
LARGE SYSTEMS

ASSEMBLY
INSTRUCTIONS

'C DPS8000

Bull •

SUBJECT

GCOS8

ASSEMBLY
INSTRUCTIONS

DPS8000

Description of the Assembly Instructions for the DPS 8000
Information System.

SOFTWARE SUPPORTED

GCOS 8 Software Release 2500

DATE

March 1987

ORDER NUMBER

DZ51-00

Worldwide
Infonnation
Systems

Bull ~

PREFACE

This manual contains information that enables the user to code programs in
symbolic machine language which is then translated into binary machine
instructions.

This manual is directed to users who are experienced in coding within the
environment of a large-scale computer installation. Considerable knowledge and
practical experience is required in the use of address modification with
indirection, hardware indicators, fault interrupts and recovery routines, macro
operations, pseudo-operations, and other features normally encountered in a
large computer with a flexible instruction repertoire under control of a master
executive program. It is assumed that the user is familiar with the two's
complement number system.

This manual includes the processor capabilities, modes of operation, detailed
descriptions of machine instructions, virtual memory addressing, paging, and
the representation of data. It should prove useful to programmers who are
responsible for analyzing conditions that cause system failures.

In this document, multiple vertical braces and brackets should be assumed to be a
single brace or bracket; for example:

{ }
{ }
{ }

represents { }
[]

and []
[]

represents []

BULL DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILlTY AND FITNESS FOR A
PARTICULAR PURPOSE AND MAKES NO EXPRESS WARRANTIES EXCEPI' AS MAY BE STATED
IN ITS WRITTEN AGREEMENT WITH AND FOR ITS CUSTOMER. IN NO EVENT IS BULL
LIABLE TO ANYONE FOR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES.

THE INFORMATION AND SPECIFICATIONS INTmS DOCUMENT ARE SUBJECT TO CHANGE
WITHOUT NOTICE. CONSULT YOUR BULL MARKETING REPRESENTATIVE FOR PRODUCT
OR SERVICEAVAILABILITY.

Copyright © Bull HN Information Systems Inc., 1987, 1990
All Rights Reserved

File No.: IV13, 1313

DZ51-OO

""~'

LISTING AND CORRECTING
DOCUMENTS

The Problem Analysis Solution System (PASS) data base is an online tool that provides direct
communications between Bull software development organizations and Bull customers.
Documentation-related transactions available to customers via PASS include those which:

• Generate a list of all software documents published for the current Software Release.

• Prepare Software Technical Action Requests (STARs) regarding documentation
discrepancies.

Logon procedures for these functions and procedures for using PASS can be obtained by contacting
the Bull Technical Assistance Center (TAC).

DOCUMENT LISTING
A list of all GeOS 8 System software documents published for this Software Release and available
through the Bull CSO Marketing and Sales Order Entry (telephone 1-800-343-6665) can be
displayed via the NEWS facility of PASS. The document lists are available via the PASS meeting
SWDOC_AV AILABILITY.

DOCUMENTATION CORRECTIONS
Customers can submit documentation error reports via the PASS online STAR Maker facility.
Responses to STARs, as well as other documentation changes, also are contained on PASS.
(Documentation corrections contained on PASS may apply to prior Software Releases as well as to
the current Software Release.)

In addition, corrections to documents will be entered on the PASS data base. Query PASS
periodically to determine if any corrections exist. Corrections documented on PASS, if applicable
to the next release of the software, will be incorporated in to the next update of the manual.

iii/iv DZ51-OO

/' "\

(

(

(

CDNTBN'l'S

SECTION 1 INTRODUCTION ••

Processor Features •••
Pipeline Architecture Of The DPS 8000 ••••••••••••••••••••••••••••••
Faults And Interrupts ••
Connect/Interrupt Mechanism ••
Online Processor Tests •••

Operator Modes •••••••••••••••••••••••••••••••••••
Processor Modes Of Operation •••••••••••••••••••
Non-Extended/Extended Modes ••••••••••••••••••••
Memory Addressing Modes ••••••••••••••••••••••••

Virtual Memory Paging ••••••••••••••••••••••••
Absolute Mode ••••••••••••••••••••••••••••••••

· ·
· · ·

Reserved Memory Space ••
Interval Timer •••

SECTION 2 REPRESENTATION OF DATA •••••••••••••••• • •••••••••••••• i ••••

Formats ••
position Numbering •••
The Machine Word •••
Character-Strings ••

Character Positions ••
Bit Positions ••

Li terals .••..•••..•..•••••••.••.••..••...•.••••••••••••••••.•••••••••
Binary Numbers •••

Fixed-Point Numbers ••
Floating-Point Numbers •••
Hexadecimal Floating-Point Numbers •••••••••••••••••••••••••••••••••
Quadruple-Precision Numbers ••
Normalized Binary Floating-Point Numbers •••••••••••••••••••••••••••
Binary Representation Of Fractional Values •••••••••••••••••••••••••

Decimal Numbers ••
Decimal Data Character Codes •••••••••••••••••••••••••••••••••••••••
Floating-Point Decimal Numbers •••••••••••••••••••••••••••••••••••••
Decimal Number Ranges ••

SECTION 3 MEMORY ORGANIZATION •••••••••••••••••••••••••••••••••••••••

Virtual Memory •••
Working Spaces •••
Page. Tables ••
:Domalns ••
Segments •••
Deser i ptors •••••••••••• ' ••

v

Page

1-1

1-1
1-2
1-2
1-3
1-4
1-4
1-4
1-6
1-7
1-7
1-8
1-8
1-8

2-1

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-5
2-5
2-6
2-7
2-8
2-8
2-9
2-10
2-11

3-1

3-1
3-2
3-2
3-3
3-4
3-6

DZ51-00

OOICi15lr.l"S (cent)

Standard Descriptor ••
Standard Descriptor With Working Space Number ••••••••••••••••••••
Supe:r Deser i ptor •••••••••••••.••••••••••••••••••••••••••••••••• ~ ...
Supe:r Descriptor With Working Space Number •••••••••••••••••••••••
Extended Descriptor ••
Extended De~criptor With Working Space Number ••••••••••••••••••••
Entry Descrlptor •••

o °nk° De 0 DyDamlC Ll lng scrlptor •••••••••••••••••••••••••••••••••••••••
Shrinking ••

SECTION 4 PROCESSOR ACCESSIBLE R~STERS ••••••••••••••••••••••••••••

Accumulator Register (A) •••
Quotient Register (Q) ••
Accumulator-Quotient Register (AQ) •••••••••••••••••••••••••••••••••••
EXponent Register (E) ••
Exponent-Accumulator-Quotient Register (EAQ) •••••••••••••••••••••••••
I..ow Operand Register (LOR) •••
Index Registers (xn) •••
General Index Registers (GXn) ••
Indicator Register (IR) ••
Timer Register (TR) ••
Instruction Counter (Ie) •••
Address Registers (ARn) ••
Linkage Segment Register (LSR) •••••••••••••••••••••••••••••••••••••••
Instruction Segment Register (ISR) •••••••••••••••••••••••••••••••••••
Segment Descriptor Registers (DRn) •••••••••••••••••••••••••••••••••••
Segment Identity Registers (SEG[Dn) ••••••••••••••••••••••••••••••••••
Instruction Segment Identity Register - S~D(IS) ••••••••••••••••••••
Pointer Registers (PR) •••
Option Register (OR) •••
calendar Clock Register (eCR) ••
Working Space Registers (WSRn) •••••••••••••••••••••••••••••••••••••••
safe Store Register (SSR) ••
Stack Control Register (SCR) •••
Argument Stack Register {ASR) ••
Parameter Segment Register (PSR) •••••••••••••••••••••••••••••••••••••
High Water Mark Register (HWMR) ••••••••••••••••••••••••••••••••••••••
Data Stack Descriptor Register (DSDR) ••••••••••••••••••••••••••••••••
Data Stack Address Register (DSAR) •••••••••••••••••••••••••••••••••••
Page Directory Base Register (PDBR) ••••••••••••••••••••••••••••••••••
O>U Moo.e Register (MR.) •••••.••
cache Mode Register (CMR), Lockup Fault Register (LUF} •••••••••••••••
Configuration Register (PORT ASSIGNMENT) (CR) ••••••••••••••••••••••••
Address Trap Register (ATR) ••
Virtual Address Trap Register (VATR) •••••••••••••••••••••••••••••••••

vi

", ,

Page

3-8
3-10
3-11
3-12
3-12
3-13
3-14
3-15
3-16

4-1

4-3
4-4
4-4
4-5
4-5
4-6
4-6
4-7
4-8
4-12
4-13
4-13
4-15 "- _/J

4-15
4-16
4-17
4-18
4-19
4-19
4-20
4-21
4-21
4-22
4-23
4-23
4-24
4-25
4-25
4-26
4-26
4-28
4-30
4-32
4-33

,
"

DZS1-00
/ "

(

CDlft'BIITS (cxm.t)

CPU Number Reg-ister (NR) ..•••.••••••.••••••••.••••••.•.•••.•••...•••.
Interrupt Mask Register (IMR) ••
CPU Fault Reg-ister (FR) •.•••••••••••••••••••••••••.•••••••••••••••••.
Extended Fault Register (EFR) ••••••••••.•..••.••••••.•••••.•••••.•••.
History Register (RR) ••..••••••••••••••.••••.•••••••••••••••••••••••.
Reserve Memory Base Register (RMBR) ••••••••••••••••••••••••••••••••••
SCU Fault Register (SCUFR) ••.
Syndrome Register (SYR) •••.••••••••••••••••••••.••••••••••••••••••••.
SCU Configuration Register (SCUCR) •••••••••••••••••••••••••••••••••••
SCU History Register <SCURR) •.•••••••••••••••••••••••.••••••.•••••••.
Memory Error Status Register (MSR) •••••••••••••••••••••••••••••••••••
Memory Identification Register (MID) •••••••••••••••••••••••••••••••••

SECTION 5 ADDRESS MODIFICATION AND DEVELOPMENT ••••••••••••••••••••••

Address Modification Features ••
Address Generation In The NS Mode ••••••••••••••••••••••••••••••••••••

Basic Modification .••••.•.••••.•••••.••••••.•.••.••••••••••••••••.•
Indirect Addressing ...•.•...••••.•.••••••.••.••••••.••••.•••••••...
Tag Field ... · .. .
Types Of Address Modification .••.•••••.••.•••..••••.••••.••.•.•.••.

Register (R) ••••.•.•.••.•.••••••••••••••••.•••••••••••••••••.•.••
Register Then Indirect (RI} ••••••••••••••••••••••••••••••••••••••
Indirect Then Register (IR} ••••••••••••••••••••••••••••••••••••••
Indirect Then Tally (IT) •••

Indirect Word Format ..•.•.•.•.•••••••..•.•••.••.•••••••••.•..•.
variations Under IT Modification •••••••••••••••••••••••••••••••

Address Modification Octal Codes •••••••••••••••••••••••••••••••••••
Address Modification Flowchart •••••••••••••••••••••••••••••••••••••
Floa.table Code•...•. .,.· ••...•..••..•••••••••.•••••••••.
Address Modification With Address Registers ••••••••••••••••••••••••

Single-Word Address Modification •••••••••••••••••••••••••••••••••
Multiword Address Modification •••••••••••••••••••••••••••••••••••
Multiword Modification Field •••••••••••••••••••••••••••••••••••••

Operand Deser i ptors•......••.•••.••.••••.••.•......
Bit String Operand Descriptor ••••••••••••••••••••••••••••••••••••
Alphanumeric Operand Descriptors •••••••••••••••••••••••••••••••••
Numeric Operand Descriptors ••••••••••••••••••••••••••••••••••••••
Indirect Word .•..•••••.•••.•••.•••••••.•••••••••••••••.••••.•••.•
Operand Descriptor Address Preparation •••••••••••••••••••••••••••

Bit String Address Preparation •••••••••••••••••••••••••••••••••
Alphanumeric/Numeric Address Preparation •••••••••••••••••••••••

Address Generation In The ES Mode ••••••••••••••••••••••••••••••••••••
Instruction Address Field And Register Formats •••••••••••••••••••••

Instruction Address Field ••
Address Modification With No AR Indicated ••••••••••••••••••••••
Address Modification With AR Indicated •••••••••••••••••••••••••
Tag Field Modification•....•.....•.......•.•.•••.••...•.•..

vii

Page

4-34
4-35
4-36
4-40
4-41
4-43
4-44
4-46
4-47
4-49
4-51
4-52

5-1

5-1
5-1
5-1
5-1
5-2
5-3
5-3
5-7
5-9
5-13
5-16
5-17
5-25
5-26
5-27
5-27
5-27
5-30
5-31
5-35
5-35
5-36
5-37
5-40
5-41
5-43
5-44
5-49
5-49
5-49
5-49
5-50
5-52

DZ51-00

Operand Descriptor Modification ••••••••••••••••••••••••••••••••
Address Development ••

Virtual Hemory Addressing ••
OJ)erand Ad.d.ress Proced.ure ••
Instruction Address Procedure ••••••••••••••••••••••••••••••••••••

Virtual Address Generation For NS Mode •••••••••••••••••••••••••••••
Standard Descriptor NS Mode ••••••••••••••••••••••••••••••••••••••
Super Descriptor NS Mode •••
Extended Segment Descriptor NS Mode ••••••••••••••••••••••••••••••

Virtual Address Generation For ES Mode ••••••••••••••
Standard Descriptor ES Mode ••••••••••••••••••••••••••••••••••••••
Extended Segment Descriptor ES Mode ••••••••••••••••••••••••••••••

Abs~lute Addressing Hode •••
Paglng •••

Address Translation Process ••••••••••••••••••••••••••••••••••••••
Page Table Directory Word Format •••••••••••••••••••••••••••••••••
Page Table Base Word Format ••••••••••••••••••••••••••••••••••••••
Page Table Word Format •••
Mapping The Virtual Address To A Real Address ••••••••••••••••••••
Dense Page Table •••
Locating The Page Table Directory Word •••••••••••••••••••••••••••
section Table ••
Associative Memory ••••••••••••••••••••••••••••••••• · ••••••••••••••
cache Memory •••

Address Truncation •••
Bounds Checking ••

Word And Double-Word Operations ••••••••••••••••••••••••••••••••••
Byte Operations ••
Bit Strings And Table Of Translate Instruction •••••••••••••••••••
Bound Check Eq'uations .. .

SECTION 6 FAULTS AND INTERRUP'l'S ••................
Description Of Faults And Interrupts •••••••••••••••••••••••••••••••••
Fault Procedures •••
Fault
Fault

Priority •••••••••••••••••••
Recognition ••••••••••••••••

....................................
Fault categories ••••••••••••••••••••••••• e· •••••••••••••••••••••••••••

Instruction-Generated Faults •••••••••••••••••••••••••••••••••••••••
Program-Generated Faults •••
Virtual Memory-Generated Faults ••••••••••••••••••••••••••••••••••••
Hardware-Generated Faults ••

Mocle Faul ts ••• e ••••••••••••••••

Privileged Master Mode Faults ••••••••••••••••••••••••••••••••••••••
Master Mode Faults •••
Slave Mode Faults ••
Any Mode Fa ul ts ••

Miscellaneous Faults •••
Segment Descriptor Flag Faults •••••••••••••••••••••••••••.•••••••••

viii

Page

5-55
5-57
5-57
5-58
5-59
5-59
5-60
5-61
5-63
5-64
5-64
5-65
5-67
5-68
5-68
5-68
5-69
5-70
5-71
5-72
5-72
5-75
5-79
5-82
5-83
5-83
5-84
5-85
5-85
5-85

6-1

6-1
6-1
6-2
6-2
6-4
6-4
6-7
6-10
6-16
6-17
6-17
6-17
6-17
6-18
6-18
6-18

Dz5l-00

(

CDHTBIftS (c:ont)

Page Table Word Control Field Faults •••••••••••••
I nterrupt Procedures •••

System Controller Interrupts •••••••••••••••••••••••••••••••••••••••
1 nward CLI MB Interrupts •••••••••••• ,.. ••••••••••••••••••••••••••••••
Multiword Instruction Interrupts •••••••••••••••••••••••••••••••••••

IC Values Stored On Faults And Interrupts ••••••••••••••••••••••••••••

SECTION 7 MACHINE INSTRUCTION FUNCTIONS ••••••••••••••••••••••••••••.

