
().

.I •
•

USER'S GUIDE FOR
MULTI-TASKING OPERATING SYSTEM

MTOS-68

lNDUSTRIAL PROGRAMMING, INC.

9 Northern Blvd.

Greenvale, N.Y. 11548

January 1976

Copyright© 197.5, by Industrial Progra1TD11ing, Inc., Greenvale, N.Y.

0 .

()

User's Guide for MTOS

The information in this document is subject to change, update

and revision without notice. Industrial Program~ing, Inc., assumes

no responsibility for any errors that may appear in this manual or

. the associated software.

The software described in this document is furnished to the

purchaser under a license which forbids reproduction in whole or

part except as pro'vided in writing by Industrial Programming, Inc.

Copyright© 1976, by Industrial Prograrrnning, Inc., Greenvale, N. Y.

i

0

rJ.
.,

Section

l. .

2.

3.

3. l

3.2

3.3

3.3.l

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

4.

4. l

4.2

4.3

5.

5.l

5.2

5.3

5.4

5.5

6.

7.

TABLE OF CONTENTS

Introduction

Supervisor Calls

Task Management

CPU Management

Task Overhead

Task Startup

Contents

Automatic Task Startup

Unconditional Requests for Task Startup

Conditional Requests for Task Startup

Requests for Task Termination

State of Task Upon Startu~

Task Coordination Via Event Flags

Coordination of Shared Subprograms

SVC for Entry To and Exit From a Controlled
Sup program

Controlled Subprogram Overhead

Registers and Condition Code

Time Management

Pause for Given Time Interval

Cancel Pause for Given Task

Set Event Flag After Given Interval

Synchronization for Exact Time Intervals

Pause for Minimum Time Interval

Input and Output of Discretes

Input and Output of Console Messages

Page

1-1

2-1

3-1

3-1

3-2

3-3

3-3

3-3

3-6

3-8

3-10

3-10

4-1

4-1

4-3

4-3

5-1

5-2

5-3

5-5

5-7

5-8

6-1

7-1

iii

.. 0 TABLE OF CONTENTS (continued)

Section ··contents Page

7. l Requested Output 7-1

7.2 Req_uested Input 7-1

7.3 Input Text Editing 7-3

7.4 Unrequested Text Messages 7-4

8. Peripheral Interrupts 8-1

9. Memory Allocation 9-1

9. l MTOS Memory Map 9-1

9.2 MTOS/User Interface 9-1

()

lV

0 TABLE OF FIGURES

Fiqure Contents Page

3-1 Typical Requests for Task Startup 3-7

3-2 Typj ca 1 Applications of SVC 9 3-14

3-3 Task Coordination Via Event Flags 3-15

4-1 Using a Controlled Subprogram 4-2

5-1 Task Coordination Via Pause Cancellation 5-4

5-2 Setting an "Alarm Clock" 5-6

7-1 Console Output 7-2

9-1 Typical Console Data 9-3

()

...... :.·

0 . .

Appendix

A

B

c

TAeLE OF APPENDICES

Contents

Task Storage Overhead

Summary of SVC Data Blocks

Samp 1 e Programs

v

Q . USER'S GUIDE FOR MTOS

l. Introduction

An operating system is used to increase the effectiveness of a

computer by allowing several activities to proceed simultaneously

and to share common facilities without interference. Simultaneous

operation increases throughput; facility sharing conserves memory.

A Multi-Tasking Operating System (MTOS), in particular, permits

the user to divide his program into separate, individual segments

called "tasks". A task is an independent program which can run

either.alone or simultaneously.with other tasks. This independence,

however, does not exclude coordination among tasks, or the sharing

of resources such as a data base or set of utility subprograms.

The ability of a task to be run as a separate program does not

imply that it is running at all times. Often it is not. Each task

will be in one of four general states: dormant, waiting, ready, or

active.

A dormant task is totally inactive; it is not running. Either

it has never started; or it has run and terminated. A dormant task

may be started by another task or by the operating system in response

to some externaJ event, e.g. recovery after a power failure.

A waiting task is currently running, but is temporarily blocked

from continuing. There are several wait states depending upon the

type of blockage. Generally, a task is either waiting to use some

shared facility which is busy, waiting for a requested service to

be completed, or waiting for some internal event such as the receipt

I- I

0 .

0

of a coordination (go ahe~d) signal from another task. While a task

is in one of these wait states it does not compete for use of the

computer's Central Processing Unit (CPU).

The active task is the one presently using tha CPU. · The ready

tasks are those which could use the CPU if it were available.

MTOS supports the individual tasks by providing functions and

services which are beyond the capability of any one task or which

are most efficiently concentrated in a central area. For example,

the allocation of the CPU must be an operating system function since

dynamic, system-wide information is needed to resolve the conflicting

needs of several tasks. In contrast, the input of discrete signals

could in principle be programmed into each task which must react to

such signals. In many cases, however, program efficiency is improved

by centralizing the processing of discretes.

The broad categories of MTOS service are:

o mana~ement of tasks

o coordination of shared subprograms

o management of time

o input and output of Con so 1 e m_essage and di scretes

Each of these categories is described in later sections of this_

document. The discussion will cover both those services.which are

provided automatically by MTOS (arid thus which are not directly

visible to the task programs), and those services which come into

play only when directly requested by a task program.

In all cases, MTOS services are initiated by interrupts. Many

of these interrupts are generated and serviced by MTOS with only

1-2

()

the indirect effects seen·within the tasks. For examples the real

time clock periodically generates an interrupt. MTOS uses that

interrupt in its timekeeping functions. However, unless a task

has requested a pause for a given amount of time, or has requested

some other time-dependent service, the clock interrupt has no

direct consequence for that task.

1-3

0 .

0

2 . Supervisor Calls

When a task needs service, it issues a supervisor call (SVC)

using the following code:

SVCPGM EQU $E400

.
JSR SVCPGM
FOB data block

The data block indicates the type of request and provides any

required parameters.

The SVCs within MTOS are:

0. terminate the issuing task without automatic restart

1. terminate the issuing task with automatic restart
after a given interval

2. pause for a given time interval

3. cancel the pause of a given task

4. start a given task if it is dormant

5. start a given task, queuing the request if the
task is busy

6. enter a controlled shared subprogram

7. exit from a controlled shared subprogram

8. set/reset/test an external discrete

9. set/reset/test an internal event flag

10. wait until event flags are set

11. set an event flag after a given interval

12~ read a message from the Console

13. write a message on the Console

All of the SVCs will be described in the sections to. follow. Ap-

pendix B contains a summary of the required data blocks.

2-1

l,~ ')

0

0

The supervisor call uses an internal MTOS subprogram (SVCPGM)
•

rather than the software interrupt (SWI) instruction. This avoids

two problems. First, the Motorola EXORciser uses the SWI for break

points. Otir use of an internal subprogram eliminat~s this conflict

and permits program development on the EXORciser. Second, if a non

maskable interrupt occurs during SWI processing, a bogus peripheral

interrupt is generated by the hardware (see Motorola Applications

Manual, Page A-10, Q9). MTOS is not subject to this anomaly.

