LARGE SYSTEMS

ASSEMBLY
INSTRUCTIONS
DPS 8000

GCOS 8

ASSEMBLY
INSTRUCTIONS
DPS 8000

SUBJECT

Description of the Assembly Instructions for the DPS 8000
Information System.

SOFTWARE SUPPORTED
GCOS 8 Software Release 2500

DATE
March 1987
Worldwide
Information
ORDER NUMBER Systems

DZ51-00

PREFACE

This manual contains information that enables the user to code programs in
symbolic machine language which is then translated into binary machine
instructions.

This manual is directed to users who are experienced in coding within the
environment of a large-scale computer installation. Considerable knowledge and
practical experience is required in the use of address modification with
indirection, hardware indicators, fault interrupts and recovery routines, macro
operations, pseudo-operations, and other features normally encountered in a
large computer with a flexible instruction repertoire under control of a master
executive program. It is assumed that the user is familiar with the two's
complement number system.

This manual includes the processor capabilities, modes of operation, detailed
descriptions of machine instructions, virtual memory addressing, paging, and
the representation of data. It should prove useful to programmers who are
responsible for analyzing conditions that cause system failures.

In this document, multiple vertical braces and brackets should be assumed to be a
single brace or bracket; for example:

} represents { } and [] represents[]

e

BULL DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND MAKES NO EXPRESS WARRANTIES EXCEPT AS MAY BE STATED
IN ITS WRITTEN AGREEMENT WITH AND FOR ITS CUSTOMER. IN NO EVENT IS BULL
LIABLE TO ANYONE FOR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES.

THE INFORMATION AND SPECIFICATIONS IN THIS DOCUMENT ARE SUBJECT TO CHANGE
WITHOUT NOTICE. CONSULT YOUR BULL MARKETING REPRESENTATIVE FOR PRODUCT
OR SERVICE AVAILABILITY.

Copyright © Bull HN Information Systems Inc., 1987, 1990 File No.: 1V13, 1313
All Rights Reserved

DZ51-00

LISTING AND CORRECTING
DOCUMENTS

The Problem Analysis Solution System (PASS) data base is an online tool that provides direct
communications between Bull software development organizations and Bull customers.
Documentation-related transactions available to customers via PASS include those which:

* Generate a list of all software documents published for the current Software Release.

¢ Prepare Software Technical Action Requests (STARs) regarding documentation
discrepancies.

Logon procedures for these functions and procedures for using PASS can be obtained by contacting
the Bull Technical Assistance Center (TAC).

DOCUMENT LISTING

A list of all GCOS 8 System software documents published for this Software Release and available
through the Bull CSO Marketing and Sales Order Entry (telephone 1-800-343-6665) can be
displayed via the NEWS facility of PASS. The document lists are available via the PASS meeting
SWDOC_AVAILABILITY.

DOCUMENTATION CORRECTIONS

Customers can submit documentation error reports via the PASS online STAR Maker facility.
Responses to STARs, as well as other documentation changes, also are contained on PASS.
(Documentation corrections contained on PASS may apply to prior Software Releases as well as to
the current Software Release.)

In addition, corrections to documents will be entered on the PASS data base. Query PASS
periodically to determine if any corrections exist. Corrections documented on PASS, if applicable
to the next release of the software, will be incorporated into the next update of the manual.

iii/iv DZ51-00

CONTENTS

szON 1 INTRODUCTION....Il........‘....‘.......‘.C......Q...C.....

Processor FeatureS..ccceececescccscssccscsccccccssscssccccccnsscccsccscs
Pipeline Architecture Of The DPS 8000...ccccsessescacccsccsccsancss
Faults And INterrUPtSeeeccesecscccsocscscccsscscsccsscsscscsssscssacss
Connect/Interrupt MeChaniSM..cceceeeeccceccoscsccscsccccscoscsscnse
Online ProCesSSOr TeStS.escescesoscsecesscoascsssscsscsssssannsennas
Operator MOQeS.ecveeeeeeeeceenceccccacsccssscsccssscecssascsssccscnnns
Processor Modes Of OperatioN.ececececcececessscsscscsssccsccscscnsns
Non-Extended/Extended MOGES...ccceeeeecscecscesssescssssssccassennns
Memory Addressing MOGeS.....ceeeseceececccccccsssccccascssssescnncs
Virtual Memory Paging...ceeececccocsacccosesssesosssssssnscncnans
ADSOLlUte MOG@..ecseesesaesescasssessascassassssssssocssssscssnsss
Reserved MemOry SPACE..ecceesccsacscscsssossssssssssssncsssocscccncssns

INterval TiMmer.ecuiceescecscecscocscscssosssosssscsssccasssasonsosoasss

SECTION 2 RERESENTATION OF DATA......O0.0..QO'.00000'0-.0.0.0060..0

Formats.ongo'ooc.oooOQQ...o..o-a.o..ooo.o.oo‘oo..oo.o.loo.ooooo.otoo.

Position NUMDEring...cececececscecccsscscsoeasesscsccaccscananasansas
The Machine WOrQ..e.eeeeceeeeesecesesasescccescscascsoncacsssnssncncse
CharaCter—StringS.ceeeceescesacsscscesnssessassssanssoscsssssscnssssans
Character POSitiONS..cececeseceseccssscaccccscssscsssssscsssascncss
Bit POSItiONS.ecetesesesssaccacsscsoaccsasssssssssoassscsscsssanans
LiteralS.usceeseececccscscesosescasasasscsssssscscasesscansssscsansse
Binary NUMDEIS.:.ceeeeceoccosscccescsssccscssscssnscssscsseassosssassasn
Fixed-Point NUMDEI'S.:...eeeeeeeeccescscoccoscssssssascsssessccasnnas
Floating~Point NUMDEIS..eseeeecescscccsccscsscnscsccsssssssnssnnnsns
Hexadecimal Floating-Point NUMDEI'S....eceeeceecesosscccscsscscccnsas
Quadruple-Precision NUMDEIS....ccseeescccsccssscosscssscscsasssnnss
Normalized Binary Floating-Point NUMDerS.....ceseeeecesccccccscnses
Binary Representation Of Fractional ValueS...ceecececescsccscscnans
Decimal NUMDEIS...ceeecersocosscsceccscscscesecssnsssasssosascscsssanes
Decimal Data Character COQeS....ccseeescscsccsnsesoscssessoscsonans
Floating-Point Decimal NUMDEIS....cccesccccsscososcscscscseascacsnns
Decimal NUMDEIr RANGES...eccescesssesscsscsscasonsssscssescsscnscssonse

SECTION 3 MEMORY ORGANIZATIONoo‘-O.oo.ooc.o.ooc.t.o'cu.oo..ooooo.-o.

Virtual Memory.o.oooOoo.o‘.o.tc.tooooooooooo...o.cno.o.o-o-o.oo-o..'.
working spaces....0.o.o.on..oo..oo.o.0-'0000.0000000ltooo'oo..coooo
Page Tables.on.o.o0000000-.0.-..0.o..o..o.o.ooobo..oooo.uo.oo-;co..

mmains.oulo.Qo.ao.oQ-o..'.-0..00.00'oo-.oou.-o.oo.-o.oocloooooooc-

segments.ooooo.to.coto00ooioooo..looocQo...o.c.o--..o.o..oc.ooo-oo.

Descriptors.oocoooooQ.o‘coo-o..o.o-000'00000000000oo.o.o..oQooocoool

Page

2-11

3-1
3-2
3-2
3-3
3-4
3-6

Dz51-00

CONTENTS (cont)

Standard DeSCriptOr.cceeecsscesssscscscsccccsccossaccscsssssassnsses
Standard Descriptor With Working Space Number.......c.cceeeeccces
SUPEr DESCIiPtOrcceesssscrssccssosccsssasancscsscnssosssascnsnocce
Super Descriptor With Working Space NUMDEr.....ceesecocscacccscas
Extended DeSCriptOr.ececcesccsscsssesssssanssessssscssssssnscoanse
Extended Descriptor With Working Space Number.....cceeececceccccs
ENtry DeSCriptOr.cecccscsscsosecsccescccssecssscscsssssssscsoannse
Dynamic Linking DeSCriptOr..cceccscsccccccsscscscssssscscscssaccnns

Shrinkingo.o.o.Q..O.'C....'Q.ooOOQOOQUOOQOO000..."0...0.....'0.'

SECTION 4 PRxESSOR ACCESSIBLE RmISTERSO.IOQI'..00.-0.0...0....0..0

Accumulator Register (A)...eeeceeescscessescesoconscsscancnsssscccane
Quotient Register (Q)..eiceeceeeececececsocscsocscsscsssscscscnsncane
Accumulator-Quotient Register (AQ)..ceceececececccsscsoscsccscncnanas
Exponent RegiSter (E)eceeceececcecsccesscsccscsasscsscsssscscsscacans
Exponent-Accumulator-Quotient Register (EAQ)..ceceeeccccsccsccnccscns
Low Operand Register (LOR)...ccceesescossccscscncssecsosascasssanscans
Index Registers (XN).i.eeeeveeeceeescsoeacsssocsocascascascsscacnnsane
General Index Registers (GXN)....cececeececececosccncscasascssssaaans
Indicator Register (IR)iuieeeeecescssececscscrcasscnsnsocscoscasannns
Timer RegisSter (TR)..eeeeeeccecsccsesococsassscnssssssscssssssccsccsas
Instruction Counter (IC)...eeeeeececcssosccsssossescssscasssccncssnne
Address Registers (ARN)...cceeceveseosesscasossscosscssscssscsnncsnns
Linkage Segment Register (LSR)....ceseecsescsscscssocscsssssscasocncss
Instruction Segment Register (ISR)...ceeceessceccecsccssscscascsscnns
Segment Descriptor ReCISters (DRN)..ceeeeessecescasccnccscascsnncansne
Segment Identity Registers (SEGIDN)..cccceecsceccccccccscsasscccncnns
Instruction Segment Identity Register — SEGID(IS)..eceececcccscocaane
Pointer RegiStersS (PR)..c.icececececocesccsassosssscscssncssosasssnsns
Option Register (OR)eceeceecesceccccocessocscossncscscscsvasassnssanas
Calendar Clock RegisSter (CCR).veeecvesvevssscscaccsascsesscacascanane
Working Space Registers (WSRN)......eveveecscsocococcosscsccscancsane
Safe Store Register (SSR).eceeiecscscsccssescsscossnsscsscccacsnsncns
Stack Control RegisSter (SCR)eeeececesscscscssssosacssccscssssosscascns
Argument Stack Register (ASR)...ccecececeoccecscacsscscscsaccasncnnns
Parameter Segment Register (PSR).c.c.cccecscescccossasescosscsaccancns
High Water Mark Register (HWMR)......cceveeeccsossccscscccsccansancas
Data Stack Descriptor Register (DSDR).....c.ccececscscssscsscascacnns
Data Stack Address Register (DSAR)....ccecevesccscscsccssscscascancns
Page Directory Base Register (PDBR)..ceecoscesccssecscosssscncasanons
CPU Mode Register (MR).c.eieeeseccessocaccasccssccssosssscsscconsanans
Cache Mode Register (CMR), Lockup Fault Register (LUF)...ccecececccss
Configuration Register (PORT ASSIGNMENT) (CR).veeseccsccccsccasccsans
Address Trap Register (ATR)..eeeceececsscecscosssosaancsscassscsasnas
Virtual Address Trap Register (VATR)..cccceeccovcvocascsocasasccannss

vi

Page

3-8

3-10
3-11
3-12
3-12
3-13
3-14
3-15
3-16

4-1

4-3
4-4
4-4
4-5
4-5
4-6
4-6
4-7

4-12
4-13

4-33

DZ51-00

CORTENTS (cont)

CPU Number Register (NR)..eeceeeeeececean.

e eceesscscscssven

Interrupt Mask Register (IMR)...ceeeeeceeceecencacancsccscancaccannas
CPU Fault RegiSter (FR)..ceeececcesocsccsvcosccseacanccccancnnanncons
Extended Fault RegiSter (EFR)...ceececccccsccccscccncccnccanccsnscnns
History Register (HR)..u.eeceecvsesescsccccceassoscccacsaccncancnncns
Reserve Memory Base Register (RMBR)...cececseecesoscocesceaconcnasocns
SCU Fault Register (SCUFR)..eecececccoscossassccscccscccsnanncnnannns
Syndrome RegiSter (SYR)....ecececsecesceccecsocsoassscccsccccancances

SCU Configuration Register (SCUCR)..cceeececssescccsccsscncacencansns

SCU H‘lstory Register (swm) ® 9 ® O 9 0 0O P T PO OH SO OO OO OO0 OO OO OGSO OSSSES
Memory Error status Register (MSR) ® & 0 0 00085000000 OO OO OO LSO N OSSOSO ESSTOSTSDE
Memory Identification Register (MID)....ceeecsevenvccscccssosccccsnns

SECTION 5 ADDRESS MODIFICATION AND DEVELOPMENT.....eeveeneocennnnnns

Address Modification FEAtUIeS..ceeeesesccecescssoscssascoascaccacscnes
Address Generation In The NS MOGE€...ceeeececcsccsccocsscsccascscncans
Basic MOAifiCAtiON.ceeecesescescecscsocssasscsanssssccsccncsansnsns
Indirect AQAreSSiNg..cceceescecsccccsossoascsscssccscassccscscscnss
= Lo T =
Types Of Address ModificatiON....cceceeccecescrcocnscocossccsccoanes
REGISLEr (R)uueuuieroesceecoecnccsessoosassosascossacsccassancnans
Register Then Indirect (RI)..c.ceceecsceccecscanccncscscsssnancas
Indirect Then Register (IR)..eeceecececcvcosocccccscascccsacnnnes
Indirect Then Tally (IT)eeececececsccscsccecscscscscascacsssocnns
Indirect WOrd FOIMat.ceeeeececscescsscasesscssssasosconncasncnss
Variations Under IT ModificatiON..eeeceveeccccecccoscascocnsans
Address Modification OCt@l COGES..eeesecosscscosssssoasscacscsscnas
Address Modification FlowChart..i.ceecessceseccccccsscconcsscncssnnss
Floatable COQE.ciceeererrsrorccssioascscensccsssscesssssasosssssssas
Address Modification With Address RegisSterS.....ceeecececcccccccacs
Single-Word Address ModificB8tiON.eecsscecscesceccssssscascnsnssns
Multiword Address MOdifiCatiON.seeeceseccecvececccccosccascacnnons
Multiword Modification Fi€ld...eeeceeccscescecscccoscconocnscanas
Operand DeSCriPtOrS.cesescocsscesseoccsescsccsassssssssssnssssssans
Bit String Operand DeSCripPtOr..cecescccccscscsssssscansscsnsoccns
Alphanumeric Operand DeSCriptOrS.ecescccssescosccscecscscacacscones
Numeric Operand DeSCripLOrS.c..cceecscsccvserssssssssccasscssncscoas
Indirect WOrQ...veseeseescsescsasosscscssssossessossansasssscssns
Operand Descriptor Address PreparatiON.cceccecececssscscscsscnnes
Bit String Address PreparatiON.cecccecccscccscsscscscsceasssnsans
Alphanumeric/Numeric Address PreparatiON....cceccecscscceccaccss
Address Generation In The ES MOG€..cseescecescssesccscescssscacsanaes
Instruction Address Field And Register FOImatS....ceeeecceccececssns
Instruction Address Fi€lQ...ceseeccecescecvsscosonssossssossscscnss
Address Modification With No AR Indicatel....ceceeececcecencens
Address Modification With AR Indicated....ceeceececccccencocesns

Tag Field MOQifiCatiON...cceeesessesccesscssscsscsnssasassnssns

vii

Page

4-34
4-35
4-36
4-40
4-41
4-43
4-44
4-46
4-47
4-49
4-51
4-52

5-1

5-1
5-1
5-1
5-1
5-2
5-3
5-3
5-7

5-13
5-16
5-17
5-25
5-26
5-27
5-27
5-27
5-30
5-31
5-35
5-35
5-36
5-37
5-40
5-41
5-43
5-44
5-49
5-49
5-49
5-49
5-50
5-52

DZ51-00

CONTENTS (cont)

Operand Descriptor ModificC8tiON..ceeceveeecrocecconccnssccsones
Address DevelopmEeNt.cececeeesscssescssscnosscsssessssncsnsssnassssans
Virtual Memory AdGreSSing.....cccseecsccecscsscssscccsccsscssessacnss
Operand Address ProCSQUIre..c.cceeecsceccscessseacssscssosssacnses
Instruction Address ProCedUI€.ceececccecccsecscsoccssscssscsesancns
Virtual Address Generation FOr NS MOQ€....cceceececcrscnsccncancsns
Standard Descriptor NS MOGE...ccoeescocccsscsscccccsnsccnnssnnnse
Super DescriptOr NS MOGE...c.ecceecccecccscescescsscascsscnsssnnns
Extended Segment DesCriptOr NS MOG€.ccecececesccscsccccccscascscse
Virtual Address Generation FOr ES MOO€...cceeecsceesssccscsscsncace
Standard DesCriptor ES MOGE..ccceesesosscescscsacssscssnssscsscnae
Extended Segment DesCriptOr ES MOG€..ccceecesceccsssvsncscssscnae
Absolute Addressing MOGE....coccesccosccccssescssscscesccsscccscsans
PAgINg.ceeceessensessossssccsscssssesssassssnssssessossanscncenssss
Address TranslatiOn PrOCESS....cceececcescccsscescssssssscosssnnsse
Page Table Directory WOord FOrmat.cecececeescsccescesvscoscceasccns
Page Table Base WOrd FOIMAt..ccceeceeseceesscsonccoccccccncsoncans
Page Table WOrd FOIMat..eceeeeeecsceceococscecscansoseccccnanascnes
Mapping The Virtual Address To A Real AdAresS....ccececceccccesscs
Dense Page Table..cesceesscccoscsossaccssacssccnssscassssnnsasansse
Locating The Page Table Directory WOrd....ccececececccseccsscnsas
SECtiOn TaDl€..cceseroceccooccessssceasessessesccascassssscssnsss
ASSOCIALIVE MEMOYY.civeeeesreceassassssssacssssscsaseassanscenssnse
Cache MEMOIY.ceeeecececcsoscscscsosscsscscsssscssssscsccsasansncscs
Address TruUNCALiON..ecsceecscrccrscocesccsscscssvascnsensenscsnsans
Bounds CheCKing.e.eeeesceeeecoosssseoccsosscascesscsssascssasscscaces
Word And Double-Word OperatiOnS..ecceescssescseocscscccccanssnses
Byte OpEratiOnS..cesescsscoessecssscosscsssscssocscssssssssssnacs
Bit Strings And Table Of Translate INStruCtiON.cc.ceecccesceccsse
Bound Check EQUALIiONS..ceeesecccccessssescsesossssccnsscascacasas

SECTION 6 FAULTS AND INTmUPTS.Q...O....O.'....l.....;'tb....Otl.lI’

Description Of Faults And INLEITUPLS.ceeeecescaccsccsscccosssoscsonns
Fault ProCedUIeS...cceececseccessscesosssnccsssssssssssssssnscsssnasse
FAUlt PriOrify.ccececeeceoesecesesscasssesssscssscscsssscssnassssnnss
Fault RECOgNItION.cieeeeseeeesessssscsssesssssesassasssscssccsocssses
Fault CategorieS.eeeescscecescscescascscassssssssvenssssncscsssnscses
Instruction-Generated FaultS...eceeeescscceccesssccsssssscsscacnans
Program-Generated FaultS..ceseeesseececccssocscsoscessocssscsssssnss
Virtual Memory-Generated FaultS..ecececececscsceccacsoscnssscvoonsas
Hardware-Generated FaultS..eccesececcceseceossossscssosssccsccssnnse
MOGE FaUltS..eiereecseseosesssassnsssnesacscsaossscacnnssesssnacasassns
Privileged Master Mode FAUltS....ceceeececcessssscsccsccssscsssnnns
Master Mode FaultS....ceececsesescvsccsesocssccsssaossssssocacsssnss
Slave MOde FaUultS..ceeeeeeeeceeessccscssccsossvsonscsssessnccncsnns
Any Mode FaultS...eeeeeesoeccseoccoscsossosssscsssssssssnscacssacas
Miscellaneous FAUltS.ueecesesseseossssocsoscoscscssccssanssoscosscnsas
Segment Descriptor Flag FaUltS....eeceeescscescssccssossscssnscnnns

viii

Page

5-55
5-57
5-57
5-58
5-59
5-59
5-60
5-61
5-63
5-64
5-64
5-65
5-67
5-68
5-68
5-68
5-69
5-70
5-71
5-72
5-72
5-75
5-79
5-82
5-83
5-83
5-84
5-85
5-85
5-85

6-17
6-17

DZ51-00

CONTENTS (cont)

Page Table Word Control Field FaultS........ceceeceeserccessnscasess 6-20
Interrupt ProCedUIeS..cceeesscsccceccscccscsscssscsnscnsssessscccsacss 6-23
System Controller INterTUPLS...cececececcccsccscccccssoascssssessss 6-23
Inward CLIMB INLeITUPLS.ceeecccccenrocccsscssscccccsccsccsoscceccces 0-24
Multiword InStruCtion INterrUPES.ceececesccsccoscscsscscscscsccnnases 6-24
IC Values Stored On Faults And INteIrrUPtS..ccceccececocccccasccccnssss 6-25

SECTION 7 MACHINE INSTRUCTION FUNCTIONS....cecceceoesssacccassasceceas 71

Single-Word INStructionS....c.cececeece. cececessesoerasranssscancsnnes
Address Register INStrUCtIONS..ceceececeesescecscccsocsososcssssens
BOO1€AN OpEIatiONS.cesescescsccseseccessssescssssssosssssacsscsssassas
Compar iSON OperatiONS..ceeccecesesccscscsccsccsssascsssnsosansccsons
Data Movement INStIrUCtIONS..eecesscscesocssscscesscsccnscscassanans
Data Shifting INStruUCtiONS..cececececcsescccoscossssoscassncssccnss
Effective Address To Register INStruCtiONS...ccecececcccccccoseccas
Fixed-Point Arithmetic INStrUCtiONS.cceececcccceccocsssncocsascaces
Floating-Point Arithmetic INStruCtiONS...ececescaceccccccscsccccans
Quadruple-Precision Floating-Point INStructionS...cececeececcccccess
Privileged Master Mode INStIrUCLiONS...eeeeecceccsscoccnscecnscccnns
Miscellaneous INStrUCLIONS..cceecesessoccsscssosssssssacssssccssnas
Special Processor INStrUCLiONS.eceeceeescescsscosscscnscsssssscncas

Multiword INStIUCEIONS.ceeteeetecesscscscsasesaescssosscsssescnsensces
Alphanumeric INStrUCLIONS...eeeececscscccecvscsossscsscsscscsccnnes /1=6
Numeric INStIrUCLIONS..ceeeecocescesssccacssscscssssscsacsassscssnss 716
Bit String INStruUCtiONS..ceeeessceccssescescssscsssscscascacacccses 716
Conversion INStruUCtiONS..eceesceescacscsccssssscsscscssscsssncsaces 1=6
Edited Move INStYUCLIONS..eveeesccsosssscscsscscsssssscscessavenses 716
Multiword Instruction Capabiliti@S.cececeeccecesccoceoccsccscencoas 7=7

Address Register INStruUCtiONS.ceceseccceccscccescoscsscsceassscncncess 1—9
Address Register Load...eeeceseccoseosscoscccosscosassssssesssscsseceas 7—10
Address RegiSter StOr€.....ccecesccccccsceccscscscsssscsssansssnses 7-10
Alter Address Register CONtentS...eceeeeccescsccaccscccccsscassssss 71—10
Special Address Register INStruCtiONS.eeecceescecsccssccssscescaess 71—12

Boolean Operation INStruCtiOnS..eceecececcesccsssscssssscnscossoscases 7—13
BoOlean EXpreSSiONS.cccceesceeccescesccscsssscessscsssssssccsssanes /=13
Evaluation Of Boolean EXPresSSiONS..cecececcscscscccsssscssssessascas /1—13
BOOlEaN AND.:.coceeosocosassossssoccsscssscocscosssssssascsansssssss [—14
BOOlEaNn OR..iveerseescacaseassesssssensssccsossscecsassssccsnsssssesas 7—15
Boolean EXCLUSIVE OR.vesevevccssscansoasssassssssasossscascsssssecee 7—15
Boolean COMPARATIVE AND....ceeescecoccccosssosososssassccansssssscnnsas /7—15
Boolean COMPARATIVE NOT AND....ececeeosococoooncsossssscasonsnnsass 7-15

Fixed-Point INStrUCtIONS.ucecsevcesccscasoasosossasssescnccsscssnssss 1—16
Data Movement LO8G...ceeeeecesccescesceosscessesssssssassscnssansas /7—16
Data MOVemENt StOrE..ceicescescssccscscsscsssssoassssscascsscssnssas /1—16
Data Movement Shift....cceeeececcrcscccesscrcscesscoscasescsssssass 71-17
Fixed-Point AdQitiON.eseeeececcscescscoscsssnsosassccscescossnnecnss 1—17
Fixed-Point SUDLraCLiON..cecscescescssocsscossesasscosanssnces eee.. 1-1B

|
QOO WWWNDNNNDN

\l\)\l\l\l\lf\!\)\l\!\l\l\)

ix DZ51-00

CONTENTS (cont)

Fixed-Point Multiplication............ ceeseneens Ceecesscessensesons
Fixed-Point DivViSiON.cceeeeeoeosceccsesoscrssscoosccssssscosnsnssos
Fixed-Point COMPAriSONe.eeecececesscccecscccscsssccscccsassesancscnne
Fixed-POint Negat€...cceececeeccccocecsescscsccacccssssnssssnsssoss
Floating—POint INStIUCtIONS.ceceecococesscccseccecossosccsosssnsoanses
Data Movement LO8Q...ccececessesssssccessssoscoscnsnsssssssssssssoees
Data MOVEmMEeNt StOrE€..ccecececccccsccocscscscccsscacccncssacassncsscocne
Floating-Point AdditiON...cecececeececrteeeesescccsccccsccscssssoces
Floating-Point SUDEIraCtiON...eeececeseccecvsescsoscsscsssosssssssses
Floating-Point MultipliCAtiON.ceeeseeeeeeacesonscscassosasssncsasss
Floating—Point DivViSiON.ceeceescecccassocescessonsssasssssssscsosse
Floating-Point COMPAriSON..ccecsecsssssssscscsscsssssscnsscssonsssss
Floating—POint Negat€..ceeeeeccesscoscsccssscacscocsnsasssnssnsoses
Floating-Point NOrmMaliZ€...eceeeececesececccsocasccsasanssssnnncnss
Floating—Point ROUNG..seceecsesecsoccccsssososssssscannsscasascnocns
Floating-Point Truncate FraCtiON...ceeececsesesccccscssscsscccnssoss
Quadruple-Precision INStrUCtIONS..ccecesececessecscsosascssssscaccoses
Multiword INStrUCLIONS.ceeeecesesesesesscocscscssscssscsescsssascoscs
Multiword Instruction FOIMat...cecesescccecccccsscscsscscssssnscsns
Multiword Modification Fiel@.......ieeeceecscoccsccsessccssnccnas
Operand Descriptors And Indirect WOrGS...ceseececessccscccsoscnscns
Operand Descriptor Indirect Word FOImaAt...ecececsecsessscscnsscss
Alphanumeric InStIrUCtiONS.eeseeacecssesassesccosassscsosccsscsceascons
Alphanumeric Operand DesCriptOr FOIMa8t....eceescceccesssscacccnss
AlphanumericC COMPAr€.ccesececeessosesssssascscssssasscossssassnss
AlphaAnUMEriC MOVE.eeesesoeesssccssssessocoscnssessassssssssnscases
Character Move To/From Register INStruCtiONS...eeceeccccccssssnccses
Operand Descriptor For Character Move INnStruCtionS.....ceceeecccss
Character Move Instruction RePErtOir€..ecceeceeccccsscsccsaccscoanse
NUmMEric INStrUCLiONS.ceeceeccsssesscsssssnscccsssssvcssssssssassnsa
Numeric Operand DesCriptOr FOIMat..eeeecceccesscrcccsccasacoasooces
NUMET 1C COMPAY . ceeessecoccsacscossscsesssassescssassnsascssnssns
NUMEYIC MOVE. eeueeecocsssosencesescssossesssccssancsscsscasssnons
Bit String INStruUCtiONS..eeeceeeeccsescasnccsscscsccscsssssssasones
Bit String Operand DescCriptor FOIMat...eeecececcecercossscoccsoas
Bit String COMbiNE.ceceececescosssasccosccscscsssosccassscsncsanns
Bit String COMPAreE..eceesesscssosscscscocossasosscssosscassccssscnses
Bit String Set INAiCAtOrS..cceecerectccsscssscssescscsscncscosnas
Data Conversion INStrUCLiONS..ceeeeececcceccsscscoscocsscocsascccns
Arithmetic INStIUCLIONS.ceeeeteseecoeessonsesssesosescscssseasassse
Decimal AGditiON...eescesseceacscscsssorscesssceososcssascasssssns
Decimal SUDtIaCtiON.eeeeeeescscsosscscscccosscscsssssesasocssascns
Decimal MultipliCatiON.seeeeecescoescsassnaoscrscssossssasncsnnsa
Decimal DivViSiONeseeesceocsscsesesssssossoscssessssssssssnsssssns
Micro Operations For Edit Instructions MVE, MVNE, And MVNEX..........
MiCro OperatiOn SeQUENCE.....ceceseccsscssscosscssescssssscscancosse
Edit InSertion TableS..eeeseeececessosesscoccscsssssscscssannssosnns
MVNE, MVE, And MVNEX DifferencesS....cccceeeeecccccescccsccccosnaacans

Page
7-18

7-20

7-40

DZ51-00

N

_

CONTENTS (cont)

Numeric Edit (MVNE AND MVNEX)....eceoeoececcccscocesanscocnsancne
Alphanumeric Edit (MVE)............ Ceeetecesecestasesctssansanans
MiCro Operation REPEItOIrE..ccececriececccscesccsocssccasssccnccsens
Micro Operations DesCriptiOnS....cceecessccscscccccsscossssosscsoncas
Edit FlagS.ceeeesececessascossacssssscscosassossosscssocassosssnssss
Micro Operation Code ASSIgnmeNnt MaP...ccccecscscsscsccscoscssscnens
Terminating MiCro OperatiONS...cceceecescessscsscsscscsscsacscscsons
Virtual Memory INStrUCEIONS..ceeececossscscccosssscesssosssssssasannns
Descriptor Register INStrUCtiONS..c.ccecececcccsoscsscsccsccscancns
Pointer Register INStrUCLIONS..eceossecscccscsssccscscscsssconsnces
Domain Transfer (CLIMB)....ceececocaceascsacccesccscccsccosasssnons
Privileged INStrUCtIONS..ceeecocecsecsescscscscscsscscnscssoscsssosce
Clear Associative MEmOry PageS...c.eeecececssccrscsscsossssnosscse
Clear CaCh.icieeeeccssscocosssscccoscsosccsssssssscnssssassosnana
Register Loa8...cceeeeeceeeceeseccecesecscascscnsesscsccssacannns
REQISter StOI€..ccececerereesessosccescscossscsecssossosssssansanse
MEmMOTry CONtYOl..ceeeeeseeeeceeeccssosscscccccsassssocssssesssnsae
System CONtroOl..ceceeececeesscescseosssascscossnsassccsssscscsonse

All Mode INSEIUCLIONS.cecescescscsoscccssscscessssssssscsssassssssass
ES MOde INStrUCLiONS.eceecececescscsssssssoscsssosossesasscsssscsnsna
Register-to-Register INStruUCtiONS..ceceeesecesccecscssnsccccccsosns
RR Type InStruction FOrMat....c.eececesecccecoeccccsccscsnasoncns
Movement And Arithmetic INStruCtiONS...ceeeeccecccessosscessnsoas
Shift INSEIUCLIONS..eceeeceeeesesseccscsssoseascsssascsoassscosnns
Fixed-Point INStrUCtIONS...ceeercecesssceccscscscssssasscassscscnns
Transfer INSErUCLIONS.ceceeescecessoscocssvesassssessssesssssssscnces
Conditional TranSfer....cceeeceesecsecscecscocscesccccsscscssscnscne
Unconditional Transfer....eceeeececcecesccccsscscsccssecscossscsnses
Miscellaneous INStrUCLIONS..ccetecsscveesssscoscssocssansecssssccnsns
Option Register Instructionms..... ceceeccas cessssssscassccsscsensens
Binary-To—BCD CONVEI'SiON..ecesesesescssscscascacscscsosescssansssss
Execute INStIrUCLIONS..cceeesececcesscacossoscsesccsccssssosssnscsns
Gray-To-Binary—COnVerSiON..cesceseccesosssccossesssssssssescsnscnas
Programmed Fault...eeecececceocccecoscesssosssssssonscsssasssnnssns
NO OpEratiON.ceeesscsseaseconssescsssssssssossscssssssscassssensoas
Repeat INStrUCLIONS.uteeceesesssosscsssscosesssssssssasscossscansas
Pointer And Length INStruUCtiONS...ccececesecocccascscsccssosscnsnsns
Coding LimitationS..eeeeceeesseseasocsscscsesccsssscssssscsssnccsanns

SECTION 8 MACHINE INSTRUCTION DESCRIPTIONS..ccvecescccscccsccssncsans

Format Of Instruction DesCriptiOn....ccecececessccoscsccscsscscssccas
Abbreviations And SYMDOlS...ceeeescacocessscsesssncscsossssscscssnasns
Common Attributes Of INStIUCLIONS....ueieeesesescscosessssscacscosscss
Illegal MOA1fiCAtiON..cesesessessssssscssescsssasosssssoscscsnssnes
Parity INdiCAtOr.ueeeeeseeeceocecescscsssascosesssscsscssssssnsnons
Instruction WOrd FOIMaLS..ccceeeecoeccceccscsososssssssassessssasnsss
Single-Word InStrUCLIONS.seeesececesessoscocssesescssssssasssscascs

x1

Page

7-40
7-41
7-41
7-42

7-57
7-57

7-62
7-64

7-66
7-67
7-67
7-67
7-67
7-67
7-67
7-68
7-68
7-68
7-69

8-1

8-1
8-3
8-7
8-7
8-7
8-7
8-7

DZ51-00

CONTENTS (cont)

MUltiword INnSEIUCLIONS.ceseossossssocsscesscsscccssscssocnssssasconse
Address Register Special Arithmetic INStruCtionS......ceeceesecccns
Character Move To/From Register INStrUCLiONS...ccceeeeesccccccccans
Register-to—Register INStrUCtiONS..ceceeesesscscscsacsccassssccsnnns
INnStruction REPEItOIrE.cecessscsccscsesccsssscscsasssoscanscsvonscnns

APPENDIX A OPERATION CODE ms..'.'.‘.....‘..0...‘0.........0'.'.00..
APPENDIX B OBSOLETE INSTRUCTION CODES...O‘QQ......o..o.o-nooooot.o..

APPENDIX C CHARACTER SETS.¢ccceccccccscosssrescsscsssossassssssscsass
Unified Character Set — ASCII SEQUENCE...ccteesccccnscscccasoacscoes
Unified Character Set - EBCDIC SEQUENCE.ccetccescsccsccssscsscnscnne
Unified Character Set — GBCD SEQUENCE.csceecvscsscccssccsscosnnscnne
Unified Character Set — HBCD SEQUENCER..cececctsceccccsccosscccsssncns

INDmcnuo-aoo.ooooooooo.uoooo.ononoqtoooooo..t..co.o.o.-...ooo.-oooo.

ILLUSTRATIONS

Figure

3-1 Domain Of Noncontiguous SegmeNtS...cceccescsssccscscssossccscne
3-2 Layout Of SegmentS OnN PageS.ec.cececcccscoscsccrssscsossscnscons
3 shrunken Descriptor For Corresponding New SegmeNt......eececees
1 Accumulator Register (A) FOrMAt...ecececcecscccccssoosscsccccns
-2 Quotient Register (Q) FOIMBLe..ccececececcescacsacsscccsccaccans
3 Accumulator-Quotient Register (AQ) FOImat...ceceecevecececseces
4 Exponent Register (E) FOIMat..cececeecsscscesssasanscocssancaes
5 Exponent-Accumulator-Quotient Register (EAQ) Format.....eeeee..
4-6 Low Operand Register FOIMat..eseesscscesscssscsscssssesccnsasans
4-7 Index Register (Xn) FOIrMAl...ceeececesscscsessssssscnsscssssane
4-8 General Index Registers (GXn) FOIMat....ceecocsccesccsccancscns
4-9 Indicator Register (IR) FOIMAt...eceeeeescecesccocccsoccanncsnns
4-10 Timer Register (TR) FOYMAt...ceeecscecccocsocscssscsocscanesnns
4-11 Instruction Counter (IC) FOrMAt....ceecececssecoccscscccascaces
4-12 Address Register (ARn) Format (NS Mod€)...c..eeeeseecescccccnns
4-13 Address Register (ARn) Format (ES MOd€)...cevecocecocosncansans
4-14 Linkage Segment Register (LSR) FOrmat......ceocoeeeoecscccscccnss
4-15 Instruction Segment Register (ISR) FOrmat.......ccececeveccccces
4-16 Segment Identity Register (SEGIDN) FOYrMat.....ceeeecececcsccaes
4-17 Instruction Segment Identity Register — SEGID(IS) Format.......
4-18 Option Register (OR) FOrMat....cececessescsvssscssasssscansasns
4-19 Calendar Clock Register (CCR) FOIMBt....eeesececoccacscacacsnns

xii

Page

8-9

8-10
g8-11
8-12
8-14

A-1
B-1

C-1
C-1
c-4
C-10
Cc-12

Page

3-3
3-5
3-16
4-3
4-4
4-4
4-5
4-5

4-6

4-7

4-8

4-12
4-13
4-13
4-14
4-15
4-15
4-17
4-18
4-19
4-20

DZ51-00

4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
d‘ 4-43
- 4-44
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-S
5-10
5-11
5-12
5-13

5-14
5-15

5-16
5-17
5-18
5-19
5-20
5-21
- 5-22

ILLUSTRATIONS (cont)

Figure

Working Space Register (WSRD) FOYMAt...eceeeeceeecccccencnconns
Safe Store Register (SSR) FOIMBL.eieeteecececeoccacccccaccncens
Argument Stack Register (ASR) FOIMAt...cececeecececcscscccccscns
Parameter Segment Register (PSR) FOIMAt.....cecececececcccccens
High Water Mark Register (HWMR) FOormat............... ceseecaaan
Data Stack Descriptor Register (DSDR) FOIMBL....oeceeecccoccons
Data Stack Address Register (DSAR) FOIMAt.....c.ceececeeccecnces
Page Directory Base Register (PDBR) FOIrMat.....ceeeeececceccess
CPU Mode Register (MR) FOIMAt..cececeececrccccccaccccsancccanas
Cache Mode Register (CMR), Lockup Fault Register Format (LUF)..
Configuration Register (Port Assignment) (CR)..eeeeeececeeccses
Address Trap Register (ATR) FOIMat...eceeeeeeeceeccccocacncnons
Virtual Address Trap Register (VATR) FOrMa8t..c..eececeeccecccas
CPU Number Register (NR) FOIMat...ceceeceseccccccccccccacccccas
Interrupt Mask Register (IMR) FOIMAt....cccecececccccccnccccens
Fault Register (FR) FOIMat...cececececsncsoscococococascacnncens
Extended Fault Register (EFR) FOIMat....e.eeceecececcccoscecsons
History Register (HR) FOrMAt...ceeececcaceccccsccccsccccsacacan
Reserve Memory Base Register (RMBR) FOIMat...eceececcccccacecan
System Control Unit Fault Register (SCUFR) FOrmat....ececeeeeeo.
Syndrome Register (SYR) FOIMat....ceseeeeeeccccecccscnccsccncns
SCU Configuration Register (SCUCR) FOrmMat....eceeeeesccccccccns
SCU History Register (SCUHR) FOIMat......ccecevececcccaccccanns
Memory Error Status Register FOrmat.......cceeeeeeccecccececens
Memory Identification Register (MID)......ceecececcscscccccsces
Indirect WOrd FOIM@t...cecececescscosesnscossnsvcssncncsvancses
Address Modification FlOwCha@rt...eeecececscecccscoocsccaccccecs
Single-Word INStruction FOIMBt..eeeeeeessecscocosscscncscnnnces
Address Preparation For Single-Word InstructiON..ecceeecececess
Multiword InStruction FOIMat...seeeeeecescescncecosccacasncanes
Bit String Operand DesCriptOr FOIMAt....eeeeeeescecccsccccccces
Alphanumeric Operand DesCriptOr FOIMAt....eeeeesceccscscccscces
Numeric Operand DesCriptor FOIMat....eceeeeeeececsccccncscssoas
Indirect WOrd FOIMat...ecececsescscsssccscssoasscsosssscscscnse
Flowchart For Operand Descriptor Address PreparatiON..eececeeces
Virtual Address Generation Using Standard Descriptor (NS Mode).
Virtual Address Generation Using Super Descriptor (NS Mode)....
Yirtual ?ddress Generation Using Extended Segment Descriptor
NS MOGE).eeeeerueenseeoeeseesosssoscesssssnsscasesssnsesansans
Virtual Address Generation Using Standard Descriptor (ES Mode).
Virtual Address Generation Using Extended Segment Descriptor
(ES MOGE) e ueeueoneseosssoaseesessosscseccnssnssssasssasssnsananns
Effective Absolute Address....... ceesecessesessecancsonsces cees
Page Table Directory Word (PTDW) FOIMAt....eceeceesccccccccsces
Page Table Base WOrd (PBW) FOIMAt.....eeeecececocccocssccncanes
Page Table Word (PTW) FOrMAt...ceccececscssoscsacsocasncnnncnns
Virtual AdAreSS...cececscsccecccccesesosssssscsccnscscascansnae
Address Mapping Using A Dense Page Table....ecceveccocscenncnes
PTDW AdAreSS..ceeseecceseesesscaccsosesssssnncans cecsesssesanns

xiii

Page

4-21
4-21
4-23
4-23
4-24
4-25
4-25
4-26
4-26
4-28
4-30
4-32
4-33
4-34
4-35
4-36
4-40
4-41
4-43
4-44
4-46
4-47
4-49
4-51
4-52
5-16
5-26
5-28
5-29
5-30
5-35
5-36
5-37
5-40
5-42
5-60
5-62

5-63
5-65

5-66
5-67
5-68
5-69
5-70
5-72
5-73
5-73

DZ51-00

ILLUSTRATIONS (cont)

Figure Page

5-23 PTW AQAIeSS...cceeceeccnccesscssssssssccscascsossescscsssccncns D=74
5-24 WOrd AQGIreSS..cesesecceccesssccssscccssssssossssossssssssassssesss 975
5-25 Virtual AQQreSS...cccceecccccccsecccssscsssssssccscsscascscnsss D575
5-26 Address Mapping Using A Section Table€.....seeceeesccccccsaceceas 5=76
5-27 PBW AGAYESS...cocecescccccccccscsscssososcssssssascsasassssnces D77
5-28 PTW AQQreSS.ccescesccsccccessccisscsccesssconsnsscssccsscsssnass O—78
5-29 WOrd AdAreSS...cceecececcccccsecccsccssescscosssscnssssscncsncess D78
5-30 Page Table Word Associative Memory (PTWAM) FOrmat.........ce... 5-79
5-31 Associative Memory Directory WOrQ....ceceeeecccccccccsecseseses 5-80
5-32 Cache Directory WOrd....ceeeeeecececcscsscsesccssscssoanscscsss O—82
7-1 sSingle-word Instruction With Address Modification.....eceeeeee. 7-9

7-2 Alter Address Register COntentS...cceceeccecccescscccocsccccses 7=10
7-3 Special Address Register INStruCtiONS....ccecececececcscccscsss 7-12
7-4 Multiword Instruction FOrmat..ecececeescssscessescscossscsnsses 7-23
7-5 Operand Descriptor Indirect Word FOrmat....ceceeceecececcccecsss 7=25
7-6 Alphanumeric Operand Descriptor FOImMat.....ccecececececaccscces 7-26
7-7 Character Move DesCriptor FOIMat.....eecescecesccccscocscsssess 71=29
7-8 Numeric Operand DesCriptOr FOIMAt...ccsescesccscscoscccscscesss 7=31
7-9 Bit String Operand DesCriptOr FOIMat...ceceeccecccscccccscccsss 7=35
7-10 Micro Operation (MOP) Character FOYmat.....ccecececscocscccssss 7-38
8-1 Single-Word Instruction FOrmat..c.ceceesecccssscsssscvcscsscess 8=7

8-2 Multiword Instruction FOrmat...c.cccecececsccccscscccsscsscanss B8-S

8-3 Address Register Special Arithmetic Instruction Format......... 8-10
8-4 Character Move To/From Register Instruction Format.....ccee.... B8-11
8-5 Register To Register Instruction FOImat...cecoeeeesccccescaccss B8-12
8-6 Standard I/0 MailbDOX..ceeceecescescscscssssosscasascsssascacsss B8-95
8-7 Safe Store Stack Format — NS MOG€..c.esvececcssecsssecsacccesss 8-107
8-8 Safe Store Stack Format — ES MOG€..cceeeeccosesecsccccsosseasaes B-108

TABLES

Table Page

1-1 Status Of Processor Mode DeterminantS...ecsecescecccscencscscecse 1=5
2-1 Ranges Of Fixed-Point NUMDEIS....eceecesesesccsscscccscsceasces 2-4
2-2 Ranges Of Binary Floating-Point NumbersS....cccceeeccccccccsccee 2-7
4-1 Processor Accessible RegiSterS...c.ccececesceccsscccscssscscees 42
4-2 System Controller Illegal Action COG€S....eoceessssceccacsscees 4-3B
4-3 Source Of Fault RegiSter ErrOrS...ccecececcsscssssccsccscssesss 4&-39
5-1 Address Modification Octal COGES.eeecescssscossscccsscssssances 5H-25
5-2 Register COGeS..ceeeeeesecescssscssscsssscsscsssosssssssassssss D5-33
5-3 Bound CheCk EQUatiONS...ceecescccsceseccssssssccncsssscccacsass 586
6-1 Processor Faults By Fault COG€...ceovevserecscsscsscscsscsscsas 6-3

xiv DZ51-00

Table

6-2
6-3
7-1

7-3
7-4

8-1
8-2
A-1
A-2

TABLES (cont)

Processor ModeS...ceceoeeee meecsassssscsssascccssnteesscssnsane
Classes Of Faults And Interrupts (DPS 8000)...cececescccccocccns
Alphanumeric Character Number (CN) COd€S...eecseccccscccccssces
Alphanumeric Data Type (TA) COdeS.cceccccccccsscscsccsscasccsas
Sign And Decimal Type (S) COQES.ceeccecsscsacesccsnsscsaccsccsas
Default Edit Insertion Table Characters For MVE And MVNX.......
Edit Insertion Table Entries FOI MVNEX.....cceeeccccccccsccssss
Binary-To-BCD Conversion COnStantS..ecesecsccssscccscscscscscss
Character Codes For ASCII And EBCDIC Overpunched SignS.........
Operation Code Map (Bit 27
Operation Code Map (Bit 27

0)eeeeeeneceececscscncscaccnccncne

l).l...........'l..Q..O...'Q..ll.'

