SECOND EDITION

MICROSOFT

IVIOUSE

PROGRAMMER’S
REFERENCE

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1991 by Microsoft Corporation

All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Microsoft Mouse programmer’s reference / Microsoft Corporation. -- 2nd
ed.
p- cm.

Includes index.

ISBN 1-55615-336-8

1. Microcomputers--Programming 2. Computer interfaces.
L. Microsoft.
QA76.6M516 1991 <MRCRR>
005.265--dc20 90-49853

CIP

Printed and bound in the United States of America.
23456789 MLML 654321

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

IBMS, PC/AT®, and PS/2® are registered trademarks of International Business Machines Corporation.
Symphony® is a registered trademark and VisiCalc™ is a trademark of Lotus Development Corporation.
CodeView8 InPort® Microsoft® MS-DOS® Multiplan® and XENIX® are registered trademarks and
BallPoint™ is a trademark of Microsoft Corporation. BRIEF® is a registered trademark of UnderWare,
Inc. WordStar® is a registered trademark of Wordstar Corporation.

Acquisitions Editor: Michael Halvorson
Project Editor: Nancy Siadek
Technical Editor: Daniel Lipkie

Contents

Acknowledgments Vit
Introduction x

PART I: INTRODUCTION
Chapter 1: Evolution of the Mouse 3
Chapter 2: Overview of Mouse Programming 17

PART Il: MOUSE MENUS

Chapter 3: Creating Your Own Mouse Menu 27
Chapter 4: Mouse Menu Language Statements 49
Chapter 5: Sample Mouse Menu Programs 69

PART lll: MOUSE PROGRAMMING INTERFACE
Chapter 6: Mouse Programming Interface 79
Chapter 7: Mouse Programming Considerations 109
Chapter 8: Mouse Function Calls 121

Chapter 9: Sample Mouse Programming Interface
Programs 217

Chapter 10: Writing Mouse Programs for IBM EGA
Modes 273

PART IV: APPENDIXES

Appendix A: ASCII Character Set 299

Appendix B: Domestic Mouse-Driver Messages 305
Appendix C: Mouse Menu Messages 309

Appendix D: Linking Existing Mouse Programs with
MOUSE.LIB 313

Appendix E: Making Calls from Borland Turbo Pascal
Programs 315

Appendix F: Using the Mouse with the Hercules Graphics
Card 319

Index 321

Acknowledgments

Several people made outstanding contributions to the Microsoft Mouse
Programmer’s Reference, 2d edition. In particular, we thank the following
reviewers whose technical skills and timely critiques proved invaluable
to this project: John Pennock, Ken Robertson, Charles Nichols, and
John Clark Craig. Their expertise, hard work, and dedication helped
make this book a superb tool for serious programmers.

In addition, we thank the following reviewers and subject-matter
experts who also made essential contributions: Eric Watson, Bridget
Cameron, Tom Hensel, Jeff Hinsch, Mary DeJong, and David Rygmyr.
And special kudos to the eagle-eyed proofreaders at Microsoft Press—
in particular, Deborah Long, Alice Copp-Smith, and Pat Forgette.

For the first edition, we are indebted to Eric Fogelin, Tom Hensel,
Greg Lee, Paul Schuster, Rich Abel, Henry Burgess, Tom Button, Stew
Chapin, Barbara Hubbard, Len Oorthuys, Steve Shaiman, Rick
Thompson, Bill Wesse, and Nathan Williams.

vii

Infroduction

The Microsoft Mouse Programmer’s Reference, 2d edition, is both an overview
and a technical resource for experienced programmers. The book in-
cludes a history of the Microsoft mouse, an overview of mouse pro-
gramming, detailed information about writing and using mouse menu
programs, and instructional information on using the mouse program-
ming interface to add mouse support to an application program you’ve
written. In addition, the Microsoft Mouse Programmer’s Reference offers a
wealth of sample programs in several languages to demonstrate the
topics and functions it discusses.

This package includes disks that contain the MOUSE.LIB and
EGA.LIB libraries and all the sample mouse menu and mouse program-
ming interface programs listed in this book. In addition, the disks in-
clude lengthy sample programs not listed in the book.

The Microsoft Mouse Programmer’s Reference is divided into four sec-
tions. Part I, “Introduction,”” provides a history of the Microsoft mouse
and an overview of mouse programming. Part II, ‘‘Mouse Menus,”’
details the mouse menus programming language, gives a complete de-
scription of each mouse menu command, and offers sample mouse
menu programs. Part III, ““Mouse Programming Interface,” discusses
the topics you’ll need to consider when adding mouse support to a
program you're writing. It also describes each of the mouse functions
available through MOUSE.LIB or Interrupt 33H and offers sample pro-
grams in QuickBasic, interpreted Basic, C, QuickC, MASM, FORTRAN,
and Pascal. In addition, Part III includes information about adding
mouse support to programs that will run on an EGA and describes the
EGA Register Interface functions available throughout the EGA.LIB
library. The appendixes in Part IV cover the ASCII character set, mouse
messages, calls from Borland Turbo Pascal programs, and mouse use
with the Hercules Graphics Card.

The following notational conventions are used in this book:

Ttalics Variable names and replaceable parameters in syntax
lines, and function names in text

Initial Caps Menu names and mouse function names

ALL CAPS Menu command names, filenames, program names,

directory names, utility names, and MS-DOS command
names

MICROSOFT MOUSE PROGRAMMER'S REFERENCE

To take full advantage of all the sample programs and libraries in
the Microsoft Mouse Programmer’s Reference, you’ll want to have the
most current mouse-driver version (8.0). Mouse-driver upgrades
are available to Microsoft mouse owners for $25. To upgrade,
mouse-driver owners can call Microsoft Customer Service at
1-800-426-9400 (6 A.M. to 5:30 P.M. Pacific time, Monday through
Friday). Be sure to have the following information handy: the
mouse-driver software version number, which is printed on the
original driver disks, and the FCC ID number for your mouse,
which is printed on the bottom of the mouse.

PART |

Introduction

Chapter 1: Evolution of the Mouse

= The Early Mice
m The Microsoft Mouse
= A Look Ahead

Chapter 2: Overview of Mouse Programming

= The Mouse Driver
= Mouse Menus
m The Mouse Programming Interface

Chapter 1

Evolution of
the Mouse

The mouse—a small, hand-held device that controls the movement of
the cursor on a computer screen—was first developed 27 years ago.
From humble beginnings as an odd-looking, one-button, wooden pro-
totype, the mouse has evolved into a sleek, sophisticated tool that is
nearly as familiar to today’s computer user as the keyboard.

Spanning fewer than 10 years of the mouse’s history, Microsoft’s
role in the evolution of the mouse is nevertheless significant. The
Microsoft mouse, first introduced in 1983, has set new standards for how
people interact with the computer. Although Microsoft didn’t invent
the mouse, it has done much to fine-tune it.

To understand Microsoft’s involvement, let’s look at how the
mouse originated and developed.

THE EARLY MICE

We were experimenting with lots of types of devices at the time. Once the
mouse proved itself to us, we tested it against several other devices, and it
clearly won. I felt that until something better came along, the mouse would
definitely remain the best pointing device for computer users.

—Doug Engelbart
Inventor of the mouse

When Doug Engelbart developed his wooden prototype of the mouse
at Stanford Research Institute in 1963, he designed it for use with his
Augment computer. Engelbart’s ideas later influenced the designs of

PART I: INTRODUCTION

the Xerox Star, Apple Lisa, and Apple Macintosh personal computers.
Not even Engelbart then envisioned what would occur over the next
27 years.

Engelbart’s mouse was a simple analog device that responded to
each movement of the mouse by sending a signal to the software that
shifted the position of the cursor on the screen. Inside the wooden
mouse body were two metal wheels that were connected to the shafts of
two variable resistors. Figure 1-1 shows Engelbart’s mouse.

The concept of using a mouse became more widely known in the
early seventies when Xerox Corporation’s Palo Alto Research Center
(PARC) commissioned Jack S. Hawley to build the first digital mouse.
Hawley’s mouse was basically a digital version of Engelbart’s mouse. At
the time, Xerox was developing the powerful Alto computer and
wanted to include a mouse as part of the computer package. Although
the Xerox Alto performed poorly in the marketplace—fewer than a
hundred were sold —it paved the way for the future development of
personal computers and the mouse. In 1975, Xerox asked Hawley to de-
velop a new standard for the mouse, a standard that many manufactur-
ers adopted and followed into the eighties. After Hawley completed his
commission for Xerox, he went on to design and manufacture mice
through his own company, the Mouse House, in Berkeley, California.

Figure 1-1. Doug Engelbart’s original wooden mouse.

THE MICROSOFT MOUSE

As the Xerox mouse received more attention, Microsoft began to con-
sider the idea of designing a mouse. A former Xerox PARC employee,
Charles Simonyi, had recently joined Microsoft and wanted to add

Chapter 1. Evolution of the Mouse

mouse support to a new product, Microsoft Word. At about the same
time, Microsoft’s Bill Gates, Paul Allen, and Raleigh Roark were also ex-
ploring ideas for hardware products.

From a Lump of Clay

In the early eighties, Microsoft was a small company with no in-house
design resources. For most of its design needs, the company relied on
a Seattle graphic designer, David Strong, who had developed the
Microsoft corporate logo and color scheme. It therefore seemed natu-
ral for Microsoft to approach Strong for assistance with the mouse
design.

After the Microsoft team explained precisely what it wanted—a
small, easy-to-handle mouse unit just big enough to accommodate the
required internal circuitry—Strong went to work. He produced a
2%-inch by 4-inch by 1%4-inch clay model with thumbtacks on the un-
derside that simulated gliders. (Figure 1-2 shows the model.)

As Raleigh Roark recalls, ‘A bunch of us sat around a conference
table for hours just gliding this lump of clay back and forth, trying to
decide if we liked the feel of it. Nobody could really agree. After a
while, we settled on the design and dimensions we thought would work.

“Then, with the clay model in hand, I got on a plane for Tokyo to
meet with an electronics manufacturer to get them to build the thing.”

Roark flew to Tokyo with Kay Nishi, who was then a Microsoft vice
president and president of ASCII Corporation in Japan. Nishi and
Roark met with manufacturing engineers to discuss what Microsoft
wanted. Discussions came to an abrupt, but temporary, halt when

Figure 1-2. The clay model for the original Microsoft mouse.

PART I: INTRODUCTION

the engineers said it couldn’t be done. They believed that the mouse
encoders couldn’t possibly be squeezed into the small, hand-size mouse
that Microsoft wanted. As Roark remembers, ‘‘There was a bunch of
grumbling about how this was impossible —it just couldn’t be done.
Then suddenly the room grew quiet, and the chief of engineering said,
‘Our engineers will now leave the room for exactly one hour, and when
they return they will have a solution to this problem.’ The engineers
came back with a workable design, and a few months later Microsoft
had its first mouse.”

The First Generation
Doing the serial mouse was the biggest thrill for me. It was a conceptual
breakthrough; no one had been able to do anything like it before.

—Raleigh Roark
Head of the Microsoft Serial Mouse Development Team

In June 1983, Microsoft introduced a new product for the IBM Personal
Computer, the Microsoft bus mouse. This was a two-button mechanical
mouse that relied on a steel ball and a pair of rollers to register move-
ment as the mouse glided across a flat surface. The mouse was powered
by a half-size circuit board that contained an Intel 8255 Programmable
Peripheral Interface and some support chips. A distinct advantage of
the Microsoft mouse (shown in Figure 1-3) was that its mechanical en-
coders used very little power.

A year after the release of the bus mouse, Microsoft developed a
serial version of the mouse. This was a major technological break-
through because the mouse could be connected directly to an RS-232

Figure 1-3. Microsoft’s first-generation mouse.

Chapter 1: Evolution of the Mouse

serial port. It required neither a bus card nor a separate power supply
because a CMOS processor in the mouse drew enough power from the
RS-232 port for operation.

The first-generation mice had separate, hardware-specific operat-
ing software (mouse drivers) for the bus and serial versions and a sepa-
rate linkable library, MOUSE.LIB, for high-level language development.
To help people become comfortable using mice, Microsoft also pro-
vided these programs in the original mouse package:

® Notepad, a mouse-oriented text editor

® Piano, an on-screen piano keyboard that users could “‘play’” by
using the mouse

m Life, a graphical game in which users followed the life and
death of simulated microorganisms they designed

Subsequent releases of the mouse software in 1983-1984 brought
updates and enhancements to Notepad, the addition of a drawing pro-
gram named Doodle, and the introduction of mouse menus. With
mouse menus, Microsoft provided a way to make the mouse accessible
to applications that weren’t originally designed for use with a mouse.
Users of VisiCalc, Multiplan, WordStar, and Lotus 1-2-3 could now in-
stall special menus that allowed use of the mouse within those applica-
tions. In addition, Microsoft provided a MENU.COM program for
loading menus and a MAKEMENU.EXE compiler so that users could
design and build their own mouse menus.

With the release of MS-DOS 2.0 in 1983, the mouse took advantage
of a new MS-DOS feature known as installable device drivers. With in-
stallable device drivers, it became much easier to configure any com-
puter system for use with MS-DOS and the mouse.

In 1985, two major software releases, mouse drivers 3.0 and 4.0, in-
troduced support for the IBM PC/AT and the growing number of high-
resolution graphics devices. People could now install mouse software
for use with most display adapters, including the Hercules Graphics
Card, the IBM Color Graphics Adapter (CGA), the IBM Enhanced
Graphics Adapter (EGA), and other newly introduced high-resolution
display adapters and monitors. In addition, the mouse driver could now
detect the hardware configuration on which it was installed.

With software release 4.0 in May 1985, Microsoft replaced Doodle
with a popular state-of-the-art graphics application, PC Paintbrush.

PART I: INTRODUCTION

The Second Generation

The Microsoft gray-button mouse, with its 200 ppi, changed the nature of
the way people used mice. Doubling the sensitivity meant that users didn’t
have to push a mouse all over a desk to move the cursor around the screen.

—Steve Shaiman
Lead Software Designer for Microsoft Mouse 5.0

In October 1985, the mouse achieved a new level of sophistication with
its more streamlined, professional look and reengineered driver. Many
changes were immediately visible: a gray color for the buttons, a
redesigned body, larger wraparound buttons, and a rubber-covered
steel ball in place of the solid steel ball. But the true significance of this
release could be felt rather than seen. By doubling the resolution to 200
ppi (points per inch), Microsoft made the mouse much easier to use.
Figure 1-4 shows Microsoft’s second-generation mouse.

The gray-button mouse required much less surface area for move-
ment (a circle of 4-5 inches), and most operations could be accom-
plished easily with simple wrist and hand movements. By contrast, the
earlier mouse seemed clunky and cumbersome, requiring movement
over a relatively large surface area (a circle of 8-10 inches).

In April 1986, Microsoft released a modified version of the bus
mouse interface that was powered by a custom InPort chip, which fur-
ther enhanced mouse performance because the mouse driver could
take advantage of the chip’s programmable interrupt rate.

Improved performance of mouse hardware set the stage for what
was perhaps the most important mouse software release, mouse

Figure 1-4. Microsoft’s second-generation mouse.

Chapter 1: Evolution of the Mouse

driver 6.0. Introduced in September 1986, mouse driver 6.0 brought a
major overhaul of the mouse software:

® PC Paintbrush was updated and renamed Microsoft
Paintbrush.

® A mouse setup program was added, and Show Partner, a
graphics presentation program, was added. (Show Partner was
discontinued in version 6.1.)

® Expert mouse menus were added for power users of Lotus 1-2-3,
DisplayWrite III, and Multimate 3.31.

® Computer-based tutorials became part of the package. (These
were discontinued in version 6.1.)

B A mouse control panel let people adjust the sensitivity of the
mouse for different applications.

Furthermore, in this release an optional international version of
the mouse driver generated messages in any one of nine foreign lan-
guages, which let software developers readily build in mouse support
for most foreign-language applications. The international driver is
shipped to users outside the United States.

The Third Generation

The new Microsoft mouse (the one that looks like a bar of Dove soap), with
its repositioned ball and seemingly improved mechanism, makes all the dif-
Sference in the world.

—]John C. Dvorak
PC Maguazine, December 22, 1987

The third-generation mouse, introduced in September 1987, had
a smaller, sleeker mouse body with easy-to-use buttons that clicked
when pressed.

Figure 1-5 on the following page shows Microsoft’s third-
generation mouse.

The internal architecture of this new Microsoft mouse remained
basically the same as that of the gray-button mouse, but some major
changes made the mouse easier to control—changes such as moving
the traction ball to the front of the mouse and making the left button
larger than the right. In July 1988, The Wall Street Journal published an ar-
ticle (shown in Figure 1-6 on page 11) about the ergonomics of the
third-generation mouse.

PART I: INTRODUCTION

10

Figure 1-5. Microsoft’s third-generation mouse.

Software included in the mouse package continued to improve
and offered increasingly more options. Microsoft introduced an im-
proved third-generation mouse—the 400 ppi mouse—in September
1989. Its release represented a major hardware and software advance-
ment. The previous version of the mouse offered a sensitivity of 200
pulses per inch, which meant that as the user dragged the device across
a desktop, the mouse sent the computer 200 electric pulses, or inter-
rupts, for every inch it was moved. The new mouse increased sensitivity
from 200 ppi to 400 ppi, which improved speed, accuracy, and accelera-
tion by 100 percent. Also, the desktop area required by the mouse was
reduced to one fourth of its previously required space.

The 400-ppi mouse also introduced the relocation of the cable
interface to inside the mouse body. Previously, the mouse came in two
pieces—a main body with cable and an interface box with cable. The
user would connect the two, creating a somewhat cumbersome adapter.
The new serial mouse enclosed the circuitry inside the mouse body,
which made the mouse more convenient to use.

Microsoft currently offers the mouse in a variety of bus-version
and serial-version hardware and software configurations. The bus ver-
sion, like earlier Microsoft bus mice, uses its own card. The serial ver-
sion can be connected directly to a serial port or to the mouse port on
IBM PS/2 computers and other PS/2-style mouse port interfaces.

The improved performance of mouse hardware coincided with an
important software release. Mouse driver 7.0 included improved ac-
celeration support and video support. Previously, only a double-speed
acceleration threshold existed. If the user moved the mouse faster than
a certain speed, the cursor speed doubled. The new release introduced
sixteen distinct, user-defined thresholds that could increase or decrease

Chapter 1: Evolution of the Mouse

Tiny Mouse Holds
Many Design Problems

OMPUTER MICE cram a
‘ surprising number of design
issues into a tiny package,
as Microsoft Corp. proved when it
undertook to develop a new model
of the hand-held control.
SHAPE: ‘‘Most mice on the
market take their shape from the
form of a computer or keyboard.
They're rectilinear, with fairly
hard edges,”” says Paul Bradley,
an industrial designer at Matrix
Product Design Inc., of Palo Alto,
Calif., which was responsible for
the new mouse’s appearance.
“We used a softer form that’s
closer to the contour of a hand.”

Mierosoft Mice:
Old (top); New (bottom)

Matrix collaborated with hu-
man-factors specialists at ID Two
in San Francisco and engineers at
David Kelley Design, Palo Alto.

SIZE: “‘At first we thought a
much smaller device, to be held
in the fingertips, might give more
accurate control,” says Mr. Brad-
ley. Tests proved that wrong.
“Our mouse is lower, but other-
wise not smaller,” he says. ‘“You
can drive it with your fingertips,
but still rest your hand on it.”

BALANCE: A mouse rolls on a
plastic ball set in its underside,
usually at about the middle. The
designers moved the ball forward
to facilitate fingertip operation.

CONTROLS: ID Two did ex-
tensive testing on the type, size
and configuration of the two but-
tons that execute mouse com-
mands. It found that making one
button larger than the other im-
proved performance without trou-
bling left-handed users, but that a
ridge was needed between the
buttons as a tactile landmark.
Test users preferred buttons with
crisply clicking feedback over a
“mushier”” button used earlier.

FINISH: Most mice tend to
have a textured finish, often in
universal humdrum computer
beige. Microsoft chose to make
the new mouse glossy white.

Microsoft considers the effort
worthwhile. Since it introduced
the model last fall, sales have al-
ready exceeded total previous Mi-
crosoft mouse sales since 1984.

Figure 1-6. Article from The Wall Street Journal about the new

Microsoft mouse.

N

PART I: INTRODUCTION

the motion of the cursor. This enhancement provided greater precision
for pointing to objects located close to or far from the cursor. Increased
video support in the mouse package allowed for more video modes and
adapters, making the mouse more versatile.

A subsequent software release, mouse driver 7.04, introduced fur-
ther enhancements—10 new information functions, the setspeed fea-
ture for loading a custom acceleration curve, and additional features
for enhancing laptop performance. Further video support was also
added—most notably Video 7 support.

The Fourth Generation

12

As software becomes more complex, more of us will need to adopt pointing
devices to work efficiently with computers. There is probably a mouse in
your future.

—Cary Lu
Author of The Apple Macintosh Book, 3rd edition, Microsoft Press

In March 1991, Microsoft introduced an alternative pointing device—
the BallPoint mouse—to fill the need for a suitable pointing device in a
portable environment.

Laptop computing was one of the fastest growing segments of the
personal computer market. Users accustomed to running Windows on
their desktop systems with a mouse wanted to duplicate this setup on
their laptops. Laptop computers were becoming increasingly capable of
running graphical user interface (GUI) applications; but the mouse —
still the best general-purpose pointing device around —requires sur-
face area on which to run, and portables are often used in places where
little, if any, space is available alongside the system. The goal of the
design team was to come up with a “‘surfaceless’’ solution, which meant
designing a pointing device that physically attached to the keyboard.

