

The Waite Group's

MS·DOS®
Papers

HOWARD W SAMS &. COMPANY
HAYDEN BOOKS

Related Titles

The Waite Group's
MS-DOS® Developer's Guide,
Revised Edition
John Angermeyer and Kevin Jaeger

The Waite Group's
Understanding MS-DOS®
Kate O'Day and John Angermeyer

The Waite Group's
Tricks of the MS-DOS®
Masters
John Angermeyer, Rich Fahringer,
Kevin Jaeger, and Dan Shafer

The Waite Group's
Discovering MS-DOS®
Kate O'Day

Hard Disk Management
Techniques for the IBM®
Joseph-David Carrabis

IBM® PC AT User's
Reference Manual
Gilbert Held

IBM® PC & PC XT User's
Reference Manual,
Second Edition
Gilbert Held

The Waite Group's
Desktop Publishing Bible
James Stockford, Editor,
The Waite Group

Personal Publishing with PC
PageMaker®
Terry Ulick

Micro-Mainframe Connection
Thomas Wm. Madron

The Waite Group's
Modem Connections Bible
Carolyn Curtis, Daniel Majhor,
The Waite Group

The Waite Group's
Printer Connections Bible
Kim G. House, Jeff Marble,
The Waite Group

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

The Waite Group's

MS-DOS®
Papers

Edited by The Waite Group

HOWARD~ SAMS &,COMPANY
A /JIvlslon ofMacmillan, Inc.

4300 West 62nd Street

Indlamlpolis. Indiana 46268 USA

\

<01988 by The Waite Group, Inc.

FIRST EDITION
FIRST PRINTING-1988

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. While every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for
errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-22594-8
Library of Congress Catalog Card Number: 88-60990

From The Waite Group, Inc.
Development Editor: MitchelllMlite
Editorial Director: James Stockford
Content Editor: Harry Henderson
Thchnical Reviewer: Blair Hendrickson

From Howard W. Sams & Company
Acquisitions Editor: James S. Hill
Development Editor: James Rounds
Editor: Albright Communications, Incorporated
Cover Artist: Ron Tro}(ell
Illustrator: Wm. D. Basham
Indexer: Ted Lau}(
Compositor: Shepard Poorman Communications Corporation

Printed in the United States of America

To our families

-r\
'/ ."

Contents

Preface xiii

Acknowledgments xv

Introduction xvii

Section One
EI'tending the MS-DOS User Interface

1 A Guided Tour inside MS-DOS
Harry Henderson

The Challenge of Change
Overall Structure of MS-DOS
The User Level
The Applications Level
The Hardware Level
The Future of MS-DOS

2 Searching the File Tree with whereis

Frank Whaley

Tree-Structured Directories
Searching: The Recursive Solution
Directory Search Functions
Using Options for Power and Flexibility
The wherei s. c Program
Compiling where; 5

Conclusion

5
6

11
21
29
30

35
36
37
38

39
52
53

5

35

v;;

MS-DOS Papers

3 Adding UNIX Power with Penix 55

R. Edward Nather

Why PCnix? 55
Our Strategy 57
Tweaking MS-DOS 58
Improving MS-DOS Operation 61
Using Batch Files to Create PCnix Commands 62
Using Batch File Helpers to Increase Flexibility 67
The Software Tholkit 75
MS-DOS Wildcards Are Not UNIX Metacharacters 86
Epilogue 88

4 Adding Power to MS-DOS Programming 91

Douglas O. Adams

Setting Up Your Operating Environment 92
Using Extended Batch Language for Real Power 94
Programming Screen Control Facilities 99
Key File Access Systems 107
Summary 112

5 Advanced MASM Techniques 117

Michael Goldman

Records 117
Structures 120
Include Files 125
Data Macros 126
Code Macros 129
Interrupt Tips 136
Parting Shots 140

Section Two
Programming Tools and Techniques

viii

6 Undocumented MS-DOS Functions
Raymond J. Michels

Program Segment Prefix
File Handles
The Environment Segment

148
152
155

147

Contents

PSP Functions 158
Memory Management 160
Other Undocumented Functions 169
Undocumented Interrupts 178

7 Safe Memory-Resident Programming (TSR) 185

M. Steven Baker

Why Are TSRs Useful? 185
The Origin of Memory-Resident Programs 186
Well-Behaved Memory-Resident Programs 190
A Simple Memory-Resident Program 198
A Closer Look at TSRs 208
Complex TSR Programs That Make MS-DOS Function Calls 209

An UNSPOOL TSR Program 211
Programming Guidelines for TSR Programs 213
The Bottom Line 214

8 Data Protection and Encryption 217

Asael Dror

Three Levels of Unauthorized Data Access 217
MS-DOS Data Structure and Access 219
Hiding Your Data 221
Protecting Files Using the Read-Only Attribute 224
Password Protection 225
Data Encryption 227
Loopholes in MS-DOS Data Security 237
Summary 238

9 Inside Microsoft Windows 241

Michael Geary

Who's in Charge Here? 241
Windows and Messages 242
Window Styles: Overlapped, Popup, Child 248
Window Classes 250
Graphics Programming in Windows 252
Memory Management 255
Resources 256
The Spy Program 257
Conclusion 270

~

MS-DOS Papers

Section Three
Working with the Hardware Interface

10 Developing MS-DOS Device Drivers 303

Walter Di~on

DOS Data Structures 304
What Is a Driver and How Is It Used? 307
Using the DOS INT 21 HApplication Services Interface 310
The Boot Process 312
The I NT 21 HDispatcher: Processing Application Requests 321
Using FCBs and Handles 323
Working with the SFT 324
From Driver Request to Call 325
Writing Background Programs 336
Debugging a Driver 338
Conclusion 344

11 Writing a SOUND Device Driver 347
Walter Di~on

Setting up the SOUND Driver 347
SOUND Driver Commands and Musical Notation 349
Using the SOUND Driver 353
Hardware Review 355
Programming Thchniques 359
DOS Internals 366
Prototype Driver 369
Sound Generation Hardware 373
Overview of the SOUND Driver 375
SOUND Driver Finite State Machine 376
SOUND Driver Coroutines 378
Synchronization and Circular Buffers 378
Speeding up the System Clock 379
New Clock Interrupt Service Routine 379
Driver Performance 381
Adding Refinements 382
Finishing Thuches 383
Conclusion 385

12 Programmtng the Enhanced Graphics Adapter 435
Andrew Dumke

Inside the EGA 435
The egacheck.c Program and Macros 440

A Print Screen Routine with Dithering
Conclusion

13 Programming the Serial Port with C
Nabajyoti Barkakati

Basics of Asynchronous Data Communications
Taming the UART
Specifications for Our Serial Communications Package
Conclusion
Program Listings and the Makefile

14 Understanding Expanded Memory Systems
Ray Duncan

Lotus, Intel, Microsoft EMS
What Is Expanded Memory?
Expanded Memory Manager
Thsting for Expanded Memory
Using Expanded Memory
C Interface to Expanded Memory

Index

Contents

461
474

477

477
484
493
502
502

535

535
536
538
540
542
550

563

Preface

MS-DOS Papers is the latest in The Waite Group's contributed series on pro­
gramming languages and operating systems. This particular collection of essays
focuses on the MS-DOS operating system and brings together a far flung variety
of MS-DOS programmers. In choosing these essays} we have strived to reflect the
real world of MS-DOS programming rather than the more traditional approach
of textbooks and software manuals. Thus} you will find in this book subjects not
usually covered, in a way not usually found, in the trade literature:

t> secrets and tricks of coding

t::> use of MS-DOS internal structures

1> tools

~> utilities

None of the original designers of MS-DOS expected it to be used for a wide
variety of applications, nor could they have anticipated the needs that users now
present. In the early 1980s, the designers revised the system by providing new
functions} interrupts} and other internal services, and they protected their revi­
sion process by secrecy and documentation that often offered no more explana­
tion than "reserved." But give them credit for a good design! MS-DOS has
survived tremendous changes, although to a large degree the operating system
itself has become something of a kludge-a set of patches, fixes, device drivers,
and add-ons. And all the while, application programmers have been busy disas­
sembling, uncovering, and sharing the mysteries one by one.

Although the operating system is now quite mature, the revisions to
MS-DOS are coming more slowly, while the market is screaming for more perfor­
mance. New generations of software need more than 640K memory, higher res­
olution graphics, faster calculations, and multitasking on a single-tasking
system. Obviously MS-DOS has hit a performance wall. In order to answer these
new market demands} enhancements are coming not from further improve­
ments of the operating system internals but from external sets of ad hoc conven-

«iii

MS-DOS Papers

tions that define such standards as Expanded Memory Specification (EMS),
Enhanced Graphics Adapter (EGA), and Thrminate and Stay Resident (TSR) pro­
grams, and such extensions as device drivers and C libraries.

So long as MS-DOS continues to flourish in this "pruning" and "patching"
way, MS-DOS programmers must learn to work outside of the operating system
as well as within it. This means learning not only the standards of EMS, EGA, MS
Windows, and other external environment additions, but also the conventions of
programming lore-which registers to use, which functions to call, how to
share the use of system services with unknown applications, how to test the IN
_DOS flag, upper interrupt areas (INT 60H to 67H), PS~ and other MS-DOS data
structures. For example, if different applications are to share memory, the pro­
gram designers must agree on the allocation and use of that common memory
space, or one program may write over the other. As another example, program­
mers must know how to test for, save, and restore any existing screen contents if
their application is to overwrite an area of the display. 1b make the point, a TSR
program that disables other TSRs, or that overwrites a screen and then disap­
pears without restoring that previous screen, is likely to get poor recommenda­
tions from disgruntled users. Anticipation of possible problems and awareness
of well-behaved manners are critical to a designer's ability to create a successful
MS-DOS application today.

In the increasingly complex MS-DOS operating system environment, many
programming rules, conventions, and good manners are shared by word of
mouth, over telecommunications networks, and in special journals. We have
tried to capture much of this haru-to-find lore inside this book. We have asked
the authors to explore what MS-DOS areas they know best. It is our hope that
you find this a readable, rich collection of wisdom that adds to your experience
and skill as an MS-DOS programmer.

Xiv

Acknowledgments

The Waite Group wishes to acknowledge the help of the many people who
have contributed to this book. Our first acknowledgment is to the authors of
these essays; thank you for sticking with this project complicated with dead­
lines, rush mail, late night phone calls, rewrites to perfect the essays, and cor­
rections for typesetting. Secondly, we could not have done this without Harry
Henderson, our editor, for whose patience and insight we are again deeply grate­
ful. Many thanks to Blair Hendrickson, who provided technical reviews for all
the papers, to Cynthia Pepper for her help through most of the development
cycle, and to Scott Calamar for his help during the production phase. Thanks to
James Stockford for managing the project, for the Introduction to the book, and
for development work on Overview of MS-DOS, PCnix, MS-DOS Power, and De­
vice Driver Basics.

We wish to thank Sams production members Wendy Ford, Kathy Ewing,
and Don Herrington for management and Nancy Albright for editing. Thanks to
Ron Troxell for his Genie on the cover and to Glenn Santner for keeping the
Genie in the bottle. Thanks to Jim Rounds for constant support in development
and to Jim Hill for his faith in the book from the beginning.

Mitchell Waite

xvi

Trademarks

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Neither The
Waite Group nor Howard W Sams & Company can attest to the
accuracy of this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or service
mark.

Apple is a registered trademark of Apple Computer, Inc.
AT&T is a registered trademark of American Thlephone and

Thlegraph.
Concurrent and Concurrent PC-DOS are trademarks, and CP/M is a

registered trademark of Digital Research Inc.
CRAY is a registered trademark of Cray Computer, Inc.
Epson is a registered trademark of Epson America, Inc.
Framework and dBASE II are registered trademarks of Ashton-Tate.
GEM is a trademark of Digital Research Inc.
IBM, IBM A'f, PC·DOS, Personal Computer A'f, 05/2, IBM PC, IBM X'f,

and IBM 9370 are registered trademarks of International
Business Machines Corporation.

Intel, Intel 80286 and 80386 are trademarks of Intel Corporation.
Lotus, 1·2·3, and Symphony are registered trademarks of Lotus

Development Corporation.
Macintosh is a registered trademark of McIntosh Laboratory, Inc.,

licensed by Apple Computers, Inc.
MS·DOS, Microsoft, Microsoft Windows, and XENIX are registered

trademarks of Microsoft Corporation.
The Norton Utilities is a trademark of Peter l\'orton Computing, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.,

licensed by Apple Computer, Inc.
ProKey is a trademark of RoseSoft, Inc.
SuperCalc is a registered trademark of Sordm Corporation.
ThinkTank is a trademark of Living Videotext, Inc.
Thrbo BASIC, Thrbo Lightning, Thrbo Prolog, Thrbo Pascal,

SideKick, Superkey, and Reflex are registered trademarks of
Borland International.

UNIX is a registered trademark of American Thlephone and
Thlegraph.

VAX, VAXNMS are registered trademarks of Digital Equipment
Corporation.

WordPerfect is a registered trademark of WordPerfect Corporation.
WordStar is a registered trademark of MicroPro International

Corporation.

Introduction

In the course of studying programming in MS-DOS, you may have noticed that
people seem to have markedly different approaches, even to the point of contra­
diction. Indeed, one quickly discovers that the MS-DOS world is one of short-cuts
and trickery of remarkable range, where anything that works is fair game. Find­
ing these important tricks, insider techniques, and bottom line facts is extremely
tedious because they are spread out in so many places-from technical net­
works to obscure articles in programming magazines. The Waite Groups
MS-DOS Papers brings you the most important of these ideas, tips, and tech­
niques in a single reference source.

Our purpose in this collection of essays on MS-DOS programming is to cre­
ate a forum for many professional points of view so that you can pick and choose
among techniques and inspect the major advanced extensions of MS-DOS
through many different windows. This is not a training book showing users how
to use MS-DOS; rather, the essays in this book show programmers how to arm
themselves to manipulate the operating system and to write better performing
software. As usual, speed is a major goal, so many of these essays reveal slick
techniques to speed up the user interface and access hardware. If you have any
interest in understanding the inner workings of the MS-DOS operating system,
this book is for you.

The Waite Group's MS-DOS Papers is divided into three topic areas:

l> sophisticated use of the user interface (manipulating directory struc­
tures, using libraries and batch files)

techniques for programming (working with functions and internal data
structures of the operating system to control application programs such
as Thrminate and Stay Resident programs)

>- control of the system hardware (understanding interrupts, functions,
and data structures to manipulate hardware such as the serial port, En­
hanced Graphics Adapter, Enhanced Memory Specification, and more)

It goes without saying that MS-DOS programmers must be fluent in both

xvii

MS-DOS Papers

the C language and assembly language, especially MASM 5.0. They must be fac­
ile users of the compilers and software development tools. Indeed, much of the
work programmers do is spent setting up their systems for maximum efficiency.
They must be practiced users of the operating system's commands and underly­
ing environment. These skills are the focus of essays in the first section.

MS-DOS programmers must contend with an increasingly extended envi­
ronment, and this is the background for the second and third sections. MS-DOS,
despite its age, is still growing and expanding, so most MS-DOS systems are be­
ginning to suffer from overpopulation of large application programs, memory­
resident programs that are squeezing the interrupt system, and constraints of
managing huge amounts of data. The effect is that after several major revisions,
the MS-DOS operating system has reached a state of maturity that now requires
working programmers to be familiar with all the system's interrupts and func­
tions and several sets of services beyond those of MS-DOS itself.

Essays in the second section deal with understanding undocumented func­
tions, learning to write Thrminate and Stay Resident programs that work pre­
dictably without interfering with other applications also loaded in memory,
creating data protection and encryption schemes for file security, and inspect­
ing the behavior of the MS Windows operating environment.

Essays in the third section focus on hardware-how to write device drivers,
control the serial port, program high-resolution color screens controlled by the
EGA display cards, and use large amounts of memory provided by the EMS hard­
ware and software.

This Book and Other Waite Group Books

The Waite Group's MS-DOS Papers is a follow up to other Waite Group books: MS­
DOS Developer's Guide, a detailed examination of the MS-DOS operating system;
Tricks ofthe MS-DOS Masters, a collection of techniques for advanced users; MS­
DOS Bible, a complete reference book with tutorials for intermediate users; and
Discovering MS-DOS and Understanding MS-DOS, both of which are introduc­
tions to the MS-DOS operating system for beginners.

What You Have to Know to Read MS-DOS Papers

You must, at a bare minimum, know how to operate MS-DOS well enough to
copy files between subdirectories, install drivers and other commands in the
CONFIG.SYS file, and use the standard internal and external commands. You
must also understand generally how the 8088/86 central processing unit (CPU)
works, the limitations of the MS-DOS 640K memory scheme, and the relation-

i<viii

Introduction

ship between peripheral devices} ports} and the I/O channel slots. Building upon
this basic knowledge} you will learn what structures make up MS-DOS and how
they behave and gain an understanding of modern enhancements to the system.

Intermediate programmers} with professional user-level skills and some
knowledge of either assembly language or the C programming language} will
find useful details of MS-DOS services as well as usable program listings with
complete explanations of the design of the code.

Advanced programmers} familiar. with both 80X86 assembler and C as well
as MS-DOS system calls, have in this book a sophisticated treatment of many of
the important topic areas that underlie the major marketing features of modern
applications, namely, control of the Enhanced Graphics Adapter (EGA)} use of
Expanded Memory Specification (EMS), operation of memory-resident pro­
grams (TSRs), examination of the Microsoft Windows operating environment}
and much more.

Organization of MS-DOS Papers

MS-DOS Papers begins with an overview of the inner structure of MS-DOS} fol­
lowed by sections that roughly parallel the three conceptual areas of MS-DOS
itself: the user interface shell; the kernelj and access to hardware through the
BIOS, ports, and device drivers. The following is a description of the essays in
this book.

Section One: Extending the MS-DOS User Interface

MS-DOS is composed of three modules: the user shell COMMAND. COM; the kernel
and the main services, MSDOS.SYS; and the hardware access routines IO.SYS. This
division provided the inspiration for the section divisions of this book. The fact
of this modularity of MS-DOS has allowed for the upgrade of each module with­
out respect to the others and also for manipulation and even replacement of one
of the modules without disturbance to the others.

A Guided Tour inside MS-DOS

Essay 1 offers a rare} comprehensive overview of the insides of MS-DOS with
suggestions for modifications for increasing user-level speed and functionality.
Of special note} this essay contains a great number of references to the other
essays in this book and serves to tie all of the papers together.

MS-DOS Papers

Searching the File Tree with where ; s

The MS-DOS file system is built around a hierarchical file system of directories
and subdirectories, yet it does not include a feature with which to find and act
on a file without first setting a PATH specification or invoking the correct sub­
directory. In other words, in order to find a file, first you have to know where it
is-not good. Essay 2 presents a search tool written in C called where; s. The
where; s utility combines two essential features: the ability to search for match·
ing files within the whole file tree (not just within one directory) and the ability
to use MS·DOS commands or programs to manipulate the files it finds.

Adding UNIX Power with Penix

PCnix is a homespun set of public domain utilities, batch files, and imaginative
patches that augment the MS-DOS A> prompt interface. By adding PCnix to your
MS-DOS system, you get such UNIX·like features as command-editing and a "his­
tory" capability to the MS-DOS user interface, the use of UNIX syntax, and a tool­
kit of UNIX-style commands for managing files and text. Essay 3 presents a
highly entertaining description of the process of tweaking interrupts and "fool­
ing DOS" to attain important UNIX-like power while preserving MS-DOS compat­
ibility. PCnix is available on three diskettes.

Adding Power to MS-DOS Programming

The first order of business for a professional C programmer is to set up applica­
tions and files for fast, easy access. This means developing a library of routines
and having a way to invoke them quickly. Essay 4 examines a popular third-party
interface extension, Enhanced Batch Language (EBL), a powerful batch language
facility with increased variables and commands, as well as two C library pack­
ages, the C-INDEX, which provides detailed file-search capabilities, and Vitamin
C, a set of library routines that automate the creation of screens and windows
and provide B-tree file indexing.

Advanced MASM Techniques

Nearly all working programmers must use assembly language at least occasion­
ally, and yet, constructing a program at the machine instruction level is painstak·
ing at best. It's easy to lose track of bits, frustrating to retype code, and tedious to
construct database records and fields. Essay 5 examines features of Microsoft's
Macro Assembler (MASM) version 5.0 from the standpoint of using names to set
up and control bits within a byte and bytes and words within data structures. It

Introduction

explores the uses of directives, Macros and subroutines (and when each is ap­
propriate), how to handle hardware interrupts, and more.

Section Two: Programming 'Ibols and Techniques

While Microsoft and IBM have discouraged use of many "undocumented" serv­
ices within the operating system, the programming community has relied on
just those services to push performance to the limits. Essays in this section focus
on how to work with the operating system itself.

Undocumented MS-DOS Functions

Essay 6 explains the Program Segment Prefix (PSP), a data structure that
MS-DOS creates and loads as a header to .COM and .EXE programs. It then
shows how to: use file handles to customize redirection; access and manipulate
the environment segment from batch files; use PSP function calls from within
TSRsj allocate and deallocate memory; inspect the Memory Control Block chain;
and get MS-DOS busy flag, switch char, DOS variables, and more.

Safe Memory-Resident Programming (TSR)

Thrminate and Stay Resident (TSR) programs (known to many users as "popups")
have come into respectability despite their use of undocumented functions. Essay
7 discusses the skills of safe TSR design that have become a staple in many work­
ing programmers' bags of tricks. It begins with a history of TSRs in CP1M, 86-DOS,
and MS-DOS, then describes problems in handling hardware and software inter­
rupts, noting differences between INT 27H (terminate but stay resident interrupt,
originally used in 86-DOS), INT 21H Function 31H (Keep Process Call, first used in
MS-DOS 2.X), and INT 2FH (Multiplex Interrupt, developed in MS-DOS 3.x). Also
included is discussion of how to use INT 21H Function 34H UN_DOS Flag Call),
INT 28H (background process function), and INT 21H Function SOH (how to save
the PSP of the foreground program), all of which allow multiple TSRs to exist in
memory. Finally, there is an examination of the TSRs provided with MS-DOS:
GRAPHICS, ASSIGN, and PRINT utilities. You'll also find a TSR to toggle the print
screen function and a review of the newest Microsoft TSR guidelines.

Data Protection and Encryption

Data protection, meaning protecting your data from loss or unauthorized en­
croachment, is often ignored by the application programmer or implemented as

MS-DOS Papers

an afterthought. Essay 8 provides a complete tutorial on MS-DOS data security
programming techniques. You see how each programmer can hide data by using
nonstandard names and characters, by using an assembly language program to
toggle the hidden attribute, and by using the read-only attribute. The author
shows how to use a password protection scheme in the AUTOEXEC.BAT file, in a
device driver, installed on an add-on card, or with a TSR to capture INT 21H calls
to verify password status. Finally we see how to encrypt the data itself by using
code book, keytape, and DES and RSA key algorithm systems.

Inside Microsoft Windows

The Microsoft Windows operating environment, after several years of develop­
ment, extends MS-DOS functionality into the complex and powerful realm of
multitasking and windowing similar to the Macintosh and OS/2 systems. Essay 9
introduces the major programming concepts of MS Windows, messages, and
queues that make for an event-driven, modeless environment. It illustrates the
message stream from the mouse, keyboard, and other software sources and
shows how to use Windows functions to manipulate that stream. It explains new
concepts and terms such as overlapping and popup windows, child windows,
classes, coordinate systems, regions, memory management including global and
local heaps, resources, and the new Windows functions that are associated. It
also presents complete explanation and source code for an examination utility
that traces through running Windows applications and reports back details on
their behavior and resources.

Section Three: Working with the Hardware Interface

The five essays in this section focus on controlling the hardware environment
and extracting the maximum speed from RAM memory, board-level registers,
and MS-DOS services.

Developing MS-DOS Device Drivers

Device drivers are the critical software between custom hardware and applica­
tions that run under the operating system. The key to programming successful
device drivers lies in knowing what MS-DOS services come into play and how
they work. The trouble is this involves nearly all MS-DOS kernel internal struc­
tures, which makes a tangle of relationships and a need for a half-dozen books,
tables, and manuals. Essay 10 presents all the workings of these MS-DOS data
structures: stacks, the System File Table, File Control Blocks and file handles,

Introduction

Device Control Blocks} Current Directory Structure} Program Segment Prefix
with the device driver strategy} and interrupt structures. The author uses a
small applications program that simply lists a file at the console to exemplify the
basic kernel behavior. As the essay progresses} the author shows such details as
checking both the IN _DOS flag and the critical error flag to avoid disrupting
non-reentrant procedures} using file handles instead of the File Control Block}
using IOCTL requests} and more.

Writing a SOUND Device Driver

Following the previous essay on device driver theory} Essay 11 explains the oper­
ation of a real-world device driver that lets an operator use the PC for manipulat­
ing tones} sounds} and special effects. This sophisticated driver mimics the
BASIC PLAY statement down to its detailed command language. The driver code
depends upon such computer science concepts as circular buffers, coroutines,
finite state machines} and more. In its simplest form, you can create a file com­
posed of commands for the driver} then COpy the file to the driver. With just a
small amount of additional code} you can open the device from within an appli­
cation, then write to it} thus playing a tune from within your spreadsheet} word
processor} data capture application, or whatever. The essay concludes with a
complete listing for a driver named SOUND.

Programming the Enhanced Graphics Adapter

The resolution offered by the Enhanced Graphics Adapter (EGA) is the current
preferred standard for color displays. But program control of the EGA is mark­
edly different from that of its predecessors, especially in the way in which one
keeps track of writes and rewrites to the registers. Essay 12 begins with a thor­
ough discussion of the EGA, its registers, and its latches. After showing how to
use macros to control the bit mask and map mask} the author presents a very
fast line-drawing routine based on Bresenham's algorithm} a macro PEEK and
POKE directive, a hard-to-find dithering algorithm for a laser printer, and more
techniques to write colored images to the screen. The author also shows how to
read the EGA memory and how to use the EGA's data rotate register to perform
Boolean operations on the EGA bit maps.

Programming the Serial Port with C

The serial port has become overloaded with peripherals-mice} pads} and cam­
eras} as well as modems and printers. It is no wonder that control of the serial
port is a chief target of concern of hardware programmers. Essay 13 begins with

}(}(iii

MS·DOS Papers

a complete, fast-moving overview of the conventions of serial data flow and
shows how to control the serial port hardware, including the DART and a mo­
dem. The discussion covers error-checking, flow control, buffers, and use of the
8259 to manage the serial adapter interrupts, and ends with discussion of a cir­
cular data buffer. Finally, the author offers an explanation of commented source
code in C for a complete communications package.

Understanding Expanded Memory Systems

Expanded memory systems depend on a scheme of switching various banks of
memory in and out of the 640K MS-DOS main memory address structure de­
fined by MS-DOS. The bank-switching process is controlled by a driver called the
Enhanced Memory Manager (EMM) designed by Lotus, Intel, and Microsoft. Es-

. say 14 shows how the EMM behaves and notes differences between the three
existing systems: Expanded Memory Specification (EMS) version 3.2, EEMS (the
extra E for Enhanced), and EMS version 4. The essay begins with a discussion of
bank-switching and the genesis of EMS. It then shows two ways to test for the
presence of an EMS device. The first uses Function 3DH (open file or driver­
request) specifying the guaranteed name, EMMXXXXO, then uses subfunctions
of Function 44H to check further. The second uses INT 67H to check for the
ASCII string of that same guaranteed name. The author includes a table of error
codes, a summary of relevant functions for both EMS 3.2 and EEMS, a simple
eight-step strategy for using EMS, and much more.

Disks Available

Some authors are offering disks with source code; ordering information is given
at the end of Essays 3, 8, 11, and 13.

Inside the Book

Each essay begins with a synopsis and a list of keywords, and ends with a biogra­
phy of the author and a list of related essays. As noted earlier, within each essay,
where appropriate, you will find references to other essays. The purpose is for
you to determine your own reading path through the book.

We suggest that you begin with the first essay, IIA Guided Tour inside
MS-DOSn (by our editor Harry Henderson). In this essay, Harry mentions all the
other essays within the book as he explores the internal operations of the MS-DOS
operating system. From there you can jump to essays that meet your interests.

lQl.iv

Section One

EXTENDING THE MS-DOS
USER INTERFACE

The MS-DOS operating system, depending on which version you may be us­
ing, provides roughly two dozen internal commands that allow only the most
elementary inspection and manipulation of files and directories. Its accompany­
ing utility programs, otherwise known as the external commands, provide suffi­
cient power for necessary housekeeping, but in a painfully inelegant manner.
Using the MS-DOS system by itself, a programmer must work slowly, chore by
chore. At the operator level, the MS-DOS operating system provides just enough
capability to load and run application programs and store their files. It seemed
like a good system at first, but most active users have outstripped it, as a young­
ster outgrows a pair of pants.

Working programmers, especially, must develop a flexible set of tools to
manage complex file relationships and to invoke a rapid succession of utilities.
Most programmers have developed a colorful mix of third-party patches-some
of their own invention, some from bulletin boards, and some from the pages of
magazines-to fill the gaps of a user interface that seems increasingly inade­
quate. The artful use of batch files shows the skill with which inventive minds
can bootstrap the limitations of the batch file commands. An inspection of an
extensive CON FIG. 5Y5file reveals the soul of system flexibility with a list of names
that are as technical and arbitrary as the cards that sit in the internal slots of the
machine.

This section of MS-DOS Papers contains five essays illustrating the authors'
creations for improving the limited features of the MS-DOS user interface.

A Guided 'lbur inside MS-DOS

The first essay, by Harry Henderson, introduces you to the inner structure of
MS-DOS. It is a rare overview with suggestions for increasing user-level speed
and functionality. The author also includes many references to all the other es­
says, thereby tying together the entire book.

1

Section 1: E~tending the MS-DOS User Interface

Searching the File Tree with where; s

In the second essay of this section, Frank Whaley explains how he created a
powerful file and subdirectory finder, where; 5, written in C, that lets you search,
match, and manipulate files using MS-DOS commands.

Adding UNIX Power with PCni~

Ed Nather presents a wild set of utilities and routines that provide an expansive
UNIX-like environment, with command editing, file and directory manipulation,
and a running commentary explaining a slightly topsy-turvy view of the MS-DOS
interrupt and function scheme.

Adding Power to MS-DOS Programming

The fourth essay, by Doug Adams, presents a quick overview tutorial of the use
of the Extended Batch Language (EBL) utility and C libraries that streamline
mundane programmer's chores such as the creation of menus, windows, in­
dexed files, and more.

Advanced MASM Techniques

In the fifth essay, Michael Goldman shows us tricks to using MASM 5.0 labels,
directives, and macros to reduce bit-level errors and speed data constructs as
well as to handle hardware interrupts.

2

Keywords

user -interface

MS-DOS kernel

BIOS

MS-DOS file system

programming environments

commands and utilities

Essay Synopsis: MS-DOS hast1)ree ba­
sic parts: a user interface (normally pro~

vided by' COMMAND. COM), a system kernel
containing data structures and function
calls needed by programmers, and a hard­
ware-oriented BIOS,'This essay points out
the significant features of MS-DOS ateach
of these levels, and highlights the ,strengths
and weaknesses of eachfor power users
andprogramnlers, :MS~DOSismoreth~p
just an operating system, hoWever. It is, also
an environment that can be expanderland'
customized by the addition of new shells,
utility programs, programming environ­
ments, and device drivers, This essay shows
how these products can be used to over­
come many of the shortcomings afMS-DOS,
and explores current and fQture trendsirt
MS-DOS use and programming.

1

A Guided Tour
inside MS-DOS
-:--.:"." -:::..~:.. ~:;:.~-"':" -~; _ -: -.-::. '':''.::--::--:-=: .', ...• ; .• .-. '. - •. ~._~ .. I - .

Harry Henderson

MS-DOS has many faces-like the fabled elephant, it can look very different
depending on one's point of view. Users need to be able to configure their envi­
ronment' set up their applications programs and programming tools, and man­
age megabytes worth of directories and files. Applications programmers must
learn how to use the many MS-DOS system services that their programs need to
manage system resources. Many of these services are poorly documented, and
many rely on an understanding of internal DOS tables or data structures. Sys­
tems programmers need to write device drivers to enable programs to use a
new printer or mass storage device. In addition, programmers frequently need
to learn specialized programming interfaces such as those for the serial port,
Enhanced Graphics Adapter (EGA), Expanded Memory Specification (EMS), or
Microsoft Windows.

The Challenge 01 Change

MS-DOS programmers live in a complicated and ever-changing world. Those
who want to be competitive must keep one eye on today's needs and the other on
those of the future. Consider the life cycle of a simple application program.
Beginning as one programmer's //quick and dirty" tool for performing some cal­
culations, the program is given to a team whose mission is to turn it into a com­
mercial product. The original program provided only a text display, but the
marketing department convinces the programmers that there is a demand for
color graphics. The IBM Color Graphics Adapter (eGA) display doesn't provide
enough resolution or colors for most graphic needs, however, so it's time to learn
how to program the EGA.

The first version of the product is marketed. Users quickly request more
features-such as the ability to move from writing a report to calculating a

5

Section 1: E}C.tending the MS-DOS User Interface

spreadsheet to consulting a database, with instant access to any or all of these
features. Now we have an lIintegrated software package:' but the users are com­
plaining that the program takes up too much memory and doesn't allow them to
run their favorite memory-resident utilities. It's time to learn how to break the
"640K barrier" imposed by DOS, by using EMS to handle larger amounts of data
and conserve precious space in main memory. Next, the users say they want Post­
Script output and the ability to use a new laser printer. Oh, and by the way,
larger customers are starting to ask when the network version will be ready. It's
time to learn everything about device drivers.

Now the program is powerful but it's hard to use. Perhaps it should be re­
written to run in the Microsoft Windows environment, and provide a graphic
user interface, and update the spreadsheet every time a change is made in the
database ...

Overall Structure 01 MS-DOS

Before we can find out how to improve MS-DOS and our programming environ­
ment' we have to understand its design and the way its parts fit together.

There are three modules that make up MS-DOS: the user shelt the system
kernel, and the hardware interfaces, including the Basic Input-Dutput System
(BIOS) routines.

MS-DOS is, at bottom, a program loader and file handler with roots in the
CP/M operating system developed in the late 1970s. MS-DOS has, of course, be­
come much more than that after going through two major (and numerous mi­
nor) revisions since Microsoft and IBM first made it available in 1982. It has had
to accommodate hard disks and other new storage media} RAM disks} new dis­
play standards} mice, memory-resident programs, expanded memory, and net­
works, to mention just a few of the developments.

The most important aspect of the structure of MS-DOS is its modularity.
The division of MS-DOS into three parts-a command processor, a system ker­
nel, and a hardware-specific BIOS-is what has made it possible to add features
in response to the development of new hardware, and to accommodate the dif­
ferences in the underlying hardware of PC clones and compatibles. Because only
the BIOS module is hardware-dependent} the user interface and system kernel
do not have to be revised to accommodate new hardware.

MS-DOS contains a standard character-oriented user interface that is sim­
ilar to those found on most mainframe operating systems. Because this interface
is a separate module, however, it can be replaced or supplemented with a differ­
ent one such as Microsoft Windows or a UNIX-like shell.

The MS-DOS kernel contains the compiled code for the internal services
(such as file management and 1/0) needed to execute both MS-DOS commands
and applications programs. This kernel is essentially hardware-independent} so

6

Chapter 1: A Guided Tour

a hardware vendor does not need to rewrite it to get MS-DOS to run on a new
machine. Furthermore, the installation of new devices requires only that a de­
vice driver be written and linked into a list of drivers maintained by the kernel.

Finally, the BIOS contains the hardware-specific code, the code that deals
with devices on a low level. Because the hardware details are hidden from the
rest of the operating system, additions at the BIOS level make it possible to add
support for new devices, such as hard disk support in MS-DOS 2.X and support
for 720K 31/2" floppies in MS-DOS 3.2, without having to make extensive changes
to services in the kernel.

System Files and DOS Modules

The MS-DOS distribution disk provides the operating system itself in the form of
three files that correspond to the three modules or interfaces that we have men­
tioned:

COMMAND. COM, a program that provides the standard MS-DOS user inter­
face and a prompt, and interprets user commands

MSOOS. SYS, the MS-DOS kernel with many services that is called upon by
application programs and provides the applications interface (this level is
invisible to the user)

10. SYS, containing the BIOS with hardware-specific code, including a col­
lection of built-in device drivers (some or all may be stored in ROM)

In IBM PC-DOS, the kernel is called 1BMOOS • COM and the BIOS is called
IBMBIO. COM.

How has the development of new versions of MS-DOS affected the three
DOS modules or interfaces? It is interesting to compare two significant revisions
of MS-DOS in order to see what has grown and by how much (see Table 1-1).

Table 1·1. Comparison of Two MS-DOS Revisions

Module

COMMAND.COM
IBMDOS.COM
IBMBIO.COM
lbtal

DOS 2.0

Size of System Files

17664
4608
17152
39424

Number of External Commands

23

DOS 3.3

25307
22100
30159
77566

35

7

Section 1: E)dending the MS-DOS User Interface

PC·DOS 2.0 was the first "modern" version of MS-DOS, with such features
as a hierarchical tree·structured system of directories and subdirectories, hard
disk support, and installable device drivers. Its generic equivalent, MS·DOS 2.11,
has been the operating system normally distributed with PC compatibles.
MS·DOS 3.0 and the minor revisions that followed added support for new media
types (the 1.2MB AT disk, and then 3 th" 720K and 1.44MB disks) and for net­
working.1t also added several useful new utility commands.

The table shows that the size of the user interface code COMMAND. COM has
grown by roughly 50 percent, that of the kernel I BMDOS. COM has exploded by
about five times, and that of the BIOS has nearly doubled. The number of exter­
nal commands has also grown by about 50 percent.

It is hard to draw precise conclusions from this byte length comparison
because, for example, a significant improvement between versions at the user
interface level might be reflected mainly by addition of certain system services
in the kernel or the development of special-purpose external programs rather
than by an increase in the size of COMMAND• COM itself. Nevertheless, the table does
reflect what has been the general experience of MS·DOS users: although the
operating system has grown considerably in size in moving from the 2.X level to
the 3.X level, most new features have been in the areas of internal routines (sys­
tem services in the kernel) and in special device support. There has not been
much added to user interface, batch processing capabilities, or external utility
commands.

DOS Startup and Configuration

The best way to begin to understand how the modules that make up MS-DOS
work is to go through the highlights of what happens when the system is booted
or started up. You will see that by the time you see A> on your screen, MS-DOS
has already been hard at work. It has installed itself in several parts of memory,
created many important data structures, configured system resources, and in­
stalled several device drivers. (See Essay 10, Developing MS-DOS Device Drivers,
by Walter Dixon, for more detailed information on the MS-DOS boot process.)

From the user point of view, MS·DOS is a series of layers going down from
the user interface to the kernel and then the BIOS. The boot process goes in the
opposite direction, however, from the most hardware-specific operations below
even the BIOS all the way up to the user prompt level. Figure I-I is a schematic of
the overall process.

In the IBM PC and most other MS-DOS systems, once the built-in ROM
hardware-ehecking routines (the POST or Power On Self Thst) finishes running,
bootstrap code in ROM triggers the loading process. This code I'knows" just
enough about the disk to try to read first drive A:, sector 1, track 0, referred to as
the boot sector in MS·DOS. If there is no disk in drive A: (which is typical of many
systems today), it tries to read the same location on the hard disk, drive C:.

8

User
Level

Kernel

SIOS

Hardware

A>
COMMAND.

COM

File Tables
and Cache

Installable
Drivers

Device
Information

SVSINIT

BIOS

ROM
boot codeo

Power On
Self Test

~ --J~

Standard
Hardware

Chapter 1: A Guided Tour

Information about
add-on devices

Information about
standard devices

Fig. 1·1. The DOS startup process.

9

Section 1: Ex.tending the MS-DOS User Interface

The code that has now been read from the boot sector enables the loading
process to continue. Assuming they are in the root directory of the boot disk,
IO.SYS and then MSDOS.SYS are loaded. (In some MS-DOS implementations,
IO.SYS loads MSDOS. SYS rather than both being loaded by the boot sector code.)
The IO.SYS file actually contains two modules: the BIOS and SYSINIT The BIOS
contains the built-in device drivers that allow standard communications with
the computer's keyboard, screen, printer, serial ports, and disk drives.

SYSINIT is responsible for a number of coordinating efforts. First, it deter­
mines the configuration of available memory and relocates the DOS kernel so that
it goes down from high memory. Second, it calls code in the now loaded MS-DOS
kernel MSDOS. SYS that builds important data structures or tables MS-DOS will
need in order to be able to use devices correctly. Each of the resident device driv­
ers is initialized) and, in turn, returns information about the device that is put into
a data structure for each device called a Device Control Block (DCB).

DeBs make up a linked list (a list where each item contains the starting ad­
dress of the next item), and the starting address of this list is recorded in a global
list (sometimes called the List of Lists). This list eventually will contain further
information such as the largest allowable sector size for block devices.

Once the built-in drivers are initialized, SYSINIT will attempt to read the
CONFIG. SYS file. This file, as you probably know, contains user specifications for
installable device drivers-drivers that can be added to those already resident in
MS-DOS. These drivers are normally contained in files with the . SYS extension.
If) for example) you specify DEVICE=VDISK. SYS in your CONFIG. SYSfile) the virtual
disk (RAM disk) will be set up. SYSINITthen collects information about the availa­
ble devices. As an installable driver is loaded, information about it is added to the
linked list of device drivers that also includes the names of built-in drivers. Ta­
bles for tracking active files and the structure of the current directory are also
set up at this time. The MS-DOS cache (buffer for file I/O) is also set up based on
information obtained during the boot process as modified by any user BUFFERS=
command found in CONFIG.SYS.

Finally, SYSINIT loads the command interpreter, or shell) normally COM­
MAND.COM. (If there is a SHELL= statement in CONFIG.SYS, the specified shell is
loaded instead of COMMAND. COM. The size of the DOS "environment" is also deter­
mined by the value found in a SHELL= statement in CONFIG.SYS or set to the de­
fault. The DOS environment consists of a number of standard variables such as
PATH) which we will look at later) as well as room for user-specified variables such
as those used in batch files. Finally) any AUTOEXEC. BAT file is executed. Entries in
this file are commonly used to install memory-resident programs and sometimes
to start a session with a particular application.

Once all of this is accomplished, either an application specified in
AUTOEXEC. BAT has been started and is now running) or COMMAND. COM alone is run­
ning) showing the familiar DOS prompt.

The startup process tells us several important things about MS-DOS. First,
the process moves from the hardware-specific level (ROM code) absolute disk

10

Chapter 1: A Guided Tour

sectors, and so on) through the installation of the standard MS-DOS drivers and
then to user-installable drivers. We thus move from the necessary and built-in
components to the optional and flexible add-ons such as user-supplied device
drivers. Next, MS-DOS, as part of the startup process, "learnsnmany important
things about the system, and sets up data structures to hold both this informa­
tion and information that will be obtained in subsequent operations. Finally,
these structures are flexible enough that any device that can provide the re­
quired information via a driver can be "hooked inn to the system.

Now we will look at the top of the iceberg that has emerged from our
startup process-the user level-in more detail.

The User Level

The user interface or shell is the MS-DOS module that is responsible for ac­
cepting, interpreting, and acting upon the command lines typed at the keyboard
by the user. Every operating system has to communicate with the user, and
much of our time is spent dealing with the user interface. It is thus worthwhile to
see if we can improve the interface so we can get more work done more easily.
Remember, programmers are users whenever they type an MS-DOS command
to change directories or delete a file.

For each command line, the shell must figure out what command or pro­
gram is to be run, what files it is to use, and what options have been specified. It
must then load the program, provide it with the required information, run the
program, and return ready to execute the next command.

COMMAN 0 • COM: The Standard MS-DOS Shell

As we noted earlier, the standard MS-DOS interface is provided by a program
called COMMAND. COM. This program is called a shell because it (metaphorically) sur­
rounds the operating system proper (the kernel and BIOS layers) and is the
means by which users can give commands to be run. Any time we see the user
prompt (such as A>, COMMAND. COM is running. We will now look at how user com­
mands are processed.

Finding Commands and Programs

Figure 1-2 provides a schematic of how COMMAND. COM responds to commands. We
will suppose we have just typed CD. COMMAND. COM first parses (breaks into signifi­
cant parts) the command line and then attempts to load and run the item speci­
fied, which can be anyone of the following:

11

Section 1: EI'tending the MS·DOS User Interface

~> an internal MS-DOS command (for example, 0 I R)

~,. a. COM program

~> an. EXE program

i> a. BAT (batch) file

MBad command
or file name"

Execute
internal
command

YES

Found in
internal
table?

NO

Prepare
.COM
program

YES

.COM
extension

?

NO

Prepare
.EXE
program

YES

.EXE
extension

?

NO

Interpret
.BAT
file

YES

.BAT
extension

?

NO

Command Line:

What is the item "DIR"?

Fig. 1·.2. How COMMAND. COM responds to commands.

COMMAN 0 • COM looks for the name of the item within a table within its code to
see if it is an internal command. The routines for executing internal commands
are included in COMMAND. COM itself-in memory so they are executed quickly just
by jumping to the appropriate routine. In the case of our example command
line, since CD is an internal MS-DOS command, it is found in the table. Since we
didn't type any filenames or options on the command line, the 0 I Rcommand can
be run right away. Many MS-DOS command lines are more complicated, how­
ever. If the item is not found in the table, it is assumed to be something external
to COMMAND. COM-an external command, an application program, or a batch file.
In this case, COMMAN 0• COM searches the disk drives for . COM programs, then . EXE

programs, and finally .BAT files. The search begins in the current drive and di­
rectory unless the program's path (directory location) is specified on the com·
mand line. Additional drives and directories are searched if they have been

12

Chapter 1: A Guided TDur

specified as part of the search path. The ability to specify a search path is an
important feature because it would be very inefficient for MS-DOS to have to
search through dozens of directories on several drives in search of a particular
program. By using the SET PATH command to give a sequence of drives and direc­
tories to be searched) the user can specify that the most frequently used directo­
ries be searched first) making the process much more efficient. Most MS-DOS
users therefore specify their PATH in the AUTOEXEC .BAT file.

If the item is found in one of the directories on the search path) COM­

MAND. COM sets up the environment needed to load and run the program (more on
this later). If the program is not found) the user sees the familiar message Bad

command or f; le name.

Organizing Resources

The PATH variable gives MS-DOS more flexibility by telling it how the user has
arranged resources (programs). It solves only part of the problem) however) be­
cause "resources" also include the data (source code) documents) spreadsheets,
databases, or whatever) the user wants to work with. Indeed) as users) we are
really saying to ourselves) "now I want to revise this letter)" not) "now I'll run
WordPerfect." The MS-DOS path) however) is searched only for executable pro­
gram or batch files) not the data files to be used with our applications. Later
versions of MS-DOS provide the APPEND command in an attempt to help track
data files) but MS-DOS has not yet developed a coherent way of looking at re­
sources. There is no linkage, for example, between a document and the word
processor that was used to create it.

Many software designers feel that users are more comfortable when ab­
stractions such as files and directories are represented by physical objects
(icons) that can be moved around. Examples of this approach to accessing re­
sources) graphical interfaces such as those used by the Macintosh or provided
by Microsoft Windows, have emerged as an alternative to the traditional com­
mand-line interface. Linking of needed files (but not the use of icons) is also of­
fered to programmers in an integrated programming environment such as the
Borland Thrbo or Microsoft Quick languages) where the files needed to edit)
compile) and link a program are brought together automatically. Such links
could be implemented in a revision of the standard command-line interface,
however) and future add-on utilities might offer them.

Parsing, E~pansion,and Redirection

Besides figuring out what command or other program is to be executed, COM­

MAND. COM also parses the remainder of the command line and uses the specifica­
tions found there to find matching filenames and to specify a program's input
and output. For example, consider this command line:

13

Section 1: Extending the MS·DOS User Interface

DIR C:\TABLE? : SORT> LIST

The internal DIR command is given the file specification C: \ TABLE? and run.
Because a wildcard character? is used in the file specification (pathname), COM­
MAND. COM searches the specified directory and passes to the DIRcommand all
filenames that consist of TAB LE plus anyone other letter. In other words, the
compact pathname with wildcards is "expanded" so that it represents all match­
ing file or path names.

Besides expanding wildcards, COMMAND. COM also looks for symbols that tell it
to redirect input and output from their normal channels. The :or pipe symbol is
conceptually a pipeline (connection) between two operations (the internal DIR
command and the external SORT command in our example) so that the output of
the first operation becomes the input to the second. (Redirection and piping
were implemented starting with MS-DOS 2.0.) In our example, first COMMAND. COM
redirects the output of DIRfrom the default standard output (the screen) to a
temporary pipe file. DIR then generates its output, which is put in the pipe file.
SORT then runs with its input redirected to take data from the pipe file. The >
(greater than) symbol following SORT causes COMMAND. COM to redirect the output
of this command to the file LIST. (The distinction here is that piping connects a
program with another program, while redirection with the > and <operators
directs the output or input respectively to a file.)

Finally, COMMAND. COM also looks on the command line for option switches, and
makes them available to the program to be run. For example, the command DIR /w
means "print a directory listing in wide (multicolumn) format:' This facility is not
limited to MS-DOS commands, however. When any program is run, MS-DOS con·
structs a block of data called the Program Segment Prefix (PSP) and puts the re­
mainder of the command line that invoked it (that is, everything but the program
name itself) into the PSE so any program can access its command line and check
for option specifications. PSP is called a prefix because it consists of the first 256
bytes of the 64K segment that either contains or begins the program code. Figure
1-3 summarizes the steps that COMMAND. COM takes in parsing the command line and
preparing to load the specified program.

These features benefit programmers and power users in several ways.
Most programming languages support redirection and piping, so it is easy to
write filter programs that perform useful chores such as stripping out the high
bits in WordStar files. Several filters can be connected together with pipes,
which allows the programs to be used in whatever combination or order makes
sense. The ability of MS-DOS to pass command-line parameters or switches to a
program enables the desired behavior of each tool to be specified when it is used
in a command or batch file. '

When combined with the batch file facility, filename expansion, redirec­
tion, piping, and command-line options allow quite a lot of work to be done auto­
matically--compiling, linking, and running a program, or processing text files in
converting between formats.

14

Chapter 1: A Guided Tour

Redirect
Output

Redirect
Input

Redirect
Output

r:l
L:J

!~
. f
II
I!

