
•

•

•

•
•

•

INTELLEC® SERIES II
MICROCOMPUTER

DEVELOPMENT SYSTEM
HARDWARE INTERFACE MANUAL

Copyright © 1979, 1980, 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 9800555-03

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli­
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7c 1 04.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

AEDIT
BITBUS
BXP
COMMputer
CREDIT
i
r21CE
iATC
ICE
iCS
iDBP

iDlS
iLBX
im
iMMX
Insite
intel
intelBOS
I ntelevision
inteligent Identifier
inteiigent Programming
Intellec

Intellink
iOSP
iPDS
iRMX
iSBC
iSBX
iSDM
iSXM
Li brary Manager
MCS
Megachassis

MICROMAINFRAME
MULTI BUS
MULTICHANNEL
MULTI MODULE
Plug-A-Bubble
PROMPT
Ripplemode
RMX/80
RUPI
SYSTEM 2000
UPI

A1005/783/ 4K DD

•

•

•

•

•

• REV. REVISION HISTORY DATE

-01 Original issue. 1979

-02 Manual updated. 1980

-03 Manual updated to support IOC-III. Obsoletes 7/83
previous editions only for systems with an IOC-III
board installed.

•

•

•
•

•
iii

•

•

•

•

•

•

•

•

•

•

PREFACE

This manual provides detailed information for users who require a comprehensive
knowledge of the internal and external interfaces of the Intellec Series II Microcom­
puter Development System. The information contained in this manual includes
definitions of the internal interface commands and their functions, descriptions of
the system "firmware" (Le., ROM-resident programs), and definitions of inter­
processor protocol. The intent of this manual is to describe existing interfaces and to
explain how these interfaces may be accessed to meet specific user requirements.
Readers of this manual are assumed to have a prior knowledge of real-time
microcomputer systems and an intimate familiarity with the functional organization
of Intellec development system hardware and software. This manual duplicates, in
condensed form, information contained in other Intel manuals and also provides a
compilation of system and interface information not otherwise available. The
manual is divided into the following five chapters:

Chapter l-Overview. A review of the Intellec Series II development system as
it relates to user-accessible interfaces.

Chapter 2-Multibus Interface. A description of the primary user-interface to
the development system including ROM and RAM expansion, 110 port
assignments, bus priorities and interrupt assignments.

Chapter 3-Serial 110 Interfaces. A description of the two serial 110 channels
of the Integrated Processor Board (IPB) or Integrated Processor Card (I PC)
and how the channels can be modified to meet user requirements.

Chapter 4-IOC 110 Interfaces. Descriptions of the program interfaces to the
integral CRT, keyboard and integral diskette of the 110 Controller (lOC) and
of the protocol required for communications between a master processor and
the IOC.

Chapter 5-PIO Subsystem Interfaces. Descriptions of the program interfaces
to the standard parallel I/O devices (paper tape reader/punch, line printer and
PROM programmer) of the Parallel Input/Output (PIO) subsystem and of the
protocol required for communications between a master processor and the PIO
subsystem.

Appendixes A, B, C and D. Program examples of an Interrupt Routine, Basic
Input Driver Routine, Basic Output Driver Routine and Diskette Read/Write
Routine.

Appendix E. Interface connector pin assignments and dc signal specifications
for the Multibus interface and peripheral interfaces.

The level of descriptions in this manual assume a familiarity with the Intellec Series
II development system structure, with the software interfaces of programmable Intel
chips, and with the Multibus interface. This prerequisite information can be found in
the following Intel manuals:

Intellec Series II CRT and Keyboard Interface Manual, 122029

Intellec Series II Microcomputer Development System Hardware Reference
Manual,9800556

Intellec Series II Model 22Xj23X Installation Manual, 9800559

Intellec Series II Microcomputer Development System Schematic Drawings,
9800554

ISIS-II User's Guide, 9800306

v

Preface

vi

Intel Multibus Specification, 9800693

Intel Component Data Catalog

Intel Peripheral Design Handbook

Intellec® Series II

•

•

•

•

•

•

•

•

•

•

CHAPTER 1
OVERVIEW

PAGE

System Capabilities]-]
Modifiable Hardware Logic]-]
Programming Considerations 1-2

Resident Master Programs 1-2
Non-Resident Master Programs 1-3
User System Programs 1-3

110 Device Interfaces 1-3
Firmware Versus System Software 1-3
110 Device Drivers 1-3
Drivers/System Software Interfaces 1-4
Types of Device Interface Modifications]-5
Device Signal Timing]-5

Electrical Considerations]-5
Grounding]-6
Power Supply Reserve Current]-6

CHAPTER 2
THE MUL TIBUS INTERFACE
Memory Configurations 2-1

ROM Expansion 2-1
RAM Expansion 2-2

110 Device Usage 2-4
Interrupt Mechanisms ... 2-5
MUL TIBUS Priority Logic .. 2-6
Real-Time Processing .. 2-7

Use of Interrupts ... 2-7
Use of Slave Processors 2-7
Parallel Processors 2-7

CHAPTER 3
SERIAL 110 INTERFACES
Software Alterations 3-]
Hardware Alterations 3-2
Inter-System Communications 3-2

CONTENTS

CHAPTER 4
IOCI/OINTERFACES

PAGE

10C/Master Processor Protocol 4-]
Data Bus Buffer. 4-1
10C Commands 4-3

System Commands 4-3
CRT Commands 4-5
Keyboard Commands 4-6
Integral Diskette Commands 4-7

CHAPTER 5
PIO SUBSYSTEM INTERFACES
PIO/Master Processor Protocol 5-]
PIO Commands 5-2

System Commands 5-2
Paper Tape Reader Commands 5-5
Paper Tape Punch Commands 5-6
Printer Commands 5-7
PROM Programmer Commands 5-8

APPENDIX A
INTERRUPT ROUTINE EXAMPLE

APPENDIXB
BASIC INPUT DRIVER EXAMPLE

APPENDIXC
BASIC OUTPUT DRIVER EXAMPLE

APPENDIXD
DISKETTE READ/WRITE EXAMPLE

APPENDIXE
CONNECTOR PIN ASSIGNMENTS

VII

TABLE TITLE PAGE

1-1 Power Supply Current Ratings 1-6
2-1 IPB I/O Port Addresses 2-4
2-2 IPC I/O Port Addresses 2-4
2-3 Dedicated and Reserved I/O Port

Addresses ... 2-5
3-1 Asynchronous/Synchronous Jumper

Configurations 3-2
4-1 10C Command Set 4-3
4-2 Typical Diskette Read and Write

Command Sequences 4-8
4-3 Diskette Operation Codes , 4-11
5-1 PIO Command Set 5-3
E-I MUL TIBUS® Interface Pin

Assignments ... E-2

FIGURE TITLE PAGE

1-1
2-1
2-2
2-3

viii

Interface Regulating System Elements 1-4
Expansion of ROM Address Space 2-1
ROM Bank Switching 2-2
Overlay ROM 2-2

TABLESi

TABLE TITLE PAGE

E-2 IPB Signal DC Characteristics E-3
E-3 IPC Signal DC Characteristics E-4
E-4 SERIAL CHI/TTY Pin Assignments

(Connector 12) E-5
E-5 SERIAL CH2 Pin Assignments

(Connector 13) E-6
E-6 PT PUNCH Pin Assignments

(Connector J4) , E-7
E-7 PT READER Pin Assignments

(Connector J5) E-8
E-8 LINE PRINTER Pin Assignments

(Connector J6) E-9
E-9 UPP Pin Assignments

(Connector 17) , E-I0

ILLUSTRATIONS

FIGURE TITLE PAGE

2-4
2-5
3-1

Address-Controlled Expanded RAM 2-3
Logic-Controlled Expanded RAM 2-3
Data Set Simulator Cable 3-3

•

•

•

•
.

•

•

•

•

•

•

. ' n

1.1 SYSTEM CAPABILITIES

Intellec Series II Microcomputer Development
System, as delivered, is a stand-alone system that can
be upgraded by the addition of numerous hardware
and software options. Performance of the develop­
ment system ranges from generation and editing of
simple paper tape-based programs to a hard disk­
based system capable of supporting assembly or com­
pilation of relocatable library supported code, sym­
bolic debugging of user hardware/software systems,
and selective programming of validated user software
into PROM. Without modification, the Intellec
Series II development system is capable of supporting
product development from design inception to the
end of the product's life cycle.

There are three basic development system models in
the series: The Model 220, the Model 225 and the
Model 230. Additionally, there are two variations of
each of the basic models according to the operating
voltage configuration. For example, a basic Model
220 development system that is configured at the fac­
tory for 115 volt operation is designated a Model 220,
while a basic Model 220 that is configured for 230
volt operation is designated a Model 221. All models
in the series feature an integral video display and an
attached keyboard, an integral power supply, a six­
slot Multibus-compatible card cage and either one or
two flexible disk drives. The development system
itself is made up of three microprocessor-based com­
puting elements that are contained on two printed
circuit board assemblies. One assembly (either an
Integrated Processor Board or an Integrated Pro­
cessor Card) is inserted into the uppermost slot of the
card cage and incorporates the master processor. The
other assembly (the Input/Output Controller) is
mounted on the inside of the rear panel. This
assembly contains the Input/Output Controller
(l0C) processor and the Parallel Input/Output (PIO)
subsystem processor. Both the Model 220 and the
Model 225 include an integral single-density diskette
drive and differ only by the circuit board assembly
installed in the card cage (the Model 220 uses the
8080-based Integrated Processor Board or "IPB,"
and the Model 225 uses the 8085-based Integrated
Processor Card or "IPC"). The Model 230 is sup­
plied with a separate chassis that contains two
double-density diskette drives in lieu of the integral
diskette drive common to the Models 220 and 225.
The card cage of the Model 230 includes an. 8080-
based IPB, a 32k RAM board and a two-board
double-density diskette controller (to support the two
double-density diskette drives).

CHAPTER 11
OVERVIEW

The high efficiency and cost effectiveness of the
Intellec Series II development system, in each of its
many configurations are made possible through the
use of general-purpose hardware and task-oriented,
diskette-based software. This delegation of system
personality to software not only simplifies upgrading
of development capabilities, but also allows altera­
tion or even replacement of basic system processes.
The Intellec Series II development system may thus
be viewed as a relatively rigid framework of general­
purpose hardware that can be user programmed to
meet the needs of a wide variety of applications.

The generation of any resident software requires a
knowledge of the system environment within which
the software will operate. This manual delineates the
Intellec Series II development system environment in
terms of the various interfaces between the develop­
ment system and its subordinate devices and/or
external systems.

1.2 MODIFIABLE HARDWARE LOGIC

Although most modifications of Intellec Series II
system functions are accomplished by the replace­
ment of software, there are a few hardware changes
that may be concurrently necessary. The following
text defines changes of this type.

One general rule to be observed when modifying an
Intellec Series II development system is that most
existing hardware cannot be changed. Aside from
reconfiguration of jumpers and replacement of ROM
chips, changes to hardware will not only void the
system warranty, but may also adversely affect the
operation of the supplied software. Furthermore,
any hardware rework, including rejumpering or
ROM replacement, must meet Intel workmanship
standards to maintain warranty provisions. Full war­
ranty rights are preserved only if written permission
is obtained from Intel prior to hardware alterations.

Prohibition of hardware changes is not as restrictive
as it might first appear. For one thing, the prohibi­
tion, whether stated or not, is imposed by the system
design which employs buses for communication
between intelligent preprogrammed chips. Another
factor negating the need for hardware changes is that
the Intellec Series II development system hardware
was designed in anticipation of other user applica­
tions. The Multibus interface and the serial I/O
channels are true general-purpose interfaces that can
be used for specific applications required by the user.

\-\

Overview

The following is a list of hardware circuit elements,
the use of which may be initiated or altered subse­
quent to system delivery (usually in conjunction with
software changes).

• The serial I/O channels are associated with a
number of jumpers that determine the routing and
use of data, clock pulses, and control signals for
various terminal and data set configurations. The
jumpers, located on both the IPB /IPC and 10C
boards, are discussed in Chapter 3.

• The 8253 timer of the IPB/IPC uses one counter
as a real-time clock that is accessible to user
programs executed by the IPB/IPC. The initial
count is set via I/O port address F2, and the mode
of the 8253 is established via I/O port address
F3. On powerup or reset, the real time clock is
initialized for a lms rate. The clock can be used
in conjunction with the local interrupt controller
to generate a level 7 system interrupt.

1.3 PROGRAMMING
CONSIDERATIONS

A simple description of user programming activities is
hindered by two factors. The first of these factors has
to do with the large variety of potential applications.
Not only does each application dictate a particular
minimum of user programming, but in many cases
there is a tradeoff between modification of existing
software and the creation of new programs or routines.
The second factor affecting the user programmer is
that Intel-supplied software is physically distributed
within RAM and ROM. These two factors make it
difficult to detail the software required for a "typical"
application without first defining the types of software
associated with the Intellec Series II development
system. The types of programs to be discussed in the
following text are:

• Resident Master Programs - Programs that are
executed by the IPB/IPC master processor and
provide overall control of the Intellec Series II
development system.

• Non-Resident Master Programs - Programs that
are executed by another master processor on the
Multibus interface and are able to utilize the
system resources of the Intellec Series II devel­
opment system.

• User System Programs - User programs that are
being developed to be executed by and to control
user-designed hardware systems. Such programs
are able to utilize system resources of the devel-

1-2

Intellec® Series II

are able to utilize system resources of the
development system through the facilities of an
In-Circuit Emulator (an Intel supplied non­
resident Multibus master).

1.3.1 RESIDENT MASTER PROGRAMS

Resident master programs are usually bootstrap
loaded from diskette and executed from system
RAM. These programs can also be loaded from
paper tape to system RAM or executed directly from
ROM. Typical Intel supplied resident master pro­
grams are the ROM-based Monitor, the diskette­
based ISIS-II diskette operating system, and the
diskette-based 8080/8085 assembler. Each of these
programs is controlled by specific command entries
from the CRT keyboard or system console device
that establishes a particular operator interface with
the system.

Each of the resident master programs follows the
protocol necessary to accomplish data transfer to or
from the 110 devices of the development system.
However, most Intel-supplied programs employ calls
to the Monitor and/or ISIS-II to accomplish 110
transfers. The Monitor provides byte transfers to or
from any device (except diskette) whereas ISIS-II
accomplishes block transfers to or from any diskette.
ISIS-II does not entirely replace the Monitor, but
often provides higher-level commands that make use
of multiple Monitor calls to simplify operator
sequences. The use of Monitor and ISIS-II calls by
other programs (including user-designed programs)
reduces the program's concern with 110 operations.
In effect, the call executes a subroutine within
Monitor or ISIS-II that follows the protocol required
by the specified device. When the transfer is com­
plete, the calling program continues from the point at
which the call was made. Refer to the ISIS-II System
User's Guide for additional information.

Within the Intellec Series II development system, the
protocol for any device involves the use of dedicated
110 port addresses. Furthermore, if the device is
subordinate to the 10C or PIO, the protocol requires
the issuance of specific commands that control the
transfer of data, status, and control bytes between
the 110 device controller hardware and the 110
device firmware. Details of the protocol required for
each device are discussed in Chapters 3 through 5. A
general discussion of protocol is provided in
paragraph 1.4.3.

Hardware interrupts may be employed by user pro­
grams, but if they are, their use must not conflict
with the hardware interrupts of existing circuit
boards such as in-circuit emulators. Interrupt level 7
is used by internal circuits within the development
system, normally masked off by the Monitor and

•
..

•

•

•

•

•

•

•

•

•

Intellec® Series II

ISIS-II since these programs use service requests in
lieu of hardware interrupts. Interrupt switches 0 and
1 are used for resetting the Monitor and ISIS-II,
respectively.

1.3.2 NON-RESIDENT
MASTER PROGRAMS

Non-resident master programs are programs that are
executed by Multibus interface master processors
other than the IPB/IPC master processor. The exter­
nal hardware involved must include provisions for
interface to the Multibus.

The non-resident master processor has direct access
to most of the system resources of an Intellec Series
II development system including the Monitor, all of
system RAM, and all 110 facilities and devices of the
10C and the PIO. Notable exclusions from the
preceding list are the serial 110 channels of the IPB
and the IPB's real-time clock and interrupt con­
trollers. These resources on the IPC, with the excep­
tion of the system interrupt controller, are available
to other bus masters.

The interrupt controllers on the IPB/IPC continue to
accept interrupts when another master assumes con­
trol of the Multibus interface. The local interrupt
controller accepts service requests from external
sources (i.e., PIO and IOC) as well as internal
sources, and generates a level 7 system interrupt that
can be sensed by any master on the bus.

1.3.3 USER SYSTEM PROGRAMS

User system programs are programs that are: 1)
assembled or compiled using an Intellec Series II
development system; 2) debugged using the com­
bined facilities of the development system and an
in-circuit emulator; and 3) programmed into PROM
for execution within a user-designed system. In most
cases, the physical connection between the user
system and the Intellec Series II development system
exists only while the user system is being debugged
via an in-circuit emulator. However, the in-circuit
emulator may also be employed to debug hardware
or software that is to directly interface with the
Intellec Series II development system.

1.4 I/O DEVICE INTERFACES

Most existing 110 device interfaces are established
using hardware and software of the IPBIIPC, the
IOC, and the PIO as shown in figure 1-1. Each of the
subsystems employs a different combination of hard­
ware and software to accomplish 110 data transfers
and to control the subordinate devices. However, the

Overview

IOC and PIO have several common attributes. The
general discussions of 110 device interfaces in the
following paragraphs are supported by further
details in Chapters 3 through 5.

A second type of I/O device interface is implemented
via the Multibus interface. In this case, the hardware
controlling the device is not part of the basic Intellec
Series II development system and there is some trade­
off between the hardware and the driver software
executed by the IPBIIPC processor. However, most
drivers associated with external I/O device interface
hardware make use of Monitor or ISIS-II calls to
simplify software design. In any event, any discus­
sion of this type of 110 device interface is more con­
cerned with Multibus interface protocol than with the
interprocessor protocol and related topics within this
chapter. Refer to Chapter 2 for discussions of I/O
device interfaces implemented via the Multibus
interface.

1.4.1 FIRMWARE VERSUS
SYSTEM SOFTWARE

The term "firmware" is used throughout the com­
puter industry to identify ROM-based microcode
that establishes the instruction sets of computers.
Within Intellec Series II development systems, the
instructions sets of CPUs are fixed, and the term
"firmware" identifies ROM-based software. The
term "system software" denotes resident and non­
resident programs that interpret operator-generated
commands. Typical firmware of Intellec Series II
development systems includes the I/O device driver
programs executed by the 10C and P 10
microprocessors.

1.4.2 110 DEVICE DRIVERS

The complexity of any 110 device firmware is
dependent on: 1) the complexity of the hardware
interface with the device; and 2) the intelligence of
the hardware between the driver and the device. The
more complex device interfaces (the serial I/O chan­
nels, the integral CRT, and the integral diskette)
make use of highly-intelligent programmable chips
that tend to reduce driver complexity. However, use
of programmable chips imposes a different type of
complexity on the associated firmware: the need to
include code to initialize the programmable chips
during system startup and/or immediately prior to
device data transfers. This initialization is required
because the operating parameters of the program­
mable chips must be preselected to meet the specific
needs of the system and/or the device being driven.

It would appear that the division of responsibilities
among the device driver, the startup routine, and the
device interface hardware is highly variable among

\-3

Overview Intellec® Series II

1------ --------,
PIO I

I PIO
SOFTWARE I

REAL
TIME I • DEVICE

PARALLEL

I

PAPER TAPE
READER
PAPER TAPE
PUNCH

RESIDENT ;-- - 1/0 CLOCK SERVICE HARDWARE
DRIVERS

• DIAG-
PORTS PRINTER

PROM
PROGRAMMER

SOFTWARE

I NOSTICS
• BOOTSTRAP
• DIAGNOSTICS

L - - - -

RESIDENT
SYSTEM -PROGRAMS

1/0 SERIAL

• MONITOR
I-- PORTS 1/0

• ISIS·II
HARDWARE

• ASSEM BLERS -

I - - - -

I 10C
MULTIBUS" INTERFACE

I
I
I

SYSTEM I 10C
EXTENSIONS SOFTWARE

-

- - - - - - -

IPBIIPC

- - - - - - -

- CRT
HARDWARE

-
1/0 DISKETTE

- - -

- - -

I

--.J

I
I
L
I

I
I
I
I

USER TTY
(OR DATASET)

GENERAL PURPOSE
RS·232

INTEGRAL
CRT

I • DEVICE r---
32K RAM' DRIVERS PORTS HARDWARE I

INTEGRAL
DISKETTE

ICEN MODULE

I
• DIAG·

I · USER MASTER NOSTICS -
DISKETTE
MODULE

· HARD DISK L ~ MODULE - - - - - - - - - - - - - -

KEYBOARD
'-- PROCESSOR KEYBOARD

SOFTWARE

'USED AS RAM EXTENSION ONLY WITH IPB.

Figure 1-1. Interface Regulating System Elements 555-01

devices. However, one basic criterion employed in
the design of the Intellec Series II development
system is the maximum simplification of system soft­
ware liD processes. The resulting arrangement is
such that system software, including ISIS-II, ICE
drivers, and user-generated master programs, need
only specify the device and either furnish or accept
the data to be transferred. Provision is also made to
advise the system software when each byte transfer is
completed. Some additional complexity occurs with
disk transfers in which case the disk controller must
be advised of the size of the file to be transferred. In
any event, the device drivers have the relatively sim­
ple task of passing data bytes between the system

\-4

software and device interface hardware. The device
interface hardware and the startup routines share
most of the responsibility for meeting the unique
initialization requirements of any liD device.

1.4.3 DRIVERS/SYSTEM SOFTWARE
INTERFACES

There are two types of liD driver interfaces with the
system software. One uses the Monitor interface to
accomplish serial liD transfers. The second type of
interface is via the liD ports of the IPBIIPC master
processor and is used by all other I/O device drivers.

•

•

•

•

•

•

•

•

•

•

Intellec® Series II

The I/O device driver used for serial I/O transfers
(Le., Monitor) is accessed by means of the CALL
instruction. The CALL instruction itself merely
specifies the proper calling location within the
Monitor. Parameters required by the Monitor are
placed within the B, C, and (if necessary) the D, E,
H, L registers prior to execution of the CALL
instruction. System software commands that result in
Monitor CALLs often elaborate on the preceding
procedure. For example, ISIS-II calls can specify a
string of data bytes, and the PUM statements allow
use of the stack to pass additional parameters.
However, the resulting process is often a simple
reiteration of the CALL instruction.

The second type of driver/system software interface
is used to communicate with the 10C and the PIO
subsystems of the development system. Each sub­
system is accessed via an I/O port address of the
IPB/IPC master processor. Each access involves the
transfer of a single byte interprocessor command that
may be followed by a data byte transfer to or from
the subsystem processor. The interprocessor com­
mand byte coding informs the subsystem processor if
a data byte transfer is to follow and initiates a
specific action within the subsystem processor. The
command may cause a system level response that
affects all subordinate devices of the subsystem or a
device level response that affects a specific I/O device
and its associated driver and interface hardware.

The system level interprocessor commands initiate
actions such as subsystem reset, the return of status
concerning the results of a preceding device level
command, the enabling or disabling of interrupts, or
the return of diagnostic test results. The device level
interprocessor commands are used to pass data to or
from the device, or to return device status. The
sequence of interprocessor commands required to
control the subsystem and/or one of its subordinate

. devices constitutes the interprocessor protocol for
that subsystem or device.

1.4.4 TYPES OF DEVICE
INTERFACE MODIFICATIONS

The interprocessor command sequence between the
iPB/IPC and the 10C or PIO has been generalized to
the extent that minor changes of the device/driver
interface do not require changes to the protocol. In
other words, use of a different printer could require
changes to the associated device driver without the
necessity for changes to the Monitor, ISIS-II, or any
other system software. It is, of course, assumed that
the existing hardware interface is compatible with the
non-standard printer.

1.4.5 DEVICE SIGNAL TIMING

The interprocessor protocol establishes a relatively
loose coupling between the system software of the
IPBIIPC and the 10C/PIO device drivers. In

Overview

general, the system software initiates an I/O opera­
tion and then periodically requests I/O status to
determine when the operation is completed. This
technique relieves the system software of concern
with I/O device timing.

The implementation of user-designed I/O drivers
and/or resident master programs must take into
account the timing of all system elements. For exam­
ple, hardware interrupts may be employed, but they
should be used only to signify the termination of an
operation.

High-speed I/O devices, such as disk or diskette
drives, require relatively complex hardware and
relatively large data storage capacities. Because of
this, only one diskette drive is supported by the 10C;
the remaining drives employ a disk or diskette con­
troller on the Multibus interface. Furthermore, the
integral diskette, the integral CRT, and the
refreshing of RAM use a substantial portion of the
10C processor's bandwidth. These factors must be
considered when changes to the 10C driver are
anticipated.