After examining many different pointing-device technologies,
such as touch pads, ISOPOINT, trackballs, and miniature mice, the
team decided that a variation on the traditional trackball would be
most suitable and began experimenting with different shapes and sizes.
The group settled on a small, D-shaped device that could be cradled
comfortably in the hand. The unit was operated by rolling the thumb
while the buttons were pressed with the index finger. Different num-
bers, shapes, and positions of buttons were tried, and the team settled
on a side-by-side design very similar to the Microsoft mouse, with the
primary button marked with a ridge. Unlike the mouse, however, the
BallPoint mouse (shown in Figure 1-7) was designed with four buttons so
it could be used on the left, right, or front of the computer.

Chapter 1: Evolution of the Mouse

Figure 1-7. Microsoft’s fourth-generation mouse— the BallPoint mouse.

“The most difficult design problem,” recalls Bridget Cameron,
BallPoint mouse product manager, ‘‘was how to attach this mini-
trackball to all the laptops on the market, and worse yet, to all the lap-
tops that would be designed in the future.” The group finally settled
on a clamping mechanism that used metal arms to fit between the keys
and the side of the keyboard. The arms could be adjusted to fit differ-
ent keyboards and replaced with longer or shorter versions if required.

As Cameron remembers, ‘‘Our allegiance to the mouse had made
us a little contemptuous toward trackballs, so we attempted to design
something unlike other trackballs, making sure the hand would be in a
relaxed position while rolling the ball and pressing the buttons, and
dragging could be done easily and with one hand.”” The group found
that the key to this was not only in the shape and size of the BallPoint
mouse itself, but also in the ability to adjust the tilt angle of the unit.
They designed a tilt positioner into the clamp, which allowed the Ball-
Point to be used at a 0-, 30-, 60-, or 90-degree angle. The size, shape, at-
tachability, and adjustability of BallPoint made it unlike any other
pointing device on the market and ideal for the portable environment.

Software released with the BallPoint mouse (driver 8.0) included
all the features of the 7.04 release but added the ability to define the in-
ternal device orientation as well as to select which of the four buttons to
be used. (A mouse assumes what is up, down, right, and left; the Ball-
Point mouse’s orientation must be defined by the user according to how
he or she will use it.) The new software introduced a utility called COM-
PASS for defining the orientation, a new function for locating the
mouse initialization file (MOUSE.INI), and support for the new IBM
XGA video hardware.

Figure 1-8 illustrates the milestones in Microsoft mouse history.

13

MILESTONES IN MICROSOFT MOUSE HISTORY

MAJOR SOFTWARE RELEASES

Mouse Driver 1.0

Contained the mouse driver plus
software that demonstrated and taught
use of the mouse. This release supported
Microsoft Word and contained separate
drivers for bus and serial versions.

Mouse Driver 2.0
Contained updates to the driver software
plus a new graphics program, Doodle.

Mouse Driver 3.0
Provided early support for the IBM Enhanced

HARDWARE RELEASES
1983
Mouse 1.0 JUNE
Bus Version
The Microsoft Green-button Mouse
Microsoft introduced its first mouse: a
two-button, mechanical mouse
designed for the IBM PC. The mouse DECEMBER~_|
supported Microsoft Word.
1984
Mouse 1.0 ———FEBRUARY
Serial Version
The Microsoft Green-button Mouse
The serial mouse was designed to plug
directly into an RS-232 serial port instead
of a separate bus card.
1985
JANUARY

Mouse 5.0 —
The Microsoft Gray-button Mouse
Reengineered hardware and software
doubled the sensitivity and resolution

MAY /

— OCTOBER —

Graphics Adapter (EGA) and MS-DOS 3.x.
The disk also contained updates to Notepad.

Mouse Driver 4.0

With mouse driver 4.0, Doodle was replaced
with Z-Soft's popular color painting program,
PC Paintbrush. The mouse software was
extended to two floppy disks.

[Mouse Driver 5.0

Mouse driver 5.0 was revised to install and
identify the type of mouse in use. Reengineered
mouse hardware enhanced software

(200 ppi) of the earlier mouse.

Mouse 5.03 —
The InPort Mouse
Introduction of the InPort mouse. The
InPort chip is a custom LSI (Large Scale
Integration) Microsoft design used in the
bus mouse board and as the peripheral
interface on the Microsoft MACH 10 and

1986

—— APRIL

SEPTEMBER —

performance (resolution now 200 ppi).

Mouse Driver 6.0

Mouse driver 6.0 was a major update. The
disk contained a new mouse setup program
and a new version of Microsoft Paintbrush. It

MACH 20.

also contained computer-based training and a
control panel.

Figure 1-8. Major hardware and software releases of the Microsoft Mouse.

14

MILESTONES IN MICROSOFT MOUSE HISTORY

HARDWARE RELEASES

Mouse 6.1

The Microsoft Mouse for the IBM PS/2
Introduction of the Microsoft mouse for the
IBM PS/2 mouse port. Microsoft's PS/2 mouse
arrived on the market one month after the first
announcement of the PS/2 line.

Mouse 1.0 —
The New Mouse
Microsoft redesigned the mouse body and moved

1987

\ MAY

— SEPTEMBER

the trackball to the front of the mouse. The mouse
became available in three different software
configurations and two hardware configurations.

Mouse 2.0 —
The 400 ppi Mouse

1989

— SEPTEMBER —

Increased mouse sensitivity from 200 ppi to 400
ppi; improved speed, accuracy, and acceleration
by 100 percent. Also reduced amount of desktop
space required to operate the mouse. Cable
interface was relocated inside the mouse body.

1990

MAY

BallPoint Mouse 1.0 ——

The BallPoint Mouse

Microsoft introduced its first alternative pointing
device for the portable environment. A variation
on the traditional trackball, the BallPoint is a
small, D-shaped device operated by rolling the
thumb while the buttons are pressed with the

1991

—— MARCH —

index finger. This new "mouse" was designed
with four buttons $o it could be used on the left,
right, or front of the computer.

MAJOR SOFTWARE RELEASES

Mouse Driver 6.1

Microsoft added the following support for VGA
graphics: serial-interface and bus-interface
versions of EasyCAD and Microsoft Windows
2.03 with Microsoft Paintbrush.

Mouse Driver 7.0

Reengineered mouse hardware enhanced
software performance (resolution now 400 ppi).
Mouse driver 7.0 included improved
acceleration support and video support.

Mouse Driver 7.04

Mouse driver 7.04 introduced further
enhancements—10 new information functions,
the setspeed feature for loading a custom
acceleration curve, and features for enhancing
laptop performance. Additional video support
was also added.

Mouse Driver 8.0

Mouse driver 8.0 included setup support for the
BallPoint mouse and introduced the utility
COMPASS, which helped the user define the
internal device orientation for the BallPoint
mouse according to how he or she planned to
use it. Also included a new function for locating
the mouse initialization file (MOUSE.INI) and
support for the new IBM XGA video hardware.

15

PART I: INTRODUCTION

A LOOK AHEAD

16

Sometime in the not-too-distant future, every microcomputer will be shipped
with a mouse. As the world moves to Windows and OS/2, mice will become

as pervasive as keyboards are.
—Steve Shaiman

General Manager,
Microsoft Systems, Peripherals, and Accessories Group

In the summer of 1988, 25 years after Doug Engelbart crafted his
wooden prototype, Microsoft celebrated the sale of its millionth mouse.
Since 1988, mouse sales have doubled almost every year.

Today, software applications with graphical user interfaces are
rapidly becoming the norm rather than the exception, and with this
comes wider acceptance and use of the mouse. As OS/2 and Presenta-
tion Manager, Microsoft Windows, and other graphical-user-interface
software come into wider use, using a mouse makes increasingly more
sense and seems a necessity rather than a luxury.

Chapter 2

Overview of
Mouse Programming

The mouse is an electronic device that sends signals to your computer.
To your software, these signals represent cursor movements and button
presses. However, the raw data sent to your computer is difficult to use
in its original form. Also, different signals are generated depending on
whether a bus, InPort, serial, or PS/2 mouse is used. To give program-
mers an easy-to-use, consistent interface, Microsoft and most other
mouse manufacturers provide a mouse driver.

THE MOUSE DRIVER

A mouse driver is software that lets the operating system consistently in-
terpret the raw data from the mouse. The Microsoft mouse driver does
this by providing application programs with 53 function calls that let
programs perform specific tasks, such as checking the state of a mouse
button. These function calls are consistent regardless of the mouse
hardware you use. (Of the functions numbered 0 through 52, Functions
17 and 18 are not supported; and Function 46 is an internal function
that is not documented here.)

Microsoft provides three means for interfacing with the mouse
driver: the mouse menus programming language, the mouse library,
and direct calls to MS-DOS Interrupt 33H. Each method offers distinct
advantages and disadvantages, and each method fulfills a particular
need. For example, you can use mouse menus only with existing appli-
cations. However, you can use the mouse library and Interrupt 33H in
programs you write yourself.

17

PART I: INTRODUCTION

Using the Mouse Menus Programming Language

The mouse menus programming language lets you integrate the mouse
into most preexisting, text-based software packages that wouldn’t other-
wise support the mouse. Thus, you can create menus that aren’t already
in the application, you can emulate keystrokes, and you can assign dif-
ferent functions to the mouse (for instance, assign mouse motions and
button presses to tasks you would normally perform with the keyboard).

Using the Mouse Library

The mouse library lets you incorporate mouse support into an applica-
tion as you write it. Because the mouse support becomes an integral
part of the program, the functionality of the mouse support within the
application program far exceeds that which you can obtain with mouse
menus. The library lets the application take advantage of 53 mouse
functions, which are accessible from high-level languages such as inter-
preted Basic, QuickBasic, C, QuickC, FORTRAN, and Pascal. The func-
tions are also accessible from MASM.

Using MS-DOS Interrupt 33H

You can access the mouse driver directly through MS-DOS software In-
terrupt 33H, which provides the same 53 functions as those available
through the mouse library. Because the overhead of making library
calls is eliminated, a program written using Interrupt 33H is smaller
and faster than the same program written using the mouse library.
Most professionally developed programs that use the mouse interact
with it through Interrupt 33H. Any language that can make calls to the
MS-DOS interrupts can use this method of interfacing with the mouse
driver.

MOUSE MENUS

18

A mouse menu program displays menus with options you can select.
Selecting an option either feeds characters into the keyboard buffer for
the current application or executes other menu commands.

NOTE: The only way the mouse menu programs interact with an application is by
detecting mouse motion or button presses and then feeding characters into the key-
board buffer.

Chapter 2: Overview of Mouse Programming

The keyboard buffer is a small portion of memory that holds the
characters you enter from the keyboard. Your application program
reads these characters from the buffer in the order in which they were
input and acts on them accordingly. A mouse menu program can emu-
late the keyboard by sending characters directly to the keyboard buffer
as you move the mouse or press one or more mouse buttons.

Menu software loads the keyboard buffer much faster than you
can load it by typing at the keyboard. How fast the buffer is loaded by
the keyboard is limited to a set rate determined by each computer’s
BIOS; however, the menu software doesn’t have this limitation. For this
reason, when the mouse emulates the direction keys, the cursor moves
much faster than if you pressed the actual keys on the keyboard.

NOTE: Because certain applications access the keyboard directly, your mouse
menu program might not work as you expect. In addition, mouse menu programs
can’t generate some keystrokes, such as Ctrl-Alt-Del. These keystrokes are listed
under the TYPE statement entry in Chapter 4, “Mouse Menu Language
Statements.”

Keyboard Mapping

A mouse menu program recognizes seven mouse actions:
B Left-hand button pressed

Right-hand button pressed

Both buttons pressed

Right motion

Left motion

Upward motion

Downward motion

Note that unlike the desktop Microsoft mouse, the BallPoint
mouse does not follow a left and right button orientation. To provide
flexibility in orienting the device the way you want, the BallPoint offers
two pairs of buttons. They are referred to as “‘primary’’ and ‘‘second-
ary”’ mouse buttons because their position might not consistently be
physically left or right—depending on where you attach the device to
your laptop keyboard. Functionally, however, the primary button works
in the same way as the left-hand button on the conventional Microsoft
mouse. The secondary button works in the same way as the righthand

PART I: INTRODUCTION

button. The COMPASS orientation program lets you designate primary
and secondary buttons.

NOTE: Documentation for your applications might refer to left and right mouse
buttons. Remember that for the BallPoint mouse, this means you should use the
“primary” and “secondary” buttons you define with the orientation program
COMPASS.

You can make each of these actions correspond to one or more
menu commands. For example, some useful and common mappings of
mouse actions to the keyboard buffer include the following:

m Right, left, upward, and downward motions that correspond to
the right-arrow, left-arrow, up-arrow, and down-arrow keys

B A button press that corresponds to pressing Enter or Esc

® A button press that tells the menu software to display a custom
menu, which you usually write to execute application program
commands or MS-DOS commands

The following mouse menu program demonstrates some simple

keyboard mapping:
BEGIN 1b,rb,bb,1m,rm,um,dm,48,48
1b: EXECUTE f1 ;Left button emulates F1 key
rb: EXECUTE entkey ;Right button emulates Enter key
bb: EXECUTE escape ;Both buttons emulate Esc key
Tm: EXECUTE Tleft ;Left movement emulates left-arrow key
rm: EXECUTE right ;Right movement emulates right-arrow key.
um: EXECUTE up ;Up movement emulates up-arrow key
dm: EXECUTE down ;Down movement emulates down-arrow key
fl: TYPE 0,59 ;These commands perform the
entkey: TYPE enter ;actual work when you move
escape: TYPE 27 ;the mouse or press one or
left: TYPE 0,75 ;both mouse buttons. Refer
right: TYPE 0,77 :to Chapter 4 for a detailed
up: TYPE 0,72 ;explanation of each of
down: TYPE 0,80 ;these commands.

Creating a Mouse Menu

The mouse menus programming language has commands that let you
create custom pop-up menus in a variety of configurations and hier-
archies. You can create simple single-function menus, or you can create

20

Chapter 2: Overview of Mouse Programming

elaborate, multilayered menu systems in which choosing an item from
one menu can call up another menu.

You follow the same basic steps to create a mouse menu as you do
when developing any other software:

1. Design and write the source code.
2. Compile the source file.

3. Run the mouse menu program.

4. Debug the program.

For instructions on creating a mouse menu program, see Chapter 3,
“Creating Your Own Mouse Menu.”’

THE MOUSE PROGRAMMING INTERFACE

Mouse menus provide mouse support for an existing application pro-
gram that doesn’t already support the mouse. However, the most effi-
cient way to add mouse program support is to write the mouse support
directly into the application program’s code. The mouse can then act
as a separate user-input device, not merely a keyboard emulator. The
most important feature the mouse brings to the user interface is the
free-floating cursor used in many popular products such as Microsoft
Word, Microsoft Works, AutoCAD, and Microsoft Windows. This fea-
ture makes programs more intuitive and user-friendly.

As the link between the mouse hardware and the application soft-
ware, the mouse driver keeps constant track of mouse movement and
button-press information. When an application program needs mouse
information, it makes a request to the driver, which then returns the re-
quested information to the application program.

Working with Functions

The mouse driver understands 53 input and output operations. Each
operation, or function, is a specific instruction to the mouse driver that
enables a program to communicate with the mouse. Some functions re-
quest information about the mouse, such as button-press information,
relative cursor position, and relative motion. Other functions control
characteristics of the mouse interface by regulating the sensitivity of
cursor motion, defining the shape of the cursor, and limiting cursor
movement to a specific area. The application program makes requests
of the mouse driver through the mouse function calls, and the driver
does the rest.

21

PART I: INTRODUCTION

Communicating with the Mouse Driver

22

You can communicate with the mouse driver from within a program in
the following two ways: You can access the MOUSE.LIB library, which
allows the program to communicate with the mouse driver by following
the calling conventions of a particular language; or you can communi-
cate with the driver by using MS-DOS Interrupt 33H. All mouse func-
tions are available by making library calls or by using MS-DOS Inter-
rupt 33H. Note, however, that each method has distinct advantages.

NOTE: The mouse driver and the corresponding interface control only the mouse.
You must set video modes and program interaction with the mouse within a pro-
gram as required for your specific application.

Using the MOUSE.LIB Library

You can use the MOUSE.LIB library supplied with the disks in this book
as a library file for several Microsoft languages. You add mouse support
to a program by making procedure calls in Pascal, subprogram calls in
QuickBasic, function calls in C and QuickGC, or subprogram calls in
FORTRAN. The library interprets all parameter passing and declara-
tions to be consistent with the language you are using. Thus, no special
programming techniques are necessary to program the mouse. Calls to
the mouse simply become subroutines.

To use the mouse library, the language you use must support
Microsoft library conventions. If the language supports the conven-
tions, you can link the library with your program. For information
about linking to various mouse programs, see Chapter 9, ‘““Sample
Mouse Programming Interface Programs.”

You might also want to consult the documentation of the lan-
guage you are using regarding linking of external libraries. If the lan-
guage doesn’t support the Microsoft library conventions, you will be
unable to link with the MOUSE.LIB library. However, it might be pos-
sible to program the mouse by using Interrupt 33H, as described in the
following section.

Using Interrupt 33H

A command in the AUTOEXEC.BAT or CONFIG.SYS file usually loads
the mouse driver when MS-DOS starts. The driver installs the starting
address as the vector for Interrupt 33H and then attaches itself to the
operating system. You can then access the mouse driver through soft-
ware Interrupt 33H. When the software calls this interrupt, the system

Chapter 2: Overview of Mouse Programming

finds the address of the mouse driver in the interrupt vector table, goes
to the mouse driver, and executes the requested function.

NOTE: The mouse driver (MOUSE.COM or MOUSE.SYS) must be installed in
memory when an application or program uses mouse function calls. When the
driver is loaded, programs can access the Interrupt 33H vector by using the mouse
Junction calls (in which the driver provides an interface for application
programmers).

You can specify the different functions by loading the AX, BX, CX,
and DX registers with the appropriate values. Some functions also use
the ES, SI, and DI registers. The mouse driver returns values to the call-
ing routine through these same registers. For detailed information
about using registers to pass function variables, see Chapter 8, ‘‘Mouse
Function Calls.”

The primary advantage of using Interrupt 33H instead of the
mouse library is improved execution speed. Also, languages that can’t
use the supplied mouse library can use Interrupt 33H if they can load
processor registers and make calls to MS-DOS.

EGA Register Interface
Although the mouse driver supports EGA and VGA hardware, program-
mers sometimes like to program their EGA or VGA hardware directly.
Because the mouse driver keeps track of the EGA and VGA registers,
programmers must take some special considerations into account when
programming the D, E, F, 10, 11, 12, and 13 graphics modes of the EGA
and VGA adapters.

For detailed information about using the EGA Shadow Register
Interface, see Chapter 10, ‘“Writing Mouse Programs for IBM EGA
Modes.”

23

PART li

Mouse Menus

Chapter 3: Creating Your Own Mouse Menu

® Mouse Menu Language Commands
= Statement Format

= Mouse Menu Program Structures

m Creating a Mouse Menu Program

Chapter 4: Mouse Menu Language Statements

m Statement Syntax Conventions
= Statement Descriptions

Chapter 5: Sample Mouse Menu Programs

= The SIMPLE Mouse Menu Program
= The DOSOVRLY Mouse Menu Program
m Other Sample Mouse Menu Programs

Chapter 3

Creating Your Own
Mouse Menu

This chapter provides an overview of the mouse menu programming
language and how you can use it to provide mouse support for appli-
cations that don’t already support the mouse. The mouse menu pro-
gram communicates with an application through the keyboard buffer
by issuing a set of commands. The following sections describe how to
employ those commands to design and run your own mouse menus.

MOUSE MENU LANGUAGE COMMANDS

The mouse menu programming language includes 13 commands. You
use these commands in statements that assign different functions to
the mouse, create menus, and simulate key presses.

Figure 3-1 lists the commands in the mouse menu programming

language.
Command Purpose
ASSIGN Assigns actions to be performed in response to mouse
events or changes mouse-movement sensitivity.
BEGIN Assigns initial action to be performed when a mouse

event (such as moving the mouse, pressing a mouse
button, or choosing a menu item) occurs and sets
initial mouse-movement sensitivity.

Figure 3-1. The mouse menu programming language commands. (continued)

27

PART IIl: MOUSE MENUS

Figure 3-1. continued

Command Purpose

EXECUTE Specifies the label of the statement that contains the
mouse menu statements to be executed when a mouse
event (such as moving the mouse, pressing a mouse
button, or choosing a menu item) occurs.

MATCH Specifies the action to be performed if a designated
character or string of characters is displayed at a
defined location on the screen.

MENU Begins a menu subroutine.

MEND Ends a menu subroutine.

NOTHING Indicates that no action will be performed. A
NOTHING statement can function as an alternative to
using an EXECUTE, TYPE, or MATCH statement.

OPTION Specifies a menu item within a menu subroutine and
the action to be performed when you choose that item.

POPUP Begins a pop-up subroutine.

PEND Ends a pop-up subroutine.

SELECT Defines the action to be performed when you choose an
item from a pop-up menu.

TEXT Defines the text for a pop-up menu title or menu items.

TYPE Specifies the key or keys “‘typed’’ into the keyboard

buffer when a mouse event (such as moving the mouse,
pressing a mouse button, or choosing a menu item)
occurs.

STATEMENT FORMAT

The mouse menu programming language lets you enter statements in
uppercase or lowercase letters. Most statements take the following

28

format:

[7abel:] command [parameters ;comments]

NOTE: A BEGIN statement and statements within menu and pop-up subroutines
don’t follow this format because they don’t require labels. A BEGIN statement
doesn’t need a label because it always appears as the first statement in a program,
and statements within menu or pop-up subroutines don’t need labels because they

run sequentially.

