HP 9000 Series 200 Computers | () Pyt

BASIC 3.0 Interfacing Techniques

CALL Sert_arrav
PRINT FNSum_arrav
=\

5UB Build_arrav (7
X (#*) 15 the arj
PN tells how man

2

m=COmxm

3 rtma=01 OP: =
FOR looep:=1 TO torp DO alrhal
WRITELN('Tvyre upPpPercase char
READ (Kev) 3 WRITELN 3

I=1 to 73red ™
"Destination
"Destination
"cat" A% f 1

BASIC 3.0 Interfacing Techniques
for the HP 9000 Series 200 Computers

Manual Part No. 98613-90020

© Copyright 1984, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road. Fort Collins, Colorado 80525

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

May 1984.. First Edition
November 1984.. Update
December 1984.. Edition 1 with update

Warranty Statement

Hewlett-Packard products are warrarted against defects in materials and workmansh:p. For Hewlett Packard computer sys-
tem products sold in the U S A. and Canada, this warranty applies for ninety (90) days from the date of shipment.* Hewlett-
Packard will, atits option. repair or replace equipment which proves to be defective during the warranty period. This warranty
includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be shipped
freight prepaid. Repairs necessitated by misuse of the equipment, or by harcware, software, or interfacing not provided by
Hewlett-Packard are not covered by *his warranty

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructicns
when properly installed on that CPU. HP does not warrant that the operation of the CPU. software, or firmware will be uninter-
rupted or error free

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

HP 9000 Series 200

For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes with a 90-day,
Return-to-HP warranty during which time HP will repair your Model 216, however, the computer must be shipped to an HP
Repair Center

All other Series 200 computers come with a 90-Day On-Site warranty during which time HP will travel to your site and repair
any defects. The following minimum configuration of equipment is necessary to run the appropriate HP diagnostic
programs: 1) V2 Mbyte RAM; 2) HP-compatible 3'%" or 57" disc drive for loading system functional tests. or a system install
device for HP-UX installations; 3) system console consisting of a keyboard and video display to allow interaction with the CPU
and to report the results of the diagnostics

To order or to obtain additional information on HP support services and service contracts. call the HP Support Services Tele-
marketing Center at (800) 835-4747 or your local HP Sales and Support office

* For other countries, coract your local Sales an. i Suppor Office to determire warranty terms

Table of Contents

Chapter 1: Manual Overview

Introduction 1
Manual Organization o 1
Chapter Preview 2

Chapter 2: Interfacing Concepts

Introduction 5
Terminology 5
Why Do You Need an Interface?. i 7
Electrical and Mechanical Compatibility 8
Data Compatibility. 8
Timing Compatibility. 8
Additional Interface Functions 8
Interface Overview. e 9
The HP-IBInterface 9
The RS-232 Serial Interface. 9
The Datacomm Interface 10
The GPIO Interface. 10
The BCD Interface 11
Data Representations i 11
Bitsand Bytes 11
Representing Numbers. 12
Representing Characters 12
Representing Signed Integers 13
Internal Representation of Integers. 13

ASCII Representation of Integers 14
Representing Real Numbers 15
Internal Representation of Real Numbers 15

ASCII Representation of Real Numbers. 15

The VO Process 16
/O Statements and Parameters. 16
Specifyinga Resource 16
Firmware e 16
Registers 16

Data Handshake 17
VOExampleso 18
Example Output Statement 18
Source-ltem Evaluation............. 18
Copying Data to the Destination. 19
Example Enter Statement 19
Destination-Item Evaluation 20

iii

iv

Chapter 3: Directing Data Flow

INtrodUuctiono 21
Specifyinga Resource. 22
String-Variable Names 22
Device Selectors 23
HP-IB Device Selectors 24
VO Path Names.o 25
Assigning /O Path Names 26
Re-Assigning /O Path Names 28
Closing /O Path Names. 28
/O Path Names in Subprograms. i 29
Assigning IO Path Names Locally Within Subprograms 29
Passing /O Path Names as Parameters 30
Declaring 'O Path Names in Common 31
Benefits of Using /O Path Names 31
Execution Speed. 31
Re-Directing Data i 32
Attribute Control 33

Chapter 4: Outputting Data

INtrodUction 35
Free-Field Outputs.o 35
The Free-Field Convention e 35
Standard Numeric Format. 36
Standard String Format 36

Item Separators and Terminators 36
Changingthe EOL Sequence i i 39
Using END in Free-Field OUTPUT 40
Additional Definition. 41
END with HP-IB Interfaces 41

END with the Data Communications Interface 41
Outputs that Use Images. 42
The OUTPUT USING Statementt 42
IMages. . . . 42
Example of UsinganlImage. 43
Image Definitions During Outputs 44
Numeric Images. 44
String Images. 46
Binary Images 47
Special-Character Images. i .. 48
Termination Imageso 49
Additional Image Features 50
Repeat Factors. 50
Repeatable Specifiers. 50

Image Re-Use 51
Nested Images. 52
END with OUTPUTS that Use Images 53

Additional Definition 53

END with HP-IB Interfaces 53
END with Data Communications Intexfaces 54

Chapter 5: Entering Data

INtrodUCHON 55
Free-Field Enters 55
Itemn Separators. 56
Item Terminators. e 56
Entering Numeric Data. i 56
Entering String Data 60
Terminating Free-Field ENTER Statements 62
EOI Termination e e 62
Enters that Use Imageso oo 64
The ENTER USING Statement e o4
Images. 64
Example of an Enter UsinganImage L. 64
Image Definitions During Enter 66
Numeric Images. 66
String Images. o 67
Ignoring Characters. 68
BinaryImages i 69
Terminating Enters that Use Imageso 70
Default Termination Conditions 70
EOI Re-Definition oo 70
Statement-Termination Modifiers 71
Additional Image Features 72
Repeat Factors. 72
Repeatable Specifiers. i 72

Image Re-Use 72
Nested Images. 72

Chapter 6: Registers

Introduction 73
Interface Registers i 74
The STATUS Statement e 74
The CONTROL Statement e 75
/O Path Regdisters e 76
Summary of /O Path Registers. 79

Chapter 7: Interface Events

Introduction 81
Review of Event-Initiated Branching 81
Events. ... 81
Service Routines 82
Required Conditions. i 82

ASimple Example. 82

vi

Logging and Servicing Events e 84
Software Priority 34
Changing System Priority. 86
Hardware Priority 87
Pending Events 88
Servicing Pending Events. 89

Setting Up Branches 91

Enabling Events to Initiate Branches, 91

Interface Interrupts. 91
Setting Up Interrupt Events 92
Enabling Interrupt Events. 92
Service Requests. 93
Interrupt Conditions 95

Interface Timeouts. 96
Setting Up Timeout Events 96
Timeout Limitations 96

Chapter 8: The Internal CRT Interface

Introduction 97
CRT Display Description. 97
CRT Display.o 98
The Output Areaand the Disp Line 100
Outputtothe CRT. 99
Numeric Qutputs. 99
String Outpulso 99
Control Characters e 100
Display Enhancement Characters........... 102
The Display Functions Mode. 103
Output-Area Memory 105
Determining Above-Screen Lines. 105
Screen Addresses 106
Determining Screen Width. 107
Scrolling the Display 107
Entering fromthe CRT 108
Readinga Screen Line. 108
Reading the Entire Output-Area Memory 108
Additional CRT Features 111
The DISP Line. 111
Disabling the Cursor Character. 112
Enablingthe Insert Mode. 112
Softkey Labels. 113
Summary of CRT STATUS and CONTROL Registers. 115

Chapter 9: The Internal Keyboard Interface

Introduction 117
Keyboard Description 117
ASCIland Non-ASCIL Keys. 118

The Shiftand Control Keys 118

Keyboard OperatingModes. 120
The Caps Lock Mode. 120
The Print Al Mode 120
Modifying the Repeat and Delay Intervals 121

Entering Data fromthe Keyboard 122
Sendingthe EOlSignal 123

Sending Data to the Keyboard. 124
Sending Non-ASCII Keystrokes to the Keyboard 124
Closure Keys 126

Softkeys . .. 127

Sensing Knob Rotation. 128

Enhanced Keyboard Control 130
Trapping Keystrokes. 130
Softkeys and Knob Rotation 132
Disabling Interactive Keyboard 132

Locking Out the Keyboard. 134

Summary of Keyboard STATUS and CONTROL Registers 135

Chapter 10: I/O Path Attributes

The Format Attributes. 137
The Format On Attribute 138
Specifying I/O Path Attributes 139
The Format Off Attribute 139

Integers 140
Real Numbers. 140
StringData 140

Additional Attributes 141
The BYTE and WORD Attributes, 141
Converting Characters 146
Changingthe EOL Sequence i 148
Parity Generation and Checking. i 149
Determining the Outcome of ASSIGN Statements. 151

Conceptsof Unified /O 152
Data-Representation Design Criteria. 152
[/OPathstoFiles. 152

BDAT Files 153
ASCIIFiles 154
Data Representation Summary 155

Applications of Unified [/O 155

/O Operations with String Variables. 155
Outputting Data to StringVariables 155
Entering Data From String Variables 159

Takinga Top-Down Approach 161

Chapter 11: Advanced Transfer Techniques

Introduction 167
BUfers . .. 168

vii

viii

Using Buffers 169
Creating Buffers e 169
Assigning Buffers. 169
Buffer Pointers. e 170

Transfers. ... 172

Using Transfers 173
Initiating Transfers. e 174
Choosing Transfer Parameters 175
Branching. 178
Terminatinga Transfer. 179