The lower-speed devices of the PIO make less strin­
gent demands on the PIO processor, but in this case
RAM and ROM capacities are more restricted.
However, the PROM programmer interface of the
PIO is a general-purpose interface that assumes the
existence of intelligence external to Intellec Series II.
If this intelligence is in the form of a microprocessor,
it is possible to establish efficient communications
that do not tax the bandwidth or storage limitations
of the PIO. Furthermore, such communications can
be implemented without changes to the PROM pro­
grammer driver. The PROM programmer interface is
thus a prime candidate for implementation of a chan­
nel to non-standard I/O devices. Refer to Chapter 5
for further information on use of the PROM pro­
grammer interface.

The Multibus interface may also be used to com­
municate with non-standard 110 devices. Refer to
Chapter 2 for details on use of the Multibus
interface.

1.5 ELECTRICAL CONSIDERATIONS

The Intellec Series II development system, as
delivered, is capable of accepting almost any com­
bina tion of Intel circuit boards. Each development
system chassis employs an internal power supply that
provides a tie point for circuit grounding and that has
adequate reserve power for optional circuit boards.
Under normal circumstances, user-designed hard­
ware may be installed either within or attached to the
development system chassis without difficulty.
However, user-designed hardware must employ com­
patible grounding techniques and must not exceed
the reserve current specification.

\-5

Overview

1.5.1 GROUNDING

Three types of grounds exist within Intellec Series II
development system. The first type of ground is
chassis ground that interconnects all metallic
enclosures and devices of the system. Chassis ground
is routed through the IOC and PIO connectors to
provide for grounding of I/O devices. Chassis
ground is also used for all cable shields.

The second type of ground is ac ground. This ground
is derived from the third (green) wire of the ac power
cord. The ac ground is tied to chassis ground at a
single point within each power supply.

DANGER
Removal of ac ground from chassis ground
can cause hazardous potentials to exist at
metallic surfaces of devices and enclosures.

The third type of ground is signal ground. This
ground is used as a common reference for all de
voltages and is the ground employed by logic circuits.
Signal ground is tied to chassis ground and ac ground
at the common,tie point within the power supplies.

NOTE

Any Intellec Series II development system
incorporating an expansion chassis contains
two power supplies, each with its own com­
mon tie point for grounding.

User-designed circuit boards are required to use
signal ground as a reference for all logic circuits.
Chassis ground is used only if the user circuit board is
associated with an external enclosure or device
(chassis ground is tied to all shielded cables and
external metallic structures). Signal and chassis
grounds should be isolated on the user circuit board
or within the external enclosure or device (if such
isolation is possible) to prevent the formation of
ground loops.

Intellee® Series II

User-designed systems connected to an Intellec Series
II development system via an in-circuit emulator
should ideally have independent signal and chassis
grounds that may be disconnected from each other
when connected to the in-circuit emulator. If user
signal ground is permanently tied to user chassis
ground, a ground loop will exist. In some cases, this
ground loop will cause unwanted currents to flow
through the in-circuit emulator signal ground and
may result in electrical noise on data, address, and
control lines.

Total elimination of ground loops may not be feasi­
ble if the system contains peripherals that tie signal
ground to chassis ground. When the signal and
chassis grounds cannot be separated, a lower­
resistance path through the chassis ground wiring
should be provided. The installation of heavy (large
surface area) straps between the development system
chassis and the user system chassis can reduce noise
on the signal lines.

1.5.2 POWER SUPPLY RESERVE
CURRENT

Two basic power supplies are used in the Intellec
Series II development systems: the internal power
supply in the development system chassis and a
smaller supply in the optional expansion chassis.
Both supplies provide regulated voltages of +5, +12,
-12 and -10 volts that are available on the
backplane. The supply in the development system
chassis also provides internal, regulated voltages of
+15 and +24 volts for the integral CRT and diskette
drive.

The current ratings for each voltage and the amount
of reserve current available for optional boards are
listed in table 1-1. Note that the expansion chassis
contains no circuit boards when delivered, and the
current ratings for its four regulated supplies are
available for use by optional or user-designed circuit
boards installed within the expansion chassis.

Table 1-1. Power Supply Current Ratings

Development System Chassis +5V +12V -12V -10V +15V +24V

Capacity 30.0 2.5 0.3 1.0 1.5 1.7
Model 220 Load 9.7 0.4 0.1 0.02 1.5 1.7
Model 220 Reserve 20.3 2.1 0.2 0.98 0 0
Model 225 Load 10.0 1.5 0.2 0.03 1.5 1.7
Model 225 Reserve 20.0 1.0 0.1 0.97 0 0
Model 230 Load 15.95 0.8 0.1 0.17 1.5 0
Model 230 Reserve 14.05 1.7 0.2 0.83 0 1.7

Expansion Chassis +5V +12V -12V -10V +15V +24V

Reserve 20.0 2.0 0.3 0.8 N/A N/A

1-6

•

•

•

•

•

•

•

•

•

•

The Multibus interface is documented in detail by the
Intel Multibus Specification and is also described in
the Intellec Series Microcomputer Development
System II Hardware Reference Manual. The
information within this chapter does not duplicate
the content of these other manuals, but rather defines
the Multibus interface characteristics in terms appro­
priate to Intellec Series II development system users
who are writing master programs. In effect, this
chapter does not define the Multibus interface as
such, but rather describes implementation and/or
utilization of system resources via the Multibus
interface .

2.1 MEMORY CONFIGURATIONS

The uses of RAM and ROM within a mUltiprocessor
system are varied. Slave processors such as the IOC
can use RAM and ROM as local private memory for
data and special purpose programs. ROM can also be
used to perform logic functions wherein the selection
of a given address generates a specified control
signal. The above uses do not involve the Multibus
interface and do not provide memory that can be
shared by other master processors in the system. The
following text is concerned only with system memory
that is accessible from the Multibus interface.

The size of the lntellec Series II system memory (32k
or 64k) is usually more than adequate for most
applications. Also, the availability of disk and
diskette storage can often reduce the need for addi­
tional memory. If, however, the memory size is
inadequate, there are means of expanding both ROM
and RAM as discussed in the following text.

2.1.1 ROM EXPANSION

When delivered, the Intellec Series II development
system contains 4k of ROM. Expansion of ROM is
possible through the installation of a Multibus­
compatible circuit board using one of two methods.
Note that regardless of the method used to expand
ROM, the Monitor RAM workspace is always the
last (top) 320 bytes of available RAM memory, and
care must be taken not to overlay or occupy these
locations (refer to the ISIS-II User's Guide for
detailed information regarding Monitor address
spacing). The first method (figure 2-1) simply assigns
ROM memory address space. This method reduces
the size of the RAM that can be accessed while
executing the program out of ROM and is useful

CHAPTER 2
THE MUL TIBUS® INTERFACE

when a large ROM-resident program is used to pro­
cess a relatively small, on-line data base. (The total
data base for the system may be very large and stored
off-line on diskette.)

NOTE

If several ROM-resident programs are
employed, each program should be capable
of being separately accessed so that the loss
of the corresponding RAM address space
during program execution is limited only to
the address space occupied by the program.

FFFFH

F800H

8000H
7FFFH

SOOOH

3000H

OOOOH

MONITOR

MONITOR RAM
(320 BYTES)

LARGE
USER

PROGRAM
(ROM)

MONITOR RAM
(320 BYTES)

1-----

ON·LINE
DATA
(RAM)

r--- - -

1515·11 BUFFERS

1515·11
(RAM)

} MONITOR RAM
LOCATION IN 64K SYSTEM

} MONITOR RAM LOCATION
IN 32K SYSTEM

-- DISKETTE
DRIVES

555-02

Figure 2-1. Expansion of ROM Address Space

2-\

The MUL TIBUS® Interface

The second method of ROM expansion, known as
bank switching (figure 2-2), occupies a limited
amount of address space, but allows ROM expansion
beyond 64k. With this method, the user-implemented
circuit board(s) contains 110 port address decoding
logic to select and deselect specific ROM banks. The
decoding logic latches the 110 port address and
inhibits the selection of more than one memory bank.
A typical memory system might contain eight banks
of system address space. This system could have a
library of relatively-large permanent programs
available for immediate execution with minimum
reliance on external program storage.

The implementation of either of the preceding ROM
expansion methods requires the inclusion of logic
that inhibits RAM when the program is being exe­
cuted out of ROM (INHl) and inhibits ROM when
the RAM is being accessed (lNH2). The I/O port
addresses assigned must be other than those reserved
by the IPB/IPC and other circuit boards of the
system. For additional information regarding inhibit
timing, refer to the Intel Multibus Specification.

The bootstrap/diagnostic program is located at
addresses E800H through EFFFH and overlays RAM
as well as any ROM at these memory locations during

2-2

FFFF

F800

H

H

8000H

SOOOH

3000H

0000 H

I

MONITOR

USER
PROGRAM

0
(ROM)

MONITOR RAM
(320 BYTES)

I--- - - -
USER
DATA
(RAM)

I--- - - -
ISIS-II BUFFERS

ISIS·II
(RAM)

I-

I-

'-y-----'
TOTAL ROM =

}

BANK
SELECTION
LOGIC
(1/0 PORT)

240K

Figure 2-2. ROM Bank Switching 555-03

Intellec® Series II

initialization and execution of the diagnostic. The
selection logic of the IPB/IPC ensures that the
initialization routine is executed, without interven­
tion, after start -up or system reset. Comparable
techniques (figure 2-3) can be used to execute critical
user programs in any memory space except the loca­
tions occupied by the Monitor and the bootstrap/
diagnostic program. Execution of overlay ROM pro­
grams can be initiated via an I/O port address or on
exit from the bootstrap/diagnostic program. Use of
the ROM overlay technique must not be used simply
as a means of ROM expansion, and user hardware
would be required to generate INHI and INH2.

2.1.2 RAM EXPANSION

The 64k RAM available with Intellec Series II
development systems is the maximum address space
that can be accessed by the master processor of the
IPB/iPe. Other master processors on the Multibus
interface can employ larger memories wherein the
IPBIlPC RAM is but one segment.

The most obvious candidate for a large memory pro­
cessor is the Intel 8086 microprocessor that uses a
20-bit address to access a full megabyte of memory

FFFF H

F800 H

8000 H

3000H

0000 H

START UPI
RESET LOGIC

---- l
BOOTSTRAP

MONITOR

MONITOR RAM
(320 BYTES)

1--------
DIAGNOSTIC

USER

OVERLAY
ROM

PROGRAM

t-
USER
DATA
(RAM)

SELECTION
LOGIC

USER
PROGRAM

(RAM)

1515·11 BUFFERS

ISIS·II
(RAM)

Figure 2-3. Overlay ROM

EFFF H

E800H

DOOOH

555-04

•

•

•

•

•

•

•

•

•

•

Intellec® Series II

(see figure 2-4). The Multibus interface is fully com­
patible with 8086 system components, but any
8080/8085 type system, including the Intellec Series
II development system, must make allowances for
the expanded address capabilities of the 8086. With
respect to memory addressing, the allowances center
on the decoding of the four high-order address bits
(ADRlO/-ADR13/) of the Multibus interface.
Accessing of the RAM segment on the IPB by the
8086 is restricted to byte transfers, while accessing of
the IPC's RAM segment by the 8086 does not have
this restriction since the RAM on the IPC can be
externally accessed in 16-bit words.

The Intellec Series II development systems contain
logic on the IPB/IPC that determines when a 20-bit
address is being used. This logic assigns addresses OH

IPB/IPC
PROCESSOR

The MULTIBUS® Interface

through FFFFH to the 64k RAM segment of the
IPB/IPC and disables this segment for all addresses
greater than 64k. Pull-up resistors associated with
the ADRlO/-ADR13/ extended address lines are
included on the IPB/IPC to ensure access to its RAM
segment when an 8086 type processor is not con­
nected to the Multibus interface.

Use of the 8086 is not the only way to expand RAM.
User systems that employ 8080/8085 hardware to
select memory segments through logical control of
the high order address lines can also be used. For
example, a user master processor can employ a
latched 110 port to set the high-order address lines
(see figure 2-5). The user processor can then access
either the IPBIIPC RAM segment or other 64k­
segments that are inaccessible to the IPB/IPC.

USER
8086

MUL TIBUS' INTERFACE

INTELLEC·
SERIES II

RAM
(64K)

INTELLEC·
SERIES II

RAM
(64K)

USER RAM
SEGMENT 1

(64K)

USER RAM
SEGMENT 2

(64K)

USER RAM
SEGMENT 3

(64K)

Figure 2-4. Address-Controlled Expanded RAM

IPB/IPC
PROCESSOR

USER RAM
SEGMENT1

(64K)

USER
8060

110 PORT

ADDRESS

USER RAM
SEGMENT2

(64K)

RAM BLOCK
SELECT
LOGIC

USER RAM
SEGMENT3

(84K)

Figure 2-5. Logic-Controlled Expanded RAM

555-05

555-06

2-3

The MULTIBUS® Interface

2.2 I/O DEVICE lJ5AG E

Communications between a processor and its 110
devices are performed similarly to communications
between a processor memory in that 110 port
addresses access the device or logic associated with
the device. These communications become more evi­
dent when considering programmable device con­
troller chips with specific registers that are accessed
via unique 1/0 port addresses.

With programmable controllers, the low-order 110
port address bits are used to distinguish between data
registers and control functions, and thus a block of
110 port addresses is reserved for each device. The
high-order bits are used to select the individual pro­
grammable chips. Within the IPB/IPC, 10C and

Table 2-1. IPB 1/0 Port Addresses

Shared System Resources

Port
Function

Address

CO 10Cdata
C1 10C command and status
C2 Reserved for 10C
C3 Reserved for 10C
F8 PIO data
F9 PIO command and status

IPB Only Resources

Port
Function

Address

FO Serial 1/0 channel 0 baud rate clock
F1 Serial 1/0 channel 1 baud rate clock
F2 Real time clock
F3 Timer mode select
F4 Serial 1/0 channel 0 data
F5 Serial 1/0 channel 0 command and status
F6 Serial 1/0 channel 1 data
F7 Serial 1/0 channel 1 command and status
FA Local interrupt controller
FB Local interrupt controller
FC System interrupt controller
FD System interrupt controller
FE Reserved
FF Control Port

2-4

Intellec® Series II

PIO, the 110 port addresses are preassigned and
fixed by hardware design. These addresses must be
used by user-designed hardware to access the shared
system resources.

Table 2-1 lists the 110 port addresses used by lPB,
and table 2-2 lists the 110 port addresses used by the
IPC. Note that the 110 port addresses are identical
for both the IPB and the IPC; only the port
accessibility function (shared resource or lPBIIPC
accessible-only resource) differs.

A number of Intel products that can be used with the
Intellec Series II development systems have dedicated
or reserved 110 ports. Table 2-3 lists the current 110
port assignments used by Intel.

Table 2-2. IPC 110 Port Addresses

Shared System Resources

Port
Function

Address

CO 10Cdata
C1 10C command and status
C2 Reserved for 10C
C3 Reserved for 10C
FO Serial 1/0 channel 0 baud rate clock
F1 Serial 1/0 channel 1 baud rate clock
F2 Real time clock
F3 Timer mode select
F4 Serial 1/0 channel 0 data
F5 Serial 110 channel 0 command and status
F6 Serial 1/0 channel1 data
F7 Serial 1/0 channel1 command and status
F8 PIO data
F9 PIO command and status
FA Local interrupt controller
FB Local interrupt controller

IPC Only Resources

Port
Function

Address

FC System interrupt controller
FD System interrupt controller
FE Reserved
FF Control Port

•

•

•

•

•

•

•

•

•

•

Intellec® Series II The MULTIBUS® Interface

Table 2-3. Dedicated and Reserved 110 Port Addresses

Device I/O Port Addresses

ICE-80 In-Circuit Emulator OEOH-OE3H

. Other ICE Modules (ICE-8S, ICE-86, ICE-88, etc.) 080H-083H

iSBC 80/05 Single Board Computer OOH-OSH

iSBC 80/10A Single Board Computer OE4H-OEFH

iSBC 80/20-4 Single Board Computer OD4H-ODFH,
OE4H-OEFH

iSBC 80/30 Single Board Computer OD8H-ODFH,
OE4H-OEFH

iSBC 86/12A Single Board Computer OCOH-OCFH,
ODOH-ODFH

iSBC 544 Intelligent Communications Controller ODOH-ODFH,

Disks
First Floppy Diskette Controller
Second Floppy Diskette Controller
Hard Disk Controller

Future Intel products may require lIO port addresses
other than the addresses specified in table 2-3. To
prevent possible incompatibility with future Intel
products, all user-device lIO port addresses should
be switch or jumper selectable.

The use of lIO port addresses to access user-designed
hardware is the most common technique employed
within Intellec Series II development systems. A
second technique, called "memory-mapped lIO,"
may also be employed to access user hardware. With
memory-mapped 1/0, a block of memory addresses
is assigned to the device andlor its controller. The
major advantage of memory-mapped lIO is addi­
tional programming flexibility; any instruction that
references memory can be used to access an 1/0 port
located in the memory space. For example, the MOV
(move) instruction can transfer data between any
8080/8085 register and a port or any of the logical
instructions can be used to manipulate individual bits
within lIO device registers. The simplest implemen­
tation of a memory-mapped lIO device is in a system
that has unused address space (i.e., a Model 220 with
32k bytes of RAM) in which case the lIO device
addresses would be assigned within the 32k to 62k
address range. However, in systems containing 64k
of RAM (i.e., the Models 225 and 230), the lIO
device addresses must replace either RAM or ROM.
RAM replacement is impractical as it would
necessitate the physical removal of RAM. ROM
replacement requires lIO device control logic that
generates INHII (to inhibit RAM) when the lIO
device is being used. Since most memory-mapped

OE4H-OEFH

078H-07FH
088H-08FH
068H-06FH

lIO devices require very few addresses, ROM
replacement is the most widely used method for
memory-mapped lIO. However, programmers must
be aware that the addresses assigned to an I/O device
are no longer accessible in RAM.

2.3 INTERRUPT MECHANISMS

The standard definition of an interrupt is the process
whereby an asynchronous device-generated signal
causes program branching to a routine that services
the needs of the device (usually the handling of lIO
data). However, the reason for employing interrupts
is that lIO devices (or other real-time system
elements) often involve synchronous operations that
cannot be delayed while the processor is performing a
lengthy processing task. An interrupt service routine
is used to quickly complete the 1/0 data transfer and
then allow continuation of the interrupted process.
At a later time, the program processes the data
accepted by the service routine or prepares new data
for output to the device. Without interrupts, input
data could be lost or output data could be
unavailable when required.

There are two reasons why the preceding real-time
hardware interrupts are not required when an Intellec
Series II development system is executing many of
the Intel-supplied resident master programs
(Monitor, ISIS, etc.). The first reason is that I/O
operations are program controlled to be performed
in sequence (e.g., if diskette data is to be printed, the
diskette operations are completed before printing

2-5

The MULTIBUS@ Interface

operations begin). The second reason is that interac­
tions with high-speed 110 devices are provided by
means of controller chips that perform many of the
tasks (including temporary data storage) that would
otherwise be performed by interrupt service routines.
The master program is never concerned with multi­
tasking or with close synchronization of 110 device
operations. Note that while some input (e.g.,
keyboard entry), is not program controlled, its data
entry rate is slow enough to allow temporary data
storage by hardware while the processor is occupied.

In place of hardware interrupts, the hardware
elements of the Intellec Series II development system
use service requests (specified bits within status bytes)
to determine when a device requires attention. The
status bytes are returned to the master processor of
the IPB/IPC on demand. The transfer of status bytes
from the IOC or the PIO to the IPB/IPC constitutes
a major segment of the interprocessor traffic.
Although hardware interrupts are not widely used by
Intel-supplied resident master programs, interrupt
handling circuits exist within the Intellec Series II
development system. These circuits establish
priorities for the interrupt switches, for interrupts
from the Multibus interface and for interrupts from
internal hardware elements of the IPB/IPC, IOC,
and PIO. The interrupt circuits also apply interrupt
switch and internal hardware interrupts to the
M ultibus interface. Interrupt masking by resident
programs inhibits sensing of interrupts by the
IPB/IPC master processor. All interrupts generated
by internal hardware elements are handled by a local
interrupt controller that operates in the polled mode
as a slave to the system interrupt controller. All inter­
nal interrupts are processed by the local interrupt
controller and generate a level 7 interrupt to the
system controller. Resident master programs must
then poll the local interrupt controller to determine
the source of the internal interrupt. An example of an
interrupt routine used to service an interrupt
originating from a device associated with the local
interrupt controller is shown in Appendix A. Inter­
rupt level assignments for the local interrupt con­
troller are as follows (level 0 has the highest priority):

Level Function

0 Serial 110 Channel 0 Input Data Ready
I Serial 110 Channel 0 Output Data Ready
2 Serial 110 Channell Input Data Ready
3 Serial 110 Channel I Output Data Ready
4 lms Real Time Clock Interrupt
5 PIO Subsystem Interrupt
6 IOC Interrupt
7 Not Used

The system interrupt controller operates in the fully­
nested mode and is initialized with a call address
interval of eight and a base address of OH to establish

2-6

lntellec® Series II

the location of the vector address block. The vector
addresses reserved for system interrupts are as
follows:

Interrupt Vector Vector
Level Address Usage

0 OOH Monitor
I 08H ISIS-II
2 IOH Disk Controller
3 I8H
4 20H ICE-80 Module
5 28H
6 30H ICE Modules
7 38H Local Interrupt Controller

Reprogramming the 8259's call address
interval from eight to four will cause
undefined system operation.

The local and system interrupt controllers of the IPB
and the system interrupt controller of the IPC cannot
be programmed or polled by a non-resident master
program (the local interrupt controller of the IPC
can be accessed by another bus master). When
another bus master assumes control of the bus, both
the local and system interrupt controllers maintain
any current interrupt request and latch any subse­
quent interrupt request (when the IPBIIPC regains
bus access, any pending interrupt request is serviced).
Since all system interrupts can be sensed by another
bus master via the Multibus interface, all IPBIIPC
local interrupts can also be sensed (any local inter­
rupt causes a level 7 system interrupt).

2.4 MUL TIBUS® PRIORITY LOGIC

To avoid conflicts that may arise when two or more
bus masters simultaneously require bus access, the
IPB/IPC includes parallel priority resolution logic.
This logic accepts individual bus request inputs from
up to nine bus masters that may be installed in the
backplane (five available slots in the development
system chassis and four slots in the expansion
chassis) and returns an individual bus priority input
to all but the bottom slot of the expansion chassis
(the bottom slot has the highest priority and its bus
priority input is permanently enabled). The parallel
priority logic samples all of the bus request (BREQ)
inputs and generates an individual bus priority in
(BPRN) output to the highest priority bus master
requesting the bus. Following Multibus interface pro­
tocol, when the requesting master receives its bus
priority in signal, it examines the common bus busy
(BUSY) bidirectional line to determine when the bus
becomes available and, when the bus is available,
activates bus busy to indicate to all other bus masters

•

•

•

•

•

•

•

•

•

•

Intellec® Series II

that the bus is in use. Note that a bus master main­
tains bus access until it either releases the bus (Le.,
the bus master executes a halt instruction) or until a
higher-priority bus master requests the bus.

Bus priority within the Intellec development system
(including the expansion chassis) is assigned in a
bottom-up sequence with the top slot (the IPB/IPC)
having the lowest priority and the bottom (tenth) slot
having the highest priority. The use of parallel prior­
ity logic (rather than serial priority logic) allows the
priority of any bus master (except the IPB/IPC) to be
readily changed by relocating the board in the back­
plane and allows "slave" boards (boards that do not
request the bus) to be positioned anywhere in the
backplane without affecting bus priority. When posi­
tioning bus masters in the backplane, boards that
have high-speed transfer rates or high data volume
functions (e.g., disk controllers) should be placed in
the lower (higher priority) slots, and low-speed device
controllers should be placed in the higher (lower
priority) slots.

2.5 REAL-TIME PROCESSING

Prior discussions in subsection 2.3 describe how an
Intellec Series II development system performs its
tasks in serial fashion so that the IPB/IPC master
program devotes its full attention to the current
operation. For I/O devices, this sequential process­
ing approach is more than adequate since the lIO
operation appears to the operator to be immediately
performed. However, when an Intellec Series II
development system is employed in a real-time
environment, the techniques used with the lIO
devices mayor may not suffice. The following
paragraphs define the capabilities and limitations of
real-time techniques that may be employed by the
user.

2.5.1 USE OF INTERRUPTS

Anyone having prior familiarity with real-time,
interrupt-driven systems might be prone to design a
master program that makes use of asynchronous
interrupt requests in place of the service requests that
are currently used by Intel-supplied software. This
design would make the system more responsive to
real-time events. However, the user-designed pro­
gram must employ interrupt service routines with
execution speeds that do not interfere with normal
operation of high-speed I/O devices. Furthermore,
drastic program alterations, such as the implementa­
tion of concurrent I/O operations, would be ill­
advised because of, the impact that the alteration
might have on existing operating systems, I/O
drivers, and I/O interface hardware. The alternative
methods discussed in the following paragraphs
should be seriously considered before attempting
extensive use of real-time interrupts.

