HP-UX Technical BASIC
Programming Guide

HP-UX Technical BASIC
Programming Guide

(ﬁp HEWLETT

PACKARD

Edition 1 May 1985

]
Notice

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another
language without the prior written consent of Hewlett-Packard Company. The information con-
tained in this document is subject to change without notice.

Restricted Rights Legend. Use, duplication, or disclosure by the Government is subject to restric-
tions as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and Software clause in DAR
7-104.9(a).

© Copyright 1979, 1980, 1983, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California.

© Copyright 1980, 1984, AT&T Technologies. All Rights Reserved.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History Edition1 May 1985

‘Chapter 1

Chapter 2

YNNI AAAOPDPOO S

[S G P G (G G G G [i O S e T T e e G G O N N N
1

O oo~

Table of Contents

Overview

Chapter Contents
Prerequisities
Hardware Installation
Software Installation
HP-UX Knowledge
BASIC Knowledge
What's In This Guide?
What this Guide Contains
How Is It Organized
What this Guide Does Not Contain
How to Read This Guide
Use the Overviews
Chapter Previews
Chapter 1: Overview
Chapter 2: Program Development
Chapter 3: Program Structure and Flow
Chapter 4: Numeric Computation
Chapter 5: String Manipulation
Chapter 6: User-Defined Functions and Subprograms
Chapter 7: Error Handling
Chapter 8: Debugging Programs
Chapter 9: Communicating with the Operator
Chapter 10: Using the Clock and Timers
Chapter 11: Data Storage and Retrieval
Chapter 12: Binary Programs
Chapter 13: Graphics

2-1
2-2
2-3
2-4
2-6
2-6

Program Development
Chapter Contents
General Steps in Program Development
Sample Development Session
Step 1: Understand and Describe the Problem
Step 2: Outline the Solution

Maintain Proper Perspective

2-6
2-7
2-8
2-8

Let the Data Structure the Algorithms
Step 3: Design, and Then Refine
Step 4: Code the Program
Elements of a BASIC Program
Keywords
Statements
Program Lines
Programs
Data Types
Functions
Subprograms
Binary Programs
Commands (Not Part of Programs)
Back to Step 4
Data Structure
Algorithm
A Coded Program Segment
Mechanics of Program Development
Global Program Editing
Inserting Lines
Deleting Lines
Renumbering a Program
Scanning for Literals
Renaming Variables
Copying and Moving Program Segments
Moving Lines with the Technical BASIC Editor
Moving Lines with the MERGE Command
Moving Lines with the HP-UX vi Editor
Step 5: Debug and Test
Step 6: Document and Support
Internal Documents
Internally Self-Documenting Programs
Relevant Features
A Comparison
General Suggestions on Comments
Indenting
External Documentation
Externally Self-Documenting Programs
External User Documents

Chapter 3 Program Structure and Flow

3-1 Chapter Contents
3-2 The Program Counter

3-3 Types of Program Flow

3-4 Sequences of Program Segments

3-4 Linear Flow

3-4 Halting Program Execution

3-5 STOP and END

3-6 PAUSE

3-7 Simple Branching

3-7 Using GOTO

3-8 Using GOSUB
3-12 Selection of Program Segments
3-12 An Example
3-12 Types of Conditional Execution
3-13 Conditional Execution of One Segment
3-14 Prohibited Statements
3-14 Conditional Branching
3-15 Multiple-Line Conditional Segments
3-16 Choosing One of Two Segments
3-17 Choosing One of Many Segments
3-20 Repetition
3-20 Fixed Number of Iterations
3-23 Conditional Number of Iterations
3-25 Arbitrary Exit Points
3-27 Event-Initiated Branching
3-28 Types of Events
3-29 An Example of Using Softkeys
3-31 Deactivating Events
3-34 Chaining Programs
3-34 General Features
3-34 A Simple Example
3-35 Program-to-Program Communications
3-36 A Closer Look at Program Execution
3-36 Prerun (RUN and INIT)
3-37 Normal Program Execution

3-38 Non-Executed Statements

Chapter 4

vi

4-1
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-6
4-8
4-9
4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-16

417

4-18

4-18

4-20

4-20

4-20

4-21

4-21

4-23

4-23

4-25

4-25

4-26

4-27

4-28

Numeric Computation

Chapter Contents
Assigning Values to Variables
Numeric Variable Names
Numeric Data Types
REAL Numbers
SHORT Real Numbers
INTEGERs
Declaring a Variable’s Data Type
Implicit Type Declarations
Evaluating Scalar Expressions
Arithmetic Hierarchy
Operators
DIV and MOD
Expressions, Calls, and Functions
Strings in Numeric Expressions
Step Functions
Making Comparisons Work
Range Limits
Rounding
Binary Operations
Resident Binary Functions
Number-Base Conversions
Converting from Decimal
Converting to Decimal
Trigonometric Functions
Resident Trigonometric Functions
Random Numbers
Scaling
A New Seed
Miscellaneous Numeric Functions

Resident General Numeric Functions

Arrays
Array Concepts
Dimensioning Arrays
Array Subscripts Bounds
Declaration Statements
Implicit Dimensioning
Array Variable Names

4-29
4-29
4-33
4-35
4-39
4-40
4-42
4-43
4-43
4-45
4-46
4-47
4-50
4-54
4-56
4-57
4-61
4-62
4-63
4-63
4-64
4-66
4-67
4-70
4-72
4-77

Assigning Values to Individual Elements

Displaying and Printing Entire Arrays
Using Images

Redimensioning Arrays

Assigning Values to an Entire Array

Assigning Values from the Keyboard
Assigning Values from a DATA Statement
Assigning the Same Value to Every Element

Constant and Zero Matrices
The Identity Matrix
Copying Subarrays

Several Examples of Copying Subarrays

Summary of General Rules

A Special Case: Empty Arrays
Scalar Arithmetic Array Operations
Summing Rows and Columns

General Rules
Array Transpose
Matrix Multiplication

An Example

Another Example

Transposing before Multiplying
Vector Cross Product
Inverting a Matrix
Solving a System of Linear Equations
Additional Array Functions

Chapter 5

5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-4
5-4
5-4
5-5

String Manipulation

Chapter Contents
What is a String?

Assigning Values to String Variables
String Variable Names
String Variable Lengths
Dimensioning String Variables
Simple String Variable
String Array

Evaluating String Expressions

Evaluation Hierarchy
String Concatenation

vii

Chapter 6

viii

5-5
5-6
5-6
5-7
5-7
5-9

5-9
5-11
5-13
5-15
5-15
5-15
5-16
5-17
5-17
5-18
5-18
5-19

Relational Operations
Substrings

Single-Subscript Substrings

Double-Subscript Substrings

Special Considerations
String-Related Functions

String Length

Substring Position

String-to-Numeric Conversion

Numeric-to-String Conversion
String Functions

String Reverse

String Repeat

Trimming a String

Lettercase Conversion

User-Defined String Functions
String Arrays

Dimensioning String Arrays

String Expressions and Operations

6-1
6-1
6-2
6-2
6-3
6-3
6-4
6-5
6-5
6-6
6-7
6-7
6-7
6-9
6-11
6-11
6-12
6-13

User-Defined Functions and Subprograms

Chapter Contents
User-Defined Functions
Review of Resident Functions
Introduction to User-Defined Functions
Example Constant Function
Passing Parameters to Functions
Parameter Lists
An Example Multiple-Line Function
Functions and Local Variables
Formal Parameter Data-Type Declarations
Limitations
Introduction to Subprograms
Simple Examples
Benefits of Using Subprograms
Difference Between Functions and Subprograms
Creating and Calling Subprograms
Checking Memory Contents
Entering a Main Program

- 6-14
6-15
6-16
6-16
6-17
6-17
6-17
6-17
6-18
6-19
6-20
6-20
6-22
6-22
6-24
6-25
6-26
6-28
6-29
6-32
6-32
6-33
6-33
6-33
6-33
6-35
6-35
6-36
6-36
6-37

Entering a New Subprogram
A Note about Naming Subprograms
Entering a New Subprogram
Storing the Subprogram
Entering and Storing the Second Subprogram
Running the Program
Subprograms Are Automatically Loaded
Deleting a Subprogram
Explicitly Loading Subprograms (For Editing)
Program/Subprogram Communication
Passing Parameters
Parameter Lists
Methods of Passing Parameters
Example of Passing by Reference
Example of Passing by Value
When Are Pass Parameter Types Declared?
Optional Pass Parameters
Using COM Variables
COM Characteristics
Using System Flags
General System Flag Features
Setting Flags
Reading Flags
Clearing Flags
Accessing System Flags as a String
Passing Flags to Chained Programs
Memory Management with Subprograms
Context Switching
Global Declarations
Local Declarations

Chapter 7 Error Handling

7-2 Chapter Contents
7-2 How the System Handles Errors

7-2 Errors in Keyboard Calculations
7-3 Run-Time Errors
7-3 Anticipating Operator Errors
7-4 Boundary Conditions
7-5 REAL Numbers and Comparisons
7-6 Trapping Errors
7-6 Setting Up the Error Branch
7-7 Determining Error Number and Location
7-8 Error Subroutines
7-8 Displaying the System Error Message
|
Chapter 8 Debugging Programs

8-2 Chapter Contents
8-2 Whence Cometh Bugs?

8-3 A Model of the Software Development Process
8-4 Methods of Debugging Programs
8-4 Walk-Throughs
8-4 Algorithm Walk-Throughs
8-5 BASIC Code Walk-Throughs
8-5 Printed Records of Debugging
8-5 Cross References
8-5 Where Are Variables Used?
8-7 Where Are Program Lines Referenced?
8-7 Program Traces
8-8 Tracing Branches
8-9 Tracing Variable Assignments
8-11 Tracing All Flow and Variables
8-12 Returning to Normal Execution
8-12 Pausing Program Execution
8-12 Setting Breakpoints with PAUSE
8-14 Accessing Variables from the Keyboard
8-15 Executing Commands and Statements
8-15 Continuing Program Execution
8-15 Single-Stepping a Program

8-17 Software Testing
8-18 Testing the Example Program

Chapter 9

9-1
9-2
9-2
9-2
9-2
9-3
9-3
9-4
9-4
9-5
9-5
9-5
9-6
9-6
9-8
9-11
9-11
9-12
9-13
9-14
9-14
9-15
9-16
9-16
9-17
9-18
9-19
9-21
9-22
9-24
9-24
9-25
9-25
9-27
9-28
9-29
9-29
9-32
9-33
9-35

Communicating with the Operator

Chapter Contents
Overview
A Simplified Model
Communications Devices
Other Factors
Importance of the Human Interface
General Design Suggestions
Sending Messages to the Operator
Sending Audio Messages
Generic Beeps
Varying Tones
Displaying Messages on the Alpha Screen
The Essence of Displaying Messages
Which Device Is the Display Screen?
Determining Display Capabilities
Clearing the Screen
Turning Off Unwanted Modes
Positioning the Cursor
Determining the Cursor’s Location
Turning the Cursor On and Off
Displaying Blank Lines
Printers
A Typical Printer’s Character Set
Control Characters
Escape-Code Sequences
Formatting Information
Using Images
Numeric Image Specifiers
String Image Specifiers
Additional Image Specifiers
Accepting Messages from the Operator
Types of Keyboard Inputs
Softkeys
Alphanumeric Input Methods
Anticipate Common Problems
Error Trapping Simplifies Input Routines
The Two High-Level Input Methods
Enabling and Disabling Keys
Low-Level Keyboard Input Routines
Reading Text from the Screen

xi

Chapter 10 Using the Clock and Timers

10-1 Chapter Contents
10-2 Using the Clock

10-2 Reading the Date
10-2 Reading the Time of Day
10-3 Time and Date Format Conversions
10-3 Time: Numeric to String Conversions
10-4 Time: String to Numeric Conversions
10-4 Date: Numeric to String Conversions
10-5 Date: String to Numeric Conversions
10-5 Timing the Interval Between Events
10-6 Using the Timers
10-6 Timer Interrupts
10-6 Cycle and Delay Interrupts
10-8 Simulated Time-of-Day Interrupts
10-9 Timer Functions
10-11 Timers and Subprograms
10-11 Timer Interrupts While Not Executing a Subprogram
10-13 Timer Interrupts While Executing a Subprogram
I
Chapter 11 Data Storage and Retrieval

11-2 Chapter Contents
11-2 Storing Data in Programs

11-2 Storing Data in Variables

11-3 Data Input by the User

11-4 Using DATA and READ Statements

11-4 Storing Data

11-5 Retrieving Data

11-6 The Data Pointer

11-6 Examples

11-6 Storage and Retrieval of Arrays

11-7 Moving the Data Pointer

11-8 Using BASIC/DATA Files

11-8 Brief Mass Storage Tutorial
11-10 Introduction to BASIC/DATA File Access Techniques
11-10 Methods of Accessing Data Files
11-10 Example of Writing Serially to a File

xii

Chapter 12

11-12
11-14
11-14
11-15
11-17
11-17
11-19
11-19
11-23
11-23
11-24
11-24
11-26
11-28
11-28
11-29
11-29
11-31
11-31
11-32

Example of Serially Reading from a File
A Closer Look at BASIC/DATA File Access

File and Record Size Calculations
Records and Blocks
The File Pointer
File Buffers
A Closer Look at Serial Access
Serial Write Operations
Extending Serial Files
Serial Read Operations
Random File Access
Random Writing
Random Reading
Determining Data Types
Data-Type Field Values
Sensing EOF and EOR Conditions
Trapping EOF and EOR Conditions
Using text/data Files
Writing to a text/data File
Reading from a text/data File

12-1
12-2
12-2
12-3
12-6
12-7
12-8
12-8
12-9
12-11
12-14
12-17
12-17
12-17
12-17

Binary Programs

Chapter Contents
Overview
A Simple Example
An Example C Binary
Summary
Additional Considerations
C Binaries
Passing Simple Numeric Parameters
Passing Numeric Array Parameters
Passing Simple String Parameters
Passing String Arrays
Restrictions
Device I/O Is NOT Supported
Examples of File /O
Calling C Binaries that Access Files

xiii

Chapter 13 Graphics

13-1 Chapter Contents
13-2 Raster Graphics

13-2 Determining Your Screen’s Capabilities
13-2 Selecting and Initializing the Output Device
13-3 An Example
13-4 Coordinate Systems
13-4 The Default Coordinates and Scale: Graphics Units (GU’s)
13-5 Aspect Ratio
13-6 User Units
13-6 Axes and Grids
13-9 Pens and Background
13-9 Monochromatic Pens
13-9 Clearing to a White Background
13-9 Line Types
13-11 Moving the Pen
13-12 Pen Control with PLOT
13-14 Relative Plotting
13-15 Incremental Pen Positioning
13-16 Labeling the Image
13-19 Storing and Retrieving Raster Images
13-20 Limits and Scaling
13-20 Physical Limits
13-20 Graphics Limits
13-21 Default Graphics Limits
13-21 Scaling Maps into the Graphics Limits
13-23 Moving the Graphics Limits
13-24 Scope of LIMIT Statements
13-24 Range of Graphics Limit Parameters
13-25 Another Look at the Ratio Function
13-26 Scaling the Plotting Area
13-26 Graphics Units Scale
13-28 User Units Scale
13-31 Millimetre Scale
13-34 Changing Units: SETGU and SETUU
13-36 Plotting Boundaries
13-37 LOCATE Boundaries
13-41 CLIP Boundaries
13-43 Unclipping Plotting Boundaries
13-46 Reflecting Images

Xiv

13-47
13-47
13-49
13-52
13-53
13-53
13-53
13-54
13-54
13-54
13-54
13-55
13-57
13-58
13-58
13-58
13-59
13-62
13-62
13-65
13-66
13-68
13-69
13-70
13-71

Using BPLOT and BREAD
Byte Plotting: BPLOT
Building the BPLOT String
Byte Reading: BREAD
Other Output Devices
Graphics Defaults Restored
Specifying a Plotter
Interface Select Code
Primary Address
Device Selector
Considerations
Graphics Using HPGL Commands
Graphics with Printers
Interactive Graphics
Compatible Devices
Digitizing Graphics Images
Digitizing Graphics Limits and Plotting Bounds
Digitizing Pen Locations
Physical and Logical Pens
Digitizing the Physical Pen Location
Digitizing Images on the Integral PC Raster
Using DIGITIZE and CURSOR
Tracing Graphics Images
An Exercise in Tracing
Digitizing the Logical Pen Location

Xv

Xvi

Overview

Chapter Contents

The HP-UX Technical BASIC system runs on the HP-UX oper-
ating system. It is a robust BASIC language, containing a
generous complement of capabilities.This guide describes
how to develop Technical BASIC programs. It covers the range
of topics from designing algorithms through writing advanced
BASIC programs. Before getting into the technical details of
the system, however, you can benefit from looking at what is
in this chapter and in this guide.

This chapter covers these topics:

m Necessary prerequisites for using this guide.

® A description of what’s in this guide.

Overview 1-1

Prereq uisites Here are the prerequisites that you must meet before using the
HP-UX Technical BASIC system:

m Hardware must already be installed.

m Both HP-UX and Technical BASIC software must already be
installed.

m Previous experience with HP-UX (or UNIX') and BASIC will
be helpful, although not a formal prerequisite.

Hardware Al hardware must have already been installed. If not, refer to
Installation the installation manual for your model of computer.

Software The HP-UX system and the Technical BASIC system must
Installation have already been installed onto your disc. If the BASIC sys-
tem is not already installed, refer to the HP-UX manuals for

your particular system.

HP-UX Knowledge Although this guide assumes that you have had some pre-
vious programming experience and a knowledge of UNIX or
HP-UX, you need not have a high level of skill in either area.

In order to use Technical BASIC on the HP-UX operating
system, you should be familiar with the following topics:

® How to log in and out of HP-UX (relevant only with multi-
user HP-UX systems).

u How the HP-UX file system is structured.

Background information on using HP-UX can be found in the
the manuals supplied with your HP-UX system.

1 UNIX is a trademark of AT&T Bell Laboratories

1-2 Overview

BASIC Knowledge

This Programming Guide discusses only the Technical BASIC
language; it does not describe using the Technical BASIC sys-
tem. For instance, it describes writing programs using the
language’s features; however, it does not discuss using the
system to store the program in a file, get a printed listing of the
program, or run the program. Such operations are described in
the Getting Started manual for Technical BASIC on your par-
ticular HP-UX system. If you have not yet read that manual,
you should do so before getting very far into the details of this
guide.

If you have never programmed a computer before, you will
probably be more comfortable starting with one of the many
beginner’s BASIC text books available from various publishing
companies. However, some beginners may find that they are
able to start in this guide by concentrating on the fun-
damentals presented in the first few chapters.

If you are a programming expert or are already familiar with
the BASIC language of other HP desktop computers, you may
start faster by going directly to the HP-UX Technical BASIC
Language Reference and checking the keywords you normally
use. If you don’t find the keywords you expect to find, then
refer to the Table of Contents or Index for the appropriate
topic.

Once you have satisfied the above prerequisites, you are ready

to being using Technical BASIC on the HP-UX operating
system.

Overview 1-3

What’s In This
Guide?

What this Guide
Contains

How Is It Organized

1-4 Overview

This section describes the contents of this guide. It discusses
these topics:

What this guide contains

How it is organized

What it does not contain

® How to read the guide

Previews of each chapter

This guide provides programming techniques, helpful hints,
and explanations of capabilities. It mainly consists of examples
of BASIC algorithms used to perform programming tasks. Any
BASIC statements appropriate to the topic being discussed are
included in each chapter, whether they have been previously
introduced or not.

The explanations and programming hints in this guide are
organized topically. It reflects the organization of a well-
written program: A program performs various “sub-tasks’ as
it completes its overall job, so many of these tasks can (and
should) be viewed separately to be understood more easily
and used more effectively. Here are two examples:

m Perhaps you have reduced your favorite formula to program
form and now want a graph of the results. You will find a
chapter called ““Graphics” that explains many ways to
generate plots and graphs.

® Perhaps you have experience in another programming lan-
guage. You know exactly what a “loop” does, but you
didn’t find the statement you were looking for in the HP-UX
Technical BASIC Language Reference. In the chapter on
“Program Structure and Flow”, there is a section called
“Repetition”” which explains the kinds of loops available
and all the statements needed to create them.

What this Guide
Does Not Contain

How to Read This
Guide

This guide is not a rigorous description of the BASIC language;
that is provided by the HP-UX Technical BASIC Language
Reference. Because it is organized by topics and concepts, it is
not a good place to find an individual keyword in a hurry.
Keywords can be found using the index, but even so, they are
often imbedded in discussions, contained in more than one
place, or only partially explained.

Also, this is not a good place to find complete syntactic details.
Program statements are often presented only in the form that
applies to the specific concept being discussed, even though
there may be other forms of the statement that accomplish
different purposes. If you want to quickly find the complete
formal syntax of a keyword, use the language reference. It is
specifically intended for that purpose.

All readers should read this “Overview” chapter. Since you
are now reading this discussion, you will have already learned
much about the Technical BASIC documentation set. Whether
or not you decide to read any of the other chapters of this
manual, you will definitely benefit from reading the rest of this
chapter.

Once you have finished reading the subsequent “’Chapter
Previews” section, you should realize that many of the keys to
designing Technical BASIC programs are revealed in the chap-
ter called “Program Development.” All readers should read
that chapter also.

Once you feel comfortable using the system, you may choose
to read only the chapter(s) and section(s) that are relevant to
your programming tasks. Since most users will not read this
guide from cover to cover anyway, this approach should not
present any significant problems. In those cases when you
have difficulty getting the meaning of certain items from con-
text, consult the Index to find additional information about
that topic.

Overview 1-5

Chapter Previews

1-6 Overview

Use the Overviews We have attempted to provide many “over-
views”” and “previews” so that you can determine the contents
of a chapter or section and then decide whether or not to read
them. For instance, most introductions to chapters and sec-
tions provide a “bulleted list” of what the subsequent text
describes. Here is an example:

Bulleted lists provide the following features:

s They “stand out” visually, allowing you to scan text and
easily find them.

m They provide a way of quickly delimiting several key points.
m They allow you to maintain a “global” view, rather than
getting bogged down in details.

These lists will help you to more quickly learn the material
provided in the text, as well as steer you around sections that
are irrelevant to you at a particular time.

The following is a preview of each chapter in this guide.
Chapter 1: Overview

This chapter (the one you are now reading) covers the neces-
sary prerequisites for using this guide and a description of
each chapter.

Chapter 2: Program Development

This chapter discusses the overall process of developing prog-
rams. It briefly discusses the steps in designing, coding, de-
bugging, and supporting programs.

Chapter 3: Program Structure and Flow

This chapter describes how you can tell a program to make

decisions and then execute the corresponding part(s) of your
program.

Chapter 4: Numeric Computation

This chapter covers mathematical operations and the use of
numeric variables. It includes discussions on types of vari-
ables, expression evaluation, arrays, and methods of manag-
ing memory.

Chapter 5: String Manipulation

This chapter explains the programming tools available for
processing strings. Strings are characters, words, and text.
Since words are more pleasant than numbers to humans,
skillful use of strings can make the input and output of prog-
rams much more natural to those using the programs.

Chapter 6: User-Defined Functions and Subprograms

This chapter discusses an outstanding feature of this language
— its ability to call other program contexts and the speed with
which it can do so. Alternate contexts, or environments, are
available as user-defined functions or subprograms.

Chapter 7: Error Handling

This chapter discusses techniques for intercepting or trapping
errors that might occur while a program is running. Many
errors can be dealt with easily by a well written program. Error
trapping keeps the program running and provides valuable
assistance to the computer operator.

Chapter 8: Program Debugging

This chapter explains the powerful debugging features avail-
able on the Technical BASIC system. We all wish that every
program would run perfectly the first time and every time.
Unfortunately, there is little evidence in real life to support
that dream. The next best thing is to get the computer to do
most of the debugging work for you.

Overview 1-7

1-8 Overview

Chapter 9: Communicating with the Operator

This chapter provides suggestions and techniques for provid-
ing information to and receiving it from a person who is using
the computer. For instance, it discusses techniques useful for
creating organized, highly readable printouts on printers and
display screens.

Chapter 10: Data Storage and Retrieval

This chapter shows many of the alternatives available for stor-
ing the data that is intended as program input or created as
program output. The two main means for storing and retriev-
ing data are program files and mass storage data files.

Chapter 11: Program Debugging

This chapter explains the powerful debugging features avail-
able on the Technical BASIC system. We all wish that every
program would run perfectly the first time and every time.
Unfortunately, there is little evidence in real life to support
that dream. The next best thing is to get the computer to do
most of the debugging work for you.

Chapter 12: Graphics

This chapter discusses the techniques of programming with
graphics and how they are very useful for displaying data in a
form that humans easily understand.

Chapter 13: Binary Programs

This chapter explains how to make calls to programs written in
other languages from Technical BASIC programs.

Chapter Contents

Program Development

There are several stages in the design and development of
programs: determining what is required; outlining algorithms
and data structures; translating the algorithms and data struc-
tures into BASIC statements (coding); checking to see that the
program works without errors (debugging); documenting the
program; and supporting and enhancing it.

There are also several steps in the mechanics of program
development once you begin coding the program: entering,
storing, listing, and editing it.

This chapter contains the following areas of program develop-
ment:

m General steps in program design and development
m Sample development session
Step 1: Understand and describe the problem
Step 2: Outline a solution

Step 3: Design data structures and algorithms, then
refine

Step 4: Code the program
m Mechanics of Program Development
m Global program editing

m Sample development session (cont.)
Step 5: Debug and test the program

Step 6: Document and support the program

Program Development 2-1

General Steps in This section describes the general steps that you will take as
Prog ram you develop programs. The following sections in this chapter

and manual show how to apply them.
Development PPy

1. Understand and describe the problem. You cannot de-
sign a solution to a problem without clear understanding
of the problem. You must get a clear grasp of these two
elements:

a. What action the program is required to perform.

b. What data it will be given or will compute.

1. Even though this step sometimes seems trivial or ob-
vious, taking time to methodically describe it may sim-
plify the design process immensely.

2. Outline the solution. This phase initially consists of ver-
bally describing what steps your program will take to
solve the problem. At this point, splitting up the prog-
ram’s responsibilities into various tasks is very impor-
tant, especially if each task is to be written by a different
programmer. Interactions between various tasks are also
important.

3. Design algorithms and data structures, and then refine.
The algorithms that you design (or choose from comput-
ing literature) will consist of the individual steps that
your program will take. The data structures required may
be global or applicable to only one or two steps of the
overall solution.

The “refine” part of this step suggests the highly effective
approach of beginning with large tasks and then breaking
each one up into smaller tasks. You can keep repeating
this approach on each subtask, until you have broken the
problem up into a set of rudimentary steps.

4. Code the data structure and algorithms. This step in-
volves translating the data structure and algorithms de-
fined in earlier steps into the programming language that
you will be using — in this case, BASIC. This guide gives
several examples of programs and code segments which
are implementations of various algorithms.

2-2 Program Development

5. Debug and test the program. Debugging a program in-
volves getting the program to run without crashing and
giving you BASIC error messages like
Error 56: STRING OVF. Testing a program involves
making sure that it does what you want it to do. Ideally,
you should be able to test each separate “module” of
your program independently, which is sometimes called
“bottom-up’’ testing. The chapter called “Debugging
Programs’” discusses these topics in greater detail.

6. Document and support it. Documenting the program
involves telling both the program’s users and its future
supporters what the program does. See the section of this
chapter called “Documenting Your Programs’ for further
details. Support involves fixing bugs and enhancing the
program.

Sample
, Development
Session

The remaining sections of this chapter, and some subsequent
chapters, show how to apply the suggestions in the preceding
section in developing a simple ““budget” program. Seeing that
the suggestions really work will help you to have faith in them
and begin to apply them.

Program Development 2-3

]
Step 1:
Understand and
Describe the
Problem

2-4 Program Development

As you begin to conceptualize your budget program, one of
the first question you might ask is, “What is abudget for?”” The
answer is that it is an attempt to evaluate present income and
spending for the purpose of planning and controlling future
income and spending. OK. But how does it help you accom-
plish these two tasks? Here some things that will help you to
evaluate present income and expenses.

1. Determine target income and expenses.
2. Determine actual income and expenses.

3. Calculate the differences between the targets and actuals.

For simplicity, using this information in planning and con-
trolling future income and spending will not be part of the
program'’s responsibility.

Now that the program’s action has been generally defined,
you are ready to ask the second question: “What data is re-
quired?” Here is an example of the data that the user will
supply to the program (also known as input data):

Incaome
Catedory Tardet Actual
Pavroll 1680,56 1680,56
Investments 345,67 2890.32
Expenses
Catedory Tardet Actual
Mortdade 654,32 634,32
Taxes 432410 432,10
Insurance 123,45 123.45
Food 432,00 301.81
Medical 75,00 125,80
Transportation 185,00 134,32
Education 100,00 95,00
Entertainment 73,00 898,55

~—

Alphanumeric data will be used in the “Category”’ column;
with BASIC, this data type is also known as string data. The
data in the “Target”” and ““Actual” columns will be real num-
bers.

Here is an example of the data that the program will compute
and display for the user (also known as output):

Income Difference
Catedory $ %
Pavraoll 0,00 0
Investments - 553,35 - 16

Total difference - 35,3

n

Exrenses

Difference

Catedory $ A

Mortgade 0,00 0
Taxes 0,00 0
Insurance 0,00 0
Food + BY.81 + 16
Medical + 30,90 + GB
Transportation - 30,68 - 19
Education - 3,00 - 5
Entertainment + 23,35 + 31

Total difference +108,38

Met Savinds Derpsit
(Withdrawal) (163.83)

The “$ differences’” will be represented as real numbers, since
it may be important to keep track of cents as well as dollars.
The “% differences” can be integers, since 1% resolution is
probably adequate.

Now that you understand and can describe the problem, both

in terms of what it does and what data is required, you are
ready to begin creating the solution.

Program Development 2-5

Step 2: Outline Here are the general steps that a program can take to solve the
the Solution problem:

1. Show you the target income and expenses (for all cate-
gories).

2. Ask you for the actual income and expenses (for each
category).

3. Compute the differences between target and actual (for
each category).

4. Show you the results (for all categories).

5. Compute the difference between total income and total
expenses.

6. Show you the net deposit to (or withdrawal from) your
savings.

Maintain Proper At this point, you should not get into the details of any step;
Perspective just stick to the broad perspective. You will be getting into
more details in the next step. By hiding the details of each step
in a procedure, you can more easily understand what is hap-
pening in the procedure (and consequently maintain better

control of it).

Let the Data You can now begin to see that the steps are more or less

Structure the structured according to the data that you have. This is in fact

; one of the most important principles that you can use in

Algorithms designing your programs: Let the structure of the data deter-
mine the structure of the algorithms.

2-6 Program Development

]
Step 3: Design,
and Then Refine

You have shown what general steps the program will take to
solve the problem, but you have not yet described the proce-
dure explicitly enough for a computer to understand what you
want it to do (at least not for the Technical BASIC language).
The next step is to take each of these general steps and begin to
refine it, or break it down into smaller and smaller tasks.

For brevity, let’s take the first step:

1. Show you the target income and expenses (for all cate-
gories), and break it down into smaller steps.

a. For each income category:
i. Determine the target income value.

ii. Display the category name and target value.

b. For each expense category:
i. Determine the target expense value.

ii. Display the category name and target value.

With this level of detail you can begin translating the algorithm
into BASIC code.

Program Development 2-7

Step 4: Code the
Program

Elements of a
BASIC Program

BEEP
DISP "THIS IS A STATEMENT"

INPUT Income

LET Expense=10

2-8 Program Development

This section consists of two parts:

= The first part gives a brief description of the fundamental
building blocks of a BASIC program.

m The second part, called “Back to Step 4,” presents a BASIC
program.

If you already know another version of BASIC, or other prog-
ramming language, then you may want to skim the first sec-
tion, called “Elements of a BASIC Program.”’

This section describes the fundamental building blocks of
Technical BASIC programs. These terms and concepts will

prepare you for translating your data structure and algorithms
into BASIC code.

Keywords A keyword is a group of characters that is under-
stood by the BASIC language system to invoke some prede-
fined action. Examples of keywords are BEEP, DISP, INPUT,
and LET.

Statements A statement is a keyword (sometimes optional)
followed by any parameters, lists, specifiers, and secondary
keywords that are allowed with that keyword. These are ex-
amples of statements:

Tells the computer to produce a short beep.

Tells the computer to display the message “THIS IS A STATE-
MENT” on the screen.

Tells the computer to allow the user to enter a value (from the
keyboard) into the numeric variable named Income.

Tells the computer to assign a value of 10 to the numeric
variable named Expense.

lﬁ

Note that the notation used in this guide is to print the
statements that you can actually type into the computer in
a special dot-matrix font.

Program Lines A program line contains a line number fol-
lowed by at least one BASIC statement. Here are two legal
program lines.

10 PRINT "THIS IS A PROGRAM LINE"
20 END I 80 IS THIS

Line 10 prints the characters between the quotes, while line 20
indicates the end of the program. The text following the END
statement on line 20is a comment; it is separated from the END
statement with the exclamation point.

You can place several statements on a single program line by
separating them with @ character.

10 PRINT "THIS IS A " @ PRINT "PROGRAM LINE"

A line number may be optionally followed by a line label. A
line label is a name that is placed after the line number and is
terminated by a colon (:).

20 Done: END ! 50 IS THIS

The subsequent section called “Documenting Your Programs”
further describes using comments and line labels.

Programs In Technical BASIC, a program is a list of program
lines, usually with an END statement on the last line. The two
following program lines define a program.

10 DISP "THIS IS A PROGRAM LINE"
20 END ! S0 IS THIS

Program Development 2-9

2

The maximum length of a program line entered from the
keyboard is 159 characters'. Note that you should check the
Implementation Specifics appendix for your particular HP-UX
Technical BASIC system.

Data Types With Technical BASIC, there are two general pre- '
defined types of data: numeric and alphanumeric (or
“string”’). And within the numeric data category, there are two
divisions: real® numbers and integers. Here are examples of
each.

Here are examples of creating storage locations, called vari-
ables, for these fundamental types of data.

String Real Integer Short
a 1.2 16 —-1.987
Word 1E + 300 32767 1E+10
MORE letters

DIM StrindgVar$lZ0] Declares a simple variable named StringVar$ to be of type
string, and allocates a storage space of size 20 characters for it.

INTEGER WholeNumber Declares a simple variable named WholeNumber to be of type
INTEGER, and allocates the corresponding amount of mem-
ory for it.

SHORT ShortReal Declares a simple variable named ShortReal to be of type

SHORT, and allocates the corresponding amount of memory
for it. Note that real variables of type SHORT are stored in half
the memory that it takes for a variable of type REAL.

REAL LongReal Declares a simple variable named LongReal to be of type

2-10

REAL, and allocates the corresponding amount of memory for
it.

1 BASIC program lines longer than 159 characters can be created using another
editor and then retrieved with the GET statement; however, only the first 159
characters will be stored on the line.

2 With HP-UX Technical BASIC, there are actually two pre-defined representations
of real numbers: REAL and SHORT. The difference between the two is the range
of values that they can represent. See the chapter called “Numeric Computation”
for further details.

Program Development

REAL RealArray(10)

Declares an array variable named RealArray to be of type
REAL, and allocates the corresponding amount of memory for
it. The array structure in BASIC is a group of variables, each of
which has the same data type and variable name. Each variable
in the array is specified by an index value; for instance, the 4th
element is RealArray(4), if OPTION BASE 1 is in effect. Note
that OPTION BASE determines the lower bound(s) of a
numeric or string array’s subscript(s); the default is OPTION
BASE 0.

You can also use these fundamental types to implement your
own data types, if you wish.

Functions Functions perform operations that always return a
value. The Technical BASIC system provides two types of
functions:

m Resident — provided by the system.

m User-defined — you can implement these yourself.

Resident functions are part of the BASIC language. For inst-
ance, SIN(PI/2) and CHR$(10) are examples of calling the
resident functions SIN and CHRS$, respectively. Resident func-
tions are discussed in the “Numeric Computations” and
“String Manipulations’ chapters.

You can implement your own user-defined functions to pro-
vide any function you desire. These types of functions are
described in the “User-Defined Functions and Subprograms”
chapter.

Subprograms Subprograms also perform operations, but they
do not necessarily return a value. Like programs, subprog-
rams are also lists of program lines, but they can be stored
independently and “’called” from a main program or another
subprogram. Each is also stored in its own portion of BASIC
memory, which is separate from the main program. Here is a
simple example subprogram:

100 SUB "FirstSub"
110 DISP "This is displaved by ‘FirstSub’,"
120 SUBEND

Program Development 2-11

2-12 Program Development

Here is how you can call it from a main program.

100 CALL "FirstSub”

Subprograms are a useful programming tool, but the compu-
ter is capable of running just fine without them. Subprograms.
are covered in depth in the chapter called ““User-Defined Func-
tions and Subprograms”.

Binary Programs The Technical BASIC system has the capabil-
ity of loading and calling “’binary programs”. The term “’binary
programs” is used to identify programs that are stored in the
“machine” language used by the computer’s central proces-
sor, rather than in a high-level language like BASIC. Thus,
binary’’ programs can be run directly by the processor, rather
than having to be translated from the high-level language into
machine language.

The usual purpose of a binary program is to add capabilities to
the language of the computer. In this respect, the computer’s
operating system and the Technical BASIC system might be
considered “binary programs”’. However, they cannot be
accessed using the CALLBIN statement. For further details
read the “Binary Programs” chapter.

Commands (Not Part of Programs) Commands are like state-
ments in that they consist of a keyword, and sometimes
appropriate parameters; however, they cannot be stored in a
program line — you can only execute them from the keyboard.
Examples of commands are DELETE and SCRATCH.

Back to Step 4

Now that you have seen the building blocks of a program, you
are ready to begin translating it into BASIC language code. For
convenience, here are copies of the data structure and algor-
ithm from the solution presented earlier. The translation into
BASIC code follows:

Data structure:

Income
Catedory Tardet
Pavroll 1680.,56
Investments 345,67
Algorithm:

a. For each income category:
i. Determine the target income value.

ii. Display the category name and target value.

A Coded Program Segment Here is one way of implementing
the data structure and algorithm. (Don’t be concerned if you
don’t understand every line of the program right now; each
line is explained after the program listing.)

100 ! Allocate memory for data storade,
110 OPTION BASE 1

120 DIM IncomeName$(2)

130 REAL TardetIncome(2)

140 !

150 ' Ascidgnm values to variables.

160 LET IncomeName$(l)="Pavroll"

170 LET IncomeName$(2)="Investments"”

180 LET TardetIncome(1)=1GB0 .00

190 LET TardetIncome(2)=345,67

200 1

210 DISP " Catedory Target"
220 DISP "e-meeemeee e "

230 DISP IncomeMame#$(1)sTardetIncome(1l)
240 DISP IncomeName$(2)sTardetIncome(Z)

Program Development 2-13

2-14 Program Development

Here are the results of running the program:

Catedory Tardet
Pavroll 1680
Investments 345,867

Here is a line-by-line description of what the program does.
You can skip the explanation if you already understand what is

happening.

Line 100 is a comment. It is a way for the programmer to
describe what he is doing in the program; they help him to
understand what the program is doing the next time that he
edits it. It is especially useful when he, or someone else, must
modify the program a long time later.

Line 110 defines the lower bound of array element indexes. In
this case, a value of 1 dictates that the first element of an array
is specified with an index value of 1; e.g., IncomeName$(1).
OPTION BASE 0 indicates that the first element would be
specified with an index value of 0; e.g., IncomeName$(0).

The DIM statement on line 120 declares the string variable
named IncomeName$, and allocates memory for it. In this
case, the (2) specifies that it is an array variable with 2 elements
(1st, and 2nd) which are both string variables.

The REAL statement on line 130 performs the same function
for the real array called Actuallncome.

Lines 140 and 150 are also comments.

The LET statement on line 160 stores the characters “Payroll”
in element 1 of the string array variable named IncomeName$.
Line 180 performs a similar function for element 1 of the REAL
array named TargetIncome. Lines 170 and 190 perform similar
operations for element 2 of the respective arrays.

Line 200 is another comment.

Mechanics of
Program
Development

The DISP statements on lines 210 through 240 display mes-
sages on the CRT screen. The first two DISP statements dis-
play the table headings, while the second two display values in
the table. On line 230 the index value of 1 specifies that 1st
element of the IncomeName$ string array is to be displayed.
This string variable’s value is “Payroll”. Similarly, the value of
the 1st element of the TargetIncome array is 1680.

Now that you have a real program to work with, the next step
is to learn the mechanics of entering, storing, listing, and

© running programs. Some of these operations are system-

dependent; in other words, they vary slightly according to the
HP-UX system you are using. Therefore, they have been co-
vered in the Getting Started manual for your particular HP-UX
Technical BASIC system.

Here is the list of operations covered therein:

® [nitial program entry using the Technical BASIC editor,
including specifics of using your keyboard.

® Storing the program in a file (STORE or SAVE).

® Checking to see if the file was stored (CAT).

® Getting a listing of the program (LIST and PLIST).
B Running the program (RUN).

® Getting a hardcopy of the screen (DUMP ALPHA and
DUMP GRAPHICS).

® Dealing with error messages.

If you are not familiar with these operations, please refer to
your Getting Started manual now.

Program Development 2-15

Global Program
Editing

2-16 Program Development

The Getting Started manual for your particular Technical
BASIC system describes entering programs using the BASIC
editor; it also describes editing programs on a line-by-line
basis. This section describes the following “global” program
editing operations which are provided by Technical BASIC
keywords:

m Inserting new program lines between existing lines.
m Deleting existing lines.

m Renumbering existing lines.

Scanning for string literals.
m Renaming variables.

m Copying and moving program segments.

Inserting Lines Lines can be easily inserted into a program. As
an example, assume that you want to insert some lines be-
tween line 200 and line 210 of our example program.

4

180 LET TardetIncome(1)=1680,00

190 LET TardetIncome(2)=345.67

200 |

210 DISP " Catedory Target"
220 DISP M"ewemeeee e "

+
+

+

You can begin by numbering the first line 201, the second one
202, and so forth (up through 209 without overwriting existing
lines).

201 CLEAR ! Clear the alrha screen,

202 1

Note that while inserting lines, you should keep track of the
line numbers you have inserted so that you do not inadver-
tantly:

m Overwrite existing lines.

m Insert lines into the wrong place.

You can generate a program listing with LIST or PLIST to keep
track of where lines have been placed.

+

+

180 LET TardetIncome(1)=1GB0O,00
190 LET TardetIncome(2)=345.67
200 |

201 CLEAR ! Clear the alpha screen.

202 1
210 DISP " Catedory Tardet"
220 DISP "ewemmeeeee e "

+
4

+

Deleting Lines The DELETE command can be used to delete
single or groups of program lines. When the keyword DELETE
is followed by a single line number, only a single line is de-
leted. For example, executing:

DELETE 2ot
deletes only line 201 of your program.

Blocks of program lines can be deleted by using two line
numbersin the DELETE command. The first number identifies
the start of the segment to be deleted, and the second number
identifies the end of the segment to be deleted. Here are some
examples.

DELETE 100,200 deletes lines 100 thru 200, inclusively.

DELETE 150:B85535 deletes all the lines from line 150
through the end of the program.

DELETE 100410 would do nothing except generate an
error if a program is currently in
memory.

Program Development 2-17

2-18 Program Development

Renumbering a Program No matter how careful you have been
while entering lines, there will inevitably be a time when you
need to renumber a program. And it is also good practice to
renumber occasionally to improve readability.

You can renumber a program by using the REN command.
When no parameters are specified, the first line number is
renumbered to 10 and the line-number increment is 10.

Both the starting line number and the interval between lines
can be specified. For example, this command renumbers the
entire program, using 100 for the first line number and an
increment of 5.

REN 100,3

100 ! Allocate memory for data storade.
105 O0OPTION BASE 1

110 DIM IvcomeName$(Z2)

115 REAL TardetIncome(Z2)

120 1

125 | Assidn values to variables.

130 LET IncomeName$(1)="Pavroll®

135 LET IncomeName$(2)="Investments"
140 LET TardetIncome(1)=188B0.,00

145 LET TardetIncome(2)=345.67

150 |

155 CLEAR ! Clear alrha diselav,

160 !

165 DISP " Catedory Tardet"
170 DISP Yecmmmmeeee eeeeeem "

175 DISP IncomeName$(1)sTardetIncome(l)
180 DISP IncomeName$(2)sTardetIncome(2)

If only the beginning line number is specified, a line-number
increment 10 is assumed. For example, this command renum-
bers the entire program using 1000 for the first line number
and an increment of 10:

REN 1000

1000 V Allocate memory for data storade.
1010 OPTION BASE 1§

1020 DIM IncomeName$(2)

1030 REAL TardetIncome(2)

1040
1050
1060
1070
1080
1080
1100
1110
1120
1130
1140
1150
1160

You can

I
I Assidgn values to variables, 2
LET IncomeName$(1)="Pavroll"

LET IncomeName$(Z)="Investments"

LET TardetIncome(1)=16B0.,00

LET TardetIncome(2)=345,67

|

CLEAR ! Clear alrha diseplav.,
!

DISP " Catedory Tardet"
DISP N e e e e e e e - "
DISP IncomeName$(1l)sTardetIncome(l
DISP IncomeName$(2) TardetIncome(2)

also renumber a portion of a program. For instance,

this command renumbers only line numbers 1000 through

1080 to 1
REN

10
20
30
40
50
GO
70
80
90
1090
1100
1110
1120
1130
1140
1150
1160

ines 10 through 90.
10+10,1000,1080

I Allocate memory for data storade,
OPTION BASE 1

DIM IricomeName$(2)

REAL TardetIncome(Z)

i

I Assign values to variables.

LET IncomeName$(1)="Pavroll"

LET IncomeName$(2)="Investments”
LET TardetIncome(1)=1680,00

LET TardetIncome(2)=345.67

!

CLEAR ! Clear alrha displav.,

!

DISP * Catedory Target"
DISP W o o e o

DISP IncomeName$(1l)sTardetIncome(l)
DISP IncomeName${2)sTardetIncome(Z)

'ﬁ Moving

| Note that the REN command cannot be used to move lines.

and copying program lines is the topic of a subse-

quent section.

Program Development 2-19

2-20 Program Development

To get back to the original program, you can use this sequence:

DELETE 111041120
REN 100

Scanning for Literals The SCAN command is used for finding
all the occurrences of a particular string literal or variable name
in a program. In our continuing example program, let’s look
for the literal “Income”:

SCAN "Income"

Here is the system’s response:

Scanning ..

130 REAL TardetIncome(2)

180 LET TardetIncome(1)=1680,00

190 LET TargetIncome(2)=345.67

210 DISP " Catedory Tardet"
230 DISP IncomeName$(l)sTardetIncome(1l)
240 DISP IncomeName$(2)sTardetIncome(2)
vveend of scan

Here is a more useful example. Suppose that you have the
string literal “Tax” in several places in your program, and you
want to change it to either ““State Tax” or “Federal Tax” — and
which one you change it to depends on the context of the
statement. Use the following command to find and list all
occurrences of the string ““Tax”":

SCAN "Tax"

You can then look at each line and decide whether it should be
changed to “State Tax” or “Federal Tax".

To verify that all change(s) have been made, execute another
SCAN command specifying the string for which you were
originally searching. (Using this command avoids a long list-
ing of the program.) The command lists all program lines
containing the string ““State Tax” or “Federal Tax”, since the
string “Tax”’ is a subset of those strings.

Renaming Variables You can rename variables with the the
REPLACEVAR...BY command. Here is an example:

REPLACEYAR TardetIncome BY TardetExrpense

REPLACEVAR...BY is like SCAN in that it looks for specific
patterns of characters; however, REPLACEVAR is different in
two ways:

m [t can only find occurrences of the specified variable name,
not any combination of characters in the program.

m [t automatically replaces the first variable name with the
second one.

Here is an example of replacing one variable name with
another. Suppose that you have the following program in
memory:

10 A=Z0
20 B=30
30 T=A+B
49 DISP T
S0 T=A+B
60 DISP T
70 END

You decide after entering the program that you want to replace
the variable “T”” with the variable name “RESULT” , but you
do not want to go through the program and replace “T” with
“RESULT"” everywhere you see it as it would take a long time
to do so. This is particularly true for large programs. The
following command allows you to do this:

REPLACEVAR T BY RESULT

When you do a listing of you program it now looks like this:

10 A=20

20 B=30

30 RESULT=A+B
40 DISP RESULT
S0 RESULT=A*B
60 DISP RESULT
70 END

Program Development 2-21

Copying and
Moving Program
Segments

ll#

2-22 Program Development

During program development you often enter a section of
code that performs some function, thinking that this function
will be needed at that place. Sure enough, a short time later
you find that you need to move it to another location. But how
on earth do you move those thirty-five lines of code? You
certainly do not want to retype the whole thing.

The following paragraphs show you how to move program
segments using three different methods:

® Using the Technical BASIC editor (if you have a terminal or
console that supports screen-oriented editing).

® Using Technical BASIC’s STORE and MERGE commands.
B Using the HP-UX system’s “vi” editor

Moving Lines with the Technical BASIC Editor

You can only use this method if you have a terminal or
console that supports screen-oriented editing. See the Get-
ting Started manual for your particular Technical BASIC
system to determine whether your terminal or console sup-
ports this feature.

Here are the steps that you will be taking with this method:

1. Perform a LIST operation on the lines to be moved.

2. Change a statement’s line number by moving the cursor
onto the line and typing over the existing number.

3. Store the line by pressing the carriage return key.

4. Repeat steps 2 and 3 until you have changed the line
numbers of all program lines to be moved. (You may
have to perform another LIST if you are moving more
than a screenful of lines.)

5. Verify that the lines have been copied into the desired
location. (Note that the original lines are still present.)

6. DELETE the original copies of the lines. (If you are dupli-
cating the lines into another location, then you will skip
this step.)

Moving Lines with the MERGE Command The following proce-
dure allows you to move a program segment using the Tech-
nical BASIC's MERGE command.

1.

Store the program which you have just entered under a
file name of your choosing by executing a STORE com-
mand that specifies the desired file name.

To assist in determining where the lines are you wish to
move, list the program using the LIST statement. Make a
note of those lines for later reference.

Delete all the lines in your program except the those
which you wish to move to another location in the prog-
ram. Use the DELETE command, which was explained
earlier in this section.

If, forinstance, you want to move lines 300 through 390 to
another location, you could execute:

DELETE 1,299
and then execute

DELETE 391 :last_line

Store the remaining lines in a temporary file. Use the
STORE command and specify the name of the temporary
file; this file’s name must be different from the one you
stored in step 1.

Reload the original program.

Delete the lines in this file that you want to move. (If you
are just making a second copy of these lines, you can skip
this step.)

If, as in the preceding example, you were moving lines
300 through 390, you would now delete these lines:

DELETE 300,390,
Finally, merge the lines stored in the “temporary” file

into the new location in original program.

Use the MERGE command and specify the temporary
file’'s name. Following the file name, specify the line
number where you want the insertion to occur and the
increment for each line. Note that the increment of 1 is
used so that lines of the existing program are not over-

Program Development 2-23

written and that lines are not “interleaved’” between
existing lines of code. For example, if you were merging
the contents of the file named TEMP into this program,
beginning at line 850, you would specify thatline number
and the increment of 1 after the file name. Your statement
would be specified as follows: ‘

MERGE "TEMP" B50.1

After executing the above procedure, purge the temporary file
by using PURGE.

Moving Lines with the HP-UX vi Editor The editors available on
your HP-UX system read and write text using ASCII-format
files. The Technical BASIC system can also read and write
ASCII files using the GET and SAVE commands. The general
procedure you will use is as follows:

1.

Create a program with the BASIC editor, SAVE it in an
ASCII file, and exit the BASIC system.

Read this file with an HP-UX editor, and move the de-
sired lines. Note that your program lines and statements
refering to them have to be renumbered. Then store this
modified file, and exit the HP-UX editor.

Load the modified file into BASIC memory with the GET
command.

Here are the details of the above procedure using the HP-UX
system’s vi editor.

1.

2-24 Program Development

While in BASIC, use the SAVE command to store the
program. This command creates an ASCII file and stores
the program as ASCII text in the file.

Exit the BASIC system.

Execute the vi command, specifying the name of the file
saved in step 1.

Locate the program lines you want to move and place the
cursor on the first line to be moved. Next, type the num-
ber of program lines you wish to move followed by the
uppercase letter Y (for “yank’). This will place the indi-
cated number of program lines into the vi editor’s buffer.

5. Next, move the cursor to the line above which you wish
to copy the text contained in the buffer. Type an upper- 2
case P (for “put”’). Your program lines have been moved;
however, the same program lines still exist in their pre-
vious location and need to be removed from the program.
To remove these line place the cursor on each of the lines
to be removed and type lowercase dd.

6. Renumber the program lines and statements refering to
them.

7. Store the file by typing uppercase ZZ. Typing this com-
mand also exits the vi editor.

8. Enter the BASIC system. Execute a GET command, spe-
cifying the name of the modified file.

]
Step 5: Debug This phase of the development process involves two main
and Test things:
m Getting the program to run (without program-execution
errors).

® Making sure the program does what is expected.

Since these are rather large topics, they are discussed in the
separate chapter called “Debugging”’. Both debugging and
testing programs are mentiored there, but the focus is on the
Technical BASIC features available for debugging. An exhaus-
tive treatise of software testing is beyond the scope of this
manual.

Program Development 2-25

Step 6:
Document and
Support

Internal Documents

Internally
Self-Documenting
Programs

2-26 Program Development

Documentation for a program describes relevant facts about
the program, such as what the program does and what kind of
data it requires. Support involves both fixing errors and
adding enhancements. Documentation is described in this
chapter, but a detailed treatment of software support is
beyond the scope of this text.

There are basically two types of documentation that you can
produce for your programs:

m Internal documents — those available to someone support-
ing or enhancing the program.

m External documents — those available to the program’s
users.

There are basically two ways to document programs for those
who will be supporting or revising them:

m Within the program itself.

m In a separate document.

The focus of this section is on self-documenting programs. The
topic of producing separate documents, while extremely use-
ful, is not discussed in this manual.

When first learning how to program, many people may view
the use of comments, long variable names, descriptive print-
outs, and other documentation tools as merely extra typing
that is not really necessary in their short programs. However,
as old programs are expanded or become more widely used, or
new programs are written, software support activities even-
tually become necessary. For example, when some obscure
bug is found, someone must address the problem.

A programmer (often the original designer) picks up a copy of
the program written a year ago and can’t begin to see what
“X1” was or why you would ever want to divide it by ““X2".
Program documentation can make the difference between a
supportable tool that adapts to the needs of the users and a

support nightmare that never really does exactly what the
current user wants. Keep in mind that the local software sup-
port person just might be you.

Relevant Features The Technical BASIC language on HP-UX

makes it easy to write self-documenting programs. In addition

to BASIC’s standard REM (remark) capability, its primary

documentation features are as follows:

= Line labels (up to 32 characters)

m Variable names (up to 32 characters)

s Remark (REM) statements

m End-of-line comments (that follow statements on a program
line)

s Indentation of statements on program lines

Although this section deals primarily with commenting
methods, all of these features work together to make a read-
able program.

A Comparison The following example shows two versions of
the same program.

m The first version is uncommented and uses ““traditional”
BASIC variable names.

m The second version uses the features of the Technical BASIC
language to make the program more easily understood.

After reading both programs, answer this question: Which
version would you rather work with?

100 A=0.03
110 B=0,02
120 C=A+B

130 D=0

140 DISP "Input item price"” B INPUT D
150 IF D<O THEN GOTO 210

160 E=DxC

170 F=D+E

180 DISP "Tax ="JEs"Item cost ="iF
190 DISP

200 GOTO 130

210 END

Program Development 2-27

2-28 Program Development

100
110
120
130
140
130
160
170
180
1890
200
210
220
230
240
250
260
270
280
290
300
280
300
310

20
330
340
350
360
370
380
390
400
410

ERREEREFERRERERERERRERRRERRERRRR AR AR R NRN
This prodram compPutes the sales tax
for a list of Pprices.

Input: Item prices are input individually,

|
i

|

i

|

!

I Dutput: The tax and total cost for
| each item are disrlaved,
|

|

I

|

|

|

i

|

|

Prodram terminated with nedative cost.

Sales tax rates are assidned on lines 270
and 280, The rates used in this version
of the prodram were in effect 9/1/84,

(XS ST XS LSS LRSS SRS RS ST EL LR S

State_tax=,03 ! Local tax rates
City_tax=,02
i
Tax-rate=State_tax+Citv_tax
|
Get_prices ! Start of main loop
Price=0 ! Don’t chande totals if no entry
DISP "Input item pPrice (nedative price to quit),"
INPUT Price
IF Price < 0 THEN GOTO Finished
Tax=Price#*Tax_rate
Item_cost=Price+Tax
DISP "Tax ="iTax:+" Item cost ="jltem_.cost
DISP
GOTO Get_price | Repeat loorp for next item
|
Finished: END

There are two methods for including comments in your prog-
rams. The use of an exclamation point is demonstrated in the
second example program. The exclamation point marks the
boundary between an executable statement and comment
text. There does not have to be an executable statement on a
line containing a comment. Therefore, the exclamation point
can be used to introduce a line of comments, to add comments
to a statement, or simply to create a “blank’’ line to separate
program segments. Exclamation points may be indented as
necessary to help keep the comments neat.

Note that when the exclamation point is used on the same line
as syntax, the exclamation point and comment are moved a
space away from the syntax by the interpreter. If you wish to
make your comment stand out from the syntax on that line,
you need to use blank spaces between the exclamation point
and the comment. An example of this was shown in the
previous program.

The REM statement can also be used for comments. The ex-
clamation point is neater and more flexible, but the REM
statement provides compatability with other BASIC lan-
guages. The REM keyword must be the first entry after the line
identifier and must be followed by at least one blank. Here are
some examples of comments.

Obscure Better
20 REM bal. arrav 20 REM Check Book Balance
50 X=PI*R"2 30 X=PI*R"2 B REM Area of circle

General Suggestions on Comments Each programmer has an
individual style in the use of comments. Therefore, the follow-
ing are not formal rules - they are simply some general sugges-
tions on the effective use of comments.

m Include a heading on programs that tells the purpose of the
program: Why was the program written? What does it do?
Who will probably be using it?

m Give any helpful support information, such as the author of
the program, the revision date, where to call or write for
help, and instructions for any modifications that might be
made by a normal user.

w [dentify all significant variables, especially global variables.
A descriptive variable name may do the job, or a more
detailed explanation may be needed.

m Describe any input or output devices that are required for
the proper running of the program. This may even include
an explanation of how to modify the program to accommo-
date alternate devices (when such changes are reasonable).

Program Development 2-29

2-30 Program Development

Make major segments and entry points visible. Many tools
are available for this, including descriptive line labels, inde-
nting (described in the next section), spacing, and com-
ments describing program flow.

Use comments freely to describe the action of complex lines,
equations, fancy manipulations, and “low-level” opera-
tions like escape code sequences. These heavily coded op-
erations can be very important to the computer and very
mysterious to the human trying to read the program.

Indenting Indenting is used to make the structure of a program
more intuitively obvious by placing program lines in their
“appropriate places”. ““Appropriate places” means indenting

whenever there is a beginning or end of a program statement
which:

causes looping,
is conditionally executed,
is a separated program segment (such as a function),

is the first character of each program line contained in that
segment ~ excluding the line number.

The following program is an example of indenting and com-
menting (but a poor example of variable names):

10 PRINT " I J" | Prints heading,
20 FOR I =1 TD 3 1 Beding "I" loop.
30 FOR J = 4 TO G ! Begins "J" loopr.
40 PRINT I3d

50 NEXT J | Ends "J" loopr.
BO NEXT I 1 Ends "I" loor,
70 END

External
Documentation

Like internal program documents, there are two ways that
external documentation can be presented to the user:

® By the program itself.

B In a separate manual.

Externally Self-Documenting Programs Ultimately, a program
should require no external documents for its users. It should
communicate what it does and how to use it through these two
principles:

® If it operates “as the user would expect,” then it doesn’t
need any documentation. The chapter called ““Communi-
cating with the Operator” presents some examples of this
principle.

®]fan interaction is so complex as to require description, then
it should do so while it is running. For instance, it should
prompt the user for data when required, giving as much
description as necessary.

Since most programs do not have this level of “human inter-
face,” you will probably need to produce an external docu-
ment for the human who is to use it.

External User Documents Although the topic of producing
documentation for the program user is a large one, here are a
few general suggestions:

® Give users a global view of all the things that they can do
with the program.

B Describe how to complete each task. Present these discus-
sions in logical progression.

® Provide relevant examples, and be sure that they work.

® If a task requires some level of expertise or knowledge, then
state what is required. If possible, present relevant con-
cept(s) at that point. If that is not possible, then give them a
way to fulfill the requirement (such as by consulting another
document or local expert).

B Summarize tasks at the end of tutorials.

Program Development 2-31

2-32 Program Development

Chapter Contents

Program Structure and Flow

Two of the most significant characteristics of a computer lie in
its abilities to:

® Perform quick and accurate computations.

® Execute decisions within programs.

If the execution sequence could never be changed within a
program, the computer could do little more than plug num-
bers into a formula. Technical BASIC has powerful computa-
tional features, but the heart of its usefulness is its ability to
make decisions.

The computational power of Technical BASIC is exercised as it
evaluates the expressions contained in the program lines. The
chapters entitled “Numeric Computation” and “’String Ma-
nipulation” present the various tools available for data ma-
nipulation. '

The decision-making power is used to determine the order in
which lines will be executed. This chapter discusses the ways
of controlling the “flow” of program execution.

Here are the general topics covered in this chapter.
m The program counter

m Sequences of program flow

® Linear flow

® Halting program execution

m Simple branching

® Selection of program segments

Repetition of program segments (looping)

® Chaining programs

® Event-initiated branching

® A closer look at program execution

Program Structure and Flow 3-1

The Program
Counter

3-2 Program Structure and Flow

The key to the concept of decision making in a computer is an
understanding of the program counter. The program counter
is the part of the computer’s internal system that tells it which
line to execute. Unless otherwise specified, the program coun-
ter automatically updates at the end of each line so that it
points to the next program line. This is illustrated in the follow-
ing drawing.

Value in Program Counter

Program Lines at End of Line
120 R=R+2
130 Area=PI*R"2
131 PRINT R
140 PRINT "Area ="jArea
150 §TOP

This fundamental type of program flow is called “linear flow”’.
As shown by the arrow, you can visualize the flow of state-
ment execution as being a straight line through the program
listing. Although linear flow seems very elementary, always
remember that this is the computer’s normal mode of opera-
tion. Even experienced programmers are sometimes embar-
rassed to discover thata “bug” in their program was due to the
program linearly flowing into a portion of the program that
was not supposed to be executed.

Types of Program
Flow

As stated in the introduction of this chapter, a computer would
be little more than a glorified adding machine if it were limited
to linear flow. Here are the three general categories of program
flow:

m Sequentially executed program segments (one after the
other)

m Selection of program segments (conditional execution)

m Repetition of program segments (loops)

In addition to capabilities in all three of these categories, your
computer also has a powerful special case of selection, called
event-initiated branching. The rest of this chapter shows how
to use all of these types of program flow and gives suggestions
for choosing the type of flow that is best for your application.

Program Structure and Flow 3-3

Sequences of
Program
Segments

Linear Flow

Halting Program
Execution

3-4 Program Structure and Flow

There are several types of sequences that the computer can use
in executing program segments:

® Linear flow (no changes to normal sequence)
® Halting program execution

® Simple branching (modifying the normal sequence)

The simplest form of sequence is linear flow. The preceding
section showed an example of this type of flow. Although
linear flow is not at all glamorous, it has a very important
purpose. Most operations required of the computer are too
complex to perform using one line of BASIC. Linear flow
allows many program lines to be grouped together to perform
a specific task in a predictable manner. Although this form of
flow requires little explanation, keep these characteristics in
mind:

® Linear flow involves no decision making. Unless there is an
error condition, the program lines involved in this type of
flow will always be executed in exactly the same order,
regardless of the results of or arguments to any expression.

® Linear flow is the default mode of program execution. Un-
less you include a statement that stops or alters program
flow, the computer will always ““fall through’’ to the next
higher-numbered line after finishing the line it is on.

One of the obvious alternatives to executing the next line in
sequence is not to execute anything. There are three state-
ments that can be used to block the execution of the next line
and halt program flow:

m END
m STOP
m PAUSE

Each of these statements has a specific purpose, as explained
in the following paragraphs.

STOP and END The “Program Development’’ chapter defined
amain program as a list of program lines with an optional END
or STOP statement on the last line. Marking the end of the
main program is the primary purpose of the END statement;
its secondary purpose is to stop program execution. When an
END statement is executed, program flow stops and the prog-
ram moves into the stopped (non-continuable) state.

It is often necessary to stop the program flow at some point
other than the end of the main program. This is another
purpose of the END or STOP statements. A program can
contain any number of STOP statements in any program con-
text. When a STOP statement is executed, program flow stops
and the program moves into the stopped (non-continuable)
state. Also, if the STOP statement is executed in a subprogram
context, the main program context is not restored. (Subprog-
rams and context switching are explained in the chapter
“User-Defined Functions and Subprograms”.)

As an example of the use of STOP and END, enter the follow-
ing program.

100 Radius=3

110 Circum=PI*Zx¥Radius

120 PRINT INT(Circum)

130 STOP

140 Area=PI*Radius”Z

130 PRINT INT(Area)

160 END

When you execute RUN, the computer prints 31 on the dis-
play. This first execution of the RUN command caused linear
execution of lines 100 thru 130, with line 130 stopping that
execution. If you execute RUN again, the same thing will
happen; the program does not resume execution from its stop-
ping point in response to a RUN command. However, RUN
can specify a starting point, so you can execute a command like
RUN 140. The computer prints ¢ and then stops. This com-
mand caused linear execution of lines 140 thru 160, with line
160 stopping that execution. However, a RUN command also
causes a pre-run initialization, which zeroed the value of the
variable Radius’.

1 See the subsequent section of this chapter called ““A Closer Look at Program
Execution” for an explanation of pre-run.

Program Structure and Flow 3-5

3-6 Program Structure and Flow

PAUSE A stopped program is not continuable. This leads up
to the third statement for halting program flow. Replace the
STOP statement on line 130 of the preceding program with a
PAUSE statement, yielding the following program.

100 Radiuws=3

110 Circum=PI*2#Radius
120 PRINT INT(Circum)
130 PAUSE

140 Area=PI*Radius”2
150 PRINT INT(Area)
160 END

Now execute RUN. The computer prints 31 on the display.
Then execute CONT. The computer prints 78 on the display.
The purpose of the PAUSE statement is to temporarily halt
program execution, leaving the program counter intact and
the program in a continuable state. One common use for the
PAUSE statement is in program troubleshooting and debug-
ging. This is covered in the chapter “Program Debugging.”
Another use for PAUSE is to allow time for the computer user
toread messages or follow instructions. Hereis one example of
using the PAUSE statement.

100 PRINT “"This prodram denerates a cross-reference"
110 PRINT "printout. The file to be cross-referenced"
120 PRINT "must be an ASCII file containing a BABIC"
130 PRINT "prodram.”

140 PRINT

150 PRINT "Insert the disc with vour files on it and"
160 PRINT “"tvee CONT and press RETURN."

170 PAUSE

180 ! Program execution resumes here after CONT,

Lines 100 thru 160 are instructions to the program user. Since a
user will often just load a program and then execute RUN, the
you cannot assume that the user’s disc is in place at the start of
the program. The instructions on the display remind the user
of the program’s purpose and review the initial actions
needed. The PAUSE statement on line 170 gives the user all the
time he needs to read the instructions, remove the program
disc, and insert the ““data disc”’. It would be ridiculous to use a
WAIT statement to try to anticipate the number of seconds

Simple Branching

required for these actions. Note that the WAIT statement
causes a delay in program execution until the specified num-
ber of milliseconds has elapsed. The PAUSE statement gives
freedom to the user to take as little or as much time as neces-
sary.

When CONT is executed, the program resumes with any
necessary input of file names and assignments. Questions
such as “Have you inserted the proper disc?”” are unnecessary
now. The user has already indicated compliance with the
instructions by executing CONT.

An alternative to linear flow is branching. Although condition-
al branching is one of the building blocks for selection struc-
tures, the unconditional branch is simply a redirection of se-
quential flow. The keywords which provide unconditional
branching are GOTO, GOSUB, CALL, and FN. The CALL and
FN keywords invoke new contexts, in addition to their bran-
ching action. The term context refers to the fact that each
subprogram and user-defined function has its own indepen-
dent set of variables and line labels. This is a complex subject
that is the topic of an entire chapter (“User-Defined Functions
and Subprograms’’). This section discusses the use of GOSUB
and GOTO for local branching.

Using GOTO First, you should be aware that it desirable to
avoid the excessive or unnecessary use of the unconditional

GOTO. The problem is not anything inherent in the GOTO

statement. The problem lies in some programmers’ tendencies
to “patch together” pieces of a poorly planned algorithm,
using more and more GOTOs with each revision. Then comes
thatinevitable day when a fatal bug reveals that it is impossible
to “GET BACK FROM” the last “GO TO”. A program that
contains sloppy and excessive use of GOTO has been approp-
riately named spaghetti code. Keep this very descriptive term
in mind when you are deciding whether to “‘just throw some-
thing together”” or to take a little more time to organize and
plan a project.

Program Structure and Flow 3-7

3-8 Program Structure and Flow

The only difference between linear flow and a GOTO is that
the GOTO loads the program counter with a value that is
(usually) different from the next-higher line number. The
GOTO statement can specify either the line number or the line
label of the destination. The following drawing shows the
program flow and contents of the program counter in a prog-
ram segment containing a GOTO.