J..
/j
'/'.
,J

/

~

Pass/R

\

..... option to
SORT.EXE

f
11
',I

~~~.~\.
L

>

Construct
PSP

External
Program

SORT.EXE

Temporary
(pipe)
File

Command
Option

EJ

Internal ]
Command

Fig. 1-3. Command-line parsing.

There are some shortcomings to these command-line features, however.
One of the most annoying is that most commands will not accept multiple
filenames. For example,you can't say, del *.bak *.old temp? Nor can you specify
several commands on the same command line, except when joining them with a
pipe. Additionally, the support for wildcards is not uniform throughout the
MS-DOS command set. For example, you can't say type report? to list report1
through report9. In general, the revisers of MS-DOS have paid much more atten­
tion to adding new commands than they have to increasing the utility and con­
sistency of the existing ones. We will look at some possible ways to improve this
situation later.

Program E~ecution

Once COMMAND. COM finishes parsing the command line, the specified program
must be loaded and run (see Figure 1-4). COMMAND. COM actually has two parts: a
permanent part and a temporary part. The permanent or resident part contains
code that monitors for user interrupts (breaks), critical errors, and for a signal
indicating that the current program has terminated. It also contains code that is
used to load the temporary or transient part of COMMAND. COM back into memory.
The transient part contains all of the rest of COMMAND. COM-the command-line
parser, batch file facility, internal commands, and so on.

15



Section 1: Extending the MS·DOS User Interface

COMMAND.COM

Transient

Permanent

Before
loading
program

COMSPEC

PROG.EXE

Transient
"Portion
overwritten

Permanent

Loading and
running
program

Transient
reloaded
from disk

Permanent

After
running
program

Fig. 1·4. How COMMAND. COM rUDS a program.

Thus, when a program is run, it is loaded into upper memory where it
frequently overwrites part of COMMAND. coM's transient portion. When the pro­
gram is terminated, the resident portion does a checksum in order to find out if
the transient portion is intact. If it is not, a fresh copy is loaded from disk. (The
variable COMSPEC can be used to tell COMMAND. COM where to look for it.) In floppy­
based systems, this sometimes requires disk swapping after running an applica­
tion.

The reason for having only a minimal part of the shell in permanent resi­
dence goes back to the fact that, in its earliest incarnation, MS-DOS had to run
on machines that had only 64K of memory. If all of COMMAND. COM were kept in
memory, the amount of memory available to application programs would be cor­
respondingly reduced. Since the size of the user interface continues to grow and
applications tend to want all available memory, this feature is probably still use­
ful.

16



Chapter 1: A Guided Tour

Running Multiple Shells

Note that COMMAND. COM itself, since it is actually "just a program; can be run like
any other program from an existing copy of COMMAND. COM. Thus at the DOS
prompt, you can type command Ie di r and get a directory. The Ie is a switch that
tells the new COMMAND. COM to execute the rest of the line as a command. The real
use of this, however, is to have a batch file run another batch file. (In DOS 3.3,
there is a CALL statement that provides a more straightforward way to do this.)
You can also have an applications program run a batch file by using a system call
(the EXEC function), to invoke a new COMMAND. COM with the appropriate command
line placed in memory.

Batch Processing

Another powerful feature of MS-DOS is the ability to put a series of command
lines in a batch file that can be executed by naming it, in the same wayan
MS-DOS command or other program is run. Indeed, a batch file is a program
consisting of MS-DOS command lines and some rudimentary branching and
control structures. Batch files are typically used for such tasks as configuring
the system at startup, installing new software, and assembling or compiling pro­
grams. The power user columns of popular PC magazines are filled with batch
files that perform a number of other chores such as setting a serial port or
printer. Because they are ordinary text files, batch files can be created with
whatever editor is handy.

Much of the power of batch files comes from the fact that they can be given
general placeholders that can be filled in from the command line when the
batch file is called. For example, if a batch file called BACKIT. BAT contains the line
COpy %1 %1.BAK, typing BACKIT LETTER results in the command COPY LETTER LET­

TER. BAK being executed.
Unfortunately, the MS-DOS batch facility, despite the creative uses to which

it has been put, is very limited as a programming language. There is an I Fbut no
ELSE, for example. There is a FOR statement, but it accepts only lists and is not
able to use a counter. Long batch files (such as those used to install software) are
hard to read and maintain because of the lack of good control structures and the
inability to use subroutines. In addition, the MS-DOS batch-processing language
has no facility for performing arithmetic, doing anything other than a literal
comparison to a string, or even for getting input (other than pausing for a key­
press) from the user.

There are several approaches that can be taken to improve MS-DOS batch
processing. One is to write short utilities that can extend the versatility of the
batch facility. (See Essay 3, Adding UNIX Power with PCnix, by Edward Nather,
which describes the use of batch files to implement UNIX-style utilities in

17



Section 1: E}Ctending the MS-DOS User Interface

MS-DOS. He also describes batch file helpers-short programs that can, for ex­
ample, check user input in a batch file.)

Another place to look for more power and ease in batch programming is
among the many menu-generation programs, some of which are public domain
or shareware. These programs allow you to set up a nested series of menus to
guide beginning users, and, in some cases, include batch facilities as well.

A more comprehensive solution is a product called EBL (Extended Batch
Language) that provides the many features missing in the MS-DOS batch lan­
guage, yet is compatible with regular DOS batch files. This is a shareware prod­
uct available on many bulletin boards. (See Essay 4, Adding Power to MS-DOS
Programming, by Doug Adams, for a detailed overview of EBL with examples.)

Finally, there are a number of products that provide implementations of
UNIX shells for MS-DOS, offering what is, in effect, a general-purpose macro
programming language. (The Korn shell, ksh, is the most comprehensive one.)
UNIX shells offer programmers more (and more flexible) variables, better con­
trol structures, and many more conditions that can be tested. Such shells are
definitely more complex than COMMAND. COM, but this will not dismay people who
are already programmers or power users of MS-DOS. The UNIX shells for
MS-DOS vary in quality. The best I have found is in a product called the MKS
Toolkit. It provides a very full implementation of the new UNIX Korn shell with
many UNIX utilities besides. This product is compatible with the rest of the
MS-DOS environment, including memory-resident programs. It can be run ei­
ther instead of COMMAND. COM or from it.

The MS-DOS File System

Readers of this book are likely to be quite familiar with the use of pathnames,
directories, and subdirectories to navigate among files under MS-DOS. Of
course, it is not easy for even a power user to type a pathname like
c:\c5\bin\graphics\ega without errors. The significant milestone in the
MS-DOS file system was the implementation of a tree-structured (hierarchical)
file structure starting with MS-DOS 2.0. Such a system of directories and sub­
directories was, of course, made necessary by the advent of hard disks with
space for hundreds of files. The syntax used is very similar to that of UNIX, ex­
cept that MS-DOS uses \ to separate parts of a file path, while UNIX uses /. On
the other hand, MS-DOS uses / for command options, while UNIX uses -. This is
a continuing frustration to people who use both operating systems daily. (See
Essay 3, Adding UNIX Power with penix, by Edward Nather, for a discussion of
ways to modify MS-DOS to accept the UNIX conventions.)

The difficulty many people have in visualizing their place in the file tree has
led to a number of developments. Numerous commercial DOS shells (which are
not really shells, since they don't replace COMMAND. COM) offer users a graphic de-

18



Chapter 1: A Guided Tour

piction of their file structure and easy selection of files for inspection, copying,
or removal. More radically, graphic environments that follow the Macintosh phi­
losophy (such as GEM and MS Windows) replace directories and subdirectories
with folders. These are designed to be more intuitive, especially for beginning
users, but some graphic interfaces (notably that of the Macintosh) do not allow
one to use command lines where appropriate. A command line using wildcards
enables us to act globally (on a whole set of files or a directory) with a single
command.

Another shortcoming that is keenly felt by most MS-DOS users is the limita­
tion of filenames to eight characters plus a three-character extension. One won­
ders how many person-hours have been lost trying to come up with a way to
name a document so that you can find it again without having to examine other
similar files. One solution is to use several layers of subdirectories to specify the
meaning of a name by its position in the hierarchy. In other words, since you
can1 use report.income.1987.fall, you can use \reports\income\1987\fall.
Although there are times when such an organization makes sense conceptually
(perhaps if you have many similar files), it usually substitutes the problem of
directory navigation mentioned earlier for the problem of incomprehensible
filenames. Disappointingly, there appears to be no provision in planned new re­
leases of MS-DOS or OS/2 to allow longer filenames.

As usual, the market has responded to users' needs, however-in this case,
by providing MS-DOS shell or file manager programs (often memory-resident)
that allow you to associate a longer name or phrase (or keywords) with a
filename. When your application asks you for a filename, you can pop up the
utility and use it to find the right name and then invoke the application.

Going beyond these relatively superficial problems, the MS-DOS file system
also suffers from a structural problem. Conceptually, one should be able to get
from any part of the file tree to another, simply by searching recursively. In this
case, recursive searching means searching the first directory, then searching
any subdirectories in that directory, searching each of its subdirectories, and so
on. Indeed, MS-DOS provides system functions that allow programs to navigate
through the directory hierarchy, but the user commands generally aren't recur­
sive. That is, they can't operate on the current directory and all its subdirecto­
ries and all their subdirectories. You can't, for example, copy or delete a
directory and all of its subdirectories in the way you can in UNIX. (MS-DOS 3.2
provides a new command called xcopy that is recursive and copies subdirecto­
ries, however.)

While it can be argued that such recursion increases the chances of acci­
dents, it is needed to take full advantage of the file system structure. MS-DOS has
most of the pieces of the needed facility. For example, starting with DOS 2.0,
MS-DOS provides a command called tree that displays the directory tree start­
ing at a specified point. Unfortunately, there is no command that will search
through this tree and show you the path to a specified file. Nor is there a com­
mand in standard MS-DOS that allows you to find matching files in the tree and

19



Section 1: E}{tending the MS-DOS User Interface

apply an MS-DOS command to them (for example, to find the file REPORT8 some­
where in the depths of your ACCOUNTS directory and TYPE it to the screen, or to
DELETE all files with the extension. BAK regardless of their position in the hier­
archy). In UNIX, this function is performed by the powerful f; nd command,
which is not to be confused with the MS-DOS FIND command. The latter doesn't
find files, but rather finds words in a file.

Again, enterprising programmers have come to the user's rescue by provid­
ing a utility that will find matching files anywhere in the file tree, and optionally
apply an MS-DOS command to them. (See Essay 2, Searching the File Tree with
where; 5, by Frank Whaley, for a very complete implementation of this utility.)

Strategies for Improving the User Interface

A "better" interface means two things that are often hard to reconcile: more
powerful and easier to use. Figure 1-5 shows stylized learning curves for three
environments: "classic" MS-DOS, the Macintosh-style interface, and UNIX. Each
plots power along the vertical axis and ease of learning and use along the hori­
zonta!. (These are not meant to be exact quantifications.)

Classic MS-DOS has a pretty steep learning curve that eventually levels off
as the user learns features. Unfortunately, the power also levels off quickly due
to the systemic shortcomings of elements such as the batch-processing and file
systems and the lack of commands for many functions.

The Macintosh-style interface offers a more shallow learning curve (it is eas­
ier to learn) and a higher initial level of power, but the power does not grow signifi­
cantly over time. It is a bit like the hare and the tortoise: on the average, as a Mac
user, you will be able to do much more with the operating system in the first
couple of months than will the MS-DOS (or UNIX) user, but the lack of global com­
mands and batch processing means that you will not be able to do much more in
the operating system after six months than you were able to do after one.

Finally, UNIX offers a learning curve that tends to remain fairly steep, but
with power that continues to increase. The MS-DOS power user who obtains a
UNIX-style shell and utilities may be able to accomplish many things the other
two kinds of users cannot, though any shell scripts created cannot be run on
another system without also providing a copy of the shell (and probably other
programs).

It should be clear that there is a place for both the easy-to-Iearn graphical
interface and the power user's command-line interface. Fortunately, both are
available today. With the use of a product such as Microsoft Windows, a user can
have access to both worlds, with many other benefits besides. (See Essay 9, In­
side Microsoft Windows, by Michael Geary.) In addition, integrated program­
ming environments usually offer a graphic-style windowed interface, access to
MS-DOS from within the program, and batch-mode compile and link options.

20



Chapter 1: A Guided Tour

t.:.•.•.•::.~
Power

iVi¥ijiff#i/ffllh>'MJ!tiP#!$il'Hq;P{h&M,"~

Time +Effort

Fig. 1-5. Learning ease of use vs. power.

Programmers and power users may have a bewildering variety of choices these
days, but with thought and planning they can have both power and ease of use.

The Applications Level

At the applications level, we move from what the user needs to what a program­
mer must do. The programmer's interface to MS-DOS is the applications services
level-the system kernel, which is loaded from the MSDOS. SYS file (I BMDOS. COM in

21



Section 1: El'tending the MS-DOS User Interface

PC-DOS). The kernel contains the data structures and service routines that ap­
plications programs must access correctly in order to function in the MS-DOS
environment.

DOS Kernel Features

The MS-DOS kernel serves an applications program in two general ways. First, it
manages information the program needs in order to interact with its environ­
ment, such as information about the current directory, the files assigned for use
by the program, and the list of available devices and how they organize data.
Second} the kernel provides service routines (often called MS-DOS functions or
interrupts) that handle such things as memory management} file management}
and I/O for built-in character devices such as the screen} keyboard} parallel port}
and serial port.

Program Structure and Memory Use

1b load a program (either a . COM or an . EXE), COMMAND. COM calls the kernel's EXEC

function INT 4BH} which constructs the PSR (See Essay 6, Undocumented MS-DOS
Functions} by Ray Michels} which begins with a detailed discussion of the PS:P.)

The PSP provides a program with information about its current environ­
ment, including the values of current DOS variables such as PATH. It also contains
the remainder of the command line used to call the program} so the program can
search for and act on option switches and find the names of user-specified files.

The PSP also contains the addresses of key services the program will need,
such as the MS-DOS termination handler INT 22H, which provides for the orderly
termination of a program} and the MS-DOS function dispatcher INT 21 H} through
which requests for disk operations and various I/O services are sent. The PSP
also provides information that can be used to determine if the program has allo­
cated enough memory for its needs or perhaps can release some memory.

The PSP thus provides a private copy of the environment for each program.
Although only one program can be active at a time} there can be several PSPs
and associated programs in memory. The PSP for each program serves to iden­
tify it as a process. This allows the maintenance of multiple memory-resident
programs. Beyond that} the PSP structure is useful for developing task-switch­
ing and the provision of variable amounts of processor time for different pro­
cesses-in other words, a form of multitasking} since each process can be
maintained with its own PS~ While Microsoft has chosen not to exploit this line
of development (opting for the much more sophisticated approach in OS/2),
other vendors have created multitasking versions of DOS or task-switching that
run under DOS.

22



Chapter 1: A Guided Tour

• COM Program Structure

As all users learn, there are two types of executable programs that run under
MS-DOS. The simplest type is the. COM program, identified by this file extension.
A . COM program is an exact image (copy) of binary program code. It is always
loaded just after the PS~ and it cannot be relocated. A . COM program is limited to
one segment (64K), minus the space for the PSP (256 bytes) and the minimum
stack (2 bytes). The compensation for this inflexibility is that . COM programs are
compact and load fast, since multiple segments do not have to be accessed.

Most . COM programs found these days are usually either old programs (per­
haps originally ported from CP/M) or small utility programs. The first genera­
tion of languages on PCs often produced only •COM programs, but most
compilers can now use large-memory models and produce . EXE files .

• EXEProgram Structure

Larger programs and those that need to be able to allocate and release memory
as needed are constructed as . EXE programs (using that file extension). The key
features of an . EXE program, as compared to a . COM program, are that it can use
as many segments of memory as are available, and it can be relocated after load­
ing. Separate segments can be devoted to program code, data, and the stack.
Figure 1-6 compares the structures of •COM and . EXE programs.

Unlike the case with . COM programs, which are always loaded as a block,
MS-DOS must know a lot of information about an . EXE program to be able to load
it into memory and allocate whatever extra memory is needed. Each •EXE pro­
gram has a header that includes information such as the location and size of the
program's code, data, and stack segments. Other header fields tell MS-DOS how
much more memory the program must have in order to run, and how much
more the program would like to have if available. An . EXE program can also call
functions that release memory that is no longer needed. Thus, . EXE programs, at
the expense of additional overhead, are much more flexible than are . COM pro­
grams.

In the early days of MS-DOS, flexible memory allocation and the ability to
deallocate unneeded memory were not very important. Normally there would
be only one program in memory at a time. The advent of memory-resident pro­
grams changed all of this. An Ilill-behaved" program that grabs all available mem­
ory freezes out memory-resident programs that expect to be able to allocate
some memory as needed. Thday, most programs that are intended to be used in a
typical MS-DOS environment should be able to release and reclaim memory as
needed. In addition, . EXE programs that follow certain rules can run under
MS-DOS, OS/2 (MS-DOS compatible) mode, or OS/2 protected mode.

23



Section 1: Elaending the MS-DOS User Interface

One Segment
(maximum 64K)

Multiple Segments
(up to available memory,
flexIble order)

Stack

Program
Code and

Data

PSP

.COM Program

Stack J
"'------'

r=l
~

R
B

PSP ,

Transient Area
COMMAND.COM

.EXE Program

.EXE

File

Code,
Data

Fig. 1-6. Structure of . COM and. EXE programs.

Memory-Resident Programs

The story of the development of memory-resident programs (usually called TSR
for Thrminate and Stay Resident programs) is a fascinating one. (See Essay 7, Safe
Memory-Resident Programming (TSR), by Steven Baker, for both history and a
very detailed discussion of the workings of TSRs and potential pitfalls.) A feature
apparently intended by Microsoft only for reconfiguring access to devices (such
as the MODE command) or spooling printer output (the PRINT command) was un­
earthed by eager developers and exploited to bring us SideKick and dozens of
other utilities that are available at the touch of a key. Indeed, one of the biggest
problems for serious users today is deciding how many of these attractive pro-

24



Chapter 1: A Guided Tour

grams can be fit into the 640K of total available memory while still leaving room
for an applications program.

As noted earlier, there can be multiple programs, each with its own PS~ in
memory at the same time. Normally an MS-DOS program is removed from mem­
ory (or more precisely, its memory is released) after it terminates. When a TSR
program first runs, it calls a function (usually INT 21 H, Funct ; on 31 H that tells
MS-DOS to maintain the program in memory even after it has exited. By using
the interrupt mechanism, a TSR can set things up so it is triggered when an
event such as a specific keypress is encountered. Problems occur when two
TSRs are set to respond to the same keypress, or a TSR does not pass on the
keystrokes it examines so other TSRs can check them.

In essence, the TSR facility, because it allows multiple programs (processes)
to exist simultaneously, provides the capability of task-switching. Since several
programs are in memory and each can be selected by a particular keypress, the
user can switch "instantly" between them. Memory-residency potentially sup­
ports an object-oriented, event-driven approach where a program could be con­
structed of modules that can respond to "messages" sent to them by various
events. Programmers can explore the possibility of implementing an application
as a group of memory-resident modules. The drawbacks are considerable how­
ever. Many important functions relating to TSRs have only been documented re­
cently, some are still undocumented. MS Windows and ultimately OS/2 are much
better environments for developing such event-driven programs, but there is
still room for exploiting memory-resident programming in the standard
MS-DOS environment.

Accessing System Services through Interrupts

The basic mechanism by which programs request the services of the MS-DOS
kernel is the software interrupt. There are basically two kinds of interrupts in the
PC environment: hardware interrupts and software interrupts. Hardware inter­
rupts originate from the hardware controlling devices, and programs must re­
spond appropriately to them. Remember, there is nothing traumatic or unusual
about hardware interrupts in the MS-DOS world. Many are nothing more than a
device saying that it has completed the requested I/O operation.

Software interrupts are used by programs to obtain such services as file
management (creating, writing, and reading files, creating directories, and so
on), memory management (allocating or releasing memory), reading the key­
board, displaying text or graphics, or running a program from the current pro­
gram.

Interrupts are referred to as I NT XXH where xx is a hexadecimal number. I NT

is also the name of the assembly language instruction used to call an interrupt.
Software interrupts can access the BIOS for low-level operations, and this is

25



Section 1: Extending the MS-DOS User Interface

sometimes done for speed reasons. For example, INT 10H is a general-purpose
interrupt used to access the BIOS video services. In general, however, the most
compatible way to request DOS services is through the software interrupts that
call code within the MS-DOS kernel. An interrupt with special significance here
is INT 21 H. This interrupt is a general dispatcher used for calling most of the
MS-DOS kernel's system services. Aproximately 100 different functions are avail­
able through INT 21 H, called by putting the hexadecimal number of the specified
service into the AH register, loading other registers with codes that specify the
desired processing, and then using the INT 21 Hinstruction.

The I NT Instruction

Software interrupts are activated by executing the INT assembly language in­
struction. The form of the instruction is INT", where" is the hexadecimal inter­
rupt number. Before the INT statement is executed, CPU registers must be
loaded with appropriate values as specified in the description of the interrupt.
When the interrupt returns control to the program, return values, as appropri­
ate, are provided in the registers.

The I NT instruction first directs the CPU to save the current contents of the
code segment (CS) and instruction pointer (IP) registers onto the stack. This must
be done so that the program that was interrupted can be started up where it left
off. New values are then loaded into these registers using the values found in the
Interrupt Vector Table in the first 1024 bytes of memory. The interrupt number
serves as an index into the table. The CPU then executes the code found at the
locations now specified by the CS and IP registers, and, when done, restores the
original CS and IP values from the stack. Execution of the interrupted program
now resumes.

Because values in the Interrupt Vector Table can be replaced by the pro­
grammer with other values, software designers can substitute their own code
for handling a particular interrupt by putting appropriate values in the table for
that interrupt number. This is how, for example, a TSR can intercept a keyboard
interrupt with code that checks for certain keystrokes.

Using MS-DOS Data Structures

The use of the many system functions (or interrupts) involves not only an under­
standing of how a particular interrupt works, but frequently how it uses internal
MS-DOS data structures. For example, a number of MS-DOS functions have to do
with file management: creating, writing, reading, closing, and removing files.
Internally, MS-DOS uses a System File Table (8FT) and individual data blocks
called File Control Blocks (FCBs) to manage files. The 8FT keeps track of the sta-

26



Chapter 1: A Guided Tour

tus of all files that are currently open. Each file has its own FCB, which contains
the file's name, status, history (when it was last accessed), as well as pointers to
the location within the file that was last accessed.

Constructing FCBs used to be a tedious process because all of this informa­
tion had to be obtained by the program and inserted one field at a time. But
MS-DOS (starting with version 2.0) has provided an alternate and preferable way
for applications to handle files, the file handle. The programmer obtains a file
handle by passing the address of a string containing the pathname of the file to
the file creation or file-opening function. The handle that is returned is a 16-bit
value that identifies that file. All further references to the file use only the han­
dIe, and MS-DOS keeps track of the file's FCB without further ado. The use of file
handles makes it easy to find a file anywhere in the file system hierarchy, redi­
rect input and output, and control the use of files and records in a network envi­
ronment.

The file handle example is typical of a problem with learning how to pro­
gram with MS-DOS. In the interest of compatibility with earlier versions, many
MS-DOS facilities do not replace the functions they are intended to supplant. It is
up to the programmer to learn what the preferred techniques are. (See Essay 10,
Developing MS-DOS Device Drivers, by Walter Dixon, and Essay 6, Undocu­
mented MS-DOS Functions} by Ray Michels} for discussions of the use of the SF'!;
FCB, and file handles.)

Problems in Interrupt Handling

While the interrupt mechanism is conceptually simple, in practice, many
problems can occur in managing interrupts. As the name implies, an interrupt
"interrupts" whatever program was running when it was triggered, so the han­
dler for the interrupt must properly save and restore the interrupted program's
register values. The programmer must also be concerned with preventing inter­
rupts from interrupting themselves.

The interrupt mechanism worked well in the environment for which it was
designed (only one program running at a time). The use of interrupt-driven TSR
programs complicates the issue-the problem is that there is no way to protect
the system from the misbehavior of one process or from an improperly handled
interrupt. In most multitasking operating systems such as UNIX or OS/2} pro­
grammers request system services and access memory only through the operat­
ing system} not by means of interrupts. The operating system is an ever-present
monitor, not just a program loader. The OS protects each program's memory
from unauthorized access. This kind of memory management and the use of
protected mode (on the 80X86) means that an errant program can commit sui­
cide} but cannot murder another program. (See Essay 10, Developing MS-DOS
Device Drivers, by Walter Dixon} for a detailed discussion of the interrupt mech­
anism. See Essay 5} Advanced MASM Thchniques} by Michael Goldman} for tech­
niques and tips for proper handling of interrupts.)

27



Section 1: Extending the MS-DOS User Interface

New Programming Tools and Techniques

Applications programming requires good tools as well as knowledge and tech­
niques. The last few years have seen the emergence of powerful and versatile
tools for programmers, and of integrated programming environments that make
it easier to use them. The new programming tools also make it easier for begin­
ning programmers, traditionally introduced to BASIC, to move directly to using C
or other languages that are better designed for professional programming.

Integrated Programming Environments

Borland International started a small revolution with the introduction of its fast,
cheap, and easy to use Thrbo Pascal product. Instead of a tedious write-compile­
link-run-debug-revise cycle, programmers could now write code in an editor,
have it compiled, linked, and run automatically, and immediately invoke the editor
to fix any errors that emerge. The control of all aspects of the programming pro­
cess from the same interface provided an integrated programming environment.

Since then, Borland and Microsoft have brought out products that add
power while retaining the easy-to-use pull-down menus and dialog windows.
Microsoft C 5.0 is particularly noteworthy in that it offers an integrated environ­
ment (QuickC) that is fully compatible with the full-fledged command-line
driven compiler,linker, and librarian, and provides a subset of its CodeView de­
bugger commands from within the integrated environment.

The significance of integrated environments is that they help program­
mers concentrate on the design and coding of the program rather than the me­
chanics of keeping track of include files, compiler options, "make" files, and
other housekeeping details.

A further step toward programming ease has recently been taken by
Microsoft, starting with its QuickBASIC 4.0 product. By using a "threaded" mech­
anism for linking compiled code sections, this integrated environment makes it
possible in many cases to recompile and relink just the parts of the program
affected by the most recent edit.

Another trend that is seen especially in the Microsoft and Borland prod­
ucts is the provision of a uniform interface that allows programs created using
one language to call routines created using another language. This is mainly a
matter of having the compiled code from each language pass parameters on the
stack using the same sequence. This "multilanguage programming" provides
flexibility in using existing resources and allows the programmer to choose the
language best suited for a given task.

C Function Libraries

The general acceptance of C as the premier higher-level language for MS-DOS
programming has resulted in the development of numerous commercial and

28



Chapter 1: A Guided Tour

public-domain libraries of C functions for nearly everything one might want to
do with an MS-DOS system and its hardware. (Two good examples on a small
scale are the serial communications routines in Essay 13, Programming the Se­
rial Port with C, by Naba Barkakati, and the EGA graphics routines in Essay 12,
Programming the Enhanced Graphics Adapter (EGA) by Andrew Dumke. Essay
4, Adding Power to MS-DOS Programming, by Doug Adams, describes the fea­
tures and gives examples of the use of two commercial C libraries: Vitamin C, a
screen generator, and C-INDEX, an indexed file-retrieval system.

The Hardware Level

Finally we come to the lowest (but certainly not least important) level of MS-DOS,
the interface to hardware. When all is said and done, a program must communi­
cate effectively with the outside world. From lowest to highest level, there are
three ways a program can control devices: direct access, BIOS calls, and device
drivers.

Direct access involves directly manipulating the registers or memory loca­
tions associated with devices connected with the system, or directly accessing
memory buffers associated with the devices. In general, this is usually done for
speed-in the case of the video display, for example, to provide high-speed draw­
ing and animation. The drawback of this approach is that it depends on exact
hardware compatibility, which is not the same as the "functional compatibility"
advertised particularly by the early PC-eompatibile vendors. Most software de­
velopers avoid this approach, except in some games.

The BIOS

In our discussion of interrupts we mentioned the BIOS calls available through
I NT 10H. Since the calls for device services through the BIOS have to be translated
into specific register or memory changes, this approach is slower than direct
access. On the other hand, now that very highly compatible BIOS chips for PC
compatibles are widely available, the BIOS approach guarantees a high degree of
compatibility.

Communicating with Devices

The third approach to communicating with hardware is the device driver. A de­
vice driver is a program that is installed by MS-DOS in memory where it waits
for control sequences directed at a particular device. The driver translates these
commands into the low-level instructions needed to get the device to perform

29



Section 1: E1Ctending the MS-DOS User Interface

the required function. MS-DOS comes with a number of built-in device drivers
for the devices that are built into every PC, such as the keyboard, disk drives,
and parallel and serial ports.

Installable Device Drivers

The open architecture of the IBM PC and its compatibles rapidly led to the prolif­
eration of add-on devices. In the area of the video display, IBM offered the EGA
and the Video Graphics Array (VGA) and other adapters to provide more resolu­
tion and color. Meanwhile, Hercules established its own display "standard:' Modi­
fying the BIOS or the MS-DOS kernel to keep up with these new devices would
have led to a logistical nightmare. Instead, MS-DOS 2.0 added the capability for
users to install their own device drivers.

As we mentioned in the discussion of the DOS boot process, MS-DOS builds
a list of device drivers that starts with its own built-in drivers. MS-DOS also pro­
vides some optional drivers, such as ANS I. SYS (a console driver) and VD I SK. SYS (a
RAMdisk driver). These or drivers written by other programmers can be in­
stalled (hooked into the MS-DOS driver list), and a DEV Ie E= statement naming the
driver in the CON FIG. SYS file then tells MS-DOS to install the driver at system
startup. (See Essay it Writing a SOUND Device Driver, by Walter Dixon, for a
complete minicourse on designing, using, and testing installable device drivers.)

The installable device driver is one of MS-DOS's outstanding successes. In
addition to accommodating new devices such as laser printers or CD drives, de­
vice drivers can even be used to intercept file accesses and provide password
protection. (See Essay 8, Data Protection and Encryption, by Asael Dror.)

The Future of MS-DOS

Microsoft Windows, with the recent release of version 2.0, represents several
fundamental extensions of the MS-DOS environment without sacrificing the un­
derlying MS-DOS kernel. For users, it provides a graphical user interface with
most of the features popularized by the Macintosh. For programmers, however,
the real significance of MS Windows is that it provides a new model for thinking
about and designing programs. This is the model that is often called object-ori­
ented programming. Instead of an application being written as a collection of
functions that are called according to the logic of the main program, each Win­
dows function is designed to handle specified inputs (messages) and send mes­
sages in return to the central dispatcher. Events such as mouse movements thus
become input to the function controlling each window.

In a traditional program, the user is put in the position of an applicant who
must fill out a series of forms (navigate menus) in order to get to the point of

30



Chapter 1: A Guided Tour

being able to do some work. In an object-oriented,llmodeless" program, the user
picks up the desired tool and the tool responds in a way that seems natural for
the intended work. While in practice, Windows may not be this seamless, it pro­
vides a taste of things to come. (See Essay 9, Inside Microsoft Windows, by Mi­
chael Geary, for more discussion on the Windows interface and programming
environment.)

Expanded Memory

The proliferation of TSRs, the overhead involved with environments such as MS
Windows, and the sheer amount of data that applications are now called upon to
handle often leads to a shortage of usable memory. Remember, MS-DOS allows
only 640K of memory to be addressed directly. The ultimate solution is an oper­
ating system that takes advantage of the Ilprotected mode" of the 80286 and
80386 to address many megabytes of memory, such as OS/2 or UNIX. Meanwhile,
EMS, a workable if not ideal solution, allows access to memory beyond 640K
under MS-DOS. Portions of the 640K main memory are treated as windows into
which chunks of memory from a memory expansion board can be mapped as
needed. While this technique is slower than being able to directly address the
extra memory (and involves housekeeping), it is much faster than using the hard
disk for swapping code or data in and out. Increasing numbers of applications
are being written or revised to take advantage of EMS or its successors, En­
hanced Extended Memory Specification (EEMS) and EMS 4.0. (See Essay 14, Un­
derstanding Expanded Memory Systems, by Ray Duncan, for a conceptual and
practical understanding of expanded memory and how a program can use it.)

OS/2

Even granting its shortcomings and limitations, by any standard, MS-DOS has
been a remarkable success. Microsoft has added significant features to the oper­
ating system on several occasions, and has been innovative in the areas of oper­
ating environments (MS Windows) and programming tools (of which Codeview
and the IIQuick" integrated environments are most notable). Perhaps the real
driving force behind the success of MS-DOS, however, is the community of devel­
opers who have discovered and exploited features such as memory-resident pro­
gramming to meet an increasingly demanding market.

It is traditional in the computer industry to want to be where the action is­
the latest wave rather than the tried and true. There is no doubt that in the long
run OS/2 is the successor to MS-DOS, providing multitasking, a new user inter­
face (Presentation Manager), and a new programming environment.

On the other hand, there is a huge installed base of PCs and XTs that will

31



Section 1: Extending the MS-DOS User Interface

never be upgraded to run OS/2. Also, OS/2 is significantly more expensive than
MS·DOS, especially considering its hefty memory requirements and the cost of
replacing all applications in order to take full advantage of OS/2, rather than
merely running in a slightly degraded fashion in a compatibility mode. Further} it
will take time to rewrite significant applications to take advantage of OS/2, and
until new applications are conceived that take full advantage of multitasking in
their design} there will be limited incentive for most ordinary users to learn OS/2
instead of using a combination such as MS-DOS, Windows, and EMS. Thus it is
likely that, for at least the next several years} there will be a significant market for
MS·DOS applications and considerable room for innovation in the MS-DOS world.

Reading List

Angermeyer, J., R. Fahringer} K. Jaeger, and D. ShaferfI'he Waite Group. 1987.
Tricks of the MS-DOS Masters. Indianapolis: Howard W. Sams & Company.

1>- Full of tips that turn users into power users} including ways to enhance
MS-DOS with add-on products.

Angermeyer, J., and K. JaegerlThe Waite Group. 1986. MS-DOS Developers
Guide. Indianapolis: Howard W Sams & Company.

i> Contains many strategies and techniques for program development
under MS·DOS including real-time programming, the 8087 coprocessor,
and network support.

Duncan, R. 1986. Advanced MS-DOS. Redmond, Washington: Microsoft Press.
;.-- A very thorough guide to MS-DOS internal structures and system func­

tions with numerous examples in assembly language.

Mortice Kern Systems. 1986. MKS Toolkit. Waterloo, Ontario, Canada.
r.-> Describes the MKS toolkit} a product that provides a very UNIX-like envi­

ronment under MS-DOS, including the Korn shell.

Simrin} S.fI'he Waite Group. 1985. MS-DOS Bible. Indianapolis: Howard W Sams
& Company.

f.:- Guide to MS-DOS features for power users and programmers.

32



Chapter 1: A Guided Tour

Harry Henderson is a freelance technical writer and editor specializing in oper­
ating systems and programming languages. He has worked on numerous books for
The Waite Group and Sams Publications, including their UNIX series, and is technical
editor for MS-DOS Papers. He also works with his wife, Lisa Yount, on educational
writing, under the close supervision of three cats.

Related Essays

2 Searching the File Tree with wherei 5

3 Adding UNIX Power with Penix
4 Adding Power to MS-DOS Programming
9 Inside Microsoft Windows

33



Keywords

tree·structurep directories

recursive search algorithms

filename matching

where; 5 (utility)

f; nd (UNIX utility)

Essay Synopsis: Most MS·DOS users
are familiar with the concept of tree·struc·
tured directories. Unfortunately, MS·DOS
does not provide user commands for finding
particular files in the file tree and process·
ing them. Additionally, many programmers
are.not aware of the techniques needed to
enable.programs to traverse the directory
tree and search for files that match particu·
lar criteria. Because subdirectories are
nested;arecursive algorithm allows pro­
grams to access the subdirectories.within a
givendirectory, the subdirectories of these
subdirectories, and s6 on. This essay dis·

. cusses the algorithms and proper DOS calls
to use for a program to access to the
MS·DOS file system. As an illustration, a
very powerful utility called where; 5, written
in Microsoft C, is provided and fully ex·
plained. This utility allows you to search for
files throughout the directory tree and au·
:tomaticaIJy apply MS·DOS commands or
other programs to matching files.



2

Searching the File Tree with
whereis

====-~~=

Frank Whaley

The more recent releases of MS-DOS (versions 2.0 and above) provide a very
useful feature that can be a tremendous aid to organizing disk files-Tree-Struc­
tured Directories (also known as a hierarchical file system). However, users and
programmers are often confused about how to use this feature properly. While
we will assume that you possess a working knowledge of MS-DOS directories
(including the commands for directory creation, deletion, and other mainte­
nance activities), we will review the basic concepts of MS·DOS directories and
show why directory searching is a required task of many programs.

The directory search program where; 5 searches all of the directories on a
disk for a given set of filenames provided on the command line. The where; 5

program also contains a number of options which turn it into a useful file utility
program that can move, delete, copy, or perform other operations on the located
files. As you study where; 5, you will learn how to access and best use the
MS·DOS file system. In addition, this program contains a number of valuable
subroutines that may be clipped out and used in other programs.

where; 5 is actually very similar to the UNIX command f; nd, but has been
slightly modified to be more like the F; l eF; nd program from Peter Norton's The
Norton Utilities. These alterations allow for simpler command lines (at least for
the simpler commands) and give where; 5 more of a regular MS-DOS flavor. We
could not use the name f; nd, as this is the name of the standard MS·DOS text
pattern-matching program.

Tree-Structured Directories

Just as a hierarchy of offices, filing cabinets, file drawers, and folders can be
used to organize paperwork, the tree-structured directories provided by
MS-DOS allow us to organize our disk files into a hierarchical structure. A prac·

35



Section 1: E«.tending the MS-DOS User Interface

tical application of such a system would be organizing your disk files so you
could have subdirectories for each subcategory of your work (for example, all
files pertaining to material purchases in one directory, and all files pertaining to
equipment purchases in another). This approach has many advantages:

t:l>.- Related files are kept in the same area, and their names can be seen to­
gether in a single directory listing.

; '- More significant characters become available for creating unique and
meaningful filenames (compare DPCMJN with DETROIT\PROD\COSTS\
MATERIAL\JUNE).

i> Files containing similar information may have the same name, provided
they are kept in different directories (APRIL\SALES and MAY\SALES).

~-;- MS-DOS requires less search time to find a given file if there are fewer
files in the current directory.

One shortcoming of this type of directory structure, however, is that files
may become lost. They may be created in the wrong directory, or you may sim­
ply forget where a file was put. A tool for automatic directory searching be­
comes very useful, particularly when you have a hard disk with dozens of
directories and hundreds of files. It is for this reason that we selected where; s as
a method for demonstrating some of the principles of directory searching.

Searching: The Recursive Solution

As with most computer programs, there are several methods that we could use
to search directories. Seemingly straightforward methods involving nested
loops require a considerable amount of housekeeping code-stacks of directory
information must be maintained.

One of the definitions of a directory is "an object which may contain files or
other directories." Since this definition is self-referential (or recursive), it would
seem that a recursive algorithm might be used for directory search. In fact, re­
cursive methods are the most common methods used with tree-oriented data
structures, because they allow for simplification of the code required to exam­
ine each branch of the tree. For example, our where; s program revolves around
a very simple algorithm:

1. Find all plain files in this directory.

2. Repeat for all subdirectories in this directory.

This method of searching is very much different from what is required by
most commercial programs. For example, finding a help message file typically

36



Chapter 2: Searching the File Tree

involves appending the name of the file to each element of a list of directories,
and testing for the presence of each constructed filename. Some programs can
get away with assuming that all pertinent files exist in the current directory, and
that any other condition is cause enough to abort the program.

The method used by where; s is most aptly suited to cases where all in­
stances of a certain class of file must be operated on at one time. These files may
be selected either by name, type, attributes, or some other condition or combi­
nation of conditions.

Directory Search Functions

MS-DOS was not the first, nor is it the only, operating system to provide tree·
structured directories. While there is a remarkable similarity between the
appearance of MS-DOS directories and those used by other systems, MS-DOS
provides one of the simplest methods for finding files and information about
these files.

MS·DOS directories are viewed as special files, and can only be accessed via
two special function calls through INT 21 H: Search For First (Function 4EH) and
Search For Next (Function 4FH). Un truth, the actual disk sectors that contain the
directory information may be read via the Absolute Disk Read interrupt (num·
ber 25H), but this method requires much more programming and is usually con·
sidered appropriate only for programs which help recover data after a major
disk failure.) Although these function calls are primarily designed for finding
files, they actually provide more information than similar functions in other op­
erating systems.

The FirstlNext function calls perform wildcard matching (? and *) and de·
posit information about the matched file into a predefined data area. This data
area is described by the following C structure:

1* Directory Information *1typedef struct
{

char
char
unsigned

long
char
}

DIRINFO;

r[21 J ;
attr;
time,
date;
size;
name[13J;

1* data area reserved by MS-DOS
1* attribute <system,hidden,etc.>
1* time stamp
1* date stamp
1* file size in bytes
1* actual file name

MS·DOS uses the concept of a Data Transfer Area IDTA) for passing blocks
of data which are too large to be contained in registers. The current DTA is used

37



Section 1: E)<tending the MS-DOS User Interface

by MS-DOS to return the DI RINFO structure shown above. The current DTA must
be set before each FirstlNext function call. This process is handled by the
SETDTAO macro.

The FirstlNext function call pair allows the controlling loop of a directory
search routine to be reduced to just a few lines, as shown in the pseudocode
below:

if (a first match can be found)
{

process the matched file
while (subsequent matches are found)

process the matched file
}

Examine the SearchO subroutine within the wherei s program fiisted at the
end of this chapter) for another example of this technique.

Using Options for Power and Flexibility

Options are what allow simple programs to perform more than one task,
thereby increasing both their power and utility. While it may sometimes be
enough to be able to say

whereis thisfile

to find all of the various versions of t hisf i leJ adding a few options like

whereis -r -b-SOOO -t+30 thisfile

uses the same program to find all of the occurrences of thisfi lethat are read­
only, less than 5000 bytes long, and more than 30 days old.

wherei s searches all directories on the current drive for files which match
both the selected options (or defaults) and one of the file specifications 'file­
specs). In the option descriptions given in Table 2-1, the argument n is expected
to be a decimal integer where + n means more than n, n means less than n, and n
means exactly n. For options that have parameters, the parameter may be given
either as part of the option argument -t+10 or as the next argument -0 \bi n.

filespecs may be any list of ambiguous filenames. If filespecs is not pro­
vided, *_* (all files) is assumed. The following are a few ways that we can use
wherei s.
1b find all .h files:

whereis *.h

38



Table 2-1.

Option

advshr

bn
tn
o dir
ecmd

Chapter 2: Searching the File Tree

Options for wherei s

Function

Match files with given attribute bit set (Archive [a), Directory [d), \blume-label
[v], System [s), Hidden [h), and Read-only [r)). Each attribute must be specified
separately (as -a -s -r).
Match files n bytes long.
Match files whose date stamps are n days before today.
Begin searching at the directory d i r instead of the root directory.
Execute the command cmd for each matched file, substituting the current
filename for any 1$' found in cmd. Multiple e commands may be included,
and each will be executed in the order encountered. The commands should
be quoted (as Itdi r $") since most commands contain spaces.

To show the directory hierarchy:

whereis -d : sort

1b find all program files that are also marked System, Hidden, and Read-Only:

whereis -s -h -r *.com *.exe *.bat

1b delete all .wks files that are more than 30 days old:

whereis -t+30 -e "del $" *.wks

1b copy all .arc files to a floppy disk:

whereis *.arc -e "copy $ a:"

1b create an archive of all .txt files marked Archive and then delete the .txt files:

whereis -a *.txt -e "echo (ARCHIVE: $) »archive"

-e "type $ »archive" -e "del $"

The where; s. c Program

The wherei s program is a fairly self-contained module-except for library sub­
routines, all of the code is contained in a single file, whe re is. c. As is typical in C
programs, the first section contains some identification and some constant defi­
nitions. This version of wherei s is coded to conform to the standards of the
Microsoft C compiler, releases 3.0 and 4.0.

39



Section 1: Ex-tending the MS-DOS User Interface

Includes and Constants

The source listings shown on the next several pages comprise the entire text of
the wherei s program. You may create your own copy of this source code by en­
tering all of the blocks of text shown in computer font.

* whereis.c -> find files
*1

#define
#include
#include
#include
#include
#include

LINT_ARGS
<stdio.h>
<ctype.h>
<dos.h>
<direct.h>
<signal. h>

1* strict type checking *1

1* constants *1
#define ARC Ox20 1* attribute bits *1
IIdefine DIR Ox10
IIdefine VOL Ox08
#define SYS Ox04
IIdefine HID Ox02
#define ROO Ox01

1* match plain files *1
#define PLAIN (SYS : HID)

1* match subdirectories *1
IIdefine SUBDIR (DIR : SYS : HID : ROO)

These constants refer to the file attribute flags contained within a direc­
tory entry (the attrelement of the DIRINFOstructure). Note that these values are
used to specify which types of files to match.

Directory Information Structure

As stated earlier, the FirstlNext function calls fill in a data area providing some
information about the currently matched file. This information can be used to
help select the appropriate file:

1* data types *1
typedef struct 1* Directory Information *1

{

40

char r [21]; 1* reserved data



Chapter 2: Searching the File Tree

char attr; 1* attribute found *1
unsigned time, 1* time mark *1

date; 1* date mark *1
long size; 1* file size *1
char name[13Ji 1* file name *1
}

DIRINFOi

Macros and Functions for MS-DOS Access

Let's look next at the interface between our wherei s program and MS-DOS.
Three macros are provided to allow for relatively easy modification to fit the
library functions provided by your favorite e compiler. The Microsoft e library
contains many functions to interface to MS-DOS, but wherei s requires a connec­
tion that is not provided in a simple fashion. The FirstlNext function calls expect
input parameters in the ex and DX registers, and they return a flag in the AL
register. There is no MS-DOS interface function in the Microsoft C library that
passes data in exactly this way, so we have included an interface function which
serves exactly our purpose.

dos(Ox1A, d)
!dos(Ox4E, f, a)
!dos(Ox4F)

1*
* macros
*1

#define SETDTA(d)
#define FIRST(f,a)
#define NEXTO
1*
* dose) -> connect to MS-DOS
*1

unsigned char dos (ah, dx, cx)
unsigned char ah;
char *dxi
unsigned CXi

{

union REGS r;
r.h.ah =ah;
r.x.dx = (unsigned)dxi
r.x.cx =cx;
intdos (&r, &r)i

return (r.h.al)i
}

1* set DTA *1
1* search for first *1
1* search for next *1

41



Section 1: Extending the MS-DOS User Interface

Note that the FirstlNext function calls return zero if a matched file is found,
and nonzero if no match was found. In order to make the function usage seman­
tically correct (FIRSTO returns TRUE if a match is found), we must reverse the
sense of the functions with the ! operator.

The fourth macro Add Fi Le() is included only as a shorthand definition of a
simple function that adds a single file specification to the list of file specifica­
tions.

#define AddFiLe(f) FiLeList[nFiLes++l=f 1* add fiLespec

Next we see the global data used by the program.

1* gLobaL data *1
char *Exec[32l,

*FiLeList[32l,
StartDir[128],

*TopDir = "\\It;

1* execute commands, from -e
1* the List of fiLespecs
1* initiaL directory
1* start directory, from -0

int AttrMask = 0, 1* mask for attribute search *1
ByteFLag = 0, 1* controLs size searching *1
DateFlag = 0, 1* controLs date searching *1
DateStamp = -1, 1* date stamp to match *1
nExecs = 0, 1* number of execute commands *1
nFiLes = 0, 1* number of fiLespecs given *1
Today; 1* today's date stamp *1

long ByteCount = -1; 1* fiLe size to match *1
1* offsets of Itfirst of month" from Itfirst of year" *1

int months[] = { 0, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };

Both ByteF Lag and DateF Lag control the sense of comparison (1,0,1 repre­
sents C = ,»), and DateStampand ByteCount contain the data to compare against.

Note that both the Exec and Fi leLi st arrays have 32 elements at most. This
means that there is a maximum of 32 (execute' commands and 32 file specifica­
tions allowed on the command line. There is no overflow checking in the wherei s
program-we assume that the user will always enter less than 32 of either item.

Forward Declarations

In generaL C programs are coded in a top-down fashion, with the main routine
appearing as the first function. This is usually done to show the basic structure
of the program. Therefore the functions that do not return integers must have

42



Chapter 2: Searching the File Tree

forward declarations. (They must be described before they may be used.) This
forward declaration informs the compiler that these functions do not return the
default data type (integer), and prevents the compiler from complaining when it
later finds the formal definitions of these functions:

int
void

GracefuLDeathCvoid)i
HandLeCDIRINFO *),

ParseCommandLineCint,
SearchCvoid)i

char **),

Note that even though the GracefuLDeathO function does return an integer
value, its name is used as a function parameter (see the call to signa l C) in the
next section), and must be declared before use to prevent confusing the com­
piler.

The Main Program

As the leading comment says, the program proper begins with "good old main":

1*
* good old main
*1

int mainCargc, argv)
int argci
char *argv[] i
{

1* get today's day number *1
Today =SysDateC)i
1* pick options and fiLespecs from command Line *1
ParseCommandLineCargc, argv)i
1* save initial directory *1
getcwdCStartDir, sizeofCStartDir»i
1* set the interrupt handLer *1
signalCSIGINT, GracefulDeath)i
1* move to starting directory *1
chdirCTopDir)i
1* any fiLenames given?? *1
if C!nFiles)

AddFiLeC"*.*")i 1* a nice defauLt *1
1* search for named fiLes *1
Search 0 i

1* pop back to initiaL directory *1

43



Section 1: E1'tending the MS-DOS User Interface

chdirCStartOir);
/* successfuL return */
return CO);
}

Handling Interrupts Gracefully

Before any directory searching can begin, we want to be certain that we have a
safe environment. The next function serves as the interrupt handler for wherei s.
Because whe re is uses the standard library function chd i r C) to move through the
directory tree, aborting the program may cause the program to leave the users
in some directory other than where they started. This is a typical source of lost
files-some program leaves the user in a different directory than was intended,
and files are created there never to be found again. It would be unforgivable to
allow our file finder program to make a mistake like that, so let us ensure that
wherei s dies a graceful death:

/*
* GracefuLOeathC) -> cLean-up upon interrupt
*/

int GracefuLOeathC)
{

chdirCStartOir);
exit(1);
}

The Directory Search Function

Now that we have taken care of potential interrupts, we move to the starting di­
rectory. We use any file specifications that were given on the command line. If
there were none, *.* (aU files) is used as the default. The SearchO subroutine is
called to perform most of the work:

* SearchO -> search for fiLes

44

*,
voi d Search 0

{

OIRINFO info;
int i,

first;



Chapter 2: Searching the File Tree

1* search current directory for all filenames *1
for (i =0; i < nFiles; i++)

{

first =1;
while (Scan(FileList[il, &info, PLAIN AttrMask, first»

{

first =0;
if (info.name[Ol != '.') 1* skip ..... and" .. *1

Handle(&info);
}

}

1* search all subdirectories *1
first =1;
while (Scan("*.*", &info, SUBDIR, first»

{

first =0;
1* search only directories and skip ..... and ...... *1

if «info.attr & DIR) && (info.namerOl != '.'»
{

1* pop into that directory *1
chdir(info.name);
1* search for the filenames *1
SearchO;
1* back to where we were *1
chdir( ...... );
}

}

}

Search() performs the recursive search described earlier. The major varia­
tion is that the search is repeated for each of the file specifications given on the
command line. This function depends heavily on the ScanO function, which
proves to be very simple:

1*
* Scan() -> find a matching file
*1

int Scan(name, info, attr, first)
char *name;
DIRINFO *info;
int attr;
int first;
{

SETDTA(info);

4S



Section 1: E}{tending the MS·DOS User Interface

return (first? FIRST(name, attr) NEXT(»i
}

This is the only occurrence of the three compiler-dependent macros shown
earlier. Scan() could also be implemented as a macro, but is shown as a function
here to simplify debugging and copying to another program.

With the exception of the HandLe() function (which decides whether some
action should be performed on the current file), most of the wherei s program
has already been described. Before the various options can be applied to any­
matched files, let us see how the options are parsed from the command line.

Parsing Command-Line Options

As we saw in good old main, the argument count argc and argument string vec­
tors argvare passed to the ParseCommandUneO function.

1*

* ParseCommandLine() -> pick our options and fiLespecs
*1

#define NEXTARG() {if(!*++argp){argp=(*argv++)iargc--i}}
void ParseCommandLine(argc, argv)

int argci
char **argvi
{

char *argpi
argc--i 1* skip argv[O] */
argv++i
whiLe (argc--)

{

argp = *argv++i
if (*argp != I_I)

AddFiLe(argp)i
eLse

{

argp++i
switch (toLower(*argp»

{

case 'a': /* archive bit */
AttrMask := ARC;
break;

case 'd ' : 1* directory bit *1
AttrMask := DIR;

46



Chapter 2: Searching the File Tree

break;
case 'v' : 1* volume label *1

AttrMask :=VOL;
break;

case 's' : 1* system bit *1
AttrMask := SYS;
break;

case 'h' : 1* hidden bit *1
AttrMask := HID;
break;

case ' r' : 1* read-only bit *1
AttrMask := ROO;
break;

case 'b' : 1* byte count *1
NEXTARGO;
if «*argp == '-') :: (*argp -- '+'»

ByteFlag = (*argp++ == '-') ? -1 : 1;
ByteCount =PickVal(&argp)i
break;

case 't': 1* time stamp *1
NEXTARGO;
if «*argp == '-') :: (*argp == '+'»

oateFlag = (*argp++ == '-') ? -1 1;
oateStamp =Today - PickVal(&argp);
break;

case '0': 1* origin directory *1
NEXTARGO;
Topoir = argp;
break;

case 'e': 1* execute *1
NEXTARGO;
Exec[nExecs++] =argp;
break;

default:
fputs("Usage : whereis [-advshrl [-b<n>l\ [-t<n>l [­

e<command>] [-o<di r>l [files]. •• \n",
stderr);

ex1t(1);
}

}

}

}

47



Section 1: E~tending the MS-DOS User Interface

The cryptic NEXTARG () is a very useful macro which allows for flexible spec­
ification of the parameters of options. In essence, this macro states, "if there was
no parameter given as part of the option string, move the argument pointer to
the next argument~ It is included within the ParseCommandLi ne 0 block to facili­
tate copying to another program. Pa rseCommand Line () uses only one other inter­
esting function Pi ckVa l 0, which converts an ASCII string to a long integer
representation:

* PickValO -> pick an integer from a string
*1

long Pi ckVa Up)
char **p;
{

long Vi

for (v = 0; isdigit(**p); ++*p)
v = (v * 10) + (**p - '0');

return (v);
}

Handling Matched Files

Now we are ready for the HandleO function:

* HandleO -> handle a matched file
*1

void Handle(info)
DIRINFO *info;
{

char theFile[128li
int i;
1* attributes?1 *1
if «info->attr &AttrMask) != AttrMask)

return;
1* byte count *1
if (ByteCount >= 0)

switch (ByteFlag)
{

case -1
if (info->size >= ByteCount)

return;

48



Chapter 2: Searching the File Tree

break;
case 0 :

if Cinfo->size != ByteCount)
return;

break;
case 1 :

if (info->size <= ByteCount)
return;

break;
}

1* date stamp *1
if (OateStamp >= 0)

switch (OateFlag)
{

case -1
if CFileDate(info->date) <= DateStamp)

return;
break;

case 0 :
if CFileOateCinfo->date) != DateStamp)

return;
break;

case 1 :
if (FileDateCinfo->date) >= DateStamp)

return;
break;

)

1* a match, build the complete filename *1
1* first the pathname *1

getcwdCtheFile, sizeofCtheFile»;
1* add trailing '\' if required *1

if C*CtheFile + strlenCtheFile) - 1) != '\\')
strcatCtheFile, "\\If);

1* add the filename *1
strcatCtheFile, info->name)i

1* execute any -e commands, otherwise print *1
if (nExecs)

for Ci = 0; i < nExecs; i++)
ExecuteCExec[i], theFile);

else
puts(theFile);
}

}

49



Section 1: Extending the MS-DOS User Interface

There are a couple of interesting points within the Hand le () function: The
comparisons inside the ByteCount and DateStampchecks are opposite. This is be­
cause the "more than" tests have opposite meaning-greater than a certain size
or before Oess than) a certain date. The filenames matched are not printed if the
"execute" option was selected. This is done purely for cosmetic reasons, so the
filename does not interfere with the output of the executed program.

Executing Commands on Matched Files

For the actual execution of a command, the Execute 0 function handles the sub­
stitution of the current filename for any occurrence of the •$' character:

1*

* ExecuteO -> execute command, substituting filename
*1

void Execute(cmd, name)
char *cmd,

*name;
{

char command[128J,
*cp,
*np;

cp =command;
while (*cmd)

if (*cmd == '$')
{

np = name;
while (*np)

*cp++ =*np++;
cmd++;
}

else
*cp++ =*cmd++;

*cp =0;
system(command);
}

Handling Dates

MS-DOS provides two formats of a date-one format for describing the date
stamp of a file, and another for describing the current date. The last two func-

50



Chapter 2: Searching the File Tree

tions of wherei s convert these two date formats into absolute integers which can
be compared. Both of these functions could be made considerably shorter. They
are shown in this fashion only to demonstrate how to extract the date informa·
tion:

1*
* FileDate() -> return file date as absolute integer
*1

int FileDate(d)
unsigned d;
{

1* days *1
1* months *1
1* years *1

days,
mons,

int

yrs;
yrs =d » 9;
mons = (d » 5) & OxOF;
days =d & Ox1F;
if (yrs X 4) 1* handle leap years *1

days++;
return «yrs * 365) + months[mons - 1] + days);
}

The Microsoft C library provides a number of time and date handling func·
tions. However, they are all very general routines and as such consume a consid·
erable amount of code. The following function uses the i ntdos () function to get
the current system date directly from MS·DOS1 saving several hundred bytes of
code. This function also converts the system date to an absolute integer compati·
ble with dates returned by Fi leDate():

return system date as absolute integer
1*

* SysDate () ->
*1

int SysDateO
{

i nt days,
mons,
yrsi

union REGS ri

r.h.ah =Ox2Ai
intdos(&r, &r)i

days = r.h.dl;
mons = r.h.dh;
yrs = r.x.ex - 1980;

51



Section 1: E~tending the MS-DOS User Interface

if (yrs % 4) 1* handle leap years *1
days++;

return «yrs * 365) + months[mons - 1] + days);
}

Neither of these functions is exactly correct, because they do not handle all
of the variations of leap-year calculations. However, they probably will last well
past the point where MS-DOS becomes obsolete, and thus may be considered
"good enough."

Compiling where; s

Due primarily to the simplicity of the program, compilation is also very simple.
For the Microsoft C 3.0/4.0 compilers, the command line

cl whereis.c

is sufficient to produce a working version of wherei s. Ifyou desire an optimized
version, I would suggest the following command, which provides maximum opti­
mization:

cl -Ox whereis.c

Note that it is not necessary to include wildcard e~pansion subroutines (con­
tained in the SSETARGV.OBJ file), because those are handled by the directory
search functions, and we want them to receive exactly what was typed on the
command line.

You may have noticed that whereis was written without using either the
printfO or scanfO functions. While it may have made for some cumbersome
code in one spot (the end of the Handle() function), including even the "no float­
ing-point" version of pri ntf 0 would have caused wherei s. exe to be at least 2000
bytes larger.

This version of where; s makes no effort to handle any disk drive other than
the current drive. It would be relatively simple to replace the c hd i r 0 function
with a ChangeDriveAndDi rectoryO function that would allow the -0 options to
include a drive specifier.

It was mentioned earlier that the filenames matched are not printed if the
execute option was selected. The UNIX program find has a -print option which
controls whether matched filenames are printed, regardless of any other op­
tions. Sometimes it is essential that the matched filenames be printed before a
program is executed. It would be a rather simple programming exercise to add a
-p option, indicating that matched filenames should always be printed.

52



Chapter 2: Searching the File Tree

Conclusion

This chapter has shown you some techniques for accessing directory entries,
and for navigating around tree-structured directories. We have also used both
normal and alternate methods of calling MS-DOS from within a C program.

The where; s program evolved in the same fashion as its UNIX counterpart
f; nd-out of a desire to find files and to do something about them when they
were found. Professional programmers have found that whe re; s has become a
useful file utility program-although it is small and simple, its power and versa­
tility will allow you to perform tasks never before thought possible.

Reading List

Card, S.,1: Moran, and A. Newell. 1983. The Psychology of Human-Computer In­
teraction. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Myers, G. 1976. Software Reliability. New York: John Wiley & Sons, Inc.

After several years of developing code for WordStar and WordStar 2000, Frank
Whaley has retired to a life of contract programming in Southern California.

Related Essays

1 A Guided Thur inside MS-DOS
3 Adding UNIX Power with penix
4 Adding Power to MS-DOS Programming

53



.'~ ,l'

, $S4Y,$ynopsis: The UNIX operating
, syst~Hlhas,had considerable igfl~~l),ceQ!l'

'.0-' ',; <:;~', .' -dle,di:t8ign'ailddevelopmentofMS~BOS,and

'n .. , .' ·/:i:+'/"!';(;\';~;ii/i';"/·"·'/;;.=~::~~==~siE?
"'r"""'"",,>:,, _ '~i;lp1:lb1icdomlPnpl"ograms that adds

""':":'/?,i,:,J,:',)i:', '::,~'I""'!//:;':';':.",:<,::,,' '; ,1',,:/ ,::':; '",', -:; .•.qpm'lpf'~efunctionality of UNIX to
,'" ,,,,,,,: ;,-' -;, '," ',:~S~Q~'~ystelI1s"without ~y sacrifice of

.'\,," .•.. .........' '.. ··'=:Y:~::ren;.rn:. ~~~~.'
. ':: :",,::,":, ";'.:,".:",:;','-";". : ".':,...::....:.. :. .-'...... ;, ...: ·:.:.· ..,,>:~~8,nn,ificme~bo\lt MS..DOS as -Well as a.bput

::;::,:,:'i:,:,~,<,,;::j:~ ";;,:,:"!''':,;':/;:,:; .::',;; "-(,J{i/h ::.:: /:',.-,i,'::..-i.isoI4e,of.tne,:basicfeatures' of UNIX. This es·
, ,'·i'i., ,',:;,:: ,-,:,:,'-, :::i'i::":' :~), Ti".i~:J;: ·~~'givesrYc:iu.,aifascinating:glimpse of the

tliQtmht process that went into the develop·
,inem'dfP~" thfl. relflvant :oo~ internals,
the·~kr!y, decisionsJ·andtheir consequences.

,As irpraCti'oal:benent, you will gain new
iPoWfn~to"contrail anC:lmanage the MS·iJOS

';, .• ·«m.viro~ent, including improved batch file
. . iproceSSing, command editing and recall

i(hist,my:)~ and a variety of file and text·han­
.dIing t(lois.



3

Adding UNIX Power
withPCnix

R. Edward Nather

The UNIX operating system was designed by computer programmers Ken
Thompson and Dennis Ritchie for their own use, to provide a comfortable work­
ing environment in which to write computer programs. Nonprogrammers find
it hard to learn-it takes a while to get used to its terse, powerful commands and
to get in tune with its underlying unity. Many critics of UNIX, who find it less
than the ideal environment for business operations or secretarial work, seem to
forget its original purpose. In my view, UNIX has been remarkably successful in
achieving its original goal. It's the most convenient operating system I've ever
used. This view is shared by many other programmers. I have yet to meet any­
one who has become completely comfortable in a UNIX environment who pre­
fers to use any other. If you've already used MS-DOS, installing PCnix on your
computer can offer you a relatively painless way to learn more about UNIX and
the real power it offers-and more about MS-DOS as well.

WhyPCnix?

When I first got access to an IBM PC running MS-DOS (version 2.0), I was struck
by the number of familiar UNIX-like features: command-line arguments, I/O re­
direction, a hierarchical file system with directories, pipes, interpreted text
scripts (batch files), a set of included software tools, etc. UNIX has clearly had a
strong (but often unacknowledged) influence on MS-DOS-but so has another
operating system: CP/M. The latest version of MS-DOS (3.3 at this writing) re­
mains an unhappy hybrid of the two systems, with many UNIX-like features but
with vestiges of CP/M as well. These seem awful to UNIX users-not necessarily
because they are awful, but because they are different. The formal name for this
problem is Semantic Confusion. The net result is that going back and forth be­
tween UNIX and MS-DOS can be dangerous to your mental health.

55



Section 1: Extending the MS-DOS User Interface

There were several versions of "cut-down UNIX" available at the time I first
got access to an IBM PC, so I tried two of them and learned a great truth: the
8088 is not a speedy microprocessor on the best of days, and, burdened with an
operating system not hand-crafted to make best use of it, the result was unbear­
ably slow. Also, most of the neat new software was being written in garages,
haylofts, and universities for the MS-DOS operating system, and I wanted to be
able to use it, while still enjoying a UNIX-like environment.

Things are somewhat better today: the 80286 is a faster engine, and some
commercial products offer a UNIX-like shell and a reasonable selection of soft­
ware tools-but they can't run all MS-DOS programs1 and in particular are often
baffled by memory-resident programs rrSRs). In general, they force you to give
up your MS-DOS environment to get UNIX power into your PC. This is a sacrifice
most PC users cannot afford to make. In addition 1 PCnix has the advantage that,
unlike the commercial "UNIX for MS-DOS" products1 it is fully customizable
since you are provided with the source code for the system and most of its utili­
ties.

The PCnix system-essentially a collection of software tools that use the
(unmodified) MS-DOS kernel-is my attempt to remove as many irritating differ­
ences as possible, and to provide a comfortable working environment in which
to write computer programs on the IBM PC. This design approach has some real
advantages:

I> Complete MS-DOS compatibility is retained. (If you really prefer to use
the DI Rcommand rather than the UNIX command l s you can do it-just
don't tell me about it.)

I> It is fast even on floppy-based 8088 machines with enough memory for a
modest-sized RAMdisk.

!> It offers the most-used UNIX software tools, and can be easily expanded
by the user. New commercial and public domain versions of UNIX tools
are continually being written and they can be easily added to PCnix.

i> Source code (in the C language) is available for almost all of the tools, so
you can tinker with them as you choose and perhaps learn about C,
UNIX, and MS-DOS in the process.

1b comply with government-sponsored truth in labeling1 the disadvantages
are:

t> Since it uses the MS-DOS shell COMMAND. COM, it can interpret MS-DOS
batch files, but lacks the ability to interpret UNIX-style shell scripts.

l> It does not attempt to provide multitasking capability.

l> Some C programs developed under UNIX must be changed to run prop­
erly under PCnix, where the system calls differ.

56



Chapter 3: Adding UNIX Power

Overall, I think the advantages outweigh the disadvantages-but I may not
be completely objective about it. In any event, let's explore what we must do to
bend MS-DOS nearer to our heart's desire.

Our Strategy

Our mission is to provide MS-DOS with the "look and feel- of UNIX without serious
compromises in response time, and without mucking about in the MS-DOS kernel.
Let's first look at the basic problem we must face before we leap into action.

UNIX supports a rich set of software tools, and people who use the system
begin to think of problems in terms of the tools they have available to them-the
richer the set, the more options they have in finding a solution. "Th the man with
only a hammer, everything looks like a nail:' We must be prepared to add the
most-used UNIX tools to those supplied with MS-DOS. This is quite possible: only
a few operations are internal to the MS-DOS shell COMMAND. COM; most are external
commands, Le., executable programs. We can replace any MS-DOS external
command by replacing it with a program of the same name, or add a new com­
mand by providing a program with a different name. However, the way com­
mands operate under UNIX differs from what is possible under MS-DOS-UNIX
is multitasking and MS-DOS is not.

The UNIX toolkit is designed around the idea of pipes, where a string of
separate tools works in sequence on a data stream, each tool doing its own thing
and passing the result along to the next tool in line. For example, the command
sequence

cat names phones : more

will first invoke the cat command (concatenate the text files names and phones
end-to-end); its output stream becomes input to the more command, which pages
the text onto the display screen, pausing so the text doesn't run off the top of the
screen before it can be read.

This command sequence, running under UNIX, will have both tools active
at the same time-whenever there is any usable output from cat it is passed
along to more right away, and immediately appears on the display screen. Under
MS-DOS, which cannot handle more than one task at a time, cat must run to
completion, storing its output in a temporary disk file. When cat is finished, the
temporary file is read back from disk into more, whose output is (finally!) sent to
the display screen. It may not take forever, but it feels like forever if you're used
to UNIX. Penix can't solve this problem in a general way, but we can design tools
with a primitive mo re built into them so that they won't need to use a pipe, and
can give much faster response. In generaL we'll need to tailor our tools to the
MS-DOS environment in which they must run.

57



Section 1: Extending the MS-DOS User Interface

As a matter of principle, we want to do as little work as possible, so we will
choose the simplest way we can find to provide any particular tool. If MS-DOS al­
ready provides the appropriate tool (e.g., format) we'll use it unchanged; if not, we'll
explore enhancing the tool's operation (and perhaps changing its name) by includ­
ing it in a batch file (e.g., copy). If that doesn't work, we'll try to find a suitable tool in
the public domain. If all else fails, we'll write it ourselves, using the C language to
code it in, and calling on the available MS-DOS services where necessary.

Let's do the easy things first.

Tweaking MS-DOS

In addition to providing enhanced, more UNIX-like tools for MS-DOS, we must
make a few changes in the way it looks to the user. This involves getting MS-DOS
to accept a more UNIX-like syntax.

The simplest change to Ilraw" MS-DOS is to change the prompt. The com­
mand

prompt %%

in the AUTOEXEC. BAT file turns the A> prompt into a UNIX-like %that already feels
better-UNIX Bourne shell users might prefer $-but it has an awkward flaw:
you can't tell what drive you're on.

UNIX has no notion of drive, since the complete file system looks like one
huge inverted tree to the user. MS-DOS inherited the idea of drives from CP/M
and still uses them, and it's important to know where you are in the file system,
since it affects how you refer to a file you want to work on. If the file is not on the
current drive, you must begin the name with the drive designator (e.g., a:) or
MS-DOS can't find it. As our first of many compromises, we use

prompt $n%%

in the AUTOEXEC. BAT file to get the prompt C% if we are on drive C, A% on drive A,
etc.

Next we must change the path separator character from \ to I or every
pathname will look jarringly different from its UNIX counterpart. MS-DOS, like
CP/M before it, normally uses the I character to indicate a command-line option,
or "switch:' as in the MS-DOS command

DIR IP

where the option Pasks that the DIRcommand pause at the end of the screen so
you can read what it told you. UNIX, contrariwise, uses the I character to sepa­
rate pathnames, and the character - to indicate a command-line option. Fortu-

58



Chapter 3: Adding UNIX Power

nately, someone at Microsoft knew about this, and arranged MS-DOS so it can
use either 1 or \ as a path separator, and you can change the switch character
SWITCHAR if you know how.

We first change the value of SWITCHAR that COMMAND. COM uses in parsing the
command lines we type. By default, that character is I. If we use some other
character to designate a switch, almost all of MS-DOS will let us use 1 in
pathnames. The obvious choice is -which UNIX uses as a switch designator, but
that choice has problems, too.

Many PC programs use the - character as part of their names-PC-Write,
for example. If we substitute - for the switch character, the parser in COM­
MAND. COM looks for a file called pc and prepares to hand it the switch -Was an
argument-not what we want. We can avoid this problem by referring to the
filename as PC?WRITE but that subterfuge is too ugly to tolerate. We'll have to
rename files that have - in their name.

Alternatively, we can substitute \ as the switch character, in effect revers­
ing the meaning of the forward and reverse slash characters. We'll have to re­
member to use \ as a switch designator for those (few) MS-DOS programs that
need a switch and that can't accept - instead. This is the solution I prefer, but
either way will work. MS-DOS 2.X allowed the switch character to be changed by
including the line

SET SWITCHAR=\

in the CONFIG.SYS startup file, but MS-DOS 3.X doesn't. Undaunted, we use the
(undocumented) Function 37h to fix things up; this works on all versions of
MS-DOS starting with 2.0. A small program called INT37 •COM does this job right
away in the AUTOEXEC.BAT startup file, so all subsequent pathnames can use 1as
the separator. Like UNIX, 1by itself designates the root directory.

Finally, since we want batch files to appear to execute the same as any other
kind of executable command, we must do something about the ECHO operation,
which decrees that all batch file commands are echoed to the console screen as
they are executed. This gabbiness is particularly offensive to UNIX users, who
come to appreciate the quiet way UNIX tools do their job. Even the mechanism
provided to shut up this chatty behavior is flawed: the command ECHO OFF in a
batch file is, itself, echoed to the screen, instantly betraying that a batch file,
rather than some other type of command, is being executed. The latest version
of MS-DOS (3.3) recognizes the a character at the beginning of a line to mean
/idon't echo this line"; earlier versions must be patched.

Each version of COMMAND. COM has a pair of flag characters that govern the be­
havior of the ECHO operation, and by default, they are set ON. We want to set them
OFF by default. Note that this still permits batch fIle commands to be echoed if that
is desirable. Just include the command ECHO ON as the fIrst command. The change
only has to be done once to a copy of COMMAND. COM, and only the initial values of two
internal flags are modified; COMMAND. COM is otherwise unaffected.

59



Section 1: Extending the MS-DOS User Interface

Using debug Scripts

When PCnix is first installed on a hard disk, the installation program (a batch
file) calls on debug to fix COMMAND. COM, handing it a debug script with instructions
about where the flags are and how to set them. What's a debug script? Glad you
asked.

The MS-DOS program debug can be used to create or modify executable
files as well as to debug them. Afew simple one-character commands, with argu­
ments attached, is all we need to make a copy of COMMAND. COM into a friendlier and
quieter shell. We can do it from the keyboard, of course-or we can prepare a
set of commands, store them in a file, and call debug with standard input redi­
rected so it comes from the file instead of the keyboard. The only tricky thing
about writing such scripts is to note that debug understands the CR (carriage­
return) code as a line ending, but is baffled by LF, the line-feed code. Scripts
prepared by any self respecting MS-DOS editor will have their lines ended by CRI
LF, the ill-chosen MS-DOS convention, so you'll have to take out all the LF codes
(and comments) before debug will be happy with it. Not a terrible job, but annoy­
ing. If you have a working copy of PCnix, you can remove the offending codes,
and run the debug script, with the single command line

tr -d \012 < file.dbs : debug newfile.com

since the option -dtells the UNIX-like utility t r (transliterate) to delete octal code
12, the line feed.

The debug script used to modify COMMAND. COMin MS-DOS version 3.1 follows,
with each command shown on a separate line:

e 105b 2
e 1967 0
w
q

;change hex location 105b to the value 2
;change hex location 1967 to the value 0
;write the modified file
;quit

If this script is stored in a file called fi xcom.dbs (with all LF codes and com·
ments removed, and lines ended by a single CR code), then the command

debug command. com < fixcom.dbs

will make COMMAND. COM a less irritating shell, automatically. A more extensive
patch job is needed for DOS 2.X.

The following procedure is used to shut up ECHO OFF in MS-DOS 2.X:

1. Copy COMMAND. COM and debug. com onto a work disk.

2. Execute debug command. com from that disk. At the -prompt, type

60



Chapter 3: Adding UNIX Power

3. sO 7fff 01 00 00 01; write down found_address + 3 as flag.
Type

4. s 0 7fff 61 6E 64 20 70; write down found_address as patch.
Type

5. sO 7fff B9 OA 00 E8; write down found_address as jmp.
Type

6. u j mp [substitute value found in step 5 for j mp].

7. First instruction is MOV CX,OOOA} second is CALL yyyy - record yyyy value.

8. a jmp+3
CALL patch+1

9. a patch

DB 24
ES:
MOV BYTE PTR [f lag]} 00
JMP yyyy

10. w

11. q

Values found for different DOS versions are listed in Table 3-1.

Table 3·1. Values for DOS Versions

Value

flag
patch
jmp
yyyy

DOS 2.0

96E
364A
171D
lE6D

DOS 2.1

96E
365D
1730
lE80

DOS 2.11

9B7
3886
17E3
2AI0

Improving MS-DOS Operation

MS-DOS supports a system call of unusual power, Thrminate and Stay Resident
(TSR), Function 31h. It allows an executable program to remain in active mem­
ory after it has been loaded, and protects it from being overwritten by other
programs. (See Essay 7} Safe Memory-Resident Programming (TSR), by Steven
Baker} for a detailed discussion.) The program can remain in memory through­
out any computing session} up to the next computer reboot, ready to leap into
action if called upon. We can use small programs of this type to add facility to the
way MS-DOS does things without changing the MS-DOS innards in any way.
There are lots of these additions available; Penix uses two of them.

61



Section 1: El'tending the MS·DOS User Interface

Much of the operation of MS-DOS is controlled by interrupts, and a table of
pointers (interrupt vectors) is resident in low memory during normal operation.
Any program can, at its own risk, replace one of these vectors so it will get called
into action by the associated interrupt, then terminate but remain in memory.
The program springs to life again whenever the chosen interrupt is triggered.

The keyboards normally supplied with IBM computers or their clones al­
low almost any keystroke to be repeated automatically just by holding the key
down. Unfortunately, the repetition rate is very slow, chosen so novice users
would not be frightened. This unfortunate hardware design choice can, fortu­
nately, be corrected in software.

The program qk. com is a version of the program qu; ckeys. asm, written by
Dan Rollins and published in PC Tech Journal (September 1986). It has been slightly
modified for PCnix in order to remove a bug. Its only job is to watch for interrupts
from the keyboard (one for each key action) and, when a key is pressed (and after a
suitable pause), generate identical keystrokes at a much faster pace than the glacial
rate provided by the PC keyboard itself, until the key is released. It is a small thing,
but it makes any program requiring keyboard input seem much peppier. It works
particularly well with PC-Write, the shareware editor. It is loaded automatically on
bootup by the command qk in the AUTOEXEC. BAT file.

The second TSR program, keydo. com, does much more, providing both a
command history mechanism ilike the UNIX C shell does) and a direct and simple
way to edit the command line. Previous commands can be recalled by the up- or
down-arrow keys on the PC keypad, while the other arrow keys move the cursor
back and forth. The Home key puts the cursor at the start of the command line, the
End key puts it at the end, and the Del key deletes characters. Any printable charac­
ter typed is inserted in front of the cursor position. The {RETURN> key calls COM­
MAND. COM to execute the command no matter where the cursor is. Commands are
stored in a circular buffer for prompt recall-they can be modified, or executed as
is. Once you get used to it, you feel crippled without it. The public domain version
used in PCnix was written by ffiM programmer J. Gersbach, and is installed on
bootup by the command keydo in the PCnix AUTOEXEC. BAT fIle.

Using Batch Files to Create PCnix Commands

Thxt files whose filenames end in . BAT are interpreted by COMMAND. COMas execut­
able commands, providing it can understand them. Although this facility is
much more limited than the shell programming provided by the UNIX shells, it
can still provide simple and useful services if two basic rules are followed in writ­
ing batch files:

1. Keep it short.

2. No, it's too longi make it shorter.

62



Chapter 3: Adding UNIX Power

The COMMAND. COM interpreter is rudimentary but reasonably fast. It is often de­
feated} however, by a curious self-inflicted wound: whenever it finds a batch file
line that is an external program to be run} it runs it-overwriting the batch file in
the process, which must then be reloaded before it can examine the next line.
Keeping the batch files in a RAMdisk helps but is awkward to arrange. Still, if a
batch file runs fast enough} it's often the easiest way to add a simple command to
the repertoire.

Changing Names to Protect the Innocent

The UNIX C shell provides a simple but powerful "alias" facility which allows you
to rename a command anything you like. For example} novice UNIX users often
complain about the terse and cryptic commands, such as ls or grep. Some users
prefer to rename the commands to something they can remember more easily.
Batch files can provide a simple alias facility as well. For example, the PCnix du
command displays current disk usage via the batch file

ls -asR %1 %2 %3 %4 %5 %6 %7 %8 %9

simply by calling the l s command with suitable switch parameters.

Commands Can Be Repeated

Batch files are capable of far more than just calling a command by another
name. They can improve the way a command operates to make it more useful.
For example, the UNIX rmfile-removal command can be approximated by a batch
file that calls on the MS-DOS (internal) command DE LETE in a loop until it runs out
of filenames to erase:

: loop
; f "%1" -- 1m goto end
del %1
sh;ft
goto loop
:end

This emulation is simple} but not perfect. It permits deletion of a series of
filenames, but it lacks the ability to delete subdirectories and their contents that
the UNIX command rm-r * provides. Some may consider this an improvement
rather than a defect, considering the havoc that can be wreaked from careless
use of the UNIX rm.

63



Section 1: E}Ctending the MS-DOS User Interface

Batch Files Can Be Subroutines

If one of the commands in a batch file is the name of a second batch file, every­
thing works, but in a chaining fashion; control is transferred to the second batch
file but never returned to the first. This behavior has led several technical writ­
ers to insist (erroneously) that you can't call a batch file as a subroutine from
another batch file. MS-DOS version 3.3 has a CALL command for this purpose,
but earlier versions can get the same effect by simply invoking a new copy of
COMMAND. COM to run the second batch file. Control returns to the original batch
file when the second has finished:

command \c second. bat

Remember, PCnix reverses the I and \ characters, so \ c designates a switch,
telling the new COMMAND. COM to quit when it has finished running its argument as a
command-in this case, the second batch file. A copy of the current MS-DOS envi­
ronment variables are passed along to the second batch fue subroutine, but the
copy is erased when it finishes, so it can't just use the MS-DOS seT command to
return strings to the calling batch file. There are ways, but they are ugly.

Commands Can Be Combined

As another example of a PCnix batch file command, one of the most-used opera­
tions in UNIX (or MS-DOS) is to move to a new working directory (cd) and then
display a listing of the files located in the new directory (ls). These two opera­
tions are used so often it's worth combining them into a single command (ch).
The UNIX command

alias ch 'cd \!*i ls -aFC : more'

defines this new command in terms of known ones; the cryptic notation \! *is C­
shell shorthand for "all arguments on the command line." In PCnix we do this
same job with a batch file:

if "%1" == "a:" goto fix
if "%1" == "b:" goto fix
if "%1" == "c:" goto fix
if "%1" == "d:" goto fix
if "%1" == "e: n goto fix
if "%1" == III' goto fix
ls %1
cd %1

64



Chapter 3: Adding UNIX Power

goto end
:fix
cd %11

ls %1
:end

Most of the verbiage in our batch file arises from the desire to allow the
command to change the working directory on a designated drive as well as on
the current working drive-a concept not present in UNIX. For example, if the
batch file above is invoked with the command

ch a:/usr/bin

it will execute the PCnix commands

ls a:/usr/bin
cd a:/usr/bin

which will first list all the files in the directory a:/usrlbin, and then change the
working directory on drive a: to lusrlbin. If the batch file is invoked with the
name of a drive but no path, then the root directory is understood to be the
target, and the batch file provides the cd command with the root directory des­
ignator I. The command also returns you to the root directory on the current
drive when used with no argument at alL just as the UNIX cd command with no
argument returns to the user's home directory.

The most ambitious batch file command in PCnix emulates the UNIX cp
command:

if "%2" == 1111 goto err
if not "%2" == 1111 set INTO=%2
if not "%3" == 1111 set INTO=%3
if not "%4" == 1111 set INTO=%4
if not "%5" == 1111 set INTO=%5
if not "%6" == 1111 set INTO=%6
if not "%7" == 1111 set INTO=%7
if not "%8" -- 1111 set INTO=%8
if not "%9" == 1111 set INTO=X9
: loop
if %1 == XINTO% goto end
copy X1 %INTOX
shift
goto loop
:err
echo Use: cp fromfile tofile

65



Section 1: Extending the MS-DOS User Interface

echo or cp fromfile [fromfile ••. J todir
:end
set INTO=

The first line enforces the UNIX convention that cp must have at least two
arguments. The MS-DOS convention that the second argument can be missing to
designate the current directory 1/ ~ is confusing in practice. The next series of
tests scans the argument list, setting the environment variable INTO according to
the last argument it finds. By UNIX convention} this should be a directory if more
than one filename precedes it. The batch file hopes it is} but doesn't check. (It is
possible to check} using a "batch file helper:' but that slows things down too
much for simple copies.)

Once the last argument is found, the MS-DOS copy command is called to
copy the files, one at a time, into the file or directory represented by the string in
INTO. The syntax %INTO%is known to the batch file interpreter, which substitutes
the actual environment string for its name before executing the resulting com­
mand. When the loop runs out of arguments, it terminates. The final line erases
INTOas a matter of cleanliness. Again} the UNIX recursive copy cp-r *is not emu­
lated. Some day ...

Batch Files Provide On-Line Help

PCnix also contains a built-in help system with a simple syntax: he lpalone gets a
list of commands, and help xx displays a short description of command xx by
searching a known directory for xx.doc.1t is made up entirely of text files and a
batch file driver he lp. bat:

if "%1" == "" goto noarg
if exist c:/help/%1.doc cls
p c:/help/%'.doc
goto end
:noarg
if exist c:/help/help.doc cls
p c:/help/help.doc
:end

The command pis the PCnix equivalent of the UNIX mo re command. With­
out arguments or redirection} it just sends the file to the screen, pausing after 22
lines to keep things in view. The (RETURN) key gets one more line} (SPACE)
gets one more screenful. It displays an error message if it can't find the file.

PCnix contains a help file for each command. It shows the syntax-what
you should type to make it work-then explains available options, describes in

66



Display the last 11 tines of "text."
Extract the last 123 lines of file "xx"
and deposit them into a fi le called "yy."

Chapter 3: Adding UNIX Power

general terms how the command works, and finally gives an example or two of
its operation. Each text file attempts to fit within one screen and is successful for
the simpler commands. As an example of the format of the he Lp documents, the
following shows the text of the file tai L.doc, which is displayed if you type the
command helptai L.

taiL - display the tail end of a text file's contents
Syntax: tail [-####J fiLename [filename ••• J
With onLy the fiLename as an argument, 'taiL' dispLays
the last eleven Lines in a text file. With more than one
fiLename, it dispLays the Last eleven lines of each file
successively. Two wiLL just fit on one screen display; this can
be handy in comparing two versions of a text fiLe. With a numeric
argument, 'tail' displays the number of requested lines
at the end of the designated file(s). By default, output is
displayed on the console screen, with a pause every 22 lines.
<RETURN> displays one more Line, any other key displays the
next screenfuL. The pause does not occur if output is redirected
to a file or device. A huge numeric argument will display the
complete text file. Binary files give a funny Looking display but
nothing burns.
Examples:
tail text
tail -123 xx > yy.

Using Batch File Helpers to Increase Flexibility

Batch files have no direct mechanism for making system calls to MS·DOS, but
since they can run an external program (at some cost in time) we can add this
capability. All that is required is a short program to make the needed system call
and a way of returning the result so the batch file can test it. MS·DOS provides a
crude return mechanism: if the program exits via the interrupt Function 4Ch,
the value in the AL register is preserved and can be tested by the if error leve l
construct.

Creating Short Programs

Probably the simplest way to write a short program is to use debug interactively
to create it as a . COM file. Here's the procedure to use:

67



Section 1: E}(tending the MS·DOS User Interface

1. debug newfile.com (Debug responds Fi Le not found and creates it)

2. a (Debug now accepts commands to assemble)

3. Type the commands in sequence (addresses will start at 0100h)

4. Type (RETURN) to make an empty line

5. rcx (Debug responds ex 0000 bytes, then prompts with ":")

6. Type the (hex) number of the empty line address Gine 4), after sub­
tracting 100h.

7. w

8. q

As an example, here's what your screen shows when you create INT37. COM

to set the SWITCHARvariable to I as described earlier (except for comments follow­
ing IIi"):

debug int37.com
FiLe not found
-a
1166:0100 mov dl,Se
1166:0102 mov ax,3701
1166: 01 05 i nt 21
1166:0107 mov ax,4COO
1166:010A int 21
1166:010C
-rcx
CX 0000
:C
-w
Writing oooe bytes
-q

Debug creates int37.com, grumpily
start to assemble
put '\' code into register DL
Function number 37h to AH, 1 to AL
AL == 1 means set SWITCHAR from DL
Exit with errorLevel set to 0

empty Line telLs Debug to stop assembLy
examine the CX register
Debug response: current value is 0
empty_Line_address - 100h
write number of bytes in CX
Debug response
quit.

If you are adept at using the assembler MASM, you might prefer to write
batch file helpers in assembly code, which is easier to document and maintain.
They are usually so short, though, that using debug is much faster.

Taming the SUBST Command

Many useful programs for the PC were written when MS-DOS was young, be­
fore it knew about directories; these programs assumed everything was availa­
ble directly on one of the drives. In UNIX parlance, all the files were stored in the
root directories. This was tolerable before hard disks entered the scene, but

68



Chapter 3: Adding UNIX Power

with 10MB or more of storage available, a DIR command became a real adven­
ture. The hierarchical directory system, eerily similar to the one used in UNIX,
was added to MS-DOS 2.0. This solved one problem but created another: the
older programs only worked if the directory they were stored in was the default,
an awkward requirement to realize with a single (hard disk) drive. Since we want
to be able to use these older programs under PCnix (and have them look just like
the newer ones), we must solve this problem somehow.

MS-DOS 3.0 provided a partial solution in the form of the SUBSTcommand.
This command allowed any directory to be designated as an honorary drive, de­
fined by its pathname. Now the older programs could be located anywhere, and
a batch file could be designed to make them operate as if they understood about
directories. It almost worked.

Let's examine how to write a batch file to call the IBM program Wordproof
into action. This excellent program looks up words in its dictionary and stops on
any it can't identify, letting the user verify or change the spelling. It can suggest
possible spellings (or synonyms) on request. For convenience, we'll put Word­
proof in the directory /edit/spell. We can use SUBST to call this directory drive e:,
for example, so when we want to proofread the file we've been working on in
our current directory, c:/propose/draft, we can say

cd e:

to go to /edit/spell. Now we want to call the Wordproof program into action with
draft as an argument, so ... oops. That file is on the drive c, the one we just
came from, not drive e. Can't do it that way.

Well, OK, let's call the program from our working directory, with the com­
mand

e:wp draft

so Wordproof can find it-but now Wordproof can't find its own dictionary, be­
cause it looks only on the default drive when it starts up.

We could assume we'll always be working from drive c and wire that idea
into the controlling batch file, but that means we can't proofread a file that is on
a floppy disk in drive a.

The right way to do it, of course, is to find out what drive we are on before
we go to our mythical drive e, then use that information to tell Wordproof where
to find the file to proofread. We can then return to our original working direc­
tory when we are done. MS-DOS knows what drive we are using, and even has a
function call to tell us-if we could make such a call from our batch file. With a
batch file helper, we can. Consider this small program:

; drv - return current drive number as errorlevel
mov ax,1900 ; get current drive number (function 19h)

69



Section 1: Extending the MS-DOS User Interface

int 21
mov ah,4C
i nt 21

return AL as errorlevel (function 4C)
int 21h does almost everything .•.

MS-DOS Function 19h returns the current drive number (0 = a, 1 = b,
etc.) in the AL register, just where Function 4C expects to find the errorlevel
value. If we create this program as drv. com using debug, we can include it in our
batch file proof. bat:

drY
if errorlevel 0 set DRV=a:
if errorlevel 1 set DRV=b:
if errorlevel 2 set DRV=c:
if errorlevel 3 set DRV=d:
subst e: c:\editp\spell
e:
wp XDRVXX1
XDRVX
set DRV=
subst e: -D

First we call drv . com, then put the name of our current drive in the environ­
ment variable DR\!. (The error leve l test is a bit strange: if error leve l1 tests true
if the errorlevel value is equal to or less than 1. Reversing the test order would
leave the wrong value in DR\l,) Next we create our phantom drive and go there,
where Wordproof lives. The string XDRVXwill be replaced by the string we stored
in the environment, so if we typed the command

proof draft

the command that calls Wordproof into action becomes

wp c:draft

if our original working drive was drive c. Similarly, after Wordproof finishes its
job, the next line will be

c:

which returns to the directory draft is in. As a final bit of cleanliness, we remove
DRV from the environment and delete the connection between e: and c:/editl
spell.

70



Chapter 3: Adding UNIX Power

Syntactic note: the shiny new SUBST command stubbornly refuses to look at
SWITCHAR for its switch character, so it insists on \ as a pathname separator. To
delete the established connection, it demands the 0 switch (and requires that it
be uppercase!). But it will accept neither \ nor / as the switch character if
SWITCHAR has been changed. It does accept - however, a fact missing from the
MS-DOS documentation.

How Many Drives Are Out There?

PCnix can run comfortably on a two-floppy system, providing it has enough
memory to hold a RAMdisk of reasonable size-640K is nice. The most-used
commands are written to the RAMdisk on system startup, with the help files and
less popular commands residing in directories on floppy drive a. Startup is a bit
slow, but if the RAMdisk is the default directory, most commands take less time
to run than from a hard disk. A lot of floppy-swappy goes on, though, if you try
to do something serious such as run a compiler. A hard disk is better if you can
afford one.

PCnix uses a public domain RAMdisk system written by Nat White; it has
the advantage of being able to be removed (welL set to zero capacity) without
rebooting. The driver, ram. sys, must be included in the CONF IG. SYS file used dur­
ing startup. It does need to know the name of the drive it pretends to be, though,
and this depends on how many real drives are installed in front of it. Here's the
batch file helper used to find out about the drives present:

; ldrv
mov
mov
mov
int
dec
cmp
jz

mov
mov
i nt

- return
bl,20
ax,4404
cx,OOOO
21
bl
al,OF
0102
a l, b l
ah,4C
21

index of last valid drive
assume no more than 32 drives
IOCTL call, read from block device
number of bytes to read (none)

count down in BL
IOCTL returns OF if drive invalid
if so, try the next smaller one
else BL now has the index
return with index as errorlevel
o means A, 1 means B etc.

The portion of the AUTOEXEC. BAT file that creates the RAMdisk and then fills it
with commands from the floppy disk looks like this:

;find out drive name for RAMdisk
ldrv
if errorlevel 2 set RO=C

71



Section 1: Extending the MS-DOS User Interface

if errorlevel 3 set RD=D
if errorlevel 4 set RD=E
path %RD%:I;a:/bin;a:/system
echo Creating a RAMdrive as drive %RD%:
setram %RD%: 256
echo Copying the most-used commands to drive %RD%: •..
copy a:/toram/*.* %RD%: > nul
set comspec=%RD%:\command.com

Note that MS-DOS will insist you have two drives even if there is only one
physical drive installed. This is actually ingenious, since two drives are simulated
by the system by using the one real drive alternately. The command

copy a: a:

works just fine, prompting you to change source and target disks as needed. In
any event, ldrvwill never return 0 or 1 as the last valid drive index if ram. sys has
been loaded.

Once the drive name is known (and stored in the environment as RD), the
name %RD% can be used wherever the drive name is needed-as the first direc­
tory searched (after the current one) via the PATH command, as the target of the
copy command, and as the location for COMMAND. COM, should the latter get over­
written and need to be reloaded.

Taming the MK0 I RCommand

Penix installs itself onto a hard disk from a batch file, which creates directories
(bi n, he lp, etc.) on the hard disk to hold everything. Should the directory already
exist, the installer should quietly put files into it-without complaint. The
MS-DOS command MKD I R, however, gets upset if the directory already exists 1 and
complains with an error message that cannot be redirected into the NULL file­
the usual way of shutting things up. In this case, we need to know whether a
particular name is already present as a directory, so we create a batch file helper
to tell us:

72

; fd
mov
add
mov
mov
mov
int

find out if arg string is
bX,0081
bl,r0080]
byte ptr [bx],OO
dx,0082
ax,4300
21

the name of a subdirectory
psp address of arg string start
number of chars in string
nulL-terminate the string
point to 1st non-bLank char
get fiLename attribute



Chapter 3: Adding UNIX Power

mov ax,4COO
cmp cx,+10
jnz 011 B
inc AX
int 21

return errorlevel exit
is it a directory?
if no, return 0
if yes, return 1

We assume that the string was given to the fd command as an argument, and has
been installed by COMMAND. COMin the usual place for the first command-line argu­
ment. The string format is different from that expected by MS-DOS Function
43h. (Naturally-eonsistency is a virtue of the small mind.) So, we must first con­
vert it, then call on the system to see if it is the name of an existing directory. We
convert the returned attribute into a yes/no answer and return it as a testable
error leve l.

Here's a portion of the PCnix file insta ll. bat that uses this helper, reading
from a floppy disk in drive a: and installing the system onto drive c:

a:/bin/fd c:bin
if not errorlevel 1 mkdir c:bin > nul
echo Filling directory "bin" with PCnix executable files _
copy a:bin bin> nul

Is There a Clock in the House?

As a final example, PCnix tries to read the clock/calendar via its AUTOEXEC _BAT file
on bootup. In a brave attempt to be independent of the hardware that might be
present, it tries several "readclock" routines for different types of hardware. It
depends on a batch file helper to find out if it has been successful in reading the
clock. If not, it keeps trying until it runs out of things to try. If it is successful, it
writes a short code string into the environment to tell other routines what kind
of clock is present, in case they need to know. It knows it's running on a PC/AT
clone if the clock is correctly set before it tries anything.

Here's the helper that finds out if the (internal, MS-DOS) clock has been
properly set:

; tclk - test to see if clock/calendar has been set
mov ah,2A Get date
int 21
mov ax,4COO 0 -> AL, "return errorlevel" -> AH
cmp cx,07C3 is date less than 1987?
jl 010E if yes, clock is not set
inc ax else mark it as set
int 21 return AL as errorlevel

73



Section 1: Extending the MS·DOS User Interface

Figure 3-1 summarizes our discussion of the design of Penix by showing
how the parts of a typical Penix system are arranged. Notice how the batch files
and software tools used by penix fit into the MS-DOS environment. (See Essay 1,
Harry Henderson's Guided lbur inside MS-DOS, for a discussion of how the parts
of MS-DOS interact.)

Keyboard

Internal
Commands

Batch File
Interpreter

'1 I'".\~

IBM DOS.COM

IBIN
Batch File
Helpers

o

IBIN
peNIX Tools

IHELP
Documents

Aoppy Disk

Hard Disk

ISYSTM
MS·DOS

Tools

IANYWHERE
Other

MS-DOS
Programs

Printer Modem Display

Fig. 3·1. How Penix and MS-DOS fit together.

74



Chapter 3: Adding UNIX Power

The Software Toolkit

We've created our basic PCnix environment and the easy support routines; now
we have some real work to do. MS-DOS provides several software tools that are
specific to its own file system. We can adopt those tools that do a good and useful
job (FORMAT, DISKCOPY, CHKDISK, SYS), and we can scour the public domain for oth­
ers. Even so, we'll fall far short of the nifty tools provided by UNIX-so we'll just
have to write them. We'll adopt the C language as the most portable and UNIX­
like, using a commercial compiler (Microsoft C or Borland's Thrbo C) as the clos­
est approximations to the Portable C compiler (cc) that comes with our particu­
lar UNIX system, Berkeley UNIX 4.3bsd.

Tools for Dealing with Text

Our plan is to avoid slavishly copying the UNIX toolkit in every detail. We must
take into account the different operating environment provided by MS-DOS, and
use its services as much as possible to make things speedy. We'll start by dividing
the tools into groups, and we'll tackle first those tools concerned mostly with
manipulating text-the primary medium of exchange between the various UNIX
software tools. Table 3-2 lists those in PCnix.

Table 3·2.

Tool

ed
diff
eline
grep
p
pI'
split
sr
str
tail
tr
uniq
wc

Text Tools

Function

PC·Write, a powerful, modeless editor for word processing
Find minimal differences between two text files
Enforce MS·DOS line-ending convention on a text file
Search text files for patterns, print all lines that match
Display files, optionally with visible control codes
Page and print text files, optionally in multiple columns
Split a long file into shorter segments, gracefully
Search and replace multiple text patterns in parallel
Find the ASCII strings in a binary file
Display the tail end of a file's contents
Transform a series of (single) character codes into others
Remove (or print) duplicate lines in a text file
Count lines, words, and characters in a text file

We'll need an editor to create and edit text files. PCnix really doesn't care
what editor you use, so long as it creates normal ASCII text and runs under
MS-DOS. The shareware editor PC-Write is a good one, and a PC version of the
Berkeley UNIX editor vi is available commercially. PCnix also uses the nans i •sys

75



Section 1: E}{tending the MS·DOS User Interface

public domain replacement for the MS-DOS display driver ANS I. SYS, written by
Dan Kegel, because it's faster.

Some of the text tools do the same jobs, and therefore bear the same
names, as their UNIX counterparts: diff, grep, pr, tai l, tr, uniq, and wc. A few
are different, or have different features, in order to cope better with MS-DOS.
For example, text lines under UNIX are ended with a single code LF. MS-DOS
requires two: CR/LF. CP/M uses only one: CR. The el inetool can cope with alien
line endings, substituting the MS-DOS CR/LF convention for whatever it finds. If
no line-ending convention is found, it word-wraps at the end of a line whose
length can be specified (default 80 columns). Its ability to word-wrap (but with­
out any attempt at hyphenation) makes it a useful companion to the pr program,
which can produce two (or more) columns of text, but chops the ends off text
lines that are too long.

The p (pager) program has a couple of hidden talents in addition to paging
text to the display screen. It can strip out high-order character bits inserted by
some other text programs, most notably WordStar, thus converting the output to
a printable form. If its output is redirected into a disk file, it behaves like the
UNIX cat command. It can also substitute printable codes for the eight codes not
normally printed by the nansi _sys screen driver (Null, Tab, Bell, Backspace, CR,

LF, Escape, Rubout), so you can see what they are. It uses intensified characters
to distinguish them from their unintensified look-alikes. Printing a binary file to
the screen is quite entertaining but the results are not terribly informative.

In a more practical vein, the s t r program searches through binary files and
displays any text strings it finds. This action is similar to the UNIX program
st rings except it knows about the various different kinds of text strings found in
MS-DOS. UNIX, bless it, has only one style. Strange things can sometimes be
found in executable files. For example, if you scan a new program fresh from a
BBS and encounter a string like HA HA, GOTCHA!! ! !!, don't run the program.

Now, let's choose one of the text tools and examine it in some detail. The C
language encourages a program architecture consisting of many separate func­
tions, each of which does a logically complete job. If these functions are written
with some attention to modest generality, they can often be used unchanged in
subsequent programs. Since we've already seen the he lp. doc file describing tai l
let's see how that command works. Here are the separate routines in outline
form:

tail - display the tail end of a text file's contents
allnum - examine a string for numeric characters exclusively
toscreen - find out if output is to the console screen
filecopy - copy the last part of a file to stdout

stak - a circular data storage & retrieval structure
size - set the modulus size of the circular stack
push - overwrite the oldest stack entry
pull - extract the oldest available stack entry

76



Chapter 3: Adding UNIX Power

(pop - extract the youngest stack entry)
endlin - end a line and watch for screen overflow

The main routine, tai l.c, processes the command line options-in this
case only one option may be present, the one to set the number of lines to be
printed. It calls on a llnum. c for help with that chore. It also calls tosc reen. c to
see if the output is going to the display screen or not. If it is, tai l. c sets a global
flag (tsc) so the output will pause after each screenful of text. t ail. c next opens
any files on the command line it can find, calling on 1; lecopy. c to do the dirty
work for each one of them:

/* toscreen - find out if output is to console screen */
#include <dos.h>
toscreenO
(

union REGS ri

r.x.ax =Ox4400i 1* get IOCTL status code *1
r.x.bx =1i intdos(&r, &r)i

returnCCr.x.dx & 1) && Cr.x.dx & Ox80»i 1* isdev && iscin *1
}

The function toscreen.c shows the way C can be used to make MS-DOS sys­
tem calls and return the result. The #inc lude file dos. his a header file that defines
REGS to match the registers available in the 8088 microprocessor. All C compilers
available under MS-DOS have this facility, but there is no standardization, so the
PCnix tools try to isolate this activity, minimizing the number of routines that have
to be changed if some other compiler is used. ANSI, where are you?

The fi lecopy. c routine makes use of a very UNIX-like feature of MS-DOS.
Files are treated as simple strings of bytes; with text files, one character is stored
in each byte. System calls allow the pointer that indicates the next character to
be moved around-just like a memory pointer. The file characters need not be
read-only in the order they are stored. By putting the file pointer to the file's end,
fi lecopy.c can determine how many characters the file holds, and can then
move back the number of lines requested and display them.

There is one complication: how many characters (bytes) are there on each
line? It varies with the text-in fact, some files may not be text files at all, so we'd
best be careful here. If we want to move back 11 lines from the end (the default
value), we can move back 880 characters and be reasonably safe, since we dis­
play at most 80 characters on a line. Now we'd like to move forward in the file,
watching for line-endings and counting them until we come to the end again. If
we keep track of just where we found each one, we can go immediately to the
start of the eleventh line from the end and print from there.

The fi lecopy routine calls on a circular storage buffer to do this last job,
setting its length to the number of requested lines-in our example, eleven. It

77



Section 1: E}Ctending the MS-DOS User Interface

then proceeds to examine the file one character at a time, using the push () oper­
ation to store a character count for each line-ending found. If there are more
than 11 lines, as there may well be, the oldest counts are overwritten. When the
end-of-file is found, the desired character count will be the eleventh count from
the end. The pu II () operation extracts it since it is the oldest value present. (The
pop () operation-extract the most recent value-is included for completeness
but is not used here.)

#define FHOME 0 1* symbolic constants for fseek *1
#define FHERE 1
#define FEND 2
1* filecopy - copy the last part of an open file to stdout *1
filecopy(fp)
FILE *fp:
{

1* find how many there really are *1

1* and run forward *1

1* use the smaller number *1
1* rewind to that point *1

1* counting text lines *1
1* and save corresponding char no. *1

1* size stack, allow for trailing newline *1
1* estimate no. of chars this represents *1

extern long lines:
i nt c, lc =0:
long nchars, guess, acnumi
long pull 0:
sizeClines + 2):
guess = lines * 80:
fseekCfp, Ol, FEND):
acnum =ftell(fp)i
if(acnum <= guess)

guess =acnumi
fseek(fp, -guess, FEND):
nchars =ftell(fp):
while«c =fgetc(fp» != EOF) {

nchars++:
if(c == '\n') {

lc++:
push(nchars):
}

}

if <Lc >= li nes)
fseek(fp, pull(), FHOME):

else
fseek(fp, -guess, FEND):

while(Cc = fgetc(fp» != EOF)
if(c == '\n' && endlin(»

continue:
fputc(c, stdout);
}

1* rewind to requested point *1

1* or to best guess *1
1* and send it out *1

1* watching for display pause *1

}

78



Chapter 3: Adding UNIX Power

Under UNIX, we could just pipe the output through more to page it one
screenful at a time, but that's much too slow under MS-DOS. Instead, we'll in­
clude the subroutine end lin. c in each tool we write that sends text to the
screen.

output is to screen *1

output is to screen *1
1* and a screenful *1
1* get a keystroke *1

and watch for screen overflow *1
1* line counter *1

#define SCRSIZ 22
1* endlin - end a line
static int lc = 0;
endl inC>
{

extern int tsc; 1* true if
regi ster i nt c;
if(tsc && ++lc >= SCRSIZ) { 1* pause if

fputs(lt\r\n\033[7m--More-- It , stdout);
c = bdos(7) &OxFF;
fputs(It\033[Om\r\033 [K", stdout);
switch(c) {

case '\r': 1* <RETURN> - show 1 more line *1
lc = SCRSIZ - 1;
break;

case 'q':
case '\003':

exit(O);
default:

lc = 0;
break;

1* quit with Itq" or Itctrl-CIt *1

1* else show another screenful *1

}

return(1);
}

return(O);
}

1* yes, we ended this line *1

1* no, we didn't end it *1

The strange codes in the fputs function are understood by the MS-DOS
screen driver nans i •sys; they paint --Mo re-- in reverse video, on a line of its own
below the text lines. The function then waits for a keystroke, which it examines
to see what to do next. When it finds one, it either quits or returns a code indi­
cating whether it had to stop (and thence end the last displayed line) or not, and
erases the --More-- from the screen. The caller must supply the line-ending
codes if the subroutine did not.

An external flag (tsc) indicates whether the output is going to the screen or
not. This is very useful to many tools. Ifoutput is redirected into a disk file, or to
the printer, it can be passed to them uninterrupted. The flag can be set correctly
for any execution of the tool by calling toscreenO once, as was done here by
tai l.c.

79



Section 1: Extending the MS-DOS User Interface

Ifyou are curious about the circular storage buffer, it's surprisingly simple:

space

stack *1
index *1
index *1
limit *1

*/

1* holding
1* li fo
1* fifo

1* modulus
& allocate

1* stak - a circular data storage &retrieval structure *1
#define EMPTY -1

long *s = NULL;
unsigned int lp = 0;
unsigned int fp = 0;
unsigned int endm = 0;
1* size - set the mod size of the stack
sizeC;)
int i;
{

if«s = (long *)mallocCi * sizeofClong») 1= NULL)
endm = i;

}

pushCx)
long X;
{

s[lp++J = X;
ifClp >= endm)

lp =0;
if Clp == fp)

fp = ++fp % endm;

1* overwrite the oldest stack entry *1

}

long pullC) 1* extract the oldest available stack entry *1
{

long j;

if Clp == fp)
return(EMPTY);

j =s[fp];
fp = ++fp % endm;
return (j) ;
}

long pope) 1* extract the youngest stack entry *1
{

if(lp == fp)
return(EMPTY);

if(--lp < 0)
lp += endm;

return(s[ lpJ);
}

80



Chapter 3: Adding UNIX Power

Dealing with Files

The PCnix toolkit also includes a set of software tools for listing, finding, and
manipulating files. Table 3-3 lists the current repertoire.

Table 3·3. Penix File Tools

Tool

arc
dog
chmod
chn
du
ffind
Is
mv
pwd

Function

Compress and archive files, or decompress files
Reorganize your hard disk for fastest access
Change the mode of a me to/from system, hidden, etc.
Change the name of a file, directory, or volume label
Summarize disk usage in a part of the file hierarchy
Find path(s) to filename(s) on the designated drive
List filenames in a directory, in many nice ways
Move files or directories to another location
Print full path to current working directory on a drive

The file compressor/archiver/decompressor arc is a shareware program,
distributed by System Enhancement Associates, that first examines a file, then
chooses one of several compression techniques depending on what it finds. Thxt
or binary files can be compressed 30 percent to 50 percent, a helpful saving if
the file is destined for transmission over phone lines.

The disk organizer dog, written by G. Allen Morris III, is also distributed as
shareware. It explores your hard disk and then, with your permission, reshuf­
fles the way storage clusters (clumps of disk segments) are ordered on the disk
to paste together all the files that have become fragmented (stored in several
pieces) by the MS-DOS storage system. This can speed up subsequent disk-inten­
sive operations dramatically. It can take a long time to run, but it keeps you enter­
tained with a slightly breathless account of how the job is progressing. Run it
during lunch break.

The UNIX program find can be dispatched into the file system to look for (and
perhaps modify) files you name or describe on the command line. It is a very pow­
erful tool only UNIX gurus use, because the syntax is unbelievably painful. It's a
superb example of a program that tries to do too much. Our PCnix program f find
has a much more modest mission: it explores a file system on a designated drive
recursively, peeking into each subdirectory and listing the complete pathname to
any file we tell it to watch for. It can accept the MS-DOS wildcard characters, so we
can fmd all the batch fl1es on drive c, for example, with the command

ffind c:*.bat

It's marginally useful on floppy disks and almost essential on hard disks with

81



Section 1: El'tending the MS-DOS User Interface

20MB or more of storage-it's amazing how easy it is to misplace files even in a
well-organized directory system. (See Essay 2 1 Searching the File Tree with
wherei Sl by Frank WhaleyI for a utility more like the complete UNIX fi nd com­
mand.)

What's in a Name?

MS-DOS 2.X had a curious limitation: its rename command I which called on Func­
tion 5Gh l worked on files but not on directories. 1b change a directory name l

you first had to create a new (empty) directory with the chosen name l copy all
the files from the old one into the new one I delete the old files I and then delete
the old directory. On a floppy disk l you would always run out of space about
halfway through. YetI MS-DOS Function 17h could rename directories. It did not l

howeverl understand about pathnames. Our PCnix chncommand is a short pro­
gram that calls Function 17h l accepting the limitation that the designated file
must be in the current directory of one of the drives.

MS-DOS 3.0 quietly introduced a new version of Function 5Gh that can re­
name directories (without I of course l mentioning that fact in the documenta­
tion). Our mv command can use this new capability to rename directories I but it
can't do so under MS-DOS versions before 3.0. We'll also teach mvabout drives. If
a file or directory is moved to another location on the same drive I only the File
Allocation Table (FAT) need be changed I and Function 5Gh will do that for us.
Moving files or directories to another drive requires that everything be copied to
the new l then (if the copy is successful) erased from the old. mv does it that way.

What's in a Directory?

Perhaps the most-used command in either UNIX or PCnix is the ls command I

which tells us the names of files in one or more directories I and as much about
them as we ask for-unlike DI RIwhich tells everything it knows whether we ask
or not l shouting at us in UPPERCASE. The ls command has (perhaps too many)
options available to control what it does:

ls - a UNIX-like directory listing program for MS-DOS

Syntax: ls [-acilrstuRl [(path)name ••• J

Options may appear in any order, grouped or separated; if
separate, each must be preceded by a dash. The name(s) may refer
to files or directories. If no name is given, the current
directory is listed. MS-DOS wildcards are graciously accepted.

82



Options:
(none)
-a
-c
-i

-l
-r

-s
-t

-u
-R

Chapter 3: Adding UNIX Power

Show filenames (only) sorted alphabetically
all: include system files, hidden files, "." and" "
columnar: change how many columns are used in the listing
identify: change whether directory pathname is shown
long listing: include file's size, date, time, attributes
reverse the sorting direction
report size(s) only
sort by time of last file modification
include actual disk use, with totals &available space
recursively list all subdirectories

The default settings for most of these options can be changed, so ls can be
sweetened to taste. For example, some people like to have the name of the cur­
rent directory shown, along with its contents, when ls is invoked without argu­
ments-in effect, UNIX pwd followed by l s. Others find this offensive. If it matters
to you, you can change one or more of the "customizing constants" in the pro­
gram to change the default settings from those normally supplied:

1* customizing constants *1
#define 10 1 1* always identify directory if 1 *1
#define All 0 1* show hidden files by default if 1 *1
#define lONG 0 1* long listing by default if 1 *1
#define SCOlM 0 1* 1-column short listing by default if 1 *1
#define lCOlM 1 1* 1-column long listing by default if 1 *1
#define RSORT 0 1* reverse sort by default if 1 *1
#define TSORT 0 1* time sort by default if 1 *1
#define DU 0 1* include disk use by default if 1 *1

Since ls has to poke around in the MS-DOS file system, much of its opera­
tion involves making system calls to learn things, and reformatting the result
(e.g., transforming filenames to lowercase) for display. In outline form, here are
the various routines that make up the whole, with MS-DOS function calls identi­
fied in parentheses:

ls - a UNIX-like directory listing program for MS-DOS
main - process input options
toscreen - find out if output is to console screen (44h)
setps - set pathname separator to MS-DOS switchar value (37h)
curdrv - get name of current default drive (19h)
curpath - get path to directory on default drive (47h)
search - search 'path' for filename or directory

83



(2Ah)
(36h)

Section 1: E}(tending the MS-DOS User Interface

find_first - find first fiLe in chosen directory (1Ah, 4Eh)
comp - compare size of two entries for quicksort
gcdate - get current date (months) for comparison
getcL - get cLuster size & space Left on A drive
abspath - get absolute path into search path buffer

find_next - find the next file in this directory (1Ah, 4Fh)
(calls the same routines as find_first)

shortlist - print a list of names in up to 5 columns
putname - convert name to lower case and print
endlin - end a line and watch for screen overflow

longlist - list everything about files in one or two columns
fill - fill long list structure with file information
mname - convert month number to month name
putname - convert name to lower case and print
endlin - end a line and watch for screen overflow

Table 3-4 lists a few other tools to complete our toolkit. Fortunately, a com­
plete version of the wonderful UNIX utility make for MS-DOS has been distrib­
uted as shareware by its author, D. G. Kneller-it is superior to the "professionaln

version distributed by Microsoft with its C compiler. We'll add the touch com­
mand to work with it, calling Functions 2Ah and 2Ch to get the current time and
date, then calling Function 57h to insert them into the file's time-stamp.

Table 3·4. Hacker Tools

TOol Function

make
tglob
touch
kermit
uuencode
uudecode
now
switch
xp

Compile, link a C program from separate files, minimally
Transform global definition file into extern ded file
Mark the time-stamp of a file with the present dateltime
Thrminal emulator and file transfer utility
Encode a binary (executable) file as ASCII text
Recover the original binary from encoded text files
Display the current day, date, and time
Display or change DOS SWITCHAR character (default is \)
Expand wildcards in filenames and display all that match .

We'll use the excellent Kermi t protocol for file transfer to and from our Vax
(running UNIX, of course) written by Frank da Cruz, and distributed at cost by
Columbia University. We can make use of its MS-DOS version to pretend our PC is
actually a smart terminal-Kermi t has terminal emulation built in. We'll also use
the public domain programs uuencode and uudecode, written by Mark Horton, so
we can send binary fIles over phone lines. Kermit handles binary files correctly,
but many electronic mail programs get serious indigestion from nontext code
combinations. The uuencode program transforms a binary file into an encoded

84



Chapter 3: Adding UNIX Power

text file, and uudecoderecovers the original binary file at the other end. The orig­
inal filename is preserved. By convention, beerbust .uue is an encoded file and
should be fed to uudecode, which might produce beerbust. arc as its output. The
command

arc x beerbust.arc

will extract the individual files from the transmitted archive, binary or other­
wise.

Our miscellaneous category includes now, which tells you what now is,
swi tch that permits changing SWITCHAR as a last resort in getting a program to
run, and xp, an MS-DOS version of the UNIX ECHO command. The UNIX shell pro­
grams expand the metacharacters ? and * for each program they invoke, but
COMMAND. COM does not. Under UNIX, the command

echo *.txt

will echo to the screen all filenames in the current directory that end in . txt, so
you can see what will happen if you use, instead, .

rm *.txt

The xp command does this same job for MS-DOS.
But what is that program called tgLob? Well, it's a programmer's tool-a bit

specialized, perhaps, but handy when we write large C programs like Ls. The C
language demands that global filenames be defined, and optionally initialized, in
only one place. The normal convention is to #include them in the main.c pro­
gram. All separate subroutines must know about them to use them, however, so
they need the same list of names, but listed as external declarations. Keeping
two name lists is both tedious and error-prone. The final goody in our "friendly
programming environmene project penix is the help file for tg lob:

tglob - transform global definition file into extern decl file

Syntax: tglob [filename] > outfiLe

Global variables may only be defined in one place in a C program,
but must be referenced as "extern" decLarations in alL other
fiLes that use them. "tgLob" acts as a filter, to transform a
globaL definition fiLe into another fiLe with the necessary
"extern" dec larations present, and wi th any i ni t i a li zi ng
values removed, so only the definition file need be maintained.
With no filename present "tglob" reads its standard input; it
aLways writes to stdout. Using a makefiLe, the following

85



Section 1: E}Ctending the MS-DOS User Interface

dependence entries will create a new declaration file from the
definition file, automatically:

sglob.h : glob.h
tglob glob.h > sglob.h

where tlglob.h tl is the definition file, and tlsglob.htl is
the resulting declaration file. The main program file should
contain #include tlglob.h tl

and all separate subroutine files should contain
#include tlsglob.h"

Example: Before (input to tglob):
=================================================================
1* individual field lengths for full and reduced display *1
int box1 =4;
char ffmax[J={0,8,9,0,19,19,19,19,19,0,8,19,2,0,6,6,6,6,0,3,o,o};
unsigned char wbuf1[J =

" ********************************\r\n\

*
*

02:07:13 UT
23 Jan 87

*\r\n\
*\r\n\

********************************\r\n";
char *mo[J = {

"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct",
tlNov","Oec"
};

int ftime[40J; 1* filter change time array *1
=================================================================
After (output from tglob):
----------------------------------------------------------------------------------------------------------------------------------
1* individual field lengths for full and reduced display *1
extern int box1 ;
extern char ffmax[J
extern unsigned char wbuf1[J
extern char *mo[J ;
extern int ftime[Ji 1* filter change time array *1
=================================================================

MS-DOS WIldcards Are Not UNIX Metacharacters

Although the wildcard characters? and * in MS·DOS (and hence in Penix) are, at
first glance, the same as the? and * metacharacters in UNIX, there are real dif­
ferences that can cause you grief. Basically, the filenames in MS·DOS consist of 8-

86



Chapter 3: Adding UNIX Power

character (max) filenames, optionally followed by a dot (.) and a 3-character
(max) extension:

wiLdcard.doc (Longest possibLe filename in MS-DOS)

Ifyou move a file from UNIX} be sure the name follows MS-DOS rules. As an
ugly example} if you copy a UNIX file called wi ldcard.doc2 to MS-DOS} it be­
comes wi Ldcard.doc. The extension is truncated to 3 characters and the file may
overwrite one called wi ldcard.doc if one is present in your working directory.

The ? metacharacter in UNIX matches anyone filename character, just as
in MS-DOS. In UNIX} however} ??? matches any 3-character name but not any
one- or two-character names. In MS-DOS} ??? matches all filenames with one}
two} or three characters. Thus} the construction ???????? will match any name
in MS-DOS that has no extension, and the construction ???????? ??? matches
any possible name.

The * metacharacter in UNIX matches any sequence of filename charac­
ters} as it does in MS-DOS} but there is an important difference. Wherever * is
found in a filename, MS-DOS replaces it with as many? characters as will fit} up
to the dot character or to the end of the extension. Ifyou are in the habit of using
* on UNIX to avoid typing long filenames, look out. The UNIX command rm *ff
would remove any filename that ends in f f but in MS-DOS the same command
removes all files that lack an extension. Similarly, the UNIX command rm *ff. *gg

removes only those filenames that end in f f and have an extension ending in gg.

In MS-DOS} the same command removes all files in the current directoryI In
these cases, the * is encountered first and is replaced by ?1??1??? in front of the
dot character and ??? afterward} so the ff and gg exceed the allowed filename
length and are truncated and thrown away.

The danger is that some things work the same on both operating systems
and some do not. For example} rm abc* removes only those files that start with
abc on both systems} and have no dot or extension. But rm *. * removes all files in
the current directory in MS-DOS} and leaves those files in UNIX that do not have
the dot character in their name somewhere. MS-DOS does warn you by asking
Are you sure (YIN)? whenever it encounters ???????? ??1 (perhaps expanded
from *. *)} so if you get this warning when you were not expecting it} say NO.

Table 3-5 lists some MS-DOS examples} and what they mean.

Table 3-5. MS-DOS Examples

Command Function

rm ???. Remove all files with one·, two-, or three·character filenames, with or
without an extension

rm ???? Remove all files with one character filenames, with or without an exten·
sion

rm •any.??? Remove all files in the current directory

87



Section 1: El'tending the MS-DOS User Interface

Epilogue

PCnix is not UNIX, and doesn't try to be. It adopts, with grateful acknowledg­
ment, many of the really good programming ideas embodied in the UNIX operat­
ing system and its accompaniment of software tools. It brings a comfortable
UNIX-like environment to the IBM PC and its clones. It has been embraced by
many who go back and forth between a UNIX system and a PC-and, surpris­
ingly, by a few who have never used UNIX.

So what is the UNIX operating system? Is it a kernel surrounded by soft­
ware facilities to provide multitasking capabilities to a large number of users
simultaneously? If so, PCnix isn't even in the same ballpark. Yet PCnix feels a lot
like UNIX to a user-in a blind test, a UNIX guru worked away for over 20 minutes
before he discovered he was really talking to MS-DOS. (He was furious.)

So perhaps UNIX-or the heart of UNIX-is just a collection of software
tools that work well together, and provide a comfortable and convenient working
environment on a computer. PCnix has no pretensions beyond that modest goal.

The PCnix software collection will be available in two formats: execut­
able code only, which takes up about three 360K floppy disks; and ex­
ecutables plus all available source code, which needs about six. The
current system loads itself onto a hard disk and runs comfortably under
MS-DOS version 3.1i other versions of MS-DOS or other computer configu­
rations may take some setup work on your part. For more information,
contact R. E. Natheri:Po O. Box 27007; Austin, TX 78731.

Reading List

Angermeyer, J., R. Fahringer, K. Jaeger, and D. Shaferffhe Waite Group. 1987.
Tricks of the MS-DOS Masters. Indianapolis: Howard W Sams &. Company.

Baker, P. 1987. Pipes and filters. Byte E~tra Edition: Inside the IBM PCs 12, no.
12:215.

Claff, W 1987. Better batch files through assembly language. Byte E~tra Edition:
Inside the IBM PCs 12, no. 12:159.

Kernighan, B., and R. Pike. 1984. The UNIX Programming Environment. Engle­
wood Cliffs: Prentice-Hall, Inc.

88



Chapter 3: Adding UNIX Power

R. Edward Nather is the Rex G. Baker and McDonald Observatory Centennial Re­
search Professor of Astronomy at the University of 'lexas. He designs and builds com·
puter-controlled instruments for the automatic collection, recording, and display of
astronomical data, which he uses to study exploding stars called novae, burnt-out
stars called white dwarfs, and other cosmic exotica.

Related Essays

1 A Guided Thur inside MS·DOS
2 Searching the File Tree with where; s
4 Adding Power to MS·DOS Programming
6 Undocumented MS-DOS Functions
7 Safe Memory-Resident Programming (TSR)

89



I

K~yWO~".-> , ,_ .',",
, , :..~~~~¢~;B~tCl1Langtlag~

. -! ~':; "sefe~Il~elleratioIi

VitaJ$1e.

windows' .

C..lNDEX

keyediriae~ files;
·1-:.. ,.

Jl+[tfee~: - • __ .... _ I

Essa.y.Synopsis: Every programmer is
aware of the amount of repetitive and te­
dious work involved in developing an
MS-DOS application. Menus, h~lp screens,
data entry screens, and perhaps dialog
boxes and windows all have to be-designed
and implemented. Routines for indexing and
accessing data have to be written. ,MS·DOS
itself offers little help in these areas, since.it .
_provides only a rudimentary batch-propess.·" .
ingcapability and no screen generation,
windowing, or data management facilities ~

In recent years, however, many products
have been developed to add power to '
MS-DOS programming. This essay looks at
three representative products in detail and
shows you how they can solve'program-

.ming problems. Extended Batch Language
<EBLlprovides sophisticated batch process­
ingto automate programming tasks, and
amounts to a full-featured programming'
language in its own right. Vitamin emms
.it easy for C programmers to do theattrac-:, .
, tive screens and windows users expect to-:
day. Finally, C-INDEX uses, indexed files with
easy-to-use data management routines that
can be used with any C program.



4

Adding Power to MS-DOS
Programming

=

Douglas o. Adams

With each new version, MS-DOS has become a more powerful operating sys­
tem, but many programmers do not use its features to the best advantage. There
are many techniques and tools you can use under MS-DOS that will make pro­
gramming faster and more convenient. We will look at some typical problems
encountered by the MS-DOS programmer and show how to overcome them.
Since the C language is becoming the primary PC programming language, we
will use C for our examples. If you are not a C programmer, similar tools are
available for other programming languages.

Once the environment is set up and running, how do you run a group of
commands or programs consecutively as a batch? Most operating systems allow
users to put a group of commands into a file so they will be executed consecu­
tively or conditionally. This feature allows commonly needed operations such as
compilations and file backups to be performed without repetitive typing. On
UNIX systems, this is called shell programming and on large IBM systems it is
called C Scripts. MS-DOS currently supports a similar, but more limited, facility
called batch or .BAT files.

Most operating systems for larger computers provide support for screen
generation and data entry for application programs, but as recent as several
years ago, few such tools were available for personal computers, and PC pro­
grammers had to write their own screen and data entry code for each project.
Due to their speed and single-user support, very fast screen operations are pos­
sible on a PC, but programming PC screens in most languages is a very time­
consuming and error-prone process.

Organized information storage presents specific challenges: a list of names
needs to be available alphabetically, invoices need to be accessible by number,
scientific weather data may need to be ordered by date and time. Early com­
puter systems sorted massive amounts of data to achieve this accessibility. A

91



Section 1: E((tending the MS-DOS User Interface

newer technique, indexes, provides a way to order and select data in a much
more efficient manner.

Setting up Your Operating Environment

Many users want their computers to set certain parameters and install device
drivers each time the system is booted. As you probably know, a CONFIG. SYS file
allows you to do this. This file is executed by MS-DOS automatically each time
the system is booted, and can include instructions to add additional devices and
modify certain DOS defaults. Such a file might include

DEVICE = MOUSE.SYS (turn on mouse driver)

DEVICE =VDISK.SYS 128/E (set up RAMdisk memory)

FILES = 20 (allow more open files)

BUFFERS =: 20 (increase disk buffers)

The mouse device driver will work as soon as the system is started. The
second line in the file defines a virtual disk using extended memory beyond the
640K size limit to simulate a disk drive. The MS-DOS default for the maximum
number of open files is 8 files. Since this is not enough for many compilers to
operate, we extend the number of open files to 20 by including FI LES=20. Buffers
are used for holding information being read from or written to disk files.

The DOS command BUFFERS=lets you set the buffer size from 1 to 99, with
each number equaling 528 bytes. The default setting is BUFFERS = 2 or 1024
bytes. For an XT class machine, the setting should be BUFFERS = 6. For an AT
class machine, BUFFERS = 20 is generally suggested. Although this means the
DOS will use more memory, file operations will generally run much faster.

Using AUTOEXEC. BAT to Get Started

As you probably know, DOS provides AUTOEXEC.BAT, a special batch file which
should be placed in the main directory along with COMMAND. COM, and will auto­
matically be executed when you boot your system. It is usually used to execute a
series of programs that you want to run each time you start up the system. For
example:

PATH=\i\MW\PROGi\UTIL\DISK\DOSi\UTIL\MISCi\UTIL\SH\NC
PROMPT $p$g

RETRIEVE
CD \UTIL\DO

92



Chapter 4: Power for Programming

DO

MENU

CO\

The first line sets the path with a list of subdirectories. Any program or .BAT
file in the listed subdirectories may now be run from any other subdirectory. This
is useful for frequently used utility programs or a word processor that may use
text files in many different subdirectories. The second line changes the prompt to
display the current path (name of the drive and subdirectory now active), making
it easier to keep track of where you are in the directory hierarchy. Next, a mem­
ory-resident program RETRIEVE is run. This program maintains a stack of DOS
commands for later use and also lets you edit the DOS command line.

Some programs, including many compilers, need to access overlays or data
files in order to run. Since the PATH command does not establish access to any
data files, the line co \UTI L\oois used to change the current path to another sub­
directory where the program DO is run. DO is a calendar-scheduling program
called Daily Organizer that runs automatically each time the computer is turned
on. The program is necessary to change the current directory so DO can find the
data files it uses and expects. The last program run before changing the path
back to the main directory is a customized MENU program.

Benefits of the Menu System

Using a menu program to run commonly used applications has three benefits.
First, it saves having to remember the exact name of each program and type it.
Second, it saves having to awkwardly change the current directory. Finally, it
makes it possible for people with little knowledge of MS-DOS to use the com­
puter effectively. For example, the following batch file is named MENU. BAT:

CO \UTIL\MENU

MENU

CO\

This simply changes the subdirectory, runs a program named MENU. COM,

and then returns to the main directory. If MENU. BAT is placed in a subdirectory
that is listed with the PATH command, it can be run from any current subdirec­
tory. Incidentally, if you use such batch programs, be sure to place them in a
subdirectory included in the PATH so they will always be available. Many power­
ful menu programs are available if you should choose to use one. Figure 4-1 sum­
marizes the use of the files and programs we have discussed for setting up your
environment. (Harry Henderson's Essay 1, A Guided Tour inside MS-DOS, evalu­
ates the MS-DOS user interface and programming environment and has further
suggestions for improving it.)

93



Section 1: E}C.tending the MS-DOS User Interface

MS-DOS 4f1!t"
I CONFIG.SYS I

~ ,,",I.,.
I File

t.

~I~~:/,l

ii,

~,
,<

I~

I~
AUTOEXEC.BAT

~ File
?i
"'.".
:~
~ I

~~,

Run
RETRIEVE

Program

~;i
,I.

~v

Run
Daily

Organizer
Program

k

~,¥t
v

Run
MENU

Program

Fig. 4-1. Setting up your environment.

Almost everything described will work with any version of MS-DOS that is
2.01 or later1 but version 3.0 adds the VDISK. SYS command and version 3.3 adds
APPEND. The latter allows access to data files similar to the way the PATH com­
mand provides access to programs.

Using Extended Batch Language for Real Power

Extended Batch Language (EBL) is a program from Seaware Corporation of Del­
ray Beach l Florida. It offers the following features:

I> operating batch files faster

r> accepting messages from the user

94



Chapter 4: Power for Programming

J; creating attractive DOS screens

creating help screens using DOS

:.< ,- passing information on to programs

'-~. performing arithmetic expressions and assignments

parsing strings for special handling

:> searching for files to see if they exist

DOS processes batch files by reading them from the disk one line at a time.
Each line is executed and another disk access is required for the next line. This
results in very slow processing. EBL speeds up the processing of batch files by
reading the entire batch file into memory before its execution, allowing you to
set a buffer size that can be as large as 64K. This buffer is then used to hold all
batch files currently in use.

The batch command set is considerably expanded, and additional com­
mands allow you to provide a number of operations beyond the minimal ones
offered by MS-DOS. While many of these commands are very easy to use, a 366­
page manual and a bulletin board service are available for assistance from the
program's developers. Let's begin with a simple example using EBL:

BAT CALL HELP. TXT
BAT PAUSE
BAT CLS

The first line uses CALL to display a regular text file. This can include in­
structions, warnings, or any other information you want to present to the user.
PAUSE is a regular DOS batch command which will hold the text on the screen
until the user presses a key, and CLS, of course, clears the screen. The BAT at the
beginning of each line identifies it as an EBL command.

EBL provides full control over the screen to create an attractive and helpful
user interface. You can create menus, display text and help screens, draw boxes,
and change colors-all with ease. While DOS batch commands do not allow any
user responses, EBL lets you ask the user questions or make selections. This is
very important when you need to accept a selection or filename from the user.
Another simple example would be to read in a filename to execute with your
word processor:

BAT IP
TYPE Enter the name of the file to process:
READ %7
WORD %7

Notice that we began the program this time with IP after the BAT. We can
now eliminate the BAT prefix to all the other commands. TYPE is standard DOS.

95



Section 1: E~tending the MS-DOS User Interface

But the READ command is new. It allows us to read a string from the keyboard
and assign it to the variable %7. MS-DOS allows batch variables in the range from
%0 to %9. EBL extends the batch variables by adding the range from %A to %0.
The last line of our example starts Microsoft Word with the file specified in %7.
This example may seem trivial, but you can devise much more complex sets of
instructions that require user input to carry out a sequence of operations.

String-handling operations, arithmetic expressions, and assignments can
be performed on the user responses. File searches can be conducted and pro­
gram return codes can be checked. All these operations allow you to branch to
the appropriate part of your batch program and to provide error messages
when needed.

EBL Commands

The basic EBL commands are listed in Table 4-1. They are used in batch files to
display data, accept keyboard data, and control the logic flow of the batch pro­
gram. Each command performs a simple operation, defined beside the com­
mand. They are used in a similar way to the language used in C and Pascal.

Table 4·1. Basic EBL Commands

96

Command

BEEP
BEGINIEND
BEGSTACK/.END
BEGTYPEIEND
CALL
CLS
COLOR
EXIT
GOTO
IFfrHEN ... ELSE ...
INKEY
LEAVE
PARSE
READ
READSCRN
READ.PARSED
READSCRN.PARSED
RETURN
SHELL
SKIP
STATEOF
STACK
STACK.LIFO
TYPE

Function

Sound speaker
Delimit block of commands
Add data to keyboard stack
Display text
Inwke another batch file
Clear the display screen
Change text color
Leave batch program
Branch to a label
Conditional statement
Accept single keystroke
Stop EBL and continue DOS
Separate string into variables
Accept response, assign to variable
Get variables from screen
Read and parse
Readscreen and parse
Return from a CALLed subroutine
Execute DOS command
Skip number of lines specified
Check for existence of a file
Pass input to a program
Put messages on stack
Display messages or variables
Batch file line is a comment



Chapter 4: Power for Programming

Control functions and directives (see Table 4-2) provide additional control
over EBL batch files. They are used to determine how EBL will operate.

Table 4·2. EBL Control Functions and Directives

Function or Directive

CALL.PURGE
STACK.ON
STACK.OFF
STACK.PURGE
TRACE.ON
TRACE.OFF
)file
) )file
)
(file
( (file
(
IK
IL
/P
IQ
IR
IS
IV
BIOS or RAM

Operation

Clear CALLIRETURN stack
1\lrn stack on
1\lrn stack off
Clear user response stack
1\lrn on debugging mode
1\lrn off debugging mode
Write file
Append file
Close write
Read file
Reopen file
Close read
Kill EBL batch processing
LEAVE default
No BAT Prefix
Permit strings to use quote marks
Run new file
SHELL default
Uppercase
Set display writing mode

EBL expands the number of variables from the 10 provided by DOS to a
total of 26 under EBL (see Table 4-3). It also provides additional special purpose
variables.

Table 4-3. HBL Variables

Variable

%0 to %9
%A to %0
%Q
%R
%S
%V
%%
%NAME%

Function

DOS variables
EBL Global User variables
Returns stack status
Stores MD-DOS return code
Space Literal
Default Drive
"%" Literal
Environment variables

Error-recovery processing is made possible by two commands which allow
you to provide special instructions or processing when an error occurs during

97



Section 1: Extending the MS·DOS User Interface

the operation of an EBL batch file: -ON. ERROR indicates branch to label if an error
occurs; RESUME indicates branch to line number on the error.

EBL provides an additional 25 external functions for the advanced pro­
grammer. They are called external because they reside in three separate . COM
programs that can be activated if needed. These functions provide advanced
string-handling, system-status inquiries, low-level system control, and floating­
point arithmetic.

Unlocking Your Storage with EBL

Imagine a fairly typical problem: you have several disk drives and you know that
your word processor and a text file are somewhere on the system. But where
are they actually stored? The following EBL program (supplied by Seaware Cor­
poration when you purchase EBL) will find them for you and begin execution.
The program first locates which diskette the editor is on, then locates the file
you want to edit, and finally starts the editor with the appropriate file. Lines
starting with an asterisk (*) are comments. Begin with

A> EDIT MYFILE.DOC

EDIT will invoke a batch file named EDIT •BAT. MYFI LE. DOC is the name of the word
processing data file that you want to edit. If the EDLIN editor were on drive A
and the file MY FILE. DOC was on drive B, this EBL program would create the fol­
lowing DOS command:

A> EDLIN B:MYFILE.DOC

The listing for the EBL batch file follows:

BAT Ip
* LISTING OF "EDIT.BAT"
* Enter here the name of editor to caLL:
%0 = EDLIN

* Make sure editor is somewhere
STATEOF %O.COM%c
IF %R <> 1 SKIP 4
STATEOF %O.EXE%b
IF %R <> 1 SKIP 2
TYPE The %0 editor couLd not be found on any drive!
EXIT

* Setup drive # where editor reaLLy is:

98



Chapter 4: Power for Programming

IF %R <> 0 %0 =%R:%O

* Search for the fiLe to be edited ...
%C =
STATEOF %1%C
IF %R <> 9 SKIP 3

TYPE The fiLename to edit is invaLid.
TYPE Reenter command
EXIT

IF %R <> 1 %1 =%C
STACK %0 %1 %2 %3 %4 %5 %6 %7 %8 %9
EXIT

First, assign the name EDLIN to a variable %0. Next, the STATEOF command
looks for a prefix of EDLINand a suffix of .COMor .EXE. The IF statement checks for
a valid return code. The return code after performing a STATEOF command is al­
ways returned in the variable L%R. If a fIle is not found, the return code will be
equal to 1. The program will fall through to the TYPE command which will display
an error message. If the file is found, the program will SKIPto EXIT. If the editor is
found on another drive, the drive is changed in the IF %R <> 0 %0 =RR: %0 line. Next,
we look for the file to be edited, using the STATEOF command once again. Note that
if %Requals 9, the filename is invalid. This could occur with an incorrect disk drive
designation or with a filename which did not follow the MS-DOS conventions. A %R
return code of 1 indicates that the filename was valid but that the file was not
found. In this case, the argument is set to XC which is blank. The editor will be
started but no file will be opened with it. The STACK command passes data to
MS-DOS as though it came from the keyboard. Here, it is used to actually execute
the edit program with the specified file. Using this command eliminates the need
to return to the batch file after the editing is completed.

In summary, EBL is a fairly complete programming language that lets you
quickly write batch files that can take the place of compiled programs. Since they
do not require compiling, they are much faster to write and test. EBL commands
also offer system-level features which other programming languages do not.

Programming Screen Control Facilities

Early computers used a teletype machine as the terminal. It operated exactly like
a typewriter, handling one character at a time. CRT display screens were very
rare.1bday, with the universal use of CRT display screens capable of displaying
many lines of data at a time, new techniques for screen display are necessary. We
want increasingly powerful capabilities on our display screens-windows, color,
and simple editing of data fields.

99



Section 1: El'tending the MS-DOS User Interface

You may have discovered that the C language (and most other languages on
personal computers) has no built-in facilities for handling data fields on the
screen. Most computer systems larger than PCs offer features to simplify the
development of display screens. These features may be part of the operating
system or add-on packages. The IBM System/3S, for example, offers as part of its
Control Program (operating system) the ability to create a menu system and in­
formation display screens that edit and format.

Larger computer systems use a variety of packages to offer these features.
On IBM mainframes, CICS (Customer Information Control System) is widely
used to develop such screens, serving as an interface between the programming
language and the operating system. It reduces the amount of code the program­
mer has to write, and even more importantly, provides a standard interface be­
tween different programs, thus making program changes and maintenance
easier. CICS also provides a consistent interface to make it easier for users to
learn new applications. Other hardware manufacturers offer similar facilities
for their systems.

Taken a step further} Fourth Generation languages exist both on PCs and
large computers. Programs such as Paradox for PCs and IOMS for mainframes
offer fast ways to develop screens, once you have mastered the tools. These pro­
grams both include database facilities, however} which may not be required or
suitable for your application.

There are simpler, still very powerful, tools for PC screen development.
These work in conjunction with another programming language such as C, Pas­
cal} or COBOL. Since we are focusing on the C language} we will discuss one
particular C screen tool: the Vitamin C (VC) library.

Libraries for the C Programmer

C was developed with the specific goal of making it a general purpose language
that could be easily used on many different computers. This portability was
achieved by providing a small language with no input or output facilities. In it­
self, such a language would be useless, of course, but the implementers of C
determined that all input and output would be done by linking the C code with
code from an easy-to-use library for each specific machine. These I/O library
functions can be used within a C program like any other function. All C compil­
ers are shipped with a standard I/O library for some computer, provided for by
the #inc lude stdio.hinstructionin the Cprogram. The emerging ANSI standard
for C specifies the minimal set of functions each compiler should provide.

The standard I/O library is very limited in its capabilities by today's stan­
dards. The VC library is much more powerful than the one shipped with your
compiler and just as easy to use. Simply incorporate the VC functions into yo~r

C source code program} using an #i nc lude statement. While you link your pro­
gram to the C libraries} you include the VC object code libraries in your com-

100



Chapter 4: Power for Programming

mand to the MS-DOS linker. The linker locates the necessary VC functions and
incorporates them into the object code (see Figure 4-2). VC is an excellent prod­
uct for program development using the C language.

C
Compiler

Object
Code

C
Libraries

A
~)..lI~,~'i",'w'ii -- /:'1"" I. l:t,.>~f 'J<"'

MS-DOS
Linker

Vitamin C
Libraries

EXE
Program

Fig. 4-2. Using Vitamin C.

Features 01 Vitamin C

VC offers many features. Some of them you may use every time you write a pro­
gram and some you may use rarely, if at all. The following are available with VC:

101



Section 1: E}Ctending the MS·DOS User Interface

1> creating a data entry or display field

t> using the standard IBM editing keys for data input

l> providing the user with a request for data

t> providing help screens linked to fields

t> controlling color and other text attributes

I> validating and formatting data input

I> providing up to twelve windows on the screen

I> simple, but powerful text editing

Advanced va Routines

The C language provides limited facilities for controlling the placement of data
on the screen. How do you overcome this basic problem in order to create data
fields that are easy to edit by the user? You could spend months writing these
routines yourself, but VC provides them for you.

Information entered into a computer is usually structured into fields of
data or freeform text. VC handles both types of information. Fields of data rep­
resent specific information, and can be displayed to the user or used to request
input from the user. 1b display a field on the screen you would use the command

atsayCrow, col, string);

where the row and column are integers indicating placement on the screen. The
string may be a constant or a variable. Thus

atsayC12, 40, "This is the center");

will be displayed on the 12th row and begin in the 40th column, printing the
message shown.

It is equally simple to request input from the user. The following command
uses field for the name of the variable holding the string and picture for op­
tional formatting of that string:

atgetCrow, col, field, picture);

The next problem is how to make sure that the user has entered the correct
type of data. The picture part of the command allows you to build a template of
acceptable input. The following symbols, used in the picture, indicate which
type of data is acceptable:

x = any key

X = any key with uppercase alpha conversion

102



Chapter 4: Power for Programming

a = only alpha

A = only alpha with uppercase conversion

9 = numbers entered from left to right

# = numbers entered from right to left

The # sign lets the display act like an adding machine with the digits moving
to the left as each digit is entered. You can also include formatting characters in
the picture template. 1b bring this all together, let's use a simple example where
we want the user to enter a telephone number, making sure only digits are en­
tered. We also want to supply the parentheses for the area code and the hyphen
for the local number automatically. The following code will do all this:

atget(6,20,phone,"(999)999-9999"i

Special characters such as a decimal point, comma, floating dollar sign, or
asterisk-filled field can be used for money amounts. The entire set of symbols
gives you a lot of flexibility.

Now comes the best part of all. If you create a form on the screen, all the
special keys on the IBM keyboard work just the way you would expect (see Table
4-4).

Table 4-4. Key Functions in VC

Key

LEFT ARROW
RIGHT ARROW
INSert
DELete
UPARROW
DOWN ARROW
Home
End
pgdn
PgUp
Fl
F2
ESC

Function

Move cursor left
Move cursor right
Thggle insert mode
Delete character at cursor
Move cursor up
Move cursor down
Move to the first field
Move to the last field
Move to the next page
Move to the previous page
Display help text for field
Move or adjust window size
Quit input and lose data

Moving through the form to the last field ends the input normally, allowing
the program to save the data. All of the values above can be changed by the pro­
grammer if you have special data entry requirements. However, these default
operations can save you a lot of special coding and provide your programs with
an excellent user interface. Since the keys will always work the same way

103



Section 1: Extending the MS-DOS User Interface

throughout your programs, the user will learn how to use them much faster
and find them easier to use.

A character's attribute indicates how it is displayed. Attributes include
color, underlining, and blinking. The setattr() function can be used at any time
to change or add attributes.

Although it is easy to create a form with labels, a label of just the word
"Date:" might not be meaningful to the user. What date is requested and what
format is required? Vitamin C allows you to provide instructions for each field
on a special status line using the xatget () function. When the cursor is moved
into a field, the status line provides additional information on the field. We will
use date in the following example:

xatget(6,O,name,"99/99/99",NULL,
"Enter date of purchase",
NULL, vc.dft, vc.dft)i

The format (slashes) will appear in the screen field, and the message "Enter
date of purchase" will be displayed whenever the cursor is within this field. The
descriptive information can be provided for each data field on the screen with
no extra programming-all cursor management is handled for you by VC. The
string constant can also be a pointer to a string assigned elsewhere in your pro­
gram. In this example, NULL and vc .dft are defaults for other optional control
fields. Since we do not now want to use these special features, we fill the argu­
ments with default values. An optional function i sb lank() will require the user
to enter something into the field before continuing on to the next field.

Usually, the picture will provide sufficient control over the data being en­
tered. However, a validation capability also gives the ability to provide your own
data-editing functions. If we substitute editdateO for the first NULLin the com­
mand above, our function edi tdateO will be called when the user exits the field.
Thus, we have the capability for any type of editing needed if we are willing to
write the editing functions.

Since MS-DOS does not currently allow multitasking, is there any way to
perform more than one function at a time? One of the more amazing abilities of
VC is loop functions. They give the appearance of a multitasking system by ale
lowing a function to execute repeatedly while the computer is awaiting input
from the keyboard. For example, the following code fragment incorporated in
your input function will execute continuous updating of the time on the display
screen:

int timeloopO i

PFI oldloop, setloop()i
oldloop = setloop(timeloop)i

The first line declares the name of your function to display the time as

104



Chapter 4: Power for Programming

timeloopO. The second line uses a special typedef PFI <Pointer to a Function).
The driver set loopC) is supplied in the library (vcstdio.h) to simplify your pro­
gramming. The third line actually executes timeloopO while your input func­
tion is waiting for data from the keyboard.

Far more complex work can be carried out. The VC demo disk has a pro­
gram that continuously displays a text file while another form is being filled in by
the user-and, these multiple displays are very easy to program.

Developing User Help Screens

It is considered almost mandatory to provide some kind of online "help system"
for programs today, but most are seriously inadequate, plunging the user into a
lot of information that mayor may not be relevant. The best help systems are
said to be context-sensitive, which simply means that the help you get is the help
you need, depending upon what you are doing. However, context-sensitive help
systems are difficult to program. Is there an easy way?

VC provides the ability to provide help for any input statement by including
a keyword for the help message. When the user presses the F1 function key, a
help window opens up displaying the text you want displayed. Pressing the F1
key again removes the help window. This is provided in the following example:

xatgetC6,O,name,"99/99/99",NULL,
"Enter date of purchase",
"Datehelp", vc.dft, vc.dft)i

Notice that the keyword "Datehelp"has been added to the example that we
previously used. Simple, isn't it? Of course, the text for the help screen has to
come from somewhere, and this is where VC is really helpful to you.

First, you create a help file with any word processor. The file uses the fol­
lowing format:

aUilDATEHELP
Enter the date that the purchase actually took place_
The date should be entered in the month, day, and year
format. Thus January 12, 1988, would be entered as
01/12/88. You do not need to type in the slashes as
they will be supplied by the program.
GlGlNEXTHELP

CilCilDATEHELPand CilCilNEXTHELPare arbitrary keywords which you assign. They
are used to index the data entry field to the help message file. The aa is used to
indicate the presence of a keyword. All the help messages are stored in one file,

105



Section 1: E({.tending the MS·DOS User Interface

and since the file is independent from your program, you can change the help
messages without changing your program. This is a great advantage, since the
messages often need clarification later.

Next, VC provides a utility program called HELPGEN. EXE to build an index to
the help file. When you change the text in your help file you just run HELPGEN

again and an updated index is created.
Finally, VC lets you provide default help messages, so that the user always

gets a message when the Fl key is pressed. The default messages can be changed
throughout your program.

Creating Windows the Easy Way

Multiple windows on the screen seem to be the user's delight and the program­
mer's horror-the amount of coding can be overwhelming. Witness the years of
development of Microsoft Windows by teams of skilled programmers. Once
again, VC provides a simple solution to this problem, by allowing you to open up
to twelve windows on the screen at the same time. The windows can be placed
wherever you wish, thus allowing overlapping windows. The following code
opens a window:

int win1;
win1 = wopen(3,10,18,34,"First Window");
win2 = wopenC10,5,12,65),"Seeond Window");
win3 = wopenC23,1,24,79),"Command Window");

This indicates that the window we have optionally called wi n1 will be a rec­
tangle beginning at row 3, column 10 and ending at row 18, column 34. The text
"Fi rst Window" will be displayed as a title in the window's border. Using exactly
the same format, we can now continue to open another eleven windows if we
wish.

Everything in VC works exactly the same, with or without windows. The
only difference is that all data is written to or taken from the current window.
The last window opened is current by default. You can also make a window
opened earlier current with the following command:

ret = wseleetCwin1);

The ret is a variable used to capture the return code from the wse leet 0 func­
tion to test for correct operation. You can close a window and include error­
checking by using this statement:

ifCret=weloseCwin1» == -1)
atsayCO,O,"That window ;s not open.");

106



Chapter 4: Power for Programming

There are many other options for windows available. You can set the attri­
butes for each window, hide or unhide windows, and have a virtual window, one
that is actually larger than the physical size displayed. You can scroll horizontally
or vertically to display the hidden data just as you can scroll using Lotus 1-2-3.
You can also write to hidden windows, and when they are redisplayed, some­
thing new will appear to the user. This is a useful trick for presenting relevant
information without cluttering up the screen.

VC comes with the complete source code, written in C, for all the libraries.
This allows you to customize the functions or move them to other computer
systems by recompiling the code. It is also furnished with a set of demonstration
programs. They should be studied carefully, since they can be used as templates
for building your own applications. The most interesting example is a menu sys­
tem which uses pull-down windows like the Apple Macintosh or Microsoft Win­
dows. The current version of VC does not provide mouse support or scroll bars,
however. Thus, it is a simpler product with the virtue of running quickly on any
PC and being simple to program. VC is a stunning example of clever program­
ming, and can be used to speed up your program development time.

Key File Access Systems

Once you enter data into a computer system, you want to store it on a disk file
and be able to retrieve it quickly. Most operating systems provide a variety of
ways to access disk files. Early model computers, including PCs, provided only
limited facilities. The four types of file access available today are sequential files,
random files, keyed-index files and database files. Sequential files just read or
write starting at the beginning of the file and continue until they reach the end.
They are used today for copying entire files or for making backups of files. The
standard DOS COpy command uses this technique.

Random files allow you to select a record from within a file based upon the
physical record number. For most business applications, this approach is inade­
quate. A later development, hashing, allows identifiers such as customer name
or number, date, or invoice number to be converted into a record number, but
this approach has its own problems in efficiently using disk space and handling
duplicate identifiers.

During the 1960s, the index sequential file was invented and incorporated
into most operating systems. Using this technique, a list is created of the identi­
fier and the corresponding physical record number. Various tricks are used to
speed to the list processing to locate and obtain the desired record more quickly.

In the early 1970s, computer scientists produced a new technique called
the B+ tree. This provides for very efficient records searching. Aversion of B+
tree-indexing is available for most computers today (called VSAM on large IBM
computers). All database management systems make use of B+ trees internally,

107



Section 1: Extending the MS-DOS User Interface

but you don't need to purchase a $700 package to use these techniques. You can
purchase file access libraries to incorporate the B+ record indexing within
your own programs.

Using a B+ Tree Library for Your Own Programs

We have selected C-INDEX + from Trio Systems as our example of a file access
library. C-INDEX will allow you to add powerful indexing capabilities to your
programs with a minimum of extra work. It offers the following features:

[> variable length keys and data

I:> storage using multiple keys

[> data and keys in the same file

t> advanced B+ tree implementation

[> ·~ultiusercapabilities with record-locking

t> full source code provided in C

I> no royalties on developed applications

Let's look at each of these features and find out what they really mean.
Many file access programs will accept only fixed length fields. This means wast­
ing disk space. C-INDEX will automatically compress the data, wasting no space.
If a field is left blank by the user, it takes up no disk space at all. You can define up
to 20 key fields for each record in the standard version.

Most file access systems require a separate DOS file for each indexed field.
C-INDEX is completely flexible in this regard. It lets you store all the indexes and
the data together in one MS-DOS file, if you choose, making it much easier for
you to back up data files and reducing the disk space overhead that occurs with
each separate MS-DOS file. On the other hand, if you really want to keep your
index files separate, you can do so.

C-INDEX uses advanced B+ tree-indexing. This is a Third Generation prod­
uct which has been tested on many types of computers. It has also been run
under UNIX should you ever want to move your program up to the UNIX operat­
ing system. The user manual even mentions use on the CRAY supercomputer,
using UNIX.

Functions are provided for use with multiuser systems and local area net­
works. While this does require some changes to individual programs, these
changes appear to be minimal. Here, however, the most important feature is re­
cord-locking. Many other multiuse systems require the user to lock everyone
else out of the whole file while adding or deleting records. With C-INDEX, this
severe limitation is overcome by locking only the individual record being

108



Chapter 4: Power for Programming

changed. Thus, other users can continue their work on other records in the
same file without interference.

Finally, the full source code is provided in C, with instructions for recompil­
ing and testing the libraries under other compilers. This means the library (and
your programs) should not become obsolete as new products come along. No
royalties are required, so if you plan to sell your programs, this is an important
consideration.

Let's See How It Actually Works

C-INDEX provides seven basic functions to allow you to create, open, update,
and close files. Let's use a simple example where the data is stored in the follow­
ing structure:

1* structure for phonel;st and notes *1
struct nap (

char lastname[10li
char f;rstname[20li
char phone[20li
char notes[240li

) napreCi

The structure name nap is an arbitrary name standing for name and phone.
naprec is the name of the record using this structure. Now we need to tell c­
INDEX how to use each of these fields. This is done by creating a tldatalist," de­
scribing the type of data and indicating whether it is a key field. The simplest
way to do this is by initializing the structure with the following code:

FIELD napl;st[l =(
STRING, STRING, DUPKEY, 10, 1, naprec.lastname,
STRING, STRING, NONKEY, 20, 0, naprec.f;rstname,
STRING, STRING, NONKEY, 20, 0, naprec.phone,
STRING, STRING, NONKEY, 240, 0, naprec.notes,

LASTFIELD
) ;

The first line includes STRING twice since both the key and the data are of
the type string. DUPKEY indicates the field is a key field to be indexed and that
duplicates are allowed. (After all, some people do have the same last name.) The
field has a maximum length of 10 characters, and the key is kept in index 1. For
example, we could have one index based on last name and another based on first
name and last name. In that case, the format would be:

109



Section 1: Extending the MS-DOS User Interface

STRING, STRING, DUPKEV, 30, 2, naprec.lastname, naprec.firstname

This is a function most databases don't provide.
Finally, we indicate the variable naprec .lastnameto store the data. The next

three lines are similar except that they are not key fields, hence, the NONKEVlabel
with an index number of zero.

Does it seem to you that each record will be 294 bytes long? This would
take a lot of disk storage, most of which might be unused. However, remember
that C-INDEX only stores the data actually input. We have a system using true
variable-length records and a record might be only 30 bytes long. That's why we
have allowed such a large size for notes.

LASTFIELD lets the compiler know the record definition is complete. Note,
we said the compiler. Since we have initialized an array of pointers, this defini­
tion is only performed at compile time-it is not repeated each time the object
program is run.

Using the "Magic 7" Functions

Let's begin by creating the DOS files:

ret =dcreate(&napfile, "nap.dat", workbuf, 294);

ret is a variable for the return code. Each function always returns a code
telling us that everything went okay or an error occurred. There is an extensive
list of error codes to tell us what went wrong. For the function dcreateO, we
first pass a pointer to the definition &napfi le, then the DOS filename nap.dat,
the buffer name, and finally the buffer size (294 since it has to be large enough
to hold the longest possible record).

Now we want to open the fIle for use. The following code does the trick. You
can see that it is exactly the same except for the name of the function:

char workbuf[294J;

ret = dopen(&napfiLe, "nap.dat," workbuf, 294);

Closing a file is even easier:

ret =dclose(&napfile);

Of course, what we really want to do next is add some records to the file. The
following little function will add records:

110

addrecO; 1* add a record to the file *1



Chapter 4: Power for Programming

(

int ret; 1* return code for possible errors *1

getdataCnaplist); 1* your function to get data *1
ret =daddC&napfile, naplist);
if Cret != 0) printfC"Error - Record Not Added.);

}

Your own function getdata () puts the data into the structure called
nap list. You could (and probably should) use VC data entry functions to create
your input function. The function daddC) then puts it into the file, providing au­
tomatic indexing of the last name. Note that we also check the return code and
display an error message if an error occurs.

Now that we have a file of useful information, we are ready to find a record.
The function dfind C) does just that:

ret =dfindC&napfile, 1, "SMITH", STRING, EQUAL);

Once again, &napfi leis the pointer to the file, and 1 is the index number we
are using. "SMITH" is the last name we are looking for and we want to find a re­
cord EQUAL to that name. We also could have specified any of these choices:

EQUAL (find only equal matches to the key)

GREATEQ (find anything equal or greater)

GREAT (find anything greater than)

LESS (find anything less than)

LESSEQ (find anything less than the key)

Since we have this much flexibility, the user does not need to know how to
spell the name exactly. We can write the program, using GREATEQ, so if only the
first letter was entered, the program will page through the file. 1b do this, we
use another command that will let us get the next record:

ret =desqC&napfile, 1, NEXT);

This function lets us move through the file sequentially. Thus, we can find
the next record from wherever we happen to be. We can also look for the previ­
ous record, first record, or last record, instead of the next record. Now that we
have found the record that we were looking for, we read it into the structure:

ret =dreadC&napfiLe, napList);

Deleting a record is done with dde lete C), as you probably have guessed by

111



Section 1: E~tending the MS·DOS User Interface

now. You must first use dfindO to find the record, and then ddeleteO to delete
it. "LOSEIT" is the keyword value in the record that we will delete:

1* first find the name to delete *1
ret = dfind(&napfile, 1, "LOSEIT" STRING, EQUAL);
if (ret == 0)

ret =ddelete(&napfile, naplist);
if (ret == 0)

fprint("Record has been deleted.");

One final function allows us to update an existing record: dupdateO. 1b
update the record for "JONES", we could use the following code:

1* first find the record in the file *1
ret =dfind(&napfile, 1, "JONES" STRING, EQUAL)i
if (ret == OK)

ret =dread(&napfile, naplist);
if (ret == OK)
{

displayrec(naplist)i 1* display old data *1
getdate(naplist); 1* get new data *1
ret =dupdate(&napfile, naplist);
if (ret == OK)

printf("Update Successful");

Note that we always check the return code to make sure that the operation
was successful. We now have a complete set of seven functions for handling
keyed files. The syntax is uniform and usage is consistent. Of course, we have not
covered the many advanced features of C-INDEX. The 154-page user manual pro­
vides much additional information, but you have already learned the fundamen­
tals for using the system.

The concepts of using keyed files is very important for most computer ap­
plications today. I hope the example given above has shown how easily they can
be implemented using good systems software.

Summary

Effective programming today consists of using a consistent set of well-matched
tools. The tools selected for this tutorial were very carefully evaluated. They are
all well-designed, well-documented, and continually updated. They all work with
the Microsoft C compiler and recent versions of MS-DOS. While there are other
products on the market, you should examine any tools carefully before making a

112



Chapter 4: Power for Programming

decision that will commit you to using them for a major project. Figure 4·3 sum·
marizes a possible integrated programming environment.

CONFIG.SYS

MS·DOS

AUTOEXEC.BAT

J

l'

Menu Program

Program 1

Program 2

Program 3

f;

i,

V
Editor

Vitamin C
and

C Compiler C·INDEX
Include

files

Vitamin C

MS·DOS and

Unker C-INDEX
Object

libraries

New Program

Setting up
environment

Executing
programs

Developing new
programs using
Vitamin C and C·INDEX

Fig. 4·3. An integrated development environment.

Ifyou are an individual programmer} your work will become more fun and cre·
ative by following these guidelines. Ifyou are working on program development
for your company or for commercial sale} the approach described herein can
save your firm hundreds of hours of development time.

Programs

RETRIEVE is available from IBM Personally Developed Software on their Utilities
I disk. The price is $19.95; it can be ordered by calling 800/426·7279.

113



Section 1: E?(tending the MS-DOS User Interface

EXTENDED BATCH LANGUAGE is available as shareware from BBSs and user
groups. It may be registered by calling Seaware Corporation in Delray Beach,
Florida at 305/392-2046. The price is $69.95. They will send you the latest pro­
gram version, a 366-page printed manual, and a password for their user BBS.

VITAMIN C is published by Creative Programming Consultants, Inc.; Box 112097;
Carrollton, TX 75011-2097. The price is $149.95; you can order by phone by call­
ing 214/245-6090.

C-INDEX is available from Trio Systems; 2210 Wilshire Blvd.; Suite 289; Santa
Monica, CA 90403. The price is $395.00; their telephone number is 203/394­
0796.

Douglas Adams is a successful consultant with nearly 20 years of computer expe­
rience, including seven years with personal computers. Although he has used more
than 10 different computer languages, his recent software development has been
done using the C language. Serving as a consultant to AT&~ he developed C programs
that are now being used nationwide. He has also served as project manager for large
organizations including the U.S. Postal Service, Bechtel Corporation, and Wells Fargo
Bank. Current interests include data modeling and designing relational databases.

Related Essays

1 A Guided lbur inside MS-DOS
3 Adding UNIX Power with PCnix
9 Inside Microsoft Windows

114







Advanced MASM
Techniques

Michael Goldman

L you have been writing assembly language code, you know that what most
often trips you up is the detailed repetitive work, having to recode every BIOS
call every time you want to do some simple task like reading the keyboard.
Microsoft's MASM, version 5.0, like many good assemblers, offers many power­
ful features to make coding assembly language as easy and error-free as a good
higher-level language. We will look at the following MASM features which can
help you as a programmer:

l> records (setting up and manipulating bit-oriented data using meaningful
names)

l> structures (creating relationships between pieces of data similar to those
found in C or Pascal)

l> include files (saving time and typing, improving program organization)

t> macros (creating flexible, powerful"super instructions")

Records

Records are very convenient templates for setting up bit-oriented data struc­
tures. They save time, and by automating the process, help us avoid errors in
setting our data bits. For example, in a byte used for setting up the line control
register for the Asynchronous Communications Element (ACE) (Le., COMl or
COM2) bits 0 & 1 set the word length, bit 2 the number of stop bits, bits 3
through 5 the parity, bit 6 the break conditions, and bit 7 is the Data Latch Ac­
cess Bit. 1b work with all these parameters in one byte, we can define a record
called LineCtrlBits as follows:

117



Section 1: E)(tending the MS-DOS User Interface

Li neCt r lBi ts RECORD DLAB:1, BREAK:1, PARITY:3, STOP:1, LEN:2

Li neCt r lBi ts is the name of the record, which represents one byte (8 bits).
DLAB, BREAK, and so on represent fields in the record, and are followed by the
number of bits for each field. Note that this definition merely gives names to the
bits in a byte, it doesn't create a byte with those bits set or cleared. Just as MyWord
dw 1234 creates a word with the value 1234, so we create a record for particular
combinations of bit settings with the following statements in the DATA segment
of the program:

LcrOnEven27 LineCtrlBits<DLABon,BreakOff,EvenParity,stop2,length7>
LcrOffOdd18 LineCtrlBits<DLABoff,BreakOff,OddParity,stop1,length8>

Note that the name of the specific record (such as Lc rOnEvn27) is followed by the
name of the record definition used (Li neCt r lBit s in this case) and then the
names of bit values.

In the equates section of our program we have defined:

DLABoff
DLABon
BreakOff
BreakOn

NoParity
OddParity
EvenParity
MarkParity
SpaceParity
stop1
stop2
lengthS
length6
length7
length8

equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

OB
1B
OB
1B

OOOB
001B
011B
101 B
111 B
OB
1B
OOB
01B
10B
11B

Data Latch Access Bit off
Data Latch Access Bit on
set break is disabled
xmit data line forced to space
(logical 0) as long as bit is one
bit setting for parity off
bit setting for odd parity
bit setting for even parity
bit setting for mark parity
bit setting for space parity
1 stop bit
2 stop bits if word 6, 7, or 8 bits
S-bit character length
6-bit character length
7-bit character length
8-bit character length

We can now write an instruction such as MOV AL, Lc rOf fOdd18 in our program as if
we had defined a byte as follows:

LcrOffOdd18 db 00001011b ; ACE bit settings

Note that we cannot write MOV AL,NoPari ty since NoPari ty is not a byte but
rather just the value of an equate. Likewise, if we write MOV AL,BREAK, what we
find in ALis not a bit moved into bit 6 but the number 6, which is the position of
BREAK in the record.

. 118



Chapter 5: Advanced MASM Techniques

Manipulating Bit Fields

So far, it may appear that records are just a convenient way to define bit-oriented
data, but there is more we can do. The TEST instruction allows us to do with bits
what CMP (COMPARE) does with bytes and words. The Intel logical instructions
AND, OR, XOR, and the MASM directive NOT allow us to manipulate the bit fields.
The NOT directive changes Is to Os, and Os to Is.

Use the bit fields in the record LineCtrlBits as above, so we can use the
MASM directive MASK to define what are called (naturally enough) masks. The
MASK operator tells MASM to create a binary constant with a bit set to 1 for the bit
positions defined in the record by that record field and a zero for all the other
bit positions. For example:

DLABmask = MASK DLAB =10000000B
BREAKmask = MASK BREAK =01000000B
PARITYmask = MASK PARITY =00111000B
BIT2 = MASK STOP =00000100B
LENmask = MASK LEN =00000011B

We've called the mask defined for the STOP bit BIT2 to show there's no restriction
on what you name the mask. Now we wish to change the parity setting in
Lc rOffNo18 from off to even, i.e., from 000 to 011. We'll use the MASK operator to
help, for instance, NOT PARITYmask =11000111b (NOT works only at assembly time,
not run time).

and LcrOffNo18,NOT PARITYmask ; LcrOffNo18 =00000011b
mov al,LcrOnEven27 al =00011110b, even parity setting, etc.
and al,PARITYmask al =00011000b, all but parity bits cleared
or LcrOffNo18,al LcrOffNo18 =00011011b, even parity setting

The use of symbolic constants helps control bits of records in MASM. In the
first line of the example, Lc rOf fNo18 is a data record for the Line Control Register
on the serial port, and is followed by the MASM NOTinstruction. PARITYmaskis the
mask created with MASM's MASK directive. LcrOnEven27 means Line Control Reg­
ister, with Break On, Even parity, 2 stop bits, 7 bits long.

A reminder about AND, OR, and NOT operations: these are called Illogical"
operations because they obey the rules of Boolean logic. They work as follows:

1 and 1 = 1,

lor 1 = 1,

not 1 = 0,

1 and 0 = 0,

lor 0 = 1,

not 0 = 1

oand 1 = 0,

oor 1 = I,

oand 0 = 0

oor 0 = 0

So, the first instruction in the example ANDs 11000111b (NOT PARITYmask)

119



Section 1: E}(tending the MS·DOS User Interface

with 00000011 b(LcrOffN018)to produce 00000011b. The purpose of this is to clear
out the parity bit settings so that we can put new settings in there with the OR
instruction later. The next instruction loads a l with 0001111 Ob (Lc rOnEven27). We
then AND the 00011110bin al with 00111000b (PARITYmask) to obtain 00011000b.
The PARITYmask masks (zeros) out all the bits in a l except the parity bits so that
a l is left with only the bit setting for even parity. Now we OR LcrOffNo18 with a l
which will put the bit settings we want into the parity bit positions. Note that had
we not done the and al ,PARITYmask, there might have been some bits from the
previous setting which would come through the OR operation.

Thus, we have succeeded in changing the 3 parity bits without affecting the
other bits. Just as we might use a CMP instruction to see if two bytes are the same,
so we can use the TEST instruction to see if any of the parity bits are set, for
example:

test
jz

ax,PARITYmask
BlankParity

parity bits set in ax ?
if zero flag, blank parity field

Records can be created and used on preexisting data. So, for example, we could
have defined the byte

anybyte db 01001111b ; no thought of records here

and then at some later time in our programming define the record Li neCt r lBit s
as above. We could also refer in the same program to the same word with a dif­
ferent record definition such as

Simple RECORD Begin:2,Middle:3,End:3

I

and do the same bit manipulations as previously with the three parity bits, refer-
ring to them as Middle instead of Parity. The point is that, at any time, we can
create ways of referring to data in whatever way is appropriate in the context.
The record is a template to fit over data. Figure 5-1 shows a typical use of reo
cords. DLAB indicates the Data Latch Access Bit, and LEN refers to character
length. BREAK, PARITY, and STOP bits are also shown.

Structures

Structures are the next level up from records in imposing order on our data.
They are assembler directives that enable you to build complex data formats
composed of bytes, words, etc., in ways that make them much more meaningful
and accessible to you. They are very similar to C structures and Pascal records.

120



Chapter 5: Advanced MASM Techniques

(0 C
7

Lo /t L I
7-

D1 I 0 [1=1 1 1

1I 1I J
DLAB IBREAK I : PARITY : I STOP I L~N

Fig. 5-1. Records as templates.

They differ in that, in MASM, indexing is harder and nesting is not allowed. As
an example, suppose you are making a membership list in which every member
is listed with name, address, and phone number. Here's how you can create a
structure for this entity:

Member STRUC
LastName
MidInit
FirstName
Street
City
StateAbbr
PhoneNumb

Member ENDS

OB20 OUP (?)

DB?
OB12 OUP (?)

OB12 OUP (?)

DB 'San Francisco'
OW?
OB'415' 7 OUP (?)

20 characters
1 character
12 characters
12 characters
13 characters
2 characters
10 characters

Ci ty, PhoneNumb, etc., are called field names" for the Member structure (see Figure
5-2). You can now allocate space for the officers and members of your organiza­
tion with

President
VicePresident
Treasurer
MembrList

Member <"",'CA',>
Member <"",'CA',>
Member <"",'CA',>
Member 1000UP «"",'CA',»

which reserves space for 103 members. At 70 bytes/member, this is 7210 bytes for
our membership list. Each member's city is initialized by default to San Franc; sco
in the structure definition, and each state is initialized to CA in the structure
declaration. The places where we have commas are blank field names that you
can fill in with data later, at run time, reading in from a keyboard or disk, etc.

121



Section 1: E~tending the MS-DOS User Interface

Required MASM
Space Field Names

I
I

san Francisco I
I

4/5 I
2 chars StateAbbr

13 chars City

12 chars Street

12 chars FirstName

1 char Midlnit

20 chars lastName

10 chars PhoneNumb

Fig. 5·2. Structure layout.

This is a good time to point out that in MASM, the following are equivalent
ways to refer to the address in register d; plus 10:

[10] Cd;]
Cd; + 10]
[d;].10

Cd;] + 10

Therefore I since the structure is really just giving mnemonics to displacements,
you can now refer to the membership list by the field names J just as you might in
C or Pascal. For example:

cmp Treasurer.F;rstName,'A'

is equivalent to

cmp [Treasurer + 21J,'A'

which compares the first byte of the F; rstName field of the Treasurer' s name.
For example I if we wish to scan the entire list of members for the first member
with last name beginning with Awe would code

mov
mov
mov

CmpLup: cmp
je
add
loop

Ex;tLup: •••

d;,MemberL;st get address of l;st
cx,100 length of l;st for loop;ng
bx,70 length of structure
[d;].F;rstName,'A' ; ;s the f;rst letter = 'A' ?
Ex;tLup yes, search done
d;,bx set po;nter to next structure
CmpLup scan the ent;re l;st of members

122



Chapter 5: Advanced MASM Techniques

Using Multiple Structures to Address Data

It is possible to add to the options in addressing the data by defining another
structure for the same data:

NewMembr
Name DB
Address DB
Phone DB
NewMembr

STRUC
33 OUP (?)

27 OUP (?)

10 OUP (?)

ENOS

Without reentering the old data, we can now refer to it by the NewMemb r structure
names as well as the Member structure names. We could write this comparison
loop:

CmpLup: cmp
je
add
loop

ExitLup:cmp
jne

[diJ.LastName,'A'
ExitLup
di,bx
CmpLup
[dil.Phone,'4'

The key to understanding structures is to realize that MASM simply replaces
the names you give to the structure elements with numbers. Specifically, MASM
will reference the number of bytes from the beginning of the structure. Thus,
[di J. Fi rstName is the same as [di +20J. The name you give it is for your easy use.

One very useful feature of using structures is that you can rearrange or
add to the structure definition at any time and the names you gave the elements
will be automatically updated when you reassemble. For example I let's change
the Member structure above to interchange Fi rstName and LastName and add the
element Count ry:

Member STRUC
FirstName DB 12 OUP (?) 12 characters
Midlnit DB 1 character
LastName DB 20 OUP (?) 20 characters
Street DB 12 DUP (?) 12 characters
City DB 'San Francisco' 13 characters
StateAbbr OW 2 characters
Country DB 6 OUP (?) 6 characters
PhoneNumb DB '415' 7 DUP (?) 10 characters
Member ENDS

1b see what this does, here are the "before" and "after" equivalencies:

123



Section 1: Extending the MS-DOS User Interface

BEFORE AFTER
[diJ.LastName = [di+OJ [diJ.LastName = [di+13J
[diJ.MidInit = [di+20J [diJ.MidInit = [di+12J
[diJ.FirstName = [di+21J [di J. Fi rstName = [di+OJ
[di J.Street = [di+33J [diJ.Street = [di+33J
[diJ.City = [di+45J [diJ.City = [di+45l
[dil.StateAbbr = [di+58l [diJ.StateAbbr = [di+58l

[di l •Count ry = [di+60J
[dil.PhoneNumb = [di+60l [dil.PhoneNumb = [di+66J

The nice thing about having used structure names in our code is that
