

BASIC Language Reference

--- ------ ----- ---- - ---- - - -----------'-

(

'(,"" ,
/' System/23

Third Edition (April, 1982)

This is a major revision of, and obsoletes SA34-0109-1. The significant changes
result from information added to support the 5217 Printer and the 5247 Disk Unit.

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes wi" be
reported in subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your coun­
try.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers' comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information Develop­
ment, Department 27T, P. O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate with­
out incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1981, 1982

/'

About this book

l
Prerequisites

This book is a reference manual that provides specific informa­
tion about the System/23 BASIC language. It was prepared
with the assumption that you wish to write or change BASIC
programs. This book is a precise reference which supple­
ments Learning System/23 BASIC, but does not replace it.

The information in this book is in encyclopedic format and
presents topics in alphabetic order. To make it easy to use,
this book uses cross-references that leads you to other topics
which may be of interest to you. The cross-referencing takes
the following form:

Dimensioning arrays see "Declaring arrays"

This tells you that the information on dimensioning arrays can
be found in the section titled "Declaring arrays."

Before using this book, you should be experienced in
programming the BASIC language or should have completed
Learning System/23 BASIC.

About this book iii

About this book
Related publications

iv SA34-0109

These books in the System/23 library contain information you
may also find helpful.

• Operator Reference, SA34-0108

• Learning System/23 BASIC

SA34-0121-Book I

SA34-0122-Book II

SA34-0123-Book III

SA34-0124--BookIV

SA34-0125-Book V

SA34-0126-Book VI

SA34-0127-Book VII

System Messages, SA34-0141

• 5110 Conversion Aid Program User's Guide, SA34-0114

• Customer Support Functions, Volume 1, SA34-0175 and
Volume II, SA34-0176

• Using your 5247 Disk, SA34-0188

• U sing your 5217 Printer, SA34-1593

{/--......... ,

"'---/

(
~.

Introduction

(

CHAIN

This book contains detailed descriptions of the system
commands, statements, concepts, data constants, variables,
and the BASIC syntax. This is a complete reference of the
BASIC language as used in System/23, and it was designed
so that each topic can be found quickly. Each topic stands
alone and, as in an encyclopedia, the topics are in alphabetic
order by topic name.

Several comprehensive programs are included in Appendix A
in the back of this book. We suggest that you review these
programs to get an idea of some of the ways you can use
System/23 BASIC.

BASIC Language Reference 1

Syntax

Syntax description

When syntax formats are described in this manual. capitalized
expressions. lowercase expressions. and special characters
(such as a comma. colon. exclamation point. or an asterisk)
have special meaning.

Syntax of the BASIC commands and statements in this book is
presented in the following format:

Statement or [,optional parameter,] CChoice of :J----,.
Command ---required parameter -r---L-.--.. gl-----L-,..-I
Keyword t _ _ _ _ _ _ _ _ J required parameters /

2 SA34-0109

7 indicates the end of the
indicates the parameter statement or command

may be repeated

Where:

Statement or Command keyword is a BASIC statement. such
as LET or a command such as RUN.

required parameter is an item that must be included. such as
the line reference in GOTO 100.

optional parameter is an item that may be included if desired
such as ELSE in an IF. THEN. ELSE statement.

indicates that the parameter may be repeated means that
more than one parameter can be included. such as the vari­
ables in INPUT A. B. C ...

choice of required parameters means that one of the parame­
ters must be included. such as the choice between numeric or
character constants in a DATA statement.

/

(

Syntax

indicates the end of the statement or command refers to the
block that indicates the end of the syntax.

To read the syntax of a command or statement, read from left
to right along the main line. When you reach an optional
parameter, you can either include that parameter or continue
along the main line. When you reach a choice of required
parameters, you must include one of the parameters with your
command or statement.

If you do not include an optional parameter, the System/23
provides a default value or action. The defaults are listed in the
description of the statement or command. The syntax
diagrams include a number (such as II) that corresponds to
the defaults listed.

In the case of the MERGE, REPLACE, and VaLiD commands
only, you must include a comma to indicate that you have
omitted an optional parameter.

If a parameter is shown in uppercase letters, you must enter it
exactly as it appears. You must also enter any special charac­
ter (such as a comma or colon) that appears in the diagram.

All lines entered in program statement and commands are
converted to English uppercase letters prior to syntax
checking. To prevent remarks or character data on DATA
statements from being converted to English uppercase, they
must be enclosed in quotation marks the letters you want to
remain lowercase.

BASIC Language Reference 3

Syntax

Syntax description (continued)

Here are two examples that use the REREAD statement:

{
Char-Var

,'USING
line-ref EXIT line-ref

REREAD _ #file-ref 1:1 RESULTSINl

REREAD #20: NAME$, ADDRESS$

REREAD. #file-ref

4 SA34-0109

i Char-var

,USING
line-ref

error-cond line-ref

EXIT line-~ef •• i
RESULTS INl

REREAD #20, USING 50: NAME$ EXIT 400

In these examples, you must include the file-ref parameter
following the keyword REREAD. You may choose to include
the USING parameter in which case you must also include
either the char-var or line-ref parameter. You must include the
colon, followed by at least one data-item. Note that you may
list more than one data-item. You may choose to include
either EXIT line-ref or error-cond line-ref.

In the first example, the optional parameters are omitted.
Therefore, the default actions are taken.

(

Absolute value

(

Syntax

The syntax for a BASIC statement is as shown:

I
rlabel :l r" remark1

line number __ ...IL ____ _statement_ _~ __ __ _

A keyword in a BASIC statement or system command must be
followed by a blank except where a comma, parenthesis, or
other appropriate delimiter is defined. Also a blank must
follow the leading line number in a BASIC statement.

A label can be added to any BASIC statement except a DEF
statement (see "Labels").

A remark can be added at the end of any system command or
BASIC statement except a DATA statement (see "Remarks").

Because they can be used on most BASIC statements, labels
and remarks are not shown in the diagrams that follow.

See "ABS(X)."

BASIC Language Reference 5

ABS(X)

ABS(X)

6 SA34-0109

Returns the absolute value of X. The result is always positive.
For example:

10 X=-S.2
20 Y=ABS(X)

y contains +5.2

10 X=+13.7
20 Y=ABS(X)

y contains +13.7

(
\

./

"'-. _.'

AIDX and DIDX

(

AIDX,DIDX

The MAT assignment AIDX or DIDX statement creates an
index to the elements of an array which will rearrange the
original array with the elements in ascending or descending
order. Character arrays are indexed alphabetically, and numer­
ic arrays are indexed numerically.

MAT-arrav-name-={ AIDX]-(arrav_name)---I ••

DIDX

The syntax of the statement is as shown above, where:

array-name is the name of a one-dimensional array.

AIDX indicates the ascending index function.

DIDX indicates the descending index function.

When a MAT AIDX or DIDX statement is executed, index
values are assigned to the array on the left of the equal sign,
according to the order of the values entered into the array on
the right of the equal sign.

BASIC Language Reference 7

AIDX,DIDX

AIDX and DIDX (continued)

8 SA34-0109

Example (AIDX)

20 OPTION BASE 1
30 DIM A(10), B(10)
40 MAT B=AIDX{A)

If array A is 9 array B will be
5
6
o (position four)
2
7
8
4
1
3

4 (position one)
9
5
10
8
2
3
6
7
1

The numbers in array B show the position of the numbers in
ascending order as they appear in array A (0 is the fourth posi­
tion in array A. and it is shown as a 4 in position 1 of array B).

(

(

Example (DIDX)

20 OPTION BASE 1
30 DIM A(10), B(10)
40 MAT B=DIDX (A)

If array A is 9 array B will be
5
6
o (position four)
2
7
8
4
1
3

AIDX,DIDX

1
7
6
3
2
8
10
5
9
4 (position ten)

The numbers in array B show the position of the numbers in
descending order as they appear in array A (0 is the fourth
position in array A, and it is shown as a 4 in position 10 of
array B).

Programming considerations

The array on the left of the equal sign must be numeric.

The results of using AIDX or DIDX depend on the collating
sequence that is in effect. See "OPTION statement" and "IF,
THEN, ELSE statement." See also "COLSEQ" in the Customer
Support Functions, Volume II.

Each element of the array on the right is compared to every
other element in that array to determine the index for that
element. The index is then stored in the array on the left.
Operation continues until the indexes for all elements of the

BASIC Language Reference 9

AIDX,DIDX

AIDX and DIDX (continued)

ALERT command

10 SA34-0109

array on the right are determined. No check is made to assure
that the target array is not the source array.

The ALERT command indicates that the operator's attention is
needed during the operation of a procedure file (see
"Procedure file"). Remarks are not allowed, they are inter­
preted as part of the message.

[message]
ALERT~--------L---~ ••

The syntax of the ALERT command is shown above. When
executed, the ALERT command: j

Halts the system operation

• Sounds the alarm

Displays the word ALERT and an optional message on
line 22 of the display screen

The following is what the ALERT command with an optional
message might look like:

ALERT REPLACE DISKETTE1 WITH DISKETTE2

The operator is informed that the diskettes must be changed.

(' \

ALERT

Any command may be issued, When the command has
finished processing, the keyboard is reopened for input, To
continue executing the procedure file, type GO and press
Enter,

To exit the procedure that issued the ALERT command enter
one of the following:

GO END

CLEAR PROC

PROC (for another procedure)

• CLEAR ALL

Alphabetic character set

See "Character set,"

(. Arc tangent

See "ATN(X),"

(

BASIC Language Reference 11

Arithmetic arrays

Arithmetic arrays

12 SA34-0109

An arithmetic array contains only numeric data and can have
one or two dimensions. A one-dimensional array is a list of
data items. A two-dimensional array is a matrix of rows and
columns.

A(O) 8(0,0) 8(0,1) 8(0,2) 8(0,3)

A(1) 8(1,0) 8(1,1) 8(1,2) 8(1,3)

A(2) 8(2,0) 8(2,1) 8(2,2) 8(2,3)

A(3) 8(3,0) 8(3,1) 8(3,2) 8(3,3)

Note: In the above example, BASE 0 is being used. For
information about BASE 0 and BASE 1, see "OPTION state­
ment."

All elements of a numeric array (except an array received from
a chaining program) are initially set to zero during the
execution of the first statement that references the array.

Before being used in any of the matrix handling statements
(MAT statements), an arithmetic array must be declared or
dimensioned. For information on dimensioning arrays, see
"DIM statement," "Declaring arrays," "Redimensioning
arrays," or "MAT assignment statements."

If an array is not explicitly declared in a DIM statement, the
highest subscript it can have is 10. The first reference to the
array determines if the array is one- or two-dimensional.

/

Arithmetic data

(

Arithmetic data

Arithmetic data is data with a numeric value. All numbers in
BASIC are decimal numbers (base 10).

Magnitude

The magnitude of a number is its absolute value. In BASIC, a
power of 10 is represented by the letter E. The E is written
between the first and second constant so that 10**126
becomes 1 E+126 or 1 E126. 1 E-126 and 1 E+126 are called
floating-point numbers or notations. Floating-point notation
is simply a shorthand way of expressing very large or very
small numbers. See "Floating-point format" under
"Arithmetic data." The numbers permitted in a BASIC
program are numbers that are greater than 1 E-126 and less
than 1 E+126.

Significance

The significance of a number is the number of digits it contains
excluding leading and trailing zeros. For the System/23, the
number is 15 digits. Numbers that are entered, are truncated
to 15 digits. Numbers that are the result of an arithmetic
operation, are rounded to 15 digits.

Accuracy

Additions and subtractions are accurate to 15 digits. Multipli­
cations and divisions return 15 digits accurate to 14 digits.
EXP, SQR, and exponentiation return 13 digits accurate to 12
digits. LOG, SIN, COS, TAN, and ATN return 15 digits accu­
rate to at least 10 digits. The remaining system functions are
accurate to 15 digits.

BASIC Language Reference 13

Arithmetic data

Arithmetic data (continued)

14 SA34-0109

Arithmetic data formats

There are three data formats available for entering, displaying,
and printing numbers: integer, fixed-point, and floating-point.
Numbers in any of the formats can be positive or negative.
Negative numbers must be preceded by a minus sign. Positive
numbers mayor may not have a plus sign.

Integer format. An integer is a whole number with no deci­
mal point. The integer format is the same as conventional
representation. A positive number mayor may not be
preceded by a sign.

Integer format

E+g ---iI--.. DI.II--+-,r--di9it --"TI--

.. Positive number

Here are some examples:

o
+2
-23
266

L ___ .1

/

(/

Arithmetic data

Fixed-point fonnat. Numbers expressed in fixed-point
format are preceded by a sign and followed by a decimal point
(+3.). The decimal point may also be followed by digits that
express the decimal fraction (+3.56).

Fixed point format

r---,
r----'

-----lE~;J~!di9it--L..,
'=:J L., digit-r--------'

L __ J

.. Positive number

Examples of fixed-point format that are:

-.3
+3.56
33.00
33.

BASIC Language Reference 15

Arithmetic data

Arithmetic data (continued)

16 SA34-0109

+

Floating-point format. When working with very large or
very small numbers, the floating-point format is the easiest to
use. Floating-point numbers are written with a fixed-point
number, followed by the letter E (E stands for "multiplied by
10 to the power of "l, and followed by a 1, 2, or 3-digit expo­
nent.

r----,
,....-......L--digit-L...--------...,

r--...,

--f-,,-+--+-..L-..digit---l'-- __ .l...-__ +-_ E _+_II.,,-+-_..L.t -digit-l.-
r---, E+g r---,

r---, 1.--___ _ ___ tLo.-digit--lL..-_

.. Positive number

An example of floating-point format is:

-3.1 E7

The value of the floating-point number is -3.1 multiplied by 10
to the power of 7.

-3.1 E7 is the same as -3.1 x 107

-3.1 E7 is the same as -31,000,000

Note that the number E7 is not a valid floating-point number.
The value 107 must be expressed as 1 E7 in BASIC
floating-point format.

./

(/

f

Arithmetic data

Selecting an arithmetic format. An arithmetic value can be
entered at the keyboard in the most convenient format for the
application. The number one million, for example, can be
entered in any of the following ways:

1000000
1000000.00
lE6
+10E5
+100E+4

Arithmetic constant

An arithmetic constant is either an integer, a fixed-point value,
or a floating-point value appearing in a BASIC statement. The
value of the constant remains the same within the program.
For example, the integer 1 is a constant in the statement

100 LET X=X+l

BASIC Language Reference 17

Arithmetic expressions

Arithmetic expressions and operations

18 SA34-0109

Syntax

Numeric expression

-&j-factor---r-------.-r----___

• } factor I + } factor--------r-T"I ...J

L _ ~ ___ J . } factor :

/ : I
I L ______ J :
L ______________ ..J

Factor

numeric constant -1 numeric variable

numeric system function-+_,.-________________,..._

numeric user function

(numeric expression) f\ numeric constant Ji numeric variable

numeric system function-+---..-...I

* ~ numeric user function I

I Inumeric expression I ~
L ____________ --'

.. Positive number

A numeric expression can be an arithmetic variable, array
element, constant, or operational reference; or it can be a
series of these items connected by operators and parentheses.
Examples of arithmetic expressions are:

ALPHA+1
BETA-3/(-6)
x+y+z
A7*(B*3+3)

(

(.

(

Arithmetic expressions

BASIC performs addition, subtraction, multiplication, division,
and exponentiation. The five operators used in most formulas
are:

Function Meaning Example

+ add, positive 10+2=12

- subtract, negative 10-2=8

* mUltiply 10*2=20

/ divide 10/2=5

** or A. exponentiation 10**2=100

(10 raised to the power of 2) 10"2=100

Rules for the arithmetic operators and the resulting actions are
as follows:

Addition and multiplication: A+B and A*B are both commu­
tative; or, A+B=B+A and A*B=B*A. However, addition and
multiplication are not always associative because of rounding;
for example,A*(B*C) does not necessarily give the same
results as (A*B)*C.

BASIC Language Reference 19

Arithmetic expressions

Arithmetic expressions and operations (continued)

20 SA34-0109

Example:

05 FOR 1=1 to 3
10 LET A=RND
20 LET B=RND
25 LET C=RND
26 LET D=A*B*C
27 LET E=A*(B*C)
30 PRINT USING 35:D,E,D-E
35 FORM 3*N 25.17
40 NEXT I

Results of three typical loops:

Contents of D
.04558553601442990 (first time)
.00548795587029670 (second time)
.43103396752564700 (third time)

• Contents of E
.04558553601443000 (first time)
.00548795587029669 (second time)
.43103396752564700 (third time)

• Difference (D-E)
.00000000000000010 (first time)
.00000000000000001 (second time)
.00000000000000000 (third time)

/

('

(

f

Arithmetic expressions

Subtraction: A-B is defined as A minus B.

Division: AlB is defined as A divided by B. If B=O and A is
not 0, an error (zero divide) occurs. If A=O and B=O the result
is 1.

Exponentiation: The expression A**B or A A B is defined as
the value of the variable A raised to the B power. The follow­
ing rules apply to exponentiation:

If A=O and B<O, a zero divide error is returned

• If A<O and B is not an integer, an error occurs because of
a negative number to a fractional power

If B=O, A**B equals 1

• If A=O and B>O, A**B equals 0

Considerations:

Exponentiation returns 13 digits accurate to 12.

The circumflex" A" can also be used for exponentiation;
however, the system converts the circumflex to **. The
circumflex key on the keyboard does not advance the
cursor.

BASIC Language Reference 21

Arithmetic expressions

Arithmetic expressions and operations (continued)

22 SA34-0109

Positive/negative operations: The + and - signs can also be
used as positive/negative operators. These positive/negative
operators can be used in only two situations. They are:

• Following a left parenthesis and preceding an arithmetic
expression

• As the leftmost character in an entire arithmetic
expression

For example:

-A+(-B) and B-(-2) are valid

A+-B and B- -2 are invalid

For more information on arithmetic expressions and
operations, see "Arithmetic hierarchy."

Subjects related to arithmetic expressions

ABS DISPLY LINE RND
AIDX ERR LOG ROUND
ATN EXP MAX SGN
CEIL FILE MIN SIN
CMDKEY FILENUM ORO SQR
CNT FREESP PI SRCH
CODE INT POS TAN
CON KLN PROCIN UDIM
COS KPS REC VAL
DIDX LEN RLN ZER

Arithmetic hierarchy

(

(

Arithmetic hierarchy

Expressions with two or more operations are performed
according to the hierarchy of the operations involved. BASIC
performs the operations in the following order:

1. Parentheses receive top priority. When parentheses are
nested (within another set of parentheses), the operation
in the innermost pair is performed first.

2. If there are no parentheses, the order of priority is:

3.

•

a. Exponentiation (/\ or **).

b. Positive and negative.

c. Multiplication (*) and division (/) have equal priority.

d. Addition (+) and subtraction (-) have equal priority.

If the items are of equal priority, then the evaluation of the
operators is from left to right. The following are examples
of arithmetic hierarchy, showing how expressions are
evaluated:

Parentheses ()
70 - (25 + 15) = 70 - 40 = 30

Exponentiation **
10+ 10**2= 10+ 100= 110

Multiplication * or division /
10 + 10*2 = 10 + 20 = 30
10+10/2=10+5=15
10 + 10*2/5 = 10 + 20/5 = 10 + 4 = 14

• Addition + or subtraction -
10 + 10 = 20
10 - 5 = 5
10+10-5=20-5=15

BASIC Language Reference 23

Arithmetic hierarchy

Arithmetic hierarchy (continued)

24 SA34-0109

• Nested parenthesis
150/(2*(13 + 12)) = 150/(2*25) = 150/50 = 3

The entire hierarchy would be as described below:

In Step 1, the nested parenthesis (13 + 12) is performed.

Step 1. 50 + 10**2/(2*(13 + 12)) - 2 =

In Step 2, the parenthesis (2*25) is performed.

Step 2. 50 + 10**2/(2*25) - 2 =

In Step 3, the exponentiation 10**2 is performed.

Step 3. 50 + 10**2/50 - 2'=

In Step 4, the division 100/50 is performed.

Step 4. 50 + 100/50 - 2 =

In Step 5, because addition and subtraction have equal
priority, the priority is from left to right. The addition 50+2 is
performed.

Step 5. 50 + 2 - 2 =

In Step 6, the final step, the subtraction 52-2 is performed and
the answer is shown.

Step 6. 52 - 2 = 50

See "Arithmetic expressions and operations."

Arithmetic variables

Array expressions

Arithmetic variables

A variable represents a number whose value is subject to
change during the execution of the program. Arithmetic vari­
ables have names consisting of from one to eight alphabetic or
numeric characters, with the first being alphabetic. Examples
of valid variable names are:

AS
BASIC
DATAl
BYTE12

Arithmetic variables are stored internally as decimal floating
point.

An arithmetic variable is initially set to zero during the
execution of the first statement that references the variable
(except when the variable is received from a chaining
program).

Some names are reserved by the system and cannot be used
for variables or labels. See "Reserved words." The term vari­
able includes array elements (see "Arithmetic arrays").

See "MAT assignment statements."

BASIC Language Reference 25

Arrays

Arrays

26 SA34-0109

An array is a collection of data items (elements) that is referred
to by a single name. Only data items of the same type (numer­
ic or character) can be grouped together to form an array. An
array is a convenient tool that provides a fast and organized
way of handling large amounts of data within a program.

Arrays can be either one- or two-dimensional. A
one-dimensional array can be thought of as a list of succes­
sive data items. A two-dimensional array can be thought of as
a matrix of rows and columns.

Each element in an array is referred to by the name of the array
followed by a subscript enclosed in parenthesis. Array
subscripts can begin with either zero (BASE 0 indexing) or one
(BASE 1 indexing). You can select the base by using the
OPTION statement (see "OPTION statement"). The default is
BASE O.

Array name Subscript

OPTION BASE 0 indicates that the first element of an array
has a subscript of O.

OPTION BASE 1 indicates that the first element of an array
has a subscript of 1.

/

(

(

Arrays

There are two types of subscripts. One is specified by a single
number after the array name, such as A(3).

For example:

10 OPTION BASE 1
20 DIM A(3) !DEFINES A ONE-DIMENSIONAL ARRAY
•
•
•

60 LET A(3)=468.45 !REFERENCES THIRD ELEMENT

A(O) A(1)

A(l) A(2)

A(2) A(3)

A(3)

Base 0 Base 1
(default)

Note: If OPTION BASE 1 was not specified, then statement
60 would be referencing the fourth element.

BASIC Language Reference 27

Arrays

Arrays (continued)

28 SA34-01 09

The other type of subscript has two numbers after the variable
name, such as 8(3,3).

For example:

10 OPTION BASE 1
20 DIM B(3,3) !DEFINES TWO-DIMENSIONAL ARRAY
30 LET B(2,2)=9.6 !REFERENCES ROW 2, COLUMN 2

B(O,O)

B(l,O)

B(2,0

B(3,0)

Base 0
(default)

B(1,1)

B(2,1)

B(3,1)

Base 1

B(O,l)

B(l,l)

B(2,1)

B(3,1)

B(1,2)

B(2,2)

B(3,2)

B(0,2) B(0,3)

B(1,2) B(1,3)

B(2,2) B(2,3)

B(3,2) B(3,3)

B(1,3)

B(2,3)

B(3,3)

/-'~

I '

(

Arrays, arithmetic

Arrays

When referencing an element in a one-dimensional array, the
position of the element is obtained by counting from top to
bottom. Thus, assuming BASE 0, the fourth element of a
one-dimensional array named A can be referenced by the
symbol:

A(3)

The first value in a subscript of a two-dimensional array gives
the number of the row containing the referenced element.
Rows are numbered from top to bottom. The second value in
the subscript gives the number of the column. Columns are
numbered from left to right. Thus, assuming BASE 0, the third
element in the fifth row of a two-dimensional array named B
can be referenced by the symbol:

B (4, 2)

Each subscript value can also be an arithmetic expression. For
example, if 1=3 then row 5, column 3 of the array named B can
be referenced by the symbol:

B(I+1,2)

The maximum subscript is 9999.

See "Program 1-Sample" in Appendix A.

See "Arithmetic arrays."

BASIC Language Reference 29

Arrays

Arrays, character

See "Character arrays."

Arrays, declaring \ ./

See "Declaring arrays" under "DIM statement."

Arrays, redimensioning

See "Redimensioning arrays."

Ascending index

See "AIDX and DIDX."

Assignment statements

See "LET statement."

ATN(X)

Returns the arc tangent of X, where X is in radians.

30 SA34-0109

Attention and inquiry

(

(/'

(-

Attention

A BASIC program may be interrupted by the operator in one of
two ways:

Cmd/ Attn (press and hold the Cmd key, then press the
Attn key)

Inq (Inquiry) key.

Cmd/ Attn can be used at any time and will stop the execution
of a BASIC program following the statement during which it is
pressed. The System/23 goes into "split screen mode."

If the Cmd/ Attn is detected during a user defined function, the
program gets an error indicating that a user function was inter­
rupted. The operator resumes normal execution with Error
Reset or may terminate the user function with Cmd/Error
Reset which abandons execution of the function. (GO will
continue execution following the line that invoked the
function.) See "DEF, FNEND statement."

If a procedure is running, the procedure is interrupted follow­
ing the command being executed.

If Cmd/ Attn is pressed during the execution of a RUN
command in a procedure, the program interrupts as if a proce­
dure does not exist. To interrupt the procedure when the
program ends, end the program with a PAUSE statement;
then, enter commands and restart the procedure.

The commands LOAD, SAVE, and REPLACE cannot be inter­
rupted.

BASIC Language Reference 31

Attention

Attention and inquiry (continued)

32 SA34-0109

During an interrupt, any system commands or calculator
statements can be entered. Some statements will prevent
resumption of the interrupted program or procedure (for
example, CLEAR, LOAD, and LINK).

Some statements will be rejected if their execution would
cause ambiguous results (editing OPTION, DIM, FOR, or NEXT
statements).

Normal execution can be resumed by entering GO.

No error code is set by Cmd/ Attn.

The Inq key also interrupts a BASIC program. The response to
the Inq key is controlled by the ON statement (see "ON state­
ment"). The default action is to interrupt execution with a 0001
error. The ON statement may also specify that the Inq key be
IGNORED or cause a GOTO when it is pressed. The inquiry
key is ignored during execution of a GOTO statement. It is not
advisable to execute a one-statement loop (10 GOTO 10)
while waiting for the Inq key to be pressed. The CONTINUE
statement may be used to return control to the interrupted task
(see "CONTINUE statement").

The Inq key is not checked while a defined function is execut­
ing. It is processed normally after all defined functions are
completely executed.

Inadvertently pressing the HOLD or TEST keys may result in
entering system diagnostic mode.

See "Program 1-Sample" in Appendix A.

/

c .. ~.

AUTO command

(

(

AUTO

The AUTO command numbers program lines or OAT A state­
ments. The starting line number and the increment can be
specified. If a beginning line number or increment value is not
specified, a beginning line number of 10 and an increment of
10 is generated for BASIC programs or data statements.

Be sure that the AUTO command does not replace existing
lines you do not want changed.

__ ---I[_'_in_c:ent

AUTOru~ ____ U ___ .L.... ___

.. AUTO 10, 10
II AUTO line-num,10

The syntax of the AUTO command is as shown where:

line-num is a positive number specifying the first line number
to be generated. The range of this number is from 1 to 99999.
The default is 10.

increment is a positive integer from 1 to 99998 used to incre­
ment succeeding line numbers. If a beginning line number is
not specified, the increment cannot be specified. The default
is 10.

Each line number generated by the AUTO command for a
BASIC program is followed by a blank, then the cursor.

00010

BASIC Language Reference 33

AUTO

AUTO command (continued)

34 SA34-0109

When working with a data file, the line number is followed by
a colon and then the cursor.

00010:

Examples:

AUTO

AUTO 15

AUTO 15,5

AUTO 150,25

To use line numbers

1 O. 20. 30AO. etc.

15.25.35A5,etc.

15.20.25.30.etc.

150.175.200.225,etc.

Programming considerations

• Ending AUTO

Automatic line numbering continues until the line
number put on the screen is overwritten or until an
empty line is scrolled up.

• Procedures

- Automatic line numbering cannot be done from a
procedure file.

• Entering DATA

- If AUTO is used to enter data. CLEAR DATA or
LOAD ...• DATA must be issued first.

• Adding lines

- To find the last line for continued entry: LIST 99999

Be sure that the AUTO command does not replace existing
lines that you do not want changed.

\ .
~

(

~- ./

BASIC statements

(

(

BASIC

A BASIC program is made up of BASIC statements. BASIC
statements allow you to enter data, specify how that data is to
be used, and determine the output. BASIC statements are
either executable or descriptive (nonexecutable). Executable
statements cause a program action such as value assignment
or printing. Descriptive statements provide information need­
ed by the program or the user, but they do not cause a visible
action.

BASIC statements can be up to 255 characters including six
for the line number and following blank. The maximum
number of statements permitted in a single BASIC program is
limited by the work area size of the system, the statement
types, and the maximum line number (99999).

The statements and a brief description are listed here.

CHAIN Ends a program, then loads and begins
executing another program or a procedure.

CLOSE Closes a file that is open.

CONTINUE

DATA

DEF

DELETE

DIM

END

EXIT

Transfers control to the statement following
the one causing the ON-condition transfer
or I/O exit.

Creates an internal data table of values.

Defines a function to be used in the
program.

Marks a specific record in an internal I/O file
as unavailable (deleted).

Specifies the size of an array or character
variable length.

Ends a program.

Specifies error exits for corresponding error
conditions.

BASIC Language Reference 35

BASIC

BASIC statements (continued)

36 SA34-0109

FNEND

FOR
Ends a function defined in a DEF statement.

Begins a loop and determines when the loop
is exited (as used with a NEXT statement).

FORM Specifies format for displayed/printed
input/ output and records in files.

GOSUB Transfers control to the beginning of a
subroutine.

GOTO Transfers control to a specific statement.

IF,THEN,ELSE Transfers program control or executes a
statement according to the results of the
logical expression.

INPUT Assigns values from the keyboard or other
device to variables. or array elements during
program execution.

LET Assigns values to variables.

LlNPUT

MAT

NEXT

ON

Performs unformatted character string input.

Assign values to all elements of an array.

Last statement in a loop (see FOR).

Specifies a transfer of control when certain
events take place.

OPEN Activates internal or display files for input or
output.

OPTION Set global parameters of BASIC program.

PAUSE Halts program execution.

PRINT Transfers DISPLAY data to a specified
device.

RANDOMIZE Sets a new starting point in random number
generator.

(

(

READ

RELEASE

REM

REREAD

RESERVE

RESTORE

RETRY

RETURN

REWRITE

STOP

TRACE

USE

WRITE

BASIC

Assigns values from the internal table (see
DATA) or internal I/O files to variables or
array elements.

Removes the lock on a disk file so that other
computers can use the file.

Defines comments or remarks in a program.

Allows access to the last record obtained
from a file.

Locks an entire file against access by any
other computer. Applies only to files on the
5247 Disk.

Causes values in the internal data table (see
DATA) to be assigned starting with the first
table value, resets the data file to the begin­
ning or to a specific record.

Transfers control to the statement causing
the most recent error.

Ends a current subroutine.

Updates existing record in a file.

Stops execution of program statements.

Traces all or part of a program's execution.

Defines the names of the variables passed
by the CHAIN statement.

Adds a record to an internal I/O file.

Note: More information on individual statements may be
found by locating the statements, listed in alphabetic order, in
this book.

BASIC Language Reference 37

Blanks

Blanks

Byte

Catenation

38 SA34-0109

The following rules apply to the use of blanks:

• Blanks can be used within quoted character strings.,

• A blank or other syntactically defined delimiter is required j

after a keyword.

• Blanks are not allowed within keywords, variable names,
numeric constants, function names, line numbers, and
labels.

• Nonsignificant blanks are deleted when the program is
listed (see "LlST, LlSTP command").

• Blanks are required after leading line numbers in BASIC
statements.

To retain blanks, the program must be entered/edited in
DATA mode.

Blanks are significant in relational compares.

Throughout this book the symbolb will represent a blank.

The unit of machine and diskette or disk storage. For
example, one character takes one byte.

See "Concatenation."

/
("' ... /

CEIL(X)

(/

Ceiling

(

(

CEIL(X)

Returns the smallest whole number (integer) greater than or
equal to X. For example:

10 CEIL (-1.2)=-1
20 CEIL (+2.3)=3

See "CEIUX)."

BASIC Language Reference 39

CHAIN

CHAIN statement

40 SA34-0109

The CHAIN statement ends the program being executed, loads
another program, and starts executing the new program. The
CHAIN statement may also be used to start a procedure or a
subprocedure from a BASIC program.

r FILES] [data.item]

CHAIN--pgmname...L......a • II I •

.. All files are closed
II No data is passed

I I L ______ oJ

The syntax of the CHAIN statement is as shown above, where: (-

pgmname is a character expression representing the program
name (see "File specifications"). If the first five characters of
pgmname are PROC=, then the file is invoked as a procedure.
If the first eight characters are SUBPROC=, then the file is
invoked as a subprocedure. In either case, FILES and
data-item may not be specified. The file specification parama­
ter must be used to address files and PROCs located on the
5247 Disk Unit.

FILES indicates that all files of the current program remain
open and at their current positions. If the keyword FILES is
not specified, all files except procedure files are closed when
the CHAIN statement is executed.

data-item is the name of a variable or array (without the
keyword MAT).

(

CHAIN

The data items define the names of the variables that are to
retain their data when the chain occurs. All other variables are
destroyed during the chaining operation. The syntax of the list
of data items is not checked until the CHAIN statement is
executed.

Examples

In the following example, the current program ends all files are
kept open, PGM3 from VOL 1 is loaded, and the values of vari­
ables A and B$ are copied into the chained-to program.

10 CHAIN "PGM3/VOL1," FILES, A, B$

In the following example, the system chains to the procedure
file "PROC4." In statement 70, "PROC=" is necessary to
indicate that "PROC4" is a procedure and not a program.

70 B$ = PROC=PROC4
80 CHAIN B$

If a procedure is already in effect, it is replaced with the new
procedure, PROC4.

An example of CHAIN specifying the subprocedure is:

90 CHAIN "SUBPROC=SET.TIME"

If a procedure is already in effect, it resumes control when the
subprocedure is finished.

BASIC Language Reference 41

CHAIN

CHAIN statement (continued)

42 SA34-0109

Programming considerations

• USE

The chained program must contain a USE statement
that specifies the same variables in the same order
as the CHAIN statement (see "USE statement").

• Dimensioning

The chaining and the chained program must be
dimensioned the same way as all arrays and the
character variables that are passed. The programs
can redimension the arrays in any valid manner (see
"Redimensioning arrays").

• Options

•

The options specified on an OPTION statement in
the chained-from program must match the options
specified in the chained-to program.

IF, THEN, ELSE

./

There cannot be an ELSE clause when a MAT or ~

CHAIN statement is the object of a THEN clause.
Only a remark can follow the data items in a CHAIN
statement.

• CHAIN interrupt

If CHAIN processing gets interrupted for any reason
while LOAD appears on the status line (for example,
file not found) and if termination is desired, CLEAR
ALL must be entered.

See "Program 7-Sample" in Appendix A.

Character arrays

f ./

Character arrays

A character array contains only character data and can have
one or two dimensions.

Character arrays, like simple character variables, are named by
a single letter of the alphabet followed by zero to seven alpha­
betic or numeric characters, followed by the dollar sign ($).

For example:

D$(5) = "JONES"
A5$(10) = "SMITH"

Character arrays can be used in input, output, and simple
matrix assignment statements. They can be redimensioned
(except for maximum string length). The maximum string
length of each element of a character array cannot changed.

For more information, see:

"Arrays"

"Character variables"

"Redimensioning arrays"

"DIM statement"

"V AL(A$)"

BASIC Language Reference 43

Character constants

Character constants

Character data

44 SA34-0109

A character constant is a string of characters enclosed in
quotation marks. Any letter, digit, or special character can be
in a character constant. For example 'THE PRICE IS $6.95."
represents THE PRICE IS $6.95.

The character constant, including blanks but excluding the
delimiting quotation marks, may be from zero through 255
characters long. The following are examples of valid character
constants:

"YES"
"HE SAID ""HELLO"""
"123456"

Lowercase characters within quotes (constants) are not
changed to uppercase.

To represent quotes within character strings, two consecutive
quotes (" ") are required.

Character data in BASIC is data with a character value. It can
be in the form of constants or variables (see "Character
constants" and "Character variables").

(
~.

('\

Character expressions

Character expressions

Syntax

[{star:dll

character variable --------... -~-·I_ ... - --....,

user defined function -----------------1
-"T"'"--+-- "character constant" ----------------i---r---.-I -

system function -------------------1
I

I system variable I
L ____________ & _____ , _____ J

.. Entire variable

Start and End are numeric expressions.

A character expression is a character constant, a character
variable, a character operation reference, a single element of a
character array, a character substring, or a combination of
these. The only operators ever associated with character
expressions are the substring and the concatenation symbol.
For more information, see "Concatenation" and "Substring
referencing." The following are examples of character
expressions:

"ABCDEFG123456"
ALPHA$ & BETA$
"SER" Ii. "IAL"
ZEBRA$(2:6)

BASIC Language Reference 45

Character expressions

Character expressions (continued)

46 SA34-0109

Subjects related to character expressions

This section lists and summarizes subjects related to character
expressions. For additional information, refer to the specific
subject in this manual.

Character set See charts under this topic.

CHR$

Concatenation

DATE$

FILE$

FORM statement

HEX$

KSTAT$

LEN

LPAD$

LTRM$

ORD

PIC$

POS

RPAD$

RPT$

RTRM$

SRCH

Returns character for specified position
within collating sequence.

Joins character strings together.

Retuns date set by DATE command.

Returns file specification.

Specifies format for displayed/printed
input/ output and for records in files.

Returns hexadecimal value.

Returns the most recent keystroke.

Returns the length of a string.

Returns a string padded on the left with
blanks.

Returns a string with leading blanks
removed.

Returns ordinal value.

Returns/ changes the current currency
symbol.

Returns position of matching substring.

Returns a string padded on the right with
blanks.

Returns repeated character.

Removes trailing blanks.

Searches array for a value. (

\.•

SREP$

STR$

TIME$

WSID$

(..

Character expressions

Replaces strings past a specified position
with another string.

Converts a specified value to a character
string.

Returns time of day (set initially by TIME
command).

Identifies which connector number on the
5246 Diskette Unit or on the 5247 Disk
Unit that the computer is attached to.

BASIC Language Reference 47

Character set

Character set

48 SA34-0109

The System/23 character set is used to represent arithmetic
and character data as data constants and variables.

The character set consists of the following:

• Alphabetic characters (English)

Alphabetic characters (non- English)

• Numeric characters

• Special characters

• Graphic characters

Alphabetic characters (English)

The uppercase and lowercase letters of the alphabet (A
through Z) make up the System/23 alphabetic characters.

_A....;lp:....h_a_b_e_t_i_c_c_h_a_r_ac_t_e_r_s....;;(_n_o_n_-E_n....;g=-I_is_h...:.) ________ ./-~.

Characters of the alphabet that are non-English may not be
used for BASIC variable names and filenames.

Numeric characters

In BASIC, the numeric characters are the digits 0 through 9.

I

"'-.~

(

(

Character set

Special characters

There are 21 characters that have special meaning in
System/23 BASIC:

Character Name

Blank or space

= Equal sign

+ Plus sign

- Minus sign

* Asterisk

I Slash

1\ Circumflex

(Left parenthesis

) Right parenthesis

, Comma

Period or decimal point

; Semicolon

: Colon

& Ampersand, concatenation

? Question mark

> Greater than

< Less than

! Exclamation point

$ Dollar sign

" Quotation mark

Number sign

BASIC Language Reference 49

Character set

Character set (continued)

50 SA34-0109

The cursor does not move to the right when using the circum­
flex. The Cursor Right key must be used.

There are other special characters but they do not have special
meaning in System/23 BASIC. They are used within character
strings.

Graphic characters

There are 11 graphic characters in System/23 BASIC:

•
•
•
•
•
•
•

•

Vertical bar

Lower right corner

Lower tee

Left tee

Upper tee

Upper left corner

Lower left corner

Upper right corner

Right tee

I
J
.1
l­
T
I
L
I
~

• Horizontal bar

• Intersection +
Note: On the printers, small gaps may be visible
between graphic characters.

(

\,-- -

Column 0 1
-+ 00 Bit

~
Ptt. 0 00 01 a:

0 0000

1 0001

2 0010

3 0011

4 0100 H Norm

5 0101

6 0110

7 0"1 B UR

8 1000 R URH

9 1001 URB

A 1010 HB URBH

B 1011 RB I

C 1100 UH

D 1101 UB

E 1110 UBH

F 1111

Character set

The Display attributes, highlight and blink, do not affect these
graphic characters.

The following chart lists all of the EBCDIC characters and their
hexadecimal representation used in System/23 BASIC.

2 3 4 5 6 7 8 9 A B C D E F

01 10 11

10 11 00 01 10 11 00 01 10 11 00 01 10 11

--1 I SP & - (/>
0 ¢ { } \ 0 q, Jl

.1. -t RSP e / E a j - £ A J NSP 1

I- a e A E b k s f B K S 2

U a e A E c 1 t Pt C L T 3

a e A
,

ND - E d m u f D M U 4

RHB a f A i e n v § E N V 5

a i A i f 0 w 11 F 0 W 6

RH Ii .j A .j
9 P x Y.. G P X 7

T C i C; i h q y Yo H Q y 8

r Ii {3 N .
i % I R Z 9 r z

[1 I
I

: « !! i --. SHY I 2 3

. $, # » Q l i 0 u 0 U

L (* % ~ j f) - i:i ii 0 0 II:

()
, y .. d U 6 U - ~ Y

+ } ! .tE I
,

6 U 6
,

+ ; = U

! A ? " ± :0: ® 0 Y (5 EO =

BASIC Language Reference 51

Character set

Character set (continued)

52 SA34-0109

Special use characters

The following shows characters that perform a special functionj
on the display screen and/or printer. An X indicates that the
device supports the function.

Character set

Hex 10 Screen Printer Use

(
04 H X Highlight
06 New line Blank X Start output in column 1,

next line
07 B X Blink
08 R X Reverse image
OA HB X Highlight blink
OB RB X Reverse image,blink
OC New Page X X Screen=clear,

printer=eject page
OD CR X X Carrier return
11 Blank X System use only
12 Blank X System use only
13 Blank X System use only
14 N X X Screen=normal image,no

blink,highlight,underline
Printer=stop underline

15 New line X X Start output in column
l,next line

17 UR X Underline, reverse
i(image

18 URH X Underline,reverse
image ,highlight

19 URB X Underline,reverse
image,blink

lA URBH X Underline,reverse,
blink, highlight

lC UH X Underline,highlight
ID UB X Underline,blink
IE UBH X Underline,blink, highlight
23 U X X Underline
24 I X Invisible
25 Line feed Blank X Start output in same

column,next line
27 RH X Reverse,highlight
2B Format Blank X Set printer
35 RHB X Reverse image,

highlight, blink

(3A Page End Blank X Eject page
3B Blank X System use only
3C Blank X System use only

BASIC Language Reference 53

Character set

Character set (continued)

54 SA34-0109

Characters not displayable

Not all graphics can be displayed at the same time (see
"DISPL Y"). Characters that cannot be displayed show up as
"blobs." All graphics always print on the printer (except 1 /4,
1 /2, and 3/4 on some printers).

The following charts show which characters are not displayed
for each setting of DISPL Y. Characters that cannot be
displayed are shown in the shaded boxes.

DISPL V(1) - United States character set:

0123456789 ABCDEF

o I \ 0

- £ A J

ks,BKS2

PtsCLT3

ufDMU4

§ E N V 5

Character-set

DISPL Y(2) - Canada character set:

o A C 0

o & -•. ¢ o

E £ A

A K

3 T

4 m o M U

N V

6 o W 6

x

8 o Y B

9

A

B

c

o

+

(
DISPL Y(3) - Europe (except Spain) character set:

o 9 A C 0

& ~. o

£ A

.. B K 5

• C T 3

m o M U

N V

6 o W

x

8 HOY 8

9

A

B $ #

c

o

+

BASIC Language Reference 55

Character set

Character set (continued) DISPL V(4) - Nordic (including Iceland) character set:

o , 2 4 A c 0

& •••• o

E £ A

, 8 K S t. C T

o M U 4

N V

6 o w

x

8 H Q Y 8

9 R Z 9

A

8 #

c

o

E

DISPL V(5) - Spain (Spanish speaking) character set:

o , A C 0

& ¢ o

£ A

, K 5 2

3 • C L T 3

m D M U 4

N V 6

I·: o

x

o W 6

8 C q H Q Y 8

P iii

A

$ #

C * 15 ~

D

E +

56 SA34-0109

0 1 2 3 4 5 6 7 8

0

1
Note Note

2 1

2 I

3 .J ...L ~

4 T Note L
r 1 .,

5 -
6 + A a a a

7
....
a a c ii [< (+

8 & e A
~ f I' I i e e

9 1 $ *) 1\ - / ~ ,

10 A A A A C N I % I

(j > E A E f A

11 ? <P E E I

12 1 ...
@

,
" I/> : =

13 b c d e f g h i ~

14 d" Y 1 ± j k I m

15 0 p q r 2 Q Ie !> A.::

16 }J. '" s t u v w x y

17 i i. {) f I ® ¢ £ 'f
18 J' § 1f '!4 Y, %

---,
I

19
,. { A B C D E F =

20 H I " 0 6 '0 } 0 0

21 K L M N a P Q R I

22 ii
, , y \ S T U u u

23 W X y z 2 0 a 0 6
24 0 1 2 3 4 5 6 7 8

25 3 '" (j u u u

(-

Decimal representation of characters

9

-I

a
!

(3

A

-

f

a

~

n
, .-
p,
z

Il-
..

G

J

" u

V
....
a
9

Character set

Notes:
1. Unprintable character

2. Page advance

Use table from left to right

Examples:

~ecimal code 193 prints A
decimal code 91 prints $

The information in this

table is used with CHR$

BASIC Language Reference 57

Character variables

Character variables

58 SA34-0109

A character variable is a named item of character data whose
value is subject to change during program execution. Charac­
ter variables are named by a single letter of the alphabet,
followed by from zero to seven alphabetic or numeric charac­
ters, followed by the dollar sign $.

When the program is executed, the initial value of character
variables is set to null (zero length).

When a character expression value is assigned to a character
variable, the resulting length of the character variable is that of
the expression.

For example:

A$="ABC"

A$ is now three characters long.

.. j

The maximum length a character variable can be dimensioned "'-_/
to is 255 characters. Examples of character variables are:

A$
DATA$
NAME$
M211$

The maximum length of a character variable is 18 unless speci­
fied differently in a DIM statement (see "DIM statement").

/
!
\ . ,-_.7'

CHR$(X)

(

CHR$(X)

Returns the one-character string occupying the ordinal posi­
tion X within the native System/23 collating sequence. X must
be in the decimal range from 0 through 255. If X is outside this
range, an error occurs. The change collating sequence
Customer Support Function does not affect the result of
CHR$. For additional information, see "Character set."

Example:

10 X=247
20 A$=CHR$(X)

A$ contains "7"

BASIC Language Reference 59

CLEAR

CLEAR command

60 SA34-0109

The CLEAR command deletes the program or data file from
the work area, or cancels the active procedure(s).

fA~:A
. PROC

CLEAR a ---'1...-___

.. CLEAR to PROGRAM mode.

The syntax for the CLEAR command is as shown above,
where:

ALL clears the work area of the program or data and any active
procedure files. In effect, it puts the machine in an initial

./

power-on status. This reinitializes all system variables except \........../
TIME$ and WSID$.

DATA sets the work area to DATA mode for entering data
files on the keyboard. Data closes all files (except procedure
files) left open by the program in the work area. All contents
of the work area are erased.

PROC resets the system to keyboard input and eliminates any
active procedure file hierarchy. Closes all procedure files left
open. The contents of the work area are not erased.

If no parameter is specified, PROGRAM is the default. It sets
the work area to PROGRAM mode for program entry. This
closes all files (except procedure files) left open by the
program in the work area. All contents of the work area are
erased.

Clear display screen

(

CLEAR

The status line will display READY INPUT when the command
is complete.

CLEAR should be used whenever a new program is entered.
Otherwise, existing lines in the work area may become part of
the new program.

See "NEWPAGE" under "Print statement."

BASIC Language Reference 61

CLOSE

CLOSE statement

The CLOSE statement specifies the file to be closed. CLOSE
is executed for each active file at the end of program
execution.

r - - -,- ---,
I I

I

F. ,RELEASE ~

,FREE I
CLOSE-#file-ref -1.--___ 0.----: '----_--...&..---__

62 SA34-0109

• Keep file, maintain reserve status

II Interrupt on error unless ON is active

The syntax of the CLOSE statement is shown above, where:

file-ref is a numeric expression. See "File-reference parame­
ter."

RELEASE resets any reserve control status. See "File
sharing."

FREE frees the file if it is opened NOSHR. See "DROP/FREE
command."

error-cond line-ref specifies the line number or label that the
program should transfer to for one of the following error
conditions:

IOERR - input/ output error
EOF - end of volume

, /

(./

(-

CLOSE

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs (see "EXIT statement").

Examples

Sample CLOSE statements:

20 CLOSE #1:
30 CLOSE #2: IOERR 200
40 CLOSE #3: EXIT CLOSEXT
50 CLOSE #5, FREE: EXIT 400
60 CLOSE #6, RELEASE:

Programming considerations

• CLOSE #0 and CLOSE #255

•

•

CLOSE #0 and CLOSE #255 may be issued even if
there was no prior OPEN #0 or OPEN #255.

CLOSE #0 and CLOSE #255 may be used to ensure
that all screen and printer operations have
completed.

SEQUENTIAL

If a DISPLAY I/O file is used for both input and
output operations during execution of a single
program, the file must be closed and reopened
between input and output references.

Output last data

The output file must be closed to make sure that the
last records are written. If the diskette is removed
without a CLOSE, END, or STOP,data may be lost.

Data may be lost if, while running a program, the
5247 Disk or the computer is switched off before a
CLOSE, END, or STOP is carried out.

BASIC language Reference 63

CLOSE

CLOSE statement (continued)

CMDKEY

• Extents

Any unused portion of the file extents remains
assigned to the file after it is closed.

CMDKEY is a system variable that returns the identity of the
last key used to terminate the last INPUt or LlNPUT
statement.

• -1 is returned if no INPUT or LlNPUT was executed in
this program.

o is returned if the Enter key was used.

• 1-9 is returned if the Cmd key plus one of the numeric
keypad keys was used.

CNT r~

64 SA34-0109

CNT is a system variable that returns the number of data items
successfully processed by the last I/O statement executed.
The CNT value is set according to the following:

• CNT is set to 0 before the I/O statement starts executing.

• For INPUT, READ, and PRINT each item is counted as
one.

• For LlNPUT, the value is set to 1 if data was read.

• For MAT variables, each element is counted separately.

(
i
"".

CODE
(,-- -

- /

Commands

Comments

(

Example:

10 OPTION BASE
20 DIM A(4)
30 INPUT MAT A

•
•
• (CNT=4 if successful)
•

CNT

Note: CNT should be assigned to a variable if its value will be
printed. This is because if used in a PRINT statement, CNT
will be reset to 0 before the value of CNT is printed. Continu­
ing the above example:

40 x = CNT
50 PRINT X

CODE is a system variable that can be set by the program with
a STOP or END statement to any value 0 through 9999. It is
available to a procedure for testing with the SKIP command.

See "System commands."

See "Remarks."

BASIC Language Reference 65

CONTINUE statement

Concatenation

66 SA34-0109

CONTINUE

Sets the entire array to a constant (see "ZER and CON").

Concatenation is joining two or more character strings into
one. The symbol used for concatenation is the ampersand (&).
For example:

10 DIM A$*4
20 DIM B$*3
30 DIM C$*7
40 A$="FLOR"
50 B$="IDA"
60 C$=A$&B$
70 PRINT C$

In this example, the character string A$ is concatenated (&)
with the character string B$ to form string C$ (FLORIDA).

Another example of how to use concatenation is as follows:

10 LET A$="MIKE"
20 LET B$="//1"
30 OPEN #1:"NAME="&A$&B$&",SIZE=0,

RECL=127",INTERNAL,OUTPUT
40 CLOSE #1:

Line 30, above (using concatenation) is the same as line 1 0, in
the following:

10 OPEN #1:"NAME=MIKE//1,SIZE=0,
RECL=127",INTERNAL,OUTPUT

20 CLOSE #1:

The result of concatenation must be 255 characters or less.
For more information, see "Character expression."

(/

CONTI N U E statement

(

CONTINUE

The CONTINUE statement transfers control to the statement
following the one causing the most recent ON-condition trans­
fer or I/O exit.

CONTINUE----------t ••

CONTINUE is useful following an ON GOTO transfer or I/O
exit. If an ON event is specified to be ignored, the return
statement specification used by CONTINUE is not changed.
See "ON statement."

If a second ON GOTO or I/O exit occurs before CONTINUE is
executed, the first occurrence is lost. Avoid operations that
cause such occurrences or use ON ... IGNORE.

If no error has occurred since RUN, execution of CONTINUE
causes an error and interrupts execution of the program.

Any event that causes an ON GOTO transfer or I/O exit includ­
ing the Inq key (ON ATTN), sets the CONTINUE target line.

For a description of special handling of ON events and I/O
exits within a defined function, see "DEF,FNEND statement."

BASIC Language Reference 67

COS (X)

COS(X)

Cross reference

68 SA34-0109

Returns the cosine of X, where X is in radians. The absolute
value of X must be less than 1 E 10. For best accuracy specif'
a value for X greater than - 2*PI or less than 2*PI.

Note: For correct results, use: COS(X)=2*(COS(X/2)**2)-1.
(This note does not apply if the system release code field on
your system status line is "1.05.")

See "LIST label" under "L1ST,L1STP command."

/

", j

TNL SN34-0870 (20 May 83) to SA34-0109-2

(

Customer Support Functions

Customer Support Functions

The Customer Support Functions are supplied by IBM on disk­
ettes. For detailed information about Customer Support Func­
tions, see Customer Support Functions, Volume I and Volume
II. The Customer Support Functions are:

Select Machine Update

• Load Machine Update

Prepare Diskette

• Copy

• Display Diskette Label

• Recover Diskette

• Create Index File

Change Collating Sequence

• Replace Customer Support Function

• Prepare Sort Control File

• Sort

• List Diskette or Disk Information

List Files

• List Storage Information

The following Customer Support Functions are part of the
Communications Licensed Programs:

• Setup Asynchronous Communications

Setup Binary Synchronous Communications

• Prepare Batch Data Transfer

• Batch Data Transfer

• Asynchronous Communications Terminal

• Asynchronous Problem Information

• Binary Synchronous Problem Information

BASIC Language Reference 69

Customer Support Functions

Customer Support Functions (continued)

70 SA34-0109

• BSC Online Test

The following Customer Support Functions are for the 5247
Disk:

• Add or Delete a Volume

• Backup and Restore

• Prepare Disk

• Recover Disk

Note: Some Customer Support Functions may be called
and controlled from Procedure Files

(

~ ..

\.

/

(

Customer Support Functions

Select Machine Update-LINK SELECT

The Select Machine Update function creates a file of machine
updates to be used by the Load Machine Update function.
This must be done before the Load Machine Update features
can be performed.

Load Machine Update-LINK UPDATE

The Load Machine Update function loads machine updates
(supplied by IBM) into the system.

Prepare Diskette-LINK PREPARE

The Prepare Diskette function prepares a new diskette or
erases a used one. A new diskette cannot be used as it is
received, it must be prepared to the format required by the
system.

BASIC Language Reference 71

Customer Support Functions

Customer Support Functions (continued)

72 SA34-0109

Copy-LINK COPY

The Copy function does any of the following:

Copies an exact image of an input diskette to an output
diskette

• Copies a group of files from an input disk volume or disk-
ette to an output disk volume or diskette

• Copies a selected input file to an output file

• Copies a selected input file or group of files to the printer

• Copies all files from an input diskette to an output disk­
ette

• Compresses files by eliminating deleted records or
unused extents

Display Diskette Labels-LINK LABEL

The Display Diskette Labels function displays the contents of
the diskette labels for use in recovery procedures. The
contents of these labels can also be printed. Labels on any
access-protected diskettes cannot be displayed or printed.
See "DIR command" and "VOLID command."

, /

(

(

Customer Support Functions

Recover Diskette-LINK RECOVER

The Recover Diskette function recovers a file when a read
error occurs on the label or data portion of the file. The func­
tion will save as much of the data on the file as possible.
Accidentally freed or dropped files can be recovered even
though no read error occurred.

