ITHACA INTERSYSTEMS
PASCAL/Z
PASCAL/BZ

USER'S MANUAL
VERSION 4.0

© Copyright 1981 JEFF MOSKOW
) Revised 11/1/81 :

ITHACA INTERSYSTEMS
PASCAL/Z AND PASCAL/BZ
USER'S MANUAL

VERSION 4.0

(e¢) Copyright 1981
by Jeff Moskow

Revised 11/1/81

COPYRIGHT NOTICEO.Q0.0..Q’......l.....-........."'v.Ol

INTRODUCTION . ¢ e s eeescoasececacocssccasecoasaanoscconesl
PASCAL/Z OBUJECTIVES . e eeeeeaooesocacososcaansssansnaesal
IMPLEMENTATION FEATURES...cceeececcaccncscsnnsascessd
EXTENSIONS TO THE STANDARD LANGUAGE...eeceeececcesead
PASCAL/Z RESTRICTIONS . eeeeeeooaccoaosenccnsonssocnsesd.

SYSTEM REQUIREMENTS..-“...........‘....l.....00000.6...‘:

RECEIVING INSPECTION..eeceeocesscosonssacossssnssscessl

Contacting IntersystemS...cccececcssacsoccnsssacsesd
CONTENTS OF THE PASCAL/Z DISTRIBUTION DISKETTE......9
CONTENTS OF THE PASCAL/Z LIBRARY DISKETTE...:......10
JENSEN & WIRTH EXAMPLE PROGRAMS ... cccccseccsccasseal2
GETTING STARTED .. cceeeccceossoscossenssassnsssansseselld

INTRODUCTION TO PASCAL.:cceosccccscscascscccancsosossld
Declarations & DefinitionS..eeecceccccacsccocscsald
Intrinsic Constants & Data TYPeSeceecceacessoccssalb
Scalar Data TYPeSecececscccossssccsccsccccssncncssall
Structured Data@ TYPeS:.eeeececcscososcasacsaseasld
The Pointer TYPECiceeeecccccsccscsscsccncsancanceadl
CONStANtS.eieeecsscccccsccesscsscsccosssasnscnnsssceadld
VariableS..eeeceeeeeceeereoosccocccacsscassasnnsanesadl

Global & Local VariableS..iceceersceeacaccceaaadl

Accessing Variables....eeeeseeanadocosonssasesanld
Assignment StatementS..eccsceccccccossccsoccoacald
Repeat & While StatementS..ccccececescccsccssesalb
For StatementS..i.eceeeeeceesessnsasscscosocsncsancesdd
Conditional StatementS..ceececcccrcccccccccccccesall
Compound StatementS..cecescecesccsscssscscsecsseeall
With StatementS..cecececcescocccocasssssasscsseadd
Procedures & FunctionNS....ecececccccccccnccsseadall
Pascal Standard FunctioNS.eececccecevsccsccccasceall
Pascal Standard ProceduUreS...ccccecccsccaceccasssall
Program Structure & Use of Semi-Colons..........32

THE PASCAL/Z COMPILER:::ccecoacscncasancccsnasancsesssssd
The Symbol Table..eseeeeeocseccsscssccansaaccessaslid
The Type Table.cierieieeeeeeerccncessnacssnnseasssid

COMPILER OPTIMIZATIONS .t st cceessescccacocsocsssnssssib

VOCABULARY . .o esceovsoncosccsscosossscossssssosssnosasasedl

PASCAL SPECIFICATIONS & LIMITATIONS..cceeveacacseses3B
SpecificationS.ecceececescesccscccscccncsscnsacsasssiB
LimitationS.eeeeeeceecacseeasceacacsasscsasoscseaasssaedcdl

COMPILER OPTIONS .. .cveeccesccecssacssosccacsscnssnassssdl

OPTIMIZING PASCAL/Z PROGRAMS FOR SPEED..cecccececeaad3

PASCAL/Z TYPE DECLARATIONS . .cccoesesesssvsaacassccasasscdd

HOW TO RUN PASCAL/Zcecteecesccnccsnscnsssaancsccscescdbh
COMPILE.SUBu.seeceascocsesosscsessssossansacssnssccseasd8

INTERPRETING PASCAL/Z LISTINGS & ERROR MESSAGES....S50
Run-Time Errors =-- Stack Overflow..ceveececeeeaadl

PASCAL/Z INPUT & OUTPUT .. e cecoecccscasascnccaccaseadl

DIRECT FILE ACCESS . it eecceassscsascsnsvssccasosscsscsedB

RENAME & ERASE..ceceesecaccccscccssosnosscsassanssesedd

DEVICE INPUT & OUTPU T .. ceeeeeececcsscsssscecnncesashl

PASCAL/Z EXTENSIONS .. eeeeeceaesscsscaccsascacnscnsasbdl
Pascal/Z CoNStaAnNtSeeeeeececceccsssosossaseaccnsseabl
Pascal/Z FUNCLIONS.ceeeeaceecocacecsosscecocacseadd
Pascal/Z SEringS..eececececsscccecssoeccasacssocsesabdbd

. Pascal/Z CASE Statement.........................69
Separate CompilatioN..c.eseevessceccccccassocoaaall
‘Pascal/Z External Routines.......ceeee. wesrescesld
Overlaylng......................................79
INCLUDE Flles.....k_ W..........................85

CHAINING. oo ovauevonononoaoananeeasenanansesacenaasaB6
PASCAL/Z POINTERS..................................87
PASCAL/Z FLOATING POINT NUMBERS....................89

FORMATTING OUTPUT..................................90
ASSEMBLER & LINKER ERRORS ... veeeeecceconsooccceanseeasld?
MEMORY USAGE ..o eeecuasonscoossoscecscscsssnsssscsscasesdl
STACK & HEAP ORGANIZATION. it e veeeeeacocsesscssacesadD
INSTALLING PASCAL/Z PROGRAMS IN ROM.:.:.veeeeocecaasaldb

APPENDICES. . veeeecocscecscscacsasescsasonsassosssssecsnes 97
Appendix One -- Parameter Stack Configurations..97
Appendix Two -- Troubleshooting.............. ...98
Appendix Three -- Fixed Point Package..........101
Appendix Four -- Pascal/Z Users' GroUP.eeceeecoe. 108
Appendix Five —=- Warranty..eececeeeocececccecesesl0S
Appendix Six —- Error MessageS....cceeeeceessssslll
Appendix Seven -- Pascal/BZ....eececccescceaees.lld

PASCAL/Z COMMENTS & BUG"REPORTS.,.....,...........121

INDEX.

Pascal/Z User's Manual o Page 1
" .COPYRIGHT NOTICE

‘This copyrighted software . product is distributed
exclusively by ITHACA INTERSYSTEMS for the use of the
original purchaser only, and no license is granted herein to
copy, duplicate, sell or otherwise distribute to any other
person, firm or entity. Further, this software product and
all forms of the program are copyrighted by JEFF MOSKOW, and
all rights are reserved.' -

Wherever referred to throughout these manuals, CP/M and Z-80 are
registered trademarks of Digital Research and Zilog, Inc.,
respectively. ,

Pascal/Z User's Manual T o \: Page 2.
- INTRODUCTION

Pascal was designed in 1971 by Nikiaus Wirth to:
"...make available a language suitable to teach programming
as a systematic discipline... (and) to develop
implementations of this language which are both reliable and
efficient on presently available computers.”

The Ithaca InterSystems, Inc. Pascal/Z compiler was designed to
compile programs written in the Pascal language into Z-80
macro-assembler code. Its design closely follows that of Jensen
and Wirth's Pascal User Manual and Report (Second Edition).
Pascal/Z is presently available to run under Digital Research's
CP/M operating system. '

'The Pascal/Z software package includes object code for the
Pascal/Z compiler in both 48K and 54K versions, object code for
the debugger (InterPEST), the assembler (ASMBLE/Z), &and the
linker/loader (LINK/Z), and both object code and.commented source
code for the library routines. Also on the diskettes are several
example programs, including the .PAS and .COM files for the’

" example programs in the Jensen & Wirth USER MANUAL AND REPORT,
and some utility programs to facilitate using the Pascal/Z
package. Documentation includes the Pascal/Z Implementation
Manual, the InterPEST Reference Manual, the ASMBLE/Z and LINK/Z

manuals, and the Jensen & Wirth USER MANUAL AND REPORT.

V;Paséal/ZtUsérfs Manual _ o pPage 3
PASCAL/Z OBJECTIVES

Pascal/Z is a recursive descent Pascal compiler for the Z-80, and
was designed to be useful in a variety of environments. Our
design objectives were:

l) To run resident on & Z-80.
2) To. generate ROM-able re-entrant code.

3) To create a compiler which could be easily re-hosted for use
as a cross-compiler.

4) To write the compiler in Pascal for ease of maintenance and
reliability.

5) To write a compiler which could be easily modified to
generate code for the new 16 bit processors.

6) To produce code which is efficient and to minimize the
amount of threaded code. :

7) To add extensions necessary for industrial and scientific
programming.

While objectives one through six are straightforward, our seventh
objective 1is much more difficult and is constantly being
reconsidered. The extensions which have been added were added
only 1if they allowed the user to easily do something that
previously would have been impossible or awkward; or if they
greatly increase the readability of Pascal programs. In all
cases we have striven to maintain the "spirit" of Pascal.

Pascal/Zz User's Manual Pagé 4

IMPLEMENTATION FEATURES

* The code generated by Pascai/z is both. ROM-able and
re—entrant. ST : y

* Dedicated Pascal/Z programs may be as small as a few hundred
bytes.

The compiler generates code optimized for a z-80 processor
and takes advantage of special cases.

* Z-80 . macro assembly code 1is generated and optionally
includes Pascal source 1lines as comments ¢to allow user
peephole optimization if desired.

* Pascal/Z supports separate compilation of user progrems in
order to reduce the time ,to re-compile, re-assemble and
re-link large programs. ‘)

* Overlays are suppoftéd to permit execution of programs
larger than system memory size.

* InterPEST (InterSystems Pascal Error Solving Tool), an
interactive symbolic debugger designed specifically to
isolate and correct faults in a Pasczl/Z program.

EXTENSIONS TO THE STANDARD LANGUAGE -

* Separate compilation permitted to speed program
development.

* Asse@bly language interface allows versatile EXTERNAL
routines.

* ° INCLUDE files allow insertion of any file within a Pascal/Z
program.

* Overlay capabilities provided.

* A STRING type is provided.

* Direct File Access (random access) is supported.

* An ELSE clause is allowed with the CASE statement.

* Symbolic I/0 of enumeration types immensely simplifies

interactive programs.

* Integer constants can use the operators +, -, *, DIV (i.e., .
CONST1 = CONSTZ2 DIV CONST3).

* Functions may now return structured types.

‘Pascal/Z User's Manual Page 5

*

TIME/SPACE optimization is user selectable when using the
CASE statement. B

-See page 61 for more detail on Pascal/Z extensions.

PASCAL/Z RESTRiCTIONS
GOTO may not leave a block (procedure or function).
Standard GET/PUT 1/0 is not implemented.
Procedural parameters not implemented. A procedure/function
cannot be passed as a parameter to another

procedure/function.

Dynamic storage is implemented using NEW, MARK and RELEASE
rather than NEW and DISPOSE

The PAGE routine is not implemented.

See page 40 for more detail on Pascal/Z restrictions.

Pascal/Z User's Manual ’ Page 6

SYSTEM REQUIREMENTS

Pascal/Z runs under the Digital Research CP/M Operating System.
We recommend version 2.2, since earlier versions of CP/M did not
implement Random File Access, and thus the Random Access (called
Direct File Access in Pascal/Z) capabilities of Pascal/Z would be
lost when using any early release of CP/M.

While a compilation is in progress, Pascal/Z requires 48K of RAM
for itself (54K for the non-overlaying version), plus &dditional
memory for the operating system - usually 8K in the case of
CP/M. However, after a program has been compiled, assembled and
linked the actual program mcdule may be considerably less than
1K.

The system must also have at least one disk drive while compil@ng
since all compilations read a Pascal source file from the disk
and output the resulting macro code to the disk.

A 64K system with two disk drives is recommended for Pascal
program development. .

‘Pascal/Z User's Manual . . Page 7

RECEIVING INSPECTION

When your Pascal/Z diskette arrives, inspect both the diskette
and the shipping carton immediately for evidence of damage during
shipping. If the shipping carton is damaged or water-stained,
request the carrier's agent to be present when the carton is
opened. If the carrier's agent is not present when the carton is
opened, and the contents of the carton are damaged, save the
carton and packing material for the agent's inspection. Shipping
damages should be immediately reported to the carrier.

We advise that in any case you should save the shipping container
for use in returning the module to InterSystems, shoculd it become
necessary to do so.

Factory Service

Your Pascal/Z compiler comes with updates for one year from the
date of original purchase. These updates are available for a
nominal copying charge. Contact InterSystems for details.

Before returning the diskette to InterSystems, for any reason,
first obtain a Return Authorization Number from our Sales
Department. This may be done by calling us, sending us a TWX, or
by writing us. After the return has been authorized, proceed as
follows:

1) Include an explanatory letter.

2) Include a 1listing of the malfunctioning program or
operation. If no 1listing is enclosed we can make no
guarantee regarding correction of the error, since it may be
impossible for us to duplicate the problem without a listing
illustrating the malfunction. You CaN EXPECT AN
ESSENTIALLY IMMEDIATE RESPONSE IF YOU 'INCLUDE. A LISTING.
Please send the smallest program which demonstrates the
‘error so that we may isclate and correct the problem in the
shortest possible time. If you are working with standard
8", soft-sectored, single density CP/M compatible diskettes,
sending the program on disk in addition to the listing would
also be helpful. All materials will be returned to you upon
request once the problem has been diagnosed.

3) Include the Return Authorization Number.

4) Pack the abeove information in a container suitable to the
method of shipment.

5) Ship prepaid to InterSystems.

Pascal/Z User's Manual ' o - Page 8

Contacting InterSystems:
The following apply-for both correspondence and service.

Ithaca InterSystems Inc.
1650 Hanshaw Road

P.0O. Box 91

Ithaca, New York 14850

U.S.A.
Telephone (607) 257-0190
TWX 510 255-4346

In Europe:

Ithaca InterSystems (U.K.) Ltd.
58 Crouch Hall Road
London N8 8HG U.K.

Telephone 01-341-2447
Telex 298568

Péscéi[Z;UsngsgmahuaI -Page -9~

‘CONTENTS'OF. THE PASCAL/Z:DISTRIBUTION; DISKETTE.

-Before: d01ng ‘anything: with your Pascal/z dlskettes, MAKE A BACKUP
COPY OF.. EACH DISKETTE. : Use -.the. -badkup “for “all- of vyour

programmlng

WRITE ON THE DISTRIBUTION DISKETTES

efforts to ellmlnate the posszblllty of . destroylng

If you purchased Pascal/BZ “the- basxness véréiOﬂiofhthe édmpiler,

instead of or

information.

.....

addition. to :Pascal/Z; see Appendix- Seven for

The first:sideuof;your'P&ééal/27ﬂaster~biskette contains the

following ﬁiIes:

PASCALA48.COM

PAS248

PASCALS54..COM

PAS254
DECS

PFSTAT
DEBUG. REL
HOWTO.RUN
HELLO.PAS
COMPILE.SUB..

LIB.REL -
MAIN.SRC

EMAIN.SRC

XMAIN.SRC
XEMAIN.SRC

ASMBL.COM
LINK.COM ..
INFO.NEW

2 preliminary program which loads PAS248

The .actual -compiler- (overlaying version)

The 54K version of PASCAL.COM

The 54K version of PAS2 ,

Overlay.. mcdule for the 48K .version of the

compiler”

Overlay module for the‘ 48K ver51on of the

~cOmpllerA:

The “interactive symbollc debugger, InterPEST
(InterSystems Pascal Error Solving Tool)
A description of how to run the compiler,

assembler and linker

Demonstration program

A submit macro to. complle, assemble, link and
Tun Pascal. programs' (A description of
COMPILE.SUB. begins ‘on page 49.) . . -
The, -Pascal ‘run—time sypport library

Definitions and routines to be assembled with
the output of the compiler =

Routines. -to - be assembled with compiled
external Pascal routines and seéeparately

‘compiled modules

Definitions and routines to be assembled with
the output. of the compiler. when using the
debugger- :

Definitions and routines to be assembled with
separately complled mcdules when using the
debugger - o

Z-80-Macro assembler . ..

Relocatable linker/loader

Hot information not vyet included 1in the
manual '

The second side of your ‘Pascal/Z Mastervéiskéftefcontains the
following . files for the leed P01nt Package (see Appendix Three

for detalls)

FIXED.PAS

FIXCONST.PAS

A collection of procedures which perform
~arbitrary.. precision arithmetic in signed
- fixed- p01nt decimal A,
.. Declared “constants .for ...the fixed-point
--package." IR Lo

Pascal/Z User's Manual Page 10

FIXTYPE.PAS
FIXVAR.PAS

FIXEDEX.PAS

Declared types for the fixed-point package
Declared variables for the - fixed-point

" package

Example for use of fixed point package

Also on this side of the Master Diskette are the following files:

PASOPT
CMAIN.SRC
QVLYGEN.COM
OVERLAY.SRC
UCTRANS. *
PRIMES.*

FILEIO.PAS
EXTENS.PAS

'EXTENS.LST
EXTENS.SRC
EXTENS.REL

EXTENS.CCOM

CALL.*
RENERA.SRC
RENDRV. PAS
ERADRV. PAS
EXAMPLE.*

PEEK.*

Optimizer for Z-80 source output of compiler
Commented version of MAIN.SRC

Program to be used when overlaying

Source for the overlay routine in LIB.REL
Programs to allow UCSD --> CP/M file transfer
Demonstration program to generate the primes
factors of the numbers from 1 to 1000

A demonstration of Pascal/Z file I/0

A demonstration program containing at least
one example of each Pascal/Z extension.
Listing file generated by Pascal/Z

Macro code generated by Pascal/Z

Relocatable object code module generated by
ASMBLE/Z

Program module generated by LINK/Z. EXTENS
cannot be relinked by the user. It is for
demonstration purposes only.

Loads Z-80 registers and transfers control to
a specified address

Z-80 source for the RENAME and ERASE routines
contained in.LIB.REL.

Sample program which drives RBNAME

Sample program which drives ERASE

A program to calculate the transient program
area available in a CP/M system

PEEK and POKE for Pascal/Z -- allows the user
to examine any location in memory and store
into that location

Also on this side are the .PAS files for the Jensen & Wirth
example programs on the second side of the Library Diskette,
provided with permission from Springer-Verlag New York, the
publishers of the USER MANUAL AND REPORT.

CONTENTS OF THE PASCAL/Z LIBRARY DISKETTE

The first side of your Pascal/Z Library Diskette contains the
following files:

ABSSQR.SRC Integer absolute value and sgquare £floating
point absolute value

ADDSUB.SRC Does BCD addition and subtraction

ARCTAN.SRC Arctangent function

BYTIN.SRC Passes a character from file buffer to A

‘ - register

BYTOT.SRC Passes a character from A register to file
buffer

CHAIN.SRC Routine to chain Pascal/Z programs

. Pascal/z Userfs»Méguél Page 11

'Range check -

Closes output file .
“Floating 'point routines to complement an
operand and check number for a zero

Console read-and print

CHKD. SRC
CLSOT.SRC
CMPCHK. SRC -

CONSOL. SRC

CVTFLT.SRC Convert 16 blt 1ntegerr to floathg, point-
.number: -

CVTSFP.SRC Convert a string to a floatlng 901nt number

DEFLT.SRC Contains default values used in assembling
some library:modules

DIVD.SRC "~ Divide routines ,

DONE2.SRC Finishes two-operand floating point
operations

Routines to specify device name and delete
files from directory

DSKFIL.SRC

DYNALL.SRC Dynamic storage allocation and deallocation
ENTEXT.SRC ‘Ehter and exit routines for procedures and
. ~ functions

EQFLN.SRC End of file and end of line routines
ERROR.SRC -

.Closes output files .when run time error is
encountered. : :

EXPFCT.SRC Exponential function

FADDSB.SRC Floating point add and subtract

FCTMAC.SRC Contains macros wused 1in assembling some
library modules

FILEXT.SRC Routines shared by reset and rewri:e routines

FILNAM,SRC Passes file name to file control block

FLTIN.SRC Floating point input

FMULT.SRC Floating point multiply

FOUT.SRC Floating point output

FPDIVD.SRC Floating point divide

FPERR. SRC Floating point routine returns a =zero and
sets carry bit

FPINIT.SRC Contains initializations of values used in
assembling some library modules

FPMAC.SRC Contains macros used 1in assembling some

. library modules

FPRLOP.SRC Floating point relational operators

FPSQR.SRC Floating point square

FPTEN. SRC Floating point multiply and divide by 10

FXDCVT.SRC Converts a floating point number to fixed
peint format

INDIR.SRC Indirect load and store

INPT.SRC Read and Readln

LAST.SRC Marks the last location of the user program

LO.SRC Routine for closing output files

LOOK.SRC Looks one character ahead

MAIN.SRC Definitions and routines to be assembled with
the output of the compiler

MPNORM. SRC Multiple precision add and subtract, and
normalizing .a floating point number

MULT.SRC Multiply routines

NATLOG. SRC Natural log function

OPFILE.SRC Opens input and output files

OUTPT.SRC Write and Writeln '

PSTAT.SRC Trace and extended error message routine

RBLOCK.SRC ~Calculates random access block number and

size, and loads file buffer

Pascal/Z User's Manual Page 12

RESET.SRC
REWRIT.SRC
ROTATE.SRC

ROUND.SRC
SAVREG. SRC

SETCON. SRC

SETFTN.SRC

SINCCS.SRC
SQRT.SRC
SRELOP.SRC
STRFCT.SRC
STRLOP.SRC
TEXT.SRC

URELOP.SRC

Resets a file
Rewrites a file

-Rotates floating boint mantissa one bit right

or left .

Truncate and round functions used to convert
floating point to integer

Saves HL register and sets up pointers to two
sets on stack

Routines to construct a set, take the union
and intersection of two sets, and test for
membership

Set relational operators, and difference
routines

Sine and Cosine functions

Square root function

Structural relational operators

String length, setlength, append, and index
String relational operators

Buffers flow of <characters to and from
console

Unstructured relational operators.

Each of these routines is self documented.

JENSEN & WIRTH EXAMPLE PROGRAMS

On the second side of the Library Diskette are the .COM files for
the Jensen & Wirth example programs. (The .PAS files are on the
second side of the Master.) Also included are data files for

those programs
JENWIRTH.DOC

which require input. Look at the file
on the second side of the Library Diskette for
detailed information on these programs.

-

Pascal/Z User's Manual Page 13

GETTING STARTED

Before doing anything with your Pascal/Z diskette, make a backup
copy of the diskette and use that for all of your programming
efforts. It is in your best interests NEVER TO WRITE ON THE
DISTRIBUTION DISKETTE. _

Throughout this manual, whenever a sample dialogue is given, both
the computer and user responses will be shown; the user responses
should always end with a carriage return.

New that you have a backup copy of the distribution diskette,
insert it into the currently 'logged in' drive (drive 'A' if the
system was just booted). In order to verify your copy of the
distribution software you may compile, assemble and 1link
HELLO.PAS. To do this try the following dialogue:

A>pascal48 hello
InterSystems Pascal v-4.0
HELLO l=-

0 compilation error(s).

A>asmbl main,hello/rel
PASCAL run-time support interface ASMBL v-7d

" A>link hellec /n:hello /e
LINK version 2b

A>

If any of the above steps did not work as indicated, refer to the
section on TROUBLESHOOTING in Appendix Two.

Now that ycu have successfully compiled, assembled and linked
your. first Pascal program you may run it as follows:

A>HELLO

If the program did not welcome you to the land of Pascal/Z then
refer to the section on TROUBLESHOOTING.

Once you have verified your diskette by. being formally welcomed,
continue reading for a brief introduction to the Pascal
language. If you are already familiar with Pascal, you may wish
to skip to page 34 for information on the Pascal/Z
implementation.

If you are using Pascal/BZ, the business version of Pascal/Z, see
Appendix Seven for details on how to use BCD numbers, and for an
explanation of the differences between Pascal/Z and Pascal/BZ.

