BASIC Language Reference

(Section One)

System/23

BASIC Language Reference

(Section One)

System/23

Second Edition (July 1981)

This is a major revision of, and obsoletes SA34-0109-0. The significant changes
are to the Customer Support Functions. The three new Customer Support Func-
tions are:

e List diskette
e List file
e List storage

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be con-
strued to mean that IBM intends to announce such IBM products, programming,
or services in your country.

Publications are not stocked at the address given below. Requests for copies of
IBM publications should be made to your I1BM representative or the IBM branch
office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A
form for readers’ comments is provided at the back of this publication. If the
form has been removed, address your comments to IBM Corporation, Information
Development, Department 27T, P.O. Box 1328, Boca Raton, Florida 33432.

IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1981

Preface

About this book

Prerequisites

This reference manual provides specific information about
the System/23 BASIC language. It was prepared with the
assumption that you wish to write or change BASIC
programs. If you are not an experienced BASIC
programmer, you should complete Learning System/23
BASIC before using this book. This book is a precise
reference which will supplement Learning System/23
BASI/C, but not replace it.

How to use this book

The information in this book is in encyclopedic format and

presents topics in alphabetic order. To make it easy to use,

this book uses cross-referencing that leads you to other
topics which may be of interest to you. The
cross-referencing takes the following form:

Dimensioning arrays see ‘‘Declaring arrays’

This tells you that the information on dimensioning arrays
can be found in the section titled “‘Declaring arrays’’.

You should be experienced in programming the BASIC
language or should have completed Learning System/23
BASIC.

Preface

Preface

Related publications

« Operator Reference, SA34-0108

« Learning System/23 BASIC
— SA34-0121—Book |
SA34-0122—Book Il
SA34-0123—Book lil
SA34-0124—Book IV
SA34-0125—Book V
SA34-0126—Book VI
SA34-0127—Book VII

« System Messages, SA34-0141

« 51710 Conversion Aid Program User’s Guide,
SA34-0114

o Customer Support Functions, Volume 1, SA34-0175
and Volume I/, SA34-0176

iv. SA34-0109

-~

Introductio

n

Introduction

This book contains detailed descriptions of the system
commands, statements, concepts, data constants, variables
and the BASIC syntax. This is a complete reference of the
BASIC language as used in System/23 and was designed
so that each topic can be found quickly. Each topic stands
by itself and, as in an encyclopedia, the topics are in
alphabetic order by topic name.

A comprehensive program is included in Appendix A in the

back of this manual. It is suggested that this program be
reviewed.

BASIC reference information

’

1

Syntax

Syntax description

2

Statement or
Command
Keyword

SA34-0109

required parameter

When syntax formats are described in this manual,
capitalized expressions, lowercase expressions, and special
characters (such as a comma, colon, exclamation point, or
an asterisk) have special meaning.

Syntax of the BASIC commands and statements is
presented in the following format:

l— yoptional parameter—|

choice of

—a

L required parameters —J /

indicates the end of the

indicates the parameter statement or command
may be repeated

Where:

Statement or Command keyword is a BASIC statement
such as LET or a command such as RUN.

required parameter is an item that must be included such
as the line reference in GOTO 100.

optional parameter is an item that may be included if
desired such as ELSE in an IF, THEN, ELSE statement.

indicates that the parameter may be repeated means that
more than one parameter can be included such as the
variables in INPUT A, B, C ...

choice of required parameters means that one of the
parameters must be included such as the choice between
numeric or character constants in a DATA statement.

Syntax

indicates the end of the statement or command refers to
the block that indicates the end of the syntax.

To read the syntax of a command or statement, read from
left to right along the main line. When you reach an optional
parameter, you can either include that parameter or continue
along the main line. When you reach a choice of required
parameters, you must include one of the parameters with
your command or statement.

If a parameter is shown in uppercase letters, you must enter
it exactly as it appears. You must also enter any special
character (such as a comma or colon) that appears in the
diagram.

All lines entered in BASIC program entry mode and
command entry mode are converted to English uppercase
prior to syntax checking.

To prevent remarks or character data on DATA statements
from being converted to English uppercase, they must be
enclosed in quotation marks.

If you do not include an optional parameter, the System/23
provides a default value or action. The defaults are listed in
the description of the statement or command. The syntax
diagrams include a number (such as [fl}) that corresponds to
the defaults listed.

In the case of the MERGE, REPLACE, and VOLID

commands only, you must include a comma to indicate that
you have omitted an optional parameter.

BASIC reference information 3

Syntax

Syntax description (continued)

Here are two examples using the REREAD statement:

=71

error-cond line-ref

REREAD s #file-ref i

RESULTS IN—l

REREAD #20: NAMES$, ADDRESS$

771

char-var error-cond line-ref
» ,USING{
] line-ref EXIT line-ref s
: Tdata |tem -- RESULTS :N—-l
L___,___

REREAD #20, USING 50: NAME$ EXIT 400

REREAD s #file-ref

In these examples, you must include the fi/e-ref parameter
following the keyword REREAD. You may choose to include
the USING parameter in which case you must also include
either the char-var or line-ref parameter. You must include
the colon, followed by at least one data-item. Note that you
may list more 'than one data-item. You may choose to
include either EXIT /ine-ref or error-cond line-ref.

In the first example, the optional parameters are omitted.
Therefore the default actions are taken.

4 SA34-0109

Syntax

The syntax for a BASIC statement is as shown:

label @ ! remark
line number I_ —] statement I.]

A keyword in a BASIC statement or system command must
be followed by a blank except where a comma, parenthesis,
or other appropriate delimiter is defined. Also a blank must
follow the leading line number in a BASIC statement.

A label can be added to any BASIC statement except a DEF
statement (see “‘Labels’”).

A remark can be added at the end of any system command
or BASIC statement except a DATA statement (see
“"Remarks’’).

Because they can be used on most BASIC statements,

labels and remarks are not shown in the diagrams that
follow.

BASIC reference information 5

Absolute value

Absolute value

see “ABS(X)”

ABS(X)
Returns the absolute value of X. The result is always
positive. For example:

10 X=-5.2
20 Y=ABS (X)

Y contains +5.2

10 X=+13.7
20 Y=ABS (X)

Y contains +13.7

6 SA34-0109

AIDX, DIDX

AIDX and DIDX

The MAT assignment AIDX or DIDX statement creates an
index to the elements of an array which will rearrange the
original array with the elements in ascending or descending
order. Character arrays are indexed alphabetically, and
numeric arrays are indexed numerically.

AIDX
MAT — array-name — = { :]—(array-name)—-

DIDX

The syntax of the statement is as shown above, where:
array-name is the name of a one-dimensional array.
AIDX indicates the ascending index function.

D/DX indicates the descending index function.

When a MAT AIDX or DIDX statement is executed, index
values are assigned to the array on the left of the equal

sign, according to the order of the values entered into the
array on the right of the equal sign.

BASIC reference information 7

AIDX, DIDX
AIDX and DIDX (continued)

Example (AIDX)

20 OPTION BASE 1
30 DIM A(10), B(10)
40 MAT B=AIDX(A)

If array Ais 9 array B will be 4 (position one)
5 9
6 5
0 (position four) 10
2 8
7 2
8 3
4 6
1 7
3 1

The numbers in array B show the position of the numbers in
ascending order as they appear in array A (O is the fourth
position in array A, and is shown as a 4 in position 1 of
array B).

8 SA34-0109

AIDX, DIDX

Example (DIDX)

20 OPTION BASE 1
30 DIM A(10), B(10)
40 MAT B=DIDX(A)

If array Ais 9 array B will be 1
5 7
6 6
0 (position four) 3
2 2
7 8
8 10
4 5
1 9
3 4 (position ten)

The numbers in array B show the position of the numbers in
descending order as they appear in array A (O is the fourth
position in array A, and is shown as a 4 in position 10 of
array B).

Programming considerations

The array on the left of the equal sign must be numeric.

The results of using AIDX or DIDX are dependent on the
collating sequence that is in effect. See "OPTION
statement’’ and “IF, THEN, ELSE statement.”” See also
““COLSEQ" in the Customer Support Functions, Volume /.

Each element of the array on the right is compared to every
other element in that array to determine the index for that
element. The index is then stored in the array on the left.
Operation continues until the indexes for all elements of the

BASIC reference information 9

AIDX, DIDX

AIDX and DIDX (continued)

array on the right are determined. No check is made to
assure that the target array is not the source array.

10 SA34-0109

ALERT

ALERT command

The ALERT command indicates that the operator's attention
is needed during the operation of a procedure file (see
“"Procedure file’’). Remarks are not allowed, they are
interpreted as part of the message.

I—-message—l
ALERT — -2

The syntax of the ALERT command is shown above. When
executed, the ALERT command:

« Halts the system operation
« Sounds the alarm

« Displays the word ALERT and an optional message on
line 22 of the display screen

The following is what the ALERT command with an optional
message might look like:

ALERT REPLACE DISKETTE1 WITH DISKETTE2

The operator is informed that the diskettes must be
changed.

BASIC reference information 1

ALERT

ALERT command (continued)

Any command may be issued, and when the command has
finished processing, the keyboard is reopened for input. To
continue executing the procedure file type GO and press
Enter.

To exit the procedure that issued the ALERT command
enter one of the following:

« GO END
. CLEAR PROC
« PROC (for another procedure)

« CLEAR ALL

Alphabetic character set

see
““Character set’’

Arc tangent

see "ATN(X)”

12 SA34-0109

Arithmetic arrays

Arithmetic arrays

An arithmetic array contains only numeric data and can have
one or two dimensions. A one-dimensional array is a list of
data items. A two-dimensional array is a matrix of rows and
columns.

A(0) B(0,0) B(0,1) B(0,2) B(0,3)
A(1) B(1,0) B(1,1) B(1,2) B(1.3)
A(2) B(2,0) B(2,1) B(2,2) B(2,3)
A(3) B(3,0) B(3,1) B(3,2) B(3,3)

Note: In the above example BASE O is being used. For
information about BASE 0 and BASE 1, see “"OPTION
statement’’.

All elements of a numeric array (except an array received
from a chaining program) are initially set to zero during the
execution of the first statement that references the array.

Before being used in any of the matrix handling statements
(MAT statements), an arithmetic array must be dec/ared or
dimensioned. For information on dimensioning arrays, see
“DIM statement,”” ""Declaring arrays,” ‘'Redimensioning
arrays’’, or “"MAT assignment statements’’.

If an array is not explicitly declared in a DIM statement, the
highest subscript it can have is 10. The first reference to
the array determines if the array is one- or
two-dimensional.

BASIC reference information 13

~ Arithmetic data
Arithmetic data

Arithmetic data is data with a numeric value. All numbers in
BASIC are decimal numbers (base 10).

Magnitude

The magnitude of a number is its absolute value. In BASIC,
a power of 10 is represented by the letter E. The E is
written between the first and second constant so that
10**126 becomes 1E+126 or 1TE126. 1TE—126 and 1E+126
are called floating-point numbers or notations.
Floating-point notation is simply a shorthand way of
expressing very large or very small numbers. See
“Floating-point format’’ under ““Arithmetic data’’. The range
of numbers permitted in a BASIC program are numbers that
are greater than 1E—126 and less than 1E+126.

Significance

The significance of a number is the number of digits it
contains excluding leading and trailing zeros. For the
System/23, the number is 15 digits. Numbers that are
entered, are truncated to 15 digits. Numbers that are the
result of an arithmetic operation, are rounded to 15 digits.

Accuracy

Additions and subtractions are accurate to 15 digits.
Multiplications and divisions return 15 digits accurate to 14
digits. EXP, SQR, and exponentiation return 13 digits
accurate to 12 digits. LOG, SIN, COS, TAN, and ATN return
15 digits accurate to at least 10 digits. The remaining
system functions are accurate to 15 digits.

14 SA34-0109

Arithmetic data

Arithmetic data formats

There are three data formats available for entering,
displaying, and printing numbers: integer, fixed-point, and
floating-point. Numbers in any of the formats can be
positive or negative. Negative numbers must be preceded
by a minus sign. Positive numbers may or may not have a
plus sign.

Integer format. An integer is a whole number with no
decimal point. The integer format is the same as
conventional representation. A positive number may or may
not be preceded by a sign.

Integer format

T |
1) I digit —

Il I

E Positive number
Here are some examples:
0

+2

-23
266

BASIC reference information 15

Arithmetic data

Arithmetic data (continued)

Fixed-point format. Numbers expressed in fixed-point
format are written as a number of digits preceded by a sign
and followed by a decimal point (+3.). The decimal point
may also be followed by digits which express the decimal
fraction (+3.56).

Fixed point format

r---7

=1 J:'..digit
Y digit—I

—.T digit T
L_-J

E Positive number
Examples of fixed point are:
-.3

+3.56

33.00
33.

16 SA34-0109

Arithmetic data

Floating-point format. When working with very large or
very small numbers, the floating-point format is the easiest
to use. Floating-point numbers are written with a
fixed-point number, followed by the letter E (E stands for
multiplied by ten to the power of), and followed by a one,
two, or three-digit exponent.

r——"7
Y digit—L

-

=== |-'—digit—J-| + r——-"
i
Y digit—L . E rﬂ—l Y digit—l

Lo

r—==1

. Y digit—L

Bl Positive number
An example of floating-point format is:
-3.1E7

The value of the floating-point number is -3.1 multiplied by
10 to the power of 7.

-3.1E7 is the same as -3.1x 10’
-3.1E7 is the same as -31,000,000
Note that the number E7 is not a valid floating-point

number. The value 107 must be expressed as 1E7 in BASIC
floating-point format.

BASIC reference information 17

Arithmetic data

Arithmetic data (continued)

18

SA34-0109

Selecting an arithmetic format. An arithmetic value
can be entered at the keyboard in the most convenient
format for the application. The number one million, for
example, can be entered in any of the following ways:

1000000
7000000.00
1E6

+10E5
+100E+4

Arithmetic constant

An arithmetic constant is either an integer, a fixed-point, or
a floating-point value appearing in a BASIC statement. The
value of the constant remains the same within the program.
For example, the integer 1 is a constant in the statement

100 LET X=X+1

Arithmetic expressions

Arithmetic expressions and operations

Syntax

Numeric expression

L

2
* +
} factor factor T
| -
! I

T
N |
| |
-] factor :
| !
| | / 1!
| Lo ——— = J :
Lo e _I
Factor
numeric variable
numeric constant
numeric system function ']

numeric user function

1((numeric expression)

numeric variable

A numeric constant
T_! numeric system function
% numeric user function —

(numeric expression)

E Positive number

A numeric expression can be an arithmetic variable, array
element, constant, or operational reference; or it can be a
series of these items connected by operators and
parentheses. Examples of arithmetic expressions are:

ALPHA+1
BETA-3/(-6)
. X+Y+7
@‘ A7% (B¥3+3)

BASIC reference information 19

Arithmetic expressions

Arithmetic expressions and operations (continued)

20

SA34-0109

BASIC performs addition, subtraction, multiplication,
division, and exponentiation. The five operators used in
most formulas are:

Function Meaning Example

+ add, positive 10+2=12

—_ subtract, negative 10—2=8

* multiply 10%*2=20

/ divide 10/2=5

or A exponentiation 102=100
(10 raised to the power of 2) 107 2=100

Rules for the arithmetic operators and the resulting actions

are as follows:

Addition and multiplication: A+B and A*B are both
commutative; or, A+B=B+A and A*B=B*A. However,
addition and multiplication are not always associative
because of rounding; for example, A*(B*C) does not
necessarily give the same results as (A*B)*C.

Arithmetic expressions

Example:

5 FOR I=1 to 3

10
20
25
26
27
30
35
40

LET A=RND

LET B=RND

LET C=RND

LET D=A*B*C

LET E=A%* (B*C)

PRINT USING 35:D,E,D-E
FORM 3*N 25.17

NEXT I

Results of three typical loops:

Contents of D

.04558553601442990 (first time)
.00548795587029670 (second time)
.43103396752564700 (third time)

Contents of E

.04558553601443000 (first time)
.00548795587029669 (second time)
.43103396752564700 (third time)

Difference (D-E)

.00000000000000010 (first time)
.00000000000000001 (second time)
.00000000000000000 (third time)

Subtraction: A—B is defined as A minus B.

Division: A/B is defined as A divided by B. If B=0 and A is
not O, an error (zero divide) occurs.

If A=0 and B=0 the result is 1.

BASIC reference information

21

Arithmetic expressions

Arithmetic expressions and operations (continued)

Exponentiation: The expression A**B or A /N B is defined
as the value of the variable A raised to the B power. The
following rules apply to exponentiation:

« If A=0 and B<O, a zero divide error is returned

« If A<O and B is not an integer, an error occurs because
of a negative number to a fractional power

« |If B=0, A**B equals 1

« If A=0 and B>0, A**B equals O

Considerations:

« Exponentiation returns 13 digits accurate to 12.

o The circumflex(A)can also be used for exponentiation;
however, the system converts the circumflex to **. The

circumflex key on the keyboard does not advance the
cursor.

22 SA34-0109

Arithmetic expressions

Positive/Negative Operations: The + and — signs can also

be used as positive/negative operators. These
positive /negative operators can be used in only two
situations. They are:

« Following a left parenthesis and preceding an arithmetic

expression

« As the leftmost character in an entire arithmetic
expression

For example:

~A+(—B) and B—(-2) are valid

A+—-B and B—-2 are invalid

For more information on arithmetic expressions and

operations, see ‘‘Arithmetic hierarchy’’.

Subjects related to arithmetic expressions

ABS DISPLY LINE RND
AIDX ERR LOG ROUND
ATN EXP MAX SGN
CEIL FILE MIN SIN
CMDKEY FILENUM ORD SQR
CNT FREESP Pl SRCH
CODE INT POS TAN
CON KLN PROCIN UDIM
Cos KPS REC VAL
DIDX LEN RLN ZER

BASIC reference information

23

Arithmetic hierarchy

Arithmetic hierarchy

Expressions with two or more operations are performed
according to the hierarchy of the operations involved.
BASIC performs the operations in the following order:

1. Parentheses receive top priority. When parentheses are
nested (within another set of parentheses), the operation
in the innermost pair is performed first.

2. If there are no parentheses, the order of priority is:
a. Exponentiation (A or **),
b. Positive and negative.
c. Multiplication (*) and division (/) have equal priority.
d. Addition (+) and subtraction (—) have equal priority.

3. If the items are of equal priority, then the evaluation of
the operators is from left to right. The following are
examples of arithmetic hierarchy, showing how
expressions are evaluated:

« Parentheses ()
70 — (25 + 15) = 70 — 40 = 30

« Exponentiation **
10 + 10**2 = 10 + 100 = 110

. Multiplication * or Division /
10 + 10*2 = 10 + 20 = 30
10 + 10/2 =10 + 5 =15
10 + 10*2/5 =10 + 20/5=10 + 4 = 14

« Addition + or Subtraction —
10 + 10 = 20
10-5=5
10+10-5=20-5=15

24 SA34-0109

Arithmetic hierarchy

« Nested Parentheses
150/(2*(13 + 12)) = 150/(2*25) = 150/50 = 3

The entire hierarchy would be as described below:

In Step 1, the nested parentheses (13 + 12) is performed.
Step 1. 50 + 10**2/(2*(13 + 12)) — 2 =

In Step 2, the parentheses (2*25) is performed.

Step 2. 50 + 10**2/(2*25) — 2 =

In Step 3, the exponentiation 10**2 is performed.

Step 3. 50 + 10**2/50 — 2 =

In Step 4, the division 100/50 is performed.

Step 4. 50 + 100/50 — 2 =

In Step b, because addition and subtraction have equal
priority, the priority is from left to right. The addition 50+ 2
is performed.

Step 5. 50+ 2 -2 =

In Step 6, the final step, the subtraction 52-2 is performed
and the answer is shown.

Step 6. 52 — 2 = 50

See ""Arithmetic expressions and operations’’.

BASIC reference information 25

Arithmetic variables

Arithmetic variables

A variable represents a number whose value is subject to
change during the execution of the program. Arithmetic
variables have names consisting of from one to eight
alphabetic or numeric characters, with the first being
alphabetic. Examples of valid variable names are:

A5
BASIC
DATA1
BYTE12

Arithmetic variables are stored internally as decimal floating
point.

An arithmetic variable is initially set to zero during the
execution of the first statement that references the variable
(except when the variable is received from a chaining
program).

Some names are reserved by the system and cannot be
used for variables or labels. See ““Reserved words.”” The
term variable includes array elements (see “Arithmetic
arrays’’).

Array expressions

see 'MAT assignment statements’

26 SA34-0109

Arrays

Arrays

An array is a collection of data items (elements) that is
referred to by a single name. Only data items of the same
type (numeric or character) can be grouped together to form
an array. It is a convenient tool that provides a fast and
organized way of handling large amounts of data within a
program.

Arrays can be either one- or two-dimensional. A
one-dimensional array can be thought of as a list of
successive data items. A two-dimensional array can be
thought of as a matrix of rows and columns.

