a syntax error.

syntax error : EOF

The end of the file was encountered unexpectedly, causing a
syntax error; this can be caused by leaving out the final clos­
ing curly brace (J) at the end of your program.

syntax error : identi fier 'identifier'

The given identifier caused a syntax error.

type 'identifier' unexpec ted

The given type is misused.

, identifier' : not a func-tion

The given identifier was not declared as a function, but an
attempt was made to use it as a function.

term does not evaluate to a function

An attempt is made to call a function through an expression
that does not evaluate to a function pointer.

, identifier' : unde fined

The given identifier is not defined.

Number

66

67

68

69

70

71

72

73

74

75

76

Error Messages

Compilation Error Message

cast to function returning . . is illegal

An object cannot be cast to a function type.

cast to array type is illegal

An object cannot be cast to an array type.

illegal cast

A type used in a cast operation is not a legal type.

cast of 'void' term to non-void

The void type may not be cast to any other type.

illegal sizeof operand

The operand of a sizeof expression Inust be an identifier or
a type name.

'c~~' : bad storage class

The given storage class cannot be used in this context.

'identifier' : initialization of a function

Functions cannot be initialized.

, identifier' : cannot ini tial ize array in
function

Arrays can only be initialized at the external level.

cannot initialize struct/union in function

Structures and unions can only be initialized at the external
level.

'identifier' : array initialization needs curly
braces

The braces (: l) around an array initializer are missing.

'~ent~er' struct/union initialization needs
curly braces

T~e .braces (: }) around a structure or union initializer are
mIssIng.

396

Microsoft C Compiler User's Guide

Number

77

78

79

80

81

82

83

84

85

396

Compilation Error Message

non-integral field initializel~ 'identifier'

An attempt is made to initialize a bit-field member of a
structure with a nonintegral value.

too many initializers

The number of initializers exceeds the number of objects to
be initialized.

'identifier' is an undefined struct/union

The given identifier is declared as a structure or union type
that has not been defined.

, expression' was the use 0 f the struct/union

An undefined structure or union type variable is used in the
given expression.

compiler limit: initializers too deeply
nested

The compiler limit on nesting of initializers has been
exceeded. The limit ranges from 10 to 15 levels, depending
on the combination of types being initialized. To correct
this problem, simplify the data type being initialized to
reduce the levels of nesting, or assign initial values in
separate statements after the declaration.

rede fini tion 0 f formal parameter' 'identifier'

A formal parameter to a function is redeclared within the
function body.

array 'identifier' al ready has a size

The dimensions of the given array have already been
declared.

function 'identifier' already has a body

The given function has already been defined.

, identifier' : ignored

A parameter declaration was given in a function definition
for a nonexistent formal parameter.

Number

86

87

88

89

90

Error Messages

Compilation Error Message

'identifier' : redefinition

The given identifier was defined more than once.

'identifier' : missing subscript

The definition of an array with multiple subscripts is miss­
ing a subscript value for a dimension other than the first
dimension, as in the following example:

int func (a)
char a [10J [J ;
{

}

int func (a)
char a [J [5J ;
{

}

/* Illegal */

/* Legal */

use 0 f unde fined struct/union 'identifier'

The given identifier was used to refer to a structure or union
type that is not defined.

typedef specifies a near/far function

Conflict between near or far used in a typedef deClar­
ation and near or far of declared item, as in the following
example:

typedef int far fARFUNC();
fARFUNC near *fp;

function returns array

A function may not return an array. (It may return a
pointer to an array.)

397

Microsoft C Compiler User's Guide

Number

91

92

94

95

96

97

98

99

100

398

Compilation Error Message

function returns function

A function cannot return a function. (It can return a pointer
to a function.)

array element type cannot be function

Arrays of functions are not allowed; however, arrays of
pointers to functions are allowed.

label 'identifier' was undefined

The function does not contain a statement labeled with the
given identifier.

parameter has type void

Formal parameters and arguments to functions cannot have
type void; they can, however, have type void * (pointer to
void).

struct/union comparison illegal

You cannot compare two structures or unions. (You can,
however, compare individual members of structures and
unions.)

illegal initialization

Attempted to initialize variable using nonconstant values.

non-address expression

An attempt was made to initialize an item that is not an
lvalue.

non-constant offset

An initializer uses a nonconstant offset.

illegal indirection

The indirection operator (*) was applied to a non pointer
value.

Number

101

102

103

104

105

106

107

108

109

110

111

Error Messages

Compilation Error Message

'&' on constant

The "address-of" operator requires an Ivalue as its operand.

'&' requires lvalue

The address-of operator can only be applied to lvalue
expressions.

'&' on register variable

Register variables cannot have their addresses taken.

'&' on bit field ignored

Bit fields cannot have their addresses taken.

, operator' needs Iva 1 ue

The given operator must have an Ivalue operand.

'operator' : left operand must be lvalue

The left operand of the given operator must be an lvalue.

illegal index, indirection not allowed

A subscript was applied to an expression that does not
evaluate to a pointer.

non-integral index

Only integral expressions are allowed in array subscripts.

subscript on non-array

A subscript was used on a variable that is not an array.

'+' : 2 pointers

Two pointers cannot be added.

pointer + non-integl-al value

Only integral values may be added to pointers.

399

Microsoft C Compiler User's Guide

Number

112

113

114

115

116

117

118

119

400

Compilation Error Message

illegal pointer subtraction

Only pointers that point to the same type may be
subtracted.

: right operand pointer

The right-hand operand in a subtraction operation (-) is a
pointer, but the left-hand operand is not.

'operator' : pointer on left; needs integral
right

The left operand of the given operator is a pointer; the right
operand must be an integral value.

'identifier' : incompatible types

An expression contains types that are not compatible.

operator : bad left-or-right operand

The specified operand of the given operator is illegal for that
operator.

'operator' : illegal for struc-t/union

Structure and union type values are not allowed with the
given operator.

negative subscript

A value defining an array size was negative.

'typedefs' both define indirection

Two typedef types are used to declare an item and both
typedef types have indirection. For example, the declara­
tion of p in the following example is illegal:

typedef int *P_INT;
typedef short *P_SHORT;
/* this declaration is illegal */
P_SHORT P_INT p;

Number

120

121

122

123

124

125

126

127

Error Messages

Compilation Error Message

'void' illegal with all types

The void type cannot be used in declarations with other
types.

typedef specifies different enum

Attempted to use a type declared in a typedef statement to
specify both an enum type and another type.

typedef specifies different struct

Attempted to use a type declared in a typedef statement to
specify both a struct type and another type.

typedef specifies different union

Attempted to use a type declared in a typedef statement to
specify both a union type and another type.

CODE GENERATION ERROR
Contact Microsoft Technical Support

The compiler could not generate code for an expression.
Usually this occurs with a complex expression. Try rear­
ranging the expression. Please report this error using the
Software Problem Report at the back of this manual.

allocation exceeds 64K for 'identifier'

The given item exceeds the limit of 64K. The only items
that are allowed to exceed 64K are huge arrays.

auto allocation exceeds 32K

The space allocated for the local variables of a function
exceeds the limit of 32K.

parameter allocation exceeds 32K

The storage space required for the parameters to a function
exceeds the limit of 32K.

401

Microsoft C Compiler User's Guide

Number

128

129

130

131

132

133

402

Compilation Error Message

huge 'identifier' cannot be aligned to segment
boundary

The given array violates one of the restrictions imposed on
huge arrays; see Section 8.2.5, "Creating Huge Model Pro­
grams," for more information on these restrictions.

static function 'identifier' not found

A forward reference was made to a static function that is
never defined.

#line expected a string containing the file
name

Invalid syntax for # line directive (missing file name).

attributes specify more than one
near/far/huge

More than one near, far, or huge attribute applied to an
item, as in the following eXample:

typedef int near NINT;
NINT far a; /* Illegal */

syntax error unexpected identifier

Identifier seen in syntactically illegal context.

array I identifier' : unknown size

Attempt to declare unsized array as local variable, as in the
following example:

int mat_add(arrayl)
int arrayl[J;
{
int array2[J;

}

/* Legal */

/* Illegal */

Number

134

135

137

138

139

140

141

142

Error Messages

Compilation Error Message

symbol too large

Size of huge array exceeds compiler limit (232 bytes).

missing ')' in macro expansion

A macro reference with arguments is missing a closing
parenthesis.

empty character constant

The illegal character constant" was used.

unmatched close comment '*/'
Compiler detected * / without matching / *. This usually
indicates an attempt to use illegal nested comments.

type following 'type' is illegal

Illegal type combination, such as the following:

long char a· /* Illegal */

argument type cannot be function returning , ,

A function is declared as a formal parameter of another
function, as in the following example:

int funcI (a)
in"!: a (); /* Illegal */

value out of range for enum constant

An enum constant has a value outside the range of values
allowed for type into

ellipsis requires three periods

The compiler has detected the token " .. " and assumes " ... "
was intended.

403

Microsoft C Compiler User's Guide

H.3.4 Command-Line Error Messages

The following messages indicate errors on the command line used to invoke
the compiler. If possible, the compiler continues operation, printing a warn­
ing message. In some cases, command-line errors are fatal and the compiler
terminates processing.