Single-Word Instructions •••
Address Register Instructions ••••••••••••••••••••••••••••••••••••••
Boolea.n Operations •••
ComJ)a.r ison Operations •••••••••••••••••• "........... •••••••••••••••••
Data Movement Instructions •••
Data Shifting Instructions •••
Effective Address To Register Instructions •••••••••••••••••••••••••
Fixed-Point Arithmetic Instructions ••••••••••••••••••••••••••••••••
Floating-Point Arithmetic Instructions •••••••••••••••••••••••••••••
Quadruple-Precision Floating-Point Instructions ••••••••••••••••••••
Privileged Master Mode Instructions ••••••••••••••••••••••••••••••••
Miscellaneous Instructions •••
Special Processor Instructions •••••••••••••••••••••••••••••••••••••

Multiword Instructions •••
Alphanumeric Instructions ••
Numeric Instructions •••
Bit String Instructions ••
Conversion Instructions ••
Edi ted. Move 1 nstruct ions •••
Multiword Instruction capabilities •••••••••••••••••••••••••••••••••

Address Register Instructions ••
Address Register I.,oa.d ••
Address Register Store •••
Alter Address Register Contents •••••••••••.••••••••••••••••••••••••
special Address Register Instructions ••••••••••••••••••••••••••••••

Boolean Operation Instructions •••••••••••••••••••••••••••••••••••••••
Boolean Expressions......................... • •••••••••••••••••
Evaluation Of Boolean Expressions ••••••••••••••••••••••••••••••••••
Boolean AND ••
Boolean OR ••••••••••••••••••••••••••••••••••
Bool ean EXCLUSI VB OR........ ••••••••••••••••
Boolean COMPAR.ATI VE AND ••
Boolean COMPAR.ATIVE NOT AND •••••••••••• : •••••••••••••••••••••••••••

Fixed-Point Instructions •••
Data Movement I.,oa.d •• o •••••••

Data Movement Store ••
Data Movement Shift ••
Fixed-Point Addition ••••••••••••••••••••••••
Fixed-Point Subtraction ••

ix

Page

6-20
6-23
6-23
6-24
6-24
6-25

7-1

7-1
7-2
7-2
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-5
7-5
7-5
7-5
7-6
7-6
7-6
7-6
7-6
7-7
7-9
7-10
7-10
7-10
7-12
7-13
7-13
7-13
7-14
7-15
7-15
7-15
7-15
7-16
7-16
7-16
7-17
7-17
7-18

DZ5l-00

CDlITBlI'l"S (amt)

F~xed-Po~nt M~l~i~lication .••...••...••••.•..•••••••• ~ •.•••.•••••••
Flxed-Polnt Dlvlslon •••
Fixed-Point Comparison •••
Fixed-Point Negate •••••••••••••••••••••••••••••• , ••••••••••••••••••

Floating-Point InstructioilS ••
Data Movement Load •••
Data Movement Store ••
Floating-Point Addition ••
Floating-Point Subtraction •••
Floating-Point Multiplication ••••••••••••••••••••••••••••••••••••••
Floating-Point Division ••
Floating-Point Comparison ••
Floating-Point Negate ••
Floating-Point Normalize •••
Floating-Point Round •••
Floating-Point Truncate Fraction •••••••••••••••••••••••••••••••••••

Quadruple-Precision Instructions •••••••••••••••••••••••••••••••••••••
Nul ti word Instructions •••••••••••••••••••••••••••••••• · •••••••••••••••

Multiword Instruction Format •••••••••••••••••••••••••••••••••••••••
Multiword Modification Field •••••••••••••••••••••••••••••••••••••

Operand Descriptors And Indirect Words •••••••••••••••••••••••••••••
Operand Descriptor Indirect Word Format ••••••••••••••••••••••••••

Alphanumeric Instructions ••
Alphanumeric Operand Descriptor Format •••••••••••••••••••••••••••
Alphanumeric Compare •••
Alphanumeric Move ••

Character Move To/From Register Instructions •••••••••••••••••••••••
Operand Descriptor For Character Move Instructions •••••••••••••••
Character Move Instruction Repertoire ••••••••••••••••••••••••••••

Numeric Instructions ••••••••••••••••••••••••••••••••• · ••••••••••••••
Numeric Operand Descriptor Format ••••••••••••••••••••••••••••••••
Numeric Compare ••
Numer i c Move •••

Bit String Instructions ••
Bit String Operand Descriptor Format •••••••••••••••••••••••••••••
B~t Str~ng Combine •••
BIt Strlng Compare •••
Bit String Set Indicators ••

Data Conversion Instructions •••••••••••••••••••••••••••••••••••••••
Arithmetic Instructions ••••••••••••••• ' ••••••••••••••••••••••••

Decimal
Decimal
Decimal
Decimal

Add it ion ••••••••••••••••••••.•••••••••••••••••••••••
Subtraction •••

1 '1' , M~ ~l~ lcatlon ••••••••••••••••••••••••••••••••••.•••
Dl V1Slon ••

.
Micro Operations For Edit Instructions MVE, MVNE, And MVNEX ••••••••••

Micro Operation Sequence ••••••••••••••••••.•••••••••••••••••••
Edit Insertion Tables •••
MVNE, MYE, And MVNEX Differences •••••••••••••••••••••••••••••••••••

x

,/

Page '--- .7

7-18
7-18
7-19
7-19
7-20
7-20
7-20
7-20
7-20
7-21
7-21
7-21
7-21
7-21
7-21
7-21
7-22
7-23
7-23
7-24
7-25
7-25
7-25
7-26
7-28
7-28
7-28
7-29
7-30
7-30
7-31
7-33
7-33
7-34
7-35
7-36
7-36
7-36
7-36
7-37
7-37
7-37
7-37
7-37
7-38
7-38
7-39
7-40

DZ5l-00

(

CDRTBHTS (amt)

Numer i c F.cl i t (MVNE AND MVNEX} ••••••••••••••••••••••••••••••••••••
Alphanumeric F.cli t (MVE) ••

Micro Operation Repertoire •••.••••.•.••.••••••••••••••••.••••••••••
Micro Operations Descriptions ••••••••••••••••••••••••••••••••••••••
Ecii t Flags•.....................•....•.......•........
Micro Operation Code Assignment Map ••••••••••••••••••••••••••••••••
Terminating Micro Operations •••••••••••••••••••••••••••••••••••••••

Virtual Memory Instructions ...•....•••..••••••••.•.•.•••...•....••••.
Descriptor Register Instructions •••••••••••••••••••••••••••••••••••
Pointer Register Instructions ••••••••••••••••••••••••••••••••••••••
Domain Transfer (ClJMB) •••••••••••••.•••••••••••••••••••••.••••••••

Privileged Instructions .••..••••.•.•.•.••.•••••••••••.••••.••.••.••••
Clear Associative Memory Pages •••••••••••••••••••••••••••••••••••
Clear Ce.che ••••••••••••••••••••••••••••••••••••• ~ ••••••••••••••••
Register I.oa.d ..•••••.•••••••••••.••••••••••••••••••••••••••••••••
Register Store •••••••••••••••.••••••••••••••••••••••••••••.•••.••
Memory Control ..••...•...••.•..••..••.•••••••••••••••......•.••••
System Control ••••••••••••••••••.••••••••••••••••••••••••••••••••

All Mcxle I nstruct ions •••.•••••••••••••.•••••••••••••••••.••••••••••••
ES Mc::x:ie I nstruct ions ••••••••••••••••••••••••••••.• ••••••••••••••••••••

Register-to-Register Instructions ••••••••••••••••••••••••••••••••••
RR Type Instruction Format •••••••••••••••••••••••••••••••••••••••
Movement And Arithmetic Instructions •••••••••••••••••••••••••••••
Shift Instructions .. .

Fixed-Point Instructions•......••...••••..••.••••....•••.••..•
Transfer Instructions •••••••••••••••••••••

Conditional Transfer ••••••••••••••••••••
Unconditional Transfer ••••••••••••••••••

Miscellaneous Instructions ••••••••••••••••

·
·

Option Register Instructions ••••••.••••••••••••••••••••••••••••••••
Binary-To-BCD Conversion ..•.•......•...•..•••.•••••••••••••..•••.••
Execute Instructions ••.•••.••••.••••.•••••••••••••••••••••••••••.••
Gray-To-Binary-Conversion •..•........••..•••••.•••••••••.••.•••..••
Programmed Faul t.
No Operation•.....•..•....••.. e • e .•••••••••••••••••

Repeat Instructions
Pointer And Length Instructions ••••••••••••••••••••••••••••••••••••

Coding Limitations ...••...•........•....••.••••..•••••••...•.••••..••

SECTION 8 MACHINE INSTRUCTION DESCRIPTIONS •••••••••••••••
Format Of Instruction Description ••••••••••••••••••••••••••••••••••••
Abbreviations And Symbols ••
Common Attributes Of Instructions ••••••••••••••••••••••••••••••••••••

Illegal Modification ••••••••••••••••••••
Parity Indicator

Instruction Word Formats ••••••••••••••••••
Single-Word Instructions ••••••••••••••••

xi

· ·
·

Page

7-40
7-41
7-41
7-42
7-42
7-57
7-57
7-58
7-58
7-58
7-58
7-59
7-59
7-59
7-59
7-60
7-60
7-60
7-61
7-62
7-62
7-62
7-64
7-65
7-65
7-66
7-66
7-66
7-67
7-67
7-67
7-67
7-67
7-67
7-68
7-68
7-68
7-69

8-1

8-1
8-3
8-7
8-7
8-7
8-7
8-7

DZ5l-00

CDliTBH'.L'S (cant)

Multiword Instructions .•.•.•••••••••••••••••.•••.•••••••••.•••..•••
Address Register Special Arithmetic Instructions •••••••••••••••••••
Character Move To/From Register Instructions •••••••••••••••••••••••
Register-te-Register Instructions ••••••••••••••••••••••••••••••••••

Instruction Repertoire .•••••••••••••••••••••••.•••.••••••••••••••.•••

APPENDIX A OPERATION CODE MAPS ••••••••••••••••••••••••••••••••••••••

APPENDIX B OBSOLETE INSTRUCTION CODES •••••••••••••••••••••••••••••••

APPENDIX C CHARACTER SETS •••
Unified Character Set ASClI SEQUENCE •••••••••••••••••••••••••••••
Unified Character Set EBCDIC Sequence ••••••••••••••••••••••••••••
Unified Character Set GBCD Sequence ••••••••••••••••••••••••••••••
Unified Character Set HBCD Sequence ••••••••••••••••••••••••••••••

I HDEX ••

I LLDS'l'RA"l'I OKS

Figure

3-1
3-2
3-3
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19

Domain Of Noncontiguous Segments •••••••••••••••••••••••••••••••
Layout Of Segments On Pages ••••••••••••••••••••••••••••••••••••
Shrunken Descriptor For Corresponding New Segment ••••••••••••••
Accumulator Register (A) Format ••••••••••••••••••••••••••••••••
Quotient Register <Q} Format •••••••••••••••••••••••••••••••••••
Accumulator-Quotient Register (AQ) Format ••••••••••••••••••••••
Exponent Register (E) Format •••••••••••••••••••••••••••••••••••
Exponent-Accumulator-Quotient Register (EAQ) Format ••••••••••••
Low Operand Register Format ••••••••••••••••••••••••••••••••••••
Index Register (Xn) Format •••••••••••••••••••••••••••••••••••••
General Index Registers (GXn) Format •••••••••••••••••••••••••••
Indicator Register (IR) Format •••••••••••••••••••••••••••••••••
Timer Register (TR) Format •••••••••••••••••••••••••••••••••••••
Instruction Counter (IC) Format ••••••••••••••••••••••••••••••••
Address Register (ARn) Format (NS Mode) ••••••••••••••••••••••••
Address Register (ARn) Format (ES Mode) ••••••••••••••••••••••••
Linkage Segment Register (LSR) Format ••••••••••••••••••••••••••
Instruction Segment Register (ISR) Format ••••••••••••••••••••••
Segment Identity Register (SEGIDn) Format ••••••••••••••••••••••
Instruction Segment Identity Register - SEGID(IS) Format •••••••
Option Register (OR) Format ••••••••••••••••••••••••••••••••••••
calendar Clock Register (CCR) Format •••••••••••••••••••••••••••

xii

Page

8-9
8-10
8-11
8-12
8-14

A-1

B-1

C-1
C-1
C-4
C-10
C-12

i-1

Page

3-3
3-5
3-16
4-3
4-4
4-4
4-5
4-5
4-6
4-6
4-7
4-8
4-12
4-13
4-13
4-14
4-15
4-15
4-17
4-18
4-19
4-20

DZ51-00

, / "
C'" ~/'

(

ILLUSTRATIOIfS (cont)

Figure

4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13

5-14
5-15

5-16
5-17
5-18
5-19
5-20
5-21
5-22

Working Space Register (WSRn) Format •••••••••••••••••••••••••••
safe Store Register (SSR) Format ••••• ~ •••••••••••••••••••••••••
Argument Stack Register (ASR) Format •••••••••••••••••••••••••••
Parameter Segment Register (PSR) Format ••••••••••••••••••••••••
High Water Mark Register (HWMR) Format •••••••••••••••••••••••••
Data Stack Descriptor Register (DSDR) Format •••••••••••••••••••
Data Stack Address Register (DSAR) Format ••••••••••••••••••••••
Page Directory Base Register (PDBR) Format •••••••••••••••••••••
CPU Mode Register (MR) Format ••••••••••••••••••••••••••••••••••
cache Mode Register (CMR), Lockup Fault Register Format (LUF) ••
Configuration Register (Port Assignment) (CR) •••••••••••••••••
Address Trap Register (ATR) Format •••••••••••••••••••••••••••••
Virtual Address Trap Register (VATR) Format ••••••••••••••••••••
CPU Number Register (NR) Format ••••••••••••••••••••••••••••••••
Interrupt Mask Register (IMR) Format •••••••••••••••••••••••••••
Fault Register (FR) Format •••••••••••••••••••••••••••••••••••••
Extended Fault Register (EFR) Format •••••••••••••••••••••••••••
History Register (HR) Format •••••••••••••••••••••••••••••••••••
Reserve Memory Base Register (RMBR) Format •••••••••••••••••••••
System Control Unit Fault Register (SCUFR) Format ••••••••••••••
Syndrome Register (SYR) Format •••••••••••••••••••••••••••••••••
SCU Configuration Register (SCUCR) Format ••••••••••••••••••••••
SCU History Register (SCUHR) Format ••••••••••••••••••••••••••••
Memory Error Status Register Format ••••••••••••••••••••••••••••
Memory Identification Register (MID) •••••••••••••••••••••••••••
Indirect Word Format •••
Address Modification Flowchart •••••••••••••••••••••••••••••••••
Single-Word Instruction Format •••••••••••••••••••••••••••••••••
Address Preparation For Single-Word Instruction ••••••••••••••••
Multiword Instruction Format •• · •••••••••••••••••••••••••••••••••
Bit String Operand Descriptor Format •••••••••••••••••••••••••••
Alphanumeric Operand Descriptor Format •••••••••••••••••••••••••
Numeric Operand Descriptor Format ••••••••••••••••••••••••••••••
Indirect Word Format •••
Flowchart For Operand Descriptor Address Preparation •••••••••••
Virtual Address Generation Using Standard Descriptor (NS Mode).
Virtual Address Generation Using Super Descriptor (NS Mode) ••••
Virtual Address Generation Using Extended Segment Des·criptor
(NS Mode) ••
Virtual Address Generation Using Standard Descriptor (ES Mode).
Virtual Address Generation Using Extended Segment Descriptor
(ES ~ode) ••
Effective Absolute Address •••••••••••••••••••••••••••••••••••••
Page Table Directory Word (PTDW) Format ••••••••••••••••••••••••
Page Table Base Word (PBW) Format ••••••••••••••••••••••••••••••
Page Table Word (PTW) Format •••••••••••••••••••••••••••••••••••
Virtual Address ••
Address Mapping Using A Dense Page Table •••••••••••••••••••••••
PTDW Address ••.••••

xiii

Page

4-21
4-21
4-23
4-23
4-24
4-25
4-25
4-26
4-26
4-28
4-30
4-32
4-33
4-34
4-35
4-36
4-40
4-41
4-43
4-44
4-46
4-47
4-49
4-51
4-52
5-16
5-26
5-28
5-29
5-30
5-35
5-36
5-37
5-40
5-42
5-60
5-62

5-63
5-65

5-66
5-67
5-68
5-69
5-70
5-72
5-73
5-73

DZ51-00

I LLUS'l'RATI OBS (cant)

Figure

5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8

Table

1-1
2-1
2-2
4.-1
4-2
4-3
5-1
5-2
5-3
6-1

P'I'W Address •••••••.••••.••••••••••••.•••••••••••••••••••••••••.
Word Address ..•••••••.••••••••••••••.••••.••••••••••••••••••••.
Virtual Address ••
Address Napping Using A Section Table ••••••••••••••••••••••••••
PBW Address ••.•••••••••••
P'I'W Address •••.
Word Address ••••••••••••••••••••••••••••••••••••••. e ••••••••••••

Page Table Word Associative Memory (PTWAM) Format ••••••••••••••
Associative Memory Directory Word ••••••••••••••••••••••••••••••
cache Directory Word ...•••••••••••••.••.•••••••••••••••••••••••
Single-word Instruction With Address Modification ••••••••••••••
Alter Address Register COntents ••••••••••••••••••••••••••••••••
Special Address Register Instructions ••••••••••••••••••••••••••
Multiword Instruction Format •••••••••••••••••••••••••••••••••••
Operand Descriptor Indirect Word Format ••••••••••••••••••••••••
Alphanumeric Operand Descriptor Format •••••••••••••••••••••••••
Character Move Descriptor Format •••••••••••••••••••••••••••••••
Numeric Operand Descriptor Format ••••••••••••••••••••••••••••••
Bit String Operand Descriptor Format •••••••••••••••••••••••••••
Micro Operation (MOP) Character Format •••••••••••••••••••••••••
Single-Word Instruction Format •••••••••••••••••••••••••••••••••
Multiword Instruction Format •••••••••••••••••••••••••••••••••••
Address Register Special Arithmetic Instruction Format •••••••••
Character Move To/From Register Instruction Format •••••••••••••
Register To Register Instruction Format ••••••••••••••••••••••••
Standard I/O Mailbox ••••••••••••••••.••••.•••••••••••••••••••.•
Safe Store Stack Format
Safe Store Stack Format

NS Mode ••••.•••••••••••••.•••••••••.•
ES Mode •••.•.••.•••••••••.••••.••••••

TABLES

Status Of Processor Mode Determinants ••••••••••••••••••••••••••
Ranges Of Fixed-Point Numbers ••••••••••••••••••••••••••••••••••
Ranges Of Binary Floating-Point Numbers ••••••••••••••••••••••••
Processor Accessible Registers •••••••••••••••••••••••••••••••••
System Controller Illegal Action Codes •••••••••••••••••••••••••
SOurce Of Fault Register Errors ••••••••••••••••••••••••••••••••
Address Modification Octal Codes •••••••••••••••••••••••••••••••
Register Codes ..••...•••.•..••••.•••.•.••..••.••••••••••••••..•
Bound Check Equations .••.••..•••••••.••..•.••••••••..••••••••••
Processor Faults By Fault Code •••••••••••••••••••••••••••••••••

xiv

Page

5-74
5-75
5-75
5-76
5-77
5-78
5-78
5-79
5-80
5-82
7-9
7-10
7-12
7-23
7-25
7-26
7-29
7-31
7-35
7-38
8-7
8-9
8-10
8-11
8-12
8-95
8-107
8-108

Page

1-5
2-4
2-7
4-2
4-38
4-39
5-25
5-33
5-86
6-3

DZ51-00

/

(

(

Table

6-2
6-3
7-1
7-2
7-3
7-4
7-5
8-1
8-2
A-I
A-2

"l'ABLBS (amt)

Processor Modes •••••.•..••••••.••••••.••.•.•••••••.••••••.•••••
Classes Of Faults And Interrupts (DPS 8000) ••••••••••••••••••••
Alphanumeric Character Number (CN) Codes •••••••••••••••••••••••
Alphanumeric Data Type (TA) Codes ••••••••••••••••••••••••••••••
Sign And Decimal Type (S) Codes ••••••••••••••••••••••••••••••••
Default Edit Insertion Table Characters For MVE And MVNX •••••••
Edit Insertion Table Entries For MVNEX •••••••••••••••••••••••••
Binary-To-BCD Conversion Constants •••••••••••••••••••••••••••••
Character Codes For ASCII And EBCDIC Overpunched Signs •••••••••
Operation Code Map (Bit 27 = 0) ••••••••••••••••••••••••••••••••
Operation Code Map (Bit 27 = I} ..•..•.......•.•....•..•...•..•.

xv

------- - -------

Page

6-10
6-26
7-27
7-27
7-32
7-39
7-40
8-78
8-398
A-2
A-4

DZ5l-00

(

(

(

SPa'lOIi 1

I lI"1'ROOOC'.rI 011

This manual contains a set of machine instructions used on Honeywell Bull
hardware and operating systems. The systems are highly modular, allowing
system configuration to be matched to the work load mix. This section
describes the essential characteristics of the central processors for these
systems.

