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PREFACE 

This is a hardware reference manual. Conceptually, however, the HP 3000 
system is designed as an integrated system of hardware and software. This 
manual, therefore, must be regarded as a system description from the hardware 
standpoint. 

The progress of computer technology inherently increases the complexity of 
hardware even as the use of that hardware becomes simpler and more con­
venient. Although the HP 3000 is not a large-scale computer, its hardware is 
nonetheless complex. In recognition of this fact, this manual has been made as 
conversational and illustrative as possible. 

An INDEX OF TERMS is given in the Appendix. A page number refers to the 
first time a given term is used or defined in the text; the term is italicized on 
that page. 
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The HP 3000 Computer System is a small-scale, disc-based 
system with true multiprogramming and multilingual capa­
bilities. It is the first 16-bit computer system to incorporate 
such large-system features as a hardware stack architecture 
and variable-length code segmentation in a virtual memory 
scheme. As a result, the HP 3000 can simultaneously handle 
interactive and batch operations - each in more than one 
computer language. 

These features have been achieved through an integrated 
hardware-software approach based on the specific demands 
of the multiprogramming environment. Hardware and soft­
ware work together in an interrelated manner, with hard­
ware performing many of the overhead operations that are 
conventionally done in software - such as environment 
changes on interrupt. 

A powerful operating system optimizes multiprogrammed 
operations. System resources such as main memory storage, 
processor time, and peripherals are dynamically allocated to 

SYSTEM FEATURES • 

each user as needed. Each user on the system is inde­
pendent and unaware of all other users; each "sees" only 
that part of the system required to solve his problem. 

Hardware is organized on a modular basis. See figure 1-1 
(shows four "modules"). Communication between modules 
occurs over a high-speed central data bus. Input/output 
data may be transferred directly to or from memory over 
the same bus, via a high-speed Selector Channel, or may be 
multiplexed via the 1/0 processor. In both cases the 1/0 
channels execute 1/0 programs in parallel with CPU pro­
grams. Direct control of devices on the IOP bus is also 
possible by the CPU's direct 1/0 instructions. The configu­
ration of either the module complement or the peripheral 
complement is easily changed to accommodate system 
expansions. Up to 7 modules and 253 1/0 devices are 
possible in the hardware organization. 

This section lists and describes the important hardware 
features of the HP 3000. Refer to Section II for a summary 
of software features. 

CENTRAL DATA BUS 
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Processor f--
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Figure 1-1. HP 3000 Modular Organization 
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System Features 

CENTRAL PROCESSOR 

ARCHITECTURE 
• Hardware-implemented stack 
• Separation of code and data 
• Non-mod ifiable , re-entrant code 
• Variable-length code segmentation 
• Virtual memory for code 
• Dynamic relocatability of programs 

IMPLEMENTATION 
• Microprogrammed CPU 
• 175 nanosecond microinstruction time 
• Built-in memory protection , parity checking, power-fail/auto restart 
• Protection between users 
• Central data bus 
• Concurrent 1/0 and CPU operations 

INSTRUCTIONS 
• 170 powerful instructions 
• All instructions 16 bits in length 
• 16- and 32-bit integer, 32-bit floating point hardware arithmetic 
• Triple-word shifts to aid 48-bit floating point software 

ARCH ITECTURE 

The data for each user is organized as a data stack. In 
general, a stack is a storage area where the last item stored 
in is always the first item taken out. The stack structure 
provides an efficient mechanism for parameter passing, 
dynamic allocation of temporary storage, efficient evalu­
ation of arithmetic expressions, and recursive subroutine or 
procedure calls. In addition, it enables rapid context switch­
ing - 21 microseconds to establish new environment on 
interrupt. In the HP 3000, all features of the stack (includ­
ing checking for overflow and underflow) are implemented 
in hardware. 

Code and data are maintained in strictly separate domains 
and cannot be intermixed (except that program constants 
may be present in code segments). This fact, plus the fact 
that code is non-modifiable while active in the system, 
permits code to be sharable and re-entrant. The two fea­
tures, re-entrancy and stack-structured data, together make 
possible program recursion (a program calling itself) which 
is essential for efficient compilers and systems software. 
Also, since code is non-modifiable, exact copies of all active 
code can be retained on the swapping disc, thus allowing 
code to be overlayed without having to write it back out on 
the disc. 

Variable-length segmentation of code and data is used to 
facilitate multiprogramming. This system, in comparison 
with paging schemes, minimizes "checkerboard" waste of 
memory resources due to internal fragmentation. The 
location and size of all active code segments is maintained 
in a Code Segment Table, known to both hardware and 
software. Software uses this table for dynamic memory 
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management by the operating system. Hardware uses the 
table for procedure entry and exit. A similar table for data 
segments is known and managed by the software alone. 
Code segments may be up to 16,384 words in length. Data 
segments may be up to 32,768 words. 

Segments are stored on a swapping disc and brought into 
main memory only when needed. This design results in a 
virtual memory which appears to be several times larger 
than the 65,536-word maximum size of the physical main 
memory. 

All addressing of code and data is done relative to hardware 
address registers. Thus by simply changing the addresses, 
programs are dynamically relocatable in memory. The few 
instances where absolute addresses are required are privi­
leged operations, handled by the operating system. 

IMPLEMENTATION 

The entire instruction set of the HP 3000 is micro­
programmed in a microprocessor within the CPU. The 
microprocessor executes each HP 3000 instruction by 
microprogrammed operations stored in an expandable read­
only memory. By allowing microprogrammed hardware to 
execute certain repetitive functions such as moves and byte 
scans (normally software-implemented) the amount of code 
and total execution times are greatly reduced. In addition 
to the instruction set, other system functions have been 
microprogrammed, including the interrupt handler and a 
cold-start loader. The microprocessor executes its micro­
instructions at a 175-nanosecond rate. 



The microprogrammed instructions routinely check for 
bounds violation during execution, and automatically inter­
rupt to error handling routines if violations occur. Memory 
protection checks are usually overlapped with the operand 
fetch and therefore do not slow the execution. Three types 
of parity checking are provided: system parity error (checks 
validity of .module numbers and commands during inter­
module communication), memory address parity error, and 
data parity error. Power failure generates an interrupt to a 
Power Fail segment, and restoration of power generates an 
interrupt to a Power On segment for automatic restart. All 
of these features are standard in the HP 3000. 

Several features contribute to the absolute privacy of each 
user's data and code. These include: microprogram checks 
for address bounds, file security guaranteed by the oper­
ating system, non-modifiable code, and uncallable code for 
system functions. Not only is each user protected from all 
others, but additionally the operating system is protected 
from all users. 

The basic structure of independent modules organized 
around a central data bus permits high-speed internal data 
rates. A selector channel can transfer data in or out, via this 
bus, at rates up to 1.9 million bytes per second, using the 
currently available memory without interleaving. When not 
communicating over the bus, each module can run 
independently at its own speed. New equipment can also be 
added without having to go through a major system 
reconfiguration. 

System Features 

Another advantage of the modular structure is that it 
permits concurrent I/O and CPU operations, which are 
essential to multiprogramming and its usage of main 
memory. 

INSTRUCTIONS 

There are 170 unique and meaningful instructions in the 
HP 3000 instruction set. Many of these have multiple 
actions which give a high complexity-to-instruction ratio. 
Code compression is achieved through the use of implicit 
no-address (stack) instructions, and the use of stack loca­
tions for operand addressing. All instructions except the 63 
stack operations are in a 16-bit format ; the stack ops may 
be packed two per word to further enhance the code 
density. 

A complete set of arithmetic instructions provide integer 
(16-bit two's complement), double integer (32-bit two's 
complement), logical (16-bit positive integer), and floating 
point ( 32 bits including 23-bit precision mantissa) 
arithmetic. Special instructions like triple normalizing shift 
aid software implemented multiple precision floating point 
arithmetic. 

Other special instructions are designated as privileged , 
meaning that they are usable only by the operating system 
or by users which the operating system permits to run in 
privileged mode. 

MEMORY 

• 
• 

Technology independent, speed independent 

One or two modules 

• Interleaving provision 

• Addressable to 64K words ( 131,072 bytes) 

• 17 bits includes parity bit 

Due to the modular construction of the HP 3000, memory 
modules are not restricted to specific characteristics, such 
as memory cycle time. Synchronous timing is required only 
when communicating with other modules over the central 
data bus. Thus memories may be of any type: low speed, or 
inexpensive, to high speed minimum access time - and may 
be mixed in the same system. Any currently offered 
memory technology (magnetic core , solid state , etc.) may 
be used and intermixed, and system updating is easily 
accomplished in the future as the state-of-the-art advances. 

One or two memory modules may be used in the system . 
Modules are available for 32K, 48K, and 64K word 
configurations. In all cases the word length is 17 bits - 16 
bits of data (one word or two bytes) and one parity bit. If 
two 32K word memory modules are present, two-way inter­
leaving of memory addresses is accomplished by simply 
adjusting switches or jumpers within each memory module 
and in the CPU. Interleaving is then automatic, entirely 
dependent on the value of absolute memory addresses 
transmitted over the central data bus. 
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System Features 

1/0 AND PERIPHERALS 

GENERAL 

• Privileged control of I /0 
• Concurrent 1/0 operations 
• Three ways to implement 1/0 
• Direct memory access by all channels 
• Device-independent 1/0 program execution 
• Up to 253 devices 
• Independent parameters for flexible 1/0 

1/0 SYSTEM 

• Multiplexer channel 
• Selector Channel 
• Direct 1/0 

INTERRUPT SYSTEM 

• Up to 253 external interrupts 
• Independent masking and priority structures 
• Microprogrammed environment switching 
• Common stack for interrupt processing 
• Also 17 internal interrupts plus 7 traps 

PERIPHERALS 

• Versatile mass storage units 
• Card equipment 
• Consoles/Terminals 
• Line printers 
• Punched tape equipment 
• Data communications interfaces 
• Add-ons supplied as complete 1/0 subsystems 

GE NERAL 

Input/output operations are defined as "privileged" oper­
ations by the HP 3000. Accordingly, 1/0 is normally per­
formed for the user by the operating system, and the entire 
1/0 system is not visible to the user. When the user asks to 
read a named file, he is only implicitly specifying the actual 
disc address of the file; the file syst.em determines the 
explicit address for him from a disc file directory and 
performs the read. At another level, when a user asks the 
file system for a certain type of device by specifying a 
device class (e.g., magnetic tape, line printer, etc.), the file 
system takes care of allocating an actual device for the user. 
Users who must have actual contact with special devices 
(such as in real-time applications) are assigned their own 
device channels during system configuration and they by­
pass the file syst.em. 

All 1/0 devices can be operated concurrently (within 
system bandwidth). Peripherals that fail are taken off line 
by operator command. 

There are three distinct means of implementing 1/0. This 
results in efficient use of data paths in accordance with the 
capabilities of different peripheral devices. The three 
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methods are described below under the heading "l/O 
System". Multiplexer channels are for medium to high 
speed synchronous and asynchronous 1/0. Selector chan­
nels are for high speed synchronous 1/0. Direct 1/0 is used 
for low speed asynchronous devices. 

All selector and multiplexer channels have direct memory 
access. The CPU simply issues a "Start 1/0" instruction to 
the device controller and the controller then assumes con­
trol of its own 1/0 program execution. The 1/0 program 
uses a unique set of commands (not related to the basic 
instruction set) to transfer information between memory 
and the external device. Note that once the device oper­
ation has been initiated, the CPU is free to continue 
processing. Both tasks run concurrently until the appropri­
ate 1/0 command terminates the device transfer. 

Since the initiating instruction, "Start 1/0", is consistently 
the same for any type of device, programs can be written in 
a general, device-independent manner. 

Device controllers are identified by a device number which 
is used to access the Device Reference Table (DRT). The 
DRT is known to both hardware and software. Since there 
can be a maximum of 253 entries in this table, the HP 3000 



may have up to 253 devices in its 1/0 system. (Actual 
limitation is the 8-bit 1/0 address bus.) 

In addition to a device number, there are two other charac­
teristic numbers associated with each device. These are: 
data service priority and interrupt priority. Each of these 
values is completely independent of the others, and none is 
related to the physical location of devices or controllers. 
This mutual independence of characteristics provides the 
following advantages: 

1. Device numbers can be assigned consecutively, starting 
at number 3 and proceeding up to the last assigned 
device in the system. When a new device is added, it is 
merely assigned the next higher available number (or 
any vacant number). 

2. A new device added to the system may have its con­
troller connected anywhere in the priority chain, inde­
pendent of physical location within the cabinet. 

3. Since data service priority and interrupt priority are 
independent of each other, a device which requires a 
high data transfer rate but interrupts infrequently (such 
as a disc) may be assigned a high data service priority 
but a low interrupt priority. Conversely, a device which 
has a low data rate but has an important interrupt 
significance (such as an alarm condition) may be con­
figured to a high interrupt priority. 

1/0 SYSTEM 

Multiplexer Channel. Each multiplexer channel handles up 
to 16 devices. By multiplexing device inputs, cumulative 
data rates of 880,000 bytes per second are possible with the 
initial memory offered. Data from the multiplexer channel 
is applied directly to the 1/0 processor for transfer to 
memory via the central data bus. 

Selector Channel. Selector channel data transfers bypass the 
1/0 processor completely to provide for very high speed 
data transfer or additional 1/0 bandwidth. Transfer rates up 
to 1.9 million bytes per second for a single device are 
possible with non-interleaved memory. Up to eight device 
controllers can be handled by one selector channel; each 
device will complete its block transfer before another can 
be selected. The selector channel interface to the central 
data bus can accept two channels which can be handled 
simultaneously on a multiplexed basis. 

Direct 1/0. The HP 3000 instruction set includes four 
instructions for transferring information directly between 

System Features 

1/0 devices and the top of the stack in the CPU. These are: 
RIO (Read 1/0), WIO (Write 1/0), TIO (Test 1/0), and CIO 
(Control 1/0). Reading and writing is accomplished on a 
word-at-a-time basis, and would be used for low speed 
asynchronous devices. An Asynchronous Terminal Control­
ler, which uses direct 1/0, can handle 16 terminals at 
transfer rates up to 2400 baud. 

INTERRUPT SYSTEM 

The interrupt system provides for up to 253 external inter­
rupt levels. The priority level for each device is hardware 
determined when the system is configured. Interrupt 
priority is independent of data service priority. Interrupt 
priorities are easily changed by clip-on wires which deter­
mine the routing of the interrupt poll. 

When interrupts occur, the microprogrammed interrupt 
handler automatically identifies each interrupt and grants 
control to the highest priority interrupt. Current oper­
ational status is saved by the microprogram, which then sets 
up the interrupt processing environment and transfers con­
trol to the interrupt routine. This microprogrammed con­
text switching is performed in an average time of 21 micro­
seconds (best case 18 microseconds, worst case 24.5 
microseconds). 

Interrupt routines operate on a common stack (Interrupt 
Control Stack) which is known to both hardware and 
software. This feature permits nesting of interrupt routines 
in the case of multiple interrupts, and further reduces 
environment switching time by about two microseconds if 
already operating on the Interrupt Control Stack. 

The interrupt system also provides for 17 internal inter­
rupts (for user errors, system violations, hardware faults, 
and power fail/restart) plus seven traps for arithmetic errors 
and illegal use of instructions. 

PERIPHERALS 

Mass storage devices include both fixed- and moving-head 
disc files. The fixed-head disc files provide an average access 
time of only 8. 7 milliseconds and a data transfer rate of 
496,000 bytes per second. Such high-speed performance 
makes this device ideal for swapping disc files. Storage 
capacity is 2 or 4 million bytes per unit. For maximum 
flexibility and storage capacity, moving-head disc files are 
available. These units provide storage capacities from 5 to 
50 million bytes and data transfer rates of up to 312,000 
bytes per second. On-line storage can be expanded to more 
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System Features 

than one billion bytes. Low-cost magnetic tape units are 
available in 9-channel models. Recording densities are 800 
or 1600 bpi at read/write speeds of 45 inches per second. 

Two types of card readers operate at 600 and 1200 cards 
per minute. Card punches provide speeds of 250 cards per 
minute. 

Reliable high-speed system communication is provided by 
either a 30 character per second (hard-copy output) 
terminal or a CRT display terminal. Standard ASR-33 
equipment is also available for terminal use. A printer 
terminal is supplied as standard equipment for the system 
console. 
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Line printer output is generated at either 200 or 600 lines 
per minute. Both units provide 132-column print lines , 
using either 64 or 96 characters. 

High-speed punched tape equipment reads at 500 characters 
per second. Punched tape output is available ns a separate 
unit at 75 characters per second. Either paper, plastic, or 
mylar tape may be used with all units. 

Also available are an asynchronous terminal controller and 
synchronous interfaces for data communications. 

Hewlett-Packard furnishes available peripherals as complete 
1/0 subsystems (including the device, interface, cables, 
etc.) , to facilitate system expansion in the field. 



OPERATING ENVIRONMENTS II 
The HP 3000 hardware is typically accessible only through 
the operating system. Thus the user's operating environ­
ment is the HP 3000 system software. 

Major contributions to the power of the HP 3000 system 
are provided by: 

• A multiple-mode operating system 

• A high-level systems programming language 

• Standard programming languages 

• Extensive user-aid software. 

Because the HP 3000 is a multipurpose system , each user 
and function interfaces with the system at a level of 
sophistication appropriate to his own task. Each user runs 
in a protected environment free from interference by other 
users. Program protection is supplied by hardware, and file 
security is provided by software. 

This section briefly describes the HP 3000 software under 
the four general categories. For more in-depth coverage , 
refer to the individual software reference manuals. 

OPERATING SYSTEM 

The Multiprogramming Executive (MPE/3000) is the only 
operating system needed for the HP 3000, since it simul­
taneously manages both terminal and batch modes of 
operation. 

Consistency and compatibility between operating modes 
are fundamental concepts of MPE/3000. Batch processing 
activities and interactive terminal users access the same 
software, and programs developed in the terminal mode 
may be utilized under batch mode to take advantage of 
available system peripherals. 

Uniform access to disc files and standard input/output 
devices is accomplished through the File System. Files are 
accessed in two modes: sequential, which can have fixed or 
variable record lengths, or direct. Files are opened, operated 
on, and closed programmatically. Three levels of file 
security are selectable by the user. 

The Dispatcher function allocates CPU time among pro­
grams in execution. All processes are entered into a master 
queue according to their priority. When execution has been 
interrupted (I/O, internal interrupt, time interrupt, etc.) , 

CPU control is granted to the highest priority process ready 
to execute in main memory. 

The memory management function dynamically allocates 
main memory space on a priority basis among contending 
users. Several programs can be active in memory con­
currently. When a higher priority program must be serviced, 
the executing program is interrupted or overwritten (data is 
saved). Programs may be relocated anywhere in main 
memory and continue executing from the point of 
interruption. 

BATCH MODE. Batch processing is the execution of user 
jobs that have been prepared on some input medium such 
as punched cards. Each job is self-contained and includes all 
necessary commands, programs, data , etc., for the operating 
system to use. No further instructions from the pro­
grammer are required during execution. 

Several jobs can be submitted from one or more devices 
concurrently . Input jobs are organized in scheduling queues 
for execution, and when any executing program is sus­
pended temporarily (e.g., waiting for input) , MPE/3000 
starts up the next highest priority iob . Thus the system 
continues to operate at peak efficiency. 

TERMINAL MODE. A user operating in terminal mode can 
be connected to the system either directly or through 
telephone lines. The user sitting at a keyboard terminal 
interacts with the system and receives immediate responses 
to his input. Since multiple terminals can be active at one 
time , they are processed through a time slicing technique 
(each active terminal is given an equal slice from each time 
period) . MPE/3000 can continue to execute batch jobs at 
the same time as it is handling terminals. 

Languages available to terminal users include HP extended 
FORTRAN , HP extended BASIC, COBOL, and the HP 
Systems Programming Language (SPL/3000). 

SYSTEMS PROGRAMMING 
LANGUAGE 

Instead of the customary assembly language, a unique new 
language - developed especially for writing systems pro­
grams - has been designed for the HP 3000. This language 
is the Systems Programming Language, or SPL/3000. It is 
both a high-level language and a machine-dependent 
language, combining the best features of both. 
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Operating Environments 

The high-level features are provided by a powerful, 
procedure-oriented structure that is similar (but not equiva­
lent) to the international language ALGOL. This structure 
permits efficient coding which can be written many times 
faster than if using standard assembly languages. Finished 
programs are self documenting, making programs easier to 
read as well as easier to write. 

Machine-dependent features permit exact and efficient con­
trol of the hardware when such control is desired. The 
programmer can address hardware registers explicitly, ex­
tract and deposit variable bit fields, execute branches based 
on hardware status, and directly execute multi-function 
machine instructions such as SCAN, MOVE, PUSH and SET 
REGISTERS. An assemble statement effectively provides a 
built-in assembler. 

Using both the high-level and machine-dependent features of 
SPL/3000, program execution times are very close to times 
achievable by comparable assembly language coding. 

STANDARD 

PROGRAMMING LANGUAGES 

FORTRAN/3000. The FORTRAN compiler for the HP 
3000 accepts a powerful extended version of ANSI 
standard FORTRAN (x3.9-1966). To support multi­
terminal capabilities, FORTRAN/3000 has been extended 
to allow free-form program input from a terminal device. 
Other extensions include: full 128-character USASCII 8-bit 
character set; character string manipulation with multi­
dimensional string arrays; all MPE/3000 file capabilities; 
recursive subroutines with dynamic allocation of temporary 
local storage; variable names may contain up to 15 char­
acters; and mixed mode arithmetic. 

BASIC/3000. BASIC is a simple language designed 
especially for interactive terminal use. The BASIC/3000 
version includes all the features of the standard BASIC 
language, plus a large number of extensions which exploit 
the inherent system capabilities of the HP 3000. The result 
is the most powerful version of BASIC available with any 
computer system. Although the interpreter is designed 
primarily for use from terminals, the inclusion of a 
command/program/data file facility makes it usable in 
batch mode as well. 

COBOL/3000. HP 3000 COBOL is based on the ANSI 
Standard COBOL (USAS x3.23-1968) at a level upward 
compatible with the highest level of the Federal Govern­
ment Standard. (ECMA COBOL conforms with ANSI 
COBOL.) COBOL/3000 is an extremely powerful and 
versatile computer language. It is ideal for administrative, 
financial , accounting, agency, inventory, warehousing, 
distribution and other commercial EDP applications. 
COBOL/3000 consists of a basic nucleus and functional 
processing modules that provide capabilities for table 
handling, sequential or random file access ,· record sorting, 
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program segmentation, and specifying text to be copied 
from a library. An additional functional processing module 
for interprogram communication provides the capability to 
call subprograms written in COBOL/3000 or other HP 3000 
languages from COBOL/3000 programs. 

USER-AID SUBSYSTEMS 

Support software includes several classes of common and 
useful subroutines. All are written in SPL/3000. 

The HP 3000 Compiler Library is a collection of sub­
routines which provide common functions required by 
FORTRAN, SPL/3000, and BASIC programs, such as: 
extended precision floating point arithmetic, matrix oper­
ations, complex arithmetic, and trigonometric and mathe­
matical functions. 

The EDIT/ 3000 Text Editor permits the user to create and 
edit on-line/batch computer programs and ordinary manu­
script text. It allows the user to manipulate files of upper 
and lower case ASCII characters. Lines, strings and charac­
ters can be inserted, deleted, replaced, searched for, etc. 
The files to be edited can be source language programs, 
such as FORTRAN, SPL, COBOL, etc., or textual material, 
such as reports. 

TRACE/3000 is a programmable debugging tool for high­
level languages (FORTRAN/3000 and SPL/3000). It allows 
the programmer to monitor the execution of a program. 
The programmer can use TRACE/3000 to check the state 
of the program whenever a variable is changed or a label is 
passed. In addition, the programmer can specify selective 
conditions for output of information; e.g. print data only 
when a variable exceeds a certain value, or when a variable 
is changed a specific number of times. 

The SORT/3000 Subsystem provides the capability to sort 
and/or merge multiple files of sequential records into a 
sequential file. This permits users of the HP 3000 Computer 
System to arrange large quantities of records (a file) into a 
prescribed order. Sorting is based on keys (values of one or 
more data fields). Merging forms one sorted sequence of 
records by combining one or more previously sorted 
sequences of records. 

A set of scientifically-oriented software includes an exten­
sive Scientific Library (geometric functions, correlation, 
etc.), and a· group of interactive Statistical Analysis 
Routines (STAR). The Scientific Library routines can be 
called by user programs written in FORTRAN/3000, 
SPL/3000, or BASIC/3000. Communication with STAR is 
done via commands (in batch mode) or questions and 
answers (in on-line terminal mode). 



HARDWARE DIAGNOSTICS 

The diagnostic software for the HP 3000 hardware is 
divided into three levels to cover all possible problem situ­
ations . The System Diagnostic Monitor (SDM/3000) runs 
on-line diagnostics under control of the operating system. 
Useful work may continue while this diagnostic is being 
run. A set of stand-alone diagnostics may also be used , 
which runs directly on the central processor without the 
operating system. If the problem is such that the stand­
alone diagnostics cannot be run , the microdiagnostics can 
be used . These microprograms replace the instruction set 
microprograms of the central processor and check the 
functions of the hardware from the inside out. The micro­
diagnostic hardware , the hardware maintenance panel , and 
the auxiliary control panel may be connected remotely to a 
computer over a modem-common carrier line to allow 
direct Hewlett-Packard assistance on difficult problems. 

Operating Environments 

FUNDAMENTAL 
OPERATING SOFTWARE 

The software listed below is required for operation of the 
HP 3000, and is designated as Fundamental Operating Soft­
ware. Other software described above is optional dependent 
on system application or configuration. The Fundamental 
Operating Software includes: 

• MPE/ 3000 (Multiprogramming Executive) 

• SDM/3000 (System Diagnostic Monitor) 

• Compiler Library 

• File Utilities 

• TRACE/3000 (Symbol Trace Facility) 

• SPL/3000 
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The Central Processor module determines the basic charac­
teristics of the hardware system. This module includes a 
microprocessor, which processes all the machine instruc­
tions, a complement of 20 hardware registers, various 
indicators, and the logic for processing interrupts and 
input/output functions. 

This section describes and defines the component elements 
of the Central Processor module" However, since 1/0 and 
interrupts are extensive subjects, they are treated in sepa­
rate sections later in this manuat The discussion here con­
centrates primarily on the CPU registers, their purposes, 
and formats. First, for an overall view of the module, the 
basic structure will be shown and discussed. 

Central Processor Unit (CPU) 

l Indicators J 
I 

...... 
_( 

... 
Current Micro-
Instruction [ CIR ] processor 
Register 1 c Next 
Instruction [ ] NIA 
Register l 

..,. Execution 
......-

.... ... 

1/0 Processor (IOP) 1/0 
Execution 

CENTRAL PROCESSOR rm 

MODULE STRUCTURE 

Basically, the Central Processor module is divided into three 
major component sections" These are: Central Processor 
Unit (CPU), 1/0 Processor (IOP), and Module Control Unit 
(MCU). The MCU is shared by the CPU and the IOP. Refer 
to figure 3-1. 

CENTRAL PROCESSOR UNIT 

The CPU accounts for most of the logic circuitry in the 
module. As shown in figure 3-1, the major elements are the 
microprocessor, the indicators, and the CPU registers 
(including the Next and Current Instruction Registers). 
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Figure 3-1. Central Processor Module 
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Central Processor 

The basic sequence of events for the CPU is as follows: The 
microprocessor requests an instruction from memory via 
the MCU. When received, the instruction is loaded into the 
Next Instruction Register (NIR). When the current instruc­
tion is completely executed, the new instruction is trans­
ferred from NIR to the Current Instruction Register (CIR). 
This causes the microprocessor to begin executing a micro­
program stored in its own internal solid-state memory. The 
microprogram manipulates and uses the contents of one or 
(usually) several CPU registers (see "Execution" arrow), 
according to the needs of the machine instruction being 
executed. The microprogram may change the state of one 
or more of the indicators, during execution, and may also 
initiate the transfer of operands or data to or from 
memory. At the conclusion of the microprogram, the 
desired action (such as a computation between two 
registers) will be complete, and the last step of the micro­
program is to load the new NIR contents into CIR for 
execution of the next instruction. 

1/0 PRO CESSOR 

There are seven I/0 instructions which, when the CPU 
executes their respective microprograms, will cause the I/O 
logic to perform some function. (See "I/O Execution" 
arrow.) The IOP may cause an external device to transfer 
data to or from memory (or to or from a CPU register), or 
may cause the device to enable or request an interrupt. 
When a device interrupts, the IOP sets a bit in one of the 
CPU registers. 

The hardware logic of the IOP is discussed extensively in 
Section VIII, and general input/output operations are 
described in Section VI. The interrupt system is discussed 
in Section VII. Refer to these sections for detailed informa­
tion on I/O, interrupts, and the IOP. 

MODULE CONTROL UNIT 

Most modules require a Module Control Unit (MCU) for 
inter-module communication via the central data bus. (The 
Selector Channel uses a Port Controller to perform MCU 
functions.) The MCU for the Central Processor module 
actually consists of two nearly-identical units, one for the 
CPU and one for the IOP. The IOP normally has higher 
priority in gaining access to the bus; however, when the 
CPU is attempting to complete a semi-completed operation 
(e.g., wants to transmit data to store in memory), the CPU 
takes higher priority. 

In general, Central Processor communications via the MCU 
would normally be to or from a memory module. 
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STACK 

One of the fundamental features of the HP 3000 archi­
tecture is the data stack concept. Later, in Section IV, the 
operation of the stack will be described in detail. Here, the 
method of referring to elements in the stack will be 
defined. Refer to figure 3-2. 

Figure 3-2 shows a data stack with 22 filled locations, all 
containing valid data, and 8 available unfilled locations. The 
stack area is delimited by the location defined as DB (Data 
Base) and the location defined as S (Stack pointer). The 
addresses DB and S are retained in dedicated CPU registers. 

The data in the DB location is the oldest element on the 
stack. The data in the S location is the most current 
element. The location S is also referred to as the "Top of 
Stack" or TOS. Conventionally, the "top" is shown in 
diagrams "downward" from DB; this corresponds to the 
normal progression of writing software programs, which 
begins at the top of the page and proceeds downward. 

To refer to previously stacked elements of data, "S-minus" 
relative addressing is used. Thus S-1 is the second element 
on the stack, S- 2 is the third, and so on. S-minus relative 
addressing is one of the standard addressing conventions, as 
will be discussed later in this section. 
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... ... ... _... --..... :: ... 

..... ,... 
..... ... 

TOS----+ 

z---+ 

Undefined 
Data 
Area 

Figure 3-2. Elements in a Data Stack 



Since the top four elements of the stack are the most 
frequently used, the letters A, B, C, D are also often used. 
With this convention, A is the top of the stack, or S, B is 
S-1, C is S-2, and Dis S-3. There are, in fact, four CPU 
registers (TRO through TR3) which are sometimes referred 
to by the logical names RA, RB, RC, and RD, and may at 
various times contain up to four of the topmost stack 
elements. However, these registers are not explicitly 
addressable; the S-minus addressing mode must be used to 
access their contents. The A, B, C, D designations are 
primarily a documentation convenience. 

The area from S+ 1 to Z (the eight shaded locations) are 
available for adding more elements to the stack. When a 
data word is added to the stack, it is stored into the next 
available location and the S pointer is incremented by one 
to reflect the new TOS. This process is said to push a word 
onto the stack. To delete a word from the stack, the S 
pointer is simply decremented by one, thus putting the 
word into the undefined area. 

FORMATS 

DATA 

There are six different data formats that are processable by 
System/ 3000 instructions. These are shown in figure 3-3. 
(The long floating point format is used primarily in soft­
ware; the TNSL instruction is the only hardware operation 
which directly handles this format.) 

BYTE FORMAT. Bytes are processed by five of the Move 
instructions (CMPB, MVB, MVBW, SCU, SCW), by two 
memory reference instructions (LDB and STB), and by the 
" byte test" instruction, BTST. Figure 3-3 shows the basic 
byte format, which usually contains an eight-bit data 
character, and the format for packing two bytes into a 
memory word. When bytes are processed by machine in­
structions, the bytes are individually addressed, fetched, 
and stored as though memory consisted of a number of 
eight-bit locations. (See "Addressing Conventions".) When 
consecutive bytes are addressed in memory with ascending 
addresses, the high order byte of a packed word is accessed 
first and the low order byte (bits 8 through 15) second. 

LOGICAL FORMAT. In logical arithmetic, a 16-bit data 
word is taken as a positive integer, with an assumed binary 
point to the right of bit 15 and an assumed + sign to the 
left of bit 0, The range of possible integers is 0 through 
+65,535, decimal. The instruction set provides six instruc­
tions for logical arithmetic: LCMP, LADD, LSUB, LMPY, 
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LDIV, and NOT. In addition and subtraction (LADD, 
LSUB), the only difference from integer adds and subtracts 
is that logical adds and subtracts do not set the Overflow 
indicator. In all other respects .(16-bit result, Condition 
Code, and Carry), the results are the same. For addition, 
the Carry bit is set if a carry out of the most significant bit 
occurs; if the carry out does not occur, the Carry bit is 
cleared. For subtraction (which is accomplished by two's 
complementing the subtrahend and adding), Carry is set by 
a computation of A - B if B is less than A. Carry is cleared 
if B is greater than A. Thus if the Carry bit is set by LADD, 
the sum has exceeded +65,535, and if the Carry bit fails to 
be set by LSUB, the difference is less than zero. In either 
case the result is modulo 2 1 6

• For multiplication (LMPY), 
overflow cannot occur and the Carry bit has a special 
meaning (see definition). For division (LDIV), the Overflow 
(not Carry) bit is used, and indicates that the quotient is 
too large to be represented in 16 bits; The quotient in this 
case will be modulo 21 6

• When the Condition Code is set 
by a logical operator, it is set as if the result were a signed 
quantity. For example, CCL is set if bit 0 is a "l" 
("negative" quantity). 

SINGLE FIXED POINT FORMAT. The single-word fixed 
point format permits two's complement representation of 
both positive and negative integers. Bit 0 is a sign bit, and 
the remaining 15 bits define the quantity. The range of 
possible integers is -32,768 through +32,767. Bit 0 is a "O" 
for positive numbers and a "l" for negative numbers. The 
binary point is assumed to be to the right of bit 15. The 
instruction set provides 24 instructions for single-length 
integer arithmetic. These include various modes of addition, 
subtraction, incrementing and decrementing. In addition 
and subtraction (ADD, SUB), conventional two's comple­
ment arithmetic is used. Both Overflow and Carry indi­
cators are provided. Overflow indicates that the 
computation result required more than 15 bits for the 
quantity and consequently overflowed into bit 0, the sign 
bit. For valid subtraction and addition, Carry should be set 
by SUB, but not by ADD. For multiplication and division, 
Carry is not used; Overflow indicates that the result cannot 
be contained in 15 bits plus sign. 

DOUBLE FIXED POINT FORMAT. The double-word 
fixed point format is the same as the single-length format 
described in the preceding paragraph except that two words 
are linked together to form a 32-bit doubleword quantity. 
Bit 0 of the most significant word is the sign bit. The range 
of possible integers is approximately - 2 billion to +2 
billion. The instruction set provides six instructions for 
double-length integer arithmetic: DCMP, DADD, DSUB, 
DNEG, MPYL, and DIVL. For multiplication with MPYL, 
overflow cannot occur and the Overflow bit is always 
cleared; Carry is used for a special purpose (see MPYL 
definition). The operands for MPYL and the divisor and 
quotient for DIVL are single-word. 

FLOATING POINT FORMAT. In this format, bit 0 of the 
most significant word is the sign bit, bits 1 through 9 are 
used to express the exponent, and the remaining bits repre­
sent the fraction. The binary point is assumed to be to the 
left of bit 10, 
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BYTE 

LOGICAL FORMAT 

FIXED POINT 

Single Word 

01234567 0 7 8 15 

111111111 
Packed 

Bytes I I I I I I I I I II I I I I I I 

0 15 

1111111111111111\ 

Positive Integer 
16 bits 

0 15 

;111111111111111\ 

Byte 0 Byte 1 
(First) (Second) 

Binary Point 

Sign Two's Complement Integer Binary Point 
16 bits 

0 15 0 15 
FIXED POINT 

Double Word 
(11111111111111111111111111111 I I I I\ 

Sign Two's Complement Integer Binary Point 
32 bits 

012345678910 15 0 15 
FLOATING POINT JI 11111111I11111111111111111111111 

Exponent \ Positive Fraction 
Sign (Biased +256) Binary 22 bits 

9 bits Point 

012345678910 15 0 15 0 15 
FLOATING POINT 

Long format 
1111111111 I I 1111 I I I I I I I I I I I I I I I I 11 11111111 111111111 

I Exponent \ Positive Fraction 
Sign (Biased +256) Binary 38 bits 

9 bits Point 

INCREASING ADDRESSES IN MEMORY 

Figure 3-3. Data Formats 



The floating point format used by the HP 3000 has some 
special features which are illustrated separately in figure 
3-4. The important distinction is the use of "sign with 
+magnitude" representation. In this type of representation, 
the fraction is always positive, with the sign bit indicating 
the sign of the number. There is an assumed "1" to the left 
of the binary point. Thus all floating point numbers, by 
definition, exist in normalized form and the mantissa effec­
tively has 23 bits. However, no bit is wasted on the leading 
"l ", and all fraction bits are significant. 

The exception to this convention is that zero is a word 
containing all "O"s. For this to be true, the assumed leading 
"l" is disregarded. 

1 . 

S E E E E E E E E E 
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The exponent for floating point numbers is biased by +256. 
Since the nine exponent bits give a range of 0 through 511, 
subtracting the bias yields an exponent range of -256 
through +255. Figure 3-4 shows four examples of exponent 
calculation. Note that if bit 1 is a "O", exponents are 
negative; if bit 1 is a "l", exponents are positive or zero, 

Thus the floating point representation of 1.0 is a "1" in bit 
1 and "O"s in all other bits. This indicates 1 X 2°. 

Figure 3-4 also shows the mathematical equation for com­
puting the value of a floating point number represented by 
the above conventions, (The exception: zero is defined as: 
S=E=F=O.) 

Mantissa 
23 Significant Bits 

ASSUMED 
LEADING "1" 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Exception: 
FLOATING POINT 
"O" 

EXPONENT 
BIAS 

Therefore: 
FLOATING POINT 
"1.0" 

Mathematically : 
DECIMAL VALUE = 

m. 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Binary Decimal - Bias Exponent 

lololololololo lolo l 0 - 256 -256 

1 2 3 4 5 6 7 8 9 

lolololololololol 1I - 256 -255 

1 2 3 4 5 6 7 8 9 

l 1 lolololololololol 256 - 256 0 

123456789 

l 1 lolololol 0 l 0 l0 11I 257 - 256 

1 2 3 4 5 6 7 8 9 

1. 

0100000000000000 0000000000000000 

0 1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 14 1 5 16 1 7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

{-1 )S x 2 E- 256 x (1 + F x 2 -22) 

T TT T T T 
Sign Exp Bias Leading Fraction Point 

"1" Position 

Figure 3-4. Floating Point Data Representation 
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The instruction set provides ten floating point instructions: 
FCMP, FADD, FSUB, FMPY, FDIV, FNEG, FLT, DFLT, 
FIXT, FIXR. Overflow indication is provided by the mathe­
matical operations (FADD, FSUB, FMPY, FDIV), and by 
the "fix" instructions (FIXT, FIXR). The Carry indication 
is not used, except for a special purpose by the FIXT and 
FIXR instructions (see definitions). 

LONG FLOATING POINT FORMAT. The long floating 
point format is the same as the standard format described 
above except that 16 fraction bits are added to the right of 
the second word. With only this change, the information 
given in figure 3-4 is also valid for this format. (Note that 
the "point position" modifier in the equation becomes 
2- 3 8 instead of r 2 2 

.) Only one instruction, TNSL, 
directly uses the triple-length floating point format. 

Note: In all cases where more than one word is 
used to represent a single unit of data, the 
words are stored in memory such that the 
least significant word is stored in the 
higher address location. For example, 
when pushing a doubleword or tripleword 
quantity onto the stack, the least signifi­
cant word will be on the TOS. 

INSTRUCTIONS 

The HP 3000 instruction set has been designed for 
maximum efficiency of bit usage in the instruction word. 
For this reason, the instruction formats do not necessarily 
always fall neatly into rigid field boundaries. There are, in 
fact, 23 distinct formats used by the instruction set. 

Figure 3-5 shows the primary format in each of the 13 
instruction groups. Exceptions are noted and can be 
obtained from Section V, where formats are given for each 
individual instruction. The following paragraphs briefly 
describe the basic formats shown in figure 3-5. 

GENERAL FORMAT. The first format in figure 3-5 shows 
the general scheme for dividing the instruction word into 
code fields. Only the first field is rigidly adhered to. This 
field, bits 0 through 3, either defines a specific instruction 
code in the memory address group (or the "loop control" 
group), or else defines one of the sub-opcode groups. There 
are four sub-opcode groups: 1, 2, 3, and "stack ops". The 
field for sub-opcodes varies. For sub-opcodes 2 and 3, bits 
4, 5, 6, and 7 are used, as shown. For sub-opcode group 1 
codes, bits 5 through 9 are used, and for stack ops the 
remainder of the word is used. In some cases the sub­
opcode will enable a third field, called a mini-opcode or a 
special opcode, in bits 8, 9, 10, and 11. The remainder of 
the word has a variety of special uses, and commonly is part 
of an "argument field". 

STACK OP. The stack op format is defined by four "O"s in 
the first four bits. The remaining 12 bits are divided into 
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two fields; stack op A and stack op B. Either or both of 
these fields may contain any of the 63 stack op instruction 
codes. Execution sequence is from left to right (A first, 
then B). Interrupts may occur between the execution of A 
and B. Also note that indicators (Carry, Overflow, and 
Condition Code) are set by the last executed stack op. If 
using only one of the two stack op fields, it is more 
efficient to use stack op A since the hardware always looks 
ahead to see if stack op B is a NOP; this permits the 
hardware to ignore the second field, resulting in a time 
saving. 

SHIFT. The shift instruction group uses about half of the 
sub-opcode 1 group of codes. Sub-opcode group 1 is 
defined by 0001 in the first four bits. If bit 4, the Index 
bit, is a "l", the content of the Index register is added to 
the shift count in bits 10 through 15 to specify the number 
of places each data bit is shifted. Bits 5 through 9 encode 
the specific shift instruction. 

BRANCH. The branch instructions account for 11 of the 
sub-opcode 1 group of codes. In the branch instruction 
format, bit 4 is used as an indirect bit (indirect if bit 4 = 

"1"). Bits 5 through 9 encode the specific branch instruc­
tion. Bits 11 through 15 give a P relative displacement (0 
through 31), and bit 10 specifies whether the displacement 
is+ or - relative to P ("O" = +, "l" = - ). 

BIT TEST. The bit test instructions, also in sub-opcode 
group 1, use bits 5 through 9 to specify the instruction. Bits 
10 through 15 specify a bit position in the TOS word for 
testing. The bit position specified is modified by the addi­
tion of the Index register contents if the Index bit is set (bit 
4 = "l"). 

MOVE. The move group of instructions accounts for eight 
of the codes specified by the sub-opcode 2 code 0000. 
Sub-opcode group 2 is defined by 0010 in the first four 
bits. Bits 8, 9, and 10 of the move instruction format 
encode the specific instruction. Bit 11 is used for some 
instructions to specify whether the source of the moved 
data is PB relative (bit 11 = "O") or DB relative (bit 11 = 

"l"). Bit 11 is also used in some cases as an additional code 
bit for specifying the instruction. Bits 12 and 13 are not 
used. Bits 14 and 15 are used to specify an S-decrement 
value to delete, if desired, the move parameters from the 
top of the stack. 

SPECIAL. The special group uses four mini-opcodes. The 
mini-opcode group is also, like the moves, specified by the 
sub-opcode 2 code 0000. Bits 8 through 11, plus bit 15, 
encode the instruction. Bits 12, 13, and 14 are not used. 

IMMEDIATE. The immediate instruction group uses codes 
in both sub-opcode group 2 (coded 0010) and sub-opcode 
group 3 (coded 0011 ). Bits 4 through 7 encode the instruc­
tion and bits 8 through 15 are used for the immediate 
operand. 

FIELD. The format for field deposit and extract instruc­
tions is specified by two of the sub-opcode 2 group of 
codes. Bits 4 through 7 specify the instruction and the 



GENERAL 
FORMAT 

STACK 
OP 

SHIFT 

BRANCH 

Except 
BR , BCC 

BIT 
TEST 

Except 
TSBM 

MOVE 

Except 
MVBW 

SPECIAL 

Except 
LLBL 

0 1 2 3 4 5 6 7 8 9 10 111 2 13 14 15 

I I I I I I I I I I I I I I I I I 
Memory 
Opcode 

or 
Sub-opcode 

Group 

Sub-opcode Mini-opcode 
or 

Special 
Opcode 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Io I 0 I 0 I 0 I I I I I I I I I I I I I 
Stack Op A Stack Op B 

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 

1°1°1°1 1 ~[ I I I I I I I I I I I 
Sub-opcode 1 Shift 

Index Count 
Bit 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 

Sub-opcode 1 P Relative 

Indirect +/- Displacement 

Bit Relative 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 

Sub-opcode 1 Bit Position 

0 1 

0 0 

0 

0 0 

Index 
Bit 

2 3 

1 0 

4 

0 

5 6 7 

0 0 0 

Sub-opcode 2 

2 3 4 5 6 7 

0 0 0 0 0 

Sub-opcode 2 

8 9 10 11 12 13 14 15 

0 0 

~ 
Move SDEC 

Opcode 
PB/DB 

Relative or 
Additional 
Code Bit 

8 9 10 11 12 13 14 15 

0 0 0 

Mini -
Opcode 

Additional 
Code Bit 
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0 1 2 3 4 5 6 7 8 9 10 111 2 1314 15 

IMMEDIATE I 0 I 0 I 1 I 0 I I I I I I I I I I I I I 
f Sub-opcode 2 

or : 1 Sub-opcode 3 

FIELD 

REGISTER 
CONTROL 

Except 

Immediate 
Operand 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I 0 Io I 1 I 0 I I I I I I I I I I I I I 
Sub-opcode 2 J -Field K-Field 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

l 0 lol 1 lol I I I 1°1 I I I I I I I 
DB DL z Sta x a s 

XCHD, ADDS. 
SUBS 

Sub-opcode 2 
Register 

Name 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
PROGRAM 
CONTROL I 0 I 0 I 1 I 1 I I I I I I I I I I I I I 

Except 
PAUS, HALT 
XEO 

Sub-opcode 3 N-Field 

0 1 2 3 4 5 6 7 8 9 10 111 213 14 15 

:~0T::~uPT Io I o I 1 I 1 I 0 I 0 I 0 I 0 I I I I I I I I I 

0 1 2 3 
LOOP 
CONTROL 

0 0 

0 2 3 
MEMORY 
ADDRESS 

Except Memory 
LOPP. Opcode 
LDPN 

Index 
Bit 

Sub-opcode 3 Special K-Field 
(or not 

used) 
Opcode 

4 5 6 7 8 9 10 111 2 13 14 15 

0 

~ 
Opcode P Relative 

Displacement 

+/-
Relative 

4 5 6 7 8 9 10 11 12 13 14 15 

Mode and 
Displacement 

Indirect 
Bit 

Figure 3-5. Instruction Formats 
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remaining eight bits are divided into a J-field and a K-field. 
The J-field specifies the starting bit number and the K field 
specifies the number of bits. 

REGISTER CONTROL. The format for the register control 
instructions uses bits 9 through 15 to name a register and 
bits 4 through 7 in sub-opcode group 2 to specify the 
operation. 

PROGRAM CONTROL. The program control instructions 
account for four of the sub-opcode 3 codes. Sub-opcode 3 
is specified by 0011 in the first four bits. The instruction is 
encoded by bits 4 through 7, and the N-field in bits 8 
through 15 is used either for a PL- displacement (PCAL 
AND SCAL) or to specify a number of parameters to be 
deleted on return from a procedure or subroutine (EXIT 
and SXIT). 

I/0 AND INTERRUPT. The I/0 and interrupt instructions 
use 11 of the special opcodes (bits 8 through 11) defined 
by the sub-opcode 3 code of 0000. The K-field, bits 12 
through 15, is used by some of the instructions for an S­
displacement to locate a device number given in the stack. 

LOOP CONTROL. The loop control instructions are 
defined by a special coding of bits 4, 5, and 6 for memory 
opcode 05 (which is otherwise defined as the STOR 
instruction). Bits 8 through 15 give a P relative displace­
ment for a branch address, and bit 7 specifies whether the 
displacement is + (= "O") or - (= "1") relative to P. 

MEMORY ADDRESS. The memory address instruction for­
mat uses bits 0, 1, 2, and 3 to encode a specific instruction. 
Bits 6 through 15 give both an addressing mode and a 
displacement. (Refer to "Addressing Conventions", later in 
this section.) Bit 5 is used to specify indirect addressing 
(= "l"), if desired, and bit 4 is used to specify indexing 
(= "1"), if desired. If both indirect addressing and indexing 
are specified, post-indexing will occur. 

STATUS WOR D 

There is a Status word for each code segment in the system. 
At all times, the Status word associated with a given process 
indicates the machine status following the execution of the 
most recent instruction in that segment. The status for the 
currently executing segment is resident in the Status 
register, and is constantly being updated as each instruction 
is executed. For segments that are not current (suspended 
by either an interrupt or a procedure call), the Status word 
exists in a stack marker in a data stack. (See "Stack Marker 
Format" figure in Section IV.) 

Figure 3-6 shows the format for the Status word. Note that 
bits 8 through 15 indicate the segment number of the 
currently executing code segment (when the particular 
Status word is resident in the Status register). Thus, when a 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

'--v--'"~~~~~---~~~~~ 

Condition 
Code 
ICC) 

M Privileged Mode bit 
1 = Privileged Mode 
0 = User mode 

Segment 
Number 

(Currently Executing) 

External Interrupts Enable/Disable 
1 = Enable 
0 = Disable 

T User Traps Enable/Disable 
1 = Enable 
0 = Disable 

R Right Stack Op Pending bit 
1 = Pending (Execution 11\ i ll proceed 

w i th Stack Op B) 
0 = Not Pending 

0 Overflow bit 

C Carry bit 

CC Condition Code 
00 = CCG (Greater) 
Ol = CCL (Less) 
10 = CCE (Equal) 

Figure 3-6. Status Word Format 

Status word is pushed into a stack marker by an interrupt 
or procedure call, these bits identify the segment that is to 
be returned to when execution is resumed later. 

The following descriptions of Status bits will assume that 
the Status word under discussion is resident in the Status 
register. All references to "current" conditions can also be 
inferred as "then current" conditions in the case of sus­
pended segments or procedures. 

Bit 0, the Privileged Mode bit, indicates that the current 
segment is running either in privileged mode (if a "l") or 
user mode (if a "O"). The state of this bit cannot be 
changed by machine instructions while resident in the 
Status register (except in privileged mode), and the PCAL 
and EXIT instructions include checks to prevent illegal 
mode changes by altering the non-current status Mode bits. 

Bit 1 is used to enable or disable external interrupts. This 
bit also cannot be changed in user mode while current, and 
the EXIT instruction invokes a trap if a non-privileged user 
illegally altered the bit while non-current. The state of bit 1 
may be changed only in privileged mode. (PCAL and EXIT 
disable external interrupts if they transfer control to the 
Trace, Absence, or STT Entry Uncallable segments, due to 
not being completely executable.) 



Bit 2 is used to enable or disable user traps (parameters 1 
through 5 for interrupt segment 17). The state of this bit 
may be changed in any mode while current (SETR in­
struction) or non-current (state not affected by EXIT). 

Bit 3 is normally used only by the hardware. The computer 
hardware will set this bit to a "1" if the right stack opcode 
(bits 10 through 15) contain a valid instruction other than 
NOP. The hardware requires this information in case an 
interrupt occurs between the execution of the left and right 
stack ops. The state of bit 3 cannot be changed in user 
mode while current. 

Bit 4 is the Overflow bit, and is one of the three indicators 
(along with Carry and Condition Code) which are set or 
cleared as an incidental operation by many of the machine 
instructions. (See "Indicators" following each instruction 
definition in Section V.) In general, Overflow is used as an 
indicator only by signed integer and floating point compu­
tations. If set (= "l"), the indication is that the result of 
the computation is too large to be represented in the 
available number of bits in the data format. For floating 
point, the setting of Overflow could also indicate that the 
result is too small to be represented. If the user traps are 
enabled (bit 2 set), an interrupt to segment 17 will occur in 
lieu of setting the Overflow indicator (except for integer 
overflow, which causes both results to happen). This will 
permit the system to generate a message to the user, indi­
cating which type of overflow or underflow occurred. All 
user traps will set the Overflow indicator if traps are 
disabled. 

Bit 5 is the Carry bit. The Carry indicator is used primarily 
by logical and integer arithmetic, and usually indicates a 
carry (= "l") or lack of carry (= "O") out of the most 
significant bit during a computation. The Carry bit is also 
used by some instructions as an indicator for special 
purposes which are stated in the instruction definitions. 

Bits 6 and 7 are used for the Condition Code. Although 
several instructions make special use of the Condition Code 

I 

I 

I 

I 
I 

Table 3-1. Condition Codes 

CCA sets CC CCG (00) if operand > 0 
CCL (01) if operand < 0 
CCE ( 10) if operand =O 

CCB sets CC 

CCC sets CC 

CCG (00) if numerical (octal 060-071) 
CCL (01) if special char (all others) 
CCE ( 10) if alphabetic (upper 101 - 132 

lower 141 - 172) 

CCG (00) if operands 1 > 2 
CCL (01) if operands 1 < 2 
CCE ( 10) if operands 1 = 2 

-'---
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(see definitions), the Condition Code typically indicates the 
state of an operand (or a comparison result with two 
operands). The operand may be a word, byte, doubleword, 
or tripleword, and may be located on the top of the stack, 
in the Index register, or in a specified memory location. 
Three codings are used: 00, 01, and 10. (The "11" combi­
nation is not used.) Except for the special interpretations, 
there are three basic patterns for interpreting these codes. 
The three patterns are shown in table 3-1. 

The most common Condition Code pattern is pattern A, 
designated as CCA. In the CCA pattern, the Condition Code 
is set to 00 if the operand is greater than zero, to 01 if the 
operand is less than zero, or to 10 if the operand is exactly 
zero. Since this usage of the Condition Code is so common, 
the three codes 00, 01, and 10 are commonly named to 
reflect these meanings. Thus 00 is CCG ("Greater"), 01 is 
CCL ("Less"), and 10 is CCE ("Equal"). These names are 
primarily used for documentation convenience. 

Pattern B for the Condition Code, designated as CCB, is 
used with byte oriented instructions. In the CCB pattern, 
the Condition Code is set to 00 if the operand byte is an 
ASCII numerical character, which would be represented by 
octal values 060 through 071. The code is set to 10 if the 
byte is an ASCII alphabetic character, which would be 
represented by octal values 101 through 132 for upper case 
letters, and 141 through 172 for lower case letters. The 
code is set to 01 if the byte is an ASCII special character, 
represented by the remaining octal values. 

Pattern C for the Condition Code, designated as CCC, is 
used with comparison instructions. The Condition Code is 
set to 00 if operand 1 is greater than operand 2, or to 01 if 
operand 1 is less than operand 2, or to 10 if the operands 
are equal. In the instruction definitions, the first mentioned 
operand is "operand l". For example, the definition for 
CMP reads: "The Condition Code is set to pattern C as a 
result of the integer comparison of the second word of the 
stack with the TOS." The second word of the stack is 
therefore operand 1, and the TOS is operand 2. (The Index 
of Instructions also defines this relationship, if the operands 
are listed.) 

CPU REGISTERS 

Since the HP 3000 architecture is structured on code 
segments and data segments, most of the CPU registers are 
used for defining the segment limits and operating elements 
within the segments. As shown in figure 3-7, three of the 
CPU registers point to locations in a code segment; the 
segment so pointed to is defined as the current code 
segment. Six of the registers point to locations in a data 
segment; the segment so pointed to is defined as the current 
data segment. The following paragraphs define the 
functions of the individual registers. 
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CODE SEGMENT REGISTERS 

PB-REGISTER. The PB-register defines the program base of 
the code segment being executed. The register contains a 
16-bit absolute address pointing to the first location of the 
code segment. 

P-REGISTER. The P-register is the program counter. It 
contains a 16-bit absolute address pointing to the location 
of the instruction being executed. It can never point to a 
location beyond the limits defined by the PB- and PL­
registers. An attempt to do so will invoke a Bounds Viola­
tion interrupt or a PCAL to the operating system. 

PL-REGISTER. The PL-register defines the program limit 
of the code segment being executed. The register contains a 
16-bit absolute address pointing to the last location of the 
code segment. 

DATA SEGMENT REGISTERS 

DL-REGISTER. The DL-register defines the data limit of 
the current data segment. The register contains a 16-bit 
absolute address pointing to the first word of memory 
available to the user's data space. 

DB-REGISTER. The DB-register defines the data base of 
the current user's stack. The register contains a 16-bit 
absolute address pointing to the first location of the 
directly addressable global area of the stack. 

Q-REGISTER. The Q-register defines the current stack 
marker in the current data segment. The portion of the 
stack between Q and S represents data that is incurred by 
the current procedure or routine. The Q-register contains a 
16-bit absolute address pointing to the fourth word of the 
current stack marker being used within the stack. The 
content of this register may be changed by a SETR instruc­
tion, but since bounds checking is always performed by the 
EXIT instruction, the location pointed to must be within 
the limits defined by the DB- and Z-registers (except that 
privileged mode may move Q below DB). 

SM-REGISTER. The SM-register defines the last memory 
location of the current stack. The register contains a 16-bit 
absolute address pointing to the last accessed data location 
in memory. Since the SM-register may not necessarily point 
to the logical top of the stack, the S pointer, rather than 
the SM-register, is the address of interest for programming 
purposes. However, bounds checking is performed on the 
SM-register, which must be between the limits defined by 
the DB- and Z-registers (except that privileged mode may 
move S below DB). 

Central Processor 

SR-REGISTER. The SR-register defines the number of TOS 
elements that are in CPU stack registers. The register con­
tains a 3-bit number which can only have one of the 
following values: 0, 1, 2, 3, or 4. This number is a positive 
displacement which, when added to the address in the 
SM-register, indicates the actual (or "logical") top of the 
stack. 

S-POINTER. The S pointer defines the logical top of the 
stack. The S pointer is not a physical register but rather is 
logically comprised by adding together the SM- and SR­
register contents. 

Note: The principle of using two physical 
registers to create the S pointer is em­
ployed for hardware convenience in 
achieving fast execution times. For nearly 
all programming purposes, the existence 
of the SM- and SR-registers may be 
ignored, using instead only the value S. 