Value in Program Counter

Program Lines at End of Line

180 R=R+2

190 Area=PI*R"2

200 GOTO 240
ey 210 Width=Width+1
220 Lensdth=Lendth+1

230 AreaszWidth*Length

$» 240 PRINT "Area ="j3Area [250

J 250 coTo 210 210

Asyou can see, the execution is still sequential and no decision
making is involved. The first GOTO (line 200) produces a
forward jump, and the second GOTO (line 250) produces a
backward jump. A forward jump is used to skip over a section
of the program. An unconditional backward jump can pro-
duce an infinite loop. This is the endless repetition of a section
of the program. In this example, the infinite loop is lines 210
thru 250.

An infinite loop by itself is not a desirable program structure.
However, it does have its place when mixed with conditional
branching or event-initiated branching. Examples of these
structures are given later in this chapter.

Using GOSUB The GOSUB statement is used to transfer prog-
ram execution to a subroutine. Note that a subroutine and a
subprogram are very different in Technical BASIC. Calling a
subprogram invokes a new context; subprograms can declare
formal parameters and local variables. A subroutine is simply
another segment of the current program context that is entered
with a GOSUB and exited with a RETURN. There are no

parameters passed and no local variables. If you are a newcom-
er to Technical BASIC, be careful to distinguish between these
two terms. They have been used differently in some other
programming languages.

The GOSUB statement is very useful in structuring and con-
trolling program flow. GOSUB executes a branch to a sub-
routine, which performs a certain task or tasks. When those 3
task are complete, control returns to the main body of the
program. The GOSUB statement can specify either the line
label or the line number of the desired subroutine entry point.
The following drawing shows the program flow and contents
of the program counter in a program segment containing a

GOSUB.
Value in Program Counter Value in Program Counter

Subroutine Program Lines at End of Line Program Lines at End of Line
1000 PRINT Areaji"sauare in.," 300 R=R+Z

1010 Cent=Area*G,4516 310 Area=PI*R*Z

1020 PRINT Centi"sauare cm" 320 GOSUB 1000

1030 PRINT 1040 330 MWidth=Width+1

1040 RETURN 330 340 Length=Lendth+l 350

350 ! Prodram continues

Program execution is sequential and no decision making is
involved. The main reason that a GOSUB is a more desirable
action than a GOTO is the effect of the RETURN statement.
The RETURN statement always returns program execution to
the line that would have been executed if the GOSUB had not
occurred. This is especially useful when using an event-
initiated GOSUB. Since it is usually impossible to predict when
a user might press a softkey (for example), it is usually im-
possible to predict what program line should be returned to at
the end of a service routine. Note that softkeys are keys on
your keyboard which are defined by their corresponding label
on the display. By using GOSUB and RETURN, the computer
does the work for you. There are more details on this use of
GOSUB later in this chapter.

Program Structure and Flow 3-9

3-10 Program Structure and Flow

Another common advantage gained from the use of GOSUB is
program economy resulting from the consolidation of com-
mon tasks. For example, assume that you are writing a page
formatter program to neatly print letters, reports, etc. The
actions taken at the end of each page might be such things as
follows:

1. Skip two blank lines

2. Print the page number
3. Update the page counter
4. Print a form-feed

5. Zero the line counter

These end-of-page actions might be necessary at many places
in the program. For example: in the new-page segment, in the
conditional-page algorithm, in the normal line-printing seg-
ment, and in the end-of-file process. It would be wasteful
duplication to repeat all those end-of-page steps every place
they are needed.

That kind of duplication also opens the door to updating
problems. Suppose that you wanted to modify the end-of-
page action to make it print line-feeds instead of a form-feed
for the benefit of a printer that doesn’t use form-feeds. If you
had duplicated the end-of-page routine in five different places
in the program (or was that six?), you will be doing five times
as much typing to make the change, and you will probably
miss a spot.

The solution is a subroutine. For the sake of completeness in
this example, the hypothetical end-of-page subroutine is
shown below.

340 End_.page: !

350 PRINT USING "Z2/:K" § Padenumber
560 Pagenumber=Padenumber+]

370 PRINT CHR$(12)}

580 Lines=0

390 RETURN

There are no well defined rules to dictate when a program task
should be a subroutine and when it should be in the linear
flow. The following suggestions may help you decide.

m A subroutine should have some identifiable task, such as
opening a file, normalizing a variable, executing an end-of-
page algorithm, decoding a keypress, parsing a string, and
so forth. It is handy for a subroutine to ““hide the details” of
performing a task so that these details do not obscure the
readability (and supportability) of the routine.

m Decisions about subroutines are best made on a conceptual
level. Although there is nothing wrong with accidentally
discovering that you repeated ten lines which would make a
good subroutine, it is better to identify the appropriateness
of subroutines during planning. One question to ask yout-
self is, ““Does it make sense to handle this task in a sub-
routine?” If it takes a dozen flags' to select all the variations
that are needed from one usage of the subroutine to the
next, then a subprogram is probably a cleaner solution.
Lines of code that just happen to be repeated in several
places are not necessarily good candidates for a subroutine.

m There is no significant speed penalty for using a sub-
routine. The time required to process the GOSUB and RE-
TURN is extremely small. If you are having trouble getting
your application to run fast enough, it is doubtful that your
problems will be solved by removing a couple of GOSUBs.
In fact, the resulting loss of “readability’’ may actually make
it more difficult to identify and correct the real problem in
timing.

m The “cross-over point” in line overhead is a subroutine that
is only three lines long and is called from only two places in
the program. In other words, it takes the same number of
program lines to duplicate three lines as it does to stick a
RETURN on the end of them and add two GOSUB state-
ments. However, there is nothing “magical” about this
observation. It does not mean that you shouldn’t have a
subroutine shorter than three lines, or that you should go
around making a subroutine out of every three-line sequ-
ence you see repeated. It should simply make you aware of
possible improvements that could be made if you see the
same sequence repeated in several places in your program.

1 System flags are system variables that you can use to keep track of information.
For instance, you can use a flag to keep track of an operating mode by storing it as
a numeric value: IF FLAG(1) THEN End_rage. See the “Using System Flags” sec-
tion of the “User-Defined Functions and Subprograms” for further information.

Program Structure and Flow 3-11

Selection of
Program
Segments

An Example

Types of
Conditional
Execution

3-12 Program Structure and Flow

The heart of a computer’s decision-making power is the categ-
ory of program flow called selection, or conditional execution.
As the name implies, a certain segment of the program either is
oris not executed according to the results of a test or condition.
This is the basic action which gives the computer an appear-
ance of possessing intelligence. Actually, it is the intelligence
of the programmer which is remembered by the program and
reflected in the pattern of conditional execution.

Consider a chemistry lab application as an example. There
would be little use for a computer whose only function was to
turn on a valve when a technician pressed “START” button.
The technician might just as well turn the valve himself.
However, if the computer turned on a valve when the
“START” was pressed and turned off the valve when a speci-
fied pH level occurred, then it is performing a much more
useful task.

If the example is extended to include state-of-the-art remote-
control valves and electronic pH measuring devices, the com-
puter is now significantly out-performing the technician. In
this example, (in spite of any fancy instrumentation) the quali-
ty that moved the computer from “‘useless” to “useful” was its
ability to decide when to turn off the valve. It was the program-
mer (you) who actually specified the criteria for the decision.
Those criteria were then communicated to the computer using
conditional-execution program structures. As a result, the
computer was able to repeat the programmer’s intention with
much greater speed and accuracy than a human.

This section presents the conditional-execution statements
according to various applications. The following is a summary
of these groupings.

1. Conditional execution of one segment.
2. Conditionally choosing one of two segments.

3. Conditionally choosing one of many segments.

Conditional
Execution of One
Segment

The basic decision to execute or not execute a program seg-
ment is made by the IF... THEN statement. This statement
includes a numeric expression that is evaluated as being either
true or false. If true (non-zero), the conditional segment is
executed. If false (zero), the conditional segment is bypassed.
Although the expression contained in an IF... THEN is treated
as a Boolean expression', note that there is no BOOLEAN data
type in BASIC. Any valid numeric expression is allowed.

The conditional segment can be either a single BASIC state-
ment or a program segment containing any number of state-
ments. The first example shows conditional execution of a
single BASIC statement.

100 IF Ph:7.7 THEN PRINT "Ph is » 7.7."

Notice the test (Ph>7.7) and the conditional statement
(PRINT...) which appear on either side of the keyword THEN.
When the computer executes this program line, it evaluates
the expression Ph>7.7. If the value contained in the variable
Phis 7.7 or less, then the expression evaluates to 0 (false) and
the line is not executed. If the value contained in the variable
Phis greater than 7.7, then the expression evaluates as 1 (true)
and the PRINT statement is executed. If you don’t already
understand logical and relational operators, refer to the chap-
ter entitled “Numeric Computation” or the chapter entitled
“String Computation”.

The same variable is allowed on both sides of an IF... THEN
statement. For example, the following statement could be
used to keep a user-supplied value within bounds.

IF Number:8 THEN Number=9

When the computer executes this statement, it checks the
initial value of Number. If the variable contains a value less
than or equal to nine, that value is left unchanged, and the
statement is exited. If the value of Number is greater than nine,
the conditional assignment is performed, replacing the origin-
al value in Number with the value nine.

1 A Boolean expression can have one of two values: true (1), or false (0).

Program Structure and Flow 3-13

3-14 Program Structure and Flow

Prohibited Statements Certain statements are not allowed as
the conditional statement in an IF...THEN statement. The
disallowed statements are used for various purposes, but the
“common demoninator” is that the computer needs to find
them during prerun as the first keyword on a line. (A possible
exception to this reasoning is REM, which is not allowed
because it makes no sense to allow it. Comments certainly
aren’t executed conditionally. If comments are necessary on an
IF... THEN line, the exclamation point can be used.) The fol-
lowing statements are not allowed in an IF... THEN statement.

Keywords used in the declaration of variables:

OPTION BASE COM

DIM SHORT
INTEGER REAL
Keywords that define context boundaries:
DEF FN FNEND
SUB SUBEND
Keywords that define program structures:
FOR
NEXT

Keywords used to identify lines that are literals:

DATA
REM

Conditional Branching Powerful control structures can be de-
veloped by using branching statements in an IF... THEN. Here
are some examples.

110 IF Free.space«100 THEN GOSUB Expand_file
120 1 The line after is alwavs executed

This statement checks the value of a variable called Free_
space, and executes a file-expansion subroutine if the value
tested is not large enough. The same technique can be used
with a CALL statement to invoke a subprogram conditionally.
One important feature of this structure is that the program
flow is essentially linear, except for the conditional “’side trip”
to a subroutine and back. This is illustrated in the following
drawing.

1000
1010
1020
1030
1040

1100
1110
1120
1130
1140

Cent=Area*B.,45106

pP_flag=1 P_flag=0

PRINT Areai"ssuare in." 300 R=R+2Z
310 Area=PI*R"Z2
PRINT Centi'sauare cm" 320 IF P.flag THEN GOSUB 1000

PRINT
RETURN

Records !

330 MWidth=Width+1
1(340 Length=Lendth+1

The conditional GOTO is such a commonly used technique
that the computer allows a special case of syntax to specify it.
Assuming that line number 200 is labeled “Start”, the follow-
ing statements will all cause a branch to line 200 if X is equal to
3.

IF ¥=3 THEN GOTO Z00
IF %=3 THEN GOTO Start
IF X=3 THEN Z00

IF X=3 THEN Start

When a line number or line label is specified immediately after
THEN, the computer assumes a GOTO statement for that line.
(This improves the readability of programs, because phrases
like ““then start’”” sound more like English and less like compu-
ter jargon.) If execution is redirected by a conditional implied
GOTO, then the program flow does not automatically return
to the line following the IF... THEN. Thus, a conditional GOTO
acts like a switch on a railroad track. This is illustrated in the
following drawing.

File 530 Sendotext: !

| Test for oren file =1 560 IF File THEN Record

! Do any CREATEs ASSIGN, etc.

PRINT# 13iText$

Filel 570 PRINT Text$
= o °80 Lines=lLines+l

I Continue with file oreration 590 ' Continue with Printing

Multiple-Line Conditional Segments If the conditional program
segment requires more than one statement, a slightly different
structure is used. Let’s expand the valve-control example.

100 1 This is a multieple-line IF.. THEN structure.
110 IF Ph«=7,7 THEN GOTOD SKir

120 PRINT "Ph is » 7.7"

130 PRINT "Final Ph = "iPh

140 PRINT "Conditional Test Ends"

150 SKie: ! Execution resumes here.

Program Structure and Flow 3-15

Any number of program lines can be placed between the line
containing the IF... THEN statement (line 110 here) and the
line number specified in the GOTO (line 150 here). In execut-
ing this example, the computer evaluates the expression
Ph<=7.7 following the IF clause. If the result is true, then the
program counter is set to 150 (i.e., the GOTO is executed), and
execution resumes with that line. If the condition is false, the
program counter is set to 120 (i.e., the GOTO is not executed),
and the “conditional” statements (lines 120, 130, and 140) are
executed. Line 150is then where “normal’”’ execution resumes.

If an other branching construct is used within a multiple-line
IF... THEN structure, the entire structure should be contained
in the conditional segment. This is called nesting constructs.
The following example shows some properly nested con-
structs. Notice that the use of indenting improves the readabil-
ity of the otherwise messy code.

100 PRINT "Enter an inteder value between 1 and 3.¢
110 INPUT VYalue
120 IF Value<=1 THEN GOTO NotGrThanl

130 | Bedin outer IF.

140 PRINT "Ualue is dreater than 1,"
150 IF Values=3 THEN NotLsThan3

160 I Bedin nested IF,

170 PRINT "Ualue is less than 5,"
180 NotLsThanS: I End of nested IF,

190 !

200 NotGrThanl: ! End of outer IF.

210 END

Choosing One of This language has an IF...THEN...ELSE construct which
Two Segments makes the one-of-two choices easy and readable. The follow-
ing example looks at a device selector which may or may not
contain a primary address. The variable Isc is needed later in
the program and must be only an interface select code. If the
operator-supplied device selector is greater than 31, the inter-
face select code is extracted from it. If it is equal to or less than
31, italready is an interface select code. (This example assumes
that no secondary addressing is used.)

500 IF Select»31 THEN Isc=Select DIV 100 ELSE Isc=8Select

3-16 Program Structure and Flow

Choosing One of
Many Segments

Notice that this structure requires you to type the
IF...THEN...ELSE structure on one contiguous line, which is
not easy to read. Note that you may place multiple statements
after the THEN and ELSE in this construct, as long as they are
concatenated by the @ character. For example:

IF X » 5 THEN X=X+5 @ DISP X ELSE X=X"Z @ DISP X

This is one way of implementing multiple statements within
the IF...THEN...ELSE construct. However, one contiguous
line of 159 characters is not easy to read. A more readable way
to implement the choice between one of two segments is as
follows:

100 ! Choosing one of two sedments,
110 IF X»5 THEN GOTO Sedl ELSE GOTO Seq?2
120 Segl:

130 H=X+5

140 DISP X

150 GOTO CommonExit

160 SedZ:

170 W=W"2

180 DISP X

190 CommonExit: ! Both sedments "continue” here,
200 END

This requires choosing from one of several possibilities, and is
like executing a sequence of IF... THEN statements. This type
of program flow can be generated with the ON statement and
some additional processing. Consider as an example the pro-
cessing of readings from a voltmeter. In this example, we
assume that the reading has already been entered, and it
contained a function code. These hypothetical function codes
identify the type of reading and are shown in the following
table.

Function Code Type of Reading
DV DC Volts
AV AC Volts
DI DC Current
Al AC Current
oM Ohms

Program Structure and Flow 3-17

Using the ON...GOSUB statement, all the anticipated values
are placed in a simple string. This string is then searched using
the POS function. The results of the POS function are adjusted
to become consecutive integers beginning with one. This re-
sult can then be used in the ON statement.

100 Match$="DVAUDIAIOM"

110 1
120 1

300 Pointer=P0OS5(Match$ UPCH(Funct$))
310 Pointer=INT((Pointer-1)/2+1)
320 0N Pointer+!l GOSUB Case.elsesCase.DViCase AV Case_DIsCase.AlCase_OM

3-18 Program Structure and Flow

Notice that a match can only cause values of 1, 3, 5, 7, or 9 from
the POS function. The POS function returns the position of the
first character of a substring within another string. A ““match
not found” gives a value of 0. Line 510 converts these to
consecutive integers from 0 thru 5. The Pointer+1 expression
in line 520 shifts the values to a range 1 thru 6, which is
acceptable to the ON statement.

The values of the match characters will determine the ““pre-
processing’’ necessary. If you are trying to match single bytes,
simply adding one to the results of the POS is all that is
necessary. Finding 3-letter sequences requires a line like 510,
but with a division by 3. Note also that, except for single bytes,
this method may not always work. For example, if the current
ranges had been indicated by DA and AA (instead of DI and
Al), Match$ would be “DVAVDAAAOM”. A subsequent
search for “AA” would return 6 instead of 7 - not good. In a
case like that, there are two choices. One approach is to rear-
range the string being searched; “DVAVDAOMAA"” would
work. Perhaps the items in the string could be separated with a
“pad” character and the calculation adjusted accordingly. The
otherapproach is to make each match value a separate element
of a string array. The array could then be ““searched” with a
FOR...NEXT loop. This approach works well to resolve con-
flicts, especially with long match strings. However, the extra
code lines and array accesses slow the process down signifi-
cantly.

The ON statement can also be used for numeric values. If the
numeric values you are trying to match just happen to be
consecutive integers starting with one, the variable to be tested
can be used in the ON statement. However, programmers are
not usually that lucky. To match arbitrary values, the follow-
ing trick can be used. This example tests the three cases: <0, 1,
and >1.

100 DISP "Enter an inteder X,"

110 INPUT X

120 Pointer=1#(X<O)+2%(X=1)+3%{H:1)

130 ON Pointer GOSUB NedativesOnesGreater
140 Nedative:

150 DISP "The value entered is nedative,"

180 GOTO Quit

170 One:

180 DISP "The value entered is a positive 1.,"
190 GOTO Quit

200 Greater:

210 DISP "The value entered is rPositive."

220 GOTD Quit

230 Quit: END

Assuming that you use non-overlapping comparison tests,
only one of the values in parentheses will be true. The system
returns a value of “1” for true. This is multiplied times the
corresponding factor to give the final value to Pointer. All the
other factors drop out because their comparison result is zero.
Programmers who like strong type checking may raise an
eyebrow at this technique, but it works.

Another useful trick for testing for numbers that are integers
between 0 and 255 is to use the CHR$ function to create string
bytes and apply the POS function as explained previously. The
code lines for this are left as an exercise for the reader.

Program Structure and Flow 3-19

]
Repetition

Fixed Number of
Ilterations

3-20 Program Structure and Flow

Humans usually prefer tasks with variety that avoid tedious
repetition. A computer does not have this shortcoming.
Although a computer is usually a miserable failure at creative
thought, it is in full glory when called upon to accurately
repeat the same boring task millions of times.

With Technical BASIC, you have only one structure available
for creating repetition. However, the others can be built using
the GOTO statement.

This section covers the repetitive capabilities common to all
versions of BASIC and explains how you can implement them
using Technical BASIC. These capabilities are:

m Repeating a program segment a predetermined number of
times (using the FOR...NEXT construct) -

B Repeating a program segment indefinitely (using the GOTO
statement), waiting for a specified condition to occur

® Creating an iterative structure that allows multiple exit
points at arbitrary locations (using the GOTO statement)

The general concept of repetitive program flow can be shown
with the FOR...NEXT structure, available in all BASIC lan-
guage systems. With this structure, a program segment is
executed a predetermined number of times. The FOR state-
ment marks the beginning of the repeated segment and estab-
lishes the number of repetitions. The NEXT statement marks
the end of the repeated segment. This structure uses a numeric
variable as a loop counter. This variable is available for use
within the loop, if desired. The following drawing shows the
basic elements of a FOR...NEXT loop.

STARTING
VALUE
LOOP FINAL STEP
COUNTER VALUE SIZE
——A A ~~—
200 FOR Count=10 TO O STEP -1
210 BEEP
REPEATED 220 PRINT Count
SEGMENT 230 WAIT 1
240 NEXT Count

The number of loop iterations is determined by the FOR state-
ment. This statement identifies the loop counter, assigns a
starting value to it, specifies the desired final value, and deter-
mines the step size that will be used to take the loop counter
from the starting value to the final value. When the loop
counter is an INTEGER, the number of iterations can be pre-
dicted using the following formula:

(Step Size + Final Value - Starting Value)
INT Step Size

Note that the formula applies to the values in the variables, not
necessarily the numbers in the program source. For example,
if you use an INTEGER loop counter and specify a step size of
0.7, the value will be rounded to one. Therefore, 1 should be
used in the formula, not 0.7. Note also that the step size is a
default of 1 when it is not included in the FOR...NEXT state-
ment.

The loop counter can be a REAL number, with REAL quanti-
ties for the step size, starting, or final values. In some cases,
using REAL numbers will cause the number of iterations to be
off by one from the preceding formula. This is because of
inaccuracy in the comparison of REAL numbers.

If you are interested, this is discussed in the next chapter.
However, there is no “’clean’” way around it with FOR...NEXT
loops. Here is an example:

200 Counter=0

210 FOR X=10 TO Z0

220 Counter=Counter+l
230 PRINT Counter

240 NEXT X

250 END

According to the formula, this loop should execute 11 times:
INT((1+20—10)/1=11). The result on the display confirms
this when the loop is executed. If line 210 is changed to:

210 FOR X=1 TO 2 STEP .1

Program Structure and Flow 3-21

3

3-22 Program Structure and Flow

the formula still yields 11 as the number of iterations. Howev-
er, executing the loop produces only 10 repetitions. This is
because of a, very small accumulated error that results from
the successive addition of one-tenth. The error is less signifi-
cant than the 15th digit, but discernible to the computer. In this
case, rounding cannot be performed at a time that would help.
When you find yourself in this situation, one way outis to shift
the final value very slightly.

The following line does give the 11 iterations predicted by the
formula.

210 FOR X=1 TO 2.0001 STEP .1

Remembering the “increment and compare” operation at the
bottom of the loop is helpful. After the loop counter is up-
dated, it is compared to the final value established by the FOR
statement. If the loop counter has passed the specified final
value, the loop is exited. If it has not passed the specified final
value, the loop is repeated. The loop counter retains its exit
value after the loop is finished. This is not necessarily one full
step past the final value. For example:

FOR I=1 TO 9.9

This statement establishes a loop that executes nine times (the
default step size is one). The variable I has the value 10 when
the loop is exited.

FOR Count=12 TO 1 STEP -0.3

This statement establishes a loop that executes 37 times. The
variable Count has the value .9 when the loop is exited. Notice
that negative step sizes are allowed using the same keywords
as positive step sizes.

Some final points to mention concern the execution of the FOR
statement. If any variables are present to the right of the equal
sign, the value used is the value they have when the FOR
statement is executed. Remember that the FOR statement is
only executed once before the loop begins. Also, if the number
of iterations evaluates to zero or less, the loop is not executed
and program execution goes immediately to the line following
the NEXT statement.

Conditional Number
of Iterations

The FOR...NEXT loop produces a fixed number of iterations,
established by the FOR statement before the loop is executed.
Some applications need a loop that is executed until a certain
condition is true, without specifically stating the number of
iterations involved. Consider a very simple example. The fol-
lowing segment asks the operator to input a positive number.
Presumably, negative numbers are not acceptable. A looping
structure is used to repeat the entry operation if an improper
value is given. Notice that it is not important how many times
the loop is executed. If it only takes once, that is just fine. If the
operator takes ten tries before he realizes what the computer is
asking for, so be it. What is important is that a specific condi-
tion is met. In this example, the condition is that a value be
non-negative. As soon as that condition has been satisfied, the
loop is exited.

800 Rerpeat:
810 DISP "Enter a positive number."
820 INPUT Number

830 | INPUT "Enter a positive number” sNumber
840 IF Number<Q THEN Reepeat ! Until Number:=0
1000 1

1010 DISP "Now this wasn’t so bad,"

1020 END

A typical use of this is an iterative problem involving non-
linear increments. One example is musical notes. Performing
the same operation on all the notes in a 3-octave band is a
repetitive process, but not a linear one. Musical notes are
related geometrically by the 12th root of two. The following
example simply prints the frequencies involved, but your ap-
plication could involve any number of operations.

1200 Note=110 ! Start at low A

1210 Rereat:

1220 DISP "Enter a positive dreater than 100,"
1230 INPUT Note

1240 PRINT Notes

1250 Note=Note*2"(1/12)

1260 IF Note«8BO THEN Rereat ! End at hidh A
2000 1

2010 DISP "It's detting betters not much.”
2020 END

Program Structure and Flow 3-23

3-24 Program Structure and Flow

For this example, a FOR...NEXT loop might have been used,
with the loop counter appearing in an exponent. That would
work because it is relatively easy to know how many notes
there are in three octaves of the musical scale. However, the
Repeat...Until structure implemented with the IF... THEN and
GOTO statements is more flexible than FOR...NEXT when
working with exponential data in general.

The While...End While loop structure, which executes from
one to N number of statements several times until the loop
condition is met, is used for the same purpose as the Re-
peat...Until loop structure and is implemented using the
GOTO statement’.

The only difference between the two is the location of the test
for exiting the loop. The Repeat structure has its test at the
bottom (post-test). This means that the loop is always executed
at least once, regardless of the value of the condition. The
While structure has its test at the top (pre-text). Therefore, it is
possible for the loop to be skipped entirely (if the conditions so
dictate).

The Repeat...Until and While...End While structures are espe-
cially useful for tasks that are impossible with a FOR...NEXT
loop. One such situation is a loop where both the loop counter
and the final value are changing. Consider the example of
stripping all control characters from a string. This can’t be
done in a loop that starts FOR I=1 TO LEN(A$), because the
length of A$ changes each time a character is deleted. There-
fore, the loop counter used as a subscript will eventually
exceed the length of the string by more than one, generating
an error. The While loop structure does not have this problem.
Note that the test at the top of the loop prevents the subscript-
ing from being attempted on a null string. This is necessary to
avoid an error.

1 Keep in mind that the Repeat...Until and While...End While keywords are not
implemented in Technical BASIC.

100
110
120
130
140
150
160
170
180

I=1

Whiles ! I<LEN(Str$)
IF T:LEN{(Str$) THEN End_While
IF Str$LI+I1<CHR$(32) THEN Remove ELSE I=I+1 @ GOTD While
Remove: LastChar=LEN(Str%$)
StréllsLastChar-11=8tr$lI+1sLastCharl ! Remove ctrl, char.
Str$=5tr¢li:LastChar-11 ! Remove trailing character,
GOTO While

End_While:

Arbitrary Exit

Points

A pass through any of the loop structures discussed so far
included the entire program segment between the top and the
bottom of the loop. There are times when this is not the desired
program flow. One alternative is to place a conditional GOTO
in the middle of the loop that directs program flow to a point
beyond the bottom of the loop. In fact, with Technical BASIC,
this is the way it is accomplished.

For the first example, consider a search and replace operation
on string data. In this example, the “’shift out” control charac-
ter is being used to initiate underlining on a printer that under-
stands standard escape sequences. The “shift in”” control char-
acter is used to turn off the underline mode. (There is nothing
significant about this choice of characters. any combination of
characters could serve the same purpose.)

One approach is to use a loop to search every character in
every string to see if it is one of the special characters. There are
two problems with this method. First, it is a little cumbersome
when the replacement string is a different length than the
target string. Second, it is slow. Admittedly, speed is not a
significant consideration when driving common mechanical
printers, but the destination might eventually be a laser printer
or mass storage file, making the program’s speed more visible.

Program Structure and Flow 3-25

Abetter approach is to use the POS function to locate the target
string. Since this function locates only the first occurrence of a
pattern, it must be placed in a loop to insure that multiple
occurrences will be found. The generalized Loop structure is
well suited to this task, as shown in the following example.

2000 Loorl:

2010 Position=POS(A%$,CHR$(14))

2020 IF NOT Position THEN GOTO End_Loorl ! "Exit Loorl
2030 AtLPosition]l=CHR$ (278" dD"&A%[Position+l]
2040 GOTO Loarl

2050 End.Loopl:

2060 !

2070 LooprZ:

2080 Position=POS(A% CHR$(15))

2090 IF NOT Position THEN GOTO End_Loor2

2100 A$LPositionl=CHR$(Z7)R"BdR"&A$[Position+1]
2110 GOTO Loor2

2120 End_Loor2:

3-26 Program Structure and Flow

In this segment, all occurrences of “’shift out”” are replaced by
“escape &dD” to enable underline mode. All occurrences of
“shift in” are replaced by “escape &d@" to disable underlin-
ing. Notice that there is no problem replacing one character
with four (assuming that A$ is large enough). Lines containing
no special characters are processed by only two POS functions,
which is much faster and cleaner than performing two com-
parisons for every character in every line.

Another common use for this structure is the processing of
operator input. Recall the Repeat...Until structure that tested
for the input of a positive number. Although this structure
kept the computer happy, it left the operator in the dark. The
Loop structure provides for the additional processing needed,
as shown in the following example.

200 Loor:

210
220
230
240
230
260
270
280

DISP "Enter a positive number,"
INPUT Number
IF Number>=0 THEN End_LooPp
BEEP
PRINT
PRINT "Negative numbers are not allowed,”
PRINT "Repeat entry with a positive number,”
GOTO Leoer

290 End_Loor: END

Another point to remember is that the Loop structure permits
more than one exit point. This allows loops that are exited ona
“whichever comes first” basis. Also, the exiting can occur at
the top or bottom of the loop. This means that the Loop
structure can serve the same purposes as the Repeat and While
structures, if that suits your programming style.

Event-Initiated
. Branching

Your computer has a special kind of program flow that pro-

vides

some very powerful tools. This tool, called event-

initiated branching, uses interrupts to redirect program flow.
Interrupts are conditions declared in a program that are con-
stantly being monitored by the computer. When these particu-
lar conditions occur a branch is made from the normal program

flow.

The process can be visualized as a special case of selection.

Every

time program flow leaves a line, the BASIC system

executes an “event-checking” subroutine. The process of
“event checking” is represented in the following lines.

10
20

30

PRINT X (gosub event_check)
{=X+1 (gosub event_check)
GDTO 10 (gosub event_check)

Program Structure and Flow 3-27

Types of Events

3-28 Program Structure and Flow

Notice that it is possible for event-initiated branching to occur
at the end of any program line, which includes the lines of a
subprogram. These potential branching points are marked in
the above BASIC program by the words ““gosub event_check”.
These event checks are “if...then” statements that the BASIC
system executes. If an event is enabled to initiate a branch
(such as with ON KEY#) and the event occurs, then this
“event-checking’’ routine initiates a branch to the service
routine for the event (which you have designated in BASIC).

Notice that in the sample program above if the operating
system finds a “‘true’’ event, a branch is taken at the end of the
current line. If not, program execution resumes with the “nor-
mal” program flow.

Event-initiated branching is established by the ON-event
statements. Here is a list of the statements that fall in this
category:

ON EOT ON ERROR
ON KYBD ON KEY#
ON INTR ON TIMEOUT
ON TIMER#

The ON EOT defines and enables end-of-line branching when
the last byte of data is transferred by a TRANSFER statement.
This topic is discussed in the HP-UX Technical BASIC I/O
Programming Guide.

The ON ERROR statement is used to trap run-time errors by
specifying a branch to an error-handling routine. This subject
is is discussed in the chapter called “’Error Handling”.

The ON KYBD and ON KEY# events pertain to various parts
of the keyboard and are used to enhance the ““human inter-
face” of programs. ON KYBD enables an event-initiated
branch to be taken when the specified key(s) is(are) pressed
during program execution. The term enable means to turn on
the particular interrupt condition so that the computer can
start monitoring that condition. The ON KEY# statement is
used to define and label the softkeys on your keyboard, and
enables an event-initiated branch for them.

An Example of
Using Softkeys

The ON INTR and ON TIMEOUT events pertain to interfaces
and I/O operations. ON INTR defines an end-of-line branch to
be taken when an interface generates an interrupt. ON TIME-
OUT enables end-of-line branching when an interface timeout
occurs on the specified interface. These topics are discussed in
the HP-UX Technical BASIC I/O Programming Guide.

ON TIMER# defines an end-of-line branch to be taken when
the specified time interval has elapsed. Note that the OFF
command of all keywords mentioned above cancels that com-
mand. Timers are discussed in the ““Clock and Timers”
chapter.

The best way to understand how event-initiated branches
operate in a program is to sit down at the computer and try a
few examples. Start by entering the following short program.

100 ON KEY# 1,"Inc" GOSUB Plus
110 ON KEY# 5,"Dec” GOSUB Minus
115 ON KEY# 4,"Quit" GOSUB Quit
120 KEY LABEL

130 !

140 Sein: DISP X

150 GOTO Sein

160 !

170 Plus: K=+l

180 RETURN

i9o !

200 Minus: X=X-

210 RETURN

220 Quits END

Notice the various structures in this sample program. The ON
KEY# statements are executed only once at the start of the
program. Once defined, these event-initiated branches remain
in effect for the rest of the program. (Disabling and deactivat-
ing are discussed later.) The program segment labeled ““Spin”’
is an infinite loop. If it weren’t for interrupts, this program
couldn’t do anything except display a zero. However, there is
animplied IF... THEN at the end of lines 140 and 150 because of
the ON KEY action. This allows a selection process to occur.
Either the “Plus” or the “Minus’’ subroutine can be selected as

Program Structure and Flow 3-29

3-30 Program Structure and Flow

a result of softkey presses. These are normal subroutines ter-
minated with a RETURN statement. (In the context of inter-
rupt programming, these subroutines are called service
routines.) The following section of pseudo code shows what
the program flow of the “Spin” segment actually looks like to
the BASIC system.

140 Sein: DISP X
If Key# 1 pressed, then gosub Plus.
If Key# 5 pressed, then gosub Minus.
130 GOTO Sein

This pseudo code is an over-simplification of what is actually
happening, but it shows that the “Spin”” segment is not really
an infinite loop with no decision-making structure. Actually,
most programs that use event-initiated branching to control
program flow will contain what appears to be an infinite loop.
That s the easiest way to “keep the computer busy” while it is
waiting for an interrupt.

Now run the sample program you just entered. Notice that the
the screen displays an inverse-video label area. These labels
are arranged to correspond to the layout of the softkeys. The
labels are displayed when the softkeys are active and are not
displayed when the softkeys are not active. Any label which
your program has not defined is blank. The label areas are
defined in the ON KEY# statement by typing a comma after
the key number and the key label name inside of quotes.

The starting value in the display line is zero, since numeric
variables are initialized to zero at prerun. Each time you press
k1!, the displayed value of X is incremented. Each time you
press k', the displayed value of X is decremented. This simple
demonstration should acquaint you with the basicaction of the
softkeys.

1 Key labels differ slightly for the various computers that run Technical BASIC. For
information on key labels, refer to your particular HP-UX Technical BASIC
system’s Getting Started manual.

Deactivating Events

It is possible to make structures that are much more elaborate,
with assignable priorities for each key, and keys that interrupt
the service routines of other keys. There are many applications
where priorites are not of any real significance, such as the
example program running now. However, priorities will
sometimes cause unexpected flow problems. For more in-
formation on priorities, read the “Branch Precedence Table”
found in the HP-UX Technical BASIC Language Reference.

Knowing how to ““turn off” the interrupt mechanism is just as
important as knowing how to enable it. Often, an event is a
desired input during one part of the program, but not during
another. You might use softkeys to set certain process para-
meters at the start of a program, but you don’t want interrupts
from those keys once the process starts. For example, a report
generating program could use a softkey to select single or
double spacing. This key should be disabled once the printout
starts so that an accidental keypress does not cause the compu-
ter to abort the printout and return to the questions at the
beginning of the program. On the other hand, you might want
an “Abort” key that does precisely that. The important thing is
that you decide on the desired action and make the computer
obey your wishes.

A key is deactivated, if it no longer has any influence on
program flow. You can press a deactivated key all day long and
nothing will happen.

All the “ON-event” statements have a corresponding ““OFF-
event” statement. This is one way to deactivate an interrupt
source. Here is a summary of the various “OFF-event’” state-
ments.

n OFF EOT deactivates end-of-line branching for termination
of a TRANSFER operation on the specified interface.

s OFF ERROR deactivates interrupts resulting from run-time
errors. If these events occur while deactivated, the program
pauses and an error message is displayed.

m OFF INTR deactivates end-of-line branching for interface
interrupts previously established by ON INTR.

Program Structure and Flow 3-31

OFF KYBD deactivates end-of-line branching previously
enabled by an ON KYBD statement.

OFF KEY# deactivates interrupts from the softkeys. If a
softkey is pressed while deactivated, it does nothing.

OFF TIMEOUT deactivates interrupts from interface time-
outs. There is no such thing as a ““timeout” when ON
TIMEOUT is deactivated.

OFF TIMER# deactivates end-of-line branching for the spe-

cified timer.

The following example shows one use of OFF KEY# to disable
the softkeys.

100
110
120
130
140
150
160
170
18¢
1890
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
380
400
410

3-32 Program Structure and Flow

Begin:
ON KEY# 1+"Stp8z"
DN KEY# 4,"Start"
ON KEY# S,"Quit "
KEY LABEL
|
Inc=1
DISP "Step Size
|

Sepin: GOTO Sepin !
|

Step_size:
Ing=Inc+l !
DISP "Ster Size =
RETURN
I

Process:

I OFF KEY# |

I ON KEY# 8," ABORT"

KEY LABEL
Number=0
FOR I=1 TO 10

GOSUB Step.size
GOTOD Process
GOTD Quit

Wait for Kevepress

Chande increment
"§lnc

Deactivate first choices
GOTD Leave

Number=Number+Inc

PRINT Number
WAIT BOO
NEXT I
Leave:
OFF KEY# 8 |
PRINT !
GOTO Begin !
|
Quits END

Deactivate ABORT
End line
Start over

A softkey is used to select a parameter for a small printing
routine. Each press of k1 increments and displays the step size
that will be used as an interval between the printed numbers.
When the desired step size has been selected, k4 is pressed to
start the printout. Enter and run this example. Notice that with
line 270 and 280 commented out, the softkey menu, or label
area, never changes.

Now run the example again and press k1 or k4 while the
printout is in progress. Notice that the keys are still active and
produce undesired effects on the printing process. To ““fix this
bug’’, remove the exclamation point from line 270. This dis-
ables all the softkeys when the printing process starts. Notice
that the softkey menu goes away when no sofkeys are active.
This is a very handy feature while you are experimenting with
interupts. It provides immediated feedback to indicate when
interrupts are active and when they are not.

Finally, remove the exclamation point from line 280. Now, the
softkey menu appears during the printing process. However,
the choices are different than at the start of the program. The
keys used to select the parameter and start the process are not
active, because they are not needed at this point in the
program.

The OFF KEY# statement can include a key number to deacti-
vate a selected key. This was done in line 370.

Program Structure and Flow 3-33

|
Chaining
Programs

General Features

A Simple Example

You may have had in the past a program which was quite
large, and you wanted to reduce the amount of memory re-
quired to run the program. The Technical BASIC system
allows a running program to load and run another program.
This section explains this type of operation.

Chaining allows you to break up a program into smaller seg-
ments, loading and running only one segment at a time.

If you need to pass information from the program currently
running to the program being chained, you can use the COM
statement to place the shared variables in a “common’ storage
area. All that is necessary is to insure that the COM declara-
tions in both programs match, and use the CHAIN command
to call the other program.

The following three short programs illustrate chaining. (If you
are going to type these programs into your computer for this
example, note that you will need to STORE them, not SAVE
them. CHAIN only works with files created by the STORE
command.)

10 REM #%¥¥X¥F¥XEFXXXXXE%% Program#]l *EFREFFEERREFEERERREFXERERXEN
20 PRINT "Prodram#l"
30 CHAIN "Prodram#2"

40 END

10 REM ¥X¥XXRXXEFARAXNREE Programil FEXEEEFXRFXERXFAERXRREFRRERESR
20 PRINT "Prodram#2"
30 CHAIN "Prodram#3"

40 END

10 REM #¥¥¥¥¥XXEXEXRRHEEF Progdramed ¥EFFFFE¥ 445X XRXXXXXXRXXXXERX
20 PRINT "Prodram#3"

30 END

3-34 Program Structure and Flow

When Program#1 is run, the following output is printed:

Prodram#1
Program#Z2
Prodram#3

Program-to- All variables not placed in ““common storage” (i.e., declared b
P g Yy
a statement) are scratched when the chained program is

Program aCOM) hed when the chained program i
Communications loaded. So if you want chained programs to communicate with

10
20
30
40
50
B0

10
20
30
40
50
GO

10
20
30
40
50

one another, then you will need to declare variables with the
COM statement.

The preceding three programs have been modified to place
four variables in COM, thereby providing a means for the
programs to communicate. Note that the variables can be
accessed with different names as they are passed between
programs.

REM ¥¥¥¥XREFXXRXXXNE5% Program@lC SEXEEXRRERRERXFEXERER X% HEF
COM A+B%L114CHD

A=1 B B¢="x" B C=3 @ D=4

PRINT "Program#1C"3A3TB%$3C3D

CHAIN "Program#2C"

END

REM #¥E¥XXFFXXXXRFR%4F ProgdramfB2l FRXEX KRR RXXXARRREXRRRHHNER
COM T.¥$l11

COM C»D

PRINT "Prodram#2C"3TiV$3C3iD

CHAIN "Program#3C"

END

REM ¥¥EXXXXEXXXXEXX%%% Prodraml0 HEEXXRXXRFRXFRARXEFXRRXRRRER
COM QyR$L11

COM WX

FRINT "Prodram#3C"iQIREIWNIXN

END

When Program#1C is run, the following output is printed:

Prodram#iC 1 x 3 4
Prodram#2C 1 x 3 4
Program#3C 1 x 3 4

This is a simplistic example; however, it does show the general
tasks involved in chaining programs. For further details about
numeric and string variables, read the "Numeric Computa-
tions” and “’String Manipulation” chapters, respectively. For
further information about COM, read the ‘““User-Defined
Functions and Subprograms” chapter.

Program Structure and Flow 3-35

A Closer Look at
Program
Execution

Prerun (RUN and
INIT)

3-36 Program Structure and Flow

The normal running of a program is started by the RUN com-
mand. Before being able to run a program, however, the
computer must make a “pre-run,” during which it performs
such tasks as allocating memory for variables and verifying
that the line numbers specified in branch instructions (GOTO
and GOSUB) actually exist. The computer then begins normal
program execution, starting with the lowest numbered line in
the main program.

This section describes some of the things that are happening
during prerun and while the program is being executed. You
may skip this section with no loss of continuity if you are not
interested in this level of detail.

Prerun is executed automatically by the RUN command. It is
also executed by the INIT command, which allows you to
perform a prerun without starting program execution — a
handy operation to have for use with the SINGLESTEP com-
mand (see the “Program Debugging’’ chapter for details).

There are three primary reasons for the prerun.

m To reserve sufficient memory for all the variables in the
program. This includes all variables in COM, DIM, INTE-
GER, SHORT, and REAL statements, and all implicitly de-
clared variables. (The chapter entitled “Numeric Computa-
tion” explains the declaration of numeric variables, and the
chapter “String Manipulation” covers the dimensioning of
string variables.)

= To detect errors that involve interaction between lines. The
computer checks for syntax errors before it stores a program
line. However, there are some errors that can’t be detected
by looking at a single line. For example, a program line that
uses properly placed subscripts can appear to be correct
when it is stored. However, if that line references two
dimensions in an array that had previously been declared to
have only one dimension, it is in error. To detect an error of
that kind, the computer needs to ““search” the entire prog-
ram to see all the dimension statements as well as the
variables used in each line. Another example of this kind of
error is a GOTO or GOSUB that specifies a line that does not
exist.

Normal Program
Execution

® To locate all the user-defined function boundaries. These
are defined by the DEF FN statement and the FNEND state-
ment with multiple-line, user-defined functions. (See the
“User-Defined Functions and Subprograms’” chapter for a
complete description of user-defined functions.)

Note that these types of “prerun errors” are not caught by
“ON ERROR” (discussed in the “’Error Handling”’ chapter).

The term execution is used to describe the process used by the
computer while it is completing the tasks described in its
program. The process of program execution is summarized
below.

1. Determine which program line is to be acted upon next.

2. Identify the statement that follows the line number and
label (if any) on that line.

3. If the statement has a run-time action, then perform that
action.

4. Repeat steps 1 thru 3 until an END, STOP, PAUSE or an
€rror occurs.

The continuing process of determining which line is to be
executed next is discussed in detail in preceding sections of
this chapter. The RUN command determines which line is
acted on first. Executing RUN with no parameters, causes the
execution process to begin at the first (lowest-numbered) line
of the main program. Execution can be started anywhere in the
main program by using the RUN command with a line identi-
fier. For example:

RUN 220
This command causes execution to begin at line 220, if there is
such a line. If there is no line 220 in the main program, execu-

tion begins with the line whose number is closest to and
greater than 220.

Program Structure and Flow 3-37

Non-Executed
Statements

3-38 Program Structure and Flow

Note that the prerun phase is always the same, whether the
actual execution begins at the program start or somewhere in
the middle. Also, if a starting line is specified, that line must be
in the main program. An error 3 results when RETURN is
executed if you attempt to start a program in a user-defined
function or subprogram. Even if the starting point is correctly
specified, be alert to the effects of starting a program in the
middle. Skipping over a section of the program may result in
null values for some of the variables.

In the preceding summary of normal execution, step 3 men-
tioned that only statements with run-time actions are ex-
ecuted. The term run-time refers to the state that exists after
the prerun, when the computer is actually performing the
sequence of actions described by the program. Some state-
ments are not executed in the course of normal program flow,
but are merely “looked at’”” and then bypassed.

The following is a list of some statements that do not cause an
action as a result of run-time execution.

8 Comments and REM statements: these never cause an ac-
tion. (See the “Program Development” chapter for more
complete details.)

® Variable declarations: COM, DIM, INTEGER, SHORT, and
REAL. These are executed during prerun but skipped at run
time. The OPTION BASE statement is also part of the dec-
laration process. (See the “Numeric Computation’’s and
*‘String Manipulations” chapters for further descriptions of
these statements.)

® DEF FN and FNEND statements. These are used during
prerun to establish the program structure and are skipped
over at run time. (See the ““User-Define Functions and Sub-
programs” chapter for a complete description.)

®m DATA statements: these are accessed by the READ state-
ment, but are not executed. (See the ““Data Storage and
Retrieval” chapter for further information.)

Numeric Computation

Chapter Contents

When most people think about computers, the first thing that
they think of is number-crunching —the giant calculator with a
brain. Whether this is an accurate impression or not, numeric
computations are an important part of computer program-
ming,.

Numeric computations deal exclusively with numeric values.
For instance, adding two numbers and calculating a sine or a
logarithm are all numeric operations. Making numeric com-
putations from the keyboard and within a program are co-
vered in this chapter.

Even though numeric computation includes converting a
number to a string, and vice versa, these tasks are not de-
scribed in this chapter; they are covered in the “String Man-
ipulations” chapter.

Here are the major topics covered in this chapter.
B Assigning values to numeric variables
® Numeric data types

® Evaluating scalar expressions

® Making comparisons work

® Range limits

® Rounding

® Binary operations

® Number-base conversions

® Trigonometric functions

® Random numbers

® Miscellaneous numeric functions

® Array operations

Numeric Computation 4-1

Assigning Values
to Variables

4-2 Numeric Computation

One of the most fundamental numeric operations is the
assignment operation, achieved with the LET statement. The
LET statement originally required the keyword LET for BASIC
interpreters, but Technical BASIC makes it optional. Thus, the
following program lines are equivalent:

100 LET A=A+1
100 A=A+l

However, when executing these statements from the
keyboard, there is a difference:

m A=A+1is evaluated as a boolean expression.
m LET A=A+1is an assignment to the variable A.

Unless you have declared otherwise, the data type of numeric
variables in this example is REAL. This is the default data type
of numeric variables. The next section discusses other numeric
data types and shows how to declare the type of a variable.

Numeric Variable Names The rules for naming simple numeric
variables are as follows: the name can be up to 32 characters in
length, and it may contain alphabetic (uppercase and lower-
case) characters, decimal digits, and the underscore () charac-
ter. The only restriction is that the first character must be a
letter.

Here are some examples:

A
AYervDescriptiveYariableName
Const22

NumericResult

als

z.coordinate

. =
Numeric Data
Types

)

REAL Numbers

SHORT Real
Numbers

INTEGERSs

There are three pre-defined numeric data types in Technical
BASIC:

m INTEGER
m SHORT
m REAL

Any numeric variable that is not explicitly declared an INTE-
GER or SHORT is implicitly declared to be of type REAL.

The range of REAL numeric variables is the largest range of
numeric values. The largest value of a REAL variable is re-
turned by the numeric INF (infinity) function, and the smallest
positive value is returned by the EPS (epsilon) function. For a
more complete description of the range on your system, see
the Implementation Specifics appendix for your particular
BASIC system.

The range of SHORT numeric variables is less than that of
REAL numbers. For an exact description of the range of REALSs
on your system, see your Implementation Specifics appendix.

The range of INTEGER numeric variables is less than that of
REAL and SHORT numbers. Also, INTEGERS are whole num-
bers, and cannot contain any fractional part.

For an exact description of the range of INTEGERS on your
system, see your Implementation Specifics appendix.

Numeric Computation 4-3

Declaring a
Variable’s Data

Type

4-4 Numeric Computation

The DIM, REAL, SHORT, and INTEGER statements are pro-
vided for explicitly declaring numeric variables:

DIM SimpleReal sRealArrav(4,3)
REAL XCoords¥CoordsVWoltade(d,13)
SHORT LogBaselOsHours(D2:7)
INTEGER IsJsDavs(3) sheeks(5417)

Each of the above statements declares both simple and array
variables.

m A simple variable can, at any given time, contain only a
single value.

m An array variable can contain multiple values, each of which
is accessed by subscripts.

With Technical BASIC, you can only define the upper bound
of array subscripts; the current OPTION BASE is always de-
fined to be the lower bound. Details on declarations of arrays
and how to use them are provided in the subsequent ““Arrays”
section of this chapter.

Implicit Type Declarations When a variable is used in a program
without its type being previously declared (such as with
SHORT or INTEGER), it is implicitly declared to be of type
REAL. Even though you can use this feature to implicitly
declare a REAL variable’s type, it is better programming prac-
tice to explicitly declare all variables. As shown in the preced-
ing example, the DIM statement may also be used to declare
REAL variables.

)

Evaluating Scalar
Expressions

Arithmetic
Hierarchy

This section describes some additional details of how the com-
puter evaluates scalar arithmetic expressions (as opposed to
array expressions, which is discussed in the subsequent
“Arrays’ section).

If you look at the expression 2+4/2 + 6, it can be evaluated in
several ways:

m2+(42)+6 = 10
m(2+4)2+6 =9
m2+4/2+6) = 2.5

m(2+4)/(2+6) = .75

Computers do not deal well with ambiguity, so a hierarchy is
used for evaluating expressions. These rules were made to
eliminate any questions about the meaning of an expression.
When the computer encounters a mathematical expression, an
“expression evaluator” is called. If you do not understand the
expression evaluator, you can easily be surprised by the value
returned for a given expression. In order to understand the
expression evaluator, it is necessary to understand the valid
elements in an expression and the evaluation hierarchy (the
order of evaluation of the elements).

Six items can appear in a numeric expression:

m Constants — represent numbers or strings with fixed value.
m Variables — represent the value stored in the variable.

m Operators — modify or perform operations on other ele-
ments in the expression.

m Intrinsic numeric functions — represent numeric values.

m User-defined numeric functions - represent numeric
values.

m Parentheses — used to modify the default arithmetic
hierarchy.

Numeric Computation 4-5

The following table defines the hierarchy used by the compu-
ter in evaluating numeric expressions.

Math Hierarchy

Precedence

Operator

Highest

Lowest

Parentheses: {) used to force the order of evaluation
Functions: both user-defined and machine-resident
Exponentiation: *

The logical “Not” monadic operator: NOT

Multiplication and division: * / MOD DIV

Addition and subtraction, and monadic operators: + -
Relational operators: 4= = k=

Logical “And” operator: AND

Logical “Or” operators: OR EXOR

When an expression is evaluated, it is read from left to right;
operations are performed as encountered, unless one of the
following is encountered:

® A higher precedence operation is encountered immediately
to the right of the operation being evaluated.

m The hierarchy is modified by parentheses.

If the computer cannot deal immediately with the operation, it
is stacked and the expression evaluator continues to read the
expression until it encounters an operation it can perform. It is
easier to understand if you see how an expression is actually
handled. The following expression is complex enough to de-
monstrate most of what goes on in expression evaluation.

A = S+3%(4+2)/SINCO +X*(1:X) +FNNegl* (X435 AND X:0)

In order to evaluate this expression, it is necessary to have
some background information. We will assume that DEG has
been executed, that X=90, and that FNNegl returns —1.
Evaluation proceeds as follows:

4-6 Numeric Computation

S+3%(A+2Y/SINCGO + X (1 X)) +FNNegl* (<5 AND X:0)
—

SH3*¥G/SINC +X*(1:X) +FNNe gl (XI5 AND X3:0)

S’
SH18/SINCK) +X* (1) +FNNeg1*(X<3 AND X:0)
[SRR
SHIB/1+X* (1 >X)+FNNed1#(X<5 AND X:0)
———

SHIB+H* (1) +FNNegl* (X435 AND X:0)
[a——
23+H* (150 +FNNedl® (<5 AND X3:0)
[—
23+H*0+FNNegl* (X<5 AND X:0)

(S

23+0+FNNegl*(X<3 AND X:0) 4
[——

23+FNNegl# (X3 AND X:0)
[

23+-1% (X453 AND X:0)

[N——

23+-1%(0 AND X:0)

Operators

(-]
23+-1%(0 AND 1)
[")

23+-1%0
———’
23+0
—

23

There are three types of operators in BASIC: monadic, dyadic,

and comparison.

m A monadic operator performs its operation on the express-
ion immediately to its right. The monadic operators are:
+ - NOT.

Examples of usage:

-3
NOT True
m A dyadic operator performs its operation on the two values

it is between. The dyadic operators are:
“ %/ MOD DIV + - £ <= = = > AND OR EXOR.

Numeric Computation 4-7

4-8 Numeric Computation

Examples of usage:
5+3
Varl MOD Var2 Varl =44

While the use of most operators is obvious from the descrip-
tions in the Technical BASIC Language Reference, some of the
operators have uses and side effects that are not always appa-
rent. Examples of such subtleties for DIV and MOD are shown
in the next section.

DIV and MOD Two additional arithmetic operators are DIV
(integer division) and MOD (modulo). These operators can be
used exactly like the arithmetic operators previously dis-
cussed.

The DIV operator uses this formula:

A DIV B = IP(A/B)
where IP returns the integer portion of the quotient of A/B.

The MOD operator returns the remainder resulting from a
normal division. Given two numbers, A and B, A MOD B is
defined by the equation:

AMOD B =~A-B * INT(A/B)

where INT(A/B) is the greatest integer less than or equal to the
quotient of A/B. It turns out that:

0<=(A MOD B)<B if B:0

and

B<(A MOD B)<=0 if B<0.

By definition, A MOD 0 is A.

Expressions, Calls,
and Functions

Strings in Numeric
Expressions

Try the following arithmetic operations:

Expression Result
16 DIV 5 3
19 DIV 5 3
5 DIV 16 0
5 DIV 6 0
16 MOD 9 1
17 MOGD 3 2
-8 MOD 3 1
-(8 MOD 3) -2

The expression —8 MOD 3 is not evaluated the same way as
—(8 MOD 3), because the monadic —operator has a higher
priority than the MOD operator.

All numeric expressions are passed by value to subprograms.
Thus 5+ X is obviously passed by value. Not quite so obvious-
ly, +Xis also passed by value. The monadic operator makes it
an expression. For more information on functions and sub-
programs read the chapter ““User-Defined Functions and Sub-
programs”’.

String expressions can be directly included in numeric ex-
pressions if they are separated by comparison operators. For
instance:

As="ABC"
The comparison operators always yield “boolean” results,
which are numeric values in BASIC. This numeric expression

is 1 if the string variable names A$ is equal to the string ABC,
and 0 otherwise.

Numeric Computation 4-9

Step Functions The comparison operators are obviously useful
for conditional branching (IF... THEN statements), but are also
valuable for creating numeric expressions representing step
functions. For example, you can easily represent this function
with a numeric expression:

m [F Select<0 THEN Result=0
m IF 0<=Select<1 THEN Result=(A%+ B> 1.
m IF Select>=1 THEN Result=15

Itis possible to generate the required response through a series
of IF...THEN statements, but it can also be done with the
following expression:

1210 Result=(Select<0)+(Select>=0 AND Select<1)*5QR(A"Z+B"2)+ (Selectr=1)*13

4-10 Numeric Computation

While the technique may not please the purist, it actually
represents the step function very well. The “‘boolean” (com-
parison) expressions each return a 1 or 0, which is then multi-
plied by the accompanying expression. Expressions not
matching the selection return 0, and are not included in the
result. The value assigned to Select before the expression is
evaluated determines the computation placed in Result. This
technique can be used to represent other functions, as long as
the program statement does not exceed the maximum allow-
able line length.

-}
Making
, Comparisons
"Work

120 DEG

If you are comparing INTEGER numbers, no special precau-
tions are necessary. However, if you are comparing REAL or
SHORT values, especially those which are the results of cal-
culations and functions, it is possible to run into problems due
to rounding and other limits inherent in the system. For exam-
ple, consider the use of comparison operators in IF..THEN
statments to check for equality in any situation resembling the
following;:

130 A=23.3765477
140 IF SIN(A)“2+CDS5(A)"2=1 THEN PRINT "OK" ELSE PRINT "Not OK"

You may find that the equality test fails due to rounding errors
or other errors caused by the inherent limitations of finite
machines. A repeating decimal or irrational number cannot be
represented exactly in any finite machine.

A good example of equality error occurs when multiplying or
dividing data values. A product of two non-integer values
nearly always results in more digits beyond the decimal point
than exists in either of the two numbers being multiplied. Any
tests for equality must consider the exact variable value to its
greatest resolution. If you cannot guarantee that all digits
beyond the required resolution are zero, there are three techni-
ques that can be used to eliminate equality errors:

m Use the value of the absolute difference between the two
values, and test for the difference less than a specified limit.

IF ABS(A-B)<,001 THEN DISP "Egqual"
ELSE DISP "Not Eaqual™

s Use the absolute value of the relative difference between
two values, and test for the difference less than a specified
limit:

IF ABS((A-B)/B)«,001 THEN DISP "Eaqual"
ELSE DISP "Not eaual”

m Eliminate unwanted resolution before comparing results.
For instance, you could use a specified number of significant
digits in the comparison.

Numeric Computation 4-11

|
Range Limits

4-12 Numeric Computation

It is sometimes necessary to limit the range of values that are
assigned to a variable. You can do that with IF...THEN state-
ments, as shown in these statements: |

200 IF
210 IF

However,
functions.

200 X

210 X

ReMaxy® THEN X = MaxX
ReMinX THEN X = MinX

it is more convenient to use the MAX and MIN

MAX (X s MinX
MINCK MaxX

Note that MAX is used to establish the lower bound, and MIN
is used to establish the upper bound. If you think about it a
minute, it makes sense.

Here is a faster version of the above computation:

190 X

= MINCMAX CGOMinX) sMaxX)

|
Rounding

Rounding occurs frequently in computer operations. The most
common rounding occurs in printouts and displays, where it
can be handled effectively with a USING clause in an output
operation. For instance:

DISP USING "DD.DDD"iNumber

The value in the variable Number is displayed using (up to)
two decimal digits preceding the decimal point radix, and
three digits following the decimal point. For further details,
see the “Formatting Information” section of the “Communi-
cating with the Operator” chapter. This feature works in state-
ments such as DISP, PRINT, LABEL, and OUTPUT.

Sometimes it is necessary to round a number in a calculation in
order to eliminate unwanted resolution. There are two basic
types of rounding:

m Rounding to a number of significant decimal digits

m Rounding to a number of significant decimal places (limiting
fractional information)

Both types of rounding have their ownapplication in program-
ming.

There is a tendency for the number of decimal places to grow
as calculations are performed on the results of other calcula-
tions. One of the first things covered in training for engineer-
ing and the sciences is how to handle the growth of the num-
ber of decimal places in a calculation. If the initial measure-
ments from an experiment produced three digits of informa-
tion per reading, it is very misleading to produce a seven-digit
number as the result of a long series of calculations.

Numeric Computation 4-13

Binary
Operations

4-14 Numeric Computation

180
180
200
210

220

In rounding to a number of decimal places, the idea is to
eliminate decimal representation beyond a specific power of
ten. A simple approach to it is to shift the desired decimal
information to the left of the radix, round up (add 0.5 to the
resulting quantity), use INT to get rid of the undesired decimal
information, then shift the number (to the right) back to its
original position.

¥=123.456

Places=2 ! Round to two didits after decimal Point.
ScaleFactor=10"Places

KRounded=INT(X#*5caleFactor+(,5)/ScaleFactor
DISP XRounded

Here are the program’s results:

123,46

ScaleFactor and Places should both be INTEGERSs. The exam-
ple shows rounding to 2 decimal places (to the right of the
decimal point). Places should be set to a negative number to
round to a number of digits to the left of the decimal point.

We humans usually think of numbers being represented as
decimal numbers, so this is the default representation for most
input and output operations (such as INPUT and DISP).
However, all operations the computer performs use the binary
number representation. You usually don’t see this, because
the computer changes decimal numbers you inputinto its own
binary representation, performs operations using these binary
numbers, and then changes them back to their decimal repre-
sentation before it displaying or printing them.

There are some operations available with Technical BASIC that
deal with binary numbers. For example, the BINIOR function
performs a bit-by-bit ““inclusive or”” operation on the two argu-
ments, and returns the result:

BINIOR(Z D)
7

Resident Binary
Functions

When any of these operations are used, the arguments are first
converted to INTEGER (if they are not already of this type) and
then the specified operation is performed. Therefore it is best
to restrict bit-oriented binary operations to declared INTE-
GERs. However, if it is necessary to operate on a REAL or
SHORT, then you should make sure that the argument is not
beyond the range of INTEGERs (to avoid an error).

In the following descriptions, the variable(s) shown in pa-
rentheses (such as Ardl, NthBit, and Shift) signify that the
function requires numeric argument(s), which can be any
numeric expression.

Function Description

BINAND (ArdlArdZ) Returns the bit-by-bit logical
““AND’"’ of the two argu-
ments.

BINCMP(Ard) Returns the bit-by-bit “‘com-
plement” of the argument.

BINEOR(Ardl Ard2) Returns the bit-by-bit exclu-
sive “OR” of the two argu-
ments.

BINIOR(Ardl,ArdZ) Returns the bit-by-bit inclu-
sive OR of the two argu-
ments.

BIT(Ard NthBit) Returns the state of bit

NthBit of Ard.

ROTATE$(Strind$:Shift) Returns a string obtained by
shifting the characters in the
string argument St ring$ the
number of positions specified
by Shift, with wraparound.
(Even though this is a string
function, you may also find it
useful for binary operations.
See the "“String Manipula-
tions’”” chapter for details.)

Numeric Computation 4-15

Number-Base
Conversions

Converting from
Decimal

4-16 Numeric Computation

The computer treats all numeric values as decimal (base 10)
quantities. However, it is often necessary to-handle numbers
represented in these number bases:

s Binary (base 2)
m Octal (base 8)
s Hexadecimal (base 16)

This section describes the functions that allow you to convert
between these number bases.

Technical BASIC provides resident functions for converting
from decimal to binary, octal, and hexadecimal number bases.
These functions are as follows:

DTB$ Converts a decimal number to a binary string
DT0$ Converts a decimal number to an octal string

DTH$ Converts a decimal number to a hexadecimal string

The DTB$ (Decimal-To-Binary) string function returns a string
containing the base-2 representation of the decimal argument.
For example, to find the binary representation of 15, use this
function:

DTBs(13)

The following “32-bit” string value is returned:

The DTO$ (Decimal-To-Octal) string function returns a string
containing the octal representation of the decimal argument.
The following function call returns the octal string representa-
tion of decimal 15:

DTO$(13)

This string value is returned:

~

Converting to
Decimal

The DTH$ (Decimal-To-Hexadecimal) string function returns
a string containing the hexadecimal representation of the de-
cimal argument. To find the hexadecimal value for 15, use the
following function call:

DTH$(13)

The following string value is returned:

Technical BASIC also provides functions to convert numbers
from binary, octal, and hexadecimal number bases to a decimal
numeric representation. These functions are as follows:

BTD Converts a binary string to a decimal number
01D Converts an octal string to a decimal number
HTD Converts a hexadecimal string to a decimal number

The BTD(Binary-To-Decimal) numeric function returns the de-
cimal equivalent of the specified binary number (which is
represented by a string expression). For instance, this function
converts an ““8-bit” string-binary number to a decimal numeric
value:

BYD("11111111™)

Here is the numeric value it returns:

255

The OTD(Octal-To-Decimal) numeric function returns the de-
cimal equivalent of the specified octal number (which is repre-
sented by a string expression). For instance, this function
converts a string-octal number to a decimal numeric value:

oTD("377")

Here is the numeric value it returns:

255

Numeric Computation 4-17

The HTD(Hexadecimal-To-Decimal) numeric function returns
the decimal equivalent of the specified hexadecimal number
(which is represented by a string expression). For example,
this function converts an *“16-bit” string-hexadecimal number
to a decimal numeric value:

HTD("ff")

Here is the numeric value it returns:

2558

4+ Trigonometric
Functions

Resident
Trigonometric
Functions

4-18 Numeric Computation

Technical BASIC provides several functions for dealing with
angles and angular measure: SIN, COS, TAN; CSC, SEC,
COT; ASN, ACS, ATN, ATN2; DTR and RTD. Each function
has a different purpose, as described subsequently; however,
all deal with angles. The interpretation of the argument, and
consequent value returned, is dependent on the angular unit
of measure currently being used.

® The default unit for all angular measure is radians.
You can use the RAD statement to set this mode.
(There are 2 7 radians in a circle.)

® Degrees can be selected with the DEG statement.
(There are 360 degrees in a circle.)

m Grads can be selected with the GRAD statement.
(There are 400 grads in a circle.)

Radians may be re-selected by the RAD statement.

It is a good idea to explicitly set a mode for any angular
calculations, even if you are using the default (radian) mode.
Subprograms inherit the angular mode from the context that
calls it. And if the subprogram changes the mode, then the
mode used in the calling context is not restored.

In the following descriptions, the variable(s) shown in pa-
rentheses (such as Angle, and X) signify that the function
requires numeric argument(s), which can be any numeric ex-
pression.

Function

ACS(Cosine)

ASN(Sine)

ATN(Tandent)

ATNZ (Y 4 X)

COS(Angle)

COT(Angle)

CSC(Angle)

DTR{DedreeAndle)

RTD(RadianAngle)

SEC(Andle)

SIN(Angle)

TAN(Angle)

Description

Returns the arccosine of an expression (— 1<Cosine<1) as an
angle in first or second quadrant. The resultant angle returned
is dependent upon the current DEG/RAD/GRAD mode.

Returns the arcsine of an expression (—1<Sine=<1) as an angle
in first or fourth quadrant. The resultant angle returned is
dependent upon the current DEG/RAD/GRAD mode.

Returns the arctangent of an expression as an angle in first or
fourth quadrant. The resultant angle returned is dependent
upon the current DEG/RAD/GRAD mode.

Returns the arctangent of Y divided by X (Y/X) in the proper
quadrant. (X,Y) is the rectangular coordinate position of a
point. The resultant angle returned is dependent upon the
current DEG/RAD/GRAD mode.

Returns the cosine of the angle specified by the expression.
The interpretation of the specified angle is dependent upon
the current DEG/RAD/GRAD mode.

Returns the cotangent of the angle specified by the expression.
The interpretation of the specified angle is dependent upon
the current DEG/RAD/GRAD mode.

Returns the cosecant of the angle specified by the expression.
The interpretation of the specified angle is dependent upon
the current DEG/RAD/GRAD mode.

Converts the specified angle expression from degrees to ra-
dians. The result returned is independent cf the current DEG/
RAD/GRAD mode.

Converts an angle expression from radians to degrees. (The
value this function returns is independent of the current DEG/
RAD/GRAD mode.)

Returns the secant of the angle represented by an expression.
The interpretation of the specified angle is dependent upon
the current DEG/RAD/GRAD mode.

Returns the sine of the angle specified by the numeric express-
ion. The interpretation of the specified angle is dependent
upon the current DEG/RAD/GRAD mode.

Returns the tangent of the angle represented by an expression.
The interpretation of the specified angle is dependent upon
the current DEG/RAD/GRAD mode.

Numeric Computation 4-19

Random
Numbers
Scaling
A New Seed

4-20 Numeric Computation

The RND numeric function returns a pseudo-random random
number greater than or equal to 0 and less than 1.

RND
0, 0459608732708518

Since many modeling systems require random numbers with
arbitrary ranges, it may be necessary to scale the numbers.

200 R=INT(RND¥Range)+0ffset

The above statement will return an integer between Offset and
Offset + Range.

The random number generator is seeded with the a default
value at system reset, power-on, SCRATCH, and pre-run. You
can change the seed with the RANDOMIZE statement, which
will give a new pattern of numbers.

RANDOMIZE NewSeed

Miscellaneous
Numeric
)Functions

Resident General
Numeric Functions

Function
ABS (Number)
CEIL(Number)

EFS

EXP(Power0fE)

FLOOR (Number)

FP(RealNumber)

INF

INT{Number)

Technical BASIC provides a generous complement of numeric
functions. For instance, the ABS, MIN, and MAX functions
have been used in preceding examples. This section lists some
of the general numeric functions which are not described
elsewhere in this chapter.

In the following descriptions, the variable(s) shown in pa-
rentheses (such as Number and Arsg) signify that the function
requires numeric argument(s), which can be any numeric ex-
pression.

