N

T S.Iaded SO SN\ gs;:g&*gl vy

o - = ¥
HOWARD W. SAMS & COMPANY 22594

The Waite Group’s

MS-DOS Papers

~for MS-DOS Developers and Power Users

Edited by
The Waite Group

The Waite Group’s

MS-DOS®

Papers

e

HOWARD W, SAMS & COMPANY
HAYDEN BOOKS

Related Titles

The Waite Group’s

MS-DOS® Developer’s Guide,
Revised Edition

John Angermeyer and Kevin Jaeger

The Waite Group’s
Understanding MS-DOS®

Kate O’Day and John Angermeyer

The Waite Group’s
Tricks of the MS-DOS®
Masters

John Angermeyer, Rich Fahringer,
Kevin Jaeger, and Dan Shafer

The Waite Group’s
Discovering MS-DOS®
Kate O’Day

Hard Disk Management
Techniques for the IBM®
Joseph-David Carrabis

IBM® PC AT User’s
Reference Manual
Gilbert Held

IBM® PC & PC XT User’s
Reference Manual,
Second Edition

Gilbert Held

The Waite Group’s
Desktop Publishing Bible
James Stockford, Editor,

The Waite Group

Personal Publishing with PC
PageMaker®
Terry Ulick

Micro-Mainframe Connection
Thomas Wm. Madron

The Waite Group’s
Modem Connections Bible
Carolyn Curtis, Daniel Majhor,

The Waite Group

The Waite Group’s
Printer Connections Bible
Kim G. House, Jeff Marble,

The Waite Group |

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

The Waite Group’s

MS-DOS'
Papers

Edited by The Waite Group

/8

HOWARD W, SAMS & COMPANY
A Division of Macmillan, Inc.
4300 West 62nd Strect
Indianapolis, Indiana 46268 USA

©1988 by The Waite Group, Inc.

FIRST EDITION
FIRST PRINTING—1988

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. While every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for
errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-22594-8
Library of Congress Catalog Card Number: 88-60990

From The Waite Group, Inc.
Development Editor: Mitchell Waite
Editorial Director: James Stockford
Content Editor: Harry Henderson
Technical Reviewer: Blair Hendrickson

From Howard W. Sams & Company

Acquisitions Editor: James S. Hill

Development Editor: James Rounds

Editor: Albright Communications, Incorporated

Cover Artist: Ron Troxell

Hlustrator: Wm. D. Basham

Indexer: Ted Laux

Compositor: Shepard Poorman Communications Corporation

Printed in the United States of America

To our families

Contents

LTI ST T LI L LT LT I

Preface xiii
Acknowledgments XV
Introduction xvii

Section One
Extending the MS-DOS User Interface

1 A Guided Tour inside MS-DOS 5
Harry Henderson
The Challenge of Change 5
Overall Structure of MS-DOS 6
The User Level 1
The Applications Level 21
The Hardware Level 29
The Future of MS-DOS 30

2 Searching the File Tree with whereis 35
Frank Whaley
Tree-Structured Directories 35
Searching: The Recursive Solution 36
Directory Search Functions 37
Using Options for Power and Flexibility 38
The whereis.c Program 39
Compiling whereis 52

Conclusion 53

vii

MS-DOS Papers

viit

3 Adding UNIX Power with PCnix

R. Edward Nather

Why PCnix?

Our Strategy

Tweaking MS-DOS

Improving MS-DOS Operation

Using Batch Files to Create PCnix Commands
Using Batch File Helpers to Increase Flexibility
The Software Toolkit

MS-DOS Wildcards Are Not UNIX Metacharacters

Epilogue :

4 Adding Power to MS-DOS Programming

Douglas O. Adams

Setting Up Your Operating Environment

Using Extended Batch Language for Real Power
Programming Screen Control Facilities

Key File Access Systems

Summary

5 Advanced MASM Techniques

Michael Goldman

Records
Structures
Include Files
Data Macros
Code Macros
Interrupt Tips
Parting Shots

Section Two

Programming Tools and Techniques

6 Undocumented MS-DOS Functions

Raymond J. Michels

Program Segment Prefix
File Handles
The Environment Segment

55
57
58
61
62
67
75
86
88

92
94
99
107
112

117
120
125
126
129
136
140

148
152
155

65

91

117

147

Contents

PSP Functions 158
Memory Management 160
Other Undocumented Functions 169
Undocumented Interrupts 178
7 Safe Memory-Resident Programming (TSR) 185
M. Steven Baker
Why Are TSRs Useful? 185
The Origin of Memory-Resident Programs 186
Well-Behaved Memory-Resident Programs 190
A Simple Memory-Resident Program 198
A Closer Look at TSRs 208
Complex TSR Programs That Make MS-DOS Function Calls 209
An UNSPOOL TSR Program 211
Programming Guidelines for TSR Programs 213
The Bottom Line 214
8 Data Protection and Encryption 217
Asael Dror
Three Levels of Unauthorized Data Access 217
MS-DOS Data Structure and Access 219
Hiding Your Data 221
Protecting Files Using the Read-Only Attribute 224
Password Protection 225
Data Encryption 227
Loopholes in MS-DOS Data Security 237
Summary 238
9 Inside Microsoft Windows 241
Michael Geary
Who's in Charge Here? 241
Windows and Messages 242
Window Styles: Overlapped, Popup, Child 248
Window Classes 250
Graphics Programming in Windows 252
Memory Management 255
Resources 256
The Spy Program 257
Conclusion 270

MS-DOS Papers

Section Three
Working with the Hardware Interface

10 Developing MS-DOS Device Drivers 303
Walter Dixon
DOS Data Structures 304
What Is a Driver and How Is It Used? 307
Using the DOS INT 21H Application Services Interface 310
The Boot Process 312
The INT 21H Dispatcher: Processing Application Requests 321
Using FCBs and Handles 323
Working with the SFT 324
From Driver Request to Call 325
Writing Background Programs 336
Debugging a Driver 338
Conclusion 344

11 Writing a SOUND Device Driver 347
Walter Dixon
Setting up the SOUND Driver 347
SOUND Driver Commands and Musical Notation 349
Using the SOUND Driver 353
Hardware Review 355
Programming Techniques 359
DOS Internals 366
Prototype Driver 369
Sound Generation Hardware 373
Overview of the SOUND Driver 375
SOUND Driver Finite State Machine 376
SOUND Driver Coroutines 378
Synchronization and Circular Buffers 378
Speeding up the System Clock 379
New Clock Interrupt Service Routine 379
Driver Performance 381
Adding Refinements 382
Finishing Touches 383
Conclusion 385

12 Programming the Enhanced Graphics Adapter 435
Andrew Dumke
Inside the EGA 435
The egacheck.c Program and Macros 440

Contents

A Print Screen Routine with Dithering 461
Conclusion 474

13 Programming the Serial Port with C 477
Nabajyoti Barkakati
Basics of Asynchronous Data Communications 477
Taming the UART 484
Specifications for Our Serial Communications Package 493
Conclusion 502
Program Listings and the Makefile 502

14 Understanding Expanded Memory Systems 535
Ray Duncan
Lotus, Intel, Microsoft EMS 535
What Is Expanded Memory? 536
Expanded Memory Manager 538
Testing for Expanded Memory 540
Using Expanded Memory 542
C Interface to Expanded Memory 550

Index 563

Preface

..
i
![
o
!
]
:
%!
L

MS—DOS Papers is the latest in The Waite Group’s contributed series on pro-
gramming languages and operating systems. This particular collection of essays
focuses on the MS-DOS operating system and brings together a far flung variety
of MS-DOS programmers. In choosing these essays, we have strived to reflect the
real world of MS-DOS programming rather than the more traditional approach
of textbooks and software manuals. Thus, you will find in this book subjects not
usually covered, in a way not usually found, in the trade literature:

I secrets and tricks of coding
=~ use of MS-DOS internal structures
- tools

= utilities

None of the original designers of MS-DOS expected it to be used for a wide
variety of applications, nor could they have anticipated the needs that users now
present. In the early 1980s, the designers revised the system by providing new
functions, interrupts, and other internal services, and they protected their revi-
sion process by secrecy and documentation that often offered no more explana-
tion than “reserved” But give them credit for a good design! MS-DOS has
survived tremendous changes, although to a large degree the operating system
itself has become something of a kludge—a set of patches, fixes, device drivers,
and add-ons. And all the while, application programmers have been busy disas-
sembling, uncovering, and sharing the mysteries one by one.

Although the operating system is now quite mature, the revisions to
MS-DOS are coming more slowly, while the market is screaming for more perfor-
mance. New generations of software need more than 640K memory, higher res-
olution graphics, faster calculations, and multitasking on a single-tasking
system. Obviously MS-DOS has hit a performance wall. In order to answer these
new market demands, enhancements are coming not from further improve-
ments of the operating system internals but from external sets of ad hoc conven-

Xxiti

MS-DOS Papers

xiv

tions that define such standards as Expanded Memory Specification (EMS),
Enhanced Graphics Adapter (EGA), and Terminate and Stay Resident (TSR) pro-
grams, and such extensions as device drivers and C libraries.

So long as MS-DOS continues to flourish in this “pruning” and “patching’
way, MS-DOS programmers must learn to work outside of the operating system
as well as within it. This means learning not only the standards of EMS, EGA, MS
Windows, and other external environment additions, but also the conventions of
programming lore—which registers to use, which functions to call, how to
share the use of system services with unknown applications, how to test the IN
—DOS flag, upper interrupt areas (INT 60H to 67H), PSP, and other MS-DOS data
structures. For example, if different applications are to share memory, the pro-
gram designers must agree on the allocation and use of that common memory
space, or one program may write over the other. As another example, program-
mers must know how to test for, save, and restore any existing screen contents if
their application is to overwrite an area of the display. To make the point, a TSR
program that disables other TSRs, or that overwrites a screen and then disap-
pears without restoring that previous screen, is likely to get poor recommenda-
tions from disgruntled users. Anticipation of possible problems and awareness
of well-behaved manners are critical to a designer’s ability to create a successful
MS-DOS application today.

In the increasingly complex MS-DOS operating system environment, many
programming rules, conventions, and good manners are shared by word of
mouth, over telecommunications networks, and in special journals. We have
tried to capture much of this hard-to-find lore inside this book. We have asked
the authors to explore what MS-DOS areas they know best. It is our hope that
you find this a readable, rich collection of wisdom that adds to your experience
and skill as an MS-DOS programmer.

Acknowledgments

The Waite Group wishes to acknowledge the help of the many people who
have contributed to this book. Our first acknowledgment is to the authors of
these essays; thank you for sticking with this project complicated with dead-
lines, rush mail, late night phone calls, rewrites to perfect the essays, and cor-
rections for typesetting. Secondly, we could not have done this without Harry
Henderson, our editor, for whose patience and insight we are again deeply grate-
ful. Many thanks to Blair Hendrickson, who provided technical reviews for all
the papers, to Cynthia Pepper for her help through most of the development
cycle, and to Scott Calamar for his help during the production phase. Thanks to
James Stockford for managing the project, for the Introduction to the book, and
for development work on Overview of MS-DOS, PCnix, MS-DOS Power, and De-
vice Driver Basics.

We wish to thank Sams production members Wendy Ford, Kathy Ewing,
and Don Herrington for management and Nancy Albright for editing. Thanks to
Ron Troxell for his Genie on the cover and to Glenn Santner for keeping the
Genie in the bottle. Thanks to Jim Rounds for constant support in development
and to Jim Hill for his faith in the book from the beginning.

Mitchell Waite

Xv

xvi

Trademarks

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Neither The
Waite Group nor Howard W. Sams & Company can attest to the
accuracy of this information. Use of a term in this beok should not
be regarded as affecting the validity of any trademark or service
mark.

Apple is a registered trademark of Apple Computer, Inc.

AT&T is a registered trademark of American Telephone and
Telegraph.

Concurrent and Concurrent PC-DOS are trademarks, and CP/M is a
registered trademark of Digital Research Inc.

CRAY is a registered trademark of Cray Computer, Inc.

Epson is a registered trademark of Epson America, Inc.

Framework and dBASE II are registered trademarks of Ashton-Tate.

GEM is a trademark of Digital Research Inc.

IBM, IBM AT, PC-DOS, Personal Computer AT, 05/2, IBM PC, IBM XT,
and IBM 9370 are registered trademarks of International
Business Machines Corporation.

Intel, Intel 80286 and 80386 are trademarks of Intel Corporation.

Lotus, 1-2-3, and Symphony are registered trademarks of Lotus
Development Corporation.

Macintosh is a registered trademark of McIntosh Laboratory, Inc.,
licensed by Apple Computers, Inc.

MS-DOS, Microsoft, Microsoft Windows, and XENIX are registered
trademarks of Microsoft Corporation.

The Norton Utilities is a trademark of Peter Norton Computing, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.,
licensed by Apple Computer, Inc.

ProKey is a trademark of RoseSoft, Inc.

SuperCalc is a registered trademark of Sorcim Corporation.

ThinkTank is a trademark of Living Videotext, Inc.

Turbo BASIC, Turbo Lightning, Turbo Prolog, Turbo Pascal,
SideKick, Superkey, and Reflex are registered trademarks of
Borland International.

UNIX is a registered trademark of American Telephone and
Telegraph.

VAX, VAX/VMS are registered trademarks of Digital Equipment
Corporation.

WordPerfect is a registered trademark of WordPerfect Corporation.

WordsStar is a registered trademark of MicroPro International
Corporation.

Introduction

s

In the course of studying programming in MS-DOS, you may have noticed that
people seem to have markedly different approaches, even to the point of contra-
diction. Indeed, one quickly discovers that the MS-DOS world is one of short-cuts
and trickery of remarkable range, where anything that works is fair game. Find-
ing these important tricks, insider techniques, and bottom line facts is extremely
tedious because they are spread out in so many places—from technical net-
works to obscure articles in programming magazines. The Waite Group’s
MS-DOS Papers brings you the most important of these ideas, tips, and tech-
niques in a single reference source.

Our purpose in this collection of essays on MS-DOS programming is to cre-
ate a forum for many professional points of view so that you can pick and choose
among techniques and inspect the major advanced extensions of MS-DOS
through many different windows. This is not a training book showing users how
to use MS-DOS; rather, the essays in this book show programmers how to arm
themselves to manipulate the operating system and to write better performing
software. As usual, speed is a major goal, so many of these essays reveal slick
techniques to speed up the user interface and access hardware. If you have any
interest in understanding the inner workings of the MS-DOS operating system,
this book is for you.

The Waite Group’s MS-DOS Papers is divided into three topic areas:

= sophisticated use of the user interface (manipulating directory struc-
tures, using libraries and batch files)

= techniques for programming (working with functions and internal data
structures of the operating system to control application programs such
as Terminate and Stay Resident programs)

= control of the system hardware (understanding interrupts, functions,
and data structures to manipulate hardware such as the serial port, En-
hanced Graphics Adapter, Enhanced Memory Specification, and more)

It goes without saying that MS-DOS programmers must be fluent in both

xvii

MS-DOS Papers

the C language and assembly language, especially MASM 5.0. They must be fac-
ile users of the compilers and software development tools. Indeed, much of the
work programmers do is spent setting up their systems for maximum efficiency.
They must be practiced users of the operating system’s commands and underly-
ing environment. These skills are the focus of essays in the first section.

MS-DOS programmers must contend with an increasingly extended envi-
ronment, and this is the background for the second and third sections. MS-DOS,
despite its age, is still growing and expanding, so most MS-DOS systems are be-
ginning to suffer from overpopulation of large application programs, memory-
resident programs that are squeezing the interrupt system, and constraints of
managing huge amounts of data. The effect is that after several major revisions,
the MS-DOS operating system has reached a state of maturity that now requires
working programmers to be familiar with all the system’s interrupts and func-
tions and several sets of services beyond those of MS-DOS itself.

Essays in the second section deal with understanding undocumented func-
tions, learning to write Terminate and Stay Resident programs that work pre-
dictably without interfering with other applications also loaded in memory,
creating data protection and encryption schemes for file security, and inspect-
ing the behavior of the MS Windows operating environment.

Essays in the third section focus on hardware—how to write device drivers,
control the serial port, program high-resolution color screens controlled by the
EGA display cards, and use large amounts of memory provided by the EMS hard-
ware and software.

This Book and Other Waite Group Books

The Waite Group’s MS-DOS Papersis a follow up to other Waite Group books: MS-
DOS Developer's Guide, a detailed examination of the MS-DOS operating system;
Tricks of the MS-DOS Masters, a collection of techniques for advanced users; MS-
DOS Bible, a complete reference book with tutorials for intermediate users; and
Discovering MS-DOS and Understanding MS-DOS, both of which are introduc-
tions to the MS-DOS operating system for beginners.

What You Have to Know to Read MS-DOS Papers

xviii

You must, at a bare minimum, know how to operate MS-DOS well enough to
copy files between subdirectories, install drivers and other commands in the
CONFIG.SYS file, and use the standard internal and external commands. You
must also understand generally how the 8088/86 central processing unit (CPU)
works, the limitations of the MS-DOS 640K memory scheme, and the relation-

Introduction

ship between peripheral devices, ports, and the I/0 channel slots. Building upon
this basic knowledge, you will learn what structures make up MS-DOS and how
they behave and gain an understanding of modern enhancements to the system.

Intermediate programmers, with professional user-level skills and some
knowledge of either assembly language or the C programming language, will
find useful details of MS-DOS services as well as usable program listings with
complete explanations of the design of the code.

Advanced programmers, familiar with both 80X86 assembler and C as well
as MS-DOS system calls, have in this book a sophisticated treatment of many of
the important topic areas that underlie the major marketing features of modern
applications, namely, control of the Enhanced Graphics Adapter (EGA), use of
Expanded Memory Specification (EMS), operation of memory-resident pro-
grams (TSRs), examination of the Microsoft Windows operating environment,
and much more.

Organization of MS-DOS Papers

MS-DOS Papers begins with an overview of the inner structure of MS-DOS, fol-
lowed by sections that roughly parallel the three conceptual areas of MS-DOS
itself: the user interface shell; the kernel; and access to hardware through the
BIOS, ports, and device drivers. The following is a description of the essays in
this book.

Section One: Extending the MS-DOS User Interface

MS-DOS is composed of three modules: the user shell COMMAND. coM; the kernel
and the main services, MsD0S. SYS; and the hardware access routines 10.5Ys. This
division provided the inspiration for the section divisions of this book. The fact
of this modularity of MS-DOS has allowed for the upgrade of each module with-
out respect to the others and also for manipulation and even replacement of one
of the modules without disturbance to the others.

A Guided Tour inside MS-DOS

Essay 1 offers a rare, comprehensive overview of the insides of MS-DOS with
suggestions for modifications for increasing user-level speed and functionality.
Of special note, this essay contains a great number of references to the other
essays in this book and serves to tie all of the papers together.

Xix

MS-DOS Papers

XX

Searching the File Tree with whereis

The MS-DOS file system is built around a hierarchical file system of directories
and subdirectories, yet it does not include a feature with which to find and act
on a file without first setting a PATH specification or invoking the correct sub-
directory. In other words, in order to find a file, first you have to know where it
is—not good. Essay 2 presents a search tcol written in C called whereis. The
whereis utility combines two essential features: the ability to search for match-
ing files within the whole file tree (not just within one directory) and the ability
to use MS-DOS commands or programs to manipulate the files it finds.

Adding UNIX Power with PCnix

PCnix is a homespun set of public domain utilities, batch files, and imaginative
patches that augment the MS-DOS A> prompt interface. By adding PCnix to your
MS-DOS system, you get such UNIX-like features as command-editing and a “his-
tory” capability to the MS-DOS user interface, the use of UNIX syntax, and a tool-
kit of UNIX-style commands for managing files and text. Essay 3 presents a
highly entertaining description of the process of tweaking interrupts and “fool-
ing DOS” to attain important UNIX-like power while preserving MS-DOS compat-
ibility. PCnix is available on three diskettes.

Adding Power to MS-DOS Programming

The first order of business for a professional C programmer is to set up applica-
tions and files for fast, easy access. This means developing a library of routines
and having a way to invoke them quickly. Essay 4 examines a popular third-party
interface extension, Enhanced Batch Language (EBL), a powerful batch language
facility with increased variables and commands, as well as two C library pack-
ages, the C-INDEX, which provides detailed file-search capabilities, and Vitamin
C, a set of library routines that automate the creation of screens and windows
and provide B-tree file indexing.

Advanced MASM Techniques

Nearly all working programmers must use assembly language at least occasion-
ally, and yet, constructing a program at the machine instruction level is painstak-
ing at best. It's easy to lose track of bits, frustrating to retype code, and tedious to
construct database records and fields. Essay 5 examines features of Microsoft’s
Macro Assembler (MASM) version 5.0 from the standpoint of using names to set
up and control bits within a byte and bytes and words within data structures. It

Introduction

explores the uses of directives, Macros and subroutines (and when each is ap-
propriate), how to handle hardware interrupts, and more.