Each element in an array is referred to by the name of the
array followed by a subscript enclosed in parenthesis. Array
subscripts can begin with either zero (BASE 0 indexing) or
one (BASE 1 indexing). You can select the base by using
the OPTION statement (see "OPTION statement’’). The
default is BASE 0.

Array name Subscript
o
B(1,1)
Row Column

OPTION BASE O indicates that the first element of an array
has a subscript of O.

OPTION BASE 1 indicates that the first element of an array
has a subscript of 1.

BASIC reference information 27

Arrays

Arrays (continued)

28 SA34-0109

There are two types of subscripts. One is specified by a
single number after the array name, such as A(3).

For example:

10 OPTION BASE 1
20 DIM A(3) !DEFINES A ONE-DIMENSIONAL ARRAY

60 LET A(3)=468.45 !REFERENCES THIRD ELEMENT

A(0) A(1)
A(1) A(2)
A(2) A(3)
A(3)

Base O Base 1
(default)

Note: If OPTION BASE 1 was not specified, then statement
60 would be referencing the fourth element.

Arrays

The other type of subscript has two numbers after the

variable name, such as B(3,3).

For example:

10 OPTION BASE 1

20 DIM B(3,3)

!DEFINES TWO-DIMENSIONAL ARRAY
30 LET B(2,2)=9.6

!REFERENCES ROW 2, COLUMN 2

B(0,0) B(0,1) B(0,2) B(0,3)
B(1,0) B(1,1) B(1,2) B(1,3)
B(2,0 B(2,1) B(2,2) B(2,3)
B(3,0) B(3,1) B(3,2) B(3,3)
Base O

(default)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

Base 1

BASIC reference information

29

Arrays

Arrays (continued)

When referencing an element in a one-dimensional array,
the position of the element is obtained by counting from top
to bottom. Thus, assuming BASE O, the fourth element of a
one-dimensional array named A can be referenced by the
symbol:

A(3)

The first value in a subscript of a two-dimensional array
gives the number of the row containing the referenced
element. Rows are numbered from top to bottom. The
second value in the subscript gives the number of the
column. Columns are numbered from left to right. Thus,
assuming BASE 0, the third element in the fifth row of a
two-dimensional array named B can be referenced by the
symbol:

B(4,2)

Each subscript value can also be an arithmetic expression.
For example, if I=3 then row 5, column 3 of the array
named B can be referenced by the symbol:

B(l+1,2)

The maximum subscript is 9999.

See “‘Sample program 1" in Appendix A.

Arrays, arithmetic

see "‘Arithmetic arrays”

30 SA34-0109

Arrays

Arrays, character

see ‘Character arrays’’

Arrays, declaring
see “‘Declaring arrays’” under "DIM statement’
Arrays, redimensioning
see ‘'Redimensioning arrays’’
Ascending index
see "AIDX and DIDX"”
Assignment statements

see ""LET statement”

ATN(X)

Returns the arc tangent of X, where X is in radians.

BASIC reference information 31

Attention

Attention and Inquiry (continued)

32

SA34-0109

A BASIC program may be interrupted by the operator in one
of two ways:

. Cmd/Attn (press and hold Cmd key and press Attn
key)

. Ing (Inquiry) key.

Cmd/Attn can be used at any time and will stop the
execution of a BASIC program following the statement
during which it is pressed. The System/23 goes into “‘split
screen mode”’.

If the Cmd/Attn is detected during a user defined function,
the program gets an error indicating that a user function
was interrupted. The operator resumes normal execution
with Error Reset or may terminate the user function with
Cmd/Error Reset which abandons execution of the function.
(GO will continue execution following the line which invoked
the function.) See “DEF, FNEND statement’’.

If a procedure is running, the procedure is interrupted
following the command being executed.

If Cmd/Attn is pressed during the execution of a RUN
command in a procedure, the program interrupts the same
as without a procedure. To interrupt the procedure when
the program ends, cause the program to end with a PAUSE
statement. Then enter commands and/or restart the
procedure.

The commands LOAD, SAVE, and REPLACE cannot be
interrupted.

Attention

During an interrupt any system commands or calculator
statements can be entered. Some statements will prevent
resumption of the interrupted program or procedure (for
example, CLEAR, LOAD, and LINK).

Some statements will be rejected if their execution would
cause ambiguous results (editing OPTION, DIM, FOR, or
NEXT statements).

Normal execution can be resumed by entering GO.
No error code is set by Cmd/Attn.

The Ing key also interrupts a BASIC program. The response
to the Inq key is controlled by the ON statement (see "ON
statement’’). The default action is to interrupt execution with
a 0001 error. The ON statement may also specify that the
Ing key be IGNORED or cause a GOTO when it is pressed.
The inquiry key is ignored during execution of a GOTO
statement. It is not advisable to execute a one-statement
loop (10 GOTO 10) while waiting for the Inq key to be
pressed. The CONTINUE statement may be used to return
control to the interrupted task (see "CONTINUE
statement’’).

The Ing key is not checked while a defined function is
executing. It is processed normally after all defined
functions are completely executed.

Inadvertantly pressing the HOLD or TEST keys may result in
entering system diagnostic mode.

See “Sample program 1" in Appendix A.

BASIC reference information 33

AUTO
AUTO command

The AUTO command provides automatic numbering of
program lines or DATA statements. The starting line number
and the increment can be specified. If a beginning line
number or increment value are not specified, a beginning
line number of 10 and an increment of 10 is generated for
BASIC programs or data statements.

Be sure that the AUTO command does not replace existing
lines if not desired.

[,increment]
line-num

AUTO I_ 1] =

B AUTO 10, 10
H AUTO line-num,10

The syntax of the AUTO command is as shown where:

line-num is a positive number specifying the first line
number to be generated. The range of this number is from 1
to 99999. The default is 10.

increment is a positive integer from 1 to 99998 used to
increment succeeding line numbers. If a beginning line
number is not specified, the increment cannot be specified.
The default is 10.

Each line number generated by the AUTO command for a
BASIC program is followed by a blank, then the cursor.

00010 __ -

34 SA34-0109

AUTO

When working with a data file, the line number is followed
by a colon and then the cursor.

00010:_

Examples: To use line numbers
AUTO 10,20,30,40,etc.
AUTO 15 15,25,35,45,etc.
AUTO 15,5 15,20,25,30,etc.
AUTO 150,25 150,175,200,225, etc.

Programming considerations

« Ending AUTO
— Automatic line numbering continues until the line
number put on the screen is overwritten or an empty
line is scrolled up.

« Procedures
— Automatic line numbering cannot be done from a
procedure file.

« Entering DATA
— If AUTO is used to enter data, CLEAR DATA or
LOAD...,.DATA must be issued first.

« Adding lines
— To find the last line for continued entry: LIST 99999

Be sure that the AUTO command does not replace existing
lines if not desired.

BASIC reference information 35

BASIC

BASIC statements

36 SA34-0109

A BASIC program is made up of BASIC statements. BASIC
statements allow you to enter data, specify how that data is
to be manipulated, and determine what is the output.
BASIC statements are either executable or descriptive
(nonexecutable). Executable statements cause a program
action such as value assignment or printing. Descriptive
statements provide information needed by the program or
the user, but they cause no visible action.

BASIC statements can be up to 255 characters including six
for the line number and following blank. The maximum
number of statements permitted in a single BASIC program
is limited by the work area size of the system, the
statement types, and the maximum line number (99999).

The statements and a brief description are listed here.

CHAIN Ends a program, then loads and begins
executing another program or a
procedure

CLOSE Closes a file that is open

CONTINUE Transfers control to the statement

following the one causing the
ON-condition transfer or 1/0 exit

DATA Creates an internal data table of values

DEF Defines a function to be used in the
program

DELETE Marks a specific record in an internal
1/0 file as unavailable (deleted)

DIM Specifies the size of an array or
character variable length

END Ends a program

EXIT Specifies error exits for corresponding
error conditions

FNEND Ends a function defined in a DEF
statement

BASIC

FOR

FORM
GOSUB
GOTO

IF, THEN,ELSE
INPUT

LET

LINPUT

MAT

NEXT
ON

OPEN
OPTION

PAUSE
PRINT

RANDOMIZE

READ

REM

Begins a loop and determines when
loop is exited (as used with a NEXT
statement)

Specifies format for displayed/printed
input/output and records in files
Transfers control to the beginning of a
subroutine

Transfers control to a specific statement
Transfers program control or executes a
statement according to the results of
the logical expression

Assigns values from the keyboard or
other device to variables or array
elements during program execution
Assigns values to variables

Performs unformatted character string
input

Assign values to all elements of an
array.

Last statement in a loop (see FOR)
Specifies a transfer of control on the
detection of specified events
Activates internal or display files for
input or output

Set global parameters of BASIC
program

Halts program execution

Transfers DISPLAY data to a specified
device

Sets a new starting point in random
number generator

Assigns values from the internal table
(see DATA) or internal /0 files to
variables or array elements

Defines comments or remarks in a
program

BASIC reference information 37

BASIC

BASIC statements (continued)

REREAD

RESTORE

RETRY
RETURN
REWRITE
STOP
TRACE
USE

WRITE

Allows access to the last record
obtained from a file

Causes values in the internal data table
(see DATA) to be assigned starting with
the first table value, resets the data file
to the beginning or to a specific record
Transfers control to the statement
causing the most recent error

Ends a current subroutine

Updates existing record in a fiie

Stops execution of program statements
Traces all or part of a program’s
execution

Defines the names of the variables
passed by the CHAIN statement

Adds a record to an internal 1/0 file

Note: More information on individual statements may be

found by locating the statement, which is in alphabetic

order, in this manual. v

38 SA34-0109

Blanks

Blanks

Byte

The following rules apply to the use of blanks:
« Blanks can be used within quoted character strings.

« A blank or other syntactically defined delimiter is
required after a keyword.

« Blanks are not allowed within keywords, variable names,
numeric constants, function names, line numbers, and

labels.

« Non-significant blanks will be deleted when the
program is listed (see “’LIST command’’).

« Blanks are required after leading line numbers in BASIC
statements.

- To retain blanks, the program must be entered/edited in
DATA mode.

« Blanks are significant in relational compares.

Throughout this reference manual the symbol b will
represent a blank.

The unit of machine and diskette storage. For example, one
character takes one byte.

BASIC reference information 39

Catenation

Catenation
see “‘Concatenation””
CEIL(X)
Returns the smallest whole number (integer) greater than or
equal to X. For example:
10 CEIL (-1.2)=-1
20 CEIL (+2.3)=3
Ceiling

see "'CEIL(X)”

40 SA34-0109

CHAIN

CHAIN statement

The CHAIN statement ends the program currently being
executed, loads another program, and starts executing the
new program. The CHAIN statement may also be used to
start a procedure or a subprocedure from a BASIC program.

F”_ES‘I I—- data-item-l
CHAIN—— pgmname——Jf}— 2]]

E All files are closed
B No data is passed

The syntax of the CHAIN statement is as shown above,
where:

pgmname is a character expression representing the
program name (see ‘‘File specifications’’). If the first five
characters of pgmname are PROC=, then the file is invoked
as a procedure. If the first eight characters are SUBPROC=,
then the file is invoked as a subprocedure. In either case,
FILES and data-item may not be specified.

FILES indicates that all files of the current program remain
open and at their current positions. If the keyword FILES is
not specified, all files except procedure files are closed
when the CHAIN statement is executed.

data-item is the name of a variable or array (without the
keyword MAT).

The data items define the names of the variables that are to

retain their data when the chain occurs. All other variables
are destroyed during the chaining operation. The list of data

BASIC reference information a1

CHAIN

CHAIN statement (continued)

42

SA34-0109

items is not syntax checked until the CHAIN statement is
executed.

N
Examples
In the following example, the current program is terminated,
all files are kept open, PGM3 from VOL1 is loaded, and the
values of variables A and B$ are copied into the chained-to
program.
10 CHAIN "PGM3/VOL1", FILES, A, BS$
In the following example, the system chains to the
procedure file “"PROC4". In statement 70, the “"PROC=""is
necessary to indicate that ‘PROC4"’ is a procedure and not
a program.
70 B$ =."PROC=PROCH" r
80 CHAIN B$ ~
If a procedure was already in effect, it is replaced with the
new procedure, PROCA4.
An example of CHAIN specifying the subprocedure is
90 CHAIN "SUBPROC=SET.TIME"
If a procedure was already in effect, it resumes control
when the subprocedure is finished.
;,
N, o

CHAIN

Programming considerations

« USE
— The chained program must contain a USE statement
that specifies the same variables in the same order as
the CHAIN statement (see "USE statement’’).

« Dimensioning
— The chaining and the chained program must be
dimensioned the same as all the arrays and the
character variables that are passed. The programs can
redimension the arrays in any valid manner (see
““Redimensioning arrays’’).

« Options
— The options specified on an OPTION statement in the
chained-from program must match the options
specified in the chained-to program.

« |IF, THEN, ELSE
— There cannot be an ELSE clause when the CHAIN
statement is the object of a THEN clause. Only a
remark can follow the data items in a CHAIN
statement.

« CHAIN interrupt
— If CHAIN processing gets interrupted for any reason
while LOAD appears on the status line (for example,
file not found) and if termination is desired, CLEAR
ALL must be entered.

See ‘'Sample program 7' in Appendix A.

BASIC reference information 43

Character arrays

Character arrays

44 SA34-0109

A character array contains only character data and can have
one or two dimensions.

Character arrays, like simple character variables, are named

by a single letter of the alphabet followed by zero to seven
alphabetic or numeric characters, followed by the dollar sign

$.
For example:

D$(5) = "JONES"
A5%$(10) = "SMITH"

Character arrays can be used in input, output, and simple
matrix assignment statements and can be redimensioned
(except for maximum string length). The maximum string
length of each element of a character array cannot changed.
For more information, see:

“Arrays’’

““Character variables’

""Redimensioning arrays”’

“DIM statement’’

“VAL(AS)”

Character constants

Character constants

Character data

A character constant is a string of characters enclosed in
quotation marks. Any letter, digit, or special character can
be in a character constant. For example “THE PRICE IS
$6.95.”" represents THE PRICE IS $6.95.

The character constant, including blanks but excluding the
delimiting quotation marks, may be from zero through 255
characters long. The following are examples of valid
character constants:

"YES"
" HE SAID " "HELLO" nn
"123456"

Lowercase characters within quotes (constants) are not
changed to uppercase.

To represent quotes within character strings, two
consecutive quotes ("”’) are required.

Character data in BASIC is data with a character value. It
can be in the form of constants or variables (see “"Character
constants’ and ‘‘Character variables’’).

BASIC reference information 45

Character expressions

Character expressions

46

SA34-0109

— system function

L—— system variable

Syntax

l-—(start:end) _l
—— character variable L

y—— user defined function

“’character constant’ —i

Bl Entire variable
Start and End are numeric expressions.

A character expression is a character constant, a character S
variable, a character operation reference, a single element of

a character array, a character substring, or a combination of
these. The only operators ever associated with character
expressions are the substring and the concatenation symbol.

For more information, see “‘Concatenation” and “'Substring
referencing.” The following are examples of character
expressions:

"ABCDEFG123456"
ALPHA$ & BETA$
"SER" 8 ” IAL"
ZEBRA$ (2:6)

Character expressions

Subjects related to character expressions

This section lists and summarizes subjects related to
character expressions. For additional information, refer to
the specific subject in this manual.

Character set
CHR$

Concatenation
DATES

FILE$

FORM statement
HEXS$

KSTATS

LEN
LPADS$

LTRMS

ORD
PIC$

POS

See charts under this topic
Returns character for specified
position within collating
sequence

Joins character strings together
Returns date set by DATE
command

Returns file specification
Specifies format for
displayed/printed input/output
and for records in files

Returns hexadecimal value
Returns the most recent
keystroke _

Returns the length of a string
Returns a string padded on the
left with blanks

Returns a string with leading
blanks removed

Returns ordinal value
Returns/changes the current
currency symbol

Returns position of matching
substring

BASIC reference information 47

Character expressions

Character expressions (continued)

48

SA34-0109

RPADS$
RPT$
RTRM$
SRCH
SREP$
STR$
TIME$

WSID$

Returns a string padded on the
right with blanks

Returns repeated character
Removes trailing blanks
Searches array for a value
Replaces strings past a specified
position with another string
Converts a specified value to a
character string

Returns time of day (set initially
by TIME command)

Returns which port of the 5246
Diskette Unit the 5322
Computer is attached to

e

R’

«

Character set

Character set

The System/23 character set is used to represent arithmetic
and character data as data constants and variables and to
represent the BASIC program.

The character set consists of the following:

+ Alphabetic characters (English)

« Alphabetic characters (non-English)

« Numeric characters

- Special characters

« Graphic characters

Alphabetic characters (English)

The uppercase and lowercase letters of the alphabet (A
through Z make up the System/23 alphabetic characters).
See “‘Character set.”

Alphabetic characters (non-English)

Characters of the alphabet that are non-English may not be
used for BASIC variable names and file names.

Numeric characters

In BASIC, the numeric characters are the digits O through 9.

BASIC reference information 49

Character set

Character set (continued)

Special characters

There are 21 characters that have special meaning in
System/23 BASIC:

Character Name

Blank or space

= Equal sign

+ Plus sign

- Minus sign
Asterisk
Slash

Circumflex

*

>~

—

Left parenthesis

) Right parenthesis

, Comma

Period or decimal point

; Semicolon

Colon

Ampersand, concatenation

Question mark

Greater than

Less than

- AV~ |

Exclamation point

@

Currency symbol

Quote

Number sign

50 SA34-0109

Character set

"« Horizontal bar

The cursor does not move to the right when using the
circumflex. The cursor right key must be used.

There are other special characters but they do not have

special meaning in System/23 BASIC. They are used within
character strings.

Graphic characters

There are 11 graphic characters in System/23 BASIC:
« Vertical bar

« Lower right corner
« Lower tee

« Left tee

« Upper tee

« Upper left corner
« Lower left corner

« Upper right corner

L Jr a4 TrEL -

« Right tee

+ Intersection +

Note: On the printers, small gaps may be visible between
graphics.

BASIC reference information 51

Character set

Character set (continued)

Display attributes, highlight and blink, do not affect these
graphic characters.

The following chart lists all of the EBCDIC characters and
their hexadecimal representation used in System/23 BASIC.

coumn o1]2]3|als]e]7]8]o]als]c]p]e]cF

£

. Bit 00 01 10 11

2| Pat foofo1 [10]11 |00 o1 |10}11f00 |01 |10]{11 {0001 |10]11
0 | 0000 JT Y sP& = e e [T e ||} N (O
1 | 0001 4 |4 |rsp|é |/ |E |a |i |~ |¢ (A |4 |[NsP|1
2 | 0010 = a |8 |A|E |b |k |s |¥ |B |K |s |2
3 {0011 U i |e |AJE |c |1 |t |Ppefc L [T |3
410100 |H |Norm|ND| — |3 |é |A |E |d |m |u |Ff |D |M|U |4
5 | 0101 RHB|4 |7 |A |i |e |n |v |§ |E [N |V |5
6 | 0110 i |t |A |1 |f |o |w |q |F |0 |w/|6
7 (0111 |B | UR|RH 8 |7 A |T |g |p |x |% |G |P |X |7
8 |1000 |R |URH| T ¢ i c |i h |{aqa |y |% |H |a Y |8
9 | 1001 URB| I~ Aao|s N i ro |z % |1 R |z |9
A | 1010 | HB |ursH [] ‘l s l« la i |7 [sHY| |2 |3
B [1011 |RB|| s | |# [o e (4 |8 & [0]0
c | 1100 UH | L ¢ * % |@e|d |2 |P |7 |6 [u |00
D | 1101 UB [R I R 2 B R s fu [o |
E 1110 UBH 1+ ;D =t &t |7 |s |a |6]0

F 111 ! " ? "

I+
O
©)]
ot

<
o

EO

52 SA34-0109

Character set

Notes:

BASIC reference information 53

Character set

Character set (continued)

Special use characters

The following shows characters that perform a special
function on the display screen and/or printer. An X
indicates that the device supports the function.

54 SA34-0109

Character set

Hex

04
06

07
08
0A
0B
0c

0D
11
12
13
14

15

17

18

19

1A

1C
1D
1E
23
24
25

27
2B
35

3A
3B
3C

ID

New line

HB
RB
New Page

CR

New line
UR

URH

URB

URBH

UH

UB

UBH

U

I
Line feed

RH
Format
RHB

PageEnd

Screen

Blank

KO XK XX

Blank
Blank
Blank

lank

Blank

Blank
Blank
Blank

Printer

R

b

> X

Use

Highlight

Start output in column 1,
next line

Blink

Reverse image
Highlight blink
Reverse image,blink
Screen=clear,
printer=eject page
Carrier return

System use only

System use only

System use only
Screen=normal image,no
blink,highlight,underline
Printer=stop underline
Start output in column
1,next line
Underline,reverse
image
Underline,reverse
image,highlight
Underline,reverse
image,blink
Underline,reverse,
blink,highlight
Underline,highlight
Underline,blink
Underline,blink, highlight
Underline

Invisible

Start output in same
column,next line
Reverse,highlight

Set printer

Reverse image,
highlight,blink

Eject page

System use only

System use only

BASIC reference information 55

Character set

Character set (continued)

Characters not displayable

Not all graphics can be displayed at the same time (see
“DISPLY’’). Characters that are not displayable show up as
“blobs.”” All graphics always print on the printer (except
1/4, 1/2, and 3/4 on some printers).