Create Index File-LINK INDEX

The Create Index File function creates index files for use in
accessing master data file records (see "Key-indexed files").

Change Collating Sequence-LINK COLSEQ

The Change Collating Sequence function replaces the
memory-resident collating sequence with an alternate collating
sequence. It also modifies the active collating sequence from
the keyboard.

For related BASIC subjects see:

"IF statement"
"AIDX and DIDX"
"OPTION statement"

Replace-LINK REPLACE

The Replace function finds obsolete versions of the Customer
Support Functions and replaces them with newer versions.

BASIC Language Reference 73

Customer Support Functions

Customer Support Functions (continued)

Prepare Sort-LINK PRESORT

74 SA34-0109

The Prepare Sort function defines the files, sorts fields, and
other information to be used by the Sort function. Prepare
Sort must be performed before the Sort function can be used.

Sort-sort-control-file

The Sort function performs a Record-Out Sort or an
Address-Out Sort. Record-out sort creates a new file with the
records sorted. Address-out sort creates a new file with the
address (positions) of the record in the sorted order.

List Diskette or Disk Information-LINK L1STDISK

The List Diskette function gives you information about the files
on a disk volume or diskette.

List Files-LINK L1STFllE

The List File function lets you investigate the records in a file.
It uses your answer to prompts to list records and summary
information about the records.

(.

(

Customer Support Functions

List Storage Infonnation-LiNK LlSTSTOR

The List Storage function is a tool that helps you debug a
BASIC program. It will prints and displays various parts of
storage that were previously saved on diskette by the built-in
diagnostic dump. The storage is interpreted in terms of the
BASIC program which was resident at the time of the dump.

Setup Asynchronous Communications-LOAD
SETUP.ASC

The Setup Asynchronous Communications function creates a
file containing the communications environment data. This
function must be done before Communications can be run.

Setup Binary Synchronous Communications-LOAD
SETUP.BSC

The Setup Binary Synchronous Communications function
creates a file containing the binary synchronous communi­
cations environment data. This function must be done before
Communications can be run.

Prepare Batch Data Transfer-LOAD PREBDT

The Prepare Batch Data Transfer communications function
builds a control file that directs the operation of Batch Data
Transfer.

Batch Data Transfer-LOAD BOT

The Batch Data Transfer communications function transfers
data files to and from a remote system.

BASIC Language Reference 75

Customer Support Functions

Customer Support Functions (continued)

76 SA34-0109

Asynchronous Communications Terminal-LOAD ACT

The Asynchronous Communications Terminal function oper­
ates as an interactive terminal for asynchronous communi­
cations.

Asynchronous Problem Information-LOAD
PROBLEM.ASC

The Asynchronous Problem Information communications func­
tion displays trace and statistical information from an asyn­
chronous communications session.

Binary Synchronous Problem Information-LOAD

PROBLEM.BSC

The Binary Synchronous Information communications function
displays trace and statistical information from a binary
synchronous communications session.

BSC Online Test-LOAD OL TST

The BSC Online Test function performs Binary Synchronous
Communications online tests to verify the communications
link.

, , , /

(

Customer Support Functions

5247 Disk Customer Support Functions

Add or Delete a Volume-LINK ADD.DELETE

The Add or Delete a Volume function creates a new volume on
the disk or deletes a volume from the disk.

Backup and Restore-LINK BACKUP.RESTORE

The Backup and Restore function copies disk volumes to disk­
ettes so that you can create backup files. These backup files
cannot be accessed by BASIC commands until they are
restored to the disk.

Prepare Disk-LINK PREPARE.DISK

The Prepare Disk Function prepares the 5247 Disk to the
format required by the system.

Recover Disk-LINK DISK. RECOVER

The Recover Disk Function recovers accidentally dropped or
freed files on the disk. Options are included in this function to
allow you recover from read errors on a file or on data set
labels.

BASIC Language Reference 77

Data buffering

Data buffering

78 SA34-01 09

The term buffering means storing data in an intermediate
storage area when coming or going to an I/O device.

The System/23 reserves sufficient storage to perform any
valid I/O operation, once the file has been opened. Substantial
improvements in performance can be realized by allowing (or
adding) additional storage which can be committed to the
OPEN operation. This allocation is handled automatically by
the System/23 whenever storage is available. If the size of
your program does not permit this allocation, it will still func­
tion correctly, but slower.

The maximum space used in this allocation is 512 bytes for
each file that is an index file or is being opened for relative
access.

A larger storage allocation is made for files that are open as:

• DISPLAY,INPUT

• DISPLAY,OUTPUT

• INTERNAL,INPUT,SEQUENTIAL

• INTERNAL,OUTPUT,SEQUENTIAL

• PROC

• SUBPROC

For the above type of open files the space used is the mini­
mum of the following:

• 7680 bytes for type 2D diskettes and disk files
• 4096 bytes for type 1 and 2 diskettes
• The extent size to be read
• The value of the SIZE= parameter on the OPEN for output

of the file

DATA files

('

DATA files

Type 05 (DISPLAY) files are used in the System/23 for proce­
dures, as input to programs (INPUT and L1NPUT), and for any
other data in the form of keyed input or printed output.With
System/23, you can create, view and edit DISPLAY files. To
create a DISPLAY file, enter:

CLEAR DATA
AUTO

CLEAR deletes any previous data or program from the work
area. AUTO puts a line number and colon on the input line.
Now enter any desired data, such as procedure file commands
or data. All normal editing facilities are available.

When finished, enter:

SAVE file-spec

This puts the new file on the diskette or disk. Remember to
include either a VOLID or device address in the file specifica­
tion. To edit an existing DISPLAY file, enter:

LOAD file-spec, DATA

Next, edit the file as usual, then enter:

REPLACE

For additional information see, "CLEAR command" and
"Editing a program."

BASIC Language Reference 79

DATA files

DATA files (continued)

DATA statement

80 SA34-0109

The following BASIC program prints the DATA file (type 05)
on the system printer. ~

10 DIM LINE$*255
20 OPEN #1: "NAME=file-spec", DISPLAY, INPUT
30 LOOP: LINPUT #1:LINE$ EOF QUIT
40 PRINT #255: LINE$
50 GOTO LOOP
60 QUIT: STOP

The DATA statement creates an internal data table. The data
table constants are assigned to the variables and/or array
elements by the READ statement (see "READ statement").

~num-constantJ
DATAn I---r----i ••

I char-constant
I I L ____ , ____ .J

The syntax of the DATA statement is as shown above, where:

num-constant is any numeric value (see "Arithmetic constant"
under "Arithmetic data").

char-constant is any character string value. The character
string may be quoted or unquoted. In the quoted character
string, any characters are allowed. In ttie unquoted character
string, leading and trailing blanks are ignored, commas and
quotes are not allowed.

When program execution begins, a pointer is set to the first
constant in the table. The pointer advances as data is read by C"

, /

(/

(

(

DATA

the READ statement. (The RESTORE statement may be used
to restore the pointer to the first constant.)

Example

100 OPTION BASE 1
110 DATA "DEBIT",21.60,"CREDIT",15.40
120 DATA MONTH, DAY, YEAR
130 READ A$,N,B$,C
140 DIM Z$(3)
150 READ MAT Z$

Programming considerations

• Too few values

•

•

If the DATA statement does not contain enough
constants for the READ statement issued, an EOF
error is generated.

Character data

Character data does not have to be enclosed in
quotation marks unless leading blanks, embedded
commas, or lowercase characters are significant.
Unquoted lowercase letters and graphic characters
are converted to uppercase.

Numeric data

- Numeric values may be accessed and read as either
a numeric or character value.

• Remarks

A remark is not permitted on DATA statements. It is
interpreted as part of the data.

BASIC Language Reference 81

DATE

DATE command

DATE$

Declaring arrays

82 SA34-0109

The DATE command assigns the specified date to the system
variable DATE$. ."

DATE-vv/mm/dd •

The syntax of the DATE command is shown above, where:

YY is in the range 00 to 99mm is in the range 01 to 12dd is in
the range 01 to 31

An example of the DATE command with a remark is:

DATE 81/01/01 ! Happy New Year

DATE$ returns an eight character string that is set by the
DATE command. When power to the computer is switched on,
DATE is set to (1)1>/1>1>/1>1>).

The date is not updated by the system.

See "DIM statement."

DEF,FNEND

DEF,FNEND statement

DEF

The DEF statement is used to define an arithmetic or character
valued function for reference elsewhere in the program. The
FNEND statement indicates the end of a multiple-line
function. The syntax of the DEF statement can be either a
one-line or multiple-line function.

One-line function

r------'---i

L[arith-var * ;J-LI
([length_ I)

[char-var J
FNname--~-------------IIE~--------------~----- arith-expression------,

FNnamE$

[*Iength]

II

,--- '-----,
* length I i[arith-var I

[' ,h"-,,, ~ ;JiIJ

.. No input parameters

II Length is 18

char-expression

The syntax for the one-line function is shown above, where:

FNname is any valid variable name. This name, preceded by
the letters FN is the name of the defined function. For charac­
ter valued functions, this name must be followed by the dollar
sign $.

BASIC Language Reference 83

DEF,FNEND

DEF,FNEND statement (continued)

84 SA34-0109

length is the length of the character variable used as input or
output. The length may range from 1 to 255 characters.

\

arith-var is an arithmetic variable name to which a value ia
assigned when the function is called.

char-var is a character variable name to which a value is
assigned when the function is called. Values assigned to the
character variable cannot exceed the maximum length of vari­
able, or loss of data will result.

arith-expression is an arithmetic expression that specifies the
value to be returned for the function. If the function name is
an arithmetic variable, an arithmetic expression must be speci­
fied. See "Arithmetic expressions."

char-expression is a character expression that specifies the
value to be returned for the function. If the function name is a
character variable, a character expression must be specified. ('
See "Character expressions." "j/

Example one-line DEF statements

Arithmetic function:

120 DEF FNA(R)=2*R+100

Character function:

120 DEF FNA$ (R)=STR$ (R+5)

DEF

(

DEF,FNEND

Multiple-line function

r------'---i

1 I"'''''' ':JJl (~ [lengt I)
char-va, II

FNnam~~~----------"--------------~-----------------------'

I---'---~

.l[""h'"
char-va, [" ""''';iJl,

FNnam~~---II---~L-----------~r-------------~--------------~

.. No input parameters

II Length is 18

The syntax for the multiple-line function is shown, where:

FNname is any valid variable name. This name, preceded by
the letters FN, is the name of the defined function. For charac­
ter valued functions, this name must be followed by the dollar
sign.

BASIC Language Reference 85

DEF,FNEND

DEF,FNEND statement (continued)

86 SA34-0109

length is the length of the character variable used as input or
output. The length may range from 1 to 255 characters.

arith-var is an arithmetic variable to which a value is assigned
when the function is called.

char-var is a character variable to which a value is assigned
when the function is called. Assigned values for the character
variables cannot exceed the maximum length of the variable.

The LET statement assigns the value of an expression as the
result of the function.

The FNEND statement is descriptive and indicates the end of a
multiple-line function. The value of the function is specified in
an expression in the LET statement.

DEF,FNEND

Example multiple-line DEF statement

10 LET A=5
20 LET B=2
30 LET C=-5
40 DEF FNA(X,Y)
50 IF X > 0 THEN LET FNA=X+Y ELSE LET FNA=X-Y
60 FNEND
70 LET D = FNA(A,B)
80 LET E = FNA(C,B)
90 PRINT D,E

When the statements in this example are executed, D will have
a value of 7 and E will have a value of -7.

BASIC Language Reference 87

DEF,FNEND

DEF,FNEND statement (continued)

88 SA34-0109

The use of functions

When a user defined function reference appears in an execut­
able BASIC statement, any expressions that follow the func­
tion name must be separated by commas and enclosed in
parentheses. These expressions are evaluated and passed by
the system to the user function in order to initialize the corre­
sponding variables in the DEF statement. These values must
agree in number, length, and type with the corresponding vari­
ables in the DEF statement. If the DEF expression is present,
the function is defined on the same line and its value is the
value of that expression. This is a one-line function. If no
expression is specified in the DEF statement, the DEF state­
ment is the start of a multiple-line function. In this case, the
FNEND statement indicates the end of the function and the
value of the function is specified by the value of the variable
FNname assigned in the LET statement.

(.. ~

(

(,

DEF,FNEND

Programming considerations

• Use of functions

A function reference to a user-defined function may
appear anywhere in a BASIC program that a
constant, variable, subscripted array element refer­
ence, or system function reference can appear (see
"Arithmetic expressions").

• Location

- A function can be defined anywhere in a BASIC
program, either before or after it is referenced.

• Name localization

•

The variables named in the DEF statement are local
to the function. Consequently, it is possible to have a
variable in the DEF statement with the same name as
a variable used elsewhere in the program. Each vari­
able is recognized as being unique, and no conflict of
names or values results from this duplicate usage. All
variables which are not DEF arguments have the
same value and meaning for all statements.

Assigned value

The value of a defined function is assigned when the
function name appears to the left of a LET statement
and the corresponding defined function is referenced
in the program.The LET statement usually appears
within the defined function. The value may also be
defined as a result of another defined function refer­
ence, a GOSUB, GOTO, ON-condition transfer or an
I/O error exit. For example:

BASIC Language Reference 89

DEF,FNEND

DEF,FNEND statement (continued)

90 SA34-0109

10 LET A=FNA+R
20 DEF FNA
30 F=10
40 IF F>6 THEN R=FNB ELSE FNA=30
50 FNEND
60 DEF FNB
70 FNB=60
80 FNA=90
90 FNEND
100 Print A

The result of this program is: A=150.

On CONDITION localization

When execution of a multiple-line defined function
begins, all ON CONDITION settings are stacked and
set to SYSTEM. New settings for the ON CONDI­
TION may be specified within the function. If an ON
event occurs within the function and the specification
is IGNORE, it will be ignored. If the specification is
GOTO, the transfer will occur, and the function will
remain active. CONTINUE and RETRY will return
execution to the appropriate line within the function.
If SYSTEM is active, the function execution is aban­
doned. The ON conditions are unstacked and
whatever was specified for the event preceding the
current function will occur (IGNORE, SYSTEM,
GOTO).

Bypass function

After control is passed to a DEF statement without
reference to the function, control goes to the first
executable statement following the function defi­
nition (the DEF statement for one-line functions, or
the FNEND statement for multiple-line functions).

Cmd/ Attn

If Cmd/ Attn is pressed during the execution of a
defined function, execution is interrupted. If Error

•

DEF,FNEND

Reset is pressed, execution of the function will
resume normally. If Cmd/Error Reset is pressed the
function is abandoned and the system enters split
screen mode at the line which invoked the defined
function.

I/O exits

Inq

Exit clauses specified in I/O statements within a
multiple-line defined function causes the specified
transfer of control when the event occurs. The func­
tion remains active and CONTINUE and RETRY will
return to the appropriate line within the function.

If the Inq key is pressed during execution of a
defined function, it is ignored until all executing,
defined functions are finished. At that time, the ON
action specified prior to entering the function,
occurs. (IGNORE, SYSTEM, GOTO).

Single definition

- A function of a given name can be defined only once
in a given program.

• Recursion

A function cannot contain references to itself or to
other functions that refer to it.

BASIC Language Reference 91

DEF,FNEND

DEF,FNEND statement (continued)

92 SA34-0109

• FOR/NEXT

- A FOR/NEXT loop beginning in a function must also
end in the same function.

• Nesting

- DEF function definitions cannot be nested.

Input/Output

User-defined functions that are referred to during an
input or output operation cannot themselves perform
any input or output operation.

• Modification of variables

If a function definition alters the value of a variable
that is referenced in the same statement that calls
the function, the results may not be as expected.

Termination

A program may not be terminated when a defined
function is still in execution. An FNEND must be
issued for each invoked DEF before the program
ends.

EXIT and FORM

EXIT and FORM statements inside a multiple-line
DEF function can be referenced from outside the
function; those outside the function can be refer­
enced from inside a DEF function.

Be sure that the first line of a multiple-line function (DEF)
is not the last line of the program.

DEL command

(

(

DEL

The DEL command deletes one or more consecutive lines from
a BASIC program or DATA work area.

J:ine-numJ

DEL-first line-num .. •

• Delete only one line number

The syntax of the DEL command is shown above, where:

first-line num is a number specifying the first line number of
several consecutive line numbers to be deleted. It may also be
the only line number to be deleted.

last-line num is a number specifying the last line number of
several line numbers to be deleted.

The numbers used in the first-line and last-line numbers must
be integers in the range of 1 through 99999. The first-line
number must be less than the last-line number.

No additional storage becomes available as a result of using
the DEL command. The additional storage will become avail­
able when the program is saved in SOURCE format and
loaded.

BASIC Language Reference 93

DEL

DEL command (continued)

94 SA34-0109

Example

To delete line 20 from a program or data work area:

DEL 20

To delete lines 20 through 90 from a program or data work
area:

DEL 20,90

If line 20 or 90 does not exist in the workspace, then the range
of lines that do exist between 20 and 90 will be deleted. If no
line exists, an error is presented.

Programming considerations

• Comments should not be used after the DEL command.

DELETE statement

DELETE

The DELETE statement deletes either the last record read from
the file or the record specified by the position specification.
After the record is deleted, the file is positioned to a location
immediately following the deleted record.

----,--~ I I
, R EC;arith-expressio error-cond line-ref

, KEY;char-expression EXIT line-ref---I

DELETE-#file-ref-L----IIt---.....L- -..L...---6_---..L...---II

• DELETE last record accessed READ/REREAD

II Interrupt on error unless ON is active

The syntax of the DELETE statement is shown, where:

file-ref is a numeric expression (see "File reference
parameter").

REC=arith-expression specifies that the record having a record
number equal to the arithmetic expression is to be deleted.

KEY=char-expression specifies that the first record in the file
having a key equal to the character expression is to be deleted.

error-cond line-ref is the error action for one of the following:
NOREC, IOERR, or NOKEY

For information on the error actions, see "EXIT statement."

BASIC Language Reference 95

DELETE

DELETE statement (continued)
,

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

Example

A sample DELETE statement is shown here:

80 A$="ZEPOL"
90 DELETE #8, KEY = A$:

In this example, the first record with a key field equal to
ZEPOL is deleted.

Programming considerations

• The file must have been opened as INTERNAL, OUTIN.
The file organization may be SEQUENTIAL, RELATIVE, or
KEYED.

• The SEARCH parameter is not permitted.

• If no KEY or REC parameter is specified, the previous
access to this file must have been a successful READ or
REREAD statement.

Descending index (MAT assignment)

See "AIDX and DIDX."

96 SA34-0109

(
~ 7

(.

(

Device address

Device address parameter

Computer

D,t,f JJ

-~ 11 ~
Feature printer

Disk unit

Many BASIC statements and system commands require entry
of a device address parameter. This address identifies the
input/ output device being used. Valid device addresses (in
decimal) for System/23 are:

1 Diskette drive 1

2 Diskette drive 2

3 Diskette drive 3

4 Diskette drive 4

5 5247 Disk unit

10 Printer

11 Feature printer

40 Communications

See "OPEN statement," and "File specification parameter."

BASIC Language Reference 97

Device sharing

Device sharing

98 SA34-0109

Sharing the 5246 Diskette Unit

Device sharing with the 5246 Diskette Unit means that two
5322 Computers are connected to the same 5246 Diskette
Unit and both have different open files on the 5246. This situ­
ation is handled entirely by the system and never produces any
new logical or data integrity questions.

The 5246 can only service one computer at a time and thus
each computer may experience additional waiting time when
the other computer is already using the 5246. For this reason,
only data that is to be shared by both computers should be
located on the 5246. Files that are to be used only by one of
the computers should be located on that computer's built-in
drive.

After you switch on power, an attempt is made to access the
5246 to establish its presence and the computer work station
identification (WS I D$).

If the 5246 is in use by the other computer, +0 appears on
the status line. In this case, the operator may simply wait
for the 5246. If the operator does not wish to wait, then
he may press Cmd/ Attn, producing an action code 21
and error code 6009. ERROR RESET will now return the
computerr to waiting for the 5246.

Cmd/Error Reset terminates the wait. The 5246 becomes
logically detached from the computer and all future refer­
ences to it will cause an error 4153 (device not attached).
To attach the 5246, you must now switch the computer
off and on again, with the 5246 power switched on.

• If the 5246 is not switched on, action code 21, error code
6009 is displayed. To attach the 5246, switch it on and
press Error Reset. If the 5246 is not plugged in or has a
blown fuse, action 21, error 6009 will reappear. To

(/

(

Device sharing

continue to work without the 5246, press Cmd/Error
Reset.

The state of the shared 5246 is shown on the status line in
columns 53 and 54 by the following codes:

• blank-The 5246 is not required by this computer.

• +0-The other computer is currently using the 5246, or the
5246 was switched on before the computer, but is now
switched off; this computer is waiting to use it. If the
5246 is switched on and you wish to wait for it, ---DO
NOTHING---.

• +1-This computer is now using the 5246.

When the computer is waiting to use the 5246 (+0), the opera­
tor may interrupt this wait with Cmd/ Attn. To continue with
the original operation, press Error Reset. To end the current
operation with I/O error 6009 or 6011, press Cmd/Error
Reset. The latter action ends a a program (with GO END) or
command if the other computer will be using the 5246 for a
long time.

If the program has open files when you do this, data may be
lost.

For some operations, multiple I/O accesses may be attempted
following the interrupt of the +0 wait. After the first
Cmd/ Attn, Cmd/Error Reset cycle, another +0 may appear.
Continue with the Cmd/ Attn, Cmd/Error Reset cycle until the
+0 is cleared.

Share and Reserve status may be left on for the file which was
being accessed. Use the PROTECT command to remove them.

Pressing Hold while +1 is displayed, stops the 5246 and
prevents the other computer from using it.

BASIC Language Reference 99

Device sharing

Device sharing (continued)

100 SA34-0109

The 5246 is also unavailable for the duration of an action code
10 (waiting for diskette to be inserted), if drive 3 or 4 or no
drive is given in the file specification. This will also occur if the
diskette contains an open file, the diskette has been removed,
and is now required.

Each of the two cables connecting a computer to the 5246
identifies the connected computer with respect to the use of
the 5246. This identification is provided through the WSID$
system variable.

If the computer is connected to cable 1, or is not attached to
the 5246, or the 5246 power is off when the computer is
switched on, then WSID$="01"

If the computer is connected to cable 2 and the 5246 was
switched on before the computer, then WSID$="02" WSID$
is useful in establishing unique file names when the same
application is running in both computers.

The following Customer Support Functions secure the 5246
Diskette Unit while they are running:

Prepare Diskette

Copy (image copy only)

• Recover Diskette

Display Diskette Label

See also "File sharing" for information on the simultaneous
use of the same file by two different opens.

(/

(

Device sharing

Sharing the 5247 Disk Unit

The 5247 Disk Unit lets up to four computers share informa­
tion. Sometimes you may have to wait, if the information you
wish to use is in use by another computer. The length of the
wait depends upon what the other computer is doing to the
information.

To find out if another computer is using the disk, look on the
status line in columns 56 and 57. These columns are blank
when you are not using the disk. Whenever you request to use
the disk, the computer reports the sharing status by displaying
either a *1, *2, *3,or *4 in columns 56 and 57.

*1

*2

*3

*4

Your computer is requesting to use the disk. No
action is required of you.

Another computer has exclusive use of the disk.
You will not be able to use it until the other
computer has completed its operation.

If you cannot wait for the disk to become
available, press the CMD / Attn key and then press
the CMD key and the Error Reset key. This clears
the *2 from the status line. Note, however, that
this is not recommended as a normal procedure as
data may be lost. Error Reset returns the system
to waiting.

The disk is processing a request from a computer.
No action is required of you.

Another computer is using the file that you are
requesting to use. In this case, the other computer
will not allow you to share the file.

If you cannot wait for the locked file to become
available, press the Cmd/ Attn key and then press
the Cmd key and the Error Reset key.This clears
the *4 from the status line. Note, however, that
this is not recommended as a normal procedure,

BASIC Language Reference 101

Device sharing

Device sharing (continued)

DIDX (array name)

Dimensioning arrays

102 SA34-0109

as data may be lost. Error Reset returns the
system to waiting.

See also "File sharing," "RESERVE statement" and "OPEN
statement" for information on the simultaneous use of the
same file.

DIDX returns an array containing the descending index of the
source array. See "AIDX and DIDX" Also see "OPTION
statement" (COLLA TEl.

See "DIM statement."

DIM statement

(

DIM

The DIM (dimension) statement specifies the maximum size of
arrays and character variables, and their original dimension.

DIM

r' cotumnsl

arith-array-name (rOwsl-a--J-) ------,

r' cotumnsl

char-array-name (rows-1--.a--L) ~-""f--'--+-""T""--__

char-var-name ___ .L...--I"'~ ______ -'

I
I
I
I
t

I I L ______________ , __________ -l

.. One-dimensional array (vector)

• Defaults to length of 18

The syntax of the DIM statement is shown above, where:

arith-array-name is an arithmetic array to be dimensioned.

char-array-name is a character array to be dimensioned.

char-var-name is a character variable to which a length will be
assigned. .
rows and columns are integers specifying the dimensions of
the arrays (highest subscript(s)). One dimensional arrays
require only the row entry. Two dimensional arrays require
both the row and column entries separated by a comma. For
example:

10 DIM A(20,25)

BASIC Language Reference 103

DIM

DIM statement (continued)

104 SA34-0109

length is the maximum length of a character scalar, or the
maximum length of each element of a character array. This
value may be from 1 to 255. If length is not specified, the
default maximum length is 18 characters.

The initial value of each arithmetic array element is zero. Each
character array element is initialized to null (zero length). This
initialization takes place when the array is first referenced.

Declaring arrays

Arrays can be declared either by using the DIM statement or
by a reference to an element of an array that has not been
declared.

When an array is declared by using the DIM statement, the
dimension and maximum number of data items are specified in
the DIM statement. For example:

20 DIM A(10)
30 DIM WEEK$(6)*9

Statement 30 dimensions the array named WEEK$ to use the
seven array elements WEEK$(O) through WEEK$(6). The
maximum length of each element is nine characters.

If OPTION BASE 0 is in effect, statement 20 dimensions the
array named A to use 11 array elements A(O) to A(10).

,
When an array is declared by a reference to one of its
elements, it is one- or two-dimensional, based upon its use.lt
has 10 elements in OPTION BASE 1 and 11 elements in
OPTION BASE O. For more information, see "OPTION state­
ment." For example:

40 A(3) = 50

/'

\,,--./

(
I
'",-.

('\

(

DIM

establishes a one-dimensional array containing 10 elements, if
OPTION BASE 1 is in effect, the third element A(3) has an
integer value of 50, and the remaining elements have values of
.zero.For example:

50 WEEK$(O)=ISunday"
60 WEEK$(3)=IWednesday"

Arrays requiring more than 10 elements (BASE 1) or 11
elements (BASE 0) must be declared explicitly.

An array can be declared by a DIM statement only once in a
program.

If an array or character variable is passed as a parameter by
the CHAIN statement, it must be declared in a DIM statement
in both programs, and the same size must be specified.

For more information see:

• "Character arrays"

"Arithmetic arrays"

• "Substring referencing"

BASIC Language Reference 105

DIM

DIM statement (continued)

106 SA34-0109

Example

A sample DIM statement is shown:

10 OPTION BASE 1
20 DIM A$(5)*20,B(4,2)
30 LET X = LEN(P$) ! x is 0
40 LET P$= "ABCDEFGHIJKLMNOPQR"

The result of the DIM statement is:

A$ is a character array with five elements (one-dimensional
array); each element has a maximum of 20 characters. All five
elements are initialized with a length of zero.

B is an array of four rows and two columns (two-dimensional
array).

P$, which is not declared in any DIM statements defaults to a
maximum of 18 characters and is intialized with a length of
zero. Statement 40 changes its length to 18.

(

"'--

(

(

(

DIM

Programming considerations

• Redimensioning

If you want to change the size of an array during
execution time. redimensioning can be used. Howev-
er. the array is allocated to its full dimensioned size
when first referenced. The storage will be reused
when redimensioning occurs. Another technique is to
create a procedure file to edit a DIM statement into
the program. For example:

LOAD file-spec
10 DIM A$(59)*33
RUN
•
•
•

See "Redimensioning."

• ·Zero

- If a length of 0 is specified. it is interpreted as the
default length of 18.

• Duplicate DIM

An array or character variable cannot appear in a
DIM statement if it has already been defined in
another DIM statement.

• The maximum value that can be specified for row or
column is 9999. If sufficient storage in the work area is
available. the maximum size of an array is 65534 (see
"Storage use").

BASIC Language Reference 107

DIR

DIR command

108 SA34-0109

The DIR command lists a directory of file information. One
line of information for each file is printed or displayed by the
computer.

Using the DIR command when you do not have a 5247
Disk Unit

J:RINTJ DIR- device-id D •

.. Displays the directory on the screen

The syntax of the DIR command, when you do not have a
5247 Disk Unit is shown above, where:

device-id specifies which diskette drive is to have its files list­
ed. The devices are 1, 2, 3, and 4 (see "Device address
parameter").

• Diskette drive 1

• Diskette drive 2

• Diskette drive 3

• Diskette drive 4

PRINT specifies that the listing be printed (device address 10).

/

(
I

"'-..

('

(

DIR

The listing can be interrupted by pressing the Hold key once.
To continue with the listing press the Hold key once again. To
terminate the commands press the Cmd/ Attn key. Since prin­
ter operations overlap other System/23 operations, after
pressing the Cmd / Attn key, the printer will print the data
remaining in the print buffer.

BASIC Language Reference 109

DIR

DIR command (continued)

110 SA34-0109

Example

The following information is displayed about each diskette.

.. The VaLID (volume identification) of the diskette

II The diskette type (1, 2, 20)

II The number of bytes not used by files on diskette

II The number of available files

II The number of defective sectors

II The physical record size

Additionally for each file on the diskette, DIR will display:

II File type (see "Diskette file types")

II filename (see "File specification parameter")

II Number of bytes allocated to the file

/

II Number of bytes of data in the file ./~-~

III The number of extents in the file '" j

II Protective information; P means protected, Read only
allowed

The following are File Sharing Status:

II Station 1 Open status

II Station 1 Reserve status

II Station 2 Open status

II Station 2 Reserve status

DIR

DIR 1

(D II II II II II
CONKLN 2D 0910336 0046 0000 512

05 AUTO 0001024 0000512 0001

05 FAIRWAY 0003072 0003072 0005

05 FSP.SOURCE 0001536 0001024 0001

09 ANIMATE 0008192 0007168 0001

05 PROC1 0000512 0000512 0001

05 DEMO 0000512 0000512 0001 lSI

07 FILE.IND 0000512 0000512 0001

05 CH 0002048 0001024 0001

05 MAKE. SCREEN. SRCE 0002048 0001024 0001

04 NEWFILE 0004096 0000972 0001 P

(05 SCREENl 0004096 0002048 0001

05 NEWINDEX 0000512 0000512 0001

05 FSP.TEST 0004096 0001024 0001

05 BUILD.MURPHY 0001024 0000512 0001

05 MURPHY. FIX 0004096 0001024 0001 aSH aSH

05 MURPHY 0003584 0002048 0001024 0001 ISH

04 MURPHY.FILE 0025088 0024920 0001

04 SCREEN. FILE 0020480 0020480 0001 NS

05 SCREEN 0002560 0001536 0001

II II II 1m III If) III III 1m

BASIC Language Reference 111

DIR

DIR command (continued)

112 SA34-0109

The five types of file-sharing are:

NS - opened no share
ISH - opened for input, SHR
lSI - opened for input, SHRI
aSH - opened for output, SHR
OSI - opened for output, SHRI

The preceding information is displayed for System/23 type
diskettes (type Z) and BX and HX diskettes. For diskettes
containing BX or HX files, the volume information (first line)
will contain only VaLID, diskette type, and physical record
size. File information will not contain sharing or reserve status.
If other diskettes conforming to IBM diskette data format are
used, only the VaLID and FILEID are accurate. The rest of the
information will be unpredictable.

(/

(

DIR

Using the DIR command when you have a 5247 Disk
Unit

device-id

/ldevice-id ----------1
/VOLID ---------......

/VOLID/device-id -------1 , PRINT

DIR , filename/VOLID -------+ -----"--......
filename/VO LI D/device-id -----I

filename//device-id -------1
partial filename*/VOLID -----t

partial filename* /VO U D/device-id

partial filename* /ldevice-id ___

The syntax of the DIR command, when you have a 5247 Disk,
is shown above, where:

device-id or / /device-id lists all the files in the specified drive
number. The devices are 1,2,3,4 (diskette drives) and 5 (disk
unit). If drive 5 is specified, the. list will show all the files on the
first volume only of the disk. See "Device address parameter"

BASIC Language Reference 11;3

DIR

DIR command (continued)

114 SA34-0109

/VOLID lists all the files in the specified volume. See "VOLID
command" and "File searches."

/VOLID/device-id lists all the files in the specified volume of
the specified drive number.

filename/VOLID gives a line of information for the named file
on the specified volume.

filename/VOLID/device-id gives a line of information for the
named file on the specified volume of the specified drive
number.

filename/ /device-id gives a line of information for the named
file in the specified drive number. If drive 5 (disk unit) is speci­
fied, the information for the file is from the first volume only on
the disk.

partial filename * /VOLID lists all the files that begin with the
same letters specified, on the specified volume. For example,
DIR SET* /VOLOO2 lists all the files on VOLOO2 that begin with
the letters SET.

partial filename*/VOLID/device-id lists all the files that begin
with the same letters specified, on the specified volume of the
specified drive number.

partial filename*/ /device-id lists all the files that begin with
the same letters specified, in the specified drive number. If
drive 5 (disk unit) is specified, the list of files is from the first
volume only on the disk.

PRINT specifies that you want the listing to be printed.

(- '

• fJ II
VOL001 30180864
10 COpy
04 FILE.ONE
05 FILE. TWO
09 PROGRAM. FILE
04 FILE3
05 FILE4
04 FILE. INTERNAL
04 INTERNAL.FILE

fJ iii

(

(

DIR

Example

DIR device-id

II II II III II 1m 1m m
0091 0000 512

00030208 00030208 0001 lSI
00024576 00016200 0045 ISH OSI OSI
00024576 00015872 0045 OSH 2
00002560 00002560 0001 P
00002048 00000000 0001 OSU
00005120 00000512 0001 ISU 4
00003584 00000957 0001 1*
00002048 00000000 0001 NS

II 1m m m 1m

The screen displays the following information about each disk­
ette (if drive 1,2,3, or 4 is specified) or for the first volume on
the disk (if you specify drive 5) or for the volume specified if
the VOLID parameter is used.

D The VOLID of the disk volume or diskette.

II The diskette type (type 1 ,2,or 20). This field is blank
when the volume is on the disk.

• The number of available bytes on the disk volume or disk­
ette.

.. The number of available files on the diskette. For disk
volumes, this is the number of file labels available in the
current allocation. When all file labels in the current allo­
cation are used, an attempt is made to allocate 100 more.

BASIC Language Reference 115

DIR

DIR command (continued)

116 SA34-0109

If space is available on the disk, this will be successful
until a volume contains 9998 files.

II The number of defective sectors on the diskette. This
number does not apply to volumes on the disk.

II The physical block size.

For each file on the disk volume or diskette, DIR displays:

II The file type (see "File types").

II The filename (see "File specification parameter").

II The number of bytes allocated to the file.

m The number of bytes of data in the file.

II The number of extents in the file.

II File protection information: a P in this field means that the
file is protected and READ only is allowed.

The following fields show the file sharing information for each
file:

111 The file-sharing information for computer #1. If the
volume is on the disk, file-sharing information for the
computer you are using.

III The RESERVE sharing information for computer #1. If the
volume is on the disk, the RESERVE sharing information
for the computer you are using.

II The file-sharing information for computer #2. If the
volume is on the disk, the most restrictive sharing infor­
mation for the other computers using the file. If the field
is blank, no other computers are using the file.

II The RESERVE sharing information for computer #2. If the
volume is on the disk, the most restrictive RESERVE
information for the other computers reserving the file. If
the field is blank, no other computers are using the file.

DIR

II Which computer has a RESERVE statement in effect for
the file. If blank, no RESERVE is in effect. This field
applies only to files on the disk.

II An asterisk indicates that the file was not closed properly.
This field applies only to files on the disk.

The seven types of file-sharing are:

lSI The file is opened for input and will allow other OPEN
statements for input.

ISH The file is opened for input and will allow other OPEN
statements for input or output.

OSH The file is opened for output and will allow other OPEN
statements for input.

OSI The file is opened for output and will allow other OPEN
statements for input.

ISU The file is opened for input and will allow other OPEN
statements for input or output.

OSU The file is opened for output and will allow other OPEN
statements for input or output.

NS The file is open and will not allow others to share it.

For related information see:
"File sharing"
"PROTECT command"
"OPEN statement"

BASIC Language Reference 117

DIR

DIR command (continued)

DISPLAY

118 SA34-0109

"FREESP"
"Prepare diskette" under "Customer Support Functions"

Display files and data

Display, as a type of data, refers to the input and output of
data that can be printed or displayed. This includes transfer of
data to or from devices such as the keyboard, display, printer,
diskette and disk. While DISPLAY I/O may be performed to or
from files, data is transfered in a format similar to that for
display devices. The same format is used for BASIC source
programs and procedure files on a diskette or on the disk.

Display files are accessed by:

• CLOSE (optional for diskette, disk, and system printer)

• INPUT

• LlNPUT

• LOAD (SOURCE or DATA)

• OPEN (DISPLAY) (optional for the display and system
printer)

• PROC

• PRINT

• REPLACE (SOURCE or DATA)

• RESTORE

• SAVE (SOURCE or DATA)

• SUBPROC

(

(/

(

Example

This example directs program output to a selected device.

10 PRINT "Choose one:"
20 PRINT" 1 Printer output"
30 PRINT" 2 Feature printer"
40 PRINT" 3 Diskette output"
50 INPUT CHOICE
60 IF CHOICE = 1 THEN FILEID$ = "//10"
70 IF CHOICE = 2 THEN FILEID$ = "//11"

DISPLAY

80 IF CHOICE = 3THEN FILEID$ = "SAVE.REPORT//l, SIZE=O"
90 N$ = "NAME="

100 OPEN #1: N$&FILEID$,DISPLAY,OUTPUT
110 PRINT #1: "First line of report"

•
•
•

500 CLOSE #1:

If the operator keys a 1, in response to INPUT statement 50,
the output is directed to the system printer. If 2, the output is
directed to the feature printer. If 3, the output is directed to the
diskette.

BASIC Language Reference 119

DISPLY(X)

DISPLY(X)

DROP/FREE command

120 SA34-01 09

DISPL Y returns the value (1-5) of the current character group
for the display. The X parameter, which is optional, is used to
set the new page (see "Character seC).

1 U.S.A
2 Canada
3 Europe, except Spain
4 Nordic, including Iceland
5 Spain, Spanish speaking countries

The DROP command sets a file to the empty state, which sets
the end of data pointer equal to the beginning of the file. The
file space remains allocated.

The FREE command specifies that the file space reserved for
the file is to be freed and may be allocated to another file. The
file is no longer accessible after a FREE command.

For more information, see "Recover Diskette," "Recover
Disk," under "Customer Support Functions," and "CLOSE
statement."

Data is not modified on the file by either the DROP or FREE
command. If security is required, the file may be written over
by a BASIC program before you enter a DROP or FREE
command.

(

(

DROP/FREE

DROP- file-spec •
FREE-- file-spec •

The syntax of the DROP/FREE command is shown above,
where:

file-spec is the filename, optionally followed by the VOLlD, or
device-id (see "File specification parameter") The file must
not be opened when DROP or FREE is issued and must not be
reserved by another station in a multi-station System/23.

Use FREE if you want to change the record length of an
INTERNAL file.

Use the Copy Customer Support Function to compress unused
space from the file (see "Customer Support Functions").

Any attempt to drop an index file will cause an error; use
FREE.

Example

FREE FILEA

BASIC Language Reference 121

Dynamic file
Dynamic file extension

122 SA34-01 09

The creation of a System/23 type file requires the specifica­
tion of an initial amount of space to be allocated to the file.
The OPEN statement obtains this value from the SIZE parame­
ter. (The SAVE command computes this value based upon the
approximate size of the work area to be saved.) If at any time
additional space is required because the original specification
was too small, System/23 will automatically add additional
space (called "extents" to the file (except as noted below and
in "Diskette file size"). Each additional extent is 10% of the
initial allocation rounded up to the next increment of 512. Up
to 99 extents can be added to a file. If even more space is
required, the file must be copied by the Copy Customer
Support Function into fewer extents. For 5247 Disk files, allo­
cations for space that fall adjacent to the last extent of the file
are merged and a new extent is not created.

Note: If FORMAT=BX or HX is specified on an OPEN
INTERNAL statement, the file created will not be extended
beyond its initial allocation. BX and HX type files are invalid for
5247 Disk files. Z is the only format supported.

See also"DIR command" "Data buffering," "OPEN
statement," "File size"

(

(

Editing

Editing a program or data file

Adding statements

You can add statements in the work area by entering a line
number and a statement any time while your program is in the
work area. The following may not be added while a program
in execution is interrupted: DIM statement, OPTION
statement, FOR statement, or NEXT statement.

Changing line numbers

You can change the line numbers in a BASIC program by
entering the RENUM command. RENUM changes the line
numbers to 00010,00020,00030, etc. See "RENUM."

Deleting statements

Enter DEL followed by a line number, or DEL followed by the
first and last line numbers of consecutive statements. See
"DEL command"

Replacing statements

You can replace one statement with another by entering the
new statement with the old line number. You can enter it by
editing the old line or entering a new line. The following
statements cannot be changed while a program in execution is
interrupted: DIM, OPTION, FOR, and NEXT.

several commands and BASIC statements can be entered by
using the Cmd key and a special key. You should refer to your
Keyboard Aids and 'The keyboard" in your Operator Refer­
ence fora complete list of special keys.

BASIC Language Reference 123

Editing

Editing a program or data file (continued)

ELSE

END statement

124 SA34-0109

Programming considerations

• Editing does not reduce the size of a program.

• If extensive editing is performed, the work area may fill up
and an error will occur; save the program in source format
and then load it. If a label is deleted, its absence will not
be detected until it is referenced when the program is
running.

• If the program exists on a file, do a REPLACE (see
"REPLACE command").

• Editing the line following a GOSUB while a program in
exe_cution has been interrupted may cause unexpected
results when program execution resumes.

See "IF, THEN, ELSE statement."

The END statement specifies the end of a BASIC program and
ends program execution. If the END statement is not
specified, the system will still perform the END functions as if
one were specified at the end of the program.

rarith-expreSSionl

END;-..... L---IBIII----........ -_.

.. Code is set to 0

('

(

ERR

(

END

The syntax of the END statement is as shown, where:

arith-expression is the numeric value from 0 to 9999 which,
after rounding, sets the CODE variable (see "CODE" .

Execution of the END statement closes all open files and ends
the program. The actions of the END statement are the same
as those of the STOP statement.

Examples

910
910

END
END 120

!Value of CODE = 0
!Value of CODE = 120

Programming considerations

• Location

- The END statement, if specified, must be the last
statement of the program.

• CODE default

If the optional arith-expression is not specified, the
default value of CODE is zero.

ERR is a system variable that contains the number of the most
recently detected error (see "PROCERR command" and
System Messages).

BASIC Language Reference 125

Error handling
Error handling

Execution order

126 SA34-0109

See "EXIT statement," "Interrupt," "System variables," "ON
statement," Customer Support Functions,Volume I and
Volume II, and System Messages.

See "Order of execution."

EXIT statement

(

EXIT

The EXIT statement specifies where control is transferred if an
error occurs. The EXIT statement is descriptive and serves as
a guide to the program. It indicates the line to which program
control will transfer if an error occurs. The EXIT statement is
referenced by an EXIT parameter on an input/output state­
ment. When an error occurs, the EXIT statement is
referenced. Program control will transfer to the line reference
associated with the error condition.

EXIT

CONV line-ref -~-.....,

DUPREC line-ref ___ -I

EOF line-ref ___ --I

IOERR line-ref ----f

NOKEY line-ref __ -I

NOREC line-ref ---I

PAGEFLOW line-ref

I
I
I
I

I . I I OFLOW Ime-ref I
L.. _____ , _____ -.J

The syntax of the EXIT statement is as shown above, where:

CONV, DUPREC, EOF, IOERR, NOKEY, NOREC, PAGEO­
FLOW, and SOFLOW are error conditions for the various
input/ output statements.

CONV indicates a conversion error. There are four types of
conversion errors:

BASIC Language Reference 127

EXIT

EXIT statement (continued)

128 SA34-0109

• The I/O list item (numeric versus character) does not
match the type of the FORM data conversion specifica­
tion

• A numeric I/O list item will not fit within the field length
specified in the FORM data conversion specification

• A numeric input field contains nonnumeric data

• A negative value is being output; the corresponding PIC
data conversion specicification does not indicate the sign.

DUPREC indicates that a record with the same relative record
number already exists in the file referenced in the WRITE
statement.

EOF indicates end of file.

•

•

In a READ or INPUT statement, it means that there are no
more records in the file.

In a PRINT or WRITE statement, it means that there is not
enough file space for the data.

/oERR for all input/output statements, this error indicates that
an error has prevented completion of the statement which is
not one of the other error conditions.

NOKEY indicates that no key matching the specified key can
be found in the referenced file.

NOREC indicates that the specified relative record number is
two or more greater than the relative number of the last record
in the file or points to a deleted record.

(/

(

(

(

EXIT

PAGEOFLOW indicates that the line printed is greater than or
equal to (>=) the PAGEOFLOW value set in the OPEN state­
ment (see "OPEN statement").

SOFLOW indicates that the number of input data characters is
greater than the length of the I/O list character variable, or
conversly, the length of the output I/O list character
expression is greater than the field width defined in the FORM
data conversion specification.

line-ref is a line number or a label symbol.

EXIT Description Value of ERR

CONV Conversion error
0002
0726

SOFLOW String overflow
0004
0058

DUPREC Write to existing record 0054

NOKEY No key found 4272

NOREC No record found 0057

PAGEOFLOW Page overflow 0701

EOF Not enough data items for READ 0054

End of file 4270

End of volume. No data space
4239

available to extend output file

No extents. Maximum number of
extents assigned. Cannot extend 4271
output file

10ERR All other errors that occur on See
1/0 statement Messages

Manual

BASIC Language Reference 129

EXIT

EXIT statement (continued)

130 SA34-0109

Example

An EXIT statement is shown below:

80 EXIT EOF 200, IOERR 220, NOKEY 240, NOREC 260

In this example. an input/output statement referencing line
number 80 for the EXIT parameter causes program control to
transfer to line number:

• 200 if an EOF condition caused the error

• 220 if an IOERR condition caused the error

• 240 if the key specified could not be found

• 260 if the record specified could not be found

f

EXIT

Programming considerations

• Duplicate EXIT

Error conditions can be entered in any order. If a
duplicate specification appears, it is ignored; the first
one will be used.

• Arithmetic errors

Overflow, underflow, and zero divide conditions that
are detected during the evaluation of an arithmetic
expression cannot be trapped by exits on I/O state­
ments. These conditions can be trapped using the
ON statement.

Note: If an I/O list item is being mapped into a PIC
data conversion specification, this rule is overridden.
The overflow, underflow, or zero divide can be
trapped by 10ERR on the I/O statement or 10ERR on
the EXIT statement referenced by the I/O statement.

Example 1:

10 PRINT 1000*1.E+126 IOERR 20
20 END

Results in program interrupt 0003 on line 10
(9.99999999999999E+126 is displayed)

BASIC Language Reference 131

EXIT

EXIT statement (continued)

132 SA34-0109

Example 2:

10 PRINT USING 20: .001*1.E-126 IOERR 30
20 FORM PIC(##.)
25 STOP
30 PRINT ERR
40 END

Results in a transfer to line 30.

• Data error

Overflow and underflow errors that are detected in
data being read or entered can be trapped by 10ERR
on the I/O statement (or 10ERR on the EXIT state­
ment referenced by the I/O statement). If the expo­
nent of the data item has more than three digits, this
error is trapped by CONY.

Example 1:

10 INPUT A IOERR 20! where 1.E+130 is
15 STOP! the value entered
20 PRINT ERR
30 STOP

This example results in a transfer to line 20.

(

EXP(X)

(

Exponential

(

Example 2:

10 INPUT A CONV 20! where 1.E-9999 is
15 STOP! the value entered
20 PRINT ERR
30 STOP

Results in a transfer to line 20.

EXIT

Returns the value of e (2.71828182845905) raised to the X
power. For example:

10 X=1
20 Y=EXP (X)

Statement 20 sets Y to 2.718281828459.
X > = 292 causes overflow.
X < = - 292 yields an answer of zero.

See "EXP(X)."

BASIC language Reference 133

Expressions

Expressions

134 SA34-0109

An expression in BASIC is a specification of a value using
operators, constants, variables, arrays, array element refer­
ences, and function references.

An arithmetic operator specifies an arithmetic operation to be
performed on the data items.

Relational expressions are used with the I F statement to test
the truth of specified relationships between two values. For
example:

30 IF A>B THEN GOTO 100

Expressions referring to entire arrays, rather than individual
array elements, are called array expressions. An expression
that does not contain a reference to an entire array is called a
scalar expression.

For more information on expressions, see:

• "Arithmetic expressions and operations"

"Character expressions"

• "MAT assignment statements"

• "Relational expression" under "IF, THEN, ELSE state­
ment"

/

Expressions

Expressions, arithmetic

Expressions, array

Expressions, character

Expressions, relational

See "Arithmetic expressions and operations."

See "MAT assignment statements."

See "Character expressions."

See "Relational expression" under "IF, THEN, ELSE
statement."

See "Full-screen processing."

BASIC Language Reference 135

FILENUM

FILENUM

136 SA34-0109

FILENUM returns the numeric value of the file reference with
the most recently detected error. -1 is returned if no errors
have been detected.

Note: FILENUM must be assigned to a variable before print­
ing or entering other I/O statement

Example

5 OPEN #2: "NAME=J",INTERNAL,INPUT
10 READ #2: A$ EOF 30
20 GOTO 10
30 A=FILENUM
40 PRINT "FILE"; A; "HAD AN ERROR"
50 CLOSE #A:
60 STOP

{

File reference

File reference parameter

The file reference parameter associates a logical file with a
physical file or device when the file is opened. It is defined in
the OPEN statement for the file and is then referenced by
subsequent I/O statements that use the file or device.

File reference is an integer or numeric expression from 0 to
127 and 255. The integer or numeric expression must be
preceded by a # (pound sign). System assigned file references
not requiring an OPEN statement are:

o Display, keyboard.

255 System printer.

I/O statements such as INPUT, LlNPUT, and PRINT, when
used to direct data to and from the keyboard or display, do not
require a file reference parameter.

10 PRINT "HELLO"! Display message
20 PRINT #255: "TOTALS"! Print message
30 FILEID$="NAME=FIL"
40 OPEN #7:FILEID$,INTERNAL,INPUT! Open file
50 READ #7:A$! Read a record
60 CLOSE #7:! Close the file

BASIC Language Reference 137

File searches

File searches

138 SA34-0109

When an OPEN (or implied OPEN) is executed, the file that is
opened depends on the file specification and the actual
location of the file.

• Filename only .. file

The search begins on drive 1 and continues on succes­
sively higher drive numbers. The first match is assumed
to be the correct file. If other files of the same name exist
on other disk volumes or diskettes, they are ignored. If
not found, error 4000 is reported on the status line.

• Filename and drive 10 .. file/ /drive

The search occurs on the specified drive only. If not
found, error 4000 is reported on the status line if drive
1,2,3, or 4 was specified. Error 4152 is reported if drive 5
was specified.

• Filename and VOLIO .. file/VOLIO

The search begins on the lowest numbered drive. The
first volume that is located with a matching VOLIO is the
only volume searched for the file. If the VOLIO is found,
but the file is not on that volume, error 4152 results. If
the specified volume is not found, error 4000 results.

• Filename and VOLIO and device .. file/VOLIO/ drive

The search occurs on the specified drive if the VOLIO
matches. If the VOLIO matches and the file is not found,
error 4152 is returned. If the VOLIO does not match,
error 4000 is reported on the status line if drive 1,2,3, or 4
was specified. Error 4152 is reported if drive 5 was speci­
fied. If the file/VOLIO/device specification matches that
of an open file, the found file must be marked OPEN for
the new OPEN to succeed. That is, you cannot open two

{-

(

(

File searches

different files with the same file/VOLIO/device specifica­
tion.

Note the following implications:

If diskettes with the same VOLIOs are inserted, only the
one in the lowest numbered drive is searched, if you do
not specify a drive number.

• If offline data (see "Offline diskette files") is involved in
the application, and open files exist on diskettes with the
same filename and VOLlD, unpredictable results can
occur.

• The simplest and safest course is to code all file specifica­
tions with filename and VOLIO and use unique filenames
and VOLIOs.

BASIC Language Reference 139

File sharing

File sharing

140 SA34-0109

File sharing lets you open a diskette or disk file two or more
times simultaneously.

Within a single 5322 Computer, file sharing permits a program
to use a file by -two or more access methods, simultaneously.
For example, you may wish to simultaneously access a file for
sequential and direct input.

Within a System/23 consisting of two 5322 Computers and a
5246 Diskette Unit, file sharing permits two independently
running programs in each 5322 Computer to share the same
file in the 5246 Diskette Unit.

The two 5322 Computers can at any time independently
access two different files with no restrictions, but the use of
the 5246 Diskette Unit cannot be simultaneous. None of the
subsequent discussion applies to this case (see "Device shar­
ing").

,

" ~ .. /

If you have added a 5247 Disk Unit to your Sysstem/23, up to _./
four computers may share a file.

File sharing is regulated by a set of OPEN parameters which
specify what level of sharing is permitted by the other OPEN
which has already, or will in the future attempt to use the file.
When a conflicting use is detected, the second and subse­
quent invalid opens fail with a 4148 error.

The information required to perform this function is stored
with the file. If an OPEN specifies restricted use of the file and
no corresponding CLOSE is executed to terminate this
restriction (power loss or diskette removal), then the PROTECT
command must be used to cancel these restrictions. See
"PROTECT command" For files on the 5247 Disk Unit, you do
not need to cancel these restrictions unless you have coded a
RESERVE parameter on the OPEN statement when you (

~./

(

(

File sharing

opened a file. Use of the PROTECT command to CLOSE or
RELEASE open files presently in use by a program should be
avoided, as this can cause unpredictable results.

The default (no sharing specification), is no sharing permitted.

Sharing of Basic or H exchange files is permitted. No logical
restrictions are imposed and any sharing other than input on
both OPEN statements may produce unpredictable results.
Any share specification is ignored for BX and HX files. Type Z
is the only format supported for 5247 Disk files.

System/23 permits file sharing, but it is the responsibility of
the programmer to see that the proper level of sharing
restrictions are imposed to maintain data integrity. Further­
more, it is the joint responsibility of the application program­
mer and the operator to see that the System/23 is operated in
a manner consistent with data integrity. This includes:

Proper power sequencing

• Removal and insertion of diskettes at the correct time

Proper use of system commands

• Proper execution of programs and procedures

File sharing is controlled by five parameters in the OPEN
statement; they are SHR, SHRI. SHRU, NOSHR, and
RESERVE. SHR means the other OPENs may use the file in
any way, with the exception that only one OPEN may be for
OUTPUT or OUTIN. SHRI means the other opens may do
INPUT only. SHRU applies only to files on the 5247 Disk.
SHRU means that up to four computers can open a file for
OUTPUT, OUTIN, or INPUT. In addition, each computer can
open the same file concurrently using a single program on that
computer. NOSHR (default) means no other opens are permit­
ted.

BASIC Language Reference 141

File sharing

File sharing (continued)

142 SA34-01 09

In summary:

First OPEN

SHR,INPUT

SHR,OUTPUT or OUTIN
SHRI,INPUT
SHRI,OUTPUT or OUTIN
NOSHR
SHRU,INPUT

SHRU,OUTPUT

Allowed subsequent OPENs

SHRI,SHRU, or SHR, INPUT,
OUTPUT or OUTIN
SHR or SHRU,INPUT

SHRI or SHR, SHRU, INPUT
SHR,SHRU INPUT
none
SHR, SHRI, SHRU
INPUT, OUTPUT,or OUTIN
SHR INPUT, SHRU INPUT,
SHRU OUTPUT

The RESERVE option of the OPEN statement specifies that
whatever sharing restriction is specified on this OPEN applies
to the other 5322 Computer even after the file is CLOSED.
This allows long term restriction of the file use, particularly
when several programs, commands or Customer Support \,-j

Functions must be run in succession without interference. The
RESERVE option restriction does not apply to the 5322
Computer which issued it. Thus, even if a file is opened
NOSHR,RESERVE, after the corresponding CLOSE is
executed, any subsequent OPEN may be used by the same
5322 Computer.