Description
Returns the absolute value of the expression Number.

Returns the smallest integer greater than or equal to the ex-
pression Number.

Returns the machine’s “epsilon” — the smallest positive num-
ber greater than zero that the system can handle. Note that this
is system-specific; refer to the Specifics appendix for you par-
ticular system.

Raise the natural e to the power specified by the expression
PowerOfE.
(e = 2.718 281 828 459 05).

Returns the greatest integer that is less than or equal to the
specified expression Number. (Same as INT function.)

Returns the “fractional” part of the specified expression Real -
Number.

Returns the machine’s “infinity’’ - the largest positive number
that the system can handle. This number is system-specific;
refer to the Specifics appendix for you particular system.

Returns the greatest integer that is less than or equal to the
specified expression Number. The result is of the same type
(INTEGER or REAL) as the original number. It differs from IP
with negative numbers. For example:

INT(-45,68) returns the value -46.

IP(-45,66) returns the value -45.

Numeric Computation 4-21

Function

IP{Number)
LGT{Number)
LOG{Number?

MAX(Argl Argd)
MIN(Argl,Ardd)
NUM(S@rin9$)
PI

POS(Source$sTardets$)

RMD(Dividend Divisor)
SGN(Number)
SOR(PositiveN)

VAL (String$)

VAL$ (Number)

4-22 Numeric Computation

Description

Returns the integer part of the expression Numbte r. (Similar to
INT above.)

Returns the base 10 logarithm of the specified decimal express-
ion Number.

Returns the natural logarithm (base e) of the specified decimal
expression Number.

Compares Ardl and Ard2, and returns the larger of the two
values.

Compares Argl and ArgZ, and returns the smaller of the two
values.

Returns the decimal code of the first character in the specified
Strind$ expression.

A constant function which returns a 15-digit approximation of
w; 3.141 592 653 589 79.

Returns the position (index) of the Target# string expression
in the Source$ string expression. (See the ““String Manipula-
tions” chapter for examples.)

Divides Dividend by Divisor (Dividend/Divisor) and returns
the remainder of the division (not the quotient, as in DIV).

Returns the arithmetic sign of the expression Number: 1 if
positive, 0 if 0, —1 if negative.

Returns the positive square root of the non-negative express-
ion PositiveN. ‘

Returns the decimal number represented by the string ex-
pression.

Returns the string representation of the specified Number.

Arrays

Array Concepts

This section describes the broad topic of arrays. Here are the
topics discussed in the remainder of this chapter:

m Concepts — what is an array?

m Creating an array variable — dimensioning.

m Assigning value to individual elements.

m Displaying arrays.

m Redimensioning arrays.

m Assigning values to all elements of an array.
m Constant and zero matrices.

Identity matrices.
Copying subarrays.
Scalar arithmetic array operations.

Summing rows and columns.

Array transpose.
Matrix multiplication.
Vector cross products.

Matrix inversion.

Solving systems of linear equations.

An array variable (or simply, an array) is a group of data items
of one type, collectively referred to by one variable name.
Subscripts enclosed in parentheses after the array name refer-
ence individual items in the collection.

Technical BASIC allows one- and two-dimensional arrays. A
one-dimensional array (also called a vector) can be thought of
as a list of items consisting of several rows but only one
column; items are referenced by one integer subscript. A two-
dimensional array is like a table of items. The table has multi-
ple rows and columns, and elements in the table are accessed
by two integer subscripts separated by commas.

Numeric Computation 4-23

4-24 Numeric Computation

The number of items, or elements, in an array is determined by
the lower and upper bounds of its subscripts. The lower bound
of an array subscript is the lowest value that the subscript can
be assigned; the upper bound of an array subscript is the
highest value subscript that the subscript can be assigned. For
example, the following group of ten numbers can be organized
several different ways: as one ten-item list; as two five-item
lists; or as five two-item lists.

(2= TN B4 1 B % B
— O oM

0

The following array is organized as one ten-item array.

Numbers(0) =1 Numbers(1) =2
Numbers(2) =3 Numbers(3) =4
Numbers(4) =5 Numbers(5)=6
Numbers(6) =7 Numbers(7) =8
Numbers(8)=9 Numbers(9) =10

The lower bound of the array subscript is 0, and the upper
bound is 9. Non-integer subscripts are rounded to the nearest
integer. Negative subscripts are not allowed.

The following assignments treat the data as two five-item lists
(i.e., two one-dimensional arrays of five elements each).

OddNumbers(0) =1 EvenNumbers(0) =2
OddNumbers(1)=3 EvenNumbers(1l) =4
OddNumbers(2) =5 EvenNumbers(2) =6
OddNumbers(3) =7 EvenNumbers(3) =8
OddNumbers(4)=9 EvenNumbers(4) =10

Now organize the two lists as one two-dimensional array. The
two subscripts used to reference the items are separated by
commas; the first subscript designates the row, the second
subscript designates the column.

Dimensioning
Arrays

100
110
120
130
140
150

Numbers(0,0)=1 Numbers(0,1) =2

Numbers(1,0)=3 Numbers(1l,1)=4
Numbers(2,0)=5 Numbers(2,1)=6
Numbers(3,0)=7 Numbers(3,1) =8
Numbers(4,0)=9 Numbers(4,1) =10

The lower bound of both subscripts in the Numbers array is 0.
Note that there are different upper bounds for each of the two
subscripts: 4 and 1.

The above examples used numeric arrays. The computer also
allows string arrays; see the “’String Manipulations” chapter
for details.

Dimensioning an array establishes the array-subscript upper
bound(s) and reserves computer memory for the array ele-
ments. After a variable is dimensioned, you can reference the
individual elements by using the array name and the appropri-
ate subscript(s). Here is a simple example:

DIM RealArray(9) ! Dimension the arrav.

!

RealArray(0)=123 ! Assidn value to element 0.
RealArrav(7)=3,142 ! Assidn value to element 7.

! Mow display an element’s value.
DISP "Value of element 7 ="3iRealArrar(7)

Here are the program’s results:

Yalue of element 7 = 3,142

Array Subscript Bounds The array in the preceding example
had 10 elements, specified by the array subscripts 0 through 9.
The upper bound (9) was specified in the DIM statement. The
maximum upper bound of any numeric array subscript is
65 530.

The lower bound of an array subscript, always 0 or 1, is
established either by default or explicitly. Technical BASIC
assumes that all array subscripts have a lower bound of 0,
unless you specify otherwise using this statement:

OPTION BASE 1

Numeric Computation 4-25

Since the computer assumes OPTION BASE 0 unless told
otherwise, the OPTION BASE 0 statement is used only for
documentation purposes.

An OPTION BASE statement can be included only once in a
program. Once an option base has been declared (or
assumed), that option base is used throughout the program.
The OPTION BASE declaration in a program must appear
before any array variables are dimensioned or referenced. And
you cannot execute an OPTION BASE statement from the
keyboard after running a program.

Declaration Statements These declarative statements are avail-
able for dimensioning arrays — declaring the type and size of
the array:

8 REAL (and DIM)
= SHORT

® INTEGER

= COM

The DIM statement is used to declare REAL variables — both
simple and arrays. The REAL statement is also used to dimen-
sion REAL variables; it is the preferred method, because it
documents the variable’s type more clearly.

10 OPTION BASE I
20 REAL Lidht Energy(20) | Simple variable Lights and
30 | 20-element array Enerdyv.

All numeric variables in DIM statements, both simple and
array, are assumed to be of type REAL. The only way to
declare them to be of type INTEGER or SHORT is to explicitly
declare them using the corresponding INTEGER or SHORT
declaration statement.

The SHORT statement declares simple numeric and numeric
array variables of type SHORT.

10 OPTION BARSE O
20 SHORT Chande{(9+15)DeltasP8I ! 1B0-element arrav Chande:
30 1 and simple variables Delta and PSI.

4-26 Numeric Computation

10
20

30

The INTEGER statement declares simple numeric or numeric
array variables of type INTEGER.

OPTION BASE ©
INTEGER DavPointer(40) ! Simple variable Davs and
! 4i-element array Pointer.

The COM statement can declare variables of any type. It is
used to reserve memory in common storage. Programs and
subprograms use common storage for communicating with
one another. Program-to-program communication is discus-
sed in the ““Chaining Programs” section of the ““Program
Structure and Flow” chapter. Subprogram-to-program and
subprogram-to-subprogram communications are discussed in
the “Program/Subprogram Communication”” section of the
“User-defined Functions and Subprograms” chapter.

implicit Dimensioning You need not dimension an array if its
upper bounds are less than or equal to 10. Any array not
explicitly dimensioned (such as with DIM) is assumed to have
upper bound(s) of 10. Here are the number of elements that
implicitly dimensioned arrays will have:

One-dimensional Two-dimensional
Array Array
OPTION BASE O 11 121 (11+11)
OPTION BASE 1 10 100 (10+10)

If you want an array to have fewer elements, you must dimen-
sion it explicitly. This also conserves memory by allocating
space for fewer elements.

Because of implicit dimensioning, the statement that explicitly
dimensions an array variable must appear before any elements
of the array are referenced. Otherwise, the system first dimen-
sions the array implicitly and then reports an error when the
second dimension is attempted (the explicit declaration)’.

1 This error will be caught during program pre-run, which occurs at RUN and INIT.
Pre-runis described in the section called “’A Closer Look at Program Execution” in
the “Program Structure and Flow” chapter.

Numeric Computation 4-27

4-28 Numeric Computation

Here 1is an example that will generate
Error 35 : DIM EXIST URBL (“attempted to dimension an
existing variable’):

OPTION BASE 1
Arrav(3)=44 | Implicitly dimensions ‘Arravy(10)7,
DIM Arrav(10) ! Causes error 35 (at Pre-run).

Regardless of the method used to dimension an array, it can be
dimensioned only once in a program. A second attempt to
dimension an array variable generates this pre-run error (35).

Array Variable Names The rules for naming simple numeric
variables also apply to numeric arrays. The name can be up to
32 characters in length, and may contain alphabetic (uppercase
and lowercase) characters, decimal digits, and the underscore
(=) character. The only restriction is that the first character
must be a letter.

In addition, a simple variable may be given the same name as
an array variable. However, the simple variable is referenced
using the name without subscripts, while an array element is
referenced using one or two subscripts in parentheses. For
example:

Yariakle Simple numeric variable.
Variable(Z2,4) Element of a numeric array.

Assigning Values to
Individual Elements

10
20
25
30
40
50
G0
70

Displaying and
Printing Entire
Arrays

Here is an example of dimensioning an array, assigning values
to its elements, and displaying the array elements indi-
vidually:

ODPTION BASE 1
DIM Sauares(8)
i
FOR Element=1 TO B
Sauares{(Element)=Element*Element
PRINT Elementi"times"iElementi"="i8quares(Element)
NEXT Element
END

The program produces the following results:

1 times 1 = 1
2 times 2 = 4
3 times 3 = §
4 times 4 = 1B
5 times 5 = 25
B times B = 3B
7 times 7 = 49
B times B = B4

Preceding examples have shown how to display and print
individual array elements. However, it is often easier to use
some resident features of the Technical BASIC system to do
that for you. There are two statements for displaying and for
printing arrays: MAT DISP and MAT PRINT. MAT DISP dis-
plays the array on the current (CRT IS) screen, while MAT
PRINT prints arrays on the current (PRINTER IS) system
printer.

Numeric Computation 4-29

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

4-30 Numeric Computation

Here are examples of using the MAT DISP and MAT PRINT
statements:

OPTION BASE 1

REAL Arrav33(3,3) | 3x3 arrav.

|

DATA 11+12+134+214+22,23+31+324+33

MAT READ Arrav33

i

MAT DISP Arravy33+ ! Trailing """ means 21-col., fields,
DISP

I

MAT DISP Arravy33% ! Trailing "3" means comPpact.
DISP

!

MAT DIBP Arrav33/ ! Trailing "/" means line-feed,
!

END

Here are the program’s results:

11 12 13
21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11
12
13
21
23
31
32
33

The terminator following the array name (semicolon, comma,
or slash) is used to specify the spacing between elements of the
array.

Terminator Spacing Between Elements

s Fields — elements will be placed at the beginning
of 21-column fields. (This is also the default termi-
nator if another is not specified.)

; Compact — elements will have one leading and
one trailing space. If the number is negative, then
the leading space is replaced by a minus sign.

/ One element per line.

You can also specify whether an array is to be displayed by
rows (default) or by columns. Normally, vectors (one-
dimensional arrays) are displayed or printed with one element
per line. If you specify COL before the vector name, however,
elements of the vector are displayed or printed across a line.
Here is an example:

100 OPTION BASE 1

110 DIM Vector{(9)

120

130 DATA 14+2:3+4:5:6+7:8+8

140 MAT READ Vector

150 |

160 MAT DISP Vectori ! One element Per line.
170 1

180 MAT DISP COL Vectori ! All elements on same line,
180 1

200 END

Upon execution of this program, the following is displayed:

[oagi €s B s s L NI o3 JLE L IR S O B U6 el

Numeric Computation 4-31

This statement displays Array33 by rows with compact spac-
ing and then by columns with compact spacing.

100 OPTION BASE 1

110 REAL Arrav33(34+3) ! 3x3 arrav,
120 !

130 DATA 11412413421422423+314+32,+33
140 MAT READ Arrav33

150 |

160 MAT DISP Arrav33i ! Default (by rows).
170 DISP

180 I

190 MAT DISP ROW Arrav333 | By rows,
200 DISP

210

220 MAT DISP COL Arrav33%1 ! By columns.
230 DISP

240

250 END

Here is the program’s output:

1112 13
21 22 23
31 32 33
11 1z 13
21 22 23
31 3z 33
1t 21 31
12 22 32
13 23 33

If you do not specify either ROW or COL, then the default
(ROW) display order is used. If you specify ROW before an
array name, elements are displayed or printed on each line by
rows, beginning with the first row (0 or 1, depending on the
current OPTION BASE in effect). Each row begins on a new
line, and the elements in each row are listed in order from the
first column to the last. More than one line may be required to
list the elements in each row, depending on the terminator
following the array name, the number of elements in each row,
the number of digits in the values of the elements, and the
display’s screenwidth or printer’s linewidth.

4-32 Numeric Computation

If you specify COL before an array name, elements are display-
ed or printed on each line by columns, beginning with the first
column (“column-major” order). Each column begins on a
new line; and the elements in each column are listed in order
from the first row to thelast. Again, more than one line may be
required to list the elements in each column; this depends on
the terminator following the array name, the number of ele-
ments in each column, the number of digits in the values of the
elements, and the printer line width.

Specifying neither ROW nor COL before an array name has
the same effect as specifying ROW.

If more than one array is specified, a blank line appears be-
tween the display or printout of each array.

Using Images You can achieve more complete control of the
spacing between array elements with the MAT DISP USING
and MAT PRINT USING statements.

One form of these statements includes an image string that
specifies how array elements are displayed or printed.

MAT DISP USING "SD.D"3iNumbers:
Another form specifies the line number of an IMAGE state-
ment.

100 IMAGE 5D.D
110 MAT DISP USING 100iNumbers .

Numeric Computation 4-33

4

As with the MAT DISP and MAT PRINT statements, specify-
ing COL before the array name causes elements to be display-
ed or printed one column per display (or printer) line: the array
elements are sent in column-major order, from first row to last
row of a column, from the first column to the last column.
Otherwise, elements are displayed or printed in row-major
order. Here is an example:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
280
300
310
320
330

OPTION BASE 1

DIM Arravd3(4:3) +VectorlO(10)sArravdd(44+3)
|

DATA 126.4+53,4+243,3,364,4,24B,24215,7
DATA S548,9,348.6+18,53,73+10.3+518.1
MAT READ Arravdd

PRINT "Arravd3:"

MAT PRINT USING "2X,3D.2D" i Arravd3
PRINT

|

DATA 48,21,944+4,18,444+27+984+72469
MAT READ VYectoriD

IMAGE "VYectorlQ:"/10(DDD)

MAT PRINT USING 220 § COL Vectorl0
PRINT

|

DATA 25423917 412+77917913+11+7448
DATA 2141B,12+13+64+63+544+40,324+189
MAT READ Arravds

PRINT "Arravdd:"

MAT PRINT USING 310 i Arravds

IMAGE 4(Z2DyX) +XH»3D/

I

END

This program prints the contents of three arrays using three
different implementations of the MAT PRINT USING state-
ment. Here are the results.

Arravd3:
126,40 5.40 243,30
364,40 248,20 213,70
348,90 348,60 1B.50
75,00 10,30 518,10

4-34 Numeric Computation

Redimensioning
Arrays

100
110

400

YectorlD:
a8 21 94 4 18 44 27 98 72 69

Arravd3:
25 23 17 12 77

17 13 11 7 48
2118 12 13 64
B3 54 40 32 189

Once an array has been dimensioned, you can reorganize it
into a different size by redimensioning it. This example dimen-
sions Array4 with 4 elements, and then redimensions it to a
working size of 3 elements.

OPTION BASE 1
DIM Arrardid) | d-element arrav.

REDIM Arravd(3) ! Chande workKing size to 3 elements.

Subsequent statements affect only the elements included in
the new working size. In this example, you cannot access the
4th element of the array. Although this 4th element still exists
in memory, the value of this element cannot be changed until
the array is appropriately redimensioned (again).

The redimensioning subscripts are numeric expressions that
specify a new upper bound for each dimension; they can be
variables, constants, or arithmetic expressions. The number of
subscripts must be the same as the number specified in the
original DIM, REAL, SHORT, or INTEGER statement. For
example, you cannot redimension a two-dimensional array
into a one-dimensional array. Furthermore, the total number
of elements in the new working size cannot exceed the number
originally dimensioned. For example, you cannot redimension
a3 X5array into a4 X 5 array, but you can redimension itinto a
5X3 or a 7X2 array.

Numeric Computation 4-35

4-36 Numeric Computation

This example redimensions Array2 from a 3 X5 array (15 ele-
ments) into a 4 X2 array (8 elements).

100 OPTION BASE 1

110 DIM Arrav35(34+5) !

+

3x3 array (13 elements).,

[
+

400 REDIM Arravy35(4,:2) ! 4x2 array (B elements),

This statement redimensions Array4 and Array35 to their ori-
ginal sizes.

REDIM Arravd(d)sArray35(3,+5)

This example redimensions Array29 from a 2 X9 array into a
3 X6 array.

100 OPTION BASE 0

110 DIM Arrav28(1.8)

+

395 X=2 B REDIM Arrav29(X.:10/X

When the array is redimensioned, the values in the array
variable in memory are not changed. The only difference is
that the correspondence between subscript(s) and elements
are changed. The following example shows how values in an
array variable are accessed when an array originally declared
to be 3 X3 is redimensioned into a 2 X 2 array.

100 OPTION BASE 1

110 DIM Arravy33(3:3)

120 !

130 DATA 11412,13521422523+31,32433

140 MAT READ Arrav33 ! Reads in "row mador" order.

150 1

160 MAT DISP Arrav333 ! 3x3 arrav.
170 DISP

1806 !

190 REDIM Arrav33(2+2) | 2x2 arrav.

200 MAT DISP Arrav33i

210 DISP

220 1

230 REDIM Arrav33(3:3) ! 3x3 arrav.
240 MAT DISP Arrav3d3i

230 1

260 END

The results of running the program look like this:

11 12 13

21 2z 23
31 3z 33
11z

13 21

11 12 13
21 2z 23
31 3z 33

The program first dimensions Array33 to be a 3% 3 array. The
MAT READ statement fills Array33 with values specified in
the DATA statement. The DATA values are placed into the
array in “row-major” order: all column elements of a row are
read, beginning with the lowest-numbered column, and then
the next higher-numbered row is read, and so forth through
the highest-numbered row. Note that each element’s value
corresponds to its subscripts; for instance, Array33(1,1)=11
and Array33(2,2)=22.

The program displays Array33, and then redimensions it to a
2x2 array. The 2X2 array is then displayed, and redimen-
sioned back to the original array size and displayed once again.

Note that redimensioning an array does not isolate a subarray.
In other words, if you redimension a 33 array into a 2x2
array, the resulting array is not the 2 X 2 subarray in the upper
left corner of the original array. Such operations are covered in
the subsequent section called “Copying Subarrays.”

REDIM is not the only statement that redimensions an array.
The MAT...CON, MAT...ZER, and MAT...IDN statements
allow you to optionally specify redimensioning subscripts.
These statements assign certain values to the array specified. If
redimensioning subscripts are specified, the array is redimen-
sioned before the assignments are performed. See the corres-
ponding sections later in this chapter for further information.

Numeric Computation 4-37

4-38 Numeric Computation

100
110
120
130
140
150
160
176
180
190
200
210

220

Implicit redimensioning may also be performed with state-
ments that specify both a result array and an operand array.
Here is an example:

OPTION BASE 1

DIM Arrav22(2:2)Arrav33(3+3)

!

DISP "Before assidning values from a smaller arrav.,"
MAT DISP Arrar33, ! Will contain all 0's,

DISP @ DISP

!

DISP "After assidgning values from a smaller arrav,"

MAT Arrav22=(2) | Assidgn ‘2’ to all elements.,
MAT Arrav33=Arrav22 ! Now assidn 2x2 to 3x3 arrav.
MAT DISP Arrav33, ! Now show new values.

!

END

Here are the results of running the program:

Before assignind values from a smaller arrav,
0 0 O
0 0 0
0 0 0

After assidning values from a smaller arrav.,

-3 -
[I]

The program first dimensions two arrays: Array22 is a 2x2
array, while Array33 is a 3 X 3 array.

The contents of Array33 are then displayed. From the three
rows of three columns of 0’s, you can see thatitis a3 x 3 array.

The contents of the smaller Array22 (2 x 2) are assigned to the
larger Array33 (3x3). The result of the assignment is that
Array33 is first implicitly redimensioned to a 2 X2 array, and
then the contents of elements of Array22 are assigned to cor-
responding elements of Array33.

Assigning Values to
an Entire Array

l&

Here is a description of the general case. The result array (such
as Array33 above) is redimensioned to accommodate the ele-
ments of the operand array (such as Array22 above) before the
new values are assigned. The number of rows in the result
array will then equal the number of rows in the operand array,
and the same is true for the number of columns. If the size of
the result array is greater than that of the operand array, then
the result array is first redimensioned to match the size of the
smaller operand array. Conversely, if the current size of the
result array is smaller than that of the operand array, then the
result array is first redimensioned to match the size of the
larger operand array. Note, however, that this second case
requires that the size of the result array (when originally
dimensioned) was at least as large as the current size of the
operand array; if not, an error is reported.

When an array has been redimensioned — either explicitly
or implicitly - the array remains redimensioned even when
the program that originally dimensioned it is run again.
The array is not dimensioned back to the original size de-
clared in the program’s DIM, REAL, SHORT, or INTEGER
statement. If a program is rerun, and it contains an array
that is redimensioned (either in the program or from the
keyboard), then a REDIM statement that specifies the ori-
ginal size should be included in the program between the
DIM, REAL, SHORT, or INTEGER statement and the first
statement or function that accesses the array or one of its
elements.

Earlier sections showed examples of assigning values to indi-
vidual array elements. This section describes several methods
of assigning values to every element of an array with a single
BASIC statement.

Numeric Computation 4-39

4-40 Numeric Computation

Assigning Values From the Keyboard The MAT INPUT state-
ment allows you to assign values to elements of a numeric
array from the keyboard. The MAT INPUT statement is prog-
rammable only; it cannot be executed from the keyboard. Here
is an example:

100 OPTION BASE 1

110 DIM Vector(3)sFirstMatrix{(5,4)sSecondMatrix(2
120 MAT INPUT VectorsFirstMatrix
130 RAD H=PI1/6 B Y=PI/3

140 MAT INPUT SecondMatrix

150 1!

160 MAT PRINT VYectors

170 MAT PRINT FirstMatrixi

180 MAT PRINT SecondMatrixs

190 !

200 END

When the computer prompts you for the first element of
Vector:

Yector(1)7?

Enter all 3 elements of Vector as follows:
1+2+3 Return

Since all three elements of Vector have been entered, the
program then prompts you to enter the first element of the
5x 4 array named FirstMatrix.

FirstMatrix(i,1)7?

Respond to the prompt by entering the first 10 of twenty
elements:

1+2+3+4+5+6+7+8,9,10 Return

All elements are assigned values in order from lowest-
numbered column to highest-numbered column within a row,
beginning with the lowest-numbered row and finishing with
the highest-numbered row. After you press the carriage return
key, the computer displays the name of the next element to be
assigned a value. In this case, the next prompt requests that
you enter the eleventh element of FirstMatrix.

FirstMatrix{(3,3)7

Respond to this prompt by entering the remaining 10 elements
as follows:

11+12+13+14+15416+17+18,19,20 Return

The next request that you enter the first element of the 2x 3
array named SecondMatrix.

SecondMatrix(14+1)

Values can be entered as numbers, as numeric variables, or as
numeric expressions. Input into the array continues until all
elements have been assigned values. If an array becomes full
in the middle of an input line, then the remaining elements on
the line are ignored. 4

You can also enter expressions that contain variables and
system-resident functions. Note that the values assigned to
the variables and the values computed for the variable func-
tions are entered into the corresponding elements.

Enter the following for SecondMatrix(1,1):
KeSIN(X) »1-COS(Z2#%X) Return

The final prompt given is:

SecondMatrix(2s1)

Now enter the remaining 3 elements into array SecondMatrix.
Y +COS(Y)+1-5IN({2%Y) Return

The execution of your program is now complete. Here is what
the program prints (assuming that you entered the values
shown in preceding paragraphs):

1

3

12 3 4

5 6 7 8

9 10 1t iz
13 14 15 16
17 18 19 20

+223388775598298 .3 .5
1.0471975511966 .5 .133874586215561

Numeric Computation 4-41

4-42 Numeric Computation

This program’s purpose was to show you how the MAT IN-
PUT statement prompts you to enter all values into an array. It
also showed how several elements could be entered at one
time. However, if you prefer entering elements individually,
then you can enter one numeric expression at a time, pressing
the carriage-return key after each one.

Assigning Values from a DATA Statement Like the READ state-
ment, the MAT READ statement can be used in conjunction
with one or more DATA statements. When MAT READ is
executed, elements of the array are assigned values from the
list of numbers in a DATA statement. Array elements are
assigned values in row-major order, just as they are in the
MAT INPUT statement. The items in a DATA statement that
correspond to numeric array elements must be valid numeric
values, not string values.

The MAT READ statement is programmable only; it cannot be
executed from the keyboard. The following program is an
example of using this statement.

100 0OPTION BASE 1
110 INTEGER Numbers(2:3)
120 DIM Titlel$[111TitleZ4l12]

130 !

140 1 Years

150 DATA 1920,1830,1940,1950,1860
igo !

170 1 Mumbers of U.S. drivers,

180 DATA 14,38.:48,62+87

190 DATA "Millions of"»"U.S, Drivers"
200 1

210 MAT PRINT Numbers

220 FREAD Titlel$ TitleZs

230

240 PRINT Titlel$

290 PRINT TitleZs$

260 PRINT "eommeeaeeme- "

270 FOR Line=1 TO 3

280 PRINT Numbers(lsLine) iNumbers(2:Line)
290 NEXT Line

300 1

310 END

Constant and Zero
Matrices

The results of executing this program are as follows:

Millions of
U.8, Drivers

1820 14
1930 38
1940 48
18950 62
1960 87

Assigning the Same Value to Every Element The MAT statement
also allows you to assign the value of a numeric expression to
all elements of an array. For instance, this statement assigns
the value 30.48 to all elements of array X.

MAT X = (30.48)
This statement assigns the value of the variable M to all ele-
ments of array Y.

MAT ¥ = (M)
This statement assigns the result of the expression
2*PI*Raduis”2 to all elements of array Z.

MAT 2 = (Z2*PI*Radius”2)

The MAT...CON statement assigns the value 1 to all elements
of an array. Here is an example:
MAT Arravi = CON

Every element in the array will now contain a value of 1.

You can also use this statement to redimension an array:
MAT Arrav3d = CON{Z,Z)

Assuming OPTION BASE 1, if array A was originally a 3 X3

array, then it would be redimensioned to a 2x2 array. All

elements of the redimensioned array would then be assigned a
value of 1.

Numeric Computation 4-43

The MAT...ZER statement assigns the value 0 to all elements
of the result array. An array in which all elements are zero is
called a zero matrix. Likewise, a vector of which all elements
are zero is called a zero vector. Here is an example:

MAT Arrav3 = ZER

You can also redimension the array:

MAT A = ZER(5:2)

Assuming OPTION BASE 1, if array A was originally a 5x 5
array, then it would be redimensioned to a 5x2 array. All
elements of the redimensioned array would then be assigned a
value of 0.

Here is another example.

100 OPTION BASE 1
110 DIM Arravd3(4.:3)

120 |

130 MAT Arravd3=ZER ! Zero 4x3 arrav,
140 MAT DISP Arravd3s

150 DISP

160 !

170 MAT Arravd3=CON(3+2) ! Redims and assidgn 1 to first 6 elements.,
180 MAT DISP Arravd3d}

190 DISP

200 1

210 REDIM Arrav43(4:3) ! Restore 4x3 array subscripts,
220 MAT DISP Arravd3i

230 1

240 END

4-44 Numeric Computation

The ldentity Matrix

This program displays the following results:
o 0 0
8] 0 o]
4] 0 0

11
11
i1
11 1
P11

An identity matrix is created using the MAT...IDN statement.
MAT...IDN assigns the value 1 to all diagonal elements of the
result matrix and assigns the value 0 to all other elements.
(Diagonal elements are those for which the row subscript is
equal to the column subscript.) A matrix created using the
MAT...IDN statement is also called a unit matrix. An example
program using MAT...IDN is as follows:

100 [OPTION BASE 1

110 DIM Arravy33(3:3)Arrav35(543)
120 !

130 MAT Arrav33=IDN

140 MAT DISP Arrav333
150 DISP

160 !

170 MAT Arravd3=1DN{4:d)
180 MAT DISP ArravS5i
190 |

200 END

Execution of the above program produces the following result:

O 1 0
o 0 1
i 0 0 0
o 1 0 0
O o 1 0
0 0 0 1

Numeric Computation 4-45

lla

Copying Subarrays

4-46 Numeric Computation

This program dimensions Array33 to be a 3x3 array and
dimensions Array55 tobe a 5 X 5 array. It also makes them both
identity matrices and displays them. Note that Array55 is
redimensioned to a 4 x4 identity matrix by specifying the
corresponding subscript values in the MAT...IDN statement.
Note also, however, that you cannot redimension arrays to be
larger than the dimensions specified in the declaration state-
ment that originally specified the array’s size.

The array specified in a MAT...IDN statement must be a
square matrix; that is, it must have two dimensions, and
the number of rows must be the same as the number of
columns.

An earlier section discussed copying the contents of an entire
array into another array. For instance, this statement is used to
copy every element of Array33 into Arrayb5.

MAT Arrav353=Arrav33

If Array33 and Array55 are of the same size, then each element
of Array33 is copied into the corresponding element of
Array55. However, if Array33is a 3 x 3 array and Array55 is a
5x5 array, then this statement redimensions Array55 into a
3x 3 array and then copies the nine elements of Array33 into
corresponding elements of Array55.

With Technical BASIC, you can also copy a subset of an array
(herein called a “subarray’”) into another array. Here is a
simple example:

100 QOPTION BASE 1

110 DIM Array35(5,3)»Arrav33(3+3)

120 1

130 MAT ArravyS5=(5) | Fill with all 5's,
140 MAT DISP Arravy33oi

150 DISP

160 !

170
180
180
200
210
220
230
240

MAT Arrav33=(3) ! Fill with all 3's.
MAT DISP Arrav33i

DISP
[

MAT ArravSS(2:4,2:4)=Arrav33 ! Put Arrav33 into subarray.
MAT DISP Array5S5i

!
END

Here are the program’s results:

o
on
o1
e
o

5 5 5 8 85
>3 % 5 % 5
3 58 5 5 5
3 3 5 3 35
3 3 3

3 3 3

3 3 3

5 5 5 5§ ©5
5 3 3 3 5
5 3 3 3 5
5 3 3 3 35
3 5 5% 95 85

The example copies all of Array33 into columns 2 through 4 of
rows 2 through 4 of Array55. The rest of Array55 is not
changed, and the array is not redimensioned.

In general, you can specify both starting and ending row and
starting and ending column for both the operand (Array33
above) and result (Array55 above). Subsequent examples ex-
plain this more clearly.

Several Examples of Copying Subarrays The following exam-
ples show several usages of the MAT statement in copying
subarrays. For these examples, assume that OPTION BASE 1
is in effect and that all values in the 5 X 5 array named Result55
are set to zero before each statement is executed. The values
shown for the Result arrays are the values that it will contain
after the corresponding MAT statement has been executed.

Numeric Computation 4-47

This statement copies the value from each element of
Operand55 into the corresponding element of Result55.

MAT Result35 = Operand3ss

Operand55 Result55

11 12 13 14 15 11 12 13 14 15
21 22 23 24 25 21 22 23 24 25
31 32 33 34 35 31 32 33 34 35
41 42 43 44 45 41 42 43 44 45
51 52 53 54 55 51 52 53 54 55

This statement redimensions Result55 to a 3 X 3 matrix (since

4 no subscripts were specified for the Result55 array); then it
copies the values from columns 1 through 3 of rows 1 through
3 of Operand55 into the redimensioned Result55.

MAT Result35 = Dperand35(1:3:1:3)

Operand55 Result55
11 12 13 14 15 11 12 13
21 22 23 24 25 21 22 23
31 32 33 34 35 31 32 33

41 42 43 44 45
51 52 53 54 55

This statement copies the third element of Vector into the
element in row 3 of column 2 of Result55.

MAT Result33(3:2) = Vector(3)
Vector Result55
1 0 0 00O
2 0 0 0 0O
3 0 3 000
4 0 0 00O
5 0 0 0 0O

This statement copies the values from row 1 columns 2
through 4 of Operand55 into row 3 columns 1 through 3 of
Result55.

MAT ResultS5(3:1:3) = Operand53(1,2:4)

4-48 Numeric Computation

Operand55 Result55

11 12 13 14 15 0O 0 00O
21 22 23 24 25 0 0 00O
31 32 33 34 35 12 13 14 0 ©
41 42 43 44 45 0 0 00O
51 52 53 54 55 0 0 00O

This statement copies the values from rows 4 and 5 of column 1
of Operand55 into rows 2 and 3 of column 5 of Result55.

MAT Result35(2:3+3) = Operand35{4:5,1)
Operand55 Result55
11 12 13 14 15 0000 O
21 22 23 24 25 0 0 0 0 41
31 32 33 34 35 0 0 0 0 51
41 42 43 44 45 0 000 O
51 52 53 54 55 0000 O

This statement copies the entire Vector into the entire third
row of Result55.

MAT Resultd3(34+) = Vector
Vector Result55
1 0 00 0O
2 0 00 0O
3 1 2 3 4 5
4 0 00 OO
5 000 00O

This statement copies the entire second column of Operand55
into Vector.

MAT Vector = Dperandd3(,42)

Operand55 Vector
11 12 13 14 15 12
21 22 23 24 25 22
31 32 33 34 35 32
41 42 43 44 45 42
51 52 53 54 55 52

Numeric Computation 4-49

This statement copies the values from rows 1 and 2 of columns
2 through 5 of Operand55 into rows 2 and 3 of columns 1
through 4 of Result55.

MAT ResultB3(2:3+1:4) = Orerandd3(1:242:5)
Operand55 Result55
11 12 13 14 15 0 0 O 0O
21 22 23 24 25 12 13 14 15 0
31 32 33 34 35 22 23 24 25 0
41 42 43 44 45 0 0 0O 0O
51 52 53 54 55 0 0 0O o0 O

This statement redimensions Result55 into a 2 X 3 matrix, and
copies the values from rows 1 and 2 of columns 3 through 5 of
Operand55 into Result55.

MAT Result3S5 = Operand35(1:2:3:3)

Operand55 Result55
11 12 13 14 15 13 14 15
21 22 23 24 25 23 24 25

31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

Summary of General Rules

8 The array elements are always copied and assigned in row-
major order — from the first column to the last column of
each row, beginning with the first row and proceeding
through the last row.

® [f all elements of the result array are to be assigned values,
then do not specify row numbers or column numbers in the
result array.

m If all elements of the operand array are to be copied into the
result array, then do not specify row numbers or column
numbers in the operand array.

m If row and/or column numbers are specified, they must be
enclosed in parentheses and separated by a comma.

4-50 Numeric Computation

& [f no row or column numbers are specified after the result
array, then it is redimensioned (if necessary) before values
are assigned to it. If row or column numbers are specified
after the result array, then values are assigned to the corres-
ponding elements and the array is not redimensioned.

m [f the array is a vector, then specify only the row number(s).

m If only one row is to be copied or assigned values, then you
need only specify that one row number; if more than one
row is to be copied or assigned values, then specify the first
row number and the last row number, separated by a colon.
Similarly, if only one column is to be copied or assigned
values, then you need only specify that one column
number; if more than one column is to be copied or assigned
values, then specify the first column number and the last
column number, separated by a colon.

m [f entire row(s) are to be copied or assigned values, then you
may omit the column numbers but include a comma after
the row number(s). Similarly, if entire column(s) are to be
copied or assigned values, then you may omit the row
numbers but include a comma before the column num-
ber(s).

® Unless either the operand array or the result array is a
vector, the number of rows specified after the result array
must be the same as the number of rows to be copied from
the operand array. The number of columns specified after
the result array must be the same as the number of columns
to be copied from the operand array.

® Unless the operand array is a vector, a column from the
operand array cannot be copied, using just one statement,
into a row in the result array. Similarly, unless the result
array is a vector, a row from the operand array cannot be
copied, using just one statement, into a column of the result
array. These types of copy operations can, however, be
made using two statements, as shown in the next example.

Numeric Computation 4-51

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
230
260
270
280
290

4-52 Numeric Computation

In this example, row 1 of Array33 is copied into column 3 of
array Result55, then column 3 of Array33 is copied into row 2
of array Result55.

OPTION BASE 1
DIM Operand33(313) sResult33(3+3)+Vector3(3)
|

DATA 1+2+3+4+5+8:7+848

MAT READ Orperand33 ! Fill 3x3 matrix.

MAT DISP Operand33i ! Show contents,

DISP

|

MAT Result33=ZER ! Fill result with O’s,

MAT Vector3=0perand33(1,s) ! Copy row 1 into vector.
MAT Result33(:3)=Vectord ! Copy vector into column 3
MAT DISP Result333

DISP

|

MAT Result33=ZER ! Fill result with 0‘s,

MAT Yector3=0perand33(4+3) ! Cory column 3 into vector
MAT Result33(2+)=Vectord ! Copy vector into row 2,

MAT DISP Result33;
|

END

Here are the results obtained from the program:

1 2 3
4 5 6
7 8 9
0 0 1
o 0 7
0 0 3
0 0 0
3 6 8

The first matrix displayed is Operand33. The next matrix dis-
played is matrix Result33, with column 3 containing values
from row 1 of matrix Operand33. The final matrix displayed is
Result33 again, but this time with row 2 containing values
from column 3 of Operand33.

100
110
120
130
140
150
166
170
180
190
200
210

220

The row and column number(s) can be specified not only as
constants, like those in the preceding examples, but also as
variables or expressions. Here is an example:

245 Column=2

250 MAT VYector3d3=0prerand33(sColumn) ! Copy column 2 into vector.
205 DBottomRow=3

260 MAT Result33(BottomRow-2+)=Vector3d ! Cop» vector into row 1.

The first row (or column) number specified is usually less than
the second row (or column) number. However, if the first row
number is greater than the second (or if the first column
number is greater than the second), then elements will be
copied or assigned values in reverse order’. The first row or 4
column number actually copied or assigned values is one less
than the specified beginning row/column number. Similarly,
the last row or column copied or assigned values is one greater
than the specified last row/column number. For instance, the
following statement copies rows 4 through 1 of the operand
into rows 1 through 4 of the result array.

180 MAT Result(l:4+1:4)=0perand(5:0,1:4)

Here is an example program containing this statement:

OPTION BASE 1

DIM Result(d:4)0rerand{(d.:4)

!

DATA 1414121 924292423333+4343 34445444

MAT READ Operand

MAT DISP Operand:

DIGP

!

MAT Result(l:d,1:4)=0perand{5:0,1:4) | Copv Orerand rows 4 thru i

I into Result rows 1 thru 4,
MAT DISP Results
I

END

1 An important special case occurs when the first row number specified is just one
greater than the second row number, or when the first column number specified
is just one greater than the second column number. This subject will be discussed
in the subsequent section called “A Special Case: Empty Arrays.”

Numeric Computation 4-53

4-54 Numeric Computation

Here is the program’s output:

= M) e
= W)
£ LI Y o
£ W Yo

[l SV I % B o)
— 3L
Lol SN % I~
Ll SO % I n

The program reverses rows 1 through 4 of the Operand array
as it copies them into the Result array.

A Special Case: Empty Arrays Here is the special case men-
tioned earlier: When the first row specified is just one greater
than the second row, and with the corresponding case for
columns, then no elements will be copied or assigned values.
Furthermore, if no row or column numbers are specified after
the result array (and OPTION BASE 1 is in effect), then the
result array is redimensioned to have zero rows or zero
columns®. The value of these features will be more apparent
after we discuss this special case a bit more.

Examples of this special case are contained in this program:

100 DPTION BASE 1
110 DIM Operand(4+4) yResult(d,4)
120 MAT Operand=CON ' Assign all 175,

130 DISP

140 MAT DISP Operands
130 DISP

160 K=1

170 MAT Result=0perand(l:K-1+2)

180 DISP "After copving Operand rows ‘1:07,"
1890 MAT DISP Resulti

200 DISP

210 MAT Result=0Oprerand(i:d,1:K-1)

220 DISP "After copving Operand columns ‘1:07,"
230 MAT DISP Resultsi

240 1

250 END

2 If OPTION BASE 0 is in effect, the result array is not redimensioned, and a DIM
SIZE error message is reported.

The program yields this output:

. er b e

i
1
11
11

After copving Operand rows ‘1:07,

After copving Operand columns ‘1:07,

The display of Operand shows that it is indeed a constant
matrix. The first display of array Result showed nothing be-
cause it was redimensioned to a 0 X 2 array, which is by defini-
tion an “empty” array. The second display of array Result was
the same as the first, except that the number of columns is 0
and the array is redimensioned to a 4 X0 empty array. Empty
arrays should not be confused with zero arrays, which contain
all 0’s. If you should display or print an empty array, there will
be no output since there are no elements in the array (accord-
ing to current dimensions).

Empty arrays can be specified in subsequent statements and
functions with meaningful results; the usual rules of redimen-
sioning and row/column matching apply (in statements with
two operand arrays). The following situations are of particular
interest:

m Statements specifying only one operand array will, if that
array is empty, redimension the destination array to be
empty. For example, if the Operand array has been re-
dimensioned to a 0 X 3 array, then this statement redimen-
sions the Result array to 0 X 3:

MAT Result = Orerand

m If both operand arrays are empty, then performing a matrix
multiplication' can yield a result array that is not empty.
However, in such cases the statement assigns the value 0 to
all elements of the destination array, regardless of the cur-
rent values in the operand arrays.

1 Matrix multiplication is discussed in a subsequent section.

Numeric Computation 4-55

Scalar Arithmetic
Array Operations

4-56 Numeric Computation

For example, if matrix Operandl has been redimensioned to
be 3 x 0, and matrix Operand2 has been redimensioned to be
0x 1, then this statement:

MAT Result = Operandi*0OprerandZ

redimensions matrix Result to 3x 1, since 3x0*0x1=3%1
according to the rules of matrix multiplication. The Result
array is not empty, since neither its number of rows nor num-
ber of columns is zero. However, it is a zero matrix, since the
value 0 has been assigned to all (three) elements.The fact that
no elements are copied or assigned values when the first row
or column number is just one greater than the second, plus the
characteristics previously described above for resulting empty
arrays, simplifies programs that do certain matrix manipula-
tions.

You can perform scalar arithmetic operations with a scalar
numeric expression (such as a constant, variable, or express-
ion) and each element of an operand array. For example, you
could add the constant 4 to each element of an array:

MAT ArravX={(4)+Arravx

The resulting values are assigned to the corresponding ele-
ments of the result array (ArrayX).

The scalar arithmetic operations that you can perform with
MAT keywords are as follows:

®m Addition (+)
® Subtraction (—)

® Scalar multiplication (.), also known as the inner or dot
product

® Division (/)

The following program makes Array44 an identity matrix. (An
identity matrix is a square matrix which contains all ones in a
diagonal which begins at its first element and moves down to
its last element; the remainder of the elements in the identity
array contain zeros.) The program then multiplies each ele-
ment of that array by the scalar 2.

100 OPTIDN BASE 1

110 DIM Arravdd(4.4)
120 1

130 MAT Arravd4=1DN
140 MAT PRINT Arravdds
150 PRINT

160 !

170 MAT Arravd4d=(Z)*Arravdd
180 MAT PRINT Arravddsi
190 !

200 END

The result of executing the above program looks like this:

1 0 0 0
o 1 0 0

If you need to change the signs of all elements in a matrix, you
can do so inserting the following statement in the preceding
program:

145 MAT Arravdd = -Arravdd

The array now contains these values:

-2 0D 0 0
0 -2 0 0
0O 0 -2 0
0O 0 0 -2

You can also perform these scalar arithmetic operations with
corresponding elements of two operand arrays: addition, sub-
traction, (dot-product) multiplication, and division. For inst-
ance, this statement calculates the squares of the elements in
an array:

MAT Arravy33=Arrav33,Arrav33

Numeric Computation 4-57

The statement multiplies Array33(1,1) by Array33(1,1) and
places the result in Array33(1,1). It does the same for each
corresponding element of the operand arrays. Multiplication
of corresponding elements is known as the dot product or
inner product of the arrays; the operator for this type of opera-
tion is a period (.)!. Note that the two operand arrays must
have the same number of elements in each dimension.

The result of two scalar multiplications can be added in one
statement. An example is given below:

100 0OPTION BASE 1

110 DIM Arravi(2+4)vArrav2(2,4)

120 1

130 DATA 124:52:76+334+81:70,724+14

140 MAT READ Arrarl

150 1

160 MAT Arrav2=(30) B Arrav2(1:2)sArrav2(2+1)=0
170 1

180 DEG ! Use dedrees mode (for andular functions
190 MAT Arravl=(0,7)*Arrayl+(0,3*5IN(BO))*Arrav2
200 MAT DISP USING "2X,DD.D" 3 Arravl

210 1

220 END

The results of executing this program are as follows:
21,3 3B.4 6B.1 36.0
36.7 61,8 B3.3 22,

Subtracting the results of two scalar multiplications can be
accomplished in one statement by changing the sign of the
second scalar. In the preceding example, change the statement
190 to:

190 MAT Arravi=(0.7)%Arravi+(-0,3*%SIN(BO)) *Arrav:z

1 The asterisk (*) is used to denote matrix multiplication, which is a different kind of
operation and is described in the subsequent section called ““Matrix Multiplica-
tion.”

4-58 Numeric Computation

Summing Rows and
Columns

Here are the modified program’s results:

-4.3
5647

21.3
36.0

40,2
37.4

10.1
-3.1

However, multiplying or dividing the results of two scalar
multiplications cannot be performed with one statement.

Technical BASIC provides MAT capabilities that allow you to
compute the sum of elements in rows and columns of arrays.

® MAT...RSUM calculates the sum of elements in a row.

s MAT...CSUM calculates the sum of elements in a column. 4

Usages of MAT...RSUM and MAT...CSUM are shown in the
following example.

Here is the Whackit Racket Company’s monthly forecast data
table. It is organized into sales regions (East, Midwest, and
West) and racket model (WR01, WR02, and WRO03).

Monthly Sales Forecast (Thousands of Units)

Model
Sales Region WR01 WR02 WR03 WRO04
East 25 23 17 12
Midwest 17 13 11 7
West 21 18 12 13

Numeric Computation 4-59

The program calculates and prints the total forecast for all
racket models — one forecast by region, and another by racket
model. Since each row contains the forecasts for all models in a
region, the total forecast for all models in each region can be
found using the MAT...RSUM statement. Likewise, since each
column contains the forecasts for one model in all regions, the
total forecast for each model in all regions can be found using
the MAT...CSUM statement.

100 OPTION BASE 1
110 DIM Forecasts(3+4)RedionSums{3) ModelSums(1.4)

120 ! Forecast for the Eastern redion.
130 DATA 25423+17412

140 ' Midwest redgion,

150 DATA 174134117

160 ! West redion.

170 DATA 214+18,12413

180 MAT READ Forecasts

180 1

200 PRINT "Forecasts:"

210 PRINT "---e-meem- "

220 MAT PRINT Forecasts?

230 PRINT

240 MAT RedionSums=RSUM(Forecasts) ! Row sums to vector,
250 PRINT "Forecasts by Redion:"
260 PRINT Moo mmmm e e o "
270 MAT PRINT RedionSumsi

280 PRINT

290 PRINT "Forecasts by Model:"

300 PRINT Mo e e m e "

310 MAT ModelSums=CSUM(Forecasts) ! Columns sums to matrix,
320 MAT PRINT ModelSumsi

330 !

340 END

4-60 Numeric Computation

The results displayed after program execution are:

Forecasts:

25 23 17 12
17 13 11 7
21 18 12 13

Forecasts by Redion:

Forecasts by Model:

The first matrix displayed is the monthly sales forcast (in
thousands of units); the rows correspond to regions, and the
columns correspond to racket models. The second matrix has
in its rows the total sales for the East, Midwest, and West
regions, respectively. Finally the last matrix has in its columns
the total sales of models WR01, WR02, WR03, and WRO04,
respectively.

General Rules Here are the rules that govern this type of op-
eration:

m MAT...RSUM adds the values of the elements in each row of
the operand array, and then assigns the sum to the corres-
ponding element of the result array (a vector or single-
column matrix). If the result array is a vector, it is first
redimensioned (if necessary) to have as many elements as
the number of rows as the operand array. If the result array
is a matrix, it is first redimensioned (if necessary) to have
one column and as many rows as in the operand array.

= Likewise, MAT...CSUM adds the values of the elements in
each column of the operand array, and then assigns the sum
to the corresponding element of the result array (a vector or
single-row matrix). If the result array is a vector, it is first
redimensioned (if necessary) to have as many elements as
the number of columns as the operand array. If the result
array is a matrix, it is first redimensioned (if necessary) to
have one row and as many columns as in the operand array.

Numeric Computation 4-61

Array Transpose

4-62 Numeric Computation

The MAT...TRN statement computes the transpose of the
operand array - interchanges the rows and columns of the
array — and places the values in the result array. The following
program shows how this statement can be used within a

program:

100
110
120
130
140
150
160
170
180
190
200

210

OPTION BASE 1

DIM ArravZ23(2:+3)+Arrav35(5+3)

DATA 1+2:3+4,346

MAT READ Arrav23

MAT PRINT Arrav23di

PRINT

MAT Arrav23=TRN(Arrav23) ! Redim: then transpose.
MAT PRINT Arrav233

PRINT

MAT Arrav35=TRN{(Arrav23) | Redim» then transrose.
MAT PRINT Arrav933

END

Here is the program’s output:

1 2z 3
4 5 6
14
25
3 B
1z 3
4 5 B

The first matrix displayed is the original Array23 — a 2x3
matrix. The transpose of Array23 is then calculated, after
which the Array23 variable is redimensioned (to a 3 X 2 matrix)
and then and assigned the transposed Array23; the second
matrix shown above is the result. Next, the transpose of
Array23 is computed, then Array55 is redimensioned from a
5 x 5 matrix to a 2 X 3 matrix, and is then assigned the values of
the transposed matrix Array23.

Matrix
Multiplication

100
110
120
130
140
150
160
170
180
180
200
210

220

The MAT statement can be used to calculate the (outer) pro-
duct of two arrays. The value of each element of the destina-
tion array is determined according to the usual rules of matrix
multiplication. Here is an example:

A % B = Result

by bz
b2t b2

a11"byy + as’bor a11*by2 + @12*bap
ax1"b11 + @'bpr @21™Di2 + @x*bop

a1 a2
a1 822

The number of columns in the first operand array (A) must be
the same as the number of rows in the second operand array
(B). The Result array has the same number of rows as the first
operand array and the same number of columns as the second 4
operand array. Either (but not both) of the operand arrays can

be vectors.

An Example Here is an example program that performs the
multiplication:

OPTION BASE 1

DIM Arrav23(2+3)Y+Arrarv32(3:2) +Arrav22{(242)
DATA 1423244546

MAT READ Arrav23 ! Fill 2x3 matrix.

MAT DISP Arrav23i

DISP

DATA 14442434346

MAT READ Arrav32 ' Fill 3x2 matrix.

MAT DISP Arrav32i

DISP

MAT ArravZ2=Arrav23%Arrar32 ! Multirly,

MAT DISP Arrav22i ! Result is a Zx2 matrix.,
END

Here are the program’s results:

3
5]

F)
o3

Gy oo

14 32
3z 77

Numeric Computation 4-63

4-64 Numeric Computation

The first array displayed is the first operand. The second array
is the second operand. The third array is the product of matrix
multiplication on the two operands.

Another Example The following problem illustrates the use of
matrix multiplication. The Whackit Racket Company is con-
sidering raising the prices on each of its four models: WRO01,
WRO02, WR03, and WR04. The sales manager wants a program
that uses the data in the following table to calculate and print a
matrix that shows the total income (in thousands of dollars) in
each of the three sales regions at the old and at the new prices.
(The price increase is not expected to affect the number of units
sold.) '

Monthly Sales Forecast (Thousands of Units)

Model
Sales Region WRO01 WR02 WR03 WRO04
East 25 23 17 12
Midwest 17 13 11 7
West 21 18 12 13
Price (Per Unit)
Model (o] 1] New
WRO01 $10 $15
WR02 $20 $27
WRO03 $35 $50
WR04 $60 $80

In each sales region, the total income (either at the old or at the
new prices) can be determined by multiplying the quantity of
each model by the price of each model, then adding the re-
sults. Applying this process to the data in the forecast and
price tables above, multiply each entry in a row of the forecast
table by the corresponding entry in a column of the price table,
and then add the results. The sum could be entered into the
same row and column of another table, in which each row
shows the total income in a sales region and each column
shows the total income at the old or at the new prices.

Since all this is just what happens in matrix multiplication,
these calculations can be done compactly with the matrix mul-
tiplication Incomes = Forecasts*Prices, in which:

m The Forecasts matrix contains the sales forecasts (in
thousands of units). The rows correspond to the three sales
regions, and the four columns correspond to the four
models.

® The Prices matrix contains the prices (per unit) of each
model. The four rows correspond to the four models, and
the two columns correspond to the two price lists (old and
new).

m The Incomes matrix will contain the total income in each
sales region at the old and at the new prices. The three rows
will correspond to the three sales regions, and the two
columns will correspond to the two price lists.

100 OPTION BASE 1
110 DIM Forecasts(3:4)Prices(d+2)sIncomes(32)

120 1 Sales for East redion,
130 DATA 25423417 +12

140 1t Sales for Midwest redion,
150 DATA 1741341147

160 | Sales for West redion.
170 DATA 21418412413

180 ! Prices.

190 DATA 10415,20,27435+50,60,80
200 MAT READ ForecastssPrices

2101

220 MAT Incomes=Forecasts*¥Prices
230 PRINT

240 PRINT " 014 New"

250 PRINT "Income Income™

260 PRINT " (k%) (k$)"

270 PRINT "eceomne meeeem "

280 IMAGE X,DC3D+4X,DC3D
290 MAT PRINT UGBING ZB0 i Incomes
300 END

Numeric Computation 4-65

4-66 Numeric Computation

Executing the program produces this result:

014 New
Income Income
(k%) (K$)
2,025 2+806
14235 1716
14770 2441

The first row shows incomes from the East region. The second
row shows incomes from the Midwest region. The third row
shows incomes from the West region.

Transposing before Multiplying If you want to multiply two
matrices, but the dimensions need to be transposed, you can
multiply the transpose of one array by the other array. The
following problem helps illustrate this usage.

Assume the manufacturing capacity of the Whackit Racket
Company is limited this quarter; it can produce only a percen-
tage of the rackets demanded. The table below shows the
percentage that can be supplied to each region in the next two
months. Using the forecast data in the table of the preceding
problem, calculate and print a matrix showing how many of
each racket model will be produced each month.

Production Quota (Percentage)

Sales Region June July
East 80 90
Midwest 75 85
West 85 95

The quantity of each racket model that will be produced (dur-
ing either month) can be determined by multiplying the
quantity of each model by the percentage for that model, and
then adding the results. As in the preceding example, these
calculations can be performed easily with a matrix multiplica-
tion of elements in the sales forecast table by elements in the

production quota table. To do so, however, requires that the
multiplication use the transpose of either the matrix contain-
ing the forecasts or the matrix containing the quotas. The
following program multiplies the transpose of the matrix con-
taining the forecasts by a matrix containing the quotas.

100 OPTION BASE 1

110 DIM Forecasts(3:4)+Quotas{3+2)sUnits{d+2)
120 | Sales for East redion.
130 DATA 25,23417»12

140 | Sales for Midwest redion.
150 DATA 174+13+1147

160 | Sales for West redion,
170 DATA 21418412413

180 ! Production suotas,

190 DATA 80,90,75:85,85,95

200 MAT READ Forecasts:Quotas

210 1

220 MAT Quotas=(0,01)*Quotas ! Converts percentades to decimal values,
180 MAT Units=TRN(Forecasts)*Quotas

190 PRINT

200 PRINT " June July"

210 PRINT "(K-Units) (K-Units)"
220 PRINT "-v-ooomee mmmemm - "
230 IMAGE 2X,2D.D+7X»2D.D

240 MAT PRINT USING 230 i Units
250 END

The results from executing this program are shown below:

June July
(k-Units) (K-Units)

5045 568
43.4 48.8
32,0 36,0
25489 29.1

Vector Cross The MAT...CROSS statement calculates the vector cross pro-
Product duct (or vector product) of two 3-element vectors. Mathemati-

cally, the cross product of two vectors is expressed as Cross-

Prod = Vector3a x Vector3b. Each of the arrays named in the

MAT...CROSS statement must be vectors; that is, they must

have only one dimension. Arrays dimensioned like

Matrix(3,1) are not allowed because they are two dimensional.

Numeric Computation 4-67

4-68 Numeric Computation

The following problem illustrates the use of MAT...CROSS. A
leaning tree has a guyed wire connecting it to the corner of a
house as shown in the picture. Calculate the moment of the
force exerted by the guy wire about the base of the tree for a
tension in the wire of 960 pounds.

~

To calculate the moment, use this formula:

Moment = Radius X Force

in which:

® Radius is the position vector of the guy wire point (on the
tree) with respect to the base of the tree.

® Force is the 960-pound force vector exerted by the guy wire.

Before making the calculation, you will need to resolve the

vectors Radius and Force into their components in the x, y, and
z directions.

You can determine the components of Radius by looking at the
drawing. They are as follows:

Radius(x) = 5
Radius(y) = 14
Radius(z) = 2

The components of Guy, from the illustration, are as follows:
Guy(x) = -9 -5= —-14
Guy(y) = 10 — 14 = —4
Guy(z) = -4 -2 =

|
|
o

The magnitude of Guy is equal to the square root of the sum of
the squares of each component. Here is the equation:

MagGuy = SQR(Guy(x)"2 + Guy(y)"2 + Guy(z)"2)
The program makes this calculation in line 200 below.

You can now calculate each component of Force by multi-
plying the corresponding component of Guy by the ratio of the
magnitude of Force to the magnitude of Guy.

. |lForcel]

Force(x) =Guy(x)
! I1Guy ||

The program performs this calculation in statement 230.

You will need to calculate the Force vector. Since you know
that the 960-pound force is exerted in the direction of the Guy
vector, the x, y, and z components of Force and Guy are
proportional.

Force(x) _ Force(y) _ Force(z) _ [Force
Guy(x) Guy(y) Guy(z) |Guy]

The unknowns in this equation are the x, y, and z components
of Force; you already know its magnitude, and you can deter-
mine the components of Guy and its magnitude.

Numeric Computation 4-69

The components of Moment (in lb-ft) are determined by the
following program:

100 OPTION BASE |
110 DIM Radius{3)sForce(3) Guv(3) Moment(3)

120 1

130 1 Components of Radius,
140 DATA S414,42

150 1 Components of Guy,

180 DATA -14,-44+-6

170 MAT READ RadiussGuvy

1go !

1890 1 Calculate magnitude of Guv,

200 MagQuy=8QR(Gury (1) "2+Cuy(2)"24Quy(3)"2)

210 !

220 ! Calculate components of Force vector,
230 MAT Force=(960/MadGuy) *Guy

240

250 ! Calculate components of Moment.

260 MAT Moment=CROSS(Radius:Force)
270 MAT PRINT USING "SD.DD" § Moment
280 |

290 END

The components of Moment are as follows:

-4B32,96
121.92
10728.97

The x-component is printed first, then the y-component, and
finally the z-component.

Inverting a Matrix The MAT...INV statement finds the inverse of the operand
matrix. The inverse of a matrix is the matrix that, when multi-
plied by the original matrix, results in an identity matrix. The
main restriction on the operand matrix is that it must be square
— that is, the number of rows must be the same as the number
of columns.

Find the inverse of the matrix shown below. Check that when
the inverse is multiplied by the matrix itself, the result is an
identity matrix.

4-70 Numeric Computation

2 3

Original =

4 5

The following program provides a solution to the problem:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
230
260
270

OPTION BASE i

DIM Oridginal(2:2)sInverse(2+2) sIdentitv(2,+2)
!

I Elements of Oridinal matrix.

DATA 2434445

MAT READ Original

IMAGE 3D.D

MAT PRINT USING 160 i Dridinal

PRINT 4
!

MAT Inverse=INU(Original)

MAT PRINT USING 180 i Inverse

PRINT

!

MAT Identity=Inverse#0ridinal

MAT PRINT USING 180 & Identitvy

!

END

Here are the results of executing the program:

240

4.0

1.0
0,0

3.0
3.0

1.3
-1.0

0.0
1.0

The first four elements are the contents of matrix Original. The
next group of four elements are the inverted contents of matrix
Original. The last group of four elements show that the pro-
duct of Original and inverse of Original is indeed an identity

matrix.

Numeric Computation 4-71

Solving a System of
Linear Equations

4-72 Numeric Computation

You can also multiply the inverse of a matrix by another matrix
using just one MAT statement. The syntax for this type of
operation is as follows:

MAT Result = INY (Operandl) * QOperandZ

When the determinant of a matrix is zero, the matrix does not
have an inverse. Therefore, if you attempt to find the inverse
of such a matrix using the MAT...INV statement,
Error 112: DETERMINANT I8 ZERO is reported. You can use
the DET (determinant) function to check the determinant be-
fore attempting to invert a matrix.

Calculating the inverse of a matrix is typically done in the
process of solving the matrix equation: Coeffecients * Un-
knowns = Constants. However, a more accurate solution
than the one provided by MAT Unknown = INV(Coefficient-
s)*Constants can be obtained using the MAT...5YS statement,
which is described in the next section.

Suppose that you have a system of n linear equations with n
unknowns. Here is the general system:

o(L1*x1) + o(1,2)*%(2) . . . + o(1,n)x(n) = k(1)
c2,1%(1) + c2,2)*x(2) . . . + c(2n)*x(n) = k(2)

c(n,1*x(1) + ¢(n,2)*x(2) . . . + c(nn)*x(n) = k(n)
It can also be expressed using this matrix notation:

C*X =K

in which:
«(1,1) «(1,2) ... c(1,n) x(1) k(1)
o2.1) c2,2) ... c(2,n) x(2) K(2)
C= . . . X = and K =
1) o(n,2) ... c(n,n) x(n) k(n)

C is the coefficient array; K is the constant array. The solution
to this system of equations is the set of elements of array X.

The MAT...5YS statement is used to solve the matrix equation:
MAT X = GYS(C.K)
for the array X.

The following example illustrates the use of MAT...SYS in
solving this system of equations:

2x +y-z=0
X-y+z=2656
X +2y +z=3

First express the system of equations in matrix notation AX =
B:

2 1 - X 0
C=}]1 -1 11 =]yl and K = | B
1 2 1 z 3

The program to solve this system of equations is as follows:

100 OPTION BASE 1

110 DIM C(343) +X(3)+K(3)

120 |

130 | Read coefficient matrix.
140 DATA 291s-1419-141414241
150 MAT READ C

160 | Read constant vector.
170 DATA 046,3

180 MAT READ K

190 1

200 ! Solue the equations.
210 MAT H=5YS(CK)

220 !

230 ! Diseplav solution,
240 MAT DISP X

250 1

2B0 END

Numeric Computation 4-73

Here are the results from executing the program:

-1
3

The value of x is 2, the value of y is -1, and the value of z is 3.

As mentioned earlier, the solution to the matrix equation C*X
= K can also be obtained using the statement MAT X =
INV(C)*K. The solution obtained using the statement MAT X
= SYS(C,K) is somewhat more accurate; however, to achieve
this accuracy two extra blocks of memory are used, each the
size of the array X.

Although in typical applications the result array X and con-
stant array K are each vectors or one-column matrices, the
MAT...SYS statement does not restrict these arrays to only one
column. This allows you, for example, to simultaneously solve
two different systems of n equations in nunknowns, provided
that the coefficients in both systems of equations are identical.

A useful example of this is described in the following problem.
Your company’s publications manager wants to determine the
cost factors used by two outside printers. Each printer esti-
mates jobs based on these criteria:

® The number of pages.
® The number of photographs.
® A fixed setup charge.

Here are estimates obtained from two printers for jobs that
have varying numbers of pages and photographs.

Number of Number of Total Cost
Job Pages Photographs Printer 1 Printer 2
1 273 35 $5835.00 $7362.50
2 150 8 $3240.00 $4085.00
3 124 19 $2775.00 $3517.50

4-74 Numeric Computation

Given the three estimates from each printer shown in the table
above, you need to develop a program that calculates the
printer’s charge per page, cost per photograph, and once-per-
job setup charge.

To solve the problem, you can set up the following system of
equations for two sets of cost estimates:

273*x(1) + 35*x(2) + 1*x(3) = Estimate(1,Printer)
150*x(1) + 8*x(2) + 1*x(3) = Estimate(2,Printer)
124*x(1) + 19*%x(2) + 1*x(3) = Estimate(3,Printer)

These equations can be represented in matrix notation as fol-
lows:
Items * CostFactors = Estimates

Items is the coefficient matrix containing the number of items
for each job.

273 35 1
ltems = 150 8 1
124 19 {

Each row contains data for a different job. Column 1 of each
row contains the number of pages for the job. Column 2 of
each row contains the number of photographs for the job.
Column 3 of each row contains the number of setup charges
for the job.

Estimates is the constant array that contains the cost estimates
of three jobs (from two printers).

5835.00 7362.50
Estimate = 3240.00 4085.00
2775.00 3517.50

Each row contains cost estimates for one job. Column 1 con-
tains printer 1’s cost estimates for each job. Column 2 contains
printer 2's cost estimates for each job.

Numeric Computation 4-75

4-76 Numeric Computation

CostFactors is the array that contains the unknown cost fac-
tors: x(1) is the cost per page, x(2) is the cost per photograph,
and x(3) is the setup charge.

Since you are solving two systems of equations, the result
array CostFactors must be a matrix; that is, it should originally
be declared with two dimensions. (If CostFactor is not the
same size as that of the constant array Estimates, then it is
automatically redimensioned to the size of Estimates before
the MAT...SYS statement is executed.) Each column contains
the cost factors for one printer.

A program to solve this manager’s problem is listed below:

100 OPTION BASE 1
110 DIM Items(3:3)sCostFactors(34+2) Estimates{3+2)

120 !

130V Items for Job 1.
140 DATA 273,351
150V Items for Job 2,
160 DATA 150,841

170 ! Items for Job 3.

180 DATA 12441941
190 MAT READ Items

200 !

210 1 Estimates for Job 1.
220 DATA 35835,7362.5

230 ! Estimates for Job 2.
240 DATA 3240,4085

250 | Estimates for Job 3.

260 DATA 2775,3517.8

270 MAT READ Estimates

280

280 ! Calculate cost factors,

300 MAT CostFactors=SYS5{Items Estimates)
310 1

320 ! Now print results,
330 PRINT "Printer 1 Printer 2"
340 PRINT "eecmcccae mmeeeaas "

3530 MAT PRINT USING "X,3D.2DsBX:3D.2D" § CostFactors
360 !
370 END

Additional Array
Functions

Function

ABSUM(Array)

AMAX(Array)
AMAXCOL

AMAXROW

AMIN(Arrav)
AMINCOL

AMINROHW

CNORM(Array)

The program displays the cost factors for each printer:

Printer 1 Printer 2

20,00 25,00
3400 7430
200,00 273,00

The first line of the table displayed above gives the cost per
page. The second line gives the cost per photograph. The final
line of the table gives the setup charge.

Technical BASIC provides several functions that deal with
numeric arrays. For instance, preceding sections gave exam-
ples of LBND, UBND, and DET. This section describes the
array-related numeric functions that have not yet been de-
scribed.

In the following descriptions, the variable(s) shown in pa-
rentheses (such as Array and Subscrirt)signify that the func-
tion requires numeric argument(s), which can be any numeric
expression.

Description

Returns the sum of the absolute values of all the elements in
Arrav.

Returns the value of the largest element in Arrav.

Returns the number of the column which contained the largest
element in the array specified in the last AMAX function.

Returns the number of the row which contained the largest
element in the array specified in the last AMAX function.

Returns the value of the smallest element in Arrav.

Returns the number of the column which contained the smal-
lest element in the array specified in the last AMIN function.

Returns the number of the row which contained the smallest
element in the array specified in the last AMIN function.

Returns the column norm of Arrav — the largest sum of abso-
lute values obtained by summing the absolute values of ele-
ments in each column of the array.