Number

o

1

2

3

4

5

6

7

404

COIDIDand Line Error Message

UNKNOWN COMMAND LINE ERROR
Contact Microsoft Technical Support

An unknown error condition has been detected by the com­
piler. Please report this condition to Microsoft using the
Software Problem Report at the back of this manual.

too many symbols predefined with -D

The limit on command-line definitions is normally 16; the
IU or lu option can be used to increase the limit to 20.

listing has precedence over assembly output

Two different listing options were chosen; the assembly list­
ing is not created.

a previously defined model specification has
been overridden

Two different memory models are specified; the model
specified later is used.

unknown -A subswi tch I letter I

A letter given with the I A option is not recognized.

only one memory model allowed

You must choose one memory model; you cannot specify
more than one.

missing source file name

You must give the name of the source file to be compiled.

too many commas

Too many commas appear on the command line.

Number

8

9

10

12

13

15

16

17

18

Error Messages

Command Line Error Message

comma needed be fore 'filename'

The fields in the command line must be separated by
commas.

a file name (not a path name) is required

The name of a directory is given where the name of a file is
required.

ignoring unknown flag 'string'

One of the options given on the command line is not recog­
nized and is ignored.

too many option fl ags I 'string'

Too many letters are given with a specific option (for ex­
ample, with the /0 option).

unknown option character in 'optionstring'

One of the letters in the given option is not recognized.

80186/286 selected over 8086 for code
generation

Both the IGO option and either the /Gl or /G2 option are
given; / d 1 or / G2 takes precedence.

optimizing for space over time

This message confirms that the / Os option is used for
optimizing.

unknown floating point option

The specified floating-point option (an /FP option) is not
one of the five valid options.

only one floating point model allowed

You can give only one of the five floating-point (/FP)
options on the command line.

405

Microsoft C Compiler User's Guide

Number

19

20

21

22

23

24

25

26

406

Command Line Error Message

could not execute I filename'

Found the specified filename, but could not execute it for
some reason (most likely cause: bad .EXE file format).

could not execute I filename I

Please insert diskette and hit any key

Could not find the given filename in the current working
directory or any of the other directories named in the
PATH statement.

too many linker flags on command line

Attempted to pass more than 128 separate options and
object files to the linker (for CL only).

only one of -P/-E/-EP allowed, -P selected

Only one preprocessor output option can be specified at
one time.

-c ignored (must also specify -P or -E or
-EP)

The -C option must be used in conjunction with one of the
preprocessor output flags, -E, -EP, or -P.

too many open files, cannot redirect
'filename I

No more file handles available to redirect the output of the
-P option to a file. Try editing your CONFIG.SYS file
and increasing the value num on the line f i 1 es=num (if
num is less than 20).

-Md not allowed with -NO

The -Au option (SS != DS, load DS) requires a new name
for the default data segment.

unknown I option I substr ing I character I

Unknown substring character used with the given option.

Number

27

28

29

30

31

32

34

35

36

Error Messages

Command Line Error Message

incomplete model specification

The -Astring option requires all three characters (data­
pointer size, code-pointer size, and segment setup) in string.

-ND not allowed with -Ad

Cannot rename default data segment unless the -Au option
(SS != DS, load DS) is given.

-ND not allowed with -Aw

Cannot rename default data segment unless the -Au option
(SS != DS, load DS) is given.

non-standard model -- defaulting to small­
model libraries

Nonstandard memory model has been specified with the
-Astring option. The library search records in the object
model are set to use the small-model libraries.

threshold only for far/huge data, ignored

The -Gt option cannot be used in memory models that have
near data pointers. It can be used only in compact, large,
and huge models.

assembly files are not handled

File name with extension .ASM specified. Compiler can­
not invoke MASM automatically, so it cannot assemble
such files.

-Gp not implemented, ignored

MS-DOS version of compiler does not support profiling.

-Gw and -ND name are not compatible

Cannot rename the default data segment to name when
-Gw given, since -Gw also requires -Aw.

-Gw and -Au flags are incompatible

Cannot use the -Au option (SS != DS, load DS) with
-Gw, since -Gw also requires -Aw.

407

Microsoft C Compiler User's Guide

Number

37

38

39

43

44

46

47

408

Command Line Error Message

Preprocessing overrides source listing

Only preprocessor listing generated, since cannot generate
both a source listing and a preprocessor listing at the
same time.

function declarations override source
listing

Cannot generate both a source-listing file and the function
prototype declarations at the same time.

cannot open linker cmd file

Cannot open the response file used to pass object-file names
and options to the linker; one possible cause: there is
another file which is read only and has the same name as the
response file.

combined listing has precedence over object
listing

When -Fe is specified along with either -FI or -Fa, the
combined listing (-Fe) will be created.

cannot overwrite the source file

Source file specified as an output-file name. The compiler
will not allow the source file to be overwritten by one of the
compiler output files.

-Gc option requires extended keywords to be
enabled (-Ze)

The -Ge option requires the extended keyword edecl to be
enabled if library functions are to be accessible.

inval id numer ical argument I string I

Non-numerical string was specified following an option that
requires a numerical argument.

Error Messages

H.3.5 Compiler Limits

To operate the Microsoft C Compiler, you must have sufficient disk space
available for the compiler to create temporary files used in processing. The
space required is approximately two times the size of the source file.

Table H.2 summarizes the limits imposed by the C compiler. If your pro­
gram exceeds one of these limits, an error message will inform you of the
problem.

Table H.2

Limits Imposed by the C Compiler

Program Item

String Literals

Constants

Identifiers

Declarations

Preprocessor
Directives

Description

Maximum length of a string,
including the terminating null
character (\ 0).

Maximum size of a constant is
determined by its type; see the
Microsoft C Compiler
Language Reference for a
discussion of constants

Maximum length of an
identifier

Maximum level of nesting for
structure/union definitions

Maximum size of a macro
definition

Maximum number of actual
argumen ts to a macro
definition

Maximum length of an actual
preprocessor argument

Maximum level of nesting for
if, # ifdef, and # ifndef
directives

Maximum level of nesting for
include files

Limit

512 bytes

31 bytes (additional
characters are
discarded)

5 levels

512 bytes

8 arguments

256 bytes

32 levels

10 levels

409

Microsoft C Compiler User's Guide

The compiler does not set explicit limits on the number and complexity of
declarations, definitions, and statements in an individual function or in a
program. If the compiler encounters a function or program that is too large
or too complex to be processed, it produces an error message to that effect.

H.4 LINK Error Messages

This section lists the error messages that can occur when linking programs
with the Microsoft Overlay Linker, LINK. The messages are in alphabeti­
cal order.

Ambiguous swi tch error: "option"

User did not enter a unique option name after the option indicator (/).
For example, the command

LINK IN main;

will generate this error, since LINK can't tell which of the three
options beginning with the letter "N" you intended to use. See Chapter
4, "Linking," for more information on LINK options.

Array element size mismatch

A far communal array has been declared with two or more different
array-element sizes (for example, declared once as an array of charac­
ters and once as an array of real numbers). This error cannot occur with
object files produced by the assembler. It only occurs with the Microsoft
C Compiler and any other compiler that supports far communal arrays.

Attempt to put segment name in more than one group
in filejilename

A segment was declared to be a member of two different groups.
Correct the source and recreate the object files.

Bad value for cparMaxAlloc

410

The number specified using the / CP ARMAXALLOC option is not in
the range 1 to 65535. See Section 4.6.10, "Setting the Maximum Alloca­
tion Space."

Error Messages

Cannot find library: filename. lib. Enter- new file spec:

The linker cannot find filename. 1 ib. The user should respond to the
prompt with a new file name, a new path specification, or both.

Cannot open list file

The disk or the root directory is full. Delete or move files to make
space.

Cannot open response file

LINK cannot find the response file specified by the user. This usually
indicates a typing mistake.

Cannot nest response files

User named a response file within a response file.

Cannot open run file

The disk or the root directory is full. Delete or move files to make
space.

Cannot open temporary file

The disk or the root directory is full. Delete or move files to make
space.

Cannot reopen list file

User did not actually replace the original disk when asked to. Restart
the linker.

Common area longer than 65536 bytes

User's program has more than 64K of communal variables. This error
cannot appear with object files generated by the assembler. It only
occurs with programs produced by the Microsoft C Compiler or other
compilers that support communal variables.

Data record too large

LEDATA record (in an object module) contains more than 1024 bytes
of data. This is a translator error. Note the translator (compiler or
assembler) that produced the incorrect object module and the cir­
cumstances. Notify Microsoft using the Software Problem Report at the
back of this manual. LEDATA is an MS-DOS term. It is explained in
the MS-DOS Programmer's Reference Man1wl and in some other MS­
DOS reference books.

411

Microsoft C Compiler User's Guide

Dup record too large

LIDATA record (in an object module) contains more than 512 bytes of
data. Most likely, an assembly module contains a structure definition
that is very complex, or a series of deeply nested DUP operators, such
as the following example:

alpha DB 10 DUP (11 DUP (12 DUP (13 DUP (...))))

Simplify and reassemble. LIDATA is an MS-DOS term. It is explained
in the MS-DOS Programmer's Reference Manual and in some other MS­
DOS reference books.

fikname is not a valid library

The file specified as a library file is invalid. LINK will abort.

fixup overflow near number
in segment name in filename offset number

412

Some possible causes are as follows:

• A group is larger than 64K.