The same data block may be referenced by several individual

requests. For example, the data block to pause for 30 seconds is:

Two

1000 02 PA30SC FCB 2 ~=pause)
1001 02
1002 1 E

separate requests

1500 BO E400
1503 1000

1641 BD E400
1643 1000

FCB 2 =seconds)
FCB 30 (=number of units)

for such a pause could be:

JSR SVCPGM PAUSE FOR 30 SECONDS
FOB PA30SC

JSR SVCPGM PAUSE FOR ANOTHER 30 SECONDS
FOB PA30SC

Furthermore, the data block may be in either read-only memory

(ROM) or read-write memory (RAM). Thus, a pause for a variable
-

number of seconds could be constructed as follows:

0120 003

1710 CE 0202
1713 FF 0120

174F 87 0122
1752 BO E400
1755 0120

PAUSE RMB 3 (in RAM)
-

LOX #$0202 SET UP PAUSE WITH SECONDS
STX PAUSE AS TIME UNIT

(calculate number of seconds)
.

STA A PAUSE+2 STORE CALCULATED NUMBER OF SEC(=A)
JSR SVCPGM PAUSE
FOB PAUSE

()

Upon return from SVCPGM, the condition code is set to convey

certain information about the SVC. The specific meaning of the

individual bits varies with the. particular type of request. How

ever, the following general scheme has been adopted for .all SVCs:

H (half carry):

I (interrupt mask):

N (negative):

Z (zero):

V (overflow):

C (carry):

always 0.

always 0.

always 0.

=l if the requested cohdition already
exists so that the SVC has no
effect. For example, if the SVC
request was to start a given task
if it is dormant, and that task·
was already started then Z is
set to 1.

=O otherwise

=l if any of the parameters are beyond
the proper range, such as an SVC
type of 99.

=O if all parameters are within range

= original value of external discrete
or internal event flag.

2-3

0

0

3. Task Manaqement

Task management encompasses:

o CPU management

o task overhead

o task startup

o task termination

o task coordination

3.1 CPU Management

While several tasks may be running simultaneously, only one task

can use the computer 1 s Central Processing Unit (CPU) at a time.

This task is said to be 11 active". MTOS determines which one of the

ready tasks wi 11 be active.

To facilitate CPU management, MTOS maintains a queue of all

ready tasks. This Ready Tasks Queue (RTQ) is dynamic. For example,

when a dormant task first starts it is placed on the RTQ. If at some

point the task re~uests a pause for a given amount of time, it is

temporarily removed from the RTQ; when the time elapses, the task is

reinstated. When the task finally terminates, jt is taken permanently

from the RTQ .. These processes are repeated for each subsequent

restart of the task.
-

Ordering within the RTQ is determined by a current priority

associated with each task. Priorities range from 0 (lowest) to 15

(highest).·· The priority is set when a task first starts and remains

constant until the task terminates. However, each restart of the

task may be made at a different priority. (Assignment of task

j-1

•

() priority is discussed in Section 3.3.2.)
'

MTOS gives the CPU to that ready task having the highest priority.

For tasks of the same priority: first-come, first-served. Since

the RTQ is maintained in descending order of current priority, the

active task is merely the head of the RTQ.

The active task retains control until an interrupt occurs. At

the interrupt the active task is automatically suspended and the

state of the machine (registers, condition code and program counter)

is saved in the task's stack. (Each running task has its own

stack.) MTOS then services the interrupt. The service may change

task status so that a new task becomes the head of the RTQ. To

resume task processing, MTOS loads the state of the machine from the

stack of whatever task is at the head of the RTQ.

3.2 Task Overhead

CPU control is an internal function of the operating system and

requires no effor~ on the part of the user. There is nevertheless

certain storage overhead which must be provided for each task.

These are described fully in Appendix A. In brief, the overheads

are:

A stack for use by MTOS to store the state of the microprocessor

during interrupt processing, and by the task to store sub

program return addresses and temporary data. The user must

keep 18 bytes within the stack always available to MTOS.

A 7 byte entry within a table of Task Control Data (TCD). The

TCD is fixed by the user and contains the program entry

. point, inherent priority, and similar static source data.

3-2

0 .

()

The i~formation must be in ROM.
•

An 18 byte Task Control Block (TCB) which is created and used

internally by MTOS. Since the TCB contains dynamic data,

it must be in RAM.

3.3 Task Startup

3.3.l Automatic Task Startup

When power is first applied to the processor (that is, during

the servicing of a reset interrupt), MTOS sets all application tasks

dormant except for a user-written "reset processing" task. Although

there are no special restrictions on the reset task, it is expected

that it will initialize certain data and then will start other tasks

as required by the· particular application.

Note, however, that recovery from a temporary power failure

and initial start of the system are indistinguishable as far as the

basic microprocessor .is concerned; they both generate a 11 reset 11

interrupt. In fact, without some external hardware to make a dis-

tinction, turning on the processor is simply the recovery from an

extended period of power outage.

Since the user may wish to proceed differently after temporary

power failure than after system restart, MTOS provides an external.

initialize button which is used upon system restart. A depression

of this button is treated exactly as a reset interrupt, except that

a different user task--the initialize task--becomes active.

3.3.2 Unconditional Requests for Task Startup

The reset and initialize tasks generally start other tasks

3-3

CJ

0

which may, in turn, start still other tasks. The mechanism by

which one task requests the start of another is through SVC 5.

All SVCs are coded as JSR SVCPGM followed by the address of a

supplementary Supervisor Data Block (SOB). The SOB for requesting

task startup is composed as:

3-4

FCB
FCB
FOB
FDB

5
parameter 1
address of TCD for task to be started
address of 7 byte RAM scratch area in

(type)
(options and control)
(target TCD)
(RCB address)

which to build queue block

Parameter 1 contains bit-by-bit control data:

o If bit 7 is a 1 the value currently in the X register of the

requesting task will be placed in the X.register of the

started task as a startup argument; otherwise the target

task will start with the X register cleared. This mechanism

provides for a single, 16-bit argument to be transmitted

from the requesting to the target task. However, since the

user can establish the convention that the argument always

points to the start of an entire data array, there is no

limit to the size of the effective argument list.

o The target task can only be started if it is currently

dormant. If it is running, the request is automatically

queued and will eventually result in a restart of the

target task. Bits 6 and 5 iridicate the coordination

between the requesting and target task:

00 the requesting task continues without wait
after the request is queued,

01 the requesting task waits for the target
task to start as a result of the current
request,

0 .

()

10 the requesting task waits for the target task
to start ~nd terminate as a result of the
current request,

11 not used.

o The requesting task controls the priority the target task

will have when it starts via the current request. If bit 4

is 1 the target task will start with whatever priority is

given in bits 3 to O; if bit 4 is a 0 the priority will be

computed by MTOS as the larger of the inherent priority of

the target task and the current priority of the requesting

task. (The inherent priority is a fixed property preserved

within the TCD.) The priority also determines the order in

which startup requests are queued to the target task.