Numeric Computation 4-77

CNORMCOL

DET(Matrix)

DETL

DOT(YectaorlsWectord)

FNORM(Array)

LBND(Array:Subscript)

MAXAB(Array)
MAXABCOL

MAXABROW

RNORM(ATrray)

RNORMROW

SUM(Array)
UBND(Arrav:Subscript)

4-78 Numeric Computation

Returns the number of the column (of the array specified in the
last CNORM function) which contained the largest sum of
absolute values.

Returns the determinant of Mat rix, which must be a square
matrix.

Returns the determinant of the matrix which was last inverted.
(Matrices are inverted by the MAT...INV and MAT...SYS
statements).

Returns the inner (dot) product of the two vectors.

Returns the square root of the sum of the squares of all ele-
ments in Array. This value is known as the Froebenius or
Euclidian norm.

Returns the lower bound of Subscrirt in Array (i.e., the
current OPTION BASE).

Returns the largest absolute value of any element in Arrav.

Returns the number of the column which contained the largest
absolute value of any element in the array specified in the last
MAXAB function.

Returns the number of the row which contained the largest
absolute value of any element in the array specified in the last
MAXAB function.

Returns the row norm of Array — the largest sum of absolute
values obtained by summing the absolute values of elements
in each row of the array.

Returns the number of the row which contained the largest
sum of absolute values in the array specified in the last
RNORM function.

Returns the sum of all the elements in Arrav.

Returns the upper bound of Subseriet in Arrav.

Chapter Contents

String Manipulation

It is often desirable to store non-numerical information in the
computer. For instance, you will often need to store and ma-
nipulate alphanumeric characters (text) with programs. This
chapter describes several techniques for working with string
data.

The sections of this chapter cover the following topics:

What is a string?

Evaluating string expressions
Substrings

String-related functions
User-defined string functions
Number-base conversions

Additional string functions

String array operations

String Manipulation 5-1

|
What is a String?

Assigning Values to
String Variables

String Variable
Names

String Variable
Lengths

5-2 String Manipulation

A string is defined as any sequence of characters. A word, a
name, or a message can be stored in the computer as a string.
Each character in a string is stored as an eight-bit quantity;
thus, there are 255 different characters available with Technic-
al BASIC.

The following are valid assignments to sting variables. Quota-
tion marks are used to delimit the beginning and ending of the
string.

LET StringYariable$="computer"
Fail$="The test has failed,"
FileName$="INVENTORY"
Test$=Fail$[5,B81]

The left-hand side of the assignment (the variable name) is
assigned the string value on the right-hand side of the assign-
ment (the literal).

String variable names are identical to numeric variable names
with the exception of a dollar sign (%) appended to the end of
the name. They may contain up to 32 characters, including all
letters of the alphabet (both uppercase and lowercase), decim-
al digits 0 through 9, and the underbar () character. Just about
the only restriction on string variable names is that the first
character must be an alphabetic character.

The length of a string is the number of characters in the string.
In the previous example, the length of StringVariable$ is 8,
since there are eight characters in the string literal “‘com-
puter”.

BASIC allows the dimensioned length of a string to range from
1to 65 530 characters; the current length (number of characters
in the string) can range from 0 to the dimensioned length. A
string of zero characters is often called a null string or an empty
string.

Dimensioning
String Variables

The default dimensioned length of a string is 18 characters.
The DIM and COM statements are used to define string
lengths up to the maximum length of 65 530 characters. An
error results whenever a string variable is assigned more char-
acters than its dimensioned length.

A string may contain any character. The only special case is
when a quotation mark needs to be in a string. A quote pre-
ceded by the tilde (~) character will embed a quote within a
string.

10 Quote$="The time is “"NOW"".,"
20 PRINT Quote$
30 END

Produces: The time is “NOW".

Strings whose length exceeds the default length of 18 charac-
ters must have space reserved before assignment. The follow-
ing statements may be used.

DIM Lond$[400] Reserves memory for a 400-character
string.
COM Line$[B0] Reserves memory for an 80-character

string variable in ““common’ storage.

The maximum length of any string must not exceed 65 530
characters. A string may also be dimensioned to a length less
than the default length of 18 characters.

Simple String Variables The DIM statement reserves storage
for simple string variables.

DIM Part_number$l101:Decrirtion$lB41/Cost$[5]
The COM statement defines common variables that can be
used by subprograms and chained programs.

COM Name$[dO1+Phone$l[14]

Strings that have been dimensioned but not assigned values
contain the null string.

String Manipulation 5-3

5

String Arrays Large amounts of text are easily handled in
arrays. For example:

DIM File%(1000)LBOI

This statement reserves storage for 1000 lines of 80 characters
per line. Do not confuse the brackets, which define the length
of each string array element, with the parentheses, which
define the number of strings in the array. Each string in the
array can be accessed by a subscript. For example:

PRINT File$(27)

Prints element 27 of the array. Since each character in a string
uses one bytes of memory and each string in the array is
allocated as many bytes as the maximum length of the string,
string arrays can quickly use a lot of memory.

Evaluating String
Expressions

Evaluation
Hierarchy

5-4 String Manipulation

This section describes how the Technical BASIC system evalu-
ates string expressions.

Evaluation of string expressions is simpler than evaluation of
numerical expressions. The three allowed operations are ex-
tracting a substring, concatenation, and parenthesization. The
evaluation hierarchy is presented in the following table.

Order Operation

High Parentheses

Substrings and Functions

Low Concatenation

String
Concatenation

Relational
Operations

Two separate strings are joined together by using the con-
catenation operator ““&"". The following program combines two
strings into one.

100 One$="WRIST"

110 Two$="WATCH"

120 Concat$=0One$&Twos

130 PRINT One$,Two%sConcat$

140 END
Prints:
WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second
string to the end of the first string. The result is assigned to a
third string. An error results if the concatenation operation
produces a string that is longer than the dimensioned length of
the string being assigned.

Most of the relational operators used for numeric expression
evaluation can also be used for the evaluation of strings.

The following examples show some of the possible tests.

"ABC" = "ABCY True
“ABC" = " ABC® False
"ABC" < “ABC True
"gr oy M7 False
"long" <= "londer" True
"RE-SAVE" = "REBAVE®" False

Any of these relational operators may be used: <, >, <=,
>=, =, <>

Testing begins with the first character in the string and pro-
ceeds, character by character, until the relationship has been
determined.

The outcome of a relational test is based on the characters in
the strings, not on the length of the strings. For example:

“BRONTOSAURUS" < "CAT"

This relationship is true since the letter “C"” is greater in ASCII
value than the letter “B”.

String Manipulation 5-5

|
Substrings

Single-Subscript
Substrings

5-6 String Manipulation

A subscript can be appended to a string variable name to
define a substring. A substring may comprise all or just part of
the original string. Brackets enclose the subscript which can be
a constant, variable, or numeric expression. For instance:

Strind%ld]l Specifies a substring starting with the fourth
character of the String$ variable, and con-
tinuing through the end of the variable’s cur-
rent contents.

Note that the brackets now indicate the substring’s starting
position, instead of the total length of the string as when
reserving storage for a string. The subscript must be in the
range: 1 to the string’s current length (not dimensioned
length). Any subscript value larger than this causes an error.

Subscripted strings may appear on either side of the assign-
ment.

When a substring is specified with only one numerical ex-
pression, enclosed with brackets, the expression is evaluated
and rounded to an integer indicating the position of the first
character of the substring within the string.

The following examples use the variable A$ which has been
assigned the literal “DICTIONARY"”.

Statement Output
PRINT A% DICTIONARY
PRINT A$LO] (error)
PRINT A%$[11 DICTIONARY
PRINT A%[51] TONARY
PRINT A%L10] Y

PRINT A%[111] (error)

When a single subscript is used it specifies the starting charac-
ter position of the substring, within the string. An error results
when the subscript evaluates to zero or greater than the cur-
rent iength of the string.

Double-Subscript
Substrings

Special
Considerations

A substring may have two subscripts, within brackets, to
specify a range of characters. When a comma is used to sepa-
rate the items within brackets, the first subscript marks the
beginning position of the substring, while the second sub-
script is the ending position of the substring. The form is:
Strind$[StartsEndl

LET Btring$="JABBERWOCKY"
String$l4,6]
BER

In the following examples the variable B$ has been assigned to
the literal “ENLIGHTENMENT"":

Statement Output

PRINT B% ENLIGHTENMENT
PRINT B%L1:+131 ENLIGHTENMENT
PRINT B#[1:9] ENLIGHTEN
PRINT B$[3:+71 LIGHT

PRINT B#Ld+41 I

PRINT B#L[13,261 (error)

An error results if either the first or the second subscript is
greater than the current string length.

All substring operations allow a subscript to specify the first
position past the end of a string. This allows strings to be
concatenated without the concatenation operator. For inst-
ance:

100 A$="CONCAT"

110 A$L71="ENATION"
120 PRINT A%

130 END

Produces: CONCATENATION

String Manipulation 5-7

5-8 String Manipulation

The substring assignment is only valid if the substring already
has characters up to the specified position. Access beyond the
first position past the end of a string results in the insertion of
blank spaces.

It is a good practice to dimemsion all strings including those |
shorter than the default length of eighteen characters. This
helps to manage the amount of memory space used by a string
so that no memory space is wasted.

Some very interesting assignments can be attempted. For ex-
ample, a 14-character string can be assigned to a 3-character
substring.

100 Bid$="Too big to fit"
110 Small$="Little string"

120 ¢

130 Small$l1,3]1=Big%
140 1

150 PRINT Small$

160 END

Prints: Tootle string

When a substring assignment specifies fewer characters than
are available, any extra trailing characters are truncated.

The alternate assignment is shown in the next example. Here a
4-character string is assigned to a 8-character substring.

100 Bidg$="A larde string"
110 Smalls="tinv"

120 1
130 Bid#l{3+101=8mall$
140 14
150 PRINT Bidg$
160 END
Prints: A tinv ring

Since the subscripted length of the substring is greater than the
length of the replacement string, enough blanks (ASCII
spaces) are added to the end of the replacement string to fill the
entire specified substring.

1
String-Related
Functions

String Length

Substring Position

Several intrinsic functions are available in BASIC for the man-
ipulation of strings. These functions include conversions be-
tween string and numeric values.

The “length” of a string is the number of characters in the
string. The LEN function returns an integer whose value is
equal to the string length. The range is from 0 (null string) thru
65 530. For example:

PRINT LEN{"HELP ME")
Prints: 7

The following example program prints the length of a string
that is typed on the keyboard.

100 DIM InsL1G01]

110 INPUT In$

120 Lendth=LEN(In%)

130 DISP Lendthi"characters in "iIn$
140 END

Try finding the length of a string containing only spaces.
When the INPUT statement is used, any leading or trailing
spaces are removed from items typed on the keyboard.
Change INPUT to LINPUT in line 20 to allow leading and
trailing spaces to be entered.

The “position” of a substring within a string is determined by
the POS function. The function returns the value of the start-
ing position of the substring or zero if the entire substring was
not found. For instance:

PRINT POS("DISAPPEARANCE" +"APPEAR™)

Prints: 4

String Manipulation 5-9

The following example prints the positions of substrings
found within a string.

10 OPTION BASE 1

20 DIM Sentence$l401 Word$(B)L8B]

30 DATA CATONsAHOT sTENNATION

40 FOR I=1 TO 6 B READ Word$(I) B NEXT I

30 Sentence$="WHERE IS THE CAT IN CONCATENATION"

B0 !

70 FOR I=1 70 6

B0 Position=P0S(Sentence$sWords(I)) ! <- POS function
90 IF Position THEN SEGI ELSE SEGZ

100 SEG1L:

110 PRINT Sentence$

120 PRINT TAB(Position) iWord$(I)3TAB(35)i"is at "iPosition
130 PRINT @ GOTO 170

140 SEGZ:

150 PRINT "/"jWord$(I)3i"’ was not found"

160 PRINT

170 I End of multi-line IF+++THEN+++ELSE construct,
180 NEXT I

180 END

5-10 String Manipulation

If POS returns a non-zero value, the entire substring occurs in
the first string and the value specifies the starting position of
the substring.

Note that POS returns the first occurrence of a substring with-
in a string. By adding a subscript, and indexing through the
string, the POS function can be used to find all occurrences of a
substring. The following program uses this technique to ex-
tract each word from a sentence.

e

100
110
120
130
140
150
160
170
18O
190
200
210
220
230
240

DIM A%LBO]
A%="1 Know vou think vou understand what I saids but vou don’t,
INTEGER ScannersFound

Scanner=1 ! Current substring position
PRINT A%
REPEAT:
Found=POS(A%$LScannerdy" ") | Find the next ASCII srace
IF Found THEN SEG1 ELSE SEGZ
SEGL:
PRINT A$[ScarnnersScanner+Found-11 ! Print the word
Scanner=Scanner+Found @ GOTO 140 ! Addust "Scan" past last match
SEG2:
PRINT A${Scanner] ! Print last word in string
IF Found THEN REPEAT ! End of REPEAT conmstruct.
END

As each occurrence is found, the new subscript specifies the
remaining portion of the string to be searched.

String-to-Numeric The VAL function converts a string expression into a numeric

Conversion value. The string must evaluate to a valid number or error 89
will result.

Error 88 INVALID PARAM

The number returned by the VAL function will be converted to
and from scientific notation when necessary. For example:

PRINT VAL("123.4E3")

Prints: 123400

String Manipulation 5-11

The following program converts a fraction into its equivalent
decimal value.

100 PRINT "Enter a fraction (i,e, 3/4)"

110 INPUT Fractions

120 1

130 ON ERROR GOTOD Err

140 Numerator=VAL(Fraction$%$)

150 1

160 IF POS(Fraction%$,"/") THEN SEG! ELSE SEGZ
170 BEGL:

180 Delimiter=POS(Fraction$.:"/")

180 Devomivator=VAL(Fraction$lDelimiter+1])

200 GOTO 240

210 SEGZ2:

220 PRINT "Invalid fraction"

230 GOTO Err

240 | Evd of multi-line IF++ .THEN,, .ELSE construct.
250 !

260 PRINT Fraction$i" = "iNumerator/Denominator
270 GOTO Quit

280 Err: PRINT "ERROR Invalid fraction"

290 OFF ERROR

300 Guit: END

Similar techniques can be used for converting: feet and inches
to decimal feet or hours and minutes to decimal hours.

The NUM function converts a single character into its equiva-
lent numeric value. The number returned is in the range: 0 to
255. For example:

PRINT NUM{"A™)

Prints: 65

The next program prints the value of each character in a name.

5-12 String Manipulation

100
110
120
130
146
150
160
170
180

PRINT "Enter vour first nmame.,"
INPUT Name$
PRINT Names$
PRINT
FOR I=1 TO LEN(Name%$)
PRINT NUM{(Name$[I1)3i ! Print value of each character
NEXT I
PRINT
END

Numeric-to-String
Conversion

Entering the name: JOHN will produce the following.
JOHN

74 789 72 78

The VALS$ function converts the value of a numeric expression
into a character string. The string contains the same characters
(digits) that appear when the numeric variable is printed. For
example:

Prints: 1e+016 {e+016

Note that scientific notation does not start until there are
seventeen digits to the left of the decimal point.

The next program converts a number into a string so the POS
function can be used to separate the mantissa from the expo-
nent. Note that this program only works with large positive
exponents of size 16 or greater. For example, enter the follow-
ing program:

100 PRINT

110 PRINT "Enter a number with an exponent”
120 INPUT Number

130 1

140 Number$=YAL$(Number)

150 1

160 PRINT Number$

170 E=POS(UPC$(Number$) »"E")

i80 IF E THEN SEG1 ELSE SEG2

190 SEGi:

200 PRINT "Mantissa is"sNumber$[1,E-11]
210 PRINT "Exponent is"sNumber$[E+1]
220 GOTO Quit

230 SEGZ:

240 PRINT "No exronent"

230 GOTOD Quit

260 Quit: END

String Manipulation 5-13

5-14 String Manipulation

The program when executed prompts you with the following:

ENTER A NUMBER WITH AN EXPONENT

Enter the following number with its exponent:

3E+16 RETURN

This returns:

Je+016
MANTISSA IS 3
EXPONENT IS +016

The CHR$ function converts a number into an ASCII charac-
ter. The number can be of type INTEGER or REAL since the
value is rounded, and a modulo 255 is performed. For ex-
ample:

PRINT CHR$(97)iCHR$(98) iCHR$(99)
Prints: abtec

The next program prints the values in the data statement as
characters.

100 OPTION BASE 1

110 PRINT

120 CLEAR

130 !

140 DATA 3489111 411793241034111,116+324+105+116,3
150 INTEGER N(13)

160 MAT READ N

170 FOR I=1 TO 13

180 PRINT CHR$(N(I)) 1

180 NEXT I
200 PRINT CHR$(7)
210 END

.|
String Functions

String Reverse

String Repeat

100
110
120
130
140
130

Several additional string functions are available when using
HP-UX Technical BASIC. This sections provides examples of
these functions and a sample user-defined string function.

The REV$ function returns a string created by reversing the
sequence of characters in the given string.

PRINT REV$("Swack cans")
Prints: snac kcanB

A common use for the REV$ function is to find the last occurr-
ence of an item in a string.

DIM List$[301]

List$="3.,22 4,33 1,10 8,53 12,20 1,77"
Length=LEN{List$)

Last_space=POS(REVS({List$) " ")

DISP "The last item is:"ilList$li+Lendth-Last_sracel
END

Displays: The last item is: 1,77

The RPT$ function returns a string created by repeating the
specified string, a given number of times.

PRINT RPTH("* *",10)

Prints; ¥ %% #% ¥% %% X% ¥% ¥¥% ¥¥ ¥¥ ¥

String Manipulation 5-15

Trimming a String

5-16 String Manipulation

100
110
120
130
1460
150
160
170

Here is a short program that uses RPT$ to create an image for a
formatted print statement.

100 OPTION BASE 1

110 DATA 350,9004+2,444,37,2001,32768

20 DIM Arrav(7)

130 MAT READ Arrav

140 Maxdigits=0

150 FOR I=1 TO 7

160 Digits=INT(1+LGT(Arrav(I)))

170 IF Didits*Maxdidits THEN Maxdigits=Didgits
180 NEXT 1

190 Form$="X}X"&RPT$("D" yMaxdigits)&",DD"
200 PRINT "Usind the imade: "iForm$

210 MAT PRINT USING Form$ 3§ Arrav

220 END

The TRIM$ function returns a string with all leading and
trailing blanks (ASCII spaces) removed.

PRINT "#"3TRIMS$(" 1.23 ERIRE &
Prints: *1,23%

TRIMS is often used to extract fields from data statements or
keyboard input.

DISP "Enter vour first and last nmame."

INPUT Name$

First$=TRIM$ (Name$[1 POS(Name$," ")1)
Last$=TRIM$(Name$[1+LEN(Name%$)-POS(REVS$(Names$) " ") 1)
PRINT Name$ LEN(Name$)

PRINT Last$sLEN(Last$)

PRINT First$:LEN(First$)

END

If you need to enter leading or trailing spaces, use the LINPUT
statement.

Lettercase
Conversion

100
110
120
130
140
150
160

User-Defined String
Functions

The lettercase conversion functions, UPC$ and LWCS$, return
strings with all characters converted to the same lettercase.
UPCS$ converts all lowercase characters to their corresponding
uppercase characters, and LWC$ converts any uppercase
characters to their corresponding lowercase characters.

DIM Word$l1601

LINPUT "Enter a few characters on this line: ",Word%
PRINT

PRINT "You tvrped: "iWord$

PRINT "Uppercase: "JUPC$(Word$)

PRINT "Lowercase: "3iLWC$(Word$)

END

Many string functions not provided by Technical BASIC can be
implemented separately as user-defined functions. The fol-
lowing program contains a string function.

100 DEF FNStmt$(X) = "Account #"RVALE(X)
110 Acctnum=10699

120 DISP FNStmt$(Acctnum)

130 END

The results after executing this program are:
Account #106899
For a detailed discussion on user-defined string functions,

read the chapter entitled ““User-Defined Functions and Sub-
programs’’.

String Manipulation 5-17

String Arrays

Dimensioning
String Arrays

10 OPTION BASE 0O

A string array is collection of character strings collected under
the same string variable name and having the same maximum
length. The computer allows both one- and two-dimensional
string arrays.

The DIM statement is used to set the upper bounds of the
string array and to specify the maximum number of characters
in each element.

DIM Stringl$(25)L201:8tring2%(15:15)L201]

The one-dimensional array String1$ has an upper bound of 25
and a length per element of 20. The two-dimensional array
String2$ has an upper bound of 15 for both its rows and
columns and a length per element of 20. Note that the upper
bound(s) and length per element cannot exceed 65530. The
lower bound of a string array is determined by the OPTION
BASE of the program. The OPTION BASE has no effect on the
maximum string length.

String arrays, numeric arrays, and simple variables can be
dimensioned in the same DIM statement. For example:

20 REM NAMES$ has 11 elements: each with maximum lendth of 25 characters.
30 REM GRADES has BG REAL numeric elements.
40 DIM NAMES$(10)[251, GRADES(104+3)

+
1

+

String Expressions
and Operations

5-18 String Manipulation

If a string array is not explicitly dimensioned, it is implicitly
dimensioned with upper bound(s) equal to 10 and maximum
string length equal to 18.

The COM statement is used to dimension string arrays which
are to be preserved in common between chained programs.

All the operations and functions provided for manipulating
simple string variables can also be used with elements of string
arrays.

Operations Examples

Assignment STRING$(1l)="ecliprse"
STRING$(Z)="1unar"
STRING$(3)="75"

Concatenation EVENT$=STRING$(Z2) & " " & STRING$(1)
DISP EVENTS
lunar ecliprse

Subshing MOUTH$=STRING$(1)[3+51]
DISP MOUTH$
lip

Modification STRING$(2)[1,:31="g0l"
DISP STRING$(Z)
solar

Cknnpaﬂson STRING$(Z) « STRING#(1)
0

Functions Examples

LEN LEN(STRING$(1))
7

POS PLACE= POS(STRING®(1):"p")
DISP PLACE
8

VAL DISP VAL(STRING$(3))
75

VALY STRING$(4)=UAL$(12345)
DISP STRING${3)&STRINGS(4)
7512345

CHR% STRING$(S)=CHR$ (40)

DISP STRING#(S)
{

NUM DECUAL=NUM(STRING$(3))
DISP DECVAL
55

UPC$ SUN$=UPC$ (STRINGS(2))
SUN$
SOLAR

String Manipulation 5-19

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
230
260
270
280
290
300
310
320

The following program sorts a list of words alphabetically.
Since string comparisons are based on the decimal codes
assigned to each letter, all lowercase letters are converted to
uppercase letters before sorting begins.

OPTION BASE 1

DIM Word$(20)L[301 ! Dimensions Z0-element string arrav,

FOR I=1 TO 16 ! This loor reads and prints DATA,.
READ Word$(I)
Word$(I)=UPC%${Word${I)}) | Converts word to all urrercase letters.
PRINT Word$(I)i" "3

NEXT T ! End loor.
PRINT
FOR J=2 7O 16 ! Bedin sort.

Temp$=Word$(J)
FOR I=Jd-1 70 1 STEP -1
IF Temp$r=Words(I) THEN GOTD Insert
Word$(I+1)=Word$(I) ! Mouve element down one Position.
NEXT I
Insert: Word$(I+1)=Temp$! Insert element at position [+1,
NEXT J
FOR I=1 TO 16 ! Print sorted list,
PRINT Word$(I)3i® "3
NEXT I
PRINT
DATA HOW:CANsvou+BE+INsTWOPLACES AT sonce +WHEN»YDU +ARE
DATA not ANYWHERE AT +ALL
END

5-20 String Manipulation

Chapter Contents

User-Defined Functions
and Subprograms

It is often handy to write algorithms that can be used in several
places in a program or by other programmers. The “Program
Structure and Flow” chapter described using subroutines for
this purpose. Another handy feature of subroutines is that you
can use them to “hide the details” of performing tasks from the
“main’’ algorithm, so as not to obscure the readability of the
main algorithm.

User-defined functions and subprograms also accomplish
these two tasks, but they provide many additional capabilities.
This chapter describes these two powerful features of the
Technical BASIC language.

This chapter discusses the following topics.

m An introduction to user-defined functions
® Passing parameters
® Multiple-line functions

Functions and local variables

Data types and declarations

"
= An introduction to subprograms

Benefits of using subprograms

Creating, storing, and calling subprograms
Deleting, loading, and editing subprograms
Program/subprogram communication
Passing parameters

Using COM variables

Using system flags

® Memory management with subprograms

m Context switching

User-Defined Functions and Subprograms 6-1

User-Defined
Functions

This section reviews some resident functions and then intro-
duces you to user-defined functions. It describes several
aspects of creating and using user-defined functions.

Review of Resident There are several resident functions built into the Technical
Functions BASIC language. Here are some examples:

¥=SIN(X+Phase)

Rootl=(-B+SQR(B*B-4%A*C))/ (Z2*A)

DISP "The value of pi = ",PI

PRINT "ASCII code = "iNumberi" Character = "3SCHR$(Number)

In the first example, the SIN function calculates the sine of the
argument X and returns the value so that it can be added to the
value of the variable named Phase, and the sum then assigned
to the variable Y.

In the second example, the SQR function calculates the square
root of the argument B*B-4*A*C, which is then added to the
negative value of the variable B, divided by the product 2*A,
and this value is assigned to the variable Root1.

In the third example, the constant function PI returns the value
3.141 592 653 589 79, which is then displayed following the
text.

In the fourth example, the CHR$ string function takes the
numeric argument Number and returns the corresponding
ASCII character.

Note that in all examples, the functions return a single value.

Introduction t0 You can also define your own functions, which effectively
User-Defined allows you to extend the language if you need a function not
Functions provided in BASIC. Here are two examples:

K=1/FNSinh(Y"4)
Andle=FNAtn2 (Y +X)

6-2 User-Defined Functions and Subprograms

A general rule of thumb for using subprograms is that if you
want to take a set of data and analyze it to generate a single
value, then you probably want to define a function. On the
other hand, if you want to actually change the data itself,
generate more than one value, or perform any sort of I/O
activity, itis better to use a subprogram. (A subsequent section
describes subprograms.)

With this system, you can define either single-line or multi-
line functions. Let’s first look at an example of a single-line
function.

Exam Ie Constant Here is an example of a user-defined string function that
% g
Function returns a constant.

DEF FNName$="John Doe"

Since a constant function always returns the same value, there
is no “argument” to be sent to it. Here are examples of using
the function:

DISP "His name is "3iFNName$
105 IF LEN(Name$)=0 THEN StudentName$ (N)=FNName$

] Functions can be defined anywhere in a program. They
“ﬂ need not appear before they are referenced.

Let’s look at a more common example — a function with argu-
ment(s).

Passing Parameters The following line defines a function that computes the area of
to Functions a circle, when supplied with a radius (the “argument”).

50 DEF FNArea(Radius)=PI*Radius"2

Here are examples of invoking the function:

100 DISP "The area of a circle of radius 10 = "iFNArea(1i0)

250 Total.Area=FNArea(R1)+FNArea(RZ2)+FNArea(R3)

User-Defined Functions and Subprograms 6-3

Note that a numeric value was “passed” to the function each
time it was called: the function call in line 100 passed a value of
10; the function calls in line 250 passed values of variables R1,
R2, R3. These values are known as pass parameters.

The variable named Radius in the Area function is known as a
formal parameter. It specifies the variable in the function that
is to receive the value passed to the function.

Parameter Lists From the preceding example, it is clear that
there are two types of parameter lists:

m Formal parameter lists

m Pass parameter lists

The formal parameter list shows how many values may be
passed to a function and gives the names the function will use
to refer to those values. The formal parameter list for this
example function:

50 DEF FNArea(Radius)=PI*Radius”2

is simply (Radius) — it is a list with one element.

The pass parameter list specifies the value(s) to be sent to the
function. The pass parameter list for the following function
call:

FNArea(i)

is simply (10).

Each parameter in the pass parameter list corresponds to a
parameter in the formal parameter list provided by the func-
tion. The function has the power to demand that the function
call match the types declared in the formal parameter list
exactly — otherwise an error results. It is also perfectly legal for
both the formal and pass parameter lists to be null (non-
existent), as long as both match.

Single-line functions are not restricted to being passed one
parameter; you can pass up to 16 numeric or 7 string para-
meters. These parameters include both simple numeric and
string variables and numeric and string arrays.

6-4 User-Defined Functions and Subprograms

An Example
Multiple-Line
Function

110
120
130
140
150
160
1760
180
190
200
210
220
230
240
230
260

Functions and
Local Variables

Since it is difficult to implement many significant functions
while limited to one line of BASIC code, you can also define
multiple-line functions. Here is a simple example.

PRINT "Decimal"»"Dctal"
FOR Decimal_no=1 TO 100 STEP 3

PRINT Decimal.nosFNOctal{(Decimal.no)
NEXT Decimal.no

STOP
I

DEF FNOctal(Decimal._Number)
Octal_Equiv=0
Remainder=Decimal Number
FOR Octal_Place=10 TOD O STEP -1
Octal_Didit=IP(Remainder/B"0Octal_Place)
Remainder=Remainder MOD 8"0Octal_Place
Octal _Eauiv=0ctal_Eauiv+0ctal Digit*10"0Octal_Place
NEXT Octal.Place
FNDotal=0ctal _Eaquiv
FN END

The function’s formal parameters are defined in the DEF EN
statement. The value of the function is not defined in this
declaration statement; instead, it is defined later in the func-
tion (line 250 in this example).

In general, all main program variables are accessible to func-
tions. This is true whether they are declared explicitly (with
statements such as DIM) or implicitly (for instance, numeric
variables are assumed REAL unless explicitly declared other-
wise). Here is an example:

10 Scale_factor=2

20 DEF FNXyz(Ard)=Scale_factor*¥Arg" 3
30 DISP "FNXyz(2)="iFNXyz(2)

40 END

The results of this function call are 16 (=2*2"3) rather than 8

(=273). Thus, the main program’s variable named Scale_fac-
tor was accessible to the function.

User-Defined Functions and Subprograms 6-5

On the other hand, all variables declared in the formal para-
meter list are not accessible to the rest of the program; they are
“local” to the function. This includes function variables that
have the same name as a main program variable. For instance,
the function’s Radius variable is not available to the main
program. Here is an example:

10 Radius=123
20 DEF FNArea(Radius)=PI*#Radius"2

30 DISP "Result of ‘Area(l0)’ ="3iFNArea(lQ)
40 DISP "Main prodram’s variable ‘Radius’ ="iRadiu
30 END

Here are the results of running the program.

Result of ‘Area(l0)’ = 314,158265358979
Main Radius = 123

In line 10, the main program assigned a value of 123 to its
variable named Radius. The call to Area (line 30) specified that
the function’s variable named Radius is to be assigned a value
of 10. The results of line 30 verify that the function’s variable
named Radius was assigned a value of 10, while line 40 verifies
that the main program’s variable named Radius was not
changed when the function’s Radius was assigned the value of
10.

Formal Parameter Variables can be declared either implicitly or explicitly. Here is
Data-Type how variables are implicitly declared:

Declarations

m Numeric variables are assumed to be of type REAL, unless
explicitly declared INTEGER or SHORT.

m String variables are dimensioned to have a maximum length
of 18 characters.

Explicit type declarations are made with DIM, REAL, SHORT,
and INTEGER statements.

6-6 User-Defined Functions and Subprograms

Limitations

Since a function’s formal parameters are local to the function,
the type of each variable is implicitly declared in its DEF FN
statement. Suppose, however, that you want to be able to pass
a string longer than 18 characters to a function. In order to do
that, you will need to declare a greater string length in the
function heading. Here is an example:

DEF FNDo.somethingd$(Arg$[1001)=

Functions cannot be used recursively. For instance, a function
cannot call itself nor can it call another function that is used in
its definition.

Functions are not restricted to being passed one parameter;
you can pass up to 30 parameters to a user-defined function.
These parameters include both simple numeric and string
variables and numeric and string arrays. However, user-
defined string functions are restricted to returning a max-
imum of 18 characters.

)
~ Introduction to
Subprograms

Simple Examples

This section shows you what subprograms are and gives you a
glimpse of their capabilities. You will see how to enter and call
two simple subroutines from a program.

As described in the Program Structure and Flow chapter,
subroutines are common routines that can be executed by
several parts of the program. Subprograms are like sub-
routines in this respect, but they are much more powerful. But
before discussing the additional capabilities that they provide,
let’s take a look at some simple examples.

User-Defined Functions and Subprograms 6-7

100
110
120
130
140
150
160
170
180

110
120
130

100
110
120
130
140

Here is a “main” program that calls two subprograms. (A
subsequent section shows how to enter, store, and load them.)

DISP "This is diseplaved by MAIN prodram.,”
DISP

CALL "FirstSub"

|

CALL "SecondSub® ("String rass parameter")
i

DISP “"This is the MAIN prodram adain.”
!
END

Here are the subprograms.

100 SUB "FirstSub"
DISP "This is displaved by ‘FirstSub’,"
DISP
SUBEND

SUB "SecondSub" (Formal_param$)

DISP "This is disrlaved by ‘SecondSub’."

DISP "The value sent to me is ‘"iFormal_Param$si®’,"
DISP

SUBEND

Here are the results of running the program.

This is displaved by the MAIN prodram,

This is displaved by 'First8ub’.,

This is displaved by ‘SecondSub’.

The

value sent to me is ‘Strind rpass parameter’,

This is the MAIN program adain,

Here is how the program flows. Executing RUN transfers
control to the main program, beginning with line 100. This
program line displays the first line of the results shown above.
Control then moves to line 110 (DISP) and to line 120, which
calls the subprogram named FirstSub. This CALL transfers
contro] to the subprogram.

6-8 User-Defined Functions and Subprograms

Benefits of Using
Subprograms

Lines 110 and 120 of FirstSub then display the third and fourth
lines of the above results. Line 130 transfers control back to the
calling context (here, the main program).

Line 140 of the main program calls the subprogram named
SecondSub. The value String pass rarameter is passed to
the subprogram; it is known as a “‘pass parameter.” Control is
then given to SecondSub.

Lines 110 through 130 of SecondSub display the fifth through
seventh lines of the above results; in particular, line 120 dis-
playsthevalueString rass parameter, which was passedto
it by the main program. (You will see more about how para-
meters get passed in the section called “"Program/Subprogram
Communication.”) Control is then returned to the calling
program.

Finally, the main program (line 160) displays the final line of
the above results, and program execution is finished when the
END statement is reached (line 180).

These simple examples show that subprograms have several
things in common with subroutines. Then why use subprog-
rams? The next section provides the answer.

Like subroutines, subprograms provide the main program
with the ability to execute a common algorithm. A subprogram
also depends on a main program and cannot be executed
alone. It can execute internal subroutines, and can call other
subprograms. However, subprograms also provide many
additional capabilities.

The main power of subprograms is provided by these two
characteristics:

m Subprograms can be handled independently - that is, they
are not part of any main program, so they can be created,
stored, and retrieved separately.

® You can give (or deny) a subprogram access to any or all of
the variables and values in the main program (or subprog-
ram) that calls it. You can “pass” specific parameters to
them, or allow them to access specific common (COM)
variables.

User-Defined Functions and Subprograms 6-9

In short, a subprogram provides an easy way toisolate a useful
programming routine, store it, and call it back into main mem-
ory for execution whenever needed.

There are several benefits to be realized by using subprograms:

m The subprogram allows the you to take advantage of the
“top-down” method of designing programs. In this techni-
que, the problem to be solved is broken up into a set of
smaller and more easily solvable problems (known as ““step-
wise refinement.””) These smaller problems can in turn be
broken up into smaller problems yet, and so on. This techni-
que has been shown to greatly improve the design, coding,
and testing of programs.

m By separating all the details of performing the subtasks from
the overall logic flow of the main program, the program is
much easier to read (assuming you name the subprograms
judiciously). The programmer can see at a high level what
he’s trying to accomplish, rather than immediately getting
lost in the details of each little sub-task.

= Subprograms can do everything a main program can do. A
subprogram has its own “context,” or state, which is dis-
tinct from a main program and all other subprograms. This
means that every subprogram has its own independent set
of variables, DATA blocks, line labels, and so forth. Thus,
you don’t have think about not re-using such things as
variable names and line labels used in the main program,
because there will never be a conflict.

® One of the most time-consuming parts of writing a program
is debugging it, or forcing it to run correctly. The time-
consuming part of fixing bugs in a program is finding where
the bug is in the first place. By using subprograms and
testing each one independently, it is easier to locate and
correct problems. (This is also known as a “bottom-up”
method of testing.)

m Finally, libraries of commonly used subprograms can be
assembled for widespread use. Many different users doing
diverse types of problems still may require some identical
subprograms.

6-10 User-Defined Functions and Subprograms

Difference Between A subprogramisinvoked explicitly using the CALL statement.
Functions and A user-defined function is called implicitly by using the func-

tion name in an expression. The function name can be used in
Sprrog rams a numeric or string expression the same way a resident system
function or constantis used. A function’s purposeis toreturna
single value (either a real number or a string). A subprogram’s
purpose is generally to calculate more than one value.
I
Creating and Here are the general steps that you will need to take to enter a
Calllng subprogram into memory, make a copy of it in mass storage,
and call it from a program (or subprogram):
Subprograms

1. Determine what is currently in memory. (This step is
optional.)

a. Use the DIRECTORY statement to get a listing of the
program and subprogram(s) currently in memory, if
any.

2. Ifanunwanted program and subprogram(s) are currently
in memory, then use SCRATCH to erase them.

3. Enter and store a main program (that calls a sub-
program).
a. Execute FINDPROG with nofile name to “point” the
editor at the main program’s memory area.

b. Enter the BASIC program lines, which include a
CALL to the subprogram (to be written subse-
quently).

€. Use the STORE command or SAVE statement to
record a copy of the program in a mass storage file.

User-Defined Functions and Subprograms 6-11

Checking Memory
Contents

4. Enter a new subprogram.

a. Use FINDPROG followed by a subprogram name to
point the editor at a memory area to be used for the
new subprogram.

b. Enter the heading by typing SUB followed by the
subprogram name (and formal parameters, if any).

c. Entertherest of the BASIC code for the subprogram.

d. End the subprogram with a SUBEND or SUBEXIT
statement.

e. Use the STORE command to record a copy of the
subprogram in file.

5. Run the main program.

Before entering any new program or subprograms, use the
DIRECTORY statement to check what is currently in your
BASIC memory area.

DIRECTORY
If no main program or subprogram is currently in memory,
then you should see the following display.

BASIC eprodram bvtes lines allocated

* MAIN 0 0 no

If the main program and two subprograms shown in the pre-
ceding example were in your BASIC memory area, then you
would see something like this:

BASIC prodram hvtes lines allocated
> MAIN 196 9 Yes

FirstSub 76 4 ves

SecondSub 156 3 Yes

6-12 User-Defined Functions and Subprograms

Entering a Main
Program

l@

Here is a brief description of the columns of the DIRECTORY
statement’s results.

BASIC program lists the name(s) of the subprogram(s) cur-
rently in <memory>. Also shows the size of
the “MAIN" program. (There is no main
program in memory of both the trtes and
lines columns show 0).

brtes shows the amount of memory required by the
program or subprogram.

lines shows the number of lines contained in the
program or subprogram.

allocated effectively indicates whether or not the prog-
ram or subprogram has been “initialized” (by
INIT) or run (by RUN).

indicates which program/subprogram can
currently be edited, listed, etc.

You can simultaneously have one program and several sub-
programs within the memory allocated for your use by
Technical BASIC. However, you can only “look at” one of
them at a time. For instance, executing a LIST command
would only show one of them — the one to which the @ is
pointing. More about this feature momentarily.

Now point the system editor at the main program by executing
a FINDPROG statement without specifying a file name:

FINDPROG

(This is a redundant step if you just executed a SCRATCH
command as shown in the preceding discussion.)

Now execute this command to verify that you can enter the
main program.

DIRECTORY

User-Defined Functions and Subprograms 6-13

You should get this result:

BASIC prodram bvtes lines allocated
= MAIN 0 0 no

The * pointing toward MAIN indicates that the main program is
the one which you can now edit (or, in this case, the one you
can enter). This is also the condition of memory at power-up.

Now enter the lines of the example program:

100 DISP "This is diselaved by MAIN program,"”
110 1
120 CALL "FirstSub"

130 !

140 CALL "SecondSub" ("Strind pass Parameter")
150 !

160 DISP "This is the MAIN prodram adain."

170 1

180 END

Now store the main program using either the STORE com-
mand:

STORE "MainProg"

or the SAVE statement:
SAVE "MainProg"

The differences between these methods are as follows:

1. STORE creates a BASIC/PROG (“object””) file, while
SAVE creates a BASIC/DATA (ASCII source) file.

2. LOAD retrieves files stored with STORE, while GET re-
trieves files stored with SAVE.

Entering a New Use the FINDPROG statement again, this time to point the
Subprogram editor at the beginning of the memory area which will be used
for the subprogram that you will be entering. For simplicity,

let's call the new subprogram FirstSub.

FINDPROG "FirstSub"

6-14 User-Defined Functions and Subprograms

l%

The system should respond with this message:

New prodram

If a subprogram file (of type BASIC/SUBP) with this name
already exists, then this message is not shown, because the
system automatically loads the subprogram from mass stor-
age. However, if a program file (BASIC/PROG) with this
name already exists, an ERROR 68: FILE TYPE error will be re-
ported.

The FINDPROG statement also directs all subsequent prog-
ram-editing operations (like DELETE, LIST, etc.) to be made
on this subprogram.

You should now see something like this:

BASIC prodram bkytes lines allocated
MAIN 196 9 no
¥ FirstSub 0 0 no

The * points to the subprogram (or program) that will be the
target of subsequent editing operations. After verifying that
the editor is now pointed at subprogram “FirstSub”, you can
begin typing it in.

A Note about Naming Subprograms A subprogram has a name
which may be up to 14 characters long, just as with line labels
and variable names. Here are some legal subprogram names:

PlotDATA
InitializeDisc
Read_DUM
Sort_2D.array

Because up to 14 characters are allowed for naming subprog-
rams, it is easy and convenient to name subprograms in such a
way as to reflect the purpose for which the subprogram was
written.

User-Defined Functions and Subprograms 6-15

.1 The name of the subprogram specified in FINDPROG state-
“ﬂ ment is also the name that you must specify in the STORE
statement that stores the subprogram in a file. Although
you can use any name in the SUB heading, it is probably
best to use the same name there, also.

Entering @a New Now that you have reserved a location in memory for the

Subprogram subprogram, you can begin typing it in. Enter this example
subroutine.

100 SUB "FirstSub®

110 DISP "This is displaved by ‘FirstSub’."
120 DISP

130 SUBEND

Note that the first line must contain the heading declaration
SUB followed by the subprogram name. Note also that line
numbers in the subprogram are completely independent of
line numbers in the main program, so the subprogram can
start with any (valid) line number.

Storing the Use the STORE command to store a copy of the subprogram in
Subprogram 2 file. You will need to specify the same name that you speci-
fied in the FINDPROG statement that pointed the editor at this

subprogram. In this example, you would type:

STORE "FirstSub"

Only the first 14 characters of the file name are used if you
specify one longer than 14 characters.

Now that the subprogram is stored, you can easily call it from
any program (or from any other subprogram, for that matter).

“,.l Do not use the SAVE command to record a subprogram,

ﬂ because SAVE does not put the subprogram in the proper
file type (BASIC/SUBP) for subsequent FINDPROG and
CALL statements.

6-16 User-Defined Functions and Subprograms

Entering and
Storing the Second
Subprogram

100

110

120

130

140

Running the
Program

Subprograms Are
Automatically
Loaded

Deleting a
Subprogram

Now you are ready to perform similar steps to enter and store
the second example subprogram. Here is another listing for
your convenience.

SUB "SecondSub" (Formal_param$)

DISP "This is displaved by ‘SecondSub’,*®

DISP "The value sent to me is ‘"iFormal_param$&i"’,"
DIsSP

SUBEND

Repeat the procedure you used to enter and store the first
subprogram.

Now that you have entered the program and both subprog-
rams, you are ready to run the program. Execute:

RUN

You should get results like these:

This is displaved by the MAIN Prodram.
This is displaved by ‘FirstSub’,

This is diselaved by ‘SecondSub’,
The value sent to me is ‘Strind Pass Parameter’.

This is the MAIN Prodram adain.

Since the subprogram in the preceding example was already in
memory when the main program was executed, the system
did not need to load it. However, if a subprogram is not in
memory when called, then it will be automatically loaded. In
order to verify that this is the case, let’s first delete one of the
subprograms.

Use the SCRATCHSUB statement to delete a subprogram cur-
rently in your BASIC memory area. This example deletes sub-
program FirstSub:

SCRATCHSUB "FirstSub"

User-Defined Functions and Subprograms 6-17

Executing a DIRECTORY statement will now show that the
subprogram is not in memory.

DIRECTORY
BASIC prodram bvtes lines allocated
» MAIN 196 9 Yes
SecondSub 156 3 Yes

If you run the program at this point, the system will automati-
cally load the subprogram when it is called.

Note that you can also execute SCRATCHSUB from a running
program; see the subsequent “Memory Management with
Subprograms’ section for more complete details.

Explicitly Loading There are two general instances when subprograms will be
Subprograms (For loaded:
Editing) = When a program calls it.

= When you want to edit it.

As mentioned previously, when a subprogram that is not
currently in memory is called, the system automatically loads
it. Thus, about the only time that you will need to explicitly
load a subprogram is for editing purposes.

To load a subprogram for editing purposes, merely execute a
FINDPROG statement, specifying the subprogram name -
which is also the file name. (It is possible to bring in as many
subprograms into the computer as you like, limited only by
available memory.) Let’s load the example subprogram cre-
ated in an earlier section:

FINDPROG "FirstSub"

6-18 User-Defined Functions and Subprograms

Executing a DIRECTORY statement will verify that the sub-
program has been loaded:

DIRECTORY
BASIC prodram bvtes lines allocated
MAIN 196 9 yes
SecondSub 156 3 Yes

» FirstSub 76 4 no

Any subsequent LIST statements or editing operations (such
as entering a line or using SCAN, etc.) will be performed on
this subprogram.

For further information about loading and deleting subprog-
rams, see the subsequent section called “Memory Manage-
ment with Subprograms.”

Now that you have the basic mechanics of entering, storing,
and calling simple subprograms, let’s look closer at some of
their more powerful usages.

B
Program/
Subprogram
Communication

As mentioned earlier, the two main features of subprograms
that make them so powerful are as follows:

® You can handle each subprogram like a separate program.

® You can allow (or deny) a subprogram access to certain
variables and values in the main program (or subprogram)
that calls it.

This section disusses the second feature.
Here are the methods that a subprogram can communicate
with the main program or with other subprograms:

m By passing parameters (through parameter lists)
m By sharing common variables (declared in COM statements)

® By using system flags.

User-Defined Functions and Subprograms 6-19

Passing Parameters

100
110
120
130

System flags are accessible to every subprogram (and user-
defined function). However, all variables and values in the
calling program that are not explicitly passed to the subprog-
ram or in COM are not accessible to the subprogram.

The second subprogram presented earlier in this chapter
showed one means of communicating with a subprogram.
Here is the relevant statement in the main program.

130 CALL "SecondSub" ("String Pass parameter")

The characters String pass parameterare passed to Second-
Sub by specifying it as a pass parameter (in parentheses).

The SUB declaration in the subprogram (line 100) has a
corresponding parameter — the string variable named
Formal_params$.

SUB "SecondSub" (Formal_raram$)

DISP "This is displaved by ‘SecondSub’."

DISP "“The value sent to me is "iFormal_param$i"’,"
SUBEND

The subprogram has been defined to receive a string para-
meter from the context that calls it. Within the subprogram,
this “local” variable will initially be assigned the value passed
to it.

Here are the lines that the subprogram displays.
This is diseplaved by ‘SecondSub’.

The value sent to me is ‘Strind pass parameter’.

These results verify that the value specified in the CALL was
the value that the subprogram received. Let’s take a closer look
at parameter lists.

Parameter Lists There are two kinds of parameter lists:

m Pass parameter lists

® Formal parameter lists

6-20 User-Defined Functions and Subprograms

The calling context provides a pass parameter list. It contains
values that are sent to the subprogram. Here is the pass para-
meter list used in a call to the preceding example subprogram:

130 CALL "SecondSub" ("Strind pass parameter")

Each item in this list corresponds to an item in the subprog-
ram'’s formal parameter list.

The formal parameter list is part of the subprogram’s defini-
tion. It immediately follows the subprogram’s name. Here is
the formal parameter list of the preceding example sub-
program:

100 SUB "SecondBub" (Formal.params$)

The formal parameter list serves three main purposes:

m |t tells how many values may be passed to a subprogram:
the calling context can pass one value for every formal
parameterl.

® [t names the variables that the subprogram will use to store
and access those values.

m [t shows the general type? of each pass parameter— numeric
or string.

The general type of each pass parameter — numeric or string —
must match the general type of the corresponding formal
parameter; otherwise Error 3Z : PARAM MISMATCH is re-
ported. The next section provides more details on how the
specific type of each parameter is declared.

1 Note that the calling context may also pass fewer parameters than are declared in
the formal parameter list. See the subsequent section called ““Optional Pass
Parameters.”

2 Note, however, that the formal parameter list does not declare the parameter’s
specific type — such as INTEGER for numeric parameters, and string length for
string parameters. That subject is discussed in the subsequent section called
“When Are Pass Parameter Types Declared?”

User-Defined Functions and Subprograms 6-21

Methods of Passing Parameters There are two ways for the
calling context to pass parameters to a subprogram:

m By reference (or “address”).

m By value.

The subprogram has no control over whether its parameters
are sent by value or by reference. That is determined by the
parameters placed in the calling context’s pass parameter list.

m To pass a parameter by reference, the pass parameter list (in
the calling context) must use a variable name for that para-
meter.

m To pass a parameter by value, the pass parameter list must
use an expression for that parameter. (Note that enclosing a
variable in parentheses is sufficient to create an expression.)

The main difference between the two methods is that a sub-
program can alter the value of a variable passed by reference
from the calling context. The calling context actually gives the
subprogram access to its value area (for that variable). A para-
meter passed by value provides no such access.

Example of Passing by Reference This program passes a string
variable and an INTEGER variable by reference:

100 ! Pass two parameters BY REFERENCE.

110 1

120 DIM String$[301]

130 String$="A strind of thirty characters,"
140 1

150 INTEGER Intdr

160 Intgr=32

170 !

180 DISP "Before pass by reference:"

180 DISP String$sIntdr

200 DISP
210 CALL "ChandeParams” (Strind$sIntdr)
220 !

230 DISP "After pass by reference:"
240 DISP String$sIntdr

250 DIgP
260 !
270 END

6-22 User-Defined Functions and Subprograms

Here is the subprogram:

100
110
120
130
140
150
160
170
180
190
200
210
220

230

5UB "ChandeParams" (Formal$:,FormalN)
!

DISP "At subprodram entry:"
DISP Formal$sFormalN

DISP

|

Formal$="Short strind,"
FormalN=FormalN#*2

!

DISP "At subprodram exit:"
DISP Formal$sFormalN

DISP

|

SUBEND

Here are the results of running the program.

Before Pass by reference:
A string of thirty characters, 32

At subprodram entry:
A string of thirty characters, 32

At subprodram exit:
Short strind, B4

After pass by reference:
Short stringd, 64

The program passes the variables String$ and Intgr to the
subprogram by reference. The subprogram accesses them as
Formal$ and FormalN, but it is actually accessing the main
program variables String$ and Intgr. When the subprogram
changes the value of these variables, the change is made
directly to the main program’s String$ and Intgr variables.

User-Defined Functions and Subprograms 6-23

Example of Passing by Value This program passes a string
value and an INTEGER variable by value:

100 | Pass two parameters BY VALUE.

110 !

120 DIM String$[30]

130 String$="A strind of thirty characters,"
140 1

150 INTEGER Intgr

160 Intdr=32

170 1

180 DISP "Before pass by values"

190 DISP Strindg$sIntdr

200 DISP

210 CALL "ChandeParams" ("Strind value.,"»(Intgr))
220 |

230 DISP "After pass by wvalue:"

240 DISP Strindg$sInter

250 DISP
260 !
270 END

Note that the program calls the same subprogram as in the last
example. Here are the results of running the program.

Before pass by value:
A string of thirty characters. 32

At subprodgram entry:
String value. 32

At subprodram exits:
Short strindg, 64

After Pass by value:
A string of thirty characters. 32

These parameters were passed by value, which means that the
values were assigned to the formal parameters Formal$ and
FormalN but no “addresses” of any main program variables
were passed with the values. Thus the value of Intgr was not
changed, because the subprogram did not have access to the
variable.

6-24 User-Defined Functions and Subprograms

When Are Pass Parameter Types Declared? As you studied the
preceding examples, you may have wondered just how and
when the data type of a subprogram’s formal parameters are
declared. The answer depends on how the parameter was
passed to the subprogram:

m If the parameter is passed by reference, then the corres-
ponding formal parameter inherits information about the
variable from the calling context (data type, simple or array
variable, etc.).

m If the parameter is passed by value, then the formal para-
meter has the defaultattributes for that general data type: 18
characters for strings, and REAL for numerics.

Thus it is possible, for example, to pass an INTEGER, SHORT,
or REAL variable to a subprogram without causing
ERROR 113 : PARAM MISMATCH. (Of course, the correspond-
ing formal parameter must be a numeric variable.) Here is a
simple example:

100 1 Explicitly declare an INTEGER.

110 INTEGER Intdr ! Explicitly declared an INTEGER.
120 Intgr=32

130 CALL "ShowParam" (Intdr)

140 1

150 ! Implicitly declare a REAL.

160 Number=12.,34

170 CALL "ShowParam" {(Number)

igo !

190 END

Here is the subprogram that it calls.

100 SUB "ShowParam™ (AnyNumeric)

110 !

120 DISP "Value of numeric parameter ="3AnrNumerig
130 DISP

140 1

150 SUBEND

Here are the program’s results.

Yalue of wumeric pParameter 32

Value of numeric parameter = 12,34

User-Defined Functions and Subprograms 6-25

The program first explicitly' declares the simple numeric vari-
able named Intgr to be of type INTEGER, assigns it a value,
and then passes the value by reference to the subprogram. The
subprogram then displays the value, and returns control to the
calling program.

The program then implicitly declares the simple numeric vari-
able named Number to be of type REAL, assigns ita value, and
then passes the value to the subprogram by reference. The
subprogram displays this value, and then returns control to
the calling program.

In summary, the declaration of a variable’s type, whether
explicit or implicit, is made in the defining context— the prog-
ram or subprogram in which it was declared. When a variable
is passed to a subprogram by reference, information about the
variable (type; simple or array, and array size; etc.) is inherited
by the subprogram.

Optional Pass Parameters Another important feature of pas-
sing parameters is that all pass parameters are optional.
However, the rules requiring matching of parameter types still
apply. For instance, you may legally pass just three para-
meters to a subprogram that lists five formal parameters.
However, these three pass parameters must match (in order,
by type) the first three formal parameters. You cannot pass, for
example, only the last three parameters.

There is a standard function called NPAR which can be used
inside the subprogram to find out how many parameters the
calling context actually did pass. If no parameters are passed to
the subprogram, NPAR will return 0. (If used inside the main
program, it will also return 0.)

The optional parameter feature is very effectively used in
situations requiring external instrument setups. Most instru-
ments have several different ranges, modes, settings, etc.,
which can be used depending upon the requirements of the
user. Often, the user doesn’t require the entire flexibility the
instrument has to offer, and would rather use some reasonable
defaults.

1 Further details of explicit and implicit type declarations are given in the “Numeric
Computation” and “String Manipulation” chapters.

6-26 User-Defined Functions and Subprograms

2000
2010
2020
2030
2040
2080
2060
2070
2080
2090
2100
2110
2120
2130
2140
2130
2160
2170
2180
2190
2200
2210

2220

2230
2240

2250

Consider the HP 3437A Digital Voltmeter. Among other
things, this device has two data formats (packed and ASCII),
three trigger modes (internal, external, and hold/manual),
three voltage ranges (0.1V, 1V, and 10V), and also has prog-
rammable values for delay between readings, and numbers of
readings taken. Naturally, the values used for the various
settings will depend entirely upon the application for which
the voltmeter is being used, but let’s make some assumptions:

® The values for delay and number of readings are going to be
changed frequently, so they will not be optional para-
meters.

® Of the remaining parameters, the range is most likely to be
altered.

A reasonable setup routine for the voltmeter might look like

this:

SUB "DVUM.Setur" (DumsReadindssDelavPRangesPTridrsPFormat)
! Assume that AT LEAST 3 parameters will alwavs be rassed.

!
I (Re)set defaults.,
Range=2 1 1-YUplt rande.
Trigr=1 ! Internal triddger,
Format=1 ! ASCII format.
!
IF NPAR<4 THEN GDTO Build.Strings
Rande=PRande
!

IF NPAR<S THEN GOTO Build_Strings
Trigr=PTridr
!

IF NPAR<B THEN GOTO Build_Strings
Format=PFormat
!

Build_Strinds: Rdndgs$="N"&VAL$(Readings)B"5"
Delav$="D"&VAL%(Delav)&"g"
Rande$="R"&VAL$(Range)
Trigr$="T"&VAL$(Trigr)
Format$="F"&VAL$(Format)
|

QUTPUT Dum 1 Rdndgs$iDelavédRandesbTrigr$dFormats$
]

SUBEND

User-Defined Functions and Subprograms

6-27

370
630
830
g50

CALL "DYUM_.Setup"
CALL "DYM_Setup"
CALL "DWM_Setup"
CALL "DUM_Setup"

Using COM
Variables

The subprogram defines defaults for voltmeter range, trigger,
and format modes (lines 2040 through 2060) for the instances
when these parameters are not passed to it. If, for instance, a
value for range is passed (through PRange), then the subprog-
ram assigns this value to the local variable named Range.

Legal invocations of the Setup_dvm subprogram are as fol-
lows:

(Dum+100,0,001) 1 Default RandgesTridr+Format
{Dumy300,0,054+3) | Default TridrsFormat,
(DumsS0,0,005,142) 1 Default Format,
(Dum30,0,005,1,2+2) 1 Explicitly define all params,

Since we've discussed parameter lists in detail, let’s turn now
to the second method a subprogram has of communicating
with the main program or with other subprograms — using
COM variables'.

Here is an example of a valid COM declaration:

10 DPTION BASE 1
20 COM Arrav(15) +INTEGERCMin:CMax:Pile_status$[20]sTolerance

The following COM declaration would be legal in a subprog-
ram (or in a chained program that is to keep the same COM
structure):

100 OPTION BASE 1
110 COM Z(15)+INTEGER +MinCsMaxC,S5t$[201sErrorMax

As in parameter lists, COM variables are matched by position
and type, not by variable names. Note that the OPTION BASE
must match, and that COM statements must be placed follow-
ing the OPTION BASE statement and before any other refer-
ence to the variable.

1 Note that COM variables can also be used for program-to-program communica-
tions when chaining programs; however, COM cannot be used within a user-
defined function. See the chapter called “Program Structure and Flow” for a
description of chaining. The subsequent section of this chapter called ““Passing
Flags to Chained Programs” describes using COM for program-to-program com-
munications during chaining.

6-28 User-Defined Functions and Subprograms

Note also that, from left to right in a given COM list, all
variables following a numeric data-type declaration keyword
have that numeric type until another numeric declaration
keyword appears in the list. In the above examples, both CMin
and CMax (MinC and MaxC) are INTEGERs, but Tolerance
(ErrorMax) is a REAL variable; this effect is due to the fact that
Pile_status$ (St$) is a string, which causes the following
numeric variable to be of the default numeric type REAL.

Consider the following COM declaration:
10 COM INTEGER Rangde:FormatsN.REAL Delav,Lastdata(40),5tatus$l20]

The following COM block matches the preceding COM block
explicitly and is legal:

110 COM INTEGER RandesFormat N,REAL Delav.Lastdata(40)Status$l20]

The following COM declaration within a different subprogram
matches the preceding COM statement and is also legal. (Even
though some variables’ names have been changed, the order
and number of variables and their types are the same).

110 COM INTEGER R:F.N:REAL DsL(40),8%0Z20]

The following declaration is illegal, since it uses explicit size
specifications on the array and string which do not match the
original definition (line 10).

120 COM INTEGER RangesFormat Ns)REAL Delav:Lastdata(30)8tatus$l15]
The following declaration is also illegal, since it violates the

types set forth by the defining block (here Range, Format, and
N are implicitly declared to be of type REAL).

120 COM RandesFormat:NsREAL DelavLastdata(d0) s»Status$l20]
COM Characteristics There are several characteristics of COM

variables which distinguish them from parameter lists as a
means of communications between contexts.

User-Defined Functions and Subprograms 6-29

COM survives pre-run’. In general, all numeric variables are
assigned values of 0 and strings are assigned the null string by
executing RUN or INIT, or upon entering a subprogram; thisis
also true of COM the first time RUN or INIT is executed.
However, after COM variables are defined, they retain their
values until one of the following conditions occurs:

m SCRATCH is executed.
m A COM statement is modified.

8 LOAD or CHAIN loads a new program which has a COM
structure that doesn’t match the existing COM structure

(which includes programs that don’t declare any COM at
all).

COM blocks can be arbitrarily large. One limitation on para-
meter lists (both pass and formal parameter lists) is that they
must fit into a single program line along with such things as
the line number, possibly a line label, and the subprogram
header. Depending upon the situation, this can impose a
restriction on the size of your parameter lists.

COM blocks can take as many statements as necessary. All
COM statements within a context are part of the definition of
that context’'s COM structure. COM statements can be inter-
woven with other statements, though this is considered slop-
py practice.

COM blocks can be used for communicating between con-
texts that do not invoke each other. Information such as mod-
es and states can be an integral part of communicating be-
tween contexts, even though those contexts don’t explicitly
call each other'. For instance, one routine might be responsible
for setting the voltage range on a voltmeter, while another
routine which may need to know what the current voltage
range is in order to set up the scale on a graph properly.
(Technical BASIC also has system flags which you can use for
this purpose. See the subsequent section of this chapter called
“Using System Flags” for details.)

1 Pre-runis described in the section called “A Closer Look at Program Execution” in
the “Program Structure and Flow” chapter.

6-30 User-Defined Functions and Subprograms

COM blocks can be used to communicate between subprog-
rams that are not in memory simultaneously. Similar to the
case above, subprograms can communicate with each other
through COM blocks even though combinations of CALL and
SCRATCHSUB may preclude their simultaneous presence in
memory.

COM blocks can be used to retain the value of “local” vari-
ables between subprogram calls. In general, the variables
used by a subprogram are discarded when the subprogram is
exited. However, there are situations where it might be useful
for a subprogram to “remember” a value. A machine which
tests capacitors in an incoming inspection department may
require calibration after every 100 tests are performed. If the
subprogram which does the testing has a way to count how
many tests it has already performed (using a COM variable),
then this task can be left to the testing routine, simplifying the
rest of the system.

COM blocks allow subprograms to share data without the
intervention of the main program. Subprogram libraries may
consist of elaborate relationships of both programs and data
structures. In many cases, a major portion of the data struc-
tures are only used for support of the task being performed,
rather than being integral to the task itself. Thus the main
program does not need to declare the supportive data struc-
tures.

An example of this situation might include data base manage-
ment libraries: hashing tables may need to be maintained for
accessing data quickly. Three dimensional graphics libraries
are another example: window, viewport, and clip information
need to be kept, as well as object definitions and related
transformations.

User-Defined Functions and Subprograms 6-31

Using System Flags System flags are the third method for communications be-

tween a main program and its subprograms (and also subse-
quently chained programs). In programming, the term “flag”
denotes an indicator or reminder. Flags are used flags for
various functions, such as in determining when to branch orin
calculating the value to be assigned to a variable. For instance,
you can use a flag to keep track of which mode a routine is
operating in and thus whether to call a subroutine:

200 InsertMode=1 | Set the flag.

+

300 IF InsertMode THEN GOSUB Insert ! Branch if flag set.

With Technical BASIC, you can also resident flags (numbered
1 through 64). Here is an example analogous to the preceding

one:
InsertFlag=10 | Specify svstem flad used for Insert Mode.
SFLAG(InsertFlag) ! Set the flag,

IF FLAG(InsertFlad) THEN GOSUB Imsert ! Branch if flag set,

If the FLAG function returns a 1, then the program branches to
the subroutine called Insert.

General System Flag Features Each of 64 flags which can be
individually set and cleared. When set, a flag contains a value
of 1. When cleared, its value returns to 0. They are initially
cleared upon entering the BASIC system.

The normal scope of system flags is a program and its subprog-
ram(s), since executing a CHAIN statement clears all flags.
However, you can store the flags in COM, as discussed later in
this section, to pass them to chained programs.

While flags are usually used within running programs, they
can also be set, tested, and cleared from the keyboard.

6-32 User-Defined Functions and Subprograms

-

Setting Flags Individual flags are set by using the SFLAG
statement. For instance, this statement sets system flag 32 (to
1).

SFLAG 32

Note that this statement may be used within a program:

100 LET MinFlag=MIN(N1,NZ)
110 SFLAG MinFlag

Reading Flags The following function call determines the cur-
rent setting of system flag 32:

FLAG(32)

If the flag is set, then this function call returns the numeric
value 1; if currently clear, then 0 is returned.

Clearing Flags The following statement clears system flag 32:
CFLAG 32

Executing this function call now returns a numeric value of 0:

FLAG(3Z)
0

The CFLAG statement clears one flag at a time, whereas ex-
ecuting INIT, RUN, or CHAIN clears all 64 flags. Note also that
a parameter less than 1 or greater than 64 will generate an error
report. Also, both CFLAG and SFLAG rounds flag numbers
containing fractional parts.

Accessing System Flags as a String The concise way to set or
clear each of the 64 flags in a single statement is to use this
syntax of the SFLAG command:

SFLAG FlagStringB4

This FlagString8$% expression may contain up to 8 characters
(64 bits) of information. The value of the characters in the
string determine whether flags are set or cleared: flags that
correspond to 1bits (in the binary representation of the charac-
ter) are set, and flags that correspond to 0 bits are cleared.

User-Defined Functions and Subprograms 6-33

10
20
30
40

For example, if you were to set the flags using the character
string “ABCD0123”, you could determine the resultant bit
patterns (and corresponding flag settings) using the following

method:
Decimal Binary String
Character Code Code Position
A 65 01000001 1
B 66 01000010 2
C 67 01000011 3
D 68 01000100 4
0 48 00110000 5
1 49 00110001 6
2 50 00110010 7
3 51 00110011 8

Using 1’s and 0’s, the following diagram specifies the settings
of flags 1 through 64 from left to right, respectively; the 64 bits
(flags) have been grouped into eight characters (or bytes).

(01000001) (01000010) (01000011) (01000100)
1 2

3 4
(00110000) (00110001) (00110010) (00110011)
5 6 7 8

You can use either of the following programs to set the flags
shown in the above diagram:

10 SFLAG "ABCDO123"
20 END

or

FlagStringB8%=CHR$(B5)&CHR$(GG)RCHR$(E7)RCHR$(EB)
FlagStrindgB8%$=FladStringB$8CHR$ (4B)BCHR$(49)BCHRE(S0)ECHR$(F1)
SFLAG FlagStrindB%

END

SFLAG truncates strings longer than eight characters at the
eighth character. Strings shorter than eight characters are fil-
led with “null” control characters, CHR$(0); consequently, all
flags after the last one are set to 0 (cleared).

6-34 User-Defined Functions and Subprograms

800
.}
Memory
Management
with
Subprograms

100
+

4

780

Passing Flags to Chained Programs If you desire to pass flags
from program to program as you chain them, then you will
need to use the COM statement, because the CHAIN state-
ment clears all flags. The following segment of a program is an
example of how flags can be passed to the next program when
chaining.

COM SysFlads%[81]

SvsFlags$=FLAGS
CHAIN "NextProg" ! Must have identical COM structure.

This passes all 64 flags to the chained program through the
“common’’ variable storage area. Note that the chained prog-
ram must have a matching COM structure, or the existing
COM will be destroyed by the new COM, and the new COM
variables will be initialized implicitly: numeric variables will be
set to 0, and string variables will be set to the null string.

The CALL and SCRATCHSUB statements allow for subpro-
gram overlays to re-use the same memory space. This is useful
for programs which are large enough that they won't all fit into
memory at once, whether the programs themselves are too
numerous and/or too large, or whether variables and arrays
use enormous amounts of space.

The SCRATCHSUB statement allows you two options:

®m You can specify the name of a single subprogram to be
deleted from memory.

SCRATCHSUB "Sort"

® You can specify a subprogram and delete that subprogram
and all subprograms in memory from that point on.

SCRATCHSUB "Cowntrol.valuves" TD END

If the system tries to delete a subprogram which is not current-
ly in memory, no error will be reported.

User-Defined Functions and Subprograms 6-35

A subprogram can only be deleted if it is not currently “ac-
tive.”. This means that:

B A subprogram can not delete itself.

® A subprogram cannot delete the subprogram that called it.
(Otherwise it wouldn’t have any place to go when the SUB-
END or SUBEXIT statement ‘was encountered!)

Between the time that a subprogram is entered and the time it
is exited, the Technical BASIC system keeps track of an
“activation record” for that subprogram. Thus if the subpro-
gram calls a subprogram which calls a subprogram, and so
forth, then none of the subsequently called subprograms can
delete the original one (or any of the ones in between), because
the system knows from the activation record that eventually
the program will need to return to the calling context.

I
Context As mentioned in the introduction to this chapter, a subpro-
SWItChlng gram has its own context, or state, which is distinct from a

main program and all other subprograms. Consequently there
are many things, such as line numbers, line labels, and vari-
ables, which are “local” to programs and subprograms. On the
other hand, there are several modes, flags, and so forth, that
are “global” to programs and subprograms. This section
shows what is local and what is global.