Section Two: Programming Tools and Techniques

While Microsoft and IBM have discouraged use of many “undocumented” serv-
ices within the operating system, the programming community has relied on
just those services to push performance to the limits. Essays in this section focus
on how to work with the operating system itself.

Undocumented MS-DOS Functions

Essay 6 explains the Program Segment Prefix (PSP), a data structure that
MS-DOS creates and loads as a header to .COM and .EXE programs. It then
shows how to: use file handles to customize redirection; access and manipulate
the environment segment from batch files; use PSP function calls from within
TSRs; allocate and deallocate memory; inspect the Memory Control Block chain;
and get MS-DOS busy flag, switch char, DOS variables, and more.

Safe Memory-Resident Programming (TSR)

Terminate and Stay Resident (TSR) programs (known to many users as “popups”)
have come into respectability despite their use of undecumented functions. Essay
7 discusses the skills of safe TSR design that have become a staple in many work-
ing programmers’ bags of tricks. It begins with a history of TSRs in CP/M, 86-DOS,
and MS-DOS, then describes problems in handling hardware and software inter-
rupts, noting differences between INT 27H (terminate but stay resident interrupt,
originally used in 86-DOS), INT 21H Function 31H (Keep Process Call, first used in
MS-DOS 2.X), and INT 2FH (Multiplex Interrupt, developed in MS-DOS 3.X). Also
included is discussion of how to use INT 21H Function 34H (IN__DOS Flag Call),
INT 28H (background process function), and INT 21H Function 50H (how to save
the PSP of the foreground program), all of which allow multiple TSRs to exist in
memory. Finally, there is an examination of the TSRs provided with MS-DOS:
GRAPHICS, ASSIGN, and PRINT utilities. You'll also find a TSR to toggle the print
screen function and a review of the newest Microsoft TSR guidelines.

Data Protection and Encryption

Data protection, meaning protecting your data from loss or unauthorized en-
croachment, is often ignored by the application programmer or implemented as

xxi

MS-DOS Papers

an afterthought. Essay 8 provides a complete tutorial on MS-DOS data security
programming techniques. You see how each programmer can hide data by using
nonstandard names and characters, by using an assembly language program to
toggle the hidden attribute, and by using the read-only attribute. The author
shows how to use a password protection scheme in the AUTOEXEC.BAT file, in a
device driver, installed on an add-on card, or with a TSR to capture INT 21H calls
to verify password status. Finally we see how to encrypt the data itself by using
code book, keytape, and DES and RSA key algorithm systems.

Inside Microsoft Windows

The Microsoft Windows operating environment, after several years of develop-
ment, extends MS-DOS functionality into the complex and powerful realm of
multitasking and windowing similar to the Macintosh and OS/2 systems. Essay 9
introduces the major programming concepts of MS Windows, messages, and
queues that make for an event-driven, modeless environment. It illustrates the
message stream from the mouse, keyboard, and other software sources and
shows how to use Windows functions to manipulate that stream. It explains new
concepts and terms such as overlapping and popup windows, child windows,
classes, coordinate systems, regions, memory management including global and
local heaps, resources, and the new Windows functions that are associated. It
also presents complete explanation and source code for an examination utility
that traces through running Windows applications and reports back details on
their behavior and resources.

Section Three: Working with the Hardware Interface

xxii

The five essays in this section focus on controlling the hardware environment
and extracting the maximum speed from RAM memory, board-level registers,
and MS-DOS services.

Developing MS-DOS Device Drivers

Device drivers are the critical software between custom hardware and applica-
tions that run under the operating system. The key to programming successful
device drivers lies in knowing what MS-DOS services come into play and how
they work. The trouble is this involves nearly all MS-DOS kernel internal struc-
tures, which makes a tangle of relationships and a need for a half-dozen books,
tables, and manuals. Essay 10 presents all the workings of these MS-DOS data
structures: stacks, the System File Table, File Control Blocks and file handles,

Introduction

Device Control Blocks, Current Directory Structure, Program Segment Prefix
with the device driver strategy, and interrupt structures. The author uses a
small applications program that simply lists a file at the console to exemplify the
basic kernel behavior. As the essay progresses, the author shows such details as
checking both the IN_DOS flag and the critical error flag to avoid disrupting
non-reentrant procedures, using file handles instead of the File Control Block,
using IOCTL requests, and more.

Writing a SOUND Device Driver

Following the previous essay on device driver theory, Essay 11 explains the oper-
ation of a real-world device driver that lets an operator use the PC for manipulat-
ing tones, sounds, and special effects. This sophisticated driver mimics the
BASIC PLAY statement down to its detailed command language. The driver code
depends upon such computer science concepts as circular buffers, coroutines,
finite state machines, and more. In its simplest form, you can create a file com-
posed of commands for the driver, then copY the file to the driver. With just a
small amount of additional code, you can open the device from within an appli-
cation, then write to it, thus playing a tune from within your spreadsheet, word
processor, data capture application, or whatever. The essay concludes with a
complete listing for a driver named SOUND.

Programming the Enhanced Graphics Adapter

The resolution offered by the Enhanced Graphics Adapter (EGA) is the current
preferred standard for color displays. But program control of the EGA is mark-
edly different from that of its predecessors, especially in the way in which one
keeps track of writes and rewrites to the registers. Essay 12 begins with a thor-
ough discussion of the EGA, its registers, and its latches. After showing how to
use macros to control the bit mask and map mask, the author presents a very
fast line-drawing routine based on Bresenham'’ algorithm, a macro PEEK and
POKE directive, a hard-to-find dithering algorithm for a laser printer, and more
techniques to write colored images to the screen. The author also shows how to
read the EGA memory and how to use the EGAs data rotate register to perform
Boolean operations on the EGA bit maps.

Programming the Serial Port with C
The serial port has become overloaded with peripherals—mice, pads, and cam-
eras, as well as modems and printers. It is no wonder that control of the serial

portis a chief target of concern of hardware programmers. Essay 13 begins with

xxiii

MS-DOS Papers

a complete, fast-moving overview of the conventions of serial data flow and
shows how to control the serial port hardware, including the UART and a mo-
dem. The discussion covers error-checking, flow control, buffers, and use of the
8259 to manage the serial adapter interrupts, and ends with discussion of a cir-
cular data buffer. Finally, the author offers an explanation of commented source
code in C for a complete communications package.

Understanding Expanded Memory Systems

Expanded memory systems depend on a scheme of switching various banks of
memory in and out of the 640K MS-DOS main memory address structure de-
fined by MS-DOS. The bank-switching process is controlled by a driver called the
Enhanced Memory Manager (EMM) designed by Lotus, Intel, and Microsoft. Es-

.say M shows how the EMM behaves and notes differences between the three

existing systems: Expanded Memory Specification (EMS) version 3.2, EEMS (the
extra E for Enhanced), and EMS version 4. The essay begins with a discussion of
bank-switching and the genesis of EMS. It then shows two ways to test for the
presence of an EMS device. The first uses Function 3DH (open file or driver-
request) specifying the guaranteed name, EMMXXXXO, then uses subfunctions
of Function 44H to check further. The second uses INT 67H to check for the
ASCII string of that same guaranteed name. The author includes a table of error
codes, a summary of relevant functions for both EMS 3.2 and EEMS, a simple
eight-step strategy for using EMS, and much more.

Disks Available

Some authors are offering disks with source code; ordering information is given
at the end of Essays 3, 8, 11, and 13.

Inside the Book

Xxiv

Each essay begins with a synopsis and a list of keywords, and ends with a biogra-
phy of the author and a list of related essays. As noted earlier, within each essay,
where appropriate, you will find references to other essays. The purpose is for
you to determine your own reading path through the book.

We suggest that you begin with the first essay, “A Guided Tour inside
MS-DOS” (by our editor Harry Henderson). In this essay, Harry mentions all the
other essays within the book as he explores the internal operations of the MS-DOS
operating system. From there you can jump to essays that meet your interests.

Section One

EXTENDING THE MS-DOS
USER INTERFACE

The MS-DOS operating system, depending on which version you may be us-
ing, provides roughly two dozen internal commands that allow only the most
elementary inspection and manipulation of files and directories. Its accompany-
ing utility programs, otherwise known as the external commands, provide suffi-
cient power for necessary housekeeping, but in a painfully inelegant manner.
Using the MS-DOS system by itself, a programmer must work slowly, chore by
chore. At the operator level, the MS-DOS operating system provides just enough
capability to load and run application programs and store their files. It seemed
like a good system at first, but most active users have outstripped it, as a young-
ster outgrows a pair of pants.

Working programmers, especially, must develop a flexible set of tools to
manage complex file relationships and to invoke a rapid succession of utilities.
Most programmers have developed a colorful mix of third-party patches—some
of their own invention, some from bulletin boards, and some from the pages of
magazines—to fill the gaps of a user interface that seems increasingly inade-
quate. The artful use of batch files shows the skill with which inventive minds
can bootstrap the limitations of the batch file commands. An inspection of an
extensive CONF16.SYsfile reveals the soul of system flexibility with a list of names
that are as technical and arbitrary as the cards that sit in the internal slots of the
machine.

This section of MS-DOS Papers contains five essays illustrating the authors’
creations for improving the limited features of the MS-DOS user interface.

A Guided Tour inside MS-DOS

The first essay, by Harry Henderson, introduces you to the inner structure of
MS-DOS. It is a rare overview with suggestions for increasing user-level speed
and functionality. The author also includes many references to all the other es-
says, thereby tying together the entire book.

Section 1: Extending the MS-DOS User Interface

Searching the File Tree with whereis

In the second essay of this section, Frank Whaley explains how he created a
powerful file and subdirectory finder, whereis, written in C, that lets you search,
match, and manipulate files using MS-DOS commands.

Adding UNIX Power with PCnix

Ed Nather presents a wild set of utilities and routines that provide an expansive
UNIX-like environment, with command editing, file and directory manipulation,
and a running commentary explaining a slightly topsy-turvy view of the MS-DOS
interrupt and function scheme.

Adding Power to MS-DOS Programming

The fourth essay, by Doug Adams, presents a quick overview tutorial of the use
of the Extended Batch Language (EBL) utility and C libraries that streamline
mundane programmer’s chores such as the creation of menus, windows, in-
dexed files, and more.

Advanced MASM Techniques

In the fifth essay, Michael Goldman shows us tricks to using MASM 5.0 labels,
directives, and macros to reduce bit-level errors and speed data constructs as
well as to handle hardware interrupts.

Keywords
user interface
MS-DOS kernel
BIOS
MS-DOS file system
programming environments

commands and utilities

Essay Synopsis: MS-DOS has three ba-
sic parts: a user interface (normally pro-
vided by COMMAND.COM), a system kernel
containing data structures and function
calls needed by programmers, and a hard-
ware-oriented BIOS. This essay points out
the significant features of MS-DOS at each
of these levels, and highlights the strengths
and weaknesses of each for power users
and programmers. MS-DOS is more than
just an operating system, however. It is also
an environment that can be expanded and -
customized by the addition of new shells,
utility programs, programming environ-
ments, and device drivers. This essay shows
how these products can be used to over-
come many of the shortcomings of MS-DOS,
and explores current and future trends in
MS-DOS use and programming.

A Guided Tour
inside MS-DOS

Harry Henderson

MS-DOS has many faces—like the fabled elephant, it can look very different
depending on one’s point of view. Users need to be able to configure their envi-
ronment, set up their applications programs and programming tools, and man-
age megabytes worth of directories and files. Applications programmers must
learn how to use the many MS-DOS system services that their programs need to
manage system resources. Many of these services are poorly documented, and
many rely on an understanding of internal DOS tables or data structures. Sys-
tems programmers need to write device drivers to enable programs to use a
new printer or mass storage device. In addition, programmers frequently need
to learn specialized programming interfaces such as those for the serial port,
Enhanced Graphics Adapter (EGA), Expanded Memory Specification (EMS), or
Microsoft Windows.

The Challenge of Change

MS-DOS programmers live in a complicated and ever-changing world. Those
who want to be competitive must keep one eye on today’s needs and the other on
those of the future. Consider the life cycle of a simple application program.
Beginning as one programmer’ “quick and dirty” tool for performing some cal-
culations, the program is given to a team whose mission is to turn it into a com-
mercial product. The original program provided only a text display, but the
marketing department convinces the programmers that there is a demand for
color graphics. The IBM Color Graphics Adapter (CGA) display doesn't provide
enough resolution or colors for most graphic needs, however, so it’s time to learn
how to program the EGA.

The first version of the product is marketed. Users quickly request more
features—such as the ability to move from writing a report to calculating a

5

Section 1: Extending the MS-DOS User Interface

spreadsheet to consulting a database, with instant access to any or all of these
features. Now we have an “integrated software package, but the users are com-
plaining that the program takes up too much memory and doesn’t allow them to
run their favorite memory-resident utilities. It’s time to learn how to break the
“640K barrier” imposed by DOS, by using EMS to handle larger amounts of data
and conserve precious space in main memory. Next, the users say they want Post-
Script output and the ability to use a new laser printer. Oh, and by the way,
larger customers are starting to ask when the network version will be ready. It’s
time to learn everything about device drivers.

Now the program is powerful but it’s hard to use. Perhaps it should be re-
written to run in the Microsoft Windows environment, and provide a graphic
user interface, and update the spreadsheet every time a change is made in the
database . . .

Overall Structure of MS-DOS

Before we can find out how to improve MS-DOS and our programiming environ-
ment, we have to understand its design and the way its parts fit together.

There are three modules that make up MS-DOS: the user shell, the system
kernel, and the hardware interfaces, including the Basic Input-Output System
(BIOS) routines.

MS-DOS is, at bottom, a program loader and file handler with roots in the
CP/M operating system developed in the late 1970s. MS-DOS has, of course, be-
come much more than that after going through two major (and numerous mi-
nor) revisions since Microsoft and IBM first made it available in 1982. It has had
to accommodate hard disks and other new storage media, RAM disks, new dis-
play standards, mice, memory-resident programs, expanded memory, and net-
works, to mention just a few of the developments.

The most important aspect of the structure of MS-DOS is its modularity.
The division of MS-DOS into three parts—a command processor, a system ker-
nel, and a hardware-specific BIOS—is what has made it possible to add features
in response to the development of new hardware, and to accommodate the dif-
ferences in the underlying hardware of PC clones and compatibles. Because only
the BIOS module is hardware-dependent, the user interface and system kernel
do not have to be revised to accommodate new hardware.

MS-DOS contains a standard character-oriented user interface that is sim-
ilar to those found on most mainframe operating systems. Because this interface
is a separate module, however, it can be replaced or supplemented with a differ-
ent one such as Microsoft Windows or a UNIX-like shell.

The MS-DOS kernel contains the compiled code for the internal services
(such as file management and 1/0) needed to execute both MS-DOS commands
and applications programs. This kernel is essentially hardware-independent, so

Chapter 1: A Guided Tour

a hardware vendor does not need to rewrite it to get MS-DOS to run on a new
machine. Furthermore, the installation of new devices requires only that a de-
vice driver be written and linked into a list of drivers maintained by the kernel.

Finally, the BIOS contains the hardware-specific code, the code that deals
with devices on a low level. Because the hardware details are hidden from the
rest of the operating system, additions at the BIOS level make it possible to add
support for new devices, such as hard disk support in MS-DOS 2.X and support
for 720K 3'%" floppies in MS-DOS 3.2, without having to make extensive changes
to services in the kernel.

System Files and DOS Modules

The MS-DOS distribution disk provides the operating system itself in the form of
three files that correspond to the three modules or interfaces that we have men-
tioned:

COMMAND. COM, a program that provides the standard MS-DOS user inter-
face and a prompt, and interprets user commands

MSDOS.SYS, the MS-DOS kernel with many services that is called upon by
application programs and provides the applications interface (this level is
invisible to the user)

10.5YS, containing the BIOS with hardware-specific code, including a col-
lection of built-in device drivers (some or all may be stored in ROM)

In IBM PC-DOS, the kernel is called 18MD0S.COM and the BIOS is called
18MBIO.COM.

How has the development of new versions of MS-DOS affected the three
DOS modules or interfaces? It is interesting to compare two significant revisions
of MS-DOS in order to see what has grown and by how much (see Table 1-1).

Table 1-1. Comparison of Two MS-DOS Revisions

Module DOS 2.0 DOS 3.3

Size of System Files

COMMAND.COM 17664 25307
IBMDOS.COM 4608 22100
IBMBIO.COM 17152 30159
Total 39424 77566

Number of External Commands

23 35

Section 1: Extending the MS-DOS User Interface

PC-DOS 2.0 was the first “modern” version of MS-DOS, with such features
as a hierarchical tree-structured system of directories and subdirectories, hard
disk support, and installable device drivers. Its generic equivalent, MS-DOS 2.11,
has been the operating system normally distributed with PC compatibles.
MS-DOS 3.0 and the minor revisions that followed added support for new media
types (the 1.2MB AT disk, and then 3%" 720K and 1.44MB disks) and for net-
working. It also added several useful new utility commands.

The table shows that the size of the user interface code COMMAND.COM has
grown by roughly 50 percent, that of the kernel 1BMDOS.COM has exploded by
about five times, and that of the BIOS has nearly doubled. The number of exter-
nal commands has also grown by about 50 percent.

It is hard to draw precise conclusions from this byte length comparison
because, for example, a significant improvement between versions at the user
interface level might be reflected mainly by addition of certain system services
in the kernel or the development of special-purpose external programs rather
than by an increase in the size of COMMAND. COMitself. Nevertheless, the table does
reflect what has been the general experience of MS-DOS users: although the
operating system has grown considerably in size in moving from the 2.X level to
the 3.X level, most new features have been in the areas of internal routines (sys-
tem services in the kernel) and in special device support. There has not been
much added to user interface, batch processing capabilities, or external utility
commands.

DOS Startup and Configuration

The best way to begin to understand how the modules that make up MS-DOS
work is to go through the highlights of what happens when the system is booted
or started up. You will see that by the time you see A> on your screen, MS-DOS
has already been hard at work. It has installed itself in several parts of memory,
created many important data structures, configured system resources, and in-
stalled several device drivers. (See Essay 10, Developing MS-DOS Device Drivers,
by Walter Dixon, for more detailed information on the MS-DOS boot process.)

From the user point of view, MS-DOS is a series of layers going down from
the user interface to the kernel and then the BIOS. The boot process goes in the
opposite direction, however, from the most hardware-specific operations below
even the BIOS all the way up to the user prompt level. Figure 1-1is a schematic of
the overall process.

In the IBM PC and most other MS-DOS systems, once the built-in ROM
hardware-checking routines (the POST or Power On Self Test) finishes running,
bootstrap code in ROM triggers the loading process. This code “knows” just
enough about the disk to try to read first drive A:, sector 1, track 0, referred to as
the boot sectorin MS-BOS. If there is no disk in drive A: (which is typical of many
systems today), it tries to read the same location on the hard disk, drive C:.

Chapter 1: A Guided Tour

AUTOEXEC.BAT

User A>
Level COMMAND.
COM
File Tables
and Cache

-/
Installable
Drivers

Kernel Device
Information
Information about
add-on devices
SYSINIT Information about
BIOS Q) standard devices
BIOS
Hardware
ROM
boot code
e)
Power On
Self Test
Standard
Hardware

Fig. 1-1. The DOS startup process.

Section 1: Extending the MS-DOS User Interface

10

The code that has now been read from the boot sector enables the loading
process to continue. Assuming they are in the root directory of the boot disk,
10.5YS and then MSpos.sYs are loaded. (In some MS-DOS implementations,
10.5Ys loads MSp0Os.sYs rather than both being loaded by the boot sector code.)
The 10.5sYs file actually contains two modules: the BIOS and SYSINIT. The BIOS
contains the built-in device drivers that allow standard communications with
the computer’s keyboard, screen, printer, serial ports, and disk drives.

SYSINIT is responsible for a number of coordinating efforts. First, it deter-
mines the configuration of available memory and relocates the DOS kernel so that
it goes down from high memory. Second, it calls code in the now loaded MS-DOS
kernel Mspos.sys that builds important data structures or tables MS-DOS will
need in order to be able to use devices correctly. Each of the resident device driv-
ers is initialized, and, in turn, returns information about the device that is put into
a data structure for each device called a Device Control Block (DCB).

DCBs make up a linked list (a list where each item contains the starting ad-
dress of the next item), and the starting address of this list is recorded in a global
list (sometimes called the List of Lists). This list eventually will contain further
information such as the largest allowable sector size for block devices.