Requests are serviced in order of restart priority.

Note that the target task is indicated by giving the address of

its TCD (as opposed to its TCB). This convention is carried through

out MTOS. Thus, if the TCD starts with a label, that label becomes

effectively the 11name 11 of the task.

The final element within the startup SOB is the address of a

scratch area in which MTOS may form a startup Request Control Block

(RCB). Any scratch area in RAM may be used. However, the area must

not be modified by the user from the time the SVC is issued until
-

the target task terminates from the request. Violation of this rule

may cause errors which could be very difficult to trace. To help

determine when a RCB is available for reuse, MTOS sets the leading

two bytes to hexadecimal FFFF (all ones) when the block is no

longer needed.

0

l 0

Some typical requests for task startup are shown in Figure 3-1.
-...._

Although all examples use an SOB within ROM this is not an inherent

restriction. An SOB can also be formed within RAM. In fact, this

would be required if either the given priority or the target task

were to be computed dynamically rather than being fixed at program

assembly time.

All condition codes are reset to zero upon return from SVC 5.

For a task started by SVC 5, the stack pointer is set to the

value given within the TCO and registers A and B have some arbitrary

values.

3.3.3 Conditional Requests for Task Startup

The SVC 5 just described is an unconditional request for task

startup. It always results in the eventual startup of the target

task. If that task is busy, the request is simply queued.

In some cases, it is sufficient merely to have a target task

running without reference to how the startup occurred. For these

situations MTOS provides an SVC to startup the target task if it is

dormant. If the task is already running, the SVC has no effect.

The format of the SOB is:

FCB
FDB

4
address of TCD for task to

be started

(type}
(target. TCD)

When the requesting task continues after the SVC has been

processed the Zero flag within its condition code will be 0 if the

task was originally dormant or 1 if the task was already running

(so that the SVC had no effect).

3-6

0 .

0

Case 1. Start task TSl with priority 7, no argument, and wait for task
to terminate:

JSR SVCPGM
FOB S5SDB1

S5SDB1 .. FCB
FCB
FOB
FOB

5
$57
TSlTCD
TEMP7B

TEMP7B RMB 7

(in ROM)

(in RAM)

Case 2. Start task TS2 with computed priority, transmit 4 as an argument,
and wait for task to start:

Case 3.

LOX #4
JSR SVCPGM
FOB S5SDB2

S5SOB2 FCB
·FCB
FOB
FOB

5
$AO
TS2TCO
TEMP7B

(in ROM)

Start task TS3 with computed priority, transmit address of
entire argument array (ARGARY), and continue without coordination:

Figure 3-1 Some Typical Requests for Task Startup

3-7

r"\ v

()

For a task started by an SVC 4, the stack pointer is set to

the value given within the TCD and the registers have some arbitrary

values.

3.3.4 Requests for Task Termination

When a task finishes its processing it issues a termination

SVC. Two SVCs are available: one automatically reschedules a

restart of the task after a given time interval; the other does

not. In the former case, the task is considered busy and thus is

not available for restart by another task. In the latter case, if

a restart request had been queued it will now be honored; other

wise the task becomes dormant.

Every task would normally have at least one termination SVC;

there may be several such calls within a given task. If there are

several terminations some may request restart and others may not.

The SDB for termination without restart is a single zero byte.

Thus, the entire SVC is a call of the SVC program followed by the

address of a byte containing a zero:

JSR
FDB

ZERO FCB

The

SVCPGM
ZERO

0

SOB for termination with

time interval is composed as:

FCB 1
FCB parameter 1
FCB number of time units

TERMINATE WITHOUT RESTART

automatic restart after a given

(type)
(option and control)
(0 to 255)

3-8

0

0

0

Parameter 1 contains bit-6y-bit information: bit 7 indicates if.

the restart is to be based on the last scheduled start time for the

task (bit 7=0) or on the current (tennination) time (bit 7=1). The

former is normally used for cyclic tasks, i.e. tasks which become

active on a regular period such as every 15 minutes. Bits 6 thru

3 are not used. Bits 2 thru 0 stipulate the time interval:

O= ms
l = 10 ms
2·= seconds
3 = minutes
4 = hours

Specifying a time interval code greater than 4 is invalid. In

such cases, the task wil 1 start immediately with the Overflow bit of the

condition code set to 1.

If a proper interval is given but the number of units is 0, the

task will also restart immediately. This, however, is a valid

restart and the Overflow bit wi 11 be reset.

Some time intervals can be composed in several ways. For

example, 20 ms can be considered twenty intervals of 1 ms or two

intervals of 10 ms. Both specifications are equivalent and neither

offers any special advantage for interval processing.

Note that the last start time is the time the task first became

ready, not the time it actually began processing. If there were

higher priority ready tasks, the actual start may. have been delayed.

Furthermore, suppose a task is to be restarted every 5 minutes

based on start time. A~sume further, that the task started on

0

schedule at 11:00 but did' not terminate until 11:07. Upon termina~

ti on the task immediately restarts (since 11 :07 is past the next

scheduled restart time of 11 :05). If the task terminates before

. 11:10 it will wai_t until then to restart; if it terminates after

11:10 it will again restart immediately trying to "catch-up".

While a task is waiting to restart at a future time it is

considered running in a wait state, not dormant. Thus, it can not

be restarted by another task (although other tasks may still queue

future restarts). Furthermore, its stack (and TCB area) are reserved

·and should not be used by other tasks.

3.3.5 State of Task Upon Startup

Whenever a task starts (or restarts) processing begins at the

entry point stipulated in the TCD, with the condition code set to

Zero. When a task resumes after termination with automatic restart,

all registers (including the stack pointer) have the same value they

had upon termination. For all other restarts, the stack pointer is

reset to the initial value given in the TCD, the index register

points to a restart argument or is 0, and the other registers have

some arbitrary values.

3.3.6 Task Coordination Via Event Flags

Coordination between tasks may be accomplished in several ways.

Section 3.3.2 described one method: a requesting task starts a

target task. The requesting task has the option of proceeding

immediately (no coordination), waiting until the target task starts

from the request (concurrent running), or waiting until the target

3-10

()

0 .

task starts and terminate~ from the request (assured compl~tion).

A later section will outline coordination by pause cancellation.

MTOS also supports coordination via event flags. Within MTOS

there is an array_of 16 discrete, internal variables called 11 event

flags 11
• Each flag may be independently set to l or reset to 0.

Upon system reset or initialization all flags are automatically

cleared to zero.

The coordination is achieved by a pair of SVCs. One resets, sets

or tests an individual flag; the other causes the issuing task to wait

until l or more flags are set.

In a typical application, a target task might first reset one of

the event flags and then issue a wait until that flag is set. Some

time in the future a coordinating task can set the event flag to

continue the waiting task. The assignment of individual event flags ·

for the purposes of coordination is left completely to the user.