Transfer Examples. 181

Special Considerations 184
Transfer with Care 184

Statements Which Affect Currency. 184

Error Reporting 186
Suspended Transfers 186
Transfer Performance. 187
Transfer Method 189
Transfer Speeds for Devices 189
Restrictions.o 190
Interactions 190
Changing Buffer Attributes 192
AnatomyofaBuffer 193
Buffer Status and Control Registers. 195

Chapter 12: The HP-IB Interface

Introduction 197
Initial Installation 198
Communicating with Devices. 199
HP-IB Device Selectors 199
Moving Data Throughthe HP-IB 200
General Structure of the HP-IB. 200
Examples of Bus Sequences. 202
Addressing Multiple Listeners 203
Secondary Addressing 203
General Bus Management 204
Remote Control of Devices 204
Locking Out Local Control 205
Enabling Local Control 205
Triggering HP-IB Devices. 206
Clearing HP-IB Devices 206
Aborting Bus Activity 207
HP-IB Service Requests. 207
Setting Up and Enabling SRQ Interrupts. 207
Servicing SRQ Interrupts. 208

Polling HP-IB Devices 209
Configuring Parallel Poll Responses. 209

Conductinga Parallel Poll 210

Disabling Parallel Poll Responses. o i L. 210
Conductinga Serial Poll 210
Advanced Bus Management 211
The Message CoNnceptottt e 211
Types of Bus Messages 211
Bus Commandsand Codest 213
Address Commandsand Codes.t 214
Explicit Bus Messages. i 215
Examples of Sending Commands L. 215
Examples of SendingData 217

HP-IB Message Mnemonics. 217
The Computer As a Non-Active Controller 219
Determining Controller Status and Address. 219
Changing the Controller's Address. i 220
Passing Control. 220
Interrupts While Non-Active Controller 221
Addressing a Non-Active Controller 225
Requesting Service 226
Responding to Parallel Polls 227
Responding to Serial Polls 229
Interface-State Information 229
Servicing Interrupts that Require Data Transfers. 231
HP-IB Control Lines 233
Handshake Lines 233
The Attention Line (ATN) o 234
The Interface Clear Line (IFC) 234
The Remote Enable Line (REN) 234
The End or Identify Line (EOI) 234
The Service Request Line (SRQ) i 235
Determining Bus-Line States. 235
Summary of HP-IB STATUS and CONTROL Registers 237
Summary of HP-IB READIO and WRITEIO Registers 242
READIO Registers.\t 242
HP-IB WRITEIO Registers.ot 247
Summary of Bus Sequences 252

Chapter 13: The Datacomm Interface

INtrodUCHON . . . oot 257
Prerequisites 257
Protocol P 258

Asynchronous Communication Protocol. 258
Data Link Communication Protocol. 259
Data Transfers Between Computer and Interface.............. 260
Outbound Control Blocks 260
Inbound Control Blocks. 260
Outbound Data Messagesttt 262
Inbound Data Messages. ittt 262

Overview of Datacomm Programming i 263

ix

Establishing the Connection. 264

Determining Protocol and Link Operating Parameters. 264

Using Defaults to Simplify Programming 265

Resetting the Datacomm Interface 266

Protocol Selection. 266

Datacomm Options for Async Communication. 267
Control Block Contents. 268
Modem-initiated ON INTR Branching Conditions 268
Datacomm Line Timeouts. 269
Line Speed (Baud Rate), 269
Handshake 270
Handling of Non-data Characters. 270
Protocol Handshake Character Assignment 271
End-of-line Recognition. 271
Prompt Recognition. 271
Character Format Definition 272
Break Timing 272

Datacomm Options for Data Link Communication. 273
Control Block Contents. 274
ON INTR Branching Conditions,

Datacomm Line Timeouts, and Line Speed 274
Terminal Identification. 274
Handshake 274
Transmitted Block Size 275
Parity . . 275

Connectingtothe Line. 275
Switched (Public) Telephone Links 275
Private Telecommunications Links. 275
Direct Connection Links 275
Data Link Connections 276

Connection Procedure 276
Dialing Procedure for Switched Public Modem Links 276
Automatic Dialing with the HP 13265A Modem 276

Initiating the Connection 277

Setting Up the Interrupt System. 278

Setting Up Softkey Interrupts 278

Setting Up Program Operator Inputs 279

Setting Up Datacomm Interrupts. 279

Background Program Routines 280
Interrupt Service Routines 281

Servicing Datacomm Interrupts. 281
Exit Conditions. 283
Data Formats for Datacomm Transfers 284
ASCIl Data Transfers. 284
Non-ASCIl Data Transfes 284

Servicing Keyboard Interrupts. 285

Service Routines for ON KEY Interrupts 286

Cooperating Programs 287

FORTRAN Program COOP forthe HP 1000 287

Cooperating BASIC Program for the Desktop Computer 289
Program File to be Downloaded from the HP 1000. 290
Modified Cooperating BASIC Program After Download 291
ReSUIS . . . o 291
Datacomm Errors and Recovery Procedures 292
Error Recovery 293
Error Detection and Program Recovery......... 293
Terminal Emulator Example Programs. i L. 294
Async Terminal Emulator Program. 294
Data Link Terminal Emulator for HP 1000 Connection. 297
Datacomm Programming Helps. 299
Terminal Prompt Messages 299
Prevention of Data Lossonthe HP 1000 299
Disabling Auto-pollon the HP 1000 300
Prevention of Data Loss on the HP 3000 301
Secondary Channel, Half-duplex Communication.............................. 301
Automatic Answering Applications oo 303
Communication Between Desktop Computers. 305
Cable and Adapter Options and Functions. oo, 306
DTE and DCE Cable Optionsttt 306
Optional Circuit Driver/Receiver Functions 307
RS-232C/CCITTV24................ P 308
Summary of Datacomm Status and Control Registers 310
HP 98628 Datacomm Interface Status and Control Registers 312

Chapter 14: The RS-232 Serial Interface

IntrodUcton o 321
Asynchronous Data Communication 321
Character Format. i 321

Parity . .. 322

Error Detectiono i 323

Data Transfers Between Computer and Peripheral. 323
Overview of Serial Interface Programming. 324
Initializing the Interconnection 324
Determining Operating Parameters. o 324
Hardware Parameters i 324
Character Format Parameters. i 324

Using Interface Defaults to Simplify Programming 325
Modem Line Disconnect Switches 325

Baud RateSelect Switches. 325

Line Control Switches 326

Using Program Control to Override Defaults. 326
Interface Reset 326
Selectingthe BaudRate 326
Setting Character Formatand Parity 327

Data Transfers 328
Program Flow 328
Data Output 328

Data Entry. 328

xi

Xii

Modem Line Handshaking O 328
Incoming Data Error Detection and Handling. 329
Trapping Serial Interface Errors. 330
Special Applications 331
Sending BREAK MeSSagest 331
Using the Modem Control Register. 331
Modem Handshake Lines (RTSand DTR) 331
Programming the DRS and SRTS Modem Lines............................ 332
Configuring the Interface for Self-test Operations. 332
READIO and WRITEIO Register Operations. 332
Interface Registers 333

UART Registers 334

Cable Options and Signal Functions. 337
The DTE Cable. 338
Optional Circuit Driver/Receiver Functions 338

The DCE Cable. 338
Example Cable Connections. 339
RS-232C/CCITT V24 . 341
Summary of RS-232 Serial Status and Control Registers. 343

Chapter 15: Powerfail Protection

Overview of Capabilities Provided. 348
The Computer’s Reaction to Powerfails 349
Continuous-Memory Registers 349
Real-Time Clock 349
Powerfail-Protection Timers. 349
Interrupt Events. 350
Setting Up and Enabling Interrupts 350
Service Routines. 350
Powerfail Status and Timers 351
Typical Service Routines. 353
Using the Continuous-Memory Registers. 353
StoringDataon Disc. 354
Power-Is-Back and One-Second-Left Interrupts 356
Summary of Powerfail Status and Control Registers. 359

Chapter 16: The GPIO Interface

Introduction 363
Interface Description 364
Interface Configuration. 365
Interface Select Code 366
Hardware Interrupt Priority 366
Data Logic Senset 366
Data Handshake Methods 366
Handshake Lines 366
Handshake Logic Sense 367
Handshake Modes 367

Data-In Clock Source. 367

xiii

Optional Peripheral Status Check. 367
Full-Mode Handshakes i, 367
Pulse-Mode Handshakes. 370
Interface Reset. 377
Outputs and Enters throughthe GPIO i 378
ASCII and Internal Representations v, 378
Example Statements that Output DataBytes 378
Example Statements that Enter DataBytes. 379
Example Statements that Output DataWords 380
Example Statements that Enter DataWords. 381

GPIO TIMeEOULS ot 381
Timeout Time Parameter. 381
Timeout Service Routines 382

Using Alternate Data Representations. 383
BCD Representation. o 383
Character ConvesioNSttt 385
GPIO Interrupts 386
Types of Interrupt Events. 386
Setting Up and EnablingEvents 386
Interrupt Service Routines 387
Designing Your Own Transfers i 389
Full Handshake Transfer. 390
Interrupt Transfeso 391

Ready Interrupt Transfers 391

Using the Special-Purpose Lines 393
Driving the Control Output Lines 393
Interrogating the Status Input Lines 393
Usingthe PSTS Line. 394
Summary of GPIO Status and Control Registers. 395
Summary of GPIO READIO and WRITEIO Registers. 397

Chapter 17: The BCD Interface

Brief Description of Operation 402
Data Representations and Formats. 402
The BCD Data Representation. 402
Standard Format 402
Optional Format. 404
TheBinary Data Representation 405
TheBinaryMode 405
Alternate Methods of EnteringData. 407
Outputting Data 407
Configuring the Interface A 408
Determining Interface Configuration. 408
Setting the Interface Select Code 409
Setting the Hardware Priority (Interrupt Level) 409
Setting the Peripheral Status Switches 409
Setting the Handshake Configuration. 410
Type 1 TIimingo 410