The following charts show which characters are not
displayed for each setting of DISPLY. Non-displayable
characters are shown in the shaded boxes.

DISPLY (1) — United States character set:

01 2 3 4 5 6 7 8 9 A B C D E F
0 T
1 [S S 1

7 P x G P X 7
8 a vy H a Y 8
9 i B N ior oz I R Z 9
A S « a i - o3
B $ # 0 o ¢ |

c « x % @ -

D [

E +)y =

F ! ? + ® =

56 SA34-0109

Character set

DISPLY(2) — Canada character set:

0 1 2 3 4 5

~
'S
o

: m

IS
'S

DISPLY (3) — Europe (except Spain) character set:

0 1 2 3 4 5 6 71 8
0 & - o ¢

3 a

o
~

9

A

B cC D E F

{ } v o

BASIC reference information

57

Character set

Character set (continued)

58 SA34-0109

DISPLY(4) — Nordic (including lceland) character set:

Character set

01 2 3 4 5 6 7 89
0 Notes:
: Note Nc1>te ; lF.)anrintable character
. Page advance
2 ! Use table from left to right
3 ol bl Examples:
4 (7| rote) L =| 4| decimal code 193 prints A
5 _ decimal code 91 prints $
6 + 21 3lsl 3| Theinformation in this
table is used with CHR$
7 3 ajc| A0 .|<|(]+]!
gl&|é|®|e|e|T|T|i]|1]|B8
oIS "D/ |AR]A
10 [A[A|R|A|C|N|]]| . |%]|_
M| > 2|e|E|E|E|E|T|T]T
12|17 #le| "o | a
13| bl cldje|flg|h}|i|<]|>
14| d|v| = ilk|[1|{m]|n
15 olp|alr|alole|, &£
wBlul~]s|tlulv|iw|x]|y]|z
i |ilelo|Y|I|lele|el¥]n
CAREEIRIR AR NIEEE
19| - |=|{|Aa|B|c|D|E|F|G
20 75| 6|a|6|3|}]|y
21 LIM|N|O|P|Q|R|1]|Q
2 G| ulaly|\ S{T({UlV
23|w|x|y|lz| 20|06|0|6|D
24101 |2|3|4|5|6|71|8]|9
25 [3 5[0]0] 0

Decimal representation of characters

BASIC reference information 59

Character variables

Character variables

A character variable is a named item of character data
whose value is subject to change during program execution.
Character variables are named by a single letter of the
alphabet, followed by from zero to seven alphabetic or
numeric characters, followed by the dollar sign $.

When the program is executed, the initial value of character
variables is set to null (zero length).

When a character expression value is assigned to a
character‘variable, the resulting length of the character
variable is that of the expression.

For example:

A$="ABC"

A$ is now 3 characters long.

The maximum length a character variable can be
dimensioned to is 255 characters. Examples of character
variables are:

A$

DATAS

NAME$

M211$

The maximum length of a character variable is 18 unless
specified in a DIM statement (see “DIM statement’’).

60 SA34-0109

CHR$

CHR$(X)

Returns the one-character string occupying the ordinal
position X within the native System/23 collating sequence.
X must be in the decimal range O through 255. If X is
outside this range, an error occurs. The change collating
sequence Customer Support Function does not affect the
result of CHRS$. For additional information, see ““Character
set.”

Example:

10 X=247
20 A$=CHR$ (X)

A$ contains 7"

BASIC reference information 61

CLEAR
CLEAR command

The CLEAR command deletes the program or data file from

the work area, or cancels the active procedure(s). ~
ALL
DATA
PROC

CLEAR 2

El CLEAR to PROGRAM mode.

The syntax for the CLEAR command is as shown above,
where:

ALL clears the work area of the program or data and any
active procedure files. In effect, it puts the machine in an
initial power-on status.

DAT A sets the work area to DATA mode for entering
keyboard generated data files. Closes all files (except
procedure files) left open by the program in the work area.
All contents of the work area are erased.

PROC resets the system to keyboard input and eliminates
any active procedure file hierarchy. Closes all procedure files
left open. The contents of the work area are not erased.

If no parameter is specified, PROGRAM is the default. It

sets the work area to PROGRAM mode for program entry.

This closes all files (except procedure files) left open by the
program in the work area. All contents of the work area are
erased. P

L

62 SA34-0109

CLEAR

Clear display screen

The status line will display READY INPUT when the
command is complete.

CLEAR should be used whenever a new program is entered.

Otherwise, existing lines in the work area may become part
of the new program.

see "NEWPAGE’ under “PRINT statement’’

BASIC reference information 63

CLOSE

CLOSE statement

64

SA34-0109

CLOSE

The CLOSE statement specifies the file to be closed.
CLOSE is automatically executed for each active file at the
end of program execution.

N
[T
|
|
y RELEASE —— error-cond line-ref-,
s FREE EXIT line-ref m——
#file-ref 1 : . |
E Keep file, maintain reserve status
El Interrupt on error unless ON is active
The syntax of the CLOSE statement is shown above, where:
file-ref is a numeric expression. See "File-reference 7N
parameter.” N

RELEASE will reset any reserve control status. See ‘Fiie
sharing.”

FREE will free the file if it is opened NOSHR. See
“"DROP/FREE command.”

error-cond line-ref specifies the line number or label that
the program should transfer to for one of the following error
conditions:

IOERR — input/output error
EOF — end of volume

C

CLOSE

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs (see “"EXIT
statement’’).

Examples

Sample CLOSE statements:

20
30
40
50
60

CLOSE #1:

CLOSE #2: IOERR 200
CLOSE #3: EXIT CLOSEXT
CLOSE #5, FREE: EXIT 400
CLOSE #6, RELEASE:

Programming considerations

CLOSE #0 and CLOSE #255

— CLOSE #0 and CLOSE #255 may be issued even if
there was no prior OPEN #0 or OPEN #255.

— CLOSE #0 and CLOSE #255 may be used to ensure
that all screen and printer operations have completed.

SEQUENTIAL

— If a DISPLAY 1/0 file is used for both input and
output operations during execution of a single
program, the file must be closed and reopened
between input and output references.

Output last data

— The output file must be closed to make sure that the
last records are written. If the diskette is removed
without a CLOSE, END, or STOP—data may be lost.

BASIC reference information 65

CLOSE
CLOSE statement (continued)

« Extents
— Any unused portion of the file extents remains i
assigned to the file after it is closed. S~

CMDKEY
CMDKEY is a system variable that returns the identity of
the last key used to terminate the last INPUT or LINPUT
statement.
o =1is returned if no INPUT or LINPUT was executed in
this program.
e 0 is returned if the Enter key was used.
o 1-9 is returned if the Cmd key plus one of the
numeric-pad keys was used. =
CNT

CNT is a system variable that returns the number of data
items successfully processed by the last 1/0 statement
executed. The CNT value is set according to the following:

« CNT is set to O before the 1/0 statement starts
executing.

« For INPUT, READ, and PRINT each item is counted as
one.

« For LINPUT, the value is set to 1 if data was read.
« For MAT variables, each element is counted separately.

N

66 SA34-0109

«

CNT

CNT

CODE

Commands

Example:

10 OPTION BASE 1
20 DIM A(4)
30 INPUT MAT A

e (CNT=4 if successful)

Note: CNT should be assigned to a variable if its value will
be printed. This is because if used in a PRINT statement,
CNT will be reset to O before the value of CNT is printed.
Continuing the above example:

40 X = CNT
50 PRINT X

CODE is a system variable that can be set by the program
with a STOP or END statement to any value O through
9999. It is available to a procedure for testing with the SKIP
command.

see '‘System commands”’

BASIC reference information 67

Comments

Comments

CON

68 SA34-0109

See “"Remarks’’

Sets the entire array to a constant (see ““ZER and CON"’).

Concatenation

Concatenation

Concatenation is joining two or more character strings into
one. The symbol used for concatenation is the ampersand
(&). For example:

10 DIM A$*4
20 DIM B$*3
30 DIM C$*7
40 A$="FLOR"
50 B$="IDA"
60 C$=A$&BS$
70 PRINT C$

In this example, the character string A$ is concatenated (&)
with the character string B$ to form string C$ (FLORIDA).

Another example of how to use concatenation is as follows:

10 LET A$="MIKE"

20 LET B$="//1"

30 OPEN #1:"NAME="¢AEB&" ,SIZE=0,
RECL=127", INTERNAL, OUTPUT

40 CLOSE #1:

Line 30, above (using concatenation) is the same as line 10,
in the following:

10 OPEN #1:"NAME=MIKE//1,SIZE=0,
RECL=127", INTERNAL, OUTPUT
20 CLOSE #1:

The result of concatenation must be 255 characters or less.
For more information, see "Character expression.”

BASIC reference information 69

CONTINUE

CONTINUE statement

70

SA34-0109

The CONTINUE statement transfers control to the
statement following the one causing the most recent -
ON-condition transfer or 1/0 exit.

CONTINUE -

CONTINUE is useful following an ON GOTO transfer or I/0
exit. If an ON event is specified to be IGNORED, the return
statement specification used by CONTINUE is not changed.
See “ON statement”.

If a second ON GOTO or I/0O exit occurs before CONTINUE
is executed, the first occurrence is lost. Avoid operations
that cause such occurrences or use ON. . . IGNORE.

If no error has occurred since RUN, execution of o
CONTINUE causes an error and interrupts execution of the e
program.

Any event that causes an ON GOTO transfer or 1/0 exit
including the Inq key (ON ATTN), sets the CONTINUE
target line.

For a description of special handling of ON events and 1/0
exits within a defined function, see "DEF,FNEND
statement.”

COS

COS(X)

Returns the cosine of X, where X is in radians. The absolute
value of X must be less than 1E10. For best accuracy
specify a value for X greater than - 2*PI or less than 2*Pl.

Cross reference

see

“LIST label”” under “’LIST,LISTP command”

BASIC reference information 71

Customer Support Functions

Customer Support Functions

72

SA34-0109

The Customer Support Functions are supplied by IBM
Marketing Support on diskettes. For detailed information
about Customer Support Functions, see Customer Support
Functions, Volume | and Volume I/. The Customer Support
Functions are:

« Select Machine Update

« Load Machine Update

o Prepare Diskette

« Copy Diskette or File

« Display Diskette Label

« Recover Diskette

« Create Index File

« Change Collating Sequence

« Replace Customer Support Function
« Prepare Sort Control File

« Sort
+ List Diskette
« List File

« List Storage

The following Customer Support Functions are part of the
Communications Licensed Programs:

« Set Up Asynchronous Communications

« Set Up Binary Synchronous Communications
« Prepare Batch Data Transfer

« Batch Data Transfer

« Asynchronous Communications Terminal

« Diagnostic Analysis

« Online Test

Note: Some Customer Support Functions may be called and
controlled from Procedure Files

Customer Support Functions

Select Machine Update—LINK SELECT

The Select Machine Update function creates a file of
machine updates to be used by the Load Machine Update
function. This must be done before the load machine update
features can be performed.

Load Machine Update—LINK UPDATE

The Load Machine Update function is used to load machine
updates (supplied by IBM) into the system.

Prepare Diskette—LINK PREPARE

The Prepare Diskette function is used to prepare a new
diskette or erase a used one. A new diskette cannot be
used as it is received, it must be prepared to the format
required by the system.

BASIC reference information 73

Customer Support Functions

Customer Support Functions (continued)

Copy Diskette—LINK COPY

The Copy Diskette function does any of the following:

« Copies an exact image of an input diskette to an output
diskette

« Copies a group of files from an input diskette to an
output diskette

« Copies a selected input file to an output file

« Copies a selected input file or group of files to the
printer

« Copies all files from an input diskette to an output
diskette

« Compresses files by eliminating deleted records or
unused extents

Display Diskette Label—LINK LABEL

The Display Diskette Label function is used to display the
contents of the diskette labels for use in recovery
procedures. The contents of these labels can also be
printed. Labels on any access-protected diskettes cannot be
displayed or printed. See “DIR command” and “VOLID
command.”

74 SA34-0109

Customer Support Functions

Recover Diskette—LINK RECOVER

The Recover Diskette function is used to recover a file when

a read error occurs on the label or data portion of the file.
The function will save as much of the data on the file as
possible. Accidentally freed or dropped files can be
recovered even though no read error occurred.

Create Index File—LINK INDEX

The Create Index File function is used to create index files
for use in accessing master data file records (see
“"Key-indexed files’’).

Change Collating Sequence—LINK COLSEQ

The Change Collating Sequence function is used to replace
the memory-resident collating sequence with an alternate
collating sequence. It also is used to modify the active
collating sequence from the keyboard.

For related BASIC subjects see:
“IF statement”

“AIDX and DIDX"’
“OPTION statement’”

Replace—LINK REPLACE

The Replace function is used to find obsoleted versions of
the Customer Support Functions and replace them with the
newer versions.

BASIC reference information 75

Customer Support Functions

Customer Support Functions (continued)

76

SA34-0109

Prepare Sort—LINK PRESORT

The Prepare Sort function is used to define the files, sort
fields, and other information to be used by the Sort
function. This must be performed before the Sort function
can be used.

Sort—SORT sort-control-file

The Sort function is used to perform a Record Out Sort or
an Address Out Sort. Record out sort creates a new file
with the records sorted. Address out sort creates a new file
with the address (positions) of the record in the sorted
order.

List Diskette—LINK LISTDISK

The List Diskette function provides you with information
about the files on the diskette you specify. It provides you
with information about the diskette and about the files on
the diskette.

List File—LINK LISTFILE

The List File function allows you to investigate the records
in a file. It uses your answer to prompts to list records and
summary information about the records.

&

Customer Support Functions

List Storage—LINK LISTSTOR

The List Storage function is a helpful tool that you can use
to help you debug a BASIC program. It will print and/or
display various parts of storage that were previously saved
on diskette using the built-in diagnostic dump. The storage
is interpreted in terms of the BASIC program which was
resident at the time of the dump.

Set Up Asynchronous Communications — LOAD
SETUP.ASC

The Set Up Asynchronous Communications function creates
a file containing the communications environment data. This
must be done before Communications can be run.

Set Up Binary Synchronous Communications —
LOAD SETUP.BSC

The Set Up Binary Synchronous Communications function
creates a file containing the binary synchronous
communications environment data. This must be done
before Communications can be run.

Prepare Batch Data Transfer — LOAD PREBDT

The Prepare Batch Data Transfer communications function
builds a control file that directs the operation of Batch Data
Transfer.

BASIC reference information 77

Customer Support Functions

Customer Support Functions (continued)

Batch Data Transfer — LOAD BDT

The Batch Data Transfer communications function transfers
data files to and from a remote system.

Asynchronous Communications Terminal — LOAD
ACT

The Asynchronous Communications Terminal function
operates as an interactive terminal for asynchronous
communications.

Diagnostic Analysis — LOAD DIAG

The Diagnostic Analysis communications function displays
trace and statistical information from a communications
session.

Online Test — LOAD OLTST

The Online Test function performs Binary Synchronous
Communications online tests to verify the communications
link.

DATA files

DATA files

Type 05 (DISPLAY) files are used in the System/23 for
procedures, as input to programs (INPUT and LINPUT), and
for any other data in the form of keyed input or printed
output.

System /23 provides a convenient method of creating,
viewing, and editing DISPLAY files. To create a DISPLAY

file, enter:

CLEAR DATA
AUTO

CLEAR deletes any previous data or program from the work
area. AUTO puts a line number and colon on the input line.
Now enter any desired data, such as procedure file
commands or data. All normal editing facilities are available.
When finished, enter:

SAVE file-spec

This puts the new file on the diskette. Remember to include
either a VOLID or device address in the file specification. To
edit an existing DISPLAY file, enter:

LOAD file-spec, DATA

Next, edit the file as usual, then enter:

REPLACE

For additional information see, “CLEAR command’’ and
"‘Editing a program.”’

BASIC reference information 79

DATA files

DATA files (continued)

The following BASIC program will print the DATA file (type
05) on the system printer.

10 DIM LINE$#*255

20 OPEN #1: "NAME=file-spec", DISPLAY, INPUT
30 LOOP: LINPUT #1:LINE$ EOF QUIT

40 PRINT #255: LINES$

50 GOTO LOOP

60 QUIT: STOP

80 SA34-0109

—

DATA

DATA statement

The DATA statement creates an internal data table. The
data table constants are assigned to the variables and/or
array elements by the READ statement (see “'READ
statement’’).

The syntax of the DATA statement is as shown above,
where:

num-constant is any numeric value (see ""Arithmetic
constant”’ under “‘Arithmetic data’’).

char-constant is any character string value. The character
string may be quoted or unquoted. In the quoted character
string, any characters are allowed. In the unquoted
character string, leading and trailing blanks are ignored,
commas and quotes are not allowed.

When program execution begins, a pointer is set to the first
constant in the table. The pointer is advanced as data is
read by the READ statement. (The RESTORE statement may
be used to restore the pointer to the first constant.)

BASIC reference information 81

DATA

DATA statement (continued)

82

SA34-0109

Example

100
110
120
130
140
150

T

OPTION BASE 1 N
DATA "DEBIT",21.60,"CREDIT",15.40

DATA MONTH, DAY, YEAR

READ A$,N,B$,C

DIM Z$(3)

READ MAT Z$

Programming considerations

Location

— The DATA statements may be placed anywhere in the
program regardless of the position(s) of the READ
statement(s).

Too few values
— If the DATA statement does not contain enough
constants for the READ statement issued, an EOF

: N
error is generated.

Character data

— Character data does not have to be enclosed in
quotation marks unless leading blanks, embedded
commas, or lowercase characters are significant.
Unquoted lowercase letters and graphic characters
are converted to uppercase.

Numeric data

— Numeric values may be accessed and read as either a
numeric or character value.

Remarks

— A remark is not permitted on DATA statements. It is
interpreted as part of the data. A

N o

DATE

DATE command

DATES

Declaring arrays

The DATE command assigns the specified date to the
system variable DATES$.

DATE—— yy/mm/dd ——{}

The syntax of the DATE command is shown above, where:

yy is in the range 00 to 99

mm is in the range 01 to 12

dd is in the range 01 to 31

An example of the DATE command with a remark is:

DATE 81/01/01 ! Happy New Year

DATES returns an eight character string that is set by the
DATE command. At power-on, it is set to (bb/bb/bb).

The date is not updated by the system.

see "DIM statement””

BASIC reference information

83

DEF,FNEND

DEF,FNEND statement

DEF——

84

—FNname

!
un

The DEF statement is used to define an arithmetic or
character valued function for reference elsewhere in the
program. The FNEND statement indicates the end of a
multiple-line function. The syntax of the DEF statement can
be either a one-line or multiple-line function.

One-line function

__,_______l

*length _-I—I—‘-
char-var _[———- —]

FNname$

SA34-0109

=arith-expression —ﬁ

arith-var — o
*length -
Iength .
l_ l l_ char-var I

=char-expression

HE No input parameters
H Lengthis 18

The syntax for the one-line function is shown above,
where:

FNname is any valid variable name. This name, preceded by
the letters FN is the name of the defined function. For
character valued functions, this name must be followed by
the dollar sign $.

DEF,FNEND

/length is the length of the character variable used as input
or output. The length may range from 1 to 255 characters.

arith-var is an arithmetic variable name to which a value will
be assigned when the function is called.

char-var is a character variable name to which a value will
be assigned when the function is called. Values assigned to
the character variable cannot exceed the maximum length of
the variable. Loss of data will result.

arith-expression is an arithmetic expression that specifies
the value to be returned for the function. If the function
name is an arithmetic variable, an arithmetic expression
must be specified. See “Arithmetic expressions.””

char-expression is a character expression that specifies the
value to be returned for the function. If the function name is
a character variable, a character expression must be
specified. See "Character expressions.”’

Example one-line DEF statements

Arithmetic function:

120 DEF FNA(R)=2*R+100

Character function:

120 DEF FNA$ (R)=STR$ (R+5)

BASIC reference information 85

DEF,FNEND

DEF,FNEND statement (continued)

DEF——

86

[
["‘{

Multiple-line function

arith-var

Iengthll_k
char- var___L.E _]

r FNnam

SA34-0109

. arith-var
*lengt
*length. L[eng
l— l l—- char-var. |
— FNname$

El No input parameters
EH Lengthis 18

The syntax for the multiple-line function is shown, where:

FNname is any valid variable name. This name, preceded by
the letters FN, is the name of the defined function. For
character valued functions, this name must be followed by
the dollar sign ($).

length is the length of the character variable used as input
or output. The length may range from 1 to 255 characters.

arith-var is an arithmetic variable to which a value will be
assigned when the function is called.

char-var is a character variable to which a value will be
assigned when the function is called. Assigned values for

S

DEF,FNEND

the character variables cannot exceed the maximum length
of the variable.