Page
6-10

DzZ51-00

.

SECTION 1

INTRODUCTION

This manual contains a set of machine instructions used on Honeywell Bull
hardware and operating systems. The systems are highly modular, allowing
system confiquration to be matched to the work load mix. This section
describes the essential characteristics of the central processors for these
systenms.

Each processor module in the system has full program execution capability. The
processors conduct all actual computational processing (data movement,
arithmetic, logic, comparison, and control operations) within the information
system. The processor communicates only with the system controller (DPS 8000:
SCU, System Control Unit) and associated memory. The processors contain several
special features that make significant contributions to multiprogramming, high
throughput, and rapid turnaround. These features are under the control of the
operating system which maintains automatic supervision and complete control of
the multiprogramming/multiprocessing environment.

PROCESSOR FEATURES

A processor contains the following general features:
1. Memory protection to place access restrictions on specified segments
2. Capability to interrupt program execution in response to an external
signal (e.g., I/0 termination), to save processor status and to restore
the status at a later time without loss of program continuity
. Capability to fetch instructions and to buffer instructions

3
4. A four-stage pipelined instruction development for greater performance
5. Fully interlaced store units addressable by a given SCU

6

. Ability to hold recently referenced operands and instructions in a 64K
high-speed cache memory

7. An Extended (ES) mode that uses 36-bit addressing includes a set of
general register-to-register instructions

8. Real memory configurations of up to 256 megawords are supported.

1-1 DZ51-00

9. Quad-precision arithmetic operations for which the exponents are handled
as powers of 16

Pipeline Architecture Of The DPS 8000

The four-stage pipeline processor consists of the following cycles:.

A cycle: Effective address calculation and virtual address calculation are
performed

V cycle: Virtual address to real address translation and bound checking,
access checking (read, write permission, etc.) are performed

C cycle: Memory is accessed (cache) using the real memory addresss

E cycle: Instruction is executed by firmware control
One instruction execution completes via four cycles. The maximum instruction
rate is attained when the processor is executing basic instructions (one memory
access and one execution cycle). Because the processor operates as a

four-stage pipeline, a new instruction can be issued before the prior one is
completed, thereby reducing the effective execution time.

 Faults And Interrupts

The processor detects illegal instruction usages, faulty communication with
main memory, programmed faults, certain external events, and arithmetic

faults. Many of the processor fault conditions are deliberately caused by the
software and do not necessarily involve error conditions. The processor
communicates with the other system modules (I/0 processors and other
processors) by setting and answering external interrupts. When the processor
responds to a fault or interrupt, control is transferred to an operating system
module via an interdomain transfer using an entry descriptor obtained from a
fixed memory location.

The locations in real memory containing the entry descriptors for interrupt,
fault, and system entry (PMME) are as follows:

Type Location

Interrupt 30-31 (octal)
Fault 32-33 (octal)
System Entry 34-35 (octal)
Backup 40-41 (octal)

1-2 DZ51-00

Interrupts and certain low-priority faults are recognized only at specific
times during program execution. If, at these times, bit 28 in the instruction
word is set ON, the trap is inhibited and program execution continues. The
interrupt or fault signal is saved for future recognition and is reset only
when the trap is recognized.

Connect/Interrupt Mechanism

On a connect to the IMX, the software points to a logical channel mailbox that
resides anywhere in main memory. The mailbox is required to be 24 words,
beginning at a 0-modul0-8 address. The operating system is responsible for
placing specific information into the first eight words.

This mailbox serves as the primary intercommunication vehicle between the IMX
and the CPU. Software specifies the (relative) starting location of the
mailbox as the effective address of the connect instruction (CIOC). Normal CPU
address preparation converts this to a real memory address, which is then used
by the IMX.

Successive 1/0 operations to the same logical channel can be issued via a
linked mailbox feature available through IMX's. However, once a connect has
been issued by the software, it is the responsibility of the operating system
to not issue another connect directed to the same logical channel until the
current one is completed or a "lost interrupt” timeout has occurred.

All 128 channels (numbered 0-127) are data channels except channel numbers zero
and three. Channel three is used for two-way communication between the CPU and
IMX maintenance system (MCA). Channel zero is normally declared invalid, to
avoid confusion that would otherwise exist in the operating system as to
whether a given channel number field is zero, or the field is currently unused.

The CPU automatically directs the connect command to the "control” SCU. If the
system configuration includes two SCU's (i.e., tandem), then the SCU which is
designated as "control" is the one which processes all connects and interrupts
for the operational system. The control SCU then adds a connect word pair to
the destination port's connect queue and notifies the port that a connect is
present in its queue. The IMX reads the contents of the queue with the Read
Connect Words command instruction (RCW).

An interrupt queue mechanism is used in the DPS 8000 system that allows for up
to 256 simultaneous entries for each of eight interrupt levels. Thus, the SCU
maintains a queue for each interrupt level. Levels one and seven are for fault
and special interrupts, respectively. The interrupt level for marker/terminate
interrupts are specified at connect time in the mailbox (GCOS uses levels 5 and

3, respectively).

The control SCU sends an interrupt present signal to all CPU's that are
unmasked for this interrupt level (each CPU initializes and modifies its own
masks independently). The SCU sends an accept signal to the candidate CPU
selected, and automatically shuts off all further interrupt present signals by
masking a unique system-wide "all mask".

1-3 DZ51-00

The CPU, selected by the SCU to process the interrupt, transfers to the
operating system interrupt handler by executing an interdomain CALL version of
the CLIMB instruction, using the entry descriptor at location 30-31 (octal).
The software interrupt handler uses the RIW instruction for each pair of
interrupt words (one doubleword interrupt queue entry). The next interrrupt
pair is selected from the highest priority (i.e., lowest numbered), unmasked
level, and inserted into the AQ register. When no more entries are available
at any level that is unmasked for this CPU, then the AQ register will contain
all zeros.

The operating system examines the channel mailbox for status information. On
terminate or marker type interrupts, status returns are automatically stored in
the channel mailbox. Up to eight words of peripheral extended status are
likewise stored.

Online Processor Tests

The PATROL feature (Processor Activity Test Runs On Line) is implemented as
firmware in its own unique CPU memory. PATROL runs test programs and reports
status to the maintainance interface.

OPERATING MODES

Three types of modes determine the operation of the CPU.

o Privileged Master, Master, and Slave modes which determine the processor
mode of operation

0 NS and ES (Non-extended/Extended) modes which determine whether 18-bit or
36-bit registers are used and determine the method to be used to generate
effective and virtual addresses

O Memory addressing modes

Processor Modes Of Operation

The three processor modes of operation are Privileged Master mode, Master mode,
and Slave mode. The master mode bit in the indicator register, the privileged
bit in the instruction segment register (ISR), and the housekeeping bit in the
page table word (PTW) for the instruction define these processor modes.

1-4 DZ51-00

‘ ~//

The status of the determinants for each mode is shown in Table 1-1.

Table 1-1. Status Of Processor Mode Determinants

Processor Modes &

Determinants Privileged Master Slave
Master

Master Mode Bit ON ON OFF
in
Indicator Register
(bit 28)

Privileged Bit in

Instruction Segment ON OFF OFF

Register
(bit 26)

Housekeeping Bit

in Page Table Word oN b ON/OFF OFF

for the Instruction
(bit 32)

@ 2ll other combinations are illegal and result in a Class 1 Security Fault.

b yhen working space zero is referenced, the housekeeping bit is assumed to
be ON and the processor addresses memory through absolute mode page
tables.

A fault or an interrupt causes the processor to enter Privileged Master mode.
I1f the processor is in Privileged Master mode, an instruction can change to
Master mode by transferring to a segment marked non-privileged. The reverse is
also true when transferring to a segment marked privileged. The use of a CLIMB
instruction between Master and Privileged Master modes, like the transfer, not
only allows a change of processor execution modes but also a change of domains.

1-5 - DZ51-00

The Master mode bit in the indicator register can be turned ON as follows:
1. Occurrence of an interrupt or a fault

2. Execution of the PMME version of the CLIMB instruction, which causes a
system entry

3. Execution of the OCLIMB version of the CLIMB instruction where the master
mode bit of the restored indicator register is ON

The following mode-dependent processor functions are listed by mode. None of
these functions are permitted in Slave mode. :

Functions allowed in Master and Privileged Master modes:
1. Accessing through working space register zero

2. Reading operands from a housekeeping page of segment descriptor type
T=0, 2, 4, 6, 12, or 14

3. Executing instructions from housekeeping pages of type T = 0 segments

4, Executing a CLIMB (ICLIMB or GCLIMB) not invoking a system entry option
(PMME)

5. Executing a transfer to a privileged executable segment
Functions allowed only in Privileged Master mode:

1. Executing Privileged Master mode instructions (e.g., load working space
registers)

2. Executing Privileged Master mode options of the LDDn, LDPn, or CLIMB
instructions, such as copying the safe store register (SSR) to a
descriptor register (DRn)

3. Writing on housekeeping pages of type T = 0, 2, 4, 6, 12, or 14 segments,
using instructions other than CLIMB, SDRn, STDn

Non-Extended/Extended Modes

The NS (Non-extended) and ES (Extended) modes are specified with bit 24 of the
Instruction Segment Register (ISR).

o When ISR bit 24 = 0 NS mode.
o When ISR bit 24 = 1 ES mode.

ISR bit 24 may be altered only with the CLIMB instruction.

1-6 DZ51-00

el

Processor operations differ between NS and ES modes for the following:
o The number of bits in the index and the address registers
o The method used to generate effective address
o The execution of some instructions

o Additional register instructions available in ES mode

Memory Addressing Modes
Three types of memory addressing exist in the DPS 8000.

1. Virtual memory which is mapped to a real (physical) memory address
2. Absolute mode which is used only when Working space zero is referenced

3. Reserved memory which is reserved for special use

VIRTUAL MEMORY PAGING

Virtual memory paging mode is an integral part of the address translation
process for mapping a virtual memory address to a real memory address. Each of
the 512 working spaces (WS) is supported by one page table (PT) or by a section
table (SCT) that references multiple page tables.

The location of a PT supporting a working space (WS) is indicated by a 9-bit
working space number (WSN) that indexes the 512-word page table directory called
the working space page table directory (WSPTD). This directory contains the
real memory address of the supporting page table. Words in the WSPTD are called
page table directory words (PTDW), and words on the page table are called page
table words (PTW). The location of a WSPTD is indicated by the page directory
base register (PDBR).

The location of the SCT supporting a given WS is indicated by a 9-bit WSN that
also indexes the page table directory (WSPTD). The SCT consists of up to 4K
words and includes the real memory address of the page table. The individual
words in the SCT are called page table base words (PBW). The effect of SCTs is
seen when paging is performed; these page tables are distributed throughout
memory.

1-7 DZ51-00

ABSOLUTE MODE

The processor utilizes the absolute addressing mode each time working space
number zero is referenced. However, the virtual address is not mapped to a real
address; it is used as the real address with a maximum size limitation of 2**28
words (256 megawords). Any time a working space other than zero (WSN=0) is
referenced, the processor uses the paging mode.

To use the absolute addressing mode, the processor must be in Privileged Master
mode. The master mode bit in the indicator register and the privileged bit in
the instruction segment register must be ON. If these two conditions are not
met, any attempted reference to WSN O results in a Command fault. The
housekeeping bit is assumed ON when WSN 0 is referenced.

RESERVED MEMORY SPACE

Reserved memory space is defined by space above the Reserved Memory Base
Register. This page is not represented in the Memory Utilization Table (MUT)
and is addressable only in absolute mode.

INTERVAL TIMER

The processor contains a timer that provides a program interrupt (timer runout

fault) at the end of a variable interval. The timer is loaded by the operating
system and can be set to a maximum of approximately four minutes total elapsed

time.

1-8 DZ51-00

SECTION 2

REPRESENTATION OF DATA

FORMATS

The processor is functionally organized to process 36-bit groupings of
information called words. Special features are also included for ease in
manipulating 4-bit groups, 6-bit groups, S-bit groups, 18-bit groups, 72-bit
double-precision, and 144-bit quad-precision groups. These bit groupings are
used by the hardware and software to represent a variety of forms of
information.

POSITION NUMBERING

The numbering of bit positions, character positions, words, etc., starts with
zero and increases from left to right as in conventional alphanumeric text. Bit
zero is the most-significant bit and the right-most bit is the least-significant
bit.

THE MACHINE WORD

The machine word consists of 36 bits arranged as follows:

0 11 3
0 18 5

One MachiTe Word

Upper Half-Word 18 Lower Half-Word 18

Data transfers between the processor and memory are double-word-oriented; 36
bits are used at a time for single-precision data and two parallel 36-bit word
are used for double-precision data. When words are transferred to a memory
unit, Error Detection and Correction (EDAC) bits are added to each word pair
before the words are stored. When words are requested from a memory unit, the
EDAC bits are read from memory, verified, and removed before sending the word
pair to the processor.

The processor has many built-in features for efficient transferring and
processing of pairs of words. When a pair of words is transferred to or from
memory, their addresses are an even number and the next higher odd number. A
pair of words is arranged as follows.

2-1 Dz51-00

0 33
56 1

A Pair of Machine Words

Even Addresss Odd Address

In an instruction intended for handling pairs of machine words, either of the
two addresses may be used as the effective address (Y). Thus,

1f Y is even, the pair of locations (Y, ¥+1) is accessed. If Y is odd, the
pair of locations (Y-1, Y) is accessed. The term "Y-pair" is used for each
pair of addresses. Preferred coding practice refers to the even address; the
GMAP assembler issues a warning diagnostic if Y is odd in an instruction
intended for handling pairs of machine words.

CHARACTER—-STRI NGS

Character Positions

Alphanumeric data is represented by 9-bit, 6-bit, or 4-bit characters. A
machine word contains either four, six, or eight characters, respectively. The
character positions within the word are as follows:

9-Bit Character (Bytes):

0 00 11 22 3 <——— Bit positions
0 8 9 7 8 6 7 5 within word
0 1 2 3 <-— Byte positions
within word
6-Bit Characters:
0 00 11 11 2 2 23 3
0 56 1l 2 7 8 34 S 0 5
0 1 2 3 4 5
4-Bit Characters (Packed Decimal):
00 00 001 11 111 22 222 33 3
01 4 5 8S0 34 7 889 23 678 12 5
zZ 0 1 Z 2 3 Z 4 5 Z 6 7

The Z represents the bit value 0; other numbers in the fields represent the
character positions.

2-2 DZ51-00

Bit Positions

Bit positions within a character are as follows:

10[112(3] 4-bit character
10]112{3[4]5] 6-bit character
Tol1]2]3]4]5]6!7]8] 9-bit character

Thus, both bit and character positions increase from left to right as in normal
reading.

LITERALS

For information on literals refer to the GCOS B OS GMAP User's Guide.

BINARY NUMBERS

Fixed-Point Numbers

Binary fixed-point numbers are represented with half-word, single-word, and
double-word precision as shown below.

Precision Representation
0 1
0 7

—-— e me e e e em—

-— e - - - o cm—

/Upper Half
/

Half-word / 1 3
\ — 8 5
\
\Lower Half 1l ______
0 3
0 5

Single-word

Double-
word

Even Address 0dd Address

2-3 DZ51-00

Instructions can be divided into two groups according to the way in which the
operand is interpreted: the "logic" group and the "algebraic" group.

For logic operations, operands and results are regarded as unsigned, positive
binary numbers. In the case of addition and subtraction, the occurrence of an
overflow is indicated by the carry out of the most significant (leftmost) bit
position:
1. Addition - If the carry out of the leftmost bit position equals 1
(Carry indicator ON), the sum is above the range.
2. Subtraction - If the carry out of the leftmost bit position equals 0
(Carry indicator OFF), the difference is below the range.

In the case of comparisons, the zero and carry indicators show the relation.

For algebraic operations, operands and results are regarded as signed binary
numbers, and the leftmost bit is used as a sign bit (a 0 being plus and 1
minus). When the sign is positive, all the bits represent the real value of the
number; when the sign is negative, they represent the two's complement of the
real value of the number.

In the case of addition and subtraction, the occurrence of an overflow is
indicated by the carries into and out of the leftmost bit position (the sign
position). If the carry into the leftmost bit position does not equal the carry
out of that position, then overflow has occurred. If overflow has been detected
and if the sign bit equals 0, the result is below range; if with overflow the
sign bit equais 1, the result is above range.

In integral arithmetic, the location of the decimal point is assumed to the
right of the least significant bit position; that is, depending on the
precision, to the right of bit position 35 or 71 (17 for upper half-word).

The number ranges for the various-cases of precision, 1nterpretat10n and
arithmetic are given in Table 2-1.

Table 2-1. Ranges Of Fixed-Point Numbers
Precision
Inter—
pretotion |Arithmetic Ho! {=word Single-Word Doub | e~Word
(Xn, Yo . . 17) (A,Q.Y) (AQ,Y=pair)
| Integral eng(2'7-1) Beng(23%1) 27 ene(271)
Algebroic -
Fractional|| =1sNg(1-2-17) 1N (1-2735) -1gNg(1=2-71)
Integrol || Ochg(2 18-1) 0<Ng(2 36-1) OgNg(2 72-1)
Logic -
Froctionol| | oeng(1-2718) oeNg(1-2 ~6) oeNg(1-2772)

Floating-Point Numbers

Floating-point numbers are represented with single-word and double-word
precision. The upper 8 bits represent the integral exponent to the base 2 in
two's complement form, and the lower 28 or 64 bits represent the fractional
mantissa in two's compiement form.

The format for a floating-point number is:

assumed
radix point
0 0 00 |0 3
0 1 78 19 5
Single-Word
Precision: . IS S
< Exponent >< Mantissa >
__assumed
radix point .
00 0 0|0 7
01 7 819 1
Double-Word .
Precision: S S
< Exponent >< Mantissa >

where S = sign bit

Before performing binary floating-point additions or subtractions, the processor
aligns the number that has the smaller exponent. To maintain accuracy, the
lovest permissible exponent of -128, together with the mantissa of zero, has
been defined as the machine representation of the number zero (which has no
unique floating-point representation). Whenever a floating-point operation
yields an untruncated resultant mantissa equal to zero (71 bits plus sign
because of extended precision), the exponent is automatically set to -128.

Hexadecimal Floating-Point Numbers

The hexadecimal option may be used in floating-point operations to declare
hexadecimal constants, either explicitly or by default. The term hexadecimal
refers to a floating-point format where the mantissa is a binary number, while
the exponent represents a power of 16 (2**4). The mantissa is shifted by the
number of places for 4-bit groups as reguired by the exponent.

The hexadecimal floating-point mode is enabled only when bit 32 of the Indicator
Register is set to 1 and bit 33 of the mode register is set to 1. After the
hexadecimal floating-point mode is reguested, the user controls the
floating-point mode via the Indicator Register. If the bit 32 of the Indicator
Register is not set to 1, the floating-point mode will be binary.

2-5 Dz51-00

Quadruple—Precision Numbers

The data format used in quadruple-precision arithmetic is illustrated below.
Notice that the format of data to be used in an operation is somewhat different
from that of data to be stored after the operation.

The format for data when an operand in main memory is used as arithmetic data:

Y-pair : Y+2 pair

/ \/ I\

0 00O 77 8 8 4

0 78 12 34 3
AR AN

EU MU ASAANRNNN ML

0_7i0 63{0\\\\\1110 59
Ignored

The format for data when the result is stored in main memory is as follows:

1
0 00 3 77 7888 4
0 78 5 12 89034 3
EU MU EL | O _ ML
0 710 6310 710 3| 59
!- 0 is set

o The data in memory must reside on a double-word boundary.
o The four words of data may span two pages.

The registers E, AQ, and LOR are used for quadruple-precision arithmetic. The
format for data used as operation data is as follows:

E AQ LOR
/ N/ \/ N
0 00O 77 78 99 5
0 78 12 S0 12 1
ASARNANRANNNNY
EU MU ASAANARRRRNNNY ML
0_710 6310\\7{0\\\\N\1110 59
Ignored
The contents of EAQ and LOR following an operation is as follows:
1
0 00O 77 78 BBY9S 5
0 78 12 90 7812 1
EU MU 0 EL | O ML
0 710 63(0 710 710 310 53
== 0 is set

2-6 DZ51-00

Field Values

EU Exponent

MU High Order Mantissa
EL EU -15 (residue)

ML Low-order mantissa

Quadruple-precision value N = (MU + ML)16EU

The guadruple-precision instructions operate with the exponent as a hexadecimal
exponent regardless of the value of bit 32 of the indicator register (IR).

Normalized Binary Floating-Point Numbers

For normalized binary floating-point numbers, the binary point is placed at the
left of the most significant bit of the mantissa (to the right of the sign bit).
Numbers are normalized by shifting the mantissa left (and correspondingly
adjusting the exponent) until no leading zeros are present in the mantissa for
positive numbers, or until no leading ones are present in the mantissa for
negative numbers. The vacated bit positions on the right are zero-filled.

The number ranges resulting from the various cases of precision, normalization,
and sign are given in Table 2-2.

Table 2-2. Ranges Of Binary Floating-Point Numbers

Sign Single Precision Double Precision

Positive -2'129‘N‘(1-2_27)2 127 2129«(1_2-53)2127

Normo | i zed
NGgO(ive (_1+2‘26)2-1 29)»_2 127 (_1+2 -‘62)2‘1292»_2127

Positive 2‘155«(1_2-27)2127 2—191“(1_2-63)2127
Unnormal i zed

Negotive 2155 3052 127 ~7 15502127

NOTE: The floating-point number zero is not included in the table.

2-7 DZ51-00

| Binary Representation Of Fractional Values

A decimal fraction of a given number of digits cannot necessarily be represented
exactly by a binary fraction of any finite number of bits. Consider, for
example, the value 1/5, which is represented in decimal notation as 0.2. Trying
to represent it by a four-bit binary fraction, one obtains (.0011)7 or 3/16;
with eight bits, one obtains (.00110011)7 or 51/256. In fact, the exact value
must be written as

(0.2)3p = (0.0011)7 ...

which means that the bit pattern 0011 in the binary expansion keeps repeating
indefinitely. If the decimal value 0.2 is converted to a binary expansion of 71
bits and then converted back, the one-digit result would be 0.1, quite different
from 0.2. The four-digit result would be 0.1993, which is almost (but not
quite) equal to 0.2. If computations were involved instead of only conversions,
the imprecision in the decimal result could be propagated.

Various adjustments can be made to binary fractional values to make exact
decimal results highly probable. One may use binary integer notation to
represent all values, whether integral or fractional, but this may make
multiplication or division of an operand by a power of 10 necessary in the
course of a computation.

DECIMAL NUMBERS

Scaled decimal numbers that are used directly in hardware arithmetic commands
are expressed as decimal digits in either the 4-bit or 9-bit character format.
They are expressed as unsigned numbers or as signed numbers using a separate
sign character.

2-8 DZ51-00

.

Decimal data utilizes the following formats:

00 00 001 11 111 2 2 222 33 3

01 4 5 8380 34 7 89S 2 3 6 78 12 5

Z 0 1 Z 2 3 Z 4 5 Z 6 7
Packed Decimal (4-bit)

00 001 111 222 3

01 890 789 678 5

Z 0 V4 1 y/ 2 Z 3

ASCII/EBCDIC (9-bit)

Z represents unused bit positions.

Decimal Data Character Codes

During arithmetic operations, decimal digits and signs are checked by the
hardware as 4-bit data (the 4 least significant bits from a S9-bit numeric).

The following interpretations are made:

Bit Pattern for Illegal Procedure
Character Interpreted as (IPR) if

0000 0
0001 1
0010 2 found where
0011 3 descriptor
0100 4 specifies sign
0101 5
0110 6
0111 7
0100 8
1001 S
1010 +
1011 + found where
1100 + descriptor
1101 - specifies
1110 + digits
1111 +

2-9 DZ51-00

The following codes (9-bit zones are created by prefixing binary 00010) are
generated for output signs; the octal values are:

Plus Minus
4-bit 14(13) 15
S-bit 053 055

For several numeric instructions, a sign value of 13 can be optionally
generated.

Floating-Point Decimal Numbers
The format for a floating-point decimal number expressed in S-bit characters is:

8-bit

SIGN 10", | 102 | 10" 10° |o| ExPONENT

where: SIGN con stert ot ony legal 9-bit choracter boundory

In 4=bit charocter nototion, there ore four formots for floating=point
decimol nurbers:

4-Bit 8-Bit

ol sioN| 10"... |0 103 | 102 [0 10? | 100 |O| ExPo | NENT

Even chorocter boundary, odd # of digits. (f of digits = n+1)

SIGN |p| 10"... | 103 |o| 102 | 4101 |o| 100 | ExPO |O| NENT

Odd character boundory, odd § of digits (f of digits = N+1)

The B-bit exponent field, which now spans two character positions, is
interpreted the same as in S-bit character mode. The other two formats are
formed with n+l even. This effectively exchanges the two exponent
representations in the formats shown.

2-10 DZ51-00

Decimal Number Ranges

The number ranges for decimal numbers are:

1. Fixed-point unsigned integer:
Range = 0...1063

2. Fixed-point signed integer:
Range = + 1062

3. Floating-point (implicitly signed):
a. 9-bit format range - + 1061 * 10+127 -128
b. 4-bit format range - + 1060 =« 30+127 -128
c. Zero = +0 * 10+127 -128

2-11

DZ51-00

R

SECTION 3

MEMORY ORGANIZATION

The Central Processing Units (CPUs) access the main memory through the System

Control Unit (SCU). Similarly, the Input/Output Multiplexer (IMX) also accesses

memory through the SCU. As a component, the SCU is a passive system element,
responding to requests from active units, the CPUs and the IMXs. This large,
memory-oriented system architecture, permits both CPU and IMX functions to
execute asynchronously and concurrently. The functions of read, store,
interprocessor communication, etc., are provided by the SCU.

Increased system throughput is achieved by operating the SCU and associated
memory units on a 72-bit parallel basis. This corresponds to two single-word
instructions, two data words, or one double-precision fixed-point or
floating-point number.

Systems with more than one system controller provide an increased effective
information rate, since each system controller operates independently and its
functions can be overlapped with those of other system controllers.

- Additional overlap is provided by memory interlacing. Each DPS 8000 SCU

operates with full memory unit interlacing, in 8-word block increments, to
reduce the possibility of the same memory unit being accessed in succession.

VIRTUAL MEMORY

Virtual memory (VM) provides an extremely large, directly addressable memory
space (2**43 bytes) and a complement of registers and instructions to manage
virtual address space. The VM space is divided into a number of working
spaces. The working spaces are further divided into variable sizes called
"segments". A segment within a working space is described by a "segment
descriptor", which has a base relative to the origin of the working space and a
bound relative to the base, together with control information. Thus, for all
memory references, virtual memory addresses are prepared relative to a
particular working space and to a particular segment base within the working
space. These virtual memory addresses are then mapped to real memory addresses
by paging mechanisms.

3-1 DZ51-00

To access (generate a memory address for) an area of VM, a process (used here to
mean the smallest working unit of software) must have a segment descriptor that
"frames" the particular segment of VM and that gives the desired permission for
using this segment of VM (i.e., Read permission, Write permission, or Execute
permission). A process cannot create a segment descriptor, nor change the base
and bound to access an area of VM not enclosed by the area originally "framed",
nor increase the permissions field. Therefore, a process is limited to
accessing only those areas of VM described by segment descriptors that are
available to the process.

The hardware environment for the virtual memory is composed of four elementsl:
working spaces, domains, segments, and pages. The working spaces and pages are
physical elements, whereas the segments and domains are logical elements. These
elements are treated as separate components of the virtual memory but must be
interpreted in the context of the whole environment, since they are closely
related in their interaction with each other.

Working Spaces

The virtual memory is divided into 512 (0 through 511) working spaces (WS) of
2**34 bytes, each of which is divided into fixed-length pages. These pages are
used for memory management and have a fixed size of 1024 words (40396 bytes)
each. Working space numbers (WSN) used to generate a particular virtual memory
address are obtained from one of eight working space registers (WSR) or a
segment descriptor register (DRn).

Page Tables

Each working space has an associated page table that identifies the real memory
allocation. The page table or section table for each working space is located
in real memory by a pointer that resides in the working space page table
directory (WSPTD). The directory has 512 entries and the pointer to the
directory is stored in the page directory base register (PDBR). Directory
entries are either pointers to page tables or pointers to section tables. The
section table (SCT) consists of up to 4K words called page table base words
(PBW) that allow page tables to be divided and distributed throughout the
memory. These pointers and tables can only be altered in the Privileged Master
mode.

The virtual address has three components: a working space number (WSN), a page
number, and a page byte number (commonly called an offset). The virtual address
is automatically transformed to a real address by the hardware.

1. Historically, discussion of virtual memory included reference to working
space quarters, described in this manual as working spaces. The working
space quarter concept is not used by any software implementation;
therefore, no further mention of working space quarters occurs in this
manual. The hardware has not been changed.

3-2 DZ51-00

Domains

Another logical element of the virtual environment is the domain.

A domain is

the particular subset of virtual memory that currently can be accessed by a
It is defined initially by the collection of descriptors contained
within the linkage segment (the segment described by the contents of the LSR).
The domain is a flexible and temporary range of operation that may encompass
several noncontiguous segments in one or more working spaces (see Figure 3-1).

process.

Two or more domains may interact by including the same segment descriptor.
domain contains exactly one linkage segment to define the domain.
domain implies a change of linkage segment and vice versa.

Each

A change of
Descriptors for

the domain may also be in descriptor segments described in the linkage segment,
in descriptor registers, or in the parameter segment.

WSKN X
P B
Page 0 < Segment a
\
R
/
Page 1 <
Segment b
Page 2 <
) Bl
Page 3 <
\
|
/
Page 4 < Segment c
\
N -
/
Page 5 <
\
N oo
Figure 3-1.

3-3

Segment d

Domain Of Noncontiguous Segments

DZ51-00

Also associated with the process are the safe store stack and the data stack
segments. The safe store stack is always used (except for GCLIMB and PCLIMB) in
a change of domain, but a new domain may or may not choose to access a different
portion of the data stack segment. It does not have access to that portion used
by the calling domain.

Normally, a change of domain is accomplished through a succession of operations
that are associated with the ICLIMB instruction. Starting with two separate
domains, which for convenience are referred to as calling domain and called
domain, the entry descriptor accessed in the calling domain describes the
called-domain linkage segment and identifies a specific initial instruction in
an instruction segment described in that linkage segment. The contents of the
calling domain's registers (LSR, ASR, PSR, and DSAR), as well as those of any
other registers specified by the type of entry descriptor, are safe stored.

The change-of-domain CLIMB instruction indicates whether there are parameters
and the number of arguments. The arguments may be either vectors or
descriptors. (Refer to discussion of LDDn instruction in Section 8.) If the
arguments are vectors, descriptors are prepared using the vectors and stored to
form a parameter segment for the called domain.

The source of the list of vectors or descriptors is given as the contents of
pointer register zero. (Descriptor register zero identifies the segment in
which the list occurs and indicates whether vectors or descriptors are listed.
Address register zero gives the offset in that segment of the list.) On
change-of-domain return (OCLIMB), the contents of the calling-domain's domain
registers and any other register contents that were safe stored are restored.

Seqments

Another division of the working space is the segment. Each segment is a lo%ical
entity of variable length and may be as small as one byte or as large as 23
bytes. Conseguently, a segment may reside on a portion of a page or span
several pages. (Refer to Figure 3-2). Segments are described with two-word
(72-bit) segment descriptors. When a virtual address is generated, the segment
descriptor is located in the segment descriptor register. Segments in virtual
memory are specified with a base value which is relative to the origin of the
WS, and a bound which is relative to the base.

3-4 DZ51-00

Working Space

/
/
Page O < <-—Segment a
\
\ <-—Segment b
/ \
/ \
Page 1 <
\
Nl]
/
/ > Segment ¢
Page 2 <
\
AN
/
/ /
Page 3 < /
\
NL o] !

Figure 3-2. Layout Of Segments On Pages

To understand the relationship between pages and segments, it is necessary to
understand the structure of a working space. The combination of a working space
nunber and offset within the related working space is called a virtual address.
Pages of 1K size are ordered sequentially by virtual page number within a
working space. Each page is represented by a page table word (PTW) that points
to a real page, if that page is in memory.

A segment is a logical sequence of virtual addresses, starting from a base and
of a size equal to the bound of that segment. The base and bound of a segment
are contained in a system protected, two-word structure called a segment
descriptor. A segment may be small, contained anywhere within a page, or it may
span multiple pages, irrespective of page boundaries.

A segment is characterized by its elements and the form of access to these
elements, which can be Execute, Read, or Write. Segments are classified either
as descriptor segments or operand segments. The descriptor segments that
contain valid descriptors as part of their contents may be used as linkage,
parameter, argument, or safe store segments; whereas the operand segments may be
instruction-only, data-only, instruction and data segments, or data stack
segments as illustrated in the following diagram.

3-5 - DZ51-00

Segment
Descriptor ' Operond
Segments Segments
Linkage Porometer Argument Sofe Store Instruction Doto Doto Stock
Segment Segment Segment Segment Segment Segment Segment

(Ls) (PS) (as) (ss) (18) (DS) (Dss)

A segment of either class may also be loaded into one of the eight operand
descriptor registers (DRn).

Descriptors

A descriptor consists of a 72-bit word-pair and locates a segment in virtual
memory. When the processor hardware obtains a descriptor from memory, the
processor assumes that the descriptor begins on an even-word boundary and
ignores the least significant bit of the virtual word address. If a descriptor
is stored from a register, the processor hardware stores on an even-word

boundary.

To allow a process to have access to a segment, a copy of the descriptor must be
obtained to locate the segment in virtual memory. 2Also, the descriptor
delimits, through a set of flags, what forms of access to the segment are
available. ‘

Twelve types of descriptors are available. Those segments containing
instructions, data, or a combination of both are commonly called operand
segments and have descriptors that are either type 0, 2, 4, 6, 12, or 14 to
indicate operand storage. The segments containing only descriptors (i.e.,
descriptor segments) have descriptors that are either type 1 or 3 to indicate
descriptor storage. Operand memory references are always accomplished through
operand segment descriptors, usually to nonhousekeeping pages, whereas
descriptor references are made only through descriptor segment descriptors

3-6 DZ51-00

to housekeeplng pages. The remaining four descriptors are used only during the
execution of the special transfer-of-domain (CLIMB) instruction. The list of
descriptor types follows.

Type Descriptor Contents
0 Standard Instructions/data
2 Standard with WSN Data
4 Super Data
6 Super with WSN Data
12 Extended Data
14 Extended with WSN Data
1 Standard Descriptors
3 Standard with WSN Descriptors
5 Dynamic linking }
8 Entry } Used only with
9 Entry } CLIMB
11 Entry }
Segment
Dosc.nptw/\.por‘ond
Segment Segment
StonBord Sto&ded

Descriptor Descriptor Descriptor Descriptor

ANVA

Descriptor Type WSR - WSN wSR WsN WSR WSN WSR WSN

3-7 DZ51-00

Instructions such as LDSS and LDAS that load segment descriptors from operand
segments to registers and instructions such as STSS and STPS that store segment
descriptors in operand memory areas access segments of type 0, 2, 4, 6, 12, or

14.

In these instances, instruction operand memory addresses must specify

operands in operand segments. An Illegal Procedure (IPR) fault occurs when
operand or indirect word addresses are generated which specify segment
descriptors of other than those types. This procedure has two exceptions:

1.

Segment descriptor types 1 and 3 specify segments that include segment
descriptors. The CLIMB, SDRn, LDPn, LDDn, and STDn instructions access
segment descriptor segments to load or store segment descriptors. These
segment descriptor segments must be located in housekeeping pages. An
IPR fault occurs when either a segment descriptor is accessed with an
instruction other than one of the five mentioned above, or when one of
these instructions is used to access a segment descriptor in an operand
segment that is not located in a housekeeping page.

Instructions such as LDDn can access both operand segments and segment
descriptor segments because LDDn performs different operations with each
access. These instructions indirectly access segment descriptors through
operand segments. The safe store stack contains data other than segment
descriptors. However, it is specified with type 1 or 3 segment
descriptors. The safe store stack does not contain operand data and
cannot be accessed except with Privileged Master Mode. Using this mode,
the segment descriptor for the safe store stack can be obtained and
converted to a type 0 or 2 segment descriptor. (Refer to the LDDn
instruction description in Section 8.)

STANDARD DESCRIPTOR

The format of the standard descriptor is:

0 12 22 33 3
0 S0 89 12 5
Bound Flags WSR |Type Even
20 S 3 4 Word
Base Odd
36 Word

Bound - A 20-bit field that is the maximum valid byte address within the

segment; bits 0-17 are the word address and bits 18-19 are the
9-bit byte address. The bound is relative to the base. A zero
bound indicates a l-byte segment if bit 27 is 1.

Flags - A 9-bit field that describes the access privileges as well as other

control information associated with the descriptor:

3-8 DZ51-00

WSR

Flag

Bit Code
20 R
21 W
22 S
23 C
24 X

25 E
26 P

27 B
28 A

Meaning
Read

0 Read not allowed
1 Read allowed

Write

0 Write not allowed
1 Write allowed

Store by STDn

0 Descriptor may not be stored in a type 1 or 3
segment by the STDn instruction.

1 Descriptor may be stored in a type 1 or 3
segment by the STDn instruction.

Cache Use Control

Not used by DPS 8000

NS/ES Mode (when in ISR; otherwise ignored)

0 NS Mode
1 ES Mode
Execute

0 Execute not allowed
1l Execute allowed

Privilege

0 Privileged Master mode not required for
execution

1 Privileged Master mode required for execution

Bound valid

0 Bound not valid; segment empty.
1 Bound field maximum valid address.

Available segment

0 Segment not available; references not allowed.
1 segment available; references allowed.

A 3-bit field that specifies which of the eight working space

registers to use with this descriptor.

The working space register

supplies the working space number (WSN).

3-9 DZ51-00

Type - A 4-bit field that defines the descriptor type. The two types for
standard descriptors are:

Type = 0 The descriptor "frames" instruction/operand space. x;
Type = 1 The descriptor "frames" an address space containing
descriptors.
Base - A 36-bit virtual byte address that is relative to the working space

defined in the WSR. Bits 0-33 are a 34-bit word address and bits
34-35 represent a S-bit byte within the word. ,

STANDARD DESCRIPTOR WITH WORKING SPACE NUMBER

The format of the standard descriptor with working space number (WSN) is:

0 12 22 33 3
0 90 23 12 5
Bound Flags WSN Type Even
20 3 9 4 Word
Base odd
361 Word

This format is the same as that for the standard descriptor except that the
flags field has been truncated to allow the descriptor to contain the actual
working space number rather than point to a working space register. The three
flag bits are the same as the corresponding flag bits of the standard
descriptor. The state of the truncated flags is assumed as follows:
Flags - 1. Execute not allowed (NE)
2. Not privileged (NP)
3. Bound valid (B)
4. Segment available (A)
WSN - The actual working space number.

Type - A 4-bit field that defines the descriptor type. The two types for
standard descriptors witn WSN are:

Type = 2 The descriptor "frames" operand space.

Type = 3 The descriptor "frames" an address space containing
descriptors.

3-10 DZ51-00

SUPER DESCRIPTOR

Super-descriptors may be used to define large segments. The definitions of the
flags, WSR, WSN, and type fields of the super—-descriptor are the same as those
of the standard descriptor. The base and bound fields are automatically
extended on the right to a length of 36 bits. The base is extended with zeros
and the bound is extended with ones.

Therefore, a super descriptor with base, location, and bound of zero describes
a segment that begins at location zero of a working space and extends 2**26
bytes (16 million words). A super descriptor with a base of 1, and location of
zero, and a bound of 3 describes a segment that starts at location 2**26 and
extends 2**28 bytes (64 million words).

The format of the super descriptor is:

0 01 12 22 33 3
0 90 90 89 12 5
Base Bound Flags WSR |Type Even
_10 10 S 3 4 Word
Location odd
36 Word
Base - A 10-bit virtual address (unit 2**26 bytes) within a working

space. The 10-bit base is converted to a 36-bit base (unit 1
byte) by extending to the right by 26 zero bits.

Bound - A 10-bit virtual address (unit 2**26 bytes) that is the maximum
valid address within the segment. Conversion to a 36-bit bound
(unit 1 byte) is accomplished by extending the 10-bit field to
the right by 26 one bits. The bound is relative to the base.

Flags - A field that describes the access privileges associated with the
descriptor (identical to the flags field for the standard
descriptor).

WSR - A 3-bit field that specifies which of the eight working space

registers to use with this descriptor (identical to the WSR
field for the standard descriptor).

Type - A 4-bit field that defines the type for the super descriptor.
Type = 4 The descriptor "frames" operand space.

Location- A 36-bit byte virtual address relative to the base; that is, an
offset from the 10-bit base. The area framed by the super
descriptor extends from (Base + Location) through (Base +
Bound).

NOTE: If an attempt is made to use a super descriptor in the ES mode, an
IPR fault occurs. '

3-11 DZ51-00

SUPER DESCRIPTOR WITH WORKING SPACE NUMBER

The format of the super descriptor with working space number (WSN) is:

0 01 12 22 33 3
0 90 S0 23 12 5
Base Bound Flags WSN Type Even
10 10 3 S 4 Word
Location 0dd
36 Word

This format is the same as that for phe super descriptor with the exception
that the truncated flags field contains three bits that are defined identically
as the corresponding three bits of the standard descriptor. The state of the
truncated flags is assumed as follows:
Flags - 1. Execute not allowed (NE)
2. Not privileged (NP)
3. Bound valid (B)
4. Segment available (A)
WSN - The actual working space number
Type - A 4-bit field that defines the descriptor type as "super with WSN".
Type = 6 The descriptor "frames" operand space.
NOTE: I1f an attempt is made to use a super descriptor with WSN in the ES
mode, an IPR fault occurs.