The SOB for ~he Reset, Set, or Test SVC is composed as:

FCB
FCB

9
parameter l

{type)
(options and control)

Bits 7 and 6 of parameter l indicate the required function:

00 or 01
10
11

= test flag
= reset flag
= set flag

Bits 5 and 4 are not used. Bits 3 thru 0 give the flag number, 0 to

15.

For all functinns, the value of the event flag at the time the

SVC was issued is returned to the task in the Carry bit of the condition

code. For the teit function there is no other processing. For set or

3-11

0

0

.· .·"""\
J.

reset the value is then forced to l or 0 respectively. In these cases,

if the new value is the same as the old (so that the SVC causes no

real change), the Zero bit of the task's condition code is also set

to l; otherwise it is reset. Some typical applications of SVC 9 ·

by itself are shown in Figure 3-2.

The SOB for the Wait Until Event Flags Are Set SVC is 3 bytes

long:

FCB
FOB

10
mask

(type)
(16 bits)

The 16 bit mask indicates which of the event flags are to end the

wait, with the left-most bit corresponding to flag 0 and the right

most bit corresponding to flag 15. Any or all of the bits may be

masked on. The task wait ends when any of the indicated flags are

set. Figure 3-3 illustrates task coordination via an event flag~

Throughout MTOS all bit arrays (such as the event flags) are

stored left-to-right in successive bits of successive bytes. Thus,

flag 0 is stored.in the left-most bit of byte 0, flag l is stored

in the next bit of byte 0, . . . ' flag 7 is stored in the right-

most bit of byte 0, flag 8 is stored in the left-most bit of byte 1,

••• , flag 15 is stored in the right-most bit of byte 1. With

this scheme flags 7 and 8 are stored in "adjacent" memory bits.

Note that Motorola numbers bits in the reverse order, i.e.

right-to-left (even though successive bytes are numbered left-to-right).

Thus, if we were to maintain consistency between bit designations and

flag or discrete designations the sequence would have to be: 7, 6, 5,

0

0

4, 3, 2, 1, O; 15, 14, 13,' 12, 11, 10, 9, 8. To avoid the discon

tinuity between 0 and 15 we chose to be inconsistent \'lith Motorola

and consistent within ourselves.

3-13

f"'\
\..;J

Case 1. Set event flag 13:

JSR SVCPGM
FOB S9SDB1

S9SOB1 FCB
FCB

9
$CD

Case 2. Reset event flag 15:

JSR SVCPGM
FOB S9SOB2
BCS WASONE

S9SDB2 FCB 9
FCB . $8F

(in ROM)

BRANCH IF FLAG WAS 1

(in ROM)

~ Case 3. Test event flag whose number is given in A:

C)

STA A
LOA A
STA A
JSR
FOB'
BCC

S9SDB3 RMB

S9SOB3+1.
#9
S9SDB3
SVCPGM
S9SDB3
WASZRO BRANCH IF FLAG WAS 0

2 (in RAM)

Figure 3-2. Typical Applications of SVC 9

3-14

()

0

Ta~k A resets flags 1 and 2, and waits for either to be set:

JSR
. FOB

JSR
FOB

. JSR
FOB

.
RSTEFl FCB
RSTEF2 FCB
WAITEF FCB

FOB

SVCPGM
RSTEFl
SVCPGM
RSTEF2

· SVCPGM
. WAITEF

. 9 ,$81
9,$82
10.
$6000

RESET FLAG 1

RESET FLAG 2

WAIT FOR FLAG 1 OR 2 TO BE SET

Task B set~ flag 2 to continue task A:.

JSR SVCPGM
FOB SETEF2

.
SETEF2 FCB 9,$C2

SET FLAG 2

Figure 3-3 Task Coordination Via Event Flags

0 4. Coordina~ion of Shar~d Subprograms

If a subprogram employs only registers or stack entries for all

its arguments and temporary variables then several tasks may use the

code simultaneously without interference. Tasks may invoke such

reentrant subprograms freely without the aid of the operating system.

However, it is not always convenient to make a subprogram reentrant.

For non-reentrant subprograms, MTOS contains a pair of SVCs

which permit only one task at a time to use the code. All other

tasks wishing entry are queued (on the basis of their current priority).

Subprograms used by only one task need not be controlled even if

non-reentrant.

4.1 SVC for Entry To and Exit From a Controlled Subprogram

0 To enter a controlled subprogram a task issues an SVC with the

following SDB:

FCB
FDB

6
addr~ss of subprogram

control data

(type)
(SCD address)

The subprogram cont~ol data (SCD) is part of the storage overhead

which MTOS requires for its control function. An SCD is the direct

analog of a TCD for tasks.

A controlled subprogram exits by issuing an SVC 7. The SOB has

the form:

FCB
FDB

7
address of subprogram

control data

(type)
(SCD address)

A typical entry and exit sequence is shown in Figure 4-1.

4-1

0 .

0

0

Task RAM

0200 08

Task ROM

12AO 06
12Al 2152

.- 2152
2152 ClBO
2154 0200

·Task Code

·. 3204 BD E400
3207 12AO

..
SUBSCB RMB 8

USESUB FCB
FOB

.
SUBSCO EQU

FOB
FOB

6
SUBS CO

*
SU BENT
SUBSCB

JSR SVCPGM
FOB USESUB

Sub2rogram Code/ROM

ClBO SUBENT EQU *

.
C205 BO E400 JSR SVCPGM
C208 C20A FOB XITSUB

C20A 07 XITSUB FCB 7
C20B 2152 · FOB SUBS CD

Sequence of Program Control:

3204 ClBO ... C205 3209
task subprogram task

SUBPROGRAM CONTROL BLOCK (SCB)

SOB TO ENTER SUBPROGRAM
-POINTER TO SCD

SUBPROGRAM CONTROL DATA (SCD)
-ENTRY POINT
-SCB AREA

ENTER SUBPROGRAM
-POINTER TO SOB

SUBPROGRAM ENTRY POINT

(subprogram code)

EX IT SUBPROGRAM
-POINTER TO SOB

SOB TO EXIT SUBPROGRAM
-POINTER TO SCO.

Figure 4-1 Using a Controlled Subprogram

4-2

0

0

4.2 Controlled Subprogram Overhead

As with task management~ control of shared subprograms requires

storage overhead:

o Each controlled subprogram must have an area 8 bytes long

within read/write memory in which MTOS may build a Subprogram

Control Block (SCB). The SCB is maintained by MTOS as

storage for current parameters such as a busy/available

flag. It is not possible for several subprograms to share

a common SCB.

o Each controlled .subprogram must also have an entry within

a table of basic Subprogram Control Data (SCD). Each SCD

is exactly 4 bytes long and contains the following data:

BYTE DATA

0,1 address of subprogram entry point
2,3 address (within read/write memory) -

at which an SCB may be formed

All entries must be in non-volatile memory to survive a power loss.

Since SCDs contain fixed data, there is no possibility of sharing

storage.