Once the built<in drivers are initialized, SYSINIT will attempt to read the
CONF16.5Ys file. This file, as you probably know, contains user specifications for
installable device drivers—drivers that can be added to those already resident in
MS-DOS. These drivers are normally contained in files with the .sYs extension.
If, for example, you specify DEVICE=VDISK.SYSin your CONFIG.SYSfile, the virtual
disk (RAM disk) will be set up. sYSINIT then collects information about the availa-
ble devices. As an installable driver is loaded, information about it is added to the
linked list of device drivers that also includes the names of built-in drivers. Ta-
bles for tracking active files and the structure of the current directory are also
set up at this time. The MS-DOS cache (buffer for file I/0) is also set up based on
information obtained during the boot process as modified by any user BUFFERS=
command found in CONFIG.SYS.

Finally, SYSINIT loads the command interpreter, or shell, normally coM-
MAND.COM. (If there is a SHELL= statement in CONFIG.SYS, the specified shell is
loaded instead of cOMMAND.COM. The size of the DOS “environment” is also deter-
mined by the value found in a SHELL= statement in CONFIG.SYS or set to the de-
fault. The DOS environment consists of a number of standard variables such as
PATH, which we will look at later, as well as room for user-specified variables such
as those used in batch files. Finally, any AUTOEXEC.BAT file is executed. Entries in
this file are commonly used to install memory-resident programs and sometimes
to start a session with a particular application.

Once all of this is accomplished, either an application specified in
AUTOEXEC.BAT has been started and is now running, or COMMAND. COM alone is run-
ning, showing the familiar DOS prompt.

The startup process tells us several important things about MS-DOS. First,
the process moves from the hardware-specific level (ROM code, absolute disk

Chapter 1: A Guided Tour

sectors, and so on) through the installation of the standard MS-DOS drivers and
then to user-installable drivers. We thus move from the necessary and built-in
components to the optional and flexible add-ons such as user-supplied device
drivers. Next, MS-DOS, as part of the startup process, “learns” many important
things about the system, and sets up data structures to hold both this informa-
tion and information that will be obtained in subsequent operations. Finally,
these structures are flexible enough that any device that can provide the re-
quired information via a driver can be “hcoked in” to the system.

Now we will look at the top of the iceberg that has emerged from our
startup process—the user level—in more detail.

The User Level

The user interface or shell is the MS-DOS module that is responsible for ac-
cepting, interpreting, and acting upon the command lines typed at the keyboard
by the user. Every operating system has to communicate with the user, and
much of our time is spent dealing with the user interface. It is thus worthwhile to
see if we can improve the interface so we can get more work done more easily.
Remember, programmers are users whenever they type an MS-DOS command
to change directories or delete a file.

For each command line, the shell must figure out what command or pro-
gram is to be run, what files it is to use, and what options have been specified. It
must then load the program, provide it with the required information, run the
program, and return ready to execute the next command.

COMMAND. COM: The Standard MS-DOS Shell

As we noted earlier, the standard MS-DOS interface is provided by a program
called coMMAND. coM. This program is called a shell because it (metaphorically) sur-
rounds the operating system proper (the kernel and BIOS layers) and is the
means by which users can give commands to be run. Any time we see the user
prompt (such as A>, COMMAND. COM is running. We will now look at how user com-
mands are processed.

Finding Commands and Programs

Figure 1-2 provides a schematic of how COMMAND.COMresponds to commands. We
will suppose we have just typed CD. COMMAND. coM first parses (breaks into signifi-
cant parts) the command line and then attempts to load and run the item speci-
fied, which can be any one of the following:

11

Section 1: Extending the MS-DOS User Interface

12

P an internal MS-DOS command (for example, DIR)

~

> a .COMprogram

i* an .EXE program
&> a .BAT (batch) file

“Bad command

or file name”
Execute Prepare Prepare Interpret
internal .COM .EXE .BAT
command program program file
YES YES E YES g YES

Found in NO .COM NO EXE NO .BAT NO
internal ’ extension A extension : extension

table? ? ? ?

What is the item “DIR™?
i
Parser
Command Line: A> DIR
Fig. 1-2. How COMMAND.COM responds to commands.

COMMAND . COMlooks for the name of the item within a table within its code to
see if it is an internal command. The routines for executing internal commands
are included in COMMAND. COMitself—in memory so they are executed quickly just
by jumping to the appropriate routine. In the case of our example command
line, since Cpis an internal MS-DOS command, it is found in the table. Since we
didn’t type any filenames or options on the command line, the bIRcommand can
be run right away. Many MS-DOS command lines are more complicated, how-
ever. If the item is not found in the table, it is assumed to be something external
to COMMAND.COM—an external command, an application program, or a batch file.
In this case, COMMAND. COM searches the disk drives for .CcOM programs, then .EXE
programs, and finally .BAT files. The search begins in the current drive and di-
rectory unless the program’ path (directory location) is specified on the com-
mand line. Additional drives and directories are searched if they have been

Chapter 1: A Guided Tour

specified as part of the search path. The ability to specify a search path is an
important feature because it would be very inefficient for MS-DOS to have to
search through dozens of directories on several drives in search of a particular
program. By using the SET PATHcommand to give a sequence of drives and direc-
tories to be searched, the user can specify that the most frequently used directo-
ries be searched first, making the process much more efficient. Most MS-DOS
users therefore specify their PATH in the AUTOEXEC.BAT file.

If the item is found in one of the directories on the search path, coM-
MAND. COMsets up the environment needed to load and run the program (more on
this later). If the program is not found, the user sees the familiar message Bad
command or file name.

Organizing Resources

The PATH variable gives MS-DOS more flexibility by telling it how the user has
arranged resources (programs). It solves only part of the problem, however, be-
cause ‘resources” also include the data (source code, documents, spreadsheets,
databases, or whatever) the user wants to work with. Indeed, as users, we are
really saying to ourselves, “now I want to revise this letter/ not, “now I'll run
WordPerfect” The MS-DOS path, however, is searched only for executable pro-
gram or batch files, not the data files to be used with our applications. Later
versions of MS-DOS provide the APPEND command in an attempt to help track
data files, but MS-DOS has not yet developed a coherent way of looking at re-
sources. There is no linkage, for example, between a document and the word
processor that was used to create it.

Many software designers feel that users are more comfortable when ab-
stractions such as files and directories are represented by physical objects
(icons) that can be moved around. Examples of this approach to accessing re-
sources, graphical interfaces such as those used by the Macintosh or provided
by Microsoft Windows, have emerged as an alternative to the traditional com-
mand-line interface. Linking of needed files (but not the use of icons) is also of-
fered to programmers in an integrated programming environment such as the
Borland Turbo or Microsoft Quick languages, where the files needed to edit,
compile, and link a program are brought together automatically. Such links
could be implemented in a revision of the standard command-line interface,
however, and future add-on utilities might offer them.

Parsing, Expansion, and Redirection

Besides figuring out what command or other program is to be executed, coM-
MAND. COMalso parses the remainder of the command line and uses the specifica-
tions found there to find matching filenames and to specify a program’s input
and output. For example, consider this command line:

13

Section 1: Extending the MS-DOS User Interface

14

DIR C:\TABLE? | SORT > LIST

The internal IR command is given the file specification C:\TABLE? and run.
Because a wildcard character ?is used in the file specification (pathname), coM-
MAND. COM searches the specified directory and passes to the DIR command all
filenames that consist of TABLE plus any one other letter. In other words, the
compact pathname with wildcards is “expanded” so that it represents all match-
ing file or path names.

Besides expanding wildcards, COMMAND . COM also looks for symbols that tell it
to redirect input and output from their normal channels. The |} or pipe symbol is
conceptually a pipeline (connection) between two operations (the internal pIR
command and the external SORT command in our example) so that the output of
the first operation becomes the input to the second. (Redirection and piping
were implemented starting with MS-DOS 2.0.) In our example, first COMMAND . COM
redirects the output of DIR from the default standard output (the screen) to a
temporary pipe file. DIR then generates its output, which is put in the pipe file.
SORT then runs with its input redirected to take data from the pipe file. The >
(greater than) symbol following SORT causes COMMAND.COM to redirect the output
of this command to the file L1sT. (The distinction here is that piping connects a
program with another program, while redirection with the > and < operators
directs the output or input respectively to a file.)

Finally, COMMAND . COM also looks on the command line for option switches, and
makes them available to the program to be run. For example, the command DIR /w
means “print a directory listing in wide (multicolumn) format. This facility is not
limited to MS-DOS commands, however. When any program is run, MS-DOS con-
structs a block of data called the Program Segment Prefix (PSP) and puts the re-
mainder of the command line that invoked it (that is, everything but the program
name itself) into the PSP, so any program can access its command line and check
for option specifications. PSP is called a prefix because it consists of the first 256
bytes of the 64K segment that either contains or begins the program code. Figure
1-3 summarizes the steps that COMMAND . COMtakes in parsing the command line and
preparing to load the specified program.

These features benefit programmers and power users in several ways.
Most programming languages support redirection and piping, so it is easy to
write filter programs that perform useful chores such as stripping out the high
bits in WordStar files. Several filters can be connected together with pipes,
which allows the programs to be used in whatever combination or order makes
sense. The ability of MS-DOS to pass command-line parameters or switches to a
program enables the desired behavior of each tool to be specified when it is used
in a command or batch file.

When combined with the batch file facility, filename expansion, redirec-
tion, piping, and command-line options allow quite a lot of work to be done auto-
matically—compiling, linking, and running a program, or processing text files in
converting between formats.

Chapter 1: A Guided Tour

Redirect Redirect Redirect
OCutput Input Output
-/
Internal Temporary Construct LIST
Command (pipe) PSP File
File
| Command A A\ Pass/R ‘}
Option -\ option to =
SORT.EXE [
g
3
External [
Program {
SORT.EXE {

LIST

a— . AEE—
DIR I/w l g | SORT

Fig. 1-3. Command-line parsing.

There are some shortcomings to these command-line features, however.
One of the most annoying is that most commands will not accept multiple
filenames. For example, you can't say, del *.bak *.o0ld temp?. Nor can you specify
several commands on the same command line, except when joining them with a
pipe. Additionally, the support for wildcards is not uniform throughout the
MS-DOS command set. For example, you can't say type report? to list report1
through report9. In general, the revisers of MS-DOS have paid much more atten-
tion to adding new commands than they have to increasing the utility and con-
sistency of the existing ones. We will look at some possible ways to improve this
situation later.

Program Execution

Once COMMAND.COM finishes parsing the command line, the specified program
must be loaded and run (see Figure 1-4). COMMAND.COM actually has two parts: a
permanent part and a temporary part. The permanent or resident part contains
code that monitors for user interrupts (breaks), critical errors, and for a signal
indicating that the current program has terminated. It also contains code that is
used to load the temporary or transient part of COMMAND.COM back into memory.
The transient part contains all of the rest of COMMAND.COM—the command-line
parser, batch file facility, internal commands, and so on.

15

Section 1: Extending the MS-DOS User Interface

16

COMSPEC COMMAND.COM
-
COMMAND.COM ' PROG.EXE
Transient : T@mstent Transient
- - -portion reloaded
overwritten from disk
Permanent Permanent Permanent
Before Loading and After
loading running running
program program program

Fig. 1-4. How COMMAND.COM runs a program.

Thus, when a program is run, it is loaded into upper memory where it
frequently overwrites part of COMMAND.COMs transient portion. When the pro-
gram is terminated, the resident portion does a checksum in order to find out if
the transient portion is intact. If it is not, a fresh copy is loaded from disk. (The
variable COMSPEC can be used to tell COMMAND. coM where to look for it.) In floppy-
based systems, this sometimes requires disk swapping after running an applica-
tion.

The reason for having only a minimal part of the shell in permanent resi-
dence goes back to the fact that, in its earliest incarnation, MS-DOS had to run
on machines that had only 64K of memory. If all of COMMAND.COM were kept in
memory, the amount of memory available to application programs would be cor-
respondingly reduced. Since the size of the user interface continues to grow and
applications tend to want all available memory, this feature is probably still use-
ful.

Chapter 1: A Guided Tour

Running Multiple Shells

Note that COMMAND. COMitself, since it is actually “just a program, can be run like
any other program from an existing copy of COMMAND.COM. Thus at the DOS
prompt, you can type command /c dir and get a directory. The /c is a switch that
tells the new COMMAND. COMto execute the rest of the line as a command. The real
use of this, however, is to have a batch file run another batch file. (In DOS 3.3,
there is a CALL statement that provides a more straightforward way to do this.)
You can also have an applications program run a batch file by using a system call
(the EXEC function), to invoke a new COMMAND.COM with the appropriate command
line placed in memory.

Batch Processing

Another powerful feature of MS-DOS is the ability to put a series of command
lines in a batch file that can be executed by naming it, in the same way an
MS-DOS command or other program is run. Indeed, a batch file is a program
consisting of MS-DOS command lines and some rudimentary branching and
control structures. Batch files are typically used for such tasks as configuring
the system at startup, installing new software, and assembling or compiling pro-
grams. The power user columns of popular PC magazines are filled with batch
files that perform a number of other chores such as setting a serial port or
printer. Because they are ordinary text files, batch files can be created with
whatever editor is handy.

Much of the power of batch files comes from the fact that they can be given
general placeholders that can be filled in from the command line when the
batch file is called. For example, if a batch file called BACKIT.BAT contains the line
COPY %1 %1.BAK, typing BACKIT LETTER results in the command COPY LETTER LET-
TER.BAK being executed.

Unfortunately, the MS-DOS batch facility, despite the creative uses to which
it has been put, is very limited as a programming language. There is an IFbut no
ELSE, for example. There is a FOR statement, but it accepts only lists and is not
able to use a counter. Long batch files (such as those used to install software) are
hard to read and maintain because of the lack of good control structures and the
inability to use subroutines. In addition, the MS-DOS batch-processing language
has no facility for performing arithmetic, doing anything other than a literal
comparison to a string, or even for getting input (other than pausing for a key-
press) from the user.

There are several approaches that can be taken to improve MS-DOS batch
processing. One is to write short utilities that can extend the versatility of the
batch facility. (See Essay 3, Adding UNIX Power with PCnix, by Edward Nather,
which describes the use of batch files to implement UNIX-style utilities in

17

Section 1: Extending the MS-DOS User Interface

18

MS-DOS. He also describes batch file helpers—short programs that can, for ex-
ample, check user input in a batch file.)

Another place to look for more power and ease in batch programming is
among the many menu-generation programs, some of which are public domain
or shareware. These programs allow you to set up a nested series of menus to
guide beginning users, and, in some cases, include batch facilities as well.

A more comprehensive solution is a product called EBL (Extended Batch
Language) that provides the many features missing in the MS-DOS batch lan-
guage, yet is compatible with regular DOS batch files. This is a shareware prod-
uct available on many bulletin boards. (See Essay 4, Adding Power to MS-DOS
Programming, by Doug Adams, for a detailed overview of EBL with examples.)

Finally, there are a number of products that provide implementations of
UNIX shells for MS-DOS, offering what is, in effect, a general-purpose macro
programming language. (The Korn shell, ksh, is the most comprehensive one.)
UNIX shells offer programmers more (and more flexible) variables, better con-
trol structures, and many more conditions that can be tested. Such shells are
definitely more complex than COMMAND.COM, but this will not dismay people who
are already programmers or power users of MS-DOS. The UNIX shells for
MS-DOS vary in quality. The best I have found is in a product called the MKS
Toolkit. It provides a very full implementation of the new UNIX Korn shell with
many UNIX utilities besides. This product is compatible with the rest of the
MS-DOS environment, including memory-resident programs. It can be run ei-
ther instead of COMMAND.COMor from it.

The MS-DOS File System

Readers of this book are likely to be quite familiar with the use of pathnames,
directories, and subdirectories to navigate among files under MS-DOS. Of
course, it is not easy for even a power user to type a pathname like
c:\c5\bin\graphics\ega without errors. The significant milestone in the
MS-DOS file system was the implementation of a tree-structured (hierarchical)
file structure starting with MS-DOS 2.0. Such a system of directories and sub-
directories was, of course, made necessary by the advent of hard disks with
space for hundreds of files. The syntax used is very similar to that of UNIX, ex-
cept that MS-DOS uses \ to separate parts of a file path, while UNIX uses /. On
the other hand, MS-DOS uses / for command options, while UNIX uses -. This is
a continuing frustration to people who use both operating systems daily. (See
Essay 3, Adding UNIX Power with PCnix, by Edward Nather, for a discussion of
ways to modify MS-DOS to accept the UNIX conventions.)

The difficulty many people have in visualizing their place in the file tree has
led to a number of developments. Numerous commercial DOS shells (which are
not really shells, since they don't replace COMMAND . COM) offer users a graphic de-

Chapter 1: A Guided Tour

piction of their file structure and easy selection of files for inspection, copying,
or removal. More radically, graphic environments that follow the Macintosh phi-
losophy (such as GEM and MS Windows) replace directories and subdirectories
with folders. These are designed to be more intuitive, especially for beginning
users, but some graphic interfaces (notably that of the Macintosh) do not allow
one to use command lines where appropriate. A command line using wildcards
enables us to act globally (on a whole set of files or a directory) with a single
command.

Another shortcoming that is keenly felt by most MS-DOS users is the limita-
tion of filenames to eight characters plus a three-character extension. One won-
ders how many person-hours have been lost trying to come up with a way to
name a document so that you can find it again without having to examine other
similar files. One solution is to use several layers of subdirectories to specify the
meaning of a name by its position in the hierarchy. In other words, since you
can't use report.income.1987.fall, you can use \reports\income\1987\fall.
Although there are times when such an organization makes sense conceptually
(perhaps if you have many similar files), it usually substitutes the problem of
directory navigation mentioned earlier for the problem of incomprehensible
filenames. Disappointingly, there appears to be no provision in planned new re-
leases of MS-DOS or 0S/2 to allow longer filenames.

As usual, the market has responded to users’ needs, however—in this case,
by providing MS-DOS shell or file manager programs (often memory-resident)
that allow you to associate a longer name or phrase (or keywords) with a
filename. When your application asks you for a filename, you can pop up the
utility and use it to find the right name and then invoke the application.

Going beyond these relatively superficial problems, the MS-DOS file system
also suffers from a structural problem. Conceptually, one should be able to get
from any part of the file tree to another, simply by searching recursively. In this
case, recursive searching means searching the first directory, then searching
any subdirectories in that directory, searching each of its subdirectories, and so
on. Indeed, MS-DOS provides system functions that allow programs to navigate
through the directory hierarchy, but the user commands generally aren’t recur-
sive. That is, they can't operate on the current directory and all its subdirecto-
ries and all their subdirectories. You can't, for example, copy or delete a
directory and all of its subdirectories in the way you can in UNIX. (MS-DOS 3.2
provides a new command called xcopy that is recursive and copies subdirecto-
ries, however.)

While it can be argued that such recursion increases the chances of acci-
dents, it is needed to take full advantage of the file system structure. MS-DOS has
most of the pieces of the needed facility. For example, starting with DOS 2.0,
MS-DOS provides a command called tree that displays the directory tree start-
ing at a specified point. Unfortunately, there is no command that will search
through this tree and show you the path to a specified file. Nor is there a com-
mand in standard MS-DOS that allows you to find matching files in the tree and

19

Section 1: Extending the MS-DOS User Interface

20

apply an MS-DOS command to them (for example, to find the file REPORT8 some-
where in the depths of your ACCOUNTS directory and TYPE it to the screen, or to
DELETE all files with the extension .BAK regardless of their position in the hier-
archy). In UNIX, this function is performed by the powerful find command,
which is not to be confused with the MS-DOS FIND command. The latter doesn't
find files, but rather finds words in a file.

Again, enterprising programmers have come to the user’s rescue by provid-
ing a utility that will find matching files anywhere in the file tree, and optionally
apply an MS-DOS command to them. (See Essay 2, Searching the File Tree with
whereis, by Frank Whaley, for a very complete implementation of this utility.)

Strategies for Improving the User Interface

A “better” interface means two things that are often hard to reconcile: more
powerful and easier to use. Figure 1-5 shows stylized learning curves for three
environments: “classic” MS-DOS, the Macintosh-style interface, and UNIX. Each
plots power along the vertical axis and ease of learning and use along the hori-
zontal. (These are not meant to be exact quantifications.)

Classic MS-DOS has a pretty steep learning curve that eventually levels off
as the user learns features. Unfortunately, the power also levels off quickly due
to the systemic shortcomings of elements such as the batch-processing and file
systems and the lack of commands for many functions.

The Macintosh-style interface offers a more shallow learning curve (it is eas-
ier to learn) and a higher initial level of power, but the power does not grow signifi-
cantly over time. It is a bit like the hare and the tortoise: on the average, as a Mac
user, you will be able to do much more with the operating system in the first
couple of months than will the MS-DOS (or UNIX) user, but the lack of global com-
mands and batch processing means that you will not be able to do much more in
the operating system after six months than you were able to do after one.

Finally, UNIX offers a learning curve that tends to remain fairly steep, but
with power that continues to increase. The MS-DOS power user who obtains a
UNIX-style shell and utilities may be able to accomplish many things the other
two kinds of users cannot, though any shell scripts created cannot be run on
another system without also providing a copy of the shell (and probably other
programs).