EXTENDED DESCRIPTOR

The format of the extended descriptor is:

0 12 22 33 3
0 S0 89 12 5
Bound Flags WSR |Type Even
20 S 3 4 Word
Base 0dd
36 Word

3-12 | DZ51-00

Bound

Flags
WSR

Type

Base

A 20-bit field that is the maximum valid byte address within the
segment, modulo 212 bytes (210 words). 1In other words, the bound
is in terms of 40S6-byte pages. It is converted to a 36-bit byte
bound by extending to the right of the 20-bit field by 12 1-bits
and adding four zero-bits in the high-order. The bound is relative
to the base.

The same as in the standard descriptor

The same as in the standard descriptor

The type for the descriptor

Type = 12;0 for the extended descriptor

The same as in the standard descriptor

EXTENDED DESCRIPTOR WITH WORKING SPACE NUMBER

The format of the standard descriptor with working space number (WSN) is:

0 12 22 33 3
0 S0 23 12 5
Bound Flags WSN _I;ype Even
20 3 9 4 Word
Base 0dd
36 Word

This format is nearly the same as for the Extended Descriptor (T = 123p),
except that the flag field is shorter and a working space number (WSN} is
specified.

Flags - The three bits of the flag field are the same as the corresponding

WSKN

standard descriptor flag bits. The state of the truncated flags is
assumed as follows:

1. Execute bit allowed

2. Not privileged (NP)

3. Bound valid (B)

4. Segment available (A)

The actﬁal working space number
The type of the descriptor

T = 147p indicates an Extended descriptor with WSN

3-13 Dz51-00

ENTRY DESCRIPTOR

An entry descriptor is required to call a new domain. The entry descriptor
describes the linkage segment that defines the new domain, a segment containing
instructions to be initially executed in the domain, and an offset relative to
the origin of that segment to which control is transferred. The entry
descriptor is used with the CLIMB instruction and has the following format:

0 111 22 33 3
0 789 89 12 5
Entry Location F ISEG No. WSR |Type Even
18 10 3 4 Word
LBOUND Linkage Base 000 0dd
10 23] 3 Word

Entry Location

ISEG No. -

WSR -

LBOUND -

An 18-bit word address that is loaded into the instruction
counter when the entry descriptor is used as an argument
of the CLIMB instruction. The entry location is relative
to the base of the new instruction segment.

Bit 18 is the "store" permission flag is interpreted the
same as flag bit 22 of the other descriptor types.

The number of the descriptor to be loaded into the
instruction segment register (ISR). The ISEG number is
expressed in units of descriptors and is an index relative
to the new linkage segment base. The ISEG number is
extended with three zeros to be expressed in bytes and is
also used in loading the SEGID (1S) register as follows:

Bits 0 - 1
Bits 2 -11

11
ISEG No.

The working space register containing the number of the
working space to which the linkage base is relative.

A 4-bit field that defines the entry descriptor type.
Type = 8, 9, or 11 Each number has a special meaning for
the CLIMB instruction (determining the registers to be
saved in the safe store stack upon change of domain).

The bound of the linkage segment expressed in units of

descriptors. To form a standard descriptor bound, bound =
0000000 | LBOUND| |111.

3-14 DzZ51-00

N

Linkage base - The virtual starting address of the linkage segment
relative to the working space defined by the working space
register pointed to by the WSR field. When an entry
descriptor is utilized, the associated linkage segment
must be contained in the first 2**26 bytes of the working
space. The last three bits of the linkage base are shown
as zeros since the linkage segment must start on a
double-word boundary; in actual practice, the hardware
ignores the contents of these three bits.

DYNAMIC LINKING DESCRIPTOR

The dynamic linking descriptor has a double-word format with a type field of
T=5 entered in bits 32-35 of the even word. Bits 0-21, 23-31, and 36-71 are
used to define how the linkage is to be resolved. Bit 22 indicates store
permission. A dynamic linking fault occurs when the CLIMB instruction attempts
to address through a dynamic linking descriptor. Any attempt by the STDn
instruction to store a dynamic linking descriptor with the store permission bit
(bit 22) of word 1 equal to zero in a type T=1 or 3 segment causes an SCL2
fault. The dynamic linking descriptor has the following format:

0 2 33 3
0 2 12 5
Reserved
Reserved for Software for Type Even
22|11| Software S 4 Word
Reserved for Software 0odd
36 Word
Type - A 4-bit field that defines the dynamic linking descriptor
Type = 5

NOTE: The software usually replaces this descriptor with a
Type = 11 entry descriptor while processing a
dynamic linking fault.

3-15 - DZ51-00

SHRINKING

Shrinking provides descriptor access control. This is the only means available
to the Slave mode for the creation of descrirtors. In this process a new
descriptor of decreased scope is formed in one of the descriptor registers from
a descriptor already available. In essence a new subordinate segment
identified by the shrunken descriptor is formed as shown in Figure 3-3.

Given
Segment
/
/
/
/ \
/ \
/ \ DRn
/ \
/ \
/
Shrunken
Given New Descriptor
Descriptor Segment
/
\ /
\ /
\ /
\
\
\
\
\
\

Figure 3-3. Shrunken Descriptor For Corresponding New Segment

Shrinking is used to prepare parameter descriptors for another domain, to
facilitate access to portions of the domain, and to restrict access to specific
shared portions of the domain. Shrinking operations may be performed on both
standard and super descriptors, but the result is always a standard

descriptor. A shrunken descriptor may be stored in a descriptor segment on a
housekeeping page or in the descriptor stack addressable by the Argument Stack
Register (ASR). Storing reguires that the descriptor to be stored have store

permission.

3-16 DZ51-00

Shrinking is done using Load Descriptor Register n (LDDn) instruction, or a
domain call, or the transfer version of the CLIMB instruction (ICLIMB or
PCLIMB). In each instance, operands are used to define the shrinking operation
in terms of a base address, size, and segment. The operands are called vectors
and each is composed of two or four contiguous words. Each vector specifies
one of the following functions to be performed by the instruction: copy
descriptor, normal shrink, or data stack shrink. An operand of a LDDn
instruction may be in the same segment as the LDDn instruction or in another
segment. If the operand is in a descriptor segment, it is a descriptor, not a
vector, and replacement occurs rather than shrinking.

A companion of the vector is an internal offset (a combination of a segment
identifier (SEGID) and an address value) called a pointer. A pointer, in NS
mode, is a 36-bit operand with sufficient information to identify an operand
within a domain. Since a pointer is relative to a domain, it can be used only
to address operands within its domain. Pointers for one domain cannot be used
in another domain; however, pointers can be exchanged and used by several
instruction segments within a domain.

A pointer in ES mode is a 2-word construct containing the same information of
segment identifier (SEGID) and address offset value.

3-17 DZ51-00

N

SECTION 4

PROCESSOR ACCESSIBLE REGISTERS

A processor register is a hardware assembly that holds information for use in
some specified manner. An accessible register is a register whose contents are
available to the user. Some accessible registers are explicitly addressed by
particular instructions, some are implicitly referenced during the execution of
instructions, and some are used in both ways. The accessible registers are
listed in Table 4-1. Refer to the Section 8, "Machine Instruction
Descriptions” for a discussion of each instruction to determine the way in
which the registers are used.

4-1 DZ51-00

Table 4-1. Processor Accessible Registers
: Length
Register Name Mnemonic (bits) Quantity
Accumulator Register A 36 1
Quotient Register 0 36 1
Accumulator-Quotient Register(l) AQ 72 1
Exponent Register E 8 1
Exponent-Accumulator-Quotient Register(l)| EAQ 80 1
Low Operand Register LOR 72 1
Index Registers Xn 18 8
General Index Register GXn 36 8
Indicator Register IR 18 1
Timer Register TR 27 1
Instruction Counter IC 18 1
Address Registers ARn 24/36 8
Linkage Segment Register LSR 72 1
Instruction Segment Register ISR 72 1
Segment Descriptor Registers DRn 72 8
Segment Identity Registers SEGIDn 12 8
Instruction Segment Identity Register SEGID(1IS) 12 1
Pointer Registers(2) PRn 108 8
Option Register OR 2 1
Calendar Clock(3) CCL 52 1
Working Space Registers WSRn ° 8
Safe Store Register SSR 72 1
Stack Control Register SCR 2 1
Argument Stack Register ASR 72 1
Parameter Segment Register PSR 72 1
High Water Mark Register HWMR 20 1
Data Stack Descriptor Register DSDR 72 1
Data Stack Address Register DSAR 17 1
Page Directory Base Register PDBR 1S 1
CPU Mode Register MR 36 1
Cache Mode Register, Lockup Fault Reg. CMR/LFR 34/2 1
Configuration Register CR 18 1
Address Trap Register ATR 72 1
Virtual Address Trap Register VATR 72 1
CPU Number Register NR 72 1
Interrupt Mask Register(3) IMR 36 1
CPU Fault Register FR 72 1
Extended Fault Register EFR 72 1
History Registers HR 144 64
Reserve Memory Base Register RMBR 36 1
SCU Fault Register(3) SCUFR 72 1
Syndrome Register(3) » SYR 72 1
SCU Configuration Register(3) SCUCR 72 1
SCU History Register(3) SCHR 144 64
Memory Error Status Register (3) MSR 72 1
Memory Identification Register(3) MID 72 1

DZ51-00

(1) These registers are not separate physical assemblies but are
combinations of their constituent registers.

(2) The pointer registers are not distinct physical registers but are a
collective group of registers (DRn, ARn, SEGIDn).

(3) These registers exist in the system controller. However, because
they may be read and/or written with processor instructions, they
have been included in this table.

In the descriptions that follow, the diagrams given for register formats do not
imply that a physical assembly possessing the pictured bit pattern actually
exists. The diagram is a graphic representation of the form of the register
data as it appears in memory when the register contents are stored or how data
bits must be assembled for loading into the register.

I1f the diagrams contain the character "x" or "O", the value of the bit in the
position shown is irrelevant to the register. Bits pictured as "x" are not
changed in the receiving cell when the register is stored. Bits pictured as "0"
are set to 0 in the receiving cell when the register is stored. Neither "x"
bits nor "O" bits are loaded into the register. I1f fields contain the "/"
character, the field is not used.

NOTE: Following descriptions of all of the programmable registers, the registers
used only in Privileged Master Mode are described.

ACCUMULATOR REGISTER (A)

Format: 36 bits

0 11 3
0 78 5
A-Upper A-Lower

18 18
Figure 4-1. Accumulator Register (A) Format
Description: |

A 36-bit physical register
Function:
In fixed-point instructions, holds operands and results.

In floating-point instructions, holds the most significant part of the
mantissa and the result.

4-3 DZ51-00

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent offsets, A-upper
and A-lower, or an extended range bit- or character-string length.

QUOTIENT REGISTER (Q)

Format: 36 bits

0 11 3
0 78 5
Q-Upper O-Lower

18 18
Figure 4-2. Quotient Register (Q) Format
Description:

A 36-bit physical register
Function:
In fixed-point binary instructions, holds operands and results.

In floating-point instructions, holds the least significant part of the
mantissa.

In shifting instructions, holds original data and shifted results.
In address preparation, may hold two logically independent offsets, Q-upper
and Q-lower, or an extended range bit- or character-string length.

ACCUMULATOR-QUOTIENT REGISTER (AQ)

Format: 72 bits

0 33 7

0 5 6 1
Even Word 0dd Word

36 36

Figure 4-3. Accumulator-Quotient Register (AQ) Format

4-4 DZ51-00

Description:
A combination of the accumulator (A) and quotient (Q) registers

Function:

In fixed-point binary instructions, holds double-precision operands and

results.
In floating-point instructions, holds the mantissa and the result.

In shifting instructions, holds original data and shifted results.

EXPONENT REGISTER (E)

Format: 8 bits

0 00 3
0 7 8 5
Exponent Zeros
8 28
Figure 4-4. Exponent Register (E) Format
Description:
An 8-bit physical register
Function:
In floating-point instructions, holds the exponent.
EXPONENT-ACCUMULATOR-QUOTI ENT REGISTER (EAQ)
Format: 80 bits
0 00 7
0 (E) 70 (AQ) 1
Exponent Mantissa
8 72

Figure 4-5. Exponent-Accumulator—Quotient Register (EAQ) Format

4-5

DZ51-00

Description:

A combination of the exponent (E), accumulator (A), and quotient (Q)
registers. Although the combined register has a total of 80 bits, only 72
are involved in transfers to and from main memory. The low-order B bits are
discarded on store and zero-filled on load (that is, Q-register bits 28-35
are zero on load; bits 64-71 of the AQ Register are ignored). See
"Floating-Point Arithmetic Instructions"” in Section 7. :

Function:

In floating-point instructions, holds operands and results.

LOW_OPERAND REGISTER (LOR)

Format: 72 bits

0 00 70 7
o___70_ _ _ o o _o_____2130 1
IExponent AQ Register Low Operand Register —[
Tt T T T T T T TTTTTTTT 64 72

Figure 4-6. Low Operand Register Format

Description:
The lower operand register (LOR) functions in combination with the exponent
(E), accumulator (A), and quotient (Q) registers in gquadruple-precision
floating-point operations.

Function:
The 72-bit lower operand register is used for the lower mantissa of
quadruple-precision (four words) with floating-point operations.

INDEX REGISTERS (Xn)

Format: 18 bits each (NS Mode)

0 1
0 7
18

Figure 4-7. 1Index Register (Xn) Format

4-6 Dz51-00

Description:
Eight 18-bit physical registers numbered O through 7. Index register data

may occupy the position of either an upper or lower 1B-bit half-word operand.
Function:
In fixed-point binary instructions, hold half-word operands and results.

In address preparation, hold bit, character, or word offsets or hold extended
range bit- or character-string lengths.

GENERAL INDEX REGISTERS (GXn)

Format: 36 bits (ES Mode)

0 3
0)
36

Figure 4-8. General Index Registers (GXn) Format

Description:

Eight 36-bit physical registers numbered 0 through 7 used in ES mode only.
General register data may occupy the entire 36-bit operand.

Function:
May be used as a data operand regiéter with fixed-point operations; however,
in the ES mode, GXn registers may be used as the single-precision operand
register.

In address preparation, hold bit, character, or word offsets or hold extended
range bit- or character-string lengths.

4-7 DZ51-00

INDICATOR REGISTER (IR)

Format: 18 bits e
0 11122222222223333 3 h
0 78901234567880123 5
X XXX XXXXXXXXZXXZXZXX x|albjcldle{f|g|h|i|j|k|1l|m|n]|p q

18111111211111111 3

Figure 4-9. Indicator Register (IR) Format

Description:

An assemblage of 15 indicator flags from various units of the processor. The
data occupies the position of a lower 18-bit half-word operand. When
interpreted as data, a bit value of 1 corresponds to the ON state of the
indicator; a bit value of 0 corresponds to the OFF state.

Function:

The functions of the individual indicator bits follow.

Key Indicator name Action
a Zero This indicator is set ON whenever the output of
the main binary adder consists entirely of zero .

bits for binary or shifting instructions or the
output of the decimal adder consists entirely of
zero digits for decimal instructions; otherwise,
it is set OFF.

b Negative This indicator is set ON whenever the output of
bit 0 of the main binary adder has value 1 for
binary or shifting instructions or the sign
character of the result of a decimal instruction
is the negative sign character; otherwise, it is
set OFF.

c Carry This indicator is set ON for any of the following
conditions; otherwise, it is set OFF.

(1) 1f a bit propagates leftward out of bit 0 of

the main binary adder for any binary or
left-shifting instruction.

4-8 DZ51-00

Key

Indicator name

Overflow

Exponent

overflow

Exponent

underflow

Action

(2) 1f |valuel| <= |value2| for a decimal numeric
comparison instruction.

(3) 1f charl <= char2 for a decimal alphanumeric
comparison instruction.

This indicator is set ON if the arithmetic range
of a register is exceeded in a fixed-point binary
instruction or if the target string of a decimal
numeric instruction is too small to hold the
integral part of the result. It remains ON until
reset by the Transfer On Overflow (TOV)
instruction or reset by some other instruction
that loads the IR. The event that sets this
indicator ON may also cause an overflow fault.
(See overflow mask indicator below.)

This indicator is set ON if the exponent of the
result of a floating-point binary or decimal
numeric instruction is greater than +127. It
remains ON until reset by the Transfer On Exponent
Overflow (TEO) instruction or reset by some other
instruction that loads the IR. The event that
sets this indicator ON may also cause an overflow
fault. (See overflow mask indicator below.)

This indicator is set ON if the exponent of the
result of a floating-point binary or decimal
numeric instruction is less than -128. It remains
ON until reset by the Transfer On Exponent
Underflow (TEU) instruction or reset by some other
instruction that loads the IR. The event that sets
this indicator ON may also cause an overflow
fault. (See overflow mask indicator.)

4-9 DZ51-00

key
g

Indicator name

Action

Overflow mask

Tally runout

Parity error

This indicator is set to ON or OFF only by the
LDI, RET, and CLIMB instructions. When set ON, it
inhibits the generation of the fault for those
events that normally cause an overflow fault.

When the overflow mask is ON, no overflow fault is
generated if either the overflow or the exponent
overflow indicator is set to ON status. When the
overflow mask is set OFF, an overflow fault is
generated if either the overflow or the exponent
overflow indicator is set to ON status. If the
overflow mask indicator is set OFF after an
overflow event, an overflow fault does not occur
even though the indicator for that event is still
set ON. The state of the overflow mask indicator
does not affect the setting, testing, or storing
of any other indicator, nor does it affect the
overflow fault caused by the truncation indicator.

This indicator is set OFF at initialization of any
tallying operation. It is then set ON for any of
the following conditions:

(1) 1f any Repeat instruction terminates because
of tally runout.

(2) If a Repeat Link (RPL) instruction terminates
because of a zero link address (NS mode
only).

(3) 1f a tally exhaust is detected for an
Indirect then Tally modifier. The
instruction is executed whether or not tally
runout occurs.

(4) 1f a string scanning instruction reaches the
end of the string without finding a match
condition.

This indicator is set by the hardware when a
parity error occurs on an access to memory. It can
be set with the LDI and STI instructionms. The
indicator is set OFF only by instructions that
load the IR.

4-10 DZ51-00

A

Key
j

Indicator name

Action

Parity mask

Master mode

Truncation

Multiword
instruction
interrupt

This indicator is set ON or OFF only by the LDI,
RET, and CLIMB instructions. When it is set ON,
it inhibits the generation of the parity fault for
all events that set the parity error indicator
even when a MEMSYS fault condition is detected.

If the parity mask indicator is set OFF

after a parity error event, a parity fault does
not occur even though the parity error indicator
may still be set ON. The state of the parity mask
indicator does not affect the loading, testing, or
storing of any other indicator.

This indicator is set ON for an interrupt
acceptance, a fault acceptance, a PMME instruction
execution, and the execution of an OCLIMB
instruction (when the master mode bit of the
indicator register to be restored is ON). This
indicator is reset to OFF following the execution
of a TSS, RET (with operand bit 28=0), OCLIMB
(when the master mode bit of the IR to be restored
is OFF), or an ICLIMB instruction (when the second
word bit 19=0).

This indicator is affected only by multiword
instructions. It is set to ON during string
instructions when the source string length is
greater than the destination string length, and
set to OFF when the reverse is true. For decimal
arithmetic instructions, it is set to ON when
there are no rounding specifications and the
lowest digit, or more of the result is truncated,
and set to OFF when the reverse is true. When the
highest nonzero digit is lost, the Overflow
Indicator is set ON.

This indicator is set OFF by the execution of the
SPL instruction and by the end of execution of all
multiword instructions, and is set ON by the
events described below. The indicator has meaning
only when determining the proper restart segquence
for an interrupted multiword instruction.

This indicator is set:
When any fault or interrupt occurs during the

execution of a multiword instruction (except
CLIMB);

4-11 DZ51-00

Key

q

Indicator name

Action

Hex mode

TIMER REGISTER (TR)

The ON state of this indicator is used during the
CLIMB (after a fault or interrupt) instruction,
for example, to save the pointers and lengths data
in order to resume the instruction.

Reserved for future use

This indicator is set ON or OFF only by the
instructions that load the IR.

NOTE: When set ON with bit 33 of the CPU mode
register set ON, the floating-point
instructions are executed in the hexadecimal
exponent mode.

Reserved for future use

Format: 27 bits
0 22 3
0 6 7 5
Timer value 000000O0CO0CO
27 9

Figure 4-10. Timer Register (TR) Format

Description:

A 27-bit settable, free-running clock. The value decrements at a rate of

512 kHz.

Its range is 1.953125 microseconds to approximately 4.37 minutes.

4-12 DZ51-00

Function:

(' The TR may be loaded with any convenient value with the Load Timer Register
(LDT) instruction. When the value next passes through zero, a timer runout

fault is signalled. If the processor is in Slave mode with interrupts not
inhibited or is stopped at an uninhibited Delay Until Interrupt Signal (DIS)
instruction, the fault occurs immediately. If the processor is in Master or
Privileged Master mode or has interrupts inhibited, the fault is delayed
until the processor returns to Slave mode or stops at an uninhibited DIS
instruction.

INSTRUCTION COUNTER (IC)

Format: 18 bits

0 1
0 7

Instruction address _-l
18

Figure 4-11. Instruction Counter (IC) Format

Description:

, An 18-bit physical register

i Function:
Holds the address of the current instruction being executed. The IC is
incremented by 1 by the control unit for the sequential execution of
single-word instructions or by the appropriate amount (2, 3, or 4) for
multiword instructions. The content of the IC is changed by a
transfer-of-control instruction or by a fault or interrupt.

A description of faults and interrupts is contained in Section 6.

ADDRESS REGISTERS (ARn)

Format: 24 bits each (NS Mode)

0 11 12 2
0 78 90 3
Rord Char| Bit
18 2 4

Figure 4-12. Address Register (ARn) Format (NS Mode)

4-13 DZ51-00

Description:

Eight 24-bit physical registers numbered 0 through 7 that are associated
with the segment descriptor registers (DRn) and that allow address
modification on a word, character, or bit basis

Function:

The address registers provide address modification to the word, byte, and

bit level:

Word - 18 bits (0-17); a word offset within the segment described by the
associated segment descriptor register

Char - 2 bits; designates one of the four 9-bit characters (bytes) of which

the word is composed

Bit - 4 bits; designates one of the 9 bits within the character

Format: 36 bits each (ES Mode)

0 233 3 3

0 901 2 5

S Word Charl Bit
29| 2 4

——

Figure 4-13. Address Register (ARn) Format (ES Mode)

Description:

Eight 36-bit physical registers numbered 0 through 7 that are associated with
the segment descriptor registers (DRn) and that allow addressing on a word,

character, or bit basis

Function:

In ES mode, each address register is extended to 36 bits. The ARn is as given

in two's complement form, with bit O as
generation, bit O is extended 4 bits to

Word - 29 bits (1-29); a word offset
associated segment descriptor

Char - 2 bits; designates one of the
which the word is composed

Bit - 4 bits; designates one of the

4-14

sign bit. 1In the effective address
the left.

within the segment described by the
register
four 9-bit characters (bytes) of

9 bits within the character

DZ51-00

LINRAGE SEGMENT REGISTER (LSR)

Format: 72 bits

0 12 22 33 3
0 90 8 S 12 5
Bound Flags WSR =1
20 S 3 4
Base
36

Figure 4-14. Linkage Segment Register (LSR) Format

Description:

A 72-bit register that holds a type 1 standard descriptor that describes the

Even-
word

odd-
word

linkage segment of the current domain of the currently executing process

Function:

The linkage segment register is loaded only by executing a CLIMB

instruction. The linkage segment register may be stored by transferring the

contents of the LSR to an segment descriptor register (DRn) and then storing

DRn. When the bound field of the LSR is loaded, bits 0-6 are forced to zero

and bits 17-19 are forced to 111. Thus, the size of the linkage segment is
effectively limited to 1024 descriptors.

INSTRUCTION SEGMENT REGISTER (ISR)

Format: 72 bits

0 12 22 33 3
0 S 0 8 S 12 5
Bound Flags WSR Type=0
20 S 3 4
Base
36
Figure 4-15. Instruction Segment Register (ISR) Format
Description:

Even-
word

Odd-
word

A 72-bit register that holds a type 0 standard descriptor that describes the

current instruction segment for the current domain of the currently

executing process.

4-15

DZ51-00

Function:

The instruction segment register may not be loaded or stored directly. The
register is loaded during the execution of a CLIMB or transfer instruction
with bit 29 ON. The ISR may be stored indirectly by moving its contents to
an segment descriptor register (DRn) and then storing DRn. If bit 29 of an
instruction word is zero or the AR bit in the MF field of a multiword
instruction is zero, the instruction segment register is used in forming the
virtual address of the operand. The base and bound values placed in the
ISR are constrained; the 5 least-significant bits of the base field must be
zero and the 5 least-significant bits of the bound field must be ones.

SEGMENT DESCRIPTOR REGISTERS (DRn)

Format: 72 bits each

Description:

Eight 72-bit registers that hold segment descriptors that describe address
space contained within the current domain of the currently executing
process. The format of the descriptors is in accordance with the content of
the type fields; type fields 0, 2, 4, 6, 12, and 14 are used for operand
segments and type fields 1 and 3 are used for descriptor segments.

Function:

Instructions are available for loading and storing the segment descriptor
registers and for modifying their contents. A segment descriptor register
is invoked for virtual operand address development when bit 29 of the
instruction is 1; address bits 0, 1, and 2 specify which of the combined
segment descriptor register (DRn) and address register n (ARn) is to be
used. Each of these eight segment descriptor registers is associated with a
corresponding address register. For example, an AR3 modification refers to
the segment whose descriptor is the contents of DR3. For multiword
instructions, the use of ARn and the associated DRn is specified by the AR
bit in the MF field. Refer to "Multiword Modification Field" in Section 5.

4-16 DZ51-00

SEGMENT IDENTITY REGISTERS (SEGIDn)

S D
2 10

Figure 4-16. Segment Identity Register (SEGIDn) Format

Format: 12 bits each

(o Ne]
- O
N O

Description:

Eight 12-bit registers that have a one-to-one correspondence with the
segment descriptor registers (DRn). The segment identity registers point to
the source of the descriptor in the DRn.

Function:
The SEGIDn registers are loaded concurrently with the related descriptor

registers (DRn). The S and D field codes used in these registers indicate
the origin of the descriptor (S = segment, D = descriptor offset).

When S = 0O:
The D field indicates the location of the segment descriptor loaded into
the DRn.
For D = 1760 through 1777 (octal), the selected register is copied into
the DRn.
D = 1760 Undef ined
D = 1761 The segment descriptor type field is changed. *
D = 1762 Instruction Segment Register (ISR)
D = 1763 Data Stack Descriptor Register (DSDR)
D = 1764 Safe Store Register (SSR)
D = 1765 Linkage Segment Register (LSR)
D = 1766 Argument Stack Register (ASR)
D = 1767 Parameter Segment Register (PSR)
D = 1770 DRO, Descriptor Register 0
D= 1771 DR1, Descriptor Register 1 }
D = 1772 DR2, Descriptor Register 2 }
D = 1773 DR3, Descriptor Register 3 } Self-Identifying
D = 1774 DR4, Descriptor Register 4 }
D = 1775 DR5, Descriptor Register 5 }
D = 1776 DR6, Descriptor Register 6 }
D = 1777 DR7, Descriptor Register 7 }

*

When S = 0 with D = 1761, 1763, and 1764, a Command fault occurs
unless the CPU is in the Privileged Master mode.

4-17 © Dz51-00

When S = 0 with D = 1761 in the Privileged Master Mode and the type of
the segment descriptor in the DRn is T = 1 or 3, this segment
descriptor type is changed to 0 or 2, respectively. SEGIDn is set to
be self-identifying. No fault occurs and no operation is performed
with the LDDn instruction, when the type in the DRn is not T = 1 or 3.

For D = 0000 through 1757 (octal), the descriptor in DRn was loaded from
the parameter segment and D was the index to the desired descriptor.

When S = 2

The descriptor DRn was loaded from the argument stack using D as the index
to the descriptor.

When S = 1 or 3

The descriptor in DRn was loaded from the linkage segment using D as the
index to the descriptor.

INSTRUCTION SEGMENT IDENTITY REGISTER - SEGID(IS)

Format: 12 bits

000 1
012 1
s D

2 10

Figure 4-17. Instruction Segment Identity Register - SEGID(IS) Format

Description:

A 12-bit register that is associated with the instruction segment register
(ISR) in the same manner that a SEGIDn register is associated with an
segment descriptor register (DRn). This register points to the source of
the descriptor in the ISR.

Function:

The instruction segment identity register may not be loaded or stored
directly; it is loaded with the identity of the source of the descriptor
when a transfer or CLIMB instruction loads the Instruction Segment Register
(ISR). The S and D field codes used in these registers indicate the origin
of the descriptor. See SEGIDn description.

4-18 DZ51-00

POINTER REGISTERS (PR)

Format: A collective grouping of registers

Description:
Eight "convenience" logical combinations of registers

Function:
The pointer registers are not physical registers but are convenient terms
used to refer to segment descriptor register (DRn), segment identity
register (SEGIDn), and address register (ARn) utilized as a collective
register.

OPTION REGISTER (OR)

Format: 2 bits

0 1112 3
0 7880)
Dis
S|s
C|B
FiF
1811 11

Figure 4-18. Option Register (OR) Format

Description:
A 2-bit register that controls the clearing of data stack space and
bypassing the safe store portion of an inward CLIMB (ICLIMB) instruction.
Bit 18 is the Data Stack Clear Flag (DSCF) and bit 19 is the Safe Store
Bypass Flag (SSBF).

Function:

The option register is loaded with the Load Option Register (LDO)
instruction and stored with the Store Option Register (STO) instruction.

4-19 DZ51-00

CALENDAR CLOCK REGISTER (CCR)

Format: 52 bits

0 12 3
0 90 5
L7770777777777777/777/7777777/77//777777

1717707777777/ 77777/770777/77/77/7/7/7777 Clock Upper
1117171777777/ 777/7/7/7/7777/7/7//7/7//07/

16
3 7
6 1
Clock Lower I
36
Figure 4-19. Calendar Clock Register (CCR) Format
Description:

A 52-bit register that holds a calendar clock with a resolution of one micro
second

Function:
The CCR register provides a means for setting and reading the calendar
clock. The CCR is set by using the SSCR 04 instruction and read by using

the RSCR 04 instruction. (Refer to the individual descriptions of these
instructions in Section 8).

4-20 DZ51-00

PaERN

NOTE: THE FOLLOWING REGISTERS CAN BE ACCESSED ONLY IN PRIVILEGED MASTER MODE.

WORKING SPACE REGISTERS (WSRn)

Format: 9 bits each

0 0
0 8

Working Space Number

Figure 4-20. Working Space Register (WSRn) Format
Description:

Eight 9-bit registers located in the virtual unit, each of which holds a
working space (WS) number that is used to form a virtual address

Function:

A working space register is referred to by the WSR field of a descriptor.

The LDWS and STWS instructions are used to load and store the working space
registers, respectively. To execute these two instructions, the processor

must be in Privileged Master mode. When the processor is initialized and
cleared, working space register 0 is set to all zeros. The working space
registers provide the means for sharing and isolating working spaces.

SAFE STORE REGISTER (SSR)

Format: 72 bits

0 12 22 22 33 3
0 90 23 89 12 5
Flags WSR Type=1
Bound -8 ___ 3, ___4&
Flags T WSN ~ 3 =3
20 3 9 4
Base
| 36

Figure 4-21. Safe Store Register (SSR) Format

4-21 DZ51-00

Description:

A 72-bit register located in the virtual unit that holds either a Type 1 or

3 standard descriptor that describes the safe store stack of the current

process. Note that the format for a Type 3 descriptor differs in that the

Flags field is truncated at bit 22 to allow the descriptor to contain the
actual working space number (WSN) rather than point to a Working Space
Register (WSR).

Function:

The safe store register describes the safe store stack of the current

process. The safe store register is loaded and stored with the Privileged

Master mode instructions LDSS and STSS. A 2-bit hardware stack control
register (SCR) is associated with the safe store register. The Stack

Control Register (SCR) content determines the size of the safe store frame.

(Refer to SCR below.)

STACK CONTROL REGISTER (SCR)

Format: 2 bits (internal)
Description:
An internal register that controls the size of the safe store frame
Function:
The SCR is initialized by execution of the Privileged Master mode
instruction LDSS. This register contains the code indicating the size of
the last safe store frame as shown in the table below. (Refer to the
discussion of the Safe Store Register (SSR).)

SCR safe Store Stack Size

00 - 16 words (Bit values are binary.)
01 - 24 words
11 - 64 words
10 - 80 words

4-22 DZ51-00

ARGUMENT STACK REGISTER (ASR)

Format: 72 bits
0 12 22 33 3
0 S0 8 9 12 5
Bound Flags WSR Type=1
20 S 3 4
Base
36

Figure 4-22. Argument Stack Register (ASR) Format

Description:

A 72-bit register that holds a type 1 standard descriptor that describes (or
frames) the argument stack of the current domain of the currently executing
process

Function:

Even-
word

0odd-
word

Instructions are provided for loading (Privileged Master mode) and storing

the argument stack register.

The argument stack register is utilized by and

may have its contents changed by the hardware during the execution of a Save

Descriptor Register (SDRn) or CLIMB instruction.

When the bound field of

the ASR is loaded, bits 0-6 are forced to zero; if flag-bit 27 = 1 (bound
Thus, the size of the argument stack
is effectively limited to 1024 descriptors. '

valid), bits 17-19 are forced to 111.

PARAMETER SEGMENT REGISTER (PSR)

Format: 72 bits
0 12 22 33 3
0 90 8 9 12 5
Bound Flags WSR -I-Type=l
20 9 3 4
Base

36

Figure 4-23. Parameter Segment Register (PSR) Format

4-23

Even-
word

odd-
word

DZ51-00

Description:

A 72-bit register that holds a type 1 standard descriptor that frames the
parameter segment of the current domain of the currently executing process

Function:

Instructions are provided for loading (Privileged Master mode) and storing
the parameter segment register. The parameter stack register is utilized by
and may have its contents changed by the hardware during the execution of
the CLIMB instruction. When the bound field of the PSR is loaded, bits 0-6
are forced to zero; if flag-bit 27 = 1 (bound valid), bits 17-19 are forced
to 111. Thus, the size of the parameter segment is effectively limited to
1024 descriptors. :

HIGH WATER MARK REGISTER (HWMR)

Format: 20 bits

0 1
0)

HWMR Address

Figure 4-24. High Water Mark Register (HWMR) Format
Description:

A 20-bit register containing the maximum bound reached relative to the
current ASR base.

Function:

The bound defined by the address contained in the register prevents one
program from gaining access to any portion of another program's descriptors
that were stored on the argument stack. The HWMR allows the PAS instruction
to be executed in the slave mode. Instructions which affect the HWMR are
1LDAS, SDRn, and CLIMB. (Refer to the individual descriptions of these
instructions in Section B.)

4-24 Dz51-00

DATA STACK DESCRIPTOR REGISTER (DSDR)

Format: 72 bits

0 12 22 33 3
0 S 0 8 S 12 5
Bound Flags WSR |Type = 0| Even
20 9 3 4| Word
Base 0dd
36| Word
Figure 4-25. Data Stack Descriptor Register (DSDR) Format
Description

A 72-bit register located in the virtual unit that holds a type 0 standard
descriptor that frames the data stack area of memory for the current
process

Function:

Privileged Master mode instructions (LDDSD and STDSD) are available for
loading and storing the data stack descriptor register. The contents of the
data stack descriptor register are utilized by the hardware when the vector
of the Load Descriptor Register (LDDn) or CLIMB instruction indicates that a
working data stack descriptor is to be generated.

DATA STACK ADDRESS REGISTER (DSAR)

Format: 17 bits

0 111 3
0 778 5
Base of the next 0
stack area 17 18

Figure 4-26. Data Stack Address Register (DSAR) Format
Description:
A 17-bit special-purpose index register that points to the next available

double-word location within the data stack area of memory framed by the data
stack descriptor register (DSDR). Bit 17 is always zero.

4-25 DZ51-00

Function:

Privileged Master mode instructions (LDDSA and STDSA) are available for
loading and storing the Data Stack Address Register. The contents of the
DSAR may be altered during the execution of the Load Descriptor Register
(LDDn) instruction, Load Data stack Address Register (LDDSA) instruction, or
CLIMB instruction.

PAGE DIRECTORY BASE REGISTER (PDER)

Format: 19 bits

0 1
0 8

Base location -_J
19

Figure 4-27. Page Directory Base Register (PDBR) Format

Description:

A 19-bit, modulo 512 word register that contains the base location of the
working space page table directory

Function:

Privileged Master mode instructions (LPDBR, SPDBR) are available for loading
and storing the page directory base register.

CPU_MODE REGISTER (MR)

Format: 36 bits

0 11112222222222333333
0 6789012345678890 ;!2 345
Descriptor Location a(00 |bjc|die| £ |g| 0 |h|i jlk i m

171 21111 21 211111 2

Figure 4-28. CPU Mode Register (MR) Format

4-26 DZ51-00

;‘,,'//

Description:

An assemblage of flags and indicators from the CPU. The mode register is
stored into the even word of a Y-pair by an SCPR instruction with tag = 6.
The mode register is loaded by an LCPR instruction with tag = 4. These
instructions may be executed in Privileged Master mode only.

On a SCPR tag 06, the second word contains the cache mode register and
lockup fault register.

Function:

The CPU mode register controls the operation of those features of the
processor capable of being enabled and disabled.

The functions of the constituent flags and indicators are as follows:

Key
DL

Bits Function
0-16 Bits 10-26 of address trap match entry descriptor location; bits
0-9, 27 = 0.
17 When set ON, enables a trap on addess match. A fault or machine
stop occurs.
18-19 Not used
20* When set ON, indicates generation of incorrect data parity.
Flag is reset by return of an SCU activity status.
21 When set ON, indicates generation of incorrect ZAC parity. Flag
is reset by return of SCU actiity status.
22 Control SCU
0 = Lower memory port
1 = Port High memory port
23 Not used
24-25 SEGID compare for LDPn
Bit 24 - Slave mode
Bit 25 - Master and Privileged Master mode
1 = enable compare
0 = disable compare
NOTE: Disabled by GCOS
26** Reset Backup fault flag
27-28 Not used
29 When set ON, enables history register transfer trace mode
30*** when set ON, ena! =s history register strobe

4-27 DZ51-00

Key Bits Function

j 3

32
k33
1 3

1.
2.
3.

When set ON, resets bit 30 on fault
Not used
Set ON, enables hexadecimal exponent mode
Inhibit PATROL
Set ON, enables CPU mode register
bit 20 is set:

On a store into cache, bad parity exists in the data.

.On a store to the SCU, bad parity exists in the data.

On a block load into cache, bad parity exists in the data placed
into cache, on the entry in cache directory, and on the data to the
register defined in the instruction.

** The LCPR tag 04 instruction resets the Backup fault flag regardless of
the value in C(Y); this bit is set by hardware to indicate the
occurrence of a backup fault. SCPR tag 06 stores the Backup fault
flag as bit 26 of the CPU mode register.

% Yok

I1f bit 31 is on, then bit 30 is reset OFF (locks history registers)
for the following faults:

LUF, PAR, CMD, BND, IPR,
Shutdown, SCL1, SCL2, SSSF, MPG, MSG, MWS,
Dynamic Linking

Bit 30 is set to OFF for ONC fault regardless of the bit 31
setting.

CACHE MODE REGISTER (CMR), LOCKUP FAULT REGISTER (LUF)

Format: 34/2 bits

0 1122222222 333
0 7890123456 345
L11117777777777777777/777/77777
[1/11177/7/7////7//7///////////7/{a|0|0]|bl0|c| @ |0|0]0|{0|0|{0|O|O|LUF
L111017770077100770/0707/7/7/7//

11111 2 8 2

17 1

Figure 4-29. Cache Mode Register (CMR), Lockup Fault Register Format (LUF)

4-28 DZ51-00

Description:
A 34/2-bit register holding an assemblage of bits that provide information
concerning cache mode and lockup faults.

Function:

The CMR/LUF register is used to engage and disengage control of cache memory
and to determine the existence of any lockup fault. This register is
accessed only through Privileged Master mode. It is loaded by an LCPR
instruction with tag = 02 and stored by an SCPR instruction tag = 6.

The functions of the constituent bits are as follows:

Key Bits Function
0-17 Ignored

a 18* Cache enabled, 1 = enable; reset to zero by ONC
19 _ Zero
20 Zero

b 21 Cache enabled for instruction fetch; 1 = enable
22 Zero

c 23** Cache to register; 1 = ON

d 24-25 Level 0,1, ON; 1 = ON
26-33 Zero

LUF 34-35 Lockup Fault register

NOTE: Word O of the double-precision store contains CPU mode register
information. (Refer to CPU Mode Register for definition of these
bits.)

Settings of the Lockup fault register are as follows:

Bits 34-35 Milliseconds

00 8.0
01 16.0
10 32.0
11 64.0

4-29 DZ51~-00

These values are applicable in Slave mode. In Master or Privileged
Master mode, the Lockup fault register is set to 128 milliseconds.

* Cache is cleared when enabled if the previous cache state was OFF.
The CCAC instruction acts as a NOP.

** When the cache to register flag is ON, all double-precision
instructions obtain operands from the normally selected double-word
and column cache location determined by address bits ¥25-26 and
¥13-24, respectively. The address match in the cache directory is
ignored (correct match is assumed). The cache level is selected by
address bit Y12. All other instructions execute normally. If the use
of the flag is to dump cache contents, the cache memory should be
disabled to avoid being changed by the non-double-word instructions.

When cache is used for PATROL, only level 0 is used. The normal
full/empty (F/E) bits of cache blocks used by PATROL are set to
empty. PATROL operation always assumes hits in cache, independent of
the state of the F/E bit and the address match. Cache flushes (e.g.,
due to write/notify buffer overflow) do not affect PATROL operation.

CONFIGURATION REGISTER (PORT ASSIGNMENT) (CR)

Format: 18 bits

012345 8 9 17
a|bl|c|d|e| ADDR ZEROS

SPLIT
11111 4 9

Figure 4-30. Configuration Register (Port Assignment) (CR)
Description:
an 18-bit register providing configuration information.
Function:
The CR register is used to determine the port assignment and to determine
the address split. This register can be used in the Privileged Master mode

only. It is stored by the SCPR instruction with tag = 11 and loaded by the
LCPR instruction with tag = 11.

4-30 DZ51-00

The functions of the constituent fields are as follows:

Key Bits Function

a 0 Bit zero is not loaded by software

0
1

Port A accesses lower memory
Port B accesses lower memory

Port A Enabled

1 A

2 Port B Enabled

d 3 Port A Initialize from SCU ON
4 Port B Initialize from SCU ON

f 5-8 Address Split

0000 = 256MW
1000 = 128MW
1100 = 64MW
1110 = 32MW
1111 = 16MW

NOTES: 1. Bits 0-4 are initialized by the Service Processor (SP)) in
accordance with the designation of the lower memory port.

2. If only one port is enabled, the address split is not used. All

memory accesses are directed to the lower memory port. The lower
memory port must always be enabled.

4-31 Dz51-00

ADDRESS TRAP REGISTER (ATR)

Format: 72 bits

0 0 3333
02 23245
/17777
/17777 Real Trap Address albjc
/(11177 ,
5 28111
3 | 7
6 1
Zeros
36
Figure 4-31. Address Trap Register (ATR) Format
Description:

A 72-bit register containing an address trap address and information
relating to it.

Function:

The ATR register is used to establish the absoclute word address of a trap
and to indicate the conditions and status of the trap. This register can be
used in Privileged Master mode only. In order for the address trap to be
enabled, bit 17 in the CPU mode register must be set ON. The ATR is stored
‘using the SCPR instruction with tag = 12 and loaded with the LCPR
instruction with tag = 12.

The contents of the register fields are as follows:

Key Bits Function

0-4 1Ignored

5-32 Real word address

4-32 DZ51-00

Function

Key Bits

a 33

b 34

c 35
36-71

O ~O
non

If ON, trap

trap on
trap on

trap on
trap on

Zeros

instruction fetch or operand fetch
instruction fetch

load or store
operand store or indirect store

enabled on a real address

VIRTUAL ADDRESS TRAP REGISTER (VATR)

Format: 72 bits

0 00 33
0 89 45
WSN Virtual Trap Address
9 2611
3 7
6 1
Zeros _[

36

Figure 4-32. Virtual Address Trap Register (VATR) Format

Description:

A 72-bit register containing a virtual address trap address and information
relating to it.