Pascal/Z User's Manual Page 14

INTRODUCTION TO PASCAL

The Pascal/Z Implementation Manual

The first section of the Pascal/Z Implementation Manual contains

a brief description of the Pascal programming language and the
facilities available to you; however, the discussion here is by
no means complete and 1if you feel that you need additional
material, you are advised to refer to a Pascal programming text.
Many books about "Pascal have recently appeared; among the better
ones are:

An Introduction to Pascal by Rodnay Zaks (Sybex, 1980)

An . Introduction to Programming and Problem Solving Using Pascal
by G.M. Schneider, S.W. Weingart and D.M. Perlman (Wiley,
"1978) .

and a slightly more advanced and in-depth book:
Programming in Pascal by Peter Grogono (Addison Wesley, 1978)

The Pascal USER MANUAL AND REPORT shipped with the Pascal/Z
compiler is an excellent reference manual and is the "standard”
by which this compiler was written; it may, however, be a little
heavy for the newcomer to Pascal.

The design of the Pascal 1language was based on the idea that
computer programs have two main parts. The £first part of a
program is the data (variables and constants) and the second part
is the "actions” which act upon that data. The data is described
by "declarations" and "definitions" while the actions are
described by "statements"”. The following sections decribe how to
declare and define the data and then how to write the statements
that act upon the data.

This description does not include a discussion of Variant records
or GOTO statements: the former because of its complexity and the

latter in an effort to discourage its use. The user is referred
to the above mentioned texts for a discussion of these topics.

The second section of this manual describes the Pascal/Z
implementation of the language. If you are already familiar with
Pascal then branch to page 34 for information on using Pascal/Z.
If you purchased Pascal/BZ instead of or in addition to Pascal/Z,
read Appendix Seven before going on to the rest of the manual.

Pascal/Z User's Manual Page 15

DECLARATIONS AND DEFINITIONS

Pascal is a "strongly typed" language. This means that each
piece of data (whether it is a variable, constant or a parameter)
has an associated data - type (i.e., integer, real,
character....). In addition, each variable must be declared
BEFORE it can be used; this allows the compiler to check all
operations to make sure that the operands are compatible and are
not being misused. There are a number of intrinsic data types
(pre-declared by the Pascal language) and there is a facility by
which the programmeér can construct his/her own data types 1if
desired.

There are two basic classes of data in Pascal. These are scalar
and structured. Examples of scalar data are INTEGER, REAL and
CHAR. Examples of structured data are ARRAY, FILE, SET and
RECORD. .

‘Pascal allows users to create their own data types through use of
the TYPE declaration section. This 1is a section of the program
where it is possible to define a type which is used later in the
program.

Types other than the standard pre-declared types may be declared
in the TYPE declaration section of a program. The following four
sections of this manual describe both the pre-declared types and
how to declare your own data types.

Pascal/Z User's Manual Page 16

INTRINSIC CONSTANTS AND DATA TYPES

Pascal has five pre-declared data types which may be used or
redefined by the programmer. These types and their attributes
are described below.

INTEGER A variable of type INTEGER is an integer in the range
-MAXINT..MAXINT. Pascal has the pre-defined constant
MAXINT which is the maximum allowable INTEGER value for

a particular implementation (MAXINT = 32767 in
Pascal/Z) .
REAL A variable of type REAL is a floating point number.

REAL numbers are 32 bits and have a precision of
approximately 6 1/2 digits

CHAR A variable of type CHAR may be assigned any legal ASCII

. character.
BOOLEAN BOOLEAN 1is actually a pre-declared enumeration type
. with the definition: BOOLEAN = (FALSE, TRUE).

TEXT TEXT is a pre-declared FILE OF CHAR and is used for

I/0.

There is also the pre-defined value NIL. For more information
about NIL, see the sections on THE POINTER TYPE and PASCAL/Z
POINTERS.

Pascal/Z User's Manual Page 17

SCALAR DATA TYPES

One very powerful feature of Pascal is the ability to create a
new type which is a subrange of an existing type, for example:

TYPE INDEX = 1..10;

This is useful both because it forces the programmer to decide in
advance how a particular variable will be used, and because it
allows the <compiler to generate <code to insure that the
particular variable remains within the specified range (if an
assignment outside the specified range is attempted, an error
will result). .

A programmer may create his own scalar data type, which 1is
referred to as an enumeration type (so called because all of the
possible values are enumerated when the user declares the type).

Example of a TYPE declaration section:

TYPE COLOR = (RED, BLUE, YELLOW, GREEN, ORANGE, VIOLET);
SMALL = 0..99;
PRIMARY = RED..YELLOW;
SECONDARY = GREEN..VIOLET;
LETTERS = 'A'..'2';
ASCII = CHAR;

COLOR is an enumerated type; PRIMARY and SECONDARY are subranges
of COLOR.

In the following examples, the curly brackets - {} - are the
standard Pascal comment markers. In Pascal/Z "(*" and "*)" may
be used for the same purpose.

The COLOR definition will be used in examples throughout this
manual. ‘

Pascal/z User's Manual = : Page 18

STRUCTURED DATA TYPES

Pascal allows the wuser to construct his own data type by
combining other types. Each of the major structures will be
discussed in this section.

First is the ARRAY (similar to the array in BASIC). An ARRAY has
two basic parts: the index type and the element type. The index
type determines how a particular point in the ARRAY is referenced
and the element type defines what type of data exists at that
point.

{ THIS WILL BE AN ARRAY INDEXED FROM 1 TO 50 AND }

{ EACH ELEMENT IS OF TYPE INTEGER }
TYPE TABLE = ARRAY[1..50] OF INTEGER;

{ THIS ARRAY IS EQUIVALENT TO THE LAST ONE }
TYPE INDEX = 1..50;

ELEMENT = INTEGER;

TABLE = ARRAY[INDEX] OF ELEMENT;

{ THIS WILL BE AN ARRAY, INDEXED BY SIZE, OF PRICE }
TYPE SIZE = (TINY, SMALL, MEDIUM, LARGE, XLARGE);
PRICE REAL; :
CHART ARRAY[SIZE] OF PRICE;

[

The next data structure is .the RECORD. Like the ARRAY, the
RECORD allows the programmer to combine many pieces of data into
one type. A RECORD is a collection of elements (which may be of
different types) where each element is given a unique name.

{ A RECORD TO SPECIFY THE SIZE AND WEIGHT OF AN OBJECT }
TYPE OBJECT = RECORD
SIZE: (TINY, SMALL, MEDIUM, LARGE, XLARGE);
WEIGHT: REAL
END;

{ A RECORD TO SPECIFY A DATE AND TIME... }
{ ...AND A CALENDAR OF IMPORTANT DATES }
TYPE MONTHS = (JANUARY, FEBRUARY, MARCH, APRIL, MAY,
JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER,
NOVEMBER, DECEMBER);
DATE = RECORD
MONTH: MONTHS;
DAY: 1..31;
YEAR: 1900..2100;
HOUR: 1..12;
MINUTE, SECOND: 0..59
END; .
CALENDAR = ARRAY[(BIRTHDAY, ANNIVERSARY, GRADUATION,
VACATION, HOLIDAY, PAYDAY)] OF DATE;

Pascal/Z User's Manual ' Page 19

{ A RECORD TO RECORD INFORMATION ABOUT A FRIEND }
TYPE NAME = ARRAY([1..30] OF CHAR;
ADDRESS = RECORD
STREET: ARRAY[1..30] OF CHAR;
NUMBER: 0..MAXINT; ‘
TOWN, CITY: ARRAY([1..30] COF CHAR;
END;
FRIEND = RECORD
WHO: NAME;
WHERE: ADDRESS
END;

The next type of structure is a SET. A SET is a collection of
objects of a given type. A SET is declared to have a particular
element type. Each SET variable may contain none, one, some or
all of the possible elements for that SET. For example, consider
the following:

TYPE STOCK = (PAINT, BRUSHES, THINNER, TOOLS, ROLLERS);
IN_STOCK = SET OF STOCK;

A wvariable of type IN_STOCK will indicate for each of the
possible values of STOCK, whether or not the particular element
is present.

Pascal allows the programmer to test £for SET membership,
inclusion: (is one SET a subset of another), equality and
inequality. In addition the programmer may take the difference,
union or intersection of two SETs.

Here are some more examples of SET declarations:

TYPE DIGITS = SET OF 0..9; '
ATTENDEES = SET OF (DAVE, BILL, STEVE, JEFF, ROB);

The last structured type 1is the FILE. FILEs are wused to
communicate with the world outside of Pascal. Each file has a
particular element type so that both you and the compiler know
what type of data will be read or written. The following
examples should help to clarify the use of FILE types.

{ A TEACHER'S GRADE RECORDS MIGHT BE STORED AS... }
TYPE BLUE BOOK = FILE OF RECORD _
- NAME: ARRAY{ 1..30] OF CHAR;
GRADE: 'A'..'F’
END;

{ A LIST OF #'S MIGHT BE STORED AS.... }
TYPE NUMBERS = FILE OF INTEGER;

Pascal/Z User's Manual Page 20

THE POINTER TYPE

The last type of data is a pointer. A pointer variable is one
which points to another variable of a specified type. This type
is useful when constructing linked lists or other data structures
where one datum has a need to know about another. In Pascal
pointers are wused in connection with dynamic variables --
variables which DO NOT have to be declared ahead of time.

A common example is the creation of a linked list of records.
The idea is this: a type is defined a2s a pointer to a record of
type; the record of type is the kind of record we want to have
linked together and <created dynamically. An example (from
Jensen/Wirth User Manual and Report):

type link = “person;
person = record
next: link;

e 0o o

end;

Here, person 1is a type defined as a record presumably with
various fields in it concerned with age, health, sex, social
security number (these fields are indicated by the periods), but
including at least one field which is a pointer to a record of
the same type.) ' '

After such a type definition, the variable declaration would be
something like this:

var first, p: link;

To write a program that creates a linked list of these records,
the Pascal built-in procedure NEW 1is used. Every time the
program statement NEW(p) is encountered, it will create another
record of type person, because "p" is a variable of type 1link
which is defined as a pointer to the type perscn. In addition,
the NEW procedure assigns to the variable p the value that points
to this newly created record. Since this record that is being
created by each NEW(p) statement has, as one of its fields, a
pointer variable, one may link each newly created record to the
next record by proper arrangement of assignment statements. Many
schemes are possible, with pointers that point both forward and
backward, but the important thing to remember 1is that the
procedure NEW creates an entirely new variable. The example from
the User Manual and Report goes 1like this (using the types
declared above):

Pascal/z User's Manual. Page 21

var p, first: link;
i: integer;
socialsecurity: file of array{l..3] of integer;
begin
first := nil; { "nil" is a special value which
indicates that the pointer points
to nothing })
for i := 1 to n do
begin
read(socialsecurity, s);
new(p);
P~ .next :

What happens here is that n records are created, of the type
person. "p~.ss := s" assigns a value to a field in the present
record, s 1is retrieved from a file in the previous read
statement. "p~.next := first" assigns the value of the pointer
"first" to the pocinter field that was built into the record; then
"first := p" makes first point to the present record.

Each time this group of statements is executed by the FOR loop,
the pointer "first"”™ is set to point to the most recently created
record, and the pointer field within that record is set to point
to the previous record.

To get the data out of such a structure, a program could use the
"first" pointer to locate the most recent record, and then the
pointer within the record to reference the second record, and so
forth. One might create another variable of type pointer, which
could be assigned the values of the pointers from each record,
one “after another, to inspect the other fields in the record
(stopping when the "next" pointer is nil).

The advantage of such a data structure 1is largely its dynamic

nature, since it is not necessary to declare the size of the list
ahead of time.

Dynamically created storage may be returned when it is no longer
needed (see the section on Pascal/Z pointers).

To assist those users with non-standard keyboards, the pointer
symbol "~ has the ASCII value 5E hex.

A later section, PASCAL/Z POINTERS, decribes Pascal/Z's
implementation of pointers.

Pascal/Z User's Manual Page 22

CONSTANTS

Many programs make use of constants such as the maximum number of
items, size of table, perfect score, etc. In Pascal it 1is
possible to define scalar constants and strings symbolically in
the CONST declaration section. In addition to making vyour
program more legible and easier to maintain, the use of constants
rather than variables will help the compiler to generate more
compact and efficient code.

Example of CONSTant declarations:

CONST TABLE_SIZE = 50;
VERSION = 'Version la';
PI = 3.1415926;
NEGATIVE = -TABLE_ﬁIZE;

"It is clearly advantageous to declare constants and use them
throughout your program since it gives you the ability to change
the value of all occurrences of the constant throughout the
entire program by redefining one constant at the beginning (e.g.,
changing all references to a table size from 50 to 1C0).

Pascal defines a constant string, such as VERSION in the example,
to be:

ARRAY[1..N] OF CHAR

where N > 1. If N = 1 then the constant is of type CBAR, not
ARRAY OF CHAR.

~ Pascal/z User's Manual Page 23
VARIABLES

All variables must be declared before a Pascal program is allowed
to refer to them. 1In addition each variable must be explicitly
declared to be of a certain type. The type of a variable
determines the amount of storage that it requires, as well as
defining how it may be used throughout the program.

Example of VARiable declarations (the two groups of declarations
here are equivalent):

VAR COUNTER: ARRAY[-4..20] OF COLOR;
FLAG: BOOLEAN;
SIZE: (TINY, SMALL, MEDIUM, LARGE, XLARGE);
I,J: INTEGER;
TABLE: ARRAY[1..50] OF INTEGER;
LETTER: ‘A'..'Z"';
TEMPERATURE: REAL;

and
CONST TABLE_SIZE = 50;

TYPE EXPANSE = (TINY, SMALL, MEDIUM, LARGE, XLARGE);
LETTERS = 'A'..'Z";
NUMBER = INTEGER;
TABLE_RANGE = 1..TABLE SIZE;
TABLE_ELEMENT = INTEGER;

L]

VAR COUNTER: ARRAY([-4..20] OF COLOR;
FLAG: BCOLEAN;
SIZE: EXPANSE;
I,J: NUMBER;
TABLE: ARRAY[TARLE RANGE] OF TABLE ELEMENT;
LETTER: LETTERS; -
TEMPERATURE: REAL;

Global and Local Variables

A global variable is one which is defined under the main program
heading. It may be used, referenced or changed anywhere within
the program. Global variables may be accessed by any procedure
or function which doces not use the same identifiers.

A local variable is one which is defined within a procedure or
function. It will disappear once the procedure or function has
been executed, and will have no effect outside its procedure or
function. A local variable will have no effect on a global
variable.

Pascal/z User's Manual o o Page 24

Accessing variables

Variables are accessed simply by referring to the ‘Jariable‘by
‘name. However, sometimes it 1is desirable to refer to a
particular part of a variable, such as an ARRAY element, a field

of a RECORD, or the target of a pointer. These types of accesses
are illustrated below:

TABLE[24]
DATE.MONTH
FRIEND.NAME[1]
FRIEND.NAME[I]
LINK"™

LINK".SIZE

THE 24TH ELEMENT OF OUR ARRAY }
THE MONTH FIELD OF A DATE RECORD }
THE FIRST CHARACTER OF A NAME }
THE Ith CHARACTER OF A NAME }

THE RECORD POINTED TO BY LINK }
THE SIZE FIELD IN THIS RECORD }

fas R ann Y e Y ann W e Yo

Now that you know about the intrinsic data types, Now that you
know about the instrinsic data types, how to create new data
types, declare constants and declare variables, the following
sections will describe the statements which manipulate the data.

Pascal/Z User's Manual Page 25

ASSIGNMENT STATEMENT

One of the most basic statements 1in any language 1is the
assignment statement (called the LET statement in BASIC). All
assignment statements in Pascal have the same form, which is:

<variable> := <expression>
Where <expression> may be any combination of constants, variables
and function calls, as 1long as the type of <expression> 1is
compatible with that of <variable>.
Examples of assignment statements are:

{ two assignments to a variable of type INTEGER }

A = 4;

RESULT := X * Y DIV Z;

{ assignment to a variable of user defined type COLOR }
STOCK.ITEM := GREEN;

{ assignment to an element of an ARRAY OF CHAR }
TABLE[20] := 'Z';

{ This is an assignment to a variable of type BOOLEAN
{ the effect of this statement is to:

{ 1) INTEGER divide A by B

{ 2) multiply the result of step 1 by B

{ 3) compare result of step 2 to A '

{ 4) assign result of the comparison to DIVISIBLE

{ this works without parenthesis because relational
{ operators are the lowest precedence operators
DIVISIBLE := A DIV B * B = A;

vt Myt el Vd gt St Nt Nt

{ The variable MY NAME is of type: }

{ ARRAY[1..4] OF CHAR }

. { This assignment copies one ARRAY into another }
MY NAME := 'Lyla';
{ This assignment copies one RECORD into another of }
{ the same type. (The type of these RECORDs is DATE }

{ which was defined in the section on structured types) }
PARTY DATE := BIRTH_DATE;

Pascal/Z User's Manual Page 26

REPEAT AND WHILE STATEMENTS

The REPEAT and WHILE statements are used to execute a loop until

some desired condition is reached. The main difference between
the two statements is that the REPEAT loop does a test for
completion at the end of the loop; and the WHILE loop does a test
at the beginning. This means that the body of a REPEAT loop 1is
executed at least once before the loop is terminated, but the

same is not true for a WHILE loop. The form of these statements
is:

REPEAT <one or more statements separated by ; >
UNTIL <expression>

WHILE <expression> DO <statement>

In both statements <expression> must be a BOOLEAN expression.
The REPEAT loop terminates when the expression is TRUE and the
WHILE loop exits when the expression is FALSE.

FOR STATEMENT

The FOR statement should be used in place of the REPEAT or WHILE.
statements when it is possible to determine in advance the number
of repetitions necesssary. The format of a FOR statement is:

FOR <control variable> := <initial value> TO/DOWNTO
<final value> DO

The type of variable allowed 1is any variable of scalar type
except REAL. The following examples should give an idea of the
flexibility of this statement:

FOR INDEX := 1 TO 50 DO <statement>

FOR ITEM := PAINT TO RCLLERS DO <statement>

FOR TINT := VIOLET DOWNTO RED DO <statement>

Pascal/Z User's Manual Page 27

CONDITIONAL STATEMENTS

The next statement 1is the IF statement (similar to the IF
statement in BASIC). Its form is: ‘

IF <expression> THEN <statement>
or , : .
IF <expression> THEN <statement> ELSE <statement>

The expression must be a BOOLEAN expression and the statement
following the THEN 1s executed 1if the expression 1is TRUE,
otherwise the statement following the ELSE (if there is an ELSE)
is executed instead.

There is another conditional statement, the CASE statement. The
CASE statement 1is similar to, but more powerful than, the
ON...GOTO statement in BASIC. 1Its form is:

CASE <case selector> OF
<case label list>: <{statement>;
<case label list>: <statement>
end; .

The <case selector> may be a variable or an expression. Each
<case label list> is a list of constants (they MUST be constants)
for use in selecting a particular CASE. Here is an example of
the use of the CASE statement:

CASE TINT OF

WHITE, RED: <statement>;

GREEN: <statement>;

YELLOW, ORANGE, BLUE: <statement>
END;

Pascal/Z User's Manual Page 28

COMPOUND STATEMENTS

Sometimes it is desirable to have a group of statements act as
one statement so that the programmer can insert the group into a
construct which expects only one statement. For example it might

be useful to be able to do the following, which is not legal in
Pascal:

IF <expression> THEN
{statement 1>
{statement 2>

<statement n>
ELSE <statement>

This can easily be done in Pascal by constructing a compound
statement. The compound statement takes the form:

BEGIN
{statement>;

<statement> { This line may be repeated zero or more times}
END

The above example becomes:

IF <expression> THEN
BEGIN

<statement 1>

<{statement 2>

~e o

e o o oo

{statement n>
END
ELSE <statement>

A compound statement may be used ANYWHERE a statement is used.

Pascal/Z User's Manual Page 29

WITH STATEMENT

The WITH statement is used when a particular RECORD. is being
accessed repeatedly. It is both shorthand for the programmer and
in some cases allows the compiler to produce more efficient

code. The CALENDAR RECORD from the RECORD descrlptlon section is
used . in this example of the WITH statement:

VAR C: CALENDAR;
BEGIN
C{ BIRTHDAY].MONTH := JANUARY;
C[BIRTHDAY].DAY := 17;
C[BIRTHDAY].YEAR := 1958;
C[BIRTHDAY].HOUR := 12;
C{ BIRTHDAY].MINUTE := 18;
C[BIRTHDAY].SECOND := 0;
END;

The following group of statements accomplishes the same thing:

VAR C: CALENDAR;

BEGIN
WITH C[BIRTHDAY] DO BEGIN
MONTH := JANUARY;

DAY := 17;

YEAR := 1958;

HOUR := 12;

MINUTE := 183

SECOND := 0;
END;

END;

Notice How the compound statement was used in the second example
to reduce the verbiage and increase the readability of the code.

Pascal/Z User's Manual Page 30

PROCEDURES AND FUNCTIONS

In Pascal there are two. types of subroutines -- procedures and
functions. Functions are basically the same as procedures except
that functions return a scalar value (e.g., ABS, SIN, SQRT,
etc.). Procedures are called explicitly as statements (procedure
statements). Functions are used in expressions.

Pascal allows parameters to be passed to procedures/functions.
There may be as many parameters as desired and each parameter may
be passed either by value or by reference (VAR parameter). In
addition each procedure/function may have its own local
constants, types and variables. Procedures and functions may be
nested and each can access the constants, types and variables of
all surrounding blocks. All procedures/functions are fully
recursive. Listed below are some examples of procedures and
functions:

TYPE STUDENTS = (ROB, JEFF, BILL, LAURIE, LYLA, NEAL);
TEST SCORES = ARRAY[STUDENTS] OF 0..100;
{ A PROCEDURE TO OUTPUT THE SCORES OF A TEST }
PROCEDURE RESULTS(TEST_N: TEST_SCORES) ;
VAR STUDENT: STUDENTS;
BEGIN
FOR STUDENT := ROB TO NEAL DO
BEGIN '
WRITE (STUDENT:10, TEST N[STUDENT]J:3);
IF TEST_N(STUDENT] = 100 THEN WRITELN('A+')
ELSE WRITELN;
END;
END;

{ A FUNCTION TO RETURN THE MAXIMUM OF TWO NUMBERS }
FUNCTION MAX(X, ¥Y: INTEGER): INTEGER;
BEGIN ' ' :
MAX := X;
IF X < Y THEN MAX := Y
END;

- Pascal/Z User's Manual Page 31

PASCAL STANDARD FUNCTIONS

Pascal contains a variety of pre-defined functions which are
available to the programmer. Each function and its description
are listed below: :

ABS{(X) Return the absolute value of X. This function
takes either a REAL or an INTEGER argument and
returns a value of the same type.

SQR(X) Return the sgquare of X. This function takes
either a REAL or an INTEGER argument and returns a
value of the same type.

ODD(X) The type of X must be INTEGER. Returns TRUE if X
is odd, FALSE otherwise.
CHR(X) The type of X must be INTEGER and the result is
. the character with the ordinal value of X.
ORD(X) The type of X may be any scalar except REAL and
: the result is the ordinal number of that element.
PRED(X) The type of X may be any scalar except REAL and
the result is the value which precedes X.
SUCC(X) The type of X may be any scalar except REAL and
the result is the value which succeeds X.
EOLN(X) The type of X must be FILE OF CHAR (i.e., TEXT)

and the result is TRUE if the £file is at the end
of the current line.

EQOF(X) The type of X must be FILE and the result is TRUE
if end-o0f-file has been reached.

TRUNC(X) ~ The type of X must be REAL and the result is the
INTEGER whose absolute value is less than X.

ROUND (X) The type of X must be REAL and the result is the

INTEGER whose value is closest to X.

The following functions take either a REAL or INTEGER argument
and return a REAL result.

SIN(X) The trigonometric SINE of X.
COS (- X) The trigoncmetric COSINE of X.
ARCTAN (X) The trigonometric ARCTANGENT of X.
SQRT(X) The square root of X.

LN(X) The Natural Logarithm of X.

EXP(X) e raised to the Xth power.

PASCAL STANDARD PROCEDURES

Pascal defines a number of standard procedures which may be used
by the programmer. They are used in I/0 and dynamic storage
allocation/deallocation. For a discussion of these procedures,
see the sections on PASCAL/Z INPUT AND OUTPUT, THE POINTER TYPE
and PASCAL/Z POINTERS.