Type 2 Timing 411

Xiv

Configuringthe Cable 411
Interface Reset 412
Entering Data Through the BCD Interface 413

Entering Data from One Peripheral 414

Entering with BCD-Mode Standard Format 414
Entering with Binary Mode 416
Entering with STATUS Statement 419
Entering Data from Two Peripherals. 420
Optional Format. 420
Outputting Data Through the BCD Interface 423

Output Routines Using CONTROL and STATUS 423

Sending Data with OUTPUT 424
BCD Interface Timeouts 425

Timeout Time Parameter. 425

Timeout Service Routines 425
BCD Interface Interrupts. 427

Setting Up and Enabling Interrupts. 427

Interrupt Service Routines 427
Summary of BCD Status and Control Registers 428
Summary of BCD READIO and WRITEIO Registers 431

BCD READIO Registers. 431

BCD WRITEIO Registers 433

Chapter 18: EPROM Programming

Introduction 435
Accessories Required 435
Hardware Installation 435
Brief Overview of Using EPROM Memory. 436

Initializing EPROM Memory 437
EPROM Programmer Select Code 437
EPROM Addresses and Unit Numbers. 437
Verifying Hardware Operation i 438
Initializing Units 440
EPROM Directories. 440
EPROM Catalogso 441

Programming EPROM 441
Storing Data. 442

Data Storage Rates. 443
Determining Unused EPROM Memory it 443
Storing Programs 445
Programming Individual Words and Bytes. 445
Operations Not Allowed. 447

Reading EPROM Memory 448

Retrieving Data and Programs. 448

Figures

Block Diagram of the Computer 6
Backplane Hardware. 6
Functional Diagram of an Interface 7
Block Diagram of the HP-IB Interface. 9
Block Diagram of the Serial Interface 10
Block Diagram of the GPIO Interface 10
Voltage and Positive-True Logic 11
Internal Representation of Real Numbers. 15
Data is Copied from Memory to a Resource During Output. 18
Data is Copied from a Resource to Memory During Enter 19
Diagram of the Default /O Path Used for String-Variable I/O Operations 23
Diagram of the Default I/O Path Used when a Device Selector is Specified.............. 25
[/O Paths to Devices and Mass-Storage Files 26
/O Path Variable Contents. e 27
Events with Higher Software Priority Take Precedence 83
An Event with Lower Software Priority Must Wait. 84
Types of Interrupt Events 91
Alphanumeric Display 98
Line Positions of the Qutput Area i e 105
Keyboard Description 118
Repeat and Delay Intervals. 121
The FORMAT ON Attribute Requires Data To Be Formatted 138
The Internal Data Representation Is Maintained with FORMAT OFF 138
Types of Transfers. 173
HP-IBlInterface 197
HP-IB Control Lines 233
Asynchronous Communication Protocol L. 258
Data Link Communication Protocol 259
Async Default Configuration Switches 265
Data Link Default Configuration Switches 266
DTE/DCE Interface Cable Wiring 307
Character Format 322
DTE Cable Interconnection Diagram 339
DCE Cable Interconnection Diagram i 340
Block Diagram of the GPIO Interface 364
Diagram of Full-Mode OUTPUT Handshakes 368
Full-Mode ENTER Handshake with BSY Clock Source............................. 369
Full-Mode ENTER Handshake with RDY Clock Source. 370
Busy Pulses With Pulse-Mode OUTPUT Handshake 371
Busy Pulses With Pulse-Mode ENTER Handshakes

(BSY Clock SoUICe)ot 372
Busy Pulses With Pulse-Mode ENTER Handshakes

(RDY Clock Source) v e e 373
Ready Pulses With Pulse-Mode OUTPUT Handshakes 374
Ready Pulses With Pulse-Mode ENTER Handshakes

(BSY Clock SoUrce)o 375

Ready Pulses With Pulse-Mode ENTER Handshakes
(RDY Clock Source)o 376

XV

xvi

Tables

Diagram of Byte Transfers 378
Diagram of Word Transfers 380
Type 1 Handshake Timing Diagram 410
Type 2 Handshake Timing Diagram 411
Measuring the BCD Interfaces TIMEOUT Parameter 425
Second Byte of Non-ASCII Key Sequences (Numeric) 446
ASCII Representation of Integers. 14
Internal Representation of Real Numbers.o .o oo o 15
ASCII Representation of Real Numbers 15
/O Path Variable Contents. 27
Digit, Radix and Exponent Specifiers 44
Character Specifiers. 46
Binary Specifiers 47
Special-Character Specifiers. 48
Termination Specifiers. 49
Numeric Specifiers. e 66
String Specifiers 67
Specifiers Used to Ignore Characters.o (i 68
Binary Specifiers 69
Definition of EOI During ENTER Statements. 70
Statement-Termination Modifiers. 71
Summary of 1 O Path Registers 79
Hardware Priorities of Interfaces 88
Control-Character Functionsonthe CRT. 101
Display-Enhanced Characters 102
Softkey Labels 113
Summary of CRT STATUS and CONTROL Registers. 115
Generating Control Characters with CTRL and ASCll Keys 119
Second Byte of Non-ASCII Key Sequences (String).......... 125
Summary of Keyboard STATUS and CONTROL Registers e 134
Parity Generation and Checking e 149
Data Representation Summary P 155
Inbound TRANSFER e 177
Outbound TRANSFER e 178
Transfer Speeds for Devices. 189
Buffer Status and Control Registers. 195
Bus Commandsand Codes 213
Address Commands and Codes 214
HP-IB Message MNemoniCsottt 218
Definition of EOQI During ENTER Statements. 235
Summary of HP-IB STATUS and CONTROL Registers 237
Summary of HP-IB READIO and WRITEIO Registers 242
Summary of Bus Sequences i 2D2
Async Protocol Control Blocks. oo o 261
Data Link Protocol Control Blocks 261
Line Speed (Baud Rate).o 269

Character Format Definition. 272

ON INTR Branching Conditions, Datacomm Line Timeouts, and Line Speed 274
Parity. .. 275
Automatic Dialing with the HP 13265A Modem 277
Interrupt Mask Bits for Async Operation. i 279
Interrupt Mask Bits for Data Link Operation 279
Servicing Keyboard Interrupts 286
Datacomm Errors and Recovery Procedures 292
RS-232C DTE (male) Cable Signal Identification Tables 306
Optional Circuit Driver/Receiver Functions, 307
RS-232C/CCITT V24 . . . 308
Datacomm Interface Status and Control
Register Summary. 319
Baud Rate Select Switches. 325
Line Control Switches. 326
Setting Character Formatand Parity. 0 327
Configuring the Interface for Self-test Operations 332
Baud Rate Switch Setting. 333
StOP Bit(S) . ..o 336
Character Length. 336
RS-232 DTE (male) Cable Identification Tables 338
OptionalCircuit Driver/Receiver Functions 338
RS-232C/CCITT V24 . 341
RS-232 Serial Interface Status and Control Registers 343
Register Summary. 359
BCD Representation i 383
GPIO Status and Control Registers. 395
Summary of GPIO, READIO and WRITEIO Registers 397
The BCD Data Representation 402
Standard Format (Read One BCD Device) i, 403
Optional Format (Read Two BCD Devices). i 404
The Binary Mode. 406
Outputting Data. 407
Entering with Binary Mode. 416
BCD Status and Control Registers. 428
Summary of BCD READIO and WRITEIO Registers 431
Summary of EPROM Programmer STATUS and CONTROL Registers. 449
Useful Tables 451
Option Numbers. 451
Interface Select Codes i 451
Display Enhancement Characters i i 452
US ASCII Character Codes e 453
European Display Characters. 455
Katakana Display Charactes. i e 457
Master Reset Table 459
Graphic Reset Table 462
Interface Reset Table. 463
Second Byte of Non-ASCII Key Sequences (String).o i, 465

Selected High-Precision Metric Conversion Factors 466

xvii

Xviii

Chapter

Manual Overview

1

Introduction

This manual is intended to present the concepts of computer interfacing that are relevant to
programming the HP Series 200 computers. However, it is not a text dealing with computer
architecture or hardware in general. It is intended to present the topics that will increase your
understanding of interfacing to these computers. If you would like a more detailed discussion of
the other concepts, you may want to consult a text on computer architecture.

Note

It may be necessary, depending on your computer system, to add
certain drivers or keywords which are provided by loading BIN files.

Manual Organization

This manual is organized by topics. The text is arranged to focus your attention on interfacing
concepts rather than to present only a serial list of the BASIC-language /O statements. Once
you have read this manual and are familiar with the general and specific concepts involved, you
can use either this manual or the BASIC Language Reference when searching for a particular
detail of how a statement works. Keep in mind that this manual has been designed as a learning
tool, not as a quick reference.

This manual is designed for easy access by both beginners and experienced users. Experienced
users may decide to go directly to the chapter that describes the interface to be used. If more
background is required, the information in chapters 3 through 7 will provide further explana-
tion. Less experienced users may want to begin with Chapter 2, *““Interfacing Concepts’’, before
reading about general or interface-specific techniques. It is recommended that less experienced
users work through the BASIC Programming Techniques manual before using this manual.

The brief descriptions in the next section will help you determine which chapters you will need
to read for your particular application.

2 Manual Overview

Chapter Previews

Chapter 2 - Interfacing Concepts

This chapter presents a brief explanation of relevant interfacing concepts and terminology. This
discussion is especially useful for beginners as it covers much of the why and how of of
interfacing. Experienced programmers may also want to skim this material to better understand
the terminology used in this manual.