Function:

This 72-bit register is used to establish the working space number and

virtual address of a virtual address trap.
Privileged Master mode only.
bit 17 in the CPU mode register must be set ON.

This register can be used in
In order for the address trap to be enabled,
It is stored with the SCPR

instruction with tag = 14 and loaded with the LCPR instruction with tag =

14,

4-33

Dz51-00

The functions of the constituent fields are as follows:

Bits Function -
0-8 Working Space Number e
S-34 Bits 15-40 of the virtual address

33,34 Bits 33 and 34 of ATR apply to VATR operation. Therefore, the

trap conditions are common for ATR and VATR operation.

35 When set ON, enables a trap on a virtual address

CPU_NUMBER REGISTER (NR)

Format: 72 bits

0 33 3
0 23 5
CPU
Zeros Number
33 3
3
6

7
1

Zeros
36

Figure 4-33. CPU Number Register (NR) Format

Description:
A 72-bit register that holds the CPU number

Function:
The NR register is used to establish the CPU number. The NR register can
only be used in Privileged Master mode. It is stored by the SCPR
instruction with tag = 13 and loaded by the LCPR instruction with tag = 13.

Only three bits of the two-word register are used as shown below:

Bits Function
0-32 Zeros
33-35 CPU Number
36-71 Zeros

4-34 DZ51-00

INTERRUPT MASK REGISTER (IMR)

Format: 36 bits
00000000002 3
01234567890 5
a|lbjc|dle|f|g|hli|jlk Zeros
11111111111 25
Figure 4-34. Interrupt Mask Register (IMR) Format
Description:
A 36-bit register that contains a mask for interrupts.
Function:
The IMR is used to enable or disable the interrupt levels from the CPU. The

CPU can set the IMR with the Load Interrupt Mask Register (LIMR) instruction

and can read the IMR with the Read Interrupt Mask Register (RIMR)
instruction. Both of these instructions execute in Privileged Master Mode
only. (Refer to discriptions of LIMR and RIMR in Section 8.)

An IMR per port exists in the SCU to inform the CPU of a particular event.
(Refer to Interrupt Procedures in Section 6.)

The contents of the constituent bits of the IMR are as follows:

Key =~ Bits Function
0-7 Interrupt levels (functions listed are a software
convention)
a 0 not used by GCOS
b 1 vhen ON = fault channel interrupt
c 2 not used by GCOS
d 3 when ON = terminate interrupt
e 4 not used by GCOS
f 5 when ON = marker interrupt
6 not used by GCOS
h 7 when ON = special interrupt

4-35

- Dz51-00

When ON enables interrupt present signals (XIP) to all

When ON enables connect faults

Key Bits Function
i 8 All Mask, conditionally (see "k" below)
ports
S Port connect mask.
k 10 Functions as indicated below:

Bit 10 contents

Bit B contents All Mask contents

X 1 1
0 0 Unchanged
1 0 0
CPU_FAULT REGISTER (FR)
Format: 72 bits
0000000000111 12111 12 222 333333
01234567890123456¢6 90 345 01]123 45
11777177777
albl|c|d|e|f|g|h|i|j|k|1|m|O|njo| IAA IAB |p|///////7///7)qr]s|t|u
[1/1111/17//
1111111111111111 4 41 611111
3 7
6 1
Zeros -I
36
Figure 4-35. Fault Register (FR) Format
Description:

A combination of flags and registers located in the system control unit

(SCu). The fault register contains
several of the hardware faults.

Function:

the conditions in the processor for

The FR register is stored and cleared by an SCPR instruction with the TAG =
1. The data is stored into the word pair at location Y and that bits 36-71

(Y+1l) are cleared.

The fault register cannot be loaded. Data accumulates

in the fault register during a fault until the register is stored and

cleared.

The data is not overwritten during subsegquent fault events.

An explanation of the constituent bits and their functions follows:

4-36

DzZ51-00

Key

a

h

= S (o

IAA

IAB

Bits

Function

0

]

Ww 00 g9 o o W

11
12
13
14
15
16-18
20-23
24

25-30
31

When ON, a firmware-detected opcode, repeat, or modify Illegal
Procedure fault (IPR) in MVE

When ON, an IPR in MVE

When ON, an illegal EIS descriptor: REG code for AR
displacement, DU/DL, Repeat, Modify, Register length code, IPR

When ON, an A-cycle or V-cycle, IPR

When ON, an illegal descriptor, IPR

When ON, indicates parity error in CA or CB chips
When ON, illegal EIS data, IPR

When ON, parity error on even word from the SCU port
When ON, parity error on odd word from the SCU port
When ON, cache directory multiple match

When ON, that the processor has attempted a retry to the SCU;
an error on the retry causes a CPU Command fault

When ON, indicates parity error in CN or CP chips

When ON, execution unit (EU) scratch pad parity error
Not used

When ON, indicates parity error in EA chips

When ON, indicates parity error in CQ chips

Illegal action code from SCU on Port A. (See Table 4-2.)
Illegal action code from SCU on Port B. (See Table 4-2.)

When ON, a write-notify receiving buffer overflow (causes cache
to automatically be cleared).

Not used

When ON, parity error on write-notify at receiving port (causes
cache to automatically be cleared).

4-37 DZ51-00

Key Bits Function

r 32 When ON, a cache directory parity error
s 33 When ON, a cache storage parity error
t 34 When ON, illegal action on store

u 35 When ON, that parity error occurred on other than the target
pair of words. (Cache is always loaded 8 words at a time, but
only two of these words represent the target pair.)

NOTES: 1. Bits 01-04 added for additional fault resolution
2. Bits 05, 11, 12, 14, 15 added to locate parity error checker

System Controller Illegal Action Codes:

The errors reported by the System Control Unit (SCU) cause illegal action
codes resulting in CPU faults. The activities causing these faults, the
faults, and the results are displayed in Tables 4-2 and 4-3.

Table 4-2. System Controller Illegal Action Codes

Code CrPU
(Binary)| Activity Fault Type| Result
Oxxx Good memory activity None

Ixxx Memory error detected Parity

x000 Good SCU activity None

x001 Uncorrected read/alter/ |Parity Uncorrected data rewritten
rewrite (RAR) error to memory

x010 Bound check error Bound

x011 Parity error on write Parity Write aborted; if multiple

writes, all aborted

0100 CONNECT to disabled or Command
halted_port

x101 Uncorrected read error Parity Incorrect data transmitted

x110 Internal SCU address/zone|Parity
error

x111 SCU multi-error detection|Parity

4-38 DZ51-00

N

Table 4-3. Source Of Fault Register Errors

Source 0Of Error

CpPU SCU GCOs
H/® H/W S/¥
Fault Register

0 X
1 X
2 X
3 X
4 X
5 X

6 x
7 X b 4

8 X b'¢

9 b'e
10 X b4
11 b4
12 X
13 b ¢
14 X

15 X

16-19 b b'¢

20-23 X x

24 X

25-30 (unused) - - -
31 b4 X

32 X

33 b3

34 b4 b'¢
35 X X

Extended Fault Register

0 (unused) - - -
1 (unused) - - -
2 X

3 X

4 (unused) - - -
5 b 4

) X

4-39 DZ51-00

EXTENDED FAULT REGISTER (EFR)

Format: 72 bits

0 00 3
0 6 7 5
Ola die|f Zeros

29
3 7
6 2

Zeros
36

Description:

Figure 4-36. Extended Fault Register (EFR) Format

The 72-bit EFR register containing PATROL information obtained from the DI
status register (RDS).

Function:

The EFR is used to determine diagnostic and error conditions not contained

in the FR.

The EFR can only be used in the Privileged Master mode. It is

stored by the SCPR instruction with tag = 3. The EFR register cannot be

loaded.

The functions of the constituent bits are as follows:

Key Bits Function Indicated

0
a 1
b 2
c 3
d 4
e 5
f 6

Always zero

When ON, PATROL cycle completed.

When ON, PATROL detected error.
When ON, a CPU firmware single error corrected
When ON, connect from diagnostic unit

When ON, a parity error in page table word associative memory
(PTWAM) directory

When ON, a parity error in page table word storage

07-71 Always zero

4-40 Dz51-00

HISTORY REGISTER (HR)

Format: 144 bits

00 11111 223 3
01 45678 8380 5
a Execute Control blc|d Opcode and A Tag
Store Address Inhibit Bit R
1 14111 10 1 6
3 55666666666¢677
6 89012345678801
Zeros e|f|glhli|j|k|1l|m|n|o|p|q
231111111111111
1
7 78 0
2 90 7
‘ Zeros Real Memory Address
8 28
3 7
6 1
Zeros -I
36

Figure 4-37. History Register (HR) Format

Description:

The history registers record information about the 64 micro steps preceding
the current step. Each history register entry is four words long; the depth
of the history registers is 64 entries. The history registers are
implemented as two independent groups. Each group has its own address
pointer. Word O is in the first group; words 1 and 2 are in the second
group. The first group of history registers receives an entry on every
reqular clock (micro instruction cycle). The second group receives an entry
on every C cycle. If the history register mode is set to transfer trace (by
Test Mode Register bit 13), the second group is entered only on transfer-go
cycles.

Function:
A history register is loaded by the LCPR instruction with tag = 03 or 07 and
is stored by the SCPR instruction with tag = 20. (Refer to LCPR and SCPR

instruction descriptions in Section 8.) Entries are made according to
controls set in the mode register.

4-41 DZ51-00

The meaning of the constituent flags and registers are as follows:

Key Bits

Word O:

a 00
01-14

b 15

c 16

d 17
18-28
29
30-35

Word 1
36-58

e 59

f 60

g 6l

h 62

i 63

j 64

k 65

1 66

m -67

n 68

Flag Name Function

DIDL

ECs

CEND
DPOA
FPIA

RBIR

RSIR

zZeros
FSTRC
FDBLC
FDIRC
INSFCH
FIC17C
DPOAC
DPGF
PTW

DPPG

Execution cycle in the idle cycle

Execution control store address (address of next
. micro instruction)

Last micro instruction of the instruction
Current "A" cycle for the operand
Current "A" cycle for the instruction
Opcode and inhibit bit of the instruction
Address register bit

Tag field of the instruction

Store cycle

Double-word memory access

Direct operand

Instruction fetch

Bit 17 of the instruction counter (IC)
Operand first read or write cycle
Paging cycle

PTW rewrite cycle

Prepage cycle

Retry disable bit. (Instruction being executed is not directly
retryable if set.)

4-42 DZ51-00

Key Bits Flag Name

o 69 PTBUSY
p 70 FBLKLD
q 71 FBYRD
Word 2

72-79

80-107
Word 3

108-144

Function
Port busy
Block load request to cache

Cache bypass read

Zeros

Real memory address

Zeros

RESERVE MEMORY BASE REGISTER (RMBR)

Format: 36 bits

0000000O00O 3
012345678 5
albjc|d|e|f|glh Reserved Memory Base - words

Figure 4-38. Reserve Memory Base Register (RMBR) Format

Description:

A 36-bit register designating the gctive processors and the reserve memory
base. The bit setting, of the individual bits in bits 0-7, indicates an
active processor when set = 1.

Function:

The RMBR is loaded by the Privileged Master mode instruction Load Reserve
Memory Base (LRMB) and stored by SCPR tag 10.

The meaning of the constituent bits are as follows when set = 1.

Key Bits Function
a 0
b 1
c 2

When ON - processor #0 active
When ON - processor #l1 active

When ON - processor #2 active

4-43 DzZ51-00

=
®

[e])

Bits Function

3 When ON - processor #3 active
4 When ON - processor #4 active
5 When ON - processor #5 active
6 When ON - processor #6 active
7 When ON - processor #7 active
8-35 Reserved memory base — Real memory address pointing to a

real memory reserved exclusively for the CPU firmware

SCU_FAULT REGISTER (SCUFR)

Format:

72 bits

00000O0O0O0O0OO0O11211111 3
0123456789012345¢67 5

L117717777777777777777/7/7777/7/7/7/
alblc|d|e|f|glh|i|j|k|Y|m|n|o|p|q|/////////77///7/7//77//7::/17777

[1/1/1177777/7///7////7//777///7//
1111111111111111 20
3 7
6 1

L17777077/7777/77//777/77/77/
1177777777777 77077777777777777777/7777777777777/7777/7/777/777/7/777
L11011771771777777077070/000000770/77/77077/7077//77////77/7/77//7//

36

Figure 4-39. System Control Unit Fault Register (SCUFR) Format

Description:

The first 18 bits of the 72-bit SCU fault register contain an accumulation
of flags indicating errors occurring in the SCU.

Function:

The SCU fault register is read and reset by the Read System Controller
Register (RSCR) instruction. The SCU selection is based upon the control
SCU mode bit (22) in the CPU mode register.

The contents of the constituent bits are as follows:

Key

a

b

Bit Error Indicated

0 Write data parity error

1 Read data parity error on C board

4-44 DZ51-00

The contents of the constituent bits are as follows:

Key

a

The

Bit Error Indicated

0 Write data parity error

1 Read data parity error on C board

2 Bound check error

3 Non-correctable EDAC error

4 Port hold regquest

5 Backpanel address/zone bus parity error

6 Port zone address/zone bus parity error

7 Memory error

8 Memory lock timeout

S Connect queue overflow

10 Interrupt queue overflow

11 Connect to a disabled port

12 Connect to a halfed port

13 Correctable EDAC error

14 Read/clear parity error

15 SCu/port bus parity error

16 Interrupt/connect queue data parity error (This shows up as a
parity error in the IA field of the CPU fault register.
data read in is not reliable.)

17-71 Unused

4-45

- DZ51-00

SYNDROME REGISTER (SYR)

Format: 72 bits

0 00 33
0 78 45
Syndrome Address R
Code

8 27 1

3 6 6 7
6 23 1
Zeros Counter -I

36

Figure 4-40. Syndrome Register (SYR) Format
Description:

An 8-bit syndrome code with a corresponding real memory address, a read
alter rewrite (RAR) bit, and a counter that counts the number of EDAC
errors.

Function:

The first word of the syndrome register is locked when a non-correctable
EDAC error occurs. The counter in the second word operates continuously.

In the unlocked state, an entry is made in the first word when a memory read
operation produces a non-zero EDAC syndrome and the counter is incremented.
The counter is incremented for each additional error and wraps around when
it reaches the maximum count that it can hold. The syndrome register is
read by the RSCR instruction with bits 22-24 = 6. SCU selection is based on
the control SCU bit in the CPU mode register. When the syndrome register is
read, it is unlocked and the counter is reset to zero.

The contents of the constituent bits are as follows:

Bit Function

0-7 A code that specifies either the position of the bit in error, or
whether it is a single bit error, or if not single, the number of
bits in error.

8-34 Bits 0-26 of the real memory address (double word) of detected
syndrome

4-46 DZ51-00

Bit Function

35 Memory operation type
0 = read
1l = RAR

36-62 Zero

63-71 Counter

SCU_CORFIGURATION REGISTER (SCUCR)

Format: 72 bits

0 00000 00O 11 222222 22 3

0 23456 8BS 67 012345 78 5
/

a b ic| d e f ;I; hiil 3 k

/

3 21 3 8 41 11 3 8

3 | 7

6 1

LI11111770777777777777770777777777077777777/7/777/777777//777//7//
LI171777777770077777777777777777777777777777/777777777/77/77777/77/
LIL11101017 0100000000010 LLL L1111/ 71//77/7

36

Figure 4-41. SCU Configuration Register (SCUCR) Format
Description:
A 72-bit SCU register that controls configuration and operation
Function:
The SCUCR is read and set in the Privileged Master mode by instructions RSCR
and SSCR. (Refer to individual descriptions of these instructions in
Section 8.)

The functions of the constituent bits are as follows.

4-47 DZ51-00

Key Bits Function
a 0-2 The number of memory units attached to an SCU
Interlace configuration

000
001
010
011
100
101
110

0o N

Non-interlace configuration
111 = 16
b 3-4 History Register Control: Recording Mode

OFF, inhibit entry

ON, record all selected activities continuously

ON, record all selected activities, stop on fault and
reset bits to 00

ON, record start of selected activities, stop on
fault and reset bits to 00

o
—
nnn

11

c 5 History Register Control: Port Select
0 = Record only for designated port

1 = Record for all ports

da 6-8 History register Control: Designated Port

e 9-16 Uppeg bound modulo 1 megawords (corresponds to minimum memory
size

f 17-20 Lower bound modulo 16 megawords (corresponds to port address
split)

g 21 Used for hardware test

22 Not used
h 23 Used for hardware test
i 24 ID definer

1 = logical ID select
0 - Physical ID select

4-48 DZ51-00

Key Bits Function
3 25-27 Reguesting port number (read only)
k 28-35 Port enable indicator for ports 0-7
1 = enable
0 = disable

36-71 Unused

SCU HISTORY REGISTER (SCUHR)

Format: 144 bits

00 00O 01 12 23 33 3
01 34 90 90 90 23 5
al b c DI DO d—]- e
3 7
6 1
Write data lower
36
0 22 33 3
0 78 12 5
Address f g
3 7
6 1
Write data upper
36

Figure 4-42. SCU History Register (SCUHR) Format

Description:

The four-word SCU history register records activity status, activity flags,
and command flags. A circular storage is maintained for 1024 activity
cycles. If no activity occurs during a clock period, no entry ir «ritten by
the SCU.

4-49 DZ51-00

Function:

This register is read using the Privileged Master mode instruction Read
System Control Register (RSCR) . & single two-word pointer is maintained.
This pointer is incremented twice on each four-word SCU entry and once on
each two-word read. If the history register is locked, it is necessary to
reset the configuration register to the correct recording mode in order to
turn the history register on.

The contents of the constituent fields of the register are as follows:

Key Bits

Word Pair 0

a 0

b 1-3

c 4-9

DI 10-19

DO 20-29

d 30-32

e 33-35
36-71

Word Pair 1
0-27

f 28-31

g 32-35
36-71

Function

Start of activity

Port

Command

Data-in activity shift register summation
Data-out activity shift register summation
Port priority

Activity number

Write data, lower (previous cycle)

Real memory address
Zone
Memory select

Write data, upper

4-50 DZ51-00

MEMORY ERROR STATUS REGISTER (MSR)

Format: 72 bits

0 3
0 6
[11070777770770777777777777777777777777777777777777/777777777/77777777
[17770777077777777777777777777777777/7777777777/7777771/77/7777/77777
L1110 001 0700000170771 0001101171111 7111/071771/7//

36
3 4444440424 =
6 012345678 1
/777777
///////|alb|c|d|e|f|glh Zeros
/////1//

Figure 4-43. Memory Error Status Register Format
Description:

Eight bits in a 72-bit register hold the error status of each memory board.
The error conditions occurring on each active board memory cycle are entered
in the error status register. Indication of the error is given on the error
output line.

Function:

An error output is issued when any error occurs on the current cycle or when
the error-register refresh-fault bit was set on an earlier cycle. The
memory-error-status register is read and set by the Privileged Master Mode
instructions, RMR and SMR, respectively. The memory error status register
is reset when a read or write status command cycle occurs, or when memory is
initialized.

4-51 Dz51-00

The contents

Rey Bits

a 40

b 41

c 42

d 43

e 44

f 45

g 46

h 47
48-71

of the eight status bits is as follows:
Function
Al15-A22 address parity error
A7-Al4 address parity error
AD-A6 address parity error
CMO-CM3 command parity error
Refresh fault
Timing generator parity error
Unit selected during a busy error

Illegal command or write in logical mode (WMID) error or
select parity error

All other bits are zero.

MEMORY IDENTIFICATION REGISTER (MID)

Format: 72 bits

000000000 11 11 3
012345678 12 56 6
J7777777777777777777777777777777777
alb| ¢ | d |elf| g h (/7177777777777777777777277777777777
[111111111111111117010171777077177717
36
3 44455 55 6 66 7
6 ~ 78901 45 4 78 1
/7777777777777777777777 /77777777777
J1777777777777777777777\il5\k| 1 \217727777777] m n
[/11/111111111711171117 111177111117

Description:

Figure 4-44. Memory Identification Register (MID)

A 72-bit memory identification (MID) register is located on each memory
board to indicate whether or not the board is present, to reflect status,
and define physical characteristics of the board.

4-52 DzZ51-00

Function:

The MID register is read and set by the Privileged Master mode instructions
RMID and SMID, respectively.

The contents of the constituent fields are as follows:
Key Bits Function
a 0 Memory board present

0
1

not present
present

b 1 Memory clear status

complete
clear is active

')
nn

c 2-3 Number of memory units per board.

)
o
wowuwan

00N > -

d 4-5 Size of memory unit

1M
4M
2M
8M

[
o
nuwuwn

e 6 ID select

0 = physical ID select
1 = logical ID select

These bits reflect the memory select ID definer of the
configuration register.

f 7 Memory unit 0 enable
0 = enable
1l = mask

8-11 Memory unit O logical ID code

h 12-15 Physical ID. This value is equal to the slot number.
16-35 Unused
36-47 Unused

4-53 DZ51-00

m

n

Bits

48
49
50
51-54
64-67
68-71

Function

Memory unit 1 enable

Memory unit 2 enable

Memory unit 3 enable

Memory unit 1 logical ID code
Memory unit 2 logical ID code

Memory unit 3 logical ID code

Bits 7-11, 48-54, 64-71 are set by the SMID instruction.
apply only for a logical ID select.

4-54

The enable bits

DZ51-00

SECTION 5

ADDRESS MODIFICATION AND DEVELOPMENT

ADDRESS MODIFICATION FEATURES

Address modification features permit the user to alter an address contained in
an instruction (or in an indirect word referenced by an imstruction). The
address modification procedure is generally directed by the tag field of the
instruction or indirect word. Address generation differs between the
Non—e?tended (NS) an? Extended (ES) modes depending upon the setting of ISR bit
24, (0 = NS; 1 = ES).

ADDRESS GENERATION IN THE NS MODE

Basic Modification

Address modification is performed in four basic ways: Register (R), Register
Then Indirect (RI), Indirect Then Register (IR), Indirect Then Tally (IT). A
fifth way, address register modification, is discussed later in this section
under "Address Modification With Address Registers". Each of these basic types
has variations in which selectable registers can be substituted for R in R, RI,
and IR and in which various tallying or other substitutions can be made for T
in IT. I indicates indirect address modification and is represented by the
asterisk placed in the variable field of the program statement as *R or R* when
IR or RI is specified. To indicate IT modification, only the substitution for
T appears in the variable field; the asterisk is not used.

Indirect Addressing

Generally, in indirect addressing, the content of bits 0-17 in the word
addressed by the instruction address (y) is treated as another address, rather
than as the operand of the instruction. Indirect address modification is
performed by the hardware whenever called for by a program instruction. When I
modification is called for by a program instruction, an indirect word is always
obtained from memory. This indirect word may call for I modification again, or
it may specify the effective address (Y) to be used for the original
instruction. Indirect addressing for RI, IR, and IT modification is indicated
by a binary 1 in either position of the tag modifier field (bit positions 30
and 31) of an instruction or indirect word.

NOTE: A "1" in bit position 30 or 31 of an indirect word does not necessarily
mean further indirection.

5-1 DZ51-00

Taqg Field

An address modification procedure generally takes place as directed by the tag
field of an instruction and the tag field of an indirect word. Repeat mode
instructions and character store instructions do not provide for address
modification.

The tag field consists of two parts, tag modifier (tm) and tag designator (td),
as follows:

ow
= w
(N)
w
rN
wm

Bit =

< tm >i< td >

<=—————-tag field >
where:
tm specifies one of four possible modification types: Register (R),
Register Then Indirect (RI), Indirect Then Register (IR), and Indirect
Then Tally (IT).
td specifies the activity for each modification type:

1. when tm = R, RI, or IR, td is called the register designator and
generally specifies the register to be used in indexing.

2. vhen tm = IT, td is called the tally designator and specifies the
tallying in detail. :

The following table shows the valid assembler mnemonics for address
modification and their relationship to the classes R, RI, IR, and IT.

tm=00 tm=01 tm=11 tn=10
td R RI IR IT
00 Blank *
00 N N* *N F
01 AU AU* *AU -
02 QU QU* *0U —
03 DU - *DU —
04 IC IC* *1C SD
05 AL AL* *AL SCR
06 oL QL* *OL —
07 DL — *DL _—
10 0 0* *0 cI
11 1 1% *] 1
12 2 2% *2 SsC
13 3 3% *3 AD
14 4 4x *4 DI
15 5 5% *5 DIC
16 6 6* *6 1D
17 7 7% *7 1DC

5-2 | DZ51-00

. S

e /
S

Types Of Address Modification

The four basic modification types, their mnemonic substitutions as used in the
variable field of the program statement, and their binary forms are as follows:

Modification Variable Binary
Tvpe Field Forms Example
3 33 3
0 12 5
tm td
3 33 3
0 12 5
R BETA, (R) 0011 1 01 BETA,S
3 33 3
0 12 5
RI BETA, (R)* 0 l» 1 0 10 BETA, 2%
3 33 3
0 12 5
IR BETA,*(R) 1 1]_1 1 11 BETA,*7
3 33 3
0 12 5
IT BETA, (T) 1 (;l-‘l 0 10 BETA,SC

The parentheses enclosing R and T indicate that substitutions should be made by
the user for R and T as explained under the separate discussions of R, IR, RI,

and IT modification below. Binary egquivalents of the substitution are used in

the tm subfield.

REGISTER (R)

The processor performs register address modification whenever an R-type
variation is coded. The assembler places binary zeros in both positions of the
tm subfield of the instruction. Accordingly, 1 of 16 variations under R are
performed by the processor, depending upon bit configurations generated by the
assembler, and placed in the designator subfield (td) of the general
instruction. The 16 variations, their mnemonic substitutions used on the
assembler coding sheet, the td field binary forms presented to the processor,
and the effective address Y generated by the processor are indicated below.

5-3 DZ51-00

R modification allows for the use of the instruction address field as the
operand. This is called direct operand address modification, of which there
are two types: Direct Upper (DU) and Direct Lower (DL). With the DU variation,
the address field of the instruction serves as bit positions 0-17 of the
operand and zeros serve as bit positions 18-35 of the operand. With the DL
variation, the address field of the instruction serves as bit positions 18-35
of the operand and zeros serve as bit positions 0-17 of the operand.

IC modification should only be used with an absolute operand. A relative
operand that has IC modification is flagged with a possible relocation error
(R) by the assembler.

Modification
Variation

(R)=X0

=X1

=X2

=X3

=X4

=X5

=X6

=X7

=A
0-17

=A
18-35
0-17
18-35

=IC

direct upper
direct lower

=None

=Any symbolic

Mnemonic

Substitution

0

S N o A B S B e S R

Qu
oL
IC

DU

DL

Blank or N
Any def%ned

index register symbol

Binary
Form

(td field)

1000
1001
1010
1011
1100
1101
1110
1111
0001
0101
0010
0110
0100
0011

0111

0000

Effective
Address

Y=y+C(X0)
Y=y+C(X1)
Y=y+C(X2)
Y=y+C(X3)
Y=y+C(X4)
Y=y+C(X5)
Y=y+C(X6)
Y=y+C(X7)
Y=y+C(a)
0-17
Y=y+C(a)
18-35
Y=y+C(Q)
0-17
¥=y+C(Q)
18-35
Y=y+C(1C)
Bits 0-17 of operand = y;
bits 18-35 of operand = 0
Bits 0-17 of operand = 0;
bits 18-35 of operand = y

Y=y

1. Symbol must be defined as one of the index registers by using an applicable

pseudo-operation (EQU or BOOL).

5-4

Dz51-00

X i
pre

The following examples show how R-type modification variations are entered
and how they affect effective addresses.

EXAMPLES:
Effective
1 8 16 Address
(1) EAXO 1
LDA B,0 Y=B+.
(2) LDA =2,DL
LDA C,AL ¥Y=C+2
(3) EAQ 3
LDA M,QU Y=M+3
1 8 16 Address
(4) ABC LDA -2,1C Y=ABC-2
(5) XYZ LDA *,DU operand =XYZ, operand =0
0-17 18-35
(e) EAX7 ABC
LDA 1,7 ¥Y=ABC+1
(7) LDA 2,DL operand =0 ,operand =2
0-17 18-35
(8) LDA B ¥=
(9) LDA B,N ¥Y=B
(10) EAX ALPHA,10
LDA C,ALPRA
ALPHA EQU 2 ¥Y=C+10

Coding examples of R-type modification follow:
o (R) =N
ALPHA LDA ADRES], N
is equivalent to
ALPHA LDA ADRES1

No address modification results; ADRES1 is the effective operand.

5-5 DZ51-00

(e}

(R) = Xn where n =0 to 7
ALPHA LDA ADRES2,5
X5 contains the value 2.
ADRES2 DEC 12

oCT 7777

oCT 123456765432

ADRES2+2 becomes the effective address and its contents (octal
123456765432) are loaded into the A-register.

A-register X5
Before 773412315026 000002
After 123456765432 000002

(R) = AU, AL, QU, OL
ALPHA LDA ADRES3,QU
Bits 0-17 of the Q-register contain the value 3.

ADRES3 DEC 10

oCT 12
oCT 14
ocT 16

ADRES3+3 becomes the effective address and its contents (octal 16) are
loaded into the A-register.

A-register Q-register
Before 123456765432 000003 123456
After 000000000016 000003 123456

5-6 DZ51-00

o (R) = DU,DL
ALPHA LDA ADRES4,DU
There is no memory access to obtain modification of ADRES4. The address
represented by the symbol ADRES4 is placed in bits 0-17 of the ;
A-register; bits 18-35 are filled with zeros. ;

ADRES4 OCT 10 (assume ADRES4 is at location 001002 octal)

Before 00000000OO116

After 001002000000

A simple program segment, the movement of 50 words from ABC to XYZ, may help
illustrate the power of address modification.

Without Address Modification With Address Modification
1 8 16 1 8 16
START LDX1 =0B17,DU START LDX1 0,DU
LDA ABC LDA ABC,1
STA XYZ STA Xyz,1
LDA =1B17 ADLX1 1,DU
ASA START+1 CMPX1l 50,DU
ASA START+2 TNC START+1
ADLX1 =1Bl7

CMPX1 =50Bl17
TNC START+1

REGISTER THEN INDIRECT (RI)

Register Then Indirect address modification is a combination in which both
indexing (register modification) and indirect addressing are performed. For
indexing modification under RI, the mnemonic substitutions for R are the same
as those given under the discussion of register (R) modification with the
exception that DU and DL are invalid for RI usage. For indirect addressing
(1), the processor interprets the contents of the operand address associated
with the original instruction or with an indirect word.

5-7 DZ51-00

Under RI modification, the effective address Y is found by first performing the
specified register modification on the operand address of the instruction; the
result of this R modification under RI is the address of an indirect word which
is then retrieved. (Refer to Figure 5-1.)

After the indirect word has been accessed from memory and decoded, the
processor carries out the address modification specified by this indirect
word. If the indirect word specifies RI, IR, or IT modification (any type
specifying indirection), the indirect sequence is continued. When an indirect
word is found that specifies R modification, the processor performs R
modification, using the register specified by the td field of this
last-encountered indirect word and the address field of the same word, to form
the effective address Y.

The variations DU and DL of register modification (R), when used with Register
Then Indirect modification (RI), cause an Illegal Procedure (IPR) fault.

To refer to an indirect word from the instruction itself without including
register modification of the operand address, the "no modification" variation
should be specified; under RI modification, this is indicated by placing only
an asterisk (*) in the tag position.

The following examples illustrate the use of RI modification, including the use
of (R) = N (no register modification). The asterisk appearing in the modifier
subfield is the assembler symbol for I (Indirect). The address-subfield,
single-symbol expressions shown are not intended as realistic coding examples,
but to show the relation between operand addresses, indirect addressing, and
register modification.

EXAMPLES:
Modification Effective
1 8 16 Type Address
(1) EAA 1
EAX1 2
. STA Z,AU* : (RI) Y=B+2
z ORG Z+1
ARG B,l (R)
(2) EAQ 3
MPY Z,* (R1) Y=B+3
z ARG B,QU (R)
(3) EAX3 3
EAX5 5
STQ Z,% (R1) Y=M
z Asz B, 5% (RI)
ORG B+5
ARG c,3* (RI)
ORG C+3
ZERO M (R)

5-8 Dz51-00

£

Coding examples of RI modification follow:
o (RI) = N¥
ALPHA LDA ADRES], N*
is equivalent to
ALPHA LDA ADRES] , *

The indirect word at ADRES] is obtained; if this indirect word
specifies further indirect modification, the process continues
until an indirect word is obtained with (R) modification.

o (RI) = (Xn)* where n = 0 to 7

EAXS5 5
EAX2 2
ALPHA LDA ADRES2,5*

The indirect word at ADRES2+5 is obtained. I1f the indirect word at
this location is

LDQ ADRES3,2

the effective address is ADRES3+2.

INDIRECT THEN REGISTER (IR)

Indirect Then Register address modification is a combination in which both
indirect addressing and indexing (register modification) are performed. IR
modification is not a simple inverse of RI; several important differences
exist.

Under IR modification, the processor first fetches an indirect word from the

memory location specified by the address field y of the machine instruction;

the C(R) of IR are safe stored for use in making the final index modification
to develop the effective address Y.

Next, the address modification, if any, specified by this first indirect word
is examined. If this modification is again IR, another indirect word is
retrieved from storage immediately; and the new C(R) are safe stored, replacing
the previously safe stored C(R). If an IR loop develops, the above process
continues, each new C(R) replacing the previously safe stored C(R), until a
type other than IR is encountered in the segquence.

5-9 DZ51-00

1f the indirect sequence produces an RI indirect word, the R-type modificatio.
is performed immediately to form another address; but the I of this RI treats
the contents of the address as an indirect word. The chain then continues with
the C(R) of the last IR still safe stored, awaiting final use. At this point
the nev indirect word might specify IR-type modification, possibly renewing the
IR loop noted above; or it might initiate an RI loop. In the latter case, when
this loop is broken, the remaining modification type is R or IT.
when either R or IT is encountered, it is treated as type R, where R is the
last safe stored C(R) of an IR modification. At this point the safe stored
C(R) is combined with the y of the indirect word that produced R or IT, and the
effective address Y is developed.
I1f an indirect modification without register modification is desired, the "no
modification" variation (N) of register modification should be specified in the
instruction. This normally will be entered on coding sheets as *N in the
modifier part of the variable field. (The entry * alone is equivalent to N*
under RI modification and must be used in that way.)
EXAMPLE 1:
(IR) = *N
ALPHA LDA ADRES], *N

The indirect word at ADRES] is obtained. If the indirect word at this
location is:

ADRES]1 LDQ ADRES2
the effective address is ADRES2
EXAMPLE 2:

IR and then R or IT

(IR) = *(Xn) where n =10 to 7
EAXS 15

ALPHA LDA ADRES], *5

The indirect word at ADRES] is obtained. If the indirect word is:

ADRES1 LDQ ADRES2, (R)

or

ADRES1 LDQ ADRES2, (T)

the effective address is ADRES2+15

5-10 DZ51-00

™

EXAMPLE 3:
IR and then RI
(IR) = *(Xn) wheren =0 to 7
EAX5 16
EAX2 17
ALPHA LDA ADRES], *5

ADRES1 LDQ ADRES2, 2%

LDA ADRES4 (in ADRES2+17)
the effective address is ADRES4+16
EXAMPLE 4:
IR and then IR
(IR) = *(Xn) where n = 0 to 7
EAXS 18
EAX3 18
ALPHA LDA ADRES1], *5
ADRES]1 LDA ADRES2,*3
ADRES2 LDA ADRES3
the effective address is ADRES3+19

The following examples illustrate the use of IR-type modification, intermixed
with R and RI types, under the several conditions noted above.

EXAMPLES:
Modification Effective
1 8 16 Type Address
(1) LDQ 1,DL
LDA Z,*QL (IR) =M+1
yA ARG M (R)

5-11 DZ51-00

(2)

(3)

(4)

(5)

(6)

Modification Effective

1 8 16 Type Address

EAX3 2

EAX5 3
ABC LDA Z,*3 (IR) Y=C+2
z ARG B,5* (RI)

ORG B+3

ARG c,IC (R)

EAX3 4

EAXS 5

EAQ 6

EAX7 7

LDA Z,*3 (IR) =M+6
z ARG B,*5 (IR)
B ARG C,*QU (IR)
o ARG M,7 (R)

EAX3 8

LDQ 9,DL

LDA Z,*DL (IR)

C(A)31g-35)=M

z ARG B,3* (R1)

ORG B+8

ARG M,0L (R)

LDA 10,DL

LDA Z,*AL (IR) ¥Y=B+10
z ARG B,AD (1T)

EAX3 1

LDA Z,*N (IR) Y=B
z ARG B,3 (R)

5-12 DZ51-00

Modification Effective

1 8 16 Type Address
(7) EAXS 12
LDA Z,*N (IR)
z ARG B,*5 (IR)
B ARG M,DU (R)
(8) EAXS 13
LDA z,% (RI) Y=M+13
z ARG B,*5 (IR)
B ARG M,DU (R)
(9) EAX1 14
LDA X,* (RI) Y=2+14
X ARG B,*1 (IR)
B ARG Z,ID (1T)
z TALLY A,10 (17)

INDIRECT THEN TALLY (IT)

Indirect Then Tally address modification is a combination in which both
indirect addressing and automatic incrementing/decrementing of fields in the
indirect word are performed as hardware features, thus relieving the user of
these responsibilities. The automatic tallying and other functions of IT
modification allow processing of tabular data in memory, provide a means for
working upon character data, and allow termination on user-selectable numeric
tally conditions. When tally runout occurs, bit 25 in the indicator register
is set. If an unassigned IT tag is used, an Illegal Procedure (IPR) fault
occurs.

The variations under IT modification are summarized below. The mnemonic
substitution for IT is (T); the designator I for indirect addressing in IT is
not represented. (Note that one of the substitutions for T is 1.)

5-13 DZ51-00

Binary

Mnemonic Form
variation Substitution (td Field)
Fault F 0000
Character indirect ca 1000
Sequence character sC 1010
Sequence character SCR 0101
reversed
Indirect 1 1001
Increment éddress, ID 1110
decrement tally
Decrement address, DI 1100

increment tally

5-14

Effect on Processor and Indirect
(Tally) Word for Each Reference

None. A Fault Tag fault is
generated. The indirect word is
not examined.

None. Applies to TALLY, TALLYB.

Obtain the operand address from the
tally word; then add 1 to the
character position value in the tag
field and subtract 1 from the tally
count field; add 1 to the address
field and set the character
position value to zero when the
character position crosses a word
boundary. Applies to TALLY,
TALLYB.

Subtract 1 from the character
position value in the tag field and
add 1 to the tally count field;
subtract 1 from the address field
and set the character position
value to 3 (TALLYB) or 5 (TALLY)
when the character position crosses
a word boundary. Then obtain the
operand address from the tally
word. Applies to TALLY, TALLYB.

None. The operand address is the
word to which the tally word
address field refers. Applies to
all tally pseudo-operations.

Obtain the operand address from
the tally word; add 1 to the
address field and subtract 1 from
the tally count field. Applies to
all tally pseudo-operations.

Subtract 1 from the address ,
field, add 1 to the tally count
field, and then obtain the operand
address from the tally word.
Applies to all tally
pseudo—-operations.

DZ51-00

vVariation

Mnemonic

Substitution (td Field)

Binary
Form

Increment address,
decrement tally,
and continue

Decrement address,
increment tally,
and continue

Add delta

Subtract delta

IDC

DIC

1111

1101

1011

0100

5-15

Effect on Processor and Indirect
(Tally) Word for Each Reference

Obtain the operand address from the
tally word, add 1 to the address
field, and subtract 1 from the
tally count field. Additional
address modification will be
performed as specified by the tag
field. Applies to TALLYC. Results
in IPR fault in ES mode.

Subtract 1 from the address field,
add 1 to the tally count field, and
then obtain the operand address
from the tally word. Additional
address modification will be
performed as specified by the tag
field. Applies to TALLYC. Results
in IPR fault in ES mode.

Obtain the operand address from the
tally word, add an increment to the
address field, and subtract 1 from
the tally count field. Applies to
TALLYD.

Subtract an increment from the
address field, add 1 to the tally
count field, and then obtain the
operand address from the tally
word. Applies to TALLYD.

DZ51-00

Indirect Word Format

The location of the indirect word is specified by the address field (y) of the
instruction or previous indirect word (IDC or DIC). IT modification causes the
indirect word to be fetched and interpreted as specified by the td subfield of the
instruction or previous indirect word that referred to the indirect word.

The format of the indirect word is shown in Figure 5-1.

0 11 23 3
0 78 90

Yy Tally Tag

Figure 5-1. Indirect Word Format

where:

y - address field

Tally - tally field (ignored except for tally modification)
Tag - tag field

Depending upon the prior tally designator, the tag field for the indirect word is
used in one of the following ways:

Tally Designators Tag Field
3 3 3 3 3 3
0 1 2 3 4 5
1,p1,I1D,F Ignored
DIC,IDC,IR,RI tm : td
C1,sC,SCr tb 0 0 cf
AD,SD Delta
where:
tm - tag modifier

5-16 DZ51-00

td - tag designator

tb - character size indicator (0=6-bit, 1=9-bit)
cf - character position field

Delta - delta field (Size of increment)

Variations Under IT Modification

Fault (T) = F Variation. The Fault variation enables the user to force
program transfers to operating system routines or to corrective routines during
the execution of an address modification sequence by causing a Fault Tag

fault. (This will usually indicate some abnormal condition for which the user
desires protection.)

Character Indirect (T) = CI Variation. The Character Indirect (CI) variation
allows operations on the A register or Q register where repeated reference to a
single character in memory is required. The character size field (tb) of the
indirect word specifies the character size.

For this variation, the effective address is the address field of the CI
indirect word obtained via the tentative operand address of the instruction or
preceding indirect word that specified the CI variation. The character
position field (cf) of the indirect word is used to specify the character to be
involved in the operation.

This variation is similar to the SC variation except that no incrementing or
decrementing of the address, tally, or character position is performed.

EXAMPLES:
y TALLY B,,4 6-bit char. addressing
1 8 16
(2) LDA ADDR,CI
ADDR %ALLY ADD,,3 6-bit char. addressing
or
ADDR TALLYB ADD,,3 S-bit char. addressing

5-17 DZ51-00

The effective address is ADD. The character in character position 3 is

loaded into the A-register in character position 5 for 6-bit characters or
into position 3 for S-bit characters. The remainder of the A-register is .
loaded with all zero bits. ‘

Sequence Character (T) = SC Variation. The Seguence Character (SC)
variation is provided for seguential access to 6-bit or 9-bit characters.
The character size field (tb) of the indirect word is used to specify the
character size. Processor instructions that do not allow SC operations are
so indicated in the individual instruction descriptions. The operand
address is obtained from the address field of the indirect word referenced
by the word containing the SC tag.

Characters are operated on in sequence from left to right within the machine
word. The character position field (cf) of the indirect word is used to
specify the character position to be involved in the operation. The Tally
Runout indicator is set when the tally field of the indirect word reaches

0.

EXAMPLE:
1 8 16 32

LDA A,SC
A TALLY TABLE,70,4 ~ 6-bit char. addressing
TABLE BSS 13

in which 70 is the count and 4 designates the character position of the)
tally start. S

For register loads using the SC variation, a character is fetched from the
indicated position of the memory location and is written into the lower end
of the register; the remaining bits of the register are set to zero. For
stores under the SC variation, a character is fetched from the lower end of
the register and written into the indicated position in the memory
location; the remaining character positions in the memory location remain
unchanged.

The tally field of the indirect word is used to count the number of times a
reference is made to a character. Each time an SC reference is made to the
indirect word, the tally is decremented by 1, and the character position is
incremented by 1 to specify the next character position. The tally runout
indicator is set when the tally reaches 0. When character position 5 (for
6-bit characters) or 3 (for 9-bit characters) is incremented, it is changed
to position 0 and the address field of the indirect word is incremented by
1. All incrementing and decrementing are done after the effective address
has been provided for the current instruction execution. The effect of
successive references using SC modification is shown in the following
examples.

5-18 Dz51-00

EXAMPLES:

Effective Character

1 8 16 Address Position Reference
LDA Z,SC B 0 1
4 TALLY B,80,0 B 1 2
B BSS 14 . . .
B 5 6
B+l 0 7
The Tally Runout indicator . : :

is set on the 80th reference.

v
o]
e ¢« O
o
=]
+
-

1 8 16

ADD1 LDA ADDR, SC

TTF ADD1

ADDR iALLY ADD,12,3 (6-bit characters)
or

ADDR TALLYB ADD,12,3 (9-bit characters)

ADD BSS 4

The first effective address is ADD. The character in character position 3
is loaded into the A-register in position 5 (for 6-bit characters) or into
position 3 (for 9-bit characters). The second reference will load ADD
character 4 (if 6-bit) or ADD+1 character 0 (if S-bit), etc. The tally is
decremented from 12 to 0. The destination in the A-register does not
change.