• The user's program contains an intersegment short jump or
in tersegmen t short call.

• The user has a data item whose name conflicts with that of a
subroutine in a library included in the link.

• In an assembly-language source file, the user has an EXTRN
declaration inside the body of a segment, as in the following
example:

code SEGMENT public 'CODE'
EXTRN main: far

start PROC far
call main
ret

start ENDP
code ENDS

The following construction is preferred:

EXTRN main: far
code SEGMENT public 'CODE'
start PROC far

call main
ret

start ENDP
code ENDS

Error Messages

Revise the source and recreate the object file.

Incorrect DOS version, use DOS 2.0 or later

LINK will not run on versions of MS-DOS or PC-DOS prior to 2.0.
Reboot your system with a valid version, and try linking again.

Insufficient stack space

There is not enough memory to run the linker.

Interrupt number exceeds 255

A number greater than 255 has been given as a value for the
/OVERLAYINTERRUPT option. The number must be in the range
o to 255. You should not use the /OVERLAYINTERRUPT option
with the Microsoft C Compiler.

Invalid numeric switch specification

An incorrect value was entered for one of the linker switches (options).
For example, a character string was entered for an option that requires
a numeric value.

Invalid object module

One of the object modules is invalid. Try recompiling. If the error per­
sists, contact Microsoft using the Software Problem Report at the back
of this manual.

NEAR/HUGE conflict

Conflicting near and huge definitions for a communal variable. This
error can only occur with programs produced by Microsoft C or other
compilers that support communal variables.

Nested left parentheses

User has made a typing mistake while specifying the contents of an
overlay on the command line. See Section 4.5, "Using Overlays."

No object modules specified

User failed to supply the linker with any object-file names.

Out of space on list file

Disk on which list file is being written is full. Free more space on the
disk and Lry again.

413

Microsoft C Compiler User's Guide

Out of space on run file

Disk on which .EXE file is being written is full. Free more space on the
disk and try again.

Out of space on scratch file

Disk in default drive is full. Delete some files on that disk, or replace
with another disk, and restart the linker.

Overlay manager symbol already defined: name

User has defined a symbol name that conflicts with one of the special
overlay-manager names. Change the incorrect name and relink.
MASM does not have an overlay manager, so this problem can only
occur if you are linking with a library from a high-level language that
supports overlays.

Relocation table overflow

More than 32768 long calls, long jumps, or other long pointers in the
user's program. Rewrite program, replacing long references with short
references where possible, and recreate object module. Note: Pascal and
FORTRAN users should first try turning off the debugging option.

Segment limit set too high

The limit on the number of segments allowed was set too high (more
than 1024) using the /SEGMENTS option. See Section 4.6.11, "Con­
trolling Segments."

Segment limit too high

There is insufficient memory for the linker to allocate tables to describe
the number of segments requested (the default of 128 or the value
sp'ecified with the /SEGMENTS option). Try linking again using the
/ SEGMENTS option to select a smaller number of segments (for
example, 64 if the default was used previously), or free some memory by
eliminating resident programs or shells.

Segment size exceeds 64K

414

User has a small-model program with more than 64K of code, or user
has a medium-model program with more than 64K of data. Try compil­
ing and linking medium or large model.

Error Messages

St.Clck size exceeds 65536 bytes

The size specified for the stack using the /STACK option is more than
65536 bytes. See Section 4.6.9, "Controlling Stack Size."

Symbol table overflow

The user's program has more than 256K of symbolic information (pub­
lics, externals, segments, groups, classes, files, etc.). Combine modules
and/or segments and recreate the object files. Eliminate as many public
symbols as possible.

Terminated by user

The user entered CONTROL-C.

Too many external symbols in one module

User's object module specified more than the limit of 1023 external
symbols. Break up the module.

Too many group-, segment-, and class-names
in one module

User's program contains too many group, segment, and class names.
Reduce the number of groups, segments, or classes, and recreate the
object files.

Too many groups

User's program defines more than 20 groups, not counting DGROUP.
Reduce the number of groups.

Too many GRPDEfs in one module

LINK encountered more than 21 group definitions (GRPDEF) in a
single module. Reduce the number of GRPDEFs or split the module.
The term GRPDEF is explained in the MS-DOS Programmer's Refer­
ence Manual and in some other reference books on MS-DOS.

Too many libraries

User tried to link with more than 16 libraries. Combine libraries, or use
modules that require fewer libraries.

Too many overlays

User's program defines more than 63 overlays. Reduce the number of
overlays.

415

Microsoft C Compiler User's Guide

Too many segments

The user's program has more than the maximum number of segments as
specified by the default of 128 or by the SEGMENTS option. Relink
using the /SEGMENTS option with an appropriate number of seg­
ments. See Section 4.6.11, "Controlling Segments."

Too many segments in one module

The user's object module has more than 255 segments. Split the
modules or combine segments.

Too many TYPDEFs

An object module contains more than 255 TYPDEF records. These
records describe communal variables. This error can only appear with
programs produced by the Microsoft C Compiler or other compilers
that support communal variables. TYPDEF is an MS-DOS term. It is
explained in the MS-DOS Programmer's Reference Manual and in some
other reference books on MS-DOS.

Unexpected end-of-file on library

The disk containing the library has probably been removed. Replace
the disk containing the library and try again.

Unexpected end-of-file on scratch file

Disk with temporary output file was removed. See Section 4.2.11, "The
Temporary File," in Chapter 4, "Linking."

Unmatched left parenthesis

User has made a typing mistake while specifying the contents of an
overlay on the command line.

Unmatched right parenthesis

User has made a typing mistake while specifying the contents of an
overlay on the command line.

Unrecognized swi tch error: option

416

User entered an unrecognized character after the option indicator (/),
as in the following example:

LINK /ABCDEF main;

Error Messages

Unresolved externals

A symbol was declared external in one module, but it was not declared
public in the module in which it was defined. This should not happen in
Microsoft C, except with misspelled or case-sensitive names, but it
could happen with an assembly-language module. A symbol must be
defined and declared public (using the PUBLIC directive) in one and
only one module before it can be used as an external symbol (using the
EXTRN directive) by other modules. Linking with versions of the
linker earlier than 2.4 might cause this message, since these older link­
ers search libraries only once.

VM.TMP is an illegal file name and has been ignored

User has specified VM.TMP as an object-file name. Rename file and
link again.

Warning: no stack segment

User's program contains no stack segment specified with stack combine
type. This message should not appear with modules compiled with the
Microsoft C Compiler, but it could appear with an assembly-language
module. Normally, every program should have a stack segment with the
combine type specified as stack. You can ignore this message if you
have a specific reason for not defining a stack or for defining one
without the stack combine type. Linking with versions of the linker
earlier than 2.4 might cause this message, since these older linkers
search libraries only once.

Warning: too many public symbols

The (MAP option was used to request a sorted listing of public sym­
bols III the map file, but there are too many symbols to sort. The linker
will produce an unsorted listing of the public symbols.

R.5 Library-Manager Error Messages

The following error messages may be displayed by the Microsoft Library
Manager, LIB:

cannot create extract file filename

The disk or root directory is full, or the extract file specified by filename
already exists with read-only protection. Make space on the disk or
change the· protection of the extract file.

417

Microsoft C Compiler User's Guide

cannot create new library

The disk or root directory is full, or the library file already exists with
read-only protection. Make space on the disk or change the protection
of the library file.

cannot open response file

The given response file was not found.

cannot open VM.TMP

The disk or root directory is full. Delete or move files to make space.

cannot read from VM

Note the circumstances of the failure and notify Microsoft using the
Software Problem Report at the back of this manual.

cannot rename old library

Lm could not rename the old library to have a .BAK extension
because the .BAK version already exists with read-only protection.
Change the protection on the old .BAK version.

cannot reopen library

The old library could not be reopened after it was renamed to have a
.BAK extension.

cannot write to VM

Note the circumstances of the failure and notify Microsoft using the
Software Problem Report at the back of this manual.

comma or newline expected

418

A comma or carriage return was expected in the command line, but did
not appear, or a comma was not expected and appeared in an inap­
propriate place, as in the following line:

LIB math.lib / -modl+mod2;

The line should have been entered as follows:

LIB math. lib -modl+mod2:

Error Messages

error writing to cross reference file

The disk or root directory is full. Delete or move files to make space.

error writing to new library

The disk or root directory is full. Delete or move files to make space.

Free: not allocated

Note the circumstances of the failure and notify Microsoft using the
Software Problem Report at the back of this manual.

insufficient memory

LID does not have enough memory to run. Remove any shells or
resident programs and try again, or add more memory.

internal failure

Note the circumstances of the failure and notify Microsoft using the
Software Problem Report at the back of this manual.

invalid library

The library does not conform to the format expected by LIB.

Invalid object module name near location
in file libraryname

The module specified by name is not a valid object module.

Mark: not allocated

Note the circumstances of the failure and notify Microsoft using the
Software Problem Report at the back of this manual.

missing terminator

The response to the "Output library:" prompt was not terminated by a
carriage return, or the last line of the response file used to start LIB
does not end with a carriage return.

no more virtual memory

Note the circumstances of the failure and notify Microsoft using the
Software Problem Report at the back of this manual.