The LET statement assigns the value of an expression as
the result of the function.

The FNEND statement is descriptive and indicates the end

of a muitiple-line function. The value of the function is
specified in an expression in the LET statement.

Example multiple-line DEF statement

10 LET A = 5

20 LET B = 2

30 LET C = -5

40 DEF FNA(X,Y)

50 IF X > O THEN LET FNA = X+Y ELSE LET FNA =X-Y
60 FNEND

70 LET D = FNA(A,B)

80 LET E = FNA(C,B)

90 PRINT D,E

I

In this example, when these statements are executed, D will
have a value of 7 and E will have a value of -7.

The use of functions

When a user function reference appears in an executable
BASIC statement, any expressions that follow the function
name must be separated by commas and enclosed in
parentheses. These expressions are evaluated and passed
by the system to the user function in order to initialize the
corresponding variables in the DEF statement. These values
must agree in number, length, and type with the

BASIC reference information 87

DEF,FNEND
DEF,FNEND statement (continued)

corresponding variables in the DEF statement. If the DEF
expression is present, the function is defined on the same
line and its value is the value of that expression. This is a
one-line function. If no expression is specified in the DEF
statement, the DEF statement is the start of a multiple-line
function. In this case, the FNEND statement indicates the
end of the function and the value of the function is
specified by the value of the variable FNname assigned in
the LET statement.

Programming considerations

« Use of functions
— A function reference to a user-defined function may
appear anywhere in a BASIC program that a constant,
variable, subscripted array element reference, or
system function reference can appear (see
“Arithmetic expressions’’).

» Location
— A function can be defined anywhere in a BASIC
program either before or after it is referenced.

« Name localization

— The variables named in the DEF statement are local
to the function. Consequently, it is possible to have a
variable in the DEF statement with the same name as
a variable used elsewhere in the program. Each
variable is recognized as being unique, and no conflict
of names or values results from this duplicate usage.
All variables which are not DEF arguments have the
same value/meaning for all statements.

88 SA34-0109

DEF.,FNEND

« On CONDITION localization

— When execution of a multiple-line defined function
begins, all ON CONDITION settings are stacked and
set to SYSTEM. New settings for the ON
CONDITION may be specified within the function. If
an ON event occurs within the function and the
specification is IGNORE, it will be ignored. If the
specification is GOTO, the transfer will occur, and the
function will remain active. CONTINUE and RETRY
will return execution to the appropriate line within the
function. If SYSTEM is active, the function execution
is abandoned. The ON conditions are unstacked and
whatever was specified for the event preceding the
current function will occur (IGNORE, SYSTEM,
GOTO).

BASIC reference information 89

DEF,FNEND

DEF,FNEND statement (continued)

90

SA34-0109

Bypass function

— After control is passed to a DEF statement without
reference to the function, control goes to the first
executable statement following the function definition
(the DEF statement for one-line functions, or the
FNEND statement for multiple-line functions).

Cmd/Attn

— If Cmd/Attn is pressed during the execution of a
defined function, execution will be interrupted. If Error
Reset is pressed, execution of the function will
resume normally. If Cmd/Error Reset is pressed the
function is abandoned and the system enters split
screen mode at the line which invoked the defined
function.

I/0 exits

— Exit clauses specified in 1/0 statements within a
multiple-line defined function causes the specified
transfer of control when the event occurs. The
function remains active and CONTINUE and RETRY
will return to the appropriate line within the function.

Inq

— If the Inqg key is pressed during execution of a
defined function, it is ignored until all currently
executing defined functions have completed
execution. At that time whatever ON action specified,
prior to entering the function, occurs. (IGNORE,
SYSTEM, GOTO).

Single definition
— A function of a given name can be defined only once
in a given program.

o

DEF,FNEND

Recursion
— A function cannot contain references to itself or to
other functions that refer to it.

FOR/NEXT
— A FOR/NEXT loop beginning in a function must also
end in the same function.

Nesting
— DEF function definitions cannot be nested.

Input/Output

— User-defined functions that are referred to during an
input or output operation cannot themselves perform
any input or output operation.

Modification of variables

— If a function definition alters the value of a variable
that is referenced in the same statement that calls the
function, the results may not be as expected.

Termination

— A program may not be terminated when a defined
function is still in execution. An FNEND must be
issued for each invoked DEF before program
termination.

EXIT and FORM

— EXIT and FORM statements inside a multiple-line
DEF function can be referenced from outside the
function; those outside the function can be
referenced from inside a DEF function.

Be sure that the first line of a multiple-line function
(DEF) is not the last line of the program.

BASIC reference information 91

DEL
DEL command

The DEL command is used to delete one or more
consecutive lines from a BASIC program or DATA work
area.

I_,Ias’(Iine~num_I
DEL— first line-num -8

HE Delete only one line number
The syntax of the DEL command is shown above, where:

first-line num is a number specifying the first line number
of several consecutive line numbers to be deleted. It may
also be the only line number to be deleted.

last-line num is a number specifying the last line number of
several line numbers to be deleted. e

The numbers used in the first-line and last-line numbers
must be integers in the range of 1 through 99999. The
first-line number must be less than the last-line number.

No additional storage becomes available as a result of using
the DEL command. The additional storage will become
available when the program is SAVEd in SOURCE format
and LOADed.

92 SA34-0109

DEL

Example

To delete line 20 from a program or data work area:
DEL 20

To delete lines 20 through 90 from a program or data work
area:

DEL 20,90
If line 20 or 90 does not exist in the workspace, then the

range of lines that do exist between 20 and 90 will be
deleted. If no line exists, an error is presented.

Programming considerations

» Comments should not be used on the DEL command.

BASIC reference information 93

DELETE

DELETE statement

The DELETE statement deletes either the last record read
from the file or the record specified by the position
specification. After the record is deleted, the file is
positioned to a location immediately following the deleted

record.
—_—_———y—— —
| |
y REC=arith-expression error-cond Iine-ref__H
y KEY=char-expression EXIT line-ref e |
DELETE— #file-ref L : E

Bl DELETE last record accessed READ/REREAD
B Interrupt on error unless ON is active

The syntax of the DELETE statement is shown, where:

file-ref is a numeric expression (see “'File reference
parameter’’).

REC=arith-expression specifies that the record having a
record number equal to the arithmetic expression is to be
deleted.

KEY =char-expression specifies that the first record in the
file having a key equal to the character expression is to be
deleted.

error-cond line-ref is the error action for one of the
following: NOREC, IOERR, or NOKEY

For information on the error actions see “'EXIT statement’.

94 SA34-0109

DELETE

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

Example

A sample DELETE statement is shown here:

80 A$="ZEPOL"
90 DELETE #8, KEY = A$:

In this example, the first record with a key field equal to
ZEPOL is deleted.

Programming considerations

« The file must have been opened as INTERNAL, OUTIN.
The file organization may be SEQUENTIAL, RELATIVE,
or KEYED.

« The SEARCH parameter is not permitted.

« If no KEY or REC parameter is specified, the previous
access to this file must have been a successful READ or
REREAD statement.

Descending index (MAT assignment)

see “AIDX and DIDX"

BASIC reference information 95

Device address

Device address parameter

Computer
1" 2 3'4
LIIZTITTTITT T 7T 77 14—
: ’ i Diskette
! unit
1
10 11
Printer Feature printer
(first printer) (second printer)

Device sharing

96 SA34-0109

Many BASIC statements and system commands require
entry of a device address parameter. This address identifies
the input/output device being used. Valid device addresses
(in decimal) for System/23 are:

1 Diskette drive 1
2 Diskette drive 2
3 Diskette drive 3
4 Diskette drive 4
10 Printer

11 Feature printer
40 Communications

See “OPEN statement’”, “‘File specification parameter’’.

Device sharing means that two 5322 Computers are
connected to the same 5246 Diskette Unit and both have
different open files on the 5246. This situation is handled
entirely by the system and never produces any new logical
or data integrity questions.

The 5246 can only service one computer at a time and thus
each computer may experience additional waiting time when
the other computer is already using the 5246. For this
reason, only data that is to be shared by both computers
should be located on the 5246. Files which are to be used
only by one of the computers should be located on that
computer’s inboard drive.

During the computer power up testing, an attempt is made
to access the 5246 to establish its presence and the
computer work station identification (WSID$).

Nl ot

Device sharing

Device sharing

If the 5246 is in use by the other processor, +0 will
appear on the status line. In this case the operator may
simply wait for the 5246. If the operator does not wish
to wait, then he may press Cmd/Attn, producing an
action code 21 and error code 6009. ERROR RESET will
now return the processor to waiting for the 5246.

Cmd/Error Reset will terminate the wait. The 5246 is
now logically detached from the processor and all future
references to it will cause an error 4153 (device not
attached). To attach the 5246 you must now power the
processor down and up again, with the 5246 power on.

If the 5246 is not powered on, action code 21, error
code 6009 is displayed. To attach the 5246, power it up
and press Error Reset. If the 5246 is not plugged in or
has a blown fuse, action 21, error 6009 will reappear.
To ignore the 5246, press Cmd/Error Reset.

The state of the shared 5246 is indicated on the status line
in columns 53 and 54 by the following codes:

blank - The 5246 is not required by this processor.

+0 - The other processor is currently using the
5246, or the 5246 was powered up before
the processor but is now powered down;
this processor is waiting to use it. If the
5246 is powered on and you wish to wait
for it, ---DO NOTHING---.

+1 - This processor is now using the 5246.

When the processor is waiting to use the 5246 (+0), the
operator may interrupt this wait with Cmd/Attn. To
continue with the original operation, press Error Reset. To
terminate the current operation with 1/0 error 6009 or

BASIC reference information 97

Device sharing

Device sharing (continued)

6011, press Cmd/Error Reset. The latter action would be
used to terminate a program (with GO END) or command if
the other processor will continue using the 5246 for a long
time.

If the program has open files when you do this, data may
be lost.

For some operations, multiple 1/0O accesses may be
attempted following the interrupt of the +0 wait. After the
first Cmd/Attn, Cmd/Error Reset cycle, another +0 may
appear. Continue with the Cmd/Attn, Cmd/Error Reset
cycle until the +0 is cleared.

Share and Reserve status may be left on for the file which
was being accessed. Use the PROTECT command to
remove them.

If the operator presses Hold while +1 is displayed, this
prevents completion of the current 5246 access and
prevents the other processor from accessing it.

The 5246 is also unavailable for the duration of an action
code 10 (waiting for diskette to be inserted), if drive 3 or 4
or no drive is given in the file specification. This will also
occur if the diskette contains an open file, the diskette has
been removed, and is now required.

Each of the two cables connecting a processor to the 5246
identifies the connected processor with respect to the use
of the 5246. This identification is provided through the
WSID$ system variable.

If the processor is connected to cable 1, or is not attached

to the 5246, or the 5246 power was off during the
processor power up, then WSID$="01".

98 SA34-0109

(\\

Device sharing

DIDX (array name)

Dimensioning arrays

If the processor is connected to cable 2 and the 5246 was
powered up before the processor, then WSID$="02"".
WSID$ is useful in establishing unique file names when the
same application is running in both processors.

The following Customer Support Functions secure the 5246
for the entire duration of their execution:

« Prepare Diskette

« Copy Diskette (image copy only)
« Recover Diskette

« Display Diskette Label

See also “'File sharing”” for information on the simultaneous
use of the same file by two different OPENSs.

Returns an array containing the descending index of the
source array. See “AIDX and DIDX". Also see “OPTION
statement” (COLLATE).

see 'DIM statement”’

BASIC reference information 99

DIM
DIM statement

The DIM (dimension) statement specifies the maximum size
of arrays and character variables, and their original

dimension.
—~y columns —
- arith-array-name (rows -)
) columns=— I—-* Iength—l
DIMT-—char-arrayﬂame (rows B) T = |

I . |
| - length— |
| |
‘I L char-var-name B— I
| |
b e S el 4

One-dimensional array (vector)
Defaults to length of 18

The syntax of the DIM statement is shown above, where:
arith-array-name is an arithmetic array to be dimensioned.
char-array-name is a character array to be dimensioned.

char-var-name is a character variable to which a length will
be assigned.

rows and columns are integers specifying the dimensions of
the arrays (highest subscript(s)). One dimensional arrays
require only the row entry. Two dimensional arrays require
both the row and column entries separated by a comma.
For example:

10 DIM A(20,25)

100 SA34-0109

DIM

/length is the maximum length of a character scalar, or the
maximum length of each element of a character array. This
value may be from 1 to 255. If length is not specified, the
default maximum length is 18 characters.

The initial value of each arithmetic array element is zero.
Each character array element is initialized to null (zero
length). This initialization takes place when the array is first
referenced.

Declaring arrays

Arrays can be declared either by using the DIM statement
or by a reference to an element of an array that has not
been declared.

When an array is declared by using the DIM statement, the
dimension and maximum number of data items are specified
in the DIM statement. For example:

20 DIM A(10)
30 DIM WEEK$ (6) *9

Statement 30 dimensions array named WEEKS$ to use the
seven array elements WEEK$(0) through WEEK$(6). The
maximum length of each element is 9 characters.

If OPTION BASE O is in effect, statement 20 dimensions
the array named A to use 11 array elements A(0) to A(10).

BASIC reference information 101

DIM statement (continued)

102

SA34-0109

When an array is declared by a reference to one of its
elements, it is one- or two-dimensional based upon its use
and has 10 elements in OPTION BASE 1 and 11 elements
in OPTION BASE 0. For more information see “OPTION
statement.” For example:

40 A(3) = 50

establishes a one-dimensional array containing 10 elements,
if OPTION BASE 1 is in effect, the third element A(3) has
an integer value of 50, and the remaining elements have

values of zero.

50 WEEK$ (0)="Sunday"
60 WEEK$ (3)="Wednesday"

Arrays requiring more than 10 elements (BASE 1) or 11
elements (BASE 0) must be declared explicitly.

An array can be declared by a DIM statement only once in a
program.

If an array or character variable is passed as a parameter by
the CHAIN statement, it must be declared in a DIM
statement in both programs, and the same size must be
specified.

For more information see:

« “Character arrays’’

« "Arithmetic arrays’”’

« "'Substring referencing”’

N

DIM

Example

A sample DIM statement is shown:

10 OPTION BASE 1

20 DIM A$(5)*20,B(4,2)

30 LET X = LEN(P$) ! x is O

40 LET P$= "ABCDEFGHIJKLMNOPQR"

The result of the DIM statement is:
A$ is a character array with five elements (one-dimensional
array), each has a maximum of 20 characters. All five

elements are initialized to zero length.

B is an array of four rows and two columns
(two~-dimensional array).

P$, which is not declared in any DIM statements defaults to

a maximum of 18 characters and is intialized to zero length.
Statement 40 above changes it to length 18.

BASIC reference information 103

DIM

DIM statement (continued)

Programming considerations

+ Redimensioning

— If a user wants to change the size of an array during
execution time, redimensioning can be used.
However, the array is allocated to its full
DIMensioned size when first referenced. The storage
will be reused when redimensioning occurs. Another
technique is to create a procedure file to edit a DIM
statement into the program. For example:

LOAD file-spec
10 DIM A$(59)*33
RUN

see 'Redimensioning’’

o« *Zero
— If a length of O is specified, it is interpreted as the
default length of 18.

« Duplicate DIM
— An array or character variable cannot appear in a DIM
statement if it has been defined in another DIM
statement.

« The maximum value that can be specified for row or
column is 9999. If sufficient storage in the work area is
available, the maximum size of an array is 65534 (see
‘Storage use’’).

104 SA34-0109

£

DIR

DIR command

The DIR command lists a directory of file information.
Information about each file is printed or displayed on one
line per file.

|—,PR|NT—|
DIR— device-id a ——n

H Displays the directory on the screen

The syntax of the DIR command is shown above, where:
device-id specifies which diskette drive is to have its files
listed. The devices are 1, 2, 3, and 4 (see 'Device address
parameter’’)

« Diskette drive 1

« Diskette drive 2

« Diskette drive 3

« Diskette drive 4

PRINT specifies that the listing be printed (device address
10).

The listing can be interrupted by pressing the Hold key
once. To continue with the listing press the Hold key once
again. To terminate the commands press the Cmd/Attn key.
Since printer operations overlap other System/23
operations, after pressing the Cmd/Attn key, the printer will
print the data remaining in the print buffer.

BASIC reference information 105

DIR

DIR command (continued)

106

SA34-0109

Example

The following information is displayed about each diskette.

o] fof~]-

The VOLID (volume identification) of the diskette
The diskette type (1, 2, 2D)

The number of bytes not used by files on diskette
The number of available files

The number of defective sectors

The physical record size

Additionally for each file on the diskette, DIR will display:

EEE .

File type (see “'Diskette file types’)

filename (see "‘File specification parameter’’)
Number of bytes allocated to the file

Number of bytes of data in the file

The number of extents in the file

Protective information; P means protected, Read
only allowed

The following are File Sharing Status:

-
(5]

Station 1 Open status
Station 1 Reserve status
Station 2 Open status
Station 2 Reserve status

Nl

DIR

dir 1

CONKLN 2D 0910336 0046 0000 512

05 AUTO 0001024 0000512 0001

05 FAIRWAY 0003072 0003072 0005

05 FSP.SOURCE 0001536 0001024 0001

09 ANIMATE 0008192 0007168 0001

05 PROC1 0000512 0000512 0001

05 DEMO 0000512 0000512 0001 IST

07 FILE.IND 0000512 0000512 0001

05 CH 0002048 0001024 0001

05 MAKE.SCREEN.SRCE 0002048 0001024 0001

04 NEWFILE 0004096 0000972 0001 P

05 SCREENI1 0004096 0002048 0001

05 NEWINDEX 0000512 0000512 0001

05 FSP.TEST 0004096 0001024 0001

05 BUILD.MURPHY 0001024 0000512 0001

05 MURPHY.FIX 0004096 0001024 0001 OSH OSH
05 MURPHY 0003584 0002048 0001024 0001 ISH
04 MURPHY.FILE 0025088 0024920 0001

04 SCREEN.FILE 0020480 0020480 0001 NS

SCREEN 0002560 0001536 0001

05
2 n B @O OB B@ @8 0

NS — opened no share

ISH — opened for input, SHR
ISI — opened for input, SHRI
OSH - opened for output, SHR
OSI| — opened for output, SHRI

BASIC reference information 107

DIR

DIR command (continued)

The preceding information is displayed for System/23 type
diskettes (type Z) and BX and HX diskettes. For diskettes -
containing BX or HX files, the volume information (first line) '
will contain only VOLID, diskette type, and physical record

size. File information will not contain sharing or reserve

status. If other diskettes conforming to IBM diskette data

format are used, only the VOLID and FILEID are accurate.

The rest of the information will be unpredictable.

For related information see:

“File sharing”

“PROTECT command”

“"OPEN statement”

"“"FREESP”’

“Prepare diskette’” under “‘Customer Support Functions”

Diskette data buffering N

108

SA34-0109

The term buffering means storing data in an intermediate
storage area when coming or going to an 1/0 device.

The System/23 reserves sufficient storage to perform any
valid 1/0 operation, once the file has been OPENed.
Substantial improvements in performance can be realized by
allowing (or adding) additional storage which can be
committed to the OPEN operation. This allocation is handled
automatically by the System/23 whenever storage is
available. If the size of your program does not permit this
allocation, it will still function correctly, but slower.

o
o

Diskette data

The maximum space used in this allocation is 512 bytes for
each file that:

« is an index file

« has more than one extent (see 'DIR command’’)

An additional allocation is made for files that are open as:
« DISPLAY,INPUT

« DISPLAY,QUTPUT

INTERNAL,INPUT,SEQUENTIAL

INTERNAL,OUTPUT,SEQUENTIAL

« PROC

SUBPROC

The size of this allocation is the minimum of the following:

« 7680 bytes for type 2D diskettes and 4096 bytes for
type 1 and 2 diskettes

« The extent size to be read

« The value of the SIZE= parameter on the OPEN for
output of the file.

BASIC reference information 109

Diskette file
Diskette dynamic file extension

The creation of a System/23 type file requires the
specification of an initial amount of space to be allocated to
the file. The OPEN statement obtains this value from the
SIZE parameter. (The SAVE command computes this value
based upon the approximate size of the workarea to be
saved.) If at any time additional space is required because
the original specification was too small, System/23 will
automatically add additional space (called “extents’’) to the
file (except as noted below and in “Diskette file size’’). Each
additional extent is 10% of the initial allocation rounded up
to the next increment of 512. Up to 99 extents can be
added to a file. If even more space is required, the file must
be copied by the Copy Customer Support Function into
fewer extents.

Note: If FORMAT=BX or HX is specified on an OPEN
INTERNAL statement, the file created will not be extended
beyond its initial allocation.

See also “DIR command” “‘Diskette data buffering” R
“OPEN statement’” “'Diskette file size”

110 SA34-0109

Diskette file

Diskette file searches

When an OPEN (or implied OPEN) is executed, the file that
is OPENed depends on the file specification and the
location of the diskette.