Sequence Character Reverse (T) = SCR Variation. The SCR variation is the
reverse of SC. The character position is decremented by 1 and the tally is
incremented by 1 before the indirect word address field and character
position are used as the operand character address. When the character
position attempts to go negative, it is set to the maximum value (3 or 5)
and the address is decremented by 1.

Indirect (T) =1 Variation . The Indirect (I) variation of IT modification
is, in effect, a subset of the ID and DI variations described below in that
all three —- I, 1D, and DI — make use of one indirect word in order to

refer to the operand. The I variation is functionally unique, however, in
that the indirect word accessed by an instruction remains unaltered; no

5-19 DZ51-00

incrementing/decrementing of the address field or tallyoccurs. Since the
tag field of the indirect word under 1 is not interrogated, this word will
always terminate the indirect chain.

The following differences in the coding and the effects of *, *N, and I
should be observed:

1. RI modification is coded as R* for all cases, excluding R=N.

For R=N under RI, the modifier subfield can be written as N* or as *
alone, according to preference.

When N* or just * is coded, the assembler generates a machine word
with octal 20 in bit positions 30-35; octal 20 causes the processor to
add 0 to the address field y of the word containing the N* or * and
then to access the indirect word at memory location y.

2. IR modification is coded as *R for all cases, including R=N,
For R=N under IR, the modifier subfield must be written as *N.

When *N is coded, the assembler generates octal 60 in bit positions
30-35 of the associated machine word; octal 60 causes the processor to
(1) retrieve the indirect word at the location (y) specified by the
machine word, and (2) effectively safe store zeros (for possible final
index modification of the last indirect word).

3. IT modification is coded using only a variation designator (I, ID, DI,
SC, SCR, CI, AD, SD, F, IDC, or DIC); that is, no asterisk (*) is
written. Thus, a written IT address modification appears as ALPH,DI;
BETA,AD; etc.

For the variation I under IT, the assembler generates a machine word
with octal 51 in bit positions 30-35; 51 causes the processor to
examine one, and only one, indirect word to be retrieved from memory
to obtain the effective address Y.

EXAMPLE:
. Modification Effective
1 B 16 Type Address
EAXS 1
LDA z,1 (1T) Y=B
Z ARG B,*5 (IR)

Increment Address, Decrement Tally (T) = ID Variation. The ID variation
under IT modification provides automatic (hardware) incrementing or
decrementing of an indirect word that is best used for processing tabular
operands (data located at consecutive memory addresses). The indirect word
always terminates the indirect chain.

5-20 DZ51-00

In the ID variation, the effective address is the address field of the
indirect word obtained via the tentative operand address of the instruction
or preceding indirect word, whichever specified the ID variation. Each time
such a reference is made to the indirect word, the address field of the
indirect word is incremented by 1 and the tally portion of the indirect word
is decremented by 1. The incrementing and decrementing are performed after

the effective address is provided for the instruction operation. When the
tally reaches zero, the Tally Runout indicator is set.
EXAMPLES:
Modification Effective
1 8 16 Type Address Reference
LDA Z,1D (17) B 1
z TALLY B,12 word addressing B+l 2
B BSS 12 . .
B+n n+l

The Tally Runout indicator is
set on the 12th reference.

1 8 16
ADRES]1 LDA ADRES2,ID
TTF ADRES1
ADRES2 TALLY ADRES3,10 word addressing
ADRES3 BSS 10

. .

The first effective address is ADRES3; the second is ADRES3 plus 1, etc. The

tally is decremented from 10 to zero.

Runout indicator.

The TTF instruction checks the Tally
I1f the tally is not zero, transfer is made to ADRESl. 1If

the tally is zero, processing continues with the instruction following TTF.
Without the TTF instruction, only one effective address is obtained.

Decrement Address, Increment Tally (T) + DI Variation.

The DI variation

under IT modification provides automatic (hardware) incrementing and
decrementing of an indirect word that is best used for processing tabular

operands (data located at consecutive memory addresses).

always terminates the indirect chain.

The indirect word

In the DI variation, the effective address is the modified address field (1
less than the value before modification) of the indirect word obtained via
the tentative operand address of the instruction or preceding indirect word,

whichever specified the DI variation.

Each time a DI reference is made to

the indirect word, the address field of the indirect word is decremented by

1 and the tally portion is incremented by 1.
from 7777 to 0, the tally runout indicator is set.

When the tally is incremented

The incrementing and

decrementing are performed prior to providing the effective address for the
current instruction operation.

5-21

' DZ51-00

Modification Effective
1 8 16 Type Address Reference
LDA z,DI (1T) B-1 1
Z TALLY B,-18 word addressing B-2 2
B BFS 18) :
B-p n
The Tally Runout indicator . .
is set on the 18th reference; . .
there, the 12-bit tally field
in the indirect word overflows
and becomes all zeros.
Modification Effective
1 8 16 Type Address Reference

ADRES1 LDA ADRES2,DI

TTF ADRES1

ADRéSZ TALLY ADRES3,-10 word addressing
ADRES3 BFS 10

The first effective address is ADRES3 -1; the second is ADRES3 -2; etc. The
tally increases from -10 to 0.

Increment Address, Decrement Tally, and Continue (T) = IDC Variation. The
IDC variation under IT modification functions in a manner similar to the ID
variation except that, in addition to automatic incrementing/decrementing,
it permits the user to continue the indirect chain in obtaining the
instruction operand. Where the ID variation is useful for processing
tabular data, the IDC variation permits processing of scattered data by a
table of indirect pointers. More specifically, the ID portion of this
variation provides the ability to seguentially step through a table and the
C portion (continuation) allows indirection through the tabular items. The
tabular items may be data pointers, subroutine pointers, or a transfer
vector.

The address and tally fields are used as described under the ID variation.
The tag field uses the set of instruction address modification variations
under the following restrictions: no variation is permitted that requires an
indexing modification in the IDC cycle since the indexing adder is in use by
the tally phase of the operation. Thus, permissible variations are any
allowable form of IT or IR; but if RI or R is used, R must equal N.

5-22 DZ51-00

EXAMPLES:

Modification Effective
1 8 16 Type Address Reference
LDA Z,1DC X 1
z TALLYC B,10,I Y 2
B ARG X z 3
ARG Y s .
ARG Z . .

The Tally Runout indicator is set on the 10th reference.

1 8 16

32

ADRES] LDA ADRES2,IDC
TTF ADRES1

ADRES2 TALLYC ADRES3, 4, *
ADRES3 ARG AD1

ARG AD2
ARG AD3
ARG AD4

word addressing and indirect

ADl1 is the first effective address, AD2 is the second, AD3 is the third, and

AD4 is the fourth.

Decrement Address, Increment Tally, and Continue (T) = DIC Variation.

The

DIC variation under IT modification performs in much the same way as the DI

variation except that, in addition to automatic decrementing or .
incrementing, it permits the user to continue the indirect chain in
obtaining an instruction operand.

The continuation function of DIC operates

in the same manner and under the same restrictions as IDC except that (1) it
increments in the reverse direction, and (2) decrementing/incrementing is
performed prior to obtaining the effective address from the tally word.
(Refer to the first example under IDC; work from the bottom of the table to
the top.) DIC is especially useful in processing last-in, first-out lists.

Some examples follow:

Modification Effective

1 8 16 Type Address Reference

LDA z,D1C (1T)
z TALLYC B,-10,I (17) Y 1

ARG Z X 2

ARG X Z 3

ARG Y . .
B NULL))

5-23 D251-00

Assuming an initial tally of -10, the Tally Runout indicator is set on the
10th reference; there, the 12-bit tally field in the indirect word overflows
and becomes all zeros.

EXAMPLES:

a 8 16 32

ADRES]1 LDA ADRESZ,DIC
TTF ADRES1

ADRES2 TALLYC ADRES3,-4,*N word addressing and indirect
ARG AD4,*
ARG AD3

ARG AD2,*N
ARG AD1,*N
ADRES3 BSS 1
AD1 ARG A
AD2 ARG B
AD4 ARG C

A is the first effective address, B is the second, AD3 is the third, and C
-is the fourth.

Add Delta (T) = AD Variation. The Add Delta (AD) variation is provided
for programming situations where tabular data to be processed is stored at
equally spaced locations, such as data items, each occupying two or more
consecutive memory addresses. It functions in a manner similar to the ID
variation, but the incrementing (delta) of the address field is selectable
by the user.

Each time such a reference is made to the indirect word, the address field
of the indirect word is increased by delta and the tally portion of the
indirect word is decremented by 1. The addition of delta and decrementing
are done after the effective address is provided for the instruction
operation.

The following examples show the effect of successive references using AD
modification:

Modification Effective

1 78 16 Type Address Reference
LDAQ Z,AD (1T) B 1
z ETALLY B,20,2 B+2 2
B EBSS 40 B+4 3
B;Zg g;l
The Tally Runout indicator . .
is set on the 20th reference. . .

5-24 DZ51-00

1 78 16 32

ADRES1 LDAQ ADRESZ,AD
TTF ADRES]1

ADRES?2 ETALLYD ADRES3,10,2 word addressing with DELTA
ADRES3 EBSS 20

The first effective address is ADRES3; the second is ADRES3+2. The tally
decreases from 10 to 0.

Subtract Delta (T) = SD Variation. The Subtract Delta (SD) variation is
useful in processing tabular data in a manner similar to the AD variation
except that the table can easily be scanned from back to front using a
programmer-specified increment. The effective address from the indirect
word is decreased by delta and the tally is increased by 1 each time an SD
reference is made to the indirect word. This is done before supplying the
operand address to the current instruction, making the SD variation
analogous to the DI variation.

Address Modification Octal Codes

Address modification and 2-digit octal codes for each type of modification are
listed in Table 5-1.
Table 5-1. Address Modification Octal Codes
LOW ORDER OCTAL DIGIT
0 1 2 3 4 5 6 7

H O N AU Qu DU IC AL QL DL
I

G

B 1 0 1 2 3 4 5 6 7
o)

R 2 N* AU* | QU* IC* | AL* | QL*

D

E

R 3 0* 1x 2% 3% 4x 5* 6* 7*
0]

c ¢4 F SD SCR

T

A

L 5 a I sC AD DI DIC | ID |IDC
D

I 6 *N |*AU |*QU |*DU |*IC [*AL QL |*DL
G

I

T 7 *0 *1 *2 *3 *4 *5 *6 *7

5-25 DZ51-00

Address Modification Flowchart

The process of address modification is illustrated in flowchart form in Figure
5-2. Address register modification is not included in this example.

Instruction
Contoining
y, tm td

Examine tm
Subfield @

Foult Routine

P!

3 x) *
=10 o= 11 tm = 01 tm = 00
Type IT Type IR Type RI Type R

Modificotion Modificotion Modificotion Modification

Bl

.

DIC or 1DC?
No

Does td specif ®'

Obtoin indirect
word using operand
oddress. Sove reg.

Yes
tg=m0111 or 0011
DU or DL?

Exomine reg.

No/ Is it the IT
vorigble of
o Foult 2

Word

Field of indirect

i

Perform type R
modificotion
specified by td
to get oddress
of indirect word.

pull indirect word.

td = 0011 or
0111 DU or DL
2

l l Re 1T c'@
Reg. specifies Reg. specifies Reg. specifies
R! type IR none. Modity
oddress with
saved reg. to
l obtain effective
operond oddress
Reg. is vsed to
modify operond , Fetch
address to obtain indirect
effective oddress Word

of indirect word.

Perform incremen t—

@_ ing/decrementing.
Get indirect word |
and examine reg.

Perform other IT
Modifications (I,

10.DI,SC,SCR,CH,
(:)-—-* AD, SD). Obtain

indirect word.

®

Is Type R
Modification
specified ?

No/ ts Type

Ri Yes
Modification
specified ?

Add contents of
register specified
by td to operond
oddress too get
effective oddress
Y.

Convert type R to
Lood the

?

|

next indirect word

Obtcin operond
from effective

Obtain eftective oddress Y
address from
indirect word.

Figure 5-2.

Execdutive
ingtruction

5-26

o>

Address Modification Flowchart

DZ51-00

Floatable Code

Program statements may be written in floatable code. Such statements may then
be executed from any location in memory without relocation at load time.
Floatable code is created by use of instruction counter (IC) modification in
all references to locations within a program. Thus, to transfer to location
SYM, the following statement can be written:

TRA SYM-*,IC
or
TRA SYM,S

The assembler accepts the currency symbol ($) as a valid IC register
designator. The following tag fields in a machine instruction are permitted:

Mnemonic Octal Code
$ 04
$* 24

The assembler computes the difference between the value of the address location
argument of the variable field and the current location as the content of the
address field of the instruction word. The IC is then supplied for
modification. *$ is illegal and will be assembled as *IC.

NOTE: The FLOAT pseudo-operation or $ modification does not apply when used
with SYMREF symbols or within the range of a BLOCK pseudo-operation.

Address Modification With Address Registers

Address registers (ARn) provide a second-level indexing capability. The
address register format allows addressing on a character or bit basis and is
used by the character and bit manipulation instructions of the processor. When
an address register is used to modify an address in which character and/or bit
addressing is not used, the character and bit positions of the address register
are ignored.

SINGLE-WORD ADDRESS MODIFICATION

When an address register is to be used in address preparation, its application
is specified in the instruction word. All single-word instructions to which
address modification is applicable have the same instruction word format as
shown in Figure 5-3.

5-27 DZ51-00

0 00O 11 22 2 3 3
0 234 78 78 S 0 5
AR# |S y OP CODE I |AR TAG
™™ [T4
Figure 5-3. Single-Word Instruction Format
AR# - Address register number, if bit 29 = 1
s - sign bit, if bit 29 = 1
y ~ Address field bits 0-17 or bits 3-17, depending on the state of
bit 29. Must be an absolute value if AR mode is used.
OP CODE - 10-bit operation code field
1 - Program interrupt inhibit bit
AR - Address register bit. If bit 29 = 1, use address register
specified in bits 0, 1, and 2 of y field for address modification
and use operand descriptor register specification in bits 0,1, and
2 of y field as the segment descriptor. Bit 3 (sign) is then
extended to bits 0, 1, and 2. If bit 29 = 0, no address register
modification is performed and the ISR is used as the segment
descriptor.
TAG - Tag field: Used to control address modification

Tm - (Bits 30-31): Type of address modification

Td - (Bits 32-35): Index register or modification variation
designator

NOTE: With some instructions, certain address modification is not permitted,

and if such modification is specified, an Illegal Procedure fault (IPR)
occurs. (Refer to the individual instruction specifications in Section
8.)

The address preparation for a single-word instruction with bit 29 = 1 proceeds
as follows:

1.

2.

3.

The three most-significant bits of y (0, 1, 2) are decoded to determine
which of the eight address registers is to be used.

Bit 3 of the y field is extended to fill bit positions 2, 1, and 0, thus
forming a two's complement signed number.

The two's complement y field is then added to the contents of the
specified address register. The character and bit positions of the
address register are ignored and the contents of the address register
remain unchanged.

5-28 DZ51-00

. J
o

4. Address modification continues as specified by the tag f1eld of the
instruction word.

Diagramatically, address preparation for a single-word instruction is
described below in Figure 5-4.

0 000 1
0 234 » 7
y field of instruction
S S s|S with bit 3 extended
31 14
-+
0 1112 2
0 7890 3
AR B Bit Contents of an address
18] 2 4 register
0 1112 2
0 7880 3
y + AR B Bit Sum of y field and
18| 2 4 address register
Continue modification All legal modification
as specified by *allowed. Indirect
tag field words cannot specify
address register
0 1112 2
0 7890 3
Effective Address B Bit Operand address
18] 2 4

Figure 5-4. Address Preparation For Single-Word Instruction

When bit 29 = 0, the first step of the address modification procedure using the
address register is omitted and the only address modification performed is that
specified by the tag field.

When an address register is specified, extending bit 3 of the y field to form a
two's complement signed number effectively designates bit 3 as a sign bit.

This leaves 14 bits, 4 through 17, with which to designate an address offset.
Thus an address offset with values between -2**14 and 2**14-1 can be
specified. An address register, then, contains a complete 18-bit memory
address which may be offset + 16K by the partial address contained in the y
field of the instruction, as shown below.

5-29 DZ51-00

11 1
T T MEMORY T
AR y field, bit 3 =1
Points Here - 16K Offset Range
g y field, bit 3 =0
+ 16K Offset Range
l |
256K
Coding Examples:
1. LDQ 4,N,2
Effective Address = 4 + C(AR2)(p-17
2, LbQ -4,N,2
Effective Address = -4 + bits 0-17 of C(AR2)
MULTIWORD ADDRESS MODIFICATION
The general format of a multiword instruction is shown in Figure 5-5.
Memory
Loc. O 11 22 3
0 78 89 5
0 Variable Field OP CODE I MF1 Instruction
_ Word
1 Operand Descriptor 1 or Indirect Word Descriptor 1
2 Operand Descriptor 2 or Indirect Word Descriptor 2
3 Operand Descriptor 3 or Indirect Word Descriptor 3

Figure 5-5. Multiword Instruction Format

5-30 DZ51-00

where:

Variable Field

Contains additional information concerning the operation
to be performed, depending on the particular instruction.
When descriptors 2 and 3 are present, most instructions
provide a corresponding MF2 (bits 11-17) and MF3 (bits
2-8) within the variable field to describe the address
modification to be performed on these operands when
present. Exceptions to this are the CMPCT, MVT, SCD, SCDR,
SCM, SCMR, TCT, and TCTR instructions.

OP CODE - The 10-bit operation code field; octal representation
consists of three octal digits corresponding to bit
positions 18-26 and a 1 for bit position 27.

1 - The program interrupt inhibit bit

MF1 - Modification field 1 (MFl) describes address modification
that is to be performed for descriptor 1. '

MULTIWORD MODIFICATION FIELD

Bach modification field (MF) contained in a multiword instruction is a 7-bit
field specifying address modification to be performed on the operand
descriptors. The modification field is interpreted as follows:

2 3 4 5 through 8 <-— bits (MF3)
11 12 13 14 through 17 <-— bits (MF2)
29 30 31 32 through 35 <— bits (MFl)

AR | RL | ID REG <——— subfield

1 1 1 4 <-——— number of bits
AR - Address Register Specifier
0- No address register used.
1- Bits 042 of the operand descriptor address field specify the
address register to be used in computing the effective address of

the operand. Bits 0 - 2 also specify the operand descriptor
register that defines the segment containing the operand.

5-31 ~ DZ51-00

RL -

ID -

Register or Length

0-

1-

Operand length is specified in the N field (bits 32-35) of the
operand descriptor.

Length of operand is contained in the register that is specified by
code in the N field (bits 32-35) of the operand descriptor, in the
machine format of REG (the coding format is different).

Indirect Operand Descriptor

0-

1-

The operand descriptor follows the instruction word in its
sequential memory location.

The operand descriptor location contains an indirect word that
points to the operand descriptor. Only one level of indirection is
allowed.

Address modification register selection for R-type modification of
the operand descriptor address field. The REG codes are
approximately the same as the single-word modifications. 1In
addition, for indirect string length specification (RL = 1), the N
field codes are similar to the REG field. A comparison of these
codes is shown in Table 5-2.

5-32 DZ51-00

Table 5-2.

Register Codes

REG In Bits 32-35 tﬁ Field
Octal REG Indirect Of N when of
Code In MF Word When RL =1 Tag
(1) |Ip=1 (2)
0000 None None IPR Fault None
0001 AU AU AU AU
0010 Qu Qu Qu QU
0011 DU IPR Fault IPR Fault DU
0100 I1C IC IPR Fault IC
0101 A (3) A (3) A (3) AL
0110 o (3) 0 (3) o (3) oL
0111 IPR Fault IPR Fault IPR Fault DL
1000 X0 X0 ’ X0 X0
1001 X1 X1 X1 X1
1010 X2 X2 X2 X2
1011 X3 X3 X3 X3
1100 X4 X4 X4 X4
1101 X5 X5 X5 X5
1110 X6 X6 X6 X6
1111 X7 X7 X7 X7

(1)

(2)

Register content is interpreted as a character or bit index. For an
alphanumeric descriptor, this index is the number of 9-bit, 6-bit,
or 4-bit characters, depending upon the data type specified in the
descriptor. For a numeric descriptor, it is the number of 9-bit or
4-bit characters, also dependent upon the data type specified. For a
bit descriptor, it is the number of bits.

Register contents are interpreted as a word index.

5-33 DZ51-00

Table 5-2 cont. Register Codes
(3) The A- and Q-registers provide for indexing by a number greater than
2**18-1. When the A or Q register is specified, the number of
right-justified bits for indexing depends on the type of unit
reference specified in the operand referring to the A- or
O-register, as follows:
18 bits for full-word (36-bit) operations
21 bits for S-bit and 6-bit character operations
22 bits for 4-bit character operations
24 bits for bit operations
All addressing is modulo addressing. For example, when software desires to

index backwards by N words, it indexes forward by 2**18-N words. This same
method is also used in character and bit indexing.

Unit No. of Units/Word No. to Effectively Yield -N
Word 1 2**18 - N

9-bit 4 4 * 2%*%]18 - N (2**20 - N)
4-bit 8 8 * 2**x18 - N (2**21 - N)
6-bit 6 6 * 2**1B - N

1 bit 36 36 * 2**18 - N

For 1-bit and 6-bit, 4-bit, and 9-bit characters, A and Q can be
respectively loaded with 36,DU; 6,DU; 8,DU; or 4,DU; and N can then be
subtracted.

The index register designations may be specified by a symbol defined by the user
to have a value in the octal range of 0, 1, ...,7 (or 10, 11,...,17 when the RL
usage is in a descriptor that does not immediately follow the multiword
instruction - an indirect descriptor).

Example:
1l - 8 16

XA BOOL 17

MLR (0,1),(0,1)
ADSCY A,0,XA
ADSCS B,0,XA

is used to specify a move of the number of characters specified by the current
value of index register 7. ‘

5-34 DzZ51-00

Similarly,

1 8 16
MLR (0,1,1),(0,1)
ARG LA

ADSCS B,0,XA

LA ADSCS A,0,XA

provides for the sending address of the move to be specified indirectly in the
word labeled LA.

As a precautionary measure, all index register symbols should be defined with
octal values in the range 10, 11,...,17, since the assembler uses only the
low-order 3 bits in all contexts except the indirect descriptor where the symbol
cannot be identified from context as an index register designation.

The content of the IC is always interpreted as a word address when used in
address modification. During the entire execution of a multiword instruction,
the IC points to the instruction word. Thus, if IC address modification is
involved with a descriptor word, the instruction word address is used.

Specifying DU or DL type address modification in the REG field of an indirect
operand descriptor is illegal and causes an IPR fault.

DU address modification is legal for MF2 of the SCD, SCDR, SCM, and SCMR
instructions; for all other instructions, an IPR fault occurs.

Operand Descriptors

The operand descriptors describe the data to be used in the operation and provide
the basic address for obtaining the data from memory. A unique operand descriptor
format is required for each of the three data types: bit string, alphanumeric,
and numeric. The operand descriptor machine formats are as shown in Figures 5-6,
5-7, and 5-8.

BIT STRING OPERAND DESCRIPTOR

0 00
023

AR# y c b N
3 15| 2 4 12

Figure 5-6. Bit String Operand Descriptor Format

N -

o
\0
o N
w N
>N

w

5-35 DZ51-00

Coding format for the bit string descriptor, BDSC, is:
BDSC - Bit descriptor

1 8 16

BDSC LOCSYM,N,c,b,AM

ALPHANUMERIC OPERAND DESCRIPTORS

0
0

g
o
on

222
123

LS V)
N
w

0
3

o

e ——

AR# y CN |TA |0 N
15 2]1 12

W
jw

Figure 5-7. Alphanumeric Operand Descriptor Format
Coding formats for the alphanumeric descriptors are:
ADSC9 - ASCII alphanumeric descriptor
1 8 16

ADSCS LOCSYM,CN,N,AM
ADSCY sets the TA field for S-bit ASCII characters.
ADSC6 - BCI alphanumeric descriptor
1 8 16

ADSC6 LOCSYM,CN,N,AM
ADSC6 sets the TA field for 6-bit BCI characters.
ADSC4 - Packed decimal alphanumeric descriptor
a 8 16

ADSC4 LOCSYM,CN,N,AM

ADSC4 sets the TA field for 4-bit packed decimal characters.

5-36 DZ51-00

NUMERIC OPERAND DESCRIPTORS

0 00 11 2 2222 23 3
0 23 78 0 1234 90 5
S
AR#$ y CN TN| or SF N
SX
3 15| 3| 2| 2 5 6

Figure 5-8. Numeric Operand Descriptor Format
Coding formats for the numeric descriptors are:
NDSCS - ASCII numeric descriptor
1 8 16

NDSCS LOCSYM,CN,N,S,SF,AM
NDSC9 sets the TN field for S-bit ASCII characters.
NDSC4 - Packed decimal numeric descriptor
1 8 16

NDSC4 LOCSYM,CN,N,S,SF,AM
NDSC4 sets the TN field for 4-bit packed decimal characters.
The legend for the machine and coding formats of the descriptors is as follows:

y = starting data word address
18 bits (0-17) if address register not specified in MF; 15 bits (3-17)
if address register specified in MF, with bit 3 extended;
15 bits (3-17) if address register specified in MF, with bit 3 extended
(i.e., if bit 3 is zero, bits 0-2 are also considered to be zero; if bit
3 is 1, bits 0-2 are also considered to be 1s).

c = starting character position within a word of 9-bit characters.
Code . Char.
00 0
01 1
10 2
11 3

5-37 Dz51-00

TA

L}

starting bit position within a 9-bit character.

Code Bit Code Bit

0000 0 0101 5 All other combinations of
0001 1 0110 6 these 4 bits are illegal
0010 2 0111 7 codes and will cause an IPR
0011 3 1000 8 fault.

0100 4

either the number of characters or bits in the data string if RL = 0 in
MF; or a 4-bit code (bits 32-35) that specifies a register (see Table
5-2) that contains the number of characters or bits if RL = 1 in MF

starting character number within the data word specified by the starting
data word address. Legal codes for the CN depends on the data type as
shown below. Coding entry is by the character shown under CN

Character.

Data CN Legal Illegal
Type Character Codes Codes
S-bit 000 001
010 011
100 ' 101
110 111
6-bit 000 110
001 111
010

011

100

101

4-bit 000
001
010
011
100
101
110
111

NoONdkewNEHO N> wnKHO WO

a cbde that defines which type of alphanumeric character is used in the
data

Data

Code Type

00 9-bit

01 6-bit

10 4-bit
11 Illegal - causes IPR fault

5-38 DZ51-00

a code that defines which type of numeric character is specified.

Data

Code Type
0 9-bit
1 4-bit

sign and decimal type (coding entry is by character)

Character Code Description
0 00 Floating-point, leading sign
1 01 Scaled fixed-point, leading sign
2 10 Scaled fixed-point, trailing sign
3 11 Scaled fixed-point, unsigned

sign and scaling (for X operation codes)

I1f TN = 0 (unpacked data)

00 leading sign, overpunched, scaled
01 leading sign, separate, scaled

10 trailing sign, separate, scaled

11 trailing sign, overpunched, scaled

I1f TN = 1 (packed data)

00 leading sign, separate, floating-point
01 leading sign, separate, scaled

10 trailing sign, separate, scaled

11 no sign, scaled

scaling factor

2 two's complement binary number that gives the scale point position for
scaled decimal numbers. The decimal point is assumed to be immediately
to the right of the least-significant digit. The scaling factor is
treated as a power of ten exponent where a positive number moves the
scaled decimal point to the right and a negative number moves it to the
left. Since the SF field is 6 bits, the largest number expressible is M
x 10**3]1 and the smallest number is M x 10**-32, where M is the value of
the data described by the numeric operand descriptor.

This field is ignored if S = 00.
Example: If data = 12345, S is not 00, and SF = -3, the value is 12.345.

address register modification, used when AR = 1 in MF field

5-39 DzZ51-00

INDIRECT WORD

The basic instruction word containing the operation code is followed by either
zero, two, or three descriptor words, with the number of descriptor words
determined by the particular instruction. The descriptor words contain either
the operand descriptor or an indirect word that points to the operand
descriptor. When an indirect word points to the descriptor, the format of the
indirect word is shown in Figure 5-S.

0 00 11 2 2333 3
0 23 78 B 9012 5
AR# - Address Ignored AR| 00| REG

3 15 1) 1] 2 4
Register

—->Address Register Number Modification
(if bit 29 specifies address reglster Specifier

register modification)

Address Register Modification
Specifier
Figure 5-9. Indirect Word Format
The AR and REG fields are identical in function to the corresponding modification
fields in the instruction word, except that the register content specified by the
REG field of an indirect word is interpreted as word index only.

Indirect words can be generated with the ARG pseudo-operation as follows:

1 8 16

ARG LOCSYM,RM,AM
where:
LOCSYM - address
RM - register modification
AM - address register modification
for example:

1 8 16

ARG DFPRSS, ,4

5-40 DZ51-00

A

OPERAND DESCRIPTOR ADDRESS PREPARATION

A flowchart of the operations involved in operand descriptor address preparation
is shown in Figure 5-10. The chart depicts the address preparation for operand
descriptor 1 of a multiword instruction as described by modification field 1

(MF1).

A similar type address preparation would be carried out for each operand

descriptor as specified by its MF code. A detailed description of the flowchart
follows:

1.
2’

3.

10.

11.

12.

The multiword instruction is obtained from memory.

The indirect (ID) bit of MFl is gueried to determine if the descriptor for
operand 1 is present or is an indirect word.

This step is reached only if an indirect word was in the operand descriptor
location. Address modification for the indirect word is now performed. 1If
the AR bit of the indirect word is 1, address register modification step 4
is performed.

The y field of the indirect word is added to the contents of the specified
address register.

A check is now made to determine if the REG field of the indirect word
specifies that a register type modification be performed.

The indirect address as modified by the address register is now modified by
the contents of the specified register, producing the effective address of
the operand descriptor.

The operand descriptor is obtained from the location determined by the
generated effective address in item 6.

Modification of the operand descriptor address begins. This step is reached
directly from 2 if no indirection is involved. The AR bit of MFl is checked
to determine if address register modification is specified.

Address register modification is performed on the operand descriptor as
described under "Address Modification with Address Registers" above. The
character and bit positions of the specified address register are used in
one of two ways depending upon the type of operand descrlptor (i.e.,
vhether the type is a bit string descriptor or a numeric or alphanumeric
descriptor).

The REG field of MF1l is checked for a legal code. If DU is specified in the
REG field of MF2 in one of the four multiword instructions (SCD, SCDR, SCN,
or SCMR) for which DU is legal, the CN field is ignored and the character
or characters are arranged within the 18 bits of the word address portion
of the operand descriptor.

The count contained in the register specified by the REG field code is
appropriately converted and added to the operand address.

The operand is retrieved from the calculated effective address location.

5-41 - DZ51-00

Fetch,
Instruction
from Memory

No

AR

f
Yes ind?rect
Word=1
Modify y of
Operond Modify y of
Descriptor indirect Word
by AR with AR

A 4

“ﬁgélfold°' Modify y of
Descriptor Indirect Word
with REG with REG
L] ‘ . J
Fetch Fetch Oper.
Operand from Descriptor
Merrory {rom Memory

& ©)

Figure 5-10. Flowchart For Operand Descriptor Address Preparation

5-42 DZ51-00

Operand descriptor address preparation is illustrated in the flowchart of Figure
Procedures for the preparation of bit string addresses and
alphanumeric/numeric addresses follow.

5-10.

Bit String Address Preparation

0 00 11 12 2
0 23 78 80 3
l y, c, and b fields
< y c b of descriptor with bit
3] 15| 2 4| 3 of y extended
-+
0 11 12 2
0 78 90 3
contents of address
WORD CHAR| BIT register specified by
18 2 4] bits 0, 1, 2, of y
yields
0 11 12 2
0 78 90 3
l l I I modified descriptor
y c B address
1 18| 2| 4]
where:
Y = WORD + y
C=CHAR + C
B=BIT +b

1. 1f (BIT + b) exceeds B, a carry is generated to character position C and B
= (BIT + b) -9:

BIT = 7
b =5
BIT + b=12, carry 1 toCand B =12 -9 = 3

2. 1f (CHAR + c + carry from B) exceeds 3, a
address and C = (CHAR + ¢ + carry from B)

carry is generated to the word
-4:

CHAR = 2
c= 3
carry + 1
= 6, carry 1 to word address and
C=6-4=2
5-43 DZ51-00

Alphanumeric/Numeric Address Preparation

First the data type designator (TA for alphanumeric, TN for numeric) is checked to
determine the character size. If the data is in 9-bit characters, then the
descriptor address and CN fields can be added directly to the address register
contents as follows:

0 000 11 12
0 234 78 90
| y and CN fields of the
< S y CN 0 numeric or alphanumeric
3| 15 2 descriptor, bit 3
extended
-+
0 11 1
0 78 S
contents of WORD & CHAR
WORD CHAR positions of address
18 2 register designated by
bits 0, 1, 2 of y
yields
0 11 1
0 78 9
CHAR
WORD + y + CN modified character
_ 18 2 address

Bits 20-23 of the address register are ignored. CHAR is added to bits 18 and 19
of CN. Bit 20 of the descriptor is zero and is not used. If CHAR + CN is
greater than 3, a carry is generated to WORD + y and CHAR + CN = (CHAR + CN)
—40 ’

If the data is in 4- or 6-bit characters, the 9-bit character representation
contained in the CHAR and BIT portions of the specified address register is
interpreted to determine the corresponding 4- or 6-bit character position
within the memory word. Translation to a 4-bit character location can be
accomplished as follows:

C =2 (CHAR) + [(BIT + 4)/9 truncated]

If CHAR = 3 and BIT = 7,
then C = 2(3) + 1 =7
If CHAR = 3 and BIT = 4,
then C=2(3) +0=6

5-44 Dz51-00

Translation to a 6-bit character location can be accomplished as follows:

9 (CHAR) + BIT
C= 6 (truncated)

If CHAR = 3 and BIT = 7,

8 (3) +7
then C = 6 =5

The remainder of 4 which represents the bit position within character position
5 is ignored. This means forcing the address register to point to the next
lower character boundary.

The address modification can now take place.

0 0060 11 2
0 234 78 0
[y and CN fields of the
<=5 y CN numeric or alphanumeric _
3] 15 3| descriptor, bit 3 extended
-+
0 11 2 contents of WORD position
0 78 0 of address register ind-
icated by bits 0,1,2 of y
WORD CAR CAR is the char. loca-
18 3 tion translated from
CHAR and BIT of address
register
yields
0 11 2
0 7.8 0
CN +
WORD + y CAR
18 3

For 4-bit character mode, if CN + CAR is greater than 7, a carry is generated
to WORD + y and CN + CAR = (CN + CAR) -8.

For 6-bit character mode, a carry is generated to WORD + y when CN + CAR is
greater than 5 and CN + CAR = (CN + CAR) -6.

In the next step of operand descriptor address preparation, as indicated in
item 10 in the flowchart of Figure 5-10, the REG field is checked for a legal
code. If DU is specified in the REG field of MF2 in one of the four multiword
instructions (SCD, SCDR, SCM, or SCMR) for which DU is legal, the CN field is
ignored and the character or characters are arranged within the 18 bits of the
word address portion of the operand descriptor as follows:

5-45 DZ51-00

Operand descriptor word address field (y) Character type (Ta)

0 00 1
0 8 9 7
9-bit characters
CHAR O CHAR 1
0 00 11 1
0 56 12 7
6-bit characters
CHAR 0 CHAR 1 ignored
00 00 00 1
01 4 5 8 S 7
4-bit characters
0| CHAR O |CHAR 1 ignored

Where only one character is involved (SCM, SCMR), only character 0 is used.

In step 11, in the flowchart of Figure 5-10, the count contained in the
register specified by the REG field code is appropriately converted and added
to the operand address. The count conversion required depends upon the type of
data.

Bit Operationms. The bit count contained in the register is effectively
divided by 36 to give a word count (WD) with a bit remainder (BR). Dividing
the bit remainder by 9 gives a character count with a bit remainder. Thus
the original bit count (BC) is converted to a word count, 9-bit character
count (CC) and bit remainder, and is in proper form to add to the bit
operand address. An example of the effective conversion is shown below:

WD and BR

bit count from register/36

BR/S = CC and BC

5-46 DZ51-00

Expressed as a 24-bit address modifier

0 111 2 2
0 7.8 9 0 3
WD cC BC converted bit
count
-+
0 111 2 2
0 7. 8 9 0 3 modified bit
descriptor
ym cm bm operand
address
yields YCB:
0 111 2 2
0 7 B 9 0 3
CC+ BC+ effective bit
WD + ym cm bm address

Carries may occur from (BC + bm) to (CC + cm) and from (CC + cm) to (WD +
ym).

There are two conditions to note in forming WD:

1.

I1f WD is a small number (expressible in less than 18 bits), it is
right-justified in the 1B-bit word area with zero-fill in the
most-significant bit positions. Thus bit counts are always positive;
they are not two's complement and there are no bit extensions.

1f the bit count comes from the A- or O-registers, division by 36 may
produce a WD greater than 2**18-1. 1In such a case, the result is
interpreted modulo 2**18. For example, if the bit count is (2**24)-1:

(2**24)-1
36 = 466,033 with BR = 27
Thus, WD = 466,033 - 262,144 = 203,889
And, BR/9 = 27/9 = 3 with 0 remainder
So that, WD = 203,889
cc=3
BC =0

No errors occur; the operation is legal and the results are predictable.

5-47 DZ51-00

Character Operations. The character count contained in the register is
divided by 4, 6, or 8 (depending upon the data type), which gives a word
count with a character remainder. The word and character counts are then
appropriately arranged in 21 bits (1B-word address and 3 for character
position) and added to the modified descriptor operand address. The
appropriate carries occur from the character positions to the word when the
summed character counts exceed the number of characters in a 36-bit word.
When the A- or Q-registers are specified, large counts can cause the result
of the division to be greater than 2**18-1, which is interpreted modulo
2**18, the same as for bit addressing. 4

As the final step, (12 in flowchart in Figure 5-10) the calculated effective
address location is used to retrieve the operand.

EXAMPLES:

1 8 16 32

* OPERAND DESCRIPTOR EXAMPLES

MLR ,,020,1 move blanks to output record
ADSC6 ,,0
ADSC6 PRTOUT,0,55+80-31

MLR move columns 31-80
ADSC6 RDWRK+5,0,80-31+1 to print columns 55-104
ADSC6 PRTOUT+S,0,80-31+1

LDX7 31-1,DU ditto
LDX6 55-1,DU

LARS =V18/RDWRK
LAR4 =V18/PRTOUT

MLR (,,,7),(1,,,6)
ADSC6 ,,B0-31+1,5
ADSC6 ,,B0-31+1,4

LARS =V18/RDWRK ditto
LAR4 =V18/PRTOUT
LDX3 80-31+1,DU

MLR (1;1):(1,1)

ADSC6 5,0,X3,5
ADSC6 S9,0,X3,4

5-48 DZ51-00

ADDRESS GENERATION IN THE ES MODE

This subsection discusses the generation of effective addresses only insofar as it
differs from the NS mode.

Instruction Address Field And Register Formats

The instruction field and register used in the generation of an effective address
are interpreted as follows.

INSTRUCTION ADDRESS FIELD

Address preparation for all instructions starts with the address field of an
instruction word (or the address field of an indirect word or data descriptor).
All instruction words have the same format as shown in Figure 5-3.

Definitions for the individual fields of this format are found under "Single-Word
Address Modification" in this section. The diagrams that follow start with only
the address portion of an instruction field (bits 0 - 17).

Address Modification With No AR Indicated

When bit 29 = 0, no AR modification is specified. The sign (S) of (y) is extended
16 bits to the left, starting at bit 0 (rather than bit 3) as indicated below.

0 17
‘ "[Bit 29=0. No AR
y <—mod. Address field
18 +bits 0-17

16 bits 0 17

As seen by
S y <—Effective Address
18 Adder

0n -~

+

01 2 35

e o o

XX A/Q/GXn Register Contents
2 34

0 33 34 39

Effective Address 0——————-0
34 6

5-49 DZ51-00

The y field of an instruction/indirect word/data descriptor is interpreted as
given in the two's complement form. Bit 0 is assumed as a sign. To generate
the effective address, bit 0 is extended 16 bits to the left. Bit 17 expresses
the word location. The effective address (Y) field is +/- 12BKW-1l. When the
A, Q, or a GXn register is used in the R modification of a basic instruction
(single-word) or a vector instruction, bits 2 through 35 are treated as word
address and bits 0 and 1 are ignored. An AL/QL specification in the tag field
modification specifies 36-bit A/Q registers. An AU/QU specification results in
an IPR fault. Address modification specified by the tag field is performed
resulting in the effective address.

EXAMPLES:
Effective
1 8 16 Address
(1) EAX4 1
LDA B,4 Y = B+l
B
(2) LDA =4,DL
LDQ C,AL Y = C+4
C
(3) EAQ 3
STA B,QL Y = B+3
B

With no AR modification specified, address modification is processed in the
same way as address modification in NS mode, with the exception of the AU/QU
modification. .

Address Modification With AR Indicated

Address register modification is performed when instruction word bit 29 = 1 or
when the AR bit of a multiword instruction's MF field is 1.

5-50 DZ51-00

0 234 17

——1 Bit 29 = 1 with AR mod.
AR |S y <-—Address field = bits 3-17
311 14
19 bits
/ , 0 2 3\ 17
—_J As seen by
S S|Sssis y <-—EA Adder
311 14
.0 33 <—EA bit positions
. +
ARn 01 29 30 32 35
Contents
lsssslf Word value of ARn Byte| Bit of ARn
1 28 2 4
. 33 39
. + .
012 35
pod A/Q/GXn Register Contents
2 34
.0 33
0 33 34 35 36 3%
Effective Address Byte | Bit
34 2 4

AR+y carry is ignored

Bits 3 through 17 of an instruction/indirect word/data descriptor are interpreted
as given in a two's complement form. Bit 3 is assumed as a sign. Thus, the
range of Y is +/- 16KW-1. To generate an effective address, bit 3 is extended 19
bits to the left. Bit 17 expresses the word location.

The address register (ARn) is extended to 36 bits as indicated in the previous
format. ARn is interpreted as given in a two's complement form with bit 0 as a
sign bit. In effective address generation, bit 0 is extended 4 bits to the
left. Bits 0 through 29 are interpreted as a word address, bits 30 and 31 as a
byte address within the word, and bits 32 through 35 as a bit address within the
byte. If BIT > 8, BIT = 8 is assumed.

Every specification of an index register (Xn) is interpreted as specifying a
36-bit GXn. An AL/QL specification in the register modification (R modification,
REG modification, N when RL = 1) specifies the 36-bit A/Q registers. Any AU/QU
specification results in an IPR fault. When GXn is used in the R modification of
a basic instruction (single-word instruction), bits 2 through 35 are treated as a
word address.

When GX/A/Q is used in the REG modification of a multiword instruction, bits O
through 35 are treated as the number of characters specified by the bit number in
the data descriptor.

Because effective address generation in ES mode involves sign extension, an
instruction such as LDA LOCSYM causes a Bound fault if LOCSYM is greater than or
equal to 128K words, regardless of the instruction segment bound.