Chapter 3 - Directing Data Flow

This chapter describes how to specify which computer resource is to send data to or receive
data from the computer. The use of device selectors, string variable names, and the new data
type known as ‘‘I/O path names’ in [/O statements are described.

Chapter 4 - Outputting Data

This chapter presents methods of outputting data to devices. All details of this process are
discussed, and several examples of free-field output and output using images are given. Since
this chapter completely describes outputting data to devices, you may only need to read the
sections relevant to your application.

Chapter 5 - Entering Data

This chapter presents methods of entering data from devices. All details of this process are
discussed, and several examples of free-field enter and enter using images are given. As with
Chapter 4, you may only need to read sections of this chapter relevant to your application.

Chapter 6 - Registers

This chapter describes the use and access of registers. The uses of registers are explained, and
programming techniques used to examine and change register contents are presented. Indi-
vidual interface register definitions are not contained in this chapter, but are discussed in the
corresponding interface chapter.

Chapter 7 - Interface Events

This chapter describes event-initiated branching from an interface’s point of view. The uses of
both interrupts and timeouts are discussed, and several examples are given. Again, the inter-
face-dependent details are not given in this chapter, but are covered in the chapter dedicated
to discussing programming techniques for each interface.

Chapter 8 - The Internal CRT Interface

This chapter describes accessing the built-in CRT display through its interface to the computer.
Since this device can be accessed via its interface, most of the programming techniques pre-
sented in Chapters 3 through 7 can be used with this device. If you have no experience in
programming interfaces, you will find this chapter very useful; many tools are presented that
will help you program and understand the other interfaces.

Chapter 9 - The Internal Keyboard Interface

As with Chapter 8, this chapter describes several programming techniques applicable to inter-
facing to the built-in keyboard, and several examples are given that will help you understand
many of the general programming techniques presented in previous chapters. All of the capa-
bilities of the keyboard are explained in this chapter.

Manual Overview 3

Chapter 10 - I/O Path Attributes

This chapter presents several powerful capabilities of the I/O path names provided by the
BASIC language system. Interfacing to devices is compared to interfacing to mass storage files,
and the benefits of using the same statements to access both types of resources are explained.
This chapter is also highly recommended to all readers.

Chapter 11 - Advanced Transfer Techniques

This chapter describes advanced I/O techniques which can be used when communicating with
devices. These techniques are generally used with devices which have data-transfer rates either
much faster or much slower than the computer’s normal transfer rate(s).

Chapter 12 - The HP-IB Interface

This chapter describes programming techniques specific to the HP-IB interface. Details of
HP-IB communications processes are also included to promote better overall understanding of
how this interface may be used.

Chapter 13 - The Datacomm Interface

This chapter describes the HP 98628 Data Communications Interface and presents program-
ming techniques for using the asynchronous or HP Data Link protocols provided by this
interface.

Chapter 14 - RS-232 Serial Interface
This chapter describes programming techniques specific to using the asynchronous-protocol
capabilities of the HP 98626 Serial Interface.

Chapter 15 - Powerfail Protection
This chapter describes programming techniques for achieving powerfail protection (Option 050
is required to use these capabilities).

Chapter 16 - The GPIO Interface
This chapter describes programming techniques specific to using the HP 98622 GPIO Interface.

Chapter 17 - The BCD Interface
This chapter describes programming techniques specific to using the HP 98623 BCD Interface.

Chapter 18 - EPROM Programming
This chapter describes how to program EPROMs (erasable programmable read only memory)
using the HP 98255 EPROM Memory Card(s) and the HP 98253 EPROM Programmer Card.

4 Manual Overview

Chapter

2

Interfacing Concepts

Introduction

This chapter describes the functions and requirements of interfaces between the computer and
its resources. Concepts in this chapter are presented in an informal manner. All levels of
programmers can gain useful background information that will increase their understanding of
the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. The purpose of this
section is to make sure that our terms have the same meanings.

The term computer is herein defined to be the processor, its support hardware, and the
BASIC-language operating system; together these system elements manage all computer re-
sources. The term computer resource is herein used to describe all of the ‘‘data-handling”
elements of the system. Computer resources include: internal memory, CRT display, keyboard,
and disc drive, and any external devices that are under computer control.

The term hardware describes both the electrical connections and electronic devices that make
up the circuits within the computer; any piece of hardware is an actual physical device. The
term software describes the user-written, BASIC-language programs. Firmware refers to the
pre-programmed, machine-language programs that are invoked by BASIC-language state-
ments and commands. As the term implies, firmware cannot be modified by the user. The
machine-language routines of the operating system are firmware programs.

6 Interfacing Concepts

(includes operating
system and user

memory)
Internal CRT
Memory Display Keyboard
Resource
Connectors
Data and /\ /\
Control Buses
Backplane
Connectors
D Built-in
Processor D'$° HP-1B < 25 >
rive Interface
HP-1B
Connector

Block Diagram of the Computer

The term I/O is an acronym that comes from “Input and Output’’; it refers to the process of
copying data to or from computer memory. Moving data from computer memory to another
resource is called output. During output, the source of data is computer memory and the
destination is any resource, including memory. Moving data from a resource to computer
memory is input; the source is any resource and the destination is a variable in computer

memory. Input is also referred to as enter in this manual for the sake of avoiding confusion
with the INPUT statement.

The term bus refers to a common group of hardware lines that are used to transmit information
between computer resources. The computer communicates directly with the internal resources
through the data and control buses. The computer backplane is an extension of these internal
data and control buses. The computer communicates indirectly with the external devices
through interfaces connected to the backplane hardware.

Connectors
in the Card Cage

Processor Buffering

Hardware

Electronic

Jeee IO

The Processor Communicates with the Interfaces
through Backplane Hardware

Backplane Hardware

Interfacing Concepts

Why Do You Need an Interface?

The primary function of an interface is, obviously, to provide a communication path for data
and commands between the computer and its resources. Interfaces act as intermediaries be-
tween resources by handling part of the ‘‘bookkeeping” work, ensuring that this communica-
tion process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer backplane is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The electronic backplane hardware has been designed with specific electrical logic
levels and drive capability in mind.

CAUTION

EXCEEDING BACKPLANE HARDWARE RATINGS WILL DAM-
AGE THE HARDWARE.

Second, you cannot be assured that the connectors of the computer and peripheral are com-
patible. In fact, there is a good probability that the connectors may not even mate properly, let
alone that there is a one-to-one correspondence between each signal wire’s function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that the
data sent will be interpreted properly by the receiving device. Some peripherals expect single-
bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as to
when the data transfer will occur; and when the transfer does begin the transfer rates will
probably not match. As you can see, interfaces have a great responsibility to oversee the
communication between computer and its resources. The functions of an interface are shown in
the following block diagram.

r—-—--"-"--"—-"=-"-"-"-"=-"=-"=-"=-"=-=-=-= M
I Interface |
! Computer I
| Compatible . |
Connector Logic |
| Level
| Interface Matcher
= Logic Cabl |
Computer = - - - e | Peripheral
— Device
| I Device I
| Compatible |
| Logic Connector |
Level
| Matcher |
| I
| |
e e e e e e e e e e e e e e e e - -J

Functional Diagram of an Interface

7

8

Interfacing Concepts

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match: if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly. All
of the computer interfaces have 100-pin connectors that mate with the computer backplane.
The peripheral end of the interfaces may have unique configurations due to the fact that several
types of peripherals are available that can be operated with the computer. Most of the interfaces
have cables available that can be connected directly to the device so you don’t have to wire the
connector yourself.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult compatibility requirements to fulfill before exchanging data is that the format
and meaning of the data being sent is identical to that anticipated by the receiving device.
Even though some interfaces format data, most interfaces have little responsibility for match-
ing data formats; most interfaces merely move agreed-upon quantities of data to or from
computer memory. The computer must generally make the necessary changes, if any, so that
the receiving device gets meaningful information.

Timing Compatibility

Since all devices do not have standard data-transfer rates, nor do they always agree as to
when the transfer will take place, a consensus between sending and receiving device must be
made. If the sender and receiver can agree on both the transfer rate and beginning point (in
time), the process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item; this process is
known as a ‘“‘handshake’”. Both types of transfers are utilized with different interfaces and
both will be fully described as necessary.

Additional Interface Functions

Another powerful feature of some interface cards is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface card vary widely and
are described in the next section of this chapter.

Interfacing Concepts

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are available
for the computer. Each of these interfaces is specifically designed for specific methods of data
transfer; each interface’s hardware configuration reflects its function.

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1978 Standard Digital
Interface for Programmable Instrumentation. The acronym “HP-IB” comes from Hewlett-
Packard Interface Bus, often called the ‘‘bus’’.

Data
8

HP-IB
Interface
Handshake

<

<
pa.
P

Shielded Cable
to Device(s)

(=

Data and

Control Hardware
Backplane m and
Connector Firmware

AAAVAA Y

25-Pin Connector

Logic and Shield

Grounds >

Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface
cable to the desired HP-IB device and begin programming. All resources connected to the
computer through the HP-IB interface must adhere to this IEEE standard.

The “‘bus’” is somewhat of an independent entity; it is a communication arbitrator that pro-
vides an organized protocol for communications between several devices. The bus can be
configured in several ways. The devices on the bus can be configured to act as senders or
receivers of data and control messages, depending on their capabilities.

The RS-232 Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the data
through a two-wire (usually shielded) cable; data is received in this serial format and is con-
verted back to parallel data. This use of two wires makes it more economical to transmit data
over long distances than to use 8 individual lines.