The RESERVE status is cleared by the RELEASE option
keyword on the CLOSE statement. The last program in a
multi-step process would normally do a CLOSE ... RELEASE to
permit access to the file by the other 5322 Computer (this may
be its only function). See "CLOSE statement."

The level of OPEN and RESERVE share restriction is indicated
by the DIR DISPLAY. See "DIR command."

(

(

(-

File sharing

Programming considerations

•

OPEN statements using key-indexed access (KEYED),
place the same share restrictions on both the master and
key files. (NAME= and KFNAME=).

Share restrictions are ignored for BX and HX files.

The RENAME, DROP, and FREE commands are rejected
for a file which is open or has any reserve status set by
the other 5322 Computer.

The LINK, LOAD, MERGE, SORT, PROC, and SUBPROC
commands open files INPUT, SHRI.

The SAVE and REPLACE commands open files
OUTPUT,NOSHR.

The following Customer Support Functions ignore SHARE
and RESERVE status, but secure the 5246 Diskette unit or
the 5247 Disk Unit during their entire operation: Prepare
Diskette, Copy (image copy only), Recover Diskette,
Display Diskette Label, Prepare Disk, Recover Disk, and
Add or Delete a Volume. Backup and Restore secures the
volume only, not the entire disk unit. File Recovery will
copy the SHARE and RESERVE status.

Machine Update Generator, Collation Sequence Alterna­
tor, REPLACE, Presort, SORT and Index Generator open
output files NOSHR.

Presort, SORT, and Index Generator use WSID$ as a
suffix for work filenames.

BASIC Language Reference 143

File sharing

File sharing (continued)

144 SA34-0109

• If both 5322 Computers load, edit and replace the same
file, the last REPLACE will overlay any preceding
REPLACE. To prevent this compromise of SOURCE files,
open the file NOSHR,RESERVE and then CLOSE it. After
editing and REPLACE, then PROTECT ... RELEASE.

The VOLID command can be used to change the disk
volume or diskette VOLID at any time. If this is done
while a file is open on the diskette or disk, it may prevent
further processing of the file.

• If the Copy All Files option of the Copy Customer Support
Function is used, the following errors are possible:

Use of the FREE, DROP, or RENAME commands
during Copy can lose a file to be copied.

A file added to the input diskette while Copy is
running may not be copied.

Incorrect use of the PROTECT CLOSE or RELEASE
options can compromise data integrity by removing share
restrictions when they are still needed.

File size

(

(

File size

The following can be used to estimate the storage used by
various file types. See "OPEN statement."

Type Size (bytes)

* ax 128 per record

* HX 256 per record

04 (1 +RECL) per record

05 Total number of characters including blanks and
new line characters

07 512 * CEIL (number of records/(lNT(512/(key
length+4))-1))

08 Value for type 07 plus 512 * CEIL (number of new
records /INT(510/(key length+10)))

09 (HELP STATUS size at CLEAR) - (HELP STATUS
size when saved + (up to 2048 bytes)

81 (HELP STATUS size at CLEAR) -(HELP STATUS
size when saved) + (up to 2048 bytes)

* Invalid for 5247 Disk files

All files are automatically extended for additional output value

Type ax and HX, which are fixed at OPEN to the SIZE
value

Files with no unallocated space; see "DIR command"

• Files with 100 extents; see "DIR command"

BASIC Language Reference 145

File size

File size (continued)

146 SA34-0109

The following chart shows the maximum file size, in bytes, for
each combination of diskette type and diskette format:

Diskette format

Diskette
type System/23 BX HX

1 301,568 242,944 n/a

2 604,672 . 485,888 n/a

2D 1,135,104 n/a 985,088

For 5247 Disk files, the file can be extended to the maxi­
mum capacity of the disk. When only one volume is
active, maximum file size is:

30 M Disk = 30,271,488 bytes
15 M Disk = 14,848,000 bytes

See "File size."

(
"'--.'

(

File specification

File specification parameter

The file specification parameter consists of a filename,
followed by a volume identification (VaLiD) and device
address. Filenames may be of the following types:

Simple filenames may be from one to eight characters in
length. The first character must be alphabetic (A-Z). The
remaining characters may be alphabetic (A-Z) or numeric
(0-9). Blanks are not permitted. Simple file names are
required for Basic and H Exchange files.

The names of the System/23 format (Z) files consist of
one or more simple names separated by periods. The
total number of characters, including periods, is 17.

CUSTOMER. EMPLOYEE
X.Y.Z

vaLiD identifies the disk volume or diskette on which the file
is to be created or found. VaLiD is up to six characters long
and may consist of alphabetic or numeric characters.

Device address identifies the 1/ a device being used (see
"Device address parameter").

File specification can be in one of the following forms:

filename

filename /VOLI 0

filename/VaLiD/device

filename/ /device

/ /device

See "RENAME command" and "VaLiD command."

BASIC Language Reference 147

File specification

File specification parameter (continued)

148 SA34-0109

Examples

CUSTOMER.EMPLOYEE//2
X.Y.Z/TEMP
//10

Note: The file specification / /10 is used in an OPEN state­
ment to open the system printer.

5247 Disk considerations

The 5247 Disk can store a large number of files. To save time
in locating a file, use the most complete file specification
parameter: filename/VOLID / device address.

If you do not specify the VOLID and device address, the
computer searches all active volumes until it locates the file.
The search sequence is:

device 1 diskette drive 1
device 2 diskette drive 2
device 3 diskette drive 3
device 4 diskette drive 4
device 5 disk unit... volume 1

volume 2
volume 3

•
up to volume 25

./

Files, related subjects

(

CHAIN statement
CLEAR statement
CLOSE statement
CMDKEY
CNT
CODE
Customer Support Functions
DELETE statement
DIR
DISPLAY
DROP/FREE command
EN D statement
ERR
EXIT statement
FILENUM
FILE(N)
File reference parameter
File sharing
File sizes
File specification parameter
FILE$(N)
FORM statement
FREESP(N)
I N PUT statement
Internal I/O file formatting
I/O Tables (Appendix B)
Key-indexed files
KLN(N)
KPS(N)
LINE

LI N PUT statement
ON statement
OPEN statement
OPTION statement
PIC$(C$)

Files

PRINT statement
PROC command
Procedure files
Device sharing
PROTECT statement
READ statement
REC(N)
Relative record files
RELEASE statement
RENAME command
REPLACE command
REREAD statement
RESERVE statement
RESTORE statement
REWRITE statement
RLN(N)
SAVE command
SORT command
STOP command
SUBPROC command
USE command
VOLID command
WRITE statement
WSID$

BASIC Language Reference 149

FILE(N)

FILE(N)

FILE$(N)

150 SA34-0109

FILE returns a numeric value to indicate the status of file N.
One of the following values is returned:

Value Description

-1 File not opened

o Operation occurred successfully

10 End of file occurred during input

11 End of file occurred during output

20 Transmission error occurred during input

21 Transmission error occurred during output

FILE$ returns a string containing the file specification (file
name, volume identification, and device address) of file N. If
file N is not open, the null string is returned.

/
!

(

(

(

File types

File Contents!
type description

BX(1) Basic
Exchange

HX(1) H Exchange

04 Data

05 Data

07 Index file
without over-
flow area

08 Index file with
overflow area

09 Program
file (internal)

81(2) Program file
(internal)

10 Customer
Support
Function

11 Feature

12 Machine update

13 Diagnostics

14 Disk volume
Backup

File types

The following table details the various file types processed by
System/23.

Created Record Access
by length Input Output mode Recoverable

OPEN INTERNAL RECl READ WRITE SEQ. Yes
Format BX 1 to 128 (Note)

OPEN INTERNAL RECl READ WRITE SEQ. Yes
Format HX 1 to 256 (Note)

OPEN INTERNAL RECl READ WRITE SEQ/REl Yes
Format Z 1 to 4096 KEYED (Note)

OPEN DISPLAY PROC PRINT SEQ. Yes
INPUT REPLACE (Note)

SAVE SOURCE variable L1NPUT SAVE
SAVE (data) o to 255 lOAD [DATA] SOURCE

Index GEN READ KEYED
Create index file KEY

Index GEN READ WRITE KEYED No
OPEN KEYED KEY KEY
OUTPUT

SAVE lOAD SAVE No
REPLACE

SAVE lOAD No

IBM LINK No

IBM LINK No

IBM SELECT SELECT No
UPDATE

IBM CE diagnostic No

BACKUP RESTORE BACKUP No
RESTORE

Notes: To recover use Recover Diskette or Recover Disk Customer Support Functions.

1. Bx and Hx file types are not val id on the 5247 Disk.

2. Program contains RESERVE or RELEASE statements and may only be loaded on a computer when a 5247
Disk is attached.

BASIC language Reference 151

Fixed point format

Fixed-point format

See "Arithmetic data."

Floating currency symbol

FNEND statement

152 SA34-0109

See "PIC specification" under "FORM statement"
"PIC$(C$)."

See"DEF, FNEND statement."

(

(

FOR and NEXT

FOR and NEXT statements

Together, a FOR statement and its paired NEXT statement
delimit a FOR loop. A FOR loop is a set of BASIC statements
that can be executed one or more times. The FOR statement
marks the beginning of the loop and specifies the conditions of
its execution and end. The NEXT statement marks the end of
the loop.

FOR syntax

CTEP arith-expression J
FOR ____ arith-var= arith expression TO arith-expression ---'----oo4Dol-----...a.----...

.. STEP=1

The syntax of the FOR statement is as shown above, where:

arith-var is an arithmetic variable (not an array name) used as
the loop control variable and identify the associated NEXT.

arith-expression is an expression that specifies an initial value
for the control variable, the final value of the control value
(where execution of the loop will end), and the amount that the
control variable will increment after each execution of the loop.
If STEP and the increment-num are omitted, an increment of 1
is assumed.

Upon initial entry in the FOR loop, all expressions are evalu­
ated. The initial value of the control variable is tested against
the final value of the control variable. If the initial

BASIC Language Reference 153

FOR and NEXT

FOR and NEXT statements (continued)

154 SA34-0109

value is greater than the final value for positive STEP values, or
less than the final value for negative STEP values, the loop is
not executed. In this case, the value of the control variable is
set to the initial value and control goes to the statement follow­
ing the NEXT statement. Otherwise, control goes to the
statement following the FOR.

NEXT syntax

NEXT--arith-var •

The syntax for the N EXT statement is as shown above, where:

arith-var is an arithmetic variable used as the loop control
variable. If the loop is executed, the control variable is set
equal to the initial value, and the statements in the loop are
executed. When the N EXT statement is executed, control is
transferred to the associated FOR statement and the STEP
value is added to the control variable, which is then compared
with the final value. If the control variable for positive incre­
ments is less than or equal to the final value, the loop is
executed again and the cycle continues until an increment is
made that makes the control variable greater than the final
value. At that time, control transfers to the first executable
statement following the associated NEXT statement. If the
increment is negative, the loop executes while the control vari­
able is greater than, or equal to the final value.

(.. ,

(
\.. ..

(

f

(

FOR and NEXT

Examples

The following example shows a simple FOR loop that
increases the control variable A by 2 until the value of 25 is
exceeded.

20 FOR A=l TO 25 STEP 2
•
•
•

90 NEXT A

The following example shows how to nest FOR loops. The
internal loop is executed 100 times each time the loop is
executed.

10 FOR J=A TO B STEP C
•
•
•

150 FOR K=l TO 100
•
•
•

250 NEXT K
•
•
•

300 NEXT J

BASIC Language Reference 155

FOR and NEXT

FOR and N EXT statements (continued)

156 SA34-0109

Programming considerations

•

Parameters fixed at loop entry

The value of the control variable can be modified by
statements within the FOR loop, but its initial value,
its final value, and the STEP value are established
during the initial execution of the FOR statement and
are not affected by any statement within the FOR
loop.

Zero STEP

If the value of the STEP increment-num is zero, the
FOR loop is executed until the value of the control
variable is purposely set beyond the specified final
value by a statement in the loop. .

• Errors

Transfer of control into or out of a FOR loop is
permitted; execution of a NEXT statement without
execution of a corresponding FOR statement causes
an error.

FOR loops can be nested within one another as long
as the internal FOR loop falls entirely within the
external FOR loop. Nested FOR loops should not
use the same control variable, because the inner loop
will modify the value of the outer loop control vari­
able.

(

(

FOR and NEXT

The maximum number of nested FOR-NEXT loops is
a variable number (usually around 50). If the maxi­
mum is exceeded, a system error occurs.

Modification of a FOR or NEXT statement during
execution is not permitted.

Exit control value

The value of the control variable at exit from
FOR/NEXT loop is the first unused value.

Example

10 FOR I=1 to 10
20 PRINT "TEST"
30 NEXT I

The value of I is 11

BASIC Language Reference 157

FORM

FORM statement

158 SA34-0109

The FORM statement describes the way output should look
when the PRINT, WRITE, or REWRITE statement is used. The
FORM statement also describes the way input looks when
using a READ or REREAD statement.

The FORM statement controls the number of output positions
taken by a value being displayed. The following program
writes b b b99 in columns 1 through 5 on line 22 on the
screen:

10 PRINT USING 20: 99
20 FORM N 5

where N 5 is a data conversion specification. N specifies the
format type numeric; 5 specifies the field length.

The FORM statement is also used to control the number of
digits displayed in a decimal fraction. For example, the follow­
ing program writes 12.35 in columns 1 through 5 on line 22 on
the screen:

10 PRINT USING 20: 12.345
20 FORM N 5.2

where N 5.2 is a data conversion specification. N specifies
numeric; the field length is 5, and the fraction is rounded 'to 2
decimal digits.

To display character data, use the C data conversion specifica­
tion. The following program writes "Number of parts in
stock:" in positions 1 through 25 on line 22:

10 PRINT USING 20: "Number of parts in stock:"
20 FORM C 25

(

(

FORM

where C identifies the format type and 25 is the field length.

The following program shows two I/O list items being output:

10 PRINT USING 20: "Number of parts in stock:",99
20 FORM C 25,N 5

where C 25 is the data conversion specification for the first
I/O list item and N 5 corresponds to the second. The output
in columns 1 through 30 on line 22 is "Number of parts in
stock: b b b99."

To increase the spacing between I/O list items, use the X data
conversion specification. The following program outputs
"Number of parts in stock: b b b b b b b b99" in positions 1
through 35 on line 22:

10 PRINT USING 20: "Number of parts in stock:",99
20 FORM C 25,X 5,N 5

where X is the format type and 5 is the field length. X 5 caus­
es five blanks to be inserted in the output. No I/O list item is
associated with X 5.

The above examples show the FORM statement being used
with the PRINT statement. The FORM statement can also be
referenced by the READ, WRITE, REREAD, and REWRITE
statements. When FORM is used with these statements,
output is to a record in an internal I/O file, and input is from a
record in an internal I/O file.

BASIC Language Reference 159

FORM

FORM statement (continued)

160 SA34-0109

The following example shows three values being written into a
record of an internal I/O file:

10 WRITE #n,USING 20: "XYZ",30,10
20 FORM C 3,N 4,N 4

The previous example assumes the record length of the
records in the file is greater than or equal to 11. If the record
length were less than 11, an error would occur, because the
field length for the third I/O list item would span the end of
the record. If this file were open for input, the second and
third values in the same record could be read as follows: (The
first value is skipped.)

10 READ #n,USING 20: A,B
20 FORM X 3,N 4,N 4

The following example shows an alternative way of reading the
same values from the same record:

10 READ #n,USING 20: A,B
20 FORM X 3,2*N 4

where 2* is a replication factor. It says to use the N 4 data
conversion specification twice.

The FORM statement can be referenced by a line number or
label in a USING clause of an I/O statement. The FORM
statement can also be contained in a character variable. In the
latter case the character variable is referenced in a USING
clause in the I/O statement. Examples showing the FORM
statement referenced by a label and the FORM statement
contained in a character variable are included in the following
program:

(

FORM

(

pas

x

10 Label Reference
20 PRINT USING LAB1: 99
30 LAB1: FORM N 5

FORM

40 ! FORM Statement Defined in Character Variable
50 A$='FORM N 5'
60 PRINT USING A$: 99

Many additional data conversion specifications are supported
by the FORM statement. The syntax of the FORM statement
(when referenced by a PRINT statement) and the data conver­
sion specifications, supported, are shown below:

integer

rith-var

SKIP~ ____ L--I._~ __________________________________ ~

"char-string "--,
I
I PIC (pic-spec) --1

integer* ~J Cfield-;I_gt_h __ --'-________________ --t
rith-var *

I
I
I
I

N J I
I G field-length I
L ___________ , ____________ J

111
II Fraction length=O

Note that a blank is required between a format identifier (for
example, pas or V) and any integer or variable which follows.

BASIC Language Reference 161

FORM

FORM statement (continued)

FORM.

162 SA34-0109

The syntax of the FORM statement (when referenced by a
READ, WRITE, REREAD, or REWRITE statement) and which
data conversion specifications are supported is shown below.

integer

x--~--~--~--~--------------------------------;

"char-string "-' ---1
PIC (pic-spec)f--~

integer'

arith-var*

~J
[field-length

-- D--~~----------~

:D}-field-length ______ --L.. __ --1 .. __ --'-__ ~
PD

G

I
I
I
I
I
I
I
I
I
I

I L I
L ______________ , _______________ -1

111
II Fraction length=O

Note that a blank is required between a format identifier (for
example, POS or V) and any integer or variable which follows.
The "char-string" and PIC specifications are not supported on
the READ and REREAD statements.

Detailed descriptions of the FORM data conversion specifica­
tions follow.

/'

',,- /

/'
I

"" /

(

(

FORM

POS (for a PRINT statement) specifies the position in the line
for the next value to be printed. If POS is less than the current
position, the current line is printed and a new line started. The
next I/O list item is printed in the new line at the position
specified.

If one or more items have been printed on the current line and
if the value of POS is beyond the end of the current line, posi­
tioning is as follows: Let N equal POS minus the current line
position. The current line is then printed. N blanks are then
written starting at the beginning of the next line.

The value specified for POS can range from 1 to 4095. The
default is 1. Noninteger values in arithmetic variables are
rounded.

POS (for a READ, REREAD, WRITE, or REWRITE statement)
specifies the position in the record to be accessed. Positioning
can be forwards or backwards in the record. The value speci­
fied for POS can range from 1 to the smaller of 4095 or the
record length. The default is 1. Noninteger values in arithme­
tic variables are rounded.

Note: Output records are initialized to blanks by the WRITE
statement and to the current record content by the REWRITE
statement.

x (for a PRINT statement) specifies the number of blanks to
be printed. If the value specified for X is greater than the
number of positions remaining on the current line, the current
line is printed, and the number of blanks specified for X is then
written, starting at the beginning of the next line.

BASIC Language Reference 163

FORM

FORM statement (continued)

164 SA34-0109

The value specified for X can range from 1 to 4095. The
default is 1. Noninteger values in arithmetic variables are
rounded.

X (for a READ, REREAD, WRITE, or REWRITE statement)
specifies the number of positions to be skipped. The value
specified for X can range from 1 to the smaller of 4095 or the
number of positions remaining in the current record. The
default is 1. Noninteger values in arithmetic variables are
rounded.

Note: Output records are initialized to blanks by the WRITE
statement and to the current record content by the REWRITE
statement.

SKIP (for a PRINT statement) specifies that the current line is
to be printed and that n-1 (where n is the value specified for
SKIP) blank lines should appear in the output. The next output
will begin in the first position of the following line. If the value
specified for SKIP is zero, there will be no line feed, and over- 7'

printing will occur. See example at the end of this FORM
statement section.

The value specified for SKIP can range from 0 to 255. The
default value is one. Noninteger values in arithmetic variables
are rounded.

char-string (for a PRINT, WRITE, or REWRITE statement)
specifies a character string to be output. The field width is the
length of the character string within quotation marks.

integer * and arith-var* specify the number of times the data
format should be used. The same format can be used repeat­
edly. This parameter must range from 1 through 255. The
default value is 1. Noninteger values in arithmetic variables are
rounded.

(

('

FORM

C specifies character data. For a READ or REREAD statement,
the number of characters specified by C are assigned from the
input field to the character varia~le listed in the READ or
REREAD statement. If the maximum variable length is less
than the field-length specified, a string overflow (SOFLOW)
occurs. If the variable length is greater than the field length
specified, the length of the character variable is set to field­
length.

For input, an example is:

10 READ #n,USING 20
:A$
20 FORM C 10

If the input field is

ABC b b b b b b b

the trailing blanks are kept, and the variable A$ is assigned a
length of 10.

For output, the value of the corresponding character
expression in the WRITE, REWRITE, or PRINT statement is
left-justified in the output field and padded with blanks. If the
length of the expression is longer than fieldlength, a string
overflow (SO FLOW) will occur.

The C parameter is valid for character expressions and will
cause a conversion (CONV) error if used with a numeric
expression. The value specified for fieldlength can range from
1 to 255. The default is 1.

BASIC Language Reference 165

FORM

FORM statement (continued)

166 SA34-0109

N specifies numeric data. For input, the number of record
positions specified by the field-length must contain a numeric
value in character form. The numeric value can have anyone
of the formats described in "Arithmetic data" (integer, fixed,
or floating point). Leading and trailing blanks are ignored. If
the numeric value is an integer, the number of digits specified
by fraction length are used to generate the decimal fraction.
The remaining high order digits in the field are used to gener­
ate the integer portion of the result. If the input numeric value
is fixed or floating point, fraction length is ignored. For input,
the numeric value is truncated to 15 significant digits. If
option INVP is in effect, a comma in the input field will be
treated as a decimal point. If the input field is left blank, a zero
is the default.

For output, the corresponding numeric value in the output list
is converted to character representation and is right-justified
in the output field. If fraction length is not specified, the
output field will contain the rounded integer value of the
numeric expression. If fraction length is specified, the decimal
fraction is rounded to the length specified. The result, includ­
ing the decimal point, is placed in the output field. (If option
INVP is in effect, a comma will be output in place of the deci­
mal point.) If the numeric expression is negative, a minus sign
will precede the numeric value in the output field. Plus signs
are not inserted into the output field. The fieldlength must be
large enough to contain any minus sign, integer digits, decimal
point, and decimal digits.

The N parameter is valid for a numeric expression and will
cause a conversion error if used with a character expression.
The value specified for field length can range from 1 to 26.

(

(

FORM

The following are examples of N format specifications:

Value to Resulting
be written output
(decimal) Specification (characters)

3.45 N7.2 3.45
3.45 N7.1 3.5

-3.45 N7 -3
-3.45 N7.1 -3.5

ZD specifies the zoned decimal format for numeric values. F
or C is plus, and 0 is minus. No other values are allowed.

For input, the specification ZD field-length specifies that the
next field-length bytes in the record contain a numeric value in
zoned decimal form (one digit per byte). The optional specifi­
cation, fraction length, identifies the number of rightmost
digits to be used for decimal positions in the number. The
default value is O. See examples of ZD format specifications.

For output, an internal numeric value is converted to zoned
decimal. If fraction length is not specified, the rounded integer
value is used to generate the field. If fraction length is speci­
fied, the decimal fraction is rounded to the length specified.
The field length must be large enough to contain all integer
and decimal digits. The decimal point is not included.

BASIC Language Reference 167

FORM

FORM statement (continued)

168 SA34-0109

The ZD parameter is valid for numeric expressions and causes
a conversion (CONV) error if used with a character expression.
The value specified for field length can range from 1 to 32.

The following are examples of ZD format specifications:

Value to
be written
(decimal)

3.45
3.45

-3.45
-3.45

Specification

ZD7.2
ZD7.1
ZD7
ZD7.1

Resulting
output
(hexadecimal)

FO FO FO FO F3 F4 F5
FO FO FO FO FO F3 F5
FO FO FO FO FO FO 03
FO FO FO FO FO F3 05

PD specifies the packed decimal format for numeric values.
Fieldlength specifies the length of the field in bytes, and frac­
tion length specifies the number of digits to the right of the
decimal point. Each digit of a PO field occupies one half of a /
byte (4 bits), 2 digits per byte. The rightmost four bits are ". /
hexadecimal F or C for plus and hexadecimal 0 for minus.

For input, field-length specifies the number of bytes in a
record containing a numeric value in packed decimal format
(two digits per byte, with one digit and a sign in the rightmost
byte). This value will be assigned to a numeric variable in a
READ or REREAD statement. If the fraction length parameter
is not specified, the field is assumed to contain an integer.

('
.~.

(

(:
,

FORM

For output, field length specifies the number of record bytes
into which the corresponding numeric expression from the
WRITE or REWRITE statement is placed. The expression is
converted to packed decimal format. If fraction length is not
specified, the rounded integer value generates the field. If
fraction length is specified, the decimal fraction is rounded to
the length specified. The field length must be large enough to
contain all integer and decimal digits, plus the sign.

The PD parameter is valid for numeric expressions and will
cause a conversion (CONV) error if used with a character
expression. The value specified for fieldlength can range from
1 to 32.

The following are examples of PD format specifications:

Value to Resulting
be written output
(decimal) Specification (hexadecimal)

3.45 PD.2 00 00 00 00 00 34 5F
3.45 PD.1 0000000000035F

-3.45 PD 00 00 00 00 00 00 3D
-3.45 PD.1 00 00 00 00 00 03 5D

L specifies internal, floating-point format (9 bytes) for numeric
values.

For input, L specifies that an internal floating-point format
value in the record is to be assigned to a corresponding numer­
ic variable specified in the READ or REREAD statement. The
contents of the field are not checked for validity.

BASIC Language Reference 169

FORM

FORM statement (continued)

170 SA34-01 09

For output, L specifies that the value of a numeric expression
in the WRITE or REWRITE statement be written in the record
in internal, floating-point format.

The following are examples of L format specifications:

Value to
be written
(decimal)

3.45
-3.45

Specification

L
L

Resulting
output
(hexadecimal)

01 03 45 00 00 00 00 00 00
01 83 45 00 00 00 00 00 00

V specifies variable length character data.

For input, field length specifies the length of the field to be
read. The string, excluding trailing blanks, is assigned to the
character variable. The variable assumes that length. If the
field length is larger than the variable's maximum length, a ('
string overflow (SO FLOW) occurs. An example of V-format is
as follows:

10 READ #n, USING 20: A$
20 FORM V 10

If the input field is ABCDb b b b b b, trailing blanks are
dropped and the data ABCD, with a length of 4, is assigned to
the variable.

For output, the value of the corresponding character
expression in the PRINT, WRITE, or REWRITE statement is
left-justified in the output field defined by V and padded with
blanks. If the length of the expression is larger than the
field-width specified, a string overflow (SO FLOW) will occur.

FORM

The V parameter is valid for character expressions and will
cause a conversion (CONV) error if used with a numeric
expression. The value specified for field-length can range
from 1 to 255. The default is 1.

G allows both character and numeric data"to be used. If the
I/O list item is numeric, the rules are the same as for N.

If the I/O list item is character, the rules are the same as for V.
If the I/O list item is character, field length and fraction length
are optional. If fraction length is specified, it is ignored.

BASIC Language Reference 171

FORM

FORM statement (continued)

PIC specification

PIC is a data conversion specification having the following
syntax:

PIC (_----------------T"""- numeric-spec--'T"""---_--l -

~---~~~-----$---~~~
'----separator--......

----r-....--.---numeric-spec ---r----i

I separator I
L ______J

-""''''''-'T''""---+---....,......,r-'
L-. __ separator I

_____ ...J

$----- J I I separator

L --.J
$ +----~~----i +

I separator I
L _-1

'------$----.... t~I~---se-pa:ator I

L _______ ...J

172 SA34-0109

(7

FORM

The syntax for numeric-spec is as shown:

(
-

z I C:t;ec
separator I AAA

L - ----1 A

* I digit-spec A

I separator I
L - - - _.....J

digit-spec

The syntax for digit-spec is as shown:

I I

Lei separator I
L - - - - ...-J #

f t I J I

separator I
L - - - _--1

e, I #

I I
I separator I
L_ --- - --I

The syntax for separator is as shown:

1----8-----1

(

BASIC Language Reference 173

FORM

FORM statement (continued)

174 SA34-0109

Each symbol represents one character position in the output.
The output fieldwidth. (the number of symbols specified) can
range from 1 to 32.

The I/O list item being output can be character or numeric.
The following examples show the use of PIC to output charac­
ter data:

Character
string to
be output

August
May
July
June

PIC
specification

PIC (######)
PIC(######)
PIC(ZZZZZ)
PIC($$.##)

Printed
output

August
May'b 'b 'b
July'b
June'b

(/

(

(

FORM

Each # symbol represents one character to appear in the
output. When the length of the character string is less than
the fieldwidth. the character string is left-justified in the field
and padded with blanks. When the character string length is
greater than the fieldwidth. a string overflow (SOFLOW) will
occur. When character data is being output. the # symbol and
all other PIC symbols defined in the following paragraphs are
character specifiers.

If the I/O list item is numeric. the PIC specification contains
combinations of symbols which represent what the output
should look like. The symbols are divided into the following
four categories:

• Digit specifiers

Insertion characters

Exponent specifiers

Trailing characters

BASIC Language Reference 175

FORM

FORM statement (continued)

176 SA34-0109

Digit specifiers

The following digit specifiers can be used:

Specifier

z

*

$

Meaning

A numeric digit is printed.

A numeric digit is printed. A blank replaces a
leading zero (or conditional insertion character).
Z may not appear to the right of a decimal point.
Z is treated the same as a # if an exponent
specifier is used.

A numeric digit is printed. An asterisk replaces
a leading zero (or conditional insertion
character). * may not appear to the right of a
decimal point. * is treated the same as a # if an
exponent specifier is used. For zero value the
decimal point is replaced by an * if the decimal
is the last character of the specification. * will
not float across the decimal point to replace an
insertion character.

A dollar sign is printed. If more than one $
symbol appears in the PIC specification, the
currency symbol appears in the position of the
rightmost $ symbol which overlaps a leading
zero (or conditional insertion character). The
character to be printed as the currency symbol
may be set by the PIC$ function.

(-

(

(

FORM

The default is $. + or - may not precede the $. $ will not float
across the decimal point to replace an insertion character $
may not follow a decimal point. A specification of all $,
outputs zero as a single $.

+ A plus sign is printed for a positive number, and
a minus sign is printed for a negative number. If
more than one + symbol appears in the PIC
specification, the plus or minus sign will appear
in the position of the rightmost + symbol which
overlaps a leading zero. + may not precede a $.
A floating + may follow a single $.

A minus sign is printed for a negative number,
and a blank is printed for a positive number. If
more than one - symbol appears in the PIC
specification, the minus sign or blank will appear
in the position of the rightmost - symbol which
overlaps a leading zero. A - sign may not
precede a $. A floating - may follow a single $.

BASIC Language Reference 177

FORM

FORM statement (continued)

178 SA34-0109

The following are digit specifier considerations.:

• A floating +, -, or $ floats to the right across a B, comma, (/-,
or a /. If the first significant digit is immediately to the ~
right of a / or comma, the +, -, or $ will replace the / or j

comma. A blank (B) is not replaced and the +, -, or $
appears to the left of the B (blank).

• Although the System/23 permits Z or * to follow a float­
ing $, +, or -, this should be avoided since other systems
may not support this function. For example:

PIC($$$**.##)

should be replaced by:

PIC($$$$$.##)

(j

(

FORM

The following are examples of digit specifiers. Assume the
data value 123456 is to be printed.

PIC specification

PIC(#########)
PIC(ZZZZZZZZZ)
PIC(ZZZZZZ###)
PIC(******###)
PIC($$$$$$###)
PIC (++++++###)
PIC(----#####)

Printed output

000123456
123456
123456

***123456
$123456
+123456

123456

If a dollar sign, plus sign, or minus sign is specified once in the
PIC specification, it is printed in the position indicated.

PIC specification

PIC($ZZZZZ###)
PIC(+ZZZZZ###)
PIC(---######)
PIC($+++#####)

Using the value .05:
PIC($$$./##)
PIC($$$B.##)

Using the value 0
PIC(###)

Printed output

$b b 123456
+b b 123456

123456
$b+123456

bb$.05
bb$b.05

BASIC Language Reference 179

FORM

FORM statement (continued)

180 SA34-0109

Insertion characters

Insertion characters add characters to a field, generally to
improve readability. The following insertion characters can be
specified:

Character

B

/

Meaning

A blank is printed.

A comma is printed. If a digit does not precede
the comma, the comma is replaced by the zero
suppression character (blank or asterisk) or
dollar sign. If OPTION INVP is in effect, a
decimal point will replace the comma in the
output.

A slash is printed. If a digit does not precede
the slash, the slash is replaced by the zero
suppression character (blank or asterisk) or
currency symbol.

A decimal point is printed. Only one decimal
point may be specified. If option INVP is in ',-, /
effect, a comma replaces the decimal point in
the output.

A PIC specification cannot begin or end with a B (blank),
comma, or /.

(

PIC specification

PIC(###B##B####)
PIC(ZZZBZZBZ###)
PIC(ZZZ,ZZZ,###)
PIC(ZZZZZ/Z#/##)
PIC(******#.##)
PIC($$$,$$$,$$$.##)

Printed output

oooh 11 h2233
11h2233
112,233

11/22/33
*112233.00

$112,233.00

FORM

BASIC Language Reference 181

FORM

FORM statement (continued)

182 SA34-0109

Exponent specifier

The exponent specifier appears in the rightmost positions of a
PIC specification, preceding the trailing characters, if any, as
three, four, or five circumflex characters. The corresponding
output positions are the letter E, the exponent sign (+ or -),
and the exponent value. If the PIC specification also includes
zero suppression symbols (Z, $, +, -, or *), the # symbol is
substituted for them. A decimal point always appears in the
output in the same position as it appears in the PIC specifica­
tion.

Values are rounded to the number of digit specifiers before
output. For a floating field of +, -, or $, the first specifier is
not included in this number. All digits are used. The leading
digit will be nonzero. An error occurs only if the exponent
cannot be accommodated.

The following are examples of exponent specifiers. Assume a
data value of 6.2345E+23 is to be printed:

PIC specification

PIC (#######"""")
PIC (##. ###"""")
PIC (##. ##""" "")
PIC (. ######"""")
PIC (ZZZ. ##""" ")
PIC(##.""""")

Printed output

6234500E+17
62.345E+022

62.35E+022
.623450E+24

623.45E+21
62.E+022

FORM

Trailing characters

The following trailing characters can be specified:

Character Meaning

+ A plus sign is printed for a positive number,
and a minus sign is printed for a negative
number.

A blank is printed for a positive number, and a
minus sign is printed for a negative number.

CR, DB, or DR The characters CR, DB, or DR, respectively,
are printed for a negative number. For a posi­
tive number, either two blanks or two aster­
isks are output. Asterisks are output if *
symbols were specified to suppress leading
zeroes. Leading signs and CR. DB, or DR can
appear simultaneously.

BASIC Language Reference 183

FORM

FORM statement (continued)

184 SA34-0109

The following are examples of trailing characters. Assume that
a data value of -123456 and 123456 are printed in alternating
sequence.

PIC specification Printed output

PIC(##########+) 0000123456-
PIC(##########+) 0000123456+

PIC(##########-) 0000123456-
PIC(##########-) 0000123456 'b

PIC (ZZZZZZZZZCR) 123456CR
PIC (ZZZZZZZZZCR) 123456'b'b

PIC(*********DR) ***123456DR
PIC(*********DR) ***123456**

PIC($$$$$$###DB) $123456DB
PIC($$$$$$###DB) $123456'b'b

PIC ($++++####DB) $'b-123456'b'b
PIC ($++++####DB) $'b+123456DB

(

(

FORM

Programming considerations

• FORM statement

If the number of I/O list items exceeds the number
of FORM data conversion specifications, the FORM
statement is reused. (For a PRINT statement, there
is a default SKIP 1 at the end of the FORM state­
ment.)

Array elements are formatted in row order.

For a PRINT statement, if the field width specified in
a data conversion specification is greater than the
number of positions remaining on the current line,
the current line is printed. The value to be output is
then printed at the beginning of the next line.

FORM statements are nonexecutable and can be
placed anywhere in a BASIC program; either before
or after the I/O statements that reference them.

PIC data conversion specification (numeric data)

The number of digit specifiers representing the inte­
ger portion of the value being output must equal or
exceed the number of integer digits in the value
itself. When one or more +, -, or $ symbols are used
as digit specifiers, one additional digit specifier is
required.

The syntax of the PIC specification is not checked
until the program runs.

The number of circumflex characters representing an
exponent must equal or exceed the number of digits
in the exponent itself, plus two.

BASIC Language Reference 185

FORM

FORM statement (continued)

186 SA34-0109

If a negative value is being output, the PIC specifica­
tion must contain either a leading + or - specifier or a
trailing +, -, CR, DB, or DR symbol.

A PIC specification must contain at least one Z, *, #,
or have at least two $, +, or - specification charac­
ters.

Values are rounded before output for fixed-point
fields (no exponents). The value is rounded into the
digit positions specified. For exponential output, the
value is rounded to the number of digits specified. In
both cases, one digit is deducted for floating $, +, or

If a floating currency string is followed by a decimal
point, it must also be followed by one or more #.
The floating + or - will not be printed for a zero value
if no fractional digits are specified.

If a floating currency string is followed by a trailing
sign or exponent specifier, the currency field must be
followed immediately by at least one #, Z, or *.

/

(Formatting I/O files

FREE command

(

FORM

Example

The following program shows how to use the FORM state­
ment to format printed output:

10 A= 11
20 B$="ABC"
30 C=5
40 D$="DEF"
50 E=16.2
70 PRINT USING 80: A,B$,C,D$,E,"GHI"
80 FORM POS 3,N 3,x 2,C 4,SKIP 1,"COMMENT",

PIC(###),V 4,2*G 4.1

The following output is displayed in lines 21 and 22, respec­
tively.

bbb11 bb ABC
COMMENT005DEFb16.2GHI

See "Internal I/O file formatting."

See "DROP /FREE command"and "CLOSE statement."

BASIC Language Reference 187

FREESP(N)

FREESP(N)

188 SA34-0109

FREESP returns the number of 512-byte areas available for
allocation on a disk volume or diskette that contains file N.
Space allocation is made in 512-byte increments. A -1 is
returned if the file is not open, if it is an exchange file, or if the
device is not a diskette or disk.

Note: If file N is on a disk volume, this is the amount of space
available on the entire disk, because disk volumes are dynam­
ically extended until the disk is full.

(--

(

Full-screen processing

Full-screen

Full-screen processing displays or enters data by letting you
use the entire screen (except the status line). To display data
with full- screen processing PRINT FIELDS must be entered.
To enter data with full-screen processing, INPUT FIELDS
must be entered. If the keyword FIELDS is not included, stan­
dard PRINT and INPUT processing is used. The syntax of the
PRINT /INPUT statement for full- screen processing is as
follows:

r-----,

rC# 0 'l t=rror action---l
INPUT 0 .. I

---"---FIELDS--field definition: data-item 0---'"--., ••
PRINT L _,_..J

D #0
II Interrupt on error unless ON is active

where:

#0 is a numeric expression having the value of 0 for
full-screen processing (see "File reference parameter").

field definltion is either a simple character variable or a MAT
character array name (where character array name is a
one-dimensional array). Avoid using substrings in the field
definition.

data-item is a simple variable, subscripted array, or a MAT
array name.

error-action is an EXIT line-ref or a CONV, SOFLOW, EOF,
IOERR (see"EXIT statement").

BASIC Language Reference 189

Full-screen

Full-screen processing (continued)

A character expression specified for FIELDS defines one field.
Multiple fields are defined in a character array. The array
element or character expression defining a field is a character
string having the following syntax:

, -----. C' trailing attributes~ 1-' leading attributes---....L.---'------,--t

~row ,column, data cony-spec --'--------------------L..--"---i ••

The parameters are positional and are delimited by commas.
The insertion of blanks preceding or following individual
parameters is permitted.

The starting location of a field is defined by the row and
column parameters specified in the field definition. Row 1,
column 1 is the upper left-hand corner of the screen. Fields
may be defined on rows 1 through 23. The length of a field is
the length specified either explicitly or implicitly in the data
conversion specification. Fields may not span lines. The /'

190 SA34-0109

maximum length of a field is 78 (columns 2 through 79) for a
field defined with leading and trailing display attributes. Lead-
ing and trailing display attributes are required for input fields.
The maximum length of an output field without attributes is 80
(columns 1 through 80).

c/

(-

('

Full-screen

The following data conversion specifications are supported in
a field definition:

field-length

GNJt------ field-Iength----..L..------.... -

PIC (pic-spec)------------------------I

v, C, N, G, and PIC have the same syntax and function as
described under the "FORM statement." PIC is not supported
on an INPUT FIELDS statement.

Leading and trailing attributes

Two types of attributes may be associated with fields: display
attributes and control attributes.

BASIC Language Reference 191

Full-screen

Full-screen processing (continued)

192 SA34-0109

Display attributes

Display attributes affect the visual characteristics of the
display screen. The attribute "blink," for example, specified
as a leading attribute for a field, causes the field to blink. The
attribute "normal" specified as a trailing attribute, returns the
screen to normal. Display attributes occupy screen locations.
These locations appear blank. They may not simultaneously
contain data. A display attribute affects the visual character­
istics of the screen starting at the location following the
attribute up through the location preceding the next display
attribute.

The following display attributes are supported:

•

I-Invisible

U-Underline

B-Blink

H-Highlight

R-Reverse (black on green)

N-Normal (visible, no underline, no blink, no highlight.
green on black)

When specified in combination, attribute I overrides attributes
U, B, H, R, and N. Attributes U, B, H, and R override attribute
N.

(

Full-screen

Example

Underline and blink:

10 PRINT FIELDS "10,10,C 40,UB,N":"HELLO"

Highlight:

20 PRINT FIELDS "10,10,C 20,H,N":"Hi"

Underline input fields:

30 INPUT FIELDS "10,10,C 20,U,N":A$

Control attributes

The second attribute type is the control attribute, which is
used to modify input field operations. The following control
attributes are effective when specified as leading attributes in
an input field definition:

• C-Position the cursor to this input field first. If C is
specified for more than one field, the cursor is positioned
to the last field in the array having the C attribute.

• A-Automatic field exit. An automatic field exit occurs
when the operator enters a character into the last location
within this field.

BASIC Language Reference 193

Full-screen

Full-screen processing (continued)

194 SA34-0109

E-Automatic enter. An automatic enter occurs when the
operator presses the Field Exit, Field Plus, or Field Minus
key. An automatic enter also occurs when the operator
enters a character into the last position of a field having
the A attribute.

Control attributes do not occupy screen locations.

Any combination of display and/or control attributes may be
specified for leading or trailing attributes in a field definition.
Control attributes are inactive when specified for a PRINT field
or as trailing attributes for an INPUT field. When an attribute
is not recognized, it is ignored. If more than one display attri­
bute is specified, the combination occupies one screen
location. This location is R, C-l for leading attributes and R,
C+L for trailing attributes (R, C, and L are row, column, and
length of the field). Input fields require both a leading and trail­
ing display attribute. If either attribute is not explicitly
specified in a field definition, the default for that attribute is N
(normal). Output fields require neither leading nor trailing ',,- /
attributes; none are defaulted.

(

Full-screen

Examples

The following displays a field as defined by line 10.

10 A$="S,7,C 18"
20 NAME$="JOHN DOE"
30 PRINT NEWPAGE
40 PRINT FIELDS A$: NAME$
SO B$="8,2,C 10"
60 INPUT FIELDS B$:DAK$

In this example, statement 40 displays the data on the fifth line
of the screen, starting in column 7. The data item to be
displayed is the character string "JOHN DOE" Statement 60
will input 10 characters from line 8, starting in column 2.

The following displays data on more than one line.

10 OPTION BASE 1
20 REM DISPLAY NAME AND ADDRESS
30 DIM FS$(3}
40 NAME$="JOHN DOE"
SO STREET$="12S 1ST ST."
60 CITY$="CHICAGO IL"
70 FS$(1)="3,4,C 20"
80 FS$(2}="4,4,C 2S"
90 FS$(3}="S,4,C 2S"
100 PRINT NEWPAGE
110 PRINT FIELDS MAT FS$: NAME$, STREET$,CITY$

This example displays the first item of data (NAME$) on the
third line of the screen, starting in column four. The second
item of data (STREET$) is displayed on the fourth line of the
screen, starting in column four, and so on.

BASIC Language Reference 195

Full-screen

Full-screen processing (continued)

196 SA34-0109

The following displays data and enters data.

10 OPTION BASE 1 (. "-
20 DIM A$(4), B$(3)
30 A$(1)="5,10,C 10,U,N"
40 A$(2)="10,4,C 5"
50 A$(3)="13,4,C 7"
60 A$(4)="16,4,C 5"
70 PRINT NEWPAGE
80 PRINT FIELDS MAT A$:"PROGRAMMER", "NAME: ",

"STREET:","CITY:"
90 B$(1)="10,12,C 18,U,N"
100 B$(2)="13,12,C 18,U,N"
110 B$(3)="16,12,C 18,U,N"
120 INPUT FIELDS MAT B$: NAME$,STREET$,CITY$

See "Appendix A" programs 10,11, and 12.

Programming considerations

• Number of fields

If an array is specified for FIELDS, the number of
fields is the number of I/O list items, not the number x. j

of elements in the array. The number of elements in
an array specified for FIELDS may exceed the
number of I/O list items. The extra elements are
ignored.

The maximum number of input fields is 128.

Input attributes

When an INPUT FIELDS statement is executed, an
implicit write to the display screen is generated to
put out display attributes. The input fields are not
modified.

(

Full-screen

Order

The fields defined in a FIELDS array may appear in
any order.

The first element or field in a FIELDS array corre­
sponds to the first I/O list item. The second element
or field corresponds to the second I/O list item, and
so on.

Enter

When the operator presses the Enter key, keyboard
input ends and the input field values are processed.
As each value is verified, it is assigned to an I/O list
variable or array element. The number of I/O list
items processed successfully is contained in the
system variable CNT.

Overlapped attributes

Input fields may not overlap. However, the location
of the trailing display attribute of one field may be
overlapped by the leading attribute of the following
field. If leading and trailing attributes overlap, the
last attribute written to the screen will be the one in
effect.

BASIC Language Reference 197

Full-screen

Full-screen processing (continued)

Functions, defined

198 SA34-0109

Mixed operations

Caution should be used when full-screen processing ("
is interspersed with non-full-screen processing.~j
There is no implicit clearing of the display screen
when switching between the two. PRINT
NEWPAGE may be used to perform this function. If
the display screen is not cleared before full screen
processing I/O, full-screen processing fields are
interspersed with the previous contents of the
screen. If the display screen is not cleared after
full-screen processing I/O, data and/or display
attributes left on line 23 may cause a syntax error on
the next operator entry.

See "DEF, FNEND statement."

GO command

(

GO

(

(-

GO

The GO command resumes or ends processing of a BASIC
program or procedure.

If a program or procedure is halted, processing can be
resumed by entering GO. Program execution may continue
with any line specified in the GO command.

Procedure execution may continue with the next procedure
line. In order to continue execution with another line, see
"SKIP command"

TRACEP ,.STEP

END ,TRACE

,TRACEP

line·num

D Resume execution at the current line of the program or
the next procedure line.

a Remain in previous mode.

The syntax of the GO command is as shown, where:
line-num is the number of the line where processing of a
program is to resume. If the line number is omitted, process­
ing begins with the line logically following the last line
executed or the next procedure statement.

BASIC Language Reference 199

GO

GO command (continued)

200 SA34-0109

END specifies that all input and output files or the current
procedure file are closed. After files are closed no program
statements are executed (GO END is required for an inter­
rupted program before issuing another RUN).

RUN specifies that processing is to continue in normal mode.

STEP specifies that processing is to continue in step mode
(see "RUN command").

TRACE specifies that processing is to continue in trace mode
(see "RUN command"). TRACE data is interspersed with
screen data.

TRACEP specifies that trace messages are to be printed only.
TRACEP should be used if tracing to screen would overwrite
valid information.

Note: If neither RUN, STEP, TRACE, nor TRACEP is
specified, processing continues in the mode that was in opera- '". /
tion when processing was interrupted.

If a line number is not specified, RUN, STEP, TRACE, or
TRACEP is not preceded by a comma (,).

(

GO

Examples

To change to normal mode or resume normal operation of a
BASIC program; type:

GO RUN (then press Enter)

To change to STEP mode and begin execution at line number
620; type:

GO 620, STEP (then press Enter)

Programming considerations

• Resume

GO may only be used to resume processing and not
to initiate processing (see "RUN command" to begin
processing).

• TRACEP printing

The data appears only when the line to be printed is
full, the program generates a new line, or the printer
is closed (when the program terminates),.

DISPLAY TRACEP

If the program is started by RUN DISPLAY, the
TRACEP information is directed to the screen.

For more information see, "Split screen" and "TRACE state­
ment."

BASIC Language Reference 201

GOSUB

GOSUB and RETURN statement

202 SA34-0109

The GOSUB and RETURN statements are used together to
invoke subroutines. The GOSUB statement transfers control ('
to a specified statement. The RETURN statement transfers ~.

control to the first executable statement following the GOSUB
statement that invoked the subroutine in which the RETURN
occurs.

RETURN •

GOSUB------- line-ref ------1 ••

The syntax of the GOSUB statement is either simple or
computed. The syntax of a simple GOSUB statement is
shown above, where:

line-ref is the line number or label to which control is to be
transferred.

Execution of a simple GOSUB statement transfers control to
the line or label specified. The maximum nesting level is 200.

f

GOSUB

.. [NONE line-ref]

ON-anth-expresslon-GOSUBrline-ret 'Tj.&.--......,IIIII----L---__ •
I I
L __ ._..J

a Interrupt occurs if the expression is out of range

The the syntax of a computed GOSUB statement is shown
above, where:

arith-expression is the arithmetic expression that determines
the statement to which control is passed.

line-ref is a statement number or label. At least one state­
ment number or label is required.

NONE if none of the line numbers preceding the NONE is
selected, the line number following it is used.

Execution of a computed GOSUB statement causes the arith­
metic expression to be evaluated. Control is then transferred
to the line whose numeric position in the list of line-num (read­
ing from left to right) is equal to the rounded integer value of
the expression. Thus, an expression with a value of 2.75
would cause control to be transferred to the third line in the
list. If the expression has a rounded integer value less than 1
or greater than the total number of lines listed, the program
goes to the statement specified in the NONE clause. If a
NONE clause is not specified, an error occurs.

When a GOSUB statement points to a descriptive statement
such as DIM, control is transferred to the first executable
statement following the descriptive statement.

BASIC Language Reference 203

GOSUB

GOSUB and RETURN statement (continued)

204 SA34-0109

Programming considerations
I "-

Subroutines should be preceded by a GOTO to avoid falling ~_>7
through into them.

Example

The following example shows the execution of GOSUB and
RETURN statements:

Simple GOSUB

E00050 GOSUB 00100

..... 00060-

•
•

00100-

•
i--__ 00140 RETURN

Program 1-Line 50 transfers control to line 00100, stacking
line 00060 as a return location. Assuming no further transfers,
lines 00100 to 00140 are executed and line 00140 transfers
control to line 00060.

(

(

(

Nested GOSUB

00080 GOSUB NEWYEAR

..---- ~00090-

00100 STOP

•
•

00150 NEWYEAR:

•
•
•

00190 GOSUB NEWMONTH

~00200-

•
•
•

- --00240 RETURN

00250 NEWMONTH:

•
•
•

L-.---00300 RETURN

GOSUB

Program 2-Assuming no transfer statements other than
those shown, the order of execution is: 00080, 00150 to
00190, 00250 to 00300, 00200 to 00240, 00090 to
00100(STOP).

BASIC Language Reference 205

GOSUB

GOSUB and RETURN statement (continued)

206 SA34-0109

An example of a computed GOSUB is as follows:

90 N=5
100 ON (C/N) GOSUB 150,280,370 NONE 420

IF C is 5, line 150 gains control.
IF C is 10, line 280 gains control.
IF C is 15, line 370 gains control.
IF C is less than 2.5 or greater than or equal to
17.5, line 420 gains control.

GOTO statement

(

(

GOTO

The GOTO statement transfers control to a specified line or
label.

The syntax of the GOTO statement can be simple or
computed.

GOTO--line-ref •

The syntax of the simple GOTO statement is shown above,
where:

line-ref is the line number or label to which control is to be
transferred.

Execution of a simple GOTO statement causes transfer of
control to the line number or label specified.

The syntax of the computed GOTO statement is:

.. • rNONE line-ref]

ON-anth-express,on-GOTOTline ref,-L---a •
I I
L_,_.....J

D Interrupt occurs if expression is out of range

where:

arith-expression is the arithmetic expression that determines
the line to which control is passed.

BASIC Language Reference 207

GOTO

GOTO statement (continued)

208 SA34-0109

line-ref is a statement number or label. At least one state­
ment number or label is required.

NONE if none of the line numbers preceding the NONE is
selected, the line number following it is used.

Execution of a computed GOTO statement causes the arithme­
tic expression to be evaluated.Control is transferred to the line
whose numeric position in the list of line numbers (reading
from left to right) is equal to the rounded integer value of the
expression. Thus, an expression with a value of 2.75 causes
control to be transferred to the third line in the list. If the
expression has a rounded integer value less than 1 or greater
than the total number of lines listed, the program goes to the
statement specified in the NONE clause. If no NONE clause is
present, an error occurs.

When a GOTO statement points to a descriptive statement
such as DIM, control is transferred to the first executable
statement following the descriptive statement.

The following statement transfers control to line number 20:

100 GOTO 20

The following statement transfers control to the statement
labeled R"ECOVERY when the variable LIMIT is 1.

100 ON LIMIT GOTO RECOVERY,SOO NONE QUIT

\
'c,_ ,./

(

(

(

(

GOTO

Programming considerations

HELP STATUS command

If the variable in the expression has a subscript that is a
numeric constant, the constant cannot have an odd
number of digits ending in 27. If you do, results will be
unpredictable when you issue a LIST command. For
example, ON 1(127) GOTO AB will not list properly.

The HELP STATUS command displays the amount of space (in
bytes) available in the work area, the work area type (PRO­
GRAM or DATAl. and the file specification of the last file used
to load or save the work area.

HELP STATUS •

The syntax of the HELP STATUS is as shown. Between
CLEAR or power on and LOAD/SAVE/REPLACE, only the
mode and number of bytes available are reported.

Example

HELP STATUS

20168 PROGRAM PAYROLL.FDP/PAYROL

(bytes avail) (type) (file specification)

BASIC language Reference 209

HEX$(A$)

HEX$(A$)

Hierarchy, arithmetic

HOLD

210 SA34-0109

Returns a character string containing the hexadecimal value
represented by the content of A$. For example:

10 A$="F1F2"
20 B$=HEX$(A$)

A$ must contain only the digits 0 through 9 or the uppercase
letters A through F. The number of hexadecimal characters
must be even.

B$ contains a two character string which is "12."

See "EBCDIC character table" under "Character set."

See "Arithmetic hierarchy."

The HOLD key can be used to stop processing at any time (for
example, to view the screen.) You press HOLD a second time
to continue operation. Pressing the HOLD key does not
immediately stop the printer.

If the 5322 Computer is sharing a 5246 Diskette Unit, the
second 5322 Computer may be stopped also. See "Device
sharing."

If diskettes are removed while the computer is in the hold
state, unpredictable results may occur.

(
~ ...

(

(

IF,THEN,ELSE

IF, THEN, ELSE statement

The IF, THEN, ELSE statement transfers cO,otrol according to
the result of an evaluated expression or conditionally executes
a statement.

r------------,
I ANJ- I

relational-expressio
OR ~

LSE{'line-ref~

{
line-ref .stateme:

I F_.relational-expression'--''--____ -I.It-____ ...a..THEN II----.......J'----I ••
statement

.. One expression considered

D If expression is false, go to next statement

The syntax of the IF, THEN, ELSE statement is as shown
above, where:

relational expression is a relational expression or a logical
operator (see "Relational expression" and "Logical operators."
under this (IF, THEN, ELSE) statement).

line-ref is the line or label to which control is to be transferred.
It is specified by either a line number or a label symbol.

BASIC Language Reference 211

IF,THEN,ELSE

IF, THEN, ELSE statement (continued)

212 SA34-0109

statement is any of the following BASIC statements:

CHAIN
CLOSE
CONTINUE
DELETE
GOSUB
GO TO
INPUT
INPUT FIELDS
LET
LET (implied)
LINPUT

MAT
ON
ON GOSUB
ON GOTO
OPEN
PAUSE
PRINT
PRINT FIELDS
RANDOMIZE
READ
RELEASE

REREAD
RESERVE
RESTORE
RETRY
RETURN
REWRITE
STOP
TRACE
WRITE

If CHAIN or MAT follows THEN, an ELSE clause is not
allowed.