The relation between an SCD and SCB mirrors that between a TCD

~nd TCB. The SCD is fundamental; it contains the permanent source

parameters from which MTOS forms the SCB upon startup of the

system. The SCB, on the other hand, contains the temporary, current

information with which MTOS controls entry and exit to the subprogram.

4.3 Registers and Condition Code

When a controlled subprogram is entered, all registers (including

0 -

0

the stack pointer) have th'e values of the calling task at the time

the SVC was issued. Similarly, there is continuity of register

values upon returning to the calling task. The condition code,

however, is cleared during both the entry and exit SVC processing.

4,..4

A v

0

5. Time Management

MTOS includes its own interrupt clock which periodically generates

a peripheral interrupt. These interrupts arive an internal millisecond

clock which is used to service time-dependent requests such as

terminate with automatic future restart and pause for a given time

interval.

The interrupt period is determined by a hardwa·re clock in

cluded within the MTOS system. A typical value is 5 ms; the possible

range is 1 to 255 ms. The user must select a value which is consis

tant with his application.

If a larger value is chosen (say 100 ms},· then the internal

clock would have a 11 granularity 11 of 100 ms. The granularity is the

smallest interval which can be seen by the system. In other words,

the internal clock would remain at the same value for 100 ms and then

be incremented by 100 ms. As a result, if a paus.e of l to 99 ms were

requested the actual pause would be 100 ms since it takes that long
.

to see any change in time.

·If a small value is chosen (say l ms) then the overhead in

servicing the clock interrupts can become appreciable. This reduces

the time available for task work.

The proper interrupt period is generally obvious from the time

requirements of the application. Thus, if all pauses and other

time-dependent servicing occur in multiples of 5 ms, the period

would be set to this lowest common denominator.

The time kept by MTOS is purely internal and does not bear a

fixed relation to the external, real-world time. Intervals are

!>-1

0

0

/
'

correct: requesting a pa~se of 10 ms with respect to the internal

clock causes a 10 ms pause with respect to a real-world clock. ·However,

the base of the internal clock (the "time zero" point) shifts occasionally.

The necessity for base shifting arises from trying to maintain a

perpetual clock in a finite (and preferably small) number of memory

words. If the clock were simply a tally on the number of mi 11 i seconds

since system startup (or some other fixed reference point) then

eventually the tally would overflow. MTOS solves the problem by

periodically decrementing both the internal clock and all internal

references to that clock by a fixed amount.

A task may make any of the following time-related requests: ·

SVC l - Terminate the task with automatic restart after a
given time interval

SVC 2 - Pause for given time interval

SVC 3 - Cancel pause of given task

SVC 14 - Pause for minimum time interval

SVC 11 - Set ~vent flag after given interval

which is used in conjunction with:

SVC 10 - Wait until event flags are set

SVC 1 was described in Section 3.3.4; the others are described i~ the

following subsections:

5.1 Pause for Given Time Interval

The SOB to specify a pause is:

FCB
FCB

2
time interval-

a = ms
l = 10 ms
2 = seconds
3 = minutes

5-2

0

0

().
\

4 = hours
FCB number of time units (0 to 255)

Certain intervals can be composed in several ways. For example,

2 seconds can also be expressed as 200 10-ms units. There is no

difference in processing efficiency.

Specifying a time interval code greater than 4 is invalid. In

such cases, the task will continue without pause and the Overflow bit

of the condition code will be set. For a valid interval the Overflow

bit is reset.

5.2 Cancel Pause for Given Task

Cancel pause can be used to coordinate task activity: One task

issues a pause for an arbitrary, long time (say 24 hours); another

task cancels that pause when it wants the waiting task to continue

(see Figure 5-1).

Cancel pause can also be used to have a task wait for some event

with timeout in cc;ise the event never occurs: One task issues a pause

for the desired timeout interval; another task monitors the event and

cancels the pause when the event is detected. If the event never

occurs, the task automatically continues after the default period .

. The SOB for the cance 1 pause SVC has the form:

FCB
FOB

3
task

(type)
(TCD address)

If the target task is not in the pause state when the SVC is

issued, the Zero bit of the condition code is set to l to indicate

that the SVC had no effect.

. 5-3

0

0

Task A pauses for an a,rbitrary 1 ong period (24 hours):

PA24HR

JSR
FOB

.
FCB

SVCPGM
PA24HR

2,4,24

PAUSE FOR 24 HOURS

Task B cancels pause to continue A:

CPTSKA

JSR
FOB

.
FCB
FOB

SVCPGM
CPTSKA

3
TKATCD

CONTINUE TASK A

=TCD FOR TASK A

Figure 5-1 Task Coordination Via Pause Cancellati.on

5-4

0

0 .
.

·o.···. t,_ ...

5.3 Set Event Flag After Given Interval

SVC 11 - Set Event Flag After Given Interval permits a task to

use an event flag as an internal alann clock timer. At some point

within a task, t~e timer may be set by issuing SVC 11 (see Figure

5-2). The task then continues with processing that may take a

variable amount of time. When that processing is completed, the

task issues an SVC 10 - Wait Unitl Event Flags Are Set referencing

the same event flag as was specified in the SVC 11. MTOS then holds

the task until the remainder of the original time interval runs out.

This mechanism permits a task to initiate action after a predeter-

mined time interval, and yet to use part of that wait interval for

further processing~

The SOB for SVC 11 is composed as:

FCB 11 (type)
FCB time interval--

a = ms
l = 10 ms
2 = seconds

· 3 = minutes
4 = hours

FCB number of time (O to 255)
units

FCB event flag number (O to 7)

.. The event flag number is limited to the first eight (Oto 7).

If either limit is exceeded, the Overflow bit within the task's
-

condition code is set to l and the event flag is not altered.

The specified event flag is automatically reset by the SVC 11 and

then set after the given interval. The flag may also be set early by

an independent SVC 9. (This does not stop the SVC 11 "countdown".)

If a new (valid) SVC 11 is issued for the same event flag while

<J

SF30MS
WAITEF

JSR
FOB

any

.
JSR
FOB

.
FCB
FCB
FOB

SVCPGM
SF30MS

code

SVCPGM
WAITEF

11 ,0 ,30 ,2
10
$2000

.SET EVENT FLAG 2
30 MS FROM NOW

CONTINUE CALCUCATIONS

WAIT UNTIL BALANCE OF
30 MS IS UP

Figure 5-2 Setting an "Alarm Clock"

5-6

0 .
.

0 .

0

• a previous one is in progress the original request is cancelled and

the new one takes control. By convention if the.number of time units

is 0 (with a valid time interval specified} the flag is reset, but

no set-flag countdown is started. Thus, a valid zero-interval SVC 11

can be used to cancel a previous.SVC 11 for a given event flag.

5.4 Synchronization for Exact Time Intervals

It is sometimes necessary to have two events, such as the output

of two signals ("A" and "B"), separated by a given interval. A

straightforward method to achieve this might be: output "A", pause

for required interval, output 11 811
• However, because of the finite

granularity of the clock, the pause interval is usually shorter than

expected. (Since on the average half of the current clock period is

. already over when a pause is issued, the average pause is half a

clock period shorter than requ~sted.)