Each processor module in the system has full program execution capability. The
processors conduct all actual computational processing (data movement,
arithmetic, logic, comparison, and control operations) within the information
system. The processor communicates only with the system controller (DPS 8000:
SCU, System Control Unit) and associated memory. The processors contain several
special features that make significant contributions to multiprogramming, high
throughput, and rapid turna~ound. These features are under the control of the
operating system which maintains automatic supervision and complete control of
the multiprogramming/multiprocessing environment.

PROCFSSOR FEATURES

A processor contains the following general features:

1. Memory protection to place access restrictions on specified segments

2. capability to interrupt program execution in response to an external
signal (e.g., I/O termination), to save processor status and to restore
the status at a later time without loss of program continuity

3. capability to fetch instructions and to buffer instructions

4. A four-stage pipelined instruction development for greater performance

5. Fully interlaced store units addressable by a given SCU

6. Ability to hold recently referenced operands and instructions in a 64K
high-speed cache memory

7. An Extended (ES) mode that uses 36-bit addressing includes a set of
general register-to-register instructions

8. Real memory configurations of up to 256 megawords are supported.

1-1 DZSI-OO

9. Quad-precision arithmetic operations for which the exponents are handled
as powers of 16

Pipeline Architecture Of 1'he DPS BOOO

The four-stage pipeline processor consists of the following cycles:.

A cycle: Effective address calculation and virtual address calculation are
performed

V cycle: Virtual address to real address translation and bound checking,
access checking (read, write permission, etc.) are performed

C cycle: Memory is accessed (cache) using the real memory addresss

E cycle: Instruction is executed by firmware control

One instruction execution completes via four cycles. The maximum instruction
rate is attained when the processor is executing basic instructions (one memory
access and one execution cycle). Because the processor operates as a
four-stage pipeline, a new instruction can be issued before the prior one is
completed, thereby reducing the effective execution time.

Faults And Interrupts

The processor detects illegal instruction usages, faulty communication with
main memory, programmed faults, certain external events, and arithmetic
faults. Many of the processor fault conditions are deliberately caused by the
software and do not necessarily involve error conditions. The processor
communicates with the other system modules (1/0 processors and other
processors) by setting and answering external interrupts. When the processor
responds to a fault or interrupt, control is transferred to an operating system
module via an interdomain transfer using an entry descriptor obtained from a
fixed memory location.

The locations in real memory containing the entry descriptors for interrupt,
faul t, and system entry (PMME) are as follows;

Interrupt

Fault

System Entry

Backup

Location

30-31 (octal)

32-33 (octal)

34-35 (octal)

40-41 (octal)

1-2 DZ5l-00

~ ..

(

Interrupts and certain low-priority faults are recognized only at specific
times during program execution. If, at these times, bit 28 in the instruction
word is s~t ON, the trap is inhibited and program execution continues. The
interrupt or fault signal is saved for future recognition and is reset only
when the trap is recognized.

ConnectlInterrupt Mechanism

On a connect to the IMX, the software points to a logical channel mailbox that
resides anywhere in main memory. The mailbox is required to be 24 words,
beginning at a 0-modulO-8 address. The operating system is responsible for
placing specific information into the first eight words.

This mailbox serves as the primary intercommunication vehicle between the IMX
and the CPU. SOftware specifies the (relative) starting location of the
mailbox as the effective address of the connect instruction (crOC). Normal CPU
address preparation converts this to a real memory address, which is then used
by the IMX.

Successi ve I/O operations to the same logical channel can be issued via a
linked mailbox feature available through IMX's. However, once a connect has
been issued by the software, it is the responsibility of the operating system
to not issue another connect directed to the same logical channel until the
current one is completed or a "lost interrupt" timeout has occurred.

All 128 channels (numbered 0-127) are data channels except channel numbers zero
and three. Channel three is used for two-way communication between the CPU and
IMX maintenance system (MCA). Channel zero is normally declared invalid, to
avoid confusion that would otherwise exist in the operating system as to
whether a given channel number field is zero, or the field is currently unused.

The CPU automatically directs the connect command to the "control" SCU. If the
system configuration includes two SCU's (i.e., tandem), then the SCU which is
designated as "control" is the one which processes all connects and interrupts
for the operational system. The control' SCU then adds a connect word pair to
the destination port's connect queue and notifies the port that a connect is
present in its queue. The IMX reads the contents of the queue with the Read
Connect Words command instruction (RCW).

An interrupt queue mechanism is used in the DPS 8000 system that allows for up
to 256 simultaneous entries for each of eight interrupt levels. Thus, the SCU
maintains a queue for each interrupt level. Levels one and seven are for fault
and special interrupts, respectively. The interrupt level for marker/terminate
interrupts are specified at connect time in the mailbox (GeOS uses levels 5 and
3, respectively).

The control SCU sends an interrupt present signal to all CPU's that are
unmasked for this interrupt level (each CPU initializes and modifies its own
masks independently). The SCU sends an accept signal to the candidate CPU
selected, and automatically shuts off all further interrupt present signals by
masking a unique system-wide "all mask".

1-3 DZ51-00

The CPU, selected by the SCU to process the interrupt, transfers to the
operating system interrupt handler by executing an interdomain CALL version of
the CLIMB instruction, using the entry descriptor at location 30-31 (octal). /
The software interrupt handler uses the RIW instruction for each pair of
interrupt words (one doubleword interrupt queue entry). The next interrrupt
pair is selected from the highest priority (Le., lowest numbered), unmasked
level, and inserted into the AQ register. When no more entries are available
at any level that is unmasked for this CPU, then the AQ register will contain
all zeros.

The operating system examines the channel mailbox for status information. On
terminate or marker type interrupts, status returns are automatically stored in
the channel mailbox. Up to eight words of peripheral extended status are
likewise stored.

Online Processor Tests

The PATROL feature (Processor Activity Test Runs On Line) is implemented as
firmware in its own unique CPU memory. PATROL runs test programs and reports
status to the maintainance interface.

OPERA'l'IHG MODES

Three types of modes determine the operation of the CPU.

o Pri vileged Master, Meister, and Slave modes which determine the processor
JKXie of operation ,/'"

o BS and ES (Hon-extendedlExtended) modes which determine whether lS-bit or
36-bit registers are used and determine the method to be used to generate
effective and virtual addresses

o Memory addressing modes

Processor Modes Of Operation

The three processor modes of operation are Privileged Master mode, Master mode,
and Slave mode. The master mode bit in the indicator register, the privileged
bit in the instruction segment register (ISR), and the housekeeping bit in the
page table word (PTW) for the instruction define these processor modes.

1-4 DZ51-00

,r:--­
'\~

(

(

The status of the determinants for each mode is shown in Table 1-1.

Table 1-1. Status Of Processor Mode Determinants

Processor Modes a

Determinants Privileged Master Slave
Master

Master Mode Bit ON ON OFF
in

Indicator Register
(bit 28)

Privileged Bit in
Instruction segment ON OFF OFF
Register

(bit 26)

Housekeeping Bit
ON b in Page Table Word ON/OFF OFF

for the Instruction
(bit 32)

a All other combinations are illegal and result in a Class 1 security Fault.

b When working space zero is referenced, the housekeeping bit is assumed to
be ON and the processor addresses memory through absolute mode page
tables.

A fault or an interrupt causes the processor to enter Privileged Master mode.
If the processor is in Privileged Master mode, an instruction can change to
Master mode by transferring to a segment marked non-privileged. The reverse is
also true when transferring to a segment marked privileged. The use of a ClJMB
instruction between Master and Privileged Master modes, like the transfer, not
only allows a change of processor execution modes but also a change of domains.

1-5 DZ51-00

The Master mode bit in the indicator register can be turned ON as follows:

1. OCcurrence of an interrupt or a fault

2. Execution of the PMME version of the ClJMB instruction, which causes a
system entry

3. Execution of the OCLIMB version of the ClJMB instruction where the master
mode bit of the restored indicator register is ON

The following mode-dependent processor functions are listed by mode. None of
these functions are permitted in Slave mode.

Functions allowed in Master and Privileged Master modes:

1. Accessing through working space register zero

2. Reading operands from a housekeeping page of segment descriptor type
T = 0, 2, 4, 6, 12, or 14

3. Executing instructions from housekeeping pages of type T = 0 segments

4. Executing a ClJMB (ICLIMB or GCLIMB) not invoking a system entry option
(PMME)

5. Executing a transfer to a privileged executable segment

Functions allowed only in Privileged Master mode:

1. Executing Privileged Master mode instructions (e.g., load working space
registers)

2. Executing Privileged Master mode options of the LODn, LDPn, or ClJMB
instructions, such as copying the safe store register (SSR) to a
descriptor register (ORn)

3. Writing on housekeeping pages of type T = 0, 2, 4, 6, 12, or 14 segments,
using instructions other than ClJMB, SDRn, STDn

Mon-Extended/Extended Modes

The NS (Non-extended) and ES (Extended) modes are specified with bit 24 of the
Instruction Segment Register (ISR).

o When ISR bit 24 = 0 NS mode.

o When ISR bit 24 = 1 ES mode.

ISR bit 24 may be altered only with the ClJMB instruction.

1-6 DZ51-00

(

Processor operations differ between NS and ES modes for the following:

o The number of bits in the index and the addres~ registers

o The method used to generate effective address

o The execution of some instructions

o Additional register instructions available in ES mode

Memory Addressing Modes

Three types of memory addressing exist in the DPS 8000.

1. Virtual memory which is mapped to a real (physical) memory address

2. Absolute mode which is used only when werking space zero is referenced

3. Reserved memory which is reserved for special use

VIRTUAL MEMORY PAGING

Virtual memory paging mode is 'an integral part of the address translation
process for mapping a virtual memory address to a real memory address. Each of
the 512 working spaces (WS) is supported by one page table (PT) or by a section
table (SCT) that references multiple page tables.

(The location of a PT supporting a working space (WS) is indicated by a 9-bit
working space number (WSN) that indexes the 512-word page table directory called
the working space page table directory (WSPTD). This directory contains the
real memory address of the supporting page table. Words in the WSPTD are called
page table directory words (PTDW) , and words on the page table are called page
table words (PTW). The location of a WSPTD is indicated by the page directory
base register (PDBR).

(

The location of the SCT supporting a given WS is indicated by a 9-bit WSN that
also indexes the page table directory (WSPTD). The SCT consists of up to 4K
words and includes the real memory address of the page table. The individual
words in the SCT are called page table base words (PBW). The effect of SCTs is
seen when paging is performed; these page tables are distributed throughout
memory.

1-7 DZ51-00

ABSOLUTB IIlDE

The processor utilizes the absolute addressing mode each time working space ', . .!
number zero is referenced. However, the virtual address is not mapped to a real
address; it is used as the real address with a maximum size limitation of 2**28
words (256 megawords). Any time a working space other than zero (WSN=O) is
referenced, the processor uses the paging mode.

To use the absolute addressing mode, the processor must be in Privileged Master
mode. The master mode bit in the indicator register and the privileged bit in
the instruction segment register must be ON. If these two conditions are not
met, any attempted reference to WSN 0 results in a Command fault. The
housekeeping bit is assumed ON when WSN 0 is referenced.

RESERVED MBMORY SPACE

Reserved memory space is defined by space above the Reserved Memory Base
Register. This page is not represented in the Memory Utilization Table (HUT)
and is addressable only in absolute mode.

IH'l'ERVAL TI MER

The processor contains a timer that provides a program interrupt (timer runout
fault) at the end of a variable interval. The timer is loaded by the operating
system and can be set to a maximum of approximately four minutes total elapsed
time.

1-8 DZ5l-00

1/ -". ,,-j

(
sm:'l'10N 2

REPRESENTATION OF DATA

POIUIA'l'S

The processor is functionally organized to process 36-bit groupings of
information called words. Special features are also included for ease in
manipulating 4-bit groups, 6-bit groups, 9-bit groups, lS-bit groups, 72-bit
double-precision, and l44-bit quad-precision groups. These bit groupings are
used by the hardware and software to represent a variety of forms of
information.

~TION NUMBERING

The numbering of bit positions, character positions, words, etc., starts with
zero and increases from left to right as in conventional alphanumeric text. Bit
zero is the most-significant bit and the right-most bit is the least-significant
bit.

(. '!'BE MACHINE WORD

The machine word consists of 36 bits arranged as follows:

o

Upper Half-Word

1 1
7 8

18 Lower Half-Word

3

18

Data transfers between the processor and memory are double-word-oriented; 36
bits are used at a time for single-precision data and two parallel 36-bit word
are used for double-precision data. When words are transferred to a memory
unit, Error Detection and Correction (EDAC> bits are added to each word pair
before the words are stored. When words are requested from a memory unit, the
EDAC bits are read from memory, verified, and removed before sending the word
pair to the processor.

The processor has many built-in features for efficient transferring and
processing of pairs of words. When a pair of words is transferred to or from
memory, their addresses are an even number and the next higher odd number. A
pair of words is arranged as follows.

2-1 DZ51-00

o

Even Addresss

3 3
5 6

A Pair of Machine Words

7

Odd Address

In an instruction intended for handling pairs of machine words, either of the
two addresses may be used as the effective address (y). Thus,

If Y is even, the pair of locations (Y, Y+l) is accessed. If Y is odd, the
pair of locations (Y-l, y) is accessed. The term "Y-pair"· is used for each
pair of addresses. Preferred coding practice refers to the even address; the
GMAP assembler issues a warning diagnostic if Y is odd in an instruction
intended for handling pairs of machine words.

Cllaracter Positions

Alphanumeric data is represented by 9-bit, 6-bit, or 4-bit characters. A
machine word contains either four, six, or eight characters, respectively. The
character positions within the word are as follows:

9-Bit Character (Bytes):

0 o 0 1 1 2 2 3 <--- Bit positions
0 8 9 7 8 6 7 5 within word

I 0 I 1 I 2 I 3 1<--- Byte positions
within word

6-Bit Characters:

0 o 0 1 1 1 1 2 2 2 3 3
0 5 6 1 2 7 8 3 4 9 0 5

I 0 I 1 I 2 I 3 I 4 I 5 I
4-Bit Characters (Packed Decimal):

o 0 o 0 001 1 1 111 2 2 222 3 3 3
o 1 4 5 890 3 4 789 .2 3 678 1 2 5

H 0 I 1 H 2 I 3 H 4 I 5 H 6 I 7 I
The Z represents the bit value 0; other numbers in the fields represent the
character positions.

2-2 DZ51-00

~.\

~

Bit Positions

(Bit positions within a character are as follows:

101112131 4-bit character

1011121314151 6-bit character

9-bit character

Thus, both bit and character positions increase from left to right as in normal
reading.

LI'l'BRALS

For information on literals refer to the GODS B OS GMAP User's Guide.

Bl NARY NtJMBBR.S

Fixed-Point Nwabers

Binary fixed-point numbers are represented with half-word, single-word, and
double-word precision as shown below.