It should be clear that there is a place for both the easy-to-learn graphical
interface and the power user’s command-line interface. Fortunately, both are
available today. With the use of a product such as Microsoft Windows, a user can
have access to both worlds, with many other benefits besides. (See Essay 9, In-
side Microsoft Windows, by Michael Geary.) In addition, integrated program-
ming environments usually offer a graphic-style windowed interface, access to
MS-DOS from within the program, and batch-mode compile and link options.

Chapter 1: A Guided Tour

Power

s e o e
Time + Effort

Fig. 1-5. Learning ease of use vs. power.

Programmers and power users may have a bewildering variety of choices these
days, but with thought and planning they can have both power and ease of use.

The Applications Level

At the applications level, we move from what the user needs to what a program-
mer must do. The programmer’s interface to MS-DOS is the applications services
level—the system kernel, which is loaded from the MsD0s.sys file (1BMDOS.COMin

21

Section 1: Extending the MS-DOS User Interface

22

PC-DOS). The kernel contains the data structures and service routines that ap-
plications programs must access correctly in order to function in the MS-DOS
environment.

DOS Kernel Features

The MS-DOS kernel serves an applications program in two general ways. First, it
manages information the program needs in order to interact with its environ-
ment, such as information about the current directory, the files assigned for use
by the program, and the list of available devices and how they organize data.
Second, the kernel provides service routines (often called MS-DOS functions or
interrupts) that handle such things as memory management, file management,
and I/O for built-in character devices such as the screen, keyboard, parallel port,
and serial port.

Program Structure and Memory Use

To load a program f(either a .COMor an .EXE), COMMAND. COM calls the kernel's EXEC
function INT 48H, which constructs the PSP. (See Essay 6, Undocumented MS-DOS
Functions, by Ray Michels, which begins with a detailed discussion of the PSP)

The PSP provides a program with information about its current environ-
ment, including the values of current DOS variables such as PATH. It also contains
the remainder of the command line used to call the program, so the program can
search for and act on option switches and find the names of user-specified files.

The PSP also contains the addresses of key services the program will need,
such as the MS-DOS termination handler INT 22H, which provides for the orderly
termination of a program, and the MS-DOS function dispatcher INT 21H, through
which requests for disk operations and various I/0 services are sent. The PSP
also provides information that can be used to determine if the program has allo-
cated enough memory for its needs or perhaps can release some memory.

The PSP thus provides a private copy of the environment for each program.
Although only one program can be active at a time, there can be several PSPs
and associated programs in memory. The PSP for each program serves to iden-
tify it as a process. This allows the maintenance of multiple memory-resident
programs. Beyond that, the PSP structure is useful for developing task-switch-
ing and the provision of variable amounts of processor time for different pro-
cesses—in other words, a form of multitasking, since each process can be
maintained with its own PSP. While Microsoft has chosen not to exploit this line
of development (opting for the much more sophisticated approach in 05/2),
other vendors have created multitasking versions of DOS or task-switching that
run under DOS.

Chapter 1: A Guided Tour

. COM Program Structure

As all users learn, there are two types of executable programs that run under
MS-DOS. The simplest type is the .coMprogram, identified by this file extension.
A .COMprogram is an exact image (copy) of binary program code. It is always
loaded just after the PSP, and it cannot be relocated. A .coMprogram is limited to
one segment (64K), minus the space for the PSP (256 bytes) and the minimum
stack (2 bytes). The compensation for this inflexibility is that .coMprograms are
compact and load fast, since multiple segments do not have to be accessed.
Most .coMprograms found these days are usually either old programs (per-
haps originally ported from CP/M) or small utility programs. The first genera-
tion of languages on PCs often produced only .COM programs, but most
compilers can now use large-memory models and produce .€XE files.

. EXE Program Structure

Larger programs and those that need to be able to allocate and release memory
as needed are constructed as .EXE programs (using that file extension). The key
features of an .EXE program, as compared to a .COMprogram, are that it can use
as many segments of memory as are available, and it can be relocated after load-
ing. Separate segments can be devoted to program code, data, and the stack.
Figure 1-6 compares the structures of .coMand .EXE programs.

Unlike the case with .coM programs, which are always loaded as a block,
MS-DOS must know a lot of information about an . EXE program to be able to load
it into memory and allocate whatever extra memory is needed. Each .EXE pro-
gram has a header that includes information such as the location and size of the
program’ code, data, and stack segments. Other header fields tell MS-DOS how
much more memory the program must have in order to run, and how much
more the program would like to have if available. An .EXE program can also call
functions that release memory that is no longer needed. Thus, .EXE programs, at
the expense of additional overhead, are much more flexible than are .coM pro-
grams.

In the early days of MS-DOS, flexible memory allocation and the ability to
deallocate unneeded memory were not very important. Normally there would
be only one program in memory at a time. The advent of memory-resident pro-
grams changed all of this. An “ill-behaved” program that grabs all available mem-
ory freezes out memory-resident programs that expect to be able to allocate
some memory as needed. Today, most programs that are intended to be used in a
typical MS-DOS environment should be able to release and reclaim memory as
needed. In addition, .€EXE programs that follow certain rules can run under
MS-DOS, 08/2 (MS-DOS compatible) mode, or OS/2 protected mode.

23

Section 1: Extending the MS-DOS User Interface

24

Multiple Segments
One Segment (up to available memory,
(maximum 64K) fiexible order)

Stack O
{-COM File >
{exact memory image)
Data
Data
Stack Header
(Relocation |
information)
Code
Program Code
Code and
Data
PSP

Transient Area
COMMAND.COM

Transient Area
COMMAND.COM

Resident Resident
Area Area
.COM Program .EXE Program

Fig. 1-6. Structure of .COMand .EXE programs.

Memory-Resident Programs

The story of the development of memory-resident programs (usually called TSR
for Terminate and Stay Resident programs) is a fascinating one. (See Essay 7, Safe
Memory-Resident Programming (TSR), by Steven Baker, for both history and a
very detailed discussion of the workings of TSRs and potential pitfalls.) A feature
apparently intended by Microsoft only for reconfiguring access to devices (such
as the MODE command) or spooling printer output (the PRINT command) was un-
earthed by eager developers and exploited to bring us SideKick and dozens of
other utilities that are available at the touch of a key. Indeed, one of the biggest
problems for serious users today is deciding how many of these attractive pro-

Chapter 1: A Guided Tour

grams can be fit into the 640K of total available memory while still leaving room
for an applications program.

As noted earlier, there can be multiple programs, each with its own PSP, in
memory at the same time. Normally an MS-DOS program is removed from mem-
ory (or more precisely, its memory is released) after it terminates. When a TSR
program first runs, it calls a function (usually INT 21H, Function 31H that tells
MS-DOS to maintain the program in memory even after it has exited. By using
the interrupt mechanism, a TSR can set things up so it is triggered when an
event such as a specific keypress is encountered. Problems occur when two
TSRs are set to respond to the same keypress, or a TSR does not pass on the
keystrokes it examines so other TSRs can check them.

In essence, the TSR facility, because it allows multiple programs (processes)
to exist simultaneously, provides the capability of task-switching. Since several
programs are in memory and each can be selected by a particular keypress, the
user can switch “instantly” between them. Memory-residency potentially sup-
ports an object-oriented, event-driven approach where a program could be con-
structed of modules that can respond to “messages” sent to them by various
events. Programmers can explore the possibility of implementing an application
as a group of memory-resident modules. The drawbacks are considerable how-
ever. Many important functions relating to TSRs have only been documented re-
cently, some are still undocumented. MS Windows and ultimately OS/2 are much
better environments for developing such event-driven programs, but there is
still room for exploiting memory-resident programming in the standard
MS-DOS environment.

Accessing System Services through Interrupts

The basic mechanism by which programs request the services of the MS-DOS
kernel is the software interrupt. There are basically two kinds of interrupts in the
PC environment: hardware interrupts and software interrupts. Hardware inter-
rupts originate from the hardware controlling devices, and programs must re-
spond appropriately to them. Remember, there is nothing traumatic or unusual
about hardware interrupts in the MS-DOS world. Many are nothing more than a
device saying that it has completed the requested 1/O operation.

Software interrupts are used by programs to obtain such services as file
management (creating, writing, and reading files, creating directories, and so
on), memory management (allocating or releasing memory), reading the key-
board, displaying text or graphics, or running a program from the current pro-
gram.

Interrupts are referred to as INT XXH where XXis a hexadecimal number. INT
is also the name of the assembly language instruction used to call an interrupt.

Software interrupts can access the BIOS for low-level operations, and this is

25

Section 1: Extending the MS-DOS User Interface

26

sometimes done for speed reasons. For example, INT 10H is a general-purpose
interrupt used to access the BIOS video services. In general, however, the most
compatible way to request DOS services is through the software interrupts that
call code within the MS-DOS kernel. An interrupt with special significance here
is INT 21H. This interrupt is a general dispatcher used for calling most of the
MS-DOS kernel's system services. Aproximately 100 different functions are avail-
able through INT 21H, called by putting the hexadecimal number of the specified
service into the AH register, loading other registers with codes that specify the
desired processing, and then using the INT 21H instruction.

The INT Instruction

Software interrupts are activated by executing the INT assembly language in-
struction. The form of the instruction is INT n, where nis the hexadecimal inter-
rupt number. Before the INT statement is executed, CPU registers must be
loaded with appropriate values as specified in the description of the interrupt.
When the interrupt returns control to the program, return values, as appropri-
ate, are provided in the registers.

The INTinstruction first directs the CPU to save the current contents of the
code segment (CS) and instruction pointer (IP) registers onto the stack. This must
be done so that the program that was interrupted can be started up where it left
off. New values are then loaded into these registers using the values found in the
Interrupt Vector Table in the first 1024 bytes of memory. The interrupt number
serves as an index into the table. The CPU then executes the code found at the
locations now specified by the CS and IP registers, and, when done, restores the
original CS and IP values from the stack. Execution of the interrupted program
now resumes.

Because values in the Interrupt Vector Table can be replaced by the pro-
grammer with other values, software designers can substitute their own code
for handling a particular interrupt by putting appropriate values in the table for
that interrupt number. This is how, for example, a TSR can intercept a keyboard
interrupt with code that checks for certain keystrokes.

Using MS-DOS Data Structures

The use of the many system functions (or interrupts) involves not only an under-
standing of how a particular interrupt works, but frequently how it uses internal
MS-DOS data structures. For example, a number of MS-DOS functions have to do
with file management: creating, writing, reading, closing, and removing files.
Internally, MS-DOS uses a System File Table (SFT) and individual data blocks
called File Control Blocks (FCBs) to manage files. The SFT keeps track of the sta-

Chapter 1: A Guided Tour

tus of all files that are currently open. Each file has its own FCB, which contains
the file’s name, status, history (when it was last accessed), as well as pointers to
the location within the file that was last accessed.

Constructing FCBs used to be a tedious process because all of this informa-
tion had to be obtained by the program and inserted one field at a time. But
MS-DOS (starting with version 2.0) has provided an alternate and preferable way
for applications to handle files, the file handle. The programmer obtains a file
handle by passing the address of a string containing the pathname of the file to
the file creation or file-opening function. The handle that is returned is a 16-bit
value that identifies that file. All further references to the file use only the han-
dle, and MS-DOS keeps track of the file’s FCB without further ado. The use of file
handles makes it easy to find a file anywhere in the file system hierarchy, redi-
rect input and output, and control the use of files and records in a network envi-
ronment.

The file handle example is typical of a problem with learning how to pro-
gram with MS-DOS. In the interest of compatibility with earlier versions, many
MS-DOS facilities do not replace the functions they are intended to supplant. It is
up to the programmer to learn what the preferred techniques are. (See Essay 10,
Developing MS-DOS Device Drivers, by Walter Dixon, and Essay 6, Undocu-
mented MS-DOS Functions, by Ray Michels, for discussions of the use of the SFT,
FCB, and file handles.)

Problems in Interrupt Handling

While the interrupt mechanism is conceptually simple, in practice, many
problems can occur in managing interrupts. As the name implies, an interrupt
“interrupts” whatever program was running when it was triggered, so the han-
dler for the interrupt must properly save and restore the interrupted program’s
register values. The programmer must also be concerned with preventing inter-
rupts from interrupting themselves.

The interrupt mechanism worked well in the environment for which it was
designed (only one program running at a time). The use of interrupt-driven TSR
programs complicates the issue—the problem is that there is no way to protect
the system from the misbehavior of one process or from an improperly handled
interrupt. In most multitasking operating systems such as UNIX or OS/2, pro-
grammers request system services and access memory only through the operat-
ing system, not by means of interrupts. The operating system is an ever-present
monitor, not just a program loader. The OS protects each program’s memory
from unauthorized access. This kind of memory management and the use of
protected mode (on the 80X86) means that an errant program can commit sui-
cide, but cannot murder another program. (See Essay 10, Developing MS-DOS
Device Drivers, by Walter Dixon, for a detailed discussion of the interrupt mech-
anism. See Essay 5, Advanced MASM Techniques, by Michael Goldman, for tech-
niques and tips for proper handling of interrupts.)

27

Section 1: Extending the MS-DOS User Interface

28

New Programming Tools and Techniques

Applications programming requires good tools as well as knowledge and tech-
niques. The last few years have seen the emergence of powerful and versatile
tools for programmers, and of integrated programming environments that make
it easier to use them. The new programming tcols also make it easier for begin-
ning programmers, traditionally introduced to BASIC, to move directly to using C
or other languages that are better designed for professional programming.

Integrated Programming Environments

Borland International started a small revolution with the introduction of its fast,
cheap, and easy to use Turbo Pascal product. Instead of a tedious write-compile-
link-run-debug-revise cycle, programmers could now write code in an editor,
have it compiled, linked, and run automatically, and immediately invoke the editor
to fix any errors that emerge. The control of all aspects of the programming pro-
cess from the same interface provided an integrated programming environment.

Since then, Borland and Microsoft have brought out products that add
power while retaining the easy-to-use pull-down menus and dialog windows.
Microsoft C 5.0 is particularly noteworthy in that it offers an integrated environ-
ment (QuickC) that is fully compatible with the full-fledged command-line
driven compiler, linker, and librarian, and provides a subset of its CodeView de-
bugger commands from within the integrated environment.

The significance of integrated environments is that they help program-
mers concentrate on the design and coding of the program rather than the me-
chanics of keeping track of include files, compiler options, “make” files, and
other housekeeping details.

A further step toward programming ease has recently been taken by
Microsoft, starting with its QuickBASIC 4.0 product. By using a “threaded” mech-
anism for linking compiled code sections, this integrated environment makes it
possible in many cases to recompile and relink just the parts of the program
affected by the most recent edit.

Another trend that is seen especially in the Microsoft and Borland prod-
ucts is the provision of a uniform interface that allows programs created using
one language to call routines created using another language. This is mainly a
matter of having the compiled code from each language pass parameters on the
stack using the same sequence. This “multilanguage programming” provides
flexibility in using existing resources and allows the programmer to choose the
language best suited for a given task.

C Function Libraries

The general acceptance of C as the premier higher-level language for MS-DOS
programming has resulted in the development of numerous commercial and

Chapter 1: A Guided Tour

public-domain libraries of C functions for nearly everything one might want to
do with an MS-DOS system and its hardware. (Two good examples on a small
scale are the serial communications routines in Essay 13, Programming the Se-
rial Port with C, by Naba Barkakati, and the EGA graphics routines in Essay 12,
Programming the Enhanced Graphics Adapter (EGA) by Andrew Dumke. Essay
4, Adding Power to MS-DOS Programming, by Doug Adams, describes the fea-
tures and gives examples of the use of two commercial C libraries: Vitamin C, a
screen generator, and C-INDEX, an indexed file-retrieval system.

The Hardware Level

Finally we come to the lowest (but certainly not least important) level of MS-DOS,
the interface to hardware. When all is said and done, a program must communi-
cate effectively with the outside world. From lowest to highest level, there are
three ways a program can control devices: direct access, BIOS calls, and device
drivers.

Direct access involves directly manipulating the registers or memory loca-
tions associated with devices connected with the system, or directly accessing
memory buffers associated with the devices. In general, this is usually done for
speed—in the case of the video display, for example, to provide high-speed draw-
ing and animation. The drawback of this approach is that it depends on exact
hardware compatibility, which is not the same as the “functional compatibility”
advertised particularly by the early PC-compatibile vendors. Most software de-
velopers avoid this approach, except in some games.

The BIOS

In our discussion of interrupts we mentioned the BIOS calls available through
INT 10H. Since the calls for device services through the BIOS have to be translated
into specific register or memory changes, this approach is slower than direct
access. On the other hand, now that very highly compatible BIOS chips for PC
compatibles are widely available, the BIOS approach guarantees a high degree of
compatibility.

Communicating with Devices

The third approach to communicating with hardware is the device driver. A de-
vice driver is a program that is installed by MS-DOS in memory where it waits
for control sequences directed at a particular device. The driver translates these
commands into the low-level instructions needed to get the device to perform

29

Section 1: Extending the MS-DOS User Interface

the required function. MS-DOS comes with a number of built-in device drivers
for the devices that are built into every PC, such as the keyboard, disk drives,
and parallel and serial ports.

Installable Device Drivers

The open architecture of the IBM PC and its compatibles rapidly led to the prolif-
eration of add-on devices. In the area of the video display, IBM offered the EGA
and the Video Graphics Array (VGA) and other adapters to provide more resolu-
tion and color. Meanwhile, Hercules established its own display “standard” Modi-
fying the BIOS or the MS-DOS kernel to keep up with these new devices would
have led to a logistical nightmare. Instead, MS-DOS 2.0 added the capability for
users to install their own device drivers.

As we mentioned in the discussion of the DOS boot process, MS-DOS builds
a list of device drivers that starts with its own built-in drivers. MS-DOS also pro-
vides some optional drivers, such as ANSI.SYS (a console driver) and vDISK.SYS (a
RAMdisk driver). These or drivers written by other programmers can be in-
stalled (hooked into the MS-DOS driver list), and a DEVICE=statement naming the
driver in the CONFIG.SYS file then tells MS-DOS to install the driver at system
startup. (See Essay 11, Writing a SOUND Device Driver, by Walter Dixon, for a
complete minicourse on designing, using, and testing installable device drivers.)

The installable device driver is one of MS-DOS’s outstanding successes. In
addition to accommodating new devices such as laser printers or CD drives, de-
vice drivers can even be used to intercept file accesses and provide password
protection. (See Essay 8, Data Protection and Encryption, by Asael Dror.)

The Future of MS-DOS

30

Microsoft Windows, with the recent release of version 2.0, represents several
fundamental extensions of the MS-DOS environment without sacrificing the un-
derlying MS-DOS kernel. For users, it provides a graphical user interface with
most of the features popularized by the Macintosh. For programmers, however,
the real significance of MS Windows is that it provides a new model for thinking
about and designing programs. This is the model that is often called object-ori-
ented programming. Instead of an application being written as a collection of
functions that are called according to the logic of the main program, each Win-
dows function is designed to handle specified inputs (messages) and send mes-
sages in return to the central dispatcher. Events such as mouse movements thus
become input to the function controlling each window.

In a traditional program, the user is put in the position of an applicant who
must fill out a series of forms (navigate menus) in order to get to the point of

Chapter 1: A Guided Tour

being able to do some work. In an object-oriented, “modeless” program, the user
picks up the desired tool and the tool responds in a way that seems natural for
the intended work. While in practice, Windows may not be this seamless, it pro-
vides a taste of things to come. (See Essay 9, Inside Microsoft Windows, by Mi-
chael Geary, for more discussion on the Windows interface and programming
environment.)

Expanded Memory

The proliferation of TSRs, the overhead involved with environments such as MS
Windows, and the sheer amount of data that applications are now called upon to
handle often leads to a shortage of usable memory. Remember, MS-DOS allows
only 640K of memory to be addressed directly. The ultimate solution is an oper-
ating system that takes advantage of the “protected mode” of the 80286 and
80386 to address many megabytes of memory, such as OS/2 or UNIX. Meanwhile,
EMS, a workable if not ideal solution, allows access to memory beyond 640K
under MS-DOS. Portions of the 640K main memory are treated as windows into
which chunks of memory from a memory expansion board can be mapped as
needed. While this technique is slower than being able to directly address the
extra memory (and involves housekeeping), it is much faster than using the hard
disk for swapping code or data in and out. Increasing numbers of applications
are being written or revised to take advantage of EMS or its successors, En-
hanced Extended Memory Specification (EEMS) and EMS 4.0. (See Essay 14, Un-
derstanding Expanded Memory Systems, by Ray Duncan, for a conceptual and
practical understanding of expanded memory and how a program can use it.)