9

10 Interfacing Concepts

Bit-Serial Data

(In)
; I
Parallel Data, | parajiel/Serial (out)
8 Converter Handshak !
g | (UART) andsharq Shielded Cable
ata an | “ to a Device

Control Serial
Backplane m Interface m
Connector Hardware
< Special Purpose
| —

Grounds
———

Block Diagram of the Serial Interface

50-Pin Connector

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all. The main use of this interface is in communicating with simple devices.

The Datacomm Interface

This interface also changes 8-bit parallel data into bit-serial data (and vice versa) in a manner
similar to the serial interface described above. However, the datacomm interface is controlled
by a Z-80A microprocessor resident on the interface board, which implements high-level fea-
tures such as inbound and outbound data buffers and the use of control blocks. The datacomm
interface is intended for general data communications applications, most of which cannot be
adequately handled by the serial interface.

The GPIO Interface

This interface provides the most flexibility of all the interfaces. It consists of 16 output-data
lines, 16 input-data lines, two handshake lines, and other assorted control lines. Data is trans-
mitted using programmable handshake conventions and logic senses.

Parallel Data Qut
16 >

Parallel Data In
16

Shielded Cable
to a Device

Data and Handshake

Control GPIO
Backplane Interface i
Connector Hardware Special Purpose
5 >
/47 Grounds

—

Block Diagram of the GPIO Interface

A NN

50-Pin Connector

IRt

Interfacing Concepts

The BCD Interface

This interface is designed to be used with peripheral devices that implement a binary-coded
decimal (BCD) data representation. Forty input lines allow up to ten BCD characters to be
entered with one handshake cycle. Eight lines are available for data output. The interface
provides great flexibility by allowing two peripheral devices to be connected and by featuring a
binary-data operating mode.

Data Representations

As long as data is only being used internally, it really makes little difference how it is repre-
sented; the computer always understands its own representations. However, when data is to
be moved to or from an external resource, the data representation is of paramount impor-
tance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits), each of
which can take on one of two logic levels (high or low). Depending on how the computer
interprets these bits, they may mean on or not on (off), true or not true (false), one or zero, busy
or not busy, or any other bi-state condition. These logic levels are actually voltage levels of
hardware locations within the computer. The following diagram shows the voltage of a point
versus time and relates the voltage levels to logic levels.

Voltage of
a Point
A
+5v
— Logic High
\,\J Logic Low
Logic Ground >
(OV) t tz 13 Time

Voltage and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT, BINCMP, BINIOR, BINEOR,
BINAND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all
data in computer memory are somehow represented with binary numbers.

The computer’s hardware accesses groups of sixteen bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65536 (=2 1 16) different
bit patterns can be produced. The computer can also use groups of eight bits at a time; this
size group is known as a byte. With this smaller size of bit group, 256 (=2 1 8) different
patterns can be produced. How the computer and its resources interpret these combinations
of ones and zeros is very important and gives the computer all of its utility.

11

12

Interfacing Concepts

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers O through 255 can be represented with this particular
scheme.

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 o 1 0 1 1 0

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value =4 | Value=2 | Value =1

Notice that the value of a 1 in each bit position is equal to the power of two of that position. For
example, a 1 in the Oth bit position has a value of 1 (=2 1 0), a 1 in the 1st position has a value
of 2 (=21 1), and so forth. The number that the byte represents is then the total of all the
individual bit’s values.

Determining the Number Represented

02170 =
1271
1%212 4
0x213= 0
1214 = 16 2+ 4+ 16 + 128 = 150
0
0
8

0
2

Number represented =

0215 =
0*2T6=
1x217 =12

The preceding representation is used by the “NUM’ function when it interprets a byte of
data. The next section explains why the character “A” can be represented by a single byte.

100 Number=NUM("A")
110 PRINT " Number = "iNumber
120 END

Printed Result
Number = 65

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a
character. The most widely used character set is defined by the ASCII standard'. This standard
defines the correspondence between characters and bit patterns of individual bytes. Since this
standard only defines 128 patterns (bit 7 = 0), 128 additional characters are defined by the
computer (bit 7 = 1). The entire set of the 256 characters on the computer is hereafter called
the “‘extended ASCII'" character set.

1 ASClI stands for “Amenican Standard Code for Information Interchange™ . See the Useful Tables for the complete table

Interfacing Concepts

When the CHRS$ function is used to interpret a byte of data, its argument must be specified by
its binary-weighted value. The single (extended ASCII) character returned corresponds to the
bit pattern of the function’s argument.

100 Number=G63 ! Bit pattern is "0O1000001"
110 PRINT " Character is "1

120 PRINT CHR$ (Number)

130 END

Printed Result
Character is A

Representing Signed Integers

There are two ways that the computer represents signed integers. The first uses a binary
weighting scheme similar to that used by the NUM function. The second uses ASCII charac-
ters to represent the integer in its decimal form.

Internal Representation of Integers

Bits of computer memory are also used to represent signed (positive and negative) integers.
Since the range allowed by eight bits is only 256 integers, a word (two bytes) is used to
represent integers. With this size of bit group, 65536 (=2 1 16) unique integers can be repre-
sented.

The range of integers that can be represented by 16 bits can arbitrarily begin at any point on the
number line. In the computer, this range of integers has been chosen for maximum utility; it has
been divided as symmetrically as possible about zero, with one of the bits used to indicate the
sign of the integer.

With this “2’s-complement’ notation, the most significant bit (bit 15) is used as a sign bit. A
sign bit of 0 indicates positive numbers and a sign bit of 1 indicates negatives. You still have
the full range of numbers to work with, but the range of absolute magnitudes is divided in half
(—32768 through 32767). The following 16-bit integers are represented using this 2’s-
complement format.

Binary representation Decimal equivalent
1111 1111 1111 1111 -1
0000 0000 0000 0001 1
1111 1111 0000 0001 —255
0000 0000 1111 1111 255
sign bit—T l T—ZTO
2114 217

2113
218

13

14

Interfacing Concepts

The representation of a positive integer is generated according to place value, just as when
bytes are interpreted as numbers. To generate a negative number’s representation, first derive
the positive number’s representation. Complement (change the ones to zeros and the zeros to
ones) all bits, and then to this result add 1. The final result is the two’s-complement repre-
sentation of the negative integer. This notation is very convenient to use when performing
math operations. Let’s look at a simple addition of 2 two’s-complement integers.

Example: 3+(-3) = ?

First, + 3 is represented as: 0000 0000 0000 0011
Now generate —3’s representation:
first complement + 3, 1111 1111 1111 1100
then add 1 + 0000 0000 0000 0001
—3’s representation: 1111 1111 1111 1101
Now add the two numbers: 1111 1111 1111 1101
+ 0000 0000 0000 0011
1 l— carry on
final carry 0000 0000 0000 0000 all places
not used

ASCII Representation of Integers

ASCII digits are often used to represent integers. In this representation scheme, the decimal
(rather than binary) value of the integer is formed by using the ASCII digits O through 9
{CHR$(48) through CHR$(57), respectively}. An example is shown below.

Example

The decimal representation of the binary value “1000 0000 is 128. The ASCII-decimal
representation consists of the following three characters.

Character 1 2 8

Decimal value
of character

49 50 56

Binary value

of character 00110001 | 00110010 | 00111000

Interfacing Concepts

Representing Real Numbers

Real numbers, like signed integers, can be represented in one of two ways with the computers.
They are represented in a special binary mantissa-exponent notation within the computers for
numerical calculations. During output and enter operations, they can also be represented with
ASCII-decimal digits.

Internal Representation of Real Numbers

Real numbers are represented internally by using a special binary notation'. With this method,
all numbers of the REAL data type are represented by eight bytes: 52 bits of mantissa magni-
tude, 1 bit for mantissa sign, and 11 bits of exponent. The following equation and diagram
illustrate the notation; the number represented is 1/3.

Byte 1 2 3 4 8
Decimal value
of character 63 213 85 85 85
Binary value
of characters (‘30111111 11010101 | 01010101 | 01010101 | ... | 01010101
s - < - —
mantissa sign exponent mantissa

Real nUmbeI’ — (_ 1)mant|ssa sign *2exponenlf 1023 *(1 mantissa)

Even though this notation is an international standard, most external devices don’t use it;
most use an ASCII-digit format to represent decimal numbers. The computer provides a means
so that both types of representations can be used during I/O operations.

ASCII Representation of Real Numbers

The ASCII representation of real numbers is very similar to the ASCII representation of inte-
gers. Sign, radix, and exponent information are included with ASCII-decimal digits to form
these number representations. The following example shows the ASCII representation of 1/3.
Even though, in this case, 18 characters are required to get the same accuracy as the eight-
byte internal representation shown above, not all real numbers represented with this method
require this many characters.

ASCII characters 0 .]13]|3|3[|3|33|3]|]3|3(3]|3|3]|]3]|3([3]3

Decimal value
of characters

48 | 46 151 |51 |51 51|51 |51 |51 |51 51|51 5156151]51]51]51

1 The internal representation used for real numbers is the IEEE standard 64-bit floating-point notation.

15

16

Interfacing Concepts

The I/O Process

When using statements that move data between memory and internal computer resources,
you do not usually need to be concerned with the details of the operations. However, you
may have wondered how the computer moves the data. This section takes you ‘‘behind the
scenes’”’ of I/O operations to give you a better intuitive feel for how the computer outputs and
enters data.

I/0 Statements and Parameters

The I/O process begins when an /O statement is encountered in a program. The computer
first determines the type of 1/O statement to be executed (such as, OUTPUT, ENTER USING,
etc.). Once the type of statement is determined, the computer evaluates the statement’s
parameters.

Specifying a Resource

Each resource must have a unique specifier that allows it to be accessed to the exclusion of all
other resources connected to the computer. The methods of uniquely specifying resources
(output destinations and enter sources) are device selectors, string variable names, and [/O
path names. These specifiers are further described in the next chapter.