5-51 DZ51-00

EXAMPLES:

Effective
1 8 16 Address
(1) EAX?2 2 (X2=2)
AWDX 1,2,3 AR3 = 3|0]|0
STZ B,2,3 Y = B+5.
(2) EAX3 1 (X3=1)
AWDX 2,3,1 AR1=3|0|0
LDA B,,1 Y=B+3
(3) awDX 4,,3 AR3=4|0]0
EAX4 B X4= address of B
STA 1,4,3 Y=B+5
(4) EAX4 B
AWDX 0,4,2 AR2= address of B
STA 2,,2 Y=B+2

Tag Field Modification

In a basic instruction (single-word instruction), a tag field modification is
performed after the AR modification. The tag field format follows:

Instruction -——> 30 31 32 35
bits tm td

tag field

The interpretation of a tag field and the accompanying modification method are
the same as in the NS mode except that the address modification by the register
A/Q/GXn/IC is altered as illustrated below. This applies to generation of the
following:

an operand address in R modification (tm = 00)

an indirect word address in RI modification (tm = 01)

an operand address in IR modification (tm = 10)
The following should be noted with A/Q/GXn modification:

1. EA (effective address) may be represented as Y.

2. The GXn specification code is identical to the Xn specification code.

3. The A/Q specification code is identical to the AL/QL specification code.

4. An AU/QU specification results in an IPR fault.

5-52 DZ51-00

EXAMPLES:

Effective
1 8 16 Address
R-Type
(1) EAX2 1
LDA B,2 Y=B+1
(2) LDQ =3,DL
LDA B,QL Y=B+3
RI-Type
Z ARG B
ARG A,L2*%
ORG A+5
A ARG B,5*
ORG B+l
(1) EAX2 1
LDA Z,2* =B+1
(2) EAX1 0
STQ Z,1* Y=B
(3) EAX2 3
STA Z,2% Y=A+5
IR-Type
Effective
1 8 16 Address
(1) LDQ 3,DL
LDA Z,*QL =B+4
z ORG B+l
(2) EAXS 3
EAXS 6
STA C,*4 Y=Z+9
o ARG B,*5
B ORG Z+3

5-53

- DZ51-00

Effective

A 8 16 Address
(3) EAX1 3
LDQ X,*1 Y=B+8
X OéG B+5

when IC modification is specified, effective address development is as follows:

0 33 3¢ 3639
AR +y Word Value B BIT
38| 2 4
. |
. 16 bits . . .
/ _0 17 . .
00 0 1C . .
o 18 L3 L d
0 33 3¢ 36 39
EA (y) Effective Address B BIT
34 2 4
Carry ignored

The contents of the instruction counter extended on the left with 1¢ bits
zero-filled is added to the contents of AR + y.

EXAMPLES:
Effective
it 8 16 Address
IC added to AR
(1) AWDX 0,0L,3
AWDX 1,0L,4
AWDX 2,0L,2
SZN TEST
TZE TEST Y=IC+AR3
TMI 0,$,4 Y=IC+AR4
TRA 0,s$,2 Y=IC+AR2
(2) AWDX 1,AL,2
LDA 2,$,2 Y=IC+AR2

5-54 DZ51-00

When DU/DL modification is specified, effective address modification interprets
the operand data as follows:

For DU
0 17 18 35
AR+y(16-33) 00 0
18 18
For DL
01 2 35
00 AR+y
<-AR+y bit
0 33 positions
EXAMPLES:
Effective
1 8 16 Address

Compare GX1 to AR3

(1) EAX1 A GX1 = address of A
CMPX 1,DL,3

Load AU with contents of AR2
(2) EAX3 B
AWDX 0,3,2 AR2=address of B
LDA 0,DU,2
Operand Descriptor Modification

When REG modification is specified in the MF field of a multiword instruction,
it is processed as follows.

When A/Q/GXn is specified

The 36 bits of A/Q/GXn are used as the character number which is the
character address.

An AU/QU specification results in an IPR fault.

5-55 DZ51-00

EXAMPLES:
1 8

16

Effective
Address

(1) This moves the string "SOURCE" to the first six characters
of TO. The contents of X3 act as an offset into the source text.

LDX3

MLR
ADSCS
ADSCS

FROM ASCII
TO BSS

=11,DL

(,,3),,040
FROM,1,6
TO,0,6

9,THIS IS THE SOURCE TEXT
2

(2) The string "LE " is moved to XB, starting at the third

character of XB.

LDA

MLR
ADSCS
ADSCS

XA ASCII
XB BSS

=4 ,DL

A

re (Ill’)1040
Iol
2,

’

),
3
3

5,SAMPLE TEXT TO MOVE
3

The Q register can be used in the same way.

When IC is specified in the REG modification, it is treated as an
18-bit word address.

EXAMPLES:

2 8

16

Effective
Address

The string "HIS IS" is moved to Y, beginning with the
first character.

EAX3
AWDX

MLR

ADSCS

ADSCS
X ASCII
Y BSS

Y
0,3,2

5-56

AR2=address of Y

DzZ51-00

L
& _ S

when DU/DL is specified
DL - An IPR fault occurs.

DU - Permitted only in the SCD, SCDR, SCM, and SCMR
instructions.

The effective address (EA(y)) generated by the operand
descriptor is treated as follows.

Bits 16 through 33 of the effective address (EA(y)) are
interpreted as character data according to its data format (TA
or TN field of the descriptor).

0 15 16 24 25 33 34 35
NEEEHEFEEEEEEEEITHEEEN W\ 9-bit
MM CharD Charl |\\\\\| characters
AMAWWAWNNNNIE 9 91 \\\\W\

0 1516 2122 27 28 35

ANTEE TSI TEEEIRERINTY AAWNNWIT 6-bit
MWW | Chard | Charl [\\\\\\\\\\\\\| characters
A6 6 ANAENRRNNRNANN

0 15 16 17 20 21 24 25 35

ATEEERLRL LR T WA 4-bit
AW [\ | Char 6 {Charl l\\\\\\\\\\\\\\\\ character
WAWWWWWAWWAWNIE N o] sl

For the SCM or SCMR instructions, only CHARO indicated in the diagrams is
used. The shaded portions are ignored during effective address
generation.

ADDRESS DEVELOPMENT

Virtual Memory Addressing

Virtual memory provides the processor with a virtual memory capability, consisting
of a directly addressable virtual space of 2**43 bytes and the mechanisms for
translating this virtual memory address to a real memory address. Memory paging is
an integral part of the translation process for this conversion. An absolute
addressing mode that allows bypassing the translation process is also provided.
When the processor is operating in the absolute addressing mode, the virtual memory
address and the real memory address are the same.

5-57 DZ51-00

To provide for virtual memory management, assignment, and control, the 2**43 byte
virtual memory space is divided into smaller units called working spaces, and
segments.

o Working Spaces (WS)

The 2**43 bytes of virtual memory space are divided into 512 2**34-byte
working spaces (WS). WS numbers used to generate a particular virtual memory
address are obtained from one of the eight WS registers or a segment
descriptor register (DRn). The WS number is represented in a segment
descriptor register either by the content of a specified WSR or by a 9-bit
WSN field.

O Segments

A segment is part of a working space and may be as small as one byte or as
large as 2**32 bytes for an extended segment. (GCOS disallows the use of
contiguous working spaces for a single segment.) Thus, unlike the fixed size
of a WS, a segment size is variable. Segments are described by a 72-bit
descriptor.

When a virtual address is generated, the descriptor (more commonly referred
to as the segment descriptor) is contained in a register such as the
instruction segment register (ISR). For operands, the descriptor may be
contained in other segment descriptor registers. The area of virtual memory
constituting a segment is "framed" by the segment descriptor by defining a
base value relative to the base of the WS and a bound value relative to the
base of the segment.

Virtual memory affects memory address development for both instructions and s
operands in Privileged Master, Master and Slave modes of operation.

OPERAND ADDRESS PROCEDURE

In the first phase of address generation, the effective address (EA) of the operand
is generated as previously described for effective address generation. The EA is
that address obtained after all register modification and indirect processing has
taken place. It is an 1B-bit word, 20-bit byte, or 24-bit bit address in the NS
mode, and a 30-bit word, 32-bit byte, or 36-bit bit address in the ES mode.

After the EA has been formed, the processor hardware forms the virtual memory
address of the operand using the base, bound, and WS values from 1 of 9 segment
descriptors. If bit 29 of the instruction for which the operand address is being
prepared is zero, then the operand resides in the instruction segment and the base,
bound, and WS from the instruction segment register (ISR) are used to form the
virtual address of the operand; if bit 28 of the instruction is 1, then descriptor
register n (DRn) specified by bits 0, 1, and 2 of the address field of the
instruction is used. Note that specifying DRn constitutes specifying ARn and vice
versa.

5-58 DZ51-00

‘When indirect EA development is involved, the following rules apply:

a. When DRn and ARn are involved_(instruction bit 28 = 1), ARn is applied only
to the first address in a chain of indirect addresses. However, the base,
bound, and WS from DRn are applied to each memory reference in the indirect
chain.

b. wWhen no DRn/ARn is specified (instruction bit 29 = 0), the base, bound, and
WS of the ISR are applied to each memory reference in an indirect chain.

c. A word in an indirect chain cannot specify a DRn.

d. An XEC or XED! instruction does not constitute an indirect chain; therefore,
the instruction executed may specify a different DRn than the XEC/XED
instruction, or no DRn. If the instruction executed by the XEC/XED does not
specify a DRn, the base, bound, and WS from the ISR are used to form the
virtual address of the operand.

INSTRUCTION ADDRESS PROCEDURE
Virtual addresses for instructions are always formed using the value in the
instruction counter (IC) and the base, bound, and WS from the ISR.

Virtual Address Generation For NS Mode

For all memory accesses, a virtual address must be generated. The mechanics of
generating the virtual memory address depend on whether the involved segment
descriptor is a standard descriptor or a super descriptor. Thus, the procedure
described below for generating the operand virtual address with a standard
descriptor also applies to virtual address generation for accessing the
instruction, argument, parameter, and linkage segments (the registers holding the
descriptors that define these segments may only contain standard descriptors).

1. XED executes in NS mode only.

5-59 DZ51-00

STANDARD DESCRIPTOR NS MODE

The method of forming an operand virtual address with a standard descriptor is

shown in Figure 5-11.

I1f instruction bit 29=0, the ISR is used; if bit 29=1, then

0 19

DRn Bound or
ISR Bound 20

> (-)

e e o o o

Bound Check

I1f EA(0-19) > Bound
then Bound Fault
Occurs

DRn is used.
____0 17 18 20 23
0- - -0 EFFECTIVE B BIT
o ADDRESS 181 2 4
] \ /. [] []
: + I - L] L3 *
Bound Fault 1f 0 33 34 35 .
Carry Is <= SEGMENT BASE B .
Generated FROM DRn OR ISR 34 2 .
Bits 0 and 1 . . :
saved to Make 0 2 33 34 35 .
WSN Access <-- EA + BASE B R
Control 2 34 2 .
Check
-OR. ..
0O 678 N
WSN : :
71 2 . .
0 89 40 42 43 46
EFFECTIVE WORD ADDRESS
WORKI NG WITHIN WORKING SPACE B| BIT
SPACE 9 321 2 4
vhere: B - page byte

WSN - working space number

Figure 5-11.

5-60

<-Relative Virtual
Address

Resulting
<—Virtual Address

Virtual Address Generation Using Standard Descriptor (NS Mode)

DZ51-00

The bound check is applied to the effective address at the byte level. The bound
check is shown for byte or bit instructions; the checks for single-word or
multiword instructions require inclusion of the base in upper- and lower-bound
algorithms.

I1f a carry is generated when the EA is added to the base, an out-of-bound situation
exists, resulting in a Bound fault.

The effective WSN is formed by ORing the low-order two bits of the working space
number with bits 0 and 1 of the sum of EA + BASE.

The bit address from the EA becomes the bit address of the virtual address.
SUPER DESCRIPTOR NS MODE

The method of forming an operand virtual address with a super descriptor is shown
in Figure 5-12.

5-61 Dz51-00

_______ 0 17 19 20 23 0 19 20 35
O0---=--=-- 0 EFFECTIVE B |BIT DR Bound l—————————-]
_______ ADDRESS 18| 2| 4
: + ...
.0 33, 35, .
LOCATION FROM DRn B—l .
2 .
Bound Fault 1% 0) 33 35, .
Carry Is <— LOCATION + EA B .
Generated 34| 21 .
.\ + /. .
. l (=)
35 . Bound Check
DRn BASE |0 - - - - - - 0 .
Bits 0 and 1 . . . Bound Fault If
saved to Make 012 33 35 . 1 Out of Bounds|
WSN Access <= EA = LOC + BASE B .
Control 12 34| 2] <— Relative Virtual Address
Check
:OR. . .
0678 ..
WSN . .
7 2—.. L] .
0 8 9 40 42 46
EFFECTIVE WORD ADDRESS Resulting
WORKING | WITHIN WORKING SPACE |[B|BIT <—Virtual Address
SPACE 9 32|2] 4
where: B - page byte
WSN - working space number
Figure 5-12. Virtual Address Generation Using Super Descriptor (NS Mode)

5-62

Dz51-00

EXTENDED SEGMENT DESCRIPTOR NS MODE

The method of forming an operand virtual address with an extended segment

descriptor is shown in Figure 5-13.

segment descriptor except in the bound check.

It is the same as that using a standard

16 Bits 4 bits 12 Bits
/ _ _ _ _\.0 1718 20 23 _/_\©O 19 _ _ _
0 0 EFFECTIVE B | BIT 0000 | DRn Bound 1l——-1
e ADDRESS 18] 2 4 o 20| _ _
A /. . . -
. > > (-) .
) " L. . " J
: ..) Bounds Check |
0 33 35 . of EA
SEGMENT BASE FROM DRn B .
34 2 .
: Bound Fault If : : :
. Carry Is . . . Bound Flt If
. Generated . . . Out of Bound
Bits 0-1 01 2 33 35 :
Saved to Effective Address + Base | B <-—-Relative Virtual Address
Make WSN 2 321 2 .
Access
Control
Check [] L] L] []
L] OR. Ll * L]
0 678 .)
WSN . : :
7 2 L] L] L]
0 8 9 20 41 43 46
EFFECTIVE <——Resulting
WORKI NG WORD ADDRESS WITHIN B BIT Virtual Address
SPACE 9 WORKING SPACE 32 2 4
where: B - page byte
WSN - working space number
Figure 5-13. Virtual Address Generation Using Extended Segment Descriptor

(NS Mode)

5-63

- DZ51-00

Virtual Address Generation For ES Mode

In the ES mode, a 36-bit effective address is added to a segment descriptor to
generate a virtual address. The method used for generation of virtual addresses
differs depending upon whether the related segment descriptor is a standard segment
descriptor or an extended segment descriptor. Super descriptors must not be used
for address generation in ES mode as any attempt to do so results in an IPR fault.

STANDARD DESCRIPTOR ES MODE
The method of forming an operand virtual address with a standard descriptor in ES

mode is shown in Figure 5-14. If instruction bit 29=0, the ISR is used; if bit
29=1, then DRn is used.

5-64 DZ51-00

16 bits

0 33 3536 39 /___\O 19
EFFECTIVE ADDRESS B | BIT oo-—-—o_[DRN Bound orl
38| 2 4 _ _ _ _l1sR Bound 20
.\ /. L] [] .
. (-)
: + .. : ")
: . . . Bounds Check
0 33 35 . of EA
SEGMENT BASE B .
FROM DRn OR ISR 34 2 .
: Bound Fault If : : :
. Carry is . . Bound Flt.If
. Generated . e . Out of Bound
Bits 0-1 01 33 35 X
Saved to Effective Address + Base | B <--Relative Virtual Address
Make WSN 2 32| 2 .
Access
Control
Check . L] L] L]]
. OR. L] - L]
0 678 . :
WSN . o .
7 2 [] L] o
0 8 9 40 41 43 46
EFFECTIVE <——Resulting
WORKING WORD ADDRESS WITHIN B BIT Virtual Address
SPACE 9 WORKING SPACE 32 2 4

vhere: B - page byte

WSN - working space number

Figure 5-14. Virtual Address Generation Using Standard Descriptor (ES Mode)

EXTENDED SEGMENT DESCRIPTOR ES MODE

The method of forming an operand virtual address with an extended segment

descriptor (T = 12) is shown in Figure 5-15.

It is the same as that using a

standard segment descriptor except in the bound check.

5-65

DZ51-00

4 bits 12 bits

0 33 35 39 / _ \O_ 19 / \
EFFECTIVE ADDRESS B BIT 0000 DRn Bound 1l=———1
34| 2 4 o 20
.\ /. -
: > (-))
: + : : : .' ..
: . . : Bounds Check
0 33 35 . of EA
SEGMENT BASE FROM DRn B .
34 2 .
. Bound Fault If . :) |
. Carry Is . . . Bound Flt If
. Generated . . . Out of Bound
‘Bits 0-1 01 33 35 .
Saved to Effective Address + Base | B <-—Relative Virtual Address
Make WSN 2 32| 2 .
Access
Control
Gleck *® . L] L] .
. OR. . [] L]
0O 678 L. :
WSN . . .
7 2 L] L] L]
0 89 40 42 43 46
EFFECTIVE <——Resulting
WORKI NG WORD ADDRESS WITHIN B BIT Virtual Address
SPACE 9 WORKING SPACE 32| 2 4

where: B - page byte
WSN - working space number

Figure 5-15

. Virtual Address Generation Using Extended Segment Descriptor

(ES Mode)

5-66

DZ51-00

Absolute Addressing Mode

Virtual memory provides an absolute addressing mode. When the processor uses the
absolute addressing mode, a virtual address is generated. However, the virtual
address is not mapped to a real address; it is used as the real address with a
maximum size limitation of 2**28 words (256 megabytes).

The processor utilizes the absolute addressing mode when the referenced working
space register or descriptor (with working space number) contains WSN = 0. 1In
these cases, the upper two bits of the segment base are not OR'ed with the
working space number. The absolute address mode is fully set by the direct value
of the WSN.

To use the absolute addresing mode, the CPU must be in Privileged Master Mode.
1f these conditions are not satisfied, a Command fault occurs when an attempt is
made to reference working space zero. The housekeeping bit is assumed ON when
working space zero is referenced.

When the processor is in the absolute addressing mode, address preparation
proceeds as in normal virtual address development. (Refer to Figure 5-16.)

0 00 11 4 4
0 8 S 2 3 2 6
EFFECTIVE
WORKI NG EFFECTIVE WORKING SPACE
SPACE WORD ADDRESS B
S 4 30] 4
\ /\ /
\ Bits 9 - 12 are / \ Used as a 30-bit absolute byte address of real /
ignored memory for the operating system. However,

paging is performed by the hardware.

Figure 5-16. Effective Absolute Address

5-67 DZ51-00

Paging

After generation of a virtual address, an address translation process for mapping
a virtual memory address to a real memory address is performed by paging, in
order to create a real memory address for accessing the real memory.

Paging does not differ between the NS or ES mode.

ADDRESS TRANSLATIOK PROCESS

Memory paging is an integral part of the address translation process for mapping
a virtual memory address to a real memory address. Each of the 512 working
spaces is supported by one page table or one section table (SCT). The working
space page table directory (WSPTD) is a 512-word table, indexed by a 9-bit WSN.
A WSPTD entry contains the real memory address of a page table or section table.
The section table consists of up to 4K words called page table base words (PBW).
Each PBW defines the real memory address of a page table. When paging is
performed using section tables, PBWs cause the page table to be divided into 1K
blocks and allow them to be distributed throughout memory.

PAGE TABLE DIRECTORY WORD FORMAT

The format of the page table directory word is given in Figure 5-17.

0 111 2 2 22 2 23 3
0 7 8 85 0 1 23 4 90 5
R
PT/SCT Base (MOD1024W) Q [P |I F PT/SCT SIZE
18 2] 1 l 1|U 12]
SCT
BOUND
Type of PT
__Bits 24-29
__Present ignored
1 WS Access Control

Figure 5-17. Page Table Directory Word (PTDW) Format

5-68 DZ51-00

Bits

0-17

18,18

20

21
22

23
24-35

Description

The modulo 1024 base address (real memory address) of a page table
(PT) or a section table (SCT).

Provide a hardware method to force the isolation of the WS. When
one or more WS is allocated to a process, software will record in
these bit positions of the associated PTDW, the relative WSN within
the set of up to four possible numbers. These bits are used to
check the WSN at transiation from a virtual memory address to a
real memory address. An SCL2 fault occurs if the check fails.

= 0, the PI/SCT is not present. (A missing working space fault
occurs.)

= 1, the PI/SCT is present.
Ignored

0 indicates a dense PT.

1 indicates an SCT.

Reserved for future use.
The size of the PT/SCT.

o For a dense page table, bits 24 to 35 indicate the modulo 64
size of the PT.

o For a section table, bits 30 to 35 indicate the modulo 64 size
of the SCT. Bits 24-29 are ignored.

o If bits 30 to 35 are zero, the size of 64 words is assumed.

PAGE TABLE BASE WORD FORMAT

The format of the page table base word is given in Figure 5-18.

0 11 2 2 22 33 3

0 78 0 1 23 12 5
PT Base (MOD1024W) RFU | P| MBZ RFU PT SIZE

18 2l 2 2 9 4

Figure 5-18. Page Table Base Word (PBW) Format

5-69 D251-00

Bits

0-17

18,19
20

21,22
23 to 31
32 to 35

Description

Indicate the modulo 1024 base address (real memory address) of a
dense page table.

Reserved for future use.

0, the PT is not present. (A missing working space fault
occurs.)
1, the PT is present.

Must be zero.
Reserved for future use.

Define the modulo 64 size of a dense page table. If 0, the size of
64 words is assumed.

PAGE TABLE WORD FORMAT

The format of the page table word is given in Figure 5-19.

0 11 2 2 2 3 3
0 7 8 7 8 9 0 5
PAGE ADDRESS (MOD 1024) ' RESERVED FOR [RHU CONTROL

18| SOFTWARE 10| 2 FIELD 6
Figure 5-19. Page Table Word (PTW) Format
Bits Description
0-17 The page modulo 1024 base address (real memory address).
18-27 Reserved for software use and may not be altered by the hardware.
28,29 Reserved for hardware use and may be changed by the hardware.

Control Field:

30

31

- Processor page present/missing bit }
= 0, page is not in memory (missing) } Interpreted only
= 1, page is in memory (present) } by processor
} Bit 31 is
- Write control bit } interpreted by
= 0, page can not be written } processor and
= 1, page can be written } 10P

5-70 Dz51-00

Control Field:

0, page was not accessed
1, page was accessed

32 - Housekeeping bit }
= 0, nonhousekeeping page } Interpreted only by processor
= 1, housekeeping page 3
33 - I0P page present/missing bit } Not inter-
= 0, page is not in memory (missing) } preted by
= 1, page is in memory (present) } processor
34 - Page modified bit }
= 0, page was not modified } Interpreted only by processor
= 1, page was modified }
35 - Page access bit 1
}
}

When the processor accesses the page table word (PTW), the hardware checks bit
30. If bit 30 = 0, a Missing Page fault occurs and no other faults that might
be caused by the page table word are checked. Refer to the discussion of "Page
Table Word Control Field Faults" in Section 6.

Note that the processor and the IOP have separate bits to indicate a missing
page. Thus, during 1/0, a page may be present to the IOP but missing to the
processor or vice-versa. When a page is accessed by the processor, and the PTW
is accessed in main memory by hardware, bit 35 of the PTW is set to 1 by the
hardware.

When a write occurs to a page, and the modified bit in the page table word in
associative memory is 0, this bit is set to 1 and bits 34 and 35 of the page
table word in main memory are set to 1 by the hardware.

Note that if a write occurs to a page, and the modified bit in the page table
word in associative memory is 1, no changes are made to the page bits. Software
may have reset the page access bit, -bit 35, to zero. This bit remains zero
under this condition.

MAPPING THE VIRTUAL ADDRESS TO A REAL ADDRESS

If a prior memory reference to the same page has already mapped that page to
real memory, and if that mapping is still present in the associative memory of
the processor, then the mapping is accomplished by concatenating the Word field
of the virtual address to the modulo 1024 real address of the page, to produce
the real address for the memory reference. Otherwise, the mapping proceeds by
locating and obtaining the Page Table Directory Word (PTDW).

I1f the PTDW indicates that the page table is not present (PTDW.P=0), then the
mapping is not completed, and a Missing Working Space fault is generated. If
the page table is present (PTDW.P=1) but PTDW.Q#1, bits 0-1 of the relative
virtual address are compared and if they are not egqual, then the mapping is not
completed, and a Class 2 Security Fault is generated.

5-71 Dz51-00

Interpreted only by processor

DENSE PAGE TABLE

When a dense page table is used, the CPU interprets the virtual address as shown
in Figure 5-20.

0 00 11 33 4 4 4 4
0 8|9 23 01 0 23 6

EFFECTIVE

WSN I PAGE NUMBER WORD B| BIT
S 4 18 10] 2 g
Figure 5-20. Virtual Address

Bits Description

0-8 Working space to be accessed.

9-12 Ignored

13-30 Page number is used as an offset or index into the PT for this

WSN, for locating the PTW. The page number is relative to the PT
base address (real memory address) which comes from the PTDW.

31-40 Determines which word within the 1024-word page is being
addressed.
41-46 Byte and bit positions within the word, if applicable.

LOCATING THE PAGE TABLE DIRECTORY WORD

The Page Directory Base Register (PDBR) contains the modulo 512 word address of
the Working Space Page Table Directory (WSPTD). Figure 5-21 shows how the
hardware uses the effective WS number from the virtual address as an offset into
the WSPTD to obtain the Page Table Directory Word (PTDW) for address translation
using a dense page table.

Figures 5-21, 5-22, 5-23, and 5-24 illustrate virtual to real mapping using a
dense page table. In Figure 5-21 below, the dense page table base address in the
PTDW is modulo 1024 words. PTW bits 0 to 17 are the modulo 1024W page start
address.

5-72 DZ51-00

512w WSPTD
PDBR |—————————— > Page table base
(Mod 1024VW) PT
EE— > Page Base
9-bit WSN# |-———-> (Mod 1024W)
PTDW
Page
18-bit Pagef |—> PTW
(All addresses = =
are real)] |
Word within Addressed
the page —>|_Word
1KW

Figure 5-21. Address Mapping Using A Dense Page Table

In Figure 5-22, the PDBR indicates the base (mod 512 words)of the 512-word

WSPTD. The 9-bit effective WS number is combined with the 19 bits from the PDBR
to generate the real memory address to access the WSPTD. The PTDW includes the
real memory address (mod 1024 words) of the page table. The PT entry location is
determined by the 1B-bit page number of the virtual address. The PTW includes
the real memory address (mod 1024 words) of the page. The 10-bit word address
field of the virtual address is combined with the 18-bit real memory address of
the page to generate a 28-bit real memory word address. This generation is
illustrated in Figures 5-22, 5-23, and 5-24.

0 8 O 8
Real memory address Effective

from PDBR 1S WSN 9

0 27

PTDW Word Address 28

Figure 5-22. PTDW Address

5-73 ~ DZ51-00

Virtual to real mapping through a Dense PT is shown in Figure 5-23.

The PTDW contains the base address (0 modulo 1024W) of the PT. The address of
the PTW is egual to the base address plus the 18-bit page number. The mapping of
the virtual address to the real address is completed when the PTW is obtained.
The mapping is then saved by the hardware in the associative memory. The PTW
contains the real address (0 modulo 1024) of the page. The 10-bit word field of
the virtual address is concatenated with the page real address to form the real
word address.

0 11 2
0 7 8 7
PT BASE ADDRESS FROM PTDW 0- 0
18 10
0 11 + 3. 2 3
0 23 0. & 5
0 0 |18-BIT PAGE # FROM PT BOUND FROM
VIRTUAL ADDRESS PTDW (MOD 64) |1——-1
13 17 12 6
.(Carry Ignored) \- /. . .
. | > > (-) .
0 2. .

PTW ADDRESS

o
o |~
* e o o o

SIZE CHECK

I1f page size >
PT Bound//111111 then
1 8 bound fault occurs

Figure 5-23. PTW Address

5-74 DZ51-00

0 1 3 4
0 7 1 0
PAGE ADDRESS FROM PTW WORD PART OF Real address
Bits 0 to 17 VIRTUAL ADDRESS from PTW
18 Bits 31-40 10
0 2
0 7

WORD ADDRESS IN REAL MEMORY

28

SECTION TABLE

Figure 5-24. Word Address

The section table allows the page table for a working space to be fragmented
into sections.
contains up to 4K of page table base words (PBW), each of which defines a page
table for a section. When a section table (SCT) is specified by the PTDW, the
virtual address is interpreted as shown in Figure 5-25:

The PTDW specifies the base of the section table, which

0 00 22 33 4 4 4 4
0 8|8 01 01 0 23 6
EFFECTIVE
WSN SECTION NUMBER PAGE NUMBER WORD B| BIT
) 12 10 10| 2 4
Figure 5-25. Virtual Address
Bits Description
0-8 Working space to be accessed
9-20 Section number. An offset of the SCT base for accessing the PBW
in the SCT. The SC number is a value relative to the SCT base
indicated by the PTDW.
21-30 Page number is used as an offset or index into the PT for this
WSN, for locating the PTW. The page number is relative to the
PT base address (real memory address) indicated by the PBW.
31-40 Determines which word within the 1024-word page is being
addressed
41-46 Byte and bit positions within the word, if applicable

5-75 Dz51-00

Figure 5-26 illustrates virtual to real mapping when using a section table.

0 18 Mod
512w WSPTD
PDBR |———————- > Section table base
(Mod 1024W) SCT
SCT
> Page Base
S-bit WSN > (Mod 1024W)
PTDW
PT
- >
12-bit SC§ |—> PBW Page Base
(Mod 1024K)
Max. 4KW i Page
—_—
10-bit Page# |-—> PTW
All addresses
are real
Max. 1KW
Addr 'sed
->|_Word
Figure 5-26. Address Mapping Using A Section Table

5-76 DZ51-00

Development of a word address from a section table is illustrated in Figures 5-27,
5-28, and 5-29.

0 11 2
0 78 7
SCT BASE ADDRESS FROM PTDW 0 0
18 10
: 16 bits 0+ 2. 3 3
./ \ 9 0. O 5
0 0 SC# FROM SCT SIZE
VIRTUAL ADDRESS FROM PTW |1 1
12 6 6|
(Carry Ignored) \ /e . .
: l > >—(-))
0 2. [] L]
0 7. [] []
PBW WORD ADDRESS) :
28
SIZE CHECK

If SC#>SCT Bound//111111
then a Bound Flt. occurs

Figure 5-27. PBW Address

5-77 DZ51-00

0 11 2
1 7 B 7
PT BASE ADDRESS FROM PBW 0 0
18 10
0 12 + 3 3 3
0 71 0 2 5
PT
0 PAGE # FROM SIZE
VIRTUAL ADDRESS FROM 1l————-1
18 10 PBW 4 6
(Carry Ignored) | /. .
. (-) .
00 2. -
0 7. .
PTW WORD ADDRESS :
28
SIZE CHECK
If PG#>PT Size//111111
then a Bound fault
occurs
Figure 5-28. PTW Address
0 1 3 4
0 7 1 0
PAGE ADDRESS FROM PTW WORD PART OF
(Bits 2-17) VIRTUAL ADDRESS
18 (Bits 31-40) 10
0 2.
0 7.
WORD ADDRESS IN REAL MEMORY
28
Figure 5-29. Word Address
5-78 DZ51-00

ASSOCIATIVE MEMORY

After a virtual address has been mapped to a real address as described earlier,
page table word information is stored in the associative memory (AM) in such a
way that a subsequent reference to this page can be mapped in one step. The
format of the data stored by an SCPR 16 from the associative memory is shown in
Figure 5-30.

0 11 333333
0 78 012345
Page Number Zeros W|H|O|M|P

Figure 5-30. Page Table Word Associative Memory (PTWAM) Format
Bits Description
0-17 The first 17 bits hold the page number
18-30 Zeros

31-35 Page control bits:

W - write

H - housekeeping

M - modified

P - parity on PTWAM storage

5-79 DZ51-00

When an operand virtual address is mapped from an associative

memory entry and the operation modifies the page, the hardware

checks the modified (M) control bit. 1If the M bit in the AM

entry is OFF, the processor turns the M bit of the AM entry ON, ‘
refetches the page table word for this AM entry from main S
memory, and turns the M control bit in the page table word ON.

The access bit in the page table word is also set ON at this

time, since it may have been turned OFF by the software. If the

M bit of the AM entry is ON at the beginning of the mapping, no

change is required.

The associative memory is arranged in 64 rows by 2 columns. Each intersection
of a row and a column contains a 35-bit entry like the one shown above.

Page table directory words from associative memory are stored by SCPR 16 with
the following format.

0 00 222222333333
0 8 9 456789012345
WSN RVA (Bits 2-17) Zeros
Figure 5-31. Associative Memory Directory Word
Bits Description
0-8 Working space number
9-24 Real virtual address (RVA) bits 2-17 ~
25 When set = 1 indicates parity error
26 When set = 1 indicates full; O indicates empty
27 Round robin counter
0 = level O
l=1level 1
28 Status of level A
0 = ON
1 = OFF
29 Status of level B
0 = ON
1 = OFF
30 When set = 1 indicates enable associative memory

5-80 DZ51-00

The PTWAM directory word is obtained from the directory with its contents
placed into the A register by the Store Central Processor Register instruction
SCPR with tag = 17. The word is loaded from the A register and put into the
PTWAM directory by the Load Central Processor Register (LCPR) instruction.
Both of these instructions must be used in Privileged Master mode.

The PTWAM has two levels, A and B, and 64 columns from a total of 128 entries.
The LCPR ,17 instruction causes the following A-register bits to be loaded into
the directory word pointed to by the effective address:

0 ——> Full/empty bit

C(aA)p7 -—> Round robin counter (RRO)

C(A)2g --> Level A set OFF

D(A)2g --> Level B set OFF
The PTWAM has only one full/empty(F/E) bit. When F/E = 1, both Level A and
Level B are full. When F/E = 0, the round robin counter (RRO) specifies
whether or not Level A is full. A typical operation sequence following
execution of LCPR 17 specifies the full/empty states as follows:

Entry F/E RRO Level A Level B

0 0 Empty Empty
1 0 1 Full Empty
2 1 0 Full Full
3 1 1 Full Full
4 1 0 Full Full

When a new address not contained in the associative memory has been mapped and
the associative memory is full, the new entry replaces the older entry in the
row (using the RRO algorithm).

The associative memory may be disabled (any further comparisons or matches are
ignored) by:

a. Executing a CAMP instruction with effective address bits 16-17 = 1.

b. Encountering an address compare of two or more columns in one of the 64
rows.

I1f one of the levels is OFF, the entry is still made in that level

corresponding to the state of the RRO counter. On a subsequent PTW search, the
OFF state of the level is recognized and a match is not permitted.

5-81 DZ51-00

The associative memory is cleared whenever the following occurs:
a. The processor is manually initialized. N
b. The processor is enabled, and the CAMP instruction is executed with
effective addrss bits 16-17 egual to 00, 10, or 11. If EA bits 16-17 =
01, the associative memory is disabled but not cleared.

c. The processor is disabled, and the CAMP instruction is executed with
effective address bits 16-17 = 10.

d. The processor is disabled, and the Load Page Table Directory Base
Register (LPDBR) instruction is executed.
CACHE MEMORY
A description of the visible portion of cache memory control follows. Cache

directory data is returned to the A register on the instruction SCPR 15 from
the entry selected by the effective address.

111111112222222222333233
234567890123456789012345
/// / ramvoreesiing
Real Memory Address /77 / /11 17777777/
/// / TARVIIIIINIV

Figure 5-32. Cache Directory Word

Bits Description

0-12 Most significant 13 bits of the real memory address
13-14 Not used

15 Parity on bits 0-9 of the real memory address

16 Cache block full/empty bit (normal mode)

NOTE: When certain cache blocks are used by PATROL, these blocks are
set to empty prior to normal use by the CPU.

17 Selected level parity error

18 Cache enable bit (1 = enable)

19 Cache block full/empty bit (PATROL mode)

20 Unused

21 Cache enabled for instruction fetch (1 = enabled)

22 Parity on bits 10-12 of the real memory address .
23 Cache to register flag (1 = ON) La,/;

5-82 DZ51-00

Bits Description
24-25 Level 0,1 ON when = 1

26-27 Unused

28 Least recently used (LRU) register
29-33 Unused

34-34 Lockup fault register

Address Truncation

The instruction set contains instructions that operate on words, double-words,
9-bit bytes, 6-bit characters, 4-bit characters, and bits. Instructions and
indirect and tally words that specify 6- or 9-bit characters are considered
word instructions. 1In accessing the operand, the full byte level virtual
address is determined. The address is then truncated in accordance with the
address type of the instruction, and the access is also in accordance with the
type of instruction.

An exception to this procedure applies to the B-word instructions, such as LREG
and SREG. The effective address is truncated to a modulo 8 word address prior
to adding the base. Following the addition of the base, the virtual address is
then truncated to a double-word address.

The user is responsible for ascertaining correctness of operation of an
instruction as influenced by such address truncation.

Bounds Checking

Virtual memory allows specifying the baseeand bound of a segment to the 9-bit
byte level, enabling a finer level of security control. Because the processor
interfaces with word-oriented main memories, certain restrictions are also
imposed to minimize the impact on performance and hardware complexity. The
size of a segment described by a super descriptor is modulo 2**26 bytes;
therefore, the bounds checking is always the same: BOUND (lower extended with
26 one bits) > LOCATION + EFFECTIVE ADDRESS. The following information applies
only to standard descriptors and extended descriptors.

5-83 'DZ51-00

WORD AND DOUBLE-WORD OPERATIONS

Word, double-word, or a succession of word accesses as in the LREG and SREG
instructions are made to real memory word or double-word boundaries. Segments
that begin or end on byte or word positions and that do not correspond to word
or double-word boundaries may be accessed by word or double-word instructions.
The processor adds the 2-bit byte position held in an address register (if
selected) to the byte position of the base before truncating the final virtual
address to point to a word or double-word. If this truncation results in the
virtual address dropping below the base value, a lower bound check will declare
an out-of-bounds condition in this case and a Bound fault occurs. Thus, the
first word or double-word of z segment may be accessed with word-oriented
instructions only when the word or double-word is entirely within the segment.

Half-word accesses, such as the LXLp instruction, are treated as word accesses
in both the lower-and upper-bounds check. If a segment begins in the middle of
a word, the LXLn and SXLn instructions cannot be used to access the lower
half-word. If the segment ends in the middle of a word, the LDXn, STXn, LXLn,
ADXn, etc., instructions cannot be used to access the upper half-word.

The STCA, STCQ, STBA, and STBQ instructions store 6-bit or 9-bit characters
into character/byte locations within a word. These are considered as word
accesses and require the entire word to be within the segment.

Indirect and tally words that specify character/byte locations are considered
as addressing words that must be fully contained in the segment. The virtual
address is truncated to the next lowest word boundary (i.e., the character
position in the base is not added to the character position held in the
indirect and tally word).

NOTE: This information is included to provide a warning for users of the
operating system and user software. If segments are "shrunk" (see the
LDDn and CLIMB instructions), and the byte portion of the virtual base is
changed, a word or double-word access to the new segment may be truncated
to a different location within the segment.

All instruction segments must begin at a 0 modulo 8 location and end at a 7
modulo 8 location. Any transfer or CLIMB instruction that attempts to load the
instruction segment register must specify a segment base whose 5
least-significant bits are Os, and a segment bound whose five least-significant
bits are 1s. This condition allows the processor to access blocks of eight
words for LPL, SPL, LREG, SREG, LAREG, and SAREG instructions with the
assurance that if the first word is on an assigned page and is within the
segment boundary, the other words will also be so located.

All descriptors loaded into the SSR, PSR, LSR, ASR, or DSDR registers must

begin and end on double-word boundaries (the three least-significant bits of
the base are 0s and the three least-significant bits of the bound are 1s).

5-84 DZ51-00

BYTE OPERATIONS

For all 9-bit and 4-bit character operations using multiword instructions, the
upper-bound check is made at the S-bit byte level. A lower-bound check is not
required since the effective address is always greater than or equal to zero. i

For all 6-bit character operations using multiword instructions, the boundary
checking is on a double-word basis, meaning that a double-word containing any
6-bit character of the operand must be fully in bounds. If access is attempted
to a segment with a base or bound not on a double-word boundary, a Bound fault
is generated.

BIT STRINGS AND TABLE OF TRANSLATE INSTRUCTION

Multiword bit string instructions and the index table of the translate
instructions (MVT, TCT, and TCTR) have double-word bound checking applied.
Thus, a double-word that includes any part of these operands must be fully in
bounds. If access is attempted to a segment that has a base or bound not on a
double-word boundary, a Bound fault is generated.

BOUND CHECK EQUATIONS
The address truncation procedure described previously forces bounds checking to
vary depending upon the type of instruction specified. The resulting three

upper-bound and lower-bound checks are listed in Table 5-3. A Bound fault is
generated if the bound checks are violated.

5-85 Dz51-00

Table 5-3. Bound Check Equations

Instruction Bound Check

Double-Word

(includes bit Upper (BASE + EA)0-32||111< BASE + BOUND

string and 6-

bit character Lower (BASE + EA)0-32||000> BASE

instructions)

Single-Word Upper (BASE + EA)0-33||11 < BASE + BOUND
Lower (BASE + EA)0-33||00 > BASE

Byte Upper EA 0-19 < BOUND

(includes

9-bit byte,

4-bit byte) Lower Always satisfied

The base, bound, and effective address (EA) addresses represented in the bound
check equations are for S-bit bytes. For 4-bit byte and bit instructions, the
effective address represents the 9-bit byte in which these small quantities are
contained. The single- and double-word bound check equations include the
effect of address truncation; the truncated address is then extended to the
largest byte contained therein for the upper-bound check and to the lowest byte
for the lower-bound check. The byte checks refer to the byte accessed; in
multibyte instructions such as MLR, the access checks are applied to each byte.

Physical accesses, which may be larger than those corresponding to a given
instruction (and which therefore may include bytes not contained in the
segment), are not bound checked beyond the byte range corresponding to the
instruction.

5-86 DZ51-00

SECTION 6

FAULTS AND INTERRUPTS

Faults and interrupts both result in an interruption of normal sequential
processing, but there is a difference in how they originate. Generally, faults
are caused by events or conditions that are internal to the processor; but
interrupts are caused by events or conditions that are external to the
processor. Faults and interrupts enable the processor to respond promptly when
conditions occur that require system attention.

DESCRIPTION OF FAULTS AND INTERRUPTS

When the processor responds to a fault, interrupt, or special systems entry
(PMME), the ICLIMB version of the CLIMB instruction is executed. Because this is
an inter-domain transfer of control, an entry descriptor is required; the entry
descriptor is obtained from a fixed memory location. The interrupt, fault,
special systems entry, and Backup fault entry descriptor locations (in real
memory) are as follows:

Location (octal) Entry Descriptor
30-31 Interrupt
32-33 Fault
34-35 Special systems entry
40-41 Backup fault

FAULT PROCEDURES

When a fault occurs, the processor generates the appropriate fault code and
executes the ICLIMB version of the CLIMB instruction. During the safe store part
of the ICLIMB, the generated fault code is stored along with a flag to indicate
that the safe store frame is the result of the occurrence of a fault (bit 11 of
word 5 is set to 0).

If the fault occurred during a multiword instruction, the pointer and length
registers will be saved in the safe store frame.

The second word of the "wired-in" ICLIMB instruction is assumed as described for
interrupts. (Refer to "Interrupt Procedure" later in this section.)

6-1 DZ51-00

I1f an entry descriptor is not found in the fixed fault vector location or if
another fault should occur (e.g., a parity error) while the processor is
attempting to CLIMB to the fault handler, the processor attempts to obtain an
entry descriptor from the Backup fault vector location. If this second location
does not contain an entry descriptor, the processor enters the HALT state. If
the second fault occurs prior to the transfer of control to the new domain at the
end of the ICLIMB, then the safe store frame will overlay the original frame
(with the same information execpt for fault code). If the second fault occurs
during the transfer of domains, such as a page fault when obtaining the next
instruction, then a second frame is fiiled specifying the new domain and the
fault code of the type fault that caused the backup condition.

The processor is placed in the Privileged Master mode for the execution of the
"wired-in" ICLIMB instruction. Upon exiting the ICLIMB, the processor remains in
the Privileged Master mode if flag bit 26 of the new instruction segment register
(ISR) is 1. 1If flag bit 26 of the new ISR is 0, the processor cycles to Master
mode.

FAULT PRIORITY

Faults are organized into five groups to establish priority for the recognition

of a specific fault when two or more faults occur at the same time in different

groups. (Refer to Table 6-1.)

Only one fault within a priority group can be active at any one time. If two or

more faults occur concurrently within a priority group, only the fault that
occurs first through normal program sequence is recognized.

FAULT RECOGNITION

Processor-detected faults can be categorized in several ways. Table 6-1 lists
the faults in order of the octal fault code, shows the priority assigned by the
processor, and lists the priority group number.

Faults in Groups I and II cause the operations in the processor to terminate
unconditionally.

Faults in Group V are recognized under the same conditions that program
interrupts are recognized. Faults in Group V have priority over program
interrupts and also can be inhibited from recognition by engaging the inhibit bit
in the instruction word.