[di J. LastName still points to the last name even though we've rearranged the
data. So, code referring to data by structure name needn't be rewritten. Note,
however, that if we have data in our file using the old structure definitions, we
must realign that existing data to conform to our new structure. Rearranging
the structure doesn't rearrange the existing data, only the relative positions de­
clared for it. We have to ensure that the actual data corresponds to the data
structure declaration on our own.

Using Structures with Existing Data

You can also apply a structure you define to a data set that you had no hand in
creating. For example, the first 22 bytes of the PSP that MS-DOS puts at the be­
ginning of executable files could be accessed via the following structure:

PSP

PSP

STRUC
INT32 DB 2 DUP (1) 2 bytes
MemSize DW 0) 1 word
Reserved DB (1) 1 byte
DOSCatt DB 5 DUP (1) 5 bytes
TermVctr DW 2 DUP (1) 2 words
BreakVctr DW 2 DUP (1) 2 words
ErrorVctr DW 2 DUP (1) 2 words
ENDS

The PSP can now be accessed as in the following code fragment:

mov
push
pop
mov

di ,0
cs
ds
si,[diJ.MemSize

PSP begins at offset zero
PSP segment is in cs
PSP segment -> ds
program memory size -> extra segment

Note that, unlike C, structure definitions cannot contain other structures.

124



Chapter 5: Advanced MASM Techniques

Include Files

The simplest way to avoid retyping "boilerplate" lists of equates, code, or seg­
ment declarations is to use include files with these where you would otherwise
put your text. You simply put your frequently used constructs in a standard DOS
file as ASCII text and tell MASM to insert the text from that file in your proce­
dure. Th use an include file, you'specify

include myfile.xyz

where you would otherwise have put the equates} definitions} etc. MASM brings
in the contents of these files at assembly time and treats them as text as if you
had typed everything in the include file in that spot in your program. Include
files can contain other include files. Figure 5-3 illustrates the idea of bringing in
files to insert in your source file. Use "greeking" (nonsense) text in the include
files to represent codes.

Source Rle
Include Flies

include Combo.inc

include STANDARD.STK .?iikiiM"''''.., I

AEQU1 I
AMACRO I

makseg I

include Sldcode.lnc ........"---- I push by I

Fig. 5·3. Use of include files.

For example, if your standard stack declaration is

stakseg SEGMENT STACK 'STACK
DB 16 DUP ('STACK ); MAKE STACK EASY TO FIND IN DEBUG
stakseg ENDS

125



Section 1: E}{tending the MS·DOS User Interface

then simply put this into a file called STANOARD.S TK or some such l and then
inc lude STANDARD. STK where you would normally type in your stack declaration.
FinallYI having an include file for each set of related definitions promotes modu­
lar organization and helps make programs easier to maintain I especially when
several programmers are involved.

Data Macros

Macros are a very flexible way of having the assembler do a lot of the tedious
work for you. Macros can be used to generate both data and actual MASM code.
Much of their power comes from their ability to accept parameters and do con­
ditional testing. Setting up tables l creating labels l and checking for errors can all
be done by macros that you create to meet your needs. We'll cover code macros
later but remember that everything used for data macros can be used for gener­
ating code as well. Data macros are instructions to the assembler to create cer­
tain data based on parameters we give it (see Figure 5-4). The simplest example
of this is when we create 10 bytes of data with

TenBytes DB 10 DUP 4 reserve 10 bytes with the
number 4 in them

"--__~_en_Byt_e_s____J> 2 DB >
Source Code

4

4

4

4

4

4

4

4

4

Result In
Memory

Fig. 5-4. Data macros reserve space for variable names.

126



Chapter 5: Advanced MASM Techniques

This is of limited use since it is more likely that we want a variety of num­
bers as in an indexing set. For example, let's reserve N bytes of data with the set
of squares of the numbers from 1 to N as follows:

Cilsquares MACRO N Define a macro with parameter N
NUMB = 0 Initialize the number
REPT N Repeat the following N times

NUMB = NUMB+1 ; INCREMENT INDEX
DB NUMB * NUMB; Define a byte with NUMB squared

ENDM End REPT command
ENDM ; End Macro

Note that we have an ENDM to match every MACRO directive.
The REPT directive is a looping structure like "do ... while" in higher-level

languages. Just bear in mind that you are programming MASM to create con­
stants. You are not programming the computer to loop at execution time.

If we put the squares macro definition at the top of our program and then
in our data segment, we have

Cilsquares 4

MASM will assemble 4 bytes as seen in the following listing:

94 Cilsquares 4
95 0004 01 2 DB NUMB * NUMB Define a byte with NUMB squared
96 0005 04 2 DB NUMB * NUMB Define a byte with NUMB squared
97 0006 09 2 DB NUMB * NUMB Define a byte with NUMB squared
98 0007 10 2 DB NUMB * NUMB Define a byte with NUMB squared

The invocation of our macro is on line 94 of our listing. The next 4 lines
show that byte 4 of our data segment has 1 squared = 1, byte 5 has 2 squared =

4, etc. Note that the numbers are given in hex. The 2 before the DB is the line
number of the macro listed. We could, of course, have used a number other than
4 as well.

We need a label to use to refer to this list of squares. We don't want to type a
label every time we use the macro so we'll use the Substitute operator &to have
MASM make our label for us:

Cilsquares
N

Sqr1to&N

MACRO

label
NUMB
REPT

N

byte
= 0
N

NUMB =NUMB+1

Define a macro with parameter

Define a label
Initialize the number
Repeat the following N times
Increment index

127



Section 1: E({tending the MS·DOS User Interface

DB NUMB * NUMB Define a byte with NUMB
squared

ENDM
ENDM

Now the list file shows our macro as follows:

End REPT command
End Macro

93 Glsquares 4
94 0004 1 Sqr1t04 label byte Define a label
95 0004 01 2 DB NUMB * NUMB Define a byte with NUMB squared
96 0005 04 2 DB NUMB * NUMB Define a byte with NUMB squared
97 0006 09 2 DB NUMB * NUMB Define a byte with NUMB squared
98 0007 10 2 DB NUMB * NUMB Define a byte with NUMB squared

&in the macro definition told MASM to substitute the value of Nused in the
macro invocation. But still we're not satisfied. (We never are!) Having only one
label for the list of squares will force us to use an index to access the list since
there is only one access point. What we'd like is a label for every item. The ex­
pression operator Xwill enable us to take the value of each of our numbers and
use it as part of a label. So we rewrite our macro as the two macros below:

Glsqr MACRO
SqrOf&NAM

ENDM

NAM,NUM ; NAM for our label, NUM for the data
DB NUM * NUM ; Define a byte with NUMB squared

End Macro

Glsquares MACRO N
NUMB = 0
REPT N

NUMB =NUMB+1
Glsqr XNUMB,NUMB

ENDM
ENDM

Define a macro with parameter N
Initialize the number
Repeat the following N times
Increment index
Create a byte of NUMB * NUMB
End REPT command
End Macro

Now when we look at the listing file, we find each byte in our list of squares
(below) has an appropriate label for our use:

97 Glsquares 4
98 0004 01 3 SqrOf1 DB NUMB * NUMB Define a byte with NUMB squared
99 0005 04 3 SqrOf2 DB NUMB * NUMB Define a byte with NUMB squared
100 0006 09 3 SqrOf3 DB NUMB * NUMB Define a byte with NUMB squared
101 0007 10 3 SqrOf4 DB NUMB * NUMB Define a byte with NUMB squared

We can create sophisticated tables in this way. If we have some formula

128



Chapter 5: Advanced MASM Techniques

such as (N * M) I «P+Q) MOD T), we can let MASM create our table for us instead of
doing it by hand and typing in the results.

We could and should check for overflow by including the following in our
macro code:

IFE «NUM * NUM) LE 255)
DB NUM * NUM

ELSE

bigger than a byte can hold ?
ok, small enough for a byte

%OUT ERROR IN SQUARES MACRO

%OUT sends your message to the screen at assembly time, in this case ERROR IN
SQUARES MACRO.

So far, we have always used parameters as individual items separated by
commas. It is also possible to have a set of items be a single parameter to the
macro for repetitive data creation. For example, if we want to set up a list of
strings of messages to display, we could code a macro as follows:

aOptDisp
li st
OptType&List
ENDM

MACRO OptType,Options ; OptType -> label, Options =

; End Macro

and then use it in the data segment as follows:

LineSpeed,<'1200','2400','4800'>

Li neSpeed will be substituted in the label and each string in the angle brack­
ets will be put in a db directive, just as if we'd typed in

LineSpeedList db
db
db

'1200'
'2400'
'4800'

There's much more you can do with macros to generate data but these are
a good idea of the possibilities. The same techniques can be used to generate
code as well as data.

Code Macros

Macros are a very powerful way of getting the assembler to do some program­
ming for you. Just as you can write a BASIC program to make the computer do
some work for you, so you can write a MACRO program to make the

129



Section 1: E}Ctending the MS-DOS User Interface

ASSEMBLER program, MASM, do some of the most tedious aspects of pro­
gramming for you.

A simple example of what we mean is the following macro designed to get a
character from the "standard input device" (usually the keyboard).

&lINCHR MACRO
MOV
INT
ENDM

AH,1
21H

TeLL MASH we're defining a macro named INCHR
STANDARD INPUT WITH ECHO
DOS CALL
TeLL MASM the macro definition is ended

Now, instead of retyping the MOVand I NT instructions whenever we want to
get a character from the standard input, we can use INCHR where we would oth­
erwise have written the code:

&lINCHR ; MASM substitutes MOV AH,1 & INT 21H here

You could do the same thing with a subroutine but making short pieces of
code into subroutines is inefficient. The difference between a macro and a sub­
routine is that the macro inserts the desired code right where our macro is
placed in the source file, whereas a subroutine resides elsewhere and we have to
jump to that location to execute the code. We use a macro instead of a subrou­
tine for the same reason we call someone on the phone for a short conversation
instead of going across town to visit-the time lost in going to another location
isn't justified given the brevity of our task. Thus, code macros tend to be very
short since they take up space every time they are used. If they get too long, they
should be recoded as a subroutine. How long is too long? That depends on the
overhead needed to invoke the subroutine, how often you use the function, and
the relative value of memory versus speed for your application. Macros are
faster since they don't require saving registers, pushing parameters, etc., but a
lot of repetitions of short macros can start taking up space in your object and
executable files. Make the code a macro at first and if it seems to be getting out
of hand, recode it as a subroutine. Later, we'll see how you can even code the
subroutine call as a macro.

Suppose we want to have a macro for standard input with no echo. We
could write another macro like the one above but calling DOS for standard input
with no echo, or we could expand our original macro by adding an argument to
determine if we want echo or not. For example:

130

&linchrif MACRO EKOFLAG
IFIDN <EKOFLAG>,<EKO>

mov ah,1
ELSE

define macro INCHRIF with argument EKOFLAG
; if the argument EKOFLAG is IDENTICAL to

the 3 letters EKO, assemble the next line
DOS function - standard input with echo
if the argument EKOFLAG is NOT IDENTICAL to
the 3 letters EKO, assemble the next Line



ENDIF
mov

; nt
ENDM

ah,8

21h

Chapter 5: Advanced MASM Techniques

DOS funct;on - standard ;nput w;th no echo
end cond;t;on testing
dos ca II
Tell MASM the macro def;n;t;on ;s ended

In this case, MASM looks at the argument EKOFLAG to determine whether to in­
sert mov ah, 1 or mov ah,8.1t would be used as shown below:

CiH nchr; f EKO

Cilinchrif NOEKO

MASM substitutes MOV AH,1 & INT 21H here
because the argument is identical to EKO

MASM substitutes MOV AH,8 & INT 21H here
because the argument ;s NOT ;dentical to
EKO

Note that instead of NOEKO in the example, we could have used PHUBAH or
anything else since the important thing is that the argument not be EKO. If it
were, it would leave open the possibility we would forget our odd spelling and
mistakenly write iili nchr; f ECHO. This would give us no echo because we wrote
ECHO instead of EKO. We can eliminate this error possibility by limiting ourselves
to either EKO or NOEKO and by providing error-checking as follows:

Cilinchrif MACRO EKOFLAG
IFIDN <EKOFLAG>,<EKO>

mov ah,1
ELSE
IFIDN

ELSE

ENDIF

ENDM

<EKOFLAG>,<NOEKO>
mov ah,8

.ERR

int 21h

def;ne macro INCHRIF with argument EKOFLAG
; if EKOFLAG = EKO, assemble the next l;ne

standard input w;th echo
otherw;se •••

; if EKOFLAG =NOEKO, assemble the next l;ne
standard input with no echo
if the argument doesn't match either then
generate an assembly error
end condit;on testing
dos call
Tell MASM the macro def;n;tion is ended

Nested Macros

The macros we have been defining use the DOS function to get a character from
the standard input by waiting for input. But we don't want to wait forever. In­
stead, we may wish to check if input is there first, and if not, continue on. DOS
Function OBh will check if a key has been struck, returning AL = OFF (hex) if a

131



Section 1: E~tending the MS-DOS User Interface

character is available and AL= 00 if a character is not available. We can write a
macro chkchr and call it from our macro inc hr i f as follows:

~chkchr MACRO
mov ah,OBH
int 21h
ENDM

define macro CHKCHR
check standard input
dos call
Tell MASM the macro definition is ended

al,O
bye

21hint

cmp
je

~chkchr

ELSE
.ERR

ENOIF

IFNB

~inchrif MACRO WAITFLAG,EKOFLAG 2 arguments: WAITFLAG, &EKOFLAG
LOCAL bye define a dummy address
<WAITFLAG> if the field for WAITFLAG is not

blank, assemble the following
see if a character is waiting
al = 0 => no character waiting
if no character, continue on

ENOIF end condition testing
IFION <EKOFLAG>,<EKO> ; if EKOFLAG = EKO, assembLe the next line

mov ah,1 standard input with echo
ELSE otherwise ••.

IFION <EKOFLAG>,<NOEKO> ; if EKOFLAG = NOEKO, assemble next line
mov ah,8 ; standard input with no echo

; if the argument doesn't match either then ••
•••generate an assembly error

; end condition testing
dos call

bye:
ENOM TeLL MASM the macro definition is ended

This newest version of inchrif has several features worthy of discussion.
The LOCAL directive tells MASM that the label bye is a "dummy" label which
MASM is to replace with a different one every time the macro is invoked within a
program. This is to avoid having the same label used twice in one program, gen­
erating an assembly error. MASM will assemble the macro using ??OOOO the first
time in a module, ??0001 the second time, etc., through ??FFFF (hex) should you
care to invoke the macro 65,536 times in one program. Note that the LocALdirec­
tive must be the very first thing after the MACRO directive-not even comments
can be placed before itl

The IFNB WAITFLAG tells MASM to assemble the 3 lines following only if the
argument WAITF LAG is not blank. Otherwise, the code is not included and the first
line assembled will be one of the lines governed by I FION. This gives us the option
of generating either code that will wait for input forever or code that will just
check the keys and go on if nothing's there. The IFNB checks for existence of
WAITFLAG, not for spelling, so we could invoke the macro by any of the following:

132



Chapter 5: Advanced MASM Techniques

ainchrif WAIT,EKO
ainchrif WAITE,EKO
Sinchrif NoWate,EKO
ainchrif FOOBAH,EKO

and still generate code that does not wait for input. Note also that we have nested
our macros, one macro invoking another.

More Macro Features

Instead of using only the WA IT FlAG to determine whether to assemble the code
for waiting, we might also make it a global option that we can choose at assembly
time. For example, we might like it to wait for a key if we're debugging or if the
WAITFlAG is set, but not wait otherwise. While we're extending this macro, we'll
throw in some other new stuff. The new macro definition is

al,O
bye

.ERR
%OUT

achkchr
cmp
je

ELSE

ainchrif MACRO WAITFlAG,EKOFlAG
lOCAL bye ; define a" dummy address

;; Macro to get a character from the standard input
" 2 arguments: WAITFlAG, &EKOFlAG determine whether to wait for a
I' character, and whether to echo the input
x = 0 x will be our indicator
IFNDEF DEBUG if the parameter DEBUG is not defined,
x = 1 flag = 1
ENDIF end condition testing
IFNB <WAITFlAG> if the field for WAITFlAG is not blank
x = 2 flag = 2
ENDIF end condition testing
IF (x eq 1) or (x eq 2) ; if either DEBUG is not defined, or

WAITFlAG is not blank
see if a character is waiting
al =0 => no character waiting
if no character, continue on

ENDIF end condition testing
IFIDN <EKOFlAG>,<EKO> ; if EKOFlAG = EKO, assemble the next line

mov ah,1 standard input with echo
ELSE otherwise •••

IFIDN <EKOFlAG>,<NOEKO>; if EKOFlAG = NOEKO, assemble next line
mov ah,8 standard input with no echo

if the argument doesn't match either then
••• generate an assembly error

Error in INCHRIF MACRO - EKOFlAG not found

133



Section 1: E}{tending the MS·DOS User Interface

ENDIF
ENDIF

bye:
int 21h

end condition testing
end condition testing
dos ca LL

ENDH
.CREF ;; restore cross-referencing

; TeLL HASH the macro definition is ended

Now at assembly time we can use the Id option to define DBUG:

HASM myprgm",; IdDBUG

and all the invocations of inchri f will generate code to wait for input.
We have used a flag (with = instead of equ since we redefine it in the next

two I Fstatements) to determine whether or not we wait for a character. Instead
of (x eq 1) or (x eq 2), we could have coded x gt 0 or x ne 0 since any value other
than our initial value of 0 is valid.

Note that we also added a few new directives. The;; tells MASM the com­
ment should not be in the assembly listing. The .XCREF saves assembly time and
cross-reference listing space by telling MASM not to clutter up our cross-refer­
ence listing with the names used only in the macro.. CREF restores cross-refer­
encing or it would be off for the rest of the listing. We have also added the %OUT
directive which will write to the screen the error message given.

Though there's plenty more we could do to it, this has become a pretty fear­
some macro, so we'll leave it here and let you figure out all the complications left
to add.

As promised earlier, we'll now show you how a generic subroutine call can
be coded as a macro. The task is to push some parameters on the stack and call
the subroutine. Pretty simple, except that we want a variable number of parame­
ters, and we want to allow for byte and word parameters. The word parameters
are easily handled, we simply push them. But byte variables have to be converted
to words first. The macro below takes care of this problem:

134

aFcnCaLL MACRO Fnctn,ParmList
IRP N,<ParmList>

IF «.TYPE N) NE 22H)
push N

ELSE
IF «TYPE N) EQ 2)

push N
ELSE

IF «TYPE N) EQ 1)
moy ah,O
moy a L,N
push ax

subroutine, & List of parameters
indefinite repeat (see beLow)
is N data-reLated and defined?
if so, done

if 2-byte parameter
push it

if 1-byte parameter
cLear upper byte of ax
parameter now a word •••
••• so we can push it



ELSE
.ERR

ENDIF
ENDIF

ENDIF
call Fnctn
ENDM

ENDM

Chapter 5: Advanced MASM Techniques

Tell MASM the IRP is ended
Tell MASM the macro definition is ended

We have used the TYPE operator which will return a 1 if the parameter is a
byte, and a 2 if the parameter is a word. We also introduced the. TYPE operator
to make it work with registers. Don't confuse this with the TYPE operator. There's
a u ~ as the first character of this new operator. Using . TYPE allows the macro to
handle a register such as BX as well as a data word or byte.. TYPE x returns a byte
with the bits set according to the following scheme:

Bit 0 =
Bit 1

Bit 5 =
Bit 7 =

1 if x is code related, 0 otherwise

1 if x is data related, 0 otherwise

1 if x is defined, 0 otherwise

1 if x is external, 0 local or public

All other bits are zero.
For example, if x is data-related, defined, and local, •TYPE x returns

001 0001 Ob (22 hex) (bit 1 is set and bit 5 is set). Since we want to allow the use of
registers (which are code related) as parameters, we will use the . TYPE operator
to tell us if we have data-related parameters.

We've introduced IRP, the indefinite repeat macro directive. This tells
MASM to repeat the instructions once for each element of the list enclosed by <>,
substituting each element of the list for the dummy variable. For example:

IRP y,<1,2,3>

db y

ENDM

will generate

db 1
db 2
db 3

135



Section 1: E((tending the MS·DOS User Interface

The nice thing about I RP for our purposes is that we don't have to specify in
advance how many parameters we wish to send to the subroutine until we call it.
We could call one routine with 3 parameters and another routine with 2 param­
eters. For example:

SFcnCall Fcn1,<word1,word2,byte3>
SFcnCall Fcn2,<word1,byte3>

and so on with virtually unlimited numbers of parameters for any subroutine
call we wish.

Structures As Subroutine Parameters

While this FcnCall macro has been very instructive as a way of demonstrating
MASM operators and directives I the best way to pass parameters to a subroutine
is via a structure address. As an example/let's pass to our subroutine the data in
one of the elements of our member list defined in our discussion of structures.
Addresses are always the segment and offset. If we use a label of our data struc·
ture l such as Treasurer, then we can code

push offset Treasurer
push segment Treasurer
ca II Fcn1

Ifwe have a label of a list l such as Memb r List in the example on structures I and an
index displacement from that label l we use [MembrU st + di] instead of Treas­
urer.

If we want to send only one element of the structure I such as the phone
numberl we use [MembrLi st + di]. PhoneNumb where we had Treasurer originally.
So now the macro to make subroutine calls and pass parameters is simple
enough that I can leave you with those immortal words I "It is left as an exercise
for the reader"!

Interrupt Tips

If you have done much assembly language programming on the IBM PC I you
have probably used software interrupts like INT 21 to make a DOS calC or INT 13
to make one of many BIOS calls. There are also hardware interrupts that can be
of use when using the communications ports (COM1 or COM2), the keyboard I or
the timer. UnfortunatelyI the proper techniques for writing an interrupt service
routine aSR) can be tricky. Let's look at the basic considerations.

136



Chapter 5: Advanced MASM Techniques

There are three routines needed to handle interrupts: one to install the
ISR] the ISR itself] and one to remove the ISR.

The ISR install routine simply uses DOS Function 35h to get the address of
the current ISR for the interrupt in question] and DOS Function 25h to set the
current ISR address. The following routine installs ISR CHKINT to respond to in­
terrupt 4:

data segment
OLdVectorAdr
OLdVectorOff
OLdVectorSeg
NewVectorAdr
NewVectorOff
NewVectorSeg
data ends

PARA pub Li c ' data' idefi ne segment
LabeL dword doubLe word for Lds instruction
dw 0 offset of oLd vector
dw 0 segment of oLd vector
LabeL dword doubLe word for Lds instruction
dw offset CHKINT offset of ISR = New vector
dw seg CHKINT i segment of New vector

mov

i nt
Lea
mov
mov
push
Lds

mov

int
pop
in
and
out
cLi
mov
out

ax,350ch

21h
si,OLdVectorOff
[siJ,bx
[si+2J,es
ds
dx,NewVectorAdr

ax,250ch

21 h
ds
aL,IMR
al,OEFh
IMR,aL

aL,20h
20h,aL

ah=35h = DOS "get current int vector"
int Och (= 4 * interrupt number) -> aL
dos caLL returns vector in es:bx
get offset adr of where to put oLd int vctr
store offset of oLd vector
store segment of oLd vector
need ds for new int vctr seg adr
Load offset:seg of new int vctr in ds:dx
vectored to when the 8259 interrupts
OCh=int #(4-1) * 4
(4 bytes=segment:offset)
code the 8259 pLaces on
data bus for 8088
ah= 25 hex = dos fcn to
set interrupts
dos caLL
restore ds
IMR=21h=8259 bus address, get current masks
reset IRQ4 mask (bit 4=O=>unmasked=enabled>
and store the new mask settings
disable (clear) interrupts
nonspecific EOI (if interrupts enabled)
send it

137



Section 1: E~tending the MS·DOS User Interface

The ISR differs from most MASM routines in stack segment addressing and
in precautions needed for the ISH interrupting itself. The problem with the stack
that can occur when writing ISRs is not having a stack available when the inter­
rupt fires off. This can happen if the interrupt occurs when the system is exe­
cuting BIOS code in ROM, or the DOS stack is close to its limit. You might think
this is not a problem because we can create our own stack, but where do you
save the segment registers, and how do you load the new ones? The following
example solves this problem.

'data' idefine segment
use stack - save it here
use stack - save it here
use stack - save it here

get the address of the stack segment
put it in the ss register
get the address of the stack top

finaLLy we can use our stack

idefine interrupt service procedure
i jump over our LocaL storage area
(?)

(?)

estabLish data addressabiLity
save ax, ds, &dx in the only segment we
can address right now - the code segment
now we estabLish the addressabiLity of our
data segment

public
don't
don't
don't

PARA
(?)

(?)

(?)

stksp

mov es,ax
ASSUME ES:DGROUP
mov dgroup:regss,ss
mov dgroup:regsp,sp
mov ax,stkchk
mov ss,ax
mov sp,dgroup:spadr
ASSUME SS:STKCHK
push bp

stkchk SEGMENT PUBLIC
DB 32 DUP ('STACKCHK') i STACK SEG EASY TO FIND IN DEBUG
stksp equ $ i define beginning of stack for chkint
stkchk ENDS
DATA segment

reges dw
regss dw
regsp dw
spadr dw

DATA ends
CHKCODE SEGMENT PARA PUBLIC
ASSUME CS:CHKCODE,DS:CHKCODE,ES:CHKCODE,SS:CHKCODE
PUBLI C CHKINT
CHKINT PROC FAR
jmp short SetSeg
ChkTmpAX dw
ChkTmpDS dw
SetSeg LabeL near
mov cs:ChkTmpAX,ax
mov cs:ChkTmpDS,ds
mov ax,dgroup
mov ds,ax
ASSUME DS:DGROUP
mov dgroup:reges,es we can now save the other segment registers

in the data segment

Let's start our examination of this example with the code segment. We will

138



Chapter 5: Advanced MASM Techniques

jump over some data space reserved in our code segment because, until we can
put the address of our data segment in the ds register, the only thing we can rely
on is that the code segment is in the cs register. When the interrupt fired off to
get to our program, the current address was pushed on the existing stack, and
the cs register was loaded with the place to jump to-CHKINT in this case.

We then save ax so we can use it as a scratch register, and ds so we can give it
our own data segment address. Then we load ds with the data segment address
and now we can store things in our data segment. We still haven't established our
stack, so we save the remaining two segment registers in the data segment. Now
we can load the stack segment and stack pointer registers. We didn't want to do
this before, because we had interrupted some other program in midstream,
which had no chance to save its stack registers. We want to be a good citizen and
restore the interrupted program's stack. Notice that we load sp immediatelyafter
we load ss. The reason is that the 8088 and later CPUs of the Intel line automati­
cally inhibit all interrupts for one instruction after the ss register is loaded. This
enables us to load the sp register right after loading the ss register without fear
that another program will interrupt our program in between, wreaking havoc
because we still have an old sp. For example, if our ss:sp will be 1000:100, our
code segment 1000:200, and the last ss:spwas 2000:0220, then, after we load ss
but before we load sp, the ss:sp address will be 1000:220. If an interrupt pro­
gram executes a push instruction now, it will overwrite our code. Not every inter­
rupt program is as nice as ours and sets up its own stack. Many assume there's
one available and use it without so much as a "by your leave:' hence, the immedi­
ate mov sp, dg roup: spad r while interrupts are disabled.

There may be some cases where the interrupt can fire off while you are in
the middle of the ISR. Then the ISR interrupts itself. This is like everyone crowd­
ing onto a boat without letting anyone out. In a short while, there's no room for
anyone else and the boat sinks.

The system will crash due to stack overflow if too many ISRs are started
before any can finish. The solution is to check a flag when the ISR begins, and if
it is set, exit immediately. Otherwise, set it and reset it when the ISR is done.

Removing the ISR is simple:

lds dx,dgroup:OldVectorAdr; load offset:seg of old int vctr in
ds:dx'vectored to when the 8259 interrupts

mov ax,250ch OCh=IRQ no.(4)+initialized base(8)=int type
code the 8259 places on data bus for 8088
dos fcn to set interrupts

i nt 21 h dos ca II
pop ds restore ds
in al,21h 21h=8259 bus address, get current masks
or al,10h set IRQ4 mask (bit 4=1 => masked=disabled)
out 21h,al and store the new mask settings

139



Section 1: Extending the MS-DOS User Interface

Parting Shots

The Programmers Guide of version 5.0 of MASM may not be your idea of light
reading, but there are some interesting new features that make it worthwhile. In
particular, take a thorough look at Chapter 5 which introduces some new ways
to deal with segments, the model declarations in particular. One of the most use­
ful for me is the set of predefined equates discussed in Section 5.1.5 of the Guide.
This allows you to set up general-purpose macros for segment naming based on
the segment name, or filename. The new documentation provides some very
nice examples which I won't try to elaborate on here.

I was also pleased with the "Communal" declaration described in Section
8.4. This feature allows you to declare variables as Communal in a single include
file instead of having to declare it public in the procedure it is defined in and
then external in the procedures it is referenced in.

One of the most useful new features of MASM 5.0 is the inclusion of the
Codeview debugger. This window-oriented debugger has many desirable fea­
tures~ It allows you to view your source code (including comments and assem­
bler directives) as you debug. It also allows you to declare some memory
locations (by name or address) to be "watch" variables which means they will
appear in a separate watch window so that you can observe any changes as they
happen. It supports debugging of Expanded Memory Specification (EMS), over­
lay programs, and library modules. And for the first time, it allows you to see the
8087 coprocessor stack and status registers. There are many more features of
Codeview which make it a very worthwhile debugger, although it lacks several
features, such as tracing backwards, creating your own window features
through macro scripts, and saving your session to disk for later review. Don't let
the fact that Codeview is better than Debug preclude you from considering
other debugging tools.

Finally, looking forward to an exciting future, we have the ability to assem­
ble 80386 and 80387 code in both real and privileged (protected) modes.

There is much more to macros, interrupts, etc., than we could cover here
but this leaves the thrill of discovery to you. Nothing in programming is beyond
you ifyou have your own PC and an attitude of"What if I try this . . . ?" After all,
the worst that can happen is that you have to power off and then on again.

Reading List

Biggerstaff, 1: 1986. Systems Software Tools. Englewood Cliffs: Prentice-Hall, Inc.
1> This contains readable descriptions of interrupt and communications

hardware and software on the IBM PC.

140



Chapter 5: Advanced MASM Techniques

Dunford, C. 1983/84. Interrupts and the IBM PC. PC Tech Journal. (November!
December, January).

r> This contains an interrupt-driven communications program in assembler
as an example.

Intel Corporation. 1985. iAPX 286 Programmer's Reference Manual. Santa Clara,
California.

t:> This contains 80286/80287 details and assembly programs.

---.1986. Microsystem Components Handbook. Santa Clara, California.
[> Go to the source! Not light reading but invaluable.

Michael Goldman wrote his first program in 1964 when response time was days.
He wrote his second program in 1972. While waiting for response time to improve, he
received a B.S. in physics and an M.A. in mathematics from the University of Wiscon­
sin. He now writes systems-level programs in C and assembly language in Silicon Val­
ley. Only assembly language feeds his insatiable appetite for ever-faster response time.

Related Essays

4 Adding Power to MS-DOS Programming
13 Programming the Serial Port with C

141



·\ ...

,.', . ',.'

• ~ I '.

.;: "-."

.. '.



Section Two

PROGRAMMING TOOLS
AND TECHNIQUES

To compete in the 1990s, MS-DOS programmers not only must thoroughly un­
derstand the MS-DOS operating system, they must learn how to use many un­
documented functions that were meant to be reserved for the operating system.
Also, they must master new standards of functionality such as popup utilities
and background-processing TSRs, data security, and interfacing with the
Microsoft Windows operating environment.

At this stage in its history, the MS-DOS operating system is generally recog­
nized to be mature, with expected revisions not likely to exceed version 3.5.
Therefore, more and more programmers are cautiously ignoring the warning
that undocumented functions are reserved for future features. In fact, many re­
served functions and interrupts have been used by Microsoft to implement some
of the earliest external command utilities, and neither these functions nor any
of the others are likely to be changed. Everything inside the system is now fair
game for exploitation.

The name of the game is mastery. The four essays in this section revolve
around the topic of developing the skill to manipulate-even customize-the
way in which the MS-DOS kernel handles application programs and their files.

Undocumented MS-DOS Functions

This essay leads the section, and in it, author Ray Michels brings together expla­
nations of most of the important undocumented functions, including those that
let you examine and manipulate the Program Segment Prefix (PSP), allocate and
deallocate memory, and inspect the MS-DOS busy flag. With these techniques,
you can take real control of the internal MS-DOS data structures and services.

143



Section 2: Programming Tools and Techniques

Safe Memory-Resident Programming (TSR)

The second essay in this section, by M. Steven Baker, shows how to use docu­
mented and undocumented interrupts and functions to create stable memory­
resident programs that do not contend with other memory-resident applica­
tions. He examines some MS-DOS memory-resident programs such as PR I NT and
GRAPH ICS and presents an example of a handy memory-resident utility that lets
you disable and reenable the PRINT SCREEN key combination.

Data Protection and Encryption

Asael Dror, in this third essay, discusses the problem of protecting data from
unauthorized access. He shows simple methods of using nonstandard charac­
ters and manipulating file attributes as well as the limitations of those methods.
He discusses more advanced protection schemes, closing with techniques for ef­
fectively using RpublicS encryption algorithms. Ultimately, the software de­
signer must assume that the encroacher is as smart, technically well-equipped,
and intimately informed as the authorized users, and yet still must be locked out
of the encryption scheme.

Inside Microsoft Windows

In this section's fourth and final essay, Michael Geary explains the fundamental
concepts behind the Microsoft Windows multitasking operating environment.
He shows how to use functions to examine the Windows message stream, the
important circulation of information between the applications and devices that
inhabit the Windows environment. Finally, he presents his now-famous sPvcode,
a tracing utility that reports details of applications as they run under Windows.

144



i­

i-,

,.::. , 4.'.



", ." .- .": ."~ ,. -.. :
. -,'" ~ . ,

:.:E$!iay.Synopsis: Even after all these
,.'.~e~Sjthl:}reare many parts ofthe MS-DOS

"·.:··,:;iJ;lfeiina1~ that are poorly documented or not
." :t:J.deumentedatalLln some cases (such as

.' 'c 'iSR~r~jated;{qrictions),the lack of docu-
. "::", ';'. ";'~entationmayhave been.intended to'dis-

, ." ,,'. '~>: "~~t1.Pagetll~eofce.rtain features. Because
."')~ ;', ". ,.:. .. . .( ~~<>. <, 'l:ri8:tiY':Undocllmented functions are never-'

, .. :./,: '" :,« ""'r" ;1JheleS$iiseful, knowledge of them has s'orne-
. . ~ ,,', , .4:ifi1es beei:t-1ealously guarded. In other

..' ;)'~";:,<>.,:.",,::,,;: /:··,:"pAs:~s;·l1I1dfJ.ptirilented functions can be dan-
.;:~.:~>':' " ," ., ·~,g~l'Q1l,stO:J.ls:e,.andthere is, of course, no

:;:" '... ' ....'::' ':.'; :." .;.g\Jar~~ethey"will be-supported by future
"{, .' . ". . ·~e!$~onsQf:mOS..Learningabout these un-
~}, i '.,.',,~ ,~":,,.::~.ocurneritedfUnQtionshigh1ights important

.... ,.' , .;" '.. ",;,;~qJ'$inti=lm~sandincreases your under-
.. .;; ", '~t~~g:of'operatingsystem design and In-
;:" ::"., . ·t~rprpce.ssoJ'arqhitecture. This essay is

..':" -~qpr·gmclelhrough the labyrinth of DOS
.::.'·'fiwdio'xi$and data structures.

M~~Qry.Iri~ag~mijI1t.:···'

lJri~•.mq-atn~ter.I.JI~d~.·

J{e)fWQrds ",

. . MS-DOSin,temaij

'UIid9~ment~Q'MS~6$'~~~h$".~'·.·

P~ogr~nl;S~~erit:p,f¢r~;(p$p,)!,:

.file handI~s

J~~nvironInehta~gmetli:,

'eIiVironmefit:variil:bl~s'
; '". '.' "'. - .. :_' , ':.', -,', .' • - .~~l



6

Undocumented MS-DOS
Functions
=

Raymond J. Michels

The MS-DOS Operating System, which has been available now for over seven
years in several versions of increasing functionality, remains in many ways an
undocumented system. Dozens of features, interrupts, and internal calls have
remained secret within Microsoft or known only to a few MS-DOS developers.
This paper explains some of the more useful DOS functions that have been ne­
glected in the documentation. Though some of these functions are used inter­
nally by DOS, their operations can be useful to application programs.

I have documented the following areas of MS-DOS:

!;"::~ Program Segment Prefix (PSP)

l> MS·DOS File Handles

r:... Program Environment Segment

!:> MS·DOS Memory Management

r> MS·DOS System Variables

There are still several MS-DOS functions that are either poorly docu­
mented or not documented at all. The process of documenting all of the "foggy"
areas of MS-DOS has been an ongoing project of mine for the last four years.
Much of what I've learned is the result of calling undocumented functions and
observing the results, and disassembling the MS-DOS code itself. A "break-out
switch" debugger (a resident debugger that can be activated with a special hard·
ware switch) proved to be one of the best tools for doing this type of work, be­
cause it allows you to stop the machine and examine the computer system state
at any time.

These MS-DOS "secrets" can be utilized in many different ways. By under­
standing how MS-DOS works, you can write better programs that take advan­
tage of all of MS-DOS' internal functions. It is also possible to extend the function

147



Section 2: Programming Tools and Techniques

of MS-DOS by adding your own functions and utilities. With the advent of OS/2
and also fast computers (Le., 80286 and 80386) multitasking functions that emu­
late OS/2 could be a very desirable feature. In addition, I think that just snooping
inside of DOS is a fun way to learn about 8086 architecture arid operating sys­
tem concepts.

Much of the information contained herein is not documented in the
Microsoft manuals. This implies that this information may not apply to future
versions of MS-DOS. However, all existing DOS 2.00 to 3.20 versions should work
(unless stated otherwise). So far, Microsoft has not removed any functions or
tables from DOS, but if you use undocumented features be sure to test your
code with every new version of MS-DOS to be sure. The fact that certain func­
tions are undocumented also implies that they may be destructive if used in the
wrong way. Be very careful when tampering with the MS-DOS system tables and
memory blocks described in this paper. The wrong operation can crash your
system and can even result in loss of file data!

I have made two assumptions about your level of expertise: You have a basic
knowledge of 8086 assembly language and have some experience in writing pro­
grams in it, and you understand how to perform MS-DOS functions via Interrupt
21h.

In several of the examples presented in this chapter, I make use of the fol­
lowing common subroutines:

D> char_out: output a character in the AL Register

/3> string_out: output string addressed by DS:DX

> hex_to_ascii: output word in ascii hex format

~ hexb_to_ascii: output byte in ascii hex format

These routines can be found at the end of this paper.
We'll start by examining both documented and undocumented aspects of

the Program Segment Prefix (PSP).

Program Segment Prefix

PSP is a 256-byte block of memory reserved by MS-DOS at program execution
time. For each program run, a unique PSP is created. Since it contains control
information related to the associated program, the PSP can also be considered to
be a Process Data Block (a unique block of data that stores specific system and
program data for the associated program). MS-DOS file and memory operations
rely upon having access to the data in the PSP and also use the value of the physi­
cal PSP segment (its actual segment address in memory) as a unique process
identifier.

148



Chapter 6: Undocumented Functions

In this section, we will examine each section of the PSP. Those of you famil­
iar with CP/M may recognize sections of the PSE since much of the same struc­
ture of the CP/M program header was retained when MS-DOS was developed
using CP/M as a guide. This was to minimize the translation of 8-bit CP/M soft­
ware to 16-bit MS-DOS software. Some of the structures in the PSP are reserved
by MS-DOS and are also undocumented, so be very careful when changing such
structures in the PS:P. Awrong address or data value can send your program into
the trash can.

The PSP segment address for a program can be found easily at startup. For
COM files, the PSP is the value in the CS register. For EXE files, the PSP is the value
in both the ES and DS registers. The offset address of the PSP is always zero.
Since the DS register can change when an EXE file is run, it is important that your
program save its value for later access to the PSP and its related fields. Figure 6-1
shows the PSP in relation to a program.

OFFSET 0

Program Segment Prefix

100 (Hex)

Your Program

Top of
Segment

Fig. 6·1. PSP and your program.

The PSP structure is identical for both COM and EXE programs. Finding the
start of a PSP located outside of your program's environment, such as the PSP of
a Thrminate and Stay Resident program (TSR), is more difficult. (See Essay 7, Safe
Memory-Resident Programming (TSR), by Steven Baker.) A technique for finding
these PSPs will be described later in the section on MS-DOS Memory Manage­
ment. Figure 6-2 shows the layout of a PSP presented in tabular format and in
the form of an assembly language MASM listing. You may find it useful to run the
MS-DOS DEBUG program so you can examine the values in your PS:P. Simply type D

0100 at the DEBUG prompt -. This will display the entire PSP of the program that
you are debugging. Even if you have not loaded a program, DEBUG still sets up a
default PSP.

149



Section 2: Programming Tools and Techniques

ASM STRUCTURE

OW

OW

DB

DB 5 DUP (7)

DO

DO 7

DO 7

OW 7

DB 20 DUP (7)

OW

DO

OW

DO

DB 24 DUP (?)- Filler

DB 3 OUP (7)

DB 10 DUP (?)- Filler

DB 16 DUP (7)

DB 16 OUP (7)

Offset (HEX) NAME

4lO-EX1T_CALl

HLOCILlENGTH

cl>2-CPM-CALL

cl>A-EX1T-ROUTINE

cl>E-cTRLC_ROUTINE

12-FATAL-ERROR

1~ARENT_ID

1~NDLE-TABLE

2C-ENVIRONMENT

2E-USER STACK

32-RLE HANDLE COUNT

34-HANDLE TABLE ADDRESS

5(H)()S CALL

5C-DEFAULT-FCB

XX= 1 Byte M

CD 20

~XX XX

XX Ill"'~,

7.'__,..

9A XX XX XX XX I'
XX XX XX XX ~
XX XX XX XX ~
XX XX XX XX ~
XX XX

" / -0
STDIN STDOUT STD ERR AUXIIO LSTOUT

XX XX

XX XX XX XX "XX XX b~.
XX XX XX XX Ttl
CO 21 CB ~

I,/$f,

DRIVE NAME-

Ext~n

" .......-
DRIVE NAME-

Ext20n ~

~
~

.;Ji1

l'
~

~~

DB

DB

4 OUP (?)

128 DUP (7)

Fig. 6-2. PSP structure.

Overview of the PSP

Let's take a look at the contents of the PSP and try to make some sense of it.
The first 2 bytes of the PSP are machine codes ~o generate an I NT 20H which

is the interrupt used to terminate a program. Thus, calling address 0 any time
from within your program will cause it to execute the INT 20H. Your program will
terminate and return to MS-DOS. This is a holdover from CP/M where a jump to
address zero of your program would exit you to the system prompt A>. This
method of program exit is not advised in MS-DOS since MS-DOS versions 2 and
above provide better ways to terminate a program by using Function 4Ch via I NT

21 H, the main MS-DOS function interrupt. This DOS function allows you to set a
return code that can be examined in a batch file or from a calling program. It
may also perform better housekeeping and cleanup when your program termi­
nates.

The next word in the PSP is called block length and contains the total

150



Chapter 6: Undocumented Functions

amount of memory available in paragraphs in this PC. One paragraph is 10h
bytes. Reading this address can be useful for quickly determining if there is
enough memory available for your program's needs. If, for example, you know
your program needs 512K bytes of memory and the PSP block length field re­
ports only 25GK bytes, appropriate action can be taken (such as reporting there
is not enough memory available).

Byte number five of the PSP contains machine code to perform MS-DOS
functions. Calling this location (similar to the old CP/M Ca l L) is equivalent to per­
forming an I NT 21 H. The function number is placed in the CL register prior to
calling offset 5. Note that this differs from the traditional I NT 21 Hconvention of
placing the function number in the AH register. Other registers may be needed
but they vary for each function. This is another holdover from CP/M and is re­
ferred to among MS-DOS aficionados as the "ancient system call:' MS-DOS func­
tions should never be performed in this manner and don't use this value, but it
allowed easy porting from CP/M to MS-DOS.

Starting at offset OAh are three double-word (32-bit) pointers, each in the
form of an offset address and a segment address. They are pointers to the Ex; t

routine, the Cant ro l-C routine) and the Fata l Error routine. These are copies of
Interrupts 22h through 24h from the standard interrupt vector table in the base
page of memory (segment O,offset = 0). When your program exits back to
MS-DOS, these values will be copied back to the interrupt vector table. This is
done just in case your program modified these values for its specific needs (such
as installing its own Critical Error Handler).

The next two components of the PSP are undocumented. The first contains
the Process Id of the parent process. What this means is that this word, starting
at lGh, points to the PSP of the program that initiated the "currentn program.
(The original program will still be in memory.) By using the documented Func­
tion 4Bh, one program can initiate another. The second component is a table of
20 bytes starting at 18h in the PS:P. These locations are used to manage file han­
dles. Remember, a handle in MS-DOS is a method of file access. The size of this
table is the reason that one program can only open 20 files at a time.

The environment pointer for our program starts at offset 2Ch in the PS:P.
This is the segment address of the program's environment-each program in
memory has a unique environment.

The double word at offset 2Eh is used by DOS to store the caller's stack
segment and stack pointer when DOS switches to an internal stack during I NT
21 Hprocessing.

The two components starting at offset 32h deal with the File Handle Table
(FHT). The word at offset 32h contains the maximum number of file handles and
the FHT's size for the program. Offset 34h contains a DWORD (double-word)
pointer to the FH1: DOS does not seem to be affected by changing these values.
They can be used when you need the number of file handles and the address of
the handle table.

Starting at offset 50h are machine instruction bytes to perform a DOS func-

151



Section 2: Programming Tools and Techniques

tion call INT 21 Hand RETF. Ifyou set up your registers properly and perform a FAR

call to location PSP:50h, the INT 21 Hwill be executed (performing the desired
DOS function) and when DOS returns, the RETF will return back to your code.

Three well-documented sections of the PSP are at locations 5Ch, 6Ch, and
80h. Offset 5C contains an unopened File Control Block (FCB) if a file was speci­
fied as a program parameter on the command line, as in OIR FILE1. If a second
file was specified (COpy FILE1 FILE2), its associated FCB will be found at 6C. These
FCBs at 5C and 6C are yet another CP/M holdover. Location 80 contains the en­
tire command line following the program name. This can be useful when pass­
ing program switches such as the IPin OIR *. * IP. Your program can examine the
data at offset 80 and recover this information. Since locations 5C and 6C only
create FCBs, location 80 is needed if full pathnames (such as \SYSTEM\FILE) are
used as command-line file parameters.

The PSP can be considered the heart of your program. It controls your file
access and also is used for memory allocation. It paves the way for a multitasking
environment since it could be used as a unique process identifier and control
mechanism. Let's move on and look more closely at the File Handle Table and the
Environment Pointer sections of the PS~

File Handles

One of the major changes in MS-DOS with the release of version 2.00 was the
introduction of file handles to the operating system. A. handle is a byte value
assigned to an opened file. All subsequent operations performed on the file only
require the handle number and not a full FCB. MS-DOS keeps track of the FCB
for you in its own System File Table (SFT).

As we have seen, the FH'f, located at offset 18 (hex) in the PSP segment, is a
table of 20 bytes. When an operation that uses a file handle is performed, DOS
uses the handle number to index into this table. DOS then uses the number re­
trieved from the table to locate the actual file in the SF'f. (See Essay 10, Develop­
ing MS-DOS Device Drivers, by Walter Dixon.) The following handles are opened
for you when your program is loaded:

0- Standard Input

1- Standard Output

2- Standard Error Output

3- Standard Auxiliary I/O

4- Standard Printer Output

The remaining 15 bytes of the FHT are available for your program's data
files. This table size is what limits your program to using 20 files (five of which

152



Chapter 6: Undocumented Functions

are already used). The FILES=nn in the CONFIG.SYS file sets up how many file
blocks are available for the entire system. If FI LES=40, a TSR can use 20 files and
your program can use 20 files. Figure 6-3 descibes how DOS uses the file handle
number to get to its internal SIT

[1 ]
Handle number assigned by DOS
and used by your program

!Index into
handle table

File Handle Table

Table Entry

Index Into
system

file table

System File Table

Fig. 6·3. File handles in action.

What does this method of file access achieve? Since, in MS-DOS, the Console
Input and Output are opened as file handles (remember that these are numbers
and not names), it is very easy to substitute an actual disk file for console output or
input. (Standard Error, COM1 and LPT can also be accessed through file handles.)
This is exactly what DOS does during a request for 110 redirection: 0 I R*.*> f i l e. A
disk file is opened with a file handle and the console output handle is replaced by
the disk file handle. The UNIX operating system (where this idea came from) uses a
similar concept for managing its files. Since the first five file handles are already
open, it is very easy to perform I/O on these devices by just using the appropriate
handle number in the documented MS-DOS file output Function 40h:

mov ah,40H
mov bx,1

iwrite to a file with handle function
i5tandard Output handle

153



Section 2: Programming Tools and Techniques

mov cx,7
mov dx,offset msg
i nt 21 H

msg db 'HeLlo',13,10

iwrite 7 bytes to Standard Output
iDS:DX points to data to output

This example would write the message Hel lo (defined with db) to the stan­
dard output (either the Console Output or the current redirection device).
MS-DOS Function 3Fh will perform a similar operation except that it will input
data (rather than output) from the specified file handle to the specified address
in the DS register.

File handles also moved DOS a step closer toward a multitasking operating
system. The actual file information is maintained by MS-DOS. This enables mul­
tiple programs to gain access to the same file without any conflicts.

What can we do with this PSP File Handle Table? It is possible, under pro­
gram control, to alter this table to redirect files on your own. Redirection is a
good feature, but at times it would be nice to be able to turn it on and off during
program execution. This feature could be used to print screens to files for docu­
mentation use, for error-logging or for program-debugging. The following code
fragments demonstrate how to change from printing, to the console, to redirect­
ing the console output to the printer:

redirect proc near

;this procedure will redirect the console output to the printer

;assumes DS:BX points to start of PSP segment

les bx,[bx+34hl
mov al,es:[bx+1J
mov save_console,al
mov al,[bx+4J
mov [bx+1J,al

iget handle table address
iget current std output handle
isave it
iget current print output
iput it in console spot

inow all output to the standard output will be directed to the
iprinter

redirect endp

154

proc near



Chapter 6: Undocumented Functions

ithis procedure will cancel the redirection set up in redirect

iassumes ES:BX points to file handle table

mov al,save_console iget original console value
mov [bx+11,al iput it back

iredirection is now canceled

cancel redir endp

db (1)

In this example, we can change the I/O direction of any file just by altering
the FH'f. Make sure you remember to save the original table entry before any
changes are made.

The Environment Segment

In our earlier discussion of the PSE we mentioned that it contains a pointer (at
offset 2Ch) to the program's environment. This address is a segment number
with an offset of O. As its name implies, the environment identifies specific pa­
rameters that can be used by the associated program. The environment is
sparsely documented in the IBM DOS Technical Reference. Let's look at it more
closely.

Variables in the Environment

The environment contains a series of ASCIIZ strings (a string of ASCII characters
terminated by a null (0) byte). Each of these strings can have specific meaning
either to DOS or your own program. An environment string is set up at the com­
mand prompt by entering a command with the form SET VARIABLE = (St ri ng pa­
rameter), for example, SET PATH =\SYSTEM. This will place the string following the
SET command into the next available environment slot. MS-DOS reserves three
environment variables, COMSPEC, PATH and PROMPT. The COMPSEC variable is always
set by MS-DOS at boot time and it defines the path and name of the command
processor (usually COMMAND. COM, but a custom command processor could also be

155



Section 2: Programming Tools and Techniques

used). The COMSPEC variable can be useful to the application program when exe­
cuting another program or MS-DOS commands such as DIR or ERASE (by using
the MS-DOS EXEC Function 4Bh where COMMAND. COM is being used to execute a
command). The PATH variable identifies the current search path for command
execution, so when you type a command, MS-DOS knows which directory paths
to search for it. PROMPT is used for generating a user-defined prompt. Both the
PATH and PROMPT commands are well-documented in the DOS Reference Manual.
Additional variables can be set up for application program use.

A good use of environment variables is to allow the user to identify where
application specific data or parameter files are located at the time a program is
run. Using this method, files accessed by your program that would otherwise
have had to be in a predefined place (either in a specific directory or in the cur­
rent directory) can be placed in a directory chosen by the user. This feature
could be used to support multiple, unique data sets that can be accessed by a
single program. Abatch file can change the environment variable to point to the
desired data. In Microsoft C, a function called GETENV is provided (and docu­
mented) in version 4.0 to gain access to environment variables. For other lan­
guages, you will have to search the environment space to locate the specific
variable of interest.

A null byte follows the last ASCIIZ string defining variables. For MS-DOS
versions 2.XX, the environment ends here. In version 3.00 and above, this is fol­
lowed by a word called a byte count. However, I have always found this to be
"one:' An ASCIIZ string specifying the full PATH name of the current application is
next. For example, if the program name were ENVI. COM and its path
C:\SYSTEM\UTIL, the string will contain C:\SYSTEM\UTIL\ENVI.COM.1t will be ter­
minated by one null to end the program name string. This single null byte also
marks the end of the environment data. We will use this string later in an exam­
ple that prints out a memory map of resident programs.

Using the Environment in Batch Files

A feature of environment parameters (undocumented until DOS 3.30) is that
they can be easily accessed from and used within a batch file. For example, sup­
pose that you have issued the command SET USER=NOVICE at the MS-DOS com­
mand line. The value of the variable US ER can be obtained from inside a batch file
by enclosing it in percent symbols. The following line:

IF "USER" == "NOVICE" TYPE HELP.TXT : MORE

could be used inside a batch file to output a special help file through the MS-DOS
MORE filter. The : (pipe) instructs MS-DOS to take the standard output from the
first program and use it as data to the standard input for the second program.
MORE displays a screenful of text and waits for a key to be hit before continuing.

156



Chapter 6: Undocumented Functions

Another interesting batch file trick is to use environment variables in such
a way as to allow callable subroutines within a batch file. These routines can be
called and then return control to a specified label in the batch file. It is really just
an intelligent GOTO. The following batch file example describes this technique:

SET RETURN=ONE
GOTO SUBROUTINE

:ONE
SET RETURN=TWO
GOTO SUBROUTINE

:TWO
GOTO END

:SUBROUTINE
ECHO INSIDE OF SUBROUTINE
GOTO %RETURN%

:END

Set up a 'return' label
Perform the subroutine

Subroutine will 'return' here
Set up a 'return' label
Perform the subroutine

Subroutine will 'return' here
Exit this batch file

Subroutine to call
Subroutine Body
'Return' to caller

Environment variables thus add a new dimension to batch file program­
ming by moving the batch language close to a real programming language. DOS
3.30 has added the capability of having one batch file call another as though it
were a subroutine.

Expanding Environment Space

When setting environment variables} the error message OUT OF ENVIRONMENT
SPACE may be encountered. The size of the initial environment for the command
processor sets the environment size of all subsequent programs. The default
size varies by DOS level and MS-DOS distributor and it can be changed by speci­
fying a shell program in the CONFIG.SYSfile. The default shell is COMMAND. COM. We
will still use COMMAND. COM in the example, but by using the documented SHELL
statement in the CON FIG. SYS file, we can alter the size of the initial environment.
The syntax of the statement is as follows:

SHELL = C:COMMAND.COM IP IE:nn

157



Section 2: Programming Tools and Techniques

The first parameter IP tells COMMAND. COM to become permanent (be kept in
memory) as the top-level process, and cause the AUTOEXEC. BAT file, if present, to
be executed. The second parameter IE:nndefines the environment size, and ap­
plies to MS-DOS versions 3.00 and above only. For versions 3.00 and 3.10, the nn
defines the number of paragraphs to allocate (one paragraph equals 16 bytes)
and this value can be from 10 to 62 (giving environment sizes from 160 to 992
bytes). For MS-DOS 3.20 and 3.30, the nrrlefines the absolute number of bytes to
allocate to the environment, from 160 to 32768. Remember, each program in
memory gets its own environment so setting a large environment will waste
memory if a number of TSRs are used.

When COMMAND. COM executes a program, it makes a copy of its own environ­
ment (the one affected by the SETcommand) and attaches this environment to
the new program. When the program terminates, its environment, along with
the PSP and executable image, is returned to free memory (unless it is a TSR).
This is an important fact since programs that alter the environment are only
accessing a COpy of the master and any changes will only be in effect while the
current program is executing and has not terminated. This also applies to a pro­
gram executed or started from a program other than COMMAND. COM (as in a child
process).

PSP Functions

Table 6-1 lists the five functions useful for manipulating the PSP segment. The
last three are undocumented. Let's briefly examine the documented functions
first.

Table 6·1. PSP Functions

Function

Function 26h
Function 50h
Function 5Ih
Function 55h
Function 62h

Operation

Create PSP Block
Set Current PSP
Get PSP Segment
Duplicate PSP Block
Get PSP Segment (DOS 3.00 and above)

Function 26h Create PSP Block

MS-DOS Function 26 will create a PSP block at the memory segment address
specified in the DX register. Prior to the EXEC call's (Function 4Bh) being available
(starting with DOS 2.0), Create PSP Block was a way to have one program "chain"

158



Chapter 6: Undocumented Functions

to another (that is to create a child process). It is up to the main program to
create/allocate the memory space required for the new program. Function 26
should be avoided since the EXEC Function 4B now does a much better job.

Function 62h Get PSP Segment

Function 62 will return the current pSP segment in the BX register. This function
is not available prior to MS-DOS version 3.00. In version 2.XX, the undocumented
Function 51h performs the same operation and it is still available in later ver­
sions.1t is rumored that Function 51 has a bug when used from a resident pro­
gram, so use Function 62h whenever this service is required. The bug is that
DOS switches to the wrong internal stack. This will cause problems if called
from a TSR during an interrupt 28h.

Function 50h Set Current PSP

Function 50 (along with Function 62) is best used from within a TSR. Since the
PSP segment is unique for every program, it is used as a Process 10 by DOS for
file handling and memory allocation. Function 50, Set Current PS~ is called with
the AH register equal to 50h and the BX register equal to the desired PSP seg­
ment number (Process 10). We'll say more about these soon.

Function 55h Duplicate PSP Block

This function is almost identical to Function 26. The new pSP segment is passed in
the OX register and, on return, a new PSP is initialized. The major difference is
that the Parent ID portion of the PSP is set up by MS-DOS. Function 55 is used by
Function 4B when executing a new program. It could be useful to you if you need
to execute a program but want total control (as in a multitasking environment).
The following steps could be used to develop a method to execute a program:

1. Allocate memory for the PSP and program code.

2. Duplicate the PSP.

3. Load your code into newly allocated segment above the PSP.

4. Save current PSP.

5. Set PSP to newly duplicated one.

6. Jump to start of code.

159



Section 2: Programming Tools and Techniques

Undocumented TSR and PSP Secrets

The two most useful PSP functions are 50h, Set Current PSE and 51h (or 62h),
Get PSP Segment. They are generally used from inside a TSR.

In MS-DOS, each process can only have a maximum of 20 files open at one
time. If a process terminates with open files, they will automatically be closed by
MS-DOS. This can cause confusion if a TSR uses files without adjusting the pro­
gram segment. For example, if a TSR opens a file, DOS will use the File Handle
Table in the current (foreground) PSE which does not belong to the TSR but to
the program the TSR interrupted. This could cause the foreground process to
run out of file table space since it didn't expect a TSR to be using its files. It can
be even more disastrous if the foreground process terminated since this would
close the TSR's file as well! A TSR-performing memory allocation/deallocation
can cause similar problems since it may be modifying the foreground process
memory pool instead of its own. Because of this, a TSR needs to save its PSP
segment during initialization for later use during file operations and/or memory
allocation/deallocation.

Another useful idea using the Get PSP call is that a TSR can access the fore­
ground program's environment. Different TSR operations could be run based on
an environment variable's setting.

Memory Management

One of the major features that DOS 2.00 added to 1.00 was the ability to allocate
and deallocate memory as needed. The concepts used are similar to those used
in the UNIX operating system (and other multiuser systems). Each program in
memory can get a block of memory and shrink or expand it based on its needs.

There are documented MS-DOS functions available that deal with memory
management Oisted in Table 6-2). The MS-DOS manual does not explain these
fully, especially for a novice programmer.

Table 8-2. Memory Management Functions

Function

Function 48h
Function 49h
Function 4Ah

Operation

Allocate Memory
Free Memory
Adjust Block Size

Memory Allocation Blocks are referenced in paragraphs and one para­
graph equals 16 bytes. 1b convert a memory value in bytes to a memory value in

160



Chapter 6: Undocumented Functions

paragraphs in a program, just add 16 to the value and binary shift the result to
the right four times. This rounds the value up by one paragraph and divides by
four.1b convert back, binary shift it to the left four times. Let's briefly take a look
at these memory management calls.

Function 48h Allocate Memory

Allocate Memory requests a block of memory from the MS-DOS pool of free
memory. Place the Function number 48h in the AX register and the number of
paragraphs required in the BX register. On return, if the Carry Flag is set, then
BX contains the maximum number or paragraphs available. Note that no actual
allocation takes place in this case. 1b allocate memory, you must call the function
again with BX less than or equal to the total amount available. If the Ca r ry Flag is
clear, the memory is allocated, and AX contains the segment address of the allo­
cated space. If you want to allocate as much memory as possible, call this func­
tion with BX equal to FFFFh. This request will never be granted but it will return
the maximum amount of memory available for allocation.

Function 49h Free Memory

Free Memory is the opposite of allocate. It will return the specified block of
memory back to the system memory pool. You must free the entire segment allo­
cated by a Function 48h call. Place Function 49 in the AX register and the seg­
ment address of the memory block to free in the ES register. On return, if the
Carry Flagis set, the operation failed and AX will contain the DOS error code. An
error is usually caused by specifying a segment of memory that does not belong
to your program.

Function 4Ah Adjust Block Size

Adjust Block Size is a request to change the size of a currently allocated block of
memory. You can shrink or expand a previously allocated memory block with
this function. Place Function 4A in the AX register, the segment address of the
block to modify in the ES register, and the new block size (in paragraphs) in the
BX register. If the Carry Flag is set, BX will contain the maximum number of
paragraphs available; otherwise, the operation was successful.1b find the maxi­
mum amount of memory available use the same technique described for Func­
tion 48 (call with BX =FFFFh).

In MS-DOS, when COMMAND. COM loads your program, all the available system
memory is allocated to that program, so if the program is a TSR, it will need to

161



Section 2: Programming Tools and Techniques

deallocate all that extra memory before terminating. MS-DOS programs also
have the ability to call other MS-DOS programs, but if another program is to be
loaded, some memory must be freed up to make room for the new program. The
MS-DOS EXEC Function 4Bh is used to execute other programs. For those of you
familiar with Pascal, MS-DOS memory functions are similar to the NEW and
DISPOSE functions.

Now that we have briefly touched upon the MS-DOS memory functions,
let's take a look at the undocumented physical structure of these memory blocks
that can be created. By understanding how these blocks are organized, it is pos­
sible to write a program that reports the status of all allocated memory blocks
that can be very handy for debugging purposes. As an example, we will describe
a technique for printing out a map of all programs currently in memory.

Every official memory block created by MS-DOS has a lOh byte (one-para­
graph) Memory Control Block (MCB) physically preceding it. (Since both the envi­
ronment and the PSP segments are allocated by MS-DOS, they each have an
MCB.) Thus, any memory blocks that your application program allocates for
holding data will have an associated control block. 1b find the MCB for a specific
segment, simply subtract one from the segment address. This will be the allo­
cated block's corresponding MCB. (Since segment numbers are the leftmost four
digits of a five-digit value, subtracting one is the same as subtracting lOh). The
following is a MASM data structure for an MCB. These control blocks are linked
together to form a chain of MCBs.

MCB Signature db 0 ;(MCB =Memory ControL BLock)
MCB Owner dw 0 ;(Segment of owner - UsuaLLy PSP

; segment)
MCB Size dw 0 ;(in paragraphs)

The byte called signature can be either 4Dh or SAh. A 4D signifies that this
is an MCB. Because the MCBs are a linked list, the SA signifies the last block in the
allocated chain.

Owne r specifies which segment owns this block, and is generally the owner's
PSP segment address. Remember, the PSP is used as a unique process ID. By us­
ing the Owne r field, DOS can ensure that one program (such as a TSR) does not
attempt to alter the size of another program's memory block. This protection is
only valid when using DOS memory allocation/deallocation functions.

Si ze specifies how many paragraphs are contained in this block. By adding
the size value to the segment address of the MCB and then incrementing the
result by one, you are able to access the next block in the chain (provided that
the current signature is not SADh, indicating the end of the chain). Figure 6-4
shows a chain of Memory Control BLocks.

There is no way to go backward in the MCB chain. This makes it tough for a
program to find out information about any TSR installed or a parent process.
But there exists an undocumented way to get to the start of the MCB chain. DOS

162



Chapter 6: Undocumented Functions

Signature Owner Size
~, II

1000:0000
1001:0000

3001:0000
3002:0000

40 I 01 I 10 I 00 I 02 I I I I I
2000 (hex) bytes allocated

40 I 02 I 30 I FO I 01 I I I I I
1FOO (hex) bytes allocated

5A I I I 50 I 00 I I I I I

500 (hex) bytes allocated
Last Block In Memory CHAIN

Memory
Control

-- Block (MCB)

Allocated
Memory

-- Block (AMB)

Fig. 6·4. A memory control block chain.

Function 52h returns a pointer to a number of special DOS variables. One of
these variables happens to be a pointer to the first MCB. Using this value, we can
create a program that will start at the beginning of the MCB chain, trace
through all allocated blocks, identify PSP segments, and generate a memory
map of the system. The environment segments can be found from the environ·
ment pointer in the PSP segments. The following is a MASM module that will
print out selected information about allocated memory. It works in this manner:

1. Get memory block.

2. If it is a PS~ print its MCB's segment address.

3. Print PSP's segment address.

4. Print size of PSP in paragraphs (from MCB).

5. Print program name (from environment).

6. Print PSP's parent name (from Parent 10).

mcb struc
s;gnature
owner
s;ze

mcb ends

db

dw
dw

o
o
o

163



Section 2: Programming Tools and Techniques

begin:
mov dx,offset headO iprint headers
call string_out
call get_first_mcb iget memory blocks and process

call process_mcb
loop1:

call get_next_mcb
pushf
call process_mcb
popf
jnc loop1

mov
int

ah,O
21h

iexit to dos

get_first_mcb proc near
iget first mcb returns pointer in Es:ax

push ax
mov ah,52h iget DOS Variables
i nt 21 h
sub bx,2 iget first Mca pointer
mov ax,es:[bxJ
mov es,ax
xor bx,bx
clc
pop ax
ret

get_first_mcb endp

get_next_mcb proc near
iget next mcb
iassumes ES:aX pointer to current MCa

push ax
mov ax,es iget MCa segment address
inc ax ipoint to actual allocated

memory block
add ax,es:[bx.sizeJ iadd in block size
mov es,ax inow we point to next block
cmp es:[bx.signaturel,4dh
je get_all_ok
stc iflag end of chain

164



jmp
get_all_ok:

clc
get_exit:

pop
ret

ax

endp

Chapter 6: Undocumented Functions

process_mcb proc near
iPrint pertinent field of device driver header
i1nput: ES:BX points to device driver header
iOutput: None

dx,es:[bx.ownerJ
hex_to_ascii
cx,4

byte ptr es:[bx+16J,OCDh ;ls It PSP?
isipsp
process_exit

push
push
push
push
push

cmp
je
jmp

ispsp:
mov
call
mov

lO:
mov
call
loop

mov
call
mov

l1 :
mov
call
loop

mov

ax
bx
cx
dx
si

dx,es
hex_to_ascll
cx,4

a l,' ,

char_out
lO

a l,' ,

char_out
l1

dX,es:[bx.sizeJ

;save registers

165



Section 2: Programming Tools and Techniques

call hex_to_asc11
mov cx,4

l2 :
mov al, , ,
call char_out
loop l2

push es
call extract_pro9_name

process_loop:
push ds
push es
pop ds
xor cx,O

process_loop1:
lodsb
inc cx
call char_out
cmp byte ptr [sil,O
jne process_loop1

mov ax,13
sub ax,cx
mov cx,ax

l3:
mov a l, I I

call char_out
loop l3

pop ds
pop es

push es
push bx
push ds

mov ax,es:[bx+26hl iget PID
dec ax ipoint to MCB
mov bx,O
mov es,ax
call extract_pro9_name

166



push es
pop ds
xor cx,cx

process_loop3:
lodsb
inc ex
call char_out
cmp byte ptr [s;],O
jne process_loop3

mov ax,13
sub ax,cx
mov cx,ax

l4:
mov a l, , ,
call char_out
loop l4

pop ds
pop bx
pop es
mov dx,offset crlf
call string_out

process exit:
pop s;
pop dx
pop ex
pop bx
pop ax
ret

process_mcb endp

Chapter 6: Undocumented Functions

;restore registers

;es:bx -> psp
;returns es:s;

push
push
pop

-> prog name
ds
es
ds

167



Section 2: Programming Tools and Techniques

mov ax,es:[bx+3chl ;get environ segment
cmp ax,O
jne extract-cont
pop ds
push ds
pop es
mov si,offset command
ret

extract-cont:
mov ds,ax
xor si , si

not found:
cmp word ptr [sil,O
je found
inc si
jmp not-found

found:
add s;,4

not found1:
cmp byte ptr [sil,O
je found1
inc s;
jmp not-found1

found1:
dec s;
cmp byte ptr [sil,"
jne found1
inc si
push ds
pop es
pop ds
ret

;data

168



Chapter 6: Undocumented Functions

headO label word

db 149,' MCG
db ' SEG SEG
db ,----

PSP PROG (PARAGRAPHS) ',13,10
SIZE NAME PARENT ',13,10

------------ ------------',13,10

crlf db
command db

2,13,10
'COMMAND.COM',O

The following is a sample of the output produced by the preceding program:

MCB PSP PROG (PARAGRAPHS)
SEG SEG SIZE NAME PARENT

------------ ------------
0034 0035 00C3 COMMAND. COM COMMAND. COM
OEOF OE10 005B SYSTEM COMMAND. COM
OE73 OE74 0037 KBDFIX.COM COMMAND. COM
OEB2 OEB3 18ED SK.COM SK.COM
27A8 27A9 0040 GRAPHICS. COM COMMAND. COM
27F1 27F2 780E PMCB.COM COMMAND. COM

Other Undocumented Functions

The following functions don't really fall into a definitive group so they have been
placed in this section. They are:

I> Numerous Dummy Functions

[> Function 37h Set Switch Character

1> Function 52h Get MS-DOS Variables

I> Function lCh and 32h Get Disk Parameters

I> Function 45h and 4Gh Duplicate File Handles

Functions 45 and 46 are documented but have some undocumented side effects.

MS-DOS Dummy Functions

The following functions are not used by MS-DOS:

169



Section 2: Programming Tools and Techniques

I!> 18h

I> lDh

t> lEh

t> 20h

Many of the lower numbered functions of MS-DOS have an equivalent CP1M
counterpart. These CP/M functions were not implemented by MS-DOS but were
probably left in to ease the porting of CP/M to MS-DOS based software by keep­
ing the succeeding function numbers the same. These are described in MS-DOS
manuals as "reserved:'

Function 34h Get MS-DOS Busy Flag

After performing an INT 21 Hwith AX equal to 34h, ES:BX will point to a byte
called the MS·DOS busy flag. When this byte is nonzero it indicates that MS-DOS
is in use. This function is generally used by a TSR to make sure that it is safe to
perform MS·DOS functions. Since MS·DOS is not reentrant, calling DOS while it
is busy will usually corrupt its stack and cause a system crash. You should not
call MS·DOS every time a flag check is needed. The proper procedure is to call
this function once and store the value returned in ES:BX for use during the cur­
rent activation of the TSR. When a later check on this flag is required, use the
previously stored ES:BX value to examine the flag value. If the flag is nonzero
when your TSR is activated, it means that you have interrupted the main (fore­
ground) program performing a DOS function.

Function 37h Get/Set Switch Char

The Switch Char is the character that precedes command-line switch (hence the
name). In the command DIR IP, the character I is called a switch character. The
directory structure of MS-DOS was patterned after the UNIX operating sytem,
but with one small (and sometimes frustrating) difference. In UNIX, IBIN/FI LEis
a legal filename. In MS-DOS, it would have to be called \BIN\FILE. Notice that the
filename separators are reversed. This is because the I was already used. At one
time, there existed a command that could be put in the CONFIG. SYSfile that could
alter the switch character. Many people prefer to use - for a command-line
switch and I for directory separators. By changing the switch character from I,
the directory separator will revert to the UNIX format. Though this command
has been removed in DOS 3.XX, you can still change the switch character
through Function 37h. When the switch charaster is changed from I, the direc­
tory path can use either \ or I as a separator. ' .

170



Chapter 6: Undocumented Functions

Function 52h Get DOS Variables

Function 52 returns a pointer to block of data values that can be called DOS
variables} also referred to as List of Lists (see Essay 11). These variables either
point to or contain relevant system information about the disk drives} file sys­
tem, device drivers} and a few other items. The returned pointer will be in the
ES:BX register set.

The following MASM structure describes the layout of the table:

VARS STRUC

dpb_ptr dd 0
sft_ptr dd 0
clock_Ptr dd 0
con_ptr dd 0
max_sec dw 0
cache dd 0
drive_inf dd 0
fcb_ptr dd 0
unknown dd 0
nUl_dev dd 0

VARS ENDS

;BX+O
;BX+4
;BX+8
iBX+OCH
iBX+10H
;BX+12H
;BX+16H
;BX+1AH
iBX+1EH
;BX+22H

The order of this table seems to vary with versions of DOS and OEM imple­
mentation. The preceding table was taken from DOS 3.20.

The first element in the table} at offset BX + O} is a pointer to the Drive or
Device Parameter Block (DPB). The DPB is a block of data that contains specific
information about each MS-DOS physical disk drive. We will examine the DPB in
detail a little later.

The second element} at offset BX + 4, is a pointer to the MS-DOS SFf, con­
taining information about all open files. There is another file table pointer at
offset lAh which points to a table of files opened with the older style FCB access.

The third and fourth elements, at offsets BX + 8 and BX + OC (hexL are
pointers to the Clock and Console Device Drivers} respectively.

The next element, at offset BX + 10h, is a maximum sector size value. This is
set to the largest sector size being used internally by MS-DOS prior to loading
block device drivers. After device driver initialization} this value is compared to
the sector size returned by the device driver. If the device driver's sector size is
greater} MS-DOS prints an error message Sector Si ze Too Large and the driver is
not installed into DOS.

Offset BX + 12h contains a pointer to the MS-DOS cache buffer head. I have
not been able to decipher the buffer structure.

At offset BX + l6h is a pointer to a series of blocks containing such drive

171



Section 2: Programming Tools and Techniques

information as the current directory of a particular drive. The last element, at
offset BX + 22h, is the start of the NUL device driver. The first two words of a
device driver is a pointer to the next driver. Since the NUL device is always first,
we can follow the device driver chain until these first two bytes are FF FF ( - 1) in
the last device driver. When debugging device drivers, it can be very helpful to
know where in memory they are located. Using this information, you can exam­
ine data inside the driver. With the proper debugging tools, you can even set a
break point in the driver code itself.

An item that is not actually part of the DOS variable table can be found at BX­
2. This word points to the fIrst MCB. Remember, we used this value to display infor­
mation about all of the MCBs. Again, it should be stressed that any values found in
the variables table, or data pointed to from the table, should not be altered. They
are best used in a read-only mode. These values control many important operations
of MS-DOS such as file I/O, Device Handling, and Memory Management.

Drive Parameter Blocks

The Drive Parameter Block (DPB) is a table created by MS-DOS during system
initialization. Every logical drive has an entry in this table. (Logical is used to
access each drive, A: B:, but may not be a physical disk drive. It could be a
RAMdisk or one hard disk with multiple drives.) These entries describe all pa­
rameters necessary for MS-DOS to maintain a file system on the disk drives. The
following MASM structure defines the layout of the DPB:

dpb struc

logical_num db ?

drive_num db ?

sector_size dw ?
spa db ? ;sectors per aLLocation unit Cc luster)
shift db ? ;shift factor C2"shift)-1 =spa
reserved dw ?

number_fats db ?

number_dirs dw ?

data_start dw ?
aLu dw ? ;number of aLLocation units
fat_size db ?

dir_start dw ?
device_drv dd ?

media db ?

dirty_fLag db ?
next_dpb dd ?
dpb_unknown dw ?
dpb ends

172



Chapter 6: Undocumented Functions

The first entry, log i ca l_num, is the logical drive number (A = 0, B =
1 ... ). This is used to identify the table entry if searching for a specific disk drive.

The next entry, dri ve_num, is the drive unit within the associated device
driver. Since device drivers can control multiple units (drives), each unit is as­
signed a sequential unit number within the driver. DOS will need this number to
"talk" to the device driver.

sector_si ze is the sector size in bytes. The next entry, spa, contains the
number of sectors per allocation unit. An allocation unit, or cluster, is the small­
est unit that DOS can allocate for a file.

rese rved is the number of reserved sectors before the File Allocation Table
(FAT). Usually this is a one, reserving a sector for the BOOT information. If the
device is not bootable, such as a RAMdisk, its value will be zero so that no sectors
will be wasted.

number_fats defines how many FATs are contained on the disk drive. Most
MS-DOS implementations keep two copies of the FAT table for data integrity.

number_di rs defines how many directory entries can reside in the ROOT di­
rectory.

data_start defines what sector the file data begins. This comes directly af­
ter the FATs and the directory. a lu defines how many allocation units make up
the disk drive. Dividing a lu by spa gives you the total number of sectors available
for data.

fat_size defines the size of each FAT in sectors. di r_start defines the
starting sector of the directory. devi ce_drv is a pointer to the device driver that
controls this disk drive. Using this value, MS-DOS can lltalk" to the disk device
through the device driver.

medi a is the media descriptor byte. This is usually the first byte in the
MS-DOS FAT and usually identifies the current disk type. This is especially useful
for identifying floppy drives where you can insert single and double-sided flop­
pies.

The DPB can be used when a program needs to know where the FAT starts,
or where the directory is located. Usually these programs will of be a diagnostic
type. A program that scans a disk containing data for bad sectors and then re­
ports what files contain bad sectors would require most of the information in
the DPB table. The scope of this paper does not allow us to develop an extensive
program but the following MASM code fragments describe how the data in the
DPB can be utilized:

load_fat proc near

iload the fat into memory starting at address DS:SI
imake sure you have a large enough buffer
iCall this procedure with ES:BX pointing to a DPB
iOn return if Carry Set then an error occurred
iThis routine will use the Documented MS-DOS Interrupt 25 (hex)

173



Section 2: Programming Tools and Techniques

Absolute Disk Read

push
push
push
push
push
push
push
push
push

ax
bx
ex
dx
bp
di
si
es
ds

isave registers
iint 25h uses a lot of regs

mov
mov
mov
mov
int
jnc

error_exit:

dX,es:[bx.reserved]
cx,es:[bx.fat_size]
al,es:[bx.logical_num]
bx,si
25h
good_exit

;get starting FAT sector
inumber of sees to read
idrive number to read
itarget offset for FAT read
ido the disk read

popf iPOP flags left on stk by int 25
stc iflag carry as error
jmp final_exit

popf
clc

iPOP flags left on stk by int 25

final -exit:

pop ds irestore registers
pop es
pop si
pop di
pop bp
pop dx
pop ex
pop bx
pop ax

load-fat endp

174



Chapter 6: Undocumented Functions

ithis procedure will read all data sectors
i(starting after reserved,fat and dir sectors)
icall with es:bx pointing to DPB

push ax isave registers
push bx imost destroyed by int 25
push cx
push dx
push bp
push di
push si
push ds
push es

mov ax,es:[bx.dir_startl iget directory start
mov bx,es:[bx.number_dirsl inumber of dir entries
mov c l,8
shl bx,cl imultiple by 32
add ax,bx iax is data start sector
push ax isave start sector
mov cx,es:[bx.spal isectors per alloc unit

inc ax
mov ax,es:[alul i# of alloc units
mul cx iget # of sectors
mov cx,ax iput in cx for loop
pop dx iget data start sector
mov al,es:[bx.logical_numl idrive to read

read_loop:

push cx
mov cx,1
push dx
mov bx,offset sector_buffer
push ax
push bx

iread 1 sector

ireg;ster are not
isaved by INT 25

175



Section 2: Programming Tools and Techniques

push cx
push dx
int 25h
jc read_error
popf
pop dx
pop cx
pop bx
pop ax

iprocess sector data here

pop
inc
pop
loop
clc
jmp

pop
pop
pop
pop
stc

exit:

pop
pop
pop
pop
pop
pop
pop
pop
pop

dx
dx
ex
read_loop

exit

dx
ex
bx
ax

es
ds
si
di
bp
dx
cx
bx
ax

iincrement sector to read
irestore loop counter

ihere if error on read

irestore registers

176

sector_buffer db 512 dup (1)



Chapter 6: Undocumented Functions

Functions IFh and 32h

Undocumented functions 1F and 32 return pointers to the DPB. There are two
major differences between using these functions and getting to the DPB via the
DOS variables:

1. These functions need to access the disk drive when called. This can be
inconvenient if it is an empty floppy drive since you will get an 1/Abort,
Retry, Ignore" type error.

2. The table pointer returned is based on a specific drive, whereas the DOS
variable DPB pointer places you at the start of the table. Function 1F re­
turns information on the currently logged disk drive while Function 32
allows you to specify a disk drive.

When calling these functions, place the function number in AH. For Func­
tion 32, place the drive number in DL (0 = default, A = 1 ... ). On return,
DS:BX will point to the appropriate table entry. It may be easier to use these func­
tions than the DOS variable pointer when dealing with specific disk drives since
you don't need the extra code to search for the specific table entry. The DPB
examples given in the previous section will work just as well with these func­
tions.

Functions 45h and 46h: Duplicate Handles

These two functions are documented in MS-DOS reference guides but they have
some additional undocumented uses. Function 45h duplicates an existing file
handle into another file. The BX register contains an open file handle and, on
return, the AX register contains a new duplicate handle. This gives you two sepa­
rate file handles referencing the same files. Function 46 takes two different file
handles and forces them both to refer to the same file. Register BX contains the
file handle to duplicate and CX contains a handle that will be force duplicated. If
the original file in CX is open before the INT 21 Hcall, it will be closed first.

The directory and FAT information are not updated for an open file handle
until that file handle is closed. If you have large amounts of data to process and
the system crashes in the middle of a file output process, all output is pretty
much lost. (You could rebuild pieces of the file sector by sector but that could
take a long time.) The obvious solution is to close the file periodically to update
the directory entry and FA'f, but all of this opening and closing means a lot of
DOS overhead. In DOS 3.3, Funtion 68h is called Commit File and will flush the
file's buffers and update the disk.

The best solution is to use Function 45h to create a duplicate of your open
file handle. Whenever you want to update the file information, simply close the

\ 177



Section 2: Programming Tools and Techniques

duplicate file. The next time an update is needed, open and close a duplicate
handle again. Just keep in mind that this additional file handle reduces the num­
ber of files that you can have open (15 files after the MS-DOS default files are
opened).

In the PSP section, we discussed altering the file handle table to affect redi­
rection. Function 46h can also change redirection. Since Function 46 takes two
file handles and makes them one, we can create a redirection. For example, sup­
pose we want to redirect the console output to a file that we have opened. Let's
call the console FILE_CON and the opened disk file FILE_DISK. First we want to
make a duplicate of FILE_CON. Since we are going to be changing the standard
output file, we want to save it for restoration later. Let's call the duplicate
FILE_SAVE. By doing this, we would call Function 45h with BX containing 1 (the
file handle for Standard Output). On return, save the value of the AX register.
This will be our FILE_SAVE. Next we will call Function 46h to force the FILE_CON to
be a duplicate of FILE_DISK. For this operation,load the BX register with the file
handle number of FI LE_DISK and the CX register with 1. After processing the INT
21 Hrequest, all output to the standard output file FILE_CONwill go to the disk file
FILE_DISK.1b restore things to the way they were before the redirection, we
need to put the old console output FILE_SAVE back. Again we will call Function
46h. Load the BX register with the handle value store as FILE_SAVE and the CX
register with 1. When the function is complete, all is restored. (Don't forget to
close the file FI LE_DISK.) (For all those out there still using FCB open calls instead
of file handles, you can see that you can do much more with a file handle.)

Undocumented Interrupts

There are three undocumented MS-DOS interrupts that can be useful to pro­
grammers. They are:

l> Interrupt 28h DOS Safe Interrupt

r> Interrupt 29h Console Device Output

t> Interrupt 2Eh Back Door 1b Command Processor

Interrupt .28h DOS Safe Interrupt

I call this function the DOS Safe Interrupt because, when this interrupt is issued
by MS-DOS, it is safe to use Functions DCh and above-if the DOS Busy Flag is not
greater than 1. It only appears to be called when DOS is waiting for keystrokes
(as the command processor COMMAND. COM is waiting for keystrokes at the system
prompt). As soon as the first key is hit, this interrupt is no longer called. This

178



Chapter 6: Undocumented Functions

enables resident programs to take advantage of the fact that the system is sitting
idle. A resident process that operates concurrently with the foreground process
could use this as a flag that the system is not being used and "steal" more time
away from the foreground. The only MS-DOS program that uses this interrupt is
the background print spooler PRINT _COM. This interrupt is generally used in con­
junction with DOS Function 34h (DOS Busy Flag) to perform background opera­
tions.

Fast Console Output

Interrupt 2Ah appears to be a back door into the console output device driver.
The character in AL is output to the console when this interrupt is performed.

Back Door to Command Processor

MS-DOS provides a method for one program to execute another through the
EXEC Function 4Bh. Though this function is very useful, there also exists a "fast
and dirty" method of executing commands. The undocumented Interrupt 2Eh
appears to be a back door into the command processor COMMAND. COM. 1b execute
an MS-DOS command, simply shrink memory down to make room for the new
program (as in Function 4B) and perform an Interrupt 2E with the DS:SI register
set pointing to a parameter string. This string has its length as the first byte, the
command to perform (such as DIR *. *L and a carriage return (ODh) to terminate
the string. The carriage return is counted as part of the string length. On return,
make sure you reset your stack again since this interrupt may not save the SS:SP
values. The following MASM fragment will execute a DIR *.* command from
within a program:

mov bx,end_of_code iset to end of our code space
mov cx,4 ishift count
shr bx,cl idivide by 16
inc bx ia little extra
mov ah,4ah iadjust memory block
int 21h
mov si,offset parameter iget command string
int 2eh ida command
push cs ireset stack
pop ss
cli
mov sp,offset stack
sti

179



Section 2: Programming Tools and Techniques

parameter db 8,'DIR *.*',Odh

Common Subroutines

We have examined many documented and undocumented MS-DOS features that
will enable you to write better, more efficient programs. The following are the
common subroutines promised at the beginning of this paper:

char_out proc near

print character in al to the standard output device using
iMS-DOS funtion #2

push dx isave register used to
output character

mov dt,al iset up for DOS function call
mov ah,2
i nt 21h icall MS-DOS
pop dx irestore register
ret

char_out endp

string_out proc near

iprint a string pointed to by DS:DX
ifirst byte of passed string is string length

push ax
push bx
push cx
push dx
mov ah,40h
mov bx,dx
inc dx
xor ch,ch
mov cl,[bxJ
mov bx,1

180

isave registers used

:MS-DOS Write To File Handle
iget string address in ax
ipoint to actual text of string
izero out ch register
iget length byte of string
:standard output handle



int
pop
pop
pop
pop
ret

21h
dx
cx
bx
ax

Chapter 6: Undocumented Functions

icall DOS
irestore registers used

string_out endp

hex_to_ascll proc near

ioutput word value in OX as a 4-digit ASCII HEX Number
ito the standard output

push cx isave registers
push ax
mov cx,4 iloop Counter (4 hex digits)

hex1:

push cx isave loop counter
mov c l,4 irotate count
rol dx,cl iswap high word and low word of

iDX
mov al,dl iget byte
and al,Ofh iturn into nibble (4 bits)
daa icreate printable ASCII character
add a l ,0FOh i(0-9 or A-F)
adc al,040h
call char_out ;output the character
pop cx irestore loop counter
loop hex1 igo back for more
pop ax irestore registers
pop cx
ret

hex_to_ascll endp

hexb_to_ascl' proc near

ioutput byte value in OX as a 2-digit ASCII HEX Number
ito the standard output

181



Section 2: Programming Tools and Techniques

push
push

mov

hex2:

cx
ax

cx,2

isave registers

iloop Counter (2 hex digits)

push cx isave loop counter

mov c l,4 irotate count
rol d l, c l iswap high and low nibble of OX
mov al,dl iget byte
and a l ,Ofh iturn into nibble (4 bits)
daa icreate printable ASCII char
add a l ,OfOh i(0-9 or A-F)
adc a l ,040h
call char_out ioutput the character

pop cx irestore loop counter
loop hex1 igo back for more

pop ax irestore registers
pop cx
ret

hexb_to_ascll endp

Reading List

Duncan, R. 1986. Advanced MS-DOS. Redmond, Washington: Microsoft Press.

Norton, ~ 1986. Inside the IBM PC. New York: Brady Communications Co.

182



Chapter 6: Undocumented Functions

Raymond J. Michels has been working with the MS·DOS operating system since
its introduction. He is a senior programmer at CES Corporation in Maryland, writing
application software for the remittance processing industry. Ray is also an independ·
ent consultant specializing in MS-DOS application and system programs.

Related Essays

2 Searching the File Tree with where; s
3 Adding UNIX Power with PCnix
'7 Safe Memory-Resident Programming (TSR)

10 Developing MS-DOS Device Drivers

183



Keywords

TSR

desk acces~o~es ,

well-behaved programs

interrupt vectors

PRINT.COM

print screen function

I~uy:synopsis: In MS.lPOS,.onlyone
.prggramcatl actually run at a given time. A
;pm~m·C$lJ.howeveI;be. to14 to Thtminat~

'4rtd,StayResident'fISR). Such programs' Fe..
nt@1 iri·~emory, ready for instant activation
by:~(keystr()keof"other eveat. ;MS-DOSits~lf
C(jJi~8se~r(l].examplasofTSRs; ~nclucl,. .

. ;In,g~a;:p~U1~'8poOler. ·jJecause,oftheoonveIl'"
'r l~n~e!i()f,te~,qiby'TSR "desk'accessorie~"and

,iotbl:3~'~negr~s.thatc8J:lbe iacc,e~sed: :frOl1l
'·~y:applip,atiOb:I.TSR8.arein widespread use '

todit:v: ''PlU8~SS!!y Will'shpw you how to, pna;.
8P@iTSR~liatid'how 1;0 ~void, tbemaQ.ypit.;
,fans·~c;l:iqpea.te"iwell,;pehaved~TSRsthat .C(lll
¢Q.eXis~With"otheJl' ,pr.ograms.



7

Safe Memory-Resident
Programming (TSR)

M. Steven Baker

The ability to support memory-resident programs is an interesting and useful
feature of MS-DOS. An ordinary MS-DOS program is loaded from disk on each
execution and removed from memory after its operation is terminated. If you
want to run the program again, you must reload it from disk. A memory-resi­
dent program remains in memory even when it is no longer running. Thus, such
programs are often called Thrminate and Stay Resident (TSR) programs.

A TSR program can be reactivated at any time, even while another pro­
gram is running. This is usually done by typing a specified character sequence at
the keyboard. Some TSR programs are reactivated by other events, such as the
movement of a mouse, a specific time event, or information from some other
hardware event. Reactivating a TSR program suspends the execution of what­
ever other program is running. When the TSR program is exited, it becomes
dormant again and the program that was running resumes. Several TSRs can be
in memory at the same time, although this can sometimes cause conflicts, de­
pending on how the programs were implemented and how they are activated.

Why Are TSRs Useful?

Perhaps the most familiar type of TSR in use today is the desk accessory pro­
gram, such as Borland's SideKick or Lotus's Spotlight. These programs fulfill the
need for computerized desk accessories by providing facilities such as a notepad
editor, calendar, calculator, phone list (similar to a rolodex), phone dialer, and so
on. Most of the utility of such a program comes from the fact that its functions
are available at the touch of a key or two, regardless of what you are doing at the
time. For example, you can activate a calculator desk accessory while in the
midst of writing a letter using your favorite word processor. Then you can per­
form some calculations and Ilpaste" the results of the calculation back into your

185



Section 2: Programming Tools and Techniques

letter, all without leaving the word processor. If the calculator were not a TSR,
you would have to exit your word processor, run the calculator program and
save the results to a temporary file, exit the calculator program, restart your
word processor, and finally read in the file with the results in it.

In addition to the desk accessories, some other popular examples of com­
mercial TSR programs include ProKey, 1\.Irbo Lightning, and Ready. ProKey is
typical of many keyboard macro programs that allow the user to program a se­
ries of keystrokes onto a single keystroke for convenience. Other similar TSR
keyboard programs include Superkey and Smartkey. Thrbo Lightning includes a
spelling checker and thesaurus available at the touch of specified keys. The spell­
ing checker can be set up to automatically beep at you if a misspelled word is
typed. Ready is a sophisticated outline processor which can be activated in the
middle of another program. Popup graphics programs such as Graph in a Box
make it easy to graph data in a spreadsheet or database. Programs such as In­
stant Recall provide freeform database features.

TSRs in MS-DOS

Another type of TSR is actually installed as an extension to the hardware envi­
ronment or the operating system. These TSRs include keyboard macro pro­
grams, mouse driver programs, networking hardware support, hardware cards
for communication with IBM mainframes, print spoolers, and the like.

You have probably used a number of TSR programs in your everyday use of
MS-DOS, perhaps without realizing it. The MS-DOS operating system comes
with several TSR utility programs. Starting with the earlier versions of DOS,
these include MODE, PRINT, GRAPHICS, and ASSIGN.

TSR programs can be found for a diverse range of other applications and
offer two main advantages to the user:

t> the ability to extend or enhance some features of MS-DOS (for example,
replace a long string of key commmands with a few keystrokes)

t:..".. the convenience of having several programs accessible at virtually the
same time (within the limitation of MS-DOS' being able to actually run
only one program at a time)

Thday, many PC users would feel lost without their favorite assortment of
TSRs supporting their work environment.

The Origin of Memory-Resident Programs

The MS-DOS operating system has its roots in the CP/M-80 operating system
written by Digital Research for 8-bit microcomputers based on the Intel 8080,

186



Chapter 7: Memory-Resident Programming

808S, and Zilog Z80 microprocessors. The early versions of MS-DOS were very
similar to CP/M-80. However, one large difference stands out between these ear­
lier 8-bit microcomputers and the IBM PC. The older machines can only directly
address 64K bytes of memory, while the IBM PC-based machines can address
1024K. (Actually, the IBM PC has only 640K of memory available for user pro­
grams, since memory above this point is used or reserved for the video display
adapters, hard disks, ROM BIOS, and other purposes.) Any way you look at it, a
lot more memory is available for programs on the PC than with the previous
generation of machines. Under CP/M, memory was precious.

CP/M Programs

Any enhancements to CP/M (Le., keyboard macros or function keys) were nor­
mally incorporated into the machine specific part of the operating system (the
BIOS) written by the computer manufacturer. These enhancements were limited
by how much memory they could take from the basic 64K. If the operating sys­
tem grew in size, less memory would be available to run your favorite applica­
tions such as WordStar, SuperCalc, and dBASEII. Since these features were
chosen by the manufacturer, the user could not customize them. However, even
under CP/M, some memory-resident programs were developed and used even at
the expense of the memory required. Three popular TSRs under CP/M were
Smartkey (a keyboard macro program), Uniform (a utility to allow reading and
writing various CP/M disk formats), and Unspol (a public domain print spooler
similar to PRINT under MS-DOS).

Early MS-DOS Features

A TSR feature was incorporated with the earliest version of MS-DOS. Seattle
Computer Products (SCP) was the original author of MS-DOS. The earliest com­
mercial release of 86-DOS version 0.3 (as it was called then) offered a TSR func­
tion well over a year before the operating system was purchased by Microsoft
and became MS-DOS. The purpose of this operating system function call was to
allow extensions to DOS to be added easily to the operating system, particularly
user-written interrupt handlers. A program could be loaded that enhanced
MS-DOS and then remained resident in memory. New enhancements or device
support could be added to MS-DOS without rewriting the operating system.
This was all made possible by the ability to address and use more memory. But
memory only seemed to be less precious under MS-DOS than it had been under
CP/M. Soon we were complaining about the 11640K barrier?'

The version of MS-DOS customized and sold by IBM was called PC-DOS,
version 1.0. PC-DOS versions before version 2.0 did not have the option of user-

187



Section 2: Programming Tools and Techniques

installable device drivers, but TSR programs provided a somewhat equivalent
feature. For example, early multifunction cards by AST and other manufactur­
ers would come with TSR programs for the realtime clock, RAMdisk and print
spoolers.

The only TSR program distributed with PC-DOS and MS-DOS version I.XX
was the MODE program, which incorporates several video and device control fea­
tures. The memory-resident part of MODE allows output to the DOS parallel
printer to be redirected to the serial port. Why was it necessary to incorporate
this feature as a TSR? In fact, this reveals one of the major deficiencies of
MS-DOS from its beginning-the operating system was designed with very poor
support for printers.

Under PC-DOS and most versions of MS-DOS, the printer device is assumed
to be a parallel port (designated LPT#I). However, a user might have a serial
printer or plotter instead or even two printers-a dot matrix draft printer and a
letter quality printer. The MS-DOS operating system did not support sending
printer output to anything but this one parallel port device. The MODE program
provides a mechanism to redirect output normally sent to a parallel printer port
to be sent to one of the serial ports instead.

Why was the MODE program written as a TSR? The inconvenient alternative
would have been for every program written for MS-DOS to have an installation
procedure and support routines to send any printer output to either the
MS-DOS parallel printer device or to serial ports (on the IBM PC, designated
COMI and COM2). Another possibility would have been to invoke something
similar to MODE as part of each program you used. Clearly, the TSR mechanism
makes more sense. When TSRs are used, the changes in configuration remain in
memory and operate transparently-no application program has to be changed,
and nothing else has to be reloaded.

Later MS-DOS Programs

With the introduction of MS-DOS version 2.0 by Microsoft, several TSR utility
programs were included with the operating system for the IBM PC:

~:.. PR INT. COM

~ .. MODE. COM

~> GRAPHICS. COM

(., ASSIGN.COM

PRINT is a memory-resident print spooler of limited usefulness. It is similar
to the earlier public domain UNspOLprogram used under CP/M-BO. PRINT allows a
file to be printed in the background while another application is operating.

188



Chapter 7: Memory-Resident Programming

While MS-DOS is waiting for keyboard input or while noncritical functions are
happening, PRINT can send a text file to the printer as a background task. This
program assumes that the file to be printed is an ASCII text file.

PR I NT expands any tabs in a file based on tab settings every eight spaces and
considers the lAH character (the old CPM end-of-file character) to mark the end
of file. Binary or nontext files can be sent to the printer properly as long as they
don't contain any embedded TAB (09) or EOF (lAh) characters, but it isn't easy to
guarantee such files don't have these characters. Effectively, this precludes using
PRINT to spool graphics files to the printer, many formatted text files to daisy
wheel printers, or font files to laser printers. The TAB or EOF character in these
files may mean which pin to fire on a dot matrix graphics dump, or may be part
of the character definition in a font file.

Why does PRINT need to be a TSR? A print spooler needs to be memory­
resident so that it can function even though several other applications are
started and stopped.

Three other simpler TSRs were included with MS-DOS 2.X. The MOOE pro­
gram, which we have discussed, allows redirecting parallel printer output to the
serial ports. GRAPHICS is a memory-resident addition to the PRINT SCREEN func­
tion. This program allows full screen dumps to an IBM graphics printer or com­
patible printer from a graphics image on an IBM Color Graphics Adapter (CGA)
or compatible adapter and display. This program is only of use when the display
is in one of several possible graphics video modes. For convenience, since GRAPH­

ICS was written as a TSR, it only needs to be invoked once.
ASSIGN is a memory-resident utility that assigns logical disk drives to actual

drives in a system. The ASS I GN command provides the ability to run programs on
a hard disk system even though they were written assuming only one or two
floppy disk drives are available. ASSIGN maps calls through a logical disk (A
through H) to another physical disk. This utility modifies disk calls passed to the
operating system.

Microsoft and TSRs

The background print spooler showed, for the first time, the appearance of ac­
cessing two programs at the same time and provided an example of its imple­
mentation. MS-DOS is still a single-user system, but the sense of task-switching
was demonstrated. This IIsimulated multitasking" naturally attracted the interest
of software developers, but as with other aspects of the operating system,
Microsoft provided only limited details on the 8086 interrupts and DOS function
calls that support these new TSR system features. Thus TSR-supporting features
were discovered by programmers trying to emulate and extend the features em­
bodied in the TSRs supplied with MS-DOS. The result, as we have seen, has been
the development of a considerable variety of TSR programs.

189



Section 2: Programming Tools and Techniques

At the same time, Microsoft expressed a general policy of not supporting
the concept of TSR programs. Why would Microsoft incorporate TSR features in
MS-DOS and not document them and support them? The most likely reason is
that they conflict with long-term goals of making MS-DOS into a true multitask­
ing operating system like OS/2. Most TSR programs are not "well-behaved" and
depend on taking control of some system hardware. This makes true multitask­
ing and multiuser operation difficult if not impossible to implement. Neverthe­
less, because widespread use of OS/2 is still in the future, and many users will
continue to use existing versions of DOS, TSRs will continue to be written and
used for some time.

Types of TSRs

Let's step back a bit and try to categorize the current flood of TSR programs.
First, there are the simplest extensions to MS-DOS itself such as GRAPHICS, MODE,

and the various RAMdisk utilities. These programs extend a hardware feature
on the IBM PC and do not need to use any MS-DOS function calls. Other exam­
ples of this first type would include the various SETCLOCK programs that replace
the MS-DOS time function calls to a realtime clock. The MS-DOS ASSIGN utility is
a TSR that maps MS-DOS disk calls from logical to actual disk drives in the sys­
tem. The distinguishing features of this class of TSR is that, once resident, no
DOS function calls are made by the TSR.

The second class includes the more complex TSRs that, once resident, must
make DOS function calls (such as for file reading and writing). These TSRs are of
two types: DOS extension and utility programs and application programs. In the
first category are keyboard enhancement programs that allow reading and writ­
ing keyboard macro files "on the fly:' The second type includes most of the spe­
cialty programs that must make DOS function calls and provide some task­
switching features. These programs may extend MS-DOS with a printer spooler
like PRINT, but more likely they provide some popup application program very
conveniently at the touch of a "hot key," as with SideKick.

Well-Behaved Memory-Resident Programs

The main concerns in writing TSRs are trying to create a well-behaved program
and making certain that other TSRs already loaded are also allowed to function.
The simpler class of TSRs (such as GRAPHICS) are much easier to write than the
second class (such as PRINT). Again, the distinguishing feature is whether MS­
DOS function calls must be made from the TSR. This fact is reflected in the size
of the sample TSRs provided with MS-DOS listed in Table 7-1.

190



Chapter 7: Memory·Resident Programming

Table 7-1. MS-DOS TSR Program Sizes (bytes)

Program

GRAPHICS
ASSIGN
PRINT

Version 2.0

789
896
4,608

Version 3.1

3,111
1,509
8,291

Version 3.3

7204
1530
8995

The difficulty in TSRs like PRINT, SideKick, Ready, etc., is determining when
DOS or an application program is interruptible. This problem exists because
MS·DOS function calls are not reentrant or recursive, Le., you cannot "stack up"
several calls. If an MS·DOS function call is in progress and our TSR interrupts
and makes another MS·DOS call, the first call will be trashed and lost with un­
pleasant side effects for the primary application. As well, the ROM BIOS Diskette
_10 interrupt INT 13H is also not reentrant. For example, if a disk read was
started by the foreground program seeking to a particular track, and we inter·
rupted before the reading took place and invoked an MS-DOS call requiring file
access and the disk interrupt, the first seek would be lost upon reentering the
Diskette_IO INT 13H routine.

The 8086 and Interrupts on the IBM PC

In order to learn how to write TSR programs, you must understand, in at least a
limited way, the underlying hardware and software structure. The IBM PC is
based on the Intel 8088 microprocessor chip, which is a member of a family of
similar chips including the 8086, 80188, 80186, 80286, and 80386. From a pro·
grammer's perspective, all these chips can be programmed as if they were an
8086 microprocessor. The 80186, 80286, and 80386 chips include some en·
hanced hardware and software features that need not be used. The V20 and V30
microprocessors from NEC (Nippon Electric Corporation) are also extensions to
the basic 8086 that have software extensions similar to the 80186.

These chips can all address at least 1024K bytes of memory. The lower 1024
(400h) bytes of memory on all these chips is special, set aside as a table of 256
(tOOH) possible interrupt vectors. Each interrupt vector consists of a double­
word pointer to a location in memory. On the 8086, an interrupt can mean either
a hardware interrupt (generated by a device or processor) or a software inter­
rupt (triggered by executing the INTinstruction). The INTinstruction is a special
software instruction on the 8086 CPU family that pushes the CPU's flag register
onto the stack, disables hardware interrupts, and invokes the instructions
pointed to by the particular interrupt vector in this table. These instructions
may be invoked by specific hardware conditions or by software instructions.
TSRs are usually interrupt driven.

191



Section 2: Programming Tools and Techniques

As an example, we will look at the first few interrupt vectors. Interrupt 0 is
invoked if the 8086 chip divides by o. At address 0 in memory, we would find a
pointer to software to handle cases of hardware divided by zero. The first word
of this pointer is the offset of the routine to invoke and the second word is the
segment. The IBM ROM BIOS sets this interrupt to point to an IRET instruction in
the ROM BIOS. This just does nothing and returns from the interrupt. The
debug command on an IBM PC under DOS 3.1 will show something like the fol­
lowing:

-dOOOO:OOOO OOOf

and the debug output will show

0000:0000 E8 4E 2f 01 FO 01 70 OO-SF F8 00 FO FO 01 70 00 .NI
••• p. _ •••

The Interrupt Vector Interpretation is

Location Offset,Segment Description

0000 dw 4EE8h, 012Fh ilNTERRUPT 0 Oivide_by_zero <DOS)
0004 dw 01FOh, 0070h ilNTERRUPT 1 Single-step <BIOS)
0008 dw OF8SFh,OFOOOh ilNTERRUPT 2 Nonmaskable interrupt <ROM)
OOOCh dw 01FOh, 0070h ilNTERRUPT 3 Breakpoint <BIOS)

Some of these vectors are special to the microprocessor itself. Intel has re­
served vectors 0 through 31 (O-lFH) for internal use, although only a few are
used on the 8086. Others are used by the hardware peripheral devices, which
interrupt the operation of the microprocessor, for example, when a key is
pressed. Finally, most of these vectors are used by the operating system software
for invoking various functions and as pointers to special data structures in mem­
0ry. All communication with the MS-DOS operating system is through the use of
these interrupt vectors. When a TSR program is loaded in memory, it replaces
some of these existing interrupt vectors with pointers to itself. (See Essay 1, A
Guided Thur inside MS-DOS, by Harry Henderson, for a general discussion of
interrupts. See Essay 10, Writing a SOUND Device Driver, by Walter Dixon, and
Essay 6, Undocumented MS-DOS Functions, by Ray Michels, for discussion of
many of the MS-DOS software interrupts. See the last part of Essay 5, Advanced
MASM Thchniques, by Michael Goldman, for a discussion of interrupt process­
ing.)

When an interrupt is invoked, the 8086 flags register is pushed onto the
stack, the current instruction pointer is pushed onto the stack, and hardware
interrupts are disabled to prevent a hardware interrupt from breaking into the

192



Chapter 7: Memory-Resident Programming

processing of the current interrupt. Figure 7-1 shows what the stack looks like
upon execution of a software or hardware interrupt.

8086 Flags

Instruction Code
Segment

Instruction Pointer
(offset)

Fig. 7·1. The 8086 stack upon interrupt.

MS-DOS version 2.0 and above provide several documented as well as un­
documented functions that support the TSRs that are provided with the operat­
ing system. Based on material I have read) I would assume that most authors of
TSRs have determined these undocumented DOS features by disassembling DOS
itself and PRINT, for example) and not from information willingly provided by
Microsoft. This is how I discovered these hidden features. Let's first look at the
documented features.

Documented TSR Support

MS-DOS provides documented support for three functions relating to TSRs.

Terminate and Stay Resident INT 27H

The original function is INT 27H, the Thrminal but Stay Resident function that
goes all the way back to Seattle Computer Products 86-DOS. This function is the
traditional method for MS-DOS programs to remain resident upon termination.

193



Entry:

Section 2: Programming Tools and Techniques

Note that this function affects several other interrupts in the same way as a nor­
mal termination Unterrupts 22h, 23h, and 24h are restored to the values that
existed before invoking the TSR program), so it cannot be used to install perma­
nently resident Ctrl-Break or Critical Error Handler routines. The maximum size
of memory that can be made resident by this method is 64K (it is actually about
63.9K since DX cannot be above OFFFOH). Open files are not automatically closed
by this function. We can summarize INT 27H with the following:

CS segment of PSP

DX = offset of last byte + 1 (relative to PSP) to be made res­
ident

Returns: Does not return to process

Keep Process I NT 21 HFunction 31h

MS-DOS 2.0 and above added another equivalent Keep Process call INT 21 H(Func­
tion 3lh) used by a program to terminate and stay resident. From Microsoft's
perspective, this is the preferred function. This function allows the return of an
exit code to the calling process and allows for larger (greater than 64K) resident
code. With INT 21 H, we have

Entry: AH 3lh (DOS Function)

AL = return code

DX memory size to reserve in paragraphs U6-byte blocks)

Returns: Does not return to process

Multiple~Interrupt I NT 2FH

The least-used documented TSR function is the Multiplex Interrupt INT 2FH also
called the Print Spool Control function in some MS-DOS documentation, which
may be used for interprocess communication. This interrupt is used by PRINTto
pass information to an already resident PR I NT spooler (TSR) in memory. However,
it may also be used by other processes. Each multiplex interrupt handler is as­
signed a specific multiplex number. The multiplex number is specified in the AH
register. The specific function requested is specified in the AL register. The mul­
tiplex numbers AH = 0 through AH = 7Fh are reserved for DOS. Application
programs are supposed to use multiplex numbers COh through FFh. 1b avoid a
conflict between two applications using the same multiplex number, the multi­
plex number used by a program should be patchable. Function 0 (Get Installed
State) is currently the only function that must be defined uniformly by all INT 2FH

handlers. INT 2FH is summarized by

194



Chapter 7: Memory-Resident Programming

Entry: AH = multiplex number

AL = function code

other registers as needed

Returns: AX = error code if unsuccesful (carry set)

Function 0 Get Installed State is summarized by

Entry: AH = multiplex number

AL = 0

Returns: AL = status (0, 1, or FFh)

AL = 0 (not installed, okay to install)

AL = 1 (not installed, not okay to install)

AL = FFh (already installed)

This interrupt was not documented until DOS 3.X versions of the IBM DOS
Technical Reference Manual, although it was used by the MS-DOS PRINT Utility
from MS-DOS 2.0 onward. The MS-DOS 2.0 PRINTutility makes calls with AH = 0
and AH = FFh which are not documented, as well as the documented calls.

Print Spool Multiple~Handler I NT 2FH

IBM DOS Technical Reference Manual 3.1 describes the Print Spooler Multiplex
(AH = 1), the resident part of PRINT. COM, in detail. DOS version 3.2 added two
additional predefined DOS Multiplex Handlers, ASSIGN (AH = 2 is the resident
part of DOS 3.X ASSIGN) and SHARE (AH = 10h) is the resident part of SHARE. How­
ever, the earlier ASSIGN command in DOS 2.X did not use this interrupt handler.
DOS version 3.3 added multiplex handler (AH = B7h), the resident part of APPEND.

Further functions of INT 2FH are summarized by

Entry: AH

AL

AL

AL =
AL =

AL

AL =
DS:DX

1 (resident Part of PR INT . COM)

o (get print spooler installed status)

1 (submit a file to be printed)

2 (remove a file from the print queue)

3 (cancel all files in queue)

4 (hold print jobs for status read)

5 (end hold for status read)

segment:offset of packet address if Function 1

segment:offset of ASCIIZ file specification if Function
2 (remove file)

195



Section 2: Programming Tools and Techniques

Returns: carry clear if successful

for Function 0

AL = status (0, 1 or FFh) as defined above

for Function 4

DX = error count

DS:SI pointer to print queue

Returns: carry set on error

AX = error code

For Function 1 (submit file to be printed), the packet is five bytes long. The
first byte contains the level and the next four bytes contain a double-word pointer
of an ASCIIZ fIle specification (the filename cannot contain wildcards). The level
byte under DOS 3.1 through 3.3 is O. For Function 2, wildcards (* and?) are per­
mitted in the filespec, allowing multiple files to be deleted. For Function 4, the
pointer returned for the print queue points to a linked list of ASCIIZ strings. Each
entry in the queue is 64 bytes long, and the last slot has a zero first byte.

Undocumented DOS TSR Support

The following MS-DOS function calls have not been documented in any of the
IBM technical reference manuals although they are used by the TSRs supplied
with MS-DOS.

The first undocumented MS-DOS function call used by TSR programs returns a
byte pointer to a flag in MS-DOS itself. I have seen this function referred to as
IN_DOS and also as DOS_CRITICALin a few articles. If this byte flag is 0, then DOS is
not currently active and therefore any DOS call can be made without trashing an
active DOS call. This flag is not just a logical flag, but represents a count of recur­
sive calls into MS-DOS. This function cannot be called any time you wish, how­
ever. Since it goes through the MS-DOS function entry and stack switch routine
with interrupts enabled, allowing interruption, this function cannot be called
while MS-DOS is executing another function or interrupts are disabled. Thus a
TSR program when it is first loaded by COMMAND. COM during initialization will
make an MS-DOS Function 34h call and save the pointer for later use. For some
unexplained reason, DOS versions 3.1 and above return a pointer to one byte
past this IN_DOS flag byte to a critical error flag byte. The IN_DOS or DOS_CR I TI CA l

function is summarized by

196



Entry:

Entry:

Chapter 7: Memory-Resident Programming

AH = 34h

int 21h

Returns: in ES:BX, a pointer to an IN_DOS flag

A second undocumented MS·DOS function supporting TSR programs is the
Background Process function, I NT 28H. There is one time that MS-DOS can safely
be interrupted even when MS-DOS has been called (Le., the IN_DOS flag is non­
zero). If MS-DOS is waiting for keyboard input, the IN_DOS is set to I, but MS-DOS
calls INT 28H continually while waiting. The MS-DOS PRINT utility appears to be
the only MS-DOS program that currently uses this interrupt, which would imply
that its express purpose was to allow background utilities like spoolers to func­
tion. Ifa TSR program replaces INT 28H and monitors for calls to it, MS-DOS func­
tions below Clear_keyboard_buffer (Function OCh) may be safely used.

GET USER_PSP and SET USER_PSP Functions

Two other undocumented calls are needed for TSRs for file handling using the
newer calling conventions added with DOS 2.X and 3.X. These support full direc­
tory paths and use file handles rather than the FCBs of DOS 1.X and CP/M. DOS
stores the file handles being used in the PSP with other operating system infor­
mation. This base page consists of lOOh bytes of memory and also includes the
command line given for executing the program, the first two filenames given on
the command line converted to FCBs, and a default disk buffer address, Data
Transfer Area (DTA), that overlays the command-line area.

This pair of undocumented calls provides a way to get and set the PSP of a
process in DOS. Before doing any file handling in a TSR, the current user PSP of
an interrupted program would first be read from DOS and saved, and then the
PSP of the TSR program would be set. The TSR would do any DOS file calls nec­
essary. Finally, the TSR would restore the user PSP in DOS back to the inter­
rupted process. In this way, the TSR would not affect the application programs
files or operating system specific information.

The GET USER_PSP function is summarized by:

AH = Soh

int 21h

Returns: in BX, the current user-process PSP segment from DOS

The SET USER_PSP function is summarized by:

Entry: AH

BX

int

SOh

PSP segment to set in DOS

21h

197



Section 2: Programming Tools and Techniques

Under DOS 2.X} if FCBs were used for file handling} file information was not
stored in the PS~As long as only FCB file calls were made} the user's PSP was not
required by TSR programs. However, under DOS 3.X} all file handling in DOS is
converted internally to file handles. Therefore} these undocumented calls are
required when operating under DOS 3.X for all file and device handling calls.

A Simple Memory-Resident Program

Let's make our discussion concrete by showing a TSR in action. The MS-DOS
GRAPHICS utility is an example of a very simple TSR program. Upon invocation,
GRAPHICS tests to make sure that it was not previously installed. This is done by
getting the current INT 5 Print Screen vector and comparing a number of bytes
of the current handler with the corresponding bytes in GRAPH I CS. Once we know
that GRAPHICS isn't there, our new INT 5 vector is installed pointing to GRAPHICS

resident code. Now} the code in GRAPHICS will be executed when an INT 5 is in­
voked (such as by holding down the shift and Print Screen keys). Additionally,
GRAPHICS frees up some memory for use of other programs. MS-DOS loads COM
programs at 100h} and the memory area in the base page (0 to Offh) from 0 to 5ch
must be preserved for termination. GRAPHICS goes to the trouble of relocating
the resident interrupt handler from 100h down to 60h in the PSP to save 160
bytes of memory. (See Essays 6 and 10 for detailed discussion of the PSP and how
it is used.)

Basic Structure of TSRs

Let's illustrate some of the ideas used in GRAPHICS with a simple TSR which al­
lows disabling and enabling the Print Screen key. The basic structure of a TSR
program usually consists of two parts: the resident code and the initialization
and install routine.

Since we would like to use as little memory as possible, the resident code is
normally at the beginning of our program and the initialization code placed at
the end, so it may be discarded after use. Again to minimize memory use, TSR
programs are often coded in assembly language. However, more sophisticated
applications might combine assembly language for certain crucial interrupt rou­
tines with code produced from a higher level language compiler.

Here is a "skeleton" showing the basic structure of a TSR program:

198

begin:

new_intx:

jmp ini t ;jump to our initialization routine

;our resident TSR code



Chapter 7: Memory-Resident Programming

;end of resident code

init: ;our initialization and install code
;which will be discarded after use

The IBM Print Screen Function

Depending on one's perspective, the Print Screen is either a wonderful or a hor­
rible feature. The ROM BIOS keyboard interrupt scans for keystrokes, and if the
Shift key and the Print Screen key are held down at the same time, the keyboard
handler calls a Print Screen function, software Interrupt 5. This is just fine if you
hit those keys on purpose, but that Print Screen key is mighty close to the tiny
Return key on the old-style IBM PC keyboard. Let's say it was an accident, and
hope you have a printer connected and turned on, because that thoughtful Print
Screen routine will wait nearly forever. If no printer is at hand, you can always
reboot the machine and lose the last 30 minutes of the report you've been pre­
paring. With a printer, we only have to turn it on and wait however long it takes
to print out the screen. If we are in the middle of printing in WordStar or
WordPerfect, of course, our printer gets a bunch of gibberish, too. It's clear that
it would be useful to disable Print Screen, except for the few times we might
really want it. But if we do want a screen dump, we want to be able to reactivate
the Print Screen key. Thus, making our Print Screen toggle a TSR is appropriate.

The PSOFF Program

The program PSOF Fenables or disables the built-in Print Screen routine. It was
written for assembly into a small MS-DOS COM file. The program was written as a
memory-resident procedure, which you might install using a batch file. For ex­
ample, an AUTOEXEC. BAT file might contain the following for a serial printer:

mode com1:9600,8,1,p
mode lpt1:=com1
psoff off

This would set up a serial printer as COM1 and disable the Print Screen
function on bootup. At any time J PSOF Fmay be invoked with either the ON or OF F

option to disable or enable the Print Screen function. For example:

A>psoff on

199



Section 2: Programming Tools and Techniques

would enable this function at some later time.

How It Works

The default Print Screen function is set up when the IBM PC ROM BIOS boots up.
The ROM BIOS installs the routine as Interrupt vector 5. Our own PSOFF will be
loaded into memory and will install a replacement routine at this interrupt vec­
tor and stay resident. When PSOFF is invoked} the ON/OFF parameter will be
scanned to determine whether Print Screen will be turned on or off. Once in­
stalled} if we invoke PSOFF again} the program must check to see whether it is
already installed in memory. If it's already there, the program just changes the
ON/OFF setting as specified and exits without staying resident. If the proper ON/
OFF parameter is not found} like any good program PSOFF gives a help message
describing its use and merely exits.

PSOFF has two basic parts} the initialization code and the interrupt handler
itself. In this simple example, almost all of the code is for initialization. The inter­
rupt handler at NEWINTS is only six bytes long. It has two modes} either on or off.
When Print Screen is OFF} the interrupt handler consists of a single IRETinstruc­
tion (return from interrupt) to complete the function} bypassing the IBM PC
Print Screen interrupt handler. When Print Screen is ON} the IRET is replaced
with a NOP (no operation) followed by a JMP FAR instruction to the original inter­
rupt handler. The memory resident part of this routine is about 40 bytes long.

The ini~alizationcode will be used once and then discarded. It starts at the
label INIT. The INIT routine goes through a series of small inline routines. You
might note that conditional assembly was used so that slightly different versions
could be created for either MS-DOS or CP/M-8G. This technique can also be used
to accommodate differences in MS-DOS versions if necessary.

Table 7-Zlists a summary of the initialization routines used by PSOFF. Table
7-3 lists subroutines.

Table 7·2. Inline Initialization Routines

200

Routine

init
getparm
mavint

testint
change

stint

Operation

Set up segment registers and local stack
lest if proper parameters were given on command line
If good parameters} copy pointer to existing Print Screen func­
tion to our own code
lest that PSOF Fis not already installed
If PSOFF already installed, change its ON/OFF toggle, tell the
user, and exit
If PSOFFnot installed, install our new INT 5 vector, tell user
current status, exit, and stay resident



Chapter 7: Memory-Resident Programming

Table 7·3. PSOFF Subroutines

Subroutine

bdos
pchar
pmess
crlf
saystat

Operation

Call DOS (works with both MS-DOS and CPIM-86)
Print a single CHAR to the screen
Print a string terminated by a binary 0 to the screen
Send a carriage return and linefeed to the screen
lell user status of Print Screen function

Here is Listing 7-1, PSOFF. You should be able to follow it by reviewing the
preceding discussion and noting the comments.

Listing 7·1. PSOFF

TITLE 'Print Screen Off Routine for MSDOS 4-3-85'

Print Screen
Author:
Revision date
Last revision

pagewidth 96

Off Routine for MSDOS
M. Steven Baker
March 25, 1985
Apri l 3, 1985

Make using the following commands:
MASM PSOFFi
LINK PSOFFi
EXE2BIN PSOFF.EXE PSOFF.COM
DEL PSOFF.EXE

Purpose:
installs and stays resident in DOS to revector
the print screen routine to an innocuous IRET
when invoked with OFF parameter

Operation:
This program must be run first to disable the
standard Print Screen Routine for PC-DOS.
It revectors the INT5 to this new code.
This code stays resident until rebooting
to allow a user to either turn ON or OFF
the print screen routine.

E QUA T E S
continued

201



Section 2: Programming Tools and Techniques

cr equ Odh
lf equ Oah

false equ 0
true equ not false

cpm86 equ false
msdos equ not cpm86

HASH equ true iusing Microsoft or compatible
iassembler

ASM86 equ not MASM iusing Digital Research

if MASM iuse some macros
cseg macro

CODE segment
assume cs:CODE,ds:CODE,ss:CODE
endm

jmps macro dummy i jump short macro
jmp short dummy
endm

rs macro count ireserve storage
db count dupe?)
endm
endif iMASM

fcb equ 05ch ifile control block for parameters

cseg

ORG 0100h

Sign on message

begin: jmp
jmp

init
newint5

ijump to initialization code
ijump to our new interrupt code

202

vernm db 'Print Screen OnlOff Version 1.0 4-3-85',0

cDntinued



newintS db
db

intS dw

90h
Oeah
0,0

Chapter 7: Memory-Resident Programming

;NOP space for our IRET
ijump far instruction
ikluge jmpf entry point
isince MASM won't assemble a
;jump far instruction

I NIT
initialization code for installing our interrupt

init: moy ax,cs ;setup segment registers
moy ds,ax
moy es,ax
moy ss,ax
MOV SP,Offset stack

CALL crlf

test if proper parameters are there

help:

getparm:
moy
moy
cmp
jne
jmp

si,fcb+1
al,[s;]
a l,' I

testparm
giyehelp

iif no parameters, then give help

di,offset on_stg ;point to ON string
cx,4 ;compare four bytes

icomparison

testparm:
moy
moy

tparm1: cmpsb
jne
loop
moy
jmps

tparm2: moy
moy
moy

tparm3: cmpsb
jne
loop
moy

tparm2
tparm1
byte ptr newintS,90h
moyint

si,fcb+1
di,offset off_stg
cx,4

help
tparm3
byte ptr newintS,Ocfh

iput NOP at newintS

ipoint to parameter
iPoint to OFF string
;compare 4 bytes
;compare them

;put IRET opcode at newintS

continued·

203



Section 2: Programming Tools and Techniques

copy print screen interrupt vector to our JUMP FAR return
used to return from our checking code

movint: xor ax,ax izero AX
mov ds,ax iset OS to segment 0
cld iset forward direct;on
mov s i ,14h ipointer to ;nt5
mov di,offset ;nt5 ipointer to our JUMP FAR code
mov ax,cs
mov es,ax iset ES to our code segment
movsw imove offset
movsw imove segment

now test that we have not aLready previously ;nstaLled this
at the print screen interrupt

testint:
mov s i ,14h iPointer to int5
Lodsw iget offset to AX
mov dx,ax isave offset to OX
lodsw iget segment to AX
mov es,ax itemporariLy store it in ES
mov ax,cs irestore our OS register
mov ds,ax
mov ax,offset newint5
cmp ax,dx ioffsets are not equal
jne setint

mov
mov
mov

testint2:
cmpsb
jne
Loop

change:

si,offset vernm iPo;nt to vers;on name
d;,s; iin both SI and 01
ex, (offset newint5)-(offset vernm)

icompare them for equal
setint
testint2

s;,offset newint5
di , si

204

mov
mov
movsb
call
jmp

saystat
exit

iand CHANGE it
igive user current status

continued



Chapter 7: Memory-Resident Programming

i now repLace INTS interrupt vector with pointer to our code

setint: mov ax,cs
mov ds,ax isetup DS = CS
mov bx,ax isave our code segment in ax
xor ax,ax izero AX
mov es,ax isetup ES as segment 0
mov di ,14h iPoint to INTS vector

cLd iset forward direction
eLi ishut hardware interrupts off

mov ax,offset newintS isetup our intS
stosw
mov ax,bx inow set our code segment
stosw iand store it

inton: sti iturn back on interrupts
ivector has now been repLaced

mov ax,cs
mov ds,ax

done:

caLL saystat iteLL them status

if
i exit and stay

mov
mov
caLL
endif

if
terminate but

mov
int
endif

cpm86
resident under CPM86
cL,O ;setup for exit
dL,1 istay resident
bdos

msdos
stay resident under dos
dx,Coffset init)+1
27h

exit but don't stay resident

giveheLp:
continued

205



Section 2: Programming Tools and Techniques

mov s;,offset helpmsg
call pmess

ex;t:
mov ax,O
mov dx,ax
call bdos

ig;ve help message

;and fall thru to ex;t

iset OX =0 for CPM86 ex;t

SAY S TAT U S
say status of Pr;nt Screen Funct;on
ENTRY none
EXIT AX and SI are destroyed

saystat:

206

mov
call
mov
mov
cmp
je

mov
cmp
je
mov

saystat_2:
call
call
ret

DOS ;nterface

crlf: push
mov
call
mov
call
pop
ret

pchar: push
push
push

s;,offset endmsg
pmess
al,byte ptr new;ntS
s;,offset onmess
a l ,90h
saystat_2

s;,offset offmess
al,Ocfh
saystat_2
s;,offset badmsg

pmess
crlf

ax
a l, cr
pchar
al,lf
pchar
ax

ax
bx
dx

continued

itell them we're done

iget value e;ther NOP or IRET



Chapter 7: Memory-Resident Programming

mov dl, a l
MOV ah,2
call bdos
pop dx
pop bx
pop ax

RET

5 5
message to screen

51 =pointer to message terminated
AL and 51 destroyed

;get byte
a l, a l ; is it ze ro??
pmess2

pmess:

pmess2:

bdos:

P M E

print
Entry
Exit
lodsb
or
jnz
ret
push
call
pop
jmps

si
pchar
si
pmess

;save pointer
;send character
;restore pointer
;and continue

by null byte

if cpm86
push es ipreserve E5
push cx isave ex
mov c l ,ah ifor cpm86
int OeOh
pop cx irestore registers
pop es
endif

if msdos
int 21h
endif
ret

datast equ $

D5EG
org offset datast

message texts

helpmsg db 'U5AGE as follows:',cr,lf
continued

207



Section 2: Programming Tools and Techniques

db A>PSCREEN ON (to ENABLE print screen function)'
db cr, l f
db A>PSCREEN OFF (to DISABLE print screen function)'
db cr,lf,O

endmsg db
onmess db
on_stgdb
offmess db
off_stgdb

badmsg db
DB
db

'Print Screen Function is ',0
'ENABLED - ,

'ON ',0
'DISABLED - ,

'OFF ',0

'*** CORRUPTED OR DAMAGED ***'
cr,lf,'PLEASE REBOOT SYSTEM'
cr,lf,O

RS 100h
stack dw 0

intend equ $

if MASM
CODE ends
end begin
endif

if CPM86
end
endif

A Closer Look at TSRs

Now that we've seen in detail how a simple TSR is implemented, let's look at some
more complex examples by examining the MS-DOS ASSIGN and PRINT programs
more closely.

The ASSIGN Command

The MS-DOS ASSIGN utility is an example of a more complex TSR program,
which modifies MS-DOS itself but does not make any MS-DOS calls when resi-

208



Chapter 7: Memory-Resident Programming

dent. This utility allows the user to assign any logical drive (from A-H in DOS 2.0)
to any actual physical drive. Its main purpose is allowing those poorly written
programs that absolutely expect their data files to be on drive liB" to run on a
hard disk machine. ASSIGN does this logical-to-actual drive mapping by replacing
a number of software interrupts, as shown in Table 7-4.

Table 7·4. Interrupt Vectors Replaced by ASSIGN

Interrupt Function

INT 21h Dosint Patches the filespec and disk drive string passed on to the
original MS-DOS interrupt

INT 25h Absolute Disk Read Patches drive number in AL, then passes on to original in·
terrupt vector

INT 26h Absolute Disk Write Patches drive number in AL, then passes on to original in­
terrupt vector

INT 2Fh Multiplex Interrupt Provides a way to communicate with the resident part of
the ASS I GN program (only replaced in versions distrib­
uted with DOS 3.X)

The Diskette_IO (INT 13H) interrupt is not modified, so calls to the ROM
BIOS will not be affected by this utility. The memory-resident part of ASSIGN

maintains a simple table of 8 bytes that map to actual disk drives. When a drive is
assigned, the value in this table is changed to reflect the actual drive to be used
as this logical disk. When the ASSIGN command is given without parameters, the
default logical to physical drive table is copied into the memory-resident code, as
follows:

disktabl db 1,2,3,4,5,6,7,8 idefault disk assign table,
iie, logical drive A =disk 1

Complex TSR Programs That Make MS-DOS Function
Calls

These applications include the more complex TSRs that, once resident, must
make MS·DOS function calls used for file reading and writing. Such programs
must be much more carefully written to be certain that they interrupt MS-DOS
operations and other activities only when it is safe to do so. Some of the hard­
ware interrupts such as the keyboard or timer may be replaced by the TSR. 1b
do this properly requires a greater understanding of the hardware controller
Untel8259 chip), various machine specific hardware features and the internals
of the IBM PC ROM BIOS code.

209



Section 2: Programming Tools and Techniques

PRINT: A Model Memory-Resident Program

The MS-DOS PRINT utility can be considered to be a model TSR program. It is a
good example in that it uses both documented and undocumented TSR functions
in MS-DOS. It also must make MS-DOS calls after becoming memory-resident so it
can read disk files and print them in the background. Two hooks are used for
background printing, the Background Process INT 28H (MS-DOS software inter­
rupt) and the Timer_tick INT 1CH (a ROM BIOS software interrupt). These two
interrupts are vectored to the resident part of PRINT which then tests several
other monitors to make certain that MS-DOS is interruptible. These other flags
include whether Diskette_IO is in process or the IN_DOS flag is set (Le., an MS­
DOS call was already in process). The following is a rough list of the initialization
routine for a TSR (such as the MS-DOS PRINT utility) that must make MS-DOS calls:

1. lest for DOS Version above 2.0 since you will be using some undocu­
mented features not available in MS-DOS 1.X. If not okay, exit.

2. Check to see whether the resident part of PRINT has previously been in­
stalled using Multiplex INT 2FH call with AU = 1 and AL = 0 (get in­
stalled state). If PRINT already installed, the remaining initialization steps
are not executed.

3. Free memory allocated to the environment for the PRINT program.

4. For the PRINT spooler, open the appropriate list device to make certain
that it exists.

5. Save old Background INT 28H and install your own.

6. Save old Multiplex INT 2FH and install your own.

7. Save old Diskette_IO INT 13H and install your own.

8. Save existing Printer_10 INT 17H, RS232_10 INT 14H, and Print_Screen
INT 5 interrupt vectors and install your own. These replacement inter­
rupt routines will return printer busy if another application tries to
print while you are spooling a file to printer.

9. Call IN_DOS function (I NT21 HFunction AU = 34h) and save pointer to the
DOS_CRITICAL byte in DOS.

10. Save old Bootstrap INT 19H vector and install your own. This step was only
added in DOS 3.3 PRINT. A call to your new INT 19H will restore all the old
ROM BIOS vectors and invoke the original INT 19H-reboot the system.

11. Save old Timer_Tick INT 1cHand install new ve.ctor. This step is omitted if
a NETBIOS interface has already been installed.

12. Set DX pointer to end of resident part of PRINT code, and terminate and
stay resident.

210



Chapter 7: Memory-Resident Programming

When the resident part of PR I NT is invoked by one of the two hooks, it
checks to make certain that INT 13H (Diskette_IO) was not in progress). Disk op­
erations cannot be interrupted, so if Diskette _10 is occurring, PR I NT will re­
turn-control to the current application. If entry was by INT 1CH (Timer_Tick), it
also checks the IN_DOS flag to make certain a critical MS-DOS function is not
being interrupted. The Timer _Tick interrupt is called during each hardware
timer tick (18.2 times a second). The INT 1CH entry also sends an End of Interrupt
(EOn command to the interrupt controller chip (Intel 8259) so that other hard­
ware interrupts can occur. Ifother hardware interrupts are pending, then PRINT

returns without printing a character.
PR I NT is also careful about saving and restoring certain other parameters

before invoking MS-DOS calls which might return an error such as reading a file.
If a hardware error occurs} it must be caught by PRINT, not passed on to the
interrupted application. The resident part of PRINT has a 512-byte buffer (DOS
2.X) for reading files to spool from disk. MS-DOS version 3.X allows the user the
ability to increase this buffer size. The following is a rough list of what is done
before and after a file open, disk read, and file close to protect an application
program from errors.

1. Save old user PSP segment.

2. Save old INT 24H Critical Error Handler.

3. Save old DTA.

4. Install your own INT 24H vector (Error Handler) to catch any errors.

5. Set DTA to your disk buffer address, set to your PSP in DOS.

6. Make DOS call for disk read.

7. Restore old DTA.

8. Restore old INT 24H Critical Error Handler.

9. Restore old user PSP in DOS.

An UNSPOOL TSR Program

1b illustrate some of these considerations, we will outline the structure of a TSR
utility to capture output to the printer device and write it to a file. (For space
reasons) we cannot include a complete listing.) This program will also incorpo­
rate a "hot key" feature to turn on or off this feature at any time. The hot key
feature will save the screen and bring up a popup menu. The hot keys could also
allow you to change the name of the unspooled file from a default name. After
this menu use, we will restore the screen to its condition before the TSR activa­
tion.

211



Section 2: Programming Tools and Techniques

The basic structure of our program UNSPOOL will be similar to what we have
seen already. However, the amount of coding for the resident and initialization
parts of the TSR will be much larger. Here is the outline:

jmp init :our initialization code

jmp newint17 iour repLacement Printer_IO
db 'UNSPOOL Version 1.3 2-20-87',0

newint17:

:resident code ends

init: :our initialization and
iinstall routines

iTSR ends

UNSPOOL Program Structure

Table 7-5 shows the interrupts that we will need to intercept for this TSR. In
addition, just before doing any MS-DOS file operations, we will need to save the
current DOS user PSP and install our own PSP segment in DOS. Next, we tempo­
rarily replace INT 24H to protect and intercept any errors and replace the default
DTA-the buffer into which DOS will read the file. After MS-DOS file operations,
the original INT 24H handler, the application PS~ and DTA must be restored.

Table 7·5. Interrupts used by UNSPOOL

Interrupt Function

5 Print Screen interrupt, need to disable if unspooling taking place
9 Keyboard hardware interrupt, sets flag for activation by "hot keys"
13h Diskette _10, monitors disk routine to prevent trashing
14h RS232_10, for serial printer output
15h Cassette _10, determines if UN SPOOLis already memory-resident
1Gh Keyboard _10, watches for a particular character sequence
17h Printer_10, for parallel printer output
lCh Timer _Tick, vector interrupt for activation
28h Background Interrupt, vector DOS interrupt for activation
2Fh Multiplex, monitors calls to printer multiplex

Before bringing up any popup menu, we will need to save the current

212



Chapter 7: Memory-Resident Programming

screen and state of other video parameters. This will require space in the resi­
dent part of our TSR for storage of the video parameters and the screen. Then
we can bring up our menu and get keyboard input from the user. Finally, the
screen will need to be restored along with any video parameters.

Programming Guidelines for TSR Programs

You should now understand the basic procedures for writing various kinds of
TSRs. Microsoft has provided a draft specification for TSR programs to develop­
ers (Andrews 1986). These draft guidelines define a set of operational rules for
TSR programs to minimize conflict when other memory-resident utilities are
loaded. They do not document or describe the undocumented features of DOS
which TSR implementers must know. The gist of the suggestions are that TSR
programs should mimic MS-DOS and the ROM BIOS as much as possible. Some
valuable basic guidelines are found in the following areas: general issues, the
keyboard, video issues, and TSR program interface.

General Issues

You should design your TSR program so it can easily coexist with other TSR pro­
grams in memory. It should not be critical that your program be the last inter­
rupt vector in the chain of interrupts. Setting up a local stack in an interrupt
routine ofyour TSR program prevents it from being reentrant. If the interrupt is
invoked again, the earlier local stack contents will be written over. Use a local
stack only when needed and hardware interrupts are ofC or in an area pro­
tected from reentry. When using your own MS·DOS Critical Error Handler, do
not jump from it to your TSR program code. Instead, set a global error flag that
your TSR routines check, issue an I GNORE response in the error handler, and
return to DOS (using an IRET instruction). This assures that the MS-DOS stacks
will be cleared properly.

Keyboard Issues

Don't take complete control of INT 9 (hardware keyboard interrupt). If your TSR
program wants to use keystrokes that the IBM PC ROM BIOS doesn't generate
(Le., the CTRL·UP arrow key is not decoded by the original PC or AT ROM BIOS),
install your routine, chain into the interrupt, generate a new scan code, and put
it into the IBM PC keyboard buffer just as the ROM BIOS does. If you are looking
for a single keystroke, set a flag and continue through the interrupt. When the

213



Section 2: Programming Tools and Techniques

TSR is running, it should use INT 16H (ROM BIOS Keyboard_IO routine) to get a
keyboard input. This allows all TSRs in the chain to see the key request and take
any appropriate action.

Video Issues

Use the ROM BIOS whenever possible. If you directly change video modes, cur­
sor types, background intensity, EGA, or VGA registers, save the new values in
the appropriate ROM BIOS and video data areas.

TSR Program Inter:face

This draft guideline also proposes an extensive format of data records for TSR
programs and a program interface. The program interface proposed would use
Cassette_IO INT 15H (Function AH = 52h) as a method for the nonresident parts
of programs to communicate with resident parts. Unfortunately, this TSR format
has not been widely implemented and may never be.

The Bottom Line

As a programmer, do I use memory-resident programs myself? Only in special
situations. I want as little to interfere with my programming and testing as possi­
ble. Oh, I wouldn't mind a good screen-capture utility now and then. But most
users do appear to like TSRs and that's a driving force for software development.
From my perspective, TSRs do serve a useful purpose when modifying hard­
ware or ROM BIOS routines. I personally prefer to use "program loaders: small
programs that load another application and change the MS-DOS or hardware
environment. Then, when the application is done, they disappear and go away.

Reading List

Andrews, N. 1986. Moving toward an industry standard for developing TSRs.
Microsoft Systems Journal 1, no. 2 (December).

Duncan, R. 1986. Advanced MS-DOS. Redmond, Wa~hington: Microsoft Press.
[> The officially sanctioned guide to DOS for assembly language and C pro­

grammers.

IBM. 1983. IBM Technical Reference Manual. Publication #1502234. North Tar­
rytown, New York.

214



Chapter 7: Memory-Resident Programming

1> The hardware reference to the IBM PC. Section 2 contains a complete
listing of the ROM BIOS which is essential for most serious PC work. This
is the most heavily used publication on the IBM PC in my library. A ver­
sion specific to the IBM AT is also available (Publication #636166), but I
still use the PC version most often. A later version is available for the IBM
PS/2 line; however, it does not contain any BIOS listings, only calling con­
ventions.

---. 1987. IBM Disk Operating System Technical Reference. Publication
#80X0945. North Tarrytown, New York.

I> Thchnical information for a specific version of DOS, the official line . The
latest version is for DOS 3.3.

(staff). 1986. Best of BIX. BYTE Magazine (September): 380-409.
1> BYTEs online conference for the IBM PC has had discussions on the

PR I NT • COM program. The Pdscal conference has several discussions by staff
from living Videotext (READY) on TSR programs and technology used by
REAm Borlands SIG on CompuseIW also has an active group of programmers
studying TSR software.

M. Steven Baker is currently the technical editor of Programmers Journal, a re­
source journal for IBM PC programmers and has written on a number of computer
and energy-related topics. He holds degrees in architecture and electrical engineering
from Massachusetts Institute of Engineering, and Masters degrees in architecture and
urban and regional planning from the University of Oregon. Steve works as an energy
analyst for the Oregon department of energy and programs on large IBM main­
frames, VAX and PRIME minicomputers, and microcomputers.

Related Essays

3 Adding UNIX Power with PCnix
8 Undocumented MS-DOS Functions

10 Developing MS-DOS Device Drivers

215



KeywQ;rds

data secUrity

encryptjon

cryptograplw .

passwords

hidden files
0:,

• ".- ~ I·

:~ti~a)r,-,Synl)p8i8:Becau:se'of them..
~r.~~igg: amQUil.t ·of sensitiVf'dilta:1Jeing
pi!O¢f!ssed on' desktop·cqmputerSlther~ is a
~.,need,tbt·iIilptqyeddata.security
and: access· control 'Oil perscmal.computers

. and~mce'I1etWripks'. this-assay.explains
'dataseeuDi~s1ID8;tegieSJ' shows how they. are
iJnplelJl(!nted;~an~'ass~ss~th.evalue and
;lft.nit~tions-.oreach. teChnique,discussed.,Tl1e
,~uth()r:expla~' s~Oqri~Y"re~a,edfeatu,I'es ..of
1:be'MS~t>eSfile .systeIll, aIld!lo\yto take ad.,
-'va11t~~:r.(jf~em. Password~hecking pro.. ­
gi;~m8,t:anlbe~iRsian~d~sen8itive;rJ1es can be

·:hiJlt:1enAiroiD,oRsualmspectianiand,differ­
:entl:ISVi:!IS-ofac,ces8.cail.be\providedto par..

, ttcul~use:rs. 'I:'h.e,U)timate·dafaproteetion,
]10wevel',.'is~encryption~.making ·data.unus..
able~out the:appropriate.ke~ The -au..

. ithor'explams.[)ES-and: RSA ~gririthms,

w)Uch,'usetnatheIilatical'techniques~oen.;
'crypt and' decryp~,c1p.~~r; .

codesysterns
cipher_syst.e~

Data Encryption Standard (DES)

public key cryptosystems



8

Data Protection and
Encryption

AsaelDror

Computer data security is becoming a critical problem, especially with
microcomputers. Though it is rarely admitted, a survey reported in PC WEEK
(June 9, 1987) suggests that more than 80 percent of corporations and agencies
have suffered financial loss due to computer security problems.

The same factors which have helped create the microcomputer revolution
have also contributed to the data security problem. The availability of inexpen­
sive microcomputers encouraged small businesses and individuals, who had
never used computers before, to adopt microcomputers. Meanwhile, in large
businesses the concept of data distribution-placing the data close to the user­
has caused the transfer of information from the traditional mainframes to
microcomputers. These trends have been further magnified by technological
advances such as fast communication devices, large capacity hard disks} and
LANs, which make it easier to transfer, store, and retrieve large amounts of data
on microcomputers. Finally, a dramatic increase in computer literacy has given
more people the knowledge needed to access the data. Thus, having easy access
to large amounts of (often sensitive) data has greatly increased the means and
opportunities for such computer security problems as illegal access, data tamp­
ering, and computer vandalism.

Three Levels of Unauthorized Data Access

What does illegal data access involve? Unauthorized data access can be classified
into three levels. In order of increasing potential for damage, they are

P> Deletion

C>- Reading

t> Changing

217



Section 2: Programming Tools and Techniques

Deletion

Deletion of data is (surprisingly) the least harmful of the three levels of unau·
thorized access. Detecting a major deletion is simple-your data is gone. (If the
deletion is such that it is not immediately evident, we shall view it as a change to
the data rather than deletion.) All that has to be done to recover from deletion is
to restore the data. This is an easy matter, assuming you have a recent backup
locked away. The only harm caused by the illegal access is that you lose whatever
data had been entered since your last backup.

Reading

When people talk about violations of data security, they are most often referring
to reading your data. An unauthorized person who wants to read large amounts
of your data needs to access your computer for only enough time to copy your
hard disk onto diskettes 10 be read later at leisure. Since reading leaves no
marks, you cannot detect the unauthorized access and so will not take measures
to minimize the damage.

Changing

The most severe data access violation is changing your data. Someone not only
reads your sensitive data but also falsifies it undetectably. While the intruder
now has the correct data, you are using a maliciously falsified version. This can
cause considerable damage not only to obviously sensitive data but also in lesser
areas. Very small changes in the data can make big differences: credit becomes
debit, $10 becomes $10 million, a "Dngrade becomes an "A,n research results be­
come false, the number of your safety deposit box is altered, key people are
moved around, and so forth.

Multilayer Protection

1b protect data, a three-layer system should be used:

1. Physical security: limiting access to your computer, keeping your back­
ups secured, destroYing printed reports, etc.

2. People confidence: ensuring reliability of people who are authorized to
access the data

3. Data security: protecting your data on the computer from unauthorized
access by someone who has bypassed the physical security

218



Chapter 8: Data Protection and Encryption

This paper will deal only with the third issue, Le., the technical means for secur­
ing data on MS-DOS machines, but remember that all three elements are impor­
tant for protecting your data.

MS-DOS Data Structure and Access

Before we can protect the data, let's review how data is organized and accessed
in the MS-DOS environment. When DOS allocates and frees disk storage space, it
does so in chunks of sectors called clusters. A cluster is a fixed number of consec­
utive sectors the size of which is determined at the time the media is formatted
by DOS. For example, when using DOS 3.X with a hard disk of 30MB, a 4-sector
(2K) cluster will be used. Space is allocated and deallocated by MS-DOS as
needed. When a file grows, more clusters are allocated for it and when the file
shrinks, clusters are deallocated.

MS-DOS "sees" a file as an ordered sequence of clusters. The order of the
file's clusters is kept in the File Allocation Table (FAT). Other information about
the file, such as its name and attributes, are kept in a directory.

Directories

A directory is a collection of entries describing files. There are two types of di­
rectories: the root directory is a special area of fixed size and location, and the
subdirectory is a DOS file having the subdirectory attribute. Each directory en­
try is 32 bytes long (see Figure 8-1) and has the format shown in Table 8-1.

i I
I I I I I I I I

I
I File Name EXT Reserved Time Date Size
I

• l • •
I I I

Indicate
empty entry

Attributes First
Cluster

Fig. 8-1. Directory entry.

The FAT is a collection of entries, each describing one cluster. A FAT entry
for a cluster which is allocated to a file has the number of the subsequent cluster
of that file. So, to find the chain of clusters making up a file, we find the first
cluster in the file's directory entry and then follow the chain. Each cluster's entry
in the FAT will tell us what the next cluster of the file is.

219



Section 2: Programming Tools and Techniques

Table 8-1. Directory Entry Format

Byte Length
offset in bytes
(decimal) (decimal)

0 8

8 3
11 1

12
22
24
26
28

10
2
2
2
4

Description

Filename (without the extension) or an indication that this en­
try is empty
Filename extension
The file's attribute (This is a bit field in which the individual
bits are used to indicate that the file has particular attributes:
OIH = READ ONlM 02H = HIDDEN; 04H = SYSTEM FILE;
08H = VOLUME LABEL; 10H = SUBDIRECTORY; 20H = AR­
CHIVE; 40H and 80H = Reserved, always 0.)
Reserved
The time this file was last updated
The date this file was last updated
The file's first cluster
The file's size

Accessing the Data

The MS-DOS data access system is designed as a layered architecture with the
following layers: the application program} MS-DOS} BIOS} and the computer's
hardware. Each layer has its own "vision" of how the data looks and uses the
services of the adjoining (deeper) layer for accessing the data. This design helps
to disconnect the higher layers from the hardware implementation details and
thus achieve hardware independence.

Application programs use the services of DOS to access the data by per­
forming software Interrupt 21h and passing the required parameters. When
DOS is called on to perform data access operations} reference to the data is made
by filename and the relative offset of the data within the file. Some common
MS-DOS data-handling functions accessed through Interrupt 21h include: open
a file (Function 3Dh)} close a file (Function 3Eh)} read from a file (Function 3Fh)}
write to a file (Function 40h)} delete a file (Function 41hL and move the readl
write pointer in the file (Function 42h).

The next layer, DOS, uses the services of BIOS to access the data. BIOS is
DOS's interface to the computer's hardware. The call to BIOS is performed via
software Interrupt 13h passing the required parameters. When calling BIOS}
reference to the data is not made by files, which BIOS does not understand, but
by the physical location of the data} Le.} the device, head, track} and sector num­
ber. 'IWo of the data-handling functions that BIOS provides are: read a sector
(Function 02) and write a sector (Function 03).

The innermost software level} BIOS} communicates directly with the hard­
ware (disk, DMA, timer, and interrupt controllers) via input and output instruc­
tions. (See Essay 1, A Guided Thur inside MS-DOS, by Harry Henderson} for
further discussion of the three layers of MS-DOS.)

220



Chapter 8: Data Protection and Encryption

Hiding Your Data

A simple strategy to protect your data is to hide it. If no one knows you have the
data or where the data is kept, it cannot be accessed.

Hiding Data with Nonstandard Filenames

One way to hide data is to use nonstandard filenames. MS·DOS specifies that file
and subdirectory names may use only the following characters: A-Z 0-9 $ # & @

% () - { } " -'
In practice, many other nonstandard characters may be used. Some of

them cannot be typed directly from the keyboard but may be entered by holding
down the ALT key, pressing the character's ASCII code on the numeric keyboard,
and then releasing the ALT key. For our purpose, the most useful of those non­
standard characters is the null character (which has ASCII code 255). This char­
acter appears on the screen as a blank and can be used to create invisible file and
subdirectory names such as <null><null>.<null>. 1b access such a file, one
must use the exact filename: <nu ll><nu ll> is a different filename from
<nu ll><nu ll>. <nu ll>. It is possible to create 32 different filenames using only
this character, but, of course, you too must remember the exact name yourself.

.Hiding with Hidden Files

Another way to hide your data is to create an MS-DOS hidden file. A file or sub­
directory that has the HIDDEN attribute in its directory entry on, will not be listed
by the DI Rcommand. This is the technique used to make the PC-DOS system files
IBMDOS.COM and IBMBIO.COM invisible. Note that the MS-DOS ATTRIB command
which can change some of the attributes of a file does not support changing the
HIDDEN attribute.

Listing 8-1 is a program named HIDE that toggles the HIDDEN attribute of a
file or subdirectory, that is, it makes a visible file hidden and vice versa. The
program reads the current attribute of the file, changes the hidden attribute bit
and rewrites the attribute. Note that the program clears the SUB DI Rattribute.
This is done since Function 43h of Interrupt 21h cannot be used to set (or reset)
the SUB DIR attribute.

Listing 8-1. HIDE

title 'hide'

This program toggles the hidden attribute of a
file or subdirectory,

continued

221



Section 2: Programming Tools and Techniques

thus mak;ng a v;s;ble f;le h;dden or a
h;dden one v;s;ble

Usage: HIDE f;lename : subd;rectoryname

Wr;tten by Asael Dror July 1987

The sequence to generate h;de.com ;s:
masm hide;
Unk h;de;
exe2b;n h;de.exe h;de.com

HIDE_ATTR EQU 02h
SUB_DIR_ATTR EQU 10h
SPACE EQU I I

onlyseg segment

PARAMLN equ 80h

HIDDEN file attr;bute
SUB. DIR. f;le attribute

h;de

org

proc

100h

far

for .com f;le

assume cs:onlyseg,ds:onlyseg,es:onlyseg

cld
mov
sub
mov
jcxz
;nc

di ,PARAMLN
ch,ch
c l,byte ptddi]
fait
di

get arg len.
no arg. g;ven
d; -> arg.

scan for first nonblank
no arg. (f;lename) given
adjust length and pointer

mov al,SPACE
rep scasb
j e fai l
;nc cx
dec di
mov si,offset filenm

continued

222



xchg si,di
rep movsb

Chapter 8: Data Protection and Encryption

si->arg. di->filenm
save arg. as filenm

mov dx,offset filenm
mov ax,4300h
int 21h ; get fi leis attribute
jc fail
xor cl,HIDE_ATTR toggle HIDDEN attr.

leave SUB DIR ATTR
along

and cl,CNOT SUB_DIR_ATTR)

mov ax,4301h
int 21h set filels attribute
jc fail
mov ax,4cOOh
int 21h terminate, errorlevel=O

fail:
mov dx,offset failmsg
mov ah,09h
int 21h print fail message
mov ax,4c08h
int 21h terminate, errorlevel=8

filenm db 64 dup CO) space for the file name
failmsg db 'Cannot change hidden attribute $'

hide endp
onlyseg ends

end hide

Protecting data by hiding files may be an effective strategy against a casual
observer who uses the DIR command. However, special directory·listing pro·
grams (as well as the DOS CHKDSK/V command which lists the tree structure of
the entire disk including all hidden files) are able to reveal such hidden files.
Here are the results of using HIDE program. The directory as it is shown by the
DI Rcommand:

Volume in drive 0 is VDISK V3.3
Directory of D:\

223



Section 2: Programming Tools and Techniques

FOO
HIDE COM

2 File(s)

9 8-19-87 11:40a
162 8-19-87 10:07a

386048 bytes free

The directory as it is shown by the DIR command after HIDE FOO was used:

Volume in drive 0 is VDISK V3.3
Directory of 0:\

HIDE COM
1 Fi lees)

162 8-19-87 10:07a
386048 bytes free

CHKDSK/V still shows the hidden file FOO:

Volume VDISK V3.3 created Dec 6, 1984 12:00p
Directory 0:\

D:\VDISK V.3.3
D:\FOO
D:\HIDE.COM

387072 bytes total disk space
512 bytes in 2 hidden files
512 bytes in 1 user files

386048 bytes!available on disk

655360 bytes total memory
567984 bytes free

but DEL FOO will give a Fi le not found when the file is hidden. Entering HIDE FOO a
second time cancels the file's HIDDEN attribute and makes it appear in the DIR
listing and deletable by the DEL command.

Protecting Files Using the Read-Only Attribute

MS·DOS provides a READ ON LYfile attribute that means the file cannot be changed
or deleted. The READ-ONLY attribute, like the HIDDEN attribute, is a bit field in the
file's directory entry. The READ-ON LYattribute can be changed by using the DOS
3.X ATTRIB command (or by writing a program similar to the one used to toggle
the HIDDEN attribute bit). Unfortunately, protecting a file by making it READ-ONLY
is really more a precaution against accidental access than a means against inten·
tional malicious access, since the READ-ONLY attribute can be easily turned off
and then the data deleted or changed.

224



Chapter 8: Data Protection and Encryption

Password Protection

The next level of security is the use of password protection. We will build such a
protection system starting with the simpler but less effective ways and then
gradually improve it. Let's begin with a system that is supposed to protect the
whole hard disk from access by unauthorized agents. Such a system should, at a
bare minimum, require the user to enter a correct password before any access
to the hard disk is allowed.

The simplest (and least effective) way of doing this is by placing a small pro­
gram in the AUTOEXEC fIle. This program would be activated when the computer is
booted and would request the user to enter the correct password. If the correct
password is entered, the program terminates normally and the system can be used.
However, if the correct password is not given, the program would halt the computer
(switch interrupts off and issue the HLT command to the CPU). Unfortunatel.)!, such
a program can be bypassed easily. The AUTOEXEC is a batch file, and so can be termi­
nated by pressing BREAK before our password program is even activated.

We could improve this program, by making it immune to BREAK. This can
be done by writing the program as a device driver instead of running it from the
AUTOEXEC. If we do so, it becomes an extension of DOS and so it is impossible to
prevent the program from running. Whenever DOS is booted from the hard
disk, the password program will receive control. Since our program does not
drive any device, which is what device drivers are really meant to do, we are
actually writing a fictitious device driver that does all of its work in its initializa­
tion routine. (See Essay 11, Writing a SOUND Device Driver, by Walter Dixon, for
a detailed discussion of the structure and function of device drivers.) Now it
seems that we have solved the problem. Whenever the system is booted our de­
vice driver will"take control:' prompt the user for the password and refuse ac­
cess to the system if the correct password is not given. However, this protection
system can be completely bypassed by booting off a diskette instead of the hard
disk that contains our device driver.

'There are two different approaches to solving this problem: A simple hard­
ware solution is to physically disable the ability to boot off a diskette. This can be
done most easily by disconnecting the drive A: diskette. ffhe drive B: diskette can
be left in place.) This solution has the following disadvantages:

1> We cannot have two internal diskette drives.

1> Some programs access drive A: directly (such as some copy-protection
systems) and so will not work (even if We use the ASSIGN command to
substitute another drive for A:).

!> If our hard disk fails or we want to switch to a new operating system, we
have to reconnect drive A:.

/>' If an intruder can connect drive A:, the password system could be by­
passed.

225



Section 2: Programming Tools and Techniques

A second approach would be to move our password program from the DOS
level to the BIOS level. We can develop an adaptor card which will have a CMOS chip
with a battery backup for storing the password, and a program in ROM to prompt
for the correct password. 1b have the password program receive control before
DOS is booted, the ROM must be located on a 2K boundary in the address space
C8000H through EOOOOH. Also, the ROM must have the following special signature:
Byte 0: hex 55; Byte 1: hex AA; Byte 2: the length of our ROM in blocks of 512 bytes;
Byte 3: the ROMs entry point. A checksum is done to determine the integrity of the
ROM.1b be valid, the sum of the bytes in the ROM modula lOoh has to be O.

During POST (the machine's Power On Self Thst), the ROM will receive con­
trol by a FAR CALL to its entry point.

At last, we have a reasonable protection system. Alas, our system provides
protection to our whole hard disk as one unit. We cannot limit different people
to different types of access. We have a "go or stopn system: if you know the pass­
word you can do everything, if you do not know it you can do nothing. Another
limitation of this system is that once the password is given, the system is fully
available to anyone. Ifyou take a coffee break and do not turn the power off (or
otherwise pass control to the password program), you leave your system totally
vulnerable. Also, if the adaptor card can be pulled out, our protection system is
not activated, and there is always the possibility of physically removing the hard
disk and accessing it on a different computer.

Password Protection of Selected Data

Transforming a system from a whole disk protection system to a protection sys­
tem for individual files or subdirectories giving different people different access
privileges requires intercepting every attempt to access the disk. With a data­
protection program that is always memory-resident (either a TSR, device driver,
or added ROM, it is possible to redirect all hard disk access attempts to our rou­
tine, which will then check for authorization. (See Essay 7, Safe Memory-Resi­
dent Programming (TSR), by Steven Baker.) We can intercept access attempts to
the hard disk either at the DOS or the BIOS level.

1b intercept at the DOS level, we have to reroute the DOS access Interrupt
(21h) to point to our routine instead of to DOS. This is done by manipulating the
interrupt vector for Interrupt 21h located at address O:84h. Once the interrupt
vector points at our interrupt-handling routine, every time a call is made to DOS,
our routine will receive control instead. In the routine, we need to determine
whether the function requested is a file access and, if so, check for authorization
(Le., the password check). Afterwards, we have to transfer control over to DOS to
finish the work that was originally called for. Intercepting at the BIOS level does
not give any significant advantages over intercepting at the DOS level and has
many complications, so it is not recommended.

226



Chapter 8: Data Protection and Encryption

Data Encryption

The major disadvantage of the password protection systems described above is
that someone can bypass our intercepting routines, which can be done at least
as easily as we intercepted DOS (or BIOS) by simply remanipulating the appropri­
ate interrupt vectors. Furthermore, someone can remove the hard disk and read
it on a different machine, giving full access to the data.

The best solution to those problems is to move the protection level down to
the data itself. After all, this is really what we want to protect! The most fool­
proof way to protect the data itself is to scramble (or encrypt) it so that it be­
comes incomprehensible to unauthorized persons. There are two basic
procedures for encrypting data: code systems and cipher systems.

Code Systems

Code systems are based on using a code book to transform the data to its en­
coded form. There are two basic code book systems: the dictionary type and the
key tape type.

Dictionary Systems

Code book systems use a special kind of dictionary code book, to translate the
original (plaintext) data to and from its encrypted form (ciphertext). Figure 8-2
shows how a code book would be used to encrypt the message "secret message.n

Secret
Message -

A-G S-R

C-A T-X
E-V
G-T
M-K

R-H

-
Code Book

Plaintext

Fig. 8·2. Simple code book example.

Ciphertext

A code book can be devised that will encrypt bytes I letters I words I or
phrases. The problem with using a code book is that our data is (usually) not a

227



Section 2: Programming Tools and Techniques

collection of random information, so it has patterns that are passed on to the
encrypted data. The presence of those patterns in the ciphertext gives the
codebreaker a great starting point from which to decode the data. For example:
the letter e is the most frequently used letter in the English alphabet. Ifour code
book translates every occurrence of the letter e to d, the most frequent letter in
our ciphertext will be d. When our ciphertext is analyzed, it will immediately be
apparent that d is the most frequent letter, thus leading to the conclusion that it
represents the letter e. This is a first step in decrypting our message.

We could improve this technique by changing our code book frequently
before the patterns are revealed in the ciphertext (the longer the text the more
patterns will emerge). The ideal frequency for changing the code book is to
never use the same entry in the code book more than once. For example: first
translate e to q, but the second time an e is encountered, translate it to band
so on, never using the same code book entries twice. Figure 8-3 shows how
such a nonrepeating code book would be used to encrypt the message "secret
message:'

PQCOBS
MIFVTYX-

-
Code Book

A-T T - S

c-c
E-Q\Bll\x
G-Y
M-M

R-O
S-pfFlv

-.Secret
Message

Plaintext Ciphertext

Fig. 8·3. Nonrepeating code book example.

Key Tape Systems

There is another way to use a code book type system. Instead of having a diction­
ary (in which some entries will be used many times while others may not be used
at all), we could use a code book composed of data to be imposed on the plaintext
instead of replacing the plaintext. This type of code book is called a key tape.
Imposing one type of data on another can be done in many ways. A simple and
common way to impose the key tape on the plaintext is by the use of the XOR
(exclusive or) function (bit wise modula 2 addition).

228



Chapter 8: Data Protection and Encryption

The XOR function is defined as follows:

o XOR 0 =0
o XOR 1 =1
1 XOR 0 =1
1 XOR 1 =0

Ifour key tape is a random collection of ones and zeros, we could represent
our data in a similar form (by using ASCII for example) and then XOR our data
with the key tape to generate the ciphertext. 1b decrypt, we would XOR the
ciphertext with the same key tape that was used for encryption. Let's look at an
example. Assume "MSDOS" is our plaintext. This is represented in binary (using
the ASCII codes of the letters) as

0100 1101 0101 0011 0100 0100 0100 1111 0101 0011

If our key tape is

0100 0110 0111 0011 1001 0000 1100 0110 1011 0100

the ciphertext (plaintext XOR key tape) would be

0000 1011 0010 0000 1101 0100 1000 1001 1110 0111

When we XOR the ciphertext with the key tape again, we get

0100 1101 0101 0011 0100 0100 0100 1111 0101 0011

which is our original plaintext.
A system such as this, where the key tape is random and is used only once, is

called a one-time pad (or tape) system. Such a system is absolutely unbreakable
without knowledge of the key tape. The big disadvantage of this type of system is
that the length of the key tape must be at least as long as the message we want to
encrypt, and if we have a safe way of storing or transmitting the key tape (or code
book), why not just use that same means for the message instead? Still, code book
and one-time pad systems do have their uses. In the militar)T, for example, the code
book (or key tape) could be distributed during peacetime when safe distribution
methods were available. Encrypted messages would be transmitted at wartime.

Cipher Systems

The other procedure for encrypting data is by using a cipher system. In a cipher
system, there are two elements: an algorithm and keys. The algorithm enables
the use of a short key to encrypt a long plaintext.

Before we look at some cipher systems we should look at our "enemy:' the

229



Section 2: Programming Tools and Techniques

one trying to break our system. The following are some assumptions we should
make about the enemy if we want to develop a strong cipher system:

I> He or she is just as intelligent as we are and is familiar with the art of
cryptography.

I> At the enemy's disposal are the tools needed for serious cryptographic
work, including such things as letters- and words-frequency information
and a high-speed computer.

I> Our enemy is in no hurry to break our system. Different data have dif­
ferent secrecy durations, but let us assume the data we are protecting
should be kept secret for a long time. Of course, if it takes a thousand
years to break our system we have a good cipher system-since most
data will not be secret or useful by the time the system is broken.

I> The enemy knows our encryption algorithm. This is a good assumption
to make (though there is no need to give the algorithm away on purpose)
since we would not like our whole cryptosystem rendered useless if the
enemy managed to get one of our encrypting devices (by getting into our
embassy, for example). Once the enemy has our encrypting device, it can
be reverse engineered and its algorithm revealed.

Data Encryption Standard (DES)

One important cryptosystem is the Data Encryption Standard (DES), a federal
standard algorithm for data encryption (U.S. Dept. of Commerce 1977).

Though some may doubt the wisdom of publishing an algorithm for data
encryption, we did assume that the enemy knows our algorithm, and by having
a standard, there is a way for people to use a good, tested algorithm instead of
forcing them to devise their own untested (and usually very weak) method.

DES was originally developed after years of work by IBM, was later adopted as
a standard. Before adoption, the algorithm was rigidly tested by the National Secu­
rity Agency (NSA), and was declared free of any statistical or mathematical weak­
nesses. This suggests that it is impossible to break the system using statistical
methods (such as frequency tables) or to work the algorithm backward using math­
ematical methods. DES is used by federal departments and agencies to protect all
sensitive computer data (excluding some data classified according to the National
Security Act of 1947 and the Atomic Energy Act of 1954). DES is also used by many
nongovernment institutions, including most banks and money transfer systems.

The DES A,&orithm

DES works on blocks of 8 bytes (64 bits), encrypting (or decrypting) them using a
56-bit external (user-supplied) key. Due to the algorithm's complexity and length,
we will not go into it in full detail.

230



Chapter 8: Data Protection and Encryption

First, 16 internal keys (K 1,Kz ... K16) are created from the external key us­
ing a variety of permutations and left shifts (rotation).

Next, let's consider the block to be encrypted as a collection of bits num­
bered 1,2,3 ... 64 (see Figure 8-4). First the block is subject to an initial permuta­
tion stage, which rearranges the location of the bits. The output is then divided
into two parts, left (Lo) and right (Ro), each consisting of 32 bits. The algorithm
has 16 steps. Each step receives as input the Land R of the previous stage and
outputs a new Land R.

At each stage n (n == 1 to 16) the following is performed:

Ln = Rno t

The new left part is equal to the previous right part.

The new right part is equal to the previous left part XQRed with the output of
the Function f (whose inputs are the old right part and the nth internal key (Kn).

The output of the 16th step is then treated by an inverse ofthe initial permu­
tation and is the final encrypted output. Decryption is done by passing the en­
crypted data through the same algorithm in reverse. The cipher Function f is
defined as

1. The 32-bit R (right part) is expanded to 48 bits and is now called ER (this
is done by a bit selection table).

2. ER is XQRed with Kn (the nth internal key) giving us 48 bits. These are di-
vided into 8 blocks of 6 bits each, which are called BlIBz Bs.

3. There are 8 substitution functions (S boxes) called Sl,sZ Ss. Every S
box gets an 8-bit input and gives a 6-bit output. Thus B1 would go into Sl
to yield a 6-bit output, Bzwould go into Sz, etc. All the outputs together
are the 32-bit output.

4. The output of the last stage is again permutated giving the final output
of the Function f.

Note that all the exact permutations, S boxes, bit-selection tables, shifts,
substitutions, etc., used in DES are specified in the standard (but are too lengthy
to be presented here).

There is no doubt that the DES is a strong cryptosystem. The strength of
DES is not only theoretical-it has remained unbroken in spite of many years of
widespread use. However, DES does have potential flaws. First, some patterns in
the plaintext will be seen in the ciphertext. If we have identical blocks of plain­
text (for example, blocks of 8 consecutive blanks), they will be encrypted to iden­
tical ciphertext (when we use the same key). Another weakness of the DES has to
do with the relatively short key used, only 56 bits. Thus, there are 256 (about 7.2

231



Section 2: Programming Tools and Techniques

Input Block J1.--------1-------

ILa

Inverse Initial Permutation

....1----- K1

Output Block I--------",
Fig. 8-4. Block encrypted by DES.

X 1016
) possible keys. It might be possible to devise a special mUltiprocessor

computer that will break messages encrypted by DES by the IIbrutal force"

232



Chapter 8: Data Protection and Encryption

approach, that is, by generating all possible keys. Such a powerful computer, if it
can be developed at all, is only within the development capacity of the security
agencies of the superpowers.

The DES is an example of a conventional cryptosystem. In such systems,
there is only one key which is used both to encrypt and decrypt the data. If two
persons want to pass secret data from one to the other, they must both know the
same key, so a safe way to transfer the key is needed.

The following example was created with the F; Le Encrypt program. The
program is a full DES implementation (that also performs a pre-DES key manipu­
lation to facilitate using the full range of external keys DES can handle).

pLa;ntext "MS - DOS" ;n hex: 4D 53 20 2D 20 44 4F 53
c;phertext (key="DES") ;n hex: 3F 8D DD 29 E7 80 31 18

Key Selection and Management

For using DES (as well as other encryption and password systems), we must choose
secret keys (or passwords). Though this may seem an easy task, it is not. Agood key
is one which cannot be guessed eas~ yet one that we can easily remember. Using a
good ciphersystem such as DES will not help us if we keep a written note of our
password lying around. On the other hand, forgetting the key used to encrypt data
with DES will make decryption absolutely impossible. The worst keys are the most
obvious ones: ffiMPC, names of people or places, telephone numbers, birthdates,
English words (there is only a limited number of words and a computer can try all
of them very quickly), etc. Reasonably good keys are those that would seem ran­
dom to anyone but you, yet you have a method to remember them, for example,
the third letter of every word of a famous saying. As a rule of thumb, longer keys
and keys that contain different types of symbols (such as letters and numbers) are
to be preferred. The best keys are those which are randomly generated, but they
are easily forgotten. This problem can be overcome by keeping all the passwords in
a file that is encrypted with a master password.

8SA and Public Key Systems

In a public key cryptosystem, keys come in "matchingn pairs. One key (the public
key) is used to encrypt and the other key (the private key) is used to decrypt data
that was encrypted with the matching public key. Obviously, it is critical that the
private key cannot be derived from knowledge of the public key. The advantage
of a public key cryptosystem over a conventional one is that there is no need to
have a safe method to transfer keys between different parties. It is possible to
publish a telephone book listing the public keys of all the users of the system. If
party A wants to encrypt a message so that only party Bcan access it, the public
key of party B will be used, but only the private (secret) key of party B can be
used to decrypt such a message, as shown in Figure 8-5.

233



Section 2: Programming Tools and Techniques

Public
Key

Plaintext

Private Key

Ciphertext

Fig. 8-5. Public key cryptosystem.

Public key cryptosystems are based on the use of trapdoor one-way func­
tions. The term Ilone-way" suggests that it is easy to compute the function in one
way (encrypt the data if you know the public key), but it is very difficult to com­
pute it in the other direction (decrypt the data). The term "trapdoor" suggests
that if you have certain secret knowledge (the private key), it becomes easy to
compute the function in the other direction (decrypt). The most important pub­
lic key system today is RSA, named after its inventors: Rivest, Shamir, and Ad­
leman. We will look at the RSA algorithm in some detail. Do not be worried ifyou
get lost in the calculations; you can get the general idea of the algorithm without
necessarily following all the calculation's details.

Before we can understand the RSA algorithm we need to define a few
terms:

Prime Number. p is a prime number if it has only two divisors (1 and pl.
Examples of prime numbers are: 3,5, 7, 1113, etc.

Relatively Prime. Two numbers: e and d are called relatively prime if they
have no common divisor except 1. For example: 9 (whose divisors are 1, 3, 9) is
relatively prime to 10 (divisors 1, 2, 5, 10) while 9 is not relatively prime to 12 since
3 is a common divisor of both.

Modula. If i and j are integers, i modula j is the remainder of dividing i by j

234



Chapter 8: Data Protection and Encryption

using integer division. For example: 31 modula 3 is 1 because 31 + 3 = 10 and 1
remainder; 5 modula 3 = 2 (5 + 3 = 1 and 2 remainder); 20 modula 5 = 0 (20
+ 5 = 4 with 0 remainder).

1b use the RSA algorithm, we first generate our private and public keys
with the following procedure:

1. Choose two very large prime numbers; call them p and q.

2. Define n as the product of p and q (n = p x q).

3. Pick a large random number, to be named d, which is relatively prime to
(p - 1) x (q - 1).

4. Define an integer e, so that (e x d) modula «p - 1) x (q - 1)) = 1.

5. Establish our public key as the set of two numbers nand e, and our pri·
vate key as the set of numbers nand d.

Now when we want to encrypt data for a person whose public key is (e, n), we
would do the following:

First, represent the plaintext as an integer between 0 and n-l. This is done
by breaking the plaintext into a series of blocks, and representing each block as
an integer. Let's call the number representing our plaintext block M. Next, raise
M to the power e. The modula n of this is the ciphertext for this block, and will be
namedC.

1b decrypt the message, using the corresponding private key (d, n), one
should raise C to the power d. The modula n of this is the original plaintext.

Here is a simple example using the procedure just listed:

1. Choose p = 3 and q = 11 (in practice we would use much larger
primes-100-digit or more primes are suggested).

2. n = 33 (3 x 11)

3. (p - 1) x (q - 1) = 20 so we need a number relatively prime to 20, for
example: 3, Le., d = 3.

4. We need to choose e so that (e x d) modula Up - 1) x (q - 1)) = 1. In
our case (e x 3) modula 20 = 1. So we can use e = 7 (7 x 3 = 21 and
21 modula 20 = 1 because 21 + 20 = 1 and 1 remainder).

5. We publish our public key as n = 20 and e = 7. Our private is (3, 20),
meaning n = 20 and d = 3.

Now, suppose someone wants to send us the message

CAB

First, the sender represents the message as blocks of numbers with values
o to 32. Let's assume the representation is A = 1, B = 2, etc., so the numeric

235



Section 2: Programming Tools and Techniques

representation of the message is 3 1 2. Next, the sender looks up our public key
which is (7, 33) (e, n). Now comes the process of encrypting the message by rais­
ing the value of every block to the power 7 modula 33 as shown in Table 8-2. The
numeric representation of the encrypted message is: 9 1 29.

Table 8-2. Encryption Conversion Chart

Mblock

3
1
2

To the power of 7 (e)

2187
1
128

Modula 33 (0)

9
1
29

When we receive this message we decrypt it by raising every block to the
power 3 (d) modula 33 (n) as shown in Table 8-3. The decrypted message is: 3 12,
the original message.

Table 8-3. Decryption Conversion Chart

Encrypted block

9
1
29

To the power of 3 (d)

729
1
24389

Modula 33 (n)

3
1
2

The strength of RSA is based on the assumption that it is very hard to de­
rive the private key from the public key. This is based on the fact that the private
key can be derived by factoring (finding the divisors of) n. Since n is a very large
number (a number with at least 200 digits is recommended) and there are no
known effective algorithms to factor such large numbers, it would take very long
to do this (requiring over 1023 operations). Unfortunately, the fact that until now
no efficient algorithm was found to factor very large numbers does not prove
that no such algorithm exists, and if such an algorithm is found, this system will
become worthless. Also, there might be a yet unknown algorithm to derive at
the secret key d without having to factor n.

Data Encryption and MS-DOS

In password protection systems, we found that implementing them at lower ac­
cess levels (BIOS instead of DOS) improves the system by making bypassing more
difficult. On the other hand, in a system based on data encryption, it is better to

236



Chapter 8: Data Protection and Encryption

implement the system at higher access levels, consequently achieving greater
control over who has what access to which data. Here, we are not worried about
the system being bypassed-anyone is welcome to look at our encrypted data.

An encryption system that works at the BIOS level (intercepts software In­
terrupt 13h) must treat the hard disk it protects as one whole unit, either grant­
ing or denying access to it all. On the other hand, if our encryption system
intercepts data access requests at the DOS level, it is possible to give various peo­
ple different access privileges by encrypting different files with different keys.
The ideal place for the encryption software is within the application that uses
the data. This enables access control down to a record or even a field level. For
example, only the company's directors have access to the president's salary
whereas all the secretaries may read the president's home phone number.

Loopholes in MS-DOS Data Security

MS-DOS, unfortunately, was not built with data security in mind, so there are
many loopholes which make sensitive data more vulnerable, even when an en­
cryption system is in use.

Deleting a File

When you delete a file using the MS-DOS DELETE command, or if a program
deletes a file using the delete file function of DOS, the file is not really deleted, it
is only marked as such. The file's data is actually left untouched on the media.
For DOS, deleting a file means: marking the FAT entries of the file's clusters as
"unallocated clusters:' and marking the file's directory entry as "unused:'

Since the data that was once your file is still on the media, it may still be
accessed (for example, through BIOS using absolute sector addresses) and in
some cases, the entire file can be reconstructed. The data is never really deleted,
but we hope when the cluster that has your old file's data is allocated to a new
file, the new file's data will overwrite it. Why use the word "hope"?

As you recalC the clusters on your hard disk are made up of multiple sec­
tors. When your old file's cluster is allocated to a new file, which only needs the
space of some of the sectors, only the data in those sectors will be overwritten by
new data. This implies that many of your current files have data of old deleted
files appended to them at the end (DOS knows how much data belongs to the
current file according to the file length field in the directory).

The solution to this loophole is to physically overwrite the data in your files.
(with zeros for instance) before requesting DOS to DELETE the file (many utility
programs can do this, including the Scratch option of File Encrypt).

237



Section 2: Programming Tools and Techniques

Formatting a Hard Disk

When MS-DOS formats a hard disk (unlike a diskette), it does not really do a
hardware format (the process of creating sectors in the tracks). Although the
FAT now indicates that all the clusters are unallocated and the root directory
now shows that there are no files, actually, all the data that was on the disk be­
fore the format is still there.

My solution: do not rely on the DOS FORMAT command to delete the disk's
data. Instead, overwrite the data or use a hardware-formatting program.

Data "Leftovers"

DOS accumulates the data before writing it to the disk in RAM buffers. The
smallest amount of data that can be written to a disk is one whole sector (512
bytes). Thus, at a file's end, though DOS may have less data to write, 512 bytes will
always be written. The data in this unused part of the buffer is unpredictable. In
reality, this will be whichever data just happened to be in the space used as the
buffer. This can easily be your secret data that just happened to be in the wrong
place at the wrong time.

The obvious conclusion is: do not leave any data "leftovers" in the com­
puter's RAM. When you are finished using a program that accesses sensitive
data, turn off the computer and so clear all the RAM. Thrning off the power will
not only prevent someone who uses the computer after you from looking at the
leftover data in RAM, but will also prevent DOS from using your sensitive data as
padding for clusters. Of course, programs which are data security-conscious
will nullify all the decrypted data left in RAM upon their termination. Regretta­
bly, there are very few such programs.

Summary

In this paper, we reviewed some of the means available to protect your data in
the MS-DOS environment. The unavoidable conclusion we have reached is that
any efficient data security system must be based on encrypting the data. The
algorithm used in an encryption system should preferably be DES or a variation
based on DES, but so-called proprietary algorithms should usually be avoided
since they are almost always very simple to break.

We can only hope that the increase in computer security problems will mo­
tivate more software developers to incorporate strong security measures into
their programs. Until then, we can protect our data by the use of stand-alone
encryption software.

238



Chapter 8: Data Protection and Encryption

The File Encrypt software, a full DES encryption program for the IBM
PC written in assembly language for maximum speed, is available for
$69.95 (check or money order, California residents add sales tax) from: Wis­
dom Software, Inc.; R O. Box 146310; San Francisco, CA 94114-6310 (Phone
415/566-0754. The program runs under both MS-DOS and OS/2 protected
mode. For source code availability and integration with other software,
contact the author at the above address.

Reading List

Meyer, C. and S. Matys. 1982. Cryptography: A New Dimension in Computer Data
Security. New York: John Wiley & Sons, Inc.

l> This book has a strong emphasis on DES. Since one of the authors was a
codesigner of DES, the book is obviously biased in favor of DES.

Rivest, R., A. Shamir, and L. Adleman. 1978. A method for obtaining digital signa­
tures and public-key cryptosystems. Communications of the ACM 21, no. 2.

t> This is the original RSA paper written by its inventors. It has more details
on the algorithm than we examined here including methods to derive at
the large primes needed to implement such a system. This paper is obvi­
ously biased in favor of RSA.

U.S. Dept. of CommercelNational Bureau of Stds. 1977. Data Encryption Stan­
dard. Federal Information Processing Standards Publication 46.

t>. This is the official DES definition and has the algorithm in full detail.

Asael Dror has been programming computers ranging from mainframes to micros
for over 11 years. He is an expert in the fields of system and communication software
with special interest in computer languages and computer security. He is the author
of the File Encrypt program for the IBM PC and the founder of WisdomSoftware, Inc.,
located in San Francisco.

Related Essays

1 A Guided lbur inside MS-DOS
6 Undocumented MS·DOS Functions
"1 Safe Memory-Resident Programs (TSR)

10 Developing MS-DOS Device Drivers

239



, 'KeyWQrds

~>MiQto~f.t 'Wm4ow~

',~·>modelB8,s I~t~~ac~~

I;' 'o.bje~-o$r¢ea';progp~,

Window ,f,unQtions

window' cl~s~8

r~·a messages

,,·spy program

'. :...

,Essay Synopsis: 1b the, casual 'USeP,

:MicrosoftWmdows simply brings a "Mac·
, iJik¢",iItteIf~ce ,~o MS-DOS machines, with
:, Window8,pl1.ll:-down menus, dialog b.ox~s,

,~d,(jtJ;1er ',features tlultmllke it easy to se"
lect ,ellul,switch,betweeQ. ,programs. 'Ib the

'"programmer, howevelj MS Wmdows repre­
,',',,,;,'~tmt~Hinewway of'thinking"about the rela·

" ."Bo~p:!1):et.weenapPlications,and: their
, ,·,epvi~driment.This·e8say will introduce pro..
':'.i~j1a1flIi1ersto· thf3Windows .way.of'thinkib'g;

'., 'Ac;lQition@y,mostof the concepts· discu:ssed'
~'qarrydVerdireotly to the Pre~entati(jn

:Manager under OS/2 i.1. Windows offers
:P¥pgreunmerspowerful tools for bUilding ,
"~er,mteriaoos. However, using:Windowsefo.
':";fectiv~ly de~and6 that programmers ,break

, , "iotitQf 'U1~'mold:of 'classic MS~DOS Progr~IDS·

, ,that ron, take input, process, produce out­
':put~:and tltenterniinate. In Windows, pro..
:gt~'m~t constantly ,conununicata with
the"environment to keep track of user reo.
,qu~ ·and.to 'manage resources. A$botll a
.'~~Qg ~dand' a :pra.ctical tOQl, this essay
p'F~~nts:a,handy. :program ~~ed SPY: Thi~
:Pr:9#~ ~·~our ·private eye" on th~ Will· ­
'dpwsenvjtcmment. ¥ou will imd it ,useful
1;Jo:tf.'-' for .lrdaming about Windows and for
)heJpmg to debug Windows applicatiol1,s.



9

Inside Microsoft Windows

Michael Geary

Microsoft Windows is an operating environment and software library de­
signed to let you write MS-DOS applications with a modeless, graphical user in­
terface. This user interface bears a striking resemblance to the Macintosh and,
likewise, Windows programming and Macintosh programming share many im­
portant concepts. In particular, the modeless user interface requires an applica­
tion program structure that's quite different from traditional DOS applications.

Who's in Charge Here?

What do we mean by a modeless user interface? Many application programs
have their user interfaces built around a variety of different modes. A mode is
simply a particular state in a program that changes the meaning of the user's
input or limits the choices the user has available. For example, some word
processors have a menu mode, edit mode, insert mode, delete mode, and per­