The IF, THEN, ELSE statement either transfers program
control or executes a statement according to the results of a
relational or logical expression. If the expression is true and a
line reference follows the THEN, control is transferred to that
line. If a statement is specified, instead of a line reference,
that statement is executed. If the expression is false and a line
reference follows the ELSE, control is transferred to that line
reference. If a statement follows the ELSE, that statement is
executed. If the execution of this statement does not result in
the transfer of control, or the ELSE was not specified, then
control is passed to the next executable statement in the
program.

IF,THEN,ELSE

Relational expression

A relational expression compares the value of two arithmetic
expressions or two character expressions. The expressions
are evaluated and then compared according to the definition of
the relational function specified. The relational functions and
their definitions are:

Relational function

<> or ><
=> or >=
=< or <=
>
<

Definition

Equal
Not equal
Greater than or equal
Less than or equal
Greater than
Less than

When comparing numeric values, the value compared is the
full 15 digits of the representation. Results of functions which
are not accurate to 15 digits should be rounded before making
an equal compare. See "Accuracy" under "Arithmetic data"
When character data appears in a relational expression, it is
evaluated according to the collating sequence, character by
character, from left to right. When character operands of
different lengths are compared, the result is unequal. If all
characters of the shorter string are character-by-character
equal to the leading characters of the longer string, the shorter
string is less then the longer string. Blanks are significant in
comparisons.

Example

10 IF A=B THEN 90 ELSE 110

BASIC Language Reference 213

IF,THEN,ELSE

IF, THEN, ELSE statement (continued)

214 SA34-0109

Logical operators, expressions

Relational expressions are combined to form logical
expressions.

Logical operators are used between relational expressions.
When the logical operator AN D is used between two relational
expressions, the logical expression is true only if both relation­
al expressions are satisfied. This is illustrated in the example
that follows.

If OR is specified and the first expression is true, or if AND is
specified and the first expression is false, the second
expression will not be evaluated. For example, if the second
expression contains a function, it will not be executed.

Examples

10 IF A$="JOB" AND B$="DATE" THEN 90 ELSE 110
20 IF MONTH=2 AND DAY=28 THEN MONTH=3 ELSE DAY=DAY-t, ... /

In the following example OR is used to specify that either of
the two relational expressions can compare in order for the
logical expression to be true.

10 IF A=e OR B<4 THEN 90 ELSE 110

(

(

IF,THEN,ELSE

The following is an example used for checking a blank field:

100 IF B$=RPT$(" ",LEN(B$)) THEN GOTO BLANK
•
•
•
500 BLANK:STOP

The following examples show a variety of IF statements:

30 IF A(3)<>X+2jZ THEN 100
40 IF R$="CAT" THEN 70
50 IF S2=37.222 THEN 120
60 IF X>Y THEN 90
70 IF A<B OR C<D THEN 110
80 IF A$="JOB" AND B$="DATE" THEN 100
90 IF A=3 OR B=4 THEN C=G ELSE STOP
100 STOP

In line 40, for example, if character variable R$ contains the
word CAT, program control is passed to line 70. In line 70, if
either A<B or C<D, control is passed to line 110.

An example showing the use of labels is as follows:

30 IF MONTH=2 AND DAY=29 THEN LEAP YEAR ELSE LET
MONTH=MONTH+l
•
•
•
70 LEAPYEAR: LASTDAY=366

BASIC Language Reference 215

IF,THEN,ELSE

IF, THEN, ELSE statement (continued)

216 SA34-0109

Programming considerations

or:

When an IF statement has a THEN clause and an ELSE
clause, the THEN clause may not contain a MAT state­
ment. For example, instead of doing this:

10 IF X=O THEN MAT A=B ELSE MAT A=C

10 IF X=O THEN MAT A=B ELSE Y=10

Do this:

10 IF X=O THEN MAT a+B

or:

10 IF X=O THEN R=S ELSE MAT A=B

For other methods of examining data values, see "SRCH" and
"POS." "..

(
~.

Index keys

(

Index keys

See "Create Index File" under "Customer Support Functions"

"DELETE statement"

"KLN"

"KPS"

"OPEN statement"

"READ statement"

"REREAD statement"

"RESTORE statement"

"REWRITE statement"

"WRITE statement."

BASIC Language Reference 217

INPUT

I N PUT statement

218 SA34-0109

The INPUT statement allows values to be assigned to variables
from the keyboard (or procedure file) or a display file. ('

fi#fi,e-ref:l

r----'---,
I I

I
error-cond line-ref

EXIT line-ref

INPUT--L-a----T data-Item"!'/ '----II':I---....&.-----i.

I I L __ 1 __ --'

.. Defaults to #0
II Interrupt on error unless ON is active

The syntax of the I N PUT statement is as shown, where:

file-ref is a numeric expression, see "File reference
parameter."

data-item is a simple variable, subscripted array element, or a
MAT array name.

error-cond can be CONY, SOFLOW, EOF, IOERR (see "EXIT
statement").

line-ref is either a line number or a label.

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

\ ,,- _./

(
~-

(

INPUT

When an INPUT statement is executed, and input is expected
from the keyboard, a question mark (?) is displayed on the
screen on line 23, column 1 and the program execution halts.
Input data is entered on the same line as the question mark.
The data must be entered beginning in column 2 because
column 1 is occupied by the question mark. You must then
enter a list of values, which will be assigned in the order they
are entered, to the variables listed in the INPUT statement or
row-by-row to elements of specified arrays. The Enter key
must be pressed to resume program execution. The number
of values entered must be the same as the number of items in
the I/O list.

INPUT is normally used to input data from the keyboard.
However, it may also be used to read data (in keyboard entry
format) from a DISPLAY file (type 05).

Assignment of values occurs after each ENTER or record
delimiter. If the PROC option is entered in the RUN command,
values are supplied from the active procedure file (see
"Procedure file") rather than from the key~oard. Each INPUT
statement gets one line from the display file or procedure file.
If the record supplies too many or not enough values for the
data list, an error is indicated.

Examples

To input:

A number or numbers, enter:

10 INPUT X
20 INPUT X,Y

BASIC Language Reference 219

INPUT

I N PUT statement (continued)

220 SA34-0109

A string or strings, enter:

10 INPUT N$
20 INPUT N$,A$

Numbers and strings, enter:

10 INPUT NAME$,AGE
20 INPUT X,X$

From a file, enter:

10 OPEN #100: I NAME=FILE.NAME",DISPLAY,INPUT
20 INPUT #100:ITEM1,ITEM2

An array (matrix), enter:

CLEAR
10 OPTION BASE 1
20 DIM ITEM$(3)
30 INPUT MAT ITEM$
40 PRINT ITEM$(1) ,ITEM$(2) ,ITEM$(3)
50 END

(

(

(

(

INPUT

The operator may respond to the following INPUT statement:

10 INPUT NAME$,AGE,ADDRESS$

in either of the following ways:

? Gabe, 25, Street

or:

? Gabe,
? 25,
? Street

Programming Considerations

Blanks

The only blanks allowed within a numeric field are
leading blanks or trailing blanks.

Enclose a character field in quotes if leading blanks,
trailing blanks, or delimiters are significant.

Data items

The data types and the number of data items are
verified before any assignment takes place.

The maximum length of each character data item
entered, is 255.

Procedures

Specifying PROC on the RUN command has no
effect on input statements containing a file reference
other than O.

BASIC Language Reference 221

INPUT

INPUT statement (continued)

222 SA34-0109

Command keys

Command function keys, when pressed during / "
INPUT, cause input to end (same as pressing the
Enter key) and CMDKEY variable to be set.

Cmd/Attn

Pressing the Cmd/ Attn key while INPUT is pending,
will cause an interrupt when the current INPUT
statement completes execution (after pressing Enter).

LlNPUT

EOF

The unformatted input of a character string is
achieved by using the LlNPUT statement (see
"LlNPUT statement").

Input from a procedure (RUN PROC) can cause an
EOF condition at the end of a procedure. An EOF
clause should be coded to account for this. The
program cannot revert to keyboard input when start­
ed by RUN PROC.

Terminating input with a slash

CNT

If the input data is terminated with a slash (/), the
number of data items entered can be less than the
number of I/O list items. The values of any remain­
ing I/O list items are left unchanged.

If the input data is terminated with a slash" / ," only
items preceding the slash "f" are counted.

Each data item is counted as one. Example:
100,200,300.400 (CNT=4)

''"'" ,7

(

Inquiry key

I nteger format

INPUT

Null entries

When constructing a DISPLAY file (type 05) for
processing by INPUT, and the last data item can be a
null character string, end each line with a slash (f).
This prevents an "ends in comma" error.

Error conditions

Before values are assigned, a check is made of all
the data values entered. If the check fails at any
point, none of the entered values are assigned.
Some potential errors which can occur are:

CONV means that character data was provided when
numeric data was required.

SOFLOW means that the character string input was
too long.

See "Program 5-Sample" in Appendix A and "Full-screen
processing."

See "Attention and Inquiry."

See "Arithmetic data."
"INT(X)."

BASIC Language Reference 223

Internal constants
Internal constants

Internal files

224 SA34-0109

An internal constant is a named, predefined value. Unlike
arithmetic variables, the value is never altered during program
execution. An example of the only internal constant is:

Constant
pi

Name
PI

Value
3.14159265358979

The internal constant name can only be used as a part of an
arithmetic expression. It cannot be the target of an assign­
ment statement. For example (assume rounding is to 7 digits),
type:

PRINT 2*PI (then press Enter)

The result is 6.283185.

See "Relative record files."
"Key-indexed files"
"Internal I/O files"

(

Internal I/O

Internal I/O file formatting

Formatted (with USING)

When a WRITE or REWRITE statement contains a USING
clause, the format of the data is specified by the associated
FORM statement. The output record is generated in the follow­
ing manner:

Allocate a buffer of length specified by REel= on the
OPEN.

Set the entire buffer to blank (hex 40). This applies to the
WRITE statement only.

• Use the FORM specification and output data list values to
fill in the specified record locations. Unspecified locations
remain either blank or unchanged.

BASIC Language Reference 225

Internal I/O

Internal I/O file formatting (continued)

226 SA34-0109

Unformatted (without USING)
('

When a WRITE or REWRITE statement does not contain a i\, __ ,

USING clause, the record is "unformatted." The output
record is generated as follows:

Allocate a buffer of length specified by RECl= on the
OPEN.

In the first two bytes of the record, place the binary
representation of the number of output list items. Each
array element counts as one. The low-order byte is first,
and the high-order byte is second.

• Preceding each data value place the binary representation
of the length of the data item. Numeric items are length 9,
and character items are specified by their current length
(0 to 255).

Following the item length, place the value of the data item
in internal format. See "Arithmetic data" and "Character
set."

The record length must have additional space allocated for
these length fields over and above the aggregate length of the
data. When numeric data items are expected, the length must
be 9 bytes. When character data items are expected, any
length is acceptable. No type checking is performed.

(

(

Internal I/O files

Internal I/O

Internal I/O files are used for collecting related numeric and
character data items and storing them as a unit in a
fixed-length logical record. These files must be opened before
using the WRITE (or REWRITE) statement to store data items
in the file and the READ (or REREAD) statement to retrieve
data items from the file. Internal I/O files can be accessed
sequentially or directly either by key-indexed or by relative
record number. For specific information, see "Relative record
files" and "Key-indexed files." See also "REC(N)" and
"RLN(N)."

Internal representation of characters

See "Character set."

BASIC Language Reference 227

Internal variables

Internal variables

Interrupt

228 SA34-0109

See "System variables."

An interrupt is a condition that stops execution of the program
or the procedure. After the interrupt occurs, the program or the
procedure is allowed to continue. For more information, see:

"Attention and inquiry"

"EXIT statement"

"ON statement"

Interrupted programs may not be saved or replaced. DIM,
OPTION, FOR. and NEXT statements may not be added or
modified during an interrupt.

System Messages, SA34-0141, describes messages and tells
how to fix each one.

Interrupt handling

(

BASIC program interrupts are:

I/O errors
Computational errors

• INO key
Cmd / Attn key

Interrupt

These interrupts are handled in the following priority:

I/O errors with an applicable EXIT clause cause transfer
to the specified line.

Computational errors and I/O errors with no applicable
EXIT clauses but with an applicable "ON condition
GOTO" active, cause the specified transfer to take place.

The INO key is pressed and an ON ATTN GOTO is active.
The INO is detected prior to the execution of the next
statement and the specified GOTO is executed. Note that
Attn should be ignored when other conditions are being
monitored by ON to prevent loss of one of the interrupts
for RETRY and CONTINUE.

Cmd/ Attn cannot be intercepted and always causes an
interrupt.

If no intercept (ON or EXIT) is specified for I/O errors, compu­
tational errors, or INO key, an interrupt occurs.

For more information, see "ON statement" "Order of
execution" and "Attention and inquiry."

For a description of special handling of ON events and I/O
exits within a defined function, see "DEF,FNEND statement."

BASIC Language Reference 229

Intrinsic functions

Intrinsic functions

INT(X)

230 SA34-0109

See "System functions."

Returns the largest integer not greater than X. For example:

10 X=-17.4
20 Y=INT(X)

Y contains -18

10 X=3.4
20 Y=INT(X)

Y contains 3

I/O action tables

(

Keyboard

I/O tables

The tables in Appendix B specify the response of System/23
to any combination of two I/O statements. Statements which
are not listed on these tables are always considered errors.
Refer to Appendix B for this information.

The keyboard is made up of alphabetic, numeric, and special
character keys. Both uppercase and lowercase characters can
be entered by using the shift key. The statement keywords
and commands can be entered by using the Cmd key. When
any of the keys are pressed, the characters entered appear on
the input line on the display screen (see "Key description
legend and tables").

Each of the keys are described in the Operator Reference,
SA34-0108.

BASIC Language Reference 231

Keyboard

Keyboard (continued)

232 SA34-0109

Programming considerations
;-."

Information that you enter (in response to the status line _ /
display of "READY INPUT') may change if it is not enclosed in
quotes. This does not apply to input as a result of an INPUT or
LI N PUT statement or as a result of a data file. The changes are
defined in terms of the EBCDIC character table shown under
"Character set." Characters in a given column are changed to
the corresponding character in the same row, with "column"
determined by the following table:

Input Resultant
character's character's
column column

0 4
1 5
2 6
3 7
4 4
5 5
6 6
7 7
8 C
9 D
A E
B F
C C
D D
E E
F F

For example, the a (in input character column 8) is changed to
the A (in resultant character column C). The national currency
symbols in column B are changed to the numerics in column F.

./

(

(

Keyboard

So, PRINT 10ft prints the number 100, whereas PRINT "10ft"
prints 10¢. See "Character set," and "Variable names" for
more information.

Keyboard-generated data files

A data file can be created directly from the keyboard by enter­
ing the CLEAR DATA command to clear the work area and
define it as data. Next, the AUTO command may be entered
to initiate automatic line numbering; or, lines may be entered
preceded by a line number and a colon. The end of a data line
is indicated when the Enter key is pressed. The only syntax
restriction is the line number followed by a colon.

The length of the data file line may not exceed 249 characters.
The work area can be saved with the SAVE command. Data
file lines are saved without line numbers or colons. They are
saved in the DISPLAY file type (05). Procedure files are an
example.

When data file lines are listed, the colon is displayed. Data in
a keyboard-generated file can be accessed as a DISPLAY file
during program execution; or it may be a procedure file to
control program execution. With line numbers and colons
removed,. the data file is accessed sequentially, one line at a
time.

A saved data file can be changed by loading it back into the
work area with a LOAD DATA command. When saved, the
line numbers and colon are removed again. When loaded,
data lines are preceded by line numbers, starting with 00010
and incrementing by 10, and the colon.

BASIC language Reference 233

Key description
Key description legend and tables

234 SA34-01 09

The key description, legend used in conjunction with the key
description tables, describes the action taken for each key on
the System/23 keyboard.

Key description table legend

The following is a legend of the symbols used in the key
description tables.

A Display lowercase graphic associated with the key
pressed

B Display uppercase graphic associated with the key
pressed

C Display alternate shift graphic associated with the key
pressed

D Display the command shift keyword associated with the
key pressed

E Build a value between 0 and 255. The last three
keystrokes between pressing and releasing the alternate
shift key are used to build the value. Treat the value as
follows:

O~value~5

Change the current CRT display page

6~value~63

Sound the audible alarm, ignore the value

./

(

(

(

(--

F

G

H

Key description

64~value~255

If the keyboard is open, display the EBCDIC
character associated with the entered value; set
KSTAT$; else ignore.

Set KSTAT$ to the value displayed.

Set KST AT$ to the value that would have been displayed
if the keyboard were open.

Set KSTAT$ to null.

Do nothing to KST AT$.

J When key is pressed, set case shift state to uppercase,
set to lowercase when released.

K When key is pressed, set case shift to uppercase. Do
nothing when released.

L When key is pressed, set data shift to command, when
released, set data shift as follows:

Alt (56) depressed (alternate)

• Alt (56) not depressed (normal)

M When key is pressed, set data shift as follows, when key
is released, set data shift to normal.

N Do not alter data shift state.

D Terminate INPUT statement.

P Set CMDKEY to zero.

Q Set CMDKEY to 1-9, according to key pressed.

R Scroll rows 1-23 down one logical line. The last logical
line on the screen is lost. If listing a program, the preced­
ing line of the program is displayed at the top of the
screen if it will fit.

S Scroll rows 1-23 up one line. If any part of the top logical
line leaves the screen, blank the top logical line. If listing a

BASIC Language Reference 235

Key description

Key description legend and tables (continued)

program, the next line of the program is displayed at the
bottom of the screen, if it will fit.

('
T Enter ROS-resident diagnostics. \

"'--
Cmd/test causes error and action codes on status
line.

Cmd/ Attn = diagnostic monitor.

Error Reset = normal

U Place machine in the hold state. All processing stops.
Processing resumes when hold key is pressed again.
Current I/O operations will run to completion. Copy
Display is active in the hold state.

V Copy the contents of the display screen, including the
status line, to the system printer, device 10. Copy Display
is active when the keyboard is open for input and when
the machine is in the hold state.

W When an error condition exists, fix the error successfully. " /

X When an error condition exists, fix the error unsuccessful- "

Iy.
'-., -'

Y Set BASIC flag for "ON ATTN" condition. If program
doesn't trap, same as Cmd/ Attn

Z Blank from the current cursor position to the end of the
logical line. Scroll down the display screen so that the
cursor is now on the entry row. The cursor is in the same
position relative to the start of the logical line being oper-
ated on.

a Blank field from current cursor position to end of field.

b Return control to the system command processor. If
BASIC is executing, control is returned before the next
statement is executed. If a Customer Support Function or
SORT is executing, control is returned at break points
established by each function.

(
~-

236 SA34-0109

Key description

c Move cursor to the first position of the next defined field.

f
Cursor goes to first field if currently in the last field.

d Move cursor to the last position of the previously defined
field. Cursor goes to last field if currently in the first field.

e If cursor is in a numeric field and field is not full, return an
error. Otherwise, position cursor to row 23, column 1.

f Move the cursor one position to the right (except for
'BE' -acute, 79' -grave, 'A l' -tilde, '5F -circumflex,
'9D' -cedilla, 'BD' -diaeresis).

g Move the cursor one position to the left.

h Wrap to the next row when leaving the right side of the
screen. Wrap to the beginning of the logical line if leaving
the right side of the screen on the last row of the line.

If the cursor leaves the field that it is in, move it to the
first position of the next defined field. Move to first
defined field if currently in the last defined field.

(Wrap to the previous row when leaving the left side of the
screen. Wrap to the end of the logical line if leaving the
left side of the first row of the line.

k If the cursor leaves the field that it currently is in, move it
to the last position of the previous defined field. Move to
the last defined field if leaving the first defined field.

m Move the cursor to the first position of the previous
defined field. Move to the last defined field if currently in
the first defined field.

n Wrap to the next row of the logical line if the cursor
moves off the screen to the right. If there is no next row,
scroll up the screen by one row and put the cursor at row
23, column 1. If the logical line would extend past 23
rows, sound the audible alarm and leave the cursor at row
23, column 80.

(

BASIC Language Reference 237

Key description

Key description legend and tables (continued)

P If the field is Automatic Field Exit, then i. If the field is
Automatic Field Exit and Automatic Enter, then 0 and P. //

If the field is not Automatic Field Exit and the cursor
would normally leave the field, put the keyboard into the
Field Exit Pending state.

p Move the cursor one position to the right for each charac-
ter displayed in the command keyword.

r Move all the characters, from and above the cursor to the
end of the line, one position to the right. Put a blank
above the cursor. If non blank data on the last row is shift-
ed off the screen, extend the logical line. If the line is
already 23 rows, return invalid key error.

s Move all the characters, from and above the cursor to the
end of the field, one position to the right. If the last posi-
tion is non blank before the operation, return an invalid key
error. Put a blank above the cursor if the operation is
successful.

t Move all the characters from, but not above the cursor to
the end of the line, one position to the left. Blank the last
position in the line. If the entry row becomes blank, scroll
down the display screen one row.

u Move all the characters from, but not above, the cursor to
the end of the field, one position to the left. Blank the last
position in the field.

v If the last position and the first position in the field are
non-blank, return an invalid key error. If the first position
is blank, put a minus sign there. If the first position is
nonblank, shift the entire field right one position and put a
minus sign in the first position.

w If machine is in hold, enter C. E. monitor. If not, ignore.

(
.~

238 SA34-0109

(

(

Key description

Key description tables

These tables, used in conjunction with the key description
legend, describe the action taken for each key on the
System/23 keyboard.

+ .) >
Normal data keys: ~/ to =, Q to \;, Ato (. < to ?/, space
Key numbers: 1·13, 16·27,30-41,43-53,57

Keyboard open for input Keyboard

Result for Result for full- closed

Shift normal mode screen processing Result

Lower-
case A, F, f, n A, F, f, P G
(normal)

Upper- B, F, f, n B, F ,f, p G
case

CMD
key D,q,n D,q,n N/A

ALT C, F ,f, n C, F, f, n N/A
key

BASIC Language Reference 239

Key description

Key description legend and tables (continued)

240 SA34-0109

;!; Copy D key

Key number: 13

Keyboard open for input

Result for
Shift normal mode

Lower-
case A, F, f, n
(normal)

Upper-
A, F, f, n

case

CMD
V

key

ALT
E

key

__ key (Cursor Backspace)

Key number: 14

Result for full-
screen processing

A, F, f, p

A, F, f, p

V

E

Keyboard open for input

Result for Result for full-

Shift normal mode screen processing

Lower-
case 9 , j g,k
(normal)

Upper-
g, j g,k

case

CMD
N/A N/A

key

ALT
N/A N/A

key

Keyboard
closed

Result

G

G

V (press
hold first)

E

Keyboard
closed

Result

N/A

N/A

N/A

N/A

c:

(

Key description

~ Key (Field Advance, Field Backspace)

Key number: 15

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

Lower-
case 0, P c
(normal)

Upper-
O,P m

case

CMO
N/A N/A

key

ALT N/A N/A
key

Enter key
Key number: 28

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

Lower-
case 0, P 0, P, e
(normal)

Upper-
O,P 0, P, e

case

CMD N/A N/A
key

ALT N/A N/A
key

Keyboard
closed

Result

N/A

N/A

N/A

N/A

Keyboard
closed

Result

N/A

N/A

N/A

N/A

BASIC Language Reference 241

Key description

Key description legend and tables (continued)

242 SA34-0109

.£!..Key (Shift Lock)
Key number: 29

Keyboard open for input

Result for
Shift normal mode

Lower-
case K
(normal)

Upper-
K

case

CMD
K

key

ALT
K

key

~Keys (Upper Shift)
Key numbers: 42, 54

Result for full-
screen processing

K

K

K

K

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

Lower-
case J J
(normal)

Upper-
J J

case

CMD
J J

key

ALT
J J

key

Keyboard
closed

Result

K

K

K

K
(,

Keyboard
closed

Result

J

J

J

J

(

(

........J Key (New Line)
Key number: 55

Key description

Keyboard
Keyboard open for input closed

Result for Result for full-
Shift normal mode screen processing Result

Lower-
case S c N/A
(normal)

Upper-
S c N/A

case

CMD
N/A N/A N/A

key

ALT
N/A N/A N/A

key

Alt key
Key number: 56

Keyboard
Keyboard open for input closed

Result for Result for full-

Shift Normal mode screen processing Result

Lower-
case M M M
(normal)

Upper-
M M M

case

CMD
N

key
N N

ALT
M

key
M M

BASIC Language Reference 243

Key description

Key description legend and tables (continued)

244 SA34-0109

Field
Exit key
Key number: 58

Shift

lower-
case
(normal)

Upper-
case

CMD
key

AlT
key

Erase
Attn key

Keyboard open for input

Result for Result for full-
normal mode screen processing

O,P a,c

O,P a, C

N/A N/A

N/A N/A

Key number: 59

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

lower-
case Z a
(normal)

Upper-
Z a

case

CMD
b b

key

AlT
Z

key
a

Keyboard
closed

Result

N/A

N/A

N/A

N/A

Keyboard
closed

Result

N/A

N/A

b
(
.~.

N/A

Key description

Cmd key

(Key number: 60

Keyboard
Keyboard open for input closed

Result for Result for full-
Shift normal mode screen processing Result

Lower-
case L L L
(normal)

Upper-
L L L

case

CMD
L L L

key

ALT
L L L

key

Inq Key
Key number: 61

Keyboard
Keyboard open for input closed

Result for Result for full-
Shift normal mode screen processing Result

Lower-
case y Y Y
(normal)

Upper- y
case

y y

CMD y Y Y
key

(ALT y Y y
key

BASIC Language Reference 245

Key description

Key description legend and tables (continued)

246 SA34-0109

Hold key
Key number: 62

Shift

lower-
case
(normal)

Upper-
case

CMD
key

AlT
key

Error
Reset key

Keyboard open for input

Result for Result for full-
normal mode screen processing

U U

U U

U U

U U

Key number: 63

Keyboard open for input

Result for Result for full-

Shift normal mode screen processing

lower-
case N/A N/A
(normal)

Upper-
N/A N/A

case

CMD
N/A N/A

key

AlT
N/A N/A

key

Keyboard
closed

Result

U

U

U

U

Keyboard
closed

Result

W

W

X

W

(

Key description

Test key
Key number: 64

Keyboard
Keyboard open for input closed

Result for
Shift normal mode

Lower-
case W
(normal)

Upper-
W

case

CMD
T

key

ALT
W

key

~ Key (Scroll Down)

Key number: 65

Result for full-
screen processing Result

W W

W W

T T

W W

Keyboard
Keyboard open for input closed

Result for Result for full-
Shift normal mode screen processing Result

Lower-
case R c N/A
(normal)

Upper-
R c N/A

case

CMD N/A N/A N/A
key

ALT N/A N/A N/A
key

BASIC Language Reference 247

Key description

Key description legend and tables (continued)

248 SA34-0109

* Key (Scroll Up)

Key number: 66

Keyboard open for input

Shift

Lower-
case
(normal)

Upper-
case.

CMD
key

ALT
key

-..­
Del key

Result for Result for full-
normal mode screen processing

S m

S m

N/A N/A

N/A N/A

Key number: 67

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

Lower-
case g, j g,k
(normal)

Upper-
case

g, j g,k

CMD
key

t u

ALT
N/A N/A

key

Keyboard
closed

Result

N/A

N/A

N/A

N/A

Keyboard
closed

Result

N/A

N/A

N/A

N/A

(

Key description

---..
Ins key
Key number: 68

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

Lower-
case f,h f, i
(normal)

Upper-
f ,h f , i

case

CMD
key

r s

ALT
N/A N/A

key

1-9 (Ten Key Pad)
Key numbers: 71-73,75-77,79-81

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

Lower-
case A, F, f, n A, F, f, p
(normal)

Upper-
A, F, f, n A, F, f, p

case

CMD
0,0 o ,O,e

key

ALT
E E

key

Keyboard
closed

Result

N/A

N/A

N/A

N/A

Keyboard
closed

Result

G

G

G

E

BASIC Language Reference 249

Key description

Key description legend and tables (continued)

Field
key

Key number: 74

Keyboard
Keyboard open for input closed

Result for Result for full-
Shift normal mode screen processing Result

Lower-
case N/A a, v N/A
(normal)

Upper- N/A a,v N/A
case

CMD
N/A N/A N/A

key

ALT
N/A N/A N/A

key

Field
+ key
Key number: 78

Keyboard
Keyboard open for input closed

Result for Result for full-
Shift normal mode screen processing Result

Lower-
case O,P a, C N/A
(normal)

Upper-
O,P a,c N/A

case

CMD
N/A N/A N/A

key

I
I

\~- /

ALT
N/A N/A N/A

key

250 SA34-0109

(

Key description

o key (Zero Key on the Key Pad)
Key number: 82

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

Lower-
case A, F , f, n A, F, f, p
(normal)

Upper-
8, F , f , n B , F , f , p

case

CMD
N/A N/A

key

ALT
E E

key

• Key (Ten Key Pad)
Key number: 83

Keyboard open for input

Result for Result for full-
Shift normal mode screen processing

Lower-
case A, F, f, n A, F, f, P
(normal)

Upper-
B, F , f , n B , F , f , p

case

CMD
N/A N/A

key

ALT
N/A N/A

key

Keyboard
closed

Result

G

G

N/A

E

Keybo<lrd
closed

Result

G

G

N/A

N/A

BASIC Language Reference 251

Key indexed

Key-indexed files

252 SA34-0109

A key-indexed file is an Internal I/O file with an associated
index file. The index file cannot be used by itself; it must be
used with a master file.

The index file is created by using the Create Index File
Customer Support Function. You enter LINK INDEX to create
the index.

The index includes a key, or set of up to 28 characters, that
identify each record and the associated relative record
numbers. An index file cannot be droped with the DROP
command.

Statements used to process a key-indexed file inlcude:

Statement Variation from Record I/O

OPEN KFNAME=key filename, access method=KEYED

READ

WRITE

KEY="identifying characters"

do not specify KEY=

REWRITE KEY="identifying characters"

DELETE KEY="identifying characters"

More than one index can be created for the same master file.
For example, with a master file of names and addresses, there
could be two different index files:

One with zip codes used as the key.

• One with names as the key.

For more information see:

"OPEN statement"
"READ statement"
"WRITE statement"
"REWRITE statement"

Keys

KLN(N)

KPS(N)

Key indexed

"DELETE statement"

See" Keyboa rd. "

Returns the key length for file N. If the file is not open keyed,
a -1 is returned.

Returns the key starting position (byte number) for file N. If
the file is not open as keyed, a -1 is returned.

BASIC Language Reference 253

KSTAT$

KSTAT$

Labels

LEN(A$)

254 SA34-0109

Returns the character representing the key most recently
pressed when the keyboard is not open. A reference to
KSTAT$ sets it to a null string.

See "Key description legend and tables."

Any BASIC statement (except a DEF statement) may be
preceded by a label, which may be used in addition to a line
number, to reference the line. The label is a one to eight char­
acter name with the same syntax as a numeric variable name
(see "Line numbers" and "Line reference"). A label may not
be the same as a variable name or a reserved word (see
"Reserved words").

Example

10 START: GO TO IT
•
•
•
500 IT:GOTO START ENDLESS LOOP

Returns the number of characters in A$, including blanks. For
example:

10 DIM A$*100
20 A$="NUTS BOLTS SCREWS"
30 A=LEN (A$)

A contains the value 17

/

LET statement

(

(

(

LET

The LET statement assigns the value of an expression to a
variable.

~
ET

anth-var anth-expresslonL-..-

char-var=char-expression~ -

The syntax of the LET statement is shown above, where:

arith-var, char-var is a variable name, a subscripted reference
to an array element, or a substring reference. The row and
column references to an array element must be enclosed in
parentheses.

arith-expression, char-expression must be an arithmetic
expression when var is an arithmetic variable or an element of
an arithmetic array. It must be a character expression if var is
a character variable or array element, or a substring reference
(see "Expressions").

When the LET statement is executed, the expression is evalu­
ated and the resulting value is assigned to the specified vari­
able.

Programming considerations

Data values to the right of the equal sign must be of the
same type as the variable to which they are assigned.

• The keyword LET is optional when entering assignment
statements. When listing a program with LIST, LET will
appear on all assignment statements.

BASIC Language Reference 255

LET

LET statement (continued)

256 SA34-0109

•

•

Subscripted references to array elements are permitted in
the assignment statement.

Assignment of substring references are allowed .

Example

10 Z$ = "CAT"
20 X = 9
30 Y(X) = 2
40 A$ = B$(4:5)
50 A$ = A$&B$(3:4)
60 F$(X) (1:2) = B$(4:5)

After execution of line 10, the character variable Z$ will
contain the word CAT. In line 20, variable X receives a value
of 9.

After execution of line 30, the tenth element (default is BASE
0) of the one-dimensional arithmetic array (Y) will have a value
of 2.

After execution of line 40, the fourth and fifth characters of the
character variable B$ will be assigned to A$.

After execution of line 50, the third and fourth characters of
the character variable B$ are appended to the end of A$. A$ is
increased by two characters.

After execution of line 60, the first two characters of the tenth
element in array F$ are replaced by the fourth and fifth charac­
ters of B$.

LINE

Line control

r(

LET

When line 10 is listed, it appears as:

00010 LET Z$ = "CAT"

LINE is the system variable containing the line number where
the last BASIC program error occurred. If no error has
occurred, it is zero. Nothing changes the value except another
error.

See:
"CODE"
"ERR"
"Error handling"
"CONTINUE statement"
"RETRY statement."

See "SKIP parameter" under "PRINT statement."

BASIC Language Reference 257

Line numbers

Line numbers

Line reference

258 SA34-0109

Each line in a BASIC program and in a data file must begin
with a unique line number. A line number is an integer from 1
to 99999 which tells the System/23 the line number in a
program or data file. Lines do not have to be entered in line
number sequence. They can be entered in any order since
they are sorted by line number when they are stored. A line
number must not be preceded by a blank. A BASIC program
line number must be followed by a blank; a data file line
number must be followed by a colon. For more information on
line numbering, see "AUTO command" and "RENUM
command."

Each BASIC statement may be referred to in a program by
either a label symbol (a name used to identify a line) or a line
number.

Example

10 GO TO WORK
•
•
•

50 WORK: GO TO 10 !ENDLESS LOOP

(
\
'~

LINK command

(

(

LINK

The LINK command loads and starts the Customer Support
Functions, Communications Access Method (see System/23
Communication Guide), and the IBM System/23 Word Proc­
essing feature.

,PROC

LlNK- file-specI Ill-
D Input will be from the keyboard

The syntax of the LINK command is as shown above, where:

file-spec is the file name, which might optionally include the
VaLiD and device ID (see "File specification parameter").

PROC is used to allow certain programs to read input data
from procedure file.

The system returns to CLEAR status when the linked program
is completed.

When the LINK command executes, the system transfers
control to the function specified.

BASIC Language Reference 259

LINK

LINK command (continued)

260 SA34-0109

Example

A sample LI N K command is as shown:

LINK COPY/VOL001

Upon execution of this command, the system will link to the
COpy Customer Support Function on volume VOLDD1.

For more information on LINK, refer to "Using a procedure
file" in Chapter 1 of Customer Support Functions, Volume II.

/

.~.

LI N PUT statement

(

(

LlNPUT

This statement permits unformatted input of a character string
from the keyboard (or procedure file) or from a display file.
The character string may contain commas, semicolons, leading
blanks, and other characters which are delimiters in INPUT
statement data. After removing trailing blanks, the maximum
length string LlNPUT will process is 255 characters.

r#fi,e-ref:l
LlNPUT ---L--.a----1- char-var

D Default is #0

r----'-----,
I I

I

error-cond I:::J

EXITline-r~

II Interrupt on error unless ON is active

The syntax of the LlNPUT statement is as shown above,
where:

file-ref is an integer or numeric variable from 0 to 127 and
must be preceded by the symbol # (number sign). See
"File-reference parameter."

char-var is a character variable into which the characters
entered in the input line will be assigned.

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

error-cond line-ref can be CONV, SOFLOW (see "EXIT
statement"). line-ref is either a line number or label.

BASIC Language Reference 261

UNPUT

UNPUT statement (continued)

262 SA34-0109

LlNPUT can access data written with a PRINT #n statement,
but not with a WRITE statement. LlNPUT can also be used for
saved data files or programs which were saved in SOURCE
format.

When Enter is pressed, keyboard input stops. LlNPUT can
also be ended by pressing the Cmd key and a number pad key.
The CMDKEY variable will be set to the number pressed.

Specifying PROC on the RUN command has no effect on
LlNPUT statements containing a file reference other than zero.

Pressing Cmd/ Attn will cause an interrupt when the LlNPUT
statement completes execution.

If the data for LlNPUT is provided from a procedure file (RUN
PROC) and data is no longer available, an EOF condition will
occur. An EOF can be coded in the LlNPUT statement to
prevent an interrupt. The program cannot revert to keyboard
input when started by RUN PROC.

Example

90 DIM ADDR$*255
100 PRINT "Enter full address"
110 LINPUT ADDR$

The full address can be entered as an answer.

See "Program 5-Sample" in Appendix A.

(

LIST, LlSTP command

(

(

LlST,LlSTP

The LIST command displays the contents of the program or
data in the work area on the screen. The contents of the work
area are not changed.

The LlSTP command prints the contents of the program or
data in the work area on the system printer. The contents of
the work area are not changed.

L"line.num

~
ine.num 1fJ-~

LlSTP

D----------~--·
LIST

label -----------.......

.. Screen-first 22 lines in work area
Printer-entire work area

II Screen-22 lines preceding and including line-num
Printer-line-num to end of work area

The syntax of the LIST, LlSTP command is as shown above,
where:

label, when specified with LIST, causes the line with that to
appear on the last line of the screen., The preceeding line will
be displayed also (as many as will fit on the screen).

line-num, when specified with LIST, causes that line to appear
on the last line of the screen, with as many preceding lines as
can be contained on the screen being displayed above that
line.

BASIC Language Reference 263

LlST,LlSTP

LIST, LlSTP command (continued)

264 SA34-0109

line-num, when specified with LlSTP, causes that line and all
succeeding lines to be printed on the printer.

last-line-num specifies the last line number to be displayed or
printed. It is used with line-num. Together, they specify that
the range delineated by the two line numbers is to be printed
or displayed. That is, all the statements with line numbers
between line-num and last line-num, inclusive, will be
displayed or printed.

If no line number or range is specified, a range consisting of
the entire program is used.

Programming considerations

• Cmd/ Attn keys

If the program is interrupted by Cmd/ Attn or an
error, LIST uses only the bottom five lines on the
screen, while retaining the other display lines as they
were (see "Split screen"). When execution resumes,
the screen is returned to the status it had when inter­
rupted.

• Nonexisting line numbers

If the line in the first line-num specification is not
found, the next higher line number in the work area
will be used.

If the line in the last line-num specification is not
found, the next lower line number in the workarea
will be used.

If the label does not exist, an error will occur.

Long lines

If the line length exceeds the screen or printer width,
the next line will contain the excess characters.

(
\

"".

•

LlST,LlSTP

Stopping LIST, LlSTP

Since printer operations occur independently of other
System/23 operations, the printer will not stop
immediately the when Cmd/ Attn or Hold keys are
pressed. The printer will stop when all the informa­
tion transferred to the printer has been printed.

The Cmd/ Attn keys are recognized only on a listing
operation to the printer.

Internal editing

When programs are listed, unnecessary blanks and
parentheses will be deleted; line numbers will be
expanded to five characters and LET will be inserted
for implicit LET statement. For example:

2 A = (B+C)

will list as:

00002 LET A B+C

Scroll

After LIST is issued, the screen may be scrolled up
to display the succeeding lines in the work area. This
can be done until either a line is entered or the Scroll
Down key is pressed. Scroll Down will not display
any preceding lines.

• Printer errors

Printer errors will not be reported until the next print­
er operation is attempted. The listing may be incom­
plete when a printing error occurs.

BASIC Language Reference 265

LlST,LlSTP

LIST, LlSTP command (continued)

266 SA34-0109

Printing a program with the aid of LIST label

If you need a printed copy of the program,use LIST
to list label to the screen to determine the line
number of that label. Then, use LlSTP and specify
that line number.

Examples

• LIST
This will display the first group of work area lines that fit
on the screen.

• LI ST 250, 99999
This will display line number 250 and all succeeding lines
that will fit on the screen.

LIST 250
This will display line number 250 and all preceding lines
that will fit on the screen.

LlSTP
This will print the entire program on the printer.

LI STP 300, 500
This will print line number 300 through line number 500
on the printer.

• LIST 20,20
This will display one line number, line number 20.

• LIST ABC
This will display the line with the label ABC and all preced­
ing lines that will fit on the screen.

LOAD command

(

LOAD

Use the LOAD command to put a display file (type 05)' a
BASIC program, or the communications Customer Support
Functions into the work area.

f PR0:=LGAM
, OAT

LOAD- file-spec II

D PROGRAM

The syntax is as shown above, where:

file-spec is the file specification parameter and is a filename
followed by an optional VOLID and device address (see "File
specification parameter"). File type must be 05 (display); 09
or 81 (BASIC program).

DATA specifies that the work area will be loaded from a file
and that each line will be assigned a line number. The file
specified must be a type 05. Line numbers will begin with 10
and increment by 10, for a maximum of 9999 lines.

PROGRAM is the default. If DATA is not specified, the file will
be loaded as a program. No line numbers will be added since
the program should already have line numbers. The file type
must be 05, 09, or 81.

Example

LOAD PROG1//l
LOAD DISPLAY.FILE,DATA

BASIC Language Reference 267

LOAD

LOAD command (continued)

268 SA34-0109

Programming considerations

•

Cmd/Attn

- A Cmd/ Attn interrupt will not be honored during a
LOAD operation.

I nsufficient storage

If insufficient space is available in storage to load the
file specified, an error occurs. Enter CLEAR to restart
operations. The program must be separated into two
or more programs.

Performance

A type 05 (display) file takes longer to load as a
program than a type 09 or 81 (program) file, because
in a type 05 or 81 file each line is syntax checked,
while it appears on the screen.

Closing Files

- LOAD will close all files left open by an interrupted
program.

LOAD commands

If LOAD PROGRAM is issued to a data file that
contains valid commands or calculator statements
(without line numbers) they will be executed and
LOAD will continue.

Syntax errors

If a syntax error occurs, the system is put into error
correction mode. The line in error can be manually
corrected at this point. No other errors are recovera­
ble. Instead of correcting a syntax error, the CLEAR
command may be entered to terminate the loading.
If the incorrect line is to be skipped, scroll down to
the previous correct line and press Enter.

(

Logarithm

(Logical expressions

LOG (X)

LPAD$(C$,X)

Logarithm

See "LOG."

See "IF, THEN, ELSE statement"

Returns the natural logarithm (base e) of X. If X is not greater
than zero, an error is returned.

Returns a string of characters with a length greater than or
equal to X by placing the required number of blanks before the
first character of C$. For example:

10 C$="ABCD"
20 A$=LPAD$(C$,5)
30 B$=LPAD$(C$,2)
B$ contains "ABCD"

A$ contains "ABCD"

Note: An error will be generated if X is not from 0 to 255.

BASIC Language Reference 269

lTRM$(C$)

lTRM$(C$)

Magnitude

270 SA34-0109

Returns the string of characters contained in C$. Leading
blanks are removed. For example:

10 C$=" AB CD"
20 A$=LTRM$(C$)

A$ contains "AB CD"

See "Arithmetic data"

(

(
\.

MAT

MAT assignment (addition, subtraction, scalar multiplication)

The MAT assignment statement (addition, subtraction, scalar
multiplication) adds or subtracts the contents of two arrays
and assigns the results to a third array. Or, the statement
multiplies the elements of a numeric array by the value of an
arithmetic expression and assigns the resulting products to the
elements of another numeric array.

MAT_array_name_={array-name{: l--, array-name •

(arith-expression) .~

The syntax of the statement is as shown above, where:

array-name is the name of an array.

arith-expression is the value to be assigned. When the
expression is evaluated, each element is set to that value.

The corresponding elements of the arrays specified to the right
of the equal sign are operated on and assigned to the corre­
sponding elements in the array specified to the left of the
equal sign. To assign the elements of one array to another
array, see "MAT assignment (simple)."

Programming considerations

All arrays must be numeric.

All arrays specified in the statement must have identical
dimensions.

BASIC Language Reference 271

MAT

MAT assignment (addition, subtraction, scalar multiplication)
(continued)

272 SA34-0109

Example (addition and subtraction)

The following shows execution of a MAT assignment (addition
and subtraction) statement:

10 DIM X (2,2), Y (2,2), Z (2,2)
•
•
•
100 MAT X=Y+Z

Each element of X now has the sum of the corresponding
elements of Y and Z.

/--

MAT

Example (scalar multiplication)

10 OPTION BASE 1
20 DIM X(2,2), Y(2,2)
•
•
•

100 MAT Y=(4)*X

The expression (4) is evaluated. Each element in array X is
multiplied by the value of the expression (4). The result is
assigned to the corresponding elements of the array Y.

The resulting values are:

[1l2l I4l8l
IfX= ~ thenY= ~

Each element of Y now contains four times the corresponding
values in X. X is unchanged.

MAT assignment (ascending index or descending index)

See "AIDX and DIDX."

BASIC Language Reference 273

MAT

MAT assignment (scalar value)

274 SA34-0109

This statement assigns a specified scalar value to each
element of an array.

~ I arith-expreSSiOrt]
MAT- array-name= ----t ••

I char-expressiort

The syntax of this statement is as shown above. where:

array-name is the name of the array that receives the values.

arith-expression is the scalar value to be assigned.

char-expression is the character value to be assigned.

Programming considerations

The expression to the right of the equal sign must be of the
same type (arithmetic or character) as the array to which it is
assigned.

(

((

Example

20 OPTION BASE
30 DIM Y(3,3)
40 MAT Y=(1)

MAT

The expression (1) is evaluated. Each element in the array Y is
set to the value of the expression (1).

The resulting values are:

1 1 1
y= 1 1 1

1 1 1

Y is now a 3x3 array with all elements equal to 1.

The following example causes all the elements of A$ to be
null:

10 MAT A$=("")

BASIC Language Reference 275

MAT

MAT assignment (simple)

276 SA34-0109

This statement assigns the elements of one array to another
array.

,('O~C:J'l
MAT- array.name=array.name~ •

a No redimensioning
II One-dimensional

The syntax of this statement is as shown above, where:

array-name is the name of the array. The arrays specified
must be the same type (numeric or character).

rows, columns are the redimensioning specifications for the
receiving array (see "Redimensioning arrays").

Example

20 DIM A(2,2), B(2,2)
•
•
•
100 MAT A=B

Each element of array B is assigned to the corresponding
element of array A.

The result of the above example is: A and B now have the
same values in corresponding elements.

(

Matrix

(

MAT

If redimensioning specifications are included with array B, the
rounded integer portion of each expression value in rows and
columns is used to redimension the receiving array A before
values are assigned to it. Results are unpredictable if
subscripted values are specified for rows and columns.

Programming considerations

Redimensioning

If redimensioning specifications are included, rules
described under "Redimensioning arrays" must be
followed.

If redimensioning specifications are not included,
arrays specified must have identical dimensions.

• Character arrays

If character arrays are used, the maximum character
length of each must be the same.

See "Arrays."

BASIC Language Reference 277

Matrix

Matrix Operations

Maximum Value

MAX (X1,X2,X3, ...)

278 SA34-0109

See "AIDX and DIDX"
"MAT assignment (addition, subtraction,
scalar mUltiplication)"
"MAT assignment (scalar value)"
"MAT assignment (simple)"
"ZER and CON"

See "Magnitude" under "Arithmetic data."

Returns the maximum value specified in the list. For example:

10 X=MAX{1,2,3,5,8,37,22,-21}

X contains 37.

(

(

(

MERGE command

MERGE

The MERGE command is used to merge all or part of a saved
file with data or with a program in the work area. In this way,
the same routine can be added to several different files. Only
BASIC statements (in a BASIC source file) and DISPLAY
DATA files can be merged (file type 05) into the work area.

Lines from the file are added to the work area in line number
sequence. If a line from the file and a line in the work area
have the same line number, the line from the file replaces the
work area line. If the merged file exceeds the size of the work
area, a message will be displayed.

/ 'mm:'""l,C'::1, [~-';'_-n_u_.....,
MERGE- file-spe~ D ------------------'---..

.. Merge all lines
II Defaults to 1
II Defaults to 99999
II Must be specified for data.

May not be specified for program.

The syntax of the MERGE command is as shown, where:

file-spec is the name of the file to be merged into the work
area (see "File specification parameter").

from-line-num is the number of the first line in the saved file
to be merged. If no number is specified, the first line in the file
is the default.

BASIC Language Reference 279

MERGE

MERGE command (continued)

280 SA34-0109

thru-line-num is the number of the last line in the saved file to
be merged. If no number is specified, the last line in the file is
the default.

new-line-num is a parameter that is used only for DATA files
and must be specified for DATA files. It is the first line
number to be used in renumbering the saved file. If no
number is specified, the merge will not take place. If a new
line number is specified (for a data file), line numbering will be
incremented by 1 O.

Omitted parameters must be indicated by consecutive
commas.

Programming considerations

• Merging commands

If a program is merged and it contains commands or
calculator statements, that do not have line
numbers, the commands or statements be executed. "'_/

• Exceeding work area

If the merged file exceeds the work area, a message
will be displayed.

If the work area is full, issue a CLEAR.

Deleting lines will not increase the available storage,
unless a SAVE SOURCE command and a LOAD
command are performed.

• Renumbering

If renumbering is necessary for a program file, the
RENUM command must be used (see "RENUM
command").

Minimum value

MIN (X1,X2,X3, ...)

MERGE

Example

MERGE PGM1, 4,200

In this example, statements from PGM1 are merged with
statements in the work area. Lines 4 through 200 will be
merged.

MERGE DATAFILE,50,80,200

In this example, assume that the work area is defined as a
DATA work area and that DATAFILE is a data file to be
merged. The MERGE command logically associates line
numbers (10,20,30, etc.) with the records in the data file.
Line 50 is merged into the work area as line 200. Line 60 is
merged into the work area as line 210. Line 70 is merged into
the work area as 220, and line 80 is merged into the work area
as line 230.

See "Magnitude" under "Arithmetic data."

Returns the minimum value specified in the list. For example:

10 X=MIN(1,2,3,5,8,37,22,~21)

X contains -21.

BASIC Language Reference 281

Multiple line

Multiple line function

See "DEF,FNEND statement."

Names, variable

See "Variable names."

N EXT statement

See "FOR and NEXT statement."

Numeric data formats

See "Arithmetic data." "FORM statement" (N specification).

(
I

"-

282 SA34-0109

Offline diskette files

(

(

Offline diskette

If an application requires that files be open on more diskettes
than can be inserted in the number of available drives, the
application can still function correctly if the operator is present
to insert the required diskette when the System/23 calls for it.
This task is greatly simplified if all involved diskettes have
unique VOLlDs.Each time the program calls for a file, the
System/23 may already have the required data in storage or
on an inserted diskette. If the program requires data from a
diskette that has been removed, and the file is already open,
the status line shows error code 4001 and action code 10.
Remove the diskette from the specified drive (if one is
inserted) and insert the required diskette; press Error Reset. If
the file is not already open, error code 4000 and action code
10 are displayed. If a drive is specified, remove the diskette
from that drive. If no drive is specified, select a drive and
remove the diskette from it. Insert the required diskette and
press Error Reset. In either case, if for any reason you cannot
provide the required diskette, press Cmd / Error Reset and the
error will be returned to the program.

BASIC Language Reference 283

ON

ON statement

284 SA34-0109

The ON statement causes the system to take a particular
action when the specified condition occurs during execution of I'
a program.

ATTN

OFLOW GOTO line·ref

SOFLO IGNOR E:--i--1

UFLOW SYSTE~-""

ON 2DI\I

CONVJ-{ GOTO line·ref

ERRO SYSTEM

The syntax of the ON statement is as shown above, where:

ATTN is the condition associated with the depression of the
INQ key. Control is passed following execution of the line in
which the INQ key was pressed. ERR is set to 1 (see
"Attention and inquiry."). For special considerations within
defined functions, see "DEF,FNEND statement."

Note: Once the ON ATTN (inquiry) condition has been
handled, CONTINUE will cause the program to resume at the
point of interrupt.

OFLOW is the condition of numeric overflow. For example, an
OFLOW error will occur when the system computes a number
having an absolute value greater than the largest System/23
numeric value (see"Magnitude" under "Arithmetic data"). The
result is replaced with plus or minus the largest System/23
numeric value. ,

""

(

ON

SOFLOW is the condition of string overflow. For example, a
SOFLOW will occur when there are more characters in the
string than the variable has been dimensioned to hold, or
when the variable has more characters than the associated
FORM specification. If IGNORE is specified, the string is trun­
cated on the right. If SOFLOW IGNORE occurs on a substring
assignment or concatenation the error action is undefined;
therefore, no assignment will occur.

UFLOW is the condition of numeric underflow. For example, a
U FLOW error will occur when the system computes a number
having an absolute value less than the smallest System/23
numeric value (see "Magnitude" under "Arithmetic data").
The result is replaced with zero.

ZDIV is the condition of division of a nonzero value by zero.
The result is replaced with plus or minus the largest
System/23 numeric value (see "Magnitude" under
"Arithmetic data").

BASIC Language Reference 285

ON

ON statement (continued)

286 SA34-01 09

CONV is the failure to map data or change representation. For
example, a CONV error will occur when the program tries to
put alphabetic characters into a numeric field.

ERROR applies to those errors not covered by any of the
above clauses (for example, I/O errors). ERROR also applies
to any of the above for which an ON statement clause is not
specified.

GOTO specifies that control is to be passed to the line speci­
fied by the line number or label symbol.

IGNORE specifies that the condition is to be ignored and
control is to be passed to the next executable statement.

SYSTEM specifies that the condition is to cause an error.

ON

Programming considerations

•

EXIT

ERR

I/O statements having error exit parameters general­
ly override the ON statement (see "EXIT
statement") .

- If an error causes a transfer of control due to an ON
statement, ERR is set and may be referenced.

Error routine

To prevent repeated entry into the error routine, the
error routine should begin with an ON condition
SYSTEM statement.

CONTINUE and RETRY

The statement CONTINUE will return control to the
point following the interruption (see "CONTINUE
statement") .

The statement RETRY will re-run the statement
causing the interruption (see "RETRY statement").

For more information, see "Order of execution," "Interrupt
handling," "EXIT statement," "Attention and Inquiry," and
"DEF,FNEND statement."

BASIC Language Reference 287

ON

ON statement (continued)

288 SA34-0109

Example

10 ON CONV GOTO ERR1
•
•

500 ERR1:PRINT "Conversion error,reenter data"
510 RETRY

OPEN statement

OPEN

OPEN DISPLAY Activates a file for input; or, activates a printer
or file for output.

OPEN INTERNAL Permits READ, REREAD, WRITE, REWRITE,
and RESTORE statements to reference the file.

The OPEN statement is used to:

Identify the file specification

Assign a logical file reference

Allocate initial space for new files

Specify file usage

Specify file type (DISPLAY or INTERNAL)

An OPEN statement must be issued for a file before any input
or output statements access that file.

BASIC Language Reference 289

OPEN

OPEN statement (continued)

II

OPEN DISPLAY (syntax)

[RECOVER"{"O
YES

, SIZE=integer 11---..,
OPEN --#file-ref::- NAME=unquoted-char-stringL---liI-----------'-L.----III----...a......

, NOSHR

~
OERR li~e-ref

[' RECL=integerl v{' INPUT EXIT line-ref

--..L...---DI--..I.-L..---111----'L..L---m----L "-, DISPLA

290 SA34-0109

.. Old file
II No backup label
II Page length = 60 lines
II No sharing allowed

,OUTPUT

II Do not change old reserve status
II 132
II Interrupt on error unless ON ERROR is active

See "OPEN parameter table."

No blanks are allowed between a keyword and the equal (=)
sign. The information in quotes is not syntax checked until the
OPEN statement is executed. A character expression can be
used in place of the information in quotes.

(

(

OPEN

The syntax for OPEN DISPLAY is as shown, where:

file-ref is a numeric expression, (see "File reference parame­
ter")

NAME= specifies the file specification for the file to be
opened. The form and content of the file specification is
described under "File specification parameter."