6-2 DZ51-00

Table 6-1. Processor Faults By Fault Code

Octal
Fault Code | Code Fault Name Priority Group
00001 02 Bound (BND) S Iv
00010 04 Master mode entry (MME) 10 Iv
00011 06 Fault tag (FTAG) 13 1v
00100 10 Timer runout (TRO) 23 v
00101 12 Command (CMD) 8 IV
00110 14 | Derail (DRL) | 11 Iv
00111 16 Lockup (LUF) 4 11
01000 20 Connect (CON) 22 v
01001 22 Parity (PAR) 7 1v
01010 24 Illegal procedure (IPR) 12 v
01011 26 Operation not completed (ONC) 3 11
01101 32 Overflow (OVF) 6 III
01110 34 Divide check (DIV) 5 111
01111 36 Execute (EXF) . 2 1
10000 40 Security class 1 (SCL1) 14 1v
10001 42 Dynamic linking (DYN) 15 1v
10010 44 Missing segment (MSG) 16 1v
10011 46 Missing working space (MWS) 17 1v
10100 50 Missing page (MPG) 18 1v
10101 52 Security class 2 (SCL2) 19 Iv
10110 54 Address trap (ADT) 21 1v
(See NOTE) - Safe store stack (SSSF) 20 1V

NOTE: The safe store stack overflow fault has no fault code because it may occur
with any other fault. 1If a safe store stack fault occurs, the fault code
is contained in bits 12-16 of safe store stack frame word 5. (Refer to
Figures B8-7 and 8-8 for a description of the safe store stack).

6-3 DZ51-00

FAULT

CATEGORI ES

There

1.
2.
3.
4

are four general categories of faults:
Instruction-generated faults
Program—-generated faults

Virtual memory-generated faults

Hardware—generated faults

Instruction-Generated Faults

An instruction generated fault can be traced to the execution of a particular
instruction. It may be an operating system service request or an illegally
coded instruction. The instruction-generated faults are the following.

1.

Master Mode Entry (MME)

A Master Mode Entry instruction was executed.

Derail (DRL)

A Derail instruction was executed.

Fault Tag

A fault tag address modifier (F) was recognized. Fault tag is a
variation of the Indirect then Tally modification. Indirect cycles
terminate upon recognition of F, and the operation is not completed. The
tag field (bits 30-35) of the instruction or indirect word is set to 40
(octal) to cause the Fault Tag fault.

Connect (CON)

The processor received a signal from a system controller indicating that
some processor in the system executed a CIOC instruction directed to this
processor.

Illegal Procedure (IPR)

The attempted execution of an illegal instruction sequence or
modification generates an IPR fault. The attempted execution of a legal
Master mode instruction in the Slave mode causes a Command (CMD) fault.

The attempted execution of any of the unassigned instruction operation
codes generates an Illegal Procedure fault.

An IPR fault occurs for any register specification that contains a tag
defined as illegal.

6-4 DZ51-00

An IPR fault occurs when an attempt is made to repeat any multiword
instruction with the use of the RPT, RPD, or RPL instructionsl or to XEC
or XED? any multiword instruction. (An XEC instruction may point to a
multiword instruction; however, the descriptors for the multiword
instruction must be stored in memory immediately following the XEC
instruction.)

An IPR fault occurs for:

a. any attempt to address through a descriptor of type T
12-15 by any instruction

7, 10, or

b. any attempt to address through a descriptor of type T
by any instruction other than CLIMB

5 8, 9, or 11

c. any attempt to address through a descriptor of type T

1l or 3 by any
instruction other than CLIMB, LDDn, or STDn

d. any attempt to address through a descriptor of type T
or 11 for vectors by the LDD or CLIMB instruction

1, 3,5, 8,9,

An IPR fault occurs when a CLIMB instruction is passing parameters (E =
1, DRO = 0, 2, 4, or 6) and attempts to use a vector that has S and D
fields = 00, 1760 (octal) or 00, 1761 (octal) or V = 10 binary.

An IPR fault occurs when a LDDn instruction attempts to use a vector that
has S and D fields = 00, 1760 (octal), or V = 10 binary.

An IPR fault occurs when a LDPn instruction attempts to use an operand
that has S and D fields = 00, 1760 (octal).

An IPR fault occurs when the S and D fields of a CLIMB instruction have S
= 00 and D = 1761, or 1763 through 1767 (octal).

an IPR fault occurs if the LDDn or CLIMB instruction specifies a shrink
operation (normal or data stack) of a descriptor with T = 5 or 7-15.

An IPR fault occurs during a CLIMB instruction when a valid entry
descriptor does not refer to a standard descriptor (T = 0).

An IPR fault occurs if the OCLIMB version of the CLIMB instruction is
specified and the Safe Store Bypass Flag is zero.

An IPR fault occurs during a CLIMB instruction that either was initiated
by a fault or interrupt or encounters the special systems entry and the
descriptor accessed from the fixed location is mot T =5, 8, 9, or 11.

1. RPT, RPD, RPL execute in NS mode only.

2. XED executes in NS mode only.

6-5 Dz51-00

An IPR fault occurs during the CLIMB instruction when the descriptor
referenced by the S and D fields isnot T =20, 1, 2, 3, 8, 9, or 11.
Also, if this descriptor has T = 1 or 3, it must refer to a descriptor
with T =5, 8, 9, or 11 or the fault will occur.

An IPR fault occurs during a Load Safe Store Register (LDSS) instruction
if the descriptor to be loaded into the safe store register register
(SSR):

a. does not have T = 1 or 3

b. has T = 1, but does not have flag bits 20, 21, 27, and 28 = 1 and flag
bits 25 and 26 = 0

c. has T = 3 but does not have flag bits 20 and 21 = 1

d. has a base that is not modulo-2 words (bits 33-35 are not equal to
000)

An IPR fault occurs during the Load Data Stack Descriptor Register
(LDDSD) instruction if the descriptor to be loaded into the data stack
descriptor register (DSDR):

a. does not have T = 0

b. has a base that is not modulo-2 words (bits 33-35 are not egual to
000)

c. has a bound that is not 7 modulo-8 bytes (bits 17-19 are not equal to
111) '

d. has flag bit 22 (store) = 1

aAn IPR fault occurs during the Load Extended Address n (LDEAn)
instruction if the descriptor to be loaded does not have T = 4 or 6
(super descriptor).

An IPR fault occurs during the Load Argument Stack Register (LDAS) and
Load Parameter Segment Register (LDPS) instruction if the descriptor to
be loaded:

a. does not have T = 1

b. has a base that is not modulo-2 words (bits 33-35 are not egual to
000)

c. has flag bit 27 equal to 1 and a bound that is not 7 modulo-8 bytes
(bits 17-19 are not equal to 111)

An IPR fault occurs when an unconditional transfer (TRA, TSXn), or a
satisfied conditional transfer (TNzZ, TPL, etc.) attempts to load a
descriptor into the instruction segment register (ISR) that either does
not have type T = 0 or does not have a modulo-8 word base and bound. 1If
this fault is detected, the ISR is not changed.

6-6 Dz51-00

An IPR fault occurs in the CLIMB instruction when a standard descriptor
(T = 0) that is to become a new ISR descriptor does not have a modulo-8
word base and bound. This fault occurs before the domain register are
changed.

Program—-Generated Faults

The program-generated faults occur through some action under the control of
either the process itself or the operating system. There are four major
categories of program generated faults, each of which has several
subcategories:

1. Arithmetic Faults

d.

Overflow (OVF). An Arithmetic overflow, exponent overflow, or
exponent underflow has been generated. The generation of this fault
is inhibited when the overflow mask is in the masked state.
Subsequent clearing of the overflow mask to the unmasked state does
not generate this fault from previously set indicators. The Overflow
fault mask state does not affect the setting, testing, or storing of
indicators.

For the automatic fault on truncation, the procesor executes the
Overflow fault. Note that the overflow mask bit (indicator register)
does not affect automatic fault on truncation.

Divide Check (DIV). A Divide Check fault is generated when the actual
division cannot be carried out for one of the reasons specified below:

if the dividend equals -2**35 and the divisor
equals zero or minus 1

1) DIV instruction

2) DVF instruction - if the absolute value of the dividend is greater
than or egual to the absolute value of the

divisor or if the divisor equals zero

3) FDV, FDI, DFDV if the mantissa of the divisor equals
DFDI instr's. zero

4) DV2D, DV3D if the divisor equals zero or if the
instructions quotient is to be stored in scaled format and the
calculated length required for the quotient is
greater than 63.

2, Elapsed Time Interval Faults

a. Timer Runout (TRO). This fault is generated when the count in the

timer register reaches zero and cycles to minus 1. If the processor
is in Privileged Master mode, the recognition of this fault will be
delayed until the processor returns to the Master or Slave mode. This
delay does not inhibit the counting in the timer register. (Refer to
the Disconnect (DIS) instruction in Section 8 for the exception to
this action.)

6-7 DZ51-00

b.

C.

Lockup (LUF). The processor remains inhibited for greater than the
lockup time. Examples of this condition are the coding TRA * or the
continuous use of the inhibit bit.

Master mode lockup time is set at 128 milliseconds and Slave mode
lockup time is specified by the lockup fault register as seen in the
settings below. These times can be loaded in Privileged Master mode
using the Load Central Processor Register (LCPR) instruction with the
register specified in the tag field.

Settings of the Lockup fault register are as follows:

Bits 34-35 Milliseconds

00 8.0
01 16.0
10 32.0
11 64.0

Operation Not Completed (ONC) This fault is generated due to one of
the following conditions:

1) No system controller is attached to the processor for the address
specified.

2) Operation is not completed. An ONC fault can be generated by
disabling the SCU ports via program control while the program is
being executed.

NOTE: A ONC fault can also be generated by hardware malfunction.

3. Command Faults

a.

b.

Attempted execution of instructions requiring Privileged Master mode
vhen the processor is not in Privileged Master mode.

Attempted use of working space register zero in Slave mode, or attempt
access to working space zero when the processor is not in the
Privileged Master mode.

Used a vector in Master mode or Slave mode with an LDDn or LDPn
instruction that specifies S = 00 and D = 1761, 1763, or 1764 (octal)
(type change, DSDR or SSR).

A connect instruction addressed to a halted or disabled port. An
entry is made in the port's connect queue even though the port is
halted or disabled.

NOTES: 1. A fault or interrupt places the processor in the
Privileged Master mode for the execution of the "wired-in"
ICLIMB instruction.

2. If a CLIMB instruction specifies the special system entry

version (PMME), this fault is not checked for the access
cf the new ISR.

6-8 DzZ51-00

4, Bound (BND) This fault is generated when:

a‘
b.

C'

d.

No physical memory exists for the effective address.
An address is outside the segment boundary.

An attempt is made to use absolute addressing or dense paging with a
relative virtual address > 2**28 words.

An attempt is made to access the contents of an empty segment (flag
bit 27 = 0) of a type T = 0, 1, or 4 segment.

NOTES: 1. When "pushing" descriptors on the argument segment during
the execution of the SDRn or CLIMB instruction, the fault
does not occur if flag bit 27=0 but does occur if ASR
bound plus 8 bytes > 8192 bytes (2K words).

2. 1f this fault occurs for any version of the CLIMB
instruction, it is generated when the new descriptor for
the instruction segment register (ISR) is obtained.

An attempt is made to access the contents of a type T=0, 1, 2, or 3
segment and:

1) The upper or lower bound is exceeded.

2) The addition of the base and the effective address fields produces
a carry.

An attempt is made to access the contents of a type T = 4 or 6 segment
and: '

1) The bound field is exceeded.

2) The addition of either the location and effective address fields or
the location, effective address, and base fields produces a carry.

The E field equals 1 during the execution of the CLIMB instruction,
descriptor register O contains a T = 1 descriptor (parameters are
framed by descriptor register 0), and P+1 > DRO bound, or DRO flag bit
27 = 0 (bound not valid).

Boundary violations occur in the shrink operation as indicated in the
description of the LDDn instruction in Section 8, or when preparing
descriptors during a CLIMB instruction.

An attempt is made to execute a multiword instruction that specifies

6-bit or bit string data in a segment whose base or bound is not
modulo-2 words.

6-9 DZ51-00

Virtual Memory-Generated Faults

Virtual memory-generated faults are:

1. Security Fault, Class 1 (SCL1l) occurs as follows:

a.

Upon an attempt to obtain instructions via a seguential instruction
fetch, an unconditional transfer, a satisfied conditional transfer, or
a CLIMB instruction in one of the illegal processor modes specified in
Table 6-2.

Table 6-2. Processor Modes

Privileged Master |Slave Illegal

Bit Status Master Mode Mode Mode Combinations(1)
Master Mode bit in
indicator register (IR) ON ON OFF | ON | OFF| OFF| OFF
Privileged bit in
instruction segment
register ON OFF OFF | ON | ON | ON | OFF
Housekeeping bit 32 in
page table word (PTW)
for the instruction(2) ON ON | OFF| OFF | OFF| ON | OFF| ON

(1) Results in a Security Fault, Class 1
(2) The housekeeping bit is assumed to be ON when working space zero
is referenced and the processor addresses real memory directly.

(There is no page table from which to retrieve the housekeeping
bit.)

Upon attempt to modify a housekeeping page of a type T 0, 2, 4, or 6
segment in Master mode

Housekeeping pages of type T = 1 or 3 segments may be modified in
Master mode under the following conditions:

1) CLIMB instruction - Safe store and push parameters on the argument
stack

2) SDRn instruction - Push to the argument stack
3) STDn instruction - If instruction bit 29 =1 and DRm is T = 1 or 3

Upon an attempt to access or modify a housekeeping page of a type T =
0, 2, 2, 4, 6 segment in Slave mode.

6-10 DZ51-00

NOTE: When a CLIMB instruction is executed in Slave mode and it
invokes the special systems entry (PMME), the Security fault,
class 1 occurs if E =1, DRO = 0, 2, 4, or 6, and a housekeeping
page is accessed.

This condition cannot occur for the SDRn instruction but occurs for
the LDPn, LDDn, CLIMB, and STDn instructions as follows:

1) LDPn - operand accass

2) LDDn - vector access(es) and data stack clear

3) CLIMB - vector access(es) and the access for the second word of the
instruction If the system entry (PMME) is invoked, the fault
detection is not overwritten.

4) STDn - instruction bit 29 = 1; DRm type T = 0, 2, 4, or 6

d. Upon an attempt to access or alter a nonhousekeeping page of a type T
, 3, 8, 9, or 11 segment

This condition only occurs for the LDDn, LDPn, CLIMB, SDRn, and STDn
instructions. Any other reference to a type T = 1 or 3 segment causes
an IPR fault. The conditions under which the Security Fault, class 1,
can occur are:

LDDn or LDPn - accesses of descriptor from parameter segment
(s = 00, D < 1760), argument segment (S = 10), or
linkage segment (S = -1 or 11)
LDDn - instruction bit 28 =1, DRm is type T = 1 or 3
CLIMB - accesses to obtain the new LSR and ISR descriptors
- accesses for safe store or restore
- accesses to the parameter, argument, or linkage
segments for descriptors to be passed
- accesses to the argument segment to store parameters
STDn - instruction bit 29 = 1 and DRm is type T = 1 or 3
STRn - write to argument segment

2. Dynamic Linking Fault (DYN)

A Dynamic Linking fault occurs if the S, D field of a programmed CLIMB
(CALL, LTRAS, LTRAD) points to a dynamic linking descriptor (T = 5),

to an indirect descriptor (T = 1 or 3) which points to a dynamic llnklng
descriptor. Any attempt by any other instruction to address through a
dynamic linking descriptor causes an IPR fault.

6-11 DZ51-00

3. Missing Segment Fault (MSG)

A Missing Segment fault is generated when an attempt is made to access
memory using a segment descriptor whose flag bit 28 eguals zero. This
condition can occur only with descriptor types T = 0, 1, or 4.

4. Missing Working Space Fault (MWS)

A Missing Working Space fault is generated during virtual to real memory
mapping when the word obtained from the working space page table
directory has bit 20 (page table or section table missing/present) equal
to zero.

5. Missing Page Fault (MPG)

A Missing Page fault is generated during virtual to real memory mapping
when the page table word has bit 30 (page missing/present) equal to zero
When a Missing Page fault occurs, the processor stores an appropriate
value in FRTRY to indicate whether or not the fault is recoverable if
software supplies the missing page and returns to the program.

0

Missing Page fault is not recoverable

1 = Missing Page fault is recoverable

Word 5, bit 0 of the safe store frame is defined as the retry flag
(FRTRY). FRTRY has a defined value only when a Missing Page fault
occurs. The value of FRTRY is undefined for all other faults.

When a Missing Page fault occurs, the processor stores an appropriafe
value in FRTRY to indicate whether or not the fault is recoverable if
software supplies the missing page and returns to the program.

0

Missing Page fault is recoverable

1

Missing Page fault is not recoverable

Recoverable means that if the faulting instruction did not modify the
instruction being executed or any of its string descriptors, and if
software pages in the missing page updates the PTW and OCLIMBs, then
execution is resumed exactly as if the fault had not occurred, except for
the time delay.

The only reasons for which the processor sets FRTRY = 1 (not recoverable)
in the safe store frame are:

1) Occurrence of a_Missing Page fault while executing an RPT, RPD, or
RPL instructionl.

2) Occurrence of a Missing Page fault while executing an instruction
pointed to by an XEC or XED? instruction

1. RPT, RPD, RPL execute in NS mode only.
2. XED executes in NS mode only.

6-12 DzZ51-00

3) Occurrence of a Missing Page fault during an indirect and tally
operation

Before the EIS numeric, MVE, DTB, or BTD instructions execute, all pages
containing parts of the operands and pages in which the results are to be
stored must be in memory concurrently. Thus, in processing a Missing
Page fault on one of these instructions, the paging software should not
remove one of the pages referenced by the instruction; otherwise, upon
return to the instruction, another Missing Page fault will occur.

Security Fault, Class 2 (SCL2)

A security Fault, class 2, is generated for the following field
violations on descriptors and page table words:

a. In a segment descriptor, if an attempt is made to violate flag bits
20, 21, 22, or 25 (read, write, store, or execute) as follows:

1) An attempt is made to read any type of data (except instructions
for execution and for the ISR in the CLIMB instruction) from a
segment whose descriptor has flag bit 20 = 0 (read not allowed)

2) An attempt is made to alter (write) a segment whose flag bit 21 =
0, except when pushing descriptors on the argument stack during the
CLIMB or SDRn instructions

3) An attempt is made to store data into type T = 1 or 3 segments
using the STDn instruction and the descriptor being stored does not
have store permission (bit 18 of an entry descriptor with type T =
8, 9, or 11; bit 22 for all other descriptor types)

4) An attempt is made to execute a transfer instruction to a segment
in which the execute control flag (bit 25) does not egual 1. This
fault is also detected in the CLIMB instruction when the new ISR is
obtained before any registers have changed

b. In a page table word, if an attempt is made to violate flag bit 31
(write control)

A Security fault, class 2, is generated when bits 18 and 19 (working
space access control) of the page table directory word do not match bits
0 and 1 of the 36-bit relative virtual address (attempt to violate
working space).

This fault is also generated during the execution of the OCLIMB version

of the CLIMB instruction if the data being loaded from the safe store
frame is incorrect as follows:

a. The descriptor to be loaded into the ISR does not have the following
format:

1) Type field T = 0
2) Flag field bits 25, 27, and 28 = 1

6-13 Dz51-00

3) Base field 0 modulo-32 bytes

4) Bound field = 31 modulo-32 bytes

"b. The descriptors to be loaded into the PSR and ASR do not have the
following format:

1) Type field T - 1
2) Base = 0 modulo-8 bytes
3) Bound = 7 modulo-B bytes when flag bit 27 =1

c. The descriptor to be loaded into the LSR does not have the fdllowing
format:

1) Type field T = 1

2) Flags field bits 20, 23, 27, and 28 = 1, and bits 21, 24, 25, and
26 = 0.

3) Base field = 0 module-8 bytes
4) Bound field = 7 modulo-8 bytes

A Security Fault, class 2, is generated on intersegment transfers when
flag bit 25 = 0 in the descriptor for the target segment.

7. safe Store Stack Fault (SSSF)
The Safe Store Stack fault occurs to report to the operating system that
the safe store stack has only one or two 64-word or B0-word frames
remaining. Two different conditions cause a Safe Store fault.

a. If the safe store stack overflow occurs as a result of a CLIMB
instruction, two frames are stored:

1) The first frame is the normal calling domain frame without the
overflow flag set.

2) The second frame is set up to return control to the first
instruction of the called domain.

The overflow flag is set. Control passes to the fault processor via
the entry descriptor at real memory address 32-33 (octal).

6-14 DZ51-00

The hardware detects a safe store overflow condition by assuming a
worst case condition -- two full frames must remain available after a
normal, successful CLIMB, or overflow will be reported. Thus, if in
the NS mode the SSR bound —-

< 191 words + 3 bytes (allows three more 64-word frames)

safe store overflow occurs.

1f the processor is in ES mode, the formula for the SSR bound is —-
< 239 words + 3 bytes (allows three more 80-word frames)

b. While generating the safe store frame, the hardware updates the SSR
base and bound to determine whether a Safe Store Stack fault should be
indicated in the safe store frame together with the original fault or
interrupt. If the fault or interrupt exhausts the safe store stack,
the frame is stored with the safe store overflow flag set to 1 in word
5 bit 10. The original fault code or interrupt cell number is stored
in word 5, bits 12-16. Control is passed through the entry vector at
real memory address 32-33 (octal) to the fault processor. (The Safe
Store Stack fault is not executed; a separate safe store stack frame
is not stored.) The SSR points to the current stack frame (i.e., the
one just laid down). The bound includes the current frame plus any
available stack space.

NOTE: GCOS monitors the SSSF bit in each fault or interrupt frame in
the safe store stack and initiates appropriate action whenever
this bit is set to 1.

c. Refer to Figures 8-7 and 8-8 for a description of the safe store
stack.

Backup Fault

A Backup fault occurs if a fault or interrrupt occurs during the
initiation of a "wired-in" ICLIMB instruction, of if any fault occurs
during the execution of this ICLIMB.

A Backup fault also occurs if there is an SSR Bound fault. A succession
of Safe Store Stack faults without any increase in the safe store frame
bound, causes an SSR Bound fault.

A safe store frame is not laid down for the Backup fault. However, the
Backup fault flag is set in the CPU mode register. If another fault, of
any type, occurs with the Backup fault flag set, the CPU will halt. When
a Backup fault occurs, software is advised to initiate a memory dump.
Software is also responsible for resetting the Backup fault flag.

6-15 DZ51-00

Bardware—Generated Faults

The hardware generated faults generally occur because a failure occurred in the
hardware. Hardware generated faults are:

1. Operation Not Completed (ONC). This fault is generated because one of
the following conditions occurred:

a. The processor did not generate a memory operation within 1 to 2
milliseconds and is not executing the Delay Until Interrupt Signal
(DIS) instruction.

b. The system controller terminated a double-precision cycle.

c. When returning to an interrupted multiword instruction, incorrect data
is loaded into the Pointer and Length Registers.

2. Parity (PAR). This fault is generated when a parity error is detected in
any of the following:

a. Single- or double-word fetch. If the odd instruction contains a
parity error, the instruction counter retains the location of the even
instruction. '

b. Indirect word fetch. If a parity error exists in an indirect then
tally word in which the word is normally altered and replaced, the
contents of the memory location are unaffected.

c. Operand fetch. When a single-precision operand, C(Y), is requested,
the contents of the memory pair at Y and Y+1, where Y is even, or Y¥Y-1
and Y, where Y is odd, are read from memory. The system controller
does not report a parity error if it occurs in C(Y+l) or C(Y-1), but
restores the C(Y+l) or C(Y-1) with its parity bit unchanged.

d. On any instruction for which the C(Y) are taken from a memory location
(this includes the "to storage" instructions such as ASA and ANSA),
the processor operation is completed with the faulty operand before
entering the fault routing.

e. On data from the system controller
f. On data from the processor data bus

g. On zone-address-command (ZAC) lines in the system controller and
memory units

The generation of this fault is inhibited when the parity mask indicator
is in the masked state. Subsequent clearing of the parity mask to the
unmasked state does not generate this fault from a previously set parity
error indicator. The parity mask does not affect the setting, testing,
or storing of the parity error indicator.

6-16 DZ51-00

3. Execute Fault (EXF). An Execute fault is generated by the maintenance
interface and the command E/F (Execute Fault) that forces the fault.

MODE FAULTS

Privileged Master Mode Faults

When the processor is in Priviliged Master (nonabsolute addressing) mode, all
instructions must be fetched from housekeeping pages of type T = O segments.
An attempt to obtain an instruction from a nonhousekeeping page causes a
Security Fault, class 1. An exception applies for those instructions executed
by an XEC or XED!. Such instructions may be accessed from either housekeeping
or nonhousekeeping pages.

References to type T = 0, 2, 4, and 6 segments to access or alter data other
than instructions may be to either housekeeping or nonhousekeeping pages.
References to type T = 1 and 3 segments for descriptors must be to housekeeping
pages or a Security fault, class 1, is generated.

Master Mode Faults

When the processor is in Master mode, instructions may be fetched from
housekeeping or nonhousekeeping pages of type T = 0 segments; operands may be
fetched from housekeeping or nonhousekeeping pages of type T =0, 2, 4, or 6
segments. However, operands may not be stored on housekeeping pages (only
Privileged Master mode instructions may modify these housekeeping pages); any
attempt to modify a housekeeping page in Master mode causes a Security fault,
class 1.

The only instructions that may modify type T = 1 or 3 segments without
generating an IPR fault are the CLIMB (safe store and pushing parameters on the
argument stack), the SDRn, and the STDn instructions. For these operations,
housekeeping pages must be referenced or a Security fault, class 1, is
generated.

Slave Mode Faults

When the processor is in Slave mode, instructions must be fetched from
nonhousekeeping pages of type T = 0 segments. Attempt to obtain an instruction
from a housekeeping page results in a Security fault, class 1. Operands must
be fetched from or stored into nonhousekeeping pages of type T = 0, 2, 4, or 6
segments. Since descriptors in type T = 1 or 3 segments are not treated as
operands, they may be stored or fetched from housekeeping pages in Slave mode.
Thus, the SDRn and STDn instructions may store the contents of a DRn in a type
T = 1 or 3 segment, but the page must be a housekeeping page; otherwise, a
Security fault, class 1 is generated. Also, the LDDn, LDPn, and CLIMB
instructions may obtain descriptors from a type T = 1 or 3 segment, but the
page must be a housekeeping page; otherwise, a Security fault, class 1, is
generated.

1. XED executes in NS mode only.

6-17 DZ51-00

Any Mode Faults

Instructions that may refer to type T = 1 or 3 segments (LDPn, LDDn, SDRn,
STDn, and CLIMB) must refer to a housekeeping page when obtaining or storing
the identified descriptor or safe store data; otherwise, a Security fault,
class 1, is generated.

Privileged instructions (such as LDSS, LDAS, and STSS) that load descriptors
from type T = 0, 2, 4, or 6 segments into registers, or store descriptors from
registers into segments, do not reguire the housekeeping bit.

Nonprivileged instructions (such as STAS, STPS, and STDn) that store
descriptors from registers into T = 0, 2, 4, or 6 segments do not require the
housekeeping bit. (However, the STDn instruction may refer to either main
memory or descriptor memory.)

Nonprivileged instructions (such as STAS, STPS, and STDn) that store
descriptors from registers into T = 0, 2, 4, or 6 segments do not require the
housekeeping bit. (However, the STDn instruction may refer to either main
memory or descriptor memory.)

MI SCELLANEOUS FAULTS

Segment Descriptor Flag Faults

The flags field in a segment descriptor provides the operating system software
a procedure for assigning use attributes to the address space framed by the
segment descriptor. Once assigned by software, these attributes defined by the
flags field are hardware-enforced. The following is a discussion of the use of
the flags field and the manner in which faults are generated upon an attempt to
"violate" one of the flags. The definition of the flags field is described in
Section 3 "Memory Organization"”. -

1. Read/Write Permission Flags (bits 20-21). The read/write flags apply to
memory accesses for operands, descriptors, and indirect words from T = O,
1, 2, 3, 4, and 6 segments (obtaining instructions from a segment is
controlled by the execute flag). Thus, in preparing the operand address
for a read-from-memory instruction (e.g., LDA), the hardware checks the
read flag to determine whether or not a read from memory is allowed, the
hardware terminates the operation with a Security fault, class 2, and the
page accessed bit in the PTW is not set. In a similar manner, when
preparing the operand address for store-to-memory instructions (e.g.,
STA), the hardware checks the write flag to determine whether or not a
store operation is allowed in the segment; if not, a Security fault,
class 2, is generated, the page accessed and modified bits in the PTW are
not set, and the operand is not stored.

6-18 DZ51-00

Write permission is not needed for the SDRn instruction, for pushing
descriptors on the argument segment in the CLIMB instruction, or for the
STDn instruction when bit 29 = 1 and the descriptor in DRm has T = 1 or
3.

When a read-alter-rewrite (RAR) operation (e.g., AOS instruction) is
performed, the write flag is checked on the read cycle. Thus, if write
permission is not allowed, a Security fault, class 2, occurs before the
read portion is executed, preventing any change in the indicators.

All indirect operand address preparation requires that the segment have
read permission to obtain the indirect word. For an Indirect then Tally
operation, the segment must have both read and write permission; read
permission to obtain the indirect word and write permission to store. If
these permissions are not granted, a Security fault, class 2, is
generated.

The segment descriptor contained in the instruction segment register
(ISR) must have execute permission (see following description of execute
flag).

Read permission is not required to access a current instruction segment.
Thus, in preparing an operand address using the ISR (bit 29 of
instruction = 0 or, for multiword instruction, the AR bit of the MF field
= 0), a read-from-memory is always permitted independent of the read flag
(write flag must still be checked as described above for a store
operation). The execute flag overrides the read flag only when the
descriptor is in the ISR.

When an XEC or XED! instruction refers to its operand with bit 29 ON
(using some DRn), the operand descriptor in the DRn must provide read
permission (execute permission is not required).

2. Store By STDn Permission Flag (bit 22; or bit 18 of T =8, 9, and 11
descriptors). This flag is checked by the hardware only during the
execution of an STDn instruction that is to store a DRn ina T = 1 or 3
segment. An attempt to save a DRn in a T = 1 or 3 segment with the DRn
store flag bit = 0 causes a Security Fault, class 2.

3. Bit 23. This flag is undefined. The DPS 8000 does not support a bypass
cache flag. Instead, the two instructions Store A Conditional On Q
(STACQ) and Store A Conditional (STAC) should be used by software when
modifying PTWs. These instructions cause a read-lock/write—unlock
sequence from/to memory. Cache is bypassed; if a cache hit occurs and
the conditional test is satisfied, then the cache block is updated.
(Refer the individual descriptions of STACQ and STAC in Section 8.)

4. Execute Flag (bit 25). The execute flag determines whether instructions
from the segment may be executed. A segment that has execute permission
does not require read permission in order to execute instructions; to
execuge instructions encompasses reading them from memory (instruction
fetch).

1. XED executes in NS mode only.

6-19 DZ51-00

The execute flag is checked by the hardware before a new instruction
segment descriptor is loaded into the ISR during execution of the CLIMB
instruction or one of the transfer instructions that has bit 29 = 1.
Thus, if an attempt is made to load the ISR with a descriptor of type T =
0 that has flag bit 25 = 0 (no execute), a Security fault, class 2,
occurs.

5. Privileged Flag (bit 26). The privileged flag applies only to
instruction segments. To load the ISR with a descriptor of type T = 0
that has flag bit 26 = 1 (privileged), the Master mode indicator bit must
be ON (except during an OCLIMB, ICLIMB, PCLIMB, or GCLIMB instruction
that either invokes the special systems entry or is the result of a fault
or interrupt); otherwise, a Security fault, class 1, occurs. With the
processor executing in Privileged Master mode, operands and instructions
executed by an XEC or XED! may originate from nonprivileged segments.
When the processor is in Master mode or Slave mode, the instructions
executed by an XEC or XED may originate from a privileged segment; that
is, the hardware does not check the privileged bit of the segment from
which the XEC or XED instruction obtains the instructions to be executed.

6. Bound Valid Flag (bit 27). The bound valid flag specifies that the bound
field of the descriptor is valid (the descriptor describes a nonempty
segment). Any attempt to access an empty segment of type T =0, 1, or 4
(flag bit 27 = 0) results in a BND fault. The hardware does not allow
the ISR to be loaded with the descriptor in which the bound is not
valid. The bound valid flag has a somewhat different use with respect to
the ASR in that descriptors may be pushed on the argument stack when the
stack descriptor indicates not valid and ASR flag bit 27 is set to 1 by
the hardware (see the CLIMB and SDRn instructions in Section 8).

7. Available Segment Flag (bit 28). The available segment flag indicates
whether or not the segment is present in real memory (bit 28 = 1). Any
attempt to generate a memory address using a type T = 0, 1, or 4 segment
descriptor that has bit 28 = 0 (segment not availaable) causes a Missing
Segment fault. The hardware does not allow the ISR to be loaded with a
"missing" segment descriptor. For type T = 2, 3, or 6 descriptors, the
segment present bit is assumed to be 1 and the segment must be available.

Page Table Word Control Field Faults

Certain control field bits of the page table word (PTW) are monitored by the
hardware and may cause particular faults to occur. Each bit of the PTW control
field and associated faulting is discussed below (the PTW) format is described
in Section 5.

1. Processor Page Present/Missing Control Field (bit 30). Each time the
processor hardware fetches a PTW in mapping a virtual address to a real
address, control field bit 30 is checked. If bit 30 = 0 (page missing),
a Missing Page fault is generated; if bit 30 = 1 (page present), the
operation continues.

1. XED executes in NS mode only.

6-20 DZ51-00

2.

Write Control Field (bit 31). The PTW control field bit 31 provides for
controlling a memory write operation to the page level by processors and
IMX. Even though the segment containing the page may have flag field
write permission, writing (altering) the page may be denied at the page
level. Thus, a memory store (write) operation requires both segment
descriptor flag field write permission and PTW control field write
permission. If a PTW has write permission, but the segment descriptor
does not, the segment write condition takes precedence, causing a
Security fault, class 2.

The segment descriptor write flag is checked during operand address
preparation for a store-to-memory operation; if write permission is
denied, the instruction is terminated and the PTW write control field is
not checked.

Thus, when a store-to-memory operation proceeds to the point where the
PTW is obtained, PTW bit 31 is checked. If bit 31 = 1 (write
permission), the operation continues; if bit 31 = 0 (write denied), the
operation terminates with a Security fault, class 2.

Housekeeping Control Field (bit 32). (Processor only) - The PTW
housekeeping bit is used by the operating system to enable allocation in
page units of use attributes depending upon the processor mode.
(Allocations in the three processor modes are described below.) The
hardware checks the PTW housekeeping bit on all instruction fetches and
stores, and all segment descriptor fetches and stores. Instructions and
operands must be contained in a segment described with type T = 0, 2, 4,
6, 12, or 14 segment descriptor. The page may be either a housekeeping
or nonhousekeeping page. The segment descriptors must be contained in a
type T = 1 or 3 segment, and the page must be a housekeeping page.

a. Privileged Master Mode

When the processor is in Privileged Master mode, all instructions must
be fetched from housekeeping pages of type T = 0 segments. An attempt
to obtain an instruction from a nonhousekeeping page causes a Class 1
Security Fault. An exception applies for those instructions executed
by an XEC or XED. Fetching and storing of operands may be performed
for both housekeeping and nonhousekeeping pages.

References to a type T = 0, 2, 4, 6, 12, or 14 segment to access or
alter data other than instructions may be to either housekeeping or
-nonhousekeeping pages. The segment descriptors must be contained in a
type T = 1 or 3 segment and the page must be a housekeeping page or a
Class 1 Security Fault will be generated.

6-21 Dz51-00

b.

C.

Master Mode

When the processor is in Master mode, instructions may be fetched from
housekeeping or nonhousekeeping pages of type T = 0 segments; operands
may be fetched from housekeeping or nonhousekeeping pages of type T =
0, 2, 4, 6, 12 or 14 segment. However, operands may not be stored on
housekeeping pages (only Privileged Master mode instructions may
modifiy these housekeeping pages); any attempt to modify a
housekeeping page in Master mode causes a Class 1 Security Fault.

Because segment descriptors are not processed as operands, the SDRn

and STDn instructions may be used to store DRn content in type T = 1
or 3 segments in housekeeping pages. All segment descriptor segment
pages must be housekeeping pages or a Class 1 Security Fault occurs

and the instruction is terminated.

Slave Mode

When the processor is in Slave mode, instructions must be fetched from
nonhousekeeping pages of type T = 0 segments. Attempt to obtain an
instruction from a housekeeping page results in a Class Security
Fault. Operands must be fetched from or stored into nonhousekeeping
pages of type T = 0, 2, 4, 6, 12, or 14 segments. Since descriptors
in type T = 1 or 3 segments are not treated as operands, they may be
stored or fetched from housekeeping pages in Slave mode. Thus, the
SDRn and STDn instructions may store the contents of a DRn in a type T
= 1 or 3 segment. In this case, the page must be a housekeeping page
or a Class 1 Security Fault occurs. With the LDDn, LDPn, and CLIMB
instructions, segment descriptors may be obtained from a type T = 1 or
3 segment. In this case, the page must be a housekeeping page or a
Class 1 Security fault occurs.

All Modes

Instructions that may refer to type T = 1 or 3 segments (LDPn, LDDn,
SDRn STDn, and CLIMB) must refer to a housekeeping page when fetching
or storing the identified descriptor or safe store data; otherwise, a
Class 1 Security Fault is generated.

Privileged instructions (such as LDSS, LDAS, and STSS) that load
descriptors from type T = 0, 2, 4, 6, 12 or 14 segments into register,
or store descriptors from registers into segments, do not reguire that
the housekeeping bit be set ON.

Non privileged instructions (such as STAS, STPS, and STDn) that store
descriptors from registers into T = 0, 2, 4, 6, 12, or 14 segments
access normal memory areas and do not reguire the housekeeping bit.
The STDn instruction accesses both normal memory areas and memory
areas which contain segment descriptors.

6-22 DZ51-00

‘\

4. IMX Page Present/Missing Control Field (bit 33). This bit is not
monitored or changed by the processor hardware.

5. Page Modified Control Field (bit 34). Each time a processor performs a
write (store) on a page and bit 34 of the PTW = 0, the hardware sets bit
34 of the associated PTW = 1 to indicate that the page has been
modified. No fault is associated with bit 34.

6. Page Access Control Field (bit 35). Each time a page is accessed by a
processor (either read or write) and bit 35 of the PTW = 0, the hardware
sets PTW bit 35 = 1 to indicate that the page has been accessed. No
fault is associatd with bit 35.

INTERRUPT PROCEDURES

The following is intended as a brief overview of the DPS 8000 interrupt
procedures.

System Controller Interrupts

The SCU has an interrupt mask register and eight interrupt level queues. There
are eight mask bits, one bit for each interrupt level, plus one "all" mask

bit. The SCU maintains a queue for each interrupt level. The queue lengths
are fixed at 256 entries per level. The SCU "senses" the interrupt level field
of the received interrupt words to determine which queue to use and places the
interrupt words in the selected queue. Interrupt words are normally sent by
the IMX upon completion of an I/0 service. A CPU can also initiate an
interrupt.

The queueing scheme used by the SCU is based on a first-in first-out rule at
each interrupt level. The SCU processes the queue in response to the Read
Interrupt Word (RIW) instruction. Interrupt level queue zero has the highest
priority and seven the lowest.

The SCU sends an interrupt to all CPUs that are unmasked when there are entries
in the queue. The SCU fetches one queue entry per RIW request, starting with
the oldest entry of the highest priority interrupt level that is not masked.

When GCOS issues the RIW command it obtains the interrupt queue words. The CPU
receives each 2-word queue entry in the A and Q registers. With each RIW, GCOS
tests the CPU's A and Q registers to determine whether all unmasked interrupt
queue entries have been serviced.

6-23 DzZ51-00

Inward CLIMB Interrupts

An entry descriptoris "wired-in" to support the ICLIMB instruction for
interupts. The second word of this ICLIMB instruction has the following
parameters:

E bit - (no parameters)
C field
bit 18 - 0 (index register 0 is not changed)
bit 19 - Ignored. The Master mode bit of the indicator register is
set ON but no descriptors are prepared.
bit 20 - Unused
bit 21 - Ignored
bit 22-23 - 0 (ICLIMB version)

S,D fields - Ignored. If an entry descriptor is not found at a fixed
memory location, the processor generates a Backup fault.

(Refer to the CLIMB instruction format in Section 8.)

If an entry descriptor is not found at the fixed interrrupt vector location or
if another fault occurs (e.g., a parity error) while the processor is
attempting to CLIMB to the interrupt handler, the processor attempts to obtain
an entry descriptor from the Backup fault vector location. If this second
location does not contain an entry descriptor, the processor enters the HALT
state. If the second fault occurs prior to the transfer of control to the new
domain at the end of the ICLIMB, then the safe store frame will overlay the
original frame (with the same information except for fault code). If the
second fault occurs during the transfer of domains, such as a page fault when
obtaining the next instruction, then a second frame will be filled specifying
the new domain and the fault code of the type of fault that caused the backup
condition.

The processor is placed in the Privileged Master mode for the execution of the
"wired-in" ICLIMB instruction. Upon exiting the ICLIMB instruction, the
processor will remain in the Privileged Master mode if flag bit 26 of the new
instruction segment register (ISR) equals 1. If flag bit 26 of the new ISR
equals 0, the processor will cycle to Master mode.

Multiword Instruction Interrupts

If an interrupt occurs during a multiword instruction, the processor sets bit
30 of the indicator register to 1. If the entry descriptor is type T = 11, the
pointer and length registers are saved in the safe store frame. Indicator
register bit 30 is reset to zero (OFF), but is safe stored as a 1 (ON) in word
4,

6-24 DZ51-00

N

Eight 36-bit registers are used to store and load pointers for sending and
receiving addresses and field lengths, and for other control information when a
multiword instruction is interrupted.

IC VALUES STORED ON FAULTS AND INTERRUPTS

I1f the safe store bypass flag in the option register equals 0, a safe store is
executed for any fault or interrupt. A description of the safe store stack is
given in Figures 8-7 and 8-8.

The instruction is stored in word 2. Words 0,1 are defined as illustrated. 1In
word 5, bit 8 is not used, but bits 17-1B contain 00. Word 47 is used for the
timer register; word 5, bit 0 is for FRTRY; and words 48-51 contain
mid-instruction interrupt recovery data for firmware.

The classes of faults and interrupts found in the safe store stack frame

following a fault or interupt are described in Table 6-3. The designation of
the fault group priorities is given in Table 6-1.

6-25 DZ51-00

9¢-9

00-Tsza

Table 6-3. Classes Of Faults And Interrupts (DPS 80)

FAULT GROUP 11 = V
| — — INTERRUPT
TAULT 1 FAULT 2 FAULT 3 |FAGLT & | TAULT FAULT & |
SAFE STORE [FAULT ALL OTHERS] DURING DURING DURING DURING IN-LINE JINTER. T JINTER. ¥]PROGRAMMED
DATA GROUP 1 NOT IN 2-6] EIS TRANSFER]TRANSFER CLIMB INSTR. NOT DURING E1S|CLIMB '
IN CLIMB FETCH DURING EIS ‘
[WORDS 0-3 NFORMATION REQUIRED BY PROCESSOR FOR RESTART AFTER FAULT N/A
TCpp 17 1C OF FAULTING 1C OF TC OF FAULTING | T [TToF |
woflB~} UNDEFINED INSTRUCTION "TRANSFERRED INSTRUCTION COMPLETED |INSTR. CLIMB
TO" INSTR. INSTR. + 1 INSTR, + 2
iR T OR 0 0 1 0 T]
woRB 4
SEGID (1S) CURRENT 18 15 OF 15 PRIOR CURRENT 15
WORD 5 NEW INSTR. |TO CLIMB
DSAR, EWSN
RVA LAST VALUE OF DSAR: EWSN AND RVA CORRESPOND TO LAST SEGMENT ACCESSED
WORDS 6-7
1SR CURRENT TSR OF NEW JISR PRIOR CORRENT TSR PRIOR
WORDS 8-9 DOMAIN TO CLIMB TO CLIMB
ASR
WORDS 10-11
LSR CURRENT OF NEW PRIOR TO CURRENT PRIOR TO
WORDS 12-13 DOMAIN CLIMB CLIMB
PSR
WORDS 14-15
REGISTERS
WORDS 16-47 LAST VALUE OF REGISTERS
SAFE STORE
OF P L IF ENTRY DESCRIPTOR T=11
WORDS 48-49
EVEN INSTR IF 1C,,=0
1S FAULTING 1Cy4=0 1Cy4=0 CLIMB
INSTR. IF UNDEF INED N/A WAS EVEN
SAFE STORED
1C 1S
NOTE: In general, DPSB80 will not change sny register values on a faulting Instruction (including TSS or RET). The one

execption is a fault occurring on a transfer at the end of the CLIMB.

reflect the new domain.