Global Declarations

Default lower bound of OPTION BASE!
array dimensions

Trigonometric modes DEG, RAD, and GRAD
All working directory MASS STORAGE IS
changes

All file-create operations CREATE

1 Since OPTION BASE is global, attempting to use different OPTION BASE state-
ments in program and subprograms will produce errors.

6-36 User-Defined Functions and Subprograms

System screen operations CRT 1§, ON CURSOR, OFF CURSOR, FLIP
System printer operations PRINTER 1§, PRINT ALL, NORMAL
All graphics operations PLOT, DRAK, PEN, PLOTTER IS etc.

Error reporting DEFAULT ON, DEFAULT OFF
System flags FLAG, SFLAG, CFLAG
File buffers ASSIGN#

Local Declarations

Error trapping ON ERROR GOTO/GOSUB, OFF ERROR
Interface interrupts ON INTR,.,.GOTO/GOSUB, OFF INTR
Softkey interrupts ON KEY# ., GOTO/GOSUB, OFF KEY#
Keystroke trapping ON KYBD GDTO/GOSUB, OFF KYBD
Timeout interrupts ON TIMEOQUT...GOTO/GOSUB, OFF TIMEOUT
Timer interrupts ON TIMER#.,.GOTO/GOSUB, OFF TIMER#

For further details on each statement, see the Technical BASIC
Language Reference.

User-Defined Functions and Subprograms 6-37

6-38 User-Defined Functions and Subprograms

Error Handling

Most programs are initially subject to errors at run time, even if
all the typographical/syntactical errors have been shaken out
while entering the program into the computer. There are three
general courses of action to take with respect to run-time
errors:

1. Try to prevent the error from happening in the first place.

2. Once an error occurs, try to recover from it and continue
execution.

3. Do nothing - let the program “‘roll over and die” if an
error occurs.

The last alternative, which may seem frivolous at first glance,
is certainly the easiest to implement. Furthermore, the friendly
nature of the HP-UX Technical BASIC system makes this a
feasible choice — if the person running the program is a prog-
rammer, or better yet is the person who wrote the program.
Upon encountering a run-time error, the BASIC system
pauses program execution and displays a message giving the
error number! and the line in which the error happened. The
operator/programmer can then examine the program in light
of this information and fix things up.

On the other hand, if the person running the program did not
write it, then the first two approaches above should be used.
The program should attempt to prevent errors from happen-
ing in the first place, and when they do occur to recover
gracefully and continue running.

1 A complete list of error numbers and definitions is provided in the back of the
HP-UX Technical BASIC Language Reference.

Error Handling 7-1

Chapter Contents

This chapter discusses the following topics:

How the BASIC system handles errors
Anticipating operator errors

Checking for boundary conditions
Comparison errors

Trapping errors

Determining error numbers and location

Displaying the normal system error message

How the System
Handles Errors

Errors in Keyboard
Calculations

7-2 Error Handling

The Technical BASIC system is designed to recognize a broad
range of errors. For instance, if a program attempts to evaluate
a mathematical operation whose results are not defined (such
as division by zero), then the system will report an error
condition. This section briefly describes how the system nor-
mally reports these errors. The subsequent sections describe
how you can anticipate these errors and handle them from a
program.

Errors encountered while you are trying to execute a command
or evaluate an expression from the keyboard are trapped by
the system. The default response of the system is to give you a
warning. Here is an erroneous math operation:

170

Here is the system’s default response to attempting the opera-
tion:

warning 2 OVERFLOW
1,79769313486231e+308

The system attempts to tell you more about the error by show-
ing that the result is larger than it can represent; the value
shown is the largest number that the system can handle. This
is known as the ““default value”” for the out-of-range result.
(There are similar errors in the range of error number 1
through 8.)

Run-Time Errors

If you now execute:

DEFAULT OFF

The system will not display the “default value” for the out-of-
range math error. Here are the results of performing the pre-
ceding 1/0 calculation with DEFAULT OFF:

Error 2 OVERFLOW

The differences between DEFAULT ON and DEFAULT OFF
while a program is running are much more significant. They
are the topic of the subsequent paragraphs.

Run-time errors occur while a program is being executed.
There are three ways that the BASIC system can handle “out-
of-range” math errors:

® Display a warning, give the default value, and continue the
calculation with the default value. (This is the system’s
response with DEFAULT ON.)

m Halt execution and display an error report. (This is the
system’s response with DEFAULT OFF.)

= Not display the report, but pass it on to an “error handler”
routine in the BASIC program.

The next section shows how to anticipate (and thereby avoid)
most errors. The section after that shows how to trap errors
(and optionally correct them) from a running program.

|
Anticipating
Operator Errors

The programmer that writes a program (hopefully) knows
exactly what the program is expected to do and what kinds of
inputs make sense for each task. Given this viewpoint, there is
a strong tendency not to take into account the possibility that
other people using the program might not understand the
range of valid inputs.

As a programmer who wants your programs to be reasonably
reliable, you really have no choice but to assume that users can
make mistakes that cause errors every time they have the
opportunity to enter information. Thus, the goal is to make the
program reasonably foolproof.

Error Handling 7-3

Boundary

A classic example of anticipating an operator error is the “divi-

Conditions sion by zero” situation. For instance, suppose that an INPUT
statement is used to get the value for a variable, and the
variable is used as a divisor later in the program. If the operator
should happen to enter a zero, accidentally or intentionally,
the program crashes with an error 31. It is far better to be
watching for an out-of-range input and respond gracefully.
One method is shown in the following example.

100 DISP "Miles traveled and total hours" @ INPUT Miles:Hours

110 IF Hours<=0 THEN 120 ELSE 1B0

120 BEEP

130 PRINT “Improper value entered for hours.,”

140 PRINT "Try adain!”

150 GOTOD 100

180 ! Input OK» so continue normallvy.
Consider another simple example of giving a user the choice of
six colors for a bar graph. It might be preferable to have the
user pick a number corresponding to the color he wished to
choose instead of having to type in up to six characters. In this
case, the program wouldn’t have to check for each number,
but rather it could use the logical comparators to check for an
entire range:

100 CLEAR

110 DATA GREENBLUERED,YELLOW,PURPLEPINK

120 DIM Colors$(B5)LG]

130 FOR Indx=1 TD B

140 READ Colors$(Indx)

150 NEXT Indx

160 FOR I=1 TO B

170 PRINT USING "DD+XsK"3I+Colors$(I)

180 NEXT I

180 AsK: DISP "PicK the number of a color” B INPUT I

200 IF Ik=1 AND I<=6 THEN Valid.Color

210 BEEP

220 DISP "Invalid answer -- "i

230 WAIT 1

240 GOTO Ask

7-4 Error Handling

250 Yalid_color: ! Prodram continues here when input is 0K,

The above example needs a little extra safeguarding. The input
variable I should be declared to be an INTEGER, since the only
valid inputs are 1, 2, 3, 4, 5, and 6. An answer like ““You have
picked the 3.14th color listed”” does not make sense.

Here is an example that tests real number boundaries:

7000 AskFrea: DISP "Enter the waveform’s freauency (in KHz)"

7010
7020
7023

INPUT Fresuency

IF Freauencv+=0 THEN AsKFres
1

7030 AskAmpl: DISP "Enter the amplitude (0-10 volts)"

7040
7050
70588

INPUT Amplitude

IF Amplitude<0 OR Amplitude>10 THEN AskAmpl
i

7080 AskDedq: DISP "Eviter the phase andle (in dedrees)”

7070
7080

REAL Numbers and
Comparisons

INPUT Andle
IF Angle<0 OR Andgle»180 THEN AskDesd

A word of caution is in order about the use of the = compari-
son operator in conjunction with real numbers — numbers of
type REAL and SHORT. Numbers on this computer are stored
in a binary form, which means that the information stored is
not guaranteed to be an exact representation of a decimal
number — even though it will be really close! What this means
is that a program should not use the = operator for comparing
real numbers. The comparison will yield a "false’ or ‘0’ value if
the two are different by even one bit, even though the two
numbers might really be equal for all practical purposes.

There are two ways around this problem. The first is to try to
state the comparison in terms of the < = or > = comparators.
However, if it is absolutely necessary to do an equality com-
parison with a pair of real numbers, then a second method
must be used. This method involves picking an error tolerance
for how close to being equal the two numbers can be to satisfy
the test.

Real number line | |

Soif the difference between two real numbers X1 and X2 is less
than or equal to a tolerance 3, we’ll say that X1 and X2 are
“equal” to each other for all practical purposes. The value of &
will depend upon the application, and must be chosen with
care.

Error Handling 7-5

For an example, assume that we’ve picked a tolerance of
1E — 12 for comparing two real numbers for equality. The prop-
er way to compare the two numbers would be:

a50 IF ABS(X1-X2)<=1E-12 THEN Numbers.eaual
960 ! Otherwise thev’re not equal

|
Trapping Errors Despite your best efforts at screening the operator’s inputs to

avoid errors, errors will still occasionally happen. It is still
possible to recover from run-time errors, provided you predict
the places where errors are most likely to happen.

Setting Up the Error The ON ERROR command sets up a branch which will be
Branch initiated any time a recoverable error is encountered at run
time. The branching action taken may be either GOTO or
GOSUB. GOTO and GOSUB are purely local in scope - that is,
they are active only within the context in which the ON
ERROR is declared, not in any subprogram or user-defined
function.

Here is a simplistic example of using the ON ERROR state-
ment:

10 ON ERROR GOTO Trar

20 A=1/0
30 DISP "DONE"™ ! This and next line not executed.
40 ST0P

50 !
B0 Trar: DISP "ERROR: Division by O
70 END

Executing an ON ERROR statement directs the BASIC system
not to report subsequent errors; instead, the system is to
initiate a branch, GOTO or GOSUB, to the specified location in
the program. The BASIC statements at that location can then
handle the error.

When line 20 is executed, an error is detected and the system
executes the GOTO Trar specified in the ON ERROR state-
ment. For simplicity, the Trap routine merely prints the corres-
ponding message and ends the program. (Note that lines 30
and 40 are not executed.)

7-6 Error Handling

Determining Error
Number and
Location

In the preceding example, it was assumed that the only error
that could be produced was error 2 — the division by 0 in line
20. However, it is rarely the case that you know which error
has happened or where it has happened. A more general
error-trapping routine would determine which error hap-
pened and where it happened.

ERRN is a function which returns the error number which
caused the branch to be taken. ERRN is a global function; it can
be used in the main program or in any subprogram to deter-
mine the number of the most recent error. Here are a couple of
simple examples:

100 DISP "Error number "JSERRN3?" has occurred,"

740 IF ERRN=18 THEN GOTO String_Error

ERRL is a function which is used to find the line in which the
error was encountered. ERRL is a boolean function. The prog-
ram passes it a line identifier (either line number or label), and
the function returns either a 1 or a 0 — depending upon
whether or not the specified identifier indicates the line which
caused the error, respectively. ERRL is also a global function.

1140 IF ERRL{¢710) THEN DISP "The error occurred in line 710."

910 IF ERRL(Compute) THEN Fix_compute

Error Handling 7-7

Error Subroutines The ON ERROR GOSUB statement sets up and enables a
branch to the error service routine which will RETURN execu-
tion to the line following the one that caused the error.

100 Radical=B*B-4+A*C

110 Imadinary=0

120 ON ERROR GOSUB Esr

130 Partial=5QR(Radical)

140 IF Imagimary THEN Partial=S5QR(Radical) ! Re-cal
150 OFF ERROR

+

350 Esr: IF ERRN=10 THEN Imadin ELSE OtherError

360 Imadin: Imadinarv=1 Set flad,

370 Radical=ABS(Radical) ! Make ard. Positive
380 GOTO EndIf

390 OtherError: BEEP

400 BEEP

410 DISP "Unexpected Error ("iERRN3I")"

420 PAUSE

430 EndIf: RETURN

Displaying the When you trap an error programmatically, you disable the
System Error system’s normal error reporting mechanism. The system
Message assumes that you want to handle errors yourself, which may
include correcting the problem and then re-trying the opera-
tion. However, there are certain times when you do not (or
cannot) fix the error. In some of these cases, you may want to
report the error to the computer operator, who may just note
the error or try to correct it.

The ERRM statement displays the ““error message’” that would
have been reported by the system when the last error occur-
red. Here is an example of using this feature.

100 IF StillNotFixed THEN ERRM
110 RETURN

7-8 Error Handling

Debugging Programs

Naturally, the ideal way to develop a program is to design and
implement it correctly the first time and not have to debug it at
all. This is a worthwhile goal, and most programmers strive
constantly to achieve it. Hopefully, the techniques discussed
in preceding chapters will help you get a little closer to this
goal.

However, no matter how good a programmer you are or how
much time you have spent designing your programs, most
programs will at one time or another be plagued with a “bug’ —
a bug is present whenever the program does not do what the
user expects it to do.

You may usually think of a bug as something that generates an
error condition, such as ERRCOR 68 FILE TYPE. However, a
bug doesn’t always inform you of its existence. In fact, the
most insidious bugs cause your program to give a wrong
answer without any indication that a bug even exists. This
chapter deals with the methods available with Technical
BASIC to diagnose problems in both logic and semantics.

The problem of debugging a program is distinct from the
issues raised in the “Error Handling” chapter. That chapter
was based on the premise that the programmer is already
satisfied that the program works as it should, and that the next
step is to make it as foolproof as possible. That assumption
could be construed as putting the cart before the horse — before
you can make a program foolproof, you must get it to run
correctly in the first place.

Debugging Programs 8-1

Chapter Contents

This chapter discusses the following topics:

Whence cometh bugs?

Methods of debugging programs
Code walk-throughs

Printing all program results

Cross references

Tracing program flow

Setting breakpoints

® Checking variables’ contents from the keyboard
® Continuing program execution.

® Single-stepping a program

® Software testing.

Whence Cometh
Bugs?

8-2 Debugging Programs

As mentioned in the introduction of this chapter, a bug is
present when the program does not do what the user reason-
ably expects it to do. Generally, this definition involves two
main steps:

® Determining (or setting) the user’s expectations.

® Making sure that the program actually does what is ex-
pected.

This chapter discusses getting your program to do what is
expected. Determining and setting users’ expectations are dis-
cussed in the chapter called “Communicating with the Oper-
ator.”

The following two topics are discussed, with the primary focus
on the second one:

® Methods of designing programs so that they do what you
want them to do.

® Methods of checking to see that part(s) of a program are
doing what you want.

A Model of the In order to find places where bugs originate, let’s take a brief
Software lookback at the steps of the software design process shown in

Development the “Program Development” chapter.
Process
Understand and describe the problem.

Outline a solution.

Design algorithms and data structures, and then refine.

Eall A

Translate the data structure and algorithms into BASIC
code.

5. Debug and test the program.
6. Document and support the program.

Note that most of these steps somehow involve either the
communication or translation of information. For instance,
step 1 involves translating the user’s needs into a set of “re-
quirements”, while step 4 involves translating the algorithms
data structures into a set of programming language state-
ments.

This translation process is one of the largest sources of bugs. It
is here that you should begin debugging programs, because
many errors in the program are only manifestations of these
problems.

1 For an excellent treatise on the origin and extermination of bugs, see Software
Reliability by Glenford J. Meyers, John Wiley and Sons, New York, 1976.

Debugging Programs 8-3

Methods of
Debugging
Programs

Walk-Throughs

8-4 Debugging Programs

Now that you have at least an inkling of where bugs originate,
you are better prepared to find them in your programs. This
section describes several methods of ridding your programs of
these annoying little creatures.

Here are the general methods discussed in the remainder of
this chapter:

m Algorithm and code walk-throughs
m Cross references

m Tracing program flow

m Setting breakpoints

= Examining variables’ contents from the keyboard

Single-stepping the program

There are generally two times when you can walk through a
program:

® Before it is coded.
m After it is coded.

In general, the sooner you find a bug, the less it costs to fix it.

Algorithm Walk-Throughs After developing an algorithm (and
before coding it), you should walk through it. This walk-
through is especially useful in checking whether you have
properly translated the problem description into the outline
and then into the algorithms and data structures.

You will perform the walk-through by acting as if you were the
computer executing the algorithm on some actual data. At this
point, you should walk through the algorithms with those
programmers whose algorithms will be interacting with yours.
Itis also a good idea to include at least one programmer who is
not involved with the project in this exercise.

You may also want to use specific test data (with known
results) in this phase.

Printed Records of
Debugging

Cross References

BASIC Code Walk-Throughs Once you have coded your prog-
ram, you should perform the exercise of walking through it to
verify again that it is going to do what you want it to do. This
walk through checks to see whether you have correctly trans-
lated the algorithms and data structures into program code.

When using the techniques presented in the remainder of this
chapter, you will often find that you want to get printed
records of what has happened. Normally, the cross-reference
and tracing statements direct information to the current CRT
IS device. However, you can use the PRINT ALL statement to
direct the system to duplicate these messages on a printer, or
you can specify another CRT IS device. For details of using
printers and displays with your particular system, see the
Getting Started manual for your HP-UX Technical BASIC
system.

To return to sending the information only to the display, use
the NORMAL statement.

A cross reference is a list of this information:

®m Where variables are used in the program.

m Where line numbers (and labels) are referenced by GOTO
and GOSUB statements.

This section explains how to obtain and interpret cross refer-
ences.

The XREF statement is programmable as well as executable
from the keyboard. It provides a cross-reference table of prog-
ram line numbers, line labels, and user-defined functions in
the program (or subprogram) currently in memory.

Where Are Variables Used? XREF V displays a cross-reference
table of all the variable and user-defined functions in the
current program (or subprogram). It is very handy in finding
such subtle errors as misspelled variable names.

Debugging Programs 8-5

8-6 Debugging Programs

Test the XREF V command out by entering the following

program:

10 OPTION BASE 1
20 DIM SArrav$(1)[5]
30 SArrav$(l) = "Codes"

40 DISP

50 END

"SArrav$(1l) = "iSArave(l)

Next, execute this statement:

KREF ¥

The resulting display looks like this:

Yariahle

SArav$
SArravs$

Diml Dim2 Maxl Trre References
10 iB string 40
1 3 string 20 30

vovend of xrefu

The listing makes it easier to see that there are two variables,
one of which is merely a misspelled version of the other.

Here is what information each column contains:

Yariable

Diml

Dim2

Maxl

Tyre

References

the name of the variable or user-defined func-
tion.

the upper bound of the first subscript in an
array variable (left blank if the variable is not
an array).

the upper bound of the second subscriptin an
array variable (also left blank if the variable is
not an array, or is an array with only one
subscript).

the maximum length of a string variable (left
blank if the variable is not a string).

INTEGER, REAL, SHORT, array, or string.

lines referencing the variable or user-defined
function, including function definitions (DEF
EN...), function value assignments
(FEN...=...), and function calls (FN...).

Program Traces

Where Are Program Lines Referenced? XREF L generates an
entry in the line cross-reference table whenever a line number
or line label is referenced. To test the XREF L command, enter
the following program:

10 X=10

20 ¥=20

30 IF X=10 THEN GOTO 50

40 Total=x+Y

50 IF Total » 300 THEN Finish

GG DISP "Total = "iTotal

70 Finish: END

Next, execute this command:

KREF L

The resulting table looks like this on your display:

Line Cross Reference Table

SO e pcours on 30
70 Finishtmeoeeo OCCUTS ON 30

vee end of xrefl

Line numbers on the left of the display show a line that is
referenced (such as with a GOTO or GOSUB). Line numbers
on the right side of the display show where the reference
occurred. In this example, a reference to line 50 occurs on line
30 (in the GOTO statement). A reference to line label Finish
(line number 70) occurs on line 50 (also in a GOTO).

The Technical BASIC system provides means of tracing the
following events:

m A branch in the linear flow, such as when a GOTO or
GOSUB is executed.

® An assignment to a variable.

® All program flow (including flow of control from one line to
the next) and all variable assignments.

Debugging Programs 8-7

100
110

20
130
140
150
160
170
180
igo
200
210
220
230
240
250
260
270
280
280
300
310
320
330
340
350
360

Tracing Branches For this section, you will be tracing bugs in
the following segment of code:

DIM Ardsl[100] Result$l100]

INTEGER BedinPossEndPos

!

Ardd=" Text "

DISP "Arg$=("3iArd$i") "y"LEN="3LEN(ATrd%)

GOSUB Trim

DISP "Result$=("iResult$i") "H"LEN="3LEN(Result$)
i

STOP

DR R RN R R RN R R R AR R RN R R R RN RERRRRRRR RS
I Given string in Ard$, this subroutine

I trims leading and trailing blanks.

I Trimmed string is returned in Result$,

I ORRERERRERERRRRRRRRE R R RN RN AR RN R ERRRERRRERRH AR
Trim:

BedinPos=0

TrimFront: BedinPos=BedinPos+l
IF BeginPos*LEN(Ards) THEN Result$="" 8 RETURN
IF Arg$lBeginPossBedinPosl=" " THEN TrimFront
!

EndPos=LEN(Arg$)+1

TrimEnd: EndPos=EndPos-1
IF Arg$lEndPossEndPosl=" " THEN TrimEnd
|

Result$=Ard$[BedinPosEndPos]

!

RETURN

Here are the results of running the program without tracing.

Ard$s=(Text) LEN= B
Result$=(Text) LEN= 4

Here are the results of executing a TRACE statement and then
running the program.

Ard$=(Text) LEN= 8
Trace line 150 to 240
Trace line 280 to ZB0
Trace line 280 to 260
Trace line 320 to 310
Trace line 320 to 310
Trace line 360 to 160
Result$=(Text) LEN= 4

8-8 Debugging Programs

As you can see, only the branches (from otherwise linear
program flow) are shown on the TRACE listing. Note also that
the program’s output also appears on the screen.

You can also use TRACE statements in a program to enable
tracing for only selected portions of the program. For instance,
insert these lines into the preceding program:

255 TRACE

285 NORMAL

Now execute:

NORMAL
to disable the TRACE enabled earlier.

Here are the corresponding results of running the program.

Arg$=(Text) LEN= 8
Trace line 280 to 260
Trace line 280 to 260
Result$=(Text) LEN= 4

Note that TRACE also shows when a subprogram is called.
Here is a typical display:

Entering subprodram SUB_1la

The trace also shows when the subprogram is exited:

Leaving subprogram SUB_1la

However, note that TRACE in this case is not enabled while in
the subprogram. To do that, you will need to store a TRACE
statement in a line that will be executed when the subprogram
is called.

When tracing user-defined functions, only the line number is
shown, which is the same as with normal branches.

Tracing Variable Assignments You can use the TRACE VAR

statement to display a message when a variable is assigned a
value.

Debugging Programs 8-9

8-10 Debugging Programs

l@

Using the preceding example program, trace the variable
named BeginPos. (If you inserted the TRACE and NORMAL
statements on lines 255 and 285, respectively, you may want to
delete them now; if so, then you will also have to execute INIT
before executing the TRACE VAR statement.)

TRACE VAR BedinPos
RUN

Here are the results:

Arg$s=(Text) LEN= 8
Trace line 2350 BedinPos=0
Trace line 260 BedinPos=1
Trace line 260 BeginPos=2
Trace line 260 BedinPos=3
Result$=(Text) LEN= 4

As the variable being traced is assigned values, the trace shows
the line number where the assignment is made. For numeric
variables, the trace also shows the value assigned to the vari-
able. For string variables, the value assigned to the variable is
not shown. For instance, here is a trace of a string variable.
(Note that the tracing of the variable named BeginPos is dis-
abled with the NORMAL statement.)

NORMAL
TRACE VAR Ard$
RUN

Tracing line 130 Arg%
Ardd=(Text)
Result®=(Text)

LEN= B
LEN= 4

As with other TRACE statements, TRACE VAR can be ex-
ecuted from a program or from the keyboard.

If you need to trace variables in subprograms, you will need to
put a TRACE VAR statement on a line of the subprogram that
will be executed when the subprogram is called.

The TRACE VAR statement does not trace variables in
user-defined functions.

Tracing All Flow and Variables When the TRACE ALL state-
ment is executed, it causes the system to issue a message prior
to executing every line, not just those where branches occur.
This shows the order in which all statements were executed.

Here is a long, boring TRACE ALL of the example program

shown in the preceding sections:

Trace lime 100 to 110
Trace line 110 to 120
Trace line 120 to 130
Tracing line 130 Arg$
Trace lime 130 to 140
Text

Ardé={

Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace
Trace

line
line
line
line
line
line
line
line
line
lime
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

140
150
240
250
230
260
260
270
280
260
260
270
280
260
260
270
280
280
300
300
310
310
320
310
310
320
310
310
320
330

LEN= 8

to 130
to 240
to 250
BeginPos=0
to 260
BedinPos=1
to 270
to 280
to 260
BedinPos=2
to 270
to 280
to 260
BedinPos=3
to 270
to 280
to 290
to 300
BedinPos=9
to 310
BedinPos=8B
to 320
to 310
BedinPos=7
to 320
to 310
BeginPos=6
to 320
to 330
to 340

Debugging Programs

Pausing Program
Execution

Setting Breakpoints
with PAUSE

8-12 Debugging Programs

ll#

100
110
120
130
140
130
160
170
180

If you have a large program, you will probably not want to
perform a TRACE ALL of the whole thing. You can insert a
program line containing TRACE ALL at the beginning of
where you want to enable tracing, and insert a line containing
NORMAL where you want to disable it.

If you need to enable TRACE ALL in subprograms, you will
need to put a TRACE ALL statement on a line of the subprog-
ram that will be executed when the subprogram is called.

The TRACE ALL statement does not trace either line num-
bers or variables in user-defined functions.

Returning to Normal Execution NORMAL cancels the effects of
any active TRACE, TRACE VAR, or TRACE ALL statements.
It also disables PRINT ALL mode. The NORMAL statement
may be executed either from the program or from the
keyboard.

On most consoles and terminals, you can pause (temporarily
halt) program execution. You can use either the Break key, or
CTRL-C. This is a rather crude way of debugging, since it does
not allow you to determine which program line will be ex-
ecuted next. The next section describes a better way to debug
using breakpoints.

A breakpoint is a point in the program where execution is
halted. With Technical BASIC, you can use the PAUSE state-
ment to set a breakpoint. Let’s use the example program from
the last section. Here is another listing of the program for
convenience:

DIM Ard$l100] Result$l100]
INTEGER BedinPos:EndPos
|

Arg$=" Text "

DISP "Argd=("jArgsi") U HLEN="JLEN(Ard%)

GOSUB Trim

DISP "Result$=("iResult$i") "HULEN="JLEN(Result$)
|

STOP

180

2L 2RSSR RS LR ESES S SRS ISR ST]

|

200 ! Given string in Arg%$s this subroutine

210 !V trims leading and trailing blanKs.

220V Trimmed strindg is returned in Result#,

20 T REEEEREEEFERERRRRERERRR R R RN RR R AR R A RR R R RN H

240 Trim:

250 BedinPos=0

260 TrimFront: BedinPos=BedinPos+l

270 IF BedinPos*LEN(Arg$) THEN Result$="" @ RETURN
280 IF Arg$[BeginPossBedinPosl=" " THEN TrimFront
290 !

300 EndPos=LEN(Ard$)+1

310 TrimEnd: EndPos=EndPos-1

320 IF Ard$[EndPos EndPosl=" " THEN TrimEnd

330 !

340 Result$=Ard$[BeginPossEndPos]

350 !

360 RETURN

(If you still have a TRACE on line 255 and NORMAL on line
285 from a previous example, then you may want to delete
these lines now.)

Insert this statement into the program:

245 PAUSE @ DISP "Breakrpoint 1"
Now run the program. It will display the message
Breakroint 1 and then pause.

You can do any of several things at this point:

m Start tracing variables or program flow.
s Examine or change the value of variables.
m Execute statements or commands.

m Resume execution by executing the CONT (continue) com-
mand.

m Single-step the program.

Tracing operations were explained in the preceding section.
Subsequent sections explain the latter four topics.

Debugging Programs 8-13

Accessing One of the pleasing characteristics of Technical BASIC system
Variables from the is that you can access variables from the keyboard any time
that it is in the “paused” state. You can also change variable’s
Keyboard values from the keyboard. Note, however, thatgyou cannot
access another variables in another context; for instance, you
cannot access the main program’s variables while in a sub-

program.

You can determine the current value of a variable (in the
current context) by typing its name on a blank line and then
pressing the carriage return key:

BedginPos
The system responds with:
0
You can also perform calculations, such as:

LEN(Ards)

The system responds:
8

You can also assign a new value to a variable. For example, to
assign a value of 5 to the variable named BeginPos, execute:

LET BeginPos=3

Now examine the variable by typing:

BedinPos

It will return:

3

If you had typed this instead:

BedinPos=5

You would have gotten this response:

0

8-14 Debugging Programs

Executing
Commands and
Statements

Continuing
Program Execution

Single-Stepping a
Program

because BeginPos=5 is a boolean expression whose value is
““false’” (since BeginPos is NOT equal to 5); the system repre-
sents a false condition with a 0, while a boolean true is repre-
sented by a 1.

Note also that you can create a variable from the keyboard by
assigning it a value:

LET NewVariable=B.023

You can use this variable in subsequent keyboard operations.

NewVariable-1
3,023

MNewWariable:0
1

You can also issue commands while a program is paused. For
instance, you can examine the catalog of a directory, list the
program to a printer, and turn the graphics or alpha displays
on and off.

When the program is in a paused state, you can continue
program execution with the CONT command. Program execu-
tion then resumes normally, or in the trace mode that was in
effect at the time the program was paused.

Preceding paragraphs declared that you can execute nearly all
commands from the keyboard while a program is paused. You
can also add, modify, or delete program lines, or attempt to
alter the control structures of the program; however, the prog-
ram cannot be continued after such modifications. You will
have to pre-run’ the program (using INIT) or execute RUN.

One of the most powerful debugging tools available is the
capability of single-stepping a program — executing it one line
at a time. This process allows you to access variables before or
after each line of a program is executed.

1 Pre-run is described in the “Program Structure and Flow” chapter.

Debugging Programs 8-15

Single-stepping is performed with the SINGLESTEP com-
mand. There are two prerequisites to using this command:

» The program must have been “pre-run”? by executing INIT
or RUN.

m The program must be in the paused state.

Type in the following example, execute an INIT command,
and then begin single-stepping by executing the SINGLESTEP
command three or four times. (If you typed in the preceding
example program, then you will probably want to store it now,
because you will be using it again in the next section.)

100 O0OPTION BASE 1

110 REAL Arrav(3),ArravSum

120 INTEGER Indx

130 ! .

140 ! Enter five numberss and calculate their sun
150 ArravSum=0

160 FOR Indx=1 T0 3

170 DISP "Enter numeric value #"3iIndx
180 INPUT Arrav{Indx)

180 ArravSum=ArraySum+Array (Indx)

200 NEXT Indx

210 1

220 @ Diselay input data and sum.

230 DISP "Arrav:®

240 MAT PRINT Arravi

250 PRINT "Sum of arravy elements:"sArravSum
260 1

270 END

Notice that it is difficult to tell which program line is being
executed without using the TRACE ALL command.

As you can see from the TRACE ALL results, the SINGLESTEP
command executes a program line and then increments the
program counter to the next program line. Thus, SINGLESTEP
steps through every program line, including those containing
non-executed statements like OPTION BASE, REAL, INTE-
GER, and ! comments (which are handled during pre-run and
cause no action during program execution).

8-16 Debugging Programs

As you single-step through the program, you can check vari-
ables’ contents to see how they change. You can also change
them as desired to create and test special conditions.

If the program is in an INPUT or LINPUT statement, then
SINGLESTEP is sufficient to terminate the operation. After
executing SINGLESTEP on one of these input statements, you
must first enter the expected data from the keyboard and then
terminate it with a carriage return. Executing a subsequent
SINGLESTEP then will execute the following line.

|
Software Testing

In general, testing a program involves verifying that it does
work without errors. So in order to test a program, you will
ordinarily use it across its normal range of conditions. In
addition, you will often want to ensure that it will not crash
when asked by a user to operate outside this range.

There are many methods of testing; they range from testing
segments individually to testing the entire program as a
whole. Although the subject of software testing is extensive, it
is mentioned here to make sure that you are aware of the need
for testing and to help you realize that there are many texts
available that describe methodical approaches to testing.

Despite the gamut of available testing methods, here are some
approaches that are common to most methods:

m [tisdifficult to thoroughly test your own programs. It is best
to have someone else test code that you have written.

® Question assumptions. For instance, you may assume false-
ly that the user will not input string data when numeric data
is expected.

® Determine boundary conditions for valid inputs, and test
each one. For instance, if you are expecting a string of up to
20 characters, test your software for strings with lengths 0
and 20 (maybe even 21).

® Check every local branch in the code to make sure that each
will be executed properly in all directions. Then globally
make a test case for each unique path through the program.

Debugging Programs 8-17

m Check to see if there are any sensitivities to any particular
data patterns.

The “Error Handling”” and ““Communicating with the Oper-
ator”” chapters also discuss anticipating and handling
erroneous inputs.

Testing the Using the program presented earlier in this chapter, you can
Example Program seta feel for implementing some of the suggestions shown

100
110

4

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

above. Here is the program again.

DIM Ardsl100]/Result$[100]
INTEGER BedginPosEndPos

D ORERRRRRRRRRR R R FRRRRRRRERERERRERERRRERRERE RN
I Givew string in Ard$: this subroutine
! trims leading and trailing blanKs,
I Trimmed string is returned in Results$,
P ORRRER R RRFRRE R RN R R AR ERARERRRRRRRERRER
Trim:
BedinPos=0
TrimFront: BedinPos=BedinPos+l
IF BedinPos*LEN{Ard$) THEN Result$="" @ RETURN
IF Ard$[BeginPosBedinPosI=" * THEN TrimFront
|
EndPos=LEN(Arg$)+1
TrimEvd: EndPos=EndPos-1
IF Arg$[EndPossEndPosl=" " THEN TrimEnd
|

Result$=Ard$[BedinPos EndPos]
i

RETURN

Since you didn’t write this program, you qualify as a candidate
for testing it.

Some assumptions that you may question are as follows:

m Will the input always be less than 100 characters?

m [s it acceptable to leave leading or trailing, non-printing
control characters, such as CHR$(0), in the string? or is the
program to remove them before removing the spaces?

8-18 Debugging Programs

® [s a string of length 0 acceptable? or should it generate an
error message?

Boundary conditions for the routine are strings of length 0,
100, and 101.

There are three, two-way branches in the program. From
studying the permutations of possible branch combinations,
there are six unique, valid paths through the code (some of the
possible paths are identical'). Here are the cases that test these
paths:

Null Arg$ (LEN =0) with no leading or trailing spaces.
Null Arg$ with leading and trailing spaces.

Non-null Arg$ with leading spaces.

Non-null Arg$ with no leading or trailing spaces.

o Lbp2

Non-null Arg$ with trailing spaces.
6. Non-null Arg$ with both leading and trailing spaces.

There seem to be no sensitivities to particular data patterns.
However, note that the case of the non-printing control char-
acter embedded in leading or trailing spaces may fit into this
category.

This listing shows testing the routine with the five cases
shown above.

1 Some identical combinations are: 1. Only leading spaces and null Arg$ (LEN =0)
or Arg$ is all spaces; 2. Only trailing spaces and null Arg$; 3. Both leading and
trailing spaces and null Arg$.

Debugging Programs 8-19

100
110
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
138
140
141
142
143
144
145
146
147
148
149
150
180
180
200
210
220
230
240
250
260
270
280
280

DIM Ard$L100]Result$l100]

INTEGER BeginPos+EndPos

|

Arg$=llll

DISP "Arg$=("3Arg$i") "y U"LEN="3LEN(Ard%$)
GOSUB Trim

DISP "Result$=("3Result$i’
I

Argg=" "

DISP "Ardé=("3Arg%i") "y "LEN="3LEN(Ard%$)
GOSUB Trim

DISP "Result$=("3iResults$}
|

Arg$=" laxlmn

DISP "Arg$=("3jArd$s") "y"LEN="3SLEN(Args)
GOSUB Trim

DISP "Result$=("3iResulté$s
|

Argd="eriyad==p2??"

DISP "Arg$={("3Arg%3") "y"LEN="3LEN(Args%)
GOSUB Trim

DISP "Result$=("jiResult%$;
|

Argé="RA"_‘a{} !

) "H"LEN="3LEN(Result$)

"H"LEN="iLEN(Result$)

"y "LEN="FLEN(Result%$)

) "y"LEN="SLEN(Result%)

DISP "Ardg$=("3iArgsi") "y "LEN="SLEN(ATd$)
GOSUB Trim
DISP "Result$=("iResult$i") "y"LEN="SLEN(Result%$)

Ards=" Two Words "
DISP "Arg$={("iArgsi") "HULEN="SLEN(Ard$)
GOSUB Trim
DISP "Result$=("iResultsi") "HULEN="3LEN(Results)
|
STOP
I RN R R AR R R RERRE AR RN RN ER AR R RA RN NN
I Given string in Ard$,s this subroutine
I trims leading and trailing blanks,
P Trimmed string is returned in Result$,
I ORREERERRRERFRRR R RRER R RN AR NRRRRRERRRR
Trim:
BeginPos=0
TrimFront: BedinPos=BeginPosg+l
IF BeginPos*LEN{Ard$) THEN Result$="" @ F(ETURNl

IF Arg$[BeginPossBedginPosl=" " THEN TrimFront
!

8-20 Debugging Programs

300
310
320
330
340
330

EndPos=LEN(Args)+1

TrimEnd: EndPos=EndPos-1
IF Ar9$[EndPos+EndPosl=" " THEN TrimEnd
|

Result$=Ardé[BedinPosEndPos]
i

360 RETURN

Here are the results of running this test program (without
tracing).

Ards={) - LEN= 0

Result$=() LEN= O

Ardg$=() LEN= B

Result$=() LEN= 0O

Ard$=(T#%17) LEN= 8
Result$=(l#*1"7) LEN= 5
Ards=(r3334a==277) LEN= 12
Result$=(:r:3 R LEN= 12
Arg$=(BA"_‘a{}) LEN= 12
Result$=(BA"_‘a{}) LEN= 8
Ard$=(Two Words) LEN= 12
Result$=(Two Words) LEN= 8§

Note that several different characters were used in several of
the tests. This may help show that the display device has no
data sensitivities. Also note that only the last test tried using
spaces embedded in the argument. This illustrates that testing
almost never stops.

Debugging Programs 8-21

8-22 Debugging Programs

Communicating with
the Operator

Chapter Contents

Have you ever been confused by the question posed by a
program? Have you ever wondered which button to press
next? Have you ever gotten a cryptic error message, or lost
some important or irreproducible data? If you answered “yes”
to any of these questions, then you know some of the frustra-
tions of using a poorly designed computer/human interface'.

As a programmer, you are on the other side of this interface.
You have the responsibility of designing a program that others
can use and, more importantly, will want to use. How will you
ask questions? What assumptions are you going to make?
How much time will you spend making your program easy to
use? The time and effort you invest could mean the difference
between a popular piece of software and one that everyone
avoids like the plague.

This chapter describes the system features available for com-
municating with the computer operator. It contains these
topics:

® An overview of the elements in a human interface

® General suggestions for improving computer/human com-
munications

Sending audio messages
Sending alphanumeric messages

Accepting input from the softkeys

Accepting information from the keyboard

1 A computer/human interface, or simply human interface, is informally defined to
be the means by which the computer operator interacts with the computer. This
interface includes hardware, software, and information.

Communicating with the Operator 9-1

]
Overview

A Simplified Model

In order to design an effective human interface for a program,
you need to take a closer look at the operator/program com-
munication process.

Although the human interface involves many aspects of the
flow of information between computer to operator, here is a
simplistic model of the communication process at this inter-
face:

1. The computer prompts the operator for information.

2. The operator receives the message.

3. The operator thinks about the question, and then formu-
lates a response.

4. The operator makes the response.

5. The computer accepts the information entered by the
operator.

Communications Devices These steps in the communication
process are generally carried out by the following physical
devices:

s Computer output devices: alphanumeric and graphics dis-
plays, beepers and voice-synthesis devices

® Human input devices: eyes, ears, sense of touch
® Human information processor: brain
® Human output devices: fingers and hands, voice

m Computer input devices: keyboards, graphics input devices
(such as a knob, mouse, touch screen, and digitizer stylus),
and voice-recognition devices

Other Factors Along with these output and input devices,
there are some other factors that affect the communication of
information.

m Method of presenting the information (terminology, page
layout, etc.)

m Placement of the preceding output and input devices

9-2 Communicating with the Operator

Importance of the
Human Interface

General Design
Suggestions

m Operator’s past experience and present mental state

m Various other human factors

In general, the most important function of a computer is to
manipulate data. Although the computer can receive data
from other computers and devices, it is probably more com-
mon that it gets data from a computer operator.

If you are the only person that uses a program you've written,
then that program may not need a quality human interface.
This normal requirement is eliminated because you know ex-
actly what data the program needs, when it is needed, and
how to enter it into the computer. However, if a program is
used by other people, then the demands for a good human
interface rise greatly — especially if they have different back-
grounds. When the intended users do not understand compu-
ters, your program must be very skillfully written so that it
does not confuse or intimidate the operator or make great
demands on their computer expertise.

This part of the process of using software is one of the most
error-prone, because it involves the subtly complex process of
human communications. And the problem is further com-
pounded because the humans are separated by space and
time, as well as restricted to communicating with limited
means — usually only visual computer prompts and manual
human input.

Good human interfaces don’t just happen; they require effort,
logical thinking, and thorough testing. In many programs, at
least 25% of the code is dedicated to the human interface. And
it is not unusual to use 60% of a good program for explanatory
messages, operator interaction, error trapping, and so forth.
Obviously, these estimates depend upon many factors, such
as the task being performed and the intended operators;
however, they do show that a significant portion of the prog-
ram design effort should be devoted to the human interface.

Communicating with the Operator 9-3

Here is a brief list of general suggestions for developing an
effective human interface.

m Ask simple, definite questions or prompts

m Present the questions and prompts in a natural, logical
order

m Limit the set of alternative answers, if possible
® Supply a default answer, if possible

m Provide a chance for the operator to verify choice(s) picked
or information entered

m Trap invalid operator responses, and give them another

chance
I
Sending The information you can send to the operator generally fits
Messages to the into these two categories:
Operator m Descriptions of what the program is currently doing (or

what mode it is currently operating in)

m Descriptions of what the user is expected to do

These “status reports” and “prompts” for information, re-
spectively, may be made in one of these ways:

m With words (text)
m With pictures (graphics)
® With sound (auditory messages)

Let’s deal with sound first, because of the simplicity of the
related Technical BASIC features, and then with text. Graphics
are covered in the ““Graphics” chapter.

Sending Audio It would be a real attention getter to have the computer synthe-
Messages size a pleasant voice that says: “Please don’t touch the
keyboard right now.” However, sometimes a simple warning

“beep’” is enough to give the same message.

9-4 Communicating with the Operator

Displaying
Messages on the
Alpha Screen

Generic Beeps With some terminals and consoles?, the only
audio message available is the “bell” sound. This BASIC state-
ment directs the terminal to make the bell sound.

BEEP

You can also get the same response by “displaying” the tell
control character:

DISP CHR&(7)

This method works well when the operator probably knows
what he is doing is wrong, but just needs a gentle reminder.

Varying Tones On other terminals and consoles there is a tone
generator, which you can use to produce sounds of varying
frequency and duration. Execute this statement to see if your
machine has these capabilities.

BEEP 10,10 @ BEEP 20,20

If you get two different pitches, then your hardware has these
capabilities.

The first parameter in the BEEP statement controls the fre-
quency, while the second controls the duration.

BEEP FreauencyDuration

The range of the frequency and duration parameters are given
in the Specifics appendix for your system.

The mechanics of using alpha displays with HP-UX Technical
BASIC systems vary from system to system. This section con-
tains some general information about using displays with all
systems. Consequently, you may want to refer to the Getting
Started manual for your Technical BASIC system as you read
this section.

Using printers to display information is described in a subse-
quent section.

1 The tones that your terminal or console can generate are listed in the Implementa-
tion Specifics appendix to the HP-UX Technical BASIC Language Reference.

Communicating with the Operator 9-5

The Essence of Displaying Messages Giving instructions to the
operator can be condensed into these basic steps:

1. Clear the display of any irrelevant information.

2. Make sure that the display device is operating in the
proper mode (for instance, not in insert mode)

3. Use as much of the display as necessary to give unambi-
guous, understandable instructions.

In the early days of computers, memory was a scarce and
expensive resource. Programmers were encouraged to use as
little memory as possible. It seemed as though there was a
contest to see who could put the most information into a short
message.

Please realize that those days are over. Take a typical HP-UX
system as an example. The standard machine is shipped with
over a half-million characters of memory, and there is no
significant restriction on program size. Neither is there any
real restriction due to the display size, since most HP displays
supported on Technical BASIC usually have at least 20 lines of
80 characters each visible at all times. It is generally false
economy to display tiny, cryptic messages.

Which Device Is the Display Screen? Statements that display
text (like DISP and CAT) send the characters to the current
CRT IS device. Normally this device will be the screen on
which characters appear as you type’.

You can see which screen is the CRT IS device by executing the
following statement:

DISP "This is the current CRT IS device.,"

1 If you see no characters on your screen as you type at the keyboard, press the
carriage-return key, then type in an ALPHA command, and execute the com-
mand by pressing the carriage-return key again. Executing this statement turns
on the alpha display.

9-6 Communicating with the Operator

The display (or printer) on which the message appears is
currently the CRT IS device. Normally it will be your terminal
or console screen. However, if these characters are currently
being sent to a printer (or file), then you can specify that your
console is now to be the display device by executing this
statement:

CRT I8 1
The numeric parameter 1 specifies the screen’s device selector.

You can also specify that a file is to be the CRT IS device. If a file
does not exist, then you can create one for this purpose. Then
assign a file selector to the file, and specify this file number as
the CRT IS device.

CREATE "CRTISFile",l
ASSIGN 11 TO "CRTISFile"
CRT I8 11

The CREATE statement creates a text/data file' in the current
working directory. The ASSIGN statement assigns a file selec-
tor of 11 to the file named CRTISFile. Since no directory path
was specified, the file was assumed to be in the current work-
ing directory. If there is no file named CRTISFile in that direc-
tory, then the system automatically creates it.

Subsequent information that would normally be sent to the
screen (such as output of CAT, LIST) will be sent to this file. If
the file already exists and has information in it, then the
subsequent information is appended to the file.

You can also specify a screenwidth in the CRT IS statement.
For instance:

CRT I8 1465
BASIC will subsequently allow the DISP statement to display

only 65 columns of text on the screen. (Other methods of
writing to the screen are not affected, however.)

1 You can read files of this type from BASIC by using ASSIGN to open the file and
the reading lines of text with ENTER statement. For example, see “Using text/data
Files” in the ““Data Storage and Retrieval” chapter.

Communicating with the Operator 9-7

Now that you have seen how to determine which display you
will be using, and how to specify another, the next step is to
find out what you can do with it.

Determining Display Capabilities An inherent requirement of
using the steps above is knowing (or determining) the display
device’s capabilities. If you don’t know, for instance, the width
of an alphanumeric display screen, then you might try to put
more than one line of text on a display line.

Here are some relevant questions you might ask about a dis-
play device’s attributes and capabilities:

® What is the screen’s width (number of columns) and height
(number of rows)?

®m What characters can it display, including enhancements
(such as half-bright and underlining)?

m Can you position its cursor? (The cursor is a pointer that
indicates the location at which the next character will be
displayed.)

Does it have special insert or delete modes or operations?

Can you scroll the text on the display?

There are several approaches that you can take to determine a
display device’s capabilities:

m Read the display device’s documentation.
m Observe its operation.

m Have the program determine them.

Using the first approach, you can read a display device’s
documentation, which is usually shipped with the device. For
instance, if you are using an Integral Personal Computer, then
you can read its installation and operating manuals. A list of
the characters it can display, along with operating modes and
escape code sequences it implements, is provided in the Im-
plementation Specifics appendix shipped with the Integral
HP-UX Technical BASIC system.

9-8 Communicating with the Operator

100
110
120
130
140
130
160
170
180
180
200
210
220
230
240

Multi-user systems, such as Series 500 HP-UX, are capable of
supporting several different terminals at one time. In such
case, you will either need to read the documentation for each
terminal to determine its capabilities, or read the
/etc/tvermcapr (“terminal capabilities”) file and decipher the
codes. The Getting Started manual for your particular HP-UX
Technical BASIC system describes the terminals that are sup-
ported on your system.

Using the second approach, you could begin displaying some
character codes on the screen and observe the results. You
should eventually do this anyway to get a feel for what is
pleasing to the eye and effectively conveys the desired in-
formation.

The following example shows an application of the third
approach: determining display width with a BASIC program®.

DIM Lines$[170]

Lines$=RPT${(" "40)R"40"KRPTE(" "+BI&"50" | Strind pos 41,51,
Lirness=Lines$BRPT$(" ",28)&"80" ! String pPos 81,
Liness=Lines$®RPTS(" *,78)8&"160" | String ros 161,

!

CLEAR ! Clear the screen,

ALPHA 1.1 ! Home the cursor (Row 1+ Column 1),

AWRIT Livnes$! Write line (excess will "wrap" to next line),
|

ALPHA 21 ! Move curser to start of second line.
AREAD Lines$! Read characters (which will show width).
ScreenWidth=YAL(Linecs$) ! Convert strind to number,

DISP "Width of screen="iScreenWidthi"characters.,"
!

END

1 The ALPHA and AREAD statements are not implemented on some terminals.
Refer to the Implementation Specifics for your particular HP-UX Technical BASIC
system to see whether they are implemented on the console or terminal you are
using.

Communicating with the Operator 9-9

Here are the results of running the program on an 80-column
screen.
40 50
BO
160
Width of screen= 80 characters.

The program creates a string (Lines$) that is longer than any
line that any screen can display. It places characters such as
40", “50”, and so forth at string locations 41, 51, and so forth,
respectively. The ALPHA statement positions the cursor at
column 1 of row 1. The AWRIT statement writes this string
into screen memory beginning at the current cursor location.
Since the length of the string is greater than a screen width,
some of the characters will be placed (“wrapped”’) onto subse-
quent row(s) of the screen. The AREAD statement then reads
the number on the second row, which represents the width of
the screen. The VAL function converts the string read by
AREAD into a numeric value, which is assigned to the numeric
variable named ScreenWidth. You can use an analogous tech-
nique to determine the number of lines (rows) on the screen.

Although this is a way for the program to determine the
screen’s width, it may not be the most reassuring thing for a
program’s user to see as he begins using the program.

An alternate method of programmatically determining screen
width might be as follows: set up a table that lists each type of
terminal’s capabilities; have the program ask the user to iden-
tify the product number of the screen device; access the entry
in the table that describes that device’s capabilities; set up the
communication model for that terminal based on the device’s
capabilities.

9-10 Communicating with the Operator

Clearing the Screen It is confusing to the operator (and embar-
assing to the programmer) when two or more displays com-
bine in an unplanned manner. The culprits are often “left-
over” alpha and graphics.

To completely erase the alpha display, use this statement:

CLEAR

[t moves the cursor to its “home’” position (upper, left corner),
scrolling the text if necessary, and clears all characters from the
display.

To completely clear left-over graphics, execute GCLEAR. Note
that alpha and graphics are displayed separately on some
consoles and terminals, but are displayed simultaneously on
others.

Turning Off Unwanted Modes As another example, suppose
that the previous user left the cursor in the middle of a screen
of text with “insert mode” left on. If a subsequent program
attempts to display new text without turning off insert mode
and clearing the screen, then the result may be a chaotic
screen.

The DISP statement does not provide a high-level method for
getting the display out of modes like ““insert character.” Those
modes are controlled by sending an escape sequence to the
display. In this case, you will need to cancel the insert mode
(return to not inserting characters before current cursor posi-
tion). Here is a simple example:

440 Cancellnsert$=CHR$(Z7)I&"R"
430 DISP Cancellnsert$s

The PRINTALL statement directs the system to print all in-
formation that is sent to the display screen; the information is
printed on the current PRINTER IS device. You can cancel this
mode by executing a NORMAL statement.

Communicating with the Operator 9-11

100
110
120
130
140
140
150
170
180
190
200
210

220

Positioning the Cursor Whenever you execute a statement that
displays characters on the screen, these characters are display-
ed beginning at the current cursor Iocation. For instance, one
of the preceding examples showed a method of moving the
cursor. Here is a similar example:

DIM Chars$[170]
Chars$="Cursor location."

CLEAR !

!

DISP Chars$
DISP Chars$%
i

ALPHA 3,20 !

Clear screens and "home" cursor (row 1y column 1),

I Display bedinning at cursor location.

Move cursor to lime 3+ column 20,

AWRIT "Cursor location doesn’t chande."
AWRIT "With AWRIT: loc"

!
END

Here are the program’s results:

Cursor location.
Cursor location.
With AWRIT: loc doesn’t chande.

The CLEAR statement clears the display and sets the cursor
location to row 1 and column 1. The subsequent DISP state-
ment displays characters beginning at this location. As the
DISP statement finishes, it automatically moves the cursor to
the next line by sending an “end-of-line”” (EOL) sequence: a
carriage-return control character followed by a line-feed con-
trol character.

The cursor is then moved to column 20 of row 3 with the
ALPHA statement. The AWRIT statement then writes the
specified characters on the display. AWRIT is different from
DISP in that it does not update the cursor location, as shown
by the second AWRIT statement beginning at the same loca-
tion (3,20) and overwriting characters written by the first one.

9-12 Communicating with the Operator

100
110
120
130
140
150
160
170
180
190
200
210
\ 220

230

o

Determining the Cursor’s Location If you are not sure where the
cursor is, you can determine its location by using the CUR-
SROW and CURSCOL functions.

m CURSROW returns the row.
m CURSCOL returns the column.
You can use these functions just as you would other numeric

system functions. Here is an example of using them in a
program.

Star$="+"

|

CLEAR

FOR RowNumber=1 TO 16 STEP 3
Col_=RND =G0 ! Random column.,
ALPHA RowNumbersCol_ ! Moue cursor,
AWRIT Stars | Display the "#",
Row-=CURSROKW ! Determine row.
Col_=CURSCOL ! Determine column,
ALPHA +CURSCOL +3 ! Moue cursor (relatiue).

DISP "("iRow_3"+"3iCol3")" | Show row and column,

NEXT RowNumber

END

Here are typical results of running the program:

(1 4+ 43)

* (44 33)

* (7 4 37)

* (10 4 36)

* (13 » 14

* (168 + 7))

Communicating with the Operator 9-13

100
110
120
130

Turning the Cursor On and Off The cursor is the screen location
at which subsequently typed or displayed characters will be-
gin appearing. Normally the cursor’s location is indicated by
an inverse-video block or a blinking underline character.

To disable the visual cursor, execute this statement!:

OFF CURSOR

To re-enable the visual cursor, execute:

ON CURSOR

Displaying Blank Lines If the cursor position is at the start of a
blank line when DISP is executed, that line remains blank.
However, if there is text on that line, the text remains. This
behavior is due to the fact that a DISP statement with no
parameters simply sends an end-of-line sequence, which is a
different operation than writing a line of blank characters —
ASClII spaces, or CHR$(32). This is not to say that itis “wrong”
to use DISP with no parameters. It just means that you cannot
guarantee the output of a blank line by using DISP with no
parameters.

To print a blank line, blanks must be printed. One of the most
convenient ways to send a line full of blanks is to use the TAB
function. Here is a sequence that prints three blank lines:

ScreenWidth=80 ! This may vary for vour display device.
DISP TAB(ScreenWidth)
DISP TAB(ScreenWidth)
DISP TAB(ScreenkWidth)

Before getting into greater detail about formatting information
that you sent to the display, let’s take a look at what capabili-
ties you have for sending information to printers.

1 This feature is not implemented on some consoles and terminals.

9-14 Communicating with the Operator

Printers

The mechanics of using printers with HP-UX Technical BASIC
systems vary from system to system. This section contains
some general information about using printers with all sys-
tems. Consequently, you may want to refer to the Getting
Started manual for your Technical BASIC system as you read
this section.

The PRINT statement sends information to a printer in the
same fashion as the DISP statement sends information to a
screen display. The device specified in the last PRINTER IS
statement, or the default system printerl, receives PRINT
statements’ output?.

To see which printer is the current PRINTER IS device, execute
this statement:

PRINT "This is sent to the PRINTER IS device,"

You can also specify that another device is to be the system
printer. Here is an example of creating a file and then specify-
ing that the file is to be the system printer.

CREATE "PRTISFile" sl
ASSIGN 11 TO "PRTISFile"
PRINTER IS il

The CREATE statement creates a text/data file in the current
working directory. The ASSIGN statement assigns a file selec-
tor of 11 to the file named PRTISFile. Since no directory path
was specified, the file was assumed to be in the current work-
ing directory. If there is no file named PRTISFile in that
directory, then the system automatically creates it.

1 With single-user Integral HP-UX systems, the default system printer is the built-
in printer. With other single-user and multi-user HP-UX systems, the default
system printer is the display screen.

2 Multi-user HP-UX systems use intermediate files to receive the output of PRINT
statements, which are then “spooled” to the printer.

Communicating with the Operator 9-15

There are times when you want to have printed records of
what has been displayed on the screen. The PRINT ALL state-
ment directs the system to print a copy of whatever informa-
tion is sent to the display on the current PRINTER IS device.

If you have not been operating in PRINT ALL mode, but you
find that you need to get a printed version of what is currently
on the screen, you can use the DUMP ALPHA! statement to
send a copy to the current PRINTER IS device.

A Typical Printer’'s Character Set Most ASCII characters are
printed on an external printer much like they appear on the
display screen’. However, depending on your printer, there
will be exceptions. Several printers will also support an alter-
nate character set; this alternate set is often a foriegn character
set, a graphics character set, or an enhanced character set. If
your printer supports an alternate character set, it usually is
accessed by sending a special command to the printer. This
section describes typical characters that printers can print and
use as control information.

Control Characters In addition to a “printable”” character set,
printers usually respond to control characters. These non-
printing characters produce a response from the printer. The
following table shows some of the control characters and their

effect.
Control Character’s | Keyboard
Printer’s Response ASCII Value Character
ring printer’s bell 7 CTRL-G
backspace one character 8 CTRL-H
horizontal tab 9 CTRL-I
line-feed 10 CTRL-J
form-feed 12 CTRL-L
carriage-return 13 CTRL-M

1 DUMP ALPHA requires that the printer is capable of displaying graphics. Note
also that it is not implemented on some terminals. For further details, see the
Implementation Specifics appendix to the HP-UX Technical BASIC Language
Reference for your particular HP-UX Technical BASIC system.

2 Alist of the characters available on a particular printer is given in the documenta-
tion sent with that printer.

9-16 Communicating with the Operator

~=

One way to send control characters to the printer is with the
CHRS function. Execute the following.

PRINT CHR$(12)

The printer usually responds by executing a form-feed - it
moves the paper to the beginning of the next blank sheet, and
re-positions the print head to the beginning of the first line.

Other control characters may be valid for your printer. For
example, sending a control-N to the 82905B printer changes
the character size of subsequent text.

30 Big$=CHR$(14)
40 PRINT Bidg$i"Double-MWidth Text"
30 END

Refer to the appropriate printer manual for a complete listing
of control characters and their effect on your printer. Note that
some printers allow control characters to affect only the line of
text on which they were used.

Escape-Code Sequences Similar in use to control characters,
escape-code sequences allow additional control over most
printers. These sequences consist of the escape control charac-
ter, CHR$(27), followed by one or more characters.

For example, the 2631A printer is capable of printing charac-
ters in several different fonts. To print extended characters on
this printer, an escape code sequence is sent to the printer
before the actual text to be printed is sent.

20 Esc$=CHR$(Z27)

30 Big#="&K1G"

40 Redulars="&KOS"

30 PRINT Esc$iBid$i"Extended-Font Text"
G0 PRINT Esc$iRegular$i"Back to normal."
70 END

Since each printer may respond differently to control charac-

ters and escape code sequences, check the manual that came
with your printer. .

Communicating with the Operator 9-17

Formatting This section describes how to use the DISP and PRINT state-
Information ments to “format” the information you print.

For many applications the PRINT or DISP statement provides
adequate formatting. The simplest method of formatting is by
specifying a comma or semicolon between items.

When the comma is used to separate items, the items are
aligned on field boundries. Fields start in column one and
occur every 21 columns (columns 1,22,43,64,...). Here is an
example of this type of formatting with PRINT statements:

PRINT "123456789012345678901234567890123456789" 3%
PRINT "012345678901234567890123456789"

DATA 1+14-22,24+300000,5,1E+8

READ A+B+C:D

PRINT AsB+C+D

Here are the results:

123456789012345678901234567890123456789012345678901234567890123456789

141 -22.2 300000 S10000000

Using the semicolon as the separator causes the numbers to be
put as closely together as the compact form allows. The com-
pact form always uses one leading space (or — when the
number is negative) and one trailing space. That is why the
positive numbers in the previous example appear to print one
column to the right of the field boundries. The next example
shows how the compact form prevents numeric values from
running together.

PRINT "123456789012345678901234567890123456789"3
PRINT "012345678801234567890123456789"

DATA 1414+-22,24+300000,3,1E+8

READ ABCHD

PRINT A3BiC3iD

Here are the results:

_______ (

123456788012345678901234567800123456780012345678901234567880123456789
11 -22,2 300000 510000000

+

9-18 Communicating with the Operator

The comma and semicolon are often all that is needed to
format a simple table.

You can also format the entire contents of an array, using the
comma or semicolon to control the format of the output. Here
is an example of printing an array in which each array element
contains the value of its subscript:

10 OPTION BASE 1|

20 DIM A(S)

30 DATA 1:2+344,45

40 READ AC1)4AC2)+A(3) +A(4) sALS)
S0 PRINT ACL)SACZ)SA(3) FACA)FA(S)
60 END

Here are the results:
12345

Another method of aligning items is to use the TAB function.

10 PRINT "123456789012345678901234567890123456789"
20 PRINT TAB(1G)i"#"
30 END

Here are the results:

1234567B9012345678901234567890123456789
*

A more powerful formatting technique employs the ability of
the PRINT and DISP statements to use an image to specify the
format.

Using Images Just as a mold is used for a casting, an image can
be used to format data. An image specifies how each item
should appear. The computer then attempts to format the
items according to the image.

One way to specify an image is to include it in the PRINT
statement. The image specifier is enclosed within quotes and
consists of one or more field specifiers. A semicolon then
separates the image from the list of items to be printed.

Communicating with the Operator 9-19

This statement prints the value of 7 (3.141592654...) rounded
to three digits to the right of the decimal point.

PRINT USING "D.DDD"3PI

Here is its result:

3.142

For each character “D”" within the image, one digit is printed.
Whenever the number contains more non-zero digits to the
right of the decimal than provided by the field specifier, the
last digit is rounded. If more precision is desired, more charac-
ters can be used within the image.

PRINT USING "D.14D"3PI

3.14139265358879

Instead of typing fourteen “D” specifiers, one for each digit, a
shorter notation was used to specify a repeat factor before the
digit field specifier. The image “DDDDDD" is the same as the
image “6D".

The image specifier can be included in the PRINT or DISP
statement or on its own line. When the specifier is on a diffe-
rent line the PRINT or DISP statement accesses the image by
either its line number or line label.

100 Format: IMAGE BZ.DDX

110 DATA 1.,5425,574,056,-,555,-3.,4,-88.9
120 READ A+B+CDIESF

130 PRINT USING FormatiA:B,C

120 PRINT USING 1003DEF

150 END

Executing this program gives the following results:

Notice that the image specifier Z filled the field to the left of the
radix with zeros.

9-20 Communicating with the Operator

Numeric Image Specifiers Several characters may be used with-
in an image to specify the appearance of a numeric value.

. Image Purpose
Specifier
D Replace this specifier with one digit of the number to be printed. If the digit is a leading
zero, then print a space. If the value is negative, then one leading space may be used by
the negative sign.
Same as “D” except that leading zeros are printed.
Prints two digit of the exponent after printing the sequence “E + . This specifier is equal
to “ESZZ”. See the Technical BASIC Language Reference for more details.
K Print the entire number without leading or trailing spaces.
S Print the sign of the number: either a “+"” or “-”,
M Print the sign if the number is negative; if positive, print a space.
Print the decimal point (radix).
R Print the comma radix.
\ To better understand the operation of the image specifiers
‘ examine the following examples and results.
Statement Output
PRINT USING "K"3i33.G6G6 33,666
PRINT USING "DD.DDD"3i33.GE6 33.B66
PRINT USING "ZZZ,3D"333.B66 033,666
PRINT USING "2Z2Z"3.444 000
PRINT USING "ZZEZ"i5,55 005
PRINT USING "SD.3DE"3B.023E+23 +B.02Z3E+23
PRINT USING “S83D,3DE"3iB.023E+23 +B602,300E+21
PRINT USING "S5D,3DE"i6.023E+23 +B0230,000E+19

Sz

Communicating with the Operator 9-21

To specify multiple fields within the image, the field specifiers
are separated by commas.

PRINT USING "K3D,3D"3100,+200,300
100 200 300
PRINT USING "ZZ,DD.DD"314+2,3

01 23

If the items to be printed can each use the same image, then the
image need be listed only once. The image will then be re-used
for the subsequent items.

10 PRINT "123456789012345678901234567890123"
20 PRINT USING "3D.DD" § 3.98,5.95,27.5,129.,85
30 END

This program produces the following after execution:

123456789012345678801234567890123
3.98 5,95 27,50 128,95

The image is re-used for each value. However, an error will
result if the number cannot be accurately printed by the image
specifier. For instance, the number 20 cannot be accurately
printed by the “D” image specifier, since it requires at least
two significant digits.

String Image Specifiers Similar to the numeric field image char-
acters, several characters are provided for the formatting of

strings.
Image
Specifier Purpose
A Print one character of the string. If all characters of the string have been printed, then
print a trailing blank.
X Print a space, CHR$(32).
“literal” Print the characters between the quotes.

9-22 Communicating with the Operator

Note that the long strings of numbers above the results are
used to show column spacing they are not part of the result.
The same type of long number strings were used in previous
programs for the same purpose but they were part of the
program output.

The following examples show various ways to use string speci-
fiers.

Executing these statements:
PRINT "1234567890123456780801234567"
PRINT USING "SX+10R2X+10A" i " Tom" +"Smith"
Produces the following results:
123456789012345678801 234567
Tom Smith
Executing these statements:

10 IMAGE SX"John"+2X4+10A

20 PRINT "1234567890123456783012"
30 PRINT USING 103"Smith"

40 END

Produces the following;:
1234567890123456788012
John Smith

Executing these statements:

10 IMAGE "PART NUMBER" 2X+10D

20 PRINT "12345678901234567880123"
30 PRINT USING 20580001234

40 END

Produces the following;:

123456789012345678901234
PART NUMBER 90001234

Communicating with the Operator 9-23

Additional Image Specifiers The following image specifiers
serve a special purpose.

Image
Specifier Purpose
B Printthe ASCII character whose code is given by the “binary” number. (This is similar to
the CHRS$ function.)
Suppress the otherwise automatic end-of-line sequence (carriage-return and fine-
feed).
/ Send an end-of-line sequence.
Examples
To print a form-feed but suppress the automatic end-of-line
sequence, execute the following:
PRINT USING "#,B"312
To print the ASCII characters that correspond to the codes
given by three integers, execute the following statement:
PRINT USING "B:BsB"3iG67:87+116
The following appears on the display:
Cat
|
Accepting There are several ways to get data from the operator:

Messages from
the Operator

m From the keyboard

® From a positioning device (such as a mouse or graphics-
tablet stylus)

® From an audio input device
The main focus of this section is on inputs from the keyboard.

Inputs from positioning devices are described in the ““Grapics”
chapter. Audio input is beyond the scope of this book.

9-24 Communicating with the Operator

Types of Keyboard
Inputs

Softkeys

100
110
120
130
140
130
160
170
180
190
200
210
220
230
240
230
260
270
280
290
300
310
320
330

There are two general methods of getting operator input
through the keyboard:

= With softkeys
= With alphanumeric keys

When possible, using softkeys is a very good choice. It limits
the number of alternative inputs, thereby eliminating the need
for translating an endless variety of typing mistakes that might
be made by the operator. Another benefit is that softkey input
is very tightly controlled by the programmer.

ON KEY# statements are used to set up and enable interrupt
service routines to be executed when each softkey is pressed’.
The KEY LABEL statement updates the screen with visual
reminders of each softkey’s definition.

| This prodram shows simple usade
! of the softKevs and system clock,
i
CLEAR ! Clear alrha screen.
OFF CURSOR ! Disable visual cursor,
|
I Set up softKey definitions.
ON KEY# 1,"Start" GOSUB Starts
ON KEY# 2,"Stop" GOSUB Stors
ON KEY# 3:"Reset" GOSUB Resets
ON KEY# 4y"Larp" GOSUB LarTime
KEY LABEL ! Show softkey labels on screev.
1
I Set up initial screen.
ALPHA 231 B DISP "Time of dav:"TIMES%
ALPHA 4,1 B DISP “"Start time:" ,HMSH(0)
ALPHA B+1 @ DISP "Elarsed time:" HMS$(0)
ALPHA Bs1 @ DISP "Larp time:" »HME$(0)
i
Loor: ALPHA 2,22 B DISP TIMES
WAIT 400 ! Dummy delav.
IF NOT Timing THEN Loor ! Don’t update elarsed,
ALPHA 6,22 B DISP HMS$(TIME-Tstart) ! Elarsed,
GOTO Loor

1 Service routines are described in the “Program Structure and Flow’ chapter.

Communicating with the Operator 9-25

340 !
350 Starts: Tstart=TIME

360 Timing=1 1! Set flayg,

370 ALPHA 4422 @ DISP HMS$(Tstart)
380 RETURN

390 !

400 Stops: Timing=0Q ! Clear flag.,

410 RETURN

420 !