When precise intervals are required, it is best to first synchronize

to the start of a clock period before the first event. Synchronization

':>-/ .

is achieved by issuing a pause for minimum time interval (see Section 5.5).

The sequence for precise intervals would then be: pause for mini mum

interval, output "A", pause for required interval, output 11 811
•

0 .

0

5.5 Pause for Minimum-Time Interval

In a typical real-time system, there is at least one task which

runs at the maximum rate. For example, a ta~k which samples input

data for changes is often activated each time the internal clock

generates an interrupt.

A convenient method to structure such a task is to have an

initialization section (which is entered just once) followed by a

cyclic section. The cyclic section ends with a pause for a minimum

interval and a branch back to itself:

ENTRY:

initialization section code

LOOP:

cyclic section code

pause for miminum interval

jump to LOOP

One method to, request the required minimum pause is via SVC 2,

with 1 ms. specified as the interval. Because of the finite granularity

of the internal time processing al ms. pause is automatically cancelled

at the next clock interrupt (for any value of the interrupt interval).

System overhead can be reduced significantly, however, by using

a special SVC which bypasses the normal pause processing but still

achieves a pause until the next clock "tick". The SOB to specify a

pause for minimum interval is:

FCB 14

Since there are no options, there are no parameters.

5-8

0 .

0 .

6 . Input and Output of D1scretes

Most systems are expected to.have a variety of external, s"ingle

bit discrete signals. Some will be iriput, others will be output.

Typical inputs ref1ect the state of a button or a switch; typical

outputs control the state of an indicator, motor drive, or mechanical

actuater.

The discretes are stored as individual bits, within one or more

bytes. A given byte could contain all inputs, all outputs, or a

mixture of inputs, outputs and unused bits. Furthermore, the bytes

dedicated to discretes need not be consecutive.

The storage medium tould be the data section of a PIA or could

be a bipolar latch. If any of the discretes are ·implemented on PIAs,

it is the user's responsibility to initialize the control sections

upon system startup ..

Because tasks run asynchronously with random interrupts, the

output of discrete ,values must be controlled by MTOS. Consider,

for example, the following situation: task 11A11 wishes to set

the first discrete to 0. It attempts this by loading the

first discretes byte, ANDing with hexadecimal 7F (which sets the

first discrete to 0 and leaves the others unchanged), and then

storing the modified value back in the first discretes byte. In

most cases this would give the desired effect. However, suppose

task "A" were interrupted, just before the store and a higher

priority task, 11 811
, were to become active. Suppose further that

0-1

)

discretes and then terminate. Task "A" then continues, completes

its store and by this act 'cancels any changes made in the interim by

task "B". To avoid such problems all output of discretes should be

done via SVC 8.

SVC 8 can be.used to reset, set or test the value of a given

discrete. Reset or set is equivalent to output; testing is equiv-

alent to input. While input can be accomplished directly (by a load

and mask) without causing the problem described above, it is some-

times more convenient to use the SVC.

Note that the discretes of interest in this section are external

signals. Thus, they are a completely different set of values from

the internal event flags which were discussed in Section 3.3.6.

The SOB for the di scretes SVC has the form:

FCB 8
FCB _ parameter 1
FOB address of discrete byte

Parameter 1 contains the function:

bits 7-6: 00, or 01
10
11

5-3: not used

= test flag
= reset flag
= set flag

(type)
(options and control)

2-0: address of bit within byte (O=bit 7, ••. , ?=bit O)

For a valid index (i.e. an index value 1 ess than the total number

of discretes) the Overflow bit of- the condition code is reset; for

ariy larger index the Overflow is set. Furthermore, for a-valid

index the value of the discrete at the time the SVC is issued is

returned in the Carry bit. For the test function, no other actions

are taken. For reset or set, the discrete is forced to 1 or 0

respectively; and if this represents no change in the value of the

discrete, the Zero bit in the condition code is also turned on.

7. Input and Output of tonsole Messages

MTOS supports a system Console by supplying the machinery for

read.ing and \'lriting text messages to a teletype or teletype-compatible

device. The devlce is interfaced through an ACIA. The functions

provided are: requested output,. requested input, and unrequested

(unsolicited) input. Both inputs have certain line editing capabil-

ities.

7.1 Requested Output

SVC 13 is used to output a message on the Console. The SOB is:

FCB 13
FCB message buffer length (bytes)

(type)
(1 to 255)

with 0 taken as 1
FOB .address of message buffer (i n RAM or ROM)

('.:) The message buffer is assumed to contain ASCII text and control

0 ""

data. The message must be fully formatted, i.e. any desired carriage

returns and line feeds must exist within the text. MTOS does not

supply any line control characters on its own. The buffer may be

within read-write or read-only memory. Some examples of message

output are shown in Figure 7-1.

1~2 Requested Input

To request input SVC 12 is issued. The SOB is similar to that

for output:

FCB
FCB

FOB

12
input buffer length (bytes)

with 0 taken as 1
address of input buffer

(type)
(l to 255)

(in RAM)

To begin processing MTOS outputs a prompt string consisting of

a question mark followed by a blank. This signals the operator that

7-1

Figure 7-1 Console Output .

0

·"'""""
....... ..,,;~~

input has been requ~sted.' MTOS will then fill the buffer area with

edited input text up to and including the mandatory carriage return

which marks the end of the message (see next section).

If more characters are entered from the Console than will fit

in the buffer, the excess is discarded. In these cases, the

Overflow bit of the condition code is set and there will always

be a carriage return at the end of the buffer.

The operator must not wait more than 5 minutes before entering

the first (or next) character. After 5 minutes without input the

Console times out and a carriage return is automatically entered to

close out the input message.

7.3 Input Text Editing

All input text lines, whether requested or not, can be edited

as follows:

ASCII, output
character hex. function response

backarrow (shift 0) 5F delete last character, none
if any

7-3

rubout 7F delete current line CR/LF/?/blank
carriage return (CR) OD end of input CR/LF
line feed (LF) OA end of line, but not CR/LF/blan~

end of input

The first two permit character-by-character and entire line

deletion. A succession of N backarrows deletes N characters (or fewer

if N characters have not yet been input).

Input must be tenninated by a carriage return. Once the CR is

given, the line is no longer available for editing. The CR always

appears in the input buffer.

0

0

The line feed may b~ used to return the carriage physically

without ending the text. The LF is not stored in the input buffer.

7.4 Unrequested Text Messages

Unsolicited text may be entered at the Console. To initiate

the process an "escape" character is entered. Assuming no solicited

input or output activity is pending, MTOS responds by outputting the

1 ? 1 prompt string. The operator may then input up to 72 edited

characters including the final carriage return. When the CR is

received a user-written Unsolicited Console Message Processor task

will be activated and the address of the message will be passed as

an argument. The analysis of the message and any subsequent actions

are left completely to the user. However, until the Message Pro-

cessor goes dormant another escape character will not be recognized.