Paséal/z User's Manual Page 32

PROGRAM STRUCTURE AND USE OF SEMI-COLONS

The actual format of Pascal programs is not fixed. You may put
symbols anywhere on a line and any statement or declaration may
be spread over many lines, as long as each individual symbol is
not broken by any separators. However, there is a structure to
Pascal programs which must be followed. This structure is:

<program> ::= PROGRAM <program identifier> ;
<block>

<block> ::= <label declaration part>
<constant declaration part>
<type declaration part>
<variable declaration part>
{statement part>

For a more detailed description of program structure see the
syntax tables in Jensen and Wirth, page 110.

One of the more confusing aspects of Pascal is where to put

semi-colons,. To the Pascal newcomer it seems as 1f their
placement is purely arbitrary. BHowever, there is a rationale
behind this scheme. Semi~colons are wused to separate two
adjacent statements and to terminate a declaration. The

following are all legal Pascal program fragments:

{ NOTICE HOW EACH DECLARATION IS TERMINATED BY A ';' }
CONST MAX = 100;

TITLE = 'World''s greatest program’;
TYPE COLOR = {(RED, BLUE, YELLOW, GREEN);
LETTERS = 'A'..'Z"';

VAR 1,J: INTEGER;
HOUSE: COLOR;

{ This shows adjacent statements separated by ;'s

{ BEGIN....END is one statement so there is no need to
{ put a semi after BEGIN or before END. Similarly

{ REPEAT....UNTIL is one statement so there is no
{

B

[SU RV VP)

need to put a semi after REPEAT or before UNTIL.
EGIN
I := 4 ;
. HOUSE := RED;
REPEAT
HOUSE := SUCC{(HOUSE)
UNTIL HOUSE = GREEN
END

" Pascal/Z User's Manual Page 33

{ Pascal allows null statements, for example the }
{ following group of statements contains an IF }
{ statement with no effect because the statement }
{ following the THEN is a null statement }
BEGIN

HOUSE := SUCC(HOQUSE);

IF HOUSE = GREEN THEN ;

I := 23
END

Pascal programmers should be careful when using null
statements since they can introduce subtle bugs into
Pascal programs. The following two code segments
illustrate this. If X is less than Y the first
segment loops for a while and then continues. and the
second segment loops forever
EGIN
WHILE X < Y DO
BEGIN

[v v [N SN

BEGIN
WHILE X < Y DC ;
BEGIN ’
WRITE(X):
X := X +1
END
END

Pascal/z User's Manual Page 34

THE PASCAL/Z COMPILER

The Pascal/Z compiler accepts as input a program written in the
Pascal programming language (.PAS file), and outputs two files.
One contains the Z-80 macro-code generated by the compiler, and
is specified as <filename>.SRC. The other £file output is the
listing file, or .LST file. This file contains the original
Pascal program, with pagination, line numbers, statement numbers,
and nesting levels indicated. Any errors in the program are also
indicated, and their location in the program specified.

There are four sections to the Pascal/Z compiler. The first is
PASCAL48.COM, which. contains initialization code £for PAS248 --
the actual compiler. - PASCAL4S chains to PAS248 after
initialization 1is completed. There are two overlay modules
called by PAS248: DECS and PFSTAT. This version of the compiler
requires a minimum of 48K to compile -- approximately 37K for the
PAS248 code, 8K of symbol and -type table and overlay space, ard
3K of stack space. :

Two versions of the compiler are supplied on the distribution
diskette. The first is described above. The difference between
it and the second version is that the second version, PASCALS4,
runs in 54K. The symbol and type tables are approximately the
same size as those for the smaller compiler, but the 54K version
will compile about twice as quickly because it does not use
overlays. This will have no effect on the execution speed of the
final code. ' : :

The 54K version which has slightly larger symbol and type tables
and which does not use overlays is named PASCALS54.COM and PAS254
on the diskette. It requires 54K to compile. To invocke the 54K
compiler, type 'PASCALS54' rather than 'PASCAL48'. PASCALS54.COM
chains automatically to PAS254.

The éymbol Table

The symbol table for the 48K version will accept up to 400
entries, and that for the 54K version will accept up to 500
entries. An entry is made into the symbol table for every
identifier declared in the Pascal/Z program.

The Type Table

The type table is structured differently from the symbol table in
that it is allocated in bytes rather than entries. The type
table for the 48K version is 1500 bytes in size, and that of the
54K version is 1700 bytes in size. Any declaration of a type
will result in the appropriate number of bytes being allocated in
the type table.

There are a number of pre-defined entries in both the symbol and
type. tables (such as INTEGER, REAL, CHAR, BOOLEAN, TEXT).

Pascal/Z User's Manual Page 35

All local entries to the symbol and type tables (except for those

which are predefined above) are deallocated upon exitting a block
so that the space may be reused.

See the section on PASCAL/Z TYPE DECLARATIONS for information on
how to reduce type table usage.

PASCAL/BZ

Pascal/BZ is a version of the original Pascal/Z compiler which
has been modified to accommodate the business user. The Pascal/Z
floating point routines are replaced 1in Pascal/BZ by BCD
(binary-coded decimal) fixed point routines to allow for the
greater precision and accuracy necessary for the business
programmer.

If you licensed Pascal/BZ in addition to or instead of Pascal/;,
you will find a description of the differences between the two in
Appendix Seven of this manual, as well as detailed information on
how to use Pascal/BZ BCD numbers.

 Pascal/Z User's Manual Page 36

This

COMPILER OPTIMIZATIONS

section contains a 1list of the kinds of optimizations

per formed by the compiler.

1)
2)
3)

4)

5)

6)
8)

9)
10)
11)

Constant folding.
Temporary variable allocation.

Expression reordering for optimal register and temporary
use.

Different code generation for one byte expressions involving
single byte values.

Processor independent peephole optimization.

Increments/decrements used in place of adds/subtracts
wherever possible.

Additions used in place of multiplications wherever
possible.

Variable storage 1is ordered to allow faster wvariable
access.

Processor specific optimizations exploited.
Compiler always exploits the use of a non-real constant.
Whenever possible a check is performed at compile-time

(except for divide by zero which is detected and 1ignored
until run-time).

Pascal/Z User's Manual Page 37

VOCABULARY

All Pascal éfograms‘are made up of the following basié-symbois:

<basic symbol> ::= <letter> | <digit> | <special symbol>
<letter> ::=a | bl cl dl el £l gth!|l il 31 k111 m)}
nlolplaglrclslitltulv]wlxl|lylzl
aAlBlcl|IDIJ]EI]J]FIGIHIIIJIJIIRILI|MI]
NJolPIQIRITIS/IUlVIWwIX Y]l Z]|
s &1 _
<digit> ::=0 | 1 { 2 | 3 {4 5|61 7181S3
<special symbol> ::=+ | = | * | / | = | & | < | > | <=] >= |
I L T T R G D T O U S
<reserved word>
<reserved word> ::= and | array | begin | case | const | div |
do | downto | else | end | external | file |
for | forward | function | goto | if | in |

label | mod | nil | not | of | or | packed |
procedure | program | record | repeat | set |
string | then | to | type | until | var |
while | with

In Pascal/Z the following also.applies:

Only standard ASCII characters may be 'used in writing Pascal/Z
programs. Any other characters may be used only in quoted
strings. Introducing non-standard ASCII characters (i.e.
control characters) into a Pascal/Z ©program will cause
inconsistent, and often disastrous, results.

The use of some editors when composing a Pascal/Z program may
cause parity bits to be set. This can cause strange results, and
can be remedied by stripping the parity bits from the file before
compiling the program.

(. is equivalent to [

(* is equivalent to {

*) is equivalent to }

S # have been defined as letters

UPPER case letters are equivalent to lower case letters
<space> <comment> <cr> <1£f> <£f£> <tab> are separators

Separators may not occur within numbers, strings, identifiers or
reserved words.

At least one separator 1is required between any two consecutive
numbers, identifiers or reserved words.

Pascal/Z User's Manual Page 38

PASCAL/Z SPECIFICATIONS AND LIMITATIONS

In many places throughout the PASCAL REPORT, Jensen and Wirth
leave certain aspects of Pascal undefined. This section
describes what happens in the Pascal/Z implementation. The user
is cautioned against writing programs which depend on these since
they are implementation specific and are therefore not guaranteed
to be transportable. ’

SPECIFICATIONS

MAXINT: 32767 (The maximum integer allowable
under Pascal/Z). The smallest integer
allowable is -32767.

REALS: REAL numbers in Pascal/Z are 32 bits and
have a precision of 6-1/2 digits (the
7th digit may contain a round-off
error). :

LARGEST REAL: The largest allowable REAL number in
Pascal/z is 1.7E+38. The smallest Iis
2.9E-39.

MAXIMUM SET SIZE: 256 elements in the range 0 to 255. All
© sets are 32 bytes in size.

LINE/SYMBOL LENGTH: The maximum allowable length of any line .
or symbol is eighty characters.

CONSOLE INPUT: The buffer will hold up to 80
characters.

STRING LENGTH: The maximum string length is 255.

.IDENTIFIERS: The £first eight <characters of all

identifiers are significant.

RECORDS: No RECORD may have more than forty
fields. This can be circumvented by
nesting the records.

OUTPUT FILES: The maximum number of open output files
is four. This may be <changed by
redefining MAXQOUT in MAIN.SRC. See the
section on PASCAL/Z INPUT AND QOUTPUT for
further detail.

PARAMETERS: The maximum number of paraméters which
may be passed to a procedure or function
is fifteen.

NESTING LEVELS: The maximum number of nesting levels 1is
fifteen.

Pascal/Z User's Manual

GOTO statement:

“Paée 39

Jumps out of procedures and functions
are not allowed (This is generally a bad
practice).

Jumps out of FCOR loops will take up four
bytes of storage for each loop exitted
prematurely (a jump out of a nested FOR
loop will result in a disaster).

Jumps into structured statements are not
recommended but will work properly as
long as the jump is into a REPEAT or
WHILE loop.

BOOLEAN EXPRESSIONS:These are only evaluated as far as

FUNCTIONS:

CASE statements:

JUMP TABLE SIZE:

. WITH statement:

PACK/UNPACK:

INPUT/QUTPUT:

POINTERS:

necessary (i.e., when executing the
Statement 'IF A OR B THEN...', the
variable B is not evaluated if A is
TRUE, since the value of the expression
is already known).

Non-real scalar functions return the
value zero (or FALSE) if no assignment
to the function identifier 1is made.
Structured functions have no default
value.

The statement after the CASE is executed
if none of the case lists is selected
(no error).

The maximum jump table size when using
the: CASE statement is 76 entries
including 0.

WITH A[{ I] DO BEGIN.... if I changes,
as long as the WITH statement 1s not
exitted the original record will be
referenced (i.e., the expression is NOT
re-evaluated) .

Arrays and records are implicitly packed
in Pascal/Z, therefore PACK and UNPACK
are not permitted.

'"INPUT® and 'OUTPUT' are not allowed in
the program heading, as input and output
are implicit in Pascal/Z. However,
INPUT and OQUTPUT are not assumed as the
default files, as they are 1in other
implementations. Pascal/Z uses its
modified I/0 routines to <cover all
ranges of input and output (see PASCAL/Z
INPUT AND OUTPUT).

Pascal/Z implements pointers using NEW,
MARK and RELEASE, rather than the NEW

Pascal/Z User's Manual Page 40

and DISPOSE described by Jensen &
Wirth. This 1is done to maintain
compatibility with most existing Pascal
compilers. (See PASCAL/Z POINTERS for
more detail.)

READ/WRITE: Each parameter to a READ/WRITE call of a
text file should have a size less than
256 bytes.

LARGEST PROGRAM: The largest program which can run under

Pascal/Z is limited by memory size- and
by the linker, since LINK/Z must be
resident in memory at link time.

LIMITATIONS
The limitations of Pascal/Z are as follows:
* No passing of procedures or functions as parameters.

* Variable declarations 1limited to 32K per group (i.e., no
procedure/function or main program can declare more than 32K of
local storage.

* In order for the types of two records or arrays to match, they
must be the same size (see the section on MEMORY USAGE). The
following example should help to clarify this:

These do not match:
X : ARRAY[1..10] of 0..255;
Y ¢ ARRAY[1..10] of INTEGER;
because X requires 10 bytes of storage and Y requires 20.

These do match:
X : ARRAY[1..10]} of INTEGER;
Y : ARRAY[1..10] of 0..1000;
because both X and Y require 20 bytes of storage.

These do match:
X ¢ 0..255;
Y : INTEGER;
because X and Y are not records or arrays.

The compiler flags as errors operations on types which do not
match.

See the section on PASCAL/Z TYPE DECLARATIONS for more
information.

* Standard GET/PUT input/output is not implemented. Pascal/Z
uses its modified READ/WRITE facilities to handle _ all
input/output. See PASCAL/Z INPUT AND OUTPUT for more detail.

* The PAGE routine is not implemented. (This rautine is being
considered for elimination from the proposed ISC standard.)

Pascal/Z User's Manual Page 41

COMPILER OPTIONS

There ‘are twelve -switchable compiler options which may be
enabled/disabled at any point in the compilation. Compiler
options are specified in the first part of any comment. The
format for enabling/disabling compiler options is:

(*$x+,y~,... <any comment> *)
where x, y, ... are any of the compiler options described below

and the '+' means enable (turn ON or leave ON) and the '-' means
disable (turn OFF or leave OFF). ’

NOTE: Do not use more than one dollar sign ($) in the same
comment -- it will cause a disaster. Also, there should be no
space or other character between the opening bracket ({) and

the dollar sign--in such an instance the compiler will ignore the
intended compiler options and the entire comment.

The default for each of the options is ON unless otherwise
specified. The options are:

C Indicates that the compiler should generate code to check
for CTRL-C (typed at the keyboard) before every GOTO
statement and at the bottom of every REPEAT, WHILE and FOR
loop. If this option is enabled and a CTRL-C is detected
all open output files w1ll be closed and program execution
will be terminated.

E Indicates that the compiler should generate code to include
the statement number of the statement being executed 1if
there is &a run-time error. Default for extended run-time
error messages is OFF.

F Indicates that the compiler should generate code to check
for floating point (REAL) over/underflow errors.

I Imbed Pascal source statements in the macrocode output of
the compiler. Default for this option is OFF.
(NOTE: S$SI when used in a comment can also mean INCLUDE. See
the section on INCLUDE FILES and be aware of the
difference.)

J This option is used to generate a particular type of CASE
statement. For information about its use see the section
PASCAL/Z CASE STATEMENT. NOTE: This must be the last option
specified in an options list.

L Indicates that the Pascal source program should be listed.
Lines with errors are always listed. Each time that this
option is used a new listing page is started; so this option
can be used to paginate the listing of your Pascal programs
by repeatedly turning this option ON.

Pascal/Z User's Manusal Page 42

M Indicates that the <compiler should generate the code
necessary to-check for INTEGER multiply and divide errors.
If an error is detected a message is printed and the program
~execution 1is terminated. Addition and subtraction errors

are ignored.

P Allows symbolic Input/Output of enumeration types declared
while this option is enabled.

R Indicates that the compiler should generate code to do range
and bounds checking. 1If enabled this option generates code
to detect range (assignment out of range) and bounds (array
index out of range) errors.

S Enables stack overflow checking during procedure/function
entry. ‘
T Trace program . execution. Each time a statement compiled

with this optien is executed the statement number is printed
on the console device. Default setting for tracing is OFF.

u Indicates that the compiler should generate code to do range
and bounds checking of parameters passed to user routines.
Default is ON. This optlcn will work only if the R option

is enabled. WARNING: This cpticn will check only value
parameters.

Below is our sample program with some compiler options added:
SAMPLE Fage 1
1 1 0 PRCCR2EM Sample; (®Se+ szitended errcr messages *)
3. 1 1 VAR I, J : COLOR;
4 1 1 S1, €2 : ARRAY[1..5] CF CEAR;
5 1 1 BEGIN {$i+ imbed the Pascal source in the

macro-code }

6 1 1 FOR I := RED TO YELLOW DO
7 2 2 WRITELN('COLOR IS:', " *, I : 1);
8 3 1 {$1+,i~ new listing page, stop imbedding }
SAMPLE Page 2
S 3 1 S1 := 'FIRST';
10 4 1 S2 := ‘LAST *;
11 5 1 WRITE(81, S2);
12 o 1 END.

Pascal/z User's Manual Page 43

OPTIMIZING PASCAL/Z PROGRAMS FOR SPEED

This is a,guideline‘for writing faster programs in Pascal)Z.

General

Constants

INTEGERSs

RECORDs

ARRAYs

CASE

Number Crunching

Research by Niklaus Wirth has shown that greater
than 90% of all wvariable accesses 1in most
programs are to either 1local or global data
areas. In Pascal/Z wvariable access has been
cptimized for accesses to the local and global
levels, therefore greatly increasing the
efficiency of variable accesses (by
approximately four times).

With the exception of SETs, it is always faster

to use constants than it is to use variables.
Declared string constants are more efficient (by
one relative jump) than in-line string
constants.

It is usually faster to use one byte INTEGERS
instead of two byte INTEGERs when possible.
However, if range checking is enabled,
assignments to subranges take longer than
assignments to INTEGERSs.

In Pascal/Z the use of the WITH statement does
not affect execution speed unless the RECORD is
"dynamic". A RECORD is "dynamic" if:

1) it is a member of an ARRAY with something
other than a constant for the index (i.e., A[I
] as opposed to A[3])

2) it is a parameter passed by reference.

If the RECORD is "dynamic" then the use of the
WITH statement increases the program speed in
case 1 and decreases the speed in case 2.

When accessing ARRAYs it 1s possible to get at
an element more quickly if the index (or any-of
the 1indices, if there are more than one) is a
constant. Also range checking (which is only
done at compile-~time for constant indices), can
slow down ARRAY accesses considerably.

It is always faster to use a CASE statement
instead of a list of two or more IF statements.

When using constants it is MUCH MUCH MUCH faster
to use REAL constants in assignments to REALs
rather than to use INTEGER constants which must
be implicitly converted to REAL (e.g., n:=n*6.0
is much faster than n:=n*6 if n 1is a REAL
number) .

Pascal/Z User's_Manual Page 44

PASCAL/Z TYPE DECLARATIONS

When declaring types in Pascal/Z, there are certain methods of
declaration which result not only in more readable code, but also
in less use of the type table. This section contains a few hints
on how to declare types so as to utilize a minimum of type table
space. Efficient type declarations alsoc result 1in faster
compilation times.

In Pascal, any two or more types may be compared for STRUCTURED
EQUIVALENCE or for NAMED EQUIVALENCE. Structured equivalents are
the same in structure, but are declared in different type
declarations. Named equivalents are the same in structure and
are also named within the same type declaration. Thus if two
types are named equivalents, they must also be structured
equivalents, but not necessarily vice versa.

The following examples. should help to illustrate the idea of
structured and named egquivalents.
EXAMPLE #1:
type employee name = ‘array{ 1..30] of char;
var X : employee_name;
y : real;
z : array{ 1..30] of char;
In the above declarations, X and Z are STRUCTURED equivalents,
but are not named equivalents, because although X and Z are
structurally the same, two separate type declarations are made.
In Example #1,
type employee name = array[1..30] of char;
is an explicit type declaration, and it results in one entry in
the type table. The size of the entry will be determined by the
complexity of the type declared.
Also in Example %1,
var z : arrayl[1..30 1 of char;
is an implicit type declaration, and it results in an additional
entry in the type table, which could have been avoided by
declaring it as follows:

var z : employee name;

Since employee name was already declared as a type of
array{ 1..30] of char, using the expression again is redundant.

Pascal/Z User's Manual Page 45

EXAMPLE #2:

type employeeinfo = record '
Ceo name : array{ 1..30] of char;
age : integer;
.sex : (m, £);
salary : real
end; { employeeinfo }

var x : emplovyeeinfo;
y : emplovyeeinfo;

The above variables are STRUCTURED equivalents, because X and Y
are identical in structure. Since X and Y are declared within
the same type declaration, they are also NAMED equivalents.

‘Pascal/Z allows both STRUCTURED and NAMED equivalents. However,
in Pascal/z it is always more efficient to use named

equivalents.

Pascal/Z User's Manual Page 46

HOW TO RUN PASCAL/Z

The following files -are necessary to-compile, assemble, and link
an ordinary Pascal/Z program (one which makes no use of special
features such as external routines or separate compilation):

<your program>

PASCAL48.COM

PAS248

DECS

PFSTAT

(or PASCALS54.COM and PAS254)
ASMBL.COM

MAIN.SRC

LINK.COM

LIB.REL

To run the Pascal/Z compiier, make sure that the necessary files
are on the currently logged-in drive and type:

PASCAL48 <filename>.<source drive><output drive><listing drive>

where,

<filename> is the file name of the text file with the
extension .PAS

<{source drive> is "the 1letter naming the drive that the
source file is on. The currently logged-in
drive is the default.

<output drive> is the letter naming the drive to which the
Z-80 macro-code generated by the compiler
should be sent. The currently logged-in
drive is the default.

<listing drive> is the letter naming the drive to which the

Pascal 1listing should go. The currently
logged-in drive is the default.

A space in place of an option letter specifies the default.

EXAMPLES
A>PASCAL48 PRIMES

This will compile the text £file PRIMES.PAS on drive A.
PRIMES.LST (the program 1listing) and PRIMES.SRC (the Z-80
macro—-code) will be sent to drive A.

B>PASCAL48 PRIMES.ABC
This will compile the text £file PRIMES.PAS on drive A.

PRIMES.SRC will be sent to drive B, and PRIMES.LST will be sent
to drive C. o

Pascal/Z User's Manual Page 47

B>PASCAL48 PRIMES.bAb { where a "b" represents a blank }

This will compile the text file PRIMES.PAS on drive B (the
default). PRIMES.SRC will be sent to drive A. The listing file
will be sent to drive B (the default).

The listing (.LST file) of a Pascal/Z program may also be sent
directly to the console or the printer during compilation by
replacing the third letter of the file extension with "x" ¢to
specify the console and "y" the printer.

EXAMPLE
A>PASCAL48 PRIMES.AAX

This will <compile the text file PRIMES.PAS on drive A,
PRIMES.SRC (the Z-80 macro-code) will be sent to drive A, and the
liszing file will be sent to the console.

A>PASCAL48 PRIMES.BBY

This will compile the text file PRIMES.PAS on drive B.
PRIMES.SRC will be sent to drive B, and the listing file will be
sent to the printer. -

While compiling, the console output of Pascal/Z is as follows.
Every time a procedure/function declaration is encountered, its
name and the present line number are printed. A '-' is output
every time that a new procedure or function declaration is
encountered and every time that 10 lines have been compiled. An
'E' is output instead of a '-' if there was an error in the last
group of lines {not necessarily 10 lines depending on
procedure/function declarations). When compilation is completed,
the total number of errors is output to the console, (NOTE: The
errors are listed individually in the .LST file, but the total
number of errors is not.) The compiler may be stopped at any
time by typing CTRL-C.

After compilation, a Pascal/Z program must be assembled and
linked before it may be run.

Before assembly, however, you may wish to optimize the output of
the compiler by running it through PASOPT, a peep-hole optimizer
designed for use only with the code generated by the Pascal/Z
compiler. To invoke the optimizer, type:

A>PASOPT PRIMES.SRC

The optimizer will scan through the Z-80 source file and reorder
certain patterns in the code to make them more efficient. The
optimizer will rename the old source file to PRIMES.ORG (for
original) and generate a new optimized file called PRIMES.SRC.
When it has finished optimizing, & message giving the total
number of bytes eliminated will appear.

Note that since PASOPT has been developed specificallyvfor use
with the output of Pascal/Z, running any ordinary assembly
language programs through it will cause false (and usually fatal)

. Pascal/Z User's Manual Page 48

results. ' Therefore, do not run any file through the optimizer
more than once.

To assemble a Pascal/Z program, type:
§>ASMBL MAIN,PRIMES/REL
The console will display:
Pascal/Z run—-time support inter face ASMBLE v=-T7c

This command will cause the assembler (ASMBLE/Z) to automatically
search for the .SRC file associated with the filenames MAIN and
PRIMES. MAIN.SRC is a file containing definitions and routines
to be assembled with the output of the compiler, and MUST ALWAYS
BE THE FIRST FILENAME SPECIFIED.