« File name only .. file

The search begins on drive 1 and continues on
successively higher drive numbers. The first match is
assumed to be the correct file. If other files of the same
name exist on other diskettes, they are ignored. If not
found, error 4000 is reported on the status line.

« File name and drive ID .. file/ /drive

The search occurs on the specified drive only. If not
found, error 4000 is reported on the status line.

« File name and VOLID .. file/VOLID

The search is done on the lowest numbered drive with
the specified VOLID inserted.

« File name and VOLID and device .. file/VOLID/drive

The search occurs on the specified drive if the VOLID
matches. If the VOLID matches and the file is not
found, error 4152 is returned. If the VOLID does not
match, error 4000 is reported on the status line. If the
file/VOLID/device specification matches that of an
open file, the found file must be marked OPEN for the
new OPEN to succeed. That is, you cannot open two
different files with the same file/VOLID/device
specification.

BASIC reference information 111

Diskette file
Diskette file searches (continued)

Note the following implications:

o If duplicate VOLIDs are inserted, the one mounted in the
lower numbered drive is accessed in the absence of a
drive specification.

« If offline data (see "‘Offline diskette files’) is involved in
the application, and open files exist on diskettes with
the same file name and VOLID, unpredictable results
can occur.

« The simplest and safest course is to code all file

specifications with file name and VOLID and use unique
file names and VOLIDs.

112 SA34-0109

O

Diskette file

Diskette file size

The following can be used to estimate the diskette storage
used by various file types. See “OPEN statement, SIZE=
parameter’’.

Type Size (bytes)

BX 128 per record

HX 256 per record

04 (1+RECL) per record

05 Total number of characters including

blanks and new line characters

07 512 * CEIL (number of records/(INT(512/(key
length+4))-1))

08 Value for type 07 plus
512 * CEIL (number of new records
/INT(510/(key length+10)))

09 (HELP STATUS size at CLEAR)

- (HELP STATUS size when SAVEd)
+ (up to 2048 bytes)

BASIC reference information 113

Diskette file

Diskette file size (continued)

114

SA34-0109

All files are automatically extended for additional output,
except:

« Type BX and HX which are fixed at OPEN to the SIZE
value

« Files on diskettes with no unallocated space; see “DIR
command’’

« Files with 100 extents; see “DIR command”’

The following chart shows the maximum file size, in bytes,
for each combination of diskette type and diskette format:

Diskette format
Diskette
type System/23 BX HX
1 301,568 242,944 | n/a
2 604,672 485,888 | n/a
2D 1,135,104 n/a 985,088

Diskette file

Diskette file types

The following table details the various diskette file types
processed by System/23.

File Contents/ Created Record Access
type description by length Input Output mode Recoverable
BX Basic OPEN INTERNAL RECL- READ WRITE SEQ. Yes
Exchange Format = BX 110128 (Note)
HX H Exchange OPEN INTERNAL RECL*= READ WRITE SEQ. Yes
Format = HX 1to 256 (Note)
04 Data OPEN INTERNAL RECL* READ WRITE SEQ/REL]| Yes
Format = Z 1 to 4096 KEYED (Note)
05 Data OPEN DISPLAY PROC PRINT SEQ. Yes
INPUT REPLACE (Note)
SAVE SOURCE variable LINPUT SAVE
SAVE (data) 0to 255 | LOAD [DATA) SOURCE
07 Index file Index GEN READ KEYED
without overflow | Create index file KEY
area
08 Index file with Index GEN READ WRITE KEYED No
overflow area OPEN KEYED KEY KEY
OUTPUT
09 Program SAVE LOAD SAVE No
file {internal) REPLACE
10 Customer Support | IBM LINK No
Function
1 Feature 1BM LINK No
12 Machine update 1BM SELECT SELECT No
UPDATE
13 Diagnostics 1BM CE diagnostic No

Note. To recover use Recover Diskette (Customer Support Functions).

BASIC reference information

115

DISPLAY

DISPLAY

116

SA34-0109

Display files and data

Display, as a type of data, refers to the input and output of
data that can be printed or displayed. This includes transfer
of data from/to devices such as the keyboard, display,
printer, and diskette. While DISPLAY 1/0 may be
performed to or from diskette files, data is transferred in a
format similar to that for display devices. The same format
is used for BASIC source programs and procedure files on a
diskette.

Display files are accessed by:

« CLOSE (optional for diskette and system printer)

« INPUT
« LINPUT
o« LOAD (SOURCE or DATA) \
« OPEN (DISPLAY) (optional for diskette and system
printer)
+ PROC
« PRINT

+ REPLACE (SOURCE or DATA)
« RESTORE
« SAVE (SOURCE or DATA)

« SUBPROC

DISPLAY

Example

This example directs program output to a selected device.

10
20
30
40
50
60
70
80

90
100
110

.
.

500

PRINT "Choose one:"

PRINT " 1
PRINT " 2
PRINT " 3

INPUT CHOICE

IF CHOICE
IF CHOICE
IF CHOICE
SIZE=0"

N$ = "NAME="

Printer output"
Feature printer"
Diskette output"

1 THEN FILEID$ = "//10"
2 THEN FILEID$ = "//11"
3 THEN FILEID$ = "SAVE.REPORT//1,

OPEN #1: N$&EFILEID$,DISPLAY,OUTPUT
PRINT#1: "First line of report"

CLOSE #1:

If the operator keys a 1 in response to INPUT statement 50,
the output is directed to the system printer. If 2, the output
is directed to the feature printer. If 3, the output is directed
to the diskette.

BASIC reference information 117

DISPLY
DISPLY (X)

DISPLY returns the value (1-5) of the current character
group for the display. The X parameter, which is optional, is
used to set the new page (see “Character set”).

\\\\\

U.S.A.

Canada

Europe, except Spain

Nordic, including Iceland

Spain, Spanish speaking countries

O WN =

N

118 SA34-0109

DROP/FREE

DROP/FREE command

The DROP command is used to set a file to the empty
state, which sets the end of data pointer equal to beginning
of file. The file space remains allocated.

The FREE command specifies that the file space reserved
for the file is to be freed and may be allocated to another
file. The file is no longer accessible after a FREE command.

For more information, see ""Recover diskette’’ under
“"Customer Support Functions’ and “CLOSE statement’".

Data is not modified on the file by either the DROP or FREE
command. If security is required, the file may be written

over by a BASIC program previous to the DROP or FREE
command.

DROP— file-spec —}

FREE file-spec =

The syntax of the DROP/FREE command is shown above,
where:

file-spec is the file name, optionally followed by the
volume-id, or device-id (see "‘File specification parameter’’).
The file must not be OPENed when DROP or FREE is issued
and must not be reserved by the other station in a
dual-station System/23.

BASIC reference information 119

DROP/FREE
DROP/FREE command (continued)

Use FREE if you want to change the record length of an
INTERNAL file.

Use the Copy Diskette function to compress unused space
from the file (see “"Customer Support Functions’’).

Any attempt to DROP an index file will cause an error; use
FREE.

Example

FREE FILEA

—
£

120 SA34-0109

Editing

Editing a program or data file

Adding statements

You can add statements simply with the line number
followed by the statement at any time while your program is
in the work area. The following cannot be added while a
program in execution is interrupted: DIM statement,
OPTION statement, FOR statement, and NEXT.

Changing line numbers

You can change the line numbers in a BASIC program by
entering the RENUM command. RENUM changes the line
numbers to 00010, 00020, 00030, etc. See “RENUM.”’

Deleting statements

Enter DEL followed by a line number, or DEL followed by
the first and last line numbers of consecutive statements.
See “"DEL command.”

Replacing statements

You can replace one statement with another by entering the
new statement using the same line number. You can enter it
by editing the old line or entering a new line. The following
statements cannot be changed while a program in execution
is interrupted: DIM, OPTION, FOR, and NEXT.

BASIC reference information 121

Editing

Editing a program or data file (continued)

Several commands and BASIC statements can be entered

by using the Cmd key and a special key. You should refer to
your Keyboard Aids and “The keyboard’’ in your Operator ./
Reference manual for a complete list of special keys.

Programming considerations

« Editing does not reduce the size of the program.

« If extensive editing is performed, the work area may fill
up and an error will occur; save the program in source
format, then load.

« If a label is deleted, its absence will not be detected
until it is referenced at execution time.

« If the program exists on a file, do a REPLACE (see
""REPLACE command”).

« Editing the line following a GOSUB while a program in
execution has been interrupted may cause unexpected
results when program execution resumes.
ELSE
see "'IF, THEN, ELSE statement’”
<
\/

122 SA34-0109

END

END statement

The END statement specifies the end of a BASIC program
and ends program execution. If the END statement is not
specified, the system will still perform the END functions as
if one were specified at the end of the program.

I— arith-expression—l
END —K] i

H CodeissettoO

The syntax of the END statement is as shown above,
where:

arith-expression is the numeric value from 0 to 9999 which,
after rounding, sets the CODE variable (see “CODE"").

Execution of the END statement closes all open files and

ends the program. The actions of the END statement are
identical to those of the STOP statement.

Examples

910 END 'Value of CODE = 0
910 END 120 !Value of CODE = 120

Programming considerations

« Location
— The END statement, if specified, must be the last
statement of the program.

BASIC reference information 123

END

END statement (continued)

« CODE default
— If the optional arith-expression is not specified, the
default value of CODE is zero.

ERR

ERR is a system variable that contains the number of the
most recently detected error (see "PROCERR command’’
and “’System/23 Messages Manual”).

Error handling

see "EXIT statement”
“Interrupt”’
"“System variables”’
“ON statement’”
Customer Support Functions, Volume | and Volume I/
System Messages

Execution order

see ‘Order of execution”

124 SA34-0109

A
|

EXIT

EXIT statement

The EXIT statement specifies where control will be
transferred if an error occurs. The EXIT statement is
descriptive and serves as a guide to the program. It
indicates the line reference to which program control will
transfer if an error occurs. The EXIT statement is referenced
by an EXIT parameter on an input/output statement. When
an error occurs, the EXIT statement is referenced. Program
control will transfer to the line reference associated with the
error condition.

—— CONV line-ref

| DUPREC line-ref
EOF line-ref 4

| I0ERR line-ref
EXIT

| NOKEY line-ref]

—— PAGEFLOW line-ref —

T
I
| |— NOREC line-ref
|
I
I L SOFLOW line-ref e

The syntax of the EXIT statement is as shown above,
where:

CONYV, DUPREC, EOF, IOERR, NOKEY, NOREC,
PAGEOFLOW, and SOFLOW are error conditions for the
various input/output statements.

CONYV indicates a conversion error. There are four types of
conversion errors:

BASIC reference information 125

EXIT

EXIT statement (continued)

126 SA34-0109

« The I/0 list item (numeric versus character) does not
match the type of the FORM data conversion 4
specification

« A numeric I/0 list item will not fit within the field length
specified in the FORM data conversion specification

« A numeric input field contains non-numeric data

« A negative value is being output, the corresponding PIC
data conversion specicification does not contain a
specifier for the sign.

DUPREC this error indicates that a record with the same
relative record number already exists in the file referenced
in the WRITE statement.

EOF this error indicates end of file: =

« For a READ or INPUT statement. There are no more
records in the file.

« For a PRINT or WRITE statement. There is not enough
file space for the data.

/OERR for all input/output statements, this error indicates
that an error has prevented completion of the statement
which is not one of the other error conditions.

NOKEY this error indicates that no key matéhing the
specified key can be found in the referenced file.

NOREC this error indicates that the specified relative record
number is two or more greater than the relative number of
the last record in the file or points to a deleted record. Ao

EXIT

PAGEOFLOW this condition indicates that the line printed is
greater than or equal to (>=) the PAGEOFLOW value set in
the OPEN statement (see “OPEN statement’’).

SOFLOW this error indicates that the number of input data
characters is greater than the length of the 1/0 list
character variable, or conversly, the length of the output I/0
list character expression is greater than the field width
defined in the FORM data conversion specification.

line-ref is a line number or a label symbol

EXIT Description Value of ERR
. 0002
CONV Conversion error 0726
0004
i fl
SOFLOW String overflow 0058
DUPREC Write to existing record 0054
NOKEY No key found 4272
NOREC No record found 0057
PAGEOFLOW | Page overflow 0701
EOF Not enough data items for READ 0054
End of file 4270
Enq of volume. No data spaf:e 4239
available to extend output file
No extents. Maximum number of
extents assigned. Cannot extend 4271
output file
I0ERR All other errors that occur on See
1/0 statement Messages
Manual

BASIC reference information

127

EXIT

EXIT statement (continued)

Example

An EXIT statement is shown below:

80 EXIT EOF 200, IOERR 220, NOKEY 240, NOREC 260
In this example, an input/output statement referencing line
number 80 for the EXIT parameter will cause program
control to transfer to line number:

« 200 if an EOF condition caused the error

« 220 if an IOERR condition caused the error

e 240 if the key specified could not be found

« 260 if the record specified could not be found

128 SA34-0109

EXIT

Programming considerations

+ Duplicate EXIT
— Error conditions can be entered in any order. If a
duplicate specification appears, it is ignored; the first
one will be used.

o Arithmetic errors
— Overflow, underflow, and zero divide conditions that
are detected during the evaluation of an arithmetic
expression cannot be trapped by exits on |/0
statements. These conditions can be trapped using
the ON statement.

Note: If an I/0 list item is being mapped into a PIC
data conversion specification, this rule is overridden.
The overflow, underflow, or zero divide can be trapped
by IOERR on the I/0 statement or IOERR on the EXIT
statement referenced by the 1/0 statement.

Example 1:

10 PRINT 1000%1.E+126 IOERR 20
20 END

Results in program interrupt 0003 on line 10
(9.99999999999999E + 126 is displayed)

BASIC reference information 129

EXIT

EXIT statement (continued)

Example 2:

10 PRINT USING 20: .001*1.E-126 IOERR 30
20 FORM PIC(##.)

25 sTOP

30 PRINT ERR

40 END

Results in a transfer to line 30.

« Data error
— Overflow and underflow errors that are detected in
data being read/input can be trapped by IOERR on
the I/0 statement (or IOERR on the EXIT statement
referenced by the 1/0 statement). If the exponent of
the data item is greater than three digits, this error is
trapped by CONV.

Example 1:

10 INPUT A IOERR 20 ! where 1.E+130 1is
15 STOP ! the value entered
20 PRINT ERR

30 STOP

Results in a transfer to line 20.

130 = SA34-0109

£

EXIT

EXP(X)

Exponential

Example 2:

10 INPUT A CONV 20 ! where 1.E-9999 is
15 STOP ! the value entered
20 PRINT ERR

30 STOP

Results in a transfer to line 20.

Returns the value of e (2.71828182845905) raised to the X
power. For example:

10 X=1
20 Y=EXP(X)

Statement 20 sets Y to 2.718281828459.

X > = 292 will cause overflow.
X < = -292 will yield an answer of zero.

see "EXP(X)"”

BASIC reference information 131

Expressions

Expressions

An expression in BASIC is a specification of a value using
operators, constants, variables, arrays, array element
references, and function references.

An arithmetic operator specifies an arithmetic operation to
be performed on the data items.

Relational expressions are used with the IF statement to
test the truth of specified relationships between two values.
For example:

30 IF A>B THEN GOTO 100

Expressions referring to entire arrays, rather than individual
array elements, are called array expressions. An expression
that does not contain a reference to an entire array is called
a scalar expression.

For more information on expressions, see:

« “Arithmetic expressions and operations”

« “"Character expressions’”

« “MAT assignment statements’

« "'Relational expression’” under “IF, THEN, ELSE
statement’’ :

132 SA34-0109

Expressions

Expressions, arithmetic

see "‘Arithmetic expressions and operations””
Expressions, array

see "MAT assignment statements”
Expressions, character

see ‘‘Character expressions”
Expressions, relational

see ‘'Relational expression’” under “IF, THEN, ELSE
statement”’

FIELDS

see “'Full screen processing’’

BASIC reference information 133

FILENUM

FILENUM

FILENUM returns the numeric value of the file reference
with the most recently detected error. -1 is returned if no
errors have been detected.

Note: FILENUM must be assigned to a variable before
printing or other 1/0 statement

Example

5 OPEN #2: "NAME=J", INTERNAL,INPUT
10 READ #2: A$ EOF 30
20 GOTO 10

30 A=FILENUM
40 PRINT "FILE"; A; "HAD AN ERROR"
50 CLOSE #A:
60 STOP

134 SA34-0109

File reference

File reference parameter

File searches

The file reference parameter associates a logical file with a
physical file or device at OPEN time. It is defined in the
OPEN statement for the file and is then referenced by
subsequent 1/0 statements using the file or device.

File reference is an integer or numeric expression from O to
127 and 255 must be preceded by a # (pound sign). System
assigned file references not requiring an OPEN statement
are:

0 — Display, keyboard.
255 — System printer.

I/0 statements such as INPUT, LINPUT, and PRINT, when
used to direct data to and from the keyboard/display, do
not require a file reference parameter.

10 PRINT "HELLO"! Display message

20 PRINT #255: "TOTALS"! Print message

30 FILEID$="NAME=FIL"

40 OPEN #7:FILEID$,INTERNAL,INPUT! Open file
50 READ #7:A% ! Read a record

60 CLOSE #7:! Close the file

see “‘Diskette file searches’’

BASIC reference information 135

File sharing

File sharing

136

SA34-0109

File sharing is used to OPEN a diskette file two or more
times simultaneously.

Within a single 5322 Computer, file sharing permits a
program to use a file by two or more access methods,
simultaneously. For example, you may wish to
simultaneously access a file for sequential and direct input.

Within a System/23 consisting of two 5322 Computers and
a 5246 Diskette unit, file sharing permits two independently
running programs in each 5322 Computer to share the same
file in the 5246 Diskette unit.

The two 5322 Computers can at any time independently
access two different files with no restrictions, the use of the
5246 Diskette unit cannot be simultaneous. None of the
subsequent discussion applies to this case (see ‘Device
sharing”’).

File sharing is regulated by a set of OPEN parameters which
specify what level of sharing is permitted by the other
OPEN which has already, or will in the future attempt to use
the file. When a conflicting use is detected, the second and
subsequent invalid OPENs fail with a 4148 error.

The information required to perform this function is stored
with the file. If an OPEN specifies restricted use of the file
and no corresponding CLOSE is executed to terminate this
restriction (power loss or diskette removal), then the
PROTECT command must be used to cancel these
restrictions. See "PROTECT command’’. Use of the
PROTECT command to CLOSE or RELEASE open files
presently in use by a program should be avoided, as this
can cause unpredictable results.

File sharing

The default (no sharing specification), is no sharing
permitted.

Sharing of Basic or H exchange files is permitted, no logical
restrictions are imposed and any sharing other than input on
both OPENs may produce unpredictable results. Any share
specification is ignored for BX and HX files.

System/23 permits file sharing, it is the responsibility of the
programmer to see that the proper level of sharing
restrictions are imposed to maintain data integrity.
Furthermore, it is the joint responsibility of the application
programmer and the operator to see that the System/23 is
operated in a manner consistent with data integrity. This
includes:

« Proper power sequencing

+« Removal and insertion of diskettes at the correct time
o Proper use of system commands

« Proper execution of programs and procedures

File sharing is controlled by four parameters in the OPEN
statement; they are SHR, SHRI, NOSHR, and RESERVE.
SHR means the other OPENs may use the file in any way,
with the exception that only one OPEN may be for OUTPUT
or OUTIN. SHRI means the other OPENs may do INPUT
only. NOSHR (default) means no other OPENs are
permitted.

BASIC reference information 137

File sharing

File sharing (continued)

138

SA34-0109

In summary:
First OPEN Allowed subsequent OPENs
SHR,INPUT SHRI or SHR, INPUT,

OUTPUT or OUTIN
SHR,OUTPUT or OUTIN SHR,INPUT
SHRLINPUT SHRI or SHR, INPUT

SHRI,OUTPUT or OUTIN SHR,INPUT

NOSHR none

RESERVE specifies that whatever sharing restriction is
specified on this OPEN applies to the other 56322 Computer
even after the file is CLOSED. This allows long term
restriction of the file use, particularly when several
programs, commands or Customer Support Functions must
be run in succession without interference. The RESERVE
restriction does not apply to the 5322 Computer which
issued it. Thus, even if a file is OPENed NOSHR,RESERVE,
after the corresponding CLOSE is executed, any subsequent
OPEN may be used by the same 5322 Computer.

The RESERVE status is cleared by the RELEASE keyword
on the CLOSE statement. The last program in a multi-step
process would normally do a CLOSE...RELEASE to permit
access to the file by the other 5322 Computer (this may be
its only function). See "CLOSE statement’’.

The level of OPEN and RESERVE share restriction is
indicated by the DIR DISPLAY. See "DIR command"’.

N
N

Vs

File sharing

Programming considerations

« OPENSs using key-indexed access (KEYED), place the
same share restrictions on both the master and key
files. (NAME= and KFNAME=).

« Share restrictions are ignored for BX and HX files.

« The RENAME, DROP, and FREE commands are rejected
for a file which is OPEN or has any RESERVE status set
by the other 5322 Computer.

« The RENAME, DROP, and FREE commands keep the
5246 Diskette unit for the entire command.