For instance, before executing an OUTPUT statement, the computer first evaluates the
parameter which specifies the destination resource. The source parameter of an ENTER state-
ment is evaluated similarly.

OUTPUT Dest_rparameteriSource_item
ENTER Sourc_rarameteriDest_item

Firmware

After the computer has determined the resource with which it is to communicate, it ‘‘sets up”’
the moving process. The computer chooses the method of moving the specified data accord-
ing to the type of resource specified and the type of 1/O statement. The actual machine-
language routine that executes the moving procedure is in firmware. Since there are differ-
ences in how each resource represents and transfers data, a dedicated firmware routine must
be used for each type of resource. After the appropriate firmware routine has been selected,
the next parameter(s) must be evaluated (i.e., source items for OQUTPUT statements and
destination items for ENTER statements).

Registers

The computer must often read certain memory locations to determine which firmware
routines will be called to execute the [/O procedure. The content of these locations, known as
registers, store parameters such as the type of data representation to be used and type of
interface involved in the I/O operation.

Interfacing Concepts

An example of register usage by firmware is during output to the CRT. Characters output to
this device are displayed beginning at the current screen coordinates. After the computer has
evaluated the first expression in the source-item list, it must determine where to begin display-
ing the data on the screen. Two memory locations are dedicated to storing the ‘X and *Y”’
screen coordinates. The firmware determines these coordinates and begins copying the data
to the corresponding locations in display memory.

The program can also determine the contents of these registers. The statements that provide
access to the registers are described in Chapter 6. The contents of all registers accessible by
the program are described in the interface programming chapters.

Data Handshake

Each byte (or word) of data is transferred with a procedure known as a data-transfer hand-
shake (or simply ‘‘handshake”). It is the means of moving one byte of data at a time when the
two devices are not in agreement as to the rate of data transfer or as to what point in time the
transfer will begin. The steps of the handshake are as follows.

The sender signals to get the receiver’s attention.
The receiver acknowledges that it is ready.
A data byte (or word) is placed on the data bus.

W=

The receiver acknowledges that it has gotten the data item and is now busy. No further
data may be sent until the receiver is ready.

5. Repeat these steps if more data items are to be moved.

17

18

Interfacing Concepts

[/O Examples
Now that you have seen all of the steps taken by the computer when executing an [/O state-

ment, let’s look at how two typical /O statements are executed by the computer.

Example Output Statement

Data can be output to only one resource at a time with the OUTPUT statement (with the
exception of the HP-IB Interface). This destination can be any computer resource, which is
specified by the destination parameter as shown below.

/-th'e destination parameter

QUTPUT Destinationi String$ CHR$(C+32)+"That’'s all"

the source items are expressions

The source of data for output operations is always memory. Either string or numeric expres-
sions can specify the actual data to be output. The flow of data during output operations is
shown below. Notice that all data copied from memory to the destination resource by the

OUTPUT statement passes through the processor under the control of operating-system firm-
ware.

Internal Memory

Source String
Expression(s) Variable

Data Bus

Data Flow To Other Resources

—————

Processor

Data is Copied from Memory to a Resource During Qutput

Source-Item Evaluation

The source items, listed after the semicolon and separated by commas, can be any valid
numeric or string expression. As the statement is being executed, these expressions must be
individually evaluated and the resultant data representation sent to the specified destination.
The results of the evaluation depend on the type of expression (numeric or string) and on
which data representation (ASCII or internal) is to be used during the I/O operation.

If the expression is a variable and the internal data representation is to be used, the data is
ready to be copied byte-serially (or word-serially) to the destination; otherwise, the expression
must be completely evaluated. The representation generated during the evaluation is stored in
a temporary variable within memory. In both cases, once the beginning memory location and
length of the data are known, the copying process can be initiated.

Interfacing Concepts

Copying Data to the Destination

The computer employs ‘‘memory-mapped’” 1/O operations; all devices are addressable as
memory locations. All output operations involve a series of two-step processes. The first step is
to copy one byte (or word) from memory into the processor. The second step is then to copy
this byte (or word) into the destination location (a memory address). Each item in the list is
output in this serial fashion. The appropriate handshake firmware routine is executed for each
byte (or word) to be copied.

Since there may be several data items in the source list, it may be necessary to output an
item-terminator character after each item to communicate the end of the item to the receiver.
If the item is the last item in the source list, the computer may signal the receiver that the
output operation is complete. Either an item terminator or end-of-line sequence of characters
can be sent to the receiver to signal the end of this data transmission. The OUTPUT statement
is described in full detail in Chapter 4.

Example Enter Statement

Data can be entered from only one resource at a time. This source can be any resource and is
specified by the source parameter as shown in the following statement.

/— the source parameter

ENTER Source iNumbe r+Strin si‘»‘

destination items are program variables

The destinations of enter operations are always variables in memory. Both string and numeric
variables can be specified as the destinations. The flow of data during enter operations is
shown below.

Internal Memory

Source String
Expression(s) Variable
)
[
/E ; Data Bus
Data Flow ' From Other Resources
U
Processor

Data is Copied from a Resource to Memory During Enter

19

20

Interfacing Concepts

Destination-Item Evaluation

The destination(s) of data to be entered is (are) specified in the destination list. Either string or
numeric variables can be specified, depending on the type of data to be entered. In general,
as each destination item is evaluated, the computer finds its actual memory location so that
data can be copied directly into the variable as the enter operation is executed. However, if

the ASCII representation is in use, numeric data entered is stored in a temporary variable
during entry.

Copying Data into the Destinations

As with output operations, entering data is a series of two-step processes. Each data byte (or
word) received from the sender is entered into the processor by the appropriate handshake
firmware. It is then copied into either a temporary variable or a program variable. If more than
one variable is to receive data, each incoming data item must be properly terminated. If the
internal representation is in use, the computer knows how many characters are to be entered
for each variable. If the ASCII representation is in use, a terminator character (or signal) must
be sent to locate the end of each data item. When all data for the item has been received, it is
evaluated, and the resultant internal representation of the number is placed into the appropri-

ate program variable. Further details concerning the ENTER statement are contained in
Chapter 5.

Chapter

3

Directing Data Flow

Introduction

As described in the previous chapter, data can be moved between computer memory and
several resources, including:

e Computer memory (string variables in memory)
® Internal and external devices

® Mass storage files

e Buffers

This chapter describes how string variables and devices are specified in 1/0 statements. Speci-
fying mass storage files in 1/O statements is briefly described in Chapter 10 and in BASIC
Programming Techniques. Buffers are described in Chapter 11.

21

22 Directing Data Flow

Specifying a Resource

Each resource must have a specifier that allows it to be accessed to the exclusion of all other
computer resources. String variables are specified with their names, while devices can be
specified with either their device selector or with a new data type known as an [/O path name.
This section describes how to specify these resources in OUTPUT and ENTER statements.

String-Variable Names

Data is moved to and from string variables by specifying the string variable’s name in an
OUTPUT or ENTER statement. Examples of each are shown in the following program.

100 DIM To_dest$[BOlsFrom_.sourceslB0O]

110 DIM Data_out$%[80]

120 !

130 From_source$="5ource data"

140 Data_out$="0UTPUT data"

1350 I

160 PRINTER IS 1

170 PRINT "To_dest$ before OQUTPUT= "3iTo.dest$
180 PRINT

190 I

200 QUTPUT To_dest$%iData_out$s I "§" suppresses CR/LF.
210 PRINT "To_dest$ after OUTPUT= "3To_dest$
220 PRINT

230 !

240 ENTER From_sourceiTo_dest

250 PRINT "To_dest$ after ENTER= "iTo_dest$
260 PRINT

270 !

280 END

Printed Results
To_dest$ before QUTPUT= (null string)
To_dest$ after OUTPUT= OUTPUT data
To_dest$ after ENTER= Source data
As with 1/O operations between the computer and other resources, the source and destination
of data are specified in software (in an I/O statement within a BASIC program). The data is

then moved through a hardware path under operating-system firmware control. An overview
of this process is illustrated in the following diagram.

Directing Data Flow 23

Variables Area
of Computer Memory

rVariabIe(s)J String Variable

Data Data

Operating Default

System Attribute
Hardware

ENTER y OUTPUT

Operating System
Firmware

Control

BASIC Program

Diagram of the Default /O Path Used
for String-Variable I/O Operations

Data is always copied to the destination string (or from the source string) beginning at the first
position of the variable; subscripts cannot be used to specify any other beginning position
within the variable.

The use of outputting to and entering from string variables is a very powerful method of
buffering data to be output to other resources. With OUTPUT and ENTER statements that use
images, the data sent to the string variables can be explicitly formatted before being sent to
(or while being received from) the variable. Further uses of string variables are described in
the section of Chapter 10 called “‘Applications of Unified [/O”".

Device Selectors

Devices include the built-in CRT and keyboard, external printers and instruments, and all
other physical entities that can be connected to the computer through an interface. Thus,
each device connected to the computer can be accessed through its interface.

Each interface has a unique number by which it is identified, known as its interface select
code. The internal devices are accessed with the following, permanently assigned interface
select codes.

CRT Display. 1 Optional powerfail protection. 5
Keyboard 2 Display (bit-mapped graphics) 6
Display (graphics) 3 Built-inHP-IB 7

Internal flexible disc drive....... ... 4

24 Directing Data Flow

Optional interfaces all have switch-settable select codes. These interfaces cannot use select
codes 1 through 7: the valid range is 8 through 31. The following settings on optional inter-
faces have been made at the factory but can be reset to any unique select code between 8
and 31. See the interface’s installation manual for further instructions.