430 Resets: Timing=0 | Clear flad,

440 ALPHA 4,22 8 DISP HMS$(0)

450 ALPHA G622 B DISP HMB$((Q)

460 ALPHA B:22 @ DISP HMB$(0)

470 RETURN

480 !

490 LarTime: IF NOT Timing THEN RETURN
500 ALPHA B84+22 @ DISP HMS#%(TIME-Tstart)
510 RETURN

520 !

530 !

340 END

Here is a typical starting screen produced by the program:

Time of dav: 14:35:453
Start time: 00:00:00
Elapsed time: 00200100
Larp time: 00:00:00

When the program begins execution, only the time of day is
updated. The other times shown remain 00:00:00.

Pressing the Start key initiates a branch to the subroutine
named ““Starts.”” This subroutine directs the program to set the
“timing flag” by assigning a value of 1 to the variable named
Timing. When this flag is set, the elapsed time is shown along
with the time of day when the timing was started (in the
“Loop” segment).

Pressing the Lap key initiates a program branch to the LapTime

subroutine, which displays the time elapsed since the Start key
was pressed.

9-26 Communicating with the Operator

Alphanumeric Input
Methods

Pressing the Stop key initiates a branch to the Stops subroutine,
which halts timing by clearing the timing flag. When the main
loop is executed subsequently, the elapsed time is no longer
updated.

Pressing the Reset key initiates a branch to the subroutine
named Resets. This routine displays 00:00:00 for Start,
Elapsed, and Lap times.

The program employs several techniques of moving the cursor
and displaying data that were shown earlier in this chapter.

Unfortunately, it is often necessary to leave the comfortable,
controlled world of softkeys. For instance, suppose you need
to get a number, such as a device selector, from the operator.
Valid values of device selectors range from 1 through 1030.
You can’t very well define a softkey that increments a variable
and expect the operator to press it several hundred times!
Instead, you will normally ask the operator to use numeric
keys to enter the number.

There are two methods that you can use to accept alpha-
numeric inputs from the keyboard:

® Use INPUT or LINPUT to enter values that can be assigned
to string and numeric variables.

® Use ON KYBD to input individual keystrokes.

With the INPUT and LINPUT statements, the operator can
type in information, use the cursor control or backspace keys
to edit the data if necessary’, and then press the carriage-
return key to send the data to the BASIC system for evaluation
and assignment to corresponding BASIC variable(s). This
method is the “high-level” approach to accepting keyboard
input, since it lets the system handle the often tricky details of
moving the cursor, displaying and erasing characters on the
screen, and so forth.

1 These keys may be labeled differently on your particular keyboard. See the
subsequent section called “‘Enabling and Disabling Keys” for further details.

Communicating with the Operator 9-27

With the ON KYBD statement, each key is handled individual-
ly by a service routine, and you, the programmer, have to
implement any desired editing capabilities. The ON KYBD
method is the “low-level” method, since it involves much
more detail; however, it gives the program greater control and
flexibility.

With both of these methods, you can use the ENABLE KBD
statement to enable or disable certain keys (or groups of keys).
For instance, you can disable the Reset and Break keys' while
still allowing the typing-aid and alphanumeric keys to func-
tion normally.

Before getting into the details of using these methods, here are
some general suggestions that apply to all methods of accept-
ing keyboard inputs.

Anticipate Common Problems One task that can be performed
by the input routine is to anticipate common problems. Many
techniques are covered in this section’s examples, but here is a
preview.

m You know that exceeding the dimensioned length of a string
gives error 18, so don’t use short string variables in an
INPUT statement.

® You know that CAPS LOCK might be on or off when the
operator starts typing, so use the UPC$ string function to
convert the inputs to uppercase characters before compar-
ing them to string constants.

® You know that an operator is likely to just execute CONT
(continue) if he isnt sure how to respond, so make sure that
your input routine can handle a null response and that it
assigns a reasonable default answer for such inputs.

1 These keys may be labeled differently on your particular keyboard. See the
subsequent section called “Enabling and Disabling Keys” for further details.

9-28 Communicating with the Operator

100
110
200
210
220
230
240
250

Error Trapping Simplifies Input Routines No matter how much
time you have spent anticipating possible errors and making
an input routine “bomb-proof,” you can always find someone
who can enter an incorrect response. However, don't feel bad,
because the proper handling of keyboard input may be one of
the most difficult areas of applications programs. Instead of
writing elaborate input routines that can parse broken English
with misspelled words, you can use the ON ERROR mechan-
ism to trap errors that have not been (or cannot be) anticipated.
The objective in such an approach is two-fold: to keep the
program running, and to give the operator a chance to correct
the mistake.

Here is a typical example. You ask the operator for a file name.
Your program can’t tell if the operator entered the name of a
file that exists until it accesses the disc. The ON ERROR
routine can tell the operator that the file does not exist on the
specified (or default) volume and then ask for another file
name. See the “Handling Errors” chapter for more informa-
tion on error-trapping techniques.

The Two High-Level Input Methods As mentioned before, there
are two keywords available for accepting alphanumeric
keyboard inputs:

= INPUT
= LINPUT

Both statements allow you to enter string values into BASIC
variables; however, only INPUT also allows inputs into
numeric variables. Here is an examples of using INPUT:

ON ERROR GOTO AskEmplNum ! Set uP error trar,
|
AskEmplNum: DISP "Please enter vour emplovee number,"
INPUT EmplNum
DISP "Is this correct 7 (Y/N)" EmpIlNum
INPUT Answer$
IF UPC%$(Answer$)<x"Y" THEN AsKEmpIlNum
OFF ERROR ! De-activate error trar.

Communicating with the Operator 9-29

100
110
120
130
140
150

The example first sets up an ON ERROR branch to the begin-
ning of the input routine. Let’s look at how the routine would
be executed without input errors before describing its error-
trapping behavior.

The program displays a prompt for information (with DISP),
and then directs the system to await numeric input data (with
INPUT). The operator is then expected to type ina number and
press the carriage-return key (to send the data to the system for
evaluation and assignment into the numeric variable named
EmplNum). If the operator enters a “valid” number, then
program execution continues with the next line (220).

Next the program ““‘echoes’ the input data on the screen and
asks the operator to verify that it is correct. If it is, then the
operator is expected to type a “Y” and press the carriage-
return key again. Note that this section anticipates a common
problem - lettercase disagreement — by converting that the first
character of the answer to an uppercase letter before compar-
ing it with the uppercase “Y” that indicates an affirmative
response.

Now back to the error-trapping mechanism. This is probably
the simplest form of error trapping during input from the
operator; it merely asks for the operator to input data again.
The program will continue to do so until there are no run-time
errors during the program. A typical error would be the oper-
ator entering string data with no numeric characters. In such
case, the system would normally report:
Error 43 on line 210 NUMERIC INPUT REGUIRED. Howev-
er, since this program branches to AskEmpINum upon detect-
ing an error, the error report is disabled and the operator is
asked again to enter the number.

Here is a similar example that uses LINPUT. (LINPUT stands
for “Literal INPUT".)

ON ERROR GOTO AsKIncome ! Bet up error trae.

|

Agklncome: LINPUT "Monthly income?"sIncome$

LINPUT "Is this correct 7 (Y/N) "&Income$: Answers$

IF UPC$(Answerd)<»"Y" THEN AsKIncome
OFF ERROR 1 Disable error trar.

9-30 Communicating with the Operator

This program uses LINPUT for the primary reason that most
people (in America, anyway) use commas in numbers be-
tween the hundreds and thousands places, and so forth. For
example: 1,500,00. If you tried to use INPUT to enter this
number into a numeric or string variable, you would get an
erroneous value of 1. This is because INPUT interprets the
comma as a field separator. Using the LINPUT statement
allows you to enter the number, commas and all, into a string
variable. The program can then parse the string to remove the
commas, if necessary.

The preceding examples show that there are several differ-
ences between INPUT and LINPUT.

The main advantages of INPUT are as follows:

m Either numeric or string values can be input.

s A single INPUT statement can process multiple fields, and
those fields can be a mix of string and numeric data.

The INPUT statement can be powerful and flexible. When you
know the skill level of the person running the program, INPUT
can save some programming effort. However, this statement
does demand that the operator enter the requested fields prop-
erly.

Two of the disadvantages of INPUT are as follows:

m Improper entries to numeric variables can cause errors, such
as Error 130 NUMERIC VALUE REGUIRED and
Error 2 OVERFLOW.

m Certain characters can cause problems. Commas and quote
marks have special meanings and are the primary offen-
ders.

The problem with INPUT is that the program is powerless to
overcome the disadvantages. If you are asking for a numeric
quantity and the operator keeps trying to enter a name, the
program will never leave the INPUT statement. The BASIC
system will display error 43 until the operator either gets tired
or realizes the mistake. In the event of an error, the computer

Communicating with the Operator 9-31

automatically re-executes the INPUT statement until the oper-
ator satisfies all the requirements. Your program never gets a
look at the input, because the erroneous input initiates a
branch back to the beginning of the input routine.

The LINPUT statement can help with these potential prob-
lems. The result of any LINPUT statement is a single string
that contains an exact image of what the operator typed. If no
data are input, then the variable is given the value of the “null
string”” (a string of length 0 characters). If you need things like
default values, numeric quantities, and multiple values, then
you will need to process the string after you get it.

Since LINPUT accepts any characters without any special con-
siderations, the only normal error would be string overflow. If
the string used to hold the LINPUT characters is dimensioned
to hold a line of text (usually 80 characters) or more, then it
becomes highly unlikely that the operator will overflow the
string from the keyboard. Therefore, LINPUT is a very “’safe”’
way to get data from the keyboard.

To find out further details regarding the use of INPUT and
LINPUT, see the Technical BASIC Language Reference.

Enabling and You can use the ENABLE KBD statement to enable and disable
Disabling Keys certain keys and groups of keys. For instance, you can disable
the special function keys (during program execution) by ex-

ecuting this statement:

100 ENABLE KBD 235-2°5 ! All bits 1 exceprt bit

The numeric parameter is the mask that specifies which keys
are to be enabled or disabled; a 1 in a certain bit position
enables that key (or group), while a 0 disables the key(s). Bit
definitions in the mask are shown in the HP-UX Technical
BASIC Language Reference.

Here are the two keys and two key groups that can be enabled
and disabled with this statement:

m Reset
= PAUSE (or Break)

9-32 Communicating with the Operator

m Special function keys (or “’softkeys”)
m All other keys (such as alphanumeric and cursor-control
keys)

The corresponding keycap labels are shown in the Getting
Started manual for your particular Technical BASIC system.

Low-Level With Technical BASIC, you have the capability of trapping
Keyboard Input every keystroke using the ON KYBD statement. You can use
: this feature to design very effective keyboard interfaces.
Routines : . o
However, the programming effort for this type of application
is often relatively large. In fact, using ON KYBD to accept
keyboard input while displaying a cursor and positioning text
is essentially writing a text editor. Unfortunately, programs of
that magnitude are beyond the scope of this manual.
Here is an example that shows a simple usage of ON KYBD to
detect presses of alphanumeric keys.
100 INTEGER KevBuffer ! Key codes will be stored in this variable.
110 Kevs$="ABL" ! Define Kevs that will initiate branches,
120 1
130 ON KYBD KevBuffer,Kevs$ GOSUB KBDService
140 |
150 Spin: GOTO Sein
160 !
170 KBDService: ! Service routine for ON KYBD
180 IF KeyBuffer=NUM("A") THEN DISP "Alpha"
180 IF KevBuffer=NUM("B") THEN DISP "Bravo"
200 IF KevBuffer=67 THEN DISP "Charlie"”

210 RETURN

The INTEGER statement declares a variable named KeyBuffer,
which will be used as a one-keystroke buffer; in other words,
when a key is pressed, the numeric code that it generates will
be stored in this variable.

The Keys$ string variable is used to define which keys will be
enabled to initiate a program branch. As each key is pressed,
the string specified by Keys$ is searched for the presence of the
corresponding code. If a match is found, then the branch is
initiated; if not, the keystroke is ignored.

Communicating with the Operator 9-33

The ON KYBD statement enables branching to the subroutine
called KBDService; the branch will be initiated whenever any
of the keys that generate a code specified in the Keys$ variable
is pressed. For instance, running the program and pressing an
uppercase A will initiate a branch to the service routine.

The service routine can then determine which key was pressed
by accessing the integer variable named KeyBuffer. This ser-
vice routine defines different actions for pressing each key;
pressing A results in the program displaying ““Alpha”’; press-
ing B results in “Bravo”; pressing C results in “’Charlie”.

Note that the key buffer contains the numeric code for the key,
not the alphanumeric character that the key produces on the
screen. Note also that pressing a key which generates a lower-
case letter does not initiate a branch to the service routine.

Since the keyboard buffer is only one character in length, the
service routine can miss keystrokes if keys are not processed
quickly. This is due to the fact that keycodes are placed in the
buffer as each keypress is detected; if a keycode is already
there, then it is overwritten.

In order to disable certain key(s) from initiating the branch,
you can execute an OFF KYBD statement that specifies the
key(s). For example, this statement would disable only upper-
case C from initiating the previously defined branch.

OFF KYBD “C"

Here is an example of disabling all keyboard branching:
OFF KYBD

With ON KYBD, you can also trap keystrokes which would
otherwise cause immediate action. For example, most
keyboards have a BackSpace key that you can press to move the
cursor left one space and erase the character at that location.
Since this type of key produces an “escape sequence” (a sequ-
ence of characters beginning with the ASCII control character
“escape’’), you can include the key’s escape sequence in the
key string’. Here is an example:

1 Alist of the keys and the code that each produces is provided in the Implementa-
tion Specifics appendix to the HP-UX Technical BASIC Language Reference.

9-34 Communicating with the Operator

320 BackSrace$=CHR$(Z27)&"D"
330 ON KYBD KevBuffersBackSrace$ GOSUB KBDService

The program segment places the escape code that is produced
by the BackSpace key (on the Integral computer) into the vari-
able named BackSpace, and then enables the BackSpace key to
initiate a branch by executing an ON KYBD statement.

Reading Text from Somewhere between the high-level INPUT or LINPUT and the
the Screen low-level ON KYBD statements lies another method of accept-
ing alphanumeric input. The AREAD statement reads text
from the screen into a string variable. See the example of using
this statement in the preceding section of this chapter called
“Sending Messages to the Operator”.

Communicating with the Operator 9-35

9-36 Communicating with the Operator

Chapter Contents

Using the Clock
and Timers

HP-UX systems feature a real-time clock that maintains date
and time of day. You can access this clock from the Technical
BASIC system'. There are also timers that allow you to gener-
ate interrupts at specified intervals.

This chapter covers using the clock and timers. Here are the
topics covered:

m Reading the current date.

Reading the current time of day.

Converting between various time and date formats.

Measuring time intervals.

Enabling timers to interrupt normal program flow at speci-
fied intervals.

1 On multi-user HP-UX systems, only the system administrator can set the time
and date.

Using the Clock and Timers 10-1

10

|
Using the Clock

Reading the Date

Reading the Time
of Day

10-2 Using the Clock and Timers

This section discusses the Technical BASIC features available
for reading the date and time of day, and for measuring time
between events.

The DATES$ string function returns the current date in the
form: yy/mm/dd (year/month/day).

DATES
B4/10/17

The numeric function for obtaining the date is DATE. Execut-
ing this function returns a date in the form: yyddd (yy indi-
cates the last two digits of the year; dddindicates the day of the
year, in the range 1 through 366).

DATE
84291

where the date displayed is the 291st day of the year 1984.

The TIMES$ string function returns the system clock reading in
this 24-hour notation: hh:mm:ss (hours:minutes:seconds).
Assuming your system clock has been properly set, the read-
ing returned by the TIME$ function shows the time elapsed
since midnight of the current day.

TIME$
B:5d4:47

Another method for determining the time elapsed since mid-
night is to use the TIME numeric function. This function re-
turns the total number of seconds elapsed since midnight. This
example of invoking the TIME function returns the numeric
equivalent of a time of day of ““8:54:57".

TIME
32087

The last value returned in a day’s time is 86 399. When the
counter reaches this value, it is reset to 0 and the date is
incremented by one. Note that all of the functions mentioned

10
20
30
40

in this section are programmable. The following short prog-
ram is an example:

DISP "Todav‘s date is: "3 DATE$i" or"iDATE

DISP "This prodgram was run at: "3iTIME$

DISP "Time of day (in seconds since midnidght) is: "3TIME
END

Time and Date Technical BASIC has additional time functions that perform
Format the following notational conversions:

Conversions a Converting a specified number of seconds (since midnight)

to an hours:minutes:seconds (hh:mm:ss) string format.

m Converting a string in the form hh:mm:ss to the equivalent
number of seconds (since midnight).

m Converting a specified Julian day number to a month/day/
year (mm/dd/yyyy) string format.

a Converting a string in the form month/day/year (mm/dd/
yyyy) to the equivalent Julian day number.

Time: Numeric to String Conversions HMS$ is a function which
converts a specified number of seconds (since midnight) to an
equivalent string in the form hh:mm:ss (hours:minutes:se-
conds). An example is as follows:

HMS$ (TIME)

Here is what it might return:

09:45:52

Here is another example:
DISP "Elarsed time = "jHMS$(TimeZ2-Timel)
In this case, the time returned would not be in seconds since

midnight; however it would be in a more usable form than just
seconds:

10:10:00

Thus, the elapsed time is 10 hours, ten minutes, and no
seconds.

Using the Clock and Timers 10-3

1Y

v

10-4 Using the Clock and Timers

Time: String to Numeric Conversions The HMS function does
the opposite of HMS$. This function converts a string in the
form hh:mm:ss (hours:minutes:seconds) to the integer equiva-
lent in seconds. Here is an example:

100 | Calculate time differential

110t and display in "hhimmiss" format.

120 |

130 DISP "Time between B:08:29 P.m,"

140 DISP " and 10:14:32 am,"

is0 1

160 ! Now calculate difference (in minutes).
170 Diff=HMS("1Z2:00:00")+HMS("0G:0B:29") -HME(" 10
180 ! Then re-format for human consumption,
190 Diff$=HME$(Diff)

200 1

210 DISP is "iDiff%

220 1

230 END

Here are the program’s results.

Time between G:0B:29 Pim.
and 10:14:32 avm.
is 7:53:57

The HMS function can be also be executed from the keyboard:
HMS("13:30:15")

which returns on the display:

48615

Date: Numeric to String Conversions The MDY?$ string function
converts a Julian Day number’ to an equivalent string express-
ion in the form: mm/dd/yyyy (month/day/year). The range of
Julian Day numbers that you can pass to this function is from
2299161 through 3199160; these limits correspond to October
15, 1582 and November 25, 4046, respectively.

1 The Julian Day number is an astronomical convention representing the number of
days since January 1, 4713 B.C.

2 The beginning date of the modern Gregorian calendar.

Timing the Interval
Between Events

10

Here is an example of how you can use MDY$:

MDY$(244B6000)
The function returns the Julian Day number in a more under-
standable format.

10/26/1984
Date: String to Numeric Conversions The MDY numeric func-
tion does the opposite of the MDY$ function. When it is given
a string in the form mm/dd/yyyy, it returns the equivalent
Julian Day number. Note that the string must lie between the
dates 10/15/1582 and 11/25/4046, and consist of exactly 10 char-

acters (including the two slashes). Here is an example of using
the function from the keyboard:

MDY {"11/25/404B6")

returns the following on the display:

3189160

Here is a more current example:

MDY ("10/17/1984")

returns the following on the display:

24435991

Measuring the time between two events is quite simple.

100 Tinit=TIME ! Initial time,
110 1

120 FOR J=1 TO 5553

130 1

140 NEXT J

isg !

160 Tfinal=TIME ! Final time.
170 1

180 DISP "Elapsed time ="3Tfinal-Tiniti"seconds,”
190 !
200 END

Using the Clock and Timers 10-5

10

Here are typical results of running the program:

Elarsed time = 4 seconds,

Note that the program does not keep track of changes in the
day. Thus, if you are timing events that will occur near mid-
night, you may get a negative time interval. You may want to
add code that keeps track of days also. For example, you could
multiply the difference in days by the number of seconds in a
day (86 400), and add this figure to the differential.

|
Using the Timers

Timer Interrupts

10-6 Using the Clock and Timers

This section covers the following timer operations:

m Timer branches.

m Measuring time elapsed since a timer was set to interrupt.

The subject of event-initiated branching was discussed near
the end of the “Program Structure and Flow”” chapter. If you
are not familiar with the concept, you may want to read that
section before reading this section.

Here are the statements that control timer-initiated branches:

m ON TIMER# sets a specified timer to zero and immediately
activates it. The end-of-line branch is initiated when the
specified time interval has elapsed. Three timers are avail-
able for this purpose; they are numbered 1, 2, and 3.

m OFF TIMER# disables branching for the specified timer.

You can use these timers to generate these types of interrupts:
m Cyclic interrupts

m Delay interrupts

m Time-of-day interrupts

Cycle and Delay Interrupts The ON TIMER# statement enables
a branch to be taken as soon as the specified number of mil-

liseconds have elapsed. For instance, the following statement
enables a GOSUB branch to the subroutine called Cycle2 to

occur two seconds from the time that the statement is ex-
ecuted:

ON TIMER® 1, 2000 GOSUB Cvclel

ON TIMER# remains in effect, re-initiating a branch every two
seconds until an OFF TIMER# statement is executed (for timer
number 1). Thus, the ON TIMER# statement creates a cyclic
interrupt.

To produce a one-time timer interrupt (i.e., a delay interrupt),
you will need to execute an OFF TIMER# statement in the
timer service routine.

This example shows both usages of timers. It displays the time
(hours:minutes:seconds) for a period of two seconds and then
prints five random numbers. It repeats this process until eight
seconds have elapsed, at which time the program is ended.
The ON TIMER# 1is a cyclic interrupt, while the ON TIMER#
2 statement, along with its OFF TIMER# 2 counterpart, actasa
one-time delay interrupt.

100 ON TIMER# 1,2000 GOSUB TwoSecCrcle
110 ON TIMER# 2,B000 GOTO EightSecDelav

120 1

130 CLEAR ! Clear screen.

140 1

150 Dummvloor: ALPHA 35,1 @ DISP TIMES
160 GOTO DummvLoop

170 |

180 TwoSecCvcle: ALPHA 841

190 FOR Number=1 T0O 3
200 DISP RND ! Random number,
210 MEXT Number

220 !

230 KETURN

240 1

250 EidhtSecDelav: OFF TIMER# 2

260 ALPHA 151

270 DISP "Finished"
280 !

290 END

Using the Clock and Timers 10-7

10

10

Here is typical output from the program.

12120125

0,744804223761712
0,02B9B206B54927213
0,558984130375072
0,311563463240455
0,114398065498712

Finished

Simulated Time-of-Day Interrupts The ON TIMER# statement
allows you to define and enable a branch to be taken when the
timer reaches a specified count. You can simulate time-of-day
interrupts by using this procedure:

1. Determine the current time of day.

2. Determine the desired time of day at which the interrupt
will occur.

3. Calculate the number of seconds between the two.

4. Setatimerinterrupt for that number of seconds (from the
present time).

Typically, the ON TIMER# statement is used to cause a branch
at a specified time. This statement can be use as an interval
timer in a program, by storing in a program variable the value
of the system clock when the program is started (using the
function called TIME) and subtracting this value from a speci-
fied final time. The following example uses the interval timer
as an alarm to remind you to go to lunch.

100 DISP "This is the present time of dav: "3JTIMES$

110 DISP

120 DISP "Seecify alarm time using this format: ‘hhimm:ss "
130 LINPUT Tfivwal$ €@ DISP "Thank vou."

140 !

150 V Determine number of seconds since midnidght,

160 Tfinal=HMS(Tfinal$)

170 1 Set timer to interrurt in Tfinal-TIME (seconds),

180 ON TIMER# 1,(Tfinal-TIME)*1000 GOSUB Alarm

10-8 Using the Clock and Timers

Timer Functions

190 1

200 Sein: GOTO Sein ! Twiddle thumbs,
210 !

220 Alarm:

230 BEEP

240 CLEAR

250 DISP @ DISP @ DISP "Time for lunch!" B DISP
260 OFF TIMER# 1

270 RETURN

280 !

290 END

Here are is the screen that the program produces:

This is the present time of day: 9:38:54

Specify alarm time using this format: ‘hhimmiss’
7 11:45:00
Thank vou.

The first line of output gives the current time of day. The
second line asks you to set the alarm for a time of your choos-
ing using the "hh:mm:ss” format. The string you enter (11:45:00
above) is converted by the numeric function HMS into seconds
since midnight and assigned to the variable Tfinal. Next, timer
number 1 is set to interrupt; the time interval is calculated as
the difference between “Tfinal” and the current TIME (it is
multiplied by 1000 to convert the result to milliseconds, which
is how the ON TIMER# statement interprets the interval para-
meter).

When the specified time interval has elapsed, the timer inter-
rupt service routine displays the “lunch alarm’ message.

Time for lunch!

The READTIM numeric function returns the number of
seconds currently registered on the specified system timer.

m For timer numbers 1, 2, or 3, this is the number of seconds
(not milliseconds) since the timer was set in the program, or
since it last initiated a branch.

Using the Clock and Timers 10-9

10

10

100
110
120
130
140
150
160
170
180
190
200
210

220

® For timer 0, it is the number of seconds elapsed since the
system clock was last set, either by the system administrator
or by power on.

m Jf the timer is not currently being used, then READTIM
returns 0.

m After an OFF TIMER# statement, READTIM returns the
reading of the timer at the point it was disabled.

The following program makes use of the READTIM function.
It programmatically defines a function key to call a routine
which displays the number of seconds elapsed since timer 1
was set. After ten minutes have elapsed, it displays the mes-
sage:

Ten minutes have elarsed.

and then issues a beep.

ON TIMER# 1,10%60*1000 GOSUB TenMin ! Interrupt after 10 min,

ON KEY# 1,"Seconds" GOSUB Elapsed | Show elarsed time,
!

Seins GOTO Sein ! Idle loop,

!

STOP

!
TenMin: DISP "Ten minutes have elapsed,"
BEEP

RETURN
I

Elapsed: DISP READTIM(1)i"seconds since timer 1 set,"
RETURN

Pressing k1! directs the program to display the number of
seconds since TIMER# 1 was set. Here are typical results that
the Elapsed subroutine displays:

3 seconds since timer 1 set.
4 seconds since timer 1 set.
9 seconds since timer 1 set.

1 On some consoles, this key is labeled k0. Refer to the Getting Started manual for
your particular Technical BASIC system for a description of ON KEY# parameters and
softkey labels.

10-10 Using the Clock and Timers

Timers and

It is possible for a context (program or subprogram) to enable a

Subprograms timer interrupt and then call one or more subprograms before
the timer interrupt occurs. As long as the context is not execut-
ing a subprogram when the timer is expected to interrupt, the
interrupt will initiate its branch at the correct time. However, if
the subprogram is being executed when the timer would have
otherwise initiated its branch, then the branch to the service
routine is not executed until after control returns to the context
that defined the timer interrupt.

Timer Interrupts While Not Executing a Subprogram The follow-
ing program is an example of the situation in which the
subprogram is finished before the timer interrupts. (The situa-
tion of the subprogram being executed when the calling con-
text’s timer interrupt would have occurred is covered in the
next section).

100 ON TIMER# 1,10000 GOSUB TenSecs ! 10-second cvcles,

110!

120 Tinit=TIME ! OStore initial time.

130 !

140 FOR I=1 TO 3 ! MWait 3 seconds.

130 WAIT 1000 8 DISP TIME-Tiniti'seconds,"”

160 NEXT 1

1701

180 CALL "SUBTimerl" (Tinit)

190 1

200 FOR I=1 TO 3 ! MWait 3 more seconds (to allow interrurt),

210 WAIT 1000 B DISP TIME-Tiniti"seconds,"”

220 NEXT I

230 !

240 END

250 |

260 TenSecs: DIGP

270 DISP "At branch to ‘TenSecs’s READTIM(L1)="3iREADTIM(1)

280 DISP

280 RETURN

Using the Clock and Timers 10-11

10

Here is the subprogram.

100 SUB "SUBTimerl"™ (Tinit)

110 DISP
120 DISP "Entering SUBTimerl."
130 DISP

140 FOR I=1 TO 5

1560 WAIT 1000

160 DISP TIME-Tiniti"seconds,"
170 NEXT 1

180 DISP
190 DISP "Exiting SUBTimerl,*®
200 DISP

210 SUBEND

Here are the results of running this program.

1 seconds,
2 seconds,
3 seconds,

Entering SUBTimerl,

seconds.,
seconds.
seconds.
seconds,
seconds.,

L8 o}

o~

Exiting SUBTimerl.

9 seconds.,
10 seconds.,

At branch to ‘TenSecs’s READTIM(1)= ©

11 seconds,

The main program starts out by setting timer number 1 to
interrupt in ten seconds. The elapsed time is then read every
second and displayed until branching to the subprogram.

The subprogram displays a message telling you that it has
been given control. It also displays elapsed times every second
(for 5 seconds). After five seconds have elapsed, control is
returned back to the calling program.

10-12 Using the Clock and Timers

100
110
120
130
140
150
160
170
1840
190
200
210
220
230
240
250
260
270
280
290

When timer 1 has counted to 10 seconds, the branch to Ten-
Secs is initiated.

The main point of this example is that the main program’s
timer interrupt occurs at the expected time, because the
subprogram is not being executed when the timer interrupts.

The program also shows that the timer is reset to 0 (as deter-
mined by the READTIM function); however, it does not show
that the timer is cyclic and is automatically re-enabled and
begins counting again. In this case, the program ended before
a second interrupt occurred.

Timer Interrupts while Executing Subprograms The following
program and subprogram show an example in which the
subprogram is being executed when the calling context’s timer
interrupts. Note that they are slightly modified versions of the
preceding program and subprogram.

ON TIMER# 1,10000 GOSUB TenSecs ! 10-second cvcles.

Tinit=TIME ! Store initial time,

FOR I=1 70 3 ! HWait 3 seconds.
WAIT 1000 B DISP TIME-Tiniti"seconds,"

NEXT I
I

CALL "SUBTimerZ" (Tinit)

FOR I=1 TO 11 ! HWait 11 more seconds (to allow interrupt).,
WAIT 1000 @ DISP TIME-Tiniti"seconds.,"”

NEXT I

!

END

!
TenSecs:

RETURN

DISP
DISP "At branch to ‘TenSecs’sy READTIM(1)="3SREADTIM(1)
DIsp

Using the Clock and Timers 10-13

10

10-14 Using the Clock and Timers

Here is the subprogram.

100
110
120
130
140
1350
160
170
180
180
200
210

Here are the results of running this program.

1

2

“

3

SUB "SUBTimer2" (Tinit)
DISP
DISP "Entering SUBTimerZ.,"
DISP
FOR I=1 T0O 10
WAIT 1000
DISP TIME-Tiniti"seconds,"”
MEXRT I
DISP
DISP "Exiting SUBTimerZ,"
DISP
SUBEND

seconds.,
seconds.
seconds.

Entering SUBTimer2,

oo

8
-
8
g
10
11

12

13

seconds.
seconds.
seconds .
seconds.
seconds.,
seconds.
seconds.
seconds,
seconds.,
seconds.

Exiting SUBTimer2,

At

14
13
16
17
18
19

20

branch to

seconds.,
seconds.,
seconds.,
seconds.,
seconds.,
seconds.
seconds.,

‘TenSecs’ sy READTIM(1)=

3

At branch to ‘TenSecs’s» READTIM(1)= O

seconds.,

2 seconds,
23 seconds.
24 seconds,

J -

[I v
r

The main program starts out by setting timer number 1 to
interrupt in ten seconds. The elapsed time is then read every
second and displayed until branching to the subprogram.

The subprogram displays a message telling you that it has
been given control. It also displays elapsed times every second
(for 10 seconds this time). After ten seconds have elapsed,
control is returned back to the calling program.

The timer in the main program would have initiated its branch,
but could not because the subprogram was being executed.
This result is shown by the value 3 being returned by the
READTIM function. In the calling context (here the program),
timer 1 did count to 10 seconds, but it could not initiate the
branch to TenSecs because it was not in the current context
(the subprogram).

The main point of this example is that the main program’s
timer interrupt is delayed, because the subprogram does not
return control to the calling context (main program) until after
the timer interrupt should have occurred. However, the
branch is initiated as soon as control returns to the context in
which it is enabled.

The program executes 10 additional 1-second waits, in order to

demonstrate that the timer will indeed initiate subsequent
branches as expected.

Using the Clock and Timers 10-15

10

10

10-16 Using the Clock and Timers

11

Data Storage and Retrieval

This chapter describes some useful techniques for storing and
retrieving data. The methods fall into these categories:

m Storing data with programs (using DATA and READ state-
ments)

m Storing data in BASIC/DATA files (using ASSIGN#,
PRINT#, and READ#).

® Storing data in text/data files (using ASSIGN, OUTPUT, and
ENTER).

To store and retrieve data that is part of the BASIC program,
use DATA statement(s) to specify data that is to be stored in
the memory area used by BASIC programs; thus, the data is
always kept in the same file as the program. The data items can
be retrieved by using READ statements to assign the values to
variables. This is a particularly effective technique for small
amounts of data that you want to maintain in a program file.

For larger amounts of data, mass storage BASIC/DATA files
are more appropriate. These files provide means of storing
data on mass storage devices. The BASIC/DATA files available
with Technical BASIC are described in this chapter. A number
of different techniques for accessing data in these files are
described in detail.

Files of type text/data are used as the interchange method for

sharing data between Technical BASIC and the HP-UX
system.

Data Storage and Retrieval 11-1

11

Chapter Contents

This chapter discusses these topics:

m Storing data in programs

Using data files

Brief mass storage tutorial
Introduction to BASIC/DATA file access techniques
A closer look at file access

A closer look at serial access

Random file access

m Determining data types

m Trapping EOF and EOR conditions
m Using text/data files

Storing Data in
Programs

Storing Data in
Variables

11-2 Data Storage and Retrieval

This section describes a number of ways to store values in
memory. In general, these techniques involve using program
variables to store data. The data are kept with the program
when it is stored on a mass storage device (with STORE and
SAVE). These techniques allow extremely fast access of the
data. They provide good use of the computer’s memory for
storing relatively small amounts of data.

Probably the simplest method of storing data is to use a simple
assignment, such as the following LET statements:

100 LET Cm.per_inch=2,54
110 Inch_rer_cm=1/Cm_per_irch

The data stored in each variable can then be retrieved simply
by specifying the variable’s name.

This technique was used in the first example program in the
“Program Development” chapter. It was a convenient way to
store data without knowing anything about data files.

Data Input by the
User

110 OPTION BASE 1

120 DIM IncomeName$(Z)

130 REAL TardetIncome(2)

140

150 ! Assidgn values to variables.
160 LET IncomeName$(1)="Pavroll"

170 LET IncomeName$(2)="Investments"
1B0 LET TardetIncome(1)=1680,00

190 LET TargetIncome(2)=343,67

This technique works well when there are only a relatively few
““constants’’ to be stored, or when several data values are to be
computed from the value of a few items. The program will
execute faster when variables are used than when expressions
containing constants are used; for instance, using the variable
Inch_rer_cm in the preceding example would be faster than
using the constant expression 1/2.,54. In addition, it is easier
to modify the value of an item when it appears in only one
place (i.e., in one LET statement). '

You also can assign values to variables at run-time with the
INPUT and LINPUT statements as shown in the following
examples.

100 DISP "Please enter vour IDs» and Press Return.,"”
110 INPUT ID

+

+

210 LINPUT "Enter the value of X" Kesponse$

Note that with this type of storage, the values assigned to the
corresponding variables are notkept with the program when it
is stored; they must be entered each time the program is run.
This type of data storage can be used when the data are to be
checked or modified by the user each time the program is run.
As with the preceding example, the data stored in each vari-
able can then be retrieved simply by specifying the variable’s
name.

Data Storage and Retrieval 11-3

11

11

Using DATA and
READ Statements

The DATA and READ statements provide another technique
for storing and retrieving data from the computer’s read/write
(R'W) memory. The DATA statement allows you to store a
stream of data items in memory, and the READ statement
allows you retrieve data items from the stream. You can have
any number of READ and DATA statements in a program,
limited only by computer memory (or disc space when the
program is stored in a file).

Storing Data When you RUN a program, the system concaten-
ates all DATA statements in a given context into a single “data
stream.” Each subprogram has its own data stream. The fol-
lowing DATA statements distributed in a program would pro-
duce the following data stream.

100 DATA Pavrollslnvestments

+

200 DATA 1680,56.343.67

+

300 DATA Mortdade

Data Stream: Payroll

Investments 1680.56 345.67 Mortgage

11-4 Data Storage and Retrieval

As you can see from the example above, a data stream can
contain both numeric and string data items.

Each data item must be separated by a comma; string items can
optionally be enclosed in quotes. Strings that contain a comma
or exclamation mark must be enclosed in quotes. In addition,
you must use the following notation for every quote you want
in the string. For example, to enter the strings UNQUOTED,
UNQUOTED, and “QUOTED” into a data stream, use this
DATA statement:

100 DATA UNQUOTED,"UNQUOTED"."~"QUOTED™""

The tilde characters indicate that the quote mark that follows it
is to be part of the data read into a string variable.

Retrieving Data To retrieve a data item, assign it to a variable
with the READ statement. Syntactically, READ is analogous to
DATA; but instead of a data list, you use a variable list. Here is
an example:

100 DATA PavrollsInvestments

+

200 DATA 1680.56,345.67

+

100 READ IncomeiName$sIncomeName2%:TardetIncomel

This READ statement would read three data items from the
data stream into the three variables. Note that the first and
second variables are string and the third is a numeric. This
corresponds to the order and type of data items in the data
stream.

Numeric data items can be READ into either numeric or string
variables, with the following restrictions:

m If the numeric data item is of a different specific numeric
type than the numeric variable, then the item is automatical-
ly converted. For instance, REALs are converted to INTE-
GERs, and INTEGERs to REALs. However, if the value is
out of range for that numeric data type, then an error is
reported.

® If the string variable has not been dimensioned to a size
large enough to hold the entire data item, then error 56 is
reported.

Data Storage and Retrieval 11-5

11

11

11-6 Data Storage and Retrieval

The Data Pointer The system keeps track of which data item to
READ next by using a data pointer. Every data stream has its
own data pointer which points to the next data item to be
assigned to the next variable in a READ statement. When you
run a program segment, the data pointer initially points at the
first item of the data stream. Every time you READ an item
from the stream, the pointer is moved to the next data item.
When a subprogram is called by a main program (or another
subprogram), the position of the data pointer is recorded and
then restored when you return to the calling context.

Starting from the position of the data pointer, data items are
assigned to variables one by one until all variables in a READ
statement have been assigned a value. If there are more vari-
ables than dataitems, the system returns an error, and the data
pointer is moved back to the position it occupied before the
READ statement was executed.

Examples The following example shows how data is stored in
a data stream and then retrieved. Note that DATA statements
can come after READ statements even though they contain the
data being READ. This is because DATA statements are linked
during program pre-run, whereas READ statements aren’t
executed until the program actually runs.

10 DATA NovembersZ2B

20 READ Monthé$:DavsYears

30 DATA 1984:+"The date is "

40 READ Str$

30 Print StréiMonth$iDaviYears
GO END

The date is Movember 26 1984

Storage and Retrieval of Arrays In addition to using READ to
assign values to string and numeric variables, you can also
READ data into arrays. The system will match data items with
variables one at a time until it has filled a row. The next data
item then becomes the first element in the next row. You must
have enough data items to fill the array or you will get an error.
In the example below, we show how DATA values can be
assigned to elements of a 3-by-3 numeric array.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

DIM Arravl1(2)
DIM Arrav2(d)
DATA 1+2,3:4

DATA 54B6.7

READ A+B4C

MAT READ Ar
DATA B8:9

RESTORE
MAT READ Ar
RESTORE 180
READ D

10 OPTION BASE 1

20 DIM Example(3:3)

30 DATA 1+2+3+445+68,7+8+9410,11

40 MAT READ Examprle

50 MAT PRINT USING "3(XsK):/"iExamerle
6O END

RUN

123
4 36

78%8

The data pointer is left at item 10; thus, items 10 and 11 are
saved for the next READ statement.

Moving the Data Pointer In some programs, you will want to
assign the same data items to different variables. To do this,
you have to move the data pointer so that it is pointing at the
desired data item. You can accomplish this with the RESTORE
statement. If you don’t specify a line number or label, RES-
TORE returns the data pointer to the first data item of the first
data stream in that context. If you do include a line identifier in
the RESTORE statement, the data pointer is moved to the first
data item in the DATA statement at the identified line. The
example below illustrates how to use the RESTORE statement.

3-element array (OPTION BASE O),
o-element array (OPTION BASE 0).
Places 4 items in stream.

Places 3 items in stream.

Reads first 3 items in stream.
Reads next 5 items in stream.

~

|
|
|
i
!
ravz !
I Places 2 items in stream,
|
| Re-positions pointer to lst item (line 120).
| Reads first 3 items in stream,
I Moves data pointer to item "8",
! Reads "B".
|

ravl

PRINT "Arravl contains:®

MAT PRINT A

rravl

PRINT "Arrav2 contains:"

MAT PRINT A

rrar2

PRINT "AsBsC+D eaqual: "3JA3IBICID

END

Data Storage and Retrieval 11-7

11

11

Here are the results of running the program.

Arravl contains:
1

ed
i

Arrav? contains:

]
L1 R N |

~ O}

8
ABHC+D equal: 1 2 3 B

|
Using
BASIC/DATA
Files

Brief Mass Storage
Tutorial

11-8 Data Storage and Retrieval

This section of this chapter describes another general class of
data storage and retrieval methods — that of using mass storage
BASIC/DATA' files. This material is broken up into several
parts.

® A look at mass storage, directories, and data files
® Introduction to accessing BASIC/DATA files
=

A closer look at using files

Determining data types
Trapping EOF and EOR conditions

This section briefly discusses these topics:

® Mass storage in general
® Directories
® BASIC/DATA files

As the adjective “mass” suggests, mass storage devices are
data-storage devices which are generally capable of storing
“large” amounts of data. Just how much data constitutes a
large amount depends on the device itself. However, most
mass storage devices are capable of storing on the order of
hundreds of thousands to several million data items.

1 The subsequent section called “Using text/data Files” discusses techniques for
accessing files of type text/data, which is the file type that both Technical
BASIC and HP-UX can use (such as for data interchange).

Besides having the ability to store data, mass storage devices
are capable of providing means for keeping data organized so
that logical groups may be accessed systematically and effi-
ciently.

m Data items are organized into logical groups known as files;
a file is merely a collection of data items which are accessed
through one name. Each file may contain one or more logic-
al records; each logical record in a file is much like a subset of
the file in that it can also contain several data items.

m Files are organized by directories. A directory is an index of
files; in any directory, there is an entry for every file within
that directory.

When a data file is initially created, it contains nothing.
However, you can fill it with any data that you want, which
gives the file the general structure shown below.

Beginning
of File
[} [l I
Type | Data | Type | Data Type | Data
Field 1! Field : Field :
. g N .) A) f 1
Data ltem Data ltem Data Item EOF or EOR Physical

Marker End of File

The data items are stored using either ASCII characters (for
string items) or an internal representation (for numeric items).
The type fields indicate whether the item is a string or a
numeric item. Subsequent sections provide further details of
just what the file contains and how to write to and read from
them.

The CAT statement shows some of the information that is
stored in a directory. Executing CAT with no directory path
tells the system to get a catalog of the current working
directory.

CAT

1 1If you don’t know the meaning of the term “current working directory,” then
refer to the discussion of the HP-UX file system in your HP-UX system’s docu-
mentation.

Data Storage and Retrieval 11-9

11

11

Introduction to
BASIC/DATA File
Access Techniques

100 1

Specifying a directory path with the file name gives a listing of
the files in that directory.

CAT "/users/mark/BASICFILE"

This section presents BASIC programming techniques useful
for accessing BASIC/DATA files. The first section gives a brief
introduction to the steps you might take to store data in a file.
Subsequent sections describe further details of these steps.

Methods of Accessing Data Files There are two methods of
accessing BASIC/DATA files:

® Serial access: writing to or reading from the file in sequential
order — one item at a time, from the beginning.

= Random access: writing to (or reading from) the file, starting
at the beginning of any logical record within the file. Within
any logical record, however, access is strictly serial.

Technical BASIC allows you to use both types of access
methods on one file, with only a few restrictions. Each access
method has uses in certain applications.

Example of Writing Serially toaFile Storing data in files requires
a few simple steps. The following program segment shows a
simple example of placing several items in a data file.

Allocate memory for variables.

110 OPTION BASE 1
120 DIM IncomeName$(2)
130 REAL TardetIncome(2)

4o !
150 !

fAssign variables.

160 IncomeName$(1)="Pavroll"
170 IncomeName$(2)="Investments"

180 !

190 TardetIncome(1)=1680,56
200 TardetIncome(2)=345.67

210 !

220

11-10 Data Storage and Retrieval

Create a data file,

1 The subsequent section called “Using text/data Files” discusses techniques for
accessing files of type text/data, which is the file type that both Technical
BASIC and HP-UX can use (such as for data interchange).

230

240

250
260
270
280
290
300
310

CREATE "Oct84Income" sl 1 Size = 1 logical record,
ASSICGN# 1 TO "OctB4Income" ! Assign a buffer to it,

!
PRINT# 1 § IncomeName$(1)sTardetIncome(l)
PRINT# 1 § IncomeName$(2):TardetIncome(Z)

!
ASSIGN# 1 TO "+ | Close file {(release buffer).
!
END

In order to store data in a file, a data file must be created (or
already exist) on the mass storage media to be used. In this
case, line 230 creates a BASIC/DATA file for storage. The file is
created with 1 logical record, which has a default size of 256
bytes. This is a large enough file to store the data in this
example. (File size, logical records, and record size are discus-
sed in the subsequent section called “A Closer Look at File
Access”’.)

The file is created in the ““current working directory.” If the file
is to be created in another directory, then the appropriate
directory path must be prefixed to the file name. This example
creates a file in another directory:

CREATE "/users/mark/NouIncomes" +4

See the Getting Started manual for your particular Technical
BASIC system for specific information about directories on
your system.

Then, in order to store data in (or retrieve data from) the file,
you must assign a buffer number to the file. Line 240 shows an
example of assigning a buffer number to the file (also called
“opening the file”’). The PRINT# statements on lines 260 and
270 send the previously defined data items being sent to the
file.

The file is closed after all data have been sent to the file. (In this

case, the close operation is not necessary, because all files are
automatically closed by the system by the END statement.)

Data Storage and Retrieval 11-11

11

11

Here is a conceptual diagram of the file’s contents after the
program has finished execution.

Payroll

1680.56

Investments 345.67

]

Beginning
of File

U

T !
EOR Physical
Marker End of File

Although they are not shown in the drawing, the system
automatically adds the type fields. You can use the TYP func-
tion to read it from BASIC and thus determine the item’s type.
The subsequent section called “‘Determining Data Types”
gives further details.

The end-of-record (EOR) marker is always placed after the last
item written into a file. It is used instead of an end-of-file (EOF)
marker, because Technical BASIC allows both random and
serial access of the same file. Note, however, that the file is
initially filled with EOF markers (when the disc is initialized).
Subsequent sections explain EOR and EOF markers in greater

depth.

Example of Serially Reading from a File Here is a simple pro-
gram that reads the data stored in the file created and written
in the preceding example.

Allocate memory for variables,

110 OPTION BASE 1 ! Implicit lower subscript bowund,
120 DIM IncNam$(2)
130 REAL TatIne(2)

140 !

150 ASSIGN# 1 TO "OctB84Income" | Assign buffer,

i6o !

170 READ# 13IvcNam$(1)TdtInc(l) ! Read 2 items from file,

1
180 READ# 13IncNam$(2),TdtInc(2) ! Read

190 !

11-12 Data Storage and Retrieval

more items.,

l@

200 DISP

210 DISP " Catedory Target"
220 DIBP " memmemeeee mmeeeee "
230 DISP IncNam$(1)TgtInc(l)

240 DISP IncNam$(2)TdtInc(Z)

250 1

260 ASSICGN# 1 TO "¢

270

280 END

11

As in the preceding example, you must assign a file number to
the data file before you can access it. Line 150 makes this
assignment.

The subsequent READ# statements (lines 170 and 180) read
the data into program variables. The general suggestion is to
“read it like you wrote it”; in other words, match the order
and type of each item in the file to the variable into which the
item will be read. For instance, if you wrote a SHORT variable,
a REAL numeric expression, and a string of length 36 charac-
ters into the file, then you should read these items using a
SHORT variable, a REAL variable, and a string variable with a
length of (at least) 36 characters.

The variable used to read each data item need only be of
the same general data type as the data item (i.e., numeric
or string). It is not strictly required to be of the same speci-
fic type (i.e., INTEGER, SHORT, or REAL for numeric
items; or identical length for string items). However, if the
specific types of variables and items are not matched, it be-
comes possible to generate range errors; for instance, a
value of 1E +200 is out of range for INTEGER and SHORT
variables, and a string of 200 characters is out of range for a
string variable with maximum length of 18 characters.

As you can see, these are very simple examples. However,
they show the general steps you must take to serially access
files.

Data Storage and Retrieval 11-13

11

A Closer Look at
BASIC/DATA File
Access

The preceding section showed simple examples of writing
data in a file and then reading it back. This section describes
what is happening “behind the scenes.” It will help you to
better understand how to create and use BASIC/DATA files.

File and Record Size Calculations In the preceding example of
serially writing a file , the following program line created a file
that was used to store the program’s data:

230 CREATE "OctB4Income" sl ! Size = 1 logical record.
The size of the file was specified to be one logical record with
(default) record size of 256 bytes. The example stated that this
file size was sulfficient to store the data. This section will help
you verify that statement and show you how to calculate the
size of file required to store any data.

The following chart describes the amount of space necessary to
store numeric and string data items.

Data Type

Storage Requirements (Per Data Item)

Simple REAL numbers
Simple SHORT numbers
Simple INTEGERSs

Simple string

REAL array
(each element)

SHORT array
(each element')

INTEGER array
(each element)

String array

1 byte for type field,
+ 8 bytes for number.

1 byte for type field,
+ 8 bytes for number.

1 byte for type field,
+ 4 bytes for number.

3 bytes for type field,
+ 1 byte per character,
+ 3 bytes each time the string crosses a logical record boundary.

1 byte for type field,
+ 8 bytes for number.

1 byte for type field,
+ 4 bytes for number.

1 byte for type field,
+ 4 bytes for number.

Each array element requires the same amount of space required for simple
string items (shown above)

1 If an entire SHORT array is written into the file as an array variable, then each
element requires 5 bytes; however, if SHORT array elements are written indi-
vidually, then each element requires 9 bytes.

11-14 Data Storage and Retrieval

Using the data from the preceding serial access example, here
are the calculations for the size of file required to store the data:

Item Type of data Bytes required
IncomeName$ “Payroll” 7+3 =10
“Investments” 11+3 = 14
Targetincome Two REAL numbers 2*(1+8) = 18
Total =E

The file size could be 1 logical record (with default size of 256
bytes). You would not need to partition it into smaller logical
records, since the data items in the file are only accessed
serially.

Note that the size of the file actually created will always be an
integral multiple of 1 024 bytes. This effect is due to the fact
that the HP-UX file system can only address portions of the
disc as small as a 1 024-byte block. Blocks and records are
discussed next.

Records and Blocks A record or block is the smallest unit of
mass storage space that is independently addressable. There
are three types:

8 Logical records are the smallest unit of mass storage that can
be addressed by a BASIC program. You can specify the size
of logical records in a file when you execute a CREATE
statement. If no logical record length is specified, a length of
256 bytes is assumed.

® Blocks are the smallest unit of mass storage that can be
handled by the HP-UX file system. HP-UX file system
blocks are always 1 024 bytes in length.

® Physical records are the smallest unit of storage that can be
addressed by a mass storage device. With most HP disc
drives, physical records are 256, 512, or 1024 bytes in
length.

Data Storage and Retrieval 11-15

11

11

Logical records make it possible to partition a file into several
smaller units, each of which the BASIC system can address
independently. In fact, each logical record is similar to a file in
the respect that it is independently addressable. Within any
file, all logical records are the same length; however, each file
may have a different logical record length.

Blocks are mentioned only so that you will understand why a
file with length of 1 024 bytes will be created if you try to create
a file with a length of 256 bytes.

Physical records are only mentioned to avoid confusion with
logical records and blocks, should you happen to see that term
in your disc manual.

When you create a data file, you specify these parameters: file
name, number of logical records, and logical record length
(optional). The following drawing shows the file that is created
by this statement:

CREATE "File_xvz"+1,300

Block (1 024 bytes)

Physical Record Physical Record
(512 bytes) (512 bytes)
Used by Logical Logical
the System Record 1 Record 2 Unused
(256 bytes) (300 bytes) (300 bytes) (168 bytes)
“File:xyz"

11-16 Data Storage and Retrieval

The example shows several important points about files.

m The file takes up 1 024 bytes of storage, since a file always
contains an integral number of blocks. (Similarly, files al-
ways begin on a physical record boundary, and thus always
contain an integral number of physical records.)

m The Technical BASIC system always uses the first 256 bytes

of a BASIC/DATA file for keeping information such as logi-
cal record size, number of records, etc.

m After allocating the first 256 bytes for overhead, the system
allocates logical records. The first logical record begins at the
byte following the last byte of system overhead, and the
second record begins on the byte just following the last byte
of the first logical record.

The example also shows that the system will allocate more
logical records than specified, if there is room in the file. In
this case, there was enough room for one more logical
record. As another example, if you create a file with 1logical
record of length 256 bytes, then the file will actually contain
3 records; the system allocates two additional records,
rather than leaving the last 512 bytes unusable.

m There are 168 bytes of unusable space at the end of this
example file (1 024 —256—2*300), because the next file be-
gins on the next block boundary (which also aligns with the
physical record boundary).

The File Pointer The system uses a file pointer to locate and
access the data items in a file. The file pointer points to the
place where data will be:

® written with the next PRINT# statement, or
® read with the next READ# statement.

The file pointer is updated automatically by the system
whenever the file is accessed. More information about the file
pointer will be given in subsequent examples.

File Buffers When a buffer number is assigned to a file, such as
in the following statement:

ABSIGN# 2 TO "OctB4Income”
the BASIC system sets up a file buffer through which it com-
municates with the mass storage device. This buffer is a small

portion of your BASIC memory area, usually a few hundred
bytes in length.

Data Storage and Retrieval 11-17

11

11

Here is a pictorial representation of the communication path.

Computer

— Mass Storage
! Device
‘ Memory
|
I

- Buffer > > Controller

Processor :

1 Storage
L BASIC Media
| Program
I
!
I
! File
|

11-18 Data Storage and Retrieval

The purpose of the buffer is to decrease access time for in-
formation and reduce the wear on the physical mass storage
devices.

Here is an example of how a buffer works. Assume the follow-
ing conditions: you have created a file with logical records of 9
bytes each, and you want to access 20 of these records in a
short program segment.

Without buffering, the BASIC system would have to make 20
different accesses of a mass storage device to obtain the in-
formation. And each time an item is requested from the mass
storage device, the BASIC system would get a whole block
(1 024 bytes) of information, since that is the smallest unit of
data that the HP-UX file system can address. Considering the
possibility that all of these items might all be located in the
same 1 024-byte block, the system would, in this case, be
getting about 100 times the information it needs in each of 20
separate mass storage accesses.

A Closer Look at
Serial Access

With buffering, the BASIC system loads a physical record of
information from the mass storage device, and then extracts
from that record the information it needs. In our example, if all
20 logical records are in the same mass storage block, the
computer only has to make 1 mass storage access; it then can
extract each logical record from the buffer. Overall, in this
particular example, the amount of disc access has been re-
duced by a factor of 20, and the information flow has been
reduced by a factor of about 2000 (=100*20).

This example is not necessarily representative of how much
mass storage wear and access time can be saved by buffering,
but it does make the point that buffering is generally a good
technique to use.

File buffers are automatically sent to the mass storage device
(while writing) at the following times:

m Whenever the buffer gets full, or when data items in another
block are accessed.

® When the file is closed (or when the file number is re-
assigned).

= When the program is halted (i.e., when PAUSE, STOP, or
END is executed).

® When program execution is interrupted (by an event that is
set up to cause an “event-initiated branch”, as described in
the “Program Structure and Flow” chapter).

m When a PRINT# statement is executed from the keyboard.

Serial access is used when a quantity of data is to be stored
sequentially in a file and then read back in the same (sequen-
tial) order. With this type of access, the file itself is the smallest
addressable unit of storage. This is true even if the file being
accessed consists of more than one logical record, because the
data items are stored and retrieved without regard to logical
record divisions (during serial access).

Serial Write Operations When a file is opened, the file pointer is
placed at the beginning of the file.

ASSIGN# 1 TO "BudgetData"

Data Storage and Retrieval 11-19

11

11

File Pointer

EOF Marker

A

Physical End
of File

The drawing shows that the file initially contains an end-of-file
(EOF) marker at the beginning of the file. Actually, the file is
entirely full with EOF markers at the point the file is created.

When a PRINT# statement writes data into the file (through
the buffer assigned to the file), the data items are sent one at a
time, from left to right in the list, starting at the location
indicated by the file pointer. As each item in the data list is
stored, the pointer is updated to point to the next available
location. When all items in the list have been recorded, the file
pointer points at a location just past the end of the recorded
data. An end-of-record' (EOR) marker indicates the position of
the last recorded data item.

The location of the file pointer is the point at which a subse-
quent PRINT# statement will begin.
PRINT# 1lilncomeName®$(1) TardetIncome(l)

File Pointer

Payroll 1680.56

11-20 Data Storage and Retrieval

3

EOR Marker Physical
End of File

1 An EOR marker is used instead of an EOF marker, because you can randomly and
serially access a file.

Execution of a subsequent PRINT# statement to the same
buffer records the items in the corresponding data list begin-
ning at the current file pointer. The system overwrites the
existing EOR marker, writes the items (and corresponding
type fields), and then writes another EOR marker at the end of
this newly recorded data.

PRINT# 1iIncomeName$(Z2)TardetIncome(2)

File Pointer
Payroli 1680.56 Investments 345.67
EOR Marker Physical End
of File
Earlier in the chapter, it was stated that serial writing essential-
ly ignores logical record boundaries. Here is what actually
happens when a serial PRINT# statement crosses a logical
record boundary.
PRINT# 1312,05,%8tringd data"
End of
Preceding Beginning
Record of Record File Pointer
12.05 String data
EOR Unused EOR Marker
Marker

In the above example, there was enough space left in the
current logical record to store the numeric item, so it was
written. However, there was not enough space to store the
string item (at least 4 bytes is required), so an EOR marker was
written into the record. The file pointer was then placed at the
beginning of the next logical record, and the string item was

Data Storage and Retrieval 11-21

1

11

File Pointer

written. The file pointer is left at the location following the
string item. (The only situation in which an EOR is not written
into the logical record is when there is exactly enough room for
a numeric item at the end of the record.)

The pointer will continue to move sequentially through the file
as shown in the preceding examples, unless moved in another
manner. For instance, executing an ASSIGN# statement on
the same buffer number moves to the file pointer to the begin-
ning of the file.

ASSICGN# 1 TO "IncomeB4™

Payroll 1680.56

Investments 345.67

!
EOR Marker Physical
End of File

The movement of the file pointer and EOR marker influence
the way in which the serial files are updated. For instance, if
the pointer is reset to the beginning of the file (as in the
preceding ASSIGN# statement) after serially reading a long
list of data items, then a subsequent serial PRINT# statement
will record new data items over the previous ones. In addition,
an EOR marker is placed at the end of the new data items, so
the result is that all previous data in the file is inaccessible.

PRINT# 13i"New data"

File Pointer

New data

Previous data (inaccessible)

A

EOR Marker Physical

11-22 Data Storage and Retrieval

End of File

Extending Serial Files These examples do not show that Tech-
nical BASIC files are extensible. That is, if you create a file and
then attempt to serially write past the current physical end-of-
file (not just past an EOR or EOF marker), then the system will
automatically extend the file for you. Each extension is either
one block or one logical record in length, whichever is greater.

Serial Read Operations Data that has been stored in a data file
must be retrieved (i.e., read back into computer memory)
before it can be used by the program. Reading data from a file
transfers a copy of the data through a buffer in computer
memory.

When a file is opened, the file pointer is placed at the begin-
ning of the file.

ASSICN# 1 TO "QOct84Income"

File Pointer
Payroll 1680.56 Investments 345.67

1
EOR Marker Physical End

of File
Serial reading is accomplished by the READ# statement; items
in the data list are filled from left to right. As each data item is
retrieved, the file pointer is updated to point to the next data
item in the file. Items are accessed sequentially, ignoring any

logical record boundaries.
READ# 13IncNam$(1)TdtInc(l)
File Pointer
Payroll 1680.56 Investments 345.67

EOR Marker Physical End
of File

Data Storage and Retrieval 11-23

11

11

Random File
Access

The variables used to read the data in the file must be of the
same general data type as the data item (i.e., numeric or
string), but they need not be of the same specific type (i.e.,
INTEGER, SHORT, or REAL for numeric items; or identical
length for string items). However, matching specific types
always works best because it prevents value range errors.

If a READ# statement attempts to read past an EOF marker, an
error is reported. You can trap these errors with the ON
ERROR statement. See the subsequent section called “Trap-
ping EOF and EOR Conditions” for further details.

Both data stored serially and data stored randomly can be
retrieved serially.

Random access allows you to move the file pointer to the
beginning of any logical record within a file. This is in contrast
to only setting the pointer to the beginning of a file for serial
access, and then sequentially reading data items from the file
and having the file pointer be updated automatically by the
system. However, random access is like serial access after
moving the pointer to the beginning of a logical record, be-
cause you will then serially access the data in that record.

Random Writing Here is an example of creating a file with 12
logical records: each one contains target incomes (names and
values) for a month of the year.

100 QOPTION BASE 1 ! Lower bound of arrav subscripts.
110 DIM IncomeMame$(2)

120 REAL TardetIncome(2)

130 |

140 IncomeName$(1)="Pavroll"

150 IncomeName$(2)="Investments"
160 |

170 TardetIncome(1l)=1680.38

180 TardetIncome(2)=345,67

190 !

200 1V Create and oren a file.
210 CREATE "TgtIncB4" 12,42

220 ASSIGN# 1 TO "TatIncB4"

230 1

11-24 Data Storage and Retrieval

240 FOR Month=1 TO 12

250 PRINT# 1:Month ! Move Pointer to start of record (random "seek”), 11
260 FOR Categorvy=1 TD 2

270 PRINT# 13iIncomeName$(Catedorv)sTardetIncome(Catedory) | Serial wrt,
280 NEXT Catedory

290 NEXT Month

300 1

310 END

Here is a conceptual drawing of what is in each logical record.

End of Beginning of End of Beginning of
Record N-1 Record N Record N Record N+ 1
Payroll 1680.56 Investments 345.67

Here are the differences between serially and randomly writ-
ing to files.

m In order to randomly write to a data file, you must use a
PRINT# statement that specifies a record number.

200 PRINT# 1,33i8tr$sIntdr | Write 2 data items in record 3.

® When a random PRINT# statement is executed, the file
pointer is moved to the beginning of the specified record.
The data items in the PRINT# statement are then recorded
in the record, and an end-of-record (EOR) marker is placed
after the lastitem (if there is at least 1 byte left in the record).

m If you want to merely position the file pointer at the begin-
ning of a record, without writing any data, then execute a
PRINT# statement specifying only the record number
(omitting the data list).

PRINT# 1,5

Data Storage and Retrieval 11-25

11

100 OPTION BASE 1
110 DIM IncomeName$(2)

m Record divisions are not ignored, as they were in serial
access. Thus, if you attempt to store more data in one logical
record than that record will hold, an EOR error is reported:

ERROR B8 : RANDOM OVF
or
ERROR 72 : RECORD.
Randomly Reading Here is an example of reading the data that

was stored using random access methods. Note that the logical
records are accessed in reverse order (12, 11, 10, ..., 1).

120 REAL TardetIncome(2)

130 !

140 ! Open the file,

150 ASSIGN# 7 TO "TgtIncB4" | Buffer # 7,
160 |

170 FOR Month=12 TO 1 STEP -1 ! Access records in reverse order,

180 READ# 7 Month ! Move pointer to start of record {random "seek").

190 DISP "Month:"iMonth

200 DISP Moo "

210 FOR Catedory=1 TO 2

220 READ# 73iIncomeName$(Catedory)sTardetIncome{Catedory) ! Serial read.
230 DISP "Income vnames"sIncomeName$(Catedory)

240 DISP "Target income:":TardetIncome(Catedory)

250 DISP

260 NEXT Catedory
270 NEXT Month

280 !

290 END

11-26 Data Storage and Retrieval

Here are the results of running the program.

Month: 12

Income name: Pavroll
Target incomes: 1680.56
Income name: Investments
Tardet income: 345,67

Month: 11

Income names: Pavroll
Tardet income: 1680356
Income name: Investments
Tardet income: 343,67

+

+

+

Month: 1

Income name: Pavroll
Tardet income: 168036
Income name: Investments
Tardet income: 345,67

Randomly reading files is slightly different from serially read-
ing files.

® In order to read data from a “random’ record of a data file,
you must use a READ# statement that specifies a record
number.

200 READ# 1,33A%+] ! Read 2 data items from record 3.

When a record is specified, the file pointer is moved to the
beginning of that record. The data item(s) in the READ#
statement are then transferred serially (through the buffer)
into the specified variable(s).

m Logical record boundaries are not ignored. If you attempt to
read more data items than are in the record, an EOR error
will be reported (ERROR 72 : RECORD).

m Jf you want to merely position the file pointer at the begin-
ning of a record without reading any data, then execute a
READ# statement specifying only the record number (omit-
ting the data list).

READ® 143

Data Storage and Retrieval 11-27

11

Determining Data
Types

Data-Type Field Values

11-28 Data Storage and Retrieval

As with serial reading, the variables used to read the data in
the file must be of the same general data type as the data item
(i.e., numeric or string), but they need not be of the same
specific type (i.e., INTEGER, SHORT, or REAL for numeric
items; or identical length for string items). However, matching
specific data types is always best, because it eliminates the
potential for value range errors.

A preceding section mentioned that each item written in a data
file is preceded by a type field. You can use the TYP function to
read this field and thereby determine the item’s data type.

This function allows you to avoid errors such as attempting to
read a string data item into a numeric variable. It also allows
you to determine whether the file pointer is pointing at the
current end-of-file (EOF) or end-of-record (EOR) marker.

Here is an example of using the TYP function:
ItemTvre=TYP(1)

The function reads the type field of the item at which the file
pointer is currently pointing. The parameter passed to the
function specifies which buffer is to be read. The preceding
statement determines the type of the item at the current loca-
tion of the file pointer in buffer number 1. An example pro-
gram is shown below.

Here is the range of integer values that the TYP function can
return, and the corresponding data types.

TYP Value Data Type

Numeric

Full string

End-of-file marker
End-of-record marker

Start of string
Middle of string
End of string

QW H»WN—

Sensing EOF and EOR Here is a simple example of using the TYP function to deter-
Conditions mine whether the file pointer is currently pointing at an EOF 4
marker.

100 DEF FNEOF(BuffNo) = TYP(BuffNo)=3

Here is an example of using the function:

200 WhileNotEOF: IF NOT FNEOF(Z) THEN ReadItem ELSE EndOfFile

Sensing an EOR marker is almost identical.

110 DEF FNEOR(BuffhNe) = TYP(BuffNo)=4

Here is an example of using the function:

200 IF NOT FNEOR(Z) THEN ReadItem ELSE NextRecord

Trapping EOF and There are certain conditions that you can encounter while
EOR Conditions writing and reading files that will generate an error. This
section describes them.

The following operations will generate an end-of-file (EOF) or
end-of-record (EOR) error condition:

m Attempting to read past either an EOF marker or the physic-
al end of file (ERROR 71: EOF).

m Attempting to read more data items than there are in a
logical record during a random read operation
(ERROR 72: RECORD).

m Attempting to write more data than will fit in a logical record
during a random' write operation
(ERROR B9: RANDOM OVF).

1 This error is only reported during random writes, because attempting to write
past the physical end of file during a serial write causes the system to automatical-
ly extend the file.

Data Storage and Retrieval 11-29

11

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
230
260
270
280
290

Here is an example of using the ON ERROR mechanism to trap
EOF errors while reading a file. The file is assumed to contain
only string data.

DIM StrindgData$l[B55301]

!

Ask: DISP "Enter file mame.," @ INPUT File%$
DISP "Is this correct?™ ‘"&File$l&"’ (Y/N)" B INPUT Anss$
IF UPC#(Anssl1,11)<x"Y" THEN Ask
|

ASSIGN# 2 TO File$! Open specified file,
!

ON ERROR GOTO ErrorTrar ! Set up branch for errors,
i
I Loop until EOF {(or other error).
NextItem: READ# Z3iStringData$! Read as stringd if errory
I branch to ErrorTrar.
DISP StringData%$
GOTD NextItem
|
ErrorTrar: IF ERRN=71 THEN DISP "End of file found." B GOTO Ask
! ELSE ERRN«»71s so display error message.
ERRM
END

The program runs until either an EOF error (71) or another
error is encountered. When an EOF is encountered, the mes-
sageEnd of file found, isdisplayed, and the program asks
for another file name. When another error is encountered, the
system’s normal error message is displayed. You can easily
expand the ErrorTrap routine to respond to other file-related
errors.

11-30 Data Storage and Retrieval

Using text/data This section briefly describes how to write and read files of

Files

type text/data. This type of file provides a method of inter-
changing data files between Technical BASIC and the
HP-UX system (they are HP-UX ““ASCII” files).

Accessing this type of file with a C program is described in the
“Examples of File I/O” section near the end of the “Binary
Programs” chapter.