ASMBLE/Z will assemble the Z-80 macro-code and output a
relocatable object code module, as specified by the extension
.REL. When assembly 1is successfully completed, the following
message appear:

0 errors. X symbols generated. Space for X more symbols.
X characters stored in X macros.
X bytes of program cogde.

where X is an integer number.

The next step 1is to 1link the program with any necessary
subroutines.

(If you wish to use the Pascal/Z interactive symbolic debugger,
InterPEST [InterSystems Pascal Error Solving Tool]l, see the
InterPEST Reference Manual for details on 1linking Pasczl/Z
programs.)

To do so, type:
A>LINK PRIMES/N:PRIMES/E
The console will display:

LINK version 2b
Load mode
Generate a COM file

This command will cause the linker (LINK/Z) to automatically link
the file PRIMES.REL with the 1library subroutines contained in
LIB.REL, provided on the distribution diskette. Only the library
modules which are called by the Pascal/Z program PRIMES will be
linked in, reducing the size of the final code.

The /N:PRIMES option specifies that the 11nker should generate a
.COM file WIth the name PRIMES.

The /E optlon indicates that after generating a .COM file, the
linker should exit and return to CP/M.

Pésqal/z User's Manual Page 49

When the 1link is completed, the console will display the
following:

Lo = X Hi = X Start = X Save X blocks

The first three Xs will be hex addresses, and the last X will be
an integer.

To run the program, simply type:

A>PRIMES

The command
A>LINK PRIMES/N:PRIMES/G

‘'will yield the same results, except that instead of returning to
the operating system, the program will be executed as soon as the
link is finished, as specified by /G, or "go".

(For more detailed information on the assembler and the 1linker,
see the accompanying manuals ASMBLE/Z and LINK/Z.)

* COMPILE.SUB

A Pascal/Z progrzam may be compiled, assembled, linked and run
automatically by using the COMPILE.SUB file on the distribution
diskette. PASCAL48.COM, PAS248, PFSTAT, DECS, MAIN.SRC, LIB.REL,
ASMBL.COM, LINK.COM, COMPILE.SUB and SUBMIT.COM must be on the
diskette in drive A. Note that although the version of
COMPILE.SUB supplied on the diskette uses the 48K overlaying
version of the compiler, those users who wish to use the 54K
version may change COMPILE.SUB quite simply by editing the file
and changing PASCAL48 to PASCALS54 (BZ users may wish to change it
to PASCALBRZ). NOTE: If you change the invocation command, be
certain that the necessary files are on the logged-in drive
(i.e. PASCALS54.COM needs PAS254, etc.).

The proper command to submit the Pascal/Z program for processing
is:

SUBMIT CCOMPILE <your program name> X

followed by a carriage return, where X is the letter of the drive
containing the diskette which your program 1is on. All files
(.SRC, .LST, .REL, .COM) will be sent to the drive specified by
X. If the drive letter is not specified, the process will be
halted at link time, and the message "Can't £find <program>.REL"
will be displayed.

Note that once the COMPILE.SUB file is submitted, processing will
continue through the execution of your program regardless of any
errors which may be present. The submit file can be halted by
typing CTRL C twice. It will finish executing the current
command of the COMPILE.SUB file and then return to the operating
system.

Pascal/Z User's Manual ' Page 50

INTERPRETING PASCAL/Z LISTINGS AND ERROR MESSAGES

When your Pascal program is compiled, the compiler generates a
listing file of your program- which includes pagination, line,
statement, and nesting level numbers, as well as any compilation
errors (.LST file). The number to the far left of each line is
the line number. The next number is the number of the first
statement on that line (if there is no statement on that line
then the same number will appear on the next line). Statement
numbers are used in conjunction with the trace and extended error
message options (see section on PASCAL/Z COMPILER OPTIONS). The
other number preceding each line is the number of levels that
that statement is nested.

Here is a sample listing of a program with no errors:

SAMPLE Page 1

Line Stmt Level

1 1 0 PROGRAM Sample;
2 1 0 TYPE COLOR = (RED, BLUE, GREEN, YELLOW);
3 1 1 VAR I, J : COLOR;
4 1 1 S1, S2 : ARRAY[1..5] OF CHAR;
5 1 1 BEGIN
6 1 1 FOR I := RED TO -YELLOW DO
7 2 2 WRITELN('COLOR IS:', ' ', I': 1);
8 3 1 Sl := 'FIRST';
S 4 1 S§2 := 'LAST ';
10 5 1 WRITE(S1, S2);
11 6 1 END.

In the unlikely event that you have written &a program which
generates compilation errors, the program listing will show the
type and location of the error(s). If the error is a syntax
error, the error message will be given in English and a ~ will
mark the location of the error. 1If the error is a semantic error
then the error message will be one of the compile-time error
codes 1listed on pages 119-121 of the PASCAL USER MANUAL AND
REPORT, as well as in Appendix Six at the back of this manual.
In addition to the standard error codes listed in the manual,
Pascal/Z has further defined the implementation restriction error
(398) as follows:

3980 Symbol table overflow (one way to help avoid this error
is to minimize the number of FORWARD declared procedures
. and functions).

-3980 - Type table overflow (One way to avoid this is to
minimize the number of type declarations. See the
section on PASCAL/Z TYPE DECLARATIONS.).

3981 Function value may not be gqualified.

3982 Jump out of a procedure/function not allowed in
‘ Pascal/Z.

Pascal/Z User's Manual Page 51

3983 Non-string compared with string.

3984 - Program has too many levels of nesting. Depends upon the
complexity of the user's program.

-3984 ‘No more than forty fields in a record. (Can be avoided
by nesting records.) ‘ \

3885 Can't output/input this value because compiler option P
was disabled when this enumeration type was declared.

3986 Line or symbol too long. The maximum line/symbol length
is eighty characters.

3987 Maximum string length is 255.

3988 String too small for call by reference.

-3988 Declarations of BCD numbers passed by reference must
match exactly. (0Only generated when using Pascal/BZ.)

3989 (This error message has changed from Version 3.2-1.
Structured values returned by functions are now allowed
as parameters to a WRITE or WRITELN.)

The error message 3989 now indicates that an EXTERNAL was

declared in a separate module. All EXTERNALs must be
declared in the main program.

One of the most common error messages is 'Program too complex';
this error message will appear on the console at compile-time,
and compilation will be halted. This message usually means there
is not enough memory in the system to run the compiler. If using
the 54K version, try switching to the 48K version. Otherwise,
adding memory to the system will usually solve the problem. It
may also mean that there is not enough stack space remaining. To
remedy this, stack usage must be reduced before trying to
recompile.

The message "Too many errors" means that an integer constant is
out of range of the allowable integer values.

Another error encountered when using separate compilation 1is
'premature EOF'. This generally means that the CP/M file names
of the modules do not correspond to the internal module names as
specified in the module headings. The problem is easily solved
-by checking to make certain the names correspond. This error -
will also occur if the fourth drive letter is not specified when
compiling the program modules.

* RUN-TIME ERRORS -- STACK OVERFLOW

One of the most common run-time errors is stack overflow. This
indicates that the stack space has been exhausted, and is a fatal
error. One way of avoiding this is to keep the number of nesting
levels to a minimum. Also, if the same parameters are passed to
a number of different routines, it may be possible to declare

them globally, and thus reduce stack usage.

Pascal/Z User's Manual Page 52
Here is the same program as above with a few errors added:
SAMPLE Page 1

Line Stmt Level

1 1 0 PROGRAM Sample;
2 1 0 TYPE COLOR = (RED, BLUE, GREEN, YELLOW);
3 1 1 VAR I, J : COLOR; '
4 1 1 S1, S2 : ARRAY([1..5 OF CHAR;
“ 1] EXPECTED
5 1 1 BEGIN
6 1 1 FOR I := RED YELLOW DO
*~ TO EXPECTED
7 2 2 WRITELN('COLOR IS:', ' ', I : 1);
8 3 1 S1 := 'FIRST';
9 4 1 S2 = 'LAST ';
® := EXPECTED
10 5 1 WRITE(S1, S3); .
* ERROR 104
: *~ ERROR 116
11 6 1 END.

Since Pascal/Z 1is a recursive descent compiler, errors are
sometimes not discovered until a couple of symbols after the
"symbel which: - is erroneous; ‘this is especially likely to occur
with multi-line statements. The ~ mark in the error descriptions
is placed as close as possible to the symbol which is in error
(for accurate placement of ° refrain from using tabs). Also
sometimes errors "percolate" through a program (i.e., one error
may cause the compiler to become "confused"™ and generate
additional errors even if there is nothing wrong); in these cases
the first error is the one which should be believed.

Pascal/Z User's Manual ' , Page 53

PASCAL/Z INPUT AND OUTPUT

All input/cutput and related operations in Pascal/Z are done with
eight standard routines: RESET, REWRITE, READ, READLN, WRITE,
WRITELN, EOLN, and EOF. These routines allow the user to create,
delete, read, write, and test the status of operating system
files. Although these routines differ slightly from the standard
Pascal I/0 routines, they are more flexible and are easier to
use. These routines are the only way to access file data; GET
and PUT (and also <fvar>”™) may not be used. In this table
<fnam> is any legal Pascal file name, <fvar> is any legal Pascal

file variable and anything enclosed 1in square brackets |is
optional.

RESET(<fnam>, <fvar>)

RESET 1is used to reset an input file to the
beginning of the file and open it for access.
<fnam> is any legal operating system filename (may
be a guoted string , &an ARRAY OF CHAR or a
STRING) , and <fvar> is the Pascal/Z file
variable. A RESET must be done before any
non-console input file may be read.

REWRITE (<fnam>, <fvar>)
REWRITE is used to open a file for output. If the
file already exists then the old file is deleted
before the new file is opened. A REWRITE must be
done before any non-console file is written to.
(See section on DEVICE INPUT AND OUTPUT for device
output specification.)

Note that the return value of a function may not
be used to specify a £file name in a RESET or
REWRITE statement [e.qg. RESET (Kfunction return
value>, fvar) is not allowed].

READ([<fvar>,] pl, «..., pPn)

READ reads the previously opened input file and
stores the information in the variables
specified. The file may or may not be of type
TEXT. For TEXT files the allowable parameter
types are INTEGER, CHAR, BOOLEAN, ARRAY OF CHAR,
REAL and correctly declared enumeration types.
The number of parameters is variable, but at least
one must be used. If the <fvar> parameter and
trailing comma are omitted, the console is used
for input (the console file is of type TEXT).

READLN([<fvar>,] pl, ..., pn)
READLN is the same as READ except that a new line
is found after the READ 1is finished. READLN
should only be used on TEXT files.

WRITE(.[<fvar>,] pl,, PD)
WRITE is used to write into a previously opened
output file. If the file is of type TEXT, then
the parameters may be INTEGER, BCOOLEAN, CHAR,

Pascal/Z User's Manual Page 54

ARRAY OF 'CHAR (including quoted strings), REAL,
and any properly declared enumeration type. 'As in
 READ and” READLN, the number of parameters is
variagble, but must be greater than zero. If the
<fvar> parameter is ommitted, then the console is
used for output (type TEXT).

WRITELN([<fvar>,] pPl,, PR)
WRITELN is the same as WRITE except that it should
only be used to write into files of type TEXT, and
it appends a carriage return/line feed to the data
being output. If WRITELN is used with no
parameters, a blank 1line is writtemn to the
consocle.

EOLN (<fvar>) . : _
EOLN is a BOOLEAN function defined for input files"
of type TEXT and returns TRUE if the file
indicated is at the end of a 1line. EOLN (0)
returns TRUE if there is no more input 1in the
console input buffer.

EOF(<Evar>)

EOF is a BOOLEAN function which returns TRUE 1if
the specified input file is exhausted cr if there
has been any type of operating system file error
(i.e., file not found, read error, etc.) A note
of caution ---. Because CP/M does no= keep any
information regarding partially filled blocks at
the end of a non-text file, it is impossible to
make EOF(<non-text £file>) work correctly unless
the record size used is a multiple of 128. The
suggested way of working around this problem is to
either know how many records are in the file or to
have a special end-of-file record configuration.

Each parameter to a- READ/WRITE éall of a text file should have a
size less than 256 bytes.

As the compiler is shipped to you, the maximum permissible number
cof simultaneously open output files is four. However, the user
may increase this number be redefining MAXOUT in MAIN.SRC (the
time required to exit a procedure/function increases as MAXOUT
increases).

There is no way of explicitly closing a file; however, whenever
the block containing a £ile buffer is exitted (or if the program
terminates) the file will be closed. 1If a file buffer is used in
another RESET, the file being RESET will be closed prior to the
opening of the second file.

After starting a Pascal/Z program the CP/M command tail is stored
in the input buffer and may be read by subsegquent read reguests.
Pascal/Z uses the console input buffer to build file names when
opening a disk file. Therefore, 1f there is some information in
the console ‘input buffer which you would like to read, read it
before opening any files. :

Pascal/Z User's Manual Page 55

-The following example programs demonstrate the dlfferent uses of
the Pascal/Z I/0 routines. The first example reads input from
the console and writes it back to the consocle. The second uses
file 1/0, and takes input from the file named 'data', then writes
the output to the file named 'result'.

Program IO;

{This is a simple program to demonstrate Pascal/Z Input/Output.}
{The following is an example of how the READ, READLN and WRITE,}
{WRITELN statements work. }
{READ will read input, in this case from the console. }
{READLN will do an initial read, and then skip to the next line}
{of input.

{WRITE will write output, in this case to the console.
{WRITELN will do an initial write, and then append a carriage
{return, line feed to the specified output.

St gt Nt Vgt

var X, Y : integer; { input data }
i : integer; { index variable }
begin { the following block demonstrates the use of READ, }
{ WRITE and WRITELN. }
for 1 := 1 to 3 do
begin

read(x, ¥)i
writeln('The numbers are:', x
write('The sum is: ', x + v);
writeln(' The difference is: ‘!
writeln

end;

: 5, v 5);

rX-Y);

{ the following block demonstrates the use of READLN, }

{ WRITE and WRITELN. }
for i := 1 to 3 do
begin
readln(x, vy);
writeln('The numbers are:', x : 5, y : 5);
write('The sum is: ', x + vy);
writeln(The difference is: ', x - y);
writeln
end

end.

When the program is run and the following data is input from the
console:

354 26 492 1032 783 97 564 928 37
471 216 34 841
1985 672 47

the following results will be obtained:

354 26 492 1032 783 97 564 928 37
The numbers are: 354 26

Pascal/Z User's Manual

The

The
The

The
The

The
The

471
The
The

sum is:

numbers
sum is:

numbers
sum is:

numbers
sum is:

-arez-

are:

are:

216 34 841

numbers
sum is:

1985 672 47

The

The

numbers
sum 1is:

are:

are:

380

492
1524

783
880

564
1492

471
687

1985
2657

- The

1032
The

97
The

928
The

216
The

672
The

difference
difference
difference

difference
difference

difference

is:

is:

is:

is:

is:

is:

328

-540

686

-364

255

1313

Page 56°

Pascal/Z User's Manual Paqef53

Program Fileio;

This is a program to demonstrate file I/O using Pascal/Z2. }
Pascal/Z does not allow.the use of GET and PUT, but does }
all input/output utilizing its modified READ / WRITE and }
RESET and REWRITE routines. }

Lo X W e Mo

var X, y : integer; - { input data }
infile : text; { data input file variable }
outfile : text; { data output file variable }

{ In this program, data is read from an input file 'data' and }

{ the results of the program are written to an output file }

{ 'result'. }

begin

{ reset the input file 'data' to the beginning }
reset('data', infile);
{ open the file ‘'result' for output from the program }
rewrite({ 'result', outfile };
while not eof(infile) do
begin
readln(infile, x, vy):
writeln(outfile, 'The numbers are:', x : 5, v : 5);
write(outfile, 'The sum is: ', x + y);
writeln(outfile, ' The difference is: ', x -y):
writeln(. outfile)
end - : L
end.

with the following data contained in the input file 'data':

354 26 492 1032 783 97 564 928 37
471 216 34 841
1985 672 47

the - results will be as follows, and will be contained in the
output file 'result':

The numbers are: 354 26
The sum is: 380 The difference is: 328

The numbers are: 471 216
The sum is: 687 The difference is: 255

The numbers are: 198% 672
The sum is: 2657 The difference is: 1313

A description of how to use PASCAL/Z INPUT AND OUTPUT with Direct
Access Files is included in the section on DIRECT FILE ACCESS.

. Pascal/Z User's Manual ‘ Page 58

DIRECT FILE ACCESS

Pascal/Z provides the user with a Direct Access Facility which is
used to directly read or write any record in a file. The term
"direct access" is used rather than random access since all file
accesses are not equal. Moving a disk head from track 1 to track
2 is much faster than moving it to track 50; such accesses are
not truly random.

The syntax for these direct reads and writes is as follows:

DIRECT WRITE:
WRITE (<fvar>:<record number>, <record variable>)

DIRECT READ:
READ(<fvar>:<record number>, <record variable>)

where the record variable is a Pascal record variable.
EXAMPLES:

Write a record to position 35 in file Q:
WRITE(Q:35, <record variable>)

Read record I from file Q: _
READ(Q:I, <record variable>)

The records and the record numbers correspond directly; RéAD(Q:l,
<record variable>) reads the first record in the file, READ(Q:12,
<record variable>) reads the twelfth record in the file.

If after a file has been repositioned a subsequent read or write
does not specify a record position, then the next sequential
record is assumed.

All files start at logical record one; an attempted access of
logical record zero will access the next sequential record. 1If a
write 1is attempted beyond the current EOF then the file 1is
extended to that point before the write is performed.

REWRITE is used to create a new file. If a file with the same
attributes already exists it is deleted before the new file is-
created.

RESET 1is used to work with an existing file. A file which has
been reset may still be written to using random writes.

Once a file has been randomly accessed, 511 subsequent sequential
reads and writes will be much slower {(due to CP/M's aversion to
mixing random and sequential access) until the file has been
closed and re-opened.

Random access is implemented in, and thus only supported with,
CP/M 2.0 or higher. :

Pascal/Z User's Manual rage o3

RENAME AND ERASE

RENAME and ERASE are two external Pascal routines which allow a
Pascal ©program to ‘RENAME and ERASE files- from. the file
‘directory. In effect they provide a clean interface to the CP/M
system functions RENAME (23) and DELETE (19).

To incorporate these functions in a Pascal program the following
declarations are required:

Type filestring = string 14;

Function RENAME (oldfile, newfile: filestring):
Boolean ; External;

Function ERASE (oldfile: filestring): Boolean; External;

Oldfile contains an unambiguous file name (ufn) of an existing
Cp/M file. Newfile also contains a ufn. NOTE that when using
the Pascal external RENAME function, the o0ld file name comes
first, and the new file name second, unlike the CP/M RENAME
facility.

Each function returns TRUE if its operation was successful, FALSE
otherwise. Failures can result from files not being found or
from illegal file names.

The user should also be sure that all files affected are closed
when a RENAME or ERASE is attempted.

Examples:

if RENAME (‘'P.COM', 'PIP.COM')
then writeln ('PIP');

if ERASE ('MASTER.BAK')
then writeln('master.bak has been deleted');

RENAME and ERASE are in the LIB.REL file and are automatically
linked by LINK/Z at 1link-~time. The 2Z-80 source code for the
RENAME and ERASE routines are contained in the file RENERA.SRC.
It 1is found on the same side of the disk containing the €£ixed
point package.

Two sample programs RENDRV.PAS and DELDRV.PAS are provided which
drive RENAME and ERASE. After compiling and linking they may be
run to rename or erase files from the <console (erase with
caution!). Exit either program by typing "C instead of a file
name.

Pascal/Z User's Manual Page 60

DEVICE INPUT AND OUTPUT

INPUT.

Pascal/Z allows the user to specify input from the console using
CON:.

To input from the console:

RESET('CON:', <fvar>);
READ(<fvar>, Pascal variable);

ouTPUT

Pascal/Z allows the user to specify output to the console or to a

printer using CON: or LST:. To access the conscle or printer
use:

REWRITE('CON:', <fvar>

); { console }
REWRITE('LST:', <(fvar>);

{ printer }

and then write to the device the same way you would to any other

output file., For example, the following program copies a text
file to the console.

FROGRAM CONSOLE;
TYPE STR = STRING 80;
VAR FNAM, FOUT : TEXT;
LINE : STR;
BEGIN ,
RESET ('TEST.TXT', FNAM);
REWRITE('CON:', FOUT);
WHILE NOT EOF(FNAM) DO BEGIN
READLN (FNAM, LINE);
WRITELN (FOUT, LINE)
END
END.

When using Pascal/Z device input and output, the file variable
(fvar) must be declared as type TEXT.

Pascal/Z User's Manual Page 61 -

PASCAL/Z EXTENSIONS

While we at InterSystems feel strongly that it is important to
keep Pascal extensions to a minimum in order to maintain
simplicity, clarity and transportability, we also feel that in
order for Pascal to be useful in the business and scientific
communities a few necessary extensions must be made. The
extensions presented in Pascal/Z represent an attempt to extend
the wutility of Pascal while maintaining the "spirit"™ of the
language. ‘

Each. of the extensions in Pascal/Z is listed here along with a
justification for including it in the language. Full
descriptions of how to use the extensions, along with examples,
are given in the appropriate sections later in this manual.

1) - Pascal/Z allows certain types of expressicns where Pascal
requires a constant to be used. This allows the user to
declare a series of inter-related constants where it is
only necessary to change one constant when & change is
desired. ~

2) Another extension made to Pascal/Z is tec allow functions
to return structured, as well as scalar, values. This
greatly increases the range of applications for
functiens.

3) A variable 1length string, type “has been added to
Pascal/Z. It is extremely useful for text manipulation
and for certain types of I/O0.

4) There is now an ELSE clause for the CASE statement. This
is one of the most common extensions to Pascal (sometimes
called OTHERS or OTHERWISE) and is extremely useful when
it is desirable to use the power of the CASE statement
without listing all of the possible cases. '

5) Separate .compilation is permitted. This decreases
program development time by allowing the user to divide
his program into distinct modules, which can then be
debugged, compiled and assembled separately, avoiding the
need to recompile and reassemble the entire program.

6) ‘Pastal/Z provides the user with a facility to 1link
EXTERNAL routines to Pascal programs. These routines
allow the user to communicate directly with I/0 devices
as well as to perform operations which are more naturally
done in assembly language.

) Overlay capabilities are supported to permit development
of programs larger than system memory size. This
facility is extremely useful for the software developer
who may be forced toe limit program function to
accommodate system restrictions.

8) Pascal/Z supports INCLUDE files to allow the user to
insert a file at any point in a Pascal program. This is
useful in decreasing typing and editing time, since

Pascal/Z User's Manual Page 62

9)

10)

program blocks which are used frequently can be contained

in a unique file, and then INCLUDED 1in the Pascal/Z
program. ‘ -

One of the contradictions in Pascal is the ability to
sym@olically input/output the type BOOLEAN, which 1is
defined as an enumeration type

BOOLEAN = (FALSE, TRUE)

but not to be allowed to symbolically input/output the
values of any other (i.e., user declared) enumeration
types. In Pascal/Z the user is allowed to symbolically
input/output the values of any enumeration type.

It is often useful to be able to directly access any
record in a FILE. Pascal/Z has added Direct File Access
(sometimes called random access in other implementations)
to allow this to be done in a reasonable fashion.

Pascal/z User's Manual Page 63

PASCAL/Z CONSTANTS

The first Pascal/Z extension is the redefinition of ‘a constant.
In the USER MANUAL AND REPORT a constant is defined as:

<constantd> ::= <unsigned number> | <sign> <unsigned number> |
<constant identifier> |
<sign> <constant identifier> | <string>

In Pascal/Z a constant is defined as:

<new constant> ::= <constant> |
<integer constant> * <integer constant> |
<integer constant> + <integer constant> |
<integer constant> - <integer constant> |
<{integer constant> div <integer constant>

This is extremely useful for the following type of declaration:
CONST CLASS 30; { number of students }

GIRLS 17; { number of girls }
BOYS = CLASS - GIRLS; { number of boys }

W u

Pascal/Z User's Manual Pége 64

PASCAL/Z FUNCTIONS

Pascal/Z wversions 3.2 and later allow functions to return
structured values, as well as scalar values. Functions returning
structured values are declared in the same manner as functions
returning scalar values, the only difference being in the
specification of the return value.