HP-IB 8 EPROM Programmer 27
Serial. L. 9 ColorOutput................... 28
BCD 11 BubbleMemory...... 30
GPIO. 12
HP-IBDisc 14 14
Data Communications 20
SRM ... 21

Examples of using interface select codes to access devices are shown below.

DUTPUT 13i"Data to CRT™
ENTER 13Crt_line%$

Int_sel_code=12
OUTPUT Int_sel_codesStringsf"Exprression”" sNum_experession
ENTER Int_sel_codeiStr_variable$ sNum_variable

Number=2
ENTER 7+NumberiSerial_data%
QUTPUT 11-Numberi"Data to serial card"

The device selector can be any numeric expression which rounds to an integer in the range 1
through 31. If the interface select code specifies an HP-IB interface, additional information
must be specified to access a particular HP-IB device, since more than one device can be
connected to the computer through HP-IB interfaces.

HP-IB Device Selectors

Each device on the HP-IB interface has a primary address by which it is uniquely identified:
each address must be unique so that only one device is accessed when one address is specified.
The device selector is then a combination of the interface select code and the device's
address'. Two examples are shown below.

To access the device on:

interface select code 7 at primary address 01, use device selector 701
interface select code 10 at primary address 13, use device selector 1013

1 The HP-IB also has additional capabilities that add to this definition of device selectors. See Chapter 11 for further details.

Directing Data Flow 25

Accessing devices with device selectors in BASIC statements is described in the following
diagram.

Variables Area
of Computer Memory ~——ENTER OUTPUT ——>-

I t i Dat
Variable(s) == g}?:t;ar:ng Default Interface <ﬁ>
Hardware Attributes Hardware Device

Operating System
Firmware

A
Control

Device Selector
in an /0 Statement

BASIC Program

Diagram of the Default I/0 Path Used
when a Device Selector is Specified

Disc drives are also considered to be devices and are connected to the computer through
interfaces. However, files on the disc media cannot be uniquely accessed with only the select
code of its interface; additional information specifying which file is to be accessed must be
included. Accessing mass storage files is fully described in the BASIC Language Reference
and is compared to accessing devices in Chapter 10 of this manual.

I/0 Path Names

As shown in the previous diagrams, all data entered into and output from the computer is
moved through an “I/O path”. An /O path consists of the hardware and operating-system
firmware used to carry out this moving process. When a string variable or device selector is
specified in an ENTER or OUTPUT statement, the operating system first evaluates the ex-
pression that specifies a resource and then chooses the corresponding default 1/O path
through which data will be moved.

With the I/O language of the computer, the I/O paths to devices and mass storage files can be
assigned special names; I/O paths to string variables can only be assigned names if the variable
is declared as a buffer. Assigning names to I/O paths provides many improvements in perform-
ance and additional capabilities over using device selectors, described in ‘‘Benefits of Using [/O
Path Names’ at the end of this chapter.

26 Directing Data Flow

The concept of using I/O path names is shown in the following diagram: by comparing it to
the previous diagram, you can see several major differences between using I/O path names
and device selectors in /O operations. These differences are described in the section of this
chapter called ‘‘Benefits of Using I/O Path Names’'.

Variables Area

of Computer Memory -<+—ENTER OUTPUT ——>
I Data Operating Attribute(s) Data
Variable(s) ~ System can be Interface <:> Device
Hardware specified Hardware
Operating System
Firmware
A Includes Internal Devices
Control and Disc Drive

/0-Path Name in
~an /O Statement
BASIC Program

I/O Paths to Devices and Mass-Storage Files

Assigning I/O Path Names

An 1/O path name is a new data type that can be assigned to either a device or a data file on a
mass storage device. Any valid name' preceded by the ‘@’ character can be used. Examples
of the statement that makes this assignment are as follows.
Examples

ASSIGN EDiselay TO 1

ASSIGN @Printer TO 701

ASSIGN BSerial TO 9

ASSIGN BGrpio TO 1Z

Now you can use the I[/O path names instead of the device selectors to specify the resource
with which communication is to take place.

1 A “name’ is a combination of 1 to 15 characters. beginning with an uppercase alphabetical character or one of the characters CHR$(161)
through CHR$(254) and followed by up to 14 lowercase alphanumeric characters, the underbar character (). or the characters CHR$(161)
through CHR$(254). Numeric-variable names are examples of valid names.

Directing Data Flow 27

OUTPUT EDisplavi"Display messade"
QUTPUT EBPrinteri”"Message to the Printer"
ENTER @SerialiVariablesVariable$

ENTER BGrioiWordi sWord2

Since an I/O path name is a data type, a fixed amount of memory is allocated, or ‘‘reserved”’,
for the variable similar to the manner in which memory is allocated for other program vari-
ables (INTEGER, REAL, and string variables). Since the variable does not initially contain
usable information, the validity flag, shown below, is set to false. When the ASSIGN state-
ment is actually executed, the allocated memory space is then filled with information describ-
ing the I/O path between the computer and the specified resource, and the validity flag is set
to true.

I/0 Path Variable Contents
validity flag

type of resource

device selector
of resource

additional information,
if any, depends on the
type of resource

Attempting to use an I/O path name that does not appear in any program line results in error
910 (“Identifier not found in this context’’). This error message indicates that memory space
has not been allocated for the variable. However, attempting to use an I/O path name that
does appear in an ASSIGN statement in the program but which has not yet been executed
results in error 177 (“‘Undefined I/O path name’’). This error indicates that the memory space
was allocated but the validity flag is still false; no valid information has been placed into the
variable since the I/O path name has not yet been assigned to a resource.

This I/O path information is only accessible to the context in which it was allocated, unless it is
passed as a parameter or appears in the proper COM statements'. Thus, an [/O path name
cannot be initially assigned from the keyboard, and it cannot be accessed from the keyboard
unless it is presently assigned within the current context. However, an I/O path name can be
re-assigned from the keyboard, as described in the next section.

This information describing the /O path is accessed by the operating system whenever the I/0
path name is specified in subsequent 1/O statements. A portion of this information can also be
accessed with the STATUS and CONTROL statements described in Chapter 6. For now, the
important point is that it contains a description of the resource sufficient to allow its access.

1 See the BASIC Language Reference or BASIC Programming Techniques for further details.

28 Directing Data Flow

Re-Assigning I/0O Path Names

If an I/O path name already assigned to a resource is to be re-assigned to another resource,
the preceding form of the ASSIGN statement is also used. The resultant action is that the
validity flag is first set false, implicitly “‘closing” the I/O path name to the device'. A ‘‘new
assignment’’ is then made just as if the first assignment never existed. Making this new assign-
ment places information describing the specified device into the variable and sets the validity
flag true. An example is shown below.

100 ASSIGN EBPrinter TO 1 "Initial assidnment.,

110 DUTPUT @Printeri"Datal®

120 !

130 ASSIGN EBPrinter TO 701 ' Znd ASSIGN closes 1st

140 OQUTPUT BPrinteri"DataZ" ! and makes a new assidnment.
150 PAUSE

160 END

The result of running the program is that “‘Datal’ is sent to the CRT, and ‘‘Data2’ is sent to
HP-IB device 701. Since the program was paused (which maintains the program context), the
I/O path name @Printer can be used in an I/O statement or re-assigned to another resource
from the keyboard.

Closing I/0O Path Names

A second use of the ASSIGN statement is to explicitly close the name assigned to an I/O
path. When the name is closed, the validity flag is set false. labeling the information as
invalid'. Attempting to use the closed name results in error 177 (*‘Undefined I/O path name’’).
Examples of statements that close path names are as follows.
Examples

ASSIGN @Printer TO *

ASSIGN BSerial_card TO *

ASSIGN @Grio TO =+
After executing this statement for a particular I/O path name, the name cannot be used in
subsequent I/O statements until it is re-assigned. This same name can be assigned either to

the same or to a different resource with a subsequent ASSIGN statement. However, if it is
used prior to being re-assigned, error 177 occurs.

1 Additional action may also be taken when the I/O path name assigned to a mass storage file is closed.

Directing Data Flow

I/0 Path Names in Subprograms

When a subprogram (either a SUB subprogram or a user-defined function) is called, the
““context’’ is changed to that of the called subprogram. The statements in the subprogram
only have access to the data of the new context. Thus, in order to use an /O path name in
any statement within a subprogram, one of the following conditions must be true.

® The I/0O path name must already be assigned within the context (i.e., the same instance
of the subprogram).

e The I/O path name must be assigned in another context and passed to this context by
reference (i.e., specified in both the formal-parameter and pass-parameter lists).

® The I/0O path name must be declared in a variable common (with COM statements) and
already be assigned within a context that has access to that common block.

The following paragraphs and examples further describe using /O path names in subprog-
rams.

Assigning I/0 Path Names Locally Within Subprograms

Any /O path name can be used in a subprogram if it has first been assigned to an I/O path
within the same context of the subprogram. A typical example is shown below.

10 CALL Subprodram_x

20 END

30 !

40 SUB Subrprodram_x

30 ASSIGN BLog.device TO 1 ' CRT.
GO QUTPUT BLod_devicei"Subprogram”
70 SUBEND

When the subprogram is exited, all /O path names assigned locally within the subprogram are
automatically closed. If the program (or subprogram) that called the exited subprogram
attempts to use the I/O path name, an error results. An example of this closing local I/O path
names upon return from a subprogram is shown below.

10 CALL Subrprodram_x

11 OUTPUT BLog_devicei"Main' -« Insert into previous
20 END example.
30 !

40 SUB Subprodgram-x

30 ASSIGN BLog_device TO 1 ! CRT.
B0 OUTPUT RLog_devicei"Subrprodram”
70 SUBEND

When the above program is run, error 177, ‘“Undefined I/O path name”’, occurs in line 11.