Writing to @ This program shows how to open and write data into a file of
text/data File type text/data. If the file does not already exist, the BASIC

100
110

20
130
140
150
160
170
180
180
200
210
220
230
240
250
260
270
280
280

system will create it for you. Numeric and string data items are
then written into the file.

INTEGER IntVar

IntWYar=32000

!

SHORT SBhortWar

ShortVar=3e+031

!

REAL RealVar

RealWar=1e+308

!

DIM StringVar$l20]

StrindYar$="This is a strindg."

!

ASSIGN 14 TO "text_file" ! Assidgn a file selector,

!

DUTPUT 14 3 IntVYariShortWar ! Write two values into file.
OUTPUT 14 i RealVariStringVar$! Write two more values into file,
!

ASSIGN 14 TO "#* | Close file,

!

END

Note that the items specified in the OUTPUT statement are
written according to the rules of the OUTPUT statement; see
the HP-UX Technical BASIC I/O Programming Guide or the
Technical BASIC Reference Manual for details.

Data Storage and Retrieval 11-31

11

11

100
110
120
130
140
150
160
170
180
1890
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

11-32 Data Storage and Retrieval

Reading from a
text/data File

INTEGER IntVar
IntWYar=-1

1

SHORT ShortVar
ShortVar=-1

!

REAL RealVar
Reallar=-1

|

DIM StrindVar$[20]
StrindVar$="Initial
|
DISP

"Ualue of InmtVar
DISP "Yalue of ShortVar
DISP "Yalue of RealVar
DISP "Yalue of StrindYar$
DIsSP

ASSIGN 14 TO “"text_file" !

ENTER 14

ENTER 14 3 RealVarsStringlar$!
!

DISP "Walue of IntVYar

DISP "Value of ShortVar

DISP "Value of RealVar

DISP "Value of StringVar$ =

IntYarsShortVar

In this example, the items in the OUTPUT statements are
separated by semicolons; therefore, the items will not be
separated (in the output data stream) by an end-of-line (EOL)
sequence, which is normally a carriage-return followed by a
line-feed (control characters). However, the EOL sequence is
automatically sent after the lastitem in the OUTPUT statement
(unless suppressed with a semicolon or comma).

Note also that the OUTPUT statement does not put end-of-
record (EOR) or end-of-file (EOF) markers in the file.

This example reads the data from the text/data file written
with the preceding example. It uses this general rule: read the
file in the same way that it was written.

value,"

"$IntWar ! Show the values BEFORE reading file,
"iShortYar
"iRealVar

"§S8tringVar$

ooy

"

Assidn a file selector,

Read two wvalues from file.

Read two more values from file,
= "§IntVYar ! Now show values read FROM FILE.
= "iShortiar

= "§RealVar

"§5trindYar$

380 ASSICGN 14 TO "#" |
390 !
40a END

Close file,

11

Here is the output of the program.

Yalue
Yalue
Yalue
Value

Value
Yalue
Yalue
Yalue

of
of
of
of

of
of
of
of

IntVar
ShortVar
RealVar
StringWars$

IntVar
ShortVar
RealVar
Stringlar$

-1
-1
-1
Initial value,

32000
3e+031
1e+308
This is a strind.

Data Storage and Retrieval 11-33

11

11-34 Data Storage and Retrieval

12

Binary Programs

Chapter Contents

Most of the time, you will be using the Technical BASIC
system to execute programs written in the Technical BASIC
language. However, you can also write programs in another
language available on the HP-UX system, and then call (ex-
ecute) the program from Technical BASIC. In this manual,
such programs are termed binary programs. The term “‘bin-
ary” was probably coined because the programs written in
another language and compiled into executable object code
cannot be easily read by humans — they look like just a bunch of
binary patterns.

Binary programs are useful in the following situations:

® An application is already written in another language, and
you don’t want to translate it into Technical BASIC code.

m Another language supports a feature that is not available in
Technical BASIC, or that runs faster in the other language.

This chapter describes how to create binary programs in the C
programming language and then call them from Technical
BASIC. In order to do so, it will provide examples of both
BASIC and C programs.

This chapter contains the following major sections:

m An overview, which includes a complete example and
general considerations.

m A section describing details of passing parameters to C
binaries.

Binary Programs 12-1

|
Overview This section focuses on two fundamental topics:

® An example of writing a C language binary program and
then calling it from Technical BASIC.

12 ® A list of general considerations that you must make when
calling binary programs.

The section is intended to quickly give you a simple example

and then move to a global perspective. More specific details of

creating and calling C binaries are presented in the subsequent

section.

A Simple Example Here is an example BASIC program that loads and calls a
binary. The binary doubles the integer sent to it.

100 LOADBIN "hinl"

110 |

120 INTEGER WholeNumber

130 WholeNumber=7

1do |

150 CLEAR

160 DISP "Before CALLBIN:"

170 DISP "WholeNumber ="iWholeNumber

180 DISP
190 CALLBIN "entrv.pt" (WholeNumber)
200 DISP

210 DISP "After CALLBIN:"
220 DISP "WholeNumber ="iklholeNumber
230 END
The BASIC program displays the following information:

Before CALLBIN:
WholeNumber = 7

After CALLBIN:
WholeNumber = 14

The LOADBIN statement (line 100) links the binary to BASIC.
This example assumes that the binary program is in a file in the

12-2 Binary Programs

An Example C
Binary

current working directory. If it is not in a file in that directory,
then you would need to specify a path name. Here is an
example of an absolute path name:

LOADBIN "/users/marKa/BASIC/CHIZ/binl"

The BASIC program then assigns a value to an INTEGER
variable (line 130) and then displays the value (lines 160 and
170y).

The CALLBIN statement (line 190) branches to the specified
entry point in the binary; in this case, the entry point is named
entry_pPt.

After the binary has finished execution, it returns control to
the BASIC program. In this example, the BASIC program
displays the modified value of the variable WholeNumber.
Note that the BASIC variable WholeNumber is passed by
reference, which allows the binary to modify the variable’s
value. Passing parameters is further described in subsequent
sections.

Once you no longer need the binary program, you can unlink
it from BASIC with the SCRATCHBIN statement.
SCRATCHBIN "binl®

These steps are all you need to do to in order to use a binary
program that has already been written.

Since the HP-UX system was written in the C programming
language, it seems appropriate to show an example C binary.
Here is a simple C language binary thatdoubles the value of an
integer that is passed to it.

entry_pt{int.var.addr)
int #int_var_addrsi

{
/% Double the value rPassed to the routine., */

~

#int.var.addr = *int_var_addr * 23

Binary Programs 12-3

12

12

12-4 Binary Programs

You can use the following procedure to enter, compile, link,
and call the C binary from Technical BASIC:

1.

Enter the C source program, and store it in a file. We'll
use the HP-UX vi editor for this purpose. Make sure the
vi editor is on-line, and execute the following command:

vi binlsc

Your screen should fill with tilde characters; the last line
should display the specified file name.

binl.c [New filel

Now press i (for “insert”) and type in the program exactly
as shown below. (Refer to the description of the vi editor
in your HP-UX documentation if you have problems
while typing it in.)

entry-pt(int_var_addr)
int *int.var_addrs

{
/% Double the value passed to the routine. %/
¥int_var.addr = *int.var_addr % 23

When the entire program is in memory, get out of the
insert mode by pressing the Es¢c key. Then store the
program by typing ZZ. (Make sure that you type upper-
case ZZ.) You may want to verify that the file exists by
getting a listing of the directory in which the file was
stored.

2. Compile the C language source code, but don’t generate

the normal “a.out” (linked, executable) object file. In-
stead, specify that the C compiler is to generate a “".0"
(unlinked, relocatable) object file. The following C com-
piler cccommand, with coption, accomplishes this task.

ce -¢ binlsc

You may want to verify that the file named kinl,0 was
actually created.

. The next step is to link the binl.o object file. Use this
HP-UX command:

ld binlso -r -4 -0 binl -lc¢

The Id command is the “link editor” command. The -r
option indicates that the specified object file (binl.0) is to
be loaded as relocatable (re-linkable) code. The -d option
indicates that it is to be loaded into an area of “‘common”’
memory that is accessible to the Technical BASIC system.
The o option specifies that the object file is to be named
“binl”, rather than given the default name “a.out”. The
Ic option specifies that the C libraries are to be made
accessible to the program.

. Now enter the Technical BASIC system. You are ready to
load the binary so that a BASIC program can call it. Use
the LOADBIN statement, specifying the name of the file
loaded with the preceding Id command:

LOADBIN "bini®

Binary Programs 12-5

12

12

Summary

12-6 Binary Programs

. Now enter and run a BASIC program that calls the bin-

ary. Actually, the BASIC program names the entry point
in the binary to which BASIC will be transferring control;

in this case, the entry point is named “entry_pt”.

100 LOADBIN "binl"

110 1

120 INTEGER WholeNumber

130 WholeNumber=7

140 |

150 CLEAR

160 DISP "Before CALLBIN:"

170 DISP "WholeNumber ="3iWholeNumber

igod DISP
190 CALLBIN "entrv.pt" (WholeNumber)
200 DISP

210 DISP "After CALLBIN:"
220 DISP "WholeNumber ="3WholeNumber
230 END

Running the program should produce the following re-
sults.

Before CALLBIN:
WholeNumber = 7

After CALLBIN:
WholeNumber = 14
When you are finished using the binary, you can unlink it
from the BASIC system by executing this statement:
SCRATCHBIN "kint"

Note that the file is still in the HP-UX file system; howev-
er, it is not linked (and is therefore inaccessible) to Tech-
nical BASIC.

The preceding example showed how to create a simple C
binary. The important points were as follows:

® The binary was loaded as a relocatable program into the
common memory area using the r and d options of the Id
command.

Additional
Considerations

The binary was linked to BASIC by executing a LOADBIN
statement that specifies the file name of the relocatable
program.

The BASIC program branched to the desired entry point by
using CALLBIN. Parameters may be passed to the binary by
including them in the CALLBIN statement. The order and
type of parameters must match that expected by the binary.

The SCRATCHBIN statement unlinked the binary from
BASIC.

When calling binary programs, you will almost always need to
provide them with some sort of data. The binary then per-
forms a pre-defined operation on this data, and often returns
some resultant data. Thus, when calling binary programs, you
must make several considerations:

What is the name of the routine to be called (i.e., the entry
point) ?

What sort of data, if any, does it require ?

How are the data items to be passed — by value, or by
reference (address) ?

What does the routine do with the data ?
What data will be returned ?
How will the data be returned ?

Rather than proceed with generalizations, the following sec-
tion gives specific examples of passing parameters to C lan-
guage binaries.

Binary Programs 12-7

12

|
C Binaries

12
Passing Simple

Numeric
Parameters

12-8 Binary Programs

This section discusses details of passing numeric and string
parameters from BASIC to C binaries. If you have trouble
understanding the mechanisms of “passing by reference’ or
“passing by value”, then you may want to study further exam-
ples of passing parameters in the “Subprograms” section of
the ““User-Defined Functions and Subprograms’’ chapter.

There are three BASIC data types: INTEGER, SHORT, and
REAL. However, you can only pass two of these types to C
programs: INTEGER and REAL. Here is the required corres-
pondence between BASIC pass parameters and C formal para-
meters:

BASIC Corresponding C
Pass Parameter Format Parameter
INTEGER int
REAL double

This BASIC program passes three parameters to the subse-
quent C binary.

100 INTEGER RadiusB

110 RadiusB=10

120 REAL AreaB

130 !

140 LOADBIN "area"

150 CALLBIN "area" (PIs(RadiusB)sAreaB)

160 DISP "Area of circle with radius"iRadiusBi"="3
170 |

180 END

Here is the C binary program.

area(PisRadiusCsAreaC)

double Pij
int RadiusCi
double *AreaC)

{
#AreaC = Pi * RadiusC * RadiusC}i
}

Passing Numeric
Array Parameters

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

Here are the results of running the program:

Area of circle with radius 10 is 314,139265358978

The first BASIC pass parameter, P, is passed by value, since it
is a numeric function and thereby qualifies as a numeric ex-
pression. The corresponding C formal parameter is of type
double, since PI is a function of BASIC type REAL.

The second BASIC pass parameter, (RadiusB), is also passed
by value since it has been enclosed in parentheses (which
makes it an expression). The corresponding C formal para-
meter is of type int.

The third BASIC pass parameter, Area, is passed by reference
since it is a variable which is not part of an expression. The
corresponding C formal parameter is of type pointer todouble,
as indicated by the leading #. A pointer variable is one that
contains the address of the variable, rather than its value. This
is required because the corresponding BASIC pass parameter
is passed by address” (by reference). Passing a variable by
reference allows the binary to modify that variable’s contents,
thereby allowing parameters to be passed back to BASIC.

Here is a modification to the preceding example that passes 2
arrays to a C binary.

INTEGER RadiiB(4) ! 5 elements (OPTION BASE 0).
FOR I=0 TO 4
RadiiB(I)=1
NEXT 1
|
REAL AreasB(4)
|
LOADBIN "arravs"
CALLBIN "arravs" (PIsRadiiB()sAreasB())

DISP "Radii Areas"
DIGP Y"ecooo ooo-- "
FOR 1I=0 T0 4

DISP USING "DD.DD«XX,DD.DD" 3§ RadiiB{I)+AreasB(I)
NEXT I
!
END

Binary Programs 12-9

12

12

12-10 Binary Programs

Here is the C program.

arrays(PisRadiiCsAreasC)

double
int

double
int 11

for (i

=03

Pij
*RadiiCs /% Pointer to arrav, */
AreasCL51% /% Can also be AreasCL] %/

9§ i++) /% Assume 5 elements in each arrav., */

i
AreasCLil = Pi % *(RadiiC+i) * #(RadiiC+i)3

Here are the results of running the BASIC program:

Radii Areas

0,00 0,00
1,00 3.14
2,00 12,56
3.00 2B.27
4,00 350,26

Note that arrays are always passed by reference. However,
also note that the C array declarations in the program use
different notation:

int *RadiiCi /% Pointer to arrav. */
double AreasC[313 /% Can also be AreasCL] */

These two declarations are equivalent in purpose because they
each declare a pointer to the first element of an array (i.e., the
element with subscript 0). The notation you use in the declara-
tion dictates the notation that you will use in accessing array
elements. For instance, individual elements of the RadiiC
array are accessed by specifying the subscript: Areas[il. The
elements of the RadiiC array are accessed by using pointer
expressions: # (RadiiC+i).

Passing Simple
String Parameters

This example binary assumes that the calling BASIC program
will send an array with at least 5 elements. A more general
method would be to pass arrays of variable sizes to the binary.
In such cases, the calling program can communicate the size of
the array using one of two methods:

m By passing parameter(s) that indicate the number of ele-
ments (and dimensions).

m By assigning a unique “flag”” value to an array element to
indicate that it is the last element in the array.

Passing string parameters from BASIC to C binaries is similar
to passing numeric parameters. However, passing string
values back to BASIC may be somewhat trickier. This section
describes both operations.

BASIC strings can be passed either by reference or by value.
The following BASIC and C programs illustrate passing string
parameters.

100 DIM BrRef$[101BvValue$[10]
110 ByRef$="variable"

120 BryValue$="expression”

130 DISP

140 DISP "BvyRef$ before call
150 DISP "BvVYalue% hefore call
180 DISP

170 LOADBIN "stringsi"

180 CALLBIN "strindgsl" (BvRef$sBrValue$l"")
190 1

200 DISP "Bykef$ after call
210 DISP "ByValue$ after call
220 1

230 END

‘UiBYRef$i" "
‘"3ByValue$i" "

‘"iByRef§i" /"
"iByValue$i" ‘"

[

Binary Programs 12-11

12

12

12-12 Binary Programs

Here is the corresponding C binary.

stringsl(BrRefsByValue)

char *BvRef,

BrWaluel1033

int ii

/% Assign new value to formal parameter 'BrRef’., */
stropy (ByRef »"modified") s

/% Assidgn new value to formal parameter ‘BvValue’, */
for (i=03 ByValuelill='\0'§ i++)
BrWaluelil = ’‘x'3

Here are the results of running the program.

BvRef$ before call = 'yariable’
Bralue$ before call = ‘expression’

ByrRef$ after call
BrValue$ after call

‘modified’
‘expression’

Ifa string is passed by value, then it must be treated as an array
of type char in the C binary. Note that the value is not passed
back to BASIC as is the value of the string variable that was
passed by reference and modified by the binary.

BASIC strings have a length header that indicates how many
characters the string currently contains. C strings have no such
header; they are instead terminated by the null control charac-
ter: \0in C; CHR$ (0) in BASIC. Thus, C binaries cannot modify
the BASIC string variable’s length.

For instance, suppose that you pass a string variable (by refer-
ence) to a C binary. The binary then proceeds to change the
length of the string, but it does not modify the BASIC string’s
length header. Thus upon returning to BASIC, there is no
indication that the length of the string variable is any different
than when it was passed to the binary.

Here is an example that illustrates this behavior:

100 DIM BrRef$[101]

110 ByRef$="variable"

120 1

130 DISP "ByRef% before call = ‘"iByRef#si"’"
140 DISP "Strind lendth = "JLEN(BvRef%)

150 DISP

160 CALLBIN "strindgs2" (ByRef$) 12
170 !

180 DISP "BvRef$% after call = ‘"iByRef#i®’"
190 DISP "String lendth = "SLEN(ByRef$)

200 1

210 END

Here is the corresponding C binary:

strinds2(BvRef)
char #*BvRef;

{
/% Now maKe strind shorter, */
strepy{(ByRefs"len=35")1

¥

Here is the program’s output:

ByRef$ before call = ‘variable’
String lendth = 8

ByRef$ after call = ‘len=3le’
String lendth = 8

The BASIC program sets the variable’s length in the assign
statement (line 110), and then displays its value and length.

The binary then assigns the string a new value. The new
length of this string, according to C, is 5 characters. The binary
then returns control to BASIC. Since the BASIC string variable
was passed by reference (address), its contents are affected by
the binary; however, the BASIC variable’s length is not
changed accordingly.

Binary Programs 12-13

12

12-14 Binary Programs

The BASIC program displays the string’s contents and length.
This display shows that only the first 6 characters of the vari-
able were changed: the 5 characters 1en=5; and the null charac-
ter, \0, which is not displayed unless the “display functions”
mode is in effect. The BASIC variable’s length and the remain-
ing 2 characters, le, are not changed.

There are two steps in the general work-around for this type of
situation:

1.

Before passing the variable (by reference), pad the string
with blank characters to the maximum length of string
that the binary can return. For instance, the following
statement pads the BASIC string variable with trailing
blanks and sets its length to the maximum (dimensioned)
length.

ByRef$[LEN(ByRef$)+13=" "

Note that this particular statement will cause an error if
the string length is already equal to the maximum
(dimensioned) length.

After returning to the BASIC program, determine the
string’s new length.

a. Search the returned string for a null character,
CHR$(0), and then set the string length to 1 less than
the position of the null.

NullPos=POS(BvRef$ CHR$(0))
BvRef$=BrRef$[1:NullPos-11

b. Pass a string length parameter (by reference) to the
binary. After the binary changes the string’s length,
it can set the length parameter accordingly and then
pass it back to BASIC.

Passing String

100
110
120

100
110
120

100
110
120

100
110
120

Arrays

As with numeric arrays, string arrays can only be passed by
reference. And the restrictions that apply to simple string

variables also apply to string arrays. Here are some examples.

BASIC Declaration & Call

OPTION BASE 1
DIM StrArrav$(3)
CALLBIN "main"(StrArrav$())

OPTION BASE ©
DIM StrArrav$ (S I[301]
CALLBIN "main"(StrArrav$())

DPTION BASE 1
DIM StrArrav$(5,10)[201]
CALLBIN "main"(StrArrav$(s))

ORTION BASE O
DIM StrArrav$(5,10)[30]
CALLBIN "main"(StrArrav$(s))

C Declaration

char

char

char

char

char

char

char

char

char

char

char

char

*#StrindArrs

or

StringArr[SIC18]; 12
or

StringArr[101873

*5trindArri
or
StringArr[10103013
or
StringArr[IL3013

¥StrindArri
or
StrindArr[SIL10QIL2013
or
StrindArrLIL10IL2011

*5trindArri
or
StringArr[BILL11050T3
or
StrindArr[IL11I05013

The implications of using the declaration char *StringArr
versus char StringArr[] are the same as for numeric array
declarations: the notation you use in the declaration dictates
the notation that you must use to specify individual array

elements.

Binary Programs 12-15

Here is an example of how to specify array elements when the
first declaration method has been used:

str.arrari(st_arr)

char #*#st_arr}

{
12
strepy(st_arr+1Bs"Line
strepy{st_arr+3B,"Line
stropv(st_arr+3dy"Line
strepy(st_arr+72y"Line

strepy(st_arrs"Line a")}

bl!
C‘
d

1

)
)
)
)

e ma mm amw

m

Here is an example of specifying array elements when the
second declaration method has been used:

str.arrav2(st_arr)

char st-arrf310181]3

{
strepy(st_arrf0]y"Line
strepy(st_arrf11:"Line
stroerpy{st_arr[21+"Line
strepy{st_arrl31:"Line
strepyist_arrfd]"Line

a")i
B
c")i
d") i
e")s

The implications of using StrindgArr{S] versus StringArrl]
are that the former specifies the (maximum) size of the array,
while the latter allows the size of the array to vary.

12-16 Binary Programs

]
Restrictions

Device 1/0 Is NOT
Supported

One of the few restrictions on binaries is that they cannot
performing certain I/O operations. Also, HP-UX environment
variables such as TERM and PATH are not available to Tech-
nical BASIC binaries. This section provides further informa-
tion about supported and unsupported I/O operations.

Binaries should not perform operations such as displaying on
the screen (stdout in C) or getting characters from the
keyboard (stdin in C). For example, there is no guarantee that
the C standard I/O library function erintf will work in all
binaries, although you may get it to work in some instances.

Examples of File
I/0

Calling C Binaries
that Access Files

On the other hand, binary programs can perform general file
I/O operations, as long as they open files, manipulate file
pointers, and close files independent of what BASIC is cur-
rently doing. For instance, if a BASIC program currently has a
particular text/data file open (with ASSIGN), then a binary
should not access that file. However, once BASIC closes the
file, the binary may access it. The converse situation has the
same restrictions.

Examples of accessing text/data files with BASIC programs
are provided at the end of the “Data Storage and Retrieval”
chapter.

Here are examples of BASIC programs that call C binaries
which open and write to a file (or read from it).

Sending a BASIC Array to a Binary The first program passes a
file name, a string array, and a parameter indicating the num-
ber of array elements to a binary; the binary then writes the
data into the specified file. (Note that in this case the BASIC
program does not create the file.)

Binary Programs 12-17

12

12

100
110
120
130
140
150
160
170
180
190
200
210

220

FileName$="sometext"
i

DIM StringArrav$(10)L0791]

StringArrav$(0)="This is the first line of text,"RCHR$(O)
StrindArrav$(1)="This is the second line of text.,"RCHR$(O)
StrindArray$(2)="This is the third line of text,"RCHR$(Q)
StrindArrar$(3)="This is the fourth line of text."&CHR$(0)
StrindArray$(4)="This is the fifth line of text,"RCHR$(D)

LOADBIN "text_write"
CALLBIN "text_write" (FileName#$StrindArrav$()5)
|

END

Storing the Array in a File Here is a listing of a C binary that

writes the string array into the specified file.

#include <stdiog.hx

text_write(file.mamesstr_arraymlines)

char #*file_nmame

str_arravy[1{791}%

int nliness

{

12-18 Binary Programs

FILE #*file_pointer:
*foren(),
*fclose()s

int lines

/% Dpen the file for writing, */
/% (File must NOT be oren in BASIC.) */
file_pointer = foren(file_name»"w")3

/% Write the stringd array into the file, */
for (line = 01 line 4 nlinesi linet++)
ferintf{file_pPointers"%s \n"sstr_arravllinel)}

/% Close the file before returning to BASIC, */
fclose(file_Pointer) i

Reading an Array with a Binary Here is a BASIC program that
calls another binary which reads the data written by the pre-
ceding BASIC and binary programs.

100 FileName$="sometext"

110 !

120 DIM StrindArrav$(10)L79]

130 FOR Livwe=0 TO 4 ! Fill strinds with spaces

140 ! (to set string lendth) 12

150 StrindArrav$(Line)[21=" 1"
160 NEXT Line

170 1

180 LOADBIN "text_read"”

190 CALLBIN "text.read" (FileName$:)StrindArrar$()3)
200 1

210 FOR Line=0 TO 4

220 DISP StringArrav$(Line)
230 NEXT Line

240 1

250 END

The Binary Here is the binary program that reads the file.

#include <stdio.h
text_read{(file_mamesstr_arravinlines)

char #file_name:
str_arrav[1[7913
int nliness

{

FILE #*file_pointer
*foren()
*¥folose()s

int lines

il
char ¢}
/% Open the file for reading, */

file_rpointer = foren(file_name,"r")1

Binary Programs 12-19

12

12-20 Binary Programs

if(file_rointer t= NULL)
/% Then file was orened w/o errors. */
{
/% Read the data in the file line by line., */
for (line = 0§ line < nlinesi line++)
{
i = 0% /% gcopy line char-by-char %/
while ((¢c = detc(file_pPointer)) != ‘\n’)
str_arravllinelli++] = ¢}
Y /% end for ¥/

Y /% end if %/

else

/% File was not opened: or other error occurred,
strepvi{str.array[QO1y"ERROR") S

/% Close the file before returning to BASIC, */
fclose(file_pPointer)s

*/

13

Graphics

Chapter Contents

Graphic displays are a powerful tool for presenting informa-
tion. Computer graphics can be equally powerful but an extra
step is required between the conception of the idea and the
final image. This step is the construction of a mathematical
model of the image within the computer.

Since computers only do what they are told, it is essential to
have a complete knowledge of the commands that communi-
cate between the real world and the computer’s world. This
knowledge is needed to create the model within the compu-
ter's memory and to understand the resulting image of the
model.

This chapter contains the following major sections.

m Raster (screen) graphics

Limits and scaling

]
m Plotting and reading bytes on the raster
m External output devices

]

Interactive graphics

Graphics 13-1

13

|
Raster Graphics

Determining Your
Screen’s
Capabilities

Selecting and
Initializing the
Output Device

13-2 Graphics

A good place to start learning about graphics by using the
graphics raster (screen) on your console or terminal. Although
many applications require a plotter to produce the final image
on paper, it is easier to develop the model on the display.
Then, with minor changes, the image can be sent to an external
plotter.

Many console and terminal screens are capable of displaying
two rasters (images) either separately or simultaneously.

m The alpha raster displays alphanumeric characters.

® The graphics raster displays pixels (picture elements).

The specific graphics capabilities of your screen are listed in
the Implementation Specifics appendix for your particular
system.

One statement selects which device is to receive graphics
output and also initializes the graphics system by setting up
default conditions.

PLOTTER IS5 1
The graphics system is now ready for use.

With most systems, the alpha raster is initially on and the
graphics raster is off. During execution of a graphics program,
the alpha raster may be turned off; however, attempting to
enter any text turns the alpha raster back on and leaves it on.
This statement turns the graphics raster on.

GRAPHICS

An Example

100
110
120
130
140
150
160
170
180
190
200
210
220

230

Whenever you wish to clear the graphics raster, execute this
statement:

GCLEAR

If the alpha raster is also on but is not clear, execute this
statement.

CLEAR

Executing this statement should draw the current graphics
plotting boundaries.

FRAME
13

Here is an example of a graphics image output by a BASIC
program.

R R]

Employeee

T T T T T T T T

Here is the program that created the picture.

PLOTTER IS i ! Choose plotter (and initialize it).
GCLEAR ! Clear any existingd imade.

FRAME ! Draw line around plotting bounds.

|

LOCATE 30,100,:304+90 ! Define plotting area.

FRAME ! Draw new bounds,

!

SCALE 1975,1884,0,10 ! Scale the Plotting area.
LAXES 1+1,1875:0:14+145 t Label the axes.

!

CSIZE B0.5 ! Use tallery narrower characters.
MOVE 1878,-3 ! Title the horizontal axis.

LABEL "Year"
i

Graphics 13-3

13

240
230
260
270
280
290
300
310
320
330
340
330

Coordinate

13-4 Graphics

Systems

MOVE 19730 | Title the vertical axis,
DEG @ LDIR 90 ! Label direction is up (90 dedrees).
LABEL "Number of Emplovees"
i
DIM Y(10) ! Array with 10 points (OPTION BASE 0).
DATA 1:3:3:44+64+6+7:8+9+9,9
FOR Point=0 TO 10
READ Y(Point)
DRAW 1975+Point ¥ (Point)
NEXT Point
I
END

Since you create a drawing by telling the computer where to
draw points and lines, the drawing area must have a coordin-
ate system that allows you to specify the locations of these
points and lines. With Technical BASIC, there are several
different methods available for setting up a coordinate system
for your plotting area.

The Default Coordinates and Scale: Graphics Units (GU’s) When
the graphics system is initialized (by PLOTTER IS), the default
scale is measured in Graphic Units. The origin (location 0,0) is
in the lower left corner of the graphics raster. The shorter side
of the raster is 100 GU’s in length. The number of GU’s in the
longer side is determined by the aspect ratio: width/height. For
instance, if the screen is exactly two times as wide asi it is high,
then its aspect ratio is 2. Thus the X coordinate of the right
bound is 200, while the Y coordinate of the upper bound is 100.

This example shows the default (GU) scaling for the Integral
PC’s graphics raster, which has an aspect ratio of approximate-
ly 2.01.

100

58

[S S N S Y T Y I

2
50
100
150
200

Aspect Ratio The current plotter’s aspect ratio (width/height)
is returned by the following BASIC function.

RATIO

Here is how the RATIO is calculated:
RATIO = width / height = (Xmax —Xmin) / (Ymax — Ymin)

Thus RATIO has no units, since they cancel in the division of
width by height.

RATIO can be used to determine the length of the longer side
of the plotting area, since GU’s are specifically chosen so that
the shorter of the plotter’s width or height is exactly 100 GU’s
long. If the height is shorter than the width, then this express-
ion gives the plotting area’s width (in GU’s).

100*RATIO
If the width is shorter than the height (indicated by RATIO

returning a value less than one), then this expression gives the
plotting area’s height (in GU’s).

100/RATID

Graphics 13-5

13

13

Axes and Grids

User Units The first example in this chapter set up a more
relevant plotting scale with this statement:

170 SCALE 1875419840410

The parameters define the coordinates of left, right, lower, and
upper boundaries of the plotting area, respectively. The scal-
ing units set up by this statement are known as User Units, or
UU’s.

Here is a SCALE statement that uses meaningful variable
names to specify the parameters that set up a User Units
coordinate system:

170 SCALE Left:Right+BottomsTor

The subsequent “Limits and Scaling” section describes both
GU’s and UU’s in greater detail.

The AXES statement can be used to draw axes and to put tick
marks on the axes. The following example shows the use of all
of the parameters available with the AXES statement:

KES XtickSpcsYtickSpcosXlocYAxiss¥LocKAxis ¥KmadorsYmadorsSize

13-6 Graphics

The XtickSpc and YtickSpc parameters specify the number of
units between the tick marks.

XLocYAxis and YLocXAxis specify the location of the intersec-
tion of the axes: XLocYAxis is the X location at which the Y axis
crosses the X axis, and YLocXAxis is the Y location at which the
Xaxis crosses the Y axis. If these parameters are not specified,
the default cross locations are 0 and 0.

Xmajor and Ymajor specify which ticks are to be “major”
(full-size) ticks; all other ticks will be ““minor’” (half-size) ticks.
For example, if Xmajor is set to 4, then every fourth tick on the
X axis will be a major tick.

10
20
30
Jils}

Tick length is determined by the Size parameter. It specifies
the size, in GU’s, of the major ticks; minor ticks are always half
thelength of major ticks. If it is not specified, major ticks have a
default length of 2 GU’s, and minor ticks have a default length
of 1 GU.

The following program shows two examples of axes.

PLOTTER IS 1

AXES 10,10 | 10 units between the ticks with oridin at (0,0),
AKXES 204205030 1 20 units between the ticks with oridin at (30,30).
END

The AXES statement has a related statement: GRID. This state-
ment is best thought of as a pair of axes with very long tick
marks. GRID uses the same parameters as AXES, except that
the Size parameter specifies the minor tick length (since
GRID’s “major ticks” span the plotting area).

GRID XticksYticKksXoridinsYoridinsXmadors¥YmadorsSize

Graphics 13-7

13

Here are examples of using GRID in a program.

100 PLOTTER IS 1
110 GCLEAR

120 1

130 GRID 10,10 ! Grid with X and Y ticks 10 GU’s apart.
140 WAIT 5000

150 !

160 GCLEAR

170 GRID 2042040404342+4 ! Ticks 20 GU's aparti

180 1! origin at 0,01

180 ! X mador drid every 3rd ticks

200 ! Y mador grid every 2Znd tickj

210 !

Tick lewndgth = 4 GU's.

13-8 Graphics

Pens and Traditionally, drawing requires pen and paper. With raster
Background graphics, the paper is replaced by the graphics raster, and the
pen is replaced by software that turns raster pixels on and off.

Monochromatic Pens On monochromatic graphics rasters, the
PEN statement lets you choose between four different pens.

PEN 1 white pen (turns pixels on).

PEN © pen off (does not affect pixels).

PEN -1 black pen (turns pixels off).

PEN -2 complementing pen (white pixels are changed to

black, and black pixels are changed to white). 13

The preceding examples did not need to specify a pen number,
since the default is PEN 1 which draws a white line (on a
default background of black).

Clearing to a White Background GCLEAR normally clears a
monochromatic raster to a black background (all pixels off).
However, you can also use it to clear the raster to a white
background (all pixels on) by using this sequence of state-

ments.
PEN -2
GCLEAR

Line Types There are eight different types of lines available
with the LINE TYPE statement. Examples are solid, dashed,
dotted, and alternating dashes and dots. The HP-UX Technical
BASIC Reference shows examples of each type.

Two parameters are allowed with the LINE TYPE statement:
the line type, and the repeat length. When these parameters
are not specified, the line type defaults to 1 (a solid line) and
the repeat length defaults to 5 (the pattern repeats every 5
GU’s). Thus the default line is LINE TYPE 1,5.

Since FRAME and AXES draw several lines at once, they are

useful when exploring the LINE TYPE statement. This prog-
ram shows a couple of different line types.

Graphics 13-9

13

13-10 Graphics

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

PLOTTER IS 1
]

LINE TYPE 1 ! Defines a solid line.

FRAME ! Frame plotting area.

!

LINE TYPE 3 ! Dotted line.

LOCATE 104+110,10,B0 ! Smaller plotting area.

FRAME ! Frame plotting area.

!

LINE TYPE 8410 ! Long dash and two short dashes.
LOCATE 2041004+20,70 ! Smaller plotting area.

FRAME ! Frame plotting area.

!

LINE TYPE 1 ! Solid line.

LOCATE 30:90,30,60 ! Smaller plotting area.

AXES | Draw a X and Y axes (in GU’s),
|

END

When the graphics raster is used as the plotting device, the
repeat factor is system-dependent.

Moving the Pen

Several statements control the movement of the pen on the
drawing surface.

MOVE ¥ Y moves the pen to the coordinate X,Y (without
drawing).
DRAW XY draws a line from the current pen position to

the coordinate X,Y.

PLOT XY sPenCtrl moves or draws to point X,Y, as directed by
the value of PenCtrl.

DRAW and MOVE do exactly what their names imply. PLOT
can do both moves and draws depending on the pen control
parameter. Try the following example. 13

100 PLOTTER IS5 1

110 GCLEAR

120 FRAME

130 DRAW B0 430

140 LABEL " X=GB0, ¥=30"

X=608, Y=50

A white line is drawn from the lower left corner to the middle
of the screen. Why from the lower left corner? Because execut-
ing the statement PLOTTER IS 1 returns the pen to location
0,0. This is currently the lower left corner of the display.

Graphics 13-11

13

13-12 Graphics

Execute the following program to see these statements’ effects.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

PLOTTER IS 1
]

PEN 1 !
GCLEAR !

MOVE 0450 !
DRAW 100,50 |
WAIT 3000 !

!

MOVE 30,430 !
PEN -1 !

DRAW 0,50 !
WAIT 3000 1

!

PEN -2 |

DRAW 100,50 !
!

END

White ren.,

Clear drarhics raster {(to black
Move to left center,

Draw solid white line,

Wait 3 seconds.

Move to center of line.
Chande to black ren.

Draw over left half of line.
Wait another 3 seconds.

Complementing rPen,
Draw over entire line.

let screen,

2nd screen.

3rd ecreen.

A white line is first drawn across the screen. Then the pen is
moved to the midpoint of the line, and a black pen draws over
the left half of the line. Finally, the entire line is com-
plemented.

Pen Control with PLOT Pen action is automatically defined for
the MOVE and DRAW statements. The pen is always raised
before a MOVE and lowered before a DRAW. The PLOT
statement has an optional pen control parameter that deter-
mines the pen’s action according to the following table.

Control Value

Result

Positive Odd
Positive Even
Negative Odd
Negative Even

Move pen, then lower it
Move pen, then raise it

Lower pen, then move it
Raise pen, then move it

Note that when a positive parameter is used, the pen’s up/
down status is not changed before moving it. For instance, if
the pen is currently lowered and a postive pen control para-
meter is used in a PLOT, then the pen remains down through-
out the entire operation; it is not raised before then move and
then lowered after the move.

The following example shows controlling the up/down motion
of the pen by using the optional pen control parameter.

PLOTTER IS5 1

100
110
120
130
140
150
160
170
180
180
200
210
220
230

PEN 1 1
GCLEAR !

PENUP !

PLOT
PLOT
PLOT
PLOT
PLOT

2042041
40,20 1

40440,0 !

2092041
20440 1

PEN O !

!
END

4th PLOT

White line,
Clear (to black).

Make sure Pen is rasied,
Moves then lower,

Draw (since pen lowered).
Draws then raise.

Moves then lower,

Draw adain.

Raise Pen.

3
2nd PLOT

Graphics 13-13

13

13

13-14 Graphics

Relative Plotting A second method of moving and drawing
involves using a new origin, and specifying pen movements
relative to this origin. The relative plot (RPLOT) statement
uses the current pen position as a new origin to define a second
coordinate system. This new origin is located wherever the last
plotting statement (other than RPLOT) left the pen. Since
RPLOT uses a movable origin, it is useful when drawing a
figure that needs to be repeated at different locations on the
display.

Here is an example usage of the statement:

RPLOT XY +P where X and Y are relative displacements.

This program draws a triangle at three different locations.

100 PLOTTER IS 1
110 GCLEAR

120 1

130 MOVE 30,50 ! Sets the relative oridin,
140 GOSUB Triandle

150 !

180 MOVE 10,10 ! Move the relative oridin,
170 GOSUB Triandle

180 1

1890 MOVE 80,80 ! Move it adain,

200 GOSUB Triandle

210 1

220 STOP

230 |

240 Triangle: ! Draw using relative coordinates.
250 RPLOT 20,10,-1

260 RPLOT 20,0

270 RPLOT 04042 | Pen up after draw,

280 RETURN

]

Note that the command RPLOT 0,0 returns the pen to the local
origin (e.g. 50,50) not the absolute origin (0,0).

Incremental Pen Positioning It also useful in some situations to
have statements that define the pen’s currentlocation as a new
origin. Plotting coordinates are then specified relative to this
new origin, which is moved every time the pen is moved.

IDRAW XY
IMDVE XY
IPLOT XY 4P

This type of plotting is similar to RPLOT, except that every pen
movement defines a new origin - including those produced by
IDRAW, IMOVE, and IPLOT.

Execute the following program and watch the results.

10 PLOTTER IS 1
201
30 MOVE 40,40

40 IDRAW 3040 ! Draw ridht,
S0 IDRAW 0,30 ! Draw up.

B0 IMOVE -30,0 ! Moue left.

70 IDRAW 0,-30 ' Draw down.

IMOVE

= =

H =

& &

2 g

2 2

& &
let IDRAW =

With each incremental movement of the pen, a new origin is
created for the subsequent incremental-plotting statement.

Graphics 13-15

13

13

Labeling the Image

13-16 Graphics

Rotating Incrementally Plotted Lines Lines generated by in-
cremental plotting (IDRAW, IMOVE, and IPLOT) can be ro-
tated by the PDIR (plot direction) statement. The current angle
mode is determines how the angle parameter is interpreted; ir
the following example, the DEG statement specifies that the
angle parameter of PDIR is to be interpreted in degrees.

100 PLOTTER IS 1

110 GCLEAR

120 1

130 DEG ! Use angular mode of dedrees.

140 FOR Angle=0 TO 90 STEP 10

150 PDIR Andle

160 MOVE 0,0

170 IDRAW 100,0 | Rotated Andle dedrees.
180 NEXT Andle

PDIR 0 will return to the system to normal (no rotation).

Although images can convey a great deal of information, a few
labels help explain what is being presented. The following
program places a label on the graphics raster.

10
20
30
40
50
B0

PLOTTER IS5 1

GCLEAR

!

MOVE 50,30

CSIZE 12 ' Larde characters.,
LABEL "Sin X"

Sin X

LABEL USING allows formatted labels to be plotted just as
PRINT USING allows formatted text to be printed.

Several statements affect the printing of labels. 13

CSIZE controls the character size, aspect ratio, and slant.
LDIR label direction specifies the printing angle of the label.
LORG label origin adjusts the location of the label.

Each of the following examples illustrates one of the above
statements.

100 PLOTTER IS 1

110 GCLEAR

120 !

130 MOVE 1540

140 CSIZE 10+4 ' Heidht 10§ aspect ratio 4
150 LABEL "WIDE"

160 !

170 MOVE 15415

180 CSIZE 20,0,2 ! Height 20§ aspect ratio=0,2
180 LABEL "TALL™"

N T C3a =

L

Graphics 13-17

Label direction is interpreted according to the current angular
mode: degrees, radians, or grads.

100
110
120
130
140
150
160
170
180
190
200
210
220

13

PLOTTER
1

DEG ! Set dedrees andular mode.
i

MOVE 80+10
CSIZE 8

LDIR 90 ! Label
LABEL "VERTICAL"
|

MOVE 80,10

I§ 1

direction is bottom to top.

LDIR 180 ! Lakel direction is right to left.
LABEL "UPSIDE DOWN®
END

VERTICAL

NMOO 30ISdN

There are nine possible label origins used for adjusting the
location of the label. This program shows three. (See the HP-
UX Technical BASIC Language Reference for a description of
all nine.)

100
110
120
130
140
150
160
170
180
190
200
210

13-18 Graphics

PLOTTER IS 1
GCLEAR
CSIZE 6

!

MOVE B0 320
LORG 1 !
LABEL USING
!

MOVE B0 30
LORG 9 !

LABEL USING
!

1st "label origin" statement.

IIK L] ;IILEFTII

2nd "label origin"
IIKH ;lIRIGHTH

statement.

Storing and
Retrieving Raster
Images

220 MOVE BO4+10

230 LORG 5 ! 3rd "label oridin" statement.
240 LABEL USING "K"3i"CENTER"
250 END
RIGHT
CENTER
LEFT

One handy feature of using the graphics raster as a plotting
device is that the image can be stored in a file. For instance, this
statement stores the current graphics raster in the file named
LORG_Raster.

GSTORE "LORG.Raster"

The statement creates a file of type BASIC/GRAF in the current
working directory, and then stores the pixels in the file.

The image can be returned to the graphics raster from a file by
this statement:

GLOAD "LORG_Raster"

The BASIC/GRAF file’s contents are loaded back into the
raster.

Graphics 13-19

13

13

]
Limits and
Scaling

Physical Limits

13-20 Graphics

The preceding section gave examples of default Graphics Un-
its (GU) and User Units (UU) scaling. These coordinate sys-
tems map into an area known as the plotting area, which can
be moved either by software or by a plotter’'s front-panel
controls. This section gives an in-depth treatment of the sub-
ject of changing the size of the plotting area and changing
coordinate systems.

The raster display and all other plotting devices have physical
limits which define the maximum size of graphics image that
can be produced on the device. For example, you cannot
produce an image on a graphics display screen that is larger
than its graphics raster. Similarly, the physical limits of a
plotter determine the maximum size of drawing that it can
produce.

Device’s Physical Limits

! f

Maximum Size of Plotting Area
Is Defined by the

Device’s Physical Limits

- .

Graphics Limits

Within the physical limits of a device, you can choose the

location of the graphics output by setting the graphics limits.

The graphics limits are the boundaries for all* graphics output.
Device’s Physical Limite

Gr‘aphicsT Limits

|

|

Default Graphics Limits The default graphics limits for your
console’s or terminal’s graphics raster can be found in the
Implementation Specifics appendix for you particular Technic-
al BASIC system.

The default graphics limits vary for different external plotters,
but are generally close to the physical limits of the device.
Refer to the documentation accompanying the plotter for addi-
tional information regarding physical and default graphics
limits.

The graphics limits are set to their default locations when the
BASIC system is entered.

1 The only exceptions to this statement are the byte-plotting operations performed
on a graphics raster, which can performed outside of the current graphics limits
(but not outside the physical limits).

Graphics 13-21

13

13

Scaling Maps into
the Graphics Limits

13-22 Graphics

When you want to move the pen, you specify the coordinates
to which you want the pen to move. For instance, this state-
ment tells the pen to move to the coordinate 50,50.

MOVE 50450

The physical location to which the pen moves depends on the
coordinate system currently set up for the device. As an exam-
ple, this sequence of statements moves the graphics limits,
sets up a user units (UU’s) coordinate system which maps into
the graphics limits, and shows the coordinate system.

LOCATE 20+120,20,80 ! Plotting area bounds (in GU’s),
SCALE 0+14040,100 1 Sets up UU scaling & coordinates.
LAXES 20,2040,041,1+300) Draws & labels axes.

Device’s Physical Limite

The X coordinate of the left graphic limit is 0, while the X
coordinate of the right limit is 140. The Y coordinates of the
lower and upper graphics limits are 0 and 100, respectively.

Thelength of 1 user unit in the X direction is determined by the
difference in X coordinates of the graphics limits (here 140)
divided by the physical distance between right and left
graphics limits (depends on the plotting device). The length of
1 user unit in the Y direction is determined similarly.

Moving the
Graphics Limits

10
20
z1
30
40
30
51
B0
61
62
70
80

This is only a brief look at scaling. However, it does show how
the coordinate system is mapped onto the physical plotting
device. More details of scaling methods are shown in subse-
quent sections.

On most graphics devices, the graphics limits can be moved
either manually or with the LIMIT! statement. In either case,
these limits are read by the BASIC system when it executes a
PLOTTER IS statement.

LIMIT XminsXmas:¥mins Ymax

Since the LIMIT parameters are in millimeters, they specify
the absolute locations of the graphics limits. The origin (0,0) is
normally the lower-left physical limit of the plotting device. X
coordinates increase as you move toward the right physical
limit of the plotting area, while Y coordinates increase toward
the top physical limit. LIMIT enables you to move the graphics
limits anywhere within the physical limits of the plotting de-
vice.

The following program shows an example of default and user-
defined graphics limits:

oxx% Limit *%%

PLOTTER IS 1 ! Specifies the CRT as the plotter,
]

GCLEAR ! Clears the drarhics diseplav,

LINE TYPE 3

FRAME !
!

! Specifies dashed line tvre,
Frames the default plotting area for
reference.

LIMIT 30,30+4B0:20,20+40 ! Specifies an 80 mm X 40 mm plotting

!

!

FRAME !
END

area that is offset from the displavs
lower-left phvsical bounds,
Frames the specified plotting area.

1 In addition to specifying the graphics limits, executing the LIMIT statement also
activates the graphics default conditions. See the HP-UX Technical BASIC Refer-
ence for further details about default graphics conditions.

Graphics 13-23

13

13

13-24 Graphics

Specified graphics limits (x max, y max)

]

|

|

|

|

| Defaun
Plotting area | graphics

| limits

|

|

|

|

f

|

v

(x min, y min)

Scope of LIMIT Statements As demonstrated by the program,
the LIMIT statement overrides any previously set or default
graphics limits. These graphics limits remain in effect until one
of the following operations is performed:

m Another LIMIT statement is executed.
m A PLOTTER IS statement is executed.
m The BASIC system is exited and re-entered.

If you do not execute a LIMIT statement in a program and your
plot turns out smaller than you expected, then the plotting
device is probably using the graphics limits set by a previous
LIMIT statement.

Range of Graphics Limit Parameters The ranges of the LIMIT
parameters are determined by the current PLOTTER IS de-
vice’s physical limits. For the graphics raster of your console or
terminal, the range of LIMIT parameters are supplied in the
Implementation Specifics appendix for your particular Tech-
nical BASIC system. For external plotters, the range is givenin
the documentation supplied with the plotter.

If a LIMIT statement parameter is out-of-bounds, the system
returns an error message and ignores the statement.

Another Look at the The RATIO function returns a value equal to the ratio width/
Ratio Function height. The value of the RATIO function depends on the

100
120
130
140
150
160
170
180
180
200
210
220
230
240
250

current graphics limits, which can be set by default, by LIMIT,
or manually on the plotting device.

10 LIMIT 54+95:10460 ! New drarhics limits (in mm).
20 DISP RATIO ! Width/height=(93-5)/(B0-10)=90/50,
30 END

The value returned by RATIO is:
1.8
The RATIO function is useful for changing the size or location

of the plotting area, without changing the proportions. A
sample program is given below.:

I %%% RATID *%%

PLOTTER IS 1 ! Specifies the displary as the plotter.
GCLEAR ! Clears the drarhics raster,

LIMIT 204890,0,70 1 Specifies the drarhics limits,

FRAME ! Frames the plottingd area.

R=RATIO ! Assigns RATID to the variable R,
LIMIT OR*¥(B0O-20) 20460 !Specifies the drarhics limits while

! maintaining the same RATIO as the

! previouns LIMIT.,

FRAME ! Frames the plottingd area.

LIMIT 50,80,10,30/R+10 | Specifies the drarhics limits while
[: maintaining the same RATIOD as the

! previous LIMIT,

FRAME | Frames the rlotting area.

END

Graphics 13-25

13

13

Scaling the Plotting

13-26 Graphics

Area

Once the plotting area is defined, either by default or by
specifying the graphics limits, the scale can be chosen to suit
your particular graphics application. You can use the default
scale — graphics units (GU’s) — or you can specify your own
scale — user units (UU’s). If you do not specify your own units,
the BASIC system sets UU’s equal to GU’s.

Graphics Units Scale The graphics units scale is the default
coordinate system. It remains in effect until a scaling statement
is executed.

As mentioned earlier, the BASIC system determines the shor-
test dimension of the area defined by the graphics limits, and
then scales it from 0 to 100 GU’s. That is, one GU corresponds
to one percent of the shortest side of the rectangle formed by
the graphics limits. The other dimension is scaled with the
same size units (equal unit, or isotropic, scaling) starting at 0;
however, the largest coordinate on the longest side is either
RATIO 100 or 100/RATIO, whichever is larger.

The graphics units scale maps onto the area defined by the
graphics limits. When the graphics limits change, the size of
the graphics units scale also changes. For example, this state-
ment moves the graphics limits to form a 50-by-70 millimetre
plotting area:

LIMIT 10:80,0470

The graphics unit scale now maps onto this plotting area. The
length of one GU is again equal to 1/100 (one percent) of the
length of the shortest side of the area bounded by the graphics
limits. The length of the longest side of the plotting area is
again something greater than 100, depending on the width/
height aspect ratio.

100
120
125
130
1460
130
160
170
175
180
190
200
210
220
230
240
230
260

140 GUs

Plotting
Area

0 > 100 GUS 13

The graphics units scale provides a simple method of scaling
the plotting area on a percentage basis, regardless of the size of
the plotting area.

The following program draws a line from point (0,0), in GUs,
to the opposite corner of the plotting area. Enter the graphics
limits from the keyboard; the RATIO function is used to com-
pute the length in GUs of the longest side of the plotting area.

o*%% Grarhics Units *¥%

PLOTTER IS 1 | The display is the plotter.
GCLEAR

DISP "Enter LIMIT Parameter: xminsxmaxsyminsymax"

INPUT xminmsxmaxsyminsymax

LIMIT xminmsxmaxsyminsymax ! Specifies drarhics limits.
DISP "RATIO = "RATIO ! Displavs current RATIO,
WAIT 2000

I

GCLEAR ! Clears the drarhics area,
FRAME ! Frames plotting area,

MOVE 040 1 Moves the pen to lower-left
! COTner,

Kmax=100%MAX (1,RATIO) ! Maximum x value in GUs,
Ymax=100%MAX (1,1/RATIO) ! Maximum v value in GUs.,
DRAW Xmaxs¥Ymax ! Draws a line to upPer-ridht
! COTHETrs

END

Graphics 13-27

13

13-28 Graphics

Execute the above program and enter the following data when
prompted to do so.

10411043435
An alpha display of the RATIO is given as the first part of the
result.

RATIO = 2

The final part of the result from executing the program is this
graphics display:

User Units Scale There are three scaling statements that allow

you to specify the user units scale:

m SCALE - sets up scaling in user units (UU’s)

m SHOW -like SCALE, but the unitsin X and Y directions are
equal in length (isotropic scaling)

m MSCALE - sets up scaling in mm units

All three scaling statements specify the scale for the current
plotting area (defined by the graphics limits) or by a LOCATE
statement (which also specifies plotting boundaries, as de-
scribed later in this section).

The SCALE statement defines the coordinates of the limits of
the current plotting area. The syntax for scale is as follows:

SCALE x_minsx_maxsy.minsy_max

The parameters can be numeric constants, variables, or ex-
pressions.

100
110
120
130
140
150
160
170
180
190
200
210

220

This program shows an example of setting up a user-units
coordinate system:

I %% Scale *¥*

PLOTTER IS 1 ! The diselay is the Pplotter.

GCLEAR ! Clears the drarhics displav.

!

SCALE -242+-444 1 Specifies UU scale.

GRID 1415040 1 Draws a drid with 1 UU spacing.

!

DEG ! Sets dedrees mode,

MOVE 1,0 1 Moves to the start of the ellirse.

FOR Dedrees=0 TO 350 STEP 10 ! 10 dedree increments.
DRAW COS(Dedrees) sy SIN(Dedrees) ! Draws in UU’s.

NEXT Dedree

END

The following graphics display is the result of executing the
above program.

The SCALE statement specifies user units independently in
the X and Y directions.

Graphics 13-29

13

13

13-30 Graphics

100
110
120
130
140
150
160
170
180
190
200
210

220

The SHOW statement specifies user units for a plotting device
such that one unit on the X axis is the same length as one unit
on the Y axis (isotropic scaling). Thus, the plotting area is
scaled with unit squares. The SHOW statement parameters
specify the minimum number of units to be mapped onto the
current plotting area. If necessary, units are added to a dimen-
sion to scale the plotting area isotropically (an example is
provided subsequently).

The syntax for the SHOW statement is as follows:

SHOW w_minsx_maxsy_minsy_max
The x_min and x_max parameters specify the minimum
bounds in the X direction. The y_min and y_max parameters

specify the minimum bounds in the Y direction. The para-
meters can be numeric constants, variables, or expressions.

To use the SHOW statement, replace the SCALE statement in
the previous example with the SHOW statement. Because of
equal unit scaling, the figure drawn is now a circle instead of
an ellipse. Line 140 of your program should look like this:

140 SHOW -2:23-444

and your changed program should be as follows:

I #%% Scale **%

PLOTTER IS 1 ! The disrlay is the plotter.

GCLEAR ! Clears the drarhics diselav,

|

SHOW -2+2+-444 | £{{-e----- Gpecifies ‘isotroric’ UU scale.
GRID 1414040 1 Draws a drid with 1 UU spacing,

!

DEG ! Sets degrees mode.

MOVE 1.0 ! Moves to the start of the ellipse,

FOR Dedrees=0 TO 360 STEP 10 ! 10 dedree increments.
DRAW COS(Dedrees)s SIN(Dedrees) ! Draws in UU’s,

NEXT Dedree

END

The SHOW statement sets up UU’s such that the coordinate
system is as large as possible and is centered within the
graphics limits (or within the plotting boundaries, if specified).
For example, if the LIMIT rectangle is twice as wide as it is high
(e.g., LIMIT 0,100,0,50), then SHOW -1,1,-1,1 is equivalent to
SCALE -2,2,-1,1.

. (1.1 2,1

(—2.-1) (—1. -1

- 200 GUs

Millimetre Scale The MSCALE statement sets millimetres as
user units and specifies the location of the origin. MSCALE is
useful when correspondence between an image and a physical
object is desirable, as in drafting applications. The accuracy of
the scale depends entirely on the graphics device in use; for
this reason, the MSCALE statement cannot be used to estab-
lish millimetre user units for an unsupported peripheral
monitor.

Graphics 13-31

13

13

13-32 Graphics

100
110
120
130
140
150
160
170
180
190
200

210

The MSCALE statement parameters are different than para-
meters in the SCALE and SHOW statements.

MSCALE x_offsetsr_offset

MSCALE specifies user units equal to millimetres, and offsets
the origin (0,0) in millimetre spacing, from the lower-left
graphics limits corner by the specified distance, in millimetres.
The MSCALE parameters can be numeric contants, variables,
or expressions.

For example, the following statement specifies that 1 user unit
equals 1 mm; the origin is offset 10 mm to the right and 15 mm
up from the lower-left corner of the plotting area.

MECALE 10,15

Like SCALE and SHOW, the MSCALE statement must follow
operations that set or move the graphics limits or the LOCATE
plotting boundaries in order to map the user units scale onto
the current plotting area.

The following program uses the MSCALE statement to draw a
metric ruler on the display.

I #%% Metric Ruler ***
PLOTTER IS 1

GCLEAR
FRAME

MSCALE 10,40 ! Specifies metric user units with

CLIP 0410040510 1

10 mm x_offset and 40 mm v_offset.
Clirs Plotting area in millimeters,

FRAME ! Frames the plotting area (ruler).
AXES Z24104041040,51043 | Draws the ruler’s metric scale.
MOVE 30,3

LABEL USING "K"3 "10 ¢m Metric Scale"

END

The results from executing this program are as shown in the
following picture:

18 om Metric Scale

The specified MSCALE origin need not be located inside the 13
graphics limits; you can plot, for example, in negative mil-
limetre units by specifying the origin of your MSCALE beyond

the maximum X and Y dimensions of the graphics limits.

The following program draws a metric grid; the MSCALE
origin is offset to the upper-right corner of the plotting area.

10 1 %% Nedative Mscale *%%
20 PLOTTER IS 1

30 GRAPHICS ! Sets the display to drarhics mode.
40 LIMIT 0,160,060 ! Specifies the drarhics limits,

30 MSCALE 160,80 ! Specifies metric UUs and rlaces

31 1 the oridin at the upPer-right

52 1 corner of the plotting area.

B0 FRAME ! Frames the plotting area,

70 GRID 2,24+0,0,10,10 1 Draws a metric dgrid with 1{0Omm

71 1 spacing and Zmm tic marks on the
72 1 ¥ and v axes.

80 END

Execution of the previous program results in the following
display:

Graphics 13-33

13

Changing Units:
SETGU and SETUU

13-34 Graphics

The two types of units used by the computer in plotting opera-
tions are graphics units (GUs) and user units (UUs). The cur-
rent units mode refers to the type of units in use during
plotting. At entry to the BASIC system, the computer is set to
user units mode and the current user units scale is GUs, by
default. However, you can switch modes at any time and
access the current UU’s and GU's scales by executing the mode
change statements: SETGU, and SETUU.

The SETGU statement sets the system to graphics units mode,
establishing GU’s as the current scale. Executing SETGU does
not disturb the current user units scale, and allows you to plot
outside the plotting boundaries set by the LOCATE and CLIP
statements (discussion of plotting boundaries appears later in
this section). The SETGU statement is the only means by
which the computer is set to graphics mode. Unless SETGU is
executed, the computer plots according to the current user
units scale as defined by SCALE, SHOW, MSCALE, or by
default (GU’s). The syntax for setting the graphics unit mode
is:

SETGU

SETUU sets user units (UUs) as the current units mode. User
units mode is also set by the SCALE, SHOW, MSCALE,
LIMIT, and PLOTTER IS statements, and by default. The
syntax for setting the user units mode is as follows:

SETUU

If the system is set to graphics units mode, you need to return
it to user units mode in order for the plotting boundaries set by
LOCATE or CLIP to be active. SETGU establishes the area
bounded by the graphics limits as the current plotting area.

The following program makes use of both scales: UU’s and
GU’s. The GU’s scale is determined by the graphics limits, and
is recalled by the SETGU statement.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
280
300

PLOTTER IS 1 !

GCLEAR

FRAME !

CSIZE 3

i

LOCATE B0 ,120,20,80 !
FRAME

i

SCALE -20320,4-20,20 |
MOVE -0,0

LABEL ™ 040, UU‘s"
DRAW 20420

LABEL "20,20 UU’s"

Sets to UU’'s (=GU’'s now).

Show display limits,

Move plotting bounds (GU’s).,

Scale in UU’s,

!
SETGU ! Chande to GU's 13
MOVE 2,2
LABEL "0,0 GU’s®
MOVE 040
DRAW 20,20
LABEL " 20,20 GU’s"
END
28,28 W'e
2,8 UWe

28,28 GU'e

8,08 GU's

Graphics 13-35

13 Plotting Boundaries

13-36 Graphics

Once a scaling statement is executed, the current user-defined
scale is active until one of the following occur:

m A new scaling statement is executed (SCALE, SHOW, or
MSCALE).

The system is exited and re-entered, in which case UU’s
default to GU’s.

m A LIMIT or PLOTTER IS statement is executed (UU’s set
equal to GU’s).

m The system is switched to graphics units mode by executing
SETGU.

Plotting is restricted either to the default graphics limits or
those specified by a LIMIT statement. The LOCATE and CLIP
statements specify plotting boundaries. Like the graphics
limits, plotting boundaries mark the limits of the plotting area.
However, plotting boundaries differ from graphics limits in
that they represent conditional limits. Plotting ouside the
plotting boundaries is possible while the system is set to
graphics units (GU) mode or while labeling.

Plotting boundaries can be used for reserving space within the
graphics limits for labeling. Plotting boundaries can also be
used to create windows for showing portions of a plot.

User units can be mapped onto the LOCATE-defined plotting
area but not the CLIP-defined plotting area.

The diagram below shows different ways in which plotting
boundaries can be set with respect to the graphics limits.
Although the plotting boundaries can extend beyond the
graphics limits, or for that matter, the physical limits of the
plotting device, you can’t plot or label outside the graphics
limits.

| |
| 1
[l
| | | |
| | | !
| | | I
| | | |
I | \ _____ u !
| L___-_4 :— j| |
1 ‘ | !
|

I el ' :
I A / | | I
[Plotting boundaries L o - - _| |
b e e e Y Y e e e — d

LOCATE Boundaries The LOCATE statement enables you to
relocate the plotting area within the graphics limits by specify-
ing the plotting boundaries. This allows you to leave space for
labels outside of the plotting area, but within the graphics
limits. The parameters in the LOCATE statement are express-
ed in GU’s. Thus, LOCATE defines the plotting boundaries as
a percentage of the graphics limits. The syntax for the LO-
CATE statement is as follows:

LOCATE XminsXmaxs¥min¥max

The first two parameters specify the left and right boundaries,
and the last two parameters specify the lower and upper
boundaries. Like the LIMIT statement, the parameters can be
exchanged to reflect the plot (refer to the section of this chapter
entitled ‘‘Reflecting Plots” for further details). The parameters
can be numeric constants, variables, or expressions.

When the LOCATE statement is executed prior to a scaling
statement (SCALE, SHOW, or MSCALE), the user units scale
is mapped onto the area defined by LOCATE rather than the
graphics limits.

Graphics 13-37

13

13

13-38 Graphics

The plotting boundaries specified by the LOCATE statement
replace any previously defined plotting boundaries. In turn,
the LOCATE-defined plotting boundaries are redefined by the
CLIP statement. The LIMIT, UNCLIP, and PLOTTER IS state-
ments default the plotting boundaries to the graphics limits.
The plotting boundaries are also set to the graphics limits
whenever display memory is reapportioned or the computer is
turned on. When the computeris set to graphics units mode by
executing SETGU, the graphics limits define the current plot-
ting area. Executing SETUU restores the LOCATE or CLIP-
defined plotting boundaries.

The following drawings show the available plotting area and
the current scale in user units mode and graphics units mode
for the given LIMIT, LOCATE, and SCALE statements. Label-
ing is allowed anywhere within the graphics limits, regardless
of the current units mode. The graphics limits are drawn in
solid lines; the plotting boundaries are drawn in dotted lines.
The plotting area is the shaded portion.

LIMIT 012040460
LOCATE 100,300,30,150
SCALE 01040410

10 i" _________ —l
| I
5

i l

: Plotting area :

User Units Mode O e e e — o —— —
] b 10

(=5,—5)
(300,150)

i_ _________ —

I |

100 l |

l l

Graphics Units Mode 50 l— ——————————— _|

Plotting area
0
0 100 200

LIMIT 0:120,0,60
LOCATE 50,150,23,73
SCALE 010,010

{15,15)
K I — m
User Units Mode I Plotting area |
b — .|
o] 10
(=5,-5)
100
75 |'— ————— —|
Graphics Units Mode I Plotting area I
25 L J
0
o 50 150 200
LIMIT 0,120,0,60
LOCATE -504+2530+-50,150
SCALE 041040410
(10,10}
I |
I |
| s |
I I
User Units Mode | Plotting area I
| |
I 2 - I
7 .3
| 1 I
- 1
0.0
(250,150)
I I
I I
| 100 |
| |
Graphics Units Mode I Plotting area I
I I
I o |
o] 200
| I
e e e e e e I
{—50,—50)

Graphics 13-39

13

13-40 Graphics

10
20
30
40
50
B0
70
80
90
91
100
110
120

130

The following program sequentially frames the default
graphics limits, the graphics limits specified by a LIMIT state-
ment, and the LOCATE-specified plotting boundaries.

I #%% Locate *¥#
PLOTTER IS 1

GRAPHICS

FRAME ! Frames the default draphics limits,
LIMIT 104+130,10,50

LINE TYPE 342 Specifies a dotted line type.

FRAME |- Frames the specified drarhics limits.,

FOR I=0 TO 30 STEP 2
LOCATE 50-1,50+1,50-130+41 ! Plotting boundaries in

! increments of 2 GUs,
LINE TYPE 1 ! Specifies a solid line tvre,
FRAME

NEXT I

END

Execution of the previous program results in the following
display:

10
20
30
40
50
B0
70
80
a0
100
101
102
ii0
111
120
130
140

CLIP Boundaries The CLIP statement specifies the plotting
boundaries according to the currents units: GU’s, or UU’s.
Previously set plotting boundaries are replaced by the CLIP-
defined boundaries. Plotting boundaries set by LOCATE or
CLIP affect lines plotted in user units mode, but have no effect
on lines plotted in graphics units mode or labels. The syntax
for the CLIP statement is as follows:

CLIP XminisXmaxs»¥minsYmax

The first two parameters specify the left and right plotting
boundaries, respectively, and the second two parameters spe-
cify the lower and upper plotting boundaries, respectively.
The parameters can be numeric constants, variables, or ex-
pressions.

The CLIP parameters are interpreted according to the current
units, in contrast to the LOCATE statement which always uses
GU'’s. The plotting area defined by the CLIP statement cannot
be scaled by any of the three scaling statements: SCALE,
SHOW, and MSCALE. If a scaling statement is executed after
the CLIP statement, the user units scale is mapped onto the
current plotting area as defined by the graphics limits or, if
specified, the LOCATE plotting boundaries.

The graphics units scale is mapped onto the plotting area
defined by the graphics limits. For example:

I %%% Clip *¥¥
PLOTTER IS 1

GCLEAR

FRAME ! Frames the default Plotting area.
LOCATE 1049041070 | Locates the Plotting boundaries.

FRAME ! Frames the LOCATE plotting area.

CLIP S0,120,50,90 1 Specifies new CLIP plotting boundaries,
FRAME ! Frames the CLIP Plotting area.

SCALE 0,5,0,5 |

GRID 141
!
|

Scales the LOCATE plotting area.

Draws a drid within the CLIP-defined
plotting area according to the scale
marped onto the LOCATE-defined area.

LOCATE 10,90,104+70 ! Returns plotting boundaries to oridinal

|

LOCATE-defined position.

LINE TYPE 3 ! Specifies a dotted line tvpe.

GRID 1.1
END

!

Draws a drid on the LOCATE plotting area.

Graphics 13-41

13

Execution of the previous program results in the following
display:

CLIP
plotting
area

LOCATE
: : : : plotting
...... area

The following program uses the CLIP statement to specify
plotting boundaries and demonstrates plotting in graphics
units mode and user units mode.

10 1 %#%% Clip-Plot *%%
20 GCLEAR
30 PLOTTER IS 1 @ FRAME

40 LIMIT 10511045470 1 Grarhics limits

30 LINE TYPE B B FRAME

B0 CLIP 10,RATIO*100-10,25473 | Plotting boundaries in
B1 GUs - the current user
g2 | units scale.

70 LINE TYPE 3 @ FRAME

80 LINE TYPE 1

90 MOVE 0,100

100 FOR X=5 T0 RATIO #1000 STEP 5

110 IF X<50*RATIO THEN SETGU ELSE SETUU ! Sets drarhics units mode

20 1 for left half of rplot:
121 ! user units mode for right
22 half of eplot., Plotting
123 | scale is GUs for both

124 | modes.,

130 IF (-1)"{(X/3)=1 THEN Y=100 ELSE ¥=0

140 PLOT XY s-1

150 NEXT X

191 | *%% Labeling is not restricted by the plotting boundaries *¥%
152 1

13-42 Graphics

160 MOVE 3,10 @ LABEL "Grarphics Units Mode"
170 MOVE 85,10 B LABEL "User Units Mode"

180

END

Execution of the previous program results in the following
display:

Unclipping Plotting Boundaries The UNCLIP statement sets
the plotting boundaries equal to the graphics limits, estab-
lishing the area bound by the graphics limits as the current
plotting area. The syntax of this statement is as follows:

UNCLIP

UNCLIP doesn’t disturb the current units; the system remains
in the current scaling units mode. The SETGU statement also
establishes the area within the graphics limits as the current
plotting area, but without resetting the plotting boundaries.
SETGU sets the system to graphics units mode.