The TCD for the Console Unsolicited Message Processor must be.

the third entry in the table of user TCDs (see Appendix A).

7-4

0 .

0

•
8 . Peripheral Interrupts

Peripheral interrupts from any device other than the internal

clock and initialize button must be serviced by the user. When

any peripheral interrupt occurs, MTOS suspends the current task

and then determines if the interrupt is internal or external to

MTOS. If external, MTOS jumps to a user subprogram whose address

is supplied within a common interface block (see Section 9). The

user subprogram must service the interrupt and then return to MTOS

via an RTS instruction.

The user peripheral processing must not re-enable interrupts.

cs- I

C)·.
~ 9. Memory Allocation

9 .1 MTOS Memory Map

The standard version of MTOS resides within hexadecimal addresses

EOOO to EFFF. Of these, the first 256 bytes are used as an internal

scratchpad and the next 768 are not used (except for an interrupt

latch .at E2FO-E2Fl). The program itself occupies the final 3K bytes.

9.2 MTOS/User Interface

MTOS requires certain information about the user's system to be

supplied with a fixed interface area. The data must be both non-

volatile and immediately available upon startup or initialization.

The block is 32 bytes long and irrrnediately precedes MTOS. The format

is:

location

DFDO
DFD2
DFD3
OFD5
OFD6
DFD7

DFD9

OFDB

OFDC

DFDD

DFDE

DFEO

length

2
. l
2
l
1
2

2

1

1

1

2

16.

information

address of user TCD table
mumber of user tasks
~ddress of user SCD table
number of user controlled subprograms
real-time clock period (ms)
address of Console ACIA data section

(FCF5 for EXORciser)
address of Console ACIA control section

(FCF4 for EXORciser)
Console ACIA initial control data (see

Table 9-1)
Console delay after carriage return (clock

pulses, see Table 9~1)"
Console delay after.other character

(cl-0tk pulses, s~e Table 9-1)
address of user peripheral interrupt

·processing subprogram
··reserved for future~expansion (must be 0)

. . -
Typical values for the Console data are shown in Table 9-1.

r'\
'iJ

0

.
In addition, the following properties of MTOS may be needed by

the user:

SVCPGM
IRQINT
RSTINT

EQU $E400
EQU $E403
EQU . $E406

address of SVC subprogram
address of IRQ interrupt processing
address of reset (power on) interrupt

processing

The SWI and NMI interrupts are not used by MTOS (since these functions

must be dedicatEd to the EXORciser).

The following procedure may be used.to start MTOS-68 on an EXOR-

ciser:

1. Load application program.

2. Using MAID, change the top of memory address from 83FF to

EFFF:

MAID
*FF00/83 EF (CR)

3. Depress 11 ABORT 11 button (to transfer interrupt vector).

4. Using MAID, start processing at E406:

MAID.
*E406;G

0 .

0

Initial Delay After Delay After
Control Carriage Other

Console Use Data Return ·character

TI Silent 700 300 BAUD for 09 190 ms* 35 ms*
printing, 1200
BAUD for tape

*:To obtain number of clock pulses, divide by clock period. For

·example, for a 5 ms clock rate, the delay is 190/5 = 38 clock

pulses·.

Table 9-1 Typical Console Data

9-3

0 .

' 0

0

Appendix A: Task Storag~"overhead

MTOS requires storage in both ROM and RAM in order to perform

CPU management. This storage overhead is used for (1) task stacks,

(2) task control data, and (3) task control blocks.

Each task must have a stack with 9 bytes always available for

interrupt processing. When an interrupt is serviced the state of

the machine is automatically pushed onto the stack; when the task

resumes the state is automatically popped from the stack. Thus, the

intermediate internal use of the stack will not be apparent to the

task provided that the stack does not overflow.

Individual stacks may be placed anywhere in RAM; they need not

be consecutive entries in a table. Furthermore, two (or more) tasks

can share a common stack provided they can never be running at the same

time. Running, here, means non-dormant.

Each task must also have an entry within a table of basic Task

Control Data (TCD). Each TCD is exactly 7 bytes long and contains the

following data:

BYTE

0
1 ,2
3,4
5,6

DATA

inherent (default) priority (0 to 15)
initial stack pointer address
address of program entry point
address (within RAM) at which a TCB

may be formed

All entries must be in non-volatile memory so as to survive a power

loss. Since TCDs contain fixed data, there is no possibility of

sharing, even between mutually exclusive tasks.

All TCDs must be stored together within a user TCD table. Further-

A-1

0

more, the first three entries must be for the tasks that respond to

the (1) power on (restart), (2) initialization button depressed, and

(3) unsolicited Console input entered conditions respectively. There

~fter the TCDs may appear in any order.

Finally, each task must designate an area within RAM in which

MTOS can build and maintain a Task Control Block (TCB). This block

is 18 bytes long. In principle, TCB areas can be shared by mutually

exclusive tasks. However, the conditions under which such sharing

is permitted are both stringent and difficult to state. Thus, in

most applications TCB areas should be dedicated to individual tasks.

Furthermore, a TCB area should not be altered by any of the application

programs even if the a-ssoci ated task is known to be dormant.

A memory allocation for a typical set of TCDs, TCBs and stacks

iS shown in Figure A-1. Except for the restrictions discussed

above, the arrangement and labeling shown in the figure is arbitrary.

For a given task the TCD, TCB and stack are all closely related.

The TCD is fundamental; it contains the permanent source parameters

from which MTOS forms the TCB upon startup of the task. In contrast,

the TCB contains the temporary, current information with which MTOS

- controls the task while it is running. The stack is used both by

the task program (to store subprogram return addresses and temporary

data) and by MTOS (to store the state of the machine during interrupt

p~ocessfng). The TCD supplies both the initial value of the stack

pointer and the initial contents of the stacked program counter

(program entry point).

A-2

A-3

* USER ROM

0 . 3200 USTCDT EQU * USER TCD TABLE:

3200 RSTTCD EQU * RESET (POWER ON) TASK
3200 OF FCB 15 -PRIORITY
3201 OC66 FOB RSTACK -STACK
3203 325F FOB RS TENT -ENTRY POINT
3205 ocoo FOB RS TT CB -TCB AREA

3207 INITCD EQU * INITIALIZATION TASK
3207 OF FCB 15 -PRIORITY
3208 OC66 FOB RSTACK -STACK
320A 3281 FOB IN I ENT -ENTRY PO INT
320C OC12 FOB IN IT CB -TCB AREA

320E CNUTCD EQU * CONSOLE UNSOLICITED INPUT TASK
320E 08 FCB 8 -PRIORITY
320F OC73 FOB CNUSTK -STACK
3211 3305 FOB CNUENT -ENTRY POINT
3213 OC24 FOB CNUTCB -TCB AREA

0 . * USER RAM

ocoo 0012 RSTTCB RMB 18 TCB FOR RESET TASK
OC12 0012 . INITCB RMB 18 TCB FOR INITIALIZATION TASK
OC24 0012 CNUTCB RMB 18 TCB FOR CNS UNSOLICITED INPUT TASK

. '

.
OC5A OC RMB 24 STACK FOR RESET AND INIT TASKS
OC66 00 RSTACK EQU *-1

OC67 OC RMB 24 STACK FOR CNS UNSOLICITED INPUT TASK
OC73 00 CNUSTK EQU *-1

/"";
,,,,.> Figure A-1 Typical TCD, TCB and Stack Allocation

0

' 0

O··.·. ~

Appendix B: Summary of SVC Data Blocks

The data block required for each of the 15 SVCs within MTOS is

given on the following pages. The SVCs are:

: 0.