Precision

Half-word /
\

tUpper Half
/

\
\Lower Half

Representation

o 1
o 7

o
o

1 3
B 5

3
5

Single-word

o 3 3 7
o 5 6 1

~~~e- .I ______ ~=---~~------------~I------~~~~------------~I Even Address Odd Address 

2-3 DZ51-00 



Instructions can be divided into two groups according to the way in which) the 
operand is interpreted: the "logic" group and the "algebraic" group. 

For logic operations, operands and results are regarded as unsigned, positive 
binary numbers. In the case of addition and subtraction, the occurrence of an 
overflow is indicated by the carry out of the most significant (leftmost) bit 
position: 

1. Addition - If the carry out of the leftmost bit position equals 1 
(Carry indicator ON), the sum is above the range. 

2. Subtraction - If the carry out of the leftmost bit position equals 0 
(Carry indicator OFF), the difference is below the range. 

In the case of comparisons, the zero and carry indicators show the relation. 

For algebraic operations, operands and results are regarded as signed binary 
numbers, and the leftmost bit is used as a sign' bit (aO being plus and 1 
minus). When the sign is positive, all the bits represent the real value of the 
number; when the sign is negative, they represent the two's complement of the 
real value of the number. 

In the case of addition and subtraction, the occurrence of an overflow is 
indicated by the carries into and out of the leftmost bit position (the sign 
position). If the carry into the leftmost bit position does not equal the carry 
out of that position, then overflow has occurred. If overflow has been detected 
and if the sign bit equals 0, the result is below range; if with overflow the 
sign bit equals 1, the result is above range. 

In integral arithmetic, the location of the decimal point is assumed to the 
right of the least significant bit positionr that is, depending on the 
precision, to the right of bit position 35 or 71 (17 for upper half-word). 

The number ranges for the various·cases of precision, interpretation, and 
arithmetic are given in Table 2-1. 

Table 2-1. Ranges Of Fixed-Point Numbers 

Precision 

Inter-
pretation Arittmetic Hal f_ord Single-Word Double-Word 

(Xn, YO ... 17) (A.O,Y) (AO,Y-pair) 

Algebraic 
Integral _217~~{217_1) -2 3S~~(2 3S_1 ) -2 71~'-(2 71_1) 

Fractional -1~'-(1-2-17) -1~~( 1-2 -3S) -1~'-( 1-2 -71) 

Integral 
Logic 

0~'-{2 18_1) 0~'-(2 36_1) 0"",-(2 72 _ 1) 

Fraet ional O~,-( 1-2 -18) O~,-( 1-2 -36) O~~( 1_2-72 ) 

-

2-4 DZ51-00 



Ploating-Point Numbers 

( '.' Floa~iI,lg-point numbers are represented with single-word and double-word 
preclslon. The upper 8 bits represent the integral exponent to the base 2 in 
two's complement form, and the lower 28 or 64 bits represent the fractional 
mantissa in two's complement form. 

The format for a floating-point number is: 

assumed 
~ radix point 

Single-Word 
Precision: 

0 0 o 0 0 
0 1 7 8 9 

S S 

< Exponent >< 

assumed 

" 

Mantlssa 

-radix point 

Double-Word 
Precision: 

o 0 
o 1 

S 

o 0 
7 8 

S 

< Exponent >< 

where S = sign bit 

0 
9 

Mantlssa 

3 
5 

> 

7 
1 

> 

C Before performing binary floating-point additions or subtractions, the processor 
aligns the number that has the smaller exponent. To maintain accuracy, the 
lowest permissible exponent of -128, together with the mantissa of zero, has 
been defined as the machine representation of the number zero (which has no 
unique floating-point representation). Whenever a floating-point operation 
yields an untruncated resultant mantissa equal to zero (71 bits plus sign 
because of extended precision), the exponent is automatically set to -128. 

( 

Hexadecimal Ploating-Point Numbers 

The hexadecimal option may be used in floating-point operations to declare 
hexadecimal constants, either explicitly or by default. The term hexadecimal 
refers to a floating-point format where the mantissa is a binary number, while 
the exponent represents a power of 16 (2**4). The mantissa is shifted by the 
number of places for 4-bit groups as required by the exponent. 

The hexadecimal floating-point mode is enabled only when bit 32 of the Indicator 
Register is set to 1 and bit 33 of the mode register is set to 1. After the 
hexadecimal floating-point mode is requested, the user controls the 
floating-point mode via the Indicator Register. If the bit 32 of the Indicator 
Register is not set to 1, the floating-point mode will be binary. 

2-5 DZ51-00 



Quadruple-Precision lumbers 

The data format used in quadruple-precision arithmetic is illustrated below. 
Notice that the format of data to be used in an operation is somewhat different 
from that of data to be stored after the operation. 

The format for data when an operand in main memory is used as arithmetic data: 

I 
o 0 0 
078 

EO 
0 7 0 

y-pair 

MU 

\1 
7 7 
1 2 

8 8 
3 4 

\\\\\\\\ 
\\\\\\\\ 

63 0\\\\\11 0 
Ignored 

Y+2 pair 

ML 

1\ 
4 
3 

59 

The format for data when the result is stored in main memory is as follows: 

1 
0 o 0 3 7 7 788 8 4 
0 7 8 5 1 2 903 4 3 

10EU,Io NO 
63 1 oEL,1 0031 

ML 
591 

I o is set 1-

o The data in memory must reside on a double-word boundary. 

o The four words of data may span two pages. 

The registers E, AQ, and LOR are used for quadruple-precision arithmetic. The 
format for data used as operation data is as follows: 

E 
I-V 
000 
078 

EO 

AQ 

MU 

\1 
7 7 7 8 
1 2 9 0 

9 9 
1 2 

\\\\ \\\\\\\\ 
\\\\ \\\\\\\\ 

LOR 

ML 

1\ 
5 
1 

0 7 0 63 0\\7 0\\\\\11 0 59 
Ignored 

The contents of EAQ and LOR following an operation is as follows: 

000 

MU 

7 7 7 8 889 9 
1 2 9 0 781 2 

1------- 0 is set 

2-6 

ML 

1 
5 

J 
DZ5I-00 



( 

Field Values 

EU Exponent 

Mil High Order Mantissa 

EL ED -15 (residue) 

ML Low-order mantissa 

Quadruple-precision value N = (MU + ML)16ED 

The quadruple-precision instructions operate with the exponent as a hexadecimal 
exponent regardless of the value of bit 32 of the indicator register (IR). 

Normalized Binary Floating-Point Humbers 

For normalized binary floating-point numbers, the binary point is placed at the 
left of the most significant bit of the mantissa (to the right of the sign bit). 
Numbers are normalized by shifting the mantissa left (and correspondingly 
adjusting the exponent) until no leading zeros are present in the mantissa for 
positive numbers, or until no leading Ones are present in the mantissa for 
negative numbers. The vacated bit positions on the right are zero-filled. 

The number ranges resulting from the various cases of precision, normalization, 
and sign are given in Table 2-2. 

Table 2-2. Ranges Of Binary Floating-Point Numbers 

Sign S.ingle Precision Double Precision 

Positive 
NOFn'ICII i zed 

_2:129~(1_2-27)2127 2129~(1_2-63)2'27 

Negot ive (_1+2-26 )2-129~2127 (_1+2-62)2-'29~2127 

Positive 2-1SS~( 1_2-27)2127 2-191~(1_2-63 )2 127 
UnnoFn'ICII i zed 

Negot ;ve _T1S5~2127 _T1SS~_2127 

NOTE: The floating-point number zero is not included in the table. 

2-7 DZ5l-00 



Binary Representation Of Fractional Values 

A decimal fraction of a given number of digits cannot necessarily be represented 
exactly by a binary fraction of any finite number of bits. Consider, for 
example, the value 115, which is represented in decimal notation as 0.2. Trying 
to represent it by a four-bit binary fraction, one obtains (.0011)2 or 3/16: 
with eight bits, one obtains (.00110011)2 or 51/256. In fact, the exact value 
must be written as 

(0.2)10 = (0.0011)2 ••• 

which means that the bit pattern 0011 in the binary expansion keeps repeating 
indef ini tely. I f the decimal value 0.2 is converted to a binary expansion of 71 
bits and then converted back, the one-digit result would be 0.1, quite different 
from 0.2. The four-digit result would be 0.1999, which is almost (but not 
quite) equal to 0.2. If computations were involved instead of only conversions, 
the imprecision in the decimal result could be propagated. 

Various adjustments can be made to binary fractional values to make exact 
decimal results highly probable. One may use binary integer notation to 
represent all values, whether integral or fractional, but this may make 
multiplication or division of an operand by a power of 10 necessary in the 
course of a computation. 

DDMAL NUMBERS 

Scaled decimal numbers that are used directly in hardware arithmetic commands 
are expressed as decimal digits in either the 4-bit or 9-bit character format. 
They are expressed as unsigned numbers or as signed numbers using a separate 
sign character. 

2-8 DZ51-00 

r '\ , , 
",,-> 



( 

( 

( 

Decimal data utilizes the following formats: 

o 0 a a a a 1 1 1 111 2 2 222 333 

Packed Decimal (4-bi t ) 

00 001 111 222 3 

.1:~1_1 _____ 0 _____ 8~1_:.IO ______ 1 _____ 7.1:~1~9 _____ 2 _____ 6~1_:.IB ______ 3 _____ 51 

ASCII/EBCDIC (9-bit) 

Z represents unused bit positions. 

Dec:iJIal Data Character Codes 

During arithmetic operations, decimal digits and signs are checked by the 
hardware as 4-bit data (the 4 least significant bits from a 9-bit numeric). 

The following interpretations are made: 

Bit Pattern for Illegal Procedure 
Character Interpreted as (IPR) if 

0000 a 
0001 1 
0010 2 found where 
0011 3 descriptor 
0100 4 specifies sign 
0101 5 
0110 6 
0111 7 
0100 8 
1001 9 

1010 + 
1011 + found where 
1100 + descriptor 
1101 - specifies 
1110 + digits 
1111 + 

2-9 DZ5l-00 



The following codes (9-bit zones are created by prefixing binary 00010) are 
generated for output signs; the octal values are: 

Plus Minus 

4-bit 14(13) 15 
9-bit 053 055 

For several numeric instructions, a sign value of 13 can be optionally 
generated. 

Floating-Point DeciEl Numbers 

The format for a floating-point decimal number expressed in 9-bit characters is: 

101 

8-bi t I 
I SIGN 1 ,0n •• . ,02 1 

10 ' 100 EXPONENT I 
where: SIGN can start at any legal 9-bi t character boundary 

In 4-bit character notation, there are four fonmats for floating-point 
decimal numbers: 

4-Bit 

100 0 EXPO 

'"-____ .Even character boundary, odd' of digits. (I of digits .. n+1) 

4 

'"-____ Odd charoc ter boundary, 

The a-bit exponent field, which now spans two character positions, is 
interpreted the same as in 9-bi t character mode. The other two formats are 
formed with n+l even. This effectively exchanges the two exponent 
representations in the formats shown. 

2-10 DZ51-00 

!/c\ 

~~_/ 



Decillal Humber Ranges 

( The number ranges for decimal numbers are: 

1. Fixed-point unsigned integer: 

Range = 0 ••• 1063 

2. Fixed-point signed integer: 

Range = :!: 1062 

3. Floating-point (implicitly signed): 

a. 9-bit format range - :!: 1061 * 10+127 -128 

b. 4-bit format range - :!: 1060 * 10+127 -128 

c. Zero = :!:O * 10+127 -128 

( 

2-11 DZ51-00 



"',, /. \ 

I" 
~,/ 



( 

( 

SIC'l'ION 3 

The Central Processing Units (CPUs) access the main memory through the System 
Control Unit (SCU). Similarly, the Input/Output Multiplexer (INK) also accesses _ 
memory through the SCU. As a component, the SCU is a passive system element, 
responding to requests from active units, the O'Us and the IMXs. This large, 
memory-oriented system architecture, permits both CPU and INK functions to 
execute asynchronously and concurrently. The functions of read, store, 
interprocessor communication, etc., are provided by the SCU. 

Increased system throughput is achieved by operating the SCU and associated 
memory units on a 72-bit parallel basis. This corresponds to two single-word 
instructions, two data words, or one double-precision fixed-point or 
floating-point number. 

Systems with more than one system controller provide an increased effective 
information rate, since each system controller operates independently and its 
functions can be overlapped with those of other system controllers • 

. Additional overlap is provided by memory interlacing. Each DPS 8000 SCU 
operates with full memory unit interlacing, in 8-word block increments, to 
reduce the possibility of the same memory unit being accessed in succession. 

VIRTUAL MEMORY 

Virtual memory (VM) provides an extremely large, directly addressable memory 
space (2**43 bytes) and a complement of registers and instructions to manage 
virtual address space. The VM space is divided into a number of working 
spaces. The working spaces are further divided into variable sizes called 
"segments". A segment within a working space is described by a "segment 
descriptor", which has a base relative to the origin of the working space and a 
bound relative to the base, together with control information. Thus, for all 
memory references, virtual memory addresses are prepared relative to a 
particular working space and to a particular segment base within the working 
space. These virtual memory addresses are then mapped to real memory addresses 
by paging mechanisms. 

3-1 DZ5l-00 



To access (generate a memory address for) an area of VM, a process (used here to 
mean the smallest working unit of software) must have a segment descriptor that 
"frames" the particular segment of VM and that.gives the desired permission for 
using this segment of VM (Le., Read permission, Write permission, or Execute 
permission). A process cannot create a segment descriptor, nor change the base 
and bound to access an area of VM not enclosed by the area originally "framed", 
nor increase the permissions field. Therefore, a process is limited to 
accessing only those areas of VM described b¥ segment descriptors that are 
available to the process. 

The hardware environment for the virtual memory is composed of four elements1 : 
working spaces, domains, segments, and pages. . The working spaces and pages are 
physical elements, whereas the segments and domains are logical elements. These 
elements are treated as separate components ·of the virtual memory but must be 
interpreted in the context of the whole environment, since they are closely 
related in their interaction with each other. 

Working Spaces 

The virtual memory is divided into 512 (0 through 511) working spaces (WS) of 
2**34 bytes, each of which is divided into fixed-length pages. These pages are 
used for memory management and have a fixed size of 1024 words (4096 bytes) 
each. Working space numbers (WSN) used to generate a particular virtual memory 
address are obtained frOm one of eight working space registers (WSR) or a 
segment descriptor register (DRn). 

Page Tables 

Each working space has an associated page table that identifies the real memory 
allocation. The page table or section table for each working space is located 
in real memory by a pointer that resides in the working space page table 
directory (WSPTD). The directory has 512 entries and the pointer to the 
directory is stored in the page directory base register (PDBR). Directory 
entries are either pointers to page tables or pointers to section tables. The 
section table (SCT) consists of up to 4K words called page table base words 
(PBW) that allow page tables to be divided and distributed throughout the 
memory. These pointers and tables can only be altered in the Privileged Master 
mode. 

The virtual address has three components: a working space number (WSN), a page 
number, and a page byte number (commonly called an offset). The virtual address 
is automatically transformed to a real address by the hardware. 

1. Historically, discussion of virtual memory included reference to working 
space quarters, described in this manual as working spaces. The working 
space quarter concept is not used by any software implementation; 
therefore, no further mention of working space quarters occurs in this 
manual. The hardware has not been changed. 

3-2 DZSI-OO 



Domains 

Another logical element of the virtual environment is the domain. A domain is 
the particular subset of virtual memory that currently can be accessed by a 
process. It is defined initially by the collection of descriptors contained 
within the linkage segment (the segment described by the contents of the LSR). 
The domain is a flexible and temporary range of operation that may encompass 
several noncontiguous segments in one or more working spaces (see Figure 3-1). 
Two or more domains may interact by including the same segment descriptor. Each 
domain contains exactly one linkage segment to define the domain. A change of 
domain implies a change of linkage segment and vice versa. Descriptors for 
the domain may also be in descriptor segments described in the linkage segment, 
in descriptor registers, or in the parameter segment. 

WSN Y 
- - - - -

Segment 

- - - - -

Segment 
- - - - -

Figure 3-1. Domain Of Noncontiguous Segments 

3-3 

- - -

d 

- - -

e 
- - -

-

\ 
\ 

/ 
\ 

/ 
\ 

/ 
\ 

> Page 0 
/ 

\ 
> Page 1 

/ 

\ 
> Page 2 

/ 

\ 

/ 

> Page 3 
/ 

DZ51-00 



Also associated with the process are the safe store stack and the data stack 
segments. The safe store stack is always used (except for GClJMB and PClJMB) in 
a change of domain, but a new domain mayor may not choose to access a different 
portion of the data stack segment. It does not have access to that portion used 
by the calling domain. 

Normally, a change of domain is accomplished through a succession of operations 
that are associated with the ICLIMB instruction. Starting with two separate 
domains, which for convenience are referred to as calling domain and called 
domain, the entry descriptor accessed in the calling domain describes the 
called-domain linkage segment and identifies a specific initial instruction in 
an instruction segment described in that linkage segment. The contents of the 
calling domain's registers (LSR, ASR, PSR, and DSAR), as well as those of any 
other registers specified by the type of entry descriptor, are safe stored. 

The change-of-domain CLIMB instruction indicates whether there are parameters 
and the number of arguments. The arguments may be either vectors or 
descriptors. (Refer to discussion of LDDn instruction in section 8.) If the 
arguments are vectors, descriptors are prepared using the vectors and stored to 
form a parameter segment for the called domain. 

The source of the list of vectors or descriptors is given as the contents of 
pointer register zero. (Descriptor register zero identifies the segment in 
which the list occurs and indicates whether vectors or descriptors are listed. 
Address register zero gives the offset in that segment of the list.) On 
change-of-domain return (OClJMB), the contents of the calling-domain's domain 
registers and any other register contents that were safe stored are restored. 

Segments 

Another division of the working space is the segment. Each segment is a logical 
entity of variable length and may be as small as one byte or as large as 232 
bytes. Consequently, a segment may reside on a portion of a page or span 
several pages. (Refer to Figure 3-2). Segments are described with two-word 
(72-bit) segment descriptors. When a virtual address is generated, the segment 
descriptor is located in the segment descriptor register. segments in virtual 
memory are specified with a base value which is relative to the origin of the 
WS, and a bound which is relative to the base. 

3-4 DZ5l-00 

.,,- j 



( 

( 

( 

Working Space 

/ 
/ 

Page 0 < <--Segment a 
\ 

\ <-Segment b 
/ \ 

/ \ 
Page 1 < 

\ 
\ ----------/ 

/ > Segment c 
Page 2 < 

\ 
\ ----------/ 

/ / 
Page 3 < / 

\ 
\ ----------

Figure 3-2. Layout Of segments On Pages 

To understand the relationship between pages and segments, it is necessary to 