« The LINK, LOAD, MERGE, SORT, PROC, and SUBPROC
commands open files INPUT, SHRI.

« The SAVE and REPLACE commands open files
OUTPUT,NOSHR.

« The following Customer Support Functions ignore
SHARE and RESERVE status, but secure the 5246
Diskette unit during their entire operation: Prepare
Diskette, Copy Diskette (image copy only), Recover
Diskette, and Display Diskette Label. File Recovery will
copy the SHARE and RESERVE status.

« Machine Update Generator, Collation Sequence
Alternator, REPLACE, Presort, SORT and Index
Generator open output files NOSHR.

« Presort, SORT, and Index Generator use WSID$ as a
suffix for work file names.

BASIC reference information 139

File sharing

File sharing (continued)

File size

If both 5322 Computers do a LOAD, edit, and REPLACE
of the same file, the last REPLACE will overlay any
preceding REPLACE. To prevent this compromise of e
SOURCE files, OPEN the file NOSHR,RESERVE and

then CLOSE it. After editing and REPLACE, then
PROTECT...RELEASE.

The VOLID command can be used to change the
diskette VOLID at any time. If this is done while a file is
open on the diskette, it may prevent further processing
of the file.

If the copy all files option of the Copy Customer

Support Function is used, the following errors are

possible:

— Use of the FREE, DROP, or RENAME commands
during Copy can lose a file to be copied.

— A file added to the copy from diskette while Copy is
running may not be copied.

Incorrect use of the PROTECT CLOSE or RELEASE
options can compromise data integrity by removing
share restrictions when they are still needed.

see “Diskette file size’’

140 SA34-0109

£

File specification

File specification parameter

The file specification parameter consists of a file name,
followed by a volume identification (VOLID) and device
address. File names may be of the following types:

« Simple file names may be from one to eight characters
in length. The first character must be alphabetic (A-Z).
The remaining characters may be alphabetic (A-Z) or
numeric (0-9). Blanks are not permitted. Simple file
names are required for Basic and H exchange files.

« The names of the System/23 format (Z) files consist of
one or more simple names separated by periods. The
total number of characters, including periods, is 17.

CUSTOMER .EMPLOYEE
X.Y.Z

VOLID identifies the diskette on which the file is to be
created or found. VOLID is up to six characters long and
may consist of alphabetic or numeric characters.

Device address identifies the 1/0 device being used (see
“"Device address parameter’).

File specification can be in one of the following forms:
« filename

. filename/VOLID

« filename/VOLID/device

. filename//device

« //device

See "RENAME command” and “VOLID command”’.

BASIC reference information 141

File specification

File specification parameter (continued)

142

SA34-0109

Examples

N

\ J
CUSTOMER . EMPLOYEE//2 P
X.Y.Z/TEMP
//10
Note: The file specification //10 is used in an OPEN
statement to open the system printer.

N

™.

Files

Files, related subjects

CHAIN statement

CLEAR statement

CLOSE statement
CMDKEY

CNT

CODE

Customer Support Functions
DELETE statement

DIR

DISPLAY

DROP/FREE command
END statement

ERR

EXIT statement

FILENUM

FILE(N)

File reference parameter
File sharing

File sizes

File specification parameter
FILE$(N)

FORM statement
FREESP(N)

INPUT statement

Internal 1/0 file formatting
1/0 Tables (Appendix B)
Key-indexed files

KLN(N)

KPS(N)

LINE

LINPUT statement
ON statement
OPEN statement
OPTION statement
PIC$(C$)

PRINT statement
PROC command
Procedure files
Device sharing

PROTECT statement
READ statement
REC(N)

Relative record files
RENAME command
REPLACE command
REREAD statement
RESTORE statement
REWRITE statement
RLN(N)

SAVE command
SORT command
STOP statement
SUBPROC command

USE command
VOLID command
WRITE statement
WSID$

BASIC reference information 143

FILE(N)

FILE(N)

FILES(N)

Fixed-point format

FILE returns a numeric value to indicate the status of file N.

One of the following values is returned: ::1'\
s

Value Description

-1 File not opened

0 Operation occurred successfully

10 End of file occurred during input

11 End of file occurred during output

20 Transmission error occurred during input

21 Transmission error occurred during output

FILES returns a string containing the file specification (file)
name, volume identification, and device address) of file N. If \
file N is not open, the null string is returned.

see "'Arithmetic data”

Floating currency symbol

144 SA34-0109

see
"PIC specification” under "FORM statement’’
“PIC$(C$)”

FOR and NEXT

Together, a FOR statement and its paired NEXT statement
delimit a FOR loop. A FOR loop is a set of BASIC
statements that can be executed one or more times. The
FOR statement marks the beginning of the loop and
specifies the conditions of its execution and end. The NEXT
statement marks the end of the loop.

FOR syntax
|—STEP arith—expression—l
FOR =———————arith-var= arith expression TO arith-expression 2 1]]
K STEP=1

The syntax of the FOR statement is as shown above,
where:

arith-var is an arithmetic variable (not an array name) used
as the loop control variable and identify the associated
NEXT.

arith-expression is an expression that specifies an initial
value for the control variable, the final value of the control
value (where execution of the loop will end), and the
amount that the control variable will increment after each
execution of the loop. If STEP and the increment-num are
omitted, an increment of 1 is assumed.

Upon initial entry in the FOR loop, all expressions are

evaluated. The initial value of the control variable is tested
against the final value of the control variable. If the initial

BASIC reference information 145

FOR and NEXT
FOR and NEXT statements (continued)

value is greater than the final value for positive STEP

values, or less than the final value for negative STEP values,
the loop is not executed. In this case, the value of the N’
control variable is set to the initial value and control goes to

the statement following the NEXT statement. Otherwise

control is passed to the statement following the FOR.

NEXT syntax

NEXT arith-vart =

The syntax for the NEXT statement is as shown above,
where:

arith-var is an arithmetic variable used as the loop control N
variable. If the loop is executed, the control variable is set
equal to the initial value, and the statements in the loop are
executed. When the NEXT statement is executed, control is
transferred to the associated FOR statement and the STEP
value is added to the control variable, which is then
compared with the final value. If the control variable for
positive increments is less than or equal to the final value,
the loop is executed again and the cycle continues until an
increment is made that makes the control variable greater
than the final value. At that time, control transfers to the
first executable statement following the associated NEXT
statement. If the increment is negative, the loop executes
while the control variable is greater than, or equal to the
final value.

146 SA34-0109

FOR and NEXT

Examples

The following example shows a simple FOR loop that

increases the control variable A by 2 until the value of 25 is

exceeded.

20 FOR A=1 TO 25 STEP 2
L]
[]

90 NEXT A

The following example shows the technique for nesting FOR

loops. The internal loop is executed 100 times for each
execution of the outer loop.

10 FOR J=A TO B STEP C
°

.

.

150 FOR K=1 TO 100
°

.

.

250 NEXT K

.

.

°

300 NEXT J

BASIC reference information

147

FOR and NEXT

FOR and NEXT statements (continued)

Programming considerations

. Parameters fixed at loop entry e’

The value of the control variable can be modified by
statements within the FOR loop, but its initial value,
its final value, and the STEP value are established
during the initial execution of the FOR statement and
are not affected by any statement within the FOR
loop.

« Zero STEP

If the value of the STEP increment-num is zero, the
FOR loop is executed until the value of the control
variable is purposely set beyond the specified final
value by a statement in the loop.

e Errors

148 SA34-0109

Transfer of control into or out of a FOR loop is
permitted; execution of a NEXT statement without
execution of a corresponding FOR statement causes
an error.

FOR loops can be nested within one another as long
as the internal FOR loop falls entirely within the
external FOR loop. Nested FOR loops should not use
the same control variable, because the inner loop will
modify the value of the outer loop control variable.

2

FOR and NEXT

— The maximum number of nested FOR-NEXT loops is
a variable number (normally around 50). If the
maximum is exceeded, a system error will occur.

— Modification of a FOR or NEXT statement during
execution is not permitted.

« Exit control value

— The value of the control variable at exit from
FOR/NEXT loop is the first unused value.

Example

10 FOR I=1 to 10
20 PRINT "TEST"
30 NEXT I

The value of I is 11

BASIC reference information 149

FORM

FORM statement

1560 SA34-0109

The FORM statement is used to describe the way output
should look when the PRINT, WRITE, or REWRITE
statement is used. The FORM statement also describes the
way input looks when using a READ or REREAD statement.

The FORM statement is used to control the number of
output positions taken by a value being displayed. The
following program writes DHH99 in columns 1 through 5 on
line 22 on the screen:

10 PRINT USING 20: 99
20 FORM N 5

where N 5 is a data conversion specification. N specifies
the format type numeric. 5 specifies the field length.

The FORM statement is also used to control the number of
digits displayed in a decimal fraction. For example, the
following program writes 12.35 in columns 1 through 5 on
line 22 on the screen:

10 PRINT USING 20: 12.345
20 FORM N 5.2

where N 5.2 is a data conversion specification. N specifies
numeric. The field length is 5, and the fraction is rounded to
2 decimal digits.

To display character data, use the C data conversion
specification. The following program writes "Number of
parts in stock:” in positions 1 through 25 on line 22:

10 PRINT USING 20: "Number of parts in stock:"
20 FORM C 25

FORM

where C identifies the format type and 25 is the field
length.

The following program shows two 1/0 list items being
output:

10 PRINT USING 20: "Number of parts in stock:",99
20 FORM C 25,N 5

where C 25 is the data conversion specification for the first
1/0 list item and N 5 corresponds to the second. The
output in columns 1 through 30 on line 22 is ““Number of
parts in stock:bbHH99".

To increase the spacing between 1/0 list items, use the X
data conversion specification. The following program
outputs ““Number of parts in stock:DHHDHHHHHI9™ in
positions 1 through 35 on line 22:

10 PRINT USING 20: "Number of parts in stock:",99
20 FORM C 25,X 5,N 5

where X is the format type and 5 is the field length. X 5
causes five blanks to be inserted in the output. No 1/0 list
item is associated with X b.

The above examples show the FORM statement being used
with the PRINT statement. The FORM statement can also
be referenced by the READ, WRITE, REREAD, and
REWRITE statements. When FORM is used with these
statements, output is to a record in an internal 1/0 file, and
input is from a record in an internal 1/0 file.

BASIC reference information 151

FORM

FORM statement (continued)

152

SA34-0109

The following example shows three values being written
into a record of an internal 1/0 file:

10 WRITE #n,USING 20: "XYZ",30,10
20 FORM C 3,N 4,N 4

The previous example assumes the record length of the
records in the file is greater than or equal to 11. If the
record length were less than 11, an error would occur,
because the field length for the third 1/0 list item would
span the end of the record. If this file were open for input,
the second and third values in the same record could be
read as follows: (The first value is skipped.)

10 READ #n,USING 20: A,B
20 FORM X 3,N 4,N 4

The following example shows an alternative way of reading
the same values from the same record:

10 READ #n,USING 20: A,B
20 FORM X 3,2%N 4

where 2* is a replication factor. It says to use the N 4 data
conversion specification twice.

The FORM statement can be referenced by a line number or
label in a USING clause of an 1/0 statement. The FORM
statement can also be contained in a character variable. In
the latter case the character variable is referenced in a
USING clause in the 1/0 statement. Examples showing the
FORM statement referenced by a label and the FORM
statement contained in a character variable are included in
the following program:

N

FORM

10 ! Label Reference

20 PRINT USING LAB1: 99

30 LAB1: FORM N 5

40 ! FORM Statement Defined in Character Variable
50 A$="'FORM N 5'

60 PRINT USING A$: 99

Many additional data conversion specifications are
supported by the FORM statement. The syntax of the
FORM statement (when referenced by a PRINT statement)
and which data conversion specifications are supported, is
shown below:

— POS T integer
e arith-var
— SKIP
’ FORM =1 —a
'(| ““char-string” |
i L PIC (pic-spec) I
| V — field-length =—— |
[integer” | |
I C {
arith-var ™ fraction '
| . [g 1 1|
= | field-length 2 |
| o |
L]

[1 [
B Fraction length=0

Note that a blank is required between a format identifier
(e.g. POS or V) and any integer or variable which follows.

BASIC reference information 153

FORM

FORM statement (continued)

154

FORM

SA34-0109

The syntax of the FORM statement (when referenced by a
READ, WRITE, REREAD, or REWRITE statement) and which
data conversion specifications are supported is shown
below.

integer

p— pos—l arith-var
—x o

| char-string ”

f—— PIC (pic-spec)

—\ — field-length
L C |

integer™ . fraction
— 72D — |_ I
arith-var® - field-length

1
B Fraction length=0

Note that a blank is required between a format identifier
(e.g. POS or V) and any integer or variable which follows.
The “‘char-string’”” and PIC specifications are not supported
on the READ and REREAD statements.

Detailed descriptions of the FORM data conversion
specifications follow.

N

FORM

POS (for a PRINT statement) specifies the position in the
line for the next value to be printed. If POS is less than the
current position, the current line is printed and a new line
started. The next I/0 list item will be printed in the new line
at the position specified.

If one or more items have been printed on the current line
and if the value of POS is beyond the end of the current
line, positioning is as follows: Let N equal POS minus the
current line position. The current line is then printed. N
blanks are then written starting at the beginning of the next
line.

The value specified for POS can range from 1 to 4095. The
default is 1. Non-integer values in arithmetic variables are
rounded.

POS (for a READ, REREAD, WRITE, or REWRITE
statement) specifies the position in the record to be
accessed. Positioning can be forwards or backwards in the
record. The value specified for POS can range from 1 to the
smaller of 4095 or the record length. The default is 1.
Non-integer values in arithmetic variables are rounded.

Note: Output records are initialized to blanks by the WRITE
statement and to the current record content by the
REWRITE statement.

"X (for a PRINT statement) specifies the number of blanks to
be printed. If the value specified for X is greater than the
number of positions remaining on the current line, the
current line is printed, and the number of blanks specified
for X is then written starting at the beginning of the next
line.

BASIC reference information 155

FORM

FORM statement (continued)

156

SA34-0109

The value specified for X can range from 1 to 4095. The
default is 1. Non-integer values in arithmetic variables are
rounded.

X (for a READ, REREAD, WRITE, or REWRITE statement)
specifies the number of positions to be skipped. The value
specified for X can range from 1 to the smaller of 4095 or
the number of positions remaining in the current record. The
default is 1. Non-integer values in arithmetic variables are
rounded.

Note: Output records are initialized to blanks by the WRITE
statement and to the current record content by the
REWRITE statement.

SKIP (for a PRINT statement) specifies that the current line
is to be printed and that n-1 (where n is the value specified
for SKIP) blank lines should appear in the output. The next
output will begin in the first position of the following line. If
the value specified for SKIP is zero, there will be no line
feed, and overprinting will occur. See example at the end of
this FORM statement section.

The value specified for SKIP can range from O to 255. The
default value is one. Non-integer values in arithmetic
variables are rounded.

char-string (for a PRINT, WRITE, or REWRITE statement)
specifies a character string to be output. The field width is
the length of the character string within quotation marks.

integer * and arith-var * specifies the number of times the
data format should be used. The same format can be used
repeatedly. This parameter must range from 1 through 255.
The default value is 1. Non-integer values in arithmetic
variables are rounded.

N

(\'\LW

FORM

C specifies character data. For a READ or REREAD
statement, the number of characters specified by C are
assigned from the input field to the character variable listed
in the READ or REREAD statement. If the maximum variable
length is less than the field-length specified, a string
overflow (SOFLOW) occurs. If the variable length is greater
than the field-length specified, the length of the character
variable is set to field-length.

For input, an example is:

10 READ #n,USING 20:A$
20 FORM C 10

If the input field is

ABC bbbbbbb

the trailing blanks are kept and the variable A$ is assigned a
length of 10.

For output, the value of the corresponding character
expression in the WRITE, REWRITE, or PRINT statement is
left-justified in the output field and padded with blanks. If
the length of the expression is longer than field-length, a
string overflow (SOFLOW) will occur.

The C parameter is valid for character expressions and will
cause a conversion (CONV) error if used with a numeric
expression. The value specified for field-length can range
from 1 to 255. The default is 1.

BASIC reference information 157

FORM

FORM statement (continued)

158

SA34-0109

IV specifies numeric data. For input, the number of record
positions specified by the field-length must contain a
numeric value in character form. The numeric value can
have any one of the formats described in “Arithmetic data’’
(integer, fixed, or floating point). Leading and trailing blanks
are ignored. If the numeric value is an integer, the number
of digits specified by fraction length are used to generate
the decimal fraction. The remaining high order digits in the
field are used to generate the interger portion of the result.
If the input numeric value is fixed or floating point, fraction
length is ignored. For input, the numeric value is truncated
to 15 significant digits. If option INVP is in effect, a comma
in the input field will be treated as a decimal point. If the
input field is left blank, a zero will be the default.

For output, the corresponding numeric value in the output
list is converted to character representation and is
right-justified in the output field. If fraction length is not
specified, the output field will contain the rounded integer
value of the numeric expression. If fraction length is
specified, the decimal fraction is rounded to the length
specified. The result, including the decimal point, will be
placed in the output field. (If option INVP is in effect, a
comma will be output in place of the decimal point.) If the
numeric expression is negative, a minus sign will precede
the numeric value in the output field. Plus signs are not
inserted into the output field. The field-length must be large
enough to contain any minus sign, integer digits, decimal
point, and decimal digits.

The N parameter is valid for a numeric expression and will
cause a conversion error if used with a character
expression. The value specified for field-length can range
from 1 to 26.

FORM

The following are examples of N format specifications:

Value to
be written Resulting output
(decimal) Specification (characters)

3.45 N 7.2 3.45
3.45 N 7.1 3.6
-3.45 N7 -3
-3.45 N 7.1 -3.6

ZD specifies the zoned decimal format for numeric values.
A zoned decimal field contains the character representation
of the numbers 0-9 (hex FO-F9). Each byte of a zoned
decimal field contains a high order 4-bit zone (hex F) and a
low order 4-bit digit (0-9). The zone of the rightmost digit
is used to represent the sign of the field. F or C is plus, and
D is minus. No other values are allowed.

For input, the specification ZD field-length specifies that
the next field-length bytes in the record contain a numeric
value in zoned decimal form (one digit per byte). The
optional specification, fraction length, identifies the number
of rightmost digits to be used for decimal positions in the
number. The default value is 0. See examples of ZD format
specifications. '

For output, an internal numeric value is converted to zoned
decimal. If fraction length is not specified, the rounded
integer value is used to generate the field. If fraction length
is specified, the decimal fraction is rounded to the length
specified. The field length must be large enough to contain
all integer and decimal digits. The decimal point is not
included.

BASIC reference information 159

FORM

FORM statement (continued)

160

SA34-0109

The ZD parameter is valid for numeric expressions and will

cause a conversion (CONV) error if used with a character P
expression. The value specified for field-length can range s
from 1 to 32.

The following are examples of ZD format specifications:

Value to
be written Resulting output
(decimal) Specification (hexadecimal)

3.45 ZD 7.2 FO FO FO FO F3 F4 F5
3.45 ZD 7.1 FO FO FO FO FO F3 F5
-3.45 ZD 7 FO FO FO FO FO FO D3
-3.45 ZD 7.1 FO FO FO FO FO F3 D5

PD specifies the packed decimal format for numeric values.
Field-length specifies the length of the field in bytes, and
fraction length specifies the number of digits to the right of
the decimal point. Each digit of a PD field occupies one half e
of a byte (4 bits), 2 digits per byte. The rightmost four bits

are hexadecimal F or C for plus and hexadecimal D for

minus.

TN

For input, field-length specifies the number of bytes in a
record containing a numeric value in packed decimal format
(two digits per byte, with one digit and a sign in the
rightmost byte). This value will be assigned to a numeric
variable in a READ or REREAD statement. If the fraction
length parameter is not specified, the field is assumed to
contain an integer.

FORM

For output, field length specifies the number of record bytes
into which the corresponding numeric expression from the
WRITE or REWRITE statement will be placed. The
expression is converted to packed decimal format. If
fraction length is not specified, the rounded integer value is
used to generate the field. If fraction length is specified, the
decimal fraction is rounded to the length specified. The field
length must be large enough to contain all integer and
decimal digits plus the sign.

The PD parameter is valid for numeric expressions and will
cause a conversion (CONV) error if used with a character
expression. The value specified for field-length can range
from 1 to 32.

The following are examples of PD format specifications:
Value to

be written Resulting output
(decimal) Specification (hexadecimal)

3.45 PD 7.2 00 00 00 00 00 34 5F
3.45 PD 7.1 00 00 00 00 00 03 5F
-3.45 PD 7 00 00 00 00 00 00 3D
-3.45 PD 7.1 00 00 00 00 00 03 5D

L specifies internal floating-point format (9 bytes) for
numeric values.

For input, L specifies that an internal floating-point format
value in the record is to be assigned to a corresponding
numeric variable specified in the READ or REREAD
statement. The contents of the field is not checked for
validity.