The following sections describe the components of a statement.

Chapter 3: Creating Your Own Mouse Menu

Labels
Alabel is the name you give a mouse menu statement. Except for state-
ments in menu or pop-up subroutines, all statements must have labels
in order for the program to access them. Your program calls a state-
ment when its label is referenced in another statement. When the
labeled statement’s action is completed, control returns to the state-
ment that referenced the label, not to the next statement. In the follow-
ing statement, matl is the label of the MATCH statement:

matl: MATCH 23,,inverse,"Format”,execl,exec2

When you include a label, be sure to follow these guidelines:

® Begin a label with a letter and follow it immediately with a
colon.

® Leave at least one space between the colon and the command.

® Don’t use mouse menu command names or the words backsp,
enter, esc, or tab for labels.

® Use any printable standard ASCII characters excepta colon in a
label.

m Create labels that suggest the statement’s purpose in the pro-
gram. For example, you might use menul as the label for the
first menu subroutine.

Parameters

A parameter is a variable that affects the resulting action of a state-
ment. When you use a statement, you must substitute an appropriate
value for each parameter you want to use. All commands except
NOTHING, MEND, and PEND require parameters.

Parameters follow the command word in a statement, with a space
separating the command word and the first parameter. Commas sepa-
rate any additional parameters.

The EXECUTE and TYPE commands allow up to 15 parameters.
Other commands, such as the MATCH command, require a specific
number of parameters. However, if you don’t want to include a particu-
lar parameter, you can insert an additional comma to hold the place of
the unused parameter. The MAKEMENU utility uses the default value
for any parameter left out of a statement requiring a specific number of
parameters. (See the section titled ‘‘Creating a Mouse Menu Program”’
later in this chapter for more information about the MAKEMENU

29

PART Il: MOUSE MENUS

30

utility.) For example, in the statement that follows, 23, inverse, Format,
execl, and exec2 are five of the six required values for MATCH statement
parameters. The second comma immediately following the first comma
tells the MAKEMENU utility that the second parameter is not included
and that the default value should be used:

matl: MATCH 23,,inverse,"Format",execl,exec2

The mouse menu programming language uses three types of parame-
ters: numeric parameters, string parameters, and attribute parameters.

Numeric Parameters
You use numeric parameters for numeric data, such as screen coordi-
nates or movement sensitivity values for the mouse.

In the preceding example, 23, the row coordinate for the MATCH
statement, is the value for a numeric parameter.

String Parameters

A string parameter can contain digits, letters, special characters, or

spaces. Most string parameters specify text for menus or messages.
You must enclose a string parameter in double quotation marks

("") and thus cannot include a double quotation mark as part of the

string.

Attribute Parameters

The attribute parameter determines the display attribute, which speci-
fies the way in which a menu or message box appears on the screen.
This parameter can take one of four values: normal, bold, inverse, or, if
your system uses a color display adapter and monitor, a number that
designates specific foreground and background colors. Figure 3-2
shows how the normal, bold, and inverse values affect the text dis-
played by a pop-up menu.

Sample Commands | Sample Commands Sanple €
T
CLS s
DIR DIR
Normal Bold Inverse

Figure 3-2. Effects of display attributes applied to pop-up menu text.

Chapter 3: Creating Your Own Mouse Menu

If you don’t specify an attribute parameter, the default attribute is
used. See Chapter 4, ‘“‘Mouse Menu Language Statements,” for a de-
scription of each command statement’s default attribute.

Color Menus

If your system uses a color display adapter and color monitor, you can
use the attribute parameter in a MATCH, MENU, or POPUP statement
to specify particular colors for the background and foreground of a
menu or message box. Text appears in the foreground color; the re-
mainder of the box appears in the background color.

Figure 3-3 lists the available foreground and background colors
and corresponding values for each color. A particular color’s value
differs depending on whether it will fill foreground or background.
The display attribute that specifies a color combination equals the sum
of the values for the desired foreground and background colors. Sup-
pose you want to display green text on a blue background. The value
for a green foreground is 2, and the value for a blue background is 16.
Therefore, the value of the attribute parameter is 18.

Color Foreground Background
Black 0 0
Blue 1 16
Green 2 32
Cyan (blue-green) 3 48
Red 4 64
Magenta 5 80
Brown 6 96
White 7 112
Gray 8 128
Light blue 9 144
Light green 10 160
Light cyan 11 176
Light red 12 192
Light magenta 13 208
Yellow 14 224
White (high intensity) 15 240

Figure 3-3. Foreground and background color values.

31

PART Il: MOUSE MENUS

NOTE: Be aware that color shades can vary according to the type of equipment you
have. Also, if you specify a display-attribute value greater than 127, the foreground
color blinks while the menu or message box is displayed. In addition, a gray back-
ground (128) appears the same as a black background (0).

Specifying the value 7 is equivalent to specifying the normal at-
tribute parameter. The value 7 is the sum of 0 (the value for a black
background) and 7 (the value for a white foreground). Specifying 15 is
equivalent to specifying the bold attribute parameter. The value 15 is
the sum of 0 (the value for a black background) and 15 (the value for a
high-intensity white foreground). Specifying a value of 112 is the equiva-
lent of specifying the inverse attribute parameter. The value 112 is the
sum of 112 (the value for a white background) and 0 (the value for a
black foreground).

Comments

Comments describe what a statement does. They help you and anyone
who might read your program to understand the program, but they
have no effect on statement execution.

You can insert a comment at the end of a statement or on a sepa-
rate line. Simply type a semicolon (;) followed by the comment. If you
include a comment on the same line as that of a statement, separate the
last parameter of the statement and the semicolon preceding the com-
ment with one or more spaces. The following is an example of a TYPE
statement followed by a comment:

F1: TYPE 0,59 ;Simulates pressing the F1 key

MOUSE MENU PROGRAM STRUCTURES

The following sections describe how each type of command is used in a
mouse menu source file. For detailed information about commands
and their parameters, see Chapter 4, ‘““Mouse Menu Language
Statements.”’

Mouse Event Commands

Mouse event commands, BEGIN and ASSIGN, specify the statements
the program executes when particular mouse events occur, such as
pressing a mouse button, moving the mouse, or choosing a menu item.

32

Chapter 3: Creating Your Own Mouse Menu

The BEGIN Command
Use the BEGIN command in a statement to specify the initial state-
ments to be executed when particular mouse events occur and to set
the initial mouse sensitivity. Always use a BEGIN statement as the first
statement in your program. (The ASSIGN command can be used later
to change these assignments.)

You can include one or more of the following parameters in a
BEGIN statement:

B Button parameters: [fbin (left-hand button), rtbtn (right-hand
button), and/or btbtn (both buttons). Button parameters define
the action performed when you press one or both mouse
buttons.

B Movement parameters: [fmov (mouse left), rtmov (mouse right),
upmov (mouse up), and/or dnmov (mouse down). Movement
parameters define the action performed when you move the
mouse.

® Movement sensitivity parameters: hsern (horizontal movement
sensitivity) and/or vsen (vertical movement sensitivity). Move-
ment sensitivity parameters define the distance the mouse must
move before the cursor will move. This control is helpful in
tailoring cursor movement to the different column and row
widths found in spreadsheet programs. You specify the move-
ment of the mouse in a unit of distance known as a mickey,
which is approximately %00 inch. For more information about
the mickey, see Chapter 6, ‘‘Mouse Programming Interface.”

The ASSIGN Comnmand

Use the ASSIGN command in a statement to assign new values to
mouse events and mouse movement sensitivity. An ASSIGN command
is useful when you want your mouse menu program to execute particu-
lar statements or subroutines depending on the current mode of an ap-
plication program or on other conditions that require a change in
mouse functioning (thus necessitating your changing the mouse-event
values or mouse movement sensitivity value).

Menu Subroutine Commands

Menu subroutines create single-column pop-up menus, bordered
menus that display a single column of menu items. (See Figure 3-4 on
the following page.)

33

PART ll: MOUSE MENUS

34

Sanmple Commands

CLS
DIR

Figure 3-4. Single-column pop-up menu.

To choose items in a menu, move the mouse to highlight the
desired item and then press either mouse button. If you press both
mouse buttons at one time, the equivalent of a NOTHING command is
executed and the menu disappears.

MENU, OPTION, and MEND are menu subroutine commands. To
code menu subroutines, use the following format:

label: MENU ["title"],[rowl,[column],[attribute]
OPTION ["text"],[Tabel]

MEND

The MENU Command
Begin each menu subroutine with a MENU command. You can include
the following parameters:

m The menu’s title, enclosed in double quotation marks (" ")

® The row and column of the screen where the upper left corner
of the menu will appear

® The menu’s display attribute

The OPTION Command

Include the OPTION command in statements within a menu subrou-
tine to define one or more menu items and the action performed when
you choose an item. Always include at least one OPTION statement that
lets you exit from the menu.

The text parameter is the text the menu displays for that item. If
you omit the fext parameter, the menu displays a blank line. Case is sig-
nificant; that is, uppercase and lowercase characters are displayed ex-
actly as you type them.

The pointer parameter is the label of the statement to be executed
when you choose a particular menu item. If you do not specify a pointer
parameter, the equivalent of a NOTHING statement is executed when
you choose that item, and the menu disappears.

Chapter 3: Creating Your Own Mouse Menu

The MEND Command
Always follow the last OPTION statement with a statement that uses the
MEND (menu end) command, which ends the menu subroutine.

Sample Menu Subroutine

The following menu subroutine produces the Inverse Attribute menu
shown in Figure 3-2. In this example, the upper left corner of the menu
produced by this subroutine appears at row 5, column 20. Because an
attribute is not specified in the MENU statement, the inverse display at-
tribute (the default) is used. When the menu appears on the screen,
the first menu item is highlighted (in this case, Cancel Menu).

If you choose Cancel Menu, the menu disappears because a pointer
parameter was not specified for that OPTION statement. If you select
any other item, the statement identified by the label specified in the
pointer parameter for that OPTION statement is executed.

menul: MENU "Sample Commands",5,20
OPTION "Cancel Menu"
OPTION "CLS",cls
OPTION "DIR",dir
MEND

cls: TYPE "cls",enter

dir: TYPE "dir",enter

Pop-up Subroutine Commands

You can use pop-up subroutines to create multiple-column menus and
message boxes. Multiple-column menus function in the same way as
single-column menus. You choose an item by moving the mouse
pointer to the item and then pressing either mouse button. Pressing
both mouse buttons at one time issues the equivalent of a NOTHING
statement and removes the menu from the screen. When the menu first
appears on the screen, the first menu item, as defined by the first
SELECT statement in the POPUP subroutine, is highlighted. Figure 3-5
shows a multiple-column menu.

CURSOR MOUVEMENT ————
I Top of screen
Screen up Bottom of screen

Screen doun Start of file
Previcus place End of file

Figure 3-5. Multiple-column menu.

35

PART Il: MOUSE MENUS

Message boxes are simply pop-up menus that display messages in-
stead of menu items, as shown in Figure 3-6. You can combine pop-up
subroutines with MATCH commands so that message boxes appear
when your application program changes the display mode or when
other conditions change the screen display.

OUSE HELP

Left button - Displays Edit/Block menu
Right button - Displays Cursor Movement menu
Both buttons - Displays Edit/File menu

Moving the nouse up, down, left, or right
causes the cursor to move in that direction.

Figure 3-6. Message box.

The pop-up subroutine commands are POPUP, TEXT, SELECT,
and PEND. To code pop-up subroutines for multiple-column menus
and message boxes, use the following format:

label: POPUP [rowl,[column],[attribute]
[TEXT ["text"]]

SELECT row,column,length,[pointer]

PEND

The POPUP Command

Begin each pop-up subroutine with a statement that uses the POPUP
command. You can include the following three parameters:

B The row coordinate of the menu’s upper left corner

B The column coordinate of the menu’s upper left corner

® The menu’s display attribute
The TEXT Command
Include the TEXT command in statements within a pop-up subroutine
to specify the menu title, menu items, and, optionally, menu borders.

Type the title text, item text, and menu borders exactly as you want
them to appear on each line of the menu and enclose them in double

36

Chapter 3: Creating Your Own Mouse Menu

quotation marks (" "). The text generated by a TEXT command ap-
pears on the screen in a location relative to the coordinates you specify
in the POPUP statement.

NOTE: Menus created by using the MENU command and menus created by
using the POPUP command differ. The MENU command, which creates only
single-column menus, draws a border around the displayed menu and a line be-
tween the menu title and the menu items. See Figure 3-2. The POPUP command
doesn’t draw the border and divider line, so you must include line-drawing charac-
ters within TEXT statements. The easiest way to do so is to type equal signs (=) or
hyphens (-) for the horizontal lines, and vertical-line characters (1) for the vertical
lines. Examples of this technique are shown on the following pages. To produce the
same line-drawing characters as those created by the MENU command, use the
line-drawing characters of the extended ASCII character set, shown in Appendix A,
“ASCII Character Set.” To create these characters, hold down the Alt key, type the
number of the character on the numeric keypad, and then release the Alt key. The
line-drawing character appears on your screen.

The SELECT Command
Use the SELECT command in statements to define the size of the area
in which you can choose each menu item. Specify the row, column, and
width of the selection area, relative to the location of the menu’s upper
left corner. The coordinates of the upper left corner of a pop-up menu
are (1, 1). You can include a pointer parameter in a SELECT statement
to specify a statement to be executed when you choose an item that is
pointed to by the SELECT statement. As with an OPTION statement for
a single-column menu, you simply specify the label of the statement to
be executed.

Note that you must include at least one SELECT statement in each
pop-up subroutine.

The PEND Command
Always follow the last SELECT statement with a statement that uses the
PEND (pop-up end) command, which ends the pop-up subroutine.

Sample Pop-up Subroutines
The following pop-up subroutine creates the multiple-column menu
shown in Figure 3-5.

In this example, the upper left corner of the menu begins at row
2, column 1. Because an attribute parameter is not specified in the
POPUP statement, the inverse display attribute (the default) is used.

37

PART li: MOUSE MENUS

38

The TEXT statements define the menu’s borders, title, and text.
Their location on the screen is relative to the coordinates you indicated
in the POPUP statement as the upper left corner of the menu. The first
character of the first menu item appears at relative row 2, column 3 in
the menu; however, its actual screen coordinates are row 3, column 3.
When the pop-up menu appears on the screen, the first item is
highlighted. '

The SELECT statements define item selection areas. For the first
item (Cancel menu), 2, 3, and 15 define the row, column, and width of
the selection area. Because the SELECT statement for the Cancel menu
doesn’t include a label for the pointer parameter, the menu disappears
from the screen if you choose Cancel menu. The other SELECT
statements execute the statements named in their pointer parameters.

movemen: POPUP 2,1
TEXT " ======== CURSOR MOVEMENT ======== *
TEXT ": Cancel menu Top of screen A
TEXT "} Screen up Bottom of screen "
TEXT "t Screen down Start of file A
TEXT "i Previous place End of file H

TEXT "
SELECT 2,3,15

SELECT 3,3,15,keyctrlr

SELECT 4,3,15,keyctrlc

SELECT 5,3,15,keyctrigp

SELECT 2,18,17,keyctrige

SELECT 3,18,17,keyctrlgx

SELECT 4,18,17,keyctrigr

SELECT 5,18,17,keyctriqc

PEND

The following pop-up subroutine creates the message box shown
in Figure 3-6. Note that the message box in Figure 3-6 uses the ex-
tended ASCII characters 186, 187, 188, 200, 201, and 205 to create the
border.

In this example, the POPUP statement defines row 2, column 1 as
the upper left corner coordinates. Because an attribute parameter is not
specified in the POPUP statement, the inverse display attribute is used.

The TEXT statements define the message-box border, title, and
message text. Their screen location is relative to the coordinates you
specified in the POPUP statement as the location of the upper left cor-
ner of the menu. The single SELECT statement highlights the menu

Chapter 3: Creating Your Own Mouse Menu

box title. Because the subroutine that produces the message box con-
tains only one SELECT statement, you cannot move the cursor within
the message box.

mousehip: POPUP 2,1
TEXT " W
TEXT "i Left button - Displays Edit/Block menu e
TEXT "i Right button - Displays Cursor Movement menu }"
TEXT ": Both buttons - Displays Edit/File menu s
TEXT ™! A
TEXT "! Moving the mouse up, down, left, or right "
TEXT "i causes the cursor to move in that direction. "
TEXT "4 "
TEXT " "
SELECT 1,18,10
PEND

Action Commands

Action commands specify the action to be performed when you choose
a menu item, press one or both mouse buttons, or move the mouse. The
EXECUTE, TYPE, and NOTHING commands are action commands.

It’s important to understand the sequence of performed actions
in mouse menu programs. Most programming languages follow se-
quentially from one statement to the next unless they encounter a
branching statement or a subroutine call. You can think of each mouse
menu program statement as a subroutine, with an implied return at the
end. And think of menu and pop-up subroutine blocks as single com-
plex statements.

A mouse menu program is started when an action specified in a
BEGIN or ASSIGN statement, such as pressing a mouse button or mov-
ing the mouse, occurs. The program then branches to the labeled state-
ment indicated in the BEGIN or ASSIGN statement. When the program
executes that statement, it returns to the BEGIN or ASSIGN statement
and then terminates. Before completing its task, however, that state-
ment might call another statement, and so on.

When the program completes the action of a labeled statement, it
returns control to the statement that referenced that label. The pro-
gram terminates when the nested chain of statements completes its
tasks and the program flow returns to the originating BEGIN or
ASSIGN statement.

39

PART Il: MOUSE MENUS

40

BEGIN
leftb:

rightb:

found:
nope:

txtl:
txt2:
txt3:

The following example shows the flow of the action when you
press the right-hand mouse button:

leftb,rightb ;Pressing the right button calls "rightb"
NOTHING ;Pressing the left button does nothing

MATCH 1,1,,"XXX",found,nope ;If XXX is found in the upper left
;corner, call "found"--otherwise, call

;nnopen
EXECUTE txtl,txt3 ;Simulates typing "Xs were found!"
EXECUTE txtl,txt2,txt3 ;Simulates typing "Xs were not found!"™

TYPE "Xs were "
TYPE "not "
TYPE "found!"

Assuming that XXX is currently displayed in the upper left corner

of the screen, the program performs the following actions when the
right-hand button is pressed.

Statement Action

1. BEGIN Program begins here when you press the
right button.

2. BEGIN:rightb The BEGIN statement calls rightb.

3. BEGIN:rightb:found The MATCH statement labeled rightb
calls found.

4. BEGIN:rightb:found:txtl The EXECUTE statement labeled found
calls txt1.

5. BEGIN:rightb:found The TYPE statement labeled xt! is

executed, and control returns to found.
6. BEGIN:rightb:found:txt3 The EXECUTE statement labeled found

calls txt3.
7. BEGIN:rightb:found The TYPE statement labeled txt3 is
executed, and control returns to found.
8. BEGIN:rightb The EXECUTE statement labeled found
is executed, and control returns to rightb.
9. BEGIN The MATCH statement labeled rightb is

executed, and control returns to the
originating BEGIN statement.

The BEGIN statement is executed, the
mouse menu program terminates, and
control returns to you.

Chapter 3: Creating Your Own Mouse Menu

The EXECUTE Command
Use the EXECUTE command in a statement to define a series of state-
ments to be executed when you perform one of the following actions:

B Press one or both mouse buttons.

B Choose a menu item.

B Move the mouse.

B Cause a MATCH command to be executed.

You use statement labels to identify statements that an EXECUTE
statement calls. You can specify up to 15 labels for each EXECUTE
statement. The following EXECUTE statement includes five labels. The
program executes the statement labeled dsk, and then the statement
labeled s, and so on. After the program executes the statement labeled
exec 4, it returns to the statement that referenced execl.

execl: EXECUTE dsk,s,a,s,execd

Itis possible for an EXECUTE statement to call another EXECUTE
statement. In fact, up to 15 EXECUTE statements can call other EXE-
CUTE statements. For example, the following sequence of nested state-
ments simulates typing abcdef:

start: EXECUTE abcdef
abcdef: EXECUTE abc,def

abc: EXECUTE ab,c

ab: EXECUTE a,b

a: TYPE "a"

b: TYPE "b"

c: TYPE "c"

def: TYPE "def"
The TYPE Command

Use a TYPE command in a statement to simulate key presses. For ex-
ample, the following TYPE statement simulates pressing the A key:

keyl: TYPE "A"

The following TYPE statement simulates typing the diskcopy a: b: com-
mand and pressing the Enter key:

keyl5: TYPE "diskcopy a: b:",enter

41

PART Il: MOUSE MENUS

Note that you can enter a series of separate keystrokes by separating
each group with commas. You can indicate which key is simulated in
one of the following three ways:

m Enter the key’s name enclosed in double quotation marks (for
example, "A").

m Enter the ASCII code that matches the character on the key
(for example, enter 65 for A). You can use extended ASCII
codes, ASCII control characters, and extended-keyboard scan
codes to simulate special keys or key sequences, such as the Alt,
Ctrl-Q, Spacebar, and direction keys. (For a list of ASCII
control characters and extended-keyboard scan codes, see Ap-
pendix A, “ASCII Character Set.”)

® Enter the key’s symbolic name if it has one. The predefined
symbolic keys are Enter, Tab, Backsp, and Esc.

In the following TYPE statements, the comments indicate which
key or keys each statement simulates. Notice that the statements
labeled dir and a simulate typing character strings by enclosing the
characters in double quotation marks. The statements labeled If; 7¢, up,
and dn define the direction keys by using extended keyboard scan
codes. The statement labeled s simulates pressing the spacebar by using
the standard ASCII code for a space. The statement labeled ent simu-
lates pressing the Enter key by using the symbolic name for the key.
The statement labeled cls simulates typing the MS-DOS CLS command
and pressing the Enter key. The statements labeled ctrlc and ctrld simu-
late pressing Ctrl-key combinations. The statements labeled home and
end simulate pressing the Home and End keys.