Z-REGISTER. The Z-register defines the stack limit of the 
current user's stack. The register contains a 16-bit absolute 
address which points to the last location available to the 
stack. (Each data segment actually has about 13 locations 
beyond Z since bounds checks are made with SM instead of 
S, and also to allow space for stack markers due to an 
interrupt.) 

OTHER CPU REGISTERS 

Three CPU registers not associated with code or data seg­
ments are the Index register, the Status register, and the 
Mask register. These are described in the following 
paragraphs. 

INDEX REGISTER. The Index register is a 16-bit register 
which contains the index to be used by a machine instruc­
tion if indexing is specified. It may also be used to contain 
a parameter or address for other (non-memory addressing) 
instructions. The Index register is program accessible. 

STATUS REGISTER. The Status register is a 16-bit register 
which indicates the current status of the computer hard­
ware, including: the segment number of the currently 
executing code segment, the state of the three indicators 
(Overflow, Carry, and Condition Code), the current mode 
(privileged or user), enable /disable control bits for external 
interrupts and user traps, and stack opcode status. (Refer 
to "Status Word" format earlier in this section.) 
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MASK REGISTER. The Mask register is a 16-bit register 
which indicates the current mask being used to enable or 
disable specified groups of external interrupts. A" l" bit in 
any particular position enables the group of external inter­
rupts which are specifically wired to be controlled by that 
bit; a "O" bit will disable the group of interrupts. The Mask 
register may be loaded from the TOS by the SMSK instruc­
tion (privileged) and may be read to the TOS by the RMSK 
instruction (not privileged). 

PRIVILEGED MODE 

The HP 3000 has the capability of operating in either 
privileged mode or user mode, and is capable of switching 
dynamically from one mode to the other depending on the 
type of operation being executed at a given instant. 

Privileged mode is characterized by the ability to execute 
the 19 privileged instructions and to call segments that have 
been declared "uncallable". In general, the privileged user is 
defined to be the operating system, which in most cases will 
be the Hewlett-Packard MPE/3000 executive software. 
Privileged operations , such as input/output, are performed 
by the operating system, operating in privileged mode. For 
an unprivileged user to perform such operations, it is neces­
sary to call one of the callable intrinsics of the operating 
system, which will in tum call the uncallable intrinsics that 
will perform the operation on behalf of the user. 

The mode currently in effect in the system is indicated at 
all times by bit 0 of the Status register. The state of this bit 
may be changed only in privileged mode. 

The method of declaring a code segment uncallable involves 
the use of an "uncallable bit" in the format of local 
program labels. The format and application of program 
labels is discussed later, in Section IV. 

ADDRESSING CONVENTIONS 

MEMORY ADDRESSING 

Earlier, in figure 3-5, the format for memory address in­
structions was shown to employ bits 6 through 15 for 
"mode and displacement". The following paragraphs ex­
plain and illustrate the six memory addressing modes and 
the respective displacement ranges. Refer to figure 3-8. 
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The HP 3000 uses relative addressing almost exclusively. 
(Only privileged instructions, including the 1/0 group and 
PLDA, PSTA, and LLSH, use absolute addresses.) Address­
ing may be relative to the location pointed to by the 
P-register, the DB register, the Q-register, or the S pointer. 
As shown in figure 3-8, addressing may be + or - with 
respect to P or Q, but only+ with respect to DB and - with 
respect to S. 

Note: When the letters P, Q, DB, etc., are used 
alone as in the preceding paragraph, the 
letter is interpreted to mean "the location 
pointed to by the P-register, Q-register, 
DB-register, etc." This convention 
simplifies such references in documen­
tation and verbal communications. 

The ranges of displacement for the various modes of rela­
tive addressing are also shown in figure 3-8. (These ranges 
apply to direct, unindexed addressing; indirect addressing 
and indexing are discussed under separate headings.) The 
variety of displacement ranges is due to the particular 
coding required to specify a given mode. For example only 
two bits (6 and 7) are required to specify the P+ , P- , and 
DB+ relative modes. This leaves bits 8 through 15 for a 
displacement, which therefore can be any value from O 
through 255. For Q+ mode , bits 9 through 15 give a 
displacement range of 0 through 127. For Q- and S­
modes, bits 10 through 15 give a displacement range of 0 
through 63. In order to provide the most efficient usage of 
bits, the mode codes are assigned according to respective 
needs for displacement range. 

Note that the DB+, Q-, Q+, and S- addressing ranges may 
overlap. Also, DB+, Q+, and S- may actually address words 
currently held in TOS registers ; this is automatically taken 
care of by the hardware. 

P+ and P- addressing modes are typically used for branches 
and referencing of literals. The DB+ mode is used for 
referencing global variables and pointers (i.e., indirect 
addresses). The Q+ and Q- modes are useful for , respec­
tively, local variable storage and passing of procedure 
parameters. The S- relative mode is typically used for 
accessing parameters in subroutines. 

Not all memory address instructions are capable of using all 
six modes. The instruction definitions in Section V specify 
which modes are applicable to a given instruction. Some vari­
ation from the above outline of relative addressing can be ex­
pected in certain cases. For example, the PCAL , SCAL, and 
LLBL instructions (not in the memory address group) use 
PL- relative addressing. Also INCM, LDB, STB, and BCC 
deviate from this convention in their coding of bit 6. 

Throughout this manual and in other HP 3000 docu­
mentation, the terms "displacement", "effective address", 
"relative address", and "base" are used in connection with 
memory addressing. These terms may be defined as follows: 
The displacement is a positive number which is given in the 
instruction word and points to a location "plus" or 
"minus" that number of locations from a given reference 
cell (also named in the instruction word). The location so 
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Figure 3-8. Memory Addressing Modes 

indicated may or may not be the effective address, which is 
the final computed address, after displacement calculation, 
indirect addressing (if any), and indexing (if any) have been 
resolved. The effective address is always an absolute 
address. The relative address, which can be extracted by an 
LRA instruction, is obtained by subtracting the base from 
the effective address; the base is either the PB address 
(program base) or the DB address (data base). 

Addressing arithmetic is done "modulo 65K" words (i.e., 
65,536 word addresses). 

INDIRECT ADDRESSING 

One level of indirect addressing is permitted. Indirect 
addressing uses the location referenced by the initial dis­
placement (the "indirect cell") to specify another location 
within the same code or data segment. In the case of 
program references, the indirect cell contains a self-relative 
address. In the case of data references, the indirect cell 
contains a DB+ relative address. Refer to figure 3-9. 

For memory address instructions, indirect addressing is 
specified by bit 5 of the instruction word: "l" indicates 
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indirect to be used. For the branch instructions (excluding 
BR), indirect addressing is specified by bit 4. See figure 3-5. 

CODE INDIRECT. Figure 3-9 shows both P+ and P- ex­
amples of the indirect addressing in a code segment. The 
first example shows the actions occurring for an assumed 
instruction of "LOAD P+4, I". The displacement, +4, 
points to the indirect cell at P+4. The indirect cell contains 
a self-relative address of +3. This points to a location three 
addresses higher, or P+7. It is the content of this location 
which will be loaded onto the TOS by the instruction. 

The second example illustrates "LOAD P-4, I". The dis­
placement, -4, points to the indirect cell at P-4. This cell 
contains a self-relative address of -3, which is 177775 in 
octal. (The number can be positive or negative.) This points 
to the location at P- 7, which is the effective address for the 
given instruction. 

DATA INDIRECT. The first of the three examples of 
indirect addressing in a data segment illustrates "LOAD 
DB+4, I". The displacement, +4, points to the indirect cell 
at DB+4. This cell contains a DB+ relative address of 7. 
(This is not a self-relative address.) Thus the effective 
address is at DB+7. Note that it is possible for the effective 
address to be below as well as above the indirect cell. 

The second data example illustrates "LOAD Q+4, I". The 
displacement, +4, points to the location four addresses 
above Q, which is the indirect cell. As in all data indirect 
cases, the indirect cell contains a DB+ relative address. 
Since, in this case, the content is 7, the effective address is 
again DB+7. 

The third data example illustrates both the S- and the Q­
modes. The displacement is again assumed to be -4, which 
points to an indirect cell at S-4 (for LOAD S-4, I) or at 
Q-4 (for LOAD Q-4, I). Since the content of the cell, in 
both cases, is assumed to be 7, the effective address is again 
DB+7. 

INDEXING 

The content of the Index register is used for indexing, when 
specified by the "X" bit of instruction formats that include 
indexing capability. When the X bit (bit 4) is a "1", index­
ing is enabled. The memory address instructions use index­
ing to modify an operand address. Shift instructions use 
indexing to modify a shift count, and bit test instructions 
use indexing to modify a bit position number. The latter 
two instances are comparatively simple concepts and do not 
apply to memory addressing; the following paragraphs 
describe indexing only as it is used in memory addressing. 

Figure 3-10 shows some examples of indexing. Unlike 
figure 3-9, this figure does not illustrate all combinations of 
cases. Figure 3-10 shows indexing when combined with 
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positive and negative addressing modes (both direct), and 
an example of indirect, indexed addressing (positive mode 
only). Examples of these cases are given for both code and 
data segments. Note that in every case the index is assumed 
to be 5; this is established by the "LDXI 5" instruction 
which precedes each LOAD instruction used in the ex­
amples. This instruction loads the value 5 into the Index 
register. 

CODE INDEXING. The first example in figure 3-10 shows 
the actions occurring for an assumed instruction "LOAD 
P+4, X". The displacement, +4, would by itself point to 
location P+4; however, by adding the index of 5 to the 
displacement, the location P+ 11 (octal) is addressed. It is 
the content of this location which will be loaded onto the 
TOS by the instruction. 

The second example illustrates indexing with a negative 
addressing mode, P- in this case. The instruction at P 
indicates a displacement of 11, which would point at the 
P- 11 location. The index of 5 indexes the address in a 
positive direction to finally address P-4. 

The third code example shows indexing combined with 
indirect addressing. In all such cases, "post-indexing" is 
used; i.e., the indirect addressing is accomplished first 
(whether in a positive or a negative direction), and indexing 
proceeds in a positive or negative direction from the loca­
tion so indicated. As shown in the example , the displace­
ment of +4 points to the indirect cell at P+4. The content 
of P+4 is a self-relative address of 3, which points to 
location P+7; however, indexing adds 5 to this value, thus 
pointing at the final effective address at P+ 14 (octal). 

DATA INDEXING. The first data indexing example illus­
trates "LOAD DB+4, X". This displacement, +4, points at 
DB+4; this is modified by the index of 5 to point at 
DB+ll. 

The second data indexing example illustrates the S- mode, 
which is similar to the P- mode previously described. Since 
a positive index is specified, indexing proceeds in a positive 
direction from the location indicated by the displacement. 

The final example illustrates data indexing combined with 
indirect addressing. Again, post-indexing is applied. The 
example instruction is "LOAD Q+4, I, X". The displace­
ment, +4, points to the indirect cell at Q+4, which contains 
the value 3. Since indirect addresses for data are always 
DB+ relative, this points at location DB+3. This is modified 
by the addition of the index, 5, thus pointing at the final 
effective address DB+ 10 (octal). 

BYTE ADDRESSING 

The Load Byte and Store Byte instructions (LDB, STB) and 
five of the move instructions (MVB, MVBW, CMPB, SCU, 
SCW) use the byte addressing convention. Since the 
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HP 3000 central processor is not specifically organized as a 
byte processor, the byte addressing convention uses the 
content of the Index register, an indirect cell, or a stack 
word to specify the byte desired. For memory addressing 
(LDB, STB), the displacement value remains a word dis­
placement. The byte data label in an indirect cell is an 
inflated value (two times the word displacement from DB). 
The contents of the Index register and/or an indirect cell 
indicate the desired byte in a byte array. For move instruc­
tions, one or two of the top-of-stack locations give a PB+ or 
DB+ relative byte index. 

'The byte addressing range is therefore restricted to 32K 
words (15 bits for word address, one for byte number). 
'This implies restricting the stack size to 32K maximum 
range from DL to S. 

Figure 3-11 shows the four different cases of byte address­
ing for memory address instructions (LDB and STB): 
direct; direct, indexed; indirect; and indirect, indexed. The 
convention for move instructions corresponds to the 
"direct, indexed" case shown in the figure; the difference is 
that the byte index would be obtained from a top-of-stack 
word rather than the Index register. 'The following para­
graphs describe each of the four examples. 

DIRECT. For direct, unindexed byte addressing, the dis­
placement value given in the instruction word is strictly a 
word displacement and only the left byte of each word is 
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addressable. As shown in figure 3-11, a "STB DB+7" in­
struction would store a byte from the TOS into the left 
byte of the DB+7 location. 

DIRECT, INDEXED. The byte index in the Index register 
is assumed to be 5, established by a LDXI 5 instruction. 
'The "STB DB+7, X" instruction directly addresses location 
DB+7, and the index of 5 accesses the sixth byte. (Note 
that the byte index starts at 0; all even indexes are left 
bytes and all odd indexes are right bytes.) 

INDIRECT. In this example the byte index is given in the 
indirect cell. As in all indirect data addressing, the indirect 
reference is relative to DB. Thus "STB DB+7, I" initially 
addresses the indirect cell at DB+7 and the byte index of 46 
accesses the 4 7th byte with respect to DB. This will be the 
left byte of DB+23. (Since there are two bytes per word, 
divide the byte index by two to identify the word location; 
a remainder of 0 indicates the left byte, 1 the right byte.) 

INDIRECT, INDEXED. In the indirect, indexed mode, the 
displacement points to the indirect cell, the indirect cell 
points to the start of a byte array, and the index in the 
Index register points to the desired byte in the array. The 
example in figure 3-11 illustrates "STB DB+7, I, X" . The 
index in the Index register is again assumed to be 5. The 
displacement points to the indirect cell at DB+7, which 
contains the value 40. Dividing this by two gives the 
starting word address of the array, location DB+20. Since 

INDIRECT 
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the index is 5, the location accessed is the sixth byte of the 
array. In this manner, the Index register acts like a byte 
index for ease of stepping through byte strings or byte 
arrays. 

Refer also to the section on byte addressing under the 
heading" Access to DB- Area". 

DOU BLEWO RD IN DEXIN G 

Two memory address type instructions, LDD and STD, 
permit doubleword indexing. When indexing is specified for 
these inf;tructions, the hardware automatically multiplies 
the Index register content by two during computation of 
the effective address. Thus an index value of 4 would imply 
the fifth doubleword in a doubleword array. 

BO UNDS CHECKING 

The central processor routinely checks all address refer­
ences and top-of-stack movements to ensure that such 
operations remain within legal bounds. Many of the instruc­
tion definitions in Section V define the checks that are 
made; however the lack of such mention does not neces­
sarily imply that no checks are made. 

The following paragraphs summarize the basic bounds 
checks that occur for the applicable instruction types. 
Refer to table 3-2 and figure 3-12. 

Table 3-2. Bounds Checks 

CHECK DEFINITION MODE 

Program Transfer PB ~ E ~ PL Privileged, User 

Program References PB ~ E ~ PL User only 

Data References DL ~ E ~ S User only 

Stack Overflow SM > Z Privileged, User 

Stack Underflow SM < DB User only 

E = Effective Address of Memory Reference 

PROGRAM TRANSFER. Program control cannot be 
passed (via PCAL, SCAL, or a branch) to any location 
beyond the limits defined by the contents of the PB-register 
and the PL-register. This rule applies to both privileged and 
user modes. For indirect branches, both the indirect refer­
ence and the direct reference must be within limits. This 
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also applies when branching indirect via the stack .(see BR 
definition), except that the initial reference must be within 
the stack limits (DB,S) rather than within PB and PL. A 
bounds violation causes a Bounds Violation interrupt to 
segment 11. 

PROGRAM REFERENCES. Some of the memory address 
instructions, all of the loop control instructions, some of 
the move instructions, and a few others, are capable of 
addressing locations in the code segment. In privileged 
mode, such references may be made without restriction. 
However, in user mode, the references (both direct and 
indirect) must be within the limits defined by PB and PL. A 
bounds violation causes a Bounds Violation interrupt to 
segment 11. 

DATA REFERENCES. In privileged mode, data references 
are not subject to bounds checking. In user mode, data 
references (both direct and indirect) must be within the 
user's defined data area - that is, between DL and S. A 
bounds violation causes a Bounds Violation interrupt to 
segment 11. 

STACK OVERFLOW. Neither privileged mode nor user 
mode may overflow the stack. A stack overflow is defined 
as the condition of moving the top-of-stack pointer beyond 
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the stack limit. In a stricter sense, stack overflow occurs 
when SM exceeds Z. Since SM is not necessarily the actual 
top of the stack (may be coincident with S or up to four 
locations lower), and to allow marker space for the remote 
possibility of a procedure call and an interrupt while SM is 
at Z, there is a zone of about 13 locations beyond Z which 
could be filled with stack related data. A stack overflow 
causes an interrupt to segment 3, which, under the dis­
cretion of the operating system, may extend the stack limit. 

STACK UNDERFLOW. A stack underflow is defined as the 
condition of moving the top-of-stack pointer below the 
data base or, more strictly, moving SM below DB. Since SM 
may or may not be coincident with S, underflow may occur 
even though S may be up to three locations above DB. 
Privileged mode is not subject to underflow checking. A 
violation in user mode, however, will cause a Stack Under­
flow interrupt to segment 13. Users can access the area 
between DL and DB by indirect addressing or indexing, as 
long as SM does not become less than DB. 

ACCESS TO DB- AREA 

Both privileged and user modes have access to the data area 
between DB and DL through indirect addressing and index-

BYTE 
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Address Calculations in Octal : WORD DB + 177770 = DB - 10 
BYTE DB+ ( 177770 -:- 2) + 100000 = DB - 10 

Figure 3-13. Access to DB- Area 
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ing. The privileged mode additionally has direct access by 
the privileged move instructions MVBL and MVLB. Figure 
3-13 illustrates the technique of indirect addressing to 
access this area, using both word and byte examples. 

WORD ADDRESSING. The left part of figure 3-13 shows 
how to access a word in the DB- area. Assume that we wish 
to load the contents of the location at DB-10 onto the 
stack, and that location DB+4 can be used for the indirect 
cell. Thus a "LOAD DB+4, I'' instruction initially refer­
ences the indirect cell at DB+4. The indirect cell contains, 
instead of a positive number, the two's complement of the 
desired DB displacement. In octal, the two's complement of 
10 is 177770. Remember that the content of an indirect 
cell in a data segment is always a DB+ relative displacement. 
Thus, since addressing arithmetic is modulo 65K, adding 
177770 to DB causes "wrap-around" and addresses the 
desired DB-10 location. (Indexing via the Index register 
may be applied from this point.) 

BYTE ADDRESSING. The right part of figure 3-13 shows 
the technique of accessing a byte in the DB- area. Assume 
that we wish to load the DB-10 byte onto the stack, and 
that location DB+4 will again be used as the indirect cell. 
The "LDB DB+4, I'' instruction initially references DB+4, 
which contains, instead of a positive byte number, the 
two's complement of the desired byte displacement from 
DB. In octal, the two's complement of 10 is 177770. 
Remember that byte indexes are converted to word indexes 
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by dividing by two. This would indicate location 
DB+7777 4 (left byte), which may or may not exceed the 
upper limit of memory, depending on the current absolute 
value of DB. 

To allow for byte addressing in additional data segments 
where DB may not be between DL and Z, a check for this 
condition is made. If DB is not between DL and Z (this 
should happen only in privileged mode and is then called 
split stack), the byte will then be accessed without further 
bounds checking. If, however, DB is between DL and Z, 
then in either mode the LDB instruction (or other byte 
addressing instruction) tests this address to see if it is within 
the required DL to Z range . If the address is not within this 
range (which should be the case , whether wrap-around has 
already occurred or not) , the instruction will add 32K 
(100000 in octal) to the DB+77774 value. Assuming that 
wrap-around had not yet occurred, this addition would 
certainly cause wrap-around and thus address the byte at 
byte address DB-10 (left byte in location DB-4) . 

At this time , a second test is made to see if the effective 
address is in the DL to Z range. If the technique has been 
applied properly , the test will be affirmative and the byte 
will be transferred. However, if the second test fails , the 
action taken will depend on the current mode. In user 
mode, there will be a Bounds Violation interrupt to seg­
ment 11. In privileged mode , the result of the second test is 
ignored; execution continues even if our of bounds, using 
the second referenced byte. 



MEMORY SEGMENTATION 

As part of its basic architecture, the HP 3000 Computer 
System organizes all code and data into variable length 
segments which may be swapped in and out of main mem­
ory on demand. 

The first half of this section ("Introduction" and "Code 
and Data Segments") describes the basic theory of segment­
ation. Since the mechanics described are automatically con­
trolled by operating system software , the information is 
presented primarily as background material. 

The second half of this section, however, ("Stack Opera­
tion" and "Examples of Stack Usage") focuses on the stack 
portion of a data segment. Since an understanding of the 
stack concept is essential to the overall system concept , 
the latter half of this section illustrates the principles of 
stack operation in detail at a fundamental level. 

INTRODUCTION 

It is the purpose of this introduction to provide a bridge 
from the overall "system" viewpoint into the functionings 
of the hardware, as regards memory operations . Therefore 
no attempt will be made to explain the concepts of jobs 
and processes, any more than is necessary for the following 
discussions. The reader should refer to separate documenta­
tion for the software systems , if full definitions of these 
concepts are required. 

First it is necessary to establish what is meant by virtual 
memory. As shown in figure 4-1, virtual memory consists of 
primary memory (the main memory) plus an area of mass 
storage called secondary memory, or the swapping area. 
The swapping area, typically on disc or drum memory, 
consists of a collection of pieces of code or data, defined as 
segments, which are not presently in core but which may be 
called in by the executing programs. A segment is the basic 
entity for transfers between core memory and the swapping 
area. Whether a segment is in main memory or absent (on 
disc), it is nevertheless part of the virtual memory . From 
the point of view of the user, he is working with a memory 
that appears to be many times larger than actual physical 
size. In fact, his own program may exceed the 65K-word 
maximum of main memory capacity, and still allow space 
for many other users on the same machine. 

At this point the reader should be visualizing a dynamic 
situation in which various segments are being swapped 
rapidly between core memory and the swapping area of disc 
memory, according to the demands of the executing 
programs. Also bear in mind that several users may be on 
the machine at a given time, and that each user may have 
several segments. 

Now the questions arise: where did the segments come 
from (i.e., how were they created), and how are they 
eventually eliminated? To answer these questions it is 
necessary to understand that there are two distinct types of 
segments, code segments and data segments. Thus there are 
two methods of origin. See figure 4-2. 

A code segment consists entirely of information that is not 
subject to change during program execution. This includes 
the instructions of the program itself, constants, and an 
area for interprocedure links. No modifiable data may be 
interspersed with the instructions in a code segment, and in 
no way is it possible to write into or alter a code segment 
(or its formative parts) once it has been compiled. It is this 
feature which allows code to be re-entrant, meaning that a 
given sequence of instructions can be in simultaneous use 
by several users - or, can be entered several times by the 
same user, whether or not preceding entries are concluded. 
An example at the end of this section (Recursion) will 
illustrate a procedure which, after being entered by the 
main program, will call itself several times before any exit is 
given. 
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As shown in figure 4-2, user code entered into the com­
puter exists in one of four states at various points in time. 
Initially, the user programs exist as source-language code. 
Then (step 1 in figure 4-2), the programs are translated into 
binary form by a process executing a compiler, and stored 
in the file area of disc memory. Each compiled program or 
subprogram exists in the file area as a relocatable binary 
module (RBM); the set of RBM's that result from compi­
lation of a user's program onto disc make up a user sub­
program library (USL) file. 

The USL is not executable, however. Instead, it must be 
"prepared" for running (step 2 in figure 4-2). During prepa­
ration, the operating system binds the RBM's from the USL 
into linked code segments arranged in a program file. Each 
segment contains machine instructions produced from the 
user's program, plus linkages to other segments. 

The next step (3, in figure 4-2) is to allocate the program 
when the user gives the command to run his program. In 
allocation, the operating system links the code segments to 
the Code Segment Table. Every allocated segment has an 
entry in the Code Segment Table, which is a set of reserved 
locations in main memory that tells both the hardware and 
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the software exactly where each code segment is located. 
The table lists a memory address if the segment is main­
memory resident, or a disc address if disc resident, plus the 
segment length. It is maintained by the operating system. 

During allocation, the operating system also binds the 
segments from the program file to referenced external seg­
ments from a library. Once the segments are allocated, the 
USL becomes part of the virtual memory, and execution 
can begin. The operating system creates a process to run the 
program and individual segments are swapped into main 
memory for execution (step 4 in figure 4-2). 

The data segment, also shown in figure 4-2, consists only of 
data. Like the code segment, a data segment is fully pro­
tected. No user (more strictly, no process) may have access 
to the data segment of another user (or process). Generally 
speaking, each process defined by a user causes a data 
segment to be created. Initially, when the code segments 
are allocated, the data segment contains no actual data, but 
consists only of an initial stack having some initializing 
information. (Stack is defined later.) But at least the data 
segment is allocated - that is, a place for data is 
established. 

Like code segments, data segments have entries in a table, 
called the Data Segment Table, which keeps track of where 
each data segment is located. Unlike the Code Segment 
Table, however, the Data Segment Table's location is 
known only to the operating system software. 

As execution progresses, data will enter and leave the data 
segment - perhaps as the result of various computations, or 
perhaps via an external data source. 

Eventually the last instruction in a given process will be 
executed. At that time the operating system will deallocate 
all segments associated exclusively with that process. That 
is, they will lose their entries in the Code Segment Table 
and the Data Segment Table, and the respective code and 
data will be overlaid by other segments coming into the 
system. For a time, of course, the old code and data will 
physically continue to exist in the virtual memory, but 
there is no means by which this information can be 
retrieved. Thus if there is some information to be saved as 
the result of process execution, the process itself must save 
such information in the file area. 

Referring back to figure 4-1, the reader should at this point 
be able to visualize not only the swapping of segments in 
and out of main memory, but also the creation and elimina­
tion of various segments as new user processes come into 
the system and other processes come to an end. Obviously 
the areas occupied by segments in both main memory and 
disc memory will dynamically shrink and expand according 
to demands placed on the system. (To maintain optimum 
efficiency, the operating system has a timer and method of 
keeping usage statistics, so that the less important or less 
frequently used segments are most eligible for temporary 
swapping out to the disc.) 



Now that the basic concept of a segment has been 
introduced, it is possible to show how the segment fits into 
the overall scheme of things. 

Figure 4-3 is an overview of the major system elements. 
This figure shows the software that might exist in the 
hardware at a given instant of time. It does not attempt to 
show the possible links between elements, nor the relation­
ships that can exist among various processes. It is simply a 
snapshot view of elements, showing location and consti­
tution. Note that the software exists either (or both) in 
main memory or in mass storage. 

The following paragraphs describe each of the elements 
shown in figure 4-3. 

RESERVED MEMORY 

Only 12 memory locations are "reserved" in the strictest 
sense - i.e., having a known, fixed address. These are the 
first 12 addresses. See table 4-1. In addition, however, there 
is also a permanent table which is reserved in the sense that, 
once established, each entry has a permanent allocation. 
The upper limit of the table, however, is flexible, depending 
on how many entries there are in the table. This table is the 
Device Reference Table (to be defined and discussed in a 
later section). It begins at octal location 14 and uses four 
locations for each device existent in the system. 

The 12 fixed memory allocations can be divided into three 
groups of four locations each. In the first group, location 0 
contains the Code Segment Table Pointer, which is the 
absolute address of the first entry in the Code Segment 
Table. Location 1 contains the Data Segment Table Pointer, 
location 2 contains the Process Control Block Table 
Pointer, and location 3 contains the System Global Pointer. 
(Note: these are dynamic assignments; for cold load opera­
tions, the hardware expects a cold-load value for the 
P-register in location 1.) 

The second and third groups each apply to separate proces­
sors, if a dual-processor system is used. Locations 4 through 
7 provide a Current Process Control Block pointer, two 
interrupt stack pointers, and an interrupt reference counter 
for processor 1. Octal locations 10 through 13 provide the 
same for processor 2. The Current Process Control Block 
pointers will be discussed in this section under the heading 
"Data Segments", and the interrupt stack pointers and 
counters will be discussed in the section on interrupt 
processing. 
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Table 4-1. Fixed Memory Allocations 

LOCATION l 
0 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 

CONTENTS 

Code Segment Table Pointer 
Data Segment Table Pointer 
Process Control Block Table Pointer 
System Global Pointer 
CPCB Pointer 1 
QI 1 

ZI 1 
Interrupt Counter 1 
CPCB Pointer 2 
012 
ZI 2 
Interrupt Counter 2 

} 

First Entry 
Device Reference 

Table 
(Device # 3) 

SEGMENTED LIBRARY 

A segmented library is a flexible means of sharing fre­
quently used routines among many users. In addition to 
standard library routines, the user may enter and delete 
routines of his own in the libraries. 

A library might be one procedure in a segment, a set of 
procedures in a segment, or a set of segments. As shown in 
figure 4-3, some segments which contain certain library 
routines are permanently allocated. That is, they have 
entries in the Code Segment Table. Other library segments 
remain in the file area until such time that a user makes a 
request for one of its routines. At that time the operating 
system will load the affected segments, create entries in the 
Code Segment Table, and provide appropriate links for the 
user to access the desired routine. 

OPERATING SYSTEM 

The operating system is the master supervisory program, 
overseeing the allocation of memory, controlling the loader, 
swapping user segments in and out of main memory, desig­
nating time to individual users, and so on. The standard 
operating system for HP 3000 is the Multiprogramming 
Executive (MPE/3000). It consists of a number of separate 
programs and many procedures in the system segmented 
library file. 

As indicated in figure 4-3, not all parts of the operating 
system need to be permanently resident in main memory. 
Certain modules may be retained in the file area, and be 
allocated on a requirement basis. 
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COMPILERS 

Several language compilers are available. If only one 
compiler is used on a system, it might be designated to be 
permanently allocated. For a multicompiler system, how­
ever, it is more efficient to retain the permanent copy of 
each compiler in the file area, and to allocate the compiler 
in virtual memory only when required. Due to the 
re-entrant feature for all programs run on this computer, 
only one copy of a compiler needs to be present in main 
memory, regardless of how many users may be simultane­
ously compiling. The operating system keeps a count of 
how many users are using a given compiler, and when this 
count reaches zero, the compiler is deallocated. 

USER ALLOCATIONS 

As shown in figure 4-3 , the remaining space (after alloca­
tions for reserved memory, library, operating system, and 
compilers) is available for users. This space includes both 
main memory space and disc space. Bear in mind that the 
relative block sizes in figure 4-3 do not indicate compara­
tive sizes of space; the file and swapping areas, for example, 
may be many times the size of any allocation in main 
memory. 

USER JOB. When a user logs into the system, he establishes 
a job. During the course of his job he will execute one or 
more programs upon information contained in separate and 
distinct data domains. The user's data domain consists of all 
data that is used or generated during the course of a job. 

PROCESS. A program is executed on the basis of individual 
processes. A process is not a program itself, but the unique 
execution of a program by a particular user at a particular 
time. Therefore, if the same program is run by several users, 
or more than once by the same user, it is used in several 
distinct processes. 

The process is the basic executable entity in the system. It 
consists of a Process Control Block that defines and 
monitors the state of the process, a dynamically-changing 
set of code segments and a data area (stack) upon which 
these segments operate. The code segments used by a pro­
cess can be shared with other processes, but its data stack is 
private (though the operating system does provide for com­
munication of data between related processes) . 

Processes will again be mentioned under the headings of 
" Code Segments" and " Data Segments", but further details 
regarding their relationships, substates, priorities, means of 
data communication, queuing, dispatching, etc., are 
extraneous to the present discussion. Refer to the operating 
system documentation for this type of information. 
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CODE SEGMENT. Code segments were defined earlier as 
consisting primarily of instruction code, and being the basic 
entity for transfers of code between main memory and the 
swapping area. As shown in figure 4-3, a program may 
consist of several code segments. 

One important point to note about code segments is that, 
since code cannot be changed after it is compiled, the copy 
of a segment in the swapping area is identical with any copy 
that has been transferred into core. Thus when the oper­
ating system decides to swap out a code segment, no actual 
transfer needs to take place. The operating system simply 
makes note that the segment is now absent , and may then 
overlay the core area occupied by that segment. This is 
unlike the data segment which, being constantly subject to 
change, must be physically transferred to disc if swapping is 
required. (Note unidirectional arrows for code segment 
swapping and bidirectional arrows for data segment 
swapping in figure 4-3.) 

CODE AND DATA SEGMENTS 

The preceding introduction provided a bridge between the 
external aspects of the system and the inner workings of 
the hardware, which now follow. Attention is to be focused 
on main memory , regarding the swapping area only as a 
place where segments can be sent when main memory 
becomes too crowded. 

At first, memory will be viewed as a whole, as a repository 
for some number of segments - whether they be code or 
data - with perhaps some spaces between. It will be shown 
how space is managed in an orderly and efficient manner. 
Following this, code segments and their interrelationship 
during execution will be discussed, followed finally by data 
segments and the stack concept. 

SEGMENTS IN MEMORY 

Figure 4-4 shows four segments being present in memory. 
These are "assigned" segments. There are also three blank 
or " free " segments. In each case , whether assigned or free , 
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the first eight locations of the segment comprise an 8-word 
link header, and the last location of the segment gives the 
size of that segment, divided by four. (The last word of the 
segment effectively points back to its header, and specifies 
the type of the preceding area - i.e., assigned or free.) 

To assist the operating system in its task of filling memory 
with variable sized segments, the memory is threaded with 
two major systems of links. These are the assigned memory 
links and the free space links. The assigned memory links 
consist of pointers within the link headers of each assigned 
segment, which link all assigned segments. Similarly, the 
free space links consist of pointers within the link headers 
of each free segment, thus linking all free segments. 

Linking pointers are given for both the forward direction 
and the backward direction. That is, one word in the header 
points ahead to the next assigned link (or next free link, as 
the case may be), and another word points back to the 
previous assigned link (or last free link). Note, as shown in 
the figure, that the links are not arranged in sequence of 
ascending memory addresses, but rather weave through 
memory in seemingly random manner. Actually, the 
assigned links are arranged according to usage statistics, so 
that the least used segments are at the head of the list and 
are thus most susceptible to overlay. The links are updated 
for this purpose each time an overlay is performed. 

Other information given in the link headers includes: seg­
ment type, disc address, segment size, and process number. 
All of this information is used in memory management. 

In typical operation, if the currently executing code 
requests an absent segment, the operating system will first 
obtain the size of the called segment from the Code Seg­
ment Table. It will then use the LLSH instruction to search 
through the free space list to see if there is a large enough 
free segment to accept the called segment. If this search 
fails, one or more assigned segments are selected for 
overlay. 

For clarity, figure 4-4 shows only the next-assigned-link 
structure for the assigned list (and the pointer to the head 
of the free list). The free list links and the previous­
assigned-link structure of the assigned list are not shown. 
The segment numbers shown are for reference purposes 
only; e.g., assigned segment number 0 points to assigned 
segment number 1, and so on. However, the pointers 
consist of absolute addresses, not segment numbers. 

CODE SEGMENTS 

During the execution of one user's process, there will typi­
cally be several code segments in memory and a single data 
segment. Assume that the current process presently has two 
code segments in memory, as shown in figure 4-5. (The data 
segment, not shown, will be discussed later.) 
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The purpose of figure 4-5 is to show how the system keeps 
track of where code segments are, and how references may 
be made from one segment to another. Although the figure 
illustrates hardware, it remains the responsibility of the 
operating system to control the actions shown here. 

The Code Segment Table and the CST Pointer have both 
been mentioned before. In summary, it was explained that 
the CST Pointer is permanently resident in location 0, and 
that it contains an absolute address pointing (1) to the 
starting location of the Code Segment Table. This table tells 
where each code segment (present or absent) is located. 

Each entry in the Code Segment Table has a unique 
number, called the code segment number, which identifies a 
particular segment. Each entry consists of a doubleword 
descriptor which includes the absolute address of the 
related segment and its length. (The format of CST entries 
is given in figure 4-6.) Entry number 0 in the table is unique 
in that it simply points (2) to the final entry in the table; 
this defines the length of the table for the benefit of the 
operating system in allocating core space for the table itself. 
Segment number 0 does not exist. 

The example Code Segment Table in figure 4-5 presumably 
has 212 entries for all code segments of all users currently 
on the machine. Assume that one user is executing a 
process which requires code segments 22 through 25. 
Segments 22 and 23 are in core, since there has been a 
reference that has caused them to be brought in, whereas 
segments 24 and 25 are not presently needed and so are 
absent on disc. 

The process is currently executing instructions in 
segment 23. This means that the address value contained in 
the second word of CST entry 23 has been loaded into the 
PB-register. Thus the PB-register is pointing (3) at PB(a). 
The PL-register, using a value derived from the segment 
length , is pointing at PL(a). The P-register is advancing from 
PB(a) toward PL(a). 

The last nine locations of segment 23 are not part of the 
segment's code, but were added by the operating system 
when the segment was loaded into the virtual memory. This 
is the Segment Transfer Table, which contains linking refer­
ences for every procedure call in the segment. A procedure 
call is an instruction which references a set of instructions 
elsewhere in the code segment; that set of instructions is 
structured as a procedure, to perform a standardized oper­
ation or computation and then return control to the 
instruction immediately succeeding the call instruction. 

Note that entries in the Segment Transfer Table are num­
bered from the end back towards the code. Entry number 0 
gives the Segment Transfer Table length (see STT Length 
word format in figure 4-6). This indicates (4) the number of 
the last STT entry , so that the hardware can make validity 
checks on procedure call references; for example a call to 
entry number 9 would be invalid. (If a call from within the 
segment is made to entry 0 , the reference will be taken 
from the top of the stack instead of from the Segment 
Transfer Table. A call from outside a segment to entry 0 
starts execution at the P = PB after checking the U bit.) 
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When the execution sequence reaches the first PCAL 
instn~ction, a reference is made (5) to the fourth entry of 
the Segment Transfer Table; i.e., since the PCAL instruc­
tion uses PL- addressing, the instruction references cell 
PL- 4. This location contains a local program label (see 
format in figure 4-6), which implies that the called pro­
cedure is located within the same segment. The reference is 
a PB relative address pointing (6) to the beginning of a 
procedure or block. 

After some preparatory operations, which include saving 
the return address on the stack, the PCAL instruction 
transfers control to the procedure. Upon encountering an 
EXIT instruction in the procedure, control returns to the 
instruction immediately following the first PCAL. 

In this example there were no references outside the 
current segment. In the following example an external 
reference is made. 

When the execution sequence reaches the second PCAL, 
another call is made (7) to the Segment Transfer Table. The 
call requests the fifth entry in the table, which happens to 
be an external program label, indicated by a "l" in bit 0 
(see format in figure 4-6). This implies that the called 
procedure is in some other segment. The contents of the 
label tells which segment, and also gives the STT number in 
that segment which must contain the local reference. 

The PCAL instruction, after the usual preparatory oper­
ations (which include bringing the segment into main 
memory if it is absent), transfers control to the called 
procedure as follows. The segment number given in the 
external program label points (8) to a specific entry in the 
Code Segment Table; this is assumed to be entry number 
22. A value for PB is picked up in the second word of this 
entry, and is loaded into the PB-register. This causes the 
PB-register to point (9) to the starting location of code 
segment 22 (PB(b)). The limit (PL(b)) is also established. 
Meanwhile, the STT value given in the external program 
label is pointing (10) to entry number 4 of the Segment 
Transfer Table. This causes a PB relative address to be 
picked up for the P-register. The P-register now points (11) 
to the starting address of the procedure or block, and 
execution begins. (If an STT number of 0 is given, exe­
cution would start at PB(b).) 

Calling procedures outside of the segment in this manner is 
subject to a number of rules, checks, and safeguards. These 
ensure that the call is allowable, and that other users are 
fully protected from deliberate or accidental invasions of 
privacy. The way in which the operating system sets up the 
Segment Transfer Tables ensures that all transfers are legal 
for that process. Even if the user transfers via the top-of. 
stack reference into another user's code segment (assuming 
that it is callable) he can do no worse than execute part of 
that other segment. He will certainly render his own stack 
data meaningless, and furthermore can in no way read or 
relocate the other user's code or data. His end result is 
completely unpredictable, but would likely eventually 
invoke one of many possible error traps. 



CODE SEGMENT TABLE Doubleword 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A M T R LENGTH 

ADDRESS 

A Absence bit ( = 1 if segment is absent) 
M Mode bit (= 1 if privileged mode) 
T Trace bit (= 1 to call Trace routine) 
R Reference bit (for statistical use by 

operating system, set to 1 when accessed) 

LENGTH This value times 4 (max = 16,380) 
ADDRESS Absolute memory address (for PB) 

or low order 16 bits of absolute disc address 
if absent 

SEGMENT TRANSFER TABLE Words 

STT Length 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 u 0 0 0 0 0 0 LENGTH 

U Uncallable bit 
LENGTH Max imum = 255 (Calls from external 

segments may reference only the first 128 
entries, PL thru PL-127 .) 

Local Progr am Label 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 u ADDRESS 

U Uncal lable bit 
ADDRESS PB relative, +only 

External Program Label 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

STT :r; SEG :::t 

STT rt STT entry number in target segment, 
maximum = 127 

SEG rt Target segment 

STATUS Word 

0 234567 8 9 10 111213 14 15 

M T R 0 C CC SEGMENT :r; 

M Mode bit (= 1 for privileged mode) 
I Interrupt enab le ( 1 )/ disable(O), external 
T T raps enable(l )/ disable(O), user 
R Right Stack Opcode bit (pending = 1) 
0 Overflow bit 
C Carry bit 
CC Cond ition Code 
SEGMENT ::r currently executing 

Figure 4-6. Formats Associated with Code Segments 
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In addition, if the operating system ascertains that a local 
reference in a segment is of a category that will not 
normally have external references to it, the operating 
system will set the uncallable bit in the STT entry. When 
this bit is set, no external references in user mode may be 
made to that procedure or block. One typical application of 
this bit is to prohibit direct user access to the uncallable 
intrinsics of the operating system - i.e. , those operations 
that the operating system will perform on behalf of a user, 
but cannot be directly accessed by the user. 

At the conclusion of the called procedure, control is 
returned to the original segment by the EXIT instruction. 
This instruction restores the Status register, which gives the 
segment number of the caller (see format in figure 4-6), and 
thus (12) returns the PB-register value back to PB(a). The 
saved P relative address on the stack re-establishes the 
return point, and execution continues at the location 
immediately following the second PCAL instruction. 

DATA SEGMENTS 

In the introductory paragraph under "Code Segments" it 
was stated that one user's process typically has several code 
segments, but only one data segment. The following few 
pages deal with the data segment, particularly concentrating 
on the stack area of that segment. 

As a beginning point of reference, figure 4-7 shows how the 
operating system establishes and keeps track of a particular 
data segment. As indicated by a note in the figure, this is 
accomplished by tables maintained by - and known only 
to - the operating system. 

Assuming we are working with processor number 1 of a 
single- or dual-processor system, core location 4 contains 
the Current Process Control Block pointer. In the example 
shown, this pointer (1) has selected process number 31 by 
pointing to that particular block in the Process Control 
Block table. This means that process number 31 is currently 
being executed on the machine. 

The Process Control Block contains considerable infor­
mation pertaining to the control of that process, such as 
priority, queue pointers, wait flags, and so on. In addition, 
there is other information, such as saved stack register 
values (2), which is actually contained within the segment. 
This area of the segment is the Process Control Block 
Extension. 

However, relevant to the present discussion, the most signi­
ficant information is the data segment number. The data 
segment number points (3) to a doubleword descriptor in 
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Location 0 CST Pointer 
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I I and known only to Increasing 
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Figure 4-7. Locating the Stack for One Process 

the Data Segment Table. Assuming that the data segment 
for this process is number 27, entry number 27 in the Data 
Segment Table will be pointed to. The second word of this 
entry will give an absolute address pointing (4) to the 
beginning location of the segment. 

The data segment itself includes two separate areas, one of 
which is the PCB Extension already mentioned. The second 
area is the stack area, beginning at the hardware-known 
location DL. The stack is where all dynamic computational 
operations take place, and it is the next major subject of 
discussion. The study of the stack, its operation and effects, 
will occupy the remaining portion of this section. 
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STACK OPERATION 

The stack can be defined as a linear list of data in which the 
last element added to the list is in the prime position for 
computational operations (comparable to an accumulator), 
and is the first element to be removed when the program 
needs data from the stack. This type of data structure is 
also more strictly identified as a "LIFO" (last in, first out) 
stack, since data is removed from the stack in the reverse 
order from which it was added. 

Although many instructions can reference elements within 
the stack, it is the element currently on the top of the stack 
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. . . . . 
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Figure 4-8. Stack Registers and One Stack 

which is of greatest significance. Note that the top element 
of the stack will be a different word, occupying a different 
physical location, each time data is added to or deleted 
from the stack. However, that top element has an identity, 
to both hardware and software, and is termed the top-of­
stack element. It is also known by its acronym, TOS, and 
loosely as the top of the stack. 

Figure 4-8 shows the basic construction of the stack area 
and the way stack registers in the CPU delimit the various 
parts. Remember that there will normally be several stacks 
in memory, one for each process, but only one will be 
active at a given time. The stack registers point to the 
currently active stack. 

The stack area is bounded at the low end by the DL-register 
and at the high end by the Z-register. A major division into 
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two parts is delimited by the DB-register, which points to 
the base location of the stack. The area between the DB 
and DL locations is not part of the stack itself, but is 
closely associated with the stack by providing a dynamic 
area for such applications as dynamic arrays, symbol tables , 
etc. Since this area is not particularly relevant to the pre­
sent discussion, it will be ignored in the following dis­
cussions. Its existence, however, should be acknowledged . 

Just as the DB-register points to the base location of the 
stack, so the SM-register points to the current top-of-stack 
location (in memory). The convention of drawing stack 
diagrams corresponds to the manner in which code is 
written (or any written language), beginning at the top of 
the page and proceeding to the bottom. Thus the stack 
appears inverted, with the last entry (top-of-stack) toward 
the bottom of the diagram. Addresses increase in a down­
ward direction . 

Whereas the DB-register and Z-register contents are static, 
the SM-register content is constantly changing as the pro­
gram progresses, moving up and down the stack area. At all 
times, the area between DB and SM is filled with valid data, 
while the area between SM and Z is available for additional 
data. Should the quantity of data exceed the available 
space, the attempt to move SM past Z will invoke an inter­
rupt to the operating system, which may grant additional 
space (new Z value), one or more times-within certain 
limits . 

Unlike the fluid cell-at-a-time movement of the SM pointer, 
the Q-register value moves sporadically in jumps. It is the 
purpose of the Q-register to retain the starting point of data 
relating to the current procedure. Thus when a new pro­
cedure begins, the Q pointer jumps ahead to establish a new 
starting point at the current top of the stack. Conversely, 
when a procedure ends, the Q pointer jumps back to the 
place it had marked earlier for the preceding procedure. 
This action will be illustrated shortly. 

As far as the current procedure is concerned , its stack data 
consists of the locations from a "base" of Q to the current 
top of the stack. 

In the foregoing discussion of basic stack structure, the 
SM-register was assumed to point at the absolute top of the 
stack. This is true only for the portion of the stack "in 
memory". In actual fact, provision is made to allow a few 
top words of the stack (maximum of four) to "spill over" 
into hardware registers in the CPU. This is shown in 
figure 4-9, where the three topmost words are actually in 
the CPU. The SM-register points to the last stack element in 
memory, but the actual top-of-stack is iri the third CPU 
register. The actual top of the stack is designated as S. 

The four registers in the CPU reserved for receiving top 
stack elements are scratch pad registers employed only by 
the CPU hardware. They may not be addressed externally. 
Externally, the programmer is interested only in the S loca­
tion contents. The hardware defines the address for him to 
be at (in this example) the SM-register value plus 3. The 
value 3 is retained in the SR-register, a three-bit register , 
which will never indicate a value higher than 4. 
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CPU MEMORY 

Stack 

0-Register 

SM-Register 

SR -Register 

~--/L..- -_____ .J 

S (SM) + (SR ) 

Address Address + 3 

Figure 4-9. Top-of-Stack in the CPU 

The address value S obtained by adding the SR-register 
contents to the SM-register contents is a completely valid 
address. In fact, when the CPU registers must be cleared for 
some other operation (e.g., a new procedure or an inter­
rupt), the register contents are physically transferred to the 
numerically corresponding memory locations. In this 
example, the SM pointer would move up by three locations, 
and the SR-register content would become 0. 

Again it must be stressed that the user is not usually aware 
of these registers. The reason for their existence is speed. 
For example, it is possible to perform computations on the 
four top elements of the stack without making a single 
memory fetch. A programmer may wish to optimize his 
code by watching the availability of operands in the regis­
ters as his algorithm progresses. 

Since the actual top of the stack (S) is the value of interest, 
and since S is a valid address, the separate existence of SM 
and SR values is commonly disregarded, as in the following 
discussions. 

The action of the Q-register in marking the starting location 
for each procedure's data is shown in figure 4-10. 

This figure will be discussed in detail, but briefly, what has 
occurred in the example shown is the following. The 
currently executing code segment was working with data in 
the temporary storage area immediately following the "first 
Q" location. At that time, the Q-register was pointing at 
"first Q", S was indicating the top of the stack, and the 
Z-register was pointing to the end of the data segment. If 
the executing code segment never called a procedure, the 
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stack picture would never get more complicated. However, 
at some point the code called a procedure (perhaps a 
lengthy mathematical routine) by means of a PCAL in­
struction. This caused additions to the stack as indicated 
(procedure A). New data was incurred as the procedure 
began, and S pointed to the top of that data as it was 
generated. Then procedure A called procedure B (perhaps a 
frequently used equation), which resulted in new additions 
to the stack, as shown. Then still later, procedure B called 
procedure C (perhaps a library routine for a trigonometrical 
function), resulting in a final picture of the stack as shown. 

What will happen next is that procedure C will end, saving 
its answer in a convenient place for procedure B to access, 
and issuing an EXIT instruction. Then all the other stack 
additions due to procedure C will be eliminated (by moving 
the S and Q pointers back), and procedure B will continue 
its computations on its own stack data. Likewise, pro­
cedure B will come to an end, save its data, and exit, 
resulting in the elimination of the procedure B stack data. 
And finally procedure A will do the same, returning the net 
answer to the new top of the stack, on the main temporary 
storage area. 

It is obvious from this brief outline of events that each time 
control is returned from the called procedure to the caller's 
procedure - within the code segment - the stack registers 
also return to the caller's data area. Thus the stack mark 
chain virtually eliminates system overhead in keeping track 
of lexicographical levels (nesting of procedures). For 
example, the simple return sequence described above, C-to­
B-to-A-to main program, is not imperative. Procedure C 
could have been called again before the return to the main 
program was complete. Or other procedures (D,E,F, etc.) 
could enter the picture. But the return for both code and 
data will always remain perfectly in step - from the called 
to the caller. 

Now the details. Beginning at the top of figure 4-10, note 
that the area between DB and the first Q is the global data 
area. The locations in this area are reserved by the process 
for variables (possibly arrays) which it has declared to be 
global for all procedures called by that process. That is, any 
procedure using this particular data segment may reference 
the variables in this area. 

The individual locations in the global data area may contain 
an actual value, or may contain an indirect address pointing 
to some other location. (That other location either will 
contain the value or will be the start of an array.) Since DB 
relative addressing is limited to a maximum of DB+255, 
only the first 256 locations of this area may be addressed 
directly. These locations are denoted as the primary global 
data area. If the number of entries exceeds 256, indirect 
addressing must be used. Locations in this area (convenient 
for arrays) are denoted as the secondary global data area. 

When the operating system finishes assigning space for the 
global variables, it points the Q-register at the next 
succeeding location (first Q). This is the actual start of the 
stack proper. Initially the S pointer is also pointed at this 
location, since there is as yet no data on the stack. As the 
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executing code segment proceeds to obtain, manipulate, 
and generate data for the stack, the S pointer moves away 
from Q, indicating at all times the top of such data. 
(Examples of typical operations will be given under the 
next major heading, "Examples of Stack Operation".) 

Then at some time during execution of the code segment , it 
is assumed that Procedure A is called. Accompanying the 
call are a set of procedure parameters which are placed on 
the stack just prior to issuance of the PCAL instruction. 
These are actual parameters, to be substituted for formal 
parameters in the procedure , and are referenced by Q­
addressing. 

Calling the procedure causes a four-word stack marker to be 
placed on the stack. The format of this marker is shown in 
figure 4-11. The first word saves the current contents of the 
X-register. The second word saves the return address for the 
code segment- i.e., the P-register address (plus one) relative 
to the PB-register contents. The third word saves the Status 
register contents, which includes the code segment number 
of the caller, in case the called procedure is external to the 
current code segment. (This was described earlier under 
"Code Segments".) The fourth word is the one of most 
interest to the present discussion. This word contains the 
delta Q value, which tells how far back it is to the previous 
location to which Q was pointing. In this case , delta Q is 
pointing to "first Q". The Q-register now points at this 
delta Q location. 

The sequence of events described in the preceding two para­
graphs is repeated when procedures B and C are called . 
Each time, the Q-register will point to the delta Q location 
of the current stack marker, and the contents of that 
location will point back to the previous setting of Q. Thus 
it is seen that when procedure C is executing, there will be a 
chain of delta Q stack marks linking the present Q setting 
back to the first Q. 

Just as the links are established as the procedures are called, 
so are they used and eliminated as the procedures are 
exited. When procedure C ends, the EXIT instruction 
returns S to equal Q, essentially placing the delta Q value 
temporarily on the top of the stack. This allows the EXIT 
instruction to compute a new value for the Q-register 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

X-Register Contents 

PB Relat ive Return Address for P-Reg 

M T R 0 C CC Code Segment = 
Delta Q 

Figure 4-11. Stack Marker Format 
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("previous Q"), and it appropriately moves Q back. The 
EXIT instruction causes S to decrement step-by-step 
through the stack marker, restoring Status, P-, and X­
register contents for procedure B. 

Lastly, S is moved back to eliminate the unwanted param­
eters of procedure C. Presumably one or more parameters 
will be computed answers resulting from procedure C, and 
so S is only moved back so far as to preserve those desired 
answers (which are now on the top of the stack). This 
ability to move S back selectively is one of the functions of 
the EXIT instruction (refer to instruction definition). 

Once again, the sequence of events described in the 
preceding two paragraphs are repeated, until all procedure 
data and stack marks are eliminated, and only the final 
answer is on the top of the stack. 

As a final note, observe the breakdown of allocations for 
one procedure (procedure C illustrated). As shown, the pro­
cedure parameters and stack marker are allocations due to 
calling the procedure. The remaining locations are allo­
cations local to the procedure, which are further broken 
down into an area for local variables and an area for 
temporary storage. 

EXAMPLES OF STACK USAGE 

Up to now, the mechanics of the stack have been examined 
without the application of specific values or problems. To 
conclude this section, various examples of stack operation 
will be given. The examples are progressively instructive 
and, in each case, the advantages of this type of archi­
tecture over the register structured computer will be 
illustrated. 

The examples do not necessarily show all the advantages of 
a stack machine. In fact one of the major advantages has 
already been shown - that of preserving code and data 
conditions by marking the stack. This facilitates rapid 
environment changes (e.g., swapping users), saves overhead 
for unlimited nesting of procedures, and helps to make 
code re-entrant. Another major advantage, that it allows 
fast interrupt handling, will be covered in a later section. 
The following examples are primarily designed to aid in 
understanding the stack concept. 

BASIC ARITHMETIC 

Figure 4-12 shows a sequence of basic instructions being 
executed on some data which is presumed to exist in the 
stack. The upper row shows the most elementary method 
of adding and removing data to and from the stack, via load 
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and delete instructions. The lower row shows the effects of 
four arithmetic instructions. 

As shown for the initial stack condition (A), the data 
consists of six numbers in six consecutive locations. The 
Q-register points to the oldest element of the group, and S 
points to the element currently on the top of the stack. A 
Delete instruction (DEL), executed between A and B, 
causes the number 44 to be removed from the stack; this is 
accomplished by simply decrementing the S pointer by one. 
Then, between B and C, a LOAD instruction causes the 
number 37 to be loaded onto the stack; this is accom­
plished by storing the number 37 (from another memory 
location) into the location formerly occupied by the 
number 44, and then incrementing the S pointer by one. 

Between C and D, an ADD instruction is executed. This 
instruction adds the two top elements of the stack together, 
deletes both from the stack, places the answer (100) on the 
top of the stack, and points Sat the answer. 

Note 

As mentioned previously, up to four of 
the top stack elements may exist in CPU 
registers. Obviously, to execute the ADD 
instruction, at least the two top elements 
must exist in the CPU. To ensure that this 
is the case, the hardware checks the 
content of the SR-register. If the number 
contained therein is not at least 2, one or 
more memory fetches are made so that 
the instruction can be carried out. 

Between D and E, a Multiply instruction (MPY) is 
executed. This instruction multiplies the two top elements 
of the stack together, deletes both from the stack, places 
the answer (700) on the top of the stack, and points S at 
the answer. 

To subtract (SUB), the top element is subtracted from the 
next-to-top element. Thus the answer at F is the result of 
500-700, or -200. (As before, only the answer remains 
after computation is performed.) Finally, at G, negation is 
performed. This simply reverses the sign of the number on 
the top of the stack; in binary form a two's complement 
operation is performed. 

Although the sequence A through G in figure 4-12 is a very 
simple series of operations, it does illustrate the advantages 
of the stack technique in computation. First, note that 
regardless of how many elements of data there are or what 
memory cells they occupy, the operand for each instruction 
is consistently the same - the top of the stack. This permits 
implicit addressing; i.e., since the operand is understood to 
be the top of the stack, it is not necessary to give an 
operand address in the instruction word. Thus (except for 
LOAD, which must specify a relative address to load from), 
the instruction can simply say "add", or "multiply", etc. 
The immediate benefit of this is that it allows code com­
pression. Two instructions can be given in a single word. 
The sequence D through G, for example, can be given in 
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LOAD/DELETE After Delete After Load 
Init ial Stack Instruction Instruction 

a a a 
11 11 11 

500 500 500 
7 7 7 

63 s 63 63 

s 44 s 37 

0 0 © 

ADD/MULTIPLY/SUBTRACT/NEGATE 
After Add After Mult iply After Subtract Afte r Negate 
Instruction Inst ruction Inst ruction Instruction 

a a a 1 a 
11 11 11 11 

500 500 s -200 s 200 

7 s 700 

s 100 

® 0 0 0 

Figure 4-12. Basic Arithmetic Stack Operations 

two instruction words. Since this reduces the number of 
memory fetches, the speed of computation is considerably 
increased. 

A second point to note is that temporary storage of inter­
mediate results is automatically provided. For example, 
once the parameters 63 and 37 (at C) have been added, 
they are no longer required and so are thrown away. But 
the answer, which is substituted on the top of the stack, is 
automatically in position (adjacent to 7) for the ensuing 
multiplication. Thus there is no need to provide a dedicated 
location to save the temporary quantity 100 (or any of the 
other intermediate results). 

