HP 3000 Computer Systems U2 Frckaro

KSAM/3000
reference manual

HP 3000 Computer System

KSAM/3000

Reference Manual

(ﬁﬁ HEWLETT

PACKARD

19420 HOMESTEAD RD., CUPERTINO, CALIFORNIA 95014

Part No. 30000-90079 Printed in U.S.A. 5/79

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied or reproduced without the prior written consent of
Hewlett-Packard Company.

Copyright © 1981 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and the dates when pages were changed in updates to that
edition. Within the manual, any page changed since the last edition has the date the changes were made on the bottom of the
page. Changes are marked with a vertical bar in the margin. When an update is incorporated in a subsequent reprinting of the

manual, these bars are removed.

Second Edition. oL May 1979

Update No. 1

Changed Pages Effective Date

Hitodv . o e May 1981
1-2t01-3 e May 1981
1-8to1-12 May 1981
20 . e e May 1981
2/ May 1981
2-49ato2-49b May 1981
25110252, May 1981
3-1 . e May 1981
30, e e May 1981
3-22 . e e May 1981
3-26 . . . e e e May 1981
3-29 L e May 1981
3-82 . e May 1981
3-33 . e e May 1981
3-36 . . e e May 1981

il

........................ May 1981

Changed Pages Effective Date
3-38t03-39. May 1981
3-41t03-43. May 1981
A-41 . . e May 1981
443 . May 1981
4-46to4-46b. L oo May 1981
O May 1981
4-91 . e May 1981
-8 . e May 1981
L May 1981
BT May 1981
6-32t06-33. May 1981
A4t0A-Bb. May 1981
A-13ato A-13b Lo May 1981
B-8. . . May 1981

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence hetween product updates and manual updates.

First Edition. Jan1977 L L. 32208.00
Update No. 1 May 1977 32208A.01
Updated No. 1 Incorporated Jun 1977
Update No. 2 Apr1978 32208A.01
Update No. 2 Incorporated Jan 1979
Second Edition May 1979 32208A.02.04
Update No. 1 May 1981 32208A.03.01
Update No. 1 Incorporated........................ Oct 1983

iv

PREFACE

This publication is the reference manual for KSAM/3000. KSAM stands for Keyed Sequential
Access Method, a method of accessing files indexed by keys. KSAM/3000 operates on the HP 3000
Computer System.

The methods used to access a KSAM/3000 file differ depending on the particular language used. A
COBOL user, an RPG user, a BASIC user, and an SPL user each has his own set of procedures with
which to access a KSAM file; a FORTRAN user can choose to access a KSAM file with either
COBOL or SPL procedures. All users can create, copy, purge, or perform other utility functions
with the KSAMUTIL and FCOPY programs.

This manual is organized so that the more general functions available to all users are described in the
first two sections followed by a section describing KSAM access from each of the four languages:
COBOL, SPL, FORTRAN, and BASIC. Access to KSAM files from an RPG program is not
described in this manual, but is included as part of the RPG manual:

RPG/3000 Compiler Application & Reference Manual (32104-90001, Second Edition, 2/77)

In order to use this manual effectively, you should be familiar with the MPE Operating System and
with FCOPY. Also, it is assumed that you are familiar with the language in which you are program-
ming. The following manuals contain all the information you might need as a supplement to this
manual:

MPE Commands Reference Manual (30000-90009)

MPE Intrinsics Reference Manual (30000-90010)

FCOPY /3000 Reference Manual (03000-90064)
COBOL/3000 Reference Manual (32213-90001)
SPL/3000 Reference Manual (30000-90024)

EDIT/3000 Reference Manual (03000-90012)
FORTRAN/3000 Reference Manual (30000-90040)
BASIC/3000 Interpreter Reference Manual (30000-90026)
BASIC/3000 Compiler Reference Manual (32103-90001)
System Manager/System Supervisor Reference Manual (30000-90014)
Using Files (30000-90102)

SECOND EDITION

The second edition of the KSAM manual provides the following new information:

e Full syntax for and description of how to use the new KSAMUTIL commands:
KEYSEQ, KEYDUMP, and KEYINFO. (section II)

e Enhancements to the KSAMUTIL utility to allow abbreviated command names,
offline listing of displays, and entry of MPE commands from KSAMUTIL. (section II)

e Discussion of record pointer positioning in all languages; with special emphasis on
using the record pointers for shared access. (sections III, IV, VI)

® Description of how pointers are set internally. (appendix B)
o Discussion of recovery procedures in case of system failure. (appendix E)

In addition, there are minor corrections throughout the manual as well as documen-
tation of minor enhancements.

This edition covers the version of KSAM number A.02.04 release on the 1918 IT.

\'

CONVENTIONS USED IN THIS MANUAL

NOTATION

[1]

{}

italics

underlining

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: ,:g] user may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.
A

Example: B ¢ user must select A or B or C.
C

Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

Example: CALL name
name one to 15 alphanumeric characters.

Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: NEW NAME? ALPHA1

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

vi

CONTENTS

Page
SECTION I INTRODUCING KSAM

OVERVIEW ittt 11
File Structurecciiiiineeinnnrnns 1-1
File ACCESS v vv ittt ieciaienenrnnesececnns 1-2
KSAM/3000 FEATURESot 1-3
Multiple Keyscooiiiiiiiiniann. 1-3
Primary Key it 1-3
Alternate Keyscoiiiiiniiiinnnn 1-3
Duplicate Keys, 1-3
Generic Keys iv i iinnini e 1-4
Approximate Matchol 1-4
Data Record Format 1-5
HOWTOUSEKSAMFILES oot 1-6
Creatinga KSAM Fileot 1-6
Writing Records toa KSAM File 1-6
Retrieving Records From a KSAM File 1-6
Updating Records ina KSAM File 1-7
Positioningina KSAM File 1-7
Deleting Records From a KSAM File 1-7
Reorganizinga KSAM File 1-7
Shared Access to KSAM Files 1-8
Recovery and Analysis of KSAM Files 1-8
Using File Equations with KSAM Files 1-8
HOW TO USE THISMANUALcconntn. 19
RPG Programmerc.ocvuiuerenennn 1-9
COBOL Programmerc.ovvuereeecnen 19
SPL Programmercouuenmeenenevens 1-9
FORTRAN Programmercooueee-.. 111
BASIC Programmercovieineennn- 1-11
All Programmerscooeveeeeenneenn.s 1-12

SECTION II USING KSAM UTILITIES
OVERVIEW it 2-1
KSAMUTIL UTILITYt i e cie e e 2-3
Running KSAMUTILcoonvnn. 2-3
Command Abbreviations 23
Running MPE Commands from KSAMUTIL2-3
Option to List Displays on Line Printer 2-3
Optional Parameters 2-4
Exiting from KSAMUTIL 2-4
HELP i e e 2-5
RequestingHelp, 2-5
BUILD . ..ottt ittt ittt ieenaaaenss 2-8
Parameterscciuiiiiinnnienaennn 2-8
Key Descriptiony 2-15
Creatinga KSAM File, 2-16
ERASE ... i e 2-19
Parametersoiiuiiininnncnnnnns 2-19
Clearinga KSAM File e 2-19
PURGE ... i i iaas 2-20
Parametersccoiniiniinninnenenn. 2-20
PurgingaKSAM File.................. ... 2-20
RENAME i i i 2-21
Parametersccoiiiiiinnnraanenn 2-21
Renaminga KSAMFile...................... 2-21

vii

Page
SAVE ... e 2-23
Parametersccoeeiniurininrrnnnenannn 2-23
Savinga KSAM File o0t 2-23
VERIFY .ottt ettt it iiiieiiaaaeaens 2-24
Parametersc.oiiiiiiieennnaanann 2-24
Display KSAM File Characteristics 2-24
Terminating the >VERIFY Command 2-26
Directing VERIFY Output to Line Printer 2-26
Using VERIFY for Recovery 2-27
KEYSEQ .. oot i i ieaieee e 2-28
Parameterscociiiiiniinneneannns 2-28
Verify Key Sequenceoonn. 2-29
KEYDUMP ... ittt 2-31
Parameterscciiiuiiniunanannnnnn 2-31
Dumpingthe Key File.ot 2-33
Dumping a Subset of the Key File 2-35
By Key Numbercoonannt. 2-35
ByKeyValueoooieinnnt. 2-35
Sorting Dump by Record Pointer 2-36
KEYINFO ... ittt ittt ieaaeaaa e 2-37
Parametersc.oeuiuiiiiinnnaanaranonn 2-37
Requesting Key File Information 2-38
Recovery after System failure 2-40
Using RECOVER Option 2-42
USING KSAMUTIL IN BATCHMODE 2-43
FCOPY UTILITY ... 2-45
Running FCOPY i, 2-45
Exiting From FCOPYt 2-45
FROMCOMMANDciiiiiiinienenes 2-46
Parameterscoeviiniieaniaanaeeaann 2-46
KSAMOptions.oovieviieneenn.n 2-46
KEY=0ption.........cooueieeeenennnn 2-46
NOKSAMOption, 2-48
Using FCOPY i, 2-48
FCOPY With No Options 2-48
FCOPY With KEY=0Options 2-50
FCOPY With NOKSAM Option 2-51
DISPLAY Copied Files on $STDLIST 2-52
:STORE AND RESTORE COMMANDS 2-55
STORE . .ottt e e 2-55
Parametersoeeuuniininenaneenannan 2-55
Using the :STORE Command 2-56
RESTORE ..ottt i e iiaaeens 2-57
Parametersccotiiiiiiiiiiiinnn 2-57
Using the :RESTORE Command 2-58
SECTION III USING KSAM FILES IN COBOL
PROGRAMS
OVERVIEW i 3-1
CALLING A KSAMPROCEDURE 3-3
FILETABLE PARAMETER 3-4
Example00iiiiiiiiiii i, 3-b
STATUSPARAMETERt 3-6
UsingStatuscoiuiiiiinien, 3-8
KSAM LOGICAL RECORD POINTER 3-9
Shared ACCESS . ..o oo iemiiiiie it 3-10

MAY 1981

CONTENTS (continued)

Page

SAMPLE KSAMFILE 3-11
CKCLOSE 3-12
Parameters 3-12
Using CKCLOSE 3-12
Examples, 3-12
CKDELETE 3-13
Parameters 3-13
Using CKDELETE 3-13
Shared Access, 3-13
Examples 3-14
CKERROR 3-17
Parameters 3-17
Using CKERROR 3-17
CKLOCK i 3-18
Parameters 3-18
Using CKLOCK 3-18
Examples 3-19
CKOPEN 3-20
Parameters 3-20
Using CKOPEN 3-20
Input-Output Type 3-21
AccessMode 3-22
Examples 3-23
CKOPENSHR 3-25
Parameters 3-25
Using CKOPENSHR 3-25
CKREAD 3-26
Parameters 3-26
Using CKREAD 3-26
Shared Access........................... 3-27
Examples 3-27
CKREADBYKEY 3-29
Parameters 3-29
Using CKREADBYKEY 3-29
Examples 3-30
CKREWRITE 3-32
Parameters 3-32
Using CKREWRITE 3-32
Rewrite in Sequential Mode 3-32
Rewriting Records With Duplicate Keys 3-32

Rewrite in Random Mode 3-33
Position of Pointer 3-33
Rewrite With Shared Access 3-33
InvalidKey 3-33
Examples, 3-34
CKSTART 3-36
Parameters 3-36
Using CKSTART 3-37
Shared Access 3-37
Examples 3-37
CKUNLOCK 3-40
Parameters 3-40
Using CKUNLOCK 3-40
Examples 3-40
CKWRITE 3-42
Parameterrs, 3-42

viil

UsingCKWRITE
Writing in Sequential Mode
Writing in Random Mode
Writing when Access Is Shared
Invalid Key

Examples

EXAMPLES OF KSAM FILE ACCESS

FROM COBOLPROGRAM
EXAMP1. SEQUENTIAL WRITE
EXAMP2. SEQUENTIAL READ
EXAMP3. RANDOM UPDATE

SECTION 1V USING KSAM FILES IN SPL
PROGRAMS

KSAM FILE SYSTEM INTRINSICS
Calling Intrinsics From SPL
KSAM Intrinsic Summary
Intrinsic Format

Passing Parameters
Optional Parameters

KSAM RECORD POINTERS
Shared Access

FCHECK

Special Considerations
FCLOSE

Special Considerations
Using FCLOSE
Closing a New KSAM File
Closing an Existing KSAM File
Deleting a KSAM File
FCONTROL
Parameters

Special Considerations
Using FCONTROL
Using Control Code 2
Using Control Code 5
Using Control Code 6
Using Control Code 7
FERRMSG

Using FERRMSG
FFINDBYKEY
Parameters

Special Considerations
Using FFINDBYKEY

CONTENTS (continued)

Using Approximate Keys
Using Partial (Generic) Keys
Shared Access
FFINDN
Parameters
Condition Codes
Special Considerations
Using FFINDN
Shared Access
FGETINFO it e i iaieiainns
Parameters
Condition Codes
Using FGETINFO
FGETKEYINFO
Parametersoev it iiee e
Condition Codesc.cciiiiiinannnn
Using FGETKEYINFO
FLOCK .ottt i i e et e et ieeaees
Parametersc.iiiiiiieii e
Condition Codescuvviiiinninnannnnn.
Special Considerations
Using FLOCK
FOPENttt et
Functional Return
Parametersc.ciiimiiiiiitiaaa.
Condition Codes
Using FOPENot
FOPTIONS Parameter
AOPTIONS Parameter
Key File Definition
OpeningaNew File vt
Declarations for FOPEN
Defining KSAMPARAM
Calling FOPENt
Opening An Existing File
Opening File for Read Access
Opening File for Write Access
Opening KSAM File as MPE File
Opening File for Shared Access
FPOINT . . ottt et e e et e et eaaaes
Parametersc.oeeiteiiiinneneannan
Condition Codesovviieinnnerennnns
Special Considerations
Using FPOINTo
Shared Access
FREAD ..ottt et e i ie e
Functional Return
Parametersc.oeiiioainiianae e
Condition Codescoveiviiininnnnnnn
Special Considerations
Using FREAD iiiiinn,
Shared Access
FREADBYKEY ...t i eens
Functional Return
Parametersiieii it
Condition Codes

ix

Page

Using FREADBYKEY 4-64
Shared ACCESS . . v v vt i it i ie it r e 4-65
Duplicate Keys, 4-65
FREADC ..ottt i e e et e it 4-68
Functional Returno ieinn... 4-68
Parametersc..iiiiiin i 4-68
ConditionCodescuoveiiiiineiinnnnn. 4-68
Using FREADC iiiiiinnn.. 4-69
Shared ACCESS . v v oo ite i iane e nneenn 4-69
FREADDIR . ..ottt e e i et 4-72
Parameterscieitiii i e 4-72
Condition Codescciiiiuerieeenens 4-73
Special Considerations 4-73
Using FREADDIR iiiiiinenn. 4-73
FREADLABELttt 4-76
Parametersccoiiit it 4-76
ConditionCodescvviiiineeennnnnns 4-76
Special Considerations 4-76
Using FREADLABEL 477
FREADSEEK ittt 4-78
FRELATE i et e et et 4-79
FREMOVE it 4-80
Parametersttt 4-80
ConditionCodesccovuiiiniinnnnnnns 4-81
Special Considerations 4-81
Using FREMOVEot 4-81
Shared ACCESS . . v oo vveeeteeeeesannennnns 4-82
FRENAME ittt 4-85
FSETMODE i 4-86
Parameterscoiitiin i 4-86
Condition Codesiiiiiieenenwnnn 4-86
Special Considerations 4-86
Using FSETMODEcoiann, 4-87
FSPACE ... i e e, 4-88
Parametersooiiiieereiinnnn 4-88
ConditionCodes 4-88
Special Considerations 4-88
Using FSPACE i, 4-88
Pointer Positionot 4-90
Shared ACCESS « v v v v vt vt e eeee e ieaeeanns 4-90
FUNLOCK ...ttt it i i it iiiiaaens 4-91
Parametersoiiiii i 4-91
Condition Codescoiveiineeroennnnns 491
Special Considerations 4-91
Using FUNLOCKciiiiiineannnn 4-91
FUPDATE . ..ottt et c e es 4-92
Parametersc.iiiiieiii i 4-92
Condition Codesccuueeiniiiienenn 4-92
Special Considerations 4-93
Using FUPDATEt 4-93
Shared ACCESS. . . . v v it it it it et 4-93
Updating Records with Duplicate Keys 4-94
FWRITE ittt 4-97
Parameters 4-97
Condition Codescouiiiiiennrnennns 4-98
Special Considerations 4-98

CONTENTS (continued)

Page
Using FWRITE 4-98
Shared Aceessovv ittt iiii 4-98
FWRITEDIR i iiiiiann. 4-100
FWRITELABEL 4-101
Parameters 4-101
Condition Codescciiivernnn. 4-101
Special Considerations 4-101
Using FWRITELABEL 4-102
HP32208 4-103
Functional Return 4-103
ConditionCodes 4-103
Using HP32208 ccviinr... 4-103
SECTION V USING KSAM FILES IN
FORTRAN PROGRAMS
OVERVIEW i 5-1
CALLING FILE SYSTEM INTRINSICS 5-2
CALLING COBOLPROCEDURES 5-3
CREATING A KSAM FILE WITH A
CALLTOFOPENt 5-4
Defining KSAMPARAM 54
Calling FOPEN 5-4
CREATING A KSAM FILE WITH
KSAMUTIL i, 5-7
OPENING A KSAM FILE WITH A COBOL
PROCEDURE i, 5-8
WRITING TOAKSAMVFILE 5-9
READING A KSAM FILE IN KEY
ORDER i 5-10
Primary Key Sequence 5-10
Alternate Key Sequence 5-10
Random Ordercciiurnnnnn.. 5-10
READING A KSAM FILE IN
CHRONOLOGICALORDER 5-13
SECTION VI USING KSAM FILES IN
BASIC PROGRAMS
OVERVIEW i, 6-1
CALLING AKSAMPROCEDURE 6-2
Optional Parameters 6-2
STATUS PARAMETER0uiiinnnn.. 6-4
KSAM Logical Record Pointer 6-7
Shared Accesscoiiiit it 6-7
BKCLOSE e i 6-8
Parameters 6-8
Using BKCLOSE i, 6-8
BKDELETE 6-10
Parameters 6-10
Using BKDELETE 6-10
Shared Accessoiin it 6-11
BKERROR i 6-12
Parameters, 6-12

Page
BKLOCKt e e 6-14
Parametersc. .. 6-14
Using BKLOCK v, 6-14
BKOPEN i 6-16
Parameters 6-16
Using BKOPEN 6-18
AccessModes 6-18
Shared Access i 6-19
Dynamic Locking 6-20
Sequence Checking 6-20
BKREAD 6-22
Parameters 6-22
Using BKREAD 6-22
Shared Accessciiiniiinninn.. 6-24
BKREADBYKEY 6-26
Parameters 6-26
Using BKREADBYKEY 6-27
BKREWRITE 6-29
Parameters, 6-29
Using BKREWRITE 6-29
Shared Access i 6-30
Duplicate Keys, 6-30
BKSTART i e 6-32
Parameters, 6-32
Using BKSTART 6-33
BKUNLOCK 6-36
Parameters 6-36
Using BKUNLOCK 6-36
BKVERSION 6-38
Parameters 6-38
Using BKVERSION 6-38
BKWRITE 6-39
Parameters, 6-39
Using BKWRITE 6-39
APPENDIX A ERROR MESSAGES AND
RECOVERY PROCEDURES
APPENDIX B INTERNAL STRUCTURES
AND TECHNIQUES

OVERVIEW it B-1
KSAM FILE STRUCTURE B-1
B-Tree Structureo vuien. B-2
Adding or Deleting Keys B-2
KSAM Key File Structure B-5
ControlBlock B-5
Key Descriptor Block B-5
Key Entry Blocks B-8
Relation of KeytoDataFile................... B-9
KSAMFILESIZE 0 B-11
Key Block Size B-11
Calculating Key Block Size B-12
KeyFileSize B-13
KSAM EXTRA DATA SEGMENTS B-17
Number of Extra Data Segments B-17

CONTENTS (continued)

Page
Extra Data Segment Size B-18
Number of Key Block Buffers B-20
Extra Data Segments with
Shared ACCESS . . oot vvneeeeeneeeeenonnens B-21
APPENDIX C ASCII CHARACTER SET IN
COLLATING SEQUENCE
APPENDIX D CONVERSION TO KSAM
FILES
USING KSAMUTIL ANDFCOPY D1
USING RTOKSAMiiiiiiiiniannennnn D-1

Xi

Page

APPENDIX E RECOVERY FROM

SYSTEM FAILURE
Overviewottt e E1
End-of-File on KSAM Files E1
DataFile E1
Key File i, E-2
End-of-File and Extra Data Segment E-4

Normal Operation-File is

Closedt E-5
System Failure-FileisOpen E-5
Situations in Which Recover is Required E-6
Example of File Recovery E-7
Reloadinga KSAM File, E-11
Expand Key Block Buffer Area E-12

ILLUSTRATIONS

Figure Title Page
1-1 Simplified View of KSAM File

Structure oL 1-5
2-1 EDITOR Listing of Job to be

Streamed, 2-44
3-1 Filetable Structure 34
3-2 Representation of KSAMFILE

Used in COBOL Examples 3-11
3-3 Sequential Write Using COBOL 3-46
3-4 Sequential Read Using COBOL 3-48
3-5 Random Update With COBOL 3-51
4-1 FCLOSEExample 4-15
4-2 FFINDBYKEY Example 4-25
4-3 File Position With FFINDN 4-27
4-4 FGETINFO Example 4-33
4-5 FOPEN Example—Building a

KSAMFilecoats, 4-51
4-6 FOPEN Example—Opening an

Existing File, 4-53
47 FREADExample 4-61
4-8 FREADBYKEY Example.................. 4-66
49 FREADCExample 4-70
4-10 FREADDIR Example 4-74
4-11 FREMOVE Example 4-83
4-12 File Position with FSPACE 4-89
4.13 FUPDATEExample 4-95
4-14 FWRITEExample 4-99
5-1 Creating and Writing to KSAM

Filein FORTRAN 5-5
5-2 Opening a KSAM File With

CKOPEN............c i, 5-8
5-3 Reading KSAM File in Key

Sequence Using FORTRAN 5-11
5-4 Reading KSAM File in

Chronological Sequence

Using FORTRAN 5-13
6-1 Closing a KSAM File with

BKCLOSE, 6-9
6-2 Deleting a Record with

BKDELETE, 6-11
6-3 Dynamically Locking a

KSAM File with BKLOCK 6-15

xii

Figure Title Page
6-4 Opening KSAM File with

BKOPEN.......... 6-21
6-5 Reading From a KSAM File

with BKREAD 6-25
6-6 Reading a Record Located

by Key Value with

BKREADBYKEY 6-28
6-7 Rewriting Record in KSAM

File with BKREWRITE 6-31
6-8 Positioning Pointer to

Least-Valued Record

with BKSTART 6-34
6-9 Positioning Pointer to

Particular Record with

BKSTART 6-35
6-10 Dynamically Unlocking a

KSAM File with BKUNLOCK 6-37
6-11 Writing to a KSAM File

with BKWRITE 6-42
B-1 Two-Level B-Tree Structure B-2
B-2 Split Causes New Levels

inTreecciiiiiiiiiiinnn... B-3
B-3 Tree Growth from Two to

Three Levels B4
B-4 KSAM Key File Structure

with TwoKeys B-6
B-5 Control Block and Key

Descriptor Block B-7
B-6 Key Entry Block Structure B-8
B-7 Data File/Key File Relation B-10
B-8 Formula to Determine File Space

PerKeyo .. B-15
B-9 Calculation of Total Key File

Size with Two Keys B-16
B-10 Extra Data Segments for

Shared Access B-18
B-11 KSAM Extra Data Segment B-19
E-1 KSAM File and an Extra

Data Segment E-4

TABLES

Table

2-1
2-2
2-3

2-5
3-1

3-2
3-3
3-4

4-1
4-2
4-3
4-4
4-5
4-6

4-1

Title Page

Summary of KSAM Utilities 2-2
Key Types «..vvvveminnncnnnennnneneens 2-15
Character Equivalent to Signed

Digit for NUMERIC Keys 2-16
FCOPY Functions With KSAM

Files .o vi it 2-417
KSAM Optionsof FCOPY 2-48
KSAM Procedures for COBOL

Interfaceccvv i 3-2
Valid status Parameter Character

Combinations 3-6
Positioning Logical Record Pointer 3-9
Procedures Allowed for Input-

Output Type/Access Mode

Combinationscccooen 3-21
KSAM File System Intrinsies 4-1
Positioning the Pointers 4-5
FCHECK errorcode Parameter

Formatccoiiiiiiiinnnnnnn. 4-8
FCLOSE disposition Parameter

Bit Settings it 4-13
FGETKEYINFO ksamcontrol

Parameter Format 4-36
FOPEN foptions Parameter

Formatc.vvuecininnieennnnonnns 4-45
FOPEN aoptions Parameter

Formatcvveiniiniinnnnnnnns 4-46

xiii

Table

4-8

6-1

6-2

6-3

6-4

6-5

A-1

A-2

A-3

A-4

C1

Title Page

FOPEN ksamparam Parameter

Formatccovuemeieneennnnnnns 4-47
KSAM Procedures for

BASIC Interfaceccocennn. 6-3
Values Returned to

status parameter o 6-4
Positioning the Logical

Record Pointer, 6-7
Procedures Allowed by

BKOPEN access Parameter 6-19
Relation of exclusive

Parameter to access

Parameterttt 6-20
File System Error Codest A-2
COBOL Status Parameter Return

Values .. oo i iieein et A-5
BASIC Status Parameter Return

Values . .o iiieie e A-6
KSAMUTIL Error Codes and

Meaningsveeuearenceanns A-8
FCOPY Warning and Error

MESSAZES « oo vvvvniin e e A-14
Number of Key Block Buffers

Assigned by Default B-20
Pointer Dependencecoonvnn. B-22
Record Pointer Summary B-23
ASCII Characters in Sequence C-1

INTRODUCING KSAM/3000

OVERVIEW

The Keyed Sequential Access Method (KSAM) is a method of organizing records in a file according
to the content of key fields within each record. As implemented for the HP 3000 computer
system, KSAM/3000 is similar to and competitive with other indexed sequential access methods.

Every record in a KSAM file contains a primary key field whose contents determine the primary
logical sequence of records in the file. Other key fields can also be defined so that the file can be
sequenced in alternate orders. The order in which records are physically written to the file, the
chronological order, can be the same as the primary key sequence or it can be unrelated to any
logical sequence.

KSAM/3000 files can be accessed by programs written in any of these languages:

RPG/3000
COBOL/3000
SPL/3000
FORTRAN/3000
BASIC/3000

KSAM/3000 files can be copied, listed, and otherwise manipulated with the utility programs:

FCOPY/3000
KSAMUTIL

FILE STRUCTURE

A KSAM/3000 file is organized into two distinct MPE files, a data file and a key file. The key file

contains only key entries, the data file only data. Each record in the data file contains at least one
item that is designated as a key. The value of each key is duplicated in the key file where all keys

are ordered in ascending sequence. This organization allows records in the data file to be stored in
any order since the key file maintains the logical order of records according to key value.

Although it is not necessary to understand KSAM file structure in order to use a KSAM file, you
may want to refer to appendix B for a detailed discussion of the relation between data and key
files and the structure of the key file.

NOTE
In the total of 253 MPE files allowed for each process, one KSAM
file counts as three files; two files for the data and keys, one for inter-

nal maintenance. If all files are KSAM files, a maximum of 84 are
allowed for each process.

1-1

FILE ACCESS

Although separate in fact, the two files that comprise a KSAM file are treated as one file by the
procedures that reference the file. The data file is the only file directly referenced by a user; the
key file is updated by the system to reflect any changes to the data file and is not directly accessed
by the user. Thus, from the user’s point of view, accessing a KSAM file is very similar to accessing
any other MPE file.

KSAM/3000 provides the following ways to store and retrieve data:

You can write records in logical sequence determined by primary key value or you can write
records without regard to key sequence.

You can read records in logical sequence determined by either the primary or an alternate key
value.

You can read a record selected at random by the value of its primary or alternate keys.

You can read records in the order they were written, that is, in chronological sequence, unless
the program is written in COBOL or BASIC.

You can read a record selected by the value of its chronological record number, unless the
program is written in COBOL or BASIC.

You can update all the contents of an existing record including the contents of the primary
key field.

You can position to a record in the file according to its key value, its chronological record
number, or its record number in key sequence.
NOTE
KSAM files are sequenced in ascending order only, not in descending
order. Character keys are ordered by the ASCII collating sequence

where numbers precede letters, not in the EBCDIC sequence where
letters precede numbers. Numeric keys are ordered in algebraic order.

1-2 MAY 1981

KSAM/3000 FEATURES

KSAM/3000 provides a number of features beyond the standard indexed sequential access method.
These include:

L Multiple Keys

Duplicate Key Values

Retrieval by Generic Key

Retrieval by Approximate Match

Fixed or Variable Length Data Records

MULTIPLE KEYS

Each data record can contain from one to sixteen keys. Of these keys, one is required, called the
primary key; any others are alternate keys. For example, in an employee record, the primary key
could be the employee’s social security number; alternate keys might be the employee’s name,
phone number, or zip code. The values in these key fields determine the orders in which data
records are sequenced.

PRIMARY KEY. One field in each data record is defined to contain the primary key. The value
in this field determines the primary sequence of records in the data file. Records are sequenced
according to this primary key unless sequencing by an alternate key or in chronological order is
specifically requested.

ALTERNATE KEYS. Other fields within each data record can be designated as alternate keys to
be used for alternate sequencing of records. Up to 15 alternate keys can be designated for each
record, however, each additional alternate key adds to the overhead and can affect performance
when accessing and maintaining a file. The file can be sequenced in a different order for each
alternate key defined for the file.

Note that alternate keys bear no hierarchical relation to each other or to the primary key. Each
key is ordered in sequence by its value and type with no relation to other keys. In KSAM, sequence
always means ascending sequence according to the ASCII collating sequence, (refer to appendix C.)

DUPLICATE KEYS

Sometimes it is essential that key values be unique (for example, a social security number), and at
other times duplicate key values should be allowed (for example, a zip code). To provide for both
cases, KSAM allows you to declare that any key may have a duplicate value while disallowing
duplicate key values as the default condition. Allowing or disallowing duplicate key values applies
to both primary and alternate keys. Duplicates can be allowed for one or more keys while being
disallowed for other keys.

NOTE

Duplicate keys can greatly increase the time required to load or access
a record with a duplicated key value. This is particularly true when
there are a large number of duplicated key values in a large file. Asa
result, duplicate keys should only be used when other methods are
not practical. For example, you should not make a key of an item
that can only have two values, such as “MALE” or “FEMALE.”

MAY 1981 1-3

GENERIC KEYS

During retrieval by key value you can choose to use part of a key rather than the entire key. Called
generic keys, such partial keys allow you to retrieve a set of records whose key values differ in their
entirety but share a common value at the beginning. Generic keys must begin at the first character
of the defined key field and be shorter, not longer, than the defined key length; also, the key type
must be BYTE, INTEGER, or DOUBLE. Suppose a key field containing a zip code is defined as five
characters long. By specifying only the first three characters for retrieval it is possible to read all rec-
ords whose zip code begins with a particular group of numbers.

NOTE

Generic keys cannot be used when accessing KSAM files
through RPG.

Record

No. key field
1 90021 records retrieved by
generic key

2 95060

95050
3 95065

95060
4 90291

95065
5 90027

¢ 90050 ’\/_
In this example of generic key retrieval, records
with first 3 characters of zip code key field = 950

m are retrieved.

APPROXIMATE MATCH

When retrieving by key value, you can specify that the key you are looking for have a value that
exactly matches a specified value, or you can specify that it bear a certain relation to a specified
value. The choices are: equal to, equal to or greater than, or greater than. The last two relations
let you search for an approximate match. For example, you can retrieve all records with a date
greater than or equal to a given date:

Record

No. key field
1 01/26/76 records retrieved by
approximate match
2 01/28/76
02/02/76
3 01/30/76
02/02/76
4 02/02/76
> 1/31/76 02/05/76
5 | 02/02/76
02/06/76
6 02/05/76
7 02/06/76 \/\N
M In this example of approximate match, all

records with a key field date greater than or
equal to 01/31/76 are retrieved.

1-4

DATA RECORD FORMAT

Every key entry in the key file contains, in addition to the key value, a pointer to the corresponding
data record in the data file. The data records can be either fixed length or variable length. If they
are fixed, the data record pointer specifies a record number relative to the beginning of the file. It
the records are variable length, then the pointer indicates the start of the data record as a word off-
set from the beginning of the file.

Data File Key File
Pointer from Primary Key to Data Record l
[1
1 STEVENS JOHN 044-24-0474{1M HOLLYWOOD|CA ABRAMS
GORHAM MARY 516-37-9272|F |[SANTAROSA |CA : Primary
ABRAMS RALPH | 214-77-3142[M{BURBANK |CA GORHAM Keys
STEVENS SUSAN 334-27-0303|F {HOLLYWOQOOD |CA .
STEVENS
STEVENS
| n /
Pointer from Alternate Key to Record 044-24-0474 \& Alternate
. Keys
214-77-3142
334-27-0303
516-37-9272
/

Figure 1-1. A Simplified View of the KSAM File Structure

1-5

HOW TO USE KSAM FILES

Although a KSAM file consists physically of two separate files, a data and a key file, it is treated as
one file for most purposes. For example, reading from a KSAM file in primary key sequence is
equivalent to reading sequentially from a non-KSAM file. Similarly, creating the data file portion of
a KSAM file is equivalent to creating a non-KSAM file.

CREATING A KSAM FILE

A KSAM file can be created in two ways: interactively with the > BUILD command of the utility
program KSAMUTIL, or programmatically with a call to the MPE file system intrinsic FOPEN. (A
COBOL or BASIC programmer can create a KSAM file only through the > BUILD command, not
FOPEN.) Whether > BUILD or FOPEN is used, file creation consists of creating a data file in very
much the same way you would create any HP 3000 file. The name assigned to the data file is the
name by which the KSAM file is known. Then, as part of the file creation procedure, a key file is
created and each of its keys defined by type, location in the data record, and size. If duplicate key
values are to be allowed, this is specified as part of the key definition.

WRITING RECORDS TO A KSAM FILE

You can write records to a KSAM file in either of two ways. In one, records are written in any
order regardless of primary key values. In the other, records are written in order according to the
value of the primary key in each record. In the first case, the chronological sequence in which
records are written differs from the logical record sequence determined by primary key. In the
second, the chronological and logical record sequence is the same. When you specify that records
are to be written in primary key sequence, KSAM checks to make sure that this sequence is fol-
lowed and issues an error message if not.

You can specify that the file be cleared of any existing records before writing new records to the
file, or you can write records following any previously written records. The choice is made when
you open the file.

In any case, when records are written to the data file, the key file structure is modified automatically
in order to place all keys in the new record into their proper sequence.

Records cannot be written directly to a KSAM file according to a relative record number.

RETRIEVING RECORDS FROM A KSAM FILE

Records can be retrieved in a variety of ways:

L Sequentially in the order determined by key value; either the primary or an alternate key can
be selected to determine the order.

® At random according to the value of a specified key; either the primary or an alternate key can
be selected for the matching process.

1-6

° Chronologically in the order the data records were written.*

L At random by chronological record number.*

*The starred access methods are not available to a COBOL or BASIC programmer.

Whenever duplicate keys are used and retrieval is by key value, the first key encountered deter-
mines the record read. When generic keys are used, the smallest key value is selected first. Again,
if there are duplicates in generic key values, the first key encountered is selected.

UPDATING RECORDS IN A KSAM FILE

You can change the contents of an existing record by program calls that read the record into
storage where you update it and then write it back to the file. The updated record overwrites

the existing record in its current location if the new record and the old record are the same length.
Otherwise, the new record is written to the end of the file and the old record is marked for
deletion.

POSITIONING IN A KSAM FILE

Record pointers can be positioned:
® To arecord determined by key value using either the primary or an alternate key.

® To arecord determined by its record number relative to the first record in key sequence,
where the key is either primary or an alternate. **

® To arecord determined by its record number relative to the first record written to the file
(chronological sequence).**

**Not available in COBOL or BASIC program.

DELETING RECORDS FROM A KSAM FILE

Records are not deleted physically from the data file. In order to delete a record, you call a proce-
dure that tags the record for deletion by writing a delete code in the first two characters of the
record. Any subsequent access skips such records as if they were not there. In addition, the key
file is reorganized automatically so that the keys in the deleted record are no longer in the path
that defines key sequence. Space in the key file from deleted key entries is re-used. In order to
maintain the file’s chronological order, space from deleted data records is not re-used.

Because the data record is not physically deleted, it is possible to reconstruct a deleted record by

copying the data file using the NOKSAM option of FCOPY. This provides back-up in case a record
is deleted by mistake.

REORGANIZING A KSAM FILE

If many records have been deleted, thereby using a great deal of physical space in the file, you can
compact the file by using FCOPY /3000 to copy only the active records, those not tagged for dele-
tion, to a new KSAM file. You can also use FCOPY to delete, add, or change alternate keys by

1-7

copying the file to a new KSAM file with a different key definition. When the key definition is dif-
ferent, you must first create the new file with the >BUILD command of KSAMUTIL.

SHARED ACCESS TO KSAM FILES

Several programs can access the same KSAM file simultaneously. Shared access is assumed when
the file is only being read, exclusive access is assumed when the file is being written to or updated.
Thus, you can choose to make all your access shared or all exclusive. Note that shared access uses
more memory than exclusive access since each open KSAM file requires a separate extra data
segment.

When access to the file is shared, it is each user’s responsibility to dynamically lock the file before
changing it in any way. The file must be locked before any records in the file are written, updated,
or deleted, and then unlocked immediately after such action. By requiring this action, the system
makes sure that the most recent values are brought into each user’s buffer at each access. Any call
to read or position to a record for sake of subsequent access should be within the locked portion
of code that includes the actual update call.

(Refer to appendix E for a full discussion of shared access.)

RECOVERY AND ANALYSIS OF KSAM FILES

The utility program KSAMUTIL provides several commands that can be used to analyze KSAM
files. These commands allow you to check any key sequence to obtain a formatted dump of the
key file, and in the event of a system failure, to check key file structural damage, determine
whether key values are missing, and recover key values and data records by resetting end-of-file
pointers. The command, KEYINFO, that performs these recovery functions must be run in case
of a system failure while a KSAM file is open. (A full discussion of these commands is found in
section II; also refer to appendix E for a discussion of KSAM file recovery in the event of system
failure.)

USING FILE EQUATIONS WITH KSAM FILES

KSAM opens the key and data file allowing file equations for both. KSAM accesses the files in a
very specific way. Since file equations will override any aoptions that KSAM uses, it is possible to
specify access parameters on the file equation which will cause unpredictable results. The following
should not be used on a file equation which references a KSAM file:

BUF=numbers of buffers
NOMR
WAIT

Refer to “Dynamic Locking” and “Exclusive Access” in Table 4-7, and the section on using FCOPY
to add data to an existing file for further information.

1-8 MAY 1981

HOW TO USE THIS MANUAL

There are some differences in the way in which KSAM files can be accessed depending on the
language in which you are programming. You should read the paragraphs below appropriate to
your programming language and then turn to the last paragraph of this section, For All Program-
mers.

RPG PROGRAMMER

This manual does not describe the code required to access a KSAM file using RPG. For this infor-
mation, you must refer to:

RPG/3000 Compiler Applications & Reference Manual

COBOL PROGRAMMER

If you are programming in COBOL, you should read section II in order to learn how to:

® (Create, purge, rename, clear the contents, display the status of, or save a KSAM file. These
functions are provided by the KSAMUTIL program.

® Copy a KSAM file to another KSAM file in any key order.

® Display the contents of a KSAM file in any key order on the standard list device. These
functions are provided by the FCOPY program.

You should read section III in order to learn how to:
® Open and close the KSAM file.

® Open the file for shared access and dynamic locking.

® Write the records to the file in sequential key order or in random order.

L] Read records from the file in sequential order by key value or at random by key value.
L Change the key in preparation for a sequential read.

L Rewrite or delete an existing record.

® Dynamically lock or unlock the file.

Note the following limitations for COBOL.:

® You cannot programmatically create a KSAM file. You must use the > BUILD command
of the KSAMUTIL utility program in order to create the file.

® You cannot read a KSAM file in chronological sequence. You can, however, use FCOPY to
copy the file to a non-KSAM file and then read it in chronological sequence.

® TFor ANSII standard COBOL, only alternate keys, not primary keys, can be duplicated.

SPL PROGRAMMER

If you are programming in SPL, you should read section II in order to learn how to:

o Create, purge, rename, clear the contents, display the status of, or save a KSAM file. These
functions are provided by KSAMUTIL.

® Copy a KSAM file to another KSAM file in any key order.

MAY 1981 1-9

Display the contents of a KSAM file in any key order on the standard list device. These func-
tions are provided by FCOPY.

You may skip sections III, V, and VI, which apply to programming in COBOL, FORTRAN, and
BASIC respectively. You should read section IV to learn how to:

Create, open, and close a KSAM file.

Write records to the file in sequential primary key order or in random order.

Read records from the file in primary or alternate key order or in chronological order.

Read records at random by key value.

Read records directly according to a record number relative to the first chronological record.

Position record pointer forward or backward a specified number of records in any specified key
sequence.

Position to a record defined by key value.

Position to a relative record number in key sequence or in chronological sequence.
Update or delete an existing record.

Request access and status information on the KSAM file.

Verify that input/output is completed, and verify that critical output is complete.
Dynamically lock or unlock the file.

Write or read user labels.

In general, SPL programmers can use all the file system intrinsics provided for HP 3000 standard
files with the following exceptions:

A KSAM file cannot be renamed with the FRENAME intrinsic.

A KSAM file cannot be positioned to a relative record number with FREADSEEK. (Similar
functions are performed by the KSAM intrinsics FFINDBYKEY and FFINDN).

A record cannot be written to a KSAM file according to relative record number with
FWRITEDIR.

The relation between two files (interactive or duplicative) cannot be determined with
FRELATE.

1-10 MAY 1981

FORTRAN PROGRAMMER

If you are programming in FORTR AN, you should read section II in order to learn how to:

® (Create, purge, rename, clear the contents, display the status of, or save a KSAM file using
KSAMUTIL.

® Copy a KSAM file to another KSAM file in any key order with FCOPY.

® Display the contents of a KSAM file in any key order on the standard list device using
FCOPY.

As a FORTRAN programmer can call either the COBOL procedures described in section III (and
summarized above) or the intrinsics described in section IV (also summarized above). You should,
therefore, read both these sections. Depending on your program requirements, you can then
choose to use either the COBOL procedures or the file system intrinsics. Since these methods
differ significantly in how the file is created and accessed, you should not attempt to combine
calls to COBOL procedures with calls to the file system intrinsics. In general, the intrinsics
provide more capabilities than the COBOL procedures.

You should also read section V, which illustrates, by means of annotated examples, how to access
a KSAM file through FORTRAN calls to the file system intrinsics. The examples illustrate:

® Programmatically creating a KSAM file.
® Writing records to a new KSAM file.

L Reading the records in sequential order by primary key value and then by alternate key
value.

L] Reading the records in chronological order.

BASIC PROGRAMMER

As a BASIC programmer you should read section II in order to learn how to:

L] Create, purge, rename, clear the contents, display the status of, or save a KSAM file using
KSAMUTIL.

® Copy a KSAM file to another KSAM file in any key order with FCOPY.

® Display the contents of a KSAM file in any key order on the standard list device using
FCOPY.

Since a BASIC programmer, like the COBOL programmer, cannot create a KSAM file program-
matically, it is especially important to note how files are created with the BUILD command of
program KSAMUTIL. Note also that BASIC programs cannot read a KSAM file in chronological
sequence. You can, however, use FCOPY to copy the data file to a non-KSAM file and then read
it in chronological sequence.

MAY 1981 1-11

You can skip sections III, IV, and V, which apply to COBOL, SPL, and FORTRAN programming
respectively, and read section VI, which describes the BASIC procedures to access KSAM files.
These procedures enable you to:

® Open and close a KSAM file.

® Write records to a KSAM file in primary key or in random order.

® Read records from the file in sequential order by key value, or at random by key value.
® Change the key in preparation for a sequential read.

L] Rewrite or delete an existing record.

® Dynamically lock and then unlock the file during shared access.

ALL PROGRAMMERS

Programmers using any of the languages that access KSAM files will probably need to refer to
appendix A. This appendix contains an explanation of the error messages, condition codes, and
status returns that can result from file access.

Appendix B describes the internal structure of KSAM files. It illustrates how key entries are stored
in a special B-Tree structure, and how KSAM file size is determined. It also explains how files are
accessed through the extra data segments allocated to each open file. This appendix provides infor-
mation for the sophisticated programmer who wants to know how KSAM files operate in order to
improve performance. For the average user, the information in appendix B is not needed in order
to create and use KSAM files.

Appendix C provides the ASCII collating sequence used by KSAM/3000 to determine character key
sequence; (numeric key sequence is in algebraic order). Note that the KSAM key sequence is in as-
cending order only, the order in which the ASCII characters are shown in appendix C.

Appendix D provides instructions that will help you convert your files to KSAM/3000 files. It tells

you how to convert any serially accessible file to a KSAM file. If you are already using INDEX files,
it describes use of the conversion program RTOKSAM for converting from INDEX to KSAM. Note

that INDEX files were previously called RSAM files.

Appendix E describes the recovery procedures to be used if the system fails when KSAM files are
open. It explains what happens when a file is closed normally as opposed to what happens when a
system failure prevents normal closing, and then tells the user exactly what to do when a system
failure affects open KSAM files.

1-12 MAY 1981

SECTION

USING KSAM UTILITIES

A pair of utility programs and a set of commands allow you to create and manipulate KSAM files.

OVERVIEW

The program KSAMUTIL provides MPE capabilities that allow you to manipulate KSAM files. With
KSAMUTIL commands, you can create a KSAM file, rename both the data and key files, save a
temporary file as a permanent file, clear all data from a file, purge a file, and verify the contents and
access history of an existing file.

The HP 3000 file copier, FCOPY, is adapted to copy KSAM files. FCOPY allows you to copy from
a KSAM file to another file (KSAM or non-KSAM), in primary or alternate key sequence; to copy
an entire file or a subset of a file, and to copy either the data or key file.

The MPE commands :STORE and :RESTORE can be used with KSAM files to transfer the files
from disc to magnetic tape and vice versa.

The utility functions that can be performed on KSAM files are summarized in table 2-1.

Both KSAMUTIL and FCOPY are programs resident in the system library that can be executed with
the MPE :RUN command. When run in a session, each program responds by issuing a greater-than
(>) prompt. You may then enter commands to control further operation of the program. Both pro-
grams may be operated in batch mode as well as in a session. In batch mode, the greater-than prompt
is not required. :STORE and :RESTORE are commands directed to the MPE command interpreter
and can be included in either a job or a session.

2-1

Table 2-1. Summary of KSAM Utilities

UTILITY OPTION/COMMAND FUNCTION
KSAMUTIL >BUILD or >B Create KSAM file consisting of a data file and key
file.
>ERASE Clear contents of KSAM data file and reset key
file pointers.
>PURGE Remove KSAM file from system.
>RENAME or >R Change name of KSAM key or data file to a new
name.
>SAVE or >S Save session/job temporary KSAM file as a
permanent file.
>VERIFY or >V Display information on current status of data and
keys in KSAM file.
>HELP or >H Request description of KSAMUTIL commands.
>EXIT or >E Exit from KSAMUTIL program.
>KEYSEQ or >KS Check the sequence of any key (primary or alter-
nate) in key file.
>KEYDUMP or >KD Display a formatted, structural key file dump.
>KEYINFO or >KI Display information on current status of key file;
in case of system failure, attempt recovery.
FCOPY ;KEY=keylocation Copy KSAM file in key sequence by a key spec-
ified by its beginning location in record.
'NOKSAM Copy contents of key or data file in consecutive
(physical) order.
f both these parameters are omitted, the data file
is copied in sequence by primary key; the key file
is established with all links maintained. Other
FCOPY options apply to KSAM files with minor
exceptions (refer to table 2-4).
MPE :STORE datafile, keyfile Store KSAM data and key fiies from disc to

:RESTORE datafile, keyfile

magnetic tape.

Restore KSAM data and key files from magnetic
tape to disc.

2-2

KSAMUTIL UTILITY

KSAMUTIL provides a number of capabilities, among which is the essential capability to create
KSAM files. For a COBOL, BASIC, or RPG programmer, KSAM files can be created only through
the BUILD command of the program KSAMUTIL. Although SPL and FORTRAN programmers can
create KSAM files with the FOPEN intrinsic (described in section IV), the BUILD command may
still provide these users with the simplest method for creating a KSAM file.

RUNNING KSAMUT!L
To pass control to KSAMUTIL, use the MPE command:

:RUN KSAMUTIL.PUB.SYS

In a session, KSAMUTIL prompts with the greater-than sign (>) in column 1 to which you respond
with the command you want to execute. In a job, you enter the command in column 1 of the
record following the RUN command. No prompt character precedes the KSAMUTIL commands in
batch mode.

Refer to table 2-1 for a list of the KSAMUTIL commands and their functions.

COMMAND ABBREVIATIONS. All KSAMUTIL commands, except ERASE and PURGE, can be
abbreviated. Most abbreviations allow the first letter of the command name. For example, >BUILD
can be specified as >B, and >EXIT can be specified as >E. The three command names beginning
with K (>KEYDUMP, >KEYSEQ, and >KEYINFO) are abbreviated to two letters to distinguish
one from the other. As shown in table 2-1, these abbreviations are, respectively, >KD, >KS, and
>KI.

RUNNING MPE COMMANDS FROM KSAMUTIL. Once you are running KSAMUTIL and you
want to use an MPE command, you need not exit from KSAMUTIL and return to MPE; simply type
the colon prompt (:) following the KSAMUTIL prompt (>) and then enter the MPE command. For
instance, if you want to list the files in your account and group from KSAMUTIL, enter the LISTF
command as shown:

>:LISTF

OPTION TO LIST DISPLAYS ON LINE PRINTER. Four KSAMUTIL commands display {file infor-
mation; these are VERIFY, KEYDUMP, KEYSEQ, and KEYINFO. Each of these has an option that
allows you to list the information on a line printer rather than display it on your terminal. If you in-
clude the keyword OFFLINE as an option in any of these commands, the requested information is
sent to the line printer. If you want the list sent to a particular line printer, you can use a :FILE
command naming the KSAM list file “KSAMLIST” as the formal designator. For example, suppose
you are running KSAMUTIL and want to list the current information on a KSAM file and you want
this information listed on a particular line printer:

>:FILE KSAMLIST; DEV=SLOWLP<«——————select particular line printer
>VERIFY MYFILE; OFFLINE «———specify output to go to an offline device
WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)? 4.
all information

request all information
The resulting output is sent to the line printer identified as SLOWLP.

OPTIONAL PARAMETERS. Wherever a command parameter is shown with brackets, [], that
parameter can be omitted. For certain commands, SAVE, VERIFY, KEYDUMP, KEYSEQ, and
KEYINFO, the filereference parameter is optional if no other parameters are specified. When this
parameter is omitted, it assumes a prior command has specified a filereference and it uses the last
filereference to identify the selected file. For example, assume you use the VERIFY command
twice in a row, once to list the requested output on the line printer, and then to display it at your
terminal. To do this, you can use the following command sequence:

:RUN KSAMUTIL
>VERIFY MYFILE; OFFLINE
WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?4

(output is sent to the line printer)

>V - previous file reference to MYFILE is assumed
WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)? 4

(output appears at your terminal)

Note that you cannot issue these commands in reverse order because the filereference parameter
can be omitted only if there are no other parameters. Thus, it is not legal to use command
>VERIFY MYFILE followed by >VERIFY; OFFLINE.

EXITING FROM KSAMUTIL

When you have finished using KSAMUTIL in a session, you can return to the MPE operating
system with the command:

In a batch job, the EXIT command is specified in column 1 of the record that terminates the
program; the greater-than sign is not included. The keyword EXIT can be abbreviated as E.

HELP

Requests help using KSAMUTIL

This command returns a summary description of each of the KSAMUTIL commands when entered
at a terminal. The keyword “HELP” can be abbreviated to “H”.

REQUESTING HELP

The HELP command lists all the valid KSAMUTIL commands and then asks if you need informa-
tion on a particular command. When you enter the name of a KSAMUTIL command, HELP dis-

plays the command syntax. HELP is terminated by entering N in response to the prompt MORE
(Y/N)2.

The following example illustrates the HELP command. User input is underlined.
>H

VALID COMMANDS AKE:

BUILDIB)soos . oeTO CREATE A FILF

ERASE eeeensoseeaeTO RESET A FILE YO INITIAL CONDITIONS
EXIT(E)eeeos.ooTO LEAVE THIS RAuTINE

PURGE geesoeeeselO DELETE A FILF

RENAMEIR)eessee 10O RENAME A FILF

SAVE[ST eoooseesl0 RETAIN A TEMPORARY FILE
VERIFY[V)esoaeo !0 DESCRIRE FILF CHARACTERTSTICS
KEYINFOIKI)e.eeTO OBTAIN KEY FILE INFORMATIOUNS
KEYDUMP(KD)e,oeeTO OBTAIN FORMATTED KEY FILE STRUCTURAL DuUMP
KEYSEQIKS)oee,eTO CHECK THE SEQUENCE OF KFY FJILE

MORE (Y/N)7Y
ENTER COMMAND NAME: B_

BUILD <DATAFILEREF>

{sDEV=<DEVICE>]

[30ISC=[<NUMREC> 1L s <NUMEXTENTS>7109s<INITAL; OC>131]]

(KREC=[<RECSIZF» [s [<BLLOCKFACTOR>I[s [F\VI[+BINARY\y»ASCIII]]])

[ITEMP]

(3CODE=<FILECODE>)]

FKEY=<TYPE> ,<POSITION>L o[<LFNGTH>1r9 [<BLOCRING>)[+DUPLICATE}]]

[LsyRDUP]

[3KEY=<TYPE> ¢<POSITION>I g {<LENGTH> I (o [<BLOCKRING>I(+sDUPLICATE]]] ,.4)
[sRDUFPII] oo

{3ILABFELS=<NUMBFRLABELS>)

[$FIRSTREC=0\1)

[$KEYDEV=<DEVICE>]

IKEYFILE=FILEREFERENCEZ2

(3KEYENTRIES=<NUMBER>)

<TYPE>: s =BA\DNINRNL\N\p\#

HELP

MORE (Y/N)?2Y

ENTER COMMAND NAME: E

EXIT

MORE (Y/N)?Y

ENTER COMMAND NAME: ERASE
ERASE <FILEREFERENCE>

MORE (Y/N)?Y

ENTER COMMAND NAME: PURGF
PURGE <FILEREFERENCE>[+TFMP]

MORE (Y/N)2Y

ENTER COMMAND NAME: R

RENAME <NLOFILFREF> o <NEWFTLEREF> (9 TEMP]
MORE (Y/N)?Y

ENTER COMMAND NAME! S

SAVE [<TEMPFILEREF>)

MORE (Y/N)7?Y

ENTER COMMAND NAME: V

VERIFY [<FILFREFERENCE>)

(3OFFLINF]
[$NOCHECK]

MORE (Y/N)?2Y
ENTER COMMAND NAME: Ki

KEYDUMP [<FILEREFERENE>)
[3SEQ=<KEYSEQUENCE>]
[3SUBSET=L[_1<PUSITION>)[<NUMRER>)]
I 1
{"CHAR=STRING")
{3FILE=<FILEREFERENCE]>)

1 I
(SOFFLINE]
($SORT]

2-6

MORE (Y/N)7Z2Y
ENTER COMMAND NAME: KI

KEYINFO [<FILEREFERENCE>]
[;OFFLINE]
[; RECOVER]

MORE (Y/N)?2Y
ENTER COMMAND NAME: KS

KEYSEQ [<FILEREFERENCE>]
[$SEQ=<KEYSEQENCE>]
(3O0FFLINE)

(INOLIST)

MORE (Y/N) 7N =
>E

END OF PROGRAM

terminate HELP display

2-7

HELP

BUILD

Creates a KSAM file.

g

L
g&gmm&&%@
e

%
e
.
aa@%ﬁgﬁ;‘g

o

P f@iﬁ’?@ .

e sg&j@s i

o §k§g§;§§w
amies

g
e

. . e o o
‘sﬁ% i 5 mgn .
: e il

-

Ll
.
<

.
.

e
L
0
.
s e

The BUILD command of the KSAMUTIL utility program is used to create a KSAM file and
allocate the file to a mass storage device. Although this command is similar to the MPE :BUILD
command, it has been modified for KSAM files. You can specify the BUILD command with

the abbreviation, B.
NOTE
You cannot create a KSAM file with the MPE :BUILD command.
If you are programming in COBOL, BASIC, or RPG, you must use the KSAMUTIL BUILD com-

mand to create a KSAM file; in SPL or FORTRAN, you can create a KSAM file either with the
BUILD command or with the FOPEN intrinsic (described in section IV).

PARAMETERS

filereferencel Actual file designator. This is the name that identifies the KSAM file

(both data and key files) and also identifies the data file when specified
independently of the key file. It has the form:

filename [/lockword] [.groupname [.accountname]]

2-8

REC=recsize

blockfactor

MAY 1981

BUILD

All four sub-parameters are names that contain from 1 to 8 alphanu-
meric characters, beginning with a letter.

NOTE

If specified, account name must be that of your log-on
account; you cannot create a file in another account.

If file has no lockword and belongs to your log-on group, only filename
is necessary.

(Required parameter.)

Size of logical records in file. If a positive number, this represents
words; characters are represented by a negative number. If the records
are variable length, recsize indicates the maximum length allowed for
a logical record.

Block size is determined by multiplying the specified recsize by
blockfactor. For binary files or ASCII files with fixed-length records,
an odd character count is rounded up to the next highest even number
to insure that the record starts on a word boundary. The rounded
number should be used in calculating block size since a block always
starts on a word boundary.

(Optional parameter.)
Default: The configured record size of the particular device is used
when recsize is omitted; for disc files, the value used is 256 characters
or 128 words.
An integer equal to the number of logical data records in each block.
This integer should result in a data block size smaller than 4096 (4K)
words. The blockfactor is used to calculate the buffer size established
for transfer of data to and from the file.
For fixed-length records, blockfactor is the actual number of records
in a block. For variable-length records, blockfactor is a multiplier
used with recsize to calculate block size:

block size = ((recsize+1) * blockfactor)+1
The calculation is performed in words, not characters.

(Optional parameter.)

Default: calculated by dividing the specified recsize into the configured
block size; the result is rounded down to an integer never less than 1.

Data file contains fixed-length records.

(Optional parameter.)

2-9

BUILD

\" Data file contains variable-length records. Since KSAM performs its
own blocking and deblocking, a KSAM data file specified as variable-
length is treated by MPE as a file with fixed-length records, each re-
cord the size of a KSAM block (refer to blockfactor above for calcu-
lation of block size). Although the MPE LISTF command shows the
data file as fixed-length, the KSAMUTIL VERIFY command, option
3, shows DATA FIXED as FALSE when the file is a variable-length
KSAM file.

(Optional parameter.)

Default: If both F and V are omitted, records are fixed-length.
BINARY Data file contains binary-coded records.

(Optional parameter.)
ASCII Data file contains ASCII-coded records.

(Optional parameters.)

Default: If both BINARY and ASCII are omitted, records are binary.

TEMP File is created as a session/job temporary file; when the session or
Job terminates, the file is deleted from the session/job temporary
file directory.

(Optional parameter.)

Default: If TEMP is omitted, file is declared permanent and is saved
in the system file domain.

DEV=device device designates the device on which the data file resides. (The key
file device is specified in the KEYDEV parameter.) device can be
specified as a device class name of up to 8 alphanumeric characters
beginning with a letter and terminated by any non-alphanumeric
character such as a blank, or as a logical device number consisting of
a three-character numeric string, or it can be a remote device identifier
consisting of the device class name or logical device number followed
by a pound sign (#) and a remote device class name or logical device
number.

Device class names and logical device numbers are assigned to devices
during system configuration. (See System Manager/System Supervisor
reference manual).

For KSAM files, the device must be a random access device such as the
disc. If the file is a newly-created disc file specified as a device class
name, then all extents to the file must be members of the same class.
Similarly, if the device is identified by a logical device number then

all extents must have the same logical device number.

(Optional parameter.)

Default: If omitted, the device class name DISC is used.

2-10

CODE=filecode

DISC=numrec

numextents

initalloc

KEYFILE=filereference2

MAY 1981

BUILD

Code indicates that the data file is specially formatted. The code is
recorded in the file label and is available to processes through the
FGETINFO intrinsic. It must be specified as a positive integer in the
range 0 through 1023.

(Optional parameter.)
Default: If CODE is omitted, the file code is 0.
NOTE

The CODE parameter applies only to data files; the key file
code value is always 1080.

Total maximum file capacity, in terms of logical records (for files con-
taining fixed-length records) or blocks (for files containing variable-
length records). Maximum file capacity allowed is 2,097,120 sectors.

(Optional parameter.)
Default: If omitted, 1024 records is the default.

Number of extents (continguously-located disc sectors) that can be
dynamically allocated to the file as logical records are written to it.
The size of each extent (in terms of records) is determined by the
numrec parameter value divided by the numextents parameter value.
Extents can allocated on any disc in the device class specified in the
device parameter. If you want to ensure that all extents for a file re-
side on the same disc, use the logical device number of that disc or a
device class name relating to a single disc device, in the device param-
eter. If specified, numextents must be integer value from 1 to 32.

(Optional parameter.)
Default: 8.

Number of extents to be allocated to the file at the time it is opened.
Must be an integer from 1 to 32. If attempt to allocate requested space
fails, an error message appears.

(Optional parameter.)
Default: 1.

Actual file designator. This is the name that identifies the KSAM key
file. It has the format: filename, which is 1-8 alphanumeric characters
beginning with a letter. Unlike filereferencel (the data filename)
filereference2 may not be qualified by account or group names, nor
may it contain a lockword. The key file contains all the key entries and
key control information, whereas the data file contains the actual data.
A KSAM file is always referenced by the data file name, filereferencel ,
not the key file name, filereference2.

(Required parameter.)

2-11

BUILD

KEY=

keytype

keylocation

keysize

keyblocking

One KEY specification must be included for each key in the KSAM file.
The first occurrence of the KEY specification describes the primary
key; each subsequent KEY specification describes an alternate key.
There may be up to 15 alternate key descriptions in addition to the
primary key description.

(Required parameter.)

keytype is specified as BYTE INTEGER, DOUBLE, REAL, LONG,
NUMERIC, PACKED, or- *PACKED The whole word or only the
first letter need be specified (for example, B is equivalent to BYTE).

If more than the first letter is used, the word must be spelled correctly.
(Refer to table 2-2 for a full description of each key type.)

(Required parameter.)
Location of the first character of the key within the data record count-

ing from the first character in the record. The first character in the
data record is always numbered 1 Only one key can start at the same

location.

(Required parameter.)

Length of the key in characters. The length depends on keytype as
follows:

BYTE 1 to 255 characters

INTEGER 1 to 255 characters (default = 2)
DOUBLE 1 to 255 characters (default = 4)

REAL 1 to 255 characters (default = 4)

LONG 1 to 255 characters (default = 8)
NUMERIC 1 to 28 characters

PACKED 1 to 14 characters (odd number of digits)
*PACKED 2 to 14 characters {even number of digits)

(Required parameter for BYTE, NUMERIC, PACKED, and *PACKED
key types; defaults are provided for INTEGER, DOUBLE, REAL, and
LONG key types, as noted above.)

Number of keys per block. The keyblocking value is an even number
greater than or equal to 4. It is used with the kev entry size (kevsize
parameter) to determine the size of each key vlock according to the
following formila:
5+ (Msnt_zqﬂ)+ 4) keyblocking = ey block size in words
2

Five words are used for control information in each block; keysize
specified in characters is divided by 2 to get the key size in words; and
4 words are added for the pointers in each key entry. This key entry
size in words is multiplied by the keyblocking factor to determine key
block size. If the keyblocking value generates a key block size greater
than 2048 (2K) words, the file cannot be created.

The resulting key block size is rounded up to a multiple of 128 words.
If the file has multiple keys, KSAM forces all key blocks to the same
size and adjusts the number of keys per block accordingly.

Note that the value you specify for keyblocking may be increased
(never decreased) by the system in order to produce a blocking factor
that does not waste disc space. Refer to appendix B for a discussion
of how the system determines the most efficient blocking factor based
on the value you enter for keyblocking.

2-12

BUILD

Key blocking can affect access time in that the smaller the key block,
the more time it may take to retrieve a record using the key file. In
many cases, the default blocking factor produces the most efficient
key blocking.

(Optional parameter.)

Default: keyblocking is set to a value that produces a key block size of
1024 (1K) words. (Maximum size is 2K.)

DUPLICATE In order to allow duplicate key values, this word must be included in

DUP the KEY specification. If DUPLICATE (or DUP) is not specified,
records with duplicate key values are rejected and an error message
issued when such records are written to the file. DUP is a legal abbre-
viation of DUPLICATE. When you use this option to specify dupli-
cate keys, each new duplicate key is inserted at the end of the dupli-
cate key chain. This maintains the chronological order of duplicate

keys.
RDUPLICATE This option specifies that duplicate keys are allowed and are to be in-
RDUP serted randomly in the duplicate key chain. This method makes in-

sertion of such keys faster, but does not maintain the chronological
order of the duplicate key chain.

(Optional parameter.)

Default: If omitted, duplicate keys are prohibited.

KEYENTRIES=numentries The value of numentries is used to determine the key file size. The
value specified for numentries should be the maximum number of
primary key entries expected. When there are alternate keys, KSAM
automatically adjusts the key file size to accomodate each key in
addition to the primary key.

Normally, this parameter can be omitted since KSAM assigns it the
value of numrec (number of fixed-length data records or blocks of
variable-length records). If, however, the data records are variable
length and there are many small records, the value of numrec may
be too small. In this case, you should specify a value for numentries
greater than the value of numrec.

The number of key entries determines the size of the key file, the file
limit. When a new KSAM file is created, the MPE end-of-file marker
is set to this file limit rather than to the end-of-data as is normal for
MPE files. This allows any key block to be accessed in case of system
failure. To determine where the actual end-of-data is, use the KSAM-
UTIL VERIFY command, option 3, and look at the heading KEY
FILE EOF. This shows the record number of the next available key
block (one record past the last used key block).

(Optional parameter.)

Default: the value of numrec in the DISC= parameter or its default
value 1024 if it too is omitted.

2-13

BUILD

LABELS=numilabels The number of user label records to be created for the KSAM data
file. Up to 254 labels (1 less than the MPE maximum) can be specified;
COBOL programmers are restricted to 8 labels.

(Optional parameter.)

Default: if omitted, numlabels is equal 0.

KEYDEV=device The device on which the key file resides, specified as a device class
name or a logical device number. A device class name indicates the
general type of the device as a string of one to eight alphanumeric
characters beginning with a letter and terminated by a non-alphanumeric
character such as a blank. The logical device number is the three-
character numeric string identifying a particular device. If the data
file is created on a remote device, the key file is assigned to the same
machine, and the key file device is specified in the KEYDEV=
parameter.

Device class names and logical device numbers are assigned to devices
during system configuration.

For KSAM files, the device must be a random-access device such as the
disc.

(Optional parameter.)

Default: If omitted, the device class name DISC is used.

FIRSTREC=recnum Determines whether record numbers in the data file are to start with
zero or one. If the integer 1 is specified, then records are numbered
beginning with 1; otherwise they will start with 0. The only accept-
able values for recnum are 1 and 0.

Normally, record numbering in MPE files starts with zero, the default
value for recnum. In order to be consistent with most commercial
applications, you can specify FIRSTREC=1 to change the record
numbering scheme so that data records are numbered starting with 1.

(Optional parameter.)

Default: if omitted, record numbering starts with zero.

2-14

BUILD

KEY DESCRIPTION

Each key is described by specifying key type, key position, key size, and, optionally, the blocking
factor and whether duplicates are allowed. Key type and size are defined in Table 2-2. Note that
default values are provided for, keysize when key type is specified as INTEGER, DOUBLE, REAL,
or LONG. Only BYTE, INTEGER, and DOUBLE type keys can be used as generic keys.

Table 2-2. Key Types

X keysize E ¢
eytype (In Characters) orma
BYTE 1-255 Each character requires 8 bits of a computer word. A character may
contain any of the HP ASCII character set consisting of letters of the
alphabet, numbers, and special characters. (Refer to appendix c.)
INTEGER 1-255 Single-word fixed-point format permits two’s complement represen-
(default = 2) tation of positive and negative integers. Bit O is a sign bit and the
remaining 15 bits define a quantity ranging from -32768 through
+32767.
DOUBLE 1-255 Double-word fixed-point format is the same as the integer format
(default = 4} except that two words are linked together to allow a 32-bit quantity
with a range between approximately -2 billion and +2 billion.
REAL 1-255 Floating-point format with bit zero as a sign bit, an exponent
(default = 4) (biased by +256) in bits 1 through 9, and a positive fraction in the
remaining 22 bits of the double word. This type cannot be used
as a generic key.
LONG 1-255 Long floating-point format uses four words; an exponent (biased by
(default = 8) +256) in bits 1-9, as with the real number, and a positive fraction in
the remaining 54 bits. This type cannot be used as a generic key.
NUMERIC 1-28 External decimal format in which each decimal digit requires one
8-bit character and the sign is combined with the least significant
digit. (Refer to Table 2-3 for the list of characters representing the
digit/sign combinations.) This type cannot be used as a generic key.
PACKED 1-14 Packed decimal format in which each digit requires only 4 bits and
the sign is specified as a hexadecimal number in the least significant
4 bits {1100 or C is plus and 1101 or D is minus). This type cannot
be used as a generic key.
*PACKED 2-14 Same as PACKED except this key type contains an even number of
digits. This type cannot be used as a generic key.

2-15

BUILD

Table 2-3. Character Equivalent to Signed Digit for NUMERIC Keys

POSITIVE VALUES NEGATIVE VALUES
SIGNED DIGIT CHARACTER SIGNED DIGIT CHARACTER
+0 { -0 |
+1 A -1 J
+2 B -2 K
+3 C -3 L
+4 D -4 M
+5 E -5 N
+6 F -6 0]
+7 G -7 P
+8 H -8 Q
+9 | -9 R

CREATING A KSAM FILE

Creating a KSAM file with the KSAMUTIL BUILD command is very similar to creating a standard
HP 3000 file with the MPE command :BUILD except that a KSAM file includes a key file descrip-
tion. As with standard files, the default values can be assumed for many of the file description
parameters.

To create a KSAM file from the KSAMUTIL program, you can start by simply naming the file as
the first parameter of the BUILD command. The file name defines the data file portion of the
KSAM file with the default options: fixed-length, 128-word, binary-coded records, blocked 1
record per block.

To fully define a KSAM file, you must also:

L] name the key file

® define at least one key (the primary key) in terms of:

type
location in the data file
size

These parameters provide your minimum KSAM file description from which the file can be created.
To illustrate:

:RUN KSAMUTIL .PUB.SYS
>BUILD KSAMFILES;KEYFILE=KFILE;KEY=1,21.,2

2-16

BUILD

This command assigns the name KSAMFILE to the KSAM data file; it names the key file KFILE,
and defines the primary key as an integer that starts in character 21 of the record, and is two char-
acters long. By default, the blocking factor of the keyfile provides key blocks 1024 words long, the
maximum number of primary keys is set to 1023 (the same as the maximum number of data
records), duplicate keys are prohibited, and record numbering starts with zero.

File KSAMFILE is now created. Default values were used where possible so that the BUILD com-
mand specification shown above is the minimum needed to create a KSAM file. You could create
the same file, KSAMFILE, with the following BUILD command in which default parameters are
specified.

recsize

>BUILD KSAMFILES;REC=128,,F,BINARY&
JDEV=DISC&

3CODE=08&

;LABELS=72&
JFIRSTREC=72& numextents
;DISC=1823,8,1&

$KEYFILE=KFILE& '\‘Q,:;':fgg“”"c

SKEY=1,21,2& key description
SKEYENTRIES=1823&

SKEYDEVU=DISC

line continuation character

VVVVV VYV VY

numentries

This specification of the BUILD command, although initially more cumbersome, documents the
default values with which the file is created. Since the default keyblocking factor is a value cal-
culated from the key size so that each key block is 1K words long, it is not specified here. You
can use the VERIFY command to find the value KSAM has assigned as a key blocking factor for
any file you create using a default for this value.

Only a primary key is defined for this file. Within the data file, this key is an integer that occupies
characters 21 and 22 (word 11) of each data record.

Character 1 ——————1—> | Word 1

21 ——— 7Y 11 ~<—— Primary Key Data Record

In the key file, the values in any key are ordered sequentially so that the next higher value can
always be located. The key should not begin in the first two characters of the data record since
these characters are set to all 1’s when the record is deleted. If the key value of deleted records
need never be recovered, then this restriction can be ignored.

For each alternate key in addition to the primary key, another KEY= clause must be included.
Suppose a personnel file with a primary key containing an employee number, an alternate key
containing a name, and another alternate key containing the person’s age. The first two keys are
specified as BYTE keys, the third is an INTEGER. The key file is blocked with 10 keys per block
and the maximum number of primary keys expected is 3000:

2.17

BUILD

:RUN KSAMUTIL.P YS
>BUILD EMPLOYEESREC=,,,ASCIISKEYFILE=FEMPKEY;KEYENTRIES=30005 &

> KEY=B,3,11,125& primary key (employee number)
> KEY=B, 15,302,105 & alternate key (employee name)
> KEY=I;5]:2:]@<\

alternate key (employee age)

The keys are located in the data record as follows:

word
character —_— 1
3 — B
primary key

15 (1 T‘_7

1st alternate key

-—23

51— ZZZZZZZ77777V77777777777274 < 2nd alternate key

Note that the keys need not be contiguous. In this example, the primary key is located nearer to
the beginning of the record than the other keys. This is not a requirement; the primary key can
physically follow any alternate keys in the record, although the primary key is always the first
key specified in the BUILD command. For example, in the file FSAMPLE, the primary key starts
in character 21 following a secondary key in character 3:

:RUN KSAMUTIL.PUB.SYS
>BUILD FSAMPLESKEYFILE=FKEYj &
> KEY=N,21,125 & = primary key

> KEY=1,3.,2
__l _
- LY

alternate key'

> data record

7))

2-18

ERASE

Clears the contents of a KSAM file.

The contents of a KSAM file, both the data and key files, can be cleared to an empty state with the
KSAMUTIL ERASE command.

PARAMETERS

filereference Actual file designator that identifies the KSAM data file. It is specified
exactly like filereferencel in the >BUILD command.

(Required parameter.)

CLEARING A KSAMFILE

When ERASE is specified for a KSAM file, the end-of-file pointer that follows all data is reset to
point to the first record in the data file. This position of the pointer is identical to its position
when the file is created and before any data is written to the file.

All pointers and control words in the key file are reset to indicate that the data file is empty.

Note that the file is still created and new data may be written to it.

For example, to clear the contents from the file identified as KSAMFILE:
>ERASE KSAMFILE

2-19

PURGE

Purges a KSAM file from the system.

The KSAMUTIL PURGE command can be used to remove a KSAM file, both data and key files,
from the system. Although the MPE :PURGE command can also be used, it must be specified
twice, once for the data file and once for the key file. If you are programming in COBOL, BASIC,
or RPG, you should use the KSAMUTIL PURGE command to purge a KSAM file. In SPL or
FORTRAN you could also use the FCLOSE intrinsic (described in section IV) to purge a KSAM
file.

PARAMETERS

filereference Actual file designator identifying the KSAM data file. Specified
exactly like filereferencel in the >BUILD command.
(Required parameter.)

TEMP Must be specified if file is a temporary file in session/job temporary

file domain. If omitted, a permanent file is assumed.

(Optional parameter.)

PURGING A KSAM FILE

When PURGE is executed, the specified KSAM data file and its associated key file are removed
from the system and can no longer be referenced.

For example, to purge a temporary KSAM file called KTEMP:

>PURGE KTEMP, TEMP
KTEMP .KSAM.DATAMGT & KKEY PURGED.

To purge the permanent file KSAMFILE:

>PURGE KSAMFILE
KSAMFILE.KSAM.DATAMGT & KFILE PURGED.

The system prints the data and key file names of a successfully purged KSAM file. It also prints
the group and account names in which the file was created (in this case KSAM and DATAMGT).

2-20

RENAME

Renames either the data or key file of a KSAM file.

The KSAMUTIL RENAME command can be used to change either the KSAM data file name or the
KSAM key file name to a new name. Following execution af RENAME, the data and key files
retain their relation to each other. Note that if the MPE :RENAME command is used, this relation
is severed. The FRENAME intrinsic cannot be used to rename a KSAM file.

PARAMETERS

oldfilereference Current actual file designator identifying the KSAM data file or the
KSAM key file, specified exactly like filereferencel or filereference2
in the BUILD command.

(Required parameter.)

newfilereference New actual file designator in same format as oldfilereference. The file
named by oldfilereference will be given the name specified by
newfilereference.

(Required parameter.)

TEMP Indicates that old file was, and new file will be, a temporary file in the
session/job temporary file domain.

(Optional parameter.)

Default: If omitted, permanent file is assumed.

RENAMING A KSAM FILE

You may rename either the data file or the key file, not both, with one >RENAME command. To
rename the entire file, you must specify the RENAME command twice. Thus, to rename the data
file KSAMFILE and its associated key file KFILE:

>RENAME KSAMFILE,NEWDATA
>RENAME KFILE,NEWKEY

The relation between keys and data in the newly named files is the same as that in the files
KSAMFILE and KFILE.

If the data file being renamed was protected by a lockword, then this lockword must be specified
on both the old and new files if it is to be retained. If the lockword is omitted, it is removed when
the file is renamed. Note that a lockword is never specified when renaming the key file; the keyfile
is protected automatically by any lockword assigned to its associated data file. For example, to
assign a new lockword to the data file DATAFIL:

>RENAME DATAFIL/LOCKA, DATAFIL/LOCKB-= new lockword

2-21

RENAME

Note that the new file name need not be in the same group as the old file name. RENAME provides a
way to move a file from one group to another. For example, to move the KSAM file DATAFILE
with its associated key file KEYFILE from GROUPA to GROUPB:

>RENAME DATAFILE.GROUPA,DATAFILE.GROUPB

Note that only one RENAME command is used. This one command insures that both the data file
and the key file are in the same group.

2-22

SAVE

Saves a temporary KSAM file as a permanent file.

A temporary KSAM data file and its associated key file are made permanent with the KSAMUTIL
SAVE command. The keyword “SAVE” can be abbreviated to “S”.