Statement Comments

dir: TYPE "dir" ; Types the DIR command

a: TYPE "a:" ; Types a:

1f: TYPE 0,75 ; Simulates pressing the left-arrow key
rt: TYPE 0,77 ; Simulates pressing the right-arrow key
up: TYPE 0,72 ; Simulates pressing the up-arrow key
dn: TYPE 0,80 ; Simulates pressing the down-arrow key
s: TYPE 32 ; Types a space

ent: TYPE enter ; Simulates pressing the Enter key

(continued)

42

Chapter 3: Creating Your Own Mouse Menu

continued
Statement Comments
cls: TYPE "cls",enter ; Types CLS command, simulates pressing the
Enter key
ctrlc: TYPE 3 ; Simulates pressing Ctrl-C
ctrld: TYPE 4 ; Simulates pressing Ctrl-D
home: TYPE 0,71 ; Simulates pressing the Home key
end: TYPE 0,79 ; Simulates pressing the End key

The NOTHING Command
Use a NOTHING command in a statement to specify that no action is to
be performed.

The MATCH Command

Use the MATCH command in a statement to direct a mouse menu
program to perform an action depending on what is displayed on
the screen.

A MATCH statement’s parameters specify a string of characters, a
row and column on the screen, and a display attribute. If a line on the
screen matches the specified string, begins at the specified row and col-
umn, and appears in the specified display attribute, then the program
executes an assigned statement. This feature enables a mouse menu
program to respond to different operating modes of the application
program or screen display.

For example, if an application program always displays the word
COMMAND in column 1 of row 22 of the screen when it is in command
mode and if it displays the word ALPHA in the same place when itisin
alphanumeric mode, you can use a MATCH command to perform an
action depending on which mode the application program is in.

A MATCH statement takes the following format:

MATCH row,column,[attribute],string,match,nomatch

The row and column parameters describe where the string parameter
must be located on the screen to qualify as a match. To be matched, the
row and column parameters must point to the first character of a
string. If row and column parameters are not included, the default loca-
tion coordinate becomes (1, 1). If the string parameter is not included,
the match succeeds with any text.

43

PART Il: MOUSE MENUS

44

The attribute parameter indicates how the string must appear on
the screen for a match. This parameter can take normal, bold, or in-
verse symbolic values or an integer value that denotes specific fore-
ground and background colors. If the attribute parameter is not
included or if it has the value 0, all display attributes are matched.

The match and nomatch parameters are the labels of the statements
executed if the match is made or not made, respectively. If the match or
nomatch parameters are not included, the equivalent of a NOTHING
command is executed.

Sample Program

The following mouse menu source program shows how MATCH
statements are used. It also changes the active drive when you press the
right-hand mouse button. The program follows this procedure:

1. When you press the right-hand mouse button, the chdriv EXE-
CUTE statement calls the checka MATCH statement and then
clears the screen.

2. The checka MATCH statement checks row 2, column 1 on the
screen. If it finds a: in normal display mode, it executes the tob
statement. If a: is not found, it executes the checkb statement,
which performs a similar check for the b: characters. The pro-
gram calls up to three MATCH statements, looking for the first
match with a:, b:, or c..

3. The tob statement clears the screen, changes the active drive to
B, and ends the mouse menu program. Similarly, toc and toa
change the active drive to C or A.

4. If the three MATCH statements fail to find a:, b:, or c: at row 2,
column 1, the program clears the screen and terminates
without changing the active drive. With the screen cleared, the
MS-DOS prompt should put the active drive letter in row 2, col-
umn 1, ready for the next press of the right-hand mouse button.

5. Pressing the left-hand button creates a directory listing, and
pressing both buttons simulates pressing Ctrl-C.

BEGIN dir,chdriv,ctric

chdriv:

checka:
checkb:
checke:

toa:
tob:
toc:

a:
b:
c:

cls:
dir:

ent:
ctric:

EXECUTE checka,cls

MATCH 2,1,normal,"a:",tob,checkb
MATCH 2,1,normal,"b:",toc,checkc
MATCH 2,1,normal,"c:",toa

EXECUTE
EXECUTE
EXECUTE

TYPE "a:
TYPE "b:
TYPE "c:

TYPE "cl
TYPE "di

cls,a,ent
cls,b,ent
cls,c,ent

s",enter
r",enter

TYPE enter

TYPE 3

Chapter 3: Creating Your Own Mouse Menu

;Labels for left, right, or both
;Buttons
;Calls “"checka," then clears screen

;If a: found, change to drive B
;If b: found, change to drive C
;If ¢: found, change to drive A

;Clears screen, changes to drive A
;Clears screen, changes to drive B
;Clears screen, changes to drive C

;Types a:
;Types b:
;Types c:

;Clears the screen
;Creates directory listing

;Simulates pressing the Enter key
;Simulates pressing Ctri-C

CREATING A MOUSE MENU PROGRAM

The following procedure lets you create a mouse menu source file. It
then shows you how to create a mouse menu program from the source
file by using the MAKEMENU utility.

To create a mouse menu program, take the following steps:

1. Create the mouse menu source file by using a text editor or
word processing program.

2. Save the source file with the filename extension DEF. A file
with this extension is used by the MAKEMENU utility to gener-
ate a mouse menu program (a MNU file). When a source file is
converted to a MNU file, the resulting program must not ex-

ceed 57 KB.

3. Type makemenu and press the Enter key.

4. At the prompt, type the name of the source file (without the
DEF extension), and then press the Enter key.

45

PART Il: MOUSE MENUS

NOTE: Be sure to save the source file as a standard ASCII text file. Most simple
text editors save files in ASCII by default. In word processing programs, however,
you usually need to select a special unformatted option to create ASCII text. You
can combine steps 3 and 4 by typing makemenu followed by a space and the name
of the source file (without the DEF extension) on the same line.

If your file contains no errors, MAKEMENU displays the following
message:

Conversion completed

and returns you to MS-DOS. The mouse menu is then ready for you to
test. However, if your file contains errors, MAKEMENU displays the
types of errors and the statements that contain the errors. In this case,
correct the source file and repeat steps 3 and 4. For more information
about error messages, see Appendix B, ‘“‘Domestic Mouse-Driver
Messages.”

NOTE: The disks that come with this book contain mouse menu source programs
Jor some commonly used applications (such as WordStar) that don’t include built-in
mouse support. If you want to create a mouse menu from one of the source pro-
grams included on the disks, you can copy the source file and edit the copy to meet
your specific needs. You can then use the procedure just discussed to create mouse
menus.

WARNING: Mouse menu programs that use the TYPE command might not work
under DOS 4.0 and 4.01. The menu will install into memory but will not interface
correctly with DOS. The only available solution is to load the ANSLSYS driver
(that comes with DOS) by inserting the following line in your CONFIG.SYS file:

device=c:\dos\ansi.sys /1 /k

WARNING: The running of any of the following Microsoft products will disable
previously installed mouse menus: Microsoft Word; Microsoft QuickC; Microsoft
QuickBasic; M, the editor for MASM; and PWB, the editor of Microsoft C.

Testing the Mouse Menu Program

46

When the mouse menu source file has been successfully translated into
an executable menu file, it is ready for you to test.

NOTE: If when you ran the Mouse Setup program you did not specify that the
mouse driver should be loaded every time you start MS-DOS, be sure you type
mouse {0 install the mouse driver before you run your menu program. The menu
program will load before you type mouse; however, it will not work.

Chapter 3: Creating Your Own Mouse Menu

To test the mouse menu program, take the following steps:

1. Type menu filename at the MS-DOS prompt, and press the Enter
key to start your mouse menu program. In this command, file-
name is the name of the MNU file generated by MAKEMENU
with or without the MNU extension. When the mouse menu file
is loaded, the following message appears:

Menu installed

2. Start your application program, and test the menu to be sure it
works under all conditions in your program.

3. If your application program doesn’t work properly, quit the ap-
plication program and then end the mouse menu program by
typing menu off at the MS-DOS prompt and pressing the Enter
key. The following message is displayed:

Keyboard emulation off

4. Correct the source file, and then run the MAKEMENU utility
again.

Running a Mouse Menu Program

Follow the steps below to run a mouse menu program.

1. Use the MS-DOS COPY command to copy the mouse menu
(MNU) file and the MENU.COM file onto the disk that contains
the application program to be used with the menu.

2. Type menu filename to run the mouse menu program for the ap-
plication. In this command, filename is the name of the mouse
menu program. When the mouse menu file is loaded, the fol-
lowing message appears:

Menu installed

NOTE: To start a mouse menu program that is not in the current directory, in-
clude as part of filename the pathname of the directory that contains the mouse
menu file.

3. Run the application program according to the instructions in
the program’s documentation.

A mouse menu program runs independently of the corresponding
application program. You should end a mouse menu program and
begin another whenever you end one application and begin another.

47

PART Il MOUSE MENUS

Ending a Mouse Menu Program

To end the mouse menu program, simply type menu off and press the
Enter key. The following message is displayed:

Keyboard emulation off

You can then load and run another mouse menu program.

Allocating Memory for Mouse Menus

48

MENU.COM can allocate up to 57 KB of memory for a mouse menu
program. Note that the size of MENU.COM [7 KB] plus the size of the
MNU file cannot exceed 64 KB. If the menu file is smaller than 6 KB,
MENU.COM allocates 6 KB of memory. If the menu file is greater than
6 KB, MENU.COM allocates the exact size of the file.

Every time you start MS-DOS, the size of the first menu file you
load determines the amount of memory reserved for other menu files.
If you plan to use more than one mouse menu before restarting your
system, first load the MNU file that requires the greatest amount of
memory so that MENU.COM will allocate enough memory to hold each
menu file.

Note that a mouse menu will function correctly only if the appli-
cation it is working with allows memory-resident programs to run with
it. In addition, a mouse menu will not work with an application that in-
tercepts the keyboard interrupt and bypasses the keyboard buffer.

If you type menu off to disable a mouse menu, note that the
memory allocated by MENU.COM will not be released for use by other
programs.

Chapter 4

Mouse Menu
Language Statemenis

This chapter describes in detail each statement used by the mouse
menu programming language. Each statement description includes the
statement syntax, a description of each parameter, and one or more ex-
amples of how to use the statement.

STATEMENT SYNTAX CONVENTIONS

In this book, the following syntax conventions apply for each statement:

The command word appears in uppercase.

Labels appear in lowercase italic. A colon (:) and a space must
separate each label from the command word.

Parameters appear in lowercase italic. A comma (,) must sepa-
rate each parameter from another parameter. If you don’t in-
clude a parameter, you must include an additional comma
where the parameter would have appeared.

A parameter in brackets ([]) is optional. A parameter that
doesn’t appear in brackets is required.

If a parameter appears enclosed in double quotation marks
(" "), you must include the double quotation marks when typ-
ing the parameter.

If a parameter appears more than once in a statement, the sec-
ond occurrence of the parameter is enclosed in brackets and
followed by an ellipsis (...).

49

PART Il: MOUSE MENUS

THE ASSIGN STATEMENT

An ASSIGN statement takes the following format:

Tabel: ASSIGN [1fbtn],[rtbtn],[btbtn],[1fmov],[rtmov],
Lupmov],[dnmov],[hsen],[vsen]

Description

An ASSIGN statement redefines one or more of the mouse parameters
in a BEGIN statement or in the most recent ASSIGN statement. If you
don’t specify a parameter value in an ASSIGN statement, the last pa-
rameter value given (in either a BEGIN statement or another ASSIGN
statement) is used. Statement labels are the values you use for all pa-
rameters except hsen and vsen.

Parameters

The parameters for an ASSIGN statement are as follows:

Parameter

Description

Ifbtn
rtbin
btbtn
Ifmov
rtmov
upmov

dnmov

vsen

Label of the first statement to be executed when you
press the left-hand mouse button.

Label of the first statement to be executed when you
press the right-hand mouse button.

Label of the first statement to be executed when you
press both mouse buttons at one time.

Label of the first statement to be executed when you
move the mouse to the left.

Label of the first statement to be executed when you
move the mouse to the right.

Label of the first statement to be executed when you
move the mouse forward.

Label of the first statement to be executed when you
move the mouse backward.

Value of the horizontal movement sensitivity parameter.

Value of the vertical movement sensitivity parameter.

Example

In the following example, the BEGIN statement assigns initial values to

all button and movement parameters. Because values are not specified

for the sensitivity parameters (vsen and hsen), the default values 4 and 8

are used.

50

Chapter 4: Mouse Menu Language Statements

The ASSIGN statement changes the values of the left button, right
button, and up-and-down movement parameters. It also changes the
value of hsen to 16 and the value of vsen to 18. Commas indicate the
values that aren’t being changed.

BEGIN esc,ent,mml,1f,rt,up,dn

reassign: ASSIGN y,not,,,,not,not,16,18

THE BEGIN STATEMENT

A BEGIN statement takes the following format:

BEGIN [7fbtn],[rtbtn],[btbtn],[1fmov],[rtmov],
[upmov],[dnmov],[hsen],[vsen]

Description

A BEGIN statement defines the actions to be performed when a mouse
event occurs.

The parameters for BEGIN define the statements to be executed
when you move the mouse or press the mouse buttons. They also define
the movement sensitivity for the mouse. All parameters for the BEGIN
statement are optional. If you don’t provide a value for a mouse button
or a mouse movement sensitivity parameter (all parameters except hsen
and vsen), nothing happens when you press a mouse button or move the
mouse. If you don’t provide a value for hsen or uvsen, the default values 4
and 8 are used. You use statement labels as the values for all parameters
except hsen and vsen.

NOTE: When a mouse menu subroutine (see MENU and POPUP) is executed, the
parameters for the BEGIN statement do not affect the mouse functions within that
subroutine. You can press either mouse button to choose an item in a menu. All
mouse movement functions are active.

The movement sensitivity parameters, hsen and vsen, control the
horizontal and vertical movement sensitivity of the mouse. Movement
sensitivity is the distance the mouse must move (measured in mickeys)
in order for the on-screen pointer to move. (For more information
about the mickey, see Chapter 6, ‘‘Mouse Programming Interface.”)

51

PART IIl: MOUSE MENUS

Parameters

Because a BEGIN statement is always the first statement in a menu
source program, it doesn’t require a label. The parameters for the
BEGIN statement are as follows:

Example

52

Parameter Description

lfbtn Label of the first statement to be executed when you
press the left-hand mouse button.

rthtn Label of the first statement to be executed when you
press the right-hand mouse button.

btbtn Label of the first statement to be executed when you
press both mouse buttons at one time.

fmov Label of the first statement to be executed when you
move the mouse to the left.

rimov Label of the first statement to be executed when you
move the mouse to the right.

upmov Label of the first statement to be executed when you
move the mouse forward.

dnmov Label of the first statement to be executed when you
move the mouse backward.

hsen Number from 0 through 32,767 that defines how many
mickeys the mouse must move horizontally in order for
the on-screen pointer to move. If you specify the value 0,
the mouse’s horizontal movement is disabled. If you
don’t specify a value, the default value 4 (mickeys) is
used.

vsen Number from 0 through 32,767 that defines how many

mickeys the mouse must move vertically in order for the
on-screen pointer to move. If you specify the value 0, the
mouse’s vertical movement is disabled. If you don’t
specify a value, the default value 8 (mickeys) is used.

The BEGIN statement in this example defines initial values for all
parameters except btbtn, hsen, and vsen. Because btbin isn’t specified,
nothing happens when you press both mouse buttons. Because values
are not given for hsen and vsen, the default values 4 and 8 (mickeys)

are used.

Chapter 4: Mouse Menu Language Statements

BEGIN ent,es,,1f,rt,up,dn

1f: TYPE 0,75 ;Simulates pressing the left-arrow key
rt: TYPE 0,77 ;Simulates pressing the right-arrow key
up: TYPE 0,72 ;Simulates pressing the up-arrow key
dn: TYPE 0,80 ;Simulates pressing the down-arrow key
es: TYPE esc ;Simulates pressing the Esc key

ent: TYPE enter ;Simulates pressing the Enter key

THE EXECUTE STATEMENT

An EXECUTE statement takes the following format:
label: EXECUTE Tabel [,7label ...]

Description

An EXECUTE statement executes specified statements when you per-
form one of the following defined actions:

B Select a menu and a pop-up item.
B Move the mouse.

B Press one or both mouse buttons.
® Execute a MATCH statement.

Each EXECUTE statement can specify up to 15 other statements to
be executed. An EXECUTE statement can also call other EXECUTE
statements—you can link up to 15 EXECUTE statements in this man-
ner. Statements within an EXECUTE statement are executed sequen-
tially, beginning with the first statement.

Parameters

The parameters for an EXECUTE statement are as follows:

Parameter Description

label Name of the EXECUTE statement. All EXECUTE
statements must be labeled.
label Name(s) of the label(s) to call. Each EXECUTE

statement begins with a label. However, you should not
use that label as a parameter within that EXECUTE
statement or in a nested EXECUTE statement—if you
do, you will create an endless loop.

83

PART Il: MOUSE MENUS

Examples
In this example, the EXECUTE statement labeled exec4 executes the
statements labeled dir, s, a, and ent, which simulate typing dir a: and
then pressing the Enter key.
dir: TYPE "dir" ;Types the DIR command
s: TYPE 32 ;Simulates pressing the Spacebar
;TYPE " " can also be used
a: TYPE "a:" ;Types a:
ent: TYPE enter ;Simulates pressing the Enter key
exec4: EXECUTE dir,s,a,ent
In the following example, two EXECUTE statements are nested,
and the first EXECUTE statement calls the second. The comments de-
scribe the flow of the program when the execl statement is activated.
execl: EXECUTE a,ent ;Executes statements labeled a and ent
;and then returns to the point from
;which execl was called
a: EXECUTE al,a2 ;Executes al and a2 and then returns to the second
;part of the EXECUTE statement labeled execl
al: TYPE "a" ~ :Simulates typing a lowercase a and then returns
;to the middle of the a: statement
az2: TYPE “AA" ;Simulates typing uppercase AA and then returns
;to the end of the a: statement
ent: TYPE enter ;Simulates pressing the Enter key and then returns to

;the end of the statement labeled execl

The following examples cause infinite loops, which you should
avoid creating. EXECUTE statements must not call themselves.

badl: EXECUTE badl ;Infinite Toop

Also, a nested EXECUTE statement must not call any EXECUTE
statement that leads to its own activation.

bad2: EXECUTE bad3 ;Executes statement labeled bad3
bad3: EXECUTE bad2 ;Infinite Toop

54

Chapter 4: Mouse Menu Language Statements

THE MATCH STATEMENT

A MATCH statement takes the following format:

label: MATCH [rowl,[column],[attributel,"string"”,match,nomatch

Description

A MATCH statement executes other statements or subroutines depend-
ing on whether it finds a specified string at a defined screen location.
You must provide values for the row and column parameters in the form
of absolute screen coordinates. The starting coordinates for the screen
are located at row 1, column 1.

Parameters

The parameters for a MATCH statement are as follows:

Parameter

Description

label

row

column

attribute

string

match

nomatch

Name of the MATCH statement. All MATCH statements
must include labels.

Number that specifies the row designation of the first
character of the match string. If you do not specify a
value, row 1 is assigned.

Number that specifies the column designation of the first
character of the match string. If you do not specify a
value, column 1 is assigned.

Value that specifies how the match string must appear on
the screen for a match to occur. This value can be the
normal, bold, or inverse symbolic value, or it can be a
decimal value that denotes (equals the sum of) the
specific foreground and background colors to be
matched. If you leave the attribute parameter blank or
give it the value 0, the MATCH statement matches any
attribute. See Chapter 3 for more information about the
altribute parameter.

String you want to match. The string can contain up to
255 ASCII characters. You must specify the string
parameter, and you must enclose it in double quotation
marks ("").

Label of a statement or a subroutine to be executed if the
string is matched. If you don’t specify a label, nothing
happens when the match is made.

Label of a statement or a subroutine to be executed if the
string is not matched. If you don’t specify a label,
nothing happens when the match is not made.

55

PART IIl: MOUSE MENUS

Example

The following example from the WS.DEF mouse menu source program,
which is included on the disks in this book, checks whether WordStar is
displaying the Beginning menu or the Main menu.

BEGIN 1leftb,rightb,bothb,mousel,mouser,mouseu,moused, 16,40
leftb: MATCH 1,12,normal,"e",imen,chk33

chk33: MATCH 1,12,,"n",imen,chkl

chkl: MATCH 1,11,,":",emen,not

imen: POPUP 2,1

PEND
emen: POPUP 2,1

PEND
not: NOTHING

When you press the left-hand mouse button, the following occurs:

® The MATCH statement labeled lfth looks for an ¢ at row 1, col-
umn 12. This is the first character in the string editing no file,
which appears on the screen in that position if WordStar ver-
sion 3.2 is displaying the Beginning menu. If lftb finds the e in
that position, it executes the statement labeled imen. (In
WS.DEF, the imen statement displays the No-File pop-up menu
for WordStar.) If lftb doesn’t find the ¢ in that position, it exe-
cutes the statement labeled chk33.

m The chk33 statement looks for the letter n at row 1, column 12.
This is the first character in the string not editing, which appears
on the screen in that position if WordStar version 3.3 is display-
ing the Beginning menu. If the chk33 statement finds the » in
that position, it executes the statement labeled imen. (In
WS.DEF, the imen statement displays the No-File pop-up menu
for WordStar.) If chk33 doesn’t find the = in that position, it
executes the statement labeled chkl

56

Chapter 4: Mouse Menu Language Statements

8 The chkl statement looks for a colon (:) after the disk drive
identifier in the first line of the WordStar main menu display. If
chkl finds a colon, it executes the statement labeled emen. (In
WS.DEF, the emen statement displays the Edit/Block pop-up
menu.) If chkl doesn’t find a colon, the menu program does
nothing.