It is apparent that the order of placing elements on the 
stack is very important. However, it is one of the compiler's 
functions to provide the correct order, and (except in 
assembly mode) this is of little concern to the programmer. 

PROCEDURE CALLS 

Figures 4-13 and 4-14 illustrate the operations involved in a 
procedure call. Figure 4-13 shows programmatically how a 

procedure is set up and called, and figure 4-14 shows what 
happens to the stack when the procedure is called and 
executed. 

The purpose of this example is to demonstrate the ease and 
simplicity of parameter passing- i.e., the means by which a 
program can substitute actual parameters for the formal 
parameters declared in a procedure. In this example (see 
bottom block in figure 4-13), the formal parameters are J 
and K, and the actual parameters to be passed to the pro­
cedure are 25 and 10, respectively. 

As shown in the bottom block of figure 4-13, the calling of 
a procedure has an equivalency in mathematical terms. That 
is, a procedure is like a predetermined equation, in this case 
"ANSWER = J/K". Calling the procedure is like a request 
to solve the equation for the specific values of 25 for J and 
10 for K. Executing the procedure is to perform the 
computation, in this case getting an answer of 2. (To keep 
things simple, the example procedure will be made to work 
strictly with integer numbers; thus the fractional remainder 
5/10 will automatically be discarded.) 

The upper two boxes in figure 4-13 list two forms of the 
program that will accomplish the example procedure. The 
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SOURCE LANGUAGE 

BEGIN INTEGER ANSWER; 
r 2 INTEGER PROCEDURE QUOTIENT ·(J,K) ; 

3 VALUE J,K; 

Pro- 4 INTEGER J,K; 

cedure 
~ 

BEGIN 5 

6 QUOTIENT - J/ K; 

7 END ; 

Call ~ 8 ANSWER - QUOTIENT (25,10); 

9 END : 

MACHINE LANGUAGE 
Assembly 

r 
10 LOAD Q-5 

11 LOAD Q-4 
Pro-
cedure 

-< 12 DIV, DEL 

13 STOR Q-6 

14 EXIT, 2 

15 ZERO, NOP 

16 LOI , 31 

Call -< 17 LOI , 12 

18 PCAL, 20 

~19 STOA 08+0 

20 PCAL (to system) 

MATHEMATICAL LANGUAGE 

Procedure : 

Call : 

Execution: 

ANSWER = J/K 

Solve ANSWER for 
J = 25 and K = 10 

ANSWER = 25/ 10 
= 2, remainder 5 

Note: Decimal 25 = Octal 31 
Decimal 10 = Octal 12 

Octal 

041605 

041604 

002340 

051606 

031402 

000600 

021031 

021012 

031020 

051000 

031xxx 

Figure 4-13. Declaring and Calling a Procedure 

top box shows how the program would be written in the 
source programming language. The middle box shows the 
machine language code that would be emitted by the 
compiler. The machine language code is shown both in 
assembly (or mnemonic) form, and in an octal form of the 
actual binary machine code. 

Both the source and machine language versions of the 
program will now be considered on a line by line basis. 
First, the source language program. 
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Line 1 begins the program block, just as line 9 ends it. 
Although the entire program consists only of one procedure 
and a call to that procedure, it nevertheless remains 
necessary to enclose the program between a BEGIN state­
ment and an END statement. These statements define a 
program. ANSWER is declared to be a global variable for 
this program by giving its name within the BEG IN state­
ment. This will cause the variable ANSWER to reside in the 
global data area, and thus allow its access by another pro­
cedure - such as an output routine to print out the result. 
The type declaration INTEGER specifies that ANSWER 
will always be an integer, and tells the compiler to reserve 
one word for the result (rather than two or three). ANSWER 
is allocated the word at DB+O. 

Lines 2 through 7 comprise the procedure declaration, 
which includes the procedure head (lines 2, 3, 4) and the 
procedure body (lines 5, 6, 7). The procedure declaration in 
a program cannot cause execution by itself; it must be 
called before any execution can take place. Thus the pro­
cedure declaration is always separate and distinct from the 
procedure call. They need not be immediately adjacent, as 
in this example. 

Line 2 gives the procedure name, QUOTIENT, and declares 
that the procedure is of type INTEGER, which means that 
the result will be in integer form. It also gives the names of 
the formal parameters, J and K. Line 3 is the value part of 
the procedure declaration. Declaring J and K as values 
means that a value (rather than a pointer) will be passed as 
a procedure parameter, in both cases. This permits working 
with a copy and eliminates any need to change the actual 
parameter. Line 4 declares that actual parameters for J and 
K must be integers; if any other type is given (floating 
point, for example}, a compilation error will result. 

Line 5 begins the procedure body. Actually, since this pro­
cedure consists of only one statement, the BEGIN state­
ment and END statement (line 7) are superfluous. They are 
included here, however, to illustrate the common form for 
a procedure (normally involving a compound statement). 
Line 6 is the procedure statement, the executable part of 
the procedure body. It is this statement which will cause 
the division of J by K, and will temporarily store the 
quotient as a procedure result, identified by the procedure 
name QUOTIENT. 

The call to the procedure is given at line 8. This is an 
executable statement, as opposed to a procedure decla­
ration. When this statement is encountered in a program, it 
will cause the procedure named QUOTIENT to be 
executed, passing actual parameters of 25 and 10 to the 
procedure, and will cause the global variable ANSWER to 
assume the value of the result. At this point (line 9) the 
program is complete. 

Lines 10 through 19 show the machine language code 
which the compiler emits for the two executable statements 
in the program. That is, line 6 causes lines 10 through 14 to 
be generated, and line 8 causes lines 15 through 19 to be 
generated. 
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In order to explain the operation of the program in 
machine language, it is necessary to examine what is 
happening on the stack. Figure 4-14 will therefore be 
referred to in the following discussions. Furthermore, to aid 
in visualizing the operatiorn:;, they will be described in 
chronological order; i.e., the machine language program will 
begin to execute at line 15. 

First of all, it is assumed that the user has logged onto the 
system, has compiled the program, and is ready to run (or is 
running a program that will shortly encounter the state­
ment in line 8). Loading the program has caused space to be 
allocated for the one global variable, ANSWER, which is at 
DB+O (see A in figure 4-14). Since there are no other global 
variables, Q and S initially point at the immediately 
following location. {The content of that location will never 
be significant; in essence it is a dummy delta Q location.) It 
may be instructive to refer back to figures 4-10 and 4-8. 

Additionally, during program loading, the operating system 
has evaluated the program in order to set the Z-register 
appropriately for an initial estimated stack size. Also, since 
no dynamic own arrays are declared, DL is set coincident 
with DB. 

Now it is assumed that the user issues a system command to 
run the program or, in other words, to execute the pro­
cedure call given in line 8 of figure 4-13. This causes control 
to be passed to line 15 in the machine language program, 
where the sequence to call the procedure begins. 

The first instruction is a ZERO, NOP. Executing this in­
struction puts a 0 on the stack and increments the S pointer 
(see A in figure 4-14). This reserves a location for the pro­
cedure result. 

Next (B and C; lines 16 and 17), the parameter values 31 
and 12 are passed directly from the instruction words to 
the stack (area reserved for procedure parameters). Octal 
notation is used for these values. 

Then (D, and line 18) a procedure call instruction, PCAL, 
causes a four-word stack marker to be placed on the stack. 
The S and Q pointers point to the delta Q location of the 
marker, which now indicates 7 (the number of locations 
back to the initial Q location). It is assumed that entry 
number 20 in the Segment Transfer Table will direct the 
call to the correct procedure starting point. 

Now execution of the procedure begins (line 10). The first 
two instructions (lines 10 and 11) load copies of the pro­
cedure parameters onto the top of the stack (E and F), 
using Q- relative addressing. The next instruction (line 12) 
divides the top-of-stack parameter into the next-to-top 
parameter, and substitutes the quotient (2) and the 
remainder (5) on the top of the stack, as shown at G. The 
second half of the same instruction (DEL) discards the 
remainder word by decrementing S, as shown at H. 

To save the result, the STOR Q-6 (line 13) first copies the 
top-of-stack into the location reserved for t.he procedure 
result, formerly occupied by a 0, as shown at I. Then it is 
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possible to exit from the procedure. The EXIT instruction 
(line 14) restores Q to its initial setting, and the "2" 
included with the instruction causes S to move back two 
locations past the stack marker. As shown at J, this leaves 
the result, 2, in the location reserved for QUOTIENT-now 
on the top of the stack. The EXIT instruction also returns 
program control to line 19, which causes the content for 
QUOTIENT to be stored in the location for ANSWER in 
the global data area. This produces the final result shown 
at K. 

Finally (line 20), a procedure call to the system returns 
control back to the system. 

RECURSION 

The last example in this series demonstrates the stack 
principles involved in a recursive procedure. A recursive 
procedure is one which calls itself one or more times during 
execution. 

Recursion is a powerful programming technique which 
derives from the re-entrant capability of the code. The 
advantages and other considerations of this technique are 
beyond the scope of this manual, and the example to be 
given does not necessarily illustrate the niceties of the 
technique. Rather the example is intended to show only 
how recursion is accomplished on the stack. 

The example chosen is purposely kept simple in order to 
provide continuity with the preceding example. (Note that 
the form of the source language program for this example, 
in table 4-2, is nearly identical to that of the preceding ex­
ample in figure 4-13.) The procedure simply computes N! 
(N factorial), where N is the formal parameter. The pro­
cedure will be called with an actual parameter of 4, so that 
computation of 4 ! will be: 1 X 2 X 3 X 4 = 24. 

In essence, this problem consists of repetitively multiplying 
the previous product by a parameter which is incremented 
by one on each repetition. To provide a starting point 
(initial "previous product"), the value 1 is automatically 
given. The procedure is designed to perform this multipli­
cation sequence by repetitively calling itself, after it has 
been called once by the main program. Thus for any N, the 
procedure will be called N+l times. In this example there 
will be one call by the main program and four recursive 
calls. 

Table 4-2 lists the source and machine language forms of a 
program block to solve this problem. Since the source 
language program is so similar to the preceding example, it 
need not be discussed at this point. The machine language 
form has been slightly changed to more closely resemble an 
actual program listing. Some assumed PB relative addresses 
are given for each instruction, beginning at address 00114. 
The assumption here is that this program block is 
embedded in a larger "main" program. (Note that the 



Memory Segmentation 

Table 4-2. Recursive Program 

SOURCE LANGUAGE 

. . . 
BEGIN INTEGER Y; 

INTEGER PROCEDURE FACTORIAL (N); 
VALUE N; 
INTEGER N; 

FACTORIAL := IF N = 0 THEN 1 ELSEN * FACTORIAL (N-1); 
Y := FACTORIAL (4) 

END; . . . 
MACHINE LANGUAGE 

PB Relative 
Addresses Instructions 

00114 LOAD 0- 004 
00115 CMPI, 000 
00116 BNE P+ 003 
00117 LOI, 001 
00120 BR 006 
00121 ZERO, NOP 
00122 LOAD 0- 004 
00123 SUSI, 001 
00124 PCAL, 026 
00125 MPYM 0- 004 
00126 STOR 0- 005 
00127 EXIT, 001 

00130 ZERO, NOP 
I 00131 LOI, 004 

00132 PCAL, 026 
00133 STOR DB 015 
00134 PCAL, XXX 

assigned STT entry for this procedure is assumed to be 026, 
and the global assignment for Y is DB+ 15.) The starting 
point for execution is at address 00130. 

Figure 4-15 illustrates the program in flowchart form. 
Box 1 in the diagram calls the procedure (boxes 2 through 
9), box 10 saves the result, and then control reverts to the 
main program at box 11. The procedure consists of two 
phases. The call phase begins when the procedure is called 
by the program, and is repeated four times. Briefly, what 
happens in this phase is that a succession of N values are 
placed on the stack, along with a space for intermediate 
answers. The N values are decremented to zero and then the 
exit phase begins. This phase successively multiplies an 
accumulating product by each of the N values loaded on 
the stack in the call phase - in the reverse order. On each 
loop unneeded stack information is deleted, saving only the 
answer for that loop, until only the final answer is left. At 
that time (box 9) the final EXIT instruction finds that its 

Octal 
Code Comments 

041604 Load parameter 
022000 Test it for zero 
141503 If not zero, branch to 00121 
021001 If zero, load 1 as initial multiplicand 
140006 Branch to 00126 (to Exit loops) 
000600 Save space for intermediate product 
041604 Load parameter 
023001 Decrement for use as new parameter 
031026 Recursive call 
111604 Multiply parameter by TOS 
051605 Store this recursion's product 
031401 Save the product and exit 

000600 Save space for final product 
021004 Load initial actual parameter 
031026 Main program's call to the procedure 
051015 Save final product in global area 
031xxx Return to system 

return address points back to the calling block, and so the 
final answer is stored in the global area and control reverts 
to the main program. 

As will be shown in the following detailed discussion, the 
return address check at box 9 is not literally a test for a 
specific address. Rather it specifies a return to the address 
given in each stack marker. Obviously the last return (first 
one placed on the stack) will be a return to the outer block. 

Figures 4-16 and 4-17 show the overall process of building 
up the stack by recursive calls, and then paring it down 
with recursive exits. These two figures will be used in the 
following discussions. Also the machine language program 
in table 4-2 will be referred to; individual lines will be 
identified by PB relative address, omitting the leading zeros. 

MAIN PROGRAM CALL. As before, the main program has 
already reserved global space for the final answer (Y) before 
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the procedure is called. When the call is given, the ZERO, 
NOP instruction at address 130 reserves space for the pro­
cedure result, FACTORIAL. (Compare stack pictures A and 
Z.) This is the first stack addition due to calling the 
procedure. 

Next, the actual parameter 4 is loaded on (B), and then the 
PCAL instruction is issued. This causes the first stack 
marker to be loaded (C). This marker differs from the ones 
which will follow in that it contains return information to 
the outer block which called the present procedure. That is, 
the "return P" word is a P relative address for return to the 
caller in the code segment, and delta Q points back to the Q 
value that the caller was using earlier in the stack. Now, S 
and Q are both pointing at the last word of the first marker 
for this procedure. 

TEST FOR ZERO. At addresses 114 and 115 (stack 
pictures D and E), the procedure parameter is first tested 
for zero. This is done by copying it onto the top of the 
stack (LOAD Q-4) and giving a CMPI 0 instruction. This 
instruction sets the condition code according to comparison 
results and deletes the tested word (E). Since the first test is 
non-zero (i.e., 4), the branch instruction at line 116 
transfers control to address 121 (i.e., P+4). This test and 
branch will be repeated in each of the following recursion 
loops until the parameter has become zero. 

FIRST RECURSIVE CALL. The branch to address 121 
causes the procedure to call itself. As usual, the first action 
of the call is to load the procedure parameters onto the 
stack. The parameters in this case are the variable 
FACTORIAL and a decremented form of the original 
passed parameter. Thus the ZERO, NOP instruction 
reserves a location for FACTORIAL (see F), strictly for use 
by this recursion (i.e., distinct from the final FACTORIAL 
location reserved at A); then (G ,H) the new parameter is 
obtained by copying the preceding value to the top of the 
stack (LOAD Q-4) and decrementing with a SUBI 1 
instruction. 

After loading parameters for the new call, another PCAL 
instruction is issued. This causes a new stack marker (see I) 
and, via the Segment Transfer Table, transfers control back 
to the starting point of the procedure, address 114. The 
new stack marker gives as its return P value the address 
immediately following the PCAL, which is 125. (This will 
be important to remember when the exit sequence is 
discussed.) Also, the delta Q value is 6, since the previous 
delta Q was six locations back. 

SUCCESSIVE RECURSIONS. Now all of the steps 
described in the preceding three paragraphs are repeated, 
beginning with the parameter test for zero. Since the 
parameter is 3 on the second recursion, the branch to 
address 121 again occurs. The first actions, again, are to 
reserve a location for this recursion's answer (J) and to load 
a decremented parameter value of 2 (K and L). After this, 
the procedure call back to the beginning is again made, 
resulting in another stack marker (M) which is identical to 
the one generated on the first recursion. 
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The third and fourth recursions repeat the entire process 
again, loading parameters of 1 and 0 followed each time by 
a stack marker. Thus when the final LOAD Q-4 occurs in 
preparation for the zero test, the stack appears as shown 
at N. 

FIRST EXIT. The check at address 115 now finds that the 
parameter is zero. The checked copy of the parameter is 
deleted from the stack (P in figure 4-1 7) and the branch at 
address 116 transfers control to address 117 (rather than 
121). 

As mentioned earlier (fourth paragraph under the 
Recursion heading), an assumed value of 1 is necessary as 
an initial "previous product" in order to begin the multipli­
cation loops. This is accomplished by a LDI 1 instruction 
(address 117), which puts a 1 on the top of the stack 
(see Q). 

Then an unconditional branch at address 120 transfers 
control to address 126, where the "l" on the top of the 
stack is stored into the location reserved for this recursion's 
answer, as shown at R. The next instruction is then the 
EXIT 1 instruction at address 127. This causes Q to move 
back six locations (delta Q = 6) and S five locations 
(EXIT 1 deletes one of the two parameters), as shown at S. 
The return address for the P-register, as will be remembered 
from five paragraphs back , is the MPYM Q-4 instruction at 
address 125. This causes the parameter at Q-4 (1) to be 
multiplied by the 1 on the top of the stack, leaving the 
answer as the new top-of-stack element. Since 1 X 1 = 1 
there is no apparent change from S to T, but in fact a multi­
plication has occurred. 

Memory Segmentation 

FIRST RECURSIVE EXIT. The answer of the first multi­
plication is now stored in the location reserved for it (Q-5) 
as shown at U, by the STOR Q-5 instruction at 
address 126. The next instruction, at 127, is again the 
EXIT 1 instruction, which peels back the stack as shown at 
V and returns the P-register to the MPYM Q-4 instruction 
at address 125. The parameter for multiplication (at Q-4) is 
now 2, so the multiplication result at W is 2. Again, tl'1is is 
stored back in the location reserved for it (Q-5) as shown 
at X. 

SUCCESSIVE EXITS. After saving the result, the next 
EXIT 1 is again encountered, causing the S and Q stack 
pointers to move back to the next marker, leaving the 
answer 2 on the top of the stack. The return for the P­
register is again 125, so the MPYM Q-4 instruction multi­
plies 2 X 3, and the following STOR Q-5 puts the answer 6 
into the reserved location as shown at Y. 

Likewise, the last recursive exit causes the value 6 to be left 
on the top of the stack when the last return to address 125 
is made. Then the final multiplication multiplies 6 X 4, and 
the last STOR Q-5 instruction puts the answer 24 into the 
location originally reserved for the end result FACTORIAL. 

The last EXIT instruction finds the return for the Q-register 
(delta Q) pointing back to the origin of an earlier pro­
cedure, and so is no longer shown in the stack diagram at Z. 
However, since one parameter is saved, the final answer 
remains on the top of the stack, as shown. The P-register, 
meanwhile, returns to the next instruction in the outer 
block, which is the STOR DB 15 instruction at address 133. 
This saves the answer in the global area, and a final PCAL 
returns control to the system. 
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INSTRUCTION SET 

This section defines each of the 170 machine instructions in the 
HP 3000 instruction set. Where additional information would be 
helpful in understanding the operation of a particular instruction, an 
Instruction Commentary reference is given following the definition. 
In such cases, refer to the corresponding number under the heading, 
"Instruction Commentary", at the end of this section. 

Unless specifically mentioned, the indicators (Condition Code, Over­
flow, and Carry) are unaffected by instruction execution. 

STACK OP INSTRUCTIONS 

NO OP INSTRUCTION 

II 

8 9 10 11 12 13 14 15 NOP No operation. The user's program space and data space 
remain unchanged. 

Alternate 
Position 

Alternate 
Position 

Alternate 
Position 

15 

Stack opcode: 00 
Indicators: unaffected 

DUPLICATE AND DELETE INSTRUCTIONS 

DELB Delete B. The second word of the stack is deleted and the 
stack is compressed. The content of the TOS is unchanged. 
Stack opcode: 01 
Indicators: unaffected 

DDEL Double delete. The top two words of the stack are deleted. 
Stack opcode: 02 
Indicators: unaffected 

0 I ' I 2 j 314 ' 5 ' 61' I B I 91'° I 11 I 12113 H 151 lo o o o 1 o o o o o 
DEL Delete A. The top word of the stack is deleted. 

Stack opcode: 40 
Indicators: unaffected 

8 9 

0 0 0 0 0 0 0 1 

8 9 

0 0 0 0 0 0 0 

Alte rnate 
Position 

10 

Alternate 
Position 

10 

Alternate 
Position 

15 

15 

DUP Duplicate A. The top word of the stack is duplicated by 
pushing a copy of the TOS onto the stack. 
Stack opcode: 45 
Indicators: CCA 

DDUP Double duplicate. The double word in the top two words of 
the stack is duplicated by pushing a copy of it onto the 
stack. 
Stack opcode: 46 
Indicators: CCA on new TOS double word 
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ZERO INSTRUCTIONS 

ZROX Zero X. The content of the Index re gister is replaced by 
zero. 
Stack opcode: 03 
Indicators: un affected 

ZERO Push zero. A zero word is pushed onto the stack. 
Stack opcode: 06 
Indica tors: unaffected 

DZRO Push double zero. Two words containing all zeros are 
pushed onto the stack. 
Stack opcod e: 07 
Indica tors: un affected 

ZROB Zero B. The second word of the stack is replaced by zero. 
The TOS is unaffected. 
Stack opcode: 41 
Indicators: un affected 

INCREMENT/ DECREMENT INSTRUCTIONS 

IN CX Increment X. The content of the Index register is incre­
mented by one in integer form. 
Stac k o pcode: 04 
Indicators: CCA, Carry , Overfl o w 

DECX Decrement X. The content of the Index register is decre­
mented by one in integer form. 
Stack opcode: 05 
Indicators: CCA, Carry , Overflow 

INCA Increment A. The TOS is incremented by one in integer 
form. 
Stack opcode: 33 
Indicato rs: CCA, Carry , Overflow 

DECA Decrement A. The TOS is decremented by one in integer 
form. 
Stac k o pcode: 34 
Indicators: CCA, Carry, Overfl ow 

INCB Increment B. The second word of the stack is incremented 
by one in integer form. The TOS is unaffected. 
Stack opcode: 73 
Indicators: CCA, Carry , Overflow 

DECB Decrement B. The second word of the stack is decremented 
by one in integer form. The TOS is unaffected. 
Stack opcod e: 74 
Indicators: CCA, Carry , Overflow 
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Instruction Set 

DOUBLE INTEGER INSTRUCTIONS 

DCMP Double compare. The Condition Code is set to pattern C as 
a result of the doubleword integer comparison of D,C and 
B,A. The two double words are deleted from the stack. 
Stack opcode: 10 
Indicators: CCC 

DADD Double add. The two doubleword integers contained in the 
top four elements of the stack are added in double length 
integer form (D,C + B,A) and they are deleted. The double­
word integer sum is pushed onto the stack (B,A). 
Stack opcode: 11 
Indicators: CCA, Carry, Overflow 

DSUB Double subtract. The doubleword integer contained in the 
top two words of the stack is subtracted from the double­
word integer contained in the third and fourth words of the 
stack (D,C - B,A). The top four words of the stack are 
deleted and the doubleword integer result is pushed onto 
the stack (B,A). 
Stack opcode: 12 
Indicators: CCA, Carry, Overflow 

MPYL Multiply long. The top two words of the stack are multi­
plied in integer form. The words are replaced by the double 
length product, with the least significant half on the TOS. 
Overflow is cleared. Carry is cleared if the low order 16 bits 
represent the true result (i.e., if the high order 17 bits are 
either all zeros or all ones); otherwise, Carry is set. 
Instruction Commentary 1. 
Stack opcode: 13 
Indicators: CCA, Carry, Overflow 

DIVL Divide long. The doubleword integer in the second and 
third elements of the stack is divided by the integer in the 
TOS (C,B -:- A). The three words are deleted, and the 
quotient and remainder are pushed onto the stack (quotient 
in B, remainder in A). 
Stack opcode: 14 
Indicators: CCA, Overflow 

DNEG Double negate. The doubleword integer contained in the 
top two words of the stack is negated (two's comple­
mented) and replaces the original doubleword integer. 
Stack opcode: 15 
Indicators: CCA, Overflow 

INTEGER INSTRUCTIONS 

CMP Compare. The Condition Code is set to pattern Casa result 
of the integer comparison of the second word of the stack 
with the TOS. Both words are deleted. 
Stack opcode: 17 
Indicators: CCC 
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ADD Add. The top two words of the stack are added in integer 
form and are then deleted. The resulting sum is pushed 
onto the stack. 

SUB 

MPY 

DIV 

NEG 

Stack opcode: 20 
Indicators: CCA, Carry, Overflow 

Subtract. The TOS is subtracted in integer form from the 
second word of the stack and both words are then deleted. 
The resulting difference is then pushed onto the stack. 
Stack opcode: 21 
Indicators: CCA, Carry, Overflow 

Multiply. The top two words of the stack are multiplied in 
integer form. The two words are deleted and the least 
significant word of the double length product is pushed 
onto the stack. If the high order 17 bits of the double 
length product (including the sign bit of the second word) 
are not all zeros or all ones, Overflow is set. 
Instruction Commentary 1. 
Stack opcode: 22 
Indicators: CCA, Overflow 

Divide. The integer in the second word of the stack is 
divided by the integer on the TOS. The second word is 
replaced by the quotient, and the top word is replaced by 
the remainder. 
Stack opcode: 23 
Indicators: CCA on quotient, Overflow 

Negate. The integer in the TOS is replaced by its two's 
complement. 
Stack opcode: 24 
Indicators: CCA, Overflow, Carry 

TEST INSTRUCTIONS 

TEST Test TOS. The condition code is set to pattern A according 
to the content of the TOS word. 
Stack opcode: 25 
Indicators: CCA 

DTST Test double word on TOS. The condition code is set to 
pattern A according to the contents of the top two words 
of the stack. Also, Carry is cleared if the low order 16 bits 
of the doubleword result (TOS) represent the true integer 
value (i.e., if the high order 17 bits are either all zeros or all 
ones); otherwise, Carry is set. 
Instruction Commentary 1. 
Stack opcode: 27 
Indicators: CCA, Carry 
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BTST Test byte on TOS. The Condition Code is set to pattern B 
according to the contents of the byte contained in the eight 
least significant bits of the TOS word (bits 8-15 ). 
Stack opcode: 31 
Indicators: CCB 

EXCHANGE INSTRUCTIONS 

DXCH Double exchange. The top two doubleword pairs are inter­
changed on the stack. 

XCH 

Stack opcode: 16 
Indicators: CCA on the new TOS double word 

Exchange A and B. The top two words of the stack are 
interchanged. 
Stack opcode: 32 
Indicators : CCA on the new TOS 

XAX Exchange A and X. The content of the TOS and the Index 
register are interchanged. 

CAB 

XBX 

Stack opcode: 35 
Indicators: CCA on the new TOS 

Rotate A,B,C. The third word of the stack is removed from 
the stack, the two top words are compressed onto the rest 
of the stack, and the original third word is pushed onto the 
stack. 
Stack opcode: 56 
Indicators: CCA on the new TOS 

Exchange B and X. The second word of the stack is inter­
changed with the content of the Index register. 
Stack opcode: 7 5 
Indicators: unaffected 

INDEX INSTRUCTIONS 

STBX Store B into X. The second word of the stack replaces the 
content of the Index register. 
Stack opcode: 26 
Indicators : CCA on the new X 

ADAX Add A to X. The TOS is added in integer form to the 
content of the Index register. The sum replaces the content 
of the Index register, and the TOS is deleted. 
Stack opcode: 36 
Indicators: CCA on the new X, Carry, Overflow 

ADXA Add X to A. The content of the Index register is added to 
the TOS, and the sum replaces the TOS. 
Stack opcode: 37 
Indicators: CCA on the new TOS, Carry, Overflow 

5-5 



Instruction Set 

LDXB Load X into B. The second word of the stack is replaced by 
the content of the Index register. The TOS is unaffected. 
Stack opcode: 42 
Indicators: CCA on the new B 

STAX Store A into X. The TOS replaces the content of the Index 
register, and TOS is deleted from the stack. 
Stack opcode: 43 
Indicators: CCA on the new X 

LDXA Load X onto stack. The content of the Index register is 
pushed onto the stack. 
Stack opcode: 44 
Indicators: CCA on the new TOS 

ADBX Add B to X. The second word of the stack is added in 
integer form to the content of the Index register, and the 
result replaces the content of the Index register. 
Stack opcode: 76 
Indicators: CCA on the new X, Carry, Overflow 

ADXB Add X to B. The content of the Index register is added in 
integer form to the second word of the stack, and the sum 
replaces the second word of the stack. 
Stack opcode: 77 
Indicators: CCA on the new B, Carry, Overflow 

FLOATING POINT INSTR UCTION S 

DFLT Double float. Converts the doubleword integer contained in 
the top two words of the stack to a floating point number 
with rounding. 
Instruction Commentary 2. 
Stack opcode: 30 
Indicators: CCA 

FLT Float. Converts the integer on the TOS to a 32-bit floating 
point number with rounding. The TOS is deleted and the 
doubleword floating point result is pushed onto the stack. 
Instruction Commentary 2. 
Stack opcode: 4 7 
Indicators: CCA 

FCMP Floating compare. The Condition Code is set to pattern C 
as a result of the floating point comparison of D,C with 
B,A. The two floating point double words are deleted. 
Stack opcode: 50 
Indicators: CCC 

5-6 

Alternate 
Position 

Alternate 
Position 

Alternate 
Position 

8 9 10 11 12 13 14 15 

0 

Alternate 
Position 

o I ' I 213 1 • I 5 16 1' Is I 9 l1ojn 112 113114115 1 
loo o o 1 1 1 1 1 1 

Alternate 
Position 

Alternate 
Position 

Alternate 
Position 

Alternate 
Position 



0 I ' I 2 I 3141 516 17 I B 19 110I11 112 1131141151 
l oo o o 1 o 1 o o 1 

5 6 

0 

0 

Alternate 
Position 

7 8 9 10 11 12 13 14 15 

0 0 

Alterna t e 
Position 

Alternate 
Position 

8 9 10 11 12 13 14 15 

0 0 

Alternate 
Position 

Alternate 
Position 

8 9 10 11 12 13 14 15 

Al ternate 
Position 

Instruction Set 

FADD Floating add. The two floating point numbers contained in 
the top four words of the stack are added in floating point 
form. The top four words of the stack are deleted and the 
two-word sum is pushed onto the stack. 

FSUB 

Instruction Commentary 2. 
Stack opcode: 51 
Indicators: CCA, Overflow 

Floating subtract. The floating point number contained in 
the top two words of the stack is subtracted in floating 
point form from the floating point number contained in the 
third and fourth words of the stack. The top four words of 
the stack are deleted and the two-word difference is pushed 
onto the stack. 
Instruction Commentary 2. 
Stack opcode: 52 
Indicators: CCA, Overflow 

FMPY Floating multiply. The two floating point numbers con­
tained in the top four words of the stack are multiplied in 
floating point form. The top four words of the stack are 
deleted and the two-word result is pushed onto the stack. 
Instruction Commentary 2. 
Stack opcode: 53 
Indicato rs: CCA, Overflow 

FDIV Floating divide. The floating point number contained in the 
third and fourth words of the stack is divided by the 
floating point number contained in the top two words of 
the stack. The top four words of the stack are deleted and 
the two-word quotient is pushed onto the stack. 
Instruction Commentary 2. 
Stack opcode: 54 
Indicato rs: CCA, Overfl ow 

FNEG Floating negate. The floating point number contained in 
the top two words of the stack is negated in floating point 
form. 
Stack opcode: 55 
Indicators: CCA 

FIXR Fix and round . The floating point number contained in the 
top two words of the stack is converted to fixed point 
form and rounded. Carry is cleared if the low order 16 bits 
of the doubleword result (TOS) represent the true integer 
value (i.e., if the high order 17 bits are either all zeros or all 
ones); otherwise, Carry is set. 
Instruction Commentaries 1 and 2. 
Stac k o pcode: 70 
Indica to rs: CCA, Carry, Overflow 
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FIXT Fix and truncate. The floating point number contained in 
the top two words of the stack is converted to fixed point 
form and truncated. Carry is cleared if the low order 16 bits 
of the doubleword result (TOS) represent the true integer 
value (i.e., if the high order 17 bits are either all zeros or all 
ones); otherwise, Carry is set. 
Instruction Commentaries 1 and 2. 
Stack opcode: 71 
Indicators: CCA, Carry, Overflow 

LOGICAL INSTRUCTIONS 

LCMP Logical compare. The Condition Code is set to pattern C as 
a result of the comparison of the second word of the stack 
with the TOS. The two words are then deleted from the 
stack. 
Stack opcode: 57 
Indicators: CCC 

LADD Logical add. The top two words of the stack are added as 
16-bit positive integers, and they are deleted from the 
stack. The resulting sum is pushed onto the stack. 
Stack opcode: 60 
Indicators: CCA (as a 2's complement result), Carry 

LSUB Logical subtract. The top word of the stack is subtracted in 
logical form from the second word and they are deleted. 
The resulting difference is pushed onto the stack. 
Stack opcode: 61 
Indicators: CCA (as a 2's complement result), Carry 

LMPY Logical multiply. The top two words of the stack are 
multiplied as 16-bit positive integers. The words are 
replaced by the double length product with the least signi­
ficant half on the TOS. Carry is cleared if the TOS word of 
the result represents the true integer value (i.e., if the high 
order 16 bits are all zeros); otherwise, Carry is set. 
Instruction Commentary 1. 
Stack opcode: 62 
Indicators: CCA (as a 2's complement result) , Carry 

LDIV Logical divide. The 32-bit positive integer in the second and 
third words of the stack is divided by the 16-bit positive 
integer on the TOS (C,B -7- A). The top three words are 
deleted. The quotient is pushed onto the stack (B) and then 
the remainder (A). If overflow occurs, the quotient will be 
modulo 2 16 

NOT 
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Stack opcode: 63 
Indicators: CCA on quotient (as a 2's complement result), 

Carry 

One's complement. The top word of the stack is converted 
to its one's complement. 
Stack opcode: 64 
Indicators: CCA 
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BOOLEAN INSTRUCTIONS 

OR Logical OR. The top two words of the stack are merged by 
a logical inclusive-OR. The two words are deleted and the 
result is pushed onto the stack. 
Stack opcode: 65 
Indicators: CCA on the new TOS 

XOR Logical exclusive-OR. The top two words of the stack are 
combined by a logical exclusive-OR. The two words are 
deleted and the result is pushed onto the stack. 
Stack opcode: 66 
Indicators: CCA on the new TOS 

AND Logical AND. The top two words of the stack are combined 
by a logical AND. The two words are deleted and the result 
is pushed onto the stack. 
Stack opcode: 67 
Indicators: CCA on the new TOS 

SINGLE WORD SHIFT 
INSTRUCTIONS 

Shift 
Count 

Shift 
Count 

Shift 
Count 

Shift 
Count 

All single word shift instructions: Instruction Commentary 3. 

ASL Arithmetic shift left. The TOS is shifted left n bits, pre­
serving the sign bit. The value of n (modulo 64) is the 
number specified in the argument field plus, if X is speci­
fied (bit 4), the content of the Index register. 
Sub-opcode 1: 00 
Indicators: CCA 

ASR Arithmetic shift right. The TOS is shifted right n places , 
propagating the sign bit. The value of n (modulo 64) is the 
number specified in the argument field plus, if X is speci­
fied, the content of the Index register. 
Sub-opcode 1: 01 
Indicators : CCA 

LSL Logical shift left. The TOS is shifted left n bits logically. 
The value of n (modulo 64) is the number specified in the 
argument field plus, if X is specified, the content of the 
Index register. 
Sub-opcode 1: 02 
Indicators: CCA 

LSR Logical shift right. The TOS is shifted right n bits logically. 
The value of n (modulo 64) is the number specified in the 
argument field plus, if X is specified, the content of the 
Index register. 
Sub-o pcode 1: 03 
Indicators : CCA 
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CSL 

CSR 

Circular shift left. The TOS is shifted left n bits circularly. 
The value of n (modulo 64) is the number specified in the 
argument field plus, if X is specified, the content of the 
Index register. 
Sub-opcode 1 : 04 
Indicators: CCA 

Circular shift right. The TOS is shifted right n bits circu­
larly. The value of n (modulo 64) is the number specified in 
the argument field plus, if X is specified, the content of 
the Index register. 
Sub-opcode 1 : 05 
Indicators: CCA 

DOUBLE WORD SHIFT 
INSTRUCTIONS 

All double word shift instructions: Instruction Commentaries 
3 and 4. 

DASL Double arithmetic shift left. The double word contained in 
the top two words of the stack is shifted left n bits, 
preserving the sign bit (bit 0 of B). The value of n (modulo 
64) is the number specified in the argument field plus, if X 
is specified, the content of the Index register. 
Sub-opcode 1 : 20 
Indicators: CCA 

DASR Double arithmetic shift right. The double word contained 
in the top two words of the stack is shifted right n bits, 
propagating the sign bit (bit 0 of B). The value of n 
(modulo 64) is the number specified in the argument field 
plus, if Xis specified, the content of the Index register. 
Sub-opcode 1: 21 
Indicators: CCA 

DLSL Double logical shift left. The double word contained in the 
top two words of the stack is shifted left n bits logically. 
The value of n (modulo 64) is the number specified in the 
argument field plus, if X is specified, the content of the 
Index register. 
Sub-opcode 1 : 22 
Indicators: CCA 

DLSR Double logical shift right. The double word contained in 
the top two words of the stack is shifted right n bits 
logically. The value of n (rr1:.Jdulo 64) is the number speci­
fied in the argument field plus, if X is specified, the content 
of the Index register. 
Sub-opcode 1: 23 
Indicators: CCA 
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DCSL Double circular shift left. The double word contained in the 
top two words of the stack is shifted left n bits circularly. 
The value of n (modulo 64) is the number specified in the 
argument field plus, if X is specified, the content of the 
Index register. 
Sub-opcode 1 : 24 
Indicators: CCA 

DCSR Double circular shift right. The double word contained in 
the top two words of the stack is shifted right n bits 
circularly. The value of n (modulo 64) is the number 
specified in the argument field plus, if X is specified, the 
content of the Index register. 
Sub-opcode 1: 25 
Indicators: CCA 

TRIPLE WORD SHI FT 
INSTRUCTIONS 

8 9 10 11 12 13 14 15 
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Shift Count 
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Rese rved 

All triple word shift instructions: Instruction Commentaries 3 
and 5. 

T ASL Triple arithmetic shift left. The triple word integer con­
tained in the top three words of the stack is shifted 
left n bits, preserving the sign bit (bit 0 of C) . The value 
of n (modulo 64) is the number specified in the argument 
field plus, if X is specified, the content of the Index 
register. 
Subopcode 1: 10 
Indicators: CCA on the new TOS tripl e word 

TASR Triple arithmetic shift right. The triple word integer con­
tained in the top three words of the stack is shifted 
right n bits, propagating the sign bit (bit 0 of C) . The 
value of n (modulo 64) is the number specified in the 
argument field plus, if X is specified , the content of the 
Index register. 
Sub-opcode 1: 11 
Indicators: CCA on the new TOS tripl e word 

TNSL Triple normalizing shift left. The top three words of the 
stack are shifted left arithmetically until bit 6 of C is 
a " l". Bits 0 through 5 of C are cleared ("O" ). The 
shift count is stored in the Index register. The instruction 
initially clears the Index register unless X is specified (" l " 
in bit 4 of the instruction). 
Sub-opcode 1 : 16 
Indicators: CCA on final valu e of to p three words 
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BRANCH INSTRUCTIONS 

IABZ Increment A, branch if zero. The TOS is incremented. If 11 12 13 14 15 

the result is then zero, control is transferred to P ± displace- 0 0 0 0 0 1 ± 

ment; otherwise to P+ 1. 
Sub-opcode 1 : 07 Displacement 

Indicators: CCA, Carry, Overflow 
Addressing modes: P relative(+/-) 

Direct or indirect 

IXBZ Increment X, branch if zero. The Index register is incre- 2 3 

mented. If the result is then zero, control is transferred to P 0 0 0 0 0 0 ± 

±displacement; otherwise to P+ 1. 
Sub-opcode 1: 12 Displacement 

Indicators: CCA, Carry, Overflow 
Addressing modes: P relative ( +/-) 

Direct or indirect 

DXBZ Decrement X, branch if zero. The Index register is decre- 11 12 13 14 15 

mented. If the result is then zero, control is transferred to P 0 0 0 0 0 ± 
±displacement; otherwise to P+ 1. 
Sub-opcode 1: 13 Displacement 
Indicators: CCA, Carry, Overflow 
Addressing modes: P relative (+/-) 

Direct or indirect 

BCY Branch on carry. If the Carry bit of the Status register is set 2 3 11 12 13 14 15 

("1 "), control is transferred to P ± displacement; otherwise 0 0 0 0 0 0 ± 
to P+ 1. 
Sub-opcode 1: 14 Displacement 
Indicators: Carry cleared 
Addressing modes: P relative ( +/-) 

Direct or indirect 

BNCY Branch on no carry. If the Carry bit of the Status register is 
clear ("O"), control is transferred to P ± displacement; 0 0 0 0 0 ± 
otherwise to P+ 1. 
Sub-opcode 1 : 15 Displacement 
Indicators: Carry cleared 
Addressing modes: P relative (+/-) 

Direct or indirect 

CPRB Compare range and branch. The integer in the Index reg- 11 12 13 14 15 

ister is tested to determine if it is within the interval 0 0 0 0 0 ± 
defined by the upper bound integer on the TOS and the 
lower bound integer in the second word of the stack. The Displacement 

Condition Code is set by the comparison to a special 
pattern: CCE if within range, CCL if below range, CCG if 
above range. If the integer in the Index register is within the 
specified range, control is then transferred to P ± displace-
ment; otherwise to P+ 1. The top two elements of the stack 
are deleted in either case. 
Sub-opcode 1 : 26 
Indicators: CCE,CCL,CCG 
Addressing modes: P relative (+/-) 

Direct or indirect 
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DABZ Decrement A, branch if zero. The TOS is decremented. If 
the result is then zero, control is transferred to P ±displace­
ment; otherwise to P+ 1. 
Sub-opcode 1: 27 
Indicators: CCA, Carry, Overflow 
Addressing modes: P relative (+/-) 

Direct or indirect 

BOV Branch on overflow. If the Overflow bit of the Status 
register is set ("1 "), control is transferred to P ± displace­
ment; otherwise to P+ 1. 
Sub-opcode 1: 30 
Indicators: Overflow cleared 
Addressing modes: P relative (+/-) 

Direct or indirect 

BNOV Branch on no overflow. If the Overflow bit of the Status 
register is clear ("O"), control is transferred to P ±displace­
ment; otherwise to P+ 1. 
Sub-opcode 1: 31 
Indicators: Overflow cleared 
Addressing modes: P relative ( +/-) 

Direct or indirect 

BRO Branch on TOS odd. If the TOS is odd (bit 15 = 1), control 
is transferred to P ± displacement; otherwise to P+ 1. The 
TOS is deleted. 

BRE 

BR 

Sub-opcode 1 : 36 
Indicators: unaffected 
Addressing modes: P relative (+/-) 

Direct or indirect 

Branch on TOS even. If the TOS is even (bit 15 = 0), 
control is transferred to P ± displacement; otherwise to 
P+ 1. The TOS is deleted. 
Sub-opcode 1: 37 
Indicators: unaffected 
Addressing modes: P relative (+/-) 

Direct or indirect 

Branch unconditionally. For P relative mode, control is 
transferred unconditionally to P ± displacement, plus (if 
specified) the value in X; may be indirect. For DB, Q, and S 
relative modes, control is transferred indirectly (only) via 
the location specified by DB, Q, or S ± the displacement; 
the content of the location so specified is added to PB (plus 
post-indexing if X is specified) to obtain the effective 
address for P. 
Instruction Commentary 6. 
Memory opcode: 14, bits 5,6 = 00, 10, or 11 
Indicators: unaffected 
Addressing modes: P relative(+/-), direct or indirect 

DB+ relative, indirect 
Q+ relative, indirect 
Q- relative, indirect 
S- relative, indirect 
Indexing available 
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BCC Branch on Condition Code. The Condition Code in the 
Status register is compared with conditions named in the 
CCF field of the instruction. If the named conditions are 
met, control is transferred to P ± displacement; otherwise 
to P+ 1. The displacement is limited to ±31. Control is 
transferred to the branch address under the following con­
ditions: 

If CCF = 0, never branch 
= 1, branch if CC= CCL 
= 2, branch if CC= CCE 
= 3, branch if CC = CCL or CCE 
= 4, branch if CC = CCG 
= 5, branch if CC = CCG or CCL 
= 6, branch if CC = CCG or CCE 
= 7, always branch 

Memory opcode: 14, bits 5,6 = 01 
Indicators: unaffected 
Addressing modes: P relative(+/-) 

Direct or indirect 

BIT TEST INSTRUCTIONS 

SCAN Scan bits. The TOS is shifted left until bit 0 contains a "1", 
then is shifted left one more bit. The shift count is left in 
the Index register, indicating the bit position which con­
tained the "1 ". The instruction normally sets the Index 
register to -1 before beginning the shifts. However, if X is 
specified, the shift count adds on to the existing Index 
register content. If TOS is all zeros, the count will be 16 if 
unindexed, or X + 16 if indexed. 

TBC 

Sub-opcode 1 : 06 
Indicators: CCA on final TOS 

Test bit and set Condition Code. One bit of the TOS word 
is tested and the Condition Code is set to a special pattern 
depending on the state of the bit. The bit position to be 
tested is specified by the argument field of the instruction 
plus, if X is specified, the content of the Index register. If 
the number specified exceeds 15, the bit position indicated 
is modulo 16; e.g., bit 0 is tested for counts of 0, 16, 32, 
48, etc. 
Sub-opcode 1: 32 
Indicators: CCE if the bit was "O" 

CCL or CCG if the bit was "1" 

TRBC Test and reset bit, set Condition Code. The operation of 
this instruction is identical to that of TBC except that the 
tested bit is reset to "O" after the test. 
Sub-opcode 1: 33 
Indicators: CCE if the bit was "O" 

CCL or CCG if the bit was "1" 
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TSBC Test and set bit, set Condition Code. The operation of this 
instruction is identical to that of TBC except that the 
tested bit is set to "1" after the test. 
Sub-opcode 1: 34 
Indicators: CCE if the bit was "O" 

CCL or CCG if th e bit was "1" 

TCBC Test and complement bit, set Condition Code. The opera­
tion of this instruction is identical to that of TBC except 
that the tested bit is complemented after the test. 
Sub-opcode 1 : 35 
Indicators: CCE if the bit was "O" 

CCL o r CCG if th e bit was "1" 

TSBM Test and set bits in memory , set Condition Code. A mask 
word on the TOS is compared by logical AND with the 
contents of the memory location specified by DB + dis­
placement; the result replaces the TOS and sets the Condi­
tion Code to pattern A. At the same time, the mask word is 
merged (logical OR) with the content of the specified 
location and this result is stored back in the memory cell. 
Displacement range is 0 through +255. (The memory loca­
tion is set to all "ls" during execution until the merged 
result is stored back in the cell; solves the hardware 
"semaphore" problem with dual CPU configurations.) 
Instruction Commentary 7. 
Sub-opcode 3: 14 
Indicators: CCA on the new TOS 
Addressing mode: DB+ relative 

MOVE INSTRUCTIONS 

PB/ DB "--y-J 

SDEC 

Note: All Move instructions are interruptable 
after each word (or byte) transfer and 
will continue from the point of interrupt 
when control is returned to the 
instruction. 

MOVE Move words. This instruction transfers a specified number 
of words from one area of primary memory to another. The 
instruction expects a signed word count in A, a DB or PB 
relative displacement for a source address in B, and a DB 
relative displacement for a target address in C. As long as 
the word count in A has not been counted to zero , the 
transferring of data will continue as follow s: The content of 
the memory location specified by DB + B or PB + B is 
transferred to the location specified by DB+ C. If the word 
count in A is positive, the source and target displacement 
values in B and C are incremented by one on each transfer , 
and the word count is decremented by one. If the word 
count in A is negative, the source and target displacement 
values in B and Care decremented by one on each transfer, 
and the word count is incremented by one. Note that the 
word count is always changed by one toward zero. On 
completion of the block transfer , the instruction deletes 
from the stack the number of words specified by the SDEC 
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(S decrement) field of the instruction; the range of this 
field is 0 through 3. 
Instruction Commentary 8. 
Move opcode: 0 
Indicators: unaffected 
Addressing modes: DB+ or PB+ for source 

DB+ for target 

MVB Move bytes. The MVB instruction transfers a specified 
number of bytes from one area of primary memory to 
another. The instruction expects a signed byte count in A, a 
DB or PB relative displacement for a source byte address in 
B, and a DB relative displacement for a target byte address 
in C. As long as the word count in A has not been counted 
to zero, the transferring. of data will continue as follows: 
The content of the byte address location specified by 
DB + B or PB + B is transferred to the byte address location 
specified by DB + C. If the byte count in A is positive, the 
source and target displacement values in B and Care incre­
mented by one on each transfer, and the byte count is 
decremented by one. If the byte count in A is negative, the 
source and target displacement values in B and C are decre­
mented by one on each transfer, and the byte count is 
incremented by one. Note that the byte count is always 
changed by one toward zero. On completion of the block 
transfer, the instruction deletes from the stack the number 
of words (0, 1, 2, or 3) specified by the SDEC field of the 
instruction. This instruction can use split stack. 
Instruction Commentary 8. 
Move opcode: 1 
Indicators: unaffected 
Addressing modes: Byte addressing 

DB+ or PB+ for source 
DB+ for target 

Move words from DB+ to DL+. This instruction transfers a 
MVBL specified number of words from the DB+ area of the data 

segment to the DL+ area. The instruction expects a signed 
word count in A, a DB relative displacement for a source 
address in B, and a DL relative displacement for a target 
addre~ ;n C. As long as the word count in A has not been 
counteu to zero, the transferring of data will continue as 
follows: The contents of the memory location specified by 
DB + B is transferred to the location specified by DL + C. If 
the word count in A is positive, the source and target 
displacement values in B and C are incremented by one on 
each transfer, and the word count is decremented by one. If 
the word count in A is negative, the source ~nd target 
displacement values in B and C are decremented by one on 
each transfer, and the word count is incremented by one. 
Note that the word count is always changed by one toward 
zero. On completion of the block transfer, the instruction 
deletes from the stack the number of words (0, 1, 2, or .:S) 
specified by the SDEC field of the instruction. This instruc­
tion can use split stack. 
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Instruction Commentary 9. 
Move opcode: 2, bit 11 = 0 
Indicators: unaffected 
Addressing modes: DB+ for source 

DL + for target 
This is a privileged instruction. 

SDEC 

~ 

SDEC 
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SCW Scan while memory bytes equal test byte. The SCW instruc­
tion expects the TOS to contain a test character in the right 
byte and a terminal character in the left byte. The second 
word of the stack contains a DB relative displacement for a 
source byte address. The source byte is tested against the 
test character. If they are equal the source byte address is 
incremented and the next byte is tested. This continues 
until a source byte is found that is not the same as the test 
character. If the last character scanned is the same as the 
terminal character, the Carry bit is set; if not , the Carry bit 
is cleared. On completion of the scan, the instruction 
deletes from the stack the number of words (0, 1, 2, or 3) 
specified in the SDEC field of the instruction. This instruc­
tion can use split stack. 
Move opcode: 2, bit 11 = 1 
Indicators: Carry 

CCB on the last character scanned 
Addressing mode: Byte addressi ng, DB+ 

MVLB Move words from DL+ to DB+. This instruction transfers a 
specified number of words from the DL+ area of the data 
segment to the DB+ area. The instruction expects a signed 
word count in A, a DL relative displacement for a source 
address in B, and a DB relative displacement for a target 
address in C. As long as the word count in A has not been 
counted to zero, the transferring of data will continue as 
follows: The contents of the memory location specified by 
DL + Bis transferred to the location specified by DB+ C. If 
the word count in A is positive , the source and target 
displacement values in B and C are incremented by one on 
each transfer, and the word count is decremented by one. If 
the word count in A is negative, the source and target 
displacement values in B and C are decremented by one on 
each transfer, and the word count is incremented by one. 
Note that the word count is always changed by one toward 
zero. On completion of the block transfer, the instruction 
deletes from the stack the number of words (0 , 1, 2, or 3) 
specified by the SDEC field of the instruction. 

scu 

Instruction Commentary 9. 
Move opcode: 3, bit 11 = 0 
Indicators: unaffected 
Addressing modes: DL +for source 

DB+ for target 
This is a privileged instruction. 

Scan until memory byte equals test byte or terminal byte. 
The SCU instruction expects the TOS to contain a test 
character in the right byte and a terminal character in the 
left byte. The second word of the stack contains a DB 
relative displacement for a source byte address. The source 
byte is tested against the test and terminal characters. If the 
source byte differs from both of these characters, the byte 
address is incremented and the next byte is tested. This 
continues until either the test character or the terminal 
character is encountered. The address of the character 
remains in the second word of the stack. If the last char­
acter scanned was the same as the test character, the Carry 
bit is cleared; if it was the same as the terminal character, 
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Carry is set. On completion of the scan, the instruction 
deletes from the stack the number of words (0, 1 , 2, or 3) 
specified in the SDEC field of the instruction. 
Move opcode: 3, bit 11 = 1 
Indicators: Carry 
Addressing mode: byte addressin g, DB + 

MVBW Move bytes while of specified type. This instruction trans­
fers an unspecified number of bytes from one area of 
primary memory to another. The instruction expects a 
source byte address in the TOS and a DB relative displace­
ment for a target byte address in the second word of the 
stack. As long as the source byte is of the type specified in 
the CCF field, it is moved to the target area. The target 
displacement value in B is incremented by one on each 
transfer. If the byte to be moved is a lower case letter and 
the upshift bit is on, the target byte will be an upshifted 
copy of the source byte. Byte transfers continue until the 
source byte is not of the proper type. On completion of the 
block transfer, the instruction deletes from the stack the 
number of words (0, 1, 2, or 3) specified by the SDEC field 
of the instruction. This instruction can use split stack. 
Instruction Commentary 8. 
Move opcode: 4 
Indicators: CCB on the last character scanned 
Addressing mode: Byte addressing, DB+ 

CMPB Compare bytes. This instruction scans .two byte strings 
simultaneously until the compared bytes are unequal or 
until a specified number of comparisons have been made. 
CMPB expects a signed byte count in A, a DB or PB relative 
displacement for a source byte address in B, and a DB 
relative displacement for a target byte address in C. As long 
as the word count in A has not been counted to zero, the 
comparison proceeds as follows: The content of the byte 
address location specified by DB+ B or PB+ Bis compared 
with the content of the byte address location specified by 
DB+ C. If the byte count in A is positive , the source and 
target displacement values in B and C are incremented by 
one after each comparison, and the byte count is decre­
mented by one. If the byte count in A is negative , the 
source and target displacement values in Band Care decre­
mented by one after each comparison , and the byte count 
is incremented by one. Note that the byte count is always 
changed by one toward zero. The instruction terminates 
when either a comparison fails or the byte count in the 
TOS reaches zero. The Condition Code is set to a special 
pattern to indicate the terminating condition. On termina­
tion, the instruction deletes from the stack the number of 
words (0, 1, 2, or 3) specified by the SDEC field of the 
instruction. This instruction can use split stack. 
Instruction Commentary 8. 
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Move opcode: 5 
Indicators: CCE if byte count= 0 

CCG if target byte > so urce byte (final) 
CCL if target byte < source byte (final) 

Addressing modes: Byte addressi ng 
DB+ or PB + for source 
DB+ for target 

8 9 10 11 12 13 14 15 

Alphabetic: 
Numeric : 

'"--v-' t'-v---1 CCF SDEC 

0 1 Upshift 
1 0 

PB/DB '"--v-' 
SDEC 
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SPECIAL INSTRUCTIONS 

11 

11 

Displacement 
PL-

15 

0 

15 

15 

0 

15 

RSW Read Switch register. The content of the Switch register is 
pushed onto the stack. 
Mini-opcode: 14, bit 15 = 0 
Indicators: CCA 

LLSH Linked List Search. This instruction searches through a 
linked list in memory, comparing a test word with a target 
word, until either: a target word is found that is equal to or 
greater than the test word, or a target word is all ones, or 
the specified count has been counted to zero. The instruc­
tion expects a positive count value in the Index register. 
Also, A must contain an absolute pointer into the linked 
list, B must contain the test word, and C is an offset 
which indicates the position, relative to each link, of the 
target location. At each step, the test word is compared 
to the content of the target location. If the target content 
is logically greater than or equal to the test word, or if 
the target content is all ones, the instruction terminates. 
Otherwise, the next link replaces the current link in 
A, the count in the Index register is decremented, and 
the instruction repeats until the count becomes zero. 
Instruction Commentary 10. 
Mini-opcode: 14, bit 15 = 1 
Indicators: CCL if terminated by X = 0 

CCE if terminated by target~ B 
CCG if terminated by target= 216 

- 1 
Addressing mode: absolute± offset 
This is a privileged instruction. 

PLDA Privileged load from absolute address. The content of the 
Index register is a 16-bit absolute address; the content of 
this address is pushed onto the stack. 
Mini-opcode: 15, bit 15 = 0 
Indicators: CCA 
Addressing mode: absolute 
This is a privileged instruction. 

PSTA Privileged store into absolute address. The content of the 
Index register is a 16-bit absolute address; the top word of 
the stack is stored into memory at that address, and then 
deleted from the stack. 
Mini-opcode : 15, bit 15 = 1 
Indicators: unaffected 
Addressing mode: absolute 
This is a privileged instruction. 