PARAMETERS

filereference Actual file designator identifying the session/job temporary file to be
saved, specified exactly like filereferencel in the >BUILD command.

(Optional parameter.)
Default: If omitted, last filereference is assumed.

SAVING A KSAM FILE

Assume that KSAM data file KDATA and its associated key file was created as a session/job
temporary file; to save this file as a permanent file:

>SAVE KDATA

Both the data and key files are saved.

2-23

VERIFY

Displays access and status information about KSAM file.

With the VERIFY command, you can request a display of the characteristics of a KSAM data file,
both the static information defined at file creation and dynamic file access information. The ab-
breviation V can be used instead of the keyword VERIFY.

PARAMETERS

filereference Actual file designator identifying the file whose characteristics are to
be displayed. The actual designator can be a back reference to a file
name in an MPE :FILE command; in this case, the actual designator
must be preceded by an asterisk (*). Either the data file name or the
key file name may be used to identify the KSAM file.

(Optional parameter only if no parameters.)
Default: If omitted, last filereference is assumed.

OFFLINE Display output on line printer. An MPE :FILE command may be used
to specify a particular line printer.

(Optional parameter.)

Default: If omitted, display is sent to terminal.

NOCHECK Allows specified KSAM file to be opened for read-only access by the
VERIFY command; use when a system failure prevents the KSAM
file from being opened.

(Optional parameter.)

Default: If omitted, VERIFY cannot open file that was open when
system fuailed.

DISPLAY KSAM FILE CHARACTERISTICS

In a session, you will be asked to select one of four possible displays:

1. File information (definitions from file creation plus file access statistics)
2. KSAM parameters (definitions of keys from file creation)

3. KSAM control (key file access statistics)

4. All three of the above displays

In a job, the entire set of displays is printed exactly as if option 4 had been selected in a session.

2-24

VERIFY

To illustrate the interaction, the following VERIFY commands select each of the three separate
displays; if option 4 were selected, these displays would be printed consecutively with no halt
until they were finished. User entries are underlined:

select file information only

\
>RUN KSAMUTIL,PUB,SYS

HP32208A,2,4 TUE, APR 17, 1979, 11:23 AM KSAMUTIL VERSIQN:A,2,.4
>VERIFY TESTFILE

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?1

TESTFILE,JOAN,MORRIS CREATOR=JOAN

FOPTIONS(004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM
AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB: TYPSLDNUM:DRT:UN,: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-128: 9: 0: 2: 4: 1: 0: 02 S5t 1023
LOG, COUNT:PHYS, COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN: DISCADDR:
13 1: =128: 129: 8 0: 2:00000117760:

The information returned by selecting file information is the same as that returned by FGETINFO
(described in section IV).

select key file information only

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?2

KEY FILE=TESTKEY KEY FILE DEVICE=3 SIZE= 386 KEYS= 2
FLAGWORD(000000)=RANDOM PRIMARY, FIRST RECORD=0, PERMANENT
KEY TY LENGTH LOC, D KEY BF LEVEL . - .
1 B 20 3y 72 { «—— primary key is listed first,
2 B 8 24 R 126 { «— alternate keys follow
N ~ ~ random insertion of duplicate key

corresponds to KEY= descriptions in BUILD command

The actual number of keys per block (the blocking factor) is listed in this display under the heading
KEY BF. Note that this number may be greater than the blocking factor you specified during file
creation. This occurs if KSAM adjusts the specified blocking factor to generate a block size that
makes optimum use of disc space. KSAM only increases the specified blocking factor, it never de-
creases it. (Refer to appendix B for full particulars on the calculation of block size and the adjust-
ment of the blocking factor.)

The maximum number of levels in the key file structure for each key is noted under the heading
LEVEL.

2-25

VERIFY

select dynamic KSAM file information

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?23

DATA FILE = TESTFILE VERSION= A,2,4

KEY CREATED=107/"79 10:58:17.4 KEY ACCESS= 107/°79 11:23:35,9

KEY CHANGED=107/°79 11:21: 7,7 COUNT START=107/°79 11:21: 8,0

DATA RECS = 5 DATA BLOCKS= 4 END BLK WDS= 64
DATA BLK SZ= 64 DATA REC SZ= 128 ACCESSORS= 0
FOPEN 1 FREAD 0 FCLOSE 1
FREADDIR 0 FREADC 0 FREADBYKEY 0
FREMOVE 0 FSPACE 0 FFINDBYKEY 0
FGETINFO 3 FGETKEYINFO 1 FREADLABEL 0
FWRITELABEL 0 FCHECK 0 FFINDN 0
FWRITE S FUPDATE 0 FPOINT 0
FLOCK 0 FUNLOCK 0 FCONTROL 0
FSETMODE 0

KEYBLK READ 3 KEYBLK WROTE 2 KEYBLK SPLIT 0
KEY FILE EOF 18 FREE KEY HD 0 SYSTEM FAILURE 0
MIN PRIME 3 MAX PRIME 1 RESET DATE

DATA FIXED TRUE DATA B/F 1 TOTAL KEYS 2
FIRST RECNUM 0 MIN RECSIZE 31

The dynamic key file information displayed by option 3 together with the static key file informa-
tion displayed by option 2 comprise the information displayed by the FGETINFO intrinsic de-
scribed in section IV. Note that the version number displayed by VERIFY is the version of KSAM
under which the file was created. The intrinsic HP32208 described in section IV can be used to
determine the current version of KSAM.

TERMINATING THE > VERIFY COMMAND

In order to terminate the VERIFY command in a session, you must press the RETURN key (CR)
in response prompt:

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?

Any other response either causes a display followed by reiteration of this prompt or else causes this
prompt to be issued. For example:

WHICH (1=FILE INF0, 2=KSAM PARAMETERS. 3=KSAM CONTROL., 4=ALL)?6
WHICH (1=FILE INFO0, 2=KSAM PARAMETERS., 3=KSAM CONTROL., 4=ALL)?e
WHICH (1=FILE INF0, 2=KSAM PARAMETERS., 3=KSAM CONTROL., 4=ALL) (R
>EXLT

END OF PROGRAM only response to terminate VERIFY!

DIRECTING VERIFY OUTPUT TO LINE PRINTER

If you want a “hard copy” of the information displayed by VERIFY, you should use the OFFLINE
option. When included, OFFLINE directs the VERIFY information to a line printer. You can use
the :FILE command to specify a different output device or a particular line printer.

2-26

VERIFY

USING VERIFY FOR RECOVERY

In case of a system failure when a KSAM file is open, the VERIFY command provides the following
useful information:

° EOF marker on the data file (END OF FILE header in option 1)
. EOF marker on key file (KEY FILE EOF header in option 3)
. Flag indicating whether system failure occurred (SYSTEM FAILURE heading in option 3)

° Number of processes that had opened the file for non read-only access when the system
failure occurred (ACCESSORS heading in option 3).

Note that you must use the NOCHECK option in order to run VERIFY when a system failure pre-
vents KSAM files from being opened. This option overrides the restriction on opening files after a
system failure and allows a file to be opened for read-only access in order to get the VERIFY infor-
mation. (This access is not counted in the ACCESSORS count.)

(Refer to the KEYINFO command description for an example of how the VERIFY information
can be used for recovery after system failure.)

2-27

KEYSEQ

Verifies sequence of key values in KSAM file.

This command compares all the key values in a particular key (primary or alternate) to determine
whether they are in ascending sequence. If any values are out of sequence, a list of numbers ident-
ifying such values is displayed, unless NOLIST is specified. In any case, the number of out-of-se-
quence values is returned. Note that if key values are out of sequence, the key file is damaged and
the KSAM file must be reloaded.

The abbreviation KS may be used instead of the keyword KEYSEQ.

PARAMETERS

filereference

SEQ=keysequence

OFFLINE

NOLIST

Actual file designator identifying the KSAM file whose key values are
to be verified. Either the data file name or the key file name can be
used to identify a KSAM file. Also, a back reference to a file named
in an MPE :FILE command may be used.

(Optional parameter if no parameters are specified.)

Default: If omitted, the last file referenced is assumed.

Identifies particular key whose key values are to be checked. Keys are
numbered from 1. The first key (SEQ=1) is always the primary key;
subsequent keys are alternate keys numbered in the order they appear
in the record, such that the first alternate key in the record is SEQ=2,
the second alternate key is SEQ=3, and so forth.

(Optional parameter.)

Default: If omitted, the primary key is assumed.

Directs list of out-of-sequence keys to the line printer. An MPE :FILE
command may be used to indicate a different output device than the
line printer, or a particular line printer.

(Optional parameter.)

Default: If omitted, the list of out-of-sequence keys is displayed at
user’s terminal.

Suppresses display of the particular key numbers whose values are out
of sequence. A count of the out-of-sequence values is displayed even

if NOLIST is specified.

(Optional parameter.)

Default: If omitted, list of key numbers for out-of-sequence key values

is displayed.

2-28

KEYSEQ

VERIFY KEY SEQUENCE

If you suspect that your key file has out of order key values in any key, you can run KEYSEQ. If
any key values are not in ascending sequence, the key numbers associated with those key values are
displayed. Note that the number of a key value refers to its position in the key file. For example, if
the third, fourth, and fifth key values of a particular key are out of sequence, the numbers 3, 4, and
5 are displayed.

If the list of out-of-sequence key numbers is long, you can terminate it by holding down the CNTL
key while typing Y (CNTL/Y). The total number of out-of-sequence key values will be displayed
even if you terminate the list with CNTL/Y or suppress it altogether with NOLIST.

Consider the following partial list of key values in the primary key of the KSAM file MYFILE:

Key Value No. Key Value
1 ADAMS
9 ADDISON
@ ALAN - key values out of order
@ ADLER [|[—
5 ADRIAN
6 AGEE
. .
. .
. /'\/

If you run KSAMUTIL and use the KEYSEQ command, as shown below, you can determine which
keys are out of order:

:RUN KSAMUTIL.PUB.SYS
>KEYSEQ MYFILE ;SEQ=1 test primary key sequence

KEYSEQ displays the following:

KEY VALUE # (FOR KEY VALUE OUT OF SEQUENCE)
3
4> key numbers of keys with out-of-sequence values

TOTAL # OF KEY VALUES READ 30

OF KEY VALUES OUT OF KEY SEQUENCE ORDER 2

KEY FILE STRUCTURE DAMAGED, KSAM FILE HAS TO BE RELOADED

Regardless of the number of key values that are out of sequence, you should reload the KSAM file
to restore its integrity.

2-29

KEYSEQ

Consider a second example. Suppose MYFILE has two alternate keys, one starting in location 11
(11th character of record) and another starting in location 33. To verify the sequence of key values
in the second alternate key, execute KEYSEQ as follows:

>KS MYFILE ;SEQ=3 ;NOLIST suppress list of key numbers
L second alternate key

TOTAL # OF KEY VALUES READ 30
OF KEY VALUES OUT OF KEY SEQUENCE ORDER 0

key values in sequence
In this case all the key values were in correct sequence. Unless other keys in this file have values
that are out of sequence, you need not reload the file.

Note that NOLIST was specified. In general this is good practice. If any key values are not in

sequence, the file should be reloaded, so it is seldom important to know which keys are out of
sequence.

2-30

KEYDUMP

Provides formatted, structural dump of key file.

The key file dump consists of three items of information for each key value:

1. Key Value The actual value of each key in ascending order

2. Record Pointer The record number (fixed-length files) or word offset (variable-
length files) of the data record to which the associated key value
points.

3. Key Block Address Relative record number of the first record in the key block con-
taining the associated key value, followed within parentheses by
the number of key values in the block. The addresses of key
blocks at different levels are indented.

This dump is very useful for examing the contents of any key file. Since key blocks are physically
scattered throughout the key file, linked by pointers, it is difficult to follow an unstructured dump
of a key file. The KEYDUMP display shows the contents of the key file, not as they are actually
stored, but in a way that makes it much simpler to read than a dump of the actual file.

One key at a time is dumped by KEYDUMP. If there is more than a primary key, you must run
KEYDUMP for each key in order to dump the entire key file.

Note that you can use CNTL/Y (the CNTL key held down while pressing the Y key) to stop display
of this dump at any time. This is particularly useful if you display the dump at the terminal. Usually,
however, you will use the OFFLINE option to list the dump on a line printer (see Parameter
description, below).

You can choose to dump a subset of the key file contents based on the key number or a key value.

You can send the dump to a particular file and, if so, you can sort the key file contents by the re-
cord number in the data file rather than by key value. You can also send the dump to a line printer.

PARAMETERS

filereference Actual file designator identifying the KSAM file whose key file is to be
dumped; either the data file name or the key file name can be specified.
The filereference can be a back reference to a file named in an MPE
:FILE command.
(Optional parameter if no parameters are specified.)

Default: If omitted, the last file referenced is assumed.

2-31

KEYDUMP

SEQ=keysequence

SUBSET=

[-]1position

“string”’

,number

FILE=filename

Specify a particular key whose contents are to be dumped. The
primary key, whatever its location in the data record, is always key
number 1 (SEQ=1). Alternate keys are numbered according to the
order in which they are specified in the BUILD command (or in

ksamparam at FOPEN). The first alternate key is specified as
SEQ=2, the next alternate key as SEQ=3, and so forth.

(Optional parameter.)
Default: If omitied, the primary key is selected.

Select a portion of the key file to dump, based on the numeric position
of the key or the key value, and the number of key values.

Start dump with key whose number is specified. This number is the
same as the key number issued by KEYSEQ. It corresponds to the
position of the key value in the file in ascending sequence. Thus the
first key value is position 1, the second is position 2, and so forth.

The optional minus sign suppresses the normal indentation by key
levels of the key block address display.

Start dump with first key value greater than or equal to the specified
string.

Indicates the number of key values to be dumped starting with the key
at the indicated position or whose value is indicated by “‘string”’.

(Optional parameter.)

Default: If omitted, all the key values for selected keys are dumped.
Direct key file dump to specified disc file. A disc file (filename) will
be created with a record size equal to the size of a key entry, that is
keylength (rounded up to full words) + four words.

The four words are needed for the record pointer (2 words) plus the
key block address (2 words). Note that a new file is always created, so
do not name an exising file.

The file has a default block size of 1K words. Any of the file charac-
teristics except the record size can be changed by a :FILE statement.

For example:

>:FILE FILEDUMP ;REC=,100 ;DEV=TAPE
>KEYDUMP MYFILE ;FILE=*FILEDUMP

These commands dump the primary key sequence to a tape with 100
records per block.

(Optional parameter.)

Default: If omitted, key dump is sent to terminal.

2-32

KEYDUMP

OFFLINE Direct output to a line printer. An MPE :FILE command can be used
to indicate a different output device or a particular line printer.

(Optional parameter.)
Default: If omitted, the dump is sent to the user’s terminal.

SORT Sort dump by record pointers rather than key values. The record
pointers indicate the record number of the records in a data file with
fixed length records or the word offset of the records in a data file

with variable-length records.

Note that this option can be used only when the dump is directed to a
specific file with the FILE= option.

(Optional parameter.)

Default: If omitted, key dump is in ascending sequence by key value.

DUMPING THE KEY FILE

The dump produced by KEYDUMP consists of three columns: the first contains the key value, the
second a pointer to a record number in the data file, and the third contains the key block address
and the number of key values in that block. The key block address is given as the record number of
the first record in any block.

For example, assume that TESTFILE contains an INTEGER type primary key whose values we
want to see. Run KEYDUMP as follows:

:RUN KSAMUTIL.PUB.SYS
>KEYDUMP TESTFILE

The resulting dump consists essentially of three columns: one contains the key values in ascending
sequence, another contains the record number (or word offset if record size is variable) of the as-
sociated record in the data file, and the third gives the record address of the key block. A sample
dump is shown below:

key values in record # (counting from Q)
ascending sequence of the data record in which
KEY REC. PTR/ KEY BLOCK ADR, the key value is located

0001 3 2 (4 relative record # of 1st

0002 5 2 record in key block

0003 6 2 (numbered from zero).

0004 2 2

0005 1 - 6 (2) Number of key values

0006 0 18 (5) in this block.

0007 4 18

0008 9 18 the block located at record
0009 7 18 #6 contains 2 key values; it
0010 8 18 is in a separate column because
0011 10 - 6 it is at a higher level of the key
0012 11 24 (3) block structure.

0013 12 24

0014 13 24

2-33

KEYDUMP

This dump lists under the heading “KEY” 14 integer key values in ascending order from 0001
through 0014. The next column under “REC.PTR.” lists the record number of the data record
associated with the key value — thus, key value 0001 is in record number 3 of the data file (the
fourth record in chronological sequence), and key value 0006 is in the first record in the data file,
record number 0. The third column under “KEY BLOCK ADR.” shows the address of the key
block in which each key value resides. The key block address is shown as the record number of
the first record in the key block. (Note that KSAM key files use fixed length records each one
sector long — 128 words. Thus, the record number is also the sector number. A keyblock consists
of more than one sectors — default is 8 sectors).

Key values are organized into blocks using a B-Tree structure (refer to appendix B for details). This
structure has one or more levels where the first or highest level, is known as the “root’ and lower
levels are “‘leaves”. This dump shows the level structure of the key file by indenting the key block
addresses to correspond to levels. The highest or root level address is in the rightmost column, lower
levels are listed to the left. By looking at the key block address, we see that the key block starting
at record (sector) 6 is the root block, and that there are three key blocks at a lower level whose ad-
dresses start, respectively, at records 2, 18, and 24. This key file has two levels; a key file with more
levels would have correspondingly more columns under the key block address heading.

The first time a key block address is listed, it is followed in parentheses by the number of key val-
ues in that block. Looking at the dump, we see that the block starting at record 2 has 4 key values,
the block at record 6 has 2 values, the block at record 18 has 5 values, and the block at record 24
has 3.

With this dump, we can picture the structure of the key file associated with the file TESTDUMP:

record 2 “Leaf” Blocks “Root” Block

0001 | 0002 | 0003 | 0004

T___. ————————— l@| 0005 T 0011 r

reccrd 18 ' I
|

|

I

|

I

|

0006 | 0007 | 0008 | 0009 | 0010

record 24

0012 | 0013 | 0014

The key values are shown within their key blocks; the dashed lines show the pointers that link key
blocks in ascending sequence.

2-34

KEYDUMP
DUMPING A SUBSET OF THE KEY FILE

If you want to dump a selected number of key values rather than all the values in a key, you can
use the SUBSET option of KEYDUMP. The starting key value can be located in two ways: if you
know the key number of the first key value you want displayed, use the SUBSET=position format;
if you know the actual key value (or a value less than the key value), then you can use the SUB-
SET="*string” format. In either case, the second SUBSET parameter is always an integer that indi-
cates the number of key values you want dumped.

BY KEY NUMBER

The key number is the sequential number associated with each key value in a particular key. If the
KEYSEQ command has listed key numbers that are out of sequence, you may want to dump only
these values. Suppose that TESTFILE has out of sequence values, the following example runs
KEYSEQ first and then runs KEYDUMP to dump the key values shown as out of sequence. (In
order to see the last value in correct sequence, the key preceding the first key out of sequence is
selected as the first key to dump.)

>KS TESTFILE
KEY VALUE # (FOR KEY VALUE OUT OF SEQUENCE)
®

7 \
values used for SUBSET= of KEYDUMP

8
9

TOTAL # OF KEY VALUES READ 14

OF KEY VALUES OUT OF KEY SEQUENCE ORDER @

KEY FILE STRUCTURE DAMAGED, KSAM FILE HAS TO BE RELOADED

>KD TESTFILE ;SUBSET=5‘5\ number of key values out of sequence (plus 1)

key preceding first key # out of sequence

The following dump shows the last key value in sequence followed by the key values that are out
of sequence:

KEY REC.PTR. KEY BLOCK ADR.
1st key out 0005 3 12 (2)
of sequence_’ooo8 9 18 (5)

0007 4 18

0009 7 18

0006 0 18
BY KEY VALUE

The second version of SUBSET= specifies an actual key value followed by the number of key values.
You need not specify the exact key value; it can be a value less than an actual Integer or Double
type key value (approximate match) or only the first part of a Byte type key value (generic match).
For example, suppose TESTFILE has an alternate key that contains names in alphabetic order and
you want to look at the ten key values that start with “GI” or the next greater value. Specify the
following command:

>KD TESTFILE ;SEQ=2 ;SUBSET=“GI",10

T dump Ist 10 values starting with or
1st alternate key greater than “GI”

2-35

KEYDUMP

The dump appears as follows:

KEY REC.PTR. KEY BLOCK ADR.
GIBBS 3 2 (4)
GILLESPIE 12 2
GLADSTONE 4 2

HERTZ 8 2

HIGGINS 0 — 8 (3)
JONES 7 16 (4)
LOOMIS 13 16

MORRIS 5 16

MYERS 6 16

NOLAN 1 - 8

SORTING DUMP BY RECORD POINTER

If you use the SORT option of KEYDUMP, you must also specify FILE=filename, where the spec-
ified file name is that of a disc file. (Note that you must not name an existing file; a new file is cre-
ated for the dump.) In this case, you might also want to suppress the indention of the key block
address levels. To do this, enter the following command:

/—suppress key block address indentation
>KD TESTFILE ;FILE=MYFILE ;SUBSET=-1 ,500 ;SORT ——sort by record pointer

\dump is sent to MYFILE, created with default values

The resulting dump is sent to a disc file MYFILE, created with a default block size of 10 words,
one record per key entry. The key entries are sorted by the pointers to the records in the data file.
Indentation of the key block address is suppressed. The key values, record pointers, and key block
addresses are not converted to ASCII but are dumped to the specified file in binary format. In case
of a file with 500 or fewer key values, the entire file is dumped.

The SORT option is useful if you want to look at key values in terms of the data records to which
the key values point. For example, in order to determine whether any key values are missing, you
can dump all the keys in a file using the SORT option, and compare the record numbers in each
dump to make sure each record has the same number of key values pointing to it.

2-36

KEYINFO

Displays information about the key file, and attempts recovery of a KSAM file in case of system
failure when the file is open.

KEYINFO performs two operations: it collects and displays information about the key file, and
it takes steps to recover the KSAM file in case a system crash occurred when the file was open. The
second operation is performed only after a system crash or if the RECOVER parameter is specified.
The key information displayed by KEYINFO consists of:

L] Number of levels in key block structure:

] Number of key blocks

° Number of sectors per key block

o Number of keys in root block

. Number of keys in all blocks of the key file

] Percent of each key block used

] Largest key block address

The crash recovery performed by KEYINFO depends on the type of damage to the file.

° If MPE end-of-file does not match end-of-file for KSAM data file, KEYINFO resets the MPE
end-of-file to match the KSAM end-of-file.

. If key file contains values that point to records past the KSAM end-of-file, KEYINFO deletes
these key values.

° If the key file end-of-file marker does not match the actual end of the key file, KEYINFO cor-
rects the key file end-of-file marker.

. If records in the data file do not have associated key values in the key file, KEYINFO issues a
warning that key values are missing.

PARAMETERS

filereference Actual file designator of the KSAM file; either the data file name or the
key file name may be specified. The filereference can be a back refer-
ence to a file named in an MPE :FILE command.

(Optional parameter if no parameters are specified.)

Default: If omitted, the last file referenced is assumed.

2-37

KEYINFO

OFFLINE Directs output to the line printer. An MPE :FILE command can be
used to indicate a different output device or a particular line printer.

(Optional parameter.)
Default: If omitted, output is sent to user’s terminal.

RECOVER Forces KEYINFO to perform recovery procedures even though no
system crash occurred.

(Optional parameter.)

Default: If omitted, recovery performed only if system crashed with
file open.

REQUESTING KEY FILE INFORMATION

Information is displayed by KEYINFO for each key in the key file, in key order starting with the
primary key. For example, request KEYINFO for the file DATAFIL which has three keys:

>KI DATAFIL

—Teweeeose INF‘O FOR KEY 1 e meecos -
OF LEVELS OF B=TREE 1

OF KEY BRLQOCKS 1

OF SECTORS PER KEY RLOCK 8

OF KEYS IN ROOT KEY RLOCK 20

OF KEYS IN B=TREE 20

% OF KEY BLOCK UTILIZATION 38,4
THE LARGEST KEY BLOCK ADDRESS 2
eeeswecewes INFO FOR KEY ? meccacaes

OF LEVELS OF B=TRFE 1

OF KEY BLOCKS 1

OF SECTORS PER KEY BLOCK 3

OF KEYS IN ROOT KEY RLOCK 20

4 OF KEYS IN B=-TREE 20

% OF KEY BLOCK UTILIZATION 9.9
THE LARGEST KFY BLOCK ADDPRESS 10
m=eee==== [NFO FOR KEY 3 evcocnnan

OF LEVELS OF B=TREE 1

OF KEY BLOCKS 1

OF SECTORS PER KEY BLOCK §

OF KEYS IN ROOT KEY BLNCK 20

OF KEYS IN B=TREE 20

% OF KEY BLOCK UTILIZATION 13.8
THE LARGEST KEY BLOCK ADDRESS 18
SEXIT

OF LEVELS OF B-TREE - Key files are organized in a structure known as a “B-Tree”. This
structure may have one or more levels (for details refer to appendix B). The file DATAFIL has
only one level.

2-38

KEYINFO

OF KEY BLOCKS - Key values are stored in blocks; this entry gives the total number of key
blocks in the file. DATAFIL has only one key block.

OF SECTORS PER KEY BLOCK - A key block may require one or more 128-word sectors.
DATAFIL uses eight sectors for its key block (the default value).

OF KEYS IN ROOT BLOCK - This specifies the number of key values stored in the root block
(in this case the only block). If this number is equal to the key blocking factor (see KEY BF header
in VERIFY output), then the next key block split will increase the number of levels in the B-Tree
by one. DATAFIL has 20 key values in its root block, and the blocking factor allows 52, 202, or
144 (see VERIFY printout below).

>VERIFY DATAFIL

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?2

KEY FILE=KEYFIL KEY FILE DEVICE=2 SI1ZE= 50 KEYS= 3
FLAGWORD (000000)=RANDOM PRIMARY, FIRST RECORD=0, PERMANENT
KEY TY LENGTH LOC, D KEY BFy LEVEL

blocking factor, keys/block

1 B 30 1y 52 1
2 B 2 31 Y 202 1
3 B 6 33 Y 144 1

OF KEYS IN B-TREE - This is the total number of key values in the key file for each key. This
number should be the same for each key and should also be the same as the number of active re-
cords in the data file (to determine this, use the FCOPY command >FROM=DATAFIL;TO=$NULL
;KEY=0. FCOPY is described later in this section). DATAFIL has 20 key values in each B-Tree,

and this is the same number as the number of active data records (see FCOPY output below).

tRUN FCOPY,PUB,SYS

HP32212A,.3.08 FILE COPIER (C) HEWLETT~-PACKARD CO, 1978

2FROM=DATAFIL; TO=$NULL;KEY=0
EOF FOUND IN FROMFILE AFTER RECORD 19— records numbered from @

20 RECORDS PROCESSED ### 0 ERRORS

% OF KEY BLOCK UTILIZATION - Average percent of use of all key blocks (percent of use means
how much of the block contains key values). Note that the root block of a multi-level tree is omitted
from this average. For multi-level trees the percent is between 50% and 100%, for single-level trees
between 0% and 100%. The higher the percentage, the faster the retrieval of data. But, also the high-
er the percentage, the greater the chance of block splits when records are added. DATAFIL uses
38.4% for its primary key, 9.9% and 13.8% each for its two alternate keys.

THE LARGEST KEY BLOCK ADDRESS - This is the largest key block address found for each

key. The key file end-of-file should never be less than the largest block address for the file plus the
number of sectors per key block. The largest block address for DATAFIL is 18 (the largest block

2-39

KEYINFO

address for DATAFIL is 18 (the largest block address of key 3). Since the number of sectors per
block is 8, the key file end-of-file should be at least 26 (see VERIFY output below).

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?3
DATA FILE = DATAFIL
KEY CREATED=292/°78 10:19: 7.4
KEY CHANGED= 93/°79 14:18: 7,6

KEY ACCESS= 107/°79 12: 0: 2.9
COUNT START=292/°78 10:19:53,6

DATA RECS = 20 DATA BLOCKS= 19 END BLK WDS= 19
DATA BLK SZ= 19 DATA REC SZ= 38 ACCESSORS= 0
FOPEN 2 FREAD 0 FCLOSE 2
FREADDIR 0 FREADC 0 FREADBYKEY 0
FREMOVE 0 FSPACE 57 FFINDBYKEY 0
FGETINFO 2 FGETKEYINFO 1 FREADLABEL 0
FWRITELABEL 0 FCHECK 0 FFINDN 3
FWRITE 20 FUPDATE 0 FPOINT 0
FLOCK 0 FUNLOCK 0 FCONTROL 0
FSETMODE 0

KEYBLK READ 7 KEYBLK WROTE 0 KEYBLK SPLIT 0
KEY FILE EQOF FREE KEY HD 0 SYSTEM FAILURE 0
MIN PRIME 11 MAX PRIME 5 RESET DATE 67/°179
DATA FIXED TRUE DATA B/F 1 TOTAL KEYS 3
FIRST RECNUM 0 MIN RECSIZE 38

key file end-of-file for DATAFIL
RECOVERING AFTER SYSTEM FAILURE

KEYINFO only performs the recovery operations if there has been a system failure or if you spec-
ify the RECOVER parameter.

If there has been a system failure while the KSAM file is open for non-read access, a flag is set that
prevents the file from being opened. Whenever this occurs, KEYINFO must be used in order to re-
set this flag so that the file can be opened. KEYINFO also recovers from any damage done to the
file as a result of the system failure. It resets end-of-file markers for both the data and key files, and
deletes any key values that point to records beyond the data file end-of-file. It also stores in the key
file the user, group, account, and home group of the user who runs KEYINFO to recover the file.
(When there has been a system failure or when KEYINFO is run with the RECOVER option, the
KSAM file is opened for exclusive access; otherwise it is opened for shared access.)

When KEYINFO is run after a system failure, the SYSTEM FAILURE count displayed by option 3
of VERIFY is incremented by 1. If there was no system failure but KEYINFO was run with the
RECOVER option, this count is not incremented.

When KEYINFO resets the “crash” flag, the date of this reset is saved and can be recovered through
the VERIFY command, option 3 under the heading RESET DATE. Note that the NOCHECK op-
tion of VERIFY allows that command to open a KSAM file for read-only access even if a system
failure prevents the file from being opened for all other access.

For example, assume a file TEST that was open when a system failure occurred. In this case, KEY-
INFO must be run. Also, assume the following:

. The data file end-of-file (at the end of the data) is beyond the MPE end-of-file (not yet written
to file when system failed).

. There are key values beyond the key file end-of-file (internal key file EOF).

] There are data values with no associated key values.

2-40

KEYINFO

Running KEYINFO will correct the end-of-file markers and, if any keys point to data records be-
yond the data file end-of-file, it will delete these key values. KEYINFO cannot, however, restore
missing key values. To do this, you must reload the file with FCOPY. To illustrate, KEYINFO op-
erates as shown below:

>KI TEST
RECOVERY BEGINS

DATA FILE EOF DAMAGED reset end-of-file

DATA FILE MPE EOF HAS BEEN RESET TO KsaM gof [[ordetafile

c===ecee-= INFO FOR KEY

4 OF LEVELS OF B-TREE r]

¢+ OF KEY BLOCKS 16

¢ OF SECTORS PER KEY nLOCK 8

4+ OF KEYS IN ROOT KEY BLnCK 14

¢ OF KEYS IN B=TREE 1000

% OF KEY BLOCK VUTILIZATION 52,1

THE LARGEST KEY BLOCK ADDRESS 210

emceeaeee INFo FOR KEY 2 eccomnrmae= # of keys should

match

¢ OF LEVELS oF B=TREE 2

¢ OF KEY BLOCKS 11

+ OF SECTORS PER KEY AaLOCK 8

¢ OF KEYS IN ROOT KEY 8LNCK 9

¢ OF KEYS IN B=TREE 997

& OF KEY BLOCK UTILIZATION 68,6

THE LARGEST KEY BLOCK ADDRESS 202

YARNING: THERE ARE SOME RECORD(S) WITH KEvy VALUE(S) MISSING
OR KEY VALUE(S) POINTING TO DATA RECORD BEYOND EOF

CEY FILE EOF (INTERNAL) DAMAGED
reset key file end-of-file
SEY FILE (INTERNAL)EOF HAS BFEN RESET

cTmanenow KEY SEQUENCE] ercaane=

4+ OF INVALID KEY VALUES DELETED 10 keys pointing to non-existent
weeeeee== KEy SEQUENCE P —— data records are deleted

OF INVALID KEY VALUES DELETED 10

RECOVERY ENOS

JARNINGS THERE ARE SOME RECORD(S) WITH KEY VALUE(S) MISSING
THE KSAM FILE HAS TO BE RELOADED

In this case, the file must be reloaded in order to add the missing key values to the key file. For
a full discussion of recovery procedures in case of system failure, including how to reload your file,
refer to appendix E.

2-41

KEYINFO

USING RECOVER OPTION

Even if a system failure does not occur, you can run KEYINFO with the RECOVER option in order
to check the file structure.

The RECOVER option forces KEYINFO to correct any end-of-file inconsistency, including the key
file end-of-file, and to delete any invalid key values. This option sets the RESET DATE field of the
VERIFY output to the current date, and saves your user name, account, group, and home group,
but does not increment the SYSTEM FAILURE count displayed by VERIFY.

Note that checking each record and key in a file with a lot of data is very time consuming. Therefore
you should not use RECOVER unless it is necessary to reconstitute your file.

For example, use KEYINFO with RECOVER to validate file TEST:

>KI TEST;RECOVER
RECOVERY BEGINS

ewe=wew== INFO FOR KEY] eeevecce-
¢ OF LEVELS OF B=-TREE 1
OF KEY BLOCKS 1
OF SECTORS PER KEY BLOCK 8
OF KEYS IN ROOT KEY BLOCK 10
% OF KEYS IN B=-TREE 10
% OF KEY BLOCK UTILIZATION 4,9
THE LARGEST KEY BLOCK ADDRESS 2
mwece==-= KEY SEQUENCE 1 ===vccec=-
OF INVALID KEY VALUES DELETED 0

RECOVERY ENDS

If you now run VERIFY, using option 3, you will see that the date of recovery is displayed follow-
ing the heading RESET DATE.

>

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)>?3

DATA FILE = TEST VERSION= A,2,4

KEY CREATED= 86/°79 13:55:23.6 KEY ACCESS= 114/°79 14: 1:14,9

KEY CHANGED=114/°79 13:55:48,8 COUNT START= 96/°79 13:55:49,2

DATA RECS = 10 DATA BLOCKS= 9 END BLK WDS= 8
DATA BLK SZ= 8 DATA REC SZ= 16 ACCESSORS= 0
FOPEN 2 FREAD 0 FCLOSE 2
FREADDIR 0 FREADC 0 FREADBYKEY 0
FREMOVE 0 FSPACE 9 FFINDBYKEY 0
FGETINFO 2 FGETKEYINFO 1 FREADLABEL 0
FWRITELABEL 0 FCHECK 0 FFINDN 1
FWRITE 10 FUPDATE 0 FPOINT 0
FLOCK 0 FUNLOCK 0 FCONTROL 0
FSETMODE 0

KEYBLK READ 3 KEYBLK WROTE 1 KEYBLK SPLIT 0
KEY FILE EQF 10 FREE KEY HD 0 SYSTEM FAILURE 0
MIN PRIME 0 MAX PRIME 9 RESET DATE 114/°79
DATA FIXED TRUE DATA B/F 1 TOTAL KEYS 1
FIRST RECNUM 0 MIN RECSIZE 2

2-42

USING KSAMUTIL IN BATCH MODE

A batch job can be developed on the text editor (EDITOR) and then executed with the MPE
:STREAM command. In order to distinguish the MPE commands within a streamed batch job
from those external to the job, an exclamation point (!) is used as the command prefix rather than
a colon (:). KSAMUTIL commands have no command prefix when executed in a batch job.

In the job illustrated in figure 2-1, the first step after job initialization with the !JOB command is
to purge all KSAM and non-KSAM files that will be created within the job. This insures that there
are no files in the account with names duplicating files that will be created programmatically with
the job.

Following initialization, the first program in the job is run. Since this program uses a KSAM file,
MANPN, this file is created with the KSAMUTIL BUILD command before the program is executed.
Note that the program is purged immediately before calling BUILD to create it. This is done to
make sure that no duplicate key or data file exists in the account.

The newly created KSAM file is used in program MAN1, which was previously compiled and is input
from the file CARDIN; output from the program goes to the file REPORT associated with the line
printer. An !EOD command follows the program. If data is entered here rather than from the input
file, then the 'EOD follows the data. Any other programs in the job stream follow the !EOD each
with its own terminating !EOD. The entire job is terminated by an !EOJ command.

Figure 2-1 is an EDITOR listing of a job entered to a file through the EDITOR program. This
job could also have been punched on cards or any other device that accepts jobs, but in that case,
the standard command prefix, the colon (:), would be used. (Refer to the EDIT/3000 reference
manual for instructions on using the EDITOR.)

In order to run this job, you can enter the command:
:STREAM filename
where filename identifies the EDITOR file where the job was saved.
Batch jobs need not be streamed, but can be entered entirely as a card deck or through some other
input device. Streaming allows you to develop and execute the job interactively at your terminal.

For a full discussion of using the :STREAM command to introduce jobs in a session, refer to the
MPE Commands Reference Manual.

2-43

job

initialization job name
job user
introduction account

program

]
e

—'!'JOB BOMP,MGR.MANUF

—

'RUN KSAMUTIL

PURGE MANONE} purges KSAM files

PURGE MANTWO

EXIT

!PURGE MANSHFj' purges non-KSAM files

'PURGE MANSAV

'COMMENT .. RUN MAN! TO GENERATE PART NUMBER FILE, MANPN
'RUN KSAMUTIL.PUB.SYS

PURGE MANPN purge key and data file before creation
BUILD MANPN}REC=-256,1,F,ASCII;:DI SC=59035¢&
KEYFILE=MANPNKEY;KEY=B,24,123 FIRSTREC=1

EXIT t
'FILE CARDIN=#STDIN record in file
'FILE REPORT;DEV=LP;CCTL numbered from
'TELLOP MAN] BEGINNING EXECUTION 1, not 0

'RUN MANte—0 previously compiled program

<DATA>

'EOD

<OTHER PROGRAMS IN BATCH STREAM>

r!EOJ

job

termination

Figure 2-1. EDITOR Listing of Job to be Streamed

2-44

FCOPY UTILITY

FCOPY /3000 is the standard HP 3000 utility program that allows you to copy data from one file
to another, creating a new KSAM file is desired, to copy selected data, to make multiple copies of
the same file, or to display data in a variety of formats. With some exceptions, the same FCOPY
functions used to copy other HP 3000 files can be used to copy KSAM files.

Table 2-4 contains a summary of the FCOPY function parameters that apply to copying KSAM files.
The function parameters: SKIPEOF, IGNERR, and SUBSET alone, are not included in this list since
they are not applicable to KSAM files. Two functions are included that apply only to copying from
KSAM files: these are KEY= and NOKSAM. Otherwise, this table includes all the standard FCOPY
functions. Note that this summary is meant only to refresh your memory and that it assumes a
knowledge of FCOPY. (For a complete description of FCOPY and its operation, refer to the FCOPY/
3000 reference manual.)

RUNNING FCOPY
The FCOPY utility program is executed by the MPE command:
:RUN FCOPY.PUB.SYS
Program FCOPY prompts for command input with a greater-than sign (>) in column 1 of the next
line. You may then enter an FCOPY command in response to the prompt. If you are executing

FCOPY in a batch job rather than in a session, you enter the command (omitting the prompt) in
column 1 of the line following the :RUN FCOPY.PUB.SYS command.

EXITING FROM FCOPY

In order to terminate FCOPY and return to the MPE Operating System, enter the following
command:

>EXIT or >E

2-45

FCOPY
FROM COMMAND

Copies data from one file to another.

The FROM command specifies the file from which data is copied and the file to which it is copied.
It optionally includes one or more function specifications in the functionlist parameter.

PARAMETERS

fromfile Specifies the file to be copied. For a KSAM file this should be the
actual file designator. An asterisk (*), indicating the ‘‘from” file
designated in the immediately preceding FCOPY command should
not be used to copy KSAM files. If fromfile is omitted, the standard
input device $STDIN is assumed.

tofile Specifies the file to receive the data. For a KSAM file this should be
the actual file designator. If tofile is specified as (dfile,kfile) where
dfile is a data file name and kfile is a key file name, a new KSAM file
is created with the same characteristics as the fromfile. The data and
key values are copied from the existing file to the new file excluding
any data records tagged for deletion.

If tofile is omitted, the standard list device $STDLIST is assumed.
Using this device as a “tofile” is a good way to display the contents
of a KSAM file at your terminal during a session and on the line
printer in a batch job.

functionlist One or more keyword parameters separated by semicolons that specify
particular FCOPY functions. (Refer to table 2-4 for a complete list.)

KSAM OPTIONS

Two keyboard options may be used with FCOPY to copy KSAM files: the KEY= option and the
NOKSAM option. These two options are mutually exclusive; they cannot both be specified in the
same FCOPY FROM command. When neither option is specified, the KSAM fromfile is copied to
another file in primary key sequence. This is exactly like copying any HP 3000 file to another with
FCOPY.

Table 2-5 summarizes the results of using, or omitting, the KSAM options KEY= and NOKSAM.

KEY= OPTION. KEY= specifies a key whose value determines the sequence in which the file is
copied. The object of KEY= is a positive integer that identifies the key by its starting character
location in the data file. The indicated key may be either the primary or an alternate key. If the
object of KEY= is zero, then the file is copied in chronological sequence rather than in key sequence.

If KEY= and NOKSAM are both omitted, the KSAM file is copied in primary key sequence. In this

case and in the case where KEY= is specified, only active records, not those tagged for deletion are
copied.

2-46

FCOPY

Table 2-4. FCOPY Functions with KSAM Files

FUNCTIONLIST ENTRY*

ACTION PERFORMED

;KEY=nn

Copy active records from KSAM file in sequence by
key located at nn, if omitted, copy file in primary
key sequence; if nn is zero, copy file in chronological
order. The KSAM EOF is used.

;NOKSAM

Copy all records, including deleted records, from data
file of KSAM file to any other file. Copy is in chrono-
logical sequence; records must be fixed length. The

data file being copied is opened as an MPE file and the
MPE end-of-file is used. Unliess the TO file is an MPE
file created with 1 user label, specify NOUSERLABELS.

NEW

Copy active records and associated key values from
KSAM file to new KSAM file specified as TO=
(dfile kfile).

;EBCDICIN
;BCDICIN

;EBCDICOUT
;BCDICOUT

Translate copied data from EBCDIC or BCDIC code
to ASCII.

Translate copied data from ASCIl code to EBCDIC
or BCDIC.

;UPSHIFT

[,lcolumn]

;SUBSET={ string]
[,EXCLUDE]]

#pattern #

;SUBSET= [first-record] Frecords
:last-record

Convert any copied lower-case characters to upper-
case.

Copy from data file only records containing speci-
fied “'string’’ or #pattern # starting search in specified
column or column 1. |f EXCLUDE specified, copy
all data file records except those containing '‘string’’
or #pattern #

Copy from data file as many records as are specified
in #records starting with first-record; or copy from
first-record through /ast-record inclusive. If first-
record omitted, start at first sequential record in
file; if #records or /ast-record omitted, copy through
last sequential record in file.

:VERIFY [=#errors]

:COMPARE [=#errors]

Verify accuracy of copy where both files are on disc;
terminate if #errors exceeded;

Compare without copying the fromfile to the tofile,;
terminate if differences exceed #errors. Comparison
applies only to KSAM data files.

;OCTAL [;CHAR] [;NORECNUM] [; TITLE="title’']

;HEX [;CHAR] [;NORECNUM] [; TITLE="title"]

[;NORECNUM]
[;TITLE="title"]

. ;OCTAL
;CHAR ["HEX]

Display contents of ““from’’ file as octal images on a
word-by-word basis.

Display contents of ““from’’ file as hexadecimal
images on a word-by-word basis.

Display contents of ““from’” file as character images
on a word-by-word basis.

IGNERR, SKIPEOF, and SUBSET without parameters do not apply to KSAM ““from" files.

2-47

FCOPY

Table 2-5. KSAM Options of FCOPY

OPTION RESULT
KEY= omitted Copy KSAM file in primary key sequence.
KEY=n (n>0) Copy KSAM file in sequence by the key {primary or alternate) located starting

at character n of each data record (counting from first character = 1).

KEY=0 Copy KSAM file in chronological sequence (the sequence in which records were
actually stored in the file); copy excludes records marked for deletion.

NOKSAM Copy the data file of a KSAM file to any file in chronological sequence; copy
includes records marked for deletion.

NOKSAM OPTION. NOKSAM allows you to copy the data file of a KSAM file with fixed-length
records to any MPE file, including KSAM files. All indicated records of the data file are copied, in-
cluding those tagged for deletion. When you copy a file using the NOKSAM option, you should
also specify the NOUSERLABELS option. The only exception to this rule is if the TO file is an
MPE file that you have already created with one user label.

USING FCOPY

FCOPY is useful in order to compact a KSAM file that has many records tagged for deletion. When
a file has been used for a period of time, changes and deletions may result in a high percentage of
inactive records. In order to recover the space occupied by such records, you can copy the file to

a new file with FCOPY. Since FCOPY copies only active records, records that are not tagged for
deletion, the new KSAM file has no unused space embedded among the data records.

FCOPY can also be used to recover records tagged for deletion in a KSAM file. The FCOPY
NOKSAM option copies all records including those tagged for deletion. The first two characters
of such records will contain the delete code rather than their original values, but otherwise are
recovered intact. This can be a useful feature in order to recover records deleted by mistake.

Another use of FCOPY is to reload data from a damaged file to a new file. This may be required

as a result of a system failure. If you decide to reload a KSAM file following a system failure, you
should first run the KEYINFO command of KSAMUTIL to reset the end-of-file markers and delete
any invalid key values. If the file is still damaged and you choose to reload it, you should use
FCOPY to transfer existing records to a new undamaged KSAM file. In this case, you use the
KEY=0 option rather than the NOKSAM option, unless you want to keep all the deleted records
or the key file was lost.

FCOPY WITH NO OPTIONS. Assume a file named KSAMFILE created with one primary key, an
integer located at character 21. Since many records were tagged for deletion in the file, it is time to
copy the active records to a new file. You may either create a new KSAM file with the BUILD com-
mand as shown in example 1, or use FCOPY to create the new KSAM file as shown in example 2.

In either case, you should purge the original file (KSAMFILE in the examples) and then rename the
new file (KSAMFILZ2) with the data and key file names of the original file so that any programmatic
references to the file need not be changed.

You may also use FCOPY to create an empty KSAM file with all the characteristics of an existing
file, but with no data. The method for doing this is shown in example 3.

2-48

FCOPY

1. Create new file with BUILD:

tRUN KSAMUTIL.PUB.SYS
>BUILD KSAMFIL2SKEYFILE=KFIL2;KEY=1,21,2 «——— create ‘“to” file
>EXIT

>FROM=KSAMFILES TO=KSAMFIL2 < copy in primary key sequence
>EXIT

tRUN KSAMUTIL.PUB.SYS

>PURGE KSAMFILE« purge “from” file after copy

KSAMFILE.KSAM.DATAMGT & KFILE PURGED
>RENAME KSAMFIL2,KSAMFILE

>RENAME KFIL2,KFILE

>EXIT

.
.

2. Use FCOPY to create new file:

:RUN FCOPY,PUB,SYS

>FROM=KSAMFILE; TO=(KSAMFIL2,KFILE?2)
>EXIT

:RUN KSAMUTIL,PUB,SYS

>PURGE KSAMFILE

KSAMFILE ,KSAM,DATAMGT & KFILE PURGED
>RENAME KSAMFIL2,KSAMFILE

>RENAME KFILE2,KFILE

>EXIT

rename copied file with old file names

You may specify the ;NEW function in the FCOPY FROM command for purposes of document-
ation. Its inclusion or omission does not affect the command in any way.

This method not only creates the new KSAM file, but also copies all the data from the exising file
to the new file (except records marked for deletion). Example 3 below, shows how you can create
a KSAM file with exactly the same specifications as an existing file but with no data.

3. Use FCOPY to build a new file with no data:

:RUN FCOPY.PUB.SYS
>FROM=KSAMFILE; TO=(KSAMFIL3,KFILE3); SUBSET=1,0=—— copy 0 records
0 RECORDS PROCESSED *** 0 ERRORS

The new file, KSAMFIL3, is created with exactly the same specifications as the existing file
KSAMFILE, but with no data. This is easier than building the file with the BUILD command,
but should be used only if the new file is to have keys in the same position and the same length
as the existing file.

Following any of these operations, only active records are contained in the new KSAM files. These
records are stored in primary key sequence in the data file; that is, the new chronological and the
primary key sequences are the same. If you prefer to maintain the original chronological sequence,
then you can use the KEY=0 option.

2-49

2-49a MAY 1981

FCOPY

4. Use FCOPY to add data to an existing file:

Before running FCOPY to add new records to a file that contains data, make sure that file
(the TO file) is opened for either APPEND or INOUT access. Otherwise, FCOPY will open the
TO file for write-only access causing the end-of-file to be reset to zero and any existing data to

be lost. For example:

:FILE A = KSAMFILE,OLD ;ACC = APPEND
or
ACC = INOUT
:RUN FCOPY.PUB.SYS
>FROM = NEWDATA ;TO = *A

The data in the file NEWDATA is appended to the data in the existing file, KSAMFILE, in
primary key sequence (the default).

MAY 1981 2-49b

FCOPY

FCOPY WITH KEY = OPTIONS.

1.

Assume that a company’s employee records have been maintained in sequence by social-
security-number in a KSAM file, EMPLOY, but a new policy requires that they be maintained
in sequence by employee number. FCOPY can be used to transfer the data to a new file,
EMPLOY?2, in which all employees are re-ordered by their unique employee numbers.

Assume EMPLOY was created with the following command:

tRUN KSAMUTIL.PUB.SYS
>BUILD EMPLOY3REC=32023KEYFILE=EMPKEY &
> KEY=B,3,115& primary key (social-security-number)

3 KEY=B, 14,55 & alternate key (employee number)
> KEY=B, 19, 32, , DUP+——alternate key (name)
>EXIT

Before copying and resequencing file EMPLOY, a new KSAM file is built:

tRUN KSAMUTIL.PUB.SYS
>BUILD EMPLOY23REC=30030;KEYFILE=EMPKEY2; &

> KEY=B,14,55 & primary key (employee number)
> KEY=B, 19, 3%, » DIIP<~——alternate key (name)
>EXIT

There is no need for the new key file to retain the same structure as the key file of the copied
file. The primary key in EMPLQY has been dropped from EMPLOY 2; although the social-
security-number remains in the data file, it is no longer a key. An alternate key in EMPLOY,
the employee’s identification number, is the primary key in EMPLOY?2.

Once the new KSAM file has been created, you can copy the old file EMPLOY to the new file
EMPLOY2 in the new sequence:

tRUN FCOPY.PUB.SYS
>FROM=EMPLOY; TO=EMPLOY23KEY=14
>EXIT

column number of key used to sequence EMPLOY2

To avoid changing programs that reference the file EMPLOY, you can rename EMPLOY 2 with
the name EMPLOY, first purging the old file EMPLOY:

sRUN KSAMUTIL.PUB.SYS
>PJRGE EMPLOY
KSAMFILE EMPLOY.KSAM.DATAMGT & EMPKEY PURGED

>RENAME EMPLQOY2, EMPLOY rename data file
>RENAME EMPKEY2, EMPKEY rename key file
>EXIT

2-50

FCOPY

2. Another use of FCOPY is to copy a selected portion of one KSAM file to another. For
example, using the same file EMPLOY used in previous examples, you can copy all the
employee records whose last names begin with the letter A into a new file sequenced by
employee name:

:RIIN KSAMUTIL.PUJB.SYS

>BUILD EMPLOYASKEYFILE=AKEY;KEY=B,19,32,,DUr
>EXIT

tRUN FCOPY.PURB.SYS
>FROM=EMPLOY; TO=EMPLOYA; KEY=19; SUBSET="A",19
>EXIT

The new file EMPLOY is sequenced by the key starting in column 19 (employee name) and
only contains records for employees whose last names start with A.

3. If you want to copy the KSAM file in chronological sequence, you can use the KEY=0 option.
Since this option copies only active records, it can be used to compact a file in which many
records are tagged for deletion while retaining the chronological order in which the file was
created. It is also the preferred option for reloading a KSAM file after a system failure.

Assume the new file EMPLOYX has the identical structure to the file EMPLOY used in the
previous examples:

tRIIN FCOPY.PITR.SQYS
>FROM=EMPLOY; TO=EMPLOYX; KEY=7
SEXIT

The new file is identical in its chronological sequence to the old file, but contains only active
records.

4. To find out how many records are currently active in a KSAM file, you can use FCOPY as
follows:

:RUN FCOPY.PUB.SYS

>FROM=KSAMFILE ;TO=$NULL
N RECORDS PROCESSED *** 0 ERRORS (where N is the number of active records
in the KSAM file)

>EXIT

Only the active records (those not marked for deletion) will be listed as present in the file.
(You can also calculate the number of active records by looking at the VERIFY listing, option
3, and subtracting the number of FREMOVEs from the FWRITES.)

FCOPY WITH NOKSAM OPTION.

1. Using NOKSAM, you can copy the data file of a KSAM file to another file. The records are
copied in chronological sequence. Since NOKSAM copies records marked for deletion as well
as active records, it provides a method for recovering the data in any records marked for
deletion. For example, if certain records in file EMPLOY were incorrectly marked for
deletion, the NOKSAM option could be used to copy the entire data file to a new file includ-
ing the inactive records.

Using the SUBSET parameter of FCOPY, you can copy only those records marked for deletion.
In the following example, all deleted records are listed on the line printer:

MAY 1981 2-51

FCOPY

pattern of all 1’s in 1st 2 characters

:FILE X3;DEV=LP

:RUN FCOPY.PUB.SYS

>FROM=EMPLOY; TO=%X3 SUBSET=#2377,%377#.,13;NOKSAM; OCTAL3 CHAR; NORECNUM; &
>TITLE="RECORDS DELETED FROM THE FILE, EMPLOY'

When records are deleted from a KSAM data file, a pattern of all 1’s is written to the first two
characters of the deleted record. (In each character this pattern can be represented as the
octal value %377.) If you want to be able to recover key data from deleted records in this
manner, you should avoid placing key data in the first two characters of a data record.

Note that you should not use the NOKSAM option to copy a KSAM file with variable-length re-
cords to another KSAM file. Also, if NOKSAM must be used to reload a file after a system crash
(for instance, because the key file was lost), you should use the SUBSET option to copy only valid
records. Normally, you use the KEY=0 option to reload KSAM files after a system failure.

(Refer to appendix E, Recovery From System Failure, for a full discussion of using FCOPY to re-
load a KSAM file following a system failure.)

DISPLAY COPIED FILES ON $STDLIST. When you omit the “to” file from the TO= specifica-
tion, the standard output device is assumed. This allows you to list the contents of the KSAM file
at your terminal in a session or on the line printer in a job.

Assume the file JINAMES with a primary key (last name) starting in character 11 and three alternate
keys: a phone number starting in character 21, a city name starting in character 53, and a zip code
starting in character 67.

1. If KEY= is omitted, the file is listed in primary key order:

>FROM=JNAMES; TO=)

JEANNE ALOGICAL 226-7295 4942 COUSIN CT SUNNYVALE 95354
»OLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE 95239
ANNA FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE 95131
ANNE HOWVE 372-4328 6547 EXUBERANCE WY CAMPRELL 95112
HY KUJVERSE 267-8961 657 LOTUS BLOSSOM WY SAN JOSE 95136
ANNA — LOGUE 224-8934 1737 INVERSE WY MOUNTAIN VIEW 95251
ARTHURT MOMITER 443-5346 1554 MERCURY ST MILPITAS 94173
CLARA NETTE 243-4493 2667 GOODMAN DR ALVISO 95143
RHEA PREYSELLE 365-8551 14879 REVIEW ROAD SAN JOSE 95272
KI'RT REMARAUE 243-17243 34 BRIEF ST MILPITAS 94962
MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112
TRUDY TEKTIFF 255-1445 17155 POIROT PL CAMPBELL 35121

EOF FOUND IN FROMFILE AFTER RECORD 11

12 REC|ORDS PROCESSED **% 3 ERRORS

ascending order by primary key

Use SUBSET to list selected portions of the file, for example, to list the first two records in
primary key sequence:

>FROM=JNAMES; TO0=3KEY=11; SUBSET=0,2
JEANNE ALOGICAL 226-08295 4942 COUSIN CT SUNNYVALE 35854
POLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE 95338

2 PECORDS PROCESSED ***x @ ERRORS

2-52 MAY 1981

FCOPY

2. If KEY=“primary key location”, the file is listed in primary key order:

>FROM=JNAMES; TO=3KEY=11

JEANNE ALOGICAL 226-2295 4942 COUSIN CT SUNNYVALE 95854
POLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE 95330
ANNA FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE 95131
ANNE HOWE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112
HY KUVERSE 267-8961 650 LOTUS BLOSSOM WY SAN JOSE 95136
ANNA LOGUE 224-8934 1737 INVERSE WY MOUNTAIN VIEW 95851
ARTHUR MOMITER 443-5346 1554 MERCURY ST MILPITAS 94173
CLARA NETTE 243-4493 2667 GOODMAN DR ALVISO 95143
RHEA PREYSELLE 365-8551 18879 REVIEW ROAD SAN JOSE 95879
KURT REMARQUE 243-1043 34 BRIEF ST MILPITAS 94862
MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112
TRUDY TEKTIFF 255-19@85 17155 POIROT PL CAMPBELL 95121

EOF FOUND/IN FROMFILE AFTER RECORD 1!

12 RECORDS\PROCESSED *** @ ERRORS

byte location 11 (same sequence as previous example)

8. If KEY="‘“alternate key location™, the file is listed in sequence by that key:

>FROM=JNAMES; TO=3 KEY=67

KURT REMARQUE 243-1043 34 BRIEF ST MILPITAS /64@62
ARTHUR MOMITER 443-5346 1554 MERCURY ST MILPITAS 24173
POLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE 95339
ANNA LOGUE 224-8934 17@7 INVERSE WY MOUNTAIN VIEW| 95851
JEANNE ALOGICAL 226-9295 4942 COUSIN CT SUNNYVALE 95854
RHEA PREYSELLE 365-8551 14879 REVIEV ROAD SAN JOSE 95870
ANNE HOVE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112
MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112
TRUDY TEKTIFF 255-1885 17155 POIROT PL CAMPBELL 95121
ANNA FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE 95131
HY KUVERSE 267-8961 659 LOTUS BLOSSOM WY SAN JOSE 95136
CLARA NETTE 243~4493 2667 GOODMAN DR ALVISO \35!43

EOF FOUND IN FROMFILE AFTER RECORD 11

12 RECORDS PROCESSED *** (3 ERRORS

output in ascending order ———
by key in byte location 67

Use SUBSET= to list all the records with the characters “SUNNYVALE?” starting in column 53;
sequence is by alternate key in location 67:

>FROM=JNAMES3 TO0=3KEY=6735 SUBSET="SUNNYVALE",53

JEANNE ALOGICAL 226-9295 4942 COUSIN CT SUNNYVALE 95854
MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112
EOF FOUND IN FROMFILE AFTER RECORD 1!

2 RECORDS PROCESSED ***x @ ERRORS

2-53

FCOPY

Another example using SUBSET= lists five records starting with the fourth record; sequence

is by alternate key in location 67: records numbered from 0

>FROM=JNAMESS TO=;KEY=67; SUBSET=3,5

ANNA LOGUE 224-8934 1787 INVERSE WY MOUNTAIN VIEW 95851
JEANNE ALOGICAL 226-9295 4942 COUSIN CT SUNNYVALE 95854
RHEA PREYSELLE 365-8551 18789 REVIEW ROAD SAN JOSE 95970
ANNE HOWE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112
MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112

5 RECORDS PROCESSED **x @ ERRORS

4. If KEY=0, the file is copied in chronological order:

>FROM=JNAMES; TO=3;KEY=0

ARTHUR MOMITER 443-5346 1554 MERCURY ST MILPITAS 94173
TRUDY TEKTIFF 255-1985 17155 POIROT PL CAMPBELL 95121
ANNA LOGUE 224~-8934 1727 INVERSE WY MOUNTAIN VIEW 95051
CLARA NETTE 243-4493 2667 GOODMAN DR ALVISO 95143
ANNE HOWVE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112
JEANNE ALOGICAL 226-8295 4942 COUSIN CT SUNNYVALE 95054
HY KUJVERSE 267-8961 650 LOTUS BLOSSOM WY SAN JOSE 95136
MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112
ANNA FORA 253~5246 9283 TROCHAIC TRAIL SAN JOSE 95131
POLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE 95339
RHEA PREYSELLE 365-8551 18879 REVIEW ROAD SAN JOSE 95879
KURT REMARAQUE 243-1043 34 BRIEF ST MILPITAS 947262

EOF FOUND IN FROMFILE AFTER RECORD 11

12 RECORDS PROCESSED *** ¢ ERRORS

2-54

:STORE
:STORE AND :RESTORE COMMANDS

The :STORE and :RESTORE commands are used primarily to provide back-up for user disc files.
The file or set of files is copied to magnetic tape or serial disc by the :STORE command in a special
format that permits the serial device to be read back onto disc with the :RESTORE command. The
use of these two commands for KSAM files is identical to their use with any HP 3000 files. (Refer to
the MPE Commands Reference Manual for a complete description of the :STORE and : RESTORE
commands.)

STORE

Stores KSAM file on magnetic tape or serial disc.

This command is used to store one or more disc files onto magnetic tape or serial disc. When used
to store KSAM files, both the data file and the key file must be specified.

PARAMETERS

filereferencel Actual file designator of data file; specified in the following format:

filename [/lockword] [.groupname [.accountname]]

where each subparameter is a name consisting of from 1 to 8 alpha-
numeric characters beginning with a letter.

(Required parameter for KSAM files.)

filereference?2 Actual file designator of key file; specified in exactly the same format
as filereferencel.

(Required parameter for KSAM files.)

storefile Name of destination device file onto which the stored files are writ-
en. This can be any magnetic tape or serial disc file from the output
set. This file must be referenced in the back-reference (*) format;

this format references a previous :FILE command that identifies the
file as a magnetic tape or serial disc file.

(Required parameter.)

SHOW Request to list names of file stored. If SHOW is omitted, total number
of files stored, names of files not stored, and number of files not
stored are listed.

(Optional parameter.)

2-55

STORE

FILES=maxfiles Maximum number of files that may be stored. If omitted, 4000 is
specified by default.

(Optional parameter.)

USING THE :STORE COMMAND

Before issuing a :STORE command, you mustidentify the storefile as a magnetic tape or as a serial
disc with the :FILE command using the following format:

:FILE formaldesignator [=filereference] ;DEV=device
The device parameter must indicate the device class name or logical unit number of a magnetic tape

or serial disc unit. All other parameters for storefile are supplied by the :STORE command executor;
if you attempt to supply any of these yourself, MPE rejects the :STORE command.

If you press the BREAK key during the store operation, the operation stops after storing the cur-
rent file and further output is suppressed.

For example, to copy KSAM file KSAMDATA to a magnetic tape file named SAVEFILE

:FILE T=SAVEFILE;DEV=TAPE
:STORE KSAMDATA,KSAMKEY; *T

data file key file
Note that both the data and key file must be specified in order to store the entire KSAM file.
If you want to copy this same file to a serial disc, use the following command sequence:

:FILE SD=SAVEFILE; DEV=SDISC
:STORE KSAMDATA, KSAMKEY; *SD

2-56

RESTORE

Restores KSAM file from magnetic tape or serial disc.

Restores to disc, one or more files stored off-line to magnetic tape or serial disc by the :STORE
command. To restore a KSAM file, both the data file and the key file names must be specified.

PARAMETERS

restorefile Name of magnetic tape or serial disc file on which files to be re-
trieved now reside. This file must be referenced in the back-refer-
ence (*) format; this format references a previous : FILE command
that defines the file as a magnetic tape or serial disc file. A message
is output to the Console Operator requesting him to mount the
magnetic tape or serial disc platter identified by the filereference
parameter in the : FILE command, and allocate the tape unit or
disc platter to you.

(Required parameter.)

filereferencel Actual file designator identifying the KSAM data file, specified in the
format:

filename [/lockword] [.groupname [.accountname]]

where each subparameter is a name consisting of from 1 to 8 alpha-
numeric characters beginning with a letter.

(Required for KSAM files.)

filereference2 Actual file designator identifying the KSAM key file, specified in the
same format as filereferencel.

(Required for KSAM files.)

KEEP Specification that if a file referenced in the :RESTORE command
currently exists on dise, the file on disc is kept and the corresponding
file on tape or serial disc is not copied into the system. If KEEP is
omitted, and an identically-named file exists in the system, that file
is replaced with the one on the tape or serial disc. If KEEP is omitted,
and a file on tape or serial disc is eligible for restoring and a file of the
same name exists on disc, and this disc file is busy, the disc file is kept
and the tape or serial disc file is not restored.

(Optional parameter.)

DEV=device Device class name or logical number of device on which files are to be
restored. (This name is also written on the label of each file restored.)
If you omit this parameter, MPE attempts to replace the files on a de-
vice of the same class (or logical device number) as that of the device
on which the file was created. If this attempt fails, perhaps because
the device class specified does not exist or the tape or serial disc was
created on a previous version of this computer, MPE attempts to

2-57

:RESTORE

replace each file on a disc of the same type (fixed or moving -head)

and subtype as that on which it was created. If this fails, MPE attempts
to restore the file to a device of class name DISC. If this fails, the file
is not restored. If the KSAM file was created with the data file and the
key file on different devices, then RESTORE twice using different
DEV=device in each RESTORE.

(Optional parameter.)

SHOW Request to list names of restored files. If you omit SHOW, only total
number of files restored, list of files not restored (and the reason each
was not restored), and count of files not restored, are listed.

(Optional parameter.)

FILES=maxfiles Maximum number of files that may be restored. If omitted, 4000 is
assigned by default.

(Optional parameter.)

USING THE :RESTORE COMMAND

Before issuing a :RESTORE command you must identify tapefile as a magnetic tape or serial disc
file with the :FILE command:

:FILE formaldesignator [=filereference] ;DEV=device

The device parameter must indicate the device class name or logical unit number of a magnetic tape
or a serial disc unit. No other parameters than these may be supplied. If you attempt to supply
more, the :RESTORE command is rejected.

To retrieve from the magnetic tape file SAVEFILE, the KSAM file KSAMDATA that includes data
file (KSAMDATA) and key file (KSAMKEY):

:FILE T=SAVEFILE; DEV=TAPE
:RESTORE *T; KSAMDATA,KSAMKEY; KEEP;DEV=DISC;SHOW

To retrieve this same file from the serial disc STORDISC, enter the commands:

:FILE SD=STORDISC; DEV=SDISC
:RESTORE*SD; KSAMDATA, KSAMKEY; KEEP; DEV=DISC; SHOW

Note that both the data file and the key file must be specified in order to restore the entire KSAM
file.

If the KSAM file currently saved on magnetic tape or serial disc was originally created with the
data file resident on one device and the key file resident on a different device, then this capabil-
ity can be retained only if you RESTORE twice using different DEV= specifications in each
command.

For example:

:FILE T;DEV=TAPE
:RESTORE *T; KSAMDATA;DEV=DISCONE
:RESTORE *T; KSAMKEY; DEV=DISCTWO

Upon successful completion, KSAMDATA will be restored from tape file T to a device class identi-
fied as DISCONE, and KSAMKEY will be restored from tape file T to a device class identified as
DISCTWO. You would do this only in the case where the file was originally created using the
BUILD command specification DEV=DISCONE for the data file, and KEYDEV=DISCTWO for the
key file.

2-58

USING KSAM FILES IN COBOL
PROGRAMS |

OVERVIEW

KSAM files are accessed from COBOL programs through calls to a set of procedures. These proce-
dures allow you to open, open for shared access, write records to, read records from, lock, unlock,
update, position, and close a KSAM file. (Refer to table 3-1 for a list of the procedures and their
associated functions.) The COBOL procedures provided with KSAM/3000 correspond to the
INDEXED I-O module statements in COBOL 74.

Note: The following applies when using KSAM with COBOL.

° The KSAM file must be created with KSAMUTIL’s > BUILD command.

™ To access a KSAM file in chronological order, the KSAM file must be copied to a non-KSAM
file.

° KSAM permits duplicate primary keys as an extension to the ANSII standards.

In HP COBOL/3000, the procedures that are used to access KSAM files differ in form from the
COBOL input/output statements used to access non-KSAM files. The KSAM interface procedures
use parameters for information that would otherwise be specified in the FILE-CONTROL para-
graph and the FD entry of the DATA DIVISION. These parameters are themselves defined in the
WORKING-STORAGE section of the DATA DIVISION. The main restriction on the KSAM inter-
face call parameters is that they must start on word boundaries.

MAY 1981 3-1

Table 3-1. KSAM Procedures for COBOL Interface

PROCEDURE

NAME PARAMETERS FUNCTION PAGE

CKCLOSE filetable Terminates processing of KSAM file identified by 3-12
status filetable.

CKDELETE filetable Logically removes record from KSAM file: deleted 3-13
status record is identified by previous read.

CKERROR status, Converts numeric value returned in status to char- 3-17
result acter string result.

CKLOCK filetable Dynamically locks file opened for shared access, 3-18
status conditionally depending on /ockcond.
lockcond

CKOPEN filetable Initiates processing of file named in filetable; 3-20
status returns file number to first word of filetable.

CKOPENSHR filetable Initiates processing with dynamic locking and shared 3-25
status access of file named in filetable.

CKREAD filetable Reads next sequential record from KSAM file iden- 3-26
status tified by filetable into record.
record
recordsize

CKREADBYKEY filetable Reads into record first record with a key in location 3-29
status keyloc whose value matches that of key, from KSAM
record file identified by filetable.
key
keyloc
recordsize

CKREWRITE filetable Replaces last sequential record read by CKREAD, 3-32
status or replaces record whose primary key matches the
record value of key item in record, with the contents of
recordsize record.

CKSTART filetable Positions record pointer in preparation for a sequen- 3-36
status tial read to the first record with a key in location
relop keyloc whose value has the relation relop to the
key value of key.
keyloc
keylength

CKUNLOCK filetable Unlocks file dynamically locked by CKLOCK. 3-40
status

CKWRITE filetable Writes record of length recordsize from record to a 3-42
status KSAM file identified by filetable.
record
recordsize

CALLING A KSAM PROCEDURE

The KSAM interface procedures (refer to table 3-1 for a complete list) are called using a CALL
statement of of the following general form:

CALL “name” USING filetable,status [,parameter|[, ...]]

Where:

“name” identifies the procedure to which control is transferred.

filetable an 8-word table that identifies the file by name and in which access
mode and input-output type are specified, and to which is returned
the file number on open, and a code identifying the previous operation.

status one word to which a two-character code is returned that indicates the
status of the input/output operation performed on the file by the called
procedure.

parameter one or more parameters, depending on the particular procedure called,

that further define operations to be performed on the file.

The first two parameters, filetable and status, are included in every KSAM procedure call except
CKERROR; other parameters may be specified depending on the particular procedure. If a param-

eter is included in the procedure format, then it must be included in the procedure call. All param-
eters are required.

Another characteristic of KSAM procedure call parameters is that they must always start on a word
boundary. In order to assure this, the parameters should be defined in the WORKING-STORAGE
SECTION as 01 record items, 77 level elementary items, or else the SYNCHRONIZED clause
should be included in their definition.

A literal value cannot be used as a parameter to these procedures. Any value assigned to a data
item used as a parameter is passed to the procedure, but a literal value causes an error.

Depending on the procedure, certain data items may be assigned values as a result of executing the
procedure.
NOTE
There are no COBOL procedures to read a KSAM file in chrono-
logical order or to access a record by its chronological record

number. (Chronological order is the order in which the data rec-
ords were written to the file.)

3-3

FILETABLE PARAMETER

The first parameter in every KSAM procedure call must be filetable, a table describing the file and
its access. This table is defined in the WORKING-STORAGE SECTION of the COBCL program.
It requires eight words as illustrated in Figure 3-1.

Word

filenumber

P —— ——— —— — . — — —— —— . —— — — . —— — —

— — —— e— ,——— —— ————— . ——— —t e

input-output type

access mode

0 N O AW N

lock/unlock

previous operation

filenumber

filename

input-output type

access mode

Figure 3-1. Filetable Structure

A number identifying the file returned by the CKOPEN procedure
after the file named in words 2-5 has been successfully opened. After
the file is closed by CKCLOSE, filenumber is reset to 0. (This number
should be set to zero when the file table is initially defined.) It must
be defined as a COMPUTATIONAL item.

The name of the KSAM file. This name is the actual designator
assigned to the file when it is created with the KSAMUTIL BUILD
command; filename may be a formal designator if it is equated to
the actual designator in a : FILE command.

A code that limits the file access to input only, output only, or allows
both input and output:

0 = input only

1 = output only

2 = input-output

It must be defined as a COMPUTATIONAL item.

A code that indicates how the file will be processed: sequentially only,
randomly only, or either (dynamically):

0 = sequential only

1 = random only

2 = dynamic (sequential or random)

It must be defined as a COMPUTATIONAL item.

FILETABLE

previous operation A code in the right byte of word 8 of the file table indicating the
previous successful operation:

0 = previous operation unsuccessful or there has been no previous
operation on this file

1 = CKOPEN successful

2 = CKSTART successful

3 = CKREAD successful

4 = CKREADBYKEY successful

5 = CKDELETE successful

6 = CKWRITE successful

7 = CKREWRITE successful

8 = CKCLOSE successful

9 = CKOPENSHR

This field should be set to zero when the file table is initially defined

and thereafter should not be altered by the programmer. It must be

defined as a COMPUTATIONAL item.

lock/unlock A code in the left byte of word 8 of the file table that indicates
whether a CKLOCK or CKUNLOCK has been performed success-
fully since the operation specified in previous operation:

10 = CKLOCK successful
11 = CKUNLOCK successful

EXAMPLE

A sample file table definition might be:

WORKING-STORAGE SECTION.

01 KSAMFILE.

02 FILENUMBER PIC S9(4) COMP VALUE 0.
02 FILENAME PIC X(8) VALUE “KSAMFILE”.

02 I-O-TYPE PIC S9(4) COMP VALUE 0.
02 A-MODE PIC S9(4) COMP VALUE 0.
02 PREV-OP PIC S9(4) COMP VALUE 0.

The file table identifies a file created with the name KSAMFILE as a file to be opened for sequential
input only. The values of I-O-TYPE and A-MODE can be changed following a call to CKCLOSE for
the file.

STATUS PARAMETER

The status parameter is a two-character item to which the status of the input-output operation is
returned. It is always the second parameter in a KSAM procedure call. The status parameter must
be defined in the WORKING-STORAGE SECTION of the COBOL program.

Status consists of two separate characters: the left character is known as status-key-1, and the right
is known as status-key-2.

,—— left character ——V—right character —\

“‘status-key-1”’ “status-key-2” <~————— status word

The possible combinations of the left and right characters of parameter status are shown in Table
3-2. The values of status-key-2 (the right character) shown in the table are the only valid values

for status-key-2.

Table 3-2. Valid status Parameter Character Combinations

If left character of status
(status-key-1) equals:

Then right character of status
(status-key-2) may equal:

0" (successful completion)

0" (no further information)

2" (duplicate key)

“1" (at end)}

“0" (no further information)

2" (invalid key) “1" (sequence error)

#2'" (duplicate key)

“3" (no record found)

“4" (boundary violation)

“3" (request denied) “0" (lock denied)

1" {unlock denied)

“n" where n is the MPE file system
error code.

“9" (file system error)

Combining status-key-1 with status-key-2, the following values may be returned to the status param-
eter as a whole:

“00” Successful completion —

The current input/output operation was completed successfully; no
duplicate keys were read or written.

If status

= “02” Successful completion; Duplicate key —
For a CKREAD or a CKREADBYKEY call, the current alternate key
has the same value as the equivalent key in the sequentially following
record; duplicate keys are allowed for the key. For a CKWRITE or
CKREWRITE call, the record just written created a duplicate key
value for at least one alternate key for which duplicates are allowed.

3.6 MAY 1981

If status

= “«“10”

- “21”

= “227’

= 4‘23”

YR

“g0”

]

“gq”

= “gn),

STATUS

At End condition —

In a sequential read using CKREAD, no next logical record was in the
file.

Invalid key; Sequence error —

A call to CKWRITE attempted to write a record with a key that is not
in sequentially ascending order, to a file opened for sequential access.

A call to CKREWRITE was attempted but the primary key value was
changed by the program since the previous successful call to CKREAD.

Invalid key; Duplicate key —

An attempt was made to write or rewrite a record with CKWRITE or
CKREWRITE and the record would create a duplicate key value for a
key where duplicates are prohibited.

Invalid key; No record found —

An attempt was made with CKSTART or CKREADBYKEY to access
a record identified by key, but no record is found with the specified
key value at the specified location.

Invalid key; Boundary violation —

An attempt was made with a call to CKWRITE to write past the ex-
ternally defined boundaries of the file; that is, to write past the
end-of-file.

Lock denied —

An attempt was made to lock a file already locked by another process;
or file was not opened with dynamic locking allowed.

Unlock denied —

An attempt was made to unlock a file with CKUNLOCK, but the file
had not been locked by CKLOCK.

File system error —

A call to an input/output procedure was unsuccessful as a result ofa
file system error, not one of the error conditions defined for the other
status values. The value of status-key-2 (n) is a binary number between
0 and 255 that corresponds to an MPE file system error code (refer

to table A-1 in appendix A). To convert this binary value to numeric
display format, call the CKERROR routine (described next in this
section).

3-7

STATUS

USING STATUS

The value of status can be tested as a whole, or the two characters can be tested separately as
status-key-1 and status-key-2. In any case, the status of each call should be tested immediately
following execution of the call. Unless the first character of status = “‘0”, the call was not
successful.

For example, a sample status parameter definition might be:

WORKING-STORAGE SECTION.

01 STAT.
02 STATUS-KEY-1 PIC X.
02 STATUS-KEY-2 PIC X.

These items can then be referenced in the PROCEDURE DIVISION. For example: to test only
the first character:

IF STATUS-KEY-1 NOT = “0” THEN
GO TO “ERROR-ROUTINE”.

To test the entire status word:

IF STAT = “23” THEN
DISPLAY “RECORD NOT FOUND”’.

Note that the word STATUS is reserved.

3-8

KSAM LOGICAL RECORD POINTER

Many of the KSAM procedures use a logical record pointer to indicate the current record in the
file. This pointer points to a key value in the key file that identifies the current record in the data
file. The particular key used, if the file has more than one key, is the key specified in the current
procedure or the last procedure that referenced a key.