In this case,

the safestore dzta will

The definition of the classes of faults and interrupts contained in Table 6-3

follows:

FAULT 1

|

FAULT 2

FAULT 3

FAULT 4

FAULT 5

FAULT 6

INTER 1

INTER 2

The effective
are not valid
not generated

A group II to V fault not coverec by FAULT 2 through FAULT 6,
including XECs and RPTsl. For XECs and RPTs, if a fault occurs
on the "to" instruction, the faulting instruction is the XEC or
RPT instruction

A group II to V fault caused by a multiword instruction

A group II to V fault that occurs while attempting to fetch
"transferred to” instructions resulting from a TRA, TSXn, TSS,
RET, or a satisfied conditional transfer

A group 11 to V fault that occurs while attempting to fetch
"transferred to" instructions resulting from a CLIMB instruction

A group II to V fault that occurs on a CLIMB instruction prior
to fetching "transferred to" instructions

A group II to V fault that occurs on an inline instruction fetch

An interrupt that occurs any time except during an interruptible
multiword instruction

An interrupt that occurs during an interruptible multiword
instruction

working space number (EWSN) and relative virtual address (RVA)
for MME and DRL instructions for faults and interrupts that are
by the virtual memory hardware, since the EWSN and RVA always

reflect the last segment accessed and the last indirect word for the fault
tag. If the virtual memory hardware detects the fault, the EWSN and RVA will
reflect the faulting segment that is referenced.

The instruction counter (IC) values stored in bits 0-17 of word 4 of the safe
store stack during faults and interrupts are described below:

1. Programmed CLIMB

IC of CLIMB + 2

2. Interrupt during multiword instruction or Connect, or Timer Runout faults
during multiword instruction

IC of the first word of the multiword instruction

3. Interrupt after completed multiword or single-word instruction

IC of the next instruction

1. RPT, RPD,

RPL execute in NS mode only.

6-27 - DZ51-00

Fault while attempting to fetch "transferred to" instructions resulting

from a CLIMB instruction

IC of "transferred to" instruction

Safestore stack fault on programmed CLIMB

I1C of "transferred to" instruction

Execute fault

1C undefined

Operation Not Completed, Lockup, or Bound faults
IC of faulting instruction + 1

Connect or Timer Runout faults after completed multiword or
instruction

IC of next instruction
Any other fault

IC of faulting instruction + 1

6-28

single-word

DZ51-00

SECTIOR 7

MACHINE INSTRUCTION FUNCTIONS

Many of the instructions available in the instruction repertoire are familiar
to experienced users of large-scale computers. However, additional
instructions have been provided to supply extended capability for character
handling, decision making, and advanced programming techniques involving list
processing. In addition, numerous instructions are provided that have
capabilities for processing and moving bytes, BCD characters, packed decimal
data, and bit strings, for vector operations, and for performing register to
register operations.

SINGLE-WORD INSTRUCTIONS

Single-word instructions provide for multiple variations by permitting the user
to specify not only the type of address modification desired, but also the
source and/or destination registers associated with particular operation

codes. For example, the operation field for a Transfer and Set Index Register
n (TSXn) instruction specifies the index in the operation field, leaving full
address modification capability free for destination calculation.

The processor performs efficient operations on 6-, 9-, 18-, 36—, and 72-bit
operands.

The following operations are performed by single-word instructions:

Address Register Instructions

Boolean Operations

Comparison Operations

Data Movement Instructions

Data Shifting Instructions

Effective Address to Register Instructions
Fixed-Point Arithmetic Instructions
Floating-Point Arithmetic Instructions
Quadruple-Precision Instructions
Master Mode Instructions

Miscellaneous Instructions

ES Mode Instructions

Special Processor Instructions
Transfer Instructions

00000000000 000O0

7-1 DZ51-00

Address Register Instructions

Address register instructions allow for loading and storing of address
registers. The number of bits loaded or stored depends upon whether the NS or
ES mode is being used. Alter address register instructions are used to
replace, increment, and decrement the content of the address register in word,
character, or bit. These instructions perform operations between registers;
they do not refer to memory. Special address register instructions, executable
only in the NS mode, use the address registers to manipulate the address
portion of numeric and alphanumeric operand descriptors. (Refer to the
instructions specifications in Section 8).

Boolean Operations

The logical operations AND, OR, and EXCLUSIVE OR are permitted between storage
and the index registers, A- and Q-registers, and the AQ-register.

Compari Operations

Comparison operations do not alter the contents of storage or the specified
register, but merely set or clear the appropriate indicators as the result
dictates. The compare instructions enable the user to make many types of
program decisions.

Fixed-point compare instructions permit comparison of absolute values,
(algebraic or characters); provide for tests of word fields; permit searches
for identical, selectable word fields; and permit searches for a value within
selectable limits.

Floating-point compare instructions are included for single- and
double-precision operations on absolute values and algebraic values. All
compare instructions are repeatable using the RPT, RPD, or RPL instructions.
(Repeat instructions execute in NS mode only.)

Data Movement Instructions

Character handling and manipulation are facilitated by "indirect and tally"
(IT) address modification and by instructions for directly storing selected
characters of the accumulator or quotient register. Instructions are also
included for directly loading the index registers from either memory or the A-
and Q-registers, directly storing any register into memory, and loading
registers with the two's complement (negative) of the contents of the memory
location specified.

7-2 DZ51-00

Data Shifting Instructions

Shifting is accomplished using an algorithm in which long shifts are executed
essentially as fast as short shifts. The A- and Q-registers can be shifted
individually or as one unit. The shift commands include right- or left-shift
arithmetic, right-shift logical, and left-shift rotate, (right-shift rotate is
omitted because the high speed of the left-shift rotate makes the right-shift
rotate unnecessary).

Effective Address To Register Instructionms

The Effective Address to Register instructions permit the effective address of
such an instruction to be placed in any of the index registers, in the
A-register, or in the Q-register. Thus, any effective address referenced
frequently in a program can be stored in a register and used without lost
processing time in repeatedly redeveloping the effective address. Furthermore,
the instructions provide the user with the capability of transferring data
among any of the index registers and to the A-register and the Q-register.

Fixed-Point Arithmetic Instructions

Instructions for both fractional and integral multiplication and division
afford the programmer freedom from scaling the results of such operations.
Fractional multiplications are performed with the multiplicand in the
A-register; the result appears in bit positions 0 through 70 of the
AQ-register, automatically scaled with the binary point to the right of
position 0. Integral multiplications are performed with the multiplicand in
the Q-register; the result appears in bit positions 1 through 71 of the
AQ-register, automatically scaled with the binary point to the right of
position 71.

Fractional divisions use the full range of the AQ-register for the dividend;
the quotient appears in the A-register with the remainder in the Q-register.
The binary point is automatically scaled to the right of position 0. Integral
divisions have the dividend in the Q-register, with the binary point to the
right of position 35. After division, the quotient is in the Q-register with
the binary point automatically placed to the right of position 35; the
remainder is in the A-register.

Normally, integer operations of divide and multiply occur in the Q-register,

and fractional operations of divide and multiply occur in the A-register. This
convention permits easy programming of fixed-point arithmetic operations.

7-3 DZ51-00

Instructions are provided for combining the contents of memory locations
directly with the contents of registers and storing the results in the same
locations, without recourse to separate store instructions. In all such cases,
the programmer can use the 18-bit indexing registers, X0 through X7 in the NS
mode, the 36-bit general indexing registers, GX0 through GX7 in the ES mode,
and the 36-bit A- and Q-registers. In effect, the Add and Subtract to Storage
instructions make arithmetic accumulators of all available memory locations.
In all such cases, the register contents are undisturbed.

Floating-Point Arithmetic Instructions

Floating-point operations can be performed on both single- and double-precision
data words; complete sets of data movement, arithmetic, and control
instructions are provided for use in both types of operations. Unless
otherwise specified by the programmer, the mantissas of all floating-point
operation results, except divides, are automatically normalized by the
hardware. In additions and subtractions, the operands are automatically
aligned.

Operations on floating-point numbers are performed using an extended register
composed of a 72-bit AQ-register, which holds the mantissa, and a separate
8-bit exponent register; operations on the exponent and mantissa are performed
by two separate adders. The existence of separate exponent and mantissa
registers and adders enables the programmer to efficiently intermix single- and
double-precision instructions.

The floating-point instruction repertoire includes two special divide
instructions: Floating Divide Inverted (FDI) and Double-Precision Floating
Divide Inverted (DFDI). These instructions cause the contents of the memory
location to be divided by the contents of the AQ-registers, the reciprocal of
other divide instructions in the repertoire. Thus, regardless of whether the
contents of the AQ-register must be a dividend or a divisor, the programmer can
always perform a division without recourse to wasteful data movement
operations.

Floating Negate, Normalize, Add to Exponent, and Single- and Double-Precision
Compare instructions further facilitate effective programming.

The slave mode instructions providing rounded floating-point results include:
FRD, DFRD, FSTR, and DFSTR.

The hexadecimal option may be used in floating-point operations to declare
hexadecimal constants, either explicitly or by default. (Refer to Hexadecimal
Floating-point Number in Section 2.)

Quadruple-Precision Floating-Point Instructions

Quadruple-precision floating-point instructions provide arithmetic operations
for which the exponents are handled as powers of 16. 1In these operations, the
AQ register and the operand register (LOR) handle mantissas and the E register
handles exponents. Results of these operations are automatically normalized.

7-4 DZ51-00

Privileged Master Mode Instructioms

The following conditions must be satisfied for execution of these instructions.
o The Master Mode bit in the Indicator Register is ON.
o The privileged bit in the Instruction Segment Register (ISR) is ON.

o The housekeeping bit in the page table word for the instruction is ON.
This bit is assumed as being ON in the Working Space 0 Addressing mode.

When these conditions are not met a Command fault or a Class 1 Security fault
occurs. (Refer to the instruction specifications in Section 8.)
Miscellaneous Instructions

This catagory includes instructions which perform operations such as

Binary-to-BCD conversion, programmed faults, repeat instructions, and
no-operation instructions (e.g., NOP).

Special Processor Instructions

Slave mode instructions available to provide the operating system with program
gating for multiprocessor configurations include: LDAC, LDQC, and SZNC. They
provide for clearing the referenced memory cell to zero after the contents are
transferred to the processor. The instruction STACQ provides for conditional
storing in the referenced memory cell, based on the comparison of Q with the
operand word.

Privileged master mode instructions providing system information and control
are LCPR, SCPR, RSCR, SSCR, STTA, and STTD.

MULTIWORD INSTRUCTIONS

Multiword instructions fall into six general categories:
O Alphanumeric instructions
o0 Numeric instructions
o Bif string instructions
o Conversion instructions

o Edited Move Instructions

7-5 DZ51-00

Alphanumeric Instructions

Alphanumeric instructions permit moving, transliteration, editing, and
comparing of alphanumeric data. The operands for these instructions (with the
exception of comparisons) can be -any combination of alphanumeric types (S-bit,
6-bit, or 4-bit) and are translated as part of the instruction execution to
permit the different types of character strings to be manipulated in the same
instruction.

Numeric Instructions

Numeric instructions include decimal arithmetic functions in addition to
moving, comparing, and editing of numeric data. Decimal add, subtract,
multiply, and divide operations are permitted. The numeric instructions can be-
2- or 3-operand instructions. The operands themselves can be either 9-bit or
4-bit packed decimal. The numbers employed as data can be floating-point with
leading sign, scaled fixed-point with trailing sign, leading sign, or no sign.
As with alphanumeric instructions, numeric instructions achieve these various
characteristics within a single multiword instruction (in conjunction with
associated operand descriptors).

Bit String Instructions
Bit string instructions allow two bit strings to be compared on a bit-by-bit

basis and Boolean operations to be performed to combine strings and set
indicators.

Conversion Instructions

Conversion instructions provide for decimal/binary and binary/decimal
conversion.

Edited Move Instructions

Both alphanumeric and numeric edited move instructions (MVE, MVNE, and MVNEX)
utilize micro operations (MOPS) to perform editing functions. The seguence of
micro-steps to be executed is contained in memory and is referenced by the
second operand descriptor of the edited move instructions.

Micro operations provide alphanumeric and numeric edited move instructions with
the capability to edit strings on a character-by-character or digit-by-digit
basis, or in concatenated series of characters and digits.

Micro operations are not altered by their execution; therefore, a sequence of
micro operations can be set to describe a data field and then can be used
repeatedly by the edit instructions. A single instruction can perform a
complicated edit function with great speed.

7-6 Dz51-00

The special edit characters are contained in a hardware edit table and table
entries are modified using micro operations designed for this purpose. Refer to
"Micro Operations For Edit Instructions MVE, MVNE, and MVNEX" later in this
section for detailed information. ~

Multiword Instruction Capabilities

The capabilities of the multiword instructions are given below.

1. Decimal Arithmetic Capability

a.

e.

Data types as packed decimal and direct ASCII (may be intermixed)

Decimal arithmetic operands of 1 to 63 digits in length (including
sign)

Numeric data as fixed-point and/or floating-point (intermixed fixed-
and floating-point data is allowed)

A full set of decimal arithmetic instructions (each is a multiword
instruction with either two or three descriptor words) including add,
subtract, multiply, and divide

All numeric instructions with a hardware rounding option

2. Data Manipulation Capability

Five native data modes - ASCII, BCD, packed decimal (numeric only), bit
string, and EBCDIC

3. Data Movement Capability

a.

b.

Alphanumeric movement from left or right with character-fill
Character moves from S-bit-byte or 8-bit-byte fields

Numeric move with fill and/or rounding and scale change

Bit string manipulation using any of 16 different Boolean operations

Radix conversion and transliteration instructions

4. Data Comparison Capability

a. Alphanumeric comparison with fill

b.

Numeric comparisons between fields of the same or different format and
character type

7-7 D251-00

c. Bit string comparisons with fill
d. string scan for a match of one or two characters
5. Second-Level Indexing Capability

Eight address registers providing for second-level indexing for all
instructions (including single-word instructions)

7-8 DZ51-00

A /

ADDRESS REGISTER INSTRUCTIONS ADDRESS REGISTER INSTRUCTIONS

ADDRESS REGISTER INSTRUCTIONS

This set of instructions provides the capability for using address registers to
manipulate the address portion of numeric and alphanumeric descriptors. If an
address register is to be used in address preparation, its usage is specified
in the instruction word. All single-word instructions, to which address
modification is applicable, have essentially the same machine instruction word
format which hardware interprets differently depending on whether the processor
is in the NS or the ES mode. (Refer to Section 5.)

000 11 22 2333 3
023 78 78 9012 5
LOCSYM ™ Td
OP CODE I|AR
AR# DI SPLACEMENT (y) TAG

Figure 7-1. Single-word Instruction With Address Modification

AR# - One of eight address registers (0-7)

LOCSYM - Represents either address of operand or displacement from a
base

DISPLACEMENT - (y) 15-bit displacement from the address register address
(two's complement: values from -16,384 to +16,383)

OP CODE - A 10-bit operation code field

1 - Program interrupt inhibit bit

AR - If bit 29 is 1, an address register is to be used and is

specified by bits 0, 1, and 2 of the y field. If bit 29 is
0, no address register is used.

TAG - Tag field that controls all other address modification. 1If
an address register is used on an instruction with indirect
addressing, it is applied only on the fetch of the indirect
word.

Tm - tag modifier
Td - tag designator

7-9 - DZ51-00

ADDRESS REGISTER INSTRUCTIONS ADDRESS REGISTER INSTRUCTIONS

Address Register Load

LARD 76én (1) Load Address Register n
LAREG 463 (1) Load Address Registers

Address Register Store

SARn 74n (1) Store Address Register n
SAREG 443 (1) Store Address Registers

Alter Address Register Contents

This set of instructions provides the capability for replacing, incrementing,
and decrementing the contents of an address register on either a word,
character, or bit address basis. The operation is register-to-register, with
no memory fetch involved.

The special instructions have the same instruction format:

0 0 00 11 2 22 3 33 3
0 2 34 78 7 89 0 12 5
AR# S y OP CODE I|AR MBZI DR

Figure 7-2. Alter Address Register Contents
AR# - Selects address register to be altered.
S - Sign bit. (Refer to Section 5 for differences betwen NS and ES
modes.)
y - A word displacement (no character or bit position included) used

along with the contents specified in the DR field to alter the
contents of the specified address register. Bit 3 provides negative
(two's complement) or positive word displacement.

OP CODE - 10-bit operation code field.
1 - Program interrupt inhibit bit.
AR - Address register bit.

7-10 Dz51-00

ADDRESS REGISTER INSTRUCTIONS ADDRESS REGISTER INSTRUCTIONS

I1f bit 28 = 1, the sum of the DR (in characters, words, or bits)
and the y field (in words) are added to or subtracted from the
contents of the AR specified in bits 0-2.

I1f bit 29 = 0, the above described sum or its two's complement is
loaded into the AR for addition or subtraction, respectively.

I1f the mnemonic is coded with X (for example, AWDX), bit 29 is
forced to zero.

MBZ - Bits 30-31 must be zero.

DR - Displacement register. Specifies which register contains the
displacement value. The register codes and register lengths are
the same as those used in MF fields except that IC modification is
illegal. (Refer to Table 5-2.) (Refer to "Multiword Modification
Field" in this section.).

The operations for adding a value to the contents of an address register
proceed as with effective operand address preparation from an operand
descriptor, with the final results being stored in the specified address
register.

The subtract operation differs only in that the contents of the register
specified by the code in the DR field are first added to the y field. This
result is then subtracted from the actual contents of the address register or
from the implied zero contents and the result is placed in the address
register. The codes for DU, DL, and IC are illegal for the DR field and cause
an IPR fault.

The indicators are unaffected by these instructions.

A4BD(X) 502 (1) Add 4-Bit Displacement to Address Register

A6BD(X) 501 (1) Add 6-Bit Displacement to Address Register

A9BD(X) 500 (1) Add 9-Bit Displacement to Address Register

ABD(X) 503 (1) Add Bit Displacement to Address Register

AWD(X) 507 (1) Add Word Displacement to Address Register

S4BD(X) = 522 (1) Subtract 4-Bit Displacement from Address
Register '

S6BD(X) 521 (1) Subtract 6-Bit Displacement from Address
Register

S9BD(X) 520 (1) Subtract S-Bit Displacement from Address
Register

SBD(X) 523 (1) Subtract Bit Displacement from Address Register

SWD(X) 527 (1) Subtract Word Displacement from Address Register

7-11 Dz51-00

ADDRESS REGISTER INSTRUCTIONS ADDRESS REGISTER INSTRUCTIONS

Special Address Register Instructions

Special instructions provide use of address registers to manipulate the address
portion of numeric and alphanumeric operand descriptors. These instructions
may be used only in the NS mode. If an attempt is made to execute these
instructions in the ES mode, an IPR fault occurs.

These special instructions have the following instruction format:

0 11 2 22 3 33 3
0 78 7. 89 0 12 5
y OP CODE I|AR TAG

Figure 7-3. Special Address Register Instructions

AARD 56n (1) Alphanumeric Descriptor to ARn
ARAD 54n (1) ARn to Alphanumeric Descriptor
ARNn 64n (1) ARn to Numeric Descriptor
NARn 66n (1) Numeric Descriptor to ARn

7-12 DZ51-00

BOOLEAN OPERATIONS BOOLEAN OPERATIONS

BOOLEAN OPERATION INSTRUCTIONS

The logical operations AND, OR, and EXCLUSIVE OR are permitted between storage
and the index registers, A- and Q-registers, and the AQ-register. These
instructions use the single-word instruction format.

Boolean Expressions

A Boolean expression is defined similarly to an algebraic expression except
that the operators *, /, +, and - are interpreted as Boolean operators. Two
types of boolean expressions are defined below:

1. The expression that appears in the variable field of a BOOL
pseudo-operation uses Boolean operators.

2. The expression that appears in the octal subfield of the variable field
of a VFD pseudo-operation uses Boolean operators.

Evaluation Of Boolean Expressions

A Boolean expression is evaluated following the same procedure used for an
algebraic expression except that the operators are interpreted as Boolean.

In a Boolean expression, the operators +, -, *, and / have Boolean meanings,
rather than their normal arithmetic meanings, as follows:

Operator Meaning Definition
+ OR, inclusive OR, 0+0=0
union 0+1=1

l1+0=1

l1+1=1

- EXCLUSIVE OR 0-0=0
symmetric difference 0-1=1

l1-0=1

1-1=20

7-13 DzZ51-00

BOOLEAN OPERATIONS BOOLEAN OPERATIONS

Operator Meaning Definition
* AND, intersection 0*0=0
0*1=0
1*0=0
1*x1=1
/ one's complement, /0 =1
complement, NOT /1 0

Although / is a unary operation involving only one term, by convention A/B is
taken to mean A*/B. This is not regarded as an error by the assembler. Thus,
the table for / as a two—term operation is:

0/0 =0
0/1 =0
1/0 = 1
171 =0

and other conventions are:

+A = A+ = A

-A=A- =A

*A = A% =0 (possible error, operand missing)

A/ = A/0 = A
Boolean AND
ANA 375 (0) AND to A-Register
ANAQ 377 (0) AND to AQ-Register
ANQ 376 (0) AND to Q-Register
ANSA 355 (0) AND to Storage from A-Register
ANSQ 356 (0) AND to Storage from Q-Register
ANSXn 34n (0) AND to Storage from Index Register n
ANXn 3én (0) AND to Index Register n

7-14 DZ51-00

BOOLEAN OPERATIONS
Boolean OR

ORA 275 (0)

ORAQ 277 (0)

ORQ 276 (0)

ORSA 255 (0)

ORSQ 256 (0)
ORSXn 24n (0)
ORXn 26n (0)
Boolean EXCLUSIVE OR
ERA 675 (0)

ERAQ 677 (0)

ERQ 676 (0)
ERSA 655 (0)

ERSQ 656 (0)
ERSXn 64n (0)
ERXn 66n (0)
Boolean COMPARATIVE AND
CANA 315 (0)
CANAQ 317 (0)

CANQ 316 (0)
CANXn 30n (0)
Boolean COMPARATIVE NOT AND
~CNAA 215 (0)
CNAAQ 217 (0)

CNAQ 216 (0)
CNAXn 20n (0)

BOOLEAN OPERATIONS

OR to A-Register

OR to AQ-Register

OR to QO-Register

OR to Storage from A-Register

OR to Storage from Q-Register

OR to Storage from Index Register n
OR to Index Register n

EXCLUSIVE OR
EXCLUSIVE OR

to
to

A-Register
AQ—-Register

EXCLUSIVE OR to Q-Register

EXCLUSIVE OR
EXCLUSIVE OR
EXCLUSIVE OR
EXCLUSIVE OR

to

Storage with A-Register
to Storage with Q-Register

to Storage with Index Register n

to

Comparative AND
Comparative AND
Comparative AND
Comparative AND

Comparative NOT
Comparative NOT
Comparative NOT
Comparative NOT

7-15

Index Register n

with A-Register
with AQ-Register
with O-Register

vith Index Register n

AND with A-Register
AND with AQ-Register
AND with Q-Register

AND with Index Register n

Dz51-00

FIXED POINT INSTRUCTIONS FIXED POINT INSTRUCTIONS

FIXED-POINT INSTRUCTIONS

Data Movement load

EAA 635 (0) Effective Address to A-Register

EAQ 636 (0) Effective Address to Q-Register

EAXn 62n (0) Effective Address to Index Register n
LCA 335 (0) Load Complement into A-Register

LCAQ 337 (0) Load Complement into AQ-Register

LCO 336 (0) Load Complement into Q-Register

LCXn 32n (0) Load Complement into Index Register n
LDA 235 (0) Load A-Register

LDAC 034 (0) Load A-Register and Clear

LDAQ 237 (0) Load AQ-Register

LDI 634 (0) Load Indicator Register

LDQ 236 (0) Load Q-Register

LDQC 032 (0) Load Q-Register and Clear

LDXn 22n (0) Load Index Register n from Upper

LREG 073 (0) Load Registers

LXLn 72n (0) Load Index Register n from Lower

Data Movement Store

SBAR 550 (0) Store Base Address Register

SREG 753 (0) Store Registers

STA 755 (0) Store A-Register

STAC 354(0) Store A Conditional

STACQ 654 (0) Store A Conditional on Q

STAQ 757 (0) Store AQ-Register

STBA 551 (0) Store 9-bit Bytes of A-Register
STBQ 552 (0) Store 9-bit Bytes of Q-Register
STC1 554 (0) Store Instruction Counter Plus 1
STC2 750 (0) Store Instruction Counter Plus 2
STCA 751 (0) Store 6-bit Characters of A-Register
STCQ 752 (0) Store 6-bit Characters of Q-Register
STI 754 (0) Store Indicator Register

STQ 756 (0) Store Q-Register

STT 454 (0) Store Timer Register

STXn 74n (0) Store Index Register n in Upper

STZ 450 (0) Store Zero

SXLn 44n (0) Store Index Register n in Lower

7-16 DZ51-00

FIXED-POINT INSTRUCTIONS FIXED-POINT INSTRUCTIONS

Data Movement Shift

ALR 775 (0) A-Register Left Rotate

ALS 735 (0) A-Register Left Shift

ARL 771 (0) A-Register Right Logical Shift
ARS 731 (0) A-Register Right Shift

LLR 777 (0) Long Left Rotate

LLS 737 (0) Long Left Shift

LRL 773 (0) Long Right Logical Shift

LRS 733 (0) Long Right Shift

OLR 776 (0) O-Register Left Rotate

QLS 736 (0) O-Register Left Shift

ORL 772 (0) O-Register Right Logical Shift
ORS 732 (0) O-Register Right Shift

Fixed-Point Addition

ADA 075 (0) Add to A-Register

ADAQ 077 (0) Add to AQ-Register

ADL 033 (0) Add Low to AQ-Register

ADLA 035 (0) Add Logical to A-Register

ADLAQ 037 (0) Add Logical to AQ-Register

ADLO 036 (0) Aadd Logical to Q-Register

ADLXn 02n (0) Add Logical to Index Register n
ADQ 076 (0) Add to Q-Register

ADXn 0én (0) Add to Index Register n

ACS 054 (0) Add 1 to Storage

ASA 055 (0) Add to Storage from A-Register
ASQ 056 (0) Add to Storage from Q-Register
ASXn 04n (0) Add to Storage from Index Register n
AWCA 071 (0) Add With Carry to A-Register
AWCQ 072 (0) Add With Carry to Q-Register

7-17 DZ51-00

FIXED-POINT INSTRUCTIONS FIXED-POINT INSTRUCTIONS

Fixed-Point Subtraction

SBA 175 (0) Subtract from A-Register

SBAQ 177 (0) Subtract from AQ-Register

SBLA 135 (0) Subtract Logical from A-Register
SBLAQ 137 (0) Subtract Logical from AQ-Register
SBLO 136 (0) Subtract Logical from Q-Register
SBLXn 12n (0) Subtract Logical from Index Register n
SBQ 176 (0) Subtract from Q-Register

SBXn lén (0) Subtract from Index Register n

SSA 155 (0) Subtract Stored from A-Register

SSQ 156 (0) Subtract Stored from Q-Register

SSXn 14n (0) Subtract Stored from Index Register n
SWCA 171 (0) Subtract With Carry from A-Register
SWCO 172 (0) Subtract With Carry from Q-Register

Fixed-Point Multiplication

MPF 401 (0) Multiply Fraction
MPY 402 (0) Multiply Integer

Fixed-Point Division

DIV 506 (0) Divide Integer
DVF 507 (0) Divide Fraction

7-18 DZ51-00

FIXED POINT INSTRUCTIONS FIXED POINT INSTRUCTIONS

Fixed-Point Comparison

Fixed-point compare instructions permit comparison of absolute values,
algebraic values, or characters; provide for test of word fields; permit
searches for identical, selectable word fields; and permit searches for a value
within selectable limits. Comparison instructions are repeatable using the
RPT, RPD, or RPL instruction. (Repeat instructions are executable in NS mode
only.)

CMG 405 (0) Compare Magnitude

CMK 211 (0) Compare Masked

CMPA 115 (0) Compare with A-Register

CMPAQ 117 (0) Compare with AQ-Register

CMPQ 116 (0) Compare with Q-Register

CMPXn 10n (0) Compare with Index Register n

CWL 111 (0) Compare with Limits

SZN 234 (0) Set Zero and Negative Indicators from Storage

SZNC 214 (0) Set Zero and Negative Indicators from Storage
and Clear

Pixed-Point Negate

NEG 531 (0) Negate (A-Register)
NEGL 533 (0) Negate Long (AQ-Register)

7-19 DZ51-00

FLOATING POINT INSTRUCTIONS FLOATING POINT INSTRUCTIONS

FLOATING-POINT INSTRUCTIONS

Data Movement Load

DFLD 433 (0) Double-Precision Floating Load

DFLP 532 (0) Double-Precision Floating Load Positive
FLD 431 (0) Floating Load

FLP 530 (0) Floating Load Positive

LDE 411 (0) Load Exponent Register

Data Movement Store

DFST 457 (0) Double-Precision Floating Store

DFSTR 472 (0) Double-Precision Floating Store Rounded
FST 455 (0) Floating Store

FSTR 470 (0) Floating Store Rounded

STE 456 (0) Store Exponent Register

Floating-Point Addition

ADE 415 (0) Add to Exponent Register

DFAD 477 (0) Double-Precision Floating Add (Normalized)
DUFA 437 (0) Double-Precision Floating Add (Unnormalized)
FAD 475 (0) Floating Add (Normalized)

UFA 435 (0) Floating Add (Unnormalized)

Floating-Point Subtraction

DFSB 577 (0) Double-Precision Floating Subtract

DFSBI 467 (0) Double-Precision Floating Subtract Inverted
DUFS 537 (0) Double-Precision Unnormalized Floating Subtract
FSB 575 (0) Floating Subtract

FSBI 465 (0) Floating Subtract Inverted

UFS 535 (0) Unnormalized Floating Subtract

UFTR 434 (0) Unnormalized Floating Truncate Fraction

7-20 DzZ51-00

FLOATING-POINT INSTRUCTIONS FLOATING-POINT INSTRUCTIONS

Floating-Point Multiplication

DFMP 463 (0) Double-Precision Floating Multiply

DUFM 423 (0) Double-Precision Unnormalized Floating Multiply
FMP 461 (0) Floating Multiply

UFM 421 (0) Unnormalized Floating Multiply

Floating-Point Division

DFDI 527 (0) Double-Precision Floating Divide Inverted
DFDV 567 (0) Double-Precision Floating Divide

FDI 525 (0) Floating Divide Inverted

FDV 565 (0) Floating Divide

Floating-Point Comparison

Floating-point compare instructions are used for single- and double-precision
operations on absolute values and algebraic values. Compare instructions are
repeatable using the RPT, RPD, or RPL instruction.

DFCMG 427 (0) Double-Precision Floating Compare Magnitude

DFCMP 517 (0) Double-Precision Floating Compare

FCMG 425 (0) Floating Compare Magnitude

FCMP 515 (0) Floating Compare

FSZN 430 (0) Floating Set Zero and Negative Indicators from
Storage

Floating-Point Negate

FNEG 513 (0) Floating Negate

Floating-Point Normalize

FNO 573 (0) Floating Normalize

Floating-Point Round

DFRD 473 (0) Double-Precision Floating Round
FRD 471 (0) Floating Round

Floating-Point Truncate Fraction

FTR 474 (0) Floating Truncate Fraction

7-21 DZ51-00

QUADRUPLE-PRECISION INSTRUCTIONS QUADRUPLE~PRECISION INSTRUCTIONS

QUADRUPLE-PRECISTON INSTRUCTIONS

The quadruple-precision instructions permit exponents to be handled as powers
of 16. The AQ register and LOR register handle the mantissas and the E
register handles the exponents. The results of these operations are
automatically normalized.

QFAD 476 (0) Quadruple-Precision Floating Add

QFLD 432 (0) Quadruple-Precision Floating Load

QFMP 462 (0) Quadruple-Precision Floading Multiply
QFSB 576 (0) Quadruple-Precision Floating Subtract
QFST 453 (0) Quadruple-Precision Floating Store

QFSTR 466 (0) Quadruple-Precision Floating Store Rounded
QSMP 460 (0) Quadruple-Precision Floating Multiply with

Double-Precision Operands

7-22 DZ51-00

TN

o ,/;

LTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS

MULTIWORD INSTRUCTIONS

The format and terms which are common to all multiword instructions are
described below.

Multiword Instruction Format

0 11 222333 3
0 78 789012 5
VARIABLE FIELD OP CODE I MF1
Data
Descr. DATA DESCRIPTOR 1
1
Data
Descr. DATA DESCRIPTOR 2
2
Data
Descr. DATA DESCRIPTOR 3
3
Figure 7-4. Multiword Instruction Format
Bits Description
0-17 Contains variable information for the executed instruction
function. The format of this field differs with each instruction.
When data descriptors 2 and 3 exist, the corresponding MF2 and MF3
are located in bits 11-17 and 1-8, respectively, of the variable
field to describe the address modification executed for the data
descriptors. Refer to the individual instruction specifications in
Section 8.
18-27 10-bit operation code
28 Interrupt inhibit bit
29-35 Modification field 1. Describes the address modification executed

for data descriptor 1.

Data descriptors (2 or 3) follow the basic instruction word. The number of
data descriptors is determined by each instruction. Data descriptors consist
of the operand descriptor or the indirect word which points to the operand

descriptor.

7-23 DZ51-00

MULTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS

MULTIWORD MODIFICATION FIELD
Each modification field (MF) contained in a multiword instruction is a 7-bit
field specifying address modification to be performed on the operand
descriptors. The modification field is interpreted as follows:

2 3 4 5 through 8 <-— bits (MF3)

11 12 13 14 through 17 <— bits (MF2)

29 30 31 32 through 35 <-— bits (MFl)

AR | RL | ID REG <—— subfield

1 1 1 4 <-—— number of bits
AR - Address Register Specifier

0- No address register used.

1- Bits 0-2 of the operand descriptor address field specify the
address register to be used in computing the effective address
of the operand. Bits 0 - 2 also specify the operand descriptor
register that defines the segment containing the operand.

RL - Register or Length

0- Operand length is specified in the N field (bits 32-35) of the
operand descriptor.

1- Length of operand is contained in the register specified by code
in the N field (bits 32-35) of the operand descriptor, in the
machine format of REG (the coding format is different).

ID - Indirect Operand Descriptor

0- The operand descriptor follows the instruction word in its
sequential memory location.

1- The operand descriptor location contains an indirect word that
points to the operand descriptor. Only one level of indirection
is allowed.

7-24 Dz51-00

RN

A

MULTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS

REG - Address modification register selection for R-type modification of
the operand descriptor address field. The REG codes are
approximately the same as the single-word modifications. 1In
addition, for indirect string length specification (RL = 1), the N
field codes are similar to the REG field. A comparison of these
codes is shown in Table 5-2.

Operand Descriptors And Indirect Words

The words following a multiword instruction word are either operand descriptors
or indirect words to the operand descriptors. The interpretation of the words
is performed according to the settings of the control bits in the associated
modification field (MF).

OPERAND DESCRIPTOR INDIRECT WORD FORMAT

An indirect pointer to an operand descriptor is interpreted as shown in Figure
7-5 (also see "Indirect Word" in Section 5):

0 00 11 2 2 3 33 3
0 23 78 8 9 012 5
AR# y AR| 00 | REG
Figure 7-5. Operand Descriptor Indirect Word Format

AR# - A 3-bit pointer register number

y - An 1B-bit main memory address or a 15-bit word offset

AR - Indirect via bit 29 flag that controls the interpretation of the y
field of the indirect pointer

REG - The address modifier for the y field

Alphanumeric Instructions

Alphanumeric instructions permit moving, transliteration, editing, and comparing
of alphanumeric data.

7-25 DZ51-00

MULTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS

ALPHANUMERIC OPERAND DESCRIPTOR FORMAT

For any operand of a multiword instruction that regquires alphanumeric data, the
operand descriptor is interpreted as shown In Figure 7-6 (also s=e
"Alphanumeric Operand Descriptors" in Section 5):

0 00 11 22 22 2 33 3
0 23 78 01 23 4 12 5
Y N (LENGTH)
CN TA |0
AR# DISPLACEMENT (y) ZEROS REG
18 3 2 1 8 4
Figure 7-6. Alphanumeric Operand Descriptor Format
AR# - A 3-bit address register number
Y - Location or displacement value
DISPLACEMENT- (y) An 18-bit main memory address or a 15-bit word offset
relative to the address register's content
CN - Character number. This field gives the character position within

the word at y of the first operand character. 1Its interpretation
depends on the data type (see TA below) of the operand. Table 7-1
shows the interpretation of the field. A digit in the table
indicates the corresponding character position (see Section 2 for
data formats). Invalid codes cause IPR faults.

7-26 DZ51-00

MULTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS

Table 7-1. Alphanumeric Character Number (CN) Codes

Data type
c(cN)

4-bit 6-bit S-bit
000 0 0 0
001 1 1 IPR
010 2 2 1
011 3 3 IPR
100 4 4 2
101 5 5 IPR
110 6 IPR 3
111 7 IPR IPR

- TA - Type alphanumeric. This is the data type code for the

operand. The interpretation of the field is shown in Table
7-2. The code shown as Invalid causes an IPR fault.

Table 7-2. Alphanumeric Data Type (TA) Codes

c(Ta) Data type

00 9-bit
01 6-bit
10 4-bit
11 IPR
N - Operand length. If RL = 0 in the corresponding MF, this

field contains the string length of the operand. (Refer to
Multiword Modification Field in this section.) If RL =1,
this field contains the code for a register holding the
operand string length (See "Register Codes", Table 5-2).

7-27 DzZ51-00

MULTIWORD INSTRUCTIONS

MULTIWORD INSTRUCTIONS

The alphanumeric operand descriptor is coded as follows:

1 8 16
{ADSC9} LOCSYM,CN,N,AM
{ADSC6} (braces indicate a choice)
{ADSC4}
where:
LOCSYM - An expression containing either the location of the data or
an offset from the base.
CN - Character number (see above)
N - Symbol or decimal value containing either length or a
register code
AM - Address register containing the base

ALPHANUMERIC COMPARE

CMPC
CMPCT
SCD
SCDR
SCM
SCMR
TCT
TCTR

106
166
120
121
124
125
164
165

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

ALPHANUMERIC MOVE

MLR
MRL
MVE
MVT

100
101
020
160

(1)
(1)
(1)
(1)

Compare Alphanumeric Character Strings
Compare Characters and Translate

Scan
Scan
Scan
Scan
Test
Test

Move
Move
Move
Move

Characters Double

Characters Double in Reverse

with Mask

with Mask in Reverse

Character and Translate

Character and Translate in Reverse

Alphanumeric Left to Right
Alphanumeric Right to Left
Alphanumeric Edited
Alphanumeric with Translation

Character Move To/From Register Instructions

Two instructions permit moves of one, two, three, or four 9-bit characters from
a memory location to a register or from a register to memory. An indirect word
cannot be used for the data descriptor of this instruction.

7-28 DZ51-00

“MULTIWORD INSTRUCTIONS LTIWORD INSTRUCTIONS

OPERAND DESCRIPTOR FOR CHARACTER MOVE INSTRUCTIONS

The word following the character move instruction word is the operand
descriptor which specifies the origin or destination of the move, indicates the
number of characters to be moved, and specifies whether 9-bit characters or
8-bit bytes are to be moved. This word is illustrated in Figure 7-7.

0 00 11 22 22 333 3
0 23 7 8 01 23 123 5
Y
CN |SE| B| O 0 L
AR# DISPLACEMENT (y)
3 15 31 1 9 4

Figure 7-7. Character Move Descriptor Format

The character move operand descriptor is created by entering a one-line pseudo
operation coded, SDSCn, following an MTR or MTM instruction. This descriptor
serves a similar purpose as operand descriptors used with other multiword
instructions. SDSCn creates a descriptor word to transfer 9-bit characters or
8-bit bytes for the MTR/MTM instruction depending upon the specification in n
as described below.

1 8 16

SDSCn LOCSYM,CN,L,SE, AM

vhere:

n - when = 9, B (see descriptor format above) is set to 0
indicating S-bit characters
when = 8, B is set to 1 indicating 8-bit bytes

LOCSYM - Address of word containing first character to be moved

CN - Character position of left end of operand within a word.
Must be 0-3.

L - Number of characters to be moved. Must be 0-4. Defaults to
0.

SE - State of enlargement for character positions. Applies to MTR
move only.

7-29 Dz51-00

MULTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS

AM - Optional address register mocification (AR#)

NOTE: Refer to specifications for MTR and MTM in Section 8.
The method of generating a start address for a character move by using the Y
field is the same as in other multiword instructions. However, A, Q,X0-X7 or
GX0-GX7 must be specified for REG modification when REG modification is used.
CHARACTER MOVE INSTRUCTION REPERTOIRE
MTM 365 (1) Move to Memory
MTR 361 (1) Move to Register

Numeric Instructions

The set of numeric instructions deals with sign and magnitude operands.
Floating-point decimal zero is represented as + 0 * 10**127. 1If any
computation is performed that would result in a zero representation other than
this, the hardware forces the zerc representation to this format, thus
preventing loss of data during decimal point alignment.

All numeric operations are limited to final results not to exceed 63 characters
(sign, digits, exponent). If any numeric move, compare, or calculation is
specified involving either a number with more than 63 characters or a final
product with more than 63 characters, the operation is performed as though €3
characters were specified and no fault occurs unless the specific description
of an instruction states that such a fault occurs and/or that operation does
not take place. -

All characters are carried internally as 4 bits. The upper 5 bits of any 9-bit
input character (TN = 0) are truncated. If a 9-bit output is specified, 00011
(ASCII numeric zone) is appended tc form the numeric digits; standard ASCII
plus minus characters (octal 053 and 055, respectively) are generated.

7-30 DzZ51-00

MULTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS

NUMERIC OPERAND DESCRIPTOR FORMAT

For any operand of a multiword instruction that requires numeric data, the
operand descriptor is interpreted as shown in Figure 7-8 (also see "Numeric
Operand Descriptors" in Section 5):

0 00 11 22 222 23 3
0 23 78 01 234 90 5
Y N (LENGTH)
CN |TN| S SF
or

AR# DI SPLACEMENT (y) SX REG

18 31 2 6 6

Figure 7-8. Numeric Operand Descriptor Format

AR# - A 3-bit address register number

Y - Location or displacement value

DISPLACEMENT - (y) An 18-bit main memory address or a 15-bit word offset
relative to the address register's content.

CN - Character number. This field gives the character position
within the word at y of the first operand digit. 1Its
interpretation depends on the data type (see TN below) of
the operand.

TN - Type numeric. This is the data type code for the operand.
The codes are:

c(T) Data Type
0 9-bit
1 4-bit
S - Sign and decimal type of data. The interpretation of the field

is shown in Table 7-3.

7-31 DZ51-00

MULTIWORD INSTRUCTIONS _ v MULTIWORD INSTRUCTIONS

SF

Table 7-3. Sign And Decimal Type (S) Codes

c(s) Sign and Decimal type
00 Floating-point, leading sign
01 Scaled fixed-point, leading sign
10 Scaled fixed-point, trailing sign
11 - Scaled fixed-point, unsigned

Sign and scaling

I1f TN = 0 (unpacked data)

00 leading sign, overpunched, fixed-point
01 1leading sign, separate, fixed-point

10 trailing sign, separate, fixed-point

11 trailing sign, overpunched, fixed-point

If T™N = 1, (packed data)

00 1leading sign, separate, floating point
01 1leading sign, separate, fixed-point

10 trailing sign, separate, fixed-point
11 no sign, fixed-point

(Refer to description of overpunched signs under MVNX in
Section 8.)

Scaling factor. This field contains the two's complement
value of the base 10 scaling factor(i.e., the value of m for
numbers represented as n * 10**m). The decimal point is
assumed to the right of the least significant digit of n.
Negative values of m move the decimal point to the left;
_positive values, to the right. The range of m is -32 to 31
treated as the powers of 10.

Operand length. If RL = 0 in MF, this field contains the
operand length in digits. If RL = 1, it contains the REG
code for the register holding the operand length and C(REG)
is treated as a 0 modulo 64 number.

7-32 DZ51-00

MULTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS

The numeric operand descriptor is coded as follows:

1 8

16

{NDSC9} LOCSYM,CN,N,S,SF,AM
{NDSC4}

where:

LOCSYM -