1.

; 2.

" 3.

4.

5.

6.

7.

8.

:9.

10.

11.

12.

13.

14 .
... ,

terminate the issuing task without automatic restart

terminate the issuing task with automatic restart
after a given time interval

pause for a given time interval

cancel the pause of a given task

start a given task if it is dormant

start a given task, queuing the request if the task
is busy

enter a controlled shared subprogram

exit from a controlled shared subprogram

set/reset/test an external discrete

set/reset/test an internal event flag

wait until event flags are set

set an event flag after a given interval

read a message from the Console

write a message on the Console

pause for minimum time interval

B-1

B-2

0 SVC 0 - Terminate Issuing.Task Without Automatic Restart

FCB 0 (type)

0 .

0

()

SVC 1 - Terminate Issuing
0

Task With Automatic
··Restart After Given Time IntetV~l · --

FCB
FCB
FCB

1
parameter 1
number of, time units

Parameter 1

(type)
(option and control)
(0 to 255)

bit 7: 0 = base restart on last scheduled start time

1 = base restart on current (termination time)

6-3: unused

2-0: time interval-
a = ms
l = 10 ms
2 = seconds
3 = minutes
4 = hours

Condition Code

Overflow = l if time interval code is greater than 4

= 0 if above error condition does not exist

B-3

rJ·
~·

0

SVC 2 Pause for Given T4me Interval

FCB
FCB
FCB

2
time i.nterval
number of time units

Time Interval

bits 7-3: unused

2-0: time interval-
a = ms
l = 10 ms
2 = seconds
3 = minutes
4 = hours

Condition Code

(type)
(see below)
(0 to 255) ·

Overflow = l if time interval code is greater than 4

= 0 if above error condition does not exist

B-4

0 .

0

SVC 3 - Cancel Pause of Given Task

FCB
FOB

3
task

{type)
(TCD address)

Condition Code

Zero: 0 = if task was originally in pause state

1 = if task was not originally in pause state

B-5

r)···
t:~tl.

0

()

SVC 4 - Start Given Task if Dormant

FCB
FOB

4
address of TCD for task

to be started

Condition Code

(type)
(TCD address)

Zero: 0 = if task was originally dormant

1 = if task was already running

B-6

0 .

0

,.,,,

f)
'<.· !

SVC 5 - Queue Start of Gi~en Task

FCB
FCB
FOB
FOB

5
parameter 1
address of TCD for task to be started
address of. 7 byte RAM scratch area in

which to build queue block

(type)
(options and control)
(target TCD)
(RCB address)

Parameter 1

bit 7: 0 = no argument to be transmitted (X register of target
task will be set to 0 upon startup)

1 = transfer value currently in X register of requesting
task to X register of target task as a startup
argument

6-5: 00 = queue start request and continue without wait (no
coordination)

01 = queue start request and wait until the task starts
because of this request (concurrent running)

10 = queue start request and wait until the task terminates
because of this request (assured completion)

11 = (illegal combination)

4: 0 = use larger of inherent priority of called task and
current priority of calling task

1 = use priority given in bits 3-0

3-0: startup priority (value must be given only if bit 4
is 1)

B-7

0

0 .

SVC 6 - Enter Controlled Shared Subprogram

FCB
FOB

6
address of subprogram control data _

8-8

(type)
(SCD address)

() SVC 7 - Exit From Controlled Shared Subprogram

FCB
FOB

•

7
address of subprogram control data .

B-9

(type}
(SCD address)

0 .

-

0 .

.
SVC 8 - Set/Reset/Test External Discrete (discretes input/output)

FCB
FCB
FOB

8
parameter 1
address of discrete byte

(type)
(options-and control) ,

Parameter 1

bits 7-6: o~ = test (input) discrete
01

10 = reset discrete (output 0)

11 = set discrete (output 1)

5-3: not used

2-0: address of bit within byte (O=bit 7, •.• , 7=bit 0)

Condition Code

Carry = 1 if discrete was set at the time the SVC was issued

= 0 if discrete was reset at the time the SVC was issued
.

Zero = l if reset or set caused no change in discrete value

=. 0 if reset or set caused a change in the discrete value,
or if the function was test

o-1u

0

SVC 9 - Set/Reset/Test Internal Event Flag

FCB
FCB

9
parameter l

(type)
(options and control)

Parameter 1

bits 7-6: OJ = test flag
01

10 = reset flag

11 = set flag

5-4: not used

3-0: event flag number (0 to 15}

Condition Code

Carry = l if flag was set at the time the SVC was issued

= 0 if flag was reset at the time the SVC was issued

Zero = l if reset or set caused no change in flag value

= 0 if reset or set caused a change in the flag value, or if the function was test

s..:11

0 .

0

.
SVC 10 - Wait Un ti 1 Event Flags Are Set

FBC 10 . (type)
FOB parameter 1 (mask)

Parameter 1

byte 1 ' bit 7 continue if Flag 0 is set, or
II I 6 1
II 5 2
II 4 3
II 3 4
II 2 5
II 1 6
II 0 7

byte 2, bif 7 continue if Flag 8 is set, or
I 6 II 9 II

5 II 10 II

4 II 11 II

3 II 12 II

2 II 13 II

l II 14 II

II 0 II 15

Note: Parameter l may be identically 0, but then the task will
never continue.

B-12

0

SVC 11 - Set Event Flag After Given Interval

FCB
FCB
FCB
FCB

11
time interval
number of time units
event flag number

(type)
(see below)
(0 to 255).
(0 to 7*)

* Only the first 8 event flags may be used for this purpose.

Time Interval

· 0 = ms
1 = 10 ms
2 = seconds
3 = minutes
4 = hours

Condition Code

Overflow = l if event flag is greater than 7, or time interval
code is greater than 4

= 0 if none of above error conditions exists

B-13

0

SVC 12 - Input a Message ~ro~~th~ Console

FCB
FCB

FOB

12
input buffer length (bytes)

with 0 taken as 1
address of input buffer

{type)
(1 to 255)

Condition Code

Overflow = 1 if excess input was discarded

= 0 if input fit within bOffer

o- I 't

·o·.=.=·, f - ... ·.-

' 0

SVC 13 - Output a Message· to the Console

FCB
FCB

FOB

13
message buffer length (bytes)

with 0 taken as 1
address of message buffer

B-15

(type)
(l to 255)

0-10

0 ' .
.

SVC 14 - Pause for Minimum Time Interval

FCB 14 {type)

0