THE MENU... MEND STATEMENTS

A MENU statement takes the following format:
label: MENU [“"title"],[rowl,[column],[attribute]

MEND

Description

A MENU statement is the first statement in a menu subroutine that
creates a bordered, single-column pop-up menu. The specific dimen-
sions of a menu are determined by the number of items listed in a
menu. The dimensions are also determined by the largest number of
characters in the longest menu item or in the menu title.

When the menu is displayed, the first menu item is highlighted.
You can choose any menu item by moving the mouse to highlight that
item and then pressing either mouse button. If you press both mouse
buttons at the same time, the equivalent of a NOTHING statement is
executed and the menu disappears. Any movement or button actions
defined in a BEGIN or ASSIGN statement are ignored within the MENU
subroutine.

Each menu subroutine must include a MEND (menu end) state-
ment, which indicates the end of a menu subroutine. The MEND
statement takes no parameters.

NOTE: The MENU statement automatically generates a border around the entire
menu and draws a line between the menu title and the menu items.

57

PART ll: MOUSE MENUS

Parameters
The parameters for a MENU statement are as follows:

Example

58

Parameter

Description

label

title

row

column

attribute

Name of the menu subroutine. All menu subroutines
must be labeled.

Text of the menu title, enclosed in double quotation
marks (""). The menu title is limited to one line. If you
don’t specify a title, MENU generates a blank line.

Number that specifies the row where the upper left
corner of the menu border begins. Be sure to specify a
value that displays the entire menu. (For example, if the
menu contains 20 items and you choose a row value
greater than 5, some of the screen items will not appear
on a 25-row screen.) If you don’t specify a row number,
the upper left corner is assigned row 1.

Number that specifies the column where the upper left
corner of the menu border begins. If you don’t specify a
column number, the upper left corner is assigned
column 1.

Value that specifies how the menu is displayed on the
screen. This value can be normal, bold, or inverse, or it can
be a decimal value that denotes (equals the sum of)) the
specific foreground and background colors to be
matched. (For more information about the attribute
parameter, see Chapter 3, “Creating Your Own Mouse
Menu.”’) If you don’t specify a value, MENU uses the
inverse value. The colors of the mouse pointer depend
on the display-attribute value for the menu. For detailed
information about how the interaction between the
mouse pointer and menu display determines the colors
of the pointer, see Chapter 6, ‘‘Mouse Programming
Interface.”

In the following example, the MENU statement contains all four pa-
rameters. The menu title is Display Directory. The upper left corner of
the menu border is located at row 5, column 5. The menu is displayed
with a normal screen attribute.

The OPTION statements specify the statements to be executed
when you choose items from the menu. (OPTION statements are de-
scribed in greater detail later in this chapter.)

Chapter 4: Mouse Menu Language Statements

NOTE: You should always include a provision for closing the menu without caus-
ing an action. This example includes a Cancel option that, because it doesn’t have
a label in the line, executes the equivalent of a NOTHING statement.

menul: MENU "Display Directory”,5,5,normal
OPTION "Cancel"
OPTION "a:",exl
OPTION "b:",ex2
OPTION "c:",ex3
MEND
exl: EXECUTE dir,s,a,ent ;DIR a:
ex2: EXECUTE dir,s,b,ent ;DIR b:
ex3: EXECUTE dir,s,c,ent ;DIR c:

ent: TYPE enter ;Simulates pressing the Enter key
dir: TYPE "dir" ;Types the DIR command
a: TYPE "a:" ;Types a:
b: TYPE "b:" ;Types b:
c: TYPE "c:" ;Types c:
CH TYPE 32 ;Types a space
THE NOTHING STATEMENT

A NOTHING statement takes the following format:
lTabel: NOTHING

Description

A NOTHING statement specifies that no action occur when you press a
mouse button, move the mouse, or choose a menu option. You can also
use a NOTHING statement to specify that no action occur when a
MATCH statement is executed.

Parameters
A NOTHING statement takes no parameters.

Example

This example from the WS.DEF mouse menu source program, which is
included on the disks in this book, determines which pop-up menu is
displayed when you press the right-hand mouse button.

59

PART Il: MOUSE MENUS

The WS.DEF program does the following:

m If the MATCH statement finds the specified character, it exe-
cutes the statement labeled movemenu, which displays the CUR-
SOR MOVEMENT pop-up menu.

m If the MATCH statement doesn’t find the specified character, it
executes the NOTHING statement, labeled nul, and the mouse
menu program does nothing.

rightb: MATCH 1,11,NORMAL, ":",movemenu,nul

movemenu: POPUP 2,1
TEXT "e=ss=== CURSOR MOVEMENT ==sse==®

nul: NOTHING

THE OPTION STATEMENT

An OPTION statement takes the following format:
[Tabel:] OPTION [text],[pointer]

Description
OPTION statements define each menu item in a menu subroutine by
specifying the text of the menu item and the action to be performed
when you choose the item.
It’s not necessary to label OPTION statements, although you can if
you want to. If you do label them, the MAKEMENU program ignores
the labels when it compiles the source program.

Parameters

The parameters for an OPTION statement are as follows.

60

Chapter 4: Mouse Menu Language Statements

Parameter Description

text Text for the menu item. You must enclose the textin
double quotation marks (" "). If you don’t specify text for
amenu item, a blank line is displayed in the menu for
that item.

pointer Label of the statement to be executed when you choose

the menu item. If you don’t include a pointer parameter,
the menu clears from the screen when you choose the
menu item. (The equivalent of a NOTHING statement is
executed.) For example, you would not include the
pointer parameter for a Cancel Menu item.

Example

The following example shows OPTION statements that define four
menu items. If you choose the first menu item, the menu disappears
from the screen because the OPTION statement doesn’t include a
pointer parameter. If you choose any other menu item, the specified
statement is executed.

menu5: MENU "Display Directory”,5,5,normal
OPTION "Cancel”
OPTION "a:",exl
OPTION "b:",ex2
OPTION "c:",ex3
_ MEND
exl: EXECUTE dir,s,a,ent ;DIR a:
ex2: EXECUTE dir,s,b,ent ;DIR b:
ex3: EXECUTE dir,s,c,ent ;DIR c:
ent: TYPE enter ;Simulates pressing the Enter key
dir: TYPE "dir" ;Types the DIR command
a: TYPE "a:" ;Types a:
b: TYPE "b:" ;Types b:
c: TYPE "c:" ;Types c:
S: TYPE 32 ;Types a space

THE POPUP...PEND STATEMENTS

A POPUP statement takes the following format:

label: POPUP [row],[column],[attribute]

PEND

61

PART Il: MOUSE MENUS

Description

A POPUP statement is the first statement in a pop-up subroutine that
creates a multiple-column menu or a message box.

Each pop-up subroutine must include a PEND (pop-up end) state-
ment, which indicates the end of a pop-up subroutine.

Parameters
The parameters for a POPUP statement are as follows:

62

Parameter

Description

label

row

column

attribute

Name of the pop-up subroutine. All POPUP statements
must be labeled. Do not label the PEND statement.

Number that specifies the row where the upper left
corner of the first row of the menu or message box
begins. Be sure to specify a value that displays the entire
menu or message box. (For example, if the menu or
message box contains 20 lines and you choose a row
value greater than 5, some of the screen items will not
appear on the 25-row screen.) If you don’t specify a row
number, the upper left corner is assigned row 1. (Note:
Subsequent menu items in a pop-up menu are created
with a TEXT statement.)

Number that specifies the column where the upper left
corner of the menu or message box begins. If you don’t
specify a column number, the upper left corner is
assigned column 1.

Value that specifies how the menu is displayed on the
screen. This value can be normal, bold, or inverse, or it can
be a decimal value that denotes (equals the sum of) the
specific foreground and background colors to be
matched. (For more information about the attribute
parameter, see Chapter 3, “‘Creating Your Own Mouse
Menu.”) If you don’t specify a value, POPUP uses the
inverse value. The colors of the mouse pointer depend
on the display-attribute value for the menu. For detailed
information about how the interaction between the
mouse pointer and menu display determines the colors
of the pointer, see Chapter 6, ‘‘Mouse Programming
Interface.”

Examples

Chapter 4: Mouse Menu Language Statements

NOTE: Unlike the MENU statement, which generates a border around the entire
menu and draws a line between the menu title and the menu items, a POPUP
statement doesn’t draw any lines. You must, therefore, include line-drawing charac-
ters within the TEXT statements that are part of the pop-up subroutine. The easiest
characters to use are the equal sign (=) or the minus sign (~) for creating horizon-
tal lines, the pipe character (1) for creating vertical lines, and the plus sign (+) for
Jorming the corners. You can also use the extended ASCII line-drawing characters,
which are listed in Appendix A, “ASCII Character Set.”

In addition, a POPUP statement provides a greater degree of control for de-
Jfining menu choices than does a MENU statement. Your pop-up subroutine must
include SELECT statements to select and act upon the menu choices presented by
TEXT statements.

The following example creates a simple pop-up menu. When you press
the left-hand mouse button, the pop-up menu lets you select one of two
MS-DOS commands. The POPUP statement defines the location of the
upper left corner of the menu as row 5, column 20. The menu border is
created by using plus signs (+), pipes (1), and equal signs (=). The sec-
ond line of the menu displays the title. In addition, the three menu
items in lines 4 and 5 are defined by the three SELECT statements in
lines 7 through 9. SELECT statements are discussed in further detail
later in this chapter.

BEGIN Teftb

leftb: POPUP 5,20,inverse

TEXT "4 +
TEXT "i POPUP - DOS helper i"
TEXT Mo-oommmmmomeemmoo o +"
TEXT "4 CLS DIR H
TEXT "t Exit POPUP menu "
TEXT "+ a

SELECT 5,4,17
SELECT 4,6,5,cls
SELECT 4,14,5,dir
PEND

cls: TYPE "cls",enter
dir: TYPE “dir",enter

63

PART ll: MOUSE MENUS

The following example from the WS.DEF mouse menu source pro-
gram, which is included on the disks in this book, is a pop-up subrou-
tine that produces a message box.

ASCII graphics characters create solid double borders around the
menu. Also, the single SELECT statement clears the message box from
the screen because it does not include a pointer parameter. Therefore,
pressing either mouse button clears the message box from the screen.

‘mousehlp: POPUP 2,1
TEXT "3 H
TEXT "! Left button - Displays Edit/Block menu v
TEXT "¢ Right button - Displays Cursor Movement menu "
TEXT "i Both buttons - Display Edit/File menu e
TEXT "4 "
TEXT "4 Moving the mouse up, down, left, or right A
TEXT "i causes the cursor to move in that direction "
TEXT "4 e
TEXT " "
SELECT 1,18,10
PEND ’

THE SELECT STATEMENT

A SELECT statement takes the following format:

SELECT row,column,lengthl,pointer]

Description

A SELECT statement in pop-up subroutines defines the size of selection
areas for items appearing on the menu. It also specifies the statement to
be executed if the cursor is moved to the defined area. It is not neces-
sary for the defined area to contain text.

NOTE: The highlight in a menu or message box moves from one defined selection
area to another when you move the mouse. It’s a good idea to define each part of a
menu with a SELECT statement so that the movement of the highlight and the
movement of the mouse are visually coordinated; however, be sure you don’t define
the same screen position with more than one SELECT statement.

Parameters

The parameters for a SELECT statement are as follows:

Example

Parameter

Chapter 4: Mouse Menu Language Statements

Description

row

column

length

pointer

Number that defines the horizontal starting point (row)
of the item selection area relative to the row and column
coordinates you specified in the POPUP statement.

Number that defines the vertical starting point (column)
of the item selection area relative to the row and column
coordinates you specified in the POPUP statement.

Number of characters in the item selection area. If you
don’t specify a number, the SELECT statement assumes
one character.

Label of the statement executed when you choose the
defined menu item. If you don’t include a pointer
parameter, the menu disappears from the screen. (You
can press either button to select the item; however, if you
press both buttons, the item is not selected and a
NOTHING statement is executed.)

The SELECT statements in the following example let you select CLS to
clear the screen, DIR to display a directory listing, or Exit pop-up menu to
clear the menu from the screen.

Notice that the first SELECT statement in a pop-up subroutine
defines which selection will be highlighted when the menu appears.

BEGIN leftb

leftb: POPUP 5,20,inverse

TEXT "+

TEXT "4
TEXT "+
TEXT "4
TEXT "i
TEXT "4

POPUP - DOS helper "

CLS DIR i
Exit pop-up menu "

SELECT 5,4,17
SELECT 4,6,5,cls
SELECT 4,14,5,dir

PEND

cls: TYPE “"cls",enter
dir: TYPE "dir",enter

65

PART Il: MOUSE MENUS

THE TEXT STATEMENT

A TEXT statement takes the following format:
TEXT “"string"

Description

A TEXT statement in a pop-up subroutine defines the menu title, the
text for menu items, and the characters used to draw lines and borders.
Its purpose is similar to that of the title and text parameters in the
MENU and OPTION statements, but it lets you position text anywhere
on the screen (as long as the text appears below and to the right of the
upper left corner of the pop-up menu).

Parameter

The parameter for a TEXT statement is as follows:

Parameter Description

string The pop-up menu title or the text of a menu item. Text
can include ASCII graphics characters for lines and
borders and must be enclosed in double quotation marks
(""). The location of text on the screen is relative to the
upper left corner position set by the POPUP statement.
Also, text display attributes are determined by the
attribute parameter in the POPUP statement.

Example

The TEXT statements in the following example define the appearance
of the pop-up menu. The statements completely define the borders,
title, and all menu selections.

66

Chapter 4: Mouse Menu Language Statements

BEGIN leftb

leftb: POPUP 5,20, inverse

TEXT "+ +
TEXT "t POPUP - DOS helper i
TEXT "#---o-mmomommmnmmeos +
TEXT " CLS DIR e
TEXT "i Exit pop-up menu "
TEXT "4 +"

SELECT 5,4,17
SELECT 4,6,5,cls
SELECT 4,14,5,dir
PEND

cls: TYPE "cls",enter
dir: TYPE "dir",enter

THE TYPE STATEMENT

A TYPE statement takes the following format:
Tabel: TYPE key [,key...]

Description

A TYPE statement simulates typing one or more keys.

NOTE: Al keys you specify in a TYPE statement are read into the DOS keyboard
buffer at the time the TYPE statement is executed. When the menu program finishes
processing the mouse event (executes the BEGIN statement), the application resumes
and finds the keystrokes in the DOS buffer as if they had been typed.

Parameters

The parameters for a TYPE statement are as follows:

Parameter Description

label Name of the TYPE statement. Every TYPE statement
must be labeled.
key Name of the key.

67

PART Il: MOUSE MENUS

The name of the key can take any of the following forms:

® One or more letters or numbers enclosed in double quotation
marks (for example, "X" or "dir").

m A standard ASCII code (characters 0 through 127) or an ex-
tended ASCII code (characters 128 through 255). The ASCII
control characters (0 through 31) that you can use with the
TYPE statement are listed in Appendix A, ““ASCII Character
Set.”

B An extended-keyboard code. (Appendix A, “ASCII Character
Set,” lists them.)

B Any of the following predefined symbolic keys: Enter, Tab,
Backsp, Esc.

NOTE: To simulate typing a double quotation mark ("), use ASCII code 34.

Examples
The following TYPE statements use character strings to define the keys:

dir: TYPE "dir" ;Types the DIR command

a: TYPE "a:" ;Types a:
The following TYPE statement uses an ASCII code to simulate typing a
space:

S: TYPE 32 ;Types a space

The following TYPE statements use extended-keyboard codes that
simulate the arrow keys:

1f: TYPE 0,75 ;Simulates pressing the left-arrow key
rt: TYPE 0,77 ;Simulates pressing the right-arrow key
up: TYPE 0,72 ;Simulates pressing the up-arrow key

dn: TYPE 0,80 ;Simulates pressing the down-arrow key

Key Sequences That Can’t Be Simulated

Some key sequences can’t be simulated by using the TYPE command
because they are suppressed in the ROM (Read-Only Memory) BIOS
(Basic Input/Output System) keyboard routine. See Appendix A,
““ASCII Character Set,” for a complete listing.

68

Chapter 5

Sample Mouse
Menu Programs

This chapter discusses the source program listings for two mouse menu
programs that simplify some tasks commonly performed on an IBM
personal computer or compatible.

Use your word processor or text editor to create the source pro-
gram for the mouse menus, run the MAKEMENU utility to generate a
mouse menu program, and then begin using the mouse menu program
immediately. You can also use these listings as a basis for designing
similar mouse menus that include features specific to your needs.

THE SIMPLE MOUSE MENU PROGRAM

The SIMPLE mouse menu program lets you use the mouse instead of
pressing commonly used keys. It is most helpful when used with appli-
cations that require frequent pressing of the direction keys. For ex-
ample, in many spreadsheet applications you must press the direction
keys to move the cursor. If the SIMPLE mouse menu is installed, you
can move the cursor by simply moving the mouse. Pressing the left-
hand mouse button simulates pressing the Enter key; pressing the
righthand mouse button simulates pressing the Esc key; and pressing
both buttons at one time is equivalent to pressing the Ins key. If your
application doesn’t use one of these keys and you press the correspond-
ing mouse button by accident, the application responds as if you had
pressed the key. You can then correct the mistake as you would correct
any typing error.

69

PART Il: MOUSE MENUS

The source program for the SIMPLE mouse menu follows:

; A menu that simulates direction, Enter, Esc,
; and Ins keys

BEGIN ent,es,ins,1f,rt,up,dn,32,16

ent: TYPE enter ; Enter key

es: TYPE esc ; Esc key

ins: TYPE 0,82 ; Ins key

1f: TYPE 0,75 ; Left-arrow key
rt: TYPE 0,77 ; Right-arrow key
up: TYPE 0,72 ; Up-arrow key

dn: TYPE 0,80 ; Down-arrow key

THE DOSOVRLY MOUSE MENU PROGRAM

70

The DOSOVRLY (DOS overlay) mouse menu lets you choose several
MS-DOS commands at the MS-DOS command level by pointing to a
menu option and pressing either mouse button. In other words, this
mouse menu ‘‘overlays’” MS-DOS.

In addition to a main menu, the DOSOVRLY mouse menu pro-
gram has two submenus—Directory and Change Directory—which list
additional MS-DOS commands. The source listing for DOSOVRLY is a
good example of how to create a hierarchy of menus and submenus in
one of your own mouse menu programs.

The DOSOVRLY mouse menu program provides several features
that are useful at the MS-DOS command level:

®m Moving the mouse to the left and right simulates pressing the
left-arrow and right-arrow keys, a feature that lets you edit your
MS-DOS commands by simply moving the mouse.

m Pressing the righthand mouse button simulates pressing the
Enter key.

m Pressing both mouse buttons at one time simulates typing CLS,
the MS-DOS command for clearing the screen.

m Pressing the left-hand mouse button displays the DOSOVRLY
main menu. Options on this menu let you clear the screen,
execute the MS-DOS DATE or TIME command, or choose the

Chapter 5: Sample Mouse Menu Programs

Directory or Change Directory submenu. To choose a menu
option, move the mouse to highlight the option and then press
either mouse button. From within a submenu, you can choose
an option to move to the other submenu or to return to the
main menu.

NOTE: In the DOSOVRLY source program, the b, rb, bb, Im, and rm parame-
ters specified in the BEGIN statement are labels for EXECUTE statements. These
EXECUTE statements branch to the appropriate MENU or TYPE statements.

If you want to simplify the following program, branch directly
from the BEGIN statement to the mnul menu subroutine and to the
TYPE statements by using the following statement:

BEGIN mnul,ent,cls,left,right

The source program for the DOSOVRLY mouse menu follows:

BEGIN 1b,rb,bb,1m,rm

1b: EXECUTE mnul ; Select Main Menu if left button

rb: EXECUTE ent ; Type Enter if right button

bb: EXECUTE cls ; Type CLS command if both buttons
Tm: EXECUTE left ; Press left-arrow key if left motion

rm: EXECUTE right ; Press right-arrow key if right motion

mnul: MENU "Main Menu",2,55,NORMAL

OPTION "cancel ", none
OPTION "clear the screen ",cls
OPTION "date ", date
OPTION "time ", time
OPTION "Directory ", mnu3
OPTION "Change Directory ",mnu2
MEND

mnu2: MENU "Change Directory",2,55,NORMAL

OPTION "cancel ",none
OPTION "cd .. ", cdl
OPTION "cd ", cd2
OPTION "Directory ", mnu3
OPTION "Main menu ",mnul
MEND

mnu3: MENU "Directory",2,55,NORMAL
OPTION "cancel © o ",none

(continued)

71

PART Il: MOUSE MENUS

continued

OPTION
OPTION
OPTION
OPTION
OPTION
OPTION
OPTION
OPTION
OPTION
MEND
none:
ent:
cls:
Teft:
right:
date:
time:
cdl:
cd2:
dir:
dire:
dirb:
dirx:
dirs:
dird:
dirz:

"dir ", dir

"dir *,exe ",dire

"dir *.bat *,dirb

"dir * bak ", dirx

"dir *,sys ", dirs

"dir *.doc ",dird

"dir *, ", dirz
"Change Directory ",mnu2

"Main menu *,mnul
NOTHING ; Do nothing
TYPE enter

TYPE "c1s",enter

TYPE 0,75 ; Left-arrow key
TYPE 0,77 ; Right-arrow key
TYPE "date",enter

TYPE "time",enter

TYPE "cd ..",enter

TYPE "cd "

TYPE "dir",enter

TYPE "dir *,exe",enter

TYPE "dir *.bat",enter

TYPE "dir *.bak",enter

TYPE "dir *.sys",enter

TYPE "dir *.doc",enter

TYPE "dir =."