LLBL Load label. The label in the Segment Transfer Table (STT) 
at PL-N is loaded onto the TOS. The value N is a displace­
ment given in the argument field of the instruction. If the 
label is local, it is converted to external type w!1en loaded . 
To be valid, the value N must point to a location which is 
actually in the STT (i.e., N ~ STTL) in all cases; addi­
tionally, in the case of local labels, N must not exceed octal 
177 (decimal 127), since this is the maximum range for 
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external labels. An invalid value of N will invoke a STT 
Violation trap. 
Instruction Commentary 11. 
Sub-opcode 3: 07 
Indicators: unaffected 
Addressing mode: PL-

IMMEDIATE INSTRUCTIONS 

LDI Load immediate. The immediate operand N is pushed onto 
the stack. The value of N is given in the argument field of 
the instruction, and is expressed as a positive integer in the 
range 0 through 255. 
Sub-opcode 2: 02 
Indicators: CCA on the new TOS 

LDXI Load X immediate. The Index register is loaded with the 
immediate operand N. The value of N is given in the 
argument field of the instruction, and is expressed as a 
positive integer in the range 0 through 255. 
Sub-opcode 2: 03 
Indicators: unaffected 

CMPI Compare immediate. The Condition Code is set to pattern 
C as a result of the comparison of the TOS with the 
immediate operand N. The value of N is given in the 
argument field of the instruction, and is expressed as a 
positive integer in the range 0 through 255. The TOS is 
deleted. 
Sub-opcode 2: 04 
Indicators: CCC 

ADDI Add immediate. The immediate operand N is added to the 
TOS in integer form, and the sum replaces the TOS. The 
value of N is given in the argument field of the instruction, 
and is expressed as a positive integer in the range 0 through 
255. 
Sub-opcode 2: 05 
Indicators: CCA on the new TOS, Carry, Overflow 

SUBI Subtract immediate. The immediate operand N is sub­
tracted from the TOS in integer form, and the result 
replaces the TOS. The value of N is given in the argument 
field of the instruction, and is expressed as a positive 
integer in the range 0 through 255. 
Sub-opcode 2: 06 
Indicators: CCA on the new TOS, Carry, Overflow 

MPYI Multiply immediate. The immediate operand N is multi­
plied with the TOS in integer form; the 16-bit integer result 
replaces the TOS. The value of N is expressed as a positive 
integer in the range 0 through 255. 
Sub-opcode 2: 07 
Indicators: CCA on the new TOS, Overflow 
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DIVI Divide immediate. The immediate operand N is divided into 
the TOS in integer form; the 16-bit integer quotient 
replaces the TOS. The value of N is expressed as a positive 
integer in the range 0 through 255. 
Sub-opcode 2: 10 
Indicators: CCA on the new TOS 

LDNI Load negative immediate. The immediate operand N is 
two's complemented and pushed onto the stack as a nega­
tive integer. The value of N is expressed as a positive integer 
in the range 0 through 255. 
Sub-opcode 2: 12 
Indicators: CCA on the new TOS, Overflow 

LDXN Load X negative immediate. The Index register is loaded 
with the 16-bit two's complement of the immediate oper­
and N. The value of N is expressed as a positive integer in 
the range 0 through 255. 
Sub-opcode 'L: 13 
Indicators: unaffected 

CMPN Compare negative immediate. The Condition Code is set to 
pattern C as a result of the comparison of the TOS with the 
two's complement of the immediate operand N. The value 
of N is expressed as a positive integer in the range 0 through 
255. The TOS is deleted. 
Sub-opcode 2: 14 
Indicators: CCC 

ADXI Add immediate to X. The immediate operand N is added to 
the content of the Index register in integer form. The sum 
replaces the Index register content. The value of N is 
expressed as a positive integer in the range 0 through 255. 
Sub-opcode 3: 05 
Indicators: CCA on X 

SBXI Subtract immediate from X. The immediate operand N is 
subtracted from the content of the Index register in integer 
form. The result replaces the Index register content. The 
value of N is expressed as a positive integer in the range 0 
through 255. 
Sub-opcode 3: 06 
Indicators: CCA on X 

ORI Logical OR immediate. The immediate operand N is 
expanded to 16 bits with high order zeros and merged 
(inclusive OR) with the TOS; the result replaces the TOS. 
The value of N is expressed as a positive integer in the range 
0 through 255. 
Sub-opcode 3: 15 
Indicators: CCA 
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XORI Logical exclusive OR immediate. The immediate operand N 
is expanded to 16 bits with high order zeros and is com­
bined by exclusive OR with the TOS; the result replaces the 
TOS. The value of N is expressed as a positive integer in the 
range 0 through 255. 
Sub-opcode 3: 16 
Indicators: CCA 

ANDI Logical AND immediate. The immediate operand N is 
expanded to 16 bits with high order zeros and is combined 
by logical AND with the TOS; the result replaces the TOS. 
The value of N is expressed as a positive integer in the range 
0 through 255. 
Sub-opcode 3: 1 7 
Indicators: CCA 

FIELD INSTRUCTIONS 

Immediate Operand 

Immediate Operand 

EXF Extract field. A specified set of bits in the TOS are 
extracted and right justified, and the result, with high order 
zeros, replaces the TOS. The J field specifies the starting 
(leftmost) bit number in the source field, and the K field 
specifies the number of bits to be extracted. 

I ~ I ~I ~ I ~ I ~ I ~ I : I ~ I " I 91'° I 11 1

12113

1

14

1

15

1 

DPF 

Instruction Commentary 12. 
Sub-opcode 2: 15 
Indicators: CCA on the new TOS 

Deposit field. A specified number of the least significant 
bits of the TOS are deposited in the second word of the 
stack, beginning at the bit number specified by the J field; 
the remaining bits of the second word of the stack are 
unchanged. The K field specifies the number of bits to be 
deposited. The source operand is deleted from the stack. 
Instruction Commentary 12. 
Sub-opcode 2: 16 
Indicators: CCA on the new TOS 

REGISTER CONTROL INSTRUCTIONS 

PSHR Push registers. The content of a register (or the displace­
ment it represents) specified by any bit 9 through 15 is 
pushed onto the stack. If more than one register (or dis­
placement) is specified, the contents will be stacked in the 
order shown below, such that if all seven were specified, DB 
would be on the TOS after execution, DL - DB next, etc. 
Note that when S-DB is pushed, the value stacked will be 
as it existed before the execution of this instruction. Stack 
overflow occurs if S+7 exceeds Z, regardless of the number 
of registers pushed. 
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If bit 15 = 1, push S-DB 
If bit 14 = 1, push Q-DB 

~ 

J 
Start ing 

Bit # 

J 
Starting 

Bit # 

K 
Number 
of bits 

K 
Number 
of bits 

DB DL Z Sta X 0 S 



DB DL Z Sta X Q S 

Immediate Operand 

Immediate Operand 
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If bit 13 = 1, push Index register 
If bit 12 = 1, push Status register 
If bit 11 = 1, push Z-DB 
If bit 10 = 1, push DL-DB 
If bit 9 = 1, push DB register 

Sub-opcode 2: 11 
Indicators: unaffected 

SETR Set registers. The registers specified by bits 9 through 15 of 
the instruction are filled by an absolute value from the TOS 
for the Index, Status, and DB registers, and an absolute 
value computed by adding DB to the TOS (displacement 
value) for the others. If more than one register (or dis­
placement) is specified, the registers will be loaded in the 
order shown below, such that if all seven were specified, the 
DB-register would receive the first TOS and the value for S 
would be computed from the seventh TOS. The TOS is 
deleted after each register is set. If the Z-register is set to 
ZI, the Interrupt Stack flag is set to "1 "; otherwise it is 
cleared. The Dispatcher flag is always cleared on setting Z. 
SETR is a privileged instruction except for setting the 
Index register, Q, S, and bits 2 and 4 through 7 of the 
Status register (user traps enable /disable, Overflow, Carry, 
and Condition Code). 

* If bit 9 = 1, load DB from TOS 
*If bit 10 = 1, load DL from (DB+TOS) 
* If bit 11 = 1, load Z from (DB+TOS) 
*If bit 12 = 1, load Status reg from TOS 
If bit 12 = 1, and not privileged mode: load Status 

bits 2, 4 thru 7 from same bits of TOS 
If bit 13 = 1, load Index register from TOS 
If bit 14 = 1, load Q from (DB+ TOS) 
If bit 15 = 1, load S from (DB+ TOS) 

Sub-opcode 2: 17 
Indicators: unaffected (may be changed if bit 12 = "1 ") 
*These are privileged operations. 

XCHD Exchange DB and TOS. This instruction expects a new DB 
value on the TOS. The current DB replaces that value on 
the TOS while the new value is placed in the DB register. 
Bits 12 through 15 are ignored. 
Special opcode: 03 
Indicators: unaffected 
This is a privileged instruction. 

ADDS Add to S. The immediate operand N is added to Sunless N 
is zero; if N is zero, the TOS content, minus one, is added 
to S instead. 
Instruction Commentary 13. 
Sub-opcode 3: 12 
Indicators: unaffected 

SUBS Subtract from S. The immediate operand N is subtracted 
from S unless N is zero; if N is zero, the TOS content, 
minus one, is subtracted from S instead. 
Instruction Commentary 13. 
Sub-opcode 3: 13 
Indicators: unaffected 
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PROGRAM CONTROL INSTRUCTIONS 

PAUS Pause . The computer hardware pauses; interrupts may 
occur. Bits 12 through 15 are ignored. 
Special opcode: 01 
Indicators: unaffected 
This is a privileged instruction. 

XEQ Execute stack word. The content of the word in the stack 
at S-K is placed in the Current Instruction Register to be 
executed. After execution, control is returned to the 
instruction after the XEQ unless a transfer of control was 
executed (branch, PCAL , etc.). If the word to be executed 
is a Stack Op, only the first position (bits 4 through 9) may 
be used; bits 10 through 15 must be a NOP. The value of K 
is 0 through 15 (decimal). 
Instruction Commentary 14. 
Special opcode: 06 
Indicators: set by the executed instruction 

HALT The computer hardware halts; interrupts may not occur and 
manual intervention is required to restart the computer. 
Bits 12 through 15 are ignored . 
Special opcode: 17 
Indi cators: un affected 
This is a privileged instruction. 

SCAL Subroutine call. Control is transferred to the location 
pointed to by the evaluation of the local label at PL-N, 
unless N is zero; if N is zero the local label is taken from the 
TOS and then deleted. The return address is then pushed 
onto the stack. Only local labels are allowed; non-local label 
gives STT Violation trap. 
Instruction Commentary 15. 
Sub-opcode 3: 01 
Indicators: un affected 
Add ress in g modes: 

Indirect via: PL - N (if N * 0) 
TOS (if N = 0) 

Local Label: PB+ 

PCAL Procedure call. Control is transferred to the location 
pointed to by the evaluation of the program label at PL -
N, unless N is zero; if N is zero, the program label is taken 
from the TOS and then deleted. Then a four word stack 
marker is placed on the stack, and Q and S are updated to 
point at this new marker. The program label may be local 
or external. If the Trace bit is on in the target CST entry, 
the PCAL will be made to the Trace segment. If a privileged 
user is calling a user segment, it will run in privileged mode. 
Instruction Commentary 16. 
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Sub-opcode 3: 02 
Ind icators: unaffected 
Addressing modes : 

Indirect via: PL - N (if N -=F 0) 
TOS (if N = 0) 

Local Label: PB+ 
External Label: via CST to local label in target segment 

1~1~1~1~-~1:1;1~·&~ 
Not Used 

I ~I~ I~ I~ - ~I~ 1•1°1~ 1"1'31141151 
'-----v----' 

K 

Not Used 

N 
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EXIT Exit from routine . This instruction is used to return from a 
routine called by the PCAL instruction or by an interrupt. 
A normal exit occurs by restoring the return address to P, 
restoring the previous contents of the Index and Status 
registers, and deleting all stack variables incurred by the 
called routine, plus its marker , plus N number of procedure 
parameters. The value of N may be any number from 0 
through 255 for exits from PCAL routines ; it must be 0 for 
exits from interrupt routines. An interrupt routine exits 
normally to the calling routine except when: a) exiting 
from the last routine to use the Interrupt Control Stack, Ot' 

b) exiting from an external interrupt routine and there is 
another external interrupt pending. In case "a", the system 
automatically exits to the Dispatcher. In case "b", the new 
device number replaces the old device number on the stack 
(without changing the existing stack marker) , and the new 
external interrupt is then processed. If the exit is from an 
external interrupt routine, EXIT clears the device's 
interrupt-active logic. If bit 0 of the return-P marker word 
is a "1 ", control is transferred to the Trace segment. If the 
return segment is absent, control is transferred to the 
Absence segment. 
Instruction Commentary 16. 
Sub-opcode 3: 03 
Indi cators: unaffected 

SXIT Exit from subroutine. This instruction is used to return 
from a subroutine called by the SCAL instruction. The 
SXIT instruction assumes that the return address is on the 
TOS , and returns program control to this address. The TOS 
is then deleted , plus N number of subroutine parameters. 
The value of N may be any number from 0 through 255. 
Instruction Commentary 15. 
Sub-opcode 3: 04 
Indicators : unaffected 

1/0 AND INTERRUPT INSTRUCTIONS 

SED Set "enable /disable external interrupts" bit. The inter­
rupt system is enabled or disabled according to the 
least significant bit (bit 15) of the instruction. If bit 
15 is a "1", bit 1 of the Status register is set, thus 
enabling external interrupts. If bit 15 is a "O", bit 1 
of the Status register is cleared, thus disabling external 
interrupts. Bits 12, 13, and 14 of the instruction are 
ignored. 
Special opcode: 02 
Indicators: unaffected 
This is a privileged instruction. 

5-25 



Instruction Set 

SMSK Set mask. The SMSK instruction assumes that the TOS 8 9 10 11 

contains the mask word and transmits this word to all 0 0 0 0 0 0 0 0 0 
device controllers. Each "1" bit in the mask word sets each 
Mask flip-flop in the group of device controllers which are Not Used 

specifically wired to be controlled by that bit. Each "O" bit 
in the mask clears each Mask flip-flop in its group . If there 
is an I/O error (no acknowledgement) , it means that the 
external interrupt system is in an unknown state. In this 
case, the SMSK instruction sets CCL Condition Code, 
and leaves the mask on the TOS. If there is no I/O 
error, the SMSK instruction deletes the mask from the 
stack and sets the Condition Code to CCE. 
Special opcode: 04 
Indicators: CCE if no error 

CCL if error 
This is a privileged instruction. 

RMSK Read mask. This instruction transfers the 16-bit mask word 8 9 10 11 

from the Mask register to the TOS. 0 0 0 0 0 0 0 0 
Special opcode: 05 
Indicators: unaffected Not Used 

SIO Start I /O. The SIO instruction expects the absolute starting 11 

address of an I/O program to be on the TOS, and a device 0 0 0 0 0 0 0 
number to be in the stack at S-K. The instruction first 
checks if the device is ready by checking bit 0 of the device K 
controller's Status register. If it is ready (bit = "l"), the 
TOS is stored into the first word location of the DRT entry 
for the device specified at S-K; an SIO command is then 
issued to the device controller to begin execution of its I/O 
program, the TOS is deleted, and the Condition Code is set 
to CCE. If the device is not ready (bit 0 of device status = 
"O"), the content of the device controller's Status register is 
pushed onto the stack and the Condition Code is set to 
CCG. If the device controller does not respond to the 
readiness test, the Condition Code is set to CCL and the 
instruction is terminated. 
Special opcode: 07 
Indicators: CCL= non-responding device controller 

CCE = device ready 
CCG = device not ready 

This is a privileged instruction. 

RIO Read I/O. This instruction expects a device number to be 5 6 7 8 9 10 11 12 13 14 15 

given in the stack at S-K. RIO first checks if the device is 0 0 0 0 0 0 0 0 0 
ready by checking bit 1 of the device controller's Status '---y----J 

register. If it is ready (bit = "1 "), the 16-bit direct data K 
word from the device is pushed onto the stack and the 
Condition Code is set to CCE. If it is not ready (bit= "O"), 
the content of the device controller's Status register is 
pushed onto the stack and the Condition Code is set to 
CCG. If the device controller does not respond to the 
readiness test, the Condition Code is set to CCL and the 
instruction is terminated. 
Special opcode: 10 
Indicators: CCL= non-responding device controller 

CCE = device ready 
CCG = device not ready 

This is a privileged instruction. 
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Instruction Set 

Write I/0. This instruction assumes that the TOS con­
tains a direct data word and expects a device number to 
be given in the stack at S-K. WIO first checks if the 
device is ready by checking bit 1 of the device con­
troller's Status register. If it is ready (bit = "1"), the 
word is transmitted to the specified device and then 
deleted from the stack; the Condition Code is set to 
CCE. If it is not ready (bit= "O"), the content of the device 
controller's Status register is pushed onto the stack and the 
Condition Code is set to CCG. If the device controller does 
not respond to the readiness test, the Condition Code is set 
to CCL and the instruction is terminated. 
Special opcode: 11 
Indicators: CCL= non-responding device controller 

CCE = device ready 
CCG = device not ready 

This is a privileged instruction. 

Test I/O. This instruction expects a device number to be 
given in the stack at S-K. TIO obtains a copy of the device 
status word from the device controller, pushes it onto the 
stack, and sets the Condition Code to CCE. If the 
device controller does not respond, the Condition Code 
is set to CCL and the instruction is terminated. 
Special opcode: 12 
Indicators: CCE =responding device controller 

CCL = non-responding device controller 
This is a privileged instruction. 

Control I/O. This instruction assumes that the TOS con­
tains a control word and expects a device number to be 
given in the stack at S-K. CIO transmits the TOS to the 
specified device controller, along with a CIO signal. If the 
device controller acknowledges receiving the word, the TOS 
is deleted and the Condition Code is set to CCE. If the 
device controller does not respond, the Condition Code is 
set to CCL and the instruction is terminated. 
Special opcode: 13 
Indicators: CCE = responding device controller 

CCL= non-responding device controller 
This is a privileged instruction. 

CMD Command. This instruction assumes that the TOS contains 
a 16-bit data word to be sent to a system hardware module 
and expects a command word in the stack at S-K. Bits 13 
through 15 of the command word specify the module 
number, and bits 10 and 11 are used to specify a module 
command. (The four possible commands depend upon 
application and do not form a part of this instruction's 
definition.) CMD sends the 16-bit data word and 2-bit 
command over the central data bus to the specified module, 
and then deletes the TOS. (Note: if the destination module 
is not ready, the CPU will not proceed until that module 
becomes ready; see "To Command a Module" in Section 
VIII.) 
Special opcode: 14 
Indicators: unaffected 
This is a privileged instruction. 
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SIRF Set external Interrupt Reference Flag. This instruction 
expects a device number to be given in the stack at S- K. 
SIRF sets the IRF bit for the specified device to "O" and 
increments the Interrupt Counter by one. (The IRF bit is 
bit 0 of the fourth word of the Device Reference Table 
entry for a device. The Interrupt Counter is fixed memory 
location 78 for processor 1 and fixed memory location 138 

for processor 2.) If the IRF bit is already a "O", the 
Interrupt Counter is not incremented. 

SIN 

Special opcode: 15 
Indicators: unaffected 
This is a privileged instruction. 

Set interrupt. This instruction expects a device number to 
be given in the stack at S-K. SIN sets the Interrupt Request 
flip-flop in the specified device controller and sets the 
Condition Code to CCE. If the device controller does not 
respond, the Condition Code is set to CCL and the instruc­
tion is terminated. 
Special opcode: 16 
Indicators: CCE = responding device controller 

CCL= non-responding device controller 
This is a privileged instruction. 

LOOP CONTROL INSTRUCTIONS 

TBA Test and branch, limit in A. This instruction expects the 
top three elements of the stack to be initialized as follows: 
A contains a limit, B contains a step size, and C contains a 
DB+ relative displacement for the address of a variable. 
TBA tests the variable against the limit. If the limit is not 
exceeded, control is transferred to the branch address at 
P ± displacement. If the limit is exceeded, the top three 
elements of the stack are deleted and execution continues 
at P + 1. 
Instruction Commentary 1 7. 
Memory opcode: 05, bits 4,5,6 = 000 
Indicators: unaffected 
Addressing mode: P relative ( +/-) 

MTBA Modify variable, test and branch, limit in A. This instruc­
tion expects the top three elements of the stack to be 
initialized as follows: A contains a limit, B contains a 
modifying step size, and C contains a DB+ relative displace­
ment for the address of a variable. MTBA adds the step size 
to the variable in integer form, replaces the old variable 
with this new sum, and tests the new sum against the limit. 
If the limit is not exceeded, control is transferred to the 
branch address at P ± displacement. If the limit is exceeded, 
the top three elements of the stack are deleted and execu­
tion continues at P+ 1. 
Instruction Commentary 17. 
Memory opcode: 05, bits 4,5,6 = 010 
Indicators: unaffected 
Addressing mode: P relative ( +/-) 
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Instruction Set 

TBX Test and branch, variable in X. This instruction requires 
that the Index register contains the variable and that the 
top two elements of the stack are initialized as follows: A 
contains a limit and B contains a step size. TBX tests the 
variable in X against the limit. If the limit is not exceeded, 
control is transferred to the branch address at P ± displace­
ment. If the limit is exceeded, the top two elements of the 
stack are deleted and execution continues at P + 1. 
Instruction Commentary 1 7. 
Memory opcode: 05, bits 4,5,6 = 100 
Indicators: unaffected 
Addressing mode: P relative(+/-) 

MTBX Modify variable in X, test and branch. This instruction 
requires that the Index register contains the variable and 
that the top two elements of the stack are initialized as 
follows: A contains a limit and B contains a modifying step 
size. MTBX adds the step size to the variable in integer form, 
replaces the old Index register contents with this new sum, 
and tests the new sum against the limit. If the limit is not 
exceeded, control is transferred to the branch address at 
P ± displacement. If the limit is exceeded, the top two 
elements of the stack are deleted and execution continues 
at P + 1. 
Instruction Commentary 1 7. 
Memory opcode: 05, bits 4,5,6 = 110 
Indicators: unaffected 
Addressing mode: P relative(+/-} 

MEMORY 'ADDRESS INSTRUCTIONS 

P+ Displacement 

P- Displacement 

Mode and Displacement 

LDPP Load double from program, positive. The double word 
contained at P+N is pushed onto the stack. An attempt to 
load from beyond the limit defined by PL will cause a 
Bounds Violation interrupt to segment 11. 
Sub-opcode 3: 10 
Indicators: CCA 
Addressing mode: P+ relative 

LDPN Load double from program, negative. The double word 
contained at P-N is pushed onto the stack. An attempt to 
load from beyond the limit defined by PB will cause a 
Bounds Violation interrupt to segment 11. 
Sub-opcode 3: 11 
Indicators: CCA 
Addressing mode: P- relative 

LOAD Load word onto stack. The content of the effective address 
location is pushed onto the stack. An attempt to load from 
beyond the limits defined by PB and PL or (in user mode 
only) DL and S will cause a Bounds Violation interrupt to 
segment 11. 
Memory opcode: 04 
Indicators: CCA 
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative 

Direct or indirect 
Indexing available 
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STOR Store TOS into memory. The content of the TOS is stored 
into the effective address memory location, and is then 
deleted from the stack. In user mode, an attempt to store 
beyond the limits defined by DL and S will cause a Bounds 
Violation interrupt to segment 11. 
Memory opcode: 05, bit 6 = 1 
Indicators: unaffected 
Addressing modes: DB+, Q+, Q-, S- relative 

Direct or indirect 
Indexing available 

CMPM Compare TOS with memory. The Condition Code is set to 
pattern C as a result of the comparison of the TOS with the 
content of the effective address location. The TOS is then 
deleted. An attempt to reference a location beyond the 
limits defined by PB and PL or (in user mode only) DL and 
Swill cause a Bounds Violation interrupt to segment 11. 
Memory opcode: 06 
Indicators: CCC 
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative 

Direct or indirect 
Indexing available 

ADDM Add memory to TOS. The content of the effective address 
memory location is added in integer form to the TOS. The 
result replaces the operand on the TOS. An attempt to 
reference a location beyond the limits defined by PB and 
PL or (in user mode only) DL and S will cause a Bounds 
Violation interrupt to segment 11. 
Memory opcode: 07 
Indicators: CCA, Carry, Overflow 
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative 

Direct or indirect 
Indexing available 

SUBM Subtract memory from TOS. The content of the effective 
address memory location is subtracted in integer form from 
the TOS. The result replaces the operand on the TOS. An 
attempt to reference a location beyond the limits defined 
by PB and PL or (in user mode only) DL and Swill cause a 
Bounds Violation interrupt to segment 11. 
Memory opcode: 10 
Indicators: CCA, Carry, Overflow 
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative 

Direct or indirect 
Indexing available 

MPYM Multiply TOS by memory. The TOS is multiplied in integer 
form by the content of the effective address memory loca­
tion. The least significant word of the result replaces the 
operand on the TOS. An attempt to reference a location 
beyond the limits defined by PB and PL or (in user mode 
only) DL and S will cause a Bounds Violation interrupt to 
segment 11. 

5-30 

Memory opcode: 11 
Indicators: CCA, Overflow 
Addressing modes: P+, P- , DB+, Q+, Q- , S- relative 

Direct or indirect 
Indexing available 

Mode and Displacement 

Mode and Displacement 

Mode and Displacement 

Mode and Displacement 

I ~ I ~ I ~I~ I: I : 16 17 I B 19 ,10111 112 113114115 1 

Mode and Displacement 



Mode and Displacement 
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Mode and Displacement 

Mode and Displacement 

Mode and Displacement 
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INCM Increment memory. The content of the effective address 
memory location is incremented by one in integer form. In 
user mode, an attempt to reference a location beyond the 
limits defined by DL and S will cause a Bounds Violation 
interrupt to segment 11. 
Memory opcode: 12, bit 6 = 0 
Indicators: CCA, Carry, Overflow 
Addressing modes: DB+, Q+, Q-, S- relative 

Direct or indirect 
Indexing available 

DECM Decrement memory. The content of the effective address 
memory location is decremented by one in integer form. In 
user mode, an attempt to reference a location beyond the 
limits defined by DL and S will cause a Bounds Violation 
interrupt to segment 11. 
Memory opcode: 12, bit 6 = 1 
Indicators: CCA, Carry, Overflow 
Addressing modes: DB+, Q+, Q- , S- relative 

Direct or indirect 
Indexing available 

LDX Load Index. The content of the effective address memory 
location is loaded into the Index register. An attempt to 
load from beyond the limits defined by PB and PL or (in 
user mode only) DL and S will cause a Bounds Violation 
interrupt to segment 11. 

LDB 

LDD 

Memory opcode: 13 
Indicators: CCA 
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative 

Direct or indirect 
Indexing available 

Load byte. The content of the effective byte address mem­
ory location is loaded into the right half of the TOS. If 
indirect addressing is used, the word referenced by the 
initial address (base+ displacement) contains a DB+ relative 
byte address. If indexing is used, the effective byte address 
is obtained by adding the byte index in the Index register 
to the relative byte address. In user mode, an attempt to 
load from beyond the limits defined by DL and S will cause 
a Bounds Violation interrupt to segment 11. 
Memory opcode: 15, bit 6 = 0 
Indicators: CCB 
Addressing modes: Byte addressing 

DB+, Q+, Q- , S- relative 
Direct or indirect 

(for final indirect: DB+ only) 
Byte indexing available 

Load double. The contents of the effective address memory 
location (E) and the succeeding location (E + 1) are pushed 
onto the stack. The content of E, the most significant 
word, is loaded into B; the content of E + 1, the least 
significant word, is loaded into A. If indirect addressing is 
used, the word referenced by the initial address (base + 
displacement) contains a DB+ relative word address. If 
indexing is used, the effective address is obtained by adding 
the doubleword index in the Index register to the relative 
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word address. In user mode, an attempt to load from 
beyond the limits defined by DL and S will cause a Bounds 
Violation interrupt to segment 11. 
Memory opcode: 15, bit 6 = 1 
Indicators: CCA 
Addressing modes: DB+, Q+, Q- , S- relative 

Direct or indirect 
(for final indirect: DB+ only) 

Doubleword indexing available 

STB Store byte. The right byte (bits 8 through 15) of the TOS is 
stored into the effective byte address memory location and 
the TOS is deleted. If indirect addressing is used, the word 
referenced by the initial address (base + displacement) 
contains a DB+ relative byte address. If indexing is used, 
the effective byte address is obtained by adding the byte 
index in the Index register to the relative byte address. In 
user mode, an attempt to store beyond the limits defined 
by DL and S will cause a Bounds Violation interrupt to 
segment 11. 
Memory opcode: 16, bit 6 = 0 
Indicators: unaffected 
Addressing modes: Byte addressing 

DB+, Q+, Q-, S- relative 
Direct or indirect 

(for final indirect: DB+ only) 
Byte indexing available 

STD Store double. The top two words of the stack are stored 
into the effective address memory location (E) and the 
succeeding location (E + 1), and are then deleted from the 
stack. The content of B, the most significant word, is stored 
into E; the content of A, the least significant word, is 
stored into E + 1. If indirect addressing is used, the word 
referenced by the initial address (base + displacement) 
contains a DB+ relative word address. If indexing is used, 
the effective . address is obtained by adding the doubleword 
index in the Index register to the relative word address. In 
user mode, an attempt to store beyond the limits defined 
by DL and S will cause a Bounds Violation interrupt to 
segment 11. 
Memory opcode: 16, bit 6 = 1 
Indicators: unaffected 
Addressing modes: DB+, Q+, Q-, S- relative 

Direct or indirect 
(for final indirect: DB+ only) 

Doubleword indexing available 

LRA Load relative address. The effective address is computed, 
then subtracted from the appropriate base register (PB for 
P± addressing or DB for DB+, Q±, and S- addressing). The 
resulting relative address is pushed onto the stack. An 
attempt to load from beyond the limits defined by PB and 
PL or (in user mode only) DL and S will cause a Bounds 
Violation interrupt to segment 11. 
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INSTRUCTION COMMENTARY 
Sign of a Sign of a 

1 
Double-length Single- length 
Integer Integer 

/ / MPYL, MPY, DTST, FIXR, FIXT, LMPY. These six 
instructions provide for the deletion of the most significant 
word of a doubleword result. The assumption is that the 
result of the instruction (e.g., multiplication product) does 
not require more than 16 bits to represent it. The MPY 
instruction deletes automatically during execution; the 
remaining five instructions simply test the result and pro­
vide an indication (Carry bit) to note whether or not the 
low order word fully represents the true result. Thus, for 
these five, the programmer may choose to insert a delete 
sequence (see figure 5-1) to delete the high order word if it 
is insignificant. 

~o~__,r-'9""'..,......, ....................... .....--....... _1_s o is 
11 I I 11 I I I I I I I I I I 11 I I I I I I I I I I I I I I I I 
000000 0000000 00 0 ox---- --------- -x 
1111111111111111 lX------- ---- ---X 

High Order Significant 
17 Bits Data Bits 

Example delete sequence : 

MPYL ; 
BCY * +2 ; 
DELB ; 

For MPYL, DTST, FIXR, FIXT, and LMPY, the Carry bit 
is cleared if the high order 17 bits are all zeros or all ones. 
This test ensures that the sign bit of the single-length result 
will be the same as the sign of the double-length result. If Figure 5-1. Deleting a High Order Word 

ROUNDING 

! 1 0 11 1 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 : ( 32 ) 
I : 
I I 1. ,.,_ ______________ Fraction ----------------r 

Decimal 
Examples: 

TRUNCATION 

+1.X - - - - - - - - 1 
-1.X----- --- 1 

- 1.X - - - - - - - - 1 49 - - -

Truncate 

0 1 234 5678910 

____. +1 .X - - - - - - - - 2 

____. +1 .X - - - - - - - - 1 
____. -1.X------- - 2 

____. - 1.X ---- ----1 

0 

+1 

1 -..J 

0 0 

+1 

0 -.J 

A 

B 

0 0000000 0 0 0 0 lolo o olo o olo o olo o olo o ol 

+ 
Exp= 1 Mantissa = 1.11 

VALUE=11 .1 (or3%) 

lJ 

Figure 5-2. Rounding and Truncation 
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BINARY REPRESENTATION 
VALUE 

(Mantissa) Exponent s Exponent Fraction 
Decimal Binary 

OVERFLOW 
+oo 

(too large 
(2) 2255 +257 to represent) "-... .....___ +256 

• (2-r22) 2255 / 
t----" 0 +255 111111111 1111111111111111111111 

1.1579X10 77 

1 l Decimal 
(~) 

0 +255 111111111 0000000000000000000000 

+127 

RANGE OF 
POSITIVE NUMBERS +63 

+31 
+1- 0 0 100000000 0000000000000000000000 

-32 

-64 

- 128 

(~ -256 
Decimal (1+2 -22) r256 • • 8.6362 x 10- 78 

"-... 0 000000000 0000000000000000000001 .....___ 
(1)r256/ 

r--

UNDERFLOW t 
(too small -256 
to represent) - 257 

ZERO 0----1 0 000000000 0000000000000000000000 

UNDERFLOW -257 
(too small - 256 
to represent) (-1) r256 "-... + 

• - 8.6362 x 10- 78 
(- 1_2-221 r256 / 

1 000000000 0000000000000000000001 
Decimal • (~ - 256 

-128 

-64 

- 32 
RANGE OF -1----1 1 0 100000000 0000000000000000000000 
NEGATIVE NUMBERS +31 

+63 

+127 

1 +255 111111111 0000000000000000000000 

(~ ! 1 Decimal - (2_2-22) 2 255 "-... 

• - 1.1579 x 1077 
1 +255 111111111 1111111111111111111111 ~ 

(-2) 2255 / 
r-- +256 

OVERFLOW +257 
(too large 
to represent) 

-00 

Figure 5-3. Ranges of Floating Point Numbers 
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this is not the case, Carry is set, and the most significant 
word should not be deleted. For MPY, Overflow will be set 
if the test fails, meaning that MPYL should have been used 
instead of MPY. 

2 DFLT, FLT, FADD, FSUB, FMPY, FDIV, FIXR, 
FIXT. These eight fl oating point instructions use rounding 
or truncation in computing a final result and except for 
DFLT and FLT, are subject to both overflow and under­
flow. The following paragraphs explain these conditions as 
they apply to the HP 3000. 

Rounding and Truncation. Figure 5-2 illustrates both 
rounding and truncation. Rounding is a simple matter of 
adding a "1" to whatever is in bit position 32. If bit 32 is a 
"1" (case A in the figure), adding "l" will cause a carry 
into bit 31, thus incrementing the representable value. If bit 
32 is a "O" (case B), adding "1" will not cause a carry , and 
the representable value is unchanged. 

Truncation is used only by the FIXT instruction and con­
sists of discarding all fractional bits after computing the 
effective binary point position. This is shown in the lower 
part of figure 5-2, which illustrates the case of truncating 
the decimal number 3.5 to 3. The biased exponent (octal 
401) represents an exponent of 1. The fraction, as stored , is 
.11 which, when combined with the assumed leading 1 gives 
a resultant mantissa of 1.11. The positive exponent of 1 
implies that the effective binary point position is one place 
to the right. Thus the true binary value represented is 11.1, 
which is 3.5 in decimal. Therefore, in this case, truncation 
of the fraction consists of discarding all low order bits from 
11 through 31. 

Overflow and Underflow. Figure 5-3 illustrates overflow 
and underflow for floating point instructions. Overflow is 
caused by these instructions when the computed result 
(either positive or negative) is too large to be represented. 
Underflow is caused when the computed result is too small 
to be represented. The limits are defined in figure 5-3. 

When user traps are enabled, an overflow or underflow trap 
will occur to indicate which type of error resulted. If the 
traps are not enabled, the Overflow bit will be set on either 
type of error. 

It is possible to reconstruct correct answers from overflow 
or underflow results. If the exponent and fraction are both 
zero and there is an underflow , the result should be taken 
as+ /- (depending on sign bit) 2-25 6

• In all other cases , test 
bit 1 (most significant bit of exponent). If this bit is 0, add 
512 (decimal) to the exponent; if it is 1, subtract 512 from 
the exponent. 

3 ASL, ASR, LSL, LSR, CSL, CSR. The actions of the 
six single word shift instructions are shown in figure 5-4. It 
is assumed that the shift count, specified in the argument 

Instruction Set 

Arithmetic Sh ift Left ASL3 

Arithmetic Shift Right ASA 3 

:t~: : : : : : : : !;; 
Logical Shift Left LSL 3 

;:£ : : : : : : : : : ~.~. 
Logical Shift Right LSR 3 

.~.~ : : : : : : : : : %'; 
Circular Shift Left CSL 3 

G~:::: : : : : :~<~ 
Circular Shift Right CSR 3 

Figure 5-4. Single Word Shifts 
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TOS - 1 I TOS 

Double Ar ithmet ic Shift Left DASL 3 

~:::::::: :~:::::::::: z.~. 
Double Arithmet ic Shift Right DASR 3 

:t~:::::::: :s::::::::: :~ 
Double Logical Sh ift Left DLSL 3 

~::::::::: :z::::::::: :;z.~. 
Double Logical Shift Right DLSR 3 

.~.~:::::::::: ~::::::::: :~ 
Double Circular Shift Left DCSL 3 

c·~: : : : : : : : : : 2.........---.--: : :_____....__,__: : : : :--: : ~c~ 
Double Circular Shift Right DCSR 3 

~c~::::::::: :~____..........:: :--: : : : :-: :~~ 
Figure 5-5. Double Word Shifts 
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field of the instruction, is 3 in each case. The before and 
after conditions of the TOS word are shown for each 
example. 

In the case of arithmetic shifts, the sign bit is always 
preserved. When shifting left, the bits shifted out of bit 1 
(most significant bit next to the sign bit) are lost; zeros are 
filled into the vacated low order bit positions. When 
shifting right, the sign bit is copied into the vacated high 
order bit positions, and bits shifted out of bit 15 (least 
significant bit) are lost. 

In the case of logical shifts, all bits are shifted. Bits are lost 
out of the high end when shifting left and out of the low 
end when shifting right. Zeros are filled into the vacated bit 
positions. 

In the case of circular shifts, no bits are lost. Bits shifted 
out of the high end when shifting left are filled into the 
vacated low order bit positions. When shifting right , bits 
shifted out of the low end are filled into the vacated high 
order bit positions. 

Note that, for all shift instructions, the number of shifts is 
determined either by the value specified in the argument 
field of the instruction or, if X is specified (" l" in bit 4), 
by adding the argument field value to the Index register 
contents. This permits the number of shifts to be computed 
as well as explicitly specified. 

All shift instructions except TNSL use the shift count in a 
modulo 64 manner. Thus if the final shift count is 100 
octal (64 decimal), the data is not shifted at all. Further­
more, if the number of shifts equals or exceeds the number 
of magnitude bits (whether single, double , or triple word), 
the following will occur: for left arithmetic shifts and all 
logical shifts, the magnitude will be all-zero; for right arith­
metic shifts, all magnitude bits will be the same as the sign 
bit; for circular shifts, the circular shifting will continue 
until the specified number of shifts (up to 63) have been 
achieved. 

Except for TNSL (see Instruction Commentary 5) the exe­
cution of shift instructions does not alter the content of the 
Index register. 

4 DASL, DASR, DLSL, DLSR, DCSL, DCSR. The 
actions of the six double word shift instructions are shown 
in figure 5-5. The shift count, specified in the argument 
field of the instruction, is assumed to be 3 in each case. The 
before and after conditions of the two top words of the 
stack are given in each example. The TOS contains the least 
significant half of double word integers, and the second 
word (B, or TOS-1) contains the most significant half. 

Instruction Set 

Double word arithmetic, logical, and circular shifts are the 
same as the corresponding single word shifts described 

. above under Instruction Commentary 3 except for the 
word length. This means that, when shifting left, bits 
shifted out of the high end of the low order word are filled 
into the low end of the high order word. When shifting 
right, bits shifted out of the low end of the high order word 
are filled into the high end of the low order word. Simi­
larly, on circular shifts, bits shifted out of one end of the 
double word are filled into the opposite end of the double 
word. 

5 TASL, TASR, TNSL. Figure 5-6 illustrates the 
actions of the three triple word shift instructions. Two of 
these, the arithmetic shifts, are the same as the single and 
double word shift instructions previously described in 
Instruction Commentaries 3 and 4, except that three words 
are shifted. The TOS contains the least significant word, B 
(or TOS-1) contains the middle word, and C (or TOS-2) 
contains the most significant word. 

The TNSL (Triple Normalizing Shift Left) instruction is a 
special case. Instead of specifying a shift count, TNSL shifts 
left arithmetically until a "1" is shifted into bit 6 of the 
most significant word, and the number of shifts is counted 
in the Index register. The argument field is ignored. Bits 0 
through 5 of the most significant word are cleared. 

The TNSL instruction clears the Index register before 
beginning to shift unless X is specified in bit 4 of the 
instruction. If X is specified, the shift count adds on to the 
existing contents of the Index register. If bit 6 of C and all 
lower order bits are zero, a "1" cannot be shifted into bit 6 
of C. TNSL initially tests for this condition and, if true, 
bypasses the shift operations and simply puts 42 into (or 
adds 42 to) the Index register. This is the value that would 
exist if the shifts were actually executed. 

The purpose of the TNSL instruction is to normalize a 
triple word floating point number. Such a number has a 
42-bit mantissa consisting of: a leading "1", 38 represent­
able fraction bits, a rounding bit , and two guard bits at the 
least significant end. TNSL assumes that the number has 
previously been left-shifted three places in order to include 
the rounding and guard bits in the least significant word. 
Thus the leading "l", instead of being assumed to exist in 
the bit 9 position of C (see figure 5-6) is now moved to the 
bit 6 position. 

6 BR. The P relative mode of BR, the unconditional 
branch instruction, is a -conventional P relative branch 
except for the indexing capability and the extended dis­
placement range. Bits 8 through 15 are available to specify 
displacement, which therefore can be up to ±255. 
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Figure 5-6. Triple Word Shifts 

The DB, Q, and S relative modes, however, are unconven­
tional in that they permit indirect branches through the 
data stack. (It is both illegal and impossible to have a direct 
branch to the stack; the coding of "01" for bits 5 and 6 
encodes the BCC instruction.) 

Figure 5-7 shows an example of the S- relative mode. 
Assume that the instruction in location P specifies the S­
relative mode, with a displacement of 4, and indexing. This 
causes an indirect branch to S-4 in the data stack. The 
content of S-4 is then added to PB, thus pointing at 
location "a" in the code segment. Since indexing is spec­
ified, the value contained in the Index register is also added 
to the address being computed. Thus the ultimate effective 
address for the branch (next P) is location "a" displaced by 
the index value. 

Note particularly that the indirect address given in the stack 
is relative to the program base, PB, not to Pas is usually the 
case. Also note that the displacement is relative to a loca-
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tion in the stack (DB, Q, or S}, and that indexing is applied 
after the indirect addressing has been accomplished. 

The displacement range for the DB, Q, and S modes 
depends on which mode is selected. For DB+, bits 8 
through 15 provide a range of 0 through +255. For Q+, bits 
9 through 15 provide a range of 0 through + 127. For Q­
and S-, bits 10 through 15 provide a range of 0 through 
-63. 

7 TSBM. This instruction is primarily intended to refer­
ence a software lock word. Typical application would be in 
multiprogramming systems. When one process attempts to 
use a given critical portion of code, it will set a certain 
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Figure 5-7. Indirect Branch via Stack 

combination of bits in the lock word to "1", using the OR 
function of the TSBM instruction. Since there is the pos­
sibility that another process may already be using the code, 
the TSBM instruction also tests to see if any of the bits it 
has set to "l" already were in the "l" state. This is 
accomplished by the AND function. If any bits in the TOS 
word are "1" following the execution of TSBM, which can 
be checked by testing the Condition Code, the indication is 
that the code is currently in use. On completion of the 
routine or subroutine, the appropriate bits of the lock word 
would be cleared. 

To preserve the lock mechanism in a dual-processor system 
(where the second processor could read the lock word in 
memory while the first processor is in the midst of changing 
its copy of the word for re-storage), the hardware auto­
matically sets the memory cell to all "1 "s until the first 
processor re-stores the modified lock word. Thus, no matter 
which bits the second processor tests, it can only assume 
that the code is currently in use. 

8 MOVE, MVB, MVBW, CMPB. These four instructions 
are members of the move group, and as such deal with 
strings of words or bytes. The first three physically move a 
word or byte string from one block of locations in primary 
memory to another. The CMPB instruction does not move 

data, but compares the data in two complete strings, byte 
by byte. The following paragraphs explain and compare the 
significant features of all four instructions. Refer to figure 
5-8. 

SOURCES. The MOVE, MVB, and CMPB instructions may 
take source data from either the code segment or the data 
segment. (For reference purposes, "source" and "target" 
terminology is retained for CMPB, even though there is no 
move operation.) If bit 11 of the instruction is a "O", 
source addresses are PB+ relative - i.e., from the code 
segment. If bit 11 is a "l ", source addresses are DB+ 
relative - i.e., from the data segment. Figure 5-8 illustrates 
both cases. Note that the target for either case is in the DB+ 
area. (Disregard move-direction arrows for CMPB.) The 
MVBW instruction, however, may not use the PB relative 
source; sources for MVBW are DB relative only. The target 
need not be "higher" than the source; figure 5-8 shows 
examples only. 

ASCENDING/DESCENDING ADDRESSES. The MOVE, 
MVB, and CMPB instructions have the capability of gen­
erating ascending or descending addresses for source and 
target locations. The direction is established by the sign of 
the count word, which is bit 0 of A, as shown in figure 5-8. 
If this bit is a "O", the sign is "+", and successive addresses 
are ascending (Band C incremented). If this bit is a "1" the 
sign is "-", and successive addresses are descending (Band 
C decremented). Note the +Count and -Count arrows in 
figure 5-8. The MVBW instruction uses only ascending 
addresses; this instruction does not use a count word, and 
the source and target words are given in A and B instead of 
Band C. 
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Figure 5-8. Examples of Moves 

METHOD OF TERMINATION. The MOVE and MVB 
instructions are terminated only when the word or byte 
count becomes zero. The MVBW instruction is terminated 
only when a character of a specified type, either alphabetic 
or numeric, is encountered. The CMPB instruction has two 
methods of termination: when the byte count becomes 
zero, or when any two bytes being compared are unequal. 

SPECIAL FEATURES. The MVBW instruction includes an 
"upshift" bit (bit 13). This bit, when set ("1"), will trans­
pose any lower case source characters to upper case during 
the transfer. If not set ("O"), the source characters are 
unaltered by the instruction. 

MOVES BEYOND TOS. In the event that the source or 
target of any move instruction advances into the top-of­
stack area (A, B, C, D) or beyond, the count, source , and 
target words contained in A, B, and C will not be affected 
since these values are contained in top-of-stack registers. 
The memory locations directly corresponding to these reg­
isters will be used for the move (or comparison). The move 
instructions, incidentally , are the only ones which in any 
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way distinguish between top-of-stack in memory and top­
of-stack in the CPU. However, situations which encounter 
this distinction will be rare , since the area between TOS and 
Z is undefined, thus indicating a probable software error. 

INTERRUPTS. All Move instructions are interruptable and 
will continue their operation after return from the inter­
rupt. To do this, the count , source, and target addresses are 
kept updated in the TOS registers, which are pushed into 
memory upon interrupt . 

9 MVBL, MVLB. These two instructions have many 
characteristics of the other move instructions described 
above (Instruction Commentary 8). However, since they 
move data into or out of the data area between DL and DB, 
MVBL and MVLB are privileged instructions. The following 
paragraphs summarize the actions of these two instructions. 
Refer to figure 5-9 . 
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Figure 5-9. Examples of MVBL, MVLB 

For MVBL, source data is taken from the DB+ area and the 
target is in the DL+ area. (A large enough displacement 
could put the target in the DB+ area.) For MVLB, source 
data is taken from the DL+ area and the target is in the 
DB+ area. Addresses for both instructions can be ascending 
or descending, depending on the state of the count sign. If 
this bit is a " O", the sign is "+", and successive addresses are 
ascending (B and C incremented). If this bit is a "l", the 
sign is "-", and successive addresses are descending (Band 
C decremented). 

Both MVBL and MVLB are terminated when the word 
count becomes zero. The comment on "Moves Beyond 
TOS" under Instruction Commentary 8 also applies to 
these two instructions. 

Instruction Set 

10 LLSH. A typical application of the LLSH instruction 
was given in Section IV (see "Segments in Memory"). 
Basically, the intent in that case was to find a segment of 
primary memory at least as large as the segment size speci­
fied by the test word. Since the software knows how many 
links exist, it can load this value into the Index register for 
counting purposes. (Note that the list may have a termin­
ator word consisting of all ones.) 

Figure 5-10 illustrates the basic operation of the LLSH 
instruction. As shown, the top-of-stack (A) contains the 
link pointer. At all times, in successive fashion , this location 
contains the absolute address of the link word in the 
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segment currently being tested. Location B in the stack is 
the test word, which would typically be a 16-bit number 
indicating the size of the segment which is to be loaded by 
the software. Location C is an offset indicating how far the 
target word is from the link word. Thus as shown, the 
comparison is between the test word and each target word. 

On termination of the instruction, location A of the stack 
contains the absolute address of the searched-for segment, 
and a Condition Code of CCE indicates that the search was 
successful. If the search is not successful, Condition Code 
CCL or CCG will indicate the cause of termination. 

11 LLBL. The LLBL instruction will convert a local 
label to external type if it is not already of this type. The 
conversion is accomplished by forcing bit 0 of the TOS to 
the "l" state, loading bits 1 through 7 with the value of N 
(which is the STT entry number), and loading bits 8 
through 15 with the corresponding bits of the Status reg­
ister (i.e., the number of the currently executing code 
segment). 

EXF Extract Field 
J 2 
K = 8 
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DPF Deposit Field 
J 4 
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Extract 
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12 EXF, DPF. Figure 5-11 compares the operations of 
EXF and DPF. In the case of EXF, only the TOS word is 
affected. Assuming values of 2 for J and 8 for K, bits 2 
through 9 will be extracted and moved to bits 8 through 15 
(i.e., right-justified). Bits 0 through 7, in this example, are 
filled with zeros. In the case of DPF, the two top words of 
the stack are affected. The second word of the stack (S-1) 
is assumed to contain a word that is arbitrarily represented 
here by the letters "a" through "p". Assuming values of 4 
for J and 6 for K, the six least significant bits of the TOS 
word are deposited into the second word, beginning at bit 4 
and ending at bit 9. The remaining bits of the second word 
are unchanged, and the combined result becomes the new 
TOS. Note that since the J and K fields each have four bits, 
they may specify values from 0 through 15 (decimal). The 
field may wrap around the end of the word; i.e., bit 15 is 
one bit to the left of bit 0. 

13 ADDS, SUBS. The reason for the "minus one" when 
using the TOS content to modify S is to delete the modi­
fying parameter. A typical application of the ADDS instruc­
tion is to reserve a block of stack locations for procedure 
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Figure 5-11. EXF and DPF Operation 
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variables. The number of locations so reserved may be 
either explicitly given in the inst ruction's operand field, or 
computed and accessed via the TOS. The effect of the 
instruction is simply to advance the top-of-stack pointer a 
given number of locations without specifying any contents. 
The SUBS instruction , conversely, deletes a specified 
number of stack locations. 

14 XEQ. The reason why the use of a second stack 
opcode (bits 10 through 15) is illegal is that there is no 
guarantee that it will be executed. If there should be an 
interrupt between the execution of the two stack opera­
tions, the program counter (P) will move on to the next 
instruction past XEQ. There is no provision to decrement P 
in order to go back to XEQ for the second stack operation. 
However, if no intervening interrupt does occur (for 
example, if the interrupt system is off), both stack opcodes 
can be executed. Also, possibly, a simple test can be pro­
grammed to check for an intervening interrupt. The indi­
cators would be set according to the last executed stack 
operation. 

15 SCAL, SXIT. Figure 5-12 illustrates the operations 
for calling and exiting from a subroutine. Since only local 
labels may be used, operation is entirely within the current 
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code segment. Assume that the system is executing instruc­
tions in the code segment shown in figure 5-12. At some 
point, P will encounter the "SCAL N" instruction, where N 
is some value 0 through 255. If the value of N is not 0, e.g., 
8, this value will be subtracted from PL (i.e., PL-8), thus 
pointing at the ninth cell counting backward from PL. This 
must be within the Segment Transfer Table, whose first 
entry is PL-1. The eighth entry, in this case, contains a 
local program label (bit 0 = 0) , which is a PB relative 
address pointing to the start of the subroutine. This address 
is converted to absolute (add to PB) and is loaded into the 
P-register, while the former value of P, plus one, is stored in 
the TOS as the return address. However, if N were 0, it 
would be assumed that the TOS contains the local label 
(subroutine starting address). This address , then , (made 
absolute) would be loaded into the P-register, while the 
former value of P, plus one, replaces the label on the TOS 
as the return address. In either case, once the P-register has 
its new address, the location so indicated will be fetched 
and subroutine execution begins. 

The final instruction of the subroutine is SXIT. At this time 
the return address, pushed onto the stack by SCAL, is 
assumed to be on the top of the stack. It is the responsi­
bility of the subroutine to provide this condition , which 
normally means deleting all variables incurred by the sub­
routine. The SXIT instruction simply takes the address 
contained in the TOS and puts it in the P-register, thus 
effecting a return to the calling routine. As a final step, 
SXIT deletes the TOS, since the return address is no longer 
needed, and may additionally move S back some number of 
locations specified by N. This would typically be used for 
deleting some of the parameters passed to the subroutine. 

SXIT 

Code Stack 
PB 

P-------4 

SXIT 
Return P 

PL..__ ____ _. 

Figure 5-12. Subroutine Call and Exit 
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16 PCAL, EXIT. These two instructions perform basi­
cally the same function as the SCAL and SXIT instructions 
described above (Instruction Commentary 15 ). That is, to 
call a routine and return from it to the point where it was 
called. However, since the routines in the case of PCAL/ 
EXIT may be external to the current segment, possibly not 
even present in main memory, the operation is somewhat 
more complex. Furthermore, EXIT also has the capability 
of providing a return from various kinds of interrupt 
routines (not called by PCAL). 

It would be redundant to explain here the mechanics of 
procedure calls and exits, since a detailed discussion was 
given earlier in Section IV (see "Code Segments" and "Data 
Segments"). If the mechanics are not thoroughly under­
stood, read that section again, particularly with reference to 
figures 4-5 and 4-10. For interrupt concepts used by the 
EXIT instruction, refer also to Section VII, Interrupt 
System. 

The following paragraphs describe the operations of PCAL 
and EXIT on a step-by-step basis, referring to flowcharts. It 
will frequently be assumed that the reader has a working 
knowledge of the intents and purposes of the various steps. 

PCAL Sequence. Figure 5-13 illustrates the operations of 
the PCAL instruction. If the call is within the current 
segment (local label), only the steps shown on the left side 
of the diagram are performed. For calls outside the current 
segment, the steps on the right side are added. 

The first step is to fetch the program label. From the PCAL 
instruction definition, we see that the label can be obtained 
from one of two places: from the TOS if N is zero, or from 
PL-N if N is not zero. This operation can be seen in the 
SCAL operation of figure 5-12, where the label is fetched 
from either the Segment Transfer Table, at PL-N, or from 
the TOS. The only difference is that PCAL puts the fetched 
label into temporary storage in the CPU, instead of directly 
into the P-register. 

Thus, referring to figure 5-13, PCAL initially checks N to 
see if the label is on the TOS. If not (block 1), the label is 
fetched from PL-N and a check is made to see if that 
location is actually within the bounds of the Segment 
Transfer table. (N must be ~ STI'L value in the PL loca­
tion.) If out of STT bounds, an STT violation interrupt to 
segment 13 is incurred; otherwise, the PCAL sequence 
continues. If the label is on the TOS (block 2), the label is 
put into temporary storage in the CPU and S is decre­
mented to delete the label from the stack. At this time, the 
CPU has the label but does not know whether it is local or 
external, or if it is valid. 

The next step is to place a standard four-word stack marker 
onto the stack (block 3) and update the Q pointer by 
loading it with the content of S (block 4). Both Q and Sare 
now pointing at the last word (delta Q) of the new stack 
marker. 
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Now the label is checked to see if it is a local label (bit 0 = 

0). If it is, the sequence goes directly to block 11 (skip next 
seven paragraphs). 

If the label is external (bit 0 = 1), bits 8 through 15 are 
checked to see if the segment number specified is valid. If 
the segment number does not have an entry in the Code 
Segment Table (two times segment number must be ~ CST 
Length, in first location of CST) , or if the segment number 
specified is 0 (segment 0 is callable only by external inter­
rupts), a CST violation interrupt to segment 13 is incurred. 
Otherwise, the PCAL sequence continues. 

Next, absolute addresses for PB and PL are calculated from 
the CST entry and loaded into these two registers (block 5 ). 
The CST entry is fetched from CSTP + 2* segment number 
(bits 8 through 15 of the label). The second word of the 
two-word CST entry is an absolute address for PB (could be 
a secondary memory address if the segment is absent from 
primary memory). The first word contains the length (7 4) 
of the called segment in bits 4 through 15. The value for PL 
is calculated by adding PB + 4* length -1. The P-register is 
initially set equal to PB at this time; as explained later, 
execution may begin at this value of P. 

Block 6 sets the privileged mode bit in the Status register if 
the mode bit in the CST entry indicates privileged mode, or 
if the caller was executing in privileged mode (i.e., if the 
privileged mode bit in Status already was set). (Although 
not shown, the Reference bit in the CST is set at this time, 
for statistical purposes.) 

Block 7 stores bits 8 through 15 of the label into bits 8 
through 15 of the Status register. This indicates to the 
system that we are now operating in the called segment. 

A check is then made to see if the called segment is absent, 
by checking bit 0 of the first word of the CST entry. If it is 
absent, a four-word stack marker is pushed onto the stack, 
then the label ; external interrupts are disabled; PB, PL, and 
P are established from the CST entry for segment 14, and 
Status is updated accordingly. This starts execution of the 
Absence segment (block 8). Otherwise, a similar test is 
made on the trace bit in the CST entry. Likewise, a stack 
marker and the label are pushed onto the stack, external 
interrupts are disabled, and control is transferred to seg­
ment 16, the Trace segment (block 9). If neither of these 
tests is affirmative , PCAL execution continues. 

The next check is to see if bits 1 through 7 of the label are 
0. These bits specify which STT entry in the target segment 
contains the desired local label. Since a value of 0 would 
point at the STI'L word in PL, the value of 0 is specially 
defined to indicate that P should start at PB (as set four 
paragraphs back). Thus only one more check is necessary 
before execution of the procedure may begin, and that is to 
see if the segment is callable (bit 1 of the STTL word in the 
PL location must be O); if it is uncallable, control is trans­
ferred to segment 15, the STT Entry Uncallable segment 
(block 10). Control is transferred by pushing the label onto 
the stack, disabling external interrupts, establishing PB, P, 
and PL from the CST entry for segment 15, and updating 
the Status register. 
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Assuming that bits 1 through 7 of the external label are not 
0, the value so indicated will point to one entry in the 
Segment Transfer Table. If it does not (i.e., if the value 
exceeds the STTL value), or if the entry pointed to is not a 
local label (i.e., if bit 0 = 1 ), there will be an STT Violation 
interrupt to segment 13. But if the label is valid, it is then 
checked to see if the procedure is callable by checking bit 1 
(must be 0). If it is not callable, control is transferred to 
segment 15, the STT Entry Uncallable segment (block 10). 
If the local label indicates that the procedure is callable, the 
PCAL sequence continues. 

Block 11 sets the P-register to the starting address of the 
procedure. The CPU at this point has a local label, whether 
it is in the same segment as the PCAL or in a segment 
external to the calling segment. The value for P is calculated 
by adding the contents of bits 2 through 15 of the local 
label to the contents of PB. As a final check, this value for 
P is checked to see that it does not exceed PL (Bounds 
Violation interrupt to segment 11 if it does). The resultant 
absolute value is then loaded into the P-register, and the 
location so indicated is fetched and execution of the pro­
cedure begins. 