0S/2

Even granting its shortcomings and limitations, by any standard, MS-DOS has
been a remarkable success. Microsoft has added significant features to the oper-
ating system on several occasions, and has been innovative in the areas of oper-
ating environments (MS Windows) and programming tools (of which Codeview
and the “Quick” integrated environments are most notable). Perhaps the real
driving force behind the success of MS-DOS, however, is the community of devel-
opers who have discovered and exploited features such as memory-resident pro-
gramming to meet an increasingly demanding market.

It is traditional in the computer industry to want to be where the action is—
the latest wave rather than the tried and true. There is no doubt that in the long
run 0S/2 is the successor to MS-DOS, providing multitasking, a new user inter-
face (Presentation Manager), and a new programming environment.

On the other hand, there is a huge installed base of PCs and XTs that will

31

Section 1: Extending the MS-DOS User Interface

never be upgraded to run 08/2. Also, 0S/2 is significantly more expensive than
MS-DOS, especially considering its hefty memory requirements and the cost of
replacing all applications in order to take full advantage of 0S/2, rather than
merely running in a slightly degraded fashion in a compatibility mode. Further, it
will take time to rewrite significant applications to take advantage of 0S/2, and
until new applications are conceived that take full advantage of multitasking in
their design, there will be limited incentive for most ordinary users to learn 0S/2
instead of using a combination such as MS-DOS, Windows, and EMS. Thus it is
likely that, for at least the next several years, there will be a significant market for
MS-DOS applications and considerable room for innovation in the MS-DOS world.

Reading List

32

Angermeyer, J., R. Fahringer, K. Jaeger, and D. Shafer/The Waite Group. 1987.
Tricks of the MS-DOS Masters. Indianapolis: Howard W. Sams & Company.
> Full of tips that turn users into power users, including ways to enhance
MS-DOS with add-on products.

Angermeyer, J., and K. Jaeger/The Waite Group. 1986. MS-DOS Developer’s
Guide. Indianapolis: Howard W. Sams & Company.
>~ Contains many strategies and techniques for program development
under MS-DOS including real-time programming, the 8087 coprocessor,
and network support.

Duncan, R. 1986. Advanced MS-DOS. Redmond, Washington: Microsoft Press.
- A very thorough guide to MS-DOS internal structures and system func-
tions with numerous examples in assembly language.

Mortice Kern Systems. 1986. MKS Toolkit. Waterloo, Ontario, Canada.
i~ Describes the MKS toolkit, a product that provides a very UNIX-like envi-
ronment under MS-DOS, including the Korn shell.

Simrin, S./The Waite Group. 1985. MS-DOS Bible. Indianapolis: Howard W. Sams
& Company.
t:- Guide to MS-DOS features for power users and programmers.

Chapter 1: A Guided Tour

e R LML o o S o T ™ To T T F ST T O Hrent i i e TATAN s S LIRS ST T A e 4 LT T L Y BN T AN o s L T TR S

Harry Henderson is a freelance technical writer and editor specializing in oper-
ating systems and programming languages. He has worked on numerous books for
The Waite Group and Sams Publications, including their UNIX series, and is technical
editor for MS-DOS Papers. He also works with his wife, Lisa Yount, on educational
writing, under the close supervision of three cats.

Related Essays

2 Searching the File Tree with whereis

3 Adding UNIX Power with PCnix

4 Adding Power to MS-DOS Programming
9 Inside Microsoft Windows

33

Keywords

tree-structured directories
recursive search algorithms

filename matching

whereis (utility)
find (UNIX utility)

Essay Synopsis: Most MS-DOS users
are familiar with the concept of tree-struc-
tured directories. Unfortunately, MS-DOS
does not provide user commands for finding
particular files in the file tree and process-
ing them. Additionally, many programmers
are not aware of the techniques needed to
enable programs to traverse the directory
tree and search for files that match particu-
lar criteria. Because subdirectories are
nested, a recursive algorithm allows pro-
grams to access the subdirectories within a
given directory, the subdirectories of these
subdirectories, and so on. This essay dis-
cusses the algorithms and proper DOS calls
to use for a program to access to the
MS-DOS file system. As an illustration, a
very powerful utility called whereis, written
in Microsoft C, is provided and fully ex-
plained. This utility allows you to search for
files throughout the directory tree and au-
tomatically apply MS-DOS commands or
other programs to matching files.

2

Searching the File Tree with
whereis

Frank Whaley

The more recent releases of MS-DOS (versions 2.0 and above) provide a very
useful feature that can be a tremendous aid to organizing disk files—Tree-Struc-
tured Directories (also known as a hierarchical file system). However, users and
programmers are often confused about how to use this feature properly. While
we will assume that you possess a working knowledge of MS-DOS directories
(including the commands for directory creation, deletion, and other mainte-
nance activities), we will review the basic concepts of MS-DOS directories and
show why directory searching is a required task of many programs.

The directory search program whereis searches all of the directories on a
disk for a given set of filenames provided on the command line. The whereis
program also contains a number of options which turn it into a useful file utility
program that can move, delete, copy, or perform other operations on the located
files. As you study whereis, you will learn how to access and best use the
MS-DOS file system. In addition, this program contains a number of valuable
subroutines that may be clipped out and used in other programs.

whereis is actually very similar to the UNIX command find, but has been
slightly modified to be more like the FileFind program from Peter Norton’s The
Norton Utilities. These alterations allow for simpler command lines (at least for
the simpler commands) and give whereis more of a regular MS-DOS flavor. We
could not use the name find, as this is the name of the standard MS-DOS text
pattern-matching program.

Tree-Structured Directories

Just as a hierarchy of offices, filing cabinets, file drawers, and folders can be
used to organize paperwork, the tree-structured directories provided by
MS-DOS allow us to organize our disk files into a hierarchical structure. A prac-

35

Section 1: Extending the MS-DOS User Interface

tical application of such a system would be organizing your disk files so you
could have subdirectories for each subcategory of your work (for example, all
files pertaining to material purchases in one directory, and all files pertaining to
equipment purchases in another). This approach has many advantages:

> Related files are kept in the same area, and their names can be seen to-
gether in a single directory listing.

- More significant characters become available for creating unique and
meaningful filenames (compare DPCMIN with DETROIT\PROD\COSTS\
MATERIAL\JUNE).

i+ Files containing similar information may have the same name, provided
they are kept in different directories (APRIL\SALES and MAY\SALES).

>~ MS-DOS requires less search time to find a given file if there are fewer
files in the current directory.

One shortcoming of this type of directory structure, however, is that files
may become lost. They may be created in the wrong directory, or you may sim-
ply forget where a file was put. A tool for automatic directory searching be-
comes very useful, particularly when you have a hard disk with dozens of
directories and hundreds of files. It is for this reason that we selected whereisas
a method for demonstrating some of the principles of directory searching.

Searching: The Recursive Solution

36

As with most computer programs, there are several methods that we could use
to search directories. Seemingly straightforward methods involving nested
loops require a considerable amount of housekeeping code—stacks of directory
information must be maintained.

One of the definitions of a directory is “an object which may contain files or
other directories” Since this definition is self-referential (or recursive), it would
seem that a recursive algorithm might be used for directory search. In fact, re-
cursive methods are the most common methods used with tree-oriented data
structures, because they allow for simplification of the code required to exam-
ine each branch of the tree. For example, our whereis program revolves around
a very simple algorithm:

1. Find all plain files in this directory.
2. Repeat for all subdirectories in this directory.

This method of searching is very much different from what is required by
most commercial programs. For example, finding a help message file typically

Chapter 2: Searching the File Tree

involves appending the name of the file to each element of a list of directories,
and testing for the presence of each constructed filename. Some programs can
get away with assuming that all pertinent files exist in the current directory, and
that any other condition is cause enough to abort the program.

The method used by whereis is most aptly suited to cases where all in-
stances of a certain class of file must be operated on at one time. These files may
be selected either by name, type, attributes, or some other condition or combi-
nation of conditions.

Directory Search Functions

MS-DOS was not the first, nor is it the only, operating system to provide tree-
structured directories. While there is a remarkable similarity between the
appearance of MS-DOS directories and those used by other systems, MS-DOS
provides one of the simplest methods for finding files and information about
these files.

MS-DOS directories are viewed as special files, and can only be accessed via
two special function calls through INT 21H: Search For First (Function 4EH) and
Search For Next (Function 4FH). (In truth, the actual disk sectors that contain the
directory information may be read via the Absolute Disk Read interrupt (num-
ber 25H), but this method requires much more programming and is usually con-
sidered appropriate only for programs which help recover data after a major
disk failure.) Although these function calls are primarily designed for finding
files, they actually provide more information than similar functions in other op-
erating systems.

The First/Next function calls perform wildcard matching (? and *) and de-
posit information about the matched file into a predefined data area. This data
area is described by the following C structure:

typedef struct /* Directory Information */

{

char rf21]; /* data area reserved by MS-DOS */

char attr; /* attribute (system,hidden,etc.) */

unsigned time, /* time stamp */
date; /* date stamp */

long size; /* file size in bytes *x/

char namel13); /* actual file name *x/

>

DIRINFO;

MS-DOS uses the concept of a Data Transfer Area (DTA) for passing blocks
of data which are too large to be contained in registers. The current DTA is used

37

Section 1: Extending the MS-DOS User Interface

by MS-DOS to return the DIRINFOstructure shown above. The current DTA must
be set before each First/Next function call. This process is handled by the
SETDTA() macro.

The First/Next function call pair allows the controlling loop of a directory
search routine to be reduced to just a few lines, as shown in the pseudocode
below:

if (a first match can be found)
{
process the matched file
while (subsequent matches are found)
process the matched file
)

Examine the Search() subroutine within the whereis program (listed at the
end of this chapter) for another example of this technique.

Using Options for Power and Flexibility

38

Options are what allow simple programs to perform more than one task,
thereby increasing both their power and utility. While it may sometimes be
enough to be able to say

whereis thisfile
to find all of the various versions of thisfile, adding a few options like
whereis -r -b-5000 -t+30 thisfile

uses the same program to find all of the occurrences of thisfile that are read-
only, less than 5000 bytes long, and more than 30 days old.

whereis searches all directories on the current drive for files which match
both the selected options (or defaults) and one of the file specifications (file-
specs). In the option descriptions given in Table 2-1, the argument n is expected
to be a decimal integer where + nmeans more than n, nmeans less than n,and n
means exactly n. For options that have parameters, the parameter may be given
either as part of the option argument -t+10 or as the next argument -o \bin.

filespecs may be any list of ambiguous filenames. If filespecs is not pro-
vided, *.* (all files) is assumed. The following are a few ways that we can use
whereis.

To find all .h files:

whereis *.h

The

Chapter 2: Searching the File Tree

Table 2-1. Options for whereis

Option Function

advshr Match files with given attribute bit set (Archive [a), Directory [d], Volume-label
[v], System [s], Hidden [h), and Read-only [r]. Each attribute must be specified
separately (as -a =s -r).

bn Match files n bytes long.

tn Match files whose date stamps are n days before today.

o dir Begin searching at the directory dir instead of the root directory.

e cmd Execute the command cmd for each matched file, substituting the current

filename for any '$' found in cmd. Multiple e commands may be included,
and each will be executed in the order encountered. The commands should
be quoted (as "'dir $') since most commands contain spaces.

To show the directory hierarchy:

whereis -d | sort

To find all program files that are also marked System, Hidden, and Read-Only:
whereis =s —h -r *.com *.exe *.bat

To delete all .wks files that are more than 30 days old:

whereis -t+30 -e "del $'" *.wks

To copy all .arc files to a floppy disk:

whereis *.arc -e '"copy $ a:"

To create an archive of all .txt files marked Archive and then delete the .txt files:

whereis -a *.txt -e "echo (ARCHIVE: $) >>archive"
-e "type $ >>archive" -e "del $"

whereis.c Program

The whereis program is a fairly self-contained module—except for library sub-
routines, all of the code is contained in a single file, whereis.c. As is typical in C
programs, the first section contains some identification and some constant defi-
nitions. This version of whereis is coded to conform to the standards of the
Microsoft C compiler, releases 3.0 and 4.0.

39

Section 1: Extending the MS-DOS User Interface

40

Includes and Constants

The source listings shown on the next several pages comprise the entire text of
the whereis program. You may create your own copy of this source code by en-
tering all of the blocks of text shown in computer font.

/*

* whereis.c => find files

*/
#define LINT_ARGS /* strict type checking */

#include <stdio.h>
#include <ctype.h>
#include <dos.h>

#include <direct.h>
#include <signal.h>

/* constants */
#define ARC 0x20 /* attribute bits */
#define DIR 0x10
#define VOL 0x08
#define SYS 0x04
#define HID 0x02
#define RDO 0x01
/* match plain files */
f#idefine PLAIN (SYS | HID)
/* match subdirectories */
#define SUBDIR (DIR ! SYS ! HID | RDO)

These constants refer to the file attribute flags contained within a direc-
tory entry (the attrelement of the DIRINFOstructure). Note that these values are
used to specify which types of files to match.

Directory Information Structure

As stated earlier, the First/Next function calls fill in a data area providing some
information about the currently matched file. This information can be used to
help select the appropriate file:

/* data types */
typedef struct /* Directory Information */
{
char rl21]); /* reserved data */

Chapter 2: Searching the File Tree

char attr; /* attribute found */

unsigned time, /* time mark */
date; /* date mark */

long size; /* file size */

char namel13]1; /* file name */

>

DIRINFO;

Macros and Functions for MS-DOS Access

Let’s look next at the interface between our whereis program and MS-DOS.
Three macros are provided to allow for relatively easy modification to fit the
library functions provided by your favorite C compiler. The Microsoft C library
contains many functions to interface to MS-DOS, but whereisrequires a connec-
tion that is not provided in a simple fashion. The First/Next function calls expect
input parameters in the CX and DX registers, and they return a flag in the AL
register. There is no MS-DOS interface function in the Microsoft C library that
passes data in exactly this way, so we have included an interface function which
serves exactly our purpose.

/*

* macros

*x/
#define SETDTA(d) dos(0Ox1A, d) /* set DTA */
#define FIRST(f,a) 'dos (Ox4E, f, a) /* search for first */
#define NEXTQO) Idos (Ox4F) /* search for next =*/
/*

* dos() -> connect to MS-DOS

*/

unsigned char dos (ah, dx, cx)
unsigned char ah;

char *dx;
unsigned cX;

{

union REGS r;
r.h.ah = ah;

r.x.dx = (unsigned)dx;

r.X.cx = cx;
intdos (&r, &r);
return (r.h.al);
>

41

Section 1: Extending the MS-DOS User Interface

42

Note that the First/Next function calls return zero if a matched file is found,
and nonzero if no match was found. In order to make the function usage seman-
tically correct (FIRST() returns TRUE if a match is found), we must reverse the
sense of the functions with the ! operator.

The fourth macro AddFi Le() is included only as a shorthand definition of a
simple function that adds a single file specification to the list of file specifica-
tions.

#define AddFile(f) FileList(nFiles++]=f /* add filespec */
Next we see the global data used by the program.

/* global data =/

char *Execl[32], /* execute commands, from -e */
FilelList[32], / the list of filespecs */
StartDir[1281], /* initial directory */
TopDir = "\\"; / start directory, from -o */
int AttrMask = 0, /* mask for attribute search */
ByteFlag = 0, /* controls size searching */
DateFlag = 0, /* controls date searching */
DateStamp = -1, /* date stamp to match */
nExecs = 0, /* number of execute commands */
nFiles = 0, /* number of filespecs given */
Today; /* today's date stamp */
long ByteCount = -1; /* file size to match */

/* offsets of "first of month" from "first of year" =/
int monthsCl ={ 0, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 };

Both ByteFlag and DateFlag control the sense of comparison (1,0,1 repre-
sents {, =,)), and DateStampand ByteCount contain the data to compare against.
Note that both the Execand FileList arrays have 32 elements at most. This
means that there is a maximum of 32 ‘execute’ commands and 32 file specifica-
tions allowed on the command line. There is no overflow checking in the whereis
program—we assume that the user will always enter less than 32 of either item.

Forward Declarations

In general, C programs are coded in a top-down fashion, with the main routine
appearing as the first function. This is usually done to show the basic structure
of the program. Therefore the functions that do not return integers must have

Chapter 2: Searching the File Tree

forward declarations. (They must be described before they may be used.) This
forward declaration informs the compiler that these functions do not return the
default data type (integer), and prevents the compiler from complaining when it
later finds the formal definitions of these functions:

int GracefulDeath(void);

void Handle(DIRINFO *),
ParseCommandLine(int, char *%),
Search(void);

Note that even though the Gracefulbeath() function does return an integer
value, its name is used as a function parameter (see the call to signal () in the
next section), and must be declared before use to prevent confusing the com-
piler.

The Main Program

As the leading comment says, the program proper begins with “good old main”:

/%

* good old main

*/

int main(argc, argv)
int argc;
char *argv[(]l;
{
/* get today's day number */
Today = SysDate();
/* pick options and filespecs from command Line */
ParseCommandLine(argc, argv);
/* save initial directory =*/
getcwd(StartDir, sizeof(StartDir));
/* set the interrupt handler =*/
signal (SIGINT, GracefulDeath);
/* move to starting directory =/
chdir(Topbir);
/* any filenames given ?? */
if (InFiles)

AddFile('*. *"); /* a nice default =*/
/* search for named files =*/
Search();

/* pop back to initial directory */

43

Section 1: Extending the MS-DOS User Interface

chdir(StartDir);

/* successful return */
return (0);

}

Handling Interrupts Gracefully

Before any directory searching can begin, we want to be certain that we have a
safe environment. The next function serves as the interrupt handler for whereis.
Because whereisuses the standard library function chdi r () to move through the
directory tree, aborting the program may cause the program to leave the users
in some directory other than where they started. This is a typical source of lost
files—some program leaves the user in a different directory than was intended,
and files are created there never to be found again. It would be unforgivable to
allow our file finder program to make a mistake like that, so let us ensure that
whereis dies a graceful death:

/*
* GracefulDeath() => clean-up upon interrupt
*/
int GracefulDeath()
{
chdir(StartDdir);
exit(1);
}

The Directory Search Function

Now that we have taken care of potential interrupts, we move to the starting di-
rectory. We use any file specifications that were given on the command line. If
there were none, *.* (all files) is used as the default. The Search() subroutine is
called to perform most of the work:

/%
* Search() -> search for files
*/
void Search()

{

DIRINFO info;

int i,

first;

Chapter 2: Searching the File Tree

/* search current directory for all filenames */
for (i = 0; i < nFiles; i++)

{
first = 1;
while (Scan(FileList[il, &info, PLAIN | AttrMask, first))
{
first = 0;
if (info.namel0] 1= '.') /* skip "." and ".." */
Handle(&info);
}
)}
/* search all subdirectories */
first = 1;
while (Scan('x ', &info, SUBDIR, first))
{
first = 0;
/* search only directories and skip "." and ".." */
if (Ginfo.attr & DIR) && (info.namel0O] != '.’))
{

/* pop into that directory */
chdir(info.name);

/* search for the filenames #*/
Search();

/* back to where we were */
chdir("..");

}

search () performs the recursive search described earlier. The major varia-
tion is that the search is repeated for each of the file specifications given on the
command line. This function depends heavily on the scan() function, which
proves to be very simple:

[*
* Scan() -> find a matching file
*/
int Scan(name, info, attr, first)
char *name;
DIRINFO =*info;
int attr;
int first;
{
SETDTA(info);

45

Section 1: Extending the MS-DOS User Interface

return (first ? FIRST(name, attr) : NEXTQ));

>

This is the only occurrence of the three compiler-dependent macros shown
earlier. Scan() could also be implemented as a macro, but is shown as a function
here to simplify debugging and copying to another program.

With the exception of the Handle () function (which decides whether some
action should be performed on the current file), most of the whereis program
has already been described. Before the various options can be applied to any-

matched files, let us see how the options are parsed from the command line.

Parsing Command-Line Options

As we saw in good old main, the argument count argc and argument string vec-

tors argv are passed to the ParseCommandLine() function.