SIZE= specifies the size, in bytes, of a new file to be created.
The SIZE= parameter must be specified for a new file and
must not be used for existing files. The value is rounded up to
the next higher multiple of 512 and the space is permanently
allocated to the file. If the specified file already exists, an error
will occur. The default (SIZE=O) indicates 4096 bytes.
DISPLAY files are dynamically extended. The largest size you
may specify is 16,777,215 bytes.

RECOVER= YES specifies that an extra copy of the file label
should be created and maintained. In case an I/O error occurs
for this file, the extra label makes it easier to recover data (see
Recover Diskette under "Customer Support Functions") This
keyword is ignored for files on the 5247 Disk.

RECOVER = NO specifies that an extra copy of the file label
should not be created.

BASIC Language Reference 291

OPEN

OPEN statement (continued)

292 SA34-01 09

PAGEOFLOW= specifies the line number which when printed
or exceeded, a PAGEOFLOW condition will exist. When the
line being printed is ~ the PAGEOFLOW value a page overflow
condition exists. The program may trap the PAGEOFLOW
condition by specifying a PAGEOFLOW exit on a PRINT
statement. Otherwise it is ignored. Transfer of control to a
PAGEOFLOW exit occurs after all lines have been printed. A
PRINT #file-ref: NEWPAGE;; must be executed to prevent
another overflow condition on the next PRINT and to reset the
PAGEOFLOW counter to 0 (range 1-255). Default is 60.

SHR specifies that any supported level of file sharing with
another OPEN statement is permitted. Two opens for
OUTPUT or OUTIN are not supported.

NOSHR specifies that no sharing is permitted.

SHRI specifies that this OPEN statement permits sharing files
with other OPEN statements for input only.

SHRU specifies that any supported level of file sharing with
another OPEN statement is permitted. Multiple OPEN state­
ments are permitted for OUTPUT or OUTIN. The SHRU
option applies only to files on the 5247 Disk.

RESERVE specifies that the OPEN sharing status is to be
permanently associated with this file and station. The
RESERVE option will be reset when a CLOSE statement speci­
fying the RELEASE option is executed for this file. The
RESERVE can also be reset using the PROTECT command.

('
\~ ..

(

(

OPEN

REeL= Specifies the number of columns per physical line of
PRINT output. formatted or unformatted. Range: 1-255.

DISPLAY specifies that the file to be opened is either the prin­
ter or a type 05 file. Do not specify SHRU/OUTPUT when you
open a display file on the 5247 Disk.

INPUT specifies that data will be transmitted from the device
using the INPUT or LlNPUT statements.

OUTPUT specifies that data will be transmitted to the device
using the PRINT statement.

EXIT specifies the line number or label of an EXIT statement
to refer to if an I/O error occurs (see "EXIT statement").

IOERR specifies the line number or label to receive control if
an error condition prevents the completion of the OPEN
statement.

BASIC Language Reference 293

OPEN

OPEN statement (continued)

294 SA34-0109

Example

100 OPEN #101:"NAME=PROC5/START,SIZE=512",
DISPLAY, OUTPUT

The following example can be used to open a file whether it
exists or not:

•
•
•
100 OPEN #1:"NAME=FILE/VOL,SIZE=1000",DISPLAY,

OUTPUT IOERR EXISTS ! Assume new file
110 GOTO 150
120 EXISTS: IF ERR<>4150 THEN STOP
130 OPEN #l:"NAME=FILE/VOL",DISPLAY,OUTPUT

! Old file
140 RESTORE # 1 :
150

To open to the system printer, use device address 10:

110 OPEN #55:"NAME=//10,RECL=255",DISPLAY,OUTPUT

To open to the feature printer (second printer), use device
address 11:

120 OPEN #56:"NAME=//11,RECL=192",DISPLAY,OUTPUT

This is the only way to access the feature printer.

See "Device address parameter" and "File specification
parameter."

/

(

i~
'\

(

OPEN

OPEN INTERNAL syntax

{
NO

,RECOVER;
YES

• SI ZE=integer -, RECl ;integer.l--~I!I-----'..I----IISII---""&'"
n

OPEN-#file-ref:-NAME""unquoted-char-stringL--D----------------------'-\

[' KW;integer

, KFNAME;unquoted-char-string iii

, NOSHR

~L------~-------~-L--~I---~--~~~",INTERNAl ,OUTPUT -f'INPUT

,OUTIN

,SEQUENTIAL

,KEYED EXIT line-ref

IOERR line-re=jf

--~----m---~~------~·I-------.l---~.

a Old file
II Format = Z (System/23)
II No backup label
II Not key accessed

BASIC language Reference 295

OPEN

OPEN statement (continued)

296 SA34-0109

II Key work area = 0
II No sharing allowed
II Do not change old Reserve status
III Sequential
II Interrupt on error unless ON is active

See "OPEN parameter table."

No blanks are allowed between a keyword and the equal (=)
sign. The information in quotes is not syntax checked until the
OPEN statement is executed. A character expression can be
used in place of the information in quotes.

The syntax for OPEN INTERNAL is as shown, where:

file-ref is a numeric expression, see "File reference
parameter."

NAME= specifies the file specification for the file to be
opened. The form and content of the file specification is "'-
described under "File specification parameter."

SIZE= specifies the size, in bytes, of a new file to be created.
The SIZE= parameter must be specified for a new file and
must not be used for existing files. Size= is in multiples of 512
bytes. For example:

Size=1 through 512 specifies 512 bytes. Size=513 through
1024 specifies 1024 bytes. Size=1025 through 1536 specifies
1536 bytes. Size=1537 through 2048 specifies 2048 bytes,
etc. The maximum size you can specify is 16,777,215 bytes.

If the specified file already exists, an error occurs. The default
(SIZE=O) is 4096 bytes. FORMAT=Z files are dynamically
extended.

(

OPEN

FORMAT= BX (Basic exchange file), HX (H Exchange file), Z
(System/23). Z is the default. BX and HX are invalid for files
on the 5247 Disk. Type Z is the only format supported for disk
files.

RECL= specifies the record length of the file being created.
RECl must be specified for a new file and cannot be specified
for an existing file. The maximum values which can be speci­
fied for RECl are 128, 256, and 4096 for FORMAT=BX, HX,
and Z. For performance considerations, the following record
lengths are recommended for FORMAT=Z files: 15,31, 63,
127, 255, 511, 1023, 2047, and 4095. An example of an
OPEN statement using SIZE= and RECl= is:

30 OPEN # 1: "NAME=CUSTll1 , SIZE=O ,RECL=127",
INTERNAL, OUTPUT

For the Communications feature, the RECl parameter must be
specified and represents the maximum record length for all
data files transmitted or received throughout the communi­
cations session.

Maximum allowable record lengths are:

Asynchronous communications, RECl=512

Binary synchronous communications, RECl=128

RECOVER= YES specifies that an extra copy of the Data Set
label should be created and maintained. This keyword is
ignored for files on the 5247 Disk.

RECOVER = NO specifies that an extra copy of the Data Set
label should not be created. RECOVER = NO is the default.

BASIC Language Reference 297

OPEN

OPEN statement (continued)

298 SA34-0109

KFNAME= specifies the index file that is used to access the
master file. This parameter is required when KEYED is speci­
fied. KFNAME is a file specification. See "File specification
parameter."

KW= specifies the amount of work area to be used for access­
ing key indexed files. If KW is not specified or assigned the
value of zero, no work area will be allocated. For optimum
performance, see "Programming considerations" at the end of
this OPEN statement.

SHR specifies that any supported level of file sharing with
another OPEN statement is permitted. Two opens for
OUTPUT or OUTIN are not permitted (see "File sharing").

NOSHR specifies that no sharing is permitted.

SHRI specifies that this OPEN statement permits sharing files
with other OPEN statements for input only (see "File
sharing"). .~.

SHRU specifies that any supported level of file sharing with
another OPEN statement is permitted. Multiple OPEN state­
ments are permitted for OUTPUT or OUTIN. The SHRU
option applies only to files on the 5247 Disk.

RESERVE specifies that the OPEN sharing status is to be
permanently associated with this file and station. The
RESERVE will be reset when a CLOSE statement specifying
the RELEASE option is executed for this file.

INTERNAL specifies that the file to be opened is a type 04 file
(see "Internal I/O files").

./
i
~ ..

:(

(

OPEN

INPUT specifies that input operations are performed on the
file.

OUTPUT specifies that output operations are performed on
the file.

OUTIN specifies that both input and output (update) oper­
ations are performed on the file.

SEQUENTIAL specifies that the file being opened is to be
organized sequentially or accessed consecutively. SEQUEN­
TIAL is the default.

RELATIVE specifies that the file being opened is a relative
data set. Access to the file is random and is by record
number.

KEYED specifies that the file being opened is a key-indexed
file. Access is made through reference to user-defined keys
which physically exist within each record in that file, and in an
auxiliary key file.

EXIT specifies the line number or label of an EXIT statement
to refer to if an I/O error occurs (see "EXIT statemenC).

IOERR specifies the line number or label to receive control if
an error condition prevents the completion of the OPEN
statement.

BASIC Language Reference 299

OPEN

OPEN statement (continued)

300 SA34-0109

Example

This example assumes that N$ and KFN$ contain the file spec­
ifications for the master file and key file:

10 OPEN #3:"NAME="&N$&",KFNAME="&KFN$,
INTERNAL, aUTIN, KEYED

Programming considerations

Positioning

- INPUT and OUTIN files are positioned to the begin­
ning. OUTPUT files are positioned to the end.

BX and HX files

On an OPEN INTERNAL statement, if FORMAT=BX
or FORMAT=HX is specified, file organization must
be specified or defaulted to SEQUENTIAL:
RECOVER=YES must not be specified; automatic file
extension is not supported.

/

(

•

•

OPEN #0 and #255

OPEN #0 is ignored.

OPEN

OPEN #255 statement may be executed to override
the default value for RECl and PAGEOFlOW.

Extents

If additional space is required, up to 99 extents are
created. Each extent is SIZE divided by 10, rounded
up to the next 512 byte multiple.

System/23 Format files (Z) will be dynamically
extended if necessary.

When a 5247 Disk file is extended and the new
extent falls adjacent to the last extent, the two
extents are merged.

OPEN DISPLAY to the printer

If an OPEN DISPLAY is issued for the printer device,
the file name or the VOLID in the file specification
parameter will be ignored. The SIZE= and
RECOVER= parameters cannot be specified.

Record length

The record length of an internal file cannot be
changed without first freeing the file and then recre­
ating it.

Device definition

If a new file is created (SIZE= parameter is specified)
either VOLID or device address must be specified in
the NAM E= parameter. .

If an old file is opened (SIZE= parameter is not speci­
fied) the VOLID and device address are optional.

• Implicit OPEN

BASIC Language Reference 301

OPEN

OPEN statement (continued)

302 SA34-0109

The only implied OPEN statements are for the
system printer (file reference 255), and the system
keyboard/display (file reference 0).

• File searches

If an old file is opened and no VOLID or device
number is specified, and there is more than one file
by that name, the file residing on the lowest
numbered drive is opened (see "File searches").

Key work area size

KW = Key work area size
KL = Key length
KS = Keys per block
NT = Number of tracks
INT = Integer system function
CEI L = Ceiling system function
ST = Number of blocks per track
NR = Number of records (Master File)

The minimum useful work area for an index file is 4+KL.
To obtain the maximum useful work area, specify
KW=65535. The system will allocate only as much as it
needs. The amount allocated by the system, when
KW=65535 is specified, can be calculated as follows:

To find KS

KS=INT(512f(4+KL))-1

To find NT

NT = CEIL(NR/(KS*ST)

ST = 8 for type 1 and 2 diskettes 15 for type 2D diskettes
and disk files

(

i{

(

To find KW

KW = 2+(NT*(KL +2))

Example:

KL = 10, NR = 10000, 2D diskette

KS = INT(512/14)-1 = 35 keys per sector

NT = CEIL(10000/(35*15)) = 20 tracks

KW = 2+(20*(10+2)) = 242 bytes

The upper bound for KW is:

4736 for type 2D and 2 diskettes and disk files

18848 for type 1 diskette

See "Appendix A. Sample programs."

OPEN

BASIC Language Reference 303

OPEN

OPEN statement (continued)

OPEN parameter table

(

Open internal Open display

Diskette or disk file Diskette or disk file Printer

(new) (old) (new) (old)

Name R R R R R

filename R R R R I

volid 0(1,5) 0(5) 0(1,5) 0(5) 1(5)

device 0(1) 0 0(1) 0 R

Size -R (S) R (S) E

Format 0 E E E E

Recl R E 0 0(11) 0

Recover 0(2) E 0 E E

Kfname E 0(3) E E E

Kw E 0(4) E E E

Noshr 0(12) 0(12) 0 0 I

Shr 0(12) 0(12) 0 0 I

Shri 0(12) 0(12) 0 0 I /

Shru (13) 0 0 0(14) 0 I

Reserve 0(12) 0(12) 0 0 I

Pageoflow E E 0 0(11) 0

Internal/display R R R R R

Input/output/outi,; R (9) R R (8,9) R (8) 0

Sequential/relative/keyed 0(7,10) 0(7) E E E

Exit 0 0 0 0 0

loerr 0 0 0 0 0

I = ignored R=required 0= optional E = error

Notes:

1. Either volume or device is required. 7. Specifying RELATIVE or KEYED
2. Applicable to FORMAT=Z only. For fora FORMAT=BX or HX file isan error.

FORMAT=BX or HX. RECOVER= 8. OUTIN is invalid on OPEN DISPLAY.
YES is an error. RECOVER";'NO is 9. INPUT is invalid for new files.
ignored. Th is keyword ignored for 10. KEYED is invalid for new files.
5247 Disk files. 11. Ignored if file open for input.

/'

i
3. Required when KEYED specified. 12. Ignore!l for a FORMAT=BX or H X file.

\..,
4. Optional when KFNAME specified. 13. SHRU valid for 5247 Disk files only.
5. Specifying volid without filename is 14. Optional for Input only. Output will

an error. produce error.
S. SI ZE denotes a new file. SIZE must

not be specified for an old file.

304 SA34-0109

OPTION statement

(

OPTION

The OPTION statement specifies a set of options to be applied
to the entire BASIC program. The OPTION statement may be
placed anywhere in the program.

BASE a

BASE 1

[
NATIVE

COLLATE ----I
ALTERNATE

OPTION
D I L _______ , ______ --.J

D BASEO
American format
Print all significant digits
Native

The syntax of the OPTION statement is as shown above,
where:

BASE 0 specifies that there is a zero row/column to any
matrix.

BASE 1 specifies that the matrix starts with 1 in the
row / column.

For more information, see "Arrays."

INVP (inverted print) specifies that the decimal point and the
comma are interchanged in the printing of numeric values
(European format). This interchange of decimal point and

BASIC Language Reference 305

OPTION

OPTION statement (continued)

306 SA34-0109

comma affects the output from a PRINT or PRINT USING
statement.

An example using PIC without INVP is: 123,456.78

The output with I NVP is: 123.456,78

INVP also affects input using the N FORM statement data
conversion specification. A comma in the input field will be
treated as a decimal point.

RD num specifies how many rounded decimal digits are to be
displayed to the right of the decimal point when a PRI NT
statement is executed. nn is an integer in the range 0 through
15.

If RD is not specified non-significant zeros will not be printed.

Note: RD affects only the printing of numbers. Internally the
numbers do not change. \,

If RD 03 had been specified, 4.5678 would print as 4.568.

COLLATE NATIVE specifies the use of the system collating
sequence, see "Character set."

COLLA TEAL TERN ATE specifies the use of the user specified
sequence, see "Customer Support Functions" (change collat­
ing sequence,) "IF, THEN, ELSE statement," and "AIDX and
DIDX."

.", ...

(

Order of execution

(

OPTION

Programming considerations

CHAIN

When chaining is performed, the options of the
chained-to program must be the same as the
chained-from program, see "CHAIN statement."

The order of execution of BASIC statements in System/23 is
given by the following rules:

After RUN verifies the global characteristics of the program
(for example conflicting DIMs or OPTIONs), execution begins
with the lowest numbered executable line not in a defined
function.

The next line to be executed is the next higher numbered
executable line, unless:

• A GOTO, GOSUB, Function reference, RETURN, NEXT,
IF, RETRY, or CONTINUE specifies the next line.

END, STOP or CHAIN terminates the program.

PAUSE interrupts the program.

DEFtransfers control to the first executable statement
following the function.

• If a computational error is detected (SOFLOW, CONV,
OFLOW, UFLOW, ZDIV) for which an ON.) .. GOTO is
active, the transfer takes place.

• If an I/O error is detected for which an EXIT is specified,
transfer to the specified line occurs.

• If an I/O error, a computational error or INQ key is
pressed and no applicable EXIT or ON condition GOTO is

BASIC Language Reference 307

Order of execution

Order of execution (continued)

ORD(A$)

Overstruck characters

308 SA34-0109

specified, or the Cmd/ Attn key is pressed, the program
interrupts.

See "Interrupt handling" "ON statement" "Arithmetic hierar­
chy."

For a description of special handling of ON events and I/O
exits within a defined function, see "DEF, FNEND statement."

Returns the ordinal value of A$, where A$ has a length of 1
(the location in the collating sequence). This is affected by the
Customer Support Function, Change Collating Sequence. See
"OPTION statement."

If we use the native collating sequence:

A$ ="0"

ORD(A$) results in 240.

See Appendix B and "Character set."

See "FORM statement"

,/

(" i

'" /

:{'
(

(

Packed decimal

Packed decimal

See "FORM statement" (PD specification).

See "LPAD$(C$,X)"and "RPAD$(A$,X)."

Page overflow

See "OPEN statement"
"EXIT statement"
"PRINT statement."

Parameter, device address

See "Device address parameter."

Parameter, file reference

See "File reference parameter."

Parameter, file specification

See "File specification parameter."

BASIC Language Reference 309

PAUSE

PAUSE statement

PI

310 SA34-0109

The PAUSE statement interrupts program execution. It can be
used for manually entering calculator operations or commands
while execution of the program is suspended.

PAUSE •

When a PAUSE statement is encountered during program
execution, execution is interrupted and:

PAUSE

is shown on the status line with the line number of the PAUSE
statement. To resume program operation, issue a GO
command (see "GO command"). Statements must not be
renumbered or a calling statement altered while the program is
interrupted.

When PAUSE is encountered, the screen will be split and the
bottom 5 lines will not appear. If the required function is
simply to stop execution, LlNPUT can be issued instead (see
"Split screens," "LlNPUT statement"). A PAUSE may not be
included within a function that you define.

See"lnternal constants."

PIC$ (C$)

(

POS(A$, B$,X)

PRINT BELL

Print control

PIC$(C$)

Returns the current currency symbol. C$, which sets the new
currency symbol, is optional. C$ must be one character in
length. If PIC$ is not set by the program, it will be "$." This
setting is changed when power is switched on or by another
PIC$ setting.

Returns the value of the first character of a substring in A$
that matches B$.

X contains the character position in A$, where the search for
B$ is to start. If the substring indicated by B$ does not occur
in A$, zero is returned. For example:

10 A$="ABBCABCDE"
20 B$="BC"
30 P=POS(A$,B$,4)

P contains 6.

See "PRINT statement."

See "Printer assignment"and "PRINT statement."

BASIC Language Reference 311

Print data list delimiters

Print data list delimiters

Printer assignment

312 SA34-01 09

See "PRINT statement."

When a printer is assigned, an association is made between
the printer and a file reference number. A printer can be
assigned to only one file reference number at a time. The
following table shows the BASIC statements and commands
which assign printers.

Statement/ command

PRINT
executed in a BASIC
program or in calculator
mode. (see note)

OPEN #n statement

LlSTP command

DIR n,PRINT
RUN TRACEP

File
reference

#255

file
reference
specified

255

255
255

Device address
(10 = system)
(11 = feature)

10

device
address
specified

10

10
10

Note: Except when the program was initiated by RUN
DISPLAY.

A printer is released at the following times:

,/ ,
I

'- ./

•

(

Printer

When the RUN statement is entered (before BASIC
program execution begins)

When a CLOSE statement is executed to close a printer
file

When a BASIC program ends

When a program is executed with RUN TRACEP, the
system printer cannot be opened to a file reference
number other than 255.

If the operator enters a PRINT #255 statement, a LlSTP,
ora DIR n,PRINT command while a BASIC program is
interrupted, the system printer is assigned to file refer­
ence number 255. This prevents the successful open of
the printer to an alternate file reference number when the
program resumes.

Once the BASIC program assigns the system printer to an
alternate file reference number, a PRINT #255 statement,
LlSTP, or DIR n,PRINT command entered by the operator
while the BASIC program is interrupted will fail.

In a BASIC program, when the system printer is assigned
to file reference number 255, a CLOSE #255: statement
will release it. It doesn't matter how the printer was
originally assigned. If the system printer is not assigned, a
CLOSE #255: is ignored.

BASIC Language Reference 313

PRINT

PRINT statement

PRINT

314 SA34-0109

The PRINT statement causes the values of specified scalar
expressions or arrays to be displayed or printed. All output is
DISPLAY data.

The output of the PRINT statement can be directed to the
screen, file, system printer, or feature printer. In order to
direct the output to the feature printer, file-ref must have been
specified on an OPEN statement with a device-id of 11.

,--1--,
I I

........ - I---L-USING{ line-ref}....I.._-I .. _-'--,

char-var

.. #0
II Use FORM statement
• Null data item

,---1---....,
I I

error-cond line-ref

EXIT line-ref

.. Interrupt on error unless ON is active

The syntax of the PRINT statement is as shown, where:

/
'~/

(

"'.

(

PRINT

file-ref is a numeric expression, see ("File reference parame­
ter").

USING must be either a line reference or a character variable.
Line reference is the statement number or label of the FORM
statement that defines how the data is to be formatted. Char­
acter variable is a character variable containing format informa­
tion identical to that in a FORM statement.

data-item is one of the following:

• MAT array-name is the name of a one- or
two-dimensional array. An example of how to print an
entire array is:

50 PRINT #255: MAT ARRYNAME

• "char-expression" is a character expression (see
"Character expressions").

• arith-expression is an arithmetic expression (see
"Expressions").

BELL makes the alarm ring for .25 seconds.

NEWPAGE causes printing to begin on the next form, or
clears the screen (see "NEWPAGE function"in this section).

TAB allows the alignment of columns of data (see 'TAB func­
tion" in this section).

, (comma) if USING is not specified, the comma causes indi­
vidual items to be printed in pre-established horizontal zones
called print zones. Each zone is 24 character positions (see
"Print zones" in this section).

BASIC Language Reference 315

PRINT

PRINT statement (continued)

316 SA34-0109

; semicolon as a delimiter, causes a null string (no extra blanks
or spaces) to be printed between two groups of characters.
(See "Print zones" in this section).

error-cond can be CONV, EOF, 10ERR, PAGEOFLOW,
SOFLOW (see "EXIT statement"). line-ref may be either a
line number or a label symbol.

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

Programming considerations

Printing arrays

When a PRINT statement is executed, each array
element is converted to the output format and
displayed. Each array is displayed in row order. For
an unformatted PRINT each row begins at the start
of a new line. Each array element is displayed or
printed in succeeding print zones. Each element of a
one-dimensional array begins on a new line.

For an unformatted PRINT, if an array is specified in
the I/O list, no additional I/O list item or delimiter
should follow.

Formatted PRINT

When a PRINT USING statement is executed, the
specified expressions or array references are evalu­
ated. Their values are then edited into the corre­
sponding format specifications in the specified
FORM.

\"

(

if

PRINT

Unformatted PRINT

Unformatted output consists of a PRINT statement
with no USING clause. Spacing between displayed
values is controlled by commas, semicolons,
NEWPAGE, and TAB expressions.

When an unformatted PRINT statement is executed,
the value of each specified expression is converted
to the appropriate output format and displayed or
printed in a left-to-right sequence, in the order in
which it appears in the PRINT statement.

Print zones

Each line that is printed or displayed is divided into
print zones. Print zones are 24 character positions in
length and are specified by the comma delimiter. For
example:

200 PRINT A,B,C

This statement displays the value of the variable A, beginning
in the first position of the new line. Since A is a positive value,
column 1 is a blank character. The value of B will begin in
position 25 of the same line and the value of C will begin in
position 49 of the same line. If a character value is longer than
24 characters it uses as many zones as necessary to accom­
modate it. If a character or arithmetic value will not fit in the
space remaining on the line, it will start on the next line.

BASIC Language Reference 317

PRINT

PRINT statement (continued)

318 SA34-0109

25.3
66
-250

160 A
170 B
180 C
200 PRINT A, B, C

results in the following line being printed:

25.3 6.6
+
column2

+
column26

-250
+
column 49

,

,

b

Print data list delimiters

The meaning of comma, semicolon, and blank (b)'
when used in data lists is shown in the following
chart.

Trailing Imbedded

Same I ine, next zone Same line, next zone

Same I ine, next character Same I ine, next character

New line Error

''Trailing'' and "imbedded"refer to the location of
the comma, the semicolon, and the blank in the
PRINT statement data list.

(

(

PRINT

TAB function

The TAB (expression) function is used to align
columns of data, in a manner similar to the TAB key
on a typewriter. The TAB value must always be posi­
tive and if a non-integer, it is rounded. If TAB is
negative, 1 is assumed. TAB(n) starts the next
output in column n of the line. If the current position
in the line is greater than n, data is put on the next
line in position n.

Printing data-items

Character constants:the actual characters enclosed
in quotation marks are printed or displayed. In order
to represent quotes, two consecutive quotes must be
entered.

Character variables:the actual characters (excluding
trailing blank) are printed or displayed.

Numeric values

If OPTION RD is not specified and the value is
between IE-6 and IE21, the number is printed in
fixed format.

If OPTION RD is specified and the value is between
IE-RD and (lE20-RD), the number is printed in fixed
format. In all other cases, floating format is used.

NEWPAGE function

On the printer, NEWPAGE causes printing to begin
on the next page or form. PRINT #255:NEWPAGE;;
sets the overflow line counter to zero.

On the display, NEWPAGE clears the screen and
places the cursor in position 1 of line 23 (input line).

BASIC Language Reference 319

PRINT

PRINT statement (continued)

320 SA34-0109

5241 and 5242 Printer statements -For printer spacing.
line control. vertical or horizontal density. use the follow­
ing statement:

PRINT #255: HEX$("2B020500hhvvlp")

All numbers must be represented in hexadecimal
form. The numbers in parentheses below are hexa­
decimal numbers.

hh (horizontal density) is the number of characters
per inch. The number of characters per inch can be
10 or 15 (Hex OA or OF) only. The default value set
by the system is 10 characters per inch (Hex OA).

vv (vertical density) increments of 1/96 inch per line
feed. The minimum number specified is 8 (Hex 08)
and the maximum number is 99 (Hex 63). The
default value set by the system is 6 lines per inch
(Hex 10).

I P (lines per page) lines per page can be 1-255
(1-FF). The default value set by the system is 66
lines per page (Hex 42).

Specifying 00 for the above values. hh. w. or Ip does
not change the current setting. If a value outside the
allowable range is specified. the power-on default is
used.

To turn quality print on/off. use the following state­
ment:

PRINT #255: HEX$("2BD10705FFxxyyOOOO") where

xx (font) = 00, economy mode (for drafts)
01, final mode

yy (type style) = 00

\(

(

PRINT

The default printer control values can be reestab­
lished by another PRINT #255 statement specifying
the defaults. The defaults are also reestablished
when the printer is powered on. Neither the CLOSE
statement nor program termination will reestablish
the defaults.

To prevent a blank line from being output when prin­
ter control values are printed, specify SKIP 0 on a
FORM statement referenced by the PRINT
statement. For example,

10 PRINT #255,USING 20: HEX$("2B0205000A1042")
20 FORM C 7,SKIP 0

Specify #255 for the system printer. The file refer­
ence number to be specified for a feature printer is
the file reference number associated with that printer
in the OPEN statement.

During quality print mode, the horizontal density
cannot be changed. See "Full-screen processing."

5217 Printer statements

Use the following statements if you are using the 5217 Printer.
All the numbers in parentheses are in hexidecimal form and
the values you input must also be in hexidecimal form.

To control the number of lines per inch, the number of charac­
ters per inch, and the number of lines per page use the follow­
ing statement:

Print #255: HEX$("2B020500hhvvlp") where:

28020500 remains unchanged

hh lets you choose the number of characters per inch.

BASIC Language Reference 321

PRINT

PRINT statement (continued)

322 SA34-0109

00= no change
OA= 10 characters per inch. This is the default.
OC= 12 characters per inch.
OF= 15 characters per inch.

• vv lets you choose the number of lines per inch in incre­
ments of 1/96 of an inch.

00= no change from the last setting.
10= 6 lines per inch. This is the default.
OC= 8 lines per inch.
12= 5 1/3 lines per inch. This is used for

System/23 Word Processing.

Note: You may choose values from hex 01-63. Values
larger than hex 63 will default to hex 10, or 6 lines per
inch.

/p lets you choose the number of lines per page.

00= no change from the last setting.
3C= 60 lines per page
42= 66 lines per page. This is the default.
58= 88 lines per page

Note: Any other choice will result in the decimal value of the
hexidecimal number.

Example:

Print #255: HEX$("2B0205000A1042")

This statement sets the printer to 1 0 characters per inch, 6
lines per inch, and 66 lines per page.

(

PRINT

To control the ribbon mode, set proportional spacing, specify a
particular character set, and signal the need to change the
print wheel, use the following statement:

Print #255: HEX$ ("2BD10705FFxxyycstd") where:

2BD10705FF remains unchanged.

xx Lets you choose the ribbon mode.

00= economy setting (for drafts).This is the default.
01 = final mode.

Note: All other values result in economy setting. Refer
to Using your 5217 Printer for printer switch settings to
support this feature.

yy lets you choose proportional spacing.

00= no change from the last setting.
04= proportional spacing.

Note: All other values reset proportional spacing and set
the printer to 12 characters per inch.

es lets you choose a character set on a print wheel.

67= the default to character set 103.

• td is a number you supply to signal the need to change
the print wheel. You determine what this number is. This
number is displayed on the printer when a print wheel
changed is required.

Example:

Print #255: HEX$("2BD10705FF01000187")

BASIC Language Reference 323

PRINT

PRINT statement (continued)

324 SA34-0109

This statement sets the ribbon to final mode, with no change
in the spacing from the last setting, asks for character set 001
and displays 87 to signal the need for a print wheel change.

To justify or leave standard the right margin, by adjusting the
space size within the printed line, use the following statement:

Print #255: HEX$("2BD2040Dstpc") where:

2BD2040D remains unchanged.

st lets you choose standard space size or to have the
printer increase the space size between words. The
amount of increase is controlled by pc.

00= Space size is standard (unjustified).This is the default.
01 = Space size is increased (justified).

Note: Any other value will leave space size standard, or
unjustified.

pc lets you choose the way space size will be increased.
This value is ignored if you have left space size standard.

00= no change from the last setting.
01-32= half justification, resulting in a ragged right margin.
33-64= full justification, resulting in an even right margin.

This is the default.

Note: Values 65-FF cause no change from the last
setting.

Example:

Print #255: HEX$("2BD2040D0164")

This statement specifies that space size will be increased caus­
ing the lines to end at the right margin.

./

\
'-

(

(

PRINT

To set the right margin, choose a paper drawer or choose to
have a message returned if a statement exceeds the printers
capability, use the following statement:

Print #255: HEX$("2B020501rmscdi") where:

28020501 remains unchanged.

• rm lets you set the right margin by specifying the number
of characters per line.

00= no change from the last setting.
84= right margin is 132 characters from the left

edge of the page. This is the maximum value you can
input when printing at 10 characters per inch. Any
value greater than 84 will default to 84. This is the
default.

9E= right margin is 158 characters from the left
edge of the page. This is the maximum number you can
input when printing at 12 characters per inch. Values
greater than 9E will default to 9E.

C6= right margin is 198 characters from the left
edge of the page. This is the maximum value you can
input when printing at 15 characters per inch.

Note: Any other choice will result in the decimal value of
the hexidecimal number.

sc lets you choose the drawer from which the paper is to
feed.

00= no change from the last setting.
01 = drawer 1 (bottom drawer}.This is the default.
02= drawer 2 (top drawer).
03= drawer 1
04= drawer 2

BASIC Language Reference 325

PRINT

PRINT statement (continued)

326 SA34-0109

Note: Any other value will cause drawer 1 to be used.

di lets you make a choice when a coded statement
requests something the printer cannot do. You may
choose to have printing stop and a message returned, or
to have printing continue.

00= no change from the last setting.
01 = printing continues.This is the default.
02= printing stops and a message is returned.

Note: Any other value causes no change from the last
setting. For a list of error conditions and the printer
action when each condition is encountered, see Using
your 5217 Printer, Appendix B.

Example

Print #255: HEX$("2B020501840202")

This statement prints a line 132 characters long, selects the
paper from the top drawer and sends a message when a
coded statement exceeds the printer's capability.

The following statements do not let you input values. They are
used as they are, without change.

Print #255 HEX$("05 ") aligns data in columns for propor­
tional spacing

Print #255: HEX$(" 16") backspaces the print head to the
left one space.

Print #255: HEX$(" 1A ") backspaces the print head to the
left 1 /60 of an inch.

Print #255: HEX$("33") causes the printer to start a new
line.

(

Print zones

PROC command

(-

Print #255: HEX$("00 ")

See "PRINT statement."

PRINT

moves the print head to the start
of the current line, without feed­
ing a new line.

The PROC command initiates the use of a procedure file (see
"Procedure file"). A procedure file is a DISPLAY (type 05) file
on a diskette or on the disk, that can contain system
commands, BASIC statements, and data. A procedure file
allows you to set up the steps necessary to load and execute a
series of BASIC programs (including data entry) without the
need for operator intervention. For example, commands such
as LOAD and RUN can be entered by executing the lines of a
procedure file containing these commands. The lines of a
procedure file are executed one line at a time, just as if they
were entered from the keyboard.

PROC-file-spec •

The syntax of the PROC command is as shown above, where:

file-spec consists of a filename followed by an optional
volume identification and device address. A procedure file
must be a type 05 file previously created and stored on a disk­
ette or on the disk. For more information about file types, see

BASIC Language Reference 327

PROC

PROC command (continued)

Procedure file

328 SA34-0109

"File types." For the methods used to create this type of file,
see "Procedure files."

When the PROC command is executed, the file with the speci­
fied ID is accessed for procedure file data. The PROC
command implicitly opens the procedure file.

See Programs 8 and 9-Sample in Appendix A.

The procedure file is a DISPLAY (type 05) file. A procedure
file can contain commands, statements, and data to be used
by the program for input.

Creating a procedure file

A procedure file can be created in two ways:

• From the keyboard using the CLEAR DATA command,
followed by entering data lines containing commands.
Data lines are preceded by a line number followed by a
colon. After the file has been entered, it must be saved.

• Under program control using the OPEN DISPLAY state­
ment. The file is written using PRINT statements,
followed by a CLOSE statement.

',,- /

~ ...

({

I(

Procedure file

Modifying a procedure file

As with any display file, a procedure file can be loaded as a
data file and then modified or edited from the keyboard. The
RENUM and AUTO commands can be used to allow entry of
new lines.

Executing a procedure file

Use of a procedure file is initiated by a PROC or a SUBPROC
command, which causes the file to be opened implicitly.
Procedure files can also be called in a program by the CHAIN
statement. Lines from the file are executed as if they were
entered from the keyboard. (See "PROC command,"
"SUBPROC command," and "CHAIN statement.")

BASIC Language Reference 329

Procedure file

Procedure file (continued)

330 SA34-0109

Closing a procedure file (after executing)

• The procedure file remains open while the procedure is
active.

• It is closed by:

a PROC command embedded within the procedure
that calls another procedure

issuing a CLEAR PROC command from the keyboard

an End Of File

GO END if no program is active

A procedure can be exited by specifying the SKIP integer,
where integer is a number larger than the number of lines
remaining in the procedure.

A procedure can also be exited by issuing a GO END
command from the keyboard when the procedure is inter­
rupted.

(

(

Procedure file

Nesting a procedure file

Procedures may be nested by use of the SUBPROC command
to a level of five active procedures or subprocedures. Proce­
dures may provide input to Customer Support Functions.

SKIP

The SKIP command allows selective use of the lines in the
procedure file (see "SKIP command").

ALERT

The ALERT command tells you that intervention is needed
during execution of the procedure file (see "ALERT
command").

Data

Data in a procedure file can also be used as input supplied in
response to an INPUT or LlNPUT statement (see "INPUT
statement" "LlNPUT statement" and "RUN command").
This is achieved by coding the PROC parameter in the RUN
command.

Interrupting

If Cmd/ Attn is pressed during execu~ion of a procedure file, it
is handled the same way as if an ALERT command had been
encountered. Upon return to the procedure, the keyboard is
opened before the next command in the procedure is
executed. For more information, see "ALERT command" and
"GO command." In both cases, enter GO to continue.

BASIC Language Reference 331

Procedure file

Procedure file (continued)

332 SA34-0109

Storage

Each procedure file activated by a PROC or SUBPROC requires
about 200 bytes of storage. The first requires 500 additional
bytes.

Example

CLEAR DATA
10: LOAD PROG1
20: RUN
30: LOAD PROG2
40: RUN
50: ALERT INSERT PAYROLL DISKETTE THEN ENTER GO

•
•
•

SAVE PAYROLL.PROC//2

In order to execute the procedure, the command PROC
PAYROLL.PROC is entered.

PROG1 is loaded and executed; then, PROG2 is loaded and
executed. The ALERT message is then displayed on the screen
and the procedure stops.

Programming consideration

.When a RUN command ends in an error (not as a result of an
END or STOP command), be sure to enter CLEAR before you
issue a LINK command.

For more information about PROC, refer to Customer Support
Functions, Volume II under "Using a procedure file."

PROCERR command

PROCERR

The PROCERR command is a procedure file command that
directs the system error handling mechanism either to return
errors that occur in commands or are untrapped in BASIC
programs to the procedure file or report them to the status
line.

PROCERR--~ II----l •• · e STOP

RETURN ~

The syntax of the PROCERR command is as shown above,
where:

STOP specifies that errors are to be reported to the status line.
Pressing Error Reset, Cmd/Error Reset, or Cmd/ Attn at this
time opens the keyboard for input.

RETURN specifies that the next procedure file record is to be
executed.

The PROC command sets the PROCERR option to STOP when
issued with no procedure files active. Thereafter, the option
may only be reset with the PROCERR command. The most
recently issued PROCERR command from any level of proce­
dure file nesting always controls the PROCERR option. The
PROCERR command may be issued from the keyboard to alter
the option when a procedure file has been interrupted (as by
Cmd/Attn). This PROCERR will be considered the most recent
until another PROCERR is issued.

Note: If the system release code field on your system status
line is "1.05," the PROCERR command will be functionally
different from preceding releases, and recoding of procedures
may be required.

TNL SN34-0870 (20 May 83) to SA34-0109-2 BASIC Language Reference 333

PROCERR

PROCERR command (continued)

334 SA34-0109

If the system release code field on your system status line is
"1.05," the PROC command will set the PROCERR option to
STOP, whether issued from the keyboard or from a procedure
file. Subprocedures will retain the PROCERR option of the
invoking PROC unless explicitly coded otherwise.

The PROCERR RETURN command sets the value of the ERR
variable to zero.

When the RETURN option is in effect, the next procedure file
record is executed in command mode and the procedure
continues. This should always be a SKIP command, which
tests the value of the ERR variable, unless the error can be
totally ignored (see examples).

Examples

PROCFILE.A

PROCERR RETURN !REGAIN CONTROL IF NO FILEXXX
FREE FILEXXX/VOLXX
PROCERR STOP !GOTO STATUS LINE IF LOAD/RUN FAILS
LOAD FILEYY.PGM
RUN

PROCFILE.B

PROCERR RETURN
LINK COPY !COPY FILE1 TO FILE2
•
•
ENDLINK
SKIP 2 IF ERR=O !IF COPY SUCCESSFUL CONTINUE
ALERT COpy FAILED

TNLSN34-0870 (20 May 83) to SA34-0109-2

PROCIN

PROCERR

Programming considerations

• The PROCERR RETURN option cannot be used to return
to the procedure file when an OPTION message occurs.
In the first example, the FREE command specifies a
VaLID in the file specification to avoid an OPTION
message in case the file does not exist.

PROCERR RETURN will not trap syntax errors.

PROCERR RETURN does not cause the procedure file to
be searched for a valid command. If a program or
Customer Support Function which reads data from
procedure file fails to load, the next read from the proce­
dure file will be data.

• If PROCERR RETURN is in effect during execution of a
BASIC program and an untrapped error occurs, the
BASIC program is only interrupted. It has not ended. Use
caution if you want to have untrapped errors in BASIC
programs return to procedure file execution.

Indicates whether input is from the screen (0) or from a proce­
dure file (1).

TNL SN34-0870 (20 May 83) to SA34-0109-2 BASIC Language Reference 335

PROTECT

PROTECT command

336 SA34-0109

The PROTECT command controls the integrity of data in a
diskette or disk file by write-protecting the file. It can also be
used to mark a file label as closed that has been left marked
open or to RELEASE a file that has been reserved (see "DIR
command" and "File sharing").

'ON -------,

,OFF ------1

,CLOSE I rAll

,RELEASE J...La
PROTECT-file-spec---........ - ... ·-----........ --..

I ON
CLOSE or RELEASE for this station only

The syntax of the PROTECT command is as shown above,
where:

file-spec consists of a filename followed by an optional VOLID
and device address. For more information ,see "File specifica­
tion parameter."

ON specifies that a file is to be write-protected.

OFF specifies that write protection is to be removed from a file
that is currently write-protected. If none of the optional
parameters are specified, ON is assumed.

CLOSE specifies that a diskette file label is to be updated to
show that the file is not open for this station. For 5247 Disk
files: CLOSE is ignored because your System/23 does it for
you. /-

RENUM command

RENUM

The RENUM command generates new line numbers for all
BASIC program statements or data in the work area. Renum­
bering begins with line number 10; the increment is 10, unless
otherwise specified. All references to line numbers such as in
GOTO, IF, PRINT USING, GOSUB are changed to the new
numbers.

[first-line-num

RENUM~-----~D~--------------L----••

D RENUM 10,10
II Increment is 10

The syntax of the RENUM command is as shown above,
where:

first-line-num is the new beginning line number of the renum­
bered work area. If there is no first-line-num specified, a
beginning number of 1 0 is the default value.

increment is the number specifying the increment for the
succeeding statement numbers. If there is no increment
number specified, an increment of 1 0 is the default value. If a
first-line-num is not specified, increment cannot be specified.

BASIC Language Reference 357

RENUM

REN UM command (continued)

REPLACE command

358 SA34-0109

Example

This example shows the execution of a RENUM command:

RENUM 20, 15

Before

10 INPUT A,B&
11 Q=INT (A/B)
19 IF Q=-1 THEN STOP
20 IF Q=O THEN 30
25 GOTO 10
30 PRINT Q
35 GOTO 10
40 STOP

After

20 INPUT A,B
35 Q=INT (A/B)
50 IF Q= -1 THEN STOP
65 IF Q=.O THEN 95
80 GOTO 20
95 PRINT Q
110 GOTO 20
125 STOP

Programming considerations

• Interrupted program

- The RENUM command is not valid during interrupted /
program execution.

• Permanent renumbering

After using RENUM, use the REPLACE command to
update the file stored on the diskette or disk because
RENUM only changes the file in the work area.

For related information, see "MERGE command."

The REPLACE command saves the contents of the work area
to an existing file. This command is similar to SAVE but
applies only to files in which no name change is intended

TNL SN34-0870 (20 May 83) to SA34-0109-2

, /

REPLACE

,SOURCE

REPLACE-L--~--~~~~--~--~.

.. Use the filename last saved or loaded.
II Internal format

The syntax of the REPLACE command is as shown above,
where:

file-spec is the file specification. For more information, see
"File specification parameter." If the file does not already
exist, an error will occur.

SOURCE indicates that the program is to be saved in source
format. If SOURCE is not specified, the program is saved in
BASIC format. In either case, the file type must conform to
the present type stored. SOURCE files are type 05; BASIC
program files are type 09 or type 81.

LOCK indicates that the program that is in memory is to be
replaced in a format that prevents the source code from being
listed. Since there is no UNLOCK function, the programmer
should keep an unlocked version of the program in case the
source code needs to be reviewed or modified.

While the LOCK function is provided as a safeguard, program
security remains the responsibility of the author. It is not
feasible to devise a LOCK that cannot be circumvented and
IBM cannot take responsibility for the actions of those who do
circumvent the LOCK function.

TNL SN34-0870 (20 May 83) to SA34-0109-2 BASIC Language Reference 359

REPLACE

REPLACE command (continued)

360 SA34-01 09

Programming considerations

Diskette or disk full

If there is not enough space on the diskette or disk
to save the entire file, an error occurs. In this case,
the file should be saved on another diskette, or
unneeded files should be freed to provide space.

• No file specification

SOURCE must be preceded by a comma if no file
specification is specified; otherwise, SOURCE will be
assumed for the filename.

Cmd/Attn

- Cmd/ Attn will not interrupt during a REPLACE.

• Interrupted program

The REPLACE command cannot be issued if the
program is interrupted; enter GO END before issuing
REPLACE.

• Compressing the work area

No additional storage becomes available as a result
of editing. Additional storage will be available if the
program is saved or replaced in source format, and
then loaded.

• Locked programs

The LOCK function replaces the program that is in
memory in a format that prevents the source code
from being listed. Since there is no UNLOCK func­
tion, the programmer should keep an unlocked
version of the program in case the source code
needs to be reviewed or modified.

While the LOCK function is provided as a safeguard,
program security remains the responsibility of the
author. It is not feasible to devise a LOCK that

TNt SN34-0870 (20 May 83) to SA34-0109-2

(

READ

EOF-an attempt to read more data than provided by
DATA statements

SOFLOW-string overflow

See "EXIT statement" for more information on these error
conditions_

EXIT line-ref specifies the line number or label of an EXIT
statement that the system should reference if an error occurs.

At the beginning of program execution, a pointer is set to the
first value in the internal data table specified by one or more
DATA statements.

When a READ statement is encountered, successive values
from the internal data table are assigned to variables and
arrays in the READ statement beginning at the current data file
position.

Example

CLEAR
10 OPTION BASE 1
20 DIM D(5)
30 DATA 5,10,15
40 READ A,B,C,MAT D
50 DATA 1,2,3,4,5

The values in the DATA statement are assigned in the same
order to the variables listed in the READ statement. Once the
READ and DATA statements are executed, A is equal to 5, B is
equal to 10, C is equal to 15, and the five elements of array D
are 1,2,3,4,5.

BASIC Language Reference 341

READ

READ statement (with no file reference) (continued)

342 SA34-0109

Programming considerations

Character assignments

The length of the character data item being read
determines the length of the character string
assigned to the character variable.

• Numerical assignments

A string of digits not in quotes may be read as a
number or a character string, depending on the vari­
able type.

Array assignments

The array references in the data-item list are
assigned values from the data file by rows, starting
at the current data file position.

• Truncation

•

- If the numeric data exceeds 15 digits, truncation will
occur.

Error conditions

A numeric data value was read and the READ state­
ment specifies a character data item.

The data file is exhausted or no DATA statements
exist in the program and unassigned data list items
remain in the READ statement (EOF).

If a READ statement is executed and there are no
DATA statements in the program, an error will occur.

The absolute value of a numeric data item is greater
than the largest System/23 numeric value (see
"Magnitude" under "Arithmetic data"). An overflow
condition is generated.

READ

The absolute value of a numeric data item is less
than the smallest System/23 numeric value (see
"Magnitude" under "Arithmetic data"). An under­
flow condition is generated.

The data that is read exceeds the length of the data
item (SO FLOW).

BASE

If the default (BASE 0) is in effect, an array dimen­
sioned to size N requires N + 1 elements. See "DIM
statement" and "OPTION statement."

BASIC Language Reference 343

READ

READ statement (with file reference)

The READ statement assigns values from records in a file to
specified variables or arrays.

'KEY~=]-
,~, ,n, char·expression

'SEARCH > =

, REC=arith-expression ------.....1 CUSING{ char·va

line·ref

READ-#file.ref D-----L....L-_______ .. _______ --L ______

{
char-var

, FORMAT
char-constan

344 SA34-0109

r-'---,
I I

r---'------,
I I

,,,",oood 0;0=9
EXIT line-ref

• Unformatted READ
II Read next sequential record
II Communications feature not in use
II Read record, do not use data
II Interrupt on error unless ON is active

•

The syntax for the READ statement is as shown above, where:

file-ref is a numeric expression. See "File reference parame­
ter."

USING specifies a line-ref (line reference) of a FORM state­
ment or a char-var (character variable) containing a FORM
statement. Line-ref can be a line number or label. The FORM
statement is used to indicate the representation and location

(
\

(

(

READ

to be assigned to the variables in the data-item list that will be
read. Include a data-item list when you have a USING clause.
If If you do not have a USING clause, an unformatted read will
be performed. See "Internal I/O file formatting."

KEY specifies the key field used to access the record in the
file. The character expression must be the same length as the
key field.

SEARCH specifies the key field used to access the record in
the file. The character expression can be less than or equal to
the length of the key field. If the character expression is
shorter in length than the key field, the search of the index will
consider only that part of the key field equal to the length of
the specified character expression.

= specifies that the KEY/SEARCH argument must make an
exact match to the record key.

>= specifies that if an equal compare is not made, the next
record in the key sequence following the provided key is used.

REC=arith-expression is a positive, non-zero integer or
numeric variable that specifies the logical record number of the
record to be retrieved. If this parameter is not specified, the
next logical record will be accessed.

data-item specifies the names of variables to be read into from
the file. Data items can include elements, or entire arrays
(preceded by MAT). The data items must be separated by a
comma. The first data item must be preceded by a colon.

error-cond line-ref specifies the line number or label that the
program should transfer to if one of the error conditions
occurs. The following error conditions may be included in any
order:

BASIC Language Reference 345

READ

READ statement (with file reference) (continued)

•
•

CONV-conversion error

EOF-end of file

IOERR-input/ output error

• NOKEY-key not found; invalid key reference

• NOREC-no record found; invalid record reference

• SOFLOW-string overflow

See "EXIT statement" for more information on these error
conditions.

EXIT line-ref specifies the line number or label of an EXIT
statement that the system should reference if an error occurs.

FORMAT is a communications feature clause. It specifies that
special control functions are requested. The control functions
can be specified as a char-constant (character constant) or in a
char-var (character variable). See System/23 Communi- . '\

346 SA34-0109

cations Guide.

Example

10 OPEN #l:"NAME=ITEMS",INTERNAL,INPUT,RELATIVE
20 LET 1=25
30 READ #l,USING 40, REC=I:I$,D$,A,B,C NOREC QUIT
40 FORM C 5,C 10,N 6,N 9.2,N 17.2

•
•

90 QUIT: CLOSE #1:

(\
l "'. /

.. ~.

(

READ

Record number 25 of the file ITEMS is read in statement 30.

An unformatted READ into an array that is too large will cause
an error. The following example will read variable size, unfor­
matted records containing numeric data.

10 OPTION BASE 1
20 DIM INARRAY (50)
•
•
80 READ #l,USING 90:L$,H$
90 FORM C 1,C 1

100 LET COUNT=ORD(L$)+256*ORD(H$)
110 MAT I NARRAY= I NARRAY (COUNT)
120 REREAD #l:MAT INARRAY

The following example uses KEYED:

10 OPEN #30: I NAME=KMAST,KFNAME=KINDX",
INTERNAL, INPUT, KEYED

20 A$="NEAT"
30 READ #30,USING 40,KEY=A$:B$,F$,

X NOKEY DONE
40 FORM C 4,X 5,C 16,X 2,N 3

•
•
•

100 DONE: CLOSE #30:

The first record with a key field equal to NEAT is read in
statement 30.

BASIC Language Reference 347

READ

READ statement (with file reference) (continued)

348 SA34-0109

Programming considerations

• No positional specifications

If the file was opened with the KEYED parameter
and if the KEY/SEARCH parameter is not entered,
the next sequential record in the file is accessed in
ascending key sequence. If the file was opened with
the RELATIVE parameter and the REC parameter is
not specified, then the next sequential record is
accessed.

• Key length

The length of the KEY parameter must be equal to
the record key field.

The length of the SEARCH parameter must be less
than or equal to the length of the key.

• Skipping records

•

The data-item parameter can be omitted on READ to
allow for error checking. There will be no transfer of
data to variables, but a record will be read.

Unformatted READ

To correctly interpret an unformatted record, the data
types of the READ input list must match, element by
element, with the data types in the WRITE statement
that created the record. If the input list contains an
arithmetic data item and the field length is not 9, a
CONV error occurs. No other errors are detected.
Character strings of length 9 can be interpreted as
numeric values; numeric values can be interpreted as
character strings of length 9.

Record I/O files

REC(N)

READ

Errors

If REC= is specified and the record is deleted or is
greater than the largest record number, a NOREC
error will occur.

If the KEY and SEARCH parameters are specified for
a file which has not been opened as an index file, an
error will occur.

See "Internal I/O files."

REC returns the record number, in file N, of the last record
processed. A -1 is returned if the file is not open or if it is a
display or keyed file. Zero is returned if no records have been
processed.

BASIC Language Reference 349

Redimensioning

Redimensioning arrays

350 SA34-0109

Numeric and character arrays can be redimensioned according
to the following rules:

• Both one-dimensional and two-dimensional arrays can
be redimensioned.

• The total number of elements in any array after redimen­
sioning must not exceed the number originally specified
when the array was dimensioned.

• The number of dimensions can be changed. A
one-dimensional array can become a two-dimensional
array and a two-dimensional array can become a
one-dimensional array.

• The maximum value for a dimension is 9999 or is deter­
mined by the available storage.

•

An array can be redimensioned in a MAT assignment
(simple) statement or by using the ZER or CON functions
(see "MAT assignment (simple)" and "ZER and CON").

The new dimensions for the array can be specified with
either a constant or an expression. The expression
cannot contain subscripts.

• Redimensioning cannot occur on input or output
data-item lists.

The array is allocated storage when it is first referenced.
After redimensioning, the unused storage of the array can
be reused.

The maximum length of each element in a character array
cannot be changed.

/ " \

Example

10 OPTION BASE 1
20 DIM BIG(50,50)
•
•
•

Redimensioning

100 BIG(37,42)=12345.6 [SPACE FOR ARRAY "BIG"
•
•
•
300 MAT BIG=ZER(l,l) [MOST OF SPACE FREED UP

The preceding example shows how an array can be redimen­
sioned in line 300. Line 300 takes the 50 X 50 array and
makes it a 1 X 1. The data in BIG (37, 42) is lost.

Referencing, substrings

Relational expressions

Relative record files

See "Substring referencing."

See "IF, THEN, ELSE statement."

A relative record file is composed of a sequence of equal-size
records. A record may be empty or may contain data. Each
record has a number associated with it (a relative record
number), starting with one and extending up to the number of
records contained within the file. The relative record number
is an index by which a record may be accessed for input or
output. This number is not in the record. Access, using a rela­
tive record number, is made independent of the contents of

BASIC Language Reference 351

Relative record

Relative record files (continued)

352 SA34-0109

any other record. Access to a relative record file may be either
on a random basis or on a sequential basis. Relative record
files can be accessed by relative record number and then
accessed sequentially.

Record-oriented statements that access keyed files may speci­
fy either a KEY clause or a SEARCH clause. Record- oriented
statements that access relative record files may specify a REC
clause. A REC clause is mutually exclusive with either a KEY
or a SEARCH clause. WRITE to a relative record file must
contain a REC= clause referencing a deleted record only. The
location following the last record in the file is considered a
deleted record. The maximum number of records is
16,777,215.

A relative record file is accessed by:

• CLOSE

• DELETE

• OPEN (internal)

• READ

• REREAD

• RESTORE

• REWRITE

• WRITE

/ ,
\

,/

RELEASE statement

(

RELEASE

The RELEASE statement removes any record locks you have
set on a file. This makes the records on the file available for
use by the other computers. The RELEASE statement applies
only to files on the 5247 Disk Unit. The RELEASE statement is
unrelated to the RELEASE option of the CLOSE command and
the PROTECT command.

RELEASE -_#file reference :_

The syntax is shown above, where:

File reference is a numeric expression. See "File reference."

Example

10 READ #1: ...
•
•
•

90 RESERVE #1:
100 REWRITE #1: ...
110 READ #1: ...
120 REWRITE #1: ...
130 RELEASE #1:

Programming considerations

• The RELEASE statement is designed to be used in
combination with the RESERVE statement, as shown in
the example. See "RESERVE statement."

BASIC Language Reference 353

RELEASE

RELEASE statement (continued)

REM statement

354 SA34-01 09

• The RELEASE statement may also be used to:

force data to be written to a disk file instead of being (
held in buffers. \"

remove locks that you implicitly set on a file using
READ statements not followed by REWRITE state­
ments.