understand the structure of a working space. The combination of a working space 
number and offset within the related working space is called a virtual address. 
Pages of lK size are ordered sequentially b¥ virtual page number within a 
working space. Each page is represented b¥ a page table word (P'l'W) that points 
to a real page, if that page is in memory. 

A segment is a logical sequence of virtual addresses, starting from a base and 
of a size equal to the bound of that segment. The base and bound of a segment 
are contained in a system protected, two-word structure called a segment 
descriptor. A segment may be small, contained anywhere within a page, or it may 
span multiple pages, irrespective of page boundaries. 

A segment is characterized by its elements and the form of access to these 
elements, which can be Execute, Read, or Write. Segments are classified either 
as descriptor segments or operand segments. The descriptor segments that 
contain valid descriptors as part of their contents may be used as linkage, 
parameter, argument, or safe store segments; whereas the operand segments may be 
instruction-only, data-only, instruction and data segments, or data stack 
segments as illustrated in the following diagram. 

3-5 DZ5l-00 



Seljp'l"ent 

L inkage Parcmeter Arg&ment Safe Store 
Seljp'l"en t Se.".n t Segnen t Se9'lln t 

(LS) (PS) (AS) (55) 

Instruct ion 
Se.".nt 

( IS) 

Data 
Se9'llnt 

(OS) 

Dato Stock 
Se.,.,.nt 

(DSS) 

A segment of either class may also be loaded into one of the eight operand 
descriptor registers (DRg). 

Descriptors 

A descriptor consists of a 72-bit word-pair and locates a segment in virtual 
memory. When the processor hardware obtains a descriptor from memory, the 
processor assumes that the descriptor begins on an even-word boundary and 
ignores the least significant bit of the virtual word address. If a descriptor 
is stored from a register, the processor hardware stores on an even-word 
boundary. 

To allow a process to have access to a segment, a copy of the descriptor must be 
obtained to locate the segment in virtual memory. Also, the descriptor 
delimits, through a set of flags, what forms of access to the segment are 
available. 

Twelve types of descriptors are available. Those segments containing 
instructions, data, or a combination of both are commonly called operand 
segments .and have descriptors that are either type 0, 2, 4, 6, 12, or 14 to 
indicate operand storage. The segments containing only descriptors <i.e., 
descriptor segments} have descriptors that are either type 1 or 3 to indicate 
descriptor storage. Operand memory references are always accomplished through 
operand segment descriptors, usually to nonhousekeeping pages, whereas 
descriptor references are made only through descriptor segment descriptors 

3-6 DZ5l-00 

,/ 



( 

( 

to housekeeping pages. The remaining four descriptors are used only during the 
execution of the special transfer-of-domain (CLIMB) instruction. The list of 
oescriptor types follows. 

~ 

0 
2 
4 
6 
12 
14 

1 
3 

5 
8 
9 
11 

Descriptor 

Standard 
Standard with WSN 
.Super 
Super with WSN 
Extended 
Extended with WSN 

Standard 
Standard with WSN 

Dynamic linking 
Entry 
Entry 
Entry 

Oeser iptor 
Se9Nnt 

5101... 

} 
} 
} 
} 

Contents 

Instructions/data 
Data 
Data 
Data 
Data 
Data 

Descriptors 
Descriptors 

Used only with 
CLIMB 

Se9Nnt 

Stondord 

7\' 7\0' 0.7\0' 7\0' 
WSR . WSN WSR WSN WSR WSN WSR WSN Descriptor Type 

3-7 DZ51-00 



Instructions such as LDSS and WAS that load segment descriptors from operand 
segments to registers and instructions such as STSS and STPS that store segment 
descriptors in operand memory areas access segments of type 0, 2, 4, 6, 12, or"\ 
14. In these instances, instruction operand memory addresses must specify 
operands in operand segments. An Illegal Procedure (IPR) fault occurs when 
operand or indirect word addresses are generated which specify segment 
descriptors of other than those types. This procedure has two exceptions: 

1. segment descriptor types 1 and 3 specify segments that include segment 
descriptors. The a.IMS, SDRn, LDPn, LODn, and STDn instructions access 
segment descriptor segments to load or store segment descriptors. These 
segment descriptor segments must be located in housekeeping pages. An 
IPR fault occurs when either a segment descriptor is accessed with an 
instruction other than one of the five mentioned above, or when one of 
these instructions is used to access a segment descriptor in an operand 
segm"nt that is not located in a housekeeping page. 

2. Instructions such as LDI>!! can access both operand segments and segment 
descriptor segments because LDDn performs different operations with each 
access. These instructions indirectly access segment descriptors through 
operand segments. The safe store stack contains data other than segment 
descriptors. However, it is specified· with type 1 or 3 segment 
descriptors. The safe store stack does not contain operand data and 
cannot be accessed except with Privileged Master Mode. Using this mode, 
the segment descriptor for the safe store stack can be obtained and 
converted to a type 0 or 2 segment descriptor. (Refer to the LDI>!! 
instruction description in Section 8.) 

STANDARD DBSClUP'l'OR 

The format of the standard descriptor is: 

o 
o 

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 3 3 3 
8 9 125 

WSR Type 
9 3 4 

36 

Even 
Word 

Odd 
Word 

Bound - A 20-bit field that is the maximum valid byte address within the 
segment; bits 0-17 are the word address and bits 18-19 are the 
9-bit byte address. The bound is relative to the base. A zero 
bound indicates a I-byte segment if bit 27 is 1. 

Flags - A 9-bit field that describes the access privileges as well as other 
control information associated with the descriptor: 

3-8 DZ5l-00 

1(- -\ 

I~_j 



C 

(-

Flag 
Bit Code 

20 R 

21 W 

22 S 

23 C 

24 x 

25 E 

26 P 

27 B 

28 A 

Meaning 

Read 

a Read not allowed 
1 Read allowed 

Write 

a Write not allowed 
1 Write allowed 

Store by STDn 

a Descriptor may not be stored in a type 1 or 3 
segment by the STDn instruction. 

1 Descriptor may be stored in a type 1 or 3 
segment by the STDn instruction. 

cache Use Control 

Not used by DPS 8000 

NS/ES Mode (when in I SR; otherwise ignored) 

a NS Mode 
1 ES Mode 

Execute 

a Execute not allowed 
1 Execute allowed 

privilege 

a Privileged Master mode not required for 
execution 

1 Privileged Master mode required for execution 

Bound valid 

o Bound not valid; segment empty. 
1 Bound field maximum valid address. 

Available segment 

o Segment not available; references not allowed. 
1 Segment available; references allowed. 

WSR - A 3-bit field that specifies which of the eight working space 
registers to use with this descriptor. The working space register 
supplies the working space number (WSN). 

3-9 DZ5l-00 



Type - A 4-bit field that defines the descriptor type. The two types for 
standard descriptors are: 

Type = 0 The descriptor "frames" instruction/operand space. 

Type = 1 The descriptor "frames" an address space containing 
descriptors. 

Base - A 36-bit virtual byte address that is relative to the working space 
defined in the WSR. Bits 0-33 are a 34-bit word address and bits 
34-35 represent a 9-bit byte within the word. 

STANDARD DBSCRIP'l'OR WI'l'B liORKIlfG SPACE JfUJIBBR 

The format of the standard descriptor with working space number (WSN) is: 

o 
o 

Bound 

1 2 2 2 
9 0 2 3 

Flags 
20 3 

Base 

WSN 

3 3 3 
1 2 5 

Type 
9 4 

36 

Even 
Word 

Odd 
Word 

This format is the same as that for the standard descriptor except that the 
flags field has been truncated to allow the descriptor to contain the actual 
working space number rather than point to a working space register. The three / "'. 
flag bits are the same as the corresponding flag bits of the standard 
descriptor. The state of the truncated flags is assumed as follows: 

Flags - 1. Execute not allowed (HE) 

2. Not privileged (NP) 

3. Bound valid (B) 

4. Segment available (A) 

WSN - The actual working space number. 

Type - A 4-bit field that defines the descriptor type. The two types for 
standard descriptors witn WSN are: 

Type = 2 The descriptor "frames" operand space. 

Type = 3 The descriptor "frames" an address space containing 
descriptors. 

3-10 DZ5l-00 



( 

SUPER DESCRI PTOR 

Super-descriptors may be used to define large segments. The definitions of the 
flags I WSR I WSN, and type fields of the super-descriptor are the same as those 
of the standard descriptor. The base and bound fields are automatically 
extended on the right to a length of 36 bits. The base is extended with zeros 
and the bound is extended wi th ones. 

Therefore, a super descriptor with base, location, and bound of zero describes 
a segment that begins at location zero of a working space and extends 2**26 
bytes (16 million words). A super descriptor with a base of 1, and location of 
zero, and a bound of 3 describes a segment that starts at location 2**26 and 
extends 2**28 bytes (64 million words). 

The format of the super descriptor is: 

o 
o 

Base 

Bound 

Flags 

WSR 

Type 

Base 

o 1 
9 0 

10 
Bound 

1 2 
9 0 

10 

Location 

Flags 

2 2 3 3 3 
89· 12 5 

WSR Type 
9 3 4 

36 

Even 
Word 

Odd 
Word 

A 10-bit virtual address (unit 2**26 bytes) within a working 
space. The 10-bit base is converted to a 36-bit base <unit 1 
byte) by extending to the right by 26 zero bits. 

A lO-bit virtual address (unit 2**26 bytes) that is the maximum 
valid address within the segment. 'Conversion to a 36-bit bound 
(unit 1 byte) is accomplished by extending the 10-bit field to 
the right by 26 one bits. The bound is relative to the base. 

A field that describes the access privileges associated with the 
descriptor (identical to the flags field for the standard 
descriptor). 

A 3-bit field that specifies which of the eight working space 
registers to use with this descriptor (identical to the WSR 
field for the standard descriptor). 

A 4-bit field that defines the type for the super descriptor. 

Type = 4 The descriptor "frames" operand space. 

Location- A 36-bit byte virtual address relative· to the base; that is, an 
offset from the lO-bit base. The area framed by the super 
descriptor extends from (Base + Location) through (Base + 
Bound) • 

NOTE: If an attempt is made to use a super descriptor in the ES mode, an 
IPR fault occurs. 

3-11 DZ5l-00 



SUPER DESCRIPl'OR WITH WORKING SPACE IIUIIBER 

The format of the super descriptor with working space number (WSN) 

o 
o 

Base 

o 1 
9 0 

10 
Bound 

1 2 2 2 
9 0 2 3 

Flags 
10 3 

Location 

WSN 

333 
1 2 5 

Type 
9 4 

36 

is: 

Even 
Word 

Q:id 
Word 

This format is the same as that for the super descriptor with the exception 
that the truncated flags field contains three bits that are defined identically 
as the corresponding three bits of the standard descriptor. The state of the 
truncated flags is assumed as follows: 

Flags - 1. Execute not allowed (HE) 

2. Not privileged (NP) 

3. Bound valid (B) 

4. Segment available (A) 

WSN - The actual working space number 

Type A 4-bit field that defines the descriptor type as "super with WSN". 

Type = 6 The descriptor "frames" operand space. 

NOTE: If an attempt is made to use a super descriptor with WSN in the ES 
mode, an IPR fault occurs. 

EXTENDED DESCRIPTOR 

The format of the extended descriptor is: 

o 
o 

Bound 

1 2 
9 0 

20 

Base 

Flags 

3-12 

2 2 333 
8 9 125 

WSR Type 
9 3 4 

36 

Even 
Word 

Odd 
Word 

DZ5l-00 



( 

( 

( 

Bound - A 20-bit field that is the maximum valid byte address within the 
segment, modulo 212 bytes (210 words). In other words, the bound 
is in terms of 4096-byte pages. It is converted to a 36-bit byte 
bound by extending to the right of the 20-bit field by 12 l-bits 
and adding four zero-bits in the high-order. The bound is relative 
to the base. 

Flags - The same as in the standard descriptor 

WSR - The same as in the standard descriptor 

Type - The type for the descriptor 

Type = 1210 for the extended descriptor 

Base - The same as in the standard descriptor 

EX'l'DDBD DESCRIPTOR WI TB WORKING SPACE JmIIBBR 

The format of the standard descriptor with working space number (WSN) is: 

o 
o 

Bound 

1 2 2 2 
9 0 2 3 

Flags 
20 3 

Base 

WSN 

333 
125 

Type 
9 4 

36 

Even 
Word 

Odd 
Word 

This format is nearly the same as for the Extended Descriptor (1 = 1210), 
except that the flag field is shorter and a working space number (WSN) is 
specified. 

Flags - The three bits of the fiag field are the same as the corresponding 
standard descriptor flag bits. The state of the truncated flags is 
assumed as follows: 

1. Execute bit allowed 

2. Not privileged (NP) 

3. Bound valid (B) 

4. Segment available (A) 

WSN - The actual working space number 

Type - The type of the descriptor 

T = 1410 indicates an Extended descriptor with WSN 

3-13 DZ51-00 



ENTRY DESCRIPl'OR 

An entry descriptor is required to call a new domain. The entry descriptor 
describes the linkage segment that defines the new domain, a segment containing 
instructions to be initially executed in the domain, and an offset relative to 
the origin of that segment to which control is transferred. The entry 
descriptor is used with the ClJMB instruction and has the following format: 

o 
o 

111 
789 

2 2 333 
8 9 125 

Entry Location F lSEG No. WSR Type Even 
Word 18 10 

LBOUND Linkage Base 
10 

3 

23 

4 

000 
3 

Odd 
Word 

Entry Location - An 18-bi t word address that is loaded into the instruction 
counter when the entry descriptor is used as an argument 
of the ClJMB instruction. The entry location is relative 
to the base of the new instruction segment. 

F 

ISEG No. 

WSR 

Type 

LBOUND 

- Bit 18 is the "store" permission flag is interpreted the 
same as flag bit 22 of the other descriptor types. 

- The number of the descriptor to be loaded into the 
instruction segment register (ISR). The ISEG number is 
expressed in units of descriptors and is an index relative 
to the new linkage segment base. The ISEG number is 
extended with three zeros to be expressed in bytes and is 
also used in loading the SEGID (IS) register as follows: 

Bits 0 - 1 = 11 
Bits 2 -11 = ISEG No. 

- The working space register containing the number of the 
working space to which the linkage base is relative. 

- A 4-bit field that defines the entry descriptor type. 

Type = 8, 9, or 11 Each number has a special meaning for 
the ClJ MB instruction (determining the registers to be 
saved in the safe store stack upon change of domain). 

- The bound of the linkage segment expressed in units of 
descriptors. To form a standard descriptor bound, bound = 
00000001 ILBOUNDI 1111. 

3-14 DZ51-00 



Linkage base - The virtual starting address of the linkage segment 
relative to the working space defined by the working space 
register pointed to by the WSR field. When an entry 
descriptor is utilized, the associated linkage segment 
must be contained in the first 2**26 bytes of the working 
space. The last three bits of the linkage base are shown 
as zeros since the linkage segment must start on a 
double-word boundary; in actual practice, the hardware 
ignores the contents of these three bits. 

DYlfAKI C LlIfKI KG DBSCRIP'l'OR 

The dynamic linking descriptor has a double-word format with a type field of 
T=5 entered in bits 32-35 of the even word. Bits 0-21, 23-31, and 36-71 are 
used to define how the linkage is to be resolved. Bit 22 indicates store 
permission. A dynamic linking fault occurs when the ClJMB instruction attempts 
to address through a dynamic linking descriptor. Any attempt by the STDn 
instruction to store a dynamic linking descriptor with the store permission bit 
(bit 22) of word 1 equal to zero in a type T=l or 3 segment causes an SCL2 
fault. The dynamic linking descriptor has the following format: 

o 
o 

Type 

Reserved for SOftware 

Reserved for 

22 

2 
2 

1 

Reserved 
for 

SOftware 

SOftware 

3 3 3 
1 2 5 

Type 
9 4 

36 

Even 
Word 

Odd 
Word 

- A 4-bit field that defines the dynamic linking descriptor 

Type = 5 

NOTE: The software usually replaces this descriptor with a 
Type = 11 entry descriptor while processing a 
dynamic linking fault. 

3-15 DZ51-00 



SHRINKING 

Shrinking provides descriptor access control. This is the only means available 
to the Slave mode for the creation of descriptors. In this process a new 
descriptor of decreased scope is formed in one of the descriptor registers from 
a descriptor already available. In essence a new subordinate segment 
identified by the shrunken descriptor is formed as shown in Figure 3-3. 

.,....------r/ 

Given 
Descriptor 

\ 

/ 

\ 

/ 
/ 

/ 

\ 
\ 
\ 

/ 

\ 

Given 
Segment 

/ 
/ 

/ 

+----------------+\ 
\ 

\ 
\ 

New 
Segment 

+----------------+/ 

\,~----------------~ 

\ 
\ 
\ 

/ 
/ 

/ 

Shrunken 
Descriptor 

Figure 3-3. Shrunken Descriptor For Corresponding New segment 

Shrinking is used to prepare parameter descriptors for another domain, to 
facilitate access to portions of the domain, and to restrict access to specific 
shared portions of the domain. Shrinking operations may be performed on both 
standard and super descriptors, but the result is always a standard 
descriptor. A shrunken descriptor may be stored in a descriptor segment on a 
housekeeping page or in the'descriptor stack addressable by the Argument Stack 
Register (ASR). Storing requires that the descriptor to be stored have store 
permission. 

3-16 DZ51-00 



( 

Shrinking is done using Load Descriptor Register n (LDDn) instruction, or a 
domain call, or the transfer version of the CLIMB instruction (IClJMB or 
PCLIMB). In each instance, operands are used to define the shrinking operation 
in terms of a base address, size, and segment. The operands are called vectors 
and each is composed of two or four contiguous words. Each vector specifies 
one of the following functions to be performed by the instruction: copy 
descriptor, normal shrink, or data stack shrink. An operand of a LDDn 
instruction may be in the same segment as the LDDn instruction or in another 
segment. If the operand is in a descriptor segment, it is a descriptor, not a 
vector, and replacement occurs rather than shrinking. 

A companion of the vector is an internal offset (a combination of a segment 
identifier (~D) and an address value) called a pointer. A pointer, in NS 
mode, is a 36-bit operand with sufficient information to identify an operand 
within a domain. Since a pointer is relative to a domain, it can be used only 
to address operands within its domain. Pointers for one domain cannot be used 
in another domain; however, pointers can be exchanged and used by several 
instruction segments within a domain. 

A pointer in ES mode is a 2-word construct containing the same information of 
segment identifier (~D) and address offset value. 

3-17 DZSI-OO 





( 

A processor register is a hardware assembly that holds information for use in 
some specified manner. An accessible register is a register whose contents are 
available to the user. Some accessible registers are explicitly addressed by 
particular instructions, some are implicitly referenced during the execution of 
instructions, and some are used in both ways. The accessible registers are 
listed in Table 4-1. Refer to the section S, "Machine Instruction 