The MULTIBUS® Interface

2.5.2 USE OF SLAVE PROCESSORS

In some cases, the occurrence of an external real-time
event requires the immediate initiation of a relatively
long program sequence, but does not require immedi­
ate interaction with other elements of the system. In
such cases, the task may be assigned to a user­
designed slave processor subsystem.

Two examples of slave processor subsystems are the
10C and PlO. The 10C and PIO are functionally
limited in that they perform most of their operations
only in response to commands from the IPBIIPC
(CRT and RAM refresh within the IOC are contin­
uous, but are implemented by special-purpose hard­
ware). User-designed slave processor subsystems can
use software that continually interacts with the exter­
nal interface and can use interrupts to signify when
the slave processor requires service from the master
processor.

Implementation of a user-designed slave processor
subsystem can be accomplished without physical
alteration of the Intellec Series II development
system. (The slave processor would contain lIO port
address decoding logic that monitors the address
lines of the Multibus interface; the lIO port
addresses employed must be among those not
reserved by Intellec Series II development system
functions.) The slave processor subsystem is, in some
respects, equivalent to a hardware-implemented
interrupt service routine in that it allows asyn­
chronism between the control of real-time operations
and the timing of IPB/IPC processing. However, the
slave processor has the distinct advantage of per­
forming complex operations without the necessity of
borrowing time from other IPB/IPC operations. A
slave processor tends to increase the bandwidth of
the entire system. The services of the slave processor
are equally available to the IPBIlPC and any other
master processor on the Multibus interface. Note
that with any user-designed slave processor, some
form of synchronization protocol must be estab­
lished among all master processors that use the slave
processor in order to prevent concurrent access of the
slave by more than one master.

2.5.3 PARALLEL PROCESSORS

The use of parallel processors substantially increases
system bandwidth by permitting two or more master
processors to simultaneously execute system level
programs.

The 8086 microprocessor is ideal for parallel pro­
cessor configurations since its architecture directly
supports the interfacing of two independent buses
(any microprocessor can drive two buses). A typical
arrangement within an Intellec Series II development
system might use one of the buses to communicate

2-7

The MULTIBUS® Interface

with the IPB/IPC that would be used to control 110
operations. The second bus would then be used to
execute master programs residing in unshared RAM
or ROM. Both buses could be the Multibus interface
or two types of buses could be implemented in much
the same way as the 10C processor interfaces with
both the Multibus interface and its own IOC bus.
The number of possible implementations is limited
only by the imagination of the designer.

Major decisions in the design of a parallel processor
system are the allocation of tasks to the processors
and the establishment of interprocessor communica­
tions. These two decision areas are interrelated in
that the division of responsibilities between the pro­
cessors determines the amount of data and status that
is exchanged. If large amounts of data must be
exchanged, the two processors could use a shared
RAM that the user processor accesses via the

2-8

Intellec® Series II

Multibus interface. If smaller amounts of data are
exchanged, a hardware-implemented data bus buffer
(DBB) could be used (refer to IOC description within
the Intellec Series II Microcomputer Development
System Hardware Reference Manual). In using a
DBB, the user processor appears to be a slave pro­
cessor to the IPB/IPC. Interrupts can be employed,
and the status bytes returned by the user processor
can redirect IPB/IPC operations and thereby assume
control of the system. The use of a DBB is somewhat
limited by its low data-transfer rate.

The preceding information is provided only to
outline some of the possible methods of implement­
ing parallel processor configurations, and many
details are omitted. Nevertheless, parallel processing
can be implemented without modification of Intellec
Series II development system hardware or firmware.

•

•

•

•

•

•

•

•

•

•

The two serial I/O channels are the only I/O inter­
faces of the Intellec Series II development system that
can be directly accessed by the IPB/IPC. All logic
associated with the serial I/O channels is incor­
porated on the IPB/IPC or within its associated soft­
ware and firmware. The connection between the
serial I/O channels and the serial device connectors
on the rear panel is accomplished by etched traces on
the 10C board assembly (the 10C includes a number
of alterable jumper links that are used to configure
connector signal routing).

The direct path between the IPBIIPC and the serial
I/O devices has the advantage that in terms of overall
operation, the omission of an intervening slave pro­
cessor (Le., the 10C or PIO) can make the system
more responsive to serial I/O events. However, if
interrupts are masked-off or disabled (normal con­
figuration), the response time of the system to any
serial I/O input is still dependent on the frequency at
which the IPB/IPC software polls the serial I/O
interface. Polling is continually performed since
most serial I/O devices (teletypewriters, video ter­
minals and modems) provide input that cannot be
anticipated by local programming. The polling rate
employed is sufficient to support synchronous com­
munications at rates of up to 64k baud.

3.1 SOFTWARE ALTERATIONS

The Intel-supplied software associated with the serial
I/O channels is part of the system software (ROM­
resident Monitor and bootstrap/ diagnostic pro­
grams). ISIS-II has the ability to indirectly initiate
data transfers via a serial I/O channel (ISIS uses the
facilities of the Monitor to accomplish I/O
transfers). With the IPB, all other system software
must use Monitor (or ISIS) calls to access the serial
110 channels. With the IPC, the serial I/O channels
are defined as system resources and can be directly
accessed by another bus master.

The Monitor can only access a serial I/O channel
when the channel is defined as the system console. By
default, the integral CRT and keyboard are defined
as the console device when the system is initialized,
and the I/O ports associated with the serial I/O chan­
nels are unused. Note that once the system has been
initialized, the Monitor's A (assign) command can be
used to assign a device connected to one of the serial
110 ports as the console device. Access to a serial I/O
channel that is not defined as the system console is
possible only through a user-designed 110 driver.

CHAPTER 31
SERIAL 1/0 INTERFACES

The bootstrap/diagnostic program initializes the
serial I/O channel hardware during start-up and
following system reset. The initialization sequence is
simply the transfer of operating parameters to the
8251 universal synchronous/asynchronous receiver
transmitters (USARTs) and the 8253 programmable
interval timer. Specifically, both the channel 0 and
channell USARTs are initialized for asynchronous
operation with two stop bits, an 8-bit character
length and a baud rate factor of 16X. The 8253 inter­
val timer consists of three separate counters that are
used to determine both the baud rate clock frequen­
cies for the USARTs and the real time clock fre­
quency. All three counters are initialized for Mode 3
(square wave) operation with a two-byte count
register. The counter register values provided to each
counter when the timer is initialized are as follows:

Counter Function Counter Counter
Value Frequency

0 Channel 0 Clock 698 1.74kHz
1 Channel 1 Clock 32 38.4 kHz
2 1 ms Real Time Clock 1229 1 kHz

Note that the channel 0 and channel 1 clock signals
are subsequently divided by 16 (baud rate factor 16X)
by the USARTs to provide baud rates of 110 and
2400 baud, respectively.

Alteration of the ROM-based bootstrap/diagnostic
program to change the baud rate or operating mode
is not necessary since the serial I/O channel hardware
(the 8251 s and the 8253) can be reinitialized by a user­
designed initialization routine that is executed
following the bootstrap/diagnostic program. An
example of a routine that modifies the 110 channel
baud rate is provided in Appendix B of the Intellec
Series II Model 22X/23X Installation Manual. For
asynchronous I/O devices, the modifiable param­
eters include character length, the number of stop
bits, parity enable/disable and odd/even parity selec­
tion as well as baud rate. For synchronous I/O
devices, the modifiable parameters include character
length, parity enable/disable, odd/even parity selec­
tion, sync in/out and single/double sync character
selection. (Refer to the Intel Peripheral Design Hand­
book for details on programming the 8251 USART.)
Note that when reprogramming the 8251, the mode
instruction is recognized only after the 8251 has been
reset (external rest or 8251 command instruction with
internal reset bit set). Since the command instruction
is used to define the states of the serial I/O channel
control lines, this instruction is normally output prior

3-1

Serial 110 Interfaces

to the transfer of serial 110 data. If the internal reset
bit is inadvertently set or if a mode instruction does
not immediately follow each use of the internal reset
bit, the serial 110 channel will be inoperative until it
is again initialized.

3.2 HARDWARE ALTERATIONS

Hardware alterations associated with the serial 110
channels are limited to changes of jumpers on the
IPB/IPC and the 10C circuit boards. This limitation
is imposed not only to maintain functional integrity
of the Intel-supplied circuit boards, but also because
the circuit board designs are dictated by requirements
of the 8251 and 8253 chips.

The 8251 chip has two control lines (RTS and DTR)
that are, in reality, program-controlled general­
purpose output signals. Similarly, DSR is a general­
purpose input signal that can be used to signify a
variety of conditions at the external device. With
appropriate programming, the serial 110 channels
are compatible with many types of serial devices and,
since the RS-232 interface is used by most data sets,
the serial device can be remote from the development
system site (i.e., telephone lines can be used). Also,
with the possible addition of some external hard­
ware, the serial 110 channels can be compatible with
any TWX or TELEX network.

The jumpers on the 10C circuit board are used to
interconnect or crossover signals to and from the
serial 110 channels on the IPB/IPC to conform to
the pin assignments of the 110 device to be inter­
faced. All of the functions performed by the IOC
jumpers can be implemented within the 110 device
cabling; the jumpers eliminate the need to rewire the
device cable/connector. To determine the jumper
positions required for any 110 device, refer to
Appendix A of the Intellec Series II Models 22XI23X
Installation Manual and match the pin assignments
of the 110 device with the rear panel connector (12
and 13) pin assignments. Note that" when interfacing
a serial 110 device to the SERIAL CH 2 connector
(13), the transmit and receive data lines may have to
be reversed (remove W7 jumpers A-B and C-D and

Intellec® Series II

install W7 jumpers A-C and B-D). Also, if the serial
110 device does not generate CTS (clear to send),
remove WI jumpers A-B and C-D and install a single
WI jumper at A-C to connect the RTS (request to
send) output to the CTS input.

The jumpers located on the IPB/IPC circuit board
are used to establish the source of the receive and
transmit clock signals for both serial 110 channels.
The jumpers installed at the factory configure both
channels for asynchronous operation by routing the
CHO CLK and CHI CLK signals from the 8253 pro­
grammable interval timer to the receive clock (RXC)
and transmit clock (TXC) inputs of the USARTs.
For synchronous communications, the jumpers must
be repositioned so that the RXC and TXC signals
originate from the serial 110 device through the serial
110 connector. Table 3-1 defines the jumper posi­
tions for both asynchronous (factory installed) and
synchronous communications.

3.3 INTER-SYSTEM
COMMUNICATIONS

I t is sometimes advantageous to couple two Intellec
Series II development systems together to allow shar­
ing of system resources or to meet the need for inter­
system communications. If the two systems are
remote from one another, the use of data sets is
necessary. However, if the two systems are in close
proximity, a pseudo data set can be implemented in
the form of an interconnecting cable. Jumpers within
each system are configured so that the clock for syn­
chronous communications is derived from the
transmitting system.

Figure 3-1 shows the jumpering and cable wiring
necessary for intersystem communications. The data­
set simulator cable shown is for serial 110 channel 0
(SERIAL CH 1 connector) of both systems. In this
case, the external transmit clock is route a via pin 24
of connector 12. (When current loops are employed,
pin 24 is used as a return for the receive data signal
RXD RETURN.) The illustrated arrangement can be
used for serial 110 channel I (SERIAL CH 2 connec­
tor), but in this case the jumper for the external TX
clock is located on the 10C circuit board.

Table 3-1. Asynchronous/Synchronous Jumper Configurations

Asynchronous Operation Synchronous Operation
Function

Channel 0 Channel 1 Channel 0 Channel 1

14-15 1-2 13-14 1-3 Transmit Clock

11-12 4-5 10-11 5-6 Receive Clock

7-8' N/A 8-9 A-B" External Transmit Clock

'TTY Receive Data Return
• 'Install jumper W3 (A-B) on IOC circuit board.

3-2

•

•

•

•

•

•

•

•

•

•

Intellec® Series II

SYSTEM A

IPB/IPC -, IOC
J2

JUMPERS

RXC 10----<1--41...---0<
11 10

8251

15

I CHO ClK ---I >()-..... - ---+-I
I 9 8
L _____________ _

IOC
J2

Serial lIO Interfaces

SYSTEM B
r - - - - - - - - - IPB/iPC - - - - ,

I

JUMPERS I

1--i---1><>-..... - --01 Rxe
10 11

8251

14
Txe

15

~---..... - --O(~~-4--CHOClK
8 9

I L ________________ ~

Figure 3-1. Data Set Simulator Cable 555-07

3-3

•

•

•

•

•

•

•

•

•

•

The IOC consists of the hardware and software that
are used to establish interfaces between a master pro­
cessor and both the integral CRT terminal and the
integral diskette drive. Modification of the IOC is
unnecessary since most IOC functions are integrated
with Intel-supplied system software. This chapter
provides details of IOC-master processor protocol as
a basis for user-designed master programs.

4.1 IOC/MASTER PROCESSOR
PROTOCOL

All communications between the IOC and the master
processor are accomplished via the data bus buffer
(DBB) of the lOCo The DBB is essentially an inter­
bus communications facility that stores one input
byte, one output byte, and one byte of DBB status.
The DBB status bits indicate the presence of data in
the input and output buffers, the busy status of the
IOC processor relative to command processing, and
the type of byte (command or data) present in the
input! output buflfer.

When the IOC is not busy processing a previously
issued command, it is idle only in the sense that the
IOC processor is not concerned with inter-processor
communications. During this time, RAM refresh and
CRT refresh cycles continually occur. Also, if any
keyboard entries are made, the character bytes are
saved by the keyboard processor. The master pro­
cessor must periodically poll the IOC to determine if
keyboard entries have occurred and then command
the IOC to transfer the keyboard characters to the
master via the IOC's DBB.

The commands used to input keyboard characters are
functionally similar to commands used to update the
CRT display or to accomplish diskette data transfers
in that any command must be completely processed
by the IOC before a new command can be issued.
However, keyboard entries may occur at any time
irrespective of I/O activities initiated by the master.
Any program controlling the IOC must allow time
for the acceptance of new keyboard entries during
the execution of any lIO operation of long duration.
The frequency of keyboard input commands must be
sufficient to match the keystroke rate of a fast typist;
the keyboard processor provides temporary storage
for up to eight characters. Keyboard entries must be
handled as unscheduled real-time events by the con­
trolling resident or non-resident program.

CHAPTER 41
10C 1/0 INTERFACES

4.2 DATA BUS BUFFER

The lPBIIPC (or any other master processor) uses
two lIO ports for communications with the IOC.
The first of these ports (port CO) is a data port that
provides for single byte transfers to or from the IOC.
The bytes may contain data to or from a device,
status from the IOC or one of its devices, or
diagnostic instructions or results from the IOC. The
second port (port Cl) is a control port that provides
for command transfers to the IOC and the return of
DBB status. The commands directly control the IOC
and identify the type of data, status, or diagnostic
information that is to be transferred via the data
port. All transfers via the data port require prior
master processor issuance of a command to the IOC
control port. However, a command does not
necessarily result in a data port transfer.

The preceding arrangement allows for the following
types of transfers to and from the IOC:

• Direct transfer of DBB status without IOC
participation .

• Direct control of the IOC by means of
commands that do not result in a data transfer.

• Data tramfers to or from a device on command.

• Status transfers from the IOC or a device on
command.

• Diagnostic data transfers from the IOC on
command.

Two important factors are associated with transfers
between a master processor and the lOCo The first
factor is that most commands cause the transfer of
only one byte of data, status, or diagnostic informa­
tion via the data port. If a block of information
(other than diskette data) is to be transferred, a
separate command is required for each byte of the
block. The diskette data transfer commands (read
and write) cause the transfer of a block of data to or
from the master processor. The second factor is that
the master processor maintains total control of
transfers via the data port. The IOC, when respond­
ing to a read command, sets the FO flag while it is
executing the command and then sets the output buf­
fer full (OBF) flag to indicate when the requested
byte can be read by the master processor. Accord­
ingly, the master processor must repeatedly access
the DBB status byte to determine when the the input
data is ready. Similarly, when the IOC is responding
to a write command, it sets the FO flag while it is
executing the command and clears the input buffer
full (IBF) flag when it accepts the byte (the master

4-1

IOC I/O Interfaces

processor sets the IBF flag when it writes the byte to
the input buffer). The DBB status byte must also be
accessed prior to issuing any command to ensure that
the laC is ready to accept the command (i.e., IOC
busy flag FO must be tested).

The format of the DBB status byte returned during
an I/O read of port CI is as follows:

OBF

IBF

FO

MSB LSB

1 716 I 514 1312 11 10 I
L

-
OBF

IBF

FO

c/o

} """"
Output Buffer Full. The OBF flag is
automatically set (to a "I" state) by the
lac processor when the lac writes a data
byte to the output buffer. The OBF flag is
automatically cleared (to a "0" state) when
the master processor reads the byte from
the output buffer.

Input Buffer Full. The IBF flag is
automatically set by the master processor
when it writes a data byte to the input buf­
fer. The IBF flag is automatically cleared
when the lac processor reads the byte
from the input buffer.

FO flag. The FO flag is set by the lac
processor on receipt of a command from
the master processor in order to lockout
additional command entry. On completion
of the command, the laC processor clears
the FO flag. The master processor monitors
the FO flag to determine when a command
has been accepted (FO flag set) and when
command processing is complete (FO flag
clear).

CI D Command/Data. The CI D flag reflects
the state of the master processor's low­
order port address bit to differentiate
between the writing of a data byte to port
CO (CI D = 0) and the writiI.!J?, of a com­
mand byte to port CI (C/D = I). The
IOC processor examines this flag to deter­
mine if the byte in the input buffer is a

4-2

IntelIec® Series II

command or data. The laC processor also
controls this flag to inform the master pro­
cessor of the contents of the output buffer
(if CI D = 0, the output buffer contains
the requested data byte; if CI D = I, the
output buffer contains a status byte).

Command bytes transferred to the lac during an
110 write to port CI have the following general
format:

MSB LSB

17161514131 2 1110J

l
-

COMMAND
CODE

} RESERVED

REQUEST INTERRUPT

Command Code is a 5-bit binary value that uniquely
identifies each of the commands that may
be issued by the master processor.

Request Interrupt is a control bit that informs the
laC that an interrupt is expected at the
completion of the operation specified by
the command. Commands that make use
of the request interrupt bit include all com­
mands that pass data to or from the CRT
and the integral diskette.

Data, status and diagnostic bytes transferred via 110
port CO have no specific format except as required by
the associated command. Data bit mnemonics are as
follows:

MSB LSB

1716151413121110 I
L DO

'--- 01
02
03
04
05
06
07

•

•

•

•

•

•

•

•

•

•

Intellec ® Series II IOC I/O Interfaces

4.3 IOC COMMANDS

Specific commands are used with the diskette drive,
the CRT, and the keyboard. The status byte returned
by the individual I/O devices serves to verify proper
operation of the device. Other commands are not
used by a specific device and are known as system
commands (all diagnostic commands are system
commands). A complete listing of the IOC com­
mands is provided in table 4-1.

diagnostic testing of IOC facilities. The following
text describes each of the system commands and
defines the format of data bytes that are transferred
as a result of command execution.

4.3.1 SYSTEM COMMANDS

NOTE

Command bit 7 has no function within the
system commands (i.e., interrupts cannot be
generated by the IOC on execution of a
system command).

Eleven of the commands that may be issued by a
master processor to the 10C are used to control or
test subsystem functions that are common to all of
the IOC devices. These system commands permit
program-controlled hardware resetting, provide for
the return of device and subsystem status, control
enabling and resetting of interrupts, and enable

The PACIFY command is a software reset that ter­
minates any pending I/O operation and reinitializes
the IOC hardware and software. No data byte
transfer is associated with this command. IOC
initialization requires a minimum of 100 milli­
seconds, and no subsequent commands should be
issued during this period.

The ERESET command is intended for use with an
I/O device that requires a hardware error reset to
clear an error condition within the device. Since the

Table 4-1. IOC Command Set

Type
Command

Mnemonic Function
Code

00000 PACIFY Resets IOC and its devices.
00001 ERESET Resets device-generated error (not used by standard devices).
00010 SYSTAT Returns subsystem status byte to master.
00011 DSTAT Returns device status byte to master.
00100 SRQDAK Enables input of device interrupt acknowledge mask from master.
00101 SRQACK Clears IOC subsystem interrupt request.

System
00110 SRQ Tests ability of IOC to forward an interrupt request to the master.
00111 DECHO Tests ability of IOC to echo data byte sent by master.
01000 CSMEM Requests IOC to checksum on-board ROM. Returns pass/fail.
01001 TRAM Requests IOC to test on-board RAM. Returns pass/fail.
01010 SINT Enables specified device interrupt from IOC.
01011 -
thru Reserved, causes illegal command error.

01111 -

CRT
10000 CRTC Requests data byte output to the CRT monitor..
10001 CRTS Returns CRT status byte to master.
10010 KEYC Requests data byte input from the keyboard.

Keyboard 10011 KSTC Returns keyboard status byte to master.
10100 - Reserved.
10101 WPBC Enables input of first of five bytes that define current diskette operation.
10110 WPBCC Enables input of each of four bytes that follow WPBC.
10111 WDBC Enables input of diskette write bytes from master.
11000 - Reserved.

Integral 11001 ROBe Enables output of diskette read bytes to master.
Diskette 11010 - Reserved.

11011 RRSTS Returns diskette result byte to master.
11100 RDSTS Returns diskette device status byte to master.
11101 -
thru Reserved, causes illegal command error.

11111 -

4-3

IOC 110 Interfaces

standard devices of the IOC do not require an error
reset signal, the ERESET command is not imple­
mented by IOC firmware.

The SYST A T command causes the IOC processor to
load the system status byte into the output data buf­
fer of the DBB. The IOC processor sets the OBF flag
and clears the C/O flag to inform the master pro­
cessor that system status byte can be read from the
data port. The format of the system status byte is as
follows:

MSB LSB

1716151413121110 I
l

-

ILLEGAL INTERRUPT MASK

ILLEGAL DATA TRANSFER

ILLEGAL COMMAND

DEVICE ERROR

Illegal Interrupt Mask is set when the interrupt
reset mask transferred by a SRQDAK com­
mand does not correspond to the interrupt
bit set in the device status byte. The illegal
interrupt mask bit is cleared when the master
processor reads the system status byte from
the output buffer.

lllegal Data Transfer is set when the master pro­
cessor loads a data byte into the DBB input
buffer without a preceding command. The
data byte is not accepted by the IOC. The
illegal data transfer bit is cleared when the
master processor reads the system status
byte from the output port.

illegal Command is set when the master processor
loads an undefined command code into the
DBB input buffer (see table 4-1). The com­
mand is not executed by the IOC. The
illegal command bit is cleared when the
master processor reads the system status
byte from the output buffer.

Device Error is set when a device fails to respond to a
command. The master processor must issue
a DST A T command to determine the indi­
vidual device responsible for the error. The
device error bit is cleared by the DST A T
command.

4-4

Intellec® Series II

The DST A T command causes the IOC processor to
load the device status byte into the output data buffer
of the DBB. The IOC processor sets the OBF flag
and clears the C/O flag to inform the master pro­
cessor that the device status byte can be read from the
data port. The format of the device status byte is as
follows:

MSB LSB

1716151413121110 I
L
~

CRT)

RD l DEVICE
KEY BOA J INTERRUPT

DISKETTE

} RESERVED

CRT ,

KEYBOARD l DEVICE

J ERROR

DISKETTE

A Device Interrupt bit is when the operation
specified by a command has been com­
pleted and interrupts for the device have
been enabled (request interrupt bit in the
command byte set or device interrupt
previously enabled by a SINT command).
A device interrupt bit is cleared by a
SRQDAK or SRQACK command.

A Device Error bit is set when the specified device
fails to respond to a command issued by
the master processor. A device error bit is
cleared when the master processor reads
the device status byte. More detailed error
information is provided by the CRTS com­
mand (for CRT errors), the KSTC com­
mand (for keyboard errors) or the RDSTS
command for diskette errors).

The SRQDAK command is used to clear a device
interrupt. The subsequent data byte from the master
processor to the input data buffer is as follows:

MSB LSB

1716151413121110 I
Lc

'---K

01

RT)
EYBOARD ~~iE~RUPT

SKETTE
~

"> RESERVED

•

•

•

•

•

•

•

•

•

•

Intellec® Series II

An Interrupt Reset bit, when set, clears the corre­
sponding interrupt bit in the device status
byte (see DST AT command). Attempting
to reset an interrupt bit that is not set
causes the illegal interrupt mask bit to be
set in the system status byte. Note that the
SRQDAK command also clears the hard­
ware interrupt to the IPB/IPC.

The SRQACK command causes the 10C to reset all
of the interrupt bits in the device status byte and the
hardware interrupt to the IPBIIPC. A data byte
transfer is not associated with the SRQACK
command.

The SRQ command causes the 10C to generate a
hardware interrupt to the IPB/IPC. The interrupt
bits of the device status byte are not affected, and a
data byte transfer is not initiated. This diagnostic
command allows any master processor to test the
10C interrupt request line when all other local inter­
rupts of the IPB/IPC are reset. The 10C interrupt
request causes a level 7 interrupt request on the
Multibus interface. The interrupt request is cleared
by a SRQACK command.