BASIC reference information 161

FORM
FORM statement (continued)

For output, L specifies that the value of a numeric
expression in the WRITE or REWRITE statement will be N
written in the record in internal floating-point format. s

The following are examples of L format specifications:

Value to
be written Resulting outputs
(decimal) Specification (hexadecimal)

3.45 L 01 03 45 00 00 00 00 00 00
-3.45 L 01 83 45 00 00 00 00 00 00

V specifies variable length character data.

For input, field-length specifies the length of the field to be

read. The string, excluding trailing blanks, is assigned to the
character variable. The variable assumes that length. If the
field-length is larger than the variable’s maximum length, a ,
string overflow (SOFLOW) will occur. An example of ek
V-format is as follows:

10 READ #n, USING 20: A$
20 FORM V 10

If the input field is ABCDDHHDLHDHD, the trailing blanks are
dropped and the data ABCD, with a length of 4, is assigned
to the variable.

For output, the value of the corresponding character

expression in the PRINT, WRITE, or REWRITE statement is
left-justified in the output field defined by V and padded

with blanks. If the length of the expression is larger than

the field-width specified, a string overflow (SOFLOW) will

occur. P

162 SA34-0109

FORM

The V parameter is valid for character expressions and will
cause a conversion (CONV) error if used with a numeric
expression. The value specified for field-length can range
from 1 to 255. The default is 1.

G allows both character and numeric data to be used. If the
1/0 list item is numeric, the rules are the same as for N.

If the 1/0 list item is character, the rules are the same as
for V. If the 1/0 list item is character, field length and
fraction length are optional. If fraction length is specified, it
is ignored.

BASIC reference information 163

FORM
FORM statement (continued)

PIC specification

PR
PIC is a data conversion specification having the following /‘«,,,;/
syntax:
PIC (numeric-spec)y —
;] —.
1 |
‘ separatormm——— |
1 CR
P D R et
DB
— 3 - numeric-spec
|
_.__l t l——separator—_—] | p D R ey
l—— —————— —'l p—— DB =i
S + , -
| SEPAIATON mmm—— |
N
- - - - - — i
— S — f - |
| s S A TO [e |
- - - ——
p— + +
{ |
| e separator mmm— |
L - - - — -]
$ I $ T
| e 5eParat Or ——— I
L ——
\W -

164 SA34-0109

FORM

The syntax for numeric-spec is as shown:

Z l ' I digit-spec
t l—-— separator | (] [/\ AN l

T
digit-spec N

[r

SEPANATON e |

digit-spec

The syntax for digit-spec is as shown:

f

L - - - — = — #

#
I—- separator——l : L‘

| e separator ——— I

-O7 * |
| separator == I
- - - — - .

The syntax for separator is as shown:

BASIC reference information

165

FORM

FORM statement (continued)

166

SA34-0109

Each symbol represents one character position in the
output. The output field-width, (the number of symbols
specified) can range from 1 to 32. (

The 1/0 list item being output can be character or numeric.
The following examples show the use of PIC to output
character data:

Character
stringto PIC Printed
be output specification output

August PIC(#HHHHH) August

May PIC(#H##HHH) Maybbb
July PIC(ZZZZZ) Julyb
June PIC($$.##) Juneb

Each # symbol represents one character to appear in the

output. When the character string length is less than the
field-width, the character string is left-justified in the field .
and padded with blanks. When the character string length is
greater than the field-width, a string overflow (SOFLOW)

will occur. When character data is being output, the #

symbol and all other PIC symbols defined in the following
paragraphs are character specifiers.

If the I/0 list item is numeric, the PIC specification contains
combinations of symbols which represent what the output
should look like. The symbols are divided into the following
four categories:

« Digit specifiers

« Insertion characters
« Exponent specifiers
« Trailing characters

FORM

Digit specifiers

The following digit specifiers can be specified:

Specifier
#

z

Meaning
A numeric digit is printed.

A numeric digit is printed. A blank
replaces a leading zero (or conditional
insertion character). Z may not appear to
the right of a decimal point. Z is treated
the same as a # if an exponent specifier is
used.

A numeric digit is printed. An asterisk
replaces a leading zero (or conditional
insertion character). * may not appear to
the right of a decimal point. * is treated
the same as a # if an exponent specifier is
used. For zero value the decimal point is
replaced by an * if the decimal is the last
character of the specification. * will not
float across the decimal point to replace
an insertion character.

A currency symbol is printed. If more than
one $ symbol appears in the PIC
specification, the currency symbol will
appear in the position of the rightmost $
symbol which overlaps a leading zero (or
conditional insertion character). The
character to be printed as the currency
symbol may be set by the PIC$ function.

BASIC reference information 167

FORM

FORM statement (continued)

The default is $. + or — may not precede the $. $ will not
float across the decimal point to replace an insertion
chracter. $ may not follow a decimal point. A specification
of all $, outputs zero as a single $.

+

168 SA34-0109

A plus sign is printed for a positive
number, and a minus sign is printed for a
negative number. If more than one +
symbol appears in the PIC specification,
the plus or minus sign will appear in the
position of the rightmost + symbol which
overlaps a leading zero. + may not
precede a $. A floating + may follow a
single $.

A minus sign is printed for a negative
number, and a blank is printed for a
positive number. If more than one —
symbol appears in the PIC specification,
the minus sign or blank will appear in the
position of the rightmost — symbol which
overiaps a leading zero. A — sign may not
precede a $. A floating — may follow a
single $.

N

A A

FORM

The following are digit specifier considerations.:

. A floating +, —, or $ will float to the right across a B,
comma, or a /. If the first significant digit is
immediately to the right of a / or comma, the +, —, or $
will replace the / or comma. A blank (B) is not replaced
and the +, —, or $ appears to the left of the B (blank).

« Although the System/23 permits Z or * to follow a
floating $, +, or —, this should be avoided since other
systems may not support this function. For example:

PIC($$$** #4#)

should be replaced by:

PIC($$$$%.4#4#)

BASIC reference information 169

FORM

FORM statement (continued)

170

SA34-0109

The following are examples of digit specifiers. Assume the

data value 123456 is to be printed.

PIC specification

PIC(###HH#H#H####
PIC (222222227
PIC(ZZZZZZ###
PIC (kkkkkkfHst
PIC($$$$Ss##4#
PIC (++++++###
PIC(-——-#####)

—_— — — — — ~—

If a currency symbol, plus sign, or minus sign is specified
once in the PIC specification, it is printed in the position

indicated.

PIC specification

PIC($ZZZZZH##)
PIC (+ZZZZZ###)
PIC(-——#####4#)
PIC($+++H#####)

Using the value .

PIC($$3./##)
PIC($$3$B.##)

Using the value 0

PIC (###)

Printed output

000123456
123456
123456

*¥%%x 123456

$123456
+123456
123456

Printed output

$6H123456
+6H123456

123456
$H+123456

H$.05
bb$H.05

bb$

FORM

Insertion characters

Insertion characters insert additional characters into a field,
generally to improve readability. The following insertion
characters can be specified:

Character

B

Meaning
A blank is printed.

A comma is printed. If no digit precedes
the comma, the comma is replaced by the
zero suppression character (blank or
asterisk) or currency symbol. If OPTION
INVP is in effect, a decimal point will
replace the comma in the output.

A slash is printed. If no digit precedes the
slash, the slash is replaced by the zero
suppression character (blank or asterisk)
or currency symbol.

A decimal point is printed. Only one
decimal point may be specified. |f option
INVP is in effect, a comma will replace the
decimal point in the output.

A PIC specification cannot begin or end with a B (blank),

comma, or /.

BASIC reference information 171

FORM

FORM statement (continued)

172

SA34-0109

The following are examples of insertion characters. Assume

a data value of 112233 is to be printed: N
PIC specification Printed output \
PIC (###B#H#BH####) 00061162233
PIC(ZZZBZZBZ###) 1162233
PIC(222,2227, ###) 112,233
PIC(ZZZZZ/7#/##) 11/22/33
PIC (***kkkf H#4) *112233.00
PIC($$$,33%,8835.44%) $112,233.00
\{—_—i’

FORM

Exponent specifier

The exponent specifier appears in the rightmost positions of
a PIC specification, preceding the trailing characters, if any,
as three, four, or five circumflex characters. The
corresponding output positions are the letter E, the
exponent sign (+ or -), and the exponent value. If the PIC
specification also includes zero suppression symbols (Z, $,
+, -, or ¥*), the # symbol is substituted for them. A decimal
point will always appear in the output in the same position
as it appears in the PIC specification.

Values are rounded to the number of digit specifiers before
output. For a floating field of +, -, or $, the first specifier is
not included in this number. All digits will be used. The
leading digit will be non-zero. An error occurs only if the
exponent cannot be accommodated.

The following are examples of exponent specifiers. Assume
a data value of 6.2345E+23 is to be printed:

PIC specification Printed output
PIC (#####H##ANN) 6234500E+17
PIC (##.### AN 62.345E+022
PIC (##.##/NA) 62.35E+022
PIC (. #####HANAN) .623450E+24
PIC(ZZZ.ZZNNAN) 623.45E+21

PIC (## .ANAAN) 62.E+022

BASIC reference information 173

FORM

FORM statement (continued)

174

SA34-0109

Trailing characters

The following trailing characters can be specified:

Character

+

CR, DB, or DR

Meaning

A plus sign is printed for a positive
number, and a minus sign is printed for
a negative number.

A blank is printed for a positive number,
and a minus sign is printed for a
negative number.

The characters CR, DB, or DR,
respectively, are printed for a negative
number. For a positive number, either
two blanks or two asterisks are output.
Asterisks are output if * symbols were
specified to suppress leading zeroes.
Leading signs and CR, DB, or DR can
appear simultaneously.

FORM

The following are examples of trailing characters. Assume a
data value of -123456 and 123456 are printed in alternating

sequence.
PIC specification

PIC (##########+)
PIC (####H###H##+)

PIC (##########-)
PIC (##########-)

PIC(Z22222ZZZZ7ZCR)
PIC(Z2Z2ZZZZZZ7ZCR)

PIC (***%x%k*x%*xDR)
PIC (k****%k*x%%xDR)

PIC($3$3$3$###4DB)
PIC($3$3$$##4DB)

PIC($++++####DB)
PIC($++++####DB)

Printed output

0000123456-
0000123456+

0000123456~
0000123456b

123456CR
1234560

*%%123456DR
kk]23456%

$123456DB
$123456Hb

$H-123456HbH
$H+123456DB

BASIC reference information

175

FORM

FORM statement (continued)

176

SA34-0109

Programming considerations

« FORM statement

If the number of 1/0 list items exceeds the number
of FORM data conversion specifications, the FORM
statement is reused. (For a PRINT statement, there is
a default SKIP 1 at the end of the FORM statement.)
Array elements are formatted in row order.

For a PRINT statement, if the field width specified in
a data conversion specification is greater than the
number of positions remaining on the current line, the
current line is printed. The value to be output is then
printed at the beginning of the next line.

FORM statements are non-executable and can be
placed anywhere in a BASIC program; either before
or after the |/0O statements that reference them.

. PIC data conversion specification (numeric data)

The number of digit specifiers representing the
integer portion of the value being output must equal
or exceed the number of integer digits in the value
itself. When one or more +, —, or $ symbols are used
as digit specifiers, one additional digit specifier is
required.

The PIC specification is not syntax checked until
execution time.

The number of circumflex characters representing an
exponent must equal or exceed the number of digits
in the exponent itself plus two.

‘\V/

N

FORM

If a negative value is being output, the PIC
specification must contain either a leading + or —
specifier or a trailing +, —, CR, DB, or DR symbol.

A PIC specification must contain at least one Z, *, #,
or have at least two $, +, or — specification
characters.

Values are rounded before output for fixed-point
fields (no exponents). The value is rounded into the
digit positions specified. For exponential output, the
value is rounded to the number of digits specified. In
both cases, one digit is deducted for floating $, +, or
If a floating currency string is followed by a decimal
point, it must also be followed by one or more #.
The floating + or - will not be printed for a zero
value if no fractional digits are specified.

If a floating currency string is followed by a trailing
sign or exponent specifier, the currency field must be
followed immediately by at least one #, Z, or *.

BASIC reference information 177

FORM

FORM statement (continued)

Formatting 1/0 files

178

SA34-0109

Example

The following program is an example of the use of the
FORM statement to format printed output:

10 A=11

20 B$="ABC"

30 C=5

40 D$="DEF"

50 E=16.2

70 PRINT USING 80: A,B$,C,D$,E,"GHI"

80 FORM POS 3,N 3,X 2,C 4,SKIP 1,"COMMENT",
PIC(###),V 4,2*%G 4.1

The following output will be displayed in lines 21 and 22,
respectively.

bbb 1 1HHABC
COMMENTOOS5DEFH16. 2GHI

see “Internal 1/0 file formatting”

NS

FNEND

FNEND statement

see “"DEF, FNEND statement’”’

(¢

FREE command

see “DROP/FREE command”
""CLOSE statement’”

FREESP(N)

FREESP returns the number of 512-byte areas available for
allocation on the diskette that contains file N. Space
allocation is made in 512-byte increments. A -1 is returned
if the file is not open, if it is an exchange file, or if the
device is not a diskette.

BASIC reference information 179

Full screen

Full screen processing

180

INPUT
PRINT

SA34-0109

#0

1

Full screen processing is used to display or input data using
the entire screen (except the status line). To display data
with full screen processing PRINT FIELDS must be entered.
To input data with full screen processing INPUT FIELDS
must be entered. If the keyword FIELDS is not included,
standard PRINT and INPUT processing is used. The syntax
of the PRINT/INPUT statement for full screen processing is
as follows:

|

r—error action—ll
FIELDS field definition: data-item B ="

B #

B Interrupt on error unless ON is active
where:

#0 is a numeric expression having the value of O for full
screen processing (see “‘File reference parameter’’).

field definition is either a character expression or a MAT
character array name (where character array name is a
one-dimensional array).

data-item is a simple variable, subscripted array, or a MAT
array name.

error-action is an EXIT line-ref or a CONV, SOFLOW, EOF,
IOERR (see’'EXIT statement’’).

\

o

Full screen

A character expression specified for FIELDS defines one
field. Multiple fields are defined in a character array. The
array element or character expression defining a field is a
character string having the following syntax:

’ j I_ , trailing attributes ————
j—, leading attributes

—row , column , data conv-spec .

The parameters are positional and are delimited by commas.
The insertion of blanks preceding or following individual
parameters is permitted.

The starting location of a field is defined by the row and
column parameters specified in the field definition. Row 1,
column 1 is the upper left-hand corner of the screen. Fields
may be defined on rows 1 through 23. The length of a field
is the length specified either explicitly or implicitly in the
data conversion specification. Fields may not span lines.
The maximum length of a field is 78 (columns 2 through 79)
for a field defined with leading and trailing display
attributes. Leading and trailing display attributes are
required for input fields. The maximum length of an output
field without attributes is 80 (columns 1 through 80).

BASIC reference information 181

Full screen

Full screen processing (continued)

The following data conversion specifications are supported
in a field definition:

V ey field-length
(o}
fraction
N —
b fie|d-length
_ 6— I
L—— PIC (pic-spec)

V, C. N, G, and PIC have the same syntax and function as
described under the ““"FORM statement.”” PIC is not
supported on an INPUT FIELDS statement.

Leading and trailing attributes

Two types of attributes may be associated with fields:
display attributes and control attributes.

182 SA34-0109

£

Full screen

Display attributes

Display attributes affect the visual characteristics of the
display screen. The attribute “'blink,”” for example, specified
as a leading attribute for a field, causes the field to blink.
The attribute “‘normal’’ specified as a trailing attribute,
returns the screen to normal. Display attributes occupy
screen locations. These locations appear blank. They may
not simultaneously contain data. A display attribute affects
the visual characteristics of the screen starting at the
location following the attribute up through the location
preceding the next display attribute.

The following display attributes are supported:

|—Invisible

« U—Underline

« B—Blink

« H—Highlight

- R—Reverse (black on green)

« N—Normal (visible, no underline, no blink, no highlight,
green on black)

When specified in combination, attribute | overrides

attributes U, B, H, R, and N. Attributes U, B, H, and R
override attribute N.

BASIC reference information 183

Full screen
Full screen processing (continued)

Example

Underline and blink:

10 PRINT FIELDS "10,10,C 40,UB,N":"HELLO"
Highlight:

20 PRINT FIELDS "10,10,C 20,H,N":"Hi"
Underline input fields:

30 INPUT FIELDS "10,10,C 20,U,N":A$

Control attributes

The second attribute type is the control attribute, which is

used to modify input field operations. The following: control
attributes are effective when specified as leading attributes e
in an input field definition:

« C—Position the cursor to this input field first. If C is
specified for more than one field, the cursor is 4
positioned to the last field in the array having the C
attribute.

« A—Automatic field exit. An automatic field exit occurs

when the operator keys a character into the last location
within this field.

184 SA34-0109

Full screen

« E—Automatic enter. An automatic enter occurs when
the operator presses the Field Exit, Field Plus, or Field
Minus key. An automatic enter also occurs when the
operator enters a character into the last position of a
field having the A attribute.

Control attributes do not occupy screen locations.

Any combination of display and/or control attributes may
be specified for leading or trailing attributes in a field
definition. Control attributes are inactive when specified for
a PRINT field or as trailing attributes for an INPUT field.
When an attribute is not recognized, it is ignored. If more
than one display attribute is specified, the combination
occupies one screen location. This location is R, C-1 for
leading attributes and R, C+L for trailing attributes (R, C,
and L are row, column, and length of the field). Input fields
require both a leading and trailing display attribute. If either
attribute is not explicitly specified in a field definition, the
default for that attribute is N (normal). Output fields require
neither leading nor trailing attributes; none are defaulted.

BASIC reference information 185

Full screen

Full screen processing (continued)

186

SA34-0109

Examples

The following displays a field as defined by line 10.

10 A$="5,7,C 18"

20 NAME$="JOHN DOE"

30 PRINT NEWPAGE

40 PRINT FIELDS A$: NAMES$
50 B$="8,2,C 10"

60 INPUT FIELDS B$:DAK$

In this example, statement 40 will display the data on the
fifth line of the screen, starting in column seven. The data
item to be displayed is the character string “JOHN DOE".
Statement 60 will input 10 characters from line 8, starting in
column 2.

The following displays data on more than one line.

10 OPTION BASE 1 —
20 REM DISPLAY NAME AND ADDRESS

30 DIM FS$(3)

40 NAME$="JOHN DOE"

50 STREET$="125 1ST ST."

60 CITY$="CHICAGO IL"

70 FS$(1)="3,4,C 20"

80 FS$(2)="4,4,C 25"

90 FS$(3)="5,4,C 25"

100 PRINT NEWPAGE

110 PRINT FIELDS MAT FS$: NAME$, STREET$,CITYS$

This example displays the first item of data (NAME$) on the
third line of the screen, starting in column four. The second
item of data (STREET$) is displayed on the fourth line of
the screen, starting in column four, etc.

Full screen

The following displays data and inputs data.

10 OPTION BASE 1

20 DIM A$(4), B$(3)

30 A$(1)="5,10,C 10,U,N"

40 A$(2)="10,4,C 5"

50 A$(3)="13,4,C 7"

60 A$(4)="16,4,C 5"

70 PRINT NEWPAGE

80 PRINT FIELDS MAT A$:"PROGRAMMER","NAME:",
"STREET:","CITY:"

90 B$(1)="10,12,C 18,U,N"

100 B$(2)="13,12,C 18,U,N"

110 B$(3)="16,12,C 18,U,N"

120 INPUT FIELDS MAT B$: NAME$,STREET$,CITY$

See ‘Appendix A"’ programs 10, 11, and 12.

Programming considerations

« Number of fields
— If an array is specified for FIELDS, the number of
fields is the number of 1/0 list items, not the number
of elements in the array. The number of elements in
an array specified for FIELDS may exceed the number
of 1/0 list items. The extra elements are ignored.
— The maximum number of input fields is 128.

e Input attributes
— When an INPUT FIELDS statement is executed, an
implicit write to the display screen is generated to put
out display attributes. The input fields are not
modified.

BASIC reference information 187

Full screen

Full screen processing (continued)

o Order
— The fields defined in a FIELDS array may appear in e
any order. b
— The first element or field in a FIELDS array
corresponds to the first 1/0 list item. The second
element or field corresponds to the second 1/0 list
item, etc.

« Enter
— When the operator presses the Enter key, keyboard
input ends and the input field values are processed.
As each value is verified, it is assigned to an 1/0 list
variable or array element. The number of 1/0 list
items processed successfully is contained in the
system variable CNT.

« Overlapped attributes
— Input fields may not overlap. However, the location of
the trailing display attribute of one field may be
overlapped by the leading attribute of the following e
field. If leading and trailing attributes overlap, the last
attribute written to the screen will be the one in
effect.

188 SA34-0109

Full screen

« Mixed operations

— Caution should be used when full screen processing
is interspersed with non-full screen processing. There
is no implicit clearing of the display screen when
switching between the two. PRINT NEWPAGE may
be used to perform this function. If the display screen
is not cleared before full screen processing /0, full
screen processing fields will be interspersed with the
previous contents of the screen. If the display screen
is not cleared after full screen processing 1/0, data
and/or display attributes left on line 23 may cause a
syntax error on the next operator entry.