• The FILE(N) function is not set by the RELEASE
statement.

• A syntax error occurs when a variable named RELEASE is
the target of an assignment statement that is not
preceded by the word LET.

The REM statement inserts remarks or comments in a BASIC
program.

r= remark --,

~~~~~-------~--~--~ •. 
remark is one or more characters. This is an optional entry. 

The REM statement is descriptive and is not executed. It 
appears in the program listing, but has no effect on program 
execution. "REM" uses 2 bytes of storage; "!" uses 4 bytes. 

./ 



( 

Remarks 

( 

REM 

Example 

10 REM THIS PROGRAM DETERMINES THE COST PER UNIT 

or: 

10 ! THIS PROGRAM DETERMINES THE COST PER UNIT 

Remarks may be added to a program by using the REM state­
ment or an exclamation point, or to an existing statement by 
using an All blanks except one are deleted before and after the 
exclamation point. Lowercase characters are changed to 
uppercase unless enclosed in quotes. If blanks are required in 
the remark field, they must be preceded by a nonblank charac­
ter (see example). Remarks are not permitted on DATA 
statements and should not be used on the DEL command. 

Example 

10 FOR MONTH=1 TO 12 !BEGIN LOOP 
20 NEXT MONTH!" end of loop" 
30 A=B !* SAVE B 

BASIC Language Reference 355 



RENAME 

RENAME command 

356 SA34-01 09 

The RENAME command renames a file. 

RENAME--ald-file-spec ,new·file-name • 

The syntax of the RENAME command is as shown above, 
where: 

old-fife-spec is the current file specification. For more infor­
mation, see "File specification parameter." 

new-fife-name is the new name to be assigned to the file. 
This name must not already exist on the volume. 

The RENAME command is rejected if control reserve is set for 
the file, if the file is in open status, or if the disk volume or 

/ 

diskette is access-protected. See "DIR command" and "File 
sharing.",,_ 7 

Note: Because there is the potential for each file on the disk 
to have more than one person using that file, be careful when 
you rename a file. Programs and procedures must be changed 
to reference the new name. 

Example 

RENAME OLD. FILE, NEW.FILE 

This changes the name of the file OLD.FILE, to NEW.FILE. 



RENUM command 

( 

RENUM 

The RENUM command generates new line numbers for all 
BASIC program statements or data in the work area. Renum­
bering begins with line number 10; the increment is 10, unless 
otherwise specified. All references to line numbers such as in 
GOTO, IF, PRINT USING, GOSUB are changed to the new 
numbers. 

f,increm:l 

[first.line.num--L--a~ 

RENUM~-----Ea~-------------------~---•• 

.. RENUM 10,10 
B I ncrement is 10 

The syntax of the RENUM command is as shown above, 
where: 

first-line-num is the new beginning line number of the renum­
bered work area. If there is no first-line-num specified, a 
beginning number of 1 0 is the default value. 

increment is the number specifying the increment for the 
succeeding statement numbers. If there is no increment 
number specified, an increment of 1 0 is the default value. If a 
first-line-num is not specified, increment cannot be specified. 

BASIC Language Reference 357 



RENUM 

RENUM command (continued) 

358 SA34-0109 

Example 

This example shows the execution of a RENUM command: 

RENUM 20, 15 

Before 

10 INPUT A,B& 
11 Q=INT (A/B) 
19 IF Q=-l THEN STOP 
20 IF Q=O THEN 30 
25 GOTO 10 
30 PRINT Q 
35 GOTO 10 
40 STOP 

After 

20 INPUT A,B 
35 Q=INT (A/B) 
50 IF Q= -1 THEN STOP 
65 IF Q=.O THEN 95 
80 GOTO 20 
95 PRINT Q 
110 GOTO 20 
125 STOP 

Programming considerations 

Interrupted program 

- The RENUM command is not valid during interrupted 
program execution. 

Permanent renumbering 

After using RENUM, use the REPLACE command to 
update the file stored on the diskette or disk because 
RENUM only changes the file in the work area. 

For related information, see "MERGE command." 



REPLACE command 

( 

( 

REPLACE 

The REPLACE command saves the contents of the work area 
to an existing file. This command is similar to SAVE but 
applies only to files in which no name change is intended. 

,SOURCE 

REPLACE-L--~--~~~9r--~--~. 

.. Use the filename last saved or loaded. 
II Internal format 

The syntax of the REPLACE command is as shown above, 
where: 

file-spec is the file specification. For more information, see 
"File specification parameter." If the file does not already 
exist, an error will occur. 

SOURCE indicates that the program is to be saved in source 
format. If SOURCE is not specified, the program is saved in 
BASIC format. In either case, the file type must conform to 
the present type stored. SOURCE files are type 05; BASIC 
program files are type 09 or type 81. 

LOCK indicates that the program is to be locked. A locked 
program may not be listed, saved, or replaced in source 
format. Once the program is locked, -it cannot be unlocked. A 
copy of the unlocked program should be kept by the 
programmer. 

BASIC Language Reference 359 



REPLACE 

REPLACE command (continued) 

360 SA34-0109 

Programming considerations 

• Diskette or disk full 

If there is not enough space on the diskette or disk 
to save the entire file, an error occurs. In this case, 
the file should be saved on another diskette, or 
unneeded files should be freed to provide space. 

• No file specification 

SOURCE must be preceded by a comma if no file 
specification is specified; otherwise, SOURCE will be 
assumed for the filename. 

• Cmd/Attn 

- Cmd/ Attn will not interrupt during a REPLACE. 

• Interrupted program 

• 

The REPLACE command cannot be issued if the 
program is interrupted; enter GO END before issuing 
REPLACE. 

Compressing the work area 

No additional storage becomes available as a result 
of editing. Additional storage will be available if the 
program is saved or replaced in source format, and 
then loaded. 

,/ 



( 

Replacing a statement 

REREAD statement 

REPLACE 

cannot be circumvented and IBM cannot take 
responsibility for the actions of those who do 
circumvent the LOCK function. 

See "Editing a program." 

The REREAD statement assigns values from the most recent 
record READ or REREAD from the file. 

r---- I -----, 

I I 

EXIT line-ref 

r' USING{Char-Var 

L line-ref 

REREAD- #file-ref D-------L:Tdata-item-r'----IY---.......... --. 

• Unformatted REREAD 

I I L __ I __ -l 

II Interrupt on error unless ON is active 

The syntax for the REREAD statement is as shown above, 
where: 

file-ref isa numeric expression. See "File reference parame­
ter." 

USING specifies a line-ref (line reference) of a FORM state­
ment or a char-var (character variable) containing a FORM 
ste!ement. 

TNL SN34-0870 (20 May 83) to SA34-0109-2 BASIC language Reference 361 



REREAD 

REREAD statement (continued) 

362 SA34-0109 

line-ref can be a line number or label. The FORM statement is 
used to indicate the representation and location of values to be 
assigned to variables in the input list that will be read. If no 
USING is specified, the record is read unformatted. See 
"Internal I/O file formatting." 

data-item specifies the names of variables to be read into from 
the file. Data items can be variables, array elements, or entire 
arrays (preceded by MAT). The data items must be separated 
by a comma. The first data item must be preceded by a colon. 

error-cond line-ref specifies the line number or label that the 
program should transfer to if one of the error conditions 
occurs. The following error conditions may be included in any 
order: 

• CONY-conversion error 

• 10ERR-input/output error 

• NOKEY-key not found; invalid key reference 

• 
• 

NOREC-no record found; invalid record reference 

SOFLOW-string overflow 

See "EXIT statement" for more information on these error 
conditions. 

EXIT line-ref specifies the line number or label of an EXIT 
statement that the system should reference if an error occurs. 

TNL SN34-0870 (20 May 83) to SA34-0109-2 



( 

RESERVE statement 

REREAD 

Example 

5 DIM D$*20 
10 OPEN # 1 : "NAME=ITEMS" , INTERNAL, INPUT, RELATIVE 
20 FOR 1=1 TO 100 
30 READ #1,USING 40,REC=I:I$,D$ 
40 FORM C 5,V 20,N 6,N 9.2,N 17.2 
50 IF D$="BOLTS" "BOLTS" THEN GOTO 80 
60 REREAD #1,USING 40:I$,D$,Q,P,P1 
70 NEXT I 
80 ! CONTINUE OPERATION 

The RESERVE statement is a request by the issuing computer 
for a temporary exclusive use of the file. RESERVE applies 
only to files opened on the 5247 Disk and is unrelated to the 
RESERVE option of the OPEN statement. When a RESERVE 
statement is coded, all other computers are prevented from 
accessing records in the file. 

RESERVE-- #file reference : ____ 

The syntax is shown above, where: 

file reference is a numeric expression. See "File reference." 

TNL SN34-0870 (20 May 83) to SA34-0109-2 BASIC Language Reference 363 



RESERVE 

RESERVE statement (continued) 

364 SA34-0109 

Exclusive use of a file is released when: 

a CLOSE or RELEASE statement specifying the same 
file reference is carried out. 

CLOSE is implied by a program ending; or when a 
GO END, CLEAR or CLEAR ALL command is issued. 

a PROTECT RELEASE command is issued. If a 
computer with a file locked through the RESERVE 
statement loses contact with the disk (because of 
power loss or system error, for example) the file 
remains locked until the PROTECT RELEASE 
command is issued. 

Programming considerations 

• A RESERVE statement may only be issued to a file 
opened with the same file reference. 

• Use RESERVE to prevent other computers from accessing 
records while you are doing multiple updates to a file. 

• Single updates are synchronized without the use of 
RESERVE. 

• Locking the entire file also prevents access to records in 
the file that you are not using. An example of how to 
minimize this contention is: 

10 READ #1: 
• 
• 
• 

90 RESERVE #1: 
100 REWRITE #1: ... 
110 READ #1: ... 
120 REWRITE #1: ... 
130 RELEASE #1: 

TNL SN34-0810 (20 May 83) to SA34-0109-2 

/ 



• 

RESERVE 

The READ at line 10 locks the record. Processing occurs 
with the single record locked. The file is locked by the 
RESERVE statement at line 90, so the exclusive use of the 
file begins at line 90. The RELEASE statement at line 130 
removes the lock and ends the exclusive use status of the 
file. 

• The RESERVE statement may also be used to lock out 
other computers while multiple reads are done. 

• The FILE(N) function is not set by the RESERVE state-

TNL SN34-0870 (20 May 83) to SA34-0109-2 

ment. 

An error message occurs if: 

a computer has the same disk file open more than 
once under different file references and the file is 
already locked under one of the other file references. 

RESERVE is the target of an assignment statement 
that is not preceded by the word LET. 

BASIC Language Reference 365 



Reserved words 

Reserved words 

The following words are reserved for System/23 BASIC and 
cannot be used as the name of variables or statement labels 
which you define. 

ABS EXP NEWPAGE RETRY 
AIDX FIELDS NEXT RETURN 
AND FILE NOKEY REWRITE 
ATN FILES NONE RLN 
ATTN FN NOREC RND 
BELL FNEND 
CEIL FN--- OF LOW ROUND 
CHAIN FOR ON SEQUENTIAL 
CLOSE FORM OPEN SGN 
CMDKEY FREESP OPTION SHIFT 
CNT GO OR SIN 
CODE GOSUB ORD SOFLOW 
CON GOTO OUTIN SQR 
CONTINUE IF OUTPUT SRCH 
CONV IGNORE PAUSE STEP 
COS INTERNAL PI STOP 
DATA INPUT SUB 
DATE INT PAGEOFLOW SYSTEM 
DEF IOERR POS TAB 
DELETE KEY PRINT TAN 

// 
DIDX KEYED THEN 
DIM KLN PROCIN TIME 
DISPLAY KPS RANDOMIZE TO 
DISPLY LEN RD TRACE 
DUPREC LET READ UDIM 
ELSE LINE REC UFLOW 
END LINPUT RELATIVE USE 
EOF LOG REM USING 
ERR MAT REREAD VAL 
ERROR MAX WRITE 
EXIT MIN RESTORE ZDIV 

ZER 

366 SA34-0109 



( 

Reserved words 

The following words cannot be used as the names of 
user-defined character variables. 

CHR$ 
DATE$ 
FILE$ 
HEX$ 

KSTAT$ 
LPAD$ 
LTRM$ 
PIC$ 

RPAD$ 
RPT$ 
RTRM$ 
SREP$ 

STR$ 
TIME$ 
WSID$ 

BASIC Language Reference 367 



RESTORE 

RESTORE statement (with no file reference) 

368 SA34-0109 

This RESTORE statement causes subsequent READ state­
ments to assign values beginning with the first item in the first 
DATA statement (see "DATA statement"). 

RESTORE • 

The syntax of the RESTORE statement is as shown above. 

The RESTORE statement returns the internal data table pointer 
from its current position to the beginning of the table. 

A RESTORE statement is ignored in a program that contains 
no DATA statements. 

Example 

10 DATA 1,2 
20 READ A,B 
30 RESTORE 
40 READ C,D 

In the above example, after the statements are executed, the 
variables A and C will each have a value of 1 and variables B 
and D will each have a value of 2. 



RESTORE 

RESTORE statement (with file reference) 

This RESTORE statement is used to reposition a file. 

IREC=arith'expression -------, 

IKEV-----, r=}-
,~, ,JL char-expression 

ISEARCH >= 

,---I----l 
I I 

error-cond line-ref 

EXIT line-ref ---I 

RESTORE -#file.ref --'-------U---------'-- -L...---f,JI-----'---__ 

II Go to the beginning of the file (if opened 
for output, DROP the file) 

II Interrupt on error unless ON is active 

The syntax of the RESTORE statement is as shown above, 
where: 

file-ref is a numeric expression. See "File reference parame­
ter. " 

When a RESTORE statement (without a parameter) is 
executed, the specified display or internal I/O file is reposi­
tioned so that subsequent references to the file will refer to the 
beginning of the file. 

REC=arith-expression for relative access, specifies the number 
of the record to which the file will be reset. The record speci­
fied by the arithmetic expression will be the next record in the 
file to be accessed by a READ without a REC clause. 

KEY for keyed access, specifies the key field used to access 
the record in the file. KEY indicates key-indexed access of the 
file, which must have been opened as a keyed file. 

BASIC Language Reference 369 



RESTORE 

RESTORE statement (with file reference) (continued) 

370 SA34-0109 

char-expression parameter contains the actual record key to 
be compared to those records in the file. The character 
expression must be the same length as the key field. ( 

SEARCH for keyed access specifies the key field used to 
access the record in the file. SEARCH indicates key-indexed 
access of the file. 

char-expression can be less than or equal to the length of the 
actual key field. If the char-expression is shorter than the key 
field, the search of the index will consider only that part of the 
key field equal to the length of the character expression. 

= specifies that the KEY/SEARCH argument must make an 
exact match to the record key. 

>= specifies that if an equal compare is not made, the next 
record in key sequence following the provided key is used. 

\,-<-- ./ 

error-cond line-ref specifies the line number or label that the "'. j 
program should transfer to for one of the error conditions. The 
following error conditions may be included in any order: 

• IOERR-input/ output error 

NOKEY-invalid key reference 

• NOREC-invalid record reference 

See "EXIT statement" for more information on these error 
conditions. 

r" i 
\~ ./ 



( 

( 

RESTORE 

EXIT specifies the line number or label of an EXIT statement 
that the system should reference if an error occurs. 

Programming considerations 

• Adding data 

- To position at the end of data, close the file, then 
reopen the file for output. 

• RESTORE #0 

• 

- RESTORE with a file reference of #0 is ignored. 

Dropping data 

A RESTORE statement that specifies no parameters, 
places the file at the beginning of data. For the 
following specific cases, previously valid data 
becomes inaccessible (same action as DROP 
command): 

1. A display file opened for output, NOSHR, 
sequential access. 

2. An internal file opened for output, NOSHR, 
sequential access. 

An error occurs if a RESTORE statement is executed 
for an internal file opened for output with relative or 
keyed access. 

BASIC Language Reference 371 



RETRY 

RETRY statement 

372 SA34-01 09 

The RETRY statement transfers control to the statement caus-
ing the most recent error that was not suppressed by an ON I " 
condition IGNORE. See "ON statement" 

RETRY • 

RETRY is useful following an ON GOTO transfer or following 
an I/O exit. Any event that can cause an ON GOTO transfer or 
an I/O exit will set the line to which RETRY will transfer 
control. 

If an ON event is specified as IGNORED, the return statement 
specification used by RETRY is not changed. 

Example 

100 ON ZDIV GOTO FIX 
• 
• 
• 

300 INPUT C 
310 Z = 10/C 
• 
• 
• 

400 FIX: C= 1 !O ENTERED FOR C 
410 RETRY ! REEXECUTE LINE 310 



( 

( 
RETURN statement 

( 

RETRY 

Programming considerations 

• 

RETRY without error 

If no error has occurred since RUN, execution of 
RETRY will cause an error and will interrupt 
execution. 

RETRY after INa 

- Execution of RETRY following INa causes the same 
line to be executed again. 

• Multiple errors 

If a second ON GOTO or I/O exit occurs before 
RETRY is executed, the first occurrence is lost. Avoid 
operations that can cause such occurrences or use 
ON .... IGNORE. 

For a description of special handling of ON events and I/O 
exits within a defined function, see "DEF,FNEND statement." 

The RETURN statement transfers program control to the first 
executable statement following the most recently executed 
GOSUB statement (see "GOSUB statement"). 

RETURN • 

BASIC Language Reference 373 



REWRITE 

REWRITE statement 

The REWRITE statement replaces an existing record in a file. 

, REC= arith-expression 

,data-item 

REWRITE--#file-ref ...... --.... ------....... -----I ... ----.....Lo:~I1-----r-"'" 

{
line-ref 

'USING 
char-var , KEY= char-expression 

r---'-----, 
I 

error-cond line-ref 

EXIT line-ref 

~~----BI----~--~. 

374 SA34-0109 

L ____ J-----.J 

D Unformatted write 
II Rewrite the last record READ/REREAD 
• REWRITE record with no data 
II Interrupt on errors unless ON is active 

The syntax of the REWRITE statement is as shown above, 
where: 

file-ref is a numeric expression. See "File reference parame­
ter:' 

USING specifies a line-ref (line reference) of a FORM state­
ment or a char-var (character variable) containing a FORM 
statement. Line-ref can be a line number or label. The FORM 
statement is used to indicate the type, length, and locations of 
the variable values (data items). 



REWRITE 

REC=arith-expression specifies the record having a relative 
record number equal to an arithmetic expression. 

KEY=char-expression specifies the key field used to access 
the record in the file. 

data-item specifies the names of variables or expressions that 
contain the values to be written to the file. Data items can 
include variables, array elements, entire arrays (preceded by 
MAT) or numeric or character expressions. The data items 
must be separated by a comma. The first data item must be 
preceded by a colon. 

error-cond line-ref specifies the line number or label that the 
program should transfer to if one of the error conditions 
occurs. The following error conditions may be included in any 
order: 

• 

CONY-conversion error 

EOF-end of file; insufficient file space for data 

IOERR-input/ output error 

NOKEY-key not found; invalid key reference 

NOREC-no record found; invalid record reference 

SOFLOW-string overflow 

See "EXIT statement" for more information on these error 
conditions. 

EXIT line-ref specifies the line number or label of an EXIT 
statement that the program should transfer if an error occurs. 

For more information, see Appendix B. 

BASIC Language Reference 375 



REWRITE 

REWRITE statement (continued) 

376 SA34-0109 

Example 

10 OPEN #3:"NAME=FILEB",INTERNAL,OUTIN 
20 DIM A$(6)*3 
30 READ #3: MAT A$ 
40 A$(3)= "ABC" 
50 A$(6)= "XYZ" 
60 REWRITE #3: MAT A$ 

Programming considerations 

OPEN OUTIN 

- OUTIN must be specified in the OPEN INTERNAL 
statement. 

Preceding statements 

REWRITE must be preceded by a successful READ 
or REREAD to the same file reference if no KEY or 
REC parameter is specified. If KEY or REC is speci­
fied, the record is read before it is updated and 
rewritten. 

No data 

- If the I/O list is omitted, there will be no transfer of 
data from variables. A record will be written. 

• Key field 

A REWRITE to a file opened for keyed processing 
cannot alter the key field. 

A REWRITE may modify any field other than the one 
used for the associated key specified by OPEN. This 
includes fields used for other keys. If the field is 
modified, the associated key file must be regener­
ated by the INDEX Customer Support Function 
before it is used again. If this is not done, unpredict­
able modifications to the master file may result if 



(\ 

• 

REWRITE 

there is a subsequent WRITE/REWRITE/DELETE 
operation that uses that key field. 

There is no check made to verify that the Master file 
record obtained (using the index file) contains the key 
characters indicated by the KEY= specification. 

Communications 

- REWRITE is not applicable to Communications. 

Multiple rewrites 

When a file is opened INTERNAL OUTIN with 
KEYED, or RELATIVE, a REWRITE statement with­
out a record specifier (KEY= or REC=) can be used to 
update portions of a record that was just accessed 
by READ or REREAD. The record may not be proc­
essed by a second chronologically sequential 
REWRITE without another intervening READ (KEY= 
or REC=). See "I/O table 7" and "I/O table 8"in 
Appendix B. 

If the record cannot be completely updated in one 
REWRITE because of a long FORM specification or 
data list, a second REWRITE may be required. This 
requirement can have the following effects: 

• If the file is in SHR (shared) mode, the other program may 
access the updated record between the two (or more) 
REWRITE statements. This provides a copy of the record 
which is not valid to the READ statement in the other 
computer. 

• If the record is one of a group with duplicate keys, the 
program may require considerable time to reaccess the 
record. Reaccessing the record takes awhile because the 
program must search through all the preceding duplicate 
keys. 

BASIC Language Reference 377 



REWRITE 

REWRITE statement (continued) 

378 SA34-0109 

These effects can be avoided by creating a temporary file with 
one record. This record should be the same size as the record 
in the data file. The following code will then update the record 
without excessive search time or loss of data integrity: 

Assume a record length of 2000 bytes. 

5 WORK=5 
10 OPEN #WORK:"NAME=WORKFILE/VOLID,SIZE=2001, 

RECL=2000",INTERNAL,OUTIN,SEQUENTIAL 
20 DIM A$(8)*250 ! USE THE MINIMUM NUMBER OF 

ELEMENTS MAXIMUM LENGTH 
• 
• 
• 

100 MAT A$=A$(8) 
110 READ #DATAFILE,USING COPYFORM:MAT A$ 
120 COPYFORM: FORM C 250 
130 RESTORE #WORK: 
140 READ #WORK: 
150 REWRITE #WORK,USING COPYFORM:MAT A$ 
160 MAT A$=A$(l) 
• 
• PERFORM MULTIPLE REWRITES TO WORK FILE 
• 

300 MAT A$=A$(8) REDIMENSION A$ 
310 RESTORE #WORK: 
320 READ #WORK,USING COPYFORM:MAT A$ 
330 REWRITE #DATAFILE,USING COPYFORM:MAT A$ 
340 MAT A$=A$(l) RELEASE STORAGE 
• 
• 
• 

See "Program 5-Sample" in Appendix A. 



RLN(N) 

RND(X) 

(' 

RLN(N) 

RLN returns the record length for internal file N. If file N is not 
open internal, a -1 is returned. 

RND returns a random number in the range of 0 to 1. If X or 
the RANDOMIZE statement is specified, the random number 
generator is reset. Each random number is computed from the 
previous one according to a fixed algorithm. When X is speci­
fied, the number generated is the number that would normally 
follow X. The value specified for X must be greater than 0 and 
less than 1. 

If X is not specified and RANDOMIZE is not executed, 2.1 E9 
unique numbers will be generated before the sequence 
repeats. "Run" starts the random numbers at the same point 
each time. 

See "Program 2-Sample" in Appendix A. 

BASIC Language Reference 379 



ROUND(X,M) 

ROUND(X,M) 

RPAD$(A$,X) 

380 SA34-0109 

ROUND returns the value of X rounded to M decimal digits to 
the right of the decimal point. If M is negative, X is rounded to 
the left of the decimal point (M trailing zeros following the 
number). For example: 

10 X=15.735 
20 R=ROUND (X,2) 

R contains 15.74. 

10 X=273 
20 R=ROUND(X,-2) 

R contains 300. 

RPAD returns a string of characters of length X or greater by 
placing the required number of blanks to the right of A$. If X is 
less than the length of A$, then A$ is returned unchanged. For 
example: 

10 A$="ABCD" 
20 B$=RPAD$(A$,5) 

B$ contains "ABCDt." 

10 A$="ABCD" 
20 B$=RPAD$(A$,2) 

B$ contains "ABC D." 

Note: An error is generated if X is not within the 0 to 255 
range. 



RPT$ (A$,M) 

(' 

RTRM$(A$) 

( 

RPT$(A$,M) 

RPT$ returns A$ repeated M times. For example: 

ABC$=RPT$("*",3) 

ABC$ Contains "***" 

Note: When the result of RPT$ exceeds 255 characters, the 
result will vary, based upon the function being performed. 

RTRM$ returns A$ with all trailing blanks removed. 

10 A$=" AB CD" 
20 B$=RTRM$(A$) 

B contains "AB CO." 

BASIC Language Reference 381 



RUN 

RUN command 

382 SA34-0109 

The RUN command starts execution of a BASIC program at 
the lowest numbered executable statement. The program 
must reside in the work area, and the work area must be 
defined as containing a BASIC program. 

RUN 

PRoc-Df-----If)-----------i 

~--~IIf-----f)----~~--~ 

.. Normal execution mode 
II Direct printed output to printer 
II INPUT, LlNPUT #0 from keyboard 

If DISPLAY or PROC parameter follows the RUN command, 
no comma is necessary. 

The syntax of the RUN command is as shown, above where: 

STEP specifies that the program stops before each statement 
is executed. The word STEP and the line number of the next 
statement to be executed are displayed. To execute the next 
statement, a GO command must be entered and you must 
press Enter. Execution will not stop inside functions you have 
defined. 

TRACE specifies that the line number of each statement will 
be displayed when the statement is executed. 



( 

RUN 

TRACEP specifies that the line number of each statement will 
be printed on the printer when the statement is executed. 
TRACEP should be used if tracing to the screen would over­
write valid information. The tracing information is accumu­
lated until a line is full or until the printer is closed (for 
example, when the program terminates). 

DISPLAY specifies that all PRINT #255 statements directed to 
the printer should be directed to the screen instead. 

PROC specifies that data for INPUT and L1NPUT statements 
should come from a procedure file rather than from the 
keyboard. This does not apply to INPUT FIELDS (see 
"Full-screen processing"). PROC is only valid on a RUN 
command issued from a procedure file. 

Example 

LOAD PAYROLL/LEDGER 
RUN 

A program named PAYROLL is loaded from a disk volume or 
diskette with VOLID LEDGER. The program is then executed. 

Programming considerations 

Variable initialization 

Each time the RUN command is issued, it initializes 
all arithmetic variables and arrays to zeros;all charac­
ter variables and arrays are initialized to null. 

Resuming normal processing 

If a RUN STEP is in process and normal processing 
is required, GO RUN can be issued. 

BASIC Language Reference 383 



RUN 

RUN command (continued) 

• Data work area 

The RUN command will not be accepted by the (' 
system if the work area contains data rather than a \ j 

program. 

Error conditions 

The following errors will be detected before the first 
statement is executed: 

An END statement appears and it is not the last 
statement. 

An undefined line number is found. 

FOR/NEXT loops are improperly nested. 

A previous RUN was interrupted. In this case, enter 
GO END, then RUN (see "Split screen"). 

An array or character variable is dimensioned more 
than once. 

• TRACEP and DISPLAY 

- If both TRACEP and DISPLAY are present, the trace 
information will be directed to the screen. 

• TRACE 

RUN TRACE(P) will trace the whole program. Use 
the TRACE statement to trace small portions of the 
program; see 'TRACE statement." 

Sample procedure or Sample program 

See "Appendix A." 

384 SA34-01 09 

( 
I 

\.. 



( 

SAVE command 

SAVE 

The SAVE command stores the contents of the work area in a 
specified file. SAVE is used to store a new program or data 
file for the first time, or an existing program or data file under a 
new name. 

f SOURLE 
, LOCK 

SAVE - file-spec D 

.. Save internal (file type 09 or 81) 

The syntax of the SAVE command is as shown above, where: 

file-spec is the file specification. For more information, see 
"File specification parameter." 

Since SAVE stores programs or data files that do not already 
exist under the name you choose, the filename must be quali­
fied by a VOLID or a drive number. 

SOURCE indicates that the program is to be saved in source 
format as file type 05. If SOURCE is not specified, a program 
is saved in BASIC format as file type 09 or 81; data is saved as 
file type 05 (see "File types"). 

LOCK indicates that the program that is in memory is to be 
saved in a format that prevents the source code from being 
listed. Since there is no UNLOCK function, the programmer 
should keep an unlocked version of the program in case the 
source code needs to be reviewed or modified. 

While the LOCK function is provided as a safeguard, program 
security remains the responsibility of the author. It is not 
feasible to devise a LOCK that cannot be circumvented and 

TNL SN34-0870 (20 May 83) to SA34-0109-2 BASIC Language Reference 385 



SAVE 

SAVE command (continued) 

386SA34-0109 

IBM cannot take responsibility for the actions of those who do 
circumvent the LOCK function. 

Examples 

SAVE MYPROG/MYVOL 
or 

SAVE MYPROG.SRC//1,SOURCE 

Programming considerations 

• Locked programs 

• 

The LOCK function saves the program that is in 
memory in a format that prevents the source code 
from being listed. Since there is no UNLOCK func­
tion, the programmer should keep an unlocked 
version of the program in case the source code 
needs to be reviewed or modified. 

While the LOCK function is provided as a safeguard, 
program security remains the responsibility of the 
author. It is not feasible to devise a LOCK that 
cannot be circumvented and IBM cannot take 
responsibility for the actions of those who do 
circumvent the LOCK function. 

Existing files 

- To save an existing program on a diskette or disk use 
REPLACE. 

• Interrupted programs 

SAVE cannot be issued if a program is in an inter­
rupted state (from an error or Cmd/ Attn, first enter 
GO END). 

/ 
( 

TNL SN34-0870 (20 May 83) to SA34-0109-2 

/ 



SAVE 

• Cmd/Attn 

- Cmd/ Attn will not interrupt during a SAVE. 

• Diskette full 

If there is not enough space on the diskette to save 
the entire file, an error will occur. In this case, the file 
should be saved on another diskette. 

• LOAD and SAVE 

- Program files (type 09 or 81) load and save faster 
than source files (type 05). 

• Compressing the work area 

No additional storage becomes available as a result 
of editing. The additional storage will be made avail­
able when the program is saved or replaced in 
SOURCE format, then loaded. 

Scalar multiplication (MAT assignment) 

Search 

SGN(X) 

See "Example (scalar multiplication),"under "MAT assignment 
(addition, subtraction,scalar multiplication)." 

See "SRCH(array,X[,row]) SRCH(array$,X$[,row])," or "File 
searches~" 

SGN returns the sign of X. 
SGN(-2) is -1 (representing a negative number). 
SGN(+10) is +1 (representing a positive number). 
SGN(O) is 0 

TNL SN34-0870 (20 May 83) to SA34-0109-2 BASIC Language Reference 387 



Sharing 

Sharing 

SHIFT(X) 

388 SA34-0109 

See "Device sharing" 
"File sharing" 
"OPEN statement." 

SHIFT returns a value to indicate the machine type (Katakana 
or non-Katakana). The X parameter, which is optional, estab­
lishes a new shift mode. 

Machine Value 
type returned 

Non-Katakana 0 

Katakana 

Value 
of X 

o = lowercase 
1 = uppercase 

o = alphanumeric 
1 = Katakana 

The following PRINT statement will display the machine type: 

10 PRINT SHIFT 

The following LET statement will set a non-Katakana machine 
to uppercase shift mode: 

20 LET A=SHIFT(1) 



Sign of a number 

( Significance 

SIN(X) 

Sign 

See "SGN(X)" and "Arithmetic data." 

See "Arithmetic data." 

SIN returns the sine of X. X is in radians and must be less than 
1 E10. Specify a value for X greater than -2*P1 or less than 
2*P1 for best accuracy. 

Note: For correct results use: 
SIN (X)=2*(COS(PI/4-X/2)**2)-1. 
(This note does not apply if the system release code field on 
your system status line is "1.05.") 

TNL SN34-0870 (20 May 83) to SA34-0109-2 BASIC Language Reference 389 



SKIP 

SKIP command 

390 SA34-0109 

The SKIP command skips records within a procedure file. 

[ I F -logical-expression J 
SKIP-- integer --I'-----IDo.----'--•• 

.. Skip unconditionally 

The syntax of the SKIP command is as shown, where: 

integer indicates the number of records within a procedure file 
to be skipped. 

logical-expression transfers procedure control according to 
the result of the logical expression (see "IF, THEN, ELSE 
statement"). Only CODE and ERR can be tested in the logical 
expression. 

When the IF clause is specified on the SKIP command, the 
logical expression is evaluated. If the evaluation results in a 
true condition, the specified number of procedure file records 
are skipped. If the evaluation results in a false condition, no 
procedure file records are skipped. 

The SKIP command without the IF clause causes the specified 
number of records to be skipped unconditionally. 

/ 



Skip Lines 

Example 

00010:LOAD FIRST 
00020:RUN 
00030:SKIP 3 IF CODE> 0 
00040:LOAD SECOND 
OOOSO:RUN 
00060:SKIP 3 
00070:ALERT INSERT TRANSACTION DISKETTE 
00080:LOAD THIRD 
00090:RUN 

SKIP 

In this example, the program in file FIRST is loaded and 
executed. If the program causes the value of the CODE vari­
able to be set to positive, the SKIP 3 IF CODE> O. causes the 
next three records in the procedure file to be skipped and the 
ALERT command to be processed. The program in file THIRD 
is then executed. IF the value of the CODE variable from 
program FIRST is zero or less, the program in file SECOND is 
loaded and executed; then, "SKIP 3" unconditionally skips the 
last three commands. 

The line numbers and colons are not part of the data on the 
procedure file. They are added and used by the editing 
commands. 

See "PROCERR" and "Procedure files." 

See "FORM statement." (SKIP specification). 

BASIC language Reference 391 



SORT 

SORT command 

Spaces 

392 SA34-0109 

The SORT command alters the order of the records in a file. 
SORT can be specified from a procedure file or entered from 
the keyboard. 

SORT -file-spec • 

The syntax of the SORT command is as shown above where: 

file-spec is the file specification of a previously generated sort 
control file, which consists of a filename followed by an 
optional VaLID and device address (see "File specification 
parameter"). 

Information for the sort is always taken from the control file 
specified by the file-spec. See Customer Support Functions, 
Volume II for more information about SORT. " 

The SORT command is used in conjunction with the Sort 
Customer Support Function 

See "Blanks." 



Special character set 

lit Split screen 

SQR(X) 

Square roots 

Special characters 

See "Character set." 

A running BASIC program goes into split screen when the 
program is interrupted by: 

• An untrapped error, followed by pressing Error Reset 

Pressing Cmd / Attn 

• A PAUSE statement in the program 

Lines 19 to 23 are temporarily replaced with a four-line blank 
area topped by a row of asterisks. This allows the entry of 
commands and desk calculator operations without disturbing 
the original screen. 

If you enter any command which restarts or ends the program, 
the "split screen" is removed and replaced with the former 
display. Use the GO command to restart and GO END or 
CLEAR to end (see "GO commarld"). 

SQR returns the square root of X. If X is less than zero, an 
error occurs. 

See "SQR(X)." 

TNL SN34.()828 (22 Sept 82) to SA34-0109·2 BASIC Language Reference 393 

l~· .. I 
I· 

Ii 
II 

II 
i 



SRCH 

SRCH (array,X(,row)) or SRCH (array$,X$(,row,)) 

SREP$(A$,M,B$,C$) 

394 SA34-0109 

SRCH searches a one-dimensional array for the value of X. 
The result is a number that indicates in which row the 
argument X was found. "Row", which is optional, is used 
to select the starting row within the array. The default 
starting row is 0 (BASE 0) or 1 (BASE 1). If the argument 
is not found, -1 is return~d. If the array has never had any 
data assigned to it, a -1 is returned. 

Notes: 

1. The value of "row", if supplied, must be within the 
range of 0 to 255. An error (405) occurs if you specify 
a value outside this range. 

2. X must not be an array element when SRCH is used 
within an IF/THEN/ELSE statement. 

3. If the value of X matches the 256th element, or an 
element that is a multiple of 250 (512, 768, .. ), the 
match is not detected. The value of these elements 
must be tested separately to detect a match. 

SREP$ returns a string that represents the replacement of B$ 
with C$ in string A$, starting at position M. 

10 A$="ABCDEFGHIJ"· 
20 B$="DE" 
30 C$="123" 
40 D$="SREP$(A$,4,B$,C$)" 

0$ contains "ABC123FGHIJ." 

Note: An error occurs if the string length exceeds 255. 

See Programming consideration in "Substring referencing." 

TNLSN34-0828 (22 Sept 82) to SA34·0109-2 



Standard format 

( Statement length 

Statement numbers 

Statements 

If· Status line 
\ 

( 

See "Integer format." 

See "BASIC statements." 

See "Line numbers." 

See "BASIC statements." 

See "Character set" 
"Device sharing" 
"DISPLAY" 

Standard format 

"Status line" in the Operator Reference Manual 
System Messages. 

BASIC Language Reference 395 



STOP 

STOP statement 

396 SA34-0109 

The STOP statement stops the program and closes all files. 

r arith-expressio"-, 

STOP--~~----~D.---~--~--~ •• 

.. CODE is 0 

The syntax of the STOP statement is as shown above, where: 

arith-expression is an expression that is rounded to an integer 
and is used to set the CODE variable. It is in the range of 0 to 
9999. If the parameter is not specified, the default is zero. 

Unlike the END statement, the STOP statement can appear 
anywhere in a BASIC program. 

Example 

With arith-expression: 

110 CODEVAL = 139 
120 STOP CODEVAL 

In this example, the STOP statement sets the value returned 
by CODE to 139 and stops the program. 

Without arith-expression: 

110 STOP 

In this example, the STOP statement sets the value returned 
by CODE to 0 (the default value) and stops the program. 



Storage use 

Storage 

The following formulas are used to estimate the amount of 
System/23 internal storage used by unedited programs. The 
total storage available is indicated by the HELP STATUS 
command immediately following CLEAR. 

For programs, calculate the following items and add 27 bytes 
for overhead: 

Item Bytes Notes 

Statement 7 
Function reference 2 II 
Keyword 1.5 a 
Label 1.5 all 
System function 1.5 a 
Variable / array reference 1.5 all 
Line number reference 4 
Character literal 2 II 
Numeric literal 4 or 10 II 
Expression 1 II 
FORM field specifier 2 
PIC specification 2 II 
Subscripts 4 or 6 II 
Substring 6 II 
Operators 1 II 
Punctuation 1 I!.I 
Asterisk 2 a 
FOR,NEXT 4 or 25 IE 
CHAIN, USE, LIST 2 II] 

BASIC Language Reference 397 



Storage 

Storage use (continued) 

II Frequently used functions, variables, and first 63 user 
defined names are 1 byte. Others are 2 bytes. 

D Plus the number of characters. 

II See "Arithmetic expression" and "Character expression." 

II Name length plus 5 for first- time reference 

II Literals used in DIM and FORM use 4 bytes. 

II 4 bytes for ( ) format, 6 bytes for (,) format, 6 bytes for (:) 
format. Byte totals only included punctuation characters 
and end-of-expression overhead. 

II Applies to logical operators, arithmetic operators, concat-
enation character, and =. 

II Punctuation characters are: # : ; ( ) and ,. 

II Used in DIM and FORM 

III FOR is 4 bytes, NEXT is 25 bytes. 

II The variable list and any remark that follows, is treated as 
a single-character literal string. Add the number of char­
acters. 

When the program is run, both objects you define and system 
objects use storage as follows: 

Item Bytes Notes 

Character variable 7 + current number of characters II 
Character array 13+ (1+DIM length) *number of elements II 

398 SA34-0109 

Numeric variable 15 II 
Numeric array 13+ (9*number of elements) II 
File controls 132 per file D 
Procedure 650/132 per procedure II 
II Allocated at first reference, released at CLEAR/RUN 

D Allocated at OPEN, released at CLOSE 
\ 

"'. 



( 

( 

Storage 

II Allocated at PROC/SUBPROC, released at EOF 

As the program is run, temporary results, work areas, and I/O 
buffers are allocated as needed and automatically released. No 
single item can exceed 64K bytes. Editing never decreases the 
size of a program. To recover space when lines are deleted, 
SAVE SOURCE, LOAD, and SAVE internal again. Storage can 
be recovered from arrays by redimensioning to one element. 
See "Redimensioning arrays" The System/23 will reserve a 
minimum amount of storage for internal use, so your program 
cannot entirely fill up storage. 

Example 

100 LET WORK5$(1:2)=RUNDAT$(5:6) 

Item 

LET 
WORK5$ 
(:) 
1 
2 
= 
RUNDAT$ 
(:) 
5 
6 

Totals 

Bytes 

1.5 
1.5 
6 
10 
10 

1.5 
6 
10 
10 

57.5 

Overhead Comments 

11 

1 
12 

7 
27 
+ 57 = 

Keyword 
Variable/ array 
Substring 
Numeric literal 
Numeric literal 
Operators 
Variable/ array 
Substring 
Numeric literal 
Numeric literal 
Statement 
Program first line 
114.5 bytes 

BASIC Language Reference 399 



Storage 

Storage use (continued) 

200 DEF FNA$(R,K$)=STR$(R+5)&K$ 

Item Bytes Overhead Comments 
/- '\ 

/ 

DEF 1.5 Keyword 
FNA$ 2 9 Function reference 
( 1 Punctuation 
R 1.5 6 Variable / array 
, 1 Punctuation 
K$ 1.5 7 Variable/ array 
) 1 Punctuation 

1 Operators 
STR$ 1.5 System function 
( 1 Punctuation 
R 1.5 Variable/ array 
+ 1 Operators 
5 10 Numeric literal 

1 Expression 
) 1 Punctuation 
& 1 Operators 
K$ 1.5 Variable/ array 

1 Expression 
7 Statement 

Totals 31 + 29= 60 bytes 

400 SA34-0109 



STR$(X) 

( 

STR$(X) 

STR$ returns the string that is the character representation of 
the value X. The string has the same appearance as though a 
PRINT X had been issued. There are no leading or trailing 
blanks. See "PRINT statement." 

X=12 
A$=STR$ (X) 

A$ contains "12." 

BASIC Language Reference 401 



SUBPROC 

SUBPROC command 

402 SA34-0109 

The SUBPROC command initiates the use of a new procedure 
file without closing the currently active procedure file. A 
procedure file is a DISPLAY I/O file that contains BASIC 
statements, system commands, and input data. 

SUBPROC - file-spec • 

The syntax of the SUBPROC command is as shown above, 
where: 

file-spec is the file specification, which consists of a filename 
followed by an optional VOLID and device address (see "File 
specification parameter"). 

The SUBPROC command is identical to the PROC command 
(see "PROC command"), with the following exceptions: 

The SUBPROC command may be issued from within a 
procedure file without causing the procedure file to be 
closed. 

• Termination of a procedure invoked by SUBPROC will 
cause the procedure file input to revert to the invoking 
procedure. 

The maximum number of procedure files that can be open 
at one time is five. 

INPUT or LlNPUT from a procedure will cause an EOF error 
when the procedure or subprocedure is exhausted. 

\" 

, / 



Subroutines 

Subscripted Variables 

Substring referencing 

( 

Subroutines 

See "GOSUB statement." 
"RETURN statement." 

See "Arrays." 

A substring is a part of a string rather than the entire string. 
Normally, the entire string is referenced. However, sometimes 
only a part of a string needs to be referenced. The substring 
reference extracts, replaces, or inserts characters in a charac­
ter string. 

The substring reference denotes the position within a charac­
ter string by: 

character string (arith-expression :arith-expression) 

The first arithmetic expression indicates the beginning 
position, and the second arithmetic expression indicates the 
ending position of the substring. The arithmetic expressions 
cannot be negative and are rounded to integers. 

The character string can be an array element. For example: 

K$ = ABC$(5)(A:B) 

BASIC Language Reference 403 



Substring 

Substring referencing (continued) 

404 SA34-0109 

Substring referencing rules are as follows: 

Rule 1. If the beginning position is less than one, it is 
considered to be one. 

Rule 2. 

Rule 3. 

Rule 4. 

Rule 5. 

If the beginning position is greater than the length 
of the character string, the substring addressed 
follows the last character of the character string. 
For example: if A$ equals "ABCD" the statement 
A$ (5:7)="123" would result in ·'ABCD123." 

If the ending position is greater than the length of 
the character string, it is assumed to be the length 
of the character string. 

If the beginning position is greater than the ending 
position, the substring addressed immediately 
precedes the beginning position character of the 
character string. The value of the ending position 
has no significance. For example if A$ equals 
"ABCD" then the statement A$(3:1)= "123" 
would result in "AB123CD." 

In order to assign characters to a string at a speci­
fied location, that location must be allocated. 



Substring 

Examples of substring referencing 

For the following examples assume that: 

A$="ABCOE" 

and 

B$="WXVZ" 

Extraction of characters: 

Statement Result 

E$=A$(2:3) E$ equals "BC" 

E$=A$(4:4) E$ equals "0" 

E$=A$(O:2) E$ equals "AB" the 0 is considered to be one 
(see rule 1) 

E$=A$(7:8) 

E$=A$(4:8) 

E$ equals" " a null string (see rule 2) 

E$ equals "DE" the eight is considered to be 
five (see rule 3) 

BASIC Language Reference 405 



Substring 

Substring referencing (continued) 

406 SA34-0109 

Replacement of characters: 

Statement 

A$(3 :4)="12" 

A$(3 :4)="" 

A$(3 :4)=B$( 1 :2) 

A$(3:4)=B$(1 :4) 

Result 

A$ equals "AB12E," "CD" is replaced 
with "12." 

A$ equals "ABE," "CD" is deleted 

A$ equals "ABWXE," "CD" is replaced by 
"wx" 

A$ equals "ABWXYZE," "CD" is 
replaced by "WXYZ" 

Insertion of characters: 

Statement 

A$(1 :0)="123" 

A$(1 :0)=B$(3:4) 

A$(3:2)=B$(1 :4) 

A$(7 :8)="123" 

Result 

A$ equals "123ABCDE," "123" is 
inserted before the "A" in A$ (see rule 4) 

A$ equals "YZABCDE," "YZ" is inserted 
before the "A" in A$ (see rule 4) 

A$ equals "ABWXYZCDE," "WXYZ" is 
inserted between the "B" and "c" in A$ 
(see rule 4) 

A$ equals "ABCDE123," 123 is inserted 
after the "E" in A$ (see rule 2) 

, '-_/ 



( 
Example using subscripts 

10 ABC$(4) = "ABC" 
20 I = 1 
30 J = 2 
40 K = 4 
50 ABC$ (K) (I:J) = "12" 

Results in ABC$(4) being "12C" 

Example Rule 5 

10 DIM A$*10 
20 A$ (1:4) = "ABCD" 
30 A$ (9:10) = "EF" 

Results in A$ being "ABCDEF" 

Substring 

Notice that character string "EF' was not assigned to location 
9 and 10 of A$ as specified. To cause "EF" to be assigned to 
location 9 and 1 0 of A$, A$ must first be allocated 10 charac­
ters. To achieve that, insert statement 15 (see rule 5). 

15 A$ = RPT$ (" b" , 1 0) 

which results in "EF' being assigned to location 9 and 10: 

"ABCDb b b b EF" 

BASIC Language Reference 407 



Substring 

Substring referencing (continued) 

408 SA34-0109 

Programming consideration 

(This programming consideration does not apply if the systen 
release code field on your system status line is "'.05. ") 

On a 64K or larger machine, a string operation which causes 
the insertion of additional characters, which extends the string 
length, may cause unpredictable results. These operations 
are: 

A$(rn:n)=B$ where M+LEN(B$)-1>N 

and 

SREP$(A$,M,B$,C$) where LEN(B$)< LEN(C$) 

In these circumstances, the correct results may be obtained by 
using the following circumvention: 

Instead of: 

A$(M:N)=B$ 

use: 

A$=A$(1:M-1)&B$&A$(N+1:255) 

Instead of: 

SREP$(A$,M,B$,C$) 

/ 

./ 

'~ ./ 

TNL SN34-0870 (20 May 83) to SA34-0109-2 



( 

( 

Example using subscripts 

10 ABC$(4) = "ABC" 
20 I = 1 
30 J = 2 
40 K = 4 
50 ABC$ (K) (I :J) = "12" 

Results in ABC$(4) being "12C" 

Example Rule 5 

10 DIM A$*10 
20 A$ (1:4) = "ABCD" 
30 A$ (9:10) = liEF" 

Results in A$ being "ABCDEF' 

Substring 

Notice that character string "EF' was not assigned to location 
9 and 10 of A$ as specified. To cause "EF' to be assigned to 
location 9 and 1 0 of A$, A$ must first be allocated 10 charac­
ters. To achieve that, insert statement 15 (see rule 5). 

15 A$ = RPT$ ("b", 10) 

which results in "EF" being assigned to location 9 and 10: 

"ABCDb b b b EF' 

BASIC Language Reference 407 



Substring 

Substring referencing (continued) 

408 SA34-0109 

Programming consideration 

(This programming consideration does not apply if the systen 
release code field on your system status line is "1.05.") 

On a 64K or larger machine, a string operation which causes 
the insertion of additional characters, which extends the string 
length, may cause unpredictable results. These operations 
are: 

A$(m:n)=B$ where M+LEN(B$)-1>N 

and 

SREP$(A$,M,B$,C$) where LEN(B$)< LEN(C$) 

In these circumstances, the correct results may be obtained by 
using the following circumvention: 

Instead of: 

A$(M:N)=B$ 

use: 

A$=A$(1:M-1)&B$&A$(N+1:255) 

Instead of: 

SREP$(A$,M,B$,C$) 

TNL SN34-0870 (20 May 83) to SA34-0109-2 

/ 



Substring 

use: 

( 10 I=M 

20 LOOP: Z=POS(A$,B$,I) 

30 IF Z=O THEN QUIT 

40 A$=A$(1:Z-1)&C$&A$(Z+1:255) 

50 I=Z+LEN(C$) 

60 GOTO LOOP 

70 QUIT: STOP 

TNl SN34-0870 (20 May 83) to SA34-0109-2 BASIC Language Reference 409 



Syntax 

Syntax description 

When syntax formats are described in this manual, capitalized 
expressions, lowercase expressions, and special characters 
(such as a comma, colon, exclamation point, or an asterisk) 
have special meaning. 

Syntax of the BASIC commands and statements is presented 
in the following format: 

Statement or [' optional parameter] CChOice 'of =r--, 
Command --- requ ired parameters --,,.....-I-'----.. g.----..L.."T-I 
Keyword t _ _ _ _ _ _ _ _ J required parameter / 

410 SA34-0109 

7 indicates the end of the 
statement or command 

Where: 

indicates the parameter 
may be repeated 

Statement or Command keyword is a BASIC statement such / 
as LET or a command such as RUN. 

required parameter is an item that must be included such as 
the line reference in GOTO 100. 

optional parameter is an item that may be included if desired 
such as ELSE in an IF, THEN, ELSE statement. 



Syntax 

indicates that the parameter may be repeated means that 
more than one parameter can be included such as the vari­
ables in INPUT A. B, C ... 

choice of required parameters means that one of the parame­
ters must be included such as the choice between numeric or 
character constants in a DATA statement. 

indicates the end of the statement or command refers to the 
block that indicates the end of the syntax. 

To read the syntax of a command or statement, read from left 