Descriptions" for a discussion of each instruction to determine the way in 
which the registers are used. 

4-1 DZ51-00 



Table 4-1. Processor Accessible Registers 

Length 
Rea ister Name Mnemonic (bits) 

Accumulator Register A 36 
Quotient Register Q 36 
Accumulator-Quotient Register(l) AQ 72 
Exponent Register E 8 
Exponent-Accumulator-Quotient Register(l) EAQ 80 
Low Operand Register LOR 72 
Index Registers X!! 18 
General Index Register GXn 36 
Indicator Register IR 18 
Timer Register 'l'R 27 
Instruction Counter IC 18 
Address Registers AR!l 24/36 
Linkage Segment Register LSR 72 
Instruction Segment Register ISR 72 
segment Descriptor Registers DR!! 72 
segment Identity Registers SEGIDn 12 
Instruction Segment Identity Register SEGID(IS} 12 
Pointer Registers(2} PRn 108 
Option Register OR 2 
calendar Clock(3) CCL 52 
Working Space Registers WSR,n 9 
safe Store Register SSR 72 
Stack Control Register SCR 2 
Argument Stack Register ASR 72 
Parameter Segment Register PSR 72 
High Water Mark Register HWMR 20 
Data Stack Descriptor Register DSDR 72 
Data Stack Address Register DSAR 17 
Page Directory Base Register PDBR 19 
CPU Mode Register MR 36 
cache Mode Register, Lockup Fault Reg. CMR/LFR 34/2 
Configuration Register CR 18 
Address Trap Register A'l'R 72 
Virtual Address Trap Register VA'l'R 72 
CPU Number Register NR 72 
Interrupt Mask Register(3) IMR 36 
CPU Fault Register FR 72 
Extended Fault Register EFR 72 
History Registers HR 144 
Reserve Memory Base Register RMBR 36 
SCU Fault Register(3) SCUFR 72 
Syndrome Reg isted 3 ) SYR 72 
SCU Configuration Register(3) SCUCR 72 
SCU History Register(3) SCHR 144 
Memory Error Status Register (3) MSR 72 
Memorv Identification Reaisted3) MID 72 

4-2 

Ouantitv 
1 
1 
1 
1 
1 
1 
8 
8 
1 
1 
1 
8 
1 
1 
8 
8 
1 
8 
1 
1 
8 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

64 
1 
1 
1 
1 

64 
1 
1 

DZ51-00 

1\ 
~>/ 



( 

( 

(1) These registers are not separate physical assemblies but are 
combinations of their constituent registers. 

(2) The pointer registers are not distinct physical registers but are a 
collective group of registers (DRn, ARg, S~Dn). 

(3) These registers exist in the system controller. However, because 
they may be read and/or written with processor instructions, they 
have been included in this tablE. 

In the descriptions that follow, the diagrams given for register formats do not 
imply that a physical assembly possessing the pictured bit pattern actually 
exists. The diagram is a graphic representation of the form of the register 
data as it appears in memory when the register contents are stored or how data 
bits must be assembled for loading into the register. 

I f the diagrams contain the character "x" or "0", the value of the bit in the 
position shown is irrelevant to the register. Bits pictured as "x" are not 
changed in the receiving cell when the register is stored. Bits pictured as "0" 
are set to 0 in the receiving cell when the register is stored. Neither "x" 
bits nor "0" bits are loaded into the register. If fields contain the "I" 
character, the field is not used. 

NOTE: Following descriptions of all of the programmable registers, the registers 
used only in Privileged Master Mode are described. 

ACCUMULA'l'OR RE;I S'l'ER (A) 

Format: 36 bits 

0 1 1 
0 7 8 

I A-Upper I A-Lower 

18 

Figure 4-1. Accumulator Register (A) Format 

Description: 

A 36-bit physical register 

Function: 

In fixed-point instructions, holds operands and results. 

In floating-point instructions, holds the most significant part of the 
mantissa and the result. 

3 
5 

I 
18 

4-3 DZ51-00 



In shifting instructions, holds original data and shifted results. 

In address preparation, may hold two logically independent offsets, A-upper 
and A-lower, or an extended range bit- or character-string length. 

QUOTI BH'l' lUG S'l'ER (Q) 

Format: 36 bits 

o 1 1 3 

Q-Upper Q-Lower 

18 18 

Figure 4-2. Quotient Register <Q) Format 

Description: 

A 36-bit physical register 

Function: 

In fixed-point binary instructions, holds operands and results. 

In floating-point instructions, holds the least significant part of the 
mantissa. 

In shifting instructions, holds original data and shifted results. 

In address preparation, may hold two logically independent offsets, Q-upper 
and Q-lower, or an extended range bit- or character-string length. 

ACCtJMtJLA'l'OR-QUOTIEN'l' RG S'l'BR (At) 

Format: 72 bits 

o 3 3 7 

Even Word Odd Word 

36 36 

Figure 4-3. Accumulator-Quotient Register (AQ) Format 

4-4 DZ5l-00 

'" ~ " 
~_/ 



( 

( 

Description: 

A combination of the accumulator (A) and quotient <Q> registers 

Function: 

In fixed-point binary instructions, holds double-precision operands and 
results. 

In floating-point instructions, holds the mantissa and the result. 

In shifting instructions, holds original data and shifted results. 

EXPOlIBNT RB:;I S'l'BR (E) 

Format: B bits 

o 0 0 

zeros 

3 

B 2B 

Figure 4-4. Exponent Register (E) Format 

Description: 

An B-bit physical register 

Function: 

In floating-point instructions, holds the exponent. 

Format: BO bits 

0 o 0 7 
0 (E) 7 0 (AQ) 1 

I Exponent I Mantissa 

8 72 

Figure 4-5. Exponent-Accumulator-Quotient Register (EAQ) Format 

I 

4-5 DZ51-00 



Description: 

A combination of the exponent (E), accumulator (A), and quotient <Q> 
registers. Although the combined register has a total of 80 bits, only 72 
are involved in transfers to and from main memory. The low-order 8 bits are 
discarded on store and zero-filled on load (that is, Q-register bits 28-35 
are zero on load; bits 64-71 of the AQ Register are ignored). See 
"Floating-Point Arithmetic I~tructions" in Section 7. 

Function: 

In floating-point instructions, holds operands and results. 

IDW OPBRARD R!GIS'l'BR (LOR) 

Format: 72 bits 

° 00 70 7 ° 7 0 :,1 r.::0:....-__ -----------::1:.,-

I~~ ~ ~ ~ ~ ~~R~~S~.: ~ ~ ~ ~ ~ I Low Operand Register I 
8 6~4~----------------------~7~2 

Figure 4-6. Low Operand Register Format 

Description:/' '\ 

The lower operand register (LOR) functions in combination with the exponent 
(E), accumulator (A), and quotient (Q> registers in quadruple-precision 
floating-point operations. 

Function: 

The 72-bit lower operand register is used for the lower mantissa of 
quadruple-precision (four words) with floating-point operations. 

INDEX R!GISTERS ( len) 

Format: 18 bits each (NS Mode) 

o 1 
7 

18 

Figure 4-7. Index Register (Xn) Format 

4-6 DZ5l-00 



( 
Description: 

Eight IB-bit physical registers numbered 0 through 7. Index register data 
may occupy the position of either an upper or lower IB-bit half-word operand. 

Function: 

In fixed-point binary instructions, hold half-word operands and results. 

In address preparation, hold bit, character, or word offsets or hold extended 
range bit- or character-string lengths. 

GENERAL I HDEK RJGS'l'ERS (GXn) 

Format: 36 bits (ES Mode) 

Figure 4-B. General Index Registers (GXn) Format 

Descript ion: 

Eight 36-bit physical registers numbered 0 through 7 used in ES mode only. 
General register data may occupy the entire 36-bit operand. 

Function: 

May be used as a data operand register with fixed-point operations: however, 
in the ES mode, GXn registers may be used as the single-precision operand 
register. 

In address preparation, hold bit, character, or word offsets or hold extended 
range bit- or character-string lengths. 

4-7 DZ51-00 



I lID! CA'J.'OR JUG STER (I R ) 

Format: 18 bits 

o 111 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 
5 o 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 

xxxxxxxxxxxxxxxxxx a b c d e f 9 h i j k 1 m n p q 

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 

Figure 4-9. Indicator Register (IR) Format 

Description: 

An assemblage of 15 indicator flags from various units of the processor. The 
data occupies the position of a lower l8-bit half-word operand. When 
interpreted as data, a bit value of 1 corresponds to the ON state of the 
indicator; a bit value of 0 corresponds to the OFF state. 

Function: 

The functions of the individual indicator bits follow. 

Key Indicator name Action 

a Zero 

b Negative 

c carry 

This indicator is set ON whenever the output of 
the main binary adder consists entirely of zero 
bits for binary or shifting instructions or the 
output of the decimal adder consists entirely of 
zero digits for decimal instructions; otherwise, 
it is set OFF. 

This indicator is set ON whenever the output of 
bit 0 of the main binary adder has value 1 for 
binary or shifting instructions or the sign 
character of the result of a decimal instruction 
is the negative sign character; otherwise, it is 
set OFF. 

This indicator is set ON for any of the following 
conditions; otherwise, it is set OFF. 

(1) If a bit propagates leftward out of bit 0 of 
the main binary adder for any binary or 
left-shifting instruction. 

4-8 DZ51-00 

r' 
i 

'\ 
" J ,,-,./ 



( 

( 

( 

Key Indicator name Action 

d 

e 

f 

Overflow 

Exponent 
overflow 

Exponent 
underflow 

(2) If Ivaluell <= Ivalue21 for a decimal numeric 
comparison instruction. 

(3) If charl <= char2 for a decimal alphanumeric 
comparison instruction. 

This indicator is set ON if the arithmetic range 
of a register is exceeded in a fixed-point binary 
instruction or if the target string of a decimal 
numeric instruction is too small to hold the 
integral part of the result. It remains ON until 
reset by the Transfer On Overflow (rov) 
instruction or reset by some other instruction 
that loads the IR. The event that sets this 
indicator ON may also cause an overflow fault. 
(see overflow mask indicator below.) 

This indicator is set ON if the exponent of the 
result of a floating-point binary or decimal 
numeric instruction is greater than +127. It 
remains ON until reset by the Transfer On Exponent 
Overflow ('l'EX) instruction or reset by some other 
instruction that loads the IR. The event that 
sets this indicator ON may also cause an overflow 
fault. (see overflow mask indicator below.) 

This indicator is set ON if the exponent of the 
result of a floating-point binary or decimal 
numeric instruction is less than -128. It remains 
ON until reset by the Transfer On Exponent 
Underflow (TEU) instruction or reset by some other 
instruction that loads the IR. The event that sets 
this indicator ON may also cause an overflow 
fault. (See overflow mask indicator.) 

4-9 DZ5l-00 



Key Indicator name Action 

g Overflow mask 

h Tally runout 

i Parity error 

This indicator is set to ON or OFF only by the 
WI, RET, and CLI MB instructions. When set ON , it 
inhibits the generation of the fault for those 
events that normally cause an overflow fault. 
When the overflow mask is ON, no overflow fault is 
generated if either the overflow or the exponent 
overflow indicator is set to ON status. When the 
overflow mask is set OFF, an overflow fault is 
generated if either the overflow or the exponent 
overflow indicator is set to ON status. If the 
overflow mask indicator is set OFF after an 
overflow event, an overflow fault does not occur 
even though the indicator for that event is still 
set ON. The state of the overflow mask indicator 
does not affect the setting, testing, or storing 
of any other indicator, nor does it affect the 
overflow fault caused by the truncation indicator. 

This indicator is set OFF at initialization of any 
tallying operation. It is then set ON for any of 
the following conditions: 

(1) I f any Repeat instruction terminates because 
of tally runout. 

(2) If a Repeat Link (RPL) instruction terminates 
because of a zero 1 ink address (NS mode 
only) • 

(3) I f a tally exhaust is detected for an 
Indirect then Tally modifier. The 
instruction is executed whether or not tally 
runout occurs. 

(4) I f a string scanning instruction reaches the 
end of the string without finding a match 
concHtion. 

This indicator is set by the hardware when a 
parity error occurs on an access to memory. It can 
be set with the WI and STI instructions. The 
indicator is set OFF only by instructions that 
load the IR. 

4-10 DZ51-00 

r"~, 

I ' 
,; I 

"--/ 



( 

( 

Key Indicator name Action 

j 

k 

1 

m 

Parity mask 

Master mode 

Truncation 

Multiword 
instruction 
interrupt 

-_._. __ .. - ... _- ...• - ... - .... ~~~ 

This indicator is set ON or OFF only by the LOI, 
RET, and CLI ME instructions. When it is set ON, 
it inhibits the generation of the parity fault for 
all events that set the parity error indicator 
even when a MEMSYS fault condition is detected. 
If the parity mask indicator is set OFF 
after a parity error event, a parity fault does 
not occur even though the parity error indicator 
may still be set ON. The state of the parity mask 
indicator does not affect the loading, testing, or 
storing of any other indicator. 

This indicator is set ON for an interrupt 
acceptance, a fault acceptance, a PMME instruction 
execution, and the execution of an OCLlMB 
instruction (when the master mode bit of the 
indicator register to be restored is ON). This 
indicator is reset to OFF following the execution 
of a TSS, RET (with operand bit 28=0), 0CLl MB 
(when the master mcxie bit of the 1 R to be restored 
is OFF), or an 1 eLI MB instruction (when the second 
word bit 19=0). 

This indicator is affected only by multiword 
instructions. It is set to ON during string 
instructions when the source string length is 
greater than the destination string length, and 
set to OFF when the reverse is true. For decimal 
arithmetic instructions, it is set to ON when 
there are no rounding specifications and the 
lowest digit, or more of the result is truncated, 
and set to OFF when the reverse is true. When the 
highest nonzero digit is lost, the Overflow 
Indicator is set ON. 

This indicator is set OFF by the execution of the 
SPL instruction and by the end of execution of all 
multiword instructions, and is set ON by the 
events described below. The indicator has meaning 
only when determining the proper restart sequence 
for an interrupted multiword instruction. 

This indicator is set: 

When any fault or interrupt occurs during the 
execution of a multiword instruction (except 
CLIMB) : 

4-11 DZ51-00 



Key Indicator name Action 

n 

p Hex mode 

q 

TI MER RlG: S'1'ER ('l'R) 

Format: 27 bits 

o 

The ON state of this indicator is used during the 
CLIMB (after a fault or interrupt) instruction, 
for example, to save the pointers and lengths data 
in order to resume the instruction. 

Re$erved for future use 

This indicator is set ON or OFF only by the 
instructions that load the IR. 

NOTE: When set ON with bit 33 of the CPU mode 
register set ON, the floating-point 
instructions are executed in the hexadecimal 
exponent mode. 

Reserved for future use 

223 
675 

Timer value 

Figure 4-10. Timer Register (TR) Format 

Description: 

A 27-bit settable, free-running clock. The value decrements at a rate of 
512 kHz. Its range is 1.953125 microseconds to approximately 4.37 minutes. 

4-12 DZ51-00 

,/ 



( 

Function: 

The TR may be loaded with any convenient value with the Load Timer Register 
(LOT) instruction. When the value next passes through zero, a timer runout 
fault is signalled. If the processor is in Slave mode with interrupts not 
inhibited or is stopped at an uninhibited Delay Until Interrupt Signal (DIS) 
instruction, the fault occurs immediately. If the processor is in Master or 
Privileged Master mode or has interrupts inhibited, the fault is delayed 
until the processor returns to Slave mode or st.ops at an uninhibited DIS 
instruct ion. 

I HS'i'RDC."i'I ON CDtJH'l'BR (I C) 

Format: 18 bits 

a 

Instruction address 

Figure 4-11. Instruction Counter (IC) Format 

Description: 

An 1S-bit physical register 

Function: 

Holds the address of the current instruction being executed. The IC is 
incremented by 1 by the control unit for the sequential execution of 
single-word instructions or by the appropriate amount (2, 3, or 4) for 
multiword instructions. The content of the IC is changed by a 
transfer-of-control instruction or by a fault or interrupt. 

A description of faults and interrupts is contained in Section 6. 

ADDRESS RKiI S'l'ERS (AR.n) 

Format: 24 bi ts each (NS Mode) 

a 1 1 1 2 2 
a 7 8 9 a 3 

I 
-Word la..rl Bit 

I 
18 2 4 

Figure 4-12. Address Register (AR!!) Format (NS Mode) 

4-13 DZ51-00 



Description: 

Eight 24-bit physical registers numbered 0 through 7 that are associated 
with the segment descriptor registers (DRn) and that allow address 
modification on a word, character, or bit basis 

Function: 

The address registers provide address modification to the word, byte, and 
bit level: 

Word - 18 bits (0-17): a word offset within the segment described by the 
associated segment descriptor register 

Char - 2 bits; designates one of the four 9-bit characters (bytes) of which 
the word is composed 

Bit - 4 bits; designates one of the 9 bits within the character 

Format: 36 bits each (ES Mode) 

o 2 3 3 3 3 
9 0 1 2 5 

Word 

Figure 4-13. Address Register (ARB) Format (ES Mode) 

Description: 

Eight 36-bit physical registers numbered 0 through 7 that are associated with 
the segment descriptor registers (DRn) and that allow addressing on a word, 
character, or bit basis 

Function: 

In ES mode, each address register is extended to 36 bits. The ~ is as given 
in two's complement form, with bit 0 as sign bit. In the effective address 
generation, bit 0 is extended 4 bits to the left. 

Word - 29 bits (1-29); a word offset within the segment described by the 
associated segment descriptor register 

Char - 2 bits; designates one of the four 9-bit characters (bytes) of 
which the word is composed 

Bit - 4 bits: designates one of the 9 bits within the character 

4-14 DZ51-00 



( 

( 

LI HKAGE SlGIEN'l' RPm STER (LSR ) 

Format: 72 bits 

a 
a 

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 
8 9 

9 
WSR 

3 3 
1 2 

3 
Type=l 

4 

3 
5 

36 

Figure 4-14. Linkage Segment Register (LSR) Format 

Description: 

Even­
word 

Odd­
word 

A 72-bit register that holds a type 1 standard descriptor that describes the 
linkage segment of the current domain of the currently executing process 

Function: 

The linkage segment register is loaded only by executing a ClJMB 
instruction. The linkage segment register may be stored by transferring the . 
contents of the LSR to an segment descriptor register (DRn) and then storing 
DRn. When the bound field of the LSR is loaded, bits 0-6 are forced to zero 
and bits 17-19 are forced to 111. Thus, the size of the linkage segment is 
effectively limited to 1024 descriptors. 

I NS'l'RUC'l'ION SEX;MENT RPm S'l'ER (I SR) 

Format: 72 bits 

o 
o 

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 
8 9 

9 
WSR 

3 3 
1 2 

3 
'l'ype=0 

4 

3 
5 

36 

Figure 4-15. Instruction segment Register (ISR) Format 

Description: 

Even­
word 

Odd­
word 

A 72-bit register that holds a type 0 standard descriptor that describes the 
current instruction segment for the current domain of the currently 
executing process. 

4-15 DZ51-00 



Function: 

The instruction segment register may not be loaded or stored directly. The 
register is loaded during the execution of a ClJMB or transfer instruction 
with bit 29 ON. The lSR may be stored indirectly by moving its contents to 
an segment descriptor register (DRn) and then storing DRn. If bit 29 of an 
instruction word is zero or the AR bit in the MF field of a multiword 