haps a few others. The menu mode may well have several levels of submodes
within itself: you make one menu choice, it leads to another, and another, until
you finally select the operation you wanted in the first place. Modes are often
used in a well-intentioned attempt to simplify things for the user, but they usu­
ally backfire. The novice user is puzzled-and the experienced user irritated­
when choices are restricted this way. It's the old problem of, /lI'm here in the
menu tree, now how do I get over there?!"

Unfortunately, modes happen to be convenient for the application pro­
grammer. As soon as you write a little piece of code like this:

printf( "Enter account number:" )i

scanf( "%1 Os" , acctnum )i

241



Section 2: Programming Tools and Techniques

you have put the user into enter-account-number mode. If the user has forgotten
the account number, it's time to escape out of this section of the program, work
through a couple of menus to get to the account number list, exit back out
through those menus again, and come back through more menus back to enter­
account-number mode. Yet, this kind of code is so easy to write that many appli­
cations are programmed this way: prompt the user and input a choice, prompt
again and input another choice. At each step, the user is limited to just those
options that the program allows at that point.

One of the main goals of MS Windows is to avoid this kind of user interface,
replacing it with one in which the user, not the programmer, is in charge. Th
accomplish this takes a radical restructuring of applications. (See Essay 1, A
Guided Thur inside MS-DOS, by Harry Henderson, for a general discussion of
approaches to the MS-DOS user interface.)

There are many different kinds of windows you can use, and just choosing
how to set up the different windows can be a real challenge. The program we
present called Spy can tell you what kinds of windows any application uses, and
is also a handy tool for debugging your own applications to see if your windows
are set up the way you intended.

Windows and Messages

The way Windows avoids modes and puts the user in control is by doing just the
opposite of a traditional DOS application. Instead of letting the program's flow of
control be the governing factor, a Windows application spends most of its time
waiting for messages. In general, each message is directed toward a specific win­
dow. Each window in an application has a windowfunction, whose job is to pro­
cess messages for that window.

For example, if the user clicks the left mouse button in a window, Windows
generates a WM_LBUTTONDOWN message to notify the window function that the but­
ton is down, and then a WM_LBUTTONUP message when the button is released.
These messages are delivered to the window function through calls to that func­
tion. Note that the application doesn't "ask" for mouse input-it's the user's action
of pressing the button that causes this input. A window function never knows
what message it is going to receive next. When it receives any particular mes­
sage, its job is to process that message and then return as soon as possible. In
fact, one good way to think of a window function is as a little machine whose job
is to respond to messages generated by the user or by Windows. The fact that
window functions process messages generated by the user's actions, instead of
asking the user for input, allows the existence of the modeless user interface.

MS Windows generates messages for mouse and keyboard input and also
for every other situation where an application needs to be notified of some
event. For example, there are messages to let a window know when its size or

242



Chapter 9: Inside Microsoft Windows

position has changed, when it needs to have its contents redisplayed, or when a
menu selection is made. Messages are one of the most important keys to under­
standing Windows applications.

Getting the Message: WinMain and Friends

How does a message actually get to a window function? First, each application
has a message queue, a first-in, first-out (FIFO) queue to hold messages waiting to
be processed. A message queue is needed simply to allow type-ahead and
"mouse-ahead." (The standard IBM BIOS type-ahead buffer would be inadequate
for Windows applications-Windows provides much more extensive keyboard
information to the application.)

The main program of any Windows application looks something like this
(the example is simplified and will not run in this form):

int WinMainO
{

MSG msg;

1* Any initialization would go here *1

1* Main message loop: *1
while( GetMessage( &msg ) ) {

DispatchMessage( &msg );
}

return 0;
}

As you can see 1 there's not much to it-after doing any needed initialization
(such as creating the application's windows), the program settles into a loop call­
ing GetMessage and Di spatchMessage. GetMessage retrieves the next message
from the application's message queue and fills in the msg structure with informa­
tion describing the message. This structure includes

L'> the window handle for the window that is to receive this message (When
you create a window, Wmdows assigns a window handle to it and returns
that handle to you. Every time you refer to a window1 you use its window
handle, and each message for a window includes the window handle.)

[> the message number, a numeric code identifying the message (These
codes are represented by #def i ne constants in C, such as the
WM_LBUTTONDOWN and WM_LBUTTONUP messages we mentioned above.)

243



Section 2: Programming Tools and Techniques

f> two additional parameters, called wParam and lParam (These are a 16·bit
value and a 3Z-bit value, respectivel,)', and contain information that varies
depending on the particular message number.)

:--~'- the mouse position and the time in milliseconds since Windows was started
(These two structure fields are usually ignored, since the same information
is repeated in wParam or lParam for those messages that deal with mouse
position or time of day.)

Strangely, Wi nMai ndoesn't do anything with all this information once it's re­
ceived it except immediately call Di spatchMessage, passing it the msg structure.
This is where the real work begins, because Di spatchMessage calls the window
function, passing it the information from the msg structure.

Actually, Windows could have done all this internally. The reason for having
this message loop in the application itself instead of down inside Windows is just
to give a little more flexibility-there are always those situations where you want
to get sneaky and do something a little out of the ordinary with messages. This
message loop gives you one more place to do that, by putting extra logic between
the GetMessage and Di spatchMessage calls. MS Windows provides several func­
tions such as IsD i a logMessage that are used this way.

Window Functions

When Di spatchMessage receives a message, it calls the window function for the
appropriate window. A window function looks something like this:

lONG FAR PASCAL ThisWindowFunction( hWnd, wMsg, wParam, lParam
HWND hWndi 1* Window handle *1
WORD wMs9i 1* Message number (WM_something) *1
WORD wParami 1* 16-bit parameter *1
lONG lParami /* 32-bit parameter */

{

switch( wMsg
{

case WM_xxxxxxxx:
1* process one kind of message */
return Oli

case WM_yyyyyyyy:
1* process another kind of message */

return Oli
}

244



Chapter 9: Inside Microsoft Windows

/* default processing for all other messages: */
return DefW;ndowProc( hWnd, wMsg, wParam, lParam )i

}

The parameters to the window function correspond to the fields we de­
scribed for the message structure in W;nMain; they just happen to be individual
parameters instead of structure fields at this point. Note that the window func­
tion is quite simple: it's just a big sw; tch statement, listing each of the messages
that the application wishes to process for this window. After processing any
given message, the function returns. (The return value isn't always 0; for some
messages, the return value is significant.)

All messages that aren't handled explicitly are passed along to a special
Windows function called DefW; ndowProc. This function provides the default pro­
cessing for all messages. Many messages are simply ignored by DefW; ndowProc­
keyboard and mouse messages, for example. If you don't process mouse input,
it's ignored. There are some messages that must be processed, however, and
DefWi ndowProc takes care of these for you. An example would be the WM_NCPAINT
message, which causes the border, title bar, and scroll bars for a window to be
displayed.

DefWi ndowProc also has defaults for some messages that you might want to
handle specially. For example, the WM_CLOSE message is a request to destroy
(close) a window. DefW; ndowProc calls the Dest royW; ndowfunction, so the window
is immediately destroyed. Many applications' window functions process this
message themselves, so they can put up a "Do you want to save . . . n message
and call Dest royW; ndow only if the user confirms.

In fact, that is why there is a default window function like this. It would have
been possible for Windows to just automatically take the "standard" actions for
various messages and never send them to your window function in the first place.
Many of the messages passed to DefWindowProc are ones you're not likely to be
interested in, but passing them through your window function gives you the
chance to intercept any and do something special with them when necessary.

Events of the Day

Messages provide a natural way to handle keyboard and mouse (or other point­
ing device) input without locking the user into different input modes. Windows
generates messages for every keystroke, mouse click, and mouse movement, and
addresses each message to a particular window.

.Mouse Messages

Mouse messages are generally sent to the window underneath the mouse cursor.
When the user rolls the mouse around, Windows sends WM_MOUSEMOVE messages

245



Section 2: Programming Tools and Techniques

to each window the cursor moves across. These messages include the mouse
cursor position, relative to the window's client area, along with a set of bits tell­
ing which mouse buttons are down and whether the Ctrl or Shift keys are down.
There's also a message sent each time the user presses, releases, or double-clicks
a mouse button. Although many Windows applications use only a single mouse
button, Windows supports up to three buttons, and each button can generate
those three kinds of messages. The WM_LBUTTONDOWN and WM_LBUTTONUP messages
fall into this category.

There is an important exception to the rule that mouse messages go wherever
the mouse is pointed. Any window can take over mouse input with the SetCapture
function. This function causes all subsequent mouse messages to be directed to a
specific window. No other window will get mouse messages until Re leaseCapture is
called. These functions are commonly used for "dragging" operations. The applica­
tion calls SetCapturewhen the user presses the mouse button and Re leaseCapture
when the button is released. In between, the capture window specified in the Set­
Capture call gets all the WM_MOUSEMOVE messages. The autoscrolling during this lets
the window control the dragging without "losing" the mouse if the user happens to
roll it past the edge of the window. 'lext selection in Notepad or Write is an example
of this use of SetCapture and ReleaseCapture.

Keyboard Messages

If you have ever struggled with the restricted keyboard interface of DOS and
BIOS, you will really appreciate the flexibility of Windows' keyboard handling.
Unlike BIOS, which throws away perfectly valid keystrokes like the infamous "5"

key on the numeric pad, Windows sends keyboard messages on every keyboard
event. Your window function gets a WM_KEYDOWN message each time a key is
pressed, and a WM_KEYUpmessage each time a key is released-for every key, even
the shift keys. Windows defines a list of virtual key codes, and passes you that
code as well as the actual keyboard scan code. Autorepeat keys also generate
WM_KEYDOWN messages, but there's a flag passed with the message telling you
whether it's an actual keypress or an autorepeat. This gives you complete con­
trol over the keyboard handling.

Windows pushbuttons are a good example of the kind of flexibility these
keyboard messages can give. When you press the space bar on a pushbutton,
the button is highlighted, remains highlighted while you hold the space bar
down, and goes back to its normal state when you release the space bar. It also
sends the parent window function a notification message (1 I ve been eli eked)
when you release the space bar. Under DOS, you couldn't have this kind of user
interface without writing your own keyboard interrupt handler, because BIOS
doesn't tell you when the key is released. With Windows, it's easy: Highlight the
button on the first WM_KEYDOWN, ignore the autorepeat WM_KEYDOWN messages (by
checking the autorepeat flag), and on the WM_KEYUP, remove the highlight and
send the notification message.

246



Chapter 9: Inside Microsoft Windows

Besides this raw keyboard handling, there is an ASCII keyboard message
available as well. This message, WM_CHAR, is more like the traditional keyboard
input. You get a WM_CHAR message for every actual ASCII character input. For ex­
ample, if you press Shift-A, you get four raw messages: WM_KEYDOWN of the Shift
key, WM_KEYDOWN of the A key (but it doesn't tell you whether it's an upper- or
lowercase A!), WM_KEYUP of the A key, and WM_KEYUP of the Shift key. You just get a
single WM_CHAR message, with the ASCII code for capital A. You can use the key­
board at whichever level suits your application, or mix and match as needed. It's
common to check the WM_KEYDOWN and WM_KEYUP messages for cursor keys and
similar functions, and the WM_CHAR messages for actual text input.

Input Focus

One question remains: How does Windows know where to send keyboard input?
At any time, one window owns the input focus, and keyboard input is always
sent to this window. This is different from the mouse, which sends messages to
different windows as you roll across them. Keyboard input goes to the window
with the input focus, regardless of where the mouse is located. The user can set
the input focus to a window by clicking the mouse in it, by using the Alt-Tab/Alt­
Esc keys to switch among the windows, or by calling the Set Focus function to
change the input focus to a different window.

When the Windows user changes from one window to another with a
mouse click or the Alt keys, that actually doesn't directly set the input focus to that
window. First, the window becomes the active window and receives a WM_ACTIVATE
message. The active window and input focus are closely related, but not the same.
The default processing for WM_ACTIVATE does set the input focus to that same win­
dow with a Set Focus call, but it doesn't have to be the same. For example, in a
dialog box, the active window is the dialog box window itself, but the input focus
is directed to one of the items inside the dialog box. This is done by processing the
WM_ACTIvATEmessage. Also, if a window is iconic, it generally doesn't take any key­
board input other than the Alt keys, so the default code for WM_ACTIVATE doesn't
set the input focus there if the window is iconic. By the way, Windows sends
WM_SETFOCUS and WM_KI LLFOCUS messages to your window function to let it know
when it is getting and losing the input focus. (If all these messages were telegrams,
your Windows application could make Western Union rich!)

Window Rectangles

The screen area for a window is defined by two rectangles: the window and the
client. The former gives the window position on the size on the screen and cor­
responds to the actual border of the window. The client rectangle defines an
area within the window rectangle that the application's window function (the
"clientn

) will use. The region in between-the title bar, menu bar, scroll bars, fat

247



Section 2: Programming Tools and Techniques

borders, etc.-is called the "non-client area.nNormally, a default window func­
tion inside Windows manages this area, but an application program can take
over if it needs to. The client area is really a coding convenience, giving the win­
dow function a nice, well-defined area it can work in.

Window Styles: Overlapped, Popup, Child

There are three major categories of windows: overlapped, popup, and child.
The main difference between them is the screen space they reside in. Over­
lapped and popup windows share the full screen as their display space, and are
defined in terms of absolute screen coordinates. They are clipped at the edge of
the screen, and also clipped relative to each other wherever they overlap. This
means they won't interfere with each other's display space. If a portion of one
window is hidden by another window sitting on top of it, any attempt to display
something in the hidden portion is ignored.

What's the difference between an overlapped and a popup window, if they
can all overlap each other? Well, "overlappednis a bit of a misnomer, since popup
windows can also overlap. The fact that we even have these two different styles is
a holdover from MS Windows l.X. The overlapped windows used to be tiled win­
dows, which were different from popups. The difference is this: overlapped win­
dows are all independent of each other and can be made iconic. Popup windows
cannot be made iconic, and they often have a parent window, which may be
either an overlapped window or another popup. If a popup window has a par­
ent, then making the parent iconic will make the popup window disappear until
the parent is made visible again. Also, the popup window will always be lion topn
of its parent-if the user tries to bring the parent window to the top, the popup
will still be on top of it. In most Windows applications, the main application win­
dow is an overlapped window and any dialog boxes are popup windows.

Child Windows

A child window always has a parent, and is always displayed within its parent's
client area. Child windows can overlap each other, but they are always clipped at
the edge of the parent's client area. A child window will never show up outside
the boundaries of its parent, and if you move a window, all its child windows
come along with it. Child windows are defined in their parent's client coordi­
nates, that is, a child window with an origin of (0,0) would be at the top left cor­
ner of its parent's client area.

Child windows are used extensively in Windows applications, as Figure 9-1
shows. The control panel has a main window containing one child window. In­
side that child window are several other child windows, the individual compo-

248



Chapter 9: Inside Microsoft Windows

nents of the control panel. Child windows provide a handy way to provide
different kinds of behavior in different areas of a single application window
since each child window has its own window function. For example, the MS-DOS
Executive has three separate child windows: one for the little disk pictures, one
for the current directory path, and one for all the filenames. This way, each child
window function can handle its own operations without worrying about the
others-you just create the windows and let them run. Child windows are also
handy when you want to take advantage of code that's already been written. All
the items in a dialog box are child windows and use window functions that have
been provided as part of Windows. You don't have to write your own code to put
a little edit field inside a dialog box, for example .

.....................................
Con t,·o 1 Pane 1

[

Tilile

2:,.2:22 PH

~py

Window 1AF,. {Spyt} (51.212;636."14) "Spy on Windowst ..
:~==:.- Window 163C {CtIPanel} (1.6;327.2"1) "Control Panel"

Child window 17.E8 {132770} (8.47;328.242) ....
~Child window 184C {Button} (32.62;152.111) "Tillle" ::::

Child window 189C {ScroIIBar} (137.10;152.111) .... ::::
Child window 18EC {Button} (196.62;292.111) "Date" :~:~

~m~ §m~ gi~ ~~~m~~:~i:~i~~~im~~~~;~!:~orBlink" Ij
Child window 1DE8 {Static} (120.145;152.161) "Fast" ..
Child window 1E2C {Button} (176.122;312.220) "Double Click" ~:~:
Child window 1E10 {ScroIIBar} (18".161;304.182) .... t

free rum + ~:~it~::~u~~~J~~m:~u!:E;~:~ ~:::i~;1~ :::~:::: +• :1

Fig. 9-1. Windows within windows.

The child windows in the MS-DOS Executive window are not readily appar­
ent to the user. In fact, it takes a program like Spy to reveal them. They are just a
coding convenience for the MSOOS. EXE program. The exact same application
could have been written with a single window and explicit code to handle things
like mouse hit-testing (determining which area the mouse was clicked in). Using

249



Section 2: Programming Tools and Techniques

child windowsI howeverI helps you modularize your codeI and also lets Windows
do more of the work for you.

You can also create child windows that the user can directly manipulate.
Child windows can have caption bars I sizing borders I and the like, letting the
user move and size them. In fact, they can look just like overlapped or popup
windows, and can operate much the same except for being located in their par­
ent's client area.

One of the few limitations on a child window is that it can't have any menu
of its own. It can have a system menu, but no menu bar of its own. (In Windows
1,XI a child window couldn't even have a system menu l only a close box. That's
probably one of the most rarely seen features in Windows 1.X applications.)

Multiple Document Interface

The Multiple Document Interface (MDI) in Windows 2.0 makes extensive use of
child windows. Each application has its own top-level overlapped window (and
any popups as needed)1 and all the application's documents or views of docu­
ments are opened as child windows within this parent. For example, in a MIDI
(Musical Instrument Digital Interface-no relation to MDI!) sequencer program,
you might open up child windows for sequence editing, voice editing, MIDI pa­
rameters, and a control panel.

The child windows can be moved and sized, and even zoomed (maximized)
to fill up the parent's display space. As you select different child windows, the
parent's menu changes since the child windows can't have their own menus. This
is similar to the way some Macintosh programs operate, wherein the title bar
changes as you select different windows. In factI running a set of Macintosh ap­
plications under MultiFinder is much like running Windows. The main visual
difference is that all menus appear on the top of the screen on the Mac, where
each main application window has its own menu under Windows.

The purpose of MOl is to help the user organize and control the different
applications' windows. For example I if you want to get that music program out
of the way for a while, you can minimize ("collapse" into a single graphic symbol)
its main window, and all its child windows disappear along with it.

Window Classes

Often, you want to have several different windows that operate the same or a
similar way. Suppose you have a dialog box with several edit fields. Each one is a
window. (In fact, every item in a dialog box is a child window.) Although you
need to be able to refer to each one individuallYI and each one has unique data
including its text l the actual program code for each is the same. That suggests

250



Chapter 9: Inside Microsoft Windows

they ought to have a common window function and perhaps some common
data, along with a block of data unique to each window.

That's exactly what a window class is, defining a collection of windows that
share a common window function and have some other attributes in common as
well. Windows comes with a number of predefined window classes. Most of
these are the various controls or child windows used inside dialog boxes, such as
the text editing and pushbutton controls. Applications can also create their own
window classes. In fact, nearly every Windows application creates at least one
new class for its main window.

You create a window class with the Reg; sterC lass function, and thus spec­
ify the information that will be common to the windows of this class. Reg; ster­

Clas s copies this information into Windows' own list of window classes, so that it
becomes available for creating windows. This information includes

r> the window class name (This is a text string that uniquely names the
class. The predefined window classes that come with Windows include
Edit (text editing window), Static (background text), Button (push button,
radio button, check box), ScrollBar (horizontal or vertical scroll bar), and
List Qist box).)

C"... the window function address (This function gets called by Windows
whenever there is a message for any window in this class.)

t> the icon and cursor to be used for windows in this class

!>- the default menu and background color (or brush) for these windows

l::> the class style, several option bits affecting window operation

!>- two values indicating how much extra space to allocate in the class data
structure and in each window data structure (Windows provides func­
tions to read and write this extra data space, giving a convenient place to
store additional information for your window functions to use--either
data for the class as a whole or data that's unique for each window.)

Creating a Window

Once you've registered a window class, you can create as many windows of that
class as you like, using the CreateW; ndow function. The parameters to
CreateW;ndow include the information that's unique (or can be unique) to each
instance of the window:

[;> the window title

I> the parent window, if this is a child or popup window

t> the window's position and size (For a child window, this is relative to the
parent window's client area. Otherwise, it's the actual screen position.)

251



Section 2: Programming Tools and Techniques

. the window's menu (optional, to override class menu)

.... window style, a set of bit flags like the class style, but unique to this win­
dow IThese style flags include things like whether the window has scroll
bars, a title bar, or a sizing border.)

One remaining parameter to CreateWindow is the window class name. The
information that was provided with the Reg; sterC lass call applies to this window,
as well as to the other windows of this class. That includes the window function.
In the example we mentioned above, where you have several text edit fields in a
dialog box, these are individual instances of the Edit class. Each one has a unique
position on the screen and contains different text, but they all share a common
window function, containing the code to do the actual text editing.

Where Do Messages Originate?

After you create a window with the CreateWindow function, the window func­
tion starts receiving all the messages we've been talking about. There are actu­
ally two very different ways a message can be originated: SendMessage and
PostMessage. Most of the messages we discussed earlier, including keyboard and
mouse input, are created with PostMessage calls (or some equivalent functions
used internally by Windows). PostMessage places a message on an application's
message queue, where it will be picked up later by a GetMessage/Oi s­

patchMessage loop, such as the one in WinMain.

There are some messages that CreateWi ndow sends directly to the window
function during the window creation process, long before CreateWi ndow ever re­
turns. These messages are created with a SendMessage call. SendMessage is essen­
tially a direct subroutine call to a window function, bypassing the message
queue. If you send messages of your own to a window function, the choice of
whether to use SendMessage or PostMessage depends on whether you want the
message to be processed immediately or queued up to be processed in sequence
with other messages. Some messages return data to the caller-these are always
sent with SendMessage. For example, you can send an EM_GETSEL message to an
edit control window, and the return value from SendMessage will give you the
beginning and end of the current selection in the edit control. PostMessage

wouldn't work for this.

Graphics Programming in Windows

In Windows, you are doing graphics programming even if your program is text
based. Really, that's always true-text is just one kind of graphics-but in Win­
dows, there's no avoiding the fact. You've got to deal with some unfamiliar con-

252



Chapter 9: Inside Microsoft Windows

cepts just to print He LLo, wor Ld!. We're not going to cover all the complexities of
graphics here, but will touch on the major concepts needed to make text and
simple graphics programs work.

Coordinate Systems and Points

Every time you do any graphics output (in any environment), it takes place in a
particular coordinate system that represents either a virtual or physical display
surface. For a DOS text-mode application, the coordinate system is the 80 x 25
screen, where you have X coordinates of 0 through 79 and Y coordinates of 0
through 24. A coordinate system is simply some method for relating X and Y
coordinates to an actual display, and a point is an (X,Y) coordinate pair.

In Windows, each window has two coordinate systems: device (physical)
and logical. Device coordinates refer to actual device pixels, but are normally
offset so that (0,0) is the top left corner of the window's client area. Logical coor­
dinates can be assigned in several different ways, either equal to device coordi­
nates or transformed through some formula to scale the coordinate size. This
lets you do tricks like the CLOCK and REVERS I programs, Le., automatically size
your image to fit the window size without having to do all the scaling computa­
tions yourself. The mapping mode you use determines how logical coordinates
are interpreted.

For a simple text program like SP~ the easiest thing to do is disregard the
fancier mapping modes and use the default one, called MM_TEXT. In this mode,
you are always dealing in terms of actual device pixels, so the one complexity is
that you have to find out how large the characters actually are. Since the font
size varies with different displays and fonts, Windows provides a function, Get­
TextMet ri cs, to let you get this information.

Rectangles and Regions

A rectangle is simple. It's defined by a pair of points, the top left and bottom right
corners. Although the top left corner is part of the rectangle itself, the bottom
right corner is just outside the rectangle by one pixel. In other words, if you had
a 2 x 2 rectangle (four pixels total) and its top left corner was (10,10), the bottom
right corner would be (12,12), not (11,11).

This is actually rather convenient once you get used to it. For example, you
can calculate width = right - left instead of width = right - left + 1. It also
lets you represent the empty rectangle (enclosing no pixels at all) as (0,0,0,0). In
fact, that's a good way to help keep rectangles straight. Think of them as enclos­
ing a group of pixels instead of describing the edgemost pixels.

A region is an arbitrary area of the display space. It can have any shape and
size, can have "holes" in it, and can be composed of several discontinuous areas. In

253



Section 2: Programming Tools and Techniques

other words, a region can be any set of pixels. Internall)!, regions are represented as
a linked list of rectangles, but Wmdows doesn't let you get at the internal structure.
There are a raft of functions to let you create a region, add a rectangle to a region
(or remove one), create the intersection or union of two regions, etc.

Regions are powerful tools for graphics programming, and Windows
makes extensive use of them. One of the most critical is the clipping region that
is in effect whenever you display anything. This is how Windows lets you display
inside a window that may have other overlapping windows on top of it. The clip­
ping region includes only the visible portions of your window, and each pixel
you try to display is compared with the clipping region and discarded if there's
another window on top of it.

Window Painting

For the newcomer to Windows programming, there are many things that must
seem pretty strange, and window painting is probably one of the strangest. Even
if you're sure you've grasped this idea of message-driven programming, you're
likely to try to paint (display) information in your window the wrong way. You
discover how to use the TextOut function and successfuly display some text in
your window. Things look fine, and then you bring up another window on top
ofyours momentarily. Then you close that other window, and . . . your window
is blankI Or worse yet, part of the text you displayed is still there and part of it
has disappeared. What happened?

Well, remember that Windows sends you messages for everything. One of the
most critical messages-one that nearly every window function needs to handle-is
WM_PAINT. This message notifies your window function that all or part of its client
area needs to be displayed. In our little mystery above, you displayed something in
the window at some other time, but forgot to handle the WM_PAINT message. When
the other window covered up your window, the text you had displayed was lost.
When the other window was closed, Wmdows dutifully sent you a WM_PAINT mes­
sage to tell you to redisplay your client area. The rest was up to you.

Regardless of any other window painting you may do, your window func­
tion always has to be prepared to handle a WM_PAINTmessage, and display what­
ever part of your client area needs to be refreshed. There's actually a two-step
process that leads to a WM_PAINTmessage being generated. First, part of the win­
dow becomes invalidated. This simply means that part of the window's screen
display may no longer be up to date. This can happen when another window
covers it up or as a result of resizing the window. You can also request that all or
part of your window be invalidated by calling the Inva L; dateRect function. Win­
dows doesn't send a WM_PAINT message at that time. It simply accumulates the
invalid areas into an update region. Remember, a region can contain any arbi­
trary area of the screen. The update region contains those portions of your win­
dow which have been invalidated.

254



Chapter 9: Inside Microsoft Windows

Later on, when the GetMessagecall in W;nMa;n (or elsewhere) has exhausted
all other pending messages, Windows will go ahead and generate a WM_PAINT mes­
sage for any windows that have any accumulated update regions. Then your win­
dow function will finally receive the WM_PAINT message and call the special
Beg; nPai nt function. This sets up a data structure telling you what portion of the
window needs to be painted, along with other information needed for painting it.

This deferred processing may sound awfully roundabout, but in practice,
you generally get the WM_PAINTmessage pretty quickly. The purpose of deferring
it is to let your application handle any higher-priority messages, such as key­
board or mouse input, first. For example, the Alt-Tab command in Windows im­
mediately highlights each window frame in sequence, letting the user quickly
step through the applications, but doesn't let any WM_PAINT messages through
until the user releases the Alt key.

Memory Management

Windows has a very powerful-and complex-memory management scheme.
There's a heap manager much like the one provided in the C runtime library,
except it has the almost magical ability to avoid the problem of memory frag­
mentation encountered in most dynamic memory management schemes. You
know the problem-suppose you allocate several blocks of memory and then
free up most of them. You now have plenty of memory free, but it's broken up
into small chunks by those blocks that haven't yet been freed. Now if you want to
allocate one large block, you can't.

1b avoid this problem, Windows uses a relocatable memory management
system. When you allocate a memory block, using the GLoba LA LLoc function, you
don't get back a pointer to it! Instead, you get a handle to the memory block.
Even though the memory has been allocated, you don't yet know its address.
This way, Windows is free to move the block-and other memory blocks­
around as needed to avoid fragmentation. Ifyou try to allocate a memory block
and there is enough free space but it's broken up into little chunks by other allo­
cated blocks, there is no problem. Windows will simply move those blocks out of
the way to bring the free space together into one large block.

What good is a memory block if you don't know its address? Not much!
When you want to actually use the memory, you call the GLobaLLock function,
which locks the block down in memory. Windows will no longer move it around.
GLoba LLoc kreturns the current physical address of the memory, so you can use
normal C pointer operations to get at it. When you're finished with the memory,
you call GLoba LUn lock to let Windows know that it's okay to start moving it
around again if it needs to. The idea is to leave the block unlocked as much of the
time as possible, locking it only when you actually access it.

This may seem like a lot of extra work compared to more traditional mem-

255



Section 2: Programming Tools and Techniques

ory allocation schemes, and it is. But it gives you the advantage of avoiding the
old problem of memory fragmentation. In cases where you need instant access
to a piece of memory without locking and unlocking it all the time} you can tell
Globa lA lloc to Inake the block fixed instead of movable. Then, you get the actual
address of the block instead of a handle, and the block will never move. Win­
dows does take the precaution in this case of allocating the block at the low end
of memory} where it is less likely to cause fragmentation.

There are a couple of other twists to the memory management. When you
allocate a block} you have the option of flagging it as discardable. This means that
Windows is free to discard this block of memory whenever it runs low on space.
On a discardable block} you can request that Windows call back a notification
function} that you provide, right before it discards the block. This lets you imple­
ment a swapping scheme for memory, even though Windows doesn't have swap­
ping built in.

Windows puts these memory management capabilities to good use in man­
aging program code. Most application code segments, and most of the code that
makes up Windows itself} is in relocatable, discardable memory blocks. Win­
dows can move code segments around in memory} discard and reload them as
needed} all transparently to the application programs. In effect} this gives you an
overlay system for your code} without any of the drawbacks of traditional over­
lay systems. You don't have to create a tree structure for your overlays} and you
don't have to worry about which overlays are in memory at any time. Further­
more} you don't pay the penalty of frequent overlay loading when plenty of
memory is available. All you have to do is break up your code into segments} and
Windows will take it from there. If there's enough memory available, all your
code can fit into it. If Windows starts to run low on memory, it will discard code
segments as needed} keeping track of which segments have been executed re­
cently and discarding the oldest.

There are actually two heaps. The functions we just discussed access the
global heap} which is shared among all applications and occupies all of memory.
Your application also has a local heap} which you can access with a similar set of
functions whose names begin with Loea l instead of Globa l. This heap is private
to your application and is located in your own DGROUP along with your static data
and stack. As in a normal C application} DGROUP is limited to a total of 64K} and
can be accessed with near pointers instead of far pointers.

Resources

Nearly every Windows application uses resources} and they're one of those
things that sounds unfamiliar at first. But} it's likely you have used them under
another name in other programs you've written. Suppose you've built a help
facility into an application. Unless you coded all the help text in your program,

256



Chapter 9: Inside Microsoft Windows

you probably created a help file containing the different help screens along with
some coded information to let your program find the various screens. You may
have gone further and included all your error messages in this special file and
other little pieces of data your program needs to load in. Of course, this means
there's another file for your users to remember to put in the right place for your
program to find it. Wouldn't it be nice ifyou could somehow include all this data
in your .EXE file and have an easy way to get to it?

That's exactly what resources are. They're chunks of data incorporated
into your . EXE file that your program can read in dynamically. Each resource has
a type and a name, which are ASCII strings (or numbers) that identify the re·
source. Any kind of data can be made into a resource. Windows provides
predefined resource types and associated functions for the most common data
items used by Windows applications. For example, the LoadMenu function loads a
menu description into memory, LoadString loads a text string, etc. There are
also the generic Fi ndResource and LoadResource functions for additional re­
source types that you define.

Windows includes a Resource Compiler (RC), which reads a text file with
the . RC extension. This file contains data declarations for the resources you
want to include in your program. RC compiles these declarations into a binary
format and merges them into your .EXE file. One nice touch here is that RC in­
cludes the standard C preprocessor. That lets you use fI inc l ude, fldef i ne and the
other preprocessor directives in your. RC file. This is extremely helpful, because
you can include a . Hfile in both your C code and your. RC file, making the same
symbol definitions available in both.

The Spy Program

Now that you've seen how Windows applications work, we can look at our fea­
tured application, Spy SPY is a Windows application that does just what its name
suggests. Specifically, Spy scans through all currently existing,windows, regard­
less of which application created them, gathering up all the information it can
find about these windows. Then, it displays this information in its own window,
letting you scroll through it and view it. Spy is both a tool for developing and
testing applications, and a good example of how a Windows application is put
together.

Using Spy

SPY's own window shows a list of all existing windows, whether they happen to
be currently visible on the screen or not. You can select either a one-line sum­
mary of each window or a detailed view that displays all the information Spy has

257



Section 2: Programming Tools and Techniques

Fig. 9·2. SpY's summary view.

picked up-the Show Detail command on SpY's menu switches between the two
views. The window list doesn't change dynamically-it's a "snapshot" of the state
of the Windows system at the time SPY was started up. You can bring the list up
to date at any time by selecting New Spy Mission from SPY's menu. Figure 9-2
shows windows owned by the MS-DOS Executive, Write, and Spy itself, along
with the Tiler and Freemem programs running as icons. Figure 9-3 shows de­
tailed information about SPY's own window, which can be scrolled up and down
to bring the rest of the detailed listing into view. Each line in the summary view
shows from left to right:

1. the basic window style: popup, child, iconic, or just plain Window for
main application windows (Child windows are indented under their par­
ent.)

2. the window handle, shown as a 4-digit hex number

3. the window class name, shown here in curly braces (The braces aren't
part of the actual name.)

258



Chapter 9: Inside Microsoft Windows

Window handle: 1AF4
Class naRe: Spyt
Window title: Spy on Windowst ~
Parent window handle: 0000 ~

Class function, Window function: 210B:OOF4, 210B:OOF4
Class ~dule handle, Window instance handle: 2108, 028£
Class extra alloc, Window extra alloc: 0, 0
Class style, Window style: 0003, 14FF0001
Menu handle: OR86
Brush, Cursor, Icon handles: 0086, 0086, 029A
Window rectangle: left- 74, Top· 171, Righta 627, Botto~ 478
Client rectangle: left- 0, Top· 0, Righta 527, Botto~ 241

Window handle: 1OR8
Class na~: Session
Window title: MS-DOS Executive

Fig. 9·3. SpY's detail view.

4. the window coordinatesJshown as actual screen coordinatesJin this or­
der: (leftJtop;bottomJright)

5. the window title J in quotes

The detailed view shows a number of additional itemsJand each item is labeled.
One handy use for Spy is to find out just how other applications are setting up

their windows. Figure 9-4 shows an exampleJSpy looking at Notepad. SPY's display
reveals that Notepads main window contains one child window, of the Edit class J

which invokes Windows' built-in text editor. Thats how Notepad works-it simply
creates a multiline edit control inside its main window, just as you could create one
inside a dialog box. This is clever. It lets Notepad use the editing code built into
Wmdows, so the Notepad program itself just has to take care of creating the child
window, resizing it when the parent window size changesJand handling the file I/O
operations and goodies like Search. The actual text editing is handled by the win­
dow function for the Edit class, with no effort on Notepad's part.

259



Section 2: Programming Tools and Techniques

For fUll docu~ntation on the use of SKARTDriue.
of the "Windows Users Guide."

In order to increase the a~unt of ~AOry auailable to Win
you ~y want to reduce the number of DOS buffers specified
\COKFIG.SYS file. Howeuer. it is not recoR~ended that you
nu~er less than 10 (e.g. BUFFERSQ 10).

Popup window OF4C {132768} (72.244;223.348)
Window 1AF4 {Spy!} (66.199;619.454) "Spy on Windows'"
Window 1804 {Notepad} (10.8;517.278) "Notepad - README. TXT"

Child window 19C8 {Edit} (24.56;490.256).... ~
Popup window DF10 {wintitl.e} (0.465;132.424) ....
Iconic window 1498 {Tiler!} (3.406;39."2) "Tiler"
Popup window OED4 {winswitch} (0.0;10.10) ....
Iconic window 1414 {FreeMelll} (3.443;39.479) "FreeMeIll"
Iconic window 10A8 {Session} (3.369;39.465) liltS-DOS Executiue"

Child window 12FO {DiSk} (11.371;275.393) ..
Child window 1338 {Path} (11.393;374.408) ..
Child window 1380 {Dir} (2.412;375.466) ....

Fig. 9·4. Notepad reveals a child window of the edit class.

SPY is also handy for debugging your own applications. If you run into a
situation where your windows aren't operating correctly, you can have Spy take
a look at the situation. In an application like my own SQLWindows database ap­
plication development system, which creates and destroys all kinds of windows
as it executes, I've found this very handy. When things haven't looked quite right,
SPY has often pointed the way toward the problem.

How Spy Works

Even though Spy is rather unusuaL its programming is typical of a Windows
application. Understanding how Spy works will help you understand how any
Windows application is put together because, like most Windows applications,
Spy is built around its window functions and messages. Let's start at the begin­
ning, with SPY's main program, Wi nMai n. (In reading the listing, you can find
functions more easily by noting that they're alphabetized, so don't look at the
beginning of the listing for Wi nMa in!)

260



Chapter 9: Inside Microsoft Windows

W;nMa;n

We gave a shortened example earlier of a Wi nMai nfunction, and SPY's main pro­
gram follows that model. You'll note that WinMainhas several parameters:

hInst and hPrevInst are the instance handles for this instance and the pre­
vious instance of Spy A Windows user can start up multiple copies of an
application, and Windows assigns an instance handle to each. Several Win­
dows functions, such as CreateWi ndow, need your instance handle as a pa­
rameter. The reason for giving you the previous instance handle is for
cases where you want to copy data over from one instance to the next. A
Wmdows application, just like a DOS application, can have command-line
parameters. Spy doesn't happen to use these, so we ignore this parameter.

~.,- nCmdShow is the parameter that should be passed to a ShowWi ndow call when
we create our main window. Normally, a Windows application starts up
with its window visible, but the user can request that it be started with an
iconic window by holding down the Shift key while starting the program.
The nCmdShow parameter communicates this to the application.

Wi nMai n itself is quite simple. It calls our Ini t i ali ze function to get things
started, then falls into the main message loop. This loop is much like the one we
looked at before, with one additional function call: Trans lateMessage. This is a
ttbusywork" function that every Windows application has to call in its main loop.
It translates the raw keyboard messages into their ASCII equivalents, and also
takes care of some necessary processing for the System (Control) menu.

The main message loop terminates when GetMessage returns zero. This
doesn't mean there aren't any more messages- GetMessagejust goes to sleep for
a while in that case. The zero return means that a WM_QUIT message has been
received by GetMessage. In SP~ this happens when PostQui tMessage is called in­
side SPY's window function, and that call is made when the window is destroyed.

Windows Naming Conventions

The naming conventions in the Spy program may be unfamiliar to many C pro­
grammers. Spy uses the conventions followed in the Windows documentation
and many Windows applications. Function names, as you've seen, generally fol­
Iowa verb-noun model, describing what they do, e.g., CreateWi ndow or
GetMessage.

Most variable names have a lowercase prefix that tells the variable type.
Some of the prefixes used in Spy are listed in Table 9-1. The np and lp prefixes
are often followed by additional prefix letters specifying what is pointed to, as in
lpszCmdLi ne, which is a far pointer lp to a zero-terminated string sz.

261



Section 2: Programming Tools and Techniques

Table 9·1. Variables in Spy

Prefix

h
n
b
dw
sz
np
lp

Variable Type

Handle
Integer
Boolean value
Double-word (unsigned long integer)
Zero-terminated string
Near pointer
Far Gong) pointer

Although a Windows application can use any kind of naming convention
internally, these conventions turn out to be very handy. It helps to know the type
of a variable from looking at its name, and the long, descriptive function and
variable names make the code much more readable and maintainable.

Initialize

SPY's In; t ; al ; ze function gets everything started. Its main job is to create our
window. First, we must register the window class with a Reg;sterClass call.
Note, however, that this is done only on the first instance of the program. Subse­
quent instances can use the same window class. You probably wouldn't want to
run multiple instances of SPY; but it's important to program correctly for multi­
ple instances, or else to disallow them completely by exiting out of W; nMa; n
whenever hPrevlnst is nonzero.

One other step that's done differently, depending on whether this is the
first instance or not, is loading of text string resources. In the first instance, we
actually load them from the . EXE file with LoadSt r; ng calls, then in subsequent
instances use the Get Instance function to copy them over from the previous in­
stance. This isn't really necessary, but it speeds up loading of subsequent in­
stances if you can copy over some of the data like this. Also, in a I/realn Windows
application, every text message should be placed in the . RC file and loaded with
LoadStr;ng. This makes it easier to produce foreign-language versions of your
program by isolating all the strings in one place outside the actual program
code. Then, you can just edit the •RC file to change languages. acheated to keep
the listing size down, and coded most of SPY's strings right in the source code­
don't follow my example on thisO

After registering the window class, we create SPY's main window with a
CreateW; ndow call, setting the window position and size explicitly and placing the
window in approximately the center of the screen. Many programs let Windows
assign a default position and size by passing the special value CW_USEDEFAULT for

262



Chapter 9: Inside Microsoft Windows

the X and nWidth parameters. This is also where we specify that our window
will have scroll bars, by giving the WS_HSCROLL and WS_VSCROLL style options.

After creating the window, we make it visible with a ShowWi ndow call, and
post a WM_COMMANDmessage to the message queue. Later, as we pick up messages
in our main message loop, this message will get picked up and processed, just as
if the user had picked the New Spy Mission menu item. This causes the first in­
formation display in the window.

Init i ali ze also takes care of a few other details. It determines the charac­
ter height and width for the system font, necessary information to properly
paint and scroll the window. It also preallocates a global memory handle for the
INFO structure, although it doesn't yet allocate any memory for it (well, it allo­
cates one byte). This simplifies other parts of the program where this handle is
used. We don't have to worry later about whether this handle has been initial­
ized or not.

SpyWndProc

This is where the action is. Once we've created our window, the main program
settles into its message loop, dispatching messages to SpyWndProc as they come in.
Like most window functions, this one is a switch statement, with one case for
each message we wish to process. Messages that we're not directly concerned
with are passed through to DefWi ndowProc for the standard Windows processing.

We get WM_ COMMAND whenever the user selects one of the items from our menu,
either with the mouse or keyboard. WM_ COMMAND is also used for notification mes­
sages when a window has child windows. (We're not concerned with these
here.) For this message, wParamcontains the command ID number, as assigned in
the SPY. RC file.

One of the most important menu items is CHD_SPY, the New Spy Mission
command, which causes the list of windows to be scanned by calling the Spy­
OnAllWindows function. Figure 9-5 shows SPY's menu just before selecting the
New Spy Mission command. Figure 9-6 shows SPY's menu just after selecting the
command. The popup window listed at the beginning of SPY's display is the
menu from Figure 9-5. Popup menus themselves are windows, and the com­
mand was executed before the menu window disappeared. Remember, CHD_SPY
comes in after initialization even if the user doesn't select it, because we posted it
to the message queue in the In; t i ali ze function. CHD _EXPAND (Show Detail) tog­
gles the detail/summary view by toggling our internal flag, bExpand, checking or
unchecking the menu item with a CheckMenuItemcall, and invalidating the entire
window with an Inval idateWindow call so it will get repainted.

263



Section 2: Programming Tools and Techniques

tl ARTICLE.BAK SPY.CU SPY.RC !)
11 ARTICLE.DOC SPY.DEF SPY.RES i1
~I ARTICLE.STY SPY.DOC SPY.SYM I~

:1~~1 ~~~~::~ .DOC ~:~ :~XE ~~~~~4.EXE 1~111~
~: OUTLIHE.STY SPY.ICO !~

~py

Windolll 1638 {Spy!} (10,220;629,423) "Spy on \4indollls'"
Window 10A8 {Session} (10,7;629,207) "MS-DOS Executiue"

Child lIIindow 12FO {Disk} (24,55;352,77) -----..
Child window 1338 {Path} (344,58;623,73) -------
Child window 1380 {Dir} (15,77;624,202) " ..---------

:::'1 Popup ,'lindolll OF10 {lIIintitle} (38,460;82,479) ....-----..
r: Iconic \llindo\ll 1498 {Tiler!} (42,424;78,460) "Tiler" i{:
{: Iconic ",indow 1414 {FreeMem} (3,424;39,460) "FreeMem" + :.r
r::+ + :::::
::::: ,.. , :.:.;.:.:.:.;.:.:.;.:.; : :.:.:.: :.:.:.:.:.:.:.:.:.:.:.:.;.:'......................... . ,............................... ;::::

!E:ri!!!ill.!
Fig. 9-0. SpY's menu before selecting New Spy Mission. (The

arrows show which window is described by each line
of SPY's display.)

The CMO_ABOUT (About Spy ... )gives an example of how to display a modal
dialog box. Despite all the nasty things said about modes earlier, there are still
situations where we want to display something or get some user input and sus­
pend the rest of the application temporarily. We do this with a modal dialog box.
One caution here, though. Any time you're tempted to put up a modal dialog
box, think twice about it and see if a modeless dialog could be used. If so, your
users will appreciate it! It gives them more flexibility in using your application.
One of the more common design flaws I've seen in Windows and Macintosh ape
plications has been overuse of modal dialogs.

WM_DESTROY
WM_OESTROY comes in when our window gets destroyed by a Oest royWi ndow func·
tion call. This can happen either by selecting the Exit command on SPY's menu
(see CHO_EXIT under WM_COMMANO), or by selecting Close from the Control menu
(the same as double-clicking the Control menu icon). In the latter case, the
Oest royWi ndow call is generated inside OefWi ndowProc. Control menu items ·all

264



Chapter 9: Inside Microsoft Windows

(132768) (8.264;159.368) ....

Show Retail

AI 1_DI 1 EI 1C:DRIUE-C \WINDOWS
DOC BROWSER.EXE CLOCK.EXE COURE.FOH DIGICLOK.EXE EDIT.C
DBII CALC.EXE COMM.DRU CRUHBLE.EXE DISKLOOK.EXE EPSOH.D.
DlIUEIS CALENDAR.EXE COMKAND.C CTLCOLOR.EXE DISPIHFO.EXE EPSOHFX.
PIF CARDFILE.EXE COHTROL.EXE CUTPAIHT.EXE DISPLAY.DRU ERROR.S!
SETUP CHAHGE.C COURA.FOH DATABASE.C DLGBOX.EXE EUAL.C!
TEST CLIP.C COURB.FOH DEB.BAT DRAG.C EUALEXT
1LIST.APP CLIPBRD.EXE COURC.FOH DEBC.BAT DTKODULE.C EXPAND.:

: ALLOC.C CLIST.APP COURD.FOH DEBW.BAT DUKP.C EXTFUH.:

+ ••••••••••••• ~..!

I.._--kf"------t (2.219;638.442) "Spy on Windowst ..
on} (2.2;638.217) "MS-DOS Executive"
o (Disk) (16.50;280.72) ..

....-------t8 (Path) (272.53;632.68) ..
Exit 0 {Dir} (7.72 ;633 .212) ....
Allout Spy... {cdntitle} (38.461 ;82.480) ....

Iconic window 11&98 {Tilert} (42.1M3;78.419) "Tiler"
Popup window OED4 (winswitch) (0.0;10.10) ....
Iconic window 11&14 {FreeMeIll} (3.443;39.479) "FreeMe","

+ +

Fig. 9·6. SpY's menu after selecting New Spy Mission.

generate WM_SYSCOMMAND messages, and we pass all those through to DefWi ndow­
Proc for the standard processing. All we do on WM_DESTROYis call PostQuitMessage
to terminate the application.

WM_HSCROLL and WM_VSCROLL

We get WM_HSCROLL and WM_VSCROLL as a result of any activity in the horizontal or
vertical scroll bars, respectively. In both cases, our DoScrollMsgfunction handles
the actual scrolling. This function is fairly lengthy because of the various cases it
must handle: clicking in the up-arrow or down-arrow, the page-up or page-down
area, or dragging the thumb. But after calculating the new scroll position based
on this information, the actual scrolling is simple. We call SetSc ro II Pos to set the
scroll bar itself to the new position-this doesn't happen automatically. Then we
call ScrollWindow, a very handy function. It optimizes the scrolling by moving
the actual window contents if there's any overlap between the old and new posi­
tions (as there would be in a single-line scroll), then calls Inva l i dateRect to cause
the remaining area to be repainted. Like all window painting, this part gets de-

265



Section 2: Programming Tools and Techniques

ferred until all other activity is done, so we call Updat eWi ndow to force the repaint­
ing to happen immediately. This gives a cleaner appearance to the scrolling.

WM_KEYDOWN indicates that some key has been pressed, and the wParam gives the
virtual key code. The only keys that Spy is interested in are the cursor keypad, so
I made life simple for myself by calling the same DoSe ro LLMsg function that han­
dles the scroll bars. I used a table, CsrSeroL L, to convert the virtual key codes into
the appropriate parameters for DoSeroLlMsg.

WM_PAINT is the big one, the message that says it's finally time to paint our win­
dow-or, more specifically, the client area of the window. Windows takes care of
the title bar, menu bar, and scroll bars for us. There are two ways that we can get
a WM_PAINT message. The most common is when GetMessage discovers that
there aren't any other messages left for us. If any part of our window needs
painting, we'll get a WM_PAINTmessage. We can also force an immediate WM_PAINT
at any time by calling UpdateWindowas we do in the scrolling code. (UpdateWindow
sends a WM_PAINT only if any part of the client area actually does need painting.)
SPY's window painting is done inside the Pai ntWi ndow function.

WM_SIZE lets us know that the size ofour window has changed. It's also sent when
the window is first created, to tell us the initial size. Spy uses this information to
recalculate the scroll bar ranges based on the current client area size.

SpyOnAllWindows

When SpyWndProe receives the WM_COMMAND/CMD_SPY message, it calls Spy­
OnA llWi ndows to scan all existing windows and gather up the information on
them. We actually make two passes through all the windows here. The first loop
counts the total number of windows so that we know how much memory to
allocate for the INFO structure that holds the window information. After allocat­
ing this structure, we make a second loop through the windows to fill in the data
for each. This could all be done in one pass, adjusting the memory size of the
data structure as needed, but it's a little faster to just calculate the needed size
and allocate the correct size structure to begin with.

For each window, SpyOnAL LWi ndowscalls SpyOnWindowto gather up the infor­
mation about that window and its window class. This is done with with some

266



Chapter 9: Inside Microsoft Windows

ordinary Windows functions, notably GetWindowWord, GetWi ndowLong, GetC lass­
Word, and GetClassLong. These functions extract various pieces of information
from the actual window and class data structures that Windows maintains inter­
nally. Unlike real-life spies, SPY doesn't have to resort to any devious methods to
get its information..

PaintWindow

Finally we get to the point of the whole exercise, displaying something in our
window. PaintWindow begins by calling the BeginPaint function, which lets Win­
dows know that yes, we really are going to go ahead and paint the window.
BeginPaint "validatesn the entire window, that is, it clears out the update region
to indicate that no further painting is required. It doesn't throw out that update
region completely, though. The intersection of the update region and our win­
dow's clipping region becomes the clipping region used for painting, so any
painting we do is clipped to the update region.

This new clipping happens because BeginPaint creates a new device con­
te}(t for us and returns a handle to it. We save this handle in the hde Pa i nt variable
for use in the actual painting. Any output you display in Windows is through
some device context or another-all the output functions take a device context
handle as a parameter. You can always get a device context for your window's
client area by calling the GetDC function; you don't have to wait for a WM_PAINT
message. If you do, the clipping region for that device context would be unre­
lated to any update region the window might have. However, the device context
retrieved by Beg i nPa i nt specifically takes the update region into account.

Begi nPai nt also fills in the PAINTSTRUCT structure that we pass as its second
argument. This structure contains several pieces of information, in particular a
rectangle called rePai nt, which is the smallest rectangle that encloses our up­
date region, and tells us just where to start and stop painting. We can either use
this information or disregard it-it's just an optimization to speed up painting. In
SP~ we use the top and bottom of this rectangle to determine which lines to
paint but we don't bother worrying about the left and right edges. We just paint
each line of text in its entirety and let Windows figure out which portion of the
line needs to be displayed, based on the clipping region.

After calling BeginPaint, we set the proper foreground and background
colors for our text. The GetSysCo lor function that we use here returns the color
values that the user set up with the Control Panel so SPY's display will match the
other windows on the screen. Back when we called Regi sterC lass, we specified
that the background of our client area should always be erased using the
COLOR_WINDOW color from Control Panel. We did this by setting the hbrBaekground
field in the window class structure. Here in the paint function, we set the back­
ground color of the text itself to match.

267



Section 2: Programming Tools and Techniques

Next, we take care of one detail that's crucial to making the window scroll
properly. Based on the current scroll bar positions, we calculate just where in
the INFO structure to besin picking up data, and where in our window that data
should be displayed. Ifour window were never scrolled} the first record in INFO
would always be displayed at the top of our window. However} if the user has
scrolled down one line, for instance, we must offset our display by one line. Simi­
lady, if the user has scrolled horizontall)T, we have to offset our display accord­
ingly. Note that the actual displacement is up to our code to determine. In SP\j I
made one scroll bar increment equal to one character height or width} but the
actual offsets are all in pixels.

Finally} we loop through the INFO structure, and for each record we paint
one line of text (the summary view) or several lines of text (the detail view). We
stop the loop when we reach the bottom of the rePaint rectangle or when we
run out of entries in INFO. The INFO structure remains locked for the duration of
this loop. We call GlobalLoek before the loop and GlobalUnloek after the loop
exits.

'Ib display each line on the screen} we can't just do a pr i nt f as you might do
in an ordinary C program. We have to call the TextOut function provided by Win­
dows. However} we can still take advantage of C's formatting capability in a very
convenient way. The Pai nt function that's called for each line of text is the (al­
most) exact equivalent of pri ntf, except the actual output is sent to TextOut. We
accomplish this trick by calling the vspr i nt f function within Pa i nt to format the
line in a memory buffer, and then pass that buffer as the string parameter to
TextOut. vsprintf is really handy in situations like this.

The Resource File: SPY. RC

SPY's resource file contains declarations for the resources that Spy uses. Three
are read in during the Ini t; ali ze function: an I CON statement} naming the icon
file where I created SPY's icon (using the ICONEDIT program supplied with the
Windows software development kit); a STRINGTABLE statement listing the few text
strings that I did make into resources; and a MENU statement, which sets up SPY's
menu. Remember} it's better to make all text messages into resources because
that makes it easy to translate your application into other languages.

Once you assign the menu command IDs (CHO_SPY} etc.) in a menu, you can
fool around with the actual menu layout without changing your C code. Since
the command IDs are not related to the actual menu position, you can move
menu items around freely if you want to change the menu layout. Furthermore}
you can create a complete menu structure and see how it looks in actual opera­
tion long before you write any actual code to support those menu items. Any
menu command ID codes that you haven't implemented will simply pass through
your window function and be ignored. This is handy for prototyping menus.

268



Chapter 9: Inside Microsoft Windows

You might also note the &character used in the menu strings. This specifies
which character of a menu command is to be underlined, becoming the mne­
monic shortcut character for that command.

One last thing in Spy .Re is the DIALOG statement that defines the "About
Spy ... n dialog box. This gives the location, size, and contents of each of the
child windows that make up the dialog box. I actually built this definition using
the Dialog Editor provided with the Windows SDK-that's a lot more convenient
than trying to figure out all those coordinates manually!

The Module Definition File: SPY. DEF

Every Windows application has a . DEF file, used by the Windows linker LINK4,
that specifies several pieces of information Windows needs to know about your
application: the module name (which must match the name of your .EXE file),
descriptions of the code and data segments your program uses, the size of the
stack and local heap you want, and a list of the functions that your program
"exports:'

Each function that you are going to pass along to Windows to be called
back, such as a window function or dialog function, must be listed in the EXPORTS

list. Dialog functions, like AboutBox, must also be run through the MakeProcln­

stance function in your C code, as we do in the CMD_ABOUT case in SpyWndProc.

Forgetting an EXPORTS entry or a MakeProclnstance call is one sure way to get
your program to crash in very mysterious ways! The problem is that when Win­
dows calls your function back, the OS register will contain the wrong value.

The segment descriptions in the _DEF file are also important, but at least
LINK4 will set up workable defaults if you leave one out. Since Spy is compiled in
small model, we have only a single code segment and single data segment, and we
declare them both to be MOVEABLE. It's also possible to declare segments as FIXED,

which can be handy for debugging. It's a good idea to avoid that if possible other­
wis~.

Have you ever noticed that if you try to run a Windows application outside
of Windows, it prints the message: This program requires Microsoft Windows?

DOS doesn't magically know that. A Windows . EXE file is actually two programs
in one, a DOS program and a Windows program. The beginning of the. EXE file
contains an ordinary DOS program, and that's what will run if you try to run the
• EXE from DOS. The actual Windows program is at the end of the . EXE file, past
the portion that gets loaded when you run the . EXE from DOS. The STUB state-
ment in the . DEF file gives the name of an ordinary DOS •EXE file which is to be
included at the beginning of the Windows . EXE. The WI NSTUB. EXE file named here
is the program that prints: This program requires Microsoft Windows. You could
put any program you wanted there, so a single. EXE could actually contain both a
DOS version and a Windows version of a program.

269



Section 2: Programming Tools and Techniques

Conclusion

Ifyou've looked into any OS/2 programming, this discussion of the . DEF file may
sound very familiar to you. That's because OS/2 applications use identical .DEF
files, and in fact, the same new linker, as Windows applications. The technique
of including both a DOS version and a new version of a program is exactly how
OS/2's "Family API" works. Windows and OS/2 share a number of other features,
such as dynamic linking and relocatable memory management, and, of course,
OS/2's Presentation Manager is a direct descendant of Windows.

Besides being a link to the future, Windows is also an exciting system in its
own right. It gives applications running on MS-DOS the kind of user interface
the Macintosh has always been known for, and provides a great set of tools for a
software developer to build quality applications. Programming for Windows is
different from traditional application programming and takes some getting used
to, but the results are worth it. I find most appealing about Windows the fact
that it resolves the old conflict between ease of learning and convenience and
utility for the experienced user. In a Windows application, you can have a pro­
gram that's easy to learn and powerful.

Listing 9·1. Spy

The files are:

SPY
SPY.H
SPY.C
SPY.RC
SPY.DEF

MAKE file
Header file for .C and .RC
C source code
Resource Compiler source code
Module definition file

* * * * * * * * * * * * * *

# Makefile for SPY.EXE

Spy * * * * * * * * * * * * * * *

spy.obj: spy.c spy.h
msc -AS -Gcsw -Oas -u -W3 -Zip $*;

spy. res: spy.rc spy.ico spy.h
rc -r spy.rc

spy.exe: spy.obj spy. res spy.def
link4 spy, spy/align:16, spy/co, slibw, spy.def
rc spy. res

continued

270



* * * * * * * * * * * * * * SPY.H

Chapter 9: Inside Microsoft Windows

* * * * * * * * * * * * * * *

- - - - - - - - - - - - - - - - - - - - *1

1* SPY.H *1

- - - - - - - - - - - - - - - - - *1

IIdefine MAXINT
IIdefine MAXWORo

32767
65535

1* - - - - - - - - - - - -

1* Menu command definitions *1

IIdefine CMo_ABOUT 1
IIdefine CMo_EXIT 2
IIdefine CMo_EXPANo 3
IIdefine CMo_SPY 4

1* - - - - - - -

1* String table 10 numbers *1

IIdefine IDS_CLASS 1
IIdefine IDS_TITLE 2

- - - - - - - - - - - *1

- - - - - - - - - - - *1

1* - - - - - - - - - - - - - - - - - - - - - - - - - *1

1* Dialog 10 numbers *1

IIdefine ABOUTBOX 1

1* - - - - - - - - - - - - - - - - - - - - - - - *1

* * * * * * * * * * * * * * Spv.c * * * * * * * * * * * * * * *

1* - - - - - - - - - - - - - - - - - - - - - - - - - *\
* Spy.c
* Windows Spy Program
* Pub li c Domai n
* Written by Michael Geary

continued

*
*
*
*

271



Section 2: Programming Tools and Techniques

* *
* This program "spies" on all the windows that are *
* currently open in your Windows session, and *
* displays a window containing all the information *
* it can find out about those windows. You can *
* scroll through this window using either the *
* mouse or keyboard to view the information about *
* the various windows. The "New Spy Mission" *
* menu item recaptures the latest information. *

- - - - - - - - - - - - *1

#define LINT_ARGS
#include <stdio.h>
#include <stdarg.h>
#include <windows.h>
#include "spy.h"

1* - - - - - - - - - - - - - - - - *1

1* The display for a single window looks like this in
* collapsed mode:

*
* [styleJ Window H {class} (L,TiR,B) "title"

*
* where [styleJ is: [Child:Popup:lconicJ

*
* or like this in expanded mode:

*
* [styleJ Window handle: H
* Class name: {class name}
* Window title: {title text}
* Parent window handle: H
* Class function, window function: H:H, H:H
* Class module handle, Window instance handle: H, H
* Class extra alloc, Window extra alloc: D, D
* Class style, Window style: H, H
* Menu handle: H -or- Control ID: D
* Brush, Cursor, Icon handles: H, H, H
* Window rectangle: Left=D, Top=D, Right=D, Bottom=D
* Client rectangle: Left=D, Top=D, Right=D, Bottom=D
* {blank line}

*
* Total number of lines for one window display: 13

continued

272



Chapter 9: Inside Microsoft Windows

#define LINES_PER_WINDOW 13
#define WINDOW_WIDTH 160

1* - - - - - - - - - - - - - - - - - - - - *1

1* The INFO structure contains all the information we
* gather up about each window we are spying on. We
* allocate an array of INFO structures in the global
* heap, with one entry for each window in the
* system.
*1

#define CLASSMAX 30

#define TITLEMAX 50

1* Window handle *1
1* Class name *1
1* Bkgd brush handle *1
1* Cursor handle *1
1* Icon handle *1
1* Class owner module *1
1* Window extra data *1
1* Class extra data *1
1* Class style word *1
1* Class window proc *1
1* Window owner inst. *1
1* Parent window *1
1* Window title *1
1* Ctrl ID/menu handle *1
1* Window proc *1
1* Window style bits *1
1* Window rectangle *1
1* Client rectangle *1
1* Child window level *1

struct {
winHWnd;
winClass[CLASSMAX];
winBkgdBrush;
wi nCursor;
winlcon;
winClassModule;
winWndExtrai
winClsExtra;
winClassStyle;
winClassProc;
winlnstance;
winHWndParent;
winTitle[TITLEMAX];
winControllD;
winWndProci
winStylei
winWindowRecti
wi nC li entRect i
wi nLeve l;

WORD
FARPROC
DWORD
RECT
RECT

char

i nt
} INFO;

typedef
HWND
char
HBRUSH
HCURSOR
HICON
HANDLE
WORD
WORD
WORD
FARPROC
HANDLE
HWND

typedef HANDLE HINFO;
typedef INFO huge * LPINFOi

1* INFO array handle *1
1* Far pointer to INFO *1

1* - - - - - - - - - - - - - - - - *1
continued

273



Section 2: Programming Tools and Techniques

1* The CsrScroLL array is used for impLementing
* keyboard scroLLing. By Looking up the keystroke
* in this array, we get the equivaLent scroLL bar
* message.
*1

#define VK_MIN_CURSOR VK_PRIOR
#define VK_MAX_CURSOR VK_DOWN

struct {

char csBari 1* Scroll bar this key triggers *1
char csMs9i 1* The scroll message for this key *1

} CsrScroLL[] ={
{ SB_VERT, SB_PAGEUP }, 1* VK_PRIOR: PgUp *1
{ SB_VERT, SB_PAGEDOWN }, 1* VK_NEXT: PgDn *1
{ SB_VERT, SB_BOTTOM }, 1* VK_END: End *1
{ SB_VERT, SB_TOP }, 1* VK_HOME: Home *1
{ SB_HORZ, SB_LINEUP }, 1* VK_LEFT: Left arrow *1
{ SB_VERT, SB_lINEUP }, 1* VK_UP: up arrow *1
{ SB_HORZ, SB_lINEDOWN }, 1* VK_RIGHT: right arrow *1
{ SB_VERT, SB_lINEDOWN } 1* VK_DOWN: down arrow *1

}i

1* - - - - - - - - - - - - - - - - - - - - - - - - - *1

1* Static variabLes *1

HANDLE hInstancei 1* Our instance handLe *1
HINFO hInfoi 1* INFO gLobaL handLe *1
lPINFO LpInfoi 1* Far pointer to INFO *1
i nt nWindowsi 1* TotaL # of windows *1
BOOl bExpand =FAlSEi 1* DetaiLed view? *1
int nlinesEach =1; 1* 1 or lINES_PER_WINDOW *1
int nCharSizeX; 1* Char. width in pixeLs *1
i nt nCharSizeYi 1* Char. height in pixeLs *1
int nExtleadingi 1* Extra pixeLs verticaLLy *1
int nPaintXi 1* X coordinate for Paint *1
int nPaintYi 1* Y coordinate for Paint *1
HDC hdcPainti 1* hDC for Paint to use *1
char szCLass[10]i 1* Our window cLass name *1
char szTitle[40]i 1* Our window title *1

1* - - - - - - - - - - ------- *1
continued

274



Chapter 9: Inside Microsoft Windows

1* Declare full templates for all our functions. This
* gives us strong type checking on our functions.
*1

PASCAL AboutBox( HWND, unsigned, WORD, lONG )i

CountWindow( HWND )i

DoScrollMsg( HWND, int, WORD, int )i

HomeScrolLBars( HWND, BOOl )i

Initialize( HANDLE, int )i

cdecl Paint( char *, •.• )i

PaintWindow( HWND )i

SetScrollBars( HWND )i

SetScrollBar1( HWND, int, int )i

SpyOnALLWindows( HWND )i

SpyOnWindow( HWND, int )i

FAR PASCAL SpyWndProc( HWND, WORD, WORD, lONG )i

PASCAL WinMain( HANDLE, HANDLE, lPSTR, int )i

BOOl
void
void
void
void
BOOl
void
long
int

BOOl FAR
void
int
void

1* - - - - - - - - - - - - - - - - - - - - - - *1

1* Dialog function for the About box.
* Since this is a simple box with only one button,
* WM_COMMAND is assumed to be a click on that button
* (the command number is not checked).
*1

BOOl FAR AboutBox( hDlg,
HWND hDlgi
unsigned wMs9i
WORD wParami
lONG lParami

wMsg, wParam, lParam )
1* Window handle
1* Message number
1* Word parameter
1* long parameter

{

switch( wMsg ) {

case WM_COMMAND:
EndDialog( hDlg, TRUE )i

return TRUEi

case WM_INITDIAlOG:
return TRUEi

}

return FAlSEi
}

continued

275



Section 2: Programming Tools and Techniques

1* - - - - - - - - - - - - - - - - - - - *1

1* Count a window for the size calculation. Loops
* through its children recursively and counts them
* as well.
*1

void CountWindow( hWnd
HWND hWndi

{

1* Window handle to count *1

HWND hWndChildi 1* Child window for loop *1

1* Count this window *1
++nWindowsi

1* Loop through children and count them *1
fore

hWndChild = GetWindow( hWnd, GW_CHILD )i

hWndChildi
hWndChild =GetWindow( hWndChild, GW_HWNDNEXT
{

CountWindow( hWndChild )i

}

}

1* - - - - - - - - - - - *1

1* Process a scroll bar message. Calculates the
* distance to scroll based on the scroll bar range
* and the message code. Limits the scroll to the
* actual range of the scroll bar. Sets the new
* scroll bar thumb position and scrolls the window
* by the necessary amount. Note that the scroll bar
* ranges are set in terms of number of characters,
* while the window scrolling is done by a number of
* pixels. Returns the distance scrolled in chars.
*1

276

int DoScrollMsg( hWnd,
HWND hWndi
int nBari

WORD wCodei
int nThumbi

nBar, wCode, nThumb )
1* Window handle to scroll *1
1* SB_HORZ or SB_VERT *1
1* Scroll bar message code *1
1* SB_THUMBPOSITION paramo *1

continued



(

int
int
int
int
int
RECT

nOld;
nOiff;
nMin;
nMax;
nPageSize;
recti

Chapter 9: Inside Microsoft Windows

1* Old scroll bar position *1
1* Scroll bar change *1
1* Scroll bar range min. *1
1* Scroll bar range max. *1
1* Window height in chars *1
1* Window client rectangle *1

1* Get old scroll position and scroll range *1
nOld = GetScrollPos( hWnd, nBar )i

GetScrollRange( hWnd, nBar, &nMin, &nMax );

1* Quit if no scrolling (see SetScrollBars) *1
if( nMax -- MAXINT )

return 0;

1* Calculate horizontal or vertical page size *1
GetClientRect( hWnd, &rect );
if( nBar == SB_HORZ )

nPageSize = (rect.right - rect.left) 1 nCharSizeX;
else

nPageSize = (rect.bottom - rect.top) 1 nCharSizeY;

1* Select scroll amount, based on scroll message *1
switch( wCode ) {

case SB_LINEUP:
nOiff =-1;
break;

case SB_LINEOOWN:
nOiff =1;
break;

case SB_PAGEUP:
nOiff = -nPageSize;
break;

case SB_PAGEOOWN:
nOiff = nPageSize;
break;

case SB_THUMBPOSITION:
continued

277



Section 2: Programming Tools and Techniques

nOiff =nThumb - nOld;
break;

case SB_TOP:
nOiff =-30000; 1* A kludge but it works ••• *1
break;

case SB_BOTTOM:
nOiff =30000;
break;

default:
return 0;

}

1* Limit scroll destination to nMin •• nMax *1
if( nOiff < nMin - nOld )

nOi1f =nMin - nOld;

if( nOiff > nMax - nOld
nOi11 =nMax - nOld;

i1( nOiff -­
return 0;

o )
1* Return if net effect is nothing *1

1* Now we can set the new scroll bar position *1
SetScrollPos( hWnd, nBar, nOld + nOiff, TRUE );

1* Scroll the actual window contents *1
Sc ro l lWi ndow (

hWnd,
nBar == SB_HORZ? -nOiff*nCharSizeX: 0,
nBar == SB_HORZ? 0: -nOiff*nCharSizeY,
NULL,
NULL

) ;

1* Force immediate update for cleaner appearance *1
UpdateWindow( hWnd );

return nOiff;
}

continued

278



1* - - - - - - - - - - - - - - - - - -

Chapter 9: Inside Microsoft Windows

- *1

1* Set both scroll bars to the home position CO)
*1

void HomeScrolLBarsC hWnd, bRed raw )
HWND hWnd; 1* Window handle *1
BOOl bRedraw; 1* Redraw scroLL bars? *1

{

SetScroLLPosC hWnd, SB_HORZ, 0, bRedraw );
SetScrollPosC hWnd, SB_VERT, 0, bRed raw );

}

1* - - - - - - - - - - - - - - - - - - - - - - - *1

1* Initialize the application. Some of the
* initiaLization is different depending on whether
* this is the first instance or a subsequent
* instance. For exampLe, we register our window
* cLass onLy in the first instance. Returns TRUE if
* initiaLization succeeded, FALSE if faiLed.
*1

BOOl InitializeC hPrevInst, nCmdShow )
HANDLE hPrevInsti 1* Prey. instance or 0 *1
int nCmdShow; 1* ShowWindow parameter *1

{

WNDCLASS
HWND
HOC
TEXTMETRIC
int
i nt

Class;
hWnd;
hOC;
Metrics;
nScreenXi
nScreenYi

1* RegisterCLass structure *1
1* Our window handLe *1
1* Temp dispLay context *1
1* System font metrics *1
1* Screen width in pixels *1
1* Screen height in pixeLs *1

nScreenX =GetSystemMetricsC SM_CXSCREEN );
nScreenY =GetSystemMetricsC SM_CYSCREEN )i

ifC ! hPrevInst ) {
1* InitiaLization for first instance only *1

1* load strings from resource file--really, all
* message strings should be loaded here--we just
* load a couple as an exampLe. *1

continued

279



Section 2: Programming Tools and Techniques

LoadString(
hInstance, IDS_CLASS, sZCLass, sizeof(szCLass)

) ;

LoadString(
hInstance, IDS_TITLE, szTitle, sizeof(szTitle)

) ;

1* Register our window cLass *1
Class.styLe =CS_HREDRAW CS_VREDRAW;
CLass.lpfnWndProc =SpyWndProc;
CLass.cbCLsExtra =0;
Class.cbWndExtra =0;
Class.hInstance =hInstance;
CLass.hIcon = LoadIcon(hInstance,szCLass);
Class.hCursor = LoadCursor(NULL,IDC_ARROW);
Class.hbrBackground = COLOR_WINDOW + 1;
Class.LpszMenuName =szClass;
Class.lpszClassName =szClass;

if( , RegisterClass(&Class) )
return FALSE;

) else (
1* InitiaLization for subsequent instances only *1

1* Copy data from previous instance *1
GetlnstanceData(

hPrevInst, sZCLass, sizeof(szCLass)
) ;
GetInstanceData(

hPrevInst" szTitLe, sizeof(szTitle)
) ;

}

1* InitiaLization for every instance *1

1* ALLocate an empty INFO structure *1
hInfo =GlobaLALLoc( GMEM_MOVEABLE, 1L );
if( ! hInfo )

return FALSE;

1* Create our tiled window, don't display it yet *1
hWnd =CreateWindow(

continued

280



}

Chapter 9: Inside Microsoft Windows

szCLass, 1* CLass name *1
szTitle, 1* Window titLe *1
WS_OVERLAPPEOWINOOW 1* Window styLe *1

WS_HSCROLL WS_VSCROLL,
nScreenX * 1 - 20, 1* X: 5% from Left *1
nScreenY * 1 - 10, 1* Y 10% from top *1
nScreenX * 9 - 10, 1* nWidth: 90% *1
nScreenY * 7 - 10, 1* nHe;ght: 70% *1
NULL, 1* No parent hWnd *1
NULL, 1* Menu handle *1
hInstance, 1* Owner instance handLe *1
NULL 1* WM_CREATE parameter *1

) i

1* In;tialize scroLL bars *1
HomeScroLLBars( hWnd, FALSE ) i

1* CaLculate character size for system font *1
hOC =GetOC( hWnd )i

GetTextMetr;cs( hOC, &Metr;cs )i

ReLeaseOC( hWnd, hOC )i

nExtLeading = Hetrics.tmExternaLLeadingi
nCharS;zeX =Metr;cs.tmMaxCharW;dthi
nCharSizeY =

Metr;cs.tmHe;ght + Metr;cs.tmExternaLLeadingi

1* Make the window visibLe before grabbing spy info,
* so it's included *1

ShowW;ndow( hWnd, nCmdShow )i

1* Post a message to ourseLf to trigger the first
* spy information display *1

PostMessage( hWnd, WM_COMMANO, CHO_SPY, OL )i

return TRUEi

1* - - - - - - - - - - *1

1* Format and paint a L;ne of text. The parameters
* are the same as for an ordinary printf caLL, a
* format string followed by a variabLe number of
* arguments to be formatted. We use the vsprintf

continued

281



Section 2: Programming Tools and Techniques

* function to format the final string to be
* painted. The global variables nPaintX and nPaintY
* tell where to paint the line. We increment
* nPaintY to the next line after painting. Note the
* cdecl' declaration. This forces this function to
* use the standard C calling sequence, which is
* necessary with a variable number of parameters.
*1

void cdecl Paint( szFormat 1* , ••• *1 )
char * szFormati 1* vsprintf format string *1

{

va_li st
int
char

pArgsi
nLengthi
Buf[160li

1* vsprintf parameters *1
1* Formatted string length *1
1* Temp buffer *1

}

va_start( pArgs, szFormat )i

nLength =vsprintf( Buf, szFormat, pArgs )i

va_end( pArgs )i

TextOut(
hdcPaint,
nPaintX,
nPaintY+nExtLeading,
Buf,
nLength

) i

nPaintY += nCharSizeYi

1* - - - - - - - - - - - - - - - - - - - - - - - *1

1* Paints our window or any portion of it that needs
* painting. The BeginPaint call sets up a structure
* that tells us what rectangle of the window to
* paint, along with other information for the
* painting process. First, erase the background
* area if necessary. Then, calculate the index into
* the INFO array to start with, based on the
* painting rectangle and the scroll bar position, and
* lock down the INFO. Finally, loop through the
* INFO array, painting the text for each entry.

continued

282



Chapter 9: Inside Microsoft Windows

* Quit when we run out of entries or hit the bottom
* of the paint rectangle.
*1

void PaintWindow( hWnd
HWND hWndi 1* Window handle to paint *1

{

PAINTSTRUCT PSi 1* Painting information *1
OWORO rgbOldTexti 1* Old text color *1
OWORD rgbOldBkgdi 1* Old background color *1
int nWini 1* Index into INFO array *1
i nt Xi 1* X position (temp) *1
int Yi 1* Y position (temp) *1
PSTR pTypeNamei 1* Ptr to style string *1

1* Set up paint structure, store HOC for Paint() *1
hdcPaint =BeginPaint( hWnd, &ps )i

1* Set up painting colors and save old values *1
rgbOldBkgd =

SetBkColor(
hdcPaint,
GetSysColor(COLOR_WINDOW)

) i

rgbOldText =
SetTextColor(

hdcPaint,
GetSysColor(COLOR_WINOOWTEXT)

)i

1* Calculate horizontal paint position, based on
* the scroll bar position *1

X =( 1 - GetScrollPos( hWnd, SB_HORZ
* nCharSizeXi

1* Calculate index into INFO array and vertical paint
* position, based on scroll bar position and top of
* painting rectangle *1

Y =GetScrollPos( hWnd, SB_VERT )i

nWin = ( ps.rcPaint.top - nCharSizeY + Y )
- nLinesEachi

nPaintY = ( nWin * nLinesEach - Y )
* nCharSizeYi

continued

283



Section 2: Programming Tools and Techniques

1* Lock down INFO array and set lpInfo pointing to
* first entry to paint *1

lpInfo = (LPINFO)GlobalLock( hInfo );
lpInfo += nWin;

1* Loop through INFO entries, painting each one until
* we run out of entries or until we are past the
* bottom of the paint rectangle. We don't worry
* much about painting outside the rectangle--
* Windows will clip for us. *1

while(
nWin < nWindows &&
nPaintY < ps.rcPaint.bottom
{

1* Set X position and indent child windows *1
nPaintX =

X +

( lpInfo->winLevel * nCharSizeX
* (bExpand ? 4 2»;

1* Set up pTypeName for window style *1
if( lpInfo->winStyle &WS_CHILD )

pTypeName = "Child window";
else if( lpInfo->winStyle &WS_ICONIC

pTypeName = "Iconic window";
else if( lpInfo->winStyle &WS_POPUP

pTypeName ="Popup window";
else

pTypeName ="Window";

if( ! bExpand ) {

1* Paint the summary view *1
Paint(

"%s %04X {%Fs} (%d,%d;%d,%d) \"%Fs\'III,
pTypeName,
lpInfo->winHWnd,
lpInfo->winClass,
lpInfo->winWindowRect.left,
lpInfo->winWindowRect.top,
lpInfo->winWindowRect.right,

continued

284



Chapter 9: Inside Microsoft Windows

lpInfo->winWindowRect.bottom,
lpInfo->winTitle

) ;

} else {

1* Paint the detail view, window handle first *1
Paint(

"%s handle: %04X",
pTypeName,
lpInfo->winHWnd

);

1* Paint the rest of the info, indented more *1
nPaintX += nCharSizeX * 2;

Paint( "Class name: %Fs", lpInfo->winClass );
Paint( "Window title: %Fs", lpInfo->winTitle );
Paint(

"Parent window handle: %04X",
lpInfo->winHWndParent

) ;
Paint(

"Class function, Window function: %p, %p",
lpInfo->winClassProc,
lpInfo->winWndProc

) ;
Paint(

"Class module handle, Window instance handle: \
%04X, %04X",

lpInfo->winClassModule,
lpInfo->winInstance

)i
Paint(

"Class extra alloc, Window extra alloc: \
%d, %d",

LpInfo->w;nCLsExtra,
lpInfo->winWndExtra

) ;
Paint(

"Class style, Window style: %04X, %08lX",
lpInfo->winClassStyle,
LpInfo->winStyLe

continued

285



Section 2: Programming Tools and Techniques

) ;
Paint(

lpInfo->winStyle &WS_CHIlO
? "Control 10: %d"
: "Menu handle: %04X",

lpInfo->winControlIO
) ;

Paint(
"Brush, Cursor, Icon handles: \

%04X, %04X, %04X",
lpInfo->winBkgdBrush,
lpInfo->winCursor,
lpInfo->winIcon

) ;
Paint(

"Window rectangle: \
left=%4d, Top=%4d, Right=%4d, Bottom=%4d",

lpInfo->winWindowRect.left,
lpInfo->winWindowRect.top,
lpInfo->winWindowRect.right,
lpInfo->winWindowRect.bottom

) ;

Paint(
"Client rectangle: \

left=%4d, Top=%4d, Right=%4d, Bottom=%4d",
lpInfo->winClientRect.left,
lpInfo->winClientRect.top,
lpInfo->winClientRect.right,
lpInfo->winClientRect.bottom

) ;

1* Make a blank line--it's already erased,
* so just increment Y *1

nPaintY += nCharSizeYi
}

1* Increment to next INFO entry *1
++nWin;
++lpInfo;

}

1* Unlock the INFO array *1
GlobalUnlock( hInfo );

continued

286



Chapter 9: Inside Microsoft Windows

1* Restore old colors *1
SetBkColor( hdcPaint, rgbOldBkgd )i

SetTextColor( hdcPaint, rgbOldText );

1* Tell Windows we're done painting *1
EndPaint( hWnd, &ps );

}

1* - - - - - - - - - - - - *1

1* Set horizontal and vertical scroll bars, based on
* the window size and the number of INFO entries.
* The scroll bar ranges are set to give a total
* width of WINDOW_WIDTH and a total height equal to
* the number of lines of information available. For
* example, if there are 130 lines of information and
* the window height is 10 characters, the vertical
* scroll range is set to 120 (130 - 10). This lets
* you scroll through everything and still have a
* full window of information at the bottom. (Unlike,
* say, Windows Write, in which scrolling to the
* bottom gives a blank screen.)
*1

void SetScrollBars< hWnd )
HWND hWnd; 1* Window handle

{

RECT recti 1* Window client rectangle *1

}

GetClientRect< hWnd, &rect );

SetSc ro llBar1 <
hWnd, SB_HORZ,
WINDOW_WIDTH - rect.right 1 nCharSizeX

) ;

SetSc ro llBar1 <
hWnd, SB_VERT,
nWindows * nLinesEach - rect.bottom I nCharSizeY

)i

continued

287



Section 2: Programming Tools and Techniques

1* - - - - - - - - - - - - - - - - - - - - - - *1

1* Set one scroll bar's maximum range. We always set
* the minimum to zero, although Windows allows other
* values. There is one case we handle specially. If
* you set a scroll bar range to minimum==maximum
* <maximum = zero for us), Windows does not actually
* set the range, but instead turns off the scroll
* bar completely, changing the window style by
* turning off the WS_HSCROLL or WS_VSCROLL bit. For
* example, this is how the MS-DOS Executive makes
* its scroll bars appear and disappear. This
* behavior is fine if you take it into account in
* your programming in two ways. First, whenever you
* do a GetScrollRange you must first check the window
* style to see if that scroll bar still exists,
* because you will *not* get the correct answer from
* GetScrollRange if it has been removed. Second, you
* must be prepared to get some extra WM_SIZE
* messages, because your client area changes size
* when the scroll bars appear and disappear. This
* can cause some sloppy looking screen painting. We
* take a different approach, always keeping the
* scroll bars visible. If the scroll bar range needs
* to be set to zero, we set it to MAXINT instead so
* the bar remains visible. Then, DoScrollMessage
* checks for this case and returns without scrolling.
*1

void SetScrollBar1< hWnd,
HWND hWnd;
int nBar;
int nMax;

(

nBar, nMax )
1* Window handle *1
1* SB_HORZ or SB_VERT *1
1* New maximum range value *1

i nt
i nt

nOldMin;
nOldMaxi

1* Previous min value (0) *1
1* Previous max value *1

1* Check for a negative or zero range and set our
* special case flag. Also, set the thumb position
* to zero in this case. *1

if( nMax <= 0 ) {
nMax = MAXINT;
DoScrollMsg( hWnd, nBar, SB_THUMBPOSITION, 0 )i

continued

288



Chapter 9: Inside Microsoft Windows

}

1* Get previous range, set it if it has changed *1
GetScrollRange( hWnd, nBar, &nOldMin, &nOldMax )i

if( nMax != nOldMax )
SetScrollRange( hWnd, nBar, 0, nMax, TRUE )i

}

- - - *1

1* loop through all windows in the system and gather
* up information for the INFO structure for each. We
* actually loop through them twice: first, to
* simply count them so we can allocate global memory
* for the INFO structure, and again to actually fill
* in the structure. After gathering up the
* information, we invalidate our window, which will
* cause a WM_PAINT message to be posted, so it will
* get repainted.
*1

BOOl SpyOnAllWindows( hWnd )
HWNO hWndi 1* Our window handle *1

{

HWNO hWndToPi 1* Window handle for loop *1

1* Count up the number of windows *1
nWindows =Oi
fore

hWndTop =GetWindow( hWnd, GW_HWNOFIRST )i

hWndToPi
hWndTop = GetWindow( hWndTop, GW_HWNDNEXT )
{

CountWindow( hWndTop )i

}

1* Allocate memory, complain if we couldn't get it *1
hInfo =

GlobalReAlloc(
hInfo,
(OWORO)nWindows*sizeof(INFO),
GMEM_MOVEABlE

) i

continued

289



Section 2: Programming Tools and Techniques

if( ! hInfo ) {
nWindows =Oi
GlobalDiscard( hInfo )i

MessageBox(
GetActiveWindow(),
"Insufficient memory!!",
NUll,
MB_OK : MB_ICONHAND

) i

PostQuitMessage( 0 )i

return FAlSEi
}

1* lock down memory and fill it in, then unlock *1
lpInfo = (lPINFO)Globallock( hInfo )i

fore
hWndTop =GetWindow( hWnd, GW_HWNDFIRST )i

hWndToPi
hWndTop =GetWindow( hWndTop, GW_HWNDNEXT
{

SpyOnWindow( hWndTop, 0 )i

}

GlobalUnlock( hInfo )i

1* Set scroll bars based on new window count *1
SetScrollBars( hWnd )i

HomeScrollBars( hWnd, TRUE )i

1* Invalidate our window so it will be repainted *1
InvalidateRect( hWnd, NUll, TRUE )i

return TRUE;
}

1* - - - - - - - - - - - - - - - - - - - - - - - - - *1

1* Gather up the information for a single window and
* store it in the INFO array entry pointed to by
* lplnfo. Increment lpInfo to the next entry
* afterward. Called once for each window.
*1

continued

290



Chapter 9: Inside Microsoft Windows

void SpyOnWindow( hWnd, nLevel )
HWND hWndi 1* Window handle *1
int nLeveli 1* Child window level *1

{

HWND hWndChildi 1* Child window for loop *1

1* Gather up this window's information *1
lpInfo->winHWnd = hWndi
GetClassName( hWnd, lpInfo->winClass, CLASSMAX )i

lplnfo->winClass[ CLASSMAX - 1 J =Oi
lplnfo->winlnstance =

GetWindowWord( hWnd, GWW_HINSTANCE )i

lplnfo->winHWndParent =GetParent( hWnd )i

GetWindowText( hWnd, lplnfo->winTitle, TITLEMAX )i

lpInfo->winTitle[ TITLEMAX - 1 ] =Oi
lplnfo->winControlID =

GetWindowWord( hWnd, GWW_ID )i

lplnfo->winWndProc =
(FARPROC)GetWindowLong( hWnd, GWL_WNDPROC )i

lplnfo->winStyle =
GetWindowLong( hWnd, GWL_STYLE )i

GetClientRect( hWnd, &lplnfo->winClientRect )i

GetWindowRect( hWnd, &lpInfo->winWindowRect )i

lpInfo->winLevel = nLeveli

1* Gather up class information *1
lpInfo->winBkgdBrush =

GetClassWord( hWnd, GCW_HBRBACKGROUND )i

lpInfo->winCursor =
GetClassWord( hWnd, GCW_HCURSOR )i

lpInfo->winIcon =
GetClassWord( hWnd, GCW_HICON )i

lplnfo->winClassModule =
GetClassWord( hWnd, GCW_HMODULE )i

lplnfo->winWndExtra =
GetClassWord( hWnd, GCW_CBWNDEXTRA )i

lplnfo->winClsExtra =
GetClassWord( hWnd, GCW_CBCLSEXTRA )i

lpInfo->winClassStyle =
GetClassWord( hWnd, GCW_STYLE )i

lpInfo->winClassProc =
(FARPROC)GetClassLong( hWnd, GCL_WNDPROC )i

continued

291



Section 2: Programming Tools and Techniques

1* Move on to next entry in tabLe *1
++Lplnfoi

1* Now spy on chiLdren recursiveLy *1
fore

hWndChiLd =GetWindow( hWnd, GW_CHILD )i

hWndChiLdi
hWndChiLd =GetWindow( hWndChiLd, GW_HWNDNEXT )

) {

SpyOnWindow( hWndChiLd, nLeveL + 1 )i

}

}

1* - - - - - - - - - - - - - - - *1

1* Window function for our main window. ALL messages
* for our window are sent to this function. For
* messages that we do not handLe here, we caLL
* DefWindowProc, which performs Windows' default
* processing for a message.
*1

Long FAR PASCAL SpyWndProc(
hWnd, wMsg, wParam, lParam

HWND hWndi 1* Window handle *1
WORD wMs9i 1* Message number *1
WORD wParami 1* Word parameter *1
LONG LParami 1* Long parameter *1

{

RECT recti 1* Temp rectangle *1
FARPROC lpProci 1* AboutBox Proclnstance *1

switch( wMsg ) {

1* Menu command message - process the command *1
case WM_COMMAND:

if( LOWORD(LParam) )
breaki 1* not a command *1

switch( wParam ) {
case CHD_ABOUT:

LpProc =
MakeProclnstance(

continued

292



Chapter 9: Inside Microsoft Windows

(FARPROC)AboutBox,
hlnstance

) :
if( ! lpProc)

return Dl:
DialogBox(

hlnstance,
MAKEINTRESOURCE(ABOUTBOX),
hWnd,
lpProc

) :
FreeProcInstance( lpProc ):
return al:

case CMD_EXIT:
DestroyWindow( hWnd ):
return al:

case CMD_EXPAND:
bExpand = ! bExpand:
nlinesEach =

( bExpand ? lINES_PER_WINDOW 1):
CheckMenultem(

GetMenu( hWnd ),
CMD_EXPAND,
bExpand ? MF_CHECKED : MF_UNCHECKED

) :
InvalidateRect( hWnd, NUll, TRUE ):
HomeScrollBars( hWnd, FALSE ):
SetScrollBars( hWnd ):
return al:

case CMD_SPY:
SpyOnAllWindows( hWnd )i

return ali
}

break:

1* Destroy-window message - quit the application *1
case WM_DESTROY:

PostQuitMessage( a ):
return Dli

1* Horizontal scroll message--scroll the window *1
case WM_HSCROll:

DoSc ro llMsg (
continued

293



Section 2: Programming Tools and Techniques

hWnd, SB_HORZ,
wParam, (int)lParam

) i

return Oli

1* Key-down message--handLe cursor keys, ignore
* other keys *1

case WM_KEyoOWN:
if(

wParam >= VK_MIN_CURSOR &&
wParam <= VK_MAX_CURSOR
{

ooScroL LMsg(
hWnd,
CsrScroLl[ wParam--VK_MIN_CURSOR J.csBar,
CsrScroLL[ wParam--VK_MIN_CURSOR J.csMsg,
o

) i
}

return Oli

1* Paint message--repaint window as needed *1
case WM_PAINT:

PaintWindow( hWnd )i

return Oli

1* Size message--recaLcuLate our scrolL bars *1
case WM_SIZE:

SetScroLLBars( hWnd )i

return Oli

1* VerticaL scroll message--scroLL the window *1
case WM_VSCROll:

ooSc ro llMsg (
hWnd, SB_VERT,
wParam, (int)LParam

) i

return Oli
}

1* ALL other messages go to oefWindowProc *1
return oefWindowProc( hWnd, wMsg, wParam, lParam )i

}

continued

294



1* - - - - - - -

Chapter 9: Inside Microsoft Windows

- - - *1

1* Application main program. Not much is done here-­
* we just initialize the application, putting up our
* window, and then go into the message dispatching
* loop that every Windows application has.
*1

int PASCAL WinMainC
hlnst, hPrevlnst, lpszCmdLine, nCmdShow

)

HANDLE
HANDLE
LPSTR
int

(

MSG

hlnsti 1* Our instance handle *1
hPrevlnsti 1* Previous instance *1
lpszCmdLineil* Command line pointer *1
nCmdShowi 1* ShowWindow parameter *1

msgi 1* Message structure *1

1* Save our instance handle in static variable *1
hlnstance = hlnsti

1* Initialize application, quit if any errors *1
ifC ! InitializeC hPrevInst, nCmdShow ) )

return 1i

1* Main message processing loop. Get each message,
* then translate keyboard messages, and finally
* dispatch each message to its window function. *1

whileC GetMessageC &msg, NULL, 0, 0 ) ) {
TranslateMessageC &msg )i

DispatchMessageC &msg )i

}

return msg.wParami
}

- - - - - - - - - - - - *1

* * * * * * * * * * * * * * SPV.RC * * * * * * * * * * * * * * *

1* - - - - - - - - - - - - - - - - - - - - - - - - - *1

continued

295



Section 2: Programming Tools and Techniques

1* Spy.rc - resource file for SPY.EXE *1

1* - - - - - - - - - - - - - - - - - - - - - - *1

#include <style.h>
#include Itspy.h"

1* - - - - - - - - - - - - - - - - - - - - *1

Spy!

1* - -

ICON spy.ico

- - - - - - - - - - - - - - - - - - - - *1

STRINGTABLE
BEGIN

IDS_CLASS,
IDS_TITLE,

END

ItSpyllt
"Spy on Windowsllt

1* - - - - - - - - - -- - - - - - - - - - - - *1

Spyl MENU
BEGIN

296

POPUP "&Spy"
BEGIN

MENUITEM It&New Spy Mission",
MENU ITEM SEPARATOR
MENUITEM "Show &Detail",
MENU ITEM SEPARATOR
MENUITEM "E&xit",
MENU ITEM "A&bout Spy •.• ",

END

END

1* - - - - - - - - - - - - -

ABOUTBOX DIALOG 25, 25, 180, 85
STYLE WS_DLGFRAME WS_POPUP
BEGIN

CTEXT "Spy"

CMD_EXPAND

CMD_EXIT
CMD_ABOUT

- - - - - - - - - - *1

-1 , 0, 5, 180, 8
continued



Chapter 9: Inside Microsoft Windows

ICON "Spy!" -1, 13, 25, 0, a
CTEXT "Windows espionage program" -1, 0, 16,180, 8
CTEXT "Version 1.1" -1, 58, 38, 64, 8
CTEXT "Written by Michael Geary" -1, 0, 50,180, 8
DEFPUSHBUTTON "Ok" IDOK, 74, 67, 32, 14, WS_GROUP

END

1* - - - - - - - - - - - - - - - - - - - - - - - - - *1

* * * * * * * * * * * * * *

NAME Spy

DESCRIPTION 'Windows Espionage'

STUB 'WINSTUB.EXE'

CODE MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 4096

EXPORTS
AboutBox a1
SpyWndProc a2

Reading List

SPV.DEF * * * * * * * * * * * * * * *

Geary, M. 1987. Microsoft Windows 2.0. Microsoft Systems Journal (July).

---.1987. Spying on windows. Byte E~tra Edition: Inside the IBM PCs 12, no.
12.

---.1988. Converting Windows applications for Microsoft's OS/2 Presenta­
tion Manager. Microsoft Systems Journal (January).

Grayson, ~ 1987. Windows of opportunity. PC Tech Journal (February).

Petzold, C. 1986. A step-by-step guide to building your first windows application.
Microsoft Systems Journal (December).

297



Section 2: Programming Tools and Techniques

---.1988. Programming Windows. Redmond, Washington: Microsoft Press.

Wong, W 1987. Program interfacing to Microsoft Windows. Micro/Systems Jour­
nal (series starting JanuarylFebruary).

Michael Geary is the principal author of Gupta Thchnologies' SQIWindows, an
interactive application development system for SQL database applications running
under MS Windows and the OS/2 Presentation Manager. He 'has written articles on MS
Windows programming for Byte and Microsoft Systems Journal and is the author of
several popular windows utilities, including SP~ Tiler, and Thrmite (a utility that inte­
grates Notepad and terminal). He is also a technical advisor in Microsoft online sup­
port forums.

Related Essays

1 A Guided lbur inside MS-DOS
4 Adding Power to MS-DOS Programming

298



Section Three

WORKING WITH THE
HARDWARE INTERFACE

The huge existing base of MS-DOS machines offers a stable, lucrative market
for those who can extract the maximum speed from RAM memory, board-level
registers, and the clever choice of MS-DOS services. The Expanded Memory Sys­
tem, the serial port, the Enhanced Graphics Adapter, and many other devices
connect to the main bus through the slots, known as the I/O channel. Such a
unifying point in common highlights the contrast in style with which the au­
thors tr,eat their topics. The five essays in this section focus on control of the
hardware environment.

Developing MS-DOS Device Drivers

This section's first essay, by Walter Dixon, explains the construction of device
drivers and their interface with the DOS kernel and loader. We see how the Sys­
tem File Table, file handles, Device Control Blocks, Current Directory Structure J

Program Segment Prefix, and other data structures and workings come into
play during the process of loading and using a device driver.

Writing a SOUND Device Driver

Walter Dixon builds on his previous essay and presents a full-blown device
driver that turns the PC into a musical instrument, parallel to the PLAY state­
ment in BASIC. The SOUND driver can be played from the MS-DOS user inter­
face or from within an application, the difference being only in writing to the
driver.

Programming the Enhanced Graphics Adapter

This essay by Andrew Dumke explains the new latching and bit-map design of
this popular display interface. Then he presents a fast dot-drawing program in
C, a fast line-drawing algorithm, and ways to read EGA memory, perform Bool­
ean operations on its bit maps, and more.

299



Section 3: Working with the Hardware Interface

Programming the Serial Port with C

Naba Barkakati reviews the basics of serial communications and explains the
hardware of the serial port. He then discusses error-checking, flow control,
buffers J serial interrupts J and use of a circular buffer, and ends with a complete
communications program in C.

Understanding E~pandedMemory Systems

Ray Duncan explains the rudiments of the bank-switching scheme for EMS J

EEMS, and EMS 4.0 and how to test for the Enhanced Memory Manager. He sum­
marizes relevant functions and presents an eight-step strategy for writing appli­
cations for Enhanced Memory Systems.

300







10

Developing MS-DOS
Device Drivers
r

Walter Di~on

Each MS-DOS application program calls upon DOS to perform services such as
opening or writing to a file. Some of these services greatly simplify the task of
program development; for example, an application asks DOS to write 10 charac­
ters to a printer the same way it would ask that those characters be sent to a disk
file. This feature is known as device-independent I/O, a very important service
because it frees the application from dealing with the hardware details of differ­
ent devices.

What we call DOS really is a number of distinct components: the kernel,
device drivers, a user interface, and kernel enhancements. (See Essay 1, A
Guided 1bur inside MS-DOS, by Harry Henderson, for an overview of the
MS-DOS components and their interfaces.) The kernel is a basic set of services,
most of which are I/O related. Included in the kernel is support for the file sys­
tem and device-independent I/O. Device drivers are short pieces of code that
help DOS deal with hardware such as disks, keyboards, and consoles. Drivers
worry about the hardware which controls individual devices and hide these
details from the kernel. Kernel enhancements extend the functionality of the
kernel. They are needed in special circumstances and should function transpar­
ently when they are invoked; for example, SHARE.EXE is a kernel enhancement
which supports file sharing.

I obtained material for this paper by disassembling PC-DOS version 3.10. As
far as I know, much of this information has not been previously documented.
Disassembling a complex program such as DOS without access to any of the de­
sign documentation is a difficult task. I cannot guarantee that the descriptions
are completely accurate or that the operating system design will not change in
the future. If you make use of any of this material, you do so at your own risk.

Documentation on the ApplicationlKernel and KernellDriver interface is
reasonably good, but the actions of the DOS kernel remain somewhat of a mys­
tery.1t loads and locates device drivers and transforms high-level application re­
quests such as read and write into device driver operations. Values in the kernel

303



Section 3: Working with the Hardware Interface

I/O data structures affect the way the kernel transforms requests. A side effect
of these transformations is that the kernel sends status, flush, and nondestruc­
tive read requests to various drivers.

The design of the DOS kernel limits the actions of both drivers and applica­
tions. Significant portions of the kernel are nonreentrant and once the kernel
begins to execute a nonreentrant section of code, it must complete that section
before it can safely process another request. Some of the more subtle implica­
tions of this architectural will enable you to bend some of the published rules
for writing drivers and create your own background programs like PR I NT • COM

which can share the processor with other tasks.
This essay concentrates on the transformation process and its side effects.

Some exposure to device drivers is necessary if you want to completely under­
stand the interaction of the DOS kernel with drivers. Even if you do not plan to
write a driver, you may find this material interesting. DOS is a significant operat­
ing system; understanding what goes on behind the scenes has a certain intrin­
sic value. If you are interested in DOS trivia, many undocumented features of
DOS surface in these discussions.

DOS Data Structures

DOS maintains a number of data structures to track systemwide resources like
memory and devices. These data structures are created when the kernel boots
and are updated as the kernel processes requests. Other resources are applica­
tion-private, but still must be managed by DOS. Let's look at these data struc­
tures and how they are used.

Systemwide Resources

DOS constructs a list of device drivers, a System File Table (SFT), a Device Con­
trol Block (DCB) list, and a Current Directory Structure (CDS). The SFT is the
focal point for device-independent 110. DOS uses the DCB list and CDS to help
manage disk operations. The CDS is also where DOS stores the current default
directory for each drive. Most DOS requests ultimately manipulate one or more
of these data structures.

Application-Private Resources in the PSP

When an application starts, the DOS Kernel creates a data structure known as
the Program Segment Prefix (PSP) which DOS uses to store application-specific
I/O information, to process errors, and to terminate an application gracefully.

304



Chapter 10: Developing Device Drivers

DOS deallocates the PSP when the application exits. Listing 10-1 illustrates the
format of the PS~ I have arbitrarily assigned names to the various fields in this
structure. The comments following each field describe how DOS uses that field.
Undocumented fields are marked with an asterisk (*).

Listing 10-1. Structure of the PSP

PSP STRUC
PSP_W_INT20 OW Ocd20H INT 20 instruction
PSP_W_MemSiz OW 0 Paragraphs of memory
PSP_B_UnusedO DB 0 Unknown
PSP_T_CaLL DB 09aH,OfOH Far ca LL to DOS

DB OfeH,01dH,OfOH dispatcher
PSP_D_Term DO 0 Terminate Address
PSP_D_Break DO 0 Break Address
PSP_D_CritErr DO 0 Critical error
PSP_W_Parent OW 0 *Parent PSP*
PSP_T_JFT DB 20 DUPCOffH) *JFT Table*
PSP_W_Envron OW 0 Environment

OW 0 Unknown
OW 0 Unknown

PSP_W_JFTSize OW 20 *JFT Size*
PSP_D_JFTAddr DO 0 *JFT Address*
PSP_D_Unused1 OW OffffH,OffffH Unused

DB 16 DUP(O) Unused
PSP_T_Parm1 DB 16 DUP(O) Formatted param 1
PSP_T_Parm2 DB 20 DUP(O) Formatted param 2
PSP_T_DTA DB 128 DUPCO) Default DTA
PSP ENDS

The Application Interface

Once an application is running, it requests DOS services through the 80X86 in­
terrupt mechanism by placing request-specific information into one or more in­
dex registers and executing an interrupt instruction. Different interrupts
provide a variety of services.

The Interrupt Mechanism

The general form of an interrupt instruction is INT on, where nn is a number in
the range from 0 to 255. When the processor executes one of these instructions,
the contents of the flags, code segment, and instruction pointer registers are

305



Section 3: Working with the Hardware Interface

pushed on the stack. The interrupt number, nn, becomes an index into a table of
double-word pointers in low memory called the Interrupt Vector Table OVT).

The IVT begins at location 0:0. Each entry contains the address of an inter­
rupt service routine. If the processor had executed an INT 21 Hinstruction, the
interrupt number, 21H, would become the index into the IVl: Location O:84H
(84H = 4 x 21H) contains the address of the I NT 21 Hinterrupt service routine
which will gain control as a result of an INT 21 Hinstruction.

Using the IVT allows DOS to dynamically alter the addresses of the inter­
rupt service routines. This feature is important because it allows for customiza­
tion. A number of factors, including DOS version, affect where various parts of
the operating system get loaded. These services are requested by number and
the kernel and the processor convert this number into an address.

When it has completed the request, the interrupt service routine executes
an IRET instruction which restores the processor flags and returns to the loca­
tion following the I NT instruction.

I NT 21 H: The Application Workhorse

Applications use a variety of interrupts to request kernel services, but INT 21 His
the primary DOS interface. This interrupt provides file and device access, sup­
ports device independent 110, supplies status information, and controls various
system resources. The INT 21 Hinterrup~ service routine is a significant part of
the DOS kernel.

An application places a value in AH to select a particular service, loads serv­
ice-specific values into other registers, a,nd executes an INT 21 Hinstruction. (As
of version 3.1 of DOS, there are 63H different INT 21 H functions.) The INT 21 H

service routine contains a dispatcher which selects an appropriate internal rou­
tine to complete the request.

DOS-Device Driver Interface

Just as a precise interface exists between an application and DOS, one exists be­
tween DOS and a device driver. Each driver has a device header which helps
DOS locate and manage the driver.

The DOS kernel maintains a linked list of device headers. One field in this
header contains either the address of the next header or a OffffffffH to mark the
end of the list. The device header for the NUL device is first on this list, and the
kernel implicitly knows the location of the NUL device header.

Whenever DOS needs the services of a device driver, DOS constructs a re­
quest header and calls the driver. This structure completely describes what DOS
needs done. Listing 10-2 shows the form~tof a gen~ric request header. There are
times when the generic header cannot completely specify a request; in these
cases, DOS appends additional fields to the request header.

306



Chapter 10: Developing Device Drivers

Listing 10·.2. Generic Request Header Format

RH
RH_B_Length
RH_B_Unit
RH_B_Command
RH_W_Status
RH_T_Reserved
RH

STRUC
DB
DB
DB
OW
DB
ENDS

o
o
o
o
8 DUP(O)

II Length (bytes)
;; Unit code
;; Command code
;; Operation results

What Is a Driver and How Is It Used?

DOS depends on device drivers to deal with the idiosyncracies of specific pieces
of hardware; you can think of them as special-purpose extensions of the operat­
ing system. Drivers isolate DOS from much of the hardware in your PC, allowing
DOS to be ported more easily and simplifying support of new devices.

You can find device drivers in two different places. Some drivers are actu­
ally part of DOS and are known as built-in device drivers. Other device drivers
exist as separate files and are called loadable device drivers. Both types of drivers
have the same structure.

Built-in drivers support those devices used in the boot process, which in­
elude the console and boot disk. Locating driver code within the operating sys­
tem simplifies the boot process.

Loadable drivers customize and enhance DOS and are added as they are
needed. When you configured your system, you probably decided to use
ANSI. SYS, which modifies the way DOS deals with the console. Using a new de­
vice is as simple as asking DOS to load another device driver. If you selected
ANSI. SYS, you enhanced DOS. ANSI. SYS replaces the built-in console driver and
provides added function. Loadable drivers also reduce memory requirements.
You need only load the drivers required to support your particular hardware
configuration.

Each driver has three parts: a device header, a strategy routine, and an in­
terrupt routine. The header is a data structure which the driver shares with
DOS. The interrupt and strategy routines contain driver code and data. When­
ever DOS needs driver service, it builds a request header, locates the driver, and
calls the driver strategy and interrupt routines.

The Device Header

The header is a collection of driver specific information which DOS uses in
much the same way as it uses the PSP for an application. In addition to the

307



Section 3: Working with the Hardware Interface

address of the next header, the device header contains device attributes and the
offsets of the strategy and interrupt routines. Listing 10-3 shows the structure of
the device header.

Listing 10-3. Device Header

DHD STRUC
DHD_A_NextDHD DO OffffffffH , , Address of next header
DHD_W_Attrib OW 0 .. Device attributes, ,
DHD_W_StgyEntry ow 0 ; ; Strategy routine offset
DHD_W_IntrEntry OW 0 ; ; Interrupt routine offset
DHD_T_Name DB ' , Device name, ,
DHD ENDS

The attributes field (a two-byte word) shown in Figure 10-1 is a summary of
device characteristics. This is an important field. It distinguishes between block
and character devices, declares a driver's ability to handle optional requests,
and identifies devices that require special handling. Table 10-1 lists devices and
their functions.

C I N 0 S C C S S
H 0 0 c p u U T T
A C N A E A A 0 0
0 T I M C C N I 0
E L B L L U N U
V M K L T

Fig. 10-1. Driver attributes word.

A device is either a block device or a character device. Block devices are
usually disks and must support the MS-DOS volume structure, which absolutely
fixes the location of certain information and establishes rules for naming and or­
ganizing files. Character devices, on the other hand, deal with streams of bytes,
one byte at a time. The keyboard, displa)T, and printer are character devices.

Strategy and Interrupt Routines

The strategy routine records the address of the request header and returns to
DOS. The real work of carrying out the request takes place in the interrupt rou­
tine, which recovers the request header address and examines the request type

308



Chapter 10: Developing Device Drivers

Table 10-1. Driver Attributes Field

Device Characteristics

CHRDEV Set to indicate a character device. DOS treats character and block devices
differently and uses different algorithms to locate their drivers.

10CTL Set to indicate driver's ability to respond to I/O Control requests. This sup·
port is optional. These requests allow control information such as printer
setup or communications parameters to be sent to the device.

NONIBM A block device is not IBM·format compatible if this bit is set. The media byte
takes on special meaning for IBM·format compatible volumes. If this bit is set,
a character device can process write-until-busy requests that transfer multi­
ple bytes with one driver request. Normally, characters are sent one at a
time.

OCRM If this bit is set, the driver supports open/close/removable media requests.
Driver will be called when a file or device is opened or closed. Removable
media requests are sent to block drivers only.

SPECL Set to indicate that the driver has an I NT 29H entry point. DOS uses this en­
try instead of the normal request-passing mechanism to speed output to the
current console device. IThe current console device has both the SrolN and
STDOUT bits set-see below.) This feature has been present in all recent ver­
sions of DOS but is not documented. Use at your own risk.

CURCLK Set to indicate the current clock device. DOS uses the clock device to keep
track of the current time and date and to time-stamp files.

CURNUL If this bit is set, the device is the current NUL device. The NUL device can be
written to or read from. Reads always return end of file; writes always suc­
ceed. The driver is never actually called to process these requests.

STDIN Set to indicate that the device is the current standard input device. Certain
characters, such as backspace, have special significance. Limited line editing
is supported.

SroOUT If this bit is set, the device is the current standard output device. Certain
characters are treated specially. Nonprinting characters are converted to
printing and tabs are expanded.

RH_B_Command. If the interrupt routine does not support request, it returns an
error; otherwise, it processes the request.

Driver Dispatch

After DOS locates the driver and constructs a request header} it places the de­
vice header address in DS:SI} the request header address in ES:BX} and calls a
driver dispatch routine. With the exception of initialization requests} all driver
calls pass through this one routine.

The dispatch routine successively calls the driver strategy and interrupt
routines. A side effect of the dispatch logic is that the DS register contains the
driver data segment. This feature is not documented and there is no guarantee
that future versions of DOS will behave in the same way. Here is the code for the
driver dispatch routine:

309



Section 3: Working with the Hardware Interface

DS:SI
ES:BX

has device header address
has request header address

CallDr;ver
mov
mov
mov
call

mov
mov
call

ret
CallDriver

PROC NEAR
ax,[s;].DHD_W_StgyEntry
cs:temp,ax
cs:temp+2,ds
cs:DWORD PTR temp

ax, [si].DHD_W_IntrEntry
cs:temp,ax
cs:DWORD PTR temp

ENDP

ax <== strategy offset
Save strategy offset
and segment
Indirect far call to
strategy routine
Now fill in interrupt
offset
Indirect far caLL to
interrupt routine
Return to caller

Using the DOS I NT 21 HApplication Services Interface

We'll now examine a simple application and its interaction with DOS. The pro­
gram, LISTER. COM, is shown in Listing 10-4. It uses INT 21 Hto list a file at on the
console. LISTER opens both the file and console device, copies 256 bytes at a
time from the file to the console, and returns to DOS after it reaches the end of
the input file.

Lines 1 to 14 of LISTER are typical of a COM program. COM programs al­
ways begin execution at location 100H. Normally, this location contains a JMP in­
struction followed by program data and then code. A COM program contains no
address references that must be modified when the program loads. This restric­
tion prevents COM programs from making far calls and restricts the way they
can initialize segment registers.

LISTER opens the input fIle llines 18 to 21) and output device llines 22 to 27)
next. The value placed at AL prior to the open request indicates the access
mode-O for read-only and 1 for write. LISTER opens the input file read-only and
the output device for write. A successful open request returns a handle in the
AX register that DOS uses to link subsequent requests with a particular file or
device.

Lines 30 to 41 read 256 bytes from the input file and write them to the
console. Notice how the read and write requests use a handle to specify the tar­
get of the read or write operation. Each read request ~ine 32) returns the num­
ber of bytes read in the AX register. If the length of the file is not a multiple of
256 bytes, the final read will not return the requested number of bytes. Since we
do not want to write any more bytes than have been read, the bytes read fixes

310



Chapter 10: Developing Device Drivers

the size of the next write (Line 36). If the read returns no bytes, LISTER has
reached the end of file nines 33 and 34) and terminates.

Listing 10-4. LISTER

Copies program source (LISTER.ASM) to console device

Compile: MASM LISTER;
Link: LINK LISTER;
Convert to COM: EXE2BIN LISTER LISTER. COM

bufS
_text

Uster

inF
outF
inH
outH
buf
start:

again:

EQU 100H ; ( 8) Size of program buffer
SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:_text,ds:_text;(10)
ORG 100H (11) COM programs start here
PROC NEAR (12)
jmp start (13)
DB 'lister.asm',O (14) name of input file
DB 'con',O (15) name of output device
DW 0 (16) handle for input file
DW 0 (17) handle for output device
DB bufS DUP(O) (18) read/write buffer
lea dx,inF (19) address input filename
mov ax,3dOOH (20) open for read
int 21H (21) make request
mov inH,ax (22) save handle
lea dx,outF (23) address output device
xor cx,cx (24) use normal attributes
mov ax,3d01H (25) open for write
int 21H (26) make request
mov outH,ax (27) save handle
mov cx,bufS (28) buffer size
lea dx,buf (29) buffer address
mov bx,inH (30) input handle
mov ah,3fH (31) read function
int 21H (32) make request
or ax,ax (33) end of file?
jz done (34) if Z--yes
mov bx,outH (35) output handle
mov cx,ax (36) bytes read
mov ah,40H (37) write function

continued

311



Section 3: Working with the Hardware Interface

int 21H (38) make request
jmp SHORT again (39) repeat read/write

done: mov ah,4ch (40) terminate function
int 21H (41 ) make request

Lister ENDP

-text ENDS
END Li ster

The Boot Process

Now that we see what the DOS kernel can do for us, let's take a look at how some
of this magic happens. DOS is a dynamic system, so the best way to see how its
parts interact is to see how they are put together. The story begins when DOS
boots. The boot process loads the operating system into memory and initializes
the major 1/0 data structures. What we collectively refer to as DOS consists of
IBMB10. COM, IBMDOS . COM, any loadable device drivers, a command line interpreter
or shell (normally COMMAND. COM), and possibly some lerminate and Stay Resident
(TSR) kernel enhancer like SHARE. EXE.

In the initial stages of the boot process, very few services are available. The
ROM code which loads IBMBIO. COM is quite primitive. IBMBIQ in turn loads
IBMDOS •COM and calls initialization code within IBMDOS which sets up the INT 21 H
interrupt service routine.

After this IBMDOS initialization code returns to IBMBIO, the customization
process can begin. IBMBIO opens and reads CON FIG. SYS using INT 21 Hrequests.
Commands in CONFIG.SYS identify loadable drivers and override default values
for certain DOS data structures. After CONFIG.SYS has been read, the boot pro­
cess completes by loading the command line interpreter, COMMAND _COM. COM­
MAND. COM initializes itself and prompts for user input.

In the Beginning (from ROM to RAM)

When you turn on your system or press control-alt-delete, the processor exe­
cutes ROM code that verifies the correct operation of your system and figures
out what equipment is present. When this Power On Self lest (POST) completes,
it executes an INT 19H instruction to invoke the ROM bootstrap routine.

The bootstrap routine tries to read sector 1 track 0 from drive A and then
from the hard disk (normally drive C). This sector is the boot sector of an
MS-DOS volume. The boot sector contains code and data needed to continue the
boot process. Low-level, ROM-based INT 13Hrequests are used to read the sector.
If neither driver responds, control passes to ROM BASIC.

If the boot sector is successfully read, the ROM bootstrap routine jumps to

312



Chapter 10: Developing Device Drivers

the entry point of the boot-sector code. This code verifies both I BMB 10. COM and
I BMDOS • COM are present in the root directory of the boot disk, and then loads
IBMBIO using ROM-based, INT 13H requests.

Control passes to IBMBIO which loads I BMDOS • COM from disk and calls
IBMDOS at its initialization entry point. IBMBIO passes the listhead of a linked
list of built-in drivers to IBMDOS; the code for these drivers is part of IBMBIO.
This list must contain headers for the disk, clock, and console devices which are
needed to finish the boot process. It currently includes drivers for CON (the con­
sole), AUX, PRN, CLOCK$ (the clock), COM1, LPT1, LPT2, LPT3, COM2, the
floppy disk, and the fixed disk (if present).

IBMDOS Initialization

IBMDOS stores the listhead of the driver chain in the next device field of the
NUL device header. The NUL device header, which is located in a DOS global
table, becomes the new listhead of the driver chain.

IBMDOS scans the driver chain looking for the console and clock devices
and records their addresses in the DOS global table. The attributes word of the
console driver has both the STDIN and STDOUT bits set; that of the clock driver
has the CURCLK bit set. These devices require special treatment.

There are times when DOS must bypass any I/O redirection. Redirection is
a function provided by COMMAND. COM that allows an application's input and output
devices to be changed dynamically. DOS always checks the console device for
control-e and reports division overflow ONT 0) to the console device. Using a
recorded header address guarantees that these operations are not redirected.
Simply naming a device /ICON" does not make it the console device. The STDIN
and STDOUT bits must be set in the attributes word.

DOS uses the stored address of the clock device header to service explicit
time or date requests and to time-stamp certain I/O operations. Recording the
address of the clock device header is a performance optimization for time­
stamping. The default clock device is named CLOCK$, but DOS uses the
CURCLK bit rather than the name to find this device.

Built-in Driver

IBMDOS builds a request header and calls each built-in driver at its strategy and
interrupt entry points. The driver initialization code for these built-in devices
does very little. Character devices simply set the status word to indicate success­
ful completion. Block device drivers also return a unit count and a table of BIOS
parameter block addresses. Each BIOS parameter block provides basic informa­
tion about disk structure. Ablock driver can support more than one device. The
unit count tells DOS how many devices the driver actually is supporting, and
DOS uses this information to initialize the DCB and Cache Block lists.

313



Section 3: Working with the Hardware Interface

DCB

The DCB list summarizes the disk structure information returned in the BIOS
parameter block and records the address of the device header. The unit count
specifies the initial size of the DCB list. Although the DCB entries for the built-in
devices are actually contiguous} they are organized as a linked list. DOS records
the listhead of the DCB list in the DOS global table.

DOS needs more information about block devices than it does character
devices. Where DOS would record the device header address for a character
device, DOS records the DCB address for a block device. Since the DCB contains
the address of the device header} DOS can find the header if it knows the DCB.
Here is the structure of a device control block (none of this is documented, by
the way):

DCB STRUC
DCB_B_Drive DB 0 [00] Drive number
DCB_B_Unit DB 0 [01 ] Unit number
DCB_W_SecSize OW 0 [02J Sector size (Bytes)
DCB_B_ClstMask DB 0 [04J Cluster size -1

Used as mask for finding
cluster boundaries

DCB_B_ClstShift DB 0 [05J Sector to cluster shift
mask
Sector » mask ==> cluster

DCB_W_FAT1 OW 0 [06] LBN of 1st FAT
DCB_B_NumFATs DB 0 [08J Number of FATs
DCB_W_RootSize OW 0 [09] Blocks in root directory
DCB_W_Clst2 OW 0 [DB] LBN of first data cluster
DCB_W_LastClst OW 0 [00] Last cluster in data area
DCB_B_FATSize DB 0 [OF] FAT size (blocks)
DCB_W_RootLBN OW 0 [10] Root Dir LBN
DCB_D_Header DO 0 [12J Device header
DCB_B_MediaCode DB 0 [16J Media code
DCB_B_MediaChgd DB 0 [17] Media changed flag
DCB_D_Next DO 0 [18] Next DCB
DCB_W_Unknown1 OW 0 [1 Cl Unknown
DCB_W_Unknown2 OW 0 [1 El Unknown

ENDS

Cache Block

DOS determines the largest sector size for the built-in block devices by examin­
ing the BIOS parameter blocks. This value fixes the size of cache blocks and con­
sequently sets a maximum sector size for all block devices (including loadable

314



Chapter 10: Developing Device Drivers

devices}. IBMDOS allocates a buffer big enough to hold the largest sector and
records its address in the DOS global table. This buffer becomes the initial disk
cache. The I NT 21 H disk I/O code requires at least one cache block. DOS uses
cache blocks to read File Allocation Table (FAT) and directory blocks and to pro­
cess partial sector reads and writes.

Contrary to popular opinion, the disk cache is not used to process full block
reads and writes for ordinary files. Possibly the designers of DOS felt that it
would be unlikely that these complete blocks would be referenced again, and so
they would gain newl performance by not having to copy data from cache to a
user buffer.

The List ofLists

DOS maintains a table of important information about the I/O subsystem. DOS
initially records addresses for the DCB listhead} CONSOLE device header}
CLOCK device header} and NUL device header, as well as the largest sector size
and current number of block devices. Other information is added later in the
boot process.

IBMDOS passes back the address of this global table} which is sometimes
referred to as the List of Lists} to IBMBIO. Applications can locate this structure
through the undocumented INT 21 H(AH = 52H). The following is a listing of the
contents of this table; none of it is documented. The labels in this listing refer to
offsets in the DOS 3.1 data segment:

LOO26 DO 0 listhead for Device Control
Blocks CDCBs)

L002A DO 0 System File Table listhead
CSFT)--handles

L002E DO 0 clock device header
L0032 DO 0 console device header
L0036 OW 0 largest sector
LOO38 DO 0 listhead for cache blocks
L003C DO 0 address of Current Directory

Structure (CDS)
L0040 DO 0 System File Table listhead

CSFT)--FCBs
L0044 OW 0 Size of FCB SFT Table
L0046 DB 0 drive count
L0047 DB 0 last drive

Device header for null device

L0048 DO 0 next device
L004C OW 8004 attributes

315



Section 3: Working with the Hardware Interface

L004E
LOOSO
LOOS2
LOOSA

DW
DW
DB

DB

L1418
L141E
'NUL
o

; strategy entry
; interrupt entry

, ; devi ce name
; count of joined drives

The IBMDOS initialization code fills in a number of entries in the IVI; in­
cluding the address of the INT 21 Hinterrupt service routine, and returns to
IBMBIO, passing back the address of the List of Lists. Much of the memory occu­
pied by this initialization code will be overwritten with DOS data later.

DOS Returns to Its Roots

When IBMBIO receives control again, the console, clock, and disk devices are
initialized and INT 21 His operational. IBMBIO uses INT 21 Hto open and read CON­

FIG. SYS. Entries in this file customize the boot process by identifying loadable
device drivers, controlling the size of various DOS tables, requesting specific
processing options, and specifying a shell.

When IBMBIO encounters a ((device =" statement in CONFIG.SYS, it loads
the driver, inserts its device header immediately after the NUL device in the de­
vice header chain, builds an initialization request header, and calls the driver.
The driver initialization routine performs any device-specific initialization and
returns to IBMBIO.

IBMBIO uses driver-supplied information from the request header to con­
tinue the boot process. Each driver initially has all available memory allocated to
it. The driver initialization code sets the break address in the request header
and IBMBIO uses this information to determine where the next device will be
loaded.

Block drivers must also return a unit count and the address of a table of
BIOS parameter blocks. IBMBIO adds this unit count to the current number
block devices and uses information from the BIOS parameter block table to
build a DCB for each unit. IBMBIO adds each new DCB to the linked list of device
control blocks.

Adding Some Finishing Touches

After reading CONFIG.SYS, IBMBIO allocates the remaining cache blocks, two
SFTs, and the CDS, and inserts their addresses in the List of Lists. Parameters in
CON FIG. SYS may affect the size of these data structures.

316



Chapter 10: Developing Device Drivers

Completing the Cache

DOS maintains a user-selectable number of memory blocks (a cache) for buffer­
ing disk I/O operations. Either a "buffers = n statement in CON FIG. SYS or a default
value sets the number of cache blocks. IBMBIO allocates the remaining cache
blocks and inserts them in a linked list of available blocks.

There are 16 bytes of overhead for each cache block. DOS uses this space to
manage the disk block cache. The next listing illustrates the layout of a cache
block. Note that the largest sector on a built-in block device sets the size of the
data area. This listing assumes the normal value of 512 bytes. This information is
also undocumented.

STRUC CCB
CCB_D_NextCCB DO 0 [OOH] Next CCB in linked li st
CCB_B_Owner DB 0 [04H] Owning Drive
CCB_B_Status DB 0 [OSH] Status of block

CCB_M_IsFAT EQU 02H This block is a FAT
CCB_M_IsDir EQU 04H This is a directory Block
CCB_M_IsData EQU 08H This is a data block
CCB_M_IsValid EQU 20H This block is valid
CCB_M_IsDirty EQU 40H This block is dirty

CCB_W_LBN OW 0 [06H] Block number
CCB_W_Count OW 0 [08H] Number of blocks
CCB_D_DCB DO 0 [OaH] DCB of owning drive
CCB_W_Flags OW 0 [OeH] Flags
CCB_T_Data DB 512 DUP(O) ; [10H] Data from disk
CCB ENDS

The System File Table

The SFT is one of the principal MS-DOS I/O data structures and is the focal point
for device independent I/O. Whenever DOS initially accesses a file or device, it
creates an SFT entry. This entry records the file/device name, directory attri­
butes, device attributes, context information such as file size and position, and
either the DCB (block devices) or Device Header (character devices) address.
DOS uses separate SFTs for File Control Block (FCB) and handles. FCBs are an­
other technique for accessing files and devices, providing the same basic capa­
bilities as handles.

The size of the FCB System File Table is fixed by an "feb =" statement in
CON FIG. SYS or a default value. The handle table can grow dynamically. Here is the
format for an SFT entry. This information is undocumented.

317



Section 3: Working with the Hardware Interface

SFT
SFT_W_RefCnt
SFT_W_"ode

SFT_"_FCB
SFT_"_DenYNone
SFT_"_DenYRead
SFT_"_DenyWrite
SFT_"_ExcLusive
SFT_M_NetFCB
SFT_M_Write
SFT_M_Read

STRUC
OW
OW

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
o

8000H
0040H
0030H
0020H
0010H
0070H
0001H
OOOOH

[00] reference count
[02] open mode

Entry is for FCB
Sharing bits (4-6)

II

II

II

This is a network FCB
FiLe access bits (0-2)

318

SFT_B_DirAttrib DB
SFT_W_FLags OW

SFT_M_Shared EQU
SFT_M_DateSet EQU
SFT_M_IOCTL EQU
SFT_M_IsDevice EQU
SFT_M_EOF EQU
SFT_M_Binary EQU
SFT_M_SpeciaL EQU
SFT_"_IsCLock EQU
SFT_M_IsNuL EQU
SFT_"_IsStdOut EQU
SFT_M_IsStdIn EQU
SFT_"_Written EQU
SFT_M_DriveMask EQU

SFT_W_CLuster1 OW
SFT_W_HHMMS OW

SFT_D_FiLSiz DO
SFT_D_FiLPos DO
SFT_W_ReLCLstr OW

SFT_W_CurCLstr OW
SFT_W_LBN OW

o
o

8000H
4000H
4000H
0080H
0040H
0020H
0010H
0008H
0004H
0002H
0001H
0040H
003FH

o

o
o

o

o
o
o

o
o

[04]
[05]

Network access
Date set (FILE onLy)
IOCTL support (DEVICE onLy)
Entry is for a device
(DEVICE) end of fiLe on input
(DEVICE) transparent mode
(DEVICE) supports INT 29H
(DEVICE) current cLock device
(DEVICE) current nuL device
(DEVICE) current stdout device
(DEVICE) current stdin device
(FILE) fiLe written
(FILE) mask for drive bits

(0-5)

[07] (FILE) DCB address
(DEVICE) Header address

[OB] (FILE) initiaL cLuster
[00] (FILE) Hour, Min, Sec/2

Access time
[OF] (FILE) Year, Month, Day

Access date
[11] FiLe size / EOF Location
[15] Current fiLe position
[19] (FILE) cLusters from

beginning of fiLe
[1B] (FILE) current cLuster
[10] (FILE) bLock number



SFT_W_DirIndex DB
SFT_T_FiLeName DB
SFT_T_Unknown DB
SFT_W_OwnerMach OW

Chapter 10: Developing Device Drivers

o ; [1F] (FILE) directory index
OBH DUP(O) ; [20] (FILE) fiLe name
04H DUP(O) ; [2B] 1111

o [2F] Machine number of fiLe
owner

SFT_W_Status OW
ENDS

Building the CDS

o

o

[31] PSP of task that
initiaLLy accessed fiLe
accessed fiLe

[33] Status

The LASTDRIVE statement in CONFIG.SYS or a DOS default value fixes the size of
the CDS. There is one CDS entry for each possible drive and all entries are con­
tiguous so the drive number can be used as an index. DOS uses the CDS to pro­
cess joined} substituted} and network drives} and to maintain current directory
information.

Each CDS entry has a device name} current default directory} DCB address}
and flags field. The 43H bytes of device and directory information include a
drive letter} a colon (:)} a backslash (\)} and a null to terminate the string. The
path-and filename can be up to 64 (40H) bytes long. The size of the name field is
what limits the length of a filename. The flags field identifies joined} substituted}
and network devices. The search for a block driver begins by using the drive
number as an index into the CDS.

Here is the format of the CDS. None of the information in this listing is docu­
mented.

CDS STRUC
CDS_T_Name DB 43H DUP(O) [00] Device and directory

name
CDS_W_Status OW 0 [43] Device status

CDS_M_Network EQU 8000H Network device
CDS_M_Local EQU 4000H Local device
CDS_M_Joined EQU 2000H Joined device
CDS_M_Substitue EQU 1000H Substituted device
CDS_M_Device EQU 0080H Device

CDS_D_DCB DO 0 [45] Address of DCB
CDS_T_Unknown DB 8 DUP(O) [49] Unknown

ENDS

319



Section 3: Working with the Hardware Interface

DOS at Your Command

At this point IBMBIO has completed all the major DOS I/O data structures. Figure
10-2 illustrates the relationships among these structures. IBMBIO runs the com­
mand-line interpreter (shell). The default shell is COMMAND. COM, but a COMSPEC =
statement in CONFIG.SYS can select an alternate shell.

FeB Handle
SFT SFT

Clock
Console

A:\FOO

B:\

C:\BAR

D:\JUNK

Cache
Blocks

Device
Header
Chain

Fig. 10-2. DOS VO data structures.

Device
Control
Blocks

Current
Directory
Structure

The boot process ends when the shell is run. The shell relies on DOS serv-

320



Chapter 10: Developing Device Drivers

ices to do its job, using INT 21 Hto display the shell prompt A>, read from the
keyboard, and invoke other applications.

The INT 21 HDispatcher: Processing Application
Requests

Now that the boot process is finished, DOS stands ready to process application
requests, many of which come through INT 21 H. The first part of the INT 21 Hin­
terrupt service routine is a service dispatcher that stores values in static vari­
ables, changes to one of three different stacks, and calls a routine to perform the
requested function.

Before returning to its caller, the INT 21 Hdispatcher must restore the static
information and stack. If the INT 21 Hdispatcher is reentered before it can restore
this information, DOS may become confused and go off the deep end.

If either a driver or a background process issues an INT 21 Hrequest, it can
cause the INT 21 Hdispatcher to be reentered. The architecture of this dispatcher
restricts background processing and limits what a driver can do. It is important
to understand what happens in this section of code.

Initial Processing

The request type passed in AH is validated. Four requests are serviced immedi­
ately-get PSP (AH = 50H and AH = 62H), set PSP (AH = 51H), and get/setl
check break state (AH = 33H). The requests corresponding to AH = 50H and
AH = 51H are undocumented. These immediately completed requests are al­
ways safe to make. We probably would never have occasion to use any of these
requests from a driver but they are necessary for background programs.

If the request cannot be immediately satisfied, DOS saves all registers on
the current stack and also records contents of the current DS:BX register pair in
a static variable (many INT 21 Hrequests pass an address in DS:BX).

INDOSFlag

Most of the remaining code is a critical section which must be completed with­
out interruption. The INT 21 Hdispatcher increments the infamous INDOS flag
when it begins this critical section and decrements the flag at·the end.

The purpose of the INDOS flag is support of background programs like
PR INT. COM. Background programs initially run from the DOS command prompt,
and after performing any initialization, they terminate and stay resident. (See

321



Section 3: Working with the Hardware Interface

Essay 7, Safe Memory-Resident Programming (TSR), by Steven Baker, for a thor­
ough discussion of these programs.) Their initialization should record the ad­
dress of the INDOS flag. The undocumented INT 21H AH = 34H returns the
address of this flag in the ES:BX registers. Note that this request can only be
safely made when the TSR initializes.

A zero value of the INDOS flag is not an absolute guarantee that it is safe to
make an INT 21 Hrequest. When DOS processes a critical error, it decrements the
INDOS flag and increments a critical error flag. A critical error is an I/O error
which cannot be handled by the device driver. The location of the critical error
flag varies with DOS version, and both critical error and INDOS flag must be
checked. In DOS 3.1, the critical error flag is the byte before the INDOS flag.

Dispatcher Stack Switching

The INT 21H dispatcher works with three separate stacks: user, auxiliary, and
disk, and switches among these stacks depending on the request and critical
error flag.

The current SS:SP register values are saved in a static variable after saving
the previous variable contents in another static variable. This action provides
one level of INT 21 Hrecursion needed to support background processing. Ss:sp
values are also recorded in the PSP of the current task, and are used to restore
the stack when the current process terminates.

The current stack is unconditionally changed to the auxiliary stack. If the
request is for termination (AH = 0) or get extended error (AH = 59H), it is serv­
iced directly. If the request is in the range OlH to OCH and a critical error is not in
progress, a change is made to the user I/O stack. Critical Error Handlers can
safely make I NT 21 Hrequests in the range OlH to OCH because no stack switch is
performed. For all other requests, the disk stack is used.

Taking a Break

If the break flag has been set either by a brea k =on statement in CON FIG. SYSor by
an explicit INT 21 Hrequest (AH = 33H) and the disk stack is in use, a nondestruc­
tive read is issued directly to the console driver to check for control-c. Some of
the user-stack requests make an unconditional control-c.

Since control-c checks are sent to the console device, DOS uses the header
address from the List of Lists to locate its driver. If a control-c is detected, the
DOS kernel executes an INT 23H. COMMAND. COM sets up an INT 23H service routine
which terminates the current program, but a program can override this action
by declaring its own INT 23H service routine. Because of the way the INT 21 Hdis­
patcher switches stacks, it is not safe to issue an INT 21 Hrequest from an INT 23H
interrupt service routine.

322



Chapter 10: Developing Device Drivers

Finishing the -:T0b

For all unsatisfied requests, the dispatcher uses the function code (initial AH
value) as an index into a table of internal service routines. In recent versions of
DOS, this table begins at offset OdefH of the DOS segment.

When the internal DOS routine returns, the INT 21 Hdispatcher decrements
the INDOS flag, restores the caller's stack pointer, removes the saved registers
from the caller's stack, and executes an IRET instruction.

Using FeBs and Handles

The majority of the INT 21H requests are 110 related. There are two basic tech­
niques for requesting a DOS I/O operation: handles and FCBs.

Handles were introduced with version 2.0 of DOS, and they support the
hierarchical file system (Le., directories and subdirectories). Initial access to
files and devices is by name, which can include a path. A path contains drive and
subdirectory names in addition to the file or device name. Open or create func­
tions return a number called the handle which is used in place of the name for
subsequent accesses. When you use handles for read or write, you specify the
number of bytes that you want to transfer, a buffer address, and the previously
returned handle.

FCBs are an artifact of version 1.0 of DOS and do not support the hierarchi­
cal file system. You create the FCB data structure and pass it to the INT 21 Hdis­
patcher with each request. Transfers are measured in records instead of bytes;
each FCB has its own record size. The Disk Transfer Area IDTA) is a common
buffer for all transfers. Here is the format of an FCB (items marked with an aster­
isk are undocumented FCB fields):

FCB.DEF

FCB STRUC
FCB_B_Drive DB 0 [OOJ Drive number
FCB_T_Name DB [013 Name
FCB_T_Ext DB [09J Extension
FCB_W_CB OW 0 [12] Current block
FCB_W_LRS OW 0 [14J Logical Rec Size
FCB_D_FS DO 0 [16J File Size (bytes)
FCB_W_DLM OW 0 [20J Date Last Modified
FCB_W_TLM OW 0 [22] *Time last modified
FCB_B_SFN DB 0 [24] *SFN
FCB_B_Flags DB 0 [25] Modified flags
FCB_A_DHD DO 0 [26] *Device Header/DCB

323



Section 3: Working with the Hardware Interface

FCB_B_BRR
FCB_O_FRR
FCB

OW
DB
DO
ENDS

o
o
o

[30J
[32J BLock ReLative Rec
[33J FiLe Relative Rec

Working with the 8FT

Handles and FCBs are application data structures, but, internally, DOS deals with
SIT entries, maintaining separate SITs for handles and FCBs. The entries in
each table are assigned a number which ranges from zero to the number of ta­
ble entries minus one. DOS allocates an SIT entry when the file or device is ini­
tially accessed. The number assigned to this entry becomes the System File
Number (SFN) and links FCBs and handles to their corresponding SFT entry.

Handles

The handle returned by an open or create is an index into a data structure called
the Job File Table (JFT). A handle of 0 references the first element of this table, 1
the second element, etc. The contents of each element of the JFT is the SFN,
which is used as an index into the handle SFT

DOS records the address and size of the JFT in the Program Segment Prefix
(PSP) because the JFT and associated handles are application-private resources.
The JFT normally holds 20 entries (Le., there are 20 handles) and can usually be
found within the PSR The size of the JIT sets a limit on the number of open files.

There is not room within the PSP to expand the size of the JFf, but you can
allocate a new JFT and update the size and base address in the PSR DOS never
assumes that the JFT is located in the PSR The capability to grow the JFT this
way has existed for some time, but it has not been documented. DOS 3.3 pro­
vides an I NT 21 Hfunction to increase the size of the JIT

After the initial file or device access, DOS uses the handle as an index into
the JIT where it finds the SFN and uses it to find the original SIT entry. Figure
10-3 illustrates the relationship between the handle, PS~ JFf, SFN, and SIT

FeBs

There is no central structure analogous to the the JIT for File Control Blocks.
DOS records the SFN assigned at the initial access in one of the reserved fields of

324



Chapter 10: Developing Device Drivers

Handle

Job
File

Table

A
Program
Segment

Prefix

Address of next SFT group I

I--

Address of next SFT group I

ddress of SFT I

Group of
SFT

Entries

Group of
SFT

Entries

Fig. 10-3. Program VO data structures.

the FCB, which is passed back to DOS in subsequent I/O operations. DOS ex­
tracts the SFN and locates the corresponding entry in the FCB SIT

From Driver Request to Call

Now that we have surveyed the general structures involved with file I/O, let's ex·
plore the transformation of some of the more common INT 21 H requests into
driver calls. Operations such as open, close, read, and write originate as either
handle or FeB requests, which DOS converts to a standard format before calling
a common internal routine to complete the request. This internal routine uses
information in an SFT entry to build a request header and locate the device
driver. Various important pieces of information are stored in static DOS variables
contributing to DOS reentry problems.

Understanding the mechanics of this process is helpful for writing drivers.
You will know the types of requests DOS will send to your driver and the circum·
stances under which they will be sent. It is not exactly obvious when a driver
will receive flush, status, and nondestructive read requests. Device attributes
have some interesting side effects on the transformation process.

I'll explain how DOS uses the different I/O data structures to locate the
driver and complete the request. Familiarity with these structures is an asset for

325



Section 3: Working with the Hardware Interface

debugging. The information which they contain tells you where DOS loaded
your driver, how many characters your driver has processed, and what DOS
knows about your driver.

Opening a Device

Either a handle or an FCB request can open a device. The separate routines for
these requests eventually call a common internal open routine to complete the
operation. The different entry points map handle and FCB requests into the SFT
entry needed by the internal open routine.

DOS always assumes a file to be the target of all open requests and concate­
nates a drive name and directory string with the device name to complete a
pathname. If this information is not explicitly contained in the initial reference,
the current default drive and directory for that drive are used. The internal
open routine parses this pathname and eventually discovers device references.
This logic may seem warped, but it has the advantage that files and devices can
be treated uniformly. On some systems, the semantics of device names (always
ending in a colon or beginning \dev\foo when foo is the name of a device) allow
the operating system to recognize a device reference. DOS cannot immediately
determine whether a name refers to a file or a device.

Handle and FCB open requests pass through the INT 21 H function dis­
patcher to separate routines that call a common internal open routine. It is this
internal open routine which does most of the actual work needed to open a de­
vice or file.

A successful open request allocates an SFT entry containing the address of
the device header if a device is being referenced, or the address of a DCB contain­
ing the address of a device header ifa file is being referenced. The SFN identifying
the SFT entry is stored in the JFf for handle operations and in the FCB for FCB
operations, and will direct subsequent accesses quickly to the correct SFT entry.

Handle Open

The handle open routine allocates an SFT entry from the handle SFT and a han­
dle from the JFI: The SFN corresponding to the newly allocated SFT entry is
recorded in the JIT

If the input file/device name does not contain an explicit device or begin
with quotation marks, the current default drive and CDS are used to construct a
complete pathname. The flags and status fields in the SFT entry are initialized
and the internal open routine is called.

The handle open routine sets the reference count in the SFT entry to 1 if
the internal open routine completes successfullyj otherwise, it must deallocate
the SFT entry and handle and return an error code.

326



Chapter 10: Developing Device Drivers

FCBOpen

The FCB open routine sets the file open attributes to read/write for compatibil­
ity with the handle open. The FCB open routine creates a pathname by concate­
nating the current default drive and directory from the CDS with the name in
the FCB. An SFTentry is allocated from the FCB SFT and the SFT flags field is set
to indicate FCB access. A call is made to the internal open routine. If this routine
returns successfully, the SFT reference count is incremented, some FCB fields
are initialized, and information is copied from the SFT entry back to the FCB.

Whenever an open request is made, a new FCB SFT entry is allocated. Be­
cause of the way file sharing is implemented for FCB access, an SFT entry corres­
ponding to the same file may have been previously allocated. The FCB open
routine scans the SFT after each request looking for duplicate entries. If there is
another SFT entry that references the same file, the reference count and IIage"
are updated and the new SFT is deallocated. FCB SFT entries are aged, and if an
SFT entry is needed and none are available, the oldest one is reused. Sufficient
context information is maintained in the FCB to reconstruct the SFT entry at a
later time.

The Internal Open Routine

DOS calls a common internal open routine to process both handle and FCB re­
quests. This routine validates the open attributes and examines the SFT flags.
Requests for access to a network device are immediately passed to MSNet using
INT 2FH; otherwise, a device/file lookup is performed.

The lookup operation is complex and is mainly of interest for processing
block device requests. The pathname (drive letter + directory string + file/
device name) is scanned from left to right looking for tokens (a string of charac­
ters separated by directory delimiters \ or ending with a nul \000). The list of
device headers is scanned in an attempt to match the name of a character driver
with the token. If the last token from the path (Le., it ends with a nul) matches
the name of a character device, the DOS kernel concludes that this device is the
target of the open request.

If a character device is not being referenced, the token must refer to a di­
rectory entry. DOS reads directory blocks from disk until it locates the directory
corresponding to the token. These steps are repeated for each token until the
directory search fails or the end of the path is reached.

Since the header chain is searched starting from the NUL device and work­
ing backward, the last device loaded with a particular name is the first one
found. Any character device except the NUL device can be replaced by loading a
similarly named device driver.

If the open request completes successfully and the device supports openI
close/removable media functions, DOS sends an open request to the appropriate
device driver. The driver indicates support for these functions by setting the
OCRM bit in the device header. Control returns to the handle or FCB open routine.

327



Section 3: Working with the Hardware Interface

Reading and Writing

Both handles and FCBs can be used to request read or write operations. Each
access method follows a different path through the INT 21 Hdispatcher} but even­
tually arrives at common internal read and write routines. The internal routines
actually perform the I/O operation using information contained in SIT entries.
The various routines along the separate code paths hide the differences be­
tween FCB and handle access from the internal I/O routines.

Handle Access

The INT 21 Hdispatcher calls separate entry points to process read and write re­
quests. This code quickly merges to a common read/write routine.

The read/write routine uses the handle to locate the SFT entry and checks
handle ownership by comparing the current PSP to the value recorded in the
owner field of the SFT entry. The buffer address is adjusted to minimize "seg­
ment wrap" (Le., the offset is made as small as possible and either the internal
read or internal write routine is called to complete the transfer).

FCBAccess

There are specific FCB requests for reading and writing records sequentially
and randomly. Sequential operations deal with a single record at a time, and ran­
dom operations can process multiple records. There are different INT 21H re­
quests for each case. These separate routines call a common FCB I/O routine
which converts the request size to bytes and the record-oriented FCB position to
a byte-oriented file position. Next} the transfer size is adjusted to prevent seg­
ment wrap and an SFTelement is allocated. Context information is moved from
the FCB into this newly initialized 8FT element.

Control now passes to the same internal read and write routines used to
satisfy handle requests. After the internal routine completes, the file size is cop­
ied back to the FeB and the number of records processed is calculated. This
number will differ from the requested number if the transfer size was altered.

If a read resulted in transfer of a partial record, DOS zeros the unused part
of the buffer. AU FCB operations implicitly use the DTA as a buffer. If a write
operation is completed, the common FCB I/O routine calls an internal routine to
get the current date and time. The time and date routine creates a request
header and passes it to the current clock device using the previously recorded
device header address. The FCB relative record field is updated regardless of the
operation performed. The number of records written and final status are re­
turned.

328



Chapter 10: Developing Device Drivers

Internal Read Routine

The internal read routine verifies that read access to the device is allowed (a
device such as a printer might be write-only), sets the error locus (for extended
error processing) to serial device, and examines the device attributes in the flags
word of the SFT entry. Some of these attributes were copied from the device
header when the SFT entry was created, and others updated as the device is
used. If an end of file has been detected or the device is the current NUL device,
the read terminates immediately.

If the flags field indicates that device is in binary or raw mode (set by an
Input/Output Control aOCTL) request), a single read request is sent to the device
driver. Binary mode processing can offer a substantial performance advantage,
but the request will not terminate until the specified number of characters have
been read.

There are two execution paths for text I/O because reads from standard
input require special handling. If the device is not standard input, the kernel
builds a one-character read request header, makes a control-c check, and calls
the driver. If the read request is successful, this routine updates the buffer ad­
dress and checks for end-of-file (EOF) or carriage routine. Ifeither of these char­
acters is found, the read terminatesj otherwise, the steps are repeated until the
requested number of characters have been read.

If the device is standard input, the internal read saves the address of the
SFT entry in another DOS global variable and converts the request to a buffered
read from standard input corresponding to INT 21 H (AH = OAH). The buffered
read routine takes care of echo and special character processing and supports
limited editing.

The internal read routine updates the SFT entry after the read request
completes. It calculates the bytes read and updates the total number of bytes
processed since the device was opened. This count, analagous to file position for
file operations, is stored in the file position field of the SIT If an end of file was
detected, the SFT flags field is set accordingly. The internal read routine checks
the status returned by the device driver in the request header and invokes the
DOS Critical Error Handler to deal with any errors.

Internal Write Routine

The internal write routine verifies that write access is permitted, sets the error
locus to serial device, and sets the not-at-end-of-file bit in the SFT entry flags
field. The internal write routine checks the current mode and device attributes
in the SFT entry flags field.

If a device is being accessed transparently, a single write request is passed
to the appropriate driver. Since individual characters are not checked in trans­
parent mode, there is no notion of end of file. This mode is useful for sending
certain bit-mapped graphics to a printer. The bit pattern corresponding to EOF

329



Section 3: Working with the Hardware Interface

cannot be sent to a device in text mode. There are also performance advantages
with transparent mode since the driver is called only once for each request.

There are two special cases for text mode I/O. If the device is the current
NUL device} DOS declares the operation successful and returns without ever
calling the driver. Writes to standard output are passed to the DOS display out­
put routine (the same one used to process INT 21 H} (AH = 02H) requests) which
is described later on.

lext mode I/O of any other device is processed one character at a time. DOS
builds a request header for a single character write} makes a control-c check}
and passes the request to the driver. If the driver does not return an error} the
buffer address and character count are updated. This process continues until
either an end of file is written or all the characters have been processed.

The Critical Error Handler processes any errors and may terminate the
current process. After the write completes} the internal write routine updates
the SFT entry and returns to its caller. The number of bytes written is calculated
by subtracting the initial buffer address from the current buffer address. This
value will eventually be returned to the application through the INT 21 Hfunction
dispatcher. The file position is updated by adding the number of bytes written to
the old position. (For a device} the file position is the total bytes written since the
device was opened.)

Closing a Device

Closing a device releases the resources which DOS allocated when it opened the
device. Handle and FCB close requests eventually call a common internal close
routine.

The handle close routine is called directly from the INT 21 Hfunction dis­
patcher. It validates handle ownership by comparing the current PSP to the own­
ing PSP stored in the SFT entry; only the handle owner can close a file. If the
reference count is 1 or the SFT entry does not correspond to a network FCB} the
corresponding SFN is extracted from the Job File Table} and the handle is
marked as available. In either case} control passes to the internal close routine.

The FeB close routine retrieves the SFN from the FCB and copies the cre­
ation data and time from the FCB to the SFT entry. The flags field of the SFT
entry is updated to indicate that the file date has not been set. The date and time
will be needed to update directory entries for modified disk files. The internal
close routine will complete the FCB close request.

Closing local devices is a simple operation. The reference count in the SFT
entry is decreased and when the count becomes zero} the entry is released. If
the device supports open/close/removable media requests and the current PSP
owns the SFT entry} a close request is sent to the device driver. This ownership

330



Chapter 10: Developing Device Drivers

requirement can prevent a driver from receiving a close request even if the
OCRM bit is set in its header. COMMAND. COM opens PRN, CON, and AUX. Any appli­
cation run by COMMAND. COM gets access to these devices without opening them
through a mechanism known as inheritance. Since COMMAND. COM and not the ap­
plications owns these devices, the driver will not be called when an application
closes them. The Critical Error Handler is called if the driver reports an error.

IOCTL Requests

IOCTL requests provide some control over DOS/driver interactions. For exam­
ple I they can return device attribute information or change between binary and
text mode. We've seen that mode can affect the transformation of read and write
requests.

Applications initiate IOCTL requests with an INT 21 Hrequest (AH = 44H);
the AL register selects an IOCTL subfunction. Some IOCTL requests are sent
only to block devices and are not discussed in this section.

The DOS kernel can satisfy some requests without calling a driver, but it
must send either a status or an IOCTL request to complete others. A driver re­
ceives the IOCTL request only if the IOCTL bit is set in its header.

Since the DOS kernel needs information from the SFT to satisfy device
IOCTL requests, a handle must be passed in the BX register. Applications must
either explicitly open a device or reference one that is permanently open such as
StdIn or StdOut. DOS validates the handle and then dispatches on the subfunc­
tion contained in AL.

Get and Set Device Information

Recall that the Stdin, Stdout, and Binary attributes directly affect request trans­
formation. Applications use IOCTL requests to change these attributes. DOS re­
cords device attribute information in the SFT and uses that entry to satisfy these
requests. It will process Get or Set Device Attributes (AL = 0 and AL = 1) re­
quests whether or not a driver provides IOCTL support. A driver cannot prevent
an application from selecting binary mode and must be prepared to deal with
multiple byte reads and writes.

The program in Listing 10-5, BINMODE, illustrates the use of Get and Set
Attributes IOCTL requests. Lines 13-15 make an IOCTL Get Attributes request
for the current standard output device. The handle for StdOut is permanently
assigned, and we do open it explicitly. At line 16, we examine the returned attri­
butes. If StdOut is a device, we issue a set device attributes IOCTL request in
lines 18-21.

331



Section 3: Working with the Hardware Interface

Listing 10-5. BINMODH

BINMODE.ASM

IOCTL demonstration program

Create this program in a fiLe caLLed BINMODE.ASM
AssembLe: MASM BINMODEi
Link: LINK BINMODEi
Make COM fiLe: EXE2BIN BINMODE BINMODE.COM

_text SEGMENT BYTE PUBLIC 'CODE'
ASSUME
ORG

BinMode PROC
mov
mov
i nt
test
jz

or
xor
mov
int

notdev: mov
int

BinMode ENDP
_text ENDS

END

cs:_text,ds:_text
100H
NEAR
bx,1 [133 bx <== stdout handLe
ax,4400H [143 ax <== IOCTL get attributes
21H [153 make the request
dL,80H [163 is it a device?
notdev [173 if Z--no
dL,20H [183 put device in binary mode
dh,dh [193 dh <== 0 (required)
ax,4401H [203 ax <== IOCTL set attributes
21H [213 make the request
ah,4cH [223 return to DOS
21H

BinMode

Use the procedure described in the listing comments to create BINMODE. COM;
you can use DEBUG to demonstrate the effect of this program. I You must be very
careful with DEBUG. DEBUG is cryptic and unjorgivingj it can easily trash your hard
disk. Make sure thatyou enter the program and DEBUG commands e){actlyas listed.

DEBUG prompts for input with -and occasionally with :. You must enter the
responses in italics. Note that you may see different values in your segment regis­
ters. At 1544:0117, tabs are no longer expanded; your console (the default StdOut
device) is in binary mode.

A>DEBUG BINHODE.COH
-g115

AX=4401 BX=0001 CX=001B DX=00F3 SP=FFFE BP=OOOO SI=OOOO DI=OOOO
OS=1544 ES=1544 SS=1544 CS=1544 IP=0115 NV UP EI PL ZR NA PE NC
1544:0115 CD21 INT 21

332



Chapter 10: Developing Device Drivers

-g117

AX=4403 BX=0001 CX=001B DX=00F3 SP=FFFE BP=OOOO SI=OOOO 01=0000
OS=1544 ES=1544 S5=1544 CS=1544 IP=0117 NV UP El PL ZR NA PE NC
1544:0117 B44C MOVoAH,4C

-g
Program terminated normally
-q

A>

The console is now in binary mode; you probably don't want to leave it in
this condition. You can either reboot your system or restore it with this pro·
gram. The following DEBUG session will restore your console to text mode.

A>OEBUG BINHOOE.COH
-g115

AX=4401 BX=0001 CX=001B DX=OOF3 SP=FFFE BP=OOOO SI=OOOO 01=0000
OS=1544 ES=1544 SS=1544 CS=1544 IP=0115 NV UP El PL ZR NA PE NC
1544:0115 C021 INTo21
-rdx

OX 00F3
:03
-g117

AX=4403 BX=0001 CX=001B DX=OOD3 SP=FFFE BP=OOOO SI=OOOO 01=0000
OS=1544 ES=1544 SS=1544 CS=1544 IP=0117 NV UP EI PL ZR NA PE NC
1544:0117 B44C MOV AH,4C

-g
Program terminated normally
-q

A>

At 1544:01151 tabs are not yet expanded; the console is still in binary mode.
Altering the value in DX (the rdx command) causes the INT 21 Hinstruction to
restore the console to text mode. Notice how tabs are expanded at 1544:0117.

Read and Write Control Information

Read and Write Control Information (AL = 2 and AL = 3) IOCTL requests allow
applications to exchange arbitrary control information with a driver. An applica·

333



Section 3: Working with the Hardware Interface

tion might send an IOCTL request whichs sets transmission speed or parity to a
communications driver. Programs can send these requests to the SOUND driver
to control various music synthesis parameters and retrieve error information.
(See Essay 11, Writing a SOUND Device Driver.) DOS will not send these requests
to a driver unless the IOCTL bit in the device header attributes word is set.

Get Input and Output Status

IOCTL requests also can cause DOS to send Input and Output Status (AL = 6
and AL = 7) requests to a device driver. Currently, IOCTL requests are the only
way to generate an output status request header. The DOS kernel routes these
status requests to the driver regardless of the setting of the IOCTL bit in the
device header.

Character 110 Routines

The INT 21 Hinterface provides a group of Character I/O (AH == 01H to OCH) rou­
tines which are important because they provide hooks for background process­
ing and frequently can be called from a device driver. These routines support
input editing and output logging. Output logging creates a listing of console out­
put on your printer. The internal read and write routines rely on these functions
to handle text mode I/O to the standard input and output devices.

Each routine in this group implicitly uses one of the permanently assigned
handles (standard input = 0, standard output = 1, standard error = 2, stan­
dard auxiliary device = 3, and standard printer = 4) and always verifies the
handle before proceeding. Because StdIn amd StdOut can be redirected, any
driver should be prepared to receive these requests.

These routines are the source of buffer flush and input status requests. Al­
most all of the input routines in this group send read/nowait requests to the driver
directly or indirectly. A number of these routines call a keyboard poll or back­
ground processing routine which are DOS's hooks for background processing.

Display Output

The Display Output (AH = 02H) service writes a single character to the current
standard output device; it is also called indirectly by the internal write routine as
a result of a text mode write to standard output.

Display Output converts control characters to sequences of printable char­
acters and maintains a current display column. For each printable character, an
internal write character routine is called. This routine examines the IsSpecl bit
in the device header. If this bit is set, the character is passed to the device driver

334



Chapter 10: Developing Device Drivers

via the undocumented I NT 29H interface instead of using a request header. The
I NT 29H interface speeds up the process of passing a character to the driver. The
write routine places the character in DL and executes I NT 29H.

After every fourth character is written, the Display Output routine calls
the keyboard poll routine; it also supports screen logging. Each time a character
is written, this routine checks the screen logging state. If logging is active and
the handle for the standard print device (handle = 4) is valid, the character is
written to the printer as well as StdOut.

Buffered Keyboard Input

Buffered Keyboard Input (AH = OAH) reads one line from the current standard
input device and supports limited line editing. This routine can also be called
indirectly by the internal read routine as the result of a text mode read from
standard input. The line-editing capability is an internal DOS function not asso­
ciated with a particular device. So long as standard input is a device, DOS will
provide editing capability.

Internally, the buffered keyboard input routine calls the console input
without echo (INT 21 HAH = 8) which repeatedly calls the keyboard poll routine
until a character is available. A single character read request is sent to the StdIn
device driver.

Keyboard Poll Routine

Several of the character I/O routines call the keyboard poll routine to check for
control-e, control-s, and control-p characters. The control-e check is done first.
Since a control-e has special significance only if entered from the keyboard, the
address of the console device recorded in the boot sequence is used to locate the
driver. Control-e checks cannot be redirected. A read/nowait request is sent to
the initial console device. If the device returns a control-e in the read/nowait
request header, DOS issues an INT 23H. Programs can set up their own INT 23

service routines to trap control-e. By default, the DOS kernel calls the COM­

MAND.COM INT 23H service routine which terminates the current program.
If no control-c is found, a read/nowait request is sent to the current stan­

dard input device. If the device is busy, the background processing dispatcher is
called and the keyboard poll routine exits. If the read/nowait detects a control-s
(suspend output), a background processing loop is entered. This loop repeatedly
checks the keyboard and calls the background processing dispatcher until key­
board input is detected. If the read/nowait returns a control-p, the keyboard poll
routine toggles the print logging flag and validates the handle for the standard
printer. If the character is not special, it is returned, and the keyboard poll rou­
tine exits.

335



Section 3: Working with the Hardware Interface

Background Processing Dispatcher

The background processing dispatcher is one of the hooks added to DOS to sup­
port background applications. This routine is called directly from several Key­
board I/O routines as well as from the keyboard poll routine.

If DOS is not currently processing a critical error, the background process­
ing dispatcher issues an INT 28H request. Programs such as PRINT. COM set up INT

28H interrupt service routines. When an INT 28H request is received} it is safe to
perform disk I/O. The DOS character I/O routines call this routine on the user
I/O stack. If an INT 28Hinterrupt service routine makes a disk I/O request, the INT

21 Hdispatcher saves the current stack (user I/O) and switches the disk I/O stack.
When the disk I/O completes, the I NT 21 Hdispatcher restores the user I/O stack
and completes the character I/O operation. Support for this feature is the reason
that the INT 21 Hdispatcher provides for one level of recursion when it saves the
caller SS:SP registers.

Writing Background Programs

Stack switching in the INT 21 Hdispatcher and recording I/O parameters in static
variable makes the INT 21 Hservice routine nonreentrant. Other kernel services
including video INT 10H} absolute disk read INT 25H} absolute disk write INT 26H,
and DiskettelDisk I/O INT 13H also suffer this limitation. DOS is basically a single­
user, single-program operating system, but it does provide some hooks for back­
ground programs.

The architecture of the DOS kernel complicates development of these ap­
plications. The basic strategy for writing a background program is to load the
program normally, perform the necessary initialization to deal with reentrancy
restrictions and to insure periodic CPU access, and finally terminate using the
DOS TSR request INT 21H (AH = 31H).

A background program can schedule itself two ways. Keyboard I/O re­
quests give background programs access to the processor through the undocu­
mented INT 28H mechanism. Since COMMAND. COM uses these routines for input,
background programs will get access to the processor while the user interface
awaits input.

There is no guarantee these requests will occur frequently enough once an
application starts up. Background programs normally take over the DOS timer
interrupt (lcH) as well as INT 28H. Declaring a timer interrupt service routine a
program guarantees that it will gain access to the processor 18.2 times a second.

Logic within the background program must decide whether or not it is safe
for the application to run when called through either of these interrupts. It is
always safe to proceed if the background program does not need any DOS serv­
ices} but life is hardly ever this simple.

The cleanest scheduling algorithm is for the application to run only at

336



Chapter 10: Developing Device Drivers

those times when any request for kernel service would be safe. Checking the
INDOS and critical error flags and trapping nonreentrant DOS requests pro­
vides the application with enough information to make safe scheduling choices.

Initializing a Background Program

Until the background program issues its TSR request, all DOS kernel services are
safe. The initialization code should obtain the address of the INDOS flag through
the undocumented INT 21 H (AH = 34H) request, declare interrupt service rou­
tines to trap nonreentrant kernel requests INT 25H, INT 26H, and INT 13H, and es­
tablish INT 28H and 1cH interrupt service routines. The interrupt service routines
for I NT 25H, 26H, and 13Hmerely note that one of these requests is in progress and
then invokes the original interrupt service routine.

The DOS kernel uses the recorded address of the current PSP to locate the
lIT A background program must establish the correct PSP before performing
any I/O. When a background program initializes, it must get its own PSP address
through INT 21 H (AH = 62H) or INT 21 H (AH = 51H) (undocumented) for future
use.

Any other information available through INT 21 Hrequests should also be ob­
tained at this time, e.g., the address of a device header. Background programs talk
directly to the driver to avoid INT 21 Hreentrancy problems or to minimize the
overhead in dealing with a driver. PR I NT • COM uses this technique to pass requests
to the current print device. An application can get the address of a device header
by locating the NUL header using the undocumented INT 21 H(AH = 52H) (get List
of List address) and walking the device header chain or by using an FCB open.

After completing any other application-specific initialization, the back­
ground program issues a TSR request to return control to the user interface.
The resident portion of the program will periodically get access to the processor
through either INT 28H (background scheduler) or INT 1cH (timer).

Deciding Whether to Run

When the background program is called through one of its interrupt service
routines, it must decide whether or not it wants to run. Even if it is safe, a back­
ground program might not want to run. Background programs must be careful
not to monopolize the processor.

Certain background operations are inherently safe. No special precautions
are needed to talk directly to a device driver. If the program is called through INT

28H, it can issue INT 21 Hrequests which are serviced on the disk stack so long as
no INT 25H, 26H, or 13H is in progress. If the program gains control through the
1cHtimer interrupt it must check the state of the INDOS and critical error flags
and verify that none of these interrupts are in progress.

337



Section 3: Working with the Hardware Interface

Preparing for the Request

Abackground program must be careful not to disturb DOS or the current appli­
cation. It must save any registers that it will modify and initialize its data and
stack segments prior to running.

Two significant events can occur in the process of making an INT 21 Hrequest:
a control-c can be detected or a critical error can occur. The background program
must guard against either of these events by setting up control-c I NT 23Hand criti­
cal error INT 24H interrupt service routines. These must be installed any time the
background application runs. The background program may also want to disable
break (control-c) checks while it is running. INT 21 H(AX = 3302H) is useful for this
purpose. It exchanges the value in DL with the current break flag. (This particular
subfunction is undocumented in some versions of DOS.)

Finally, the application must make sure that the DOS kernel uses the proper
JFT to process any handle I/O requests. By loading its own PSP with the undocu­
mented set current PSP INT 21 H(AH = 50H BX = PSP) segment, the background
program establishes the proper PSP (and hence JFT).

Making the Request

Having made all these preparations, the background application may now safely
make an INT 21 Hrequest. When this request completes, the application must
undo its preparations and return dismiss the interrupt with an I RET instruction.

Debugging a Driver

Writing a device driver is often easier than getting it to work. Normal develop­
ment aids such as DEBUG will not work on device drivers. You should debug any
hardware interrupt service routines as well as the driver strategy and interrupt
code. The reliance of DEBUG on INT 21 Hfor input and output prevent its use in a
driver strategy or interrupt routine. Unless special precautions are taken, INT
21 Hcannot be used from within a hardware interrupt service routine. (Rest as­
sured that DEBUG does not take these precautions.)

Starting with a Stub

I like to take a top-down approach to driver development. I begin with a minimal
driver which responds properly to initialization requests and returns a success
status for all others. I normally use an existing driver as a template for a new
driver; the "stub" listed in Essay 11 frequently is a good starting point.

338



Chapter 10: Developing Device Drivers

Debugging the Initialization Routine

All initialization routines must return an ending (break) address as a status;
block drivers must return some additional information. If you wish, you may
print a message from the driver initialization routine using one of the keyboard
I/O routines INT 21 H(AH = OlH to OCH).

Recall that IBMBIO sends the initialization request to your driver as part of
the boot process. Errors in your driver can cause your system to hang. You should
always boot from a removable media when testing a driver. If the boot process
hangs, reboot with another system disk. Carefully examine the initialization
code. Make sure that the driver returns a reasonable break address and that
both the strategy and interrupt routines execute far returns. Both of these mis­
takes are common driver errors.

Admiring Your Handiwork

Once you have successfully booted using your new driver, locate your driver
code. Make sure your driver really did get loaded and that all its code is intact. It's
easy to use the incorrect copy of CON FIG. SYS or to load an old version of your
driver. Returning an incorrect break address does not always hang your system;
it can cause IBMBIO to overwrite all or part of your driver.

You can use DEBUG and the List of Lists to locate your driver. The next listing
shows the sequence used to locate the CLOCKS driver. I have edited this output
to fit in this book; your results won't look exactly like those in the listing. You also
may notice different values in the segment registers on your system. As with the
previous DEBUG example, user input appears in italics. The commands between a
and 9104 define and execute a short program. Note that you must end this pro­
gram with an empty line. (I entered a carriage return in response to the
152A: 01 05 prompt.) This program returns the address of the List of Lists in
ES:BX. The command des:26l40 dumps the first 40H bytes of the List of Lists
which includes the NUL device header. The easiest way to locate this header is to
look for the string NUL Working backward from this name, we find the expected
value of 8004H for the device attributes. This header corresponds to a character
device that is the current NUL device. The next two commands, d901 :Ol20 and
d84d: 0 l20 walk backward through the driver chain to the CLOC K$ device. If we
had wanted to examine driver code, we could have used the DEBUG "u" command
to disassemble the driver. From the information contained in this header, we find
that the strategy routine starts at 84D:0012 and the interrupt routine at
84D:0024.

-a
152A:0100
152A:0102

mov ah,52
int 21

339



Section 3: Working with the Hardware Interface

152A:0104 nap

152A:0105
-g104

• .NUL
•• %•••

) ... ) .

• • j •••••
$.CLOCK$

P.8W ••
X•••••••

M••• j •••

• • p •••••

• .1 ..•.•

• .M.. K.
Z•• RAMoI
SKVOISK
V2.0 •••

.k10 6B
2E 01 98 00 2E 01 00 00

012E:0030 40 08 00 00 EA 07 00 02
00 00 FO OB 00 00 10 10

012E:0040 00 00 B1 09 00 00 06 1A
00 00 01 09 04 80 18 14

012E:0050 1E 14 4E 55 4C 20 20 20
20 20 00 90 AS 15 2E 01

012E:0060 A9 15 2E 01 A9 15
-d901:0LZO
0901:0000 00 00 40 08 00 20 4B 00

SA 00 01 52 41 40 44 49
0901:0010 53 4B 56 44 49 53 4B 20

20 56 32 2E 30 08 00 00
-d84d:OlZO
0840:0000 00 00 EA 07 08 80 12 00

24 00 43 4C 4F 43 4B 24
0840:0010 20 20 50 1E B8 07 08 8E

08 89 1E 00 00 8C 06 02

AX=5200 BX=0026 CX=OOOO OX=OOOO SP=FFEE BP=OOOO SI=OOOO 01=0000
OS=152A ES=012E SS=152A CS=152A IP=0104 NV UP EI PL NZ NA PO NC
152A:0104 90 NOP
-des:Z6L40
012E:0020

-q

Based on the information presented in this chapter, I have written a pro­
gram (DEVICES) which lists all block and character devices, displays device in­
formation, and prints cache usage statistics. The device information includes
attribute information and the addresses of the device header, strategy, and inter­
rupt routines. DEVICES uses the CDS and the DCBs to locate block devices and
the device header chain to locate character devices. I prefer using this program
to OEBUG because it is easier and provides more information.

Adding Driver Functions

After I am confident that the initialization code is working, I add other driver
functions. I like to use a program that calls the driver directly, bypassing the INT
21 Hdispatcher. This technique lets me use OEBUG to trace what is happening in
the driver.

340



Chapter 10: Developing Device Drivers

The CallDev routine presented in the next listing shows how you can use
some undocumented features of DOS to locate and call your driver directly. This
program sends a request header directly to the PRN driver causing the message
He llo, wor ldto be displayed. Please note that lines 16} 18,21, 22, and 23 cannot be
entered as shown in this listing. I have split these lines so that the listing would fit
on this page.

Lines 2·4 reference some include files. The contents of FCB.DEF were given
earlier in this essay. The other two files are listed at the end of Essay 11. Lines 13·
15 use an FCB to open the "PRN" device. A successful FCB open returns the ad·
dress of the device header in one of the reserved FCB fields. Lines 16·24 fill in
fields in the request header. Lines 25·35 are a bit tricky; they place three ad·
dresses on the stack and load ES:BX with the address of the request header.
First, the address of done is pushed; next comes the address of the driver inter·
rupt entry. The address of the strategy routine is pushed last. The return_far
macro at line 36 executes a far return to the driver strategy routine. When it
completes, the strategy routine executes a far routine which transfers control to
the interrupt routine. The far return in the interrupt code returns us to done.

_text SEGMENT BYTE PUBLIC 'CODE'
INCLUDE FCB.DEF
INCLUDE DEVICE.DEF
INCLUDE MACROS.ASM
ASSUME cs:_text,ds:_text
ORG 100H

CallDev PROC NEAR

[01 ]
[02]
[03]
[04]
[05]
[06]
[07]
[OS]
[09]
[10]
[11 ]
[12]

[13] ah <== FCB open
[14] dx <== FCB address
[15] do it

x

,>

wor ld' ,Odh ,0aH;
$-theMsg

xx

start
<,'PRN
<>
'Hello,
EQU

ah,OfH
dx,theFCB
21H
theRH.RH_B_Length,-
SIZE RH_IO [16] request header length
theRH.RH_B_Unit,O ; [17] unit number = 0
theRH.RH_B_Command,-
RH_C_Output [1S] function is output
theRH.RH_W_Status,O; [19] initialize status
ax,OFFSET theMsg [20] add buffer address
WORD PTR -
theRH.RH_A_TransferAddress,ax ; [21]
WORD PTR -mov

mov
mov

mov
mov
mov

jmp
theFCB FCB
theRH RH_IO
theMsg DB
theMsgSiz

x
start: mov

lea
int
mov

341



Section 3: Working with the Hardware Interface

theRH.RH_A_TransferAddress+2,ds ; [22J
mov theRH.RH_W_Count,-

theMsgSiz [23] and message size
mov theRH.RH_W_Sector,O; [24] sector =0
mov ax,cs [25J
mov es,ax [26] es <== SEGMENT theRH
push ax [27J push SEGMENT done
mov ax,OFFSET done [28J
push ax [29J push OFFSET done
mov bx,OFFSET theRH [30] bx <== OFFSET theRH
lds si,theFCB.FCB_A_DHD; [31 J ds:si <== device header
push ds [32J SEGMENT Int entry
push [si].DHD_W_InterruptEntry; [33] OFFSET Int entry
push ds [34] SEGMENT Stg entry
push [si].DHD_W_StrategyEntry ; [35J OFFSET Stg entry
return_far [36] call strategy routine

done: mov ah,4cH [37J ah <== terminate
int 21H [38J

catter ENDP

-text ENDS
END CatlDev

When you use a program such as CalIDev, pay particular attention to what
happens with the index registers and stack pointer. Ifany index registers change
across the call, make sure you understand why. Forgetting to save a register or
restoring registers in the wrong sequence are common errors. It is usually wise
to single-step through one driver call. Make sure the ret instructions in the strat­
egy and interrupt routines transfer to the proper place. It is easy to mess up the
stack by removing the wrong number of saved values.

Calling Your Driver

The next step in the testing procedure would be to access the driver through
DOS. You can use the DOS copy command to test your driver read and write
routines.

The copy command uses handles to open, read, and write to a device. The
INT 21 Hdispatcher switches to the disk 110 stack to process these requests. So
long as the new device is not the current StdOut device, you can trace execution
with INT 21H (AU = 9) messages. The INT 21H dispatcher uses the user stack to
process keyboard I/O (AU = 1 to AU = DeB) requests, and can handle this one
level of recursion. Note that this capability is not documented and may break in
the future.

342



Chapter 10: Developing Device Drivers

If a request appears to complete successfully and DOS dies sometime later,
it is a good bet that a register was inadvertantly changed or the driver erron­
eously overwrote some important DOS variable. (Usually any location acciden­
tally modified by a driver is important to DOS.) The most common cause of
trashing a DOS variable is improper initialization of a segment register. Some­
times MASM adds to our confusion by doing something unexpected. You must
be very careful with ASSUME statements, or MASM may do you in.

Stack overflow (putting too much information on the stack) or underflow
(removing too many items from the stack) can also lock up the system. Stack
errors usually show up very quickly. If stack overflow is suspected, switch to a
driver-private stack or increase the size of the existing stack.

Unless your driver makes many subroutine calls or saves a lot of informa­
tion on the stack, you shouldn't need a separate stack. One reason that the INT

21 Hdispatcher switches stacks is to protect DOS from applications with inade­
quate stack space. It is easy to switch stacks; you load the SS:SP registers with
the address of a data area within your driver. Of course, you must remember to
save the original SS:SP values and restore them before your driver returns. The
SOUND driver described in Essay 11 illustrates this technique.

Dealing with Hardware Interrupts

Some devices are capable of generating interrupts. They are a way of getting the
processor's attention on demand. Your PC has some special hardware to support
this feature. When a device generates an interrupt, the same event sequence
that occurs when the processor executes an INT nn instruction is followed.

There is one important difference between hardware-generated interrupts
and executing an INT instruction: the hardware interrupt can occur at any time.
There are times when you don't want to be interrupted. You must take explicit
action to avoid an interrupt at an inappropriate time; this process is known as
synchronization. (See Essay 11 for a more complete discussion of this topic.)

The PC hardware which supports the interrupt mechanism has some sub­
tle features which you must be aware of, such as adapters that generate a spe­
cific interrupt (e.g., 09H) which you must enable. Once an interrupt has been
generated, it cannot recur until you say it is OK by sending an End of Interrupt
(EOI) message to the hardware.

Adapter interrupt service routines are the most difficult part of the driver
to debug. Many interrupt service routine errors, including improper synchroni­
zation, tend to be timing sensitive. No BIOS requests can be safely made from an
interrupt service routine. Diagnostic information can be written directly to
video memory. This technique is not pretty and may introduce enough delay to
cause problems or make problems disappear, but it is still worth a try. The
printer or COM port may also be used when their slow speed will not cause a

343



Section 3: Working with the Hardware Interface

problem. Interrupt driven I/O should not be used for diagnostic writes. If the
driver does not work and the system does not lock up, sometimes counters can
be used to track down a problem. Each time a particular event happens, update
a counter. Use a debugger to examine these counters later.

Common interrupt service routine errors include forgetting to send an EOI
to the interrupt controller, sending too many EOls, using a RET instead of an IRET
to dismiss the interrupt, not enabling a particular interrupt, forgetting to save a
register, and stack overflow. Devices can generate spurious interrupts and inter­
rupts can be missed. Heavy duty hardware aids are often needed to track down
these types of errors.

Conclusion

This has been a long journey. We found that in order to understand device driv­
ers we had to look at most of the interfaces and data structures within DOS. (See
Essay 6, Undocumented MS-DOS Functions, by Ray Michels, for a reference-type
approach to DOS internals focusing on undocumented DOS features.)

The more you know about DOS, the more you can do with it. I have used
the information presented in this chapter to write self-loading device drivers
and a utility which loads (and unloads) drivers. The key in this age of networks is
exploiting the versatility built into DOS. Network devices can be very useful for
developing applications in a heterogeneous environment.

Walter Dixon holds degrees in both mechanical and electrical engineering. He is
employed at General Electric Corporate Research and Development Center in Sche­
nectady, where he works in the areas of distributed systems and computer networks.
Mr. Dixon also teaches graduate computer science at Union College in Schenectady.
He has written more than ten device drivers for PC·DOS.

Related Essays

1 A Guided Thur inside MS-DOS
6 Undocumented MS-DOS Functions
8 Data Protection and Encryption

11 Writing a SOUND Device Driver
14 Understanding Expanded Memory Systems

344





.'? .

KeYWQrds,

devicedm:~

circUlar~b~r

C()rou~es

finite's~te:~,-c;hiI1e' .

synchro~afipfi;

crlti~ seC1io~ , ., .....

:...... -.._'----- .... --.._~.~ ..._~...... _.. ,

,_.--~- •.••h_ ._••..~ ••• __.•. ~. _ •• _._._

...• ."'

:~8~Y'Synops.: The best way to turn
:, ~~or-y mtopractice inmasteriitg the art of
.,q~¢e"dMverprogramming is to see how a

"o>~"~driver isdevaloped and imple-
.', ,·:"-·m~f,itf3.:th, Mer 't;l 'brief'recap of the theory

. ,,'._ _,...·.;.~::fM~~.~$~;:m::his preceding essa)!, the author

.·.;;;}·~'0~r.,:!;~;;,yt~~~~:'~:a=~:~::~
': ,.... ': : " ,,', 'fnlis~'c a~d"lother sounds under MS·.nOS.

",'.. , : ,'" •. ,:. {'~':"'"':',,.':~' ·,':~e·,,~venuses, state ofthe art program-
'.' . : ,: :,'.. ,::,·;··,:.,:i"'~·:~<"\:;·:';,,~;::'<,,'.~~g~~~IDUqlIes 'inoludihgcircular buffers I .

;", .., '~';' -" ,..'::'.,:.' '.", ", ,·I~~fffija."W~$J and finite' state machines. Pro-
.. ::' ,'j;," -"i:'~" ',:'. :'>,' -'-. ::. '\,' '0:, i~~m~;C\r.e"M1ritteh to test the driver and

,- :':':::~;,;":/';"~ ,',:>=> -:';,fue@8~~.J'ij&:<peNQrmance. Many of the con-,
," ";. , ·cijPf$llsei{'itrtllis':essay are applicable. to a

• . ~ ';: " ;. . '" ? • n. .
'.' ;'-:'~~~;~ietybf system software..



11

Writing a SOUND
Device Driver

Walter Di~on

-- =

Device drivers are the essential tools that allow your programs to control
printers, disk drives, sound generation chips, and many other devices. Writing
or modifying device drivers to accommodate new or improved hardware is an
important programming task. (See Essay 10, Developing MS-DOS Device Drivers,
for a comprehensive discussion of the many MS-DOS data structures and serv­
ices involved with file and device access.)

Some of the material presented here may be new to you. If your goal is to
write a device driver after studying this essay, you'll need to know assembly lan­
guage, understand MS-DOS, and be familiar with digital logic. This knowledge
comes with experience. Even if you are unfamiliar with 8086 assembly lan­
guage, don't despair. Although the driver and other examples are coded in that
language, they are heavily commented, and the accompanying text explains the
salient features.

There is a little something for everyone in this essay. The sample device
driver turns your PC into a musical instrument, so musically inclined readers
will have fun playing with this infrequently exploited PC capability and using it
to explore music composition. The more technically minded reader may be in­
terested in the relationship between DOS and device drivers. The programming
techniques and performance analysis are useful additions to any programmer's
bag of tricks. Ifyou really want to write a device driver, the driver code included
at the end of this essay is a good starting point. Although the best way to learn
about device drivers is to write one, you can also learn a lot by studying someone
else's code.

Setting up the SOUND Driver

The SOUND driver is a sophisticated DOS device driver which converts textual
descriptions to musical tones. Commands can be put into a file and sent to the

347



Section 3: Working with the Hardware Interface

driver with the DOS COpy command or directly written from your own program.
They support a superset of the functions provided by the well known BASlCA
SOUND and PLAY statements.

This section describes the organization of the driver software and the steps
needed to create a working version of the SOUND driver. Please pay special atten­
tion to the warning in the ne}(t section about installing this driver on your hard disk.
Once I have shown you how to build and install the driver, I will give you an
example you can use to try it out.

Creating a Working SOUND Driver

The six files needed to build the SOUND driver are listed in Table 11-1. Listings of
these files appear at the end of this chapter. Use EDLIN or a real text editor to
create these files. You can also use a word processor if it can save documents as
ASCII text. Most word processors normally imbed format information in the file
which the assembler (MASM) cannot handle. You need not include the com­
ments that begin with a semicolon and extend to the end of the line.

Table 11·1. SOUND Driver Files

File

sound.asm
macros.asm
device.def
hardware.def
values.def
fsm.def

Description

The driver source
Useful macros
DefInitions of device and request headers
Hardware related defInitions
Various driver parameters
DefInition of macros for finite state machine

Create a subdirectory and move all these files to it. Do not name this sub­
directory SOUND. The driver which you are building is known to DOS by this
name and its presence will prevent you from accessing the subdirectory. Use the
following commands to create a working SOUND driver. The link command will
produce an ignorable warning that there is no stack segment. You now have an
executable version of the SOUND driver.

masm sound;
link sound;
exe2bin sound \sound.sys

348



Chapter 11: A SOUND Device Driver

Installing and Using the SOUND Driver

I have tested this code on IBM XT and AT computers, but you should not assume
that it will work on your system. The driver may not work on certain hardware
configurations or in conjunction with programs which manipulate the timer vec­
tors. You should always test a new device driver by booting from a floppy disk. If
the driver passes this first test, you can move the driver to your hard disk, but
make sure you have a bootable floppy disk in case something goes wrong.

Add the following line to your CONFIG.SYS file and reboot your system.

device=\sound.sys

The SOUND driver is now installed and ready to use.

SOUND Driver Commands and Musical Notation

SOUND driver commands control music pitch (frequency) and duration. Each
musical note conveys both pitch and duration information. Individual notes are
combined to produce a tune.

Pitch and Musical Notes

Pitch specification rules are modeled after the piano keyboard shown in Figure
11-1. (A real keyboard actually has 88 notes.) The SOUND driver can play 84 differ­
ent notes which are specified by number or name. The command to select a note
by number is the letter N followed by the note number N13 selects the 13th note.

The 84 different notes are divided into seven octaves of 12 notes each. An
octave begins with a note named C, followed by C# (C sharp), D, D#, E, E F#, G,
G#, A, A#, and B. Each note in this sequence, known as a chromatic scale, is one
half-step above the preceding one. Moving up one half-step increases a note's
frequency about six percent. Octaves are numbered from 0 to 6. Moving up one
octave doubles a note's frequency. The letter 0 followed by a number specifies an
octave. The command 03 selects the third octave, the one beginning with middle
C. The default octave number is 4 04.

Middle C is the key in the middle of a piano keyboard. The note located at
zero NO is the C three octaves below middle C, and its frequency is l/S that of
middle C.1b completely specify a note, either a number or a name and an octave
is required. The commands 03C and N36 both select middle C. Once an octave
command appears, subsequent named notes are assumed to be in the same oc­
tave. The sequence 03CDE selects middle C and then the notes D and E directly
above middle C.

349



Section 3: Working with the Hardware Interface

T
00

02

+
03

+
04

+05