Procedures that use pointers are either pointer-dependent or pointer-independent. Pointer-depend-
ent procedures expect the pointer to be positioned at a particular record in order to execute cor-
rectly. Pointer-independent procedures, on the other hand, execute regardless of where the pointer
is positioned and, in most cases, they position the pointer. (Refer to table 3-3 for a summary of
those procedures that either position the pointer or are dependent on the pointer position.)

Table 3-3. Positioning the Logical Record Pointer

dynamic mode}

Procedure Pointer- Position of Pointer After
Name Dependent Execution of Procedure

CKSTART NO Points to key whose value was specified in call.

CKREADBYKEY NO Points to key whose value was specified in call.

CKWRITE NO Points to key whose value is next in key sequence to
key value in record just written.

CKREAD YES Pointer remains positioned to key value for record just
read: unless next call is to CKREAD, or to CKREWRITE
followed by CKREAD, in which case, next CKREAD
moves pointer to next key in key sequence before read-
ing the record.

CKDELETE YES Points to next key value in ascending sequence following
key value in record just deleted.

CKREWRITE YES

tial .
(sequentia Pointer remains positioned to key value for record just
mode) ien .

modified; unless any key value in record was changed,
in which case, it points to next key in ascending se-
NO . e
quence after the key in the modified record.
(random or

3-9

SHARED ACCESS

Particular care must be taken when using the logical record pointer during shared access (the file
was opened with CKOPENSHR). Since the record pointer is maintained in a separate control block
for each open file, if more than one user opens the same file, one user may modify the key file
causing the record pointers of other users to point to the wrong key.

To avoid this problem, you should always lock the file in a shared environment before calling a
procedure that sets the pointer and leave the file locked until all procedures that depend on the
pointer have been executed. Thus, if you want to read the file sequentially, delete a record, or
modify a record, you should lock the file, call a procedure that sets the pointer (such as
CKSTART), and then call CKREAD, CKDELETE, or CKREWRITE. When the operation is com-
plete, you can then unlock the file to give other users access to it.

3-10

SAMPLE KSAM FILE

The file KSAMFILE illustrated in figure 3-2 is used in all subsequent examples associated with the
COBOL procedure calls.

:RUN KSAMUTIL
>BUILD KSAMFILE;:REC=-74,3,,ASCI;KEYFILE=KSAMKEY ;KEY=B,3,20; &

KEY=B,23,8, DUP

character KSAMFILE Data Record word
1 R 1 (reserved for delete code)
31— 3
file creation command
> NAME (primary key)
~
23 4+—>
PHONE (alternate key)
31 +—> N
L OTHERDATA
file description in Working Storage
739 PRl WORKING-STORAGE SECTION.
77 RECSIZE PIC S9(4) COMP VALUE 74.
77 RESULT PIC 9(4) VALUE 0.
01 REC.
03 FILLER PIC XX VALUE SPACES.
03 NAME PIC X(20).
03 PHONE PIC X(8).
03 OTHERDATA PIC X(44).
01 DAT.
03 NAME PIC X(20).
03 PHONE PIC X(8).

03 OTHERDATA PIC X(44).
01 FILETABLE.
03 FILENUMBER PIC S9(4) COMP VALUE 0.
03 FILENAME PIC X(8) VALUE “KSAMFILE”.

03 I-O-TYPE PIC S9(4) COMP VALUE 0.

03 A-MODE PIC S9(4) COMP VALUE 0.

03 PREV-OP PIC S9(4) COMP VALUE 0.
01 STAT.

03 STATUS-KEY-1 PIC X.
03 STATUS-KEY-2 PIC X.

Figure 3-2. Representation of KSAMFILE Used in COBOL Examples

3-11

CKCLOSE

A call to CKCLOSE terminates file processing for the specified file.

When processing is completed, a KSAM file should be closed with a call to CKCLOSE. No further
processing is allowed on the file until a CKOPEN procedure call opens the file.

CKCLOSE can be executed only for a file that is open.

PARAMETERS

filetable an 8-word record containing: the name of the file, its input-output
type, access mode, the filenumber given the file when it was last
opened, and a code indicating whether the previous operation on the
file was successful and if so what it was. (Refer to Filetable Parameter
discussion earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon comple-

tion of the call to CKCLOSE. It indicates whether or not the file was
successfully closed and if not, why not. The left character is set to
“0” if CKCLOSE is successful, to “9” if not. The right character is
set to “0” if CKCLOSE is successful, to the file system error code if
not. (Refer to Status Parameter discussion earlier in this section.)

USING CKCLOSE

Upon successful completion of CKCLOSE, the file identified by filetable is no longer available for
processing. Note that a KSAM file can be closed and then reopened in order to specify a different
access mode or input-output type.

EXAMPLES

Assuming the same filetable and status definitions used to define the sample file in figure 3-2:

FINISH.
CALL “CKCLOSE” USING FILETABLE, STAT.
IF STATUS-KEY-1 = ““9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKCLOSE ERROR NO. ”, RESULT;
ELSE DISPLAY “CKCLOSE SUCCESSFUL”.

3-12

CKDELETE

This procedure logically deletes a record from a KSAM file.

In order to logically delete records from a KSAM file, you can use the procedure CKDELETE. A
logically deleted record is marked by a code of binary 1’s in the first two characters of the record,
but is not physically removed from the file. The deletion mark makes such a record inaccessible
but does not physically reduce the size of the file. The utility program FCOPY (described in
section II) can be used to compact a KSAM file by copying only active records, excluding deleted
records, to a new KSAM file.

CKDELETE deletes the record at which the logical record pointer is currently positioned. There-
fore, CKDELETE must be preceded by a call that positions the pointer (see table 3-3).

PARAMETERS

filetable an 8-word record containing the number and name of the file, its
input-output type, access mode, and a code indicating whether the
previous operation was successful and if so what it was. (Refer to
Filetable Parameter discussion earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon comple-

tion of the call to CKDELETE indicating whether the call was
successful and if not, why not. (Refer to Status Parameter discus-
sion earlier in this section.)

USING CKDELETE

In order to delete a record, you should first read the record into the working storage section of
your program with a call to CKREAD if in sequential mode, a cail to CKREADBYKEY if in
random mode, or a call to either if in dynamic mode. CKDELETE can be called only if the file is
currently open for both input and output (input-output type =2). This allows the record to be
read into your program’s data area and then written back to the file with the delete mark. Follow-
ing execution of CKDELETE, the deleted record can no longer be accessed.

SHARED ACCESS. If the file was opened for shared access with CKOPENSHR, you must lock the
file with CKLLOCK before you can delete any records with CKDELETE. Because CKDELETE de-
pends on the logical record pointer, the call to CKLOCK should precede the call that positions the
pointer. The call to CKUNLOCK is then called after the call to CKDELETE. To illustrate, the se-
quence of calls in shared access should be:

CKLOCK to lock file
CKSTART or CKREADBYKEY

to position pointer

bKDELETE
CKUNLOCK

to delete record at which pointer is positioned
to unlock file

3-13

CKDELETE

Following the call to CKDELETE, the pointer is positioned to the next key following the key in
the deleted record.

EXAMPLES
The following examples show the use of CKDELETE for sequential access using CKREAD and for

random access using CKREADBYKEY. The WORKING-STORAGE SECTION from figure 3-2 and
the FINISH procedure from the CKCLOSE example are assumed for these examples.

1. Sequential Delete.
In order to delete all records whose primary key begins with “P”’, first position the file to the start

of these records with CKSTART and then read each record with CKREAD and delete it with
CKDELETE.

WORKING-STORAGE SECTION.

77 RELOP PIC S9(4) COMP.
77 KEYVAL PIC X(20).
77 KEYLOC PIC S9(4) COMP.

77 KEYLENGTH PIC S9(4) COMP.

PROCEDURE DIVISION.
START.
MOVE 2 TO I-O-TYPE.
MOVE 0 TO A-MODE.
CALL “CKOPEN” USING FILETABLE, STAT.

.- check status

FIND-REC.
MOVE 0 TO RELOP.= test for equality between primary key and KEY
MOVE “P” TO KEYVAL.
MOVE 3 TO KEYLOC.
MOVE 1 TO KEYLENGTH. check first character only
CALL “CKSTART” USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,
KEYLENGTH.
IF STATUS-KEY-1 = “0” THEN
GO TO READ-REC.
IF STAT = ““23” THEN
DISPLAY “NO RECORD FOUND”’
GO TO FINISH.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. =", RESULT
GO TO FINISH.

3-14

CKDELETE

READ-REC.
CALL “CKREAD” USING FILETABLE, STAT, REC, RECSIZE.
IF STATUS-KEY-1 = “1” THEN
DISPLAY “END OF FILE REACHED”
GO TO FINISH.
IF STATUS-KEY-1 = “0” THEN
IF NAME OF REC NOT LESS THAN “Q ” THEN
DISPLAY “DELETIONS COMPLETED”
GO TO FINISH;
ELSE GO TO DELETE-REC;
ELSE
DISPLAY “CKREAD ERROR, STATUS =", STAT
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. ”’, RESULT.
GO TO READ-REC.

DELETE-REC.
CALL “CKDELETE” USING FILETABLE, STAT.
IF STATUS-KEY-1 = “0” THEN
DISPLAY REC, “ DELETED”
GO TO READ-REC;
ELSE
DISPLAY “CKDELETE ERROR, STATUS = 7, STAT
IF STATUS-KEY-1 = ““9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. = 7, RESULT
GO TO READ-REC.

Note: If access is shared, the file must be opened with a call to CKOPENSHR and then locked be-
fore the call to CKSTART that initially sets the pointer. The file should remain locked while the rec-
ords to be deleted are read and then marked for deletion. If the file is not locked before CKSTART
is called, other users can change the file so that the record pointer points to the wrong record.

2. Random Delete.

A file containing the primary keys of those records to be deleted from a KSAM file is read into the
working storage area DAT. These key values are used by CKREADBYKEY to locate and read the
items to be deleted by CKDELETE.

PROCEDURE DIVISION.
START.
MOVE 2 TO I-O-TYPE, A-MODE.
CALL “CKOPEN” USING FILETABLE, STAT.

check status

READ-KEY.
READ DATA-FILE INTO DAT;

AT END GO TO FINISH.
CALL “CKREADBYKEY” USING FILETABLE, STAT, REC, NAME OF DAT, RECSIZE.
IF STATUS-KEY-1 = “0” THEN

GO TO DELETE-RECORD.
DISPLAY “CKREADBYKEY ERROR, STATUS =, STAT.

3-15

CKDELETE

IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. =", RESULT
GO TO READ-KEY.
DELETE-RECORD.
CALL “CKDELETE” USING FILETABLE, STAT.
IF STATUS-KEY-1 = “0” THEN
DISPLAY REC, “ DELETED”
GO TO READ-KEY.
DISPLAY “CKDELETE ERROR, STATUS = ", STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. =”, RESULT.
GO TO READ-KEY.

Note: If access is shared, the file must be opened with a call to CKOPENSHR; a call to CKLOCK
must precede the call to CKREADBYKEY and a call to CKUNLOCK must follow the CKDELETE
error tests and should precede the return to READ-KEY.

3-16

CKERROR

Converts file system error code returned in status to a display format number.

Whenever a ““9” is returned as the left character of the status parameter following any call to a
KSAM procedure, you can call the procedure CKERROR to convert the MPE file system error
code in the right character of status from a binary number to a display format number. This
allows you to display the error code.

PARAMETERS

status is the status parameter to which a value was returned by a previous
KSAM procedure call. The entire status parameter, both left and
right characters, must be specified.

result is an item to which the error number is returned right justified in
display format. The item must have a picture of 4 numeric characters
(PIC 9(4)).

USING CKERROR

The following example shows the WORKING-STORAGE SECTION entries needed to check for
errors and a call to CKERROR in the PROCEDURE DIVISION that checks for and displays the
error number if a file system error occurred in a call to process a KSAM file.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 RESULT PIC 9(4) VALUE ZERO.
01 STAT.

03 STATUS-KEY-1 PICX.

03 STATUS-KEY-2 PICX.

PROCEDURE DIVISION.
START.

IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT.
DISPLAY “ERROR NUMBER ”, RESULT.

3-17

CKLOCK

A call to CKLOCK dynamically locks a KSAM file.

When access is shared, you must lock the file before calling CKWRITE, CKREWRITE, or CK-
DELETE. This insures that another user cannot attempt to modify the file at the same time, and it
guarantees that the most recent data is available to each user who accesses the file.

In order to call CKLOCK, the file must have been opened with a call to CKOPENSHR, not
CKOPEN.

PARAMETERS

filetable an 8-word record containing the number and name of the file, its input-
output type, access mode, and a code indicating whether the previous
operation was successful and if so, what it was. (Refer to Filetable
Parameter discussion earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon completion
of the call to CKLOCK. It indicates whether or not the file was success-
fully locked and if not, why not. The status word = “00” if the call was
successful. It = “30” if the file was locked by another process;it=“9n,”
where n is a file system error code, if the call failed for some other
reason. (Refer to the Status Parameter discussion earlier in this section.)

lockcond one-word computational item whose value determines the action taken
if the file is locked by another user when CKLOCK is executed. The
value is either zero (0) or one (1).

0 locking is conditional; if the file is already locked, control is
returned to your program immediately with the status word set
to “30.”

1 locking is unconditional; if the file cannot be locked immediately
because another use has locked it, your program suspends until the
file can be locked.

USING CKLOCK

In order to call CKLOCK, the file must be opened with dynamic access enabled. This can be done
only with the CKOPENSHR procedure. CKOPEN will not open the file for shared access with

dynamic locking.

When users are sharing a file, it is essential to lock the file before modifying it. An error is returned
if any user attempts to write, rewrite, or delete records without first locking the file. It is also impor-
tant to avoid situations where one user locks the file and forgets to unlock it. If the file is already
locked when you call CKLOCK with lockcond set to zero, the call will fail with “30” returned to
status, and your process will continue. If, however, lockcond is set to 1, your process suspends until
the other user unlocks the file or logs off.

3-18

CKLOCK

EXAMPLES

The following example opens file KSAMFILE for shared access with dynamic locking allowed. It
then locks the file unconditionally. If another user has locked the file, the process suspends until
the file is unlocked and then continues by locking your file. The status value is checked as soon as
control returns to your process to insure that the file has been locked before continuing.

DATA DIVISION.
77 LOCKCOND PICTURE S9(4) COMP VALUE 1.
77 RESULT PICTURE 9(4) VALUE 0.
01 STATUSKEY.
02 STATUS-KEY1 PICTURE X VALUE “ ~,
02 STATUS-KEY2 PICTURE X VALUE « ”,

01 FILETABLE.
02 FILENUMBER PICTURE S9(4) COMP VALUEO.

02 FILENAME PICTURE X(8) VALUE “KSAMFILE” .
02 I-O-TYPE PICTURE S9(4) COMP VALUE 0.
02 A-MODE PICTURE S9(4) COMP VALUE 0.
02 PREV-OP PICTURE S9(4) COMP VALUE 0.

PROCEDURE DIVISION.

START.
CALL “CKOPENSHR” USING FILETABLE, STATUSKEY.
IF STATUS-KEY1 = “0” THEN GO TO LOCK-FILE.
IF STATUS-KEY1 = “9” THEN
CALL “CKERROR” USING STATUSKEY, RESULT
DISPLAY “ERROR NO. ”, RESULT.

LOCK-FILE.

CALL “CKLOCK” USING FILETABLE, STATUSKEY, LOCKCOND.
IF STATUSKEY = “00”
THEN DISPLAY “CKLOCK IS OK”

ELSE IF STATUSKEY = “30”

THEN DISPLAY “FILE LOCKED BY ANOTHER PROCESS”

ELSE IF STATUS-KEY1 = “9”
THEN CALL “CKERROR’’ USING STATUSKEY, RESULT
DISPLAY “ERROR NO.”, RESULT.

3-19

CKOPEN

A call to procedure CKOPEN initiates file processing.

In order to process a KSAM file, it must be opened with a call to the CKOPEN procedure. CKOPEN
initiates processing, specifies the type of processing and the access mode; the file must have been
created previously. You can create a KSAM file through the BUILD command of the KSAMUTIL
program (refer to section II).

To open a file means to make it available for processing, to specify the type of processing (input
only, output only, or both), and to specify the access method (sequential, random, or dynamic). If
a different type of processing or access method is needed, the file must be closed and opened again
with the parameters set to new values.

NOTE

If you want to open the file for shared access, you must use a
call to CKOPENSHR, rather than CKOPEN.

PARAMETERS

filetable an 8-word record containing the name of the file, its input-output type,
and access mode. When the open is successful, the first word of this
table is set to the file number that identifies the opened file. (Refer to
Filetable Parameter discussion earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon completion

of the call to CKOPEN to indicate whether or not the file was success-
fully opened and if not why not. Left character is set to “0”” if open
is successful, to “9” if not. Right character is set to “0” if open is
successful, to file system error code if not. (Refer to Status Parameter
discussion earlier in this section.)

USING CKOPEN

Upon successful execution of CKOPEN, the file named in filetable is available for the type of
processing specified in filetable. Before the file is successfully opened with CKOPEN, no operation
can be executed that references the file either explicitly or implicitly.

The input-output procedures that can be called to process the file depend on the value of the words
in filetable that specify input-output type and access mode. (Refer to table 3-4 for the procedures
allowed with the various combinations of input-output type and access mode.)

A file may be opened for input, output, or input-output, and for sequential, random, or dynamic
access in the same program by specifying a different call to CKOPEN for each change in input-
output type or access mode. Following the initial execution of CKOPEN, each subsequent call to
CKOPEN for the same file must be preceded by a call to CKCLOSE for that file.

When files are opened for input or input-output, the call to CKOPEN sets the current record pointer
to the first record in the primary key chain.

3-20

CKOPEN

Table 34. Procedures Allowed for Input-Output Type/Access Mode Combinations

ALLOWED PROCEDURES ACCESS MODE J| INPUT-OUTPUT TYPE
CKREAD 0 “
CKSTART (sequential) 2 0
1 (dynamic) (open for input)
CKREADBYKEY
(random)
0
(sequential) 9 1
CKWRITE 1 {(dynamic) (open for output)
(random)
CKREAD
CKSTART 0
CKREWRITE (sequential)
CKDELETE 9 9
i for i tput
CKREADBYKEY (dynamic) (open for input/output)
CKWRITE 1
CKREWRITE (random)
CKDELETE

INPUT-OUTPUT TYPE. Word 6 of filetable must be set to one of the following values before
calling CKOPEN:

0 input only
1 output only
2 input-output

Input Only. In general, if you want to allow records to be read or the file to be positioned without
allowing any new records to be written or any existing records to be changed, you should set the
input-output type to 0. This input-output type allows you to call CKREAD or CKSTART in
sequential processing mode, CKREADBYKEY in random mode, or all three in dynamic mode.

Output Only. If you want to cause all existing records to be deleted when the file is opened and
then allow new records to be written, you should set the input-output type to 1. This type of open
deletes all existing records so that records are written to an empty file. When a file is opened for
output only, you can call CKWRITE in any of the three access modes: sequential, random, or
dynamic, but you cannot call any other of the KSAM procedures.

Input-Output. If you want unrestricted file access, you should set the input-output type to 2.
This access type allows records to be read, positioned, written, rewritten, or deleted. You may call
CKREAD, CKSTART, CKREWRITE, and CKDELETE (but not CKWRITE) when opened in
sequential mode; you may call CKREADBYKEY, CKWRITE, CKREWRITE, or CKDELETE (but
not CKREAD or CKSTART) when opened in random mode. In dynamic mode, any of the KSAM
procedures may be called. With this type of input-output, existing records are not cleared when
you write a record with CKWRITE.

3-21

CKOPEN

ACCESS MODE. Word 7 of filetable must be set to one of the following values before calling
CKOPEN:

0 sequential access
1 random access
2 dynamic access

Sequential Access. With this type of access, records in the file are read in ascending order based
on the value of a key within each record. The key is the primary key unless an alternate key was
specified with CKSTART. Reading starts with the first record in sequence unless a particular
record was specified with CKSTART. Each time a call to CKREAD is executed, the next record
in sequence is read from the file. CKREAD and CKSTART are the only procedures that can be
called in input mode. CKREADBYKEY cannot be specified for any input-output type if the
access mode is sequential.

In output mode, CKWRITE is the only procedure that can be called. When access is sequential,
the record to be written must contain a unique primary key that is greater in value than the key of
any previously written record. If it is not in sequence, an invalid key sequence error code, “21”,
is returned to status.

In input-output mode, CKREWRITE and CKDELETE can be specified as well as CKREAD and
CKSTART, but CKWRITE cannot.

Random Access. This type of access allows you to read, write, replace, or delete a record with
any value for its primary key. To read a record, the CKREADBYKEY procedure must be called
in either input or input-output mode. CKREAD and CKSTART cannot be specified for any
input-output type when access mode is random.

When writing a record with CKWRITE in output or input-output mode, the value of the primary
key in the record need not be greater than the keys of previously written records; that is, records
can be written in any order.

In input-output mode, CKREWRITE can be used to replace any record whose primary key matches
the primary key in the record being written. CKDELETE can be used to delete a record specified
in a previous CKREADBYKEY call.

CKWRITE can be used to write a record following existing records in the file if you position to fol-
low the last sequential record before writing. Use this input-output type if you want to save existing
data in a file to which you are writing.

Dynamic Access. Dynamic access allows you to use any call to process a file opened for input-
output. When the file is opened in dynamic mode, and a call is made to CKREAD or CKSTART,
the file can be read, but not updated, sequentially. For all other calls, dynamic mode is treated as if
the file had been opened in random mode. See Random Mode discussion, above. The reason to oepn
a file in dynamic mode is to allow both sequential and random processing on the same file without
closing it and then opening it again each time access switches from sequential to random or vice versa.

3-22 MAY 1981

CKOPEN

EXAMPLES

To open a file initially for sequential read:

WORKING-STORAGE SECTION.

77 RESULT PIC 9(4) VALUE ZERO.

01 FILETABLE.
03 FILENUMBER PIC S9(4) COMP VALUE ZERO.
03 FILENAME PIC X(8) VALUE “KSAMFILE”.

03 I-O-TYPE PIC S9(4) COMP VALUE ZERO. input only
03 A-MODE PIC S9(4) COMP VALUE ZERO. sequential access
03 PREV-OP PIC S9(4) COMP VALUE ZERO.

01 STAT.

03 STATUS-KEY-1 PIC X.
03 STATUS-KEY-2 PIC X.

PROCEDURE DIVISION.
START.
CALL “CKOPEN” USING FILETABLE , STAT.
IF STATUS-KEY-1 = “0”” THEN GO TO S-READ.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY ‘“CKOPEN FAILED. . . ERROR NO. ”, RESULT
STOP RUN.
S-READ.

If you subsequently want to write in sequential order to the same file, you should close the file with
a call to CKCLOSE (described below), move the value 1 (output to I-O-TYPE and then re-open the
file:

CALL “CKCLOSE” USING FILETABLE, STAT.

IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKCLOSE FAILED — ERROR NO. 7,
STOP RUN.

MOVE 1 TO I-O-TYPE: output only

CALL “CKOPEN” USING FILETABLE, STAT.

3-23

CKOPEN

Similarly, to update records in random order in the same file, first close the file, then use the fol-

lowing MOVE statement to alter the input-output type and access mode in FILETABLE and re-
open the file:

CALL “CKCLOSE” USING FILETABLE, STAT.

MOVE 2 TO I-O-TYPE. = input-output
MOVE 1 TO A-MODE. random access
CALL “CKOPEN” USING FILETABLE, STAT.

3-24

CKOPENSHR

A call to CKOPENSHR initiates file processing with dynamic locking and shared access allowed.

s
o

In order to process a KSAM file with shared access and dynamic locking, the file must be opened
with a call to CKOPENSHR. CKOPENSHR is exactly like CKOPEN in that it initiates processing,
specifies the type of processing, and specifies the access mode. The file must have been created
previously with the BUILD command of program KSAMUTIL (refer to section II).

To open a file for shared access means to make it available for processing by more than one user.
Shared access allows all users to read or position the file, but only one user at a time can modify
the file by writing new records, or rewriting or deleting existing records. To insure that more than
one user does not attempt to modify the file at the same time, you must call CKLOCK to dynami-
cally lock the file before calling the procedures CKWRITE, CKREWRITE, or CKDELETE. After
modifying the file, you should call CKUNLOCK so that it can be accessed by other users.

PARAMETERS

filetable an 8-word record containing the name of the file, its input-output
type, and access mode. When the open is successful, the first word of
this table is set to the file number that identifies the opened file.
(Refer to Filetable Parameter discussion earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon comple-

tion of the call to CKOPENSHR to indicate whether or not the file
was successfully opened and if not why not. Left character is set to
“Q” if open is successful, to “9” if not. Right character is set to “0”
if open is successful, to file system error code if not. (Refer to Status
Parameter discussion earlier in this section.)

USING CKOPENSHR

Except that CKOPENSHR allows shared access and dynamic locking, and CKOPEN does not, a
call to CKOPENSHR operates exactly like the call to CKOPEN. Upon successful execution of
CKOPENSHR, the file named in filetable is available for the type of processing specified in file-
table. Before the file is opened successfully, no operation can be performed that references the file
either explicitly or implicitly.

A file may be opened by CKOPENSHR for any of the access modes (sequential, random, or dy-
namic) and for any input-output type (input only, output only, or input-output) allowed with
CKOPEN.

Refer to the description of using CKOPEN for the specific affects of opening a KSAM file with the
various input-output types and access modes.

3-25

CKREAD

A call to procedure CKREAD makes available the next logical record from a file.

In order to read records in sequential order by key value, call procedure CKREAD. The file must
have been opened in input or input-output mode with access mode specified as either sequential
or dynamic.

PARAMETERS

filetable an 8-word record containing the number and name of the file, its
input-output type, access mode, and a code indicating whether the
previous operation was successful and if so, what it was. (Refer to
Filetable Parameter discussion earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon comple-
tion of the call to CKREAD to indicate whether or not the record
was successfully read and if not, why not. (Refer to Status Parameter
discussion earlier in this section.)

record arecord defined in the WORKING-STORAGE SECTION into which
the contents of the next sequential KSAM record is read.

recordsize an integer (S9(4)COMP) containing the length in characters of the

record being read. It must not exceed maximum record length established
for the file when it was created.

USING CKREAD

The file from which the record is read must be open for sequential or dynamic access (access
mode = 0 or 2.) It may be opened for input only or input-output (input-output type = 0 or 2),
but not for output only.

When the file is opened initially for input or input-output, the logical record pointer is positioned
at the first sequential record; that is, at the record with the lowest key value. The key used is the
primary key unless a previous call to CKSTART has specified an alternate key. When a call to
CKREAD is executed, the record at which the record pointer is currently positioned is read into
the location specified by record.

If, when CKREAD is executed, there is no next logical record in the file, the at end condition is
returned to status; that is, status is set to “10”’. Note that a call to the procedure CKSTART can
be used to reposition the pointer for subsequent sequential access according to primary or alternate
key order.

In order to update records in sequential order, CKREAD must be called before executing either of
the update procedures CKREWRITE and CKDELETE. When access is shared, it is important to in-
clude the call to CKREAD within the same locked portion of code that includes the call to
CKREWRITE or CKDELETE. This insures that the correct record is modified or deleted.

3-26 MAY 1981

CKREAD

SHARED ACCESS. Because CKREAD is a pointer-dependent procedure (refer to table 3-3), the
actual record read depends on the current position of the logical record pointer. When access is
shared, this pointer position can be made incorrect by other users without your program being a-
ware of it. For this reason, you should lock the file, position the pointer with a pointer-indepen-
dent procedure, and then call CKREAD. When the last record is read, you should then unlock the
file so other users can access the file. Example 2 below illustrates how you should read the file se-
quentially when access is shared.

EXAMPLE

Using the WORKING-STORAGE SECTION from figure 3-2 and the FINISH procedure in the

CKCLOSE example, the following procedures read records in sequential order from file KSAMFILE
and display them on the standard output device.

1. Example of Sequential Read

PROCEDURE DIVISION.
START.

MOVE 0 TO I-O-TYPE, A-MODE.
CALL “CKOPEN” USING FILETABLE, STAT.
IF STATUS-KEY-1 = “9”
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKOPEN ERROR NO. ’, RESULT.
IF STATUS-KEY-1 NOT = “0”
DISPLAY “CKOPEN FAILED”
STOP RUN.
READ-NEXT.
CALL “CKREAD” USING FILETABLE, STAT, REC, RECSIZE.
IF STATUS-KEY-1 = “1” GO TO NEW-POSITION.
IF STATUS-KEY-1 = “0”
DISPLAY REC;
ELSE
DISPLAY “CKREAD ERROR, STATUS =, STAT.
IF STATUS-KEY-1 = “9”
CALL “CKERROR” USING STAT, RESULT
DISPLAY “FILE ERROR =, RESULT.
GO TO READ-NEXT.
NEW-POSITION.

see CKSTART example

3-27

CKREAD

2. Example of Sequential Read with Shared Access

PROCEDURE DIVISION.
START.

MOVE 0 TO I-O-TYPE, A-MODE.
CALL “CKOPENSHR” USING FILETABLE, STAT <———open file for shared access

test status

FIND-RECORD.
MOVE 2 TO RELOP.
MOVE “000-0000” TO KEYVAL.
MOVE 23 TO KEYLOC,
MOVE 8 TO KEYLENGTH.
MOVE 1 TO LOCKCOND.
CALL “CKLOCK” USING FILETABLE, STAT, LOCKCOND.«——Iock file unconditionally
CALL “CKSTART” USING FILETABLE,
STAT, RELOP, KEYVAL, KEYLOC, KEYLENGTH.<—position pointer to lowest key value

test status

READ-RECORD.
CALL “CKREAD” USING FILETABLE, STAT, REC, RECSIZE
IF STATUS-KEY-1 = “1” end of file
GO TO END-OF-READ.
IF STATUS-KEY-1 = “0” «———if successful, display record read
DISPLAY REC.

read record

test status for errors

TO TO READ-RECORD.
END-OF-READ.
CALL “CKUNLOCK” USING FILETABLE, STAT.

unlock file

3-28

CKREADBYKEY

A call to CKREADBYKEY makes available a record identified by key value from a KSAM file.

Records can be read from a KSAM file in an order determined by key value. This order need not
be sequential; in fact, it can be any order you specify. This type of access is used to access
individual records in random order by key value.

PARAMETERS

filetable an 8-word record containing the number and name of the file, its
input-output type, access mode, and a code indicating whether the
previous operation was successful and if so what it was. (Refer to
Filetable Parameter discussion earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon completion
of the call to CKREADBYKEY indicating whether the call was success-
ful and if not why not. (Refer to Status Parameter discussion earlier in
this section.)

record a record defined in the WORKING-STORAGE SECTION into which
the contents of a record located by key value is read.

key an item whose value is used by CKREADBYKEY to locate the record
to be read. Key values in the file identified by filetable are compared
to the value of key until the first record with an equal value is found.

keyloc one-word integer (S9(4)COMP) set to the starting character position of
the key in the KSAM data record (first position is character 1). keyloc
identifies the file key to be compared with key.

recordsize an integer (S9(4)COMP) containing the length in characters of the record
being read; it must be less than or equal to the maximum record length
established for the file at creation.

USING CKREADBYKEY

In order to use the CKREADBYKEY procedure, the file must be opened for either input or input-
output. The access mode can be either random or dynamic, but must not be sequential.

Execution of CKREADBYKEY causes the value of key to be compared to the value of the key at
location keyloc in the KSAM file data records. When a key is found whose value is identical to that
of key, the record pointer is moved to the beginning of that record and the record is read into the
location record.

If no record can be found whose key value equals that of key, an invalid key condition is diagnosed
and status is set to the value ““23”. Successful execution of CKREADBYKEY is indicated by the

MAY 1981 3-29

CKREADBYKEY

value “0” in the left byte of status, unsuccessful execution is indicated by either the invalid key
return or by a value of “9” in the left byte of status.

In order to delete records in random or dynamic mode, CKREADBYKEY must be called before
executing CKDELETE. It is not required prior to CKREWRITE.

EXAMPLES

In the following examples, update information is read into the area called DAT in the WORKING-
STORAGE SECTION. (Note that in this as in the preceding examples, the WORKING-STORAGE
SECTION from figure 3-2 continues to be useful.) In the first example, the primary keys of records
in KSAMFILE are searched for values matching the value read into NAME in the DAT record; in
the second example, an alternate key at location 23 is searched for values matching the value read
into PHONE in the DAT record.

1. Read arecord located by its primary key value:

DATA DIVISION.

WORKING-STORAGE SECTION.
77 KEYLOC PIC S9(4) COMP.

PROCEDURE DIVISION.
START.

MOVE 2 TO I-O-TYPE, A-MODE.-— prepare to open for input-output, dynamic access
CALL “CKOPEN” USING FILETABLE, STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY ‘“CKOPEN ERROR NO. 7, RESULT.
IF STATUS-KEY-1 NOT = ““0” THEN
DISPLAY “CKOPEN FAILED”
STOP RUN.
FIND-RECORD.
READ NEW-DATA INTO DAT;
AT END GO TO FINISH.
MOVE 3 TO KEYLOC.
CALL “CKREADBYKEY” USING FILETABLE, STAT, REC, NAME OF DAT,
KEYLOC, RECSIZE.
IF STATUS = “00” THEN
DISPLAY “RECORD FOUND ”’, REC
GO TO FIND-RECORD.
IF STATUS = “23” THEN
DISPLAY “RECORD NOT FOUND, KEY =", NAME OF DAT
GO TO FIND-RECORD.
IF STATUS-KEY-1 = “9” THEN

read update records

3-30

CKREADBYKEY

CALL “CKERROR” USING STAT, RESULT
DISPLAY “ERROR NO. 7, RESULT
GO TO FIND-RECORD.

To find a record by the value of an alternate key, simply change two statements in the preceding
example so that KEYLOC contains the location of the alternate key and the key value for compari-
son is found in item PHONE OF DAT rather than in NAME OF DAT:

FIND RECORD.
READ NEW-DATA INTO DAT;
AT END GO TO FINISH.
MOVE 23 TO KEYLOC.
CALL “CKREADBYKEY” USING FILETABLE, STAT, REC, PHONE OF DAT,
KEYLOC, RECSIZE.

3-31

CKREWRITE

The procedure CKREWRITE replaces a record existing in a KSAM file with another record having a
matching primary key.

You can replace an existing record in a KSAM file with the procedure CKREWRITE. This proce-
dure replaces a record previously read from the file with another record whose primary key matches
the primary key of the record being replaced.

PARAMETERS

filetable an 8-word record containing the number and name of the file, its input-
output type, access mode, and a code indicating whether the previous
operation was unsuccessful and if so what it was. (Refer to Filetable
parameter discussion earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon the comple-
tion of the call to CKREWRITE indicating whether or not the call was
successful and if not why not. (Refer to Status Parameter discussion
earlier in this section.)

record a record défined in the WORKING-STORAGE SECTION containing
data to be written as a logical record to the file replacing the record
with a matching primary key.

recordsize aninteger (S9(4)COMP) containing the length in characters of the record
to be written. It must not exceed the maximum record length established
for the file creation.

USING CKREWRITE

In order to call procedure CKREWRITE, the file must be open for both input and output (input-
output type=2). The access mode can be sequential, random, or dynamic. If access mode is sequential,
CKREAD must have been executed successfully just prior to the call to CKREWRITE. In random or
dynamic mode, no prior read is required; the system searches the file for the record to be rewritten.

REWRITE IN SEQUENTIAL MODE. When the file is opened in sequential mode (access mode = 0),
CKREAD must be executed before CKREWRITE. The primary key in the record to be written by
CKREWRITE must be identical to the primary key in the record read by CKREAD. A simple way
to insure that the keys match is to read a record into WORKING-STORAGE, modify it without
altering the primary key, and then write it back to the file using CKREWRITE. Since the primary
key is not changed, the sequence of records in the file is not affected.

Rewriting Records With Duplicate Keys. 1f you want to rewrite in sequential mode all the records in
a chain of records with duplicate keys, use either CKSTART or CKREADBYKEY to position to the
first record in the chain. Then call CKREWRITE to update the first record in the chain. Subsequent
calls depend on whether you are changing any key value in the record (not necessarily the selected

key).

3-32 MAY 1981

CKREWRITE

If no key in the record is changed, the record pointer continues to point to the current record.
Only a subsequent CKREAD advances the pointer to the next record in the duplicate key chain.
In this case, you can issue CKREAD and CKREWRITE calls until all records with the duplicated
key value have been rewritten.

If any key in the record is changed, the new key is written to the end of the chain of duplicate keys
in the key file. After the first call to CKREWRITE, the record pointer points to the record whose
key value follows the changed key. Since this key is now at the end of the chain of duplicate keys,

a subsequent call to CKREWRITE skips all records with keys in the duplicate key chain and re-
writes the record with the next higher key value. In this case, you must precede each call to CKRE-
WRITE with a call to CKSTART or CKREADBYKEY in order to update all subsequent records with
duplicate keys.

If you are updating a primary key value which is duplicated, it is good practice to use CKDELETE
to delete the selected record and then rewrite it as a new record with CKWRITE.

REWRITE IN RANDOM MODE. When the file is opened in random or dynamic mode (access
mode =1 or 2), no prior call to a read procedure is needed. You specify the record to be written

in WORKING-STORAGE and then call CKREWRITE. However, you must use the primary key

to position to the record to be modified. When the procedure is executed, the file is searched for a
record whose primary key matches that of the record to be written. If such a record is found, it is
replaced by the record specified in CKREWRITE. If not found, an invalid key condition is diagnosed
and status is set to the value “23”.

A call to CKREWRITE in random mode only updates the first record with a key in the chain of
duplicate keys.

POSITION OF POINTER. Regardless of the mode, after any call to CKREWRITE that does not
modify a key value, the record pointer is positioned to the key of the record just modified. How-
ever, if any key in the modified record was changed, the record must be deleted and then rewritten
by a write procedure. If the access mode is sequential and a key was modified, the pointer is moved
to the record with the next key value in ascending sequence after the modified key. If the access
mode is random or dynamic, and a key was modified, the pointer is moved to the record with the
next key in ascending sequence after the primary key in the modified record. This means that in
random or dynamic mode the key pointer may change if it was pointing to an alternate key before
the call to CKREWRITE.

REWRITE WITH SHARED ACCESS. If the file was opened for shared access with CKOPENSHR,
then you must lock the file with a call to CKLOCK bhefore rewriting any records with CKRE-
WRITE. After the records are rewritten, you should unlock the file with CKUNLOCK.

To insure that you are updating the correct record in sequential mode, you should call CKLOCK
before positioning the pointer with CKSTART or CKREADBYKEY, then specify the sequential
calls to CKREAD and CKREWRITE before unlocking the file with CKUNLOCK. This insures
that no other users change the position of the pointer while you are sequentially updating the file.

INVALID KEY. In sequential mode, the invalid key condition exists when the record just read by
CKREAD and the record to be written by CKREWRITE do not have the same primary key value.
In random or dynamic mode, an invalid key condition exists if no record can be found in the file
whose primary key matches that of the record to be written by CKREWRITE. In either case, status
is set to the value “23”.

Regardless of mode, an invalid key condition occurs if an alternate key value in the record to be
written duplicates a corresponding alternate key for which duplicates are prohibited. When rewrit-
ing a record, try to avoid specifying an alternate key value that may duplicate a value existing in
the file unless duplicates are allowed for the key. A duplicate key condition where duplicates are
not allowed causes status to be set to ““22’’ and the procedure is not executed.

MAY 1981 3-33

CKREWRITE

EXAMPLES

The first example is of a sequential update that clears the value of an item in each record of the

file. The second example searches the file for a record whose primary key has a particular value in
order to change the alternate key for that record. Both examples assume the WORKING-STORAGE
SECTION from figure 3-2 and the FINISH procedure from CKCLOSE.

1. Sequential Update.

Use CKSTART to position the current record pointer to the start of the file. Then read each record
in sequence and set its non-key items to blanks:

DATA DIVISION.

WORKING-STORAGE SECTION.

77 RELOP PIC S9(4) COMP. \]

77 KEYVAL PIC X(20). , . .

77 KEYLOC PIC ng(4)) COMP. items required by CKSTART
77 KEYLENGTH PICS9(4) COMP. J

PROCEDURE DIVISION.
START.
MOVE 2 TO I-O-TYPE.
MOVE 0 TO A-MODE.
CALL “CKOPEN” USING FILETABLE, STAT.

check status

UPDATE-FILE.
MOVE 1 TO RELOP.
MOVE “000-0000” TO KEYVAL. « set up CKSTART parameters to start
MOVE 23 TO KEYLOC. reading at lowest alternate key value
MOVE 8 TO KEYLENGTH.
CALL “CKSTART” USING FILETABLE,STAT,RELOP,KEYVAL,KEYLOC,KEYLENGTH.
IF STATUS-KEY-1 = “0” THEN
GO TO READ-RECORD;
ELSE
DISPLAY “CKSTART ERROR, STATUS =7, STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. 7, RESULT
GO TO FINISH.
READ-RECORD.
CALL “CKREAD” USING FILETABLE, STAT, REC, RECSIZE.
IF STATUS-KEY-1 = “1” THEN
GO TO FINISH. = end of file
IF STATUS-KEY-1 = “0” THEN
GO TO WRITE-RECORD
ELSE
DISPLAY “CKREAD ERROR,STATUS = ”*, STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. ”, RESULT
GO TO READ-RECORD.

3-34

CKREWRITE

WRITE-RECORD.
MOVE SPACES TO OTHERDATA OF REC.
CALL “CKREWRITE” USING FILETABLE,
IF STATUS-KEY-1 = ““0” THEN
DISPLAY NAME OF REC, “DATA CLEARED”
GO TO READ-RECORD.
DISPLAY “CKREWRITE ERROR, STATUS = 7,
IF STATUS-KEY-1 = ““9” THEN
CALL “CKERROR” USING STAT, RESULT,
DISPLAY “CKERROR NO. =",
GO TO READ-RECORD.

Note: If the file was opened for shared access with a call to CKOPENSHR, then the file should be
locked with a call to CKLOCK before the call to CKSTART. The file should be unlocked with a
call to CKUNLOCK only when the final record is updated, probably in the FINISH procedure.

2. Random Update.

Find the record with the primary key “ECKSTEIN, LEO ” and change the value of the secondary
key to “257-5137"*

PROCEDURE DIVISION.
START.

MOVE 2 TO I-O-TYPE, A-MODE.
CALL “CKOPEN” USING FILETABLE, STAT.
IF STATUS-KEY-1 = “0” THEN
GO TO F-UPDATE.
DISPLAY “CKOPEN ERROR, STATUS =, STAT.
IF STATUS-KEY-1 = ““9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. =, RESULT
GO TO FINISH.
F-UPDATE.
MOVE “ECKSTEIN, LEO ” TO NAME OF REC.
MOVE “257-5137” TO PHONE OF REC.
MOVE SPACES TO OTHERDATA OF REC.
CALL “CKREWRITE” USING FILETABLE, STAT, REC, RECSIZE.
IF STATUS-KEY-1 = ““0” THEN
DISPLAY REC, “UPDATED”
GO TO FINISH.
IF STAT = “23” THEN
DISPLAY NAME OF REC, ” NOT FOUND”
GO TO FINISH.
DISPLAY “CKREWRITE ERROR, STATUS = ”, STAT.
IF STATUS-KEY-1 = ““9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. =", RESULT.
GO TO FINISH.

3-35

CKSTART

A call to procedure CKSTART allows you to position the record pointer to a particular record de-
fined by its primary or alternate key value.

In order to position the current record pointer to a location in the file defined by a key value, call
CKSTART. Since CKSTART is used in preparation for sequential retrieval of records with
CKREAD, the file must be open for sequential or dynamic access, not random, and for input or
input-output, not output only.

PARAMETERS

filetable an 8-word record containing the number and name of the file, its
input-output type, access mode, and a code indicating whether the
previous operation was successful and if so, what it was. (Refer to
Filetable Parameter discussion earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon completion
of the call to CKSTART to indicate whether or not the call was success-
ful and if not why not. (Refer to Status Parameter discussion earlier in
this section.)

relop one-word integer (S9(4)COMP) code that specifies a relation between
the key value specified in the call to CKSTART and the key value in
the record to which the record pointer is to be positioned:

0 — record key is equal to key
“13 — record key is greater than key
[2 - record key is greater than or equal to key
key an item whose value is used by CKSTART to locate the record at
which to position the record pointer. The values of a specified file
key are compared in ascending order to the value of key according to
the relation specified by relop.

keyloc one-word integer (S9(4)COMP) set to the starting character location
of a key in the KSAM file data record (first position is character 1).
The key at keyloc is compared to key.

keylength one-word integer (S9(4)COMP) set to the length of key; the length
must be less than or equal to the length of the key defined by keyloc.

3-36 MAY 1981

CKSTART

USING CKSTART

When CKSTART is executed, the key file is searched for the first key in the set of keys at location
keyloc whose value when compared with key satisfies the comparison specified by relop. The
current record pointer is positioned to the beginning of the record in the data file associated with
the key found by CKSTART.

The specified length of key (keylength) may be less than the length of the key in the file; if so, the
comparison proceeds as if the file key were truncated on the right to the same length as keylength.

If no record can be found whose key value satisfies the comparison, an invalid key condition is
returned to status; that is, status is set to “23”.

SHARED ACCESS. If you use CKSTART to position the pointer before reading or updating the
file sequentially in a shared environment, you must lock the file with a call to CKLOCK before
calling CKSTART. Then, after you have completed the sequential operations, you can unlock the
file with a call to CKUNLOCK. If you wait to lock the file until after the call to CKSTART, anoth-
er user can change the structure of the key file so that the position of the pointer becomes invalid
for any subsequent call to a procedure that depends on the pointer position. (Refer to table 3-3
for a list of the pointer-dependent procedures.)

EXAMPLES

Four new items must be added to the WORKING-STORAGE SECTION in figure 3-2; otherwise,
the same WORKING-STORAGE SECTION is used. The new items are:

77 RELOP PIC S9(4) COMP.
77 KEYVAL PIC X(20).

77 KEYLOC PIC S9(4) COMP.
77 KEYLENGTH PIC S9(4) COMP.

Each of these items is assigned the value appropriate to the operation to be performed by statements
in the PROCEDURE DIVISION. Note that the length of array KEY VAL can be made shorter by
assigning a value less than 20 to KEYLENGTH but it cannot be made longer than 20 characters.
Since there is no key in KSAMFILE longer than 20 characters, this allows comparison to be made
on the longest key.

The following example shows the statements needed to display the records in KSAMFILE in order
by the alternate key PHONE that starts in location 23 and has a length of 8 characters. It assumes
the file is open for input or input-output and that access mode is sequential. It also assumes the
FINISH procedure from the CKCLOSE example.

3-37

CKSTART

1. Position by alternate key sequence:

NEW-POSITION.
MOVE 2 TO RELOP. find key value greater than or equal to KEYVAL
MOVE “000-0000” TO KEYVAL.
MOVE 23 TO KEYLOC.
MOVE 8 TO KEYLENGTH.
CALL “CKSTART” USING FILETABLE,STAT,RELOP,KEYVAL,KEYLOC,KEYLENGTH.
IF STATUS = “23” THEN GO TO FINISH. no record found
IF STATUS-KEY-1 = “0” THEN GO TO READ-BY-PHONE.~—lowest key value found
DISPLAY “CKSTART ERROR, STATUS =", STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “ERROR NUMBER = ", RESULT.
GO TO FINISH.

READ-BY-PHONE.
CALL “CKREAD” USING FILETABLE, STAT, REC, RECSIZE.
IF STATUS-KEY-1 = “1” THEN GO TO FINISH. end-of-file
IF STATUS-KEY-1 = “0” THEN
DISPLAY REC;
ELSE DISPLAY “CKREAD ERROR,STATUS = 7, STAT
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “ERROR NUMBER = ", RESULT.
GO TO READ-BY-PHONE.

In the next example, CKSTART is used to position to the beginning of the series of names beginning
with the letter “T”’. The KSAM file key is located at character position 3 (NAME key); the param-
eter KEYVAL is set to the value “T”’; the key length for purposes of comparison is set to 1; and
RELOP is set to 0. Thus the record pointer is positioned at the first key found whose value (when
the key is truncated to 1 character) is equal to ‘I”’. Note that this example reads not only all

names beginning with “T”, but also reads all names that begin with letters following “T”. To
read only the names beginning with “T”’, the program must add a test for the end of the “T”

names.

3-38 MAY 1981

CKSTART

2. Using a Generic Key

POSITION.
MOVE 0 TO RELOP.
MOVE “T” TO KEYVAL.

MOVE 3 TO KEYLOC.
MOVE 1 TO KEYLENGTH.
CALL “CKSTART” USING FILETABLE,STAT,RELOP,KEYVAL,KEYLOC,KEYLENGTH.
IF STATUS = ““23” THEN GO TO FINISH.
IF STATUS-KEY-1 = “0” THEN
GO TO READ-NAMES.
DISPLAY “CKSTART ERROR, STATUS =", STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “ERROR NUMBER =, RESULT.
GO TO FINISH.
READ-NAMES.
CALL “CKREAD” USING FILETABLE, STAT, REC, RECSIZE.
IF STATUS-KEY-1 = “1” THEN GO TO FINISH.
IF STATUS-KEY-1 = “0” THEN
DISPLAY REC;
ELSE
DISPLAY “CKREAD ERROR, STATUS = 7, STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “ERROR NUMBER = 7, RESULT.
GO TO READ-NAMES.

find key equal to KEY value

MAY 1981 3-39

CKUNLOCK

A call to CKUNLOCK unlocks a KSAM file dynamically locked by CKLOCK.

A file locked by CKLOCK is released for use by other users with a call to CKUNLOCK. (If you log
off from any connection with the system, the file is also unlocked.) Since dynamic locking takes
place during shared access to the same file by more than one user, it is important that any file
locked by CKLOCK be unlocked as soon as possible by CKUNLOCK.

To use CKUNLOCK, the file must be opened for shared access with dynamic locking allowed. This
can only be done by calling CKOPENSHR to open the file, not CKOPEN.

PARAMETERS

filetable an 8-word record containing the number and name of the file, its input-
output type, access mode, and a code indicating whether the previous
operation was successful and if so, what it was. (Refer to Filetable
Parameter discussion earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon completion

of the call to CKUNLOCK. It indicates whether or not the file was suc-
cessfully unlocked and if not, why not. The status word is set to “00”
if the file was unlocked successfully; to “31°’ if the file was not locked;
or to “9n” where n is a binary file system error code if the call fails for
any other reason. (Refer to Status Parameter discussion earlier in this
section.)

USING CKUNLOCK
After calling CKUNLOCK, you should always check the status parameter to make sure that the pro-
cedure was executed successfully. When successful, the file locked by CKLOCK is again made avail-

able for access by other users. If the file was not locked by CKLOCK, when CKUNLOCK is called,
status is set to “31.”

EXAMPLES

The following example unlocks a file previously locked by CKLOCK. (Refer to the CKLOCK
example.)

3-40

DATA DIVISION.

77 RESULT PICTURE 9(4)
01 STATUSKEY.

02
02

STATUS-KEY1 PICTURE X
STATUS-KEY2 PICTURE X

01 FILETABLE.

02
02
02
02
02

PROCE

FILENUMBER PICTURE S9(4)

FILENAME PICTURE X(8)

I-O-TYPE PICTURE S9(4)

A-MODE PICTURE S9(4)

PREV-OP PICTURE S9(4)
DURE DIVISION.

COMP

COMP
COMP
COMP

CKUNLOCK

VALUE 0.

VALUE “ .
VALUE ¢ .

VALUE 0.
VALUE “KSAMFILE” .
VALUE 0.
VALUE 0.
VALUE 0.

CALL “CKUNLOCK” USING FILETABLE, STATUSKEY.

IF STATUSKEY = “00”

THEN DISPLAY “CKUNLOCK IS OK”

ELSE IF STATUSKEY = “31”

THEN DISPLAY “FILE NOT PREVIOUSLY LOCKED BY THIS PROCESS”’

ELSE IF STATUS-KEY1 = “9”

THEN CALL “CKERROR” USING STATUSKEY, RESULT
DISPLAY “ERROR NO.”, RESULT.

MAY 1981

3-41

CKWRITE

Procedure CKWRITE copies a logical record from the program’s data area to an output or an
input-output file.

-

A call to procedure CKWRITE may be used to write records to a KSAM file either in sequential
order or randomly by key value. The file must have been opened for output or for input-output,
but not for input only.

PARAMETERS

filetable an 8-word record containing the number and name of the file, its
input-output type, access mode, and a code indicating whether the
previous operation on the file was successful and if so what it was.
(Refer to Filetable Parameter discussion earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon completion
of the call to CKWRITE to indicate whether or not the record was
successfully written and if not why not. (Refer to Status Parameter
discussion earlier in this section.)

record arecord defined in the WORKING-STORAGE SECTION containing
data to be written to the file by CKWRITE.

recordsize an interger (S9(4)COMP) containing the length in characters of the

record to be written. It must not exceed the maximum record length
established for the file when it was created, and it must be long enough
to contain all the keys.

USING CKWRITE

The file to which the content of record is written must be open for output only if sequential mode
is specified. It may be opened for output or input-output if the access mode at open is random or
dynamic.

WRITING IN SEQUENTIAL MODE. When the file is opened for sequential access (access

mode = 0) and for output only (I-O type = 1), then records must be written to the file in ascending
sequential order by primary key value. The value of the primary key in the record to be written
must be greater than the value of the primary key in any record previously written to the file.

This insures that the records written to the file are initially in ascending order physically as well as
logically.

3-42 MAY 1981

CKWRITE

When I-O type = 1, CKWRITE writes records starting at the beginning of the file, thereby effectively
clearing any records previously written to the file.

WRITING IN RANDOM MODE. In a file opened for random or dynamic access (access mode =1
or 2) and for output only or for input-output (I-O type = 1 or 2), records can be written in any
order; the value of the primary key need not be in any particular relation to the primary key values
of previously written records.

If you want to preserve existing records in the file, you should open the file with the input-output
type equal to 2; when input-output type = 1, all existing records are cleared prior to the write.

WRITING WHEN ACCESS IS SHARED. If the file was opened for shared access with
CKOPENSHR, then you must lock the file with a call to CKLOCK before writing any records.
After the records are written, you should unlock the file with a call to CKUNLOCK.

INVALID KEY. The invalid key condition (left byte of status = “2’’) can occur as a result of the
following circumstances:

L4 File was opened for sequential access in output mode and the value of the primary key in the
record being written is less than or equal to the value of the primary key in the record just
written; status = “21”.

L File was opened for sequential or random access in output or input-output mode and the value
of the primary key is equal to the value of the primary key in an existing record; status = “22”.

® File was opened for sequential or random access in output or input-output mode and the value
of an alternate key for which duplicates are prohibited equals the value of a corresponding key
in an existing record; status = “22”.

o File was opened for sequential or random access in output or input-output mode and an
attempt was made to write a record beyond the physical bounds of the file; status = ““24”".

EXAMPLES

Assume a KSAM file called KSAMFILE with records containing 74 characters (72 characters of
data following two characters reserved for the delete code), one primary key containing a name,
and an alternate key containing a phone number. The data is read from an input file called
DATA-FILE. (Refer to figure 3-2 for a diagram of the structure of this file.)

The first example writes data to KSAMFILE in sequential order by the primary key. The second
example, using the same DATA DIVISION and the same FINISH procedure, writes one record to
the file containing the value “ADAMSON JOHN? as its primary key value.

3-43

CKWRITE

1. Example of Sequential Write.

DATA DIVISION

WORKING-STORAGE SECTION.

77 RECSIZE PIC S9(4) COMP VALUE 74.
77 RESULT PIC 9(4) VALUE 0.
01 REC.
03 FILLER PIC XX VALUE SPACES.
03 NAME PIC X(20).
03 PHONE PIC X(8).
03 OTHERDATA PIC X(44).
01 DAT.
03 NAME PIC X(20).
03 PHONE PIC X(8).

03 OTHERDATA PIC X(44).
01 FILETABLE.
03 FILENUMBER PIC §9(4) COMP VALUE 0.
03 FILENAME PIC X(8) VALUE “KSAMFILE”.

03 I-O-TYPE PIC S9(4) COMP VALUE 0.

03 A-MODE PIC S9(4) COMP VALUE 0.

03 PREV-OP PIC S9(4) COMP VALUE 0.
01 STAT.

03 STATUS-KEY-1 PIC X.
03 STATUS-KEY-2 PIC X.

PROCEDURE DIVISION.
START.

MOVE 1 TO I-O-TYPE. set type to output only
CALL “CKOPEN” USING FILETABLE, STAT.
IF STATUS-KEY-1 = “0” THEN GO TO WRITE-F.
DISPLAY “CKOPEN ERROR, STATUS = ”, STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKERROR NO. ”’, RESULT.
STOP RUN.
WRITE-F.
READ DATA-FILE INTO DAT;
AT END GO TO FINISH.
MOVE CORRESPONDING DAT TO REC.
CALL “CKWRITE” USING FILETABLE, STAT, REC, RECSIZE.
IF STATUS-KEY-1 = “0” THEN
DISPLAY REC.
GO TO WRITE-F.
IF STAT = “21” THEN
DISPLAY “SEQUENCE ERROR IN ”’, NAME OF REC
GO TO WRITE-F.

3-4.4

CKWRITE

IF STAT = “22” THEN
DISPLAY “DUPLICATE KEY ’, NAME OF REC
GO TO WRITE-F.
IF STAT = “24” THEN
DISPLAY “END OF FILE”
GO TO FINISH.

FINISH
CLOSE DATA-FILE.
CALL “CKCLOSE” USING FILETABLE, STAT.
IF STATUS-KEY-1 = “9” THEN
CALL “CKERROR” USING STAT, RESULT
DISPLAY “CKCLOSE ERROR NO. ”’, RESULT.
STOP RUN.

2. Example of random write.

PROCEDURE DIVISION.

START.
MOVE 1 TO I-O TYPE. output only
MOVE 2 TO A-MODE. random access

CALL “CKOPEN” USING FILETABLE, STAT.
check status

FIND-REC.
READ DATA-FILE INTO DAT;
AT END GO TO FINISH.
IF NAME OF DAT = “ADAMSON JOHN” THEN
GO TO WRITE-REC;
ELSE GO TO FIND-REC.
WRITE-REC.
MOVE CORRESPONDING DAT TO REC.
CALL “CKWRITE” USING FILETABLE, STAT, REC, RECSIZE.
IF STATUS-KEY-1 = “0” THEN
DISPLAY REC,” RECORD WRITTEN”
GO TO FINISH.
IF STAT = “22” THEN
DISPLAY “DUPLICATE KEY”
GO TO FINISH.
IF STAT = “24” THEN
DISPLAY “NO ROOM IN FILE”
GO TO FINISH.

3-45

EXAMPES OF KSAM FILE ACCESS
FROM COBOL PROGRAM

The following three examples illustrate KSAM file access from a COBOL program. The file
accessed in each example is called KSAMFILE. It was created previously by the KSAMUTIL
>BUILD command with BYTE type keys: the primary key containing the name of a person and
the alternate key containing his telephone number; the remaining data in each record is his
address.

EXAMP1. SEQUENTIAL WRITE

The first example reads data from an input file into working storage and then writes it to a KSAM
file. Access mode is sequential so that as each record is written, the keys are linked in sequential
order although the records are not physically written in sequence. Input-output type is output
only, the only type allowed for the procedure CKWRITE. The following procedures are illustrated:

CKOPEN

CKWRITE

CKCLOSE

Input to EXAMP1:

NULAN JACK 923.4975 967 REED AVE, SUNNYVALE CA, 94087
HOSUDA JOE 227-F214 1180 SAINT PETER ¢T, LOS ALTOS CA, 940p2
FUKSTEIN LEO 287.5137 5303 STEVENS CREEK SANTA CLARA CA, 95050
CaROIN RICR 57R.7018 11100 WOLFE ROAD CURERTINO CcA, 94053
PASBY LINUa 29%-1187 TOWN & CNTRY VILLAGE San JOSE CA,., 94102
SEELY HENKY 293.6220 1144 LEREKRTY ST, EL CERRITO CcA, 94053
RUBERT GERKY 25R.5535 12345 TELEGRAPH AVE, BERKELEY CA, 90871
TURNEWR IVAN 984.8498 22905 EMERSUN ST, OakLAND cA, 98p34
wrITE GURUON 398,301 @350 ASHBY AVE, BRERKELEY CA, 9123¢
WESTER ELDER P6Te998 1256 KINGFISHER ST, SUNNYVALE CA, 43098

woENpD OF TNPUT FOR pxaMp]s

Program EXAMP1:

001000 IDENTIFICATION DIVISION,
001100 PROGRAMID, EXAMPI,

001200 ENVIRONMENT DIVISION,

001300 INPUT=OUTPUT SECTION,

001400 FILE=CUNTROL,

001500 SELECT SEQ~DATA ASSIGN TO "SEQDATA",
001600 DATA DIVISION,

001700 FILE SECTION,

001800 FD SEQ=DATA

001900 LABE| RECORDS ARE STANDARD,
002000 01 INPUTREC,
002100 05 REAL-DATA PIC X(T2),

002200 WORKINGeSTORAGE SECTION,
002300 77 RECSIZE PIC S9(4) COMP VALUE T4,

002400 77 RESULT PIC 9(4) VALUE ZERO,

002500 01 DATA~REC,

002600 05 FILLER PIC XX VALUE SPACES,
002700 05 REA_=DATA PIC X(72),

Figure 3-3. Sequential Write Using COBOL

3-46

g02800 01
002900
003000
003100
003200
003300
003400 0}
003500
003600
003700

FILETABLE,

02 FILENUMBER PIC S9(4) COMP VALUE o,

02 FILENAME PIC X(8) VALUE "GKSAMFIL',
02 JeOwyYPE PIC S9(4) COMP VALUE 1.

02 A<MpDE PIC $9(4) COMP VALUE o0,
02 PREV=OP PIC S9(4) COMP VALUE 0.
STATUSKEY,

02 STATUS=KEY=1 PIC X,
02 STATUS=KEY=2 PIC X,

003800 PROCEDURE DIVISION,
003900 START,

004000
004100
004200
004300
n04400
no4S00
004600
004700

OPEN INPUT SEQw=DATA,
CALL "CKOPEN" USING FILETABLE, STATUSKEY,
IF STATUS=KEY=]l = '"gu THEN
CALL "CKERROR" USING STATUSKEY, RESULT
DISPLLAY "CKOPEN ERROR NO, ', RESULT,
IF STATUS=KEY=]1 NOT = "0n THEN
DISPLAY "CKOPEN FAILED"
sTOP RUN,

004800 LOoOP.

004900
005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300

READ SEQeDATA
AT END GO TO FINISH,
MOVE CORR INPUT=REC TO DATAREC,

CALL "CKWRITE" USING FILETABLE, STATUSKEY, DATA~REC,

RECSIZE,
IF STATUSKEY = 102" THEN
DISPLAY "DUPLICATE KEY"s
IF STATUS=KEY~l = '"o" THEN
DISPLAY DATA=REC
6o TO LoOP,
IF STATUS=KEY=]1 s “Qu THEN
CALL "CKERROR!" USING STATUSKEY, RESULT
DISPLAY "CKWRITE ERROR NO, ", RESULT
DISPLAY DATA=REC
G0 TO LOOP,

006400 FINISH,.

006500
n06600
006700
006800
006900
007000

CLOSE SEQ=DATA,
CALL "CKCLOSE" USING FILETABLE, STATUSKEY,
IF STATUS=KEY=]1 = "on THEN
CALL "CKERROR" USING STATUSKEY, RESULT
DISPLAY "CKCLOSE ERROR NO, ", RESULT,
STOP RUN,

Output from EXAMP1 Execution:

NOLAN
HOSODA
ECKSTEIN
CARDIN
PASBY
SEELY
ROSERT
TUINEWR
WHITE
WESTER

JACK 92324975 967 REED AVE, SUNNYVALE
JOE 227~8214 1180 SAINT PETER CTe LOS ALTOS
LEO 287~5137 5303 STEVENS CREEK SANTA CLARA
RICK S78~7018 11100 WOLFE ROAD CUPERTINO
LINDA 29541187 TOWN & CNTRY VILLAGE SAN JOSE
HENRY 293~4220 1144 LEBERTY ST, EL CERRITO
GERRY 259+5535 12345 TELEGRAPH AVE, BERKELEY
IVAN 984»8498 22905 EMERSON ST, OAKLAND
GORDON 398»030]1 4350 ASHBY AVE, BERKELEY
ELDER 287-4598 1256 KINGFISHER ST, SUNNYVALE

END OF PROGRAM

CA,
CA,
CA,
ca,
Cﬁ.
CA,
CA,
CA.
ca,
CA,

94087
94022
95080
94053
94102
94053
90871
98234
91234
43098

Figure 3-3. Sequential Write Using COBOL (continued)

3-417

EXAMP2. SEQUENTIAL READ

The second example reads the file KSAMFILE in sequential order by primary key (NAME) and
prints each record as it is read. It then repositions the file to the first sequential record according
to the alternate key (PHONE) and prints each of the records as it is read in this order. The file is
opened in sequential mode for input only. . The following procedures are illustrated:

CKOPEN
CKREAD
CKSTART
CKCLOSE

Program EXAM2:

001000 IDENTIFICATION DIVISION,

001100 PROGRAM=ID, EXAMP2,

n01200 ENVIRONMENT pIVISION,

001300 INPUT=OUTPUT SECTION,

001400 FILE~CONTROL,

001500 SELECT SgQ-DATA ASSIGN TO nSEQDATA',
001600 DATA DIVISION,

001700 WORKING-STORAGE SECTION,

n01800 77 RECSIZE PIC S9(4) COMP VALUE T4,

nul900 77 RESULT PIC 9(4) VALUE ZERO.
002000 77 KEY=_0OC PIC S9(4) COMP VALUE 23,
n02100 77 RELOP PIC S9(4) COMP VALUE 2,

002200 77 KEYLENGTHM PIC S9(4) COMP VALUE 8,
002300 77 KEY=VALUE PIC X(8) VALUE "000~0000",
n02400 01 DATA-REC,

002500 05 FILLER PIC XX,

002600 05 NAME PIC X{20)a

p02700 05 PHONE PIC X(8),

nok8o¢C 05 OTHER=DATA PIC X(&44),

n02900 01 FILETABLE,

003000 02 FILENUMRFR PIC S9(4) COMP VALUE q,
n03100 02 FILENAME PIC X(8) VALUE "GKSAMFIL",
003200 02 1~0~TYPE PIC $9(4) COMP VALUE g,
003300 02 A~MQODE PIC S9(4) COMP VALUE g,
003400 02 PREV=~OP PIC S$S9(4) COMP VALUE o,
n93500 01 STYATUSKEY,

n03600 02 STATUS~KFY=1 PIC X,

n03700 02 STATUS=KEY=2 P1IC X,

003800

003900 PRQCEDURE DIyi1sloN,
no4000 STaART,

no4100 CALL "CKOPEN'" USING FILETABLE, STATUSKEY,
n0%200 IF STATUS~KEY=1 = "Oun THEN

n04300 CALL "CKERROR" USING STATUSKFY, RESULT
n0440p0 DISPLAY "CKOPEN ERROR NO, 'y RESULT,
n04500 IF STATUS=KEY=1 NOT = ©Qn THEN

n04600 DISPLAY "CKOPEN FAILED"

n04700 STOP RUAN,

n04800 JISPLAy “A| PHABETICAL ORDER:"™

Nno%900 UISPLAy © n,

r05000 LONPL.

005100 CALL "CKREAD" USING FILETABLEs STATUSKEY, DATA=REC,
005200 RECSIZE,

n05300 IF STATUS~KEY=1 = "1 THEN GO TN PARTZ,

Figure 3-4. Sequential Read Using COBOL

3-48

105400
205500
005600
n05T00
n05800
nnNS900
nu6000
n06100
006200
n06300
006400
n06%500
006600
006700
n06800
006900
667000
nuTlo00
007200
007300
p0T400
007500
007600
nu7700
207800
007900
o0B0OO
n08100
008200
008300
008400
008500
008600
n08700
008800
008900
009000
009100
009200

IF STATUS~KFY=1 = 90" THEN
DISPLAY DATA=REC
ELSE
DISPLAY nCKREAD ERROR, STATUS = ', STATUSKEY
IF STATUS=KEY=1l = n9n THEN
call "CKERROR'" USING STATUSKEY, RESULT
ODISPLAY "ERROR NO, ", RESULT,
0 710 LooPy,

PART2,

DISPLAY n u,

DISPLAY “PHONE NO, ORDERH

DIselay v

CALL "CKSTARTH USING FILETABLE, STATUSKEY, RELOP,

KEY=VALUE, KEY=LO0C, KEYLENGTH,
IF STATUSKEY = n23'" THEN 6O TO FINISH,

IF STATUS=KEY~1 = "on THEN 60 YO LgoP2,
DISPLAY WCKSTART ERROR, STATUS = v, STATUSKEY,
IF SYATUS-kEle = "9n THEN
CALL "CKERROR" USING STATUSKEY, RESULT
DISPLAY WERROR NO, ", RESULT,
GO YO FINISH,

LonP2,.

CALL "CKREADM" USING FILETABLEs STATUSKEY, DATA=REC,
RECS17E,
IF STATUS=KEY=1 = "1' THEN GO TO FINISH,
IF STATUS~KEY=] = nQn THEN
DISPLAY DATA~REC
ELSE
DISPLAY "CKREAD ERROR, STATUS 3 n, STATUSKEY
IF STATUS=KEY=1 = n9n THEN
CALL "CKERROR" USING STATUSKEY, RESULT
DISPLAY "ERROR NO, ", RESULT,
G0 710 LooP2,

FINISH.

CALL "CKCLOSE" USING FILETABLE, STATUSKEY,
IF STATUS=KEY=1 = "gu THEN
CaLL "CKERROR" USING STATUSKEY, RESULT
DISPLAY "CKCLOSE ERROR NO, ', RESULT,
STOP RUN,

Figure 3-4. Sequential Read Using COBOL (continued)

3-49

Output from EXAMP2 Execution:

ALPHABETICAL ORDER!

CARDIN RICK
ECCSTEIN LEO
HOSODA JOE
NOLAN JACK
PASBY LINDA
RQBERT GERRY
SEELY HENRY
TUINEWR IvaN
WESTER ELDER
wHITE GORDON
PHONE NO, 0RDERI
HNSODA JOE
ROBERT GERRY
WESTER ELDER
ECXSTEIN LEO
SEELY HENRY
PASRY LINDA
WHITE GORDON
CARDIN RICK
NOL AN JACK
TURNEWR IvaN

END OF PROGRAM

578-701l8
287-5137
227-8214
9234975
2595535
293~4220
9848498
287~4598
398-0303

2595535
287~-4598
287-5137
293=-422¢
398-0303
578~7018
923-497s
9848498

11100 WOLFE ROAD
5303 STEVENS CREEK
1180 SAINT PETER CTe
967 REED AVE,

TOWN & CNTRY VILLAGE
12345 TELEGRAPH AVE.
1144 LEBERTY ST,
22905 EMERSON ST,
1256 KINGFISHER ST,
4350 ASHBY AVE.

1180 SAINT PETER CT.
12345 TELEGRAPH AVE.
1256 KINGFISHER ST,
$303 STEVENS CREEK
1144 LLEBERTY ST,
TOWN & CNTRY VILLAGE
4350 ASHBY AVE,
11100 WOLFE ROAD

967 REED AVE,

22905 EMERSON ST,

CUPERTINO
SANTA CLARA
L.OS aLTOS
SUNNYVALE
SAN JOSE
BERKELEY

EL CERRITO
OAKLAND
SUNNYVALE
BERKELEY

LOS ALTOS
BERKELEY
SUNNYVALE
SANTA CLARA
EL. CERRITO
SaAN JOSE
BERKELEY
CUPERTINO
SUNNYVALE
OAKL AND

ca,
ca,
ca,
ca,
TR
ca,
CA,
ca,
ca,
CA,

ca,
CA,
CA,
CA,
CA,
CAa,
CA.
CA.
cAa,
ca,

94053
95050
94022
94087
94102
S0871
94053
98234
43098
91234

94022
90871
43098
95050
94053
94102
91234
94053
94087
98234

Figure 3-4. Sequential Read Using COBOL (continued)

3-50

EXAMP3. RANDOM UPDATE

This example reads a set of new data containing update information into the WORKING-STORAGE
SECTION. Each record read is followed by a U for update, a D for delete, or an A for add. Records
to be added are written to the file KSAMFILE using CKWRITE in random mode. Records to be
updated are copied to the appropriate record with CKREWRITE. Records to be deleted are first
read in the WORKING-STORAGE SECTION with CKREADBYKEY and then deleted with
CKDELETE. The file is opened in random mode for input-output.

The procedures illustrated by this example are:

CKOPEN
CKREADBYKEY
CKDELETE
CKREWRITE
CKWRITE
CKCLOSE

Program EXAMP3:

001000 IDENTIFICATION DIVISION,
001100 PROGRAM=ID. EXAMP3,

001200 ENVIRONMENT DIVISION,

001300 INPUT=QUTPUT SECTION,

001400 FILE=CONTROL,

001500 SELECT NgWeDATA ASSIGN TO nNEWDATAMN,
001600 DATA DIVISION,

001700 FILE SECTION,

001800 FD NEW-DATA

001900 LABEL RECORDS ARE STANDARD,

002000 01 INPUTREC PIC X(T73),

002100 WORKING=STORAGE SECTION,

002200 77 RECSIZE PIC S9(4) COMP VALUE 74,
002300 77 RESULT PIC 9(4) VALUE ZERO,
002400 77 KEY=LOC PIC S9(4) COMP VALUE 3,
002500 01 MASTER=REC,

002600 05 FILLER PIC XX,

502700 05 NAME PIC X(20),

002800 05 PHONE PIC Xx(8),

002900 0S OTHER«DATA PIC X(&4b),

003000 01 DATA=REC,

p03100 05 NAME PIC X(20),

003200 05 PHONE PIC X(8),

003300 0S OTHERDATA PIC X(44),

003400 05 TRANSACTION=CODE PIC X,

003500 01 FILETABLE,

003600 02 FILENUMBER PIC $9(4) COMP VALUE 0.
003700 02 FILENAME PIC X(B) VALUE "GKSAMFIL",
003800 02 I~O-yYPE PIC S9(4) COMP VALUE 2,
003900 02 A«MODE PIC S9(4) COMP VALUE),
004000 02 PREV.OP PIC S9(4) COMP VALUE o,
004100 01 STATUSKEY,

004200 02 STATUS=KEY=l PIC X,

004300 02 STATUS=KEY=2 PIC X,

n04400

Figure 3-5. Random Update with COBOL

3-b1

004500
004600
004700
004800
n0é4990
005000
005100
n05200
n05300
005400
005%00
005600
005700
n05800
n05900
n06000
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
n07600
007700
007800
n07900
n08000
008100
n08200
008300
008400
008500
008600
008700
008800
n089¢00
Q09000
009100
009200
n09300
n09400
009500
009600
009700
009800
009900
0l0000
0l0lo00
0l0200
010300
010400
010500
010600
010700
010800
010900

PROCEDURE DIVISION.
START,

OPEN INPUT NEW«DATA.
CALL "CKOPEN'" USING FILETABLE, STATUSKEY,
IF STATUS=KEY=] a "gn THEN
CALL "CKERROR" USING STATUSKEY, RESULT
DISPLAY "CKOPEN ERROR NO, ', RESULT,
IF STATUS=KEY=]1 NOT .3 non THEN
DISPLAY "CKOPEN FAILED"
STOP RUN,
LONnP.
READ NEW=DATA INTO DATA®RECH
AT END GO TO FINISH,
IF TRANSACTION-CODE = "An THEN GO TO ADDREC,
IF TRANSACTION=CODE NOT = "D" AND "UM THEN
DISPLAY YILLEGAL TRANSACTION cODE"
DISPLAY DATAREC
Go TO L 0O0P,
CALL "CKREADBYKEY" USING FILETABLE, STATUSKEY, MASTEReREC,
NAME OF DATA-REC, KEY=_ 0C, RECSIZE,
IF STATUS=KEY=1 NOT = "0n THEN
DISPLAY "CKREADBYKEY ERROR, STATUS = ", STATUSKEY,
"y KEY = v, NAME OF DATA=REC
IF STATUS=KEY=]1 = ''git THEN
CalLL "CKERROR'" USING STATYUSKEY, RESULT
D1SPLAY "ERROR NO, ", RESULT
Go TO LOOP
ELSF
Go TO LOOP,
IF TRANSACTION«CODE = "D" THEN GO To DELETE~REC,
MUVE CORR DATAwREC TO MASTEReREC,
CALL "CkREWRITE" USING FILETABLE, STATUSKEY, MASTER-REC,
RECSIZE.
IF STATUSeKEYel = "0' THEN
DISPLAY MASTERREC, " VUPDATED"
Go TO LOOP,
DISPLAY wCKREWRITE ERROR, STATUS = n, STATUSKEY, 1} KEY = ®
NAME OF MASTER@REC,
IF STATYUS=KEYe]l & "9n THEN
CalLL "CKERROR" USING STATUSKEY, RESULT
DISPLAY "ERROR NO, ", RESULT
Gp TO LOOP,
DEILETE=REC.,

CAL| "CKDELETE" USING FILETABLE, STATUSKEY,
IF STATUS=KEYwl = "Qn THEN
DIsPLAY MASTER=REC, ' DELETYTED"
GO TO LOOP,
UISPLAY "CKDELETE ERROR, STATUS = n, STATUSKEY.
IF STATUS=KEY=] = "gn THEN
CALL "CKERROR'" USING STATUSKEY, RESULT
DIsPLAY "ERROR NO, ", RESULT,
GO YO LooP,
ApDn=REC,
MOVE CORR DATA=REC TO MASTER=REC,
CALL "CKWRITE" USING FILETABLE, STATUSKEY, MASTER-REC,
RECSIZE,
IF STATUSKEY = n02" THEN
DIsPLAY "DUPLICATE KEY"M,
IF sTATUS=KEY=]1 = '10n THEN
DISPLAY MASTER=REC, " ADDED"®
GO TO LOOP,
DIsSPLAy nCKkWRITE ERROR, STATUS = n, STATUSKEY,
IF STATUS~KEY=1 = "9u THEN
CALL "CKERROR" USING STATUSKEY, RESULT
DIsPLAY "ERROR NO, ", RESULT.