/%

* ParseCommandLine() -> pick our options and filespecs

*/

#define NEXTARG() {if(1*++argp){argp=(*argv++) ;argc--;1}

void ParseCommandLine(argc, argv)

int argc;
char **argv;
{
char *argp;
argc--; /* skip argv[0]
argv++;
while (argc--)
{
argp = kargv++;
if (*xargp != '-")
AddFile(argp);
else
{
argp++;
switch (tolower(*argp))
{
case 'a’' : /* archive bit
AttrMask |= ARC;
break;
case 'd' : /* directory bit

AttrMask = DIR;

46

*/

*/

Chapter 2: Searching the File Tree

break;

case 'v' : /* volume label */
AttrMask != VOL;
break;

case 's' : /* system bit */
AttrMask |= SYS;
break;

case 'h' : /* hidden bit */
AttrMask = HID;

break;

case 'r' : /* read-only bit */
AttrMask = RDO;
break;

case 'b’ : /* byte count */
NEXTARG();
if ((xargp == '=') |1 (*argp == '+'))

ByteFlag = (*xargp++ == '-') 72 =1 : 1;

ByteCount = Pickval(&argp);
break;

case 't' : /* time stamp */
NEXTARG();
if ((xargp == '=') |! (*argp == '+'))

DateFlag = (xargp++ == '=') 2 -1 : 1;

DateStamp = Today - PickvVal(&argp);
break;

case 'o' : /* origin directory */
NEXTARG();
TopDir = argp;
break;

case 'e' : /* execute */
NEXTARG();
Exec(nExecs++] = argp;
break;

default :

fputs(''Usage : whereis [-advshrl [-b<n>]\ [-t<n>]

e<command>] [-o<dir>] [filesl...\n",

stderr);
exit(1);

47

Section 1: Extending the MS-DOS User Interface

The cryptic NEXTARG () is a very useful macro which allows for flexible spec-
ification of the parameters of options. In essence, this macro states, “if there was
no parameter given as part of the option string, move the argument pointer to
the next argument” It is included within the ParseCommandLine () block to facili-
tate copying to another program. ParseCommandLine () uses only one other inter-
esting function Pickval (), which converts an ASCII string to a long integer

representation:
/%
* Pickval () -> pick an integer from a string
*/
long PickVal(p)
char *xp;
{
long v;
for (v = 0; isdigit(x*xp); ++*p)

v=o(v*10) + (»xp - '0');
return (v);
>

Handling Matched Files

Now we are ready for the Handle () function:

/*

* Handle() -> handle a matched file

*/
void Handle(info)
DIRINFO *info;

{
char theFilel128]);
int i;

/* attributes ?? */

if ((info->attr & AttrMask) != AttrMask)

return;
/* byte count */
if (ByteCount >= Q)
switch (ByteFlag)
{
case -1 :

if (info->size >= ByteCount)

return;

case

case

)
/* date stamp

Chapter 2: Searching the File Tree

break;

0:

if (info->size != ByteCount)
return;

break;

1 :

if (info->size <= ByteCount)
return;

break;

*/

if (DateStamp >= 0)
switch (DateFlag)

{
case

case

case

b

-1:

if (FileDate(info->date) <= DateStamp)
return;

break;

0:

if (FileDate(info->date) !
return;

break;

1:

if (FileDate(info->date) >= DateStamp)
return;

break;

DateStamp)

/* a match, build the complete filename */

/* first

the pathname */

getcwd(theFile, sizeof(theFile));
/* add trailing '\' if required */
if (x(theFile + strlen(theFile) - 1) I= '\\")
strcat(theFile, "\\');
/* add the filename */
strcat(theFile, info->name);

/* execute any —-e commands, otherwise print */

if (nExecs)

for (i = 0; i < nExecs; i++)
Execute(Exec(il, theFile);

else

puts(theFile);

}

49

Section 1: Extending the MS-DOS User Interface

There are a couple of interesting points within the Handle () function: The
comparisons inside the ByteCount and DateStamp checks are opposite. This is be-
cause the “more than” tests have opposite meaning—greater than a certain size
or before (less than) a certain date. The filenames matched are not printed if the
“execute” option was selected. This is done purely for cosmetic reasons, so the
filename does not interfere with the output of the executed program.

Executing Commands on Matched Files

For the actual execution of a command, the Execute () function handles the sub-
stitution of the current filename for any occurrence of the '$' character:

/%
* Execute() -> execute command, substituting filename
*/
void Execute(cmd, name)
char *cmd,
*name;
{
char command(1281],
*cp,
*np;
cp = command;
while (*xcmd)
if (*cmd == '$')
{
np = name;
while (*np)
*Cp++ = *np++;
cmd++;
)
else
*kcp++ = *cmd++;
*cp = 0;
system(command) ;
}
Handling Dates

MS-DOS provides two formats of a date—one format for describing the date
stamp of a file, and another for describing the current date. The last two func-

50

Chapter 2: Searching the File Tree

tions of whereis convert these two date formats into absolute integers which can
be compared. Both of these functions could be made considerably shorter. They

are shown in this fashion only to demonstrate how to extract the date informa-
tion:

/%
* FileDate() -> return file date as absolute integer
*/
int FileDate(d)
unsigned d;

{

int days, /* days */
mons, /* months */
yrs; /* years */

yrs = d >> 9;

mons = (d >> 5) & OxOF;

days = d & Ox1F;

if (yrs % &) /* handle leap years */
days++;

return ((yrs * 365) + monthslmons - 1] + days);

)

The Microsoft C library provides a number of time and date handling func-
tions. However, they are all very general routines and as such consume a consid-
erable amount of code. The following function uses the intdos () function to get
the current system date directly from MS-DOS, saving several hundred bytes of
code. This function also converts the system date to an absolute integer compati-
ble with dates returned by FileDate():

/%
* SysbDate() -> return system date as absolute integer
*/
int SysDate()
{
int days,
mons,
yrs;
union REGS r;

r.h.ah = 0Ox2A;
intdos(&r, &r);
days = r.h.dl;
mons = r.h.dh;
yrs = r.x.cx - 1980;

51

Section 1: Extending the MS-DOS User Interface

if (yrs % 4) /* handle leap years =/
days++;

return ((yrs * 365) + monthsimons - 1] + days);

)

Neither of these functions is exactly correct, because they do not handle all
of the variations of leap-year calculations. However, they probably will last well
past the point where MS-DOS becomes obsolete, and thus may be considered
“good enough.”

Compiling whereis

52

Due primarily to the simplicity of the program, compilation is also very simple.
For the Microsoft C 3.0/4.0 compilers, the command line

cl whereis.c

is sufficient to produce a working version of whereis. If you desire an optimized
version, I would suggest the following command, which provides maximum opti-
mization:

cl -Ox whereis.c

Note that it is not necessary to include wildcard expansion subroutines (con-
tained in the SSETARGV.OBJ file), because those are handled by the directory
search functions, and we want them to receive exactly what was typed on the
command line.

You may have noticed that whereis was written without using either the
printf() or scanf() functions. While it may have made for some cumbersome
code in one spot (the end of the Handle () function), including even the “no float-
ing-point” version of printf() would have caused whereis.exe to be at least 2000
bytes larger.

This version of whereismakes no effort to handle any disk drive other than
the current drive. It would be relatively simple to replace the chdir() function
with a ChangeDriveAndDirectory () function that would allow the -o options to
include a drive specifier.

It was mentioned earlier that the filenames matched are not printed if the
execute option was selected. The UNIX program findhas a -print option which
controls whether matched filenames are printed, regardless of any other op-
tions. Sometimes it is essential that the matched filenames be printed before a
program is executed. It would be a rather simple programming exercise to add a
-p option, indicating that matched filenames should always be printed.

Chapter 2: Searching the File Tree

Conclusion

This chapter has shown you some techniques for accessing directory entries,
and for navigating around tree-structured directories. We have also used both
normal and alternate methods of calling MS-DOS from within a C program.

The whereis program evolved in the same fashion as its UNIX counterpart
find—out of a desire to find files and to do something about them when they
were found. Professional programmers have found that whereis has become a
useful file utility program—although it is small and simple, its power and versa-
tility will allow you to perform tasks never before thought possible.

Reading List

Card, S., T. Moran, and A. Newell. 1983. The Psychology of Human-Computer In-
teraction. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Myers, G. 1976. Software Reliability. New York: John Wiley & Sons, Inc.

After several years of developing code for WordStar and WordStar 2000, Frank
Whaley has retired to a life of contract programming in Southern California.

Related Essays

1 A Guided Tour inside MS-DOS
3 Adding UNIX Power with PCnix
4 Adding Power to MS-DOS Programming

53

i Essay Synopsis: The UNIX operating
.. system-has had considerable influence on.

. the design and development of MS-BOS, and
is-thus a-good source of ideas for extending
its power and flexibility. This essay presents
- PEnix, a set of modifications, batch files,

and public domain programs that adds

: -of the functionality of UNIX to
©8 systems, without any sacrifice of
mpaﬁbnlity with your regular MS-DOS
software. As you explore PCnix, you: will
earn. more about MS-BOS as well as about
some of the basic-features of UNIX. This es-
:ay: gives you a fascinating glimpse of the
- - thought pracess that went into the develop-
.. ment of PCnix, the relevant DOS internals,
. the key decisions, and their ¢onsequences.
. As apractical benefit, you will gain new

- power to.control and thanage the MS-DOS
; ... efvironment, including improved batch file
©. .. /processing, command editing and recall

" (history), and a variety of file and text-han-

dlmg tools.

Adding UNIX Power
with PCnix

s

ety ey ol A St oo SN0} S-St il S M P B Sttty At g S Pt 1 A S04 ML SIS b g A

R. Edward Nather

The UNIX operating system was designed by computer programmers Ken
Thompson and Dennis Ritchie for their own use, to provide a comfortable work-
ing environment in which to write computer programs. Nonprogrammers find
it hard to learn—it takes a while to get used to its terse, powerful commands and
to get in tune with its underlying unity. Many critics of UNIX, who find it less
than the ideal environment for business operations or secretarial work, seem to
forget its original purpose. In my view, UNIX has been remarkably successful in
achieving its original goal. It's the most convenient operating system I've ever
used. This view is shared by many other programmers. I have yet to meet any-
one who has become completely comfortable in a UNIX environment who pre-
fers to use any other. If you've already used MS-DOS, installing PCnix on your
computer can offer you a relatively painless way to learn more about UNIX and
the real power it offers—and more about MS-DOS as well.

Why PCnix?

When I first got access to an IBM PC running MS-DOS (version 2.0), I was struck
by the number of familiar UNIX-like features: command-line arguments, /O re-
direction, a hierarchical file system with directories, pipes, interpreted text
scripts (batch files), a set of included software tools, etc. UNIX has clearly had a
strong (but often unacknowledged) influence on MS-DOS—but so has another
operating system: CP/M. The latest version of MS-DOS (3.3 at this writing) re-
mains an unhappy hybrid of the two systems, with many UNIX-like features but
with vestiges of CP/M as well. These seem awful to UNIX users—not necessarily
because they are awful, but because they are different. The formal name for this
problem is Semantic Confusion. The net result is that going back and forth be-
tween UNIX and MS-DOS can be dangerous to your mental health.

55

Section 1: Extending the MS-DOS User Interface

56

There were several versions of “cut-down UNIX” available at the time I first
got access to an IBM PC, so I tried two of them and learned a great truth: the
8088 is not a speedy microprocessor on the best of days, and, burdened with an
operating system not hand-crafted to make best use of it, the result was unbear-
ably slow. Also, most of the neat new software was being written in garages,
haylofts, and universities for the MS-DOS operating system, and I wanted to be
able to use it, while still enjoying a UNIX-like environment.

Things are somewhat better today: the 80286 is a faster engine, and some
commercial products offer a UNIX-like shell and a reasonable selection of soft-
ware tools—but they can’t run all MS-DOS programs, and in particular are often
baffled by memory-resident programs (TSRs). In general, they force you to give
up your MS-DOS environment to get UNIX power into your PC. This is a sacrifice
most PC users cannot afford to make. In addition, PCnix has the advantage that,
unlike the commercial “UNIX for MS-DOS” products, it is fully customizable
since you are provided with the source code for the system and most of its utili-
ties.

The PCnix system—essentially a collection of software tcols that use the
(unmodified) MS-DOS kernel—is my attempt to remove as many irritating differ-
ences as possible, and to provide a comfortable working environment in which
to write computer programs on the IBM PC. This design approach has some real
advantages:

& Complete MS-DOS compatibility is retained. (If you really prefer to use
the DIR command rather than the UNIX command Ls you can do it—just
don't tell me about it.)

B- It is fast even on floppy-based 8088 machines with enough memory for a
modest-sized RAMdisk.

> It offers the most-used UNIX software tools, and can be easily expanded
by the user. New commercial and public domain versions of UNIX tools
are continually being written and they can be easily added to PCnix.

> Source code (in the C language) is available for almost all of the tools, so
you can tinker with them as you choose and perhaps learn about C,
UNIX, and MS-DOS in the process.

To comply with government-sponsored truth in labeling, the disadvantages
are:

> Since it uses the MS-DOS shell COMMAND.COM, it can interpret MS-DOS
batch files, but lacks the ability to interpret UNIX-style shell scripts.

™ It does not attempt to provide multitasking capability.

> Some C programs developed under UNIX must be changed to run prop-
erly under PCnix, where the system calls differ.

Chapter 3: Adding UNIX Power

Overall, I think the advantages outweigh the disadvantages—but I may not
be completely objective about it. In any event, let’s explore what we must do to
bend MS-DOS nearer to our heart’s desire.

Our Strategy

Our mission is to provide MS-DOS with the “look and feel” of UNIX without serious
compromises in response time, and without mucking about in the MS-DOS kernel.
Letss first look at the basic problem we must face before we leap into action.

UNIX supports a rich set of software tools, and people who use the system
begin to think of problems in terms of the tools they have available to them—the
richer the set, the more options they have in finding a solution. “To the man with
only a hammer, everything looks like a nail” We must be prepared to add the
most-used UNIX tools to those supplied with MS-DOS. This is quite possible: only
a few operations are internal to the MS-DOS shell COMMAND . COM; most are external
commands, i.e., executable programs. We can replace any MS-DOS external
command by replacing it with a program of the same name, or add a new com-
mand by providing a program with a different name. However, the way com-
mands operate under UNIX differs from what is possible under MS-DOS—UNIX
is multitasking and MS-DOS is not.

The UNIX toolkit is designed around the idea of pipes, where a string of
separate tools works in sequence on a data stream, each tool doing its own thing
and passing the result along to the next tool in line. For example, the command
sequence

cat names phones | more

will first invoke the cat command (concatenate the text files names and phones
end-to-end); its output stream becomes input to the more command, which pages
the text onto the display screen, pausing so the text doesn’t run off the top of the
screen before it can be read.

This command sequence, running under UNIX, will have both tcols active
at the same time—whenever there is any usable output from cat it is passed
along to more right away, and immediately appears on the display screen. Under
MS-DOS, which cannot handle more than one task at a time, cat must run to
completion, storing its output in a temporary disk file. When cat is finished, the
temporary file is read back from disk into more, whose output is (finally!) sent to
the display screen. It may not take forever, but it feels like forever if you're used
to UNIX. PCnix can't solve this problem in a general way, but we can design tools
with a primitive more built into them so that they won’t need to use a pipe, and
can give much faster response. In general, we'll need to tailor our tools to the
MS-DOS environment in which they must run.

57

Section 1: Extending the MS-DOS User Interface

As a matter of principle, we want to do as little work as possible, so we will
choose the simplest way we can find to provide any particular tool. If MS-DOS al-
ready provides the appropriate tool (e.g., format) we’ll use it unchanged; if not, we'll
explore enhancing the tool’s operation (and perhaps changing its name) by includ-
ing it in a batch file (e.g., copy). If that doesn’t work, we'll try to find a suitable tool in
the public domain. If all else fails, we'll write it ourselves, using the C language to
code it in, and calling on the available MS-DOS services where necessary.

Let’s do the easy things first.

Tweaking MS-DOS

58

In addition to providing enhanced, more UNIX-like tools for MS-DOS, we must
make a few changes in the way it looks to the user. This involves getting MS-DOS
to accept a more UNIX-like syntax.

The simplest change to “raw” MS-DOS is to change the prompt. The com-
mand

prompt %%

in the AUTOEXEC.BAT file turns the A> prompt into a UNIX-like % that already feels
better—UNIX Bourne shell users might prefer $—but it has an awkward flaw:
you can't tell what drive you're on.

UNIX has no notion of drive, since the complete file system looks like one
huge inverted tree to the user. MS-DOS inherited the idea of drives from CP/M
and still uses them, and it's important to know where you are in the file system,
since it affects how you refer to a file you want to work on. If the file is not on the
current drive, you must begin the name with the drive designator (e.g., a:) or
MS-DOS can't find it. As our first of many compromises, we use

prompt $n%%

in the AUTOEXEC.BAT file to get the prompt ¢%if we are on drive C, A% on drive A,
etc.

Next we must change the path separator character from \ to / or every
pathname will look jarringly different from its UNIX counterpart. MS-DOS, like
CP/M before it, normally uses the / character to indicate a command-line option,
or “switch; as in the MS-DOS command

DIR /P

where the option Pasks that the bIR command pause at the end of the screen so
you can read what it told you. UNIX, contrariwise, uses the / character to sepa-
rate pathnames, and the character - to indicate a command-line option. Fortu-

Chapter 3: Adding UNIX Power

nately, someone at Microsoft knew about this, and arranged MS-DOS so it can
use either / or \ as a path separator, and you can change the switch character
SWITCHAR if you know how.

We first change the value of SWITCHAR that COMMAND.COM uses in parsing the
command lines we type. By default, that character is /. If we use some other
character to designate a switch, almost all of MS-DOS will let us use / in
pathnames. The obvious choice is -~which UNIX uses as a switch designator, but
that choice has problems, too.

Many PC programs use the - character as part of their names—PC-Write,
for example. If we substitute - for the switch character, the parser in coM-
MAND. COM looks for a file called pc and prepares to hand it the switch -w as an
argument—not what we want. We can avoid this problem by referring to the
filename as PC?WRITE but that subterfuge is too ugly to tolerate. We'll have to
rename files that have -in their name.

Alternatively, we can substitute \ as the switch character, in effect revers-
ing the meaning of the forward and reverse slash characters. We'll have to re-
member to use \ as a switch designator for those (few) MS-DOS programs that
need a switch and that can't accept - instead. This is the solution I prefer, but
either way will work. MS-DOS 2 X allowed the switch character to be changed by
including the line

SET SWITCHAR=\

in the CONFIG.SYS startup file, but MS-DOS 3.X doesn’t. Undaunted, we use the
(undocumented) Function 37h to fix things up; this works on all versions of
MS-DOS starting with 2.0. A small program called INT37.c0Mdoes this job right
away in the AUTOEXEC.BAT startup file, so all subsequent pathnames can use / as
the separator. Like UNIX, / by itself designates the root directory.

Finally, since we want batch files to appear to execute the same as any other
kind of executable command, we must do something about the ECHO operation,
which decrees that all batch file commands are echoed to the console screen as
they are executed. This gabbiness is particularly offensive to UNIX users, who
come to appreciate the quiet way UNIX tools do their job. Even the mechanism
provided to shut up this chatty behavior is flawed: the command ECHO OFF in a
batch file is, itself, echoed to the screen, instantly betraying that a batch file,
rather than some other type of command, is being executed. The latest version
of MS-DOS (3.3) recognizes the a character at the beginning of a line to mean
“don’t echo this line”; earlier versions must be patched.

Each version of COMMAND.COM has a pair of flag characters that govern the be-
havior of the ECHO operation, and by default, they are set ON. We want to set them
OFF by default. Note that this still permits batch file commands to be echoed if that
is desirable. Just include the command ECHO ON as the first command. The change
only has to be done once to a copy of COMMAND. COM, and only the initial values of two
internal flags are modified; COMMAND. COM is otherwise unaffected.

59

Section 1: Extending the MS-DOS User Interface

60

Using debug Scripts

When PCnix is first installed on a hard disk, the installation program (a batch
file) calls on debug to fix COMMAND.COM, handing it a debug script with instructions
about where the flags are and how to set them. What's a debug script? Glad you
asked.

The MS-DOS program debug can be used to create or modify executable
files as well as to debug them. A few simple one-character commands, with argu-
ments attached, is all we need to make a copy of COMMAND. cOMinto a friendlier and
quieter shell. We can do it from the keyboard, of course—or we can prepare a
set of commands, store them in a file, and call debug with standard input redi-
rected so it comes from the file instead of the keyboard. The only tricky thing
about writing such scripts is to note that debug understands the CR (carriage-
return) code as a line ending, but is baffled by LF, the line-feed code. Scripts
prepared by any self respecting MS-DOS editor will have their lines ended by CR/
LF, the ill-chosen MS-DOS convention, so you'll have to take out all the LF codes
(and comments) before debug will be happy with it. Not a terrible job, but annoy-
ing. If you have a working copy of PCnix, you can remove the offending codes,
and run the debug script, with the single command line

tr -d \012 < file.dbs | debug newfile.com

since the option -dtells the UNIX-like utility tr (transliterate) to delete octal code
12, the line feed.

The debugscript used to modify COMMAND.COMin MS-DOS version 3.1 follows,
with each command shown on a separate line:

e 105b 2 ;change hex location 105b to the value 2
e 1967 0 ;change hex Llocation 1967 to the value O
W ;write the modified file

q ;quit

If this script is stored in a file called fixcom.dbs (with all LF codes and com-
ments removed, and lines ended by a single CR code), then the command

debug command.com < fixcom.dbs
will make COMMAND.COM a less irritating shell, automatically. A more extensive
patch job is needed for DOS 2.X.