For example;

TYPE NUMBERS ARRAY{1..100] OF INTEGER;
NAME STRING 20;
VAR NUM : NUMBERS;
ID : NAME;

{A FUNCTION TO INCREMENT EACH ELEMENT OF AN ARRAY}
FUNCTION INCREMENT(CNT:NUMBERS): NUMBERS;
VAR X : INTEGER;
BEGIN
FOR X := 1 TO 100 DO CNT([X] := CNTI[X] + 1;
INCREMENT := CNT
END;

{A FUNCTION TO CREATE AN ARRAY WITH EACH}
{ELEMENT 20 GREATER THAN THE OLD ARRAY}
FUNCTION XXPLUS(CNT:NUMBERS): NUMBERS;
VAR X : INTEGER;
BEGIN)
FOR X := 1 TO 100 DO
XXPLUS[X] := CNT([X] + 20
END;

{A FUNCTION TO APPEND A ' ESQ.' TO A NAME}
FUNCTION ADDESQ(VAR PERSON:NAME) :NAME;
BEGIN
IF LENGTH(PERSON) <= 15 THEN
APPEND (PERSON, ' ESQ.');
ADDESQ := PERSON

END;

BEGIN
NUM := INCREMENT (NUM);
NUM := XXPLUS (NUM);

ooooo

ID := ADDESQ(ID);

NOTE: In the third example, the function LENGTH must be declared
as shown in the section on STRINGS.

In the example above of function INCREMENT, the entire array CNT
was assigned to INCREMENT; while in XXPLUS, each element was
individually assigned. Both of these formats are legal within
the function. However, an element of a function returning an
array (or a fleld of a function returning a record), cannot
appear on the right side of an assignment statement. The entire

Pascal/Z User's Manual Page 65
value of the return value must be assigned to a variable of the
defined return type.

NUM := INCREMENT (NUM); {LEGAL STATEMENT!}

NUM[10] := INCREMENT (NUM[10]); {ILLEGAL}

The entire return value of a function can also be passed by value
as a parameter, or compared using relational operators.

Pascal/Z User's Manual Page 66

'PASCAL/Z STRINGS

In addition to the standard Pascal string (see Pascal User Manual
.and Report, pages 40-~41l), Pascal/Z introduces variable 1length
strings to the Pascal language. While this extension is the
least Pascal-like of all Pascal/Z extensions, it is none the less
quite useful for programmers who are used to the availability of
such types. :

Variable length strings are declared using the reserved word
STRING followed by the maximum length of that string (maximum
allowable string length is 255).

VAR Z: STRING 126; { string with a maximum length of 126 }

There is also an additional intrinsic procedure APPEND. APPEND
is used to append one string to another; for example:

APPEND(Z, '!'); { add '"!' to Z }
APPEND(2, ' FINI'); { add ' FINI' to Z }
APPEND(Z, Z); { add Z to Z }

APPEND was implemented rather than a concatenate procedure
because many string operations are appends and appending is more
efficient than concatenating; however concatenate may be
simulated as follows:

VAR TEMP: STRING 255;
BEGIN
TEMP := Z;
Z = ‘1) ';
APPEND(Z, TEMP); { append Z to 1) and store in Z }

There are other string routines in the Pascal Run-Time Support
Library, but the programmer must declare them externally in order
to access them. Before declaring these external routines the
following types must be declared:

SSTRINGO = STRING O0;
$STRING255 = STRING 255;

The routines and their declarations are:

FUNCTION LENGTH(X: S$STRING255): INTEGER; EXTERNAL;
returns the present length of a string.

FUNCTION INDEX({ X, Y: S$STRING255): INTEGER; EXTERNAL;
returns the place in string X where the substring Y begins. If Y
is not in X, a zero is returned.

PROCEDURE SETLENGTH(VAR X: S$SSTRINGO; Y: INTEGER); EXTERNAL;
set the length of X to Y.

Strings may be initialized to the NULL string with the SETLENGTH
routine.

Pascal/Z User's Manual Page 67

The following restrictions apply when using the type STRING 1in
Pascal/Z programs: '

1) When passed by reference, the maximum length of a STRING
must be greater than or equal to that of the formal
parameter, hence the use of $STRINGO above in procedure
SETLENGTH.

2) When passed by value the actual length of a STRING must be
less than or equal to that of the formal parameter, hence
the use of $STRING255 above in functions LENGTH and INDEX.

3) When used with relational operators a constant STRING may
not appear to the left of the relational operator (generates
compilation error 3989).

~IF STRINGl = STRING2 THEN <statement> { legal }
IF STRING1l = 'HELLO' THEN <statement> { legal }
IF 'HELLO' = STRINGl THEN <statement> { illegal }

It is possible to access the Nth character in a string using the
form

Z[N]

The value of N will be checked to make sure that it is between 1
and the maximum length of Z (unless. range checking has been
turned off). ‘

Note that at compile time & guoted string will take twelve bytes
in the type table before it is written out. This space will be
reallocated as soon as the statement containing the string has
been executed.

Pascal/Z User's Manual Page 58

‘Here is a short program using Pascal/Z STRING functions.

PROGRAM LONGLINE; {SI+ }
CONST LINESIZE = 80;
TYPE S$STRINGO = STRING O0;
SSTRING255 = STRING 255;
VAR LINE: STRING LINESIZE;
WORD: STRING 80;
FUNCTION LENGTH(X: $STRING255): INTEGER; EXTERNAL;
FUNCTION INDEX(X, Y: $STRING255): INTEGER; EXTERNAL;
PROCEDURE SETLENGTH(VAR X: $STRINGO; Y: INTEGER); EXTERNAL;
BEGIN
WRITELN('TYPE ONE WORD AT A TIME AND THIS PROGRAM WILL',
' ASSEMBLE THE WORDS INTO LINES OF ',
LINESIZE:1, ' WORDS EACH'); ‘
WRITELN('TYPE !"#>$ TO STOP');
" SETLENGTH(WORD, 0); { INITIALIZE WORD TO NOTHING }
REPEAT
SETLENGTH(LINE, 0); { INITIALIZE LINE TO NOTHING }
WHILE (LENGTH(LINE) + LENGTH(WORD) < LINESIZE)
AND (INDEX(WORD, '!"#$') = 0) DO BEGIN
APPEND (LINE, WORD); :
IF LENGTH(LINE) < LINESIZE THEN

APPEND(LINE, ' '); { WORD SPACE WORD }
WRITE('THE WORD IS: ');
READLN (WORD);
END; . ‘
WRITELN('THE LINE IS:'); WRITE(LINE);

UNTIL INDEX(WORD, '!"%#S') <> 0;
END. * .

Pascal/Zz User's Manual Page 69

'PASCAL/Z CASE STATEMENT

As mentioned earlier an ELSE clause has been added to the CASE
statement. The following example should help to clarify its use:

CASE COLQR OF :
RED, YELLOW, BLUE: PRIMARY := TRUE; -
ELSE: PRIMARY := FALSE
END; ,

The CASE statement in Pascal/Z is usually implemented as a series
of successive value tests, and while more efficient and neater
than using IF statements, the benefit is not as large as it could
be. Another method of implementing the CASE statement is with a
jump table (i.e. wusing a table lookup to select the appropriate
case); this is MUCH faster but scmetimes requires a large jump
table to work. For example, it would take 128 entries of 2 bytes
each (total of 256 bytes) just for the jump table to have a CASE
"statement that used a jump table for CASE CH OF where CH
is of type CHAR. However, for some CASEs the required jump table
is small or the speed gain is worth the table space and for this
reason there is a compiler option to allow the generation of a
jump table instead of individual value tests. The maximum table
size allowed is 7€ entries including 0. The user is responsible
for making sure that the table size is large enocugh to handle the
statement in question.

The jump table option is set using compiler option J (which MUST
be the last option in an option list) and is disabled as soon as

the first CASE statement has been encountered. Instead of using
J+ and J-, the jump option takes one argument. The argument to
the J option is the ordinal value of the last desired jump table

entry. The above example, recoded to use a jump table would
appear as follows:

{$J5 maximum value is violet, and the ordinal
value of violet is five (ord(violet) = 5)
so this will generate table entries for 0..5 }
CASE COLOR OF
RED, YELLOW, BLUE: PRIMARY := TRUE;
ELSE: PRIMARY := FALSE
END;

If one of the CASE branches above had contained a CASE statement,
it would not have been generated with a jump table unless there
had been another J option used after the start of the first CASE
statement.

When using the J option to create a CASE statement with a jump
table, there i1s NO range checking done on the case selector.

Pascal/Z User's Manual . Page 70

SEPARATE COMPILATION -

Pascal/Z versions 3.2 and later support separate compilation of
user programs. Separate compilation-is the ability to divide a
large program into two or more pieces so that each piece can be
compiled and assembled separately and then linked together. This
feature is especially useful when modifying a large program since
the time required to re-compile, assemble and link a 5,000 line
program can sometimes reach one hour, while with separate
compilation this can often be reduced to as 1little as ten
minutes.

Now that a motivation for separate compilation has been esta-

blished, we can proceed to the actual details of how it is and 1is
not used.

1) . Separate compilation in Pascal/Z assumes that there is a
main module which contains the main program and external
declarations (the same as those for an assembly language
routine) for all external (i.e. those in another module)
routines. -

2) Each routine in a module which is not the main module
must be declared as if it were being declared for the
first time (i.e. it must have a fully defined formal
parameter section and this must agree with the
declaration in the main module, although the compiler
will NOT check to make sure that this is the case).

3) Each separate module has access to anything declared at
the glcocbal level in the main module, including externally
declared routines in other separate modules.

4) Because of assembler and linker limitations all routines
which are accessed from &another module must have
assembler legal names and have only eight significant
characters. Names of externally declared procedures must
not conflict with names already in use by MAIN.SRC and
the library.

5) At any time & separate module may be changed,
re-compiled, re-assembled and re-linked without any other
changes. However, 1if there are any changes to the main
module, then all other modules must be re-compiled,
re—assembled and re-linked also =-- this encourages the
user to make the main module as small as possible to
reduce the probability of its requiring change.

6) To use separate compilation no changes to the main module
are regquired except those regarding declaration of
externals as described above; however, when compiling the
main module, the compiler must be invoked as follows:

PASCAL48 <filename>.xXXXy
(where xxx are drive letters as described in HOW TC RUN

PASCAL/Z and y is the drive on which to write two new
files <filename>.SYM and <filename>.TYP). These files

Pascal/Z User's Manual Page 71

9)

contain symbol - and - type information used during
compilation of the separate modules.

~ The syntax for separate modules dlffers from that of the

main module as follows:

{Main program heading}
Program <main filename> (0);

External <main filename>::<module name> (X);

<zero or more procedure/function declarations
which need not have been declared in the main _
module (but if they were not declared in the
main module they can NOT be accessed outside
this module> .

The "X" in the external module heading represents the
number of the module, and must be in the range 0 to 15.
The default is 0. The numbering of modules is used when
the compiler options T (trace) and/or E (extended error
messages) are enabled, or when using InterPEST. Both the
statement number and the module number (as specified by
the "X" in the module heading) in which szid statement is
contained will be listed when the T and/or E options are
enabled.

Note ~- separate modules must end with a period '.' .-

The compiler is invoked in a manner similar to that for
the main module except that the fourth drive letter
indicates the drive from which to read the two auxiliary
files.

Separate modules are assembled with EMAIN.SRC rather than
MAIN.SRC. This prevents the duplication of a few common
routines and insures that the correct ENTRY and EXT
statements are used. The main program module is still
assembled with MAIN.SRC.

The error message 'premature EOF' may occur when using
separate compilation. This generally means that the CP/M
file names of the modules do not correspond to the
internal module names as specified in the module
headings. The problem is easily solved by checking to
make certain the names correspond. This error message
will also occur 1if the fourth drive letter 1s not
specified when compiling the program modules.

Pascal/Z User's Manual Page 72

This example of a main module and two separate modules- should
help clarify the use of separate compilation.

program test(0); { Thié is the start of the file TEST.PAS }
const max_score = 100;

min_score 000;
type score = min_score .. max_score; .
student = (dave,john,bilT,peter,susan,mary,ruth,linda);
test = (math, geography, history, english, science);
var blue_book: array[student] of array(test] of score;
i,j,k: integer;
sl, s2: student;
£tl, t2: test;

function average(name: student): score; external;
function classavg: score; external;

proccedure hilo(name: student; var high, low: score); external;

begin
for sl := dave to linda do
for tl := math to science do begin
write(sl:1, '''s ', tl:1l, ' score is -- ' });
readln(blue book[sl, t1]);
end; -
for sl := dave to linda do begin
write(sl:1, '''s average score is: ', average(sl):3);
i := 0; -
j = 0;
hilo(sl1, i, 3);
writeln(' with a high of ', i:3, ' and a low of ', 3:3);
end;
writeln;
writeln(‘The class average is: ', classavg:3)
end. '

{ This is the start of the file INDIV.PAS }
External test::indiv(l); { report on individual student }

function average(name: student): score;
var i: integer;
j: integer;

t: test;
begin

i = 0;

j = 0;

for t := math to science do begin
i =1+ 1;

j := J + blue_book{ name, t]

end;

average := j div i

end;

function min(i, 3: integer): integer;
begin
min := 1i;
if j < i then min := j
end;

Pascal/Z User's Manual Page 73

function max(i,:j: integer): integer;.

begin

max := i;

if j > i then max := j
end;

procedure hilo(name: student; var "high, low: score Y
var t: test;

begin
low := 100; { minimum score is <= 100 }
high := 0; { maximum score is >= 0 }
for t := math to science do begin
low := min(low , blue_book[name, t]);
high := max(high, blue book{ name, t]);
end; -
end;

{ This is the start of the file CLASS.PAS }
External test::class(2);

function classavg: score;
var i,3j: integer;
s: student;

t: test;
begin .
: i = 0;
j = 0; :
for s := dave to linda do
for t := math to science do begin
i =1+ 1;
j 1= j + blue book{ s, t]
end; - -

classavg := j div i
end;

This example has been tested and is KNOWN to work with Pascal/Z
4.0. The main module is called 'TEST' and the two subordinate
modules are called 'INDIV' and 'CLASS' respectively. The
following command sequence will compile, assemble and link this
program:

pascald8 test.aaaa

asmbl main,test/rel

pascald8 indiv.aaaa

asmbl emain,indiv/rel

pascald48 class.aaaa

asmbl emain,class/rel

link /n:test test indiv class /g

The sample module 'INDIV' has two local functions, MIN and MAX,
which can NOT be accessed anywhere outside of the INDIV module.
Had it been desired, any of the routines in INDIV could have
called CLASSAVG and CLASSAVG could have called HILO and AVERAGE.

Pascal/Z User'é‘Manual Page 74

. PASCAL/Z . EXTERNAL ROUTINES |

EXTERNAL routines are used to communicate with the world outside
cf Pascal/Z. To Pascal/Z, external routines 1look and behave
EXACTLY LIKE INTERNAL routines; so using an EXTERNAL routine is
the same as using a regular Pascal procedure/function. EXTERNAL
routines are declared just like FORWARD declared procedures and
functions except that instead of using the reserved word FORWARD,
the reserved word EXTERNAL 1is used instead. EXTERNAL modules
should be assembled with EMAIN.SRC, while the main program should
be assembled as usual with MAIN.SRC.

The following conventions must be followed in order for EXTERNAL
routines to work properly:

1) The X, Y and alternate BC, DE, HL registers must be
- maintained.

2) Upon return from the EXTERNAL routine the accumulator must
contain a zero.

3) If the routine is a function then:
a) BOOLEANs return CARRY SET -> TRUE
CARRY CLEAR -> FALSE
b) Other non-REAL scalars return value in DE register pair
c) REALs return in the four bytes above the function
parameters on the stack
d) Structured types return in the n bytes above the
parameter list on the stack (where n = size of return value)"

4) Each EXTERNAL routine is responsible for removing all of its
parameters from the stack before returning.

All parameters to EXTERNAL routines are passed on the stack.
They are pushed onto the stack in the order that they are
declared. The table in Appendix One shows exactly what the stack
looks 1like after they have been pushed. After all of the
parameters have been pushed onto the stack the EXTERNAL routine
is called (using the Z-80 CALL instruction).

In the case of external procedures, variable values to be
returned simply replace the variables passed; that 1is, the
external routine accesses the address of the variable provided on
the stack, uses this address to get the variable 1itself,
processes it, and places the new value back at the same address.
The external routine may alter value parameters passed directly
on the stack, but this will have no effect on any variables in
the program..

If we use the following contrived type declaration of COLOR, then
the EXTERNAL functicn declared below it will return the color
obtained by mixing two primary colors.

Pascal/Z User's Manual Page 75

{ this type was‘specially;designed;soithat the
following is true: .

1) ord(red) -+ ord(yellow.) = ord{(orange)
2) ord(red) + ord{ blue) - = ord(violet)
- 3) ord(yellow)} + ord(blue) = ord(green) 1}~

COLOR = (CLEAR, RED, BLACK, BLUE, VIOLET, YELLOW,
ORANGE, WHITE, GREEN);

FUNCTION MIX(PRIMARY1l, PRIMARY2: COLOR): COLOR; EXTERNAL;

; the assembly language routine will look like this
ENTRY MIX ;entry point for the linker

MIX: POP H ;get the return address
POP D ;get the two colors
MOV A,.D ;get primaryl in A
ADD E ;add in primary2
MOV E.A ;set low half of return value
XRA A ;clear accumulator
MOV D,A ;set high half of return value
PCHL ;return

Note that the ENTRY point of the routine must be declared for the
linker (only the first eight letters of the ENTRY point will be
significant).

In the file EMAIN.SRC, which is included on the distribution
disk, there are two macro definitions, ENTR and EXIT. These
macros may be assembled with your EXTERNAL routines and used to
simplify the writing of your routines. ENTR is used as follows:

ENTR D,LVL,VSIZ

where D is a dummy argument (that is, any value may be used), LVL
is the declaration 1level of the routine (the global level is
level 1, for EXTERNAL routines the value 2 should be used) and
VSIZ is the number of bytes of local variables necessary for the
EXTERNAL routine. Assuming n (where n is a nice number) bytes of
parameters to the EXTERNAL routine then they may be addressed as

n+7 (IX) ;first byte of parameters = 8+n-1(IX)
n+6 (IX) ;second byte of parameters = 8+n-2(IX)
B (IX) ;last byte of parameters = 8+n-n(IX)

Local storage (as requested by VSIZ) may be addressed as
0(IX) :;first byte of local storage
1-VSIZ(IX) ;last byte of local storage

And for non-REAL functions the return value must be stored in
2(IX) ;low byte of return value
3(IX) ;high byte of return value

the return value is initialized to 0 by ENTR.

For real functiens the return value must be stored in
n+8 (IX) ;least significant byte

n+ll (IX) ;most significant byte (exponent)

Pascal/Z User's Manual Page 76

For structured functions the return value must be stored in
n+8 (IX) ; least significant byte
ntsize-1(IX) ; most significant byte

A pictorial representation of the stack after execution of the
ENTR macro is as follows:

return address | Proc/Fct activation
o-oo-oo.-oaooocoo'..oooo.l fecofd—7 bytes total
old IX pointer |

l
|
!
I
l
l

return value

level number (one byte)

l
I
|
|
--------- - |
!
|
l

IX ===> |

SP --=> | temporary storage |

EXIT is used as follows:
EXIT D,PARMSZ

where D is a dummy argument and PARMSZ is the number of bytes of
parameters to the EXTERNAL routine. This routine will remove
local storage and parameters, restore the stack and IX registers
to their correct wvalues, clear the accumulator, install the
correct return value and return to the routine which called the
EXTERNAL routine.

The EXTERNAL routine MIX can be recoded using ENTR and EXIT as
follows:

; the assembly language routine will look like this

ENTRY MIX ;for linker
PRIM1: EQU 9 ; PRIMARY1l is 9 bytes above IX
PRIM2Z2: EQU 8 ; PRIMARY2 is 8 bytes above IX
RESULT: EQU 2 ;low byte of result is 2(IX)
MIX: ENTR D,2,0 :level 2, no local storage

MOV A,PRIM1(IX) ;get primaryl in A

ADD PRIM2 (IX) ;add in primary?2

MOV RESULT (IX) ,A ;set low half of return value

; ;the high byte is already zero
EXIT D,2 ;two bytes of parameters

Pascal/z User's Manual Page 77
These last examples will allow a user program to do
direct I/0. : :

PROCEDURE OUTPUT(PORT, VALUE: INTEGER); EXTERNAL;

; assembly language output routine

’
PORT: EQU 10 ; LOW BYTE OF PORT NUMBER
VALUE: EQU 8 ;LOW BYTE OF OUTPUT VALUE
ENTRY OQUTPUT ; FOR LINKER
OUTPUT: ENTR D,2,0 ;NO LOCAL STORAGE
MOV C,PORT(IX) ;C <~ OUTPUT PORT
MOV B,VALUE (IX) ;B <- OUTPUT VALUE
QuUTP B ;OUTPUT THE VALUE TO THE PORT
EXIT D,4 ;DONE, FOUR BYTES OF PARAMETERS

- TYPE BYTE = 0..255; :
PROCEDURE INPUT (PORT: BYTE; VAR VALUE: BYTE); EXTERNAL;

.
’

; assembly language input routine

PORT: EQU 11 - ; LOW BYTE OF PCRT NUMBER

HADDR: EQU 10 ;HIGH BYTE OF INPUT VALUE ADDR
LADDR: EQU 9 ; LOW BYTE OF INPUT VALUE ADDR
LENGTH: EQU 8 ; LENGTH OF CALL-BY-REF INTEGER
ENTRY INPUT ; FOR LINKER
INPUT: ENTR b,2.,0 ;NO LOCAL STORAGE
MOV C,PORT (IX) ;C <~ INPUT POQRT
INP B ; INPUT THE VALUE FROM THE PORT
MOV H,HADDR (IX) - ;GET HIGH BYTE OF ADDRESS
MOV L,LADDR (IX) ;GET LOW BYTE OF ADDRESS
MOV A,LENGTH(IX) ;GET SIZE
CPI 2 ;CHECK FOR 2 BYTE INTEGER
JRNZ NOPE ;NO, 1 BYTE INTEGER
MVI M,0 ;YES, CLEAR HIGH BYTE
DCX H ' ;POINT TO LOW BYTE
NOPE: MOV M,B ;STORE LOW (OR ONLY) BYTE
EXIT D,4 ;DONE, FOUR BYTES OF PARAMETERS

If a Pascal routine 1is to be used as an EXTERNAL routine for
other Pascal programs and you do not wish to use separate
compilation, then you must assemble it with 'EMAIN.SRC in order to
create a .REL file which can be 1linked to the main Pascal
program. Before assembling the EXTERNAL routine you must edit
the .SRC file containing the Z-80 macro code for that routine.

You can do this as follows (this example 1is taken from the
OVERLAY section later in the manual):

1) Add an ENTRY statement at the beginning of the .SRC file to
identify the name of the routine(s) within the file for the
linker.

E.G. ENTRY MIN, MAX

Pascal/Z User's Manual Page 78

where MIN and MAX are the names of procedures/functions within
the module. (No spaces after the comma or the assembler will
become very upset.)

2) Delete all EXTR and EXTD macro instructions from the .SRC
file.

3) You must also identify each procedure/function for the linker
by placing the name of the procedure/function, followed by a
colon, immediately prior to the label indicating the beginning of
that procedure/function. (A label which marks the beginning of a
procedure or function will always be followed by an ENTR macro
instruction. In the .SRC file, the code for the
procedures/functions will be found in the same order in whlch the
routines occur in the Pascal module.) -

EXAMPLE:

MIN:

L140
ENTR D, 2,0
STMT D,1
MOV L,10(IX)

.
.

148 .
EXIT D,4
ENTRY L140
MAX:
L1611
ENTR D,2,0
STMT D,4
MOV L,10(IX)

.
3

L16S
EXIT D,4
ENTRY L161
LSS
ENTR D,1,0
STMT D,7
FINI

4) All code which may have been generated as part of the main
program should be removed since you are only concerned with
eXxtracting one or more procedures or functions. To do this,
delete all code from the L99 label to the end of the file.