The UNCLIP statement is used in the following program to

reset the LOCATE-specified plotting boundaries to the
graphics limits. The user units scale is preserved.

Graphics 13-43

13

13

i0
20
30
40
30
a1
GO
70
B0
a0
91
100
110
111
120
121
122

130

13-44 Graphics

I owxx Unclip #ex

PLOTTER IS 1

GCLEAR

LIMIT 01154075 @ FRAME ! Specifies and frames drarhics limits,

LOCATE 4041202080 8 FRAME ! Locates and frames the plotting

! boundaries,
SCALE 0,10,0410 ! Scales the LOCATE plotting area,
GRID 141 1 Draws a drid on the LOCATE area.
CSIZE 9,.8 ! Specifies character size,
MOVE 2424-1.,9 ! Moves the pen outside the plotting

| boundaries,

LABEL "UNCLIP" | Labels the character string "UNCLIP",
UNCLIP ! Sets the plotting boundaries esual to
! the drarhics limits.

GRID 1,1 ! Draws a dgrid an the plotting area

| bound by the drarhics limitsi Uls

i are unchanded,

END

Execution of the previous program results in the following
display:

The following table summarizes the statements and conditions
which affect the position and scale of the plotting area.

Condition Parameter Effect on Effecton Effect .° n Eﬂeq on
or Units ScalingMode | ScalingUnits | Craphics Plotting
Statement Limits Boundaries
Power-on - Setto UU's mode. |UU’'s = GU'’s. Set to default Set to default
graphics limits of | graphics limits of
the graphics the graphics
display. display.

PLOTTER IS - Setto UU’'s mode. |UU’'s = GU’s. Read from Set to graphics

device. limits.

LIMIT millimetres Setto UU’'s mode. |UU’'s = GU’s. Set to specified | Set to graphics

limits. limits specified
byLIMIT,

LOCATE GU’s No effect. No effect. No effect. Setto
boundaries
specified by
LOCATE.

CLIP currentunits | No effect. No effect. No effect. Setto
boundaries
specified by
CLIP.

UNCLIP - No effect. No effect. No effect. Resets to current
graphics limits.

SCALE UU’s Setto UU’'s mode. | UU’s specified No effect. No effect.

by SCALE.

SHOW UU’s Setto UU’'s mode. | UU’s specified No effect. No effect.

by 8HOMW (in
equal x &y
units).

MSCALE millimetres Set to UU’'s mode. | UU’s specified No effect. No effect.

by MSCALE in
millimetres.

SETGU - Setto GU’s mode. |GU’s No effect. Temporarily set
Plotting area is to graphic’s
defined by limits.
graphics limits.

SETUU - Setto UU's mode. | Current UU's as | No effect. Restores plotting
Plotting area is specified by the boundaries.
defined by plotting | above
boundaries. statements and

conditions.

Graphics 13-45

13

13

Reflecting Images

13-46 Graphics

ll#

The normal sequence of parameters in the LIMIT statement
puts the origin of your graph in the lower-left corner of the
graphics output. By changing the order of parameters, you can
produce a reflected image of the plot (except labels) without
any additional changes in the program. Three kinds of re-
flected images are possible:

Exchanging the x_min with the x_max parameter reflects the
image across the y axis.

LIMIT x_maxsX_minsvy._minsy._max
Exchanging the y_min with the y_max parameter reflects the
image across the x axis.

LIMIT xominsx_maxsy.maxsy.min
Exchanging the x_min with the x_max parameter, and the

y-min with the y_max parameter reflects the image across the
origin.

LIMIT x_maxsX.minsy_minsy_max

The SCALE, SHOW, and LOCATE statements can also be
used to reflect plots by exchanging parameters similarly.

Note that these procedures do not reflect labels or BPLOT
data. Labels are reflected by the CSIZE statement.

Using BPLOT
and BREAD

Byte Plotting:
BPLOT

The BPLOT, or byte plot, statement performs a type of plotting
operation in which the system addresses individual pixels on
the graphics raster, turning them on or off according to the
parameters in the BPLOT statement. The plotting area is set up
using the same procedures as for plotting data, axes, and
labels. You can BPLOT anywhere within the default graphics
limits. However, the pen cannot be positioned outside the
current graphics limits (as specified by LIMIT or by default)
prior to BPLOT unless the system is set to graphics units mode
(unlike pen positioning for data and labels). The PEN state-
ment is ignored during BPLOT operations. BPLOT plots white
or black dots according to the BPLOT statement parameters.

The BREAD statement allows you to read the on/off states of
pixels on the graphics raster. The raster is read dot by dot and
placed into a character string. BREAD performs the opposite
function as BPLOT; the two statements are often used cooper-
atively for creating and storing display dot graphics.

BPLOT address pixels from the current pen position, plotting
across the row from left to right. Successive BPLOT statements
plot rows of pixels from top to bottom, unless the pen is
repositioned by another plotting or positioning statement.
(Note that byte plots can’t be reflected, as can other plotted
images.)

The BPLOT statement reads the character string expression
and interprets each character’s code (an eight-digit binary
number) as the on/off status of eight pixels. A ““1” in the binary
code specifies that a pixel is to be turned on, while a “0”
indicates that the pixel is to be turned off. The syntax for
BPLOT is as follows:

BPLOT string_exrpression » bytes.per.row

Graphics 13-47

13

13

13-48 Graphics

With the BPLOT statement, characters and bytes are synony-
mous. One character specifies the on/off status of eight pixels
on the graphics raster. The string expression contains multiple
bytes of information that translates into patterns of pixels. The
bytes_per_row parameter specifies the number of characters
(bytes) per row; it can be a numeric constant, variable, or
expression. If the bytes_per_row parameter is positive, the
BPLOT statement performs an exclusive or with the existing
dots on the display screen; if it is negative, the pixels are
inclusive or’ed with existing pixels on the graphics display.
When the specified number of bytes per row are plotted,
BPLOT repositions the pen to the left edge, one row below the
previous byte-plotted row. BPLOT continues to plot pixels
until the entire character string is converted to pixels.

For example, the following statement plots 16 characters (16
groups of eight pixels) per pixel row on the raster, until all of
the characters in A$ have been plotted.

BPLOT A%.,16

If A$ contained 64 characters, then the statement would pro-
duce a byte plot of four rows of 128 (16 X 8) pixels per row.

This statement would produce eight rows of 64 (8x8) pixels per
TOW- " BPLOT A$.8

BPLOT can begin at any pixel location. The starting location for
BPLOT is determined in two ways:

m If the most recent pen movement was directed by a BPLOT
statement, then the next BPLOT string begins at the left
edge of and one row below the last byte-plotted string.

m If the most recent pen movement was directed by any state-
ment other than BPLOT, then the BPLOT begins at the
current pen position (the closest pixel).

The BPLOT statement doesn’t affect the pen position for other
plotting operations. However, all of the other plotting state-
ments which move the pen affect the location of the byte
plotted information.

Building the BPLOT The procedure for building a BPLOT string is summarized
String below.

1.
2,

Draw the figure you wish to plot.

Redraw the figure in matrix form, using dot patterns
instead of lines. Graph paper is useful for this task; let
each square equal one pixel (one bit of information).

Divide the dot figure into columns of dots and spaces;
each row must be an even multiple of eight squares wide
(e.g., 16, 32, etc.). View each group of eight dots as a byte
of information where each dot specifies a bit in the byte. If
adotis to be plotted, the value of the corresponding bit is
one; if no dot is to be plotted, then the bit’s value is zero.
Each group of eight dots or spaces specifies a binary
number that determines a particular character.

Convert each binary number to its decimal equivalent.

Build the character string by assigning the character of
the specified decimal value (using the CHR$ function) to
the appropriate character position in the string. One
approach is to write a program that accepts and appends
the character to the string through INPUT statements or
READ and DATA statements.

Use this string with the BPLOT statement to plot the
figure.

Use the procedure just given to create a BPLOT string for a
triangle.

1.

Draw the figure.

Graphics 13-49

13

13

10
20
21
22
30
40
50
31
60
70

13-50 Graphics

2. Represent the figure with dots.

3. Since the base of the triangle is seven dots wide, place it
in a 4 X 8 matrix.

lals
Slalaialalels

4. Convert each row of the matrix to a decimal value (note
that all bytes on right side of drawing will be 0).

Binary Representation Decimal Value
n 00O0O0O100O00O0 8
LILIL) 00011100 2 8
UL o011 11110 6 2
LIUIUUIDILIL o111 1111 12 7

5. Build the character string using the CHR$ function and
this program:

DIM T#[B1 ! Dimensions the stringd variable.

FOR I=1 TO 4 ! Loor reads the decimal values into the
! approrriate character rosition in the
! strind,

READ Y

T$LZ2*%1-14+11=CHR% (V)

NEXT I | End loor.

! Data statement contains the decimal codes for the BPLOT string,
DATA B8:284BZ4+127
END

BPLOT T4%.2

. -—
LI —

LN I

SRR R R

BPLOT T%.4

BPLOT T4.6

BPLOT T%.8

6. Use the string with the BPLOT statement to plot the
triangle. BPLOT T$,2 produces a triangle because it plots
two characters per line (and the second character of each
line is all 0’s).

The drawings below represent the outcome of the listed
BPLOT statement using four different bytes per row pa-

rameters.

sma
I E R NN NN

amm LA RN N

.an amman sEmEmER
—_— < LIS RLLLLLLY

Graphics 13-51

13

13

Byte Reading:
BREAD

100
110
120
130
140
150
160

13-52 Graphics

You can read the current states of pixels on the raster by using
the BREAD statement. Note that the BREAD (byte read) state-
ment performs the opposite of BPLOT: it reads even multiples
of groups of eight dots from the graphics display and stores
them as characters in a string variable. The byte reading begins
at the current pen position and moves down one row of dots
after reading the specified number of bytes per row. The
BREAD statement continues to read bytes across and down —
building the character string until the string variable has
reached its allocated length. Recall that strings longer than 18
characters must be allocated memory through a DIM state-
ment. The syntax for a BREAD statement is as follows:

BREARD strind_variablesbytes_per.row

The bytes_per_row parameter can be a numeric constant, vari-
able, or expression; negative values are interpreted as their
absolute value.

BREAD does not effect the pen location for any plotting opera-
tion other than BREAD and BPLOT. An example of using
BREAD is as follows:

BREAD String%,32

where String$ is the character string that is to receive the pixels
to be read, and 32 is the number of bytes per row.

By dimensioning a string variable to the proper size, it is
possible to BREAD the entire graphics display. In the follow-
ing program, a figure is drawn on the raster of an Integral PC
using the IDRAW statement in a FOR...NEXT loop. (The
string size and bytes_per_row parameters are machine-
dependent.) The graphics raster is then read into a string
variable, and after a short pause the program BPLOTs the
string variable.

| %%% Bread **%
PLOTTER IS 1

GCLEAR
I

SCALE -120,1204-30,30 !

MOVE €40
DEG !

Scales the plot to GUs,

Tridonometric mode is DEG.

170 FOR Ang=0 TO

3600 STEP 100 ! Loop for plotting fidure,

180 IDRAW SO*COS{Ang) »S0*5IN(And)

180 NEXT Ang !
200 !

End of loop.

210 DIM D$L1IB3207 ! Dimensions strind to drarhics

220 1

230 MOVE -120,30
240 BREAD D$.:64 !
230 PAUSE

260 !

270 GCLEAR !

280 MOVE -120,50
2890 BPLOT D$.G4 !
300 END

display size.

Brte reads the grarhics diseplav,

Clears the drarhics displav.

Plots the bvte read strind.

Other Output
Devices

Graphics Defaults
Restored

Specifying a Plotter

Now that you have used most of the features of graphics raster
devices, it is time to expand this knowledge to include other
devices like pen plotters.

When you change plotting devices (with PLOTTER IS), the
system sets up certain default conditions on the device and in
the BASIC graphics system itself. The following operations
also set up default graphics conditions:

m Executing a LIMIT statement.
m Exiting and re-entering BASIC.
B Resetting the system.

For a complete list of graphics default conditions, refer to the
HP-UX Technical BASIC Reference.

The PLOTTER IS statement is used to specify the device that is
to receive subsequent graphics output. Before using the
PLOTTER IS statement, you need to assign an interface select
code to an interface card, (and determine the primary address
of the plotting device, if using an HP-IB interface and plotter).
Combining these values properly results in the device selector
for the PLOTTER IS statement.

1 For a list of select codes available on your particular system, refer to the Imple-
mentation Specifics appendix for your Technical BASIC system.

Graphics 13-53

13

13

Considerations

13-54 Graphics

Interface Select Code For instance, select code 7 is used for the
internal HP-IB interface on the Integral Personal Computer.
This value can be assigned to the internal HP-IB interface by
using the ASSIGN statement as follows:

ASSIGN 7 TO "hpib"
where “hpib” identifies the internal HP-IB.

Primary Address Next, you can determine the primary address
of a plotter by looking at switch settings on the back panel.
Refer to your particular plotter manual for the switch locations
and settings. You will find that address 05 is the factory default
switch setting for most plotters.

Device Selector With select code 7 assigned to an HP-IB inter-
face, and plotter primary address switches set to address 05,
you can use a device selector of 705 in the PLOTTER IS state-
ment.

PLOTTER IS 708

Executing this statement from the keyboard or from a program
will cause graphics to be sent to the plotter whose device
selector is 705.

There are several special considerations when using an exter-
nal plotter.

® For instance, PENUP lifts a plotter’s pen from the surface of
the paper. The logical pen used with raster graphics could
care less where it sits, but real pens with real ink make a real
mess unless lifted from the paper. Thus programs that use
pen plotters should make a point of lifting the pen whenev-
er it is not moving. After plotting, cap the pen (or execute
PEN 0 to put the pen away).

m The aspect ratio of an external plotter is often different than
the aspect ratio of a graphics raster. Character size is also
affected by this difference.

® Lines drawn by the LINE TYPE statement will differ from
those defined for the display. Check the plotter’s manual for
descriptions of line type parameters.

Graphics Using
HPGL Commands

To simplify communicating with the wide variety of HP
graphics devices, a standard set of graphic commands has
been adopted. The Hewlett-Packard Graphics Language
(HPGL) consists of about sixty, two-letter commands that can
be used to control the operation of most HP plotters. If fact,
when BASIC statements are used to control an external plot-
ter, they are converted (by the system) into a series of HPGL
commands which are then sent to the plotter. Refer to the
plotter’'s manual for details concerning which HPGL com-
mands the plotter can recognize.

While most plotting applications can be accomplished by us-
ing BASIC statements, some plotters have capabilities that can
only be accessed by using HPGL commands. When it is nec-
cessary (or desirable) to communicate directly with the plotter,
the OUTPUT statement can be used to send HPGL commands.
For example,

ASSIGN 7 TO "heib"
QUTPUT 7053"DFi"3

This statement sends the HPGL command to restore the de-
fault conditions of the plotter. Many of the HPGL commands
have one or more parameters. For instance:

ASSIGN 7 TO "heib"
DUTPUT 7033"LT Bi"+:

This statement sets the line type to pattern number 6. The line
type is plotter dependent and not likely to be the same pattern
displayed on the CRT by the LINE TYPE statement in Technic-
al BASIC.

In general, an HPGL command is terminated by either a semi-
colon or a line-feed. The parameters in commands are usually
separated by commas. In the previous example statement, a
semicolon is included in the string sent to the external plotter
to indicate the end of a command. The OUTPUT statement’s
trailing semicolon suppresses the current end-of-line sequ-
ence from being sent to the plotter.

Graphics 13-55

13

13

13-56

Graphics

100
110
120
130
140
150
160
170
180
190
200
210
220
220

230

Some HPGL commands request the plotter to send back in-
formation to the computer. The ENTER statement is used to
receive the information. The following example interrogates
the plotter for the coordinates of the lower-left (P1) and upper-
right (P2) graphics limit.

This prodram determines the coordinates of
the lower-left corner (P1) and upper-ridht corner (P2)
of the "plotting area" (in “"absolute device units").

|
|
1
!
I Ask plotter to "Output Points Pl and PZ2",
QUTPUT 7053% "OP3"3

|

I Now inpPut the Points.

ENTER 705 § PlxsPly sPExsP2y

|

! Now show the coordinates,

CLEAR @ DISP

DISP "Lower-left cormers Pl: ("3iP1x3","iPlyi")"
DISP "Upper-ridght cornersy P2: ("3§P2xi"s"iP2y3i")"
END

The results of executing this program on an HP 7475 plotter are
as follows:

Lower-left cormery P1; (250 4 358G)
Upper-ridht cormery P2: (10230 + 7796)

The OUTPUT statement sends the “Output Points P1 and P2
command to the plotter, and the ENTER statement accepts the
X and Y coordinates for P1 (lower-left corner) and P2 (upper-
right corner) sent by the plotter. The values returned are in
“absolute device units,” not in GU’s or UU’s. One absolute
device unit is equal to 0.025 millimetre.

You might wonder how the mapping of GU’s, UU’s, and
absolute device units is accomplished. Consider the following
statement.

PLOTTER IS 703

Graphics with
Printers

This statement actually sends several HPGL commands to the
plotter and accepts the current setting of P1 and P2 for use by
the computer in converting the values used by Technical
BASIC statements into the values needed for HPGL com-
mands.

If you wish to change the locations of P1 and P2, it will be
necessary to re-execute the PLOTTER IS statement (after
changing P1 and P2). This allows Technical BASIC to become
aware of the new graphics limits, and set up the correspond-
ence between UU’s (or GU’s) and absolute device units.

There are printers capable of reproducing the image on the
graphics raster. For a list of printers that support these opera-
tions, see the Implementation Specifics appendix for your
particular system. Usually there is a one-for-one correspond-
ence between a pixel on the screen and a dot on the printed

paper.

The image on the graphics raster can be sent to the external
printer by entering the statement,

DUMP GRAPHICS

The contents of the alpha display can be sent to the PRINTER
IS device by the statement,

DUMP ALPHA

Graphics 13-57

13

13

Interactive
Graphics

Compatible Devices

Digitizing Graphics

13-58 Graphics

Images

Technical BASIC has the ability to accept inputs from a
graphics device. The following capabilities are supported.

m You can digitize individual points on the PLOTTER IS de-
vice. Each point is selected by first positioning the device’s
locator (typically a pen on plotting devices or stylus on input
devices) and pressing the “digitize” button (typically the
“ENTER” button on plotters or the stylus on input devices).

m The ability to “continuously’”” monitor the locator’s coordin-
ates.

m The ability to monitor the Digitize button to determine
whether or not it is currently being pressed.

The PLOTTERIS statement is used for designating the input or
output device. The device selector used in conjunction with
the PLOTTER IS statement determines which device you are
selecting. A list of the input and output devices supported on
your system can be found in the Implementation Specifics
appendix for your system.

Digitizing is essentially the inverse of plotting. During plotting
operations, the computer sends x,y coordinate values and pen
status instructions (pen up or down) to the plotter, directing
the pen to the specified location on the plotting area. To
digitize a point, you can use the plotter’s front-panel controls
to move the pen to the desired point and then press a key to tell
the system to determine the coordinates of (i.e., digitize) the
point.

The digitizing process enables you to convert graphics in-
formation into digital information. For example, you could
trace the outline of a drawing or photograph with the plotter’s
pen or digitizing sight, digitizing the coordinates along the
way. The pen coordinates and status are read into computer
memory in a format identical to the PLOT statement — as
numeric X,y coordinates. This information can then be used
with plotting statements to create a reproduction of the origin-
al graphics image.

Digitizing Graphics
Limits and Plotting
Bounds

This section begins with a discussion of digitizing graphics
limits and plotting boundaries. It is followed by a discussion of
digitizing pen position and up/down status.

When executed without parameters, the LIMIT, LOCATE,
and CLIP statements allow you to manually move the graphics
limits or plotting boundaries on the plotting device. Executing
these statements without parameters suspends program ex-
ecution.

® With the LIMIT statement, the system waits to receive a
message from the plotter containing the location of the
lower-left and upper-right graphics limits.

® With LOCATE and CLIP, the system waits to receive the
location of the lower-left and upper-right CLIP or LOCATE
plotting boundaries.

The procedure for digitizing the graphics limits or the plotting
boundaries is as follows:

1. Execute LIMIT, LOCATE, or CLIP, which suspends
program execution.

2. Move the pen to the desired lower-left limit or boundary
and press the ENTER key on the plotting device. The pen’s
location is sent to the system, where it is interpreted as
the lower-left limit or plotting boundary. The system
beeps when the ENTER key is pressed to signify that the
digitized information has been received.

3. Move the pen to the desired upper-right limit or bound-
ary and press the ENTER key again. The pen’s location is
sent to the system and interpreted as the upper-right
graphics limit or plotting boundary. The computer beeps
once again after pressing the ENTER key to signify that the
digitized information has been received.

4. The digitized graphics limits or plotting boundaries are
now active, and program execution continues.

Graphics 13-59

13

13

Normally you would want to enter the lower-left limit or
boundary first and the upper-right limit or boundary second.
However, you can also digitize the graphics limits or plotting
boundaries in different orientations to get a reflected image of
your plot. For example, if you enter the upper-right limit first
and the lower-left limit second, your plot will appear as if it
was reflected through the origin. The procedure is analogous
to exchanging parameters in the LIMIT or LOCATE statement.
The sequence (first or second) and location (lower-left, upper-
right, upper-left, or lower-right) of the digitized graphics limit
or plotting boundary corner determines the type of reflection.
The three types of reflections are summarized in the table
below. (Note that digitized CLIP boundaries cannot be used to
reflect plots.)

LIMIT and LOCATE Reflected Plots

Location of second
digitized limit or
boundary

upper-right
corner

lower-left
corner

lower-right
corner

Reflection Reflection Reflection
Unreflected across across across
plot origin x-axis y-axis
Location of first digi- | lower-left | upper-right |upper-leftjlower-right
tized corner corner corner corner
boundary

upper-left
corner

13-60 Graphics

The following program digitizes the graphics limits, frames
the plotting area, and then draws an arrow; the arrow points
from the first digitized corner to the second digitized corner of
the graphics limits. Experiment with your plotter by digitizing
different graphics limits, and note how the shape and orienta-
tion of the figure changes.

prodram listing digitize go0es here

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
230
260
270
280
290
300
310
320
330
340
330
360
370
380
390
400

ASBSIGN 7 to
IS 705 !

PLOTTER
CLEAR

"heib"

Specifies the plottind device,

DISP "DIGITIZE THE GRAPHICS LIMITS."

LIMIT !
!

CLEAR

ComPputer waits while vou diditize the
grarhics limits from the plotter.

DISP "PLOTTING 1"

FRAME !
READ ¥ ,Y
MOVE XY
FOR

READ XY
DRAK XY
NEXT I !

I
READ
MOVE
FOR

READ
DRAMK
NEXT 1

PENUP

i
RESTORE !
GOTD 120 |

|

KoY
KoY
1=1 70
KoY

YANRY S
KoY

I=1 TO 7

Frames the diditized plotting area.

! Loor pPlots fidure.

13

End of looe.

Restores DATA pointer.
Rerppats diditizingd loor.

DATA 204,104104+20420,30,1040,80,60,40,10,30,20420,10
DATA 38+18+40,184+40,20,38,20,38+18

!
END

Graphics 13-61

13

Digitizing Pen
Locations

13-62 Graphics

The example output below shows the image of two arrows,
each of which is the reflection (through the origin) of the other.
It was produced by first digitizing the lower-left and upper
right corners, followed by digitizing the upper-right and low-
er-left corners.

You have already seen an example of digitizing by executing
the LIMIT statement without parameters and entering the
graphics limits from the plotter. This feature is just one ap-
plication of your computer’s digitizing capability. You can also
digitize any point on the plotting area and store it for later use.
In order to better understand these operations, however, you
may need a little background.

Physical and Logical Pens The ink pen on a pen plotter and the
thermal print head on a thermal printer are both considered
“physical pens” in the sense that they draw the lines, points,
and curves which constitute plotter graphics.

The BASIC system has a pen of its own, known as the “logical
pen”. The X and Y coordinates and up/down status of the
logical pen reside in memory and are determined by the most
recently executed statement affecting logical pen location and
status. For example, executing PLOT 10,20,1lowers the logical
pen at the coordinates 10,20 (according to the current scaling
units).

On some devices, the physical pen location can be changed at
the device. For example, you can move a plotter pen by using
the front-panel pen-movement controls. The physical pen
location can also be altered by executing a plotting statement
(for example PLOT, MOVE, LABEL, or AXES). The physical
penis always located within the physical limits of the plotting
device, but not necessarily within the current plotting area.

The location and status of the logical pen are unaffected by the
pen movement controls on the plotting device. The logical pen
can be located anywhere inside or outside the physical limits of
the device.

Although the physical and logical pens coincide with each
other during most plotting operations, they are each recog-
nized individually by the system. Listed below, are some
instances where the logical and physical pens have different
locations.

m Whenever the graphics default conditions are activated, the
logical pen moves to the lower-left corner of the plotting
area. However, the physical pen location is unaffected.

m When a plotting statement directs the pen to a point outside
the current plotting area, the physical pen stops short of the
intended point, at the current graphics limit or plotting
boundary and is lifted (refer to the diagram below). In
contrast, the logical pen location and status always coincide
with the destination point and status specified by the plot-
ting statement, regardless of whether or not the point lies
within the current plotting area and whether or not it was
actually plotted.

m Whenever the plotting device is changed, the physical and
logical pens may have different locations depending on the
initial physical pen position and the last executed plotting
statement.

® Whenever the physical pen is moved using the pen move-
ment controls at the external plotting device, the physical
and logical pen locations differ.

Graphics 13-63

13

The following diagram shows the location of the physical and
logical pens during the sequence of plotting statements listed
in the table below. The framed plotting area is scaled from 0 to
15 in the X direction and from 0 to 10 in the Y direction. The
solid black line indicates a line drawn during physical pen
movement. The dashed black line indicates physical pen
movement without line drawing. Note that the computer plots
successive points according to the logical pen location.

13-64 Graphics

10
: (10,8)
I (5.5)
5 I
L /
/
/
/
/
/
r 7
D /1 L L I | I L\ L 1 1 L

0 5 10 15

(—3:—3)
(10',—5)
Resulting physical | Resulting logical
Execute: pen location pen location
and status and status

PLOT 1081 (10,8) down (10,8) down
DRAW 104-5 (10,0) up (10,—5) down
PLOT 545 (5,5) down (5,5) down
MOVE -3:-3 (0,0) up (=3,-3) up

Digitizing the Physical Pen Location Digitizing the plotter’s
physical pen is an operation which involves both the plotter
and the computer. Here is an example statement that digitizes
the PLOTTER IS device’s physical pen location:

DIGITIZE Xpos:YrossPenStatus

The system first asks the plotter for the pen’s coordinates and
up/down status. When the “ENTER” button is pressed, the
plotter sends the information (as numbers) to the computer.
The BASIC system then stores the information in the three
numeric variables specified. The first two variables identify the
coordinate location of the physical pen; the third variable
identifies the pen status. The variables are assigned values
according to the current scaling units. The optional third vari-
able parameter is assigned the pen status information. If the
penis up, 0is assigned to the variable. If the pen is down, 1is
assigned to the variable. All three variables must be numeric
variables.

There is also another statement which can be used to digitize
the physical pen’s location: CURSOR. The syntax is the same
as for the DIGITIZE statement, but the statements use diffe-
rent methods for entering the digitized information into com-
puter memory:

s The DIGITIZE statement suspends program execution
while you position the plotter’s pen to the desired location
and waits until the ENTER button is pressed on the plotter.
The physical pen’s coordinates and up/down status are read
into computer memory only when the ENTER button is
pressed. When the computer receives the digitized informa-
tion, program execution continues. Here is an example that
uses the DIGITIZE statement:

DIGITIZE HXvarsYvarsPenStatus

where Xvar and Yvar are the coordinates of the point that
was plotted and PenStatus is the pen status which tells
whether the pen is in the up or down position.

Graphics 13-65

13

13

13-66 Graphics

m The CURSOR statement does not suspend program execu-
tion. The physical pen’s coordinates and up/down status
are read into the specified variables immediately — without
pressing the plotter’s ENTER button. Here is an example that
uses the CURSOR statement:

CURSOR XvarsYvarsPenStatus

where Xvar and Yvar are the variables that receive the
coordinates of the point that was plotted and PenStatus is
the pen status which tells whether the pen is in the up or
down position.

Keep in mind that the pen must be positioned at the desired
location for digitizing prior to executing the CURSOR state-
ment. The DIGITIZE statement allows you to position the pen
and enter the digitized information after DIGITIZE is ex-
ecuted.

Digitizing Images on the Integral PC Raster You can digitize
points on an Integral PC’s graphics raster by using the proce-
dure explained in this section.

1. Execute this statement:
DIGITIZE XY P
Your display will enter the graphics mode.

2. Next, move the graphics pointer into the lower-left cor-
ner of your active (BASIC graphics) window by pressing
the CTRL key and pressing one of the cursor-arrow keys
(on the lower-right portion of the keyboard).

3. Press the User key and then the Select key to obtain the set
of softkeys used for digitizing. You will know that you
have the right set of softkeys when you see the word
basic_g appears in the softkey labels area of the display.

4. Press the softkey labeled graph and a new set of softkey
labels will appear. Look for the softkey labeled FastPen.
Press this softkey and an asterisk should appear in its
softkey label.

100
110
120
130
140
150
160
170
180
190
200

210

5.

You are now ready to move the digitize arrow to any
point on the display that you wish to digitize. To do this,
press the arrow keys until you have moved the digitize
arrow over the point you wish to digitize. Next, press the
Enter key to store this point as the variables X, Y, and P.

Return to the Technical BASIC window after digitizing
the point on your display. To return to this window hold
down the Shift key and press the Select key until the
Technical BASIC window appears with your DIGITIZE
statement in it.

Now that you are in the Technical BASIC window enter
the following statement:

DISP XsYsP
This displays the coordinates for the digitized point. Your
result should look similar to this:

BOW236B2204724400 37.7852735905512 0

The final number show is either 0 or 1, depending on
whether you pressed the softkey labeled Pen Down or Pen
Up, respectively.

The following program allows you to digitize 5 points on the
display and draw lines that connect them. Enter and run the
program, and use the arrow keys to move the digitize arrow
and the Enter key to digitize the points. Note that once you
have entered 5 points on the display, the program will draw
lines connecting these points. After the drawing is complete,
you will be returned to the Technical BASIC window.

k% Diditize %%+
OPTION BASEOD

GCLEAR
|
FOR I=0 TO 4 ! Diditize 5 Points.
DIGITIZE X{I)s¥(I)»P(I)
NEXT I !
!
MOVE X(O)»¥{(0) ! Move back to starting rpoint.
FOrR I=1 70 5 ! Draw lines to connect the 5 points.

DRAW X(I MOD 3).:Y(I MOD 5)
NEXT I

Graphics 13-67

13

13

13-68 Graphics

A drawing of a star is given below as an example of using this
program. Run the program, and then digitize points 1 through
5. The program then draws the star.

2

Using DIGITIZE and CURSOR To use the CURSOR statement,
lift the plotter’s pen and move it to any point using the pen
movement controls and then execute this statement:

CURSOR XY P
Look at the coordinates stored and the pen status, by execut-
ing the following statement:

DISP Xy¥,.P
The physical pen’s coordinates and status are shown on the
display. They look similar to this:

D3 4722222222222 B81,03555355355556 0

To use the DIGITIZE statement, execute:
DIGITIZE Xvars¥vars,PenStatus
Lift the pen and relocate it on the plotter. Lower the pen and

press the plotter’s ENTER button. Next, execute the following
statement:

DISP KvarsYvarsPenBtatus

The physical pen’s new X,Y coordinates and status are shown
on the display:

B4.B327777777778 31.7916666666667 1
Be sure to lift the pen after you have finished digitizing.

Tracing Graphics Images Digitizing operations are commonly
used for tracing drawings or other graphics images, which can
then be reproduced using the PLOT statement. Note the simi-
larity between the DIGITIZE statement and the PLOT state-
ment.

DIGITIZE x.variablesy_variablespen.status.var

PLOT x.coordinatesy_coordinatespen_control

If the pen is in the appropriate up/down position while digitiz-
ing, the PLOT statement can use the pen status variable for the
pen control parameter.

The digitized pen status variable takes on the value 0 or 1
depending on whether the pen is up or down, respectively.
When the PLOT statement interprets a digitized pen status
value as input for pen control, there are two possible results.

1. Pen status = 0 (for example, PLOT 4,-6,0): The pen is
directed to the specified x,y coordinate and lifted after
movement. The pen maintains its initial up or down
status until relocated at the specified x,y coordinate. If
the pen is initially down, a line is drawn to the specified
point and lifted. If the pen is initially up, the pen is
moved to the specified point and remains up.

2. Pen status = 1 (for example, PLOT 10,14,1): The pen is
directed to the specified x,y coordinate and lowered after
movement. The pen maintains it's initial up or down
status until the pen is relocated.

The outcome of both PLOT statements is determined by the
pen’s up or down status preceding execution of PLOT. There-
fore, when you digitize a point, have the pen set to the correct
up/down status for the next digitized point.

Graphics 13-69

13

13

13-70 Graphics

An Exercise in Tracing This section takes you through the steps
necessary for tracing the image shown below. Keep in mind
how pen status affects pen control when the digitized data is
plotted using the PLOT statement.

The drawing consists of two line segments, requiring you to
digitize four points (the endpoints of the two lines).

The following group of statements enables you to digitize four
points on the current PLOTTER IS device:

FOR I= 1 TO 4 B DIGITIZE R{I)»¥{I)sP(I) @ NEXT I

The coordinates variables X(I),Y(I) are assigned the physical
pen locations, according to the current scale. Pen status in-
formation is assigned to the variable P(I).

To digitize the example drawing, follow this sequence of steps:

1. Place a copy of the drawing onto the plotter. Your plotter
should already be turned on.

2. Set the graphics limits manually, (“P1” and “P2” on the
plotter), so that the drawing is located within the plotting
area. Execute the PLOTTER IS statement to read the
manually set graphics limits.

3. Execute the above multi-line statement that digitizes four
points.

4. Digitize the four points in the sequence shown in the
previous drawing, using the indicated up/down pen sta-
tus. It is easiest to position the pen at the desired point
while the pen is up. When the pen is properly positioned
and in the correct up/down status, press the plotter’s
ENTER button and move on to the next point.

The digitized coordinates and pen status information are
stored in the numeric arrays X(I), Y(I), and P(I). To reproduce
the digitized image, execute the following multi-statement
line. Be sure your plotter is equipped with paper and a pen.

FOR I = 1 70 4 @ PLOT X(I)s¥(I)+P{I) B NEXT I

If the physical pen coordinates and status were entered as
shown, the plotter duplicates the original drawing.

Keep in mind that the DIGITIZE and CURSOR statements
digitize points according to the current scaling units. To recre-
ate a digitized image accurately, the scaling units and plotting
area dimensions in effect while plotting must match those in
effect while digitizing.

Digitizing the Logical Pen Location The WHERE statement
assigns the current logical pen coordinates and status to the
specified variables. The parameters are the same as the para-
meters in the CURSOR and DIGITIZE statements.

WHERE x_variablesv_variablespen_.status_var

The location and up/down status of the logical pen is deter-
mined by the most recently executed statement which changes
pen status or location. All of the plotting statements which
direct pen movement also affect the logical pen location. In
addition, statements and conditions which activate the default
graphics conditions also lift the logical pen and move it to the
origin (0,0). However, the physical pen’s location and status
are unaffected by activating the default graphics conditions.

The logical and physical pens often have the same location and
status; any plotting statement which directs pen movement
inside the current plotting area moves the physical pen as well
as the logical pen.

Graphics 13-71

13

13

13-72 Graphics

100
110
120
130
140
150
160
170
1B
190
200
210

L Xl
220

The following program demonstrates the difference between
the physical and logical pen positions as read by the CURSOR
and WHERE statements. When program execution is sus-
pended, move the pen (using the plotter’s front panel con-
trols) to a new location, lower the pen, execute CONT. The
computer displays the resulting physical (CURSOR) and logic-
al (WHERE) pen coordinate locations and pen status. In the
example output below, the physical pen was moved to the
coordinate location x = 76.6, y = 68.0, and lowered.

ASSIGN 7 to "heib"

PLOTTER IS 705 ! Specifies the plotting device.
MOVE 50,50 ! Moves the pen to the point (S50,:50)
PAUSE ! Pauses the prodram while vou move
! the plotter Pen to a new pPosition.
WHERE WX WY WP ! Assidns lodical pen position and

! status to the variables WX WY WP,
CURSOR CXCY+CP ! Assigns phvsical pen position and

[status to the variables CXsCY»CP.
CLEAR

DISP USING "BAs2X1Z2(3D.,D) 3% D" 1"WHERE" sWA WY SWP
DISP USING "BA2X+2(3D.D)»3X,D"i"CURSOR" +CXICYICP
END

The results from the programs execution are:

WHERE 50,0 50,0 0
CURSOR 7646 68.0 1

IndeXx

A

ABS, 4-21

Absolute difference, 4-11
Absolute graphics device units, 13-56
ABSUM, 4-77

Accessing data files, 11-10
ACS, 4-19

Activation record, 6-36
Additional image specifiers, 9-24
Algorithms, 2-2,2-6
Allocation, of subprograms, 6-13
ALPHA, 9-6,9-9,9-12,9-13
Alpha raster, clearing, 13-3
Alpha screen, 9-6
Alphanumeric inputs, 9-27
AMAX, 4-77

AMAXCOL, 4-77
AMAXROW, 4-77

AMIN, 4-77

AMINCOL, 4-77

AMINROW, 4-77
Anticipating problems, 9-28
Appending strings, 5-5
Arbitrary loop exit points, 3-25
AREAD, 9-9,9-35

Arithmetic hierarchy, 4-5
Arithmetic operators, 4-6
Array dimensions, 4-25

Array functions, misc., 4-77
Array subscripts, 4-24,4-25
Array terminator, 4-31

Array transpose, 4-62

Array variable names, 4-28
Array variables, 2-10

Arrays, 2-10

Arrays, displaying, 4-29
Arrays, empty, 4-54

Arrays, numeric, 4-23

Arrays, passing, 12-8,12-15
Arrays, printing, 4-29
Arrays, redimensioning, 4-35
Arrays, scalar arithmetic, 4-56
Arrays, storing, 11-6
Arrays, string, 5-4,5-18
Arrays, summing rows

and columns, 4-59
ASCII character, 5-14
ASCII characters, 11-9
ASCII file, 2-24
ASN, 4-19
Aspect ratio (width/height), 13-4,13-5
ASSIGN, 6-37,9-7,9-15
ASSIGN#, 11-10,11-17,11-19,

11-23,11-24,11-26
Assigning array variables, 4-29
Assigning string variables, 5-2
Assigning values to arrays, 4-40
Assigning variables, 4-2
Assumptions, questioning, 8-18
ATN, 4-19
ATN2, 4-19
Audio messages, 9-4
AWRIT, 9-9,9-12
AXES, 13-6
Axes intersection, 13-6

BackSpace key, 9-34

BASIC editor, 2-15

BASIC editor, moving lines, 2-22
BASIC/DATA file, 6-14,11-11
BASIC/GRAF file, 13-19 .
BASIC/PROG files, 6-14,6-15
BASIC/SUBP files, 6-15,6-16
BEEP, 2-8,9-5

Index 1

BINAND, 4-15

Binary (base 2), 4-16

Binary operations, 4-14

Binary programs, 2-12,12-1,12-8
Binary programs, restrictions, 12-17
BINCMP, 4-15

BINEOR, 4-15

BINIOR, 4-14,4-15

BIT, 4-15

Blank lines, displaying, 9-14
Blocks, 11-15

Boolean expression, 3-13
Boolean expressions, 4-9
Boundary conditions, 7-4,8-19
Branching, event-initiated, 3-27
Break key, 8-12,9-28,9-32
Breaking programs up, 3-34
Breakpoints, 8-12

BTD, 4-17

Budget program, example, 2-3
Buffer number, 11-11

Buffer numbers, 12-17

Bug, definition of, 8-1

Bugs, source of, 8-2

Bulleted lists, 1-6

Byte plotting (graphics), 13-47
Byte reading (graphics), 13-47,13-52

C

C binaries, 12-8

Calculations from keyboard, 8-14

CALL, 6-8

CALLBIN, 2-12,12-2

Capabilities of displays, 9-8

Capabilities, determining
graphics, 13-2

CAPS LOCK, 9-28

CAT, 11-9

CEIL, 4-21

CFLAG, 6-33,6-37

CHAIN, 3-34,6-32,6-35

Chaining programs, 3-34

Changing units (graphics), 13-34

2 Index

Chapter previews, 1-6
Character sets, printer, 9-16
Character size (graphics), 13-17
Characteristics of COM, 6-29
Choosing program segments, 3-16
CHRS, 2-11,5-14,9-17
CLEAR, 9-11,9-12,13-3
Clearing flags, 6-33
Clearing graphics raster, 13-3
Clearing graphics raster (to white), 13-9
Clearing the screen, 9-11
CLIP, 13-36,13-41,13-42,13-45
Clock, 10-2
Closing files, 11-11,11-31
CNORM, 4-77
CNORMCOL, 4-78
Code walk-throughs, 8-5
Codes, for keys, 9-34
Coding programs, 2-2,2-8
COL, 4-31
Column-major order, 4-33
COM, 3-34,3-38,4-27,5-2,6-28,6-35
COM characteristics, 6-29
Commands, 2-12
Comments, 2-8,2-27,3-38
Comments, general suggestions, 2-29
Commmon storage, 4-17
Common storage, 6-28
Common variables, 3-34
Communication between
programs, 3-35
Communication, program/
subprogram, 6-19
Comparisons, numeric, 4-11,7-5
Compiling C programs, 12-5
Computer/human interface, 9-1
CON, 4-35
Conatenating statements, 2-8
Concatenation, string, 5-5
Conditional branching, 3-14
Conditional execution, 3-12
Conditional GOTO, 3-14
Console, 9-6
Constant matrices, 4-43
Constants, numeric, 4-5

Constructs, nesting, 3-16

CONT, 3-6,8-15,9-28

Context, 3-7,6-10,6-36

Context switching, 6-36

Continuing execution, 8-15

Control characters, 9-16

Conversion, lettercase, 5-17

Conversions, number-base, 4-16

Conversions, string, 5-11

Conversions, time and date, 10-3

Coordinate systems, 13-4,3-20,13-22

Copying program segments, 2-22

Copying subarrays, 4-46

COs, 4-19

COT, 4-19

CREATE, 6-36,9-7,9-15,
11-10,11-14,11-24

CROSS, 4-67

Cross product, 4-67

Cross references, 8-5

CRT IS, 6-37,9-6

CSC, 4-19

CSIZE, 13-3,13-17

CSUM, 4-59

Current working directory, 11-9

CURSCOL, 9-13

CURSOR, 13-66

Cursor location, 9-13

Cursor positioning, 9-12

Cursor, turning on, 9-14

CURSROW, 9-13

Cyclic timer interrupts, 10-6

D

DATA, 3-38,4-42,11-4

Data file access, 11-10

Data files, 11-8

Data items, 11-9

Data pointer, 11-6

Data pointer, moving, 11-6
Data structure, 2-6

Data structures, 2-2

Data types, 2-10,11-24,11-28

Data types, numeric, 4-3
Date, 10-2
DATE, 10-2
Date format conversions, 10-3
DATES$, 10-2
Debugging methods, 8-4
Debugging programs, 2-3,2-25
Decisions, 3-1
Declarations, implicit, 4-4
Declarations, of function

parameters, 6-6
Declaring COM variables, 6-28
Declaring pass parameter types, 6-25
Declaring variables, 2-10
Declaring variables, numeric, 4-4
DEF EN, 3-38
Default graphics limits, 13-21
DEFAULT OFF, 6-37,7-2
DEFAULT ON, 6-37
Default scale, 13-4
Defaults, graphics, 13-53
DEG, 4-18,6-36,13-16
Delay interrupts, 10-6
DELETE, 2-17
Deleting program lines, 2-17
Describing the problem, 2-4
DET, 4-78
DETL, 4-78
Developing programs, 2-2
Device I/O in binaries, 12-17
Device selector, 9-7,9-15,13-54
Device units, absolute graphic, 13-56
Devices, graphics, 13-2
Devices, graphics output, 13-53
Difference, absolute, 4-11
Difference, relative, 4-11
DIGITIZE, 13-65,13-66
Digitizing graphics images, 13-58
Digitizing pen

locations, 13-62,13-65,13-71
DIM, 2-10,2-14,3-38,4-4,4-26,5-2,5-18
Dimensioned length, string, 5-2
Dimensioning numeric arrays, 4-25
Dimensioning strings, 5-2,5-18
Dimensioning, implicit, 4-27

Index 3

Directory, 11-9
DIRECTORY, 6-11,6-12,6-18
Disabling keys, 9-34

DISP, 2-8,2-15,9-6,9-12,9-14
DISP item separators, 9-18
DISP USING, 4-33

Display capabilities, 9-8
Display screen, 9-6

Display screen modes, 9-11
Displaying blank lines, 9-14
Displaying messages, 9-5
DIV, 4-8

Documenting programs, 2-3,2-26
Documents, external, 2-31
Documents, internal, 2-31
DOT, 4-78

DRAW, 6-37,13-4,13-11
DTBS, 4-16

DTHS$, 4-16

DTOS, 4-16

DTR, 4-19

DUMP ALPHA, 2-15,9-16
Dump graphics, 13-57
DUMP GRAPHICS, 2-15
Dumping the screen, 2-15
Dyadic operators, 4-6

E

Editing, global operations, 2-16
Editing, search operations, 2-20
Editor, BASIC, 2-15

Editor, vi, 2-24

Elements of BASIC program, 2-8
Empty arrays, 4-54

ENABLE KBD, 9-28,9-32
Enabling keys, 9-32

END, 2-8,2-9

End-of-record marker, 11-12
Entry point, 12-3

EOF conditions, 11-29

EOF markers, 11-20,11-24,11-29
EOL sequence, 9-12

EOR conditions, 11-29

4 Index

EOR marker, 11-12

EOR markers, 11-20,11-29

EPS, 4-21

ERRL, 7-7

ERRM, 7-8

ERRN, 7-7

Error handling, 7-1

Error location, 7-7

Error messages, 2-15,7-8

Error numbers, 7-7

Error reporting, 7-2

Error trapping, 7-6,9-29

Errors, default response, 7-2
Errors, file, 11-29

Escape-code sequences, 9-17,9-34
Euclidian norm, 4-78

Evaluating numeric expressions, 4-4
Evaluating strings, 5-4
Event-initiated branching, 3-27
Events, 3-27

Events, types of, 3-28

EXP, 4-21

Expressions, evaluating numeric, 4-4
Expressions, string, 5-4,5-19
Extending BASIC/DATA files, 11-23
Extensible files, 11-23

External documents, 2-31

F

Field boundaries, DISP
and PRINT, 9-18

Field specifiers, 9-19

File access, 11-10,11-31

File access, random, 11-24,11-26

File buffers, 11-17

File I/O, in binaries, 12-17

File names, 6-15

File overhead, 11-16

File pointer, 11-17

File selector, 9-7,9-15

File size calculations, 11-14

Files, 11-9

Files, ASCII, 2-24,11-31

Files, BASIC/DATA, 6-14
Files, BASIC/GRAF, 13-19
Files, BASIC/PROG, 6-14,6-15
Files, BASIC/SUBP, 6-15,6-16
Files, closing, 11-11,11-31
Files, data types, 11-28
Files, opening, 11-31
Files, text/data, 11-31
FINDPROG, 6-11,6-14
FLAG, 6-33,6-37
Flags, system, 6-32
FLIP, 6-37
FLOOR, 4-21
FN END, 3-38
FNORM, 4-78
FOR..NEXT, 3-20
Formal parameters, 6-4,6-20
Formatted printing, 9-18
FP, 4-21
FRAME, 13-3
Froebenius norm, 4-78
Function, constant, 6-3
Functions, 2-11
Functions, binary, 4-15
Functions, constant, 6-3
Functions, data-type declarations, 6-6
Functions, limitations

of user-defined, 6-7
Functions, local variables, 6-5
Functions, misc. array, 4-77
Functions, misc. numeric, 4-21
Functions, multi-line, 6-5
Functions, passing parameters to, 6-3
Functions, resident trig, 4-18
Functions, step, 4-10
Functions, string, 5-9,5-15
Functions, timer, 10-9
Functions, user-defined, 5-17,6-1,6-2

G

GCLEAR, 9-11,13-3,13-9
General steps in development, 2-2
GET, 2-24,6-14
Getting Started manual, 1-3,2-15
GLOAD, 13-19
Global declarations, 6-36
Global program editing, 2-16
GOSUB, 3-8
GOTO, 3-7
GOTO, conditional, 3-14
GRAD, 4-18,6-36
GRAPHICS, 13-2
Graphics capabilities,
determining, 13-2
Graphics character size, 13-17
Graphics defaults, 13-53
Graphics devices, selecting, 13-2
Graphics limits, 13-3,13-20,13-21,
13-26,13-28,13-29,13-30,13-36,13-59
Graphics limits (summary), 13-36
Graphics limits, default, 13-21
Graphics limits, moving, 13-23,13-25
Graphics limits, range of, 13-24
Graphics mapping, 13-22
Graphics output devices, 13-2,13-53
Graphics printers, 13-57
Graphics raster, 13-2
Graphics raster, clearing, 13-3
Graphics scaling, 13-4,13-20,13-22
Grapics units, absolute, 13-56
Graphics units
(GU’s), 13-4,13-26,13-34,13-36
Graphics units (UU’s), 13-45
Graphics, clearing screen, 9-11
Graphics, digitizing, 13-58
Graphics, initializing, 13-2
Graphics, interactive, 13-58
Graphics, tracing, 13-68,13-70
GRID, 13-7
GSTORE, 13-19

Index 5

H

Halting program execution, 3-4

Hardcopy, of the screen, 2-15

Hardware installation, 1-2

Hewlett-Packard Graphics Language
(HPGL), 13-55

Hexadecimal (base 16), 4-16

Hiding the details, 2-6

Hierarchy, arithmetic, 4-5

Hierarchy, string, 5-4

HMS, 10-4,10-9

HMS$, 10-3

HP-IB primary address, 13-54

HP-UX file system, 1-2

HP-UX knowledge, 1-2

HP-UX Technical BASIC Language
Reference, 1-3

HPGL, 13-55

HTD, 4-17

Human/computer interface, 9-1,9-3

Identity matrix, 4-45

IDN, 4-35

IDRAW, 13-15,13-16

IMAGE, 4-33,9-19

Image specifiers, 9-19

Image specifiers, additional, 9-24
Image specifiers, numeric, 9-21
Image specifiers, string, 9-22
IMOVE, 13-15,13-16

Implicit declarations, 4-4
Implicit dimensioning, 4-27
Implicit redimensioning, 4-38
Incremental plotting, 13-15
Indenting program lines, 2-30
INF, 4-21

INIT, 3-36,8-15,8-16
Initializing graphics, 13-2
INPUT, 2-8,9-27,9-28,9-29,11-3
Input, alphanumeric, 9-27
Input, from keyboard, 9-25,9-27
Input, keyboard, 9-33

6 Index

Insert mode (screen), 9-11
Inserting program lines, 2-16
INT, 4-14
INTEGER, 2-10,3-38,4-26,11-24,12-8
INTEGER numbers, 4-3
Integral numbers, 2-10
Interactions between timers
and subprograms, 10-11
Interactive graphics, 13-58
Interface select code, 13-54
Internal documents, 2-26
Interrupts, cyclic timer, 10-6
Interrupts, delay, 10-6
Interrupts, time-of-day, 10-8
Interrupts, timer, 10-6
Intersection of axes, 13-6
Interval timing, 10-5
Intrinsic functions, 2-11
Intrinsic functions, string, 5-9,5-15
Inverting matrices, 4-70
1P, 4-22
IPLOT, 13-15,13-16
Isotropic scaling, 13-30
Iterations, 3-20

J

Joining strings, 5-5
Jump, 3-8

K

Key buffer, 9-33

Key codes, 9-34

KEY LABEL, 9-25

Key labels, 3-30

Keyboard calculations, 8-14
Keyboard enable mask, 9-32
Keyboard errors, 7-2
Keyboard input, 9-25,9-27,9-33
Keyboards, 2-15

Keys, disabling, 9-34

Keys, enabling, 9-32

Keys, special function, 9-25
Keywords, 1-5,2-8

L

LABEL, 13-3,13-16

Label area (softkeys), 3-30

Label direction, 13-17,13-18

Label origin, 13-17,13-18

Labeling, 13-16

LAXES, 13-3,13-22

LBND, 4-78

LDIR, 13-4,13-17,13-18

LEN, 5-9

Length of string, 5-9,12-12,12-14

Length of string variables, 5-2

LET, 2-8,2-14,4-2

Lettercase conversion, 5-17

LGT, 4-22

Libraries, subprogram, 6-10

LIMIT, 13-21,13-23,13-24,13-25,
13-26,13-29,13-30,13-31,13-36,
13-39,13-40,13-45,13-61

Limiting range of values, 4-12

Limits, graphics, 13-20,13-21

Limits, physical (graphics), 13-20,13-21

Line labels, 2-9,2-27

Line numbers, 2-9

LINE TYPE, 13-9

Linear equations, 4-72

Linear flow, 3-4

Lines, where referenced (XREF L), 8-7

Linking object files, 12-5

LINPUT, 9-27,9-29,11-3

Listings, 2-15

Lists, in program lines, 2-8

Lists, parameter, 6-4,6-20

LOAD, 6-14

LOADBIN, 12-2,12-5

Loading subprograms, 6-17,6-18

Local declarations, 6-37

Local variables, 6-5

LOCATE, 13-3,13-10,13-22,13-28,
13-29,13-30,13-36,13-37,
13-39,13-40,13-45

LOG, 4-22

Logging in and out, 1-2

Logical pen, 13-62

Logical record, 11-25

Logical records, 11-9,11-15
Loop counter, 3-20
Looping, 3-20

LORG, 13-17,13-18
LWC$, 5-17

Machine language programs, 2-12
Manual organization, 1-4
Manual overview, 1-1
Mapping, graphics, 13-22
Markers, EOF, 11-12,11-20,11-24,11-29
Markers, EOR, 11-12,11-20,11-29
MASS STORAGE IS, 6-36
Mass storage tutorial, 11-8
MAT, 4-42,4-56
MAT DISP, 4-30
MAT DISP USING, 4-33
MAT INPUT, 4-40
MAT PRINT, 4-30
MAT PRINT USING, 4-33
MAT READ, 4-42
MAT..CON, 4-35,4-43
MAT..CROSS, 4-67
MAT..CSUM, 4-59
MAT..IDN, 4-35,4-45
MAT..INV, 4-70
MAT..RSUM, 4-59
MAT..SYS, 4-73
MAT..TRN, 4-62
MAT..ZER, 4-35,4-44
Math hierarchy, 4-6
Matrix inversion, 4-70
Matrix multiplication, 4-63
MAX, 4-12,4-22
MAXAB, 4-78
MAXABCOL, 4-78
MAXABROW, 4-78
MDY, 10-5
MDY$, 104
Mechanics of program
development, 2-15

Index 7

Memory management
(subprograms), 6-35

Menu (softkeys), 3-31

MERGE, 2-23

Messages, accepting, 9-24

Messages, audio, 9-4

Messages, displayed, 9-5

Messages, from operator, 9-24

Messages, to operator, 9-4

Millimetre scaling, 13-31

MIN, 4-12,4-22

MOD, 4-8

Model of computer/human
interface, 9-2

Model of software design process, 8-3

Modes, display screen, 9-11

Moment, 4-68

Monadic operators, 4-6

Monochromatic pens, 13-9

MOVE, 13-3,13-11

Moving data pointer, 11-6

Moving graphics limits, 13-23

Moving program segments, 2-22

Moving the pen, 13-11

MSCALE, 13-28,13-31,13-32,
13-36,13-45

Multiplying matrices, 4-63

N

Names, array variables, 4-28
Names, of numeric variables, 4-2
Names, string variables, 5-2
Names, subprogram, 6-15
Nesting constructs, 3-16
Newline character (C), 12-12,12-14
Non-executed statements, 3-38
NORMAL, 6-37,8-5,8-9,9-11
Notation for program lines, 2-9
NPAR, 6-26
Null character

(string terminator), 12-12,12-14
NUM, 4-22,5-12
Number-base conversions, 4-16

8 Index

Numbers, INTEGERs, 4-3
Numbers, random, 4-20
Numbers, range of, 4-3
Numbers, REAL, 4-3
Numbers, SHORT, 4-3
Numeric arrays, 4-23

Numeric comparisons, 4-11
Numeric data types, 4-3
Numeric functions, misc., 4-21
Numeric image specifiers, 9-21
Numeric variables, 4-4

o)

Object files, 12-5

Octal (base 8), 4-16

OFF CURSOR, 6-37,9-14

OFF ERROR, 6-37

OFF INTR, 6-37

OFF KEY#, 3-33,6-37

OFF KYBD, 6-37

OFF TIMEOUT, 6-37

OFF TIMER#, 6-37,10-6,10-10
ON CURSOR, 6-37,9-14

ON ERROR, 6-37,7-6,9-29,11-29
ON INTR, 6-37

ON KEY#, 3-29,6-37,9-25

ON KYBD, 6-37,9-27,9-33

ON TIMEOUT, 6-37

ON TIMER#, 6-37,10-6
ON..GOSUB, 3-18

Opening files, 11-31
Operations, string, 5-19
Operator errors, 7-3

Operators, arithmetic, 4-6
Operators, string, 5-5

OPTION BASE, 2-14,4-4,4-25,5-18
Optional pass parameters, 6-26
Organization, of manual, 1-4
Origin, graphics, 13-4

OTD, 4-17

Output devices, graphics, 13-2,13-53
Overview, 1-1

Overviews, 1-6

P

P1, P2, 13-56

Parameter lists, 6-4,6-20

Parameter passing, 6-3,6-20,12-8,12-11

Parameters, 2-8

Parameters, formal, 6-4,6-20

Parameters, optional, 6-26

Parameters, pass, 6-4,6-20

Pass parameter types, 6-20

Pass parameters, 6-20

Pass parameters, declaring types, 6-25

Pass parameters, optional, 6-26

Passing arrays, 12-9,12-15

Passing by reference, 6-22,12-9,12-10

Passing by value, 6-22,6-24,12-9

Passing parameters, 6-3,6-20,12-8,12-11

PAUSE, 3-6,8-12

PAUSE key, 9-32

Pausing execution, 8-12

PDIR, 13-16

PEN, 6-37,13-9

Pen control (PLOT), 13-12

Pen location (physical), 13-22

Pen, logical, 13-62

Pen, physical, 13-62

Physical limits (graphics), 13-20,13-21

Physical pen, 13-62

Physical pen location, 13-22

Physical records, 11-15

PI, 4-22

Pitches, beeper, 9-5

Pixels, 13-47 .

Pixels (picture elements), 13-2

PLOT, 6-37,13-11,13-69

Plotter considerations, 13-54

PLOTTER IS, 6-37,13-2,13-21,13-23,
13-24,13-36,13-45,13-53

Plotting area, 13-20,13-26,13-27,
13-28,13-29,13-30,13-37,13-38

Plotting boundaries, 13-36,13-38,
13-41,13-43

Plotting boundaries (summary), 13-45

Plotting bounds, 13-59

Plotting devices, 13-53

Plotting direction, 13-16

Plotting with HPGL, 13-55
Pointer, data, 11-6
POS, 4-22,5-9
Positioning cursor, 9-12
Pre-run, 3-36
Precedence, arithmetic, 4-6
Prerequisites, 1-2
Primary address, 13-54
PRINT, 9-15
PRINT ALL, 6-37,8-5,9-11
PRINT item separators, 9-18
PRINT USING, 4-33,9-19
PRINT#, 11-11,11-17,11-25
Printer character sets, 9-16
Printer graphics, 13-57
PRINTER IS, 6-37,9-11,9-15
Printers, 9-15
Printing arrays, 9-19
Printing screen contents, 2-15
Printing, formatted, 9-18
Problem solving steps, 2-2
Program counter, 3-2
Program elements, 2-8
Program execution, 3-36
Program flow, 3-1,3-3
Program line numbers, 2-9
Program lines, 2-8
Program lines, maximum length, 2-10
Program segments, choosing, 3-16
Program segments, repeating, 3-20
Program structure, 3-1
Program/subprogram
communication, 6-19
Programs, binary, 2-12
Programs, communication between, 3-35
Programs, definition of, 2-9
Programs, editing globally, 2-16
Programs, entering, 2-15
Programs, listings, 2-15
Programs, machine language, 2-12
Programs, running, 2-15
Programs, storing, 2-15
Prohibited statements
(in IF..THEN), 3-14
Put (vi), 2-25

Index 9

Q

Questioning assumptions, 8-18
Quotes in strings, 11-4

R

RAD, 4-18,6-36

Random file access, 11-10,11-24,11-26
Random numbers, 4-20
RANDOMIZE, 4-20

Range limits, 4-12

Raster graphics, 13-2

Raster images, retrieving, 13-19
Raster images, storing, 13-19
RATIO, 13-5,13-25,13-27

Ratio, aspect (width/height), 13-4,13-5
READ, 11-4

READ#, 11-12,11-17,11-23,11-26
Reading flags, 6-33

Reading text from screen, 9-35
READTIM, 10-9

REAL, 2-10,2-14,3-38,4-26,11-24,12-8
Real numbers, 2-10

REAL numbers, 4-3

Record size calculations, 11-14
Records, 11-15

Redimensioning arrays, 4-35
Refine, 2-7

Refining, 2-2

Reflecting images, 13-46,13-60
Relative difference, 4-11

Relative plotting, 13-14
Relocatable object files, 12-5
REM, 2-8,2-27,3-38

Remark statement, 2-8

Remark statements, 2-27

REN, 2-18

Renaming variables, 2-21
Renumbering programs, 2-18
Repeat, 3-23

Repeat factor (LINE TYPE), 13-10
Repetition, 3-20

REPLACEVAR, 2-21

Reset key, 9-28,9-32

10 Index

Resident binary functions, 4-15
Resident functions, 2-11
Resident trig functions, 4-18
RESTORE, 11-6

Restrictions, binary programs, 12-17
Retrieving raster images, 13-19
RETURN, 3-8,7-8

REV$, R

Reversing background color, 13-9
Reversing strings, 5-15

RMD, 4-22

RND, 4-20

RNORM, 4-78

RNORMCOL, 4-78
RNORMROW, 4-78
ROTATES, 4-15

Rotating lines, 13-16
Rounding, 4-13

ROW, 4-32

Row-major order, 4-35
RPLOT, 13-14

RSUM, 4-59

RTD, 4-19

RUN, 3-36,6-17,8-15,8-16
Run-time errors, 7-2

Running programs, 2-15

S

SAVE, 2-24,6-11,6-16

Scalar array arithmetic, 4-56

SCALE, 13-3,13-6,13-22,13-28,13-29,
13-36,13-39,13-45

Scaling, 13-34,13-36

Scaling (graphics), 13-20,13-22,13-26

Scaling (summary), 13-45

Scaling, graphics, 13-4

SCAN, 2-20

Scanning for literals, 2-20

SCRATCH, 6-11

SCRATCHBIN, 12-3

SCRATCHSUB, 6-17,6-35

Screen, 9-6

Screen dumps, 2-15

)

Screen, clearing, 9-11

Screen, reading text from, 9-35
Screenwidth, 9-7

Searching for literals, 2-20

SEC, 4-19

Seed, random numbers, 4-20
Select code, 13-54

Selecting graphics devices, 13-2
Selection of program segments, 3-12
Selector, device, 9-7

Selector, file, 9-7
Self-documenting programs, 2-26
Sending messages, 9-4
Separators, DISP and PRINT, 9-18
Serial file access, 11-10,11-12,11-19,11-23
Service routines, 3-30,9-34
SETGU, 13-34,13-36,13-45
Setting flags, 6-33

SETUU, 13-34,13-45

SFLAG, 6-33,6-37

SGN, 4-22

SHORT, 2-10,3-38,4-26,11-24
SHORT numbers, 4-3

SHOW, 13-28,13-30,13-36,13-45
Simple branching, 3-7

Simple strings, 5-3

SIN, 2-11,4-19

Single-stepping programs, 8-15
SINGLESTEP, 8-15

Size, of files, 11-14

Size, of records, 11-14

Softkeys, 3-29,9-25,9-32

Softkeys labels, 3-30

Software installation, 1-2
Software testing, 8-17

Solving problems, 2-2

Solving simultaneous equations, 4-72
Spaghetti code, go to 3-7

Special function keys, 9-25,9-32
Specifiers, field, 9-19

Specifiers, image, 9-19

SQR, 4-22

Statements, 2-8

Step functions, 4-10

Stepwise refinement, 2-2,2-7
STOP and END, 3-5

Stopwatch example, 9-26

Storage, common, 4-27

STORE, 2-23,6-11,6-16

Storing arrays, 11-6

Storing data in variables, 11-2

Storing programs, 2-15

Storing raster images, 13-19

String, 2-10

String arrays, 5-4,5-18

String concatenation, 5-5

String conversions, 5-11

String expressions, 5-19

String functions, 5-9,5-15

String hierarchy, 5-4

String image specifiers, 9-22

String length, 5-9,12-12,12-14

String operators, 5-5

String position, 5-9

String reverse, 5-15

String subscripts, 5-6

String terminator (C), 12-12,12-14

String trim, 5-16

String variable length, 5-2

String variable names, 5-2

String, definition of, 5-2

Strings, dimensioning, 5-18

Strings, evaluating expressions, 5-4

Strings, in numeric expressions, 4-9

Strings, simple, 5-3

SUB, 2-11,6-8,6-12

Subarrays, copying, 4-46,4-50

SUBEND, 6-8,6-12

SUBEXIT, 6-12

Subprogram libraries, 6-10

Subprogram loading, 6-17,6-18

Subprogram memory management, 6-35

Subprogram names, 6-15

Subprogram/program
communication, 6-19

Subprograms, 2-11,6-1,6-7

Subprograms, benefits of, 6-9

Subprograms, creating, 6-11

Subprograms, scratching, 6-17

Subroutine, 3-8

Subroutines, general suggestions, 3-11

Subscript bounds, 4-25

Index 11

Subscripts, string, 5-6
Substring position, 5-9
Substrings, 5-6

SUM, 4-78

Summing arrays, 4-59
Syntax of keywords, 1-5
SYS, 4-72

System clock, 10-2
System error message, 7-8
System flags, 6-32
System of equations, 4-72
System timers, 10-9
System warnings, 7-2

T

TAB, 9-14,9-19
TAN, 4-19
Terminal capabilities (termcap), 9-9
Terminator, numeric array, 4-31
Testing programs, 2-3,2-25
Testing, software, 8-17
Text/data files, 11-31
Tick marks, 13-6
Tilde (~) character, 11-4
TIME, 10-2
Time format conversions, 10-3
Time of day, 10-2
TIMES$, 10-2
Time-of-day interrupts, 10-8
Timer functions, 10-9
Timer interrupts, 10-6
Timer interrupts
(w/ subprograms), 10-11
Timers, 10-6
Timing intervals, 10-5
Tones, 9-5
Top-down design, 6-10
TRACE, 8-8
TRACE ALL, 8-11
TRACE VAR, 8-9
Tracing all flow, 8-11
Tracing branches, 8-7
Tracing graphics images, 13-68,13-70

12 Index

Tracing variables, 8-9
Transposing arrays, 4-62
Trapping errors, 7-6,9-29,11-29
Trigonometric functions, 4-18
TRIMS, 5-16

Trimming strings, 5-16

TRN, 4-62

TYP, 11-12,11-28

Type fields (files), 11-12,11-28
Types of lines, 13-9

Types of pass parameters, 6-21,6-25
Types of program flow, 3-3
Types, pass parameters, 6-25

U

UBND, 4-78

UNCLIP, 13-43,13-45

Understanding the problem, 2-6

Unit matrix, 4-45

UNIX, 1-2

Unlinked object files, 12-5

UPC$, 5-17,9-28

User documents
(for your programs), 2-31

User units (UU’s), 13-6,13-28,13-34,
13-36,13-45

User-defined functions, 2-11,5-17,6-1,6-2

User-defined functions, limitations, 6-7

User-defined keys, 3-29

\'}

VAL, 4-22,5-11

VALS$, 4-22,5-13

Variable declarations, 2-10
Variable names, 2-27,4-2
Variable names, string, 5-2
Variables, allocation of, 3-36
Variables, assigning, 4-2
Variables, in COM, 6-28
Variables, numeric, 4-4

Variables, numeric arrays, 4-23
Variables, renaming, 2-21
Variables, string, 5-2
Variables, string length, 5-2
Variables, types of, 2-10
Variables, where used (XREF V), 8-5
Vector components, 4-69
Vector cross product, 4-67
Vector magnitude, 4-69

vi “insert” command, 12-4

vi editor, 2-24,12-4

w

Walk-throughs, 8-4
Warnings, 7-2
WHERE, 13-71

While, 3-24

White background, 13-9
Width of screen, 9-7

X

XREF, 8-5
XREF L, 8-7
XREF V, 8-5

Y

Yank (vi), 2-24

Y4

ZER, 4-35
Zero matrices, 4-44

Index 13

14 Index

Reorder Number
97068-90000
Printed in U.S.A. 5/85

()

HEWLETT
PACKARD

M

97068-90600

Mfg. No. Only

I