419

Microsoft C Compiler User's Guide

page size too small

Page size specified with the IPAGESIZE option must be 16 bytes or
larger.

syntax error

The given command did not follow correct LIB syntax as specified in
Chapter 6, "Managing Libraries."

syntax error (bad input)

The given command did not follow correct LIB syntax as specified in
Chapter 6, "Managing Libraries."

syntax error (bad file spec)

A command operator such as a minus sign (-) was given without a fol­
lowing module name.

syntax error (switch name expected)

A forward slash (I) was given without the PAGE SIZE option.

syntax error (switch val expected)

The IP AGESIZE option was given without a following value.

too many symbols

The maximum number of symbols allowed in a library file is 4609.

unexpected EOF on command input

An end-of-file character was received prematurely in response to a
prompt.

unknown switch

An unknown option was given. The IPAGESIZE option is the only
one currently recognized by LIB.

write to extract file failed

The disk or root directory is full. Delete or move files to make space.

write to library file failed

The disk or root directory is full. Delete or move files to make space.

420

Error Messages

H.6 MAKE Error Messages

Most error messages displayed by the Microsoft Program Maintenanee U UI­
ity, MAKE, have the following form:

filename linenumber : message

The filename is the MAKE description file. The linenumber is the line
where the error occurred. If an error occurs after MAKE has finished read­
ing through the file, the linenumber will be listed as 1 even though this will
not be the correct line number. The message is one of the error messages
listed below:

Exec not available on DOS l.x

MAKE requires MS-DOS Version 2.0 or later.

expansion too big

A line with macros expands to longer than 512 bytes. Try rewriting the
MAKE description file to use two short lines instead of one long one.

line too long

A line in the make description file is longer than 128 characters. Try
rewriting the make description file to use two short lines instead of one
long one.

make: command - errorcode

One of the programs or commands called in the make description file
was not able to execute correctly. MAKE terminates and displays the
command followed by the code of the error that caused it to fail. Error
codes are described in Appendix E, "Using Exit Codes."

make: colon missing in 'filename'

A line that should be a target/ dependent line lacks a colon indicating
the separation between target and dependent. MAKE expects any line
following a blank line to be a target/ dependent line.

make: dependent 'fikname' does not exist,
target 'filename' not bui 1 t

MAKE could not continue because a required dependent file did not
exist. Make sure all named files are present and that they are spelled
correctly in the MAKE description file.

421

Microsoft C Compiler User's Guide

make: infinitely recursive macro

A circular chain of macros was defined, as in the following example:

A=$ (B)
B=$ (C)
C=$ (A)

make: multiple source

An inference rule has been defined more than once.

make: out of memory

MAKE has run out of memory for processing the MAKE description
file. Try to reduce the size of the MAKE description file by reorganiz­
ing or splitting it.

make: out of space

MAKE has run out of memory for processing the MAKE description
file. Try to reduce the size of the MAKE description file by reorganiz­
ing or splitting it.

make: syntax error

The MAKE description file has a line beginning with an equal sign (=).

make: target does not exist 'filename'

This usually does not indicate an error. It warns the user that the tar­
get file did not exist. MAKE executes any commands given in the
target/ dependent description since in many cases the target file will be
created by a later command in the MAKE description file.

Stack overflow

Recursive macros have used up all available memory. Reduce the
number or levels of nested macros.

usage: make [/nJ [/dJ [Ii] [/sJ [name=value ... J file

MAKE has not been invoked correctly. Try entering the command line
again with the syntax shown in the message.

422

Error Messages

H.7 EXEP ACK Error Messages

The Microsoft EXE File Compression Utility, EXEPACK, generates the
following error messages:

exepack: (warning) omitting debug data from output file

EXEP ACK strips symbolic debug information from the input file.

exepack: can't change load-high program

When the minimum allocation value and the maximum allocation value
are both zero, the file cannot be compressed.

exepack: error reading relocation table

The file cannot be compressed because the relocation table cannot be
found or is invalid.

exepack: invalid .EXE file (actual length < reported)

The second and third fields in the file header indicate a file size greater
than the actual size.

exepack: invalid .EXE file (bad header)

The given file is not an executable file or has an invalid file header.

exepack: filename: No such file or directory

The file specified by filename cannot be found.

exepack: filename: Permission denied

The file specified by filename is a read-only file.

exepack: out of memory

The EXEP ACK utility does not have enough memory to operate.

Out of space on output file

The disk or root directory is full. Delete or move files to make space.

exepack: too many segments in relocation table

The given file is too large to be compressed in the available system
memory.

423

Microsoft C Compiler User's Guide

usage: exepack <infile> <outfile>

The EXEP ACK command line was not specified properly. Try again
using the syntax shown.

You may also encounter MS-DOS error messages if the EXEP ACK pro­
gram cannot read from, write to, or create a file.

H.8 EXEMOD Error Messages

The Microsoft EXE File-Header Utility, EXEMOD, generates the follow­
ing error messages:

exemod: can't change load-high program

When the minimum allocation value and the maximum allocation value
are both zero, the file cannot be modified.

exemod: file not .EXE

EXEMOD automatically appends the .EXE extension to any file name
without an extension; in this case, no file with the given name and an
.EXE extension could be found.

exemod: invalid .EXE file (actual length < reported)

The second and third fields in the file header indicate a file size greater
than the actual size.

exemod: invalid .EXE file (bad header)

The specified file is not an executable file or has an invalid file header.

exemod: min> max (correcting max)

If the minimum allocation value is greater than the maximum alloca­
tion value, the maximum allocation value is adjusted. This is a warn­
ing message only; the modification is still performed.

exemod: min < stack (correcting min)

424

If the minimum allocation value is not enough to accommodate the
stack (either the original stack request or the modified request), the
minimum allocation value is adjusted. This is a warning message only;
the modification is still performed.

Error Messages

exemod: filename: No such file or directory

The file specified by filename cannot be found.

exemod: filename: Permission denied

The file specified by filename is a read-only file.

exemod: (warning) packed file

The given file is a packed file. This is a warning only. EXEMOD will
still modify the file. The values shown if you ask for a display of MS­
DOS header values will be the values after the packed file is expanded.

usage:exemod file [-/h] [-/stack n] [-/max n] [-/min nJ

The EXEMOD command line was not specified properly. Try again
using the syntax shown. Note that the option indicator can be either a
slash (/) or a dash (-). The single brackets ([]) in the error message
indicate that your choice of the item within them is optional.

The, EXEMOD utility also produces error messages when the file header is
not in recognizable .EXE format, or if errors occur in reading from, or
writing to, a file.

H.9 SETENV Error Messages

!he Microsoft Environment Table Utility, SETENV, generates the follow­
Ing error messages:

setenv: Envsize must be <= 65520

You specified an environment size greater than 65520, the maximum
size allowed.

setenv: Envsize must be >= 160

You specified an environment size less than 160, the minimum size
allowed.

setenv: Maximum for Version 3.1 = 992

The user specified a file that was recognized as COMMAND.COM for
MS-DOS, Version 3.1, and gave an environment size greater than 992,
the maximum allowed for that version.

425

Microsoft C Compiler User's Guide

setenv: <filename>: No such file or directory

The specified file was not. found, or it was a directory or some other spe­
cial file.

setenv: <filename>: Permission denied

The specified file is a read-only file.

setenv: unrecognizable COMMAND. COM

The COMMAND.COM file was not one of the accepted versions
(PC-DOS, versions 2.0, 2.1, 2.11, 3.0, and 3.1).

usage: setenv <command. com> [envsizeJ

426

The command line was not specified properly. This usually indicates
that the wrong number of arguments was given. Try again with the
syntax shown in the message.

Index

$ (dollar sign) 325
& (ampersand), in LIB command, 145,

149
* (asterisk)

CL command, used in, 292
example, command symbol, 149
LIB command symbol, used as, 146,

152
wild-card character, 33, 134

+ (plus sign)
command symbol, example, 147, 149
LIB command symbol, used as, 145,

151
LINK command, used in, 101

, (comma) MSC command line, used in,
58

- (dash) op tion character
- (minus sign), as LIB command

symbol, 145, 147, 149, 152
-* (minus sign-asterisk), as LIB

command symbol, 146, 153
-+ (minus sign-plus sign), as LIB

command symbol, 145, 147, 152
/ (forward slash)

option character, 60
LINK option character, used as, 111

; (semicolon) in
LIB command, 144, 147, 150
LINK eommand, 101
MSC command, 57

? (question mark)
CL command, used in, 292
wild-card character, 134

_ (underscore) in
global names, 341
identifiers, 224

80186/80188 processor, 40, 84
80286 processor, 40, 84
8087/80287 coprocessor, 39, 79, 80

control of, 81
in-line instructions, 80, 81
library, 32, 198
suppression of, 200

87.LIB, 31, 80, 198

/ A option, 186, 187
abs function, 331
/AC option, 175
Address space, 353
Addresses

parameters passed by, 234
passing, 231

/M option, 176
Alias checking, 91, 329
Align type, 123, 217
Alignment. See storage alignment
allmem routine, 330
Alternate calling sequence, 221
Alternate floating-point library, 32
Alternate math library, 82, 198
/AM option, 175
Ampersand (&), in LIB command, 145,

149
argc variable, 132
Arguments

command line, 135
conversion, 219
-F options, 293
LINK options, 112
macros, 409
MSC options, 60
procedure in mixed-language

programming, 262
pushing, 219
to main function. See main function
variable number, to a function, :~57
wild card, on command line, 134