5) Assemble and link as follows:

A>ASMBL EMAIN,MINMAX/REL
A>LINK /N:<com file name> <main program> MINMAX /G

Pascal/Z User's Manual Page 79

~ OVERLAYING

Pascal/Z implements overlaying of modules containing procedures
and functions, in order to allow programs to be executed which
might not normally €fit in available memory. = An overlaying
program 1is comprised of a resident program which remains in
memory throughout the execution of the program, and one or more
overlay modules, containing procedures and/or functions, which
are swapped into an allocated section of memory prior to a call
of a routine contained within an overlay module.

Overlaying is implemented in Pascal/Z as follows:

1) The program is broken into a main module and separate modules
in the same manner as a separately compiled program (see section
on - SEPARATE COMPILATION). Modules which are to be overlay
modules must contain routines which are accessed ONLY from the
resident program or from other routines within the overlay
module. Overlaying between overlay modules is NOT allowed.
Other separate modules are allowed and become a part of the
resident program.

2) To call a prccedure or function in an overlay module, the
Pascal/Z OVERLAY routine must £f£irst be called using the command:

OVBRLAY({ name of file containing overlay module >);
followed by one or more calls to procedures or functions in the
overlay module.

The < name of file containing overlay module > may be either a
guoted string or an ARRAY[1..N] of CHAR. Note that OVERLAY is
a predeclared identifier in Pascal/Z.

3) The main module and all separate modules, both overlay and
non-overlay, are compiled and assembled in the same manner as a
separately compiled program.

4) Before linking, the resulting .REL files must be processed by
OVLYGEN.COM, a program included on the Pascal/Z dfstribution
disk. OVLYGEN.COM generates memory maps of the main module
(MAINMAP.REL) and the library (LIBMAP.REL), a memory map of the
entry points of all routines in overlay modules (OVLYMAP.REL),
allocates an area in memory where overlaying will take place, and
generates an output file which contains the commands necessary to
link the program and its overlay modules.

5) When the link commmands generated in step 3 are executed, the
results are i) a .COM file which 1is the main program and all
linked 1library modules, and 1ii) one or more files with no
extension -- each containing an object code overlay module. When
the program is run, these overlay files are loaded at the correct
location in memory by the OVERLAY routine in the Pascal/Z run
‘time library.

Pascal/Z User's Manual Page 80

6) In order to minimize the size of the resident module, it is
advisable to modify LIB.REL, the Pascal/Z run time support
library provided on the distribution disk, prior to processing it
using OVLYGEN.COM. This can be easily done using the Query
option of the linker. : : :

To determine which 1library modules should be included in the
library for a specific overlayingl program, the following
procedure may be followed:

After all modules have been compiled and assembled, the main
module should be linked with the standard LIB.REL, using the
/S (search) option and the /V (verbose) .option of the
linker. A list of all modules linked will be generated.

Then follow the same procedure with each separate module,
overlay module, and external module.

A.composite list of all library modules linked during these
'pre-links' will determine those library modules which must
be included in the program's library. -

Use the /Q (query) option to generate the new library by
loading the standard library as the input file and excluding
those modules not included in the composite list generated
above. It is 1important that the relative position of
modules within the library be maintained, and this is most
easily achieved using the query option of the linker.

If the standard library is not modified prior to processing by
OVLYGEN.COM, the .COM file generated after linking will contain
all the library modules, whether or not they are needed, and will
probably be much larger than necessary, perhaps defeating the
purpose of overlaying.

The following example should help clarify overlaying and the use
of OVLYGEN.COM. The program TEST is almost 1identical ¢to the
example in the section describing SEPARATE COMPILATION. But in
this case, the program contains a main module, a separate module,
a module containing two Pascal external functions, and two
overlay modules.

{ Main module contained in file TEST.PAS }
program test(0);

const max score =100;
min score =000;

type score = min score .. max score;
student = (dave,john,bill,peter,susan);
test = (math,geography,history,english,science);
var blue_book: array[student] of array(test] of score;

i,j,k:integer;
sl,s2:student;
tl,t2:test;

Pascal/Z User's Manual Page 81

function average(name:student): score; external;-

function classavg: score; external; .

function min(i, j: integer): integer; external;

function max(i, j: integer): integer; external;

procedure hilo(name: student; var high,low:score); external;

begin :
for sl := dave to susan do
for tl1 := math to science do begin
write(sl:1, ''"'s ', tl:1, ' score is -- ');
readln(blue book[sl,tl 1 };
end; -
overlay('indiv'); { first overlay }
for sl := dave to susan do begin
write(sl:1, '''s average score is : ',
average(sl):3);
i = 0;
j = 0;
hilo(sl, i, 3);
writeln({(' with a high of *, i:3,
''and a low of ', 3:3);
end;)
writeln;
overlay('class'); { second overlay }
writeln{ *The class average is : ', classavg:3)
end.

{ separate module contained in file AVE.PAS }
external test::ave;

function average(name: student): score;
var i, j: integer;

t: test;
begin
i e O;
j o= 0;
for t := math to science do begin
i =1+ 1;
j := 3 + blue book[name, t]
end;
average := Jj div i
end;

{ external functions contained in file MINMAX.PAS }
{ see section on Pascal/Z External Routines }

program minmax;

function min(i, j: integer) : integer;

begin
min := 1i;
if j < i then min := j

end;

Pascal/Z User's Ménual

function max(i,j:integer): integer;

begin
max :

{ overlay module contained in file INDIV.PAS }

external test::indiv;

Page 82

procedure hilo(name: student; var high, low: score);

var t: test;

begin
low := 100;
high := 0;
for t := math to science do begin
low := min(low, blue book[name, t 1);
high :
end;

end;

{ overlay module contained in file CLASS.PAS }

external test::class;

function classavg: score;
var i,j:integer;
S: student;

begin

t: test;
begin
i = 0;
j = 0;
for s := dave to susan do
for ¢t := math to science do
i =i+ 1;
j := j + blue book([s,t]
end; -
classavg := Jj div i

end;

The following command sequence will compile

modules of this program:

pascal4d8 test.aaaa
asmbl main,test/rel
pascal48 ave.aaaa
asmbl emain,ave/rel
pascald48 indiv.aaaa
asmbl emain,indiv/rel

= max(high, blue_book{ name, t]);

and assemble

the

Pascal/Z User's Manual, Page 83

pascald48 class.azaaa

asmbl emain,class/rel

pascald48 minmax.aaa
{ see section on Pascal/Z external routines’
{ for modifications to MINMAX.SRC prior to
{ assembly

asmbl emain,minmax/rel

(S SR

To generate a new library do:

link test /v lib/s /r /e
link ave /v 1lib/s /r /e
link minmax /v lib/s /r /e
link indiv /v lib/s /r /e
link class /v lib/s /r /e

After each link note the modules that have been linked and then
generate a new library using the command:

link /l:newlib 1lib/q /e
OVLYGEN.COM is then executed} prompting the user for:

1) the name of the .REL file containing the Pascal/Z CHAIN
routine 1if chaining - is being done between this program and
another program.

2) the name of the .REL file containing the main module.

3) the name of all .REL files éontaining separate modules.
4) the name of all .REL files containing external routines.
S) the name of all user-created libraries.

6) the name of all .REL files containing overlay modules.

7} the name of the Pascal/Z run time support library to be used.

(If using the debugger InterPEST with an overlaying program, the
debugger should be specified as a user-created library.)

At the completion of execution, OVLYGEN.COM will generate a file
TEST.SUB which will contain the following commands.

link /n:test test ave minmax ovlymap néwlib /u /e
link /0:0675 /n:indiv indiv mainprog libmap /u /e
link /0:0875 /n:class class mainprog libmap /u /e

Note: A '/u' is generated in each linker command line. This is
included to flag any 1library modules which might have been
inadvertently left out of the modified library. If any library
entry points are 1listed a&as unresclved externzl symbols, the
modified library should be regenerated, even if the '/e' option
(which loads the 1library - usually VLIB.REL) resolves the
indicated unresolved externals. Not doing so will result in
unpredictable, and often disastrous results.

Pascal/Z User's Manual ‘Page 84

After execution of these:cpmmands, TEST.COM may be run.

‘Pascal/Z User's Manual Page 85

INCLUDE FILES

Pascal/Z provides an INCLUDE facility, with which any £file may be
included at any-point in a Pascal/Z program.

The file or files to be INCLUDEd must be on the default drive or
the drive must be specified, followed by a colon and the
filename. (The compiler will not check to make certain the file
is present, and will generate no error message if it is not.)

To use INCLUDE files, type the following at the point at which
the file is to be inserted:

{SI<filename> }

The "I" specifies that the file following it should be INCLUDEd.
Please note that $I+ or S$I- in a comment with no £filename
-specified indicates that the IMBED compiler option should be
enabled/disabled -~ be careful that there are no spaces or
characters betwesen the "I" and the filename. Also, there must be
a space between the filename and the closing bracket (}).

Care must be taken to ensure that there are no conflicting
declarations in the various files -- it is very easy to INCLUDE a
file which uses variables already declared in another of the
files.

To: INCLUDE more than one £ile in the same place, each filename
must be specified in a separate comment.

INCLUDE files may be nested, limited only by available stack
space.

Pascal/Z User's Manual Page 86

CHAINING

- While we advise against overlays and chaining, we realize that in
some instances there is no choice. Overlays were discussed in an
earlier section. 1In Pascal/Z there is also a way for one program
to chain to another with the same global declarations (programs

must chain at the main program level). In the Pascal program the
following is used to do the chain: ‘

FTXTIN(<name of file to call>); CHAIN;

The <name of file to call> may be either a quoted string or an
ARRAY[1..N] of char. Then each of the programs involved in the
chaining must be re-linked with the chain module (shipped in
source on the library diskette) as follows:

LINK CHAIN <Pascal REL filename>/N:<COM filename>/E

For CHAIN to work correctly it is imperative that it be the first
file linked.

It is also possible for one program to chain to another with
different global data areas by changing the ENTR macro as
indicated in CMAIN.SRC. -

If chained programs are to use the heap then the LAST routine in
the library shou.d be changed to set LAST to. the size of the
largest program being chained.

Pascal/z User's Manual Page 87

 PASCAL/Z POINTERS

Pointers, combined with their associated intrinsic routines, NEW,
MARK, and RELEASE, are the means by which a user can dynamically
allocate and deallocate variable storage. While the PASCAL
REPORT describes NEW and DISPOSE, we have implemented NEW, MARK
and RELEASE. These procedures are used as follows:

NEW (P) P .may be any pointer variable. NEW allocates storage
for P from the heap and assigns P the address of
this NEWly allocated storage.

MARK (P) P must be & pointer variable. MARK sets P equal to
the present top of heap (the information stored in P
is used by a subsequent RELEASE).

RELEASE(P) P is a pointer variable which has been previously
"MARKed". RELEASE (P) releases all of the heap which
has been allocated since P was "MARKed".

The RELEASE of a pointer to a file variable will
close the output file pointed to.

Note: A variable which has been "MARKed”™ should not be used
for anything other than a RELEASE if you want to
maintain the "MARK".

The program on the next page will input a list of names, store
them in a linked list, output the list, release the storage and
end.

Pascal/Z User's Manual Page 38

PROGRAM POINTERS;
TYPE LINK = “NAMEREC;
NAMEREC = RECORD
NAME: STRING 20;
NEXT: LINK
END;
VAR Ml: LINK;
FIRST: LINK;
LAST: LINK;
X: LINK;
BEGIN
MARK (M1);
FIRST := NIL;
REPEAT
IF FIRST = NIL THEN BEGIN
NEW(LAST); { ALLOCATE A NEW RECORD }

FOR STORING THE MARK }

FOR FINDING THE FIRST NAME }
FOR FINDING THE LAST NAME }
FOR CHASING THROUGH THE LIST }

A ane Yann Yana Yooy

FIRST := LAST
END
ELSE BEGIN
NEW(LAST" .NEXT);
LAST := LAST” .NEXT
END;

WRITE('Name (* = DONE) ');
READLN (LAST".NAME); { GET PERSONS NAME }

LAST” .NEXT := NIL
UNTIL LAST".NAME = '*!';
{ PRINT OUT THE NAMES }
X := FIRST; '

WHILE X" .NEXT <> NIL DO BEGIN
WRITELN(X" .NAME);
X := X" . NEXT
END;
{ RESTORE THE STORAGE }
RELEASE(M1);
END.

Pascal/Z User's Manual Page 89

PASCAL/Z FLOATING POINT NUMEERS

In Pascal/Z all floating point numbers are 4 bytéé and are
organized as follows: ”

byte 1 byte 2 byte 3 byte 4
: T T T T T T T T T T T T T T T :
f e e e e e e e ————— e {
0...7 8 9...15 16...23 24...31
2's complement sign mantissa (2..31)
exponent

There is an implied binary point to the left of bit 9. The value
of the mantissa is multiplied by 27 (exponent) to achieve the
 final value.

Floating point precision is approximately 6 1/2 decimal digits
(there will be a roundoff error in the seventh digit). If this
is inadequate for your ©purposes, the fixed point routines
described in Appendix Three might provide sufficient precision
(or try Pascal/BZ, the business version of Pascal/Z).

Other floating point formats are possible (i.e. AMDS51l1 could be
used to process floating point); contact InterSystems for details
if you need to use another format.

Pascal/Z User's Manual Page 20

FORMATTING OUTPUT’

When outputting the data types INTEGER, REAL and BOOLEAN, it is
often desirable to format the output into columns. This is done
by specifying a €field width such that all data is properly
aligned.

In Pascal/Z, the standard field width for outputting the data
types INTEGER, REAL and BOOLEAN is eight. This can be overridden
by specifying the minimum field width preceded by a colon, as
follows:

X := LAURIE
WRITE(X : 10);

X will be written in ten places and aligned to the right:
bbbbLAURIE
where b indicates a blank place.

If the item to be ocutput requires more than the allotted number
cof columns, it will use as many as is necessary.

When outputting a REAL, the user may specify not only the field
width, but also the number of digits to be printed after the
decimal point. This is done by adding another coclon followed by
an integer specifying the number of digits to be placed after the
decimal point. ' '

Jensen & Wirth dictate that £flocating point output should always
be preceded by two spaces--cne blank and one for the sign (which
is only actually printed 1f it is negative; otherwise it is left
blank) .

Example:

X 1= 12.352
WRITE(X ¢+ 7 : 2);

This will output X as follows:

bbl12.35
The number will be rounded to display the prescribed number of
places after the decimal point. If the number of places
specified to be output is larger than the number of existing

digits, it will be padded with zeroces.

With the same number as a negative (i.e. -12.352), the following
statements will return the following results:

WRITE(X : 7 ¢+ 2) ===—- > b-12.35
WRITE(X ¢ 5 ¢ 2) ===—- > b-12.35

Note that although in the second example a field width of five is
specified, since the two preceding spaces are needed, the field

Pascal/z User's Manual Page 91

width 1s automatically expanded to accept the number. Whenever
the field width specified is not large enough to output the
number as specified, as many places as necessary will be taken.

Also note that the number is printed in fixed point notation,
rather than exponential/scientific notation. Had X originally
been specified in scientific notation, the result would be as
follows:

Result: bb1340.0900

If the number 1is too large to be represented in fixed point
notation (e.g. 1.34E+25), the number will be output in
scientific notation, but will still place the proper number of
digits after the decimal point.

X := 1.34E+25;
WRITE(X : 6 : 4);

rResult: bl.3400E+25

Note as well that the decimal point occupies one place, and must
be accounted for when specifying field width.

Pascal/Z User's Manual Page 92

ASSEMBLER AND LINKER ERRORS

There are a few assembler errors which can occur during the
assembly of a Pascal/Z program. These result from the few
program errors which are not caught by the compiler. The first
error 1is an attempted invocation of a FORWARD declared
procedure/function which is never actually defined; in this case
the error will be:

Symbol not £found
CALL L?2?22272

The second error is a GOTO to a label which was declareé but not
defined; i.0 this case the error will be:

Symbel not found
JMP L222272

The next error is a READ/WRITE to/from a textfile of a parameter
which is larger than 255 bytes; in this case the error will be:

Argument too big
MVI <register>,<value>

Pascal/Z User's Manual Page S3

- MEMORY USAGE

This section 1is included to allow users of Pascal/Z to make
efficient use of memory by describing the amount of storage
necessary for certain types of variables and statements. Since
in Pascal/Z the reserved word PACKED is implicit in all ARRAY
declarations its'use is unnecessary (but still allowed).

BOOLEANSs
stored 1 byte/variable

CHARSs
stored 1 byte/variable

INTEGERS
stored 2 bytes/variable

REALs
stored 4 bytes/variable

Enumeration types
stored 1 byte/variable

Subranges

stored in one byte unless the base type is INTEGER and the
range doesn't fit in one byte (the lower bound is less than
Zzero or the upper bound is greater than 255).

Pointers
stored 2 byte/pointer

File variables
stered 300 bytes/variable

ARRAYs & RECORDs

require the amount of memory equal to the sum of the
requirements of the individual elements. Variant RECORDs
require storage sufficient to store the largest wvariant
case.

Quoted strings
each quoted string takes up three bytes plus one additional
byte for each character in the string.

Declared constants
numerical constants require no memory; string constants use
one byte/character plus one byte of overhead.

Procedure activation (each call of a procedure)

each &activation record requires seven bytes of storage plus
the memory for the parameters and local variables. This
storage 1s allocated dynamically from the run-time stack and
is released when the procedure is exitted.

Function activation
same as procedure activation, except for REAL functions
which require eleven bytes of memory.

Pascal/Z User's Manual Page 94

Value parameters
each parameter requires storage as defined above.

Reference parameters (VAR parameters)
all reference parameters require two bytes of storage except
for those of base type INTEGER which require three bytes.

SETs
All sets are stored in 32 bytes.

FOR statements
require four bytes of storage for each active FOR loop.

WITH statements

require two bytes of memory for each active dynamic WITH
statement.

All of the memory usage described in this section (with the
exception of quoted strings and string constants) 1is allocated
dynamically from the run-time stack and is only used when a
particular routine or statement is active.

Pascal/Z User's Manual Page 95

STACK AND HEAP ORGANIZATION

This section is intended mainly for tHose users interested in
using Pascal/Z programs in a multi-tasking environment.

ALL code generated by the Pascal/Z is completely ROM-able and is
also re-entrant as long as separate stacks and heaps are
maintained as described in this section.

All Pascal/Z pregrams start by initializing their stacks. The
cede to do this is in MAIN.SRC. ALL non-dynamic variables are
stored on the run—-time stack. By changing the stack
initialization code, many different processes can run with the
same memory image of the Pascal/Z program as long as each one has
a different, and non-overlapping, stack.

At any given time during program execution the IY register points
to the global variable stack frame and the IX register points tpo
the local stack frame.

Although all variables are stored on and accessed through the
stack, the stack can not be relocated once program execution has
begun. This is because there are often references from one part
of the stack to ancther part of the stack which, in the interest
of efficiency, are stored as absolute addresses and not stack
relative addresses.

The heap, like the stack, is zllccazted at run~time, not compile
time. This means that the heap too may be initialized at a
different peint in memory for each process. The initial value of
the heap is determined by the LAST module; this could ezsily be
changed whenever desired. Tt is initially set to the £first
location following the user program.

ocate the stack from the top
p from the bottom of memory
grror if they collide. If vou
rs for different processes then
it is most reascnable to allocate them in contiguous memory to
ensure that the stack and heap overflow checking 1is not
defezted.

The run-time package is
of memory downwards &
upwards and to give an a

Pascal/Z User's Manual Page 94

INSTALLING PASCAL/Z PROGRAMS IN ROM

When installing a Pascal/Z program into a ROM it is NOT necessary
to make any changes to the program. However, it is possible to
further reduce the 'size of the object code before burning a ROM.
This is especially true for programs which are to run in a
dedicated environment.

When your program is assembled and linked, a certain smount of

error recovery and termination code 1is included. This includes

code to close any open output files, to print error messages and

to check for “C. If your program does not use any files for

output, then much of this code can be eliminated by replacing the
JMP LO

instruction in the FINI macro (which is found in MAIN.SRC) with a

JHMP <location at which execution should resume
after completion of the program>

by replacing the
JZ ERROR

instruction in the CTRL macro (in MAIN.SRC) with the same JMP
instruction as above, and by removing the

CNZ CLSOT
in the ENTEXT.SRC module.
Similarly, 1f you do I/0 but do not do any flecating point
operations, the flocating ©point <code <can be eliminated by
modifying the INPT.SRC mocdule with the removal of the

CZ FLTIN

cali.

Pascal/Z User's Manual Page 97

APPENDIX ONE
PARAMETER STACK CONFIGURATIONS

This appendix describes the form of parameters that are pushed
onto the stack for use in external routines.

In this appendix all dizgrams have the high memory locations
towards the top o paga and the lower locations towards the

£
bottem of the page. In eddition each box represents one byte
: fie

pt those of base type INTEGER) take

All reference parameters (exce
t te address and are passed like this:

the form of a two by céc
[e e e -—=]
| high byte of address |
| = e e e e |
| low bvte of zddress |
i

-

| low bvte of address |
1

| INTEGER size 1, 2 bvtes |

[e o o e e e e e ot i |
‘

A1l reference parametsr addresses (except those of type FILE) are
the address of the highsst zyte (highest memory location) 92f the
variable FILE parameter addresses are the lowest byte of the
varlaDWe since operating systems are usually concerned with the
lower end of the Zuffer.

BOOLEANs, CHARs, enumeracion types, one byte INTEGERS

| ordinal value of the parameter |

Two byte INTEGERS

| m e e e n

| high byte

Pascal/

Z User's Manual Page

——— e | ARRAY[1..N] OF COLOR

___________ [ARRAY[1..N] OF

f af 1, 11 |

[| ARRAY(1..3] OF

b af 1, 21 |

R | BCOLEAN;

i af 1, 31 | '
——————————— |

| Al 2, 1] |

| a0 N, 3] |

R et Lt {

RECORDs:

[| | RECORD

| A | A, B, C: 0..255;

[e e |

| B |

[wmmm e e |

| o |

[A e |

| D[1] | D: ARRAY(1..3] OF

[| BOCOLEAN;

I D[2] |

[mmmm e |

I D[3] |

| m—————————— | .

| LETTER | LETTER: CHAR;

[~ | ,

! X | X: BOOLEAN

............. | END;

88

Pascal/Z User's Manual . Page 95

Pointer variables:

P g STRING N

RIS !
|~ m e |

The entire string is passed even i1f the length is zero.

REALs (floating point numbers):

SETs:

l bits 0..7 | BYTE 1

Pascal/Z User's Manual Page 100

APPENDIX TWO

TROUBLESHOOTING

Most problems. encountered when using the Pascal/Zz compiler are
menifestations of hardware problems.

It is common for memory boards, in non-IEEE S100 standard bus
machines, to run memory tests for many hours and then not be able
to run the Pascal compiler. This is usually due to the inability
of the memory to be able to handle Ml states in &ll of the first
40K.

Often Pascal/Z will be the first program you ever run that uses
all of high memory. Therefore it is in your best interest to
save time and frustration by making sure your memory 1is good
(this can sometimes be done by re-arranging memory boards).

Another problem is not encugh memory. The compiler will cutput a
message to this effect if this is the case (but will not be able
to in the cases where the shortage is tco severe).

If vou &re unable to read the disk, which is single density
standard CP/M diskette, then check the «calibration of vour
dr

[

wves.

If you receive the message 'Unable to Cheain' then the precblem is
that PAS248 (or PAS254) is not on the currently logged-in drive.

If you receive the message 'Unable to overlay' then the problem
is that one or more of the overlay modules called is not on the
currently logged-in drive. This will cccur if the modules DECS
and PFSTAT are not on the drive with PASCAL48.COM and PAS248.

I£f vyou have performed the above steps and still <can not
successfully compile even the demo programs then contact the
dealer from whom the Pascal/Z package was purchased or the
factory for assistance.