The following procedure is used to shut up ECHO OFF in MS-DOS 2.X:

1. Copy COMMAND.COM and debug.comonto a work disk.
2. Execute debug command.comfrom that disk. At the - prompt, type

Chapter 3: Adding UNIX Power

3. s 0 7fff 01 00 00 01; write down found _address + 3 as flag.
Type
4. s 0 7fff 61 6E 64 20 70; write down found _address as patch.
Type
5. s 0 7fff B9 0A 00 E8; write down found _address as jmp.
Type
6. u jmp [substitute value found in step 5 for jmp].
7. First instruction is MOV €X,0004, second is CALL yyyy - record yyyy value.
8. a jmp+3
CALL patch+1

9. a patch
DB 24
ES:
MOV BYTE PTR [flag], 00
JMP yyyy

10. w
11. q

Values found for different DOS versions are listed in Table 3-1.

Table 3-1. Values for DOS Versions

Value DOS 2.0 DOS 2.1 DOS 2.11
flag 96E 96E 9B7

patch 364A 365D 3886

jmp 171D 1730 17E3

yyyy 1E6D 1E80 2A10

Improving MS-DOS Operation

MS-DOS supports a system call of unusual power, Terminate and Stay Resident
(TSR), Function 31h. It allows an executable program to remain in active mem-
ory after it has been loaded, and protects it from being overwritten by other
programs. (See Essay 7, Safe Memory-Resident Programming (TSR), by Steven
Baker, for a detailed discussion.) The program can remain in memory through-
out any computing session, up to the next computer reboot, ready to leap into
action if called upon. We can use small programs of this type to add facility to the
way MS-DOS does things without changing the MS-DOS innards in any way.
There are lots of these additions available; PCnix uses two of them.

61

Section 1: Extending the MS-DOS User Interface

Much of the operation of MS-DOS is controlled by interrupts, and a table of
pointers (interrupt vectors) is resident in low memory during normal operation.
Any program can, at its own risk, replace one of these vectors so it will get called
into action by the associated interrupt, then terminate but remain in memory.
The program springs to life again whenever the chosen interrupt is triggered.

The keyboards normally supplied with IBM computers or their clones al-
low almost any keystroke to be repeated automatically just by holding the key
down. Unfortunately, the repetition rate is very slow, chosen so novice users
would not be frightened. This unfortunate hardware design choice can, fortu-
nately, be corrected in software.

The program qk.comis a version of the program quickeys.asm, written by
Dan Rollins and published in PC Tech Journal (September 1986). It has been slightly
modified for PCnix in order to remove a bug. Its only job is to watch for interrupts
from the keyboard (one for each key action) and, when a key is pressed (and after a
suitable pause), generate identical keystrokes at a much faster pace than the glacial
rate provided by the PC keyboard itself, until the key is released. It is a small thing,
but it makes any program requiring keyboard input seem much peppier. It works
particularly well with PC-Write, the shareware editor. It is loaded automatically on
bootup by the command gk in the AUTOEXEC.BAT file.

The second TSR program, keydo.com, does much more, providing both a
command history mechanism (like the UNIX C shell does) and a direct and simple
way to edit the command line. Previous commands can be recalled by the up- or
down-arrow keys on the PC keypad, while the other arrow keys move the cursor
back and forth. The Home key puts the cursor at the start of the command line, the
End key puts it at the end, and the Del key deletes characters. Any printable charac-
ter typed is inserted in front of the cursor position. The (RETURN) key calls comM-
MAND. COM to execute the command no matter where the cursor is. Commands are
stored in a circular buffer for prompt recall—they can be modified, or executed as
is. Once you get used to it, you feel crippled without it. The public domain version
used in PCnix was written by IBM programmer J. Gersbach, and is installed on
bootup by the command keydo in the PCnix AUTOEXEC.BAT file.

Using Batch Files to Create PCnix Commands

62

Text files whose filenames end in .BAT are interpreted by COMMAND.COMas execut-
able commands, providing it can understand them. Although this facility is
much more limited than the shell programming provided by the UNIX shells, it
can still provide simple and useful services if two basic rules are followed in writ-
ing batch files:

1. Keep it short.
2. No, it’s too long; make it shorter.

Chapter 3: Adding UNIX Power

The COMMAND.COM interpreter is rudimentary but reasonably fast. It is often de-
feated, however, by a curious self-inflicted wound: whenever it finds a batch file
line that is an external program to be run, it runs it—overwriting the batch file in
the process, which must then be reloaded before it can examine the next line.
Keeping the batch files in a RAMdisk helps but is awkward to arrange. Still, if a
batch file runs fast enough, it's often the easiest way to add a simple command to
the repertoire.

Changing Names to Protect the Innocent

The UNIX C shell provides a simple but powerful “alias” facility which allows you
to rename a command anything you like. For example, novice UNIX users often
complain about the terse and cryptic commands, such as lsor grep. Some users
prefer to rename the commands to something they can remember more easily.
Batch files can provide a simple alias facility as well. For example, the PCnix du
command displays current disk usage via the batch file

ls —asR %1 %2 %3 %4 %5 %6 X7 %8 %9

simply by calling the s command with suitable switch parameters.

Commands Can Be Repeated

Batch files are capable of far more than just calling a command by another
name. They can improve the way a command operates to make it more useful.
For example, the UNIX rmfile-removal command can be approximated by a batch
file that calls on the MS-DOS (internal) command DELETEin a loop until it runs out
of filenames to erase:

:loop

if "Z1" == "M goto end
del %1

shift

goto loop

tend

This emulation is simple, but not perfect. It permits deletion of a series of
filenames, but it lacks the ability to delete subdirectories and their contents that
the UNIX command rm-r * provides. Some may consider this an improvement
rather than a defect, considering the havoc that can be wreaked from careless
use of the UNIX rm.

63

Section 1: Extending the MS-DOS User Interface

64

Batch Files Can Be Subroutines

If one of the commands in a batch file is the name of a second batch file, every-
thing works, but in a chaining fashion; control is transferred to the second batch
file but never returned to the first. This behavior has led several technical writ-
ers to insist (erroneously) that you can't call a batch file as a subroutine from
another batch file. MS-DOS version 3.3 has a CALL command for this purpose,
but earlier versions can get the same effect by simply invoking a new copy of
COMMAND. COM to run the second batch file. Control returns to the original batch
file when the second has finished:

command \c¢ second.bat

Remember, PCnix reverses the /and \ characters, so \c designates a switch,
telling the new COMMAND . COMto quit when it has finished running its argument as a
command—in this case, the second batch file. A copy of the current MS-DOS envi-
ronment variables are passed along to the second batch file subroutine, but the
copy is erased when it finishes, so it can’t just use the MS-DOS SET command to
return strings to the calling batch file. There are ways, but they are ugly.

Commands Can Be Combined

As another example of a PCnix batch file command, one of the most-used opera-
tions in UNIX (or MS-DOS) is to move to a new working directory (cd) and then
display a listing of the files located in the new directory (ls). These two opera-
tions are used so often it's worth combining them into a single command (ch).
The UNIX command

alias ch 'cd \!*; Lls -aFC | more'

defines this new command in terms of known ones; the cryptic notation \!*is C-
shell shorthand for “all arguments on the command line” In PCnix we do this
same job with a batch file:

if %1 == "a:" goto fix
if "¥1" == "b:" goto fix
if %1 == "c:" goto fix
if "X1 == "d:" goto fix
if "%1' == “e:" goto fix
if "%1" == " goto fix
ls %1

cd %1

Chapter 3: Adding UNIX Power

goto end
sfix

cd %1/
ls %1
:end

Most of the verbiage in our batch file arises from the desire to allow the
command to change the working directory on a designated drive as well as on
the current working drive—a concept not present in UNIX. For example, if the
batch file above is invoked with the command

ch a:/usr/bin
it will execute the PCnix commands

ls a:/usr/bin
cd a:/usr/bin

which will first list all the files in the directory a:/usr/bin, and then change the
working directory on drive a: to /usr/bin. If the batch file is invoked with the
name of a drive but no path, then the root directory is understood to be the
target, and the batch file provides the cd command with the root directory des-
ignator /. The command also returns you to the root directory on the current
drive when used with no argument at all, just as the UNIX c¢d command with no
argument returns to the user’s home directory.

The most ambitious batch file command in PCnix emulates the UNIX cp
command:

if 2" == " goto err

if not "%2" == "' get INTO=%2
if not "%3'" == " get INTO=%3
if not "X4" == "' get INTO=%4
if not "AS5" == "M get INTO=%5
if not "%6" == "' get INTO=%6
if not "47" == """ get INTO=%7
if not "%8" == """ get INTO=%8
if not "X9" == """ get INTO=%9
s loop

if %1 == %INTO¥X goto end
copy %41 XZINTO%

shift

goto Loop

terr

echo Use: cp fromfile tofile

65

Section 1: Extending the MS-DOS User Interface

66

echo or cp fromfile [fromfile ...] todir
tend
set INTO=

The first line enforces the UNIX convention that cp must have at least two
arguments. The MS-DOS convention that the second argument can be missing to
designate the current directory “” is confusing in practice. The next series of
tests scans the argument list, setting the environment variable INTOaccording to
the last argument it finds. By UNIX convention, this should be a directory if more
than one filename precedes it. The batch file hopes it is, but doesn’t check. (It is
possible to check, using a “batch file helper;’ but that slows things down too
much for simple copies.)

Once the last argument is found, the MS-DOS copy command is called to
copy the files, one at a time, into the file or directory represented by the string in
INTO. The syntax %INTO%is known to the batch file interpreter, which substitutes
the actual environment string for its name before executing the resulting com-
mand. When the loop runs out of arguments, it terminates. The final line erases
INTOas a matter of cleanliness. Again, the UNIX recursive copy cp-r *is not emu-
lated. Some day . . .

Batch Files Provide On-Line Help

PCnix also contains a built-in help system with a simple syntax: helpalone gets a
list of commands, and help xx displays a short description of command xx by
searching a known directory for xx.doc. It is made up entirely of text files and a
batch file driver help.bat:

if "1 == " goto noarg

if exist c:/help/%1.doc cls
p c:/help/%1.doc

goto end

tnoarg

if exist c:/help/help.doc cls
p c:/help/help.doc

tend

The command pis the PCnix equivalent of the UNIX more command. With-
out arguments or redirection, it just sends the file to the screen, pausing after 22
lines to keep things in view. The (RETURN) key gets one more line, (SPACE)
gets one more screenful. It displays an error message if it can’t find the file.

PCnix contains a help file for each command. It shows the syntax—what
you should type to make it work—then explains available options, describes in

Chapter 3: Adding UNIX Power

general terms how the command works, and finally gives an example or two of
its operation. Each text file attempts to fit within one screen and is successful for
the simpler commands. As an example of the format of the help documents, the
following shows the text of the file tail.doc, which is displayed if you type the
command helptail.

tail - display the tail end of a text file's contents

Syntax: tail [-####] filename [filename ...}

With only the filename as an argument, ‘'tail' displays

the last eleven lines in a text file. With more than one
filename, it displays the last eleven lines of each file
successively. Two will just fit on one screen display; this can
be handy in comparing two versions of a text file. With a numeric
argument, 'tail’ displays the number of requested lines

at the end of the designated file(s). By default, output is
displayed on the console screen, with a pause every 22 Llines.
<RETURN> displays one more line, any other key displays the

next screenful. The pause does not occur if output is redirected
to a file or device. A huge numeric argument will display the
complete text file. Binary files give a funny looking display but
nothing burns.

Examples:
tail text Display the last 11 lines of "text."
tail =123 xx > yy . Extract the last 123 lines of file "'xx"

and deposit them into a file called "yy."

Using Batch File Helpers to Increase Flexibility

Batch files have no direct mechanism for making system calls to MS-DOS, but
since they can run an external program (at some cost in time) we can add this
capability. All that is required is a short program to make the needed system call
and a way of returning the result so the batch file can test it. MS-DOS provides a
crude return mechanism: if the program exits via the interrupt Function 4Ch,

the value in the AL register is preserved and can be tested by the i f errorlevel
construct.

Creating Short Programs

Probably the simplest way to write a short program is to use debug interactively
to create it as a .comfile. Here's the procedure to use:

67

Section 1: Extending the MS-DOS User Interface

68

U o

tracting 100h.

7. W

8. q

debug newfile.com (Debug responds File not found and creates it)
a (Debug now accepts commands to assemble)

Type the commands in sequence (addresses will start at 0100h)
Type (RETURN) to make an empty line

rcx (Debug responds CX 0000 bytes, then prompts with “2’)

Type the (hex) number of the empty line address (line 4), after sub-

As an example, here’s what your screen shows when you create INT37.COM
to set the SWITCHARvariable to /as described earlier (except for comments follow-

ing ll‘,”):

debug int37.com

File not found

-a

1166:0100 mov dlL,5C
1166:0102 mov ax,3701
1166:0105 int 21
1166:0107 mov ax,4C00
1166:010A int 21
1166:010C

-rcx

cx 0000

:C

-w

Writing 000C bytes
-q

-e we

- we ws ws

we ®wes ws we we o

Debug creates int37.com, grumpily
start to assemble

put '\' code into register DL
Function number 37h to AH, 1 to AL
AL == 1 means set SWITCHAR from DL
Exit with errorlevel set to O

empty line tells Debug to stop assembly
examine the CX register

Debug response: current value is 0
empty_line_address - 100h

write number of bytes in CX

Debug response

quit.

If you are adept at using the assembler MASM, you might prefer to write
batch file helpers in assembly code, which is easier to document and maintain.
They are usually so short, though, that using debug is much faster.

Taming the SUBST Command

Many useful programs for the PC were written when MS-DOS was young, be-
fore it knew about directories; these programs assumed everything was availa-
ble directly on one of the drives. In UNIX parlance, all the files were stored in the
root directories. This was tolerable before hard disks entered the scene, but

Chapter 3: Adding UNIX Power

with 10MB or more of storage available, a 0IR command became a real adven-
ture. The hierarchical directory system, eerily similar to the one used in UNIX,
was added to MS-DOS 2.0. This solved one problem but created another: the
older programs only worked if the directory they were stored in was the default,
an awkward requirement to realize with a single (hard disk) drive. Since we want
to be able to use these older programs under PCnix (and have them look just like
the newer ones), we must solve this problem somehow.

MS-DOS 3.0 provided a partial solution in the form of the susBsT command.
This command allowed any directory to be designated as an honorary drive, de-
fined by its pathname. Now the older programs could be located anywhere, and
a batch file could be designed to make them operate as if they understood about
directories. It almost worked.

Let’s examine how to write a batch file to call the IBM program Wordproof
into action. This excellent program looks up words in its dictionary and stops on
any it can’t identify, letting the user verify or change the spelling. It can suggest
possible spellings (or synonyms) on request. For convenience, we'll put Word-
proof in the directory /edit/spell. We can use SUBST to call this directory drive e:,
for example, so when we want to proofread the file we've been working on in
our current directory, c:/propose/draft, we can say

cd e:

to go to /edit/spell. Now we want to call the Wordproof program into action with
draft as an argument, so . . . oops. That file is on the drive c, the one we just
came from, not drive e. Can't do it that way.

Well, OK, let’s call the program from our working directory, with the com-
mand

e:wp draft

so Wordproof can find it—but now Wordproof can't find its own dictionary, be-
cause it looks only on the default drive when it starts up.

We could assume we'll always be working from drive ¢ and wire that idea
into the controlling batch file, but that means we can’t proofread a file that is on
a floppy disk in drive a.

The right way to do it, of course, is to find out what drive we are on before
we go to our mythical drive e, then use that information to tell Wordproof where
to find the file to proofread. We can then return to our original working direc-
tory when we are done. MS-DOS knows what drive we are using, and even has a
function call to tell us—if we could make such a call from our batch file. With a
batch file helper, we can. Consider this small program:

; drv - return current drive number as errorlevel
mov ax, 1900 ; get current drive number (function 19h)

69

Section 1: Extending the MS-DOS User Interface

70

int 21
mov ah,4C ; return AL as errorlevel (function 4C)
int 21 ; int 21h does almost everything ...

MS-DOS Function 19h returns the current drive number (0 = a, 1 = b,
etc.) in the AL register, just where Function 4C expects to find the errorlevel
value. If we create this program as drv.comusing debug, we can include it in our
batch file proof.bat:

drv

if errorlevel 0 set DRV=a:
if errorlevel 1 set DRV=b:
if errorlevel 2 set DRV=c:
if errorlevel 3 set DRV=d:
subst e: c:\editp\spell

e:

wp XDRV%Z%1

%DRV%

set DRV=

subst e: -D

First we call drv.com, then put the name of our current drive in the environ-
ment variable DRV. (The errorlevel testis a bit strange: if errorlevel 1tests true
if the errorlevel value is equal to or less than 1. Reversing the test order would
leave the wrong value in DRV.) Next we create our phantom drive and go there,
where Wordproof lives. The string %bRv% will be replaced by the string we stored
in the environment, so if we typed the command

proof draft
the command that calls Wordproof into action becomes
wp c:draft

if our original working drive was drive c. Similarly, after Wordproof finishes its
job, the next line will be

cs

which returns to the directory draft is in. As a final bit of cleanliness, we remove
DRV from the environment and delete the connection between e: and c:/edit/
spell.

Chapter 3: Adding UNIX Power

Syntactic note: the shiny new SuBSTcommand stubbornly refuses to look at
SWITCHAR for its switch character, so it insists on \ as a pathname separator. To
delete the established connection, it demands the b switch (and requires that it
be uppercase!). But it will accept neither \ nor / as the switch character if
SWITCHAR has been changed. It does accept - however, a fact missing from the
MS-DOS documentation.

How Many Drives Are Out There?

PCnix can run comfortably on a two-floppy system, providing it has enough
memory to hold a RAMdisk of reasonable size—640K is nice. The most-used
commands are written to the RAMdisk on system startup, with the help files and
less popular commands residing in directories on floppy drive a. Startup is a bit
slow, but if the RAMdisk is the default directory, most commands take less time
to run than from a hard disk. A lot of floppy-swappy goes on, though, if you try
to do something serious such as run a compiler. A hard disk is better if you can
afford one.

PCnix uses a public domain RAMdisk system written by Nat White; it has
the advantage of being able to be removed (well, set to zero capacity) without
rebooting. The driver, ram.sys, must be included in the cONF16.sYs file used dur-
ing startup. It does need to know the name of the drive it pretends to be, though,
and this depends on how many real drives are installed in front of it. Here’s the
batch file helper used to find out about the drives present:

; ldrv - return index of last valid drive

mov bi,20 ; assume no more than 32 drives

mov ax, 4404 ; IOCTL call, read from block device
mov ¢x,0000 ; number of bytes to read (none)

int 21

dec bl ; count down in BL

cmp al,0F ; IOCTL returns OF if drive invalid

iz 0102 ; if so, try the next smaller one
mov al,bl ; else BL now has the index
mov ah,4C : return with index as errorlevel
int 21 ; O means A, 1 means B etc.

The portion of the AUTOEXEC.BAT file that creates the RAMdisk and then fills it
with commands from the floppy disk looks like this:

;find out drive name for RAMdisk
ldrv
if errorlevel 2 set RD=C

71

Section 1: Extending the MS-DOS User Interface

72

if errorlevel 3 set RD=D

if errorlevel &4 set RD=E

path %RD%:/;a:/binja:/system

echo Creating a RAMdrive as drive %RDZ: ...

setram %RD%: 256

echo Copying the most-used commands to drive %RD%: ...
copy a:/toram/*.* %RD%Z: > nul

set comspec=%RD%:\command.com

Note that MS-DOS will insist you have two drives even if there is only one
physical drive installed. This is actually ingenious, since two drives are simulated
by the system by using the one real drive alternately. The command

copy a: a:

works just fine, prompting you to change source and target disks as needed. In
any event, ldrvwill never return Oor 1 as the last valid drive index if ram.sys has
been loaded.

Once the drive name is known (and stored in the environment as RD), the
name %R0% can be used wherever the drive name is needed—as the first direc-
tory searched (after the current one) via the PATHcommand, as the target of the
copy command, and as the location for COMMAND. cOM, should the latter get over-
written and need to be reloaded.

Taming the MKDIR Command

PCnix installs itself onto a hard disk from a batch file, which creates directories
(bin, help, etc.) on the hard disk to hold everything. Should the directory already
exist, the installer should quietly put files into it—without complaint. The
MS-DOS command MKDIR, however, gets upset if the directory already exists, and
complains with an error message that cannot be redirected into the NULL file—
the usual way of shutting things up. In this case, we need to know whether a
particular name is already present as a directory, so we create a batch file helper
to tell us:

; fd - find out if arg string is the name of a subdirectory

mov bx,0081 ; psp address of arg string start
add bl,[0080] number of chars in string

mov byte ptr [bx],00 nut Ll-terminate the string

mov dx,0082 point to 1st non-blank char

mov ax, 4300 get filename attribute

int 21 '

-e we ws we

Chapter 3: Adding UNIX Power

mov ax,4c00 ; return errorlevel exit
cmp cx,+10 ; is it a directory?

jnz 0118 ;s if no, return O

inc AX ;s if yes, return 1

int 21

We assume that the string was given to the fdcommand as an argument, and has
been installed by COMMAND. coMin the usual place for the first command-line argu-
ment. The string format is different from that expected by MS-DOS Function
43h. (Naturally—consistency is a virtue of the small mind.) So, we must first con-
vert it, then call on the system to see if it is the name of an existing directory. We
convert the returned attribute into a yes/no answer and return it as a testable
errorlevel.