The DECHO command causes the IOC processor to
accept and return (in complemented form) the next
data byte input from the master processor. Although
the data byte is sent and received via 110 port CO, the
path within the 10C includes a software-controlled
transfer of the data byte from the DBB input data
buffer to the DBB output data buffer. The entire
action constitutes a fairly comprehensive test of the
master processor-IOC interface. The 10C response
to a DECHO command requires approximately two
milliseconds.

The CSMEM command causes the IOC processor to
checksum the contents of the 10C ROM and thereby
perform a confidence test on the IOC firmware. If
the checksum test passes, the IOC processor sets the
C / D flag to zero and returns a data byte of all
zeroes; if the checksum test fails, the 10C processor
sets the C/ D flag to one and returns a data byte of
all ones. Command execution requires approximately
100 milliseconds.

The TRAM command causes the 10C processor to
perform read-after-write testing of 10C RAM. If a
RAM location is found to be faulty, the test is ter­
minated, and the IOC processor sets the C/ D flag
to one and returns a data byte of all ones. If the test
passes, the IOC processor sets the C/D flag to zero
and returns a data byte of all zeros. Faulty locations
are not identified. Command execution requires
approximately 100 milliseconds.

IOC I/O Interfaces

The SINT command causes the IOC processor to
accept an interrupt enable byte at the input data buf­
fer of the DBB. The enabling of any interrupt bit also
enables the hardware interrupt line (IOC interrupt) to
the IPB/IPC. The interrupt enable bits perform a
function identical to the request interrupt control bit
(bit 7) of a command byte. Note that once an inter­
rupt is enabled, it remains enabled until a subsequent
SINT command is issued to clear the interrupt enable
bit. The format of the interrupt enable byte is as
follows:

MSB LSB

171s 1514 I 31 2 11 10 I
LCR

'---K

01

E:BOARO) INTERRUPT ENABLE

SKEnE
...,

> RESERVED

An Interrupt Enable bit, when set, enables the inter­
rupt from the corresponding IOC device.
The format of the interrupt enable byte is
identical to that of the interrupt reset byte
of the SRQDAK command. Note that
when any of the interrupts are enabled, the
IOC interrupt to the IPB/IPC is also
enabled.

4.3.2 CRT COMMANDS

All timing and formatting of the integral CRT
display is established by the IOC firmware and the
8275 programmable CRT controller. The pre­
sentation of data is accomplished by transferring
data from 10C RAM tables to the CRT character
generating circuits. Commands from the master pro­
cessor merely update the data tables. A single type of
command is used to write keyboard inputs and to
program responses on the CRT. A second CRT­
associated command returns CRT status to the
master processor.

The CRTC command causes the 10C to use the next
data byte appearing at the DBB input data buffer as
an input to the CRT display tables located in IOC
RAM. The occurrence of the command is totally
asynchronous with respect to CRT display raster tim­
ing. Furthermore, positioning of characters on the
CRT screen is determined solely by a pointer that is
maintained by the 10C firmware. Operator keyboard

4-5

lOC I/O Interfaces

entries can alter the pointer for editing purposes, but
the interpretation of the special characters used for
this purpose (or any other purpose) is a function of
the IOC firmware. The character codes employed are
those of the ASCII set.

When operating under ISIS or Monitor, the
IPB/IPC polls the DBB to determine when the IOC
has accepted the CRT character byte, and interrupts
are not employed (the request interrupt bit of the
command byte is notset). When the request interrupt
bit (bit 7) of the CRTC command byte is set (or if
CRT interrupts have been previously enabled by a
SINT command), the IOC processor will set the CRT
interrupt bit in the device status byte when it writes
the CRT character byte into IOC RAM and, unless
IOC interrupts have been masked out by the master
processor, the IOC will interrupt the IPB/IPe. In an
interrupt-driven environment, the master processor
should clear the CRT interrupt (SRQDAK or
SRQACK command) before the next CRT character
byte is written.

NOTE

Interrupt-driven programs that make use of
the IOC interrupt must access the device
status byte (DST AT command) to determine
the source of the interrupt.

The CRTS command causes the IOC processor to
load the CRT status byte into the output data buffer
of the DBB and to clear the CRT device error bit in
the device status byte. The CRTS command is nor­
mally issued only in response to a CRT error as
indicated by the setting of the device error bit in the
system status byte and the setting of the CRT error
bit in the device status byte. The format of the CRT
status byte is as follows:

MSB LSB

17161514131211101

L CRT PRESENT

-

}m"'''
ILLEGAL DATA

ILLEGAL STATUS

RESERVED

CRT Present is set during initialization and indi­
cates that the IOC is operational (i.e., able
to respond to commands from a master
processor).

4-6

Intellec® Series II

lllegal Data is set when the master processor loads
a data byte into the DBB input buffer
without a preceding CRTC command. The
illegal data bit is cleared when the master
processor reads the CRT status byte.

Illegal Status is set when the request interrupt bit
(bit 7) of the CR TS command byte is
erroneously set by the master processor. (A
master processor cannot legally request an
interrupt at the completion of a status
accessing operation.) The illegal status bit
is cleared when the master processor reads
the CRT status byte.

4.3.3 KEYBOARD COMMANDS

Two commands are used with the keyboard; one
command is used to access keyboard entries, and the
other command is used to access keyboard status.

The KEYC command causes the IOC processor to
access an ASCII character byte from the keyboard
processor and to place this byte in the output data
buffer. The KEYC command is the only IOC data
transfer command that does not make use of the
request interrupt bit in the command byte (to enable
keyboard interrupts, the SINT command must be
used). The format for the keyboard character bytes is
established by the ASCII standard.

The KSTC command causes the IOC to access the
keyboard status byte and to place this byte in the out­
put data buffer of the DBB. When operating in the
polled mode (interrupts disabled), the master pro­
cessor first uses the KSTC command to determine
when a character has been entered at the keyboard
(by testing the data ready bit) and then uses the
KEYC command to access the character byte. The
KSTC command is also issued in response to a
keyboard error (indicated by the setting of the device
error bit in the system status byte and the setting of
the keyboard device error bit in the device status
byte). The format of the keyboard status byte is as
follows:

MSB LSB

17161514131211101

L
'----

DATA READY

KEYBOARD PRESENT

ILLEGAL STATUS REQUEST

DEVICE TIMEOUT

•

•

•

•

•

•

•

•

•

•

IRtellec® Series II

Data Ready is set when a character byte is available
from the keyboard processor as a result of
keyboard entry.

Keyboard Present is set when the keyboard is
connected to the development system. The
IPB/IPC examines this bit during initial­
ization to assign the system console device
(if the keyboard present bit is set, the
keyboard and integral CRT are assigned as
the system console; if the keyboard present
bit is clear, the device attached to one of
the serial I/O channels is assigned as the
system console).

Illegal Status Request is set when the request inter­
rupt bit in the KSTC command byte is set
(a master processor cannot legally request
an interrupt at the completion of a status­
access operation) and is cleared when the
master processor reads the keyboard status
byte.

Device Timeout is set when a KEYC command is
issued when a character byte is not
available from the keyboard processor
(data ready bit clear). The device timeout
bit is cleared when the master processor
reads the keyboard status byte.

4.3.4 INTEGRAL DISKETTE
COMMANDS

The integral diskette of the lntellec Series II develop­
ment system is a random-access, mass-storage media
on which information is formatted to simplify access
and to utilize available storage space. Accordingly, a
significant amount of control information must be
passed to the diskette and its control circuits. Some
control information such as sector size may be fixed
and can be established during system initialization.
Other information, such as the size of a file to be
recorded and the availability of storage space, can
only be determined immediately prior to recording
the file and requires active participation on the part
of the master program.

The need to provide for master program control of
diskette recording plus the fact that data transfers
occur in two directions (diskette read or write)
substantially increases the number of commands that
must be issued to the lOCo Furthermore, two types of
status bytes are returned by the 10C processor; one
to indicate the success of IOClmaster interactions
and the other to indicate the results of lOCI diskette
drive interactions. The six commands required to
transfer diskette control, data, and status bytes are
listed in table 4-1.

10C I/O Interfaces

Most of the control information supplied to the 10C
is provided in the form of five bytes that are referred
to as the I/O parameter block (lOPB). These bytes
specify the diskette operation to be performed and
provide formatting information including the
number of records (sectors) to be transferred and the
track and sector addresses.

The diskette commands are associated with two inter­
faces; the interface between the 10C and a master
processor and the interface between the 10C pro­
cessor and the diskette. The diskette read and write
commands (RDBC and WDBC) transfer data
between the master processor and 10C RAM. Con­
versely, the parameter block write commands
(WPBC and WPBCC) load the I/O parameter block
into 10C RAM; the contents of the parameter block
are used to define and initiate data transfers between
10C RAM and the diskette. The read drive status
command (RDSTS), in addition to defining the cur­
rent status of the drive, indicates incorrect command
entry or execution. The read result status command
(RRSTS) is used to verify the result of a diskette
operation.

Diskette data transfers must be viewed as two
separate operations; the transfer of the data block
between a master processor and 10C RAM and the
transfer of the data block between 10C RAM and the
diskette. Data block transfers between 10C RAM
and the diskette are automatically initiated when the
last byte of the I/O parameter block is written into
10C RAM. Accordingly, in order to write data on
the diskette, the data block must first be written into
10C RAM before the parameter block is written.
Conversely, in order to read a data block from the
diskette, the parameter block must. precede the
reading of the data block from 10C RAM. Typical
command sequences for diskette read and write
operations are outlined in table 4-2.

The WPBC command causes the 10C processor to
accept the next data byte at the DBB input data buf­
fer as the first (channel word) byte of a parameter
block. The 10C processor writes this data byte into a
preassigned location in IOC RAM. The request inter­
rupt bit of the command byte, if set, causes a diskette
device interrupt to be generated when the byte is writ­
ten into RAM. The format and function of the first
parameter block byte are discussed following the
description of the WPBCC command.

The WPBCC command causes the 10C processor to
accept the next data byte at the DBB input data buf­
fer as one of the subsequent I/O parameter block
bytes. The IOC processor writes the byte into IOC
RAM and, if the request interrupt bit is set in the

4-7

10C 110 Interfaces Intellec® Series II

Table 4-2. Typical Diskette Read and Write Command Sequences

Read Sequence

Command Action

RDSTS Determine if drive is ready
WPBC Input IOPB Channel Word byte
WPBCC Input IOPB Diskette Instruction byte
WPBCC Input IOPB Sector Count byte
WPBCC Input IOPB Track Address byte
WPBCC Input IOPB Sector Address byte
RDSTS Determine when operation is complete (polled mode)
RRSTS Determine if operation was successful
RDBC Output data block from IOC RAM

Write Sequence

Command Action

RDSTS Determine if drive is ready
WDBC Input data block to IOC RAM
WPBC Input IOPB Channel Word byte
WPBCC Input IOPB Diskette Instruction byte
WPBCC Input IOPB Sector Count byte
WPBCC Input IOPB Track Address byte
WPBCC Input IOPB Sector Address byte
RDSTS Determine when operation is complete (polled mode)
RRSTS Determine if operation was successful

NOTE:
1. First byte of data block input to IOC from master processor contains sector count that is multiplied

by 128 by the IOC to determine the number of bytes to be transferred.

command byte, generates a diskette device interrupt
when the byte is written. The data byte being written
into IOC RAM is either the second, third, fourth or
fifth byte of the lIO parameter block. The byte writ­
ten and the IOC RAM location selected are deter­
mined by the occurrence of the WPBC command and
any subsequent WPBCC command. In other words,
the WPBC command serves as a reference for the
lIO parameter block and the following four WPBCC
commands load the four remaining parameter bytes
in consecutive RAM locations. Accordingly, the
parameter block bytes must be presented in sequence,
and any detected error requires reentry of the entire
lIO parameter block. The sequence in which lIO
parameter block bytes are input is indicated in table
4-2.

4-8

NOTE

Further details on programming diskette
operations are provided in the 8271 Pro­
grammable Floppy Disk Controller data
sheet.

The format of the lIO parameter block Channel
Word byte (byte 1) associated with the WPBC com­
mand is as follows:

MSB LSB

L7/ajS/4 /3l2 /1 loJ
L--

-

> RESERVED

~

SE CTOR SEQUENCE

RE SERVED

The sector sequence bit (bit 6) is only examined when
a format track operation is specified in the diskette
instruction byte (byte 2) of the lIO parameter block.
When the sector sequence bit is set, the "random"
sector format is selected, and the diskette controller

•

•

•

•

•

•

•

•

•

•

Intellec® Series n

accesses a format table in 10C RAM to determine the
order in which logical sector addresses are assigned
when formatting the track. The format table consists
of 26 data byte pairs. The first byte of each pair is a
sector address ranging from 1 to 26 (OIH-IAH); the
second byte can contain any value and is required
only to maintain compatibility with the Intel two­
board diskette controllers. The format table must be
written into 10C RAM (using the WDBC command)
prior to initiating the format track operation. The
format table itself begins at the same predefined loca­
tion in 10C RAM that is used to temporarily store
diskette data. The first entry in the table is the sector
count byte (see WDBC command description) and
contains a value of 01H (the 10C processor multi­
plies the sector count value by 128 to determine the
number of consecutive RAM locations to be written
by the WDBC command). During the format track
operation, the diskette controller writes the first sec;
tor address entry from the table into the ID field of
physical sector 01 (the first sector following the index
mark), the second sector address table entry into
physical sector 02, etc., until all 26 sectors have been
written. The track address written into the ID field is
taken directly from the track address byte (byte 4) of
the 110 parameter block. The sector data marks,
CRC characters and gaps are supplied by the diskette
controller, and the data field of each sector is filled
with 128 bytes of OE5H .

When the sector sequence bit is clear, the "sequen­
tial" sector format is selected. The format track
operation follows the random sector format descrip­
tion of the previous paragraph with the exception
that the sector addresses are assigned in sequential
order (i.e., physical sector 01 is assigned logical sec­
tor address 01, physical sector 02 is assigned logical
sector 02, etc.) by the diskette controller, and a for­
mat table is not required.

The format of the 110 parameter block Diskette
Instruction byte (byte 2) is as follows:

MSB LSB

1716151413121110 I
L

} 0"""0' CODE

RESERVED
(MUST BE ZERO)

} DRIVE ADDRESS
(MUST BE ZERO)

} RESERVED
(MUST BE ZERO)

IOC liD Interfaces

Drive Address. Bits 4 and 5 specify the drive address.
The integral drive is assigned unit 0, and
bits 4 and 5 must both be zero.

Operation Code. Bits 0, 1 and 2 specify the diskette
operation to be performed. Operation code
functions are outlined in table 4-3.

The format of the 110 parameter block Sector Count
byte (byte 3) is as follows:

MSB LSB

171 &1 5 14 1 31 2 11 10 I
L"
~

~

l

SECTOR
COUNT

RESERVED
(MUST BE ZERO)

The Sector Count byte specifies the number of sec­
tors to be accessed during a diskette read,
write or verify operation. The combined
value of the sector count and the (starting)
sector address (byte 5 of the 110 parameter
block) cannot be greater than 26 (lAH).
Note that if the sector count value is OH,
one sector is transferred.

The format of the 110 parameter block Track
Address byte (byte 4) is as follows:

MSB LSB

17161514131211101

L
L.......-

TRACK
ADDRESS

RESERVED
(MUST BE ZERO)

The Track Address byte specifies the track to be
accessed during a subsequent diskette seek,
read or write operation. Since a diskette
has 77 tracks, legal values range from OOH
to 4CH (tracks 0 through 76).

4-9

IOC 110 Interfaces

The format of the I/O parameter block Sector
Address byte (byte 5) is as follows:

MSB LSB

17181514131211101
L"

L--

>-

--

}

SECTOR ADDRESS

RESERVED
(MUST BE ZERO)

The Sector Address byte specifies the sector or the
first of a series of sectors to be accessed
during a subsequent diskette read, write or
verify operation. Legal values range from
01H to lAH (1-26).

The WDBC command causes the IOC processor to
read-in a block of data bytes through the DBB input
data buffer and to write the data bytes into sequential
locations in IOC RAM. The WDBC command is
used prior to a write data or format track (random
format only) diskette operation to load the data to be
written on the diskette into IOC RAM. The first byte
transferred by the WDBC command is a count byte
that specifies the number of 128-byte blocks to
follow (the count byte is not written into RAM; the
IOC multiplies the value by 128 to determine the
extent of the transfer). Note that while the format
table associated with the format track operation only
requires 52 byte entries, 128 bytes are transferred by
the WDBC command. The request interrupt bit of
the WDBC command byte, when set, causes a
diskette device interrupt to be generated when the
specified number of data bytes have been written into
IOCRAM.

The RDBC command causes the IOC processor to
place sequential data bytes from IOC RAM into the
DBB output data buffer and is issued following a
read data diskette operation to allow a master pro­
cessor to access the data read from the diskette. The
number of bytes transferred by a RDBC command is
dependent on the number of sectors read during the
previous read data operation (specified by byte 3 of
the associated I/O parameter block). When the
request interrupt bit is set in the RDBC command
byte, a diskette device interrupt is generated when the
master processor reads-in the last data byte from the
DBB output data buffer.

4-10

Intellec® Series II

The RRSTS command is issued when a diskette
device error is indicated in the device status byte and
causes the IOC processor to place the diskette con­
troller's result byte in the DBB output data buffer.
The diskette device error bit is cleared when the
master processor reads the result byte. The individual
bits of the result byte are defined as follows:

MSB LSB

1718151413T2T1101
L

'---

DELETED RECORD

CRCERROR

SEEK ERROR

ADDRESS ERROR

DATA OVERRUN/UNDERRUN ERROR

WRITE PROTECT

NOT USED
(ZERO RETURNED)

NOT READY

Deleted Record is set when an attempt is made to
read or verify a deleted sector (a sector that
has previously been rewritten with a deleted
data mark at the beginning of its data
field). If the deleted record bit is set, the
data is not transferred or verified.

CRC Error is set when the CRC character computed
for a read data or verify CRC operation
does not match the CRC character
generated when the sector was written.
Since this error is not detected until the sec­
tor is read, the data in IOC RAM must be
considered invalid.

Seek Error is set during a read, write or verify opera­
tion when the addressed sector cannot be
located within one complete revolution or
when the track address specified does not
match the track address read. If the seek
error bit is set, no data is transferred, and a
recalibrate operation should be performed
to position the drive's read/write head at a
known location.

Address Error is set when:

• the track address specified is greater
than 76 (4CH).

• a sector address of OOH is specified.

• a sector address greater than 26 (lAH)
is specified.

• the sector address and the number of
sectors specified is greater than 26
(lAH).

•

•

•

•

•

•

•

•

•

•

Intellec® Series II IOC I/O Interfaces

Table 4-3. Diskette Operation Codes

Operation Code
Operation Function

Bit 2 Bit 1 BitO

0 0 0 No Operation No operation. The diskette controller immediately sets the operation
complete status bit in the diskette device status byte when the last 1/0
parameter block is written.

0 0 1 Seek Initiates a seek operation to the track address specified in byte 4 of the
1/0 parameter block and sets the operation complete status bit in the
diskette device status byte.

0 1 0 Format Track Initiates a seek operation to the track address specified in byte 4 of the
1/0 parameter block. When the complete track has been formatted, the
diskette controller sets the operation complete status bit.

0 1 1 Recalibrate Steps the diskette drive's readlwrite head out until a track 0 indication is
received from the drive. When track 0 is located, the diskette controller
sets the operation complete status bit.

1 0 0 Read Data Initiates a seek operation to the track address specified in byte 4 of the
1/0 parameter block and begins reading the sector ID fields until the sec-
tor addressed in byte 5 of the 1/0 parameter block is located. When the
addressed sector is located, transfer the data contents of the number of
sectors specified by byte 3 of the 1/0 parameter block to 10C RAM. When
the transfer is complete, the diskette controller sets the operation com-
plete status bit.

1 0 1 Verify CRC Identical to the read data operation except that no data is transferred to
10C RAM. If an error is detected (i.e., if the data read does not match the
data previously written), the diskette controller sets the CRC error bit in
the result status byte. The operation complete status bit is set when the
operation is complete (or if an error is detected).

1 1 0 Write Data Initiates a seek operation to the track address specified in byte 4 of the
1/0 parameter block and begins reading the sector ID fields until the sec-
tor addressed in byte 5 of the 1/0 parameter block is located. When the
addressed sector is located, reads in the data from 10C RAM and serially
writes the data into the sector's data field. When the number of sectors
specified by byte 3 of the 1/0 parameter block have been written, the
diskette controller sets the operation complete status bit.

1 1 1 Write Deleted Identical to the write data operation except that a deleted data mark is
Data written in place of the data address mark at the beginning of the data

field.

Data Overrun/Underrun Error is set when the disk­
ette controller is unable to write a data byte
to RAM before it is overwritten or when
the requested data byte is not received from
RAM in time to be written on the diskette.

Not Ready is set when the diskette drive is not ready
to perform a seek, read or write operation
(i.e., the door is open or a diskette is not
installed) .

Write Protect is set when an attempt is made to for­
mat or write to a write-protected diskette.
When this bit is set, the operation is
prevented, and no data is written on the
diskette.

The RDSTS command causes the 10C processor to
place the diskette status byte in the DBB output data
buffer. The RDSTS command is used prior to a
diskette operation to determine if the drive is ready

4-11

IOC I/O Interfaces

and is used in the polled mode (interrupts disabled) to
determine when the operation has been completed.
The format of the diskette status byte is as follows:

MSB LSB

17181514131211101

L
'---

RESERVED

READY 0

OPERATION COMPLETE

PRESENT

RESERVED

ILLEGAL DATA

ILLEGAL STATUS

RESERVED

Ready 0 is set when the diskette is ready to perform
a seek, read or write operation (i.e., the
diskette is in place and up to speed).

4-12

Intellec® Series II

Operation Complete is set when the specified
operation has been completed or when the
operation cannot be completed as a result
of an error condition. When this bit is set,
the device status byte and/or the con­
troller's result byte should be examined.

Present is set when the integral diskette drive is
physically connected to the IOC circuit
board.

Illegal Data is set when the master processor loads
a data byte into the DBB input data buffer
without a preceding integral diskette
command.

Illegal Status is set when the request interrupt bit
(bit 7) of an RDSTS or RRSTS command is
set by a master processor (a master pro­
cessor cannot request an interrupt at the
completion of a status-access operation) .

•

•

•

•

•

•

•

•

•

•

CHAPTER 5
PIO SUBSYSTEM INTERFACES

The Parallel Input Output (PIO) subsystem consists
of the hardware and software that are used to
establish interfaces between a master processor and
the standard parallel-byte peripheral devices of the
Intellec Series II development systems. The standard
peripherals consist of a line printer, a paper tape
punch, a paper tape reader, and an Intel PROM
programmer.

The interfaces for the printer and paper tape
reader/punch are somewhat specialized, but may be
modified to meet the requirements of similar devices.
The bidirectional PROM programmer interface is
more adaptable and can be modified to meet the
parallel communication needs of a wide variety of
intellegent devices, subsystems, and systems.

The PIO subsystem is, in several respects, similar to
the 10C. The PIO subsystem includes a data bus buf­
fer (DBB) that is functionally identical to the 10C's
DBB; the PIO system commands are identical in
function to the 10C system commands, and the PIO
device commands are comparable to the 10C com­
mands that control the CRT and keyboard. The
device interfaces of the two subsystems differ,
however, due to the specific requirements of the
devices. All PIO functions are implemented within
an Intel 8041 PIO processor. The 8041 chip contains
the DBB as well as all data and program memory
required for peripheral device control. Conversely,
the PIO subsystem does not use intelligent hardware
in the form of special- purpose programmable chips;
all device signal timing and control are established by
the PIO. The PIO is more flexible in terms of the
special I/O device interfaces that may be
implemented.

All communications between the PIO and a master
processor are accomplished via the DBB. The DBB is
essentially an inter bus communications facility that
stores one input byte or output byte and one byte of
DBB status. The DBB status bits indicate the
presence of data in the input and output buffers, the
busy status of the PIO processor relative to com­
mand execution, and the type of byte (command/
status or data) in the input or output buffer.

5.1 PIO/MASTER PROCESSOR
PROTOCOL

The IPB/IPC (or any other master processor) uses
two 110 ports for communications with the PIO pro­
cessor's data bus buffer. One port (port F8) is a
bidirectional data port that provides single byte
transfers to or from the PIO processor's data bus
buffer. The byte transferred may contain data to or
from a device, status from the PIO processor or one
of its devices, or diagnostic information from the
PIO processor. The other port (port F9) is a control
port that is used to transfer commands to the PIO
processor or to return DBB status to the master pro­
cessor. All transfers via the data port must be pre­
ceded by the issuance of a command to the PIO's
control port, although a command does not
necessarily result in a data port transfer.

Two facts should be noted regarding transfers
between a master processor and the PIO processor.
The first fact is that most commands transfer only
one byte of data, status or diagnostic information via
the data port, and in order to transfer a block of
information, a separate command must be issued for
each byte of the block (the PROM programmer read
and write commands transfer three bytes). The
second fact is that the master processor maintains
complete control of all transfers via the data bus buf­
fers; the PIO processor 'Gan only write to the DBB
output data buffer when requested by a master
processor.