to right along the main line. When you reach an optional 
parameter, you can either include that parameter or continue 
along the main line. When you reach a choice of required 
parameters, you must include one of the parameters with your 
command or statement. 

BASIC Language Reference 411 



Syntax 

Syntax description (continued) 

412 SA34-0109 

If a parameter is shown in uppercase letters, you must enter it 
exactly as it appears. You must also enter any special charac­
ter (such as a comma or colon) that appears in the diagram. 

A" lines entered in BASIC program entry mode are converted 
to English uppercase prior to syntax checking. 

To prevent remarks or character data on DATA statements 
from being converted to English uppercase, they must be 
enclosed in quotation marks. 

If you do not include an optional parameter, the System/23 
provides a default value or action. The defaults are listed in the 
description of the statement or command. The syntax 
diagrams include a number (such as. that corresponds to 
the defaults listed. 

In the case of the MERGE, REPLACE, and VOLID commands 
only, you must include a comma to indicate that you have 
omitted an optional parameter. 

\ 

" 



Syntax 

Here are two examples using the REREAD statement: 

REREAD_Mil,,,, .r:'NG~~::',::j'd''';~m:r _ EXITIIM'" 

~~ ..... ~ 
RESULTS INl 

REREAD #20: NAME$, ADDRESS$ 

error-cond line-ref 

", ~Iine-ref ->.~ 0'.': EXIT line-ref __ ... ·. "rSlNGr~"""4 
REREAD ~ #file_ref,,':;' ".. " :i'data-item"it"':'-----D-----.~ .. 

L_1 __ J 
RESULTS INl 

REREAD #20, USING 50: NAME$ EXIT 400 

In these examples, you must include the file-ref parameter 
following the keyword REREAD. You may choose to include 
the USING parameter in which case you must also include 
either the char-var or line-ref parameter. You must include the 
colon, followed by at least one data-item. Note that you may 
list more than one data-item. You may choose to include 
either EXIT line-ref or error-cond line-ref. 

In the first example, the optional parameters are omitted. 
Therefore the default actions are taken. 

BASIC Language Reference 413 



Syntax 

Syntax description (continued) 

SYSTEM command 

414 SA34-0109 

The syntax for a BASIC statement is as shown: 

r'b'" l (,m"k] 
line number __ ---' _____ --1-_ statement --'-------'----

A keyword in a BASIC statement or system command must be 
followed by a blank except where a comma, parenthesis, or 
other appropriate delimiter is defined. Also a blank must 
follow the leading line number in a BASIC statement. 

A label can be added to any BASIC statement except a DEF 
statement (see "Labels"). 

A remark can be added at the end of any system command or 
BASIC statement except a DATA statement (see "Remarks"). 

The SYSTEM command lets you specify special functions for 
the communications feature. 

SYSTEM ------......., •• 



System commands 

System commands 

The system commands are used for program management, 
execution, operations, and to control diskette, disk, and printer 
operations. System commands are instructions that the 
computer executes immediately. Commands are not part of a 
BASIC program and do not have line numbers. Commands 
may be entered either character-by-character from the 
keyboard and then executed by pressing the Enter key or, by 
holding down the Cmd key and pressing the appropriate key 
for the keyword you want. Using the Cmd key inserts the 
keyword by pressing a single key, providing faster operation. It 
also prevents typing errors. It should be noted that commands 
can be executed from the keyboard or from a PROC, but not 
from a program. The commands direct the system to perform 
the following operations. 

Program execution-Start or resume execution of a 
BASIC program, procedure, or Customer Support Func­
tion. 

Program management-Load or save programs or data 
on a diskette or on the disk. Display program status 
(name and storage). 

Program operation-List. edit, and renumber program 
statements or merge several programs into one. 

File management-Lists, renames, protects, drops, or 
frees files on a diskette or on the disk. 

Set date and time. 

PRINT variables or expression results. 

• Assign values to variables. 

BASIC Language Reference 415 



System commands 

System commands (continued) 

416 SA34-0109 

Parameters required for a command can be entered on the line 
after the command keyword. The command operation starts ("'. 
after the Enter key is pressed. The command keywords and~/ 
their functions are: 

ALERT 

AUTO 

CLEAR 

DATE 

DEL 

DIR 

DROP 

FREE 

GO 

HELP STATUS 

LET 

LINK 

LIST 

LlSTP 

LOAD 

MERGE 

PRINT 

PROC 

PROCERR 

PROTECT 

Alerts the operator from a procedure file 

Assigns line numbers 

Deletes data or program from work area 

Sets the DATE$ variable 

Delete lines of a BASIC program or data 
work area 

Lists a file directory 

Removes file data 

Eliminates a file 

Resumes interrupted processing 

Displays the name of the work area 

Assigns a value to a variable 

Loads and executes Customer Support 
Functions 

Displays a BASIC program or data file work 
area 

Prints a list of lines in the work area 

Loads a BASIC program or data file 

Merges a BASIC program and source file 

Displays data on screen or printer 

Initiates command input from a procedure 
file 

Directs system error handling 

Write-protects a file, removes share 
restrictions, or closes a file 



System commands 

RENAME Renames a file 

f RENUM Renumbers lines 

REPLACE Saves a program to an existing file 

RUN Runs a BASIC program 

SAVE Saves a BASIC program or data file 

SKIP Skips records within a procedure file 

SORT Executes SORT file 

SUBPROC Initiates input from a sub-procedure 

SYSTEM Specifies special communications feature 
functions 

TIME Sets time of day 

VOLID Lists or changes a volume-identification or 
access status 

( 

BASIC Language Reference 417 



System functions 

System functions 

418 SA34-0109 

The System/23 BASIC language includes system functions 
(intrinsic functions) that perform a number of commonly used 
operations. In addition, the function can be defined and 
named by using the DEF statement (see "DEF statement") . 

The system functions can be used anywhere in a BASIC 
expression in which constants, variables, or array element 
references can be used. See "Arithmetic expressions" 

Some of the functions have one or more arguments that 
produce a single result. An invalid argument will cause an 
error. 

System function rules are as follows: 

Arithmetic expressions are indicated by X or M. 

• Character scalar arguments are indicated by A$, B$, or 
C$. 

File reference numbers are indicated by N and can be 
arithmetic expressions. Noninteger values are rounded., 

Note: The arguments to system functions can be expressions 
that include function references. 

See "Program 4-Sample" in Appendix A. 



System functions 

ABS(X) Absolute value of X 

( AI DX(array name) Ascending index of the source array 

ATN(X) ARC tangent of X 

CEIL(X) Next larger number 

CHR$(X) Position in native collating sequence 

CON Sets array to a constant and redim-
ensions 

COS(X) Cosine of X 

DIDX(array name) Descending index of the source array 

DISPLY(X) Current screen display page 

EXP(X) E raised to X power 

FILE(N) Status of the file 

FILE$(N) File specification 

FREESP(N) Space available 

i·f INT(X) X or next smaller number 

HEX$(A$) Character equivalent of hexadecimal 
value 

KLN(N) Key length of file N 

KPS(N) Key position of file N 

LEN(A$) Length of A$ 

LOG(X) Natural log of X 

LPAD$(C$,X) Pad with blanks on left 

LTRM$(C$) Trim blanks from left 

MAX(X1,X2, ... ) Maximum value of list 

MIN(X1,X2, ... ) Minimum value of list 

ORD(A$) Collating location of A$ 

(-- PIC$(C$) Return or set PIC currency symbol 

BASIC Language Reference 419 



System functions 

System functions (continued) 

420 SA34-0109 

POS(A$, B$,X) 

REC(N) 

RLN(N) 

RND(X) 

ROUND(X,M) 

RPAD$(A$,X) 

RPT$(A$,M) 

RTRM$(A$) 

SGN(X) 

SHIFT(X) 

SIN(X) 

SQR(X) 

SRCH 

SREP$ 

STR$(X) 

TAN(X) 

UDIM(array,X) 

VAL(A$) 

WSID$ 

ZER 

Substring location 

Last record number used in file N 

Record length 

Random number 

Rounded value of X 

Pad with blanks on right 

Repeat string A$ 

rim blanks from right 

Sign of X 

Returns machine type or sets shift 
mode 

Sine of X 

Square root of X 

Search table 

Replaces substring 

Character string representation of X 

Tangent of X 

Highest subscript of array 

Numeric equivalent of numeric repre­
sentation 

Shared 5246 and 5247 connector 
number 

Zero array and redimension 



System keywords 

( 
System variables 

( 

System keywords 

See "System commands" and "Reserved words." 

The system variables are used by the system to aid in time 
stamping, program control, and error recovery. System vari­
ables are maintained by the system. They cannot be the target 
of an assignment, nor can they be referenced in a substring 
operation. Otherwise, they may be used in any context where 
a user variable is allowed. 

The following are system variables that are set to arithmetic 
values: 

CMDKEY-INPUT /LiNPUT termination code 

• CNT-I/O variable count 

CODE-Program termination code 

ERR-Error code 

FILENUM-Last file causing an error 

• LINE-Last program line number causing an error 

PROCIN-Is RUN PROC active? 

The following are system variables that are set to character 
values: 

DATE$-Value set by DATE command 

KST A T$-Last key stroke 

TIME$-Current time of day 

WSID$-5246 and 5247 attachment code 

BASIC language Reference 421 



TAB 

TAB function 

Tables 

TAN(X) 

THEN 

422 SA34-0109 

See "PRINT statement." 

See "Arrays." 

TAN returns the tangent of X, where X is in radians and is less 
than 1 E10. Specify a value for X greater than -(PI/2) or less 
than PI/2 for best accuracy. 

See "IF, THEN, ELSE statement." 



TIME command 

( 

(. TIME$ 

Tips and techniques 

( 

TIME 

The TIME command is used to enter the time of day into the 
system. The system variable TIME$ is set to the value speci­
fied. 

TIM E - hh:rnrn:ss • 

The syntax of the TIME command is as shown above, where: 

hh:mm specifies the time in hours, minutes, and seconds. 

The time is set to 00:00:00 when you switch on power. 

The value of TIME$ wraps on 23:59:59 to 00:00:00. The 
DATE$ variable is not incremented. 

TIME$ returns an eight-character string that is initialized by 
the TIME command and maintained by the system. When you 
switch power on, the value is set to 00:00:00. 

See Appendix C, "Performance tips and techniques." 

BASIC Language Reference 423 



TRACE 

TRACE statement 

424 SA34-0109 

The trace statement traces all or part of a program's execution. 

£Ni. OFF 

PRINT 

TRACE D 

.. ON to display 

The syntax of the TRACE statement is as shown above, 
where: 

ON specifies that tracing is to be displayed onthe screen. This 
is the default. 

OFF specifies that tracing is to be stopped. 

PRINT specifies that tracing is to be printed on the system 
printer. PRINT cannot be used if device address 10 is OPEN to 
a file reference number other than #255. If TRACE PRINT is 
active, device 10 cannot be OPEN to any file reference number 
except #255 (see "Printer assignment"). 

To TRACE an entire program without modifying it, see "RUN 
command" (TRACE option). 

( " 
\. / 



Trim 

UDIM (array,X) 

( 

See"LTRM$" 
"RTRM$" 

Trim 

UDIM returns the value of the upper dimension X of the array, 
where X is either an integer 1 or an integer 2. 

X=1 returns the row dimension 
X=2 returns the column dimension 

An error occurs if X is neither 1 nor 2, or if 2 is specified and 
the array is one-dimensional. 

10 DIM A(5,3) 
20 B UDIM(A, 1) 
30 C = UDIM(A,2) 

B contains 5 (row dimensions). 
C contains 3 (column dimensions). 

BASIC Language Reference 425 



USE 

USE statement 

426 SA34-0109 

The USE statement lists the variables passed from one 
program to another during chaining. 

USEr data-item I • 

I I L __ , ___ J 

The syntax of the USE statement is as shown above. where: 

data-item is the variable or array (without the keyword MAT) 
passed to the chained-to program. The list of data items is 
not syntax checked until the USE statement is executed. 

The list of data items specified on the USE statement must 
exactly match those listed on the corresponding CHAIN 
statement. If an array or a character variable is passed during 
chaining. the array or the character variable must be dimen­
sioned in the chained-to program to the same number of 
elements and string size to which it was dimensioned in the 
chained-from program. The options of the chained-to 
program must be identical to the options of the chained-from 
program. 

Only one USE statement is permitted in a program. 

\'-.. ./ 



VAL(A$) 

Variable names 

( 

VAL(A$) 

The numeric value associated with the string A$ is returned. If 
the conversion of the numeric representation results in a value 
that causes an underflow, then the value returned is zero. If 
the conversion of the numeric representation results in a value 
that causes an overflow, then the value returned is the largest 
number. A conversion error occurs if: A$ is not a valid numer­
ic representation or if the variable in parentheses is a scalar 
that has not been set. 

All variable names must be unique. You cannot use the same 
name to designate an array, a variable, a function, or a label. 

There are three types of variable names. They are: 

Numeric variable or numeric array name 

Character variable or character array name 

Function names 

Numeric variable or numeric array name 

A numeric variable name or a numeric array name must start 
with an alphabetic character, followed by up to seven alpha­
betic or numeric characters. The name must be surrounded by 
blanks, commas, parentheses, or other delimiters as shown in 
the syntax. For example: 

10 SALARY = 850 
20 TAXRATE(3) =.22 

BASIC Language Reference 427 



Variable names 

Variable names (continued) 

428 SA34-0109 

Character variable or character array name 
(" 

A character variable name or character array name must start ',,-- _ / 
with an alphabetic character, followed by up to seven alpha-
betic or numeric characters and ending in a $. The name must 
be surrounded by blanks, commas, parentheses, or other 
delimiters as shown in the syntax. For example: 

20 DIM ADDRESS$*20 
30 ADDRESS$ "22136 LARKSPUR TRAIL" 
40 NAME $ (3) = "SCOTT" 

Function names 

Function names must start with FN, followed by an alphabetic 
character, followed by up to seven alphabetic or numeric char­
acters. The function name must end in a $ only if a character 
result is returned (see "DEF,FNEND statement"). For 
example: 

50 DEF FNFICA(X)=.0613*X 
60 DEDUCT=FNFICA(SALARY) 
70 DEF FNCONNECT$(X$,Y$)=X$&Y$ 
80 PRINT FNCONNECT$ (NAME$ (3) ,ADDRESS$) 

Note: Names which are already used in the BASIC language 
may not be used as variable names. All words beginning with 
FN are reserved words (see "Reserved words"). 



Variables 

Variables, arithmetic 

See "Arithmetic variables." 

( Variables, character 

See "Character variables." 

Variables, internal 

See "System variables." 

( 

BASIC Language Reference 429 



vaLiD 
vaLiD command 

old-volume-id-' 

The VOLIO command. if entered with parameters. is used to 
change a disk volume or diskette identification. the owner 
identification. or the access state. 

If no parameters are entered for the VOLIO command. volume 
identification and owner identification for all diskettes currently 
inserted and disk volumes defined. are displayed and 
unchanged. 

'ON 

,OFF 

, owner-id-....... --I!If---'''-----------., 
, ON 

':OFF 

,-C0wner-id 

'ON--------~ 

new-volume-id"". "---..... 1---------------........... 
VOLID----~ _____ --------------------------~---__ 

430 SA34-01 09 

.. Display current volume and owner identification 

IJ Protection off 

II Owner-id not changed 

The syntax of the VOLIO command is as shown above. where: 

old-volume id specifies the volume to be changed. 

new-volume id specifies the new volume identification for the 
disk volume or diskette. This parameter can be from one to 

/ " 

/ 



c' 

VOLIO 

six alphabetic or numeric characters. New-volume id is only 
necessary if the volume identification is being changed. 

owner-id specifies the owner identification for the disk volume 
or diskette. This entry can be up to 14 alphabetic or numeric 
characters. Owner-id is only necessary when the owner iden­
tification is being changed or when the OFF parameter is used. 

ON specifies that the protection indicator for the volume is to 
be turned on, making the volume unaccessible. 

OFF specifies that the protection indicator for the volume is to 
be turned off, making the volume accessible. 

Do not change the VaLID of a disk volume or diskette with 
files that are open and in use. An error message results if you 
do so when using the 5247 Disk. No error message results for 
diskette files. 

BASIC Language Reference 431 



vaLiD 
vaLiD command (continued) 

Work area 

432 SA34-0109 

Example 

VOLID DEBITS,DEBTS,ZEPOL,ON 

In this example, the volume identification of the volume named 
DEBITS is changed to DEBTS. The owner identification is 
changed to ZEPOL. The volume protection indicator is turned 
on. 

VOLID DEBITS"NEW 

In this example, the owner identification of the volume DEBITS 
is changed to NEW. Notice that no new-volume-id is entered 
because the volume identification is not changed. However, a 
comma must still be entered as shown in the example. The 
extra comma indicates that a parameter is being skipped. 

VOLID 
1 MASTER PAYROLL 

In this example, the VOLID command is entered alone and the 
volume ID and owner ID are displayed for the diskette in drive 
1. 

See "Storage use." 



(-

(~/ 

WRITE 

WRITE statement 

The WRITE statement replaces a deleted record or adds a 
record to an internal file. The file may be opened for 
sequential, relative, or keyed access. 

--{
line-ref 

'USING 
char-var char-constant 

char-var __ .... 

,REC=arith-expression 1 r'FORMAT{ 

WRITE -#tile-ref ....... ---......... ---....... ......l ....... --....... ---......l ............ ------II----......L_ 

I I L __ , __ ..J 

r-----'·----., 
I I 

error-cond line-ref 

EXIT line-ref ---t 

• Unformatted write 

• Sequential or keyed file only. Add to the end of the file 

• Communications special control functions not in use 

II WRITE record with no data 

• Interrupt on error unless ON is active 

The syntax for the WRITE statement is as shown, where: 

file-ref is a numeric expression. See "File reference parame­
ter." 

USING specifies a line reference of a FORM statement or a 
character variable containing a FORM statement. line-ref can 
be a line number or label. The FORM statement is used to 
indicate the representation and location of the variables in the 
output. 

BASIC Language Reference 433 



WRITE 

WRITE statement (continued) 

434 SA34-0109 

REC= specifies the record having a record number equal to an 
arithmetic expression. This parameter must be used when 
RELATIVE is specified in the OPEN statement. When replac­
ing a record, the record number refers to the deleted record. 
When adding a record, the record number is n + 1 (n is the 
total number of records in the file). 

FORMAT is a communications feature clause. It specifies that 
special control functions are requested. The control functions 
can be specified as a char-constant (character constant) or in a 
char-var (character variable). 

data-item specifies the names of variables or expressions to 
be written to the file. The data-item can include variables, 
array elements, entire arrays (preceded by MAT). or numeric or 
character expressions. Data-item must be separated by a 
comma and must be preceded by a colon. 

error-cond line-ref specifies the line number or label that the 
program should transfer to if one of the error conditions 
occurs. The following error conditions may be included in any 
order: 

• CONV-Conversion error 

• DUPREC-Record already exists 

• EOF-End of volume 

• IOERR-lnput/output error 

• NOREC-Invalid record reference 

• SOFLOW-String overflow 

EXIT specifies the line number or label of an EXIT statement 
that the system references if an error occurs. 

/ 



(' 

(/ 

WRITE 

For related information, see "Internal I/O file formatting" 
"READ statement" "OPEN statement" "FORM statement" 
and I/O tables in Appendix B. 

Programming considerations 

• Added keyed records 

• 

• 

The record is added to the master file and a pointer 
to it is added to the index file. Running the Index 
Customer Support Function is recommended to 
speed up subsequent file access. If the new index 
file record was created and the master file write is 
unsuccessful, the index file will contain an invalid 
entry. The condition will cause a NOREC error (no 
record found) on a subsequent READ KEY= for the 
record. To prevent the addition of a duplicate key, 
precede the WRITE with a READ KEY= and check for 
a NOKEY condition. The specification of no dupli­
cate key in the Index Customer Support Function 
does not prevent the addition of duplicate keys. 

CLOSE statement 

Execution of the WRITE statement does not always 
result in an immediate physical write to the diskette 
or disk. To ensure that it Will, a CLOSE can be 
issued. When a file is opened with SHR specified, 
only one program can write while the other program 
reads. When a disk file is opened with SHRU speci­
fied, the physical write is done immeadiately. 

Unspecified record locations 

- Unspecified record locations are written as blanks if 
a USING clause was present. 

KEY/SEARCH 

The KEY/SEARCH position specification cannot be 
used. 

BASIC Language Reference 435 



WRITE 

WRITE statement (continued) 

WSID$ 

436 SA34-0109 

• OPEN statement 

- OUTPUT or OUTIN must be specified on the OPEN (~" 
INTERNAL statement. . 

• No data 

If the I/O list is omitted, there will be no transfer of 
data from variables. A record will be written. 

See "Program 5-Sample" in Appendix A. 

WSID$ is A BASIC variable that allows programs to determine 
to which I/O connector of the 5246 Diskette Unit and the 
5247 Disk Unit the computer is attached. 

WSID$ is two characters long. The first character gives 
informtion about the 5247 Disk Unit and the second character 
gives information about the 5246 Diskette Unit. 

First character 

o disk not attached 
to the computer or 
not operational. 

1 computer attached 
to disk connector 1. 

Second character 

1 diskette unit not attached 
to the computer,not 
operational, or the computer 
is attached to diskette unit 
connector 1. 

~/ 



( 

2 computer attached 
to disk connector 2. 

3 computer attached 
to disk connector 3. 

4 computer attached 
to disk connector 4. 

WSID$ 

2 computer attached to diskette 
unit connector 2. 

If you do not have a 5247 Disk Unit, the only possible values 
for WSID$ are: 01 and 02. 

WSID$ is set when the computer is turned on and does not 
change until the computer is turned off. The next time you 
turn the computer on, the WSID$ will reflect the status of the 
disk and diskette unit at that time. For example: 

If the computer is attached to disk connector 3 and diskette 
unit connector 2, the WSID$ is 32. 

If the diskette unit is switched off when the computer is 
switched on, the WSID$ is 31. 

You can create a workspace local to a particular computer by 
concatenating a VaLiD with the WDID$. For example: 

Let A$="Name=FILEA/VOL"&WSID$ 

BASIC Language Reference 437 



WSID$ 

WSID$ (continued) 

XREF 

438 SA34-0109 

If you open a file with the WSID$ added to the filename, and 
the WSID$ is 32, the result is "FILE.NAME32 .. " If the WSID$ 
changes (as in the example) to 31, the same program would 
open the file as "FI LE. NAM E31" and a "file not found" condi­
tion results. This happens because the file was originally 
opened as "FILE.NAME32 .. " 

Programming considerations 

• Use WSID$ on temporary files that you create at open 
and delete at close. 

• For permanent files, use only the portion of the WSID$ 
that refers to the device the file is stored on. 

• Do not include WSID$ in the filename when you create a 
file that you migrate between devices. 

See "LIST label" under "LlST,LlSTP command." 



ZER and CON 

(~\ 

( 

ZER and CON 

ZER and CON are functions provided for matrixes. 

ZER syntax 

l(m~O)l 
MAT- array.nam9=ZER~ • 

.. No redimensioning 

II Redimension to a one-dimensional array (vector) 

The syntax for ZER is as shown, where: 

array-name is the name of the array to be set to zero. 

ZER sets all the elements of the array to zero. 

row, columns are the redimensioning specifications for the 
array. Results are unpredictable if subscripted values are spec­
ified for rows and/ or columns. 

BASIC language Reference 439 



ZER and CON 

ZER and CON (continued) 

440 SA34-01 09 

Example 

Assume array A is an array with four rows and four columns. 

10 OPTION BASE 1 
20 DIM A(4,4) 
• 
• 
• 

250 MAT A=ZER(3,3) 

Array A before 

1234 
2345 
3456 
4567 

Array A after 

000 
000 
000 

/ 



ZER and CON 

CON syntax 

[(arith-expreSSiOn) * J 
MAT_array-name= D 

[(m~J:::11 ] 
CON II • 

.. 
II No redimensioning 

.. Redimension to one-dimensional array (vector) 

The syntax for CON is as shown, where: 

array-name is the name of the array to receive the constants. 

arith-expression is a scalar arithmetic expression, which must 
be enclosed in parentheses. 

CON sets all the values of array-name to the value of the 
arith-expression. If no arith-expression was specified, the 
default is 1. 

rows, columns are the redimensioning specifications for the 
array. Results are unpredictable if subscripted values are spec­
ified for rows and/or columns. 

BASIC Language Reference 441 



ZERandCON 

ZER and CON (continued) 

442 SA34-0109 

Example 

Assume that array 8 is an array with five rows and five 
columns. 

10 OPTION BASE 1 
20 DIM B(5,5) 
• 
• 
• 

250 MAT B=(3*2)*CON(3,4) 

Array 8 before 

12345 
23456 
34567 
45678 
56789 

Array 8 after 

6666 
6666 
6666 



Appendix A. Sample programs 
Program 1 - Sample 

00010 PRINT ~255: "SAMPLE 1 PROGRAM" HAB(1) 
00020 TRACE PRINT !. TRACE 1 DISPLAY LINE NUMBERS WITH RESULTS 
00030 PRINT t255:ABS(5)/ABS(-5) ! ABS , ABSOLUTE VALUE SYSTEM FUNCTION 
00040 PRINT t255:ATN(1) ! • ARC TANGENT SYSTEM FUNCTION 
00050 ! 4 ROW, 4 COLUMN ARITHMETIC ARRAY A, CHARACTER ARRAY C$ 
00060 ! (MAXIMUM STRING LENGTH 10) 
00070 DIM A(3 /3)}C$(3 /3)*10 
00080 LET A(2 /2)=5 ! • ASSIGN NUMERIC ARRAY ELEMENT 
00090 PRINT t255:A(2 /2) ! • PRINT NUMERIC ARRAY ELEMENT 
00100 LET C$(2 /2)="XYZ" ! • ASSIGN NUMERIC ARRAY ELEMENT 
00110 PRINT ~255:C$(2/2) !. PRINT CHARACTER ARRAY ELEMENT 
00120 PRINT ~255:MAT A ! • PRINT ENTIRE ARRAYS A AND C$ 
00130 PRINT ~255: HAT C$ ! • PRI·NT ENTIRE ARRAYS A AND C$ 
00140 PRINT t255:9.E+126 /1.E-126 ! PRINT MAXIMUM AND MINIMUM NUMBERS 
00150 PRINT t2551.123456789012345 ! PRINT FULL SIGNIFICANCE 
00160 DATA 266/266'/266.001.266E3/.266E+3/+.266E3/+.266E+3 
00170 DATA +0.266E+003/+2.66E2/26.6E1/2660E-1/+26600E-2/.00266E5 
00180 DIH N(2 /3) I • DIH ARRAY FOR REPRESENTATION EXAHPLE 
00190 READ HAT N ! • READ DIFFERENT VERSIONS OF 266 INTO ARRAY N 
00200 PRINT t255:HAT N ! • PRINT RESULTS 
00210 PRINT ~255:1+2/1*2*3,(1+2)*3/(1+2)*(3+4) 
00220 PRINT t255:1+2*3+4 /1+2*3/4,(1+2)*(3/4)/TAB(0),1+2*3/4,2**3 
00230 PRINT t255:50+10**21(2*<13+12»-2 
00240 LET PAYMENT=122.3 ! • ASSIGN NUMERIC VARIABLE 
00250 LET TODAY=30 
00260 LET VALUE=20 
00270 PRINT t255: PAYMENT 1 VALUE 1 TODAY 
00280 PRINT "PRESS ING TO CONTINUE" 
00290 ON ATTN GOTO ENDING! • INO KEY CAUSES TRANFER TO ENDINO 
00300 TRACE OFF ! • STOP TRACE WHILE WAITING FOR INO 
00310 LET Z=O ! CANNOT DETECT INO 'ON A GOTOi MUST HAVE SOMETHING ELSE IN LOOP 
00320 GOTO 310 
00330 ENDINQ: ON ATTN IGNORE!. INa KEY IGNORED 
00340 TRACE PRINT !. RESTART TRACE 
00350 PRINT t255:CEIL(1.2)iCEIL(-1.2),CEIL(5)jCEIL(-5) 
00360 LET D$="ABCD" ! • INITIALIZE CHARACTER VARIABLE D$ 
00370 PRINT t255:D$,D$~"EF"/D$(2:3) ! PRINT CHARACTER EXPRESSIONS 
00380 LET D$(2:3)="XY" ! • REPLACE "BC" WITH "XY" 
00390 PRINT t255:D$ 
00400 LET D$(2:3)="12345" ! • REPLACE "XY" WITH "12345" 
00410 PRINT ~255:D$ 
00420 LET D$(2:6)="" ! • REPLACE 5 CHARACTERS WITH NULL 
00430 PRINT t255:D$ 

Appendix A. Sample programs 443 



Sample programs 
Program 1 - Printed output 

SAMPLE 1 PROGRAM 

00030 5 5 
00040 .785398163397448 
00080 00090 5 
00100 00110 XYZ 
00120 
0 0 0 0 
0 0 0 0 
0 0 5 0 
0 0 0 0 

00130 

XYZ 

00140 9.E+126 1.E-126 
00150 .123456789012345 
00190 00200 

266 266 266 266 
266 266 266 266 
266 266 266 266 -"-

00210 3 6 9 21 
00220 11 2.5 2.25 

2.5 8 
00230 50 
00240 00250 00260 00270 122.3 20 30 
00280 00290 00300 00350 2-1 5 -5 
00360 00370 ABCD ABCDEF BC 
00380 00390 AXYD 
00400 00410 A12345D 
00420 00430 AD 

444 SA34-0109 



( --

- " 

CO"-
./ 

Program 2 - Sample 

00010 PRINT t255:"SAHPlE 2 PROGRNlH HABU) 
00020 TRACE PRINT 
00030 PRINT HEX$(H04") i"HIGHLIGHT"iHEXf("07") i"BLINKPjHEX$(H0811 ) j"REVE RSE"ii 
00040 PRINT HEXfCIOAII)iIlHIGHLIGHT/BLINKlliHEX$(IIOBII)iIlREVERSE,BLINK"jHEX$(H1411) 
00050 DIH E$*255 
00060 TRACE OFF 
00070 FOR 1=64 TO 255 ! USE CHR$ TO GENERATE ALL LETTER GRAPHICS 
00080 LET E$=Et&CHRt<IH ! CATENATE EACH CHARACTER TO ACCUMULATED E$ 
00090 NEXT I 
00100 PRINT NEWPAGE ! CLEAR SCREEN 
00110 PRINT FIELDS Hl,2,C 78P:HDISPLAY FOR EACH SETTING OF THE DISPLY FUNCTION" 
00120 PRINT FIELDS "5,2,C 6411 :E$U :64) ! PRINT CONTENTS OF E$ (ALL CHARACTERS) 
00130 PRINT FIELDS H7,2 /C 64H:E$<65:128) 
00140 PRINT FIELDS "9,2,C 6411 :E$<129:182) 
00150 FOR 1=1 TO 5 ! SET DISPLY AND PRINT DISPLY SETTINGj WAIT FOR ENTER 
00160 PRINT FIELDS 1I15,2,C 7BII :HDISPLY FUNCTION SETTING IS:II&STR$(DISPLY<I» 
00170 PRINT FIELDS 1117,2 /C 7811 :"PRESS ENTER TO CONTINUE II 
00180 INPUT FIELDS "lB,2,C 111 :2$ 
00190 NEXT I 
00200 TRACE PRINT 
00210 PRINT t255:"COSINE OF 1 RADIAN IS PiCOSU) 
00220 DIM H4) ,AINDEX('~) ,DINDEX(4) 
00230 FOR 1=0 TO 4 ! FILL F WITH RANDOM NUMBERS 
0<>240 LET F(I)=RND 
00250 PRINT 1255:j 
00260 NEXT I 
00270 HAT AINDEX=AIDX(F) ! ASCENDING INDEX OF F 
00280 HAT DINDEX=DIDX(F) ! DESENDING INDEX OF F 
00290 FOR 1=0 TO 4 
0<>300 PRINT t255:i 
00310 PRINT t255,USING 330:F(I),AINDEX(I),DINDEX(I),F(AINDEX(I»,F(DINDEX(I» 
0<>320 NEXT I 
00330 FORM N 17.15,X 2,N l,X 2,N I,X 2,N 17.15,N 17.15,SKIP 21 
00140 PRINT 1255: IITANU)=II HANU) , IITAN(PII4)=1I HANCPII4) 
00350 PRINT t255: IICHARACTER AND NUMERIC DATA ";STRfU23.45) 
00360 END 

Appendix A. Sample proprams 445 



Sample programs 
Program 2 - Printed output 

SAMPLE·2 PROGRAM 

00030 00040 00060 00210 COSINE OF 1 RADIAN IS .540302305868036 
00230 00240 00250 
00260 00240 00250 
00260 00240 00250 
00260 00240 00250 
00260 00240 00250 
00260 00270 00280 00290 00300 
00310 .131537788143166 0 1 .131537788143166 .755605322195030 

00320 00300 
00310 .755605322195030 4 3 .218959186328090 .532767237412170 

00320 00300 
00310 .458650131923449 2 2 .458650131923449 .458650131923449 

00320 00300 
00310 .532767237412170 3 4 .532767237412170 .218959186328090. 

00320 00300 
00310 .218959186328090 1 0 .755605322195030 .131537788143166 

00320 00340 TAN(I)= 1.5574077246552 
00350 CHARACTER AND NUMERIC DATA 123.45 
00360 

TAN(PI/4)= .99999999999067 

446 SA34-0109 



( 

(/ 

c: 

Program 2 - Display output 

DISPLAY FOR EACH SETTING OF THE DISPLY FUNCTION 

3a~~il~fi[.«+!&~fi~iiIIB].*)iA-/AAAAAACNI/X_)?fttEtt!Il'It@'::" 

tlabcdeflJh i «»dn:t· jk l.nepqr~QzJ I~fl-S tu ... ",xyZ i "Btl! tHfrJ§"I ., ,_ .. , :: 

{ABCDEFGHI-ooooo}JKL"NOP9RluU~6y\ STUVWXYZ 260066012345 

DISPLY FUNCTION SETTING IS:l 

PRESS ENTER TO CONTINUE 

RUN FIELDS 1.01 1 1 

Appendix A. Sample programs 447 



Sample programs 
Program 3 - Sample 

448 SA34-01 09 

00010 OPTION BASE 1 ! SAHPLE3, PISKETTE FILE SIZE 
00020 DIH FILETYPES(6)*2 
00030 DATA BX,HX,04,05,07,08 
00040 READ HAT FILETYPES 
00050 PRINT NEWPAGE 
00060 PRINT FIELDS "2,2,C 3611 :"ENTER FILE TYPE (BX,HX,04 /05,07,OS)1I 
00070 INPUT FIELDS "2 /39 /C 2"IFTYPEt 
00080 ON l+SRCH(FILETYPES /FTYPEt /l) GOTO 70,TBX,THX,T04,T05,T07,T08 NONE 70 
00090 TBX: GOSUB INREC 
00100 LET BYTES=128*RECORDS 
00110 GOTO REPORT 
00120 THX: GOSUB INREC 
00130 LET BYTES=256*RECORDS 
00140 GOTO REPORT 
00150 T04: GOSUB INREC 
00160 PRINT FIELDS "6,2,C 12":"RECORD SIZE" 
00170 INPUT FIELDS "6,15,N 4":RSIZE 
00180 IF RSIZE)4095 THEN GOTO 170 
00190 LET BYTES=(l+RSIZE)*RECORDS 
00200 GOTO REPORT 
00210 T05: PRINT FIELDS "4,2,C 1511 :"NUHBER OF LINES II 

00220 INPUT FIELDS "4,18,N 511 :NLINES 
00230 PRINT FIELDS 116,2,C 30":"AVERAGE LINE LENGTH <1 TO 255)" 
00240 INPUT FIELDS "6,34,N 3":LINELGTH 
00250 LET BYTES=LINELGTHf(l+NLINES) 
00260 GOTO REPORT 
00270 TOSI ! 
00280 T07: GOSUB INREC 
00290 PRINT FIELDS "6,2,C 20"I"KEY LENGTH (1 TO 28)" 
00300 INPUT FIELDS "6,24,N 2":KEYLGTH 
00310 LET BYTES=512*CEIL(RECORDS/INT(512/(KEYLGTH+4»-1) 
00320 IF FTYPEt="07" THEN GO TO REPORT 
00330 PRINT FIELDS 118,2,C 21 11 :"NUHBER OF NEW RECORDS II 
00340 INPUT FIELDS "8,24,N S"INEWRECS 
00350 LET BYTES=BYTES+512*CEIL(NEWRECS/INT(510/(KEYLGTH+10») 
00360 GOTO REPORT 
00370 ! 
.003S0 REPORT: PRINT FIELDS "I0,2,C 30":"FILE SIZE = "&STR$(BYTES) 
00390 PRINT FIELDS "22,2/C 16":"AGAIN ? (YES/NO)" 
00400 INPUT FIELDS "22,20,C 311 : ANSWERS 
00410 IF ANSWERS="YES II THEN GOTO 50 
00420 PRINT NEWPAGE 
00430 STOP 
00440 INREC: PRINT FIELDS 114,2,C 1811 111NUHBER OF RECORDS II 
00450 INPUT FIELDS 114,21,N 8":RECORDS 
00460 RETURN 
00470 END 



( 

Program 3 - Display output A 

ENTER FILE TYPE (BX,HX,04,05,07,08) 08 

NUMBER OF RECORDS 800 

KEY LENGTH (1 TO 28) 14 

NUMBER OF NEW RECORDS 200 

FILE SIZE = 19456 

AGAIN ? (YES/NO) 

RUN FIELDS 

----- ----~---- --~ 

1.01 1 2 

Appendix A. Sample programs 449 



Sample programs 
Program 3 - Display output B 

ENTER FILE TYPE CBX,HX,04,05,07,OS) HX 

NUMBER OF RECORDS 200 

FILE SIZE = 51200 

AGAIN ? (YES/NO) 

RUN FIELDS 

450 SA34-0109 

.", .. / 

1.01 1 2 



Program 4 - Sample 

( 

(' 

00010 PRINT ~25S: "SAMPLE 4 PROGRAM" iTAB(1) 
00020 TRACE PRINT 
00030 IIEF FNTIMESTMPU30 
00040 LET FNTIMESTMP$="[lATE: "MIATE$6," I TIME: "6, TIME$ 
00050 FNEND 
00060 PRINT t255:FNTIMESTMP$ 
00070 DEF FNTESTl(X) 
00080 LET FNTESTl=X+FNTEST2(X) 
00090 FNEND 
00100 DEF FNTEST2(Y) 
00110 LET FNTEST2=Y*Y 
00120 FNEND 
00130 PRINT ~255:FNTEST1(3) ! RESULT IS 12 
00140 [lEF FNTEST3(Z)=Z+2 
00150 PRINT ~255:FNTEST3(6) ! RESULT IS 8 
00160 PRINT ~255:EXP(1)iEXP(2);EXP(.5) 

ggl~g ~~f~+ !~~~;lS~~i)Tl66~l~p~ir~~lSJiI8~ 
00190 LET A$=" ABC" 
00200 PRINT ~255:A$iA$;LEN(A$) 
00210 PRINT ~255:LTRM$(A$)iLTRM$(A$),LEN(LTRM$(A$» 
00220 LET B$="XYZ " 
00230 PRINT ~255:B$;B$ILEN(B$) 
00240 PRINT ~255:RTRM$(B$)iRTRM$(B$)/LEN(RTRM$(B$» 
00250 LET C$=/I[IEF" 
00260 PRINT ~255:C$iC$/LEN(C$) 
00270 PRINT ~255:LPAD$(C$,10)iLPAD$(C$,10},LEN(LPA[I$(C$,10» 
00280 PRINT ~255: RPAII$(C$ J 10) iRPAD$(C$,lO) ,LEtHRPA[I$(C$,IO}) 
00290 PRINT ~255:RPT$(/lGHI" 3) 
00300 PRINT ~255:MIN(1/3/-5~/MIN(-511/3) 
00310 PRINT :t255:POS ("ABCDCD£" /"DE"/1) 
00320 PRINT ~255:POS ("ABC[lCDE","CD" 14) 
00330 LET A=123.456789 
00340 PRINT ~255:A;ROUN[I(Al3)6'ROUN[I(AlO) ;ROUND(A,-2) 
00350 PRINT ~255:SljN(-3)!SuN( )ISGN(2J.2) 
00360 PRINT ~255:SIN(PI)lSIN(2*PI)iSIN(PI/2) 
00370 PRINT ~255:SQR(4)i~QR(9);SQR(2) 
00380 PRINT ~255: ORI/( "A") ORIt( "1/1 } 
00390 PRINT ~255:SREP$("AnABCDEFG"!3)IAB"I"XY"} 
00400 PRINT ~255:10+VAl(112") 
00410 END 

Appendix A. Sample programs 451 



Sample programs 
Program 4 - Printed output 

SAMPLE 4 PROGRAM 

00030 00060 00040 00050 DATE: / / 1 TIME: 00:02:25 
00070 00100 00130 00080 00110 00120 00090 12 
00140 00150 8 
00160 2.718281828459 7.389056098931 1.6487212707 
00170 1 -2 10 
00180 0 .999999999999983 2.30258509299405 
00190 00200 ABC ABC 6 
00210 ABCABC 3 
00220 00230 XYZ XYZ 6 
00240 XYZXYZ 3 
00250 00260 DEFDEF 3 
00270 liEF nEF 10 
00280 DEF liEF 10 
00290 GHIGHIGHI 
00300 -5 -5 
00310 6 
00320 5 
00330 00340 123.456789 123.457 123 100 
00350 -1 0 1 
00360 0 -1.E-14 1 
00370 2 3 1.414213562373 
00380 193 241 
00390 ABXYCDEFG 
00400 22 
00410 

452 SA34-0109 



( 

Program 5 - Sample 

00010 PRINT ~255:"SAI1PLE 5 - OPEN/ CLOSE<FREE)t INPUTl LINPUT" 
00020 PRINT ~255:" READ/ REREAD/ WRI E/ REWtdTE"iTAB(1) 
00030 TRACE PRINT 
00040 OPEN ~1:INAI1E=TEST.DISP/SAHPLE/SIZE=512"/DISPLAY/OUTPUT 
00050 PRINT U: ILINE,l" 
00060 PRINT tl:"LINE/2" 
00070 CLOSE tl: 
00080 OPEN ~2:"NAHE=TEST.DISPIIDISPLAY/INPUT 
00090 OPEN ~3:INAI1E=TEST.INT/SAHPLE/SIZE=512/RECL=21"/INTERNAL/OUTPUT 
00100 LINPUT ~2:A$ 
00110 PRINT ~255:A$ 
00120 LINPUT ~2:A$ 
00130 PRINT ~255:A$ 
00140 RESTORE ~2: 
00150 INPUT ~2:A$/B 
00160 PRINT ~255:A$/B 
00170 WRITE ~3:A$/B 
00180 INPUT ~2:A$/B 
00190 PRINT ~255:A$/B 
00200 WRITE ~3:A$/B 
00210 CLOSE ~2/FREE: 
00220 CLOSE ~3: 
00230 OPEN ~3: "NAHE=TESLINT"/INTERNAL,OUTIN 
00240 READ ~3: 
00250 REREAD t3:A$/B 
00260 PRINT ~255:A$/B 
00270 REWRITE ~3:A$,B!,'NEW" 
00280 READ ~3:A$/B 
00290 PRINT ~255:A$/B 
00300 RESTORE ~3: 
00310 READ *3:A$/B /C$ 
00320 PRINT t255:A$/B/C$ 
00330 LET COUNT=CNT ! • HUST SAVE CNJ TO PRINT VALUE 
00340 PRINT t255:CNT !,'REAL VALUE OF CNT IS II iCOUNT 
00350 PRINT t255: "FILE(3) = II iFILE(3) 
00360 PRINT t255:"FILE$(3) = "iFILE$(3) 
00370 PRINT t255:"FREESP(3) = "iFREESP(3) 
00380 PRINT ~255: "WSIII$ = II i WSID$ 
00390 PRINT t255:"REC(3) = "iREC(3) 
00400 PRINT t255:"RUH3) = "jRLN(3) 
00410 CLOSE t3 /FREE: 

Appendix A. Sample programs 453 



Sample programs 
Program 5 - Printed output 

SAHPLE 5 - OPEN, CLOSE(FREE), INPUT, LINPUT 
READ, REREAD, WRITE, REWRITE 

00040 00050 00060 00070 00080 00090 00100 00110 LINE,1 
00120 00130 LINE,2 
00140 00150 00160 LINE 1 
00170 00180 00190 LINE 2 
00200 00210 00220 00230 00240 00250 00260 LINE 1 
00270 00280 00290 LINE 2 
00300 00310 00320 LINE 1 NEW 
00330 00340 0 REAL VAlUE OF CNT IS 3 
00350 FILE(3) = 0 
00360 FILEt(3) = TEST.INT/SAHPLE/3 
00370 FREESP(3) = 509 
00380 IrISID$ = 01 
00390 REC(3) = 1 
00400 RlN(3) = 21 
00410 

454 SA34-0109 



Program 6 - Sample 

( 

(' 

00010 PRINT ~255:"SAHPLE 6 - ON ERROR} ERRI LINE} CONTINUE} RETRY" 
00020 TRACE PRINT 
00030 ON ERROR GOTO REPORT 
00040 OPEN ~1:"NAHE=TEST2/SAHPLE}SIZE=512"}DISPLAY}OUTPUT 
00050 PRINT ~1:"TEST RECORD" 
00060 CLOSE U: 
00070 OPEN U:"NAHE=TEST2"}DISPLAY}INPUT 
00080 INPUT ~1:A 
00090 CLOSE ~1}FREE: 
00100 ON ZDIV GOTO FIXZDIV 
00110 LET A=1 
00120 LET B=O 
00130 LET C=A/B 
00140 PRINT ~255:C 
00150 STOP 
00160 ! 
00170 REPORT: PRINT ~255:"ERR="iERR 
00180 PRINT ~255: "LINE=" iLINE 
00190 CONTINUE 
00200 ! 
00210 FIXZDIV: LET B=1 
00220 RETRY 
00230 END 

Appendix A. Sample programs 455 



Sample programs 
Program 6 - Printed output 

SAMPLE 6 - ON ERROR1 ERR, LINEI CONTINUE , RETRY 
00030 00040 00050 00060 00070 00080 00170 ERR= 726 

. 00180 LINE= 80 
00190 00090 00100 00110 00120 00130 00210 00220 00130 00140 1 
00150 

456 SA34-0109 

/' -



( 

Program 7 - Sample 

00010 PRINT ~255:"SAHPLE 7A" INITIALIZE VARIABLES AND ARRAYS THEN CHAIN 
00020 OPTION BASE 1 
g88~8 rf~ 2t:A~EH56ATA" 
00050 LET £1=5 
00060 DATA 10/20/30/40/50 
00070 READ MAT C 
00080 OPEN ~1: "NAME=CHAHI. TEST ISAMPLE/SIZE=512" /IIISPLAY ,OUTPUT 
00090 CHAIN "SAMPLE7B",FILES/A$,B,C 

00010 DIM A$*18,C(5) 
00020 USE A$lB~C ! PICK UP CHAINED VALUES AND FILE FROM SAMPLE 7A 
00030 PRINT ... 2;:,5:"SAMPLE 7£1" 
00040 TRACE PRINT 
00050 OPTION BASE 1 ! MUST BE SAME AS CHAINED FROM PROGRAM 
00060 PRINT ~255:A$jBjC(5) 
00070 PRINT ~255:A$ 
00080 CLOSE ti/FREE: 
00090 PRINT ~255:UDIH(C/1) 
00100 PRINT ~255:MAT C 
00110 HAT C=ZER(4) 
00120 PRINT ~255:HAT C 
00130 MAT C=(2*5)*CON(3) 
00140 PRINT t255:MAT C 
00150 HAT C=C(2) 
00160 PRINT ~255:MAT C 
00170 HAT C=C+C 
00180 PRINT t255:HAT C 

Appendix A. Sample programs 457 



Sample programs 
Program 7 - Printed output 

SAMPLE 7A 
SAMPLE 78 
00060 TEST DATA 5 50 
00070 TEST DATA 
00080 00090 5 
00100 
10 
20 
30 
40 
50 

00110 00120 o 
o o 
o 

00130 00140 
10 
10 
10 

00150 00160 
10 
10 

00170 00180 
20 
20 

458 SA34-0109 



Program 8 - Sample 

00010:LOAD SAMPLES. BUILD ! PROCEDURE TO DRIVE SAMPLE S 
00020: RUN 
00030:LINK INDEX 
00040:MESSAGES=1 
00050:CHOICE=2 
00060:HASFILE=TEST.MASTER 
00070:KEYSTART=9 
OOOSO:KEYLGTH=5 
00090:IDXFILE=TEST.INDEX 
00100: I DXVOL I D=SAMPLE 
00110 : DUPKEY =N 
00120:ENDLINK 
00130:LOAD SAMPLES. TEST 
00140:RUN 
00150:PRINT ~2S5:"END SAMPLE SOl 

00010 PRINT ~255:"SAMPLES.BUILD" 
00020 OPEN :::1: "NAME=TEST.MASTERISAMPLEISIZE=5121RECL=22" ,INTERNAL ,OUTPUT 
00.030 WRITE ~l,USING FORHK:"RECORD 1"/'SHITH",L!.34 
00040 WRITE :::l,USING FORMK:"RECORD 2","JONES",56.7S 
00050 WRITE ~1,USING FORMK: "RECORD 3" ,"BURNS",O 
00060 CLOSE ~1: 
00070 FORMK: FORM C 8,C 6,N 8.2 
00080 END 

00010 PRINT ~2S5:"SAMPLE8.TEST" 
00020 TRACE PRINT 
00030 LET A$=PIC$("$") ! INITIALIZE CURRENCY SYMBOL 
00040 OPEN U:"NAHE=TEST.MASTER,KFNAME=TEST.INDEX",INTERNAL,INPUT ,KEYED 
00050 PRINT ~255:KLN(1),KPS(1) ! KEY POSITION, KEY LENGTH 
00060 READ ~l,USING FORMR,KEY="JONES":A.,NAtlE$,AMOUNT 
00070 FORMR: FORti C S,C 6,N S 
00080 PRINT ~255,USING FORMP:AMOUNT 
00090 FORtlP: FORM PIC($:::~~.~:::) 
00100 PRINT ~255:PIC$("X") l SET CURRENCY SYMBOL TO "X" 
00110 PRINT ~255,USING FORMP:AtlOUNT 
00120 READ U, KEY="BAKER": EXIT EXIT1 
00130 STOP 
00140 EXIT1: EXIT NOKEY PRINTERR 
00150 STOP 
00160 PRINTERR: PRINT :::255:"KEY NOT FOUND" 
00170 CLOSE :::1 ,FREE: l FREE TEST FILE 

Appendix A. Sample programs 459 



Sample programs 
Program 8 - Printed output 

§ftR~tU:~M~~D 
00030 00040 00050 5 9 
00060 00080 $056.78 
00100 X 
00110 X056.78 
00120 00160 KEY NOT FOUND 
00170 
END SAMPLE 8 

460 SA34-01 09 



Program 9 - Sample 

( 

00010:PRINT t255:"SAHPLE 9 - COHHANDS", TABH) 
00020: CLEAR 
00030: 10 PRINT t255: "SAHPLE 9 TEST" 
00040: 20 PRINT t255: "DATE=" iDATEf ,"TIHE:" iTIHE$ 
00050:30 PRINT t255:"LINE TO BE DELETED" 
00060:40 END 1+83 
00070:SAVE SAHPLE9.TESTPROG/SAHPLE,SOURCE 
00080: CLEAR 
00090:DATE 80/12/04 
00100:TIHE 15:12:30 
00110:RENAHE SAHPLE9.TESTPROG /SAHPLE9.TEST2 
00120:LOAD SAHPLE9.TEST2 
00130:RENUH 100 /100 
00140:LISTP 
00150:210 PRINT t255:"NEW LINE" 
00160:DEL 300 
00170: REPLACE 1 SOURCE 
00180:LISTP 
00190:RUN TRACEP 
00200:PRINT t255:CODE 
00210:SKIP 1 IF CODE=84 
00220:ALERT CODE NOT SET PROPERLY 
00230:FREE SAHPLE9.TEST2 
00240:PRINT t255:"END SAHPLE 9" 

Appendix A. Sample programs 461 



Sample programs 
Program 9 - Printed output 

SAHPLE 9 - COMMANDS 

00100 PRINT t255:"SAHPLE 9 TEST" 
00200 PRINT t255: "DATEe" iDATEf,"TIME=" iTIHE$ 
00300 PRINT t255:"LINE TO BE DELETED" 
00400 END 1 +83 
00100 PRINT t255:"SAHPLE 9 TESTII 
00200 PRINT t255:"DATE=" iDATEf,"TIttE=" ;TIttE$ 
00210 PRINT 1255: IINEII LINE" 
00400 END 1+83 
00100 SAttPLE 9 TEST 
00200 DATE=80/12/04 TIttE=15:12:50 
00210 NEW LINE 
00400 

84 
END SAMPLE 9 

462 SA34-0109 



( 

(' 

Program 9 - Display output A 

PROC SAMPLE9.PROC 
PRINT ~2551 "SAMPLE 9 - COMMANIIS", TAB( 1) 
CLEAR 
10 PRINT ~255:"SAMF'LE 9 TEST" 
20 PRINT ~255: "DATE"" iDATE$, "TIME=" iTIME$ 
30 PRINT ~~~55: "LINE TO BE DEL.ETED" 
40 END 1+83 
SAVE SAMPLE9.TESTPROG/SAMPLE,SOURCE 
CLEAR 
DATE 80/12/04 
TIME 15:12:30 
RENAME SAMPLE9.TESTPROG,SAMF'LE9.TEST2 
LOAD SAMPLE9.TEST2 
00010 PRINT ~255:"SAMPLE 9 TEST" 
00020 PRINT ~255:"DATE="iDATE$,"TIME="iTIME$ 
00030 PRINT ~255:"LINE TO BE DELETED" 
00040 END 1+83 
RENUM 100,100 
LISTP 
210 PRINT ~255:"NEW LINE" 
DEL 300 
REPLACE/SOURCE 
LISTP 
RUN TRACEP 
PRINT "t255:CODE 
SKIP 1 IF CODE=84 
FREE SAMPL.E9.TEST2 
PRINT ~255:"END SAMPLE 9" 

READY INPUT 1000 1.03 1 1 

Appendix A. Sample programs 463 



Sample programs 
Program 10-Sample 

464 SA34-0109 

Full-screen processing. 

00010 PRINT NEWPAGE 
00020 LET 1=3.14159265 
00030 LET A$="A TEST LINE" 
00040 LET j=-I 
00050 PRINT FIELDS "1,IOIN B,N,N":I 
00060 PRINT FIEL[lS "2,10,N B,N,N":j 
00070 PRINT FIELDS "3,lO,N B.6,N,N":I 
OOOBO PRINT FIELDS· 1I4,10,N B.5,N,N":J 
00090 PRINT FIELDS "5,10,N 11.9,N,N":I 
00100 PRINT FIELDS "6,lO,N 15.9,N,N":J 
00110 PRINT FIELDS "7,10,PIC($$ •••• ) N,N":I 
00120 PRINT FIELDS "B,10/PIC($$.~ •• Dtl),N,N":J 
00130 PRINT FIELDS "9 10,PICe •••••••• ) N N":I 
00140 PRINT FIELDS "16,10,PIC(+ ••••••• 6)~N,N":J 
00150 PRINT FIELDS "11,10,PIC(+++ •••••••• I,N,N":I 
00160 PRINT FIEL[lS 112,IO,PIC(+++ •••••••• I,N,N":J 
00170 PRINT FIELDS "13,10,PICC+* ••••••••• ',N,N":I 
001BO PRINT FIELDS "14,10,PIC(H ••••••••• I,N,N":j 
00190 PRINT FIELDS "15/10,PICC---•••••••• I,N,N":I 
00200 PRINT FIELDS 116 /10,PIC(---•••• H •• ),N,N":J 
00210 PRINT FIELDS "17,lO,C 11":A$ 
00220 PRINT FIELDS "IB/I0 ,C 11": STRS( I) 
00230 PRINT FIELDS "19,10 /C l1":STR$(J) 
00240 PRINT FIELDS "20,10,U 11":STRS(J) 
00250 PRINT FIELDS "21,10,G l1":STR$(JI 
00260 PRINT FIELDS "22,10,G 11":J 
00270 PRINT FIELDS "23,10,G 11": AS 
002BO END 



( 

Program 1 O-Display output 

00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 

Full-screen processing. 

3 
-3 

3.141593 
-3.14159 
3.141592650 

-3.141592650 
1;3.141 
$3.141DB 
03.14159 
-03.14159 
+3.1415926 
-3.1415926 

+*3.1415926 
-*3.1415926 

3.1415926 
-3.1415926 

A TEST LINE 
3.14159265 
-3.14159265 
':"3.14159265 
-3.14159265 

-3 
A TEST LINE 

READY INPUT 4000 1.01 1 4 

Appendix A. Sample programs 465 



Sample programs 
Program 11-Sample 

466 SA34-0109 

Full-screen processing. 

00010 REM FULL SCREEN PROCESSING WITH THE liN X" FORMAT ,,_ / 
00020 OPTION BASE 1 
00030 DIM B$(16,16)*13,A(16,16) 
00040 FOR 1=1 TO 16 ! BUILD THE FIELD DEFINITION 
00050 FOR J=l TO 16 ! AND DATA ARRAYS 
00060 LET Bin I J)=STR$( l)~" ,nt.STR$(5*(J-1)+2)~II,N 3,U ,Nil 
00070 LET A(I,J)=16*J+I 
OOOBO NEXT J 
00090 NEXT I 
00100 MAT B$=B$(256) ! REDIMENSION THE CONTROL ARRAY 
00110 PRINT NEWPAGE 
00120 PRINT FIELDS MAT B$:MAT A 
00130 PRINT FIELIIS "22,lO,C 501 :"THIS USES AN 'N 3' FORMAT" 
00140 INPUT FIELDS "22,70,N 1,U,N":I ! WAIT FOR OUTPUT 
00150 END 



(~ 

~, 

Program 11-Display output 

Full-screen processing. 

17 33 
18 34 
19 35 
20 36 
21 37 
22 38 
23 39 
24 40 
25 41 
26 42 
27 43 
28 44 
29 45 
30 46 
31 47 
32 48 

RUN 

49 65 81 97 113 
50 66 82 98 114 
51 67 83 99 115 
52 68 84 100 116 
53 69 85 101 117 
54 70 86 102 118 
55 71 87 103 119 
56 72 88 104 120 
57 73 89 105 121 
58 74 90 106 122 
59 75 91 107 123 
60 76 92 108 124 
61 77 93 109 125 
62 78 94 110 126 
63 79 95 111 127 
64 80 96 112 128 

THIS USES AN 'N 3' FORMAT 
FIELDS 

129 145 
130 146 
131 147 
132 148 
133 149 
134 150 
135 151 
136 152 
137 153 
138 154 
139 155 
140 156 
141 157 
142 158 
143 159 
144 160 

161 F~ i93 209 '")'jC" 241 257 ! ! ~L.J 1 "i 178 194 210 226 242 258 0<-
163 179 195 211 227 243 259 
164 180 196 212 228 244 260 
165 181 197 213 229 245 261 
166 182 198 214 230 246 262 
167 183 199 215 231 247 263 
168 184 200 216 232 248 264 
169 185 201 217 233 249 265 
170 186 202 218 234 250 266 
171 187 203 219 235 251 267 
172 188 204 220 236 'iC"'i 268 L..Jt.. 

173 189 205 221 237 253 269 
174 190 206 222 238 254 270 
175 191 207 223 239 255 271 
176 192 208 224 240 256 272 

4000 1.01 1 1 

Appendix A. Sample programs 467 



Sample programs 
Program 12-Sample 

Full-screen processing. 

/ " 
00010 REM VARIABLE OPEN OF 4 FILES ON 4 DRIVES" / 
00020 DIM REC$*25 

468 SA34-01 09 

00030 LET J=10· 
00040 LET K=24 
00050 FOR 1=1 TO 4 ! OPEN A FILE ON EACH DRIVE 
00060 LET FILEN$= "FILE" CtSTR$ (5-I) Ct "//" CtSTR$ (I ) 
gg~~g ~~~l!~7~N2~E~~i~1L~N$~!~§h~~"~M~i(j~Ki~8)Ct",RECL=SO,,,INTERNAL,OUTPUT 
00090 NEXT I 
00100 LET REC$="THIS IS A TEST RECORD" 
00110 FOR J=l TO 100 ! WRITE 100 RECORDS TO EACH FILE 
00120 FOR 1=1 TO 4 
00130 WRITE UbUSING 140: REC$&" RECORD NUMBER "&STR$(J)&" ON FILE "&STR$( I) 
00140 FORM C 8 
00150 NEXT I 
00160 NEXT J 
00170 FOR 1=1 TO 4 ! CLOSE THE FILES 
00180 CLOSE ~I: 
00190 NEXT I 
00200 END 

/ 
I 



Appendix B. Tables 
Tables 

1 2 

Hex Dec Hex Dec 

0 0 00 0 

1 1 10 16 

2 2 20 32 

3 3 30 48 

4 4 40 64 

5 5 50 80 

6 6 60 96 

7 7 70 112 

8 8 80 128 

9 9 90 144 

A 10 AO 160 

( 8 11 80 176 

C 12 CO 192 

D 13 DO 208 

E 14 EO 224 

F 15 FO 240 

Table 1. Decimal to hex conversion 

Appendix B. Tables 469 



Tables 
Tables (continued) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

470 SA34-0109 

0 1 2 3 4 

Note 
2 

...J ..L I-
T Note L 

r 1 

-
+ 

a a c n [ 

& e A i! e e 

1 $ * ) 

A A A A C 

> ? 
'" 

E A 
E 

1 -. 
# @ : 

b c d e f 

d Y ! ± 

0 p q r ~ 

/J. 
~ s t u 

i l £) Y I 

J § ~ y" 'h 
.- { A B -
H I '" 0 0 

K L M N 0 

ii 
~ 

Y \ u u 

w X y Z 2 

0 1 2 3 4 
3 " U U U u 

5 6 7 

Note 
1 

I 

A a a 

< ( 

f A 
i' I 

" - / 

N I 
I , 

E E f 
, 

= " 

9 h i 

j k I 

2 re 
~ 

v w x 

® ¢ £ 

% 
---. I 

C D E 

0 6 '0 

P Q R 

s T 

0 0 0 
5 6 7 

8 

., 

a 
+ 

i 
:a-
% 

A 
I 

It> 

~ 

m 

A: 

y 

l 

F 

} 
I 

U 

6 
8 

9 

-I 

a 
! 

(3 

A-

-

I 

a 

~ 

n 
, " ,,0, 

z 

fl-
.. 

G 

J 

'" u 

V 

-0 

9 

Notes: 
1. Unprintable character 
2. Page advance 

Use table from left to right 

Examples: 
gecimal code 193 prints A 
decimal code 91 prints $ 

The information in this 
table is used with CHR$ 

Table 2. Decimal code to print character conversion 



( 

The following tables specify the response of the System/23 to 
any combination of two I/O statements. Statements which 
are not listed in the table are considered errors. 

Preceding I/O Following I/O statement 

statement READ REREAD RESTORE 

Next Previous Position 
READ sequential record to 

record read beginning 

Next Previous Position 
REREAD sequential record to 

record read beginning 

First Position 
RESTORE record Error to 

beginning 

Table 3. OPEN, INTERNAL. SEQUENTIAL, INPUT 

Appendix B. Tables 471 



Tables 
Tables (continued) 

472 SA34-0109 

Precedi ng I/O Following I/O statement 

statement WRITE RESTORE 

Add Position 
WRITE record to 

at the end beginning 

Record Position 

RESTORE 
is written to 
as first beginning 
and only 

Table 4. OPEN, INTERNAL, SEQUENTIAL, OUTPUT 

Preceding I/O Following I/O statement** 

statement READ REREAD 

Next Read 
READ 

sequential previous 
or 

record record 
REREAD 

DELETE 
Read 
next 

Error or 
sequential 

REWRITE 
record 

. Read 
RESTORE first Error 

record 

*Initial position at beginning of file 
**Error for diskette files on a WRITE 

REWRITE 

Update 
previous 
READ 

Error 

Error 

Table 5. OPEN, INTERNAL, SEQUENTIAL, OUTIN* 

RESTORE 

Position 
to 
beginning 

Position 

to 
beginning 

Position 
to 
beginning 

DELETE 

Delete 
record 
previously 
read 

Error 

Error 

/ 

( 

\.. 



( 

Following I/O statement 

.Preceding I/O READ* RESTORE* 

statement READ REC=n2 REREAD RESTORE REC=n2 

READ Next Read Read iPosition Position 
or sequential record previous to to 
REREAD record n2 record beginning record n2 

READ* 
Next Read . Read ,Position Position . 

REC=nl 
sequential record previous to to 
record n2 record beginning record n2 

Read Read Position .Position 
RESTORE first record . Error to to 

record n2 beginning record n2 

RESTORE* 
Read Read Position Position 

REC=nl 
record record Error to to 

n1 n2 beginning record n2 

*NOREC error if record is nonexistent or deleted. 

Table 6. OPEN, INTERNAL, RELATIVE, INPUT 

The WRITE statement must have a REC=clause. The WRITE 
must be directed to a deleted record in the file or to record 
n+1, where n is the last record. If a WRITE REC=is followed 