Figure 3-5. Random Update with COBOL (continued)

3-52

0llo00 VISPLAy MASTER=REC,

olllo00 60 TO LoOP,

011200 FINISH.

011300 CLOSE NEweDATA,

0ll400 CALL "CKCLOSE" USING FILETABLE, STATUSKEY,
011500 IF STATUS=KEY=] & 19H THEN

nllég00 CaLL “CKERROR" USING STATUSKEY, RESULT
011700 DISPLAY "CKCLOSE ERROR NO, ", RESULT,
0lleoo STOP RUN,

Input to EXAMP3:

NOLAN JACK 923=497% SUNNYVALE ca.
SMITr JOHN 555=1712 OUR TOWN ca,
ECKSTEIN LEO
CARDIN RICK 11100 WOLFE RQaD CUPFRTINO Ca.
PASBY LINvS
JANE MARY 565=9090 1776 BICENTENNIAL ST, ANAHEIM Ch.
RUBERT GERRY 259-5535 12345 TELEGRAPH AVEe RERKELEY Ca.
TURNEW VAN
FORD GERALD 5655-1976 1600 PENNSYLVANIA AASHINGTON DC.
WwESTEN ELDER 2BT-4%98 1256 KINGFISHER ST, SUNNYVALE cA
Output from Execution of EXAMP3:
NOL AN Jack 923~4975)1 ANY STREET, SUNNYVALE ca, 94087
SMITH JONN 555~31212 1102 FIRST ST, OUR TOWN CA, 94099
ECASTEIN LEO 287~5137 5303 STEVENS CREEK SANTa CLARA CA, 95050
CAIDIN RIcK 257=700p0 11100 WOLFE ROAD CUPERYINO CA, 94014
PASBY LINDA 295«3187 TowN & CNTRY VILLAGE San JOSE CA, 943102
JANE MARY 5659090 1776 BICENTENNIAL ST,ANAHEIM ca, %1076
RO3ERT GERRY 259=5535 12345 TELEGRAPH AVE, BERKELEY Ca, %70¢
CKREADBYKEY ERRORy STATUS = 233 «EY = TURNEW IVAN
CxRESDBYKEY ERROR, STATUS = 233 «EY = FORD GERALD
CkwRITE FRROR, STATUS = 22
WESTER ELDER 28Tw4t.8 1256 KINGFISHER ST. SUNNYVALE CA, 94309

Q4087TU
94099A

3]
4014V

20001V
«94309A

uPDATED
ADDED

DELETED
UPDATED
DELETED
aDOEC

11IPDATED

Figure 3-5. Random Update with COBOL (continu

Note that the input contains data that results in error messages. The name IVAN TURNEWR is
spelled incorrectly and cannot be found. The name GERALD FORD does not exist in the original
file and also cannot be found. On the other hand, the name ELDER WESTER already exists in the

ed)

file and cannot be added since it is a primary key for which duplicates are not allowed.

3-53

USING KSAM FILES IN SPL
PROGRAMS | v

KSAM FILE SYSTEM INTRINSICS

The Multi-Programming Executive Operating System (MPE) provides a set of procedures, known
as intrinsics. A subset of these intrinsics makes up the file system, a set of procedures used to
manipulate files. KSAM files are processed using these same intrinsics with the following excep-
tions: seven new intrinsics are added for KSAM files, and four of the file system intrinsics do not
apply to KSAM files. (Refer to table 4-1 for a list of the KSAM file system intrinsics.)

Table 4-1. KSAM File System Intrinsics

INTRINSIC KSAM | NOT USED
ES1I
NAME ONLY BY KSAM DIFFERENCES IN FORMAT FUNCTION
FOPEN ksamparam replaces formmsg Opens a KSAM file for
as sixth parameter. access and assign file num-

ber to file.

FCLOSE none Closes a KSAM file to
further access.

[FRENAME] X - If called for KSAM file, re-
turns CCL error code.

FREAD none Reads next record in se-
quential order by key.

*FREADC X all new Reads next record in
chronological sequence.

*FREADBYKEY X all new Reads record identified by
key value.

FREADDIR none Reads record identified by
chronological position.

[FREADSEEK] X — If called for KSAM file, re-
turns CCL error code.

FWRITE control parameter included Writes record to KSAM file.

for compatibility only.

[FWRITEDIR] X — If called for KSAM file, re-
turns CCL ervor code.

*FREMOVE X all new Deletes current record from
KSAM file.

FUPDATE none Updates last referenced
record.

4-1

Table 4-1. KSAM File System Intrinsics (continued)

INTRINSIC KSAM | NOT USED
E
NAME ONLY IN KSAM DIFFERENCES IN FORMAT FUNCTION

FSPACE none Spaces forward or backward
in file.

*FFINDBYKEY X all new Positions current record
pointer to record located
by key value.

*FFINDN X all new Positions current record
pointer to relative record
number in key sequence.

FPOINT none Positions current record
pointer to relative record
number in chronological
sequence.

FGETINFO none Requests file access and
status information.

*FGETKEYINFO X all new Requests access and status
information on KSAM file.

[FRELATE] X - I called for KSAM file, re-
turns CCE and false
condition.

FCHECK none Requests details of file
input/output errors.

FERRMSG none Prints message correspond-
ing to FCHECK error code.

FCONTROL param parameter included Ensures that input/output

for compatibility only is complete or positions to
first sequential record by
key value; other options not
available for KSAM file.

FSETMODE none Verifies critical output as
part of write operation;
other options not avail-
able for KSAM file.

FLOCK none Dynamically locks file.

FUNLOCK none Dynamically unlocks file.

FREADLABEL none Reads user’s file label.

FWRITELABEL none Writes user’s file label.

*HP32208 X all new identifies the KSAM version.

CALLING INTRINSICS FROM SPL

An intrinsic used in an SPL program must be declared at the beginning of the program following
all other declarations. There are two ways to declare an intrinsic: one is to make an external pro-
cedure declaration, and the other is to use the INTRINSIC declaration. Since declaring an external
procedure is a long process, you can save space and time by using the INTRINSIC declaration as
follows:

INTRINSIC intrinsicname, intrinsicnhame, . . . ,intrinsicname;

You name all the intrinsics used in your program in the intrinsicname list. When more than one
intrinsic is named, the names must be separated by commas.

You call an intrinsic by writing the intrinsic name followed by a list of parameters enclosed in
parentheses. These parameters must be in the order established for each intrinsic as shown in the
intrinsic formats later in this section. Every parameter that is specified as a variable or an array
must be declared before the intrinsic is called. The formats that describe intrinsics define the
variable or array type of each parameter; specify whether it can be passed by value or must be
passed by reference; and indicate whether any parameters are optional and if so which ones.

In summary, to call an intrinsic from an SPL program:

1. Refer to the intrinsic format to determine the parameter type and position.

2. Declare any variable or array names to be passed as parameters at the beginning of the program.

3. Declare the intrinsic name in an INTRINSIC statement.

4. Issue the intrinsic call where appropriate in your program.

KSAM INTRINSIC SUMMARY

Table 4-1 is provided to give an overview of the intrinsics available for accessing KSAM files. In
this table, the intrinsics are organized into functional groupings. In the body of this section, how-
ever, the intrinsic descriptions are in alphabetic order so that they may be referenced easily.

In table 4-1, an asterisk (*) preceding an intrinsic name indicates that this intrinsic applies only to

KSAM files. A bracket around an intrinsic name indicates that the intrinsic should not be used for
KSAM files.

INTRINSIC FORMAT

Intrinsic format is illustrated below using FCHECK as an example.

4-3

Optional parameters are indicated by an underline under each option and by the superscript O-V.
The parameter type and whether it is passed by value is shown by the superscript over each param-
eter. Possible parameter types are:

BA Byte array

BP Byte pointer

D Double

DA Double array
DV Double by value
1 Integer

1A Integer array

v Integer by value
L Logical

LA Logical array
LV Logical by value
R Real

PASSING PARAMETERS. Integer, logical and double type parameters can be passed by value.
'This means that the actual value can be specified in the intrinsic call instead of a variable or array
name. When a parameter is passed by reference (default for all parameter types), the address in
the caller’s data area of the named variable or array is made available to the intrinsic. If the
variable or array is modified by execution of the intrinsic, the storage in the caller’s data area is
updated. When a parameter is passed by value, the corresponding variable in the calling routine is
unchanged.

OPTIONAL PARAMETERS. If any parameters can be omitted, the superscripts that describe
individual parameters are followed by the superscript O-V, option variable. O-V means that at
least one parameter in the list is optional. Since all parameters are recognized by their position
in the list, a parameter may be omitted but its preceding comma must be included. If one or
more parameters are omitted from the end of the list, this is indicated by placing the terminating
parenthesis after the last specified parameter.

For example:
FCHECK(FILEX , , ,, REC) ~———only the first and fifth parameters are included

FCHECK(2,ERR) - the last three parameters are omitted; note that filenum
is passed by value.

4-4

KSAM RECORD POINTERS

Certain KSAM procedures use pointers that indicate the current record position in the file.
Depending on the procedure, either of two pointers may be used:

e Logical Record Pointer Points to a key in the key file that identifies a
particular record in the data file.

e Chronological Record Pointer Points directly to a record in the data file based
on its chronological record number.

Procedures that use these pointers are either pointer-dependent or pointer-independent. Pointer-
dependent procedures expect the pointer to be positioned in order to execute correctly. Pointer-
independent procedures, on the other hand, execute regardless of where the pointer is positioned,
and in most cases, they position the pointer. Because the position of the pointer is significant for
pointer-dependent procedures, table 4-2 defines exactly where each pointer is located following
successful execution of those procedures that either depend on or position the pointer.

Table 4-2. Positioning the Pointers

PROCEDURE POINTER POINTER- POSITION OF POINTER AFTER
NAME TYPE DEPENDENT EXECUTION OF PROCEDURE
FFINDBYKEY Logical NO Points to key whose value was specified in call.
FFINDN Logical NO Points to key whose relative record number was
specified in call.
FREADBYKEY Logical NO Points to key whose value was specified in call.
FWRITE Logical NO Points to key whose value is next in ascending key

sequence to the key value in the record just written.

FPOINT Chronological NO Points to record whose relative record number was
specified in call.

FREADDIR* Chronological NO Points to record whose relative record number was
specified in call.

FREAD Logical YES Pointer remains positioned to key for the record just
read; unless next call is to FREAD or to FUPDATE
followed by FREAD, in which case, pointer is
advanced to next key in sequence before the next
FREAD reads the record. (This permits sequential
reads and updates.)

FSPACE Logical YES Positioned forward or backward, in key sequence,
the number of records specified in call.

FREMOVE Logical YES Points to next key value, in ascending sequence, to the
key value in the record just deleted.

FUPDATE Logical YES Pointer remains positioned to key of the record just
modified; unless any key value is changed, in which
case, it points to next key in ascending sequence
after the key in the modified record.

FREADC Chronological YES Pointer remains positioned to the record just read;
unless next call is to FREADC, in which case, it
points to next record in ascending chronological
sequence.

* Except for FREADDIR, each of these procedures positions both pointers. That is, all procedures that position
the logical pointer also position the chronological pointer, and all calls (except FREADDIR) that position the
the chronological poiner also position the logical pointer.

(Refer to appendix B, Extra Data Segments With Shared Access, for details of how KSAM determines
pointer position.)

SHARED ACCESS

The position of the record pointers is crucial during shared access because the pointers are main-
tained in separate control blocks (extra data segments) for each open file. Thus, if the same file
is opened by different users, any user may change the key file structure by adding or deleting
records so that other users’ pointers become invalid. To avoid this problem, it is good practice
to lock the file in a shared environment before calling a procedure that positions the pointer and
leave the file locked until any pointer-dependent operation is complete. This means that you
should lock the file, call a procedure that sets the pointer, and then call a procedure that reads
the file sequentially or updates the file, and then unlock the file so other users may access it.
Once the file is unlocked, no user should assume that his pointers will still be valid. Before using
a pointer again, it must be re-established.

4-6

FCHECK

INTRINSIC NUMBER 10

Requests details about file input/output errors.

When a file intrinsic returns a condition code indicating a physical input/output error, additional
details may be obtained by calling FCHECK. This intrinsic applies to files on any device.

FCHECK accepts zero as a legal filenum parameter value. When zero is specified, the information
returned in errorcode reflects the status of the last call to FOPEN. When an FOPEN fails, there is
no file number that can be referenced in filenum. Therefore, when an FOPEN fails, a filenum of
zero can be used in the FCHECK intrinsic call to obtain the errorcode only. If the tlog, blknum,
or numrecs parameters are specified, a zero value is returned to these parameters. If a filenum of
zero is used for a file which has been opened but not yet closed, the returned errorcode is
meaningless.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file for which error
information is to be returned.

errorcode integer (optional)
A word to which is returned the error code specifying the type of error
that occurred. If no error occurred errorcode is set to zero. (Refer to
table 4-3 for the errorcode values.) The intrinsic FERRMSG returns
a displayable message that corresponds to the value of errorcode.
Default: The error code is not returned.

tlog integer (optional)
A word to which is returned the transmission log value recorded when
an erroneous data transfer occurs. This word specifies the number of
words not read or written (those left over) as the result of an input/
output error.
Default: The transmission log value is not returned.

blknum double (optional)
A double word to which is returned the relative number of the block
involved in the error.
Default: The block number is not returned.

numrecs integer (optional)
A word to which is returned the number of logical records in the bad
block.

Default: The number of logical records is not returned.

4-7

FCHECK

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because filenum was invalid and errorcode is 72, or a
bounds violation occurred while processing this request and errorcode
is 73.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

Table 4-3. FCHECK errorcode Parameter Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FCHECK error code
Shaded bits are set to zeros.
Bits
0:8 unused (all zeros)
8:8 error caode = one of the following values:
Code .
(Decimal) Meaning
0 End of file.
1 Illegal DB register setting (typically, a request in split-stack mode when it is
illegat).
2 Itlegal capability
8 Ilegal parameter value.
20 Invalid operation.
21 Data parity error,
22 Software time-out.
23 End of tape.
24 Unit not ready.
25 No write ring on tape.
26 Transmission error.
27 Input/output time-out.
28 Timing error or data overrun.
29 Start input/output (SI0) failure.
30 Unit failure.
31 End of line (special character terminator).
32 Software abort of input/output operation.
33 Data lost
34 Unit not on line.

4-8

FCHECK

Table 4-3. FCHECK errorcode Parameter (continued)

Code

(Decimal) Meaning

35 Data set not ready.

36 Invalid disc address.

37 Invalid memory address.

38 Tape parity error.

39 Recovered tape error.

40 Operation inconsistent with access type.

41 Operation inconsistent with record type.

42 Operation inconsistent with device type.

43 The tcount parameter value exceeded the recsize parameter, but the mu/ti-
record access aoption was not specified when the file was opened.

44 The FUPDATE intrinsic was called, but the file was positioned at record zero.
(FUPDATE must reference the last record read, but no previous record was
read.)

45 Privileged file violation.

46 File space on all discs in the device class specified is insufficient to satisfy this
request.

47 Input/output error on a file label.

48 Invalid operation due to multiple file access.

49 Unimplemented function.

50 The account referenced does not exist.

51 The group referenced does not exist.

52 The referenced file does not exist in the system (permanent) file domain.

53 The referenced file does not exist in the job temporary file domain.

54 The file reference is invalid.

b5 The referenced device is not available.

56 The device specification is invalid or undefined.

57 Virtual memory is not sufficient for the file specified.

58 The file was not passed (typically, a request for SOLDPASS when there is no
SOLDPASS).

59 Standard label violation.

60 Global RIN not available.

61 Group disc file space exceeded.

62 Account disc file space exceeded.

63 Non-sharable device (ND) capability required but not assigned.

64 Multiple RIN (MR) capability required but not assigned.

66 Plotter limit switch reached.

67 Paper tape error.

68 System internal error.

69 Miscellaneous (ATTACHIQ) input/output error.

71 Too many files opened for process.

72 Invalid file number.

73 Bounds check violation.

77 NO-WAIT input/output operation is pending.

78 There is no NO-WAIT input/output for any file.

79 There is no NO-WAIT input/output for file specified.

80 Configured maximum number of spoolfile sectors would be exceeded by this
output request.

81 No SPOOL class defined in system.

FCHECK

Table 4-3. FCHECK errorcode Parameter (continued)

Code

(Decimal) Meaning
82 Insufficient space in SPOOL class to honor this input/output request.
83 Extent size exceeds maximum allowable.
84 The next extent in this spoolfile resides on a device which is unavailable to
the system (i.e., the device is =DOWN).
85 Operation inconsistent with spooling; e.g., attempt to read hardware status.
86 Spool process internal error.
87 Offset to data is greater than 255 sectors.
89 Power failure.
20 The calling process requested exclusive access to a file to which another
process has access.
91 The calling process requested access to a file to which another process has
exclusive access.
92 Lockword violation.
93 Security violation.
94 Creator conflict in use of FRENAME intrinsic (user is not the creator).
95 “BROKEN" terminal read.
96 Miscellaneous disc input/output error (device may require HP Customer
Engineer attention).
97 CONTROL Y processing requested but no CONTROL Y PIN exists.
98 Input/output read time has overflowed.
99 Magnetic tape error. Beginning of tape (BOT) found while requesting a back-
space record (BSR) or a backspace file (BSF).
100 Duplicate file name in the system file directory.
101 Duplicate file name in the job temporary file directory.
102 Directory input/output error.
103 System directory overflow.
104 Job temporary directory overflow.
105 llegal variable block structure.
106 Extent size exceeds maximum allowable.
107 Offset to data is greater than 255 sectors.
108 Inaccessible file due to a bad file label.
109 Illegal carriage control option.
110 The intrinsic attempted to save a system file in the job temporary file
directory.
170 FPOINT intrinsic tried to position to a record that was flagged for deletion.
171 Duplicate key value when duplicates not allowed.
172 Key not found; no such key value.
Codes 170 — 173 tcount parameter larger than record size.
200 174 Cannot get extra data segment for this file.
Reserved 175 KSAM internal error.
for KSAM 176 Illegal extra data segment length.
File Errors 177 Too many extra data segments for this process.
178 Not enough virtual memory for extra data segment.
179 Undefined.
180 Undefined.
181 Invalid key starting position.
182 File is empty.
183 Record does not contain all the keys.

4-10

FCHECK

Table 4-3. FCHECK errorcode Parameter (continued)

Code Meaning
(Decimal)

184 Invalid record number in FFINDN intrinsic; record number is negative.

185 Sequence error in primary key. '

186 Invalid key length; (numeric display and packed decimal type keys shorter
than length specified at creation).

187 Invalid key specification; keys illegal.

188 Invalid device specification.

189 Invalid record format.

190 Invalid key blocking factor value.

191 Incorrect record; as a result of a previous system failure, a key points to a record
that has a different key value.

192 System failure occurred when the KSAM file was open; run KEYINFO of
KSAMUTIL to recover.

193 Undefined.

194 Undefined.

195 Undefined.

196 Undefined.

197 Undefined.

198 Undefined.

199 Undefined.

200 Undefined.

4-11

FCLOSE

INTRINSIC NUMBER 9

Closes a file.

The FCLOSE intrinsic terminates access to a file. This intrinsic applies to files on all devices.
FCLOSE deletes the buffers and control blocks through which the user process accessed the file.

It also deallocates the device on which the file resides and it may change the disposition of the file.
If you do not issue FCLOSE calls for all files opened by your process, such calls are issued auto-
matically by MPE when the process terminates.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to be closed.

disposition integer by value (required)
Indicates the disposition of the file, significant only for files on disc.
This disposition can be overridden by a corresponding parameter in a
:FILE command entered prior to program execution. The disposition
options are defined in table 4-4

Default: disposition is zero for no change, no return of disc space.
seccode integer by value (required)
Denotes the type of security initially applied to the file, significant

only for new permanent files. The options are:

0 — Unrestricted access — the file can be accessed by any user, unless
prohibited by current MPE provisions.

1 — Private file creator security — the file can be accessed only by its
creator.

Default: seccode is zero for unrestricted access.
NOTE
Both parameters are required when FCLOSE is specified in

a program; the default values are used when MPE closes any
open files at the end of a job or session.

4-12

Table 4-4. FCLOSE disposition Parameter Bit Settings

FCLOSE

Set shaded areas to zero for KSAM files.

1

12

13

14 15

Domain

BITS

OPTION

SETTINGS

13:3

Domain

000 = No change. (default) The disposition code remains as it was before the
file was opened. Thus, if the file is new, it is deleted by FCLOSE; other-
wise, the file is assigned the domain to which it previously belonged.

001 = Permanent file. If a disc file, it is saved in the system file domain. If
the file is a new or temporary file, an entry is created for it in the sys-
tem file directory. An error code is returned if a file of the same name
already exists in the directory. This disposition has no effect when the
file is an old permanent file on disc.

010 = Temporary job file. The file is retained in the user’s temporary (job/
session) file domain. It can be requested by any process within the job/
session. The uniqueness of the file name is checked and if a file of the
same name already exists, an error code is returned.

011 = Temporary job file. This option has the same effect as disposition code
010.

100

Released file. The file is deleted from the system.

12:1

Disc Space
Disposition

0 = No return. (default) Any disc space allocated to the file that is
beyond the end-of-file indicator is not returned to the system. This
option is recommended for KSAM files.

1 = Return disc space. Any disc space allocated beyond the end-of-file
indicator is returned to the system. This option is not recommended
for KSAM users since the returned space cannot be recovered.

CONDITION CODES

CCE

CCG

CCL

The file was closed successfully.
Not returned by this intrinsic.
The file was not closed, perhaps because an incorrect filenum was

specified, or because another file with the same name and disposition
exists in the system.

4-13

FCLOSE

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FCLOSE

The FCLOSE intrinsic terminates access to a file so that it cannot be accessed again by the current
program until it is re-opened. FCLOSE can also be used to change the disposition currently assign-
ed to a file by a previous FOPEN.

Because of the special structure of KSAM files, it is not good practice to set the disc space bit in
the disposition parameter in an attempt to save disc space. For this reason, 4 is the largest value that
should be assigned to the disposition parameter when using FCLOSE to close a KSAM file.

When a file is opened by the FOPEN intrinsic, a file count maintained by the system is incremented
by one. When the file is closed with FCLOSE, the file count is decremented by one. If more than
one FOPEN is in effect for a particular file, its disposition is recorded by the FCLOSE call but is
not put into effect until the file count is zero. The effective disposition at that time is the smallest
non-zero disposition parameter specified among all the FCLOSE calls issued against the file. For
example, a file XYZ is opened three successive times by a process. The first FCLOSE disposition

is 1, the second FCLOSE disposition is 4, and the third and last FCLOSE disposition is 2. The

final disposition of the file XYZ is 1, that is, it is saved as a permanent file with no return of disc
space.

The use of FCLOSE differs slightly in its application to new files or to existing files.

CLOSING A NEW KSAM FILE. When a new file is created by FOPEN, the job temporary and
system file domains are not searched to determine whether a file of the same name exists already.
Only when a file is closed and saved as a permanent or temporary file with FCLOSE, is such a
search conducted. The job temporary file domain is searched if the file is closed with the domain
field of disposition set to 2 or 3 (save as temporary file); the system file domain is searched if the
file is closed with domain set to 1 (save as permanent file). If a file of the same name is found in
either directory, an error code is returned. Thus it is possible to open a new file with the same
name as an existing file, but an error results if FCLOSE is used to save such a file in the same
domain with a file of the same name.

In general, unless you plan to use the file once and then delete it, a newly created file should be
closed using FCLOSE with the disposition parameter set to 1, 2, or 3. There is no need to set
disposition to 4 in order to delete a new file since a new file is deleted when it is closed with a
disposition of 0.

The security code parameter (seccode) is set only when the disposition parameter is set to 1. If
you want exclusive access to a file being saved as a new permanent file, you should set seccode to
1 when you close the file for the first time. Otherwise, the file can be accessed by any other user.

In figure 4-1, a new file is closed and saved as a permanent file in the system file domain
(disposition = 1), and access is permitted to the file by other users (seccode = 0).

CLOSING AN EXISTING KSAM FILE. Unless you plan to change the domain where a file is
saved, you usually close an existing file with both FCLOSE parameters set to zero. There are two
limitations: you cannot change an existing permanent file to a temporary file, and you cannot
change the security code that was assigned to a permanent file at creation.

4-14

FCLOSE

CCpBBOERBBIUODOBBNPIPRRIBOIBOB RO BOD)D
<<y READ DATA FROM SSTUIN DEVICE +o>>
CCHOVBRBHBBRRBBBOORANRRRBILRBOABRBRBODD

L1

READ(INPUT,=T2) 3 <<READ ONg RECORD FROM £STDIN>>
IF >

THEN BEGIN <<END OF FILE ON S$STDIN>>

END}

IF «
THEN REGIN
MOVE MESSAGE1="ERROR OCCURRED WHILE READING INPUTI;
PRINT(MESSAGF §=34,0)%
TERMINATE}
END3
PRINT(OUTPUT»=72,0) <<ECHO CHECK>>

Figure 4-1. FCLOSE Example

Assume, for example, that a file was closed as a job temporary file. Should you want to make the
file permanent, close the file with the following call:

FCLOSE(FILENUM,1,0) close job temporary file as permanent file

If, however, you want to maintain this file with its current disposition, you would close it with the
following call:

FCLOSE(FILENUM,0,0) close file with current disposition

Regardless of the value assigned to seccode, the type of security initially applied to the file when it
is closed as a new permanent file is not subsequently changed.

DELETING A KSAM FILE. The FCLOSE intrinsic can be used to delete a KSAM file from the
system. If you intend to use a new file once only, you can delete it at the same time you close it
for the first time by setting the FCLOSE parameters to zero:

FCLOSE(FILNUM,0,0) delete a new file
In this case, because disposition is zero, the file is returned to its domain before FCLOSE is

executed. Since the file is not assigned a domain until it is closed the first time, this effectively
deletes the file.

4-15

FCLOSE

A file that has been assigned to a domain by a previous FCLOSE, can be deleted by the call:
FCLOSE(FILNUM,4,0) delete an existing file

Note that the only other methods for deleting a KSAM file are to use the KSAMUTIL >PURGE
command, or to issue two MPE :PURGE commands, one for the data file and one for the key file.

4-16

FCONTROL

INTRINSIC NUMBER 13

Performs control operations on a KSAM file.

The FCONTROL intrinsic performs various control operations on a KSAM file. When specified
for a KSAM file, these control operations are limited to the following:

® Complete input/output

® Rewind the file

PARAMETERS

filenum

controlcode

integer by value (required)
A word identifier supplying the file number of the file for which the
control operation is to be performed.

integer by value (required)
An integer identifying the operation to be performed:

2 = Complete Output. This insures that requested output has been
physically completed; that is, that the key buffers, data buffers, and
KSAM control information are all written to disc.

When access is shared, you must lock the file with FLOCK before
calling FCONTROL with control code 2.

5 = Rewind File. This repositions the file at its beginning, so that the
next record read or written is the first logical record in the file. When
this code is used for KSAM files, the file is not repositioned to the
first physical record but to the first logical record. The first logical
record is the record with the lowest value in the current key (primary
or alternate)

6 = Complete Output/Write MPE EOF. This performs all the functions
of control code 2 plus it writes the MPE end-of-file and the extent

bit map to disc. (Note that the MPE end-of-file and the extent bit
map are written to disc automatically whenever a new extent is
allocated.) Writing the MPE end-of-file to disc periodically insures that
it does not precede the KSAM end-of-file. Because the MPE end-of-file
marker points to the next available block and the KSAM end-of-file
marker points to the next available record within the last block, it is
possible that the MPE mark is past the KSAM mark.

In shared access, you must lock the file before calling FCONTROL with
control code 6.

7 = Clear Buffers. Clears the key and data buffers of all information, and
then reads the KSAM control information (first two sectors of key file)
from disc to the buffers. This forces data to be read from the disc to the
buffers at the next read operation thereby insuring that the most up-
to-date information is in the buffers.

4-17

FCONTROL

In shared access, FCONTROL with control code 7 can be used
immediately before a read operation, but this does not guarantee that
the record read is not being modified or deleted by another user. For
that purpose, you must use FLOCK (which also clears the buffers)
before calling a read intrinsic.

param logical (required)
This parameter may be specified as any variable or word identifier; it
is needed by FCONTROL to satisfy internal requirements of the
intrinsic, but serves no other purpose and is not modified by the
instrinsic.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred. Returned if any control

code other than 2, 5, 6, or 7 is specified for a KSAM file; or the file
was opened for shared access, but was not locked for control code
2 or 6.

SPECIAL CONSIDERATIONS
Split stack calls permitted.

USING FCONTROL

FCONTROL provides four control functions for KSAM files. These allow you to write the key and
data buffers and all KSAM control information to disc; to position the logical record pointer to the
first logical record in the file; to write the buffers, KSAM control information, plus the MPE end-
of-file and the latest extent bit map, to disc; and to clear all the data buffers and the latest control
information from disc.

The control functions that write the buffers to disc (2 and 6) require that you lock the file before
calling them in a shared access environment.

USING CONTROL CODE 2. When you use control code 2, the data block and key block buffers
and the KSAM control information (including the KSAM end-of-file) are written to disc. (The

data written is that contained in the Extra Data Segment for the open file — refer to figure B-11 for
details.) This control code is particularly useful to make sure the KSAM file reflects current changes.
Suppose, for instance, that you open a KSAM file exclusively for a long period of time and that
your data buffer holds many records. In this case, you can call FCONTROL with code 2 after
writing or updating a certain number of records to insure that no more than that number of records
will be lost in case of a system failure.

For example, you could call FCONTROL every 10 records:

IF COUNT =10 counter set by each FWRITE or FUPDATE
THEN BEGIN
FCONTROL(FILNUM,2,DUMMY);
END;

4-18

FCONTROL

Note that the parameter DUMMY has no function. It is supplied because all
FCONTROL parameters are required. It should be declared in the program as a
word variable: LOGICAL DUMMY;

As a result of the call shown above, you can never lose more than 10 records in case of a system
failure. When a system failure occurs with a KSAM file open, you must run the KSAMUTIL
command KEYINFO to allow the file to be reopened. KEYINFO also sets the MPE end-of-file
to the current position of the KSAM end-of-file. Control code 2 of FCONTROL makes sure that
the KSAM end-of-file follows the last record written to your file.

In a shared environment, be sure to lock your file before calling FCONTROL with control code 2.
Otherwise, the call will fail.

USING CONTROL CODE 5. This control code repositions the file to the first logical record,
that is, the record with the lowest key value. The key that determines this position can be the
primary key or an alternate key, depending on which key was accessed last. Suppose you want
to read the KSAM file in sequence starting with the record containing the lowest primary

key value, you can position to this record using FCONTROL as follows:

FCONTROL(FILNUM,5,DUMMY);

positions to 1st record in primary key sequence

USING CONTROL CODE 6. This control code performs the same functions as control code 2,
except that it also writes the MPE end-of-files for the KSAM files and the latest extent bit map
to disc. Because it must access the MPE control blocks as well as the KSAM control block, this
code takes more time than code 2. Also, since the MPE end-of-files and the extent bit map are
written to disc automatically whenever a new extent is allocated, this code is useful primarily
when a series of updates changes the buffers but does not cause new extents to be allocated,
and when access to the file is exclusive. If access is shared, you must lock the file before using
control code 6.

USING CONTROL CODE 7. This control code clears the buffers so that the next call to a read
instrinsic must get the record from disc rather than from the buffers. It also forces the latest
control information to be read from disc to the buffers. Note that a call to FLOCK will also

clear the buffers. The advantage of FCONTROL with code 7 over FLOCK is that it saves time

— the buffers are cleared without locking and then unlocking the file. Thus, you can call
FCONTROL with code 7 immediately before calling a read instrinsic in a shared environment in
order to get the latest information from disc. However, this does not guarantee that this latest
information is not changed (modified or deleted) by other users while you are calling FCONTROL.
The only complete safeguard is to lock the file before the read. In any case, if you are making
modifications, you should lock the file. For example:

FCONTROL(FILNUM,7,DUMMY);
FREAD(FILNUM,DATA,-72);

clear buffers
read record from file

FLOCK(FILNUM,TRUE); lock file
FREAD(FILNUM,DATA,-72);

FUPDATE(FILNUM,DATA,-72); rewrite record just read
FUNLOCK(FILNUM); unlock file

4-19

F E R R M S G INTRINSIC NUMBER 307

Returns message corresponding to FCHECK error number.

A call to FERRMSG causes a message to be returned to msgbuf that corresponds to an FCHECK
error number. This makes it possible to display an error message from your program. The message
describes the error associated with the error number provided in the parameter errorcode.

PARAMETERS

errorcode integer (required)
A word identifier containing the error code for which a message is to
be returned. It should contain an error number returned by FCHECK.

msgbuf logical array (required)
A logical array to which the message associated with errorcode is re-
turned by FERRMSG. In order to contain the message string, msgbuf
must be defined as at least 72 characters (36 words) long.

msglgth integer (required)

A word identifier to which is returned the length of the msgbuf string.
The length is returned as a positive byte count.

CONDITION CODES

Condition codes are not returned by this procedure.

USING FERRMSG

This intrinsic is called usually following a call to FCHECK. The error code returned in the call to
FCHECK can then be used as a parameter in the call to FERRMSG.

For example, suppose a CCL condition is returned by a call to FCLOSE, a call to FCHECK requests

the particular error code, then a call to FERRMSG can be used to retrieve a printable message asso-
ciated with the code.

4-20

FERRMSG

FCLOSE(FILNUM,1,0);

IF <

THEN BEGIN
FCHECK(FILNUM,ERRNUM);
FERRMSG(ERRNUM,MESSAGE,LENGTH);
PRINT(MESSAGE,-LENGTH,0);.

END
TERMINATE;

The message printed explains the FCHECK code. If the FCHECK code has no assigned meaning,
the following message is returned:

UNDEFINED ERROR errorcode

4-21

F FI NDBYKEY INTRINSIC NUMBER 302

Positions record pointer to record located by a key value.

When FFINDBYKEY is executed, the logical record pointer is set to the beginning of a record
located by this intrinsic. The particular key is defined by the keylocation parameter. The pointer
is positioned to the first record containing a key value that bears the relation specified by relop to
the value specified by keyvalue. A partial key can be specified by a keylength value less than the
defined key length. If, however, the key type specified at file creation was numeric display or
packed decimal, a type where the sign is stored in the least significant byte, partial keys cannot be
specified.

FFINDBYKEY also positions the chronological pointer.
PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to be positioned.

keyvalue byte array (required)
A byte array containing a value that is used to locate the record at
which the pointer is positioned. The key value in the record must be
in the relation specified by relop to the value in array keyvalue.

keylocation integer by value (required)
The keylocation parameter specifies the relative byte location of the
key being used. Bytes are numbered starting with 1. If keylocation
is zero, then the primary key is used.

keylength integer by value (required)
This parameter specifies the length of the key in bytes. If it equals zero,
the entire key is used. If less than the full key length (generic key), then
only the length specified here is used in the comparison with relop. The
keylength parameter must be equal to or less than the full length of the
key when the file was created. For keys of type numeric display or
packed decimal, the full key length must be used.

relop integer by value (required)
A relational operator that specifies the relation of the key value in the
file to the value specified in keyvalue. The record to which the file is
positioned will have this relation to keyvalue following execution of
FFINDBYKEY:

0 — equal
1 — greater than
2 — equal to or greater than

When relop is set to 1 or 2, the search is for an approximate key.

4-22

FFINDBYKEY

CONDITION CODES

CCE Request granted.

CCG The requested position was beyond the logical end-of-file or beginning
of file.

CCL Request denied because an error occurred. The error could be a disc

input/output error; the relational operator (relop) could not be satis-
fied; a keylength less than the full length was specified for a key
with numeric display or packed decimal format; or a key is not
found in the key file when the relational operator is equal.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FFINDBYKEY

The intrinsic FFINDBYKEY allows you to position the file to a record containing a particular key
value. Usually, you will do this in order to read in ascending sequence from that particular record.
If you simply want to locate and read a single record, you should use FREADBYKEY.

In figure 4-2, FFINDBYKEY is used to position the file to the record containing the lowest value
of an 8-byte alternate key in which a telephone number is stored. After FFINDBYKEY positions
the file to this record, a series of FREAD statements read the records in ascending order according
to the value of the key specified by FFINDBYKEY. (Refer to shaded portions of the program for
the FFINDBYKEY declarations and statements).

FFINDBYKEY can also be used prior to a call to FREADC in order to position the chronological
pointer to the record located by the specified key.

USING APPROXIMATE KEYS. In order to find the lowest-valued telephone number, keyvalue
is set to the value *“000-0000”. The key to be searched for this value is identified by its position
in the record. In this case, the alternate key containing the telephone number starts in byte posi-
tion 21, and keylocation is set to the value 21. The full length of the key is specified in keylength
as the value 8. In order to position to the record whose alternate key value is equal to or greater
than ““000-0000”, the value of relop is set to 2.

When executed, FFINDBYKEY will locate the record with an 8-byte value starting in byte 21
that is either equal to “000-0000” or is the lowest value greater than ““000-0000”. Since the
value ““000-0000”’ is not a valid telephone number, the value of relop could be set to 1 indicating
the lowest value greater than “000-0000°’. An error condition is returned if the value in keyvalue
cannot be located. For this reason, relop should not be set to 0 unless it is expected that the
value being sought exists.

4-23

FFINDBYKEY

USING PARTIAL (GENERIC) KEYS. If the value of keylength is less than the length of the key
at creation, this allows a search for a partial (generic) key. For example, assume a file with a 20-
byte key starting in byte 2 of each record. This key contains a name entered last name first. If
you want to find and read all records starting with the letter “R’’ through the last record in se-
quence by key, you could assign the following FFINDBYKEY values:

INTEGER FILNUM;
BYTE ARRAY FILNAME(0:9):=“KSAMFILE ”’;
BYTE ARRAY KEYVALUE(0:4):=“R”;

INTEGER KEYLENGTH:=1;
INTEGER KEYLOCATION:=2;

INTEGER RELOP:=2;
iNTRINSIC FOPEN,FCLOSE,FREAD,FWRITE,FFINDBYKEY;

FFINDBYKEY(FILNUM,KEYVALUE,KEYLOCATION,KEYLENGTH,RELOP)

When executed, FFINDBYKEY will position to the first record with a key value whose first (left-
most) character is the letter “R”. A subsequent series of FREADs will read that record and posi-
tion to the next record in sequence by the same key.

SHARED ACCESS. If you use FFINDBYKEY to position the pointer before calling another
procedure to read or update the file in a shared environment, you must call FLOCK to lock the
file before calling FFINDBYKEY. Then, after performing the read or update operation, you
can unlock the file. If you call FFINDBYKEY and then lock the file before an operation that
depends on the record pointer, another user could move the pointer between the call to
FFINDBYKEY and FLOCK.

4-24

FFINDBYKEY

CCRHHRBRRQEBRIREB B BB RBRRBEBoata0bRBRORDdRIRROGRIRRIRNARRBIRBED>

<cn
<< EXAMPLE »

<< READ A KSAM FILE SEQUENTIALLY
<<y

CHIVRBUBBEHRO O RO RPpRBEN BN DRI BEDEBRIG G D

. s R e e
1 e N:éﬂ% Ex,\ Lane o
. g@, ;.gg; &;ﬁ i .
5 e
i v

]

canRNMES VAT
MESSAGFE (0335) 4
INPUT (0139) 3
_OUTPUT (#) =INPUT

T FCHECK, FERRMSG, TERMINATE 4

CCuduphBdpopdetdpbastdatanyd>

<<» OQPEN THE KkSAM FILE o>>

CCpbrabdpradtdstndogtasbanyd>

FILNJMIZFOREN(FILNAME,3))

IF FILNUM=(

TREN BEGIN <<CANNOT
MOVE MESSAGE:="CANNOT
PRINTI{MESSAGE,=21,0) 14
FCHECK (FILNUM,ERRORCODE). ¢
FERRMSG (ERRORCODE yMESSAGE L FNGTH) §
PRINT (MESSAGE) =LENGTH, 0 3
TERMINATE }

END1

<<OPEN THE

OPEN KSAM FILE>>
OPEN KSAM FILE"}

CCHBBEBBIBODRVB BNV P RIRCOBROBVABBRBRBRDLODBBBIBIOIDNRIBBREHED)D
READ DATA FROM KbAM FILE IN TELEPHONE w» SEQUENCE
XS TERLA AL AL FY AL AL DL REY LY EETR LY TR L RIa-reny 3 39

<<

L2t
B — -
FRNIRVKEVAF TLNGM,
MCVE MESSAGE iznae
PRINT (MESSA0E, =330
y Set g R

o T
i -

ad>>
8> >
#>>
&>>

KsaM FILE>>

C¢GET THE ERROR NUMBER>>
C<GET MESSAGE STRING>>
C<PRINT ERROR MESSAGE>>

“>>

Figure 4-2. FFINDBYKEY Example

4-25

FF' N D N INTRINSIC NUMBER 301

Positions the logical record pointer to relative record number according to key sequence.

When FFINDN is executed, it positions the KSAM logical record pointer to the record whose
relative record number is specified in the parameter number. Records are numbered from the
record with the lowest key value in the key that starts at keylocation in each record. Record
numbering starts with zero unless the flagword in the FOPEN ksamparam parameter specifies
that record numbering starts with 1, or the FIRSTREC parameter in the >BUILD command is
set to 1.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to be positioned.

number double by value (required)
Relative record number counting from the first logical record in the file.
Record numbers start with zero or one depending on the record numbering
scheme specified at file creation; the lowest numbered record applies to the
record with the lowest value in the specified key field. A negative record
number positions the file pointer to the record with the smallest key value.

keylocation integer by value (required)

The relative byte location in the record of the key to be used. The first
byte is byte 1. If keylocation is set to zero, the primary key is assumed.

CONDITION CODES

CCE Request granted.
CCG The requested position was beyond the logical end-of-file.
CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FFINDN

When you specify the relative record number, it is important not to confuse this number with the
chronological record number, the number of the record as it is stored in the file. To illustrate,
assume a file in which records have been stored in chronological order from the beginning of the
file (BOF). Each record has a key starting in byte 3 that contains a name. The relative record

4-26

FFINDN

number is based on the value of this key, not the relative location of the record in the
file.

For example:
FFINDN(FILNUM,4D,3)

This call positions the logical record pointer (as shown in figure 4-3) to record number 4 of the
key at location 3. Note that record number 4 is the fifth record in the sequence of key values:

ABLE relative record 0D
BAKER relative record 1D
CHARLIE relative record 2D
DOG relative record 3D
EASY relative record 4D
FOX relative record 5D

If you want to position the chronological record pointer to the relative record number in chrono-
logical sequence from the beginning of the file, you can use the intrinsic FPOINT, discussed later
in this section. Chronological order is the order in which records are written. In figure 4-3, record
number 4 in key order, to which FFINDN positioned the file pointer, is also record number 2 in
chronological order.

0 1 2 3 4 5 ChronologicalOrder
BAKER ABLE EASY DOG CHARLIE FOX
— EOF
logical record pointer
1 0 4 3 2 5 Key Order

Figure 4-3. File Position with FFINDN

Note that FFINDN is useful to reset the pointer to an alternate key. For example, when you
open the file, the primary key is selected by default. If you want to select another key starting
in location 23 and position to the first record in key sequence, you can use the following
command:

FFINDN(FILNUM,-1,23)

SHARED ACCESS. If you use FFINDN to position the pointer before calling another procedure
that reads or updates the file in a shared environment, you must call FLOCK before calling FFINDN.
Then, after performing the read or update operation, you should unlock the file so other users can
access it. If you lock the file after calling FFINDN, another user can change the pointer position
without your program being aware of it.

4-27

FGETINFO

INTRINSIC NUMBER 11

Requests access and status information about a file.

Once a file is opened on any device, the FGETINFO intrinsic can be used to request access and
status information about that file.

PARAMETERS

filenum

filename

foptions

integer by value (required)
A word identifier supplying the file number of the file about which
information is requested.

byte array (optional)

A byte array to which is returned the actual designator of the file
being referenced, in this format:

f.g.a

where

f = the local file name
g = the group name (supplied or implicit).
a = the account name (supplied or implicit).

The byte array must be 28 bytes long. When the actual designator is
returned, unused bytes in the array are filled with blanks on the right.

Default: The actual designator is not returned.

logical (optional)

The foptions parameter returns seven different file characteristics by
settlng corresponding bit groupings in a 16-bit word. Correspondence
is from right to left. The file characteristics returned are the same as
those specified for foptions in the FOPEN intrinsic (refer to table 4- 6,
in the FOPEN description). Note that bit 4 is set to 1 to indicate a
KSAM file.

Default: Foptions are not returned.

4-28

aoptions

recsize

devtype

ldnum

hdaddr

FGETINFO

logical (optional)

The aoptions parameter returns up to seven different access options
represented by bit groupings in a 16-bit word, as described for the
aoptions parameter of FOPEN (refer to table 4-7 in the FOPEN
description).

Default: Aoptions are not returned.

integer (optional)

A word to which is returned the logical record size associated with the
file. If the file was created as a binary type, this value is positive and
expresses the size in words. If the file was created as an ASCII type,
this value is negative and expresses the size in bytes.

Default: The logical record size is not returned.

integer (optional)
A word to which is returned the type and subtype of device being used
for the file, where

bits (0:8) = device subtype, and
bits (8:8) device type.

If the file is not spooled, which can be determined from hdaddr (0:8),
the returned devtype is actual. The same is true if the file is spooled and
was opened via logical device number. However, if an output file is
spooled and was opened by device class name, devtype contains the
type and subtype of the first device in its class, which may be different
from the device actually used.

Default: The device type and subtype are not returned.

logical (optional)
A word to which is returned the logical device number associated with
the device on which the file resides.

If the file is a disc file, then the logical device number will be that of the
first extent. If the file is spooled, then ldnum will be a virtual device
number which does not correspond to the system configuration I/O
device list.

Default: The logical device number is not returned.

logical (optional)
A word to which the hardware address of the device is returned, where

bits (0:8) = the Device Reference Table (DRT) number, and
bits (8:8) = the unit number.

If the device is spooled, the DRT number will be zero and the unit
number is undefined.

Default: The hardware address is not returned.

4-29

FGETINFO

filecode

recpt

eof

flimit

logcount

physcount

blksize

integer (optional)
A word to which is returned the value recorded with the file as its data
file code (for disc files only).

Default: The file code is not returned.

double (optional)

A double word to which is returned a double integer representing the
current chronological record pointer setting. This is the displacement in
chronological records from record number 0 in the file. This record
number is counted from the first record stored in the file in chronologi-
cal order; it is not the logical record number counting from the lowest
key value in ascending sequence. The pointer setting (recpt) identifies
the record that would be accessed next by an FREADC intrinsic.

Default: The chronological record pointer setting is not returned.

double (optional)

A double word to which is returned a double positive integer equal to
the number of logical records currently in the data file. If the file does
not reside on disc, this value is zero.

Default: The number of logical records in the file is not returned.

double (optional)

A double word to which is returned a double positive integer represent-
ing the number of the last logical record that could ever exist in the
data file because of the physical limits of the file.

Default: The file limit information is not returned.

double (optional)

A double word to which is returned a double positive integer represent-
ing the total number of logical records passed to and from the user
during the current access of the file.

Default: The logical record count is not returned.

double (optional)

A double word to which is returned a double positive integer represent-
ing the total number of physical input/output operations performed
within this process against the file since the last FOPEN call.

Default: The number of 1/0 operations is not returned.

integer (optional)

A word to which is returned the block size associated with the file. If
the file was created as a binary type, this value is positive and expresses
the size in words. If the file was created as an ASCII type, this value is
negative and shows the size in bytes.

Default: The block size is not returned.

4-30

FGETINFO

extsize logical (optional)
A word to which is returned the disc extent size associated with the
data file (in sectors).

Default: The disc extent size is not returned.

numextent integer (optional)
A word to which is returned the maximum number of disc extents
allowable for the data file.

Default: The maximum allowable number of extents is not returned.

userlabels integer (optional)
A word to which is returned the number of user header labels defined
for the file when it was created. When an old file is opened for over-
write output, the value of userlabels is not reset and old user labels
are not destroyed.

Default: The number of user labels is not returned.

creatorid byte array (optional)
A type array to which is returned the eight-byte name of the user who
created the file. If the file is not a disc file, blanks are returned.
Default: The user name is not returned.

labaddr double (optional)
A double word to which is returned the sector address of the label of
the file. The high-order eight bits show the logical device number.

The remaining 24 bits show the absolute disc address.

Default: The label address is not returned.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

USING FGETINFO

By calling FGETINFO you can return to your program any or all of the items listed as parameters.
Except for the identifying filenumber, each of these parameters is optional. When omitted, em-
bedded parameters are indicated by commas. Parameters omitted from the end of the list need not
be so indicated. For example, to locate the number of records in the file by finding the end of file,
you can call FGETINFO as follows:

FGETINFO(FILNUM,,,,,,,,,, LSTRPC);

eof parameter

4-31

FGETINFO

The value returned to LSTREC is the number of records in the file. The value LSTREC is also
the chronological number of the last record in the file. This number can be used to read the
last chronological record with FREADC or FREADDIR.

Another useful parameter of FGETINFO is recpt. This parameter returns the chronological record
number of the record last read. The example in figure 4-4 illustrates both these parameters. First,
FGETINFO is used to determine the total number of records in the file using the parameter eof.
Then, each record in the file is read in sequential order by primary key. Following each sequential
read, FGETINFO retrieves the chronological record number of the record just read.

In the output from the program (refer to figure 4-4), note that the record number returned by
FGETINFO is the chronological number. For instance, the first record written to the file was the
record with record number 1. This record, which contains the primary key value “NOLAN JACK”,
is the fourth consecutive record in key sequence.

4-32

FGETINFO

SLONTROL MAINSJEXAMPLS
<‘“oa@qﬁ¢pgu&ﬂaﬁ&ﬂ&ﬁ“%”“ﬁ“””ﬂﬂﬁ%*“0V“¢ﬁoﬁbﬁoovﬂbﬁﬂo“ﬂﬁﬁﬁ“ﬁ”))

< #>>
<o EXAMPLE S ar>
Lg 6 FIND NUMER UF RECQORDS & RECURD NUMBER S>>
<< a3>

‘4%Qﬁqﬁdaﬁﬁnuaooé”&99@5&&&*##66&““0“0Q@“&))

Cerabatds oo
o d

ARRAOY MESSAGE (0:35) 4
ARKAY INPUT (08393
QUTPUT (#) =INPUT}

<<GO906600060¢¢00G3¢0Q¢0ﬁ0>>
<¢® OPEN THE KSAM FILE #>>
CCotbetoppatdanodbospditanyd
FILNIMISFOREN(FILNAME,3) C<OPEN THE KSAM FILE>>
IF FILNUM=9

THEN REGIN C<<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE 1=z"CAaNNOT OPEN KSAM FILE'"}
PRINT(MESSAGE»=21,0) 1}

FCHECK (FILNUM,ERRORCODE} 3 <<GET ERROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE ,LFNGTH) § CCCONVERT TO STRING>>
PRINT{MESSAGE y=LENGTH, 01} <<PRINTOUT ERROR MESSAGE>>
TERMINATES

END3

L1
<<unoau644406¢¢¢000n¢°00Q60“09aoo»au»n&aonan«oﬁanno“l»>>
<<o READ KSAM SEQUENTIALLY 5>

<<oaub#ﬁﬂOoo“0QOQbQQDDOGQQOQGQQQQGOGQDGGQGOQ§¢66D6¢¢'0>>
FREAD(FILNUMy INPUT, =72}
IF > C<END OF DATA>>
TREN BEGIN
FCLNSE (FILNUM,0,0)} <<ClLLOSE THE KSAM FILE>>
IF <> THEN
AFGIN
MOVE MESSAGE$z"CANNOT CLOSE THE KSAM FILE"y
PRINT(MESSAGE y=22,0) ¢

FCHECK (FILNUM,ERRORCODE) § <¢<GET ERRUR NUMBER>>
FERRMSG|ERRORCOUE,MESsAGE.LENGTH);<<CONVERT TO STRING>>
PRINT (MESSAGE y=LENGTH,N) 3 <<PRINTOUT EPROR MESSAGE>>
ENU}
TERMINATE}

END3y

Figure 4-4. FGETINFO Example

4-33

FGETINFO

IF «

THEN BREGIN
MOVE MESSAGE;="ERROR OCCURRED WHILE READING KSAM FILE"M
PRINT (MESSAGE y=37,0) 1}
FCHECK (FILNUM,ERRORCODE <<GET ERROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE LENGTH) <<CONVERT TO STRING>»>

PRINT (MESSAGE y=LENGTH)0) 3 <<PRINTOUT ERRUR MESSAGE>>
TERMINATE §

END
<<nouu“olwon*ooooﬂoo°°““ﬁ060000»a¢a00¢¢*o¢¢6¢0o¢¢>>
<<a WRITE THE DATA JUST READ FROM KSAM FILE *>>
BB GUB R BB D BB YRR BBV BBO O N BRI BEBBDRBRDVOBRBOOBDD
PRI PUT»=T72,0) 4
ey | “'“ﬁ@

0
Gondunensssun T ‘5@ @ﬁ%ﬁf

o
o

-

el
=

..

FET T T T Y P Poeiq
<<t GO BACK TO GET ANOTHER RECORND #>>
CCHBOBRBRBHIRVBIRDB OOV RB BB pBLBaRBODD
GC T2 L1y
ENG, }

1EON

When Executed, the Following Output is Printed:

— S S— .
e o L ey et
- - -
o 5 i e § e
. . e
L h
@%@%g@x

o :

L . .

e o e .
L o o e
 hne i e . o i ,x%@igg;@

g
.

mjﬁ“@
I e

e
%%Lg @

.
:

il
pa

g
o
e
- w0 e
;‘@%@‘ . . L
2 T e =
. . e
?%@g e i% P
e o T e
! H i i
G
i B %
e
. :
el i o
e -
s o - e S

Figure 4-4. FGETINFO Example (continued)

4-34

FGETKEYINFO

INTRINSIC NUMBER 303

Requests access and status information about a KSAM file.

PARAMETERS

filenum

ksamparam

ksamcontrol

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the filenumber of the file about which
information is requested.

array (required)

An array of the same format and size as the byte array of the same
name in FOPEN (refer to table 4-8), except that key file size is given
as the number of sectors. The length of the array depends on the
number of keys in the KSAM file; its length is 17 words plus 4 words
for each key. Note that the device (words 6-14) is not returned as a
device class name but as an ASCII string containing the logical device
number.

array (required)
an array whose size is 128 words containing control information about
the key file. Refer to table 4-5 for the definition of the array contents.

Request granted.
(not returned)
Request denied because an error occurred such as: insufficient space

declared for ksamparam or ksamcontrol; or an illegal file number; or
the DB register is not set to the user stack.

USING FGETKEYINFO

Once a KSAM file is opened, you can request information about the key file through this intrinsic.
The ksamparam return provides static information defined for the key file at the time it was
created. The ksamcontrol parameter provides dynamic information about the use of the key file
from the time it was created. In particular, it provides a count of the number of times the key file
was referenced by various intrinsics, the date and time it was created, closed, updated or written

to, and so forth.

4-35

FGETKEYINFO

Table 4-5. FGETKEYINFO ksamcontrol Parameter Format

BIT/

11 12 13 14
WORD012345678910 2 15

0 Data File Name (8 bytes)

N
4 K:irr I (r::'::lute i Last key file creation (set
second second/10 / by >BUILD)
/ year I da_y) Last key file close (set by
hour minute - FCLOSE)
second second/10 Y,
10 ﬁzirr I (rj:i:l)ute | Last key value change (set
second second/10 by FUPDATE or FWRITE)
N
13 :\lzzrr l :::Imte |_Last count reset (set at
second second/10 / create or by >ERASE)
16 Version (ASCI| letter) Update no. (binary) _ KSAM/3000 version number
17 Fix level (binary) y .at fi.le f:reation (use HP32298
18 Number of records in data file (double word) :}t;gi(;\;;;g;toju"em version
20 Number of blocks in data file (double word)
22 Number of words in last block of data file
23 Number of words in data file block
24 Number of bytes in data file record
25 FOPEN count (double word) h

27 FREAD count (double word)

29 FCLOSE count {double word)

31 FREADDIR count (double word)

33 FREADC count (double word)

35 FREADBYKEY count (double word)

Counts reflect total number

37 FREMOVE count (double word) of times file has been

39 FSPACE count (double word) |_accessed by each intrinsic
since file was last created

41 FFINDBYKEY count (double word) or erased (see words 4-6 for

43 FGETINFO count (double word) date and time of creation).

45 FGETKEYINFO count (double word)

47 FREADLABEL count (double word)

49 FWRITELABEL count (double word)

51 FCHECK count (double word)

53 FFINDN count (double word) J

4-36

FGETKEYINFO

Table 4-5. FGETKEYINFO ksamcontrol Parameter Format (continued

Wl'g;;/so123456789101112131415
55 FWRITE count (double word) Counts reflect total number
57 FUPDATE count (double word) of times file has been
accessed by each intrinsic

59 Any key block read count (double word) since file was created or
61 Any key block write count (double word) erased.

63 Any key block split count (double word)

65 Next available key block record number (double word)

67 Reserved for future use (double word)

69 Minimum primary key value record number (double word)

71 Maximum primary key value record number (double word)

73 Reserved for future use.

75 Data file record type (fixed=TRUE)

76 Data file blocking factor

77 Total number of keys (always >0)

78 Record numbering method (double word)

(= -1D if starts with 1, OD if 0)

80 Minimum record size®

81 Current accessors (+1 for open, —1 for close)

82 FPOINT count (double word))

84 FLOCK count (double word)

86 FUNLOCK count (double word)

88 FCONTROL count {(double word)

90 FSETMODE count (double word))

92 File Limit (double word)

94 Keyblock size

95 Key block buffer size in extra data segment

96 Delete head for free key blocks (doubie word)

98 Key file size (No. of sectors) (double word)
130 Reserved for future use
127

*The minimum record size is the minimum size in which all keys are contained; it is computed by taking the
highest key location, adding the key length, and subtracting 1:

min record = max key position + keylength -1

4-37

F L o C K INTRINSIC NUMBER 15

Dynamically locks a file.

The FLOCK intrinsic dynamically locks a file and transfers the latest control information from
disc to the buffers. A call to FLOCK is required before any attempt is made to read or modify a
file opened for shared access.

PARAMETERS
filenum integer by value (required)

A word supplying the file number of the file to be locked.
lockcond logical by value (required)

A word specifying conditional or unconditional locking:

TRUE — Locking will take place unconditionally. If the file
cannot be locked immediately, the calling process
suspends until the file can be locked.

Bit15=1
FALSE — Locking will take place only if the file’s Resource Identifi-
cation Number (RIN) is not currently locked. If the RIN

is locked, control returns immediately to the calling
process, with condition code CCG.

Bit 15 = 0
CONDITION CODES

The condition codes possible when lockcond = TRUE are

CCE Request granted.
CCG Not returned when lockcond = TRUE.
CCL Request denied because this file was not opened with the dynamic

locking aoption specified in the FOPEN intrinsic, or the request was to
lock more than one file and the calling process does not possess the
Multiple RIN Capability.

The condition codes possible if lockcond = FALSE are

CCE Request granted.
CCG Request denied because the file was locked by another process.
CCL Request denied because: this file was not opened with the dynamic

locking aoption specified in the FOPEN intrinsic; or the request was
to lock more than one file and the calling process does not possess the
Multiple RIN Capability.

4-38

FLOCK

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Standard Capability sufficient if only one file is to be locked dynamically.
If more than one file is to be locked dynamically, the Multiple RIN Capability is required.

USING FLOCK

The dynamic locking and unlocking capability allows you to complete any update to a file when it
is possible for other users to access the file. When dynamic locking is allowed (bit 10 of FOPEN
aoptions parameter is set to allow dynamic locking); then you must use the FLOCK intrinsic to lock
the file before writing, rewriting, or deleting any records. This requirement insures that another user
does not attempt to change the same record at the same time. FLOCK also insures that the most
recent data is available in the file. A locked file can be unlocked following the update with the
FUNLOCK intrinsic.

When FLOCK is executed, it clears all the buffers and transfers the latest control information from
the KSAM file to the buffers. This insures that any subsequent read of the file retrieves the latest in-
formation from disc rather than from the buffers. (Note that FCONTROL control code 7 also clears
the buffers.)

If you use the Multiple RIN capability, a sequence of file locking should be agreed upon or you
should use conditional locking (lockcond = FALSE). Otherwise, it is possible to lock other users
from the file. Consider the situation where one program unconditionally locks file A and then
attempts to lock file B. If another program unconditionally locks file B and then attempts to lock
file A, both programs will wait indefinitely to lock the second file in sequence. To avoid this, both
programs should agree to lock the files in the sequence A first, then B; or both programs should
use only conditional locks.

For example, suppose you open a KSAM file called DATA1 for shared access in update mode and
allow dynamic locking and unlocking:

FIL1:=FOPEN(DATA1,7,%345);

The parameters specified are:

filenum File number of DATA1, which is assigned to FIL1 when the file is
opened.

formaldesignator Name identifying the file contained in DATAI.

foptions The value 7 specifies that this is an old user file (bits 14,15 = 11) and

that it is coded in ASCII (bit 13 = 1).
aoptions The octal value 345 indicates that the file was opened for update

(bits 12 through 15 = 0101), that dynamic locking/unlocking is allowed
(bit 10 = 1), and that access is shared (bits 8 and 9 = 11).

4-39

FLOCK

This file can then be locked as follows:
FLOCK(FIL1,1)
The parameters specified are:
filenum File number of file DATA1 contained in the variable FIL1.
lockcond =1 which means the file is to be locked unconditionally. If the file

cannot be locked immediately, the calling process is suspended until
the file can be locked.

4-40

Opens a file.

FOPEN

INTRINSIC NUMBER 1

The FOPEN intrinsic makes it possible to access a KSAM file. In the FOPEN intrinsic call, a
particular file may be referenced by its formal file designator. When the FOPEN intrinsic is exe-
cuted, it returns to the user’s process a file number by which the system uniquely identifies the
file. This file number, rather than the file designator, then is used by subsequent intrinsics in

referencing the file.

FUNCTIONAL RETURN

This intrinsic returns an integer file number used to identify the opened file in other intrinsic calls.

PARAMETERS

formaldesignator

foptions

aoptions

MAY 1981

byte array (required)

Contains a string of ASCII characters interpreted as a formal file
designator. This string must begin with a letter, contain alphanumeric
characters, slashes, or periods, and terminate with any non-alpha-
numeric character except a slash or a period. If the string names a user-
predefined file, it can begin with an asterisk (*). Note: The DEL, SAVE,
or TEMP parameters should not be used to predefine a KSAM filein a
:FILE command; they will cause deletion or duplication of the file.

logical by value (optional)

The foptions parameter allows you to specify different file character-
istics, by setting corresponding bit groupings in a 16-bit word. If the
file is new, bit 4 must be set to 1 to indicate that this is a KSAM file.
Refer to table 4-6 for the foption bit settings.

Default: All bits are set to zero.

logical by value (optional)

The aoptions parameter permits you to specify the various access
options established by bit groupings in a 16-bit word. These access

options are defined in table 4-7.

Default: All bits are set to zero.

4-41

FOPEN

recsize

device

ksamparam

integer by value (optional)

An integer indicating the size of the logical records in the data file.

If a positive number, this represents words; bytes are represented by a
negative number. If the file is a newly-created file, this value is re-
corded permanently in the file label. If the records in the file are of
variable length, this value indicates the maximum logical record length
allowed.

Binary files are word oriented. A record size specifying an odd byte
count for a binary file is rounded up by FOPEN to the next highest
even number.

ASCII files may be created with logical records which are an odd num-
ber of bytes in length. Within each block, however, records begin on
word boundaries.

For either ASCII or binary files with fixed-length records, the record
size is rounded up to the nearest word boundary. For example, a
recsize specified as —106 for an ASCII file is 106 characters (53 words)
in length. A recsize of =113 for a binary file is 114 characters (57
words) in length. The rounded sizes should be used in computations
for blockfactor or block size.

Default: The default value is the configured physical record width of
the associated device.

byte array (optional)

Contains a string of ASCII characters terminated by any non-
alphanumeric character (except a slash or period) that designates

the device on which the file is to reside. It may be a device class
name of up to eight alphanumeric characters beginning with a letter;
or a logical device number consisting of a three-byte numeric string;
or a remote device identifier consisting of the device class name or
logical device number followed by a pound sign (#) and a remote de-
vice class name or logical device number.

Device class names and logical device numbers are assigned to devices
during system configuration.

For KSAM files, the device must be a random access device such as
the disc. If the file is a newly-created disc file specified as a device
class name, then all extents to the file must be members of the same
class. Similarly, if the device is identified by logical device number,
then all extents must have the same logical device number.

Default: Disc.

byte array (optional)

Contains information describing the key file of a KSAM file. It
includes the key file name, size and device plus an entry for the
primary key and up to 15 alternate keys. If the file is new (is being
created by FOPEN) then this array must be included. If the file is
an old file, it can be omitted. Note that if the parameter is included

4-42

userlabels

blockfactor

numbuffers

filesize

MAY 1981

FOPEN

and the file is not a KSAM file, an error can result. Refer to table
4-8 for a full description of ksamparam.

Default: key file description is omitted.

integer by value (optional)
Specifies the number of user-label records to be written for the data
file. If there are no user labels, this parameter can be omitted.

Default: The default number of user-label records is zero.

integer by value (optional)

Establishes the size of each block in the data file by specifying the
number of logical records per block. It also establishes the size of the
data file buffer in KSAM’s extra data segment. For fixed-length records,
blockfactor is the actual number of records in a block; for variable-
length records, blockfactor is a multiplier used to compute block size
from record size; ((maximum recsize +1) * blockfactor) +1 = block-
size. The value of blockfactor should be an integer that results in a
block size less than 4K words. The blockfactor is from 1 through 255.
If you specify a negative value or zero, the default value is used. Values
greater than 255 are defaulted to the specified blockfactor modulo 256.

Default: 1

integer by value (optional)
An integer between 1 and 20 that specifies the number of key block

buffers in the extra data segment used by KSAM files for buffering
data and key blocks. The number of buffers is specified in bits 4-10;
the rest of the word must be set to zeros:

bits 0 3 4 10 11 15

T
number of buffers
This number should only be specified if the default number assigned
by KSAM affects performance. Refer to appendix B, under KSAM
Extra Data Segments for a discussion of how the key block buffers
are used.

Default: Between 1 and 20 buffers depending on access type,
number of keys, and number of levels per key. (Refer
to appendix B.)

double by value (optional)

A double-word integer specifying the maximum data file size as the
number of logical records in the file. A zero or negative value results
in the default filesize setting. The maximum file capacity is over two
million (221) sectors; a sector contains 128 words.

Default: 1024 logical records

4-43

FOPEN

numextents integer by value (optional)
An integer specifying the number of extents (integral number of
contiguously-located disc sectors) that can be dynamically allocated
to the file as logical records are written to it. The number of extents
applies equally to the data and key files on the assumption that there
is a proportional expansion in each. The size of each extent is deter-
mined by the filesize parameter value divided by the numextents
parameter value. If specified, numextents must be an integer from 1
to 32. A zero or negative value results in the default setting.

Default: 8 extents.

NOTE

Extents are allocated on any disc in the device class specified
in the device parameter when the file was created. If it is
necessary to insure that all extents of a file are on a particular
disc, a single disc device class or a logical device number must
be used in the device parameter.

initialloc integer by value (optional)
An integer specifying the number of extents to be allocated to the
data file when it is opened. (For a key file, this parameter is forced
equal to the value of numextents.) This must be an integer from 1 to
32. If an attempt to allocate the requested disc space fails, the FOPEN
intrinsic returns an error condition code to the calling program.

Default: 1 extent.

filecode integer by value (optional)
An integer recorded in the file label and made available for general use
to anyone accessing the file through the FGETINFO intrinsic. This
parameter is used for new data files only. The filecode applies to data
files only; the key file code is always 1080 and need not be specified.
For this parameter, any user can specify a non-negative integer.

Default: 0
CONDITION CODES
CCE Request granted. The file is open.
CCG Not returned by this intrinsic.
CCL Request denied. This may be because another process already has

exclusive or semi-exclusive access for this file, or an initial allocation
of disc space cannot be made due to lack of disc space. The file num-
ber value returned by FOPEN if the file is not opened successfully is
zero. The FCHECK intrinsic should be called for more details.

4-44

USING FOPEN

FOPTIONS PARAMETER.

Table 4-6. FOPEN foptions Parameter Format

BITS
0o 1 2 3| 4 5 |6 | 7 8 9 10 11 12 13 14 15
KSAM DIS- CCTL | RECORD | DEFAULT FILE ASCIl/ DOMAIN
FILE | ALLOW FORMAT DESIGNATOR BINARY
:FILE

Set shaded areas to zero for KSAM files.

BITS OPTION SETTINGS

14:2 File Domain 00 = New file created by FOPEN call. No search is required. The ksamparam
parameter must be present to define the file structure. (default)

01 = Old permanent file; search system file domain.

10 = Old temporary file; search job file domain.

11 = Old user file; search job file domain and, if not found, search system file
domain.

13:1 ASCII/Binary 0 = Binary code used to record data; any dummy records are padded wtih
zeros. (default)

1 = ASCII code used to record data; any dummy records are padded with
blanks.

10:3 Default File 000 = Actual file designator is the same as the formal file designator. (default

Designator and only setting allowed for KSAM files.)

8:2 Record Format 00 = Fixed-length records. (default)

01 = Variable-length records. (Other settings not allowed for KSAM files)

7:1 CCTL 0 = Carriage control directive not expected. (default and only setting
allowed for KSAM files.)

5:1 Disallow :FILE 0 = Allow :FILE command to override FOPEN file specifications. Note that
formaldesignator is the only :FILE specification allowed for KSAM
files. (default)

1 = Disallow (ignore) :FILE command file equations when in conflict with
FOPEN.
4:1 KSAM 0 = Not a new KSAM file. (default)
1= New KSAM file or exising KSAM file opened as an MPE file.

4-45

FOPEN

AOPTIONS PARAMETER.

Table 4-7. FOPEN aoptions Parameter Format

8 9 10 11 12 13 14 15

EXCLUSIVE | DYN- ACCESS TYPE
ACCESS AMIC
LOCK

Set Shaded areas to zero for KSAM files.

BITS OPTION SETTINGS

12:4 Access Type 0000 = Read only. (default). Allows access to ali intrinsics except:
FWRITE,FUPDATE, and FREMOVE.

0001 = Write only. Delete previously written data. Allows access to all
intrinsics except: FREAD,FREADDIR,FREADC,FREADBYKEY,
FUPDATE,FREMOVE,FSPACE,FPOINT,FFINDBYKEY, and
FFINDN.

0010 = Write only. Save previously written data. Allows access to same
intrinsics as write only with delete.

0011 = Same as above.

0100 = Input/Output access. Allows access to all intrinsics except: FUPDATE
and FREMOVE.

0101 = Update access. Allows access to all intrinsics.

10:1 Dynamic Locking 0 = Disallow dynamic locking/unlocking. (default)

1 = Allow dynamic locking/unlocking. Allows use of FLOCK and
FUNLOCK intrinsics to permit or restrict concurrent access to file.

8:2 Exclusive Access 00 = Default access depending on access type: if access type = 0000 (read
only) default is 11 (share access); if access type is any other, default
is 01 {exclusive access).

01 = Exclusive access. Prohibits another FOPEN request to open the file
until current process issues FCLOSE or terminates.

10 = Semi-exclusive access. Allows another process to open this file for
read only but prohibits any output access until this process issues
FCLOSE or terminates.

1 Share access. After file is opened, permits concurrent access to the
file by any process in any access mode, subject only to MPE security

provisions in effect.

4-46 MAY 1981

FOPEN

Table 4-7. FOPEN aoptions Parameter Format (continued)

BITS OPTION SETTINGS

4:1 No Wait 0 = No Wait input/output. (default and only setting allowed for KSAM
files.)

3:1 KSAM Access 0 = KSAM access expected.

1= Non-KSAM access expected; KSAM key file or data file is treated as
standard MPE file. For this setting to be meaningful, file must be a
KSAM file (foptions 4:1 = 1).

*If dynamic locking is enabled with share access, a call to FLOCK must precede any call to FREMOVE,
FUPDATE, or FWRITE. Note that a file equation that specifies shared access (FILE filename;SHR),
automatically sets the dynamic locking option, forcing users to lock for all access. Also, if you specify
SHR (aoptions.(8:2)), KSAM will automatically set lock bit (aoptions.{10:1)) which will require that
the file be locked before issuing any intrinsics.

MAY 1981 4-46a

4-46b MAY 1981

FOPEN

KEY FILE DEFINITION. The ksamparam array defines the key file for a new KSAM file. If the
file has already been created, this parameter can be set to all zeros or omitted. Otherwise, it must
be assigned values to define the key file as shown in table 4-8.

When a new KSAM file is created, the MPE end-of-file for the key file is set to the file limit. The
file limit is based on the key file size (see words 4-5 of ksamparam). The location of the key file
end-of-file can be determined by executing the VERIFY command of KSAMUTIL and looking
at the heading KEY FILE EOF. A call to FGETKEYINFO returns the key file size as the number
of sectors used by the file.

Table 4-8. FOPEN ksamparam Parameter Format

01 2 3 456 7 8 9 10 1 12 13 14 15
N
0 Key File Name
1 (8 bytes)
2
3
4 Key File Size (maximum number of primary keys)
5 (double word)
6 Key Device Basic Key File
7 (8 bytes) - Definition
8 (17 words)
9
10
11
12 (reserved)
13
14
15 Flagword (1 word)
16 . Number of Keys (1 byte) J
17 Key Type | Key Length
18 Key Location Primary Key
I Y= - b — Definition
19 D inimum (Maximum) Number of Keys Per Block (4 words)
20 (reserved) R (reserved))
N\
21 Key Type Key Length
y P - I v &ng 1st Alternate
22 Key Location | Key Definition
23 D I Minimum (Maximum) Number of Keys Per Block (4 words)
24 (reserved) l R I (reserved))
\
' . Up to 14 More
: e] Alternate Key
. T~ Definitions
: (16 keys total)
80
/

4-47

FOPEN

This array defines the key file portion of a new KSAM file being created by the FOPEN call. The
values are:

Key File Name 8-byte file name that must be present if this is a new file. Only the
name is specified; the account, group, and security are taken from the
data file formal file designator.

Key File Size Double-word specifying the maximum number of primary keys expected
from which the key file size is derived. If zero, the data file size is used.

(Note that a call to FGETKEYINFO returns the key file size as the
number of sectors in the file.)

Key Device 8-byte array that specifies the device on which the key file resides.
Specified as a device class name of 1-8 alphanumeric characters begin-
ning with a letter and terminated by a non-alphanumeric character such
as a blank; or it is specified as a logical device number (3-byte numeric
string) identifying a particular device. If the data file is assigned to a
remote device the key file is automatically allocated to the same
machine. Default is DISC.

Flagword 1-word that specifies file characteristics as shown below:

01 2 3 45 6 7 8 9 10 11 12|13 | 14 | 15

RN |JT

JT { bit 15:1 = 1 if file is job temporary file
= (Q if file is a permanent file (default)
RN _E 14:1 = 1 if record numbering starts with 1.
0 if record numbering starts with 0. (default)

13:1 = 1 if only sequential writing by primary key value is
allowed.
SW = 0 if random writing by primary key value is allowed.
(default)
0:13 = 0 all reserved bits must be set to 0.
Number of Keys 1 byte providing the total number of keys for the file, specified as a

numeric digit between 1 and 16. (left byte of word should be zero).

Key Definitions Each key in the file requires a 4-word definition. The first definition
is always of the primary key. Subsequent definitions describe any
alternate keys. Up to 15 alternate keys are allowed in any one key file.
The key definitions each contain the following information:

bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Key Type Key Length

Key Location

D | Minimum (Maximum) Number of Keys per Block

(reserved) R (reserved)

4-48

Key Type

Key Length

Key Location

D (Duplicate Flag)

Minimum (Maximum)
Number of Keys per
Block

R (Random Insert Flag)

FOPEN

The information for each key has the form shown above starting in
word 17 of ksamparam. It is defined as follows:

4 bits specifying the type of the key by the following code:

bits 0:4 = 0001 (1) = Byte key (1 to 255 bytes)

0010 (2) = Integer key (2 bytes)

0011 (3) = Double Integer key (4 bytes)

0100 (4) = Real key (4 bytes)

0101 (5) = Long key (8 bytes)

0110 (6) = Numeric Display key (1 to 28 bytes)

0111 (7) = Packed Decimal key, odd number of digits
(1 to 14 bytes)

1000 (8) = Packed Decimal key, even number of digits
(2 to 14 bytes)

Refer to figure 2-2 in section II for a full description of key type.

12 bits specifying length of the key in bytes. Length is a function of
key type (see key type) but must never exceed 255 bytes.

1 word specifying the location of the first byte of the key in the record.
Bytes in a record are numbered starting with 1. (Note that it is good
practice to leave the first two bytes of a record empty of keys since
these bytes are used by FREMOVE for the record delete code.)

1 bit that determines if duplicate values are allowed for this key:
= 0 if duplicate key values are not allowed (default)
= 1 if duplicate key values are allowed.

15 bits that specify the minimum number of keys allowed per key
block. The value must be an even-numbered integer greater than or
equal to 4. If the resulting key block size is greater than 2048 words,
this number may be reduced automatically. In order to make optimum
use of disc space, KSAM may increase the value specified here. If KSAM
increases the number of keys per block, this new value is the maximum
size of the key block. (Refer to appendix B for particulars on the cal-
culation of block size and the adjustment of the blocking factor.) The
default generates a block size of 1K (1024) words.

1 bit (8:1) that determines whether duplicate key is to be inserted ran-
domly in duplicate key chain or is to be added to the end of the chain;
the duplicate flag (D bit) must be set to 1 in order to use this flag.

=0 if duplicate key values are to be inserted at the end of the
chain (default)

=1 if duplicate key values are to be inserted randomly. If inserted
randomly, the chronological order of duplicate keys is no
longer maintained, but the addition of keys is faster.

4-49

FOPEN

OPENING A NEW FILE

When FOPEN is used to open a new KSAM file, you must provide all the information needed to
create the two files that make up a KSAM file: the key file and the data file. To inform the system
that this is a KSAM file, the KSAM bit must be set in the foptions parameter; and the ksemparam
parameter must be included to define the key file.

Figure 4-5 is a short SPL program that builds a KSAM file. The file has two keys; the primary key
starting in column 1 is 20 characters long, and the alternate key starting in column 21 is 8 charac-
ters long. The primary key will contain a name, the alternate a phone number.

The first step is to declare all arrays and variables needed by the program followed by the intrinsic
declaration for FOPEN. The shaded declarations in figure 4-5 show these required to open the
file; others are used in parts of the program not shown in this figure.

The next step is to move the necessary values to ksamparam in order to define the key file.

The last step is to call the FOPEN intrinsic, passing any previously defined variables or arrays by
reference and passing all others by value.