The PIO processor, when responding to a command
specifying a read operation, sets the FO flag while it is
executing the command and then sets the output buf­
fer full (OBF) flag to indicate when the requested
byte can be read by the master processor. Unless
interrupts are employed, the master processor must
repeatedly access (poll) the DBB status byte to deter­
mine when the requested input data is available.
Similarly, when the PIO processor is responding to a
command specifying a write operation, it sets the FO
flag while it is executing the command and clears the
input buffer full (IBF) flag when it accepts the byte
(the master processor sets the IBF flag when it writes
the byte to the input buffer). The DBB status byte
must also be examined prior to issuing any command
to ensure that the PIO processor is ready to accept
the command (Le., PIO busy flag FO must be tested).

5-1

PIO Subsystem Interfaces

The format of the DBB status byte returned during
an 110 read of port F9 is as follows.

MSB LSB

1 7 1 6 1 5 1 4 I 31 2 11 10 I
L

'---

OBF

IBF

FO

c/o

} .m~ED

OBF Output Buffer Full. The OBF flag is
automatically set (to a "1" state) by the PIO
processor when it writes a data byte to the out­
put buffer. The OBF flag is automatically
cleared (to a "0" state) when the master pro­
cessor reads the byte from the output buffer.

IBF Input Buffer Full. The IBF flag is
automatically set by the master processor
when it writes a data byte to the input buffer.
The IBF flag is automatically cleared when the
PIO processor reads the byte from the input
buffer.

FO FO flag. The FO flag is set by the PIO
processor on receipt of a command from the
master processor in order to lock out addi­
tional command entry. On completion of the
command, the PIO processor clears the FO
flag. The master processor monitors the FO
flag to determine when a command has been
accepted (FO flag set) and when command
processing is complete (FO flag clear).

C/O Command/Data. The C/O flag reflects the
state of the master processor's low-order port
address bit to differentiate between the
writing of a data byte to port F8 (C/O=O)
and the writing of a command byte to port F9
(C/O=l). The PIO processor examines this
flag to determine if the byte in the input buf­
fer is a command or data. The PIO processor
also controls this flag to inform the master
processor of the contents of the output buffer
(if C/O=O, the output buffer contains the
requested data byte; if CI 0= 1, the output
buffer contains a status byte).

5-2

Intellec® Series II

Command bytes transferred to the PIO processor
during an 110 write to port F9 have the following
general format:

MSB LSB

1118 I 514 I 3 1211 loJ
L'

'---

>-

}
RE

COMMAND
CODE

CONTROL
CODE

QUEST INTERRUPT

Command Code is a 5-bit binary value that uniquely
identifies each of the commands that may
be issued by the master processor.

Control Code is a two-bit code that provides addi­
tional control of PIO paper tape reader
operations.

Request Interrupt is a control bit that informs the
PIO that an interrupt is expected at the
completion of the operation specified by
the command. Commands that use the
request interrupt bit are the paper tape
reader, paper tape punch and line printer
control commands.

5.2 PIO COMMANDS

Specific commands are used to transfer data between
the master processor and the peripheral devices
associated with the PIO subsystem and to return
status bytes from the individual devices. Other com­
mands are not used by any specific device and are
defined as system commands. A complete list of the
PIO commands is provided in table 5-1.

5.2.1 SYSTEM COMMANDS

There are eleven commands available to a master
processor that are used to control or test system func­
tions common to the PIO subsystem. These system
commands are identical in function to the eleven
system commands of the IOC and permit a program­
controlled reset function, return device and sub­
system status, control the enabling and disabling of
interrupts and permit diagnostic testing of the PIO

•

•

•

•

•

•

•

•

•

•

Intellec® Series II PIO Subsystem Interfaces

Table 5-1. PIO Command Set

Command
Mnemonic Function

Type Code

00000 PACIFY Resets PIO and its devices.
00001 ERESET Resets device-generated error (not used by standard devices).
00010 SYSTAT Returns subsystem ~;tatus byte to master processor.
00011 DSTAT Returns device status byte to master processor.
00100 SRODAK Inputs device interrupt acknowledge mask from master processor.

System
00101 SROACK Clears PIO subsystem interrupt request.
00110 SRO Requests PIO to forward an interrupt request to the master processor.
00111 DECHO Requests PIO to echo data byte sent by master processor.
01000 CSMEM Requests PIO to checksum internal ROM. Returns pass/fail.
01001 TRAM Requests PIO to test internal RAM. Returns pass/fail.
01010 SINT Enables specified device interrupt from PIO.
01011 -
thru Reserved, causes illegal command error.

01111 -
Reader

10000 RDRC Moves tape one frame forward /reverse or returns paper tape reader data byte.
10001 RSTC Returns paper tape reader status byte.

Punch 10010 PUNC Transfers data byte to paper tape punch.
10011 PSTC Returns paper tape punch status byte.
10100 LPTC Transfers data byte to printer.
10101 LSTC Returns printer status byte.

Printer 10110 WPPC Transfers two address/control bytes and one write data byte to PROM
programmer.

10111 RPPC Transfers two address/control bytes to PROM programmer and one read data
byte from PROM programmer.

11000 RPSTC Transfers two PROM programmer status bytes to master.
PROM 11001 RDPDC Transfers read data byte from PROM programmer.
Programmer 11010 -

thru Reserved, causes illegal command error.
11111 -

facilities. The following text describes each of the
system commands and defines the format of the data
bytes transferred as a result of command execution.

NOTE
Bit 7 of the command byte is not used in
system commands (i.e., an interrupt cannot
be generated by the PIO on completion of a
system command).

The PACIFY command is a software reset that ter­
minates any pending 110 opertion and reinitializes
the PIO hardware and software. There is no data
byte transfer associated with the PACIFY command,
and a minimum of 100 milliseconds is required to
complete the initialization sequence.

The ERESET command is intended for use with a
peripheral device that requires a hardware error reset
to clear an error condition within the device. Since
the standard devices of the PIO do not require an
error reset signal, the ERESET command is not
implemented by PIO firmware.

The SYST A T command causes the PIO processor to
load the system status byte into the output data buf­
fer of the DBB. The PIO processor sets that OBF flag

and clears the c/n flag to inform the master pro­
cessor that the system status byte can be read from
the data port. The format of the system status byte is
as follows:

MSB LSB

17161514131211101

l
'--} """"

ILLEGAL INTERRUPT MASK

ILLEGAL DATA TRANSFER

ILLEGAL COMMAND

DEVICE ERROR

Illegal Interrupt Mask is set when the interrupt reset
mask transferred by a SRQDAK command
does not correspond to the interrupt bit set
in the device status byte. The illegal inter­
rupt mask bit is cleared when the master
processor reads the system status byte from
the DBB output buffer.

5-3

PIO Subsystem Interfaces

Illegal Data Transfer is set when a master processor
loads a data byte into the DBB input buffer
without a preceding command. The byte is
not accepted by the PIO. The illegal data
transfer bit is cleared when the master pro­
cessor reads the system status byte from the
DBB output buffer.

Illegal Command is set when a master processor
loads an undefined command code into the
DBB input buffer (see table 5-1). The com­
mand byte loaded is not executed by the
PIO. The illegal command bit is cleared
when the master processor reads the system
status byte.

Device Error is set when a device fails to respond to a
command. The master processor must issue
a DST AT command to determine the indi­
vidual device responsible for the error and
to clear the device error bit from the system
status byte.

The DST AT command causes the PIO processor to
load the device status byte into the DBB output data
buffer. The PIO processor sets the OBF flag and
clears the CI is flag to inform the master processor
that the device status byte can be read from the data
port. The format of the device status byte is as
follows:

MSB LSB

111s 1514 I 3\2 111° I
L

'-----

PAPER TAPE PUNCH I
PRINTER ~\Vi~~uPT
PAPER TAPE READER

RESERVED

PAPER TAPE PUNCH}

PRINTER DEVICE

PAPER TAPE READER ERROR

PROM PROGRAMMER

A Device Interrupt bit is set when the operation
specified by a command that has its request
interrupt bit set has been completed. The
device interrupt bit is cleared by a subse­
quent SRQDAK or SRQACK command.

A Device Error bit is set when the specified device is
unable to comply with a command issued
by the master processor. A device error bit
is cleared when the master processor reads
the device status byte. More detailed error
information is provided by the individual
device status bytes (see RSTC, PSTC and
LSTC command descriptions).

5-4

Intellec® Series II

The SRQDAK command is used to clear a device
interrupt. The subsequent data byte from the master
processor to the DBB input data buffer is as follows:

MSB LSB

1 1 1 8 I 514 1 3 12 11 Lo I

LPA
PU NCH

_LI NE INTERRUPT

PER TAPE}

PR INTER RESET
PA PERTAPE
RE ADER

.....

>-- RESERVED

~

An Interrupt Reset bit, when set, clears the cor­
responding device interrupt bit in the
device: status byte (see DST A T command
description). Attempting to reset an inter­
rupt bit that is not set causes the illegal
interrupt mask bit to be set in the system
status byte. Note that the SRQDAK com­
mand also clears he PIO hardware inter­
rupt signal to the IPBIIPC.

The SRQACK command causes the PIO processor to
reset all of the device interrupt bits in the device
status byte and the PIO hardware interrupt signal to
the IPBIIPC. A data byte transfer is not associated
with the SRQACK command.

The SRQ command causes the PIO to generate a
hardware interrupt to the IPB/IPC. The device inter­
rupt bits of the device status byte are not affected and
a data byte transfer is not initiated. This diagnostic
command allows a master processor to test the PIO
hardware interrupt signal when all other local inter­
rupts of the IPB/IPC are reset. The PIO interrupt
signal causes a level 7 interrupt request on the
Multibus interface. The interrupt signal is cleared by
a subsequent SRQACK command.

The DECHO c:ommand causes the PIO processor to
accept and return (in complemented form) the next
data byte input from the master processor. Although
the data byte is sent and received via 110 port F8, the
internal path within the PIO processor includes a
software-controlled transfer of the data byte from
the DBB input data buffer to the DBB output data
buffer. The DECHO command represents a fairly
comprehensive test of the master processor-PIO
interface. The PIO response to a DECHO command
requires approximately two milliseconds.

•

•

•

•

•

•

•

•

•

•

Intellec® Series II

The CSMEM command causes the PIO processor to
checksum the contents of the PIO internal ROM and
thereby perform a confidence test of the PIO firm­
ware. If the checksum test passes, the PIO processor
clears the C/O flag to zero and returns a data byte
of all zeroes; if the checksum test fails, the PIO pro­
cessor sets the C/O flag to one and returns a data
byte of all ones. Command execution requires
approximately 100 milliseconds.

The TRAM command causes the PIO processor to
perform read-after-write testing of PIO internal
RAM. If a RAM location cannot be successfully
written and read-back, the test is immediatelY ter­
minated, and the PIO processor sets the C/O flag
to one and returns a data byte of all ones. If the test
passes, the PIO processor clears the C/O flag to
zero and returns a data byte of all zeroes. Command
execution requires approximately 100 milliseconds.

The SINT command causes the PIO processor to
accept an interrupt enable byte at the DBB input data
buffer. A bit set within the byte enables the cor­
responding device interrupt and also enables the PIO
hardware interrupt signal to the IPBIIPC. The inter­
rupt enable bits perform a function identical to the
interrupt request bit of a command byte. Note that
once a device interrupt is enabled, it remains enabled
until a subsequent SINT command is issued to reset
the interrupt enable bit. The format of the interrupt
enable byte is as follows:

MSB LSB

17161514131211101

LPA
PU NCH

'--- LI NE INTERRUPT

PER TAPE}

PR INTER ENABLE
PA PER TAPE
RE ADER ...,

>- RESERVED

~

An Interrupt Enable bit, when set, enables the inter­
rupt from the corresponding device. The
format of the interrupt enable byte is iden­
tical to the interrupt reset ,byte of the
SRQDAK command. Note that when any
of the individual interrupt enable bits is set,
the PIO interrupt line to the IPBIIPC is
also enabled.

PIO Subsystem Interfaces

5.2.2 P APER TAPE READER
COMMANDS

The standard 200 character/second paper tape reader
is pulsed to move one frame forward (to the right) or
reverse (to the left). Two control signals are used by
the reader: DR (drive right) and DL (drive left). The
paper tape reader supplies two device status signals:
DAT A READY and SYSTEMS READY. The
OAT A READY signal indicates that tape movement
has been completed and that a valid data byte is being
presented to the PIO. The SYSTEMS READY signal
indicates that the reader is connected to the PIO and
that power is applied to the reader.

Commands to the PIO include the RDRC reader con­
trol command and the RSTC reader status com­
mand. The reader control command is able to either
move the tape one frame or to enable PIO acceptance
of the data byte (concurrent tape movement and data
reading is not implemented). If the PIO detects an
error condition during a read operation, the reader
status byte is returned in place of the data byte. The
PIO informs the master processor that a status byte is
being presented by setting the command/data bit of
the DBB status byte, and the operation is comparable
to the PIO's execution of the RSTC reader status
command.

The RDRC command uses bits 5 and 6 of the com­
mand byte to define the direction of tape movement,
and either to select tape movement or to enable data
byte reading. Note that if data byte reading is
specified, the tape direction bit (bit 5) has no
significance. The combinations of bits :5 and 6 are as
follows:

Bit

6 5
Operation

0 0 Read data byte
0 1 Read data byte
1 0 Move tape forward one frame
1 1 Move tape reverse one frame

When the request interrupt bit (bit 7) of the com­
mand byte is set, a PIO interrupt is generated at the
completion of command processing and the paper
tape reader device interrupt bit is set in the device
status byte. When the RDRC command specifies tape
movement (bit 6 of the command byte set), the inter­
rupt is generated following tape movement (when the
paper tape reader generates OAT A READY). When
the command specifies a data byte read operation,
the interrupt is generated when the PIO processor
places the requested data byte in the DBB output
data buffer. Note that if an error is detected during
command execution, the interrupt is generated when
the PIO processor places the reader status byte in the
DBB output data buffer.

5-5

PIO Subsystem Interfaces

The RSTC command causes the PIO processor to
place the reader status byte in the DBB output data
buffer and to clear the paper tape reader device error
bit in the device status byte. The format of the reader
status byte is as follows:

MSB LSB

17161514131211101

L DATA READY

'--- SYSTEMS READY

ILLEGAL STATUS REQUEST

READER TIMEOUT

Data Ready is set when the paper tape reader has a
character in its output buffer and is cleared
when the PlO processor executes an RDRC
command to access the character byte.
When operating in the polled mode (inter­
rupts disabled), a master processor tests the
data ready bit following a tape movement
command to determine when the character
can be accessed by a subsequent RDRC
read data byte command.

Systems Ready is set when both primary power is
applied to the paper tape reader and the
reader is connected to its corresponding
connector on the rear panel of the develop­
ment system.

Illegal Status Request is set when the request inter­
rupt bit is set in the RSTC command byte
(a master processor cannot legally request
an interrupt at the completion of a status
access operation). The illegal status request
bit is cleared when the master processor
reads the paper tape reader status byte
from the DBB output data buffer.

Reader Timeout is set if the paper tape reader is not
connected or has remained in a not ready
condition (data ready=O) for more than 260
milliseconds following a tape movement
command. The timer is reinitialized with
every RDRC command.

5-6

IntelIec® Series II

5.2.3 PAPER TAPE PUNCH COMMANDS

The standard 75 character/second paper tape punch
responds to a single control signal (PUNCH COM­
MAND) that causes the punch to perforate a
character on the tape and to advance the tape to the
next frame position. The PUNCH COMMAND
signal is generated by the PIO following receipt of a
PUNC command from a master processor. The
associated paper tape punch data byte is placed on
the data output lines to the paper tape punch prior to
the generation of the PUNCH COMMAND signal to
the paper tape punch. Status regarding paper tape
punch operations is supplied by the PlO processor to
the master processor on receipt of a PSTC command.
Status lines from the paper tape punch consist of
PUNCH READY (operation complete) and
SYSTEMS READY.

NOTE

The INPUT MODE SELECT and OUTPUT
MODE SELECT control lines of the
standard paper tape punch are disabled
(grounded) at the interface connector on the
chassis rear panel, and the DIRECTION
control line is connected to +5 volts to only
enable forward tape motion.

The PUNC command causes the PlO processor to
accept the subsequent data byte at the DBB input
data buffer as the character byte to be punched on
the paper tape. The PIO processor delays the genera­
tion of the PUNCH COMMAND/ control signal
until the character byte has stabilized on the output
data lines to the paper tape punch. If the request
interrupt bit of the PUNC command byte is set, the
PIO processor sets the paper tape reader device inter­
rupt bit in the device status byte and generates a PIO
interrupt to the IPB/IPC when the paper tape reader
returns a PUNCH READY status indication.

The PSTC command causes the PlO processor to
place the paper tape punch status byte in the DBB
output data buffer and to clear the paper tape punch
device error bit of the device status byte. The format
of the paper tape punch status byte is as follows:

MSB LSB

1716151413121110 I
L PUNCH READY

'--- SYSTEMS READY

} """"
ILLEGAL COMMAND

ILLEGAL STATUS REQUEST

PUNCH TIMEOUT

•

•

•

•

•

•

•

•

•

•

Intellec® Series II

Punch Ready is set when the paper tape punch is
ready to receive a new punch command
(i.e., after a character is punched and the
tape is advanced one frame). When
operating in the polled mode (interrupts
disabled), a master processor tests the
punch ready bit following a PUNC com­
mand to determine when the operation has
been completed and the next character can
be punched.

Systems Ready is set when both primary power is
applied to the paper tape punch and the
punch is connected to its corresponding
connector on the development system's
rear panel.

Illegal Command is set when a PUNC command is
followed by a subsequent command byte
(C/D=l). When this bit is set, the PUNC
command is not executed (a character is
not punched). The illegal command bit is
cleared when the master processor reads
the paper tape punch status byte from the
DBB output data buffer.

Illegal Status Request is set when the request inter­
rupt bit is set in the PSTC command byte (a
master processor cannot legally request an
interrupt at the completion of a status
access operation). The illegal status request
bit is cleared when the master processor
reads the paper tape punch status byte
from the DBB output data buffer.

Punch Timeout is set if the paper tape punch is not
connected or has remained in a not ready
condition (punch ready=O) for more than
260 milliseconds following a PUNC com­
mand. The timer is reinitialized with every
PUNC command.

5.2.4 PRINTER COMMANDS

Two PIO commands are used to control the stanclard
60 character per second dot matrix printer. One com­
mand transfers ASCII character and control codes
from a master processor to the line printer (both
character and control codes are output to the printer
as parallel bytes), and the other command returns the
printer status byte to the master processor. The PIO
processor uses a single control line (LPT DATA
STROBEl) to transfer both control and character
codes to the printer. The ASCII characters trans­
ferred are stored in the printer's input character buf­
fer until either 80 characters have been received or a
carriage return or line feed control code is
encountered to terminate the line. When a character
line is complete, the printer initiates its print cycle.

PIO Subsystem Interfaces

The line printer returns three status signals to the
PIO processor: SELECT, BUSY and ACKNOWL­
EDGE. The SELECT signal is active when the line
printer is placed on-line, and the BUSY signal is
active during a print cycle. The ACKNOWLEDGE
signal, when active, indicates that a character or con­
trol code has been accepted. The duration of the
ACKNOWLEDGE signal returned by the standard
printer is too short to be detected by the PIO pro­
cessor; the PIO processor assumes that all character
and control codes are accepted.

The LPTC command causes the PIO processor to
accept the subsequent data byte at the DBB input
data buffer as an ASCII character or control code to
the line printer. The PIO processor delays the genera­
tion of the data strobe pulse (LPT DATA STROBEl)
to the line printer until the ASCII code byte has stabi­
lized on the output data lines to the printer. If the
request interrupt bit (bit 7) of the LPTC command
byte is set, the PIO processor sets the printer device
interrupt bit in the device status byte and generates a
PIO interrupt to the IPB/IPC when the associated
character line is printed (i.e., when BUSY returns to
an inactive level).

The LSTC command causes the PIO processor to
place the printer status byte in the DBB output data
buffer and to clear the printer device error bit in the
device status byte. The format of the printer status
byte is as follows:

MSB LSB

1116151413121110 I
L

'----

PRINTER READY

PRINTER PRESENT

PRINTER SELECTED

) RESERVED

ILLEGAL COMMAND

ILLEGAL STATUS REOUEST

PRINTER TIMEOUT

Printer Ready iis set whenever the printer is on-line
and is not performing a print cycle (i.e.,
when BUSY is inactive). Since a character
or control code is not accepted during a
print cycle, the printer ready bit is exam­
ined prior to every LPTC command.

Printer Present is set when the printer is connected,
powered-on and has been placed off-line,
the printer present bit remains active.

5-7

PIO Subsystem Interfaces

Printer Selected is set when the printer is placed
on-line (i.e., when SELECT is active) and
remains set until the printer is placed off­
line.

Illegal Command is set when a LPTC command is
followed by a subsequent command byte
(C/15=l). When the illegal command bit
is set, the LPTC command is not executed
(a data strobe pulse is not generated). The
illegal command bit is cleared when the
master processor reads the printer status
byte from the DBB output data buffer.

Illegal Status Request is set when the request inter­
rupt bit is set in the LSTC command byte (a
master processor cannot legally request an
interrupt at the completion of a status
access operation). The illegal status request
bit is cleared when the master processor
reads the printer status byte from the DBB
output data buffer.

Printer Timeout is set when the printer fails to com­
plete a print cycle within 3.5 seconds. The
cycle timer is reinitialized at the beginning
of every print cycle when BUSY goes
active.

5.2.5 PROM PROGRAMMER
COMMANDS

The following information pertains to the PROM
programmer interface of the Intellec Series II
development system. The text provides details on
each of the commands and describes the functions of
bits within the currently implemented data and status
bytes. The PIO processor does not examine the con­
tents of any PROM programmer data byte.

One factor common to all PROM programmer com­
mands is that the PIO processor initiates a three
millisecond timeout each time a command is
received. For the WPPC write command, the timeout
error simply causes a PROM programmer timeout bit
to be set in the device status byte. However, for the
RPPC and RDPDC read commands and the RPSTC
status command, a special action is taken since it is
assumed that a valid data or status byte could not be
accessed from the PROM programmer. This special
action consists of setting the CI D flag of the DBB
status byte and loading an all ones byte (FFH) into
the DBB output data buffer. The master program
recognizes this DBB response as an indication that
the PROM programmer was unable to provide the
requested data or status byte.

5-8

Intellec® Series II

The WPPC command causes the PIO to transfer
three bytes in sequence from the DBB input data buf­
fer to the PROM programmer interface write data
lines (PWDO-PWD7). Concurrently, the PIO pro­
cessor sequentially activates control lines PPWC2,
PPWCl, and PPWCO in order to synchronize accep­
tance of the three bytes by the PROM programmer.
The PROM programmer responds to each control
signal by generating PPACK (PROM Programmer
Acknowledge) to acknowledge acceptance of the
associated byte. PPACK, since it cannot be detected
at the PIO processor's data port due to its short dura­
tion, is additionally coupled to the TEST 1 input
where it is tested using the appropriate branch
instruction.

The three bytes transferred to the PROM program­
mer by the WPPC command are described in the
following text in the order of their occurrence.

The first of the three write bytes is clocked by
PPWC2 and is known as the low address byte. The
format of the low address byte is as follows:

MSB LSB

1716151413121110 I
L

'---

AO

Al

A2

A3

A4

AS

AS

A7

LOW·ORDER
PROM
ADDRESS

The second of three write bytes is clocked by PPWCI
and is known as the high address byte. The format of
the high address byte is as follows:

MSB LSB

1716151413121110 I
L

- ::} HIGH·ORDER
PROM

Al0 ADDRESS

All

NIBBLE SELECT

SOCKET

START READ

CONTROL BIT

•

•

•

•

•

•

•

•

•

•

Intellec® Series II

High-Order PROM Address is defined by the control
bit (bit 7) of the high address byte. When
the control bit is clear, the four low-order
bits of the byte contain PROM address bits
A8 through All (4k address range). When
the control bit is set, the four low-order bits
contain PROM address bits Al2 through
Al5 (64k maximum address range).

Nibble Select is only applicable when programming
4-bit PROMs. When the nibble select bit is
set, the four data bits to be programmed
are contained in the high-order four bits of
the data byte (D7-D4), and when clear, the
four data bits are contained in the low­
order four bits of the data byte (D3-DO).
The nibble select bit is ignored when pro­
gramming 8-bit PROMs. When reading a
4-bit PROM, the data is always returned in
the four low-order bits of the data byte.

Socket Select, when set, specifies PROM pro­
gramming operations on the PROM device
installed in Socket 1 and, when clear,
specifies PROM programming operations
on the PROM device in Socket 2.

Start Read is only applicable during PROM pro­
grammer read operations (see RPPC and
RDPDC read command descriptions) .