~~~i

~~1
OC
20
4E

29 F

31 G

33A

35 B
36C
380
40 E
41 F

43G
45A

47 B

48C
500
52 E
53 F

55 G

57 A
59 B

soc
620
64 E

1 C# D·
30# E-

30 F# G­

32GIIA·
34 All B-

37CII O·
39 Oil E-

42 F# G·
44 Gil A·

46 All B·

49 CII O·

51 0# E-

54 FII G·
56 Gil A­

58 All B·

61 C# o·
630# E·

Octave 3 (03)

36 37 38 39 40 41 42 43 44 45 46 47

Octave 4 (04)

~
48 49 50 51 52 53 54 55 56 57 58 59

!55i7~7~F~
79 G 78 F# G·

06 80 Gil A·
I 81 A 82 A# B-

-.L- 83 B
C

Fig. 11·1. The piano keyboard.

Sharping a note raises its frequency one half-step and flatting it lowers its
frequency by an equal amount. Sharps are indicated by # or + and flats by -. F#

says take the note F and raise it one ht!lf-step. Both BASICA and the SOUND
driver support sharps and flats. The SOUND driver accepts double sharps and
double flats, which raise or lower, respectively, the frequency one whole-step.
C## (C double sharp) says to raise C one whole-step. Since D is one whole-step
above C, C## and D are names for the same note.

Scales and Key Signatures

Notes are grouped into scales; each note in a scale has a precise relationship to
the preceding one. There are eight notes in a major scale. The third and eighth

350

Chapter 11: A SOUND Device Driver

notes of this scale are one half-step above their predecessors; all others are sepa­
rated by a whole-step. Each scale has a name taken from its initial note. The
simplest major scale is C major whose notes are C, D, E, EG, A, B, and C. Musical
scores use a key signature to select a scale. If there is no explicit signature, the
key of Cis assumed. The SOUND driver supports multiple keys. The Kcommand
followed by the key name specifies a key signature; thus, KF# selects the key of F
sharp. Like the octave command, a key signature remains in effect until it is ex­
plicitly changed. BASICA does not support key signatures; all music must be in
the key of C.

Key signatures affect the interpretation of music. In the key of C, there are
no sharps or flats, and an F sharp must be explicitly written. The G major scale
consists of G, A, B, C, D, E, F#, and G. In this key KG, an F is played as F sharp.1b
summarize the effect of a key signature, the sequence KCOOFwould select F (NG),
but KGOOF would select F Sharp (N7).

If a sharp or flat is needed in a key where the note would not normally be
played this way, the sharp or flat must be explicitly written. Musicians refer to
such an occurrence as an accidental. KCF# would explicitly ask for F sharp even
though that note does not appear in the C major scale. It is sometimes necessary
to lower a note which normally would be sharped or raise a note which normally
would be flatted. Another accidental, a natural, is used for this purpose. The
musical natural symbol does not have an ASCII equivalent; it looks like a square
box with two tails. The SOUND driver uses = to represent a natural. If a score
were written in the key of G (F would normally be sharped) and the composer
wanted a normal F (F natural) played, he must explicitly ask for it. The equivalent
SOUND driver command would be KG F=. This sequence says play in the key of G
(KG), but make F unsharped. BASICA does not support naturals.

Duration

Three factors control sound duration: length indicated by the note, time, and
tempo. Each note in a musical score has a relative duration implied by how it is
written. Scores contain whole-notes, half-notes, quarter-notes, etc. A whole­
note lasts twice as long as a half-note and four times as long as a quarter-note.
The length command is used to specify default duration, and is written as the
letter L followed by a number from 1 to 64. The number 1 corresponds to a
whole-note, 2 to a half-note, 4 to a quarter-note, 8 to an eighth-note, etc. L, like
0, applies to all following notes. A number following a note indicates the dura­
tion of just that note. The sequence 03L4CDC8 specifies that middle C, D above
middle C, and middle C be played in succession. The default duration L4 makes
the first two quarter-notes, but the last note is explicitly labeled as an eighth­
note. (The duration of eighth-notes is half that of quarter-notes.) The length of a
note may also be dotted. A dotted length is 50 percent longer than an undotted
one. The sequence 03L4. CC8. would play middle C first as a dotted quarter-note

351

Section 3: Working with the Hardware Interface

(duration 1.5 times a quarter-note) followed by a dotted eighth-note (duration
1.5 times an eighth-note).

Notes may be tied together. In musical notation, notes are tied together by
connecting them with an arc-the notes must be the same. The arc is also used
to indicate something called a slur. Tied notes are played as one; the duration is
the sum of the individual note lengths. The command 03 C1 &C1 says play middle C
for twice the normal duration of a whole note. BASICA does not support ties.

A second factor affecting note duration is time which indicates how many
beats per measure and what type of note gets one beat. Musical scores are di­
vided into units called measures which contain an equal number of beats; graph­
ically, measures are indicated by vertical bars. If no time is explicitly indicated, a
score is assumed to be in 4/4 time which means there are four beats to a measure
and a quarter-note gets one beat. Neither BASICA nor the SOUND driver support
times; however, they could be easily added to the SOUND driver.

Time and Tempo

Tempo is the third factor affecting note duration. Thmpo specifies the absolute
speed at which a score should be played. Composers specify tempo by indicating
that so many of a particular type of note (e.g., quarter-note) must be played in a
minute. The note type used to set the tempo depends on the time of the music;
BASICA and the SOUND driver use quarter-notes. The tempo command, written
as Tfollowed by a number, specifies how many quarter-notes must be played in a
minute. The default tempo, T120 says that 120 quarter-notes must be played in
one minute. Some scores use a less precise method of specifying tempo. Words
like andante (slowly), moderato (moderately), and presto (fast) are used to select
a range of tempos. Andante indicates a tempo range of 76-108 quarter-notes per
minute, moderato a tempo of 108 to 120, and presto a range of 120-168.

Rests indicate periods of silence. There are whole-rests, half-rests, quarter­
rests, etc. These individual rests select different periods of silence. BASICA uses
the pause command, P, to indicate a rest. Syntactically, the pause command is
treated like a note (except that it cannot be sharped or flatted). The commands
P4 and L4P would both indicate a quarter-rest.

Staccato and Legato

Both the SOUND driver and BASICA provide three commands which crudely deter­
mine the way music is played. MN asks for -normal" mode, MS selects "staccato" mode,
and ML "legato" mode. Music style is implemented by varying the time between
notes. at should be noted that the BASICA implementation used incorrect values
for this intemote pause.) When a musician changes from one style to the other, he

352

Chapter 11: A SOUND Device Driver

is able to vary volume and harmonic content of the note as well. The sound genera­
tion hardware in the mM PCIXTIM is rather primitive compared to a musical in­
strument. The SOUND driver does not support foreground MF and background MB

playing.
The SOUND driver supports imbedded comments. A comment begins with

an exclamation point (!) and terminates at the end of a line. The delimiter and
any subsequent characters are ignored. Comments can be used to imbed lyrics
or titles in a tune file; they are not supported by BASlCA.

Command Summary

Table 11-2 summarizes the SOUND driver commands. Asterisks indicate SOUND
driver enhancements not found in BASlCA. Notes (A ... G) can have trailing ac­
cidentals (#, ##, +, + +, -, - -, or =). A dotted length may follow the note
name or pause.

Table 11·2. SOUND Driver Command Summary

Command

#
##
+
++

A ... G
Kxx
Lnn
ML
MN
MS
Nnn
On
p
Tnnn

Description

Flat
·Double flat
Sharp
·Double sharp
Sharp
·Double sharp
•Natural
·Tie
•Comment
Increases duration by 50 percent
Note
·Key signature (xx = valid key name)
Note length (1 <= nn <= 64)
Music legato
Music normal
Music staccato
Note number (0 <= nn <= 83)
Octave (0 <= n <= 6)
Pause
Music tempo (30 <nnn <300)

Using the SOUND Driver

The first step in using the SOUND driver is to convert a musical score to driver
commands. Figure 11-2 illustrates this process for the first 11 notes of "Mary Had
a Little Lamb.n

353

Section 3: Working with the Hardware Interface

J :;:100

[
{IThese"o,..~l>l~ 1D

are in
OCtave 3 (E flat) (eighth rest)

/ I
03 T100 La G F E· F G G G P F F F4

Fig. 11·2. "Mary Had a Little Lamb."

If you create a file named TUNE.DATwhich contains these commands, you
can "play" it with the DOS COpy command. COPY TUNE. DAT SOUND. Using the SOUND
driver in this way is like playing a record. You start it with the COpy and music
continues until the entire file has been processed.

Interactive access to the driver is also possible with commands from the
keyboard. Again we use the DOS COpy command, but this time we copy our key­
board input to the driver. Enter the command COpy CON SOUND and then enter the
commands and notes you want performed. Either a control-z or FlO terminates
the interactive mode. (Both these keys generate an end of file character.) You may
find this technique a bit awkward because a note will not start to play until the
first character of the next note is entered.

You can also access the driver directly from your own program. The follow­
ing program plays the first 11 notes of ((Mary Had a Little Lamb."

_data
notes
nurn_notes
sound
_data

SEGMENT WORD PUBLIC 'DATA'
DB 'T100L803GFE-FGGGPFFF4'
EQU $-notes
DB 'SOUND',O
ENDS

SEGMENT WORD STACK 'STACK'
DW 256 DUP(O)
ENDS

SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:_text, dS:_data

"exe" programs
need a stack
segment

start of segment
needed by masm

354

start PROC NEAR start of procedure
mov ax,_data "exe" programs must
mov ds,ax ;n;t;al;ze ds
mov dx,OFFSET sound dx <== addrC sound)
mov ax,3d01H ask DOS to open dev;ce

;nt
mov
mov
mov
mov
; nt
mov
i nt
mov
int

start ENDP

-text ENOS
END

21H
bx,ax
dx,OFFSET notes
cx,num_notes
ah,40H
21H
ah,3eH
21H
ah,4cH
21H

start

Chapter 11: A SOUND Device Driver

for wr;te
bx <== handle
dx <== addr< notes)
cx <== # characters
ask DOS to write these
characters
ask DOS to close dev;ce

ask DOS to term;nate
program
end of procedure
end of segment
spec;fy start address

You may wish to transcribe printed sheet music into input for the SOUND
driver. This takes a little practice, but it's not really hard. As an example, Figure
11-3 illustrates the score to Beethoven's /lOde to Joy: from the last movement of
his Ninth Symphony. This listing shows the resulting transcription:

KDT12003L4F2GAAGFEDDEFF.E8E2
FFGAAGFEDDEFE.D8D2
E2FDEF8G8FDEF8G8FEDE02A03F&
FFGAAGFEDDEFE.D8D2
04F2GAAGFEDDEFF.E8E2
F2GAAGFEDDEFE.D8D2
E2FDEF8G8FDEF8G8FEDE03A04F&
FFGAAGFEDDEFE.L8DDAGFL4
E2FDEF8G8FDEF8G8FEDE03A04F&
FFGAAGFEDDEFE.D8DP4

The SOUND driver maintains an internal buffer (currently 256 notes). Music will
continue to play after the copy completes or the device is closed.

Hardware Review

Before we get into the details of writing our SOUND driver, let's consider how the
relevant PC hardware is accessed by a device driver. The hardware which con­
troIs a device may exist as a separate board called an adapter or may be part of
the mother board. The board designers provide one or more ports for the CPU
to communicate with the device. You can think of these ports as a mailbox.
When the CPU wants to tell the device something, it places a message in this
mailbox. Similarly, when a device has information for the CPU, it leaves a mes­
sage in this mailbox. The hardware helps keep track of sender and receiver.

355

Section 3: Working with the Hardware Interface

Ode to Joy

J=120I,·ue_
I'~­
I'·U~

I'·~­
I'UU _

I'~­
I'~­
~I'UU_
~

Fig. 11-3. Beethoven's "Ode to Joy/'

Some of these devices can perform more than one function. The CPU re­
quests a particular action by sending appropriate data to the device. You can
think of what is being sent as a program that the CPU wants the device to exe­
cute. The device returns the results of this program to the CPU as a status. Mes­
sages placed in these mailboxes may be programs, data, or status.

Controlling a Device

Intel processors use special instructions to communicate with a device. All mem­
bers of the 80X86 provide IN and OUT instructions. Some have special instruc-

356

Chapter 11: A SOUND Device Driver

tions for reading or writing more than one byte at a time. The I N and OUT

instructions move data between the accumulator and the port whose address is
in the OX register.

On the IBM PC, COMl is implemented with an INS8250 UART chip. This
chip has several ports. The next listing shows a simplistic approach to reading a
character from COMl. Characters are read by specifying the receive buffer
pointer as the target of an IN instruction. Actually dealing with COMl is slightly
more involved. We want to read each character only once. The 8250 sets a bit in
another register to indicate that a character is available and clears this bit after
the receive buffer register is read.

COM1 EQU 3f8H Base for COM1
RBR EQU 0 Receive buffer register

offset
mov dx,COM1.RBR dx <== addr< RBR)

in al,dx read the character

The following example shows how you might actually read a character from
COMl. I've omitted some important details from these examples such as establish­
ing communications parameters (speed, parit)', etc.) and checking for errors.

COM1 EQU 3f8H Base for COM1
RBR EQU 0 Receive buffer register

offset
LSR EQU 5 Li ne status register

offset
DR EQU 1 Data ready flag

mov dx,COM1.LSR dx <-- addr< LSR--
wait: in al,dx read line status

and a l ,DR new character?
jz wait if Z--not yet
mov dx,COM1.RBR dx <-- addr< RBR)--
in al,dx read the character

Interrupts Explained

The INS8250 is relatively slow compared to the CPU. The processor will execute
many instructions while it waits for a character to arrive. In the previous exam­
pie, the CPU is doing nothing useful while it awaits the next character. Some­
times we will not want to waste this time. Interrupts help the PC deal with this
problem. If a device wants to get the processor's attention (as COMl would when
a character arrived), it can request an interrupt. Under certain conditions, the
processor stops what it is doing and deals with the interrupt.

357

Section 3: Working with the Hardware Interface

A special chip, the 8259 Interrupt Controller, helps the processor deal with
interrupts. This chip controls when an interrupt is serviced and what code will
be used to service it. The CPU programs the 8259 by writing control words to
one of its registers.

The 8259 deals with up to eight separate devices and assigns a priority to
each one. If more than one interrupt has been requested, the 8259 services the
one with highest priority first. Once an interrupt begins, no lower priority inter­
rupt can occur until the current one completes, but a higher priority interrupt
can suspend the one currently in progress.

The code that gets executed as a result of an interrupt is known as an inter­
rupt service routine. When the processor grants an interrupt, it pushes the
processor flags, CS, and IP registers on the stack and transfers control to the
interrupt service routine.

When the interrupt service routine begins, all interrupts are disabled. Nor­
mally, it will enable interrupts almost immediately. Once interrupts are enabled,
this routine can be interrupted by higher priority interrupts.

This routine must send the 8259 a control word which indicates that the
interrupt has been serviced. Normally, this notification occurs just prior to re­
turning to the interrupted code with an IRET instruction. The following code
illustrates a typical interrupt service routine.

18259 EQU 20H Base address
PortA EQU 0 Port offsets
PortB EQU 1
EOI EQU 20H Nonspecific end of

interrupt
ISREntry PROC FAR

STI EnabLe higher priority
interrupts

NormaL ISR Logic:

(1) Save any registers needed by this routine
(2) DeaL with interrupt
(3) Restore registers saved in step 1

mov I8259.PortA,EOI Say interrupt is over
iret pick up where we left

off
ISREntry ENDP

The CPU must explicitly enable individual interrupts by sending a control
word to the 8259. It can also disable all interrupts with a CLI instruction. The eLI
inhibits interrupt recognition until the CPU executes a STI instruction. (There is

358

Chapter 11: A SOUND Device Driver

a special interrupt which is not masked by the CLI instruction} but it is not rele­
vant to our discussion.)

Programming Techniques

The SOUND driver uses circular buffers} coroutines} and finite state machines.
It also illustrates synchronization and critical sections. Although these tech­
niques are normally discussed in advanced computer science courses} they are
frequently used in system software. Their names may sound exotic} but these
techniques are useful and easily implemented.

Circular Buffers

Circular buffers are useful when data is gathered and removed at unpredictable
rates. Their implementation requires a storage area} two pointers} and a flag.
One pointer specifies where the next data item will be stored and the other iden­
tifies which item will be removed next. Data is used FIFO (First In} First Out).
Each pointer initially points to the beginning of the storage area. As data is
added and removed} each pointer sweeps sequentially through the storage array.
At the end of the array} the pointer "wraps" to the first location} hence the name
circular buffer (see Figure 11-4).

You can think of this structure as an ordinary array whose beginning and
ending location "float!' The ending location changes as data is added, and the
start changes as data is removed. Each pointer can wrap because the start of the
array floats. Ifwe did not allow the beginning location to float} we would have to
slide the contents of the buffer down every time we removed an element} which
would be time-consuming.

The only trick to implementing a circular buffer is distinguishing between
the empty and full states. If we use only two pointers and completely fill the
array, we cannot tell whether the buffer is empty or full. Leaving one location
unfilled or using an auxiliary variable will solve this problem. The auxiliary vari­
able may be either a boolean or a buffer count. Here is a program that uses a
buffer count to distinguish between full and empty:

'DATA'
Both remove and insert
initially point to 1st
location
No elements initiallyo

BUF_S_Size DUPCO)
DB
DB

EQU 8
SEGMENT WORD PUBLIC
OW BUF_T_Data
OW BUF_T_Oata

BUF_B_Count
BUF_T_Data

BUF_S_Size
_data
BUF_A_Remove
BUF_A_Insert

359

Section 3: Working with the Hardware Interface

Arriving Data

Fig. 11-4. Circular buffer.

EQU $ So we can detect wrap

SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:_text, ds:_data
PROC NEAR
clc
ret
stc
ret

Say we succeeded
and returned
Say we failed
and return

Inserts byte in AL into circular buffer. Returns with
CY=1 if failed (buffer full) or CY=O otherwise.

Insert LABEL NEAR

360

cmp
jz
xchg
mov
caLL
xchg
inc
jmp

BUF_B_Count,BUF_S_Size
b_err
bx,BUF_A_Insert
BYTE PTR [bx],al
NextBX
BUF_A_Insert,bx
BUF_B_Count
SHORT b_succ

Chapter 11: A SOUND Device Driver

Is buffer fuLL?
If Z--yes
bx <== insert address
Insert it
CaLc next address
Update insert ptr
One more data item
Take success exit

Removes byte from circular buffer. Returns with CY=1
if faiLed (buffer empty) or CY=O and AL=byte otherwise.

Remove LABEL NEAR
cmp BUF_B_Count,O Is buffer empty?
jz b_err If Z--yes
xchg bx,BUF_A_Remove bx <== remove address
mov aL,BYTE PTR [bxl Remove byte
caLL NextBX CaLc next address
xchg BUF_A_Remove,bx Update remove ptr
dec BUF_B_Count One less data item
jmp SHORT b_succ Take success exit

NextBX PROC NEAR
inc bx Advance to next item
cmp bx,BUF_A_End Have we reached end?
jnz aO If NZ--no
Lea bx,BUF_T_Oata Wrap the pointer

aD: ret and return
NextBX ENOP
CirBuf ENDP

-text ENDS

Coroutines

The familiar programming technique of subroutines is a special case of a more
generalized construction known as a coroutine. The difference between a sub·
routine and a coroutine is that a subroutine is always invoked at its entry point
and a coroutine is invoked at the instruction following the one last executed.
This concept is confusing until you understand the linkage mechanism. When a
coroutine gives up control, it issues another call rather than executing a return.
This second call leaves the address of the next instruction on the stack.

Coroutines are normally quite complex, and it is difficult to come up with a

361

Section 3: Working with the Hardware Interface

short example that could not be done more easily with some other technique.
The following listing uses coroutines to decompress run length encoded data. In
this trivial example, the data consists of zeros and ones. Frequently data con­
tains runs of the same value. Inserting a run length and single value in place of
the original run reduces storage requirements. (This technique is common in
image processing.) The string 0000111011111000000 would be encoded as
403105160. In this example, the run length must be nine or less.

Lea si, stdng
caLL Dcmprss

nxtch: pop bp
or a L,a L
jz done

We pass through here
decompressed string.

caLL bp
jmp SHORT nxtch

done LABEL NEAR

si <== compressed string
set up initiaL coroutine
bp <== caLLback address
end of string?
if Z--yes

once for every character in the
The character CO or 1> is in AL

make coroutine callback
get the next character
end of string reached

additionaL processing

Dcmprss PROC NEAR
pop bp ; bp <-- ca LLback address--

Branch here to Look for singLe vaLue or run

dO: Lodsb al <-- next byte of--
compressed string

cmp a L, '1 ' is it a run Length?
jg run if G--yes
caLL bp make coroutine caLLback

Return here if not in the middle of a run

jmp SHORT Dcmprss get another character

Branch here at start of a run

362

s_run: cbw
mov
sub

cx,ax
c L, 'a'

convert run Length to
binary integer
Cascii to binary conversion>

lodsb

Chapter 11: A SOUND Device Driver

; al <== repeated byte

Branch here to resume run processing

c-run: push ax save repeated value
call bp make callback

Return here to continue processing a run

pop bp bp <== callback address
pop ax recover repeated value
loop n2 continue processing run
jmp SHORT dO look for run length or

s;ngle value
Dcmprss ENDP

The advantage of using coroutines in this example is that the calling pro­
gram is unaware of the run length decompression. The decompression routine
Dcmprss uses the program counter to maintain state information implicitly. The
callback address which Dcmprss leaves on the stack indicates whether or not a
run is being processed.

Finite State Machines

Finite state machines are common in compilers, communications protocols, and
pattern-searching. They provide a way of dealing with data that must be proc­
essed according to certain rules or that must arrive in a predetermined se­
quence. Finite state machines manipulate abstract entities called tokens which
may be characters, words, sentences, or program statements. The collective set
of sequencing rules is called a grammar. A token may be acceptable at one time
and not at another. The grammar specifies when a token is acceptable. The set
of all possible tokens is called the alphabet.

A finite state machine is in a particular state while it is waiting for a token.
When the token arrives, the finite state machine checks to see if the token is
acceptable. The grammar specifies when a particular token arriving at a given
time conforms to the rules. If the token is acceptable, the finite state machine
makes a transition to a new state where a different set of tokens may be legal. at
may also stay in the same state.)

The SOUND driver uses a finite state machine to recognize the sequences
MN, MS, and ML (see Figure 11-5). In fact, it uses a state machine to recognize all
sequences. In this case, the alphabet consists of the letters L, H, N, and S. The
state machine immediately rejects a token which is not in its alphabet. The finite
state machine initially looks for an M, in this first state, the only legal token. The

363

Section 3: Working with the Hardware Interface

arrival of an M causes a transition to a new state where N, S, or L are acceptable.
The arrival of one of these three letters causes the finite state machine to accept
or recognize the string. It is common to use a picture to represent what happens
in a finite state machine. Figure 11-5 describes recognition of the MS, MN, and ML
sequences. Circles represent states and arcs represent transitions. Arcs are la­
beled with the token which causes the transition. Some arcs are not labeled.
After recognizing ML, MN, or MS, the state machine in this example resets itself. It
is then ready to look for another M.

Synchronization

Cooperation is needed when multiple processes work on the same problem. If
we were to write two separate programs-one which inserted characters into a
circular buffer and another that removed them-we would immediately recog­
nize the importance of this requirement. The program which removes charac­
ters must recognize an empty buffer, and the program which inserts characters
must be smart enough to deal with a full buffer. This scenario is the basis for a
classical computer science problem, the Producer-Consumer Problem, which is
solved by synchronization. The consumer, in this case, the remove routine, must
wait for a new character if the buffer is empty. Similarly, the producer must wait
for a character to be removed if the buffer is full. Each program can use the
buffer count to stay in sync with its partner.

The same problem also occurs in a single program with multiple execution
threads such as interrupt-driven device drivers. A program which fills a circular
buffer at a noninterrupt level and removes characters from within an interrupt
service routine has two execution threads.

Relegating an execution thread to an interrupt service routine adds an in­
teresting twist to this problem. The producer, which operates at the noninter­
rupt level, can enter a busy wait loop if it finds the buffer full. At some time in the
future, an interrupt will occur and the consumer will remove a character. After
the interrupt is dismissed, the producer will notice that the buffer is no longer
full and insert its character. The consumer cannot use this strategy. Since it is
operating at an interrupt level, the consumer blocks the producer's execution. A
busy wait loop in the interrupt service routine (see the next example) would
never terminate, resulting in a condition known as a deadlock. The consumer
must dismiss the interrupt and depend on the consumer to somehow cause an
interrupt after it places a character in the buffer.

test: cmp
jz

count,size
test

is the buffer full
if Z--yes

There1s at least one empty location now.

364

.,/

/
!
l

I
i

:."\,

""""'--
.~.,.",~..... ~,,,,,,, ..

Fig. 11·5. Finite state machine.

Critical Sections

Chapter 11: A SOUND Device Driver

c9
N//

,/
/,.'

oil'

.,1<"".'1':>

-,.,..",..-~'

The following example illustrates what happens when two execution threads
try to alter a common variable:

noninterrupt level code

mov
add
mov

ax,value
ax,10
value,ax

raJ put value in accumulator
[bJ make an adjustment
[cJ update value

Interrupt service routine

mov ax,value

365

Section 3: Working with the Hardware Interface

sub ax,10

mov vaLue,ax

Ifan interrupt occurs after [albut before [cl completes, the alteration made
in the interrupt service routine will be overwritten as [cl executes. For these two
code fragments to work correctly, no interrupts can occur between the load and
store instructions. This requirement of guaranteed completion is known as a
critical section. Disabling interrupts before [a] and enabling them after [c] in­
sures correctness.

We don't always have to disable interrupts when two threads update a
shared variable. The previously discussed circular buffer routines may be called
from different execution threads. Both routines alter BUF_B_Count, but this ad­
justment occurs within a single, indivisible instruction. Once the INC or DEC in­
struction begins, it is guaranteed to complete.

There are potential critical sections in these routines. If Insert is called at
both the interrupt and noninterrupt levels, the BUF_A_Insert may be corrupted.
(Consider what happens if the interrupt occurs between the two xchg instruc­
tions.) Changing where the buffer count is updated will introduce a critical sec­
tion. If BUF_W_Count were changed before BUF_A_Insert or BUF _A_Remove was
updated, the wrong buffer element might be removed. (Look at the buffer full
and buffer empty cases.)

Identifying and dealing with critical sections is a very important part of
writing a device driver. When handled incorrectly, critical sections often result
in nasty bugs that can be very difficult to isolate. You'll see examples of critical
sections in the SOUND driver.

DOS Internals

In this section, we will review driver structure and DOS/driver interaction. You can
find more complete descriptions of this material in the Disk Operating System Tech­
nical Reference Guide (1984), the MS-DOS Technical Reference Encyclopedia (1986),
the MS-DOS Developer's Guide (Angermeyer et al. 1986), and in Essay 10of this book.

Every device driver has three parts-device header, strategy routine, and
interrupt routine. Whenever DOS needs to access a device, it creates a structure
called a request header and passes its address to the driver, which uses it to re­
turn status information to DOS.

Device Header

The device header supplies a device name, a summary of driver capabilities, and
the addresses of two driver entry points. The following example illustrates the

366

Chapter 11: A SOUND Device Driver

header. Because of the way in which DOS loads device drivers at boot time, the
device header must be at the beginning of the driver.

DHD
DHD_A_NextDHD
DHD_W_Attrib
DHD_W_SrategyEntry
DHD_W_InterruptEntry
DHD_T_Name
DHD

STRUC
DO
OW
OW
OW
DB
ENDS

-1 II Address of next device
o II Device attributes
o ;; Strategy entry offset
o ;; Interrupt entry offset
8 DUpe' ')

DOS builds a linked list of device headers. The head of this chain is the NUL
device, and each DHD_A_NextDHofield contains the address of the next header in
this chain. The DHD_W_Attribfield identifies the driver as block or character, de­
scribes the driver's ability to respond to optional requests, and specifies certain
special devices. The next two fields specify the offsets for the strategy and inter­
rupt entry points. Since these fields are only 16 bits, both entry points must be in
the same segment as the header. The final header field contains the name of a
character device. Although IBM documentation and various other sources sug­
gest that block drivers set the first byte of the name field to a unit count, DOS
does not use this value.

Strategy Entry

The strategy entry currently does very little. When DOS needs to access a de­
vice, it passes a request header to the driver strategy entry which stores this
address and returns.

Interrupt Entry

The real work of completing the request happens in the interrupt entry code.
This code recovers the address of the request header and completes the re­
quests. In most cases, the interrupt entry code sets the status field of the request
header to indicate the results of its processing.

Request Header

DOS constructs a request header like the one illustrated in the next example to
describe a driver request. This structure is not sufficient to describe all possible

367

Section 3: Working with the Hardware Interface

driver requests. DOS appends information to this basic structure for certain re­
quests.

RH STRUC
RH_B_Length DB 0 ; ; Length (bytes) of this

, , request header
RH_B_Unit DB 0 , , Unit code
RH_B_Command DB 0 ; ; Command code
RH_W_Status DW 0 ; ; Operation results
RH_T_ReservedDOS DB 8 DUP(O)
RH ENDS

RH_B_Length specifies the total length of the request header. DOS always
sets this field, but it is never used. A block device driver can control multiple
units. The RH_B_Unit field identifies which unit is the target of the request. DOS
keeps track of the driver address and unit number for each block device.
RH_B_Command specifies the requested operation. The driver normally sets
RH_W_Status to indicate the results of an operation. This field is also used to indi­
cale that a device is busy.

IOCTL Requests

A BIOS call initiates IOCTL requests which allow direct device control and ac­
cess to device status information. The next example demonstrates this tech­
nique. DOS can satisfy some of these requests without driver intervention and
supports them regardless of the state of the IOCTL bit. Get and set device infor­
mation (AL = 0 or AL = 1) manipulates DOS tables. The set function can
change mode as well as current standard input and output. These operations
affect the way DOS passes requests to the driver (see Essay 10). DOS sends input
and output status requests to the driver in response to IOCTL status operations.

mov al,function there are several functions
(see Tech ref manual)

mov ah,44h BIOS IOCTl request

Request dependent info in BX and ex

int 21H ; issue BIOS request

Other requests require explicit driver support. The driver indicates it is
able to handle these requests by setting the IOCTL bit in the device attributes
word. If this bit is set, DOS creates the appropriate request header and passes its
address to the driver, which is free to interpret these requests as it sees fit.

368

Chapter 11: A SOUND Device Driver

Prototype Driver

The prototype character driver upon which the SOUND driver is built does no
useful work. It returns a successful status for each character device operation
and an error status for all others. Code for this prototype driver is listed next.
Because it is so simpleJ the prototype driver is a good introduction to my pro­
gramming style and driver structure in general.