instruction is zero, the instruction segment register is used in forming the 
virtual address of the operand. The base and bound values placed in the 
lSR are constrained; the 5 least-significant bits of the base field must be 
zero and the 5 least-significant bits of the bound field must be ones. 

S1!9IBR'l' DESCRIP'l'OR JUG S'lBRS (DRn) 

Format: 72 bits each 

Description: 

Eight 72-bit registers that hold segment descriptors that describe address 
space contained within the current domain of the currently executing 
process. The format of the descriptors is in accordance with the content of 
the type fields; type fields 0, 2, 4, 6, 12, and 14 are used for operand 
segments and type fields 1 and 3 are used for descriptor segments. 

Function: 

Instructions are available for loading and storing the segment descriptor 
registers and for modifying their contents. A segment descriptor register 
is invoked for virtual operand address development when bit 29 of the 
instruction is 1; address bits 0, 1, and 2 specify which of the combined 
segment descriptor register (DRn) and address register n (ARB) is to be 
used. Each of these eight segment descriptor registers is associated with a 
corresponding address register. For example, an AR3 modification refers to 
the segment whose descriptor is the contents of DR3.. For multiword 
instructions, the use of ARB and the associated DRn is specified by the AR 
bit in theMF field. Refer to "Multiword Modification Field" in Section 5. 

4-16 DZ5l-00 



( 

( 

SlGmNT IDENTI TY RPa STBRS (SlGDn) 

Format: 12 bits each 

000 

D 

Figure 4-16. segment Identity Register (SEGID!!) Format 

Description: 

Eight 12-bit registers that have a one-to-one correspondence with the 
segment descriptor registers (DR!!). The segment identity registers point to 
the source of the descriptor in the DRn. 

Function: 

The SEGIDn registers are loaded concurrently with the related descriptor 
registers (DRn). The S and D field codes used in these registers indicate 
the origin of the descriptor (S = segment, D = descriptor offset). 

When S = 0: 

The D field indicates the location of the segment descriptor loaded into 
the ORn. 

For D = 1760 through 1777 (octal), the selected register is copied into 
the DR!!. 

D = 1760 
D = 1761 
D = 1762 
D = 1763 
D = 1764 
D = 1765 
o = 1766 
o = 1767 
D = 1770 
o = 1771 
o = 1772 
D = 1773 
D = 1774 
o = 1775 
D = 1776 
o = 1777 

Undefined 
The segment descriptor type field is changed. * 
Instruction Segment Register (ISR) 
Data Stack Descriptor Register (OSOR) 
safe Store Register (SSR) 
Linkage Segment Register (LSR) 
Argument Stack Register (ASR) 
Parameter Segment Register (PSR) 
DRO, Descriptor Register 0 } 
DRl, Descriptor Register 1 } 
DR2, Descriptor Register 2 } 
DR3, Descriptor Register 3 } self-Identifying 
DR4, Descriptor Register 4 } 
OR5, Descriptor Register 5 } 
OR6, Descriptor Register 6 } 
OR7, Descriptor Register 7 } 

* When S = 0 with D = 1761, 1763, and 1764, a Command fault occurs 
unless the CPU is in the Privileged Master mode. 

4-17 - OZ51-00 



When S = a with D = 1761 in the Privileged Master Mode and the type of 
the segment descriptor in the DRn is T = 1 or 3, this segment 
descriptor type is changed to a or 2, respectively. ~Dn is set to 
be self-identifying. No fault occurs and no operation is performed 
with the LODn instruction, when the type in the DR!! is not T = 1 or 3. 

For D = 0000 through 1757 (octal), the descriptor in DR!! was loaded from 
the 'parameter segment and D was the index to the desired descriptor. 

When S = 2 

The descriptor DRn was loaded from the argument stack using D as the index 
to the descriptor. 

When S = 1 or 3 

The descriptor in ORo was loaded from the linkage segment using D as the 
index to the descriptor. 

INSTRUCl'ION S!GMBH'l' IDBNTI'.l'Y RlGS'l'BR - SlGD(IS) 

Format: 12 bits 

000 

D 

1 

Figure 4-17. Instruction Segment Identity Register - SEGID(IS) Format 

Description: 

A 12-bit register that is associated with the instruction segment register 
(lSR) in the same manner that a ~D!! register is associated with an 
segment descriptor register (DRn). This register points to the source of 
the descriptor in the ISR. 

Function: 

The instruction segment identity register may not be loaded or stored 
directly: it is loaded with the identity of the source of the descriptor 
when a transfer or OJMB instruction loads the Instruction Segment Register 
(lSR). The Sand D field codes used in these registers indicate the origin 
of the descriptor. see SEGIDn description. 

4-18 DZ51-00 



( 

POI HTER RPmSTERS (PR) 

Format: A collective grouping of registers 

Description: 

Eight "convenience" logical combinations of registers 

Function: 

The pointer registers are not physical registers but are convenient terms 
used to refer to segment descriptor register (DRn), segment identity 
register (SEGIDn), and address register (ARn) utilized as a collective 
register. 

A 2-bit register that controls the clearing of data stack space and 
bypassing the safe store portion o~ an inward ClJMB (IClJMB) instruction. 
Bit 18 is the Data Stack Clear Flag (DSCF) and bit 19 is the safe Store 
Bypass Flag (SSBF). 

Function: 

The option register is loaded with the Load Option Register (LDQ) 
instruction and stored with the Store Option Register (STO) instruction. 

4-19 DZ51-:00 



CALBHDAR o.ocK RlGS'l'ER (CCR) 

Format: 52 bits 

012 
090 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 

3 

Clock Lower 

Clock Upper 

Figure 4-19. calendar Clock Register (CCR) Format 

Description: 

3 
5 

16 
7 
1 

36 

A 52-bit register that holds a calendar clock with a resolution of one micro 
second 

Function: 

The CCR register provides a means for setting and reading the calendar 
clock. The CCR is set by using the SSCR 04 instruction and read by using ,~'\ 
the RSCR 04 instruction. (Refer to the individual descriptions of these ~ 
instructions in section 8). "-

( 
'-'/ 

4-20 DZ51-00 



( 

( 

NOTE: '!'BE POLLOWI HG REm S'l'ERS CAB BE ~BI) ONLY I Ii PRIVI I..!IiED IIAS"l'BR MODE. 

WORKING SPACE REXiIS'l'ERS (WSRn) 

Format: 9 bits each 

0 0 
0 8 

I 
Working Space Number 

91 

Figure 4-20. Working Space Register (WSRg) Format 

Description: 

Eight 9-bit registers located in the virtual unit, each of which holds a 
working space (WS) number that is used to form a virtual address 

Function: 

A working space register is referred to by the WSR field of a descriptor. 
The LOWS and STWS instructions are used to load and store the working space 
registers, respectively. To execute these two instructions, the processor 
must be in Privileged Master mode. When the processor is initialized and 
cleared, working space register 0 is set to all zeros. The working space 
registers provide the means for sharing and isolating working spaces. 

SAFE STORE REXiI S'l'BR (SSR) 

Format: 72 bits 

o 
o 

Bound 

1 2 
9 0 

2 2 2 2 
2 3 8 9 

3 3 
1 2 

Flags ~1 WSR ---Ir _9 --_3 Flags WSN 3 
20 3 9 

Base 

Type=1 

3 
5 

4 
~3-

4 

36 

Figure 4-21. safe Store Register (SSR) Format 

4-21 DZS1-00 



Description: 

A 72-bit register located in the virtual unit that holds either a Type 1 or 
3 standard descriptor that describes the safe store stack of the current 
process. Note that the format for a Type 3 descriptor differs in that the 
Flags field is truncated at bit 22 to allow the descriptor to contain the 
actual working space number (WSN) rather than point to a Working Space 
Register (WSR). 

Function: 

The safe store register describes the safe store stack of the current 
process. The safe store register is loaded and stored with the Privileged 
Master mode instructions LOSS and STSS. A 2-bit hardware stack control 
register (SCR) is associated with the safe store register. The Stack 
Control Register (SCR) content determines the size of the safe store frame. 
(Refer to SCR below.) 

STACK roNnOL Rl!m S'l'ER (SCR) 

Format: 2 bits (internal) 

Description: 

An internal register that controls the size of the safe store frame 

Function: 

The SCR is initialized by execution of the Privileged Master mode 
instruction LOSS. This register contains the code indicating the size of 
the last safe store frame as shown in the table below. (Refer to the 
discussion of the safe Store Register (SSR).) 

SCR safe Store Stack Size 

00 - 16 words 
01 - 24 words 
11 - 64 words 
10 - 80 words 

(Bit values are binary.) 

4-22 DZ51-00 



ARGUIIEN'l' STACK RPm S'l'BR (ASR) 

( Format: 72 bits 

( 

o 
o 

Description: 

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 
8 9 

9 
WSR 

3 3 
1 2 

3 
Type=1 

4 

3 
5 

36 

Figure 4-22. Argument Stack Register (ASR) Format 

Even­
word 

Odd­
word 

A 72-bit register that holds a type 1 standard descriptor that describes (or 
frames) the argument stack of the current domain of the currently executing 
process 

Function: 

Instructions are provided for loading (Privileged Master mode) and storing 
the argument stack register. The argument stack register is .utilized by and 
may have its contents changed by the hardware during the execution of a save 
Descriptor Register (SDRn) or CLIMB instruction. When the bound field of 
the ASR is loaded, bits 0-6 are forced to zero: if flag-bit 27 = 1 (bound 
valid), bits 17-19 are forced to 111. Thus, the size of the argument stack 
is effectively limited to 1024 descriptors. 

PARAME'l'BR SlGIENT RPm S'l'BR (PSR) 

Format: 72 bits 

o 
o 

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 
8 9 

9 
WSR 

3 3 
1 2 

3 
Type=1 

4 

3 
5 

36 

Figure 4-23. Parameter Segment Register (PSR) Format 

4-23 

Even­
word 

Odd­
word 

DZ51-00 



Description: 

A 72-bit register that holds a type 1 standard descriptor that frames the / -" 
parameter segment of the current domain of the currently executing process 

Function: 

Instructions are provided for loading <Privileged Master mode) and storing 
the parameter segment register. The parameter stack register is utilized by 
and may have its contents changed by the hardware during the execution of 
the a.IMB instruction. When the bound field of the PSR is loaded, bits 0-6 
are forced to zero; if flag-bit 27 = 1 (bound valid), bits 17-19 are forced 
to Ill. Thus, the size of the parameter segment is effectively limited to 
1024 descriptors. 

m GB WA'l'BR NARK JUG: S'l'BR (BWMR.) 

Format: 20 bits 

o 1 

HWMR Address 

Figure 4-24. High Water Nark Register (HWMR) Format 

Description: 

A 20-bit register containing the maximum bound reached relative to the 
current ASR base. 

Function: 

The bound defined by the address contained in the register prevents one 
program from gaining access to any portion of another program's descriptors 
that were stored on the argument stack. The HWNR allows the PAS instruction 
to be executed in the slave mode. Instructions which affect the HWNR are 
WAS, SDRg, and CLIMB. (Refer to the individual descriptions of these 
instructions in Section 8.) 

4-24 DZ5l-00 



.( 

( 

DATA STACK DESCRIPTOR RB.iISTER (DSDR) 

Format: 72 bits 

0 1 2 2 2 3 3 3 
0 9 0 8 9 1 2 5 

Bound Flags WSR Type = 0 
20 9 3 4 

Base 
36 

Figure 4-25. Data Stack Descriptor Register (OSDR) Format 

Description 

Even 
Word 

Odd 
Word 

A 72-bit register located in the virtual unit that holds a type 0 standard 
descriptor that frames the data stack area of memory for the current 
process 

Function: 

Privileged Master mode instructions (LDDSD and S'l'DSD) are available for 
loading and storing the data stack descriptor register. The contents of the 
data stack descriptor register are utilized by the hardware when the vector 
of the Load Descriptor Register (LOOll) or CLIMB instruction indicates that a 
working data stack descriptor is to be generated. 

DATA STACK ADDRP'SS RlGI S'l'BR (DSAR) 

Format: 17 bits 

0 111 3 
0 778 5 

I 
Base of the next 

17101 lsi stack area 

Figure 4-26. Data Stack Address Register (DSAR) Format 

Description: 

A l7-bit special-purpose index register that points to the next available 
double-word location wi thin the data stack area of memory framed by the data 
stack descriptor register (DSDR). Bit 17 is always zero. 

4-25 DZ5l-00 



Function: 

Privileged Master mode instructions (LDDSA and S'I'DSA) are available for 
loading and storing the Data Stack Address Register. The contents of the \~J; 
DSAR may be altered during the execution of the Load Descriptor Register 
(LDDn) instruction, Load Data stack Address Register (LDDSA) instruction, or 
ClJMB instruction. 

PAGE DIRB:"rORY BASE UGIS'l'BR (PDBR) 

Format: 19 bits 

o 

Base location 

Figure 4-27. Page Directory Base Register (PDBR) Format 

Description: 

A 19-bit, modulo 512 word register that contains the base location of the 
working space page table directory 

Function: 

Privileged Master mode instructions (LPDBR, SPDBR) are available for loading 
and storing the page directory base register. 

CPU MODE RG S'1'ER (MR) 

Format: 36 bits 

o 1 1 112 2 2 222 2 2 223 3 3 3 3 3 

1° Qescriptor ~tion 
17 1 2 1 1 1 1 2 1 2 1 1 1 1 1 2 

Figure 4-28. CPU Mode Register (MR) Format 

4-26 DZ51-00 



( 

Description: 

An assemblage of flags and indicators from the CPU. The mode register is 
stored into the even word of a Y-pair by an SCPR instruction with tag = 6. 
The mode register is loaded by an LCPR ins~ruction with tag = 4. These 
instructions may be executed in Privileged Master mode only. 

On a SCPR tag 06, the second word contains the cache mode register and 
lockup fault register. 

Function: 

The CPU mode register controls the operation of those features of the 
processor capable of being enabled and disabled. 

The functions of the constituent flags and indicators are as follows: 

Key Bits Function 

DL 0-16 Bits 10-26 of address trap match entry descriptor location: bits 

a 

b 

c 

d 

e 

17 

0-9, 27 = O. 

When set ON, enables a trap on addess match. A fault or machine 
stop occurs. 

18-19 Not used 

20* When set ON, indicates generation of incorrect data parity. 
Flag is reset by return of an SCU activity status. 

21 When set ON, indicates generation of incorrect ZAC parity. Flag 
is reset by return of SCU actiity status. 

22 Control SCU 

o = Lower memory port 
1 = Port High memory port 

23 Not used 

f 24-25 SEGID compare for LDPn 

Bit 24 - Slave mode 
Bit 25 - Master and Privileged Master mode 
1 = enable compare 
o = disable compare 

NOTE: Disabled by GODS 

9 26** Reset Backup fault flag 

27-28 Not used 

h 29 When set ON, enables history register transfer trace mode 

i 30*** When set ON, en~ =s history register strobe 

4-27 DZ5l-00 



Key Bits Function 

j 

k 

1 

m 

31 

32 

33 

34 

35 

When set ON, resets bit 30 on fault 

Not used 

Set ON, enables hexadecimal exponent mode 

I nhibi t PATROL 

Set ON, enables CPU mode register 

* If bit 20 is set: 

1. On a store into cache, bad parity exists in the data. 

2 •. On a store to the SCU, bad parity exists in the data. 

3. On a block load into cache, bad parity exists in the data placed 
into cache, on the entry in cache directory, and on the data to the 
register defined in the instruction. 

** The LCPR tag 04 instruction resets the Backup fault flag regardless of 
the value in C(Y); this bit is set by hardware to indicate the 
occurrence of a backup fault. SCPR tag 06 stores the Backup fault 
flag as bit 26 of the CPU mode register. 

*** If bit 31 is on, then bit 30 is reset OFF (locks history registers) 
for the following faults: /- '-, 

LUF, PAR, CMD, BND, IPR, 
Shutdown, SCLl, SCL2, SSSF, MPG, MSG, MWS, 
Dynamic Linking 

Bit 30 is set to OFF for ONC fault regardless of the bit 31 
setting. 

CACHE MODE R!GIS"l'ER (om)« LOCKUP FAULT RlGS'l'ER (LUF) 

Format: 34/2 bits 

o 
o 

1 1 2 222 2 222 
7 890 1 2 345 6 

111111111111111111111111111111 
1111/,1111111111111111111111111 a 0 0 b 0 c d 0 
111111111111111111111111111111 

17 1 1 1 1 1 1 2 

o 0 0 0 0 0 

333 
345 

0 LUF 

8 2 

Figure 4-29. cache Mode Register (CMR), Lockup Fault Register Format (LUF) 

4-28 DZ51-00 



( 

( 

Description: 

A 34/2-bit register holding an assemblage of bits that provide information 
concerning cache mode and lockup faults. 

Function: 

The CMR/LUF register is used to engage and disengage control of cache memory 
and to determine the existence of any lockup fault. This register is 
accessed only through Privileged Master mode. It is loaded by an !.CPR 
instruction with tag = 02 and stored by an SCPR instruction tag = 6. 

The functions of the constituent bits are as follows: 

a 

b 

c 

d 

Function 

0-17 Ignored 

18* 

19 

20 

21 

22 

23** 

24-25 

cache enabled, 1 = enable; reset to zero by ONe 

Zero 

Zero 

cache enabled for instruction fetch; 1 .. enable 

Zero 

cadle to reg ister; 1 = ON 

Level 0,1, ON: 1 = ON 

26-33 Zero 

LUF 34-35 Lockup Fault register 

NOTE: Word 0 of the double-precision store contains CPU mode register 
information. (Refer to CPU Mode Register for definition of these 
bits.) 

Settings of the Lockup fault register are as follows: 

Bits 34-35 Milliseconds 

00 8.0 
01 16.0 
10 32.0 
11 64.0 

4-29 DZ51-00 



These values are applicable in Slave mode. In Master or Privileged 
Master mode, the Lockup fault register is set to 128 milliseconds. 

* cache is cleared when enabled if the previous cache state was OFF. 
The CCAC instruction acts as a NOP. 

** When the cache to register flag is ON, all double-precision 
instructions obtain operands from the normally selected double-word 
and column cache location determined by address bits Y25-26 and 
Y13-24, respectively. The address match in the cache directory is 
ignored (correct match is assumed). The cache level is selected by 
address bit Y12. All other instructions execute normally. If the use 
of the flag is to dump cache contents, the cache memory should be 
disabled to avoid being changed by the non-double-word instructions. 

When cache is used for PATROL, only level 0 is used. The normal 
fulliempty (FIE) bits of cache blocks used by PATROL are set to 
empty. PATROL operation always assumes hits in cache, independent of 
the state of the FIE bit and the address match. cache flushes (e.g., 
due to write/notify buffer overflow) do not affect PATROL operation. 

com GORATION RPmS'l'BR (PORT ASSIGHMENT ) (at) 

Format: 18 bits 

ZEROS 

1 1 1 1 1 4 9 

Figure 4-30. Configuration Register (Port Assignment ) (CR) 

Description: 

An 18-bit register providing configuration information. 

Function: 

The CR register is used to determine the port assignment and to determine 
the address split. This register can be used in the Privileged Master mode 
only. It is stored by the SCPR instruction with tag = 11 and loaded by the 
LCPR instruction with tag = 11. 

4-30 DZ51-00 

/-" 
I , 

~-j 



( 

( 

The functions of the constituent fields are as follows: 

Key 

a 

b 

c 

d 

e 

f 

NOTES: 

Bits Function 

0 Bit zero is not loaded by software 

o = Port A accesses lower memory 
1 = Port B accesses lower memory 

1 Port A Enabled 

2 Port B Enabled 

3 Port A Initialize from SCU ON 

4 Port B Initialize from SCU ON 

5-8 Address Split 

0000 = 256MW 
1000 = l28MW 
1100 == 64MW 
1110 = 32MW 
1111 = l6MW 

1. Bits 0-4 are initialized by the Service Processor (sp» in 
accordance with the designation of the lower memory port. 

2. If only one port is enabled, the address split is not used. All 
memory accesses are directed to the lower memory port. The lower 