EXIT Sequence. Figure 5-14 illustrates the operations of 
the EXIT instruction. The diagram breaks down into three 
major functional sequences as follows: 1) Only the opera­
tions down the left side of the diagram are used when the 
exit occurs on any stack except the Interrupt Control 
Stack, and when the return is not to another segment. 2) A 
major branch to blocks 3 through 6 occurs if exiting from a 
routine that uses the Interrupt Control Stack. 3) A major 
branch to block 7 occurs if the return is to some segment 
other than the current one. The detailed sequence follows. 

The first step is to check if the new values for Q and S are 
within bounds. In all cases, the new value for Q must be less 
than or equal to the Z-register content; otherwise there will 
be a Stack Overflow interrupt to segment 3. For user mode 
(but not privileged mode), Q must also be greater than or 
equal to the DB-register content; otherwise there will be a 
Stack Underflow interrupt to segment 13. Likewise, the 
new value for S must always be less than or equal to Z and, 
for user mode only, must also be greater than or equal to 
DB. The new value for S is Q-N-4, computed from the old 
Q. The new values for Q and Sare saved temporarily within 
the CPU (block 1). 

Next, two checks are made for illegal operations in user 
mode. The first check assures that an unprivileged user 
cannot accidentally or deliberately exit to the privileged 
mode. A Mode Violation trap to segment 17 is incurred if 
Status register bit 0 is a "O" (meaning, exit from user 
mode) and the corresponding bit in the status word of the 
stack marker does not match. The second check incurs the 
same trap if the user has changed the state of bit 1 (Enable/ 
Disable External Interrupts) in the status word of the 
marker. Neither of these checks is made in privileged mode. 

Assuming that no errors have occurred to this point, the 
sequence now restores the Index value from the stack 

Instruction Set 

marker to the Index register (block 2). Following this, a 
check is made to see if the current stack is the Interrupt 
Control Stack (ICS). If it is not, the sequence skips the next 
four paragraphs. 

When exiting from a routine that has been using the ICS, 
the first check is to determine if the routine was for an 
external interrupt. This check is "yes" if the Segment 
Number field of the status register indicates Segment 0. If 
this field is not 0, the sequence skips the rest of this 
paragraph. For any external interrupt routine exit, the 
active state of the device's interrupt logic must be reset, 
since we can now assume that the request has been serviced. 
Thus an RIL (Reset Interrupt Level) signal is sent to the 
device (block 3) and a check is made to see if the device's 
Interrupt Active flip-flop actually did reset. If it did not, a 
serious I/ 0 error is indicated and the system will halt, with 
the SYSTEM HALT light on and all interrupts disabled. 
Otherwise, the next check is made which determines if any 
other external interrupts are pending. If so, the device 
number of the highest priority interrupt request is put on 
the stack in place of the former device number, and proc­
essing of this new interrupt begins; the existing stack 
marker is not changed. If no other external interrupts are 
pending, the EXIT sequence continues. 

Bit 0 of .6.Q is now checked to see if it is a 1, which in 
effect asks if the Dispatcher was interrupted. If not, the 
remainder of this paragraph is skipped. If the check is 
affirmative, bit 0 of the Interrupt Counter (fixed location 
7) is checked to see if it is a 1, which in effect asks if the 
routine being exited has requested a Dispatcher abort. If 
the answer is yes, Q is set to QI and the sequence goes back 
to block 1. Otherwise the sequence continues to the next 
paragraph. 

A check is then made to see if we are exiting from the last 
routine to use the ICS. In such a case, control must be 
passed to the Dispatcher. This condition is tested by 
checking the content of the delta Q word of the stack 
marker. If the word is all zero, the Dispatcher Flag is set 
(block 4), indicating a return to the Dispatcher. The Dis­
patcher DB value from Q+ 1 is loaded into the DB-register 
(block 5). The next check determines whether the current 
segment is one which could have altered DB (segments 0 
through 7). If this test is affirmative, the appropriate DB 
value from Q+ 1 is loaded into the DB-register (block 5). 

If we are returning to a partly completed external interrupt 
routine, PB and PL are returned to their respective extreme 
values (block 6), with PB= 0 and PL= 21 6 -1. The 
sequence would then proceed directly to block 8 (skip next 
two paragraphs.) Otherwise, the sequence continues with 
the following paragraph. 

A check is now made to see if the return is to some segment 
other than the current one. If not, several checks involved 
in changing segments can be bypassed (remainder of this 
paragraph). If a return to segment 0 is indicated, there will 
be a CST Violation interrupt to segment 13, since segment 
0 is undefined. Assuming this error does not exist, the next 
step (block 7) is to use the Status information in the stack 
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marker to fetch the CST entry for the segment we are 
returning to. The CST entry gives both an absolute value for 
PB (second word of the entry) and a PB+ displacement for 
computing an absolute value for PL. These values are loaded 
into the PB-register and PL-register respectively. Next, a 
check is made to see if a user mode exit is attempting to re­
turn to an uncallable segment (bit 1 of its CST entry is a "l "). 
If so, there will be a Mode Violation trap to segment 17. 
Otherwise, bit 0 of the CST entry is then tested. If this bit is 
a "1", the segment being returned to is absent. In this case, 
the N parameter from the EXIT instruction is pushed onto 
the stack, external interrupts are disabled and control is trans­
ferred to segment 14, the Absence segment. If the absence­
test is negative, the trace bit (bit 0) in the return-P word of 
the current stack marker is checked to see if it is a "l". If so, 
the parameter N from the EXIT instruction is pushed onto 
the stack, external interrupts are disabled and control is trans­
ferred to segment 16, the Trace segment. Otherwise, the 
EXIT sequence continues. 

The final check determines that the new value for P (which 
is calculated by adding the PB relative displacement from 
the old stack marker to the PB-register content) does not 
exceed the PL value. If it does, there will be a Bounds 
Violation interrupt to segment 11. 

The sequence finishes by loading the values for P, Q, S, and 
Status into their respective registers (block 8). The next 
instruction pointed to by P is fetched for execution. 

17 TBA, MTBA, TBX, MTBX. These four instructions per­
form essentially the same function, and that is to provide a 
simple mechanism for loop repetition, loop counting, and 
loop exit, all in one instruction. The differences are that: 

a. 

b. 

For TBA and MTBA, the variable is located in the 
stack; for TBX and MTBX the variable is located in 
the Index register. 

For TBA and TBX, modification of the variable is 
assumed to have been done earlier in the loop, where­
as MTBA and MTBX automatically modify the var­
iable as part of their execution function. 

With these differences understood, one of the instructions 
may be taken as a typical example for discussion. Figure 5-15 
illustrates one use of MTBA, which is to execute the SPL/ 
3000 FOR statement. As shown, the intent is to vary the 
value I from 1 to 10 while repeating a certain procedure ten 
times. (The TBA at the beginning is used to test if the 
loop is to be executed zero times in the general FOR 
statement.) 

In assembly form, three instructions would be used to 
initialize the stack. The LRA I instruction puts the DB+ 
displacement for the variable onto the stack (C), and LDI 1 
and LDI 10 push the values 1 and 10 (or octal 12) on to the 
stack to specify the step increment (B) and limit (A) 
respectively. The loop is then entered. (If the loop control 
instruction at the end were TBA or TBX, one of the 
instructions in the loop would add B to the variable.) 
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Figure 5-15. Example of Loop Control with MTBA 

The last instruction of the loop is MTBA, which checks to 
see if the variable has exceeded the limit. If it has not, 
control is transferred back (four locations in this example) 
to the beginning of the loop. The range is P ± 255. At the 
end of the final loop, MTBA increments the variable to 11, 
thus exceeding the limit and causing the next instruction in 
line to be fetched. The three words on the TOS relating to 
this loop are automatically deleted. The FOR statement has 
now been executed. 

Values for the limit, step, and variable may be negative 
(two's complement) as well as positive. If step is negative 
(bit 0 = 1), exit from the loop will occur when the variable 
becomes smaller (more negative) than the limit, which may 
be either a positive or a negative number. 
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1/0 SYSTEM OVERVIEW 

The purpose of the 1/0 system is to perform actual physical 
input/output operations for the file system of the MPE/ 
3000 operating system. The user normally does not interact 
directly with the 1/0 system - only indirectly via the file 
system. Thus all 1/0 operations are normally invisible to the 
user. However, privileged users may access the 1/0 system 
directly, and users with real-time capability may bypass 
both the file system and the 1/0 system for direct access to 
specific devices. See figure 6-1. 

This section of the manual presents a generalized descrip­
tion of the 1/0 system as accessed via the file system. Direct 
access by privileged or real-time users requires a deeper level 
of familiarity than is presented here. 

FILE SYSTEM OPERATION 

Figure 6-2 illustrates the function of the 1/0 system in the 
overall handling of files. Hardware elements are shown on 
the right and software elements are shown on the left. The 
1/0 system, as shown, is part hardware and part software. 

FILE SYSTEM 1/0 

PRIVILEGED 1/0 

REAL-TIME 1/0 

PROCESS 
FILE 

SYSTEM 

Several peripheral devices are shown connected to the 1/0 
system, each of which has some capability for handling files 
- entering files, storing files, or both. Of particular interest 
in this discussion are the files stored on disc. (Several 
physical disc units might be used.) Each disc file is broken 
up into one or more extents, which in tum are composed of 
some number of blocks. When the file system causes the 
1/0 system to transfer data to or from the disc, it does so 
one block at a time. The blocks are further subdivided into 
records and then into individual words. When the file sys­
tem processes user file requests, it does so on the basis of 
records. 

The memory management routine is also shown in figure 
6-2 (dotted line) since it frequently makes its own requests 
to the 1/0 system. Memory management calls 1/0 in order 
to make drivers and code segments present in main memory. 

In typical operation, the user's process might make a file 
request such as FREAD to the file system (1). The file 
system reads the record named in the request (2) and 
transfers the record to the stack associated with the user's 
process (3). Note that in this example, no input/output has 
taken place. This is because the named record is already 
present in a buffer in main memory. 

1/0 
SYSTEM 

1/0 
SYSTEM 

User-Supplied 
Driver 

Figure 6-1. Basic 1/0 Access Methods 
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Figure 6-2. File System Basic Operation 

Assume another case in which the requested record is not 
present. In this case, the file system makes a request to the 
1/0 system (A) to read the block containing the particular 
record. The 1/0 system accordingly reads this block from 
the disc (B) and loads it into one of the buffers allocated to 
the named file (C). (When a user opens a file, he specifies 
how many buffers should be allocated for that file; however 
he cannot access the buffers directly - only by naming 
records within files.) The file system can now complete the 
request by reading the requested record to the stack. 

Note that in none of the preceding operations did the user's 
process specify a device. An actual I/ 0 operation may or 
may not have occurred, and the user is completely unaware 
of such occurrence. However, as described in the MPE/3000 
Reference Manual, the operating system does permit de­
vices to be specified, either as a class name or a logical 
device number. This would permit, for example, inputting 
or outputting files via a specific terminal, card reader, or 
line printer. 
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DEFINITION OF TERMS 

The preceding discussion presented a broad overview to 
show the relationship of the 1/0 system to the file system 
and peripheral devices. The following descriptions will con­
centrate on the block labeled "1/0 System" in figure 6-2, 
explaining this area in greater detail. 

Figure 6-3 illustrates some of the important elements of the 
1/0. system. This picture is by no means complete, but 
rather is intended to define the chain of linkages that are 
basic to the 1/0 system. 

As shown in figure 6-3, a device controller is the hardware 
1/0 interface, typically consisting of one or two interface 
cards. Depending on particular controllers, the device con­
troller may drive only one peripheral (such as a terminal) or 
may be capable of driving several peripherals (such as disc 
units). 
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Figure 6-3. Fundamental Elements of I/0 System 

For each device controller there is a four-word entry in the 
Device Reference Table. (The Device Reference Table will 
be defined shortly.) The third word of this table entry 
contains a pointer to a data area uniquely associated with 
that table entry. 

The data area consists of an J/0 Queue Head (IOQH), one 
or more Device Information Tables (depending on how 
many units the device controller is driving), and an I/O 
program area. The IOQH contains CST and STT values for 
defining the location of the driver routines associated with 
that particular device controller. Along with various other 
information, the IOQH also defines how many Device 
Information Tables are present, and how long each one is. 

The Device Information Table contains information rele­
vant to one physical I/O device, and is differently con­
figured for each type of device. In each case, however, the 
first word of this table points to an entry in the J/0 Queue 
(IOQ) when a request is being made. 

The I/O Queue is a single table (only one in the system) 
containing a fixed number of entries having a fixed number 
of words per entry. If there are no I/O requests pending in 
the system, none of the Device Information Table entries 
will be pointing to the IOQ. In this case, all elements of the 
IOQ are unused, and the first word of each element points 
to the first word of the next element. Thus, all unused 

elements are linked together. Assume, then, that the file 
system makes a request to use unit 1 of the device con­
troller shown in figure 6-3. The I/O system will unlink the 
first free element in the IOQ and fill it with information 
pertaining to the request (including buffer address and 
logical device number). 

Figure 6-3 assumes that the next request is for unit 2 (uses 
the next available element), followed by a second request 
for unit 1. This second request for unit 1 causes the first 
word of the initial request to point to the next unused 
element, which is then filled with information pertaining to 
the second request. Thus it can be seen that eventually the 
IOQ will contain a queue of requests for unit 1, a separate 
queue for unit 2, and so on, plus a linked list of free 
elements. 

Then an I/O process is dispatched to execute the request. 
An I/O program will then be run on a device, using the 
request parameters given in the IOQ. When the request is 
fulfilled, the IOQ element is returned to the free list. 

Note that the IOQ only establishes the priority of requests 
for each device, on a first-in first-out basis. Questions of 
priority in dispatching I/O processes (i.e., which queue) are 
resolved by the Dispatcher. Once several device controllers 
are running I/O programs, priority conflicts are resolved by 
hardware service priority. 
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Figure 6-4 illustrates the Device Reference Table (DRT). 
The DRT consists of a number of four-word entries corre­
sponding to the number of device controllers present in the 
system. It is located in fixed memory locations beginning at 
octal address 14. (Locations 0 through 13 are allocated to 
other purposes; see table 4-1.) The upper limit for the table 
is location 1777, which thus limits the maximum number 
of four-word entries to 253 (decimal). 

Since each DR T entry is always four words in length, it is 
convenient for the hardware to map device numbers to 
DRT addresses simply by multiplying by four. (Left-shift 
device number two binary places.) Thus the entry for 
device number 3 begins at octal location 14 (i.e., 38 x 4 = 

148 ). Since the DRT begins at location 14, device number 3 
is the lowest device number. Devices 0, 1, and 2 do not 
exist. 

Device 
Controller 
#3 

Device 
Controller 
#4 

Device 
Controller 
#5 

Octal 

M•m•: ___ o_R_r_-' 
15 

-----""'4 

~-----""'4 
21 

-----""'4 

~-----""'4 
25 -------..! 
26 

-----""'4 
21._ ___ .. 

30 -------..! 
31 -----""'4 
32 

FORMAT 1-------' 

--~~~~~~-------~~ ..... ----
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Device 
Controller 
# 3778 

1/0 Program Pointer 

Pl Address 

DBI Address 

(Reserved) ...... ~~~~~~-,"'"' 

Interrupt 
Reference 
Flag 

,,,. ,,"' ,"'-----""'4 

I 
I 

1774~
1 

I 
1775 

1776 

1777 

Figure 6-4. Device Reference Table 

Note: The device number associated with a par­
ticular DRT entry defines a device con­
troller or multiplexer channel, and not 
necessarily an actual device. Remember 
also that some controllers, identified by 
one "device number", are capable of 
driving several physical units. Individual 
identification of actual devices is made by 
logical device numbers. The logical device 
number is the value used by the file sys­
tem in requesting I/O, and the I/O system 
software performs the logical to physical 
device number translation. 

The format of a DRT entry is also shown in figure 6-4. The 
first three words are absolute addresses and the fourth word 
contains a bit for use as an interrupt flag. The first word is 
the J/0 Program Pointer, which initially points to the first 
word of the I/O program for the associated controller, and 
(for multiplexed channel devices) is updated to point at the 
next program word as the I/O program progresses. The 
second word (PI) points to the starting address of the 
interrupt program for the associated controller. (Interrupts 
are discussed in Section VII.) The third word (DBI) points 
to the data area for the associated controller. The Interrupt 
Reference Flag (fourth word) is discussed in Section VII, 
Interrupt System; it is primarily a user feature and is not 
used by the I/O system. 

1/0 INSTRUCTIONS 

There are five I/O instructions in the HP 3000 instruction 
set. These are: 

SIO 
RIO 
WIO 
TIO 
CIO 

Start I/O 
Read 1/0 
Write 1/0 
Test 1/0 
Control I/O 

These instructions are fully defined in Section V under the 
heading "I/O and Interrupt Instructions". The distinction 
to note here is that the SIO instruction is used in conjunc­
tion with an I/0 program, and the remaining four are not. 
That is, the SIO instruction commands a device controller 
to begin executing its associated I/O program, which effects 
a block transfer of data between an I/ 0 device and 
memory. This is termed an "SIO transfer" mode. The other 
four instructions, on the other hand, transfer only one 
word per instruction, between the device and the top-of­
stack in the CPU. This is a "direct transfer" mode, and is 
used primarily with terminal devices. In this manual, direct 
I/O is usually treated separately from normal SIO 
operations, due to these differences. 

For additional information on transfer modes, refer to the 
"Transfer Modes" heading in Section VIII. 
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GENERAL 1/0 OPERATION 

Figure 6-5 is a general overview of the operations of the I/O 
system. (Does not apply to direct I/O devices.) To provide a 
complete sequence of operations, it will be assumed that 
the file request will result in a need for physical I/O to be 
performed; as stated earlier, this will not always be the case. 
The sequence of operations is as follows. 

G) An executing user process generates a file request to 
the file system. 

® The file system tests the validity of the request and 
calls the Attach 1/0 (A TTIO) intrinsic. This is the 
entry point to the I/O system, implied by the first and 
second examples of figure 6-1. 

® Attach I/O inserts the request parameters in the I/O 
Queue for the requested device. 

@ When all earlier requests for the device have been 
completed, and when the 1/0 Monitor Process has 
highest priority among all other processes, the 1/0 
Monitor Process begins execution for this request. 

® The I/O Monitor process ensures that the data buffer 
for the file is present and frozen in memory. It then 
issues a PCAL to the initiator section of the device 
driver, passing the request parameters to that routine. 

Note: A device driver normally consists of three 
parts: an initiator section, a completion 
section, and a data area. With multiple 
data areas, one driver may drive several 
devices. 

@ The initiator section assembles the I/O program (using 
the request parameters), issues an SIO instruction to 
the device controller, and exits back to the I/O 
Monitor Process. The SIO instruction initializes the 
DRT to point at the starting location of the 1/0 
program. 

(J) The 1/0 program issues commands via a multiplexer or 
® selector channel to the device controller, on demand 

by the channel. 

® The device controller, on rece1vmg a read or write 
command from the I/ 0 program, transfers a block of 
data to or from the data buffer. The length of the 
block is specified by the 1/0 command. 

@ On completion of the data transfer, the I/O program 
commands the device controller to request an interrupt. 
The 1/0 program then ends. 

Input/Output System 

@ The device controller causes a CPU interrupt to an 
interrupt routine, which tells the I/O Monitor Process 
that an interrupt has occurred. 

Note: There are currently two interrupt rou­
tines for external interrupts. One is the 
General Interrupt Processor (GIP) for all 
types of devices except terminals, and the 
other is the Terminal Interrupt Processor 
(TIP). Other interrupt routines may exist, 
depending on the requirements of newly 
developed interfaces. 

@ The interrupt routine (or the last routine to use the 
Interrupt Control Stack - see ICS definition in Section 
VII) exits to the Dispatcher. It also may awaken the 
related I/O process if necessary. 

@ When the I/O Monitor Process is again dispatched, it 
recognizes that an interrupt has occurred and accord­
ingly calls the completion section of the device driver. 

@ The completion section checks the results of the trans­
fer. If necessary, it may initiate additional transfers by 
telling the I/O Monitor Process to call the initiator 
section again. Otherwise, it updates the 1/0 Control 
Block with information regarding results of the original 
request. The file system may then check these results. 
The I/O Control Block is a table of doubleword entries, 
with one entry for each I/O request. Each entry con­
tains a transmission log (number of words or bytes 
transferred), logical 1/0 status, and the process number 
of the process to activate upon 1/0 completion. 

@ When the user process is again dispatched, return is 
made to a point following the file request, depending 
on whether blocked or unblocked I/O was specified. 
(Refer to discussion on blocked/ unblocked I/O later in 
this section.) 

DIRECT 1/0 OPERATION 

The operations for direct 1/0 involve considerably more 
software overhead than the operations for the SIO transfer 
mode. This is due to the varied nature of the terminal 
devices that use direct 1/0, and also to the fact that the 
system must respond to commands entered via the terminal 
as well as to file requests affecting that terminal. 

In addition, the operation is complicated by such factors as 
speed sensing, error sensing, whether the device is synchron­
ous or asynchronous, whether the device is capable of 
reading or writing or both, what controls exist, and which 
mode or modes the device is capable of. Also, the log-on 
sequence is handled by an entirely different set of routines 
than those used for data handling. 

Thus, the sequences described in the following paragraphs 
present only a broad generalization of direct I/O terminal 
operations. The sequences given should not be construed as 
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representing any particular device or even a "typical" de­
vice. It will be assumed that the log-on sequence has been 
accomplished. 

Figures 6-6 and 6-7 illustrate the handling of data via direct 
1/0 terminal devices. Figure 6-6 shows input (read) opera­
tions and figure 6-7 shows output (write) operations. 

In comparison with figure 6-5, note that there is no 1/0 
program in the data area ; instead, the interrupt routine 
performs the functions of an 1/0 program. The interrupt 
routine, in this case, is part of the device driver. 

Note also that direct read uses no initiation section and 
direct write uses no completion section. Also: no multi­
plexer or selector channel is involved. 

One element not previously present is the line buffer. The 
line buffer consists of a number of buffer tanks, which are 
pointed to by address words in the Device Information 
Table for a particular terminal. A sufficient number of 
these tanks is used to accommodate the line or record 
length of the associated device. Data is transferred between 
the line buffer and the device (via the Interrupt Control 
Stack) on a character-by-character basis. Data is transferred 
between the line buffer and the data buffer on a record 
basis. This scheme conserves main memory space by 
allowing the data buffer to be absent on disc while the 
comparatively slow terminal device is transferring individual 
characters. 

DIRECT READ. The sequence of operations for direct 
read, illustrated in figure 6-6, is as follows. Again, it will be 
assumed that the file request does require a physical read 
from the terminal. 

G) The executing user process generates a file request to 
the file system. 

® The file system tests the validity of the request and 
calls the Attach I/O intrinsic. 

® Attach 1/0 inserts the request parameters in the 1/0 
Queue for the requested device. Unlike the general 
(SIO) case , which uses a firs t-in/first-out queue for the 
requests, terminal requests are analyzed for relative 
importance and are then inserted into an appropriate 
place in the queue. The factors involved in assessing 
request importance are: mode (standard , escape, break , 
and console) , and request type (standard , soft, and 
hard). 

@) When all higher priority requests for the terminal have 
been completed , and when the TERM process has 
highest priority among all other processes, the TERM 
process begins execution for this request. (There is one 
TERM process for each terminal device controller.) 

® The TERM process enables interrupts and links to­
gether a sufficient number of buffer tanks to accom­
modate the request. It then issues a CIO (Control I/O) 

Input/Output System 

instruction directly to the device controller to enable 
read interrupt. TERM then exits to the dispatcher. 

® The device controller enables the device to read a 
character. When a key is pressed , the device returns the 
character to the controller. 

(j) On receipt of the character, the device controller 
causes the CPU to interrupt to the interrupt routine for 
terminals , TIP (Terminal Interrupt Processor). 

@ TIP issues an RIO instruction to the device controller. 
This causes the character to be loaded onto the Inter­
rupt Control Stack, and also causes a command to be 
issued to the device to read the next character. TIP 
now checks the character on the ICS to see if it is a 
data character or a control character. 

® If the character on the ICS is a data character, it is 
transferred by TIP to the line buffer. If it is a control 
character, TIP performs the appropriate control func­
tion. 

@ TIP exits to the Dispatcher and the sequence repeats 
back to step 7 until the entire record has been read. 

@ When TIP detects a CR character (Carriage Return) , 
TIP sets a bit in the Device Information Table to 
signify that the record is complete , then exits back to 
the TERM process. 

@ The TERM process, after checking the Device 
Information Table , issues a PCAL to the completion 
section of the device driver. 

@ The completion section transfers the content of the 
line buffer to the data buffer. Then the transmission 
log in the 1/0 Control Block is updated and the com­
pletion section exits back to the TERM process. 

@ TERM releases the buffer tanks and goes to sleep. The 
Dispatcher then returns control to the user process. To 
read another record , the file system must make another 
1/0 request to Attach 1/0. 

DIRECT WRITE. The sequence of operations for direct 
write , illustrated in figure 6-7 , is as follows : 

G) The executing user process generates a file request to 
the file system. 

@ The file system tests the validity of the request 
and calls the Attach 1/0 intrinsic. 

@ Attach 1/0 inserts the request parameters in the 1/0 
Queue for the requested device. 

@) When all higher priority requests for the terminal have 
been completed, and when the TERM process has 
highest priority among all other processes, the TERM 
process begins execution for this request. 
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® The TERM process enables interrupts and links to­
gether a sufficient number of buffer tanks to accom­
modate the request. TERM then issues a PCAL to the 
initiator section of the device driver. 

@The initiator t ransfers one line (maximum of 132 
bytes) from the data buffer to the line buffer. 

(j) The initiator issues a CIO (Control 1/0) instruction to 
the device controller to enable write interrupt and exits 
back to the TERM process. 

® The device controller causes the CPU to interrupt to 
TIP, the Terminal Interrupt Processor. 

® TIP transfers a byte to the ICS. If the byte is a control 
character, TIP does the control function and gets the 
next byte from the line buffer. If it is a data character, 
proceed to 10. 

@ TIP executes a WIO instruction , transferring the 
character from the ICS to the device controller. 

@ TIP then exits to the Dispatcher, while hardware takes 
control from this point. 

@ The device controller writes the character out to the 
device. 

BLOCKED 1/0 

USER 
PROCESS 

WAIT 

Continue 
USER 

PROCESS 

IOCB 

A TTIO 

100 

- - --- ----' 

Input /Output System 

@ On completion of the write, the device controller gen­
erates another interrupt to TIP. The sequence repeats 
back to step 9 until all characters in the record have 
been written out to the terminal. 

@ When TIP detects a CR character (Carriage Return) in 
step 9, TIP checks a counter to see if this was the last 
line. If not, TIP calls the initiator again repeating back 
to step 6. If this was the last line, TIP exits back to the 
TERM process, which disables interrupts, releases the 
buffer tanks, and goes to sleep. 

@ The Dispatcher then returns control to the user 
process. 

BLO CKED/UNBLOCKED 1/0 

At the conclusion of all three of the preceding operating se­
quences (general 1/0, direct read, and direct write), control 
is returned to the user process on completion of 1/0. While 
the 1/0 operation was in progress, the user process may have 
been suspended at that point to await 1/0 completion 
(blocked I/ 0}, or may have continued to execute while peri­
odically checking for 1/0 completion (unblocked J/ 0 }. The 
choice of blocked or unblocked 1/0 is made in the call to 
ATTIO. (The file system nearly always uses unblocked 1/0.) 

UNBLOCKED 1/0 
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Figure 6-8. Blocked and Unblocked 1/0 
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The following paragraphs discuss the characteristics of 
blocked and unblocked 1/0. Refer to figure 6-8. ("User" 
implies privileged user.) 

BLOCKED 1/0. As shown in figure 6-8, the user process 
goes into an 1/0 wait substate as soon as the 1/0 request is 
given. Since an 1/0 Control Block will be provided auto­
matically, it is not the user's responsibility to provide one. 

The user process remains in the wait substate while the 1/0 
operations proceed. The ATTIO intrinsic creates an 1/0 
Control Block entry for this request. Then the request is 
entered into the 1/0 Queue and is ultimately processed via 
the hardware 1/0 system. At the end of the 1/0 operation, 
the results of the transfer are entered into the IOCB. 
Control is then returned to the user process, along with the 
contents of the IOCB (to the top of the stack). ATTIO then 
deletes the IOCB entry for this request. 

The user process now continues to execute from the point 
following the 1/0 request. 

UNBLOCKED 1/0. In the case of unblocked 1/0 , also 
illustrated in figure 6-8, the user process must initially 
provide the 1/0 Control Block. (Privileged capability is 
assumed.) The process must also specify the action to be 
taken on completion of 1/0: either no action or awaken the 
process if in an 1/0 wait substate. This specification (like 
the blocked/unblocked 1/0 choice) is made in the call to 
ATTIO. 

The process may then, after calling ATTIO, continue to 
execute, and may generate other unblocked 1/0 requests. It 
is the responsibility of the process to synchronize all un­
blocked requests and to check the contents of the asso­
ciated IOCB entries for 1/0 completion. The process also 
has the capability to put itself into the 1/0 wait substate, 
and to change the 1/0 completion action for any unblocked 
request at any time. Obviously, however, the process should 
not specify "no action" for all unblocked requests and then 
go into the 1/0 wait substate; there is no way to recover 
from this hanging situation. At least one request must 
specify "awaken process". 

While the process continues to execute, ATTIO enters the 
request into the 1/0 queue, and hardware processing of the 
request begins. At the end of the 1/0 operation, the results 
of the transfer are entered into the user-provided IOCB. 
Then the completion action bit is examined. If "awaken 
process" is specified, the process will be awakened if it has 
put itself into the 1/0 wait substate, as shown in figure 6-8. 
If "no action" is specified, presumably the process has 
continued to execute without any wait, or will be awak­
ened by some other process. In any case, the process checks 
for 1/0 completion by checking the contents of the IOCB. 
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HARDWARE 1/0 SYSTEM 

As evident from the preceding overview of 1/0 operations, 
the hardware portion of the 1/0 system bears a large meas­
ure of the responsibility in the execution of an 1/0 request. 
That is, when software passes control to hardware , the 
hardware assumes full control from that point while the 
software goes on to other business. 

The remainder of this section describes the hardware 1/0 
system. (For a more detailed explanation of the hardware 
logic, refer to Section VIII.) 

HARDWARE ELEMENTS 

Separately identifiable hardware elements are: the 1/0 Proc­
essor (IOP), multiplexer channel , selector channel, device 
controller, and peripheral device. With reference to figure 
6-9, the following paragraphs define the basic functions of 
each of these elements. 

The J/ 0 Processor has three basic functions , relating to the 
three different transfer modes illustrated in figure 6-9. In 
the case of direct 1/0 , the IOP executes the direct 1/0 
instructions (RIO, WIO, TIO, CIO, SIN and SMSK), trans­
ferring data, device status, and control information between 
the CPU and a device controller. In the case of programmed 
I/O via a multiplexer channel, the IOP transfers I/O pro­
gram words between memory and the multiplexer channel, 
and data between memory and the controller. In the case of 
programmed I/O via a selector channel , the IOP passes 
initialization information to the device controller; the IOP 
does not become involved in any part of the I/O program 
execution. The IOP also interrupts the CPU on behalf of 
the device controllers. 

The multiplexer channel acts as a switch to enable one of 
16 device controllers to transfer one word of data to or 
from memory via the IOP, then to allow another controller 
- based on priority - to perform its transfer. At all times, 
the multiplexer channel contains the current I/0 program 
word for each of the 16 device controllers. To accomplish 
this, the multiplexer channel has a 16-location solid-state 
memory to contain the 16 I/O program words, and is 
responsible for updating the contents and fetching the next 
I/0 program word when necessary. 

The selector channel also acts as a switch but in a manner 
different from a multiplexer channel. Whereas the multi­
plexer switches between controllers on demand , based on 
hardware priority , the selector channel maintains the con­
nection for one controller until it has completed the I/0 
program. Thus only one I/0 program is current at a given 
time for one channel. Another major difference , as shown 
in figure 6-9, is that the selector channel accesses memory 
directly for data and I/O program word transfers , rather 
than indirectly through the I /O Processor. These features 
permit a very high speed data transfer rate. 
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Figure 6-9. Hardware 1/0 Elements 

The device controller is the interface between a peripheral 
device and the computer system. Its primary function is to 
translate programmed I/O commands from a multiplexer or 
selector channel (or direct 1/0 commands from the 1/0 
Processor) to the unique signals required to control a par­
ticular device. When an 1/0 program is in execution, the 
device controller responds to and requests service from the 
channel. The device controller also generates interrupts 
when required by some device condition or by direct or 
programmed command. 

The peripheral device receives output data for storage or 
display, or supplies input data to the computer. In general , 
one device controller controls one peripheral device; 
however, some controllers are capable of controlling several 
devices. 

1/0 PROGRAMMING 

The 1/0 program, as shown earlier in figure 6-5, is a part of 
a device driver and is uniquely assembled for each I/O 
request from the file system. Once the driver issues an SIO 

instruction to the requested device controller, the hardware 
1/0 system begins to execute the 1/0 program 
independently of the CPU. The CPU is then free to 
continue processing in parallel with the 1/0 operations. 

The following paragraphs define the elements of an 1/0 
program and describe the actions occurring after the SIO 
instruction is issued to the hardware. 

I/O PROGRAM WORD. Figure 6-10 illustrates the format 
of the J/ 0 program word. Two computer words are used to 
accommodate the 32-bit word length. The first word is 
designated as the J/0 Command Word, or IOCW, and the 
second word is designated as the J/ 0 Address Word, or 
IOAW. The IOAW does not necessarily always contain an 
address , as indicated in the figure. 

Data chaining occurs for WRITE and READ orders if bit 0 
of the IOCW is a "1 ". This bit may be a "l" for a WRITE 
order followed by a WRITE or for a READ order followed 
by a READ. This will permit the hardware to treat the 
counts of each order as a continuous chained count, with­
out reinitializing for each order. The DC bit should be "O" 
for all other orders. 
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ORDER = 1/0 command code 
COUNT = Word Count 

ORDER CODES 

for INTERRUPT 

000 JUMP, Conditional if IOCW(4) = 1 
Unconditional if IOCW(4) = 0 

001 RETURN RESIDUE 

010 INTERRUPT 

011 END, with interrupt if IOCW(4) = 1 
without interrupt if IOCW(4) = 0 

100 CONTROL 

101 SENSE 

110 WRITE 

111 READ 

Figure 6-10. I/0 Program Word Format 

The count field of the IOCW contains a two's complement 
negative count value for WRITE and READ orders. The 
count is a word count, independent of the particular re­
cording format (bytes, words, or records). For a CONTROL 
order, these 12 bits are used for control information in 
addition to the 16 control bits in the IOAW (a total of 28 
bits). 

The eight I/O orders are defined as follows: 

JUMP. If bit 4 of the IOCW is a "l", a conditional jump of 
I/O program control is made to the address given by the 
IOAW at the discretion of the device controller. If bit 4 of 
the IOCW is a " O", an unconditional jump is made. 

RETURN RESIDUE. This causes the residue of the count 
to be returned to the IOAW. The residue is obtained from 
the multiplexer or selector channel. 
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INTERRUPT. This causes the device controller to interrupt 
the CPU. 

END. End of the 1/0 program. If bit 4 of the IOCW is a 
"1", the device controller also interrupts the CPU. Returns 
device status to the IOAW. 

CONTROL. This causes transfer of a 16-bit control word in 
the IOAW to the device controller, as well as the 12-bit 
count field. 

SENSE. This causes transfer of a 16-bit status word from 
the device controller to the IOAW. 

WRITE. This causes "count" words of data to be trans­
ferred between main memory and the device , starting at the 
address given by the IOAW. 

READ. This causes " count" words of data to be transferred 
between the device and main memory, starting at the 
address given by the IOAW. 

TYPICAL I/O PROGRAM OPERATION. Figure 6-11 
shows the sequence of operations occurring as the result of 
an SIO instruction. The sequence is as follows. 

CD The SIO instruction, decoded by the CPU, fetches the 
@ device number given at S-K in the stack, and puts the 

TOS into the first word of the DRT as the I /O program 
pointer. 

G) SIO then loads the device number into the eight least 
@ significant bits of the IOP Control Register, and loads 

an SIO command into bits 1, 2, and 3. 

® The 1/0 Processor issues the SIO command to the 
device controller, and execution by the hardware 
begins. The CPU is now free to continue execution 
elsewhere. 

@ On demand from the multiplexer channel, the 1/0 
Processor obtains the program pointer from the Device 
Reference Table. (The selector channel obtains the 
program pointer directly , not via the IOP.) As shown 
earlier (figure 6-4) , the address is obtained by multi­
plying the device number by four. The program pointer 
is the first word of the four-word DRT entry. 

(j) The program pointer points to the first double word of 
the 1/0 program. The pointer is updated to point at 
each I/ 0 program double word as the program pro­
gresses. (The selector channel , to minimize memory 
fetches, copies the pointer value into a register and 
updates the pointer internally ; the multiplexer channel , 
however, updates the pointer directly in the DRT.) 
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Figure 6-11. 1/0 Program Operation 

@ The sample 1/0 program is assumed to operate as 
follows. The first double word contains a CONTROL 
order which enables the hardware 1/0 subsystem for 
this device number. The second double word contains a 
READ order, which causes the subsystem to read 
4096 words (or 8192 bytes) into the data buffer whose 
starting location is given in the IOAW word. Since the 
data chaining bit is on, the next (third) double word is 
also a READ order, which specifies the remaining 
count required to fulfill the 1/0 request. (Additional 
READ orders could be given for larger requests.) The 
IOAW may specify a buffer area contiguous to the first 
4096-word buff er if desired, or in another part of 
memory if a scatter read is desired. 

When the transfer is complete, the fourth double word, 
a CONTROL order, turns off the 1/0 subsystem. The 
final double word contains an END order, which ob­
tains the result of the transfer (device status) and loads 
it into the IOAW; the END order then generates an 
interrupt to inform the software that the transfer is 
complete. 

At the completion of an 1/0 program, the selector 
channel returns the current program pointer value to 
the DRT. The multiplexer does not take any special 
action since it updates the DRT after each order fetch. 
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The interrupt system is designed to conform with the basic 
architectural scheme of the HP 3000. Thus, interrupt 
routines are called and exited in a manner resembling the 
way that procedures are called and exited. An interrupt is 
therefore an implicit PCAL (vs. explicit PCAL instruction). 
Also, code and data domains are kept separate. 

The primary difference is that the calling operations are 
performed by a microprogrammed Interrupt Handler rather 
than by the PCAL instruction. For exit, however, the same 
EXIT machine instruction is used as for exiting from a 
procedure. 

The first 16 entries in the Code Segment Table (CST) are 
always devoted to defining the code domains of interrupts. 
CST entries 1 through 16 define the code for internal inter­
rupts and CST entry 0 is the default segment number for 
external interrupts. Table 7-1 lists all interrupts according 
to code segment numbers. 

Code segmentation for external interrupts is performed by 
the Device Reference Table. The default segment number 
of 0 is retained in the Segment Number field of the Status 
register while processing external interrupts. This tells both 
hardware and software that an external interrupt is being 
processed. 

The "parameter" is a value that is derived by the Interrupt 
Handler, and passes to the interrupt routine relevant infor­
mation about the interrupt - such as to identify the source 
or type of an error. 

Before discussing the various interrupt types, the Interrupt 
Control Stack will first be defined, since it will be referred 
to frequently throughout the succeeding descriptions. 

INTERRUPT CONTROL STACK 

The Interrupt Control Stack (ICS) is a single stack, unique 
to one CPU, which is used in common by all external inter­
rupts and some of the internal interrupts ("ICS type"). 
When only minimal data is to be handled by an interrupt 
routine, the data is processed on the ICS. (Otherwise, the 
separate data area defined in the DR T must be used for 
data.) Use of a common stack also permits efficient nesting 
of interrupt routines, via stack markers. 

The ICS has a permanent stack marker (set up by the oper­
ating system) which is used for exiting to the Dispatcher. 
This guarantees that the final routine to use the ICS will 
always exit to the Dispatcher. Figure 7-1 illustrates the 
format of the Dispatcher marker on the ICS. 

INTERRUPT SYSTEM • 

Note that, unlike the standard four-word stack marker, the 
Dispatcher marker contains five words. As will be explained 
later, all markers on the ICS (as well as the marker left on 
the previous stack before switching to the ICS) include a 
fifth word to save the current value of DB. The reason for 
saving DB is that all external interrupts automatically alter 
DB (to the DBI value); also, interrupt routines for ICS-type 
internal interrupts may also change DB. The EXIT instruc­
tion restores DB. 

The delta Q location of the Dispatcher marker always con­
tains a "O" word. Since the Dispatcher does not change Q 
until a new process is dispatched, a specific value for Q is 
not needed. Instead, the "O" value tells the hardware not to 
delete the marker when exiting from the ICS, and to set the 
Dispatcher Flag in the CPU. The Dispatcher Flag is set 
whenever an exit is made from the ICS to the Dispatcher, 
and remains set while the Dispatcher is executing. It is 
cleared when the Dispatcher completes its execution, or is 
aborted by another interrupt. 

The segment-number field of the Status word permanently 
points to the CST entry for the Dispatcher, and the "P -
PB" word permanently points to the starting point in the 
Dispatcher code segment. The EXIT instruction uses these 
values for transferring control to the Dispatcher. 

The locations preceding the Dispatcher marker comprise 
the ICS global area, which contains operating system infor­
mation set up or to be acknowledged by the Dispatcher. 
The location following the Dispatcher marker is used for 
the parameter by those interrupts that do pass a parameter 
(refer to table 7-1). Note that since ICS-type interrupts use 
a five-word marker, the parameter is found in location Q+2, 
rather than the usual Q+ 1 location. 
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Figure 7-1. Dispatcher Marker on ICS 
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Table 7-1. Interrupts and Traps 

*CODE 
SEG TYPE PARAMETER 

I 

0 External Interrupts (via ORT) Device No. 

----

1 Power Fail ' 
2 Power On 

On ICS < 

Internal at 0+2 
3 Stack Overflow 

I CS-type 
4 Module Interrupt > Module No. 

5 Console Interrupt CPU No. 

6 Cold Load I ' 

7 Unassigned 

10 Unassigned 

11 Module Error I 

Illegal Address 1000* 

Bounds Violation 2000 

Non-responding Module 4000 

12 Pari ty Error 

Data Parity Error 10000 

Memory Address Parity Error 20000 

System Parity Error 40000 

13 Miscellaneous Error 

Stack Underflow 1 

CST violation 2 
STT violation 3 

14 Code Segment Absence 
On Current < 

Stack at 0+1 
If PCAL Label 

If EXIT N 

15 STT Entry Uncallable Label 

16 Trace 
If PCAL Label 
If EXIT N 

-
--1 

17 Traps 

Integer Overflow 

} 
1 

Floating Point Overflow 
User 

2 

Floating Point Underflow 
Traps 

3 
Integer divide by 0 4 

Floating Point div ide by 0 5 

Mode violation } System 6 
Unimplemented instruction Traps 7 

' 

* Octal numbers 
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A hardware JCS Flag is set in the CPU whenever a switch is 
made to the ICS from any other stack. The ICS Flag 
remains set until another process is dispatched and the ICS 
is no longer the current stack. 

Figure 7-1 also shows the delimiting of the ICS by QI and 
ZI ("interrupt" Q and Z). These values are given in fixed 
memory locations 5 and 6 for CPU number 1 or loca­
tions 11 and 12 (octal) for CPU number 2, if used. The QI 
value points to the delta Q location of the Dispatcher 
marker on the ICS. The ZI value points to the ICS stack 
limit. 

Privileged software may gain access to the ICS by loading 
an absolute value into the Z-register which is equal to ZI. 
This is accomplished by a SETR Z instruction with a 
ZI - DB relative value on the top of the stack. (SETR Z will 
add DB to the relative value before checking if the result is 
equal to ZI.) This action will set the ICS Flag. Note: Sand 
Q must also be set to appropriate ICS values by the same 
SETR instruction, or a stack overflow is likely to occur. 

INTERRUPT TYPES 

Interrupts may be divided into two basic types: external 
interrupts, which are controlled signals from the 1/0 
system, and internal interrupts, which typically are unex­
pected signals caused by certain hardware conditions or 
programming violations. 

The HP 3000 system characteristics necessitate splitting 
each of these two basic types, resulting in the following 
four types: 

• External interrupts (from standard 1/0 devices) 

• IRF-type external interrupts (from non-standard 1/0 
devices, using Interrupt Reference Flag) 

• ICS-type internal interrupts (using Interrupt Control 
Stack) 

• Non-ICS internal interrupts 

A standard device is one which is known to, and control­
lable by, the file system of the MPE / 3000 operating system. 
A non-standard device is independent of the file system 
(such as a real-time device) , and uses the Interrupt Refer­
ence Flag (IRF) to make its interrupt known to the 
operating system. 

Figure 7-2 compares the overall operations of all four inter­
rupt types. Taking a general view of this figure , note that 
operations proceed mostly left-to-right. For example, 
external interrupts begin by triggering some actions in hard-

Interrupt System 

ware, then the interrupt processing environment is set up in 
software, and finally there is an exit to the Dispatcher. The 
Dispatcher is the part of the operating system which 
schedules the execution of processes. 

Note that three of the four types of interrupts exit to the 
Dispatcher. (The same three use the Interrupt Control 
Stack for a data domain.) The action of exiting to the Dis­
patcher, instead of returning to the point of interrupt, per­
mits the operating system to re-evaluate process priorities. 
Remember that in the case of external interrupts (refer 
back to figure 6-2), the process that caused the 1/0 request 
has been inactive while the hardware 1/0 system is trans­
ferring data. Another process would be running at the time 
of the interrupt. The interrupt essentially means: re-activate 
the monitor process so the 1/0 request can be completed. 
Since the Dispatcher decides which process is activated 
next, the Dispatcher is the logical point of return. 

Note: It is assumed here that only one interrupt 
is being processed. As will be shown later, 
interrupt routines can be interrupted by 
other interrupts, and the exit to the Dis­
patcher occurs only when making the 
final exit on the Interrupt Control Stack. 

For IRF-type interrupts, the meaning of the interrupt is 
even simpler - i.e., activate a certain process (via the 
Dispatcher). For ICS-type internal interrupts, the Dis­
patcher return is still necessary, since the priorities of pro­
cesses may have changed while operating on the Interrupt 
Control Stack, as a consequence of functions performed 
thereon. 

One of the important features of the Dispatcher is that it 
can be aborted at any time during its operation. Thus if a 
new interrupt arrives while the Dispatcher is in operation, 
the new interrupt can immediately be handled without 
having to restore any particular conditions. This feature 
maintains the fast interrupt response of the system in multi­
interrupt situations. 

For non-ICS internal interrupts, an exit to the Dispatcher is 
not necessary since these operate on the current user's 
stack. The exit can be made directly back to the point of 
interrupt. 

Figure 7-2 also shows that the interrupt routine code is 
accessed via the Device Reference Table for external inter­
rupts (both types) and via the Code Segment Table for 
internal interrupts (both types) . This is because internal 
interrupts are processed by specifically assigned code 
segments which must always be present in main memory 
(or the system will halt) . External interrupts, on the other 
hand, are device-related and so code segmentation is done 
by the Device Reference Table. Accordingly, an internal 
interrupt routine is an interrupt code segment and an 
external interrupt routine is called the interrupt receiver 
code. 

All external interrupt routines, by definition, execute in 
privileged mode. The Interrupt Handler automatically sets 
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the Mode bit in the Status register to the privileged mode 
state before transferring control to the interrupt routine. 
For internal interrupts, however, the mode bit in the CST 
entry determines which mode is to be used during 
execution. 

All external interrupt routines are entered with the external 
interrupt system enabled. All internal interrupt routines are 
entered with the external interrupt system disabled. 

The following paragraphs individually describe each of the 
four interrupt types. Only a brief introductory description 
is given at this point. Detailed operating sequences are given 
later in this section. 

EXTE RNAL IN TERR UPTS 

External interrupts interface external events to software 
processes. Referring to figure 7-2 (top example), the overall 
operation is as follows: 

At or near the end of an I/O program, the device con­
troller decodes a SET INT (Set Interrupt) command, 
which causes the controller to set its Interrupt Re­
quest flip-flop. This action corresponds to step 10 in 
the I/O System Overview, figure 6-5. 

Note: The device controller's Interrupt Request 
flip-flop can also be set by an SIN instruc­
tion decoded by the CPU. However, such 
action is more commonly used in diag­
nostic routines than in conventional I/0 
operations. 

The setting of the Interrupt Request flip-flop causes 
the device controller to issue an INTREQ (Interrupt 
Request) signal to the I /O Processor - provided that a 
previously issued mask permits requests from this 
controller. (Masks will be discussed later.) 

@ The I/O Processor issues a poll (INTPOLL) to activate 
the highest-priority request. (There may be more than 
one request.) 

@) The device controller returns an acknowledgement 
(INTACK), along with its device number. 

® 

® 

The IOP requests the CPU to set up the interrupt 
environment. The initial steps are to set up the data 
segment registers to point at the Interrupt Control 
Stack (after saving the user's environment on his own 
stack) and to fetch the device's DRT entry. 

The address in the second word of the DRT entry is 
loaded into the P-register, thus transferring control to 
the interrupt receiver code. 

(J) The information in the data area for this device 
(pointed to by the third word of the DRT) is updated 

Interrupt System 

by the interrupt receiver. This information will tell the 
I/O monitor process that the initiator section of the 
device driver has done its work, and the completion 
section should be called. 

@ The interrupt receiver exits to the Dispatcher. This 
action corresponds to step 12 in the I/O System 
Overview, figure 6-5. 

IR F EXTERNAL INTERRUPTS 

IRF-type external interrupts provide an external means of 
activating a process. One action of this interrupt is to set 
the Interrupt Reference Flag associated with a particular 
device controller. It is then up to the operating system to 
connect the process to the device and begin execution. 
Referring to the second example in figure 7-2, the overall 
operation is as follows: 

An external event sets the Interrupt Request flip-flop 
in the device controller. This could be as simple as a 
contact closure. 

@ The device controller issues an Interrupt Request to 
the I/O Processor, provided that a previously issued 
mask permits requests from this controller. 

@ The I/O Processor issues an interrupt poll to activate 
the highest-priority request. 

The device controller returns an acknowledgement 
along with its device number. 

@ The IOP causes the CPU to switch to the ICS (after 
saving the user's environment on his own stack), and 
to fetch the device's DRT entry. 

® The address in the second word of the DRT entry is 
loaded into the P-register, thus transferring control to 
the interrupt receiver code. 

(j) An SIRF (Set Interrupt Reference Flag) instruction in 
the interrupt receiver sets the IRF bit (bit 0) of the 
fourth word in the DR T entry. 

@ The interrupt receiver exits to the Dispatcher. (The 
association of the external interrupt and a specified 
process is performed by the Dispatcher, using software 
table information and the SIRF bit of the DRT.) 

ICS INTE RNA L INTERRUPTS 

ICS-type internal interrupts operate on the Interrupt Con­
trol Stack, and the interrupt code for each separate inter­
rupt is permanently allocated in code segments 1 through 7 
(see table 7-1). Referring to the third example in figure 7-2, 
the overall operation is as follows: 
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An internal hardware condition (due to power failure, 
stack overflow, module interrupt, or console inter­
rupt) causes the CPU to switch to the ICS (after saving 
the user's environment on his own stack), and to fetch 
the Code Segment Table entry for the specific inter­
rupt (1 through 7). 

@ The absolute address in the second word of the CST 
entry is loaded into the PB-register, and execution 
begins with P =PB. This transfers control to the 
appropriate segment. 

@ After processing the interrupt, the code segment exits 
to the Dispatcher. 

NON-ICS INTERNAL INTERRUPTS 

The non-ICS type interrupts operate on the current user's 
stack. The interrupts caused by this type are generally 
caused by errors in a user's process, or by the system while 
executing a user's process. Code segments 10 through 17 
are permanently allocated for processing these interrupts. 
Referring to figure 7-2, the overall operation is as follows: 

G) An error in the execution of a user's process causes the 
CPU to save the user's environment on his own stack 
and to fetch the CST entry for the specific interrupt 
(10 through 17). 

@ The absolute address in the second word of the CST 
entry is loaded into the P-register, thus transferring 
control to the interrupt segment. 

@ After processing the interrupt, the code segment exits 
back to the point of interrupt in the user's process. In 
the case of serious errors, another procedure may be 
called to abort the offending process, or, for irrecover­
able errors, a system halt will occur. 

EXTERNAL INTERRUPT 
PROCESSING 

Before discussing the sequence of operations for external 
interrupts, there are three important factors that need to be 
considered. These are: interrupt priorities, the interrupt 
mask, and interrupt program pointers. 
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INTERRUPT PRIORITIES 

Servicing of external interrupts is done in descending order 
of priority. That is, the highest priority interrupt is serviced 
first. A higher priority interrupt can always interrupt the 
processing of a lower one. 

The interrupt priority of a device is completely inde­
pendent of the device number and interrupt masking. It is 
determined by the device's logical proximity to the IOP on 
the interrupt poll line. The interrupt poll is wired at system 
configuration time from one device controller to another, 
using twisted-pair clip-on wires. An illustration of how an 
interrupt poll might be wired is shown in a later section 
(figure 8-7). The routing of the interrupt poll is determined 
by the desired interrupt priorities of the device controllers, 
and is completely independent of other parameters. 

Each device controller therefore has a distinct priority level 
in relation to all other controllers. The maximum number 
of controllers, and hence interrupt levels, is 253. 

INTERRUPT MASK 

The mask is a word of 16 bits which, when transmitted to 
the 1/0 system, will enable or disable the interrupt request 
logic of certain groups of device controllers, according to 
the bit pattern of the word. A logic "l" in a given bit 
position will enable the corresponding group of interrupts; 
a logic "O" will disable the group. 

The mask is originally created as a word on the top of the 
stack. From there it is transmitted to all device controllers 
simultaneously by a SMSK (Set Mask) instruction. Each 
device controller is wired (at system configuration time) to 
respond to one particular bit in the mask word. Thus when 
the mask is transmitted by SMSK, the Mask flip-flop in 
each device controller will either set or reset according to 
the value of the bit to which the controller is sensitive. 

Assuming that all controllers do accept the new mask, the 
SMSK instruction will also load the mask word into the 
Mask register in the CPU. This makes it possible to check 
the value of the existing mask at any time by reading it to 
the top of the stack by a RMSK (Read Mask) instruction. 
Note that RMSK is actually reading a copy of all the mask 
bits and not the real Mask bits in all the devices. RMSK is a 
non-privileged instruction; SMSK, however, is a privileged 
instruction. 

If there is a hardware failure on the Power Bus Terminator 
card and it does not issue a Mask Return signal, then the 
mask word is retained on the TOS, the Condition Code is 
set to CCL to indicate an 1/0 error, and the external inter­
rupt system is disabled. Note that the state of the individual 
Mask flip-flops on the device controllers are in an unknown 
state in this case. 

Figure 7-3 illustrates an example of interrupt masking. In 
this example, if bit 2 of the transmitted mask word is a 
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logic "l", interrupts will be permitted from devices 3 
and 11; if bit 2 is a "O", devices 3 and 11 will not be able to 
make interrupt requests. Similarly, bit 3 controls the inter­
rupts from devices 4 and 12, bit 5 controls the interrupts 
from devices 5 and 13, and so on. 

INTERRUPT PROGRAM POINTER 

The Device Reference Table was defined in Section VI. As 
stated then, the second word of each DRT entry contains 
the interrupt program pointer. This is an absolute address 
pointing to the start of the interrupt routine associated 
with a particular device controller. See figure 7-4. Note that 
several controllers could point to the same routine. 

ORT { Entry 
for 

One 
Device 

Pl P ... -.... 

(PB= 0) 
(PL = oo) 

Interrupt 
Receiver 
Code 

Figure 7-4. Interrupt Program Pointer 
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SEOUENCE OF OPERATIONS 

Figures 7-5 and 7-6 illustrate the sequence of operations for 
processing external interrupts. Basically, we are narrowing 
the scope of the overall 1/0 operation to focus on just the 
portion that establishes the interrupt processing environ­
ment on receipt of an external interrupt. In previous 
figures, this corresponds to steps 11 and 12 in figure 6-5, 
and to steps 5, 6 and 7 in figure 7-2. 

Figure 7-5 shows how control is transferred from the point 
of interrupt in a user's code segment to the start of the 
interrupt receiver code. Also shown is the transfer of the 
data domain from the current user's stack to the interrupt 
control stack. Figure 7-6 shows how a second interrupt is 
handled and how exit is made from the interrupt routines. 

The following paragraphs describe the sequence of 
operations, step by step. Note first the Dispatcher marker 
in the Interrupt Control Stack; the contents are not 
detailed since they were discussed under a previous heading . 
Note also that all operations are under control of the 
hardware-implemented Interrupt Handler until control is 
transferred to the interrupt receiver code in software. 

The initial assumption is that the current process is 
operating at point P in some user's code when the CPU 
recognizes an external interrupt. The CPU thereupon passes 
control to the Interrupt Handler. 

G) The first action of the Interrupt Handler is to push 
into memory any TOS elements of the current user's 
data that are in CPU registers. This takes a maximum 
of four memory cycles if all four registers are full. 

@ Next, a normal four-word stack marker is pushed onto 
the user's stack, plus the absolute value of DB that is 
currently in use. (DB may not necessarily point to a 
location within the stack, such as if a system intrinsic 
had been called at the time of the interrupt.) This 
action preserves most of the user's environment; the 
current value of S will be preserved later (refer to 
step 5). Incidentally, DL is never changed by an 
interrupt. 

The Interrupt Handler now goes to location 5 
(assuming CPU # 1) and loads the QI value into the 
Q-register. This points Q at the delta Q location of the 
permanent Dispatcher marker. (As explained previ­
ously, this location contains a value of 0.) 

@) The content of location 6 is next fetched and the 
value of ZI is loaded into the Z-register. This estab­
lishes the stack limit for the Interrupt Control Stack. 
(The ICS Flag is also set by this action in hardware.) 

@ The user's current absolute value of S is stored into 
location Q-5 on the Interrupt Control Stack. (Of 
course, S will by this time be pointing at the top word 
of the marker on the user's stack.) Later, when control 
is passed to the Dispatcher in step 18, the Dispatcher 
will convert S to a relative value by subtracting the DB 
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® 

value of the user's stack, and will store the result in 
the user's environment. (The "stack DB" is always 
saved in res location Q-4 by the Dispatcher, prior to 
launching a process - in case DB is altered during the 
process.) This action will complete the preservation of 
the user's pre-interrupt environment. 

The S pointer is set to point at location Q+2, and the 
device number of the interrupting device is stored into 
this location. The CPU obtains this number from the 
Interrupt Address register in the 1/0 Processor. At this 
point, the Interrupt Control Stack is fully delimited 
by register values, and is ready for handling interrupt 
data. 

The Interrupt Handler now uses the device number on 
the res to form an address for fetching the second 
word of the DRT entry for that device. The content of 
that location (PI) is loaded into the P-register, thus 
pointing to the start of the interrupt receiver code. 