TITLE DriverStub
INCLUDE MACROS.ASM
INCLUDE DEVICE.DEF

useful macros
Driver data structures

=DHD_M_Character OR oHD_M_IOCTl
_ff OR DHD_M_OCRM

_ff
dFlags =

_text SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:_text,ds:_text
ORG DOH ; Drivers begin at DOH

Driver PROC NEAR

begin: DHD <-1,dFlags, StgyEntry, IntEntry,'SOUND ,>

RQ_T_Table:
DW Soundlnit Device Initialization
OW SoundNOP ; Media check
OW SoundNOP Build BIOS parameter

block
DW SoundInIOCTl Input IOCTl request
DW SoundError Input (read) request
DW SoundError Nondestructive input
DW SoundError Input status
OW SoundError Input Flush
DW SoundWrite Output (write)
OW SoundWrite Output write verify
DW SoundStatus Output status
DW SoundFlush Output flush

OW SoundNOP Output IOCTl request
OW SoundOpen Device open request
OW SoundClose Device close request
DW SoundNOP Removable media
DW SoundWriteTilBusy Write until busy

369

Section 3: Working with the Hardware Interface

RQ_S_Table = (RQ_T_Table-S)/2

OW 256 DUpeD)
Dr;verSP OW $-2
DosSS OW D
DosSP OW D
RqOffset OW D
RqSegment OW D

Pr;vate stack for dr;ver
Current top of stack
DOS stack segment
DOS stack po;nter
OFFSET of request hdr
SEGMENT of request hdr

SUBTTL Process Dr;ver Requests

Dr;verRequest PROC NEAR

SoundError:
mov ax,DHD_C_ErrUnknownCommand
ret

SoundNOP:
SoundInIOCTL:
SoundWr;te:
SoundWr;teT;lBusy:
SoundStatus:
SoundFlush:
SoundOpen:
SoundClose:

mov ax,DHD_M_StsDone
ret

Dr;verRequest ENDP

PAGE
SUBTTL DOS Entry Po;nts

Dr;verEx;t:
les
mov
mov
mov
mov

bx,DWORD PTR RqOffset
es:[bxl.RH_W_Status,ax
Dr;verSP,SP
SS,DosSS
SP,DosSP

ES:BX <== DOS request
Return status to DOS
Save dr;ver stack
Restore dos stack

popf
pop_all
return_far

Restore processor flags
Restore all reg;sters
and return to DOS

370

StgyEntry:
mov CS:RqOffset,bx Save request address

mov CS:RqSegment,es
return_far

Chapter 11: A SOUND Device Driver

and return to DOS

IntError:
mov
jmp

ax,DHD_C_Unknowntommand
SHORT Dr;verEx;t

Say command ;s bad

IntEntry:
push_all
pushf
mov
mov

mov
mov
mov
mov
cld
les
mov
cmp
jge
cbw
add
mov

call
jmp

ax,cs
ds,ax

DosSS,ss
DosSP,sp
ss,ax
sp,DdverSP

bx,DWORD PTR RqOffset
al,es:Cbxl.RH_B_Command
al,RQ_S_Table
IntError

ax,ax
s;,ax

RQ_T_TableCs;l
Dr;verEx;t

Save all reg;sters
Save processor status
Set dr;ver DS
<DOS currently does
th;s for us)

Save DOS stack

Establ;sh dr;ver stack
Restore dr;ver SP
Set d;rect;on flag
ES:BX <== DOS Request
AL <== command
Is ;t ;n range?
If GE--out of range
Make command a word
Convert to word ;ndex
SI <== funct;on table
;ndex
D;spatch on funct;on

Soundln;t:
mov WORD PTR es:Cbxl.RH_A_Break, OFFSET Soundln;t
mov WORD PTR es:Cbx+2l.RH_A_Break,cs
mov ax,DHD_M__StsDone
ret

dd ver
_text

ENDP
ENDS
END beg;n

Coding Style

In some of the previous code fragments you may have noticed variable names of
the form XXX_V_Zzzzzz. These names arise from the technique I use to label

371

Section 3: Working with the Hardware Interface

data structures. Each of these structures has a 2- to 5-eharacter name which is a
prefix to the name of a structure element. One of the type-specifiers listed in
Table 11-3 follows this prefix. The final part of each name identifies an individual
field. Underscores separate these components. For example, the DHD structure
defines the device header. The attributes field of the header is a word; the com­
plete field name is DHD_W_Attrib.

Table 11·3. Naming Conventions

Specifier

A
B
C
M
S
T
V
W

Meaning

Address
Byte Field
Constant (Byte or Word)
Mask (Bit field)
Size of a structure
lext Field (arbitrarily long)
Bit Number
Word (Z·byte) field

You may notice that comments begin with one, two, or three semicolons.
Normal comments begin with a single semicolon. I use double semicolons in
macro definitions to suppress comments in their expansions. Whenever inter­
rupts are disabled, I begin comments with three semicolons to remind myself of
the interrupt state.

Driver Structure

The prototype driver begins with references to two include files. These two files,
which I include in every device driver, define MASM STRUCs and macros, and ap­
pear in the listings at the end of this essay. (See Essay 5, Advanced MASM Thch­
niques, by Michael Goldman, for more information on STRUCs and macros.)

The MACRO. ASMfile includes definitions for push_aIl and pop_all. Perform­
ing these operations in a macro ensures that I save all the registers and restore
them in the correct order. It is easy to forget to save a register or to restore one
out of order. Macro definitions for explicit near and far returns are also defined
in this file. On more than one occasion, MASM has generated a near return
when I really wanted a far return. Of course, this error was one that I created,
but the macro definitions prevent MASM from helping me make mistakes.

The DEVICE.DEFfiIe defines the device and request headers as well as speci­
fying symbolic values for the various fields within these structures.

Data declarations follow the include statements. The first declaration is the
device header which begins at ORG o. The PSP causes normal applications to start

372

Chapter 11: A SOUND Device Driver

at ORG 100H, but the driver does not have a PS:P. A dispatch table follows the
header. It is a very common practice to have separate routines for every driver
function and to use the request code RH_B_Command as an index into a table of
routine addresses.

Driver code follows the data section. Notice that the code and data are in
the same segment. Although separate segments are possible, it is common to
combine code and data into a single segment.

The strategy code records the request header address and returns. The real
work happens in the interrupt code, which saves all registers and the current proc­
essor flags, sets up the driver data segment, switches to a private driver stack, and
dispatches on the request code. After completing all request-specific processing,
the driver returns a status in the request header and restores all registers.

Sound Generation Hardware

The remainder of this chapter deals specifically with the SOUND driver. The
SOUND driver manipulates sound generation hardware and the system clock.
Before I could design the SOUND driver, I had to understand how this hardware
worked.

Sound Generation

A frequency generator, filter, and speaker make up the sound generation hard­
ware. The square wave output of the frequency generator drives the speaker
through a filter (see Figure 11-6).

The PC uses an 8253-5 programmable interval timer as the frequency gen­
erator. This chip can perform different functions depending on its initialization.
The frequency generator divides a 1.139180MHz fixed-frequency, square-wave
clock input by a software selectable 16-bit value. 1b produce the A above middle
C (440Hz) you would load a value of 2712 (1,193,180 + 440) into the counter. The
counter output is a 440Hz square wave.

You may know that a square wave can be represented as the sum of many
sine waves. The frequency of the second and all following sines in this sum are
integer multiples of the first whose frequency matches that of the square wave.
Each sine wave has an associated amplitude which determines its contribution
to the final sum. Mathematicians call this representation a Fourier series.

Removing the higher frequency sine waves and sending what is left to a
speaker produces music. On the PC, the filter removes the high-frequency
sound waves. Thchnically, this filter is called a low-pass filter because it allows the
low-frequency waves to pass and stops the higher-frequency ones.

Changing the divisor while the speaker is on results in an unpleasant tone.

373

Section 3: Working with the Hardware Interface

lJU1IlJlf
Clock In---1

Speaker
RIter

-.1 Counter2 1
Out2"-----

•••
Fig. 11·6. Sound generation hardware.

The speaker can be turned on and off under software control. Whenever we want
to change the sound frequency or produce a Period of silence, we must tum off the
speaker. This listing illustrates use of the sound generation hardware.

SOUND driver hardware def'ns
select counter
select read/load
select mode
8253 control word

Set up 8253 to function
as a tone generator
Turn off speaker
ax <== frequency divisor
Write LSB of divisor
Delay for AT

_m1
_m2
_m3
cntrlW
_text

a440

INCLUDE HARDWARE.DEF
= CSelCtr2 SHL SC)
= CLSBMSB SHL RL)
= (Mode3 SHL M)
EQU _m1 OR _m2 OR _m3
SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_text,DS:_text
ORG 100H
PROC NEAR
mov al,cntrlW
out I8253.Mode,al
ca II TurnOff
mov ax,2712
out I8253.Ctr2,al
jmp SHORT $+2

374

Chapter 11: A SOUND Device Driver

xchg al,ah
out 18253.Ctr2,al
call TurnOn
xor cx,cx

x: loop x
call TurnOff
mov ah,4cH
int 21H

a440 ENDP
Speaker PROC NEAR

out 18255.PortB,al
ret

TurnOff LABEL NEAR
in al,18255.PortB
and al,SpeakerOff
jmp SHORT Speaker

TurnOn LABEL NEAR
in al,I8255.PortB
or al,SpeakerOn
jmp SHORT Speaker

Speaker ENDP

-text ENDS
END a440

al <== MSB divisor
Write MSB of divisor
Turn speaker on now
Delay for a while
(Period depends on CPU speed)
Turn speaker off
Return to DOS

Update 8255
and return
Turn off speaker
Read current port settings
Turn off the speaker
Update 8255 (jmp req'd for AT)
Turn on speaker
Read current port settings
Enable the speaker
Update 8255 (jmp req'd for AT)

System Clock

The programmable interval timer chip (8253) actually contains three independ­
ent down counters. One of these counters (Counter 2) is part of the sound gener­
ation hardware and another (Counter 0) drives the system clock. DOS sets up
Counter 0 the same as I programmed Counter 2 in the previous example. DOS
uses a frequency divisor of 65536. (This value is actually loaded into the counter
as O. The 8253 decrements the counter first and then tests for 0.) The output of
the counter} a 1.139180MHz/65536Hz (- 18.2) square wave} is connected to chan­
nelO (IRQ 0) of the 8259 interrupt controller chip. DOS programs the 8259 so
that Counter 0 generates an interrupt 18.2 times a second.

Overview of the SOUND Driver

Now that we've reviewed driver basics and looked at the hardware used by our
SOUND driver} let's see how the driver is implemented. There are three distinct
parts to the SOUND driver-a DOS interface, a compiler} and a player. The DOS

375

Section 3: Working with the Hardware Interface

interface is similar to the previously discussed prototype. The compiler and
player expand this prototype to a fully functional character driver.

DOS Interface

The DOS interface consists of the device header, strategy entry, and interrupt
entry. The attributes word of the device header DHD_W_Attrib declares the
SOUND driver to be a character driver which supports WriteUntiIBusy, IOCTL,
and OCRM requests. The strategy code records the address of the request
header. The interrupt code saves all registers, switches to an internal stack, and
dispatches on request header function to a specific subroutine which completes
the request. The driver saves information on its private stack between calls. Be­
fore returning to DOS, the interrupt code switches back to the DOS stack, re­
stores all processor registers, and sets a completion status in the request header.

Compiler

The interrupt entry code calls the SOUND driver output routines (Sound\'\Tite and
SoundWriteTilBusy), which pass characters from a buffer in the DOS request
header to the compiler. The compiler converts ASCII text to note pitch and dura­
tion information .and stores the compiled data in a circular buffer. The compiler
encodes pitch as an 8253 programmable interval timer frequency divisor and dura­
tion as ticks of the system clock. A fInite state machine implements the compiler.

Player

The player is driven by interrupts from the system clock. It removes compiled
notes from the circular buffer and manipulates the PC sound generation hard­
ware to produce music. The player loads pitch information into the 8253 Pro­
grammable Interval Timer and initializes a counter with duration information.
This counter is decremented on every tick of the system clock. When the tick
count goes to zero, the player gets another note from the circular buffer.

SOUND Driver Finite State Machine

There are three parts to the SOUND driver finite state machine: macros which
describe the translation rules or grammar, subroutines which recognize spe­
cific musical constructs, and an interpreter. The FSM.DEF include file defines all
macros and internal data structures which the finite state machine uses j you
will find a listing of this file at the end of the chapter.

376

Chapter 11: A SOUND Device Driver

Macros

STATE and TRAN macros specify the rules for music compilation. The STATE
macro identifies the start of a particular state} and the TRAN macro defmes legal
transitions out of this state. One or more TRAN macros follow each STATE macro.
These two macros build the state transition table which drives the interpreter.

The only argument for the STATE macro is a state name. The TRAN macro
has four arguments: class, data, nstate} and action. Class is the name of a subrou­
tine which recognizes a particular token such as a note or key signature. Certain
class routines use the data argument. Nstate specifies the state which will be en­
tered if a transition is successful. If the nstate argument is omitted} a default value
of the next state in the transition table is used. Action is the address of an action
routine} which can contribute to the decision of whether or not to accept a transi­
tion or perform some special processing if a transition is successful. Action rou­
tines are a hook for decisions that cannot be described easily by the state table.

Class Routines

Class routines assemble and examine tokens and they decide whether or not to
make a transition. The class routines referenced in the TRAN macro are specific
to music compilation. Every class routine returns with an unprocessed charac­
ter in the AL register.

Class routines recognize notes which include a name (A ... G) and possi­
bly an accidentaL numbers} key signatures, and commands. The command rou­
tine compares the current input character to the value in the data field; it is
normally used in conjunction with the SubState class routine.

SubState is a special class routine which saves the current state and enters
the state specified by nstate-you can think of it as a subroutine call. SubState is
used when a transition must be described in terms of other transitions. A transi­
tion to S_exi t causes a successful exit from SubState, a transition to s_fai l
causes an unsuccessful exit from SubState. The following example shows the
state table entry which defines the Thmpo command. This definition says that
tempo is defined by the letter T} followed by a number. Notice how the Command
class routine recognizes the letter 1: If the current letter is not a 1; the substate}
s_t} returns a failure; otherwise} the Number class routine looks for a number. If
a number is found} the ThmpoDone routine is called and a successful exit is
taken from the substate s_t.

state
tran
state
tran

s_t
Command,'T'

Number"s_exit,TempoDone

377

Section 3: Working with the Hardware Interface

Interpreter

The state machine interpreter keeps track of the current state, which is no more
than a list of legal transitions. The interpreter passes the current character to
each class routine which may need more characters to complete a token. At
some point, the class routine will either recognize the token or return with a
failure status. If the class routine returns success, the interpreter calls the op­
tional action routine (if present). If this routine does not reject the transition, the
interpreter enters the state specified by the nstate argument. A failure status
causes the interpreter to process the next transition (if there is another one).

SOUND Driver Coroutines

The finite state machine analyzes characters which come from either Sound­
Write or SoundWriteTilBusy requests. SoundWrite requests are one character
long unless the SOUND driver is in binary mode. Binary mode and write-until­
busy requests are arbitrarily long.

Coroutines simplify the relationship between multiple entry points and the
finite state machine. The finite state machine calls NextCharacter when it needs
another character. In an effort to satisfy this request, NextCharacter makes a
coroutine callback to the original driver entry point. The target of this callback is
a loop within either SoundWrite or SoundWriteTilBusy. The loop logic removes a
single character from the buffer specified in the request header and makes a
coroutine callback to NextCharacter. If the current request header cannot pro­
vide another character, the SOUND driver returns to DOS. Information saved on
the driver-private stack ensures that processing will be resumed properly on the
next driver call. Initialization code in the ResetExit routine sets up the initial call;
normal coroutine processing propagates the calls.

Synchronization and Circular Buffers

All circular buffer operations occur in BufferInsert and BufferRemove. Class
routines call BufferInsert whenever a note or a rest has been completed. The
player calls BufferRemove from the timer interrupt service routine when it is
time to play another note. Neither of these operations is indivisible. Both rou­
tines manipulate a common data structure which must be kept in a consistent
state.

The SOUND driver architecture makes synchronization between compiler
and player easy. The player manipulates the next available note pointer, and the
compiler handles the next free space pointer. Access to these pointers is com-

378

Chapter 11: A SOUND Device Driver

pletely independent and does not require synchronization. Both routines make
indivisible adjustments to the buffer count. The increment operation used by
the compiler and the decrement option used by the player are guaranteed to
complete once started.

Speeding up the System Clock

We have tacitly assumed that DOS would provide clock ticks for the SOUND
driver. It turns out that the system clock does not provide sufficient resolution.
At the standard clock rate of 18.2 ticks per second, a quarter-note played at the
default tempo of 120 lasts nine ticks (60 + 120 * 18.2). An eighth-note (half as
long as a quarter-note) would last only five ticks. Since we need short periods of
silence between notes, we actually would play an eighth-note as four audible
ticks followed by one tick of silence. Because the tick per note is so small, we
cannot accurately deal with tempo or the relative durations of short notes. The
faster the tempo, the worse the problem becomes.

An obvious solution is to increase the system clock speed, but this ap­
proach might cause the processor to spend excessive time servicing timer inter­
rupts. Since the ability to speed up the system clock was important, I created a
prototype interrupt service routine. By the time I wrote this prototype code, I
had designed all the driver data structures and decided how to implement the
compiler; the interrupt service routine interface was completely specified. Using
a factor of 16 speedup, I analyzed the time required to execute this prototype
code. It was apparent from this analysis that I could safely increase the fre­
quency of the system clock.

Space constraints prevent a discussion of the prototype code, but it was
almost identical to the code finally used in the SOUND driver. The estimate was
so accurate because it was made after the interrupt service routine interface
was completely specified.

New Clock Interrupt Service Routine

The following example illustrates the interrupt service routine code, which has
some subtle aspects. We cannot just change the frequency of the system clock.
On every clock tick, the clock interrupt service routine in ROM gets called. This
code updates the time of day, checks the status of the diskette timers, issues an
INT 1 CH, sends an EOI to the 8259 interrupt controller, and dismisses the clock
interrupt with an IRET. If the ROM BIOS routine were called too frequentl)', the
system clock would gain time and diskette operation would be impaired. Any
other device driver or TSR program which linked to the INT 1 CH vector would
also be called too often. It is difficult to predict the effects of more frequent calls

379

Section 3: Working with the Hardware Interface

to these linked routines, but a significant percent of the available CPU cycles
could be spent servicing the timer interrupt and traversing the INT 1CH chain.

ax,OFFSET ClkISR1
SetISR

Oldlnt8Vector

cs:ClockTicks,1
clk2
c lk1
SetClockSlow

ClkISRO:
cmp
jz
dec
jnz
call

clkO: dec
jz

ClklntExit:
push
mov
out
pop
i ret

c lk3: cs:
mov
cs:
jmp

ClkISR1:
cmp
jl

jg
call
cs:
and

c lk1 : dec
jmp

clk2: cs:
mov
jmp

SetAltISR:
and

or

mov
call
ret

380

cs:NoteTicks,O ; ; ; [ABC(22)]Playing a note?
clkO iii [ABC(16/4]If Z--no
cs:NoteTicks ; ; ; [BC(31)]Decrement note count
clkO , , , [BC(16/5)]If NZ not note end
PlayNextNote ; ; ; [C(23+496)]Play another note
cs: ClockTi cks iii [ABC(31)]Dec clock ticks
clk3 iii [ABC(16/4)]Not time for old

iii clock isr

ax iii [ABC(15)]Save ax
al,EOI iii [ABC(4)]Send Nonspecific EOI
I8259.PortA,al iii [ABC(10)]EOI to 8259
ax iii [ABC(12)]Restore ax

iii [ABC(32)]and exit ISR
iii (22)Reset counter

ClockTicks,FastTickCount
iii (32) Call old clock isr

", Can clock frequency change?
iii If L--no reset ClockTicks
iii If G--not yet
iii Enter slow mode
iii Say not busy

DriverStatus,NOT MASK Busy
cs:ClockTicks iii One more tick
SHORT ClklntExitiii and exit ISR

iii Set ticks to wait
ClockTicks,FastTickCount
SHORT ClkIntExit;;; and exit ISR

DriverStatus,NOT MASK EOFPending iii EOF not
iii pending

DriverStatus,(1 SHL ChangePending);;i but vector
;;i change is

;;i Played last note
;;; Swap clock ISR
i;i and return

./

Chapter 11: A SOUND Device Driver

When we change the frequency of the system clock, we must also change
the clock interrupt service routine. Changing the clock frequency is easy. We
change the frequency divisor from 65536 to 16384 (Oxl000) to get a factor of 16
speedup. We also must change the clock interrupt vector to point to the new
clock interrupt service routine.

The first action performed by the ClkOISR code is to check the value of
NoteTicks. If a note is currently being played, NoteTicks will be nonzero. Only
nonzero values are decremented. When NoteTicks becomes zero, it is time to
playa new note. Whether any note processing took place or not, ClockTicks is
decremented. When this value becomes zero, it is reset to 16 (the clock speedup
factor), and the old INT 8 service routine is invoked with a JMP instruction.

Invoking the old INT 8 routine every 16th-fast clock tick maintains the
proper delay between calls. The transfer of control is done with a JMP instruc­
tion to ensure that only one EO I gets sent to the 8259 interrupt controller. (Re­
member, the ROM BIOS interrupt service routine wants to send an EOI.)

Driver Periormance

Estimating driver performance is done by calculating execution times for worst
case code paths. These estimates provided assurance that DOS could handle the
clock speedup and that the driver could play notes in real time. At the faster
clock rate, there are 3432800 ns (nanoseconds) between interrupts (1193180 +

4096 = 291 interrupts/sec = .0034328 sec/interrupt = 3432800 ns/interrupt).
In the previous example of the clock interrupt service routine, the num­

bers in parentheses are instruction times in clock cycles and the letters inside
square brackets are code paths.

When no note is playing and the BIOS interrupt service routine does not
need to be invoked, code path A is followed. This path takes 197 clock cycles (51
+ 22 + 16 + 31 + 4 + 15 + 4 + 10 + 12 + 32). The PC runs at a clock speed
of 210 ns; this path requires 41370 (210 x 197) ns or 1.2 percent (41370 +
3432800 x 100) of the available CPU cycles (to a first approximation).

When a note is playing and the ROM BIOS interrupt service routine is not
called, code path B is followed. The processor overhead for this path is 1.4 per­
cent. When a new note has to be played (path C), overhead goes up to 4.5 per­
cent. No estimates were made on how much time was required to execute the
original BIOS interrupt service code or compile the text. The number of routines
chaining to the lCH interrupt is unpredictable and can have a drastic effect on
the length of this code path. So long as this path takes less than 6 percent (100 x
I1t6) of the total CPU cycles, we should not miss any ttfast ticks:'

A significant portion of the time available for compile is spent in DOS code.
If we make a worst case assumption that BIOS code and resident timer routines
take up 6 percent of the CPU cycles and that playing a note takes up 4.0 percent

381

Section 3: Working with the Hardware Interface

(certainly a very conservative assumption since notes are changed relatively in­
frequently), we still have 90 percent of the processor cycles available. There
should be no problems playing most scores in real time. When the completed
driver was tested by copying a score to it, it was found that the copy command
completed before the music stopped confirming this analysis. Isn't all this sci­
ence wonderful!

Adding Refinements

The system clock can be permanently sped up by changing the counter fre­
quency and interrupt vector in the SOUND initialization routine (SoundInit), or
the clock frequency can be altered when music is being played. The former ap­
proach would work at the expense of some wasted CPU cycles when the SOUND
driver is not being used, but, as our performance analysis shows, its impact
should not be noticed. The SOUND driver uses the latter technique. This ap­
proach is more elegant and provides further examples of driver synchroniza­
tion as well as illustrating nonstandard uses for open and close routines. The
system clock is sped up in the open routine and slowed down in the close rou­
tine.

The OCRM bit is set in the device header. When the device is closed either
explicitly or implicitly by process termination, DOS sends a close request to the
SOUND driver. The Interrupt code dispatches to the SoundClose routine which
informs the state machine that a close operation has been requested (an EOF is
passed through the NextCharacter coroutine). With interrupts disabled, the
driver state is set to end of file pending and NoteTicks is tested. It is important
that both actions are taken with interrupts disabled. Note playing is interrupt
driven and will always take precedence over compiling. If NoteTicks ever goes to
0, the compiler is sure that the Player has nothing to do. If the Player has nothing
to do and a close has been sent to the driver, SoundClose resets the clock speed
to slow and restores the original interrupt service routine (call SetAltISR). If
NoteTicks is nonzero, the Player is currently busy. Eventually the Player will run
out of notes, notice that a close has been requested (driver state will be end-of­
file pending), and reset the clock speed and interrupt service routine.

If interrupts are not disabled while the driver state is changed and Note­
Ticks is checked, an interrupt could occur between the two instructions. If the
final note completed between these two instructions, SetAitISR would be in­
voked twice. If the order of these two instructions were reversed, SetAltISR
might never get called. It is important that the two instructions be executed
without interruption. The ell instruction ensures that this critical section com­
pletes without interruption.

The actual swap of interrupt vectors is slightly more involved than what
has been previously described. We want to change vectors and slow down the

382

Chapter 11: A SOUND Device Driver

clock on the 16th-fast tick so we do not lose any time (on the average 25 ms per
close).1b avoid time loss, SetAltlSR sets the driver state to change pending and
changes the interrupt service routine to ClkISR1. ClkISR1 waits for the Clock­
Ticks to go to one, then slows down the clock and restores the interrupt vector
to its original value.

Since the OCRM is set in the device header, the SOUND driver is called each
time the device is opened. The SoundOpen routine processes open requests. It
immediately clears the end of file pending driver state. If a vector change is
pending, a busy wait loop is entered. SoundOpen could back out of the vector
change, but very little would be gained and the code complexity would increase.
If two songs are played in quick succession, it is possible that the interrupt vec­
tors will not change and the clock speed will not be altered between songs.
Whenever the vector and clock speed are in their original state, the driver state
is InitNeeded. If SoundOpen finds the driver in the InitNeeded state, it changes
the interrupt vector to ClkOISR and speeds up the clock.

Finishing Touches

The open routine (SoundOpen) speeds up the clock and copies the
CErr. ERR_L_Bytes and CErr. ERR_A_Text values. These variables describe the last
error and identify where it occurred. SoundOpen then resets the error descrip­
tion and initializes some driver parameters. It also initializes the driver stack and
calls ResetExit to set up the initial coroutine callback.

The SOUND driver supports both input and output IOCTL routines. These
routines allow the user to read or modify the default tempo, octave) and style.
They also allow the user to interrogate the driver about the most recent com­
piler errors. Error information is read-only.

As I mentioned previously, the driver is free to interpret the IOCTL infor­
mation as it sees fit. The SOUND driver expects to be passed a list of requests.
Each list element has a request identifier) request length) buffer address, and a
return length address. Both addresses are specified with a segment and an off­
set. The optional return length address is the address of a variable which will be
set to the actual number of bytes returned. The following listing requests the
current default note length, octave) and the text of the last compiler error.

ITEM
ITEM_W_Code
ITEM_W_Length
ITEM_A_Address

STRUC
OW
OW
OW
OW
OW
OW

o
o
o
o
o
o

Request code
Allocated size
Address of item buffer

Address of actual length
(ignored if ~egment=O)

383

Section 3: Working with the Hardware Interface

ITEM ENDS

IOCTL_K_CBytes EQU 0 Get current bytes read
IOCTL_K_PBytes EQU 1 Get previous bytes read
IOCTL_K_CError EQU 2 Get text of current error msg
IOCTL_K_PError EQU 3 Get text of previous error msg
IOCTL_K_Length EQU 4 Get/Set defauLt note Length
IOCTL_K_Octave EQU 5 Get/Set defauLt octave
IOCTL_K_Tempo EQU 6 Get/Set defauLt tempo
IOCTL_K_StyLe EQU 7 Get/Set defauLt styLe

stack

stack

_data
sound
itmlst

SEGMENT WORD STACK 'STACK'
DW 256 DUP(O)
ENDS

SEGMENT WORD PUBLIC 'DATA'
DB 'SOUND',O
ITEM <IOCTL_K_Length, 2,OFFSET Length,SEG _data,O,O>
ITEM <IOCTL_K_Octave, 2,OFFSET Octave,SEG _data,O,O>

Note that you cannot actuaLLy wrap structure reference

ITEM <IOCTL_K_CError,50,OFFSET Text, SEG _data,
OFFSET TLength,SEG _data>

itmend
Length
Octave
TLength
Text
_data

EQU
DW
DW
DW
DB
ENDS

$

o
o
o
50 DUP(O)

Return defauLt Length here
Return defauLt octave here
Length of Text
Error text here

-text SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:_text,ds:_data

main PROC NEAR
mov ax,_data
mov ds,ax
mov dx,OFFSET sound
mov ax,3d01H
int 21h
mov bx,ax
mov dx,OFFSET itmLsti
mov cx,itmend-itmLsti
mov ax,4402H
int 21H

384

EstabLish data segment

Open device (need handLe)
Say write-onLy access

bx <== handLe
dx <== item List
cx <== Length of item List
issue a read IOCTL

mov
i nt

main ENDP
_text ENDS

END

ah,4cH
21H

main

Chapter 11: A SOUND Device Driver

Return to dos

Coroutines are also used to implement the list processing. The read or
write IOCTL routines call Firstltem to process the first IOCTL item; coroutines
satisfy the remaining requests.

Conclusion

In this essay} I have introduced some new programming techniques and shown
how they are used in a real device driver. A listing of this driver and its include
files appears next. The techniques I have described and much of the code is di­
rectly applicable to other drivers.

1b write your own device driver, you will need to understand the hardware
you are controlling. Most purchased hardware comes with a technical descrip­
tion similar to what is provided in the IBM Hardware Technical Reference Manual.
Usually} this description does not include sufficient information to write a device
driver} and you will have to consult the component data catalogs provided by
chip vendors. These catalogs usually contain a complete description of how a
chip works and many also provide sample circuits and code.

Listing 11-1 gives the complete source listings for the SOUND driver. The
main program PLAY _ASMis followed by its supporting include files} which are pre­
sented in the order they appear in the INCLUDE statements. This listing is thor­
oughly commented.

Listing 11·1. Sound Driver

TITLE SoundDriver
SUBTTL Basica 3.0 Compatible Sound Driver

SOUND.ASH

Source for SOUND device driver

© 1987 W. V. Dixon. All rights reserved.
continued

385

Section 3: Working with the Hardware Interface

May be freely copied for personal, nonprofit use
so long as this copyright notice and disclaimer are
retained and usage restrictions are observed. This
software may not be used in whole or in part in any
program which is sold without prior written consent
of the author.

DISCLAIMER

This software is furnished as an example of a character
device driver. The author will assume no responsibility
for any direct or indirect damages resulting from the use
of this code. You are using this software ENTIRELY AT
YOUR OWN RISK.

INCLUDE MACROS.ASM
INCLUDE DEVICE.DEF
INCLUDE VALUES.DEF
INCLUDE HARDWARE.DEF
INCLUDE FSM.DEF

Useful macros
Device driver data structures
Limits and parameters
PC hardware definitions
Finite state machine definitions

SUBTTL Driver-specific macro definitions
PAGE

Macro to associate text with message number. The message
number is defined as the address of the text string.

number,text
x

error_msg

x

y:

number

386

MACRO
LOCAL
LOCAL
DB

EQU
ENDM

y

y-x-1,text,O

OFFSET x

;; Define message text

" Define error number
;; MACRO error_msg

continued

Chapter 11: A SOUND Device Driver

Signal that an error occurred.

signal MACRO x
mov
jmp
ENDM

cx,x
WriteFaultExit

"cx <== error number
;; and take error exit
;; MACRO signal

Define a musical scale

;; IRPC sharps
;; Specify which notes are flats

defscale
name:

MACRO
DB
IRPC
DB
ENDM
IRPC
DB
ENDM
ENOM

name,scale,sharps,flats
scale
y,<sharps>
&y

y,<flats>
&y

" Specify notes in scale
;; Specify which notes are sharp

" IRPC flats
;; MACRO defscale

SUBTTL Data Structures
PAGE

Define driver status summary word

DSS record InitNeeded:1,Busy:1,ChangePending:1,EOFPending:1,lnComment:1,
InTie:1,HasNote:1

DSS_M_HasNote
DSS_M_lnTi e
DSS_M_lnComment
DSS_M_EOFPending
DSS_M_ChangePending
DSS_M_Busy
DSS_M_InitNeeded

EQU 1 SHL HasNote Compiler has note
EQU 1 SHL InTie Compiler processing tie
EQU 1 SHL InComment Compiler processing comment
EQU 1 SHL EOFPending End file pending
EQU 1 SHL ChangePending Vector change pending
EQU 1 SHL Busy Device is in use
EQU 1 SHL InitNeeded Clock speedup needed

Define Score (SCR) structure

STRUC
OW SCR_K_DLength ; Note length

continued

387

Section 3: Working with the Hardware Interface

SCR_W_Octave
SCR_W_Tempo
SCR_W_Key

SCR_W_StYle
SCR_W_Ticks
SCR_W_TTicks
SCR_W_TFreq
SCR_W_NTicks
SCR_W_NFreq
SCR
SCR_S_Size

OW
OW
DW

DW
DW
DW
DW
DW
DW

ENDS
EQU

SCR_K_OOctave
SCR_K_DTempo
o

SCR_K_DStyLe
SCR_K_DTicks
o
o
SCR_K_OTicks
o

SIZE SCR

Octave
Tempo
Key signature
NB Must fill in when defined
StyLe
Current tick count
Tied tick count
Tied frequency divisor
Note ticks
Note frequency divisor

Define Error structure

ERR
ERR_L_Bytes
ERR_A_Text

STRUC
DW
DW

ENDS
EQU

0,0
o

SIZE ERR

Bytes read
Address of error text
NB Must fiLL in when defined

Define IOCTL item list structure. List is array of ITEM
eLements.

ITEM STRUC
ITEM_W_Code DW 0 Request code

ITEM_W_Length DW 0 Attocated size
ITEM_A_Address DO 0 Address of item buffer
ITEM_A_RetLen DO 0 Address of actual Length

(ignored if segment=O)
ITEM ENDS
ITEM_S_Size EQU SIZE ITEM

SUBTTL Constant Definition
PAGE

Miscellaneous ASCII symbols
continued

388

BEll
IF
CR
EOF

EQU
EQU
EQU
EQU

07H
OaH
OdH
1aH

Chapter 11: A SOUND Device Driver

Used to tell state machine
about end of file

Item codes for IOCTl requests

IOCTL_K_CBytes
IOCTl_K_PBytes
IOCTl_K_CError
IOCTL_K_PError
IOCTl_K_Length
IOCTL_K_Octave
IOCTl_K_Tempo
IOCTl_K_StYle

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
1

2

3
4

5
6
7

Get current bytes read
Get previous bytes read
Get text of current error msg
Get text of previous error msg
Get/Set default note length
Get/Set default octave
Get/Set default tempo
Get/Set default style

Driver parameters

Driver attributes word

temp
temp
DHD_C_Attrib

=

=
EQU

DHD_M_lsCharacter OR DHD_M_IOCTLSupport
temp OR DHD_M_WriteBusySupport
temp OR DHD_M_OCRMSupport

IVTSegment

IntSVector
IVTSegment

SUBTTl IVT Definition
PAGE
SEGMENT AT 0
DO 8 DUP(O)
DO 0
ENDS

SUBTTL Driver Data Declarations
PAGE

SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:_text,ds:_text
ORG OOH

To reference interrupt vectors
Don't care about these
Timer (S253 Counter 0) interrupt

continued

389

Section 3: Working with the Hardware Interface

driver PROC NEAR

DecLare device header

begin: DHD <-1,DHD_C_Attrib, StgyEntry, IntEntrY,'SOUND ,>

Driver action tabLe used to dispatch to appropriate processing routine
based on request type.

DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
EQU

Soundlnit
SoundNOP
SoundNOP
SoundlnlOCTL
SoundError
SoundError
SoundError
SoundError
SoundWrite
SoundWrite
SoundStatus
SoundFLush
SoundOutlOCTL
SoundOpen
SoundCLose
SoundNOP
SoundWriteTiLBusy
($-RQ_T_TabLe)/2

Device InitiaLization
Media check
BuiLd BIOS parameter bLock is
Input 10CTL request
Input (read) request
Nondestructive input
Input status
Input FLush
Output (write)
Output write with verify
Output status
Output fLush
Output 10CTL request
Device open request
Device cLose request
RemovabLe media
Write untiL busy

TabLe used for processing 10CTL requests

Address Length

10CTL_T_TabLe DW
DW
DW
DW
OW
DW

390

CErr.ERR_L_Bytes, 4
PErr.ERR_L_Bytes, 4
CErr.ERR_A_Text, 0
PErr.ERR_A_Text, 0
OScore.SCR_W_Length,2
DScore.SCR_W_Octave,2

continued

Chapter 11: A SOUND Device Driver

OW
OW

IOCTL_S_Table EQU

OScore.SCR_W_Tempo, 2
OScore.SCR_W_Style, 2
($-IOCTL_T_Table)/4

State table. Defines state transitions for device driver state
machine.

This is the main state
Compile note (if completed)

Number"s_exit,OctaveDone
s_key
Command,'K'

Number"s_exit,TempoDone
s_n
Command, 'N '

Number"s_exit,NoteDoneO
s_o
Command, '0'

Note
Length (Lnn)
Rest
Octave (On)
Numeric note (Nnn)
Tempo (Tnnn)
Key signature
Music style (ML, MN, MS)
Gracefully terminate state machine
Process length
Need 'L' first
'L' must be followed by

OottedNumber"s_exit,LengthDone ; dotted number
s_t Process tempo
Command,'T' Need 'T' first

'T' must be followed by
number
Process numeric note
Must begin with 'N'
'N' must be followed by
a number
Process octave
Must begin with '0'
'0' must be followed by
a number
Process key signature
Must begin with 'K'
'K' must be followed by

Signature"s_exit,SignatureDone a valid signature
s_music Process music command
style"s_exit,StyleOone Must be a valid style
s_p Process a pause (rest)

substate,s_note,s_main
substate,s_l,s_main
substate,s_p,s_main
substate,s_o,s_main
sUbstate,s_n,s_main
sUbstate,s_t,s_main
substate,s_key,s_main
substate,s_music,s_main
Command,EOF,s_main
s_l
Command,'L'

tran
tran
tran
tran
tran
tran
tran
tran
state
tran
state
tran
state
tran
state
tran
state
tran
state
tran
state
tran
state
tran
state
tran
state
tran
state
tran
state

state s_main
tran lambda",CompileNote
state
tran

continued

391

Section 3: Working with the Hardware Interface

tran Command,'P',np_length,PauseOone
state s_note
tran Note"np_length,NoteOone1
state np_length
tran Oots"s_tie,NPOoneO
tran OottedNumber"s_tie,NPDone1
tran lambda"s_tie,NPOone2
state s_tie
tran Command,'&',s_exit,TieOoneO
tran lambda"s_exit,TieOone1
state_end

Must begin witn 'P'
Process a note
Must begin with valid note
Length of note or rest
Dots may follow
Dotted number may follow
Anything else ends note
Look for ties
'&' starts a tied note
Anything else ends note
End of driver state table

Style table is used to define various music styles. These styles are
indicated by MN (Normal), ML (Legato), and MS (Staccato).

StyleTable 08 'MNLS',StyleStaccato,StyleLegato,StyleNormal

Define scales for each key signature. There are 12 positions in
each scale beginning with C flat (C-) and extending to 8 sharp (8+).
The position of the note name indicates whether it is sharped or
flatted in the key signature in question. (Note that the notes of
the scale are in reverse order so we can conveniently use a scab
instruction. The scale column is used to determine a notes pitch.
The sharps and flats column also tell whether the note is normally
sharped or flatted; they are used in processing accidentals.

Key Scale Sharps Flats

#=#=#=#==#=#=# #8#A#G#FE#0#C# #8#A#G#FE#0#C#
defscale C ," 8 A G FE 0 C ",01010101101010,01010101101010
defscale G ," 8 A GF E 0 C ",01010100101010,01010102101010
defscale 0 ," 8 A GF E DC ",01010100101000,01010102101020
defscale A ," B AG F E DC ",01010000101000,01010202101020
defscale E ," 8 AG F ED C ",01010000100000,01010202102020
defscale 8 , .. BA G F EO C ",01000000100000,01020202102020
defscale FSharp," BA G FE 0 C ",01000000000000,01020202202020
defscale CSharp,"B A G FE 0 C ",00000000000000,02020202202020

-=-=-=-==-=-= -8-A-G-FE-0-C- -B-A-G-FE-O-C­
continued

392

Chapter 11: A SOUND Device Driver

defscale F " BA G FE 0 C ",02010101101010,00010101101010,
defscale BFlat " BA G F ED C ",02010101201010,00010101001010,
defscale EFlat .. B AG F ED C ",02020101201010,00000101001010,
defscale AFlat " B AG F E DC ",02020101202010,00000101000010,
defscale DFlat " B A GF E DC ",02020201202010,00000001000010,
defscale GFlat .. B A GF E 0 C",02020201202020,00000001000000,
defscale CFlat .. BAG FE 0 C",02020202202020,000000OOOOOOOO,

Define the key signatures. The order in this table corresponds to
the previous scale definitions. Again we reverse the order for
convenience in using the scasw instruction.

Keys DB 'C-G-D-A-E-B-F C+F+B E A 0 G C' note reverse order

The following table defines the counter (8253 counter 3) value for each
note. Values are calculated by dividing the input oscillator frequency
(1193180) by the note pitch (in Hz).

FreqDivTable OW
OW
OW
OW
OW
OW
OW

C C# 0 0# E F F# G G# A A# B
36156,34090,32248,30594,29101,27117,25386,24350,22945,21694,20572,19244
18356,17292,16124,15297,14550,13714,12829,12175,11472,10847,10198, 9700
9108, 8584, 8007, 7648, 7231, 6818, 6449, 6087, 5736, 5423, 5120, 4830
4554, 4307, 4058, 3836, 3615, 3418, 3224, 3043, 2875, 2711, 2560, 2415
2281, 2153, 2032, 1918, 1810, 1709, 1612, 1521, 1435, 1355, 1280, 1207
1140, 1075, 1015, 958, 904, 854, 806, 760, 718, 677, 642, 603
570, 538, 507, 479, 452, 427, 403, 380, 359, 338, 321, 301

Associate message text with error number. The error number is actually
the address of the text string defined in the following table. The
message text is returned in an OutputIOCTl request.

error_msg
error_msg
error_msg
error_msg
error_msg
error_msg
error_msg
error_msg
error_msg

BadStateTable,'Driver internal error: state table bad'
NumberTooLarge,'Number is too large'
BadSignature,'Key signature is bad'
BadLength,'length is out of range'
BadOctave,'Octave is out of range'
BadTempo,'Tempo is out of range'
BadNote,'Note is out of range'
BadTie,'Tied notes must be the same'
Successful, 'No errors encountered'

continued

393

Section 3: Working with the Hardware Interface

LocalStack OW 256 OUPCQ) Private stack for driver
OriverSP OW $-2 Current top of stack
OosSS OW 0 DOS stack segment on entry
OosSP OW 0 DOS stack pointer on entry
RqOffset OW 0 OFFSET of DOS i/o request
RqSegment OW 0 SEGMENT of DOS i/o request

Circular buffer for storing notes as they are compiled. Notes are
put in at one end CBUF_A_NextFree) and removed from the other
CBUF_A_NextOata). When the buffer is empty, BUF_W_Count=O,

BUF_T_Notes DD BUF_S_Notes dupCO) Buffer for note duration and pitch
BUF_W_Count OW 0 Notes currently in buffer
BUF_A_NextFree DW BUF_T_Notes Next free buffer location
BUF_A_NextOata OW BUF_T_Notes Next data item in buffer

OldlntSVector DD 0 Original timer CS253) interrupt
vector
ClockTicks OW 0 Used to count clock ticks
NoteTicks DW 0 Used to measure note duration

PErr ERR <,Successful> Previous error bytes and text
CErr ERR <,Successful> Current error bytes and text
CScore SCR <",SCR_K_DKey> Current valu~s

InitialCErr ERR <,Successful> Initial CErr values
OScore SCR <",SCR_K_OKey> Default Values

10 request state information

SavedCX
SavedSI
SavedDS

OriverStatus

OW
OW
OW

DSS

o
o
o

o

Bytes left to read
Buffer OFFSET
Buffer SEGMENT

Device driver status summary

PAGE
SUBTTL Driver Exit Routines

WriteFaultExit - Come here when want to return a WriteFault error
continued

394

Chapter 11: A SOUND Device Driver

Say a write fauLt occurred

ResetExit - Come here to reset driver state. Error code in ax.

ResetExit:

dispatch

mov
mov
push
sub
mov

push
jmp

sp,OFFSET DriverSP-2
bx,OFFSET StateMachine
bx
sp,6
bx,OFFSET nc4

bx
SHORT DriverExit

Reset driver stack
To get to state machine

For NextCharacter registers
To set up initiaL coroutine

and take common exit

SuccessExit - Come here to return successfuL compLetion to DOS.

SuccessExit: mov ax,DHD_"_StsDone ; Say we were successfuL

Dr; verExi t - Common driver exit code. Returns error code and
restores DOS state.

DriverExit: Les bx,DWORD PTR RQOffset ES:BX (:: DOS request
mov es:[bx].RH_W_Status,ax Return exit status to DOS
mov DriverSP,SP Save driver stack
mov SS,DosSS Restore dos stack
mov SP,DosSP
popf
pop_aLL
return_far

PAGE
SUBTTL Get Next Character (Coroutine)

Restore fLags
Restore aLL registers
and return to DOS

CaLLed by state machine to read next character. The driver wiLL have
previousLy set up a coroutine call back (in BP). NextCharacter makes
a coroutine caLLback to appropriate driver write routine. The write
routine makes a caLL back to NextCharacter thus propagating the caLL
back address.

NextCharacter: pushr <bx,cx,di>
jmp SHORT nc3

continued

Save nonvoLatiLe registers
Skip speciaL cases

395

Section 3: Working with the Hardware Interface

ncO:

nc1:

nc2:

nc3:
nc4:

nc5:

or DriverStatus,DSS_M_InComment
jmp SHORT nc3
mov al, '+'
jmp SHORT nc5
and DriverStatus,NOT MASK InComment
cmp al,EOF
jz nc5
call bp
pop bp
cmp al, , ,
j l nc2
test DriverStatus,MASK InComment
jnz nc3
cmp al, , ! '

jz ncO
cmp al, 'tI'
jz nc1
job al, 'a' , 'z' , nc5
sub al,20h
popr <di ,cx,bx>
exH success

Say welre in a comment
and get another character
Change '#' to '+'
and exit with '+'
Say comment has ended
Was it an EOF that ended it?
If Z--yes (Exit with EOF)
Return to coroutine for next char

Is this a printing character?
If L--nonprinting
Are we in a comment?
If NZ--we are
Are we starting a comment?
If Z--yes
Is ths a 'I'?
If Z--yes (Convert to '+')

If not lowercase, exit directly
Convert to uppercase
Restore nonvolatile registers
and return to caller

PAGE
SUBTTL Driver State Machine

Come here when state machine gets confused

StateError: signal BadStateTable Say the state table is bad
StateMachine: mov bx,-1 Mark initial state

push bx and put on stack
mov bx,OFFSET s_main bx <== initial state

mainO: call [bxl.FSM_A_Class Dispatch on class
jnc main2 Transition successful

main1: lea bx,[bxl.FSM_A_Ntrans Take next transition
jmp SHORT mainO and dispatch on transition

main2: test [bxl.FSM_A_Action,Offffh Any action routine?
jz main3 If Z--no action routine
call [bxl.FSM_A_Action and call action routine
jc main1 Action routine rejected transition

main3: mov bx,[bxl.FSM_A_Nstate Transition successful
; Move to next state

jmp SHORT mainO ; and dispatch

continued

396

Chapter 11: A SOUND Device Driver

PAGE
SUBTTL State Machine Class Processing

Defines class processing action. BX has current state. Values are
returned in CX. If class action is unsuccessful, the character
causing failure is in AL. If the action is successful, AL has a
new, unprocessed character.

Classes PROC NEAR

Substate: add sp,2 Remove return address
push bx Put current state on stack
mov bx,[bx].FSM_W_Data Get next state
jmp mainO And return to state dispatcher

Command: cmp al,byte ptr [bx].FSM_W_Data Look for a character match
jz sO If Z--found one
exit failure No match--say we failed

sO: call NextCharacter Get a new character
exit success and say match occurred

Lambda: exit success Lambda transition always
successful
exit_failure: stc Say transition failed

Common state transition exit. Restores state. Makes sure that stack
is not messed up. Previous state is returned in BX.

state_exit: popr <si,bx> Recover state and return address
pushf Remember carry state
cmp bx,-1 Popped too many states?
jnz seO If NZ--we're still OK
mov si,OFFSET StateError Force error exit

seO: popf Restore carry state
jmp si Return to caller or StateError

exit_success: clc Say transition successful
jmp SHORT state_exit and take common exit

Process a string of one or more dots C.>

dO:
d1 :

call NextCharacter
cmp al,' .'
loopz dO

continued

Get next character
Is character a dot?
It is a dot. Get another character

397

Section 3: Working with the Hardware Interface

neg cx convert loop count to dot
dec cx count
clc Assume successful
or cx,cx Was there a dot?
jnz d2 Must have at least 1 dot
stc Say we failed

d2: ret Return with status (success or
failure)
Dots: xor cx,cx Initialize loop count

jmp SHORT d1 look at current character

Convert an ascii number '0' to '9' to a binary value. Return with
cy=1 if not a number.

bdO: exit failure Say this isn't a digit
BinaryDigit: job al , ,0' , '9' , bdO

sub a l, '0' Ascii to binary conversion
xor ah,ah Byte to word conversion
mov cx,ax cx <== converted digit
ret and return to caller

Process a number. Number is returned in CX. CY=1 if no digits found.

Number:

n1 :

NumberExit:

NumberError:
NoNumber:

398

call
jc
push
call
call
jc
mov
pop
mul
or
jnz
add
jc
push
jmp
pop
exit
signal
exit

BinaryOigit
NoNumber
cx
NextCharacter
BinaryDigit
NumberExit
ax,10
dx
dx
dx,dx
NumberError
cx,ax
NumberError
cx
SHORT n1
cx
success
NumberToolarge
failure

continued

Convert first digit
If c--no number
Save number (first digit)
Get next character
convert to binary
Not a digit--we are done
Accumulate digit
Old number
ax:dx <== old number*10
Product > 64K?
If NZ--yes (too large)
cx <== digit + 10*old number
If c--number too large
Save number
and get next digit
cx <== number
Say we succeeded and return
Say number too large

Chapter 11: A SOUND Device Driver

Process a dotted number. A dotted number consists of a number followed
by 0 or more dots. Each dot scales number by 3/4. Scaled number returned
in cx.

DottedNumber: call Number Look for number
jc NoNumber If c--no number
push cx Save number
ca II Dots Look for one or more dots
jc NumberExit Only number (no dots>
pop dx Recover number
call DotTheNumber Scale for dots seen
jc NumberError If c--number too large
ret Return (cx = scaled number>

Process key signature.

SignatureError: signal BadSignature
Signature: mov ah, I ,

mov cx,ax
call NextCharacter
mov si,ax
cmp al, '-'
j z sigO
cmp al, '+'

sigO:
sig1 :

jnz
mov
mov

sig1
ch,al
ax,15

Say signature bad
Assume no sharp or flat follows
cx <== key signature
Get another character
Save this character
Is it a flat?
If Z--it is a flat
Is it a sharp?
If NZ--neither sharp nor flat
Add sharp or flat to signature
Number of key signatures

xchg ax,cx
mov

repne scasw
signature

jnz
cmp
mov
jz
call

sig2: exit

di ,OFFSET Keys

SignatureError
ah, I I

ax,si
sig2
NextCharacter
success

List of valid signatures
Try to match cx with valid

If NZ--no match
Did we use this character
Recover last character
If Z--last character not used
Get another character
and return indicating success

Process note. Note returns relative position within current scale
continued

399

Section 3: Working with the Hardware Interface

in cx.

NoNote:
NoteExitO:
character
NoteExit1:
Note:

repne

DoNatural:

DoSharp:

DoFlat:

exit
call

exit
mov
mov
scasb
jnz
call
cmp
jz
cmp
jz
cmp
jnz
sub
add
jmp
add
call
cmp
jnz
inc
jmp
sub
call
cmp
jnz
dec
jmp

failure
NextCharacter

success
di,CScore.SCR_W_Key
cx,14

NoNote
NextCharacter
al, '+'
DoSharp
al, ,-,

DoFlat
a l,'='
NoteExit1
cl,byte ptr [di+13l
cl,byte ptr [di+27l
SHORT NoteExitO
cl,byte ptr [di+13l
NextCharacter

a l, '+'
NoteExit1
cl
SHORT NoteExitO
cl,[di+13l
NextCharacter
al, ,-,

NoteExit1
cl

SHORT NoteExitO

Character is not a note
So AX will have unprocessed

Return (Found note)
di (== address of scale
Number of notes in scale
See if this is a note
If NZ--no (not a note)
Get another character
Is this a sharp?
If Z--yes
Is thi s a flat?
If Z--yes
Is this a natural?
If NZ--not an accidental
Subtract one if sharped
and add one if flatted
Success exit
Sharp may add one to note
Get next character
Double sharp?
If NZ--no (success exit)
Double sharp always adds one
Get next character and exit
Flat may subtract one
Get next character
Double flat?
If NZ--no (Success exit)
Double sharp always lowers one
Get next character and exit

Process style (MS, MN, or ML.

StyleFailure:
Style:

repnz

400

exit
mov
mov
scasb
jnz
call
mov

failure
di,OFFSET StyleTable
cx,1

StyleFailure
NextCharacter
cl,3

continued

Say style is invalid
di (== styLe tabLe
Look at first character
in styLe tabLe ('M')
If NZ--not Music command
Get next character
Look at next three characters

Chapter 11: A SOUND Device Driver

repnz scasb
jnz StyleFa;lure If NZ d;dn't f;nd L, N, or P
mov cl,es:[d;+3] cl <:: appropr;ate style
call NextCharacter Get another character
exH success and say we were successful

CLASSES ENDP

PAGE
SUBTTL Ut;l;ty Rout;nes

Ut; Uty PROC NEAR

Save prev;ous byte count and error message. These f;elds are zeroed when
f;le ;s opened. We want to be able to return these ;n response to IOCTL
request. Before IOCTL can be ;ssued, another open may have occurred.

mov cx,cs
mov es,cx
lea d;,PErr
lea s;,CErr
mov cx,ERR_S_S;ze/2
movsw
add s;,SCR_S_S;ze
mov cx,(SCR_S_S;ze+ERR_S_S;ze)/2
movsw

SetDefaults:

rep

rep

push

pop
ret

es

es

Save current ES

ES <:: dr;ver segment

Copy current error to
prev;ous error
s; <:: In;t;al CErr value
In;t;al;ze both SCR and
CErr
Restore ES
and return

GetISR:

Get current INT 8 ISR address

xor dx,dx
mov es,dx
assume es:IVTSegment
les dx,es:Int8Vector
assume es:_text
ret

Set INT 8 ISR to address ;n ds:ax
continued

dx <:: IVTSegment
es <:: IVTSegment

es:dx <== Int8 vector

and return

401

Section 3: Working with the Hardware Interface

SetISR:
state)

vector

pushf

cU

Save current flags (to restore int

Disable interrupts while changing

pushr <dx,es>
xor dx,dx
mov es,dx
ASSUME es:IVTSegment
mov es:WORD PTR Int8Vector,ax
mov es:WORD PTR Int8Vector+2,ds
popr
ASSUME
popf
ret

<es,dx>
es:_text

iii Save nonvolatile registers
iii dx <== IVT Segment
iii ds <== IVT Segment

iii Set INT8 ISR OFFSET
iii and segment
iii Restore nonvolatile registers

iii Restore interrupt state
i and return

Sets 8253 counter 0 to value in AX register.

SetCounterO: out
jmp
xchg
out
xchg
ret

I8253.CtrO,al
SHORT $+2
al,ah
18253.CtrO,al
al,ah

Write LS8 of count
Delay (for AT)
AL <== MS8 of count
Write MS8 of count
Return with count intact

Set the clock to run slow (normal speed)

<ax,ds> iii Save nonvolatile registers
ax,SlowTickDivisor iii ax <== count down value (64K)
SetCounterO iii Use normal countdown value
ax,cs:Oldlnt8Vector iii ds:ax <== original int vector
SetISR iii Make this the int vectir
cs:DriverStatus,DSS_M_InitNeedediii Say vector must change
cs:DriverStatus,NOT MASK ChangePendingiii and that a change is in

SetClockSlow: pushr
mov
call
lds
call
or
and

progress
popr
ret

<ds,ax> iii Restore nonvolatile registers

Speed up clock. We make clock tick FastTickCount times faster. We
do this to increase the resolution in timing note duration.

continued

402

Chapter 11: A SOUND Device Driver

SetClockFast: pushr <ax,es> Save nonvolatile registers
pushf Save int enable flag
cl i Disable interrupts while setting

up
call GetISR iii Get current int 8 vector
mov WORD PTR OldInt8Yector,dx ... and save it,,,
mov WORD PTR OldInt8Yector+2,es
mov ClockTicks,FastTickCount iii Initialize clock tick count
mov ax,FastTickDivisor ; ; ; ax <== Countdown value for

timer
call
mov
call
and
popf
popr
ret

SetCounterO
ax,OFFSET ClkISRO
SetISR
cs:DriverStatus,NOT MASK

<es,ax>

iii Set clock fast
iii Setup new clock ISR

InitNeeded iii Don't need to change ISRs
iii Restore interrupt state

Restore nonvolatile registers
and return

Converts a number to a dotted number. Dot count is in CX and number
is in DX. Dotted number is returned in ex.

DotTheNumber:
dtnO:

dtn1 :
dtn2:

push ax Save nonvolatile register
mov ax,dx Copy of number
shr ax, , Number / 2
shr ax,1 Number / 4
sub dx,ax i 3/4 number
loop dtnO More dots to process
mov cx,dx cx <== scaled number
pop ax Recover nonvolatile register
ret and return

Utility ENDP

PAGE
SUBTTl State Machine Action Routines

Actions PROC NEAR

lengthError:
TempoError:
lengthDone:

signal Badlength i Say length was bad
signal BadTempo i Say tempo was bad
job cx,Minlength,Maxlength,lengthError ; Range check length

continued

403

Section 3: Working with the Hardware Interface

LtO:

mov
jmp

TempoDone: job
mov
push
mov
mov
div

(CScore.SCR_W_Length *

xor
div
mov
mov
pop
exit

CScore.SCR_W_Length,cx
SHORT ltO
cx,MinTempo,MaxTempo,TempoError ;
CScore.SCR_W_Tempo,cx
ax
ax,4352
dx,1
CScore.SCR_W_Tempo

dx,dx
CScore.SCR_W_Length
CScore.SCR_W_Ticks,ax
CScore.SCR_W_NTicks,ax
ax
success

Save length
Take common exit
Range check tempo
Save tempo
Save nonvolatile register
dx:ax <== 69888

Calculate 69888 +

Zero remainder

Call result CScore.SCR_W_Ticks
Update CScore.SCR_W_NTicks too
Restore nonvolatile register
and return successfully

Dotted note or rest. CX has dot count. Length specified by
CScore.SCR_W_Length. Calculate dotted length (result in CX).

NPDoneO: mov
call

dx,CScore.SCR_W_Length
DotTheNumber

dx <== default note length
Calc dotted length (cx =dots)

ex has total length (including dots). Either fall through from NPDoneO
or called as a result of DottedNumber processing.

xor
div

CScore.SCR_W_Tempo)
mov

NPDone1: push
mov
mov
div

pop

ax
ax,4352
dx,1
CScore.SCR_W_Tempo
dx,dx
cx

CScore.SCR_W_NTicks,ax
ax

Save nonvoLatiLe register
dx:ax <== 69888

Zero remainder
Calculate 69888 + (NoteLength *

Call result CScore.SCR_W_NTicks
Restore nonvolatile register

Either we're using default tick count (CScore.SCR_W_Ticks) or we have
set CScore.SCR_W_NTicks to proper value. CScore.SCR_W_NTicks is set to
CScore.SCR_W_Ticks after note has been compiled.

continued

404

NPDone2: exit success

Chapter 11: A SOUND Device Driver

Exit successfully

Complete octave processing by checking range and saving value.

OctaveError:
OctaveDone:

signal
job
mov
exit

BadOctave ; Say octave was bad
cx,MinOctave,MaxOctave,OctaveError ; Check octave range
CScore.SCR_W_Octave,cx Save value
success ; Exit successfully

Complete processing of a note. If it was specified by a letter, convert
to absolute number by considering octave. Convert absolute note number
(either letter or Nxx) to pitch. Say there is a valid note.

NoteError1:
NoteError:
NoteDone2:

NoteDone1:

NoteDoneO:

signal BadTie
signal BadNote
cmp cx,CScore.SCR_W_TFreq
jnz NoteError1
exit success
push ax
dec cx
mov ax,12
mul CScore.SCR_W_Octave
add cx,ax
pop ax
job cx,MinNote,MaxNote,NoteError
mov si,cx
add si,cx
mov cx,FreqDivTable[si]
mov CScore.SCR_W_NFreq,cx
test DriverStatus,DSS_M_InTie
jnz NoteDone2
exit success

Say tie is bad
Say this wasn't a note
Is this note same freq?
If NZ--No
Tie is good
Save nonvolatile register
Tables start with A- instead of A
12 notes in an octave
ax <== base note of octave
cx <== absolute note
Restore nonvolatile register
Range check note
Convert note to word index

cx <== Frequency Divisor
Save frequency divisor

Processing tied note
If NZ--yes
Take successful return

Complete processing of a rest. Say there is a valid note.

PauseDone: or
exit

DriverStatus,DSS_M_HasNote
success

and say we have a complete note
Take successful return

Complete processing of style
continued

405

Section 3: Working with the Hardware Interface

StyleDone: mov
exH

CScore.SCR_W_Style,cx
success

Record the stype
and take success exit

Complete processing of signature

SignatureDone: pushr <ax,dx> Save nonvolatile registers
mov ax,cx ax <== signature number
mov dx,42 Size of scale + sharps + flats
mul dx Offset of scale
add ax,OFFSET C Address of scale
mov CScore.SCR_W_Key,ax Save scale
popr <dx,ax> Restore nonvolatile registers
exit success Take successful return

Note ends in &

pop
exit

Actions ENDP

signal BadLength
push ax
mov ax,CScore.SCR_W_NTicks
add CScore.SCR_W_TTicks,ax
jc TieError
or DriverStatus,DSS_M_lnTie
mov ax,CScore.SCR_W_NFreq
mov CScore.SCR_W_TFreq,ax
pop ax
exit success
push ax
xor ax,ax
xchg ax,CScore.SCR_W_TTicks

TieError:
TieDoneO:

TieDone1 :

add
jc
and
or

PAGE

CScore.SCR_W_NTicks,ax
TieError
DriverStatus, NOT DSS_M_lnTie
DriverStatus,DSS_M_HasNote
ax
success

continued

Note is too long
Save nonvolatile registers
Add tick count for this note
to accumulated ticks
If C--too big
Say we're processing a tie
Remember frequency

Receiver nonvolatile register
and exit
Save nonvolatile register
New CScore.SCR_W_TTicks value
New CScore.SCR_W_TTicks <== 0
AX <== oldCCScore.SCR_W_TTicks)
AX <== Total note length
If CY--note too big
Say no longer in tie
Say we have a valid note
Restore nonvolatile register
Exit successfully

406

Chapter 11: A SOUND Device Driver

SUBTTL Buffer Manipulation Routines

BufferRoutines PROC NEAR

When pointer has reached end of buffer, wrap it around to the start.
SI is current pointer.

CheckForWrap: cmp
jl

mov
cfwO: ret

si,OFFSET BUF_W_Count
cfwO
si,OFFSET BUF_T_Notes

Is pointer at end of buffer?
If L--not at end
At end. Wrap to start
Return with pointer to next item

Try to insert note into buffer. If the buffer is full, we wait for
a note to be removed. AX has note duration and OX has note pitch.

Bufferlnsert: cmp BUF_W_Count,BUF_S_Notes Is there any room?
jge Bufferlnsert If GE--no room (Busy wait loop)
mov di,BUF_A_NextFree di <== next free slot
stosw Store Counter value
xchg ax,dx ax <== duration
stosw Save duration in buffer
xchg ax,dx
xchg di,si si <== buffer pointer
call CheckForWrap Adjust pointer for wraparound
xchg di,si
mov BUF_A_NextFree,di Update next free pointer
inc BUF_W_Count Say one more note in buffer
ret and return

Remove a note from the buffer. On return, Z=1 ==> buffer empty.
Z=O ==> we were able to remove a note. OX has duration and AX
has pitch.

BufferRemove: cmp 8UF_W_Count,O Anything in buffer?
jz brO If Z--no (buffer empty)
mov si,BUF_A_NextOata si <== address of next note
lodsw ax <== note duration (ticks)
mov dx,ax dx <== note duration
lodsw ax <== frequency divisor
dec BUF_W_Count One less note in buffer

continued

407

Section 3: Working with the Hardware Interface

call CheckForWrap
mov BUF_A_NextData,si
or si,si

brO: ret

BufferRoutines ENDP

PAGE
SUBTTL CompiLe and Play Music

NotePrepPlay PROC NEAR

Make sure pointer wraps at end
Update pointer
Return with Z=O (have data)

Check note status. If we have a complete note, the note state informa­
tion is converted to a duration and pitch. The converted note is stored
in the note buffer.

CompileExit:
CompileNote:

ret
test
jz

push
mov

CScore.SCR_W_Ticks
xchg
xor
xchg

mov
cmp
jz

or
jz

mov
mov
shr

sub
xchg

<== (rest duration)
call
mov
xor

rest)

408

DriverStatus,DSS_M_HasNote
CompileExit
ax
ax,CScore.SCR_W_Ticks

ax,CScore.SCR_W_NTicks
dx,dx
dx,CScore.SCR_W_NFreq

cx,CScore.SCR_W_Style
cL,StyleLegato
cnO
dx,dx
cnO
si,dx
dx,ax
dx,cl

ax,dx
dx,si

BufferInsert
ax,si
dx,dx

continued

Compilation done
Do we have a valid note?
If Z--no note yet
Save nonvoLatile register
Set CScore.SCR_W_NTicks =

and ax =old note tick count
Set Frequency divisor back to 0
(rest) and dx = old frequency

cx <== style
Playing in Legato?
If Z--yes (no gap between notes)
Are we playing a rest?
If Z--yes (no gap between notes)
si <== frequency divisor
dx <== note duration
dx <== gap between notes (rest

ax <== audible duration
dx <== frequency divisor, si

Insert audible portion in buffer
ax <== rest duration
dx <== frequency divisor (0 ==>

cnO:
buffer

cn1 :

call BufferInsert

cU
cmp NoteTicks,O
jnz cn1
call PlayNextNote
sti
and DriverStatus,NOT MASK HasNote
pop ax
ret

Chapter 11: A SOUND Device Driver

Insert legato note or rest into

Begin critical section
;;; Is an interrupt expected?
, " If NZ--yes
iii No note playing. Play one.
;i; Interrupts ok now

Say we've played this note
Restore nonvolatile register
and return

Play the next note. If the buffer is empty, check for end of
file. After an end of file and the buffer is empty, the clock
is set back to slow mode so as not to consume CPU cycles.

PlayNoteExitO: test DriverStatus,MASK EOFPending ; ; ; Have we hit end of file?
jz PlayNoteExit1 ; ; ; If Z--no EOF yet
call SetAltlSR ; ;; Start swap of interrupt vectors

PlayNoteExit1: popr <ds,si,dx,ax> ; ; ; Restore nonvolatile registers
ret ; ; ; and return

PlayNextNote: pushr <ax,dx,si,ds> ; ; ; Save nonvolatile registers
in al,I8255.PortB iii Read current 8255 outputs
mov si,cs iii Do this now in case slow adapter
mov ds, si ; ; ; ds <== driver segment
and al, SpeakerOff ; ;; Turn off speaker
out 18255.PortB,al
call BufferRemove iii Get next note from buffer
jz PlayNoteExitO ; ; ; If Z--no (buffer empty)
or ax,ax ; ; ; Is thi s a rest?
jz pn1 ; ; ; If Z--yes (Don't enable speaker)
out 18253.Ctr2,al iii lSB of frequency divisor
in al,18255.PortB iii Overlap with 18253 access
xchg al,ah ; ; ; ah <== 8255 latch settings
out 18253.Ctr2,al ... MSB of frequency divisor,,,
xchg al,ah ; ; ; al <== 8255 latch settings
or al,SpeakerOn i; ; Turn speaker back on
out I8255.PortB,al

pn1 : mov NoteTicks,dx ; ; ; and set durations
jmp SHORT PlayNoteExit1 ; ; ; Take common exit

NotePrepPlay ENDP
continued

409

Section 3: Working with the Hardware Interface

PAGE
SUBTTL Interrupt Service Routines

ClocklSRs PROC NEAR

Normal ISR when clock is in fast mode. (Clock frequency has been
increased FastTickCount times). If NoteTicks >0, we are playing
a note. In this case decrement NoteTicks. If result is 0, its time
to turn off the speaker and get another note. Every FastTickCount
times through, we call the old ClocklSR to update date and time
and make any INT 1ch calls.

ClkISRO:

clkO:

ClkIntExh:

clk3:

cmp cs:NoteTicks,O iii Are we playing a note?
jz clkO iii If Z--no
dec cs:NoteTi cks iii Decrement note count
jnz clkO ; ; ; If NZ--not at note end
call PlayNextNote iii Play another note
dec cs:ClockTicks iii Decrement clock tick counter
jz clk3 iii Not time to do old clock isr
push ax ... Save ax,,,
mov al,EOI iii Send nonspecific EOI to
out 18259.PortA,al ; ; ; 8259 Interrupt controller
pop ax iii Restore ax
i ret iii and exit ISR
mov cs:ClockTicks,FastTickCount iii Reset the counter
jmp cs:Oldlnt8Vector ii; and call old isr to do int 8

things

An end of file was detected and the sound buffer is empty. We are
, waiting for the ClockTick count to go to 1, so we can put the clock
back in slow mode. (If we didn't wait, we would lose an average
of 27 ms each time we did change).

ClkISR1 :
yet?

clk1:

cmp cs:ClockTicks,1 iii Can we change clock frequency

j l clk2 ;; ; If L--no must reset ClockTicks
jg clk1 iii If G--not time yet
call SetClockSlow ; ; ; Put the clock in slow mode
and cs:OriverStatus,NOT MASK Busy ;; ; Say driver is not busy
dec cs:ClockTicks ;; ; Count one more tick of the clock

continued

410

clk2:
jmp
mov
jmp

SHORT ClkIntExit
cs:ClockTicks,FastTickCount
SHORT ClkIntExit

Chapter 11: A SOUND Device Driver

iii and exit ISR
iii Wait ClockSpeedUp ticks
iii and exit ISR

Switch Timer ISR from ClkISRO (Fast clock> to ClkISR1 (Fast, waiting
for tick count to go to 1.

SetAltISR:

ClockISRs

and DriverStatus,NOT MASK EOFPending ,, , EOF no longer pending
or DriverStatus,DSS_M_ChangePending ; ; ; but vector change is
mov ax,OFFSET ClkISR1 ; ; ; Have played last note
call SetISR iii Swap clock ISR
ret ; ; ; and return

ENDP

PAGE
SUBTTl Process Driver Requests

DriverRequest PROC

SoundNOP: jmp

SoundError: mov
jmp

NEAR

SuccessExit

ax,DHO_C_ErrUnknownCommand
Driver-Exit

IOCTl request processing •••

IOCTl Exits

Inputs

bx address of next IOCTl list item

ItemTooShort: popr
ItemBad: mov

jmp

<es,bx,cx>
ax,DHD_C_ErrGeneralFailure
SHORT ioctl_exit_O

continued

ax <== error code

411

Section 3: Working with the Hardware Interface

lastltem: mov
ioctl_exit_O: les

les
sub
les
mov
jmp

ax,DHD_"_StsDone
di,DWORD PTR RqOffset
di,es:[di].RH_A_BufferAddress
bx,di
di,DWORD PTR RqOffset
eS:[di].RH_W_Count,bx
DriverExit

ax <== successful completion
es:bx <== request header
es:di <== ioctl item list
bx <== bytes processed
es:di <== request header
Return count
Take common driver exit

IOCTl Item list Coroutines

Outputs:

al item code
es:di item address
cx allocated item length
dx required item length

Initialize coroutine processing

Inputs:

es:bx - request header

FirstItem: pop
mov
les

bp
cx,es:RH_W_Count[bx]
bx,es:[bx].RH_A_BufferAddress

bp <== coroutine return
cx <== size of item list
es:bx <== item list

Get next list item

Inputs:

es:bx next item address

NextItem:

412

sub
j l

mov
cmp
jge
pushr
shl
shl

cx,ITE"_S_Size
lastItem
ax,es:[bx].ITEH_W_Code
al,IOCTl_S_Table
ItemBad
<cx,bx,es>
ax,1
ax,1

continued

cx <== bytes left in item list
If l--at end
ax <== item code
Is it legal?
If G-no

Convert code to Nord index

al,dl
cx,es:[bxJ.ITEH_W_length

cx,dx
ItemTooShort
di,es:[bxJ.ITEH_A_Address
bp

mov
mov
mov
or
jnz
mov
xchg
lodsb
xchg
mov
cmp
j l

les
call

si,ax
dx,IOCTl_T_Table+2[siJ
si,IOCTl_T_Table[siJ
dx,dx
ni_O
si,[siJ
al,dl

Chapter 11: A SOUND Device Driver

Use si for index
dx <== length of item
si <== address of item
Is it a string
If NZ--no

Save item code
al <== length of error text
Put values where they belong
cx <== allocated bytes
Enough bytes allocated?
If l--no
es:di <== item address

; Make coroutine callback

ni _1:

Return here to process next item

pop bp
popr <es,bx,cx>
push ds
lds si,es:[bxJ.ITEM_A_Retlen
mov ax,ds
or ax,ax
jz ni_1
mov [siJ,dx
pop ds
add bx,ITEH_S_Size
jmp SHORT NextItem

bp <== callback address

ds:si <== return length address
See if return length givem
(not given if segment = 0)
If Z--not needed
Return bytes moved

bx <== address of next item
Process next item

IOCTl processing routines. Input routine (SoundInIOCTl) read
information from device. Information is returned to buffers
passed in IOCTl request. Output routine (SoundOutIOCTl) writes
information to device. Information comes from buffers passed
in IOCTl request.

Inputs:

es:bx Request header

SoundOutIOCTl: call
soi_O: pop

Fi rstItem
bp

continued

Get first item in list
bp <== callback address

413

Section 3: Working with the Hardware Interface

cmp al,IOCTl_K_length
jl ItemBad
xchg si,di
pushr <ds,es>
popr <ds,es>

rep movsb
mov ax,es
mov ds,ax
call bp
jmp SHORT soi -0

SoundlnlOCTl: call Firstltem
sii_O: pop bp

rep movsb
call bp
jmp SHORT sii -0

legal output item?
if l--no
swap es:di and ds:si

copy item
restore ds

get next item

Get first item in list
bp <== callback address
copy item
Get next item in list

Process write requests (Write, WriteVerify, WriteTilBusy",

Utility routines •••

WriteSetup:

WriteRestore:

Wri teUpdate:

WriteDone:

414

mov
lds
mov
ret
mov
lds
ret
mov
mov
mov
mov
mov
add
adc
ret
mov
mov

cx,es:[bxl.RH_W_Count
si,es:[bxl.RH_A_TransferAddress
cs:SavedDS,ds

cx,SavedCX
si,DWORD PTR SavedSI

dx,cs
ds,dx
es,dx
SavedCX,cx
SavedSI,si
CErr.ERR_l_Bytes,1
CErr.ERR_l_Bytes+2,0

bx,cs
ds,bx

continued

cX <== transfer size
dS:SI <== buffer address
Save xfer buffer segment
Return (to state machine)
Restore transfer count
Restore Buffer offset
and return
Reset our data segment

Update count remaining
and current buffer offset
Count total characters transferred
MSW of character count
Return to request processing
Restore driver ds

les
sub
jmp

bX,DWORD PTR RqOffset
es:[bxl.RH_W_Count,cx
SuccessExit

Chapter 11: A SOUND Device Driver

es:bx <== request header
Calculate bytes processed
and take success exit

Process Write and WriteVerify

SoundWrite: call WriteSetup
address)

swO: lodsb
call WriteUpdate
pop bp
call bp
call WriteRestore
loop swO
jmp SHORT WriteDone

Process WriteTilBusy

Copy transfer parameters (size and

al <== next byte to write
Update transfer parameters
Coroutine callback address
Ca II corout ine
Restore transfer paramters
and process next byte
Common write exit

SoundWriteTilBusy:
call WriteSetup Copy transfer parameters (size and

address)
sw1:

SoundStatus:

cmp
jge
lodsb
call
pop
call
call
loop
jmp

moy
cmp
j l

or
jmp

BUF_W_Count,BUF_S_Notes-1
WriteDone

WriteUpdate
bp
bp
WriteRestore
sw1
SHORT WriteDone

ax,DHD_"_StsDone
BUF_W_Count,BUF_S_Notes-1
ss_O
ax,DHD_M_StsBusy

DriYerExit

Is buffer (almost) full?
If Z--yes (Don't wait)
al <== next byte to write
Update transfer parameters
Coroutine callback address
Call coroutine
Restore transfer paramters
and process next byte

Assume not busy
Is buffer full?
If l--no
Say operation would wait
and exit

SoundFlush: eli
or
moy
moy
moy
cmp

Begin critical section
DriyerStatus,DSS_"_EOFPending iii Say EOF is pending
BUF_W_Count,O iii Reset count and buffer
BUF_A_NextFree,OFFSET BUF_T_Notesii; pointers
BUF_A_NextData,OFFSET BUF_T_Notes
NoteTicks,O iii Are we doing anything?

continued

415

Section 3: Working with the Hardware Interface

sf0
SetAltISR

sf0:

jnz
call
sti
jmp SuccessExit

; ; ;

, ,,
; i;

If NZ--yes
Done. Change to slow mode
Interrupts OK now

Say operation was successful
and reset driver

SoundOpen:

soO:

s01 :

call
and
test
jnz
test
jz
ca II
or
mov
out
mov
jmp

SetDefaults Set driver default values
DriverStatus,NOT MASK EOFPendingi EOF is no longer pending
DriverStatus,MASK ChangePending Is a vector change pending?
soO If NZ--yes <wait for it)
DriverStatus,MASK InitNeeded Does clock need to be set fast?
s01 If Z--no <back to back copies)
SetClockFast Set clock in fast mode
DriverStatus,DSS_M_Busy Say device is busy
al,<SelCtr2 SHL SC) OR <LSBMSB SHL RL) OR <Mode3 SHL M)
I8253.Mode,al
ax,DHD_M_StsDone
ResetExit

SoundClose:

DdverRequest

mov ax,cs Set ES to driver segment
mov es,ax
mov a l ,EOF Tell state machine we're done
pop bp Set up coroutine
call bp and make call
jmp SuccessExit Take success exit
ENDP

PAGE
SUBTTL DOS Entry Points

StgyEntry:

IntError:

IntEntry:

416

mov CS:RqOffset,bx
mov CS:RqSegment,es
return_far

mov ax,DHD_C_ErrUnknownCommand
jmp ResetExit
push all
pushf
cld
mov ax,cs
mov ds,ax
mov DosSS,ss
mov DosSP,sp
mov ss,ax

continued

Save request address

and return to DOS

Say command is bad
and reset driver
Save all registers
Save flags
Set direction flag
Set driver OS
<DOS currently does this for us)
Save DOS stack

Establish driver stack

Chapter 11: A SOUND Device Driver

mov sp,DriverSP
les bx,DWORD PTR RqOffset
mov al,es:[bx].RH_B_Command
cmp al,RQ_S_Table
jge IntError
cbw
add ax,ax
mov si,ax

SoundDispatch: jmp RQ_T_TablersiJ

Set SP to where we left off
es:bx <== Request Header
AL <== command
Is it in range?
If GE--out of range
Make command a word
Convert to word index
SI <== function table index
Dispatch on function code

SoundInit:

Copyright

driver
_text

; ;

mov
mov
or
mov
mov
int
mov
jmp
DB
DB
DB
endp
ends
end

WORD PTR es:rbx].RH_A_BreakAddress, OFFSET SoundInit
WORD PTR es:[bx+2].RH_A_BreakAddress,cs
DriverStatus,DSS_M_InitNeeded
dx,OFFSET Copyright
ah,9
21h
ax,DHD_M_StsDone
ResetExit
BELl,"SOUND v2.0",CR,lF
"© w. V. Dixon 1987",CR,LF
" All rights reserved",CR,lF, '$'

begin

;; MACROS.ASM
,,
;; Common device driver macro definitions
, ,

,,
;; © 1987 W. V. Dixon. All rights reserved.
; ;

; ;

,,
,,
;;

;;

;;

May be freely copied for personal, nonprofit use
so long as this copyright notice is retained and usage
restrictions are observed. This software may not be
used in whole or in part in any program which is sold
without prior written consent of the author.

continued

417

Section 3: Working with the Hardware Interface

; ;
ii Macros for pushing and popping registers
; ;

; ;

; ;

; ;

pushr

,,

Push an arbitrary number of registers

MACRO x ; ; x is register list
,, (enclosed within <»

IRP y,<x> ;; For alL registers in List
push y ;; Push it on the stack
ENDM ;; IRP
ENDM ,, MACRO pushr

ii Push aLL registers onto stack
; ;
push aLL

; ;

MACRO
pushr
ENDM

<ax,bx,cx,dx,di,si,bp,ds,es>
ii MACRO pusha

; ;
;;

popr

i;

Pop an arbitrary number of registers

MACRO x ,, xis register List
; ; (encLosed within <»

IRP y,<x> ; ; For aLL registers in List
pop y ;; Pop the register
ENDM ; ; IRP
ENDM ;; MACRO popr

;i Pop aLL registers from stack
; ;

, ,

418

popr
ENDM

MACRO
<es,ds,bp,si,di,dx,cx,bx,ax>

i; MACRO popa

continued

Chapter 11: A SOUND Device Driver

;; Macros for near and far returns
; ;
return_far MACRO

DB Ocbh
ENDM

return_near MACRO
DB Oc3h
ENDM

;;

; ; Macros for return w;th status
; ;.. CY=Q ==> SUCCESS"
;; CY=1 ==> FAILURE
; ;
exH MACRO x

IFIDN <x>,<success>
clc

ELSE
IFIDN <x>,<fa;lure>

stc

;; Opcode for far return
;; MACRO return_far

;; Opcode for near return
;; MACRO return_near

; ; x ; s success or fa; lure
; ; Ifx ;s success

; ; Set CY=Q
; ; x ;s not success

; ; If x ;s faHure
; ; Set CY=1

ENDIF
ret
ENDM

ELSE

ENDIF

XOUT
stc

;; x ;s not fa;lure
"Inval;d exH argument - fa;lure assumed"

;; x ;s not fa;lure
" x ;s not success
;; Return w;th status ;n carry
;; MACRO exH

;; Uncond;t;onal return w;th fa; lure status
; ;
ret_fa; lure MACRO x ;; x h argument count

stc ; ; Say we fa;led (CY=1)
ret x ;; and return
ENOM ;; MACRO ret_fa; lure

ret_success MACRO x ; ; x ;s argument count
clc ; ; Say we succeeded (CY=Q)
ret x ; ; and return
ENDM ; ; MACRO ret_success

continued

419

Section 3: Working with the Hardware Interface

; ;

;; Macro to do range check
; ;

; ;..,,
; ;

; ;

; ;

job

I

If value is less than minvalue or greater than maxvalue,
jump to outrange; otherwise fall through to next statement
unless inrange is not blank. If inrange is not blank and
value is within range, jump to inrange.

MACRO value,minvalue,maxvalue,outrange,inrange
cmp value,minvalue ; ; Value less than minimum?
j l out range ; ; If L--yes (jump out range)
cmp value,maxvalue ; ; Value greater than maximum?
jg out range ,, If G--yes (jump out range)
IFNB <inrange> , , If inrange label is specified
jmp inrange ; ; Jump to it
ENDIF ; ; Inrange nonblank
ENDM .. MACRO job,,

..,,
; ; Macro to trace driver execution
; ;

trace MACRO msg ; ; Message to display
LOCAL x ; ; We need some local labels
LOCAL y
jmp SHORT x ; ; Jump over text

y DB msg ; ; Define message text
DB Odh,Oah,'$' ; ; Append <CR><LF> and "$"

x: pushr <ax,dx,ds> ; ; Save nonvolatile registers
pushf ; ; Remember flags
mov ax,cs
mov ds,ax ; ; ds <== current CS

;; (message segment)
mov dx,OFFSET y ; ; dx <-- message address--
mov ah,9 ; ; Issue bios request to display
int 21h ; ; Message
popf ;; Restore flags
popr <ds,dx,ax> ; ; Restore registers
ENDM ; ; MACRO trace

continued

420

Chapter 11: A SOUND Device Driver

; ;

;; DEVICE.DEF
; ;

; ;

;;

;; ~ 1987 W. V. Dixon. All rights reserved.
; ;
;; May be freely copied for personal, nonprofit use
;; so long as this copyright notice is retained and usage
;; restrictions are observed. This software may not be
;; used in whole or in part in any program which is sold

;; without prior written consent of the author.
; ;

; ;
;; Bit settings for device header (DHD) attributes word
;;

DHD_M_IsCharacter EQU 8000h ; ; Character device
DHD_M_IsBlock EQU OOOOh ; ; Block device
DHD_M_IOCTlSupport EQU 4000h ;; Supports MS-DOS IOCTl functions

; ; <INT 21H AH =44H)
DHD_M_NonIBMFormat EQU 2000h ; ; Media is not IBM format compatible
DHD_M_IBMFormat EQU OOOOh ; ; Media is IBM format compatible
DHD_M_WriteBusySupport EQU 2000h ; ; Write until busy supported
DHD_M_IsNetwork EQU 1000h ; ; Network device
DHD_M_OCRMSupport EQU 0800h .. Open I Close I Removable media,,

;; supported
DHD_M_logDevSupport EQU 0040h ; ; Get I Set logical device supported
DHD_M_IsSpecial EQU 0010h ; ; Supports INT 29H output
DHD_M_IsCurClk EQU 0008h ; ; Device is current clock
DHD_M_lsCurStdOut EQU 0OO4h .. Device is current stdout, ,
DHD_M_IsCurStdln EQU 0OO2h ;; Device is current stdin
DHD_M_IsCurNul EQU 0OO1h ; ; Device is current nul
DHD_M_GenIOCTlSupport EQU 0001h ; ; Supports MS_DOS generic IOCTl function

; ; <INT 21H AX =4400H)

;;
continued

421

Section 3: Working with the Hardware Interface

;; Driver return status values
;; ("SB of Request Header status word)
; ;

DHD_"_StsOone EQU 100h ; ; Successful completion
DHD_"_StsBusy EQU 200h ;; Device is currently busy
DHD_"_StsError EQU 8000h , , Unsuccessful completion

,,
; ; Specific driver error codes
,, (lSB of Request Header status word)
,,
DHD_C_ErrWriteProtect EQU DHD_M_StsError OR 0 ;; Write protection error
DHD_C_ErrUnknownUnit EQU DHD_M_StsError OR 1 ;; Illegal unit number
DHD_C_ErrNotDriveReady EQU DHD_M_StsError OR 2 , , Drive is not ready
DHD_C_ErrUnknownCommand EQU DHD_M_StsError OR 3 ; ; Illegal driver command
DHD_C_ErrCRC EQU DHD_"_StsError OR 4 ; ; CRC error on drive
DHD_C_ErrBadStructure EQU DHD_M_StsError OR 5 ; ; Bad request structure length
DHD_C_ErrSeek EQU DHD_"_StsError OR 6 ;; Error on seek
DHD_C_ErrUnknownMedia EQU DHD_M_StsError OR 7 ; ; Media unknown
DHD_C_ErrSectorNotFound EQU DHD_M_StsError OR 8 ; ; Sector not found
DHD_C_ErrPaperOut EQU DHD_M_StsError OR 9 ; ; No paper in printer
OHD_C_ErrWriteFault EQU DHD_M_StsError OR Oah ; ; Error writing
DHO_C_ErrReadFault EQU DHO_"_StsError OR Obh ; ; Error reading
DHO_C_ErrGeneralFailure EQU OHD_M_StsError OR Och ;; Catcha II error
OHD_C_ErrlnvDiskChange EQU DHD_"_StsError OR Ofh ; ; Invalid disk change

; ;

;; Device Header (DHD)
; ;

I ••,,

DHD
DHD_A_NextDHD
DHD_W_Attrib
DHD_W_StrategyEntry
DHD_W_lnterruptEntry
DHD_T_Name
DHD

; ;

STRUC
dd
dw
dw
dw
db

ENDS

-1

o
o
o

;; Address of next device
;; Device attributes
;; Offset to strategy routine
;; Offest to interrupt routine

Device name

;; Request Header (RH)
; ;

; ;

422

continued

Chapter 11: A SOUND Device Driver

;; Generic request header. Directly used for:..
I I

; ;

; ;

; ;

; ;

; ;

; ;
; ;

Input Status
Input Flush
Output Status
Output Flush
Device Open
Device Close
Removable Media

(RH_C_InputStatus)
(RH_C_InputFlush)
(RH_C_OutputStatus)
(RH_C_OutputFlush)
(RH_C_Open)
(RH_C_Close)

(RH_C_RemovableMedia)
I I

RH STRUC
RH_B_length DB 0 ; ; length (bytes) of request
RH_B_Unit DB 0 ; ; Unit code
RH_B_Command DB 0 ; ; Command code
RH_W_Status OW 0 ; ; Status
RH_T_ReservedDOS DB 8 DUP(D>;; Reserved for DOS
RH ENDS

; ;

;; Request Header commands
; ;
RH_C_Init EQU
RH_C_Media EQU
RH_C_BuildBPB EQU
RH_C_InputIOCTl EQU
RH_C_Input EQU
RH_C_InputNoWait EQU
RH_C_InputStatus EQU
RH_C_InputFlush EQU
RH_C_Output EQU
RH_C_OutputVerifY EQU
RH_C_OutputStatus EQU
RH_C_OutputFlush EQU
RH_C_OutputIOCTl EQU
RH_C_Open EQU
RH_C_Close EQU

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OaH
ObH
OcH
OdH
OeH

;; Device initialization
;; Media check
;; Build BIOS Parameter block
;; Input IOCTl
II Input
;; Nondestructive input
;; Input status
;; Input flush
;; Output
;; Output and verify
;; Output status
;; Output flush
;; Output IOCTL
;; Device I File open
;; Device I File close

RH_C_RemoveableMedia
RH_C_OutputTilBusy
RH_C_GenIOCTl
RH_C_GetlogDevice
RH_C_SetlogDevice

EQU
EQU
EQU
EQU
EQU

OfH
10H
13H
17H
18H

;; Check for removable media
;; Output until busy
;; Generic IOCTl request
;; Get Logical device
;; Set logical device

continued

423

Section 3: Working with the Hardware Interface

; ;
;; Initialization request (RH_C_Init)
; ;

RH_INIT STRUC
DB TYPE RH DUP(O)

RH_B_UnitCount DB 0 ;; Number of units
RH_A_BreakAddress DD 0 ;; Ending address of driver
RH_A_BPBTable DD 0 II Pointer to BPB array
RH_B_Drive DB 0 ;; Drive number
RH_INIT ENDS

; ;

; ;

I I

I I Returned MediaStatus values
; ;

RH_C_MediaChanged EQU -1 ; ; Media has changed
RH_C_MediaNotChanged EQU +1 ; ; Media has not changed
RH_C_MediaNotSure EQU 0 ; ; Not sure whether media has

I I changed

RH_MEDIA STRUC
DB TYPE RH DUP (0)

RH_B_MediaCode DB 0 ; ; Current media code
RH_B_MediaStatus DB 0 ; ; Media status
RH_A_MCVolumeID DD 0 ; ; Pointer to volume id
RH_MEDIA ENDS

I I

;; Build BIOS Parameter Block (RH_C_BuildBPB)
; ;

RH_BUILD_BPB STRUC
DB
DB

RH_A_BufferAddress DD
RH_A_BPB DD
RH_BUILD_BPB ENDS

424

TYPE RH DUP (0)

o ;; Current media code (RH_B_MediaCode)
o ;; Buffer address I FAT Sector
o ;; Address of BPB table

continued

Chapter 11: A SOUND Device Driver

Input or output request. Used for:

STRUC
DB TYPE RH DUP(O)
DB 0 ;; Current media code (RH_B_MediaCode)
DO 0 ;; Transfer address
OW 0 " Byte/sector count
OW 0 ;; Starting sector
DO 0 ;; Pointer to volume id
ENDS

RH_A_TransferAddress
RH_W_Count
RH_W_Sector
RH_A_VolumeID
RH_IO

;;

; ;

; ;

; ;

; ;

; ;

;;

; ;
; ;

; ;

RH-10

Input
Output
Output and Verify

Input 10CTL
OutputlOCTL
Output til busy

(RH_C_lnput)
(RH_C_Output)
(RH_C_OutputVerify)

(RH_C_InputIOCTL)
(RH_C_OutputIOCTL)
(RH_C_OutputTilBusy)

; ;

;;

STRUC
TYPE RH DUP(D)
o ;; Byte just read

DB
DB
ENDS

RH_B_ByteRead
RH_RNW

; ;

;; VALUES.DEF
; ;
;; Specifies min/max, constants, and default values for
;; SOUND driver.
;;

; ;

;; ~ 1987 W. V. Dixon. All rights reserved.
; ;

continued

425

Section 3: Working with the Hardware Interface

, ,
, ,
;;

; ;

; ;
,,

May be freely copied for personal, nonprofit use
so long as this copyright notice is retained and usage
restrictions are observed. This software may not be
used in whole or in part in any program which is sold
without prior written consent of the author.

MinTempo EQU 35 ; ; Minimum tempo
MaxTempo EQU 256 ; ; Maximum tempo
MinOctave EQU 0 ; ; Lowest octave
MaxOctave EQU 7 ,, Highest octave
MinLength EQU 1 ,, Longest note (whole)
Max Length EQU 64 ,, Shortest note (sixty-fourth)
MinNote EQU 1 ; ; Lowest note
MaxNote EQU 88 ; ; Highest note

StyleLegato
StyleNormal
StyleStaccato

EQU 256

EQU 0
EQU 4
EQU 3

" Internal buffer size

;; Play Legato
;; Play Normal
;; Play Staccato

SCR_K_DLength EQU 4 ,, Default note length (quarter-note)
SCR_K_DOctave EQU 4 ; ; Default octave

; ; (octave above middle C)
SCR_K_DTempo EQU 120 ; ; Default tempo

; ; (quarter-notes per second)
SCR_K_DKey EQU OFFSET C ,, Default key
SCR_K_DStYle EQU StyleNormal ;; Default style
SCR_K_DTi cks EQU 146 ; ; Default note length in ticks

;; 69888 + (DefaultTempo * OefaultLength)

FastTi ckCount EQU 16 ;; Speed up timer by factor of 16
FastTi ckDi vi sor EQU 1000h ; ; Counter preset for speedup
SlowTi ckCount EQU 0 , , Normal timer
SlowTi ckDi vi sor EQU 0 ; ; Counter preset for normal speed

continued

426

Chapter 11: A SOUND Device Driver

; ;

;; HARDWARE.DEF
; ;

;; Hardware definitions for SOUND driver
;;

,,
;; ~ 1987 W. V. Dixon. All rights reserved.
; ;

; ;

; ;
; ;

,,
; ;
,,

; ;

May be freely copied for personal, nonprofit use
so long as this copyright notice is retained and usage
restrictions are observed. This software may not be
used in whole or in part in any program which is sold
without prior written consent of the author.

;; 8259 Interrupt Controller
; ;
18259
EOI

EQU
EQU

20H
20H

;; Base address
;; Nonspecific end of interrupt
;; control word

;;

;; 8255 PPI
; ;
18255 EQU 60H ; ; Base address
PortA EQU 00 ;; Port A offset (base =Ox60>
PortB EQU 01 ,, Port B offset (base =Ox61)
PortC EQU 02 ; ; Port C offset (base =Ox62)
Control EQU 03 ; ; Control port (base =Ox63)

; ;
;; Speaker control
; ;

PsO Record SpeakerData:1,SpeakerGate:1

SpeakerOn EQU MASK SpeakerData OR MASK SpeakerGate
continued

427

Section 3: Working with the Hardware Interface

SpeakerOff EQU NOT SpeakerOn

;;

;; 8253 Timer I Counter
·.,,
18253 EQU 40H ;; Base address
CtrO EQU 0 ,, Counter 0 (base =Ox40)
Ctr1 EQU 1 ,, Counter 1 (base =Ox41>
Ctr2 EQU 2 ,, Counter 2 (base = Ox42)
Mode EQU 3 ;; Control (base = Ox43)

·.,,
;; Control word format
; ;

ModeWord

;;

Record SC:2,RL:2,M:3,BCD:1

;; Control word values
; ;

CounterLatch EQU 0
MSBOnly EQU 2
LSBOnly EQU 1
LSBMSB EQU 3

SelCtrO EQU 0
SelCtr1 EQU 1
SelCtr2 EQU 2

ModeO EQU 0
Mode1 EQU 1
Mode2 EQU 2
Mode3 EQU 3
Mode4 EQU 4
ModeS EQU S

; ;
;; FSM.DEF
·.,,
·.,,

428

Macros for generating state transition table
continued

Chapter 11: A SOUND Device Driver

; ;

; ;

;; © 1987 W. V. Dixon. All rights reserved.
,,
; ;

; ;

; ;
,,
; ;

; ;

May be freely copied for personal, nonprofit use
so long as this copyright notice is retained and usage
restrictions are observed. This software may not be
used in whole or in part in any program which is sold
without prior written consent of the author.

,,
; ; Macros for generating state labels
; ;

; ;

; ; Generates label for current state
; ;

this_s MACRO x ; ; Create label for
s_&x: ; ; s xxx (current state)

ENDM ; ; MACRO this_s

,,
; ; Generates label for next state
,,
next_s MACRO x ; ; Generate reference to

OW s_&x ; ; s_xxx (next state)
ENDM ,, MACRO next_s

; ;
; ; Define state table entry
; ;

FSM STRUC ; ; Define state table entry
FSM_A_Class OW 0 ; ; Class processing routine
FSM_W_Oata OW 0 ,, Class data
FSM_A_Nstate OW 0 .. Next state,,
FSM_A_Action OW 0 ; ; Action routine
FSM_A_Ntrans OW 0 ; ; Offset of next transition
FSM ENOS

continued

429

Section 3: Working with the Hardware Interface

;;

;; State definition counter
; ;
nnn=O

; ;
;; Define transition macro (tran)
,,

;; Make sure state count
;; set to 0

tran MACRO
OW

t_class,t_name,t_nstate,t_action
t_class ;; Class always present

; ;

IFNB <t_name> ; ; Name is optional
OW t -name ; ; Use it if present

ELSE ; ; Otherwise
OW 0 ; ; say not present

ENDIF ,, IFNB <t_name>

IFNB <t_nstate ; ; Next state optional
OW t_nstate ; ; Use next state if present

ELSE ;; Otherwise
next_s Xnnn ; ; Default to next state

ENDIF ; ; IFNB <t_state>

IFNB <t_action> ; ; Action routine optional
OW t_action ; ; Use it if present

ELSE ; ; Otherwise
OW 0 ; ; say no action routine

ENOIF ; ; IFNB <t_action>

ENDM ,, MACRO trans

;; Define state macro (state)
; ;

state MACRO sname

430

;; State macro definition
continued

Chapter 11: A SOUND Device Driver

IFE nnn
s_exit: tran
nnn=1
s_fail: tran
nnn=2

ENDIF

;; If first invocation

exit_success,a,a ;; Make sure that s_exit defined
;; We've defined one state

exit_failure,O,a ;; Make sure s_fail defined
" We've defined two states
I I IFE nnn

sname:

tran exit_failure,a,a

IFNB <sname>

ENDIF
this s Xnnn

;; Final transition for previous
" state. (Forces error exit
II because no matching transition)
II If optional name present
II Define it as a symbol
II IFNB <sname>
II Always define s_xxx style name

nnn=nnn+1

ENDM

; ;

II One more state defined

II ENDM state

;; Define state end (state_end) macro
;; Forces completion of last state (specifically appends
;; failure transition to previously built transition table).
; ;

MACRO
state
ENDM

;; Declare end to state table
;; Final state forces last tran
;; For previous state to be
;; defined

An executable version of the SOUND driver and all driver source code
is available on IBM 5-1/4" DSDD diskette. Also included on this diskette are
sources and executables for DEVICES and a self-loading RAMdisk device
driver. These are written primarily in Microsoft C. All the programs on this
disk have been tested under PC-DOS version 3.10. The author believes they
work correctly but makes no guarantees to this effect. The software is pro­
vided strictly on an as-is basis and you are using it entirely at your own risk.
The author will assume no responsibility for any damage that the software
may cause. All code carries a copyright notice similar to the SOUND driver
in this essay. The diskette is available for $10.00 (check or money order)
from Walter Dixon; RR#2, Box 581; Delanson, NY 12053.

431

Section 3: Working with the Hardware Interface

Reading List

Angermeyer, J., and K. Jaegerffhe Waite Group. 1986. MS-DOS Developer's
Guide. Indianapolis: Howard W Sams & Company.

IBM. 1984. Disk Operating System v. 3.00 Technical Reference Guide. North Tar­
rytown, New York.

Lai, R./fhe Waite Group. 1987. Writing MS-DOS Device Drivers. Reading, Massa­
chusetts: Addison-Wesley Publishing Company, Inc.

Microsoft. 1986. MS-DOS Technical Reference Encyclopedia. Redmond, Washing­
ton.

Walter Dixon holds degrees in both mechanical and electrical engineering. He is
employed at General Electric Corporate Research and Development Center in Sche­
nectady, where he works in the areas of distributed systems and computer networks.
Mr. Dixon also teaches graduate computer science at Union College in Schenectady.
He has written more than ten device drivers for PC-DOS.

Related Essays

6 Undocumented MS-DOS Functions
10 Developing MS-DOS Device Drivers

432

Keywords

Enhanced Graphics Adapter (EGA) .

graphics memory organization

EGA registers

Bresenham's Algorithm

pixel values

bit planes

color palettes

Essay Synopsis: The Enhanced Graph­
.jC8 Adapter (EGA) has effectively become the

standi:U'd for graphics on MS-DOS systems.
·...~~tho:Ugh many programming languages
. 'contain high-level graphics routines, direct
. access to the EGA registers and memory is
n,e.ededfo.r many demanding applications.
.Due t~ its-Increased capabilities, the EGA is
·qori~iderablymore cOIl)plex to program
.tb~are:tJ:1eCGA or monochrome displays.
YOuwUlJearnhow to program the EGA
~oug1:lbasic routines for reading and writ-
'iIIgpiXels, (J,rawinglines, printing the
s~ree:ri, and setting the color palette regis­
ters~'The examplesuse access through C

. pointers, but the same principles can be
,Used by. programs in assembly or other lan­
.·go.ages'.·The author also discusses perfor­
manceconsiderations.

12

PrograDlnllngtheEnhanced
Graphics Adapter
=C7==__ =-- -.;...:.;._==========================.=

Andrew Dumke

The Enhanced Graphics Adapter (EGA) has established a new standard for
high-resolution graphics on the IBM PC and compatibles. The EGA is more flexi­
ble and powerful than the Color Graphics Adapter (CGA) it replaces, but also
more complex to program. This paper is intended to show how to program the
EGA, the similarities and differences between it and previous adapters, and a
few graphics routines to make using the EGA much easier. Basic graphics rou­
tines will be presented for reading and writing pixels, drawing lines, printing the
screen, and manipulating the palette registers. As each of these routines is de­
veloped, the different methods of controlling the color and shapes written to the
EGA's memory will be covered. These concepts are easily extended to a future
programming project of your own.

Inside the EGA

Most of the routines in this paper use EGA output ports and direct memory ac­
cess for maximum performance. Although there are more than 60 EGA output
registers, the few ports covered here are enough for most programming proj­
ects. The EGA BIOS is also more involved than the few calls covered here would
indicate, but not many graphics programs need to use any more than the most
basic BIOS functions.

While many of the improvements over the CGA have to do with text} only
the EGA graphics modes will be examined in detail. Every code listing in this
paper is EGA-specific, and does not apply at all to the CGA. The routines use C
pointers for direct memory access. If pointers are unfamiliar to you, you may
want to brush up on them before modifying any of these routines.

435

Section 3: Working with the Hardware Interface

Compiling the Examples

The examples included were developed using Microsoft C version 4, and Borland's
Thrbo Cversion 1. These two compilers are source code compatible. There may be
some syntactic differences with other compilers but the concepts are the same. All
the EGA functions have been separated into separate C functions. As you read this
paper, keep two separate files. The fIrst, ega. c, should contain the EGA Cfunctions
covered in this paper. Each code listing has a comment to remind you to add the
functions to ega _cthat are used later. The second file, ega _h, will contain the func­
tion prototypes for the functions in ega. c and EGA-specific macros.

Once ega •c has been compiled, the EGA-specific functions in ega •ob j may
be called by any program by linking that program with ega. ob j .

MicrosoftC

1b compile all examples under Microsoft C, use:

Mse example.c !W 3
LINK examp le ;

The !W 3 compiler switch turns on strong type-ehecking to help you catch er­
rors. Ifyou keep the EGA functions in a separate source code file, compile with
these statements:

Mse ega.c !W 3 ;
Mse example.c !W 3
LINK example + ega

Ifyou use Microsoft Cversion 3.0, add the !Ze compiler switch to enable the far
keyword.

Borland Turbo C:

The Borland Thrbo C compiler will compile and link in a single step. 1b compile
with Thrbo C, use:

Tee EXAMPLE

If you keep the EGA functions separate, use:

Tee EXAMPLE EGA

where EXAMPLE is the file with your code, and EGA contains EGA-specific graphic
functions. Strong type-checking is the default with Thrbo C so no compiler
switches are necessary.

436

Chapter 12: Enhanced Graphics Adapter

History of the EGA

IBM introduced the EGA in 1984. It is well on the way to becoming the dominant
color graphics display adapter for the mM pc. The EGA is compatible with the
two other popular IBM display adapters, the CGA and the Monochrome Display
Adapter (MDA). With the introduction of the new PS/2 systems, IBM introduced
three new video standards: the MCGA on the PS/2 model 30, the Video Graphics
Array (VGA) on all other PS/2s, and the optional high-resolution 8514/A. The
MCGA is compatible with the older CGA standard but not the EGA. The VGA and
8514/A both support most EGA programs. The MCGA may be upgraded to a
VGA. Essentially, the EGA is the new lowest common denominator for IBM color
graphics, replacing the older CGA.

The original EGA from IBM comes with 64K of graphics memory on the
card which may be expanded in 64K increments to 256K. The more EGA mem­
ory, the greater the graphics capabilities. EGA compatible cards from other
manufacturers often come with the full 256K memory already installed.

Video functions on the IBM PC are called with the BIOS Interrupt 10h.
These video functions allow a program to set text or graphics modes, read or
write single pixels, and place characters on the screen. The EGA has a new BIOS
that replaces all the original PC video functions, and adds several new BIOS
functions. The new EGA functions allow new characters to be defined, more
control over the palette, and text strings to be printed. Several of the new BIOS
function calls relating to graphics will be covered later, but the new EGA BIOS
calls for text functions will not be covered in this essay.

Monitors and EGA Capabilities

The EGA is designed to work with one of three different monitors-the IBM
Color Display (CD), the IBM Enhanced Color Display (ECD), or the IBM Mono­
chrome Display (MD)-and their equivalents from other manufacturers. The
monitor used determines the graphics resolution, the maximum number of col­
ors, the color palette, and the number of pixels that make up each character.

The IBM Color Monitor has a maximum resolution of 640x200 pixels. The
Color Monitor is limited to 200 scan lines vertically by only being able to use one
vertical scan rate. The EGA is compatible with all the text and graphic modes of
the Color Graphics Adapter when used with the Color Monitor. There are two
new graphics modes, modes 13 and 14, that use up to 16 colors with 320x200 and
640x200 resolution. However, the Color Monitor is limited to a 16-color fixed pal­
ette and 200 scan lines vertically. The fixed palette uses the same 16 colors used
by the CGA in text mode. The default character box is 8x8 pixels. The modes
available with the IBM Color Monitor are listed in Table 12-1.

437

Section 3: Working with the Hardware Interface

Table 12·1. IBM Color Monitor Modes

Mode Maximum Size Box Maximum Buffer
Number Type Colors (Col. X Row) Size Pages Segment Resolution

0 lext 16 4OX25 8x8 8 B800 320x200
1 lext 16 40x25 8x8 8 B800 320x200
2 lext 16 80x25 8x8 4/8/8· B800 640x200
3 lext 16 8OX25 8x8 4/8/8- B800 640x200
4 Graphics 4 4OX25 8x8 1 B800 320x200
5 Graphics 4 40x25 8x8 1 B800 320x200
6 Graphics 2 8OX25 8x8 1 B800 640x200

13 Graphics 16 4OX25 8x8 2/4/8· AOOO 320x200
14 Graphics 16 8OX25 8x8 1/2/4- AOOO 640x200

• Depends on amount of installed EGA memory

Enhanced Color Display

The IBM Enhanced Color Display is compatible with all the modes used with the
Color Monitor, and uses one more high-resolution mode. The Enhanced Color
Display is able to use two vertical scan rates, one for 200 line modes and one for
350 line modes. The new multisync-type monitors are able to use the two stan­
dard EGA-generated vertical scan rates as well as even higher frequencies for
higher resolution. The high-resolution mode, mode 16, can be used onlywith the
IBM Enhanced Color Display, an equivalent monitor, or a multisync monitor
since the vertical resolution is 350 scan lines and the Color Display can only dis­
play 200 lines. The EGA can display 16 colors from a 64-color palette in most
modes when used with the Enhanced Color Display. The 16 colors are only avail­
able in mode 16 if there is more than 64K on the EGA card. Modes 4 through 6,
the CGA compatible graphics modes, are limited to the same 16-color fixed pal­
ette as the CGA. The text modes on the Enhanced Color Display use 8x14 pixels
for each character, which gives a higher-resolution character than used on the
CGA. The modes for the Enhanced Color Display (and multisync equivalents) are
listed in Table 12-2.

Monochrome Graphics Modes

The IBM Monochrome Display is used primarily as a text-only display. The text
mode is compatible with the IBM Monochrome Adapter. However, there is a new
mode that adds 640x350 graphics with four "colors": black, video, flashing
video, and intensified video. If a Monochrome Monitor is connected to the EGA,
it is unable to use any of the color graphics modes, but may use the new mono­
chrome graphics mode.

The EGA converts the 8x14 font used with Enhanced Color Monitor into an
MDA-compatible 9x14 font. This is accomplished by extending any line draw
characters into the 9th pixel position.

438

Chapter 12: Enhanced Graphics Adapter

Table 12·2. Enhanced Color Display Modes

Mode
Number Type

o lext
1 lext
2 lext
3 lext
4 Graphics
5 Graphics
6 Graphics

13 Graphics
14 Graphics
16 Graphics

Maximum Size Box Maximum Buffer
Colors (Col. X Row) Size Pages Segment Resolution

16 of 64 40x25 8x14 8 B800 320x350
16 of 64 40x25 8x14 8 B800 320x350
16 of 64 40x25 8x14 4/8/8· B800 640x350
16 of 64 80x25 8x14 4/8/8· B800 640x350
4 40x25 8x8 1 B800 320x200
4 40x25 8x8 1 B800 320x200
2 80x25 8x8 1 B800 640x200
16 of 64 40x25 8x8 2/4/8· AOOO 320x200
16 of 64 80x25 8x8 1/2/4 * AOOO 640x200
4/16 of 64· 80x25 8x14 1/2* AOOO 640x350

• Depends on amount of installed EGA memory

The addition of multiple video pages is a subtle change in the standard
MDA mode 7} the text mode} with the EGA. The original Monochrome Adapter
uses only one page. The EGA can store up to eight individual video pages} de­
pending on the amount of EGA memory. The page number is specified in the
8086 register BH when using the BIOS functions for text. If older software uses
BH for other data} or fails to initialize it} the final text output may not appear on
the desired page.

EGA-compatible cards from other manufacturers may offer a Hercules­
compatible graphics mode when used with a Monochrome Display. The two
modes for the Monochrome Display are listed in Table 12-3.

Table 12·3. Monochrome Display Modes

Mode
Number Type

Maximum Size Box Maximum Buffer
Colors (CoL X Row) Size Pages Segment Resolution

7 lext
15 Graphics

4
4

8Ox25
BOx25

9x14 4/8*
8x14 1/2*

BOOO
AOOO

720x350
640x350

• Depends on amount of installed EGA memory

Installation Considerations and Presence Test

Notice that the capabilities of the EGA are dependent on the monitor and the
amount of memory on the EGA board. The monitor determines which video
mode to use for graphics or text} and the amount of EGA memory determines
the number of colors and pages available. It is very important for your programs
to determine whether there is an EGA present in the PC before you try to use it}
and which monitor and memory were used if one is found.

439

Section 3: Working with the Hardware Interface

EGA BIOS routine: Return EGA lriformation (INT 0~10)

The program we will show next does just that. The function get_ega_ info(&info>

is called with a pointer to a structure to hold EGA information. The function first
retrieves a byte from the BIOS data area. That byte, at Ox40:0x87, has encoded
information about the EGA hardware configuration, memory, and monitor. It is
one of several status bytes kept by the EGA BIOS for its internal use and to provide
information to programs. The bits we are interested in are bits 5 and 6 which indi­
cate total EGA memory, bit 3 which indicates whether the EGA is the active display,
and bit 1 which indicates the type of monitor. The Function calls one of the EGA's
new BIOS calls, alternate Function 10, which returns EGA information. This func­
tion is called by placing Ox12 in register AH and Ox10 in BL, and using I NT 1OH. Since
the PC's BIOS does not use a video function Ox12, this call can be used as an EGA
presence test. The PC's BIOS will safely reject unknown I NT 1OH calls with the regis­
ters unchanged, so if the outgoing registers are unchanged by the call, or the in­
coming registers do not match the data in the EGA information byte, there is simply
no EGA present. Here is the EGA BIOS call which returns the information:

Call with: AH

BL

Ox12 1b Select EGA Alternate Functions

Ox10 Alternate Function for EGA Information

Returns: BH o = Color Monitor

1 = Monochrome Monitor

BL Encoded EGA Memory:

o = 64K

1 = 128K

2 = 192K

3 = 256K

CH Feature Bits

CL EGA Board Switch Settings

The ega c he c k. c Program and Macros

This program will check for an active EGA display card. (There may be another
display card in the system. Ifanother card is active, bit 3 of the byte at Ox40:0x87
will be 1.) If an active EGA card is found, some information about the setup is
saved.

Notice the macro PEEK_BYTE(seg,off>, which allows this program to re­
trieve a byte from anywhere in the PC's memory. It works by shifting the value

440

Chapter 12: Enhanced Graphics Adapter

for the segment left one word (16 bits), and then bit DRing the offset to form a
long into This long int is then cast to a far pointer.

Also notice the definition #defi ne LINT _ARGS. If you wish to use the
Microsoft C's built-in lint on the library functions, you must define this before all
the #i nc lude directives. You also must compile with the IW 3 compiler option to
use the Microsoft lint. With LINT_ARGS at the top, before the #includes, the com­
piler will check all library function calls for argument-type agreement and num­
ber of arguments.

1* egacheck.c *1
1* Checks for an EGA *1
1* If one is found, information is saved *1
#define LINT_ARGS 1* Enable strong type checking *1
#include <conio.h>
#include <dos.h>
#include <stdio.h>

#define PEEK_BYTE(seg,off) \
(*(char far *) «long)(seg)«16 (off»)

1* Add this template to "ega.h" *1
struct Ega_info
{

char
i nt
char
char

monitor; 1* to hold the type of monitor *1
memory; 1* amount of memory: 64, 128, 192,
high_res_graphics ;
text_mode

256K *1

} 1* Template to hold information about EGA *1

1* Add this function prototype to lIega .h ll *1
int get_ega_info(struct Ega_info *) ;

mainO
(

struct Ega_info info;

ifCget_ega_infoC&info»
(

1* test for EGA *1

printfC"\n\nEGA in use. lI)
printf(lI\nConnected to a") ;
switch(info.monitor)
(

case 'C': putsCII Color Monitor")
break ;

441

Section 3: Working with the Hardware Interface

case 'M': putsC" Monochrome Monitor") ;
break ;

case 'H': putsC"n Enhanced CoLor Monitor")
break

defauLt: break 1* undefined *1
}

printfC"\n%iK bytes of EGA Memory.", info.memory) ;
pdntfC"\nMode %#2i is the highest resoLution graphics mode.",

Cint)info.high_res_graphics) ;
printfC"\nMode %#2i is the text mode.\n\n",

(int)info.text_mode)
}

eLse
putsC"\nNo active EGA.") ;

} 1* End of mainO *1

int get_ega_infoCinfo)
struct Ega_info *info ;

1* This function tests if an active EGA is in the system *1
1* Add this function to ega.c *1
1* Be SURE to use IIget_ega_infoC&info)1I IE USE THE "&"

IN FRONT OF "INFO" *1
(

union REGS regs ;
i nt i ;

1* Get the EGA information byte from the BIOS data area *1
char bios_info = PEEK_BYTECOx40,Ox87)

1* Bit 3 indicates if the EGA is active or not
** it is NOT a test for presence *1
if(bios_info & Ox8)

return CO); 1* if bit 3 is 1, EGA is NOT active *1

regs.h.ah =Ox12 1* EGA ALternate BIOS Function *1
regs.h.bL =Ox10 1* Get Info *1
regs.h.bh =OxFF 1* An impossibLe return vaLue *1
int86COx10, ®s, ®s) ; 1* EGA BIOS Video CaLL *1

1* bios_info bits 5 + 6 and BL(encoded EGA memory) and *1
1* bios_info bit 1 and 8H must be equaL if there is an EGA *1
if«regs.h.bL != «bios_info & Ox60) » 5» :: 1* Memory *1

(regs.h.bh != «bios_info & Ox2) »1» :: 1* Monitor *1

442

Chapter 12: Enhanced Graphics Adapter

(regs.h.bh == OxFF» 1* BH != FF *1
return(O) ; 1* if any test fails, return, no EGA *1

1* OK, there is an EGA, save the type of monitor *1
1* The monitor type code is:

'c' for color,
'M' for mono,
'H' for highres *1

switch(regs.h.cl) 1* cl has the EGA switch settings *1
{

*1
*1
second *1
second *1

EGA mono
EGA mono
color 40
color 80

case 0: 1* mono primary, EGA color 40x25 *1
case 6: 1* mono second, EGA color 40x25 *1

info->monitor = 'e' ;
info->high_res_graphics = OxD ;
info->text_mode =Ox1
break ;

case 1: 1* mono primary, EGA color 80x25 *1
case 2: 1* same as 1 *1
case 7: 1* mono second, EGA color 80x25 *1
case 8: 1* same as 7 *1

info->monitor = 'c' ;
info->high_res_graphics =OxE
info->text_mode =Ox3
break ;

case 3: 1* mono primary, EGA high res *1
case 9: 1* EGA high res primary, mono second *1

info->monitor = 'H' ;
info->high_res_graphics =Ox10 ;
info->text_mode =Ox3 ;
break ;

case 4: 1* color 40 primary,
case 5: 1* color 80 primary,
case 10: 1* EGA mono primary,
case 11: 1* EGA mono primary,

info->monitor = 'M' ;
info->high_res_graphics =OxF ;
info->text_mode =Ox? ;
break ;

default: 1* Reserved Switch Settings *1
return (0) ;

}

1* EGA is active in this system, return the memory *1
return(info->memory =64 * (regs.h.bl + 1)) ;

}

443

Section 3: Working with the Hardware Interface

EGA BIOS Routine: Write Dot (INT O~l0)

Now that we know what mode to use for graphics, we can draw something on
the display. The EGA BIOS has the same write dot call as the PC BIOS. This call is
slow, but usable on all IBM graphics cards. Here is the specifics of the EGA BIOS
Write Dot:

Call With: AH OxC 1b Select Write Dot Function

Returns:

BH Page

DX Row Number

CX Col Number

AL Color Value

Nothing

Notice the addition of a page value in BH. If you are converting older soft­
ware to run on the EGA, make sure the page number is in BH before calling INT
10H. Programs written for the monochrome adapter, or the CGA in graphics
mode, are especially vulnerable to this oversight.

The BIOS call to switch to a graphics mode is precisely the same as on the
PC, namely Function 0 of INT 10H. However, the BIOS does not check that the mode
you select will not damage your monitor. A monochrome monitor, connected
to an EGA, may be damaged by a color text or graphics mode signal, so it is
important to check for monitor and mode compatibility. The function
get_ega_info(&info) from the EGACHECK program is used to check the moni­
tor and find the high-resolution mode that is safe to use. The program in the
next listing demonstrates the use of set_crt_mode() to set a graphics mode, and
dot () which uses the BIOS write dot function. The program will draw a series of
parallel diagonal lines .

1* diagonal.c *1
1* Demonstrates the EGA high res graphic mode *1
Ndefine LINT_ARGS
Ninclude <conio.h>
Ninclude <dos.h>
#include <stdio.h>
Ninclude "ega.h"

void set_crt_mode(char) ; 1* Add this to "ega.h" *1
void dote int, int, int, int) ;

mai nO

444

Chapter 12: Enhanced Graphics Adapter

{

regi ster i, j ;
struct Ega_info info;
if(get_ega_info(&info»

set_crt_mode(info.high_res_graphics)
else

return(1)

for(j = 0; j <= 500; j += 5)
for(i = 0; i <= 100; ++i)

dot(i,i+j,13,0) ;
getch() ; 1* wait for a character to be typed *1
set crt_mode(info.text_mode)

}

1*====================================*1
void dot(row,col,color,page)
int row, col, color, page;
{

}

union REGS regs
regs.x.dx = row
regs.x.cx = col
regs.h.al = (char)color
regs.h.ah = (char)OxC ;
regs.h.bh = (char)page ;
int86(Ox10, ®s, ®s)

1* Write Dot call *1
1* NEW TO THE EGA! *1

1*=====================================*1
void set_crt_mode(mode)
1* Add this function to ega.c *1
char mode ;
{

union REGS regs ;
regs.h.al = mode ;
regs.h.ah = (char)O
int86(Ox10, ®s, ®s)

1* al=mode to set *1
1* Set Mode Function *1
1* execute BIOS int 10h *1

}

1*======================================*1

When you see how slow the BIOS write dot function is} you will probably
wonder about making it faster. 1b do that requires bypassing the EGA BIOS and
putting pixels directly into the EGA's memory. However} you first must under­
stand how the EGA's memory is organized} and how to control it.

445

Section 3: Working with the Hardware Interface

Memory Organization

The EGA uses two different display memory organizations for graphics. In
modes 4 through 6, the EGA uses the same memory organization as the CGA. In
these modes, the display memory segment starts at OxB800 and uses 80 bytes
per scan line. Since there are 200 scan lines, 16,000 bytes are used. In the me­
dium resolution 320x200 mode, each byte represents four pixels with one of
four colors, or two bits per pixel. In mode 6, each byte represents eight pixels
with two colors, or one bit per pixel. If a bit is 1, the corresponding pixel is on,
and if a bit is 0 the corresponding pixel is off. Additionally, the even-numbered
scan lines are in the first 8K of the display memory, and the odd-numbered scan
lines are in the second 8K of memory. The split scan line memory requires every
pixel's offset to be tested if it is in the even or odd bank.

The display memory for modes 13 through 16 starts at segment OxAOOO and
uses up to 64K of the 8086 CPU address space. (Where is the 256K of EGA mem­
ory I paid for? More on that in a minute.) Each byte represents eight pixels with
the most significant bit being the leftmost. The scan lines are not separated in
memory like they are in the CGA modes, so the byte offset of a pixel is easier to
calculate. In mode 16, the EGA has a maximum resolution of 640x350, or
224,000 pixels. Since there are up to 16 colors, each pixel uses four bits to specify
the color. This is a total memory usage of (640 x 350 pixels + 8 pixelslbyte x 4
bits/pixel + 1024 bytesIK) = 109K. But the 8086 CPU used in the PC can only
address a segment of 64K. The EGA fits into the 64K segment limit by dividing
128K of its 256K memory into four 32K bit planes. Each bit plane (or bit map)
corresponds to one bit of a pixel's color. Imagine these four bit planes as being
stacked on top of each other at the same CPU address. Each CPU display mem­
0ry address is actually four bytes of EGA memory.

Latch Registers

Reading or writing four different bytes (one for each bit plane) at the same ad­
dress presents a problem. 1b overcome this problem, the EGA has four latch reg­
isters. These hold one byte from each of the four bit planes temporarily. Each of
the four latch registers is filled with a byte from each of the bit planes at the
address last read by the CPU. When the CPU sends a byte to the address last
read, each of the four latch register contents may be unchanged, modified, or
entirely replaced by the CPU data. The latch register contents are then written
back to the EGA's bit planes. When the latch registers are written back to the
EGA's bit planes, they are again "stacked: with each bit of the four bytes forming
the four-bit color for eight pixels. The relationship between the latch registers
and the bit planes is shown in Figure 12-1. The state of the EGA's memory and the
contents of the four latch registers after the CPU reads the byte at AOOO:OOOO
are represented. The 8 pixels in the byte contain colors 0 through 7. It is impor­
tant to understand that the byte returned to the CPU after reading AOOO:OOOO

446

Chapter 12: Enhanced Graphics Adapter

has no use. That byte is read only to establish which pixels to work with (in this
case pixels 0 through 7 in row 0), and to "prime" the latch registers, allowing the
individual bytes of the bit planes to be manipulated by CPU data. Then the eight
pixels contained in the four bytes can be modified, replaced, or cleared by the
PC's CPU. 1b work with pixels in a different row or column, the offset from AOOO
is changed and a new byte containing the pixels is read by the CPU.