Control Bit defines the four address bits of the high
address byte. When set, the high-order
PROM address bits correspond to address
bits Al2 through Al5 and when clear, the
high-order PROM address bits correspond
to address bits A8 through All. Note that
since the PIO firmware only issues one high
address byte with any read or write com­
mand, when address bits Al2 through Al5
are required (e.g., when programming a
2764 EPROM), the master processor must
perform a "dummy read" (with the control
bit set) to load address bits Al2 through
Al5 prior to programming (or reading) the
PROM.

The third of the three write bytes is clocked by
PPWCO and is the data byte to be written into the
PROM address specified by the low and high address
bytes.

The RPPC command is used to read the contents of a
PROM that has been previously programmed. The
action of the PIO processor in response to an RPPC
command is similar to that of the WPPC command
in that the low and high address bytes are transferred
to the PROM programmer by sequential generation
of PPWC2 and PPWCI. If the start read bit of the
high address byte is clear, the PIO processor

PIO Subsystem Interfaces

generates PPRCO in place of PPWCO to cause the
PROM programmer to transfer the data contents of
the addressed PROM location to the PIO processor's
input data port. The PROM programmer signals the
PIO processor when the data byte is available
(PPACK), and the PIO processor sets the OBF flag
in the DBB status byte when it transfers the byte to
the DBB output data buffer for access by the master
processor.

If the start read bit of the high address byte is set, the
"read polling mode" is selected, and the PROM pro­
grammer initiates the read operation when the high
address byte is received (i.e., on receipt of PPWCI).
Note that in the read polling mode, the low address
byte must precede the high address byte. The master
processor monitors the Busy bit in the operation
status byte (using the RPSTC command) to deter­
mine when the PROM programmer has accessed the
addressed data byte. When the byte has been
accessed (when the Busy bit clears), the master pro­
cessor must issue an RDPDC command to access the
data byte. Note that if the data byte returned by an
RPPC or RDPDC command is invalid, the PIO pro­
cessor sets the command! data flag (C / D= I) and
returns a data byte of all ones.

The RDPDC command is only valid when a prior
RPPC command specifies read polling mode opera­
tion (start read bit set in the high address byte). The
RDPDC command, as previously explained, is issued
by the master processor when it determines that the
PROM programmer has accessed the data byte
addressed by the RPPC command. In response to the
RDPDC command, the PlO processor generates
PPRCO to enable the byte onto the PROM program­
mer's read data lines (the byte is accepted on receipt
of PPACK from the PROM programmer) and then
transfers the byte from its input data port to the DBB
output data buffer for access by the master
processor.

The RPSTC command causes the PlO processor to
transfer two status bytes to the master processor. On
receipt of the RPSTC command, the PlO processor
generates PPRCI to access the operation status byte
from the PROM programmer. The accessing of the
operation status byte is simplified in that this byte is
continuously applied to the read data lines (PRDO­
PRD7) except when the PROM programmer receives
a read data command. On receipt of PP ACK from
the PROM programmer, the PIO processor transfers
the operation status byte to the DBB output data buf­
fer and then monitors the DBB output buffer full
(OBF) flag to determine when the master processor
accepts the status byte. When the byte is accepted
(when the OBF flag is cleared), the PlO processor
places the PROM programmer device status byte in
the DBB output data buffer and again sets the OBF
flag.

5-9

PIO Subsystem Interfaces

The format of the PROM programmer operation
status byte is as follows:

MSB LSB

17161514131211101

L
-

BUSY

OPERATION COMPLETE

FAILED TO PROGRAM PROM

PROGRAMMING ERROR

ADDRESS ERROR

HARDWARE FAILURE

BOARD SENSE ERROR

PROM PROGRAMMER TIMEOUT

Busy is set while the PROM programmer is perform­
ing any operation specified by a data read
or write command. Note that the remaining
status bits are only valid when the PROM
programmer is not busy (Le., when the
busy bit is clear).

Operation Complete is set at the completion of any
data read or write operation.

Failed to Program PROM is set when the PROM
programmer is unable to successfully pro­
gram the PROM.

Programming Error is set when an attempt is made to
reprogram a fused location (e.g., attempt­
ing to reprogram a bipolar PROM).

Address Error is set when an attempt is made to pro­
gram or read a non-existent PROM
location.

Hardware Failure is set when a hardware fault is
detected (e.g., programming voltage not
present, PROM incorrectly programmed).

Board Sense Error is set when a personality module is
not installed for the socket specified.

5-10

Intellec® Series II

PROM Programmer Timeout is a personality
module-dependent status bit (e.g., the
UPP-848 personality module sets this bit if
the 8748 device is incorrectly oriented in the
socket).

The format of the PROM programmer device status
byte is as follows:

MSB LSB

17161514131211101

L
'---

READY

PROM PROGRAMMER PRESENT

}'ES"""
ILLEGAL COMMAND REQUEST

RESERVED

PROM PROGRAMMER TIMEOUT

Ready is set when the PIO processor completes
execution of a command.

PROM Programmer Present is set when the PROM
programmer is connected to its cor­
responding rear panel connector and
primary power is applied to the PROM
programmer.

Illegal Command Request is set when the master pro­
cessor issues a new command and the
previous command has not been
completed.

PROM Programmer Timeout is set if the PROM
Programmer is not present or primary
power is not enabled, or if command
execution is not completed within three
milliseconds (Le., the ready bit remains
clear for more than three milliseconds).

•

•

•

•

•

•

~ -

• • •
SIS-II .1.1/.1.5 IACRO ASBEI8LER. V2.1 KEYINT PAGE

LOC OBJ lEI

1
2
3 1
4
5 ,
7 I

• , I

III
11
12
131
14 I
15
16
17 I
181

'" 21 I
21 I
U I
23
24 1
2S I
U I
27 I
2B I
29 1
31 1
31 I
32/
n /

lIP. 34 LIC'.
•• FI as LICPl
IIFC 36 SICPI
lIFO 37 SICPl

38
39
41 I

1121 41 EOI
IIIC 42 OCV

43
44
4S /

187E 46 SUSK
188F 47 lOCI"

48
49
51 I

1114 51 lACK
IlIA 52 SUT

10URCE BTATE"ENT

NA"E KEYINT
ASEG

TNIS PROGRA" IS AN EXAMPLE OF AN INTERRUPT ROUTINE TO 8E USED
VNEN ENABLING AND SERVICING INTERRUPTS ORIGINATING FROM THE DEVICES
ATTACHED TO THE LOCAL INTERRUPT CONTROLLER (IOC.PIO.USARTI.USART2 ETC)
OF A SERIES II PROCESSOR .

THJS SPECIFIC EXAMPLE IS FOR A KEYBOARD INTERRUPT FROM THE SERJES II
MODEL 221 OR 231. THE LINES OF CODE WHJCH 00 NOT CHANCE FROM DEVICE TO DEYICE
ARE SHOWN WITH AN ASTERIK(.). THE LINES WHICH CNANGE BASED ON THE
DEYICE IS SHOWN VITH A DOUBLE ASTERIK(••).

THE FOLLOWING STEPS ARE PERFORMED
INITIALIZATION.
I) UNMASK INTERRUPT LEVEL 1.7 OF SYSTEM B2S9
2) UNMASK INTERRUPT LEYEL , OF LOCAL 8259
3) ENABLE KEYBOARD IHTERRUPT OF IOC

INTERRUPT SERVICING.
I) POLL LOCAL B25' (MUST 8E DONE)
2) READ CHARACTER FRO" IOC KEYBOARD
3) ACKNOWLEDGE INTERRUPT TO IOC LOGIC
4) ACKNOWLEDGE INTERRUPT (EOI) TO SYSTEM/LOCAL 82S9

THE ROUTINE WHEN STARTED FRO" LOCATION IIBBH ENA8LES KEY.BARO INTERRUPTS
AND ECHOS THE KEYBOARD CHARACTER TO THE CONSOLE DURING TNE SERVICE
ROUTINE FOLLOVED BY RETURNING TO THE EXECUTING ROUTINE UHICH
IN THIS CASE IS A LOOP ON A HALT INSTRUCTION.

825' INTERRUPT CONTROLLER INTERFACE CONSTANTS

18U
EIIU
EIU
EIU

EIIU
EIIU

.'AN
BF8N
IFCN
BFDH

I2IH
IICN

LOCAL INT •• RUPT CONTROL 'ORT I
LOCAL INTERRUPT CONTROL/DATA PORT
SYSTEM INTERRUPT CONTROL PORT 8

I SYSTEM INTERRUPT CONTROL/DATA PORT

I END OF INTERRUPT
I OPERATION CONTROL YORD (POLL CO"NAND)

SYSTEN INTERRUPT CONSTANTS

nu 87EN
nu 88FH

10C INTERFACE CONSTANTS

EgU 884H
nu IIAN

I "ASK FOR ENABLINC SYSTEI INTERRUPTS 1,7
I "ASK FOR ENABLINC IDe INTERRUPT

,. INTERRUPT ACKNOWLEDCE CO"MAHD
I SyaTE" INTERRUPT ENABLE/DISABLE CO"MIAND

•

-Z
-I
m
::D
::D
c:
"'tJ
-I

::D
o
c:
-I -Zl>
m"'tJ
m"'tJ
)(m
l>Z
3:0
"'tJX
r­
ml>

> ,
N

Lie OU

•• 12
.1.2

FII'
F821
FI ..

.131
1131 311C
anA D3F.
.nc DIFt

.nE IU2

.... CUIF.

.143 .F

.1.. CDItFI
11.7 iii.
lin aEU
11.8 CD •• F8
aUE 3UI
ani DlF.
1152 UFD
an. FI
an5 C,

.111

.1.1 U7E
1112 DlFC
.1 •• 3E1F
1111' D3FA
al88 aUA
IlIA IEI2
11IC CD.4F8

IIIF -u
1118 uaFII

PUlL IC SYIIOLI

EXTERNAL IYNIOLI

UIlER IIYNIOLI
CO II FI.,
un _ alia

BlNIIC II 117&

•

.EI
53 I£YD
54 INII
55

IOURce ITUUEIT

EGU
EGU

II2N
112N

J IEYIOARD DATA CONNAND
J KEYBOARD MASIC

56 NONITOR INTERFACE CONSTANTS
57
51 CO
" IOCDRS
n IOCDU
61/
62 I
n I
64 I

" " 67 ..
" 11
71
72
73
7.
75
76
77
18
19
II
81
82 J
n I
84 I
85
U
17
88
19 ,.
91
'2
n LlOP' ,.
" "

EDI
LlCPI
IIIIT

A 1121
A IIFA
A IlIA

£DU .FII'N
£DU IFI21N
EIIU .F144N

INTERRUPT 7 ROUTINE

DRG 13 liN
IY! A.DCU
OUT LlCPI
IN LICPI

IU B.ICEYD
CALL IDCoRI
lOY C.A
CALL CD
MVI I.IACIC
IYI C.KISIC
CALL IDCDR2
"YI A. EOJ
OUT LICPI
OUT SlCPI
II
RET

IUN PROCRA"

DRG
IVI
OUT
NVI
OUT
IYI
NYI
CALL

NLT
~"P
END

IACIC
LlCPl

II •• N
A.snslC
BlCPI
A.IOCIN
Llep.
B.SINT
C .ICHSK
IOCDR2

LOOP

A .1.4
A .IF.

•

J CONSOLE OUT ENTRY POINT
I 10C OUTPUT DRIYER

10C INPUT DRIYER

J •• OUTPUT POLL COIMAND TO LOCAL 825'
I ••
J •• INPUT HIGHEST PRIORITY INTERRUPT AND
J DISCARD IF DESIRED
I • LOAD 10C KEY80ARD COINAND
I • INPUT KEYBOARD DATA
I SET UP FOR OUTPUT TO CONSOLE ROUTINE

OUTPUT CHARACTER
J • LOAD 10C INTERRUPT ACKNOWLEDGE COIIAND

• LOAD KEYBOARD ACKNOWLEDGE CONSTANT
• OUTPUT ACKNOWLEDGE

/ •• OUTPUT EOI TO LOCAL/SYSTEM INTERRUPT CONTROLLERS
I ••
J ••

J •• ENABLE INTERRUPTS
I ••

•• OUTPUT SYITEI INTERRUPT MASIC
••
•• OUTPUT LOCAL INTIRRUPT NAIIC
••
• LOAD SYSTEI INTERRUPT COIIAND
• LOAD KEYBOARD ENABLE CONSTANT

I • OUTPUT TO 10C LOGIC

IOCOII • F821
LOOP A IIiF

•

IOCOR2 II F •• 4
OCY A .ue

IOCIII
SICPI

A .I.F
A IIFC

•

rEYO
SICPS

A 1112
• liFo

•

f
g
["

t

{
f.
I:
=

•

1:1:1
I

• • •
RSI1BB :Fl:IDRVR.SRC OBJECT(:Ft:IORVR OBJ) PRIHT(:FI:IORYR LST)

ISIS-II 8B88/8B85 I1ACRO ASSEMBLER. Y2.B MODULE PAGE

LOC OBJ

4B1111
411BH C33D411

BBBD
BBBS
BBFF
BBCB
BBCB
BBCI
BBCI
BHB4
BBB2
IIHB!
IIBBI

4B83 3EBD
48H5 D3FF

4BB7 DBCI
4BB~ EbB7
4B8B C2B748
4BIIE 7A
4BBF D3CI

41111 DBCI
4BI3 EDB7
4815 FElli
4B 17 C211 4 B
4BIA oaci
4B IC EbBI
481E CAB7411

4821 DBCI
4B23 E6B?
4B25 C2214!1
4H28 7B
4B29 03CI

SEQ

1
2

SOURC~ STRTEMENT

ORG
JI1P

4BBBH
START

Arbitrll.ry origin pOint
Brnnch to st4rt ~f eXQ~ple

3 ;-- __________ _
4
S BASIC INPUT DRIvER EXAI1PLE
.;
7 ThiS is a.n eXQlllple ot' an input driver to the- lOCo It is cll.iled
8 with the yollowing input par4fteters;
g D-r.gister contains the <deVice stQtus cQ~ftQnd>

18 E-register contains the {deVice output co~~~nd>
11 Upon eXiting froft thiS drlverl the ddta. input fro~ the device
12: witl be in the A-register.
13
14 An input driver to the PIO is si~ilQr to thiS driv~r to the IOe
!5 except thnt the I/O port nss;gn~@nts or@ chonged
16
!7 ;--- __________ _
! S

DISABL EQU BDH {)iso.bl@ interrupts
ENABL EQU BSH En.ble interrupts
CPUC EQU BFFH Control por t
10C I EQU BCIlH I/O Control teor input d.t. (f r .)1fI ~BB) po rt

19
21
2!
22
23
24
25
26
27
28

10C 0 EaU BCBH I/O Controller' output 1'1 t4 " to DBB) par t

2'
3B
31
32
33
H
35
36
37
38
H
411
41
42
43
44
45
46
47
4e
49
511
51
51

lacs
IOCe
Fa
IBF
OBF
DEYRD'f
IHDRYR:

LOO!>I:

LOOP2 :

LOOP3:

EQU
EQU
EQU
EQU
EaU
EaU

"Y I
au T

IN
AN I
JHZ
HOY
OUT

IN
ANI
CPI
JNZ
IN
ANI
JZ

IN
AN I
JNZ
MOY
OUT

BelH
BelH
888BBI UB
B HIlBBB I BB
BBIIIlBBBIB
BBBBBBBIB

A.I)!SABL
CPUC

IOeS
Fa OR ISF OR OSF;
lO OP!
A.O
IOCC

10 CS
Fa OR IBF OR OBF;
OBF
LOOP 2
lOCI
DEYROV
lOOP!

10CS
FO OR IBF OR OBF
LOOP3
A.E
loee

I/O Control let~ input DBB sta.tus port
I/O Control ler output control c:ol'lflta.nd p or t
Flog B - sla.ve is bus". 1"\0. st Eo r i i lock e d out
Slove input buffer is full
Slo.ve output buffer i. full
DeVice rea.dy

Block .11 interrupts

Input DBB .t.tus
T e. t for slQ.ve processor idle
Loop u nt i 1 it is • d I.
lo. d th .. de ItI ice sta.tus: cOfllflllllnd
Out put th. co I"II'Ia.nd to tn. IOC contro I p or t

Input DBB st .. t us
" .. sk off st.tu. n. gs
rut t' or 510.'11. don .. ; SOl"lething far tho MQ,ster
loop unt i t s 1 Q. ',e i. re.d"
Otn.rwise deVice (rol'l DBB
I. the df''IiCI! r'e Q. d IJ "
Loop u nt i 1 it is

I npu t DBB s to t us
r •• t for :llall~ procfossor idle
Laop unt i 1 it is !dl.
Load t.h. d.'" i C" output CO''H''II.l n d
Output th. cQPI,.a.nd to th. p;o control por t

•

aJ
l> en -o
-Z
-e
c:
-I

C
::D -<
ml>
::D-e
m-e
)(m
l>Z
3:~
-e)(
r
mm

t:tI
N

•

ISIS-II 8888/8895 "ACRO ASSE"BLER, V2.8 NODULE PACE 2

LOC OBJ

4828 D8Cl
4820 E6B7
4B2F FEU
4il31 C22B4B
4a34 Dsca
4836 F5
4837 3E85
4839 D3FF
4838 F 1
4a3e C<J

8812
lIal3

4a30 215HB
484a aHA

4842 1613
4844 IE12
4a46 CDa341
4a49 77
48414 FEaD
414C CAS841
414F 23
48sa 15
4a51 r.A574a
41154 C3424 a

41157 7b

4158 76
BilH
4fi30

PUiLiC iV"BOLS

[XHRHAL ilYHUOlS

USER SYMBOLS
BUFFER H 4B5~
ISF 1\ BU2
KSTS A III J
(iVFL A 4157

SEQ SOURCE STATEKEHT

lOOP4,
IOCS Input DBB stdtus

Kosk off stdtus fldgs

53
54
55
56
57
58
59
bB
61
62
63
64
65

IN
AHI
CP I
JHZ
IN
PUSH
NY I
OUT
POP
RET

FO OR IBF OR OSF;
OBF
LOOP4

Test ror slave done; so~ethin9 for the ~Qster
loop unti 1 it is reo.dy

lOCI
PSW
A,EMABl
CPUC
PSW

OtherWise input the dQta. fro~ the DBB
Sdve the dntn
Ennble the interrupts

Return the dut~ in the A-register

i---
6£ ThiS is Qn .xQ~pl. keyboard driver WhiCh e4Its th~ dbove
67 gener41ized input driver
68 Ch4r4cters Qre input fro~ the keybonrd and stored into Q

,~ buffer of Size 122. Input is h41ted when either Q CQrri~ge

711 return is input or the butt.r is full.
71

72 ;---
73

KEYC EQU BI2H KeyboQrd input ddt 01 CO!"ld""Io.r1d

KSTS EQU 813H Keybodrd deVice Sta.tU5 C OP'H'In. n d

START'
lX I H,SUFFER
MY I B,122 Set up buffer s 1 Zi' count.r of 122

lOOP,
"V I I), KSTS L 00 d keybodrd status CO I"tI'lQna
"VI E, KEYC L 001 d I'.yboolrd input doto CO'HIa.nd
CALL IHORYR C.l I the input dr-iver rout ine
MOY N,A Store the input byte in the b 1..1 fe r
ep I SOH Is it • ca.rriQ'Je return?

74
75
76
77
78
79
911
81
82
83
84
85
86
87
88
89
'JI
91
92
'3
H

JZ EXIT BrQnch to EXIT if !J e hCl. 'J e just i np ut Q cQr!~:Qge

"

CPIJe
IHDRVR
LOOP
STAR T

O"FL;

EM IT,

BUFFER I

Ii 81FF
A <lIIHJ
A 41<12
Ii <lIiJu

IHX H
DCR 8
JZ OYFL
JI1P lOOP

HLT

HLT
OS !22
END START

DEI/RO·f A BUI
[OCC Ii &He I
LOOP! Ii 41187

Oth.rwise .. ove the buffer po i ntero
a.nd d.cr.",ent the buffeor count

If buft'e-r
OtherWiSEP

Ov.rfl ow

DISABl A BUD
lOCI H SBea
lOOP2 H 4BII

f u I 1 , jU"P to
get the next

code

EHHBl BBBS
I OC 'J aaCB
LOOPJ R 4B21

overt' low codi'
cha.ra.cter

EXIT "4ess
IDeS A aeC!
LOOP4 "4S2B

FO
KEYC
OBF

ASSEMBLY COMPLETE, NO ERRORS

• • •

t' ~t Uf' n

A Bae4
Bal2
eaBI

•

t:tI
I»

'" r'i"
.§

$:=
tl ...
:;::-
~

~
I»
3
'0
n

-=
i ;-
"" ®

;(1 ..
~ .
....

•

Q

• • •
AS"81 .FI'OORYR.SRC OBJECT<.FI'OORVR OBJ) PRIHT(.FI'OORYR.LST)

ISIS-II 8181/8185 "AeRO ASSE"BLER, V2.1 "OOULE PACE

LOC OBJ

4111
4111 ellA41

IIBO
lIB:!
IIFF
ilIF8
IIF8
IIF9
IIF9
IBl4
BlIZ
III1
IIBI

41113 3EIO
4115 03FF

41117 OBF9
411' E6117
411B C21741
411E 7A
411F 03F9

4111 OBF'
4113 E617
4115 FElli
4117 C21141
411A OBFS
411C EiBl
411E CAI741

4121 OBF'
4123 E6IiI7
4125 C22141
4128 7B
412' D3F9

SEQ

I
2
3
4
5 ,
7
8 ,

II
II
12
13
14
15

I'
17
18
U
21
21
22
23
24
2:!
26
27
28
2'
311
31
32
33
34
35
36
37
38
39
4.
41
42
43
44
45
4f,

47
48
H
58
51
52

SOURCE STATE"EHT

ORC
J"P

4111H
START

Arbitr~ry origin pOint.
Br~nch to stdrt of .x~"pl.

;---
BASIC OUTPUT DRIYER EXA"PLE

ThiS is Qn .xQ"ple of Qn output driver to the PI~. It is c.lled
with the following input p4r4"eters'

C-register cont4ins the byte d4t~ to be output
O-r.g;ster contQins the <device stQtyS co~ftQnd>
E-regist.r cont~ins thQ (d.~ice output ca~"Qnd>

An output driver to th& IOC is $i~i IQr to thl3 driver to the PIO
except th~t the 1/0 port ~ssign"ents Qre chQnged.