@ The PB- and PL-registers are set to their respective 
extreme values (PB= 0, PL= 21 6 

- 1) since they are 
not used for delimiting interrupt code. 

@ Bit 0 of the Status register is set to a "l" so that , as 
required, the interrupt receiver code will execute in 
privileged mode. 

@The DB-register is set to the value of DBI, the third 
word in the device's DRT entry. 

@ The CPU now fetches the instruction at P and begins 
executing the interrupt receiver code. 

The following steps, relating to figure 7-6 , list the actions 
occurring if a second interrupt (of higher priority, of 
course) is received while processing the first interrupt. 
Assuming a still higher priority , another interrupt could 
interrupt the second routine in the same manner as 
described below. This example shows how several levels of 
interrupts can be nested on the Interrupt Control Stack. 
Since the ICS is common to all external interrupts, no 
further switching of environments is necessary for addi­
tional interrupts. As mentioned in Section I, this reduces 
the interrupt response time by about two microseconds. 

If, however, the second interrupt did not occur before com­
pleting the processing of the first interrupt, the sequence of 
operations would skip from this point (step 11) to step 19. 
The sequence continues as follows: 

@The CPU recognizes a second interrupt while exe­
cuting the interrupt receiver code for the first 
interrupt. The CPU therefore again passes control to 
the Interrupt Handler. 

@The Interrupt Handler pushes into memory any TOS 
elements that are in CPU registers, and pushes the 
usual five-word marker onto the ICS. The fifth word 
of this marker is the DB value that is currently in the 
DB-register at the time of interrupt. 
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@The Q-register is updated to point at the delta Q word 
of the new marker. The delta Q value is the number of 
locations back to the delta Q word of the Dispatcher 
marker. 

Note: Unlike the first interrupt, subsequent inter­
rupts do not store S into Q-5 at this point 
(see step 5). Such action would overlay one 
of the variables associated with the previous 
interrupt. 

@The S-register is updated to point at location Q+2, and 
the device number of the second interrupting device is 
stored into that location. 

@The Interrupt Handler uses the device number to fetch 
the second word of the DRT entry for that device. 
The content of that location (PI) is loaded into the 
P-register, thus pointing to the start of the interrupt 
receiver code for the second device. Also (not shown), 
the DBI value from the new DRT entry is loaded into 
the DB-register. 

@The CPU now fetches the instruction at P and begins 
executing the interrupt receiver code. 

@ Assuming there are no other higher priority interrupts, 
the interrupt routine for the second device runs to 
completion and then exits to the point of interrupt in 
the interrupt routine for the first device. The exit, as 
usual, is made via the stack marker. Note that since 
PB= 0 while operating on the ICS, the "return P" 
(second word) of the marker is an absolute as well as a 
relative address value. The Q value is restored to the 
previous setting, pointing to the delta Q word of the 
Dispatcher marker. The S pointer is moved back to the 
location just preceding the second stack marker. The 
N field of the EXIT instruction must always be 0 for 
exiting from interrupt routines, so that none of the 
variables associated with the previous routine will be 
deleted by the act of moving S back. One of the 
actions of the EXIT instruction is to issue a Reset 
Interrupt command to the interrupting device con­
troller, which clears the interrupt active condition and 
unblocks the interrupt poll line to lower priority 
devices. (The device number is obtained from location 
Q+2.) 

@ The interrupt receiver code for the first interrupt now 
runs to completion and an exit is made to the Dis­
patcher. Again, the EXIT instruction issues a Reset 
Interrupt command to the device controller. In this 
case , however, the stack marker is not deleted, and the 
hardware sets the Dispatcher Flag to signify that the 
Dispatcher is now executing. This completes the 
sequence of operations. 

If another external interrupt should occur while the Dis­
patcher is executing, the interrupt is treated in a slightly 
different way. If the CPU recognizes an interrupt while the 
Dispatcher Flag is set (from step 19), the sequence effec­
tively repeats steps 12 through 1 7 with the added actions 



that, in step 14, bit 0 of 6Q is set to 1 (indicating a 
Dispatcher interrupt) and the Dispatcher Flag is cleared. 
Then the interrupt receiver code can optionally set bit 0 of 
the Interrupt Counter (fixed location 7) to a 0 if no 
processing is required (e.g., in the case of character inter­
rupts from a terminal, which should not require aborting 
the Dispatcher), or to a 1 if it wishes to process the 
interrupt (such as for a carriage return interrupt). In either 
case, when the EXIT instruction is given, the sequence goes 
to step 19. As explained in the EXIT instruction commen­
tary, EXIT will allow the Dispatcher to continue execution 
from the point of interrupt if bit 0 of the Interrupt Counter 
is clear, or aborts the Dispatcher (i.e., eliminates progress 
made prior to the interrupt by setting Q = QI, thus elimi­
nating the interrupt stack marker and all Dispatcher data) if 
bit 0 of the Interrupt Counter is a 1. In the latter case, the 
Dispatcher will be restarted. 

If, however, the Dispatcher is allowed to run to completion, 
the CPU will clear the Dispatcher Flag when the Dispatcher 
sets the Z-register to some value other than ZI. (This is one 
of the last actions of the Dispatcher . .) 

IRF INTERRUPT PROCESSING 

Normally, a process calls 1/0 which in turn causes inter­
rupts. !RF interrupts, however, reverse the situation - that 
is, the interrupt calls a process. This is necessary because 
the devices that use the Interrupt Reference Flag are not 
known to the file system, which normally handles all 1/0 
requests. Thus the IRF interrupt must inform the 
Dispatcher of its occurrence, so that the Dispatcher can 
activate the process which is associated with the inter­
rupting device. That process may then use the device 
directly, bypassing the file system. 
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In order to maintain some control over non-standard 
devices, the operating system has control of "arming" the 
IRF bits in the DRT entries. 

The operating sequence for an IRF interrupt begins as a 
normal external interrupt, subject to priority and masking. 
Thus the first eleven steps are exactly the same as described 
for external interrupt processing (i.e., all of the steps shown 
in figure 7-5). That part of the sequence takes the operation 
up to the point of beginning the execution of the interrupt 
receiver code. The sequence then continues as follows, with 
reference to figure 7 -7. 

t--< 

@An SIRF instruction in the interrupt receiver code sets 
(to logic "O") the IRF bit in the DRT entry for the 
interrupting device controller. If the bit already was in 
the "O" state, the SIRF instruction is treated as a 
NOP; the next instruction (EXIT) causes an exit to the 
Dispatcher with no further effects. 

@ Assuming that the IRF bit was previously armed 
(i.e., in the "l" state), the SIRF execution continues 
by incrementing the Interrupt Counter in location 7 
(assuming CPU # 1). At a later time, this counter will 
tell the Dispatcher how many IRF interrupts are 
pending. 

@ An EXIT instruction resets the Interrupt Active flip­
flop of the interrupting device controller, and causes 
an exit to the Dispatcher via the Dispatcher marker on 
the ICS. 

@The Dispatcher checks the content of the Interrupt 
Counter and, if non-zero, activates each process corre­
sponding to the DRT's which have the IRF bit reset. 
The IRF bits are then set again to the "l" state. 

PROCESS 
~ 

DISPATCHER . 
® 

....... 

@ 

Figure 7-7. IRF Interrupt Processing 
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INTERNAL INTERRUPT 
PROCESSING 

As listed earlier in table 7-1, there are 25 internal inter­
rupts, including seven user-related traps. These 25 inter­
rupts are processed by the first 15 dedicated code segments 
(numbered 1 through 17 octally). Several of the segments 
process more than one specific interrupt; two of the seg­
ments are presently unassigned. Note that all of the user 
and system traps enter one code segment, number 17. 

When internal interrupts are being processed , all external 
interrupts are disabled. Internal interrupts therefore have 
higher "priority". Among internal interrupts, however, 
there is no priority structure (except in the case of simul­
taneous interrupts); any internal interrupt may interrupt 
the processing of any other. If multiple interrupts occur 
simultaneously, they stack their markers in the following 
order, and are therefore serviced in the reverse order: 
integer overflow , system parity error, memory address 
parity error, data parity error, non-responding module, 
bounds violation, illegal address, module interrupt, external 
interrupt, console interrupt , and power fail. 

A module error interrupt while processing a module error, 
or a parity error interrupt while processing a parity error, 
are considered to be irrecoverable errors, resulting in a 
system halt. 

In most cases, the Interrupt Handler loads a parameter onto 
the stack. The parameter (listed in table 7-1) passes infor­
mation regarding the interrupt from the hardware to the 
interrupt processing software. In some cases, the parameter 
is simply an interrupt identification number; in other cases, 
the parameter gives specific information, such as a program 
label, to the interrupt routine. 

GENERAL DESCR IPTIONS 

POWER FAIL. Code segment 1 does the interrupt pro­
cessing for the Power Fail interrupt . This routine saves the 
software status in a format suitable for automatic restart , 
making use of the finite time between the detection of a 
power failure and the loss of usable power (approximately 
10 milliseconds) . 

POWER ON. The Power On segment (code segment 2) is 
entered either by an initial power turn-on, or by an auto­
matic restart following a power failure - if automatic 
restart is enabled by a panel switch. (The computer will halt 
on restoration of power if automatic restart is disabled.) 
Assuming that automatic restart is enabled , the Power On 
segment will set up the software environment and pass con­
trol to the operating system. 

STACK OVERFLOW. A stack overflow results from 
attempting to stack more data than can be contained on the 
current stack (SM > Z) . This condition will result in an 
interrupt to segment 3, which processes the interrupt. The 
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system makes the decision whether to abort the current 
process or to expand the stack. 

MODULE INTERRUPT. A module interrupt occurs when 
a CPU receives a transmission from a system module 
(hardware) from which it is not expecting a transmission. 
The offending module number (FROM code) is passed to 
segment 4 as a parameter. The interrupt routine may then 
attempt to identify the source of the error and take 
appropriate action. The interrupt is disabled if ex ternal 
interrupts are also disabled (by bit 1 of Status= 0). 

CONSOLE INTERRUPT. The console interrup t is the con­
sole operator's method of getting the attention of the 
operating system prior to entering an operator command. 
Segment 5 processes this interrupt , and passes the CPU 
number as a parameter. In order to protect the Dispatcher 
from random console interrupts during its final SETR, 
EXIT sequence, console interrupts are disabled when the 
Dispatcher Flag is set and the external interrupts are dis­
abled (by bit 1 of Status= 0). Console interrupts are also 
disabled during system halt and power fail. 

COLD LOAD. The cold load operation does not use an 
internal interrupt. It is therefore an exception to the 
present general discussion of internal interrupts. A "cold 
load interrupt" is listed as the sixth internal interrupt only 
in order to obtain a dedicated code segment number (6) for 
the routine which " brings up" the operating system. But, 
here again, the designation, code segment 6 , is largely 
fictitious, since the CST entry for that segment has no 
significance and is not used. Instead , PB is set to 0, PL is set 
to 21 6 -1 , and P is indicated by fixed memory location 1. 
The way cold load operates is roughly as follows: Pressing 
the COLD LOAD switch causes the CPU to start its cold 
load microprogram , which begins by reading the operator­
set switches on the panel. The switches will have been set to 
indicate the cold load device number and an 8-bit control 
byte. The microprogram generates a five-word 1/0 program 
beginning at the DRT entry locations for the specified 
device, and then issues an SIO instruction to that device 
and goes into a waiting loop to wait for an external inter­
rupt from that device. Meanwhile the 1/0 Processor causes 
the device controller to begin executing the five-word 1/0 
program. This program reads in a 32-word bootstrap loader 
(a larger 1/0 program), which in tum reads in still larger 
blocks (e.g. , 128 words) which eventually accomplish the 
loading of all required fixed memory locations. This 
includes overlaying the previously used DRT locations with 
normal DRT entries. Finally , the I/O program causes the 
device controller to generate the external interrupt that the 
CPU has been waiting for , and ends. The CPU then pro­
ceeds to initialize the registers for execution of code 
segment 6 , with the ICS as the data domain . (PB, DB , and 
DL all set to 0 , PL to 2 1 6 -1 , Z to ZI , Q to QI , S to Q+l , 
and P to the content of fixed memory location 1.) The 
Status register is set to 140006, octal , to indicate privileged 
mode , enable external interrupts, and indicate segment 
number 6. The CPU then halts. When RUN is pressed, 
segment 6 will execute , setting up the operating conditions 
for the operating system (software tables, linkages , etc.) 
Once this is complete, the system is in full operation. 



MODULE ERROR. Segment 11 processes three different 
module errors: illegal address, bounds violation, and non­
responding module. An identification number (1000, 2000, 
or 4000, octal) is passed to the routine to identify which 
type of error occurred. An illegal address is caused by 
attempting to address a memory location beyond the limit 
of the physical main memory. A bounds violation interrupt 
is caused by attempting to address locations outside of a 
specified program domain or data domain; refer to "Bounds 
Checking" in Section III. A non-responding module inter­
rupt occurs when the CPU requests information from some 
other module and that information is not received in a 
reasonable length of time (a preset time in the order of 4.6 
milliseconds). 

PARITY ERROR. Segment 12 processes three different 
parity errors: data parity error, memory address parity 
error, and system parity error. These are indicated by the 
parameters 10000, 20000, and 40000 (octal) respectively. 
In general, parity checking is done by the receiving module; 
there are exceptions, however. Also, only those parity 
errors that result in an interrupt will be discussed here. 
(Parity checking is also performed on transmissions 
between an IOP or Selector Channel and memory ; any 
errors, however, result in a transfer error signal to the 
affected device controller, rather than a CPU interrupt.) A 
data parity error interrupt is caused only by the CPU on 
receiving a data word from memory that has erroneous 
parity. (Parity should be odd.) A memory address parity 
error interrupt is caused only by a memory module on 
receiving an address word from the CPU that has erroneous 
parity. (Memory will ignore any read or write request 
accompanying the erroneous address word.) A system 
parity error interrupt is caused by either the CPU or a 
memory module on receiving a combination of FROM bits, 
TO bits, and MOP bits (total of nine bits, including parity) 
that produces erroneous parity. 

MISCELLANEOUS ERRORS. Three different kinds of 
errors are processed by segment 13. These are: stack under­
flow, CST violation , and STT violation, indicated by 
parameter values 1, 2, and 3 respectively. A stack under­
flow interrupt is caused by an attempt to move SM below 
DB. This might result from deleting too much information 
from the stack , or from using the SETR or SUBS instruc­
tions incorrectly. (See definition under "Bounds Checking" 
in Section III.) A CST (Code Segment Table) violation 
interrupt is caused by calling a non-existent code segment, 
or by attempting to exit to a non-existent code segment. 
An STT (Segment Transfer Table) violation interrupt is 
caused by attempting to call a procedure in an external seg­
ment or the local segment through a non-existent STT 
entry, or if the STT entry in a called ex ternal segment is 
not a local label. 

CODE SEGMENT ABSENCE. An interrupt to segment 14 
is generated whenever an attempt is made to call or return 
to a segment that is not present in main memory . The 
PCAL and EXIT instructions perform the appropriate tests, 
by checking bit 0 of the first word in the CST entry for the 
external segment. Segment 14 invokes the memory manage­
ment part of MPE /3000, which is then responsible for 
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making the absent segment present in main memory. For 
PCAL, the parameter passed to the segment 14 routine is 
the external program label, so that the routine will know 
which segment to make present from the disc. For EXIT, 
the parameter is the value N, since the EXIT instruction is 
not fully executed when the interrupt to segment 14 
occurs; thus segment 14 must preserve the N value so that S 
can be pointed at the correct location when execution 
resumes. (The absence segment is not invoked by inter­
rupts; the absence of an interrupt segment will cause a 
system halt if that interrupt occurs. The halt also occurs if 
any segment with a CST number less than octal 20 is 
absent .) 

STT ENTRY UNCALLABLE. An interrupt to segment 15 
is generated by a PCAL instruction if attempting to call a 
segment which has been declared to be uncallable. A seg­
ment is uncallable if bit 1 of the STTL word in its PL loca­
tion is a logic " l". 

TRACE. An interrupt to segment 16 is generated by a 
PCAL instruction when calling an external segment whose 
CST entry has the Trace bit set ("1"). The interrupt is also 
generated by an EXIT instruction when exiting via a stack 
marker in which the Trace bit (bit 0 of the retum-P word) 
is set. Thus the Trace segment can collect information on 
calls outside of the local segment, such as the time taken to 
execute code segments, etc. (Note: trace interrupts do not 
occur for interrupts or on exiting from external interrupt 
routines.) 

TRAPS. Segment 17 handles the processing of seven traps. 
Five of these are user traps, which are caused by arithmetic 
errors, and two are system traps, which are caused by 
attempted illegal use of privileged mode or unimplemented 
instructions. Each trap is identified by a parameter which is 
placed on the stack by the Interrupt Handler; see table 7-1. 
The five user traps are controlled by the "User Traps 
Enable/Disable" bit (bit 2) in the Status register; see 
figure 3-6 in Section III . If the traps are disabled by this bit 
when an error occurs, the Overflow bit in Status will be set 
in lieu of the trap; no explicit error identification is given. 
If, however, the traps are enabled , the interrupt to segment 
17 will occur. 

The two system traps , on the other hand , are always 
active - i.e. , not subject to the enable/disable bit in the 
Status register. The mode violation trap includes illegal use 
of privileged instructions, user ex it to privileged mode, and 
any alteration of the "External Interrupts Enable/Disable" 
bit (bit 1) of the Status word (checked during EXIT). The 
unimplemented instruction trap is incurred by any attempt 
to execute an instruction for which there is no valid code in 
the machine instruction set. 

SEOU ENCE FOR ICS TYPE 

Figure 7-8 illustrates the sequence of operations for 
processing ICS type internal interrupts. The figure shows 
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how control is transferred from the point of interrupt in 
the user's code to the start of the interrupt code segment, 
and how the data domain is switched from the user's stack 
to the Interrupt Control Stack. 

The initial assumption is that the current process is exe­
cuting at point P in the user's code when an interrupt 
condition occurs. The CPU then passes control to the Inter­
rupt Handler. The sequence is then as follows: 

CD The Interrupt Handler pushes into memory any TOS 
elements that are in CPU registers. This takes a maxi­
mum of four memory cycles if all four registers are 
full. 

@ Next, a normal four-word stack marker is pushed onto 
the user's stack, plus the value of DB that is currently 
in use. 

@ The QI value is fetched from location 5 and is loaded 
into the Q-register. This points Q at the delta Q 
location of the permanent Dispatcher marker. 

@) The ZI value is fetched from location 6 and is loaded 
into the Z-register. This establishes the stack limit for 
the Interrupt Control Stack. 

@ The user's current value of S is stored into location 
Q-5 on the ICS. (Up to this point the operation has 
been identical to the sequence of operations for ex­
ternal interrupts, described earlier; the actions now 
begin to differ.) 

@ A parameter, if any, is now pushed onto the ICS. Only 
the Module and Console interrupts use a parameter. 

(j) External interrupts are disabled by clearing ("O") bit 1 
of the Status register. 

@ The Interrupt Handler next fetches the Code Segment 
Table Pointer from fixed memory location 0. Using 
this value , indexed by two times the code segment 
number of the specific interrupt, the Interrupt 
Handler then fetches the relevant CST entry. 

® The absolute address in the second word of the 
fetched CST entry is loaded into the P- and PB­
registers. (Unlike external interrupts, which set PB 
to 0, an internal interrupt provides a value for PB and 
starts Pat that location - as does PCAL.) 

@ Using the code segment length value in the first word 
of the CST entry, PL is established relative to PB. 

@ The mode bit in the CST entry (bit 1 of the first 
word) is transferred into the mode bit (bit 0) of the 
Status register. This determines the mode of execution 
for the segment, privileged mode or user mode. Also , 
external interrupts and user traps are disabled. 

@ The code segment number is loaded into the Status 
register to indicate which segment is executing. 

Interrupt System 

@ Lastly, the CPU fetches the instruction at P and begins 
executing the interrupt code segment. 

Additional ICS type internal interrupts could occur before 
exiting from the interrupt code segment, and they would be 
stacked on the ICS in a manner similar to that shown in 
figure 7-6. If there are any external interrupts, either sus­
pended on the ICS or waiting for priority, they will be 
processed after all internal interrupts have been processed. 
(However, external interrupts can interrupt internal inter­
rupt routines if the software re-enables the external inter­
rupt system.) After all internal and external interrupts using 
the ICS have been processed, an exit to the Dispatcher will 
occur, as described for steps 17 and 18 of figure 7-6. 

SEQUENCE FOR NON-ICS TYPE 

Figure 7-9 illustrates the processing of non-ICS type inter­
nal interrupts. As shown in the figure, the Interrupt Control 
Stack is not used; the interrupt code segment will operate 
on the user's stack. 

Assume that the user is executing at point P when an inter­
rupt condition occurs. The CPU passes control to the 
Interrupt Handler, and the sequence is then as follows: 

CD Any TOS elements that are in CPU registers are 
pushed into memory. 

® A normal four-word stack marker is pushed onto the 
user's stack. 

@ The parameter is pushed onto the stack. 

@) External interrupts are disabled by clearing ("O") bit 1 
of the Status register. 

@ The Interrupt Handler next fetches the Code Segment 
Table Pointer from fixed memory location 0. Using 
this value, indexed by two times the code segment 
number of the specific interrupt, the Interrupt 
Handler then fetches the relevant CST entry. 

@ The absolute address in the second word of the 
fetched CST entry is loaded into the P- and PB­
registers. 

0 

® 

® 

Using the code segment length value in the first word 
of the CST entry, PL is established relative to PB. 

The mode bit in the CST entry (bit 1 of the first 
word) is transferred into the mode bit (bit 0) of the 
Status register. This determines the mode of execution 
for the segment, privileged mode or user mode. 

The code segment number is loaded into the Status 
register to indicate which segment is executing. 
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@The CPU fetches the instruction at P and begins exe­
cuting the interrupt code segment. 

If an ICS type internal interrupt should interrupt the 
processing of a non-ICS type, control will not revert to the 
non-ICS routine until there is an exit to the Dispatcher 
from the ICS. The user's process, in that case, will have to 
contend with other processes for priority. 

INTERRUPT HANDLER 

The Interrupt Handler is a microprogram (actually a set of 
microprograms) permanently stored within a read-only 
memory in the CPU. The CPU periodically checks for the 
existence of a waiting interrupt condition, which is stored 
in one of several bit positions in a dedicated CPU register 
(CPXl or CPX2), and then transfers control to the Inter­
rupt Handler. 

The purpose of the Interrupt Handler is to save the inter­
rupted environment and transfer control to the interrupt 
routine in software. The suspended environment is saved in 
a format that is ready to resume execution. 

The descriptions which follow are essentially a summary of 
the preceding portion of this section. A flowchart will be 
used as a basis for discussion, with the assumption that the 
reader understands the physical operations that have been 
previously described. 

Figures 7-10 and 7-11 illustrate the operations performed 
by the Interrupt Handler. Generally, the sequence begins 
with the START block at the top left corner and ends with 
the EXECUTE block at the bottom right corner. There are 
exceptions for cold load, power on (if automatic restart is 
disabled), the "run" interrupt, halt mode interrupts (mostly 
single-cycle operations) , parity errors or module errors 
while executing the respective parity error or module error 
routines, and disabled traps. 

As shown proceeding down the left side of figure 7-10 (A 
through F), a series of tests is made to identify the basic 
type of error. Sub-tests G through K provide further identi­
fication. (Note that tests for Absence, Trace, and STT 
Entry Uncallable interrupts are not included, since the 
EXIT and PCAL microprograms handle those three 
interrupts.) The following descriptions are given in the 
sequence of basic tests, A through F. 
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ICS TYPE 

If the waiting interrupt is determined to be of the ICS 
type (A), an additional test (G) is made to see if it is a 
Power-On interrupt. If not , skip the remainder of this 
paragraph. If so, a further check is made to see if auto­
restart is enabled. If not, the microprogram jumps to the 
halt loop. If auto-restart is enabled , the data segment regis­
ters are set up for operation on the ICS (block 1). That is, 
Q is set to QI, Z to ZI, and S to the content of QI-5 (where 
S was saved by the power fail interrupt). The DB- and DL­
registers are initially cleared. Many of these register settings 
are largely arbitrary, simply to provide standardized initial 
conditions for the Power On routine. Once this is done, the 
operation proceeds to the "Transfer Control " sequence 
(refer to that heading). 

Assuming that the interrupt is not a Power-On, the se­
quence continues as follows (referring to blocks 2, 3, 4, 
and 5). First (block 2), a standard four-word stack marker 
is pushed onto the current stack. Next (block 3), the cur­
rent DB value is pushed onto the stack. This is followed by 
a test to see if the interrupt occurred while operating on the 
ICS. If not , the user's value of Sis saved in location QI-5 of 
the ICS (block 4), and the operation proceeds to block 5; if 
so, block 4 is bypassed and an additional test is made to see 
if the interrupt occurred while executing in the Dispatcher. 
If so, the Dispatcher is aborted by establishing the ICS 
again (Q =QI, Z = ZI, and S = QI + 1) , as set by block 5. 
Otherwise block 5 is bypassed , since the registers are 
already set for ICS operation. In any case, the operation 
now proceeds to the "Transfer Control" sequence (refer to 
that heading). 

MISCELLANEOUS ERROR 

If the waiting interrupt is determined to be a miscellaneous 
error (B) , the only operation to occur before the " Transfer 
Control" sequence is to push a standard four-word stack 
marker onto the current stack (block 6). Miscellaneous 
errors include stack underflow , CST violation and STT 
violation. 

TRAPS 

If the waiting interrupt is the result of a trap (C), it is tested 
to see if it is an arithmetic trap (H) . If not , (i.e., a system 
trap) , the remainder of this paragraph is skipped, since 
system traps are not subject to the enable/disable bit. For 
arithmetic traps, the state of the enable/disable bit in the 
Status register is checked. If traps are enabled , the re­
mainder of this paragraph is skipped. If disabled , the Over­
flow bit in Status is set (block 7), and the next instruction 
is fetched and executed; no further interrupt handling 
operations occur. 

The next action is to push a standard four-word stack 
marker onto the current stack (block 6). Following this, the 
"Transfer Control" sequence begins. 
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MODULE ERROR 

If the waiting interrupt is a module error (D), a test is made 
to see if the error occurred while executing in the Module 
Error segment. If not, the remainder of this paragraph is 
skipped. If the error did occur while executing in the 
Module Error segment, the error win halt the computer. All 
run-mode interrupts are disabled (block 8), meaning that 
the CPU will respond only to those interrupts caused by 
pressing operator panel switches. The Halt flip-flop is set 
and the SYSTEM HALT light on the panel is lit (block 9). 
The CPU then enters the halt loop. 

If the error did not occur while in the Module Error 
segment, a standard four-word stack marker is pushed onto 
the current stack (block 6), and the operation proceeds to 
the "Transfer Control" sequence. 

PARITY ERROR 

If the waiting interrupt is a parity error (E), a test is made 
to see if the error occurred while executing in the Parity 
Error segment. If not, the remainder of this paragraph is 
skipped. If so , the error will halt the computer. All run­
mode interrupts are disabled (block 8), the Halt flip-flop is 
set, and the SYSTEM HALT light is lit (block 9). The CPU 
then enters the halt loop. 

If the error did not occur while in the Parity Error segment, 
a standard four-word stack marker is pushed onto the cur­
rent stack {block 6), and the operation proceeds to the 
"Transfer Control" sequence. 

TRANSFER CONTROL 

The "Transfer Control" sequence completes most of the 
operations described above. Basically, this sequence simply 
transfers control to the appropriate interrupt routine 
software. 

The first action is to test whether any parameter is to be 
passed to the routine. If so , the appropriate parameter (see 
table 7-1) is pushed onto the current stack (block 10). 
(Depending on how this sequence was entered, the current 
stack is either the res or a user stack.) If no parameter is 
required, block 10 is bypassed. 

Next, all external interrupts are disabled while the code seg­
ment registers are being set up (block 11). In the case of 
internal interrupts, the external interrupts will remain 
disabled on completion of this sequence; the interrupt 
routine software will eventually re-enable the external 
interrupts. 

Next a test is made to see if the interrupt is an external 
interrupt (K). If not, the remainder of this paragraph is 
skipped. For external interrupts (block 12) , Pis set to 0, PL 
to 216 -1 , and P to the PI value given in the DRT entry for 
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the interrupting device. Also DB is set to the DBI value. 
Next (block 13), the mode bit in the Status register is set to 
privileged mode and external interrupts are re-enabled. The 
sequence for external interrupts skips the following 
paragraph. 

For internal interrupts (block 14), PB and PL are set from 
the values given in the CST entry for the appropriate inter­
rupt code segment; P is set equal to PB. Next (block 15), 
the Reference bit in the CST entry is set if it has not 
already been set. The Status register is updated (block 16) 
by setting the mode bit to the same state as the mode bit in 
the CST entry , and loading the segment number of the 
interrupt code segment into bit positions 8 through 15. 

Finally (block 17) , the instruction in the location pointed 
to by P is fetched , and execution of the software routine 
begins. 

RUN/LOAD/HALT 

If the interrupt is none of the run-mode interrupts men­
tioned above, it is a halt-mode interrupt - i.e. , one caused 
by pressing a switch on the operator panel. The first check 
(F) tests if the RUN pushbutton was pressed. If so, the CPU 
fetches the instruction in the location specified by the cur­
rent address in the P-register (block 18), and begins 
execution. 

If the interrupt is not due to the RUN switch, the next 
check (I) tests if the COLD LOAD pushbutton was pressed. 
If not, the remainder of this paragraph is skipped. The cold 
load sequence is represented by blocks 19 through 23. The 
first action (block 19) is to read the manually-set content 
of the Switch register; this will consist of an eight-bit device 
number and an eight-bit control byte. Next (block 20) , a 
five-word 1/0 program is loaded into the memory locations 
beginning at the DRT locations for the input device. (This 
is an arbitrary starting point for beginning the bootstrap 
loading operation; the DRT locations will be overlaid with 
correct DRT information at a later time by the loading 
software.) Next (block 21) , external interrupts are enabled 
and an SIO command is issued to the input device. The 
device controller then begins executing the five word 1/0 
program, which includes a command to read 32 words com­
prising a bootstrap loader (block 22). On completion of the 
five-word program , the device controller continues exe­
cuting into the 32-word program , while the CPU waits for 
an interrupt from the device. One of the commands in the 
1/0 program will be an interrupt command. This will cause 
the device controller to generate an ex ternal interrupt, and 
the sequence then continues to block 23. Block 23 ini­
tializes the data segment registers to operate on the res 
(Q =QI, Z = ZI , S = QI+ 1) and sets P to the content of 
location 1. Location 1 will by this time have a cold-load 
address for P, and locations 2 and 3 will be used during the 
cold load operation; all three of these locations will later be 
overlaid with correct system information as indicated in an 
earlier section (table 4-1). The CPU now goes into the halt 
loop and waits for RUN to be pressed. 



If the interrupt was not due to RUN or COLD LOAD being 
pressed, the Interrupt Handler checks what other halt-mode 
interrupt occurred. Examples are: single instruction switch, 
load register switch, display memory switch, etc. The 
appropriate operation is performed (block 24), and the 
CPU goes into the halt loop. The halt loop is also entered if 

Interrupt System 

no cause is found. 

The halt loop consists of displaying the registers (block 25), 
and checking for any interrupt to occur. When an interrupt 
does occur, control is transferred to the start of the Inter­
rupt Handler. 
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FUNCTIONAL OPERATION n 
This section describes the logic operation of the system 
hardware. The complexity of the hardware precludes any 
detailed discussion of logic cards in this reference manual. 
Instead, the descriptions given here are highly simplified, 
based mostly on block diagrams. If further details are 
required, the reader must refer to the maintenance 
documentation. 

Brief descriptions of the following units are given: 

a. the bus system 
b. the Central Processor Unit (CPU) 
c. the Module Control Unit (MCU) 
d. a typical memory module 
e. the Input/Output Processor (IOP) 
f. the Multiplexer Channel 
g. the Selector Channel 

In addition, sequences of operations for CPU transfers to 
and from memory are given, as well as 1/0 transfers by way 
of both the Multiplexer Channel and the Selector Channel. 

As much as possible, correct nomenclature has been 
applied. A list of mnemonics and abbreviations used in this 
section is given in table 8-1, at the end of this section. 

BUS SYSTEM 

The bus system is a network of data and control lines which 
are necessary to effect the transfer of data between 
modules and between 1/0 devices and memory. Figures 8-1 
and 8-2 show, respectively, the electrical and physical 
configuration of the system buses. Figure 8-1 represents a 
four-module system, consisting of a CPU/IOP module, two 
primary memory modules, and a high-speed channel 
module. The 1/0 system includes two Multiplexer Channels, 
although there may be any practical number; each Multi­
plexer Channel can accommodate up to 16 device control­
lers. The Port Controller is shown with two Selector Chan­
nels, each of which can accommodate up to eight device 
controllers. There may be additional Port Controllers, each 
of which will be assigned a module number. 

CENTRAL DATA BUS. All communications and transfers 
of data between modules occur by way of the cen"tral data 
bus. This bus consists of a 50-conductor flat cable which 
connects together each Module Control Unit (MCU) and 
each Port Controller in the system. See both figures 8-1 
and 8-2. (Figure 8-2 does not illustrate the central data bus 
terminator cards, which are attached to each end of the 
bus.) 

IOP BUS. The 1/0 Processor (IOP) is connected to every 
device controller in the system by the !OP bus. As ex­
plained later, Multiplexer Channels are also connected to 
this bus. The IOP bus provides the means for the IOP (in 
one direction) to send control signals and control words to 
any device controller and (in the reverse direction) to 
accept interrupts from the device controllers. For multi­
plexed SIO devices, all data transmissions also occur via the 
IOP bus. For high-speed devices on a selector channel, data 
transmissions occur via the IOP bus only for the direct 1/0 
instructions (RIO, WIO, CIO, and TIO). 

SELECTOR CHANNEL BUS. The selector channel bus 
(one per Selector Channel) provides the communication 
path for a Selector Channel to select one of up to eight 
devices for transmission. Data transmissions on the channel 
bus, occurring as a result of an SIO instruction, are by 
block transfer (data burst). Only one device on any channel 
can be selected at a time, and it will monopolize the 
channel until the device's 1/0 program is finished. The Port 
Controller, however, can service all four channels simultane­
ously, on a word-by-word basis. 

MULTIPLEXER CHANNEL BUS. With a few minor differ­
ences in signal nomenclatures, the multiplexer channel bus 
is virtually identical to the selector channel bus. This allows 
certain device controllers, such as high-speed discs, to be 
connected interchangeably to either bus. The difference is 
that data transmissions are under control of the Multiplexer 
Channel instead of a Selector Channel. All data trans­
missions, in this case, are via the IOP bus and are multi­
plexed among the devices on a word-by-word basis. (The 
equivalent data lines on the channel bus are used as service 
request lines on the multiplexer channel bus.) 

POWER BUS. The power bus, unlike the flat cable signal 
buses discussed above, is a rigid printed circuit board. 
Terminal strips on the right side of each board (in fig­
ure 8-2) accept the power wires from the power supply, 
which is mounted to the rear of the cabinet. However, some 
1/0 bus lines and the system clock are also routed along the 
power bus, as indicated by the small flat cables shown 
attached to the power bus in the figure. 
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CENTRAL PROCESSOR UNIT 

The CPU portion of the CPU /IOP module logically consists 
of three sections, as shown in figure 8-3. The Instruction 
Decoder receives an instruction word from memory and 
translates it into a microprogram starting address; the 
microprogram is then read out of ROM (read-only memory) 
and is decoded into a set sequence of control signals. The 
Processor Registers include 20 flip-flop registers that can be 
loaded from the U-bus (i.e., output of Arithmetic Logic) 

8-2 

and read onto the R-bus and/or S-bus (inputs to Arithmetic 
Logic). The Arithmetic Logic basically executes various 
functions (add, subtract, etc.) on the R- and S-bus inputs, 
with or without a shift, and outputs the result to either the 
CPU Output Register (for transmission out of the module) 
or the U-bus (for storage in one of the internal registers). 

CPU elements identified in figure 8-3 are briefly described 
in the following paragraphs. (Figure 8-4, shown facing 
figure 8-3 in order to show MCU interconnections, will be 
discussed later.) 
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INSTRU CTION DECOD ER 

NEXT INSTRUCTION REGISTER. The Next Instruction 
Register is loaded with an instruction from memory by a 
procedure which is described under the heading, Central 
Data Bus Transmissions. 

CURRENT INSTRUCTION REGISTER. The Current 
Instruction Register contains the instruction that is cur-

rently being executed. It is loaded from the Next Instruc­
tion Register by a NEXT signal from the microprogram. 
The reason for having two instruction registers is so that 
one instruction can be executing while another is being 
fetched from memory. 

LOOK-UP TABLE. The Look-Up Table, together with a 
preliminary address generator, provides two stages of 
decoding to produce a microprogra 1;1 starting address from 
the instruction bits in the Current Instruction Register. 
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ROM ADDRESS REGISTER. The ROM Address Register 
(RAR) supplies the address of each microprogram word to 
the Read-Only Memory. It is given a starting address from 
the Look-Up Table and is thereafter automatically incre­
mented every 175 nanoseconds until the end of the micro­
program for that instruction is reached. However, during 
the execution of a microprogram, the RAR contents may 
be forced to some other address value, such as for a micro­
program jump or jump-to-subroutine. Although not shown 
in figure 8-3, the ROM Address Register can be loaded from 
the ROM Output Registers, the U-bus, and the Hardware 
Maintenance Panel. When the microprogram does a jump­
to-subroutine, the current ROM address is saved in the Save 
ROM Address Register; upon return from the subroutine, 
the saved value is loaded back into the ROM Address 
Register. 

READ-ONLY MEMORY. The Read-Only Memory (ROM) 
accepts 12-bit addresses from RAR and outputs the 32-bit 
microinstruction words of a microprogram to the ROM 
Output Registers. There is at least one microprogram in 
ROM for each machine instruction. For example, instruc­
tions which affect the top-of-stack will first call a micro­
program routine to check that there are enough filled or 
vacant top-of-stack registers to carry out the operation; 

MOD 

6 
SEL 

TO 
2 

NEXT 

BUSL 

BUSH / DATA 

11 

SPC 
ST 

OPINP 

NIP 

MCU 
OP 

Encoder 

NIP 

FF 

Mem Read 

OPINP 

FF 

FROM 
Comparator 

TO 
Comparator 

Functional Operation 

then, after possibly one or more memory transfers to adjust 
the stack, the microprogram for the instruction may begin. 

ROM OUTPUT REGISTERS. There are two ROM Output 
Registers (ROR), numbered 1 and 2. The 32-bit output 
from ROM is loaded into RORl on each clock cycle (175 
nanoseconds). On the next clock cycle, five of the seven 
fields of the microinstruction word are transferred from 
RORl to ROR2 (while RORl is receiving the next micro­
instruction word). Thus it takes two cycles to initially "fill 
the pipeline", but thereafter ROR2 receives a new micro­
instruction word on each successive cycle. The reason for 
having two ROM Output Registers is so that the S and R 
fields can be decoded in advance of the rest of the word. 
Thus S- and R-bus selection will have occurred, and the 
selected data will be ready and waiting at the S- and R-bus 
Register outputs by the time the rest of the word is 
decoded from ROR2. 

ROM OUTPUT DECODERS. Each field of the ROM out­
put word is separately decoded. The S-bus field selects one 
of 31 registers (or sets of lines) to be loaded into the S-bus 
Register. (Only 22 are shown in figure 8-3.) The Store field 
selects one of 22 registers (not all shown) in which to store 
the U-bus data. In addition, the PUSH and central data bus 
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request signals also come from this field. The Function field 
specifies the function that the Arithmetic Logic Unit is to 
perform on the two operands in the R- and S-bus Registers. 
The Skip field determines what condition shall be tested for 
a possible skip; if the condition is met (e.g., U-bus positive/ 
negative, odd/even, zero /non-zero, overflow set, etc.). 
ROR2 is caused to execute a NOP (no operation), effec­
tively skipping one microinstruction word. Other signals, 
such as NEXT, also come from the Skip field. The Shift 
field specifies how the T-bus data will be shifted onto the 
U-bus (right one, left one, straight through, etc.). The 
Special field has many varied uses including the generation 
of POP and memory opcode signals. The R-bus field selects 
one of 15 processor registers (or the U-bus) for loading into 
the R-bus Register. 

PROC ESSOR REGISTERS 

There are 22 processor registers, as shown in figure 8-3. 
These registers may be selectively loaded from the U-bus 
(except the Operand register, which is loaded from the 
central data bus, and the interrupt condition registers 
CPXl and CPX2), and selectively read into the R- and /or 
S-bus Registers. Figure 8-3 groups together those registers 
that are similarly read out. For example, the X-, Z- , PL-, 
SPO, and SR-registers may be read out only to the R-bus 
Register. TRO through TR3 and SPl registers may be read 
out to either the R- or S-bus Registers. The P- , PB-, (etc.) 
through OPND Registers may be read out only to the S-bus 
Register. 

The purposes of most of the processor registers are more 
appropriately discussed elsewhere in this manual, and so 
will not be discussed here. However, a few of these registers 
are not accessible from outside the CPU, and so are shown 
nowhere else except in figure 8-3. For example, the four 
scratch pad registers, SPO, SPl, SP2, and SP3, are used only 
by the ROM microprograms. These registers are available to 
the microprograms for holding temporary values, such as to 
contain the middle word during triple-word shifts (while 
the R- and S-bus Registers contain the most and least 
significant words, respectively). 

The logic consisting of the namer, two mappers, the four 
TR registers (TRO through TR3) and the SR-register, is 
designated as the Top-of-stack Register Renamer, or simply 
the re namer. This logic permits fast access to the top-of­
stack elements by renaming the registers when stack ele­
ments are added or deleted (rather than transferring data 
from register to register). The ROM microprograms know 
the top-of-stack elements (when in the CPU) only by the 
names RA (top), RB, RC , and RD. The namer includes a 
two-bit naming register to tell the mappers which of the 
four Top-of-stack Registers (TRO through TR3) is "RA", 
and "RB", etc. This two-bit naming register is decremented 
each time a stack element is added (PUSH) and incre­
mented each time a stack element is deleted (POP). To keep 
track of how many elements are in the TR registers , the 
three-bit SR-register is incremented by PUSH and decre-
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mented by POP , in step with the naming register. When the 
SR-register count is zero, there are no elements in the TR 
registers; this would tell a ROM microprogram not to look 
for RA in the CPU, and that one or more memory fetches 
may be required. 

The pre-adder is used to gain a speed increase for instruc­
tions which use or perform computations on bits in the 
Current Instruction Register. For example, when executing 
indexed memory reference instructions, the proper dis­
placement field of the Current Instruction Register is pre­
added to the contents of the X-register. Thus the final 
absolute address can be computed in only one cycle by 
adding the output of the pre-adder to the contents of the 
base register (P, DB, Q, or S). 

AR ITHMETI C LOG IC 

The foregoing discussions have touched on about half of 
the arithmetic logic blocks. The following paragraph sum­
marizes these blocks; this will be followed by descriptions 
of the previously unmentioned blocks. 

The R-bus and S-bus read selection circuits, under control 
of the ROM R- and S-bus fields, read one of the processor 
registers (or a set of bus lines) into the R-bus and S-bus 
Registers. Then , under control of the ROM Function field, 
the Arithmetic Logic Unit performs an arithmetic or logical 
function on the R- and S-bus operands. And under control 
of the Shift field , the result on the T-bus is transferred 
either directly or shifted onto the U-bus. 

CPU OUTPUT REGISTER. There are actually two CPU 
Output Registers, though both are represented as a single 
register for simplicity in figure 8-3. These registers are used 
as buffers for sending information to memory. If the ROM 
Store field specifies DATA, BUSH (Bus High) , or BUSL 
(Bus Low), the U-bus is loaded into the CPU Output 
Register. If the ROM Skip field specifies NEXT (to fetch 
next instruction), the P-register is loaded into the CPU 
Output Register. When the transmission to memory occurs 
(by a procedure described later under the heading, Central 
Data Bus Transmissions), a SEL (Select) signal reads the 
buffer contents out to the central data bus. 

INTERLEAVER. The interleaver is a circuit which provides 
mechanical switches for the user to select one of two 
memory interleaving schemes. Memory interleaving causes 
the memory transmissions for consecutive addresses to be 
directed alternately between two memory modules or, for 
four-way interleaving, rotationally among four memory 
modules. This is illustrated in figure 8-5. Note that for 
two-way interleaving, all even addresses are directed to one 
module and all odd addresses to the other module. For 
four-way interleaving , the two least significant bits of the 
address are used for module selection. 

The advantage of interleaving is that, if sequential addresses 
are being accessed , it allows memory cycles to overlap; that 
is, a second transmission to memory may be made while the 
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first is still going through its memory cycle in another 
module. Logically , interleaving is accomplished by ex­
changing address bits as shown in the lower box of fig­
ure 8-5. In the CPU, the interchanging is done only to 
obtain a module number; the address sent out on the 
central data bus is unmodified. In the memory module, the 
address word itself is altered by the specified bit exchange, 
so that all memory locations can be filled. (Obviously, if a 
module used only even-numbered addresses, only half of its 
locations could be used.) An incidental effect of the bit 
exchange is that addresses which were originally consecu­
tive will not be adjacent within the memory module; this is 
of no consequence in the operation of the system. 

MAPPER. The mapper (i.e., memory mapper) examines the 
three most significant bits of each address word from the 
output of the interleaver, and outputs a module number on 
the TO lines which corresponds to that address. Jumpers or 
switches are used to configure the mapper appropriately for 
the quantity and sizes of memory modules existent in the 
system. 

MODULE CONTROL UNIT 

Each module gains access to the central data bus by way of 
its Module Control Unit, or MCU. The Module Control Unit 
in each module may be a dedicated card, distributed on 
several cards, or located on a small part of one card. 
However, they all perform essentially the same function, 
and that is to establish the priority of transmissions on the 
central data bus. 

Figure 8-4 illustrates in simplified form the logic of the 
CPU Module Control Unit. This MCU is representative, and 
will be used as an example in the following discussions. 

Since the purpose of the MCU is to effect bus trans­
missions, the logic is best described by following the 
sequence of operations involved in different types of bus 
transmissions. Refer to the next major heading , Central 
Data Bus Transmissions. 

CENTRAL DATA BUS 
TRANSMISSIONS 

The procedures discussed under this heading describe how 
an instruction is fetched, how an operand is fetched and 
stored , and how a module is given an operation code. 
Figures 8-3 and 8-4 are used as references throughout these 
procedures. 
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As mentioned before, the diagrams are simplified, and so 
not all features are shown. For example, none of the error 
checking logic is shown, nor is the gating that prevents 
undesired simultaneous operations. Flip-flop resets are not 
shown unless they are particularly significant, and clock 
inputs are not shown at all. Functionally similar logic has 
been combined in some cases, whereas in actual fact some 
circuits are duplicated in the interest of speed. 

TO FETCH NEXT INSTRUCTION 

CPU TRANSMIT. The first step in fetching an instruction is 
to send an address to memory and tell memory what to do 
with that address (read contents and send back to CPU). 
The following three paragraphs describe this step. 

When a NEXT micro-order is decoded from the ROM Skip 
field, a NEXT signal loads the contents of the P-register 
(address of instruction to be fetched) into the CPU Output 
Register. NEXT also transfers the Next Instruction Register 
contents into the Current Instruction Register (CIR). The 
CPU may proceed to execute the CIR contents while the 
following operations are in progress. 

The objective now is to refill the Next Instruction Register. 
Assuming that the transmission may proceed, NEXT sets 
the LREQ (Low Request) flip-flop in the MCU. (The differ­
ence between low request and high request is that low 
request always checks to see if the destination module is 
ready to receive a transmission; high request assumes that 
the destination module is expecting the transmission, so 
readiness is not checked.) By this time, the MCU Operation 
Decoder has encoded the appropriate memory opcode 
(MOP), which is now in the MOP register. The memory 
opcode is a two-bit code which tells memory what to do 
when it receives bus data. The four possible codes are NOP 
(No Operation) , CW (Clear/Write), RR (Read /Restore) , and 
RNW (Read /No Write). In this case the memory opcode is 
RR. NEXT locks this code in the MOP register, and sets the 
NIP (Next In Process) flip-flop. Setting NIP "opens" the 
Next Instruction Register, so that it will load all central 
data bus transmissions until told to stop (by resetting NIP, 
later). NEXT also locks the TO register, which now con­
tains the destination module number from the mapper. 

The LREQ signal reads the TO register contents into the 
Ready Comparator, which checks the RDY (Ready) line 
from the intended destination to see if that module is ready 
to receive. If not, nothing further happens until the RDY 
line is true. The output of the Ready Comparator (through 
a set of changeable jumpers) pulls low on the Enable (ENB) 
line for this module number. Since each module cannot 
transmit unless all ENB lines of higher priority modules are 
high, this pulling low on one ENB line disables all lower 
priority modules (those with higher module numbers). Pro­
vided that no higher priority module has pulled low on its 
ENB line to this module (through a second set of jumpers), 
and provided the 1/0 Processor is not requesting the bus, 
the output of the Ready Comparator now sets the Select 
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(SEL) flip-flop. The SEL signal reads out the CPU Output 
Register contents to the central data bus, as well as the TO 
and FROM module numbers and the memory opcode. SEL 
also pulls low on the destination module's RDY line for one 
cycle, so that other modules will not assume the memory 
module is ready before memory has a chance to pull the 
RDY line low itself on the next cycle. 

MEMORY RECEIVE AND TRANSMIT. The next step in 
the process is for memory to receive the address from the 
bus, read the contents of the addressed location, and trans­
mit the contents back to the CPU. The following two 
paragraphs describe this step. See figure 8-6. 

The TO Comparator identifies the code on the TO lines as 
its own module number and sets a Start flip-flop. The Start 
signal locks the address word from the bus into the address 
register, and locks the FROM bits into the FROM register. 
The Start signal also keeps the module's RDY line pulled 
low (the CPU had pulled it low temporarily in the 
preceding cycle), and together with the decoded memory 
opcode begins the read/write memory cycle. The X-Y 
drivers begin to read the contents of the addressed memory 

location into the data register, via the sense amplifiers. 
Meanwhile, after a fixed delay, the MCU begins the process 
of requesting access to the bus by setting the HREQ flip­
flop. (Since memory transmits only to modules that are 
expecting the transmission, only high requests are used.) 
The HREQ signal pulls low its ENB line to lower priority 
modules and, provided no higher priority module has pulled 
low on its ENB to this module, sets the Select flip-flop. 

By this time, the memory location contents are in the data 
register, and the SEL signal reads the contents out to the 
central data bus. SEL also reads out the wired FROM code 
and the TO code (which is simply the saved FROM code, 
since transmission is back to the CPU). 

CPU RECEIVE. The last step in the process is for the CPU 
to receive the instruction word, which is now on the central 
data bus, and load it into the Next Instruction Register. 
The following paragraph describes this step. Refer back to 
figures 8-3 and 8-4. 
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The TO Comparator identifies the code on the TO lines as 
its own module number, and gives a true output. Also, the 
FROM Comparator identifies the transmission as the one it 
was waiting for by comparing the saved TO register con­
tents with the FROM lines of the bus; it therefore also gives 
a true output. (If the FROM code is not the expected one, 
it is loaded into the FROM register, and the bus infor­
mation is processed as an interrupt from the identified 
module.) The two true outputs together reset the NIP 
flip-flop. The Next Instruction Register, which up until 
now has been freely loading all bus transmissions into itself, 
is now inhibited from further loading, since it now contains 
the expected next instruction. 

TO FETCH AN OPERAND 

The procedure for fetching an operand from memory is 
very similar to the procedure for fetching an instruction. 
The main differences are that the initiating signals are 
different , and the receiving register is the Operand (OPND) 
Register rather than the Next Instruction Register. The 
following descriptions are therefore somewhat abbreviated , 
primarily giving the overall flow of information. Refer back 
to the preceding descriptions if further logical details are 
necessary. 

CPU TRANSMIT. The process of sending an address to 
memory begins when a BUSL (Bus Low) signal from the 
ROM Store field loads the U-bus contents into the CPU 
Output Register and sets the LREQ flip-flop. The MCU 
Operation Decoder gives a memory opcode to the MOP 
register and sets the OPINP (Operand in Process) flip-flop . 
The OPND register now begins to load all bus transmissions. 
The LREQ signal causes the Ready Comparator to check if 
the destination module is ready and, if so, enters the 
priority structure. When priority allows (ENB present), the 
Select flip-flop is set, causing the address in the CPU Out­
put Register to be read out to the central data bus. 

MEMORY RECEIVE AND TRANSMIT. The memory 
module, after recognizing its TO code and setting the Start 
flip-flop, locks the address from the bus into the address 
register. The Start signal, together with the decoded 
memory opcode, initiates the reading of the addressed 
location into the data register. Meanwhile , the HREQ flip­
flop is set and priority is established. When ENB is present, 
the Select flip-flop is set causing the operand, now in the 
data register, to be read out to the central data bus. The 
saved FROM code is used to identify the destination (TO) 
as the CPU module. 

CPU RECEIVE. The TO and FROM Comparators together 
cause the OPINP flip-flop to reset, thus locking the operand 
from the bus into the OPND register. 
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TO STORE AN OPERAND 

Storing an operand in memory involves much the same 
logic operations that were discussed in the preceding fetch 
transmissions. The main difference here is that instead of 
being a round trip, CPU to memory and then memory to 
CPU, there are two consecutive transmissions from CPU to 
memory. The first transmission is the address, the second is 
the operand . The following paragraphs, again condensed to 
illustrate the overall flow of information, describe these 
transmissions. 

CPU ADDRESS TRANSMIT. A BUSL signal from the 
ROM Store field loads the U-bus contents into the CPU 
Output Register and sets the LREQ flip-flop. The MCU 
Operation Decoder gives a memory opcode to the MOP 
register; in this case the opcode is Clear/Write rather than 
Read/Restore as in the previous cases. (Neither NIP nor 
OPINP flip-flops are set.) After checking if the destination 
module is ready and ENB is present, the LREQ signal 
causes the Select flip-flop to be set. This reads out the 
address to the central data bus. 

MEMORY RECEIVE. The memory module, after recog­
nizing its TO code and setting the Start flip-flop, locks the 
address from the bus into the address register. The Start 
signal, together with the decoded memory opcode , causes a 
" clear" half-cycle. The Start flip-flop remains set, and the 
FROM , MOP and address registers remain locked. Also the 
RDY line remains low, so no other modules may send a 
new address to this memory module. 

CPU DATA TRANSMIT. The CPU, meanwhile, has put the 
operand on the U-bus, and a DATA signal from the ROM 
Store field loads it into the CPU Output Register. The 
DATA signal also sets the HREQ flip-flop. (Destination 
readiness does not need to be checked, since memory is 
expecting a data transmission from this module.) After 
priority checks, the HREQ signal sets the Select flip-flop , 
which reads out the operand to the central data bus. (The 
memory opcode is NOP, since memory is already holding 
the appropriate opcode.) 

MEMORY RECEIVE. In the memory module the TO Com­
parator recognizes its TO code and the FROM Comparator 
verifies transmission from the correct module. The true 
outputs from both of these comparators cause the operand 
from the bus to be loaded into the data register, and 
additionally cause the memory timing to proceed with the 
second half of the clear/write memory cycle. This causes 
the operand to be stored into the addressed location. 

TO COMMA ND A MODU LE 

The instruction set includes an instruction, CMD, which 
permits privileged executive programs to issue commands 
directly to a module (assuming the module is equipped to 
handle such commands). When programmed, the CMD 



instruction takes a 16-bit word from the top of the stack 
and sends it to a module whose module number (and 
two-bit opcode) are given in another word in the stack. (See 
CMD instruction definition.) The logic operations involved 
in this type of transfer are described in the following 
paragraph. 

A BUSH signal from the ROM Store field loads the word 
containing the opcode and intended module number into 
the CPU Output Register. The TO code is the CPU's own 
module number so that, after select occurs, the CPU trans­
mits to itself. The five effective bits from the CPU Output 
Register are loaded by a CRL (Control) signal into the CMD 
(Command) and CTO (Command TO) registers in the MCU. 
The CPU, meanwhile, has read the top-of-stack word onto 
the U-bus, and a BUSL signal from the ROM Store field 
loads this word into the CPU Output Register. A CMD 
signal from the MCU Operation Decoder enables the CMD 
and CTO registers to be read out when select occurs, rather 
than MOP and TO respectively. Thus when the Select 
flip-flop is set, the 16-bit word in the CPU Output Register 
is transmitted to the module specified by CTO, with the 
CMD opcode on the MOP lines. 

1/0 SYSTEM 

The remainder of this section deals with components of the 
input/output system. Before proceeding with detailed 
descriptions, an overall view of the 1/0 system will be 
presented. First, an overall discussion of 1/0 priorities is 
given, followed by a summary of data routes and a com­
parison of basic transfer modes. Figures 8-7, 8-8, and 8-9 
are used as the bases of these discussions. 

1/0 PRIORITIES 

There are two types of priority to be considered in the 1/0 
system: interrupt priority and service priority. That is, the 
ability of a device to interrupt the CPU is based on a 
priority structure that is separate and distinct from the 
priority structure that handles service requests. 

Figure 8-7 partially illustrates the priority structure, 
showing the use of " polls" to establish priority. (This figure 
is a modified copy of figure 8-1.) 

Functional Operation 

The interrupt poll determines the priorities of all 1/0 inter­
rupts. As shown in figure 8-7, the interrupt poll originates 
in the 1/0 Processor and is wired in series through every 
device controller in the system. The proximity to the I /O 
Processor on this line determines the interrupt priority of 
each controller. The desired wiring sequence is dependent 
on system configuration. Physically, the interrupt poll is a 
twisted-pair wire (signal and ground) connected into and 
out of each unit at INT POLL IN and INT POLL OUT 
terminals. Functionally, the interrupt poll is an I/O Proces­
sor response to a received Interrupt Request (INTREQ line 
in the IOP bus). The poll propagates through each non­
requesting unit and stops at the first requesting unit it 
encounters. That unit will then return INTACK (Interrupt 
Acknowledge) and its device number to the 1/0 Processor. 
The 1/0 Processor accordingly generates an interrupt signal 
to the CPU. When the CPU is ready to process the inter­
rupt, it will use the device number saved in the 1/0 Proces­
sor (Interrupt DEVNO register) to refer to the device. 

Service priority, unlike the simple series-linked structure of 
interrupt priority, is determined in two steps. For Multi­
plexer Channel devices, the first level determines the 
priority among two or more Multiplexer Channels. The 
second level determines the priority of each device con­
troller associated with that Multiplexer Channel. Figure 8-7 
shows only the first-level determination of priority among 
Multiplexer Channels by means of a data poll; the re­
maining priority determination is by logic which has not 
been detailed in the figure. The data poll operates very 
much like the interrupt poll. That is, when the 1/0 Proces­
sor receives a Service Request, it sends out a data poll. The 
first requesting Multiplexer Channel encountered by the 
poll stops propagation of the poll, and proceeds to specify 
the kind of service required. Since priority is therefore 
determined by proximity to the 1/0 Processor, the poll is 
wired through each Multiplexer Channel in the desired 
priority sequence. 