DECLARATIONS FOR FOPEN. The array ksamparam is defined three different ways: as a

numeric array containing 25 words (KSAMPARAMA), as a byte array equivalenced to the numeric

array (KSAMPARAM), and as a double array also equivalenced to the numeric array (KSAMPARAMD).
These three definitions allow the array to be addressed by word, by byte, or by double word as required.

The variable to which the file number is returned is declared to be an integer.

The two arrays that will contain the formal designator and device parameter values are declared
and assigned these values. In this case, the formal designator is assigned the value JEXAMFIL.
This name identifies both the KSAM file in its entirety and the data file if referenced separately.
The device class name assigned to the device parameter is DISC.

Finally, the intrinsic itself is declared in an INTRINSIC statement.

DEFINING KSAMPARAM. The ksamparam parameter is assigned a variety of values that, for the
sake of clarity, are assigned in separate statements. The values assigned to ksamparam define the
key file. The statements that move values to ksamparam (refer to figure 4-5) tell the system every-
thing it needs to know in order to build the key file.

The first item moved to ksamparam is the key file name, up to 8 characters enclosed in quotes. In
this case, the key file name is JKEYFILE.

Next, the size of the key file is defined in terms of the maximum number of primary keys expected.
The size is specified as a double word integer and is assigned to the third double word in the array,
specified by an index of 2 counting from double word 0. The maximum number of primary keys
should be the same as the maximum number of records specified in the filesize parameter of
FOPEN. KSAM assigns a key file size based on this value. If there are alternate keys, the key file
size is made proportionately larger. If the key file size is specified as zero, KSAM uses the value

of the FOPEN filesize parameter as the key file size.

The device class name is assigned in the 8 bytes starting in byte 12 that are allocated to device

description. In this case, the device class name is DISC, the same as the device class name specified
in the device parameter of FOPEN for the data file.

4-50

FOPEN

SCONTROL MAINzyUEXAMPL1
CCHBBURB RN st R RERGREREN DO PR BB OBBRBROBVBLBEDOBOBRODBUBLODD

<< #>>
<< EXAMPLE 1 a>>
<<# BUILD A KSAM FILE 3>
<< @>»

suoe »»

ik

ARRAY MESSAGE (0335)}
ARKAY INPUT (0139)3
ARRAY OUTPUT (#)3INPUT}

FRINS PENSFCLOSEFWRITE,READ,PRINT, TERMINATE
INTRINSIC FCHECK,FERRMSG}
CCpptpttatptdoatatapntadttonttognany>
<<s SETUP KSAMPARAM FOR FQPEN 43>
CCvBpBBBBORRRRROBDoaRBRNBBBOER Bl

.. . o A N

- . o

ik i
e il e . .
B EOBanaRt00RERsneaatossD
<<# OPEN THE KSAM FILE we>>
CCrBpattpontRacantoptehtinyd>

IF FILNUMs

THEN BEGIN <<CANNOT OPEN KSAM FILE>>
MOVE MESSAGE ;=n"CANNOT OPEN KSAM FILEY}
PRINT(MESSAGE,y=21,0)}

FCHECK(FILNUM,ERRORCODE) <<¢BET THE ERROR NUMBER>)>
FERRMSG (ERRORCODE s MESSAGE y LENGTH) €¢GET MESSAGE STRING>>
PRINT(MESSAGE y=LENGTH,0) <<PRINT ERROR MESSAGE>>
TERMINATE

END3

Figure 4-5. FOPEN Example — Building a KSAM file

4-51

FOPEN

Word 15, the flag word, is set next. It uses bits 13, 14, and 15 to define three conditions of the
key file. In this example, bit 14 is the only bit set. This means that record numbers in the file start
with 1 rather than 0 (bit 14=1), that the file is a permanent file saved in the system directory (bit
13=0), and that records may be written to the file in random order rather than being restricted to
ascending sequence by primary key (bit 15=0). In figure 4-5 the flag word is specified as a binary
value for clarity; it could have been specified as octal 2 (2 or %2) for brevity.

The right byte of the 16th word (byte 33) is set to 2 to specify that two keys are to be used: the
primary key and one alternate.

This completes the general description of the file. Its name, size, device type, special conditions,
and number of keys are now specified. The remainder of ksamparam defines each key in 4-word
entries. The first entry always describes the primary key. Subsequent entries define up to 15
alternate keys. In this case, one primary and one alternate are defined.

Starting in word 17, the primary key is defined as type ASCII, 20 bytes long, its location starting
in the first character of each record, and duplicate values are not allowed. It is blocked with four
keys per block.

Starting in word 21, the alternate key is defined as type ASCII, 8 bytes long, located starting in
character 21 of the record, duplicate values not allowed, and blocked four keys per block.

Refer to table 4-8 for an illustration of the bit patterns used to define the ksamparam entries.

CALLING FOPEN. When all the variables and arrays that pass values by reference have been de-
fined, the intrinsic FOPEN can be called. In figure 4-5, each parameter is shown on a separate line
and documented for clarity, but the call could also be specified as:

FILNUM:=FOPEN(FILNAME,%4004,%10101,-72,DEVICE,KSAMPARAM, ,10,0,100D);

This call is identical to the call in figure 4-5 except that octal values are used for foption and
aoption.

foptions

The value of foptions is set to octal 4004, for which the bit pattern is:

ol1 2 3|4 5 6|7 8 9|10 11 12|13 14 15 Bits
olo o o|L o oj]0O O O|lO O Of1 0 O Binary
0 0 4 0 0 4 Octal
This specification defines the following file options:
New KSAM file (bit 4=1)
Allow :FILE (bit 5=0)
Fixed-Length Records (bits 8,9=00)
ASCII code (bit 13=1)
New file (bits 14,15=00)
aoptions
The value of aoptions is set to octal 101, for which the bit pattern is:
0 4 5 6|7 8 9|10 11 12|13 14 15 Bits
0 0O 0 0{0 O 1 0 o0 0| O 0 1 Binary
0 0 1 0 1 Octal

4-52

FOPEN

This specification defines the following access options:

KSAM access expected (bit 3=0)

Exclusive access (bits 8,9=01)

Dynamic locking not allowed (bit 10=0)
Access type is write only (bits 12-15=0001)

OPENING AN EXISTING FILE

Once the file has been created, opening it again after it has been closed is a simple process. The
record size, device, blocking, buffersize, and file size are all defined for the data file. Therefore
these parameters need not be repeated. The key file has already been defined so that ksamparam
need not be specified. This leaves the first three parameters to specify. Of these, only the formal
designator and the domain option of the foptions parameter are always required. The formal-
designator provides the file name in order to identify the file. The domain option specifies where
to locate the file; if domain is set to zeros, the system expects a new file. If the file is to be read
only, the access mode parameter, eaoptions, can be omitted. For any other type of access, aoptions
should be specified.

OPENING FILE FOR READ ACCESS. The example in figure 4-6 illustrates opening a file for read-
only access.

$CONTROL MAINZJEXAMPL2
<<QO0QQOa.gG##0#690OQQQ#QO”GQ#OQQQGQGOQQGQ“OQ.QQQGQQGQQ&.OQ“)>

<<H “>>
<<® w>>

a ESSAGE (

ARRAY INPUT (028393

ARRAY CUTPUT (8)3INPUT}

RYTE ARRAY KEYVALUE(0:7)$¢=1000=«0000"}
INTEGER KEYLENGTH!=81}

INTEGER KEYLOCATIONI=21}

NTEGER RELOPi=z2}

S Ny FCLOSE s FREAD,FFINDBYKEY,READ,PRINT,
K,FERRMSG,PRINTtFILE'INFO,TERMINATE}
cCHarpaudyyptBattoadopaatandd>

<< OPEN THE KSAM FILE #@>)>
cCRantttopndaiteoddaanspaed>

1F FILNUM=zO

THEN BEGIN <<CANNOT OPEN KSAM FILE>>
MOVE MESSAGE:="CANNOT OPEN KSAM FILE"}
PRINT(MESSAGE ,«21,0) }

FCHECK (FILNUM,ERRORCODE) § <<GET THE ERROR NUMBER>)>
FERRMSG (ERRORCODE yMESSAGE , LENGTH) § <<¢GET MESSAGE STRING>>
PRINT (MESSAGE ,~LENGTH,0)} <<PRINT ERRQR MESGSAGE>>
TERMINATE

END}

Figure 4-6. FOPEN Example — Opening an Existing File

4-63

FOPEN

The file name is specified in the FILNAME array declaration as JEXAMFIL. This is the file that
was created and opened for write-only access in figure 4-5. It is opened for read-only access with
the call:

FILNUM:=FOPEN(FILNAME,3);

The value of foptions is set to the value 3, for which the bit pattern is:

0111213456789 10|11 |12 (13 }14 |15 Bits

0/j0j0j0j0f0f0|0f0OjO0)0O; O] O| O] 1| 1| Binary

0 0 0 0 0 3 Octal

This specification defines the following file options:

Not a new KSAM file (bit 4=0)
Old user file (bits 14-15=11)

Because this is an existing (old) user file, other foptions settings defined when the file was created
need not be respecified. For example, at creation the file was defined as containing ASCII code
(bit 13=1). In subsequent FOPEN calls this bit can be 0 without changing the code to binary.

When an old user file is opened, the job file domain is searched first and then the system file domain
is searched for the file specified in the formal designator.

The access parameter, aoptions, is not specified, but by default it specifies the following access
mode:

KSAM access expected

Share access (default for read-only)
Read-only access

OPENING FILE FOR WRITE ACCESS. To open an existing file for write access, you use the same

foptions values as you do to open the file for read-only access. The different access mode is speci-

fied in the aoptions parameter.

For example, assuming FILNUM and FILNAME have been declared:
FILNUM:=FOPEN(FILNAME,3,1)

The foptions specification is the same as described above. The aoptions specification is:

0(1;2(|3(4|5|6 (789 |10]11 |12 |13 14 |15 Bits

0jo0jo;o0(0fo0ojo0oj|0j0j0] O O O| O O} 1 Binary

0 0 0 0 0 1 Octal

4-54

FOPEN

This bit pattern defines the following access options:

KSAM access expected (bit 3=0)

Exclusive access (default for all access modes except read-only) (bits 8-9=00)
Disallow dynamic locking (bit 10=0)

Write only access (bits 12-15=0001)

This opens the file for write-only access in which all previous data is deleted. It is the access mode
to use when writing to a file for the first time. If you want to write to the end of an existing file
then bits 12-15 should equal 0010 and aoptions could be specified as 2 if other aoptions values are
defaulted. To open the file for both reading and writing, bits 12-15 should be set to 0100, or the
value 4. For update, these bits are set to 0101, or the value 5.

OPENING KSAM FILE AS MPE FILE. You may want to open either the key file or the data file
as a standard MPE file. To do this, name the file you want to open in the formaldesignator param-
eter, set foptions bit 4:1 to 1, and then set aoptions bit 3:1 to 1. These settings indicate that the
file is a KSAM file, but is to be treated as an MPE file. The remaining parameter settings depend
on what you want to do with the open file. For example, if you want to read the key file,
JKEYFILE, as an MPE file, you call FOPEN as follows:

INTEGER FILNUM;
BYTE ARRAY FILNAME(0:9):=“JKEYFILE *’;

INTRINSIC FOPEN, .. .;

FILNUM:=FOPEN(FILNAME,%4003,%10000);
The value of foptions defines the following file options:

Specified as KSAM file (bit 4=1)
O1d user file (bits 14-15=11)

The value of aoptions indicates the following:

Non-KSAM access expected (bit 3=1)
Share access (default for read only bits 8-9=00)
Read-only access (default bits 12-15=0000)

Normally, the only time you need to set bit 4 of foptions to 1 is when you are originally creating
a KSAM file. However, when you are opening an existing KSAM file for non-KSAM access, you
must set this bit to 1 so that the system can distinguish the KSAM data or key file from an MPE
file.

4-55

FOPEN

OPENING FILE FOR SHARED ACCESS. When a file is opened for shared access (aoptions bits
8,9 = 11), and you plan to modify the file in any way, you must enable dynamic locking (aoptions
bit 10 = 1). This is necessary since you cannot call FWRITE, FUPDATE, or FREMOVE to modify a
shared file without first calling FLOCK to lock the file.

Even if you are not planning to modify the file, but only plan to read it sequentially, you should
allow dynamic locking when you open the file. This is because FREAD (as well as FUPDATE and
FREMOVE) is a pointer-dependent procedure. Any time you call a pointer-dependent procedure
(refer to table 4-2), you must precede it with a call to a pointer-independent procedure that posi-
tions the pointer. It is important to call FLOCK to lock the file before setting the pointer with the
pointer-independent procedure and leave it locked until you have completed the sequential read or
update. This insures that no other user changes the position of the pointer between the call that
positions the pointer and the call that depends on the pointer.

4-56

FPOINT

INTRINSIC NUMBER 6

Sets the chronological (and logical) record pointer for a KSAM file.

The FPOINT intrinsic sets the chronological record pointer for a KSAM disc file. The file may con-
tain either fixed-length or variable-length records. When the next FREADC request is issued for
this file, the record to which FPOINT positioned the pointer is read. Note that this intrinsic posi-
tions the logical record pointer as well as the chronological pointer.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file on which the
pointer is to be set.

recnum double by value (required)

A positive double integer representing the record number of a fixed-
length file or the word pointer to a variable-length file. Word number-
ing always starts with word 0, whereas record numbering starts with O
or 1 depending on how the file was created. In either case, the number
is in terms of the chronological (consecutive) order in which the data
file records were written. It has no relation to the logical record pointer
that is based on key values.

CONDITION CODES

CCE Request granted.

CCG Request denied. The chronological record pointer position is un-
changed. Positioning was requested at a point beyond the physical
end-of-file.

CCL Request denied. The chronological record pointer position is un-

changed because of one of the following:

Invalid filenum parameter.

recnum parameter specified a record marked for deletion.

A key value for specified record not found in key file.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

MAY 1981 4-57

FPOINT

USING FPOINT

The FPOINT intrinsic is generally used prior to an FREADC intrinsic in order to read a record
without reference to the key file. FPOINT sets the chronological record pointer to the position in
the file specified by recnum. A subsequent FREADC reads the record (or portion of a record) to
which the pointer is positioned. It then sets the pointer to the next record that was written to the
file in chronological order.

For example, in order to read the 39th record written to the file identified by FILENUM:

FPOINT(FILNUM,39D); = set pointer
FREADC(FILNUM,BUFFER,COUNT); read record

Following execution of FREADC, the contents of the 39th record are transferred to the array
BUFFER and the chronological pointer remains positioned at record 39. A flag is set so that the
next call to FREADC moves the pointer forward to the beginning of record 40, the next record
in chronological order.

Note that the combination of FPOINT followed by an FREADC intrinsic is identical in effect to
the FREADDIR intrinsic that positions to a chronological record number and then reads that
record. The FGETINFO intrinsic can be used to recover the chronological record number of the
record most recently accessed. (Refer to FGETINFO and FREADDIR for more information on
accessing records by chronological record number.)

Since the FPOINT intrinsic positions the logical pointer as well as the chronological pointer, it can
be used prior to an FUPDATE or FREAD intrinsic to identify the record to be updated or read.
FPOINT sets the logical record pointer to a key in the key file that points to the record it located
by record number. The key is by default the primary key for that record, though an alternate key
is used if such a key was selected by a prior call to FFINDBYKEY or FREADBYKEY.

SHARED ACCESS. When you use FPOINT to position the chronological pointer in a shared access
environment, you must lock the file with a call to FLOCK before calling FPOINT. You should
leave the file locked until you have completed any calls that read or update the file in chronological
sequence, and then call FUNLOCK to unlock the file for the other users. This insures that the
pointer is not moved by other users between the pointer-independent procedure FPOINT and any
subsequent pointer-dependent procedure. (Refer to table 4-2 for a list of the pointer-independent
and pointer-dependent procedures.)

4-58

FREAD

INTRINSIC NUMBER 2

Reads a logical record in key sequence from a KSAM file to the user’s stack.

FREAD reads a logical record in sequential order by key value. The primary key determines key
sequence unless a prior call to FFINDN (or FFINDBYKEY or FREADBYKEY) has specified an
alternate key. If the file is opened without KSAM access (FOPEN aoptions bit 3=1), then FREAD
reads the data file as if it were not a KSAM file.

The record read by FREAD depends on the current position of the logical record pointer.

FUNCTIONAL RETURN

The FREAD intrinsic returns a positive integer value to igth showing the length of the information
transferred. If the tcount parameter in the FREAD call is positive, the positive value returned
represents a word count; if the tcount parameter is negative, the positive value returned represents
a byte count.

PARAMETERS
filenum integer by value (required)
A word identifier supplying the file number of the file to be read.
target logical array (required)
An array to which the record is to be transferred. This array should
be large enough to hold all of the information to be transferred.
tcount integer by value (required)

An integer specifying the number of words or bytes to be transferred.
If this value is positive, it signifies the length in words; if it is negative,
it signifies the length in bytes; if it is zero, no transfer occurs.

If tcount is less than the size of the record, only the first tcount words
or bytes are read from the record. If tcount is larger than the size of
the physical record, transfer is limited to the length of the physical
record.

CONDITION CODES

CCE The information was read.
CCG The logical end-of-data was encountered during reading.
CCL The information was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

4-59

FREAD

USING FREAD

The FREAD intrinsic reads the record at which the logical record pointer is currently positioned.
When a file is opened, this pointer is positioned to the beginning of the first record in primary key
sequence. That is, it is positioned to the record containing the lowest value in those bytes con-
taining the primary key.

Following each FREAD , the record pointer remains positioned at the record just read. Any sub-
sequent FREAD call positions the pointer to the next sequential record in ascending key sequence.
Also, if an FREAD call is followed by an FUPDATE and another FREAD, the pointer is advanced
before the second FREAD.

A key other than the primary key can be selected as the basis of the sequential read by executing
FFINDN, FFINDBYKEY, or FREADBYKEY before executing the FREAD intrinsic.

When the logical end-of-data is encountered during reading, the CCG condition code is returned to
your process. The end-of-data occurs when the last logical record of the file is passed . Note that the
last logical record of a KSAM file is the record containing the maximum key value in the key on
which the key sequence is based.

SHARED ACCESS. In order to be sure that you are reading the record you want, you should call
either FLOCK or FCONTROL with control code 7 before calling FREAD. FLOCK prevents other
users from changing or deleting the record until the file is unlocked with FUNLOCK. FCONTROL
with control code 7 clears the data and key block buffers so that the record must be read directly
from the file, and also transfers the latest control information from the file to the extra data seg-
ment. Because the logical pointer is part of this control information, you can be sure that is is set
correctly by calling FCONTROL with code 7.

FCONTROL uses less overhead than FLOCK, but it cannot prevent other users from modifying the
record you want to read while you are calling FCONTROL. FLOCK, on the other hand, fully pro-
tects the information to be read from changes by other users but requires more time.

Because FREAD is a pointer-dependent procedure, you must call one of the procedures that posi-
tion the pointer before calling FREAD. When you are reading the file in sequential key order, it is
important to lock the file before calling the procedure that positions the pointer, and to leave it
locked while you are reading the file. This insures that the pointer is not moved by another user
between the call that positions the pointer and FREAD or between sequential FREAD calls. (Refer
to table 4-2 for a list of the pointer-independent and pointer-dependent procedures.)

For example, the following sequence of calls guarantees that you will read the file in sequential order
starting with a specified key:

FLOCK

FFINDBYKEY sets logical pointer
FREAD loop read records in key sequence

FUNLOCK

Note that FREAD advances the record pointer only if it is followed by another FREAD (or an
FUPDATE followed by another FREAD). A single call to FREAD leaves the pointer at the record
just read; a subsequent call to FREAD causes the pointer to be positioned to the next record in key
sequence. This permits sequential reading of the file without calling a pointer-independent proce-
dure before each FREAD. Also, in order to allow sequential updates, the pointer is advanced for
each FREAD in an FUPDATE/FREAD sequence with no other intervening calls (see FUPDATE
discussion).

In the example in figure 4-7, FREAD is used first to read the KSAM file in sequence by primary
key. When the end of data is reached, the program uses FFINDBYKEY to specify an alternate
key and FREAD then reads the file in sequence by that alternate key. When the end of data is
reached again, the file is closed. (Note that this program is opened for exclusive access so that
locking is not necessary).

4-60

FREAD

$CONTROL MAINzJEXAMPLZ2
<<§“o&¢°§§§60&“##?00&&QQib%cﬁQ6ﬁ&QQQ09QQQQQQD.DGQ'QQQGQ‘QGG>>

<<t @>>
<<H EXAMPLE 2 #>3>
<<w READ A KSAM FILE SEQUENTIALLY #3>
<< e3>

Q<<#“Q#Q'G#%&’QG#QQ##QOQ&QQG [XIAAET XX L)

MESSAGE (03351}
INPUT(0239) 3

FOPEN FCLosE, R ‘ JREADZPRINT,
FcHecK,FERRMSG.PRINT'FILE'INFO TERMINATES

<<Q“0.&“#0#GQ00&“#..90G>)
<<®* OPEN THE KSAM FILE o>>
PP IIIRXS AL 2 AL L2 L 0
FILENUM:=FOPEN(FILNAME,3,200); <<OPEN KSAM FILE FOR EXCLUSIVE READ-ONLY ACCESS>>
IF FILNUMgzQ
THEN BEGIN <¢<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE $='"CANNOT OPEN KSAM FILEn}

PRINT (MESSAGE ,=21+0)}

FCHECK (FILNUM,ERRORCODE) } <<GET THE ERROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) § <<GET MESSAGE STRING>>
PRINT (MESSAGE ,=LENGTH,0)} <<PRINT ERROR MESSAGE>>
TERMINATES

ENDy

MOVE MESSAGE!="LIST IN LAST NAME SEQUENCE"}
PRINT (MESSAGE,=26,0)}

CCRDPBHB G HBDBBRUBBERENIHEDRBRDENDONEDS

<c<® READ KSAM IN NAME SEQUENCE #>>
<<00n¢oingooooa.noaGloooooiooooﬂuuku>>

IF <
THEN BEGIN

MOVE MESSAGEI="ERROR OCCURRED WHILE READING INPUTHY
PRINT (MESSAGE y=34,0))

TERMINATE}
END3
<<Q09600QQQQQQGGQGQGQOQ.lQQ.OQQQQOQGQQOGOQGQQOGQ0>>
<<® WRITE THE DATA JUST READ FROM KkSaM FILE @#>>

<<6000.6.gGooooﬂooo0Qo&QG&O&Qbﬁohi.oﬁ;a»OG#»ﬂOboO>)
PRINT(QUTPUT»=T72,40) §

<RI PNBRREQBDBORNBBDRENBIRNNBDBOPADREEYD

<<% GO BACK TO GET ANOTHER RECORD a>»>

UG BBBbBgrpRanRRNNOLtRRGBBIRGBEDNRNND>

GO TO L1}

Figure 4-7. FREAD Example

4-61

FREAD

CCEB BB P DR R ENBER I RN NN EOR N DR B R RDBIRDIRRDRROBGELORaONDD
<<# READ DATA FROM KSAM FILE IN TELEPHONE # SEQUENCE #>>
<<¢#oon0°a¢¢iooowoaQQo&o¢§Q¢anGQ'QQQQQQOQQQOGQQOQQDDQQ..9Q>>

— e s

THEN BEGIN <<END OF FILE>>
FCLOSE(FILNUM,0,0)}) <<CLOSE THE KSam FILE>>
IF <> THEN
BEGIN <<CLOSE UNSUCCESSFUL>>
MOVE MESSAGE:!3"CANNOT CLOSE THE KSAM FI_E"}
PRINT (MESSAGE1=29,0) 4

FCHECK (FILNUM,ERRORCODE)} <<GET THE ERROR NUMBER>>
FERRMSG (ERRORCODE ,MESSAGE ,LENGTH) j ¢<GET MESSAGE STRING>>
PRINT (MESSAGE ,, ~LENGTH,014 <<PRINT ERROR MESSAGE>>
END
TERMINATE §
END}
IF <
THEN BEGIN
MOVE MESSAGE {3"ERROR QCCURRED WHILE READING INPUTw}
PRINT (MESSAGE ,»34,0)
TERMINATE}
END}
<(¢~o¢“.¢onoOqoﬁo#»Qn.un0oi.oaaﬁoQOQoocﬂo.oannonc>>
<<# WRITE THE DATA JUST READ FROM KSaM FILE a>>

((O“Q"o“o..a!oilﬁ#o.u.QGQQ‘CQQOGOQOQ'“QQQQ.QQOQl.>>
PRINT(QUTPUT y«72,0)

IF <>

THEN BEGIN <<ERROR OCCURREND WHILE PRINTING QUTPUT>>
MOVE MESSAGE:=z"ERROR OCCURRED WHILE PRINTING OUTPUT!"}
PRINT (MESSAGE,=36,0)
FCHECK (FILNUM,ERRORCODE) § <<GET THE ERROR NUMBER>>
FERRMSG (ERRORCODE ,MESSAGE ,LENGTH) J <<GET MESSAGE STRING>>»
PRINT (MESSAGE ,=LLENGTH,0) } <<PRINT ERROR MgSSAGE>>
TERMINATE}

END}

CCHARBBBV BRI ONAVIRRNNNDNBIBRIVORDO85D
<<# GO BaCK TO GET ANOTHER RECORD a>>
CCHUBABR D BBBRBBRRIRRNRVONNRBBDDBEODONDD
GO T0 L3}

END}

Output from Program Execution:

.

g

END OF PROGRAM

Figure 4-7. FREAD Example (continued)

4-62

FREADBYKEY

INTRINSIC NUMBER 304

Reads a logical record randomly from a KSAM file to the user’s data stack.

FREADBYKEY reads a logical record selected by key value. The record to be read must have the
same value as keyvalue in the bytes that start at keylocation. Following execution, the logical
record pointer is still positioned to the record in the file located through the value of the key at
keylocation.

FUNCTIONAL RETURN

The FREADBYKEY intrinsic returns a positive integer value to Igth showing the length of the infor-
mation transferred. If the tcount parameter in the FREADBYKEY call is positive, the positive
value returned represents a word count; if the fcount parameter is negative, the positive value re-
turned represents a byte count.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to be read
randomly.

target logical array (required)
An array to which the record is to be transferred. It should be large
enough to hold all the information read.

tcount integer by value (required)
An integer specifying the number of words or bytes to be transferred.
If this value is positive, it signifies the length in words; if negative, it
signifies the length in bytes; if zero, no transfer takes place.

If tcount is less than the size of the record, only the first tcount words
are read from the record. If tcount is larger than the physical record
size, transfer is limited to the length of the physical record.

keyvalue byte array (required)
A byte array containing the value that will determine which record is
read. The first record found with this identical value in the key iden-
tified by keylocation is the record read.

keylocation integer by value (required)
The relative byte location in the record of the key whose value deter-
mines which record is read. The first byte is numbered 1; if a value of
zero is specified, the primary key is used.

4-63

FREADBYKEY

CONDITION CODES

CCE The information specified was read.

CCG The logical end-of-data or beginning-of-data was encountered during
the read.

CCL The information was not read because an error occurred, such as an

input/output error, or the key could not be located.

USING FREADBYKEY

The intrinsic FREADBYKEY allows you to locate and read a single record according to a specified
key value. Like FFINDBYKEY, it defines the key that is to be used for determining record se-
quence and, following execution, remains positioned at the same record. Unlike FFINDBYKEY,
FREADBYKEY cannot specify a key length different from the full length of the key at creation,
nor can it search for approximate key values.

In the example in figure 4-8, the keylocation and keyvalue values are read from the standard input
device. As each is read, it is printed to test the read. The first set of values read into the word
array INFOW is:

01ROBERT GERRY
\l/P T /
keylocation keyvalue

The first two ASCII characters contain the keylocation; the characters starting in byte 2 contain
the keyvalue to be found at the specified keylocation. Since keylocation is an integer parameter,
the first two bytes of the byte array INFO (equivalenced to the word array INFOW) must be con-
verted to a binary value. This is done with the statement:

KEYLOCATION:=BINARY(INFO,2);
The value to be used for keyvalue is contained in the byte array INFO starting in the third byte
(byte 2 numbered from byte 0). In the declarations at the beginning of the program, the byte array
KEYVALUE is equivalenced to the portion of the byte array INFO that starts in byte 2.
The intrinsic FREADBYKEY can be called with the following statement:
FREADBYKEY(FILNUM,INPUT,-72,KEYVALUE,KEYLOCATION);
This locates and reads the first record with the value ROBERT GERRY in the key located starting
in byte 1 of the record. The program prints this record and then returns to get the next pair of

values input for keyvalue and keylocation. When there are no more values in the input file, the
KSAM file is closed and the program terminates.

4-64

FREADBYKEY

SHARED ACCESS. If you use FREADBYKEY to position the pointer for subsequent calls that
read or update the specified record, you should lock the file with a call to FLOCK before calling
FREADBYKEY. Then, after calling the read or update procedure, you should unlock the file so
other users can access it. Locking the file before calling FREADBYKEY insures that other users
do not change the position of the pointer between the call to FREADBYKEY and any subsequent
procedure that depends on the pointer position. (Refer to table 4-2 for a list of the pointer-de-
pendent procedures and also those that set the pointer.)

To illustrate, the following sequence of calls makes sure that the correct record is updated:

FLOCK to lock the file

FREADBYKEY to position the pointer

FUPDATE to modify the record to which the pointer points
FUNLOCK to unlock the file for other users

DUPLICATE KEYS. FREADBYKEY always positions to the first key in a chain of duplicate keys.
If you want to read or update the remaining keys in a duplicate key chain, you should use FREAD.
For example, to update all the records with a particular key, use the following code sequence:

FREADBYKEY io locate 1st key in chain of duplicates
FUPDATE update that record
FREAD read next sequential record

<test if this is correct key value>
FUPDATE update record

<return to read next record>

4-65

FREADBYKEY

sCONTROL MAINz JEXAMPLI
(<#“#6#“0##66§&#GQQOQ“QOQQOQ&Q’““QQQG&Q#Ob§§¢6§0¢0#¢0o6¢¢96>>

<< #t>n
<<® EXaMPLE 3 83>
<< READ A KSAM FILE RaNPDOMLY @3>
<< #>>
<<Cuvy

i

B R RO R R RO RO BIROBBV P RN BB O RS

MESSAGE (0335)
INPUT (0139} 3
NPU

i

AD,PRINT,

g OPEN,FCLOSE,FREAD,
FCHECK,FERRMSG yBINARY I TERMINATE)
CCHIBBERBEBBBNBIRBBLBBOBEODD
<<& OPEN THFE KSAM FILE &>>
<<§G&§aﬁ0¢u&ggﬁn gxk’b

i s

IF FILNUMz0

THEN BEGIN C<CANNOT OPEN KSAM FILE>>
MOVE MESSAGEI="CANNOT OPEN KSAM FILEuwS
PRINT (MESSAGE,~21,0)

FCHRECK (FILNUM,ERRORCODE) § <<GET THE ERROR NUMRER>>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) 1 <<GET MESSAGE STRING>>
PRINT (MESSAGE ,»LENGTH,0) } <<PRINT ERROR MESSAGE>>
TERMINATE}

END}

<<.00#QQQn§#GQOﬁihQG'“OQQ'G}..Q“GO.QQGG#O&#Q#Q.G“))
<<# READ IN KEYVALUE AND KEY_LOCATION INFOMATION #>>
<<“90“0“‘“9&6#9“#0QQG“ODQQ“Q.QQ'“QOQOQQQQQGQ“’QOQ))

L1
READ (INFOwW,=36) }
IF >
THEN BEGIN
FCLOSE (FILNUM,0,0)} <<CLOSE THE KSAM FILE>>
IF <> THEN
BEGIN
MOVE MESSAGE!="CANNOT CLOSE THE KSAM FILEwn}
PRINT (MESSAGE)=26,0)%
FCHECK (FILNUM,ERRORCODE) <<BET THE ERROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) 1 <<GET MESSAGE STRING>>
PRINT (MESSAGE,~LENGTH,0)} <<PRINT ERROR MESSAGE>>
END
TERMINATE
END}
IF <
THEN BEGIN

MOVE MESSAGEI="ERROR OCCURRED WHILE READING INPUTnH}
PRINT(MESSAGE y=34,0)}
TERMINATE

Figure 4-8. FREADBYKEY Example

4-66

FREADBYKEY

PRINT (]

<<TEST READ>>
“¥@ 5 T ek >,ﬁM§ e

R BB OV BB BB BRRBERBBR DR ERBBDRIRIOSRBEP RGOSR DBBBIRBBI0DD>
<<# READ KSAM ACCORDING TO KEYVALUE AND KEYLOCATION &>>
U BB BB RBG BBV BB AR BN BB R DR GRORDBBDOBHIRDEO DRI BEEEBE0DD

THEN BEGIN ¢<ERROR OCCURRED IN FREADBYKEY>>
MOVE MESSAGE!="ERROR OCCURRED IN FREADBYKEY!,
PRINT(MESSAGE ,=28,0)1

FCHECK (FILNUM,ERRORCODE) }§ <<¢GET THE ERROR NUMRER>>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) § <<GET MESSAGE STRING>>
PRINT(MESSAGE , »LENGTH,0)} <<PRINT ERROR MESSAGE>)>
GO TO L1}
END3}
<<66.6“¢“ﬁﬂ#0069QGQGGQGGGOQQQoﬂ“#&%u“o#’##“#@QO&#>>
<<% WRITE THE DATa JUST REaD FROM KSaM FILF a>>

AN RBARBBIBRABHBOIRRNEEBRRETRERTENRBBRBBBRROGBRBHNDD
PRINT (OUTPUT,«72,0) 3
<<Qﬁ“Qo'#aﬁ#&h&.&O»GQiQﬁ#ﬁﬂﬂ#uﬁ““%#e#))

<<#% GO BACK TO GET ANOTHER RECORD &3>
(<0*“60“QQG6“6606¢QQ#¢#§9&6§&Gﬁ‘“l#@d))

GO TO 13

END}

Output from Program Execution:

END OF PRNOGRAM

Figure 4-8. FREADBYKEY Example (continued)

4-67

FREADC

INTRINSIC NUMBER 305
Reads a logical record in chronological sequence from KSAM file to user’s stack.

FREADC reads a logical record in chronological sequence. Chronological sequence means the se-
quence in which the records were originally written to the data file.

When FREADC is executed, the key file is not accessed. This read is similar to the standard FREAD
for non-KSAM files except that FREADC skips any data records that are marked for deletion. Fol-
lowing execution, the chronological pointer remains positioned at the same record.

FUNCTIONAL RETURN

The FREADC intrinsic returns a positive integer value to Igth showing the length of the information
transferred. If the tcount parameter in the FREADC call is positive, the positive value returned
represents a word count; if the tcount parameter is negative, the positive value returned is a byte
count.

PARAMETERS
filenum integer by value (required)
A word identifier supplying the file number of the file to be read in
chronological sequence.
target logical array (required)
An array to which the record is to be transferred. This array should
be large enough to hold all the information to be transferred.
tcount integer by value (required)

An integer specifying the number of words or bytes to be transferred.
If this value is positive, it signifies the length in words; if negative, it
signifies the length in bytes; if zero, no transfer occurs.

If tcount is less than the size of the record, only the first tcount words

are transferred from the record. If tcount is larger than the physical
record size, transfer is limited to the length of the physical record.

CONDITION CODES

CCE The information was read.
CCG The logical end-of-data was encountered during reading.
CCL The information was not read because an error occurred.

4-68

FREADC

USING FREADC

This intrinsic allows you to read the records in the data file in the order in which they are physically
stored in the file. The end-of-data is encountered following the last record in the file. If any records
have been marked for deletion (refer to the FREMOVE intrinsic), these records are not read; other-
wise, this intrinsic reads the data from the data file exactly as it was stored.

Following execution of FREADC, the chronological pointer remains positioned at the record just

read, unless it is followed by another call to FREADC. In a series of calls to FREADC, the pointer
is advanced automatically so you can read the file in chronological sequence without resetting the
pointer for each record.

Because FUPDATE only checks the logical pointer, you cannot update a record located by
FREADC or FREADDIR. To update a record located by its chronological record number, you
must precede the call to FUPDATE with a call to FPOINT. Unlike FREADC or FREADDIR,
FPOINT sets the logical pointer as well as the chronological pointer.

In figure 4-9, the FREADC intrinsic is used to read the data from the KSAM data file in chronologi-
cal order. Compare this order to the sequential order by primary key in which the same file is read
by FREAD. (Refer to figure 4-10 for an example showing the chronological record number printed
in association with each record listed in sequential key order.)

SHARED ACCESS. Because FREADC is a pointer-dependent procedure, you must call one of the
procedures that position the pointer before calling FREADC. (Refer to table 4-2 for a list of the
pointer-dependent and pointer-independent procedures.) When access is shared, it is essential that
you lock the file before calling the procedure that positions the pointer, and then leave the file
locked while it is being read by FREADC. This insures that no other user changes the position of
the pointer after the call that positions the pointer or between sequential calls to FREADC.

For example, the following sequence of calls guarantees that you will read the file in chronologi-
cal sequence starting with a specified record number:

FLOCK lock file
FPOINT -position the chronological pointer

FREADC loop read records in chronological sequence
FUNLOCK unlock file

4-69

FREADC

S$CONTROL MAINzJEXAMP| &
<<*006»0»qaa@ncooo»«o#u».no.n»oOaua;«auan#anocunooaouaoﬁgua>>

<<% [3%)
<< EXAMPLE 4 #>>
<< READ A KSAM FILE CHRONOLOGICALLY @3>
< 3>

< “0““0#“9@096“6#6’Gﬁ&#iﬁ“#DQ““GGQQGQﬂﬂ‘ﬁb####}“ﬁb“&&““&#“))

‘8) FILNA

ARRAY MESSAGE (03135)3
ARRAY INPUT (0139)}
ARRAY OUTPUT (#) = INPUT}

FOPEN,FCLOSE,

LI T TP T YT X TYY XY PYTESEN

<<# OPEN THE KSAM FILE a>>
DBt Bpaatanbstad

IF FILNUMzp
THEN BEGIN .

MOVE MESSAGE$="CANNOT OPEN KSAM FILE"}
PRINT (MESSAGE y»21,0) 4

FCHECK (FILNUM,ERRORCODE) } <<GET THE FRROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) 1 <<GET MESSAGE STRING>>
PRINT (MESSAGE y=LENGTH,0) } <<PRINT ERROR MESSAGE>>
TERMINATE
END}

L1

((6“0#0#0‘90#&064‘kOQ'QQQG'Q&OQ“QOD664.0##&9.'6*0“#0““))

<<#* READ KSAM ACCORDING TO CHRONOLOGICAL ORDER a>>

< @

aHBHHG

CHRBBpBBgoatpedatebntnonbasetVossoy

IF >
THEN BEGIN <<END OF FILE>>
FCLOSE(FILNUM,040) 4 <<CLOSE THE KSAM FILE>>
IF <>
THEN BEGIN
MOVE MESSAGE t="CANNOT CLOSE KSAM FILE"}
PRINT (MESSAGE)=22,0)}
FCHECK (FILNUM,ERRORCODE) ¢ <<GET THE ERROR NUMBRER>>
FERRMSG (ERRORCODE ,MESSAGE ,LENGTM) I<<GET MESSAGE STRING>»>
PRINT(MESSAGE,~LENGTH, 0} <<PRINT ERROR MESSAGE>>
ENDY
TERMINATE
END
IF <
THEN BEGIN
MOVE MESSAGE!="ERROR OCCURRED WHILE READING KSAM FILEw";
PRINT(MESSAGE y=37,0) 3
TERMINATES
END}
<(00060““9000&'0'6&“QGG'Q.GQOQO“GQQQQ&QQ#QO##GGG“>>
<<# WRITE THE DATA JUST READ FROM KSaAM FILE #>>

((000#&““#6thh“.éb#i’#&dﬂd#ﬁﬁ’”Ql#!i“b“.“###“’é“>>
PRINT{OUTPUT »=T7240) 4
<<“0##OQ“#DQ“QO“&Q#““OQOQO#QG‘Q“Q#QO#>>

<<% GO BACK TO GET ANOTHER RECORD e3>
<<ﬁ“*b#“&ﬁ##6“’““!DQG“G#OQ‘#O#G'OG#%’))

GO TO (1%

ENDJ

Figure 4-9. FREADC Example

4-70

FREADC

Output from Program Execution:

END OF PROGRAM

Figure 4-9. FREADC Example (continued)

4-71

FREADDIR

INTRINSIC NUMBER 7

Reads a logical record located by its chronological record number from a KSAM file to the user’s
stack.

The FREADDIR intrinsic reads a specific logical record, or a portion of such a record, from a
KSAM file to the user’s data stack. The particular record read is specified by its chronological
record number. This number is determined by the order in which the record was written to the
file; it is not the logical record number determined by ascending key sequence. When the file has
fixed-length records, recnum is the actual record number counting from the first record in the file.
When the file has variable-length records, recnum is a word pointer to the first word in the record
counting from the first word in the file, word zero.

After FREADDIR has been executed, the chronological record pointer remains positioned at the
record just read. FREADDIR does not change the position of the logical record pointer.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to be read.

target logical array (required)
An array to which the record is to be transferred. This array should be
large enough to hold all of the information to be transferred.

tcount integer by value (required)
An integer specifying the number of words or bytes to be transferred.
If this value is positive, it signifies words; if negative, it signifies bytes;
and if it is zero, no transfer occurs.

If tcount is less than the size of the record, only the first tcount words
or bytes are read from the record. If fcount is larger than the size of
the logical record, the transfer is limited to the length of the logical
record.

recnum double by value (required)
A double-word integer indicating the relative chronological record
number (or word number for variable-length records) to which the
chronological pointer is positioned. Chronological record numbering
for fixed-length records starts with zero or one, as specified in
ksamparam or by FIRSTREC in BUILD.

4-72

FREADDIR

CONDITION CODES

CCE The specified information was read.
CCG The end-of-data was encountered during reading.
CCL The information was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FREADDIR

The FREADDIR intrinsic can be used to position to a particular record in chronological sequence
and then read that record. Following execution, the record pointer remains positioned at the same
record. This intrinsic is thus identical in effect to the pair of intrinsics: FPOINT and FREADC.
You might use FREADDIR to read one record and then reposition the pointer; you might use
FPOINT and FREADC to position to a particular record and then continue reading in chronological
order from that position.

You can use the FGETINFO intrinsic to determine the relative chronological number of the record
most recently accessed. This number is returned in the FGETINFO parameter recpt. The example
in figure 4-10 determines the chronological record of each record as it is read in sequence by pri-
mary key value. The chronological record number is printed, and then FREADDIR uses this num-
ber to read the record to which it points. The output shows the chronological record number fol-
lowed by the record to which it points. To see these records listed in chronological order, refer to
the output in example 4-9 illustrating FREADC.

Note that execution of those intrinsics that position the KSAM data file by means of the chrono-
logical record pointer (FPOINT, FREADC, FREADDIR), do not access the key file. This type
of access only affects the data file. It is, therefore, much faster than those intrinsics that use key
sequence to position the data file and must access the key file.

4-73

FREADDIR

SCONTROL MAINsJEXAMPLS
<<»onao*uﬁa»aoﬁoaonuw#»cuo&oub#“o«aboo»obp»u»oaucoan#aoaqna>>

<< >
<<H EXAMPLE & #>>
<< H READ A KSAM FILE BY CHRONOLOGICAL RECORD NUMRER ®>>y
<< #>>

CCHBBaudBopostadebaty BOERDBBERRDR BN BO R B ERBRBBIDIBOSRBBDD

ARRAY MESSAGE (0135) }

ARRAY INPUT(0139))
ARRAY OUTPUT (#) = INPUT

INTRINSIC FOPENFCLOSE,FREAD,FGETINFO,FREADDIR,
PRINT,TERMINATE,DASCII,FCHECK,FERRMSG}

<<0°GGQG#&OG”#“QGQQ'#O“Q#Q))

<<% OPEN THE KSAM FILE 4>>

AL ILFE T e LYY Y FY Y

i o
IF FILNUM=O

THEN BEGIN €<CANNOT OPEN KSAM FILE>>
MOVE MESSAGE!I="CANNOT QPEN KSAM FILE"}
PRINT(MESSAGE =210}

.
= ﬁ&ﬁ%i@mg}gﬁ%

FCHECK (FILNUM,ERRORCODE) } <<GET FRROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) 1 <<CONVERT TO STRING>>
PRINT (MESSAGE ,~LENGTH,0) } <<PRINTOUT ERROR MESSAGE>>
TERMINATE]
END}
<<006¢¢*buauogahbhoﬂﬁbobﬁobb060“00“0#&#@#0#.0600»#;))
<<% READ KSAM SEQUENTIALLY #>>
<<.'.QG“QGO“#QQQO'“'G““”OQ“G“Q'““000‘#““00#9““90@#’6“’>>
L1t
FREAD(FILNUM, INPUT,=»T2)}
IF >
THEN BEGIN
FCLOSE(FILNUM,0,0)3 <<CLLOSE THE KSaM FILE>>
IF <> THEN
BEGIN
MOVE MESSAGE13"CANNOT CLOSE THE KSAM FILEn;
PRINT (MESSAGE,=22,0) 7
FCHECK (FILNUM,ERRORCODE) 3 <<GET ERRORP NUMRBER>>
FERRMSG (ERRORCODE ¢yMESSAGE y LENGTH) J <<CONVERT To STRING>>
PRINT (MESSAGE ,~LENGTH,0)} <<PRINTOUT ERROR MESSAGE>>
END?
TERMINATE}
END}
IF <
THEN BEGIN

MOVE MESSAGE{="ERROR OCCURRED WHILE READING KSAM FILE"}
PRINT (MESSAGE y»37,0)}

FCHECK (FILNUM,ERRORCODE) ¥ <<GET ERROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) 1 <<CONVERT T0 STRING»>
PRINT(MESSAGE ,*LENGTH,0)} <<PRINTOUT ERROR MESSAGE>>

Figure 4-10. FREADDIR Example

4-74

FREADDIR

TERMINATE}
ND§

R PRGN RO AR D ROBBERBBRERIIRNRERTURIOB ANV IR RV RRBGEOBBa%DD

<<% Y0 FIND OUT RECORD NUMBER OF THE RECORD JUST READ #>>

<<00¢¢%:?0onoooouénaoogg@:ﬂopﬁa“#ﬁiaauﬂaousfgnnnaoaﬁ§0“>>

FO(FILMNL 100 RECPT

MOVE MESsAGEz:"REcoRDa = "y
DASCII(RECPTR,10yMESSAGE(5))}
PRINT(MESSAGE y=14,0) 4

RN BB PO RO RO RBNBREORE N ROV DPNRRBRBOLRBBNDREONDD

<<t READ THE KSAM FILE BY USING RECORD NUMBER 4>>

(#0Q#QOOQQQQ§§00!#G“#i*ﬂb!bb“ﬂ“#lb##“#“»“bﬁCHH!))w

i =
PR e

THEN BEGIN
MOVE MESSAGE1="ERROR OCCURRED nURING FREADDIRM}
PRINT(MESSAGE)=30,0)1

FCHECK (FILNUM,ERRORCODE)} <<GET FRROR NUMBER>>
FERRMSG (ERRORCODE ,MESSAGE s LENGTH} § <<CONVERT TO STRING>>
PRINT(MESSAGE ,»LENGTH,0)} <<PRINTOUT ERROR MEQSAGE>>
TERMINATE S
END3}
RV BODDO R RBRBOBEORIBBBEBIVIBRRRINBODHODIBROGREOEDD
<<# WRITE THE DATA JUSTY READ BY FREADDIR a>>

Pl I Iy Y e Y Y Y FY T ALY YT YT LY TP Y33
PRINT(OUTPUT1=T7240)}
<CCPtBandBanobpanEDBBABERBRBIREBBBRBODYD

<<k GO BACK TO GET ANOTHER RECORD a>>
CChbBupdgnutosaantadrnendsearPasssn>>

GO TO L1}

ENDI

Output from Program Execution:

END OF PROGRAM

Figure 4-10. FREADDIR Example (continued)

4-75

FREADLABEL

INTRINSIC NUMBER 19
Reads a user file label.

The FREADLABEL intrinsic reads a user-defined label from a disc file. Before reading occurs, the
user’s read-access capability is verified. Note that MPE automatically skips over any unread user
labels when the first FREAD intrinsic call is issued for a file; therefore the FREADLABEL intrinsic
should be called immediately after the FOPEN intrinsic has opened the file.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file whose label is to
be read.

target logical array (required)
An array in the stack to which the label is to be transferred. This array
should be large enough to hold the number of words specified by
tcount.

tcount integer by value (optional)
An integer specifying the number of words to be transferred from the
label. Tcount must not be greater than 128 words.
Default: 128 words.
labelid integer by value (optional)
An integer specifying the label number where the first user label is

numbered O.

Default: A default value of 0 is assigned.

CONDITION CODES

CCE The label was read
CCG The intrinsic referenced a label beyond the last label written on the file.
CCL The label was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

4-76

FREADLABEL

USING FREADLABEL

If the KSAM file contains one or more user labels (written with FWRITELABEL), you can read
these labels with the FREADLABEL intrinsic. During the normal file reads with FREAD, FREADC,
FREADBYKEY, or FREADDIR, any user labels are ignored. The number of user labels that can

be written to the file is specified by the userlabels parameter of FOPEN, or in the BUILD command
of KSAMUTIL.

Since MPE checks to insure that you have opened the file with read access before executing
FREADLABEL, you must open the file with an FOPEN aoptions setting that permits reading. It
must be one of the following:

bits 12:4 = 0000 (octal 0) read only access
0100 (octal 4) input/output access
0101 (octal 5) update access

In addition, the FOPEN userlabels parameter must be set to a value of 1 or greater depending on
the number of labels that may be written to the file.

Suppose you have opened the file KDATA with the following call:
KFILNUM:=FOPEN(KDATA,34,,,,2);

old user, number of labels
domain

input/output access
You might read the second label with the following call:
FREADLABEL(KFILNUM,LABELBUF, , 1)
This reads the second label into the array LABELBUF. Note that label numbering begins with O; if

the labelid parameter were zero or omitted, then the first label would be read. By default, the num-
ber of words read from the label is 128.

4-77

FREADSEEK

INTRINSIC NUMBER 12
Moves a record from a disc file to a buffer in anticipation of a FREADDIR intrinsic call.

NOTE

This intrinsic may not be used for KSAM files. If called for a file
created as a KSAM file, the intrinsic returns a CCL condition code.

4-78

FRELATE

INTRINSIC NUMBER 18

Determines whether a file pair is interactive, duplicative, or both interactive and duplicative.
NOTE
This intrinsic may not be used for KSAM files. If called for a file

created as a KSAM file, the functional return is set to zero (FALSE)
and the condition code CCE is returned.

4-79

FREMOVE

INTRINSIC NUMBER 306
Marks the current record in KSAM file for deletion.

The intrinsic FREMOVE effectively removes the current record from the KSAM file. When exe-
cuted, the first two characters of the current record in the data file is set to all 1’s, and all key
entries pointing to this record are deleted from the key file. Although the space required by the
record remains in the data file, it is no longer possible to access the record through KSAM intrinsics.

In order to position the file to the record to be deleted, FREMOVE must be preceded by one of
the intrinsics that positions the logical record pointer: FFINDN, FFINDBYKEY, FREADBYKEY,
FREAD, FPOINT, or a previous FREMOVE. Following execution of FREMOVE, the logical
record pointer is positioned at the next record in ascending key sequence.

FREMOVE checks only the logical record pointer, not the chronological pointer, to locate the
record to be deleted. Therefore, if you want to delete a record located by its chronological posi-
tion in the file, precede the call to FREMOVE with a call to FPOINT. FPOINT locates the record
by its record number and sets the logical, as well as the chronological pointer, to that record. If
you try to locate a record for FREMOVE by calling FREADDIR or FREADC, which only set the
chronological pointer, you will delete the wrong record.

When FREMOVE is executed, a check is made to make sure the record to be deleted actually con-
tains the key value to which the pointer is positioned. If the record does not contain that value,
then a condition code (CCL, error=191) is issued and the record is not deleted.

If the file was opened for shared access (aoptions bits 8,9 = 11) then you must call FLOCK before
calling FREMOVE. Note that the file must also have been opened with dynamic locking allowed
(aoptions bit 10 = 1).

NOTE
If you want to recover the data in deleted records through non-
KSAM access (using FCOPY with the NOKSAM option), do not

place any data in the first two bytes since these bytes are over-
written by FREMOVE.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file from which the
record is to be deleted.

4-80

FREMOVE

CONDITION CODES

CCE The current record is deleted.
CCG The logical end-of-data was encountered.
CCL An error was encountered or record does not contain requested key

value; the record is not deleted.
SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FREMOVE

When FREMOVE is executed, it sets the first word (bytes 1 and 2) of the current record to all 1’s.
It does not physically delete the record from the file. When the file is read by any of the KSAM
read intrinsics, the deleted records are skipped as if they were not there. Since all references to
them are deleted from the key file, the speed of execution is not usually affected by the records
physically remaining in the file. However, they do take up space and if a great many records are
deleted, then you might want to build a new KSAM file and copy the old file to the new file with
FCOPY. Since FCOPY does not copy records marked for deletion (except with the NOKSAM
option), the new file will be shorter and have no space used by deleted records. (Refer to section
II for a description of copying KSAM files with FCOPY.)

The example in figure 4-11 deletes all records with a telephone number in the alternate key field
that is equal to or greater than “500-0000". The FFINDBYKEY intrinsic positions the file to the
record containing the lowest alternate key value that is greater than or equal to “500-0000”. This
record is then read and printed prior to being deleted by FREMOVE. Following FREMOVE, the
program loops back to read the next sequential record, print it, and then delete it. When an end of
data is reached, the program terminates. In all, the program deletes three records. You can check
the deleted records against the list of records printed in telephone number sequence by the program
illustrating FREAD in figure 4-7.

4-81

FREMOVE

In practice, an FREAD prior to an FREMOVE is useful because it allows you to test the record
contents prior to deleting the record. For example, you might want to delete only those records
with the zip code 90871 in bytes 75 through 79 of the record, assuming the same file as in
figure 4-11:

equate the byte array INPUTB to INPUT

BYTE ARRAY INPUTB(*)=INPUT;

Ll:
FREAD(FILNUM,INPUT,-72);
IF>

. —— test for end of data

IF<

test for read error

IF INPUTB(75)=“90871"

THEN BEGIN
FREMOVE(FILNUM);
IF<

. ————— test for delete error

END;

GO TO L1; — return for next record

SHARED ACCESS. In a shared environment, you must always lock the file with a call to FLOCK
before calling FREMOVE. Furthermore, since the logical record pointer must be positioned before
the call to FREMOVE, you should lock the file before calling the procedure that positions the
pointer. This prevents other users from affecting the pointer position by adding or deleting records
between the time you position the pointer and call FREMOVE. The following sequence of calls
illustrates the correct method for deleting a record in a shared environment:

FLOCK lock the file

FREADBYKEY position pointer and read record
FREMOVE mark the record for deletion
FUNLOCK unlock file to allow access to other users

Remember to open the file for shared access and allow dynamic locking whenever you plan to
delete records from a file in a shared environment.

4-82

FREMOVE

0 .
INTEGER FILNUMS
INTEGER LENGTH}
INTEGER ERRORCODE

i

ou : ,
KEYVALUE(03T) =500

INTEGER KEYLENGTH1=8}
INTEGER KEYLOCATION!=21}
INTEGER RELOPI=2} <¢ GREATER THAN OR EQUAL TO >>

INTRINSIC FOPEN,FCLOSE,FREAD,FREM FINDB

-

CCOBBBB DB NBEOtODE0BDIBIODD
<<% OPEN THE KSAM FILE #>>
CCH BN OB DB BRI BB BB RBOBRONDD

FILNUMISFOPEN(FILNAME,3,5)} <<OPEN THE KSAM FILE FOR UPDATE>>
IF FILNUMzO
THEN BEGIN <<CANNOT OPEN KSAM FILE>»>

MOVE MESSAGE!='"CANNOT OPEN KSAM FILE"|
PRINT(MESSAGE,=21,0)1

FCHECK (FILNUM,ERRORCODE) } <<GET ERROR NUMBER>>
FERRMSG (ERRORCODE ,MESSAGE , LENGTH) } <¢CONVERT TO STRING>>
PRINT(MESSAGE,~LENGTH,0)} <<PRINTOUY ERROR MESSAGE>>

f > EPHONE QUE!
<<0GoooouobuoooloﬂciﬁoQconocnoo#o«ﬁconQa&o»»&ao«Oﬂuq&aﬁl¢0“>>
FFINDBYKEY(FILNUM,KEYVALUE.KEYLOCATION,KEYLENGTH.RELOP)'

MOVE MESSAGE$s"DELETE FOLLOWING RgCORDSt"}

PRINT (MESSAGE ,»25,0) 3
CCINBRDNBRBNODECRBUNRDBDDRBIRROR DGRy
<<% READ RECORD BEFORE DELETING 4a>>
RN BBPO R PRBBQRBOBBRRDBRBOBEORBDRRBHDY
Lai
FREAD (FILNUM INPUT,~72) 3 <<READ RECORDS Tn BE DELETYED>>
IF >

THEN BEGIN <<END OF FILE>>
FCLOSE(FILNUM,0,0)1 <<CLOSE THE KSAM FILE>>
IF <> THEN
BEGIN <<CLOSE UNSUCCESSFUL>>

MOVE MESSAGE 1="CANNOT CLOSE THE KSAM FILE"M
PRINT (MESSAGE y=29,0) 1

FCHECK (FILNUM,ERRORCODE) 4 <<GET ERROR NUMBRER>>
FERRMSG (ERRORCODE MESSAGE ,LENGTH) § <CCONVERT T0o STRING>>
PRINT (MESSAGE ,~LENGTH,0) 3 <<PRINTOUT ERROR MESSAGE>>
END?
TERMINATE §

END}

Figure 4-11. FREMOVE Example

4-83

FREMOVE

IF <

THEN BEGIN
MOVE MESSAGEIas"ERROR QCCURRED WHILE READING INPUTn}
PRINT (MESSAGE) =34,0) 1
FCHECK (FILNUM,ERRORCODE) § <<GET FRROR NUMBER>>
FERRMSG(ERRORCODE ;MESSAGE s LENGTH) j<<cONVERT TO STRING>»>
PRINT(MESSAGE ,~LENGTH,0) C<PRINTOUT ERROR MESSAGE>»>
TERMINATE}

END)

KON B ROV BBRDRRBRINRNORBRRAIDRNBBRDIVIRODORDRRBDBRRDEGND)
<<# WRITE THE RECORD JUST READ FROM KSAM FILE #>>
CCHWaBpbppantattatonadnanatanntossnsaProsontannddd
PRINT (OUTPUT 72,0}

KRB BB RBERARBBRBRRNOIBBRIRRNDHDRRDIBIVBLBBHED>

<< REMOVE RECORD JUST READ FROM FILE #>>
A L A L Y L L L ALY 2T T'Y SRS

IF<

THEN BEGIN
MOVE MESSAGE$="ERROR OCCURRED DURING DELETE'",

PRINT(MESSAGE,+*28,0)}

FCHECK (FILNUM,ERRORCODE) } €<GET ERROR NUMBER>»>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) 1 <<~ ONVERT T0 STRING>>
PRINT(MESSAGE ,~LENGTH,0) } <<PRINTOUT ERROR MEGSAGE>>
TERMINATE }

END}

CCRHBEPNND QIR RBRBRBRDIORNOBRIPRODBEDD>
<<% GO BACK TO GET ANOTHER RECORD s3>
<<omuwmnmnl-mwn&ooaiﬁr«#“uwucwﬂuoq»»>>
GO To L2%

END}

Output from Program Execution:
.

S
END OF PROGRAM

Figure 4-11. FREMOVE Example (continued)

4-84

Renames a disc file.

FRENAME

INTRINSIC NUMBER 17

NOTE
This intrinsic may not be used for KSAM files. If called for a
file created as a KSAM file, the intrinsic returns a CCL condition

code.

To rename a KSAM file, use the KSAMUTIL RENAME command.

4-85

FSETMODE

INTRINSIC NUMBER 14

Activates or deactivates critical output verification

The FSETMODE intrinsic activates or deactivates the access mode option that permits critical out-
put verification. This means that all output must be verified as physically complete before control
returns from an output intrinsic (FWRITE,FUPDATE, or FREMOVE) to your program.

The access mode established by the FSETMODE intrinsic remains in effect until another
FSETMODE call is issued or until the file is closed.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to which the
call applies.

modeflags logical by value (required)

A 16-bit value that denotes the access mode options in effect. For
KSAM files only bit 14 is used; all the remaining bits are set to zeros.

Bit 14=1 — Activate Critical Output Verification
When this bit is set, all output to the file is verified as
physically complete before an FWRITE, FUPDATE, or
FREMOVE intrinsic returns control to the user. As soon
as a logical record is written, a CCE condition is returned
to the user.

Bit 14=0 — Deactivate Critical Output Verification
When the bit is cleared, output is no longer verified.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

4-86

FSETMODE

USING FSETMODE

When FSETMODE is executed with the modeflags parameter equal to 2 (bit 14=1), then each
logical record written by an output intrinsic is physically transferred to the file immediately. Con-
trol is not returned to the user program until the transfer has been made. At that time a CCE con-
dition code is returned to the program.

When FSETMODE is executed with the modeflags parameter equal to zero (bit 14=0), output is

treated in the standard manner. That is, when an output intrinsic writes a logical record, the record

is physically transferred to the file only when the entire physical record (block) of which it is a

part is transferred. (Calls to FWRITE, FUPDATE, and FREMOVE send output to the KSAM file.)

For example, the following intrinsic call activates critical output verification:
FSETMODE(FILNUM,2);

If you want to return to normal output mode, you can use the call:

FSETMODE(FILNUM,0);

When the file is first opened and when it is opened subsequently following an FCLOSE call, the
critical output verification mode is deactivated.

4-87

FSPACE

INTRINSIC NUMBER 5

Spaces forward or backward on a file.

The FPSACE intrinsic allows you to space forward or backward a specified number of records on
a KSAM file. The logical record pointer is repositioned by FSPACE in key sequence. The spacing
is based on primary key sequence unless an alternate key has been specified in a prior call to
FFINDN, FFINDBYKEY, or FREADBYKEY.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file on which spac-
ing is to be done.

displacement integer by value (required)

An integer indicating the number of logical records to be

spaced over, relative to the current logical record pointer position.
Record sequence for spacing is based on key sequence. A positive
value signifies forward spacing, a negative value signifies backward
spacing; zero signifies no spacing, but sets a flag so that the next call
to FREAD does not move the logical record pointer before reading
the record. The maximum positive value is 32767; the maximum
negative value is -32768. The sign is optional for positive values.

CONDITION CODES

CCE Request granted.

CCG A logical end-of-file indicator was encountered during spacing. The
logical record pointer is at the beginning-of-file if displacement was

negative, to the end-of-file if displacement was positive.

CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FSPACE

If you want to space back a particular number of records in key sequence, you would specify a
negative value for the displacement parameter in a call to FSPACE. To space forward, you would
use a positive or unsigned integer as the displacement value. In either case, the displacement indi-
cates the number of records to space over.

4-88

FSPACE

For example, suppose the following sequence of primary key values:

ABLE

BAKER (2) pointer after FSPACE(FILNUM,-2);
CHARLIE

DOG @ current record pointer

EASY

FOX (3) pointer after FSPACE(FILNUM,4);

Suppose the current record pointer is at the beginning of the record whose primary key contains
the value DOG. To position the pointer to the beginning of the record with a primary key value
BAKER:

FSPACE(FILNUM,-2);

To space forward from the beginning of the record with BAKER as the key value to the beginning
of the record with FOX as the key value:

FSPACE(FILNUM,4);

figure 4-12 shows that the movement of the pointer bears no relation to the physical placement of
records in the file.

marked for deletion

FOX ABLE EASY DOG CHARLIE

— EOF

—(2) FSPACE(FILNUM,-2) — |
@ pointer before FSPACE calls

(3) FSPACE(FILNUM,4) '

Figure 4-12. File Position with FSPACE

4-89

FSPACE

POINTER POSITION. FSPACE checks a flag to determine whether to advance the pointer before
it moves the pointer the specified number of records. If FSPACE follows a call that reads the file
(FREAD or FREADBYKEY) then it advances the pointer to the record in key sequence following
the record just read. After advancing the pointer, FSPACE positions the pointer as indicated in the
call. If, on the other hand, FSPACE follows FPOINT, FFINDBYKEY, or FFINDN, the pointer
remains positioned to the record specified in one of these calls until FSPACE is executed.

To illustrate, consider the following calls:

FREAD read record, set flag to advance pointer
FSPACE(-1) test flag, advance pointer, then move pointer back 1 record
FREAD reread record just read

SHARED ACCESS. Because FSPACE is a pointer-dependent procedure (see table 4-2), it is essen-
tial to lock the file before the call that determines the original pointer position, then call FSPACE,
then call any other procedures that depend on where FSPACE positioned the pointer. When all

the pointer-dependent procedures are complete, then unlock the file for other users. To illustrate:

FLOCK lock file

FFINDBYKEY locate a particular key value

FSPACE move pointer relative to that key position
FREAD read the record to which pointer is positioned
FUNLOCK unlock the file

4-90

FUNLOCK

INTRINSIC NUMBER 16

Dynamically unlocks a KSAM file.

The FUNLOCK intrinsic dynamically unlocks a KSAM file (Resource Identification Number) that
has been locked with the FLOCK intrinsic.

PARAMETERS

filenum integer by value (required)
A word supplying the file number of the file to be unlocked.

CONDITION CODES

CCE Request granted.

CCG Request denied because the file had not been locked by the calling
process.

CCL Request denied because the file was not opened with the dynamic
locking aoption of the FOPEN intrinsic, or the filenum parameter is
invalid.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FUNLOCK

A file that has been locked with FLOCK in order to allow exclusive updating should be unlocked
with FUNLOCK as soon as the update is complete. Dynamic locking and unlocking apply to files
opened for this capability. In the aoptions parameter of FOPEN, bit 10 must be set to 1 in order
to use either FLOCK or FUNLOCK. (For more discussion of dynamic locking and unlocking,
refer to the FLOCK intrinsic description.)

Suppose a file has been locked to allow update of a record. To unlock the file following completion
of the update, use the call:

FUNLOCK(FILNUM);

When FUNLOCK is executed, all output written while the file was locked is transferred to the file
so that other users have the most recent data.

MAY 1981 4-91

FUPDATE

INTRINSIC NUMBER 4
Updates the contents of a logical record in a KSAM file.

The FUPDATE intrinsic can be used to update a logical record in a KSAM file. The entire record
including primary and any alternate keys can be updated with FUPDATE. The record to be updated
is the record last referenced by the intrinsics FREAD, FREADBYKEY, FFINDBYKEY, or FPOINT.
The new values for the record are moved from the user’s stack into this record. The file containing
this record must have been opened with the aoption parameter of FOPEN set to update access.
FUPDATE can be used to update both fixed-length and variable-length records. FUPDATE can be
used to modify key values or to change record size, but if key values or the record size are changed,
the update operation causes the entire record to be deleted and then rewritten. After an update, a
subsequent call to FREAD will read the next record in ascending key sequence after the record just
written.

FUPDATE checks only the logical record pointer, not the chronological pointer, in order to de-
termine which record to update. Therefore, if you want to update a record based on its chronologi-
cal position, precede the call to FUPDATE by a call to FPOINT. FPOINT locates the record by its
record number and sets the logical, as well as the chronological, pointer. If you try to locate a record
for FUPDATE by calling FREADDIR or FREADC, which only set the chronological pointer, the
wrong record will be updated.

If the file was opened for shared access (eoptions bits 8,9 = 11), then you must call FLOCK to lock
the-file before calling FUPDATE. Note that the file must also have been opened with dynamic lock-
ing allowed (aoptions bit 10 = 1).

PARAMETERS
filenum integer by value (required)
A word identifier supplying the file number of the file to be updated.
target logical array (required)
Contains the record to be written in the updating.
tcount integer by value (required)

An integer specifying the number of words or bytes to be written from
the record. If this value is positive, it signifies words; if it is negative,
it signifies bytes. If tcount is less than the recsize parameter associated
with the record, only the first tcount bytes or words are written.

CONDITION CODES

CCE Request granted.
CCG An end-of-file condition was encountered during updating.
CCL Request denied because of an error, such as tcount exceeds the record

size defined for the KSAM file; or tcount does not include all the keys;
or a disc input/output error.

4-92

FUPDATE

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FUPDATE

In order to update a record in a KSAM file, you must open the file for update. This access mode
is specified by setting bits 12 through 15 of the FOPEN aoptions parameter to the octal value 5
(binary value 0101). You must then access the record to be updated. Normally, you would read
the record with one of the read intrinsics and then modify the record just read.

The record to be updated by FUPDATE is the last record accessed. FUPDATE writes the contents
of a user buffer area (target) over the existing contents of the last record accessed. The record
written by FUPDATE must contain all the key values expected by the file. If only a portion of
the record is specified by a tcount parameter less than the original record size, then this portion
must contain all primary and alternate key values or a CCL condition is returned and the update
does not take place.

The example in figure 4-13 shows an update of an alternate key, the telephone number located in
bytes 21 through 28 of the record. In order to locate the record to be updated, FREADBYKEY
is executed before FUPDATE. The data input through the standard input device contains the
keylocation and keyvalue values for FREADBYKEY as well as the new value for the update:

byte |0 1|2 21 (22 29
name phone #
) . 4 4
keylocation keyvalue new value
(starting byte) (primary key) (alternate key)

Note that bytes are numbered from zero in the standard input or output device, but bytes in the
KSAM record are numbered starting from 1 for the keylocation parameter.

SHARED ACCESS. When access is shared, it is essential to lock the file with a call to FLOCK be-
fore rewriting any records. After the update, you should unlock the file with FUNLOCK. To make
sure you are updating the correct record, include both the intrinsic that locates the record and
FUPDATE between the same pair of FLOCK and FUNLOCK intrinsics.

4-93

FUPDATE

For example, suppose you use FREADBYKEY to examine the record to be updated, you should
lock the file before calling the intrinsic that locates the record to be updated and unlock if after
the update:

FLOCK
FREADBYKEY (or FFINDBYKEY)

locate record to be updated

FUPDATE
FUNLOCK

update record
all key buffers, data buffers and control information written to disc

If you perform operations on a record between locating it and updating it, and you do not want
to lock the file during this process (between the read and the update), then you can use the fol-
lowing code sequence:

FLOCK
FREADBYKEY (or FFINDBYKEY)
FUNLOCK

locate record

while you decide whether to update record,
other users can modify or delete it

(decide to update)
FLOCK
FREADBYKEY (or FFINDBYKEY)<——reread record
FUPDATE

FUNLOCK

UPDATING RECORDS WITH DUPLICATE KEYS. If you want to sequentially update all the
records in a chain of records with duplicate keys, locate the first record in the chain with FFIND-
BYKEY, FREADBYKEY, or FPOINT. Then call FUPDATE to modify this record. If no key value
(the selected key or any other) is modified, subsequent calls to FUPDATE will modify the next se-
quential records in the chain of records with duplicate keys. If, however, any key has been changed,
the modified key is written to the end of the chain and the next sequential record is one with the
next higher key value. In this case, to update all records with duplicate keys, precede each call to
FUPDATE with a call to FFINDBYKEY, FREADBYKEY, or FPOINT to position to the begin-
ning of the chain.

If you are in the middle of a duplicate key chain and FUPDATE modifies a key value, you can
position back to the next duplicate key in the chain with the following sequence of calls:

FSPACE(FILNUM,1); position to next sequential record
FGETINFO(FILNUM,,,,,,,, ,RECPTR); retrieve current record number
FSPACE(FILNUM,-1); backspace to current record
FUPDATE(FILNUM,OUTPUT,-72); «——— modify key, positioning to end of key chain

FPOINT(FILNUM,RECPTR);=——position to next duplicate key using record number
retrieved by FGETINFO

Note that if the KSAM file has fixed-length records or if the updated record is the same size as the

old record, the space in the data file is reused. Otherwise, the updated record is written to the end
of the data file.

4-94

FUPDATE

SCONTROL MAINazJEXAMPLS8
CCHDRBBOBPBRBBBRBOBOBRIDBIDIRCADIDVCRNBPRRVBIDLDBRORDRGRBBTNDD

<< #>>
<<® EXAMPLE 8 o>
<o UPDATE A RECORD IN A KSAM FILE e3>
<C® 4>

YLOCATIO
FOPEN,FCLOSE,] DATE,FREADBYKEY,READ,PRINT,
BINARY ,FCHECK ,FERRMSGt TERMINATE 3
<<0090¢000¢Q0oiOQQ.GQ'O‘QG))
<<% OPEN THE KSAM FILE a>>
CCERBBBBDaRRNIBRADIORSRBNGDY

LNUMISFoRED AE»345)
FILNUMz0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>
MOVE MESSAGE1='"CANNOT OPEN KSAM FILE'}
PRINT (MESSAGEy~21,0)}

i THE KSaM FILE FoO

FCHECK (FILNUM,ERRORCODE) } <¢<GET FRROR NUMBER>>
FERRMSG (ERRORCODE ,MESSAGE yLENGTH) § <<CONVERT TO STRING»>
PRINT (MESSAGE ,~LENGTH,0)} <¢<PRINTOUT ERROR MESSAGE>>
TERMINATE

END}

CCHBRGRRBRRLBBONVDPBBNBDRRVRRDRIRBBRNBRROIRDRPOBDINNDD

<<# READ N KEYVALUE AND KEY_OCATION INFOMATION #>>
CCHABRQGIDBOBOQORDBRRRABBRORCRBDOVDBBRNRROOBOBIROBIBNHID>

L1t
READ(INFOW,=36)}
IF >
THEN BEGIN
FCLOSE (FILNUM,0,0)} <<C|.OSE THE KSAM FILE>>
IF <> THEN
BEGIN
MOVE MESSAGE1enCANNOT CLOSE THE «kSAM FILEw;
PRINT (MESSAGE*26,0) 1
FCHECK (FILNUM,ERRORCODE) } <<GET ERROR NUMBRER>)>
FERRMSG (ERRORCODE yMESSAGE , LENGTH) } CCCONVERT TO STRING>»>
PRINT(MESSAGE,-LENGTH,O); <<CPRINTOUT ERROR MESSAGE>>
END?
TERMINATE}
END}
IF <
THEN BEGIN

MOVE MESSAGE!a'"ERROR OCCURRED WHILE READING INPUT'j

Figure 4-13. FUPDATE Example

4-95

FUPDATE

PRINT(MESSAGE =340}
TERMINATE}

END3

IF <>
THEN BEGIN <<ERROR OCCURR
MOVE MESSAGE $2""ERROR OCCURR
PRINT(MESSAGE,»28,0)
FCHECK (FILNUM,ERRORCODE) }
FERRMSG (ERRORCODE ,MESSAGE , |
PRINT(MESSAGE y=LENGTH,0) }

ED IN FREADBYKEY>>
ED IN FREADBYKEY#}y

€<GET ERROR NUMBER>>
ENGTH) § <<CONVERT YO STRING>>
<<PRINTOUT ERROR MESSAGE>>

GO TO L1}

END}
<<G6ﬁ'¢“QQQﬁ“..ﬂQGbQQOQ.QD.QHGO’QDQQ.QDOQ"QQ.O.))
<< UPDATE THE RECORD JUST READ #>>
<HOdan io#oo»boop.oDu00000non#ﬂbnﬁoo0000*§'0¢¢>>

IF<>
THEN BEGIN
MOVE MESSAGE $=2"ERROR OCCURRED DURING UPDATE,
PRINT(MESSAGE y=28,0)
FCHECK (FILNUM,ERRORCODE) } <<GET ERROR NUMBER>)>
FERRMSG (ERRORCODE yMESSAGE , LENGTH) $ <<CONVERT TO STRING>>
PR:uT(neSSAsE.-LENGTH.O)! <<PRINTYOUT ERROR MEQSAGE>>
TERMINATE)
END}
<<¢990“.0¢0¢*0ﬁiGOiQQ0.0QQ"‘OO..QDQ09'00000...6'))
<<% PRINT THE RECORD JUST UPDATED >
<<¢bo¢o’o¢ool#.uooonnoOoooQlu»l.aﬁoniol##boﬁoonod>>
PRINT (OUTPUT,m72,0) 4
(<“0&@&000600’0“#QDOGQQQOOG#0'0“’Q6¢0>>

<<# GO BACK TO GET ANOTHER RECORD #>»>
<<&009.990&QQQGQQQQi#'ol.”.'.&’l#'iﬂ))
GO TO L1

END}

Output from Program Execution:

read from $STDIN

updated record

Figure 4-13. FUPDATE Example (continued)

4-96

FWRITE

INTRINSIC NUMBER 3

Write a logical record from the user’s stack to a KSAM file.

The FWRITE intrinsic writes a logical record from the user’s stack to the KSAM file. The record
contents are contained in the array target in the user’s program and include all key values.
FWRITE uses the primary key value to update the key file so that the new record is in sequence
by primary key value. Any alternate keys are also entered into their appropriate positions in the
key file. No separate key specification is required since all the key values are contained in the
record to be written.

Following execution of FWRITE, the logical record pointer is positioned at the next sequential
record in key sequence or at the end-of-file if the record is the last in sequence. The particular
key is the current key being used when FWRITE is called.

If sequential processing was specified for the file in the flagword of ksamparam when the file was
opened by FOPEN, then the records must be written in ascending order by primary key. If dupli-
cate keys are not allowed, any record with a key duplicating a key in an existing record is not
written and a CCL condition code is returned.

When the physical bounds of either the data file or the key file prevent further writing (all allowable
extents are filled), an end-of-file condition code (CCG) is returned to the user’s program.

If the file was opened for shared access (aoptions bits 8,9 = 11), then you must dynamically lock
the file with FLOCK before calling FWRITE. Note that the file must also have been opened for
dynamic locking (aoptions bit 10 = 1).

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to be written on.

target logical array (required)
Contains the record to be written.

tcount integer by value (required)
An integer specifying the number of words or bytes to be written to the
record. If this value is positive, it signifies words; if it is negative, it
signifies bytes; if it is zero, no transfer occurs. If tcount is less than the
recsize parameter associated with the record, only the first tcount words
or bytes are written.
If tcount is larger than the recsize value, the write request is refused and
condition code CCL is returned.

control logical by value (required)

A logical value representing a carriage control code. This parameter
has no meaning for KSAM files but must be included for compatibility.
Whatever value is specified will be ignored.

4-97

FWRITE

CONDITION CODES

CCE Request granted.

CCG The physical bounds of the file prevented further writing; all disc
extents are filled.

CCL Request denied because an error occurred, such as: an input/output
error occurred; a duplicate key value occurred when duplicates are not
allowed; tcount does not include all keys; or sequential processing was
specified in the flagword of ksamparam in FOPEN and the primary key
is not the next in ascending order.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FWRITE

The FWRITE intrinsic writes records from an array in your program to a KSAM file. All the key
information is contained in this target array. The record is written to the data file and the keyfile
is updated to reflect the primary key and any alternate keys in the new record.