Pascal/Z User's Manual Page 101

APPENDIX THREE

FIXED POINT PACKAGE

The Fixed Point Package is a collection of procedures which
perform arbitrary prccision arithmetic in signed fixed-point
decimal. The Pascal/Z fixed point routines are implemented in
binary-coded dec1mal {BCD), and are packed two digits per byte.
In &ddition to the four basic functions add (ADD), subtract
(SUB), multiply ({SMULT), and divide (SDIVD), functionsg are
supplied that convert between real and fixed point and between
string and fixed point. : ‘

The source code for these functiens is supplied so that the user
may include it in his or her program. The bulk of the code is in
the file 'FIXED.PAS'., This has 2ll ¢f the procedures and none of
the declaraticns. There ar: nts, seven types, and two

g a2

variables that must bhke dsclared. These are in the files
'FIXCONST.PAS?, 'FIXTYPE,PASY, and PFIXVAR.PAS' respectively.
All three of these files zre very short. In the event that any
of the global identifiers used by the fixed-point package are the
same as ones used by 2 user program, sither the fizxed-point code
will have to be changed o¢r the user code will have to be
changed. We suggest that cthe user be zware of these identifiers
when writing code that usss the fixed-point package.

Often the user wiil not nesd all of the functicns supplied. 1In
the interest of £faster cecmpilatiens, shorter listings, and
smaller source and object files, the vunused functions may be
deleted as long as they are not called by functions that remain.
The dependencies ar as follows: subtract calls add, dJgreater
calls subtract, di ils btracc su

1V byte and
addbyte, just zbout e ri

The Type 'FIXED!
The user declares a fixed-point number &s follows:

MYVAR: FIXED;

A fixed point number can be an elementc f an array, record or
file. For exampla:

DIV_TOTALS: ARRAY[1..DIV_MAX] OF FIXED;

DIV_INFO: RECORD
- NAME: STRING 40;
DIV_LOCATION: 1
DIV_SALES: FIXEI

MYFILE: FILE OF FIXED;
The type fixed tzkes up encugh sSpace to store the number of

digits requested by the constants ‘LEFT' and 'RIGHT' in a packed
form plus one {for the sign).

Pascal/Z User's Manual ‘ ' 4 Page 102

The Constants 'LEFT' and 'RIGHT'

These constants are found in the file FIXCONST.PAS and are set by
the user for the amount of precision needed. 'LEFT* specifies
the number of decimal digits that fixed-point numbers are to have
to the left of the decimal point. Likewise, 'RIGHT' specifies
the number of digits to the right of the decimal point. Both
numbers must be non-negative and their sum must be positive. A
program may have only one size of fixed-point number. Also, a
file written with one size of <fixed-point cannot be read as
ancther size. So, 1f you have & collection of programs that
share common files with fixed-point numbers in them, they all
must be the same size.

The Arithmetic Functions

Add, subtract, multiply, and divide all take two fixed parameters
by value and return a fixed. Subtract takes the minuend as the
first parameter and the subtrehend as the second parameter (the
second is subtracted from the £first). Divide takes the £first
parameter as the dividend and the second &as the divisor (the
first is divided by the second). 2ll four functions will set the
global beclezn 'FIXEDERRCR' true 1f there 1iIs &an arithmertic
overflow. Divide by zero will cause the flag to be set true and
a value of zerc will be returned.

211 numbers to be operated upon must be read in as strings or as
real numbers. Before the numbers can be used, they must be
converted to fixed point numbers, using either . the STRTOFIX

string to fixed) cr REALTCFIX (real to fixed) routines described
below. They can. then be operated upon using the fixed point
operators ADD, SUB, $MULT and S$DIVD, or the relational operator
GREATER, as shown in the example program. ONLY the fixed pocint
operators may be used on fixed point numbers.

Once &ll arithmetical cperations have been completed, the £fixed
point numbers must be converted to the format in which they were
read in before they can ke written out, using either the FIXTOSTR
(fixed to string) or FIXTOREAL (fixed to real) routines.

Real and Fixed Conversicns

The functions 'REALTOFIX' and 'FIXTOREAL' convert real numbers to
fixed-point and vice-versa respectively. Both have their single
parameters passed by value. '"FIXEDERROR' will be set 1if the
number being converted is toco big for the result type.

String and Fixed Conversions

The functions 'STRTOFIX' and 'FIXTOSTR' «convert strings to
fixed-point and vice-versa respectively. Both have thelir
parameters passed by value.

STRTOFIX scans the string from left ¢to right 1ignoring all
characters other than the decimal digits, the minus sign, and the
period (decimal point). Thus the string may have a dollar sign

~Pascal/Z User's Manual Page 103

and commas and it will still be converted properly (i.e. the
strings '$12,314.43' and '12314.43' would be converted to the
same fixed-point number).

FIXTOSTR takes three parameters. The first is the fixed number
to be converted. The second is the format mode. The format mode
is an enumerated type that specifies the operations to be
performed on the number as it is being converted. The different
formats follow:

none: No formatting is done, nc zercs are suppressed.
suplzer: Leading zeros are suppressed.

supltzer: Both leading and trailing zeros are suppressed.

wdollar: Leading zercs are suppressed and a dollar sign is
placed before the most significant digit.

wcomma : Leading zeros are suppressed and commas are inserted
between every third digit to the left of the decimel
point.

wboth: Leading zeros are suppressed, commas are inserted every
between every third digit to the left of the decimal
peint, and & dollar sign is placed before the most
significant digit.

The third parameter specifies the number o
display past the decimal point.

rh
t
Lnt
0
..J
‘ -
-
o]
o]
Qu
[WH
{9}
=
o+
n
cr
(o]

Relational Function

The function ‘GREATER' compares
returns true 1if the first operand
second operand.

wo fixed-point numbers. It
greater than or equal to the

m cr

pete

USING THE FIXED POINT ROUTINES

The fixed ©point routines, including the constant, type and
variable declarations, must actually be inserted into the
Pascal/Z program; they are not part of the library LIB.REL.

This may be done using INCLUDE files (see page 79) as follows,.

The user must first examine the file FIXCONST.PAS, which contains
the constant declarations for the £fixed point routines. He
specifies the precision of the fixed point number in FIXCONST.PAS
by setting the value of the constants LEFT and RIGHT to the
precision desired. Once the precision is established, it CANNOT
be changed within the same program to save storage space.

He must insert the declarations for the fixed point routines with
the other declarations at the beginning of his program. The
fixed point declarations must be included in the appropriate
declaration

Pascal/Z User's Manual Page 104

section before any declarations of fixed point numbers are made
(otherwise the error "Identifier not declared” will be
encountered). He can do this using INCLUDE files by typing

{$IFIXCONST.PAS } at the end of the constant declarations,
{SIFIXTYPE.PAS } at the end of the type declarations, and
{SIFIXVAR.PAS } at the end of the variable declarations.
Note, however, that the reserved words CONST, TYPE and VAR are
contained in the fixed point declarations, and that these must be
removed 1f any constant, type or 'variable .declarations have
already been made in the program. Failure to do this can cause
disastrous results during compilation.
Then he may INCLUDE the fixed peoint routines in his program &t
any point before they are accessed (we suggest at the beginning
cf the procedure and function declarations) by typing:
{SIFIXED.PAS }
The entire Pescal/Z program is then compiled, assembled and
linked as usual.
EXAMPLE

Program checkbock;

{ This is a simple checkbock balancing program designed }
{ to demonstrate the use of the fixed point package }

const max_t = 100;

{ The following comment INCLUDES the fixed point constant }
{ declaraztions. The FIXCONST.PAS file has already been }
{ editted to remove the reserved word CONST. }

{Sifixconst.pas }
type

{ The following comment INCLUDES the fixed point type }
{ declarations. The FIXTYPE.PAS file has already been }
{ editted to remove the reserved word TYPE. }

{$ifixtype.pas }

transaction = (ing, dep, chk, stmt, stop);
daterec = record
month : (Jjan, feb, mar, apr, mey, jun, jul,

aug, sep, oct, nov, dec);
day : 1..31;
year : integer;
end;
transrec = record
oldbal, newbal : fixed;
date : daterec;

Pascal/Z User's Manual Page 105

t_type : transaction;
amount : fixed;
end;
sequence = l.%max_t;

var

{ The following comment INCLUDES the fixed point variable }
{ declarations. The FIXVAR.PAS file has already been }
{ editted to remove the reserved word VAR. _ }

{Sifixvar.pas }

number to be read }

dummy variable for comparisen }
present deposit }

present withdrawal }

current balance }

current operation }

test for stop }

date }

number : string 20;
dummy ,

income,

withdrawal,

balance : fixed;

option : transaction;

done : boolean;

today : daterec;

L Y e W X e e e B e]

{ array to store individual transactions }
history : array[l..max t] of transrec;
t# : sequence; ~ { transaction number }
i : sequence; { index variable }

{ forward declaration of proéedure print }
procedure print; forward;

{$1-} { turn off listing to eliminate fixed point }

{ The following comment INCLUDES the fixed point routines. }
{$ifixed.pas }

{$1+} { turn the listing back on }

{ enter the date }
procedure getdate;
begin
write('Enter date (E.G. JUN 17 1981l) -- "');
with today do
read(month, day, year);
end;

{ add deposits }

procedure increment;

begin
write('Deposit -= ');
read (number };
{ convert the string to a fixed point # }
income := strtofix(number);
{ perform a fixed point addition }
balance := add(balance, income);
{ store the current information in the array }
with history[t#] do

Pascal/Z User

begin

's Manual

{ perform a fixed point subtraction }

oldbal :=

newbal :

date :=

amount :

t_type :
end;

LU I

sub(balance,
balance;
oday;

incecme:;
option;

income);

Page 106

{ convert the fixed point # to a string and write it out }

writeln(fixtostr(

tk 1= £ +
end;

1;

{ decrement withdrawals }

procedure dec
begin

rement;

balance, wboth, 2)

write('Withdrawal amount -- ');

read(numbe
{ convert t
withdrawal

begin
cldbal :
newbal :

r);

he string to a fixed point # }

:= strtofix(number);
with history{ t# 1 do

balance;
sub(balance,

date := today;

t_type
amount

end;

t# 1= tE +

opticn;
withtdrawal;

1;

withdrawal);

{ perform a fixed point subtraction }

balance :=
history([t#

sub(balance,
- 1 l.newbal

withdrawal);
:= balance;

)i

{ convert the fixed pecint # to a string and write it out }
ttostr(balance, wboth, 2)

writeln(fi

dummy := st

if greater(

end;

rtofix('0"');

dummy, balance)

{ procedure to print out statement }

procedure pri
begin
with nistor
begin

nt;

y{ i], date do

):

{ routine to check for overdrawn account }

then writeln(

Overdrawn')

{ convert all fixed point §s to strings and write out }

write(fixtostr(newbal,

wboth, 2));

write(fixtostr(oldbal, wboth, 2));
nth, day, year, t type);

write(mo

writeln(fixtostr(amount, wboth, 2)

end;
end;

begin
done := fal
tg 1= 1;
getdate;

se

{ main program }

write{('Starting balance -- ');
read(number);

)

Pascal/z User's Manual Page 107

{ convert the string to a fixed point % and assign it to balance }
balance := strtofix(number);
repeat
write('Option (ing, dep, chk, stmt, stop)- -- ');
read(option);
case option of
ing: writeln(fixtostr(balance, wboth, 2));
dep : increment;
chk : decrement;
stmt : for i := 1 to t# - 1 do print;
stop : done := true
end;
until done;
end.

The fixed point declarations and routines may alsc be inserted by
typing or editing the files FIXCONST.PAS, FIXTYPE.PAS, FIXVAR.PAS
and. FIXED.PAS into the Pascal program itself.

(Note that the Fixed Point Package 1is supplied with Pascal/Z
only, and that the routines are not intrinsic to the compiler.
For users desiring greater speed, precision and £lexibility,
Pascal/BZ should be used. VYou will have received Pascal/BZ only
1f it was specifically ordered, as it is a distinct produc: from
Pascal/Z. ©See Appendix Seven for details on Pascal/BZ.)

Pascal/Z User's Manual Page 108

APPENDIX FOUR
PASCAL/Z USER'S GROUP

The Z Users' Group 'was formed by Charles Foster of Sacramento,
California to provide a forum for information and discussion
about Pascal/Z.

The organization publishes a bi-monthly newsletter containing
information on current and forthcoming versions of Pascal/Z, as
well as user comments and suggestions. The newsletter also
describes public domain software, written in Pascal/Z, available
from the Users' Group. There are currently twelve disks
containing programs donated by users of Pascal/Z, with more to
follow.

The cost to be placed on the mailing list for the newsletters is
$9.00 (U.S.) annually. The cost for the User Disks is $10.00 per
disk/volume. (ALL DISKS ARE CP/M COMPATIBLE, SOFT-SECTORED,
SINGLE DENSITY, IBM 3740 FORMAT.)

Any request for further information must be accompanied by a
self—-addressed, stamped envelope. Contact:

Mr. Charles Foster

Z Users' Group

7562 Center Parkway
Sacramento, California
85823 '

916-392-2789 SPM - 10PM (PST)
916-447 6077 B8AM - GSPM (PST)

Pascal/Z User's Manual) Page 108

APPENDIX FIVE

ITHACA INTERSYSTEMS'LIMITED WARRANTY

ITHACA INTERSYSTEMS disclaims any warranty as to this product.
This product is sold for commercial, and not consumer, use.

SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED, AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE WHICH EXCEEDS THBE FOREGOING WARRANTY IS HEREBY
DISCLAIMED BY SELLER AND EXCLUDED FROM ANY AGREEMENT.

Buyer expressly waives its rights to any consequential damages,
loss or expense arising in connection with the use of or the-
inabiity to use its goeds for any purpose whatsocever.

No warranty shall be applicable to any damages arising out of any
act of the Buyer, his employees, agents, patrons or other
persons.

The remedies set forth herein are exclusive and the liability of
Seller to any contract or sale or anything done in connection
therewith, whether in contract, in tort, under any warranty, or
otherwise, shall not, except as expressly provided herein, exceed
the price of the equipment or part on which said liability is
based.

No employee or representative of Seller is authorized to change
this warranty in any way or drant any other guarantee or
warranty.

Pascal/Z User's Manual Page 110

APPENDIX SIX
ERROR MESSAGES

The following are the error messages listed by Jensen & Wirth on
pages 119 - 121 of the USER MANUAL AND REPORT shipped as part of
the Pascal/Z software package. The error messages which are
specific to Pascal/Z7 are listed under the 398 category:
implementation restriction.

Note that not all of the error messages are applicable to
Pascal/Z.

WO O N N

error in simple type
identifier expected
‘program' expected
') ' expected
':' expected
illegal symbol
error in parameter list
‘of' expected
'(' expected
10 error in type
11 '{' expected
12 ']1' expected
13 'end' expected
14 '; ' expected
15 integer expected
16 '=! expected
17 'begin' expected
18 error in declaration part
19 error in field-1list
20 ',! expected
21 '*! expected
50 error in constant
51 . t:=! expected
52 'then' expected
53 ‘until® expected
54 'do' expected
55 ‘to'/'downto' expected
56 'if' expected
57 'file' expected
58 error in factor
58 error in variable
101 identifier declared twice
102 low bound exceeds high bound
103 identifier is not of appropriate class
104 identifier not declared
105 sign not allowed
106 number expected
107 incompatible subrange types
108 file not allowed here
109 type must not be real
110 tagfield must be scalar or subrange

111 incompatiblg with tagfield type

Pascal/z User's Manual Page 111

112
113
114
115
1l8
117
118
119

120

121
122

123
124
125
126
127
128

128
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144 -

145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165

index type must not be real

index type must be scalar or subrange

base type must not be real

base type must be scalar or subrange

error in type of standard procedure parameter

unsatisfied forward reference

forward reference type identifier in variable declaration
forward declared; repetition of parameter 1list not
allowed

function result type must be scalar, subrange or pointer
file value parameter not allowed

forward declared function; repetition of result type not
allowed :

missing result type in function declaration

F-format for real only

error in type of stzndard function parameter

number of parameters does not agree with declaration
illegal parameter substitution

result type of parameter functlon does not agree with
declarztion

type conflict of operands

expression 1s not of set type

tests on equality zllowed only

strict inclusion not allowed

file cecmparison not allowed

illegal type of operand

type of operand must be boclean

set element type must be scalar or subrange

set element types not compatible

type of variable is not array

index type is not compatible with declaration

type of variable is not record

type of variasble must be file or pointer

illegal parameter substitution

illegal type of loop control variable

illegal type of expression

type conflict

assignment of files not allowed

label type incompatible with selecting expression
subrange bounds must be scalar

index type must not be integer

assignment to standard function is not allowed
assignment to formal function is now allowed

no such field in this record :

type error in read

actual parameter must be a variable

control variable must not be declared on intermediate
level

multidefined case lzbel

too many cases in case statement

missing corresponding variant declaration

read or string tagfields not allowed

previous declaration was not forward

again forward declared

parameter size must be constant

missing variant in declaration

substitution of standard proc/func not allowed
multidefined label

Pascal/Z User's Manual Page 112

166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181.
201
202
203
204
205
206
250
251
252
253

multideclared label

undeclared label

undefined label

error in base set

value parameter expected

standard file was redeclared

undeclared external file

fortran procedure or function expected

pascal procedure or function expected

missing file "input®™ in program heading

missing file "output" in program heading
assignment to function identifier not allowed here
multidefined record variant

x-opt of actual ©proc/func does not match format
declaration

control variable must not be formal

constant part of address out of range

error in real constant: digit expected

string constant must not exceed source line
integer constant exceeds range

8 or 9 in octal number

zero string not allowed

integer part of real constant exceeds range

too many nested scopes of identifiers

too many nested procedures and/or functions

too many forward references of procedure entries
prccedure teco long

In Pascal/Z, this error usually means that the compiler

" reached the last END 'and found no period (i.e., the

254
255
256
257
258
259
260

300
301
302
303
304
398

3980
-3%80
3981
3882
3883
3884
-3984
3885

BEGINs and ENDs do nct match up).

too many leng constants in this procedure
too many errors on this source line

toco many externzl references

too many externals

too many local files

expression too complicated

too many exit labels

division by zero

no case provided for this value

index expression out of bounds

value to be assigned is out of bounds

element expression out of range

implementation restriction

More detailed explanations of the following
implementation dependent error messages are available on
pages 50 - 52 of the Pascal/Z Implementation Manual.

Symbol table overflow

Type table overflow

Function value may not be qualified

Jump out of a procedure/function not allowed

Non~-string compared with string

Program has too many levels of nesting

No more than forty fields in a record

Cannot input/output this value because compiler option
P was disabled when this enumeration type was
declared.

Pascal/Z User's Manual ‘Page 113

3986 Line or symbol too long

3887 String too long

3988 String too small for call by reference
-3988 BCD number passed by reference must match exactly
388¢ EXTERNAL must be declared in main program

389 variable dimension arrays not implemented

There are a few other, unnumbered error messages which may be
generated either during compilation o¢r during run-time. These
are described in detail on the page numbers given in parentheses
after the brief description here.

Program tco complex -- Usually means that there is not enough
memory in the system to compile (page 51).

Too many errors -— Integer constant out of range of the allowable
integer values (page 51).

Premature ECF - Error encountered when using separate
compilation. CP/M file names do not correspond to the internal
module names OR fourth drive letter was not specified during
compilation (pages 51, 71).

Stack overflow -- Stack space has been exhausted (page 51).

Unable to overlay =-- Overlay mocdule being called 1is not on
currently logged-in drive (page 100).

Unable to chain -- PAS248 (or PAS254 if using 54K version) is not
on currently logged—-in drive (page 100).

Can't find <program>.REL =-- When using COMPILE,.SUB, this message
means that no drive letter was specified in the command line
(page 49).

Pascal/Z User's. Manual 4 Page 114

APPENDIX SEVEN

PASCAL/BZ

This section of the Pascal/Z Implementation Manual describes the
differences between the original Pascal/Z compiler &and 1its
business counterpart, Pascal/BZ.

Pascal/BZ is a version of the Pascal/Z compiler which has been
changed to accommodate the business user. The Pascal/Z floating
point routines are replaced in Pascal/BZ by BCD (binary-coded
decimal) fixed point routines to allow for the greater precision
eand accuracy necessary for the business programmer. Pascal/BZ
provides precision of up to thirty digits (fifteen to either side
of the decimal point) under user control. Pascal/BZ fixed point
numbers of different sizes can be mixed within the same progranm,
permitting great flexibility in business applications
programming.

Pascal/BZ is available only in a S4K version (that is, a 54K TPA
is necessary to compile programs with Pascal/BZ).

The following pages detail specific changes made in the software
package for Pascal/BZ, as well as the use of Pascal/BZ BCD
numbers. '

USING PASCAL/BZ FIXED POINT NUMBERS

* Declaring a BCD number
A BCD constant, type or variable declaration will be cof the form:

CONST TaX = 13.5;
TYPE SALARY = BCD X:Y;
VAR RATE : BCD X:Y;

where BCD 1is a reserved word denoting a fixed point binary-coded -
decimal number. "X" indicates the number of digits to be placed
to the left of the decimal point and "Y" indicates the number of
places to the right. (Note that this specification is not needed
when declaring a constant, since a constant will not change and
cannot have a new value assigned to it.) There may be up to
fifteen digits to either side of the decimal point.

A constant cannot be defined as the negative of another
constant. For example:

CONST X
Y

14.7;
-X;

_Pascal/Z User's Manual ‘ Page 115

is not permitted, but

CONST X
Y

14.7;
-14.,7;

([}

is allowed.

BCD types and variables may be of varying sizes, and these do not
have to match when performing arithmetic operations. The only
exception to this rule 1is that when passing a variable by
reference, the declarations of the variables must match exactly,
or the error code -3988 will be generated by the compiler. When
passing a BCD number by value, the number is converted to the
size of theée formal parameter (as declared), not the actual
parameter (as passed at run-time).

Integers may be used in BCD expressions (provided of course that
they are smaller than MAXINT or greater than -MAXINT). An
integer used in a BCD expression will be converted by the
compiler internally to a 15:15 BCD number, although its type and
value will remain unchanged.

BCD numbers such as .1 or 1. may not be used. A zero must be
placed before the decimazl point in the first case (0.1) and after
thedecimal point in the second case (1.0).

wWhen performing BCD operations, the standard operators may be
used (including relationals). The expression is evaluated, and
the return value will be of size 15:15. This wvalue 1is then
automatically converted to the size of the variable to which it
is finally assigned. Note that wusing the operator / (real
divide) will yield a BCD number, regardless of the types of the
operands.

If the number of digits to the left of the decimal point
(excluding leading zeros) is less than or equal to that in the
assignment variable, the entire process will take place with no
problem. If the number of digits to the left is bigger than the
size of the assignment variable, it will result in a run-time
error. i

If the number of digits to the right of the decimal point in the
return value 1iIs greater than the number .of digits 1in the
assignment variable, the number will be truncated to fit.

If assigning a constant to a BCD number or using a constant in a
BCD expression, the same rules apply.
* Files of BCD numbers
A file of BCD numbers is declared as follows:
VAR NUMFILE : FILE OF BCD X:Y;
The numbers will be written out to the file as the size which

they are declared to be. For example, & 6:4 number will be
written out in six bytes (see section on PASCAL/BZ STORAGE), and

Pascal/Z User's Manual) Page 116

a 5:7 number will be written as seven bytes. A file must be read
as the same type in which it was written, that is a file written-
as BCD 6:4 must be read as BCD 6:4. -

OUTPUTTING BCD NUMBERS

When outputting a BCD number, if no field width is specified, the
variable will be written with a leading space (or a "-" sign if
negative) followed by the number. The entire number will be
right-justified with no leading zerocs.

E.G.

WRITE(variable); where variable is 34562.12

will result in b34562.12

I£f a field width is specified, the variazble will be written as
described above, with a leading blank if positive, but will be
right-justified in & field of the width indicated. 1If there are
not enough places in the field to output the number as specified,
the field width will be expanded to the right to accommodate the
number. Leading zeros will be suppressed. Note that the decimal
point occupies one place.

E.G.

WRITE(variable : 9); where variable is 34562.12

will result in b34562.12

WRITE(variable : 12); where variable is -34%562.12

will result in bbb-343562.12
In both cases, the number will be printed as declared, with x
digits to the left of the decimal point and y to the right.
FORMATTING BCD QUTPUT
Normally a BCD number may be output by doing a simple WRITE or
WRITELN. Sometimes, however, it 1is desirable to format BCD
numbers, and Pascal/BZ offers a variety of formatting options to

accomplish this.