Argument-type list, 77
argv variable, 132
Array identifiers, in previous versions

of the compiler, 326
Array limits, in previous versions of the

compiler, 328
Arrays, in mixed-language

programming, 256
/AS option, 174
ASCII character codes, 269

427

Index

Assembly-language interface, 213
differences, 336

calling conventions, 337
case significance, 342
classes, 344
entry sequence, 338
exit sequence, 338
groups, 344
naming conventions, 341
register usage, 336
segmen t model, 342
segment names, 342, 344
stack checking, 339
stack setup, 338

program example, 226
Assembly-listing file, 64, 68
Asterisk (*)

CL command, used in, 292
LIB command symbol, 146, 152
wild-card character, 33, 134

Attributes
calling conventions, 231
mixed-language programming, used

in, 231
AUTOEXEC.BAT file, 37
AUX,54
/ Aw option, Windows applications, 209

Backup procedures, 17
Batch files, 38, 46, 311
BEGDATA class name, 120
Bibliography, 11
Binary mode, i>3, 205
BINMODE.OBJ, 33, 205
Bit fields, 327, 351
Bold font, 9--10
Boolean, in mixed-language

programming, 248
BP register, 221, 224, 338
Brackets, use of, 11
BSS class name, 120
__ BSS segment, 215
Buffers, in CONFIG.SYS file, 39
Byte length, 348
Byte order, 350, 360

C calling sequence, 219
/C option, 75
-c option, 294, 296

428

C primer, 11
C programming language, 11
C1.EXE, 30, 34
C2.EXE, 30, 34
C3.EXE, 30, 34
Calling con ven tions

described, 230
mixed-language programming, choice

of, 230
mixed-language programming,

specification of, 231
previous versions of the compiler,

337
Calling sequence

alternate, 221
C,219

Capital letters, small, 11
Capital letters, use of, 10
Carriage-return-line-feed (CR-LF)

translation, 205
Case sensitivity, preservation of, 116
Case

MS-DOS, 41
significance, 225

absence of, 116
file names, 53
LINK, 98, 116
names, 236
previous versions of the compiler,

342
XENIX, 41

c_ common segment, 215
cdecl keyword, 193
char constants, in previous versions of

the compiler, 325
char type

default changing, 196
previous versions of the compiler,

326
Character-classification macros, 353
Character set, 353
check_ stack pragma, 201
_ chkstk routine, 340
chksum, 138
CL command, 51, 98, 291

-F options, 292
linking, 294
syntax, 291

CL options
-c, 242, 296
-F,296

CL options (continued)
-Fe, 292, 296
-Fm, 292, 296
-Fs, 292
-link, 295, 296
XENIX compatible, 296

Class names, 217
BEGDATA, 120
BSS, 120
CODE, 120
FAR_BSS, 216
FAR_DATA, 216
STACK, 120

Class type, 124
Classes, 217, 344
CL.EXE, 30, 31
CLIBC.LIB, 33
CLIBF A.LIB, 82
CLIBFP.LIB, 33, 80, 198
/CO option, 115
CODE class name, 120
Code pointers, 186
Code-segment restrictions, 93
Code segments. See Text segments
Code size, optimization, 91
Combine class, 217
Combine type

COMMON, 125
PRNATE, 125
PUBLIC, 125
STACK, 125

Combined-listing file, 68
Comma (,), in MSC command line, 58
Command

prompts
list file, 153

symbols
asterisk (*), 146, 149, 152
minus sign (-), 145, 147, 149, 152
minus sign-asterisk (-*), 146, 153
minus sign-plus sign (-+), 145,

147, 152
plus sign (+), 145, 147, 149, 151

Command characters
LIB, summary, 283
LINK, summary, 280

Command line
error messages, 372, 404
length, maximum, 371
LIB, 147
LINK, 102

Index

Command line (continued)
messages, 86
method, MSC, 57

Command-line arguments
executable file, 131
suppressing processing of, 135
wild cards, 134

Commands
CL. See CL command
IF ERRORLEVEL, 47,88
notational conventions, 10
PATH, 17,35,36,37,166
SET, 17, 35, 36, 37
summary, 273

Comments
preservation of, 75
previous versions of the compiler,

325
Compact model, 175

library files, 31
Compatibility

87.LIB,82
EM.LIB,82
floating-point options, 83
XENIX options, 296

Compilation
conditional, 71
large programs, 92
mixed-language programming, 264

Compile-only option, 294, 296
Compiler

command line, partial, 58
differences, 319, 354

alias checking, 329
array identifiers, 326
array limits, 328
bit fields, 327
char constants, 325
char type, 326
comments, 325
enum type, :~26
equality operators, 327
function identifiers, 326
identifiers, 325
language definition, 325
logical AND and OR operators,

329
lvalue expressions, 327
macro definitions, 328
preprocessor, 328
relational operators, 327

429

Index

differences (continued)
strings, 326
structure identifiers, 327
structures and unions, 328
type casts, 327
uninitialized variables, external

level, 377
union identifiers, 327
unsigned-long type, 326
versions 2.03 and earlier, 324

documentation, 4
error, in code generation, 372
error messages, 371

command line, 372, 404
compilation, 372
fatal, 371, 382
internal, 86, 372
warning, 371, 373

exit codes, 88
limits, 409
mixed-language programming,

versions required for, 229
naming conventions, 69, 109
options. See MSC options
passes, 30
prompts, response to, 52
summary, 273
termination, 52

Complex numbers, in mixed-language
programming, 260

CON, 54
CONFIG.SYS file, 38
Consistency check, 144, 154
CONST segment, 215
Constant expression~, 328
Constants

definition of, 71
size, maximum, 409

Control, of
binary and text modes, 205
data loading, 121
floating-point operations, 198
LINK, 111
preprocessor, 70, 71, 73, 75
run-file loading, 121
segments, 119
stack size, 117

Control program, 30
CONTROL-C, 52, 102, 150
Conventions, notational, 9
Conversion, 219

430

Conversion (continued)
pointer arguments, 183
short pointers to long integers, 322

Converting from previous versions of
the compiler. See Assembly­
language interface; Compiler
differences; Differences from
previous versions of the compiler

Coprocessor
See also 8087/80287 coprocessor
8087/80287 versions, 38, 79
suppressing use of, 200

/CPARMAXALLOC option, 118
creat function, 331
CR-LF (carriage-return-line-feed)

translation, 205
Cross-reference listing (LIB), 146, 153
CRTO.OBJ, 32,117
CS register, 221, 225
CSETARGV.OBJ, 33, 134
Ctype macros, 353
Customized memory models, 185
CVARSTCK.OBJ,34

/D option, 71
MAKE, 162, 285

Dash (-), as MSC option character, 60
Data

loading, 121
passed at execution, 131
portability, 359
segment, 188, 216

default, 206, 215
default name, 207
naming, 207
restrictions, 93

sharing, in mixed-language
programming, 262

threshold, setting, 206
types, mixed-language programming,

243
types, size of, 349

Data files
binary, 33
text, 33

Data pointers, 186
_ DATA segment, 207, 215
Data threshold, setting, 206
Debugging, preparation for, 89

Declaration
functions with near and far, 181
procedures in mixed-language

programming, 241
Declarations, maximum level of

nesting, 409
Default

data segment, 215
file extensions

LINK, 98
MSC, 53

libraries, 32, 100, 106
changing, 107
ignoring, 116
linking, order of, 199
overriding, 116, 198
search path, 100, 106
suppression of, 195, 199

parameters, passing, 231
responses

LIB, 150
LINK, 101
MSC, 57
overriding MSC, 53

defined(iden tifier) cons tan t expression,
328

Definition of constants and macros, 71
Denormal, 369
Denormal numbers, 82
Description file, 159
Device names, 54
DGROUP group, 120, 216'
DIreg~ter, 221, 224, 225,337
Differences from previous versions of

the compiler. See Assembly­
language interface; Compiler
differences

Direction flag, 225, 337
Disk

backing up, 17
contents, 18, 40
swapping, 57, 112

Documentation, compiler, 4
Dollar sign ($), 325
/DOSSEG option, 120
DS (data segment) register, 216, 221,

225, 336, 343
DS. See Data, segment
/DSALLOCATE option, 121

/E option, 74
elif directive, 328
Ellipsis dots, use of, 10
EM.LIB, 31, 198
EMOEM.ASM, 34, 82
Emulator, 79, 198

in-line instructions, 81
library, 32

Entry sequence, 221, 338

Index

enum type, in previous versions of the
compiler, 326

environ variable, 133
Environment table, 133

size, maximum, 371
suppression of processing, 135

Environment
batch files, setting up with, 46
changing, 38
enlargement, 307
portability, 358
setting up, 34
variable names, notational

conventions, 10
variables, 17, 34, 35, 273

defining, 36
INCLUDE, 35
LIB, 35
overriding, 38
PATH, 35
TMP,35

envp variable, 132
/EP option, 74
Equality operators, in previous versions

of the compiler, 327
Error messages, 365

compilation, 86, 371
compiler, 85, 371

command line, 86, 372, 404
fatal, 86, 371, 382
internal, 86, 372
warning, 86, 88, 371, 373