Depending on how the file was opened, you can write records at random regardless of primary key
order, or you may be constrained to write records in sequential order by primary key value. The
examples in this manual use the file JEXAMFIL that is created for writing at random. If you refer
to figure 4-5, the flagword of the ksamparam parameter is set to the binary value 0000000000000010.
Bit 14, indicating that record numbers start with 1, is the only bit set. If bit 13 had also been set

to 1 then all records written to the file would have to be in ascending order by primary key value.
In such a case, the chronological order of records and the sequential order would be the same.

When you write a record to a KSAM file, FWRITE either overwrites any records previously written
to the file or else writes new records following existing records. The choice is made when you open
the file. If you set bits 12 through 15 of the aoptions parameter of FOPEN to the binary value
0001 (octal or decimal 1), then all records written to the file before this open are deleted and
FWRITE writes records to a cleared file. If you set bits 12 through 15 of aoptions to 0010 or 0011
(octal or decimal 2 or 3), then any previously written data is saved. The example in figure 4-14
deletes any data written to file JEXAMFIL before it was opened. The file will have no data other
than that written by this program. If, after closing the file, you want to open it to write more data
without deleting existing data, then you must set the aoptions access type (bits 12-15) to 0010 or
0011.

SHARED ACCESS. When access is shared, it is essential that you lock the file before writing new
records. This means opening the file with dynamic locking allowed and calling FLOCK before call-
ing FWRITE. You should also unlock the file with FUNLOCK after writing the records.

4-98

FWRITE

$CONTROL MAINmEXAMPLE9
KOOI aNO DNt antaR B lIRERN00RDRRRHANNONNREBIRRBNIRIGIRGRTREN))

<<¥ *>>
<< EXAMPLE 9 *>>
<< WRITE TO EXISTING KSAM FILE #>>
<< *>>
CCUBRRRR R BBV RBVRORBHRBVONRERNDDBAVRBITBLRNGDBBOIRDDGBatNINSD)
INTEGER FILNUM)y

INTEGER FRRORCODE ;s

INTEGER LENGTH}

BYTE ARRAY FILNAME(089) tan JEXAMFIL %}
!

NSIC FOPEN)FCLOSE,FWRITE,READ,PRINT,FCHECK,FERRMSG |
INTRINSIC TERMINATE}
CCHNBORU BB RBOBRINGIBOND)
<<% OPEN THE KSAM FILE e>>

THEN BEGIN ¢<CANNOT OPEN KSAM FILE>>
MOVE MESSAGE!="CANNOT OPEN KSam FILEw}
PRINT(MESSAGE =21,+0)}

FCHECK (FILNUM,ERRORCODE) } <<GET FRROR NUMBER>>
FERRMSGA (ERRORCODE yMESSAGE , LENGTH) § <<CONVERT T0 STRING>>
PRINT(MESSAGE ,*LENGTH,0)} C¢<PRINTYOUY ERROR MESSAGE>>
TERMINATE

END}S

CCH BB PRBBQRRBRBRROBBOBRNNTIBRNON N0
<< READ DATA FROM SSTDIN DEVICE w>»
CCHBBUBD B aORRRBRBIOIRBDBOBRROROYHE0O>Y

L1
READ (INPUT,=72) 1 <<READ ONE RECORD FROM §STDIN>>
IF >
THEN BEGIN <<END OF FILE ON €STDIN>>
FCLOSE (FILNUM,1,0)1 <<CLOSE THE KSAM FILE>>
IF <> THEN
BEGIN <<CANNOT CLOSE THE KSAM FILE>>
MOVE MESSAGE$="CANNOT CLOSE THE wkSAM FILE"y
PRINT(MESSAGE y~29,0) ¢
FCHECK(FILNUM,ERRORCODE) ¢ <<BET ERROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE , LENGTH) § <CCONVERT To STRING>>
PRINT (MESSAGE ,=LENGTH,0) 3 <<PRINTOUT ERROR MESSAGE>>
END?
TERMINATE}
END3
IF <
THEN BEGIN
MOVE MESSAGEIS"ERROR OCCURRED WHILE READING INPUT}
PRINT(MESSAGEy~34,0)
TERMINATE}
END3
PRINT (OUTPUT1=72450) 4 <<ECHO CHECK>>

RO BORERBBBBINVBBDBBDBRRNGOORRINBBONDREREDODRRBBEDD

<< NRITE THE DATA JUST READ TO THE kSAM FILE o>>
AL ARSI AL RL S a“ioo'»¢¢¢w0)>

THEN BEGIN <<ERROR OCCURRED WHILE WRITING KSAMD>
MOVE MESSAGE!=z"ERROR OCCURRED WHILE WRITING kSAM FILE"}

PRINT(MESSAGE ,»38,0)

FCHECK (FILNUM,ERRORCODE) $ <<GET ERROR NUMBER>>
FERRMSG (ERRORCODE yMESSAGE ,LENGTH) 1 <CCONVERT TO STRING>
PRINT(MESSAGE ,"LENGTH,0) 3} <<PRINTOUT ERROR MESSAGE>>
TERMINATE}

END}

U HOBEI T IR BRORNRDOBRBVBIBOREERBT NI OODID
<<¥ GO BACK TO GET ANQOTHER RECORD wa>>
(€4 A DALY I AL R TR 2 Y POY
GO TO L1}

ENDJ

Figure 4-14. FWRITE Example

4-99

FWRITEDIR

INTRINSIC NUMBER 8
Writes a specific logical record from the user’s stack to a disc file.
NOTE

This intrinsic may not be used for KSAM files. If called for a file
created as a KSAM file, the intrinsic returns a CCL condition code.

4-100

FWRITELABEL

INTRINSIC NUMBER 20

Writes a user file label.

The FWRITELABEL intrinsic writes a user-defined label onto a disc file. This intrinsic overwrites
old user labels.

PARAMETERS

filenum integer by value (required)
A word identifier specifying the file number of the file to which the
label is to be written.

target logical array (required)
Contains the label to be written to the disc file.

tcount integer by value (optional)
An integer specifying the number of words to be transferred from the
array.
Default: 128 words.

labelid integer by value (optional)
An integer specifying the number of the label to be written. The first
label is 0.

Default: A default value of 0 is assigned.

CONDITION CODES
CCE Request granted.

CCG Request denied because the calling process attempted to write a label
beyond the limit specified in FOPEN when the file was opened.

CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

4-101

FWRITELABEL

USING FWRITELABEL

You can write your own labels to a KSAM file with the FWRITELABEL intrinsic. Such labels are
useful to hold information related to the file but not part of it. For example, you might use a label
to contain the date and time of the last update to the file.

The number of labels that are allowed to be written to any file must be specified in the userlabels
parameter of the FOPEN intrinsic when the file was created. If an attempt is made to write more
labels than are specified for the file at creation, a CCG condition is returned.

In order to write labels, as with any other write request, the file must be opened for write access.
This means that the aoptions parameter of FOPEN must be set to one of the following:

bits 12:4 = 0001 (octal 1)
0010 (octal 2) } write only access
0011 (octal 3)
= 0100 (octal 4)

0101 (octal 5)

input/output access
update access

Suppose file KDATA has been created as follows:
KFILNUM:=FOPEN(KDATA,%4004 4, , , , 2);

new KSAM file, number of labels
ASCII coded input/output access

Then a total of two labels, each with a maximum of 128 words, can be written to this file with
FWRITELABEL. To write a second label consisting of 60 words stored in the array LABELBUF
use the following call:

2

FWRITELABEL(KFILNUM,LABELBUF,60,1);

Note that label numbering starts with zero, so the second label is identified by the number 1.

4-102

HP32208

INTRINSIC NUMBER 308

Returns current version, update, and fix level of KSAM/3000.

The double word result returned by HP32208 contains the version number in ASCII, the update
number in binary, and the fix-level number in binary of the KSAM/3000 version currently in use.

FUNCTIONAL RETURN

version Double word returned by HP32208 in the form:
0 7 8 15
Version, in ASCII Update #, in binary word 1
Fix-level #, in binary word 2

CONDITION CODES

Condition codes are not affected by execution of this intrinsic.

USING HP32208

You may call this intrinsic in order to get the current version, update, and fix numbers of the
KSAM/3000 that is currently being used. The intrinsic FGETKEYINFO returns the version, up-
date, and fix number of a KSAM file at the time the file is created (refer to words 16/17 of the
ksamcontrol parameter, table 4-4). The version, update, and fix number of a KSAM file at
creation is also returned by the VERIFY command (refer to section II). You can call HP32208
to get the KSAM version you are using in order to compare it with the version at file creation of a
file you are accessing.

Another reason for calling HP32208 is if you want to convert the version, update, and fix numbers
to display values so they can be listed for documentation purposes.

4-103

USING KSAM FILES IN FORTRAN
PROGRAMS|[v

OVERVIEW

The FORTRAN language has no input/output statements that can be used to access or create a
KSAM file directly. In order to reference KSAM files for input or output, the FORTRAN
programmer can choose between using MPE file system intrinsics (as described in section IV) or
using COBOL procedures (described in section III). He can create a KSAM file with the
KSAMUTIL utility program (described in section II) or with a call to the FOPEN intrinsic, but
not with a COBOL procedure.

If you are programming in FORTRAN, you can use the CALL statement to call any of the
COBOL procedures or any of the file system intrinsics that access KSAM files. In order to
determine which to use, you should refer to table 3-1 for a list of the COBOL procedures that
provide KSAM interface and to table 4-1 for a similar list of the file system intrinsics used for
KSAM interface. You will note that there are differences in the functions provided.

Since the COBOL procedures are described in detail in section III and the file system intrinsics
are described in detail in section IV, these descriptions are not repeated here. This section merely
describes how to call the COBOL procedures or the file system intrinsics, and provides examples
of file creation and access along with brief commentaries.

5-1

CALLING FILE SYSTEM INTRINSICS

To the FORTR AN user, some of the file system intrinsics are treated as functions and others as
subroutines. A function is called implicitly by being referenced in a FORTRAN statement. A
subroutine is called explicitly with the FORTRAN CALL statement. A further distinction is that
a function can return a value to the calling program as a functional return, whereas a subroutine
can return values only through the parameters (arguments) specified in the call.

To illustrate, the FOPEN intrinsic is called as a function:
FILNUM=FOPEN(FILENAME,%4004L,%101L,-72,DEVICE,KSAMPARAM,,10,,100J)

When this statement is executed, a value is returned to the integer variable FILNUM. Note that
the word CALL is not used. On the other hand, the FWRITE intrinsic is a subroutine that must be
called with the CALL statement:

CALL FWRITE(FILNUM,OUTPUT,-72,%0L)

In order to determine quickly which is which, look up the intrinsic definition in section III; if it
has a functional return it should be called as a function, if not it should be called as a subroutine.

MPE/3000 system intrinsics differ from FORTRAN/3000 language procedures: System
intrinsics can have optional parameters (arguments) whereas all parameters must be specified in
a call to a FORTRAN procedure. Another difference is that parameters can be passed by value
to a system intrinsic but they must be passed by reference to a FORTRAN procedure. To pass
a parameter by value, use the literal value as a parameter (the parameter -72 in the FOPEN call
above); to pass by reference, the value is assigned to a parameter specified as a variable or array
name (FILENAME in the FOPEN call).

In order to take advantage of the capabilities of the system intrinsics, you should declare the
names of any intrinsics you plan to use in a SYSTEM INTRINSIC statement. This statement
must appear as one of the declaration statements that precede executable statements in a
FORTRAN/3000 program. For example, if you plan to call FOPEN, FCLOSE, FWRITE, and
FCHECK then these intrinsics should be declared in the statement:

SYSTEM INTRINSIC FOPEN,FCLOSE,FWRITE,FCHECK
Declared in this way, you can then omit optional parameters from the call and pass parameters
by value. If you do not declare the intrinsics in a SYSTEM INTRINSIC call, then a function call

such as that illustrated above for FOPEN would generate an error because it omits some para-
meters and passes others by value.

5-2

CALLING COBOL PROCEDURES

Like the FORTRAN/3000 procedures, COBOL/3000 procedures do not allow you to omit any
parameters from the parameter list or to pass parameters by value. Thus no special provisions
need be made in order to call COBOL procedures from a FORTRAN program. Since the COBOL
procedure call differs in format from the FORTRAN procedure call, you must translate from the

COBOL format when calling a COBOL procedure in a FORTRAN program. The translation
is simple:

CALL “CKOPEN” USING filetable , status. =

COBOL format

procedure parameters
name

CALL CKOPEN (filetable, status)

FORTRAN format

CREATING A KSAM FILE WITH A CALL
TO FOPEN

A KSAM file can be created with the >BUILD command of the KSAMUTIL program or it can

be created programmatically through a call to the file system intrinsic FOPEN. Figure 5-1
contains a FORTRAN program that uses the intrinsic FOPEN to create and open a file, and the
intrinsic FWRITE to write to the open file. It checks for errors with the FCHECK and FERRMSG
intrinsics, and closes the file with a call to FCLOSE.

The file is named FEXAMFIL and the associated key file is named FKEYFILE. Two keys are
used, a primary key of 20 characters starting in byte 1 of each data record, and an alternate key
of eight characters starting in byte 21 of the data record. The primary key contains a name, the
alternate key a phone number (refer to the input data in figure 5-1).

DEFINING KSAMPARAM

The parameter ksamparam describes the key file in an array that contains many different types
of data (refer to table 4-7). Because the data differs, the EQUIVALENCE statement is used to
equate the word-array KSAMPARAMA to the byte-array KSAMPARAM to the double-word-array
KSAMPARAMD. The keyfile name is in the first eight bytes and this is equivalenced to the
beginning of the array. The key device is defined in word 7 of KSAMPARAMA, and the key
descriptions begin in word 18.

The flag word (word 17) has the octal value 2. This means that only bit 14 is set to 1. The
flagword defines the following options for the KSAM file:

bit 13=10 file is permanently saved in system directory
bit14=1 record numbers in file start with 1, not zero
bit 15=10 records can be written in random order

If you compare this ksamparam definition to that in the SPL sample program (figure 4-5), you
will note that the index values into the array differ. This is because, SPL arrays begin numbering
with zero whereas FORTRAN arrays begin numbering with one.

CALLING FOPEN

In the FOPEN call, the first parameter is the KSAM file name that identifies the data file and

the KSAM file as a whole. The second parameter specifies the file options (foptions) parameter
as octal 4004:

01 2 3 4 5 6 7(8 9 10 11 12 13 14 15

0{0 0 0f1 0 OfO0Oj0 OO O O|1 0 O binary

0 0 4 0 0 4 octal

This defines the following file options:

New KSAM file (bit 4=1)
Allow :FILE (bit 5=0)
Fixed-Length Records (bits 8,9=00)
ASCII code (bit 13=1)

New file (bits 14,15=00)

54

&

olA A L IAL L AAAL IR IR ETIZTI LTI ALY YT Y Y Y e e e
C L)
c EXAMPLE 1 o
& BUILD A KSAM FILE L]
(o]
"

LY I L T AT ey e R N F e L YT L LT Y Y 2 2)
SYSTEM INTRINSIC FOPEN,FCLOSE,FWRITE,FERR42G,FCHECK
INTEGER KSAMPARAMA (26)

INTEGER KEYUDESCRIPTION (8)

CHARACTER KSAMPARAM(52)

INTEGER#4 KSAMPARAMO(13)

CHARACTEReR KEYFILENAME

CHARACTERG]} 7T KEYDEVICE

EQUIVALENCE (KSAMPAKRAMA,KSAMPARAM,K3AMPARAMD,KEYFILENAME)

EQUIVALENCE (KEYDEVICE,XKSAMPARAMA (7))

EQUIVALENCE (KSAMPARAMA(]18) ,KEYDESCRIPTION)

INTEGER FILNUM

INTEGER LENGTH

CHARACTER FILENAME#10

CHARACTER DEVICE#1n

CHARACTER®72 INPUT

LOGICAL OUTPUT (35)

CHARACTER MESSAGE (72)

LOGICAL MESSAGEW(36)

EQUIVALENCE (MESSAGE MESSAGEW)

EQUIVALENCE (INPUT,QUTPUT)

DATA FILENAME, "FEXaMFI| "/ <«—— filename

DATA DEVICE/ZM"DISC "y .

DATA KEYDEVICE/"DYSC "/}dewce

DATA KEYFILENAME/nFREYFILEN/

DATA KSAMPARAMD (3)/100J/ ~——————file size

DATA KSAMPARAMA (1s)/2/ flagword

DATA KSAMPARAMA (17)/2/ no. of keys

DATA KEYDESCRIPTION/%[4/1,12/201, 1;%(1/0,15/41.0.}_ key

) %[4/19127 8),219%11/0,15/43,07) descriptions
Cuoaguuuoqouunuoéuauoooaaaaouoauoaoaa»oo&“uu&a#»#oanoﬂloa
*

OPEN THE xSaM FILE]
@

[o o Ne Ne)

#0“#6#“#a“**“““6““““Q“GQ#0“ﬁ“#ﬂ&ﬁ&00&’#6“060“0666!0&0#”0
FILNUM=F0PEN(FILFN&ME,ihOO“L.%lOlL,’?E-DEVICE,KSAMPARAM,
1 s10,4,1000)
IF (FILNUM (EQ, 0O) GO TO 400
Ca#ouuo#¢¢éaﬂooooﬁaao»a§a#¢¢ounaooo«#quoc“»onuoo¢«aﬂqv
)
RKEAD DATA FROM $STDIN #
L
LAZ XY Y T Y)

e}

00D

CQ##ﬁ0#“#u#0“*”“#“0&6“9060’“%“#“%6&9#9bﬂ

20 READ (593009END=30,ERR=40) INPUT
Cnouauaoooaﬂna»¢o°#aou»o«c»ouno#«o»oluooo'#uoﬁuoo&oouoﬂ
*

@
L]

c
€ WRITE THE DATA JysST READ TO THE KSAM FILE

C
C&66oﬁ#“Qa#@*“%ﬁ&#&ﬂb“&n“”QQO““Qbo#b“ﬁbﬂ““’&“ﬁ###“&‘.h“

50 DISPLAY INPUT
CALL FWRITE(FILNUM,0UTPUTy=T72,%0L)
IF (+CCe) 70,420,700

Figure 5-1. Creating and Writing to KSAM File in FORTRAN

5-5

R AR TR R T L P Y T X A LT T YT Y'Y X 2
c %
c ERROR MESSALGE #
C .

~
~

LI TR A R L FER YT YL EYY ALY T T TR Y L

70 STOP MERROR QCCURBED WHILE WRITING KSaM FILEw
1o STop “END OF JOPw
30 CALL FCLOSE(FILNUNM,0,40)

IF (4CCe) 3351009233
33 STOP nMCAN NOT CLOSE THE KSAM FILEN
40 STOP MERROR DCCUFRED WHILE READING INPUTH
400 CALL FCHECKI(FILNUM,TERRNUM)
CALL FERRMSG{IERFNUM MESSAGEW,LENGTH)
WRITE(6+1200) (MESSAGE(I),I=1,LENGTH)
STop "CAN NOT QPEMN KSAM FILEM
3430 FORMAT(ATR2)
200 FORMAT(1X,72A))
END
Output from Program Execution:
NG AN JACK 923=4975 967 REED AVE, SUNNYVALE
HC>N A JUE 227=38214 118Bn SAINT PETER CcT, LOS ALTOS
ECKSTEIN |0 28f=5137 5303 STEVENS CREEK SANTA cLARA
CawpIN 210K 578-7018 11100 WOLFE RNAD CUBERTINO
Paghy LINDA 295=1187 TOWMN & CNTRY VILLAGE 5aN JOSE
SeeLyY HENKY 293=4220 1144 LEWERTY ST, EL CERRITH
RCHERT GERRY 299=8535 12345 TELEGRAPH AVE, BERKELEY
TLURNTWR Tvany 9b4=E49H 20945 EMERSON ST, Qax| AN
WHITE ;IRDOMN 398-0301 4350 aSHRY AvEe, BFPKELEY
WESTeCL FLULER ebT-45948 1256 KINGFIShER ST, SUNNYVALE
STuP ENP OF JOb

Figure 5-1. Creating and Writing to KSAM File in FORTRAN (continued)

01 2 3 4 5 6 7

8 9 10 11 12 13 14 15

010 0 0|0 O

0

0({0 110 0 O

0 0 1

0 0 0

KSAM access expected
Exclusive access

No dynamic locking
Write only access

1 0

This defines the following access options:

(bit 3=0)

(bits 8,9=01)

(bit 10=0)

(bits 12-15=0001)

5-6

1

The next parameter defines the access options (aoptions) as the octal value 101:

binary

octal

A new file contains no information and is always opened for write access. Before accessing the file
for reading or update, it must be reopened. Such an open specifies that the file is an old file in
the foptions parameter. Depending on the type of access expected, aoptions can be omitted

or can specify a particular access type.

CREATING A KSAM FILE WITH KSAMUTIL

Instead of using the file system intrinsic FOPEN to create the KSAM file, you can create the
file with the >BUILD command of the KSAMUTIL program. Once created, the file can be
opened with a call to FOPEN or CKOPEN. (Note that CKOPEN cannot be used to create a file.)

The same file created in figure 5-1 with FOPEN could be created in KSAMUTIL as follows:
(1N KSAMIITIL .DUE.SYS

>RUILD FEYAMFIL;REC=~-72,17,F,ASCIIS;DEY=DISC;DISC=179; &
KEYFILE=FXEYFILE;KEY=R,1,223KEY=E,2]1,8;FIRSTREC=]

5-7

OPENING A KSAM FILE WITH A COBOL
PROCEDURE

The CKOPEN procedure requires two parameters: one is a table that identifies the file and
specifies the type of access; the other is a two-byte item to which the status of the call is
returned. When calling this procedure from a FORTRAN program, the filetable parameter must
be defined as an eight-word array containing both integer and character values.

Any item that is defined as COMPUTATIONAL or COMP in a COBOL program is declared as
an INTEGER in a FORTRAN program when it contains four bytes or less. Thus, the following
are equivalent:

02 FILENUM PIC S9(4) COMP. COBOL description

INTEGER FILENUM FORTRAN description

Any data items defined with a picture of X in COBOL would be declared as CHARACTER items
in FORTRAN. Thus, the following are equivalent:

02 FILENAME PIC X(8). = COBOL description
CHARACTER *8 FILENAME - FORTRAN description

Assuming that file FEXAMFIL has been created by the >BUILD command, the FORTRAN
statements in figure 5-2 open that file for output only and sequential access.

INTEGER FILETABLE(8)
CHARACTER FILETABLC(16)

INTEGER FILENUM

CHARACTER*8 FILENAME

CHARACTER*2 FSTAT

INTEGER IOTYPE

INTEGER AMODE

INTEGER PREVOP

EQUIVALENCE (IFSTAT,FSTAT)
EQUIVALENCE (FILETABLE, FILETABLC,FILENUM)
EQUIVALENCE (FILETABLC(3),FILENAME)
EQUIVALENCE (FILETABLE(6),IOTYPE)
EQUIVALENCE (FILETABLE(7),AMODE)
EQUIVALENCE (FILETABLE(8),PREVOP)
DATA FILENAME/“FEXAMFIL”/,PREVOP/0/

(C 7k = 3k ok ok sk sk ok ok sk ok ok ok koo skeosikok sk sk sk sk sk sk sk sk sk ske ok stk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk ok sk sk ok ok sk ok ok sk skesk sk sk sk

C OPEN KSAM FILE FOR SEQUENTIAL INPUT *
Gk sk sk sk sk ok ok s skl sk stk sk skofe sk st ot s s ot s s ok sk ok ok o s o sk oot sk s s sk sk ok st s e s sk sk ok ok ok

IOTYPE=1 1/0 type is output only
AMODE=0 access mode is sequential
CALL CKOPEN(FILETABLE,IFSTAT)

Figure 5-2. Opening KSAM File with CKOPEN

5.8 MAY 1981

WRITING TO A KSAM FILE

Once a KSAM file has been created and opened for output access, you can write to the file with
a call to FWRITE or a call to CKWRITE. You may choose to write records in primary key
sequence and have that sequence checked. To do this, you can open the file for sequential
access with CKOPEN or else call FOPEN with bit 13 of the flagword in ksamparam set to 1. 1f
the sequence in which records are written doesn’t matter, you can open the file for random
access in COBOL or open the file by calling FOPEN with bit 13 of the ksamparam flagword
cleared to zero.

The example in figure 5-1 uses FWRITE to write records to the KSAM file in the order in which
they are read from the standard input device; they are not written in primary key order.

Since duplicate primary keys are never allowed by the COBOL KSAM procedures, you should
use the file system intrinsics if you want to allow duplicate primary keys. Duplicate alternate
keys are allowed by both the file system and COBOL if so specified when the file was created.

READING A KSAM FILE IN KEY ORDER

PRIMARY KEY SEQUENCE

Reading a file in primary key order requires no other preparation than to open the file (file
system) or to open the file for sequential input (COBOL). In the file system, sequential logical
read is the default and the aoptions parameter can be omitted from the FOPEN call. In a COBOL
procedure, input type and sequential access are indicated by zero values in the appropriate words
of the filetable table.

Once opened for input, the file system FREAD intrinsic or the COBOL CKREAD procedure can
be called to read the file in sequence by primary key.

ALTERNATE KEY SEQUENCE

To read a file in sequence by an alternate key, that alternate key must be specified in a call prior
to the call to a read procedure or intrinsic. In COBOL, you would use a call to CKSTART; with
the file system intrinsics you would use FFINDBYKEY.

The example in figure 5-3 illustrates use of the file system intrinsics FREAD and FFINDBYKEY
to read a KSAM file in sequence first by primary key and then by alternate key.

RANDOM ORDER

A particular record in the file can be selected for access according to the value of a key field in
the record. This can be a primary or alternate key field. In COBOL, a call to CKREADBYKEY
reads a record specified by the key value parameters. The file system uses the intrinsic
FREADBYKEY for the same purpose. The main difference here is that the file must be opened
for random access before calling the COBOL procedure; no distinction is made by the MPE

file system between a file opened for sequential access and one opened for random access.

5-10

LI Irnrrrrr e ey e T L LT PR L L AL L TR R LY
e} EXAMPL 2 o
c ReAD KSAM FILE SEQUENTIALLY *
cuouaéanogaoﬂa#9§i¢¢o¢¢¢uaonaaaﬁoa«ouwuuﬁﬁoaoahououb

SYSTEM INTRINSIC FOPEN,FCLOSE,FWRITE,FERRMSG,FCHECK

SYSTEM INTRINSIC FREAD,FFINDBYKEY

INTEGER FILNUM

CHARACTER FILENAME®10

CHARACTER QUTPUT#TR

CHARACTER MESSAGE (72)

LOGICAL INPUT (36)

LOGICAL MESSAGFW(36)

EQUIVALENCE ({MESSAGE ,MESSAGEW)

EQUIVALENCE (OUTPUT,INPUTI

CHARACThR KEYVALL#R

DATA FILENAME/nFEXAMFIL "/

DATA KEYVAL/"000-0000'/
C#oquo&&ua#oé*##a@#oo##aoau&0«uﬁuobo&ﬁ»#ﬂ“&###*eo&oo
c UPEN KSaM FILE FOR INPUT ®
Ca&anﬁa#cqc&c“##a#G“o#&oﬁQGQ&“OQQ#QQQO0“#“0&0###0#“»

FILNUMSFOPEN(FILENAME, 2TL)

IF (FILNUM ,EQe ©) GO TO 200
Cb#buu&ﬂag&00&60oﬁﬁoéo&u#b&&ﬁﬂ*“ﬁﬁ&h&dﬁ##“ODGOQﬁ&QQQ
c READ DATA FROM FILE IN o
c SEQUENTIAL ORDER o
Cooha#qancohﬁudn##a#9&96&#Qﬁ&u“é#ﬁ“ﬁ&b#.?#ob&“n“ﬂd#

DISPLAY "PRINT RECORDS IN NaME ORDER"

20 ILENsFREAD(FILNUM,INPUT,«72)
IF («CC,) 300,30,35
30 DISPLAY OUTPUT
G0 70 €0
Co06#0600o0§0#00§06n0&.¢00&OQ&#OQQGQGQGQO“Q&QGQQ&&QO
READ IN SEQUENCE BY ALTERNATE KEY °
c“GGQQG00@##.0“0#’06“0&0#.0#6“50“00606060“0#“0”9#'.“
35 D.SPLAY MPRINT RECORDS IN PHONE ¥ ORDER"
CALL FFINDBYKEY (FILNUM,KEYVAL,21,82)
IF (eCCe) 400,40,400
40 ILEN=FREAD(FILNUM,INPUT,=T2)
IF («CCs) Sppns»e5,50
45 DIsplLAY OUTPUT
GO TO 40
cddo&#&Qﬁq*&.“.“iﬁﬁabuﬂﬁﬂ&&QQQGQOGDGOQOGGQGDQGOQGQOQ
c CLOSE FILE »
COQ&000009OQﬁﬂhﬁn*&#no’«ﬂb&#hd..ooo’06.00’0000“66”6
50 CALL FCLOSE(FILNUM,0,0)
IF (eCCs) 600,955,500

55 STOP "END OF jos8"
cn»aooaﬁgaco'&ﬁoﬁdoanquqbnﬁuo‘¢o¢o¢oﬁcobiﬁOﬁooﬁooouo

(of ERROR MESSAGES »
CQOQ&OQQQQQQQOQQQG“OQOQQGOQQGQQOQOQOGQO.Q“llt“’o.ﬁ*.
200 CALL FCHECK(FILNUM, IERRNUM)
CALL FERRMSG(IERRNUMoMESSAGEN'LENGT")
WRITE(169250) (MESSAGE(I)sI=l,LENGTH)
STop "CANNOT OPEN KSAM FILE"
300 CALL FCHECK (FILNUM,IERRNUM)
CALL FERRMsG(IERRNUM.MESSAGEH.LENGTH)
NRITE(&;ESO)(MESSAGE(I):I:I.LENGTH)

Figure 5-3. Reading KSAM File in Key Sequence Using FORTRAN

5-11

400

500

600

CALL FCHAECK(FILNUM, IERRNUM)
CALL FERRMSG(IFRRNUMyMESSAGEW,LENGTH)
WRITE(69250) (MESSAGE(]))lul)LENGTH)

STop n

CALL FCHECK(FILNUM, IERRNUM)
CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)
WRITE(65250) (MESSAGE (1) ,1=2]1,LENGTH)
$STop YERKROR OCCURRED READING BY ALTERNATE KEYM
CALL FCHECK(FILNUM, IERRNUM)

CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)
WRITE(69250) (MESSAGE(I)yI=1,LENGTH)
STor "CANNOT CLOSE FILE"®
FORMAT(1X,72A1)

END

Output from Program Execution:

PRINT RECORDS IN NaME OKRDER

ERROR OCCURRED WHILE USING FIFINDBYKEY"

CawDIN RICK 576=7018 11100 WOLFE ROAD CUPERTINO
ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA cLARA
HCS0dA JUE 227-6214 1180 SAINT PETER CT, LOS aLTOS
NGCLAN JACK 923=4975 967 REED AVE, SUNNYVALE
PasByY LINDA 295-1187 TOWN & CNTRY VILLAGE SaN JOSE
RCHERT GERRY 299-5535 12345 TELEGRAPH AVE, BERKELEY
SEELY HENRY 293-4220 1144 LEBERTY ST, EL CERRITO
TURNEZWR JVAN 984=-8498 52995 EMERSON ST. OAKLAND
WESTZR ELDER 287=4598 1256 KINGFISHER ST, SUNNYVALE
WHITE GURDON 398-0301 4350 ASHBY AVE, BERKELEY
PRINT RECORUS IN PHONE # ORDER
HO502A JOE 227-8214 118n SAINT PETER ¢T, LOS aLTOS
RORERT GERRY 299=5535 12345 TELEGRAPH AVE, BERKELEY
WESTER ELUVER 287=-4598 1256 KINGFISHER ST, SUNNYVaLE
ECKSTEIN LEO 287=5137 5393 STEVENS CREEK SANTA CLARA
SEELY HENRY 293-4220 1144 LEBERTY ST, EL CERRITO
PASRY LINDA 295=1187 TOWN & CNTRY VILLAGE SaN JOSE
WRITE GURDON 398=0301 4350 ASHBY AVE. BERKELEY
CARDIN RICK 578=7018 11100 WOLFE ROAD CUPERTINO
NOLAN JACK 923-497% 967 REED AVE, SUNNYV4LE
TUINEWR IVAN 984~=8498 22905 EMERSON ST, VAKLAND
STuP ENn OF J0O8

Figure 5-3. Reading KSAM File in Key Sequence Using FORTRAN (continued)

5-12

READING A KSAM FILE IN CHRONOLOGICAL
ORDER

The order in which records are physically written to a data file is called chronological order.

This order is not necessarily the same as a sequence by key value although it may be. In particular,
if the records were written by a COBOL procedure to a file opened for sequential access, then

the chronological sequence and the primary key sequence are the same. If, however, these orders
differ, then the file system provides an intrinsic that allows you to read a KSAM file in chrono-

logical order.

Figure 5-4 is a program that uses the intrinsic FREADC to read the records in the order they were
stored in the file.

Other file system intrinsics allow you to position the file to a particular record number in
chronological order (FPOINT), to retrieve the current chronological record number (FGETINFO),
and to read a record located by its chronological record number (FREADDIR).

The COBOL procedures for KSAM interface do not provide the means to access records by
chronological record number.

R EETTLEFT LI ALFE L FY IR FT Y YT EE LT YT LLE R TR YR
[of EXamMPL 23 o
I READ KSaM FTLE CHRONOLOGICALLY o
CHBBadBdoaBR eI BoOP Bt taulRRROIRBBRLEODORBY RO RBBOY
SYSTEM INTRINSIC FOPEN,FCLOSE,FERRMSG,FCHECK
SYSTEM INTRINSIC FPEADC
INTFGER FILNUM
CHARACTER FILENAME®10
CHARACTLR OUTPUT®TZ
CHARACTER MEQgAGE (72)
LOGICAL INPUT (36)
LOGICAL MESSAGEW(136)
EQUIVALENCE (MESSaGE,MESSAGEW)
EQUIVALENCE (OUTPUT,INPUTI
DATa FILENAME/nFExaMFIL "/
Q»ooaoaaaaoohﬁuug&“p»¢ooo§ﬁe»“i»#n»o«qb»v“n«&a»ouuoo
C UPEN KSaM FILE FOR INPUT @
Caaagogoganaoauwnuﬁou»oo«uooaoanooooououn“ou«noooago
FILNUMzFOPEN(FILFNAME ,,2TL)
IF (FILNUM LEQe 0) GO TO 200
C»nooﬁoao¢¢ooo«aanao¢owou¢»»n¢«»uuo»&ouauonoonnoﬁooo
RKEAD DATA FRUM FILE IN L)
CHRONOLOGICAL ORDER &
aonauonoaaouvﬁ#aﬂhuunouo%ﬂ»aoaﬁaqoouonou“ooo&aoooaﬁ
DISPLAY "PRINT RECORDS IN CHRONOLOGIC:L ORDER"
20 ILEN=FREADC(FILNUM,INPUT,=72)
IF («CCs) 300,30,50
3p DISPLAY CUTPUT

Gn T0 20
CQGG&DQ“OO*GﬁQQGb““EQhOﬁﬁﬂ#ﬂ“ﬂ#Dﬁ###hﬂd“““ﬁ%@éﬁo&iou

c CLOSE FILE »
C#0QQ#QQQQQQQQGO“QQ#QQOQGQ#O“Oﬁ@b“#“#ﬁ’ﬁ““*@”#““.“ua
50 CALL FCLOSE(FILNUM,0,0)
IF (+CCo) 600,55,600
58 sSTOP "END OF JoR"

(e

o
C

Figure 5-4. Reading KSAM File in Chronological Sequence Using FORTRAN

5-13

c“ad#(ﬂﬂﬁ&poﬂ&ﬁo&“’Q#“nﬂcG“OG&0&006#@.6#!’0“”0”00’“&“
¢ ERROR MESSAGES o+
coo#a#o#oqlba#“9#»#00»#6&0DCHNHHHHOQQQ090“#“6#000000#4
200 CALIL FCHECK(FILNUM, IERRNUM)
CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)
WRITE(6+9250) (MESSAGE (I)9I=21,LENGTH)
STop "CANNOT OPEN K3AM FILE"
300 CALL FCHECK({FILNUM, IERRNUM)
CA| L FERRMSG (IERRNUM,MESSAGEW, LENGTH)
WRITE(69250) (MESSAGE(I)y1I31,LENGTH)
STop "ERRQR OCCURREU READING IN CHRONOLOGICAL ORDER™
600 CALL FCHECKI(FILNUM, IERRNUM)
CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)
WRITE(©9250) (MESSAGE(I)»1=1)LENGTH)
STOP "CANNOT CLOSFE FILE"
250 FORMAT(1lX,72A1)
END

Output from Program Execution:

PRINT RECORUS IN CHRQONOLOGICA|, ORpER

NCL 3N JRACK 923-497S 9s7 rEED AVE, SUNNYVALE
HC3CHA JUE 227=4214 1180 SAINT PETER CT. LOS ALTOS
ECKSTEIN (EQ 267-5137 5303 STEVEMS CREEK SANTA CLARA
Ca~nIN 2ICk S78=7018 11100 WOLFE ROAD CUPERTINO
PajAvy LINGA 292=1187 TOWN & CNTRY VILLAGE SAN JOSE
SEFELY HENRY 293~60220 1144 LEHERTY ST, (EL CERRITN
RCERT AEHRRY 299-553% 12345 TELEGRAPH AVE, BERKELEY
TURNTWR TVAN 984=-B498B 22905 EMERSON ST, OAKL AND
WHITS GORDON 3¥8=-5301 43%n ASHBY AVE, BERKELEY

WE »TZR FLUER 287-4598 |25+ KINGFISHER ST, SUNNYVaLE

STOP ENN OF JO®

Figure 5-4. Reading KSAM File in Chronological Sequence Using FORTRAN (continued)

5-14

USING KSAM FILES IN
BASIC PROGRAMS [vi

OVERVIEW

KSAM files are accessed from BASIC programs through calls to a set of input-output procedures.
These procedures allow you to open, write records to, read records from, update and delete
records, position, lock, unlock, and close KSAM files. (Refer to table 6-1 for a list of the
procedures and their associated functions.)

A KSAM file must already exist before it can be accessed from a BASIC program. It is usually
created with the KSAMUTIL program BUILD command. (Refer to section II for a description of
BUILD.) The BASIC procedures for accessing KSAM files do not provide a means to create a
KSAM file.

NOTE

The BASIC procedures to access KSAM files perform input-output
activities differently from the BASIC input-output commands. The
KSAM procedures read and write records in their entirety. Once
part of a record has been read or written by one of the KSAM file
access procedures, the entire record has, in actuality, been read or
written. A subsequent call will access another record.

6-1

CALLING A KSAM PROCEDURE

The KSAM interface procedures are called from a BASIC program with a CALL statement of
the following general form:

statement label CALL procedure name (filenumber, status [, parameterlist |)

Where

statement label is the number of the statement in the program.

procedure name identifies the KSAM access procedure to which control is
transferred. (Refer to table 6-1 for a complete list of the procedure
names.)

filenumber is a numeric variable whose value identifies an open KSAM file.
This parameter must be present. Its value is assighed by KSAM/3000
when the file is opened and must not be changed until the file is
closed.

status is a 4-character string variable to which a code is returned that
indicates whether the current operation was successful or not, and
if not, the reason for failure.

parameterlist is a set of one or more parameters that, if present, further define

input-output operations on this file.

The first two parameters, filenumber and status are included in every KSAM procedure call,
except BKERROR and BKVERSION. The parameters in parameterlist depend on the procedure
in which they are used. Some parameterlist parameters are optional and, if omitted, default
values are assigned by KSAM. Such parameters are indicated by brackets in the procedure call
format. The required parameters filenumber and status are both variables, the first numeric, the
second string. Other parameters are either variables or expressions. Expressions being either
variables, constants, or a combination of both. The data type of the parameter depends on its
definition in the procedure. The procedure call formats specify the data type of each parameter.

Depending on the procedure, certain variables can be assigned values as a result of executing the
procedure. The procedure itself is never assigned a value (unlike a function, which may be
assigned a value).

Refer to table 6-1 for a complete list of the KSAM interface procedures that can be called from
a BASIC program.

OPTIONAL PARAMETERS

When parameters in parameterlist are optional, those parameters are surrounded by brackets.
In a series of optional parameters, the enclosing brackets are nested. For example:

CALL name (filenum,status|,param1[,param2[,param3]11)
This notation tells you that parameters can be omitted only from the end of the optional list;
parameters cannot be omitted from the middle or beginning of the list. For example, if you want

to specify param3, you must also specify the preceding parameters, param1 and param?2; if you
specify param2, you can omit the following parameter param3, but not the preceding param1.

6-2

Table 6-1.

KSAM Procedures for BASIC Interface

PROCEDURE
UNCTION PAGE
NAME PARAMETERS F

BKCLOSE filenum, Terminates processing of KSAM file identified by filenum. 6-8
status

BKDELETE filenum, Logically removes record from KSAM fiie; the record to 6-10
status be deleted is the record at which the logical record

pointer is currently positioned.

BKERROR status, Converts numeric value returned in status parameter to 6-12
message character string message.

BKLOCK filenum, Dynamically locks KSAM file during shared access, con- 6-14
status ditionally depending on condition.
[,condition]

BKOPEN filenum, Initiates processing of file identified by filenum, named 6-16
status, by filename. Type of access, whether dynamic locking
filename is allowed, whether access is exclusive, and whether
[,access primary key sequence is checked are options of
[, dynamic lock BKOPEN.
{, exclusive
[,sequence] 11}

BKREAD filenum, Reads data from current sequential record of file identi- 6-22
status fied by filenum into variables named in parameterlist.
{,parameterlist]

BKREADBYKEY filenum, Reads data from a record identified by keyvalue in the 6-26
status, key specifiéd by keylocation of the file identified by
keyvalue, filenum into variables named in parameterlist.
keylocation,
parameterlist

BKREWRITE filenum, Writes data from parameterlist to record at which pointer 6-29
status, is positioned in file identified by filenum.
parameterlist

BKSTART filenum, Positions file identified by filenum in preparation for a 6-32
status sequential read to the first record with a key in
[, keyvalue keylocation whose value bears the specified relation
[,keylocation to keyvalue.
{,relation]]]

BKUNLOCK filenum, Unlocks file identified by filenum that has been pre- 6-36
status viously locked by BKLOCK.

BKVERSION status, Identifies version of KSAM/3000 currently being used 6-38
message returns version number in message.

BKWRITE filenum, Writes data from parameterlist to record in file identi- 6-39
status, fied by filenum.
parameterlist

6-3

STATUS PARAMETER

The status parameter is a four-character string variable to which the status of the input-output
operation is returned. It is the second parameter in every KSAM procedure call except BKERROR,
in which it is the first parameter. The first character of the status string determines its general

type. The other three characters supply specific codes to further define the status. The operation

of a called procedure is successful only if the first character returned in status is zero. Other

values returned to status indicate the reason an operation was not successful. You can convert
any status value to a printable message by calling BKERROR. (Refer to table 6-2 for possible

status values).

Table 6-2. Values Returned to status Parameter

FIRST CHARACTER REMAINING CHARACTERS
"0" successful completion 0" no further information
2" duplicate key value
1" at end or beginning of file “0” no further information
2" invalid key 1" sequence error
2" duplicate key error
3" no record found
“4" boundary violation
7" request denied 1" file already locked
“8" invalid call 1" invalid number of parameters
2" invalid parameter
3" insufficient space for data in parameterlist
“9"" file system error 0" through 255"
corresponding to file system error codes
(Refer to complete list in appendix A.)

Combining the two parts of the status code, the following values may be returned to the status

parameter:

if status = ““00”’

_ ‘602?7

Successful completion —

The current input-output operation was completed successfully; no

duplicate keys read or written.

Successful completion; Duplicate key —
In a call to BKREAD or BKREADBYKEY, the current key

has the same value as the equivalent key in the next sequential

record; duplicate keys

In a call to BKWRITE or BKREWRITE, the record just written

are allowed for the key.

created a duplicate key value for at least one key for which

duplicates are allowed.

MAY 1981

STATUS

= 410" At end condition —
A sequential read was attempted with BKREAD and there was no next
logical record in ascending sequence according to the primary key
value or the current alternate key value. Or an attempt was made by
BKSTART or BKREADBYKEY to position to a record whose key
value was less than the lowest key value or higher than the highest
key value.

=“21” Invalid key; Sequence error —

e In a call to BKWRITE for a file opened with sequence checking,
the record being written contains a primary key that is less than
a key in a previously written record.

e In a call to BKRREWRITE, the primary key value was changed in
the program since a successful execution of BKREAD defined the
record to be rewritten.

=227 Invalid key; Duplicate key error —

An attempt was made to write or rewrite a record with BKWRITE
or BKREWRITE and the record would create a duplicate key value
in a key for which duplicates are not allowed.

=“23” Invalid key; No record found —

An attempt was made to locate a record by a key value with
BKSTART or BKREADBYKEY and the record cannot be found.

= 24> Invalid key; Boundary violation —

An attempt was made with BKWRITE to write beyond the
externally defined boundaries of the file; that is, to write past the
end-of-file.

=“71” Request denied; File already locked —

An attempt was made to lock a file with BKLOCK and the file is
already locked.

=“81” Invalid call; Invalid number of parameters —

Too many or too few parameters were specified in the procedure
call just made.

=82” Invalid call; Invalid parameter —

The specified parameter is not the correct type. For example, a string
variable was selected where only a numeric variable or expression is
allowed.

= 83" Invalid call; Insufficient internal buffer space —
The data specified in the parameterlist to be read or written will not
fit into the configured internal buffer space. You may need to have
certain operating system parameters re-valued.

= “Oxxx” File system error —
An MPE file system error occurred for which the three-character value,
xxx is the error code. (Refer to table A-1 for a list of these codes.)
You can call procedure BKERROR to convert the error code returned
here to a printable message.

6-5

STATUS

The value of status can be tested as a whole, or the first character can be tested separately from
the remaining characters. For example:

10 DIM S$(4) <« dimension status string S$
[J
° test first character only

50 IF S$(1;’Zrl) =‘“0” THEN PRINT “SUCCESS”’

60 ELSE PRINT “ERROR CODE =";S$«———— print entire string
™
™
® 4

100 IF S$(1;1) = “9” THEN DO

110 PRINT “FILE ERROR = ;S$(2)

test first character

120 DOEND X print remaining characters
[]
®
° test entire string

200 IF S$ = “25” THEN DO

210 PRINT “DUPLICATE KEY ERROR”

220 DOEND

300 IF S$(2\) = “2” THEN PRINT “DUPLICATE KEY”

test only remaining characters

For any status value, you can call the BKERROR procedure and a message is returned that gives
the meaning of the status code. You can then print this message rather than writing your own.

KSAM LOGICAL RECORD POINTER

Many of the KSAM procedures use a logical record pointer to indicate the current record in the file.
This pointer points to a key value in the key file that identifies the current record in the data file.
The particular key used, if the file has more than one key, is the key last specified in the current or
a previous procedure call; by default it is the primary key.

Procedures that use pointers are either pointer-dependent or pointer-independent. Pointer-dependent
procedures expect the pointer to be positioned at a particular record in order to execute properly.
Pointer-independent procedures, on the other hand, execute regardless of where the pointer is posi-
tioned and, in most cases, they position the pointer. (Refer to table 6-3 for a summary of those pro-
cedures that either position the pointer or are dependent on that position.)

Table 6-3. Positioning the Logical Record Pointer

Procedure Pointer- Position of Pointer After
Name Dependent Execution of Procedure
BKSTART NO Points to key whose value was specified in call.
BKREADBYKEY NO Points to key whose value was specified in call.
BKWRITE NO Points to key whose value is next in ascending key

sequence to key value in record just written.

BKREAD YES Pointer remains positioned to key value for record just
read; unless next call is to BKREAD, or to BKREWRITE
followed by BKREAD, in which case, the pointer is
moved to the next record in key sequence before the
read.

BKDELETE YES Points to next key value in ascending sequence follow-
ing key value in record just deleted.

BKREWRITE YES Pointer remains positioned to key value for record just
modified; unless any key value in record was changed,
in which case, it points to next key in ascending se-
quence after the key in the modified record.

Note: BASIC procedures do not access a KSAM file in chronological sequence or by record number; they ignore

the chronological pointer.

SHARED ACCESS

Particular care must be taken when using the logical record pointer during shared access. Since the
record pointer is maintained in a separate control block for each open file, one user may cause the
record pointer to be inaccurate without other users being aware of it. To avoid this problem, you
should always lock the file in a shared environment before calling any procedure that sets the
pointer and leave the file locked until all procedures that depend on that pointer have been exe-
cuted. Thus, if you want to read the file sequentially, delete a record, or modify a record, you
should lock the file, call a procedure that sets the pointer (such as BKSTART), and then call
BKREAD, BKDELETE, or BKREWRITE. When the operation is complete, you can then unlock
the file to give other users access to it.

MAY 1981 6-7

BKCLOSE

A call to BKCLOSE terminates file processing for the specified file.

When processing is completed, a KSAM file should be closed with a call to BKCLOSE. No further
processing is allowed on the file until a BKOPEN procedure call re-opens the file.

BKCLOSE can be executed only for a file that is open.

PARAMETERS

filenum A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered until the file is closed with a successfull call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned a code that

indicates whether or not the file was successfully closed and if not,
why not. The first character is set to “0”" if the close is successful,
to another value if not. (Refer to the Status Parameter discussion
earlier in this section.)

(Required parameter)

USING BKCLOSE

After calling BKCLOSE, you should check the status parameter to determine if the file was
closed successfully. A successfully closed file is no longer available for processing until it is
re-opened. Note that a KSAM file can be closed and then re-opened in order to specify a different
access mode or type of processing.

The BKCLOSE procedure does not remove the file from the system. To do this, you should use
the PURGE command of the KSAMUTIL program.

The example in figure 6-1, closes a file identified by the filenumber in F. It then checks the
status and prints a message if the status shows any code except the zero for successful completion,

6-8

BKCLOSE

3e10
3e20
3630
3640
Jean
3660
3670
36830
3699
3710
3710
3720
3730
3740
3750
3760
3770
3780

REM
REM
REM
REM
REM
REM
REM

CALL RKCLOSE(F,SS$)

REM

REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED

REM

IF ss{l3131<>"on THEN DO
REM N$ CONTAINS THE NAME OF THE KSAM FILE
REM $$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CaLL
PRINMT "UNABLE TO CLOSE myNgs" ERROR n§S$S(13114" DETAIL "35%8(2]
CALL BKERROR (S$)1M$%)
PRINT Mg

DOEND

AT rT Iy I et LT TR FTL LYY T YT LR T LA AL LA XY L2 L 2 2
o CLOSE A KSAM FILE "
BpatestadapadtdatatpaootaattdeostensndsoRetrsnoBanNODGD

F IS THE FILE NUMBER OF A KSAM FILE
NEFINED By A CALL TO 8KOpFN

Figure 6-1. Closing a KSAM File with BKCLOSE

6-9

BKDELETE

Logically deletes a record from a KSAM file.

A call to BKDELETE logically deletes the last record read from or written to a KSAM file. A
logically deleted record is marked by two delete characters (ASCII code 255) in the first two
character positions in the record. The deletion characters indicate that the record is inaccessible,
although it is not physically removed from the file. The connection between a data record marked
for deletion and the key file is severed.

When a file with deleted records is copied by FCOPY to a new KSAM file, records marked for
deletion by BKDELETE are not copied. This use of FCOPY provides a means to compact a file
in which many records have been marked for deletion but physically use space in the file.

To use BKDELETE, the file must be open in the access mode that allows update. If access is shared,
the file must also be opened with dynamic locking allowed (lock = 1), and the file must be locked
by BKLOCK before records are deleted.

PARAMETERS

filenum A numeric variable containing the file number that identifies the
file; this number was returned by the last call to BKOPEN. It should
not be altered unless the file is closed with a successful call to
BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned a code that

indicates whether or not the call to BKREWRITE was successful and
if not, why not. The first character is set to zero if the call succeeds,
to another value if not. (Refer to Status Parameter discussion earlier
in this section.)

USING BKDELETE

Before calling BKDELETE, you can read the record to be deleted from the KSAM file into the
BASIC program. (The record to be deleted can also be specified as the last record written or
rewritten.) Using either BKREAD or BKREADBYKEY, read record into variables named in the
read call. When BKDELETE is successfully executed, the first two characters of the record just
read are marked for deletion. Then the record is written back to the file. Any connections between
the record and key entries in the key file are severed. The associated key entries are physically
deleted from the key file although the data record remains in the data file. Data space is not re-
used in order to maintain the chronological order of the file. Because BKDELETE requires that
the record be both read and written, you must open the file for update (access = 4) before calling
this procedure.

After calling BKDELETE, you should check the status parameter to make sure that the delete was
successful.

6-10

BKDELETE

In the event that you deleted a record in error, you can recover the information in the data record
by copying the data file with the NOKSAM option of FCOPY. You can copy the data file to
another non-KSAM file or to the list device. With this FCOPY option, the deleted records as well
as active records are copied. In order to make use of this recovery procedure, you may want to
leave the first two characters of any KSAM record empty of data. In particular, you should not
specify keys in those two characters.

FCOPY can also be used to permanently remove any records that were logically deleted with
BKDELETE. When you use FCOPY to copy your KSAM file to a newly created KSAM file, only
active records are copied. Records marked for deletion are dropped from the data file during the
copy. The new file is more compact, particularly if many records had been deleted from the old
file. (Refer to FCOPY description in section II for more information.)

SHARED ACCESS. When access is shared, the call that positions the pointer to the record to be
deleted should be included in the same pair of BKLOCK/BKUNLOCK calls as the call to
BKDELETE. This insures that no other user alters the record position between the call that locates
the record and the call that deletes it. (Refer to table 6-3 for a list of the procedures that position
the pointer and those that depend on the pointer.)

Figure 6-2 contains an example illustrating the logical deletion of a record from a KSAM file.

3240 REM #3000008000a0a80000000s0000000080000080000000% 00000000000

3250 REM #» REMOVE o RECORD FROM A KSAM FILE «
3z6n REM PO Y Y TP L LR XY Y Y A XYY TR AR TAL TR T Y 2 Y X
327n REM

3280 REM F IS THE FILE NUMBER OF A KSAM FILE OPENED BY 4 CALL TO BKOPEN
3230 REM NOTE THAT FOR BKDELETE, PKOPEN ACCESS MODE MUSY = 4 FOR UPDATE
3295 REM

339n REM THE RECORD YO HBE DELETED MUST FIRST BE REAV,,,

3305 REM AN ASSUMPTION HAS BEEN MaDE THAT THE RECORD TO BE RERD

3310 REM ANU DELETED CONTAINS THE SAME INFORMATION THAT was

3320 REM WRITTEN IN THE BKWRITE EXAMPLE, -

3330 REM

3340 CALL BKREAD(F,5$1B1$,B28,A57a)yA3[0),A2{=))

3350 REM

3360 REM NOW DETERMINE WHETHER THF CALL WAS SuccessFuL
3370 REM

3380 IF Ss(lill<>on THEN 0O

3390 REM NS CONTAINS THE NAME OF THE KSaM FILE

3490 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CalL|
3410 PRINT WUNABLE TO READ myNSy' ERROR n3S${1§1))» DETAIL "i1s$(2)
3420 CaLL BKERROR(SSiM$)

3430 PRINT Ms

34135 GoTo 3620

3440 DOEND

3450 REM

3460 CALL BKDELETE(F,sSS)

3470 REM

3480 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED
3490 REM

3500 1F ss[lilic<>"on THEN DO

3519 REM NS CONTAINS THE NAME OF THE KSAM FILE
3529 REM S$ CONTAINS THE STATUS CUDE SET BY THE PRECEDING CAL(
3530 PRINT "UNABLE TO DELETE RECOKD FROM '"NS$)
3535 PRINT " ERROR "ISsS[131)s' DETAIL "isSs(2])
3540 CALL BKERROR (S$,MS$)

3850 PRINT Ms

3560 GOTO 3620

3579 DOEND

3875 PRINT "DELETED RECORD CONTAINS "}BlSiIB2%}
3576 MAT PRINT AS

38577 MAT PRINT A3,42

3580 REM

3590 REM THE PROGRAM CONTINUES

Figure 6-2. Deleting a Record With BKDELETE
6-11

BKERROR

A call to BKERROR returns a message corresponding to the status value.

Call this procedure in order to get a printable string of characters that describes the condition that
corresponds to the value of the status parameter. The string of ASCII characters returned in
message can be printed as an error message.

PARAMETERS

status is a four-character string variable to which is returned a numeric
value in printable form following execution of any of the procedures
described in this section. The value in status is used to derive the text
in message.
(Required parameter)

message is a string variable which will contain the text describing the error

whose code has been returned to status. This parameter should be
dimensioned to at least 72 characters in length. If the message length
exceeds the dimensioned length of message, a truncated text is
provided.

(Required parameter)

USING BKERROR

The following example illustrates the use of BKERROR. Two strings are dimensioned for
message; one (M$) is sufficiently long, the other (N$) causes truncation of the message. Assume
that the status code in S$ is the value <“22”.

10 DIM S$(4),M$(72),N$(24)

20 REM .. S$ IS THE STATUS STRING

30 REM . . M$ IS A SUFFICIENTLY LARGE STRING

40 REM . . N$ IS TOO SMALL FOR THE MESSAGE

50 REM . . ASSUME S$ CONTAINS THE VALUE “22”

60 REM . .

°

®

[]
100 CALL BKERROR (S$,MS)
110 PRINT “ERROR ”;S$(1;1);* DETAIL ”7;8%(2);¢ s M$
120 CALL BKERROR (S$,M$)
130 PRINT “ERROR ’S$(1;1);“ DETAIL ”758%$(2);¢ ”;N$
RUN 7 full message
ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPLICATED KEY VALUE
ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPL,

\ truncated message

6-12

BKERROR

In another example, BKERROR is called to retrieve the message corresponding to the MPE file
system error code returned when the first character of status is “9”".

10 DIM S$(4),M$(72)

[]

[]

[]

50 IF S$(1;1) = “9” THEN DO

60 CALL BKERROR(S$,M$)

70 PRINT “FILE ERROR ”;S$(2);* MEANS ”;M$
80 DOEND

Suppose the value returned in status is “9172”, then the routine above prints the following
message when the program is run:

FILE ERROR 172 MEANS KEY NOT FOUND; NO SUCH KEY VALUE

A list of the MPE file system error codes and their meaning is contained in table A-1 of appendix A.

6-13

BKLOCK

Dynamically locks KSAM file during shared access.

When more than one user accesses the same file, BKLOCK can be used to make access to the file
exclusive for one user while he writes to or updates the file. In order to use BKLOCK, the file
must be opened with dynamic locking allowed by all users who are sharing the file. When finished
with the changes that required exclusive access, the user who has locked the file with BKLOCK
should unlock it with BKUNLOCK.

Note that a file opened for shared access must be locked by BKLOCK before the file can be modi-
fied by BKWRITE, BKREWRITE, or BKDELETE.

PARAMETERS

filenum A numeric variable containing the file number that identifies the file;
this number was returned to filenum by the last call to BKOPEN. It
should not be altered unless the file is successfully closed by BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned a code that indi-
cates whether or not the call to BKLOCK was successful and if not,
why not. The first character is set to zero when the call succeeds, to
another value if it fails. (Refer to the Status Parameter discussion earlier
in this section.)
(Required parameter)

condition A numeric expression whose value determines the action taken if the
file is locked by another user when BKLOCK is executed. If the value
of condition is:

zero—-locking is unconditional; if the file cannot be locked immediately
because another user has locked it, your program suspends execution
until the file can be locked. (default value)

non-zero-locking is conditional; if the file is already locked, control
returns immediately to your program with status set to ““71”".

(Optional parameter)
Default: If omitted, locking is unconditional.

USING BKLOCK

In order to call BKLOCK, the file must be opened with dynamic locking allowed. That is, the
parameter lock in the BKOPEN procedure must be set to 1. Also, since dynamic locking is useful

only when access is shared, probably the file will have been opened with the exclusive parameter
in BKOPEN set to 3.

6-14

BKLOCK

NOTE

All users who share access to the file must agree to allow dynamic
locking in order for any user to dynamically lock the file with
BKLOCK.

The note above points out that users who share the same file should cooperate on how they will
share the file. Unless they all agree to allow locking, no one will be able to lock the file. Also, it is
important to avoid situations where one user locks the file and forgets to unlock it. If this occurs
when condition is set to a non-zero value, the calling process is not halted. But if the file is locked
already and if you attempt to lock a file with condition omitted or set to zero your process is
halted until the other user either unlocks the file or logs off.

You should always check the status parameter immediately following a call to BKLOCK in order
to determine if the call was completed successfully. If you locked with condition set to a non-
zero value, you should check if the file was locked before continuing. If it was locked, status will
have a “0” in the first character, but if another user had locked the file preventing your call to
BKLOCK from working, then status contains the value “71”".

Figure 6-3 contains an example of locking a file with BKLOCK.

830 REM Hp00800a0aatattanatdatatsadidatalasdtnantdf®annsnansrsnad
840 REM » LOCK A KSAM FILE ™
850 REM ot cdadostotitoadaanatantadotetonactsont®asantasdascntd
855 REM

860 REM F IS THE FILE NUMBER OF A KSAM FILE

870 REM OPENED BY A CALL TO BKOPEN

890 REM

900 REM THE THIRD PARAMETER INDICATES THAT LOCKING IS

910 REM To TAKE PLACE UNCONDITIONALLY

920 REM

930 CALL BKLOCK(F,S8$,0)

940 REM

950 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED
$60 REM

70 IF SStlili<>'on THEN DO

980 REM NS CONTAINS THE NAME OF THE KSAM FILE

990 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
1000 PRINT "UNABLE TO LOCK " NS3n ERROR "1S$[1113#" DETAIL "i18$(2)
1010 CALL BKERROR(S$iMs)

1020 PRINT Ms

1030 DOEND

Figure 6-3. Dynamically Locking a KSAM File with BKLOCK

6-15

BKOPEN

A call to procedure BKOPEN initiates file processing.

In order to process a KSAM file, it must be opened with a call to the BKOPEN procedure.
BKOPEN initiates processing, and optionally specifies how the file is to be processed. BKOPEN
does not create the file; it must have been created previously. You can create a KSAM file
through the BUILD command of the KSAMUTIL program (refer to section II).

To open a file means to make it available for processing. You can also specify how the file is to be
accessed (whether for input, output, input and output, or for update), whether dynamic locking
is allowed, whether access to the file can be shared, and whether records written to the file are to
be checked for primary key sequence. Default values are assigned for the optional parameters.

If you want to change the current processing or access method, you must close the file and then
open it again with the parameters set to new values.

PARAMETERS

filenum A numeric variable whose value identifies the file opened by the call
to BKOPEN. Since the value of filenum identifies the file in other
CALL statements, it must not be changed while the file is open.
(Required parameter)

status A four-character string variable to which is returned a code to indicate
whether or not the file was successfully opened and if not, why not.
The first character is set to “0’’ if the open is successful, to another
value if not. (Refer to Status Parameter discussion earlier in this
section.)
(Required parameter)

name A string expression containing the name of the KSAM file to be
processed. This name is the actual designator assigned to the file when
it was created, or else it is a back reference to a formal designator
specified in a :FILE command, in which case, name has the form
*formal designator.
(Required parameter)

access A numeric expression whose value indicates one of the permissible
access types:

0 Read only. Use of procedures BKWRITE, BKREWRITE,
and BKDELETE are prohibited.

1 Write only. Deletes previously written data. Use of the
procedures BKREAD, BKREADBYKEY,
BKREWRITE, BKDELETE, and BKSTART
are prohibited.

2 Write only. Saves previously written data. Use of the
procedures prohibited by the access=1, above,
are also prohibited by access=2.

6-16

lock

exclusive

BKOPEN

3 Read and write. Use of procedures BKREWRITE and
BKDELETE prohibited. (Default value.)

4 Update access. Allows all procedures described in this section.
(Optional parameter)
Default: If omitted,or out of range, access is 3, read and write access.

A numeric expression whose value indicates whether dynamic locking
can take place. Acceptable values are:

0 Disallow dynamic locking and unlocking.
Use of procedures BKLOCK and BKUNLOCK
prohibited. (Default value.)

1 Allow dynamic locking and unlocking.
Procedures BKLOCK and BKUNLOCK may
be used to permit or restrict concurrent access
to the file.
(Optional parameter)
Default: If omitted, or out of range, lock = 0 to disallow dynamic
locking

A numeric expression whose value indicates the kind of exclusive
access desired for this file. If this parameter is omitted or is not one
of the following acceptable values, the default is assumed:

0 Depends on access parameler.
If access = 0 (read only), then users share
access to this file as if exclusive were set to 3.
If access is not = 0, then access to this file is
exclusive as if exclusive were set to 1.

1 Exclusive. Prohibits other access to this file until either
the file has been closed or the process
terminated. Only the user who opened the
file can access it while it is currently open.

2 Semi-exclusive. Other users can access this file, but only for
read access. The file cannot be accessed to
write, rewrite, or delete records until it is
closed or the process is terminated. (Default
value.)

3 Shared. Once the file is opened, it can be accessed
concurrently by any user in any access mode,
subject only to the MPE security provisions

in effect.
(Optional parameter)
Default: If omitted, or out of range, exclusive = 2, semi-exclusive
access.

6-17

BKOPEN

sequence A numeric expression whose value indicates whether records written
to the file will be checked for primary key sequence or not.
Acceptable values are:

0 No sequence When records are written to the file, primary
checking. key values can be in any order; their sequence
is not checked. (Default value.)

1 Sequence As each record is written to the file, KSAM
checking. checks to insure that its primary key value is
greater than the primary key value of any
previously written records; if duplicates are
allowed for this key, then the primary key can
be equal to that of the previously written

record.
(Optional parameter)
Default: If omitted, or out of range, sequence = 0, no sequence
checking

USING BKOPEN

After calling BKOPEN, you should always check the status parameter to determine whether the
open was successful. Upon successful execution of BKOPEN, the file named in name is available
for processing; an identification number is assigned to this file and returned to filenum where it
is available to identify the open file in other calls. Until the file is successfully opened with
BKOPEN, no operation can be executed that references the file either explicitly or implicitly.

If only the first three parameters are specified, and the file is opened successfully, the file has the
following default characteristics:

® Read and Write access; you can read from and write to but not update the file.
® Semi-exclusive access; other users can read from but not write to or update the file.
® Dynamic locking not allowed; you cannot lock or unlock a file.

® No sequence checking; records can be written in any order without checking sequence of
primary key values.

ACCESS MODES. There are two types of write only access: one clears any existing records
before writing the specified records to the file (access = 1); the other saves existing records and
writes the new records after those already written (access = 2). Both these access modes do not
permit any read or update access to the file.

Read-only access (access = 0) can be specified if you want to insure that the file is not changed.
This mode prohibits the writing of new records, and rewriting or deleting of existing records. In
read-only mode, you can position the file, and read records in either sequential or random order.

The default access mode (access = 3) allows you both to read records from and write records to a

file, but not to change or delete existing records. If you plan to read and write records during
the same process, but do not want to alter existing records, use this access mode.

6-18

BKOPEN

If you want to rewrite or delete existing records in a KSAM file, you must open with access = 4.
This mode allows you to use the BKREWRITE and BKDELETE procedures, as well as all the
other procedures described in this section.

Table 6-4 summarizes the procedures you may call depending on the access parameter value you
specify in BKOPEN.

Table 6-4. Procedures Allowed by BKOPEN access Parameter

BKOPEN access Parameter
Write-onl Write-onl .
Read-only with C|eaz with SavZ Read/Write Update
(access=0) {access=1) (access=2) (access=3) (access=4)
BKREAD BKREAD BKREAD
BKREADBYKEY BKREADBYKEY | BKREADBYKEY
BKSTART BKSTART BKSTART
Procedures BKWRITE | BKWRITE | BKWRITE BKWRITE
Allowed BKREWRITE
BKDELETE
BKCLOSE BKCLOSE | BKCLOSE | BKCLOSE BKCLOSE
BKERROR BKERROR | BKERROR | BKERROR BKERROR

SHARED ACCESS. By default in a multi-user envornment, all users whose MPE security
restrictions allow them to access your file can read the file, but they cannot change the file or add
new records to it. This is the default specification of the exclusive parameter in BKOPEN
(exclusive=2). 1t is independent of the value of the access parameter.

If you want to prevent other users from reading the file as well as writing to it, you must specify
this by setting exclusive=1. This setting allows only you to read from, write to, or alter the
file.

Another alternative is to set exclusive=0, thereby allowing other users access to the file only when
it is opened for read only (access=0). This setting of the exclusive parameter prevents any access
by other users when the file is opened for any form of write or update (access#0) . This means that
you and other users share read access to the file, but only you can write to or change the file.

You can choose to completely share access to the file, reading and/or writing and updating, by
setting the exclusive parameter to 3.

(Refer to table 6-5 for a summary of the relation between the exclusive parameter and the
access parameter.)

6-19

BKOPEN

Table 6-5. Relation of exclusive Parameter to access Parameter

exclusive =0 exclusive = 1 exclusive = 2 exclusive = 3
(default)

access =0 shared exclusive semi-exclusive shared
(read only)

access # 0 exclusive exclusive semi-exclusive shared
(write only,

read/write,

or update)

DYNAMIC LOCKING. When access is shared, it is good practice to allow dynamic locking so
that individual users can dynamically lock the file while performing any updates to the file.
The file can be unlocked as soon as the update is complete. An update to a file is when you
write a new record, delete a record, or rewrite an existing record. When access is exclusive or
semi-exclusive, there is no need for dynamic locking since only the user who has opened the
file can update the file.

Dynamic locking should also be allowed if access is shared and you plan to read the file sequentially.
This is because the sequential read procedure (BKREAD) is dependent on the position of the logical
record pointer and, in a shared environment, this pointer can be changed by other users unless the
file is locked (Refer to table 6-3 for a list of the pointer-dependent procedures.)

SEQUENCE CHECKING. When sequence checking is specified, you must write records to the

file in primary key sequence. An attempt to write a record out of sequence causes the write to

fail and the value “21” is returned to status following a call to BKWRITE. (Refer to the description
of Status earlier in this section.) As a result of sequence checking, the chronological and the
primary key sequence of records in your file is the same. Since the BASIC KSAM procedures have
no provision to read the file in chronological sequence, you may want to specify sequence checking
for any file that you will want to read in that order. With sequence checking, a file read in logical
order by primary key (the default for BKREAD) is also read in chronological order.

The example in figure 6-4 shows how to use BKOPEN to open a KSAM file for input and output

(default access), with dynamic locking (lock=1), for shared access (exclusive=3), and without
sequence checking (default sequence).

6-20

BKOPEN

a0
50
55
60
65
70
a0
30
100
110
120
130
135
140
145
150
160
170
178
180
190
290
210

220

3g0

390

400
6410

INTEGER A[l0}

DIM Re(l2)

INTEGER J

DIM B18%(])

CIM 532%(2)

INTEGER A2(21,A3(3),A5(5;

REM

REM THE KSAM/3000 FILE WAS BUILT WITH:

REM REC=-80,16,F,ASCI]

REM KEY=Bjy2,291DUP

REM S0+RECORD {ENGTH IS 2 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK,
REM THE KEY Is 2 CHARACTERS LONG,STARTING IN CMARACTER 2 OF RECORD
REM

REM 6aatactataadadtatnitaastontdontodsntanssdttosssnatonsnnt
REM » OPEN A KsAM FILE)
REM 40t daaadaadttdtontianntptdtatadatsssntatdtRasosnastossnsit
REM

REM THE FILE NaME IS IN Ns

REM THE STATUS OF THE caLL IS RETURNED IN S$

REM wHEN SUCCESSFUL, BKOPEN RETURNS A FILE NUMBER IN F

REM INPUT-OUTPUT ACCESS IS SPECIFIED IN J

REM DYNAMIC LOCKING IS A|_|LLOWED IN D

REM SEMI=-EXCLUSIVE ACCESS IS INDICATED IN E

REM

REM
REM

GOTo 3620~——— {0 close the file
DOEND

THE PROGRAM CONTINUES

Figure 6-4. Opening KSAM File with BKOPEN

6-21

BKREAD

Transfers the next logical record from a KSAM file to a BASIC program.

A call to BKREAD transfers the contents of a record from a KSAM file to a storage area defined

by a list of variables in a BASIC program. The record read is that at which the logical record pointer
is currently positioned. In a series of calls to BKREAD, records are read in ascending order by

key value. The primary key is used unless a previous call to BKSTART or BKREADBYKEY has
positioned the pointer to an alternate key. The file must have been opened with an access mode
that allows reading.

PARAMETERS

filenum A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered unless the file is closed by a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKREAD was successful and if not, why
not. The first character is set to zero when the call succeeds, to another
value if not. (Refer to the Status Parameter discussion earlier in this
section.)
(Required parameter)

parameterlist A list of variables separated by commas into which the data in the
record is read. The contents of the record are read into the variable
(or variables) until the physical length (or combined physical lengths)
of parameterlist is exhausted, or the end of the record is reached.
(Optional parameter)
Default: If omitted, the logical record pointer is positioned to the
beginning of the next record in key sequence.

USING BKREAD

After calling BKRREAD, you should always check the status parameter to determine whether the
read was successful. Upon successful completion of BKREAD, the variables specified in
parameterlist contain data read from the record at which the record pointer was positioned when
BKREAD was called. Note that if parameterlist is omitted, the record pointer is positioned to the
beginning of the next logical record, effectively skipping the current record.

In order to use BKREAD, the file must be opened for input. The BKOPEN access parameter
should be zero if you only plan to read or position a record. To both read from and write to the
same open file, you either omit the access parameter or set it = 3. If you want to rewrite or update
as well as read records, you must set access = 4.

6-22

BKREAD

Values are read from the current record into the variables specified in parameterlist according to
the type and length of the variable. For example, consider the following code:

10 DIM G$(3),H$(3),5$(4)

20 INTEGER L,F

30 CALL BKREAD (F,S$,G$,HS$,L)
__l_/

filenum parameterli;st
status

If the record being read contains only the word SCRABBLE, this word is read into the specified
variables as if they were assigned by the statements:

100 G$=“SCR”
110 H$=“ABB”
120 L=NUM(“LE”)

assigns numeric equivalent of string “LE” to L

NOTE

Each variable in the parameterlist is filled to its current physical
length before proceeding to the next variable.

The following calls omit the parameterlist in order to skip forward two records:

210 CALL BKREAD(F,S$) -~

220 CALL BKREAD(F.S$) <— skip two records

The records skipped are not the next records physically placed on the file, but are the next two

in logical sequence according to the value of the current key. The particular key used for the read
sequence can be selected with a call to BKSTART or BKREADBYKEY. BKSTART can also be
used to position the file to the beginning of the record with the lowest key value in the selected
key (Refer to BKSTART following BKREAD discussion.)

The example in figure 6-5 assumes that the record pointer has been positioned to the beginning of
the first record in primary key sequence. Assume that the file being read was opened inthe example
in figure 6-4, the records read were written in the example in figure 6-11.

Each record contains five integers followed by five undefined words (garbage) followed by a string
of three characters. The record is read into

A5 a b-word integer array
A2 a 2-word integer array
A3 a 3-word integer array
B1$ a 1-character string
B2$ a 2-character string

The five integers that were written to the beginning of each record are read into array A5. The

next two arrays A2 and A3 receive the undefined values that filled the next five words of the
record. The first string character is read into B1$, the next two into B2$.

R-922

BKREAD

SHARED ACCESS. If you open the file for read-only access (access=0), and the exclusive param-
eter is allowed to default to zero, then more than one user can share read access to the file. In this
case, or if you specifically indicate shared access, you should also allow dynamic locking in order to
read records from the file in key sequence. This is necessary because BKREAD depends on the cur-
rent position of the logical record pointer. (Refer to table 6-3 for a list of the pointer-dependent
procedures.)

For example, if you plan to read the file sequentially starting from a particular key value, use the
following sequence of calls:

BKOPEN open file for read-only, shared access, allow dynamic locking
BKLOCK lock file

BKSTART position pointer

BKREAD loop read file in sequence from original pointer position
BKUNLOCK unlock file when last record read

6-24

BKREAD

10 DIM S5l &)

20 DIM Ns([26]

3n DIM M={72)

4 INTEGER arlol

50 DIM ®x[1l2)

58 INTEGER J

&0 DIM R13(1)

65 DIM nrosle)

70 INTEGER AQCEJ,A3£3],A5[5]

1310 REM 40 toatetoatdttoiodtcnstnatttotatansttadtsdosonnatenne
1320 REM # READ FROM A KSAM FILE @
1330 REM #pdtdododastdedeandinsstadatoatatonnpiondddoonanastians
1340 REM

1350 REM F IS THE FILE NUMBER OF A KSAM FILE

1360 REM OPENED BY A CALL TO BKOPEN

1370 REM

1380 REM AN ASSUMPTION MAS BEEN MADE THAT THE RECORD TO BE READ
1390 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN To

1400 REM THE FILE By THE EXAMPLE TO WRITE A KSAM FILE

1410 REM

1420 CALL BKREAD(F,5$)BlS,B2S,AS5(a*1,A3(®],A2(%]))

1430 REM

1440 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED
1450 REM

1460 IF S$[1311<>"0n THEN DO

1470 REM NS CONTAINS THE NAME OF THE KSAM FILE

1480 REM $$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CalLL
14390 PRINT M"UNABLE TO READ "yN$;n ERROR "$S$(131))* DETAIL nisS(2)
15900 CALL BKERROR(SSyM3)

1510 PRINT Ms

1520 REM

1530 REM TEST FOR END OF FILE

1540 REM AND POSITION TO LEAST VALUED PRIMARY KEY

1850 IF sS(1jl)m1n THEN 1080

1560 GOTO 3620

1570 DOEND

1580 REM

1590 REM ECHO WHAT wAS READ

1600 REM

1610 PRINT “RECORD CONTAINS ";B1$3B2S

1620 MAT PRINT AS

1622 MAT PRINT A3,aA2

1630 REM

1650 REM THE CONTENTS OF BlS=zwnin, OF B2$an23n

1660 REM THE CONTENTS OF AS(1l) THROUGH AS(S) ARE 1 THROUGH 5,
1670 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN,

1680 REM

1690 REM THE PROGRAM CONTINVES

Figure 6-5. Reading From a KSAM File with BKREAD

6-25

BKREADBYKEY

Transfers record identified by particular key value from KSAM file to BASIC program.