Bit Plane 0

Bit Plane 3

Bit Plane 2

Bit Plane 1

Fig. 12-1. EGA bit maps and latch registers.

Whether the latch registers are modified, replaced, or unchanged by the
CPU depends on the settings of several EGA control registers. These registers
are accessed through one of five indexed Very Large Scale Integration (VLSI)
chips on the EGA. These VLSI chips are set by sending an index number corres­
ponding to the function desired, followed by the data for that function. Essen­
tially, the index corresponds to one of many registers internal to the EGA, but
mapped to a single PC output port. Data for these registers are sent using the
8086 OUT instruction or the Clibrary's outpO function. For example, the EGA has
a bit-mask register that will allow individual bits of the latch registers to be pro­
tected from change. Setting a bit to 0 in this register masks out the correspond­
ing bit in the latch registers, and setting a bit to 1 allows that bit to be changed by
CPU writes. The bit-mask register allows individual pixels to be changed with­
out altering an adjacent pixel's address by the byte. In other words, the bit-mask
register allows individual pixels to be changed rather than the entire byte full of
pixels. The bit-mask register is Function number 8 on the EGA's Graphics -1&2
chip. It is programmed by sending an index of 8 to port Ox3CE followed by the
bit-mask data to port Ox3CF. The following C statements would set the bit-mask
register to protect all bits except bit 2:

447

Section 3: Working with the Hardware Interface

outpCOx3CE, 8) ;
outpCOx3CF, Ox2)

1* The index of the bit mask *1
1* All bits, except bit 2, to 0 *1

But these statements give no clue, except for the comments, to what they do. In
the next section, we will cover a C macro to make setting the EGA registers easier.

A second EGA register that affects how the latch register contents are re­
written is the map-mask register. If any of the four bits of the map-mask register
are zero, the corresponding bit maps are protected from change. Sending a
number between 0 and 15 to the map-mask register will allow that color corres­
ponding to that number to be written to the EGA's bit planes. However, the previ­
ous contents of the bit maps are not cleared, and must be before setting the map
mask-but after setting the bit mask-by writing a zero to the byte containing
the pixel to change. The map-mask register is part of the EGA's Sequencer chip.
It is accessed by sending the index of 2 to port Ox3C4 and sending the map mask
to port Ox3C5. The effects of the bit mask and the map mask, setting pixel 2 on
map 0, 2, and 3, are shown in Figure 12-2.

Map-Mask Register
\ Latch Registers

Bit Plane 3

Bit Plane 2

. Bit Plane 1

Bit Plane 0

Fig. 12-2. Bit-mask and map-mask registers.

With these two registers, and an understanding of the EGA latch registers,
we have enough information to create a routine in C that will directly write a dot
into screen memory. This routine is faster than the same routine in the EGA's
BIOS. On an 8MHz ~ the EGA BIOS will put 2.65 dots on the display in one
millisecond (2.65 dots/ms). The routine in the listing in the next section
FASTDOT. Cputs 7.55 dots/ms on the display, or an increase in speed of 185 per-

448

Chapter 12: Enhanced Graphics Adapter

cent. The drawback is that fastdot 0 will work only in EGA graphics modes and
would have to be rewritten for another display card.

More Macro8

The first thing we need to do is define some routines to access the EGA's VLSI
controllers. These macros will allow the routine to set the bit mask, the map
mask, and other internal EGA registers.

#define EGA_GRFXCindex, value) { outpCOx3CE, index) i \
outpCOx3CF, value) i}

#define EGA_SQNCCindex, value) { outpCOx3C4, index) i \
outpCOx3C5, value) ;}

The first macro, EGA_GRFX, takes as arguments the index number corresponding
to the function desired on the Graphics - 1&2 controller chip, as well as the
value to send to the chip. The EGA's Graphics 1&2 chips control the access to the
bit planes. Although there are actually two chips at the same address, you can
treat the Graphics -1&2 chips as one chip. The address to index the Graph­
ics - 1&2 chip is Ox3CE, and the data address is Ox3CF: The macro expands into
two C statements. The first statement sends the index value to the chips using
the library function outpC). The second statement sends the data.

The second macro, EGA_SQNC, is similar to EGA_GRFX. However, EGA_SQNC ac­
cesses a different chip, the EGA's Sequencer chip, by sending the index and data
to different output ports. The Sequencer chip's main interest here is the map­
mask register.

The next two macros will allow the routine to access a segment:offset ad­
dress anywhere in the PC's address space:

#define PEEK_BYTECs,o)
#define PEEK_WOROCs,o)

(*Cchar far *) C Clong)Cs)«16 : Co)))
(*Cint far *) C Clong)(s)«16 : Co)))

The final macros give a name to some common uses of the previous
macros. The GET_CRT_COlSO macro returns the value to use for the number of
bytes per line in the EGA graphics modes. EGA_BIT_MAS Kand EGA_MAP_MASK set the
bit-mask and the map-mask registers, respectively.

#define GET_CRT_COlSC) PEEK_WOROCOx40, Ox4a)
#define EGA_BIT_MASKCmask) EGA_GRFXC8, mask)
#define EGA_HAP_MASKCmask) EGA_SQNCC2, mask)

These macros make the following code written to manipulate EGA hard-

449

Section 3: Working with the Hardware Interface

ware far easier to read and understand. The six macros: EGA_GRFX} EGA_SQNC}
PEEK_BYTE} PEEK_WORD} EGA_BIT_MASK} and EGA_MAP_MASK should be added to ega. h.
These macros are used in all the routines in the rest of this paper.

1* fastdot.c *1
#include <conio.h>
#include "ega.h"

fastdotCrow, col, color)
1* add this function to ega.c *1
1* This routine will put a dot in the EGA's display buffer
** Use only in EGA graphics modes C13,14,15, or 16)
** and on an EGA with 128K memory or greater *1
int row, col, color;
{

char latch
1* establish the address of the byte to change *1
1* buffer byte is AOOO:CCrow * bytes/row) + col/8) *1

unsigned char far *rgen = Cchar far *)COxAOOOOOOOl +

Ccol »3) +

(row * GET_CRT_COlSC»
1* Calculate the bit to change: *1

char bit_mask = Cchar)COx80 » Ccol &7» ;
EGA_BIT_MASKCbit_mask) 1* set the bit mask *1
latch =*Crgen) ; 1* prime the EGA latches *1
Crgen) =0 ; 1 clear the bit *1
EGA_MAP_MASKCcolor) 1* set the color *1
Crgen) =OxFF ; 1 set the bit *1
EGA_MAP_MASKCOxF) ; 1* reset the map mask *1
EGA_BIT_MASKCOxFF) 1* reset the bit mask *1

}

Write-Only Register in the EGA

Notice the last two lines where the map mask and the bit mask are reset. The
majority of EGA registers are write-only. Any concurrent or subsequent pro­
gram that uses the display needs to make assumptions about the state of the
EGA} because a write-only register cannot be read. Therefore, the safest state to
leave the EGA registers in is the EGA BIOS default state. Additionall)'J the EGA
BIOS assumes the EGA registers are in the default state when writing characters
on the display. If the bit-mask register is set to mask bits} the characters will be
unreadable. For the bit mask and the map mask} the default is no mask at all, so a
"mask" of OxF and OxFF restores the default state.

450

Chapter 12: Enhanced Graphics Adapter

Also notice how the byte address of the pixel is calculated:

char far *rgen = (char far *)(OxAOOOOOOOL +
(coL » 3) +

(row * GET_CRT_COLS(»)i

The address of the byte is ((row X bytes per row) + coIs + 8 bits per byte). For
the division of cols by 8, C's shift right operator, the »is used for greater speed.
Since 8 = 2 X 2 X 2 = 2 <<3, then cols + 8 = cols >>3.1b calculate the
number of bytes per row, which can be 40 bytes in video mode 13 or 80 bytes in
modes 14 through 16, look at the number of characters per row in the BIOS data
area (address Ox40:0x4A). The number of bytes per row and the characters per
row are the same in the EGA graphics modes. The result of the total calculation
is added to OxAOOOOOOOL, which is the segment of the EGA graphics modes. The
entire value is then cast to a far pointer.

The bit number in the byte that corresponds to the pixel to change is calcu­
lated by (co L"&"7). Once the bit number is known, the bit mask is set to Ox80 >>
bit number. The value Ox80 is 010000000b.

The routine above assumes that page 0 is used. 1b add the ability to address
a page other than page 0, add these lines:

wh;Le(page){
rgen += PEEK_WORD(Ox40, Ox4c)
--page i}

1* add the page Length *1

where page is the number of the page to address. The word at Ox40:0x4C con­
tains the length of the CRT Display buffer in bytes used by the EGA's BIOS rou­
tines.

Try the DIAGONAL. Cprogram after replacing dot with fastdot o. It is two to
three times faster than the BIOS routine.

Lots of Dots

For maximum performance on the EGA, many functions need to be written to
take advantage of unique EGA hardware. For example, the fastdot routine above
set the bit mask and map mask to the needed values at the beginning of the rou­
tine, then reset those registers to the BIOS default state at the end. If a function
calls the fastdot routine repeatedly, the register reset at the end of the fastdot
routine is repeated unnecessarily. That slows the function down. The program
BRES _Cshown next includes a line drawing routine that is based on Bresenham's
Algorithm. Bresenham's Algorithm was originally used to control digital plotters,
but it is equally suited for bit/map CRT graphics. The algorithm always incre-

451

Section 3: Working with the Hardware Interface

ments (or decrements) by 1 in either the x or y direction. The x or y direction is
selected by the magnitude of the slope of the line. If the rise (y direction) is
greater} increment (or decrement) y; if the run (x direction) is greater} increment
(or decrement) x. Whether to increment or decrement x and y is decided by the
direction of the line. A cumulative error term is used to decide when to incre­
ment or decrement in the perpendicular direction. Instead of calling the fastdot
routine above} the dots are placed on the display directly. The EGA registers are
reset only once at the end} and the function is much faster than the same one
written based on a calling fastdot O.

1* bres.c *1
1* Draws a pattern to demonstrate the lineC) function *1
#define LINT_ARGS
#include <conio.h>
#include <dos.h>
#include <stdio.h>
#include "ega.h"

void lineCint,int,int,int,int) 1* Add this to ega.h *1
1*==*1
mainO
{

int x1, y1, x2, y2 ;
int step = 10, color = 13, scan_lines
struct Ega_info info;

ifCget_ega_infoC&info) >= 128) 1* Active EGA? Memory? *1
{

set_crt_modeCinfo.high_res_graphics) ;
scan_lines = CPEEK_BYTE(Ox40, Ox84) + 1)

* PEEK_WORD(Ox40, Ox85)
y2 = (scan_lines - 1) - «scan_lines - 1) % step)
for (y1 = 0, x1 = 0, x2 = 0;

y1 <= y2;
y1 += step, x2 += step)

lineCx1,y1,x2,y2,color) ;
getch() ; 1* Wait for a key press *1

set_crt_mode(info.text_mode)
}

else
puts("\nEGA adapter not active or not installed.\n") ;

}

1*==*1
void line(x1,y1,x2,y2,color)

452

Chapter 12: Enhanced Graphics Adapter

/* run */
/* rise */
/* direction to increment/decrement */

qabs(x2 - x1)
qabs(y2 - y1)
sign(x2 - x1)
sign(y2 - y1)

dy2, bytes_per_line = GET_CRT_COLS() ;
error_term, i ;
char far *rgen = (char far *)(OxAOOOOOOOL)
char exchange = (char)O ;

int x1,y1,x2,y2,color ;
/* A fast line function - uses Bresenham's algorithm. */
/* row(y's) and col(x's) and are assumed not equal */
#define sign(x) «(x) < 0) ? (-1) (1»
#define qabs(x) «(x) < 0) ? -(x) : (x»
{

int dx =
int dy =
int s1 =
int s2 =
int dx2,
register
unsigned
unsigned

/* The larger of rise or run determines
** which to increment in the loop */
if(dy > dx)

{ int temp = dx; dx = dy; dy = temp; exchange = (char)1;)

] += Ox1 ;
another pixel */

/* Used repeatedly, calculate now */
/* Use shifts for speed */

dx) « 1 ; /* Initialize error_term */
/* Use the EGA's Set/Reset Register */
/* Enable all bit planes */
/* All the pixels along the line */

dx2 = (dx « 1)

dy2 = (dy « 1)
error_term = (dy ­
EGA_GRFX(O, color)
EGA_GRFX(1, OxF)
for (i=1; i<=dx; ++i)

{

EGA_BIT_MASK(Ox80 » (x1 &7)) ;
rgen[«x1 » 3) + (y1 * bytes_per_line»

while (error_term >= 0) /* loop until
{

if (exchange)
x1 += s1

else
y1 += s2

error_term -= dx2
}

if (exchange)
y1 += s2

else
x1 += s1

error_term += dy2
}

EGA_GRFX(1, 0) ; /* Disable the Set/Reset register */

453

Section 3: Working with the Hardware Interface

EGA_BIT_MASK(OxFF) ; 1* Reset the bit mask *1
}

1*==*1

1b keep the graphic image on the screen, a program should have the height
and width of the display in pixels. The width is given by GET_CRT_COlS 0 * 8 pix­
elslbyte. The height could be determined exactly with a table containing scan
line counts for each mode. However, there is a quicker but less accurate way.
Both the number of character rows and the point size (bytes per character) are
programmable on the EGA, and therefore, either one can change. The height,
however, of the character box in bytes and the number of scan lines determine
the number of rows. Since the word at Ox40:0x85 has the bytes per character
and the byte at Ox40:0x84 has the number of rows, they can be used to calculate
the number of scan lines for any video mode. The C statement:

scan_lines = (PEEK_BYTE(Ox40, Ox84) + 1)
* PEEK_WORO(Ox40, Ox85) ;

calculates the approximate value for total scan lines-approximate since the
number of rows is rounded down and mayor may not be off by 1. Once the EGA
data are known, the program draws a pattern of lines that is independent of the
EGA graphics mode used.

Using the Set/Reset Register

The line () function uses a different method to specify the color of dots on the
display than the fastdot 0 routine. The fastdot 0 routine uses the map-mask
register to specify the color, but since specifying a mask to the map-mask regis­
ter does not clear the previous dot, the dot must be cleared with the map mask
first reset to OxF and then set to the color of the new dot. In other words, both
the map mask and EGA memory must be accessed twice for every dot to set to a
specific color. The line () function uses the set/reset register and the enable set/
reset register to specify the color. The set/reset register will set a byte to OxFF in
each EGA bit plane where a bit is on in the set/reset register, and will reset a byte
to 0 in each EGA bit plane where a bit is off. Therefore, the previous contents of
the latch registers are replaced with the color number corresponding to the
value set in the set/reset register. The map-mask register has no effect on the set/
reset register but the bit-mask register is usable to protect adjacent pixels. 1b
use the set/reset register, you must first enable it with the enable set/reset regis­
ter. The BIOS default state for the enable set/reset register is 0, which means that
the set/reset register is turned off. Each bit of a four-bit value sent to the enable
set/reset register corresponds to an EGA bit plane. If a bit in the enable set/reset

454

Chapter 12: Enhanced Graphics Adapter

register is 0, the corresponding bit plane is protected from change by the set/
reset register. The set/reset register and the enable set/reset register are part of
the EGA's graphics controller. The set/reset register is accessed by first sending
an index of 0 to port Ox3CE, then sending the four-bit color code to port Ox3CF.
The setlreset register only affects the bit planes enabled in the enable set/reset
register. The enable set/reset register is accessed by sending an index of 1 to port
Ox3CE, then sending the four-bit map mask to port Ox3CF.

Notice the statement rgen [«x1 »3) + (y1 * bytes_per_l i ne» J += Ox1 ;.
Since the EGA display buffer is linear, it can be easily addressed as an array. The
expression inside the brackets calculates the buffer offset of the byte to change.
The right side of the statement would seem to be adding 1 to that byte, and that
is what the CPU thinks it is doing. However, the actual purpose is to preserve the
adjacent pixels contained in the byte. When the bit-mask register is used, the
display buffer must be read first to fill the latch registers so that the other bits in
the byte may be preserved. Unlike the map-mask register, when the set/reset reg­
ister is used, the byte sent by the CPU has no meaning beside establishing ad­
dressability of the byte to change. So the += 1does two things: It reads the display
buffer in order to prime the latch registers, and then sends a byte back which
triggers the set/reset register. The 1 could be any value as long as the C compiler
translates the operation into an 8086 instruction that first reads and then stores
a byte in the EGA's display memory.

Using the EGA Write Modes

The EGA has three write modes: 0,1, and 2. Changing the EGA write mode will
change the way EGA hardware reacts when the CPU sends a byte to the display
buffer. Each write mode is optimized for a different use. Write mode 0 is the
general-purpose write mode, write mode 1 is optimized for copying EGA mem­
0ry regions, and write mode 2 is best used for color fills. Changing the write
mode can speed up an operation dramatically.

Write mode 0 is the mode used by the EGA BIOS. It is the most general­
purpose write mode. In write mode 0, the color of a pixel may be set by using
either the map-mask register or the set/reset register. The map-mask register is
used by the EGA BIOS and by the f astdot () routine. The line () function uses
the set/reset register to specify a color. When using the map-mask register, indi­
vidual pixels may be set by the CPU sending a byte, with the corresponding bits
in the byte set to 1. However, adjacent pixels in the byte must be protected with
the bit-mask register. When using the set/reset register, the bits in a CPU byte
sent to the EGA display do not correspond to pixels. The byte is written only to
determine the offset of the pixels to change. The color is specified in the setI
reset register, and the bit-mask register allows individual control of pixels.

Write mode 2 is the most similar to write mode O. Write mode 1 has a spe­
cial use and will be covered later. In write mode 2, the byte sent from the CPU

455

Section 3: Working with the Hardware Interface

sets the color rather than individual pixels. The bit-mask register gives control
over individual pixels, and, if the bit-mask register is not set, the entire byte of
pixels is filled with the color from the CPU. The write mode is specified in bits 0
and 1 of a byte sent to the mode register on Graphics - 1&.2 chips. The index of
the mode register is 5. The program rect. c shown next demonstrates write
mode 2. The rect 0 routine uses write mode 2 to fill a rectangle with a given
color.

/* rect.c */
1* this program demonstrates write mode 2 */
#define LINT_ARGS
#include <conio.h>
#include <dos.h>
#include <stdio.h>
#include "ega.h"

void rect(int,int,int,int,char); 1* add to ega.h *1

mai nO
{

i nt i, j ;

set_crt_mode(16); /* Make sure you have the
** right monitor/memory! */

printf("\nColor #:\n");
for (i=O,j=O;i<16;++i,j+=40)
{

printfC" %2i ",0;
rect(SO,j,349,j+39,(char););

}

getch 0 ;
set_crt_mode(3)
}

void rect(row1,col1,row2,col2,color)
int col1,row1,col2,row2
char color ;
/* add this function to "ega.c" */
{ /* This Function generates a filled rectangle */

/* It is assumed that row1 < row2, and col1 < col2 */
unsigned char far *rgen = (char far *)(OxAOOOOOOOL)
int rows = row2 - row1 ; /* number of rows */
int cols = Ccol2 » 3) - Ccol1 » 3) - 1 ; 1* total columns *1
char left = Cchar)(OxFF » Ccol1 &7»; /* left bit mask */
char rght = (char)-COxFF » Ccol2 &7»; /* right bit mask */

456

Chapter 12: Enhanced Graphics Adapter

char next_row ;
char bytes_per_line = (char)GET_CRT_COLS()
register x,y
char latch ;

1* EGA offset *1
next row offset *1

if (coLs < 0) 1* Test if col1 and coL2 are
left &= rght, coLs = 0, rght = 0 ;

rgen += bytes_per_Line*row1 + (coL1 » 3)
next_row = bytes_per_Line - coLs - 2; 1*

in the same byte *1

EGA_GRFX(S,2);
for(y = 0 ; y < rows
(

EGA_BIT_MASK(Left)
Latch =*(rgen) ;
*(rgen++) =color ;
EGA_BIT_MASK(OxFF) ;
for(x = 0; x < cols;

{

1* Set Write Mode 2 *1
y++) 1* do every row *1

1* Set the bit mask for left *1
1* Latch the EGA bit pLanes *1
1* Set the coLor, point to next byte *1
1* No mask in the center *1

x++) 1* do every coLumn *1

1* Set the right bit mask *1
1* Latch the EGA bit planes *1
1* Set the color *1
1* Go to the next row *1

1* Reset the Bit Mask *1
1* Reset the Write Mode *1

Latch = *(rgen) ;
*(rgen++) = coLor

}

EGA_BIT_MASK(rght) ;
latch = *(rgen) ;
*(rgen++) = coLor ;
rgen += next_row

}

EGA_BIT_MASK(OxFF)
EGA_GRFX(S,O)

}

Write mode 2 is set with the macro EGA_GRFX(S,2). You must be careful not
to send a value other than 0, 1,.or 2 since the other bits of the byte sent to the
mode register are significant to the EGA. The map-mask register and the bit­
mask register are effective in write mode 2, but the set/reset register is not us­
able. Write mode 0, the BIOS default write mode, is set with EGA_GRFX(S,O). The
write mode must be reset to 0 before other programs or BIOS calls are used.

Write mode 1 is used to copy one area of EGA memory to another area
rapidly. This is most useful for scrolling, animation, or saving and restoring ar­
eas of the screen. Write mode 1 allows you to copy the four bytes in each of the
four bit planes with only one CPU read and write. The EGA memory offset con­
taining the eight pixels to copy is read to prime the latch registers, then the off­
set containing the destination for the eight pixels is written to by the CPU. When

457

Section 3: Working with the Hardware Interface

the CPU writes a byte} and the write mode is set to I} the EGA discards the byte
from the CPU and copies the latch registers to each of the bit planes. Write mode
1 is many times faster than reading the four individual bytes from the bit planes
and then writing the four bytes back at the new address. The bit-mask register is
not usable with write mode 1. All four bytes in the latch registers are written to
all four bit planes regardless of the setting of the bit mask. The map-mask regis­
ter can be used to protect individual bit planes.

The next program} mode l1 •c} demonstrates write mode 1. Apattern of lines
is drawn at the top of the screen. That pattern is then copied using write mode 1.
Finally, the edge of the pattern is redrawn rapidly to demonstrate the potential
for animation.

1* mode1.c *1
1* This program demonstrates EGA write mode 1 *1
#define LINT_ARGS
#include <conio.h>
#include <dos.h>
#include <stdio.h>
#include "ega.h"

void copy(int,int,int,int,int,int

void mai nO
{

register i,j;
int k = 0;
set_crt_mode(16) ; 1* Enhanced Monitor Only! *1
1* Draw an interesting pattern: *1
for(k = 0; k <= 4; ++k)
for(j = O+k; j <= 500+k; j += 5)
for(i = O+k; i <= 100+k; ++i)

fastdot(i,i+j,13) ;
for(k = 0; k <= 3; ++k)
for(j = O+k; j <= 500+k; j += 5)
for(i = O+k; i <= 100+k; ++i)

fastdot(i,i+j,3)
1* Copy the pattern 120 rows down: *1
copy(0,0,105,639, 120,0);
wh i le (! kbh itO)
{

1* copy the edge repeatedly,
** gives the illusion of motion: *1

copy(99,100,106,592, 219,100)
copy(99,100,106,592, 219,108)

458

Chapter 12: Enhanced Graphics Adapter

}

set crt_mode(3)
}

copy(r1_1, c1_1,
r1_1, c1_1,
r2_1, c2_1,
r1_2, c1_2 ;

r2_1, c2_1, r1_2, c1_2)
1* Upper left corner of source *1
1* Lower right corner of source *1
1* Upper left corner of destination *1

{

1* Copies one screen region to another rapidly. Uses
** write mode 1. Only the upper corner of the destination
** needs to be given. *1

char far *source = (char far *)(OxAOOOOOOOL) ;
char far *destination = (char far *)(OxAOOOOOOOL)
int rows = r2_1 - r1_1 ;
int cols = (c2_1 » 3) - (c1_1 » 3) ;
int bytes_per_line = GET_CRT_COLS() ;
int next row = bytes_per_line - cols ;
register x,y ;

source += bytes_per_line * r1_1 + (c1_1 » 3) ;
destination += bytes_per_line * r1_2 + (c1_2 » 3)

EGA_GRFX(S,1) 1* Set write mode 1 *1
for(y = 0 ; y < rows ; y++)

(

for(x = 0; x < cols; x++)
*(destination++) = *(source++)

source += next_row ;
destination += next row

1* copy four bytes *1

}

}

EGA_GRFX(S,O) ; 1* Reset the write mode *1

Since the bit-mask register is not usable in write mode 1, the copy () routine
will copy all eight pixels in the source bytes to the destination bytes. In other
words, write mode 1 is only usable on bytes rather than pixels. Write mode 1 can
be used to save an area of the screen to a nonvisible page, which is useful for
implementing pull-down menus. The area under the pull-down menu can be
saved to a nonvisible page, then restored after the user has finished with the
menu. Write mode 1 can only copy to another part of the EGA's memory. Reading
a color from EGA memory requires reading the four bit maps individually.

459

Section 3: Working with the Hardware Interface

Reading the Bit Maps

Since each byte of address space in the EGA represents four bytes of graphics
memory, EGA memory cannot be read by the CPU directly. The EGA will return
the byte from the bit plane selected in the read map select register. The map to
read must be set before reading the EGA offset containing the pixels you are
interested in. Determining the color of a given pixel requires a separate read
from each of the four bit planes. Each bit of the four-bit color value is on one of
the four bit planes. The most significant bit of the color value is on bit map 3, and
the least significant bit is on bit map o. The read map select register is index 4 on
the EGA's Graphics -1&2 chip. Since each of the EGA's bit maps must be read
individually, the value in the read map select register corresponds to only one
EGA bit map at a time.

The function readdot returns the color of a pixel on the display. Like
fastdot 0, it is several times faster than the equivalent BIOS routine to read the
color of a dot.

1* return the color of a pixel *1
int readdot(row,col)
int row,coL;
{

register color = 0 ;
register latch
unsigned char far *rgen = (char far *)(OxAOOOOOOOL +

(col »3) +

(row * GET_CRT_COLS(»)
int bit_number = (col & 7)A7
int bit_mask = (1 « bit_number) ;
int plane;
1* step through each pLane 3,2,1,0 *1
for(plane = 3; plane >= 0; plane--)
{

}

EGA_GRFX(4,pLane) ;
latch =*(rgen) & bit_mask
latch »= bit_number
coLor «= 1 ;
color := latch

}

return(color) ;

1* select pLane to read *1
1* bit from that plane *1
1* right justify the bit *1
1* make room for new bit *1
1* add the bit *1

The offset of the byte containing the pixel is determined in exactly the same
way as in the fastdot () routine. Avalue for a bit mask is calculated by determin-

460

Chapter 12: Enhanced Graphics Adapter

ing the bit number of the byte to change. But the bit-mask value is not sent to the
EGA's bit-mask register. The EGA's bit-mask register has no effect on bytes read
from the EGA. The bit mask is used to isolate the pixel from the byte read from
the EGA's bit plane. The bits are then added plane by plane to the pixel's color
code. The read map select register selects the map to read from. The bit maps
are read backward, (3, 2, 1,0), since that makes the color code translation easier.
Notice that the read map select register is not reset at the end of the routine. The
last time through the loop sets the read map select register to 0, which is the
default value.

A Print Screen Routine with Dithering

Although the readdot 0 routine could be used for a graphics print screen rou­
tine, it would be very slow (over three minutes). The reason readdot 0 is so slow
for multiple pixels is that each EGA byte is read 32 times to return the color of
the eight pixels (8 pixels x 4 bit planes). A print screen routine can be made
much faster by reading the EGA four bit planes only once and keeping the values
in an array that can then be accessed much quicker. This technique is used in the
print screen routine in the next listing. The print screen is written for a Hewlett­
Packard LaserJet printer. Since the LaserJet cannot print colors, the prtsc 0
function uses an array of dither patterns, each unique to one of 16 colors. The
array of dither patterns is indexed by the color of the pixel and the row the pixel
is on.

1* prtsc.c *1
1* This function will print a graphics screen to
** an HP LaserJet Printer *1
#include <dos.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "ega.h"
prtsc(res)
i nt res ;
{

1* The array contains 8x8 dither patterns for each EGA color *1
static unsigned char dither[16J[8J =

{

{ OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO },
{ Ox88,Ox44,Ox22,Ox11,Ox88,Ox44,Ox22,Ox11 },
{ Ox88,Ox11,Ox22,Ox44,Ox88,Ox11,Ox22,Ox44 },
{ Ox18,Ox24,Ox42,Ox81,Ox18,Ox24,Ox42,Ox81 },

1* 0 *1
1* 1 *1
1* 2 *1
1* 3 *1

461

Section 3: Working with the Hardware Interface

{ OXAA,OxAA,OxAA,OxAA,OxAA,OxAA,OxAA,OxAA },
{ OXFF,OxOO,OxFF,OxOO,OxFF,OxOO,OxFF,OxOO },
{ Ox88,OxOO,Ox22,OxOO,Ox88,OxOO,Ox22,OxOO },
{ OXEE,OxFF,OxBB,OxFF,OxEE,OxFF,OxBB,OxFF },
{ OxAA,Ox55,OxAA,Ox55,OxAA,Ox55,OxAA,Ox55 },
{ Ox77,OxBB,OxDD,OxEE,Ox77,OxBB,OxDD,OxEE },
{ Ox77,OxEE,OxDD,OxBB,Ox77,OxEE,OxDO,OxBB },
{ OxE7,OxDB,OxBD,Ox7E,OxE7,OxDB,OxBD,Ox7E },
{ OxCC,OxCC,OxCC,OxCC,OxCC,OxCC,OxCC,OxCC },
{ OXFF,OxFF,OxOO,OxOO,OxFF,OxFF,OxOO,OxOO },
{ OxFF,OxOO,OxFF,OxOO,OxFF,OxFF,OxFF,OxOO },
{ OXFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF }

1* 4 *1
1* 5 *1
1* 6 *1
1* 7 *1
1* 8 *1
1* 9 *1
1* 10 *1
1* 11 *1
1* 12 *1
1* 13 *1
1* 14 *1
1* 15 *1

}

union REGS inregs, out regs ;
int scan_lines =get_scan_lines()
unsigned char far *rgen = Cchar far *)COxAOOOOOOOL)

+ (PEEK_WORD(Ox40,Ox4C)
* PEEK_BYTECOx40,Ox62» ;

unsigned char bit_planes[4l ;
static char start_raster_graphics[l ={ "\x1B*r1A" }
static char end_raster_graphics[] = { "\x1B*rB" } ;
char transfer_graphics[7l
char set_resolution[16l
char buffer[7l ;
char *cp ;
int row, col, line, line_multiple
char color, plane;
int bit_mask,byte,bit ;
char crt_mode =PEEK_BYTE(Ox40,Ox49) 1* CRT graphics mode *1
int bytes_per_line =GET_CRT_COLS() ;

if (crt_mode < 13) 1* EGA modes only *1
return CO)

if (crt_mode -- 14)
1* 640x200 mode, print each line twice *1

line_multiple =1
else

line_multiple =0

strcpy(set_resolution,"\x1B*tU)

strcatCset_resolution,itoa(res,buffer,10»
strcatCset_resolution,"R") ;
cp = strcat(set_resolution, start_raster_graphics)
inregs.x.dx =0 ; 1* LPT1 *1

462

Chapter 12: Enhanced Graphics Adapter

inregs.h.ah =0 ; 1* Print character call *1
whileCinregs.h.al =*cp++) 1* Print the string *1

int86COx17,&inregs,&outregs) ;
strcpy (transfer_graphics,"\x1B*b") ;
strcat Ctransfer_graphics,itoaCbytes_per_line,buffer,10»
strcat (transfer_graphics,"W")

EGA_GRFXC3,24) ; 1* Set the EGA to XOR *1
for Crow =0; row < scan_lines; ++row)
for Cline = 0; line <= line_multiple; ++line)
{

cp = transfer_graphics; 1* Set the LaserJet for *1
whileCinregs.h.al =*cp++) 1* a line of graphics *1

int86COx17,&inregs,&outregs) ;
for (col =0; col < bytes_per_line; ++col)
{

1* First, read the EGA bit planes. *1
for(plane = 0; plane <= 3; ++plane)
{

EGA_GRFXC4,plane)
bit_planes[plane] = rgen[Ccol + row * bytes_per_line)]

}

1* XOR the byte just read: *1
if Cline :: crt_mode != 14)

rgen[Ccol + row * bytes_per_line)] =OxFF

for Cbyte = 0, bit = 7; bit >= 0; --bit)
{

bit_mask =1 « bit ;
calculate the color of ONE pixel masked by bit_mask: *1
color = «Cbit_planes[3] & bit_mask) » bit) « 3)

CCCbit_planes[2] & bit_mask) » bit) « 2)
CCCbit_planes[1] & bit_mask) » bit) « 1)
CCCbit_planes[O] & bit_mask) » bit)) ;

Read a byte from dither based on the row and color: *1
byte := (dithe. [color][(row & 7)] & bit_mask) ;

}

1* Print the byte: *1
inregs.h.al = Cchar)byte
int86COx17, &inregs, &outregs)
1* Restore the previous row: *1
ifCCrow) && (!line»
{

463

Section 3: Working with the Hardware Interface

byte = rgen[(col + (row-1) * bytes_per_line)]
rgen[(col + (row-1) * bytes_per_line)] =OxFF

}

}

}

cp = end_raster_graphics ; 1* set the LaserJet for text *1
while (inregs.h.al =*cp++)

int86(Ox17,&inregs,&outregs)

1* Restore the last line: *1
for(col = 0; col <= bytes_per_line; ++coL)

(

byte = rgen[(coL + (row-1) * bytes_per_line)]
rgen[(col + (row-1) * bytes_per_line)] =OxFF

}

EGA_GRFX(3,0)
return(1)
}

1* Reset the EGA *1

1* video mode is at 40:45 *1

1*==*1
int get_scan_Lines()
(

int scan_lines;
switch(PEEK_BYTE(Ox40,Ox49»
{

case 13:
case 14: scan_Lines =200

break ;
case 15:
case 16: scan_lines = 350

break ;
default: scan_lines =0 ;

}

return(scan_lines)
}

1* a 200 line mode *1

1* a 350 Line mode *1

1* Unknown mode *1

If you compile and run prt sc(), you will notice a line advancing from the
top of the screen to the bottom, showing how much of the screen has been
printed. This line is created by XORing the contents of all the EGA bit maps with
OxFF. But how do you XOR all four bit maps without reading and storing each
one? The answer is to use the EGA's data rotate register. This register allows the
contents of the latch registers to be rotated, ANDed, ORed, or XORed with the
data from the CPU. The meaning of each bit of the data rotate register is shown
in Figure 12-3.

464

Chapter 12: Enhanced Graphics Adapter

­~""-----'~. ~

I
Rotation Count for Byte from the CPU

------- Function Selection:

BITS
4 3
o 0 Data is unmodified
o 1 CPU byte is ANDed with latch bytes
1 0 CPU byte is ORed with latch bytes
1 1 CPU byte is XORed with latch bytes

'----------- Unused on the EGA

Fig. 12·3. The data rotate register.

Using the data rotate register to rotate the byte from the CPU is of limited
use. The latch registers are not rotated by this function, only the CPU data. The
CPU is just as able to rotate the byte before sending it. However, the AND, OR,
and XOR functions are very useful for quick logical operations on the bytes in
the latch registers.

The stream I/O functions from the C library (such as fpri ntf 0 or fputs 0)
are not used in prtsc 0 because any byte (0 - OxFF) may be sent to the printer as
graphics data. Some values, such as EOF (OxlA), have special meaning to MS
DOS. If the prtsc 0 routine tried to send OxlA to the printer using one of the
stream I/O functions, MS-DOS would terminate I/O rather than printing the
byte. Even opening the device for binary output will hot cure this. 1b get around
this problem, each byte is printed directly using the PC BIOS print character call
INT Ox16.

If you do not have a LaserJet printer, you should be able to adapt the
prtsc 0 function to another printer easily. The main thing to change is the
printer control strings. The other potential change is the method used to send
graphics data to the printer. The LaserJet, and most other new printers, take
graphics one horizontal line at a time. Older printers may need graphics sent in
8x8 chunks. As an example, here is an equivalent print screen for an Epson
printer:

#incLude <dos.h>
#incLude <string.h>
#incLude <stdio.h>
#incLude <stdLib.h>
#include Uega.h"
prtscO
1* This print screen is for an Epson FX-80 *1
{

465

Section 3: Working with the Hardware Interface

static unsigned char dither[16J[8J =
{

{ OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO },
{ Ox88,Ox44,Ox22,Ox11,Ox88,Ox44,Ox22,Ox11 },
{ Ox88,Ox11,Ox22,Ox44,Ox88,Ox11,Ox22,Ox44 },
{ Ox18,Ox24,Ox42,Ox81,Ox18,Ox24,Ox42,Ox81 },
{ OxAA,OxAA,OxAA,OxAA,OxAA,OxAA,OxAA,OxAA },
{ OXFF,OxOO,OxFF,OxOO,OxFF,OxOO,OxFF,OxOO },
{ Ox88,OxOO,Ox22,OxOO,Ox88,OxOO,Ox22,OxOO },
{ OXEE,OxFF,OxBB,OxFF,OxEE,OxFF,OxBB,OxFF },
{ OXAA,Ox55,OxAA,Ox55,OxAA,Ox55,OxAA,Ox55 },
{ Ox77,OxBB,OxDD,OxEE,Ox77,OxBB,OxDD,OxEE },
{ Ox77,OxEE,OxDD,OxBB,Ox77,OxEE,OxDD,OxBB },
{ OXE7,OxDB,OxBD,Ox7E,OxE7,OxDB,OxBD,Ox7E },
{ OxCC,OxCC,OxCC,OxCC,OxCC,OxCC,OxCC,OxCC },
{ OXFF,OxFF,OxOO,OxOO,OxFF,OxFF,OxOO,OxOO },
{ OXFF,OxOO,OxFF,OxOO,OxFF,OxFF,OxFF,OxOO },
{ OXFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF }

1* 0 *1
1* 1 *1
1* 2 *1
1* 3 *1
1* 4 *1
1* 5 *1
1* 6 *1
1* 7 *1
1* 8 *1
1* 9 *1
1* 10 *1
1* 11 *1
1* 12 *1
1* 13 *1
1* 14 *1
1* 15 *1

}

union REGS inregs, outregs ;
int scan_Lines;
unsigned char far *rgen = (char far *)(OxAOOOOOOOL)

+ (PEEK_WORD(Ox40,Ox4C)
* PEEK_WORD(Ox40,Ox62»

unsigned char bit_pLanes[4J ;
static char start_raster_graphics[J ={ "\xD\xA\x1b\x33\x18"
} ;
char transfer_graphics[7l ;
char *cp ;
int row, coL, Line_muLtipLe
char coLor, plane;
int bit_mask,byte,bit ;
char crt_mode =PEEK_BYTE(Ox40,Ox49) 1* CRT graphics mode *1
int bytes_per_line =GET_CRT_COLS()
int n1, n2 ;

line_muLtipLe =2 ;
scan_lines =200 ;
break ;
Line_multiple =4 ;

466

if (crt mode < 13)
return eO)

switch(crt_mode)
{

case 13:

case 14:

1* EGA modes onLy *1

Chapter 12: Enhanced Graphics Adapter

scan_lines =200
break ;

case 15:
case 16:

}

line_multiple =2 ;
scan_lines =350 ;
1* falls through! *1

1* LPT1 *1
1* Print character *1
1* Print the string *1

cp =start_raster_graphics
inregs.x.dx =0 ;
inregs.h.ah =0 ;
while(inregs.h.al =*cp++)

int86(Ox17,&inregs,&outregs)
strcpy (transfer_graphics,U\xOD\xOA\x1B\x4cU) ;
n2 = (line_multiple * scan_lines) 1 256 ;
n1 = (line_multiple * scan_lines) - n2 * 256 ;
transfer_graphics[4l = (char)n1 ;
transfer_graphics[5l = (char)n2 ;
transfer_graphics[6l = (char)O ;

EGA_GRFX(3,24) ; 1* Set the EGA to XOR *1

for (col =0; col < bytes_per_line; ++col)
(

cp =transfer_graphics;
while(inregs.h.al =*cp++) 1* Print the string *1

int86(Ox17,&inregs,&outregs)
for (row = scan_lines - 1; row >= 0; --row)
(

1* First, read the EGA bit planes. *1
for (plane = 0; plane <= 3; ++plane)
(

EGA_GRFX(4,plane)
bit_planes[planel = rgen[(col + row * bytes_per_line)l

}

1* XOR the byte just read: *1
rgen[(col + row * bytes_per_line)l =OxFF

for (byte = 0, bit = 7; bit >= 0; --bit)
{

bit mask = 1 « bit;
1* the color of ONE pixel masked by bit_mask: *1
color = «(bit_planes[3l & bit_mask) » bit) « 3)

«(bit_planes[2l &bit_mask) » bit) « 2)

467

Section 3: Working with the Hardware Interface

«(bit_pLanes[1] & bit_mask) » bit) « 1)
«(bit_pLanes[O] & bit_mask) » bit)) ;

1* byte from dither based on the row and color: *1
byte := (dither[color][(row &7)] & bit_mask) ;

}

1* Print the byte: *1
for(n1 = 1; n1 <= Line_multiple; ++n1)

{

inregs.h.al =byte;
int86(Ox17,&inregs,&outregs)

}

if(coL != 0)
{

byte = rgen[(col-1 + row * bytes_per_line)]
rgen[(col-1 + row * bytes_per_line)] = OxFF

}

}

}

for (row =scan_lines - 1 ; row >= 0; --row)
{

byte = rgen[(col - 1 + row * bytes_per_Line)]
rgen[(col - 1 + row * bytes_per_line)] =OxFF

}

EGA_GRFX(3,0)
return(1)
}

1* Reset the EGA *1

A print screen generated from the color bar program (rect. c) is shown in
Figure 12-4. This print screen took about 16 seconds to print with a parallel
LaserJet} printed with Prtsc. c. Each color is shown dithered.

EGA Color Palettes

When used with an Enhanced Color Monitor} the EGA can display any 16 colors
from a 64-color palette. It takes four bits to represent 16 colors. Each of these
bits corresponds to one of the EGA's four bit planes. On the CGA} and with the
EGA's default palette} the four bits correspond to red, green} blue, and intensity
(IRGB). But once the EGA palette is changed from the default} the four-bit color
code is simply an index to the new palette.

The 64-color palette has the same three basic colors (red} green} blue) as
the 16-eolor palette, but there is no intensity bit. Instead} each color has two bits
for individual intensity, giving three intensity levels for each color. The total 64-

468

Chapter 12: Enhanced Graphics Adapter

ColoI'll:
8 1 Z 3 4 5 6 7 8 CJ 18 11 12 13 14 15

Fig. 12·4. Color bar print screen.

color palette may be represented with six bits. The bits for the lower intensity of
the three colors are the most significant bits in the six-bit value, and are usually
abbreviated as lowercase rgb for red, green, and blue. The least significant three
bits are the brighter red, green, and blue and are abbreviated as RGB. The total
six-bit value, rgbRGB, is used to select one of the 64 colors. Once one of the 16
colors is set to an rgbRGB value, that color may be selected with a four-bit IRGB
value. The bits of an rgbRGB value will always indicate the red, green, and blue
components of the resulting color, but an IRGB value is simply an index to the
current palette.

The RGB colors can only be used with an EGA connected to an Enhanced
Color Monitor. When the EGA is connected to a Color Display, only the 16 colors
from the default palette may be used. In text modes and the EGA graphics
modes, individual palette registers may be set to any of the 16 default colors. In
the CGA compatible modes, the palette must be changed using the CGA compati­
ble BIOS calls.

The EGA also has an overscan register. The color value sent to the overscan
register is displayed as a border. However, the overscan is usable only in the 200
scan line modes.

EGA BIOS Routine: Set Palette (INT 0~10)

The EGA's palette registers are most often set with a new EGA BIOS call. The
BIOS call can set either one of the 16 colors, or all 16 at once. The BIOS call is
Function Ox10 of Interrupt Ox10. There are four subfunctions: 0 sets individual
palette registers to any rgbRGB value (or any IRGB value if the EGA is not con­
nected to an ECD); 1 sets the overscan register; 2 sets all the palette registers and

469

Section 3: Working with the Hardware Interface

the overscan register; and 4 toggles between text blinking and intensity. The sub­
function is selected in register AL.

Call with: AH = Ox10

AL = 0, Set Individual Palette Register

BL = color number QRGB) to change

BH = rgbRGB value to set

AL = 1, Set Overscan Register

BH = color number to set

AL 2, Set All Palette Registers and Overscan

ES:DX points to a 17-byte table

Bytes 0-15 has the 16 rgbRGB values for colors 0-15

Byte 16 is a color number for the Overscan Register

AL = 3, Thggle Intensity/Blinking Bit

Changes the meaning of bit 7 of the text attribute
byte.

BL = 0, allow background intensity

BL = 1, allow foreground blinking

Unfortunately, the palette registers are write-only. It is not normally possi­
b�e to determine what rgbRGB value a given color number represents. The EGA
BIOS will check for the existence of a 256-byte table called the parameter save
area when changing the palette registers. The BIOS will save the rgbRGB values
in that table if it exists. The creation and maintenance of a parameter save area
will not be covered here, but it is important to use BIOS calls to set the palette so
that a parameter table will be updated.

The following is a program that demonstrates the uses of the palette regis­
ters. It will only work with an EGAIECD combination. The program will first
draw 16 colored rectangles using the rect 0 function. The palette is then contin­
uously changed.

1* paLette.c *1
1* demonstrates the 64 coLor paLette *1
#define LINT_ARGS

470

Chapter 12: Enhanced Graphics Adapter

#incLude <conio.h>
#incLude <dos.h>
#incLude <stdio.h>
#include "ega.h"

void set_all_paLCchar *)
void gotoXYCint,int) ;

mainO
(

int i,j,ch = 0;
char palette[17JJ
set crt_mode(16)

1* This array hoLds the palette *1
1* Make sure you
** have the right monitor! *1

1* Draw some coLor bars: *1
printf(lI\nCoLor #:\nU) ;
for Ci=O,j=O;i<16;++i,j+=40)
(

printfC" ~2i ",;);
rectC50,j,300,j+39,i);
paLette[;J = (char)i;

)

1* from Listing 5 *1
1* initiaLize the array *1

gotoXY(15,22) ;
printf("rgbRGB of coLor 7U) i

printfCU"c"c~c~c"c"c",205,205,205,205,205,190)

gotoXYC20,0) ;
printfC"Press Space to singLe space, Esc to exit")

palette[16J = Cchar)O
whileCch != 27)

(

if Ckbhi to)
ch = getchO

for Ci = 1; i<=15; ++i)
(

paLette[iJ++i
if CpaletteCiJ == 64)

paLette[rLJiJ = 1
}

set_alL_paLCpalette) ;

1* whiLe not ESC *1

1* If a key is hit, *1
1* get the character *1

1* max rgbRGB value *1

1* Set the palette *1

471

Section 3: Working with the Hardware Interface

gotoXY(15,23) ;

1* Convert the rgbRGB value to binary: *1
for(i = 5;i>=0; --i)

if(palette[7J &1«i)
putchar('1')

else
putchar('0')

if(ch == 32) 1* single space mode *1
whi le(! kbhit 0);

}

set crt_mode(3)
}

1*==*1
void set_all_pal(palette)
char *palette ;
1* This function sets the entire palette *1
{

1* the 8086 registers *1
1* the 8086 segment registers *1

*)palette ;
1* EGA BIOS call set palette*1
1* Function to set all *1
1* ES to segment of palette *1
1* DX to offset of palette *1

&segregs) ;

union REGS regs
struct SREGS segregs
char far *fp = (char far
regs.h.ah =Ox10 ;
regs.h.al =2 ;
segregs.es =FP_SEG(fp)
regs.x.dx =FP_OFF(fp) ;
int86x(Ox10, ®s, ®s,

}

1*==*1
void gotoXY(x,y)
int x,y
1* This function moves the text cursor to x,y *1
{

union REGS regs
regs.h.ah = 2 ;
regs.h.bh = 0 ;
regs.h.dh = (char)y
regs.h.dl = (char)x
int86(Ox10, ®s, ®s)

1* set cursor function *1
1* page 0 *1
1* row *1
1* col *1
1* call int Ox10 *1

}

472

Chapter 12: Enhanced Graphics Adapter

Making Everything Faster

Remember the macros EGA_GRFX and EGA_SQNC? They are reproduced here:

#define EGA_GRFX(index, vaLue) { outp(Ox3ce, index) i \
outp(Ox3cf, vaLue) i}

#define EGA_SQNC(index, vaLue) { outp(Ox3c4, index) i \
outp(Ox3cS, vaLue) i}

Each of these macros sends an index to one of the EGA's ports followed by a byte
of data. EGA_GRFX sends the index to Ox3CE and the data byte to Ox3CF. EGA_SQNC
sends the index to Ox3C4 and the data byte to Ox3C5. In both cases, the address
of the index port is one port below the data port. You can take advantage of this
arrangement to make every code listing that uses these macros up to 30 percent
faster. The key is to output a word (two bytes) to the lower of the two addresses,
rather than a byte to each address.

Borland's Thrbo C already has the library function to output a word to a
port. It is called outport (). The macros only need to be slightly rewritten to take
advantage of outport (). Since Thrbo C already produces much faster code than
the Microsoft compiler, the speed improvement is not dramatic. However, the
change is easy to make, and does increase the speed of the example programs
about 10 percent.

The Microsoft C library only includes the function out p(), and will only
send a byte at a time. Th send a word requires writing a new function in assem·
bly:

out.asm
does word outs with the Microsoft CompiLer
This exampLe is for the smaLL modeL onLy

assembLe with: MASM out IML
Link with your program with: LINK yours.obj out.obj
The IML makes Lower case LabeLs

ret_sequence equ 4

_TEXT segment byte pubLic 'CODE'
assume cs:_TEXT
pubLic _outport

_outport proc near
push bp
mov bp, sp

use the Microsoft segments

t his i s caLLed

smaLL modeL uses near caLLs
save the stack frame
point to the arguments

473

Section 3: Working with the Hardware Interface

add bp, ret_sequence

mov dx, [bpJ
mov ax, [bp+2J
out dx, ax
pop bp
ret

_outport endp

_TEXT ends
end

skip over the return

the port
the data to send
send the data
recover the stack frame

The word output function is named outport () to provide compatibility
with Thrbo C. When word outs are done, the byte in AL is first written to the
port number in DX, and then the byte in AH is written to the port DX + 1. That
means the data byte must be the byte in AH, and the index byte needs to be in
AL. The macros are rewritten like this:

#define EGA_GRFX(index, value) \
outport(Ox3ce, «<int)value «8) (index»

#define EGA_SQNC<index, value) \
outport<Ox3c4, «<int)value «8) <index»

Conclusion

With the EGA, everything is complicated. IBM was locked in to supporting two
very different previous display standards (the CGA and MDA) when designing
the EGA. The result now is supported in the even more complicated VGA. Your
best bet for designing software to run on the EGA without sacrificing future
compatibility is to separate hardware-dependent code into logically independent
functions. For example, the fastdot 0 routine should be easy to rewrite for all
future IBM displays. A more complicated plotting routine that calls fastdot 0 to
plot dots would not need to be rewritten as long as fastdot 0 supports the dis­
play. Also consider how easy it was to upgrade all the routines in this paper sim­
ply by rewriting the EGA_GRFX and EGA_SQNC macros. Now every routine is faster
since they all can do word outs rather than byte outs.

This essay has developed several basic graphics functions: line 0,
fastdotO, readdotO, prtscO, and rectO. Many of the EGA peculiarities, such
as latch registers, have been examined. The three ways of setting a color on the
EGA, the map-mask register, the set/reset register, and write mode 2, have also
been shown. Although the routines in this paper are fast, there are many im-

474

Chapter 12: Enhanced Graphics Adapter

provements that could be made. High performance graphics routines on the
EGA tend to be found only though exploration.

Reading List

Newman, W, and R. Sproull. 1979. Principles of Interactive Computer Graphics.
New York: McGraw-Hill Book Co.

Rogers, D. 1985. Procedural Elements for Computer Graphics. New York: McGraw­
Hill Book Co.

A complete technical reference manual with an EGA BIOS listing and complete
EGA description may be ordered from IBM by calling 800IIBM-PCTB (800/426­
7282). The EGA technical directory is $9.95 and is part no. 6280131.

Andrew Dumke is the author of an EGA-based desktop publishing program, La­
ser Gl; and an EGA print screen utility, Laser PR, both released by Sterling Pacific Inc.
Mr. Dumke is currently a San Francisco-based fulltime computer industry investor
with interests in microcomputers. He has owned a variety of microcomputer systems
since 1978, and has programmed in C since 1983.

Related Essays

1 A Guided Thur inside MS·DOS
10 Developing MS-DOS Device Drivers

475

Keywords

asynchronous serial communications

Universal Asynchronous Receiver
Transmitter (DART)

RS-Z3Z-e standard

error-detection methods

communications protocols

XONIXOFF flow control

interrupts

polling Essay Synopsis: .Most MS-DOS com­
puters these days need to use serial commu·
nications to transfer messages, programs,
and data with other computers. Since many
applications programs require serial com­
munications capabilit}', these functions be­
long in every programmer's toolkit. This
essay begins by covering the basic concepts
of asynchronous serial communication,in­
eluding a discussion of -error~etection
methods and commoncoIll.rilurrlcations pro­
tocols. This is followed by a look at the ac­
tual serial port hardware and how it can be
used to control modems, to manage XONI
XOlt'F flow control, and to handle interrupts.
Finall)', the author.presents a complete inter­
rupt-rlriven, buffered serial communications
package implemented in Microsoft C.

13

Programming the Serial
PortwithC

Nabajyoti Barkakati

The PC and data communications are rapidly becoming an integral part of our
lives. PC users routinely expect to be able to share programs, send messages and
use their PCs to talk to other computers, large and small. An increasing number
of computers are now hooked up in networks and various protocols and stan­
dards have been developed to guarantee that all computers in a network can
communicate with each other and even with other networks. Ifyou develop ap­
plications for the PC, chances are that you will one day be required to exploit its
communications capabilities.

Luckily for us, enough standardization exists in the PC arena to allow us to
write a single software package to handle most communications chores.1b sum­
marize in a single jargon-laden sentence: In the PC world, we normally commu­
nicate by asynchronous serial data transfers using the ASCII encoded character
set and Universal Asynchronous Receiver Transmitter (DART) based hardware
connected to a telephone line via an RS-232-e port and a modem. If all of these
terms are too technical for you, don't despair-we will explain each and guide
you through the design and implementation of a small but very functional serial
communications package written in C.

Basics of Asynchronous Data Communications

Thxtual information is stored in computers by representing each character by a
pattern of bits as prescribed by the ASCII code (ANSI standard X3.4-1977). The
code uses seven bits per character, stored in the rightmost seven bits of an eight­
bit byte. The ASCII code provides for 128 characters, which allows us to repre­
sent all upper- and lowercase letters, the numerals, and the punctuation sym­
bols. In addition, there are 32 nonprintable characters (control characters) that
are often used to signal special conditions-earriage return, line feed, form feed,

477

Section 3: Working with the Hardware Interface

etc. Two of these characters, Control-S and Control-Q, are used in what is known
as the XONIXOFF flow control during asynchronous communications.

In data communications, we are interested in transferring the bytes from
one device to another, e.g., from the PC to an electronic Bulletin Board System
(BBS). If we had eight lines between the two points, we could let each line corre­
spond to a bit and send the data one byte at a time. This would be a parallel
transfer. The parallel port on the PC works this way, though in addition to the
eight data lines there are other signals to assist in the data transmission. On the
other hand, if we have only a single line, we would send each byte of data serially,
one bit at a time. In addition to these options, we may also decide to send the data
synchronously so that every byte is sent at a predetermined time (e .g., once every
x seconds), or asynchronously at a rate that is not necessarily uniform. Serial
communications is cheaper than parallel because it requires only one data line.
Also, the asynchronous mode of transmission makes much less demand on
hardware because there is no need for special hardware to maintain synchro­
nism between the transmitter and the receiver. Thus, asynchronous serial com­
munications is the preferred solution. Of course, in this mode of data
transmission we must have a means to convert each data byte into a series of bits
and indicate to the receiver the beginning and the end of each byte. Figure 13-1
illustrates the concept of asynchronous serial communication.

For the moment, let us assume that we have some means of converting each
byte into a stream of 1s and Os, bits that can be transmitted over the communica­
tions medium (for example, the telephone line). In fact, the DART performs pre­
cisely this function, as we will see in the next section. It is normal practice to
indicate that a line is "okay" by keeping it at a logical 1 when it is idle. In this case,
the line is said to be marking. On the other hand, when the line is at a logical 0, it
is said to be spacing. Thus, logical 1 and 0 are also referred to as MARK and
SPACE respectively. In asynchronous communications, a change in the condition
of the line from MARK to SPACE indicates the start of a character (see Figure
13-2). This is referred to as the START bit. A pattern of bits follows the START bit,
representing the character and a bit known as the PARITY bit. Finally, the line
transitions to its idling MARK condition which represents the STOP bit and indi­
cates the end of the current character. The number of bits used to represent the
character is known as the wordlengrh and is usually either seven or eight. The
PARITY bit is used to perform rudimentary error detection.

How does the transmitter (or the receiver) know how long each bit lasts? In
fact, both must have some knowledge of this duration or the detection of the bits
would be impossible. The duration of each bit is determined by data clocks at
the receiver and the transmitter. Note, however, that while the clocks at the re­
ceiver and the transmitter must have the same frequency, they are not required
to be synchronized. The selection of the clock frequency depends on the baud
rate, which essentially refers to the number of times the line changes state every
second. Nominally, a clock rate of 16 x baud rate is used so that the line is sam­
pled often enough to detect a bit reliably.

478

A single character
is received

From·modem

.....-­
Baud
Rate

CJ
00 c::::II

UART at Receiving End

PC

A byte

AslnglEfetiaracter
t();~ sent . " , .

Receiving
Computer

Modem

~

Baud
Rate

~ft,~T:.:.

PC's Setlal ,Ajdllpter:

Fig. 13-1. Asynchronous serial communications.

In addition to the ASCII characters used for information exchange, there is
one particular condition of the line that is sometimes used to gain the attention

479

Section 3: Working with the Hardware Interface

~YW\'\,*f!@kiJ ~~~~:'~~n

~b ~~~

of 1 bit to IDLE

~~ , /
MARK or 1, :=lJ\· · ---r---T--,---r--T--.---T--'---rr=u---

1 I 1 1 1 1 1 1 1 I
0111213 1 41516171 1 I

I I I 1 I I I I I 1
SPACE or 0 ------- __~ L __ ~ L. __ .1. __ ..J L __~__ ---~------- ---

I \ 7 or 8 bits ' \ \ \
START Bit of data Parity Stop Start of

Bit Bit another
character

Fig. 13·2. Format of a single character.

of the receiver. Remember, the normal state of the line is MARK (1) and the be­
ginning of a character is indicated by a transition to SPACE (0). If the line stays in
the SPACE condition for a period longer than the time it would have taken to
receive all the bits of a character, we say that a BREAK condition has occurred.
There is no ASCII representation of BREAK-it is essentially the line (Idropping
dead" for a short duration of time that constitutes a BREAK.

Parity and Error Detection

Earlier, we mentioned the PARITY bit as being useful for error detection. For
example, when even parity is selected, this bit is set so the total number in the
current word is even. (A similar logic applies for odd parity.) At the receiving end,
the parity is recalculated and compared with the received parity bit. If they disa­
gree, the receiver declares that a parity error has occurred. A major drawback
of error detection via parity check is that it can only detect errors that affect a
single bit. For example, the bit pattern 0100 0001 0 (ASCII A, with a 0, or even
parity bit) transmitted with eight·bit wordlength and even parity may change
(due to say, noise in the line) to 01000111 0 (ASCII G), but to the receiver, every­
thing would seem fine because there is still an even number of ones.

A much more reliable scheme of detecting errors is the so-called Cyclic Re­
dundancy Check (CRC). Instead of checking errors in a single character, the CRC
checks for errors in a block of characters. As shown in Figure 13-3, the CRC
calculation treats a block of characters as a single binary number (with a large
number of bitsO and finds a 16-bit remainder after dividing this number by a
prespecified 17-bit divisor, for example, the CCITT polynomial:

X16 + X l2 + xs + 1

Since the remainder after a division is always less than the divisor, by choosing a

480

Chapter 13: The Serial Port with C

17-bit divisor we are guaranteed} at most} 16 bits in the remainder. The remain­
der is known as the CRC checkvalue and often referred to as the CRC of that
block. The two-byte CRC checkvalue is then sent at the end of the block of char­
acters and} at the receiver} the CRC is recalculated and compared with the re­
ceived CRC to check for transmission errors. Thus} each block of characters
would have two more bytes appended and these would be the CRC (or the Block
Check) characters. How good is this method of error detection? Research has
shown that the CRC can detect a burst of errors shorter than 16 bits with 100
percent accuracy. CRC is widely used in hard disks for error detection. File
transfer protocols such as XMODEM and KERMIT also use CRC.

Block of characters

~

1 0001 0000 0010 0001

17·bit divisor

0100 1101 0101 0011 0100 0100 0100 1111 0101 0011

... (quotient is discarded)

16·bit remainder - XXXX XXXX XXXX xxxx
\ ,

(t .. ~
C2-byte CRC checkvalue

appended to message block

Fig. 13·3. Computing the CRC bytes.

Since a detailed discussion of this topic is beyond the scope of this essay} we
refer the reader to chapter 3 of Campbell (1987) and chapter 13 of McNamara
(1982). Both authors provide a thorough analysis of several CRe techniques and,
more importantly, present algorithms to compute CRCs.

So far we have talked about sending and receiving individual characters.
The serial communications package that we will develop operates at this level.
However, there are other higher-level protocols (or conventions) used when
transmitting files from one computer to another that send data in the form of
packets of characters with additional information to help the receiver answer
such questions as

481

Section 3: Working with the Hardware Interface

f>- Was the packet received without errors?

r> How do I construct the original file out of the received packets?

~:;. How do I decode the information in case it is encoded?

The two most widely used file transfer protocols in the PC world are
XMODEM and KERMI'I: Once again, we are taking the easy way out by referring
the reader to books that describe these protocols. The recent book by da Cruz
(1987), who was one of the original authors of the KERMIT protocol, has a very
complete discussion of KERMrr. The XMODEM protocol, originated by Ward
Christensen in 1977, is also discussed (pp. 303-309). Campbell (1987) also de­
scribes both of these protocols.

Communicating with the RS·232·C Standard

Although in the PC we represent the 1s and Os by voltage levels, the signals car­
ried in a telephone line are usually tones of different frequencies. The device
that sits between the PC's hardware and the transmission line, and makes data
communication possible, is the modem (modulator/demodulator). A nlodem can
convert information back and forth between the voltage/no voltage representa­
tion of digital circuits and analog signals (for example, tones) appropriate for
transmission through the telephone lines. Standards such as the RS-232-C, set
forth by the Electrical Industry Association (EIA), specify a prescribed method
of information interchange between the modem or data communications equip­
ment (DCE), and the PC's communications hardware or data terminal equipment
(DTE). Amodem can be operated in one of two modes: half duplex or full duplex.
Half duplex mode can only transmit in one direction at a time while full duplex
operation permits independent two-way communications. The RS-232-C stan­
dard provides control signals such as Request Th Send (RTS) and Clear Th Send
(CTS) that may be used to coordinate the transmission and reception of data. As
shown in Figure 13-4, the RS-232-C standard is evident in the cable and connec­
tors used to connect the PC to the modem. The arrows in the figure point to
equipment for which the signal is intended. Table 13-1 lists the acronyms and
their meanings.

Various other configurations of the cables are shown in Campbell (1987).

Flow Control with XONIXOFF

In addition to the ((handshaking" via the hardware RTS/CTS signals, special AS­
CII control characters (Control-Q/Control-S or XONIXOFF) are used to achieve
flow control in software. Flow control is necessary because sometimes either the
transmitter or the receiver may not be able to keep up with the rate of transmis­
sion and should be able to inform the other party to stop while it catches up.

482

Chapter 13: The Serial Port with C

Table 13·1. RS·232·C Signals

Acronym

m
RD
RTS
CTS
DSR
RLSD
DTR

Meaning

Transmitted Data
Received Data
Request 1b Send
Clear 1b Send
Data Set Ready
Receive Line Signal Detector
Data Thrminal Ready

To
telephone
line

Modem or
Data Communication Equipment
(DeE)

Fig. 13·4. The RS·232·C connection.

Suppose the receiver has a buffer to store incoming characters. As the buffer
gets close to full, the receiver can send an XOFF character to the transmitter to
indicate that transmission should stop. Of course} the transmitter must under­
stand the meaning of XOFF and cease sending characters. Then when the re­
ceiver processes characters (e.g., puts them in a disk file) and the buffer empties}
it can send an XON to indicate that transmission can proceed. This scheme of
flow control is widely used because of its simplicity. In the serial communica­
tions package we will develop, we will be primarily concerned with full duplex
communication with XONIXOFF flow control.

Now that we have gone over some of the basics of asynchronous serial com-

483

Section 3: Working with the Hardware Interface

munications, let us roll up our sleeves and see how we can program the PC's
communications hardware.

Taming the UART

The most common communications hardware on the IBM PC and compatibles is
the serial or asynchronous communications adapter or serial adapter. This
adapter is based on the Intel 8250 UAR't has an RS·232·C port for connecting to
the communication channel (for example, the telephone line) via a modem, and,
like the graphics adapter, is programmable through a set of registers. The regis­
ters are accessible from the 8086 or 80286 microprocessor in the IBM PC
through predefined I/O port addresses. Note that the information presented in
this section is, of necessity, somewhat technical. However, everything will fall
into place once you go through the C code presented later and correlate it with
the material in this section.

The Intel 8250 UART is controlled by writing to or reading from a set of
internal data locations called registers. Each register can hold a byte. These reg­
isters are accessible to the programmer via port addresses. The port addresses
are assigned sequentially, so it is enough to know the address of the first port to
be able to find any other. This is also commonly known as the base address of the
serial adapter. In the IBM PC, the two serial ports COM1 and COM2 are assigned
base port addresses 3F8h and 2F8h respectively. Thus for the serial adapter
COM 1, the first register is at 3F8h, the next one at 3F9h and so on.

There are seven physical registers in the 8250 which we will investigate in
the order of increasing offsets from the base address (see Figure 13·5). At the
base port address, there is a single register which doubles as the receive buffer
register and the transmit holding register used to store a single character that is
received or is being transmitted. Next comes the interrupt enable register which
is used to enable, by setting the bit to 1, or disable interrupts that the serial
adapter is capable of generating. The third register, the interrupt identification
register, contains the UART's report on the identity of an interrupt. In the 3-bit
interrupt ID (bits 0-2), 110 means line status, 100 means received data, 010 means
transmit buffer empty, and 000 means modem status. Then comes the line con·
trol register used to set up various communications parameters such as word­
length, number of stop bits, parity, and baud rate. In bit 6, 1 sets the line to
SPACE. (See Essay 5, Advanced MASM Thchniques, by Michael Goldman, for ex­
amples showing how' to manipulate these bits in assembly language.) The fifth
register is the modem control register, which is used to send signals such as DTR
and RTS to the modem. Bit 3 must be 1 for interrupt I/O on PC. Finally, the last
two registers, the line status register and the modem status register indicate the
status of the line and the modem, respectively.

484

Port Address
of Register

Base Address

(Com1-3F8
Com2-2F8)

Base Address + 1

Base Address +2

Base Address +3

Base Address + 4

Base Address + 5

Base Address + 6

Chapter 13: The Serial Port with C

Receive Buffer Transmit Holding Register

Interrupt Enable Register

Interrupt Identification Register

3-bit Interrupt 10

Une Control Register

Modem Control Register

Une Status Register

Modem Status Register

Fig. 13·5. Registers in the 8250 UART.

The first two registers are also used in setting baud rates, but for the sake
of brevity, we will skip over some of these details, focusing our attention on only

485

Section 3: Working with the Hardware Interface

those aspects of programming the serial adapter that have a direct bearing on
our goal-to develop a serial communications package for the PC.

Interrupts vs. Polling

As you might already know, there are two common methods of I/O in any com­
puter system: polled and interrupt-driven. In polled I/O, the program requesting
the character repeatedly reads a status register in the I/O device until it indicates
that a character is available for input (or until the program decides to "time out").
When the status indicates that there is a character ready, the program reads the
character from the appropriate register in the I/O device. A similar sequence of
"wait until ready, then write" is used when writing characters out to the I/O de­
vice. Thus, the thread of execution of the program is held up until the I/O opera­
tion is complete. The polling refers to the repeated checking of the status
register of the I/O device to see if the desired transaction can be initiated. A big
problem with polled I/O through the communication port is that] at baud rates
above 300 baud] there is hardly any time available for the program to do any­
thing with the received character] even display it on the screen. Consider the
following example. Suppose you are reading characters at 300 baud and the
communication parameters are seven-bit wordlength] even parity] and one stop
bit] which with the start bit adds up to 10 bits per character. So you expect to
receive roughly 30 characters every second. After reading a character] your pro­
gram has about 1/30th of a second to do other chores. If you do not want to miss
any characters you must begin polling the port again before this time is up.
What happens when the speed is increased to 9600 baud? You guessed it! The
time interval between characters is too short to even put the received character
up on the display let alone interpret special characters and emulate a terminal.

In the interrupt-driven approach] the program enables interrupts from the
I/O device] assuming it is capable of signaling interrupts to the CPU, and then
goes about its own business without any concern about the device. Whenever
the device is ready for I/O] it signals the CPU via hardware. Upon receiving this
signal] the CPU saves its current state and invokes an interrupt service routine
whose address is stored in an interrupt vector table. This routine performs the II
o and then restores the state of the machine and returns control to the CPU.
Consider the case of characters arriving at the communication port of the PC. If
you set aside some memory locations to hold characters (a buffer)] you can use a
simple interrupt handling routine that quickly reads the character from the
communication port and saves it in the next available location in the buffer. As
long as the interrupt handler can read and save a character before another one
arrives] no characters will be lost. This simple task is easy enough to complete
even in the short time interval between characters at 9600 baud. The beauty of
this method is that it does not matter how long the main program takes to ma-

486

Chapter 13: The Serial Port with C

nipulate the characters saved in·the buffer. Of course, there is the risk of filling
up the buffer, but this can be remedied by simply increasing the size of the
buffer. If this is not good enough, there is XONIXOFF flow control to help us out.

From our discussion, it is clear that an interrupt-driven, buffered commu­
nication package with XONIXOFF flow control is preferred over a polled imple­
mentation, so we will develop an interrupt service routine that will, depending
on the cause of the interrupt, either read a character from the adapter and save
it in a receive queue or send out a character from a transmit queue. That way, our
main program (which may be a terminal emulator) can feed itself off the receive
queue and send out characters by simply placing them in the transmit queue.
How are interrupts enabled and and how are they serviced? Let's explore the
possibilities.

Servicing Interrupts from the Serial Adapter

The serial adapter on the PC can be programmed to interrupt the CPU when­
ever one of four things happens (see Figure 13-6). The UART assigns a priority to
each of these events. Table 13-2 lists the four interrupts.

ASCII Characters

~---~

1 A~ ~.l4.
...

Serial
Adapter

Interrupt~
enable reg.~

Interrupt~
identification L....l...Ll..Y

I
I

;
I

Interrupt
to 8259A

Fig. 13-6. Interrupts from the serial adapter.

The event with highest priority is the receive line status (RLS) interrupt.
This occurs when one of the following happens: the line goes dead Uogical 0) for
a period longer than that necessary to receive a character, a character is re­
ceived before the last one was read (an overrun error), there is a parity error, or

487

Section 3: Working with the Hardware lnteiface

Table 13-2. Serial Adapter Interrupts

Priority

1
2
3
4

Interrupt ID

Receive line status (RLS)
Receive data available (RDA)
Transmit holding register empty (THRE)
Modem status (MS)

no stop bit was found while assembling a character out of the received bits (a
framing error). This interrupt is processed by reading the line status register.

Next comes the receive data available (RDA) interrupt that occurs when a
character is ready in the receive buffer register. It can be cleared by reading the
character from that register. Of course, in our scheme of things, the character
will be squirreled away into a receive queue.

The transmit holding register empty (THRE) interrupt has the next priority.
As the name suggests, it occurs when the register assigned to hold the character
to be transmitted (same port address as the receive buffer register) is empty.
This interrupt is processed by writing into this register or by reading from the
interrupt identification register. The second method of clearing this interrupt is
necessary because sometimes, even though the UART interrupts to say the
transmit buffer is empty, there may not be anything to transmit.

The lowest priority interrupt is the modem status (MS) interrupt) and is
caused when the modem

asserts (sends) the CTS signal

indicates its readiness by setting the DSR line

receives a call, in which case the HI line becomes a logical 1

detects a carrier signal (the tone you hear when you dial a number and a
modem answers), which means the RLSD line is set to 1

This interrupt can be cleared by reading the modem status register.
Each of these interrupts may be turned on or off individually by setting

appropriate bits in the interrupt enable register. On the IBM Serial/Parallel
Adapter (as well as the IBM Asynchronous Adapter) the bit named OUT2 in the
modem control register must also be set to 1 before interrupts from the UART
can reach the CPU. When interrupts occur, the serial adapter arranges them
according to priority and indicates the pending interrupt of highest priority in
the interrupt identification register. The adapter stops responding to further in­
terrupts of equal or lower priority until it determines that the current one has
been serviced by the interrupt service routine.

488

Chapter 13: The Serial Port with C

8259A: The CPU's Receptionist

In the IBM PC (and compatibles) the CPU does not directly accept interrupts
from hardware devices such as the serial adapter. Rather, hardware interrupts
are first fielded by an Intel 8259A Programmable Interrupt Controller (PIC) chip.
The 8259A acts as the CPU's "receptionist." A programmable device, the 8259A
accepts up to eight distinct interrupts and can mask (i.e., ignore) interrupts indi­
vidually. The 8259A responds to each unmasked or allowed interrupt and for­
wards it to the CPU, provided no other interrupt of higher priority is being
serviced at that moment.

How does the 8259A assign priorities? Just as the UART has its method of
determining priorities of interrupts generated from the serial adapter, the
8259A also has its own scheme of assigning priorities to interrupts. The serial
adapter is only one of several hardware devices that can interrupt the 8259A.
Each device is hardwired or jumpered into distinct inputs known as interrupt
request URQ) inputs in the 8259A. That's why it is customary to talk about the
IRQ assigned to a hardware interrupt. Another feature is also tied to the IRQ of
an interrupt-the interrupt number used in referring to that particular inter­
rupt. On the mM PC, this number is eight plus the IRQ. This is the number used
by the CPU when looking up the address of the interrupt handling routine from
the interrupt vector table. Since the 8259A associates higher priorities with
lower IRQs, the hardware devices needing maximum attention have lower IRQ.
Thus the system timer gets IRQO, the keyboard has IRQl and so on. The two
communication ports COM1 and COM2 are respectively assigned IRQ4 and
IRQ3, resulting in interrupt numbers 12 and 11 (decimal). By the way, the inter­
rupt numbers must be known so that DOS function call (software Interrupt 21h)
with Function numbers 35h and 25h can be used for get and set interrupt vec­
tors, respectively. (See Essay 5, Advanced MASM Thchniques, by Michael Gold­
man, for a discussion on avoiding pitfalls in interrupt handling.)

A few more details to note: The CPU automatically disables all interrupts
when it transfers control to the actual software service routine for the current
interrupt. So unless we do something, while we are processing a character from
the serial port, the system timer, the keyboard and the disk will not be serviced.
Since many vital system functions rely on interrupts (for example, updating of
the system time), it is important to turn interrupts back on as soon as the service
routine gets control-with an STI SeT Interrupt f lag instruction. Although dur­
ing the servicing of an interrupt the 8259A inhibits further interrupts of the
same or lower priority, higher priority interrupts are still acknowledged, and if
the interrupt flag is set, our serial service routine will be interrupted. This will
then allow the timer, the keyboard, and the disk to interrupt our routine, al­
lowing them to function properly.

How do we tell the 8259A when the serial interrupt processing is complete?
Our service routine has to send an end-of-interrupt EOI command to the 8259A

489

Section 3: Working with the Hardware Interface

before returning control to the CPU. Although there are ways of indicating an
end-of·interrupt for a specific IRQ} for the priority scheme used in the PC it is
enough to send what is known as a nonspecific end-of-interrupt (code 20h) to
the 8259A} nonspecific because it does not specify which interrupt has been
serviced but simply tells the 8259A that the servicing is complete for the highest­
priority interrupt that has been acknowledged. This reenables acknowledgment
of further interrupts at that IRQ or lower.

Programming the 8259A

How do we program the 8259A? As with any hardware in the PC, the 8259A is
programmed via two command words (registers) at I/O port addresses 20h and
21h} respectively (see Figure 13-7). The register at 21h is used solely for masking
interrupts. An interrupt is masked (Le.) not acknowledged) if the bit correspond­
ing to its IRQ (counting from right to left with the rightmost bit assigned to IRQO)
is a logical 1. The port at 20h is used to send the end-of-interrupt command to
the 8259A. As we noted earlier, on the PC this is done by writing 20h to this port.

Various programming tricks follow from this scheme of things. The first
serial port in the IBM PC (known as COM1: to MS-DOS) is assigned IRQ4 (Inter­
rupt number 12)} and the second one (COM2:) has IRQ3 (Interrupt 11). Thus, the
8259A can be programmed to acknowledge interrupts from COM1: by reading
from the port at 21h and writing back the contents logically ANDed with EFh.
Interrupts from COMl: may be masked by repeating the above step but DRing
with 10h in place of the logical AND. Programming devices in this manner, by
first reading the contents of a register and then writing back again with the ap­
propriate bit altered} is recommended because that way we do not disturb any

. prior bit settings.

Sorr~ We Don't Do Much BIOS

After being swamped by all this information, you are probably wondering if we
could do all these via the BIOS? Unfortunately, the answer is no. Unlike the mini­
mal support for the graphics adapter, the BIOS provides hardly anything in the
way of controlling the serial adapter for us. The BIOS does have a function, Inter­
rupt 14h, to access the serial adapter. Unfortunately, this function only supports
polled I/O which is not much help because of the drawbacks of polling we have
outlined earlier. However, this function is ideal for the initial setting up of the
parameters of the communication port, and we will make use of this function in
our package to save code. Another useful built-in feature of the BIOS is that dur­
ing the Power On Self 18st (POST) phase, it checks for the existence of serial
adapters COM1 and COM2 and if it finds either, the address of the first register

490

Chapter 13: The Serial Port with C

Interrupt
to CPu

r---1--------,

ttttttm.·.··.·-End of Interrupt
Port 20h . EOI =20h

8
2
5
9
A

Port 21h

_IRQ

1 =MASK Interrupt
0= Allow Interrupt

Programmable Interrupt ControllerL -- _

COM2:} PC's
Serial

'---- COM1: Ports

.Fig. 13·7. The 8259A programmable interrupt controller.

of each adapter is stored in an area of memory beginning at offset zero of seg­
ment 40h. Since, in the PC, a 20-bit physical address equals 10h x 16-bit segment
+ I6-bit offset, if your PC has a single serial adapter designated as COM1:, the
physical location 400h would contain 3F8h. So in our interrupt-driven package,
we will get the port address of the serial adapter from this BIOS data area at
offset 0 and segment 40h.

We need to go over just a few more details before we can design the com­
munications package. The serial adapter in the PC supports full duplex commu­
nication (that means, we can transmit and receive simultaneously) with the
following programmable parameters. Using BIOS Interrupt 14h, the baud rate
can be set to 110, 150,300,600,1200,2400,4800, or 9600 baud. The parity can be
one of none, odd, or even, but the line control register may be directly pro­
grammed for space or mark parity as well. Either one or two stop bits are al­
lowed and the wordlength can be seven or eight bits.

491

Section 3: Working with the Hardware Interface

Queues for the Interrupt Handler

We have mentioned the use of buffers to save received characters. Conceptually,
the buffer should behave like a checkout line at the supermarket cash register.
The incoming characters line up one after another and the program reading the
characters takes the first one in the line and processes it, then takes the next,
and so on. This type of buffer is known as First In First Out or FIFO buffers.
They are also called queues.

Figure 13-8 shows the conceptual realization of a queue. The queue natu­
rally has a front and a rear. In an actual implementation, the queue size, Le., the
maximum number of characters it can hold, is fixed. It is convenient to think of
the storage locations assigned to the queue as a circle so that once we go past the
last location we come back to the first one again. This makes efficient use of the
limited space available in the queue, and is called circular implementation.
1remblay and Sorenson (1984,217-23) describe algorithms to implement a circu­
lar queue.

Out

In

Fig. 13·8. A circular FIFO buffer (queue).

Summary

Programming the serial adapter for interrupt-driven I/O requires that we do the
following:

492

Chapter 13: The Serial Port with C

1. Get the base port address of the selected communication port from BIOS
data area at segment 40h and offset o.

2. Using MS-DOS Function, 35h, get the address of the old interrupt service
routine for the interrupt number corresponding to this adapter and save
it.

3. Using MS-DOS Function 25h, install our own interrupt service routine
for that interrupt number.

4. Set up the communication parameters of the adapter using BIOS Func­
tion 14h.

5. Set up the receive and transmit queues to hold incoming and outgoing
characters.

6. Thrn on signals needed by modem (e.g., DTR and RTS in the modem con­
trol register).

7. Enable all interrupts from the adapter (by setting bits 0 through 3 of the
interrupt enable register to 1).

8. Thrn on the bit OUT2 in the modem control register to enable interrupts
from the serial adapter.

9. Program the 8259A to recognize interrupts with the IRQ of this adapter
(by setting the appropriate bit to zero in the interrupt mask register ac­
cessed through the port address 21h).

At some point, when the user decides to terminate the communication ses­
sion, a Ilcleanupn routine should be called involving the following steps:

1. Thrn off interrupts from the serial adapter.

2. Reset the bits in the modem control register.

3. Restore the old interrupt service routine.

4. Mask the interrupts for this IRQ in the 8259A.

Specifications for Our Serial Communications
Package

Based on what we know so far, the specifications for our serial communication
package are fairly simple. We want to be able to perform interrupt-driven, buff­
ered 110 from the serial communications adapter configured as either COM 1 or
COM2. We need one buffer to store received characters and another one for
characters waiting to be transmitted. The buffers ensure that the interrupt han­
dler has some place to save characters and return control to other processing as

493

Section 3: Working with the Hardware lnteiface

quickly as possible. In case the buffer should fill up, we want to allow XONIXOFF
flow control. As we mentioned earlier} many installations respond only when a
BREAK signal is received so our software must be able to send a BREAK. This
requires that the line be held in a spacing state for a period longer than the time
it takes to send all the bits of a character at the current baud rate. (Generally, 250
milliseconds is long enough.) The user should be able to set communications
parameters such as baud rate, wordlength, number of stop bits and parity easily.
Some computers often play games with the unused eighth bit in a byte repre­
senting a character. For example, one might set the eighth bit to 1, another might
require that this bit be always O. In order to be able to keep up with these incon­
sistencies, the software should have the ability to selectively turn the eighth bit
of each byte to 1 or to 0 while transmitting or receiving. In order to test the
package, we also need a main routine. We will go over the major pieces one by
one. You may find it convenient to consult the listings at the end of this essay as
we go through the design.

Since there will be a lot of reference to the listings, Tables 13-3 through 13-6
show the sequence in which they appear and a short description of the func­
tions contained in Listings 13-2 through 13-5. (There is no table for Listing 13-1,
Makefile for Microsoft MAKE, because it is short.)

Table 13-3. Listing 13-2: Main Program COMTEST. C

Function

mainO
connect()
sendfile()
newparams()
showparams()

Description

Main routine to test package
Connects over serial line as a dumb terminal
Sends file to serial port
Changes communications parameters
Displays current settings of communications parameters

Table 13·4.

Function

_s _inthndlr
_s_cli
_s_sti

Listing 13·3: Assembly Language Portion of Package

Description

Saves current contents of OS register in a location in its code segment, in­
voked from C as s saveds ().
Interrupt handler for serial port, calls s_mai nhnd l r 0 in Listing 13-5.
Disables interrupts
Enables interrupts

The main program in Listing 13-2 shows typical usage of the functions in
our communications package. Listing 13-1 has the makefile that can be used
with Microsoft's MAKE to prepare the executable version of the test program

494

Chapter 13: The Serial Port with C

COMTEST. The package itself consists of some assembly language routines shown
in Listing 13-3, the C routines in Listing 13-4 that provide the capability to buffer
characters, and the C routines in Listing 13-5 to handle interrupts and perform
setup and cleanup operations.

Table 13-5. Listing 13-4: The Circular Buffer (Queue) Package

Function

q_setup()
q_reset()
q_getfromO
q_puton()

Description

Allocates storage and initializes circular queue
Deallocates queue
Returns next element in queue
Inserts new element into queue

Table 13-6. Listing 13-5: C Portion of Package, SERIAL. C

Function Description

s _mainhndlr()
s_rlsO
s_rdaO
s_trmtyO
s_msO
s_setupO
s _intiniH)
s_cleanupO

s_intoff()
s _setcommparams()

s _setvals()
s _ vtblsrch()
s_getvals()
s _sendchar()
s_rcvcharO
s_txqempty()
s _sendbreak()
s_delayO

Overview

Handles interrupts from PC's serial port
Handles receive line status interrupt
Handles receive data available interrupt
Handles transmit holding register empty interrupt
Handles modem status interrupt
Sets up serial port and the 8259A for interrupt-driven I/O
Enables interrupts from serial port
Cleans up before exiting to DOS by disabling interrupts from se·
rial port and restoring old interrupt vector
Disables interrupts from serial port
Sets up communications parameters of serial port using BIOS
Function 14h
Internal utility routine to set new value for a parameter
Routine to search internal table for a string
Returns string containing value of a parameter
Places character on transmit queue
Returns character from receive queue
Returns 1 if transmit queue is empty
Sends BREAK signal
A coarse timer used by s_sendbreak <>

Figure 13-9 shows a flow chart for the program COMTEST. C (Listing 13-2). This
program is provided so you can test the serial communications package. The
main program accepts optional command line arguments specifying communi­
cations parameters such as baud rate, parity, port number, etc. First it goes over
these arguments and calls the function s_setvaLs<> to enter the name of each

495

Section 3: Working with the Hardware Interface

Maln()

Print Greetings
and process command·
line arguments

Prompt for Input
and read a character
and convert to uppercase

Connect () Call s_ setup() to
r-------.;....;.....-.t~ set up communication

for interrupt I/O

Call s_rcvchad) to
read a character from
receive queue

Display current
communication
parameters

Use s_setva/s()
to set parameter
values

Call send fileO
to transmit a
file over
communication port

Display a
list of the
commands

Put it in
transmit
queue by
calling
s_sendchar

Call
s_sendbreak
to send a
BREAK signal

NO Call s_cleanup
to reset everything

Fig. 13·9. Flow chart of test program COMTEST.

496

Chapter 13: The Serial Port with C

parameter and its value into an internal table maintained in the file SERIAL. C

(Listing 13-5). This table is used to translate the value of each parameter entered
by the user into an internal form. For example, this allows us to enter the string
"even" as the value of the parameter named parity even though internally "even
parity" is denoted by the integer 3. The internal forms are dictated by what BIOS
accepts, but we see no reason to burden the user with these details. So,
s_setvals<> essentially hides the details and makes it easy for us to enter new
values for the parameters.

After processing the command-line arguments, the program enters an end­
less loop to accept single character commands and process them until it receives
the command q. You can get a list of the commands by typing h. (Commands can
be entered in either lower- or uppercase, and are converted to uppercase.) A ?

displays the current parameter settings by calling the function showparams () to
do this. New communication parameters can be entered by typing p. The C func­
tion newpa rams <> will prompt you for the names and the values of the parame­
ters you want to change. Two commands follow that are more interesting
because they actually perform serial communications.

The s command calls the function sendf; leO to transmit a file over the
serial port. Ifyou happen to have your printer hooked up to the serial port, you
can use this function to print files. This can be very handy because most printers
with a serial interface require the use of XONIXOFF flow control but the PRINT

command under MS-DOS does not use XONIXOFF. In other words, using this
function as a model, you can write your print utility for printers hooked up to
the PC's serial port.

The last and most interesting command is c that calls the C function con­
nect () which emulates a "dumb" terminal. This is the typical way a package like
this might be used. The following is a detailed description of how connect 0
works.

First, the communication port is set up by the routine s_setupO. This gets
the address of the serial port from the BIOS data area in segment 40h and sets up
various masks for enabling and disabling interrupts from the serial adapter. It
uses DOS Function 35h to get and save the address of the current interrupt han­
dler for serial interrupts, following which it installs our package's interrupt han­
dler s_; nt hnd l rOusing the DOS function call with Function 25h. Then it calls
the routine s_setcommparams 0 which uses the RS232 interrupt (14h) of the BIOS
to set the communication parameters. Next the value of the DS register is saved
by calling s_saveds () (Listing 13-3). This is a crucial step because, as you will see,
our interrupt handler calls a C routine to do the actual work. All important vari­
ables are in the C function's data segment. That is why we must save the value of
DS in the assembly code so that data is accessible during interrupt handling.
After this step, memory is allocated for the transmit and the receive queues and
some internal variables are initialized to default values. Finally, interrupts are
enabled by calling s_intinitO.

After setting up the serial port, connect () falls into an endless loop that

497

Section 3: Working with the Hardware Interface

first calls s_rcvchar 0 which returns a character if there are any in the receive
queue or returns a 1 otherwise. If a character is returned, it is simply displayed
and the keyboard is checked for any unprocessed keystrokes. If there are none,
the routine returns to the beginning of the loop. If a character is found waiting
in the keyboard buffer, it is read. As long as this character does not match a
predefined special character (DEFAULT_ESC in the listing), the character is placed
on the transmit queue by calling the routine s_sendcharO from the package}
and then the loop is repeated.

Why is there a predefined special character? It allows us to exit from the
endless loop and provides a way to send a BREAK signal. If a match with the
special character is found, the routine waits for one more character, and if that
character is a q it exits after performing the necessary cleanup functions by call­
ing the routine s _cleanup (). If it is a b, a BREAK signal is sent by calling
s_sendbreak O.

The routine s_cleanup () is used to reset everything at the end of a commu­
nication session. This routine calls s_; ntoff () to turn off all interrupts from the
serial adapter and mask the interrupt at the 8259A. Then the original interrupt
vector for the serial interrupt is restored. Finally, the storage allocated to the
transmit and receive queues is released.

How is the BREAK signal sent? The routine s_sendbreak 0 first puts the line
in a spacing state by setting bit 6 of the line control register (LCR) to a logical 1.
The BIOS time-of-day interrupt (number lAh) is used to achieve a delay of ap­
proximately 250 milliseconds, at the end of which bit 6 of LCR is reset to logical
O. This delay is achieved by calling the C routine s_delayO (Listing 13-5).

The other two routines we mentioned, s_sendcharO and s_rcvcharO, are
high-level interfaces to the communications package. Using these routines, you
can place characters in and retrieve characters from the transmit and the re­
ceive queues.

How are the characters magically appearing in the receive queue and disap­
pearing from the transmit queue? All this is happening behind the scenes cour­
tesy of our friendly interrupt handler that was duly installed as the guardian of
the serial port when s_setupO was called.

FIFO Buffers

For buffered I/O, there must be some FIFO buffers set up to hold incoming and
outgoing characters while they are waiting to be processed. As described ear­
lier, we have chosen to implement a circular queue. Listing 13-4 shows QPAC. C­

an implementation of a generic circular FIFO buffer. The routine q_setupO is
used to allocate memory for a queue and initialize some internal variables such
as front and rea r indices of the queue. Notice that the number of elements in the
queue and the size of each element are selected by the programmer by passing

498

Chapter 13: The Serial Port with C

them as parameters when calling q_setupO. The queue is deallocated by
q_resetO.

Of course, there must be a way to put elements on the queue and retrieve
the first element in the queue. These functions are performed by the routines
q_putonO and q_getfromO, respectively.

Serial Interrupt Handler

Now let us jump right into the heart of the package-the interrupt service rou­
tine for the serial adapter. In the previous sections, we outlined the actions that
should be performed by this interrupt service routine. It should first turn on
interrupts (with an STI instruction) and save the current state of the machine (by
pushing all the registers onto the stack), then read the interrupt identification
register of the 8250 DART to determine which one of four events caused the
interrupt. Next, it should perform the action necessary to clear the interrupt. If
it is either a line status interrupt or a modem status interrupt, the handler sim­
ply reads the line or the modem status register. If there is received data available,
the handler reads the character from the DART's receive buffer and inserts it
into the receive queue. If the interrupt indicates that the transmit holding regis­
ter is empty and if the transmit queue is not empty, a character is retrieved and
written out to the transmit holding register. After the processing is complete, an
EOI (20h) should be sent to the 8259A and the registers should be restored. Then
the routine should return by using an IRET (return from interrupt) instruction.
(This is one reason why we must have some assembly language routines in our
package.) Remember, an IRETinstruction is necessary to return from interrupts.

The C routine s _rna i nh nd l r 0 (serial main handler) services the interrupts
from the serial port by calling one of the routines: s_r ls () for line status inter­
rupt, s_rdaO for receive data available, s_trrntyO when the transmit holding
register is empty, and s_msO for modem status changes. Figure 13-10 is a flow
chart for the complete interrupt handler.

The installed interrupt handler in our package is the assembly language
routine s_inthndlrO shown in Listing 13-3. Immediately after saving the regis­
ters, this routine calls s_rnai nhnd l r 0 in SERIAL. C(Listing 13-5) which services the
interrupt as outlined above. There is only one tricky part in this arrangement.
The compiled version of the C routines in SERIAL. Cwill use the segment register
DS to point to the area in memory where the variables and data are stored. At
the time when the interrupt from the serial port occurs, there is no certainty
that the DS register contains a value appropriate for the routines in SERIAL. C. We
call this the problem of "establishing the addressability of the data!' This prob­
lem can be solved by saving the value of the DS register (appropriate for the
routines in file SERIAL. c) at a location in the code segment of the assembly lan­
guage routine during the setup (Le., when s_setupO is called). From then on,
whenever the assembly language routine s _ i nt hnd l r () gets called because of an

499

Section 3: Working with the Hardware Interface

Assembly Language
Routine s_lnthndlr C portion of Interrupt handler

(s_ malnhndlr)

Set OS to value
saved earlier so that
data in C routine can
be accessed properly

Send EOI
to 8259A
port 20h

Process according to inUd

(1) MOMSTATUS: call s_ms()
to read modem status register

(2) TXAEGEMPTY: call s_trmty()
to put a char in Tx holding
register

(3) RXOATRAREAOY: call s_rda()
to get character from receive
buffer and save in queue

(4) RLiNESTATUS: call s_rls()
to read line status register

Fig. 13·10. Flow chart of interrupt handlen

interrupt, the 80X86 microprocessor will load the cs register with the code seg·
ment of this routine and the saved value will always be accessible for loading the
DS register before calling the C routine s_mainhndlrO. Specifically, we call the
assembly language routine s_saveds 0 (Listing 13-3) from the C routine
s_setupO (Listing 13·5) during setup. This is the routine that saves the DS regis·
ter (corresponding to the segment address of the data in the file SERIAL. c) in a
location in the code segment of the assembly language routine.

Notice that in s_mainhndlrO, interrupts are processed until no further in·
terrupts are pending. This ensures that interrupts from the serial adapter, that
may have occurred while an earlier interrupt was processed, don't get lost.

There are two more assembly language routines in the file SERASM.ASM.

These routines, s_s t i () and s_eLi (), are used to set and clear the interrupt flag,

500

Chapter 13: The Serial Port with C

respectively. It is necessary to disable interrupts in some parts of the serial pack­
age. For example, suppose you are installing an interrupt handler for the serial
port. This means you are inserting the segment and the offset address of your
routine into the CPU's interrupt vector table. What if an interrupt from the serial
port should occur just after you've changed the segment address in the vector
table, but before the offset is altered? With the CPU jumping off to this indeter­
minate address, the results could be unpredictable and most likely, very unwel­
come. So it is important to disable all interrupts during these crucial periods.

Our Package and Microsoft C

One of our goals was to implement as much of the communications package as
possible in Microsoft C (we used version 4.0). As you can see by examining the
listings, this is quite possible. Assembly language routines are only needed to
perform the functions return from interrupt and set/clear interrupt flag be­
cause Microsoft C has no functions to do these. We make use of the Microsoft C
library functions inpO and outpO to read from and write to port addresses.
The communications parameters are set up by accessing BIOS via the function
int860. Similarly, DOS functions are accessed through intdosxO. The DOS
functions are used to get (Function number 35h) and install (Function 25h) inter­
rupt vectors.

A note on memory models available in Microsoft C. The "large" memory
model in the Microsoft C compiler uses full 32-bit (16-bit segment and 16-bit off­
set) data and code pointers. This makes it slow compared to, for example, the
"small" model which assumes that everything fits into two physical segments­
one for code and one for the data. The large model has the benefit of allowing
truly large-scale programs.1b keep things simple, we have used the large model.
Since the package works at 9600 baud with this model, it should also work with
the small memory model. 1b change to the small model, you will have to replace
the keyword FARin the assembly language routines with the keyword NEAR. Also,
in the makefile (Listing 13-1), the line MODEL=L should be replaced with MODEL=S

before reconstructing the executable. Other variations such as "mixed" memory
models are also possible, but we will not consider them here.

Our serial communications package and this essay were prepared prior to
the release of version 5.0 of the Microsoft C compiler. Prerelease announce­
ments and "beta test" reports indicate that the run-time library will be expanded
considerably in version 5.0 with the inclusion of many new routines, most nota­
bly in the categories of graphics, memory allocation, and MS-DOSIBIOS inter­
face. Among the new routines for interfacing with the hardware are ones that
can enable and disable 80X86 interrupts. There will also be a new attribute
(named interrupt) for functions that tells the compiler to treat the function as an
interrupt handler. This will instruct the compiler to use a "return from inter­
rupt" instead of a "return from subroutine call" as the last instruction in the com-

501

Section 3: Working with the Hardware Interface

piled code. With these new features, it should be possible to write the serial
communications package entirely in Microsoft C 5.0 with no need for routines
written in Assembler.

Testing the Package

Listings 13-3, 13-4, and 13-5 constitute our serial communications package. Use
the makefile COMTEST in Listing 13-1 to prepare the executable COMTEST. EXE.

The routines were compiled with Microsoft C 4.0 using the large memory
model and tested on an IBM PC AT (PC-DOS 3.1) with an IBM SeriallParallel
Adapter. The dumb terminal was used at 9600 baud to communicate with a VAX!
VMS system without any problem. COMTEST also successfully printed files at 9600

baud on an Imagen laser printer using XONIXOFF flow control.

Conclusion

Our serial communications package supports interrupt-driven, buffered I/O
through the serial port, and may be used in application programs such as termi­
nal emulators, file transfer utilities, and smart interfaces for minis and main­
frames. The way it relies on a minimal amount of assembly language
programming and uses C routines to service the interrupts could serve as an ex­
ample if you want to develop C-based interrupt handlers. The information pre­
sented in this essay may serve as a reference guide to those who are interested in
developing other interrupt-driven applications, especially those involving asyn­
chronous communications.

Of course there is much room for improvement in the package. One obvi­
0us function we can add is an XMODEM file transfer protocol with CRC error­
checking, but we will have to save that for another time.

The routines have been tested at speeds of 1200 through 9600 baud and
found to work properly. However, the testing was far from thorough, so you may
very well find some bugs. If you do, feel free to fix them and drop us a line.

Program Listings and the Makefile

Listing 13·1. Makefile for Microsoft MAKE

##
#

continued

502

COM T EST

Makefile for COMTEST.EXE--a program to test an asynchronous
communications package for IBM PC and compatibles.

Copyright ~ 1987 Nabajyoti Barkakati
Copies may be made for noncommercial, private purposes only.

Chapter 13: The Serial Port with C

File:
#
#
#

#
#
#
#
##

MODEL=L

SRC=.
INC=.

CFLAGS=-A$(MODEL) -I$(INC) -Gs -Od
modelsize incl. nostkchk noopt.

MSC=msc $(CFLAGS)
ASM=masm

General inference rules
Rule to make .OBJ files from .C files

.C.OBJ:
$(MSC) $*.C",;

.ASM.OBJ:
$(ASM) $*.ASM",;

Make object files

COMTEST.OBJ: $(SRC)\COMTEST.C

SERIAL.OBJ: $(SRC)\SERIAL.C

QPAC.OBJ: $(SRC)\QPAC.C

SERASM.OBJ: $(SCR)\SERASM.ASM

Make the executable

continued

503

Section 3: Working with the Hardware Interface

COMTEST.EXE: $(SRC)\COMTEST.OBJ $(SRC)\SERIAL.OBJ $(SRC)\QPAC.OBJ\
$(SRC)\SERASM.OBJ
LINK $**, $Cili
ERASE $(SRC)*.LST
ERASE $(SRC)*.COD

################### End of File: COMTEST #########################

Listing 13·2. Main Program, COMTESrcC

1*--*1
1*
* Filename:
* Purpose:

*
*
*
* Language:
* Usage:

*

COM T EST • C
Test an asynchronous communication package for
IBM PC and compatibles.
This version was developed on an IBM PC-AT with
an IBM Serial Card. DOS version 3.1 was used.
Microsoft C 4.0
Use makefile COMTEST with Microsoft MAKE.

* Sample invocation:
* "comtest baud 9600 parity none wordlength 8 stopbits 1"

*
*
*
*
*
*

When you run COMTEST.EXE you can set the
communication parameters, send a file over
the communication line, and connect to the
serial port as a "dumb" terminal.

* Copyright ~ 1987 Nabajyoti Barkakati
* Copies may be made for noncommercial, private purposes only.

*
* Date Started:
* Revisions: V1.00

10-JAN-1987
9-FEB-1987 -- First working version. (NB)

*1
1*--*1
#include <stdio.h>
#include <conio.h>
#include <ctype.h>

#define TRUE 1
#define FALSE 0
#define BUFSIZE 512

continued

504

Chapter 13: The Serial Port with C

#define CONTROL(x) (x-Ox40)
#define DEFAULT_ESC CONTROl(']')

extern int s_setup(), s_sendchar(), s_rcvchar(), s_setvals(),
s_cleanup(), s_txqemptY()i

extern void s_sendbreak()i
extern char *s_getvals()i

static char buffer[BUFSIZE]i

static char helplist[] =
lI\n\

q exit.\n\
c connect to serial port.\n\
s send a file over serial port.\n\
? show status.\n\
p set new communication parameters.\n\
h print this list.\n"i

main(argc, argv)
i nt argci
char *argv[] i
{

static void connect(), newparams(), sendfile(), showparams()i
int ch, i, codei
printf("\nCOMTEST 1.0 -- Testing Serial Communications\nll)i
printf("Type H for help, ? for parameters.\n")i

1* Setup communication port. Use parameters specified by user
* on command line, if any. Sample invocation:
* comtest baud 9600 parity none word length 8 stopbits 1
*1

if (argc > 1) {
for (i = 1i i < argci i += 2) {

if (s_setvals(argv[i], argv[i+1]) -- 0) {
fprintf(stderr,

"Error setting parameter: %s to value: %s\n",
argv[i], argv[i+1])i

)

)

)

1* Accept and respond to user command *1
continued

505

Section 3: Working with the Hardware Interface

while (TRUE) {
printf("\nCOMTEST> II);

ch = getcheO;
code = toupper(ch);
switch (code) {

case 'Q': exit(O);
case 'C': connect()i

break;
case '5': sendfile();

breaki
case 'P': newparams();

break;
case '1': showparams()i

breaki
case 'H': printf(helplist)i

}

}

}

1*--*1
1* con n e c t
* Connect over serial port as a dumb terminal.
*1

static void connect()
{

int ch, nxti
printf(l\nConnecting ••• \n")i

1* First set up the serial port *1
s_setupO i

1* The following endless loop simulates a very dumb terminal.
* We first get a character from the receive queue, print it,
* then check if any keystrokes are waiting. If a key was
* struck, it's read in and sent out to the transmit buffer.
* This sequence of steps is repeated until user hits the
* A] (CTRL and]) keys together)--then a 'b' sends out
* a BREAK signal and a 'q' cleans up everything and returns.
*1

while (TRUE) {
if «ch = s_rcvchar(» != -1) putch(ch)i
i f (kbh itO !=0) {

ch = getchOi
if (ch == DEFAULT_ESC) {

printf(lI\n'b' to send BREAK, 'q' to quit\n");
nxt =getch()iif (nxt -- 'b' :: nxt == 'B') {

continued

S06

Chapter 13: The Serial Port with C

s_sendbreak 0 ;
}

if (nxt == 'q' :: nxt -- 'Q') {

s_c leanupO;
return;

}

}

else {
s_sendchar(ch);

}

} 1* End of kbhit() check *1
}

}

1*--*1
1* sen d f i l e
* Send a file over the serial port.
*1

static void sendfile()
{

regi ster i nt i, j;

int readcount;
unsigned long bytecounti
char filename[40J;
FILE *infile;

printf("\nEnter name of file to be transmitted: II);

scanf("%s", filename);
1* Open file for binary read only *1

if «infile = fopen(filename, "rb"» == NULL> {
fprintf(stderr, "Error opening file: %s\n", filename);
return;

}

printf("Transmitting file ••• \n");
1* First set up the communications port *1

s_setupO;
bytecount = 0;
j =0;
while (TRUE) {

1* Read in a "chunk" from the file into a buffer *1
readcount = fread(buffer, sizeof(char), BUFSIZE, infile);
bytecount += readcounti
for (;=0; ; < readcount; i++) {

1* Keep sending each character until successful *1
continued

507

Section 3: Working with the Hardware Interface

while «s_sendchar(buffer[iJ» != 1);
}

j++;
if (j == 10) {

j =0;
printf("%lu", bytecount);

}

else {
putch('.');

}

if (readcount < BUFSIZE) {
printf("(end)\nTransmitted %lu characters.\n",

bytecount);
1* Now wait until the transmit queue is emptied out *1

while (s_txqempty() != TRUE);
1* Close comm port and return *1

s_c leanupO;
return;

}

}

}

1*--*1
1* new par a m s
* Set new parameters in the communications package.
*1

static void newparams()
{

int chi
char pname[20J, pvalue[20J;
while (TRUE) {

printf("\nParameter name (Q to quit): II);

scanf("%s", pname);
ch =pname[OJ;
if (toupper(ch) == 'Q') return;
printf("Change %s from %s to: ", pname,

s_getvals(pname»;
scanf("%s", pvalue);
if (s_setvals(pname, pvalue) == 0) {

fprintf(stderr,
"Error setting parameter: %s to value: %s\n",
pname, pvalue);

}

continued

508

Chapter 13: The Serial Port with C

eLse {
printf("%s is now %s\n", pname, pvalue):

}

}

}

1*--*1
1* s how par a m s
* Show current parameters.
*1

static void showparams()
{

Settings\n"):
VaLue\n"):

=%s\n", s_getvaLs("port"»:
=%s\n", s_getvaLs(flbaudfl »:
=%s\nfl , s_getvaLs("wordLengthfl »:
=%s\nfl , s_getvaLs(flstopbitsfl »:
=%s\nfl , s_getvaLs(flparityfl»:
=%s\n", s_getvaLs(flxonxoff"»:
=%s\n", s_getvaLs("nulL_ignore lt»:
=%s\n", s_getvals(lIdeL_ignore"»:
=%s\n", s_getvals(1t8thbitO_on_rx lt»:
=%s\n lt

, s_getvals("8thbit1_on_rx"»:
=%s\n", s_getvals("8thbitO_on_tx"»:
=%s\nfl , s_getvaLs(II8thbit1_on_tx"»:

printf(fl\n Current
printf(fl Name
printf(flport
printf(flbaud
printf(flwordLength
printf("stopbits
printf("parity
printf(flxonxoff
printf("nulL_ignore
printf(fldel_ignore
printf("8thbitO_on_rx
printf(fl8thbit1_on_rx
pr; ntf ("8thbi to_on_tx
printf(fl8thbit1_on_tx

}

1*------------------- END OF FILE: COMTEST.C -------------------*1

Listing 13·3. Assembly Language Portion of Package

;---
FiLename:
Purpose:

Usage:

S ERA SM. A S M
AssembLy Language routines to support interrupt
handling in an asynchronous communication package
for IBM PC and compatibLes.
Routines caLLed from Microsoft C 4.0 programs.

Copyright ~ 1986, 1987 Nabajyoti Barkakati
Silver Spring, MD 20904

Right to use, copy, and modify this code is granted for personaL
noncommerciaL use, provided that this copyright discLosure is
retained on aLL copies. ALL other rights reserved.

continued

509

Section 3: Working with the Hardware Inteiface

Date Started:
Revisions: V1.00

10-DEC-1986
9-FEB-1987--First working version. (NB)

;--
TITLE
SERASM_TEXT
SERASM_TEXT

SERASM
SEGMENT BYTE PUBLIC 'CODE'
ENDS

EXTRN _s_mainhndlr:FAR
ASSUME CS:SERASM_TEXT
SERASM_TEXT SEGMENT
PUBLIC _s_saveds
PUBLIC _s_inthndlr
PUBLIC _s_cli
PUBLIC _s_sti

510

DW 0

PROC FAR
ClI
PUSH ax
MOV ax,ds
MOV WORD PTR cs:save_ds,ax
POP ax
STI
RET
ENDP

PROC FAR
STI
PUSH bp

PUSH ds
PUSH es
PUSH ax
PUSH bx
PUSH cx
PUSH dx
PUSH si
PUSH di
MOV ax, WORD PTR cs:save_ds
MOV ds, ax
CAll _s_mainhndlr
POP di

continued

Storage for DS

Set DS to value
saved earlier
Call C int handler

Chapter 13: The Serial Port with C

Interrupts back on
and return.

Turn off interrupts
and return.

routine turns off interrupts.
PROC FAR
CLI
RET
ENDP
routine turns on interrupts.
PROC FAR
STI
RET
ENDP
ENDS

POP si
POP dx
POP cx
POP bx
POP ax
POP es
POP ds
POP bp
IRET
ENDP

s c Li
The following

s sti

s sti
SERASM_TEXT
END

i------------------- END OF FILE: SERASM.ASM --------------------

_s_inthndlr
The following

s cLi

Listing 13-4. The Circular Buiier (Queue) Package

1*--*1
1*
* FiLename: Q PAC. C
* Implements a circular queue in Microsoft C 4.0.

*
* Copyright ~ 1986, 1987 Nabajyoti Barkakati
* Copies may be made for noncommerciaL, private purposes onLy.

*
*1

1*--*1
#incLude <stdio.h>
#incLude <maLloc.h>

typedef struct QTYPE {
continued

511

section 3: Working with the Hardware Interface

int count;
int front;
int rear;
int elemsize;
int maxsize;
char *data;

} QTYPE;

QTYPE *q_setupC);
char *q_getfromC);
int q_putonC), q_resetC);

1*--*1
1* q _ set u p
* Allocate a queue with room for specified number of characters.
* The argument elemsize is the size of each data element.
*1

QTYPE *q_setupCmaxsize, elemsize)
unsigned maxsize, elemsize;
(

QTYPE *queue;
if CCqueue = CQTYPE *) callocC1,sizeofCQTYPE») == NULL){

fprintfCstderr,"Ran out of memory in queue setup!\n");
return CNULL> ;

}

queue->maxsize =maxsize;
queue->elemsize =elemsize;
if CCqueue->data =callocCmaxsize,elemsize» == NULL){

fprintfCstderr,"No room for data in queue setup!\n");
returnCNULL> ;

}

1* Initialize queue *1
queue->front =neg]1;
queue->rear =-1;
Queue->count =0;
returnCqueue);

}

1*--*1
1* q _ res e t
* Deallocate a queue and its data area.
*1

int q_resetCqueue)
QTYPE *queuei

continued

512

Chapter 13: The Serial Port with C

{

free (queue->data);
free «char *)queue);

}

1*--*1
1* q _ get fro m
* Copy next data element in queue to specified location.
* Also return the pointer to this element.
*1

char *q_getfrom(queue, data)
QTYPE *queuei
char *datai
{

regi ster int i, j i
char *current;
current = NULL;
if(queue->front == -1) return(current);

1* Else retrieve data. Copy elemsize characters into data. *1
if (queue->elemsize == 1){

current = &(queue->data[queue->front]);
*data = *current;

}

else {
for(i=O,j=queue->front * queue->elemsizei

i<queue->elemsize; i++, j++){
*(data+i) = queue->data[j]i

}

current =
&(queue->data[queue->front * queue->elemsiz~]);

}

queue->count--i
if(queue->count -- 0) {

1* The queue is empty. Reset front and rear, and the count. *1
queue->front = queue->rear = -1;
return(current)i

}

1* Increment front index and check for wraparound *1
if(queue->front == queue->maxsize-1) {

queue->front = 0;
}

else {
queue->front++;

}

continued

513

Section 3: Working with the Hardware Interface

return(current)i
}

1*--*1
1* q _ put 0 n
* Put a data element into queue.

*1
int q_puton(queue, data)
QTYPE *queuei
char *datai
{

register int i, ji
1* First check if queue is full. Return 0 if full. *1

if(queue->count == queue->maxsize) return(O);
1* Else, adjust rear and check for wraparound *1

if(queue->rear == queue->maxsize-1){
queue->rear = 0;

}

else {
queue->rear++i

}

1* Save data in queue. Copy elemsize characters *1
if Cqueue->elemsize == 1){

queue->data[queue->rearl =*datai
}

else {
forCi=O,j=queue->rear * queue->elemsizei

i<Queue->elemsizei i++, j++){
queue->data[jl = *(data+i)i

}

}

queue->count++i
if(queue->front == -1) queue->front = Oi
return(1); 1* SuccessfulLy inserted eLement *1

}

1*-------------------- END OF FILE: QPAC.C --------------------*1

Listing 13-5. C Portion of Package, SERIAL.C

1*--*1
1*

continued

514

* Filename:
* Purpose:

*
*
*
*
*
* Language:
* Usage:

*
*
*
*
*
*
*
*

Chapter 13: The Serial Port with C

S E R I A L • C
An asynchronous communication package for
IBM PC and compatibles. Supports asynchronous
communication adapters based on Intel 8250
UART (or compatible).
This version was developed on an IBM PC-AT with
an IBM Serial Card. DOS version 3.1 was used.
Microsoft C 4.0
This a set of routines that provides basic
functions for asynchronous communication.
Call s_setvals to set parameters and s_getvals
see parameter values. Call s_setup to setup
port for communications. Use s_sendchar and
s_rcvchar to send and receive characters
respectively. A BREAK may be sent by calling
s_sendbreak.

* Copyright ~ 1986, 1987 Nabajyoti Barkakati
* Si lver Spring, MD 20904
* Right to use, copy, and modify this code is granted for personal
* noncommercial use, provided that this copyright disclosure is
* retained on all copies. All other rights reserved.

*
* Date Started:
* Revisions: V1.00

10-DEC-1986
9-FEB-1987--First working version. (NB)

*1
1*--*1

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <dos.h>
#include <conio.h>

#define TRUE 1
#define FALSE 0
#define EOS '\0'

1* Definitions for the 8259 Programmable Interrupt Controller *1
#define P8259_0 Ox20 1* Address of int control register *1
#define P8259_1 Ox21 1* Address of int mask register *1
#define END_OF_INT Ox20 1* Nonspecific EOI *1

1* Define some ASCII characters *1
continued

515

Section 3: Working with the Hardware Interface

#define NUL_ASCII
#define XON_ASCII
#define XOFF_ASCII
#define DEL_ASCII

(0)

(Ox11)
(Ox13)
(Ox7f)

1* Address of BIOS data area (segment 40h, ofset 0) *1
#define BIOS_DATA «int *)(Ox400000L»

1* Some interrupt vectors *1
#define BIOS_RS232 Ox14
#define BIOS_TOO Ox1a

1* Defines for BREAK *1
#define BREAK_ON Ox40
#define BREAK_OFF Oxbf

1* Time of day interrupts occur once every 18.2 seconds *1
#define TOO_INTERVAL (1000.0/18.2) 1* Interval in milliseconds *1

1* Interrupt Enable Register *1
1* Interrupt Identification *1
1* Line Control Register *1
1* Modem Control Register *1
1* Line Status Register *1
1* Modem Status Register *1

+ 1)
+ 2)

+ 3)
+ 4)
+ 5)

+ 6)

(comport
(comport
(comport
(comport
(comport
(comport

1* The address of the comm port is in the integer
* 'comport'. This variable is initialized by reading from
* the BIOS data area at segment Ox40.
*1

#define IER
#define IIR
#define LCR
#define MCR
#define LSR
#define MSR

1* Individual Interrupt Enable Numbers *1
#define RDAINT 1
#define THREINT 2
#define RLSINT 4
#define MSINT 8

1* Modem Control Register value *1
#define MCRALL 15 1* (DTR, RTS, OUT1 and OUT2 =1) *1
#define MCROFF 0 1* Everything off *1

1* Interrupt Enable Register value to turn on/off all into *1
#define IERALL (RDAINT+THREINT+RLSINT+MSINT)
#define IEROFF 0

continued

516

Chapter 13: The Serial Port with C

1* Some masks for turning interrupts off *1
#define THREOFF Oxfd

1* Interrupt identification numbers *1
#define MDMSTATUS 0
#define TXREGEMPTY 2
#define RXDATAREADY 4
#define RLINESTATUS 6

1* Some flags *1
#define XON_RCVD 1
#define XOFF_RCVD 0
#define XON_SENT 1
#define XOFF_SENT 0

1* Hi and low percentages for xon-xoff trigger *1
#define HI_TRIGGER(x) (3*x/4)

#define LO_TRIGGER(x) (x/4)

1* Function to get bit 0 of an integer *1
#define bitO(i) (i & Ox0001)

1* Function to turn on interrupt whose "Interrupt Enable Number"
* is 'i', in case it has been disabled. For example, the
* THRE interrupt is disabled when an XOFF is received from the
* remote system.
*1

#define turnon_int(i,j) if«(j=inp(IER»&i)==O)outp(IER,(j:i»

#define report_error(s) fprintf(stderr,s)

typedef struct QTYPE {

int counti
int fronti
int reari
int elemsizei
int maxsizei
char *datai

} QTYPEi

typedef struct VTBLTYPE {
char *vnamei
int value;

continued

517

Section 3: Working with the Hardware Interface

} VTBLTYPEi

typedef struct NTBLTYPE {
char *pnamei
VTBLTYPE *vtblentrYi
int *p_valuei
VTBLTYPE *p_vtablei
int vtblsizei

} NTBLTYPEi

1* Functions accessible by user *1
int s_sendchar(), s_rcvchar(), s_setvals(), s_setup(),

s_cleanup(), s_txqemptY()i
void s_sendbreak(), s_delaY()i
char *s_getvals()i

1* Global status indicators *1
int s_linestatus, s_modemstatus, s_rbocount, s_totalcount,

s_rlscount, s_rdacount, s_trmtycount, s_mscounti

extern
extern
extern
extern

QTYPE
char
int
void

*q_setupO i

*q_getfromO i
q_puton(), q_reset()i
s_inthndlr(), s_cli(),

static void s_rls(), s_rda(), s_trmtyO, s_ms 0 i
static void (*p_newhndlr) 0 i
static QTYPE *txq, *rxqi
static union REGS xr, yri
static struct SREGS sri

static VTBLTYPE b_table[] ={

"110" , 0,
"150", 1,
"300", 2,
"600", 3,

"1200", 4,
"2400", 5,
"4800", 6,
"9600", 7

}i

static VTBLTYPE p_table[] ={

continued

518

"none", 0,
"odd", 1,
"even", 3

}i

stat;c VTBLTYPE s_table[] = {

"1", 0,
"2", 1

}i

stat;c VTBLTYPE w_table[] = {

"7", 2,
"8", 3

}i

stat;c VTBLTYPE port tablet] = {

"1" , 0,
"2", 1

}i

stat;c VTBLTYPE onoff_table[] = {
"off", 0,
"on", 1

}i

Chapter 13: The Serial Port with C

stat; c ; nt port_number = 0,
comport=O,
baudrate = 4,
par;ty = 0,
stopb;ts = 0,
word length = 3,
txqs;ze = 1024,
rxqs;ze = 2048,
enable_xonxoff = 1,
rcvd_xonxoff = XON_RCVD,
sent_xonxoff = XON_SENT,
null_;gnore = TRUE,
del_;gnore =TRUE,
b;t7_1_rx = FALSE,
b;t7_0_rx = TRUE,
b;t7_1_tx = FALSE,
b;t7_0_tx = FALSE,
send_xon = FALSE,

continued

519

Section 3: Working with the Hardware Interface

send_xoff = FALSE,
seg_oLdvector =0,
off_oLdvector =0,
pckd_comparams =OxS3,
int_number =12;
int_enabLe_mask =Oxef,
int_disabLe_mask = Ox10;

static NTBLTYPE pname_tabLe[] ={
"baud", &(b_tabLe[4l>, &baudrate,

b_tabLe, (sizeof(b_table)/sizeof(VTBLTYPE»,
"parity", &(p_tabLe[O]), &parity,

p_table, (sizeof(p_tabLe)/sizeof(VTBLTYPE»,
"stopbi ts", &(s_tab Le[O]) , &stopbi ts,

s_table, (sizeof(s_tabLe)/sizeof(VTBLTYPE»,
"wordLength", &(w_tabLe[1]), &wordLength,

w_tabLe, (sizeof(w_table)/sizeof(VTBLTYPE»,
"port", &(port_tabLe[O]), &port_number,

. port_tabLe, (sizeof(port_tabLe)/sizeof(VTBLTYPE»,
"xonxoff", &(onoff_table[1]), &enable_xonxoff,

onoff_table, (sizeof(onoff_table)/sizeof(VTBLTYPE»,
"nuLL_ignore", &(onoff_table[1]), &nuLl_ignore,

onoff_tabLe, (sizeof(onoff_table)/sizeof(VTBLTYPE»,
"del_ignore", &(onoff_table[1]), &del_ignore,

onoff_table, (sizeof(onoff_table)/sizeof(VTBLTYPE»,
"SthbitO_on_rx", &(onoff_tabLe[1]), &bit7_0_rx,

onoff_table, (sizeof(onoff_table)/sizeof(VTBLTYPE»,
"Sthbit1_on_rx", &(onoff_tabLe[O]), &bit7_1_rx,

onoff_table, (sizeof(onoff_table)/sizeof(VTBLTYPE»,
"SthbitO_on_tx lI , &(onoff_tabLe[O]), &bit7_0_tx,

onoff_tabLe, (sizeof(onoff_tabLe)/sizeof(VTBLTYPE»,
IISthbit1_on_tx", &(onoff_tabLe[O]), &bit7_1_tx,

onoff_tabLe, (sizeof(onoff_tabLe)/sizeof(VTBLTYPE»
};

#define pnmtbl_size (sizeof(pname_table)/sizeof(NTBLTYPE»

/*--*1
1* sma ; n h n d l r
* Main interrupt handler for all serial port interrupts.
* CaLLed by the assembly routine s_inthndLr.
*1

int s_mainhndlr()
{

continued

520

Chapter 13: The Serial Port with C

int c;
register int int_id, intmask;
while CTRUE) (

1* Read the interrupt identification register, IIR *1
int_id = inpCIIR);
if CbitOCint_id) == 1) (

1* If bit ° is 1, then no interrupts pending. Send an end of
* interrupt signal to the 8259A Programmable Interrupt
* Controller and then return.
*1

outpCP8259_0, END_Of_INT);
return;

}

s_totalcount++;
if Cint_id >= RXDATAREADY) turnon_intCTHREINT,intmask);

1* Process interrupt according to ide
* The following list is in increasing order of priority.
*1

switch Cint_id) {
case MDMSTATUS:

case TXREGEMPTY:

case RXDATAREADY:

case RLINESTATUS:

1* Just fall through if id is
}

}

s_ms 0;
break;
s_trmtyO;
break;
s_rdaO;
break;
s_rlsO;
break;
none of the above *1

}

1*--*1
1* s r l s
* Process a "receive line status" interrupt
*1

static void s rLs()
(

register int intmask;
1* Read Line status and save it in 's_linestatus' *1

s_Linestatus = inpCLSR);
s_rLscount++;

}

continued

521

Section 3: Working with the Hardware Interface

1*--*1
1* s r d a
* Process a "receive data avaiLabLe" interrupt
*1

static void s rdaC)
{

register int intmask;
char c;

1* Read from comport *1
c = inpCcomport);
s_rdacount++;
ifCenabLe_xonxoff) {

ifCc == XON_ASCII) {
rcvd_xonxoff = XON_RCVD;

1* Turn on THRE interrupt if it's off. *1
turnon_intCTHREINT,intmask);
return;

}

ifCc == XOFF_ASCII) {
rcvd_xonxoff = XOFF_RCVD;

1* Turn off THRE interrupts. *1
intmask = inpCIER);
if Cintmask & THREINT) outpCIER, intmask & THREOFF);
return;

}

}

ifCnuLL_ignore && c == NUL_ASCII) return;
ifCdeL_ignore && c == DEL_ASCII) return;
ifCbit7_1_rx) c := Ox80;
ifCbit7_0_rx) c &= Ox7f;
ifC q_putonCrxq, &c) == O){

1* Increment receive buffer overfLow count *1
s_rbocount++;

}

1* Check if queue is almost C75%) full *1
ifCenabLe_xonxoff){

ifCrxq->count >= HI_TRIGGERCrxqsize) &&
sent_xonxoff != XOFF_SENT) {

1* Set fLag to send XOFF *1
send_xoff = TRUE;

1* and turn on THRE interrupts so that we can send the XOFF *1
turnon_intCTHREINT,int~ask);

}

continued

522

Chapter 13: The Serial Port with C

}

}

1*--*1
1* s t r m t y

* Process a "transmit hoLding register empty" interrupt
*1

static void s_trmty()
{

char c;
register int iervaL;

s_trmtycount++;

if (send_xoff == TRUE) (
outp(comport, XOFF_ASCII);
send_xoff = FALSE;
sent_xonxoff = XOFF_SENT;
return;

}

if (send_xon == TRUE) (
outp(comport, XON_ASCII);
send_xon = FALSE;
sent_xonxoff = XON_SENT;
return;

}

1* Put a character into the transmit hoLding register *1
if(q_getfrom(txq, &c) != NULL){

if(bit7_1_tx) c := Ox80;
if(bit7_0_tx) c &= Ox7f;
outp(comport, c);
return;

}

1* Nothing to send--turn off THRE interrupts *1
iervaL = inp(IER);
if (ierval &THREINT) outp(IER, iervaL & THREOFF);

}

1*--*1
1* s m s
* Process a "modem status" interrupt
*1

static void s_ms()
{

continued

523

Section 3: Working with the Hardware Interface

1* Read modem status and save in 's_modemstatus' *1
s_modemstatus = inp(MSR);
s_mscount++;

}

1*--*1
1* s _ set u p
* Sets up everything for communication. Call this routine
* after parameter values have been specified (by s_setparams).
* Return 1 if setup successful, else return O.
*1

int s_setupO
{

int i;
static void s_intinit();

if (port_number < 0 :: port_number> 1)
report_error("Invalid port number!\n");

1* Get port address from BIOS data area and save in 'comport' *1
comport =*(BIOS_DATA + port_number);
if (comport == O){

report_error("BIOS could not find port!\n");
return(O);

}

1* Set up masks for 8259A PIC. To enable interrupt from the
* port this mask is ANDed with the mask register at 21h.
* To disable, OR the disable mask with the mask register.
* The interrupt number is 8+the IRQ level of the interrupt.
* Com port 1 has IRQ 4, port 2 has IRQ 3.
*1

if (port_number == 0) {
int_enable_mask =Oxef;
int_disable_mask = Ox10;
int_number =12;

}

if (port_number == 1) {
int_enable_mask = Oxf7;
int_disable_mask =8;
int_number =11;

}

1* Get oLd interrupt vector and save it. Use DOS function 35h *1
xr.h.ah =Ox35;
xr.h.al = int_number;
segread(&sr);

continued

524

Chapter 13: The Serial Port with C

intdosx(&xr, &yr, &sr);
off_oldvector =yr.x.bx;
seg_oldvector = sr.es;

1* Install new interrupt service routine, use DOS function 2Sh *1
p_newhndlr =s_inthndlr;
xr.h.ah = Ox25;
xr.h.al = int_number;
xr.x.dx = FP_OFF(p_newhndlr);
segread(&sr);
sr.ds = FP_SEG(p_newhndlr);
intdosx(&xr, &yr, &sr);

1* Set up communication parameters *1
s_setcommparams();

1* Call assembly language routine to save current value of OS *1
s_savedsO;

1* Setup the transmit and receive queues *1
if ((txq =q_setup(txqsize, sizeof(char») == NULL){

report_error("Error creating transmit queue!\n");
return(O);

}

if ((rxq =q_setup(rxqsize, sizeof(char») == NULL){
report_error("Error creating receive queue!\n");
return(O);

}

1* Reset all counts and flags. *1
s_rbocount =0;
s_totalcount =0;
s_rlscount =0;
s_rdacount =0;
s_trmtycount =0;
s_mscount =0;

rcvd_xonxoff = XON_RCVD;
if (sent_xonxoff == XOFF_SENT) {

send_xon =TRUE;
}

else {
send_xon = FALSE;

continued

525

Section 3: Working with the Hardware Interface

}

send_xoff = FALSE;

1* Turn on interrupts from the comm port and setup 8259A *1
s_cliO;
s_ i nt i ni to;
s_sti 0;

return(1);
}

1*--*1
1* s n tin i t
* Start up interrupts from the serial board. Also set up
* 8259A to accept the interrupts. This routine should be
* invoked with the interrupts turned off, i.e., inside a
* CCLI---STI) pair.
*1

static void s_intinitC)
{

i nt i ntmask;

1* Set up modem control register Cport =MCR) *1
outpCMCR, MCRALL);

1* Enable all interrupts on the serial card Cport = IER) *1
outpCIER, IERALL);

1* Read 8259A's interrupt mask register and write it back after
* ANDing with int_enable_mask.
*1

intmask = inpCP8259_1) &int_enable_mask;
outpCP8259_1, intmask);

}

1*--*1
1* s c lea n u p
* Cleanup after comm session is done. Turns off all interrupts.
*1

i nt s_c leanupO
{

1* Turn off interrupts from serial card *1
s_cliO;

continued

526

Chapter 13: The Serial Port with C

s_intoffO i

s_sti 0 i

1* Restore orginal interrupt vectors *1
xr.h.ah = Ox25;
xr.h.al = int_numberi
xr.x.dx = off_oldvectori
sr.ds = seg_oLdvectori
intdosxC&xr, &yr, &sr)i

1* DealLocate space used by the transmit and receive queues *1
q_resetCtxq)i
q_resetCrxq)i

}

1*--*1
1* sin t 0 f f
* Turn off aLL interrupts after comm session is done.
* ShouLd be caLled with interrupts cleared.
*1

static void s intoffC)
{

int intmaski

1* First reset the Interrupt Enable Register on the comm card *1
outpCIER, IEROFF)i

1* Turn off all bits of Modem Control Register *1
outpCMCR, MCROFF)i

1* Next disable 8259A from recognlzlng ints at this IRQ level *1
intmask = inpCP8259_1) int_disable_maski
outpCP8259_1, intmask)i

}

1*--*1
1* s _ set com m par a m s
* Set up basic communication parameters by using BIOS interrupt
* number 14h, function 0 (ah=O).
*1

int s_setcommparamsC)
{

1* Set up communication port parameters. Use BIOS INT 14h, AH=O *1
pckd_comparams = (baudrate « 5) : Cparity « 3)

Cstopbi ts « 2) : Cword length) i

continued

527

Section 3: Working with the Hardware Interface

xr.h.ah = 0;
xr.h.al = pckd_comparams;
xr.x.dx = port_number;
int86(BIOS_RS232, &xr, &yr);

1* Copy status into "s_linestatus" and "s_modemstatus" *1
s_linestatus = yr.h.ah;
s_modemstatus = yr.h.aL;

}

1*--*1
1* s v t b l s r c h

* Searches a vaLue string in specified tabLe. Returns index if
* found. Returns -1 if string not in table. (InternaL Routine)

*1
static int s_vtblsrch(string, table, size)
char *string;
VTBLTYPE *table;
int size;
{

i nt i;
for (i = 0; i < size; i++) {

if ((strcmpi(string, table[iJ.vname» -- 0) (
return(i);

}

}

return(-1);
}

1*--*1
1* sse t val s
* Set the value string for a named parameter.
* Return 1 if ok, 0 otherwise.