EXEMOD, 424, 425
EXEP ACK, 423
floating-point exceptions, 368
LIB, 417
LINK, 410
MAKE,421
mixed-language programming, used

in, 265
run time, 365

Errorlevel codes. See Exit codes

431

Index

ES register, 217, 336, 343
Evaluation order, 357
Exception, 369
Exclude option, 76
Executable

files, 18, 30, 131
command-line arguments, 131
compression, 303
modification of, 304
naming, 99, 293
packing, 113
passing data to, 131
search path, 34, 35

image, 123
Execution of programs, 131
Execution-time optimization, 91
EXEMOD, 304

error messages, 424
/H option, 315
!MAX option, 305
!IvflN option, 305
ISTACK option, 305
summary, 287

EXEMOD.EXE, 30
EXEPACK, 303

error messages, 423
stripping symbolic debug

information, 113, 304
summary, 286

/EXEPACK option, 113
EXEP ACK.EXE, 30
Exit code, 47, 311
Exit codes

Code View, 313
EXEMOD, 314
EXEPACK, 314

Exit sequence, 224, 338
Extensions, default

.LIB, 144
LINK, 98
MSC, 53

External names, 194

IF option, 296
arguments, 293
CL command, used in, 292

IFa option, 64, 68, 222, 226, 228
far keyword, 177, 193

declaration of functions, used in, 181
library routines, used with, 179

432

Far pointers, 177
FAR_BSS, 216
F AR_ DATA class, 216
Fatal error messages, 86, 371, 382
/Fc option, 64, 68, 222, 226, 228
IFe option, 292, 296
File extensions. See Extensions
File-name conventions, 53

LINK, 98
File names

notational conventions, 10
special, 54

Files, batch. See Batch files
Files, data. See Data files
Files, executable. See Executable, files
Files, include. See Include files
Files, library. See Library files
Files

CONFIG.SYS file, 38
library, 31
locating, 34
mixed-language programming, used

in, 264
number open, maximum, 371
organization

floppy-disk system, 25
hard-disk system, 22

other, 21
size, maximum, 371

Files, temporary. See Temporary files
Fix-ups, 126
IFI option, 64
Floating point not loaded, 81, 367
Floating point

libraries, 32, 80, 82
operations, 80, 198

compatibility, 83
default, 81
efficiency, maximum, with

coprocessor, 80
efficiency, maximum, without

coprocessor, 82
error messages, 368
flexibility, maximum, 83
floating-point exceptions, 368
function calls, 80, 82
in-line instructions, 80, 81
precision, maximum, with

coprocessor, 80
precision, maximum, without

coprocessor, 81

Floating point (continued)
options, 79

IFm option, 242, 296
IFo option, 63
fopen function, 333
fortran keyword, 193, 221
Forward slash (()

LINK option character, 111
MSC option character, 60

IFPa option, 79, 82, 198
IFPc option, 79, 82, 198
IFPc87 option, 79, 80, 198
IFPi option, 79, 81, 198
IFPi87 option, 79, 80, 198
Frame number, 124
Frame pointer, 338
freopen function, 333
/Fs option, 64, 292
Function identifiers, in previous

versions of the compiler, 326
Function declarations, generation of,

77
Functions, with variable number of

arguments, 357
Functions, declaration with near and

far, 181

IGO option, 84
IGI option, 84
IG2 option, 84
IGc option, 221
getenv, 133
getmem routine, 330
Global symbols. See Public symbols
Global variables, naming conventions,

341
Groups, 125,216

DGROUP, 120, 216
previous versions of the compiler,

344
IGs option, 201
I Gt option, 206
IGw option, Windows applications, 209

/H option, 194, 305
Hancock, Les, 11
Heap, 214
IHELP option, 112
IHIGH option, 122

Index

Huge arrays, in mixed-language
programming, 256

huge keyword, 177, 193
library routines, used with, 179

Huge-model library files, 31

/1 option, 75, 162, 285
Identifier length, 355
Iden tifiers

length, maximum, 409
notational conventions, 10
predefined, 72

removal of definitions, 73
previous versions of the compiler,

325, 326
IF ERRORLEVEL command, 47, 88
include directive, 31
Include files, 18, 31

directory specification, 75
nesting, maximum level of, 409
portability problems, 348
search path, 35, 75, 76
v2tov3.h, 330

INCLUDE variable, 35, 75, 76
Inference rules, 165
Infinities, 82
Input, and mixed-language

programming, 264
Installation of compiler software, 17
Instruction set

80186/80188 processors, 84
80286 processor, 84
8086/8088 processors, 84

Instructions, in-line, 80, 81
Integers

mixed-language programming, used
in, 244

summary of sizes, 278
INTERFACE statement

mixed-language programming, used
in, 238

Interfaces, with other languages, 213
iscsym, 333
iscsymf macros, 333
Italics, 10

/ J option, 196

433

Index

Kernighan, Brian W., 11
Key sequences, notational conventions,

11
Keywords

calling conventions, specification of,
231

fortran, 221
mixed-language programming, used

in, 226
pascal, 221
special, 193

Kilobyte, 92
Kochan, Stephen, 11
Krieger, Morris, 11

Language-definition differences, 325
Large model, 176

compilation, in mixed-language
programming, 230

library files, 31
Large programs, 92
Learning to Program in C, 11
Length, of identifiers, 355
.LIB, 144
LIB

backup library file, 143
command characters, summary, 280
error messages, 417
Exit codes, 314
modification methods, 143
operations, order of, 142
/PAGESIZE option, 154
summary, 283
termination, 150
variable, 35, 100, 106

LIB command
command symbols, 145
command-line method, 147
default responses, 150
library module

addition, 145, 151
deletion, 145, 152
extraction, 146, 153
extraction and deletion, 146, 153
replacement, 145, 152

line extension, 145
prompts, 143
response-file method, 148
termination, 150

LIB.EXE, 30

434

Libraries
8087/80287,198
alternate math, 82, 198
changing, at link time, 198
combining, 145, 151, 153
creation, 141, 150, 196
default, 100, 106, 107, 116
emulator, 198
floating point, 80
mixed-model programs, 189
modification, 141, 151
page size, 154
prompt, 100
search path, 100, 106

Library file does not exist. Create?, 151
Library files, 20

compact model, 31
default, 32
floating point, 31
huge model, 31
large model, 31
medium model, 31
notational convention, 33
search path, 35
small model, 31
standard C, 32

Library functions, changes to syntax,
324

Library listing, 146, 153
Library manager, 30

command line, 147
response file, 148
response to prompts, 143

Library manager utility. See LIB
Library name prompt, 144
Library search path, 100, 106
Library support, for near, far, and

huge, 179
Limits

compiler, 409
run time, 370

Line extension, 101, 145, 149
Line-number option, 89
Line numbers, display in linker listing

file, 114
/LINENUMBERS option, 114
LINK

align type, 123
C files, used with, 105
error messages, 410
exit codes, 313

LINK (continued)
groups, 125
operation, 123
options

IEXEPACK, 113
IHELP, 112

separation of entries, 101
starting, 97
temporary output file, 105
termination, 102

LINK command
default responses, 101
line extension, 101
prompts, 97
separation of entries, 101
termination, 102

LINK command characters
summary, 280

-link option, 295, 296
LINK options, 111

abbreviations, 111
arguments, numerical, 112
case sensitivity, 116
/CO, 115
compatibility preservation, 122
control of

data loading, 122
run~file loading, 122
segments, 119
stack size, 117

/CPARMAXALLOC, 118
debugging, 115
default libraries, ignoring, 116
/DOSSEG, 120
/DSALLOCATE, 121
/HIGH, 122
line number, displaying, 114
/LINENUMBERS, 114
/MAP, 114
map file, 114
/NOD (no default library search), 84,

116, 198, 199
INOG (no group association), 122
INOI (no ignore case), 116
overlay illLerrupt seLLing, 120
jOVERLA YINTERRUPT, 120
paragraph space allocation, 118
jPAUSE,112
pausing, 112
segment order, 120
jSEGMENTS, 119

LINK options (continued)
/STACK, 117
summary, 280

Index

unsuitable for use with C programs,
107

Linker summary, 280
Linker utility. See LINK
Linker, 30

command line, 102
response, 97
response file, 103

LINK.EXE, 30, 34, 35
Linking

C program files, used with, 105
CL command, use in, 294
default libraries, overriding, 198
mixed~language programming, used

with, 264
LINT_ARGS,78
List File prompt, 99
List file prompt, 146, 153
Listing file

assembly listing, 64, 68
combined listing, 68
LIB, 142, 146, 153
LINK, 99, 107, 114
object listing, 64
preprocessed listing, 74
source listing, .64

LLIBC.LIB, 33
LLIBF A.LIB, 82, 198
LLIBFP.LIB, 33, 80, 198
Logical AND and OR operators, in

previous versions of the compiler,
329

Logical values, in mixed~language
programming, 261

Long addresses, parameters passed by,
235

Long pointers. See Far pointers
LSETARGV.OBJ, 33, 134
Lvalue expressions, in previous versions

of the compiler, 327
LVARSTCK.OBJ,34

Macro definitions
MAKE, 163
size, maximum, 409

Macros
arguments, maximum number, 409

436

Index

Macros (continued)
character classification, 353
defined, 71
notational conventions, 10

main function, 105
arguments to, 132

MAKE
dependent file, 160
described, 159
description file, 159
error messages, 421
example, 167
exit codes, 88, 311, 314
inference rules, 165
invocation, 161
macro definitions, 163
macro names, special, 165
messages, 162
target file, 160