by a WRITE REC=, a record is added. If the record specified 
already exists, a DUPREC error occurs. A RESTORE to a rela­
tive file open for output is an error. 

Table 7. OPEN, INTERNAL, RELATIVE, OUTPUT 

Appendix B. Tables 473 



Tables 
Tables (continued) 

Preceding 
I/O READ RE- WRITE 
statement READ REC=n; READ REC,:n;* 

READ Read Read Read Add 
or next record pre- record 
REREAD sequen- n2 vious n2 

tial record 
record 

READ Read Read Read Add 
REC=n. next record record record 

sequen- n2 n. n2 

tial 
record 

Note Read Read Add 
next record Error record 
sequen- n. n2 

tial 
record 

Restore Read Read Add 
first record Error record 
record n2 n2 

RESTORE Read Read Add 
REC=n, record record Error record 

n2 n2 n2 

Note: This line applies to: WR ITE, REC=n, 
REWRITE 
REWRITE, REC=n, 
DELETE 
DELETE, REC=n, 

*If a record does not exist, a NOREC error occurs. 
**If a record already exists, a DUPREC error occurs. 

RE-
WRITE 

Update 
pre-
ceding 
record 
read 

Update 
record 
n. 

Error 

Error 

Error 

Table 8. OPEN, INTERNAL, RELATIVE, OUTPUT 

474 SA34-0109 

RE- DE- RE-
WRITE LETE RE- STORE 
REC=n; DELETE REC=n 2 STORE REC=n; 

Update Delete Delete Posi- Position 
record pre- record tion at 
n2 vious n2 to record 

record begin- n2 

read ning 

Update Delete , Delete Posi- Position 
record record record tion at 
n2 n. n2 to be- record 

ginning n2 

Update Delete Posi- Position 
record Error record tion at 
n2 n2 to record 

begin- n2 

ning 

Update Delete Posi- Position 
record Error record tion at 
n2 n2 to record 

begin- n2 

ning 

Update Delete Pos;' Position' 
record Error record t,ion at 
n2 n2 to record 

begin- n2 

ning 

',,- -



Following I/O statement 

( READ* RESTORE* 
Preceding I/O KEY/ KEY/ 
statement READ SEARCH REREAD RESTORE SEARCH 

Read Read Read Position Position 

READ 
next specified previous to to 
record record record first specified 
by key key record 

READ Read Read Read Position Position 
KEY= next specified previous to to 

SEARCH= record record record first specified 
by key key record 

Read Read Read Position Position 
next specified previous to to 

REREAD record record record first specified 
by key key record 

Read Read Position Position 
first specified to first to 

RESTORE record record 
Error key specified 

by key record 

RESTORE Read Read Position Position 
KEY= record specified Error to first to 
SEARCH= restored record key specified 

to record 

*If there is no KEY to match then a NOKEY error occurs 

Table 9. OPEN, INTERNAL, KEYED, INPUT 

If A WRITE is followed by a WRITE, a record is added. 

Table 10. OPEN, INTERNAL, KEYED, OUTPUT 

Appendix B. Tables 475 



Tables 
Tables (continued) 

Following I/O statement 

RE· 
Preceding READ* RE· STORE* DE· 
I/O KEY/ RE· RE· WRITE* DE· RE· KEY/ LETE* 
statement READ SEARCH READ WRITE KEY= LETE STORE SEARCH KEY= WRITE 

READ Read R Read Update U Delete P P D A 
or next e pre· pre· P pre· 0 0 e d 

READ record a vious vious d vious s s I d 

KEY/ by d record record a record i i e 

SEARCH key read t read t t t r 
s e i i e e 

or p 0 0 c 
REREAD e s n n s 0 

REWRITE Read c p p r 

or next i e t t e d 

REWRITE record f c 0 0 c 

KEY= by 
i i i b 
e f f s f y 

or key d Error Error i Error i p i 
DELETE e r e e k 
or r d s c d e 
DELETE e t i Y 
KEY= c r f r 

or 0 e k i e 

WRITE r c e e c 
d 0 y d 0 

RESTORE Read r r 
first d k d 

record Error Error Error e 

by y 

key 

RESTORE Read 
KEY/ record q Error Error Error 
SEARCH n2 

n 2 

*If there is no key to match, then a NOKEY error occurs 

Table 11. OPEN, INTERNAL, KEYED, OUTIN 

476 SA34-0109 



( 
Preceding I/O Following I/O statement 

statement INPUT LlNPUT RESTORE 

Next Next Position 
INPUT logical logical to 

line line beginning 

Next Next Position 
LlNPUT logical logical to 

line line beginning 

First First Position 
RESTORE logical logical to 

line line beginning 

Table 12. OPEN, DISPLAY,INPUT 

Preceding I/O 
Following I/O statement 

statement PRINT RESTORE 

PRINT 
Next logical Position to 
line written beginning 

RESTORE 
First logical Position to 
line written beginning 

Table 13. OPEN, DISPLAY, OUTPUT 

Appendix 8. Tables 477 



478 SA34-0109 



( 

( 

Appendix C. Performance tips and techniques 
Introduction 

This appendix identifies areas that significantly affect program 
and system performance. Performance is enhanced if it is 
initially designed carefully and thoughtfully. 

Appendix C. Performance tips and techniques 479 



Performance tips and techniques 
BASIC statements and functions 

480 SA34-0109 

A functionally enriched BASIC language on System/23 makes 
it possible to achieve the same results with various combina­
tions of BASIC statements. Read carefully the complete set of 
options of each BASIC statement and, in particular, to the 
specially provided set of 45 system functions. Using system 
functions can eliminate many lines of program statements, 
thereby improving processing time. Performance can also be 
enhanced by selecting and using the BASIC statements care­
fully. 

This section contains general comments on the use of BASIC 
to assist you in selecting combinations of statements and 
functions. Many of the following comments and examples will 
become noticeably significant when processed repetitively in 
loops or collectively with other statements. 

Statement length (255 characters) 

Combine statements where possible to take advantage of the 
255-character maximum statement length. 



( 

( 

Example 

Do: 

10 PRINT USING 20: "TOTALS", A, B, C 
20 FORM X 9,C 6,SKIP 1,3*N 8.2 

Instead of: 

10 PRINT USING 20: "TOTALS" 
20 FORM X 9,C 6 
30 PRINT USING 40: A, B, C 
40 FORM 3*N 8.2 

Constants in variables 

Maintain constants in a variable if they are used repeatedly to 
initialize other variables. This executes somewhat faster than 
assignment from a constant and uses less storage. 

Example 

Do: Instead of: 

20 LET 11=1 • 
• • 
• • 

300 LET COUNTER=I1 300 LET COUNTER=1 
• • 
• • 

500 LET SWITCH=I1 500 LET SWITCH=1 

Appendix C. Performance tips and techniques 481 



Performance tips and techniques 
BASIC statements and functions (continued) 

482 SA34-0109 

Array initialization with MAT assignment 

Use the MAT assignment statement to initialize an array, since /', 
it is nearly as fast as the simple assignment. "- / 

Example 

Do: 

10 DIM ARRAY (10) 
20 MAT ARRAY=(10) 

Simple subscripts 

Instead of: 

10 DIM ARRAY (10) 
20 FOR 1=1 TO 10 
30 ARRAY(I)=O 
40 NEXT I 

Performance can be improved by not specifying an expression 
as an array subscript. 

Example 

Do: 

X=N+1 
ARRAY (X) =5 

Instead of: 

ARRAY (N+1)=5 



( 

Arithmetic guidelines 

Consider the arithmetic guidelines in the following examples. 

Examples 

Do: 

250 LET B=A*.5 
500 LET B=A+A 
650 LET B=A*A*A 

Instead of: 

250 LET B=A/2 
500 LET B=A*2 
650 LET B=A**3 

Expressions.avoid repetitive evaluation 

Avoid repetitive evaluation of the same expression in a state­
ment. Evaluate the expression once, and save the result in a 
variable for use in subsequent statements. 

Example 

Do: 

300 LET A=C*3+D 
310 LET X=A+B 
320 LET Y=A+E 

Instead of: 

310 LET X=C*3+D+B 
320 LET Y=C*3+D+E 

Appendix C. Performance tips and techniques 483 



Performance tips and techniques 
BASIC statements and functions (continued) 

484 SA34-0109 

System functions 

System/23 has 45 preprogrammed system functions. Each of 
these functions has a specific purpose and was designed to 
make program development easier and more efficient. Use 
the system functions whenever possible because they execute 
faster than the same capability written in the BASIC language. 

The following is a list of some useful system functions and a 
brief description of their purpose. 

Function Name 

POS Position 

SRCH Search 

SREP$ String replace 

RPAD$ Pad blanks right 

LPAD$ Pad blanks left 

Purpose 

Locates a string of characters 
within a second string of 
characters 

Searches a one-dimensional 
array for the location of a 
specific character string or 
numeric value 

Replaces a substring of 
characters with a new 
substring of characters within 
a larger character string 

Adds blanks to the right 
of a character string 

Adds blanks to the left 
of a character string 



( 

( 

( 

RTRM$ Trim blanks right 

LTRM$ Trim blanks left 

Removes blanks from 
the right of a character string 
(The V FORM statement 
specification removes trailing 
blanks from a character value 
being input.) 

Removes blanks from the left 
of a character string 

You should become familiar with each of the system functions. 
Refer to the main section of this manual for a complete 
description of each individual system function. 

Appendix C. Performance tips and techniques 485 



Performance tips and techniques 
Logic control 

486 SA34-0109 

The sequential execution of a BASIC program can be modified 
by many of the BASIC statements. Use the following general 
guidelines when selecting the method of branching for each 
step of a program. 

Labels for branching 

Use labels as targets for branching statements to improve the 
readability of a program. 

Branching to labels executes as fast as branching to line 
numbers. Also, storage is saved if the label is referenced from 
more than one location in the program. 

Example 

500 GOTO BEGIN 

Subroutine use 

Use subroutines to handle commonly used portions of a 
program. Invoke these subroutines using either the 
GOSUB/RETURN statements or the DEF/FNEND define func­
tion statements. The GOSUB/RETURN combination executes 
faster than the function call. However, the performance of a 
subroutine is highly dependent on the BASIC code within the 
subroutine. Defined functions have specific characteristics 
that are not available to the GOSUB/RETURN combination. 
Review the features of the DEF/FNEND and the 
GOSUB/RETURN statements in the main section of this 
manual before selecting the subroutine technique to use in a 
program. 

-"'--



(' 

( 

I F statement capabilities 

You can improve performance by taking full advantage of the 
capabilities of the IF statement. By using the logical AND/OR 
comparison and the THEN/ELSE clause cabability of the IF 
statement, you can often avoid the need for more IF state­
ments and additional code in a program. 

Example 

Do: 

200 IF A=B AND C=D THEN Z=A ELSE Z=B 

Instead of: 

200 IF A=B THEN GOTO 210 
205 GOTO 215 
210 IF C=D THEN GOTO 225 
215 LET Z=B 
220 GOTO 230 
225 LET Z=A 
230 

IF statement ordering 

Place the most frequently occuring IF condition at the begin­
ning of a series of IF statements. Example 1 : 

A customer order to be read from a data-entry file consists of 
different record types and numerous individual transactions. 

Appendix C. Performance tips and techniques 487 



Performance tips and techniques 
Logic control (continued) 

488 SA34-0109 

Record type 

Do: 

100 
110 
120 
130 

A 
B 
C 

C 
o 

IF 
IF 
IF 
IF 

RECTYPE$="C" 
RECTYPE$="A" 
RECTYPE$="B" 
RECTYPE$="D" 

Instead of: 

100 IF RECTYPE$="A" 
110 IF RECTYPE$="B" 
120 IF RECTYPE$="C" 
130 IF RECTYPE$="D" 

Identification 

Header 
Customer name and address 
Transaction 

Transaction 
Trailer 

THEN GOTO 
THEN GOTO 
THEN GOTO 

3000 
1000 
2000 

THEN GOTO 4000 

THEN GO TO 1000 
THEN GOTO 2000 
THEN GOTO 3000 
THEN GOTO 4000 

Moving the test for record C to the beginning of the list would 
result in 1800 fewer I F statements executed, assuming 100 
groups with an average of 10 transactions per group. 

/ " 

,/ 

, 
\''''' -



( 

Example 2: 

Cascading the I F statements may also improve performance 
and reduce storage requirements. 

Do: 

200 IF A ><1 THEN GOTO NOT1 
210 IF B==1 THEN x==o 
220 IF B==2 THEN X==1 
230 IF B==3 THEN X==2 
240 GO TO CONTIN 
250 NOT1 : IF B==1 THEN X==3 
260 IF B==2 THEN X==4 
270 IF B==3 THEN X==5 
280 CONTIN: 

Instead of: 

200 IF A==1 AND B==1 THEN x==o 
210 IF A==1 AND B==2 THEN X==1 
220 IF A==1 AND B==3 THEN X==2 
230 IF A><1 AND B==1 THEN X==3 
240 IF A><1 AND B==2 THEN X==4 
250 IF A><1 AND B==3 THEN X==5 

Appendix C. Performance tips and techniques 489 



Performance tips and techniques 
Logic control (continued) 

490 SA34-0109 

Loop design 

In general, design loops using FOR/NEXT statements, instead 
of the IF / GOTO combination of statements. 

Example 

Do: Instead of: 

200 FOR 1=1 TO 10 200 1=1+1 
• 210 IF 1=11 THEN GOTO 310 
• • 
• • 

300 NEXT I 300 GOTO 200 

Tight loops 

Always inspect loops for unnecessary code; whenever possi­
ble, the code should be removed from the loop. This includes 
nonexecutable statements such as FORM (see " .... 
"Nonexecutable statements" in this appendix). 

Example 

Do: 

10 LET A=B+l 
20 FOR X=l to 1000 
030 IF D(X)<A THEN D(X)=A 
040 NEXT X 

Instead of: 

10 FOR X=l to 1000 
20 LET A=B+l 
30 IF D(X)<A THEN D(X)=A 
40 NEXT X 

,/ 



Coding techniques 

( 

( 

(--

Nonexecutable statements 

Some required BASIC statements are considered nonexecuta­
ble since they do not functionally alter the program during 
execution. As these statements are encountered during the 
execution of a program, the system requires a small amount of 
time to identify the instruction and proceed to the next sequen­
tial statement. The nonexecutable statements are DIM, 
DEF/FNEND, FORM, EXIT, and REM. Whenever possible, 
move these nonexecutable statements out of loops. 

Example 

Do: Instead of: 

200 DIMA(10) 200 FOR 1=1 to 10 
210 FORM C 5, N 3 • 
220 FOR 1=1 to 10 • 
• 250 DIM A( 1 0) 
• 260 FORM C 5, N 3 
• • 

300 NEXT I 300 NEXT I 

Appendix C. Performance tips and techniques 491 



Performance tips and techniques 
Coding techniques (continued) 

492 SA34-0109 

Remarks 

Comments (REM statements) are considered nonexecutable. 
The system requires a small amount of time to identify a REM 
statement. Place comments on individual instructions using an 
exclamation point instead of REM statements whenever 
possible. Placing comments on individual statements 
improves performance and also saves storage by eliminating 
the need for a line number and the REM statement. 

Example 

Do: 

100 FOR A=1 to 15 Process items 
• 
• 

400 NEXT A 

Instead of: 

100 FOR A=1 to 15 
110 REM Process items 
• 
• 

490 NEXT A 

Array redimensioning 

The redimensioning of an array saves storage. When you 
originally dimension an array to a predetermined maximum 
dimension and find that in the course of running the program 
you don't need the maximum size, you can redimension 
downward. 



( 

Example: 

Do: 

100 DIM A$(100)*20 
110 INPUT A ! Operator types in a number 

of items to be input 
120 FOR I = 1 to A 
130 INPUT A$(I) 
140 NEXT I 

190 MAT A$ = A$(A) ! Redimension down to 
the number of items input 

200 CHAIN "NEXTONE", A$, A 

Instead of: 

100 DIM A$(100)*20 
110 INPUT A ! Operator types in a number 

of items to be input 
120 FOR I 1 to A 
130 INPUT A$(I) 
140 NEXT I 

190 REM without redimensioning 
you will pass a 100 element array 

200 CHAIN "NEXTONE", A$, A 

Appendix C. Performance tips and techniques 493 



Performance tips and techniques 
I/O techniques 

494 SA34-0109 

Buffer space considerations 

System/23 does not necessarily do a physical I/O operation 
each time a READ or WRITE statement is executed. If enough 
storage is available, System/23 may put up to 7.5K bytes of 
data per file into a buffer before actually reading from or writ­
ing to the diskette or disk. By taking advantage of this buffer­
ing, heavily I/O bound programs can be made to run faster. 

Points to remember are: 

Sequential vs. relative access of files 

Sequential access files can be buffered up to 7.5K 
bytes of data. For relative access files, System/23 
tries to keep as many 512 byte buffers as needed to 
hold one logical record. 

Use sequential access whenever possible. 

• Priority of accessing files 

When more than one file will be accessed in a 
program, access the most frequently used file first to 
ensure that as much buffer space as possible is 
assigned to this file. 

Need for closing files 

- CLOSE files that are no longer needed. This frees 
space for buffers. 

Using CHAIN statement 

Additional space for buffers can be provided by 
breaking the program into a number of programs by 
using the CHAIN statement. However, be sure that 
the benefits are not offset by the length of time it 
takes to execute the chain. 

Selecting record length 



( 

( 

( 

System/23 format diskettes and the 5247 Disk have 
a block length of 512 bytes. Records that cross 
sector boundaries require additional physical I/O. To 
avoid this, choose a record length which, when 
incremented by one, divides evenly into 512. (for 
example: 63, 127, 511). The extra byte is the 
control byte that System/23 attaches to each record 
in type 04 files. 

OPEN statement considerations 

An OPEN statement requires many physical I/O operations 
and is time consuming. The time required can be reduced in 
the following ways: 

Restrict use of CLOSE and OPEN statements 

Close a file only if it will not be used again or if stor­
age is a problem. This avoids unnecessary OPEN 
statements. 

Position most-used files first 

Position frequently opened files first in the diskette 
directory. This can be done by creating these files 
first on empty diskettes before adding additional 
files. Directory position does not affect the perform­
ance of OPEN statements in files on the 5247 Disk. 

Specify drive numbers 

Specify drive numbers and VOLIDs in the OPEN 
statement whenever possible. 

Appendix C. Performance tips and techniques 495 



Performance tips and techniques 
I/O techniques (continued) 

496 SA34-0109 

Group files 

If a BASIC program has many files located on the 
5247 Disk, group the files in one volume and specify 
the VOLID in the OPEN statement. 

Access time reduction for keyed files 

The time required to access keyed files can be reduced in the 
following ways: 

• Use keyed, sequential access 

- Whenever possible, use keyed, sequential access. 

• Specify KW= in the OPEN statement 

- For large key files, specify "KW=" in the OPEN 
statement (see "OPEN statement"). 

Regenerate key files after update 

After adding records to the master file, regenerate 
key files using the Create Index File Customer ' ./ 
Support Function. This places all keys in sorted 
order within the key file. 

General I/O performance guidelines 

Allow sufficient file size 

System/23 files will be automatically extended when 
full, but this will slow down any file access. For 
better performance, whenever possible, create a file 
as large as will be required. 

• Compress files 

Compress multi-extent files (see "DIR command"). 
Do this by copying the file to an empty diskette or a 
different disk volume using the Copy Customer 
Support Function. 



( 

( 

Multiple rewrites to the same record, see "Programming 
considerations" under "REWRITE statement." 

Copy diskettes with media errors. 

If a diskette begins to have media errors (see "DIR 
command"). transfer all data to another diskette. Do 
this using the Copy or Recover Diskette Customer 
Support Functions. 

Place files for best access 

When a program will be accessing more than one 
file, the files should be on separate diskettes or be 
positioned close together when on a single diskette. 

Place 5247 Disk files on the same volume. 

Select best file format 

Use Basic and H-exchange files only to transfer data 
between System / 23 and other systems. 

Always use System/23 format files for normal proc­
essing. 

BASIC language considerations 

Unformatted I/O is faster than formatted I/O. 

MAT I/O is faster than scalar processing. 

Appendix C. Performance tips and techniques 497 



Performance tips and techniques 
I/O techniques (continued) 

498 SA34-0109 

Selection of data file access method 

Choosing the proper access method for your data files is one 
of the more important decisions you must make. 

Whether to use the sequential, relative, or keyed access 
method depends on your application. 

• Accessing individual records 

Relative access. A fast method of accessing an indi­
vidual record is directly by means of the relative 
record number of the desired record. For example, in 
an inventory file, it is possible to convert the item 
number into a record number. Item numbers could 
be 1 to 1000. Item number 52 would be record 52 in 
the file. 

Keyed-access indexing. This is the next fastest 
method to access individual records. A pointer to 
the master file data record is maintained in an index 
file. This is the most commonly used access method 
because existing keys such as item numbers can be 
used. 

Sequential access. Processing a file sequentially to 
find an individual record is time consuming because 
the file must be read from the beginning until the 
proper record is found. 



Processing sequential files 

If an entire file is to be processed from beginning to 
end, sequential access is the fastest method. 

The fastest method to process a file sequentially is to 
sort the master file into the desired order before 
processing. 

To process a RELATIVE file sequentially, starting at a 
specified record number, first open the file RELA­
TIVE, and then execute a RESTORE #X, REC=A 
statement. Subsequent READ statements without a 
REC= clause will read each record sequentially from 
the file. 

Processing keyed files 

If a file is to be processed SEQUENTIAL in some 
cases and RELATIVE in others, it may be more 
appropriate to create an index (key) file. The system 
can then access the master file (1) SEQUENTIAL by 
accessing the index file or (2) RELATIVE by providing 
a key to the index file. 

Appendix C. Performance tips and techniques 499 



Performance tips and techniques 
I/O techniques (continued) 

Main storage index area for keyed access method 

Access to a master file record using an index (key) file can be " / 

500 SA34-0109 

improved substanially if you maintain an index area in main 
storage that points to the index (key) file. To do this, use the 
KW= parameter, which is included in the OPEN statement. 

Example 

30 OPEN #1:"NAME=TAXES,KFNAME=TAXKEY,KW=50", 
INTERNAL, INPUT, KEYED 

In the preceding statement, 50 bytes of main storage have 
been allocated for index file pointers. 

Performance can be improved for random key access to a file 
when an optimum KW parameter is assigned. Refer to the 
"OPEN statement" section of this manual for a complete 
description of the KW parameter and instructions about how 
to calculate the optimum KW value. 

/-

.. ",,-



( 

( 

Index file sorting 

Many applications, such as inventory, make use of an index 
file with pointers that allow fast access to desired records. If 
the index file is sorted, access to a master record will be faster 
than if the index file is not sorted. The index file for a master 
file is automatically placed in sorted order when it is initially 
created by the Create Index File Customer Support Function. 
(see Customer Support Functions, Volume II). 

As new items are added to the master file, the item number 
key (item number is specified as the key) is added to the end 
of the index file. Depending on the activity of adding and 
deleting records, the index file should be periodically recreated 
so that the new index record is placed in its proper location 
and the unwanted index records are deleted. 

Appendix C. Performance tips and techniques 501 



502 SA34-0109 



(-

Index 

A 
about this book iii 

prerequisites iii 
related publications iv 

ABS(X) 6 
absolute value 

See ABS(X) 
access method 498 
access time reduction keyed files 496 
accuracy 13 
action tables, I/O 231 
add or delete a volume 77 
addition and multiplication 19 
AIDX and DIDX 7 

example (AIDX) 8 
example (DIDX) 9 
programming considerations 9 
syntax 7 

ALERT command 10 
syntax 10 

allocation of printer 312 
allocation, disk 78 
allocation, diskette 78 
alphabetic character set 

See character set 
alphabetic characters 48 
AND (relational expression) 214 
arc tangent 

See ATN(X) 
arithmetic arrays 12 

BASE 0 12 
BASE 1 12 
declared 12 
dimensioned 12 
one-dimensional 12 
two-dimensional 12 

arithmetic constant 17 
example 17 

arithmetic data 13 
accuracy 13 
arithmetic constant 17 
arithmetic data formats 14 
blink 192 
fixed-point format 15 

floating-point format 16 
integer format 14 
magnitude 13 
selecting an arithmetic format 17 
significance 13 

arithmetic data formats 14 
fixed-point format 15 

examples 15 
floating-point format 16 

example 16 
integer format 14 

examples 14 
selecting an arithmetic format 17 

example 17 
arithmetic expressions 23 
arithmetic expressions and operations 18 

example 18 
operators 19 
rules 19 
syntax 18 

arithmetic format 17 
arithmetic guidelines 483 
arithmetic hierarchy 23 

example 23 
order of priority 23 

arithmetic variables 25 
examples 25 

array element references 134 
array expressions 

See MAT assignment 
array initialization 482 
array name, character 428 
ARRAY redimensioning 276,492 
arrays 12, 26, 43 

data - item 26 
elements 26 
example 27 
maximum subscript 29 
OPTION BASE 0 26 
OPTION BASE 1 26 

arrays, arithmetic 
See arithmetic arrays 

arrays, character 
See character arrays 

Index 503 



Index 

arrays, declaring 
See declaring arrays 

arrays, redimensioning 
See redimensioning arrays 

ascending index 7 
assignment 271 
assignment statements 

See LET statement 
asynchronous communications terminal 76 
asynchronous problem information 76 
ATN(X) 30 
attention and inquiry 31 

Cmd/Attn 31 
Inq Key 32 

attributes, display 190 
attributes, Full-screen 189 
AUTO command 33 

examples 34 
increment 33 
line-num 33 
programming considerations 34 
syntax 33 

B 
backup and restore 77 
BASE 0 12 
BASE 1 12 
BASIC statements 35 

CHAIN 40 
CLOSE 62 
CONTINUE 67 
DATA 79,80 
DEF 83 
DELETE 95 
DIM 103 
END 124 
EXIT 127 
FNEND 83 
FOR 153 

504 SA34-0109 

FORM 158 
GOSUB 202 
GOTO 207 
IF,THEN,ELSE 211 
INPUT 218 
LET 255 
LlNPUT 261 
MAT 270 
NEXT 153 
ON 284 
OPEN 289 
OPTION 305 
PAUSE 310 
PRINT 314 
RANDOMIZE 339 
READ 340 
RELEASE 353 
REM 354 
REREAD 361 
RESERVE 363 
RESTORE 368 
RETRY 372 
RETURN 202, 373 
REWRITE 374 
STOP 396 
TRACE 424 
USE 426 
WRITE 433 
5217 Printer 321 

BASIC statements and functions 480 
batch data transfer 75 
binary synchronous problem information 76 

binary synchronous problem information 76 
blanks 38 

rules 38 
bsc online test 76 
buffer space considerations 494 
built in functions 418 
byte 38 

',,- / 



( 

( 

( 

c 
catenation 

See concatenation 
CEIL(X) 38 

example 38 
ceiling 

See CEIL(X) 
CHAIN statement 40 

data-item 40 
example 41 
FILES 40 
pgmname 40 
programming considerations 42 
syntax 40 

changing BASIC statements 123 
changing line numbers 123 
character array name 428 
character arrays 43 

example 43 
character constants 44 

examples 44 
character data 44 
character expressions 45 

examples 45 
related subjects 46 
syntax 45 

character position (POS) 163 
character set 48 

alphabetic characters 48 
characters not displayable 54 
EBCDIC characters 51 
graphic characters 50 
hexadecimal representation 51 
numeric characters 48 
special characters 49 

character string 59 
character string input (LiNPUT) 261 
character variable 428 
character variables 58 

example 58 
CHR$(X) 59 

example 59 
CLEAR command 60 

parameters 60 

syntax 60 
CLEAR DATA 60 
clear display screen 

See PRINT statement 
CLOSE statement 62 

example 63 
parameter 62 
programming considerations 63 
syntax 62 

closing a procedure file 330 
CMD/ATTN 31 
CMDKEY 64 
CNT 64 
CODE 65 
coding techniques 491 
collating sequence, change 73 
commands 

See SYSTEM commands 
comments 

See remarks 
communications 69 
CON 66 
concatenation 66 

example 66 
constants 17,44 
constants in variables 481 

examples 481 
CONTINUE statement 67 
control attributes 193 
control reserve 356 
conventional representation 14 
Copy 72 

copy 72 
COS (X) 68 
create index file 73 
cross reference 68 
cursor position 193 
Customer Support Functions 69 

asynchronous communications terminal 76 
asynchronous problem information 76 
batch data transfer 75 
bsc online test 76 
change collating sequence 73 
copy 72 

Index 505 



Index 

create index file 73 
disk customer support functions 77 

add or delete a volume 77 
backup and restore 77 
prepare disk 77 
recover disk 77 

display diskette labels 72 
list files 74 
list storage information 75 
load machine update 71 
prepare batch data transfer 75 
prepare diskette 71 
prepare sort 74 
recover diskette 73 
replace 73 
select machine update 71 
set up asynchronous communications 75 
set up binary synchronous communications 75 
sort 74 

o 
data 1 2, 44, 80 
data buffering 78 
data display 118 
data file 233 
data file access method 498 
DATA files 79 

create a display file 79 
edit an existing DISPLAY file 79 
example 79 

data formats 14 
data items 26 
DATA statement 80 

example 81 
parameter 80 
programming considerations 81 
syntax 80 

data transfer, batch 75 
DATE command 82 

syntax 82 
DATE$ 82 
decimal 

See FORM statement 

506 SA34-0109 

declaring arrays 82 
DEF, FNEND statement 83 

multiple-line function 85 
example 87 
syntax 85 

one-line function 83 
example 84 
syntax 83 

programming considerations 89 
use of functions 88 

DEL command 93 
example 94 
parameter 93 
programming considerations 94 
syntax 93 

DELETE statement 95 
example 96 
parameter 95 
programming considerations 96 
syntax 95 

deleting a file 
See FREE command 

descending index 7 
descending index (MAT assignment) 

See also AIDX and DIDX 
drive number 97 

device address parameter 97 
device sharing 98, 100 
DIDX 7,102 
DIDX (array name) 102 
digit specifiers 176 
DIM statement 1 03 

declaring arrays 104 
example 104 

example 103, 106 
parameter 103 
programming considerations 107 
syntax 103 

dimension, upper (UDIM) 425 
dimensioning arrays 

See DIM statement 
DIR command 108 

disk 113 
drive number 113 
example 115 



( 

( 

( 

disk 

parameter 113 
syntax 113 

diskette 108 
example 110 
parameter 108 
syntax 108 

diskettes, using DIR without a 5247 Disk Unit 108 

disk considerations 148 
file types 145 
prepare 77 
recover 77 

disk access state (VOLlD) 430 
disk storage requirements 145 
disk, saving on 359 

REPLACE 359 
SAVE 385 

diskette access state (VOLlD) 430 
diskette storage requirements 145 

file types 145 
diskette,saving on 359 

REPLACE 359 
SAVE 385 

DISPLAY 118 
example 118 
files and data 118 

display diskette labels 72 
display labels 72 

display files 118· 
DISPLY(X) 120 
division 21 
dollar sign (PIC$) 311 
DROP/FREE command 120 

example 121 
parameter 121 
syntax 121 

DUPREC 128 
dynamic file extension 122 

E 
EBCDIC characters 51 
edit DISPLAY file 79 
editing a program or data file 123 

adding statements 123 
changing line numbers 123 
deleting statements 123 
programming considerations 124 
replacing statements 123 

element 26 
ELSE 

See IF, THEN, ELSE statement 
end of file (EXIT) 128 
END statement 124 

examples 125 
parameter 124 
programming considerations 125 
syntax 124 

ERR 125 
error handling 126 
evaluation expressions 23 
executing a procedure file 329 
execution order 

See order of execution 
EXIT statement 127 

error conditions 127 
CONV 127 
DUPREC 128 
EOF 128 
IOERR 128 
NOKEY 128 
NOREC 128 
PAGEOFLOW 129 

example 130 
parameter 127 
programming consideration 131 
syntax 127 

EXP(X) 133 
exponent specifiers 182 

example 182 
exponential 

See EXP(X) 
exponentiation 21 

Index 507 



Index 

expressions 134, 483 
expressions, arithmetic 

Se~ arithmetic expressions and operations 
expressions, array 

See MAT assignment 
expressions, character 

See character expressions 
expressions, relational 

See IF, THEN, ELSE statement 

F 
FIELDS 

See full-screen processing 
file 328 
file extension, dynamic 122 
file name 147 
file reference parameter 137 

example 137 
file searches 138 
file sharing 140 

controlled 141 
default 141 
programming considerations 143 
regulated 140 
restrictions 140 
summary 142 

file size 145 
file space (FREESP) 188 
file specification parameter 147 

control attributes 189 
display attributes 192 

control attributes 193 
example 193 
examples 195 
highlight 193 
invisible 192 
normal 192 
programming considerations 196 
underline 193 

examples 147 
parameters 190 
programming considerations 196 
syntax 189 

508 SA34-0109 

5247 Disk considerations 148 
file types 151 
FILE(N) 150 
FILE$(N) 150 
file-spec 147 
FILENUM 136 

example 136 
files 79, 252 
files, display 118 
files, internal 224 
files, key-indexed 224 
files, related subjects 149 
files, internal I/O 224 
fixed-point format 152 
floating currency symbol 152 
floating-point formula 16 
FNEND statement 152 
FOR and NEXT statements 153 

examples 155 
FOR syntax 153 
N EXT syntax 154 
programming considerations 156 

FORM statement 158 
output positions 158 
digit specifiers 176 
display character data 158 
example of V format 171 
examples of L format 169 
examples of N format 166 
examples of PD format 168 
examples of V format 170 
examples of ZD format 168 
exponent specifier 182 
I/O list items 159 
increase the spacing 159 
insertion characters 180 
PIC specifications 172 
programming considerations 185 
reading same values 160 
syntax 161 
trailing characters 183 
written into a record 160 
ZD parameter 167 

FORMAT 346 
format, arithmetic 17 



( 
formatting I/O files 187 
FREE command 187 
FREESP(N) 188 
full screen processing 189 
function names 427, 428 
function references 134 
functions 69 
functions, built in 418 
functions, defined 

See DEF, FNEND statement 

G 
GO command 199 

examples 201 
parameters 199 
programming considerations 201 
syntax 199 

GOSUB and RETURN statement 202 
examples 204 
parameter 202 
programming considerations 204 
syntax 202 

GOTO statement 207 
computed GOTO syntax 207 
example 208 
parameters 207 
programming considerations 209 
simple GOTO syntax 207 

graphic characters 50 
guidelines 483 

H 
HELP STATUS command 209 

example 209 
syntax 209 

HEX$(A$) 210 
hexadecimal representation 51 
hierarchy, arithmetic 

See arithmetic hierachy 
HOLD 210 
HX (H exchange) 145 

I/O action tables 231,469 
I/O files 225 
I/O list items 159 
I/O performance guidelines 496 
I/O techniques 495 
IF statement capabilities 487 
IF statement ordering 487 
IF, THEN, ELSE statement 211 

BASIC statements 212 
example 213 
logical operators, expressions 214 
parameter 211 
programming considerations 216 
relational expression 213 
relational functions and definitions 213 
syntax 211 

increment loop (NEXT) 153 
index file sorting 501 
index file, create 73 
index keys 217 
indexing, BASE 0 or 1 305 
INPUT FIELDS 189 
INPUT statement 218 

example 219 
parameter 218 
programming considerations 221 
syntax 218 

inq key 32 
inquiry 31 
inquiry key 

See attention and inquiry key 
integer format 

See arithmetic data 
internal constants 224 
internal files 

See key-indexed files 
See relative record files 

internal I/O file formatting 225 
formatted (with USING) 225 
unformatted (without USING) 226 

internal I/O files 227 

Index 509 



Index 

internal machine fixes (LINK) 259 
internal representation of characters 

See character set 
internal variables 

See system variables 
interrupt 228 
interrupt handling 229 

priority 229 
intrinsic functions 

See system functions 
introduction 1 
inverted print 305 
IOERR 128 
ITN(X) 230 

K 
key description legend and tables 234 

key description tables 239 
legend 234 

key starting position (KPS) 253 
key work area size 302 
key-indexed files 252 

created 252 
process 252 

keyboard 231 
programming consideration 232 

keyboard-generated data files 233 
changed 233 
created 233 
length 233 
listed 233 

keyed files 496 
keys 

See keyboard 
KLN(N) 253 
KPS(N) 253 
KSTAT$ 254 

510 SA34-0109 

L 
L format 170 
labels 254 

example 254 
labels for branching 486 
leading and trailing attributes 191 
LEN(A$) 254 
length of a character (LEN) 254 
length of key for file (KLN) 253 
length of record (RLN) 379 
LET statement 255 

example 256 
parameter 255 
programming considerations 255 
syntax 255 

LINE 257 
line control 

See PRINT statement 
line function 

See DEF, FNEND statement 
line numbers 258 
line reference 258 

example 258 
LINK command 259 

example 260 
parameter 259 
syntax 259 

LlNPUT statement 261 
example 262 
parameter 261 
syntax 261 

list diskette or disk information 74 
list files 74 
list items, I/O 159 
list storage information 75 
LIST, LlSTP command 263 

examples 266 
parameter 263 
programming considerations 264 
syntax 263 

LOAD command 267 
example 267 
parameter 267 



( 
programming considerations 268 
syntax 267 

load machine update 71 
LOG(X) 269 
logarithm 

See LOG 
logic control 486 
logical expressions 

See IF.THEN.ELSE statement 
logical operators. expressions 214 
loop (FOR and NEXT) 153 
loop design 490 
LPAD$(C$.X) 269 
L TRM$(C$) 270 

M 
magnitude 13. 270 

See also arithmetic data 
main storage index area 500 
MATAIDX 7 
MAT assignment 

See AIDX and DIDX 
MAT assignment (addition. subtraction. scalar 

multiplication) 271 
example (addition and subtraction) 271 
example (scalar multiplication) 273 
parameter 271 
programming considerations 271 
syntax 271 

MAT assignment (scalar value) 274 
example 275 
parameter 274 
programming considerations 274 
syntax 274 

MAT assignment (simple) 276 
ARRAY redimensioning 276 
example 276 
parameter 276 
programming considerations 277 
syntax 276 

matrix 
See arrays 

matrix operations 
See AIDX and DIDX 

MAX (X1.X2.X3 •... ) 278 
maximum subscript 29 
maximum value 278 

See also arithmetic data 
MERGE command 279 

example 281 
parameter 279 
programming considerations 280 
syntax 279 

MIN (X1.X2.X3 •... ) 281 
minimum value 

See arithmetic data 
modifying a procedure file 329 
modifying a screen 189. 263 
multiple line function 

See DEF.FNEND statement 

N 
N format 167 
names. variable 

See variable names 
negative 22 
NEWPAGE 315.319 
next 

See FOR and NEXT statement 
N EXT statement 154 
NOKEY 128 
non-katakana 388 
NONE (GOSUB. GOTO) 203 
nonexecutable statements 491 
NOREC 128 
numbers 258 
numeric array name 427 
numeric characters 48 
numeric data formats 

See arithmetic data 
See FORM statement. (N specification) 

numeric to string conversion (STR$) 401 
numeric variable 427 

Index 511 



Index 

o 
offline diskette files 283 

diskette files ,offline 283 
OFLOW 284 
ON GOSUB 202 
ON GOTO 372 
ON statement 284 

example 287 
parameter 284 
programming considerations 287 
syntax 284 

online test 76 
OPEN statement 289 

OPEN DISPLAY (syntax) 290 
example 294 
parameter 291 
syntax 291 

OPEN INTERNAL syntax 295 
example 300 
OPEN parameter table 304 
parameter 296 
programming considerations 300 
syntax 296 

parameter 289 
OPEN statement considerations 495 
operations, arithmetic 18 
operators 134 
OPTION BASE 0 26 
OPTION BASE 1 26 
OPTION statement 305 

parameter 305 
programming considerations 307 
syntax 305 

OR 214 
ORD(A$) 308 
order of execution 307 

rules 307 
ordinal value 308 
output positions 158 
overstruck characters 

See FORM statement 

512 SA34-0109 

p 

packed decimal 
See FORM statement (PD specification) 

PAD 
See LPAD$ 

page overflow 309 
parameter, device address 

See device address parameter 
parameter, file reference 

See file reference parameter 
parameter, file specification 

See file specification parameter 
PAUSE statement 310 
PD format 169 
performance tips and techniques 479 
PI 

See internal constants 
PIC 172 
PIC$ 311 
pas 163 
POS(A$,B$,X) 311 
positive / negative operations 22 
prepare batch data transfer 75 
prepare disk 77 
prepare diskette 71 

prepare 71 
prepare sort 74 
prerequisites iii 
PRINT BELL 

See PRINT statement 
print control 

See printer assignment 
print data list delimiters 

See PRINT statement 
PRINT FIELDS 189 
PRINT statement 314 

parameter 314 
programming considerations 316 
syntax 314 
USING 315 • 
5217 printer statements 321 

print zones 
See PRINT statement 

\,--



( 
printer assignment 312 
printer spacing 320 
'1ROC command 327 

parameter 327 
syntax 327 

procedure 328, 443 
procedure file 328 

closing a procedure file 330 
creating a procedure file 328 
data 331 
example 332 
executing a procedure file 329 
interrupting 331 
modifying a procedure file 329 
nesting a procedure file 331 
storage 332 
using the ALERT command 331 
using the SKIP command 331 

PROCEER command 333 
examples 334 
parameter 333 
programming considerations 335 

, syntax 333 
'processing 189 
,PROCIN 335 

program 443 
program or data file 123 
PROTECT command 336 

examples 338 
parameter 336 
syntax 336 

R 
random numbers 

See RANDOMIZE statement 
RANDOMIZE statement 339 
READ statement 340 

example 341 
parameter 340 
programming considerations 342 
syntax 340 

READ statement (with file reference) 344 

(~~~ example 346 

TNL SN34-0870 (20 May 83) to SA34-0109-2 

key length 348 
parameter 344 
programming considerations 348 
syntax 344 

REC(N) 349 
record I/O files 349 
record length (RLN) 379 
record number (REe) 349 
recover disk 77 
recover diskette 73 

recover 73 
redimensioning arrays 350 

example 351 
rules 350 

reference parameter 137 
reference, line 258 
referencing, substrings 351 
related subjects, files 149 
relational expressions 135,351 
relational function 213 
relative record file 351 

accessed by 352 
RELEASE statement 353 

example 353 
parameter 353 
programming considerations 353 
syntax 353 

REM statement 354 
example 355 

remarks 355 
example 355 

RENAME command 356 
example 356 
syntax 356 

RENUM command 357 
parameter 357 
programming considerations 358 
syntax 357 

replace 73 
REPLACE command 358 

parameter 359 
programming considerations 360 
syntax 359 

replacing a statement 123, 361 
representation of characters 51 

Index 513 



Index 

REREAD statement 361 
example 363 
parameter 361 
syntax 361 

RESERVE statement 363 
parameter 363 

. programming considerations 364 
syntax 363 

reserved words 366 
RESTORE statement 368 

example 368 
parameter 368 
syntax 368 

RESTORE statement (with file reference) 369 
parameter 369 
programming considerations 371 
syntax 369 

RETRY statement 372 
example 372 
parameter 372 
programming considerations 373 

RETURN statement 373 
REWRITE statement 374 

example 376 
parameter 374 
programming considerations 376 
syntax 374 

RLN(N) 379 
RND(X) 379 
ROUND(X,M) 380 
RPAD$(A$,X) 380 
RPT$ (A$,M) 381 
RTRM$(A$) 381 
RUN command 382 

example 383 
parameter 382 
programming considerations 383 
syntax 382 

514 SA34-0109 

s 
sample procedure or sample program 

See Appendix A 
sample program 443 
SAVE command 385 

examples 386 
parameter 385 
programming considerations 386 
syntax 385 

scalar multiplication (MAT assignment) 
See MAT assignment 

screen 393 
screen, clear (NEWPAGE) 315,319 
search 

See file searches 
See SRCH 

select machine update 71 
selection of data file access method 498 
set up asynchronous communications 75 
set up binary synchronous communications 75 
SGN(X) 387 
sharing 140 

See also file sharing 
sharing files (types of file-sharing) 117 
sharing the 5246 Diskette Unit 98 
sharing the 5247 Disk Unit 100 
SHIFT(X) 388 
sign of a number 

See arithmetic data 
significance 13 

See also arithmetic data 
simple subscripts 482 
SIN(X) 389 
size of array (DIM) 103 
SKIP .164,331 
SKIP command 390 

example 391 
syntax 390 

SKIP lines 
See FORM statement 

sort 74 
SORT command 392 

parameter 392 

TNL SN34·0870 (20 May 83) to SA34·0109·2 



( 
syntax 392 

sorting 501 
space considerations 494 
space, work area (HELP STATUS) 209 
space,file (DROP/FREE) 120 
spaces 

See blanks 
spacing, FORM 158 
special character set 

See character set 
specification parameter 147 
split screen 393 
SQR(X) 393 
square roots 

See SQR(X) 
SRCH (array,X), SRCH (array$,X) 394 
SREP$(A$,M,B$,C$) 394 
standard format 

See integer format 
statement length 

See BASIC statements 
statement numbers 

See line numbers 
statements 

See BASIC statements 
statements, adding 123 
status line 

See character set 
See device sharing 
See DISPLAY 

STOP statement 396 
example 396 
syntax 396 

storage use 332, 397 
example 399 

STR$(X) 401 
string 59, 403 
string to numeric conversion 427 
subjects related to arithmetic expressions 22 
subjects related to character expressions 46 
SUBPROC command 402 

exceptions 402 
parameter 402 
syntax 402 

subroutine use 486 

subroutines 
See GOSUB statement 
See RETURN statement 

subscripted variables 
See arrays 

substring referencing 403 
example rule 5 407 
example using subscripts 407 
examples of substring referencing 405 
extraction of characters 405 
programming consideration 408 
replacement of characters 406 
rules 404 

subtraction 21 
support 69 
syntax description 410 
SYSTEM command 414 
SYSTEM commands 415 

ALERT 10 
AUTO 33 
CLEAR 60 
DATE 82 
DEL 93 
DIR 108 
DROP 120 
FREE 120 
GO 199 
HELP STATUS 209 
LINK 259 
LIST 263 
LlSTP 263 
LOAD 267 
MERGE 279 
PROC 327 
PROCERR 333 
PROTECT 336 
REMANE 356 
RENUM 357 
REPLACE 359 
RUN 382 
SAVE 385 
SKIP 331,390 
SORT 392 
SUBPROC 402 
SYSTEM command 414 

Index 515 



Index 

TIME 423 
VOLID 430 

system functions 418, 484 
system keywords 

See reserve words 
See system commands 

system variables 421 
CMDKEY 421 
CNT 421 
CODE 421 
DATE$ 421 
ERR 421 
FILENUM 421 
KSTAT$ 421 
LINE 421 
PROCI 421 
TIME$ 421 
WSID$ 421 

T 
TAB function 

See PRINT statement 
tables 469 

See also arrays 
TAN(X) 422 
techniques 479, 491 
TEST 32 
THEN 

See IF, THEN, ELSE statement 
tight loops 490 
TIME command 423 

syntax 423 
TIME$ 423 
tips and techniques 423, 479 
TRACE statement 424 

syntax 424 
trailing characters 183 

examples 184 
trim 

See LTRM$ 
See RTRM$ 

516 SA34-0109 

u 
UDIM (array,X) 425 
UFLOW 285 
unformatted READ 348 
use of blanks 38 
USE statement 426 

data-item 426 
syntax 426 

USING 225,315,344,361,374,433 

v 
V format 170 
VAL(A$) 427 
variable names 427 

character variable or character array name 428 
function names 428 
numeric variable or numeric array name 427 

variables 25, 58, 134 
variables, arithmetic 429 
variables, character 429 
variables, internal 429 
VOLID command 430 

example 432 
parameters 430 
syntax 430 

volume identification (DIR) 108 

w 
whole numbers (CEIL) 38 
work area 

See storage use 
WRITE statement 433 

parameter 434 
programming considerations 435 
syntax 433 

write-protection (PROTECT) 336 
WSID$ 436 

programming consideration 438 



( 
x 

XREF 
See LIST, LlSTP command 

z 
ZD format 168 
ZDIV 285 
ZER and CON 439 

CON syntax 441 
example 442 
parameter 441 

ZER syntax 439 

example 440 
parameter 439 

5 
5247 Disk customer support functions 77 

add or delete a volume 77 
backup and restore 77 
prepare disk 77 
recover disk 77 

Index 517 



518 SA34-0109 



( 

Q) 
c: 
:J 
Cl 
c: 

( 
0 

Ci: 
"0 
'0 
u.. 
~ 

0 
~ 

:J 
<.l 

( 

READE R'S COMMENT FORM 

SA34-0109-2 

BASIC Language Reference 

Your comments assist us in improving the usefulness of our publications; they are an 
important part of the input used in preparing updates to the publications. I BM may 
use and distribute any of the information you supply in any way it bel ieves appro­
priate without incurring any obligation whatever. You may, of course, continue to 
use the information you supply. 

Please do not use this form for technical questions about the system or for requests 
for additional publications; this only delays the response. Instead, direct your 
inquiries or requests to your I BM representative or the I BM branch office serving 
your locality. 

Corrections or clarifications needed: 

Page Comment 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 



Reader's Comment Form 

Fold and tape Please Do Not Staple 

Fold and tape 

--- ------ ----- ---- - ---- -- -----------'-

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
Information Development, Dept 27T 
P.O. Box 1328 
Boca Raton, Florida 33432 

Please Do Not Staple 

(') 

S 
» o 
:J ... 
r 
;5' 
CD / 

I 
I 

--I 
Fold and tape 

NO POSTAGE 
NECESSARY 
IFMAILED 

IN THE 
UNITED STATES 

Fold and tape 

SA34·0109·2 
Printed in U.S.A. 

/ 



{ 

., 
c 
:J 
OJ 
c 

( 
0 « 

"0 
(5 
u.. 
~ 

0 ... 
::J 

U 

( 

READER'S COMMENT FORM 

SA34-0109-2 

BASIC Language Reference 

Your comments assist us in improving the usefulness of our publications; they are an 

important part of the input used in preparing updates to the publications. IBM may 

use and distribute any of the information you supply in any way it believes appro­

priate without incurring any obligation whatever. You may, of course, continue to 

use the information you supply. 

Please do not use this form for technical questions about the system or for requests 

for additional publications; this only delays the response. I nstead, direct your 

inquiries or requests to your IBM representative or the IBM branch office serving 

your local ity. 

Corrections or clarifications needed: 

Page Comment 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 



Reader's Comment Form 

Fold and tape Please Do Not Staple 

Fold and tape 

--- ------ - ---- ---- - ---- - - ----------_.-

II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
I nformation Development, Dept 27T 
P.O. Box 1328 
Boca Raton, Florida 33432 

Please Do Not Staple 

(') 

S 
l> 
0-
:J 

'" r-
:J .. 

I 
Fold and tape I 

- - - --I 
NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 

I 
1 

I 
I 

--I 
Fold and tape 

SA34-0109-2 
Printed in U,S.A. 



. ( .... '" 
'if. __ 

§ : ::§~~ ~eChnical Newsletter ~/ I 

IBM System/23 
,BASIC Language Reference 

© IBM Corp. 1981,1982 

This Newsletter No. SN34·0828 

Date September 22, 1982 

Base Publication No. SA34·0109·2 

Previous Newsletters None 

This Technical Newsletter provides replacement pages for the subject publication. Pages to be inserted and/or 
removed are: 

393,394 

A technical change to the text or to an illustration is indicated by a vertical line to the left of the change. 

Summary of Amendments 

• Additional information for using the BASIC SRCH array function is provided. 

Note. Please file this cover letter at the back of the manual to provide a record of changes . 

IBM Corporation, Information Development, Department 27T, P.O. Box 1328, Boca Raton, Florida 33432 

Printed in LJ.S.A. 





s : :,s,~feChnical Newsletter This Newsletter No. SN34-0870 

Date 20 May 83 

.( 

i(" ''\. 

Base Publication No. SA34-0109-2 

Previous Newsletters SN34-0828 

System/23 
BASIC Language Reference 

© IBM Corp. 1981, 1982 

This Technical Newsletter provides replacement pages for the subject publication. Pages to be 
inserted and/or removed are: 

67,68 
333 through 336 
357 through 366 
385 through 390 
407 through 410 
513,514 

A technical change to the text or to an illustration is indicated by a vertical I ine to the left of 
the change. 

Summary of Amendments 

1. Clarification of the LOCK portion of the REPLACE and SAVE commands. 
2. Revised information on ROS level 1.05. 
3. Revised pages of the book index. 

Note: Please file this cover letter at the back of the manual to provide a record of changes. 

IBM Corporation, Information Development, Dept. 27T, P.O. Box 1328, Boca Raton, FL 33432 

Printed in U.S.A. 