OTHER SAMPLE MOUSE MENU PROGRAMS

The disks that accompany this book contain 11 sample mouse menu
programs, which you can recognize by the DEF filename extension. Of
the 11 DEF files, 5 are demonstration programs and 6 are fully opera-
tional mouse menu programs designed for use with early versions of
IBM Multiplan, Microsoft Multiplan, Symphony, VisiCalc, WordStar,
and BRIEF. These files are located in the \MENUS directory on disk 2.

Demonstration Programs

The five demonstration programs on the disks are designed to show
various elements of mouse menu programming. The source files for
these programs are COLOR.DEF, DROP.DEF, EXECUTELDEF,

72

Chapter 5: Sample Mouse Menu Programs

EXECUTE2.DEF, and KBD.DEF. Each contains comments that explain
how the demonstration program works. For an overview of each
demonstration program, read the following sections.

The COLOR Program
The COLOR program displays a menu of all possible color choices for
mouse menus:

QUIT
660 016 032 048 0664 080 096 112 128 144 160 176 192 208 224 240
601 01?7 033 049 665 081 097 113 129 145 161 17?7 193 209 225 241
602 018 034 050 666 082 098 114 130 146 162 178 194 210 226 242
603 019 035 051 667 083 099 115 131 147 163 179 195 211 22?7 243
604 020 036 052 068 084 160 116 132 148 164 180 136 212 228 244
605 621 037 653 669 685 161 117 133 149 165 181 19?7 213 229 245
666 622 038 05¢ 070 686 162 118 134 150 166 182 198 214 230 246
607 023 639 655 671 687 163 119 13S 151 167 183 199 215 231 24?
668 024 040 656 072 688 164 120 136 152 168 184 200 216 232 248
669 625 041 657 673 689 165 121 137 153 169 185 201 217 233 249
010 626 042 058 074 090 166 122 138 154 176 186 202 218 234 250
011 62?7 643 659 075 091 10?7 123 139 155 1?71 18?7 203 219 235 251
012 028 0644 660 07?6 092 108 124 140 156 172 188 204 220 236 252
013 029 045 661 077 093 109 125 141 157 173 189 205 221 23?7 253
014 030 046 662 678 094 110 126 142 158 1?4 190 206 222 238 254
015 631 047 663 679 695 111 12?7 143 159 175 191 20?7 223 239 255

The numbers in the menu are the sums of the various foreground and
background color combinations listed in Figure 3-3 in Chapter 3. The
COLOR program can help you choose color combinations for MENU or
POPUP statements.

The DROP Program

The DROP program demonstrates how you can create drop-down
menus. When you run the program and press the lefthand mouse but-
ton, the following main menu appears:

" CLR SCRN I LIST DIR [CH DIIlUE—II

If you choose the menu item CLR SCRN, the DROP program
clears the screen and causes the main menu to disappear. If you choose
the menu item LIST DIR, a second pop-up menu appears in place of
the main menu, giving the appearance of a drop-down menu:

[[cur scan | ist p1m [on omrve |

dir
».bat
*.con
».doc
».exe
*.sys
CANCEL

73

PART Il: MOUSE MENUS

74

The selection rectangle’s movement is restricted to the items within the
newly displayed column, letting you list a directory of the current drive
in one of several ways. »

If you choose the menu item CH DRIVE, a third pop-up menu ap-
pears in place of the main menu. Like the second menu, the third
menu also gives the appearance of a menu ‘“‘pulled down’” from the
menu bar.

([cur scan | List oig || o oRive

CANCEL

The EXECUTE1 Program
The EXECUTEI demonstration program is designed to show how the
EXECUTE mouse menu command functions.

When you press the left-hand mouse button, a menu displaying a
single option appears on the screen. The option leads to a second
menu, and then the screen clears. Although the string cls <enter> is sent
to the keyboard buffer before the second menu is displayed, the screen
doesn’t clear until after the second menu disappears because the con-
tents of the keyboard buffer are not processed until the mouse menu
returns control to MS-DOS.

The EXECUTE2 Program
The EXECUTE2 demonstration program is designed to show how to
create a multilevel menu.

The program relies on mouse-event trapping to determine
whether or not a second menu is displayed. When you press the left-
hand mouse button, a menu is displayed in the upper right corner of
your screen. If you press either mouse button, the program clears the
screen and the menu disappears. If you press both buttons at the same
time, the menu disappears and the program does not clear the screen.
If, however, you move the mouse horizontally after pressing the left or
right mouse button, a second menu is displayed. The horizontal mouse
movement is the event trapped by the mouse menu program: Unless it
detects horizontal mouse movement, the mouse menu program will not
display the second menu.

NOTE: The EXECUTE2 program is well commented; it’s a good idea to read the
source program before you compile and run the program.

Chapter 5: Sample Mouse Menu Programs

The KBD Program
The KBD program is designed to provide partial keyboard emulation
with the mouse. Most but not all of the keystrokes that the mouse can
emulate are included in the program.

When you press a mouse button, the following pop-up menu
appears:

quitfctr [synb]] Enter [1ns]fper

@|A|B|C|D|E|F|G|H|I|J[K|LIM|N|O
PlQ|R|S|T|uv|ulx|¥|Z|C|N "2 |"
“la|bleld|e|f]gih]i||k]||n]n
q|rl|s|t|u]v]u]x]|ylz]]|} |3]|7]-

spacebar "BS

tl |s]S|<la) 1|]*]+].|-|.
10]112]|3|4]|5]|6|?|8]|9]:{: |<]|=|>|?

htp|f1 £2 £f3 f4 f5
4->|f6 f8 f8 f9 f10
eld

(e taf

To type a character, move the mouse pointer to that character and click
the left-hand mouse button. The KBD program then sends that charac-
ter to the keyboard buffer. A second click reactivates the menu. To
close the menu and instruct the KBD program to act on the ‘‘key-
strokes’’ you sent to the keyboard buffer, click on the Enter box at the
top of the menu.

Alternatively, you can click on the Ctrl box at the top of the menu,
which causes the following menu to appear:

quit|[Kyba|fSynb
of| nuL pLE || 10
1|l soH pc1 || 11
2|l stx pcz |f 12
3|l ETx pc3 || 13
4)| EOT BC4 || 14
sil Eng nak || 15
6|| AcK s || 16
?|| BEL ETB || 17
8| Bs can || 18
off ur Em[f 19
Al LF suB || 18
Bl vrEsc || 1B
cl] FF Fs || 1c
p|| c8 es || 1p
El| so Bs || 1E
Fl| s1 us || 1F

Clicking on one of the characters in the menu causes the KBD program
to send that character to the keyboard buffer. You can also click on the
Quit option to return to the MS-DOS prompt, or you can click on the

75

PART Il: MOUSE MENUS

Kybd option to return to the first menu. Note that this second menu
has no Enter option. To choose Enter, you must return to the first
menu and choose the Enter option, or you can click on the Symb
option and then choose the Enter option.

Clicking on the Symb option in either the first or second menu
causes the following menu to appear:

quit" Keyboard | Control |[Enter
cliile|lalalajals|e|ele]i]|T|i[A]A
Ele|@|6|c|o|aj|G|O|U|C|L|¥|R]S

ilola|a|R|2|2|e]-|~|%] %] i}«
x|B|F|ujz|o|p|T|E|0|R]|5]|=]|8]|€|N
JEHALUEEMER UL

Double-clicking on one of the characters in this menu causes the KBD
program to send that character to the keyboard buffer and then
redisplay the menu. You can then choose the Enter option, which clears
this menu and causes the KBD program to act on the keystrokes you
sent to the keyboard buffer. You can also choose the Keyboard option
to activate the first menu, or you can choose the Control option to acti-
vate the second menu.

Application Mouse Menus

The six mouse menu programs on the disks are designed to work with
earlier versions of six applications that didn’t offer mouse support. The
following table lists the names of the source files and the application
programs for which they are designed:

Source File Application Program
MPIBM.DEF Multiplan (IBM)
MPMS.DEF Multiplan (Microsoft)
SYM.DEF Symphony

VC.DEF VisiCalc

WS.DEF WordStar

BRIEF.DEF BRIEF

To create a compiled mouse menu program, use the MAKEMENU
utility. To load and start the mouse menu program, use the MENU
program.

76

PART il

Mouse Programming
Interface

Chapter 6: Mouse Programming Interface

m Video Adapters and Displays
u The Virtual Screen

m Graphics and Text Cursors

m The Internal Cursor Flag

m Reading the Mouse

= Calling Mouse Functions

m Passing Buffer Pointers

m Testing for Installed Mouse

Chapter 7: Mouse Programming Considerations

= Setting Up Your System
a Advanced Topics
= Mouse Functions

Chapter 8: Mouse Function Calls

® Infroduction to Mouse Functions
= Mouse Functions

Chapter 9: Sample Mouse Programming Interface Programs

= Interpreted Basic Programs
= QuickBasic Programs

m C and QuickC Programs

= MASM Programs

= FORTRAN Programs

= Pascal Programs

Chapter 10: Writing Mouse Programs for IBM EGA Modes

= The EGA Register Interface Library
m EGA Register Interface Functions

Chapter 6

Mouse
Programming
Interface

This chapter covers the interface issues you must consider when pro-
gramming for the mouse: how your particular display adapter affects
the type of cursor displayed, how your program must manipulate the
cursor, and how your program can access information about mouse ac-
tivities. It presents information you will need in order to provide the ap-
propriate mouse support in your program—such as information about
the difference between text mode and graphics mode and between text
cursors and graphics cursors. This chapter also discusses the concept of
a virtual screen—an important tool for ensuring that the mouse driver
interacts properly with the video display.

VIDEO ADAPTERS AND DISPLAYS

The IBM family of personal computers offers many types of video
adapters and video displays. Each computer’s unique display capabili-
ties and characteristics affect how the mouse cursor appears and moves
on the screen.

79

PART Ill: MOUSE PROGRAMMING INTERFACE

Screen Modes

80

The screen mode defines the number of pixels and the types of objects
that appear on the screen. A pixel is a point of light or a block of light
made up of individual points. The screen modes available to you de-
pend on the type of video adapter installed in your computer. Some
adapters display both points of light and blocks of light; others display
only blocks of light.

The screen modes and the video adapters that support them are
listed in Figure 6-1.

NOTE: For Hercules Monochrome Graphics Cards, the current convention is to
use screen mode 5 for page 1 and screen mode 6 for page 0. See Appendix F, “Using
the Mouse with the Hercules Graphics Card,” for more information.

Text Mode vs. Graphics Mode

Some adapters display only text mode, and others display both text
mode and graphics mode. The modes have their own characteristics
but share similar programming considerations for the mouse.

In graphics mode, you can access individual points of light. Some
graphics modes display these points in only one color; other graphics
modes offer a choice of colors.

In text mode, you can access only character-cell-size blocks of light
made up of individual points. Common text modes on IBM PCs offer
screen sizes of 80 columns by 25 rows or 40 columns by 25 rows. Text
mode uses less memory and is generally faster than graphics mode.
However, color combinations in text mode apply to entire character
cells rather than to individual points within each character cell, and all
graphics created in text mode must consist of ASCII characters.

Testing for Screen Modes

Suppose you want to write programs that can run on a variety of ma-
chines. Because you don’t know what types of video adapters are in-
stalled in the other machines, and because your program might use
graphics or color, your program must test each video adapter to check
that the desired screen modes are available. In addition, your program
should be able to compensate if only text mode is available.

Chapter 6: Mouse Programming Interface

Screen Virtual Bits
Mode Display Text/ Screen Cell per
(Hex) Adapter Graphics (x, y) Size Pixel
0 CGA, EGA, MCGA, VGA, Text 640 x 00 16x8 -
3270
1 CGA, EGA, MCGA, VGA, Text 640 x 200 16x 8 -
3270, 16-color, 40 x 25
2 CGA, EGA, MCGA, VGA, Text 640 x 200 8x8 -
3270, 16-color, 80 x 25
3 CGA, EGA, MCGA, VGA, Text 640 x 200 8x8 -

3270, 16-color, 80 x 25

4 CGA, EGA, MCGA, VGA, Graphics 640 x 200 2x1 2
3270, 4-color, 320 x 200

5 CGA, EGA, MCGA, VGA, Graphics 640 x 200 2x1 2
3270, 4-color, 320 x 200

6 CGA, EGA, MCGA, VGA, Graphics 640 x 200 1x1 2
3270, 2-color, 640 x 200

7 CGA, EGA, MCGA, VGA, Text 640 x 200 8x8 -
3270, MDA, 80 x 25

8 16-color, 160 x 200 Graphics 640 x 200 4x1 4
(PGjr only)

9 16-color, 320 x 200 Graphics 1280x200 1x1 1
(PGjr only)

A 4-color, 640 x 200 Graphics 640 x 200 1x1 1
(PCjr only)

D EGA, VGA, 16-color, Graphics 640 x 200 2x1 2
320 x 200

E EGA, VGA, 16-color, Graphics 640 x 200 1x1 1
640 x 200

F EGA, VGA, MDA, 640 x 350 Graphics 640 x 350 1x1 1

MDA = Monochrome Display Adapter (continued)
CGA = Color/Graphics Adapter

EGA = Enhanced Graphics Adapter

MCGA = Multi-Color Graphics Array

VGA = Video Graphics Array

XGA = Extended Graphics Array

3270 = IBM 3270 All-Points-Addressable Graphics Adapter

Figure 6-1. Screen-mode characteristics of the IBM PC family of
of video-display adapters.

81

PART Ill: MOUSE PROGRAMMING INTERFACE

Figure 6-1. continued

Screen Virtual Bits
Mode Display Text/ Screen Cell per
(Hex) Adapter Graphics (x, y) Size Pixel
10 EGA, VGA, 16-color, Graphics 640 x 350 1x1 1
640 x 350
11 MCGA, VGA, 2-color, Graphics 640 x 480 1x1 1
640 x 480
12 VGA, 16-color, 640 x 480 Graphics 640 x 480 1x1 1
13 MCGA, VGA, 256-color, Graphics 640 x 200 2x1 2
320 x 200
20 16-color, 40 x 25 Text 640 x 200 4x1 -
21 Hercules page 0, 2-color, Graphics 720 x 348 1x1 1
720 x 348
22 Hercules page 1, 2-color, Graphics 720 x 348 1x1 1
720 x 348
23 Genius VHR, 2-color, Graphics 728x1008 1x1 1
728 x 1008
24 HP Vectra Graphics 640 x 400 1x1 1
25 IBM 8514, XGA, 16-color, Graphics 1024x 768 1x1 1
1024 x 768
26 Genius, 66-line mode Text 640 x 528 8x8 -
30 PC 3270 Graphics 720 x 350 1x1 1
40 Olivetti, 16-color, Graphics 640 x 400 1x1 1
640 x 400
40 Video?7, 16-color, 80 x 42 Text 640 x 400 1x1 -
41 Video?7, 16-color, 132 x 25 Text 1056x344 1x1 -
42 Video?7, 16-color, 132 x 43 Text 1056x 344 1x1 -
43 Video?7, 16-color, 80 x 60 Text 640 x 480 1x1 -
44 Video?7, 16-color, 100 x 60 Text 800 x 480 1x1 -
45 Video?7, 16-color, 132 x 28 Text 1056x 392 1x1 -
60 Sprite, 132x 25 Text 1056 x 200 8x8 -
60 Video?, 16-color, Graphics 752 x 408 1x1 1
752 x 410
61 Sprite, 132 x 50 Text 1056 x400 8x8 -
61 Video?7, 16-color, Graphics 720 x 536 1x1 1
720 x 540
62 Video?7, 16-color, Graphics 800 x 600 1x1 1
800 x 600

6E Sprite, 16-color, 720 x 540 Graphics 720 x 540 1x1 1

(continued)

82

Figure 6-1. continued

Chapter 6: Mouse Programming Interface

Screen Virtual Bits
Mode Display Text/ Screen Cell per
(Hex) Adapter Graphics (x, y) Size Pixel
6F Sprite, 16-color, 768 x 576 Graphics 768 x 576 1x1 1
70 Sprite, 16-color, 800 x 600 Graphics 800 x 600 1x1 1
71 Sprite, 16-color, 960 x 720 Graphics 960x720 1x1 1
72 Sprite, 16-color, Graphics 1024x 768 1x1 1
1024 x 768
74 Toshiba T2100/T3100, Graphics 640 x 400 4x1 4
16-shade gray, 640 x 400
78 Sprite, 256-color, Graphics 640 x 400 1x1 1
640 x 400
79 Sprite, 256-color, Graphics 640 x 480 1x1 1
640 x 480
7A Sprite, 256-color, Graphics 720 x 540 1x1 1
720 x 540
7B Sprite, 256-color, Graphics 768 x 576 1x1 1
768 x 576
7E Ericsson Graphics 640 x 400 Ix1 1

In C programming, the _setvideomode function returns a value that
lets you check availability of specified video modes. The following pro-

gram demonstrates this by attempting to set a medium-resolution

graphics mode with as many colors as possible.

/*

* K * ¥ ¥

*/

SETVID.C
Short QuickC program that sets a graphics video
mode based on the available graphics adapter.

Program 1ist: setvid

finclude <stdio.h>
fHinclude <graph.h>

main()
{

if (_setvideomode(_MRES256COLOR))
printf("VGA medium resolution, 256 colors\n");
else if (_setvideomode(_MRES16COLOR))
printf("EGA medium resolution, 16 colors\n");

(continued)

83

PART Ill: MOUSE PROGRAMMING INTERFACE

84

continued

valid

else if (_setvideomode(_MRES4COLOR))
printf("CGA medium resolution, 4 colors\n");
else
printf("No medium-resolution graphics mode available\n");

In QuickBasic, you can use the ON ERROR statement to test for
video modes and available video adapters. The SETVID.BAS

program demonstrates one way to do this:

SETVID.BAS
Short QuickBasic program that sets a graphics video
mode based on the available graphics adapter.

ON ERROR GOTO ErrorTrap

Try VGA medium resolution, 256 colors
videoMode = 13
SCREEN videoMode

Try EGA medium resolution, 16 colors
IF videoMode = 0 THEN

videoMode = 7

SCREEN videoMode
END IF

Try CGA medium resolution, 4 colors
IF videoMode = 0 THEN

videoMode = 1

SCREEN videoMode
END IF

Clear the error trapping
ON ERROR GOTO 0

Did we find a valid video mode?
IF videoMode THEN
PRINT "Video mode number”; videoMode
ELSE
PRINT "No medium-resolution graphics mode available"
END IF

(continued)

Chapter 6: Mouse Programming Interface

A1l done
END

ErrorTrap:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

videoMode = 0
RESUME NEXT

Following is a similar program in interpreted Basic. Notice that
BASICA might not support all available modes.

' Short BASICA program that sets a graphics video
' mode based on the available graphics adapter.
ON ERROR GOTO 270

VIDEOMODE = 13

SCREEN VIDEOMODE

IF VIDEOMODE THEN GOTO 230

VIDEOMODE = 7

SCREEN VIDEOMODE

IF VIDEOMODE THEN GOTO 230

VIDEOMODE = 1

SCREEN VIDEOMODE

IF VIDEOMODE THEN PRINT "Video mode number"; VIDEOMODE
IF VIDEOMODE = 0 THEN PRINT "No medium-resolution mode available”
END

VIDEOMODE = 0
RESUME NEXT

THE VIRTUAL SCREEN

To understand how the mouse interacts with the normal display of your
program, you must understand the concept of a virtual screen. A vir-
tual screen simplifies programming for the screen resolutions available
with the various video adapters. A virtual screen can be thought of as a
grid that overlays the physical screen. As a programmer, you need to
work only with the grid coordinates on the virtual screen. The mouse
software translates the virtual-screen coordinates into the physical-
screen coordinates for the current screen mode.

The mouse software interacts with the computer screen as if it
were a virtual screen composed of a matrix of horizontal and vertical
points. In Figure 6-1, the Virtual Screen column shows the number of
horizontal and vertical points in the matrix for each screen mode.

85

PART lll: MOUSE PROGRAMMING INTERFACE

86

NOTE: The minimum size of a virtual screen is 640 pixels by 200 pixels.

Notice that most text and graphics modes have virtual-screen
dimensions of 640 by 200 pixels. This standard often simplifies the task
of programming the mouse in several graphics modes.

You can set or change the screen mode by issuing an Interrupt
10H instruction, which invokes a built-in routine in the computer’s
ROM BIOS. When issuing an Interrupt 10H, you must specify a function
number and (optionally) a subfunction number that indicate the work
you want Interrupt 10H to perform.

Whenever your program calls Interrupt 10H to change the screen
mode, the mouse software intercepts the call and determines which vir-
tual screen to use. The mouse software also reads the screen mode and
chooses the appropriate virtual screen whenever your program calls
Mouse Function 0 (Mouse Reset and Status) to reset default parameter
values in the mouse software.

In the following C program, the mouse driver intercepts Inter-
rupt 10H during the second call to the _setvideomode function and then
hides the mouse cursor. The mouse cursor reappears after you press
a key.