MAKE description file, 159
MAKE options, 162

ID, 162, 285
II, 162, 285
IN, 162, 285
IS, 162, 285

Manifest constants, notational
conventions, 10

Map file, 114
naming, 293

jMAP option, 114
max macro, 333
jMAX option, EXEMOD, 305
Medium model, 175
Medium-model library files, 31
Memory allocation, from the stack, 34
Memory model

compact, 31
customized, 185
default, 174
huge, 31
large, 31
medium, 31
mued, 177, 185, 186, 188
mued-Ianguage programming, used

with, 230
notational convention for files, 33
small, 31

Memory-model options, 185
code-pointer size, 186
data-pointer size, 186
segment setup, 188

436

Memory models, standard, 17, 278
M- 186,72
M-I86xM,72
Microsoft C, XENIX version, and

mued-Ianguage programming, 229
Microsoft LIB. See LIB
Microsoft LINK. See LINK
min macro, 334
jIv11N option, 305
Minimum allocation value, control of,

305
Minus sign (-), LIB command symbol,

146, 152
Min us sign -asterisk (-*), LIB command

symbol, 146, 152
Minus sign-plus sign (-+), LIB

command symbol, 145, 152
Mixed-language programming

advantages, 229
arrays, 256
attributes, 231
booleans, 248
C, from, 242
calling conventions, 230
characters, 248
compilation, 264
compiler versions required, 229
complex numbers, 260
data sharing, 262
data types, 243
data types, using tables of, 243
files, 264
FORTRAN, from, 238, 240
input, 264
in tegers, 244
keywords, 231
linking, 264
logical values, 261
memory models, 230
Microsoft C, XENIX version, used

with, 229
output, 264
parameters, passing, 230
Pascal, from, 241
pointers, 254
procedure arguments, 262
procedure parameters, 262
procedure pointers, 262
real numbers, 248
records, 259
return values, 262

Mixed -language programming
(continued)

set type, 259
stack, use of, 230
structs, 259
uses, 229
writing to the terminal, 264

Mixed-memory models, 177, 186, 188
1'v1LIBC.LIB, 33
1'v1LIBFA.LIB, 82, 198
1'v1LIBFP.LIB, 33, 80, 198
Modules, naming, 207
movmem routine, 334
MSC command

command line, partial, 58
command line, use of, 57
exclude option, 76
prompts, response to, 52
Iw option, 89
IX option, 76

MSC exit codes, 312
MSC option character (I), 60
MSC option character (-), 60
MSC options, 60

80186/80188 and 80286 processors,
use of, 84

I A, 186, 187
lAC, 175
lAB, 176
IAL,176
lAM, 175
argumen ts to, 60
/AS, 174
assembly listing, 64, 68
/C,75
case of, 60
char type default, changing, 196
combined listing, 68
comments, preservation of, 75
constants and macros, defining, 71
/D option, 71
data segments, naming, 207
data threshold, setting, 206
default-library selection, suppression

of, 195
IE, 74
IEP, 74
external names, restricting length of,

194
/Fa option, 64, 68
IFc option, 64, 68

MSC options (continued)
/FI option, 64
floating point, 79, 80, 81, 198
IFo, 63
IFPa, 79, 82, 198
IFPc, 79, 82, 198
IFPc87, 79, 80,198
IFPi, 79, 81, 198
IFPi87, 79, 80, 198
IFs option, 64

Index

function declaration generation, 77
IGO, 84
IGl, 84
/G2, 84
IGs, 201
IGt, 206
/H,194
11,75
include files, search for, 75
/J,196
line numbers, 89
listing, 62
memory model

code-pointer size, 186
compact, 175
customized, 185
data-pointer size, 186
huge, 176
large, 176
medium, 175
m~ed, 185, 186, 187
segments, setting up, 188
small, 174

modules, naming, 207
/ND, 207
INM, 207
INT, 207
10 ,90
object file

labeling, 195
naming, 63

/Od, 89
optimization, 90, 201, 203
lax, 203
IP,74
predefined identifiers, removing

definitions of, 73
preprocessed listing, 74
preprocessor, 70, 71, 73, 75
spaces in, 60
special keywords, disabling, 178, 193

437

Index

MSC options (continued)
stack probes, removal, 201
structure members, packing, 193
summary, 273
syntax error identification, 77
text segments, naming, 207
IV, 73
/u,73
IV, 195
/W, 88
/w,88
warning level, setting, 88
/X,75
XENIX-compatible, 297
/Za, 178, 193
/Zd, 89
/Zg, 77
/Zi, 89
/Zl, 195
/Zp, 193
/Zs, 77

MSC prompts, 52
default responses, 57

MSC.EXE, 30, 34
MSDOS identifier, 72
MS-DOS

case sensitivity, 41
program header, 305

MSETARGV.OBJ, 33, 134
MVARSTCK.OBJ,34

IN option, MAKE, 162, 285
Names

executable file, 99
length, in FORTRAN, 236
module, 207
object file, 63
segment. See Segment, names

Naming conventions, 224, 236, 341
compiler, 69, 109
previous versions of the compiler,

341
segments, 208

Naming the executable file, 292
Naming the map file, 293
NANs, 82
/ND option, 207
near keyword, 177, 193

declaring functions, used in, 181
library routines, used with, 179

438

Near pointers, 177
Nesting

declarations, 409
include files, 409
preprocessor directives, 409

/NM option, 207
N087 variable, 200
/NOD (no default library search)

option, 84, 116, 194, 199
/NODEFAULTLIBRARYSEARCH

option, 116
NO_EXT_KEYS,73
/NOGROUPASSOCIATION option,

122
INOI (no ignore case) option, 116
/NOIGNORECASE option, 116
Notational conventions, 9
/NT option, 207
NUL,54
NUL., 146, 153
Null-pointer assignment, 137, 366
NULL segment, 137, 215, 366
_ nullcheck, 138
NUL.MAP, 99

/0 option, 90
0_ BINARY, 332
Object file name prompt, 55
Object file, 141

labeling, 195
naming, 63

Object-listing file, 64
Object listing prompt, 56
Object module, 141

copying from a library, 152
deletion from a library, 145, 152
extraction and deletion from a

library, 146, 153
inclusion in a library, 145, 151

Object Modules prompt, 98
/Od option, 89
Offset, parameters passed by, 235
open function, 334
Operations prompt, 144
Operators

logical AND and OR, 329
previous versions of the compiler

equality, 327
relational, 327

Optimization, 90

Optimization (continued)
advanced, 201
alias checking, relaxation of, 91
code size, 91
default, 90
disabling, 91
execution time, 91
maximum, 203
options, 90, 203
stack probes, removal, 201

Optimizing. See Optimization
Option character U), 111
Optional fields, notational conventions,

11
Options

See also MSC options
LINK. See LINK options
MSC, 60

arguments to, 60
case of, 60
spaces in, 60

summary, 273
O_RAW, 332
Order of evaluation, 357
Output, and mixed-language

programming, 264
Output library prompt, 146
Overlay manager prompts, 110
IOVERLA YINTERRUPT option, 120
Overlays, 109 .

interrupt number, setting, 120
Overview, 3
lOx option, 203

IP option, 74
IP AGESIZE option, 154
Paragraph space, 118
Parameters

default calling conventions, 231
long address, passed by, 235
procedure, in mixed-language

programming, 262
reference, passed by, 230, 231
short address, passed by, 235
value, passed by, 230, 231, 234
variable number of, 230
variable numbers, passed by, 236

Partial command line, MSC, 58
pascal keyword, 193, 221
Passing data at execution, 131

Index

PATH command, 17,35,36,37,166
AUTOEXEC.BAT file, used in, 37
batch files, used in, 38

Path names
portability problems, 348

PATH variable, 35, 36, 131
IP AUSE option, 112
peek routine, 330
Plum, Thomas, 11
Plus sign (+)

LIB command symbol, 145, 151
LINK command, used in, 101

Pointer
arguments, size conversion, 183
manipulation, 352

Pointers
code. See Code pointers
data. See Data pointers
far. See Far pointers
mixed-language programming, 255
near. See Near pointers
procedure, in mixed-language

programming, 262
summary of sizes, 278

poke routine, 330
Portability, 348

address space, 353
bit fields, 351
byte length, 349
byte order, 350, 360
case distinction, 355
character set, 353
data, 359
environment, 358
evaluation order, 357
functions, with variable number of

arguments, 357
identifier length, 355
pointer manipulation, 352
problems, hardware, 348
problems, include files, 348
problems, path names, 348
register variables, 355
shift operations, 354
side effects, 357
sign extension, 354
signed and unsigned char, 351
size of data types, 349
storage alignment, 349
type conversion, 356
word length, 349

439

Index

Practice session, 41
Pragmas, check_ stack, 201
Preprocessor

defined(identifier) constant
expression, 328

elif directive, 328
macro arguments, maximum number

of, 409
macro definition, maximum size of,

409
nesting, maximum level of, 409
options, 70

comments, preservation, 75
/D,71
predefined identifiers, removing

definitions of, 73
previous versions of the compiler,

328
PRN, 54
Procedure pointers

mixed-language programming, 255,
262

Processor
80186/80188 versions, 40, 84
80286 version, 40, 84
8086/8088 versions, 84
8087/80287 versions, 38