The second-level priority determination for Multiplexer 
Channel devices is by a service request number. Since each 
Multiplexer Channel can handle 16 device controllers, there 
are 16 service request numbers (0 through 15 ). Each device 
controller associated with a given Multiplexer Channel is 
uniquely wired by a jumper to connect to one of these 16 
numbers. This, then, gives the device controller a specific 
priority level. Service request number 0 is highest priority; 
15 is lowest priority. 

(The service request number has no association with the 
device number. It is simply a convenient means by which a 
Multiplexer Channel can communicate with and assign 
priorities to its set of device controllers.) 

For high-speed device controllers , the Port Controller deter­
mines the first level of priority. Selector Channel 1 has 
highest priority and Selector Channel 4 has lowest priority. 
The second-level determination is a simple preemptive 
process: the first device to be given an SIO instruction , on a 
particular channel, will have exclusive use of that channel 
until its 1/0 program is finished. No further SIO instruc­
tions for devices connected to that channel can be honored 
until that time. 
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Figure 8-7. Interrupt Poll and Data Poll 

1/0 DATA ROUTES 

Figure 8-8 illustrates data transfer routes for both low­
speed and high-speed devices and for both direct 1/0 and 
SIO type instructions. The ten blocks represent one of each 
type of unit (one low-speed device controller, one Multi­
plexer Channel, one memory module, etc.), and correspond 
to the ten simplified logic diagrams presented in this 
section. 

MULTIPLEXER CHANNEL DEVICE. For direct 1/0 in­
structions, information is transferred to or from the top of 
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the stack in the CPU via the 1/0 Processor and IOP bus. The 
information could be device status (for TIO or rejected 
SIO, RIO, or WIO), control information (CIO), or data 
(RIO or WIO). For SIO operation, data is transferred to and 
from memory by way of the central data bus, 1/0 Proces­
sor, and IOP bus. 

SELECTOR CHANNEL DEVICE. For direct 1/0 instruc­
tions, the data route is the same as for Multiplexer Channel 
devices: to or from the top of the stack in the CPU via the 
1/0 Processor and IOP bus. For SIO operation, data is trans­
ferred to and from memory by way of the central data bus, 
Port Controller, Selector Channel , and channel bus. 
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TRANSFER MODES 

There are three basic modes of data transfer. One, direct 
I/0 , is relatively uncomplicated , consisting of the transfer 
of a single word (per CPU instruction) between the CPU 
and a device controller; the Multiplexer Channel and 
Selector Channel are not involved. Direct I/O operation will 
be described at the end of this section. 

The other two transfer modes are SIO-type transfers. That 
is, the CPU gives the I/O system a command to "start I/O" 
for a particular device, and the I/O system proceeds to 
execute an I/O program for that device. The program, 
which resides in memory , controls the input and output of 
data. 

Specifically the two SIO modes are: moderate-speed trans­
fers via the Multiplexer Channel, and high-speed transfers 
via the Selector Channel. Figure 8-8 illustrates the differ­
ence in data routes for these two modes; however, the 
significant difference is in the sequencing of transfers for 
multiple device controllers. The following paragraphs 
describe the differences between a multiplexer and a 
selector, with reference to figure 8-9. 

MULTIPLEXER. A multiplexer transfers data from many 
sources on an apparently simultaneous basis. Thus it is the 
function of the Multiplexer Channel to perform one dis­
crete operation for one device controller (such as to trans­
fer one word to or from memory) , and then check to see 
which device controller has highest priority for the next 
discrete operation. 

Referring to figure 8-9 , note that the Multiplexer Channel 
includes a 16-cell solid-state memory. Each location in this 
memory corresponds to one of the 16 device controllers 
connected to the multiplexer channel bus, and at all times 
it contains the information required to execute the next 
operation for that device. Typically this would be the 
current I/O program word . When a particular device con­
troller is selected for service, the stored word is read out to 
a set of registers and the Multiplexer Channel proceeds to 
execute the indicated operation. Then the information is 
updated for the next anticipated operation and is stored 
back in the memory cell. 

The overall Multiplexer Channel operating sequence is as 
follows. Each time a device controller requires a new I/O 
program word, it causes the Multiplexer Channel to fetch 
an address from the Device Reference Table (1) and loads it 
into its solid-state memory location. (Some other operation 
for another device could be interleaved after each of these 
steps.) Then (2) , the I/O program doubleword is fetched 
and loaded into the same memory location. This I/O pro­
gram word is then read out (3), control signals are issued to 
the device controller ( 4), and the updated operation 
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information is stored back into the memory cell (5 ). If the 
device controller was commanded to transfer data, it issues 
a service request when it is ready (6) , causing another 
read-out of the stored information (7) and a transfer of 
data (8); updated operation information is re-stored (9). 
Steps 6 through 9 are repeated for each word transferred. 

SELECTOR. A selector transfers data from many sources in 
a data block manner. That is , it locks onto one device 
controller until I/O program for that device is completed. 
Then a check is made to see which device controller has 
highest priority for the next block transfer. Since only one 
I/O program will be in progress as long as a particular device 
is selected, the selector is designed to facilitate very high 
speed transfers. 

As shown in figure 8-9, the Selector Channel uses double­
buffering for both data and I/O program words. For data, 
this permits device/ channel transfers to overlap channel / 
memory transfers. For I/O program words, this permits the 
next program word to be fetched from memory while the 
current word is active. Both of these features contribute to 
the speed capability. In addition, the necessity to 
repeatedly fetch a DRT entry for the address of the current 
I/O program word (as is done by the Multiplexer Channel) 
is eliminated by including a Program Counter in the 
Selector Channel. The Program Counter is loaded with the 
initial address contained in the DRT, but is thereafter 
incremented (or altered for jumps) internally in the 
Selector Channel. To provide software compatibility wif'· 
Multiplexer Channel transfers, the final value of the Pro­
gram Counter is automatically re-stored in the DR T at the 
end of the program. Software cannot distinguish whether 
the transfer occurred by way of the Multiplexer Channel or 
the Selector Channel. 

The overall Selector Channel operating sequence is as 
follows. When the device controller is commanded by the 
CPU to "start I/O" , it causes the Selector Channel to fetch 
the starting address of the I/O program from the Device 
Reference Table (A). This address is used to fetch an I/O 
program doubleword (B) and load it into either the active 
control registers or, during order prefetch , into the 
buffers (C). The Program Counter is incremented after each 
fetch. Control signals are issued to the device controller 
(D) , and (E) if the command is a "read", the device con­
troller reads data into buffer A (or buffer B if A is full) ; if 
the command is a "write" , the device controller writes data 
from buffer A (or buffer B if A is empty). Meanwhile (F), 
the Selector Channel attempts to keep both buffers full for 
output or both empty for input, by transmissions to or 
from memory. At the end of the block transfer, the next I/0 
program word is fetched (repeat back to step B). At the end 
of the I/O program, the Selector Channel stores its Program 
Counter contents into the Device Reference Table (G). 
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1/0 PROCESSOR 
Figure 8-10 is a simplified logic diagram of the I/O Proces­
sor portion of the CPU /IOP module. The signal lines at the 
left of the diagram are the IOP bus. The lines at the top 
connect to the CPU (see figure 8-3). Figure 8-11 , shown 
facing figure 8-10 in order to show MCU interconnections, 
will be discussed later under the heading IOP Module Con­
trol Unit. 

IOP LOGIC 

Basically, the functions of the I/O Processor are to: 1) 
execute direct I/O instructions and pass the results to the 
CPU, and 2) transfer data and I/0 program words between 
memory and device controllers, so that the CPU may con­
tinue to execute other instructions without further inter­
vention. The operations performed by the I/O Processor 

l(See CPU ) 
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Store 

' ~ 
• w fl5 '-- r=D-l Mask --i 
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will be seen throughout the remainder of this section, when 
actual transfer sequences are discussed. The following para­
graphs describe the blocks identified in figure 8-10. 

IOP CONTROL REGISTER. This register receives the I /0 
instruction information, which has been combined by the 
CPU into a single word. The instruction code from the code 
segment has been translated into a 3-bit command 
(IOCMD). This can now be read out onto the IOCMD lines 
of the IOP bus. The device number has been obtained from 
the stack, and can now be read out on the DEVNO lines of 
the IOP bus. The SO bit (Service Out) tells the addressed 
device to accept and respond to the accompanying infor­
mation. (The device controller must return SI, Service In.) 

IOP CONTROL. This block represents sequencing logic for 
transfers between the device and memory , and between the 
device and the CPU. Each of the lines shown entering or 
leaving this block will be discussed later when transfer 
sequences are described. 
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INTERRUPT CONTROL. The interrupt control logic 
accepts an Interrupt Request (INTREQ) from the device 
controllers on the IOP bus, interrogates the device con­
trollers with INTPOLL to find the highest-priority request, 
and, when Interrupt Acknowledge (INTACK) is received, 
loads the device address into the Interrupt DEVNO register. 
It then issues an interrupt (1/0 Int) signal to the CPU. 

INT DEVNO. The Interrupt DEVNO register holds the 
device number of the interrupting device so that, upon 
command, the CPU may read the contents onto its S-bus 
for interrupt processing. 

DATA OUTPUT REGISTER. There are actually two Data 
Output Registers, one for memory data received from the 
central data bus, and one for direct data received from the 
S-bus of the CPU. For simplicity figure 8-10 combines the 
two registers into one. Signals from IOP Control can either 
read the contents out onto the IOP bus (OUT), or transfer 
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the contents into the Memory Data Input register (for 
re-storing a DRT entry). 

DATA INPUT REGISTERS. There are two input registers. 
The Memory Data Input register is used for sending data to 
memory via the central data bus. This register is loaded 
either from the IOP bus (In) or, for DRT entry re-storing, 
from the Data Output Register. When doing a DR T store, 
the Memory Data Input register is incremented by two 
before the transfer is made. The second input register may 
be used either as a Direct Data Input register or as a 
Memory Address register (MAR). It is loaded from the IOP 
bus. When direct 1/0 is being executed, the register con­
tents are read onto the CPU S-bus. When addressing mem­
ory, the register contents are read out to the central data 
bus. 

INTERLEAVER AND MAPPER. These circuits are the 
same as described earlier for the CPU, under the Arithmetic 
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Logic heading. The purpose of these circuits is to derive an 
appropriate module number when transmitting to memory. 
The memory module number for each transmission is 
loaded into the IOTO register. 

IOP MODULE CONTROL UNIT 

Figure 8-11 illustrates the Module Control Unit for the I/O 
Processor. This MCU is a simplified form of the CPU MCU 
discussed earlier. Both of these MCUs, in fact, are 
physically located on the same printed-circuit card. They 
operate basically in parallel, but not independently. Since 
both MCUs share the same access to the central data bus, it 
is necessary to resolve priority when both IOP and CPU 
simultaneously attempt to use the bus. 

Priority is resolved such that all IOP requests take prece­
dence over CPU requests, except that a CPU high request 
takes precedence over an IOP low request. This exception 
means simply that the CPU is in the middle of a transfer, 
having sent an address to memory, and the high request is 
an attempt to follow up by sending the data. The CPU low 
request, on the other hand, represents the beginning of a 
transfer (attempt to send an address) and so is of lesser 
importance. 

Note the logic in figures 8-11 and 8-4 which accomplishes 
this priority resolution. In figure 8-11, the IOP REQ is 
generated when either a low request (IOLRQ) or a high 
request (IOHRQ) is about to set one of the Select flip-flops 
(LO SEL or HI SEL) . This signal, in figure 8-4, inhibits the 
CPU's Select flip-flop from being set. Note, however, that a 
CPU HREQ signal from the CPU can inhibit IOLRQ from 
generating the IOP REQ signal. 

The IOINP flip-flop provides a function similar to the NIP 
and OPINP flip-flops in the CPU MCU. IOINP (I/O In 
Process) is set when a request sets LO SEL, if the memory 
opcode (MOP) is Read/Restore. When data is returned from 
memory the FROM Comparator in figure 8-11 checks that 
the transmission is from the same memory module that the 
address was sent to (by comparing with the contents of the 
TO register). Also, the TO Comparator in figure 8-4 checks 
that the transmission is to "this module". Together, the 
outputs of these two comparators generate an IOSTRB (I/O 
Strobe) signal which resets the IOINP flip-flop. This causes 
the IOP to lock the Data Output Register, since it now 
contains the correct information from the central data bus. 
IOSTRB also tells IOP Control that the data is ready for 
output via the IOP bus. 

The Ready Comparator checks if a destination module is 
ready, so that an I/O low request can set the Low Select 
(LO SEL) flip-flop. Setting the LO SEL flip-flop causes the 
contents of the Data Input Register, FROM, TO, and MOP 
to be read out onto the central data bus for transmissions 
to memory. 
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MULTIPLEXER CHANNEL 

As explained earlier under the heading of Transfer Modes, 
the purpose of the Multiplexer Channel is to execute the 
I/O programs of up to 16 devices on a multiplexed (word­
by-word) basis. All data transfers for these 16 devices are 
also multiplexed on a word-by-word basis. A wired-in 
service request number in each device controller determines 
its priority in being serviced. 

Figures 8-12 and 8-13 show, in simplified form, the logic 
which accomplishes this purpose. Figure 8-13 is the Multi­
plexer Channel and figure 8-12 shows one device controller 
connected to the multiplexer channel bus (top of diagram). 
The IOP bus runs across the bottom of both diagrams and 
connects to the I/O Processor at the right. (See figure 8-10.) 

The following descriptions, which refer to these two fig­
ures, describe the major operations that were outlined 
briefly under the Transfer Modes heading. 

INITIALIZE 

When the CPU encounters an SIO instruction the CPU, 
under control of its SIO microprogram, outputs a command 
word to the IOP Control Register. (See figure 8-10.) The 
I/O Processor, in turn, relays this information to the device 
controller (figure 8-12) via the IOP bus. Note in figure 8-12 
that the device number on the bus (DEVNO) is compared 
with the internal wired device number. A true result, 
together with the SO (Service Out) signal from the I/O 
Processor, enables the IOCMD (I/O Command) to be 
decoded. The IOCMD in this case is SIO which, when 
decoded, sets the SR (Service Request) flip-flop. 

The Service Request is sent via the multiplexer channel bus 
to the Multiplexer Channel. (Since an SIO to a controller 
temporarily inhibits service requests from all other control­
lers, the only controller requesting is the one receiving the 
SIO.) The Priority Encoder then issues a 4-bit binary code 
which corresponds to the Service Request line number. The 
binary code is used as a "RAM Address", to enable one of 
the 16 locations in the solid-state memory. The solid-state 
memory consists of three separate "RAMs", or Random­
Access Memories, one each for the IOCW and IOAW parts 
of the I/O program doubleword, and one to specify the 
"state" (or next operation) - in this case a DRT fetch. The 
IOCW is contained in the Order RAM (16 bits), the IOAW 
is contained in the Address RAM (16 bits), and the state is 
contained in the state RAM (4 bits). Each of the 16 
addressable locations therefore contains 36 bits. 

For the initialize operation, the State RAM location for the 
requesting device is forced to the condition required for a 
DRT fetch. Once this is done, the Multiplexer Channel 
returns SI (Service In) to the I/O Processor. 



ORT FETCH 

The Service Request received at the Multiplexer Channel 
from the device controller causes HSREQ (the Multiplexer 
Channel's service request) to be issued to the 1/0 Processor, 
and also sets the SR Latch. Any of the 16 SR inputs can set 
this latch and generate HSREQ; however, only the highest 
priority request will be honored by the Priority Encoder. 

When the 1/ 0 Processor receives HSREQ , it issues DATA­
POLL to all Multiplexer Channels. The highest priority 
Multiplexer Channel stops the propagation of the poll 
(since SR Latch is set), and its transfer logic is enabled. 
First, the contents of the addressed RAM location are 
loaded into the State, Address, and Order Registers. The 
State bits tell the transfer logic to send out a command to 
the device controller via the multiplexer channel bus, along 
with the service request number signal (which is returned 
on the same line used for Service Request) and CHANSO 
(Channel Service Out). This command tells the device con­
troller to read out its device number to the IOP bus. 

Note: The approximately 20 command and 
response lines shown as part of the multi­
plexer channel bus have not been indi­
vidually identified, as they represent 
greater detail than is required at this level 
of discussion . 

The device controller, for a DRT fetch , reads out its device 
number (Shifted DEVNO) onto the IOD lines. Instead of 
being read onto the eight least significant lines of the bus (8 
through 15), the number is read onto lines 6 through 13, 
which is left-shifted by two bits. This effectively multiplies 
the number value by four, thus automatically providing the 
correct address for that device's DRT entry. (Remember 
that each device uses four locations in the DRT.) 

Meanwhile, the Multiplexer Channel is returning an SI 
(Service In) response to the 1/0 Processor, along with an 
IOCMD (1/0 Command) which tells the 1/0 Processor to 
accept the address existing on the IOD lines, and that a 
DR T fetch from that address is required. 

Now the 1/0 Processor proceeds to fetch the DRT entry , as 
follows. (Reference can be made to figures 8-10 and 8-11.) 
The 1/0 Processor issues IOLRQ to its MCU, with an 
appropriate MOP to read memory. When Select occurs, the 
address is transmitted to memory, and when memory 
returns the DRT entry contents, IOSTRB loads the word 
into the Data Output register. The contents of this register 
are then read out onto the IOD lines, and SO is issued. 

On receiving SO, the Multiplexer Channel loads the DRT 
word into the Address RAM , re-stores the Order register 
contents into the Order RAM, and sets the State RAM to 
the condition required for an 1/0 program word fetch. 

The 1/0 Processor, meanwhile, transfers its copy of the 
DRT word from the Data Output register to the Data Input 
register, increments it by two, and sends it back to the DRT 
in memory. (This is an anticipatory move, as the Address 
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RAM presently contains the desired address for the next 
operation ; the incremented address in the DRT will not be 
used until the next DRT fetch.) 

At this point the DRT fetch operation is complete. Some 
other operation for another device could be interleaved 
here. 

1/0 PROGRAM WORD TRANSFERS 

Each 1/0 program word consists of two words in memory , 
the IOCW (1 /0 Command Word) and the IOAW (1/0 
Address Word). Therefore two memory transfers are 
required. The first transfer is to fetch the IOCW. Depending 
on the order that the IOCW contains, the second transfer 
may be either a fetch or a store. The differences will be 
pointed out in the following descrip tions. 

IOCW FETCH. The SR flip-flop in the device controller is 
still set from the previous procedure , so HSREQ is still 
present at the 1/0 Processor. The 1/0 Processor therefore 
issues a new DAT APO LL. The SR Latch in the Multiplexer 
Channel , which had reset on the trailing edge of the previ­
ous SO , has become set again , since the SR input was still 
present at the next clock. Thus DATAPOLL is stopped 
from further propagation, and the transfer logic is enabled 
again. 

Again , the contents of the addressed RAM location are 
loaded into the State, Address , and Order registers. The 
state specifies an IOCW fetch , so the transfer logic reads out 
the contents . of the Address Register and issues SI and 
IOCMD (" transfer from memory") to the 1/0 Processor. 
The address now on the IOD lines is the word previously 
fetched from the DRT, indicating the address of the 1/0 
program word. 

The 1/0 Processor loads the address into the Memory 
Address Register (MAR) and issues IOLRQ to its MCU, 
with MOP (Read/Restore). The MCU, when priority allows, 
transmits the address to memory. When memory returns 
the IOCW, IOSTRB loads this word into the Data Output 
Register in the 1/0 Processor. The 1/0 Processor then reads 
the word out to the IOD lines and issues SO. 

On receiving SO, the Multiplexer Channel loads the IOCW 
into the Order RAM. (If the order is Control, the Multi­
plexer Channel issues a command through the multiplexer 
channel bus, so that the device controller may also load the 
IOCW into its Control register.) The contents of the 
Address Register, incremented by one, are re-stored in the 
Address RAM, and the next state (fetch or store IOAW) is 
stored in the State RAM. 

At this point the IOCW fetch is complete. Some other 
operation for another device could be interleaved here . 
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The next operation, transfer of the IOAW, begins the same 
way for each of the orders. That is, SR to the Multiplexer 
Channel causes HSREQ to the 1/0 Processor. The 1/0 
Processor returns a DATAPOLL which enables the Multi­
plexer Channel to load the addressed RAM location into 
the State, Address, and Order Registers. The action after 
this point varies, depending on the order that the IOCW 
contains. The following paragraphs describe each of the 
various courses of action. 

IOAW FETCH. The Read, Write, Jump, Control, and Inter­
rupt orders each cause an IOAW fetch. However, the action 
taken on receiving the IOAW varies in each case, as will be 
pointed out. 

The IOAW fetch begins by reading out the contents of the 
Address Register (incremented on the trailing edge of 
DAT APO LL in the IOCW fetch procedure) to the IOD lines. 
The Multiplexer Channel also issues SI and IOCMD 
("transfer from memory") to the 1/0 Processor. The 1/0 
Processor, in turn, issues IOLRQ with MOP to its MCU to 
request a memory read. 

When memory returns the contents of the addressed loca­
tion, IOSTRB loads it into the Data Output Register in the 
1/0 Processor. The 1/0 Processor then reads out the con­
tents of this register to the IOD lines and issues SO. For 
Read, Write and Jump orders, the Multiplexer Channel will 
store the word (IOAW) into the Address RAM. For a 
Control order, the Multiplexer Channel issues a command 
via the multiplexer channel bus to tell the device controller 
to load the word into its Control register. For an Interrupt 
order, the fetched information is loaded into the Address 
RAM but is disregarded. 

In addition, for Read, Write, and conditional Jump, a 
command is sent to the device controller to specify con­
ditions for the next action. For Read, the "in-transfer" 
condition is set. For Write, the "out-transfer" condition is 
set. For conditional jump, the controller is given the choice 
of setting or not setting the "jump met" condition. If 
"jump met" is true in the next DR T fetch sequence (or if 
an unconditional jump was given), a store operation 
(instead of fetch) will occur. That is, the Multiplexer 
Channel will cause the contents of the Address Register to 
be sent to the 1/0 Processor, which will increment the value 
by two before storing in the DRT. (The Address RAM 
already contains the correct jump address, so a DRT 
"fetch" is not necessary.) 

IOAW STORE. The Sense , End, and Return Residue orders 
each cause an IOAW store operation. This operation begins 
as the Multiplexer Channel reads the incremented contents 
of the Address Register out to the IOD lines and issues SI 
with a "transfer-to-memory" IOCMD. 

The 1/0 Processor Loads this address into its Memory 
Address Register (MAR) and issues IOLRQ to its MCU with 
a "Clear/Write" MOP. The ensuing central data bus trans­
mission prepares memory for receiving data. 
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Meanwhile, the 1/0 Processor has issued SO to the Multi­
plexer Channel to ask for data. Depending on the current 
order, the Multiplexer Channel either gates the Order 
Register contents out to the IOD lines (Return Residue 
order) or issues a command to the device controller, telling 
it to read its Status register contents out (Sense or End 
orders) . When either action occurs, SI is returned to the 1/0 
Processor, which causes the 1/0 Processor to load the IOD 
information into its Memory Data Input register. 

The 1/0 Processor then proceeds to transmit this infor­
mation to memory by issuing IOHRQ to its MCU. When the 
transmission occurs, the appropriate information will be 
stored into the IOAW location of the 1/0 program double­
word. 

NEXT OPERATION. At this point (after the IOAW fetch 
or store), the 1/0 program word transfer is complete. In 
addition, all orders except Read and Write (i.e., Control, 
Sense, Return Residue, End, Jump, and Interrupt) are fully 
executed. The next operation for any of these orders 
(except End, which terminates the program) is to return to 
the DRT fetch operation. 

For Read or Write , however, a data transfer is indicated. 
Procedures for data transfers are next described. 

DATA TRANSFERS 

Data transfers are very similar to the I/ 0 program word 
transfers described above, in that the basic operation is to 
fetch or store information using a memory address that has 
been put in the Address RAM by a previous operation. (For 
I/O program word transfers, the previous operation was the 
DRT fetch; for data transfers , the previous operation is the 
1/0 program word transfer.) 

The main difference is that the data transfer is device­
initiated. That is, when the device is ready for a transfer, it 
so informs its device controller, which then issues a Service 
Request to the Multiplexer Channel. Another difference is 
that the word count and memory address contained in the 
Order and Address Registers must be incremented during 
each word transfer. 

Each data transfer consists of two distinct steps: the 
transfer of an address to memory, and the transfer of data 
to or from that address. The first step is the same for either 
output or input, and is described first. Output and input 
data transfers are then separately described, followed by 
the end-of-transfer operations. 

ADDRESS TRANSFER. When the device sets the device 
controller's SR flip-flop, the SR signal to the Multiplexer 
Channel generates an HSREQ signal to the 1/0 Processor. 



The I/ 0 Processor returns DAT APO LL, which enables the 
Multiplexer Channel to begin its transfer. First, the 
addressed RAM location is read out to the State, Address, 
and Order Registers. Then the Address Register contents 
are read out to the IOD lines. Also SI and an appropriate 
IOCMD ("transfer to memory" or "transfer from 
memory") are sent to the 1/0 Processor. 

The 1/0 Processor loads the address into its Memory 
Address Register (MAR) and issues IOLRQ to its MCU, 
with a "Read/Restore" or a "Clear/Write" MOP. When 
priority allows, the MCU will transmit the address to 
memory. 

Meanwhile, the Multiplexer Channel resets the device con­
troller's SR flip-flop, via the multiplexer channel bus, and 
increments the Address and Order Registers. 

OUTPUT TRANSFER. When memory returns a data word, 
IOSTRB loads the word into the Data Output Register in 
the 1/0 Processor. The 1/0 Processor then reads the con­
tents of this register out to the IOD lines and issues SO. On 
receiving SO, the Multiplexer Channel issues a command to 
the device controller via the multiplexer channel bus, telling 
the controller to load the word on the bus into the con­
troller's Data Out Buffer. The device controller returns SI 
to the I/ 0 Processor and proceeds to output the word to 
the device. 

Meanwhile, the Multiplexer Channel re-stores the contents 
of the State, Address, and Order Registers into the RAM 
location, and the output data transfer is complete. Some 
other operation for another device could be interleaved 
here. Otherwise , the entire data transfer procedure repeats. 

INPUT TRANSFER. As the input data transfer procedure 
begins, memory is expecting the data. The procedure begins 
when the 1/0 Processor sends SO to the Multiplexer Chan­
nel to ask for data. On receiving SO , the Multiplexer Chan­
nel issues a command to the device controller via the 
multiplexer channel bus, telling the device controller to 
read the contents of its Data In Buffer out to the IOD lines. 
When the controller does so , it also sends an SI response, 
which causes the I/O Processor to load the data into its 
Memory Data Input register. The 1/0 Processor then issues 
IOHRQ to its MCU, with a "Clear/Write" MOP, thus 
causing a data transmission to memory via the MCU bus. 

Meanwhile, the Multiplexer Channel re-stores the contents 
of the State, Address, and Order Registers into the RAM 
location, and the input data transfer is complete. Some 
other operation for another device could be interleaved 
here. Otherwise, the entire data transfer procedure repeats. 

END OF TRANSFER BY WORD COUNT. If the word 
count rolls over while incrementing (during the address 
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transfer sequence), then in the data transfer sequence the 
Multiplexer Channel will issue a command which will reset 
the "in-transfer" or "out-transfer" condition in the device 
controller. Also an End-of-Transfer (EOT) signal accompa­
nies the last command from the Multiplexer Channel to 
read or write. The controller logic will therefore not 
transfer any more data to or from the device. It will , 
however, issue one more SR. 

In the Multiplexer Channel , the transfer logic sets the next 
state to "DRT fetch" , when re-storing the RAMs at the end 
of the final data transfer. When the Multiplexer Channel 
receives the SR from the device controller, and when 
priority conditions are satisfied , a new DRT fe tch pro­
cedure will begin. This advances the I/O program to the 
next IOCW. 

END OF TRANSFER BY DEVICE. On termination of a 
transfer by a device, the controller will issue an SR to the 
Multiplexer Channel. When the Multiplexer Channel 
responds with the select code and CHAN SO , the device 
controller returns a " device end" signal. This causes the 
Multiplexer Channel to initiate a DRT fetch , thus advancing 
the I/O program to the next IOCW. 

INTERRUPTS 

Each device controller has its own device number and is 
able to generate an interrupt on being given an Interrupt 
command by the I/0 Processor. The interrupt logic for a 
device controller is shown in figure 8-1 2. 

As explained earlier in this manual , each device number can 
be assigned to an interrupt mask group . If the mask bit for 
that group is not set, no interrupt from that device can 
occur. Note in figure 8-12 that set ting the Mask flip -flop 
will allow the Interrupt Request flip-flop to set the Inter­
rupt Latch. The condi tions that set the Mask flip-fl op 
are : 1) that the 1/0 Processor has issued an IOCMD of 
SMASK (Set Mask) ; 2) that the mask word given on the 
IOD lines includes a true bit corresponding to the single bit 
that is wired to the Mask flip-flop input. Several device 
controller cards may have their Mask flip -flop wired to 
the same IOD line ; thus these cards form one interrupt 
mask group. 

An interrupt is initiated either by a CPU instruction (SIN, 
Set Interrupt) , for any device number, or by an 1/0 pro­
gram order (device controllers only). A SIN instru ction 
causes the 1/0 Processor to issue an IOCMD of SIL (Set In­
terrupt Level) with the appropriate DEVNO, which sets the 
Interrupt Request flip -flop. An Interrupt order causes the 
Multiplexer Channel to issue "set interrupt" command to 
the device controller via the multiplexer channel bus; the 
controller logic then directly forces the Interrupt Request 
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flip-flop to set. From either cause, setting the Interrupt 
Request flip-flop will result in an INTREQ signal to the I/0 
Processor and (only if the Mask flip-flop is set) the setting 
of the Interrupt Latch. 

When the I/O Processor receives INTREQ and is ready to 
process the request, it returns INTPOLL to determine the 
highest priority request. The first set latch encountered by 
the poll stops further propagation of the poll, and is then 
permitted to set the Interrupt Active (!ACTIVE) flip-flop. 
This causes the interrupt device number to be sent to the 
1/0 Processor via the DEVNO lines. An Interrupt Acknowl­
edge signal (INTACK) is also sent, telling the 1/0 Processor 
to load DEVNO into its Interrupt DEVNO register. 

When the 1/0 Processor has the device number, it issues an 
I/0 Int signal to the CPU, so that interrupt processing may 
begin when the CPU is ready. 

SELECTOR CHANNEL 

As explained earlier under the heading of Transfer Modes, a 
Selector Channel operates only one 1/0 program, and trans­
fers blocks of data, for only one device at a time. 

However, since there may be several Selector Channels 
operating in the system, it would be advantageous to first 
study the Port Controller, to see how each channel gains 
access to the central data bus. Then, following the Port 
Controller discussion, the complete operating sequences for 
a Selector Channel will be given. 

PORT CONTROLLER 

The Port Controller provides four ports to the central data 
bus for 1/0 program and data transfers between Selector 
Channels and memory. Figure 8-14 is a simplified logic 
diagram of the Port Controller. Note that only one-fourth 
of the logic is shown; the logic for the three remaining ports 
is identical to the one shown. The signal and data lines on 
the left of the diagram represent a portion of the port 
controller bus. (The port controller bus contains four sets 
of signal lines-one set for each channel-and one set of 
data lines which is shared by all four channels.) The bold 
line on the right is the central data bus. Connection points 
for the other three sets of logic are marked by X's. 

The Port Controller is assigned a module number, like other 
system modules, by jumper wiring of the module number 
and Enable (ENB) inputs and outputs. The module number 
(2, 3, 4, 5, or 6) gives the Port Controller a specific trans­
mission priority among the other system modules. 
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A Selector Channel requiring transfer of a word to or from 
memory presents the Port Controller with a request for a 
Clear/Write or a Read/Restore operation, respectively, 
along with the memory module number (0, 1, 2, or 3) to 
which the address will be sent. 

A Clear/Write operation consists of a Low Request (LREQ) 
for an address transfer followed by a Low Select (LSEL) of 
that address from the channel to memory, via the central 
data bus; then a High Request (HREQ) for a data transfer 
followed by a High Select (HSEL) of that data to memory, 
via the central data bus. A Read/Restore operation consists 
of a LREQ for an address transfer followed by a LSEL of 
the address to the bus and memory; then a "wait" for a 
return transfer of data to the Port Controller from the 
module to which the address was sent. This return transfer 
of data is indicated to the Selector Channel by the STRB 
(Strobe) signal. 

Priority is resolved among the four ports in the Port Con­
troller on the following basis: Low Requests, with the 
desired destination module ready, are granted first to chan­
nel 1, next to channel 2, next to channel 3, and last to 
channel 4. A High Request for any channel takes prece­
dence over all Low Requests. Since a High Request is set 
immediately when a Low Request for a CW operation is 
granted, there can be at most one High Request pending at 
a time. 

To maximize the transfer rate, each port can accept a 
request from its channel before a previously requested 
transfer has completed; i.e., after LSEL but before or 
during HSEL or STRB. This second request cannot be 
granted by a LSEL, however, until the first transfer is 
complete. 

The Clear/Write sequence is as follows. A CWREQ on the 
request lines to the port sets the LREQ flip-flop and sets 
the MOP flip-flop to the CW state. The TO lines from the 
channel are clocked into TO Register A, and the content is 
then compared with the Ready line (RDY) for that module. 
When the destination is ready, and ENB is present, and the 
port has priority, the LSEL and HREQ flip-flops are set. 
LSEL clocks the content of TO Register A into TO Regis­
ter B, and gates the address from the channel to the central 
data bus along with TO (=TO Reg A), FROM (=wired 
module number), and MOP(= CW). LSEL also pulls low on 
the destination's RDY line. Then, when ENB is present, the 
HSEL flip-flop is set. HSEL gates data from the channel to 
the central data bus, along with TO (=TO Reg B), FROM 
(=wired module number), and MOP (=NOP). 

The Read/Restore sequence is as follows. A RRREQ on the 
request lines to the port sets the LREQ flip-flop and sets 
the MOP flip-flop to the RR state. The TO lines from the 
channel are clocked into TO Register A, and the content is 
then compared with the RDY line for that module. When 
the destination is ready , and ENB is present, and the port 
has priority, the LSEL flip-flop is set. LSEL clocks the 
content of TO Register A into TO Register B, and gates the 
address from the channel to the central data bus along with 
TO (=TO Reg A) , FROM (= wired module number), and 
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MOP (=RR). LSEL also sets the Wait flip-flop. Then, when 
returning data is present on the bus, the TO (=This 
Module) and FROM (=TO Reg B) comparisons match, and 
a STRB signal is sent to the channel. This tells the channel 
to accept the data on the port controller data (PCD) lines. 

INITIATOR SEQUENCE 

The following procedures describe how the Selector Chan­
nel's program counter is initialized, as the first step in 
executing an I/O program for one device. 

Refer to figures 8-15 and 8-16, which show simplified logic 
diagrams of, respectively, a high-speed device controller and 
a Selector Channel. The selector channel bus, which is 
similar to the multiplexer channel bus in purpose, is shown 
originating at the Selector Channel. It is routed to all 
controllers on this channel, although only one is shown. 
The selector channel bus differs from the multiplexer chan­
nel bus in that it uses 16 lines for transfer of control, status, 
and data words between device controller and channel; the 
corresponding lines on the multiplexer channel bus are used 
as service request lines for up to 16 devices. 

The IOP bus (not shown) connects to the device controller 
as indicated at the top of figure 8-15. Except for the SI 
signal, the Selector Channel has no connections to the IOP 
bus. Physically, the SI line is routed to the Selector Chan­
nels by way of the power bus (see figure 8-2). 

The initiator sequence begins when the CPU encounters an 
SIO instruction. The CPU, under control of its SIO micro­
program, outputs a command word to the IOP Control 
Register. (See figure 8-10.) This initial command is a TIO 
(Test I/O), the purpose of which is to see if there is already 
an I/O program active on the channel. The I/O Processor 
issues the TIO with SO and DEVNO on the IOP bus. The 
device controller compares DEVNO with its internal wired 
device number and a true comparison, with SO, causes the 
controller to return SI to the I/O Processor with a 16-bit 
status word on the IOP bus. The CPU microprogram 
obtains this status word from the I/O Processor and checks 
to see that bit 0 , the "SIO OK" bit, is true. This bit will be 
true if the device is ready and the channel is inactive. 
Assuming that the SIO OK bit is true, the CPU micro­
program outputs an SIO command to the IOP Control 
Register, and the I/O Processor issues the SIO command to 
the controller. 

Again, the DEVNO on the bus is compared with the 
internal wired device number (see figure 8-15) , and the true 
result, with SO, enables the IOCMD (I/O Command) to be 
decoded. The IOCMD is now SIO which, when decoded, 
issues a Request (REQ) signal to the channel control logic. 
The channel then returns SI (Service In) to the I/O Proces­
sor as an acknowledgment response. From now on (except 
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for processing an interrupt), the I/O Processor is not 
involved. The data gating logic routes all data transmissions 
to the DAT A lines of the selector channel bus, rather than 
the IOD lines of the IOP bus. 

The REQ signal, sent to the Selector Channel via the 
channel bus, is accompanied by a 16-bit word on the DATA 
lines. This 16-bit word identifies the requesting device by 
device number (eight bits) . 

When the Selector Channel receives REQ from the device 
controller, it sets the control logic to "active". The device 
address is then loaded into the DEVNO register. The 
Selector Channel is now exclusively reserved for that 
device. Furthermore, only this controller will respond to 
CHANSO (Channel Service Out) from the Selector Channel. 

The Selector Channel now reads out the device number 
from the DEVNO register, and requests a memory transfer 
by issuing a Read/Restore Request to the Port Controller. 
The Port Controller checks if memory is ready and, when 
ENB is present, sets LSEL. The LSEL signal is returned to 
the Selector Channel, where it reads the device number 
(shifted left by two bits to be the DRT entry address) onto 
the PCD lines. LSEL also reads out the TO , FROM, and 
MOP codes in the Port Controller, thus effecting an address 
transmission to memory. 

When memory returns the DRT contents, the Port Con­
troller issues STRB to the Selector Channel. Since the 
channel control logic is expecting a DRT word , it loads the 
bus data into the I/O Program Counter. The contents of the 
I/O Program Counter will hereafter be used to address the 
individual locations of the I/O program , and so no further 
DR T fetches are necessary. Program execution will occur as 
a result of "fetch" and "execute" sequences, next 
described. 

FETCH SEQUENCE 

Fetching an I/O program doubleword requires two memory 
fetches. Unlike the Multiplexer Channel, which examines 
the IOCW to determine what to do about the IOAW (fetch 
it, store into it , or gate it out to the device controller) , the 
two memory fetches always occur. The different operations 
for the various types of I/O orders are accomplished in the 
execute sequence. 

The fetch sequence begins with the Selector Channel 
reading out the contents of the I/O Program Counter, and 
requesting a memory transfer (Read/Restore Request to 
Port Controller). When the Port Controller has obtained 
transmit priority, it returns LSEL, transmitting the I/O 
Program Counter contents to memory as an address. (The 
Counter is immediately incremented.) 



When memory returns the IOCW from the addressed 
location, the Port Controller issues STRB to the Selector 
Channel. The channel control logic, which is expecting the 
IOCW, loads the word into the IOCW Active Register. Then 
the 1/0 Program Counter is again read out with another 
memory transfer request. The Port Controller transmits this 
address to memory, and the 1/0 Program Counter is again 
incremented. Then, when memory returns the IOAW from 
the addressed location, the Selector Channel loads the word 
into the IOA W Active Register, and at this point the fetch 
sequence is complete. 

The channel control logic can now examine the order. If 
the order specified in the IOCW is Read or Write, and if 
data chaining is also specified, a pre-fetch sequence is 
enabled. This operation is the same as the fetch sequence 
described in the preceding two paragraphs, except that the 
returned data is loaded into the IOCW Buffer and IOAW 
Buffer instead of the IOCW and IOA W Active Registers. An 
additional condition for the pre-fetch sequence is that data 
transfers take precedence; i.e., pre-fetch will occur only 
when both Input Buffers A and B are empty (for Read) or 
both Output Buffers A and Bare full (for Write). 

Then, when the Read or Write order finishes, due either to 
word count rollover or to a "device end" condition (see 
Read and Write execute sequences), the IOCW/IOAW 
Buffers are read into the IOCW /IOAW Active Registers. The 
data transfer can thus continue uninterrupted. If the new 
IOCW specifies further data chaining, another pre-fetch is 
initiated to refill the buffers. 

EXECUTE SEQUENCES 

A separate description is given below for the execute 
sequence of each of the eight 1/0 orders. In each case 
except End (which terminates the 1/0 Program) , operation 
returns to the fetch sequence following the completion of 
the execute sequence, in order to fetch the next 1/0 pro­
gram word. 

SENSE. The Selector Channel issues a "P STATUS STB" 
signal to the device controller, with CHANSO, via the 
channel bus. The device controller accordingly reads the 
contents of its Status register onto the channel DATA lines 
and returns CHAN ACK (Channel Acknowledge). On 
receipt of CHAN ACK, the Selector Channel loads the 
Status information into one of the two input buffers, and 
prepares for a memory transfer. First the contents of the 
1/0 Program Counter are decremented by one. This is 
necessary because the Status word must be stored in the 
IOA W location for the current order, whereas the fetch 
sequence has incremented the 1/0 Program Counter to 
point at the next word. Once this is done, the contents of 
the I/ 0 Program Counter and the input buffer containing 
the status word are read out to the channel PCD gates (but 
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not gated out yet). Also, the 1/0 Program Counter contents 
are decoded by the interleaver and mapper to derive a TO 
code. (See earlier discussions of these circuits under the 
Arithmetic Logic heading of the CPU discussion.) A Clear/ 
Write Request to the Port Controller requests a trans­
mission to memory, and when the Port Controller returns 
LSEL, the address from the I/O Program Counter is sent to 
memory and the Counter is incremented. An HSEL from 
the Port Controller (which follows immediately unless ENB 
has been preempted by a higher-priority module) then reads 
out the Status word to the PCD lines and sends it to 
memory. This stores Status in the IOAW location. 

RETURN RESIDUE. The function of the Return Residue 
order is to send the current contents of the Residue 
Register (which reflects the results of the most recent Read 
or Write order) to the IOAW location of the current I/O 
program word. The device controller is not involved. To 
begin the procedure, the channel control logic decrements 
the I/O Program Counter (for the same reason described in 
the preceding paragraph). The contents of the I/O Program 
Counter and the Residue Register are then read out to the 
PCD gates, while a Clear/Write Request and a mapped TO 
code are issued to the Port Controller. When the Port 
Controller returns LSEL, the address from the I/O Program 
Counter is sent to memory. When HREQ sets the HSEL 
flip-flop, the word count from the Residue Register is sent 
to memory. This stores the residue in the IOAW location. 

INTERRUPT. The channel control logic issues a "P SET 
INT" signal to the device controller, with CHANSO, via the 
selector channel bus. The device controller returns CHAN 
ACK and sets its Interrupt Request flip-flop. Provided the 
Mask flip-flop is set, the device controller issues INTREQ to 
the I/0 Processor via the IOP bus. When the I/0 Processor 
returns INTPOLL, the device number is sent to the I/O 
Processor, along with INTACK. On receipt of INTACK, the 
I/O Processor generates an interrupt signal to the CPU. 

JUMP. The Jump order may be specified to be either 
conditional or unconditional. It is the function of an 
unconditional jump or a successful conditional jump to 
transfer the contents of the IOAW Buffer (the jump 
address) to the I/O Program Counter. (The IOAW Buffer 
and IOAW Active Register contain identical contents at this 
time.) In the case of a conditional Jump order, the Selector 
Channel issues a "set jump" command to the device con­
troller, with CHANSO, via the channel bus. The device 
controller returns a true or false "jump met" signal. If the 
jump is not met, operation returns to the fetch sequence. If 
the jump is met, and for an unconditional Jump order, the 
channel control logic gates the contents of the IOAW 
Active Register into the I /O Program Counter. Thus sub­
sequent orders will be fetched and executed from a new I/O 
program area. 

CONTROL. The Control order routes both the IOCW and 
the IOAW to the device controller. The Selector Channel 
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first reads out the contents of the IOCW Active Register to 
the channel DATA lines and issues a "PCMDI" signal, with 
CHANSO , for the device controller to load the DATA 
word. The device controller accordingly loads the word into 
its Control register, and then issues a request (CHAN SR) 
back to the Selector Channel to send the second word. The 
Selector Channel reads out the contents of the IOAW 
Active Register to the DAT A lines and issues a second 
command ("P CONT STB"), with CHANSO, for the device 
controller to load this new word. When the device con­
troller has done so, and is ready for the next order, it 
returns the appropriate response (another CHAN SR) signal 
to the Selector Channel. 

READ. The Read order causes a block of data to be 
transferred from the device to memory. The block size in 
words is specified in two's complement form by the word 
count (IOCW bits 4 through 15) and the absolute starting 
address in memory is specified by the IOAW. While the 
block transfer is in progress, there are two separate, simul­
taneous operations taking place: the device-to-channel 
transfer and the channel-to-memory transfer. The following 
two paragraphs separately describe these two operations. 
To begin the Read execute sequence, the Selector Channel 
issues CHANSO to the controller. When the controller 
returns CHAN ACK, the Selector Channel issues the initial 
RD NXT WD ("Read Next Word") with CHANSO still 
asserted. When CHAN SO is removed , both the Selector 
Channel and the controller are set to the "in-transfer" 
condition to enable data transfers. 

After the device has read a word and the controller is ready 
to transfer it to the channel, it sends CHAN SR (Channel 
Service Request) to the channel. The channel issues "P 
READ STB" and CHANSO , causing the device controller to 
read its Data In Buffer onto the channel DATA lines and to 
return CHAN ACK. On receiving CHAN ACK, the Selector 
Channel loads the data into either Input Buffer A or Input 
Buffer B (depending on which is empty), increments the 
word count in the IOCW Active Register, and re-issues RD 
NXT WD. The above transfer sequence repeats for each 
data word until the device controller asserts DEV END to 
terminate the block, or until the word count rolls over. In 
either case, the channel sends EQT ("End of Transfer") to 
the controller and, if not data chaining, clears the "in­
transfer" condition. A CHAN SR from the controller is 
required to resume program execution. 

Meanwhile, the Selector Channel attempts to keep both 
Input Buffers empty by transmitting their contents to 
memory. The control logic for the A and B buffers ensures 
that data is transmitted to memory in the same sequence as 
received from the device . To accomplish a memory transfer, 
the Selector Channel enables the IOAW Active Register for 
use as a memory address, enables Input Buffer A or B for 
use as a data word, and sends a Clear/Write Request and a 
mapped TO code to the Port Controller. When the port 
returns LSEL, the IOA W is gated onto the bus as an address 
to memory, and the IOAW is incremented to point to the 
next data location. When the port returns HSEL, the Input 
Buffer is gated onto the bus to be stored in the addressed 
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memory location. The preceding operation (this paragraph) 
repeats until the Read order completes, via a DEV END or 
word count rollover , and all input data has been sent to · 
memory. 

If the data chaining bit in the IOCW Active Register is true, 
the next order pair will have been prefetched when possible 
during the block data transfer. When the Read order com­
pletes, the prefetched order pair will be transferred from 
the IOCW /IOA W buffers to the active registers without the 
need for a normal fetch sequence. Data input can thus 
continue for the next block with minimum interruption. If 
the data chaining bit is not set, the Read termination will 
be followed by a normal fetch sequence. 

WRITE. The Write order causes a block of data to be 
transferred from memory to the device. The block size in 
words is specified in two's complement form by the word 
count (IOCW bits 4 through 15) and the absolute starting 
address of the block in memory is specified by the IOAW. 
While the block transfer is in progress, there are two 
separate, simultaneous operations taking place: the 
memory-to-channel transfer and the channel-to-device 
transfer. The following two paragraphs separately describe 
these two operations. To begin the Write execute sequence, 
the Selector Channel issues CHANSO to the controller, and 
when the controller returns CHAN ACK, both the Selector 
Channel and the controller are set to the "out-transfer" 
condition to enable data transfers. 

Meanwhile, the Selector Channel proceeds with a memory 
fetch and will attempt to keep both output buffers full. 
The control logic for the A and B Output Buffers ensures 
that data is transmitted to the device in the same sequence 
as it was fetched from memory. To accomplish a memory 
fetch, the Selector Channel enables the IOAW Active 
Register for use as a memory address and sends a Read/ 
Restore Request (RRREQ) and a mapped TO code to the 
Port Controller. When the port returns LSEL, the IOAW is 
gated onto the bus as an address to memory, and the IOA W 
is incremented to point to the next data location. When the 
port returns STRB, the data on the bus from memory is 
loaded into an empty output buffer. The preceding 
operation (this paragraph) repeats until the Write order 
completes (by either a DEV END or word count rollover). 

When the controller is ready to accept a data word from the 
channel, it sends CHAN SR. The channel issues CHANSO 
and "P WRITE STB" and gates Output Buffer A or B onto 
the channel DATA lines. The controller returns CHAN 
ACK, causing the channel to remove P WRITE STB, 
increment the word count, and remove CHANSO in that 
order. The device controller uses the removal of P WRITE 
STB to latch the data word from the channel DATA lines. 
The above transfer sequence (this paragraph) repeats for 
each data word sent to the device controller, until the 
device controller asserts DEV END to prematurely 
terminate the block or until the word count rolls over. In 
either case, the Selector Channel sends EQT ("End of 
Transfer") to the controller and, if not data chaining, clears 



the out-transfer condition. To resume program execution, a 
new CHAN SR from the controller is required by the 
Selector Channel. 

If the data chaining bit (IOCW bit 0) is true, the next order 
pair will have been prefetched when possible during the 
block transfer. When the Write order completes, the pre­
fetched order pair will be transferred from the IOCW /IOA W 
buffers to the active registers without the need for a normal 
fetch sequence. Data output to the controller can thus 
continue for the next block with minimum interruption. If 
the data chaining bit is not set, termination of the Write 
order will be followed by a normal fetch sequence. 

END. The execute sequence for the End order begins by 
duplicating the operations of a Sense order, obtaining the 
controller's status word and storing it in the IOAW location 
in the I/O program. Additionally, if IOCW bit 4 is true, a "P 
SET INT" signal is also issued to the controller; see lpter­
rupt order description. Then the channel proceeds to store 
the contents of its I/O Program Counter into the device's 
DRT location. As explained earlier, this is to maintain 
compatibility with I/O programs run via a Multiplexer 
Channel. The Selector Channel enables its DEVNO register, 
shifted left two bits, as a memory address, enables the I/O 
Program Counter for use as data, and sends a Clear/Write 
Request (CWREQ) and a mapped TO code to the Port 
Controller. When the port returns LSEL, the shifted device 
number is gated out as the DR T address, and when the port 
returns HSEL, the I/O Program Counter content is gated 
out to the bus as data. This completes all operations for the 
I/O program. The channel control logic resets to the 
inactive condition, thus allowing another program for the 
same or another device to be initiated via that channel. 

DIRECT 1/0 OPERATION 

In addition to the SIO modes of transfer, described under 
the Multiplexer Channel and Selector Channel headings of 
this section, a direct I/O mode is also provided. In this 
mode, the CPU may transfer information directly to or 
from a device controller, without involving memory, Multi­
plexer Channel, or Selector Channel. 

The CPU has four instructions for direct I/O communi­
cation. These are: TIO (Test I/O), CIO (Control I/O), RIO 
(Read I/O), and WIO (Write I/O). In each case, one word is 
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transferred for each instruction, either to or from the top 
of the stack in the CPU. The following paragraphs describe 
the operation for each of these four instructions. Figures 
8-10 and 8-12, the I/O Processor and a device controller, 
may be used as references. 

TIO. The Test I/O instruction obtains the contents of the 
device controller's Status register and loads it into the 
CPU's current top-of-stack register (RA). When the CPU 
encounters a TIO instruction, its TIO microprogram loads a 
command word into the IOP Control Register in the I/O 
Processor. The I/O Processor then issues a TIO IOCMD to 
the device addressed by the DEVNO code, along with SO. 
The addressed device is therefore enabled to accept and 
decode the command, and accordingly reads the contents 
of its Status register onto the IOD lines, with SI. On receipt 
of SI, the I/O Processor loads the Status word into the 
Direct Data Input register and informs the CPU that the 
word is present (by means of a flag signal not shown in 
figure 8-10). The CPU then issues a read signal which reads 
the contents of the Direct Data Input register to the S-bus. 
From there, the status word is routed to the current RA 
register. 

RIO. The operations for the Read I/O instruction begin by 
performing a TIO to the controller (as above) to check the 
Read/Write OK status bit. If status is acceptable, the same 
sequence is repeated except that the OUTCMD is RIO and 
data is transferred from the Data In Buffer rather than the 
Status register. 

CIO. The Control I/O instruction obtains a control word 
from the top-of-stack register (RA) and sends it to the 
device controller's Control register. When the CPU 
encounters a CIO instruction, its CIO microprogram loads 
the RA contents into the Data Output Register, and then 
issues a command word to the IOP Control Register in the 
I/O Processor. The command word causes a CIO IOCMD to 
be issued to the device controller addressed by the DEVNO 
code, along with SO. At the same time, the contents of the 
Data Output Register are read out onto the IOD lines. 
When the device controller decodes the IOCMD it loads the 
word on the IOD lines into its Control register, and returns 
SI to the I/O Processor. On receiving SI, the I/O Processor 
returns a flag signal to the CPU, indicating completion of 
the instruction. 

WIO. The operations for the Write I/O instruction begin by 
performing a TIO to the controller (as above) to check the 
Read/Write OK status bit. If status is acceptable, the remain­
ing operations for the Write I/O instruction are the same as for 
CIO, except that the information sent is a data word, the 
IOCMD is WIO instead of CIO, and the information is loaded 
into the Data Out Buffer instead of the Control register. 
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Table 8-1. Mnemonics and Abbreviations 

Adrs Address JMP Jump 

ALU Arithmetic Logic Unit LOSEL Low Select 

BUSH Bus High LREQ Low Request 

BUSL Bus Low LSEL Low Select 

CHAN ACK Channel Acknowledge LUT Look-Up Table 

CHAN DATA Channel Data MAR Memory Address Register 

CHAN SO Channel Service Out MCU Module Control Unit 

CHAN SR Channel Service Request Mem Memory 

CIO Control Input/Output MOP Memory Opcode 

Comp Comparator NIP Next In Process 

Cont Controller NOP No Operation 

CPU Central Processor Unit OPINP Operand In Process 

CRL Control OPND Operand 

CTO Command TO PCONT STB Programmed Control Strobe 

cw Clear/Write PREAD STB Programmed Read Strobe 

CWREQ Clear/Write Request P SET INT Programmed Set Interrupt 

DC Device Controller/Data Chain PSTATUSSTB Programmed Status Strobe 

DEV END Device End PWRITE STB Programmed Write Strobe 
DEVNO Device Number PCD Port Controller Data 

DATAPOLL Data Poll Prog Program 

DRT Device Reference Table RAM Random Access Memory 
DRTE Device Reference Table Entry RAR ROM Address Register 
ENB Enable RDY Ready 

EOT End-of-Transfer Reg Register 

HISEL High Select REQ Request 
HREQ High Request RIL Reset Interrupt Level 

HSEL High Select RIO Read Input/Output 
HSREQ High Service Request RNW Read/No Write 
INT ACK Interrupt Acknowledge ROM Read-Only Memory 

IA CTI VE Interrupt Active ROR ROM Output Register 

Iner Increment RR Read/Restore 
Int DEVNO Interrupt Device Number RRREQ Read/Restore Request 
IOAW 1/0 Address Word SEL Select 
IOCMD 1/0 Command SI Service In 
IOCW 1/0 Control Word SIL Set Interrupt Level 

IOD 1/0 Data SIN Set Interrupt 
IOHRQ 1/0 High Request SIO Start Input/Output 
IOINP 1/0 In Process SM ASK Set Mask 
IOLRQ 1/0 Low Request so Service Out 

IO MOP 1/0 Memory Opcode SR Service Request 

IOP Input/Output Processor STRB Strobe 

IOSTRB 1/0 Strobe TIO Test Input/Output 

INTPOLL Interrupt Poll WC Word Count 

INTREQ lnterru pt Request WIO Write Input/Output 
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absent 
actual parameters 
addressing modes 
allocate ..... 
assigned memory links 
Attach I/0 ..... . 

base ..... . 
BEGIN statement 
blocked I/O 
blocks 
buffer tanks 
bus system 
byte addressing 

Carry ..... . 
central data bus 
Central Processor 
code segment . . 
code segment number 
Code Segment Table 
Code Segment Table Pointer 
cold load .... 
Condition Code 
console interrupt 
CPU ..... . 
CPU Output Registers 
Current Instruction Register 
Current Process Control Block pointer 

data base .. 
data chaining 
data domain 
data formats 
data limit .. 
data poll 
data segment 
Data Segment Table 
Data Segment Table Pointer 
deallocate 
delete ..... . 
delta Q .... . 
device controller 
device driver .. 
Device Information Tables 
device number . . . . 
Device Reference Table 
Dispatcher . . 
Dispatcher Flag 
displacement 

effective address 
END statement 
extents ..... 
external interrupts 
external program label 
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4-15 
3-12 
4-2 
4-6 
6-7 

3-13 
4-16 
6-11 

6-1 
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3-15 

3-9 
8-1 
3-1 
4-1 
4-8 
4-2 
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7-12 
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4-13 
6-2 
6-7 
6-3 
6-4 
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7-3 
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3-12 

3-13 
4-16 

6-1 
7-3 
4-8 

file area ..... . 
file system 
formal parameters 
free space links 

global data area 
global variable 

high request 

ICS Flag 
implicit addressing 
indexing ..... 
indicators . . . . . 
indirect addressing 
instruction formats 
interleaver 
internal interrupts 
interrupt code segment 
Interrupt Control Stack 
Interrupt Counter 
Interrupt Handler 
interrupt poll . . . 
interrupt receiver code 
Interrupt Reference Flag 
I /O Address Word 
I/O Command Word 
I/O Control Block 
I/O Monitor Process 
IOP bus ...... . 
I/O Processor . . . . 
I/O Program Pointer 
I /O Program word 
1/0 Queue 
I/O Queue Head 
I/O system .. 
IRF interrupts 

job .... 

line buffer 
local program label 
local variables 
logical device numbers 
Look-Up Table 
low request 

mapper .. 
mask ... 
memory opcode 
microprocessor 
microprogram 
mini-opcode 
Module Control Unit 
multiplexer . . . . . 
multiplexer channel 
multiplexer channel bus 
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Next Instruction Register 
non-standard device 

operating system 
Overflow ... . 

parameter passing 
parity errors 
peripheral device 
power bus 
Power Fail interrupt 
pre-adder .... 
primary memory . 
privileged mode 
Privileged Mode bit 
privileged user 
procedure 
procedure body 
procedure call 
procedure declaration 
procedure head . . . 
procedure name 
procedure parameters 
procedure statement 
process ...... . 
Process Control Block 
Process Control Block Extension 
Process Control Block Table Pointer 
program 
program base . . 
program counter 
program file 
program limit 
push 

Random Access Memories 
Read-Only Memory 
recursive procedure 
re-entrant . . . . . 
relative address . . 
relative addressing 
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relocatable binary module 
renamer ...... . 
ROM Address Register 
ROM Output Registers 

scatter read . . . . . 
scratch pad registers 
secondary memory 
segment ... .. 
segmented library 
Segment Transfer Table 
selector ...... . 
selector channel 
selector channel bus 
service request number 
special opcode 
split stack 
stack .... 
stack limit 
stack marker 
stack overflow 
stack underflow 
standard device 
Status word 
sub-opcode groups 
sub-opcodes 
swapping area 
System Global Pointer 

temporary storage 
TERM process 
top-of-stack 
Trace 
traps 

unblocked 1/0 
uncallable bit 
user mode 
user subprogram library 

value part ... 
virtual memory 
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OCTAL ARITHMETIC 

COMPLEMENT 

To find the two's complement form of an octal number. (Same procedure whether converting 

from positive to negative or negative to positive.) 