;--
DISABL EQU IOH Oisa.bllJ i nterrlJpts
EHABL EQU 15H En~bl .. interrupt:;
CPUC EQU IIFFH Control par t
Pial EQU IF8H P'lrQ Ilel 1/0 input do.tIJ. (f ro~ DBB)
PIOO EQU IF8H PorQllel 110 output d"t" < to DBB)
PIOS EQU IF9H P"r" Ilel 1/0 input DBB s to. tu s port

por t
port

PIOC EQU IF9H P~rQllel I/O output control coflltl'lo.nd port
FO EQU III BBII III liB FI~9 II - stOol/e is b'JSY, "o.ster is locked out
IBF EQU IBIIIIIBlliIB Slave input buff er is fu II
OBF EQU BlIBIBillB SI"ve output blJffer is f'J I I
DEYROY EQU IIIIBIllillB DeVice r &Q.d'J
OUrDYR:

"VI A,OISABL Block "II interrupts
OUT CPUC

LOOPl'
IN PIOS Input DeB s til t IJ:i
AN I FO OR IBF OR OBF; Test for s: I Q.V e pro,:essor Idle

JNZ LOOP I Loop unt i I it is idle
"OY 1'1,0 Load the de, ... i ce stlltus cOl"JI\Qnd

OU T PIOC Output the COf'l.Plo.nd to the PIO contro I p or t
LOOP2'

IN PIOS Input DBB 5ta.tUS
AHI FO OR IBF OR OBF; "~sk off st Q t u. fl"9 S

CPI 08F Test for :ila. e done; sOAeth;ng f'J r the AQ.ster
JHZ LOOP2 Loop unt i 1 51 Q' ... e is r"ady
IN PIOI Oth .. !"'wise deVice frofllt DBB
ANI DEYROY Is the del/ice reG.dy?
JZ LOOPI Loot) <Ant i 1 it is

LOOP3'
IN P I OS Input DBB sto. tu:;
AN I FO OR IBF OR Q BF ; Test for sIllve processor Idlli>

.JHZ LOOP3 Loop \Jnt i 1 it is idle
MOV A,E Lo.d the de'.,' ice output CO.;!! f';Q r. d
OUT PIOC Outpl.. .. t the cOf!l.i'\a.nd to the P:O contra 1 p .)r t

LOOP4'

•

til »
en -o
o
c:
-I
""0
c:
-I

C
::D -< m»
::D""O
m""O
)(m »Z
i:~
""0)(
r­
mO

(')
I

IV

•

[SIS-II 8H8H/Sa85 "ACRO ASSEMBLER, V2.a "ODULE PACE

LOC 08J

4128 t>BF~

4120 E6H7
412F C22B41
4132 7'
4133 t>3F8
4135 3EII5
4137 t>3FF
413' C'

118113
BBl4
BBl5

413A 215841

4130 4E
413E 1615
414B IEI4
4142 CDSHI
4145 7'
4146 FEa3
4148 eA 4F 41
4148 23
414C C33041

414F 7£
415B 4C4~4E4'5

4154 28511524"1
4158 4E544552
415t 2B58494F
4!~8 28455841
4164 4D5B4C45
4168 2B
416' BO
41f.A BA
41 .. B B3
413A

PUBLIC SVMSQLS

EXTERNAL SYMBOLS

USER SYMBOLS
CllrrE~ A 4158
FO II 11084
LPTC A BB14

SEQ

CPUC
IBF
LS Te

53
5·4
55
5£
57
58
5'
6a
61
£2
63
H
65
H
i7
U
£,
71
71
72
13
74
75
76
77
78
7'
81
81
82
83
B4
85
8'

87

SOURCE STATEMENT

IN pros Input DBB "tat""
ANI fO OR IBF OR OBF; Test for slQve proc~s50r r~Qd~
JHZ LOOP4 loop I;nt iIi tis r(llld!~

MOY A,e load dtlto. tQ be writt.e-n
OUT PlOD Output dQt. to tho DBB
"VI A.EHRBL En.ble the interrupt"
OUT CPUC
RET

;---_.------
ThiS is 'In 09xll"ple lir.~ printeor driver which c;llls th.e Qbove generulizE'd
output driv.r.
Th~ cont.nts of th. ~rrlly BUFfER ~re output to the lin~ printer

;--
ET:<
LPTC
LSTC
START:

LOOP'

EX I T:

BUFfER;

A BBFF
D B82
8815

•

EQU
EQU
EIW

LX[

~OV

~YI

~VI

CALL
"OV
CPI
JZ
[HX
J"P

HLT

B3H
1114H
B ISH

H.BUFFER

C,M
D.LSTC
LLPTC
OUTDVR
A,C
ETX
EX IT

LOOP

End-of-f; Ie
Line printer OIJtput d~t~ co~~nnd

Lin~ printer deviCe stQtyS CORA~nd

"ove dQ~Q to be output to the C-r~gister
Land printer stQtus COM~Qnd
Load printer output data cO~MQnd

C~ll the output driver rout;ne

Branch to EXIT if we hnve j~l~t output an ETX

DB 'LINE PR[NTER pro EXAMPLE' .ODH.BAH.ETX

END START

~EVRD·t II UB 1
l.nop
0l8F

A 4130
BBOI

D1SABL H BBaD
LOOPl A 41lF
ourOVR ~J01

•

EH.C~ • BCil'
LI)QP] H 41 I:
PIOC H BUr-

E'~ A B033
lOOPl 4111
rlOI ~ O~F8

•

E., I T
LOOn
PIOO

41H
4128
DBF3

•

iG'
'" (')'

o
s::
05
s::
Sf
:or
(1) ..,
~

~ ;-

-a
~
;;-
t')

®

~ ..,
~. --

Intellec® Series II Basic Output Driver Example

•

•

• '" ,~

<t
"-

'" ...J

'"
'"

lSI

"' • '" ...J

'" <E
z: ,.,

'" w '" '" .. (:)

'" ...
<t G: '" ...
'" '" ... (:)

u '" %
<t G:
z: ..

"'
0'
'" w

'" ...J '" "-
lSI :0:: ., ID (:)
CI lSI '.) .,

'"
,..
...J
CD , E

'"
., ...
(:) .,

'" '" 0.. <t

•
C-3

•

•

•

•

•

•

9

• • •
AS~8B 'FI,DISK.SRC OBJECT(:FI'[)ISK.OBJ) PRIHT<:FI:OISK.LST)

ISIS-II 8B98/8B8S ~ACRO ASSEMBLER, Y2.B MODULE PAGE

LOC OB·J

6B8B

i888 CODb6 I
ia B3 E684
~a8S CA1I611
6B118 CH261
UBB COOC61
6allE C3BB6a

6811 allHB
61114 CD2C61
6Bt7 B 125 6 a
681A CII2C61
6810 76

ia 1 E 8a
6a IF a4
6B 2a 82
6821 28
6822 a7
6B23 2C6B

6B 25 8B
6826 86
6a27 B2
61128 4a
6B2' 18
U2A 2C 6a
81BB

SEQ SOURCE S TATE~ENT

1 ; •• * ••••• ~.* •••••• *.* •••• * •• * •••••• *~.~*~*.*.**.~.*.**.**** •• ***.T.*.~ •• *
2 ,.
3 i *' THIS SI~PLE EXA~PLE READS TWO SECTORS FRO" THE DISK (TRACK 28H.

" 5
6

• SECTORS? AHD 8) IHTO A BUFFER IN RAM IT THEN WRITES THE
• COHTENTS OF THAT BUFFER BACK TO THE DISK AT TRACK 4BH. SECTORS
• 18 H A HO l' H .

7 ;.
8 ; ••••• ** •••••••••••••••• *** ••••••••••••• **** ••••• *** •• ******.*.****.****
'J

Iii
I 1
12
13
14
15
16
17
18
l'
28
21
22
23
24
2'5
26
27
28
a
38
31
32
33
34
35
36
37
38
H
48
41
42
43
44
45
46
47
4B
4~

58
51
52

ORG 68aaH
CL EAR:

CALL OKSTAT
AHI 4H
JZ BEGIH
CALL RTYPE
CALL RBYTE
.JHP CLEAR

BEGIH:
LX I B.RIOPB
CALL ISDDR
LX I B,WIOPB
CALL I SDDR
HLT

RIOPB:
DB B
DB READ
DB 2
DB 28H
DB 7
DW BUFFER.

WIOPB' IOPB FOR WRI TE
DB B
DB IIR ITE
DB 2
liB 4BH
DB ISH
OW BUFFER

BUFFER: OS 256

ARBITRARV ORIGIN POINT

GET CURRENT DISK STATUS
OPERATIOH COMPLETE?
BRAHCH IF PREVIOUS OPERATION
OTHERWISE. CLEAR THE DISK OF

OPERATIONS

COI'IPLETE

LOAD ADDRESS OF RIOPB IH 8.C REGISTERS

LOAD ADDRESS OF WIOPS

10PB FOR READ
10 CONTROL WORD
READ INS T RU CT I ON
NU~BER OF SECTORS
TRACK ADDRESS
SECTOR ADDRESS
BUFFER ADDRESS

10 CONTROL ~ORD

WRITE INSTRUCT ION
NUMBER OF SECTORS
TRfiCK ADDRESS
SECToe ADDRESS
BUFFER ADDRESS

.**.*.******.****.**.*~**.*******.*****~******~**********~*~*y**

•
•
•

PROCEDURE HA~E: ISODR (INTEGRATED SINGLE DEHSIT" [01 K "RIVER)
PROCESS: TRANSMIT 'HE IOPB. ONE BYTE AT A TIME· TO HE ISD

1fT H E PF) T P. iJ C T ION TOT H E C' t S~, ISH ['",," ~ T H H S r E R
(I E. READ DATA. FOR~AT WRITE DATA. ~IITE DELETED
DATA) THEN TRANSFER THE DATA. OHE BVTE AT A TIME.
TO/FRO~ THE ISO

• INPUT' 6-REG COHTAIHS "5B OF lOPS
C-REG COHTAINS LSB OF lOPS

• OIJTPUT: THE lOPS IS TRANSMITTED TO THE ISD DATA IS TRANSFERED
TO/FRO" THE ISO AS REQUIRED

•

c -en

" m
-I
-I
m
::D
m »
c
........
=e
::D --I»
m-e
m-e
><m »Z
:s::S!
-e><
r­
mC

o
N

•

ISIS-II SBS8/8895 "ACRO ASSE"BLER, V2,B MODIJLE PAGE

LOC OBJ

BBCI
BBCI
BBCB
BBCB
BIB4
BBB2
BBBI
BBlS
BBI6
BBI7
BBlS
BBI9
BBlA
BBlB
BBle

BIBI)
BaaS
BBFF

BHU
BHB2
Baa3
BBB4
BIBS
BBB6
BBB7

612C (;5
GI2D B3
il2E SA
i12. FEB4
61 J1 C26561
61H EI

,,135 E5
6136 23
6137 23
6138 56

SEQ SOURCE STATE"EHT

53).
54 ; ••••••••••••••••••••••••••••••••••••• * ••••••••••••• **.* •••• ******
55
Sf,
57
58
S9
6B
61
62
63
H
(,5

66
67
68
69
7B
71
72
n

i IOC
IOCS
IOCC
I OC I
10C 0
FB
IBF
OSF
WPSC
IoIPCC
WDBC
WDCC
ROBe
ROCC
RRSTS
RDSTS

I HTERFACE
Eau
EGU
Eau
Eau
EGU
EGU
Eau
EQU
Eau
EalJ
Eau
Eau
EGI)
Eau
Eau

COIIMHHOS
BCIH
BCIH
BCBH
BCBH
BBBB81BBB
&BUBB I BB
BBB88B11IB
ISH
16H
17H
19H
19H
IAH
IBH
ICH

J PSEUDO INTERRUPT INSTRUCTIOHS
DISABL EGU BOH

IOC I~PUT DBB STATUS PORT
10C OUTPUT COHTROL COMMAND PORT
10C IHPUT DATA (FROII OBB) PORT
10C OUTPUT DATA (TO DBB) PORT
FLitG B - SLAVE IS SUSv, /lASTER IS LOCKED OIJT
SLAYE INPIJT BUFFER IS FULL
SLAYE OUTPUT BUFFER IS FULL
WRITE PARAMETER BLOCK COMMAND
~RITE PAPA"ETER BLOCK CO~MANO CONTINUATIOH
WRITE DATA BLOCK COMMAND
RESERVED

J READ DATA BLOCK COMIIAHD
RESERVED
READ RESULT STATUS COMMAND
READ DEVICE STATUS COMMAND

74 ENABL EQIJ aSH
DISABLE I~TERRUPTS

EHABLE INTERRUPTS
7S CPUC EGU BFFH PORT FOR THESE INSTRUCTIOHS
76
77
78
B
88
81
82
93
94
85
86
87
88
89
98
91
92
93
94
95
3li
97
98

" IIiB
181
1112
1B3
1114
1115
186
IB7

) I)ISK
SEEK
FO R"A T
RECALB
READ
YER IFY
WR'I TE
!,II" I TED

IHSTRUCT IOHS

LAYOUT

ISOOR'

EGI) IH
Eau 2H
Eau 3H
Eau 4H
EQU 5H
Eau 6H

SEEK IHSTRUCTION
FOR"AT INSTRUCTION
RECAlIBRATE INSTRUCTION
READ DATA INSTRUCTION
VERIFY CRC INSTRIJCTION
WRITE DATA IHSTRUCTION

Eau 7H WRITE DELETED DATA IHSTRUCTION

OF THE 1/0 PARAMETER SLOCK (IOPB)
ONLY THE FIRST FIVE BYTES OF THE IOPB ARE TRAHSHITTEC' TO THE ISO
IOCY BYTE CHANNEL WORD
lOINS BYTE D!SKETTE INSTRUCTION
HSEC BYTE HUMBER OF SECTORS
TAOR SYTE TRACK ADDRESS
SAOR BVTE SECTOR ADDRESS
BUf ADDRESS BUFFER ADDRESS

PUSH 8 SAVE S,C (IE ADDRESS OF IOP8)
IN:,
LDRK
CP I
JHZ
POP

PUSH
IN :<
IHX
HOII

8
B
READ
ISO I
H

H
H
H
D, "

Be PQrHTS TO lOINS BYTE
A-REG COHTAINS lOINS
IS IT ~ READ INSTRUCTION'
JU~P IF IT ISH'T
OTHERWISE. PROCESS THE READ
HL COHTAINS lope ADDRESS
SAVE THE ADDRESS OF THE IOP8

CO~i1AfW

SAVE THE NUMBER OF SECTORS IH O-REG

• • • •

9-
'" ~
n
n
~

~
"-

~
;
tr1
>c:

~
0-

-:I -~
;-
n

@

rn
II> ... ;DO
'" =

•

)'
w

• • •
ISIS-II 8i18i1/8B95 MACRO ASSEMBLER, V2,iI III)D ULE PAGE

LOG OB.J SEQ

6139 E 1 li18
613A DS lB~

6139 CDBA61 11 B
613E 23 111

112
613F 5E 113
6148 23 114
6141 56 1 15
6142 EB 116
6143 B61~ 117
6145 COB(62 I 18
6148 DI 11 ,

12B RD LPI ,
.149 1 E ~B 121

122 RDlP2 ,
6148 DBCI 123
';14& E6 B7 124
614F FEill 125
6151 C24Hl 126
6154 I>BCB 127
6156 77 128
61~7 23 12'
6158 II> 13.
615' C24861 131
615C 15 132

133
134

615D C24%1 135
616B 3EB5 136
6162 1>3FF 137
6164 C' 138

lH
148 IS D I'
141

6165 FEB2 142
6167 C~7461 10
616A FEB6 144
61H CA 746 I 145
61H FE B7 146
61 ? 1 C2AD61 lH

148
lH IS02'
158

6174 EI 151
6175 E5 152
6176 23 153
6177 7E 154
61 78 FE B2 155
617A 23 IS';
61 ?B CA 92 (, I 15 ?
617E 4E 158

15'
61?F G3846 1 168

161 I SD2A ,
6192 ilEBI ! 62

SOURCE STATEIIEHT

POP H
PUSH 0
CALL iRIOPB
INX H

11011 £,/1

INX H
MOY 1>, /I
:<C HG
MY I 8, RI>BC
GALL 10CCOII
POP D

"V I E, 128

IH IOCS
AH I FB OR IBF OR OBF;
CP I OBF
JH2 RI>LP2
IH IOC!
11011 II, A
IHX H
DC R E
JHZ RDLP2
OCR 0

JHZ ROLP!
"VI A,EHA8L
OUT C?UC
RET

HL HOW POINTS TO BEGINNING OF THE IOP8
SAVE THE NUMBER OF SECTORS
TRANS~IT THE lOPS
HL NOW POIHTS TO 8UFFER ADDRESS

ENTRY OF THE IOPB
E CONTAIHS LSB OF BUFFER ADDRESS
HL NOW COHTAINS LSB OF BUFFER ADDRESS
o CONTAINS "58 OF BUFFER ADDRESS
HL HOW POINTS TO THE BUFFER ITSELF
LOAD THE READ DATA BLOC~ COMIIAND
OUTPUT IT
D-REG CONTAINS NUM8ER OF SECTORS TO BE TRANSFERRED

SET COUNTER FOR NU~BER OF BYTES PER SECTOR

INPUT DBB STATUS
~AS' OFF STATUS FLAGS
TEST FG~ SLRVE DONEI SOMETHING FOR THE MASTER
LOOP UNTIL SLAVE IS REAI>Y
OTHERWISE, INPUT THE DATA FROM THE I>BB
STORE THE DATR IN MEMORY AT THE BUFFER LOCATION
HL POINTS TO THE NEXT BYTE IN iHE BUFFER
DECREMENT THE LENGTH REMAINING IH ONE SECTOR
CONTINUE READING UNTIL WHOLE SECTOR READ
ALL OF A SECTOR HAS BEEN RERD DECREMENT THE

COUNT OF THE TOTAL NUMBER OF SECTORS
REIIAINING TO 6E RE~D

READ THE NEXT SECTOR
ENABLE INTERRUPTS

RETURNI READ DISK OPERATION COMPLETED
:--

GP I FOR~AT

J2 ISD2
CPI WR IrE
·J2 IS D2
CPI W R I TED
.JHZ 1503

POP H
PUSH H
I H:< H
HOV A,M
CPI FORMAT
IH,
J2 IS D2A
MOV C, M

,J M P ISD2B

MV I C, 8 I

WE KNO~ IT IS NOT A READ INSTRUCTION
A-REG CONTAINS THE lOINS

IS IT A FORHAT INSTRUGiION
JUMP IF IT IS
IS IT A WRITE DRTA IMiCRUGT!ON?
JUMP IF IT IS
IS IT A WRITE DE~ETED DATA INSTRUCTION'
JUMP IF IT ISN'T' THEREFORE, THE INSTRUCTION IS A

SEEK, RECALB, OR VERIFY)
A DATA TRRNSFER INSTRUCTION INVOLVING A

WRITE TO THE DISKETTE
HL CONTAINS THE IOP8 ADDRESS
SAVE THE IOPB ADDRESS
HL NOW POINTS TO lOINS
A-REG CONTA!NS THE INS'RUCTION
IS IT A FORMAT INSTRUCTION
HL HOW POIHTS TO HSEC
JUMP IF IT IS A FORMAT INSTRUGTION
MOVE HUMGER OF SECTORS TO B-REG IF NOT

FORMAT !HST~UcrION

SKIP FORMAT STUFF

9IHCE :i IS A .ORMAT 'HSTRUCTION MOVE A 1 TO

•
-~
~
;:s-
r>

@

r.n
tt> ...
~.
<I> --

t::I
;n'
:0;-

~
~

~
~
::l.
;;­
tyj
><

9
~

o
~

•

ISIS-II 8889/8885 "ACRO ASSE"8LER, Y2.8 "!JDUlE PAGE

lOC 08J

6194 23
6195 23
6 196 23
6197 SE
6189 23
6199 56
619A E9
il8B 1617
itS!> CDIC62
619B C08261
6193 79
6194 DlC8

61')6 F5
61')7 168B

6199 CDB261
619C 7E
6190 1>3CB
619F 23
61 AB 15
61AI C29961
61 A4 F 1
UA5 30
61A6 C29661
61A9 3E85
61AB 03FF

61 AD E I
61AE CDBA6!
61 B 1 C9

61B2 D8CI
61B4 EeB7
61 B6 C28261
6189 C9

SEQ SOURCE STATE"EHT

163 THE C-REG (EXPLANATION' FOR TIIO BOARI) I>ISK
164 COHTROLLERS, IT IS POSSIBLE TO HAYE AN IHYALlI>
165 VALUE IN THE NU"BER OF SECTORS eYTE OF THE
166 IOPB AHD THIS WILL HOT AFFECT THE OPERATION
167 OF THE CONTROLLERS. FOR THE 8271,HOWEYER,
168 WE MUST HAYE A VALID YALUE.)
169
1711
171
172
173
174
175
176
177
178
179
18B
191
182
IB3
184
185
186
187
188
189
198
191
192
193
194
195
1 'H
197
199

1" 21111
2111
282
283
284
285
286
217

ISD28'

WRlPI'

WRlP2 I

IS03 :

;------
IOCRDV'

IHX
IHX
IHX
MY
IHi<
MOY
XCHG
"I'I
CAll
CALL
HOY
OUT

PUSH
"1'1

CALL
"OY
OUT
IHX
OCR
JH2
POP
DCR
JHZ
"Y I
OUT

POP
CALL
RET

IH
AN I
JHZ
RET

H
H
H
E,M
H
0,"

8,WD8C
10CCO"
10CRDY
A,C
lOCO

PSI/
1),128

10CRDY
A."
lOCO
H
0
WRlP2
PSW
A
IIRlPI
A,EHA8l
CP IJC

H
TRIOPB

IOCS
F8 OR OBF OR IeF
IOCRDV

Hl HOij POINTS TO THE TRDR
Hl HOW POIHTS TO SADR
Hl NOW POIHTS TO BUFFER ADDRESS
lOAD THE LSB o~ BUFFER ADDRESS IN T I} E
Hl NOW POINTS TO ~SB OF BUFFER ADDRESS
lOAD THE "SB o~ BUFFER ADDRESS IN T I} D
Hl HOW POINTS TO FIRST BYTE OF THE BUFFER
LOAD THE WRITE DATA BLOCK COMMAHD
OUTPUT THE CO""AHD
"AKE SIJRE OBS IS CLEAR AHD SLAYE IS IDLE
LOAD HUMBER OF SECTORS TO BE WRITTEN
OUTPUT DATA TO THE DBB

SAYE THE COUNT OF THE HUMBER OF SECTORS
SET v-REG COUNTER TO NUMBER OF BYTES/SECTOR

"AKE SURE DBB IS CLEAR AHD SLAVE IS IDLE
lOAD DATA TO BE WRITTEN
OUTPUT DATA TO THE DBB
POIHT TO THE NEMT BYTE OF DATA
ARE WE DONE TR~NSFERRIHG A SIHGLE SECTOR'
,lUMP BACK IF NIJT
RESTORE COUHT OF HUMBER OF SECTORS
ARE WE DOHE T~P.NSFERRING ALL THE SECTORS?
JU"P BACK IF HOT
ENABLE IHTERRUPTS

AHY DISKETTE IHSTRUCTION EXCEPT A READ
IN ANY CASE. HAHS"IT THE lOPS HOI,

Hl CONTAINS THE ADDRESS OF THE IOPB
TRAHS~!T THE IOPB
RETURN

INPUT DBB STATIJS
TEST FQR SLAVE PROCESSOP READY
CONT INIJE TO LOOP IJHTIL IT IS RE AD.,.

288 ; •• *.* ••• * •••••••• *.*.* ••••••••• **** •• *.* •••••• ~* •••••• * •• * ••• **.*.~*.
219 ;.
211 ;- PROCEDURE HA"E' TRIOP8 (TRANSMIT rOPB TO I Sf,)

211 ;. PROCESS: TRAHS"IT THE IOPB TO THE 8271 INTHFATEL' SINGLE OEHSITY
212 .* COHTROlLER THIS PROCEDURE IS CALLED ONLY BV PROCEDURE ISDDR
213 •• INPUT' Hl CONTAINS ADDRESS OF THE IOPB
214 .* OUTPUT: TRAHS"lT THE IOP8
215 ;. Hl POINTS TO SADR OF IOPB
216 ;. MODIFIED: A, FLAGS, 8, C, D., Hl
217 1*

• • • •

S?
OIl
;.;-

~ o
~
~
0..
"-
~ ;.-
trl
)<
II>
S
'0
0'

-a
~
"®

~ .. i-
:::::

o
v.

• • • •
1515-1 I BBSII/8B8S "ACRO ASSE"BLER, Y2.8 "ODULE PAGE 5

LOC OSJ

61 SA 4£
618B 11615
61BD CDFA61
61CB 1684

61C2 23
61 C3 4£

61C4 8616
61C6 CDFA61
61C~ 15
61CA C2C261

61CD CDD661

blOB Hili
6102 CACIl61
6105 C3

61D6 861C
61DS GDE561
61DB G9

'·IDC 8618
~IDE CDE561
i 1 E 1 C9

SEQ SOURCE STATE"ENT

218).*** ••• ~k. ••• *~* •••• ~***.~ •• ***.**** •• **************.* ****************
TRIOPS:

MOil C, M C-REG CONTAIHS IOC~

219
2211
221
222
223
224
225
226
227
2213
229
23B

MYI 8, WPBC LOAD WRITE PARAMETER BLOCK COHMAND
CALL IOCDR2 ISSUE THE COMMAND AHD IOCW
"III 0,4 I)-REG COHTAIHS COUNTER OF

TRL OOP:
IHX H HL POINTS TO HEXT BYTE IN iOPS
HOY C, " C-REG CONTAIHS HEXT BYTE I H lOPS

WHEH D = 4, C 10 I HS
0 3, C HSEC
D 2, C TAD R
() = 1 , C SADR

2-31 "Vi s,wpee LUHV CO~TI~UATION COMMHHD
232
233
234
235
236
237
238
239
2411

CALL IOCOR2 ISSUE THE COM"AND AHD THE DATA
DCR D
·JHZ TRLOOP .J UMP IF WE HAVEN'T FINISHED

TRIIAIT: ijAIT COP RETURN OF STATIJS BYTE
CALL DKSTAT SEE IF THE BIT INDICATING OPERATION

COMPLETE IS TURNED ON
AHI 4H
.) Z TRWAlT KEEP LOOPING UNTIL OPERATION COi'lf'LETED
RE T RETURN OTHERWISE

241 .** •• *****~*.*.*.*********.********~*t*~*******~**.**~*.**.********~
242 •
243 * PROCEDURE NAME: DK$STAT (DISK STATUS)
244 * PROCESS: RETURN THE DIS~ DEYICE STATUS
245 * INPUT:
246 * OUTPUT' A-REG CONTAINS THE STATUS BYTE
247 ;.
248 ;*.** •• **.****.* •• *.*********.*******.***~*****.*.**~* *********.****

DKSTAT:
MVI
CALL
RET

BoRDSTS
I oeD R 1

LOAD THE RDSTS COMMRND

RETURN WITH THE ISD STMT~S BYTE
;*****.**.*.****** ••• * ••• ******.**** ••• **************.******.* •• ***

24~

25B
251
252
253
2'54 ;*
255 : *
256 ;.
257 ;.
258 ;.
2S~ ;.
2611

PROCEDURE NAME: R$BYTE
PROCESS: RETURN WITH THE RESULT BYTE OF A DISK I/O OPERATiON
INPUT:
OUTPUT' A-REG CONTAINS THE RESULT BYTE

: •• *~********** ••• *.*.*************~*~T*~~***~**~~*~~**~**********~
R9 'iTE :

1111 I
CALL
RET

8·RRSTS
IOCDRI

LOAD THE READ RESULT STATUS COMMAND

RETURN ijITH THE ISD RESULT STATUS BYTE

261
262
263
264
26S
266 ;.
267

;.*.* •• ****.**.** •• ****.******~*****************.****.**~*~*******

268
26~

;. PROCEDURE NAME: R$TVPE
I. F~OCE5S: RETURN THE RESULT TYPE OF A DISK OPERATION
;. INPUT:

• OUTPUT: A-REG CONTAIHS THE RESULT TYPE 27B
271 ;'
272 *.*** •• *** •• **.***.*.** •• **** •• ******.*********~****.* ******t***

•
-sa.
!E.. ;-..,

<3
[J)
I'C .,
~. --

Q
en
:>I""
o
o
:;tI
~ c..
........