A call to BKREADBYKEY locates and reads a record into a storage area identified by a list of
variables in the BASIC program. The record to be read is located by matching the specified keyvalue
with an identical value stored in the record starting at keylocation. The record value and the value
specified in keyvalue must match exactly, or an error code is returned to status. To use
BKREADBYKEY, the file must be open in an access mode that allows reading.

You cannot use BKREADBYKEY to locate a record by generic or approximate key values. For
this purpose you can call BKSTART followed by a call to BKREAD. (Refer to the discussion of
BKSTART.)

PARAMETERS

filenum A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered unless the file is closed with a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned a code that indi-
cates whether or not the call to BKREADBYKEY was successful and
if not, why not. The first character is set to zero if the call succeeds,
to another value if not. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

keyvalue A string or numeric expression whose value is compared to a key value
in the record. The record pointer is positioned to the first record with
a key value at keylocation that is exactly equal to the specified keyvalue.
In order to match exactly, the record value and keyvalue must have the
same logical length.
(Required parameter)

keylocation A numeric expression whose value indicates the starting character posi-
tion in each record of the key used to locate the record to be read by
BKREADBYKEY. The characters in a record are counted starting with
1. If the value of keylocation is zero, the primary key is assumed. The
primary key also may be specifically indicated by its location in the
record.
(Required parameter)

parameterlist A list of variables separated by commas into which the data in the
record is read. The contents of the record are read into the variable
(or variables) until the physical length (or combined physical lengths)
of parameterlist is exhausted, or until the end of the record is reached.
(Required parameter)

6-26

BKREADBYKEY

USING BKREADBYKEY

After calling BKREADBYKEY, you should always check the status parameter to determine
whether the read was successful. Upon completion of BKREADBYKEY, the variables specified
in parameterlist contain data read from the record located through the keyvalue and keylocation
parameters.

The key value in therecord to be read must exactly match the specified keyvalue. Unlike BKSTART,
the only relation between the value in the record and the value in the call is that of equality. If
duplicate key values are allowed in the key being sought, then the first record with a matching key
value is read by BKRREADBYKEY. To read the remaining records with duplicate key values, you
should use BKREAD.

NOTE

Each variable in parameterlist is filled to its current physical
length before proceeding to the next variable.

The example in figure 6-6 uses BKREADBYKEY to read the first record found with the value “23”
starting in byte 2. Since this is the file written by BKWRITE in figure 6-11, the records in the file
are identical including the keys and only the first record is read.

6-27

BKREADBYKEY

2220
2230
2240
2250
2260
2279
2280
2290
23p0
2310
2320
2330
2340
23%0
2360
2370
2340
2390
2400
2410
2420
2430

2440
2450
2460
2470
2430
2490
2590
2s1n
2520
2530
2540
2550
2560
2562
2570
2530

REM oo¢“0&60“bub&lﬁaic“lo»ubp&ﬁi’QQ#&GQGQOO#OG"QQGQQQQQOGQ#
REM & READ BY KEY FROM A KSAM FILE »
REM ognﬂﬂ»ooQ#ug#ﬂﬁ#ﬂbﬂ'.io096QCHOQbb«».ﬁﬁoDO“OOO“OOG'.QQQQQQQ
REM
REM F IS THE FILE NUMBE OF A KSAM FILE
REM OPENED BY A CALL TO BkOPEN
REM
REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ
REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN IN THE
REM WRITE EXAMPLE.
REM
REM AN ADDITIONAL ASSUMPTION IS THAT THE DESIRED KEY VALUE
REM STARTS AT CHARACTER 2 AND HAS THE VALUE n23n,
REM
CALL RBKREADBYKEY(F»S$,"231,2,B1$,B289)A5(@),a3["),A2(e])
REM
REM NOw DETERMINE WHETHER THIS CALL HAS SUCCEEDED
REM
IF ssclili<>"on THEN DO
REM N$ CONTAINS THE NAME OF THE KSAM FILE
REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CaL(
PRINT “UNABLE TO READByKEY "INsj" ERROR nySSL1§11jn DETAIL "}SS[&
2]
CALl BKERROR(S$)Ms$)
PRINT Mg
GoTO 3620
DOEND
REM
REM THE CONTENTS OF BlS=wu]lwn, OF B2$s"23v,
REM THE CONTENTS OF AS{1) THROUGH AS(S) ARE INTEGERS 1 THROUGH S
REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN,
REM
REM ECHO wHAT wAS READ
REM
PRINT "RECORD READ = n}B1$)B2s
MAT PRINT AS
MAT PRINT A3,yA2
REM
REM THE PROGRAM CONTINUES

Figure 6-6. Reading a Record Located by Key Value with BKREADBYKEY

6-28

BKREWRITE

Changes the contents of a record in a KSAM file.

A call to BKREWRITE replaces the contents of an existing record with new values. The record to
be rewritten is the last record accessed by a call to BKREAD, BKREADBYKEY, or BKSTART. To
use BKREWRITE, the file must be open in the access mode that allows update. If access is shared,
it must also be opened with dynamic locking allowed, and the file locked by BKLOCK before rec-
ords are rewritten.

PARAMETERS

filenum A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered unless the file is closed with a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned a code that
indicates whether or not the call to BKREWRITE was successful
and if not, why not. The first character is set to zero if the call
succeeds, to another value if not. (Refer to the Status Parameter
discussion earlier in this section.
(Required parameter)

parameterlist A list of variables or constants, separated by commas, that contain
the data to be written to the file replacing the last record read or
written. The total length of the new record is derived from the total
number, data type, and length in characters of each item in
parameterlist. Although this length need not be the same as the
record it replaces, it should be long enough to contain all the keys,
but not so long that it exceeds the defined record length.
(Required parameter)

USING BKREWRITE

After calling BKREWRITE, you should always check the status parameter to make sure that the
rewrite was successful. Upon successful completion of BKREWRITE, new values replace the
data in the last record read to or written from the BASIC program. The new data may change
every value in the previously read record including the primary key value.

If you want to replace a record with a particular key value, you should locate and read the record
with BKREADBYKEY or BKSTART. To rewrite a series of records you should read the records
with BKREAD.

When the data in the parameterlist of BKREWRITE is shorter in total length than the data in
the record being rewritten, there is less total data in the rewritten record. In order to maintain
the key sequence of all keys, defined values should be written to the location of all keys, both
the primary key and any alternate keys.

6-29

BKREWRITE

NOTE

Items written to a KSAM file with the BKREWRITE
procedure are concatenated; rounding to word boundaries
does not occur.

The example in figure 6-7 writes new values to a record originally written if figure 6-11 and read in
figure 6-5. The new values fill an array that had undefined values in the last five words, now defined
as two arrays A3 and A2 by the BKREAD call. The primary key value “23” in location 2 is un-
changed.

The record read by BKREAD contained the following values:

NN

1 1 11
7
1 I

A3 A2
(undefined)

After being rewritten by BKREWRITE, it contains the following values:

12 3|12

NN

.~ P —
T T

B1$ T Ab A3 A2
B2$ (Primary Key)

SHARED ACCESS. When access is shared, the call to BKREAD, BKREADBYKEY, or BKSTART
that locates the record to be rewritten should be included in the same pair of BKLOCK/BKUNLOCK
calls as the call to BKREWRITE. This insures that no other user alters the record pointer between
the call that locates the record and the call that rewrites it.

DUPLICATE KEYS. If you want to sequentially rewrite all records in a chain of records with du-
plicate keys, locate the first record in the chain with BKREADBYKEY. Then call BKREWRITE to
modify this record. If no key value (the selected key or any other) is modified, subsequent calls to
BKREWRITE will modify the next sequential records in the chain of duplicate keys. If, however,
any key has been changed, the modified key is written to the end of the chain and the next se-
quential record is one with the next higher key value. In this case, to rewrite all records with du-
plicate keys, precede each call to BKREWRITE by a call to BKREADBYKEY.

6-30

BKREWRITE

2600
2610
2620
26130
2640
2650
2660
2€e710
2680
2699
27900
2710
2720
2730
2740
27150
2760
2770
2780
2730
2800
2810
2820
2830
2900
2910
2920
2930
2940
2950
2960
2970
2580
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210

REM

REM BReRROR BB PR RO R BB ROBOD BRI PRRRIBIRRRRORRRBOTVRDDONDRBB OB DY

REM & REVISE THE CONTENTS OF s RECORD READ FROM A KSAM FILF #

REM #4008 0800uapsdl0aadtguactasdatetodooottontdPotcndontntonde

REM

REM F IS THE FILE NUMBER OF A KSAM FILE OPENED BY a CALL TO BKOPEN
REM NOTE THAT FOR SKREWRITE,8KOPEN ACCESS MODE MUST=4 FOR UPDATE,
REM

REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ

REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN To THE

REM KSAM FILE IN THE BKWRITE EXAMPLE,,

REM , — Pparameterlist

CALL RKREAD(F,s$sB1$,828,AS5[#1,A3[#],A2(%])

REM

REM Now DETERMINE WHETHER THE CALL HAS SUCCEEDED,

REM

IF S$Srt13131<>"on THEN DO
REM N$ CONTAINS THE NAME OF THE KSAM FILE
REM S$ CONTAINS THE STATUS CALL SET BY THE PRECEDING CaLL
PRINT “UNABLF TO READ wiNS$ 3 ERROR "yS${111)4" DETAIL "i1S8$(2)
CALL BKERROR(S$iM3%)
PRINT Mg
GOTO 3620

DOEND

REM THE CONTENTS OF B1S$z1m, OF B2$=123n

REM THE CONTENTS OF AS(l) THROUGH AS5(5) ARE 1 THROUGH §

REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN
REM
REM STORE VALUES 1 THROUGH 3 INTO A3(1) THROUGH A3(3)
REM STORE VALUES 1 AND 2 INTO A2(1) AND A2(2).
REM
FOR Izl To 2
A2(11=1
A3(11%1
NEXT 1)
A3([3)23 parameterlist
REM / L -~
CALL BKREWRITE(F,53,B15%9828,A5(#),A3([#],A2(#))
REM
REM NOW DETERMINE WHETHER TH E CALL HAS SUCCEEDED
REM
IF Sss(1111<>'"0n THEN DO
REM N$ CONTAINS THE NAME OF THE KSAM FILE
REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
PRINT M"UNABLE TO REWRITE "jNSj" ERROR "iSS[141)3n DETAIL "ISsSL2)
CALL BKERROR (S$iMs)
PRINT Ms
GoTon 3620
DOEND
REM
REM ECHO WwHAT wAS UPDATED
REM
PRINT "REWRITTEN RECORD = wyB1iB2

MAT PRINT ASyA3,A2
REM
REM THE PROGRAM CONTINUES

Figure 6-7. Rewriting Record in KSAM File with BKRREWRITE

6-31

BKSTART

Positions a KSAM file to a particular record based on a key value.

By calling BKSTART, you can position the record pointer to any record in the file based on the
value of a key in that record. The key can be the primary key or any alternate key, since BKSTART
also allows you to select the key for positioning and for subsequent sequential reads. If you want
to read all the keys in a key sequence, you can use BKSTART to position to the record with the
lowest key value in the selected key

PARAMETERS

filenum A numeric variable containing the file number that identifies the file;
this number was returned by the last call to BKOPEN. It should not
be altered unless the file is closed with a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned a code that indi-
cates whether or not the call to BKSTART was successful and if not,
why not. The first character is set to zero when the call succeeds, to
another value when it fails. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

keyvalue A string or numeric expression whose value is compared to a key value
in this record. The record pointer is positioned to the first record with
a key value that bears the relation specified by relation to the value
in keyvalue. If the value is a string, its logical length is used for the
comparison; otherwise, the physical or dimensioned length is used. The
length of this value must be less than or equal to the length of the key
as specified when the file was created. If keyvalue is a null string (*“),
the file is positioned to the beginning of the first logical record accord-
ing to the value of the key in keylocation. (Optional Parameter)

Default: If omitted, the vaiue assumed for keyvalue is the lowest
value for the specified key type.

keylocation A numeric expression whose value indicates the starting character loca-
tion in each record of the key used for positioning by BKSTART. The
characters in a record are counted starting with 1. If set to zero, the
primary key is assumed.
(Optional parameter)

Default: If omitted, the primary key is assumed.

relation A numeric expression whose value specifies the relation between the
specified keyvalue and the value of the key at keylocation. The record
pointer is positioned to the first record with a key value satisfying this
relation:

0 — the value of the record key is equal to keyvalue

1 — the value of the record key is greater than keyvalue

2 — the value of the record key is greater than or equal to
keyvalue. (default)

6-32 MAY 1981

BKSTART

Any value greater than 2 is treated as if it were 2.
(Optional parameter)

Default: If omitted, the relation is assumed to be 2, record key is
greater than or equal to the keyvalue.

USING BKSTART

After calling BKSTART, you should check the status parameter to determine if the procedure was
executed successfully. If successfully executed, the record pointer is positioned at the beginning
of the first record with a value at keylocation that has the relation specified in relation to the value
specified in keyvalue.

If default values are assumed for all three optional parameters, the pointer is positioned to the
record with the lowest value for its type in the primary key location.

If the relation specified is equality (relation = 0), then a record must be located that has the exact
same key value as that specified in the BKSTART call. When found, the pointer is positioned to
that record. If duplicate values are allowed for the key, then the pointer is positioned at the first
record with the particular key value.

When the specified relation is greater than (relation = 1), the file is searched until a record is found
with a key value greater than the specified key value. The search passes over any record with a key
value equal to the specified value. This relation allows you to retrieve items by an approximate key.
Thus, if you specify a key value of “R”, a call to BKSTART will position the pointer to the first
record with a key value that starts with the letter R. A subsequent series of calls to BKREAD
allows you to read the remaining records in the file or, by including a test, to read only the records
beginning with R.

When the specified relation is greater than or equal to (relation = 2), BKSTART looks for a record
containing a value equal to the specified value. If found, it positions the pointer to that record. If
not found, it continues looking and positions the pointer to the first record that is greater than the
specified value. This type of search can be used to locate records by generic key. A generic, or
partial, key is a value that matches characters at the beginning of the key, but not necessarily the
end. For example, in a key containing a date in the form yymmdd, by specifying only the first two
characters as keyvalue and a relation = 2, you can position to the first record with a key for that
year; by specifying the first four characters, you can position to the first record for a particular year
and month.

Whenever a record cannot be found with a key that satisfies the relation and value specified, the
value “23” for invalid key is returned to status.

BKSTART allows you to specify a key other than the primary key assumed by BKREAD. Called
prior to a series of calls to BKREAD, it prepares for a sequential read of the file in alternate key
order. For example, assuming a file with an alternate key in location 21, the following call positions
the pointer to the first record in that key sequence:

100 DIM A$(10),S$(4)

150 A$=<"” assign null string to keyvalue

160 L =21 alternate key location to keylocation
170 CALL BKSTART(F,S$,A$,21)

MAY 1981 6-33

BKSTART

The default for relation is 2 (greater than or equal to) and need not be specified except for docu-
mentation purposes.

Figure 6-8 illustrates the use of BKSTART with default values for all optional parameters. Speci-
fied in this minimal form, it positions to the least valued primary key.

1080 REM 0¢06§0¢06¢¢GQQﬁ0000§6§00000000.0¢000000GQ““Q#OQQQ.'Qag»

1090 REM » POSITIUN TO LEAST VALUED PRIMARY KEY o
llon REM ““““““.o““’“"”.“’“’““““.“'““““.'““.““’““““.’““”“"’“““
1110 REM

1120 REM F IS THE FILE NUMBER OF A KSAM FILE
1130 REM OPENED BY A CALL TO BKOPEN

1140 REM

1150 CAL| RKSTART(F,Ss)

1160 REM

1170 REM NOW DETERMINE WHETHER TH1S CALL HAS SUCCEEDED
1180 REM

1190 IF Sstlili<>"on THEN DO

1290 REM NS CONTAINS THE NAME OF THE KSAM FILE

1210 REM S CONTAINS THE STATUS CODE RETURNED BY THE PRECEDING CALL
1220 PRINT "UNABLE TO POSITION FILE TO LEAST VALUED PRIMARY KEYM
1231 PRINT MERROR "iS$(131)yn DETAIL "3;Ss[2)

1240 CALL BKERROR (S$,M$)

1250 PRINT Ms

1260 GOTO 3620

1270 DOEND

1230 REM

1290 REM THE PROGRAM CONTINUES

13n0 REM

Figure 6-8. Positioning Pointer to Least-Valued Record with BKSTART

The example in figure 6-9 positions the record pointer to a record containing a specific key value.
The value is ““23”’; it is located starting in the second character of each record. The value for relation
is zero indicating that the key must contain exactly the value 23,” not a value larger than “23.”

6-34

BKSTART

1920
l930
1940
lgs0
1960
1970
1880
1990
2000
2010
2020
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

XYL L T L I R Y Y Y T Y Y Y P Y L Yy Y Y Y T YN
o POSITION A KSAM FILE o
CRRRBRRROIRBORNIRRERIRRNNERRBBIRNBNRRIRROBRONBBOBERBORNOY

F IS THE FILE NUMBER OF A KSAM FILE
OPENED BY a CALL TO BKOPEN

AN ASSUMPTION HAS BEEN MADE THAT THE POSITIONING TO RE
DONE IS TO THE RECORD WRITTEN IN THE WRITE EXAMPLE,
AND THAT THE DESIRED KEY STARTS AT CHARACTER 2,

CALL BKSTART(F,S$,"23'"y2,0)

REM
REM
REM

NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

IF SSC1511<>"0on THEN DO
REM NS CONTAINS THE NAME OF THE KSAM FILE
REM S$ CONTAINS THE STATUS CODE RETURNED BY THE PRECEODING CaALL
PRINT "UNABLE TO START njNgj" ERROR ")SS{13133 DETAIL " 1SS([(2)
CaALL BKERROR (SiM)
PRINT Ms$
GOTO 3620

DOEND

REM
REM
REM

THE PROGRAM CONTINVES

Figure 6-9. Positioning Pointer to Particular Record with BKSTART

6-35

BKUNLOCK

Unlocks a file dynamically locked by BKLOCK

A file locked by BKLOCK is released for use by other users with a call to BKUNLOCK. (If you log
off from any connection with the system, the file is also unlocked.) Since dynamic locking takes
place during shared access to the same file by more than one user, it is important that any file
locked by BKLOCK be unlocked as soon as possible by BKUNLOCK.

To use BKUNLOCK, the file must be opened with dynamic locking allowed by all users who share
access to the file.

PARAMETERS

filenum A numeric variable containing the file number that identifies the file;
this number was returned to filenum by the last call to BKOPEN. It
should not be altered until the file is successfully closed by BKCLOSE.
{ Required parameter)

status A four-character string variable to which is returned a code that indi-

cates whether or not the call to BKLOCK was successful and if not,
why not. The first character is set to zero when the call succeeds, to
another value if it fails. (Refer to Status Parameter discussion earlier
in this section.)

(Required parameter)

USING BKUNLOCK
After calling BKUNLOCK, you should always check the status parameter to make sure that the
procedure was successfully executed. When successful, a file locked by BKLOCK is again made

available for access by other users. If the file is not locked by BKLOCK when BKUNLOCK is
called, the file is not affected.

Figure 6-10 illustrates the use of BKUNLOCK to unlock the file after it is updated.

6-36

BKUNLOCK

1700 REM #p80000080p0at08paadonantaditantasaanetasaddonancnsony

1710 REM % UNLOCK A KSAM FILE o
1720 REM DpattERBBENORORIRNOORNERBGRDBRNORBERBODOORN NGB BOBBOG
1730 REM

1740 REM F IS THE FILE NUMBER OF A KSAM FILE
1750 REM OPENED BY A CALL TO BKOPEN

1769 REM

1770 CALL RKUNLOCK(F,S§%)

1780 REM

1790 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED
1800 REM

1R10 IF S$rlili<don THEN DO

1820 REM NS CONTAINS THE NAME OF THE KSAM FILE

1830 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

1840 PRINT "UNABLE TO UNLOCK "iINS&j§" ERROR "jS$(131)4" DETAIL "§Ss(2])
1850 CALL BKERROR (S$:M$)

1860 PRINT Ms

18710 GOTN 3620

1850 DOEND

18390 REM

1607 REM THE PROGRAM CONTINUVES

Figure 6-10. Dynamically Unlocking a KSAM File

6-37

BKVERSION

Retrieves the version, update number and fix number of the current KSAM/3000.

A call to BKVERSION retrieves a printable string of characters that identifies the current version
of the KSAM/3000 procedures used to process KSAM files. The string of characters returned by
BKVERSION can be printed.

PARAMETERS

status A four-character string variable to which is returned the code that
indicates whether or not the call to BKVERSION was successful and
if not, why not. The first character is set to zero when the call succeeds,
to another value if it fails. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

message A string variable to which is returned the identification of the current
KSAM/3000 procedures. It is in the form:

version.update.fix

where version is an ASCII letter, update is an ASCII integer, and fix is
also an ASCII integer. The three terms are separated by periods.
(Required parameter)

USING BKVERSION

You may call BKVERSION in order to get the version, update, and fix numbers of the KSAM/3000
currently being used. This identification can be compared to the version, update, and fix numbers
that identify the version in which a KSAM file was created, as returned by the VERIFY command
of program KSAMUTIL (refer to section II). The following example illustrates use of BKVERSION.
Note that two strings are needed.

10 DIM S$(4) <———— status
20 DIM V$(72) ~——— message

100 CALL BKVERSION(S$,V$)
110 PRINT “THE CURRENT KSAM/3000 IS HP32208.”;V$

RUN
THE CURRENT KSAM/3000 IS HP32208.A.1.23

contents of V§$

6-38

BKWRITE

Writes data from a BASIC program to a KSAM file.

A call to procedure BKWRITE writes a record to a KSAM file from a BASIC program. This call pro-
vides the only way to create a KSAM record from a BASIC program. The file must have been opened
with an access mode that allows writing. If access is shared, the file also must be opened for dynamic
locking (lock = 1), and the file locked with BKLOCK before any records are written.

PARAMETERS

filenum A numeric variable containing the file number value that identifies
the file; this number was returned by the last call to BKOPEN. It
should not be altered unless the file is closed by a successful call to
BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned a code that
indicates whether or not the call to BKWRITE was successful and if
not, why not. The first character is set to zero when the call succeeds,
to another value if not. (Refer to the Status Parameter discussion
earlier in this section.)
(Required parameter)

parameterlist A list of variables or constants, separated by commas, that contain
the data to be written to the file as a record. The total length of the
record contents is derived from the total number, the type, and the
length in characters of the items in parameterlist. The parameterlist
must contain a value for each location defined as a key location in
the record.
(Required parameter)

USING BKWRITE

After calling BKWRITE, you should always check the status parameter to insure that the write
was successful. Upon successful completion of BKWRITE, one record containing the values
specified in parameterlist is written to the opened KSAM file.

Two parameters that are set when the file is opened affect how BKWRITE operates. These are
the access and sequence parameters.

In order to write to a file, the file must be opened with access greater than 0. If the access
parameter is set to 1, all existing data in the file is cleared before the first record is written to the
file. If access is set to 2 or greater, the first record written by BKWRITE immediately follows
any existing records; the file is not cleared.

The sequence parameter determines whether records must be written in primary key sequence,
or not. If sequence is zero, records can be written in any order; no check is made on the sequence
of the primary key field. If sequence is set to 1, you must write each record with a value in the
primary key field that is greater than the primary key value in the previous record. Primary key
values may equal the previous primary key value only if the file was created with duplicate key
values permitted. To illustrate, assume that the record illustrated by the following example was

6-39

BKWRITE

the first record written to the file. It has the value 1 as its primary key. If the file was opened
with sequence = 1, the next record written must have a value of 2 or more in the primary key
field. It may have the same value only if duplicates are allowed for that key field, and must not
have a value less than the previous primary key.

The values written to the record depend on the type of the items in parameterlist. To illustrate,
consider the following statements:

10 DIM D$(20),E$(10),S$(4)

20 INTEGER 1,J

30 D$=“MITCHELL” = logical length = 8 characters

40 E$=“JAMES” logical length = 5 characters

50 I=O:> hint 2ch ¢
60 J=1 each integer requires 2 characters

70 CALL BKWRITE (F,S$,1,J,D$.,ES$)
N

filenum/ \ .
parameterlist

status

This set of statements writes one record to the KSAM file. The record has the form:

characters
13 18 80
MITCHELL|JAMES |
;_r____/___r__J\ T /
D$ E$ undefined value

Assuming a file created with one key starting in the third character, two characters long, the value
1 is the key value. Each integer requires 2 characters, the two strings use a total of 13 characters,
resulting in values that take up 17 characters of the record. The remainder of the record is
undefined. Record size is specified at file creation.

When writing from numeric arrays, the dimensioned length is used; when writing from strings
the logical length is used. The logical length of a string variable or string array element, is the
number of characters actually stored in the variable or element. It determines the length of the
item written to the record. A numeric array, on the other hand, uses the dimensioned length as
the length of the item written to the record. For example, suppose a numeric array A is added
to the parameterlist in the previous example:

6-40

BKWRITE

5 INTEGER A(10) dimensioned length of A is 10 words
10 DIM D$(20),E$(10),S$(4)
20 INTEGER LJ,F
30 D$=“MARSHALL”
40 D$=“MILLY”
50 FOR I=1TO 5 }

60 A()=1
70 NEXT I
80 1=0
90 J=3
100 CALL BKWRITE(F,S$,IJ,A(*),D$,E$)

‘Move 5 words to array A

This set of statements results in a record with the following values:

characters
135 15 25 33 38 80
\ |MARSHALL|MILLY]| A]
N\ I AN T /
D$ E$

undefined values

NOTE

Items written to a KSAM file from a BASIC program are
concatenated ; rounding to word boundaries does not
occur.

Figure 6-11 is an example of writing one string and one integer array to each record of the KSAM
file opened in figure 6-4. The three records written contain the following data:

123|12345 123

record 2 / record 3 ————~

6-41

BKWRITE

19
20
30
40
30
59
5N
LR
70
N
w)
1n0
111
120
130
135

430
440
4s0
460
470
489
490
500
510
520
530
540
5%0
560

$70
580
620
630
640
650
660
670
680
690
700
710
720
730
740

750
760
770
780
790
800
810

DIM Sa{&]

CIM nN&l26)

DIM M« (T2

INTFGER Aflo)d

DIM ax(le)

INTEGFR J

DIM Rys[]]

DIM Rpsl2)

INTEGFR A2[2),a3([(31,A5(5)

REM

REM THE KSAM/3n000 FILE WaAS PUILT WITH:

REM REC=-80,16,F,AsCIY

REM KEY=By2,2)yUUP

REM Sn,RECORD LENGTH IS 2 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK,
REM TWHE KEY IS 2 CHARACTERS LLONG,STARTING IN CHARACTER 2 OF RECORD
REM

REM «Qoﬁ“anbnab*“0'QaﬁGQQna¢6Q¢6QQGQQQOOQQQQ.'QQQQG“.G&O&OG
REM « WRITE TO A KSAM FILE ®
REM #aadaatadanaadttnptodontaddtdsantdoneodtandtf®oansanadrssstad
REM
REM asSIGN VALUES TO OUTPUT VARIABLES
REM
FOR I=z1 70O S
At11=1
NEXT I
RS=n]123"
REM
REM F 1S THE FILE NUMBER OF A KSaM FILE
REM OPENED BY A CALL 7O BKOPEN
REM

REM NOTE THAT ONLY THREE BYTES "123" ARE WRITTEN FROM BS
REM WHEREAS TEN WORDS ARE WRITTEN FROM NUMERIC ARRAY A,
REM
REM THREE IDENTICAL RECORDS ARE BEING OUTPUT SO THAT
REM SUBSEQUENT EXAMPLES OF THIS PROGRAM WILL EXECUTE
REM
FOR 121 T0 3
CALL BKWRITE(F,S%,B$)A[a))
REM
REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED
REM
IF s3{1311<>n0" THEN DO
REM Ns CONTAINS THE NAME OF THE KSAM FILE
REM S$ CONTAINS THE sTATUS CODE SET BY THE PRECEDING CODE
PRINT "UNABLE TO WRITE TO *"INS}VUERROR nyss${131)4m DETAIL "3SS{s
2)
call BKERROR(S%,MS§)
PRINT Ms
GoTO 3620
DOEND
NEXT 1
REM
REM THE PROGRAM CONTINUES

Figure 6-11. Writing to a KSAM File with BKWRITE

6-42

ERROR MESSAGES AND
RECOVERY PROCEDURES || A

This appendix lists the error messages that may be issued as a result of errors encountered while
accessing KSAM files. The messages are not limited to KSAM errors since other file system errors
or language errors can occur while accessing a KSAM file.

Whenever possible, the reason the message was issued is listed under ‘““Meaning” and any action
that can be taken to correct the error is listed under “Action.”

The messages are contained in the following tables:

Table A-1 File System Error Codes

Table A-2 COBOL Status Returns

Table A-3 BASIC Status Returns

Table A-4 KSAMUTIL Error Codes and Messages
Table A-5 FCOPY Warning and Error Messages

Table A-1. File System Error Codes

CODE MEANING ACTION
0 END OF FiLE
1 ILLEGAL DB REGISTER
2 ILLEGAL CAPABILITY
3 OMITTED PARAMETER
4 INCORRECT S REGISTER
5 PARAMETER ADDRESS VIOLATION
6 PARAMETER END ADDRESS VIOLATION
7 ILLEGAL PARAMETER
8 PARAMETER VALUE INVALID
9 INCORRECT Q REGISTER
20 INVALID OPERATION
21 DATA PARITY ERROR
22 SOFTWARE TIME-OUT
23 END OF TAPE
24 UNIT NOT READY
25 NO WRITE-RING ON TAPE
26 TRANSMISSION ERROR
27 /0 TIME-OUT
28 TIMING ERROR OR DATA OVERRUN
29 SIO FAILURE
30 UNIT FAILURE
31 END OF LINE
32 SOFTWARE ABORT
33 DATA LOST
34 UNIT NOT ON-LINE
35 DATA-SET NOT READY
36 INVALID DISC ADDRESS
37 INVALID MEMORY ADDRESS
38 TAPE PARITY ERROR
39 RECOVERED TAPE ERROR
40 OPERATION INCONSISTENT WITH ACCESS TYPE
41 OPERATION INCONSISTENT WITH RECORD TYPE
42 OPERATION INCONSISTENT WITH DEVICE TYPE
43 WRITE EXCEEDS RECORD SIZE
44 UPDATE AT RECORD ZERO
45 PRIVILEGED FiLE VIOLATION
46 OUT OF DISC SPACE
47 1/0 ERROR ON FILE LABEL
48 INVALID OPERATION DUE TO MULTIPLE FILE ACCESS
49 UNIMPLEMENTED FUNCTION
50 NONEXISTENT ACCOUNT
51 NONEXISTENT GROUP
52 NONEXISTENT PERMANENT FILE
53 NONEXISTENT TEMPORARY FILE
54 INVALID FILE REFERENCE
55 DEVICE UNAVAILABLE
56 INVALID DEVICE SPECIFICATION
57 OUT OF VIRTUAL MEMORY

A-2

Table A-1. File System Error Codes (continued)

CODE MEANING ACTION
58 NO PASSED FILE
59 STANDARD LABEL VIOLATION
60 GLOBAL RIN UNAVAILABLE
61 OUT OF GROUP DISC SPACE
62 OUT OF ACCOUNT DISC SPACE
63 USER LACKS NON-SHARABLE DEVICE CAPABILITY
64 USER LACKS MULTI-RIN CAPABILITY
71 TOO MANY FILES OPEN
72 INVALID FILE NUMBER
73 BOUNDS VIOLATION
80 SPOOFLE SIZE EXCEEDS CONFIGURATION
81 NO “SPOOL" CLASS IN SYSTEM
82 INSUFFICIENT SPACE FOR SPOOFLE
83 I/0 ERROR ON SPOOFLE
84 DEVICE UNAVAILABLE FOR SPOOFLE
85 OPERATION INCONSISTENT WITH SPOOLING
86 NONEXISTENT SPOOFLE
87 BAD SPOOFLE BLOCK
89 POWER FAILURE
90 EXCLUSIVE VIOLATION: FILE BEING ACCESSED
91 EXCLUSIVE VIOLATION: FILE ACCESSED EXCLUSIVELY
92 LOCKWORD VIOLATION
93 SECURITY VIOLATION
94 USER IS NOT CREATOR
100 DUPLICATE PERMANENT FILE NAME
101 DUPLICATE TEMPORARY FILE NAME
102 I/0 ERROR ON DIRECTORY
103 PERMANENT FILE DIRECTORY OVERFLOW
104 TEMPORARY FILE DIRECTORY OVERFLOW
106 EXTENT SIZE EXCEEDS MAXIMUM
107 INSUFFICIENT SPACE FOR USER LABELS
108 DEFECTIVE FILE LABEL ON DISC
110 ATTEMPT TO SAVE PERMANENT FILE AS TEMPORARY
111 USER LACKS SAVE FILE CAPABILITY
112
{ RESERVED FOR FUTURE USE
169
170 THE RECORD IS MARKED DELETED. FPOINT POSITIONED
POINTER TO A RECORD THAT WAS MARKED FOR DELE-
TION.
171 DUPLICATE KEY VALUE WHEN DUPLICATES NOT
ALLOWED.
172 KEY NOT FOUND; NO SUCH KEY VALUE.
173 tcount PARAMETER LARGER THAN RECORD SIZE
174 CANNOT GET EXTRA DATA SEGMENT FOR THIS FILE.
175 KSAM INTERNAL ERROR. A KEY VALUE (NOT SEARCH
KEY) FOR A RECORD TO BE DELETED IS NOT IN KEY
FILE; RECORD CANNOT BE DELETED.
176 ILLEGAL EXTRA DATA SEGMENT LENGTH.
177 TOO MANY EXTRA DATA SEGMENTS FOR THIS

PROCESS

A-3

Table A-1. File System Error Codes (continued)

CODE MEANING ACTION
178 NOT ENOUGH VIRTUAL MEMORY FOR EXTRA DATA INCREASE THE SIZE
SEGMENT OF VIRTUAL MEMORY
179 THE FILE MUST BE LOCKED BEFORE THIS INTRINSIC USE FLOCK TO LOCK
ISSUED FILE OR OPEN FILE FOR
EXCLUSIVE ACCESS.
180 THE KSAM FILE MUST BE REBUILT BECAUSE THIS USE FCOPY TO REBUILD
VERSION OF KSAM DOES NOT HANDLE THE FILE FILE:
BUILT BY PREVIOUS VERSION. >FROM=o/dksamfile
;TO=(dfile kfile)
181 INVALID KEY STARTING POSITION.
182 FILE IS EMPTY.
183 RECORD DOES NOT CONTAIN ALL THE KEYS.
184 INVALID RECORD NUMBER IN FFINDN INTRINSIC; RECORD NUMBER MUST
RECORD NUMBER IS NEGATIVE. BE POSITIVE INTEGER.
185 SEQUENCE ERROR IN PRIMARY KEY; ATTEMPT TO
WRITE RECORD WITH PRIMARY KEY LESS THAN
PREVIOUS KEY WHEN ASCENDING SEQUENCE
EXPECTED.
186 INVALID KEY LENGTH.
187 INVALID KEY SPECIFICATION; KEYS ILLEGAL.
188 INVALID DEVICE SPECIFICATION.
189 INVALID RECORD FORMAT.
190 INVALID KEY BLOCKING FACTOR VALUE.
191 RECORD DOES NOT CONTAIN SEARCH KEY FOR
DELETION. SPECIFIED KEY VALUE POINTS TO
RECORD WHICH DOES NOT CONTAIN THAT VALUE.
192 SYSTEM FAILURE OCCURRED WHILE KSAM FILE RUN KEYINFO OF
WAS OPENED KSAMUTIL TO
RESET FLAG.
193
RESERVED FOR KSAM
200
201
RESERVED FOR FUTURE USE
255

MAY 1981

Table A-2. COBOL Status Parameter Return Values

STATUS
VALUE

MEANING

ACTION

“00”

SUCCESSFUL COMPLETION — 1/0 operation was
completed successfully.

None.

1102"

SUCCESSFUL COMPLETION, DUPLICATE KEY —
Read or Readbykey read a record whose key value
was the same as the equivalent key in the next
sequential record; this is not an error since dupli-
cate alternate keys are allowed. Write or rewrite
operation was successful; a duplicate key was
written for a key that is allowed duplicates.

None required, returned for informa-
tion only.

“10”

AT END — End-of-file or beginning-of-file reached
during sequential or random read. There is no next
logical record in ascending key order.

Usually none. This result is a signal
to close the file or perform another
end-of-file action.

11211:

INVALID KEY, SEQUENCE ERROR — Attempt
was made to write a record with a primary key that
is out of sequence when the file was opened for
sequential access.

Check the primary key value in the
record being written. If you don’t
want sequence checking, re-open the
file for random or dynamic access.

112211

INVALID KEY, DUPLICATE KEY — Attempt was
made to write or rewrite a record with a key value
that duplicates a key value in an existing record,
and duplicates are not allowed.

Check the key values. |f possible
change them to avoid the duplication.
If duplicate keys must be written,
create the file again allowing dupli-
cates for the key and then copy the
old file to the new file with FCOPY.

112311

INVALID KEY, NO RECORD FOUND — Attempt
to access record identified by a key with CKSTART
or CKREADBYKEY, but no record is found with

the specified key value at the specified key location.

Check the keyvalue, keylength, and
keylocation parameters in the call.
Correct if necessary. If record that
cannot be found should be in the file,
you may want to list the data file
with FCOPY.

::2411

INVALID KEY, BOUNDARY VIOLATION — An
attempt was made to write beyond the externally
defined end of file.

:130!1

LOCK DENIED — File was locked by another
process.

Wait until process locking file unlocks
it — try again or lock file with lockcond
=1.

A-ba MAY 1981

Table A-2. COBOL Status Parameter Return Values (continued)

STATUS
N
VALUE MEANING ACTIO
31" UNLOCK DENIED — File was not locked by call- Before calling CKUNLOCK to uniock a
ing process. shared file it must have been locked by
a call to CKLOCK.
“9n’ FILE SYSTEM ERROR — Where n is a binary Within your program you can call

number between 0 and 255 corresponding to a

File System Error code (Refer to table A-1).

CKERROR to convert the number to
a displayable value and then display
it. Look up the value in table A-1 and
perform any suggested action.

Note that COBOL error messages 752 and 753 are issued for errors processing KSAM files. (Refer to
table C-2 in the COBOL manual.)

MAY 1981

A-5b

Table A-3. BASIC Status Parameter Return Values

STATUS
VALUE MEANING ACTION

00" SUCCESSFUL COMPLETION -- The current 1/0 None.
operation was completed successfully.

"02" SUCCESSFUL COMPLETION, DUPLICATE KEY — None required. Returned for informa-
In a call to BKREAD or BKREADBYKEY, the cur- tion only.
rent key has the same value as the equivalent key in
the next sequential record; duplicate keys are al-
lowed. Or in a call to BKWRITE or BKREWRITE,
the record just written created a duplicate key value
for at least one key for which duplicates are allowed.

10" AT END — A sequential read was attempted with Usually none. This result is a signal to
BKREAD, but there was no next logical record in close the file or perform some other
ascending sequence by key value, or random read end-of-file function.
attempted to position to record with key value less
than lowest value or greater than greatest value.

21" INVALID KEY, SEQUENCE ERROR — BKWRITE Check the primary key value in the
attempted; record being written has primary key record; if you don’t want sequence
that is not in sequential order but file was opened checking, reopen the file with
for sequence checking. sequence = 0.

BKREWRITE attempted, but the primary key Check the primary key value. Either

value was changed since the record being re- change it back to the original value

written was read. or read the record again before calling
BKREWRITE.

122" INVALID KEY, DUPLICATE KEY ERROR — Check the key value. If possible
BKWRITE or BKREWRITE attempted to write change it to a unique value. f
record that contains a duplicate value for a key duplicate keys must be written,
that is not allowed duplicate values. create the file again allowing dupli-

cate values for the key and then copy
the old file to the new file.

23" INVALID KEY, NO RECORD FOUND — Check the key value, and key location
BKSTART or BKREADBYKEY attempted to parameters. Correct if necessary. If
locate a record by a key value that could not be record that cannot be found should be
found. in file, you may want to list data file

with FCOPY.

24" INVALID KEY, BOUNDARY VIOLATION — Re-enter command.

BKWRITE attempted to write beyond the ex-
ternally defined boundaries of the file.
“71" REQUEST DENIED, FILE ALREADY LOCKED — Perform some action that does not re-

BKLOCK was called with conditional locking and
the file was already locked by another user.

quire exclusive access and then try
BKLOCK again. As soon as the other
user unlocks the file BKLOCK will
work.

A-6

Table A-3. BASIC Status Parameter Return Values (continued)

STATUS
VALUE MEANING ACTION

“81" INVALID CALL, WRONG NUMBER OF PARAM- Check the call syntax and correct; if
ETERS — A procedure call had too many or too not sure of error, consult manual.
few parameters.

‘82" INVALID CALL, INVALID PARAMETER — Check the parameter and compare it
Specified parameter is not the correct type. For to the rules specified in this manual
example, a string variable was specified where only for the parameter format.
numeric variables or constants are allowed.

‘83" INVALID CALL, INSUFFICIENT INTERNAL You can ask the system manager to
BUFFER SPACE — The data to be written to the reconfigure the system, or you may
file is too long for the configured internal buffer be able to reduce the amount of data
space. being written from parameterlist.

“Oxxx" FILE SYSTEM ERROR — An MPE file system Within your program you can call

error occurred for which the value xxx specifies
a 3-digit code between ‘0’ and 255",

BKERROR to display a message with
the meaning of the code; you can
consult table A-1 for the code meaning.

Table A-4. KSAMUTIL Error Codes and Messages

CODE MESSAGE MEANING ACTION

1000 COMMAND FILE READ

ERROR.

1001 COMMAND FILE END OF
FILE.

1002 UNKNOWN COMMAND. TYPE | Command name not recognized. | Type the correct name if
HELP. you know it; else type

HELP.

1003 TOO MANY PARAMETERS More parameters specified than Check the command syn-

FOR THIS COMMAND. are allowed. tax and reenter correctly.

1004 COMMAND FILE DATA
TRANSMISSION ERROR.

1005 COMMAND TOO LONG.

1006 FILE NAME TOO LONG OR File name in BUILD command Enter file name of 8 or
ABSENT. incorrect. fewer alphanumeric char-
acters starting with a letter.

1007 ‘REC’ PARAMETER LIST Too many parameters specified Check syntax and reenter
EXHAUSTED. after REC=in BUILD command. | with correct number of
parameters.

1008 ‘REC’ RECORD SIZE VALUE Record size in BUILD command | Check syntax and reenter

INVALID. is not valid. with correct value for
record size.
1009 ‘REC’ BLOCKING FACTOR Block factor in BUILD Check syntax and reenter
VALUE INVALID. command is not valid. with correct value for

blocking factor.

1010 ‘REC’ RECORD FORMAT Record format in BUILD Enter V for variable length
VALUE INVALID. command is not F or V. records, F for fixed length,
or omit for fixed length.
1011 ‘REC’ RECORD TYPE VALUE Record code in BUILD com- Enter ASCII for ASCII-
INVALID. mand is not ASCI or code records; BINARY or
BINARY. omit for binary-coded
records.
1012 ‘DEV’ DEVICE VALUE No device specification after Enter legal device name or
ABSENT. DEV= in BUILD command. omit if device class is DISC.
1013 ‘DEV’ DEVICE VALUE Device specification in BUILD Enter legal device class
INVALID. command is not valid. name or fegal logical device

number. Refer to System
Manager/Systern Supervisor
Manual.

Table A-4. KSAMUTIL Error Codes and Messages (continued)

CODE MESSAGE MEANING ACTION
1014 ‘DEV’ DEVICE VALUE TOO DEV= missing device specifica- Enter device name that is
LONG OR ABSENT. tion or one that is too long. 1 to 8 alphanumeric char-
acters, begins with a letter,
terminates with non-
alphanumeric character;
or omit DEV= for DISC;
or enter logical device
number.
1015 ‘KEY’ SPECIFICATIONS Too many KEY= specifications Reduce number of keys to
EXCEED LIMIT. in BUILD. a total of 16.
1016 ‘KEY’ CONTAINS TOO More than 5 parameters follow Parameters are: keytype,
MANY PARAMETERS. KEY=in BUILD. keylocation, keysize, and
optionally, keyblocking,
and DUP or DUPLICATE.
1017 ‘KEY’ TYPE VALUE INVALID. | Invalid key type specified after Key types may be: B, I, D,
KEY= in BUILD. R, L, N, P,*. Enter one of
correct types.
1018 ‘KEY’ POSITION VALUE The key location is missing from | Enter required key/location
ABSENT. KEY= in BUILD command. parameter following key-
type in KEY= specification.
1019 ‘KEY' POSITION VALUE Invalid keylocation parameter Key location is specified as
INVALID. specified after KEY=in BUILD. integer between 1 and num-
ber of bytes in record.
1020 ‘KEY’ SIZE VALUE RE- The key size is missing from Enter required keysize
QUIRED AND ABSENT. KEY= in BUILD command. parameter after keylocation
in KEY= specification.
1021 ‘KEY’ SIZE VALUE INVALID. Invalid keysize parameter Key size is specified as the
specified after KEY=in BUILD. number of bytes in the key;
refer to table 2-2 for legal
sizes for each key type.
1022 ‘KEY’ BLOCKING FACTOR Invalid key blocking parameter Specify keyblocking as an
VALUE INVALID. specified after KEY= in BUILD. even number equal to or
greater than 4; or omit for
key blocks with four keys
per block.
1023 CONFLICTING OPTIONS Check command syntax
1024 MISSING CLOSING QUOTE Check command syntax
1025 ‘KEY’ ‘DUPLICATE’ Key word DUP or DUPLICATE Enter DUP or DUPLICATE

EXPECTED.

expected in KEY= specification.

or remove terminating
commas.

Table A-4. KSAMUTIL Error Codes and Messages (continued)

CODE MESSAGE MEANING ACTION

1026 ‘DISC’ MUST BE FOLLOWED Key word DISC in BUILD com- Reenter DISC= followed

BY '='. mand was specified without =. by up to 3 parameters
describing disc file, or omit
for defaults.

1027 ‘DISC’ NUMBER OF Value of numrecs parameter Enter maximum number of
RECORDS VALUE INVALID. to DISC= not a positive integer. records as file size, or omit

for default value of 1023
records.

1028 ‘DISC’ NUMBER OF EX- Value of numextents not in Enter integer between 1
TENTS VALUE INVALID. range 1-32. and 32, or omit for default

value of 8 extents.

1029 ‘DISC’ INITIAL ALLOCA- Value of initalloc not in range Enter integer between 1
TION VALUE INVALID. 1-32. and 32, or omit for default

value of 1 extent allocated
when file is opened.

1030 ‘LABELS’ NOT FOLLOWED Key word LABELS in BUILD Reenter LABELS= followed
BY ‘=" OR BY TOO MANY command was specified with- by one parameter to specify
PARAMETERS. out = or had more than 1 number of user labels, or

parameter. omit for default of 0.

1031 ‘LABELS’ NUMBER OF
LABELS VALUE INVALID.

1032 ‘FIRSTREC’ NOT FOLLOWED Key word FIRSTREC in BUILD | Reenter FIRSTREC= fol-
BY ‘=" OR BY TOO MANY command was specified without | lowed by starting record
PARAMETERS. = or had more than 1 parameter. | number, or omit to start

numbering records with
zero.

1033 ‘FIRSTREC’ STARTING Value other than 0 or 1 entered Enter correct value or omit
RECORD NUMBER MUST BE for first record number. for default of 0.

O0OR 1.

1034 ‘CODE’ NOT FOLLOWED BY Key word CODE in BUILD Reenter CODE= followed
‘=" OR BY TOO MANY command was specified with- by filecode, or omit for
PARAMETERS. out = or had more than one file code of zero.

parameter.

1035 ‘CODE’ FILE NUMBER Value not in range 0 through Enter positive integer
VALUE INVALID. 1023 entered for file code. between 0 and 1023, or

omit for default of 0.
1036 ‘KEYDEV’ FOLLOWED BY Key word KEYDEV= in Reenter with one parameter

TOO MANY PARAMETERS.

BUILD command was speci-
fied with more than 1
parameter.

to specify device class or
logical device number of
key file, or omit for DISC.

A-10

Table A-4. KSAMUTIL Error Codes and Messages (continued)

CODE

MESSAGE

MEANING

ACTION

1037

1038

1039

1040

1041

1042

1043

1044

1045

‘KEYDEV’ MUST BE FOL-
LOWED BY ‘="

‘KEYDEV’' DEVICE PARAM-
ETER VALUE TOO LONG
OR ABSENT.

‘KEYFILE’ NOT FOLLOWED
BY =" OR BY TOO MANY
PARAMETERS.

KEY FILE NAME TOO LONG
OR ABSENT.

'KEYENTRIES’ NOT FOL-
LOWED BY ‘=" OR BY TOO
MANY PARAMETERS.

'KEYENTRIES’ NUMBER OF
ENTRIES VALUE INVALID.

KEYWORD SPECIFICATION
IN THIS COMMAND IS IN-
VALID.

DELIMITER AT THE END
OF A SPECIFICATION IS
INVALID.

THE NUMBER OF PARAM-
ETERS IN THIS COMMAND
IS INVALID.

‘Key word KEYDEV not followed

by =.

Key word KEYDEV= must be
followed by valid device
parameter.

Key word KEYFILE in BUILD
command was specified with-
out = or had more than 1
parameter.

File name specified as KEY-
FILE= parameter is more than
8 characters or was omitted.

Key word KEYENTRIES in
BUILD command was specified
without =, or had more than 1
parameter.

A key word specified as a
KSAMUTIL command
parameter is misspelled or
not in syntax.

A delimiter follows command
specification in KSAMUTIL
command.

Too many or too few param-
eters specified in a KSAMUT | L
command.

Reenter KEYDEV=, or
omit for default device
class DISC.

Reenter with device class
specified as 1 to 8 alpha-
numeric characters begin-
ning with letter, terminated
by non-alphanumeric char-
acter, or reenter with logical
device number, or omit for
default DISC.

Reenter KEYFILE= fol-
lowed by actual file desig-
nator of key file.

Reenter KEYFILE= with
correct file name format.
{Refer to BUILD descrip-
tion in manual.)

Reenter KEYENTRIES=
followed by the maximum
number of primary key
entries expected in the key
file, or omit for default

of numrecs value from
REC=parameter.

Check command syntax for
correct key word and/or
spelling; reenter correctly.

Remove delimiter or follow
with rest of command.

Check command syntax
and reenter with the cor-
rect number of parameters.

A-11

Table A-4. KSAMUTIL Error Codes and Messages (continued)

CODE MESSAGE MEANING ACTION

1046 A PARAMETER VALUE IS The key word TEMP was ex- Check command syntax,
INVALID. ‘'TEMP’ WAS pected as a parameter in reenter with correct
EXPECTED. PURGE or RENAME parameter value.

commands.

1047 LOCKWORD NOT Check command syntax;
ALLOWED IN KEY FILE remove lockword from key

file specification.

1048 GROUP AND/OR ACCOUNT Check command syntax of
NOT ALLOWED FOR BUILD command.
KEYFILE=

1049 BACK REFERENCE NOT
ALLOWED ON formal-
designator

1050 SEQ=SEQUENCE NUMBER Non-numeric sequence Check command syntax
IS INVALID number specified for of KEYSEQ or KEYDUMP

SEQ= parameter. commands.

1051 SUBSET= VALUE Either the starting Check command syntax of
INVALID position or the number KEYDUMP command

of key values to be dumped
is invaled.

1052 SEQ= SYNTAX ERROR Check command syntax of
KEYSEQ or KEYINFO
command.

1053 SEQ= PARAMETER LIST Not enough information in Enter parameter value for

EXHAUSTED parameter list; key SEQ=in KEYSEQ or
number missing. KEYDUMP commands.

1054 FILE= PARAMETER Not enough information in Enter file name after
LIST EXHAUSTED parameter list; file name FILE=in KEYDUMP

missing. command.

1055 FILE= SYNTAX ERROR Check command syntax of
KEYDUMP command.

1056 SUBSET=PARAMETER Not enough information in Check command syntax of
LIST EXHAUSTED parameter list. KEYDUMP; enter correct

number of parameters.

1057 SUBSET=SYNTAX ERROR Check command syntax of
KEYDUMP command.

1058 INVALID KEY Key number specified in Key number is 1 for primary
SEQUENCE SEQ= parameter is greater key, 2 for first alternate key,

SPECIFICATION

than the number of keys
in file.

etc. Use VERIFY command
to check number of keys
in file.

A-12

Table A-4. KSAMUTIL Error Codes and Messages (continued)

CODE MESSAGE MEANING ACTION

1059 FILE SPECIFIED File name specified in Enter name of non-existent
IN FILE= ALREADY FILE= parameter is an file, or rename permanent file.
EXISTS existing permanent file;

KEYDUMP always creates
a new file.

1060 B-TREE HAS MORE THAN KEYDUMP cannot dump more
20 LEVELS than 20 levels of the key file

structure.

1061 INVALID DECIMAL DIGIT Packed decimal digit is not
OR DIGIT COUNT >28 0-9, or there are more than

28 digits. Cannot convert to
ASCIt for KEYDUMP.

1062 THE REFERENCED FILE File reference in the Check file name and
IS NOT A KSAM FILE command is not a KSAM file. correct it.

1063 RECORD SIZE OF THE Record size of the file Check KEYDUMP syntax;
SPECIFIED FILE HAS specified in FILE= change :FILE command so
BEEN CHANGED parameter of KEYDUMP that record size is not

has been changed by a specified.
:FILE command.

1064 GENERIC OR APPROXI- Generic or approximate Use full key value in
MATE SEARCH NOT keys can be specified in SUBSET= or do not use
ALLOWED FOR KEY SUBSET= parameter of SUBSET= parameter.
TYPE KEYDUMP only if key

type is BYTE, INTEGER,
or DOUBLE.

1065 ILLEGAL OR TOO Position value of SUBSET= Change position value, or
MANY CHARACTERS parameter in KEYDUMP use quoted string for

contains non-numeric SUBSET= parameter.
characters, or is >9 digits.

1066 REMOTE FILE ACCESS A :FILE command specified Change :FILE command
NOT SUPPORTED a remote file, but this com- to specify local file.

mand does not support
remote access.

1067 SORT ON RECORD Sort of keydump by record Check the reasons for
POINTERS FAILS pointers (SORT option of failure in SORT error

KEYDUMP) failed during message.
sort by SORT/3000 program.
1068 SYSTEM FAILURE KSAM file was open when a Run KEYINFO command

OCCURRED WHILE
THE KSAM FILE WAS
OPEN

system failure occurred, and
file may be damaged.

to recover file and reset flag

so file can be opened, or run
VERIFY with NOCHECK to
examine file.

A-13

A-13a
MAY 1981

Table A-4. KSAMUTIL Error Codes and Messages (continued)

CODE MESSAGE MEANING ACTION
1069 UNEXPECTED The only non-alphanu- Check the file name
CHARACTERIN meric characters allowed and correct it.
FILE NAME; in a file name are *’.” or
EXPECTED . or / “pr.
MAY 1981 A-13b

Table A-5. FCOPY Warning and Error Messages

CODE MESSAGE MEANING ACTION
None <CONTROL Y> Acknowledges receipt of a None.
CONTROL-Y entered during
a session.
None READ ERROR FROM An error occurred while read- In a job:
COMMAND IMPUTFILE ing an FCOPY command from Re-submit the job.
$STDIN. In a session:
Re-enter the command.
None WRITE ERROR TO COM- An error occurred while writ- More than likely nothing
MAND LISTFILE ing an FCOPY message to serious has occurred and
$STDLIST. all FCOPY operations have
been performed success-
fully. If you want to be
sure, however, do the
following:
In a job:
Re-submit the job.
In a session:
Re-enter the most recent
FCOPY command.
3 SYNTAX ERROR: IN The subset function was not
SUBSET OPTION specified properly.
4 SYNTAX ERROR: IN The title option of the disptay
TITLE OPTION function was not specified
properly.
5 SYNTAX ERROR: IN The ignore errors function was
IGNERR OPTION not specified properly.
6 SYNTAX ERROR: IN The verify function was not
VERIFY OPTION specified properly.
In a job:
7 SYNTAX ERROR: IN The skip end-of-file function Correct the command and
SKIPEOF OPTION was not specified properly. re-submit the job.
8 SYNTAX ERROR: IN The compare function was not In a session:
COMPARE OPTION specified properly. Re-enter the command
using the correct format.
9 SYNTAX ERROR: IN The new file function was not
NEW OPTION specified properly.
10 SYNTAX ERROR: IN The display hexadecimal func-

HEX OPTION

tion was not specified properly.

1

SYNTAX ERROR: IN
EBCDICOUT OPTION

The EBCDICOUT character
translate function was not
specified properly.

A-14

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION
12 SYNTAX ERROR: IN The display character function
CHAR OPTION was not specified properly
13 SYNTAX ERROR: IN OCTAL | The display octal function was
OPTION not specified properly.
14 SYNTAX ERROR: IN UP- The upshift function was not
SHIFT OPTION specified properly.
In a job:
15 SYNTAX ERROR: IN The BCDICIN character trans- Correct the command and
BCDICIN OPTION late was not specified properly. resubmit the job.
16 SYNTAX ERROR: IN The NORECNUM option of In a session:
NORECNUM OPTION the display function was not Re-enter the command
specified properly. using the correct format.
17 SYNTAX ERROR: IN The EBCDICIN character trans-
EBCDICIN OPTION late function was not specified
properly.
18 SYNTAX ERROR: IN The BCDICOUT character
BCDICOUT OPTION translate function was not
specified properly.
19 SYNTAX ERROR: IN- The EXIT command was not None. FCOPY terminates.
VALID FORM OF EXIT specified properly.
COMMAND
51 SYNTAX ERROR: IN The characterstring specified
QUOTED STRING for the subset function is not
valid.
52 SYNTAX ERROR: INBIT The patternlist specified for the
PATTERN subset function is not valid.
53 SYNTAX ERROR: IN- An integer specified is outside
VALID INTEGER the range atlowed for the
particular FCOPY function. In a job:
— - Correct the command and
54 SYNTAX ERROR: UN- One of the specified functions resubmit the job.
KNOWN OPTION NAME was unrecognizable. .
In a session:
b5 SYNTAX ERROR: IN FROM- The “from’ file was not speci- Re-enter the command
FILE SPECIFIER fied properly. using the correct format.
56 SYNTAX ERROR: IN The “to" file was not specified
TOFILE SPECIFIER properly.
b7 SYNTAX ERROR: ILLEGAL Two or more functionlist entries
COMBINATION OF OPTIONS conflict with one another.
58 SYNTAX ERROR: FROM- FROM= and TO= were not both

FILE AND TOFILE NOT
BOTH SPECIFIED

specified in the FCOPY
command.

A-15

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION
59 SYNTAX ERROR: ILLEGAL The context used to specify a
USE OF NEW new ““to” file is not valid.
In a job:
60 SYNTAX ERROR: ILLEGAL The context used to specify * Correct the command and
USE OF * as a “from” file or "'to”’ file resubmit the job.
is not valid.
In a session:
62 SYNTAX ERROR: FILE The “from’’ or “to” file name Re-enter the command
NAME TOO LONG specified is longer than the 35 using the correct format.
characters allowed in a fully-
qualified file name with
lockword.
102 CAN’T CLOSE FROMFILE MPE can’t close the ““from’’
file. This message is followed
by an MPE file information
display containing (among
other things) an error Look up the error number
number. in table A-1 and act
103 CAN'T CLOSE TOFILE MPE can’t close the “'to” file. accordingly.
This message is followed by an
MPE file information display
containing (among other
things) an error number.
104 CAN'T SAVE NEW MPE can't close the ““to’ file If you don’t have SF
TOFILE as a permanent file. Either capability, you can’t per-
you do not have SF capability form the operation.
or there is not enough group If there is not enough file
account, or system file space. space, purge some un-
needed files to free some
file space.
105 CAN'T OPEN FROM FILE MPE can’t open the ““from”’
file. This message is followed
by an MPE file information
display containing (among
other things) an error number. Look up the error number
in table A-1 and act
106 CAN‘T OPEN TOFILE MPE can’t open the ““to’’ file.

This message is followed by
an MPE file information dis-
play containing (among other
things) an error number.

accordingly.

A-16

Table A-5; FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION
107 VERIFY OR COMPARE MPE can’t get read access to Reset the particular :FILE
OPTION: CAN'T GET the “to” file for a verify or command (using the MPE
READ ACCESS TO compare operation. The read :RESET command) and
TOFILE access specified in the file label retry the operation.
has been overridden by an
MPE :FILE command contain-
ing ACC=APPEND, ACC=0UT,
or ACC=OUTKEEP.
108 ERROR IN CALLING An error prevented MPE from
FGETINFO FOR FROMFILE obtaining information from the
“from" file's label. This mes-
sage is followed by an MPE
file information display contain-
ing (among other things) an Look up the error number
error number. in table A-1 and act
109 ERROR IN CALLING An error prevented MPE from accordingly.
FGETINFOR FOR TOFILE obtaining information from
the "“to’’ file's label. This mes-
sage is followed by an MPE
file information display contain-
ing (among other things) an
error number.
110 IGNERR OPTION: The “from” file’s device is not The ignore errors function
FROMFILE NOT TAPE a magnetic tape unit. cannot be used in this case.
111 CAN’'T GET READ ACCESS MPE can’t get read access to
TO FROMFILE the ““from’’ file. The read access
specified in the file label has
been overridden by an MPE Reset the particular :FILE
:FILE command containing command (using the MPE
ACC=APPEND, ACC=0UT, :RESET command) and
or ACC=OUTKEEP. retry the operation.
112 CAN'T GET WRITE MPE can’t get write access to
ACCESS TO TOFILE the ““to” file. The write access
specified in the file label has
been overridden by an MPE
:FILE command containing
ACC=IN.
113 SKIPEOF OPTION: The skip end-of-file function
FROMFILE NOT TAPE was specified for the ““from”
file and the ‘“from’* file device If the intended “from™ or
is not a magnetic tape unit. “to” file is on magnetic
tape, check the associated
114 SKIPEOF OPTION: The skip end-of-file function MPE :FILE command and

TOFILE NOT TAPE

was specified for the “to” file
and the ““to” file device isnot a
magnetic tape unit.

the back reference to it.

A-17

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION

115 SUBSET OPTION: STRING The characterstring or patternl/ist | Change the specified subset
FALLS QUTSIDE OF specified is greater than the definition to a valid one
FROMFILE RECSIZE record size of the ““from’’ file. and try the operation again.

No such subset can exist in the
specified ““from’ file.

116 CAN'T GET LARGE There is not enough data space Ask the system manager
ENOUGH BUFFER for the buffers needed by the what size data area was

requested operation. FCOPY specified when FCOPY

uses the DL-DB area for vari- was prepared and rerun

able sized buffers. FCOPY specifying a larger
MAXDATA= parameter.
Also make sure that the
system configuration will
accommodate your record
size in the maximum
allowed data segment size.

117 SKIPEOF OPTION: ERROR An error occurred while
WHILE SKIPPING IN skipping end-of-file marks
FROMFILE in the ““from"’ file.

118 SKIPEOF OPTION: ERROR An error occurred while
WHILE SKIPPING IN skipping end-of-file marks Retry the operation.
TOFILE in the “‘to” file.

119 SUBSET OPTION: ERROR An error occurred while
WHILE SPACING IN spacing through the ‘from”

FROMFILE file.

120 SUBSET OPTION: SUBSET The subset specified extends Change the specified subset
STARTS OVER EOF over an end-of-file mark or a definition to a valid one
BOUNDARY tape mark boundary. and try the operation again.

123 SUBSET OPTION: THIS The specified subset requires Check the MPE :FILE com-
INPUT DEVICE DOES NOT backspacing in the “from’ file mand associated with the
BACKSPACE but the device for that file is “from" file and the back

not a disc or magnetic tape. reference to it.

124 READ ERROR IN FROM- An error occurred while spac- Retry the operation.

FILE AT RECORD recnum ing through the “from" file
in search of the start of a
subset.
125 SUBSET OPTION: NUMERIC A subset specified by starting Change the specified subset

SUBSET IS EMPTY

record-number, number-of-
records, and/or last-record-
number does not exist or
contains no data.

definition to a valid one
and try the operation again.

A-18

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION
126 VERIFY OPTION: ERROR An error occurred while spac- Retry the operation.
WHILE REWINDING ing backward to the beginning
FROMFILE of the “from” file at the start
of a verify operation.
127 VERIFY OPTION: ERROR An error occurred while spac- Retry the operation.
WHILE REWINDING ing backward to the beginning
TOFILE of the “to”’ file at the start of
a verify operation.
128 EOF FOUND WHILE An end-of-file mark was en- Retry the operation specify-
SPACING IN FROMFILE countered while spacing ing block numbers instead
through the ““from” file in of record numbers.
search of the start of a sub-
set. This most often occurs OR
when the “from.” fileisa Reblock the tape so each
blocked magnetic tape. For block contains one record
a blocked magnetic tape, the and then retry the
record numbers supplied in operation.
the SUBSET= parameter are
used as block numbers.
129 EOF FOUND WHILE An end-of-file mark was en- Compare operation:
SPACING IN TOFILE countered while spacing The “from” and ‘“to” files
through the ““to” file in are not identical. Display
search of the start of a sub- the “to”’ file to determine
set during a compare or what it actually contains.
verify operation Verify operation:
The copy operation was
not performed correctly.
Retry the operation.
131 ERROR WHILE WRITING An error occurred while
EOF TO TOFILE writing an end-of-file mark
in the ‘'to” file.
132 VERIFY OPTION: ERROR An error occurred while Retry the operation
WHILE SPACING IN THE spacing through the “from”’ M P
FROMFILE file during a verify
operation.
133 VERIFY OPTION: ERROR An error occurred while

WHILE SPACING IN THE
TOFILE

spacing through the “'to’’
file during a verify
operation.

A-19

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION
134 WARNING: FOUND EOF FCOPY has performed the The “to” file was not
IN TOFILE specified opeiation but has large enough. Use the
filled the "“to” file before MPE :LISTF filename, 2
completing the operation. command to determine
the ““to” file’s size and
then increase its size (using
the MPE :PURGE and
:BUILD commands) and-
retry the operation.
135 WRITE ERROR TO An error occurred while Retry the operation.
TOFILE writing to the ““to’’ file.
136 READ ERROR FROM An error occurred while read- Compare operation:
TOFILE ing from the “to” file during Retry the operation. If
a compare or verify operation. the error persists, you
must try to recreate the
“to” file.
Verify operation:
Retry the operation.
137 WARNING: AN UNLABELLED | An operation involving a mag- This is not an error. You
TAPE OPERATION ENDS ON netic tape “from” file was can avoid this message by
AN ERROR terminated by reading beyond reading the “from’’ tape
the end of valid data rather one file at a time and using
than by sensing an end-of-file the keyword SUBSET.
mark.
138 TITLE OPTION: TITLE TOO The title specified for the list In a job:
LONG function is longer than the 70 Correct the command and
characters allowed or it ex- resubmit the job.
tended over more than one line In a session:
(record). Re-enter the command
using the correct format.
139 DUMP OPTION: TOFILE A file display was directed to Change the record size of

RECSIZE NOT WITHIN
LEGAL LIMIT

an intermediate storage device
with an incorrect record size.
That record size must be = 60
bytes (30 words).

the intermediate storage
file (using the MPE
:PURGE and :BUILD
commands) so that it is
within the allowed range
and then retry the oper-
ation.

A-20

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION
140 COMPARE OR VERIFY The compare or verify operation | Compare operation:
OPTION: OPERATION was not attempted because the None. The compare oper-
FAILS; DIFFERENT record sizes of the “to’”” and ation revealed that the
FIXED RECSIZES “from’’ files are not identical. fixed record sizes of the
two files are not identical.
Verify operation:
Change the record size of
the "“to” file (using the
MPE :PURGE and :BUILD
commands) so that it is
the same as that of the
“from” file and then retry
the operation.
141 COMPARE BEGINS The comparison phase of a None.
verify operation has begun.
143 WARNING: FROMFILE IS The “from” file contained None. You may have acci-
EMPTY no data. Nothing was copied dentally specified the
or compared. wrong file as the “from"’
file.
144 NEW OPTION: FILE The “to"” file named for the Change the name of the
ALREADY EXISTS new file function already exists *“to” file and try the oper-
in the specified (or implied) ation again.
group and account.
145 BACKSPACE ERROR IN An error occurred while spacing Retry the operation.
FROMFILE backward to the beginning of
the “from” file or a subset
within it.
200 WARNING: FROMFILE The record sizes of the “from”’ In a job:

RECSIZE IS number type,
TOFILE RECSIZE IS
number type

and ‘‘to’’ files are not identical.

FCOPY performs the speci-
fied operation despite the
conflict.

In a session:

You are given the choice
whether or not to continue
the operation.

Note that if the “from"”
record size is larger than
the ““to”’ record size, the
““from”’ records would be
truncated. !f the ""to”’
record size is larger than
the “from”’ record size, the
content of the excess byte
positions in the “to”
records is unpredictable.

A-21

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION

201 WARNING: FROMFILE IS The data formats of the “from” | /n a job:

ASCII, TOFILE IS BINARY and ““to” files are not identical. FCOPY performs the oper-

or ation despite the conflict.

WARNING: FROMFILE IS In a session:

BINARY, TOFILE IS ASCII You are given the choice
whether or not to continue
the operation.

301 READ ERROR IN An error occurred while read- Retry the operation. If
FROMFILE AT RECORD ing from the “from”’ file at the error persists, use the
recnum the record number displayed subset function to copy

(recnum). all of the file except the
erroneous record.

302 VERIFY OPTION: RAN The verify function was Retry the operation specify-
OUT OF VERIFY ERRORS terminated because the speci- ing a larger number-of-

AT FROMFILE RECORD fied maximum number of errors parameter.

recnum errors has been exceeded at

the record number displayed
(recnum).

304 COMPARE OPTION: RAN The compare function was Retry the operation specify-
OUT OF COMPARE ERRORS terminated because the speci- ing a larger numper-of-

AT FROMFILE RECORD fied maximum number of errors parameter

recnum errors has been exceeded at

the record number displayed
(recnum).

901 KSAM FROMFILE The beginning or end of the
BOUNDARY (EOF OR BOF) from file was reached during

the copy operation.

902 KSAM FROMFILE Could not position to desired Try again.

POSITIONING ERROR place.

903 ERROR; WRONG CONDI- From file is not a KSAM Create a KSAM file before

TIONS FOR OPENING
NEW KSAM FILE

file, or NOKSAM was
specified.

running FCOPY and copy
to that file.

A-22

KSAM/3000 INTERNAL
STRUCTURE AND TECHNIQUES || B

OVERVIEW

KSAM files can be used efficiently without any knowledge of how the files are structured or how

file blocking and size is determined. The default values provided for file capacity, key blocking, num-
ber of key entries, and so forth are effective in many applications. This appendix provides the sophis-
ticated programming staff with information on how KSAM files are structured, how disc space is
allocated to a KSAM file, and how memory space is allocated for the Extra Data Segments used when
a KSAM file is modified or accessed. Such information may be useful for improving performance
based on the particular application.

KSAM FILE STRUCTURE

A KSAM/3000 file is two physical files: a data file and a key file. The data file portion of a KSAM
file contains all the data in the file and contains nothing but the data. Data records are written to the
data file in the order in which they are received from a program. (The last record added is always
written to the end of the file.) This chronological order is not necessarily in sequence by key value.
At the time the file is opened, you can specify that records must be written in primary key sequence,
but the default mode is to write records in any order.

The key file portion of a KSAM file contains the key entries that maintain the sequence of the data
records. As a data record is written to the data file, a key entry is added for each key defined for the
file, and the sequential connections between key entries maintained. This means that if there is a pri-
mary key and two alternate keys, three key entries are added with each new data record, and three
sets of pointers are updated to reflect the new key sequence of each key.

The structure of the data file is like that of any MPE file. Data records may be fixed or variable in
length. If fixed, each record is the size specified when the file is created (default size is equivalent to
one 128-word disc sector). If variable, the actual size of each record is included in the record itself,
and the maximum size of any record is used to determine the blocking. By default, data records are
blocked one record per block.

The structure of the key file is more complex. The key file is organized so that locating a particular
key requires the least number of accesses. For this purpose, the key files are organized in a particular
structure known as a “B-Tree’)! B-tree structure has two main advantages:

° The number of file accesses is limited to the number of levels in the tree. If there are two levels,
no more than two reads of the key file are needed to locate a particular key.

° The key file is balanced. This means that each level pointer associated with a particular key value
points to approximately as many higher key values as lower key values at the next level of the
tree.

B-tree structure in general is discussed below, followed by a discussion of how KSAM key files use
this structure.

! Described in ““Organization and Maintenance of Large Ordered Indexes”, Bayer and McCreight, Acta Informatica, Springer Verlag
1972, pp 173-189.

B-1

B-TREE STRUCTURE

In a B-tree, there is always one root level block that points to blocks at a lower level. At the lowest
level, the blocks are called leaves and they do not reference another level. In a two-level structure (see
figure B-1), the blocks at the second level are all ’leaves”. If the tree has more than two levels, inter-
mediate blocks (nodes or branches) are referenced by a higher level and themselves reference a lower
level. Unless this lower level is a leaf, it also references a lower level. This continues until the lowest
(leaf) level is reached.

The notion of higher and lower level does not refer to the key values. The root block key values are
always central and point to blocks with lower values and blocks with higher values. Thus if there are
two entries at the root or a branch level, there will be three pointers to the next level: one for key
values less than the first key value, one for key values less than the second key value but greater than
the first, and one for key values greater than the second.

Within each block, values are stored in ascending order. Although not all blocks are filled with values,
each block in a tree is the same size. Figure B-1 illustrates a simple 2-level tree with one root block
and three leaf blocks. The root is a single block and each leaf is a block of the same size. (This example
uses the KSAM minimum key block size consisting of four key entries per block.)

e = Pointer

o]l 6 [¢o] 12 [oF= < Root

> | 7 |e| 8 |o] 9 |o] 10 |e Leaves

Figure B-1. Two-Level B-Tree Structure

ADDING OR DELETING KEYS. When a key block is full and new keys are added, the root level
block may need to be split, causing a new root block to be introduced and adding a new level to the
tree. This process is illustrated in figure B-2 where the addition of one new key to a partially filled
block does not affect the tree structure, but the addition of a second key to the full block causes
the block to split.

Again, this example assumes the minimum key block size for the sake of simplicity. Note that all
key file maintenance is performed in the KSAM extra data segment where space is allocated for one
more key than the key block size. This allows the addition of a key to a ““full”” block. Before the
block is read back into the key file, it is split so that the key block size is maintained.

<:) initial root block

0103050/A

1. Insert key value “4"*:

o| 1 3 4 5 | |<C———— root block full
)\/

insert “4" 7 shift “5" to right

2. Insert key value “2" into full block:

HiZZ1ERIERIERE

shift ‘3" & “4" to rIght

insert “2" -\
- T

1 2 3 4 5 11
- LJ

shift “’5"" to special location

K- middle value selected for new root block

3. Split block in order to maintain block size:

o] 3 07/ / // <::Inewrootblock

‘_, - 3" is selected for new root
since it is middle key value

ol 1 2 [72 4 o]l 4 5 <:! new leaves

Figure B-2. Split Causes New Level in Tree

When the root block and all the leaves are full, another split becomes necessary. Figure B-3 illustrates
a split caused when a new key is added to a full two-level tree structure, forcing it to a three-level
structure.

B-3

2-Level Key
Block Structure
{all blocks full)

Insertion of
key value 9
causes block
split

3-Level Key
Block Structure
(shaded entries
empty)

-
-
——

»l 16 l»l 21 —FI<— root (father)

—| 2 =[] 2] 4
e[17 [o]| 10fe] 20]]
—={e[12 [13]ef1a [o] 15 o]
—[o [7] s]

leaves (sons)

SNAERR PR

3l o]

. . . root (father)

N NN N\ P——
== =F
[e [T
[=T

25 H

leaves (sons)

ERERANNENND

—] 9 [10 RN
—>|.| 6 H 7 |.®.N.I

e S RNCENCERIRED

Figure B-3. Tree Growth from Two to Three Levels

Note that key blocks must always be defined with an even number of keys. As a result, when a key
is added to a full block, there will be a middle value to form a block at a new level. This maintains
the balance essential to B-tree structure.

As records are deleted from the data file, two blocks at the same level (brothers) may be merged into
one block. If sufficient records are deleted, the root block may be merged into a higher level, thereby
contracting the number of levels in the key structure.

B4

KSAM KEY FILE STRUCTURE

A KSAM key file consists of three types of information:

° Control — contains general control information such as the KSAM file name, and
the number of keys defined for the file.

° Key descriptor — contains general key information for each key such as the starting loca-
tion in the data record of the key field, and the location in the key file
of the root key entry.

] Key entries — Each key entry contains information about a key associated with a data
record. This information consists of:

® the key value
® a pointer into a data record in the data file with the same key value.

® pointers into other records within the key file.

The control and key descriptor information is contained in two blocks (physical records) at the be-
ginning of each file. Regardless of the number of keys in the file, each block is 128 words (1 sector)
long. Thus, every key file is preceded by two sectors of control and key descriptor information.

The key entries are also organized into blocks of a fixed size. However, the exact number of blocks
and the size of each block is based on a variety of factors, such as the key size, the number of keys
in the file, the number of key values for each key, the key blocking factor, and so forth. (Calculation
of key block size is discussed later in this section.) These key entry blocks are organized into the B-
tree structure discussed above. A separate key structure is maintained for each key defined for the
file. Thus there may be up to 16 separate tree structures in a single KSAM file.

Refer to figure B-4 for a simplified diagram of a KSAM key file with two keys each organized into
a two level tree structure. For a detailed description of the three types of block, refer to figures B-5

and B-6.

CONTROL BLOCK. This 128-word block contains information on the data file associated with the
key file, and keeps track of the number and type of access to the key file. It also specifies the number
of keys (primary and alternate) defined for the KSAM file. The name of the data file and the number
of keys are essential for associating the key file with the data file. The number of keys determines
how many entries are in the Key Descriptor Block. (Refer to figure B-5.)

KEY DESCRIPTOR BLOCK. This 128-word block contains one 8-word entry for each key defined
for the KSAM file. The first entry describes the primary key, the next entry describes the first al-
ternate key (if there is one), and each subsequent entry describes any additional alternate keys. The
first word of each entry points to the root block for that key; another important item is the location
of the key in the data file record. (Refer to figure B-5.)