29

30 Directing Data Flow

Each context has its own set of local variables, which are not automatically accessible to any
other context. Consequently, if the same I/O path name is assigned to I/O paths in separate
contexts, the assignment local to the context is used while in that context. Upon return to the
calling context, any [/O path names accessible to this context remain assigned as before the
context was changed.

1 ASSICGN EBLog_device TO 701 = I Insert these lines into
2 O0OUTPUT BLog_devicei"First Main" - previous example.
10 CALL Subrprodgram-_x

11 OUTPUT BLod_devicei"Second Main" - Change this line.
20 END
30 |

40 5UB Subprogram_x

20 ASSIGN BLog_device TO 1 ' CRT.
GO OUTPUT EBLog_devicei"Suberrogram"
70 SUBEND

The results of the above program are that the outputs ‘‘First Main’” and ‘‘Second Main’’ are
directed to device 701, while the output “Subprogram’ is directed to the CRT. Notice that
the original assignment of @Log_device to device selector 701 is ‘‘restored”’ when the sub-
program’s context is exited, since the assignment of @Log_device made to interface select
code 1 was local to the subprogram.

Passing I/O Path Names as Parameters

I/O path names can be used in subprograms if they are assigned and have been passed to the
called subprogram by reference; they cannot be passed by value. The I/O path name(s) to be
used must appear in both the pass-parameter and formal-parameter lists.

1 ASSICGN BLog_device TO 701
2 0OUTPUT BLog_devicei"First Main"

10 CALL Subrprodram_.x(BlLod_device) = Add pass parameter.
11 OQUTPUT BlLod.devicei"Second Main"

20 END

30 1

40 SUB Subprodram_x(BLod) = Add formal parameter.

530 ASSIGN @Log TO &t ! CRT.
GO OQUTPUT EGLodi"Subeprodram"”
70 SUBEND

Upon returning to the calling routine, any changes made to the assignment of the 1/O path
name passed by reference are maintained; the assignment local to the calling context is not
restored as in the preceding example, since the I/O path name is accessible to both contexts.
In this example, @Log_device remains assigned to interface select code 1; thus, ‘‘Subpro-
gram’’ and ‘‘Second Main’’ are both directed to the CRT.

Directing Data Flow

Declaring I/0O Path Names in Common

An /O path name can also be accessed by a subprogram if it has been declared in a COM
statement (labeled or unlabeled) common to calling and called contexts, as shown in the
following example.

1 COM GLod.device - Insert COM
3 ASSIGN BLog_device TO 701 statement.
4 0ouUTPUT BlLog_deviceis"First Main"

10 CALL SubProdram_x Parameters
11 QUTPUT BLog_devicei"Second Main" not necessary.
20 END

30 I

40 SUB SubrProdram_x <—

41 COM BLod_device - Insert COM
30 ASSICGN BLog_device TO 1 | CRT. statement.
B0 OQUTPUT BLog_devicei"Subprodram”

70 SUBEND

If an I/O path name in common is modified in any way, the assignment is changed for all
subsequent contexts; the original assignment is not ‘‘restored’’ upon exiting the subprogram.
In this example, ‘‘First Main’’ is sent to HP-IB device 701, but ‘““Subprogram’ and ““‘Second
Main”’ are both directed to the CRT. This is identical to the preceding action when the 1/O
path name was passed by reference.

Benefits of Using I/O Path Names

Devices can be accessed with both device selectors and /O path names, as shown in the
previous discussions. With the information presented thus far, you may not see much differ-
ence between using these two methods of accessing devices. This section describes these
differences in order to help you decide which method may be better for your application.

Execution Speed

When a device selector is used in an /O statement to specify the /O path to a device, the
numeric expression must be evaluated by the computer every time the statement is executed.
If the expression is complex, this evaluation might take several milliseconds.

device selector expression

r

OQUTPUT VYalue_1+BIT(Value 23)%2°33"Data"

If a numeric variable is used to specify the device selector, this expression-evaluation time is
reduced; this is the fastest execution possible when using device selectors. However, more
information about the I/O process must be determined before it can be executed.

31

32 Directing Data Flow

In addition to evaluating the numeric expression, the computer must determine which type of
interface (HP-IB, GPIO, etc.) is present at the specified select code. Once the type of interface
has been determined, the corresponding attributes of the [/O path must then be determined
before the computer can use the /O path. Only after all of this information is known can the
process of actually copying the data be executed.

If an [/O path name is specified in an OUTPUT or ENTER statement, all of this information
has already been determined at the time the name was assigned to the I/O path. Thus, an /O
statement containing an I/O path name executes slightly faster than using the corresponding
[/O statement containing a device selector (for the same set of source-list expressions).

Re-Directing Data

Using numeric-variable device selectors, as with [/O path names. allows a single statement to
be used to move data between the computer and several devices. Simple examples of re-
directing data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors

100 Device=1

110 GOSUB Data_out

200 Device=9

210 GOSUB Data_out

a1o0 Data_outs: OQUTPUT DeuvicesData%
4z0 RETURN

Example of Re-Directing with I/O Path Names

100 ASSIGN BDeuvice TO 1

110 GOSUB Data_out

200 ASSIGN E@Device TO 9

210 GOSUB Data-out

410 Data_out: OQUTPUT BDevicesData$

420 RETURN

Directing Data Flow 33

The preceding two methods of re-directing data execute in approximately the same amount of
time. As a comparison of the two methods, executing the ‘‘Device="" statement takes less
time than executing the ‘‘ASSIGN @Device” statement. Conversely, executing the “OUT-
PUT Device”’ statement takes more time than executing the “OUTPUT @Device”’. However,
the overall time for each method is approximately equal.

There are two additional factors to be considered. First, device selectors cannot be used to
direct data to mass storage files; I/O path names are the only access to files. If the data is ever to
be directed to a file, you should use 1/O path names. A good example of re-directing data to
mass storage files is given in Chapter 10. The second additional factor is described below.

Attribute Control

1/0 paths have certain ‘‘attributes’ which control how the system handles data sent through the
I/O path. For example, the FORMAT attribute possessed by an I/O path determines which data
representation will be used by the path during communications. If the path possesses the
attribute of FORMAT ON, the ASCII data representation will be used. This is the default
attribute automatically assigned by the computer when I/O path names are assigned to device
selectors. If the I/O path possesses the attribute of FORMAT OFF, the internal data representa-
tion is used; this is the default format for BDAT files. Further details of these and additional
attributes are discussed in Chapter 10.

The second additional factor that favors using [/O path names is that you can control which
attribute(s) are to be assigned to the /O path to devices (and also to the [/O paths to files and
buffers). If device selectors are used, this control is not possible. Chapter 10 describes how to
specify the attributes to be assigned to an I/O path and gives several useful techniques for using
the available attributes.

34 Directing Data Flow

Chapter

4

Outputting Data

Introduction

The preceding chapter described how to identify a specific device as the destination of data in
an OUTPUT statement. Even though a few example statements were shown, the details of
how the data are sent were not discussed. This chapter describes the topic of outputting data to
devices; outputting data to string variables, buffers, and mass storage files is described in
Chapters 10 and 11 of this manual, in Chapter 7 of BASIC Programming Techniques, and in
the BASIC Language Reference.

There are two general types of output operations. The first type, known as ‘‘free-field out-
puts”, use the computer’s default data representations’. The second type provides precise
control over each character sent to a device by allowing you to specify the exact ‘‘image’” of
the ASCII data to be output.

The OUTPUT and ASSIGN keywords are in mainframe BASIC. You may have to load some
BIN files, depending on your system, to make all of the examples work.

Free-Field Outputs

Free-field outputs are invoked when the following types of OUTPUT statements are executed.
Examples

OUTPUT GDevicei3.ld*¥Radius”2

OUTPUT Printeri"String data" iNum.l

OUTPUT 93Test:Score»Student$

OUTPUT Escare_codediCHR$(Z7IR"BALS"S

The Free-Field Convention

The term “‘free-field” refers to the number of characters used to represent a data item. During
free-field outputs, the computer does not send a constant number of ASCII characters for each
type of data item, as is done during ‘‘fixed-field outputs” which use images. Instead, a special
set of rules is used that govern the number and type of characters sent for each source item. The
rules used for determining the characters output for numeric and string data are described in the
following paragraphs.

1 The ASCII representation described briefly in Chapter 2 is the default data representation used when communicating with with devices;
however, the internal representation can also be used. See Chapter 10 for further details.

35

36 Outputting Data

Standard Numeric Format

The default data representation for devices is to use ASCII characters to represent numbers.
The ASCII representation of each expression in the source list is generated during free-field
output operations. Even though all REAL numbers have 15 (and INTEGERs can have up to
5) significant decimal digits of accuracy, not all of these digits are output with free-field OUT-
PUT statements. Instead, the following rules of the free-field convention are used when gener-
ating a number’s ASCII representation.

All numbers between 1E—5 and 1E+6 are rounded to 12 significant digits and output in
floating-point notation with no leading zeros. If the number is positive, a leading space is output
for the sign; if negative, a leading ** -’ is output.

Examples

32767
—32768
123456.789012
—.000123456789012

If the number is less than 1E — 5 or greater than 1E + 6, it is rounded to 12 significant digits and
output in scientific notation. No leading zeros are output, and the sign character is a space for
positive and ‘=" for negative numbers.

Examples

—1.23456789012E + 6
1.23456789012E -5

Standard String Format

The internal representation of string data consists of the string characters prefaced by a four-
byte header that contains the length of the string (number of characters in the string). The
data actually sent consists only of all actual data characters in the string; the length header is
not output during free-field outputs in which the ASCII representation is being used. Thus, no
leading or trailing spaces are output with the string’s characters.

[tem