Functions, defined

see 'DEF, FNEND statement’’

BASIC reference information 189

GO

GO command

The GO command resumes or ends processing of a BASIC
program or procedure.

If a program or procedure was halted, processing can be
resumed by entering GO. Program execution may continue
with any line specified in the GO command.

Procedure execution may continue with the next procedure
line. In order to continue execution with another line, see
““SKIP command”’.

— RUN——
L STEP. S 1
— TRACE — —3 RUN ——y
GO ——
— TRACEP — —3 STEP ——
[END— —y TRACE ~]
., TRACEP]
— line-num n N

H Resume execution at the current line of the program or
the next procedure line.
B Remain in previous mode.

The syntax of the GO command is as shown, where:
line-num is the number of the line where processing of a
program is to resume. If the number is omitted, processing

begins with the line logically following the last line executed
successfully, or the next procedure statement.

190 SA34-0109

GO

END specifies that all input and output files or the current
procedure file are closed. After files are closed no program
statements are executed (GO END is required for an
interrupted program before issuing another RUN).

RUN specifies that processing is to continue in normal
mode.

STEP specifies that processing is to continue in step mode
(see “RUN command”).

TRACE specifies that processing is to continue in trace
mode (see “"RUN command’’). TRACE data is interspersed
with screen data.,

TRACEP specifies that trace messages are to be printed
only. TRACEP should be used if tracing to screen would
overwrite valid information.

Note: If neither RUN, STEP, TRACE, nor TRACEP is
specified, processing will continue in the mode that was in
operation when processing was interrupted.

If a line number is not specified, RUN, STEP, TRACE, or
TRACEP is not preceded by a comma (,).

BASIC reference information 191

GO

GO command (continued)

192

Examples

To change to normal mode or resume normal operation of a
BASIC program:

GO RUN (then press Enter)

To change to STEP mode and begin execution at line
number 620:

GO 620, STEP (then press Enter)

Programming considerations

« Resume
— GO may only be used to resume processing and not
to initiate processing (see "RUN command’’ to
initialize processing).

« TRACEP printing
— The data appears only when the line to be printed is
full, the program generates a new line, or the printer
is closed (when the program terminates).

« DISPLAY TRACEP
— If the program is started by RUN DISPLAY, the
TRACEP information will be directed to the screen.

For more information see “’Split screen’”” and “TRACE
statement’’.

GOSUB

GOSUB and RETURN statement

The GOSUB and RETURN statements are used together to
invoke subroutines. The GOSUB statement transfers control
to a specified statement. The RETURN statement transfers
control to the first executable statement following the
GOSUB statement that invoked the subroutine in which the
RETURN occurs.

RETURN ———@

GOSuUB line-ref ~——————————

The syntax of the GOSUB statement is either simple or
computed. The simple syntax is shown above, where:

line-ref is the line number or label to which control is to be
transferred.

Execution of a simple GOSUB statement causes transfer of

control to the line or label specified. The maximum nesting
level is 200.

BASIC reference information 193

GOSUB

GOSUB and RETURN statement (continued)

194

SA34-0109

[NONE line-ref-l P
2 -

ON—arith-expression—GOSUB r— line-ref =1
1
L

|
—_——y—

Bl Interrupt occurs if the expression is out of range
The computed GOSUB syntax is shown above, where:

arith-expression is the arithmetic expression that
determines the statement to which control is passed.

line-ref is a statement number or label. At least one
statement number or label is required.

NONE if none of the line numbers preceding the NONE is
selected, the line number following it is used.

Execution of a computed GOSUB statement causes the
arithmetic expression to be evaluated. Control is then
transferred to the line whose numeric position in the list of
line-num (reading from left to right) is equal to the rounded
integer value of the expression. Thus, an expression with a
value of 2.75 would cause control to be transferred to the
third line in the list. If the expression has a rounded integer
value less than 1 or greater than the total number of lines
listed, the program goes to the statement specified in the
NONE clause. If a NONE clause is not specified, an error
occurs.

When a GOSUB statement points to a descriptive statement
such as DIM, control is transferred to the first executable
statement following the descriptive statement.

GOSUB

Programming considerations

Subroutines should be preceded by a GOTO to avoid falling
through into them.

Example

The following example shows the execution of GOSUB and
RETURN statements:

Simple GOSUB
00050 GOSUB 00100
— |—>00060—

00100—

00140 RETURN

Program 1—Line 50 transfers control to line 00100, stacking
line 00060 as a return location. Assuming no further
transfers, lines 00100 to 00140 are executed and line 00140
transfers control to line 00060.

BASIC reference information 195

GOSUB
GOSUB and RETURN statement (continued)

Nested GOSUB

00080 GOSUB NEWYEAR N
————|— 00090~
00100 STOP

— 00150 NEWYEAR:

L]

— 00190 GOSUB NEWMONTH
—|—00200—

L
®

— 00240 RETURN
— 00250 NEWMONTH:

00300 RETURN

Program 2—Assuming no transfer statements other than
those shown, the order of execution is: 00080, 00150 to
00190, 00250 to 00300, 00200 to 00240, 00090 to
00100(STOP).

196 SA34-0109

GOSUB

An example of a computed GOSUB is as follows:

90 N=5
100 ON (C/N) GOSUB 150,280,370 NONE 420

IF C is 5, line 150 gains control.

IF C is 10, line 280 gains control.

IF C is 15, line 370 gains control.

IF C is less than 2.5 or greater than or equal to
17.5, line 420 gains control.

BASIC reference information 197

GOTO
GOTO statement

The GOTO statement transfers control to a specified line or
label.

The syntax of the GOTO statement can be simple or
computed. '

GOTO

line-ref ————Ji}

The simple GOTO syntax is shown above, where:

line-ref is the line number or label to which control is to be
transferred.

Execution of a simple GOTO statement causes transfer of
control to the line number or label specified.

The computed GOTO syntax is:

I—NONE line-ref—l
1 L

ON~—-arith-expression=GOTO T-Hne refT
|

|

L y—
E Interrupt occurs if expression is out of range
where:

arith-expression is the arithmetic expression that
determines the line to which control is passed.

198 SA34-0109

GOTO

line-ref is a statement number or label. At least one
statement number or label is required.

NONE if none of the line numbers preceding the NONE is
selected, the line number following it is used.

Execution of a computed GOTO statement causes the
arithmetic expression to be evaluated and control
transferred to the line whose numeric position in the list of
line numbers (reading from left to right) is equal to the
rounded integer value of the expression. Thus, an
expression with a value of 2.75 would cause control to be
transferred to the third line in the list. If the expression has
a rounded integer value less than 1 or greater than the total
number of lines listed, the program goes to the statement
specified in the NONE clause. If no NONE clause is present
an error occurs.

When a GOTO statement points to a descriptive statement
such as DIM, control is transferred to the first executable
statement following the descriptive statement.

The following statement will transfer control to line number
20:

100 GOTO 20

The following statement will transfer control to the
statement labeled RECOVERY when the variable LIMIT is 1.

100 ON LIMIT GOTO RECOVERY,500 NONE QUIT

BASIC reference information 199

HELP STATUS

HELP STATUS command (continued)

200

SA34-0109

The HELP STATUS command displays the amount of space
(in bytes) available in the work area, the work area type
(PROGRAM or DATA), and the file specification of the last
file used to load or save the work area.

HELP STATUS ——@@

The syntax of the HELP STATUS is as shown. Between
CLEAR or power on and LOAD/SAVE/REPLACE, only the
mode and number of bytes available are reported.

Example

HELP STATUS
20168 PROGRAM PAYROLL.FDP/PAYROL

(bytes avail) (type) (file specification)

e

HEXS

HEXS$(A$)

Hierarchy, arithmetic

HOLD

Returns a character string containing the hexadecimal value
represented by the content of A$. For example:

10 A$="F1F2"
20 B$=HEX$ (A$)

A$ must contain only the digits 0 through 9 or the
uppercase letters A through F. The number of hexadecimal
characters must be even.

B$ contains a two character string which is 12",

See’'Hexadecimal table’” under ““Character set’".

see “'Arithmetic hierarchy’’

The HOLD key can be used to stop processing at any time
(for example, to view the screen.) You press HOLD a
second time to continue operation. Pressing the HOLD key
will not immediately stop the printer.

If the 5322 Computer is sharing a 5246 Diskette unit, the
second 5322 Computer may be stopped also. See “Device
sharing™.

If diskettes are removed while in the HOLD state,
unpredictable results may occur.

BASIC reference information 201

IF, THEN, ELSE

IF, THEN, ELSE statement

The IF, THEN, ELSE statement transfers control according
to the result of an evaluated expression or conditionally
executes a statement.

| —AND | line-ref
_:I_relational-expression‘ ELSE-[
OR line-ref I— statement
| F ——relational-expression n LTHEN _|

]

statement --I

H One expression considered
E It expression is false, go to next statement

The syntax of the IF, THEN, ELSE statement is as shown
above, where:

relational expression is a relational expression or a logical
operator (see “‘Relational expression’” and ‘“‘Logical
operators’’ under this (IF, THEN, ELSE) statement).

line-ref is the line or label to which control is to be

transferred. It is specified by either a line number or a label
symbol.

202 SA34-0109

o

£

J

kY
AN

IF, THEN, ELSE

statement is any of the following BASIC statements:

CHAIN LINPUT READ
CLOSE MAT REREAD
CONTINUE ON RESTORE
DELETE ON GOSUB RETRY
GOSUB ON GOTO RETURN
GOTO OPEN REWRITE
INPUT PAUSE STOP
INPUT FIELDS PRINT TRACE
LET PRINT FIELDS WRITE
LET (implied) RANDOMIZE

If CHAIN follows THEN, no ELSE clause is allowed.

The IF, THEN, ELSE statement either transfers program
control or executes a statement according to the results of a
relational or logical expression. If the expression is true and
a line reference follows the THEN, control is transferred to
that line. If a statement is specified, instead of a line
reference, that statement is executed. If the expression is
false and a line reference follows the ELSE, control is
transferred to that line reference. If a statement follows the
ELSE, that statement is executed. If the execution of this
statement does not result in the transfer of control, or the
ELSE was not specified, then control is passed to the next
executable statement in the program.

BASIC reference information 203

IF, THEN, ELSE

IF, THEN, ELSE statement (continued)

204

SA34-0109

Relational expression

A relational expression compares the value of two arithmetic
expressions or two character expressions. The expressions
are evaluated and then compared according to the definition
of the relational function specified. The relational functions
and their definitions are:

Relational function Definition

= Equal

<> or >< Not equal

=> or >= Greater than or equal
=< or <= Less than or equal

> Greater than

< Less than

When comparing numeric values, the value compared is the
full 15 digits of the representation. Results of functions
which are not accurate to 15 digits should be rounded
before making an equal compare. See “"Accuracy’” under
“Arithmetic data’’. When character data appears in a
relational expression, it is evaluated according to the
collating sequence, character by character, from left to right.
When character operands of different lengths are compared,
the result is unequal. If all characters of the shorter string
are character-by-character equal to the leading characters
of the longer string, the shorter string is less then the
longer string. Blanks are significant in comparisons.

Example

10 IF A=B THEN 90 ELSE 110

IF, THEN, ELSE

Logical operators, expressions

To form logical expressions, relational expressions can be
combined.

Logical operators are used between relational expressions.
When the logical operator AND is used between two
relational expressions, the logical expression is true only if
both relational expressions are satisfied. This is illustrated in
the example that follows.

If OR is specified and the first expression is true, or if AND
is specified and the first expression is false, the second
expression will not be evaluated. For example, if the second
expression contains a function, it will not be executed.

Examples

10 IF A$="JOB" AND B$="DATE" THEN 90 ELSE 110
20 IF MONTH=2 AND DAY=28 THEN MONTH=3 ELSE
DAY=DAY+1

In the following example OR is used to specify that either of
the two relational expressions can compare in order for the
logical expression to be true.

10 IF A=e OR B<4 THEN 90 ELSE 110

BASIC reference information 205

IF, THEN, ELSE

IF, THEN, ELSE statement (continued)

The following is an example used for checking a blank field:
100 IF B$=RPT$ (" ",LEN(B$)) THEN GOTO BLANK

500 BLANK:STOP
The following examples show a variety of IF statements:

30 IF A(3)<>X+2/Z THEN 100

40 IF R$="CAT" THEN 70

50 IF S$2=37.222 THEN 120

60 IF X>Y THEN 90

70 IF A<B OR C<D THEN 110

80 IF A$="JOB" AND B$="DATE" THEN 100
90 IF A=3 OR B=4 THEN C=G ELSE STOP
100 STOP

In line 40, for example, if character variable R$ contains the
word CAT, program control is passed to line 70. In line 70,
if either A<B or C<D, control is passed to line 110.

An example showing the use of labels is as follows:

30 IF MONTH=2 AND DAY=29 THEN LEAPYEAR ELSE LET
MONTH=MONTH+1

L]

L]

70 LEAPYEAR: LASTDAY=366

206 SA34-0109

IF, THEN, ELSE

Programming considerations

(« When an IF statement has a THEN clause and an ELSE
clause, the THEN clause may not contain a MAT
statement. For example, instead of doing this:

10 IF X=0 THEN MAT A=B ELSE MAT A=C
or:
10 IF X=0 THEN MAT A=B ELSE Y=10

Do this:
10 IF X=0 THEN MAT a+B
orx:

10 IF X=0 THEN R=S ELSE MAT A=B

For other methods of examining data values, see “"SRCH"’
and “POS”.

(Index keys

see
““Create index file”" under ““Customer Support
Functions”
"“DELETE statement””
“KLN""
“KPS"’
““OPEN statement””
“"READ statement’”
“REREAD statement’’
"“RESTORE statement’’
“REWRITE statement’”
“WRITE statement””

BASIC reference information 207

INPUT
INPUT statement

The INPUT statement allows values to be assigned to
variables from the keyboard (or procedure file) or a display AN
file. w7

r————9-—=7
I |

|
error-cond line-ref ==

#file-refs EXIT line-ref
INPUT —Lll——]r data-item T a2
| |

Ly

E Defaults to #0
BE Interrupt on error unless ON is active

The syntax of the INPUT statement is as shown, where: TN
file-ref is a numeric expression, see "‘File reference
parameter.”

data-item is a simple variable, subscripted array element, or
a MAT array name.

error-cond can be CONV, SOFLOW, EOF, IOERR (see
“EXIT statement’’).

line-ref is either a line number or a label.

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

;

A
!

208 SA34-0109

INPUT

When an INPUT statement is executed, and input is
expected from the keyboard, a question mark (?) is
displayed on the screen on line 23, column 1 and the
program execution halts. Input data is entered on the same
line as the question mark. The data must be entered
beginning in column 2 because column 1 is occupied by the
question mark. You must then enter a list of values, that
will be assigned in the order they are entered, to the
variables listed in the INPUT statement or row-by-row to
elements of specified arrays. The Enter key must be pressed
to resume program execution. The number of values entered
must be the same as the number of items in the 1/0 list.

INPUT is normally used to input data from the keyboard.
However, it may also be used to read data (in keyboard
entry format) from a diskette DISPLAY file (type 05).

Assignment of values occurs after each ENTER or record
delimiter. If the PROC option is entered in the RUN
command, values are supplied from the active procedure file
(see ““Procedure file’’) rather than from the keyboard. Each
INPUT statement will get one line from the display file or
procedure file. If the record supplies too many or not
enough values for the data list, an error is indicated.

BASIC reference information 209

INPUT

INPUT statement (continued)

210

SA34-0109

Examples

To input:

A number or numbers.

10
20

INPUT X
INPUT X,Y

A string or strings.

10
20

INPUT N$
INPUT N$,A$

Numbers and strings.

10
20

INPUT NAMES$,AGE
INPUT X,X$

From a file.

10 OPEN #100:"NAME=FILE.NAME" ,DISPLAY, INPUT

20

INPUT #100:ITEM1,ITEM2

An array (matrix).

CLEAR

10
20
30
40
50

OPTION BASE 1

DIM ITEMS$ (3)

INPUT MAT ITEM$

PRINT ITEM$ (1) ,ITEMS$ (2),ITEMS$ (3)
END

.
Ny

INPUT

The operator may respond to the following INPUT
statement:

10 INPUT NAME$,AGE, ADDRESSS$
in either of the following ways:

? Gabe, 25, Street

or:

? Gabe,

? 25,
? Street

Programming Considerations

« Blanks
— The only blanks allowed within a numeric field are
leading blanks or trailing blanks.
— Enclose a character field in quotes if leading blanks,
trailing blanks, or delimiters are significant.

« Data items
— The data types and the number of data items are
verified before any assignment takes place.
— The maximum length of each character data item
entered, is 255.

o Procedures
— Specifying PROC on the RUN command has no effect

on INPUT statements containing a file reference other
than O.

BASIC reference information 211

INPUT

INPUT statement (continued)

212

SA34-0109

Command keys

— Command function keys, when pressed during
INPUT, cause input to end (same as pressing the oo
Enter key) and CMDKEY variable to be set. A

Cmd/Attn

— Pressing the Cmd/Attn key while INPUT is pending,
will cause an interrupt when the current INPUT
statement completes execution (after pressing Enter).

LINPUT

— The unformatted input of a character string is
achieved by using the LINPUT statement (see
“LINPUT statement”’).

EOF

— Input from a procedure (RUN PROC) can cause an
EOF condition at the end of a procedure. An EOF
clause should be coded to account for this. The
program cannot revert to keyboard input when started
by RUN PROC.

Terminating input with a slash

— If the input data is terminated with a slash (/), the
number of data items entered can be less than the
number of 1/0 list items. The values of any remaining
I/0 list items are left unchanged.

CNT

— If the input data is terminated with a */,”" only items
preceding the **/’* are counted.

— Each data item is counted as one.
Example: 100,200,300,400 (CNT=4)

‘%,,;/"

INPUT

Inquiry key

Integer format

e Null entries
— When constructing a DISPLAY file (type 05) for
processing by INPUT, and the last data item can be a
null character string, end each line with a slash (/).
This will prevent a “‘ends in comma’’ error.

« Error conditions

Preceding the assignment of any value, a check is made

of all the data values entered. If the check fails at any

point, none of the entered values are assigned. Some

potential errors which can occur are:

— CONV means that character data was provided when
numeric data was required.

— SOFLOW means that the character string input was
too long.

See “Sample program 5 in “Appendix A" and “‘Full screen
processing.”’

see "‘Attention and Inquiry”’

see
“Arithmetic data’’
“INT(X)"”

BASIC reference information 213

Internal constants

Internal constants

Internal files

214 SA34-0109

An internal constant is a named, pre-defined value. Unlike
arithmetic variables, the value is never altered during
program execution. An example of the only internal constant
is:

Constant Name Value

pi Pl 3.14159265358979

The internal constant name can only be used as a part of an
arithmetic expression. It cannot be the target of an
assignment statement. For example (assume rounding is to
7 digits):

PRINT 2*PI (then press Enter)

The result will be 6.283185.

see
“Relative record files’”
""Key-indexed files”’
“Internal 1/0 files”

Internal 1/0

Internal 1/0 file formatting

Formatted (with USING)

When a WRITE or REWRITE statement contains a USING
clause, the format of the data is specified by the associated
FORM statement. The output record is generated in the
following manner:

« Allocate a buffer of length specified by RECL= on the
OPEN.

« Set the entire buffer to blank (hex 40). This applies to
the WRITE statement only.

« Use the FORM specification and output data list values

to fill in the specified record locations. Unspecified
locations remain either blank or unchanged.

Unformatted (without USING)

When a WRITE or REWRITE statement does not contain a
USING clause, the record is ““unformatted”. The output
record is generated as follows:

« Allocate a buffer of length specified by RECL= on the
OPEN.

« In the first two bytes of the record place the binary
representation of the number of output list items. Each
array element counts as one. The low order byte is first
and the high order byte is second.

« Preceding each data value place the binary
representation of the length of the data item. Numeric
items are length 9 and character items are specified by
their current length (0 to 255).

BASIC reference information 215

Internal 1/0

Internal 1/0 file formatting (continued)

« Following the item length, place the value of the data
item in internal format. See ““Arithmetic data” and
“*Character set”.

The record length must have additional space allocated for
these length fields over and above the aggregate length of
the data. When numeric data items are expected, the length
must be nine bytes. When character data items are
expected, any length is acceptable. No type checking is
performed.

Internal 1/0 files

Internal 1/0 files are used for collecting related numeric and
character data items and storing them as a unit in a
fixed-length logical record. These files must be opened
before using the WRITE (or REWRITE) statement to store
data items in the file and the READ (or REREAD) statement
to retrieve data items from the file. Internal 1/0 files can be
accessed sequentially or directly either by key-indexed or
by relative record number. For specific information, see
“"Relative record files’” ‘and “‘Key-indexed files.”” See also
"“REC(N)”" and “"RLN(N)"".

Internal representation of characters

see "‘Character set’”’

216 SA34-0109

N