B-5

Data File Name

l r— No. of Keys

FILEX 2 «—————————— Control Block

p 1 «———— Key Descriptor Block

to Alternate

Key Root

Block

. NN 1
> 6 le| 12 p&\ok\o@ root (father)
»10| 14 |o] 18 [e] 36 |o] 42 |e
> N \
»le|l 7 o] 11 o\\\ obm\\\o
leaves (sons)
to Primary
Key Root \Q \
Block it b B N BRI M NN NN
Key
— Entry
y shaded areas available Blocks
¢l BC |¢| GH |e¢ . o |<«—— root (father) for new entries
o] JM |e] MX |o] NO |e} XT e
- N)
»le] DC |e]| EE o&\o$\o
leaves (sons)

. NANN
»le] AA |e] AC o\\o&o

Primary Key Sequence = AA AC BC DC EE GH JM MX NO XT
Alternate Key Sequence= 2 5 6 7 11 12 14 18 36 42

e = Pointer to next level in tree

Figure B-4. KSAM Key File Structure With Two Keys

B-6

CONTROL BLOCK (first block in each key file)

4

L Total file access

counts, used by

VERIFY command

KEY DESCRIPTOR BLOCK
34 78

identifies data file
associated with
key file

« specifies number of
keys defined for file

g
o
=
o}

15

Disc Address of Root Block

-

key size

Word
0-3 Data File Name
4-15 Date/Time
16-17 Version/Fix
18-19 # Records in Data File
20-21 #Blocks in Data File
22 # Words in Last Data File Block
23 Data File Blocking Factor
24 Data File Record Size
Intrinsic Calls
25-58 {each a double word)
59-60 Key Block Read Counter
61-62 Key Block Write Counter
63-64 Key Block Split Counter
- S S
77 # Keys
128} }
bits= 0 1
pointer to primary »
key root block
keytype |
location in data record >

of primary key

pointer to 1st alternate >

key root block

location in data record >
of 1st alternate key

user name, account, group,

& home group

(4 words each) set by

KEYINFO

key starting location

primary

D]

key blocking factor

key

(D=Duplicate key flag)

of tree levels I

reserved

0 N OO A WN =

s Alternate

Key 1

S

addijtional entries for up
to 15 alternate keys

>

user who recovered file last

2

Figure B-5. Control Block and Key Descriptor Block

B-7

KEY ENTRY BLOCKS. Each block in the key file contains, in addition to the key values, pointers
that link the key blocks to each other and pointers that link each key value to an associated data
record. Preceding these entries, the first item in every key block is the address of the block on disc;
the next item is the number of keys in the key block.

All key block access for search and modification is performed in the KSAM extra data segment.
The disc address in each key block insures that the block is returned to its correct location on disc
from the extra data segment.

Figure B-6 illustrates the general layout of all key entry blocks. Each key value is followed by a
pointer to a data record and a pointer to the block at the next level with higher key values. The first
pointer in each block points to a block at the next level with lower key values. These pointers are set
to zero for key blocks that have no next level (the leaves on a tree structure).

KEY ENTRY BLOCK
Disc Address of Block +——— 2 words
Extra 5 words { # of Keys in Block +——— 1 word
Pointer to Next Level in Tree +———2 words
Key Value
Key Entry <
Pointer to Record in Data File +———2 words
Pointer to Next Level in Tree <+———— 2 words
Key Value
Key Entry <
Pointer to Record in Data File +———2 words
Pointer to Next Level in Tree +——2 words
Key Value
Key Entry <
Pointer to Record in Data File +———-2 words
{ Pointer to Next Level in Tree +——2 words

Figure B-6. Key Entry Block Structure

B-8 MAY 1981

RELATION OF KEY TO DATA FILE

The purpose of the KSAM key file is to maintain the order of data records in the data file. In order

to maintain sequential order for each key, the keys blocks are connected through pointers. In addition
to these pointers, each key entry must also contain a pointer linking the key value to the data record
containing the corresponding key value.

When the KSAM file is created, each key is defined by its starting location in the data record, its
length, and its type. The location is specified as the character position where the key value starts;
the length is the maximum number of characters used by the key value; its type is the type of the
value such as, an integer, a character string, or a double-word integer.

Thus, if the primary key is defined as a character string that starts in character position 3 and is 20
characters long, then KSAM expects that each data record will contain such a value in that location.
Whatever is placed in the defined location is treated as the primary key and determines the order in
which data records are sequenced.

The order in which records are physically written to the date file is called chronological sequence.
This sequence may or may not also be a key sequence. If the records were written to the file in pri-
mary key sequence, then this sequence and the chronological sequence are the same. If there is an
alternate key for the file, however, it is very unlikely that alternate key sequence is the same as the
chronological sequence.

NOTE

Key sequence in KSAM files is always in ascending order by
key value.

Refer to figure B-7 for a simplified diagram of the relation between the primary keys in the key file
and the associated data records in the data file. (A similar diagram could be set up for the alternate
key.) The diagram shows the pointer in each key entry pointing directly to a record in the data file.

When a data record is to be located by key value, the root block for the appropriate key is searched
first, using a binary search method. If the key is in the root block, the search is over. If it is not, the
key value is between two root block values or it is less than the lowest value or greater than the
highest. Using the pointer in the appropriate location, a block at the next level is located. This block
is then searched for the selected key. Again, if the key is found, the search is over. If the key is not
found at this level, the appropriate pointer to the next level is used and the search continues.

When the selected key value is found, the pointer to the data file associated with that key value is
used to locate the record in the data file.

B-9

KEY FILE DATA FILE

(KFILEX) (FILEX)
Data ¢ *
Filename No. of Keys
FILEX 2 }«—— Control Block
Primary Key Alternate Key (key blocks not shown)
P] - 1 —
o] 3 o] 25 }«—— Key Descriptor
Block byte 3 byte 25
? Record
. \] Y No
Primary Pointer to Data Record L BCI - .
Key - 0
Location
> |GH| I 6 1
191 BC 16|9f GH [élq \o\\o
Pointer to \ N
! »| |MX 36
Root Block . . r . 2
|0 JM 1 l'l MXs i|0] NO olXT iple
l l l : NO 18
> 3
> | XT l 14
4
Y AN BN \ M 2|
i B S NI
> EE 12
Pointer to 6
next level
Key Block »| |DC 2 ,
\
I T N \,
! ' N AC 5
»| [AA 11
9
Primary key sequence: AA AC BC DC EE GH JM MX NO XT
Chronological sequence: BC GH MX NO XT JM EE DC AC AA

Alternate key sequence: 2 5 6 7 11 12 14 18 36 42
Chronological sequence: 7 6 36 18 14 42 12 2 5 11

Figure B-7. Data File/Key File Relation
B-10

KSAM FILE SIZE

The size of the data file is calculated from the maximum number of data records times the size of
each record (for fixed length records). For variable length records, it is calculated from the maximum
number of data blocks times the size of each block. By default, a KSAM data file contains 1024 rec-
ords (or blocks) in which each record (or block) is 1024 words long. This default size fits each block
into eight disc sectors (each sector is 128 words long), and results in a data file of 8192 sectors.

Calculation of key file size is more complex. It is based on the total number of keys in the file (pri-
mary and alternate), the size of each key entry (including overhead), the expected number of data
records specified when the file is built, plus space to allow for block splitting when the number of
key entries increases.

The number of key entries per key is usually exactly the same as the number of data records expected.
By default, KSAM uses the maximum number of data records specified, or the default value of 1024
records. This number is multiplied by each key in addition to the primary key to arrive at the total
number of key entries in the file.

The size of each key entry and the number of key entries per block (the blocking factor) is used to
determine key block size. Since all blocks in the key file must be the same size, KSAM adjusts the
blocking factor so that all keys, regardless of entry size, use the same block size. Also, this blocking
factor may be adjusted so that disc sector space is not wasted. (A block always starts on a sector
boundary.) By default, the blocking factor is adjusted so that a block size of 1024 words is used for
all key blocks for all keys in the file.

Because of the nature of the B-tree structure, enough room must be left in the key file so that the
file can be increased in a balanced manner. When block splitting occurs as a result of adding new key
values, up to half of each key block may have empty slots. To allow for such expansion, the key file
size is calculated, and then doubled.

The following discussion describes exactly how KSAM calculates the key block size, and then the
total key file size. These calculations are useful primarily if you do not use default values for the key
blocking factor and for the number of key entries. In such a case, they may help you determine the
most effective block size and file size for your application.

KEY BLOCK SIZE

Key block size can affect the complexity of the tree structure and this complexity can affect access
time. In order to understand the relation between block size and access time, consider the following
general rules:

. The larger the block, the less often it has to split and the fewer the splits, the fewer levels to
the tree.

. The more levels to the tree, the more mass storage retrieval time is needed to locate a particular
key value.

From this it would follow that in order to reduce access time, you should define large blocks. This
is true only up to a point. Depending on the total number of key values expected in the file, a large
block size may result in a great deal of unused space in each block. Also, the blocking factor may
result in unused disc space since all blocks must start on sector boundaries.

B-11

KSAM provides a default blocking factor that produces a block with 1024 (1K) words. This size has
proved to be efficient for many files. You may, however, override this default blocking by specifying
avalue in the keyblocking parameter of the ;KEY= option in the BUILD command, or in word 19

of the FOPEN ksamparam parameter. Note that any blocking factor you specify is a minimum value
since KSAM may increase the blocking factor so that the least amount of disc space is wasted.

After creating a KSAM file, you can use the VERIFY command of KSAMUTIL to determine the
number of levels needed by the KSAM file. The VERIFY listing will also tell you the actual blocking
factor used in creating the file so you can find out whether your specified blocking factor has been
increased.

CALCULATING KEY BLOCK SIZE. Key block size is based on a number of factors:

e The key size is bytes (KS)
° The key entry size in words (ES).
° The number of key entries per block, the blocking factor (BF).

Once the block size is determined, the number of sectors needed to hold one block is calculated. If
this value (NB) wastes sector space, KSAM adjusts the blocking factor to produce a block size that
uses the least number of sectors by filling each sector as completely as possible. Note that when KSAM
uses the default block size of 1024, it calculates a blocking factor by the same method.

The following steps show how KSAM determines block size based on a specified minimum blocking
factor.

NOTE

The notation L _| means round down the result of the enclosed
algorithm to the next whole number;™ 71 means round it up.

1. Calculate the entry size (ES) in words from the key size (KS) in bytes, and then add two words
for each pointer in the key entry (see figure B-6). KSAM uses the following algorithm to per-
form this calculation:

ES=L (KS+1)/2 1+ 4

2. If the blocking factor (BF) was specified as an odd number, KSAM issues an error message.
Otherwise, it uses the specified blocking factor to continue the calculation of block size.

3. Determine block size (BS) by multiplying the key entry size by the blocking factor and adding
5 words. (The five words are for the three words of control information at the beginning of
each block, plus two words for the final pointer in the block. See figure B-6). KSAM uses the
algorithm:

BS=(ESxBF)+5
Since blocks always start on sector boundaries, this calculated block size may leave a lot of unused
sector space. The following steps show how KSAM determines the most efficient block size and, if

this size differs from the size calculated from the specified blocking factor, how KSAM adjusts this
blocking factor upwards to produce the optimum block size.

B-12

4. Determine the number of sectors required to hold the block at its calculated size. If the result
is not a whole number, round it up to the nearest whole sector. KSAM determines the number
of sectors per block (NB) as follows:

NB =1 BS/128 71

5. Multiply the number of sectors per block by 128 to determine the optimum block size:
BS=NBx 128

6. If the optimum block size calculated in step 5 differs from the block size calculated in step 3,
or if the default block size 1024 is used, KSAM adjusts the blocking factor to one that produces
the optimum block size. It uses the following algorithm to determine the number of key entries
that fit in the block and, if this is an odd number, reduces it by one. (Blocking factor must be
an even number.)

BF =0 (L (BS-5)/ES _|-1)/271x 2

KEY FILE SIZE

KSAM uses the blocking factor and the number of sectors per block to determine the maximum file
size in sectors to allocate to the key file. In addition, KSAM needs to know the maximum number
of key entries to expect, and the number of keys (primary and alternate) defined for the key file at
creation.

The maximum number of key entries for each key may be specified in the numentries parameter of
the KEYENTRIES= option of the BUILD command, or in the ksamparam parameter of FOPEN.
However, this file limit is usually based on the maximum number of data records. This value is spe-
cified in the numrec parameter of the DISC= option of the BUILD command, or in the filesize
parameter of FOPEN. If not specified in either of these places, KSAM assumes a default file limit

of 1024 key entries.

Since the number of records in the data file can be used to calculate the maximum number of keys
for only one key, each additional key defined for the file causes the file sizes to be summed.

When key file size has been calculated, KSAM uses this value to allocate that number of sectors on
disc to the key file whenever the file is opened.

Key file size is based on the following factors:

® The number of key entries per block, or the blocking factor (BF).
L] The number of blocks per sector (NB).
. The maximum number of key entries for one key (FL).

] The number of keys defined for the key file.

KSAM uses the following formula to determine key file size in sectors for a file with one key:

FS= (I FL/BF 1x 2)xNB

B-13

This formula is derived through the following steps:

1. The maximum number of key entries (FL) is divided by the number of key entries per block
(BF) to find the number of blocks in the file. If not a whole number, it is rounded up to include
all blocks.

2. The resulting number of blocks is multiplied by 2. This doubling of the number of key blocks
is done to allow room for expansion when the number of levels in a key file expands due to block
splitting.

3. Finally, the number of blocks is multiplied by the number of blocks per sector (NB) to find the
total number of sectors needed to contain all key entries.

NOTE

The file size (FS) calculated by the above algorithm does not
include the two sectors required for control information.

If the file has only one key, add 2 to the file size (FS+2) to get the total file size. The value 2 repre-
sents the two sectors at the beginning of each key file containing control and key descriptor informa-
tion.

If the key file has multiple keys, then the optimum block size of each key must be determined. The
largest block size is then selected as the standard block size for all keys in the file (KSAM does not
allow variable-length key blocks). Since the block size of some keys has changed, the blocking factor
(BF) must be recalculated for these keys using the algorithm:

BF = (L (BS-5)/ES 1-1)/2 1x 2

A separate file size for each key is then calculated based on their various blocking factors. The total
key file size is equal to the sum of all these file size (FS) values plus 2 for the two control sectors.

Figure B-8 summarizes the steps KSAM uses to calculate file size for one key. Figure B-9 shows how
KSAM calculates key file size for a file with two keys. Each key file size (FS) is calculated separately,
and then the blocking factor and file size of the key with the smaller block size is recalculated.

For a file with one key, KSAM simply adds 2 sectors to the file size (FS) calculated for the single key.

B-14

KS = key size in bytes

ES = key entry size in words

BF = blocking factor (number of key entries per block)
BS = key block size

FL = data file limit in records

NB = number of sectors per key block

FS = key file size in sectors

1= roundup | _| = rounddown

ES= L(KS+1)/21+4 «—— 2 words/pointer

¥___I__/
— fewest # words that contain key entry
. !
BF specified?
Y
v N
BF = even number? ———— > error
Y
v
+ BS = (ES X BF) + 5 «— 3 contral words + 2-word pointer
BS=1024
(default)
v
NB = [BS/1287
T # words in sector
y
BS = NB x 128 «———— optimum block size
——————— BF=[{(L(BS-56) /ES1-1)/2 1x2 «—————— adjusted BF

__‘_./

T # key entries in block

”~

A

FS=(IF

I
+————— rounded to nearest even whole #

4

N

specified? ——1

Y FL = 1024 (default)
1

y

L/BF1 x2)xNB
double # of blocks for block splitting

Figure B-8. Formula to Determine File Space per Key

B-15

Assume a file with 2 keys defined as:

KEY =B,1,63,12
KEY =B,54,13,20

For Key 1:

KS=563
FL=1024 (default)
BF=12

Calculation of FS:

ES=L(53+1)/2_1+4 = 27+4 = 31
BS=(31x12)+5 = 377
NB=1377/12871=12.91= 3 sectors
BS= 3x128 = 384
*BF=1(L(384-5)/311-1)/21x2
=M(L12.21-1)/271x2
=[(12-1)/271x2
=[5.5671x2 =6x2=12
FS=(11024/1271x2) x3
=(185.31x2)x3

= 516 sectors

For Key 2:

KS=13
FL=1024 (default)
BF=20

ES=L(13+1)/21+4=7+4 =11

BS= (11x20) +5 = 225

NB=1[225/1281=11.7571= 2 sectors

BS= 2x128 = 256

*BF=1(L{256-5)/111-1)/271x2

=[(L22.81-1)/27Tx2
=[(22-1)/21x2
=71057Tx2=11x2 = 22

FS=(11024/2271x2) x2
=(46.571x2) x2

= 188 sectors

Since key 1 has the largest block size (384 words in 3 sectors), its blocking factor is unchanged. The blocking

factor for key 2 is adjusted so it has the same block size. The following values are used:

ES=11«———— entry size calculated for key 2

BS=384 «—— block size of key 1 (now used for key 2, also)

FL=1024 «——— default file size in words

NB=3 «————— number of sectors needed for each block of 384 words

Calculate the new blocking factor for key 2:

*BF=T(L(384-5/11] -1)/21x2
=T(L34.41-1)/27x2
=[16.57x2= 17x2 = 34

FS=(11024/3471x2) x3
=("30.171 x2) x3 = 186 sectors

Summing the two file sizes and adding two sectors for control and key descriptor information, the total file

size in sectors is:

516 + 186 + 2 = 704 sectors

*The algorithm to calculate BF can be expressed more simply if the result can be checked for an even

number:

BF=LBS-5/ES_ If BF is an odd number, set BF=BF-1

Figure B-9. Calculation of Total Key File Size with Two Keys

B-16

KSAM EXTRA DATA SEGMENTS

Another factor that may affect performance when KSAM files are used, is the number and size of
KSAM extra data segments. An extra data segment (XDS) is an area in memory used as a buffer during
KSAM file access. Each extra data segment contains:

. Statistical information on file use (listed by VERIFY command);

L Control Block and Key Descriptor Block data from the first two sectors of each KSAM key file;
® A Working Storage area large enough to hold a data record and two key entries;

) A data block buffer large enough to hold a block from the data file;

. At least one, and up to 20, key block buffers each large enough to hold one key block.

When the key file is searched for a particular data record, the root block and lower level blocks, as
needed, are moved to key block buffers in the extra data segment. Key entries are compared in the
working storage area. When the data block is located, it is moved to the data block buffer of the extra
data segment, and when the particular data record is located, it is moved to the working storage area.

Since each open KSAM file is allocated an extra data segment and each extra data segment can be up
to 82K words long (32,767 words), KSAM files can use a lot of memory. When there is not enough
room in memory for all the extra data segments, they must be swapped between memory and disc

as needed. This swapping can slow access to KSAM files.

In order to minimize swapping, you can reduce the number of KSAM files by combining several files
into one file. This automatically reduces the number of extra data segments, and it can be a very
effective way to improve performance, particularly when files are shared by a number of users. (Refer
to Number of Extra Data Segments, below.)

Decreasing the overall size of the extra data segment may reduce swapping of extra data segments.
However, reducing the number of key block buffers in the extra data segment may increase swapping
of key blocks between the key file and the extra segment during a file search. By default, KSAM
allocates key block buffers according to a formula that takes into account the type of access for
which the file is opened, the number of levels in the key file structure, and the number of alternate
keys in the file. Since this formula (see table B-1) keeps the extra data segment size as small

as is compatible with efficiency, the default number of key block buffers should be used except in
special cases. (For details, refer to Extra Data Segment Size later in this section.)

NUMBER OF EXTRA DATA SEGMENTS

KSAM assigns an extra data segment to each KSAM file opened by an active process. Since more
than one process can use the same file during shared access, one file may require a number of extra
data segments. Thus, the number of extra data segments depends both on the number of KSAM
files and the number of users concurrently using the file. (Refer to figure B-10.)

B-17

KSAM FILE
FILEX
Data Key
File File
\ /
\
XDS FILEX XDS FILEX XDS FILES
1 2 oo n
[N N J
Process 1 Process 2 Process n

Figure B-10. Extra Data Segments for Shared Access

EXTRA DATA SEGMENT SIZE

The size of each extra data segment associated with an open KSAM file is determined by the number
of key block buffers it contains, the size of each key block buffer, the size of the data block buffer,
and to a lesser extent, the key entry size and the data record size. (Refer to figure B-11.)

Initially (when a file is opened), 12K words are allocated to the extra data segment. If less actual
space is needed, the extra space is not used, but remains in virtual memory. If more is needed,
the original extra data segment is released and a new extra data segment is allocated with the
actual size needed.

The maximum size of any extra data segment is 32K words. The actual size is calculated from:
o The total size of the overhead statistics and working storage area;

° The size of the data block buffer;

® The size of each key block buffer and the number of buffers allocated.

B-18

The overhead statistics and working storage area is approximately 14K bytes long depending on
variables such as the key entry size and the data entry size. The data block buffer size is based on
the size of each data block in the data file. Each key block buffer must be large enough to contain
all the key entries in a key block plus one key entry used when new keys are added to a full block
(as described earlier, see figure B-2).

The default key block size is 2K bytes (1024 words) and the maximum size of the key block buffer
is 4K bytes (2048 words). If a key block is larger than 4K bytes, KSAM reduces the block size so
that no block is larger than will fit in an extra data segment key buffer. Thus, the main variable in
extra data segment size is the mmber of key block buffers.

KSAM
Extra Data Segment

STATISTICS
CONTROL BLOCK
Data used &

by VERIFY KEY DESCRIPTOR
BLOCK

v

L A (approx. 1%K bytes)

Current data record,

) Working Storage
& key comparison area

Current data block ——» Data Block B (maximum 4K words)
Buffer
)
3\
Key Block
Buffer
1 key block per buffer
Key Block
Buffer
R L C # of key block buffers
. x key block buffer size
[] . .
(maximum size per block
up to 20 =4K bytes)
Key Block
Buffers

Total Extra Data Segment size = A + B + C (maximum 32K words)

Figure B-11. KSAM Extra Data Segment

B-19

NUMBER OF KEY BLOCK BUFFERS. The number of key block buffers depends on the type of
access for which the file is opened, the number of keys in the file, and the number of levels in the
tree structure for each key. (Refer to table B-1 for details.) The least number of buffers is allocated
for read only access, unless the primary key has many levels in its structure. More buffers are usually
required for write only, read/write, or update access. The number of buffers for read only access
increases with the number of levels used by the key, but is never less than one. The number

of buffers for write only access increases with the number of alternate keys in the file, but is never
less than six. The number of buffers for all other types of access increases with the number of alter-
nate keys and with the number of levels for each key, but is never less than four.

Unless you specify a particular number of key block buffers, KSAM allocates buffers in the extra
data segment according to the file characteristics as shown in table B-1.

Table B-1. Number of Key Block Buffers Assigned by Default

Access Type Buffers Assigned

1 buffer per level in key with most levels

Read Only Acce
ad Only Access (minimum of 1 buffer up to 20 buffers)

3 buffers per primary key + 3 buffers per alternate key + 3 buffers

Write Only Acce
" v 58 (minimum of 3 buffers up to 20 buffers)

Other Access
(Read/Write or
Update)

1 buffer per level in + 1 buffer per level + 3 buffers
primary key structure in alternate key structure

(minimum of 3 buffers up to a maximum of 20 buffers)

Note that you can determine the number of levels per key with the KSAMUTIL command, VERIFY.

For example, if the file is opened for read only, and the only key needs two levels, two key block
buffers are allocated. If the file is opened for write only, and there is one alternate key in the file,
nine key block buffers are allocated. If this same file is opened for update access, the primary key
uses two levels, and the alternate uses three, a total of eight buffers is allocated.

If you want to override the number of key block buffers assigned by default, you can use the MPE
:FILE command before opening the file, or set the numbuffers parameter of FOPEN when you open
the file programmatically.

The file equation is specified as follows:
:FILE filename; DEV=,, #buffers

The KSAM extra data segment will be allocated space for as many key block buffers as you specify,
up to a maximum of 20. (Note that the third DEV= parameter is interpreted as the number of key
block buffers only when the file name is a KSAM file; for standard MPE files, this parameter indicates
the number of list copies of the file.)

Another way to reduce the number of key block buffers is to use fewer alternate keys, or to adjust
the blocking factor so that the key file structure uses fewer levels. Either of these methods is effective
when the file is written to or updated more than it is simply read.

B-20

Note that when you are loading a KSAM file with large amounts of data, you should increase the
number of key buffers. The more key buffers in the extra data segment, the more likely it is that,
as new data is added, locations for the new key values will be found in memory. This cuts down on
disc access and can significantly reduce the time it takes to load the file.

For example, if you are reloading a KSAM file after a system failure, you should use the : FILE
command to increase the number of buffers to maximum of 20 buffers. Then, after the file is
loaded, you can allow it to revert to the default number of buffers established by KSAM for the
particular file.

EXTRA DATA SEGMENTS WITH SHARED ACCESS

The extra data segment allocated to each open file acts as a control block for that file. The extra
data segment contains not only the current data block and the current key block buffers, but also
the latest control information for the file. This information includes the logical and chronological
record pointers that indicate the current record being accessed. Because the current pointer posi-
tion is not in a “common block”, when several programs open the same file, each can alter the key
file structure by adding or deleting records so that the pointers set by other programs may point
to the wrong record without those other programs being aware of it.

To make sure that the latest pointer position is stored with the file rather than in the separate
extra data segments, programs that share the same KSAM file must use a locking scheme. When-
ever a program locks a KSAM file, the control information is transferred from the file to the extra
data segment; and when a program unlocks the file, the contents of the extra data segment is writ-
ten back to the file. Thus, each program should lock a KSAM file before executing any procedure
that positions a record pointer (pointer-independent procedures), and not unlock the file until all
procedures that depend on this pointer position (pointer-dependent procedures) have completed
execution. This is true regardless of whether the pointer is chronological (points to a record in the
data file) or is logical (points to a key in the key file). Both types of pointer are maintained in the
extra data segment for the open file.

Table B-2 lists all the procedures that affect or are affected by the record pointers.

B-21

Table B-2. Pointer Dependence

Pointer-Independent Pointer Pointer-Dependent Pointer
Procedures Type Procedures Type
FFINDBYKEY Logical FREAD Logical
CKSTART CKREAD
BKSTART BKREAD
FFINDN Logical FSPACE Logical
FREADBYKEY Logical FREMOVE Logical
CKREADBYKEY CKDELETE
BKREADBYKEY BKDELETE
FWRITE Logical FUPDATE Logical
CKWRITE CKREWRITE
BKWRITE BKREWRITE
FPOINT Chronological FREADC Chronological
FREADDIR Chronological®
* Each procedure that sets the logical pointer also sets the chronological pointer; but only FPOINT sets
the logical pointer as well as the chronological pointer.

The pointer-independent calls position the pointer regardless of its current position. Pointer-de-
pendent calls, on the other hand, must know to which record the pointer is currently positioned
in order to operate correctly.

All the procedures listed in table B-2 affect the pointer in some way. In order to use these pro-
cedures correctly, it is important to understand how each moves the pointer, whether it positions
the pointer directly or advances it from its current position.

In general, when access to the file is random, the pointer is positioned directly. For example, a
call to FFINDBYKEY (or CKSTART or BKSTART) positions the logical pointer to a particular
key in the key file based on a key value specified in the call; and a call to FPOINT positions the
chronological pointer to a particular record determined by its chronological record number.

When access to a file is sequential or the file is being modified, pointer positioning is not direct but
is relative to its previous position. Depending on the sequence in which procedures are executed,
the pointer may or may not be advanced to the next record in key or chronological sequence.
Internally, a flag is used to indicate whether or not to advance the pointer. This flag, the “Do Not
Advance” flag, is set to FALSE if the pointer is to be advanced sequentially, to TRUE if it is not
to be advanced. Some procedures never test the flag; these are, in general, the pointer-independent
procedures that set the pointer directly. Other procedures test the flag and advance the pointer if
the flag is FALSE; generally, these are procedures that read the file or position the pointer sequen-
tially. Table B-3 summarizes when the pointer is set or advanced. (Note that only SPL procedures
are listed; check table B-2 for the equivalent BASIC or COBOL procedures.)

B-22

Table B-3. Record Pointer Summary

Beginning of Call End of Call
Check Record Procedure Record Sets
DNA Flag Pointer Pointer DNA Flag
— - FFINDBYKEY Position TRUE
— — FFINDN Position TRUE
— Position FREADBYKEY — FALSE
- — FWRITE Advance TRUE
If TRUE - FREAD — FALSE
If FALSE Advance
If TRUE — FSPACE Position TRUE
If FALSE Advance
— — FREMOVE Advance TRUE
- - FUPDATE — FALSE
(key value
changed) Advance TRUE
— - FPOINT Position TRUE
- Position FREADDIR - FALSE
If TRUE - FREADC — FALSE
If FALSE Advance
Advance: Move logical pointer to next record in key sequence or move chronological
pointer to next record in chronological sequence.
Position: Set pointer to record specified in call.

For example, if you call FREADBYKEY, it positions the pointer to a specified key value. After the
call, the logical pointer remains positioned to this key and the Do Not Advance flag is set to FALSE.
If the next call is to FREAD, FSPACE, or FREADC, then the pointer is advanced to the next key

in key sequence before these procedures perform their other functions. Thus, after FREADBYKEY,
a call toFREAD will read the next record, not reread the same record, and a call to FSPACE will
move the pointer relative to the record following the record just read.

B-23

ASCII CHARACTER SET IN | lstiieds
COLLATING SEQUENCE | c

In the collating sequence for ASCII characters, unlike EBCDIC, numbers precede letters.

Table C-1. ASCII Characters in Sequence

DECIMAL | CONTROL/
VALUE GRAPHIC COMMENTS
0 NUL @°¢ Null
1 SOH AC Start of heading
2 STX B¢ Start of text
3 ETX CC End of text
4 EOT D¢ End of transmission
5 ENQ EC Enquiry
6 ACK F¢ Acknowledge
7 BEL G€ Bell
8 BS HC Backspace
9 HT € Horizontal tabulation
10 LF JC Line feed
1 VT K¢ Vertical tabulation
12 FF LC© Form feed
13 CR M¢ Carriage return
14 SO N¢ Shift out
15 Sl o¢ Shiftin
16 DLE PC€ Data link escape
17 DC1 Q¢ Device control 1 (X-ON)
18 DC2 RC¢ Device control 2
19 pDc3 Ss°¢ Device control 3 (X-OFF)
20 DC4 TC Device control 4
21 NAK U¢ Negative acknowledge
22 SYN V¢ Synchronous idle
23 ETB WC¢ End of transmission block
24 CAN X¢ Cancel
25 EM YC End of medium
26 suB z¢ Substitute
27 ESC [¢ Escape
28 FS \¢ File separator
29 GS 1¢ Group separator
30 RS AC Record separator
31 us ¢ Unit separator

C-1

Table C-1. ASCII Characters in Sequence (continued)

DECIMAL | CONTROL/
VALUE GRAPHIC COMMENTS
104 h Lowercase h
105 i Lowercase i
106] Lowercase j
107 k Lowercase k
108 | Lowercase |
109 m Lowercase m
110 n Lowercase n
111 [} Lowercase o
12 p Lowercase p
13 q Lowercase q
114 r Lowercase r
115 s Lowercase s
116 t Lowercase t
117 u Lowercase u
118 v Lowercase v
119 w L.owercase w
96 ' Grave accent 120 X Lowercase x
97 a Lowercase a 121 y Lowercase y
98 b Lowercase b 122 z Lowercase z
99 c Lowercase ¢ 123 { Left brace
100 d Lowercase d 124 i Vertical line
101 e Lowercase e 125 } Right brace
102 f Lowercase f 126 ~ Tilde
103 g Lowercase g 127 DEL Delete

CONVERSION TO KSAM FILES

In order to convert from your existing files to KSAM files, you may want to take advantage of
utility programs provided with KSAM/3000. If your files are serially accessible, you can use the
KSAMUTIL command BUILD to create a KSAM file and then copy your files to the new file

with FCOPY. Another method only converts HP INDEX files. INDEX is the new name for RSAM
(or R’ISAM) files. This method uses the program RTOKSAM. Finally, if neither of these methods is
useful, you can write your own special purpose conversion program.

USING KSAMUTIL AND FCOPY

This conversion method can be used for any file that is serially accessible. First you create a
KSAM/3000 file using the BUILD command of KSAMUTIL. At this time you can define your
file with any legitimate specification of the BUILD command. Once the file is built (created),
you can run FCOPY to copy your existing file to the newly created file. No special FCOPY
commands are needed. You simply specify your existing file as the FROM= file and the newly
created KSAM file as the TO= file. All connections between the data file and the key file are
made automatically. (Refer to section II of this manual for a discussion of both the KSAMUTIL
BUILD command and FCOPY as applied to KSAM/3000 files.)

USING RTOKSAM

The RTOKSAM program will create a KSAM/3000 file from an existing INDEX file. The KSAM
file will have the same key structure as the INDEX file. Any number of INDEX files can be con-
verted to KSAM/3000 files in one RTOKSAM run provided that you have sufficient disc space
within your group and account for all the files.

Program RTOKSAM is run as follows:

:RUN RTOKSAM.PUB.SYS.

HP32208.A.0.00 INDEX TO KSAM CONVERTER
ENTER INDEX KEY, KSAM DATA, AND KSAM KEY FILE NAMES
>indexkey ksamdata,ksamkey

The names of the INDEX key file, the KSAM data file, and the KSAM key file must be entered in
that order. Only the INDEX key file already exists; a new KSAM/3000 file wll be created with the
specified names.

After converting the INDEX file to the KSAM file, the program continues to prompt you for
additional file names for conversion. When you wish to stop processing, simply press the
carriage return key in response to the greater than (>) prompt. Or, if you are in a job, enter
an :EOD record.

D-1

Record numbering in INDEX files always starts with record number 1. The KSAM file created
by the RTOKSAM conversion program will also have record number starting with 1. Note that
this is not the standard KSAM file default. Key blocking, on the other hand, does follow the
KSAM file default. That is, the number of keys per block is determined by KSAM so that each
key block has 1024 (1K) words.

If errors occur during execution of RTOKSAM, the following error messages may be displayed:

INPUT/OUTPUT ERROR ON $STDIN/$STDLIST
COMMAND TOO LONG

DUPLICATED FILE NAME

INSUFFICIENT PARAMETERS

INDEX OPEN ERROR (detail line follows message)
INDEX FREADLABEL ERROR (detail line follows message)
UNABLE TO BUILD KSAM FILE (detail line follows message)
KSAM FILE WRITE ERROR (detail line follows message)
INDEX FILE READ ERROR (detail line follows message)

The detail line that follows certain of the RTOKSAM messages explains in more detail the
input/output error that occurred.

The normal MPE security provisions for files apply when the INDEX file is specified in this
program. The KSAM file that is created must be within the same log on group.

NOTE

It is good practice to make a back-up copy of the INDEX
file on off-line storage such as magnetic tape before running
RTOKSAM to copy the file to a KSAM file. This allows
you to purge the INDEX file once it is copied.

RECOVERY FROM SYSTEM FAILURE

OVERVIEW

If the system fails when a KSAM file is open for any type of access except read-only, the file cannot
be reopened until it has been recovered. In such a circumstance, any attempt to reopen the file
causes the following message to be issued:

#192 — SYSTEM FAILURE OCCURRED WHILE THE KSAM FILE WAS OPENED

The file is easily recovered in most cases by running KSAMUTIL.PUB.SYS and then requesting
KEYINFO. This command resets any incorrect end-of-file marks and deletes any key values that
point to non-existent data records. If key values are missing or are out of sequence, the keys cannot
be recovered by KEYINFO and, in this case, the file must be reloaded. (You can refer to section II
for a discussion of KEYINFO; also an example of file recovery and reloading is provided later in
this appendix.) If you want to examine the file statistics, you can run the VERIFY command of
KSAMUTIL using the NOCHECK option. (If KEYINFO does not complete execution successfully,
then the KSAM file must be reloaded.)

For most purposes, this is all you need to know in order to recover a file when a system failure
prevents you from opening it. This appendix provides internal details that explain why recovery is
necessary and what KEYINFO does in order to recover. It is intended primarily for the sophisticat-
ed programming staff.

END-OF-FILE ON KSAM FILES

The first step in understanding what KEYINFO does and why it is needed, is to understand how
KSAM end-of-files are set and maintained. Each of the two files that comprise a KSAM file (the
data file and the key file) has two end-of-file marks: an MPE end-of-file and a KSAM internal
end-of-file. Thus, there are four end-of-files to consider. The main characteristics of each of these
end-of-files are shown below:

DATA FILE
MPE End-Of-File:

. Number of records in fixed-length record file (or number of blocks in variable-length
record file).

° Stored in system file label of data file.

e Recorded on disc when file is closed (or when zn SPL procedure calls FCONTROL with
control code 6) or when a new extent is allocated.

° Used by FCOPY with NOKSAM option (KSAM file is treated as an MPE file).
o Displayed by LISTF,2:
sLISTF DATAFIL,2

ACCOUNT= MORRIS GROUP= JOAN
FILENAME CODE ==e==-e= e==-LOGICAL RECORD==s=s===sces =e=eSPACE====
SIZE TYP EQF LIMIT R/B SECTORS #X MX
DATAFIL KSAM 38R FA 20 1 23 8 8
@\MPE end-of-file for data file

E-1

KSAM End-of-File:

° Address of next available logical record in the data file.
° Stored in control block of key file.

° Recorded on disc when file is unlocked or closed (or when an SPL procedure calls FCONTROL
with control code 2 or 6).

. Used by FCOPY when file is opened as a KSAM file (KEY=option)

° Displayed by VERIFY command (option 1) of KSAMUTIL:
:RUN KSAMUTIL,.PUB,.SYS

HP32208A.2.3 MON, APR 23, 1979, 1:11 PM KSAMUTIL VERSION:A.2,0
>VERIFY DATAFIL

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?1

DATAFIL.JOAN.MORRIS CREATOR=JOAN

FOPTIONS(004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM
AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB:TYP:LDNUM:DRT:UN.,: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

=-38: 3: O0: 3: 5: 0: 0: 0: : 20
LOG., COUNT:PHYS, COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN DISCADDR:
1: 1: -38: 3: 8: $00000010135:

KSAM end-of-file for data file

Since this is a file that closed successfully, the two end-of-files coincide.

KEY FILE

MPE End-of-File:

. File limit — Number of records (sectors) allocated to file at time of creation
. Stored in system file label.

° Displayed by LISTF,2:
tLISTF KEYFIL,?2

ACCOUNT= MORRIS GROUP= JOAN

FILENAME CODE ===e==e<c==-LOGICAL RECORD===c===e=ee =ece=SPACE===-
SIZE TYP EOF LIMIT R/B SECTORS #X MX

KEYFIL KSAMK 1284 FB 50 1 30 5 8

MPE end-of-file on key file
(set to file limit)

KSAM End-of-File

° Address of 1st record in next available key block.

. Stored in Control Block of key file.

° Recorded on disc when file is unlocked or closed (or when SPL procedure calls FCONTROL
with control codes 2 or 6).

° Used by FCOPY and KSAM procedures.

° Displayed by VERIFY command, option 3, of KSAMUTIL:

WHICH (1=FILE INFO,

DATA FILE = DATAFIL VERSION= A,2.1

KEY CREATED=292/°78 10:19: 7.4 KEY ACCESS=
KEY CHANGED= 93/°79 14:18: 7.6 COUNT START=
DATA RECS = 20 DATA BLOCKS= 19
DATA BLK SZ= 19 DATA REC 5Z= 38
FOPEN 2 FREAD 0
FREADDIR 0 FREADC 0
FREMOVE 0 FSPACE 57
FGETINFO 3 FGETKEYINFO 1
FWRITELABEL 0 FCHECK 0
FWRITE 20 FUPDATE 0
FLOCK 0 FUNLOCK 0
FSETMODE 0

KEYBLK READ 7 KEYBLK WROTE 0
KEY FILE EOF FREE KEY HD 0
MIN PRIME 11 MAX PRIME 5
DATA FIXED TRUE DATA B/F 1
FIRST RECNUM 0 MIN RECSIZE 38

2=KSAM PARAMETERS,

KSAM internal end-of-file on key file

3=KsAM CONTROL,

4=ALL)?3

113/°79 13:11:45.8
292/°78 10:19:53.6

END BLK WDS= 19
ACCESSORS= 0
FCLOSE 2
FREADBYKEY 0
FFINDBYKEY 0
FREADLAREL 0
FFINDN 3
FPOINT 0
FCONTROL Y
KEYBLK SPLIT 0
SYSTEM FAILURE 0
RESET DATE 3/7°79
TOTAL KEYS 3

Since the MPE end-of-file is set to the file limit and the KSAM internal end-of-file to the next
available key block, these values never coincide until the key file is full.

END-OF-FILE AND THE EXTRA DATA SEGMENT

As described in appendix B, each open KSAM file uses an extra data segment (XDS) to hold the
control information for that particular open file. The extra data segment also contains a data
block buffer into which records are read from the file and from which records are written.
Finally, the extra data segment keeps key block buffers to hold key entries affected by the
data records being accessed. The control block in each extra data segment also maintains the
most up-to-date KSAM end-of-file markers for each open file.

Whenever a KSAM file is opened, the KSAM end-of-files for the data and key files are moved
(with all other information from the key file control block) to the control block of the extra
data segment for that file. When the file is closed or unlocked, the control block is written back
to disc. (Refer to figure E-1 for a diagram illustrating the end-of-file markers and their relation
to an extra data segment.)

disc
L N\ XDS
Data Fite Key File for Open file
Open/Lock
File Label Control Block Control Block
(|\I/|pEaEOF) (key ﬁ|e EOF (key file EOF
data file EOF) - data file EOF)
Close/Unlock

key block
buffers

3-20 key
block buffers

last , .
data - |
block { & Ll

KSAM EOF
MPE EOF (next available
(file limit) key block)
MPE EOF KSAM EOF
{next available {next availabie
record or block) logical record)

Figure E-1. KSAM File and an Extra Data Segment

E-4

NORMAL OPERATION - FILE IS CLOSED

During normal operation, if a new record is written to the file by any user, the record is written

in the data block buffer of the extra data segment and the key entry for the record is inserted into
the key block buffer where it belongs. (Refer to appendix B for a discussion of how new key entries
are added.) The appropriate key block buffer is brought into the extra data segment automatically.
Then, whenever the data block or key block buffers are full or new blocks must be read into the
extra data segment, the key and data blocks are written back to disc. But the control block from the
extra data segment is not written to disc until the file is closed (or is unlocked, or FCONTROL with
code 2 or 6 is called).

Before considering what happens in case of a system failure, let’s look at the normal steps taken
when the file is closed:

@ Key block buffers are written to the key file

@ Data block buffer is written to the data file (and, if a new extent is allocated, the MPE
end-of-file is written to the data file system label).

@ Control block with the KSAM end-of-file marks is written to the key file.
@ MPE end-of-file mark is written to the data file system label.

When a file is unlocked, the first three steps shown above are taken (except the MPE end of file
is not written). FCONTROL with control code 6 performs all four steps, and control code 2 per-
forms the first three steps.

SYSTEM FAILURE - FILE IS OPEN

If the system fails when a KSAM file is open, the extent of the damage to the file depends on when
the failure occurred and whether the file was being modified. If all users opened the file for read-
only, then the file is undamaged and can be reopened. If a user had just unlocked the file and no
other user has modified it, the MPE end-of-file may need to be reset but otherwise, the file is un-
damaged. But if the file was being modified, then the extent of the damage depends on whether
any of the steps listed above had been completed and, if so, which ones.

In the simplest case, all the steps except step 4 have been performed. This means that the KSAM
end-of-file is up-to-date, but the MPE end-of-file is still at its previous position. In the most com-
plex case, caused by records being deleted, data records remain in the data file for which there are
no corresponding key entries, (error number 175).

SITUATIONS IN WHICH RECOVERY
IS REQUIRED

Whenever the file cannot be reopened (error #192 is issued), you must run KEYINFO to recover
the file. The following four cases are typical of the reasons for file damage. In each case, the sug-
gested action is discussed.

1.

Records were being added to the data file when the system failed. The KSAM end-of-file for
the data and key files are current, but the MPE end-of-file precedes the KSAM end-of-file
(steps 1-3 completed).

Solution: Run KEYINFO to reset the MPE end-of-file. You can then run the KSAMUTIL
command, VERIFY, to determine where the current KSAM end-of-file for the data file is posi-
tioned, and then run the MPE command :LISTF 2 to compare the MPE end-of-file. If you run
VERIFY before running KEYINFO, use the NOCHECK option so the file can be opened.

Records being added to the KSAM file when the system failed were not written to the data
file, but some key entries for the new records had been written to the key file (key blocks
written to key file because buffer space in XDS was needed). This means that the key file
contains key values pointing to records not in the data file.

Solution: Run KEYINFO to delete the key values that point to records that were not writ-
ten to the data file.

Records being added to the KSAM file when the system failed caused a key block split. As a
result, the key blocks are written, but the new internal KSAM end-of-file for the key file has
not been transferred to disc. This places certain key values past the old KSAM key file
end-of-file.

Solution: Run KEYINFO to reset the key file end-of-file to the correct location following

the existing key values. It still may have to delete any key values pointing to records past the
data file end-of-file.

Records were being deleted when the system failed. Some key block buffers have been written
to disc, but the data block buffer has not. Since some key entries were deleted from the file on
disc, but the deleted records remain, key values appear to be missing.

Solution: You must run KEYINFO to reset the crash flag so the file can be reopened. When
key values are missing, KEYINFO cannot fully recover from the file damage and issues the
following message:

WARNING: THERE ARE SOME RECORD(S) WITH KEY VALUE(S) MISSING THE
KSAM FILE HAS TO BE RELOADED

To reload the KSAM file, use FCOPY to copy the file to a new KSAM file. As it copies the
data records, it writes new key entries for each data record. Only in this way can missing key
values be recovered. (Refer to the discussion of Reloading a KSAM File later in this section.)

If you want to determine how many key values are missing and the file has more than one key, you
can compare the number of values in each B-Tree as listed by KEYINFO. These values should be
identical. When there is only one key in the file, you can use FCOPY to determine the number of
non-deleted records in the batch file. The number of key values for any key in the file should ex-
actly match the number of valid data records. The FCOPY command to determine this value is:

>FROM=filename;TO=$NULL;KEY=0

E-6

If your file is very large, using this FCOPY command can be time consuming and you may prefer
to reload the file without checking the number of missing keys.

EXAMPLE OF FILE RECOVERY

Suppose you try to open file TEST and receive error message #192:
SYSTEM FAILURE OCCURRED WHILE KSAM FILE WAS OPENED

In order to have the most information about the file, first run KSAMUTIL and request VERIFY
to list all the file information.

HP32208Y .24 THUs A2 A4 1979, 12:53 PM KSAMUTTIL VERSION:A.3.0
>V TEST
WHICH (1=FILF INFOy 2=KSAM PARAMETERS, 3=KSAM CUNTROLe 4=ALL)74

KSAMUTIL
error message

SYSTEM FAILURE OCCURRED wWILE TWE KSAM FI\ & wAS OPENED (1n68)

Just like any other program, the VERIFY command cannot open the damaged file. So try again
using the NOCHECK option that allows such a file to be opened for read-only:

>V TESTINOCHECK

forces open
WHICH (1=FILF INFO, 23KSaM PARAMETERS, 3=K5AM COUNTROL+ 4=ALL)74

TEST.KSAMJUTILITY CREATOR=ONG
FOPTIONS (004005) =KSAM, 3FTLE, NACCTLy Fo FILENAMEs ASCIIs PERM
Option AOPTIONS (000400) =DEFAULT, NOBUF, DEFAULTs NU FLUCKs NO MRy IN
1 RECSIZE $3UBI TYPILDNUMIDRTIUN,§ CODE:LUGICAL PTR: END OF FILEIFILE LIMI] KSAM
-80: 31 91 31 51 o8 0t 0t 1023 X
LOG. COUNTIPHY&e COUNTIALK SZ;gXT SZINR FXT: LABELS:LON: DISCADDR? data file
108 1t =800 52: L] 0: 2:000001261733 end—of-file
KEY FILE=TE>TK KEY FILF DEVrcE=s S12E= KEYS= 2
Obti FLAGWORD (000000) =RANDOM DRIMARY, FIRST KECUND=0» PERMANENT
ption ! gy Ty LENGTH LOCe n KeEY BF LEVEL file limit
2 1 8 8 73 126 2
2 8 6 20 v 144 2
of non-read-only opens
when system failed
(OATA FILE = TEST VFRSIONs Z.2.4
KEY CREATED™ 61,'79 17136129.8 KEY ACCESSE 67/t79 12154317,8
KEY CHANGED= 67/'79 12152:41,7 COUNT START= 67/179 12:51:20.7
DATA RECS = 990 DATA BLOCKs= 99 END BLK wWDSs= 40
DATA BLK SZ= 400 DATA REC S4= 80 ACCESSONS=
FOPEN 3 FREAD 0 FCLOSE 3
. FREADDIR 0 FREADC 0 FREADRYKEY a
Option FREMOVE 0 FSPACE 0 FFINDBYREY 3
3 < FGETINFO 3 FGETKEYINFO 2 FREAD| ABEL 0
FWRITELAREL 0 FCHECK 0 FFINDN n
FWRITE 1000 FUPDATF 0 FPOINT n
FLOCK 0 FUNLOCK 0 FCONTROL n
FSETMODE 0
KEYBLK READ 29 XFYRLK WROTE #9 KEYBLK SPLIT 23
KEY FILE EOF [210]| FREE KFy HD] SZSTEM FATILURE 0 incremented
MIN PRIME 0 MAX PRTME 999 RESET DATE >
DATA FIXED TRUE NATA B/F 10 TOTAL KEYS 2#” after recovery
\ FIRST RECNUM 0 wIN RECSIZE 80

KSAM internal end-of-file

E-7

The next step is to run LISTF,2 to see where the MPE end-of-file is positioned. Note that you can
request the MPE command without exiting from KSAMUTIL.

>ILISTF TEsT,?2

ACCOUNT= UTTLITY GRALIP= KkGAM

FILENAME CUDE ww===. wwma==| 0GTCAL RECORN*"mcce=vmcce "waaSPACF=~=w
5IZ TYP LOF LIMIT R/B SECTORS #X wmX

TEST KSAM 404 FA 1023 10 46 R 8

MPE end-of-file on data file

LISTF shows the MPE end-of-file after the first 900 records, whereas option 1 of VERIFY showed
the KSAM end-of-file after 990 data records. This is a discrepancy of 90 records. These records
actually exist. You only have to run KEYINFO to reset the MPE end-of-file. When you run
KEYINFO, however, you may find that there are other problems.

>KI TEST
RECOVERY BEGINS

DATA FILE EOF DAMAGED

DATA FILE MPE EOF H:S BFFN RESFT TN KSAM rutb

MPE end-of-file recovered

After resetting the MPE end-of-file for the data file, KEYINFO continues. It next displays informa-
tion on the two keys in the file TESTK.

OF LEVELS OF B~-TREE e
OF KEY BLOCKS 16
OF SECTORS PER KEY xLOCK [8]

KSAM end-of-file should
be at least 218

OF KEYS IN ROOT KEY BLACK
OF KEYS IN B=TREE

% OF KEY BLOCK UTILIZATION
THE LARGEST KEY BLOCK ADDRESS

coasmseacaas INFO FOR KEvY 2 mvmaTeae= # Of key entries in two

¥ OF LEVELS OF B=TREE 2 keys do not match

OF KEY BLOCKS 11 .

b o SEL R v wone : e othr o ot
OF KEYS IN RQOT KEY BLnCK 9

OF KEYS IN B=TREE

¥ OF KEY BLOCK UTILIZATION 68,6

THE LARGEST KEY BLOCK ADDRESS 202

WARNING: THERE ARE SOME RFCORD(s) WITH KEY VALUE(S) MISSING
OR KEY VALUE(S) POINTING YO DATA RECORDU BEYOND EOF

KEY FILE EOF (INTERNAL) DAMAGED End-of-file moved forward
KEY FILE (INTERNAL)EOF HAS BFEN RESET so all key blocks are included

Looking at the key information displayed for the two keys, the first thing to check is where the
actual end of file should be. The largest key block address for key 1 is 210 and each block requires
8 records, therefore the key file end-of-file should be at least 218. If you look back to option 3 of
the VERIFY display, it is listed as 210. Since this is not the real end-of-file, KEYINFO resets the
KSAM internal end-of-file to the actual end of file (see VERIFY display, below).

E-8

Next, check the total number of key values for each key. The first thing to notice is that they do
not match each other. The number of key values for each key should always be the same, and each
should equal the number of records in the data file. But, if you look at option 1 of the VERIFY
display, the number of records in the data file is 990, less than the number of key values for either
key. (Note that if the file contains records marked for deletion, you can run FCOPY to determine
the number of active records).

In response to this discrepancy, KEYINFO deletes 10 key values from each key. The values delet-
ed are those that have no matching data record. This completes the KEYINFO functions. Now that
it has deleted 10 key values from the key entries for key 2, only 987 are left (997 minus 10). This
is three fewer than the number of key values in key 1 (990 = 1000 -10). For this reason, KEYINFO
must issue the warning that the file needs to be reloaded:

eweseccee= Kty SEQUENCE] srcatene-

OF INvVALID kEY VALUES PELETED 10 10 values deleted that
> have no matching data record.

eceecme=== Kty SEQUENCE 2 =mmmmman=

OF INVALID KEY VALUES DELETED 10

RECOVERY ENDs

WARNING: THERE ARE SOME RECORD(s) WITH KEy VALUE(S) MISSING
THE KSAM FILE HAS TO RF RELOADED

Before reloading the file, as described below, use LISTF, 2 to check the current MPE end-of-file
(after recovery); run VERIFY to check the current KSAM end-of-file positions; and run

KEYINFO again to see the number of key values left in each key following the previous
KEYINFO recovery.

E-9

>ILISTF TEST,2

ACCOUNT= UTTLITY GRAUPE KSAM
FILENAME CODE =====aeeccee| 0ayCAL RECORN==cae=ccace =eeeSPACE=me=
SIZ tvp EOF LIMIT R/B SECTORS #X MX
TEST KSAM 808 Fa 1023 1g 416 8 8 New MPE EOF
>V TEST matches

WHICH (1=FILE INFOs 2aKSaAM PARAMETERS, 3=KSAM CONTROLs &=ALL)?4

TEST KSAM UTTLITY CREATOR=0NG
FOPTIONS(004009) =KSAM, 1FTLE, NOCCILy F9 FILENAMEbs ASCII,y PERM
AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULTs NO FLOUCKs NO MR, IN
RECSIZE:ISUB3TYPILDNUMIORTIUN,! CODEILOGICAL PTR: END OF FILESFILE LIMIT

-80¢ 3¢ ¥i 3: 851 ot LH 03 CEI0H 1023
LOG. COUNTEPHYce COUNTIRLK SZsEXT SZ:NR FXT: LABELSILDN: DISCADDR: KSAM EOF

108 1: =800 521 ds 0: 3300000126173¢
KEY FILE=TE TK KEY FILF DEVIcE=4 SyzZE= 274 KEYS= 2
FLAGWORD (000000) =RANDOM PRIMARY, FIRST RECUND=Us PERMANENT
KEY TY LENGTH LOCse » KEY BF | EVEL

1 8B 8 73 N 126 2

2 B 6 20 vy 144 2
DATA FILE = TEST VERSION= Zo2¢4
KEY CREATED= 6%,'79 17:36:129.8 KEY AcCEtss= H7/179 12:156:19,6 Fkn‘varhzblelength
KEY CHANGED= 67/'79 12154152,3 COUNT S1ART= 67/¢79 12:51:20.7 .
DATA RECS = 990 NATA Bl oCKs= BSLEND Al K wps= 400 files, MPE EOF must
DATA BLK SZ= 400 NATA REC SZ= 80 ACCESSORS= 0
FOPEN 7 FREAD 0 FCLOSE 7 equal the number of
FREADDIR 0 FREADC 0 FREADBYKEY 0 data blocks + 1
FREMOVE 0 FSPACE €024 FFINDRYKEY 3
FGETINFO 4 FGETKEYINF0 4 FREADLAREL n
FWRITELAREL 0 FCHECK 0 FFINDN 4
FWRITE 1000 FUPDATF 0 FPOINT n

N 0 FCONTROL 0 .

%gg:oos § FUNLOCK T system failure
KEYBLK READ A8 KEYRLK WROTE 96 KEYBLK SPLIT 23/ count
KEY FILE EOF 218 fREE KFY WD 0 SYSTEM FAILURE 1
MIN PRIME 0\ MAX PRTME 989 RESET DATE 67/179 recovery date
DATA FIXED TRUE\PATA B/f 10 TOTAL KEYS rd
FIRST RECNUM 0 MIN RECSIZE 80

Follows last
possible key
>K1 entry

WHICH (1asFILE INFO, 2aKSam PARAMETERS, 3zKSAM CONTROLs 4=ALL)?

a=eeceee= INFO FOR KEy 1 emenmean-

OF LEVFLS OF n=TREE 2
OF KEY BLOCKS 16

OF SECTORS PER KEY JLORK (8- (8 +210)
OF KEYS IN ROnT KEY BLNCK 14

"
)
T

OF KEYS IN B=TREE
OF KEY BLOCK VUTILIZATION
HE LARGEST KEY BLOCK ADNRESS

after recovery, # of key values

e=eeecaca INFO FOR KEv 2 ameemcna=
do not match

OF LEVELS OF B-=TREE

OF KEY BLOCKS

OF SECTORS PER KEY RLOCK
OF KEYS IN ROOT KEY BLNCK
OF KEYS IN B=TREE

OF KEY BLOCK UTILIZATInM 67.9

THE LARGEST KEY BLOCK ADPRESS 202

WARNING: THERE ARE SO04E RFCORD(s) WITH KEY VALUE(S) MISSING
OR KEY VALUE(S) POINTING TO DATA KRECORVD BEYOND EOF

The name of the user who runs KEYINFO to recover the file for the RESET DATE shown by
VERIFY is stored in the key file control block, along with his account, group, and home group
(refer to figure B-5).

E-10

RELOADING A KSAM FILE

You use FCOPY to reload a KSAM file when KEYINFO cannot recover the file. In general, you
should use the KEY=0 option of FCOPY (see section II for a complete description of the FCOPY
options for KSAM files). KEY=0 copies the file in chronological sequence so that the new file will
be an exact copy of the original file, except that records marked for deletion are physically deleted
from the file.

For example, to reload the file TEST to a new KSAM file, NEWTEST:

:RUN FCOPY.PUB.SYS
>FROM=TEST;TO=(NEWTEST,NEWKEY) ;KEY=0;NEW

After the file is successfully reloaded, you should purge the old file TEST and rename the file
NEWTEST. To do this, run KSAMUTIL and use the PURGE and RENAME commands as follows;

:RUN KSAMUTIL.PUB.SYS

HP32208V2.4 THU, MAR 8, 1979, 1:05 PM KSAMUTIL VERSION:A.3.0
>PURGE TEST

TEST,TESTKEY PURGED

>RENAME NEWTEST,TEST

>RENAME NEWKEY, TESTKEY

Now you can run any existing programs that referenced the old file TEST.

The only time you might not want to use the KEY= option to reload a damaged file is if the key
file has been accidentally purged. In this case, and if the file has fixed-length records, you can use
the NOKSAM option. This option needs only the original data file. As it copies the data file in
chronological order to a new KSAM file, it creates a key file with key entries for the data records.
The NOKSAM option does not, however, allow you to copy a data file with variable-length records.

For example, to reload a KSAM file for which you have only a data file with fixed-length records,
you can use the following FCOPY command:

>FROM=DATAFIL;TO=(NEWFIL,NEWKEY);NOKSAM;NOUSERLABELS;
SUBSET=#%377,%317#, ,EXCLUDE

\ 7
to exclude records marked you must not copy
for deletion by -1 in user labels to a
first two characters KSAM file

This command copies only the non-deleted records; it creates a new KSAM file with only valid
records and a key file that has key entries for each data record.

After a system crash in which the key file is lost, it is possible that the MPE end-of-file follows the
KSAM end-of-file because it was written to disc just before the crash. If this is the case and you use
the NOKSAM option you should also use a SUBSET option to copy only the records up to the
KSAM end-of-file, not the undefined area between the KSAM and MPE end-of-files.

E-11

EXPAND KEY BLOCK BUFFER AREA

Depending on the length of the existing file, the reloading procedure can take a long time. One way
to shorten this time is to increase the number of key block buffers in the extra data segment for the
file. Since reloading is a write-only operation, the more buffers that can be allocated to key blocks,

the less swapping is needed between the extra data segment and disc as new key entries are added.

In order to increase the number of key block buffers, enter the following commands:

:RUN FCOPY.PUB.SYS

>FROM=TEST;TO=(NEW,NEWK);SUBSET=1,0 create new file with 0 records
>:FILE F=NEW;DEV=, ,20 increase number of key block buffers
>FROM=TEST;TO=*F;KEY=0 copy data in chronological order

“—— remember to back reference file

E-12

INDEX

A

Abbreviations, KSAMUTIL commands 2-3

Access,
approximate match 1-4
duplicate keys 1-3
generic key 1-4
multiple key 1-3
Access mode,
BASIC 6-16,-17
COBOL 3-4
SPL 4-41,-46
Access options, FOPEN (see aoptions)
Accessing KSAM files 1-2
Add keys to B-tree B-2
Alternate key positioning,
BASIC 6-33
COBOL 3-38
SPL 4-22,-26,-63
Analysis of files capability 1-7
aoptions parameter, FOPEN 4-41,-46
Approximate key access
BASIC 6-32
SPL 4-22,-23
Approximate match capability 1-4
ASCII character set C-1
ASCII records,
BUILD 2-10
FOPEN 4-45

B

B command (see BUILD)
B-tree

number of levels 2-38

structure B-2
Backspace file,SPL 4-88
Backup files

to serial disc 2-55

to tape 2-55
BASIC

error messages A-6

features 1-11

interface 6-1

procedures,summary 6-3
Batch execution, KSAMUTIL 2-43
Binary records,

BUILD 2-10

FOPEN 4-45
BKCLOSE

call, BASIC 6-8

example 6-9
BKDELETE

call, BASIC 6-10

example 6-11
BKERROR call, BASIC 6-12

BKLOCK
call,BASIC 6-14
example 6-15

BKOPEN
call, BASIC 6-16
example 6-21

BKREAD
call,BASIC 6-22
example 6-25

BKREADBYKEY
call,BASIC 6-26
example 6-28

BKREWRITE
call, BASIC 6-29
example 6-31

BKSTART
call,BASIC 6-32
examples 6-24,-35

BKUNLOCK
call, BASIC 6-36
example 6-37

BKVERSION call,BASIC 6-38

BKWRITE
call, BASIC 6-39
example 6-42

Block size,

BUILD 2-9
FOPEN 4-43

Blocking factor,
BUILD 2-9
FOPEN 4-43

Buffers,number of FOPEN 4-43

BUILD command,
KSAMUTIL 2-8
use of 2-16

BYTE key type 2-15

C

Call KSAM intrinsics,
FORTRAN 5-2
SPL 4-3

Call KSAM procedures,
BASIC 6-2
COBOL 3-2
FORTRAN 5-3

CALL statement,
BASIC 6-2
COBOL 3-2
FORTRAN 5-2

Chronological read,
FORTRAN 5-13
SPL 4-68

Chronological record pointer,SPL 4-5

CKCLOSE
call, COBOL 3-12
examples 3-14,-47

CKDELETE

call, COBOL 3-13

examples 3-14,-52
CKLOCK

call, COBOL 3-18

example 3-19
CKOPEN

call, COBOL 3-20

examples 3-23,-47
CKOPENSHIR call, COBOL 3-25
CKREAD

call,COBOL 3-26

examples 3-27,-48
CKREADBYKEY

call,COBOL 3-29

examples 3-30,-51
CKREWRITE

call,COBOL 3-32

examples 3-34,-51
CKSTART

call,COBOL 3-36

examples 3-37,-48
CKUNLOCK call,COBOL 3-40
CKWRITE

call,COBOL 3-42

examples 3-43,-46
Clear file, ERASE 2-19
Close file,

BASIC 6-8

COBOL 3-12

SPL 4-12
COBOL

error messages A-5

examples 3-46

features 1-9

interface 3-1

procedures from FORTRAN 5-3

procedures,summary 3-2
Collating sequence C-1
Command abbreviations, KSAMUTIL 2-3
Complete input/output,SPL 4-17
Control block,key file B-5
Conversion to KSAM files D-1
Copy KSAM file, FCOPY 2-45
Crash recovery 2-27,-40;E-1
Create capabilities 1-6
Create file,

BUILD command 2-8

BUILD examples 2-16

FCOPY 2-49

FORTRAN 5-4,-7

SPL 4-50

D

Data buffers, FOPEN 4-43
Data file name,

BUILD 2-8

FOPEN 4-41
Data file/key file relation B-9
Data record format 1-5

I-2

Delete file,

PURGE 2-20

SPL 4-15
Delete keys from B-tree B-2
Delete record,

BASIC 6-10

capability 1-7

COBOL 3-13

COBOL example 3-51

SPL 4-80
Device specification,

BUILD 2-10

FOPEN 4-41
Display error message,

BASIC 6-12

COBOL 3-20

SPL 4-20
Display file, FCOPY 2-52
Display file characteristics, VERIFY 2-24
Display offline 2-3
DOUBLE key type 2-15
Dump key file 2-31
Duplicate key,

BUILD 2-13

capability 1-3

FOPEN 4-47,-49

random insertion 2-13;4-49
Dynamic access, COBOL 3-22
Dynamic access code,COBOL 3-4
Dynamic locking

BASIC 6-14

COBOL 3-18

SPL 4-38

E

E command (see ERASE)
End-of-file,

data file E-1

key file E-2
EOF,

data file 2-40;E-1

key file 2-40;E-2,-3

MPE 2-27,-40;E-1
ERASE command 2-19
Error checking

BASIC 6-4

COBOL 3-6

SPL 4-7
Error code translator,SPL 4-20
Error messages A-1
errorcode list 4-8;A-1
Exclusive access,

BASIC 6-17

SPL 4-46
EXIT command,

FCOPY 2-45

KSAMUTIL 2-4
Extent allocation,

BUILD 2-11

FOPEN 4-44
Extents,number of 2-11;4-49

Extra data segment size B-18

Extra data segments,
definition B-17
end-of-file marker E-4
shared access B-21

F

FCHECK call,SPL 4-7
FCLOSE call,SPL 4-12
FCONTROL call,SPL 4-17
FCOPY 2-45
FCOPY error messages A-14
FCOPY,
function summary 2-47
to list files 2-52
use with KSAM 2-48
using KEY= 2-50
using NOKSAM 2-51
without KSAM options 2-48
FERRMSG call, SPL 4-20
FFINDBYKEY
call,SPL 4-22
example 4-25
FFINDN call,SPL 4-26
FGETINFO
call,SPL 4-28
example 4-33
FGETKEYINFO call,SPL 4-35
File access capability 1-2
File analysis capability 1-7
File capacity,
BUILD 2-11
FOPEN 4-43
File characteristics,
FGETINFO 4-28
FOPEN (see foptions)
VERIFY 2-24
File code,
BUILD 2-11
FOPEN 4-44
File error list 4-8;A-1
File errors, FCHECK 4-7
File equations 1-8
File label read in SPL 4-76
File name,
BUILD 2-8
FOPEN 4-41
File sequence 1-2
File size,
BUILD 2-11
calculation of B-11
FOPEN 4-43
File status request,
SPL 4-28
VERIFY 2-24
File structure 1-1,B-1
diagram of 1-5
internal B-1
File system error codes A-2

MAY 1981

1-3

File system intrinsics,
FORTRAN 5-2
SPL 4-1
Filetable parameter,COBOL 3-4
Find key
BASIC 6-32
COBOL 3-36
SPL 4-22
Fixed length records,
BUILD 2-9
FOPEN 4-45
FLOCK call ,SPL 4-38
FOPEN
call,SPL 4-41
example,create file 4-51
example,open file 4-53
FORTRAN features 1-11
FORTRAN interface 5-1
Forward space file, SPL 4-88

FPOINT call,SPL 4-57
FREAD

call,SPL 4-59

example 4-61
FREADBYKEY

call 4-63

example 4-66
FREADC

call,SPL 4-68

example 4-70
FREADDIR

call,SPL 4-72

example 4-74
FREADLABEL

cail,SPL 4-76

example 4-77
FREADSEEK call 4-78
FRELATE call 4-79
FREMOVE

call 4-80

example 4-83
FRENAME call 4-85
FROM command,FCOPY 2-46
FSETMODE call,SPL 4-86
FSPACE call,SPL 4-88
FUNLOCK call,SPL 4-91
FUPDATE

call,SPL 4-92

example 4-95
FWRITE

call,SPL 4-97

example 4-99
FWRITEDIR call,SPL 4-100
FWRITELABEL call,SPL 4-101

G

Generic key access,
BASIC 6-32
COBOL 3-36
SPL 4-22

Generic key capability 1-4

H Key file name,

BUILD 2-11
H command (see HELP) FOPEN 4-41
HELP command,KSAMUTIL 2-5 Key file size,
HP32208 intrinsic,SPL 4-103 BUILD 2-13

calculation of B-13
FOPEN 4-47.-48

I Key file status request,
FGETKEYINFO 4-35
Input only, VERIFY 2-24
BASIC 6-16,-18 Key file structure B-5
COBOL 3-4,-21 diagrams B-6,-7
SPL 4-46,-53 Key location,
Input-output, BUILD 2-12
BASIC 6-16,-18 FOPEN 4-47,-49
COBOL 3-4,-21 Key sequence verification 2-28
SPL 4-46 Key size,
Input/output verification,SPL 4-86 BUILD 2-12
INTEGER key type 2-15 FOPEN 4-47.-49
Internal structure, KSAM files B-1 Key type,
Intrinsic format,SPL 4-3 BUILD 2-12
Intrinsics, KSAM 4-1 FOPEN 4-47,-49
Invalid key, Key types 2-15
COBOL rewrite 3-33 Key values,sequence check 2-28
COBOL write 3-43 KEY= option,FCOPY 2-50

KEYDUMP command,KSAMUTIL 2-31
KEYINFO command, KSAMUTIL 2-37

K Keys,
number in B-tree 2-38
KD command (see KEYDUMP) number in root block 2-38
Key block buffer size,during reload E-12 KEYSEQ command, KSAMUTIL 2-28
Key block buffers,number of B-20 KI command (see KEYINFO)
Key block, KS command (see KEYSEQ)
calculation of size B-12 KSAM,
size B-11 BASIC interface 6-1
utilization,percent of 2-38 COBOL interface 3-1
Key blocking, file system intrinsics 4-1
BUILD 2-12 FORTRAN interface 5-1
FOPEN 4-47,-49 internal file structure B-1
Key blocks,number of 2-38 SPL interface 4-1
Key description, summary of FCOPY options 2-47
BUILD 2-12 summary of features 1-3
FOPEN 4-47 utilities 2-1
Key descriptor block,key file B-5 ksamcontrol parameter, FGETKEYINFO 4-46
Key device, , ksamparam,
BUILD 2-14 format, FOPEN 4-47
FOPEN 4-47,-48 parameter, FOPEN 4-41
Key entries, KSAMUTIL 2-3
number of BUILD 2-13 commands,summary 2-2
number of FOPEN 4-48 error messages A-8
Key entry block key file B-8
Key file characteristics, L

FGETKEYINFO 4-35
KEYINFO 2-38

Key file/data file relation B-9 Labels,

Key file definition, BUILD 2-14
BUILD 2-11 FOPEN 4-43
FOPEN 4-41,-47 read in SPL 4-76

Key file formatted dump 2-31 write in SPL 4-101

Key file information Line printer display,
FGETKEYINFO 4-35 FCOPY 2-52
KEYINFO 2-38 KSAMUTIL 2-3

I-4

Lock file,
BASIC 6-14
COBOL 3-18
SPL 4-38

Logical record pointer,
BASIC 6-7
COBOL 3-9
SPL 4-5

LONG key type 2-15

M

Modify record,
BASIC 6-29
COBOL 3-32
COBOL examples 3-34,-51
SPL 4-91
Multiple key capability 1-3

N

NEW option, FCOPY 2-47
NOCHECK option,VERIFY 2-24,-27
NOKSAM option,

description, FCOPY 2-51

syntax 2-47
NUMERIC key,

type 2-15

signed digit 2-16

6]

Offline display 2-3
Open file after system failure,
KEYINFO 2-40
VERIFY 2-24,-27
Open file for shared access, COBOL 3-25
Open file,
BASIC 6-16
COBOL 3-20
FORTRAN 5-8
SPL 4-41,-53
Optional parameters, KSAMUTIL 2-4
Qutput only,
BASIC 6-16,-18
COBOL 3-4,3-21
SPL 4-46,-54

P

PACKED key type 2-15
Parameter types,SPL 4-4
Permanent file,close as 4-13
Pointer dependence B-22
Pointer,logical record,
BASIC 6-7
COBOL 3-9
Pointers,SPL 4-5
Position by chronological record,SPL 4-57
Position by key sequence,SPL 4-26

Position by key value,
BASIC 632
COBOL 3-36
SPL 4-23

Position by key value and read,
BASIC 6-26
COBOL 3-29
SPL 4-63

Position file capability 1-7

Position to first record,SPL 4-17,-26

Position to lease-valued key,

BASIC 6-34

COBOL 3-37

SPL 4-23
Post buffer to disc,SPL 4-17
Previous operation,COBOL 3-5
PURGE command 2-20
Purge file,

FCLOSE 4-15

PURGE command 2-20

R

R command (see RENAME)

Random access code,COBOL 3-4,-21

Random access,COBOL 3-22

Random duplicate key insertion,

BUILD 2-13
FOPEN 4-49

Random read,
BASIC 6-26
COBOL 3-29
FORTRAN 5-10
SPL 4-63

Read by chronological record number,SPL 4-72

Read chronologically,
FORTRAN 5-13
SPL 4-68

Read randomly,
BASIC 6-26
COBOL 3-29
SPL 4-63

Read sequentially,
COBOL 3-22
COBOL example 3-48
FORTRAN 5-10
SPL 4-59

Read user file label,SPL 4-76

REAL key type 2-15

Record numbering,
BUILD 2-14
FOPEN 4-48

Record pointer,
BASIC 6-7
COBOL 3-9
operation of B-23
SPL 4-5

Record size,

BUILD 2-9
FOPEN 4-41

Record type,

BUILD 2-9

FOPEN 4-45
RECOVER option, KEYINFO 2-42
Recover capability 1-7

Recovery from system failure 2-27,-40;E-1

Reload KSAM file E-11
RENAME command,KSAMUTIL 2-21
Rename file, RENAME command 2-21
Reorganize file capability 1-7
RESTORE command,MPE 2-57
Restore file

from magnetic tape 2-57

from serial disc 2-57
Retrieve record capability 1-6
Rewind file,SPL 4-17,-19
Rewrite record,

BASIC 6-29

COBOL 3-32

COBOL examples 3-34,-51

SPL 4-92
RPG interface 1-9
RSAM conversion D-1
RTOKSAM program D-1

S

S command (see SAVE)
SAVE command, KSAMUTIL 2-23
Save file

on magnetic tape 2-55

on serial disc 2-55

SAVE command 2-23
Save permanent file,SPL 4-45
Save temporary file,SPL 4-45
Sectors per key block 2-38
Security code,SPL 4-12
Sequence check of key values 2-28
Sequence checking,

BASIC 6-20,-40

COBOL 3-22,-42

SPL 4-97
Sequential access, COBOL 3-22
Sequential access code,COBOL 3-4
Sequential read,

BASIC 6-22

COBOL 3-26

COBOL example 3-48

FORTRAN 5-10

SPL 4-59
Sequential write,

BASIC 6-39

COBOL 3-42

COBOL example 3-46

SPL 4-97
Serial disc,backup to 2-565
Shared access,

BASIC 6-7

capability 1-8

COBOL 3-10

extra data segments B-21

SPL 4-6

I-6

Space forward/backward,SPL 4-88
SPL

interface 4-1

summary of features 1-9
Status checking,

BASIC 6-4

COBOL 3-6
Status parameter,

BASIC 6-4

COBOL 3-6
Status parameter values,

BASIC A-6

COBOL A-5
STORE command,MPE 2-55
STREAM command,use of 2-43
Structure, KSAM files B-1
SUBSET option,FCOPY 2-47,-52
System failure,

count 2-27

recovery from 2-27,-40;E-1

SYSTEM INTRINSIC statement, FORTRAN 5-2

T

Tape backup 2-55
Temporary file
close as 4-13
creation, BUILD 2-9
creation, FOPEN 4-45
purging, FCLOSE 4-13
purging, PURGE 2-20
renaming, RENAME 2-21
Terminal display, FCOPY 2-52
Terminate FCOPY 2-45
Terminate KSAMUTIL 2-4

U

Unlock file,
BASIC 6-36
COBOL 3-40
SPL 4-91

Update record
BASIC 6-29
capability 1-7
COBOL 3-32
COBOL examples 3-34,-51
SPL 4-92

Utilities,

KSAM 2-1
summary of 2-2

A%

V command (see VERIFY)
Variable length records,
BUILD 2-10
FOPEN 4-45
VERIFY command, KSAMUTIL 2-24
Version request,
BASIC 6-38
SPL 4-103

W

Write capability 1-6
Write record,
BASIC 6-39
COBOL 3-42
FORTRAN 5-9
SPL 4-97
Write sequentially, COBOL example 3-46
Write user label ,SPL 4-101

I-7

READER COMMENT SHEET

HP 3000 Computer System
KSAM/3000
Reference Manual

30000-90079 May 1981

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate? Yes [] No [] (If no, explain under Comments, below.)
Are the concepts and wording easy to understand? Yes [] No [] (If no, explain under Comments, below.)
Is the format of this manual convenient in size, Yes [] No [(If no, explain or suggest improvements
arrangement, and readability? under Comments, below.)
Comments:
FROM: Date

Name

Coimpany

Address

FIRST CLASS
PERMIT NO. 102
SANTA CLARA
CALIFORNtA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States. Postage will be paid by

Customer Information Products Manager ——
Hewlett-Packard Company —_
Information Systems Division —_—
19420 Homestead Road e
Cupertino, California 95014

[b HEWLETT
Part No. 30000-90079 ﬁ

Update No.1 Incorporated 10/83 PACKARD
Printed in U.S.A. 5/79

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-49a
	02-49b
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	04-001
	04-002
	04-003
	04-004
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038
	04-039
	04-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-046a
	04-046b
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075
	04-076
	04-077
	04-078
	04-079
	04-080
	04-081
	04-082
	04-083
	04-084
	04-085
	04-086
	04-087
	04-088
	04-089
	04-090
	04-091
	04-092
	04-093
	04-094
	04-095
	04-096
	04-097
	04-098
	04-099
	04-100
	04-101
	04-102
	04-103
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	A-01
	A-02
	A-03
	A-04
	A-05
	A-05a
	A-05b
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-13a
	A-13b
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	replyA
	replyB
	xBack