RULE 

1. Subtract from the maximum represen­
table octal value. 

2. Add one. 

EXAMPLE 

Two's complement of 5568 : 

177777 
- 000556 

177221 
+ 1 

1772228 



OCTAL/DECIMAL CONVERSIONS 

OCTAL TO DECIMAL 

TABLE 
OCTAL DECIMAL EXAMPLE 

0- 7 (). 7 Convert 4638 to a decimal integer. 
10-17 8-15 
20-27 16-23 4008 = 25610 30-37 24-31 
4Q-47 32-39 608 = 4810 
50-57 4Q-47 
60-67 48-55 38 = ~ 70-77 56~3 

100 64 307 decimal 
200 128 
400 256 

1000 512 
2000 1024 
4000 2048 

10000 4096 
20000 8192 
40000 16384 
77777 32767 

DECIMAL TO OCTAL 

TABLE DECIMAL OCTAL EXAMPLE 

1 1 Convert 522910 to an octal integer. 
10 12 
20 24 

500010 116108 40 50 = 
100 144 

20010 = 3108 
200 310 
500 764 2010 = 248 

1000 1750 
2000 3720 910 = 11 3 

I 5000 11610 
10000 23420 121558 
20000 47040 t 32767 77777 

(Reminder: add in octal) 
---' 

NEGATIVE DECIMAL TO TWO'S COMPLEMENT OCTAL 

TABLE DECIMAL 2's COMP EXAMPLE 1 
-1 177777 Convert -629 10 to two's complement octal. 

-10 177766 
-20 177754 

-50010 = 1770148 
-40 177730 

-100 77634 -10010 = 1776348 
-200 177470 
-500 177014 -2010 = 1777548 (Add in 

-1000 176030 
octal) -2000 174040 -910 = 1777678 

-5000 166170 
-10000 154360 1766138 
-20000 130740 
~32768 100000 

For reverse conversion (two's complement octal to negative decimal): 

1. Complement, using procedure on facing page. 
2. Convert to decimal, using OCTAL TO DECIMAL table. 
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MATHEMATICAL EQUIVALENTS 

2±n IN DECIMAL 

2n n 2-n 
65 536 16 0.00001 52587 89062 5 

1 0 1.0 131 072 17 0.00000 76293 94531 25 

2 0 .5 

4 2 0 .25 262 144 18 0 .00000 38146 97265 625 

524 288 19 0 .00000 19073 48632 8125 

8 3 0.125 1 048 576 20 0.00000 09536 74316 40625 

16 4 0 .0625 
32 5 0 .03125 2 097 152 21 0 .00000 04768 37158 20312 5 

4 194 304 22 0 .00000 02384 18579 10156 25 

64 6 0 .01562 5 8 388 608 23 0 .00000 01192 09289 55078 125 

128 7 0.00781 25 
256 8 0.00390 625 16 777 216 24 0 .00000 00596 04644 77539 0625 

33 554 432 25 0 .00000 00298 02322 38769 53125 
512 9 0.00195 3125 67 108 864 26 0 .00000 00149 01161 19384 76562 5 

1 024 10 0.00097 65625 
2 048 11 0 .00048 82812 5 134 217 728 27 0 .00000 00074 50580 59692 38281 25 

268 435 456 28 0.00000 00037 25290 29846 19140 625 
4 096 12 0.00024 41406 25 536 870 912 29 0 .00000 00018 62645 14923 09570 3125 
8 192 13 0.00 012 20703 125 

16 384 14 0.00006 10351 5625 1 073 741 824 30 0 .00000 00009 31322 57461 54785 15625 
2 147 483 648 31 0 .00000 00004 65661 28730 77392 57812 5 

32 768 15 0.00003 05175 78125 4 294 967 296 32 0.00000 00002 32830 64365 38696 28906 25 

10 ± n IN OCTAL 

10n n 10-n 10n n 10-n 

1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0 .000 000 000 006 676 337 66 
12 1 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0 .000 000 000 000 537 657 77 

144 2 0.005 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32 
1 750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0 .000 000 000 000 003 411 35 

23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0 .000 000 000 000 000 264 11 

303 240 5 0 .000 002 476 132 610 706 64 34 327 724 461 500 000 15 0 .000 000 000 000 000 022 01 
3 641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0 .000 000 000 000 000 001 63 

46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14 

575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0 .000 000 000 000 000 000 01 

7 346 545 000 9 0 .000 000 000 104 560 276 41 
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MATHEMATICAL EQUIVALENTS 

2x IN DECIMAL 

x -r x 2X x 2X 

0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 0 .1 1.07177 34625 36293 
0.002 1.00138 72557 11335 0 .02 1.01395 94797 90029 0.2 1.14869 83549 97035 
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 0 .3 1.23114 44133 44916 
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894 
0.005 1.0034 7 17485 09503 0.05 1.03526 49238 41377 0 .5 1.41421 35623 73095 
0.006 1.00416 75432 38973 0.06 1.04246 57608 4 1121 0.6 1.51571 65665 10398 
0.007 1.00486 38204 23785 0.07 1 .04971 66836 23067 0.7 1.62450 47927 12471 
0.008 1 .00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248 
0.009 1.00625 78234 97782 0 .09 1 .06437 01824 53360 0 .9 1.86606 59830 73615 

n 10910 2, n 1092 10 IN DECIMAL 

n n 109102 n 1092 10 n n 10910 2 n 1092 10 
1 0.30102 99957 3.32192 80949 6 1 .806 17 99740 19.93156 85693 

2 0.60205 99913 6.64385 61898 7 2. 10720 99696 23 .25349 66642 

3 0.90308 99870 9 .96578 42847 8 2.40823 99653 26.57542 47591 

4 1.204 11 99827 13.28771 23795 9 2.70926 99610 29.89735 28540 

5 1.50514 99783 16.60964 04744 10 3.01029 99566 33 .21928 09489 

MATHEMATICAL CONSTANTS IN OCTAL SCALE 

1T = (3.1 1037 552421) (8) e (2 .55760 521305)(8) 'Y = (0.44742 147707)(8) 

7T- 1 = (0 .24276 301556)(8) e-1 (0.27426 530661) (8) In "( = - (0.43127 233602) (8) 

v'1T = (1 .6 1337 611067)(8) --re = (1.51411 230704)(8) 1092 "( = - (0.62573 030645) (8) 

In 1T = (1.11206 404435)(8) 10910 e = (0.33626 754251 )(8) ,ft = (1 .32404 746320)(8) 

1092 1T = (1.51 544 163223) (8) 1092 e = (1 .34252 166245) (8) In 2 = (0 .54271 027760)(8) 

""10 = (3. 12305 407267)(8) 1092 10 = (3.24464 741136)(8) In 10 = (2.23273 067355 ) (8) 
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CONSOLIDATED CODING TABLE 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
00 ST ACK OPCODES 00 NOP 40 DEL 

ALL 64 STACK 01 DELB 41 ZROB 
OPS MAY BE 02 DDEL 42 LDXB 
USE D IN 03 ZROX 43 STAX 
EITHER POSI - 04 INCX 44 LDXA 
TION (STACK 05 DECX 45 DUP 
OP A ORB) 06 ZERO 46 DDUP 

07 DZRO 47 FLT 
10 DCMP 50 FCMP 
11 DADD 51 FADD 
12 DSUB 52 FSUB 
13 MPYL 53 FMPY 
14 DIVL 54 FDIV 
15 DNEG 55 FNEG 
16 DXCH 56 CAB 
17 CMP 57 LCMP 
20 ADD 60 LADD 
21 SUB 61 LSUB 
22 MPV 62 LMPV 
23 DIV 63 LDIV 
24 NEG 64 NOT 
25 TEST 65 OR 
26 STBX 66 XOR 
27 DTST 67 AND 
30 DFLT 70 FIXR 
31 BTST 71 FIXT 
32 XCH 72 SPARE 
33 INCA 73 INCB 
34 DECA 74 DECB 
35 XAX 75 XBX 
36 ADAX 76 ADBX 
37 ADXA 77 ADXB 

01 SUB OPCODE 1 x 00 ASL SHI FT COUNT L 
x 01 ASR " " " 

x 02 LSL " " " 

x 03 LSR " " " 
x 04 CSL " " " 
x 05 CSR " " " 

x 06 SCAN 

8 
RESERVED 

I 07 IABZ P RELATIVE DISPLACEMENT 
x 10 TASL SHI FT COUNT L 
x 11 TASR " " " f---
I 12 IXBZ +/- P RELATIVE DISPLACEMENT 
I 13 DXBZ +/- " " " 
I 14 BCV +/- " " " 
I 15 BNCY +/- " " " 
x 16 TNSL .------ RESERVED 
y 17 SPARE 
x 20 DASL SHIFT COUNT L 
x 21 DASR " " " 
x 22 DLSL " " " 
x 23 DLSR " " " 
x 24 DCSL " " " 
x 25 DCSR " " " t----i 
I 26 CPRB +/- P RELATIVE DISPLACEMENT 
I 27 DABZ +/- " " " 
I 30 BOV +/- " " " 
I 31 BNOV +/- " " " 
x 32 TBC .------ BIT POSITION 
x 33 TRBC " " 
x 34 TSBC " " 
x 35 TCBC " " ~ 
I 36 BRO +/- P RELATIVE DISPLACEMENT 
I 37 BRE +/- " " " 

02 SUB OPCODE 2 00 MOVE OPS 0 MOVE PB/DB RESERVED SDEC 
1 MVB " " " 
2 MVBL 0 " " 

2 sew 1 " " 

3 MVLB 0 " " 
3 scu 1 " " 
4 MVBW N A I u " 
5 CMPB PB/DB RESERVED SDEC 
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CONSOLIDATED CODING TABLE 

0 1 2 3 4 5 6 7 8 l 9 l 10 l 11 12 l 13 l 14 15 
02 SUB OPCODE 2 00 MINI OPS 14 RSW RESERV ED 0 

14 LLSH RESERVED 1 
11 15 PLDA RESERVED 0 

15 PSTA RESERVED 1 
I' 

I' 01 SPARE I 
02 LOI IMMED IATE OPERAN D N 
03 LDXI " " " ,, 

I: 04 CMPI " " " 
05 ADDI " " " 

'" 06 SUBI " " " 
07 MPYI " " " 
10 DI V I " " " 
11 PSHR l osl od z ST A l x l Q s 
12 LONI IMMEDIATE OPERAND N 
13 LDXN " " " 

I·' 14 CMPN " " " ,, 15 EX F BEGINNING BIT # # OF BITS 
16 DPF " " " " " " 
17 SETR l DB1 od z STA ! x l Q s 

03 SUB OPCODE 3 00 sPECIAL OP 00 SPARE 
01 PAUS K FIELD 
02 SEO " " 

I·"· 03 XCHD " " 
04 SMSK " " ,, 
05 RMSK " " 
06 XEO " " 

~·· 
07 SIO " " 
10 RIO " " 

I• f! 11: "" 11 WIO " " 

I' '" 12 TIO " " 
' 13 CIO " " 

I• 14 CMD " " 
15 SIRF " " 

16 SIN " " 
,, 17 HALT " " 

'I 
STT ENTRY # N 01 SCAL 

I 02 PCAL " " II II 

I• 03 EXIT N FIELD 

I' 04 SXIT " " 
05 AOXI " " 

06 SBXI " " 
I'" 

07 LLBL PL- DISPLACEMENT N 
10 LOPP P+ DISPLACEMENT N 

11 11 LDPN P- DISPLACEMENT N 

I' I' 12 ADDS IMMEDIATE OPERAND N 
13 SUBS " " " 

111 14 TSBM DB+ DISPLACEMENT N 
" 15 ORI IMMEDIATE OPERAND N 

16 XORI " " " 

17 ANDI " " " 

04 LOAD x I PDOS ADDRESS MO DE & DISPLACEMENT 
05 TBA 0 0 0 +/- P RELATIVE DISPLACEMENT 

MTBA 0 1 0 +/- " " " 
TBX 1 0 0 +/- " " " 

MTBX 1 1 0 +/- " " " 

STOR x I 1 t---oos ADDRESS MODE & DISPLACEMENT 
06 CMPM x I t---- PDOS " " " " 

07 ADDM x I " " " " " 

10 SUBM x I " " " " " 

11 MPYM x I " " " " " 
12 INCM x I 0 DOS " " " " 

DECM x I 1 " " " " " 

13 LOX x I PDOS " " " " 

14 BR x I 0 ~ P RELATIVE DISPLACEMENT 
BR x 1 1 DOS ADDRESS MODE (INDIRECT) & DISPLACEMENT 
BCC I 0 1 CCG CCE J CCLJ +/- J P RELATIVE DISPLACEMENT 

15 LOB x I 0 DOS ADDRESS MO DE & DISPLACEMENT 
LDD x I 1 " " " " " 

16 STB x I 0 " " " " " 

STD x I 1 " " " " " 
17 LRA x I PDOS " " " " 
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Appendix 

CHARACTER CODES 
ASCII First Character Second Character ASCII First Character Second Character 

Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent 

A 040400 000101 ACK 003000 000006 
B 041000 000102 BEL 003400 000007 
c 041400 000103 BS 004000 000010 
D 042000 000104 HT 004400 000011 
E 042400 000105 LF 005000 000012 
F 043000 000106 VT 005400 000013 
G 043400 000107 FF 006000 000014 
H 044000 000110 CR 006400 000015 
I 044400 000111 so 007000 000016 
J 045000 000112 SI 007400 000017 
K 045400 000113 OLE 010000 000020 
L 046000 000114 DC1 010400 000021 
M 046400 000115 DC2 011000 000022 
N 047000 000116 DC3 011400 000023 
0 047400 000117 DC4 012000 000024 
p 050000 000120 NAK 012400 000025 
Q 050400 000121 SYN 013000 000026 
R 051000 000122 ETB 013400 000027 
s 051400 000123 CAN 014000 000030 
T 052000 000124 EM 014400 000031 
u 052400 000125 SUB 015000 000032 
v 053000 000126 ESC 015400 000033 
w 053400 000127 FS 016000 000034 
x 054000 000130 GS 016400 000035 
y 054400 000131 RS 017000 000036 
z 055000 000132 us 017400 000037 

SPACE 020000 000040 
a 060400 000141 ! 020400 000041 
b 061000 000142 .. 021000 000042 
c 061400 000143 # 021400 000043 
d 062000 000144 $ 022000 000044 
e 062400 000145 % 022400 000045 
f 063000 000146 & 023000 000046 
g 063400 000147 023400 000047 
h 064000 000150 ( 024000 000050 
i 064400 000151 ) 024400 000051 
j 065000 000152 * 025000 000052 
k 065400 000153 + 025400 000053 
I 066000 000154 026000 000054 

m 066400 000155 - 026400 000055 
n 067000 000156 027000 000056 
0 067400 000157 I 027400 000057 
p 070000 000160 : 035000 000072 
q 070400 000161 ; 035400 000073 
r 071000 000162 < 036000 000074 
s 071400 000163 = 036400 000075 
t 072000 000164 > 037000 000076 
u 072400 000165 ? 037400 000077 
v 073000 000166 @ 040000 000100 
w 073400 000167 [ 055400 000133 
x 074000 000170 \ 056000 000134 
y 074400 000171 l 056400 000135 
z 075000 000172 t. 057000 000136 

- 057400 000137 
0 030000 000060 
1 030400 000061 { 060000 000140 

075400 000173 
2 031000 000062 I 076000 000174 
3 031400 000063 } 076400 000175 
4 032000 000064 ~ 077000 000176 
5 032400 000065 DEL 077400 000177 
6 033000 000066 
7 033400 000067 
8 034000 000070 
9 034400 000071 

First Character Second Character 
NUL 000000 000000 
SOH 000400 000001 
STX 001000 000002 
ETX 001400 000003 
EQT 002000 000004 
ENO I 002400 000005 

.A .A r-- Y --, 

; o j , i 2 ! 3 I 4151 s I 1 ; a 19 l10! 11112l 13H15; 
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ALPHABETICAL INDEX OF INSTRUCTIONS 

ADAX .......... 5-5 DXCH .......... 5-5 OR . . . ..... 5-9 
ADBX .......... 5-6 DZRO .......... 5-2 ORI .......... 5-21 
ADD .......... 5-4 
ADDI ......... 5-20 EXF .......... 5-22 PAUS ......... 5-24 
ADDM ........ 5-30 EXIT ........ . 5-25 PCAL ..... 5-24 
ADDS ......... 5-23 PLDA ........ 5-19 
ADXA .......... 5-5 FADD .......... 5-7 PSHR ........ 5-22 
ADXB .......... 5-6 FCMP .......... 5-6 PSTA ......... 5-19 
ADXI ......... 5-21 FDIV .......... 5-7 
AND .......... 5-9 FIXR .......... 5-7 RIO .......... 5-26 
ANDI ......... 5-22 FIXT .......... 5-8 RMSK ......... 5-26 
ASL ........... 5-9 FLT ........... 5-6 RSW .......... 5-19 
ASR ........... 5-9 FMPY ....... ... 5-7 

FNEG .......... 5-7 SBXI ......... 5-21 
BCC .......... 5-14 FSUB .......... 5-7 SCAL ......... 5-24 
BCY .......... 5-12 SCAN . . .... 5-14 
BNCY ......... 5-12 HALT ......... 5-24 scu .......... 5-17 
BNOV ......... 5-13 sew .......... 5-17 
BOV .......... 5-13 IABZ ......... 5-12 SED .......... 5-25 
BR .......... 5-13 INCA .......... 5-2 SETR ......... 5-23 
BRE .......... 5-13 INCB .......... 5-2 SIN .......... 5-28 
BRO .......... 5-13 INCM ......... 5-31 SIO .......... 5-26 
BTST .......... 5-5 INCX .......... 5-2 SIRF ......... 5-28 

IXBZ ......... 5-12 SMSK ......... 5-26 
CAB ........... 5-5 STAX .......... 5-6 
CIO .......... 5-27 LADD ......... 5-8 STB .......... 5-32 
CMD ......... 5-27 LCMP ......... 5-8 STBX .......... 5-5 
CMP ........... 5-3 LDB .......... 5-31 STD .......... 5-32 
CMPB ......... 5-18 LDD .......... 5-31 STOR ......... 5-30 
CMPI ......... 5-20 LDI .......... 5-20 SUB ........... 5-4 
CMPM ......... 5-30 LDIV .......... 5-8 SUBI ......... 5-20 
CMPN ......... 5-21 LDNI ......... 5-21 SUBM ......... 5-30 
CPRB ......... 5-12 LDPN ......... 5-29 SUBS ........ 5-23 
CSL .......... 5-10 LDPP ......... 5-29 SXIT ........ 5-25 
CSR .......... 5-10 LDX .......... 5-31 

LDXA .......... 5-6 TASL ........ 5-11 
DABZ ......... 5-13 LDXB .......... 5-6 TASR ........ 5-11 
DADD .......... 5-3 LDXI ......... 5-20 TBA .......... 5-28 
DASL ......... 5-10 LDXN ......... 5-21 TBC .......... 5-14 
DASR ......... 5-10 LLBL ......... 5-19 TBX .......... 5-29 
DCMP .......... 5-3 LLSH ......... 5-19 TCBC ......... 5-15 
DCSL ......... 5-11 LMPY .......... 5-8 TEST .......... 5-4 
DCSR ......... 5-11 LOAD ......... 5-29 TIO .. ........ 5-27 
DDEL .......... 5-1 LRA .......... 5-32 TNSL ......... 5-11 
DDUP .......... 5-1 LSL ........... 5-9 TRBC ......... 5-14 
DECA .......... 5-2 LSR ........... 5-9 TSBC ..... 5-15 
DECB .......... 5-2 LSUB .......... 5-8 TSBM .. ....... 5-15 
DECM ......... 5-31 
DECX .......... 5-2 MOVE ......... 5-15 
DEL ........... 5-1 MPY ........... 5-4 WIO .......... 5-27 
DELB .......... 5-1 MPYI ......... 5-20 
DFLT .......... 5-6 MPYL .......... 5-3 
DIV ........... 5-4 MPYM ......... 5-30 XAX .......... 5-5 
DIVI ......... 5-21 MTBA ........ 5-28 XBX ........... 5-5 
DIVL .......... 5-3 MTBX ......... 5-29 XCH ........... 5-5 
DLSL ......... 5-10 MVB ......... 5-16 XCHD ......... 5-23 
DLSR ......... 5-10 MVBL ......... 5-16 XEQ .......... 5-24 
DNEG .......... 5-3 MVBW ..... 5-18 XOR ... 5~ 
DPF .......... 5-22 MVLB . . . . . . 5-17 XORI ......... 5-22 
DSUB .......... 5-3 
DTST .......... 5-4 NEG . . . . . . .. 5-4 ZERO .......... 5-2 
DUP ........... 5-1 NOP . . . . . . .. 5-1 ZROB ...... 5-2 
DXBZ ......... 5-12 NOT ........... 5-8 ZROX .......... 5-2 
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WORLD WIDE 
SALES & SERVICE OFFICES 

UNITED STATES 
ALABAMA 
8290 Wh1lesburg Dr ., 
P.O. Box 4207 

S.E 

Huntsville 35802 
Tel : 1205) 881 -4591 
TWX: 810-726-2204 
·Birmingham 
Medical Service only 
Tel (205) 879-2081 

ARIZONA 
2336 E. Magnolia St. 
Phoenix 85034 
Tel : (602) 244-1361 
TWX: 910-951-1331 
2424 Easl Aragon Rd . 
Tucson 85706 
Tel : 1602) 889-4661 

CALIFORNIA 
1430 Easl Orangelhorpe Ave 
Fullerton 92631 
Tel : (714) 870-1000 
TWX : 910-592-1288 
3939 Lankersh1m Boulevard 
North Hollywood 91604 
Tel : (2 13) 877-1282 
TWX 910-499-2170 
6305 Arizona Place 
Los Angeles 90045 
Tel : (2 13) 649-2511 
TWX 910-328-6147 
"Los Angeles 
Tel (213) 776-7500 
3003 Scott Boulevard 
Santa Clara 95050 
Tel : (408) 249-7000 
TWX: 910-338-0518 
"Ridgecrest 
Tel: (714) 446-6165 
2220 Watt Ave . 
Sacramento 95825 
Tel: (916) 482-1463 
TWX : 910-367-2092 
9606 Aero Drive 
P.O. Box 23333 
San Diego 92123 
Tel : (71 4) 279-3200 
TWX: 910-335-2000 

CANADA 
ALBERTA 
Hewlett-Packard (Canada) Lid 
11748 Kingsway Ave 
Edmonton TSG OX5 
Tel (403) 452-3670 
TWX 610-831-2431 
Hewlett-Packard (Canada) Lid 
915-42 Avenue S.E. Suite 102 
Calgary T2G I Z 1 
Tel : (403) 287-1672 

COLORADO 
5600 Soulh Ulsler Parkway 
Englewood 8011 O 
Tel : (303 ) 771-3455 
TWX: 910-935-0705 

CONNECTICUT 
12 Lunar Drive 
New Haven 06525 
Tel : (203) 389-6551 
TWX : 710-465-2029 

FLORIDA 
P.O. Box 24210 
2806 W. Oakland Park Blvd 
Ft. Lauderdale 33307 
Tel: (305) 731-2020 
TWX: 510-955-4099 
•Jacksonville 
Medical Service only 
Tel : (904) 725-6333 
P.O. Box 13910 
6177 Lake Ellenor Dr 
Orlando 32809 
Tel : (305) 859-2900 
TWX: 810-850-0113 
21 East Wrighl St 
Suite 1 
Pensacola 32501 
Tel : (904) 434-3081 

GEORGIA 
P 0 . Box 28234 
450 lnterslate North 
Atlanta 30328 

iWlgt6.i~t~~~g 
HAWAII 
2875 So . King S1reel 
Honolulu 96814 
Tel: (808) 955-4455 

ILLINOIS 
(Calculalors Only) 
100 S. Wacker Drive 
Suite 1100 
Chicago 60606 
Tel : (3 12) 346-9701 
5500 Howard Slreel 
Skokie 60076 
Tel (312) 677-0400 
TWX 910-223-3613 
·st. Joseph 
Tel : (2 17) 469-2133 

BRITISH COLUMBIA 
Hewlelt-Packard (Canada) Lid 
837 E. Cordova Slreel 
Vancouver V6A 3R2 
Tel : (604) 254-0531 
TWX: 610-922-5059 

INDIANA 
3839 Meadows Drive 
Indianapolis 46205 
Tel : (317) 546-4891 
TWX: 810-341 -3263 

IOWA 
1902 Broadway 
Iowa City 52240 
Tel : 1319) 338-9466 
Night : (319) 338-9467 

·KANSAS 

~e~r~J'16) 267-3655 

LOUISIANA 
P 0 . Box 840 
3239 Williams Boulevard 
Kenner 70062 
Tel (504) 721-6201 
TWX 810-955-5524 

MARYLAND 
6707 Whiteslone Road 
Baltimore 21207 
Tel : (301 ) 944-5400 
TWX : 710-862-9157 

~2~~~~ 11~h%~5~oad 
Tel : (301) 948-6370 
TWX : 710-828-9685 

710-828-0487 
P 0 . Box 1648 
2 Choke Cherry Road 
Rockville 20850 
Tel : (301) 948-6370 
TWX: 710-828-9684 

MASSACHUSETTS 
32 Hartwell Ave 
Lexington 02173 
Tel : (617) 861 -8960 
TWX : 710-326-6904 

MICHIGAN 
23855 Research Drive 

~:i r(i~~t~~6~4°io4 
TWX : 810-242-2900 

MANITOBA 
Hewlett-Packard !Canada) Lid 
513 Cenlury SI 
St . James 
Winnipeg R3H OL8 

iWP~tu~rn~1 

CENTRAL AND SOUTH AMERICA 
ARGENTINA 
Hewlett-Packard Argentina 
S.A.C.e.I 
Lavalle 1171 -3° Pisa 
Buenos Aires 
Tel: 35-0436, 35-0627, 35-0341 
Telex : 012-1009 
Cable: HEWPACK ARG 

BOLIVIA 
Stambuk & Mark (Bohv1a) Lida 
Av . Mariscal , Sanla Cruz 1342 
La Paz 
Tel: 40626, 53163 . 52421 
Telex : 3560014 
Cable: BUKMAR 

BRAZIL 
Hewlett-Packard Do Brasil 
1.E.C . Lida 
Rua Frei Caneca , 1. t 52-Bela Vista 
01307-Sao Paulo-SP 
Tel : 288-71-11 , 287-81-20, 

287-61-93 
Telex : 309151 1213 
Cable HEWPACK Sao Paulo 

EUROPE 
AUSTRIA 
Hewlell-Packard Ges .m.b.H 
Handelska 5213 
P.O. Box 7 
A-1205 Vienna 
Tel : 10222) 33 66 06 to 09 
Cable : HEWPAK Vienna 
Telex: 75923 hewpak a 

Hewlell-Packard Do Brasil 
l.E.C. Lida 
Praca Dom Feliciano, 78-8' 
andar (Sala 80618) 
9000-POrto Alegre-RS 
Tel : 25-84-70-DDD (0512) 
Cable : HEWPACK POrto Alegre 
Hewlelt-Packard Do Brasil 
l.E.C. Lida . 
Rua Siqueira Campos . 53 . 4° 
andar Copacabana 
2000-Rio de Janeiro-GB 
Tel : 257-80-94-DDD (021) 
Telex : 2100 79 HEWPACK 
Cable: HEWPACK 

Rio de Janeiro 

CHILE 
Calcagni y Melcalle Lida 
Calle Lira 81. Ofic1na 5 
Casilla 2118 
Santiago 
Tel : 398613 
Cable : CALMET 

BELGIUM 
Hewlell-Packard Benelux 
S.A./N.V 
Avenue de Col-Vert , t . 
(Groenkraaglaan) 
B-1170 Brussels 
Tel : 102) 672 22 40 
Cable. PALOBEN Brussels 
Telex: 23 494 paloben bru 

COLOMBIA 
lnstrumentaci6n 
Henrik A. Langebaek & Kier S.A 
Carrera 7 No. 48-59 
Apartado Aereo 6287 
Bogota, 1 D.E. 
Tel : 45-7 8-06 , 45-55-46 

f:1~: :tRJg1~m~ 
COSTA RICA 
Lie . Alfredo Gallegos Gurdian 
Apartado 10159 
San Jose 
Tel : 21-86-13 
Cable: GALG UR San Jose 

GUATEMALA 
IPESA 
Avenida La Relorma 3-48. 
Zona 9 
Guatemala 
Tel: 63627, 64736 
Telex : 4192 TELTRO GU 

DENMARK 
Hewlell-Packard AIS 

g~t_a:J%bJ~ irkerpd 
Tel: (01) 81 66 40 
Cable HEWPACK AS 
Telex : 166 40 hp as 

MINNESOTA 
2400 N. Prior Ave 
Roseville 55113 
Tel : (6 12) 636-0700 
TWX: 910-563-3734 

MISSISSIPPI 
•Jackson 
Medical Service only 
Tel : (601 ) 982-9363 

MISSOURI 
11131 Colorado Ave. 
Kansas City 64137 
Tel : (816) 763-8000 
TWX : 910-771-2087 
148 Weldon ParKway 
Maryland Heights 63043 
Tel : (314) 567-1455 
TWX: 910-764-0830 

NEBRASKA 
(Medical Only) 
11902 Elm Slreet 
Suite 4C 
Omaha 68144 
Tel : (402) 333-6017 

"NEVADA 
Las Vegas 
Tel : (702) 382-5777 

NEW JERSEY 
W. 120 Cen1ury Rd 
Paramus 07652 

iWP?i16-~i5:~~~~ 
NEW MEXICO 
P.O. BOx 8366 
Station C 
6501 Lomas Boulevard N.E 
Albuquerque 87108 
Tel : (505) 265-3713 
TWX: 910-989-1665 
156 Wyatt Drive 
Las Cruces 88001 

iWP~f6-~~rn~5 

NOVA SCOTIA 
Hewlett-Packard (Canada) Lid 
800 Windmill Road 
Dartmouth B3C 1L1 
Tel (902) 469-7820 

MEXICO 
Hewlett-Packard Mex1cana . 
S.A. de C.V 
Torres Adalld No. 21. I 1° P1so 
Col. del Valle 
Mexico 12 , D.F 
Tel (905) 543-42-32 
Telex : 017-74-507 
Hewlell-Packard Mex1cana , 
S.A. de C.V 
Ave . Const1tuci6n No . 2184 
Monterrey , N. L 
Tel 48-7 1-32, 48-71 -84 

NICARAGUA 
Roberto Teran G. 
Apartado Postal 689 
Edificio Teran 
Managua 
Tel : 3451 , 3452 
Cable: ROTERAN Managua 

Hewlett-Packard AIS 
Naverve1 I 
DK-8600 Silkeborg 
Tel (06) 82 71 66 
Telex 166 40 hp as 
Cable HEWPACK AS 

NEW YORK 
6 Aulomation Lane 
Computer Park 
Albany 12205 
Tel : 1518) 458-1550 
TWX 710-441-8270 
New York City 
Manhallan , Bronx 
Contac1 Paramus . NJ Ofl1ce 
Tel : (201) 265-5000 
Brooklyn , Queens, Richmond 
Contact Woodbury , NY Office 
Tel (516) 921 -0300 
201 South Avenue 
Poughkeepsie 12601 
Tel : (914) 454-7330 
TWX : 510-248-0012 
39 Saginaw Drive 
Rochester 14623 
Tel (716) 473-9500 
TWX : 510-253-5981 
5858 Easl Molloy Road 
Syracuse 13211 
Tel : (315) 455-2486 
TWX : 710-541-0482 
1 Crossways Park West 
Woodbury 11797 
Tel : (516) 921-0300 
TWX: 510-221-2168 

NORTH CAROLINA 
P 0 Box 5188 
1923 North Main Street 
High Point 27262 
Tel : (919) 885-8101 
TWX : 510-926-1516 

OHIO 
16500 Sprague Road 
Cleveland 44130 
Tel : 1216) 243-7300 

~~~1 l14g.JJ~i431 
330 Progress Rd . 
Dayton 45449 
Tel : (513) 859-8202 
TWX 810-459-1925 
104 1 Kingsmill Parkway 
Columbus 43229 
Tel : (614) 436-1041 

ONTARIO 
Hewlett-Packard (Canada) Lid 
1785 Woodward Dr 
Ottawa K2C OP9 

iWx16Jnj~~:~~~~ 
Hewlett-Packard !Canada) Lid 
6877 Goreway Drive 
Mississauga L4V 1 L9 
Tel : (416) 678-9430 
TWX: 610-492-4246 

PANAMA 
Electr6nico Bal~0~. S.A. 
P.O. Box 4929 
Calle Samuel Lewis 
Cuidad de Panama 
Tel 64-2700 
Telex : 3431103 Curunda , 

Canal Zone 
Cable· ELECTRON Panama 

PARAGUAY 
Z.J. Melamed S.R L 
Division : Aparatos y Equipos 

Medicos 
Division: Aparatos y Equipos 

Scientif1cos y de 
lnvest1gacion 
P.O. Box 676 
Chile, 482 , Edificio Victoria 
Asuncion 
Tel : 4-5069, 4-6272 
Cable : RAMEL 

HNLAND 
Hewlett-Packard Oy 
Nahkahousuntie 5 
P 0 . Box 6 
SF-00211 Helsinki 21 
Tel : 6923031 
Cable: HEWPACKOY Helsinki 
Telex : 12-15363 

OKLAHOMA 
P 0 Box 32008 
Oklahoma City 73132 
Tel 1405) 721-0200 
TWX· 910-830-6862 

OREGON 
17890 SW Boones Ferry Road 
Tualatin 97062 
Tel: (503) 620-3350 
TWX: 910-467-8714 

PENNSYLVANIA 
111 Zeta Drive 
Pittsburgh 15238 
Tel : (412) 782-0400 
Nighl: 782-0401 
TWX: 710-795-3124 
1021 81h Avenue 
King of Prussia Industrial Park 
King of Prussia 19406 

iWx(2m-~i5:~in 
SOUTH CAROLINA 
6941 -0 N. Trenholm Road 
Columbia 29260 
Tel : '(803) 782-6493 

TENNESSEE 
·Memphis 
Medical Service only 
Tel : (901) 274-7472 
·Nashville 
Medical Service only 
Tel (615) 244-5448 

TEXAS 
P.O. Box 1270 
201 E. Arapaho Rd 
Richardson 75080 

iWx(2Jtrnrn~1 
P.O. Box 27409 
6300 Westpark Drive 
Suite 100 
Houston 77027 

rn2m.m:~~~i 

QUEBEC 
Hewlell-Packard (Canada) Lid 
275 Hymus Blvd 
Pointe Claire H9R 1G7 
Tel (514) 697-4232 
TWX: 610-422-3022 
TLX : 05-821521 HPCL 

PERU 
Compania Elewa Med1ca S.A 
Ave . Enrique Canaual 312 
San Isidro 
Casilla 1030 
Lima 
Tel: 22-3900 
Cable: ELMED Lima 

PUERTO RICO 
San Juan Electronics . Inc 
P 0. Box 5167 
Ponce de Le6n 154 
Pda . 3-PTA de Tierra 
San Juan 00906 
Tel. (809) 725-3342, 722-3342 
Cable: SATRONICS San Juan 
Telex : SATRON 3450 332 

URUGUAY 
Pablo Ferrando S.A. 
Comercial e Industrial 
Avenida Italia 2877 
Casilla de Correo 370 

FRANCE 
Hewlett-Packard France 
Ouartier de Courtaboeuf 
Boite Postale No. 6 
F-9 1401 Orsay 
Tel (1) 907 78 25 
Cable : HEWPACK Orsay 
Telex 60048 

205 Billy Mitchell Road 
San Antonio 78226 
Tel (512) 434-8241 
TWX 910-871-1170 

UTAH 
2890 South Main Slreel 
Salt Lake City 84115 
Tel : (801) 487-0715 
TWX 910-925-5681 

VIRGINIA 
"Norfolk 
Medical Service only 
Tel 1804) 497-1026 
P 0 Box 9854 
2914 Hungary Springs Road 
Richmond 23228 
Tel (804) 285-3431 
TWX 710-956-0157 

WASHINGTON 
Bellefleld Office Pk 
1203-l 14th SE 
Bellevue 98004 
Tel : 1206) 454-3971 
TWX : 910-443-2446 

"WEST VIRGINIA 
Charleston 
Tel: 1304) 345-1640 

WISCONSIN 
9431 W. Beloil Road 
Suite 117 
Milwaukee 53227 
Tel : 1414 ) 541-0550 

FOR U.S. AREAS NOT LISTED : 
Contact lhe regional office 
nearest you Atlanta . Georgia 
North Hollywood , Cal1lornia ... 
Rockville . 14 Choke Cherry Rd ) 
Maryland .. Skokie , Illinois . 
Their complete addresses 
are listed above 

·service Only 

Hewlett-Packard (Canada) Lid 
2376 Galvani Streel 
Ste-Foy G 1 N 4G4 
Tel : 1418) 688-8710 

FOR CANADIAN AREAS NOT LISTED: 
Contact Hewlett-Packard (Canada) 
Lid . 1n Mississauga 

Montev ideo 
Tel 40-3 102 
Cable: RADIUM Montevideo 

VENEZUELA 
Hewlett-Packard de Venezuela 
CA 
Apartado 50933 
Ediflcio Segre 
Tercera Transversal 
Los Ruices Norte 
Caracas 107 
Tel 35-00-11 
Telex : 21146 HEWPACK 
Cable HEWPACK Caracas 

FOR AREAS NOT LISTED, CONTACT: 
Hewlett-Packard 
Inter-Americas 
3200 Hillview Ave 
Palo Alto . California 94304 
Tel : 1415) 493-1501 
TWX 910-373-1260 
Cable. HEWPACK Palo Alto 
Telex 034-8300. 034 -8493 

Hewlell-Packard France 
Agence Regional 
Chemin des Mou1lles 
Bo11e Postale No. 12 
F-69130 Ecully 
Tel 178) 33 81 25 
83 65 25 
Telex 31 617 



Hewlett-Packard France Hewlett-Packard GmbH GREECE Hewlett-Packard ltaliana S.p.A PORTUGAL SWITZERLAND Hewlett-Packard Ltd . 

Agence Reg1onale Vertriebsburo Dusseldort Kostas Karayannis Via Medaglie d'Oro , 2 Telectra-Em presa Tecnica de Hewlett-Packard (Schweiz) AG 4th Floor 

Zone Aeronautique Vogelsanger Weg 38 tS . Ermou Street 1-56100 Pisa Equ1pamentos Electricos S.a.r.I Zurcherstrasse 20 Wedge House 

Avenue Clement Ader 0-4000 Diisseldorf GR-Athens 126 Tel : (050) 500022 Rua Rodrigo da Fonseca 103 P.O. Box 64 799, London Road 

F-31770 Colomiers Tel (021 t) 63 80 31 15 Tel : 3230-303 Sales/SVC Telex : 32046 via Milan P.O. Box 2531 CH-8952 Sch lieren Zurich GB-Thornton Heath CR4 6XL. 

Tel : (61) 78 11 55 Telex 85186 533 hpdd d 3230-305 Adm . Order Proc Hewlelt-Packard S.p.A P-Lisbon 1 Tel: (01) 98 18 21 f ~i'.r(61) 684 0105 
Telex : 51957 Hewlett-Packard GmbH Cable: RAKAR Alhens Via G. Armellini 10 Tel : (19) 68 60 72 Cable: HPAG CH 

Hewlelt-Packard France Vertriebsburo Hamburg Telex: 21 59 62 rkar gr 1-00143 Rome-Eur Cable TELECTRA Lisbon Telex : 53933 hpag Telex: 946825 

Agence Reg1onale Wendenstrasse 23 Hewlelt-Packard S.A Tel : (6) 591254415 Telex : 12598 Hewlett-Packard (Schweiz) AG Hewlelt-Packard Ltd 

Centre d'aviat1on generale 0-2000 Hamburg 1 Mediterranean & Middle East Telex : 6t514 SPAIN 9, chemin Louis-Pictet C/O Makro 

F-t3721 Aeroport de Tel: (040) 24 t3 93 Operations Cable : HEWPACKIT Rome Hewlett-Packard Espanola , S.A CH-1214 Vernier-Geneva South Service Wholesale Centre 

Marignane Cable : HEWPACKSA Hamburg 35 Kolokotroni Street Hewlelt-Pa ckard ltaliana S. p.A Jerez No. 3 t~1bl~~~2J0~A4{K§~ Geneva 
Wear Industrial Estate 

Tel: (91) 89 12 36 Telex : 21 63 032 hphh d Platia Kefallariou Via San Quintina . 46 E-Madrid 16 Washington 

TWX: 41770F Hewlett-Packard GmbH Gr-Kifissia-Athens l-t0121 Turin Tel : 458 26 00 Telex : 27 333 hpsa ch GB-New Town , County Durham 

Hewlett-Packard France Vertriebsburo Hannover Tel : 8080337, 8080359 . Tel (1 1) 53 82 64 Telex 23515 hpe TU RKEY 
Tel: Washington 464001 ext. 57/58 

Agence Regionale Mellendorter Strasse 3 8080429. 80t8693 Telex : 32046 via Mil an Hewlett-Packard Espanola . S.A Telekom Engineering Bureau Hewlett-Packard Ltd .· s registered 

53 . Avenue de Rochester 0-3000 Hannover-Kleefeld Telex 21 6588 address for V.A.T . purposes 
Cable: HEWPACKSA Athens LUXEMBURG Milanesado 21-23 Saglik Sok No. 15/1 

F-35000 Rennes Tel (051 1) 55 60 46 
Hewlett-Packard Benelux E-Barcel ona t 7 Ayaspasa-Beyoglu only 

Tel 74912 F Telex 092 3259 IRE LAND S.A. /N.V. Tel (3) 2036200-08 . P.O. Box 437 Beyoglu 70. Finsbury Pavement 
Telex : 74 912 F Hewlett-Packard GmbH Hewlett-Packard Ltd Avenue de Col-Vert . 1, 2044098/9 TR-Istanbul London , EC2A 1 SX 

Hewlett-Packard France Vertnebsburo Nuremberg King Street Lane ~Groenkraaglaan ) Telex : 52603 hpbe e Tel: 49 40 40 Registered No. 690597 

Agence Regionale Hersbruckerstrasse 42 Winnersh. Work in gham -1170 Brussels Hewlett-Packard Espanola , S.A. Cable: TELE MATION Istanbul USSR 
74. Allee de la Robertsau 0-8500 Nuremberg GB-Berkshire RG 11 SAR Tel (02) 672 22 40 Av Ramon y Ca1al . 1 UNITED KINGDOM 

Hewlelt-Packard 
F-67000 Strasbourg Tel · (0911 ) 57 10 66 Tel: Wokingham 784774 Cable. PALOBEN Brussels Edificio Sevilla I. planla 9° Representative Offi ce USSR 
Tel · (88) 35 23 20121 Telex : 623 860 Telex 847178/848179 Telex : 23 494 E-Seville 

Hewlett-Packard Ltd Hotel Budapest/Room 201 
Telex : 8914 1 Hewl ett- Packard GmbH Hewlett-Pa ckard Ltd Tel : 64 44 54/58 

Ki ng Street Lane Petrovskie L1n i1 2/18 
Cable HEWPACK STR BG Vertriebsburo Munchen " The Graftons" NETHERLANDS Winnersh, Wokingham Moscow 

Unterhachinger Strasse 28 Stamford New Road Hewlett-Packard Benelux N.V Hewlett-Packard Espanola S A. GB-Berkshire AG 11 5AR Tel: 221-79-71 
GERMAN FEDERAL REPUBLIC ISAR Center Weerdestein tt7 Ed1fic10 Albia II 7 B Tel : Workingham 784774 
Hewlett-Packard GmbH 0-8012 Ottobrunn 

GB- Attr incham , Cheshire P.O. Box 7825 E-Bilbao Telex : 847178/848 179 YUGOSLAVIA 
Vertriebszentrale Frankfurt Tel : (089) 601 30 61 /7 

Tel : (061) 928-9021 NL-Amsterdam. 1011 Tel: 23 83 06123 82 06 Hewlett-Packard Ltd . Iskra-Standa rd /Hewlett-Packard 
Bernerstrasse 1 t7 Telex : 52 49 85 

Telex : 668068 Tel : (020) 54 11522 · The Graftons" Topniska 58/3 
Posttach 550 t40 Cable HEWPACKSA MlJnchen ITALY Cable: PALOBEN Amsterdam SWEDEN Stamford New Road 61000 Ljubljana 
0-6000 Frankfurt 56 

(West Berlin) Hewlett-Packard ltahana S.p.A Telex: t3 2t6 hepa nl Hewlett -Packard Sverige AB GB- Altrincham . Cheshire Tel 3t456 t or 3t4927 
Tel : (06 11 ) 50 04-t Via Amerigo Vespucci 2 Enighetsvagen 1-3 Tel (061 ) 928-902t Telex 3t300 
Cable : HEWPACKSA Frankfurt Hewlett-Packard GmbH 

l-20t24 Milan 
NORWAY Fack Telex : 668068 

Telex 41 32 49 Ira Vertnebsburo Berlin 
Tel : (2) 6251 (10 lines) Hewlett-Packard Norge A/S S- 161 20 Bromma 20 SOCIALIST COUNTRIES 

Hewlett-Packard GmbH 
Keith Strasse 2-4 Nesveien 13 Tel (08) 730 05 50 Hewlett-Packard Ltd PLEASE CONTACT: 
0-1000 Berlin 30 Cab le: HEWPACKIT Milan Box 149 Cable MEASUREMENTS c/o Makro Hewlett -Packard S.A 

Vertriebsburo Boblingen Telex 32046 
Herrenbergerstrasse 110 

Tel : (030) 24 90 86 N-1344 Haslum Stockholm South Service Wholesale Centre 7. rue du Bois-du- Lan 
Telex : 18 34 05 hpbln d Hewlett-Packard ltaliana S.p.A Tel: (02) 53 83 60 Telex : 10721 Amber Way P 0 . Box 349 

0-7030 Bbblingen , Wurttemberg Via Pietro Maroncelli 40 Telex : 16621 hpnas n Halesowen Industrial Estale CH-1217 Meynn 1 Geneva 
Tel (07031) 66 72 87 (ang . Via Visentin) Hewl ett-Packard Sverige AB GB-Halesowen . Wares Switzerland 
Cable : HEPAK Bbblingen 1-35100 Padova Hagakersgatan 9C Tel: Birmingham 7860 Tel : (022) 41 54 00 
Telex 72 65 739 bbn Tel: 66 40 62/66 31 88 

S-431 41 Mblndal 
Tel : (031) 27 68 00/0t Cable: HEWPACKSA Geneva 

Telex : 32046 via Milan Telex : Via Bromma Telex : 2 24 86 

AFRICA, ASIA, AUSTRALIA 
ANGOLA CYPRUS Blue Star Ltd JAPAN LEBANON Mushko & Company. Ltd TAI WAN 
Telectra Kypronics Blue Star House Yokogawa-Hewlett-Packard Ltd Constantin E. Macridis 38B. Satel lite Town Hewlett-Packard Taiwan 
Empresa Tecnica de t 9 Gregorios & Xenopoulos Rd 34 Ring Road Ohashi Building Clemenceau Street 34 Rawalpindi 39 Chung Sh1ao West Road 

Equipamentos P.O. Box t t52 Lajpat Nagar t -59-1 Yoyog1 P 0 Box 72 t3 Tel : 4t924 Sec. t Overseas Insurance 
Electncos . S.A.R.L CY-Nicosia New Delhi t 10 024 Shibuya-ku, Tokyo RL-Beirut Cab le: FEMUS Rawalpindi Corp . Bldg . 7th Floor 
R. Barbosa Rodrigues . 42-1 °DT.' Tel : 45628/29 Tel. 62 32 76 Tel 03-370-2281 /92 Tel : 220846 Taipei 
Caixa Postal. 6487-Luanda Cable: KYPRONICS PANOE HIS Telex : 2463 Telex : 232-2024YHP Telex : 2t t t4 Leb PHILIPPINES Tel: 389t60,1,2. 375t21 . 
Tel 35515/6 

ETHIOPIA 
Cable: BLUESTAR Cable : YHPMARKET TOK 23-724 Cable : ELECTRONUCLEAR Beirut Electromex. Inc. Ext. 240-249 

Cable : TELECTRA Luanda Blue Star Ltd Yokogawa -Hewlett-Packard Ltd 
6th Floor , Amalgamated Telex TP824 HEWPACK 

AUSTRALIA 
African Salespower & Agency Blue Star House Nisei lbaragi Bldg . 

MALAYSIA Development Corp . Bldg Cable : HEWPA CK Taipei 
Private Ltd ., Co . MECOMB Malaysia Ltd Ayala Avenue . Makat1. Rizal 

Hewlett-Packard Australia P 0 . Box 718 11 /11A Magarath Road 2-2-8 Kasuga 2 Lorong t 3/6A C.C. P.O Box 1028 Hewlett-Packard Taiwan 
Pty Ltd 58/59 Cunningham St . Bangalore 560 025 lbarag1-Sh1 Section 13 Makati , Rizal 38. Po-A1 Lane . San Min Chu 
31-41 Joseph Street Addis Ababa Tel 55668 Osaka Petahng Jaya . Selangor Tel 86-18-87, 87-76-77 , Kaohsiung 
Blackburn , Victoria 3130 Tel: 12285 Telex: 430 Tel: (0726) 23- 1641 Cable MECOMB Kuala Lumpur Cable: ELEMEX Manila Tel 2973t9 
Tel. 89-6351. 89-6306 Cable : ASACO Addisababa Cable : BLUESTAR Telex : 5332-385 YHP OSAKA 
Telex : 3t-024 Blue Star Ltd Yokogawa-H ewlett-Packard Ltd MOZAMBIQUE SINGAPORE THAILAND 

Cable HEWPARO Melbourne HONG KONG Meeaksh1 Mandiran Nakama Building A.N. Goncalves. Lta Mechanical & Combustion UNI MESA Co .. Ltd 

Hewlett-Packard Australia Schmidt & Co . (Hong Kong) Ltd . xxx/1678 Mahatma Gandhi Rd No. 24 Kam1sasazima-cho 162. 1° Apt. 14 Av . 0 Luis Engineering Company Pte ., Elsom Research Building 

Pty Ltd . P.O. Box 297 Coch in 682 016 Kerala Nakamura-ku . Nagoya City Caixa Postal t07 ltd . Bang1ak Sukumv1t Ave 

31 Bridge Street Cor.na light Centre Blue Star Ltd Tel (052) 571-5171 Lourenco Marques t0/12 . Jalan Kilang Bangkok 

Pymble. 39th Floor 1-1-11711 Yokogawa-Hewlett-Packard Ltd Tel 27091 , 27t 14 Red Hill Industri al Estate Tel 932387 . 930338 

New South Wales. 2073 Connaught Road . Central Saro11ni Devi Road Nitto Bldg 
Te lex : 5-203 Negon Mo Singapore. 3 Cable : UNIMESA Bangkok 

Tel : 449-6566 Hong Kong Secunderabad 500 003 2-4-2 Shinohara-K1ta Cable : NEGON Tel: 647t5t (7 lines) UGANDA 
Tel : 240t 68 . 232735 Cable : MECOMB Singapore 

Telex : 2t56t Telex · HX4766 Tel 7 63 9t , 7 73 93 Kohoku-ku NEW ZEALAND Uganda Tele-Electric Co .. Ltd 
Cable : HEWPARO Sydney Cable: SCHMIDTCO Hong Kong Cable BLU EFRDST Yokohama 222 Hewlett-Packard (N.Z. ) Ltd Hewlett-Packard Singapore P.O. Box 4449 

Hewlett-Packard Australia Te lex : 459 Tel 045-432-1504 94-96 Dixon Street (Pte.) Ltd Kampala 

Pty Ltd INDIA Blue Star Ltd Telex : 382-3204 YHP YOK P 0 Box 9443 Blk . 2, 6th FLOOR. Jalan Tel : 57279 

97 Churchill Road Blue Star Ltd 23/24 Second Line Beach Yokogawa-Hewlett-Packard Ltd Courtenay Place . Buk1t Merah Cable: CO MCO Kampala 

Prospect 5082 Kasturi Buildings Madras 600 00 t Chuo Bldg Wellington Redhill Industrial Estate 
VIETNAM 

South Australia Jamshedji Tata Rd Tel 23954 Rm. 603 3. Tel. 59-559 Alexandra P.O. Box 87 . 
Singapore 3 Peninsular Trading Inc 

Te l: 44 8t51 Bombay 400 020 Telex · 379 2-Chome Telex: 3898 Tel 633022 P 0 Box H-3 
Cable: HEWPARO Adelaide Tel · 29 50 2t Cable BLUESTAR IZUMl -CHO Cable : HEWPACK Wellington 

Telex 375t Telex : HPSG RS 2t486 2t6 Hien-Vuong 
Hewlett-Packard Australia Cable: BLUEFROST Blue Star Ltd Milo. 3t0 Hewlett-Packard (N.Z. ) Ltd . Cable: HEWPACK. Singapore Saigon 
Pty Ltd Nathra1 Mansions Tel : 0292-25-7470 Pakuranga Professional Centre Tel: 20-805, 93398 
t4 t Stirling Highway Blue Star Ltd 2nd Floor Bistupur KENYA 267 Pakuranga Highway SOUTH AFRICA Cable PENTRA, SAIGON 242 
Nedlands, W.A. . 6009 Sa has Jamshedpur 83 t OOt Box 5t 092 Hewlett-Packard South Afri ca 

Tel 86 5455 4 t 4/2 Vir Savarkar Marg Tel. 38 04 
Technical Engineering Services Pakuranga (Pty.). Ltd ZAMBIA 

Prabhadev1 Cable : BLUESTAR 
P 0 Box 1831t Tel 569-651 Hewlett-Packard House R.J. Tilbury (Zambia) Ltd 

Hewlett-Packard Au stralia Bombay 400 025 Telex . 240 
Nairobi , Kenya Cable : HEWPACK . Auckland Daphne Street. Wendywood P 0 . Box 2792 

Pty Ltd Tel 45 78 87 Tel 57726 Sandton . Transvaal 200t Lusaka 
t2t Wollongong Street Telex: 4093 INDONESIA Cable. PROTON NIGERIA Tel: 802-1040 Zambia . Central Africa 
Fyshwick , A C.T . 2609 Cable: FROSTBLUE BERCA Indonesia P.T KOREA 

The Electronics Telex SA43-4782JH Tel 73793 
Tel 95 3733 P.O. Box 496 lnstrumentat1ofns Ltd . Cable: HEWPACK Cab le ARJAYTEE . Lusaka 
Hewlett-Packard Australia 

Blue Star Ltd 1st Floor JL. C1k1ni Raya 61 American Trading Company N6B/770 Oyo Road 

~/~ FTci~r 
Band Box House Jakarta 

Korea Oluseun House Hewlett-Packard South Africa MEDITERRANEAN AND 
Prabhadev1 Tel: 56038. 40369 . 49886 

l.P .O. Sox 1103 PM B. 5402 (Pty .), Ltd MIDDLE EAST COUNTRIES 
Teach ers Union Building Bombay 400 025 Telex · 2895 Jakarta 

Dae Kyung Bldg . 8th Floor Ibadan Breecastle House NOT SHOWN PLEASE CONTACT: 
4.95-499 Boundary Street Tel: 45 73 01 107 Se1ong- Ro . Tel. 22325 Bree Street Hewlett-Packard S.A 
Spring Hill , 4000 Queensland Telex : 3751 IRAN Chongro-Ku , Seoul Cable: THETEIL Ibadan Cape Town Mediterranean and Middle 
Tel 29-1544 Cable : BLUESTAR Multi Corp International Ltd Tel (4 lines) 73-8924-7 

The Electronics lnstrumenta-
Tel: 2-6941 /2/3 East Operations 

Telex : AA-42133 Blue Star Ltd Avenue Soraya 130 Cable : AMTRACO Seoul Cable: HEWPACK Cape Town 35, Kolokotron i Street 
14140 Civi l Lines P 0. Box 1212 KUWAIT 

tions Ltd . (TEil) Telex : 0006 CT Platia Kefallariou 16th Floor Cocoa House CEYLON Kampur 208 001 IR-Teheran Al-Khald1ya Trading & P M.B 5402 Hewlett-Packard South Africa GR-K1fissia-Athens 
United Electricals Ltd Tel : 6 88 82 Tel 83 10 35-39 Contracting Co Ibadan (Pty .). Ltd Telex : 2t-6588 
PO Box681 Cable· BLUESTAR Cable MULTICORP Tehran 641 Ridge Road . Durban 
60 . Park St Telex 2893 mc1 tn 

Al Soar Street Tel 22325 P 0 . Box 99 
Cable HEWPACKSA Ath ens 

Colombo 2 Blue Star Ltd M1chaan Bldg No. 4 Cable THETEIL Ibadan Overport , Natal OTHER AREAS NOT LISTED, CONTACT: 

Tel 26696 7 Hare Street ISRAEL Kuwait 
PAKISTAN Tel 88-6102 Kewlett-Packard 

P.O Box 506 Tel 42 99 10 
Cable: HOTPOINT Colombo Calcutta 700 001 

Electronics & Engineering 
Cable VISCOUNT Mushko & Company . Ltd Te lex 567954 Export Trade Company 

Tel 23-0131 
Div . of Motorola Israel Ltd Oosman Chambers Cable : HEWPACK 3200 K1llview Ave 

Te lex: 655 
t7 Aminadav Street Abdul lah Haroon Road Palo Alto. California 94304 

Cable BLUESTAR 
Tel-Aviv Karachi 3 Tel : (4t5) 493-1501 
Tel : 36941 (3 lines) Tel 51 t02 7. 512927 TWX 910-373-t267 
Cable BASTEL Tel-Aviv Cable COOPERATOR Karachi Cable: HEWPACK Palo Alto 
Telex : 33569 Telex : 034-8300 . 034-8493 

E t 1174 
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