#include <stdio.h>
f#include <graph.h>
f#include <dos.h>

void mouse(int *, int *, int *, int *);

main()
{
int ml,m2,m3,m4;

if (_setvideomode(_MRES256COLOR))
{
printf("”320 x 200\n");
ml = 0; /* Reset mouse */
mouse(&ml,&m2,&m3,4m4) ;
ml=1; /* Show cursor #*/
mouse(&ml,&m2,8&m3,&m4) ;
}
getch();
if (_setvideomode(_VRES16COLOR))
{
printf(“640 x 480\n");

(continued)

Chapter 6: Mouse Programming Interface

getch(); /* Cursor is now hidden */
ml=1; /* Show cursor */
mouse(&ml,&m2,8&m3,4m4) ; :
}

getch();

}

void mouse(ml, m2, m3, m4)
int *ml, *m2, *m3, *m4;
{

union REGS reg;

reg.x.ax = *ml;
reg.x.bx = *m2;
reg.x.cx = *m3;
reg.x.dx = *m4;
int86(0x33, ®, ®);
*ml = reg.x.ax;
*m2 = reg.x.bx;
*Mm3 = reg.x.cx;
*m4 = reg.x.dx;

Regardless of the screen mode, the mouse software uses a pair of
virtual-screen coordinates to locate an object on the screen. Each pair
of coordinates defines a point on the virtual screen. The horizontal
coordinate is listed first.

Many mouse functions take virtual-screen coordinates as input or
return them as output. Whenever you refer to a virtual-screen coordi-
nate for a pixel or character in a mouse function, be sure the values are
correct for the current screen mode. When you first program mouse
functions, a common error is confusing physical-screen coordinates
and virtual-screen coordinates. For example, in a medium-resolution
mode (320 by 200 pixels) a horizontal mouse position of 320 pixels is at
the center of the screen rather than at the right edge. In this case, even
though there are 320 physical pixels across the screen, the virtual
screen has 640 pixels. Remember that mouse functions always refer to
virtual-screen coordinates.

The Cell Size column in Figure 6-1 lists for each mode the
minimum resolution of mouse motion in terms of the virtual screen.
Consider, for example, the 8-by-8 cell size listed for mode 3 (the 80-
character-by-25-line text mode). In this mode, as the cursor moves from
character to character, the returned position of the mouse changes by 8

87

PART Ill: MOUSE PROGRAMMING INTERFACE

virtual-screen units. The character cell at the upper left corner of the
screen is located at mouse coordinates (0, 0), but when the cursor
moves to the second character cell on that line, the coordinates become
(8, 0). At the lower right character cell of the screen, the coordinates
are (632, 192).

Graphics Modes

In graphics modes 6, E, F, 10, 11, and 12, and in graphics modes 5 and 6
with a Hercules Graphics Card (HGC), each pixel on the virtual screen
maintains a one-to-one correspondence with each pixel on the physical
screen. In these modes, the full range of coordinates listed in the Vir-
tual Screen column of Figure 6-1 is available.

In graphics modes 4, 5, D, and 13, the size of the physical screen is
320 by 200 pixels. The size of the virtual screen for these modes is 640 by
200 pixels, which makes the modes consistent with the other CGA
graphics modes. Notice that the horizontal coordinates for the mouse
cursor are evenly numbered. Each horizontal pixel position on the
screen represents a change of two virtual-screen units. Thus, the hori-
zontal pixel positions numbered 0 through 319 on the physical screen
map to positions 0 through 638 on the virtual screen. The vertical coor-
dinates are unaffected because both the physical-screen and virtual-
screen coordinates are numbered from 0 through 199.

Text Modes

88

Text modes 2, 3, and 7 display only characters on the screen, and each
character is formed by an 8-by-8-pixel group. (See the Cell Size column
in Figure 6-1.)

When in text mode, you can’t access the individual pixels in a
character, so the mouse software uses the coordinates of the pixel in
the cell’s upper left corner as the character’s location. Because each
character is formed by an 8-by-8-pixel group, both the horizontal and
the vertical coordinates are multiples of 8.

For example, the character in the upper left corner of the screen
has the coordinates (0, 0), and the character immediately to the right
of that character has the coordinates (8, 0).

In text modes 0 and 1, as in text modes 2, 3, and 7, only characters
can appear on the screen. Note that in modes 0 and 1 each character is
a 16-by-8-pixel block. (See the Cell Size column in Figure 6-1.)

As in text modes 2, 3, and 7, the mouse software uses the coordi-
nates of the pixel in the cell’s upper left corner as the character’s

Chapter 6: Mouse Programming Interface

location. But because modes 0 and 1 have only one-half as many pixels
as modes 2, 3, and 7, the mouse software uses horizontal coordinates
that are multiples of 16.

For example, the character in the upper left corner of the screen
has the coordinates (0, 0), and the character immediately to the right
of the first character has the coordinates (16, 0).

In all these text modes, whether they use 40 or 80 columns, the
character cells are 8 pixels in height. This means that the vertical coor-
dinates change by 8 virtual-screen units for each vertical character-cell
movement of the cursor. For example, the first character in the second
row of the screen has the coordinates (0, 8).

GRAPHICS AND TEXT CURSORS
The mouse software can display one of three cursors at a time:

® The graphics cursor, a shape that moves over images on the
screen (for example, an arrow).

® The software text cursor, a character attribute that moves from
character to character on the screen (for example, an under-
score, reversed type, or a blinking square).

® The hardware text cursor, a flashing square, half-square,
or underscore that moves from character to character on
the screen.

In the graphics modes, the graphics cursor is the only cursor avail-
able. The mouse software can display either of the two types of text cur-
sor in the text modes. Your application program might change the
cursor type, shape, or other attributes ‘‘on the fly,”” so it’s a good idea to
hide the cursor temporarily while changes are made.

Functions 9 (Set Graphics Cursor Block) and 10 (Set Text Cursor)
let you define the characteristics of the cursors in your application pro-
grams. You can define the characteristics yourself, or you can apply the
characteristics of the sample cursors provided in this book. For more
information about the sample cursors, see the descriptions of functions
9 and 10 in Chapter 8, ‘“‘Mouse Function Calls.”

The Graphics Cursor

The graphics cursor, which is used when the video adapter is in one of
the graphics modes, is a block of individual pixels. In modes 6, D, E, F,
10, 11, and 12, and modes 5 and 6 with an HGC, the cursor is a 16-by-16

89

PART Iil: MOUSE PROGRAMMING INTERFACE

90

square that contains 256 pixels. In modes 4 and 5, the cursor is an
8-by-16 square that contains 128 pixels.

As you move the mouse, the graphics cursor moves across the
screen and interacts with the pixels directly under it. This interaction
determines the cursor shape and background.

Screen Mask and Cursor Mask

For each graphics mode, the interaction between the screen pixels and
the cursor pixels is defined by two 16-by-16-bit arrays: the screen mask
and the cursor mask. The screen mask determines whether the cursor
pixels are part of the shape or part of the background. The cursor mask
determines how the pixels under the cursor contribute to the color of
the cursor when the video adapter is in text mode.

In your application programs, you can specify the shapes of the
screen mask and cursor mask by defining the shapes as arrays and pass-
ing these arrays as parameters in a call to Function 9 (Set Graphics Cur-
sor Block). For more information about Function 9, see Chapter 8,
“Mouse Function Calls.”

Mask interaction in modes 4 and 5. The interaction between the
screen mask and the cursor mask differs somewhat between modes 4
and 5 and the rest of the graphics modes. In modes 4 and 5, each pair
of bits in the masks represents one pixel on the screen. The graphics
cursor masks are always defined as 16-by-16-bit squares; however, in
modes 4 and 5 the cursor appears as an 8-by-16 rectangle of screen
pixels. This two-to-one mapping causes each 2-bit pair of masks to
represent one screen pixel. In all other graphics modes, one mask

bit represents one pixel on the screen.

To create the cursor, the mouse software operates on the data in
the computer’s screen memory that defines the color of each pixel on
the screen. First, each bit in the masks expands to match the number of
bits in video memory required for each pixel’s color information. For
example, in mode D each screen pixel requires 4 bits to produce one of
16 possible colors. In this case, each I in the masks expands to 1111 and
each 0 expands to 0000. Other graphics modes result in different
amounts of this bit expansion. Mode 4 (2 colors) doesn’t require ex-
pansion, whereas mode 13H (256 colors) requires that each mask bit
expand to 8 bits.

The mouse software then logically ANDs each of these bit groups
with the bit group for the associated screen pixel, which allows the
pixel color to remain unaltered wherever the screen-mask bit is 1. It also

Chapter 6: Mouse Programming Interface

allows a new color setting wherever the screen-mask bit is 0. The pixel is
blocked by a 0 bit and allowed through by a 1 bit.

Finally, the pixel bits are XORed with the expanded bit groups
from the cursor mask. Where the cursor mask is 0, the pixels are un-
altered. Where the mask is 1, the color bits are inverted. The result is an
inversion of the color information for the pixel. Most commonly, the
screen mask is 0 and the cursor mask is 1 wherever the cursor image is
shown, resulting in a solid, bright white image. Careful manipulation of
the screen and cursor masks and of the color palette information lets
you create transparent or colorful graphics cursors.

Figure 6-2 shows how these operations affect each screen bit.

If the
screen- And the cursor- The resulting
mask bit is mask bit is screen bit is
0 0 _ 0
0 1 1
1 0 Unchanged
1 1 Inverted

Figure 6-2. This table shows how the screen-mask bit and the cursor-mask
bit affect the screen bit.

In modes 4 and 5, each pair of mask bits maps to one screen pixel,
resulting in a slightly different cursor creation. Each screen pixel re-
quires 2 bits of color information. These 2 bits logically AND and XOR
with the screen mask bit pair and the cursor mask bit pair to form the
cursor. Note that you should set each pair of mask bits to the same
value to prevent the cursor image from bleeding around the edges. You
can see this bleeding effect as a magenta or cyan (blue) fringe on the
default cursor arrow when in mode 4 or 5.

Figure 6-3 on the following page depicts the screen and cursor
masks for the default graphics cursor. The 1’s in the screen mask let the
background show through; the 0’s hide the background pixels. The 1’s
in the cursor mask indicate bright white pixels composing the cursor
image; the 0’s let the background show through unaltered.

Mask interaction in modes E and 10. In modes E and 10, as in modes 6
and F, each bit in the screen mask and cursor mask corresponds to a
pixel in the cursor block.

91

PART Ill: MOUSE PROGRAMMING INTERFACE

92

Screen Mask Cursor Mask. Hot Spot
1001111111111111 0000000000000000 X=0
1000111111111111 0010000000000000 Y= -1
1000011111111111 0011000000000000
1000001111111111 0011100000000000
1000000111111111 0011110000000000
1000000011111111 0011111000000000
1000000001111111 0011111100000000
1000000000111111 0011111110000000
1000000000011111 0011111111000000
1000000000001111 0011111000000000
1000000011111111 0011011000000000
1000100001111111 0010001100000000
1001100001111111 0000001100000000
1111110000111111 0000000110000000
1111110000111111 0000000110000000
1111111000111111 0000000000000000

Figure 6-3. The default graphics-mode screen and cursor masks.

The cursor mask and the screen mask are stored in off-screen
memory, and each plane has its own identical copy of the cursor mask
and screen mask. Therefore, for each plane, the resulting screen bit (as
shown in Figure 6-2) is actually the bit used in the color lookup table on
the EGA.

In EGA and VGA graphics modes, the color information is kept in
lookup tables. This means that the pixel-color information bits repre-
sent an index to a table of predefined colors. By changing the colors in
this table, you can change the color of the cursor. For more informa-
tion about changing colors, see the Basic PALETTE statement or the C
_remappalette function in your product’s language reference manual.

The Graphics-Cursor Hot Spot
The graphics-cursor location is the point on the virtual screen that
coincides with the cursor’s kot spot. You can set the hot spot at any
virtual-screen coordinates up to £127 units from the upper left corner
of the screen-mask and cursor-mask definitions. This means that you
can set the hot spot at a visible cursor pixel location or at an invisible
pixel location where the background is visible. The cursor appears on
the screen relative to the hot spot.

You define the hot spot in the cursor block by passing the horizon-
tal and vertical coordinates of the point to Function 9. For all graphics

Chapter 6: Mouse Programming Interface

modes, the coordinates are relative to the upper left corner of the cur-
sor block. In most cases, the hot spot is set in the range 0 through 15,
the area where the cursor pixel masks are defined; however, you can
define the hot spot anywhere in the range —128 through 127.

The Text Cursors

Two types of text cursors are available for use with the mouse. The soft-
ware text cursor affects the appearance of the entire character cell,
altering the character’s attributes. The hardware text cursor comes
with the computer hardware; it usually contains a block of scan lines in
a portion of the character cell. Choosing one type of text cursor instead
of the other is largely a matter of aesthetic preference. Both are fast
and efficient.

The Software Text Cursor
You use the software text cursor when the video adapter is in one of the
text screen modes. The software text cursor affects how characters ap-
pear on the screen. Unlike the graphics cursor, the software text cursor
usually doesn’t have a defined shape. Instead, it displays its position by
changing the character attributes (such as foreground and background
colors, intensity, and underscoring) of the character directly under it;
however, if the cursor does have a defined shape, it takes the shape of
one of the 256 characters in the ASCII character set.

The screen and cursor masks control which attributes are altered
and whether the ASCII code for the character itself is modified.

The screen mask and cursor mask. Earlier in this chapter, you read
about the relationships of screen and cursor masks to the graphics cur-
sor. Software text cursors also use screen and cursor masks. In fact, the
effect of the software text cursor on the character beneath it is defined
by the screen mask and the cursor mask. The screen mask is a 16-bit
value that determines which of the character’s attributes are preserved,
and the cursor mask is a 16-bit value that determines how these at-
tributes change to yield the cursor.

To create the cursor, the mouse software operates on the data that
defines each character on the screen. The mouse software first logically
ANDs the screen mask and the 16 bits of screen data for the character
currently beneath the cursor. The mouse software then logically XORs
the cursor mask with the result of the AND operation, producing the
cursor’s appearance on the screen.

Q3

PART lll: MOUSE PROGRAMMING INTERFACE

The format of the screen data for each character is shown in
Figure 6-4. Each of the 16 bits shown has a purpose, as follows:

Bit(s) Purpose

15 Sets blinking or nonblinking character
12-14 Sets the background color

11 Sets high intensity or medium intensity
8-10 Sets the foreground color

0-7 ASCII value of the character

The range of values for each field depends on the characteristics
of the display adapter installed in your computer. (See the documenta-

tion that came with your display adapter for details.)

Bit: 15 14 12 11 10 8 7 0
| 1l]
[[
Odd address Even address

Figure 6-4. Data format for each screen character in text mode.

The screen mask and cursor mask are identical in structure to the
character structure shown in Figure 6-4. The value contained in each
field of the screen mask and cursor mask defines a character’s new at-
tributes when the cursor is over that character. For example, to invert
the foreground and background colors, be sure the screen mask and
cursor mask have the values shown in Figure 6-5. (The software text
cursor defined in this figure is the default cursor before Function 10

(Set Text Cursor) is called to redefine it.)

Bit: 15 14 12 11 10 8
Screen mask: of1 1 1]0]1 1 1

7
1111111
Cursor mask: of1 1 1j0y1 1 1|0 0 O O 0 O O

Figure 6-5. Sample screen-mask and cursor-mask values.

0
1
0

= &H77FF
= &H7700

In your application programs, you can define the values of the
screen mask and cursor mask by passing their values as parameters to
Function 10 (Set Text Cursor). For more information about Function

10, see Chapter 8, ‘““Mouse Function Calls.”

94

Chapter 6: Mouse Programming Interface

The text-cursor location is determined by the virtual-screen coor-
dinates of the character beneath the cursor. The text cursor doesn’t
have a hot spot.

The Hardware Text Cursor
The hardware text cursor is another type of text-mode cursor. You can
also set a hardware text cursor by using Function 10.

The hardware text cursor is the computer’s cursor—the one that
appears on the screen after the MS-DOS system-level prompt. The
mouse software lets you adapt this cursor to your needs.

Scanlines. The hardware cursor is 8 pixels in length and 8 to 14 pixels
in height. Each horizontal set of pixels forms a line called a scan line.
The cursor contains 8 to 14 scan lines.

Your program turns scan lines on or off. If a scan line is turned
on, it appears as a flashing bar on the screen. If a scan line is turned off,
it has no effect on the screen. Your program defines which lines are on
and which are off by passing the numbers of the first and last lines in
the cursor to Function 10.

The number of scan lines in the cursor depends on the display
adapter installed in your computer. For example,

® Ifyour computer has a Color/Graphics Adapter, the cursor
contains 8 lines, numbered 0 through 7.

® Ifyour computer has a Monochrome Display Adapter, the cur-
sor contains 14 lines, numbered 0 through 13.

B Ifyour computer has an Enhanced Graphics Adapter and a
Color Display, the cursor contains 8 lines, numbered 0
through 7.

® Ifyour computer has an Enhanced Graphics Adapter and an
Enhanced Color Display, the cursor contains 8 lines, numbered
0 through 7.

THE INTERNAL CURSOR FLAG

Regardless of the type of cursor displayed, the mouse software main-
tains an internal flag that determines whether the cursor appears on
the screen. The value of this flag is always 0 or less. When the value of
the flag is 0, the mouse software displays the cursor. When the value
of the flag is less than 0, the mouse software hides the cursor.

95

PART Ill: MOUSE PROGRAMMING INTERFACE

Application programs cannot change the value of this flag di-
rectly. To change the flag’s value, your program must call Functions 1
(Show Cursor) and 2 (Hide Cursor). Function 1 increments the flag;
Function 2 decrements it. Initially, the flag’s value is —1, so a call to
Function 1 displays the cursor. A call to Function 42 (Get Cursor Hot
Spot) returns the value of this flag.

Your program can call Function 1 or Function 2 any number of
times, but if it calls Function 2, it must subsequently call Function 1 to
restore the flag’s previous value. For example, if the cursor displayed on
the screen and your program calls Function 2 five times, it must also
call Function 1 five times to return the cursor to the screen.

If your program calls Function 1 to display the cursor, any addi-
tional calls to Function 1 have no effect on the internal cursor flag;
therefore, one call to Function 2 always hides the cursor. In addition,
your program can call Function 0 (Mouse Reset and Status), or it can
change screen modes to reset the flag to —1 and hide the cursor.

READING THE MOUSE

You can obtain input from the mouse by directing your program to
read the status of the mouse buttons and check if (and how far) you
have moved the mouse. Your program can also check how many times
you pressed or released a particular button, and it can adjust the mouse
movement sensitivity.

Mouse Buttons

Function 5 (Get Button Press Information) and Function 6 (Get But-
ton Release Information) read the state of the mouse buttons. They
return a count of the number of times the buttons are pressed and
released. The button status is an integer value in which the first 2 bits
are set or cleared. Bit 0 represents the state of the left-hand button, and
bit 1 represents the state of the right-hand button. If a bit is set (equal to
1), the button is down. If a bit is clear (equal to 0), the button is up.
The mouse software increments a counter each time the corre-
sponding button is pressed or released. Functions 5 and 6 can read the
contents of these counters. The software sets the counter to 0 after you
reset the mouse (Function 0) or after you read a counter’s contents.

Mouse Unit of Distance: The Mickey

The motion of the mouse track ball translates into values that express
the direction and duration of the motion. These values are given in
a unit of distance called a mickey, which is approximately %200 inch

96

Chapter 6: Mouse Programming Interface

(Y400 inch for a 400 ppi mouse). When you move the mouse across a
desktop, the mouse hardware passes a horizontal and vertical mickey
count—that is, the number of mickeys the mouse ball rolled in the
horizontal and vertical directions—to the mouse software. The mouse
software uses the mickey count to move the cursor a certain number of
pixels on the screen.

You can use Function 11 (Read Mouse Motion Counters) to read
the relative motion counters kept by the mouse software. After the
counters are read, they are reset to 0. You can also obtain the absolute
position of the mouse as maintained by the mouse software by calling
Function 3 (Get Button Status and Mouse Position).

Mouse Sensitivity

The number of pixels that the cursor moves doesn’t always correspond
one-to-one with the number of mickeys the track ball rolls. The mouse
software defines a sensitivity for the mouse, which is the number of
mickeys required to move the cursor 8 pixels on the screen. The sen-
sitivity determines the rate at which the cursor moves.

In your application programs, you can define the mouse’s sen-
sitivity by passing a mickey count to Function 15 (Set Mickey/Pixel
Ratio) or by calling Function 26 (Set Mouse Sensitivity). The default
mickey count is 8 mickeys to 8 pixels, but the mickey count can be any
value from 1 through 32,767. For example, if you pass a count of 32, the
sensitivity is 32 mickeys per 8 pixels. In this case, the cursor moves at
one-fourth the speed of the default setting.

CALLING MOUSE FUNCTIONS

Before calling any mouse functions, your program should verify that
the mouse driver has been installed. (See ‘‘Testing for Installed
Mouse” later in this chapter.) All example code in the function de-
scriptions assumes that the mouse driver has been installed.

You can use either of two methods—MOUSE.LIB and MS-DOS
Interrupt 33H—to communicate with the mouse driver from within a
program. All mouse function calls are available by using either
method. (See “The Mouse Programming Interface’ in Chapter 2.)

MOUSE.LIB offers eight interfaces, four that support C language
calling conventions and four that support Pascal calling conventions.
(QuickBasic uses Pascal calling conventions.) Within each group of
four is an interface for each of four different memory models: Small,
Medium, Compact, and Large.

97

PART lll: MOUSE PROGRAMMING INTERFACE

98

Interface Convention Model

cmouses C Small

cmousem C Medium
cmousec C Compact
cmousel Cc Large

mouse Pascal Small, Medium
mouses Pascal Small

mousem Pascal Medium

mousel Pascal Large, Compact

For Pascal calling conventions with small and medium memory models, the interfaces
mouse, mouses, and mousem can be used interchangeably.

All MOUSE.LIB interfaces require four parameters. In the mouse
function descriptions in this book, the parameter names M1 %, M2 %,
M3 %, and M4 % act as placeholders. Following the standard notation
for interpreted Basic and QuickBasic, the percent sign (%) emphasizes
that the passed parameters are 16-bit integers. In C and QuickC, the pa-
rameters are short integers named MI, M2, M3, and M4.