To format a BCD number, three types must be declared within the
program, as follows:

TYPE BCD1S515 = BCD 15:15;
SSTRING1S5 = STRING 1l5;
SSTRING40 = STRING 40;

Also, the FORMAT function must be declared as follows:

FUNCTION FCRMAT(X:BCD1515; Y:SSTRINGI1S): SSTRING40; EXTERNAL;

Pascal/Z User's Manual _ Page 117
When calling the FORMAT routine to output a BCD number, several
options can be specified in quotes, as shown below:

FORMAT(<BCD variable>, '<options>' : <field width> };

These options may be 1in any order, and can be separated by
blanks. The options are:

$ Print the number with a leading dollar sign.
Add commas every three digits to the left of the decimal’
point.

s Suppress trailing zeros.

m Print the minus sign after the number (the default is before
the number for negative numbers).

p Print the negetive number in parentheses rather chan with a
minus sign.

X Print x (where x is any integer between 0 and 15) digits to
the right of the decimal point (the default is fifteen).

r Round the number to fit in x places (refers to above option;

default is truncate).

Note that if any of the specified options conflict (for example
specifying both m and p for a negative number), the result of the
statement will be undefined.

The FORMAT function returns " a string of forty characters
(SSTRING40), which can then be ocutput using a WRITE cr WRITELN
statement. .

The FORMAT routines are supplied in source so that they can be
changed to accommodate differing format reguirements. For
Eurcpean users, for example, the dollar sign can be changed to an
appropriate monetary sign and the commas and decimal point can be
reversed.

HOW TO USE PASCAL/BZ

To invoke Pascal/BZ, follow the instructions on HOW TO RUN
PASCAL/Z (pages 46-49 of this manual), substituting PASCALBZ for
PASCAL48 or PASCALS4.

When assembling, use BMAIN.SRC or BEMAIN.SRC (for =separate
compilation or EXTERNAL routines) rather than MAIN.SRC or
EMAIN.SRC.’

The library for Pascal/BZ is named BZLIB.REL, and is linked in
automatically with the /E command when wusing Pascal/BZ (see
section on HOW TO RUN PASCAL/Z on pages 46-~4%9),

Pascal/Z User's Manual Page 118

Using InterPEST with Pascal/BZ programs

If the debugger 1InterPEST (InterSystems Pascal Error Solving
Tool) is to be used with a Pascal/BZ program, it must be compiled
as described in the InterPEST Reference Manual, invoking PASCALBZ
rather than PASCAL48 or PASCALS4. Then resulting .SRC file
should then be assembled with BXMAIN.SRC or BXEMAIN.SRC (if using
externals or separate compilation). The .REL file generated can
then be 1linked with BZBUG.REL as described in the InterPEST
Reference Manual.

BZBUG.REL contains a version of InterPEST designed to work with
Pascal/BZ programs. In this version, all that applies to REAL
numbers in the Pascal/Z version of InterPEST now applies to BCD
numbers.

BCD numbers may be displayed, but may not be modified. When a
BCD number is displayed, not only will the value be displayed,
but also the declared size of the number will be given. The
number will always be displayed as a 15:15 number, regardless of
the declared size.

* Error messages

If the compiler generates any error messages referring to REAL
numbers, they will in fact refer to BCD numbers.

The S$F option to generate an error message if a floating point
overflow/underflow is encountered will now refer to a BCD fixed
point overflow/underflow. .

* The Fixed Point Package

The Pascal/Z Fixed Point Package is not supplied as a part of
Pascal/BZ, since the compiler has intrinsic BCD fixed point,
numbers. (The Fixed Point Package alsoc reguires REALs to perform
many of 1its operations, and REALs have been removed from
Pascal/BZ.)

* Pascal/BZ EXTERNAL routines

When using EXTERNAL routines as described on .pages 74-78, BCD
numbers returned by functions will be stored above the function
parameters on the stack (see page 74). The least significant
byte will be stored at n+8 (IX), and the number will occupy space
on the stack according to its size (as described in PASCAL/BZ
STORAGE) .

* TRUNC & ROUND

The Pascal procedures TRUNC and ROUND will work slightly
differently with BCD numbers than they do with REALs. The
numbers to be truncated or rounded will be converted to integers,
and an overflow/underflow error will be generated if attempting

Pascal/Z User's Manual Page 119

to truncate or round numbers which convert to greater than MAXINT
or less than.-MAXINT. :

* PASCAL FUNCTIONS

In Pascal/BZ, none of the standard functions may be passed a BCD
number, with the exception of ABS, SQR and SQRT. (See the
section on PASCAL STANDARD FUNCTIONS for more information on
these routines.)

PASCAL/BZ STORAGE

In Pascal/BZ, fixed peoint numbers are implemented in binary-coded
decimal. The numbers may be variable in length, and are stored
two digits per byte, organized as follows:

byte 1 byte 2 byte n
lsign/digit| |digit/digit| ... ldigit/digit].

(for digits to the left of the decimal point)

where n may be up to eight bytes to accomodate a number with
fifteen digits to the left of the decimal point.

ldigit/digit] ... Idigit/digit]

(for digits to the right of the decimal point)

Thus for a number with an odd number of digits to the left and an
even . number of digits to the right, there will never be any
wasted storage. For & number with an even number of digits to
the left or an odd number of digits to the right, there will be
some waste, as shown below:

For a 3:4 BCD number > 2 bytes left, 2 bytes right = 4 bytes
{no waste)
For a 2:4 BCD number > 2 bytes left, 2 bytes right = 4 bytes

(one wasted nibble to the left)
» For a 1:4 BCD number > 1 byte left, 2 bytes right = 3 bytes
(no waste) _
For a 4:5 BCD number > 3 bytes left, 3 bytes right = 6 bytes
(one wasted nibble to the left, cne wasted nibble to
the right)

(Note that an even:odd number is the most inefficient, with a
total of two wasted nibbles.)

If there is wasted space on the left side of the decimal point
the wasted nibble will be the nibble after the sign; on the right
side of the decimal point the wasted nibble will be the nibble
after the last digit.

The meximum precision allowed in Pascal/BZ is fifteen digits to

Pascal/Z User's Manual Page 120

either side of the decimal point, for a total of thirty digits.

See USING PASCAL/BZ FIXED POINT NUMBERS for more information on
how to make use of BCD numbers.

Pascal/z Usgr's Manual Page 121
PASCAL/Z COMMENTS & BUG REPORTS
Please use this sheet (and any -additional sheets if necessary)

when sending your comments and bug reports to INTERSYSTEMS.

NAME:

ADDRESS:

PHONE;

VERSION: SERIAL NUMBER:

BUGS (include a listing, description of the problem, etc):

SUGGESTIONS FOR IMPROVEMENTS TO THE COMPILER:

Pascal/Z User's Manual Page 122

SUGGESTIONS FOR IMPROVEMENTS TO THE MANUAL:

-y

EXTENSIONS:

WHAT DO YOU THINK OF EXISTING PASCAL/Z EXTENSIONS:

Pascal/Z User's Manual Page 123

WHAT EXTENSIONS WOULD YOU LIKE TO SEE:

DO YOU HAVE ANY UNANSWERED QUESTIONS ABQUT PASCAL/Z:

INDEX

abs 31,119

absolute value 10,31

ABSSQR.SRC 10

access 6,11,36,43,58,62
accumulator 74,75,76

activation 76,93

activation records 76,93

actual parameter 115

ADD 101,102,104~107

add 10,11,36,101,102,104-107
address 74,75,76,77,87,97-989
ADDSUB.SRC 10

allocation

10,36,75-84,87-88,85

and 37
append 11,64,66,68
appendices
one 97-99
two 100
three 101-107
four 108
five 108
six 110-113
seven 114-120
ARCTAN.SRC 10,31
arctangent 10,31
array 15,18,22,37,39,40,43,53~-54,86,93,98
ascii 16,21,37
ASMBL.COM 9,13,48
asmble 2,9,48
assembler 2,4,9,13,47-48,70~-73,74~-78,79-80,92

base types 83,94,97

BCD 10,35,51,101,114-120
begin 28,37

BEMAIN.SRC 117

binary ‘ 89

binary-coded decimal 10,35,51,101,114-120

bit 11,16,38,89,99

block "5,30,32,35,54

BMAIN.SRC 117

boolean 16,25,26,27,34,39,53,54,59,62,74,90,93,

87-88,102

bound 42,93

brackets 17,37

buffer 10-11,38,54,97

byte 34,36,38,39,40,43,54,67,69,74-77,89,%2,93-94,

97-99,101,115-116,119-120

BYTIN.SRC 10

BYTOT. SRC 10

'BXEMAIN.SRC 118

BXMAIN.SRC 118

BZ 35,51,114-120

BZBUG.REL 118

BZLIB.REL 117

T e

call by reference
called

case

case leabel list
case selector
CHAIN.SRC

chain

char

character

check

CBKD.SRC

chr

CLSOT.SRC
CMAIN.SRC
CMPCHK.SRC

.COM

comma

command tail
comments
compare
compatibility
compatible
compilation
COMPILE.SUB
compiler
ccmplement
compound statement
CON:
‘concatenate

conditional statement

CONSOL.SRC
console
console input

console input buffer

console output
const
constant

constant folding
constant strings
construct
control C
cos
cesine

cpi
" CVTFLT.SRC
CVTSFP.SRC

data

data areas
data types
dcx
deallocation
DEBUG.REL
debugger
decimal
decimal point
declaration

thyve
10,25,40751,54,74,79,92,93,96,97,101
51,77,87 N

30,48,74,75,101
4,5,27,37,39,41,43,61,65,93

27,39,61 ' -

27,69

10,83,86

10,34,80,83,86,100
15,16,22,31,53,69,86,92,97
10,11,15,16,31,37,38,51,67,70,85,92,93
10,15,36,41-42,43,67,69,70,95,86,100
11

31

11,96

11,86

10

48

102-103,117

54

4,17,37,41,85

25,103

40

6,7,15,25

46-49,79-84

9,49

2,3,4,34,36

10,89

28,29

11 :
10,11,38,46,47,53~-54,59,60
60

38,54

60
4,22,32,37,63,104,114-115
4,9,14,15,16,22,27,32,36,43,51,61,63,93,
94,101-107,114-115

36

57

28

41,47,96

31

11,31

77

11

11

14,15,16,17,18
43,86

16-21,90

77 _
10,20-21,87-88
Q

4,9,48

9,89,90-21,101-104,114-120

90-91,114-120
32,34,40,44-45,47,50,51,66,70,71,86,93,101-107,
114-115,116

declaration level 75-76

decrements 36

DECS 9,34,46,42,100

default 10,39,41-42,46,71,85

define 22,31

definitions 9,11,14,15,16,75

DEFLT.SRC 11 ,

delete : 10,53,59

density 100

device 10,53,60

device input 60

device output 60

digit 16,37,38,71,8%,90-91,101-104,114~120

Digital Research 1,2,6

direct file access 4,6,11,58,62

directory 10,58

disable 41

dispose $,40,87

div 37,63

SDIVD : 101,102

DIVD.SRC 11

divide 10,11,36,42,101,102,115

divide by zero 36

dollar sign ‘41,85,102-103,117

DCNE2.SRC 11

downto ‘ 26,37

DSKFIL.SRC 11

DYNALL.SRC . 11

dynamic storage 5,10,20-21,87--88,93-94,95 -

sditors 37

eafficiency 3,22,29,43,44--45,66,69,93

element 18-19,23,25,38,43,64,93,101

element type 18-19

EMAIN.SRC 9,71,73,74-78,82~83

enable 41-42

end 10,28,32-33,37

end of file See. EOF ,EOFLN

end of line See EQLN,EOFLN

enter 11

ENTEXT.SRC 11,96

entr i 75-78,86

entry 42,6%,70-71,75-76,92

entry point 70,75~-78,7%,83,92

enumeration type 4,16,17,42,51,53-54,62,93,97,103

eof 21,51,53-54,58

EQFLN.SRC 11

eoln 31,53-54

equivalence 44-45

ERROR. SRC 11

errcr messages 11,41,42,50-51,70,71,100,115,118

errors 7,10-11,17,34,38,39,40,41-42,47,49,50-52,54,
67,70,71,8%,92,110-113,115

EXAMPLE 10

execution 41,42,48-49,76,79,83,95

execution speed 34,43

exit 10,26,48,54,75-77

2Xp - 31

EXPFCT. SRC 11

exponent 75,89,89

exponential notation
expressions

ext

EXTENS

extensions

external routines
EXTD

EXTR

FADDSB .SRC
FCTMAC.SRC
ftields
field width
FILE

file

file data
FILEIO.PAS.

file names

file variables
FILEXT.SRC
FILNAM.SRC

fini

FIXCONST.PAS
FIXED.PAS
fixederror

fixed peoint arith.
FIXEDEX.PAS
fixtoreal

fixtostr
FIXTYPE.PAS
TIXVAR.PAS

flag

floating point
floating pt. formats
floating point ocutput
FLTIN.SRC

FMULT. SRC

FOR

FCR lcop

formal parameter
FORMAT

format mode
formatting output
forward declarations
foster, charles
FOUT.SRC
FPDIVD.SRC
FPERR.SRC
FPINIT.SRC
FPMAC.SRC
FPRLOP.SRC
FPSQR.SRC
FPTEN.SRC

ftxtin

function

function &activation
FXDCVT.SRC

10,91 :

25,26,30,36,39,61,115

71

10 .
3,4,9,46-47,61-62,63-85 -
4,9,37,38,51,61,66,70-73,74-78,79-84,97,118
78

78

11

11

23,38,51,064
90-91,116-117
15,16,19,31,37,62,97

4,6,10-11,15,16,19,21,31,34,37,38,39,53-%4,71,

79-54,86,87,115~116

53

16,56
46-47,51,53,54,59,70,71,7%

87

11

11

96

9,101-107

8,101-107

102
9-11,35,89,91,101-107,114-120
10,104-107

102

102-107

10,101-107

10,101-107

102
10-12,16,35,41,89,90-91,96,99,114
89,99

80-91

11,96

11

21,26,37,39,41,94

26,39,41,94

115

116-117

103

90-91,116-117

92

108

11

11

11

11

11

11

11

11

86 ,
4,5,10-11,25,30,31,37,38,39,40,42,47,50,51,
53,54,56,61,64-65,66-68,71,74,75-78,75%,92,
93,101-104,116-117,118,119

93

11

get ' 5,40,53

global data areas 43,86

global declarations 51,86 .

global level 23,43,70,75

global variables 23,95,101,102

GOTO 5,14,39,41

hardware problems 100

heap 86,87,95%

HELLO 9,13

hex 21,48

HOWTO.RUN S

I1/0 ports 76=-77

identifier . 32,34,37,38,39,63,101

imbed : 41

implementation - 4,14,38-40,50,61-52

include files 4,41,61,85,103-107

increments 36

INDEX 66~67

index 18,42,43,55

INDIR.SRC 11

INFO.NEW 9

initialization 11,34,95

INPT.SRC ll,d

INPUT 3¢

input 11,34,38,39,40,42,51, 53 54,60,61-582,77

input files 10-11,39,53-57

installing in ROM 26 :

integers 4,10-11,15,16,31,34,38,42,43,51,53,863,90,653,
94,997,115

interactive 4

intersection 11,19

intrinsic data types 16
intrinsic procedures 66,87

introduction 2,14

Jensen & Wirth 2,12,20,32,38,40,¢0

jmp 82,96

jump 39,43,50

jump table 38,68

kKeybosrd 21

LO.SRC 11

label 27,32,37,78,92

language 2,4,14,15,34,38,61,66,70,74~77
LAST.SRC 11,86,85

legality 16,28,32,53,64-65,67,70

LENGTH 11,64,66~-68,9¢9

length 38,51,61,64,66-68

LIB.REL 9,10,48,59,79-80,83,103
library 2,,,lOull,48,66,70,79480,83,86,103
library modules 9-11,48,7%-84,86,95,96
limitations 40

line 10,31,32,38,51,53-54

LINK.COM 9,13,49

linked lists 20--21,87

linker/loader 2,9,40,48-4%,52,70,75-78,79-84,86,92

list _ 43,69,74

listing files
load
local data areas
local level
local variables
log
logarithm
LOOK.SRC
locps
.1lst
.LST:
LVL

macro—-code
macroes
MAIN.SRC
MAINMAP

main module
main program
mantissa
MARK

max imums
MAXINT
maxout
membership
memory
memory locations
memory requirements
memory usage
minuend

mod
MPNORM.SRC
SMULT
MULT.SRC
multiply

named equivalence
NATLOG. SRC
negative numbers
nesting

nesting levels
NEW

nibble

non-reals

null

numbers

object code
odd

open files
ocperands
operations
operators
OPFILE.SRC
optimization
optimizer
options

ord ‘
ordinal
ordinal value

8,34,41-42,46-47,50
10,11

30,43,76
23,30,43
23,30,40,75,93
11

31

11
26,33,39,41,94
9,34,46-49,50-52
60

75

2,4,6,34,41,46-47,74-78

75-78,86,96

%,10,11,38,47,48,54,70,74,95,96

79

70-71,79~-84
40,51,70,79-~84,85,86
11,89,89

5,40,87-88

16,38-39,51,54,66-57,69

i6,38,115,119
38,54
11,19

6,10,40,51,79-80,93-94,95,37,100

10,11,79~84,95,96,97
6,40,51,93,101
40,93-94,95,97-99
102

37

11

101,102
11 .
11,42,101,102

44-45

11

90
30,38,39,51,85
34,38,50,51
5,20-21,40,87-88
119

36,39

33,66

10-11,16,31,37,38,43,63,89,90,¢91,°9,

101-107
2,9,47,96
31
38,53-54,96
15,103

15,40,61,66,102-103,114-115

4,115
11

"4,5,36,43,96

10,47-48

41-42,46,48,50,51,69,71,85,116-117,118

31
31,97
69

. ORG 47

out of range 42

QUTPT.SRC 11

QUTPUT : 39

output 42,47,51,60,61-62,76,90-~91,100,116-117
output files 6,10-11,34,38,39,41,46,53-57,87,96
overflow 42,50,51,95,102,118

overhead 83

OVERLAY.SRC 10

overlays 4,9,10,34,61,79-84,86,100

overlay modules 9,34,46,79-84,100

OVLYGEN.COM 10,79-~-80,83

OVLYMAP 79,83

pack 3e

padding 30

page 5,40

pairing 95

parameters 30,38,40,42,43,51,53,54,65,67,70,74-77,22,93,
: 114-115,118 '
34,97-99,103

parentheses 25,37

parity 37

parmsz 76

. PAS 34,46

PAS248 9,34,46,4%,100

PAS254 9,34,46,49

PASCALA4S 9,34,46,49,100

PASCALS4 9,34,46,49,100

PASOPT .0,47-48

passing by value i 30,65,67,102,115
passing by reference 30,43,51,67 ‘

PEEK 10

PFSTAT 9,34,46,49,100

peinters 20-21,23,40,87-88,83,59
ports 76-~77

precision $,11,16,38,89,101-104,114-120
pred 31

PRIMES ' 10

print 10

printer 46-47,60

procedural parameters 5,40

procedure 5,10,20,30,31,37,38,39,40,42,47,50,51,54,

66-67,70,71,74-78,79,87,92,93,101-104
procedure activation 83

processor 4,36

program structure 32

PSTAT.SRC 11

PUT 5,40,53

query option 80,83

guoted strings 37,54,67,79,86,93,%94
random access 4,6,11,58,62
range—-checking 10,42,43,57,69

ranges 17,38,93

RBLOCK.SRC 11

read . 10-11,21,40,53-54,58,60,92
readln 11,53~-54

real 15,16,25,31,34,38,41,43,53-54,74,75,90,93, 99,

101,102,114,118

realtofix
record

record numbers
record zero
recursion
re-entrancy
reference parameters
references
registers
relational operators
relative addresses
relative jumps
relocatable modules
relocatable object
code modules
relops)
RENERA.SRC
RENDRV. PAS
repeat
repeat loop
reserved words
reset
RESET.SRC
resident program
restrictions
return values
. rewrite
REWRIT.SRC
ROM
ROTATE.SRC
round
ROUND. SRC
roundoff error

S-101 bus
SAVREG.SRC
scalars
scientific notation
search option
semi-colons
separate compilation
separate modules
separators
sequential access
sets

SETCON.SRC
SETFTN.SRC
setlength
shiftleft
shiftright

sign

significance

sin

SINCOS.SRC

sine

size

source code
spaces

-

102

15,18-19,20-21,23,29,37,38,39,40,43,51,54,58,

62,64,76,93,98
58 ‘

58

3,30,52

3,4,85

94,897

22
10,11,36,74-77,92,85
11,25,67,103,115
85

43

9,48

48

See relational operators
10,59

10,59

26,37,39,41

26,39,41

37,114

12,53,58,60

12

79

5

53,74-77,115,118
12,53,60

12

3,4,95,96

12
12,31,89,117,118-119
12

89

100

12
15,17,22,26,30,31,39,64,74
51

80,83

32-33
4,9,51,61,70-73,77
51,61,70-73,79-84
32,37

58
11,15,19,37,38,43,94,99
12

12

11,66-68

101

101
63,8%,%90,99,101-107
38,70,75,103

30,31

12

11,31

11,21,34,38,40,44,54,569,80,86,96,102,114,115,

119-120
2,4,6,10,41,46,59,86,101
37,41,46,85,90

specifications

sqr

sqrt

- SQRT.SRC

sguare

sguare root

.SRC

SRELOP.SRC

stack

stack overflow
standard functions
standard language
standard procedures
statements

storage

STRFCT.SRC

string constants -
strings

strlop

strtofix

structured
egquivalence

SUB

subbyte

submit

subranges

subroutines

subsets

substrings

subtract

succ

supltzer

suplzer

InterPEST
{InterSystems Pascal
Error Solving Toel)

. SYM

symbol

symbolic input/output

symbol table

syntax

syntax errors

tabs
tables
TEST.SUB
text

TEXT.SRC ¢

text files
threaded code
trace
transportability
trigenometric fcts
troubleshooting
trunc

truncate

. TYP

type

38-40

31,119
12,30,31,119
12

10,11,31
11,31

*9,10-11,34,46-49,77-78

12
11,34,42,51,74-77,85,93-5%4,
42,51

31

4,5,14,17,31,37,40,53,66

31
4,14,20-21,25,26,27,28,29,30,32,33,39,41,42,
5,10,20-21 Q3 36,39,40,75,76,87-88,93-94,103
12

22, 43,63,86,93,94
4,10—11,22,37,38,43,51,
93,94,89,102-103

11 :

102

85,87-99,118

53,61,563,66-58,79,86,,

44-45
101,102,104-107
101

9,49 .

17,43,93

30,48

1S

66
11,36,101,102,104-107
31

103

103

4,9,48,118
70
21,32,34,37,38,51,52,70-71,83,92

4,42 Also see enumeration types

5,24-35,50

32,58,71

50

37,52

65

83

12,16,31,53-56,60

12

40,46,61,92

3

11,42,50,71

61

31

100

31

11,31,115,117,118~-118

71 ‘
10,15,16,17,18,1¢9,20-21,23,26,30,31,32,34~35,
37,40,42,44~- 45,,0 53,%4,61-62, GJ,o6 67,/0-/1,

90,%4,97,101~-107,114,116

type declarations
type table

J.C.S.D.

JCTRANS

underflow

union

unpack

unstructured relops
o until

. updates

_URELOQOP.SRC

value parameters
values

var

variable

variable access

variable declarations

variable length
strings

variable storage

variant records

verbose opticn

vocabulary

vsiz

warranty
wboth
wcomma
wdollar
while
wh.le loop
Wirth
with
words
write
writeln

XEMAIN.SRC
AMAIN. SRC

ZEIrOo

15-21,32,34,40,44-45,50
5,34-35,44-45,50,67

S

10
41,118
11,19
39

11
26,37
5

12

42,%94,97-59

30,31,39,50,51,61,62,64,67,89,95,103

23,37,94,104,114

10,15,16,17,20-21,23-24,25,26,27,3C0,32,36,39,40,
43,45,53,58,60,65,74-76,93,95,97-99,101,103,

114-116
24,36,43

4,10-11,61,66-68,99
20-21,36,87,97-99
14,87

80,83

37

75

109°
103,104-107
103

103
26,37,39,41,
26,33,39,41
2,43
29,37,39,43
37
11,40,53-57,58,60,90-91,92
11,54-57

9
S

10,11,36,39,66,74,99,102,103,115,117

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10