*1
int s_setvals(name, vaLs)
char *name, *vaLs;
{

static int s_vtbLsrch();
int i, j, retvaL;

retval = 0;
1* First search tabLe for parameter name *1

for (i=O; i<pnmtbl_size; i++) {
if (strcmpi(pname_table[iJ.pname, name) == 0) {

1* Now search the table for the value string *1
continued

528

Chapter 13: The Serial Port with C

if «j = s_vtblsrch(vals, pname_table[iJ.p_vtable,
pname_table[iJ.vtblsize» != -1) {

*(pname_table[iJ.p_value) =
(pname_table[iJ.p_vtable)[jl.value;

pname_table[iJ.vtblentry =
&«pname_table[iJ.p_vtable)[jl);

retval = 1;
}

break;
}

}

return(retval) ;
}

1*--*1
1* s _ get val s
* Return the value string corresponding to a named parameter.
* Returns NULL in case of error.

*1
char *s_getvals(name)
char *name;
{

int i;
for (i=O; i<pnmtbl_size; i++) {

if (strcmpi(pname_table[iJ.pname, name) == 0) {
return«pname_table[il.vtblentry)->vname);

}

}

return (NULL) ;
}

1*--*1
1* sse n d c h a r
* Puts a character into transmit queue. Returns 1 if all's ok,
* 0 if there were problems.
*1

int s_sendchar(ch)
int chi
{

int retval, intmaski

retval = q_puton(txq, &ch)i
1* Turn on THRE interrupt if it's off and an XOFF was not received*1

if (rcvd_xonxoff != XOFF_RCVO)turnon_int(THREINT,intmask);
return(retval) ;

continued

529

Section 3: Working with the Hardware Interface

}

1*--*1
1* s r c v c h a r
* Returns a character from the receive queue.
* Returns -1 if queue is empty.

*1
i nt s_rcvchar 0
{

int ch, intmaski
1* If we had sent an XOFF earlier, we might have to send an XON *1

if(enable_xonxoff){
if(rxq->count <= LO_TRIGGER(rxqsize) &&

sent_xonxoff != XON_SENT) {
send_xon =TRUE;
turnon_intCTHREINT,intmask);

}

}

if (q_getfrom(rxq, &ch) -- NULL) {
return(-1)i

}

else {
return(ch);

}

}

1*--*1
1* s _ t x q e m p t y

* Returns 1 if txq (transmit queue) is empty, else returns O.
* Need when sending file.

*1
i nt s_txqempty 0
{

if (txq->count == 0) {
return (TRUE);

}

else {
return (FALSE)i

)

}

1*--*1
1* sse n d b rea k
* Send a break signal (hold line in spacing state for 250 ms).

*1
void s_sendbreak()

continued

530

Chapter 13: The Serial Port with C

{

int lcrval:
1* Turn on bit 6 of LCR to initiate BREAK signal *1

lcrval = inp(LCR) : BREAK_ON:
outp(LCR, lcrval>:
s_delay(250.0):

1* Turn off bit 6 of LCR to end the BREAK signal *1
lcrval = inp(LCR) & BREAK_OFF;
outp(LCR, lcrval>:

}

1*--*1
1* s del a y
* Delay for 'd_ms" mi lUseconds. Resolution -55 mi lUseconds.
* WARNING: This is a very "coarse" timer.
*1

void s_delay(d_ms)
double d_ms;
{

int ticks;
long oldcount, newcount;

1* Get timer ticks for this delay *1
ticks = (int)(d_ms 1 TOO_INTERVAL + 0.5):
xr.h.ah =0:
int86(BIOS_TOD, &xr, &yr):

1* On return CX has high count and OX has low count.
* The high count is incremented every 65,536 low counts.
*1

oldcount = (long)« (long)(yr.x.cx) « 16) :
(unsigned) yr.x.dx):

newcount =oldcount:
1* Now keep checking count until difference between new and
* old counts is 'ticks'.
*1

while «newcount - oldcount) < ticks) {
int86(BIOS_TOD, &xr, &yr)i

if (yr.h.al != 0) {
1* The timer has crossed 24 hours *1

newcount = (long)« 24L «16) (unsigned) yr.x.dx):
}

else {
newcount = (long)« (long)(yr.x.cx) « 16)

(unsigned) yr.x.dx)i
}

continued

531

Section 3: Working with the Hardware Interface

}

}

1*------------------- END OF FILE: SERIAL.C -------------------*/

The source code for the serial communications package described in this
article is available on a 360KB double-sided double-density IBM PC diskette
(DOS 3.1) for $9.95. (check or a money order) from LNB Software, Inc.;
2005 Aventurine Way; Silver Spring, MD 20904.

Reading List

Note that although we have presented all pertinent details necessary to develop a
serial communications package, we could not discuss all aspects of data commu­
nications. For your convenience, we are including this list of references. The
recent book by Campbell (1987) discusses "communications programming" from
the viewpoint of C programmers working with MS-DOS or CP/M machines. Mc­
Namara's book (1982) has a wealth of technical information on all aspects of data
communications in general. The book by LaFore (1984) is an excellent guide on
assembly language programming for the IBM PC, and Prata's book (1986) is very
helpful if you are a programmer trying to make the most of the PC and MS-DOS.
For detailed information on the serial adapter and interrupt handling in the PC,
you can consult the IBM reference manuals directly, but we hope that after hav­
ing read this essay, you will not find it necessary to do so-at least not until you
need information on exact meanings of the internal registers of the asynchro­
nous communications hardware on the PC. The book on data structures by
'fremblay and Sorenson (1984) has algorithms on pp. 219-223 to implement a cir­
cular queue. Campbell, J. 1987. C Programmer's Guide to Serial Communications.
Indianapolis: Howard W Sams & Company.

da Cruz, F: 1987. KERMIT-A File Transfer Protocol. Bedford: Digital Press.

IBM. 1984. Personal Computer AT Technical Reference Manual. Part #1502243.
North Tarrytown, New York.

--.1984. Options and Adapters Technical Reference Manual. Part #6322509.
North Tarrytown, New York.

Intel Corporation. 1981. iAPX 86,88 User's Manual. Publication #21201-001. Santa
Clara, California.

532

Chapter 13: The Serial Port with C

LaFore, R. 1984. Assembly Language Primer for the IBM PC. New York: New
American Library (PlumelWaite).

McNamara, J. 1982. Technical Aspects of Data Communications. Bedford: Digital
Press.

Prata, S./The Waite Group. 1986. Advanced C Primer + +. Indianapolis: Howard
~ Sams & Company.

'Iremblay, J., and :Po Sorenson. 1984. An Introduction to Data Structures with Appli­
cations. New York: McGraw-Hill Book Co.

Nabajyoti Barkakati works as an electronics engineer for a well·known research
laboratory. He began his programming career in 1975, and has worked extensively
with FORTRAN, C and several assembly languages (PDP·1t 80X86). He remains an avid
programmer, primarily interested in developing communications and graphics soft­
ware on the IBM PC and the Macintosh. He has a Ph.D. in electrical engineering from
the University of Maryland.

Related Essays

1 A Guided Thur inside MS-DOS
6 Undocumented MS-DOS Functions

10 Developing MS-DOS Drivers

533

"

','

'Keywords

:.' 8JqJanded: mePlory systems'
,',

;:~;. Expcmde&:.Memany {(EMS),

,'-~, Ei1hCUlced:~8tiaedjMemp~_~l

"'... expanded,mEtmoty ,ttliUlag~

device drivers

Ulem.~ry ,man~g$ent

..-._._ __ ._._._-- ._ __._-~ _--,--~ .. _.. _-._.._.,-_._--_ .• _ -- .' .
, .__._-~--~---- ..._....- .. - ...- -. _. ~_._'-.- -.- ';'." ." ,- _... -- - -_ .. -._-:- .--..

-, ,:8_-.,. -Synopsis: '1bdays,~pplicatiqns
".,' ,o~enlpr~~s;agaiil8t~e64QKJiniitforad­

_,~s~~bla:,'memory WJ.derMS.D@S'Jespe'·"
';~!alJy'·-Wheit memory is being,shaned with
'!I.~~~_@;l·me~~i'E'8lg~1l1i p~gram~·-,:~"
~tlil.lt~d;;m~~o~ ;~Y8~em8offer~'o.llP.ortu,.

··;==:itJ:~~~~::d~~
,-"m~mi}tfqE;,$g~d~(jl'imE!mp~Suppo.rtis
';gF~~»l,:8JJJ.~·!PllqgralPID(;);r8;'an~o~en.calle4:

,~pon. ,taproYi,de it Witl).. new Qr;reyisE!d,' ,
'Pf.<,i4b.,cta. ,-mn$rSSSi\ye.xplaitls; dif!ereRt stan"

" 'd@qs:{or:'E!xp~ndedJ.;mempty ,(ENl,Sa.nd
',-~MS.};at:lq'JPrQViq~S'a:8Utnn'iary af thefunc~
,~Q~,,~~'t'l~~~e~fQt.,~,pr,Q~aJP.to' access .
··8rl.d!,m.~g~,~~p~d~.dDlemoiw. Ue gives an
-'OlitljI)eQf~thestrategyneeded forrecogniz..

, ~g,-thc;, 1:YPe"of~Ssupportpresent, and
p~e8 example Iistlngs of key:routines.

14

Understanding Expanded
Memory Systems

Ray Duncan

The Intel 8086 and 8088 microprocessors, which serve as the heart of the orig­
ina} IBM PC and most of its compatibles, can directly address up to one megabyte
of memory. In the IBM PC architecture, the bottom 640K of this address space is
available for use by MS-DOS and the programs which run under its control. The
upper 384K are reserved for use by various adapter boards and for test pro­
grams and device drivers in read-only memory (ROM). Personal computers
based on the Intel 80286 and 80386 microprocessors are physically capable of
addressing much larger amounts of RAM, but run MS-DOS in so-called real
mode (8086 emulation mode) where they are still subject to the same one-mega­
byte limitation.

In the early days of the IBM PC and MS-DOS, a 640K program space seemed
simply enormous. After all, most of the first MS-DOS programs were ported
from 8080 and Z-80 systems running under CP/M, where 64K of memory was
the maximum and 32K systems were not unusual. But within three years, sev­
eral events conspired to make the 640K space seem suddenly crowded after all.
Completely new applications were written that were able to take full advantage
of the larger address space, a new class of immensely popular applications
called Terminate and Stay Resident (fSR) emerged, and MS-DOS itself rapidly
grew larger as it was enhanced to support networks and fixed disks. (See Essay 1,

A Guided Thur inside MS-DOS, by Harry Henderson, for a general discussion of
changes in MS-DOS, and Essay 7, Safe Memory-Resident Programming (TSR) by
Steven Baker.)

Lotus, Intel, Microsoft EMS

In order to prolong the useful life of the 8086/88-based PCs, Lotus Development
Corporation and Intel Corporation worked together on a method to increase the

535

Section 3: Working with the Hardware Interface

amount of fast storage available to MS-DOS applications. The result of their col­
laboration, the Expanded Memory Specification (EMS) version 3.0, was an­
nounced at the Spring COMDEX in 1985. Shortly afterward, Microsoft
announced support for the EMS, and that Microsoft Windows would be up­
graded to use the memory made available by EMS hardware and software. EMS
version 3.2, modified from 3.0 to add support for multitasking operating sys­
tems, was released in August 1985 as a joint effort of Lotus, InteL and Microsoft
and is commonly referred to as the LIM EMS.

Enhanced Expanded Memory

In response to the first Intel and Lotus announcement, AST Research, a manu­
facturer of popular add-on memory boards for IBM PC compatibles, formulated
a competitive memory expansion approach called the Enhanced Expanded
Memory Specification (EEMS). The AST design was upward compatible from the
original EMS, but technically more complex and specifically directed at improv­
ing the performance of multitasking operating systems. It was subsequently en­
dorsed by Ashton-Tate and Quadram, modified for compatibility with the LIM
EMS version 3.2, and became popularly known as the AQA EEMS.

In August 1987, Lotus, Intel, Microsoft, and the other interested parties an­
nounced Expanded Memory Specification version 4.0. EMS 4.0 reconciles the
previous EMS 3.2 and EEMS specifications, is upward compatible from EMS 3.2,
raises the limit on the maximum amount of expanded memory which may be
installed in a system, and adds many new capabilities for the benefit of mul­
titasking program managers such as DESQView and Microsoft Windows.

It is apparent, as this book goes to press, that the Expanded Memory Speci­
fication has been a tremendous success. EMS compatible expansion boards are
available from scores of manufacturers, and an incredible variety of software
products, including all of the most popular spreadsheets and integrated envi­
ronments, have been revised to take advantage of EMS memory when it is availa­
ble. (Representative products that support LotuslIntellMicrosoft EMS and/or
AST Research/Quadram/Ashton-Tate EEMS are included in the Reading List at
the end of this essay.)

What Is Expanded Memory?

The LotuslIntellMicrosoft EMS and the AST/Quadram/Ashton-Tate EEMS are
functional specifications of bank-switched memory subsystems. Bank-switch­
ing is a technique whereby one out of many logical memory pages can be made
available for access by the central processor in a window at a predetermined
physical address, somewhat like bringing one card out of a deck to the top

536

Chapter 14: Expanded Memory Systems

where it can be read. It was first widely employed on Apple II and S-100 bus
computers in the late 1970s, to overcome the memory size limitations and the
slow floppy disk access times on those machines.

An EMS or EEMS compatible memory subsystem consists of one or more
user-installable expanded memory boards which are plugged into the IBM PC
expansion bus and resident driver program-the Expanded Memory Manager
(EMM)-provided by the board manufacturer. Thgether, the boards and driver
allow an application program to gain access to as much as 8 megabytes of ran­
dom access storage (32 megabytes in the case of EMS 4.0) in a hardware-inde­
pendent manner. The application calls on the driver to map 16K pages of
expanded memory in and out of the microprocessor's usual 1-megabyte address
space as they are needed (see Figure 14-1). The driver accomplishes this mapping
by writing expanded memory logical page numbers to specific CPU I/O ports,
which are in turn physically connected to page registers on the memory boards.

Expanded Memory

8M ----------------

Transient
Program

Area

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Boundary

I MS-DOS and Ivaries
its buffers. tables.
and device drivers

---------------- 1KInterrupt Vector Table
---------------- OK

Fig. 14·1. Relationship of expanded memory to conventional
memory.

537

Section 3: Working with the Hardware Interface

The EMS 3.2, EEMS, and EMS 4.0 specifications differ mainly in where the
expanded memory pages may be mapped to main memory, and how many pages
may be so mapped simultaneously. LIM EMS 3.2 allows four 16K pages to be
mapped at a time into a contiguous 64K area called a pageframe. The location of
the page frame is user-configurable so that it will not conflict with other hard­
ware expansion options, but it is always located above the 640K area controlled
by MS-DOS. Thus, since the expanded memory pages lie outside the area recog­
nized by the operating system, they cannot be used for the execution of pro­
grams but only for storage of data.

In the AQA EEMS or EMS 4.0 design, on the other hand, more than four
expanded memory pages can be mapped into memory at once, and the pages
can be mapped anywhere within the CPU's one-megabyte address space. This
makes it possible for specially designed multitasking managers (such as Quarter­
deck System's DESQView) or operating systems (such as Digital Research's Con­
current PC-DOS) to use expanded memory for storage of executable program
code and very fast switching between processes. However, for upward compati­
bility with the LIM EMS 3.2, the AQA EEMS and EMS 4.0 require that the mem­
ory area used to map the first four 16K pages (referred to in the the AQA EEMS
as windows) be contiguous.

Expanded Memory vs. Extended Memory

Expanded memory should not be confused with extended memory. Although
the two terms sound almost identical, they refer to completely different types of
storage. Extended memory is the term used by IBM to refer to the memory at
physical addresses higher than 1 megabyte (100000H) that may be accessed by
an 80286 or 80386 microprocessor executing in protected mode. Since MS-DOS
runs on these processors in real mode, extended memory is not directly accessi­
ble to MS-DOS-based application programs. Most machines contain ROM BIOS
routines and special hardware support that allow it to be used for storage by
electronic disk (RAMdisk) drivers, however.

Protected mode operating systems such as Microsoft's XENIX or OS/2, on
the other hand, can take full advantage of extended memory for storage of both
executable programs and data. Protected-mode 80386 virtual machine manag­
ers, such as Windows/386, can even take advantage of the 80386's page registers
to simulate the presence of expanded memory by remapping extended memory.

Expanded Memory Manager

The EMM provides the hardware-independent interface between application
programs and the expanded memory board(s). The EMM is supplied by the man-

538

Chapter 14: Expanded Memory Systems

ufacturer in the form of an installable device driver compatible with MS-DOS
version 2.0 or later. (See Essay 10, Developing MS-DOS Device Drivers, by Walter
Dixon, for the theory and practice of installable device drivers.) The EMM itself
is not sensitive to the version of MS-DOS that is running, but installable device
drivers were not supported under MS-DOS versions 1.0 and 1.1.

The user installs the EMM by copying the file containing the driver to his
boot disk, adding a DEVICE= directive to the CONFIG_SYS file, and restarting the
system. Internally, the EMM is divided into two distinct components: the driver
and the manager.

The driver portion contains some of the elements of a genuine installable
character device driver, in that it includes Initialization and Output Status sub­
functions and a valid device header. These elements allow the EMM to be incor­
porated into the environment in an orderly way, and provide a means for
application software to test for the driver's presence using conventional operat·
ing system services.

The manager element of the EMM is the true interface between application
software and the expanded memory hardware. The LIM EMS defines the serv­
ices to be provided by the EMM, including

status of the expanded memory subsystem

allocation of expanded memory pages

mapping of logical pages into physical memory

deallocation of expanded memory pages

~> support for multitasking operating systems

diagnostic routines

The EMS also specifies how the EMM services are invoked, what parame­
ters they accept, and what results they will return.

The AQA EEMS redefines the software interface between application soft·
ware and the EMM from that used in LIM EMS 3.2 only slightly, extending the
definition of one of the EMS 3.2 functions and adding one new function in order
to remove the restrictions on the mapping regions and the number of pages
which may be mapped simultaneously.

The LIM EMS 4.0, in its turn, defines about 40 new functions and subfunc­
tions. Since the EMS 4.0 functions are mainly used by program managers and
operating systems, they will not be described in detail in this essay.

Application programs communicate with the EMM directly via a software
interrupt INT 67H. The MS-DOS operating system kernel does not take part in ex­
panded memory manipulations and does not make any use of expanded memory
for its own purposes. However, some multitasking manager programs that run on
top of MS-DOS, such as Microsoft Windows and Quarterdeck System's DESQview,
are able to use expanded memory for swapping program code and/or data.

539

Section 3: Working with the Hardware Interface

'Jesting for Expanded Memory

Before it attempts to use expanded memory for storage} an application program
must establish that the Expanded Memory Manager is present and functionaC
and then it must call the driver to check the status of the memory boards them­
selves. There are two methods a program can use to test for the existence of the
EMM.

The first technique is to issue an open file or device request INT 21 H(Func­
tion 3DH), using the guaranteed device name of the EMM driver} EMMXXXXO. If
the open operation succeeds, either the driver is present or there is a file with
the same name in the current directory of the default disk drive. The application
can then issue IOCTL Get Device Information INT 21 H(Function 44H Subfunction
DOH) and IOCTL Get Output Status I NT 21 H(Function 44H Subfunction 07H) re­
quests to further qualify the existence and status of the driver. In any case, the
handle that was obtained from the open function should be closed INT 21 H(Func­
tion 3EH) so it can be reused for another file or device. The open method is dem­
onstrated in the following listing:

540

mov dx,seg emm_name
mov ds,dx
mov dx,offset emm_name
mov ax,3dOOh

int 21h
jc error

mov bx,ax
mov ax,4400h

int 21h
jc error
and dx,80h
jz error

attempt to "open" EMM
DS:DX =addr. of name
of Expanded Memory Manager

Function 3DH, Mode=OOH
= open, read-only
transfer to MS-DOS
jump if open failed

open succeeded, make sure
it was not a file
BX = handle from open
Function 44H Subfunction OOH
= IOCTL Get Device Information
transfer to MS-DOS
jump if IOCTL call failed
Bit 7 = 1 if character device
jump if it was a file

EMM is present, make sure
it is available •••
(BX still contains handle>

Chapter 14: Expanded Memory Systems

mov ax,4407h

int 21h
jc error
or a L,a L
jz error

mov ah,3eh
i nt 21 h
j c error

emm_name db 'EMMXXXXO',O

Function 44H subfunction 07H
= IOCTL Get Ouput Status
transfer to MS-DOS
jump if IOCTL caLL faiLed
test device status
if AL=O EMM is not avaiLabLe

now cLose handLe
(BX stiLL contains handLe)
Function 3EH = CLose
transfer to MS-DOS
jump if cLose faiLed

guaranteed device name for
Expanded Memory Manager

The second method of testing for the driver is to use the address that is
found in the vector for INT 67H to inspect the device header of the presumed
EMM. The contents of the vector can be obtained conveniently with INT 21 H
(Function 35H). If the EMM is present1 the name field at offset OAH of the device
header contains the eight-byte ASCII string1 EMMXXXXO. This method is highly
reliable and it avoids the overhead of an open operation1 but it is considered less
"well-behaved" because it involves inspection of memory that does not belong to
the application. The get interrupt vector technique is illustrated in the following
listing:

emm_int equ 67H

mov aL,emm_int
mov ah,35h
int 21h

mov di,10

Extended Memory Manager
software interrupt

first fetch contents of
EMM interrupt vector •••
AL = EMM into number
fxn 35H =get vector
transfer to MS-DOS
now ES:BX =handler addr.

assume ES:OOOOO points
to base of the EMM •••
ES:DI =addr. of name
field in Device Header

541

Section 3: Working with the Hardware Interface

mov si,offset emm_name
mov cx,8
cld
repz cmpsb
jnz error

emm_name db 'EMMXXXXO'

Using Expanded Memory

length of name field

compare names •••
jmp if driver absent

guaranteed device name for
Expanded Memory Manager

It is not uncommon for several programs, such as electronic disks (RAMdisks),
TSR utilities, and foreground application programs, to be using expanded mem­
ory for storage at the same time. Accordingly, it is important that each program
treat expanded memory as a system resource like a file or peripheral device,
and employ only the documented EMM services to allocate, access, and release
expanded memory pages. Otherwise, the data belonging to one or more of the
programs may be corrupted or destroyed.

Once it has established that the Expanded Memory Manager is present, the
application program bypasses MS-DOS and communicates with the EMM di­
rectly via software INT 67H. The general calling sequence is

mov ah,function

int 67h

AH selects EMM function

load other registers with
values specific to the
requested service

transfer to EMM

In general, registers ES:DI are used to pass the address of a buffer or an
array, and register DX holds an expanded memory handle, a 16-bit token re­
turned by the EMM when a program first allocates some expanded memory
pages and used by the program for subsequent access to those pages. Some
EMM functions also use the AL and BX to pass such information as logical and
physical page numbers.

Upon return from an EMM function call, register AH contains zero if the
function was successful. Otherwise, AH contains an error code with the most
significant bit set, from the selection listed in Table 14-1.

542

Table 14·1.

Error Code

OOH
80H

81H
82H

83H
84H
8SH
86H
87H

88H

89H
8AH

8BH
BCH
8DH

8EH

8FH

Chapter 14: Expanded Memory Systems

Expanded Memory Manager Error Codes

Significance

Function was successful
Internal error in the expanded memory manager software (Possible
causes include a logical error in the driver itself or damage to the mem­
ory image of the driver,)
Malfunction in the expanded memory hardware
Memory manager is busy (It is already processing an expanded memory
request.)
Invalid expanded memory handle
Function requested by the application is not defined
No more expanded memory handles available
Error in save or restore of mapping context
An allocation request specified more logical pages than are physically
available in the system (No pages were allocated.)
An allocation request specified more logical pages than are currently
available in the system (The request does not exceed the physical pages
that exist, but some are already allocated to other EMM handles; no
pages were allocated.)
Zero pages cannot be allocated
The logical page that was requested for mapping is outside the range of
logical pages assigned to the handle
Illegal physical page number in mapping request (not in the range 0·3)
The save area for mapping contexts is full
Save of mapping context failed, because save area already contains a con·
text associated with the requested handle
Restore of mapping context failed, because save area does not contain a
context for the requested handle
Subfunction parameter not defined

Other values are typically returned in registers AL and BX or in a user­
specified buffer. The parameters and returned results for the various functions
supported by the EMS and EEMS compatible EMMs are summarized in Tables
14-2 and 14-3. EMS Functions 49H and 4AH (not listed) were defined in EMS ver­
sion 3.0 and are "reserved" in later EMS versions.

Table 14·2. Expanded Memory Manager Interface

AH = status BX The page frame is divided
= segment of into four 16K pages, which

page frame, if are used to map logical ex·
AH = 0 panded memory pages into

Function
Name

Get Manager
Status

Get Page Frame
Segment

Action

lest whether the
expanded memory
software and hard·
ware are func­
tional.
Obtain the segment
address of the
EMM page frame.

Call With

AH = 40H

AH = 41H

Returns

AH = status

Comments

This call is used after the
program has established that
the Expanded Memory Man­
ager is present in the system.

543

Section 3: Working with the Hardware lnteiface

Table 14·2. (cont.)

Function
Name Action Call With Returns Comments

the physical memory space
of the 8086/8088 processor.

Get Expanded Obtain the number AH = 42H AH = status BX The application need not
Memory Pages of logical expanded = unallocated have already acquired an

memory pages pages, if AH = EMM handle to use this func-
present in the sys· oox = total tion.
tern and the num- EMS pages in
bel' of pages that system
are not already al·
located.

Allocate Ex- Obtains an EMM AH = 43UBX = AU = status OX Equivalent of a file open
panded Mem- handle and allo- logical pages to = EMM handle, function for the EMM. The
ory cates logical ex- allocate ifAH = 0 handle that is returned is

panded memory analogous to a file handle,
pages to be con- and owns a certain number
trolled by that han- of EMM pages. The handle
die. must be used with every sub·

sequent request to map
memory, and must be re-
leased by a close operation.

Map Memory Map one of the log- AU = 44H AL AH = status The logical page number
ical pages of ex- = physical page must be in the range (0 ...
panded memory (0-3) BX = logi- n - 1), where n is the num-
assigned to a han- cal page (0 ... bel' of logical pages pre-
die onto one of the n -l)DX = viously allocated to the EMM
four physical pages EMM handle handle with Function 43H.
within the EMM's 1b actually access the mem-
page frame. ory once it has been mapped

to a physical page, the appli-
cation also needs the seg-
ment of the EMM's page
frame, obtained with Func-
tion 41H.

Release Handle Deallocate the logi- AH = 45HDX AH = status This function is the equiva-
and Memory cal pages of ex- = EMM handle lent of a close operation on a

panded memory file. It notifies the EMM that
currently assigned the application will not be
to a handle, and making further use of the
then release the data it may have stored
handle itself for reo within expanded memory
use. pages.

Get EMM Return the version AH = 46H AH = status AL The returned value is the
Version number of the Ex- = EMM ver- version of the EMS with

panded Memory sion, if AH = 0 which the driver complies.
Manager software. The version number is en-

coded as BCD, with the inte-
ger part in the upper four
bits, and the fractional part
in the lower four bits.

Save Mapping Save the contents AH = 74HDX = AH = status This function is designed for
Context of the expanded EMM handle use by interrupt handlers

memory page-map- and resident drivers or utili-

544

Chapter 14: EI'panded Memory Systems

Table 14·2. (cont.)

Function
Name Action call With Returns Comments

ping registers on ties that must access ex-
the expanded panded memory. The handle
memory boards, supplied to the function is
associating those the handle that was assigned
contents with a to the interrupt handler dur-
specific EMM han· ing its initialization sequence,
die. not to the program that was

interrupted.
Restore Map- Restore the con· AH = 48H DX AH = status Use of this function must be
ping Context tents of all ex· = EMM handle balanced with a previous call

panded memory to EMM function 47H.1t ai-
hardware page· lows an interrupt handler or
mapping registers resident driver which used
to the values associ· expanded memory to restore
ated with the given the mapping context to its
handle. state at the point of interrup-

tion.
Get Number of Return the number AH = 4BH AH = status BX If the number of handles re-
EMM Handles of active EMM han- = number of turned is zero, none of the

dies. EMM handles, if expanded memory is in use.
AH = 0 The number of active EMM

handles never exceeds 255. A
single program can make
several allocation requests
and therefore own several
EMM handles.

Get Pages Return the number AH = 4CHOX AH = status BX The number of pages re-
Owned by of logical expanded = EMM handle = logical pages, turned is always in the range
Handle memory pages allo- if AH = 0 1-512 if the function is sue-

cated to a specific cessful. An EMM handle
handle. never has zero pages of

memory allocated to it.
Get Pages for Return an array AH = 40H 01 AH = status BX The array is filled in with
All Handles that contains all the = offset of ar- = number of two-word entries. The first

active handles and ray to receive in- active EMM han- word of each entry contains
the number of logi- formation ES = dies IF AH = 0, a handle, and the second
cal expanded mem- array segment array is filled in word contains the number of
ory pages as described in pages associated with that
associated with comments col- handle. The value returned
each handle. umn in BX gives the number of

valid two-word entries in the
array. Because 255 is the
maximum number of EMM
handles, the array need not
be larger than 1020 bytes.

Get/Set Page Save or set the con· AH = 4EH AL AH = status AL Subfunctions: 0 = get map-
Map tents of the page· = subfunction = bytes in page· ping registers into array 1 =

mapping registers number OS:SI = mapping array set mapping registers from
on the expanded array holding (subf. 3) Array array 2 = get and set map-
memory boards. mapping infor· pointed to by ping registers in one opera-

mation (subfunc- ES:DI receives tion 3 = return needed size
tions 1, 2) ES:DI mapping infor- of page-mapping array (This

545

Sect:on 3: Working with the Hardware Interface

Table 14-2. (cont.)

Function
Name Action Call With

= array to re­
ceive informa­
tion
(subfunctions)

Returns

mation, for sub­
functions 0 and
2

Comments

function was added in EMS
version 3.2 and is designed to
support multitasking. It
should not ordinarily be used
by application programs,)
The content of the array is
hardware.

Table 14-3. Modified or Additional Expanded Memory Manager
Functions Defined by the AST/QuadramlAshton-Tate
EEMS

Function
Name Action Call With Returns Comments

Map Memory Map one of the log- AH = 44H AL = AH = status The logical page number
ical pages of ex- window no. (see must be in the range (Q ••.
panded memory comment) BX = n - 1), where n is the num·
assigned to a han· logical page (0 bel' of logical pages pre-
die onto one of the ... n -1) DX = viously allocated to the EMM
EMM's physical handle handle with Function 43H.
windows. The window number must

be within the range reo
turned by the EEMS function
60H (see below). The first
four windows are mapped
contiguously for EMS com-
patibility.

Get Physical Obtain the number AH = 60H ES:DI AH = status AL = This function fills in the aI'-
Window Ar- of mapping win- = address of ar- number of win- ray with a list of the physical
ray dows and an array ray dows Array reo page windows available.

containing the ad- ceives window· Each entry in the array is
dresses of those mapping informa- one byte in length and cor·
windows. tion responds to a physical page

number that contains the
most significant six bits of
the segment address.

Strategy for Using Expanded Memory

Although the EMM software interface may appear somewhat forbidding at first
glance, it is really very easy to use. The general strategy for use of expanded
memory by an application program is quite straightforward:

546

Chapter 14: Expanded Memory Systems

1. Establish the presence of the EMM by one of the two methods demon­
strated in the earlier examples. If the EMM cannot be found} the applica­
tion must either terminate or proceed using conventional memory
resources only.

2. Once the driver is known to be present} check its operational status with
EMS Function 40H. This function verifies that the EMM has been prop­
erly initialized during the system boot process, and that the EMS hard­
ware is functioning correctly.

3. Check the version number of the EMM with EMS Function 46H to ensure
that all services the application will request are available. For example} if
the application makes use of EMS Function 4EH} it must ensure that it is
running with version 3.2 or greater of the EMM rather than 3.0. The al­
gorithm to be used by the program is as follows:

a. Issue INT 67H with AH = 46H. If AL = 40H} the EMM is compatible
with EMS version 4.0. If AL = 30H} the EMM is compatible with
EMS version 3.0. If AL = 32H, proceed to step 3b.

b. Issue INT 67H with AH = 60H. If an error is returned (AH not zero),
the EMM is compatible with LIM EMS version 3.2. If AH is zero
upon the return, the EMM is compatible with the AQA EEMS.

4. Obtain the segment of the EMS compatible page frame used by the EMM
with EMS Function 41H. Applications exploiting the additional mapping
capabilities of the EEMS must obtain the additional window addresses
with EEMS Function 60H.

5. Allocate the desired number of expanded memory pages with EMS Func­
tion 43H. If the allocation is successful, the EMM returns a handle that is
used by the application to refer to the expanded memory pages that it
owns. This step is exactly analogous to opening a file and using the han­
dIe obtained from the open function for read/write operations on the
file.

6. If the requested number of pages are not available} the application can
query the EMM for the actual number of pages available (EMS Function
42H) and determine whether it can continue in a degraded fashion.

7. Once the application has successfully allocated the number of expanded
memory pages it needs, it uses EMS Function 44H to map logical pages in
and out of the physical page frame, in order to store and retrieve data in
expanded memory.

8. When the program finishes using its expanded memory pages, it must
release them by calling EMS Function 45H before it terminates and re­
turns control to MS-DOS. Otherwise, the pages will be lost to use by
other programs until the system is restarted.

547

Section 3: Working with the Hardware Interface

The following is a program skeleton that illustrates this general approach
to the use of expanded memory. This code assumes that the presence of the
EMM has already been verified with one of the techniques shown earlier.

mov ah,40h test EMM status
int 67h
or ah,ah
jnz error jump if bad status from EMM

mov ah,46h check EMM version
i nt 67h
or ah,ah
jnz error jump if couldn't get version

cmp al,030h make sure it is at least ver. 3.0
jb error jump if wrong EMM version

mov ah,41h get page from segment
int 67h
or ah,ah
jnz error jump if failed to get frame
mov page_frame,bx save segment of page frame

mov ah,42h get no. of available pages
int 67h
or ah,ah
jnz error jump if get pages error
mov total_pages,dx save total EMM pages
mov avail_pages,bx save available EMM pages
or bx,bx
jz error abort if no pages available
mov ah,43h try and allocate EMM pages
mov bx,needed_pages
int 67h if allocation is successful
or ah,ah
jnz error jump if allocation failed

mov emm_handle,dx save handle for allocated page

now we are ready for other
processing using the EMM pages

548

mov bx,log_page
mov al,phys_page
mov dx,emm_handle
mov ah,44h
int 67h
or ah,ah
jnz error

mov dx,emm_handle
mov ah,45h
int 67h
or ah,ah
jnz error

Chapter 14: Ei'panded Memory Systems

map in EMS memory page •••
BX <- EMS logical page number
AL <- EMS physical page (0-3)
EMM handLe for our pages
Function 44H =map EMS page

jump if mapping error

program ready to terminate,
give up aLLocated EMM pages •••
handLe for our pages
EMS Function 6 = reLease pages

jump if reLease faiLed

1b ensure that it will not be terminated unexpectedly by events that are not
under its control, any program that uses expanded memory should replace the
system's default handlers for Control-e and Critical Error exceptions with its
own handlers, the addresses of which are stored in the vectors for INT 23H and
INT 24H, respectively. These new handlers would be responsible for releasing ex·
panded memory pages owned by the application and cleaning up any other
loose ends before returning control to MS-DOS and allowing the application to
be terminated.

Device Drivers, TSRs, and Expanded Memory

ATSR, interrupt handler, or installable device driver (such as an electronic disk)
that uses expanded memory follows the same general procedure outlined above,
but with a few minor variations. These variations are imposed by the fact that
the program may be executing as a result of a hardware interrupt or during the
system boot process.

If the program is a device driver, it will need to test for the existence of the
EMM and allocate expanded memory pages during its Initialization routine,
which is called when the driver is loaded into memory and before the operating
system is fully functional. Consequently, the driver must use a modified version
of the get interrupt vector method of testing for the existence of the EMM, fetch·
ing the contents of the INT 67H vector directly rather than using I NT 21 H(Function
35H). Of course, the user must be warned to place the DEVICE=line that loads the

549

Section 3: Working with the Hardware Interface

EMM before the DEVICE= line that loads the driver that uses expanded memory
services.

TSRs and interrupt handlers are usually initialized in a more normal sys­
tem context (Le., they are typically first loaded as though they were normal pro­
grams from COM or EXE files). Therefore, they can test for the EMM's presence
like any other application program.

When a TSR, device driver, or interrupt handler acquires control and
needs to access its expanded memory pages, it must first save the EMM context
with a call to EMM Function 47H. This function stores the current contents of
the page-mapping registers on the EMS hardware and any other hardware-de­
pendent information, which will be needed later to restore the exact same state
of the EMS subsystem, into an internal buffer. Note that the EMS context which
is being saved belongs to the foreground application program that was inter­
rupted, but the context is saved in association with the EMM handle owned by
the background program, handler, or driver which has asserted control.

When the background program is finished using expanded memory) it calls
EMM Function 48H, which restores the expanded memory hardware to its state
at the point of interruption, so that the expanded memory page-mappings pre­
viously requested by the foreground program are again valid. This is an abso­
lutely vital step since the foreground program assumes that its expanded
memory pages are always available within the page frame after it has requested
them to be mapped. It has no way to know that it has been temporarily sus­
pended by a background program that also used the same page frame for ex­
panded memory access.

A driver, interrupt handler, or TSR typically owns its expanded memory
pages on a permanent basis (until the system is restarted) and never deallocates
them. For example, an electronic disk which is using expanded memory to emu­
late a physical disk device would have no reason to ever change its initial page
allocation, since block devices do not change size dynamically while the system
is running!

C Interface to Expanded Memory

As a practical example of the use of expanded memory pages, Listing 14-1 con­
tains an assembly language subroutine package EMSPROCS. ASM that allows C pro­
grams to test for the existence of the EMM, test its status, and allocate, map, and
deallocate expanded memory pages. The package is compatible with EMS 3.2,
EEMS, or EMS 4.0. The functions supported are listed in Table 14-4.

When an error occurs on an EMM function call, the actual error code re­
turned by the expanded memory manager is stored in the variable _emserr)

which can be declared external in the Cprogram and then accessed as the static
integer variable emserr.

550

Chapter 14: E;<panded Memory Systems

Table 14-4. Functions of EMSPROCS. ASM

Function Description

EMSlnst Returns flag indicating whether the EMM is installed in the system (A
value of 0 indicates that the manager is present. a value of 1 is returned if
the manager cannot be found.)

EMSReady Returns a flag indicating whether the EMM and the expanded memOl'y
hardware are functional (A value of 0 indicates that the subsystem is us­
able and ready. a value of 1 is returned if the subsystem should not be
used. Use of this function assumes a previous successful call to EMSlnst.)

EMSPages Returns total number of expanded memory pages installed in the system
(Use of this function assumes that the presence of the EMS driver and
hardware has been established by previous successful calls to EMSlnst
and EMSReady.)

EMSAvail Returns number of expanded memory pages currently available (Use of
this function assumes that the presence of the EMS driver and hardware
has been established by previous successful calls to EMSlnst and EM·
SReady.)

EMSAlloc Allocates expanded memory pages and returns an EMM handle that can
be used for subsequent mapping of those pages (If the pages cannot be al·
located. 1 is returned. Use of this function assumes that the presence of
the EMS driver and hardware has been established by previous successful
calls to EMSlnst and EMSReady.)

EMSMap Called with an EMM handle, a logical expanded memory page number.
and physical page number within the page frame (0-3) (It maps a pre·
viously allocated expanded memory page to the requested physical page
within the page frame, returning a far pointer to the mapped page,)

EMSFree Called with an EMM handle and releases the pl'eviously allocated EMM
pages.

The subroutine package. Listing 14·1, can be assembled with the command:
MASM IMx EMSPROCS. The IMx switch must be included so that the function names
are not folded to uppercase (failure to use the IMx switch will result in "unre­
solved" messages when you attempt to link the package to a C program). The
assembly language code shown for these procedures assumes that the C pro­
grams which call it are being compiled as small model programs, but should be
easy to convert for use with other memory models or high level languages .

Listing 14-1.

name
page
title

EMSPROCS

emsprocs
55,132
EMS support functions for C

Expanded memory support functions for Microsoft C
continued

551

Section 3: Working with the Hardware Interface

Copyright ~ 1987 Ray Duncan

To assemble: MASM IMx IZi EMSPROCSi

args equ
emm_int equ
DGROUP group

4

67h

_DATA

offset of arguments, small model
expanded memory manager interrupt
automatic data group

- DATA segment word publi c 'DATA'

publi c -emserr

-emserr dw Q status from last EMS operation

emmname db 'EMMXXXXQ' logical device name for EMM

emframe dw Q segment of EMS page frame

-DATA ends

_TEXT segment word public 'CODE'

public
public
publi c

_EMSlnst,_EMSReady
_EMSPages,_EMSAvail
_EMSAlloc,_EMSMap,_EMSFree

status =EMSlnst()i

status is 0 if expanded memory manager is present, 1 if not.

EMSlnst proc near

552

push
mov
push
push

bp
bp,sp
di
si

establish stack frame,
save register variables

continued

mov si,offset
mov cx,S
cld
repz cmpsb
mov ax,O
jz -EMSInst1
inc ax

-EMSInst1:
pop si
pop di
pop bp
ret

-EMSInst endp

mov

mov
mov
int
mov

_emserr,O

al,emm_int
ah,35h
21 h
di ,10

Chapter 14: Expanded Memory Systems

initialize EMS error status

fetch contents of
EMM interrupt vector •••
Al =EMM into number
fxn 35H =get vector
transfer to MS-DOS
ES:DI =presumed addr. of
name field in device header
DS:SI =guaranteed EMM name

DGROUP:emmname
length of name field

compare names •••
assume return false flag
jump if driver present
else return true flag

restore register variables
and return to C program

status =EMSReadY()i

status is 0 if EMS subsystem operational, 1 if not

_EMSReady proc near

push bp
mov bp,sp
push di
push si

mov ah,40h
int emm_int

xchg ah,al

establish stack frame,
save register variables

call EMM to get status

i fix up status and save it
continued

553

Section 3: Working with the Hardware Interface

and ax,Offh
mov _emserr,ax

mov ax,O
jz _EMSReady1
inc ax

_EMSReady1:
pop si
pop di
pop bp
ret

_EMSReady endp

and set Zero flag

assume returning false flag
jump if status ok
otherwise return true flag

restore register variables
and return to C program

pages =EMSPages()i

returns number of expanded memory pages installed in the system,
returns 0 pages if operation failed.

_EMS Pages proc near

push bp
mov bp,sp
push di
push si

mov ah,42h
int emm_int

xchg ah,al
and ax,Offh
mov _emserr,ax

mov ax,O
jnz _EMSPages1
mov ax,dx

_EMSPages1:
pop si
pop di

554

establish stack frame,
save register variables

call EMM to get total pages

fix up status and save it
and set Zero flag

assume returning zero pages
jump if bad status
otherwise return total pages

i restore register variables
i and return to C program
continued

Chapter 14: Expanded Memory Systems

pop bp
ret

_EMS Pages endp

pages =EMSAvail()i

returns the number of expanded memory pages currently available,
returns °pages if operation failed.

_EMSAvail proc near

push bp
mov bp,sp
push di
push si

mov ah,42h
int emm_int

xchg ah,al
and aX,Offh
mov _emserr,ax

mov ax,O
jnz -EMSAvail1
mov aX,bx

-EMSAvail1:
pop si
pop di
pop bp
ret

-EMSAvail endp

establish stack frame,
save register variables

call EMM to get available pages

fix up status and save it
and set Zero flag

assume returning zero pages
jump if bad status
otherwise return available pages

restore register variables
and return to C program

EMM_handle =EMSAlloc(pages)i

EMM_handle is -1 if pages could not be allocated

_EMSAlloc proc near
continued

555

Section 3: Working with the Hardware Interface

push bp
mov bp,sp
push di
push si

mov ah,41h
int emm_int
xchg ah,al
and ax,Offh
mov _emserr,ax

mov ax,-1
jnz -EMSAlloc1

mov emframe,bx

mov bx,[bp+argsl
mov ah,43h
i nt emm_int

xchg ah,al
and ax,Offh
mov _emserr,ax

mov ax,-1
jnz -EMSAlloc1
mov ax,dx

EMSA lloc1 :
pop si
pop di
pop bp
ret

-EMSAlloc endp

establish stack frame,
save register variables

first get page frame segment,
weill need it for mapping calls
fix up status and save it
and set Zero flag

assume returning -1 signal
jump if bad status

else save page frame address

attempt to allocate pages

fix up status and save it
and set Zero flag

assume returning -1 signal
jump if bad status
otherwise return EMM handle

restore register variables
and return to C program

char far *pageptr = EMSMap(EMM_handle,logical_page,physical_page)

maps the requested logical expanded memory page into the
specified physical page, and returns a far pointer to the
physical page, or a NULL pointer if the mapping failed.

continued

556

Chapter 14: El'panded Memory Systems

_EMSMap proc near

push
mov
push
push

mov
mov
mov
mov
int
xchg
and
mov
jnz

mov
mov
mul
mov
jmp

_EMSMap1:
mov
mov

_EMSMap2:
pop
pop
pop
ret

_EMSMap endp

bp
bp,sp
di
si

dx,[bp+argsJ
bx,[bp+args+2J
ax, [bp+args+4J
ah,44h
emm_int
ah,al
ax,Offh
_emserr,ax
_EMSMap1

ax, [bp+args+4J
dx,4000h
dx
dx,emframe
_EMSMap2

dx,O
ax,O

si
di
bp

establish stack frame,
save register variables

EMM handle
logical page
physical page

request mapping
fix up status and save it
and set Zero flag

bad status, return NULL ptr

mapping OK, calculate pointer
get physical page again
multiply it by 16 KB
to set AX =offset in page frame
get segment of page frame
and return far pointer

if error, return NULL pointer

restore register variables
and return to C program

status =EMSFree(EMM_handle)i

status is 0 if pages deallocated successfully, 1 otherwise.

_EMSFree proc near
continued

557

Section 3: Working with the Hardware Interface

push bp
mov bp,sp
push d;
push s;

mov dx,[bp+argsJ
mov ah,45h
; nt emm_;nt

xchg ah,al
and ax,Offh
mov _emserr,ax

mov ax,O
jz -EMSFree1
inc ax

-EMSFree1:
pop s;
pop d;
pop bp
ret

-EMSFree endp

-TEXT ends

end

establish stack frame,
save register variables

get EMM handle
and try to release ;t

fix up status and save ;t
and set Zero flag

assume returning false flag
jump ;f status was ok
otherwise return true flag

restore register variables
and return to C program

Finally, we will present a brief Cprogram EMSDEMO. C, Listing 14-2, that dem­
onstrates use of some of the EMS access subroutines. EMSDEMO. Ccan be compiled
into the file EMSDEMO.OBJ and then linked with EMSPROCS.OBJ to form the execut­
able file EMSDEMO.EXE with the following command line (for Microsoft C): CL EM­
SDEMO. CEMSPROCS.

Listing 14·2. EMSDBMO.C

1*
EMSDEMO.C Demonstrate use of EMS support

functions in EMSPROCS.ASM
continued

558

Chapter 14: Expanded Memory Systems

Ray Duncan, August 1987

To compile and link to EMSPROCS, with CodeView info:

MASM IMx IZi EMSPROCSi
CL IZi EMSDEMO.C EMSPROCS

#include <stdio.h>

1* prototypes for EMS functions *1
1* provided by EMSPROCS.ASM *1

extern unsigned
extern unsigned
extern unsigned
extern unsigned
extern unsigned
extern char far
extern unsigned

EMSInst () i

EMSReadY()i
EMSPages()i
EMSAvai l () i
EMSAlloc(unsigned)i
*EMSMap(unsigned, unsigned,
EMSFree(unsigned)i

unsigned)i

extern int emserri

static char *ErrorMsg[] ={

main(argc, argv)
int argci
char *argv[] i

1* contains status of most recent
expanded memory operation *1

"EMM internal error",
"EMS hardware malfunction",
"Memory manager busy",
"Invalid EMM handle",
"Function not defined",
"Out of EMM handles",
"Mapping context error",
"Insufficient pages installed",
"Insufficient pages available",
"Zero pages allocation error",
"Invalid logical page number",
"Invalid physical page number",
"Context save area full",
"Duplicate context save",
"Context restore not found",
"Subfunction parameter undefined" }i

continued

559

Section 3: Working with the Hardware Interface

{ int status,handLe;
char far *pageptr;

1* misceLLaneous variabLes *1
1* far pointer for mapped page *1

puts("\nSimple Demo Program for EMSPROCS");

if(EMSInst()) 1* test if EMM is instaLLed in system *1
{ puts("\nExpanded memory manager not found");

exiteD;
}

i f (EMSReady 0) 1* if instaLled, make sure it is ready

{ puts("\nExpanded memory manager not ready");
OisplayErrorO;

}

status =EMSPages(); 1* report totaL pages in system *1
printf("\nExpanded memory pages installed = %d", status);
Di sp layError 0;

status =EMSAvail(); 1* report pages not yet aLlocated *1
pdntf("\nExpanded memory pages available = %d\n", status);
Di sp layError 0 ;

handle =EMSAlloc(3); 1* allocate some expanded memory *1
printf(lI\nAllocating 3 pages, handle returned =%xh", handle);
Di splayError 0 ;

1* demonstrate page mapping *1
pageptr =EMSMap(handle,2,3);
puts(lI\n\nMapping logical page 2 to physical page 3,lI);
printf("Page pointer =%lxh", pageptr);
Di sp layError 0 ;

status=EMSFree(handle); 1* now reLease our pages *1
puts("\n\nDeallocating pages ll

);

Di splayErrorO;

exit(O);
}

560

Di sp LayError 0
{ if(emserr)

1* show EMM error no. & message *1

continued

Chapter 14: Expanded Memory Systems

{ printf("\nEMS error: %xh, %s", emserr, ErrorMsg[emserr&Ox7fJ);
exit(1);

}

}

Reading List

t> The LotuslIntellMicrosoft Expanded Memory Specification version 3.2
(part no. 300275-003) or Expanded Memory Specification version 4.0
(part no. 300686-001) can be obtained from Intel Corp.j 3065 Bowers
Ave.j Santa Clara, CA 95051.

!> The AST Enhanced Expanded Memory Specification can be obtained by
writing to Product Marketing, AST Research; 2121 Alton Ave.; Irvine, Cali­
fornia 92714.

l> The following are representative products that support LIM EMS and/or
AQAEEMS.

Spreadsheets:

Lotus Development Corp. 1-2-3

Javelin Software. Javelin

Computer Associates. SuperCalc

Lifetree Software. Words & Figures

Daybreak Thchnologies. Silk

Databases:

Ansa. Paradox

Borland International. Reflex

Information Builders. PC/Focus

Software Publishing. Pfs:Professional File

Software Solutions. DataEase

Symantec. Q&A

Integrated Products:

Ashton-Tate. Framework II

Lotus Development Corp. Symphony

561

Section 3: Working with the Hardware Interface

Innovative Software. Smart

CAD:

Autodesk. AutoCAD

T&W Systems. VersaCAD

Program Managers and Operating Systems:

Microsoft. Windows

Quarterdeck Systems. DESQview

Digital Research. Concurrent PC-DOS

Softlogic Solutions. Software Carousel

Utilities:

Bourbaki Inc. 1DIR +
Living Videotext Ready/ and ThinkTank

Multisoft. Super PC Kwik

PC Support Group. Lightning

Phoenix Thchnology. PDisk

Polytron. PolyBoost and PolyDesk III

Software Masters. Flash

Ray Duncan is the author of Advanced MS-DOS (Microsoft Press 1986) and numer­
ous articles and columns in Dr. Dobb~ Journal and other publications. Ray is founder
of Laboratory Microsystems Inc.} a software house specializing in Forth interpreters
and compilers.

Related Essays

1 A Guided Thur inside MS-DOS
10 Developing MS-DOS Device Drivers

562

Index

A

AboutBox function (Windows), 269
Absolute Disk Read interrupt, 37, 209, 336
Absolute Disk Write interrupt, 209, 336
Accidentals with SOUND driver, 351
Active windows, 247
Adaptor cards for data protection, 226
Adjust Block Size function, 160-162
Age of SFT entries, 327
Allocate Expanded Memory function (EMM),

544
Allocate Memory function, 160-161
Alphabets for fmite state machines, 363
ALT key for entering nonstandard filenames,

221
Ampersands (&)

with SOUND driver, 352
for substitute operator, 127-128

Ancient system call, 151
AND operator, 119-120
Andante tempo with SOUND driver, 352
ANSI.SYS console driver, 30

replacement for, 76
APPEND command, 13
Application programs

batch file calling by, 17
data access by, 220
INT 21H for, 306, 310-312, 321-323
interface for, 305-306
and MS-DOS, 21-29

AQA EEMS, 536, 539, 547
Arc file tool (PCnix), 81
Archiver, 81
Arithmetic with EBL, 96
Arrow keys with keydo.com program, 62

ASCII code
conversion of bytes and words to, 181-182
and data communications, 477-478
window messages for, 247

ASSIGN program, 189-191, 208-209
Assignments with EBL, 96
Asterisks (.)

in EBL, 96, 98
as wildcards and metacharacters, 86-87

Asynchronous data communications, 477-484
At sign character (@)

with batch echoing, 59
with VC, 105

Atget function (VC), 102-103
Atsay function (VC), 102
Attributes

character, 104
device, 308-309,329,331
file, 39

Auto repeat, keyboard, 62
AUTOEXEC.BAT file, 92-93

in booting, 10
passwords for, 225

AUX, opening of, 331
Auxiliary stack, 322

B

B+ trees, 107-112
Background Process function, 197,210,336
Background programs, 336-338
Backslashes (\) in file paths, 18,58-59, 71
Bank-switching with expanded memory,

536-537
Base address of serial adapters, 484

563

MS-DOS Papers

Base page} 197
Batch files} 17-18} 91-93

ECHO commands in} 59-61
and environment} 156-157
for on-line help} 66-67
for PCnix commands} 62-67

Baud rate
in data transfer} 478
with serial adapter} 491

Beats with SOUND driver} 352
BEEP command (EBL)} 96
BEGINlEND command mBLL 96
BeginPaint function (Windows)} 255} 267
BEGSTACK/.END command (EBL)} 96
BEGTYPEIEND command (EBL)} 96
BINARY device attribute} 331
Binary files

locating text strings in} 76
phone transmission of} 84-85
reading oC 329

BIOS} 6-8
for data access} 220
for EGA} 437
hardware access by} 29
loading of} 312-313
module for} 10
for serial adapter} 490-491
software interrupts with} 25-26

BIOS function (EBL)} 97
BIOS parameter blocks and built-in drivers}

313
Bit-mapped graphics and transparent write

mode} 329-330
Bit maps} reading of} 460-461
Bit-mask register} 447-448} 454} 456-459} 461
Bit-oriented data structures with MASM}

117-120
Bit planes} 446-447
Block devices} 308} 313-314} 316
Block length in PSp' 150-151
Block size} function for} 160-162
Booting of MS-DOS} 8-11

and device drivers} 312-321
and DPB} 173
sector for} 8} 312

Borland International
integrated programming environments by}

28
Thrbo languages} linking of files in} 13

BREAK
in data transfer} 480
disabling of} 225

Break flag and INT 21H} 322
Break-out switch debugger} 147
Bresenham's Algorithm with line drawing,

451-452
Buffers

564

Buffers-cont
flushing oC 177} 334
for keyboard input} 335
size of, with EBL} 95
See also Cache; Circular buffers

BUFFERS = command, 10} 92, 317
Built-in device drivers, 10} 307

and IBMDOS initialization} 313
Busy flag, 170

c
C

compiling with, 436
expanded memory interface for} 550-551
forward declarations in} 42-43
libraries for} 28-29} 100-105
and PCnix, 85
and Resource Compiler, 257
system calls with, 77

C-INDEX + , file access with} 108-110
Cache

blocks for} 314-317
for file I/O, 10
pointer to, 171

Cache Block list and block drivers, 313
Calendar with PCnix, 73-74
CALL command (batch), 17} 64
CALL command (EBL), 95} 96
CALL.PURGE function (EBL)} 97
Cassette_IO interrupt for TSRs, 214
Cat command (UNIX) and p PCnix tooL 76
CD (Color Display), 437
CDS (Current Directory Structure)} 304, 319
CGA (Color Graphics AdapterL 437
Ch command (PCnix)} 64-65
Chaining of programs} 158-159
Char _out subroutine} 180
Characters

attributes oC 104
devices for} 308
I/O routines for} 334-336

CheckMenuItem function (Windows)} 263
Child process} creation oC 158-159
Child windows} 248-250

in Notepad} 259
CHKDSKN command and hidden files}

223-224
Chmod file tool (PCnix)} 81
Chn file tool (pCnix)} 81-82
CHRDEV driver attribute} 309
CICS (Customer Information Control SystemL

100
Cipher systems} 229-230
Circular buffers} 80} 359-361

for serial adapter} 492} 498-499

Circular buffers-cont
for SOUND driver, 378-379

Class routines for SOUND driver, 377
Classes, window, 250-252
Clear 1b Send signal, 482
CLI instruction, 358
Client rectangles, 247-248
Clipping regions, 254, 267
Clock

with PCnix, 73-74
pointer to} 171

Clock devices
header for, in List of Lists, 315
and IBMDOS initialization, 313
initialization of, 316

Clock interrupt service routine for SOUND
driver, 379-381

Close file function, 220
Closing of devices, 330-331
CLS command (EBL), 96
Clusters, 219
Code macros, 129-136
Code segments with interrupts, 2.6, 139
Code systems for data protection, 2.27-229
CodeView, 28

with MASM} 140
Color

monitors for, 437-439
palettes of, 468-472
of pixels} 460-461
and set/reset register, 454

COLOR command (EBL), 96
Color Display, 437
Color Graphics Adapter, 437
COM files

using debug to create, 67-68
PSP segment address for, 149
structure of, 23

COM1
base port address of, 484
and INS8250 IC, 357
interrupt request for, 489

COM 2.
base port address of, 484
interrupt request for, 489

Combining of commands, 64-66
COMMAND.COM file, 7-8

for batch file subroutines, 64
environment for, 158
loading of, 10,312
operation of, 11-16

Command lines
editing of, 62
parsing of, 13-15, 46-48
in PSp, 152
slashes in, 18,58-59

Command processor

lnde}(.

Command processor-cont
back door to, 179-180
MS-DOS, 6

Commands
combining of, 64-66
driver, 353
EBL,96-98
renaming of, 63
repeating of, 63
user, processing of, 11-16

Comments
with EBL, 96, 98
with SOUND driver, 353

Commit File function, 177
Communal declarations with MASM, 140
Compatibility and BIOS, 29
Compilation

of SOUND driver, 376
of whereis, 52

Compressor, file, 81
COMSPEC environment variable, 16, 155-156

command for, 32.0
CON, opening of, 331
Configuration and CONFIG.SYS file, 8-11. 92

in booting, 10
and environment size, 157-158
and installable device drivers, 30
loading of, 312

Console Device Drivers, pointer to, 171
Console devices

ANSI.SYS drivers for, 30
handles for, 152-153
header for, in List of Lists, 315
and IBMDOS initialization, 313
initialization of, 316
INT 2AH for, 179

Control-C
checking for, 322, 335
and expanded memory systems, 549
and INT 23H, 338
and PSP, 151

Control characters, 477-478
Control functions, EBL, 97
Control-p, processing of, 335
Control-Q, with asynchronous

communications, 478, 482
Control-S

with asynchronous communications, 478,
482

with keyboard polling, 335
Controller chips, EGA, 449
Coordinates, window, 248, 253
COpy command for sequential files, 107
Copying of files with whereis, 39
Coroutines,361-363

for SOUND driver, 378
Cp command (uNIX), emulation of, 65-66

565

MS·DOS Papers

CP/M
and PSPs, 149-151
and TSRs, 187

CRC (Cyclic Redundancy Check), 480-481
Create PSP block function, 158-159
CreateWmdow function (Windows), 251-252
.CHEF directive (MASM), 134
Critical errors

and background programs, 337-338
and expanded memory systems, 549
flag for, 322
handlers for, 213, 330, 331

Critical sections, handling of, 365-366
Cross-reference listings with MASM, 134
Cruz, Frank, Kermit protocol by, 84
CTS (Clear 1b Send) signal, 482
CURCLK driver attribute, 309, 313
CURNUL driver attribute, 309
Current Directory Structure, 304, 319
Current drive, function for, 70
Customer Information Control System, 100
CW _ USEDEFAULT message (Windows),

262-263
Cyclic Redundancy Check in data transfer,

480-481

D

Dadd function (C·INDEX), 111
Data communications of binary flies, 84-85

See also Serial ports
Data Encryption Standard, 230-236
Data entry with VC, 102-103
Data macros, 126-129
Data protection and encryption, 220

hiding data, 221-224
and MS·DOS data access, 219-220
and MS·DOS loopholes, 237-238
passwords for, 225-237
unauthorized access, levels of, 217-219

Data rotate register, EGA, 464-465
Data segments with interrupts, 139
Data structures. See Thbles
Data Transfer Area, 37-38, 323, 328
Date

and elock device header, 313
on directories, 220
in DTA buffer, 328
function for, 84
handling of, with whereis, 50-52

DCB. See Device Control Blocks
Delose function (C·INDEX), 110
Dcreate function (C-INDEX), 110
Ddelete function (C·INDEX), 111-112
Deadlocks and wait loops, 364
Debug

566

Debug-cont
cautions for, 332
for creating .COM fIles, 67-68
for PSP examination, 149
scripts with, 60-61

Debugging
break-out switch for, 147
with CodeView, 28
of drivers, 338-344
of windows, 260

.DEF window fIles, 269
DefWindowProc function (Windows), 245,

264-265
Delete key

with keydo.com program, 62
with VC, 103

Deletion of flies
and data protection, 218, 237-238
function for, 220
with whereis, 39

DES IData Encryption Standard), 230-236
Desk accessories, TSR, 185
Desq function (C·INDEX), 111
DestroyWindow function (Windows), 245, 264
Device contexts, 267
Device Control Blocks, 10,304,314

and device openings, 326
listhead for, in List of Lists, 315

Device coordinates, 253
Device drivers, 29-30,303-304,307-310

and background programs, 336-338
in BIOS, 10
and boot process, 312-321
debugging of, 338-344
DEVICE ~ command for, 30, 316
and DOS tables, 304-307
in DPB, 172
and expanded memory, 549-550
and FCBs and handles, 323-324
and hardware interrupts, 343-344
and INT 21H, 321-323
routines for, 325-336
and SFr, 324-325
See also SOUND driver

Device headers, 306-308, 313, 31S
for SOUND driver, 366-367

Device Parameter Blocks, 171-177
Dfind function (C·INDEX), 111
Diagonal lines, program to draw, 444-445
Dictionary code book systems, 227-228
Diff text tool (PCnix), 75-76
Direct access of hardware, 29
Directives, EBL, 97
Directories

and DPB, 173
entries in, 173, 219-220
Is PCnix tool for, 82-84

Directories-eont
reading of, in open routines, 327
renaming of, 82
searching of, with whereis, 39,44-46
tree-structured, 35-36

DIRINFO structure, 37-38, 40-41
Discardable blocks, 256
Disk devices

information for, in DPB, 171-172
initialization of, 316
logical, 172-173, 189, 209
in UNIX, 58

Disk 1/0
buffer for, 317
interrupt for, 336

Disk organizer, 81
Disk stack, 322
Diskette _10 interrupt, 191
Dispatch routine for device drivers, 309-310
DispatchMessage function (Windows),

243-244
Display. See Screen display
Display Output routine, 334-335
Dog file tool (PCnix), 81
Dopen function (C-INDEX), 110
DOS

data access by, 220
loading of, 312
for SOUND driver, 376
variables for, function for, 171-172

DOS_CRITICAL function, 196-197
DOS Safe Interrupt, 178-179
Dotted notes with SOUND driver, 351-352
Down arrow key with VC, 103
DPB (Device Parameter Blocks), 171-177
Dread function (C-INDEX), 111
DTA (Data Transfer Area), 37-38, 323, 328
Du file tool (PCnix), 81
Dummy functions, 169-170
Dummy labels, with MASM, 132
Dupdate function (C-INDEX), 112
DUPKEY label (C-INDEX), 109
Duplicate handles, function for, 177-178
Duplicate PSP block function, 159
Duration with SOUND driver, 351-352

E

EBL (Extended Batch Language), 18,94-99
ECD (Enhanced Color Display), 437-438
ECHO command (batch), disabling, 59-61
ECHO command (uNIX), xp PCnix tool for, 85
Ed text tool (PCnix), 75
Editing

of character input, 334
of command lines, 62

Index

Editing-eont
with standard devices, 335

EEMS (Enhanced Expanded Memory
Specification), 31, 536-540

EGA. See Enhanced Graphics Adapter
Eline text tool (PCnix), 75-76
ELSE directive (MASM), 129
EM_GETSEL message (Windows), 252
EMM (Expanded Memory Manager), 537-540
EMS. see Expanded memory systems
Encryption, data, 227-237
End of Interrupt instruction, 343,489-490
End key

with keydo.com program, 62
with VC, 103

Endline.c program, 79
ENDM directive (MASM), 127
Enhanced Color Display, 437-438
Enhanced Expanded Memory Specification,

31, 536-540
Enhanced Graphics Adapter, 435-440

bit maps with, 460-461
checking for, 440-443
line drawing with, 451-454
memory in, 446-449, 455, 457
palettes for, 468-472
print screen routine for, 461-468
setlreset register in, 454-455
speeding up of, 473-474
write modes for, 455-459
write-only register in, 450-451

Environments
and PSP, 22, 151
segment for, 156-158
setting of, 92-94

EOI (end of interrupt) instruction, 343,
489-490

Epson printers, print screen routine for,
465-468

Equ directive (MASM), 134
EQUAL parameter with C-INDEX, 111
Equal sign (=)

with MASM, 134
with SOUND driver, 351

Errors and error codes
with C·INDEX, 110
in data transfer, 480-482
for device drivers, 339
with EBL, 97-98
with expanded memory systems, 543
and read and write routines, 329

ESC key with VC, 103
Even parity in data transfer, 480
Events, window, 245-247
Exclamation point (!) with SOUND driver, 353
EXE files

PSP segment address for, 149

567

MS·DOS Papers

EXE files-cont
structure of, 23-24

EXEC function
and batch files, 17
for program loading, 22

Execution of programs, 15-16
EXIT command (EBL), 96
Exit routine (MS·DOS) and PSp' 151
Expanded memory systems, 31, 535-538

C interface to, 550-551
control with, 542-550
EEMS,536
Expanded Memory Manager for, 537-540
LIM} 535-536, 539, 547
testing for, 540-542

EXPORTS lists} 269
Expression operator} MASM} 128
Extended Batch Language, 18,94-99
Extended memory compared to expanded,

538
Extensions in directories, 220

F

FA'f. see File Allocation Table
Fatal Error routine and PSP, 151
FCB. See File Control Blocks
FCB = command, 317
Ffind file tool (PCnix)} 81
FHT (File Handle Table), 151
Fields

bit, 119-120
with VC} 102-104

FIFO buffers, 492} 498-499
File Allocation Table

and cache blocks} 315
for clusters, 219
and DPB, 173
and file deletion, 237
and PCnix mv command, 82

File Control Blocks, 26-27
access routine with, 328
close routine with, 330-331
and device drivers, 323-324
open routine with, 327
in PSp' 152
and SFf, 324-325

File Handle Table, 151
File handles, 152-155

duplication of, 177-178
and PSP, 15\ 197

Filecopy.c program} 77-78
Filenames

with commands, 15
in directories, 220
limitation of, 19

568

Filenames-eont
nonstandard, for hiding data, 221

Files, 18-20
access of, with PSP, 152
attributes for, 39
batch. See Batch files
binary. see Binary files
closing of} 330
copying of, 39
deletion of, and data protection, 237-238
with EBL, 97
EXE, 23-24,149
FCBs for, 26-27
handles for. See File handles
include, 40, 125-126
key access systems for, 107-112
linking of, 13
listing of, 310-312
names for. See Filenames
opening of, 220,540
options with, 38-39
password protection of, 226-227
PCnix tools for} 81-84
random, 107,328
sequential, 107, 328
size of, on directories, 220
system, 7-8
tree·structured, 18-20
See also Whereis directory search program

FILES = command, 92, 153
Filling of rectangle, program for, 456-457
Filter for SOUND driver, 373
Filter programs, 14
FIND commands in MS·DOS vs. UNIX, 20
FindResource function (Windows), 257
Finite state machines. 363-364

for SOUND driver} 376-378
Flats for SOUND driver, 350-351
Flushing of buffers, 177,334
Folders in graphic environments, 19
FOR command with batch files, 17
Formatting

of hard disks, for data protection, 238
of input, with VC, 103

Forward declarations with C, 42-43
Fragmentation

of hard drives, program for, 81
of memory, and windows, 255-256

Free Memory function, 160-161
Frequency generator for SOUND driver, 373
Full duplex

in data transfer, 482
with serial adapter, 491

Function 02H, 330, 334-335
Function OAH, 329,335
Function OBH, 131
Function 17H, 82

Function 19H, 70
Function IDH, 170
Function lEH, 170
Function IFH, 177
Function 20H, 170
Function 25H, 137,489
Function 26H, 158-159
Function 2AH, 84
Function 2CH, 84
Function 31H, 25, 61, 194
Function 32H, 177
Function 33H, 321, 338
Function 34H, 170, 179, 196, 322, 337
Function 35H, 137, 489, 541
Function 37H, 59, 170
Function 3DH, 220, 540
Function 3EH, 220, 540
Function 3FH, 154, 220
Function 40H, 153-154,220
Function 41H, 220
Function 42H, 220
Function 44H, 331, 540
Function 45H, 177-178
Function 46H, 177-178
Function 48H, 160-161
Function 49H, 160-161
Function 4AH, 160-162
Function 4BH, 151, 162, 179
Function 4CH, 150
Function 4EH, 37
Function 4FH, 37
Function 50H, 159-160, 197, 321, 338
Function 51H, 159-160, 321, 337
Function 52H, 163, 171-172
Function 55H, 159
Function 56H, 82
Function 57H, 84
Function 62H, 159-160,321,337
Function 68H, 177
Functions

dispatcher of, 22
for whereis, 41-42
window, 242
See also specific functions

G

Gersbach, J., keydo.com program by, 62
Get Device Attributes, 331, 540
Get DOS Variables function, 171-172
Get_ega_info function, 440
Get EMM Version function (EMM), 544
Get Expanded Memory Pages function (EMM),

544
Get Input Status, 334
Get Manager Status function (EMM), 543

Index.

Get MS-DOS Busy Flag function, 170
Get Number of EMM Handles function (EMM),

545
Get Output Status, 334
Get Page Frame Segment function (EMM), 543
Get Pages for All Handles function (EMM), 545
Get Pages Owned by Handle function (EMM),

545
Get Physical Window Array function (EMM),

546
Get PSP function, 321
Get/set/check break state function, 321
Get/Set Page Map function (EMM), 545-546
Get/Set Switch Char function, 170
GET USER_PSP function, 197-198
GetClassLong function (Windows), 267
GetClassWord function (Windows), 267
GetDC function (Windows), 267
Getenv function, 156
GetInstance function (Windows), 262
GetMessage function (Windows), 243-244, 261
GetSysColor function (Windows), 267
GetThxtMetrics function (Windows), 253
GetWindowLong function (Windows), 267
GetWindowWord function (Windows), 267
Global filenames, C, tglob PCnix program for,

85
Global list. See List of lists
Global options with MASM, 133
GlobalAlloc function (Windows), 255-256
GlobalLock function (Windows), 255, 268
GlobalUnlock function (Windows), 255, 268
GOTO command (EBU, 96
Grammars for finite state machines, 363
Graph in a Box, 186
Graphic interfaces, folders in, 19
GRAPHICS rrSR program), 189, 191

and INT 05H, 198
Graphics with windows, 252-255
GREAT parameter (C·INDEX), 111
GREATEQ parameter (C-INDEX), 111
Greater than sign (»

with EBL, 97
with IRP directive, 135
for redirection, 14

Grep text tool (PCnix), 75-76

H

Half duplex in data transfer, 482
Handles

access routine with, 328
close routine with, 330
and device drivers, 323-324
duplication of, function for, 177-178
file. See File handles

569

MS-DOS Papers

Handles-cont
instance} 261
open routine with, 326
window} 243, 255

Hard drives
formatting of} for data protection, 238
organizer for, 81

Hardware interrupts, 136
and device drivers} 343-344
kernel access by} 25-26
keyboard, and TSRs, 213-214

Hashing with random files, 107
Headers

device, 306-308, 313, 315} 366-368
for EXE programs, 23

Heap manager with windows, 255-256
Help screens} 105-106

batch files for, 66-67
HELPGEN.EXE program (VC), 106

Hex_to_ascii subroutine, 181
Hexb_to_ascii subroutine, 181-182
HIDDEN attribute for hiding data, 221-224
Hierarchical files,18-20. See also Whereis

directory search program
Home key

with keydo.com program, 62
with VC, 103

Horton, Mark, programs by} 84-85
Hyphen (-)

for command options} 18,58-59,71
with SOUND driver} 350

I

IBMBIO.COM file, 7-8, 312-313
IBMDOS.COM file, 7-8} 312-316
IF command with batch files} 17
IFrrHEN ... ELSE command (EBL), 96
IFE directive (MASM), 129
IFIDN directive (MASM)} 132
IFNB directive (MASM), 132
IN instruction, 357
IN _DOS function, 196-197
Include files

with MASM, 125-126
for whereis, 40

Index sequential files, 107
Indexes for help files, 106
INDOS flag, 211

and background programs, 337
and INT 21H, 321-322

Inheritance with devices, 331
INKEY command (EBL), 96
Inp function, 501
Input editing with character I/O, 334
Input focus with windows} 247

570

INS8250 UART IC, 357
Insert key with VC, 103
Installable device drivers, 30, 307

in CONFIG.SYS file, 10
See also Device drivers

Instance handles, 261
Instant Recall} 186
Instruction pointer and interrupts, 26
INT 05H} 198-199
INT 09H, 213-214
INT 10H, 26, 336, 437

Function OCH, 444
Function lOH, 469-472
Function 12H, 440

INT 13H, 19~ 220, 336, 337
INT 14H, 490-491
INT 15H, 214
INT 16H} 214
INT 19H, 312
INT lCH, 210-211. 336-337
INT 20H, 150
INT 21H (general dispatcher), 26

for applications, 306, 310-312, 321-323
and ASSIGN, 209
for device drivers, 321-322} 329-330}

334-335,337-338
for directories} 37, 82
for files, 84, 220
for handles} 153-154, 177-178
for JFT size, 324
for keyboard, 131
for List of Lists location, 315
for opening devices, 326
and passwords, 226
and PSPs, 150-152} 158-163, 197-198
for switch character} 59} 170
for TSRs, 25} 6~ 194, 196-197
undocumented, 170-172
See also specific functions

INT 22H, 22, 15~ 194
INT 23H, 15~ 194, 322, 335, 338, 549
INT 24H, 15~ 194, 338} 549
INT 25H} 37, 209, 336, 337
INT 26H, 209, 336, 337
INT 27H, 193-194
INT 28H, 159, 178-179, 197,210,336-337
INT 29H, 335
INT 2AH, 179
INT 2EH, 179-180
INT 2FH, 194-196, 209} 327
Int 4BH} 22
INT 4CH} 67
INT 67H, 539,541-549
Int86 functions} 501
Intdos function, system date, 51
Intdosx functions, 501

Integrated programming environments, 28,
113

Intel 8250 UAR'f, 484-492
Intel 8253-5 programmable timer, 373-375
Intel 8259A PIC chip, 489-490
Interfaces

for device drivers, 306-307
uniform, 28
user, 20-21, 241

Internal commands
COMMAND.COM, 12
for devices, 327, 329-330

Interrupt Controller (8259), 358, 375
Interrupt enable register, UAR'f, 484-485, 488
Interrupt entry for SOUND driver, 376
Interrupt identification register, UAR'f,

484-485,488
Interrupt requests, UAR'f, 489
Interrupt vector Table, 26, 62, 191-192,306
Interrupts, 62

with applications, 305-306
and COMl, 357-359
for device drivers, 308-309
for expanded memory, 540-546
handlers for, 44, 136-139,499-501
INT instruction for, 26, 191
for 1/0,486-487
kernel access by, 25-26
problems with, 27
for serial adapter, 487-488
and TSRs, 25, 191-193
undocumented, 178-182
See also specific interrupts

InvalidateRect function (Windows), 254
InvalidateWindow function (Windows), 263
IO.SYS file, 7-8

loading of, 10
10CTL driver attribute, 309
IOCTL requests, 331-334, 368, 540
IRET instruction, 306
IRP directive (MASM), 135-136
IRQ (interrupt request), 489
Isblank function (VC), 104
IsDialog Message function (Windows), 244

J

JIT Uob File Table), 324, 326
and background programs, 338
and closing of files, 330

K

K command (SOUND driver), 351
IK directive (EBL), 97

Inde)(

Keep Process function, 194-196
Kegel, Dan, nansLsys by, 75-76
KERMIT file transfer protocol, 481-482
Kermit tool (PCnix), 84
Kernel, 6-8

device driver support in, 303-304
features of, 21-22
interrupts for, 25-26
and IOCTL requests, 331
relocation of, by SYSIN'f, 10

Key file access systems, 107-112
Key signatures with SOUND driver, 351
Key tape code book systems, 228-229
Keyboard

auto repeat with, 62
buffered input of, 335
function for, 131-132
input by, with EBL, 96
and INT 28H, 197
interrupt request for, 489
poll routine for, 335
and shells, 11
and TSRs, 186, 213-214
with VC, 103-104
window messages for, 246-247

Keydo.com program, 62
Kneller, D.G., make utility by, 84
Korn shells (ksh), 18

L

L command (SOUND driver), 351-352
IL directive (EBL), 97
Labels, MASM, 132
Large memory model for Microsoft C, 501
LaserJet printer, print screen routine for,

461-465
LASTDRIVE in CONFIG.SYS file, 319
LASTFIELD label (C·INDEX), 109-110
Latch registers, EGA, 446-449, 458, 464
Learning curves, 20-21
LEAVE command (EBL), 96
Left arrow key with VC, 103
Legato mode with SOUND driver, 352-353
Length command with SOUND driver,

351-352
LESS parameter (C·INDEX), 111
Less than sign «)

with EBL, 97
with IRP directive, 135

LESSEQ parameter (C·INDEX), 111
Libraries for C, 28-29, 100-105
LIM expanded memory system, 535-536, 539,

547
Line control register, UAR'f, 484-485
Line-editing with standard devices, 335

571

MS-DOS Papers

Line feeds with debug, 60
Line status register, UAR'f, 484-485
Lines, program to draw, 452-454
Linked lists for DCBs, 10
Linking of files, 13
List of Lists, 10

and device drivers, 313-316
pointer to, 171

LISTER.COM program, 310-312
Loadable device drivers, 10,30,307

See also Device drivers
Loading of programs, 22
LoadMenu function (Windows), 257
LoadResource function (Windows), 257
LoadString function (Windows), 257, 262
Local area networks, C-INDEX with, 108
LOCAL directive (MASM), 132
Local memory management function, 256
Local stacks for TSRs, 213
Logical coordinates, 253
Logical disk drives

and ASSIGN, 189,209
in DPB, 172-173

Logical operators, 119-120
Loop functions, VC, 104
Low-pass filter for SOUND driver, 373
LParam parameter (Windows), 244
Ls file tool (PCnix), 81-84

M

Macintosh, learning curves for, 20-21
Macros

code, 129-136
data, 126-129
for EGA, 449-450
and ProKey, 186
for SOUND driver, 377
with whereis, 41-42

Make tool (PCnix), 84
MakeProclnstance function (Windows), 269
Map-mask register, 448, 454, 457
Map Memory function (EMM), 544,546
Map select register, EGA, 460
Mapping modes, window, 253
MARK in data transfer, 478
MASK directive (MASM), 119
MASM techniques

code macros, 129-136
data macros, 126-129
include files, 125-126
records, 117-120
structures, 120-124

MCB (Memory Control Block), 162-163
MCGA,437
MD (Monochrome Display), 437-439

572

MDA (Monochrome Display Adapter), 437-439
MDI (Multiple Document Interface), 250
Media descriptor byte in DPB, 173
Memory

allocation of, 22-24, 152, 160-169, 255-256
configuration of, with SYSIN'f, 10
in EGA, 446-449
and PSp, 151-152
with windows, 255-256
See also Expanded memory systems

Memory Control Blocks, 162-163
Memory models for Microsoft C, 501
Memory resident programs. See Thrminate

and Stay Resident programs
Menus

batch file generation of, 18
benefits of, 93-94
and child windows, 250
disadvantages of, 241-242

Messages, window, 242-248
Metacharacters, UNIX, 86-87
Microsoft and TSRs, 189-190
Microsoft C, 28

compiling with, 436
for data transfer package, 501-502

Microsoft Quick languages, linking of files in,
13

Microsoft Windows, 30, 241-242
classes of, 250-252
graphics with, 252-255
learning curve with, 20
memory management of, 255-256
messages for, 242-248
resources for, 256-257, 268-269
SPY program for, 257-269
styles of, 248-250

Minus sign (-)
for command options, 18, 58-59, 71
with SOUND driver, 350

MKDIR command with Penix, 72-73
MKS Tholkit, 18
ML command (SOUND driver), 352
MM _ TEXT message (Windows), 253
MN command (SOUND driver), 352
Modal dialog boxes, 264
MODE program, 188
Modeless dialog boxes, 264
Modeless programs, 31
Modeless user interfaces, 241
Modems for data transfer, 482

registers for, 484-485
status interrupt for, 488

Moderato tempo with SOUND driver, 352
Modularity of MS-DOS, 6
Module Definition Files, 269
Monitors

damaging of, 444

Monitors-eont
for EGA, 437-440

Monochrome Display, 437-439
Monochrome Display Adapter, 437-439
Morris, G. Allen, Jr., dog program by, 81
Mouse window messages, 245-246
Move read/write pointer function, 220
MS command (SOUND driver), 352
MS (modem status) interrupt, 488
MS-DOS, 5

2.0 compared to 3.3, 7
applications level of, 21-29
hardware level with, 29-30
learning curves for, 20-21
structure of, 6-11
user level of, 11-21

MSDOS.SYS file, 7-8
See also Kernel

MSNet and network devices, 327
Multilanguage programming, 28
Multilayer data protection, 218-219
Multiple Document Interface, 250
Multiple programs, 25
Multiple shells, 17-18
Multiple structures with MASM, 123-124
Multiplex Interrupt, 194-196,209
Multisync monitors, 438
Multitasking

expanded memory for, 535-536, 538
and file handles, 154
and Function 55H, 159
operating system for, 27
and PSp, 22, 152
and TSRs, 189-190
and UNIX, 57
and VC, 104

Multiuser systems, C-INDEX with, 108
Musical notes, 349-350

See also SOUND driver
Mv file tool (PCnix), 81-82

N

N command (SOUND driver), 349
%NAME% variable (EBL), 97
NansLsys display driver, 75-76
National Security Agency, DES approval by,

230
Naturals with SOUND driver, 351
Nesting of macros, 131-133
Network devices and open routines, 327
NONIBM driver attribute, 309
NONKEY label (C-INDEX), 109-110
Nonstandard filenames for hiding data, 221
NOT operator, 119-120
Notepad, 259-260

Index

Notes (musical) with SOUND driver, 349-350
Now tool (PCnix), 84-85
NUL device

driver for, in DPB, 172
header for, 306, 313, 315
writing to, 330

Null characters in filenames, 221
Number sign (#)

with SOUND driver, 350
for VC fields, 103

o
o command (SOUND driver), 349
Object-oriented programming, 30-31
OCRM driver attribute, 309, 327, 331
Octaves with SOUND driver, 349-350
Odd parity in data transfer, 480
-ON.ERROR (EBL), 98
On-line help, batch files for, 66-67
Open file function, 220, 540
Opening of devices, 326-327
Option switches with COMMAND.COM, 14,

18,58-59
with whereis, 38-39

OR operator, 119-120
OS/2, 31-32

and windows, 270
%OUT directive (MASM), 129
OUT instruction, 357

with EGA, 447
Outline processor, TSR, 186
Outp function, 501

with EGA, 447, 473
Outport function, 473
Output logging with character I/O, 334
Overlapped windows, 106, 248
Overscan register, EGA, 469-470

p

P command (SOUND driver), 352
IP directive (EBL), 95, 97
P text tool (PCnix), 75-76
Packets, data transfer of, 481-482
Page frames, 538
Painting of windows, 254-255, 267-268
PaintWindow function (Windows), 267-268
Palettes, 468-472
Paragraphs, 151, 160-161
Parallel data transfer, 478
Parameter save area and EGA, 470
Parent process, id for, in PSP, 151
Parity in data transfer, 478, 480-482
PARSE command (EBL), 96

573

MS-DOS Papers

Parsing
of command·line options, 46-48
of user commands, 11, 13-15

Password protection, 225-237
PATH environment variable, 13, 156
Paths, 13

for opening devices, 326
separators for, 18, 58-59, 71
setting of, 92-93

PAUSE batch command, 95
Pauses with SOUND driver, 352
PC-DOS, 8, 187-188
PCnix

batch files for, 62-74
with MS·DOS functions, 58-62
tools for, 75-86
and UNIX, 55-58
and wildcards, 86-87

Percent sign (%)
for batch variables, 97, 156
for expression operator, 128
for UNIX prompt, 58

Permanent part of COMMAND.COM, 15
PgDn key with VC, 103
PgUp key with VC, 103
Physical security of data, 218
PIC (Programmable Interrupt Controller) chip,

489-490
Piping, 14

with batch files, 156
with UNIX, 57

Pitch (musical), 349-350
Pixels

addresses of, 451
color of, 460-461
height and width of, 454

Placeholders with batch files, 17
Plus sign (+)with SOUND driver, 350
Polling of I/O, 486
Popup windows, 248
Port addresses, 484
Portability

and C, 100
and device drivers, 307

Ports, I/O, 490
See also Serial ports

POSrr, See Power On Self Thst
PostMessage function (Windows), 252
PostQuitMessage function (Windows), 261
Power On Self Thst, 8, 312

and passwords, 226
and serial adapters, 490-491

Pr text tool (PCnix), 75-76
Predefined equates with MASM, 140
Presto tempo with SOUND driver, 352
PRINrr,COM program

and INT 21H, 337

574

PRINrr,COM program-cont
and INT 28H, 179, 336
and INT 2FH, 194
as TSR, 188-189, 191, 210-211

Print Screen key, disabling of, 198-208
Print screen routine, 461-468
Print Spooler Control interrupt, 194-196
Printer and control-p, 335
Printing of characters, subroutine for, 180
PRN, opening of, 331
Process Id in PSP, 151
Program Segment Prefix, 148-152

and background programs, 337
command line in, 14
construction of, 22
functions for, 158-160
JFTin,324
resources in, 304-305
and TSRs, 197-198

Programmable Interrupt Controller chip,
489-490

Programmable interval timer (8253·5) chip,
373-375

Programs
execution of, 15-16
loading of, 22
multiple, 25
object-oriented, 30-31
structure of, 22-24
termination of, 150

ProKey,186
PROMPT environment variable, 156
Prompts

in booting, 10
for PCnix, 58
setting of, 93

Protection, data. See Data protection and
encryption

PS/2, video adapters for, 437
PSOFF program, 199-208
PSP. See Program Segment Prefix
Public key cryptosystems, 233-236
Pushbuttons, window, 246
Pwd file tool (PCnix), 81

Q
IQ directive (EBL), 97
%Q variable (EBL), 97
Qk.com program, 62
Question marks (?) as wildcards and

metacharacters, 86-87
Queues

for interrupt handler, 492
with serial data transfer, 487
for window messages, 243-244

QuickBASIC,28
QuickC, 28

R

IR directive (EBL), 97
%R variable CEBL), 97
RAM function (EBL), 97
RAMdisk

drivers for, 30
with PCnix, 71-72

Random files, 107, 328
RC (Resource Compiler), 257
RDA (receive data available) interrupt, 488
READ command (EBL), 96
Read Control Information, 333-334
Read from file function, 220
READ-ONlY attributes for hiding data, 224
READ.PARSED command (EBL), 96
Read sector function, 220
Reading

of data, unauthorized, 218
of devices, 328-329

READSCRN command (EBU, 96
READSCRN.PARSED command (EBL), 96
Ready outline processor, 186
Receive buffer register, UAR'f, 484-485
Receive data available interrupt, 488
Receive line status interrupt, 487-488
Receive queues for data transfer, 487
Records

locking of, with C-INDEX, 108-109
with MASM, 117-120

Rectangles, window, 247-248,253-254
Recursive methods for directory searching,

19,36-37
Redirection, 14

and file handles, 153-154
and Function 46H, 178
and IBMDOS initialization, 313
with MODE, 188

Regions, window, 253-254
RegisterClass function (Windows), 251-252,

262,267
Registers, DARl; 484
Release Handle and Memory function (EMM),

544
ReleaseCapture function (Windows), 246
Relocatability of EXE programs, 23
Relocatable memory management with

windows, 255
Renaming

of commands, 63
of directories, 82

Repeating
of commands, 63

lnde;l

Repeating-cont
of keystrokes, 62

REPT directive (MASM), 127
Request headers

and IBMDOS, 313
for SOUND driver, 367-368

Request 1b Send signal, 482
Reserved functions, 169-170
Resident part of COMMAND.COM, 15
Resource Compiler, 257
Resources, window, 256-257, 268-269
Restore Mapping Context function (EMM), 545
Rests with SOUND driver, 352
RESUME (EBU, 98
Ret variable (C·INDEX), 110
Ret variable (VC), 106
RETURN command (EBL), 96
Right arrow key with VC, 103
RLS (receive line status) interrupt, 487-488
Rm command (uNIX), approximation of, 63
Rollins, Dan, qk.com program by, 62
Root directory, 219

and DPB, 173
RS-232-e data transfer standard, 482-484
RSA cryptosystems, 234
RTS (Request 1b Send) signal, 482

s
IS directive (EBL), 97
%S variable (EBL), 97
Save Mapping Context function (EMM),

544-545
Scales (musical) with SOUND driver, 350-351
Scrambling of data, 227-237
Screen display, 99-107

dumping of, 189
and INT 10H, 437
memory for, 446-449
printing of, 461-468
programming of, 91
and TSRs, 214

Screen logging, 335
ScrollWindow function (Windows), 265
Search for First directory function, 37,

545-546
Search for Next directory function, 37
Search paths, 13
Seattle Computer Products, MS·DOS by, 187
Sector size in DPB, 17L 173
Security. see Data protection and encryption
Semicolons (i) with MASM comments, 134
SendMessage function (Windows), 252
Sequencer chip, EGA, 448-449
Sequential files, 107, 328
Serial adapters, 484

575

MS-DOS Papers

Serial adapters-eont
interrupts for, 487-488

Serial ports
and asynchronous data communications,

477-484
program using, 493-532
and UAR'f, 484-492

SET command, 13, 155
Set Current PSP function, 159
Set Device Attributes, 331
Set Palette routine, 469-472
Set PSP function, 321
Setlreset register, EGA, 454-455, 457
SET USER_PSP function, 197-198
Setattr function (VC), 104
SetCapture function (Windows), 246
SETCLOCK programs, 190
SETDTA macro (whereis), 38
SetFocus function (Windows), 247
Setloop function (VC), 105
SetScrollPos function (Windows), 265
SFN (System File Number), 324-326
SIT See System File Table
Sharps for SOUND driver, 350-351
Shells, 320

commands for, 10, 96
multiple, 17-18
UNIX, 18
See also COMMAND.COM file

ShowWindow function (Windows), 261
SideKick, 185
SKIP command (EBL), 96
Slashes (I)

for command options, 18,58-59
with EBL commands, 97
in file paths, 18, 58-59, 71

Slurs with SOUND driver, 352
Small memory model for Microsoft C, 501
SmartKey, 186, 187
Software interrupts

kernel access by, 25-26
and TSRs, 191-193
See also specific interrupts

SOUND driver
DOS internals for, 366-368
file creation for, 353-355
finite state machine for, 376-378
hardware for, 355-359, 373-375
listing of, 385-431
musical notation for, 349-353
performance evaluation of, 381-382
programming techniques for, 359-366
prototype for, 369-373
refinements for, 382-385
setting up, 347-349

SPACE in data transfer, 478
SPECL driver attribute, 309

576

Spelling checker, TSR, 186
Split text tool (PCnix), 75
Spoolers, TSR, 188-189
Spotlight, 185
SPY program for windows, 257-269
Sr text tool (PCnix), 75
Staccato mode with SOUND driver, 352-353
STACK command (EBL), 96
STACK.LIFO command (EBL), 96
STACK.OFF function (EBL), 97
STACK.ON function (BBL), 97
STACK.PURGE function (BBL), 97
Stack segment and PSP, 151
Stacks

with interrupts, 26, 138, 192-193,213
overflow of, with device drivers, 343
switching of, with INT 21H, 322-323

Standard auxiliary device with character 1/0,
334

Standard error with character I/O, 334
Standard I/O handles, 152
Standard input

with character I/O, 334
devices for, 130, 335
reading from, 329

Standard interface, CICS as, 100
Standard output

with character I/O, 334
devices for, 180
writing to, 330, 334-335

Standard printer with character I/O, 334
START bit in data transfer, 478
Startup, DOS, 8-11
STATEOF command (BBL), 96
States in finite state machines, 363
STDIN driver attribute, 309, 313, 331
#stdio.h file for C, 100
STDOUT driver attribute, 309, 313, 331
STI instruction, 358, 489
STOP bit in data transfer, 478
Str text tool (PCnix), 75
Strategy routines for device drivers, 308-309,

376
STRING label (C-INDEX), 109
String_out subroutine, 180-181
Strings, handling of, by EBL, 96
Strings program (UNIX) and str PCnix tooL 76
Structures

with MASM, 120-124
as subroutine parameters, 136

Subdirectories, 219
password protection of, 226-227

Subroutines, 180-182
in batch files, 157
batch files as, 64
coding of, as macros, 134
compared to coroutines, 361

Subroutines-eont
compared to macros, 130
parameters for, structures as, 136

SUBST command with PCnix, 68-71
Substitute operator (&), MASM, 127-128
SuperKey, 186
Switch tool (PCnix), 84-85
SWITCHAR

changing of, 59
function for, 170
with SUBS'f, 71
switch PCnix program for, 85

Synchronization
of interrupts, 343
of multiple processes, 364-365
of SOUND driver, 378-379

Synchronous data transfer, 478
SYSINT module, 10
System calls from C, 77
System clock, speeding up of, 379-382
System date, function to convert, 51
System File Number, 324-326
System File Table, 26-27, 152-153,304

aging of entries in, 327
building of, 317-319
and closing of devices, 330
and device drivers, 324-326
and IOCTL requests, 331
pointer to, 171
and read routine, 329

System files, 7-8
System kernel. See Kernel
System timer, interrupt request for, 489

T

T command (SOUND driver), 352
Tables, 26-27

and device drivers, 304-307
of files open, 171
MS-DOS, building of, 10

Tail text tool (PCnix), 75-77
Task-switching, 25
Thmpo with SOUND driver, 352
Thmporary part of COMMAND.COM, 15
Thrminate and Stay Resident programs,

185-186
and busy flag, 170
and expanded memory, 549-550
function calls with, 61, 209-211
guidelines for, 213-214
interrupt for, 193-194
and memory allocation, 23-25,158
origin of, 186-190
PSP functions for, 159-160
sample of, 198-208

Index

Thrminate and Stay Resident programs-eont
with UNIX-like shells, 56
UNSPOOL program, 211-213
well·behaved, 190-198

Thrmination handler, 22, 151, 194
TEST command (MASM), 119-120
Thxt, PCnix tools for, 75-80
Thxt mode, writing in, 330
Tglob tool (Penix), 84-85
Thesaurus, TSR, 186
THRE (transmit holding register empty)

interrupt, 488
Time

and clock device header, 313
on directories, 220
in DTA buffer, 328
function for, 84
interrupts for, 336,489

Timer _Tick interrupt, 210-211
lbkens for finite state machines, 363
lbscreen.c program, 77
lbuch tool (PCnix), 84
Tr text tool (PCnix), 75-76
TRACE.OFF function (EBL), 97
TRACE.ON function (EBL), 97
Transitions in finite state machines, 363
TranslateMessage function (Windows), 261
Transmit holding register, UAR'f, 484-485
Transmit holding register empty interrupt,

488
Transmit queues for data transfer, 487
Transparent write mode, 329
Trapdoor functions, 234
Tree command, 19
Tree·structured files, 18-20

See also Whereis directory search program
TSR programs. See Thrminate and Stay

Resident programs
Thrbo C, compiling with, 436
Thrbo Lightning, 186
Thrbo Pascal, 28
TYPE command (EBL), 96
TYPE operator (MASM), 135
.TYPE operator (MASM), 135

u
IU directive (EBL), 97
UART (Universal Asynchronous Receiver

Transmitter), 357, 484-492
Uniform, 187
Uniform interfaces, 28
Uniq text tool (PCnix), 75-76
Universal Asynchronous Receiver Transmitter,

357,484-492

577

MS·DOS Papers

UNIX
file path separators in, 18, 58-59
learning curves for, 20-21
she]]s for, 17
See also PCnix

UNSPOOL program, 187, 211-213
Up arrow key with VC, 103
UpdateWindow function (Windows), 266
User interaction with EBL, 95
User interface

improving, 20-21
modeless, 241
See also Command processor

User stack, 322
Uudecode tool (PCnix), 84
Uuencode tool (PCnix), 84

v
%V variable (BBL), 97
Variables

batch, with EBL, 96-98
Dos, function for, 171-172
in environment, 156-157

VC (Vitamin C) library, 100-106
VDISK.SYS driver, 30
vertical bar (I)

with batch files, 156
for piping, 14

VGA (Video Graphics Array), 437
Video and TSRs, 214
Video Graphics Array, 437
Video interrupt, 336,437
Video services, BIOS, interrupt for, 26
Virtual windows with VC, 107
Vitamin C library, 100-106
VSAM files, 107

w
Wc text tool (pCnix), 75-76
Well·behaved TSRs, 190-198
Whereis directory search program, 35

analysis of, 39-52
compilation of, 52
functions in, 37-38
options in, 38-39
using recursion, 36-37

White, Nat, RAMdisk system by, 71
Wildcards

commands with, 15

578

Wildcards-eont
compared to UNIX metacharacters, 86-87
with directories, 19,37

Windows, creation of, with VC, 106-107
See also Microsoft Windows

WinMain function (Windows), 243, 261
WM_ACTIVATE message (Windows), 247
WM_CHAR message (Windows), 247
WM_CLOSE message (Windows), 245
WM _COMMAND message (Windows), 263
WM_DESTROY message (Windows), 264-265
WM_HSCROLL message (Windows), 263, 265
WM_KEYDOWN message (Windows),

246-247,266
WM_KEYUP message (Windows), 246-247
WM _KILLFOCUS message (Windows), 247
WM_LBUTTONDOWN message (Windows),

242, 246
WM _LBUTTONUP message (Windows), 242,

246
WM _MOUSEMOVE message (Windows),

245-246
WM_NCPAINT message (Windows), 245
WM_PAINT message (Windows), 254-255,

266
WM_QUIT message (Windows), 261
WM_SETFOCUS message (Windows), 247
WM_SIZE message (Windows), 266
WM _SYSCOMMAND message (Windows),

265
WM_VSCROLL message (Windows), 263, 265
Wordlength in data transfer, 478
WordStar and p PCnix tool, 76
WParam parameter (Windows), 244, 266
Write Control Information, 333-334
Write Dot routine, 444
Write modes, EGA, 455-459
Write-only register, EGA, 450-451
Write sector function, 220
Write to file function, 220
Writing to devices, 328-330
Wselect function (VC), 106

x
Xatget function (VC), 104
Xcopy command, 19
.XCREF directive (MASM), 134
XMODEM file transfer protocol, 481-482
XONIXOFF data flow control, 478, 482-484
XOR operator, 119
Xp tool (PCnix), 84-85

The Waite Group's
Discovering MS·DOS@
Kale O'Day. The Waite Group

This comprehensive study of MS-DOS
commands such as DEBUG. l.INK. and
EDLIN begins with general information
about operating systems. It then shows
how to use Ms-DOS to produce lelters
and documents; create, name. and
manipulate files; use the keyboard and
function keys to perform jobs faster;
and direct. sort, and find data quickly.
It features a command summary card
for quick reference.
Topics covered include:

• Introduction to MS-DOS
• What is a Computer System?
• What is an Operating System?
• Getting MWOS off the Ground
• System Insurance
• Editing
• Filing
• Batch Files
• Paths
• Input/Output
• Hard Disks
• Appendices: Error Messages.

Reference Card

296 Pages. 71h x 93f., Softbound
ISBN: Q.672-22407.Q
No. 22401, $19.95

The Waite Group's
Tricks of the MS·DOS@ Masters

John Angermeyer. Rich Fahringer,
Kevin Jaeger, and Dan Shaler,

The Waite Group

This title provides the personal user
(not necessarily the programmer or soft·
ware developer) with a wealth of ad­
vanced tips about the operating system
and tricks for using it most successfully.
Also included are advanced tips on us­
ing popular software packages such as
WordStar.~

Topics covered include:

• Secrets of the Batch File Command
Language

• Secrets of Pipes. Filters. and
Redirection

• Secrets of Tree-Structured Directories
• Discovering Secrets: ADebugger

Tutorial
• Secrets of DOS Commands
• Secrets of Files
• Secrets of Free and Low-Cost

Software
• Secrets of Add-on Software, Boards,

and Mass Storage
• Secrets of System Configuration
• Secrets of Data Encryption
568 Pages. 71h x 93/•• Softbound
ISBN: 0-672-22525-5
No. 22525, $24.95

300 Pages. 7 x 9. Softbound
ISBN: 0-672·27067-6
No. 27067, $17.95

Topics covered include:

• Organizing Data into Files
• Redirecting Input and Output
• Using the Text Editor EDl.IN to

Create and Edit Files
• Using Commands to Manage Files
• Special Function Keys and Key

Combinations
• Creating Batch Files of Often

Repeated Commands
• Create and Use Tree Structured

Directories

The Waite Group's
Understanding MS·DOS@
Kale O'Day and John Angermeyer,

The Waite Group

MWOS is a very powerful and intricate
operating system with millions of users.
This operating system can be explored
by beginning programmers in a hands­
on approach. at the keyboard.
Understanding M5-DOS introduces the
use and operation of this popular
operating system for those with lillie
previous experience in computer hard­
ware or software. The fundamentals of
the operating system such as EDLIN.
tree-structured directories and
pathnames. and such advanced features
as redirection and filtering are presented
in a way that is easy-to-understand and
use.

The Waite Group's
MS.DOS Developer's Guide,

Second Edition
John Angermeyer. Kevin Jaeger,

The Waile Group

laJlding upon the first edition. M5­
is Developer's Guide covers the MS
I PC DOS operating systems. concen­
ing on techniques for developing ap­
:alions programs. Ideally suited for
grammers, developers. and "power
rs," the book highlights the specifics
:he operating system's internal
avior which is so essential to
:em integration and software
elopment.

s revised guide includes special em­
sis on undocumented DOS functions
Nell as coverage of M~DOS file
ctures and their differences.
ics covered include:
fools for Structured Coding
I'he Design and Implementation of
\1odular Programs
>rogram and Memory Management
~eal·Time Programming
nstallable Device Drivers
Writing Programs for the Intel 8087/
10287 Math Coprocessor
.ANs and M~DOS

)isk Layout and File Recovery
nformation
tecovering Data Lost in Memory
)ifferences Between Ms-DOS
lersions
figh-Level Languages
)ebugging Techniques
~icrosoft Windows
Ippendices: Development Tools.
libliography. ASCII Cross·Reference
nd Number Conversions. Product
:nhancements
Pages, 71h x 931., Softbound
I: 0-672-22630-8
22630, $24.95

Visit your local book retailer, use the order form provided, or call 800·428·SAMS.

r

IBM@ PC AT
User's Reference Manual

Gilbert Held

Includes everything you need to know
about operating your IBM PC AT-how
to set the system up, write programs
that fully use the Ais power, organize
fixed-disk directories, and use IBM's
multitasking TopView.
Includes a BASIC tutorial for beginners
and includes several fixed disk
organizer programs-all clearly de­
scribed, explained, and illustrated.
Topics covered include:

• Hardware Overview
• System Setup
• Storage Media and Keyboard

Operation
• The Disk Operating System
• Fixed Disk Organization
• BASIC Overview
• Basic BASIC
• BASIC Commands
• Advanced BASIC
• Data File Operation
• Text and Graphics Display Control
• Batch and Shell Processing
• Introduction to TopView
• Appendices: ASCII

Code Representation, Extended
Character Codes, BASIC Error
Messages, Programming Tips and
Techniques

453 Pages, 7 x 9'14, Softbound
ISBN: 0-8104-6394-6
No. 46394, 829.95

Hard Disk Management
Techniques for the IBM@

Joseph-David Ca"abis

This is a resource book of in-depth
techniques on how to set up and
manage a hard disk environment
directed to the everyday "power user,"
not necessarily the DOS expert or
programmer.

Each fundamental technique, based on
the author's consulling experience with
Fortune 500 companies, is emphasized
to help the reader become a "power
user." This tutorial highlights installa­
lion of utililies, hardware, software, and
software applications for the experienced
business professional working with a
hard disk drive.

Topics covered include:

• Introduction to Hard Disks
• Hard Disks and DOS
• Backup and What You Need to

Know
• Service and Maintenance
• Setting Up a Hard Disk
• Organizing a Hard Disk
• Hard Disk Managers
• Utilities to Find Files, Get Overlays,

unERAse Files, Recover Damaged
Files, Speed Up Disk Access, and
Restore and Backup Disks

• Maintenance Utilities
• File Security Utilities
• Security Utilities
250 Pages, 7112 x 9314, Softbound
ISBN: ()'672·22580-8
No. 22580, 822.95

IBM@ PC & PC XT User's
Reference Manual,

Second Edition
Gilbert Held

Expanded 10 include the more powel
PC XT, this second edition contains
most up~o-date information available
the IBM PC. From setup through ap
ing and modi(ying the system, this I
continues to provide users with c1ea
steiH>y-step explanations of IBM PC
hardware and software-complete w
numerous illustrations and exampleli
Highlights of the second edilion inel
instructions for using DOS 3.1 and
upgrading a PC to an XT; informalil
on the customized hardware configu
tion of the PC and XT; explanation~

how to load programs on a fixed di
and how to organize directories: ani
material on available software, inclt
compilers.
Topics covered include:

• Hardware Overview
• System Setup
• Storage Media and Keyboard Op
• The Disk Operating System
• Fixed Disk Organization
• BASIC Overview
• BASIC Commands
• Data File Operations
• Text and Graphics Display Coni
• Batch Processing and Fixed

Disk Operations
• Audio and Data Communication
• Introduction to TopView
• Appendices: ASCII

Code Representation, Extended
Character Codes, BASIC Error
Messages, and Programming Ti~

and Techniques
496 Pages, 7 x 9'14, Softbound
ISBN: ()'672-46427-6
No. 46427, 826.95

Visit your local book retailer, use the order form provided, or caD 800·428·SAMS.

MS·DOS@ Bible, Second Edition
Steven Simrin, The Waite Group

This revised edition of the best seller is
ideally targeted for the intermediate lev­
el user and programmer of the operat­
ing system, especially those who have
upgraded to the new version 3.3. The
comprehensive tutorial emphasizes the
new features found in DOS 3.3 and pro­
vides expanded coverage of batch files,
device drivers, memory management,
and network commands.
The new expanded batch language, disk
structure, terminate and stay resident
programs (TSRs), and the Lotus-Intel ex·
panded memory model 4.0 are high­
lighted. The new commands are
explained in detail, and a unique "Infor­
malion Jump Table" is included and
enhanced for easy reference.

Topics covered include:

• Starling MS-DOS
• MS-DOS Files and Batch Files
• Directories, Paths, and Trees
• Installing a Fixed Disk
• Redireclion, Filters, and Pipes
• EDLIN
• Extended Keyboard and Display

Control
• Debug
• Link
• Disk Structure
• MS-DOS Device Drivers
• MS-DOS Commands
~ Appendices: Undocumented Features;

MS-DOS Interrupts and Function
Calls; Practical Batch Files; ASCII
Cross Reference Table

568 Pages, 71h x 93/4, Softbound
ISBN: 0-672-22617.Q
No. 22617, 822.95

The Waite Group's
Desktop Publishing Bible

James Siocklord Editor

Publish high-<juality documents right
on your desktop with this "bible" that
tells you what you need to know­
everything from print production,
typography, and high-tnd typesetters, to
copyright information, equipment, and
software.

In this collection of essays, experts
from virtually every field of desktop
publishing share their tips, tricks, and
techniques while explaining both tradi·
tional publishing concepts and Ihe new
desktop publishing hardware and
software.

Topics covered include:

• Publishing Basics: Traditional Print
Production. Conventional Typography,
Case Studies in Selecting a
Publishing System, and a Comparison
of Costs for Desktop and Conventional
Systems

• Systems: The Macintosh. PC, MS-DOS,
An Overview of Microsoft Windows,
Graphics Cards and Standards.
Monitors, Dot and Laser Printers,
UNIX, and High-End Work Stations

• Software: Graphics Software, Page
Layout Software, Type Encoding Pro­
grams. PostScript. and JustText

• Applications: Newslellers. Magazines,
Forms, Comics and Cartooning, and
Music

480 Pages. 71h x 93/4. Softbound
ISBN: 0-672-22524-7
No. 22524, $24.95

Personal Publishing with
PC PageMaker@

Terry M. Ulick

Here is everything you need to know
about PC PageMaker to design publica­
tions. It shows you how to select and
use type, work in multicolumn and
multipage layouts. create graphs. and
merge text with graphic elements.

Hands-<ln instruction at the terminal.
numerous visual examples, and a detailed
explanation of typesetting terms pro­
vide the information necessary to help
the beginning to intermediate PC user
produce allractive copy.

Topics covered include:

• Assembling a Personal Publishing
System

• Selecting the Right Hardware and
Software

• Pages on the IBM(!)
• Electronic Page Assembly
• Working with Type
• PostScript™ and LaserJet Plus™

TypeStyles
• Formalling Type
• Working with PageMaker
• Building Master Pages
• Placing Elements on a Page
• Adding Graphic Elements
• Linking PageMaker Files
• Printing Page Files
• High-Volume Printing
• Multicolored Pages
• Grids and Sample Pages
304 Pages, 7'h x 93,4, Softbound
ISBN: 0-672-22593-X
No. 22593, $18.95

Micro-Mainframe Connection
Thomas Wm. Madron

Focusing on the organizational environ­
ment, this book explores the oppor­
tunities, technologies, and problems
involved in implementing the transfer of
data between the mainframe and the
micro workstation-more comprehen­
sively than any other book on the
market.

Designed to help managers and
technical support people design and
implement micro-mainframe networks, it
gives complete information about
features, facilities, and requirements,
including cost considerations.

Topics covered include:

• The Micro-Mainframe Link
• Features, Facilities, and Problems

in the Micro-Mainframe Connection
• Local Area Networks in the

Micro-Mainframe Connection
• Micros as Mainframe Peripherals:

Mainframes as Micro Peripherals
• Micros and IBM(!) Mainframes in a

Synchronous Network
• Asynchronous Devices in a

Synchronous Network: Protocol
Conversion

• File Transfer
• Data Extraction, Data Format. and

Application Specific File Transfers
• Making the Micro-Mainframe

Connection
256 Pages. 7117 x 93,4, Hardbound
ISBN: ()'67246583-3
No. 46583. $29,95

The Waite Group's
Modem Connections Bible

Curtis and Majhor

This book describes modems, how they
work, and how to hook ten well-known
modems to nine name-brand computers.
A handy Jump Table shows where to
find the appropriate connection diagram
and applies the illustrations to eleven
more computers and seven additional
modems. It also features an overview of
communications software, an explana­
tion of the RS-232C interface, and a
section on troubleshooting.

Topics covered include:

• Types of Modems
• How Modems Work
• Connecting Equipment
• The RS-232 Connector
• The Progress of a Call
• Full Duplex and Half Duplex Mode
• Types of Communications Programs
• Features and Uses
• Voice/Data Switching
• How to Read the Charts
• Jump Table
• Appendices: Types of Online Services

and Costs, The RS-232C Interface,
Further Reading, Glossary,
Troubleshooting, Communications
Software for Microcomputers

192 Pages, 7tlz x 93/4. Softbound
ISBN: 0-672-22446-X
No. 22446, $16.95

Visit your local book retailer, use the order form provided, or call 800·428·SAMS.

The Waite Group's
Printer Connections Bible

Marble and House

This book contains all the information
necessary to make the proper connec·
tions to get a printer printing. It focuses
on the hardware side of connecting,
particularly the main interface-the
cable itself.
Avoid hours of frustration with this
easy-to-follow format including tables
and diagrams, information about various
printers, computers and software.
printer technology. and cables and
connectors.
Topics covered include:

• Types of Printers
• Cable and Connector Types
• Soldering
• The ASCII Code
• Binary Numbers
• Serial and Parallel
• Centronics Parallel
• More Complex Parallel Interfaces
• R5-232 Serial Interface
• Speed Considerations in R5-232
• Printer Drivers
• Hardware versus Software

Handshaking
• DIP Switches
• Jump Table
• Connection Diagrams
240 Pases, 7'h x 931., Softbound
ISBN: 0-672·22406-2
No. 22406, $16.95

The Walte Group's
Micro8of~ C Pro~mlng

for the IBM@
Robert LaIore

Programmers using the Microsoft C
compiler can learn to write useful and
marketable programs with this entry
level book on Microsoft C programming.
This title is a tutorial geared specifically
10 the IBM PC family of computers.
Unlike olher introductory Ctitles, it is
wrillen for the Microsoft C compiler. It
provides special coverage of IBM
features such as sound, color graphics
including CGA and EGA, keyboard,
variable storage, and character graphics.
Topics covered include:

• Gelting Started
• Building Blocks
• Loops
• Decisions
• Functions
• Arrays and Strings
• Pointers
• Keyboard and Cursor
• Structures, Unions, and ROM BIOS
• Memory and the Monochrome

Display
• CGA and EGA Color Graphics
• Files Preprocessor
• Serial Ports and Telecommunications
• Larger Programs
• Advanced Variables
• Appendices: Supplemental

Programs, Hexadecimal Numbering.
IBM Character Codes. and a
Bibliography

640 Pases. 71h x 931•• Softbound
ISBN: 0.672·22515-8
No. 22515, $24.95

The Waite Group's
Turbo (,'@ PrograIlllitlng for

the IBM~

Robert Lafore

This entry-level text teaches readers the
C language while also helping them
write useful and marketable programs
for the IBM PC, XT. AT, and PCI2.
This tutorial is based on Borland's new
Turbo C compiler with its powerful in­
tegrated environment that makes it easy
to edit. compile, and run C programs.
The author's proven hands-on intensive
approach includes example programs,
exercises, and questions and answers
and covers CGA and EGA graphic
modes.
Topics covered include:

• C Building Blocks
• Loops
• Decisions
• Functions
• Arrays and Strings
• Pointers
• Keyboard and Cursor
• Structures, Unions. and ROM BIOS
• Memory and the Character Display
• CGA and EGA Color Graphics
• Files
• Larger Programs
• Advanced Variables
• Appendices: References,

Hexadecimal Numbering, Biblio­
graphy. ASCII Chart, and Answers to
Questions and Exercises

608 Pases. 7'h x 931., Softbound
ISBN: 0-672·22614-6
No. 22614, $22.95

IBM(!) PC and Maclntosb(!)
Networking Featuring: TOPS"­

and AppleSbareTli

Stephen L Michel

IBM PC and Macintosh owners and
users who want to combine the power
of Iheir machines will welcome this
complete resource for networking the
IBM PC and the Macintosh using TOPS
and AppleShare.
This book details the specifics of using
the Macintosh and Ihe IBM PC on the
same network, including transferring
files, sharing prinlers, transporting data
from IBM software to Mac and vice vert
sa, and mixing word processing and
spreadsheet programs.
Topics covered include:

• How the Macintosh and PC Really
Differ

• TOPS
• AppleShare
• Coexistence
• Managing the Network
• Appendices: Glossary, ASCII

Characters Sets. Using PostScript
Printers

328 Pages, 7314 x 9114, Softbound
ISBN: 0-672-48405-6
No. 48405, $21.95

Visit your local book retailer, use the order form provided, or call SOO-42S-SAMS.

HOWARD W. SAMS &. COMPANY
••

TheWlite Group's
MS-DOS- Papers
b MS-DOS DewIopers and Power Users

MS-DOS Papers lets you 8:Jlploil the MS-DOS operating system to its limit. Essays on
fourteen state-of-the-art topics, wriffen by experts and oimed 01 programmers and serious
users, present the inner workings of the MS-DOS operating sYslem, secrets of undocu·
menfed fealur~. and lips for creating powerful new MS·DOS applications.

You'll find advanced techniques in assembly language and C. replacement shells for the
DOS command line, linla-known details on writing sofe Terminate and Slay Resident
programs, a complete examination of device drivers, and more, including

• A rare look at the cryptic and detailed internal struclures of the MS-DOS operating
system

• Penix, a UNIX-like shell replacement for MS-DOS, consisting of public domain utilities,
balch files, and patches

• Advanced techniques for using Microsoft's Macro Assembler (MASM) 5 and third-party C
libraries

• Writing Terminate and Stay Resident (TSR) programs, including when to use the little­
known INT SOh, INT 51 h, INT2fh (Multiplex Implement), and Functions 31 h (Keep Process
Call) and 34h (IN_DOS Flag Call)

• Exploring programming concepts of MS-WindoW$: queues, message streams, Windows
functions, classes, regions, resources, and a complete SPY examination utility in C .

• The interface between the MS-DOS operating system and device drivers, with detoiled
information about Program Segment Prefix (PSP), Memory Control Block Chain, MS-DOS
busy flog, System File Table, Device Control Blacks, and Current Directory Structure

• Enhanced Graphics Adopter (EGA) programming, including control of EGA registe",
latches, bit mask, and map mask, with listings for graphics routines written in C

• A detailed examination of sefial port control, including a complete communications
package

• Expanded Memory Specification (EMS) versions 3.2 and 4.0, and EEMS, including bonk
switching, testing for EMM, and error code and relevant function tables

This valuable r.eference presents a remarkable range of powerful techniques, insider
shortcuts, and wizardry for the most popular operating system ever created.

n.. WofN Gt'ovp is a developer of computer, science, and technology books.
Acknowledged as a leader in the field, The Waite Group creates book ideas,
finds authors, and provides development support throughout the book cycle,
including editing, reviewing, testing, and production control for each title.
The Waite Group has produced over 70 titles, including such best-sellers as C
Prjm~r Plus, MS-DOS- Dev~loper's Guide, Tricks of th~ UNIX- Masters, and
Assembly language Prim~r for th~ IBM- PC. Mitchell Waite, president of The
Waite Group, wrote his first computer book in 1976. Today The Waite Group
produces 15 to 20 new computer books each year. Authors can contoet The
Waite Group at 3220 Sacramento Street, San Francisco, California, 94115.

o

$26.95/22594

#f
HOWARD W. SAMS &.COMPANY

A DIvtsIon 01MacmlIIM. Inc.
4300 Mblc 62ltd SIf'ee(

IntMMapoIls, ItttJIiIM 46268 l&