Product names, notational
conventions, 11

Program fragments, notational
conventions, 10

Program header, inspection of, 305
Program maintainer. See MAKE
Programming examples, notational

conventions, 10
Prompts

M8C, 52
notational conventions, 11

Public names. See External names
Public symbols, 114
putenv, 133

Question mark (?)
CL command, use in, 292
wild-card character, 33, 134

Quick setup
floppy disk, 25
hard disk, 22

Quotation marks, use of, 11

440

rbrk routine, 330
README.DOC file, 34
Real numbers, in mixed-language

programming, 248
Records, in mixed-language

programming, 259
Register

usage conventions, in previous
versions of the compiler, 336

variables, 337, 355
Registers, 225

BP, 221, 224, 338
CS, 221, 225
DI, 221, 224, 225,337
DS, 216, 221, 225, 336, 343
E8, 217, 336, 343
81,221,224,225,336
8P,340
88, 216, 221, 225, 337

Relational operators, in previous
versions of the compiler, 327

Relocation information, 123
repmem routine, 330
Response file

LIB, 148
LINK, 105

Return codes. See Exit codes
Return-value conventions, 222
Return values, in mixed-language

programming, 262
Ritchie, Dennis M., 11
rlsmem routine, 330
rstmem routine. 330
Run file '

See also Executable files
loading, 122
prompt, 99

Run time
error messages, 365
libraries, 141
library differences, 330

abs, 331
allmem, 330
creat, 331
fopen, 333
freopen, 333
getmem, 330
iscsym, 333
iscsymf, 333
max, 333
min, 334

library differences (continued)
movmem, 334
open, 334
peek, 330
poke, 330
rbrk, 330
repmem, 330
rlsmem, 330
rstmem, 330
setmem, 335
setnbuf, 335
sizmem, 330
stcarg, 330
stccpy, 330
stcd_ i, 330
stch_ i, 330
stCL. d, 330
steis, 335
stcisn, 335
stclen, 335
stcpam, 330
stcpm, 330
steu_ d, 330
stpblk, 331
stpbrk, 335
stpchr, 335
stpsym, 331
stptok, 331
stscmp, 335
stspfp, 330
v2tov3.h, 330

Running programs, 131

IS option, MAKE, 162, 285
Sample floppy-disk setup, 40
Sample hard-disk setup, 35
Sample setup, 40
Schustack, Steve, 11
Search path

See also Standard search paths
changing, 38
files

executable, 34, 35
include, 35, 75
library, 35

libraries, 100, 106
Segment

model, 188, 213, 342
names, 203, 279, 344

previous versions of the compiler,
342

Segment (continued)
naming conventions, 208
order, 120

ISEGMENTS option, 119
Segments, 214

align type, 217
_BSS, 215
c_ common, 215
class name, 217
combine class, 217
combining, 125
CONST, 215
_DATA, 215
data, 188, 216

data threshold, setting, 206
default name, 207
names, 209
~L, 137,215, 366
number allowed, 119
setting up, 188
stack, 188
STACK, 215
__ TEXT, 216
text, 216

default name, 207
naming, 207

Semicolon (;) in
LIB command, 144, 147, 150
LINK command, 101
MSC command, 57

SET command, 17, 35, 36
AUTOEXEC.BAT file, 37
batch files, 38

Index

Set type (Pascal), in mixed-language
programming, 259

_ setargv, 135
SETENV utility, 307

error messages, 425
exit codes, 315

_ setenvp, 135
setmem routine, 335
setnbuf routine, 335
Shift operations, 354
Short addresses, parameters passed by,

235
Short pointers

See also Near pointers
conversion to long integers, 322

SI register, 221, 224, 225, 337
Side effects, 357
Sign extension, 354

441

Index

Signed char, 354
Size of data types, 349
sizmem routine, 330
SLIBC.LIB, 32
SLIBFA.LIB, 32, 82,198
SLIBFP.LIB, 32, 80,198
Small capitals, use of, 11
Small model, 174
Small-model library files, 31
Source file name prompt, 55
Source-listing file, 64
Source listing prompt, 55
SP register, 340
Spaces, in MSC options, 60
Special file names, 54
Special keywords, 178, 193

disabling, 178, 193
Special macro names, MAKE, 165
SS. See, Stack segment
SS register, 221, 225, 336
SS (stack segment) register, 216
SSETARGV.OBJ, 33, 134
Stack

memory allocation from, 34
mixed-language programming, used

in, 230
order, 219
overflow, 366
probes, 201
segment, 188
setup, in previous versions of the

compiler, 338
size

con trol, 305
default for C programs, 117
setting, 117

Stack checking, in previous versions of
the compiler, 339

STACK class name, 120
/STACK option, 117
/STACK option, EXEMOD, 305
STACK segment, 215
Standard C library, 32
Standard memory models,

summary, 278
Standard places, 35

changing, 76
ignoring, 76
libraries, 100, 106

Standard search paths, 35
Start-up routine, 32, 105, 117

442

Statements
INTERFACE, in mixed-language

programming, 238
WRITE, in mixed-language

programming, 264
stcarg routine, 330
stccpy routine, 330
stcd_ i routine, 330
stch_ i routine, 330
stcL d routine, 330
stcis routine, 335
stcisn routine, 335
stclen routine, 335
stcpam routine, 330
stcpm routine, 330
stcu_ d routine, 330
STDARGV, 134
Storage alignment, 349
stpblk routine, 331
stpbrk routine, 335
stpchr routine, 335
stpsym routine, 331
stptok routine, 331
Strings

length, maximum, 409
notational conventions, 11
previous versions of the compiler,

326
Structs, in mixed-language

programming, 259
Structure identifiers, in previous

versions of the compiler, 327
Structures

packing, 193
previous versions of the compiler,

328
stscmp routine, 335
stspfp routine, 331
Super arrays., in mixed-language

programming, 256
Suppressing command-line processing,

135
Suppressing null-pointer checks, 137
Suppressing processing of environment

table, 135
SVARSTCK.OBJ,34
Swapping disks, 57
Switches. See Options
Syntax checking, 76
Syntax conventions. See Notational

con ven tions

Syntax errors, 77
SYS subdirectory, 31
System-level definitions, 31

Target/dependent descriptions, 159
Temporary files, 35, 409
Terminal, writing to, in mixed-

language programming, 264
_ TEXT, 207
Text mode, 33, 205
_ TEXT segment, 216
Text segment

default name, 207
naming, 207

Text segments, 216
TMP variable, 35
TOOLS.INI file, 166
Type casts, in previous versions of the

compiler, 327
Type checking, 78
Type conversion, 356

/U option, 73
lu option, 73
Underflow, 370
Underscore (_) in

global names, 341
identifiers, 224
significance, in names, 237

Uninitialized variables, in previous
versions of the compiler, 327

Union identifiers, in previous versions
of the compiler, 327

Unions, in previous versions of the
compiler, 328

Unsigned char, 354
Unsigned char type, 196
unsigned long type, in previous

versions of the compiler, 326
Uppercase letters, use of, 10
User's Guide, organization, 4
Utilities

EXEMOD. See EXEMOD
EXEMOD. See EXEMOD.EXE
EXEPACK.SeeEXEPACK
EXEPACK. See EXEPACK.EXE
LIB. See LIB.EXE
library manager. See LIB
LINK. See LINK.EXE

Utilities (continued)
linker. See LINK

/V option, 195
Value

parameters passed by, 234
passing parameters by, 230, 231

Variable numbers of parameters,
passing, 236

Variables
communal, 327
environment, 34
global, naming conventions, 341
register, 336

Index

uninitialized, in previous versions of
the compiler, 327

Variables, environment. See
Environment, variables

Variables, register, 355
Variations in C, 11
VM.TMP, 104

/W option, 88
Iw option, 88
Warning error messages, 371, 373
Warning level option, 88
Warning levels, 88
Warning messages, 86, 88
WARNING: NO STACK SEGMENT,

117
Wild-card arguments, 134
Wild-card characters, 33

in CL command, 292
Windows applications

/ Aw option, 209
IGw option, 209

Word length, 349
WRITE statement, and mixed­

language programming, 264

/X option, 75
XENIX, case sensitivity, 41
XENIX-compatible options, 297

!Za option, 178, 193
/Zd option, 89
IZg option, 77

443

Index

IZi option, 89
IZI option, 195
/Zp option, 193
/Zs option, 77

444

MICRE3S0FT®
16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717

Software
Problem Report

Name ________________________ _

Street _______________________ _

City _____________ State _____ Zip ____ _

Phone _______________ Date ______ _

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

__ Software Problem

__ Software Enhancement

Software Description

Microsoft Product_

__ Documentation Problem
(Document # ____ _

__ Other

Rev. __ _ Registration # ____________ _

Operati ng System

Rev. ____ _ _ Suppl ier _______________ _

Other Software Used ____________________ _

Rev. _____ Suppl ier _______________ _

Hardware Description

Manufacturer _______ CPU ____ _ Memory ___ KB

Disk Size ___ " Density: Sides:

Single__ Single __

Double __ Double __

Peri pherals _____________________ _

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