For almost all mouse function calls using MOUSE.LIB, values are
assigned to MI1%, M2%, M3 %, and M4 %, and then the parameters are
passed by reference to the MOUSE.LIB interface. (Functions 9, 12, 16,
22, 23, 24, and 51 treat M4 % differently; see the function descriptions
in Chapter 8 and ‘‘Passing Buffer Pointers’’ later in this chapter for
details.)

The MS-DOS Interrupt method of calling mouse functions uses
the AX, BX, CX, and DX registers to pass parameters that correspond
to M1%, M2%, M3 %, and M4%. In a few special cases, ES and SI are
also used.

The example code in the function descriptions in Chapter 8
assumes the variable and types are defined as in the templates that fol-
low (for example, RegType for QuickBasic and iReg and oReg for C and
QuickC).

To initialize the variables MOUSESEG and MOUSE used in the
interpreted Basic template, execute the interpreted Basic code listed
in the section ‘‘Testing for Installed Mouse’’ later in this chapter before
making any interpreted Basic program calls to the mouse. Also, for
brevity in the function descriptions in Chapter 8, the two DEF SEG
lines in the interpreted Basic template are not repeated in the example
code shown.

Chapter 6: Mouse Programming Interface

Interpreted Basic

110 M1% = number of the function to be called

120 M2% = value of second parameter

130 M3% = value of third parameter

140 M4% = value of fourth parameter

150 DEF SEG = MOUSESEG

160 CALL MOUSE(M1%, M2%, M3%, M4%)

170 DEF SEG ' Restore Basic data segment

160 ' M1%, M2%, M3%, M4% now contain return values

The QuickBasic template that follows assumes a small or medium
memory model. To use a compact or a large model, change mouse to
mousel.

QuickBasic

' Using MOUSE.LIB interface

M1% = number of function to be called

M2% = value of second parameter

M3% = value of third parameter

M4% = value of fourth parameter

mouse(M1%, M2%, M3%, M4%)

' M1%, M2%, M3%, M4% now contain return values

QuickBasic

' Using MS-DOS Interrupt 33H

DEFINT A-Z

TYPE RegTypeX
ax AS INTEGER
bx AS INTEGER
cx AS INTEGER
dx AS INTEGER
bp AS INTEGER
si AS INTEGER
di AS INTEGER
flags AS INTEGER
ds AS INTEGER
es AS INTEGER

END TYPE

(continued)

99

PART Ill: MOUSE PROGRAMMING INTERFACE

continued

DECLARE SUB InterruptX (intnum%, iReg AS RegTypeX, oReg AS RegTypeX)
DIM iReg AS RegTypeX :

DIM oReg AS RegTypeX

iReg.ax = number of the function to be called

iReg.bx = value of second parameter

iReg.cx = value of third parameter

iReg.dx = value of fourth parameter

InterruptX &H33, iReg, oReg

' oReg.ax, oReg.bx, oReg.cx, oReg.dx now contain return values

The C/QuickC template that follows assumes a small memory
model. To change to another memory model, simply change the define
statement.

C/QuickC

/* Using MOUSE.LIB */

fdefine mouse(a,b,c,d) cmouses(a,b,c,d)

int M1, M2, M3, M4;

M1 = number of function to be called;

M2 = value of second parameter;

M3 = value of third parameter;

M4 = value of fourth parameter;

mouse(&M1, &M2, &M3, &M4);

/* M1, M2, M3, M4 now contain return values */

C/QuickC

/* Using MS-DOS Interrupt 0x33 #*/

f#include <dos.h>

union REGS iReg,oReg;

iReg.x.ax = number of function to be called;

iReg.x.bx = value of second parameter;

iReg.x.cx = value of third parameter;

iReg.x.dx = value of fourth parameter;

int86(0x33, &iReg, &oReg);

/* oReg.x.ax, oReg.x.bx, oReg.x.cx, oReg.x.dx contain return values */

100

Chapter 6: Mouse Programming Interface

MASM

; Using MS-DOS Interrupt 33H

mov ax,number of function to be called

mov bx,value of second parameter

mov cx,value of third parameter

mov dx,value of fourth parameter

int 33h

; ax, bx, cd, dx now contain return values

If you use the MS-DOS Interrupt method for Functions 9, 12, 22,
28, 24, 41, 51, and 52, additional information is passed in register ES,
and for Functions 43, 44, and 45, additional information is passed in
registers ES and SI. To pass this information in QuickBasic, use the
definition for iRegin the previous example and move the information
into iReg.es and iReg.si. To pass this information in C and QuickC, read
the current values of the segment registers by using segread, put the ad-
ditional information into segreg.es and segreg.si, and then use int86x as
shown in the following example.

C/QuickC

/* Using MS-DOS Interrupt 0x33 to pass additional information */
f#include <dos.h>

union REGS iReg,oReg;

struct SREGS segregs;

iReg.x.ax = number of function to be called;
iReg.x.bx = value of second parameter;
iReg.x.cx = value of third parameter;
iReg.x.dx = value of fourth parameter;
segread(&segregs);

segreg.es = additional information;
segreg.si = additional information;

int86x(0x33, &inregs, &outregs, &segreg);
/* oReg and segreg contain return values */

If the function description doesn’t specify an input value for a pa-
rameter, you don’t need to supply a value for that parameter before
making the function call. If the function description doesn’t specify an
output value for a parameter, the parameter’s value is the same before
and after you make the function call.

101

PART lil: MOUSE PROGRAMMING INTERFACE

NOTE: The mouse software doesn’t check parameter input values, so be sure the
values you assign to the parameters are correct for the given function and screen
mode. If you pass the wrong number of parameters or assign incorrect values, the
result will be unpredictable.

PASSING BUFFER POINTERS

102

Functions 9, 16, 22, 23, and 51 pass a pointer to a buffer as M4 %.

If you are using C/QuickC and the MOUSE.LIB method to com-
municate to the mouse driver, use the following memory-model
independent code to pass a pointer to the buffer as the fourth parameter.

C/QuickC

/* Memory Model Independent code for passing buffer pointer */
int _far *M4FPTR; /* M4FPTR is a far pointer to */
MAFPTR = (int _far *)buffer; /* a buffer */

/* Variable &MFPTR can now be passed as the fourth %/

/* parameter in a call to MOUSE.LIB for any memory model */

If you are using C/QuickC or MASM and the MS-DOS Interrupt
method to communicate to the mouse driver, pass the offset of the
buffer in the DX register and the segment of the buffer in the ES
register.

C/QuickC

/* Passing buffer pointer to MS-DOS Interrupt */
iReg.x.ax = ...

iReg.x.bx = ...

iReg.x.cx = ...

iReg.x.dx = FP_OFF(mptr);
segregs.es = FP_SEG(mptr);
int86x(0x33, &iReg, &oReg, &segregs);

MASM

mov ax,...

mov bx,...

mov CcX,...

mov dx,0FFSET buffer

mov ex SEG buffer

int 33h

int86x(0x33, &iReg, &oReg, &segregs)

Chapter 6: Mouse Programming Interface

TESTING FOR INSTALLED MOUSE

If you use the MOUSE.LIB method to communicate to the mouse, call
Function 0 (Mouse Reset and Status) to verify that the mouse software
and hardware are installed. If you have installed the mouse hardware
and software correctly, Function 0 returns M1 % =—1. (With mouse ver-
sion 6.25 or later, if the driver is installed correctly but you later discon-
nect a serial or PS/2 mouse, subsequent calls to Function 0 will return
MI% = 0.) If you didn’t install the hardware and software correctly,
Function 0 returns MI% = 0.

If you use the MS-DOS Interrupt method to communicate to the
mouse driver, you need to do the following: First check to see that the
mouse-driver software was installed correctly by verifying that the vec-
tor for Interrupt 33H does not point to 0:0 or to an IRET instruction.
Next check to see that the mouse hardware is installed by using Func-
tion 0 (Mouse Reset and Status). Optionally, you can then include a
call to Functions 36 (Get Driver Version, Mouse Type, and IRQ
Number) and 50 (Get Active Advanced Functions) to check the version
of the mouse driver that is installed and to verify that the mouse func-
tions you will use later in the application program are supported by the
installed mouse driver.

Be sure your program issues a message if the mouse driver is not
installed properly or (assuming you used Functions 36 and 50) if the
mouse driver does not support the mouse functions you will use later.

Each of the following program fragments verifies mouse installa-
tion and displays a message stating whether the mouse driver and
mouse were found.

Interpreted Basic communicates with the mouse driver directly
without using MOUSE.LIB or the MS-DOS interrupts. The code that fol-
lows should appear in every interpreted Basic program. It determines
the interrupt vector for MS-DOS Interrupt 33H and, if the mouse driver
is installed, initializes MOUSESEG to the segment for the mouse driver
and MOUSE to the offset of the second byte of the mouse driver. The
second byte is a special entry point to support a call from interpreted
Basic, which passes it parameters on the stack. Only interpreted Basic
programs should use this entry point. All mouse function calls are then
made by setting the segment to MOUSESEG, calling MOUSE, and reset-
ting the segment as shown in the previous example.

103

PART Ill: MOUSE PROGRAMMING INTERFACE

Interpreted Basic

100 ' Verify Mouse Driver & Mouse Installed

110 '

120 ' Determine mouse-driver interrupt address

130 DEF SEG = 0

140 MOUSEG = 256 * PEEK(207) + PEEK(206)

150 MOUSE = 256 * PEEK(205) + PEEK(204) + 2

160 DEF SEG = MOUSEG

170 '

180 ' Check if interrupt code loaded :
190 IF (MOUSEG% OR (MOUSE% - 2)) AND (PEEK(MOUSE - 2) <> 207) THEN GOTO 260
200 PRINT “"Mouse driver not found"

210 DEF SEG ' Restore Basic data segment

220 END

230 '

240 ' Mouse Reset and Status

250 M1% = 0

260 CALL MOUSE(M1%, M2%, M3%, M4%)

270 DEF SEG ' Restore Basic data segment

280 °

290 ' Was mouse hardware found?

300 IF M1% = -1 THEN 340

310 PRINT "Mouse not found"

320 END

330

340 PRINT "Mouse driver and mouse found and reset"
350 END

QuickBasic

' Verify Mouse Driver & Mouse Installed
* Determine mouse-driver interrupt address
DEF SEG =0
mouseseg = 256 * PEEK(207) + PEEK(206)
mouseofs = 256 * PEEK(205) + PEEK(204) + 2
DEF SEG = mouseseg
IF (mouseseg = 0 AND mouseofs = 0) OR PEEK(mouseofs) = 207 THEN
PRINT "Mouse driver not found"
SYSTEM
END IF
' Mouse Reset and Status
iReg.ax = 0
Interrupt &H33, iReg, oReg

(continued)

104

Chapter 6: Mouse Programming Interface

IF oReg.ax = -1 THEN

PRINT "Mouse driver and mouse found and reset”
ELSE

PRINT "Mouse not found"

SYSTEM
END IF

C/QuickC

/* Verify Mouse Driver & Mouse Installed */
#include <stdio.h>
f#include <stdlib.h>
fHinclude <dos.h>
main()
{
union REGS iReg,oReg;
void (interrupt far *int_handler)();
long vector;
unsigned char first_byte;
/* Determine mouse-driver interrupt address */
/* Get interrupt vector and first instruction of interrupt */
int_handler = _dos_getvect(0x33);
first_byte = * (unsigned char far *) int_handler;
vector = (long) int_handler;
/* Vector shouldn't be 0, and first instruction shouldn't be iret */
if ((vector == 0) i1 (first_byte == Oxcf))
{ :
printf("Mouse driver not found");
exit(l);
}
/* Mouse Reset and Status */
iReg.x.ax = 0;
int86(0x33, &iReg, &oReg):
/* Was the mouse found? */
if (oReg.x.ax == -1)
printf("Mouse driver and mouse found and reset\n");
else
{
printf("Mouse not found\n");
exit(1l);
}

105

PART lll: MOUSE PROGRAMMING INTERFACE

MASM

; Verify Mouse Driver & Mouse Installed
print MACRO string
mov dx,0FFSET string
mov ah,9
int 21h
ENDM
DOSSEG
.MODEL SMALL
.STACK 100h
.DATA
mesg0 db "Mouse driver not found", 13, 10, "$"
mesgl db "Mouse not found", 13, 10, "$"
mesg2 db "Mouse driver and mouse found and reset”, 13, 10, "$"
.CODE ~ ‘
; Set up DS for the data segment
start: mov ax, @DATA
mov ds,ax
; Determine mouse-driver interrupt address
mov ax,3533h ; Get Interrupt 33H vector
int 21h '
mov ax,es
or ax,bx
Jz no_driver ; es and bx both 0 ?
cmp byte ptr es:[bx], 207
jne reset
no_driver:
print mesg0
; Exit with a code of 1
mov al,l
Jjmp short exit
reset: ; Mouse Reset and Status
Xor ax,ax s M1% =0
int 33h
; Was mouse found?
or ax,ax
jne found
; Mouse not found
print mesgl
; Exit with a code of 1
mov al,l
Jmp short exit

(continued)

106

found:

- print mesg?2

; Mouse was found -

3

3 Exit with a code of O

exit:

END-

xor al,al
s Exit to MS-DOS
mov ah, 4Ch

Sint 21h

start

Chapter 6: Mouse Programming Interface

107

Chapter 7

Mouse Programming
Considerations

This chapter covers some basic programming considerations for add-
ing mouse support to your application programs. It discusses specific
uses for commonly used mouse functions as well as functions that ad-
dress more advanced programming issues. The last section presents a
list of mouse functions categorized by operation.

SETTING UP YOUR SYSTEM

The Microsoft mouse driver provides 51 functions for adding mouse
support to your application program. After you load the mouse
driver—either by loading MOUSE.COM from the MS-DOS command
prompt or from AUTOEXEC.BAT or by loading MOUSE.SYS with a
DEVICE directive in CONFIG.SYS—you can include these functions in
your application program by calling MS-DOS Interrupt 33H with the
appropriate parameters or by using the mouse library, MOUSE.LIB.

Although using these functions is fairly straightforward, to do so
you must consider several aspects of the system on which your applica-
tion is running. The most important considerations are the type of
video hardware installed and what modes it is capable of displaying.
Mouse functions that draw, display, and move the cursor are heavily
dependent on the current video display mode. Other considerations
include the version of the mouse driver, the language setting for the
country in which the application program is being used, and whether
the application program using the mouse is a terminate-and-stay-
resident (TSR) program.

109

PART lll: MOUSE PROGRAMMING INTERFACE

Although there are no hard-and-fast rules about where you must
place mouse support within your program, you should include certain
mouse functions early in your program to ensure that you installed the
mouse driver properly and that its version supports the mouse func-
tions you plan to use in your application. In addition, because the
mouse driver works closely with the video adapter, be sure your applica-
tion program communicates with the video adapter by using the BIOS.
You should not program the video hardware directly.

You make mouse function calls either by using Interrupt 33H or
by calling the MOUSE.LIB library. Both methods offer identical func-
tionality and differ only in how you access them. See Chapter 2, “Over-
view of Mouse Programming,”” for more information; however, note
that application programs calling the MOUSE.LIB must treat the func-
tions as external.

You must include four variables when making a mouse function
call. The first variable identifies the function number; the other three
provide any additional information required by that function. The
mouse function returns information in these same variables. You
declare the variables as you would any other integer-value variables
within your program.

Testing for the Mouse Driver

110

After declaring any necessary variables and functions, you should
check that the mouse driver was installed correctly by verifying that the
vector for Interrupt 33H does not point to 0:0 or to an IRET
instruction. You can also include a call to Function 36 (Get Driver Ver-
sion, Mouse Type, and IRQ Number) to check the version number of
the installed mouse driver. If the version number is high enough (7.0 or
later), a call to Function 50 (Get Active Advanced Functions) is neces-
sary to determine which of the functions beyond 36 are available.

NOTE: Be sure your program issues an error message that sends a warning if the
mouse driver is not installed properly or if the mouse-driver version is incapable of
supporting the mouse functions you plan to use later.

You should then include Function 0 (Mouse Reset and Status) in
your program to reset the mouse driver. A call to Function 47 (Mouse
Hardware Reset) performs the same reset function as Function 0, but it
doesn’t reset the software values, only hardware values.

Chapter 7: Mouse Programming Considerations

In most cases, you can now call Function 1 (Show Cursor) in your
application program to display a cursor. The cursor that appears
reflects the current mode of the video adapter: The mouse driver dis-
plays a square if the video adapter is in text mode or a solid arrow if the
video adapter is in graphics mode. If your video adapter is in a mode
that is not supported by the mouse driver, the result is unpredictable.
For example, the cursor might not appear at all, but your application
might continue to run normally; or your system might lock up. (See
“Supported and Unsupported Video Modes’’ later in this chapter.)

Before calling Function 1 (Show Cursor) to display the cursor, you
can first call other mouse functions to perform tasks such as modifying
the shape of the cursor or defining an area to which cursor movement
will be restricted. Although you can include these calls at any point in
the program, you might want to do so early to avoid making changes
in the program later.

Controlling the Cursor

As explained in Chapter 6, ‘‘Mouse Programming Interface,” you can
include in your program Function 9 (Set Graphics Cursor Block) and
Function 10 (Set Text Cursor) to modify the shape of any graphics or
text cursor. In addition, you can use Function 7 (Set Minimum and
Maximum Horizontal Cursor Position) and Function 8 (Set Minimum
and Maximum Vertical Cursor Position) to define a boundary for cur-
sor movement on the screen. You can also use Function 16 (Conditional
Off) to define an area of the screen in which the cursor will disappear
if moved into that area.

To turn off the cursor completely without losing any of the cursor
attributes you’ve set in your program, you can use Function 2 (Hide
Cursor). Note that after your program hides the cursor, the mouse
driver continues to keep track of mouse movements and button presses.
If you include in your program mouse functions that continue to track
mouse movements and button presses when the cursor is turned off,
you can use Function 1 (Show Cursor) to display the cursor in the up-
dated position. You can also use Function 4 (Set Mouse Cursor Posi-
tion) to position the cursor before you display it.

Other functions let you control the relationship between mouse
movement and cursor movement. Function 15 (Set Mickey/Pixel Ratio)
adjusts the ratio of mouse movement to cursor movement, and Func-
tion 19 (Set Double-Speed Threshold) defines the level of mouse

111

PART Ill: MOUSE PROGRAMMING INTERFACE

movement speed that causes mouse sensitivity to double. Note that
Function 19 is a “‘quick-and-dirty’’ method for providing crude ac-
celeration. You can manipulate full acceleration curves by calling Func-
tion 43 (Load Acceleration Curves), Function 44 (Read Acceleration
Curves), and Function 45 (Set/Get Acceleration Curve).

A single call to Function 26 (Set Mouse Sensitivity) is equivalent to
separate calls to Functions 15 and 19. In most cases, you’ll find it’s easier
to use Function 26 than to use the two separate functions. Calling
Function 27 (Get Mouse Sensitivity) lets your program check the cur-
rent mickey-per-pixel ratio and double-speed threshold, allowing the
program to use Function 26 to reset values if necessary.

Determining Mouse Position and Button-Press Status

112

To use the mouse as more than a pointing device, you need to request
from the mouse driver status information about mouse position and
button presses. Your program can then use the information to control
program flow by augmenting the user interface.

You can use Function 3 (Get Button Status and Mouse Position)
to determine whether the user pressed a mouse button and, if so, the
position of the cursor when the button was pressed. This information
lets your program perform tasks such as highlighting text, selecting on-
screen menu items, and creating shapes.

Function 5 (Get Button Press Information) and Function 6 (Get
Button Release Information) return mouse-movement and button-
press status. Functions 5 and 6 are similar to Function 3 except that
they maintain a buffer to keep a cumulative count of button presses or
releases since those functions were last called. Function 3 checks the
button-press status at the time of the function call. Functions 5 and 6
let you build a “click-ahead” buffer into your program in the same way
as the keyboard buffer lets you use a type-ahead buffer.

Using Function 11 (Read Mouse Motion Counters) lets your pro-
gram keep track of relative mouse motion, as opposed to absolute
screen position. In other words, Function 11 can indicate how far the
user moved the mouse since the last call to Function 11.

Chapter 7: Mouse Programming Considerations

Function 39 (Get Screen/Cursor Masks & Mickey Counts) lets
your program determine raw counts for accumulated mickey counts
since the last time the mouse was polled for movement. These counts
are unaffected by acceleration tables, double-speed threshold, or sen-
sitivity settings.

BallPoint Support

All functions but one operate in the same way for the Microsoft mouse
and the Microsoft BallPoint mouse. Call Function 48 (Set/Get Ball-
Point Information) to control the variables unique to the BallPoint—
direction orientation and button definition.

ADVANCED TOPICS

Several mouse functions address specific programming issues not nor-
mally encountered in an average program. The following sections
discuss these functions.

Querying the Driver

You can use a variety of functions to determine the status of the mouse
driver, including Function 37, Function 38, Function 39, Function 42,
Function 49, and Function 51. Accessible information includes mouse
type, cursor type, interrupt rate, internal flags, xy-coordinate
minimums and maximums, screen-mask values, cursor-mask values,
horizontal and vertical raw mickey counts, and switch settings. See
specific function descriptions in Chapter 8 for further details.

Video Modes

Due to the close interaction between the mouse driver and the video
adapter, you need to take special steps if your program performs ad-
vanced video techniques. (For EGA programming considerations, see
Chapter 10, “Writing Mouse Programs for IBM EGA Modes.”’)

- 113

PART Ill: MOUSE PROGRAMMING INTERF<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>