~
~. o
tT1
~
III
:3
"e. o

tl
b-

•

ISIS-I [nSIl/SIlBS "ACRO ASSE"BLER, V2.B II 00 U LE PAGE

LOC OBJ

61E2 3EII8
6IE4 C'

61E5 CDIIC62

61E8 DBCI
ilEA E6117
61EC FEBI
6tH C2E861
61FI D8CB
61 F3 F5
61F4 3E85
61F6 D3FF
61 F8 F I
61 F9 C9

61FA CD8C62

61FD D8CI
'IFF EbB7
62111 C2F061
6284 79
b2B5 D3e8
62B7 3E85
62B~ D3FF
62B8 C9

SEQ SOURCE STATE"EHT

RTYPE. 273
274
275
276
277
278 ;.
27' ;.
281 ;.
281 J.
282 J.

283 J.
284 J.

"\II
RET

A.I RETURN A ZERO SINCE ISO DOES HOT REALLY HAVE A RESULT TYPE

J •••••••••••••••••••••• * ••
J.

PROCEDURE HA"E' IOCDRI
PROCESS: GET DEVICE STATUS OR DATA FRO" DISK
INPUT: 9 CONTAINS THE 10C CO""AND (STATUS REQUES

DATA REQUEST
OUTPUT' A-REG CONTAINS THE REQUESTED INFOR"ATION
"ODIFIED: A.FLAGS.S

OR IHPIJT

2es
286
287
288
28'
2'U
291
292
293
2')4

; .. .
IOCDRI'

CALL IOCCO" OUTPUT 'GET DEVICE STATUS CO""AND" OR
'IHPUT DATA COHMAHO" TO lac CONTROL PORT

IOCXXX'
IN
AN I
CP I
·INZ
IN
PUSH
MVI
OUT
POP
RET

IOCS
IBF OR
OBF
IOCXXX
lOCI
PSI!
A.EHASL
CPUC
PSW

INPUT DBB STATUS
08F OR F81 "ASK OFF STATUS FLAGS

J TEST fOR SLAVE DONE. SOMETHING
IF HOT, CONTINUE TO LOOP
OTHERWISE, INPUT THE DATA FRO"
SAVE A-REG

I ENABLE INTERRUPTS

RESTORE A-REG

FOR THE MASTER

THE DBS
2'5
2%
297
298
299
388
381

; •• * ••••••••• * ••••
;.

382 • PROCEDURE HAilE; IOCDR2
383 • PROCESS' OUTPUT DATA TO THE DISK
384 * INPUT' B COHTAIHS THE COH"AHD TO
385 • C COHTAIHS THE DATA TO BE
386 • OUTPUT'

OUTPUT THE DATA
OUTPUT

387 • "ODIFIED' A,FLAGS,B,C
388
389 j •• *

IOCDR2'

10CHY'

CALL

IN
AH I
JHZ
"OV
OUT
I'IV I
OUT
RET

IOCCO"

IDes
IBF OR
IOCVYY
A. C
lOCO
A,EHABL
CPUC

FB OF OSF;

OUTPUT "OUTPUT DATA COMMAND" TO IDe
CONTROL PORT

INPUT DBB STATUS
TEST FOR SLAVE PROCESSOR READY
CONTINUE TO LOOP UNTIL IT IS READY
LOAD DATA TO BE WRITTEH
OUTPUT DATA TO THE DBB
ENABLE INTERRUPTS

JtB
311
312
313
314
315
31fi
317
318
319
321
321
322
323 ;.
324).
325 ,.
326 ;.
327 ,.

; •••••••••••••••••••••••••••••• ** ••••••••••••••••••••• *.*.~ •••••••••••
PROCEDURE NAHE' IOCCOM
PROCESS: OUTPUT CO""AND TO THE
INPUT: B CONTAINS THE CO""AND
OUTPUT:

10C

• • • •

9-
'" :0;-

~
::a
g
c..
"-
~ ;-..
~
9
"0 n

-:s -!2-
~
~

®

7JJ
'" .. :;0
[I.>

=

o
~

• • • •
ISIS-II 8888/8B85 MACRO ASSEMBLER, Y2.B MODULE PAi~E

LOC OBJ SEQ SOURCE STATE"EHT

328). MODIFIED' A,FLAGS
J29 1.
33B ; ••• •••••• ****** •••
331 10CCO" ,

i28C JE80 332 PlY I A.I>ISA8L 8LOCK ALL IHTERRUPTS
U8E oJFF 333 OUT CPUC

334 10CZZZ'
6218 D8Cl 335 IH lacs IHPUT OBB STATUS
6212 EiB? 336 AHI FB OR IBF OR OBF; TEST FOR SLAVE PROCESSOR IDLE
6214 C21862 337 JHZ 10CZZZ LOOP UNTIL IT IS IDLE
621? ?8 338 MaY A,8 LOAD THE CO"HAND
6218 D3CI 339 OUT 10CC OUTPUT COMMAND TO IOC CONTROL PORT
621A CC) 348 RET

341 , ••• **.*********
6888 342 EHD CLEAR

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER SYMBOLS
8EGIN A 68 II BUFFER A 682C CLEAR A 6BaB CPUC A BBH DISABL A 8BB~ DKSTAT A 6106
F8 A BII4 FORMAT A 18B2 18F A BBI2 10CC A IBCI 10r.COM A 62BC IOCDRI II 61E5
lOCI A BaCB lOCO A IIICB IOCROY II 6182 IOCS II 88CI IOCX:<X II 61E8 10 CY yy II 61H
ISOI A 6165 ISD2 A 61?4 lSD2A II 6182 ISD28 A 6184 ISol II 61 AC· ISDDR A 612C
RUfE II 61 OC ROBC II 1819 ROtC II lilA ROLPI II 614' RDLP2 A 6148 RDSTS II BIle
RECALl A BII3 RIOPB A 'II E RR$TS II 8819 RTYPE A 61 E2 SEEK A BBB! TRIOP9 A 618A
TRWllif II 'ICI) YERIFY II aaas ~1)ge II 1117 IIDce II BB 18 \lIOPS A 6B25 IIPBe A BI!S
WRITE A .11' WR ITEO II BIB? IIU P I A 6196 WRLP2 II 61"

ASSEMBLV CO"PLETE. NO ERRORS

•

EHABL A B885
IOCDR2 A 61FA
IOC222 II 621B
OBF II BaBI
READ II BBB4
TRLOOP II 61C2
WPCC A 8816

....
::I -~
ii'
n

®

~ .. ;0
'"

!2
<II

i
~

~
~
::l.
eD
~ a
'5!.
n

•

•

•

•

•

•

•

•

•

•

• ii

n APPENDIX E
CONNECTOR PIN ASSIGNMENTS

This appendix identifies the pin assignments for all
user-interface connectors for the Intellec Series II
Microcomputer Development System and defines the
dc drive and load characteristics for the individual
signals. The Multibus interface is internal to the
development system and is available on connectors
J2 through]6 of the card cage. Table E-l identifies

the Multibus interface pin assignments and tables E-2
and E3 define the Multibus interface dc signal
characteristics for the IP Band IPe, respectively.
Tables E-4 through E-9 define the pin assignments
and dc characteristics for the rear panel peripheral
connectors (12 through 17).

E-l

Connector Pin Assignments Intellec® Series II

Table E-I. MULTIBUS® Interface Pin Assignments

E-2

Board Component Side

Pin Mnemonic Description

1 GND Signal ground
3 +5 +5VDC
5 +5 +5VDC
7 +12 +12VDC
9 -5 -5VDC

11 GND Signal ground

13 BCLKI Bus Clock
15 BPRNI Bus Priority In
17 BUSYI Bus Busy
19 MRDC! Memory Read Command
21 10RCI I!O Read Command
23 XACK! Transfer Acknowledge
25 AACK! Advanced Acknowledge

27 BHENI Byte High Enable
29 CBRa/'* Common Bus Request
31 CCLKI Constant Clock
33 INTA/* Interrupt Acknowledge

35 INT6!
37 INT4!

Interrupt Requests
39 INT2!
41 INTO!

43 ADREI
45 ADRCI
47 ADRAI
49 ADR8!

Address Lines
51 ADR6!
53 ADR4!
55 ADR2!
57 ADRO!

59 DATE!
61 DATC!
63 DATA!
65 DAT8!

Data Lines
67 DAT6!
69 DAT4!
71 DAT2!
73 DATO!

75 GND Signal ground
77 -10 -10VDC
79 -12 -12 VDC
81 +5 5VDC
83 +5 +5VDC
85 GND Signal ground

* Not implemented on IPBIIPC
•• Only implemented on IPC

Board Circuit Side

Pin Mnemonic Description

2 GND Signal ground
4 +5 +5VDC
6 +5 +5VDC
8 +12 +12VDC

10 -5 -5VDC
12 GND Signal ground

14 INIT! Initialize
16 BPRO!" Bus Priority Out
18 BREQ/ Bus Request
20 MWTC! Memory Write Command
22 10WCI I!O Write Command
24 INH1! Inhibit (disable) RAM
26 INH2! Inhibit (disable) ROM

28 ADR10!
30 ADR11!

Address

32 ADR121
Extension

34 ADR13!
Lines

36 INT7!
38 INT5!

Interrupt Requests
40 INT3!
42 INT1!

44 ADRF!
46 ADRD!
48 ADRB!
50 ADR9!

Address Lines
52 ADR71
54 ADR5!
56 ADR3!
58 ADR1!

60 DATF!
62 DATD!
64 DATB!
66 DAT9!

Data Lines
68 DAT7!
70 DAT5!
72 DAT3!
74 DAT1!

76 GND Signal ground
78 -10 -10 VDC
80 -12 -12VDC
82 +5 +5VDC
84 +5 +5VDC
86 GND Signal ground

•

•

•

•

•

Intellec® Series II Connector Pin Assignments

• Table E-2. IPB Signal DC Characteristics

Current Drive Current Load
Signal Mnemonic Type Termination

Low (Iod High (I OH) Low (lId High (lIH)

AACKI 20mA N/A -4mA 100f./A Open Collector 370Q pull up

ADRO/-ADR71 24mA -15mA -O.5mA 70f./A Three-State 2.2kQ pullup

ADR8/-ADRF I 24mA -15mA -O.45m A 30f./A Three-State 2.2kQ pullup

ADR10/-ADR131 N/A N/A N/A N/A N/A 2.2kQ pullup

BCLK/, CCLKI 60mA -3m A -O.5mA 1OOl'A TTL 220/330Q on backplane-

BHENI N/A N/A N/A N/A N/A 2.2kQ pullup

BPRN1/-BPRN91 20mA -1mA 0 0 TTL None

• BREQ1/-BREQ91 N/A N/A -3.2mA 80f./A N/A 1kQ pullup

BUSYI 20mA N/A 0 0 Open Collector 1kQ pullup

DATO/-DAT71 25mA -10mA -O.5mA 80f./A Three-State 2.2kQ pullup

DAT8/-DATFI N/A N/A N/A N/A N/A 2.2kQ pullup

INH11 15mA N/A -1.6mA 40f./A TTL 1 kQ pullup

INH21 15mA N/A 0 0 TTL 1kQpuliup

INITI 60mA -3m A 0 0 TTL None

• INTO/-INT71 40mA N/A -O.2mA 20f./A Open Collector 1kQ pull up

IORC/, IOWCI 32mA -2mA -O.45mA 6Ol'A Three-State 1kQ pull up

MRDC/, MWTCI 32mA -2mA -1.6mA 40f./A Three-State 1kQ pull up

XACKI 20mA N/A -2mA 50f./A Open Collector 510Q pullup

-A 150Q/100pF series RC termination network is also installed on the backplane.

•

•
E-3

Connector Pin Assignments Intellec® Series II

Table E-3. IPC Signal DC Characteristics

Current Drive Current Load • Signal Mnemonic Type Termination
Low (Iod High (I OH) Low (lId High (IIH)

AACKI 16mA -5.2mA -O.4mA 20llA Three-State 510Q pullup

ADRO/-ADRFI 32mA -5mA -O.4mA 50llA Three-State 2.2kQ pullup

ADR10/-ADR131 N/A N/A -O.4mA 20llA N/A 2.2kQ pullup

BCLK/, CCLKI 60mA -3m A -O.5mA 100ilA TTL 220/330Q on backplane'

BHENI N/A N/A -O.4mA 20llA N/A 2.2kQ pullup

BPRN1/-BPRN91 20mA -1mA 0 0 TTL None

BRE01/-BRE091 N/A N/A -3.2mA 80llA N/A 1kQ pull up

BUSYI 20mA N/A 0 0 Open Collector 1kQ pull up • CBROI 20mA N/A 0 0 Open Collector 1kQpuliup

DATO/-DAT?I 20mA -5mA -O.95mA 230llA Hiree-State 2.2kQ pullup

DAT8/-DATFI 20mA -5mA -O.25mA ?OIlA Th ree-State 2.2kQ pull up

INH11 48mA N/A -O.4mA 0 Open Collector 1kQ pullup

INH21 48mA N/A 0 N/A Open Collector 1kQ pull up

INITI 48mA N/A 0 N/A Open Collector 2.2kQ pullup

INTO/-INT71 40mA N/A -D.2mA 20llA Open Collector 1 kQ pullup • IORC/, IOWCI 32mA -2mA -O.2mA 2DIlA Three-State 1 kQ pullup

MRDC/, MWTCI 32mA -2mA -2m A 50llA Three-State 1 kQ pullup

XACKI 16mA -5.2mA -O.4mA 20llA Three-State 510Q pullup

* A 150Q/100pF series RC termination network is also installed on the backplane.

•

•
E-4

•

•

•

•

•

Intellec® Series II Connector Pin Assignments

Table E-4. SERIAL CHlITTY Pin Assignments (Connector J2)

Pin Signal Function

1 PROTGND Protective Ground
2 RxD (RS232) Transmitted Data In
3 TxD (RS232) Received Data Out
4 RTS (RS232) Request to Send
5 CTS (RS232) Clear to Send
6 DSR (RS232) Data Set Ready
7 GND Signal Ground
8 Not Used
9 Not Used

10 Not Used
11 Not Used
12 RxD (CURRENT LOOP) Transmitted Data In
13 TxD (CURRENT LOOP) ReCE!ived Data Out
14 TTY ROY Same as DSR (pin 6)
15 TxC Transmit Clock
16 DTR (CURRENT LOOP) Data Terminal Ready (Reader Control)
17 RxC Receive Clock
18 Not Used
19 Not Used
20 DTR (RS232) Data Terminal Ready
21 DTR RET Reader control Return (to -12V)
22 Not Used
23 Not Used
24 RxD RET (CURRENT LOOP) RxD Return (to + 12V)
25 TxD RET (CURRENT LOOP) TxD Return (to -12V)

Note: The required mating connector is a Cannon DEC·25P (or equivalent).
* At 12.0 volts

Current Drive Current Load

Low(lod High (I OH) Low(lld High(IIH)

-4mA* 4mA'
6mA -6mA
6mA -6mA

-4mA* 4mA*
-4mA* 4mA*

<100jiA (ON) >16mA (OFF)
>22mA(ON) <100jiA (OFF)

<100jiA (ON) >22mA (OFF)
-4mA* 4mA*

6mA -6mA

E·5

Connector Pin Assignments Intellec® Series II

Table E-S. SERIAL CH2 Pin Assignments (Connector J3)

Current Drive Current Load • Pin Signal Function
Low (Iod High (I OH) Low (lid High(IIH)

1 PROTGND Protective Ground
2 TxD Transmitted Data Out SmA -SmA
3 RxD Received Data In -1.7mA 1.7mA
4 RTS Request to Send SmA -SmA
5 CTS Clear to Send -1.7mA 1.7mA
S DSR Data Set Ready -1.7mA 1.7mA
7 GND Signal Ground
8 Unassigned
9 Not Used

10 Not Used
11 +12V +12V (requires jumper connection)
12 Not Used
13 Not Used • 14 Not Used
15 TxC Transmit Clock -1.7mA 1.7mA
1S Not Used
17 RxC Receive Clock -1.7mA 1.7mA
18 Not Used
19 Not Used
20 DTR Data Terminal Ready SmA -SmA
21 Not Used
22 Not Used
23 -12V -12V (requires jumper connection)
24 EXTTxC External Transmit Clock SmA -SmA
25 +5V +5V (requires jumper connection •

Note: The required mating connector is a Cannon DEC-25P (or equivalent).

•
•

•
E-6

•

•

•

•

•

Intellec® Series II Connector Pin Assignments

Table E-6. PT PUNCH Pin Assignments (Connector J4)

Current Drive
Pin Signal Function

Low (Iod High (lOH)

1 DATA TRACK 11 Output Data Bit 1 15mA -1mA
2 DATA TRACK 21 Output Data Bit 2 15mA -1mA
3 DATA TRACK 31 Output Data Bit 3 15mA -1mA
4 DATA TRACK 41 Output Data Bit 4 15mA -1mA
5 DATA TRACK 51 Output Data Bit 5 15mA -1mA
6 DATA TRACK 61 Output Data Bit 6 15mA -1mA
7 DATA TRACK 71 Output Data Bit 7 15mA -1mA
8 DATA TRACK 81 Output Data Bit 8 15mA -1mA
9 Not Used

10 DIRECTION Direction Control
11 PUNCCOMMANDI Punch Command 16mA -800j.lA
12 PUNCH READY I Punch Ready
13 SYSTEM READY I System Ready
14 INPUT MODE SELECT Select Input Mode
15 OUTPUT MODE SELECT Select Output Mode
16 CHASSISGND Chassis Ground
17 CHASSISGND Chassis Ground
18 GND Ground
19 Not Used
20 Not Used
21 Not Used
22 Not Used
23 GND Ground
24 Not Used
25 GND Ground

NOTE: ·Slash (/) after signal mnemonic denotes that signal is true when :;;O.4V.

The required mating connector is a Cannon DEC-25P (or equivalent).

Current values include pullup load .

Current Load
Termination

Low (I,d High (I'H)

1kQ pullup

-10.85j.1A -7.4j.1A 470Q pullup
-10.85j.1A -7.4j.1A 470Q pullup

Ground
Ground

E-7

Connector Pin Assignments Intellec® Series II

Table E-7. PT READER Pin Assignments (Connector J5)

Current Drive
Pin Signal Function

Low (od High (lOH)

1 DATA TRACK 1/ Input Data Bit 1
2 DATA TRACK 2/ Input Data Bit 2

3 DATA TRACK 3/ Input Data Bit 3
4 DATA TRACK 4/ Input Data Bit 4
5 DATA TRACK 5/ Input Data Bit 5
S DATA TRACK S/ Input Data Bit S
7 DATA TRACK 7/ Input Data Bit 7
8 DATA TRACK 8/ Input Data Bit 8
9 DATA READY/ Data Ready

10 Not Used
11 GND Ground
12 GND Ground
13 GND Ground
14 SYSTEM READY/ System Ready
15 Not Used
16 DRj Paper Tape Drive Right 16mA -800,uA
17 DLj Paper Tape Drive Left 1SmA -800,uA
18 Not Used
19 Not Used
20 Not Used
21 Not Used
22 Not Used
23 Not Used
24 GND Ground
25 CHASSIS GND Chassis Ground

NOTE: 'Slash (f) after signal mnemonic denotes that signal is true when ~0.4V.

E-8

The required mating connector is a Cannon DEC-25P (or equivalent).

Current values include pullup load.

Current Load
Termination

Low (IlL) High (IH)

-0.75mA -0.24mA 10KQ pullup
-0.75mA -0.24mA 10KQ pullup
-O.75mA -0.24mA 10KQ pullup
-O.75mA -0.24mA 10KQ pullup
-O.75mA -O.24mA 10KQ pullup
-0.75mA -O.24mA 10Kfl pullup
-0.75mA -O.24mA 10Kfl pullup
-0.75mA -O.24mA 10Kfl pullup

--10.85mA -7.4mA 470fl pullup

--10.85mA" -7.4mA 470Q pullup

•

•

•

•
•

•

•

•

•

•

•

Intellec® Series II Connector Pin Assignments

Table E-8. LINE PRINTER Pin Assignments (Connector J6)

Current Drive
Pin Signal Function

Low (OL) High (lOH)

1 DATA 1 Output Data Bit 1 1SmA -1mA

2 DATA 2 Output Data Bit 2 15mA -1mA

3 DATA 3 Output Data Bit 3 1SmA -1mA

4 DATA 4 Output Data Bit 4 1SmA - 1mA

S DATAS Output Data Bit S 15mA -1mA

6 DATA 6 Output Data Bit 6 1SmA -1mA
7 DATA 7 Output Data Bit 7 1SmA -1mA

8 DATA 8 Output Data Bit 8 1SmA -1mA

9 GND Ground
10 GND Ground

11 GND Ground
12 GND Ground
13 Not Used
14 LPT DATA STROBE/ Data Strobe 16mA -800j.LA

15 GND Ground
16 ACKNOWLEDGE/
17 BUSY/ PrintHr Busy
18 Not Used

19 LPT CTL 1/ Control Line 1 16mA -800j.LA

20 LPT CTL 2/ Control Line 2 16mA -800j.LA

21 Not Used

22 SELECT/ PrintHr Select

23 Not Used

24 Not Used

25 CHASSiS GND Chassis Ground

NOTE: ·Slash (f) after Signal mnemonic denotes that signal is true when :sO.4V.

The requirHd mating connector is a Cannon DEC-2SP (or equivalent).

Current values include pullup load .

Current Load
Termination

Low (lId High (IH)

-10.8SmA -7.4mA 47011 puilup
-10.8SmA -7.4mA 47011 pullup

-10.85mA -7.4mA 47011 puilup

E-9

Connector Pin Assignments lntellec® Series II

Table E-9. UPP Pin Assignments (Connector J7)

Current Drive
Pin Signal Function

Low (oL> High (I0H)

1 GND Ground
2 PPACK/ PROM Programmer Acknowledge

3 PPRC1/ PROM Programmer Read Control Line 1 16mA -800~A

4 PPRCO/ PROM Programmer Read Control Line 2 16mA -800~A

S PRD7/ PROM Read Data Bit 7
6 PRD6/ PROM Read Data Bit 6
7 PRD5/ PROM Read Data Bit S
8 PRD4/ PROM Read Data Bit 4
9 PRD3/ PROM Read Data Bit 3

10 PRD2/ PROM Read Data Bit 2
11 PRD1 PROM Read Data Bit 1
12 PRDO/ PROM Read Data Bit 0
13 GND Ground
14 INIT/ Initialize 16mA -800~A

15 PWD7/ PROM Write Data Bit 7 15mA -1mA
16 PWD6/ PROM Write Data Bit 6 15mA -1mA
17 PWD5/ PROM Write Data Bit 5 15mA -1mA
18 PWD4/ PROM Write Data Bit 4 15mA -1mA
19 PWD3/ PROM Write Data Bit 3 15mA -1mA
20 PWD2/ PROM Write Data Bit 2 1SmA -1mA
21 PWD1/ PROM Write Data Bit 1 1SmA -1mA
22 PWDO/ PROM Write Data Bit 0 15mA -1mA
23 PPWC2/ PROM Programmer Write Control Line 2 16mA -800~A

24 PPWC1/ PROM Programmer Write Control Line 1 16mA -800~A

25 PPWCO/ PROM Programmer Write Control Line 0 16mA -800~A

NOTE: 'Slash (f) after signal mnemonic denotes that signal is true when :sOAV.

E-IO

The required mating connector is a Cannon DEC-2SP (or equivalent).

Current values include pullup load.

Current Load
Termination

Low (IlL> High (IH)

-10.6mA -5.9mA 470Kf!
pullup

-0.75mA -0.24mA 10Kf! pullup
-0.75mA -0.24mA 10Kf! pullup
-0.7SmA -0.24mA 10Kf! pullup
-0.7SmA -0.24mA 10Kf! pullup
-0.7SmA -0.24mA 10Kf! pullup
-0.7SmA -0.24mA 10Kf! pullup
-0.7SmA -0.24mA 10Kf! pullup
-0.7SmA -0.24mA 10Kf! pullup

•

•

•

•
•

•

•

•

•

•

•

inter Intellec® Series II Microcomputer Development System Hardware Interface Manual
9800555-03

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi­
cation. If you have any comments on the product that this publication describes, please contact your Intel repre­
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1 . Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve­
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _____________ _

NAME _________________________ __ DATE _______ _

TITLE ______________________ .

COMPANY NAME/DEPARTMENT ____________________________ _

ADDRESS ___________________ __

CITY _______________ _ STATE _________ _ ZIP CODE ____ _

(COUNTRY)

WE;O LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

II I NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

•

•

•

•

•