Here’s a portion of the PCnix file install.bat that uses this helper, reading
from a floppy disk in drive a: and installing the system onto drive c:

a:/bin/fd c:bin

if not errorlevel 1 mkdir c:bin > nul

echo Filling directory "bin'" with PCnix executable files ...
copy a:bin bin > nul

Is There a Clock in the House?

As afinal example, PCnix tries to read the clock/calendar via its AUTOEXEC . BAT file
on bootup. In a brave attempt to be independent of the hardware that might be
present, it tries several “readclock” routines for different types of hardware. It
depends on a batch file helper to find out if it has been successful in reading the
clock. If not, it keeps trying until it runs out of things to try. If it is successful, it
writes a short code string into the environment to tell other routines what kind
of clock is present, in case they need to know. It knows it’s running on a PC/AT
clone if the clack is correctly set before it tries anything.

Here’s the helper that finds out if the (internal, MS-DOS) clock has been
properly set:

s telk - test to see if clock/calendar has been set

mov ah,2A ; Get date

int 21

mov ax,4c00 : 0 => AL, "return errorlevel” -> AH
cmp cx,07c3 ; is date less than 19877

il 010€e ; if yes, clock is not set

inc ax ; else mark it as set

int 21 ; return AL as errorlevel

73

Section 1: Extending the MS-DOS User Interface

Figure 3-1 summarizes our discussion of the design of PCnix by showing
how the parts of a typical PCnix system are arranged. Notice how the batch files
and software tools used by PCnix fit into the MS-DOS environment. (See Essay 1,
Harry Henderson’s Guided Tour inside MS-DOS, for a discussion of how the parts
of MS-DOS interact.)

Keyboard
—
l[ll el
)
Internal . 3 - R Batch File
Commands &F g COMMAND.COM Interpreter

Execute
B ..
/ANYWHERE /BIN
/SYSTM /BIN
Mgfg%s MS-DOS PONIX Tools Batch File
Programs Tools /HELP Helpers
Documents
l IBM BOS.COM '
IBM BIO.COM T Telephone
£
Floppy Disk y
Hard Disk =)
Printer Modem Display

Fig. 3-1. How PCnix and MS-DOS fit together.

74

Chapter 3: Adding UNIX Power

The Software Toolkit

We've created our basic PCnix environment and the easy support routines; now
we have some real work to do. MS-DOS provides several software tools that are
specific to its own file system. We can adopt those tools that do a good and useful
job (FORMAT, DISKCOPY, CHKDISK, SYS), and we can scour the public domain for oth-
ers. Even so, we'll fall far short of the nifty tools provided by UNIX—so we'll just
have to write them. We'll adopt the C language as the most portable and UNIX-
like, using a commercial compiler (Microsoft C or Borland’s Turbo C) as the clos-
est approximations to the Portable C compiler (cc) that comes with our particu-
lar UNIX system, Berkeley UNIX 4.3bsd.

Tools for Dealing with Text

Our plan is to avoid slavishly copying the UNIX toolkit in every detail. We must
take into account the different operating environment provided by MS-DOS, and
use its services as much as possible to make things speedy. We'll start by dividing
the tools into groups, and we'll tackle first those tools concerned mostly with
manipulating text—the primary medium of exchange between the various UNIX
software tools. Table 3-2 lists those in PCnix.

Table 3-2. Text Tools

Tool Function

ed PC-Write, a powerful, modeless editor for word processing
diff Find minimal differences between two text files

eline Enforce MS-DOS line-ending convention on a text file
grep Search text files for patterns, print all lines that match

P Display files, optionally with visible control codes

pr Page and print text files, optionally in multiple columns
split Split a long file into shorter segments, gracefully

sr Search and replace multiple text patterns in parallel

str Find the ASCII strings in a binary file

tail . Display the tail end of a file's contents

tr Transform a series of (single) character codes into others
uniq Remove (or print) duplicate lines in a text file

we Count lines, words, and characters in a text file

We'll need an editor to create and edit text files. PCnix really doesn't care
what editor you use, so long as it creates normal ASCII text and runs under
MS-DOS. The shareware editor PC-Write is a good one, and a PC version of the
Berkeley UNIX editor vi is available commercially. PCnix also uses the nansi.sys

75

Section 1: Extending the MS-DOS User Interface

76

public domain replacement for the MS-DOS display driver ANSI.SYS, written by
Dan Kegel, because it's faster.

Some of the text tools do the same jobs, and therefore bear the same
names, as their UNIX counterparts: diff, grep, pr, tail, tr, uniq, and wc. A few
are different, or have different features, in order to cope better with MS-DOS.
For example, text lines under UNIX are ended with a single code LF. MS-DOS
requires two: CR/LF. CP/M uses only one: CR. The eline tool can cope with alien
line endings, substituting the MS-DOS CR/LF convention for whatever it finds. If
no line-ending convention is found, it word-wraps at the end of a line whose
length can be specified (default 80 columns). Its ability to word-wrap (but with-
out any attempt at hyphenation) makes it a useful companion to the pr program,
which can produce two (or more) columns of text, but chops the ends off text
lines that are too long.

The p (pager) program has a couple of hidden talents in addition to paging
text to the display screen. It can strip out high-order character bits inserted by
some other text programs, most notably WordStar, thus converting the output to
a printable form. If its output is redirected into a disk file, it behaves like the
UNIX cat command. It can also substitute printable codes for the eight codes not
normally printed by the nansi.sys screen driver (Null, Tab, Bell, Backspace, CR,
LF, Escape, Rubout), so you can see what they are. It uses intensified characters
to distinguish them from their unintensified look-alikes. Printing a binary file to
the screen is quite entertaining but the results are not terribly informative.

In a more practical vein, the strprogram searches through binary files and
displays any text strings it finds. This action is similar to the UNIX program
strings except it knows about the various different kinds of text strings found in
MS-DOS. UNIX, bless it, has only one style. Strange things can sometimes be
found in executable files. For example, if you scan a new program fresh from a

Now, let’s choose one of the text tools and examine it in some detail. The C
language encourages a program architecture consisting of many separate func-
tions, each of which does a logically complete job. If these functions are written
with some attention to modest generality, they can often be used unchanged in
subsequent programs. Since we've already seen the help.docfile describing tail
let's see how that command works. Here are the separate routines in outline
form:

tail - display the tail end of a text file's contents
allnum - examine a string for numeric characters exclusively
toscreen - find out if output is to the console screen
filecopy - copy the last part of a file to stdout
stak - a circular data storage & retrieval structure
size - set the modulus size of the circular stack
push - overwrite the oldest stack entry
pull - extract the oldest available stack entry

Chapter 3: Adding UNIX Power

(pop - extract the youngest stack entry)
endlin - end a Line and watch for screen overflow

The main routine, tail.c, processes the command line options—in this
case only one option may be present, the one to set the number of lines to be
printed. It calls on al Lnum.c for help with that chore. It also calls toscreen.c to
see if the output is going to the display screen or not. If it is, tail.c sets a global
flag (tsc) so the output will pause after each screenful of text. taiL.cnext opens
any files on the command line it can find, calling on filecopy.c to do the dirty
work for each one of them:

/* toscreen - find out if output is to console screen */
#include <dos.h>

toscreen()

{

union REGS r;

r.x.ax = 0x4400; /* get IOCTL status code */
r.x.bx = 1; intdos(&r, &r);

return((r.x.dx & 1) && (r.x.dx & 0x80)); /* isdev && iscin */
}

The function toscreen.c shows the way C can be used to make MS-DOS sys-
tem calls and return the result. The #includefile dos.his a header file that defines
REGS to match the registers available in the 8088 microprocessor. All C compilers
available under MS-DOS have this facility, but there is no standardization, so the
PCnix tools try to isolate this activity, minimizing the number of routines that have
to be changed if some other compiler is used. ANSI, where are you?

The filecopy.c routine makes use of a very UNIX-like feature of MS-DOS.
Files are treated as simple strings of bytes; with text files, one character is stored
in each byte. System calls allow the pointer that indicates the next character to
be moved around—just like a memory pointer. The file characters need not be
read-only in the order they are stored. By putting the file pointer to the file’s end,
filecopy.c can determine how many characters the file holds, and can then
move back the number of lines requested and display them.

There is one complication: how many characters (bytes) are there on each
line? It varies with the text—in fact, some files may not be text files at all, so we'd
best be careful here. If we want to move back 11 lines from the end (the default
value), we can move back 880 characters and be reasonably safe, since we dis-
play at most 80 characters on a line. Now we'd like to move forward in the file,
watching for line-endings and counting them until we come to the end again. If
we keep track of just where we found each one, we can go immediately to the
start of the eleventh line from the end and print from there.

The filecopy routine calls on a circular storage buffer to do this last job,
setting its length to the number of requested lines—in our example, eleven. It

77

Section 1: Extending the MS-DOS User Interface

78

then proceeds to examine the file one character at a time, using the push () oper-
ation to store a character count for each line-ending found. If there are more
than 11 lines, as there may well be, the oldest counts are overwritten. When the
end-of -file is found, the desired character count will be the eleventh count from
the end. The pul L () operation extracts it since it is the oldest value present. (The
pop() operation—extract the most recent value—is included for completeness

but is not used here.)

#define FHOME O /* symbolic constants for fseek
#define FHERE 1

#idefine FEND 2

/* filecopy - copy the last part of an open file to stdout */

filecopy(fp)

FILE *fp;

{

extern long lines;

int ¢, lc = 0;

long nchars, guess, acnum;

long pull();

size(lines + 2); /* size stack, allow for trailing newline
guess = lines * 80; /* estimate no. of chars this represents
fseek(fp, Ol, FEND);

acnum = ftell(fp); /* find how many there really are
if(acnum <= guess)
guess = acnum; /* use the smaller number

fseek(fp, —guess, FEND);
nchars = ftell(fp);

/* rewind to that point

while((c = fgetc(fp)) != EOF) { /* and run forward
nchars++;
if(c == '\n') {
lo++; /* counting text lines
push(nchars); /* and save corresponding char no.
b4
b
if(lc >= lines)
fseek(fp, pull(), FHOME); /* rewind to requested point
else
fseek(fp, —-guess, FEND); /* or to best guess
while((c = fgetc(fp)) != EOF) /* and send it out
if(c == '"\n' &8 endlin()) /* watching for display pause
continue;
fputc(c, stdout);
)
>

*/

*/
*/

*/

*/
*/

*/

*/
*/

*/

*/
*/
*/

Chapter 3: Adding UNIX Power

Under UNIX, we could just pipe the output through more to page it one
screenful at a time, but that’s much too slow under MS-DOS. Instead, we'll in-
clude the subroutine endlin.c in each tool we write that sends text to the
screen.

#define SCRSIZ 22
/* endlin - end a line and watch for screen overflow */

static int lc = 0; /* line counter */

endlin(Q)

{

extern int tsc; /* true if output is to screen */

register int c;

if(tsc && ++lc >= SCRSIZ) { /* pause if output is to screen */
fputs (""\r\n\033[7?m--More--"", stdout); /* and a screenful */
¢ = bdos(7) & OxFF; /* get a keystroke */

fputs ("'\033[0m\r\033[K", stdout);
switch(c) {

case '\r': /* <RETURN> - show 1 more line */
lc = SCRSIZ - 1;
break;
case 'q': /* quit with "g'" or "ctrl-C" */
case '\003':
exit(0);
default:
lc = 0; /* else show another screenful */
break;
)
return(1); /* yes, we ended this line */
>
return(0); /* no, we didn't end it */

}

The strange codes in the fputs function are understood by the MS-DOS
screen driver nansi.sys; they paint --More--in reverse video, on a line of its own
below the text lines. The function then waits for a keystroke, which it examines
to see what to do next. When it finds one, it either quits or returns a code indi-
cating whether it had to stop (and thence end the last displayed line) or not, and
erases the --More-- from the screen. The caller must supply the line-ending
codes if the subroutine did not.

An external flag (tsc) indicates whether the output is going to the screen or
not. This is very useful to many tools. If output is redirected into a disk file, or to
the printer, it can be passed to them uninterrupted. The flag can be set correctly
for any execution of the tool by calling toscreen() once, as was done here by
tail.c.

79

Section 1: Extending the MS-DOS User Interface

80

If you are curious about the circular storage buffer, it's surprisingly simple:

/* stak - a circular data storage & retrieval structure */

#define EMPTY -1

long *s = NULL; /* holding stack */
unsigned int lp =0 /* Lifo index */
unsigned int fp = 0 /* fifo index */
unsigned int endm = 0; /* modulus Llimit */
/* size - set the mod size of the stack & allocate space */
size(i)

int i;

{

if((s = (long *)malloc(i * sizeof(long))) I= NULL)
endm = i;

push(x) /* overwrite the oldest stack entry */
long x;

{

sllp++] = x;

if(lp >= endm)

lp = 0;
if(lp == fp)
fp = ++fp % endm;
}
long pull () /* extract the oldest available stack entry */
{
long j;
if(lp == fp)
return(EMPTY);
j = slfpl;

fp = ++fp % endm;
return(j);
>
long pop() /* extract the youngest stack entry */
{
if(lp == fp)
return(EMPTY);
if(-=lp < O
lp += endm;
return(siipl);
}

Chapter 3: Adding UNIX Power

Dealing with Files

The PCnix toolkit also includes a set of software tools for listing, finding, and
manipulating files. Table 3-3 lists the current repertoire.

Table 3-3. PCnix File Tools

Tool Function

arc Compress and archive files, or decompress files

dog Reorganize your hard disk for fastest access

chmod Change the made of a file to/from system, hidden, etc.
chn Change the name of a file, directory, or volume label
du Summarize disk usage in a part of the file hierarchy
ffind Find path(s) to filename(s) on the designated drive

Is List filenames in a directory, in many nice ways

mv Move files or directories to another location

pwd Print full path to current working directory on a drive

The file compressor/archiver/decompressor arc is a shareware program,
distributed by System Enhancement Associates, that first examines a file, then
chooses one of several compression techniques depending on what it finds. Text
or binary files can be compressed 30 percent to 50 percent, a helpful saving if
the file is destined for transmission over phone lines.

The disk organizer dog, written by G. Allen Morris III, is also distributed as
shareware. It explores your hard disk and then, with your permission, reshuf-
fles the way storage clusters (clumps of disk segments) are ordered on the disk
to paste together all the files that have become fragmented (stored in several
pieces) by the MS-DOS storage system. This can speed up subsequent disk-inten-
sive operations dramatically. It can take a long time to run, but it keeps you enter-
tained with a slightly breathless account of how the job is progressing. Run it
during lunch break.

The UNIX program findcan be dispatched into the file system to look for (and
perhaps modify) files you name or describe on the command line. It is a very pow-
erful tool only UNIX gurus use, because the syntax is unbelievably painful. Its a
superb example of a program that tries to do too much. Our PCnix program ffind
has a much more modest mission: it explores a file system on a designated drive
recursively, peeking into each subdirectory and listing the complete pathname to
any file we tell it to watch for. It can accept the MS-DOS wildcard characters, so we
can find all the batch files on drive c, for example, with the command

ffind c:*.bat

It's marginally useful on floppy disks and almost essential on hard disks with

81

Section 1: Extending the MS-DOS User Interface

82

20MB or more of storage—it's amazing how easy it is to misplace files even in a
well-organized directory system. (See Essay 2, Searching the File Tree with
whereis, by Frank Whaley, for a utility more like the complete UNIX find com-
mand.) ‘

What’s in a Name?

MS-DOS 2 .X had a curious limitation: its rename command, which called on Func-
tion 56h, worked on files but not on directories. To change a directory name,
you first had to create a new (empty) directory with the chosen name, copy all
the files from the old one into the new one, delete the old files, and then delete
the old directory. On a floppy disk, you would always run out of space about
halfway through. Yet, MS-DOS Function 17h could rename directories. It did not,
however, understand about pathnames. Our PCnix chncommand is a short pro-
gram that calls Function 17h, accepting the limitation that the designated file
must be in the current directory of one of the drives.

MS-DOS 3.0 quietly introduced a new version of Function 56h that can re-
name directories (without, of course, mentioning that fact in the documenta-
tion). Our mv command can use this new capability to rename directories, but it
can't do so under MS-DOS versions before 3.0. We'll also teach mv about drives. If
a file or directory is moved to another location on the same drive, only the File
Allocation Table (FAT) need be changed, and Function 56h will do that for us.
Moving files or directories to another drive requires that everything be copied to
the new, then (if the copy is successful) erased from the old. mv does it that way.

What’s in a Directory?

Perhaps the most-used command in either UNIX or PCnix is the Ls command,
which tells us the names of files in one or more directories, and as much about
them as we ask for—unlike DIR, which tells everything it knows whether we ask
or not, shouting at us in UPPERCASE. The s command has (perhaps too many)
options available to control what it does:

ls - a UNIX-like directory listing program for MS-DOS

Syntax: ls [-acilrstuR) [(path)name ...]

Options may appear in any order, grouped or separated; if
separate, each must be preceded by a dash. The name(s) may refer

to files or directories. If no name is given, the current
directory is listed. MS-DOS wildcards are graciously accepted.

Chapter 3: Adding UNIX Power

Options:

(none) Show filenames (only) sorted alphabetically

-a all: include system files, hidden files, "." and ".."

-c columnar: change how many columns are used in the listing
=i identify: change whether directory pathname is shown

-1 long listing: include file's size, date, time, attributes
-r reverse the sorting direction

-s report size(s) only

-t sort by time of last file modification

-u include actual disk use, with totals & available space

-R recursively Llist all subdirectories

The default settings for most of these options can be changed, so Lscan be
sweetened to taste. For example, some people like to have the name of the cur-
rent directory shown, along with its contents, when Ls is invoked without argu-
ments—in effect, UNIX pwdfollowed by Ls. Others find this offensive. If it matters
to you, you can change one or more of the “customizing constants” in the pro-
gram to change the default settings from those normally supplied:

/* customizing constants */

#define 1D 1 /* always identify directory if 1 */
#define ALL 0 /* show hidden files by default if 1 */
#define LONG 0 /* long listing by default if 1 */
#define SCOLM O /* 1-column short listing by default if 1 */
#define LCOLM 1 /* 1-column long listing by default if 1 */
#idefine RSORT O /* reverse sort by default if 1 */
#idefine TSORT O /* time sort by default if 1 */
#define DU 0 /* include disk use by default if 1 */

Since Ls has to poke around in the MS-DOS file system, much of its opera-
tion involves making system calls to learn things, and reformatting the result
(e.g., transforming filenames to lowercase) for display. In outline form, here are
the various routines that make up the whole, with MS-DOS function calls identi-
fied in parentheses:

ls - a UNIX-like directory listing program for MS-DOS
main - process input options

toscreen - find out if output is to console screen (44h)
setps - set pathname separator to MS-DOS switchar value (37h)
curdrv - get name of current default drive (19h)
curpath - get path to directory on default drive (47h)

search - search 'path’ for filename or directory

83

Section 1: Extending the MS-DOS User Interface

84

find_first - find first file in chosen directory (1Ah, 4Eh)
comp - compare size of two entries for quicksort
gcdate - get current date (months) for comparison (2Ah)
getcl - get cluster size & space left on A drive (36h)
abspath - get absolute path into search path buffer
find_next - find the next file in this directory (1Ah, 4Fh)
(calls the same routines as find_first)
shortlist - print a list of names in up to 5 columns
putname - convert name to lower case and print
endlin - end a Line and watch for screen overflow
longlist - list everything about files in one or two columns
fill - fill long list structure with file information
mname - convert month number to month name
putname - convert name to lower case and print
endlin - end a line and watch for screen overflow

Table 3-4 lists a few other tools to complete our toolkit. Fortunately, a com-
plete version of the wonderful UNIX utility make for MS-DOS has been distrib-
uted as shareware by its author, D. G. Kneller—it is superior to the “professional”
version distributed by Microsoft with its C compiler. We'll add the touch com-
mand to work with it, calling Functions 2Ah and 2Ch to get the current time and
date, then calling Function 57h to insert them into the file’s time-stamp.

Table 3-4. Hacker Tools

Tool Function

make Compile, link a C program from separate files, minimally
tglob Transform global definition file into extern decl file

touch Mark the t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>