memory port must always be enabled. 

4-31 DZ5l-00 



ADDRFSS TRAP R!XilSTER (ATR) 

Format: 72 bits 

I 

o 
o 

o 
4 

IIIIII 
IIIIII 
IIIIII 

5 

3 
6 

Description: 

Real Trap Address 

zeros 

Figure 4-31. Address Trap Register (ATR) Format 

3 333 
2 3 4 5 

a b c 

28 1 1 1 

7 
1 

36 

A 72-bit register containing an address trap address and information 
relating to it. 

Function: 

I 

The ATR register is used to establish the absolute word address of a trap 
and to indicate the conditions and status of the trap. This register can be 
used in Privileged Master mode only. In order for the address trap to be 
enabled, bit 17 in the CPU mode register must be set ON. The ATR is stored 
using the SCPR instruction with tag = 12 and loaded with the LCPR 
instruction with tag = 12. 

The contents of the register fields are as follows: 

~ Bits Function 

0-4 Ignored 

5-32 Real word address 

4-32 DZ5l-00 



( 

( 

Key Blts Function 

a 33 o = trap on instruction fetch or operand fetch 
1 = trap on instruction fetch 

b 34 o = trap on load or store 
1 = trap on operand store or indirect store 

c 35 If ON, trap enabled on a real address 

36-71 zeros 

VIR'l'UAL ADDRESS mAP RlG:STBR (VATR) 

Format: 72 bits 

o o 0 3 3 

WSN Virtual Trap Address 

3 

zeros 

Figure 4-32. Virtual Address Trap Register (VATR) Format 

Description: 

A 72-bit register containing a virtual address trap address and information 
relating to it. 

Function: 

This 72-bit register is used to establish the working space number and 
virtual address of a virtual address trap. This register can be used in 
Privileged Master mode only. In order for the address trap to be enabled, 
bit 17 in the CPU mode register must be set ON. It is stored with the SCPR 
instruction with tag = 14 and loaded with the LCPR instruction with tag = 
14. 

4-33 DZ51-00 



The functions of the constituent fields are as follows: 

Function 

Working Space Number 

Bits 15-40 of the virtual address 

0-8 

9-34 

33,34 Bits 33 and 34 of ATR apply to VATR operation. Therefore, the 
trap concH tions are common for ATR and VATR operation. 

35 When set ON, enables a trap on a virtual address 

CPU IlJJIBBR RBGI STBR (IIR) 

Format: 72 bits 

o 

Zeros 

3 

Zeros 

Figure 4-33. CPU Number Register (NR) Format 

Description: 

A 72-bit register that holds the CPU number 

Function: 

333 
2 3 5 

The NR register is used to establish the CPU number. The NR register can 
only be used in Privileged tester mode. It is stored by the SCPR 
instruction with tag = 13 and loaded h¥ the LCP.R instruction with tag = 13. 

Only three bits of the two-word register are used as shown below: 

0-32 

33-35 

36-71 

Function 

Zeros 

CPU Number 

Zeros 

4-34 DZSI-OO 

.' - '\ 



( 

( 

I JlTBRRUPT MASK JUG S'1'BR (I MR ) 

Format: 36 bits 

o 0 0 0 0 0 0 0 0 0 1 3 

Zeros 

1 111 1 1 1 1 1 1 1 25 

Figure 4-34. Interrupt Mask Register (IMR) Format 

Description: 

A 36-bit register that contains a mask for interrupts. 

Function: 

The IMR is used to enable or disable the interrupt levels from the CPU. The 
CPU can set theIMR with the Load Interrupt Mask Register (LIMR) instruction 
and can read the IMR with the Read Interrupt Mask Register (RIMR) 
instruction. Both of these instructions execute in Privileged Master Mode 
only. (Refer to discriptions of LIMR and RIMR in Section 8.) 

An 1 MR per port exists in the SCU to inform the CPU of a particular event. 
(Refer to Interrupt Procedures in Section 6.) 

The contents of the constituent bits of the IMR are as follows: 

a 

b 

c 

d 

e 

f 

9 

h 

0-7 

Function 

Interrupt levels (functions listed are a software 
convention) 

o not used by GODS 

1 when ON = fault channel interrupt 

2 not used by GODS 

3 when ON = terminate interrupt 

4 not used by GODS 

5 when ON = marker interrupt 

6 not used by GeOS 

7 when ON = special interrupt 

4-35 DZ51-00 



i 

j 

k 

8 

9 

10 

Function 

All Mask, conditionally (see "k" below) 
When ON enables interrupt present signals (XIP) to all 
ports 

Port connect mask. When ON enables connect faults 

Functions as indicated below: 

Bit 10 contents Bit 8 contents All Mask contents 

x 1 1 
o 0 Unchanged 
100 

O'U PAUL'!' RlGm'BR CPR) 

Format: 72 bits 

o 000 0 0 0 0 0 0 1 1 1 1 111 1 2 222 3 333 3 3 
o 1 2 3 4 5 6 7 8 901 2 3 456 9 0 345 o 1 2 3 4 5 

IIIIIIIIIII 
a b c d e f g h i j k 1 m 0 n 0 lAA lAB P IIIIIIIIIII q r s t u 

IIIIIIIIIII 
1 1 1 1 1 1 III 111 1 1 1 1 

3 

4 4 1 6 1 1 1 1 1 

7 

Zeros 

36 

Figure 4-35. Fault Register (FR) Format 

Description: 

A combination of flags and registers located in the system control unit 
(SCU). The fault register contains the conditions in the processor for 
several of the hardware faults. 

Function: 

The FR register is stored and cleared by an SCPR instruction with the TAG = 
1. The data is stored into the word pair at location Y and that bits 36-71 
(Y+l) are cleared. The fault register cannot be loaded. Data accumulates 
in the fault register during a fault until the register is stored and 
cleared. The data is not overwritten during subsequent fault events. 

An explanation of the constituent bits and their functions follows: 

4-36 DZ51-00 



( 

( 

( 

Key Bits Function 

a 

b 

c 

d 

e 

f 

9 

h 

i 

j 

k 

1 

m 

n 

o 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

When ON, a firmware-detected opcode, repeat, or modify Illegal 
Procedure fault (IPR) in MVE 

When ON, an I PR in MVE 

When ON, an illegal EI S descr i ptor: REG code for AR 
displacemen~, OU/OL, Repeat, Modify, Register length code, IPR 

When ON, an A-cycle or V-cycle, IPR 

When ON, an illegal descriptor, IPR 

When ON, indicates parity error in CA or CB chips 

When ON, illegal EIS data, IPR 

When ON, parity error on even word from the SCU port 

When ON, parity error on odd word from the SCU port 

When ON, cache directory multiple match 

When ON, that the processor has attempted a retry to the SCU; 
an error on the retry causes a CPU Oommand fault 

When ON, indicates parity error in CN or CP chips 

When ON, execution unit (EU) scratch pad parity error 

13 Not used 

14 

15 

When ON, indicates parity error in EA chips 

When ON, indicates parity error in CQ chips 

lAA 16-19 Illegal action code from SCU on Port A. (see Table 4-2.) 

lAB 20-23 Illegal action code from SCU on Port B. (See Table 4-2.) 

p 

q 

24 When ON, a write-notify receiving buffer overflow (causes cache 
to automatically be cleared). 

25-30 Not used 

31 When ON, parity error on write-notify at receiving port (causes 
cache to automatically be cleared). 

4-37 DZ51-00 



Key Bits Function 

r 

s 

t 

u 

NOTES: 

32 

33 

34 

35 

When ON, a cache directory parity error 

When ON, a cache storage parity error 

When ON, illegal action on store 

When ON, that parity error occurred on other than the target 
pair of words. (cache is always loaded 8 words at a time, but 
only two of these words represent the target pair.) 

1. Bits 01-04 added for additional fault resolution 

2. Bits OS, 11, 12, 14, 15 added to locate parity error checker 

System COntroller Illegal Action COdes: 

The errors reported by the System COntrol Unit (SCU) cause illegal action 
codes resulting in CPU faults. The activities causing these faults, the 
faults, and the results are displayed in Tables 4-2 and 4-3. 

Table 4-2. System Controller Illegal Action COdes 

COde CPU 
(Binarv) Activitv Fault Type Result 

Oxxx Good memory activity None 

!xxx Memory error detected Parity 

xOOO Good scu activity None 

x001 Uncorrected read/alter/ Parity Uncorrected data rewritten 
rewrite (RAR) error to memory 

xOlO Bound check error Bound 

xOll Parity error on write Parity Write aborted; if multiple 
wr i tes, all aborted 

0100 CONNECT to disabled or Command 
halted port 

xl01 Uncorrected read error Parity Incorrect data transmitted 

xl10 Internal SCU address/zone Parity 
error 

xlII SCU multi-error detection Parity 

4-38 DZ5l-00 



Table 4-3. SOurce Of Fault Register Errors 

( Source Of Error 
CPU SCU GCOS 
H!W H!W S/W 

Fault Register 

0 x 
1 x 
2 x 
3 :It 
4 x 
5 x 
6 x 
7 x x 
B x x 
9 x 

10 x x 
11 x 
12 x 
13 x 
14 x 
15 x 
16-19 x x 
20-23 x x 
24 x 

( 
25-30 (unused) 
31 x x 
32 x 
33 x 
34 x x 
35 x x 

Extended Fault R~ister 

0 (unused) 
1 (unused) 
2 x 
3 x 
4 (unused) 
5 x 
6 x 

( 

4-39 DZ51-00 



BK'l'BNDED FAULT Rl!SS'l'ER (EFR) 

Format: 72 bits 

o 0 0 

Zeros 

3 7 

Zeros 

Figure 4-36. Extended Fault Register (EFR) Format 

Description: 

The 72-bit EFR register containing PATROL information obtained from the DI 
status register (ROS). 

Function: 

The EFR is used to determine diagnostic and error conditions not contained 
in the FR. The EFR can only be used in the Privileged Master mode. It is 
stored by the SCPR instruction with tag = 3. The EFR register cannot be 
loaded. 

The functions of the constituent bits are as follows: 

Key Bits Function Indicated 

0 Always zero 

a 1 When ON, PATROL cycle completed. 

b 2 When ON, PATROL detected error. 

c 3 When ON, a CPU firmware single error corrected 

d 4 When ON, connect from diagnostic unit 

e 5 When ON, a parity error 
(PTWAM) directory 

in page table word associative memory 

f 6 When ON, a parity error in page table word storage 

07-71 Always zero 

4-40 DZ51-00 



( 

HI S'l'QRY RPGI S'1'ER (DR) 

Format: 144 bits 

o 0 
o 1 

a Execute Control 
Store Address 

1 

3 
6 

I Zeros 

7 7 8 
2 9 0 

I Zeros I 
8 

3 
6 

I 

11111 
45678 

b c d 

14 1 1 1 

Opcode and 
Inhibit Bit 

223 
·8 9 0 

A 
R 

10 1 

Tag 

3 
5 

6 

5 5 6 6 6 6 666 6 6 6 7 7 
8 9 0 1 2 3 4 5 6 7 890 1 

lelflglhl;ljlkl1lmlnlolplql 
23 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 
0 
7 

Real Memory Address I 
28 

7 
1 

Zeros I 36 . 

Figure 4-37. History Register (RR) Format 

Description: 

The history registers record information about the 64 micro steps preceding 
the current step. Each history register entry is four words long; the depth 
of the history registers is 64 entries. The history registers are 
implemented as two independent groups. Each group has its own address 
pointer. Word 0 is in the first group; words 1 and 2 are in the second 
group. The first group of history registers receives an entry on every 
regular clock (micro instruction cycle). The second group receives an entry 
on every C cycle. If the history register mode is set to transfer trace (by 
Test Mode Register bit 13), the second group is entered only on transfer-go 
cycles~ 

Function: 

A history register is loaded by the LCPR instruction with tag = 03 or 07 and 
is stored by the SCPR instruction with tag = 20. (Refer to LCPR and SCPR 
instruction descriptions in Section 8.) Entries are made according to 
controls set in the mode register. 

4-41 DZ51-00 



The meaning of the constituent flags and registers are as follows: 

Key Bits Flag Name FUnction 

Word 0: 

a 00 D1DL Execution cycle in the idle cycle 

01-14 ECS Execution control store address (address of next 
/ micro instruction) 

b 

c 

d 

Word 1 

e 

f 

9 

h 

i 

j 

k 

1 

15 

16 

17 

CEND 

DPOA 

FPIA 

18-28 RBIR 

29 AR 

30-35 RSIR 

36-58 Zeros 

59 FSTRC 

60 FDBLC 

61 FDIRC 

62 INSFCH 

63 FIC17C 

64 DPOAC 

65 DPGF 

66 PTW 

Last micro instruction of the instruction 

Current "A" cycle for the operand 

Current "A" cycle for the instruction 

Opcode and inhibit bit of the instruction 

Address register bit 

Tag field of the instruction 

Store 'cycle 

Double-word memory access 

Direct operand 

Instruction fetch 

Bit 17 of the instruction counter (IC) 

Operand first read or write cycle 

Paging cycle 

PTW rewrite cycle 

m -67 DPPG Prepage cycle 

n 68 Retry disable bit. (Instruction being executed is not directly 
retryable if set.) 

4-42 DZ51-00 

/' 



( 

( 

( 

Key Bits Flag Name Function 

0 69 PTBUSY Port busy 

p 70 FBLKLD Block load request 

q 71 FBYRD cache bypass read 

Word 2 

72-79 Zeros 

80-107 Real memory address 

Word 3 

108-144 Zeros 

RESERVE MBMORY BASE RlGS'l'BR (RMBR) 

Format: 36 bits 

000 0 0 0 000 

to cache 

Reserved Memory Base - words 

Figure 4-38. Reserve Memory Base Register (RMBR) Format 

Description: 

3 

A 36-bit register designating the active processors and the reserve memory 
base. The bit setting, of the individual bits in bits 0-7, indicates an 
active processor when set = 1. 

Function: 

The RMBR is loaded by the Privileged Master mode instruction Load Reserve 
Memory Base (LRMB) and stored by SCPR tag 10. 

The meaning of the constituent bits are as follows when set = 1. 

b 1 

c 2 

Function 

When ON - processor #0 active 

When ON - processor #1 active 

When ON - processor #2 active 

4-43 DZ51-00 



Key 

d 

e 

f 

g 

h 

Bits 

3 

4 

5 

6 

7 

8-35 

Function 

When ON - processor #3 active 

When ON - processor #4 active 

When ON - processor #5 active 

When ON - processor #6 active 

When ON - processor #7 active 

Reserved memory base -- Real memory address pointing to a 
real memory reserved exclusively for the CPU firmware 

SCU FAULT RBGIS'l'ER (SCUPR) 

Format: 72 bits 

o 0 0 0 000 0 0 0 111 1 111 1 3 
5 o 1 2 3 4 5 6 7 8 9 0 1 234 567 

11111111111111111111111111111111 
a b c d e f g h i j k 1 m n 0 p q 111111111111111111111111///11111 

11111111111111111111111111111111 
1 1 1 111 1 1 1 1 1 1 111 1 20 

3 7 
6 1 
111111111111111111111111111111111111111111111111111111111111111111 
111111111111111111111111111111111111111111111111111111111111111111 
111111111111111111111111111111111111111111111111111111111111111111 

36 

Figure 4-39. System Control Unit Fault Register (SCUFR) Format 

Description: 

The first 18 bits of the 72-bit SCU fault register contain an accumulation 
of flags indicating errors occurring in the scu. 

Function: 

The SCU fault register is read and reset by the Read System Controller 
Register (RSCR) instruction. The SCU selection is based upon the control 
SCU mode bit (22) in the CPU mode register. 

The contents of the constituent bits are as follows: 

Key Bit Error Indicated 

a 0 Write data parity error 

b 1 Read data parity error on C board 

4-44 DZ5l-00 



( 

( 

( 

The contents of the constituent bits are as follows: 

Key Bi t Error Indicated 

a 0 Write data parity error 

b 

c 

d 

e 

f 

9 

h 

i 

j 

k 

1 

m 

n 

o 

p 

q 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Read data parity error on C board 

Bound check error 

Non-correctable EDAC error 

Port hold request 

Backpanel address/zone bus parity error 

Port zone address/zone bus parity error 

Memory error 

Memory lock timeout 

Connect queue overflow 

Interrupt queue overflow 

connect to a disabled port 

Connect to a halted port 

Correctable EDAC error 

Read/clear parity error 

SCU/port bus parity error 

Interrupt/connect queue data parity error (This shows up as a 
parity error in the IA field of the CPU fault register. The 
data read in is not reliable.) 

17-71 Unused 

4-45 - DZ51-00 



S!lmRONE lUG S'l'ER (SYR) 

Format: 72 bits 

000 3 3 

Address 

B 27 1 

3 6 6 7 

Zeros Counter 

36 

Figure 4-40. Syndrome Register (SYR) Format 

Description: 

An B-bit syndrome code with a corresponding real memory address, a read 
alter rewrite (RAR) bit, and a counter that counts the number of BOAC 
errors. 

Function: 

The first word of the syndrome register is locked when a non-correctable 
BOAC error occurs. The counter in the second word operates continuously. 
In the unlocked state, an entry is made in the first word when a memory read 
operation produces a non-zero EDAC syndrome and the counter is incremented. 
The counter is incremented for each additional error and wraps around when 
it reaches the maximum count that it can hold. The syndrome register is 
read by the RSCR instruction with bits 22-24 = 6. SCU selection is based on 
the control SCU bit in the CPU mode register. When the syndrome register is 
read, it is unlocked and the counter is reset to zero. 

The contents of the constituent bits are as follows: 

Bit Function 

0-7 A code that specifies either the position of the bit in error, or 
whether it is a single bit error, or if not single, the number of 
bits in error. 

8-34 Bits 0-26 of the real memory address (double word) of detected 
syndrome 

4-46 DZ5l-00 



{" 

(-

Bit Function 

35 Memory operation type 

o = read 

1 = RAR 

36-62 zero 

63-71 Counter 

SCU CDRFIGORA'l'ION R!mS'l'BR (SCU~) 

Format: 72 bits 

0 00000 o 0 1 1 2 2 2 2 2 2 2 2 3 
0 2 3 4 5 6 B 9 6 7 o 1 2 3 4 5 7 B 5 

I a I b lei d I e I f Igl~I+1 j I k 

3 2 1 3 B 4 1 1 1 3 B 

3 7 
6 1 
////////////////////////////////////////////////////////////////// 
////////////////////////////////////////////////////////////////// 
////////////////////////////////////////////////////////////////// 

36 

Figure 4-41. SCU Configuration Register (SCUCR) Format 

Description: 

A 72-bit SCU register that controls configuration and operation 

Function: 

I 

The SCUCR is read and set in the Privileged Master mode by instructions RSCR 
and SSCR. (Refer to individual descriptions of these instructions in 
Section B.) 

The functions of the constituent bits are as follows. 

4-47 DZ5l-00 



Key Bits 

a 0-2 

b 

c 

d 

e 

f 

g 

3-4 

5 

6-8 

9-16 

17-20 

21 

Function 

The number of memory units attached to an SCU 

Interlace configuration 

000 = 1 
001 = 2 
010 = 4 
011 I: 8 
100 = 16 
101 = 1 
110 = 1 

Non-interlace configuration 

III I: 16 

History Register Control: Recording Mode 

00 = OFF, inhibit entry 
01 I: ON, record all selected activities continuously 
10 I: ON, record all selected activities, stop on fault and 

reset bits to 00 
11 = ON, record start of selected activities, stop on 

fault and reset bits to 00 

History Register Control: Port Select 

o = Record only for designated port 

1 = Record for all ports 

History register Control: Designated Port 

Upper bound modulo 1 megawords (corresponds to minimum memory 
size) 

Lower bound modulo 16 megawords (corresponds to port address 
split) 

Used for hardware test 

·22 Not used 

h 

i 

23 

24 

Used for hardware test 

ID definer 

1 = logical ID select 
o - Physical ID select 

4-48 DZ51-00 



f 

( 

( 

Key Bits Function 

j 25-27 Requesting port number (read only) 

k 28-35 Port enable indicator for ports 0-7 

1 = enable 
o = disable 

36-71 Unused 

SCU HISTORY Jm:;IS'l'ER (SCUBR) 

Format: 144 bits 

o 0 o 0 o 1 1 2 2 3 3 3 3 
o 1 3 4 9 0 9 0 9 0 2 3 5 

H b I c I DI I DO I d I e I 
3 7 
6 1 

I Write data lower I 
36 

0 2 2 3 3 3 
0 7 8 1 2 5 

I Address I f I g I 
3 7 
6 1 

I Write data upper I 
36 

Figure 4-42. SCU History Register (scmm) Format 

Description: 

The four-word SCU history register records activity status, activity flags, 
and command flags. A circular storage is maintained for 1024 activity 
cycles. If no activity occurs during a clock period, no entry i:: 'oI'!'itten by 
the scu. 

4-49 DZ51-00 



Function: 

This register is read using the Privileged Master mode instruction Read 
System Control Register (RSCR). A single two-word pointer is maintained. 
This pointer is incremented twice on each four-word SCU entry and once on 
each two-word read. If the history register is locked, it is necessary to 
reset the configuration register to the correct recording mode in order to 
turn the history register on. 

The contents of the constituent fields of the register are as follows:" 

Word Pair 0 

a 0 

b 1-3 

c 4-9 

D1 10-19 

DO 20-29 

d 30-32 

e 33-35 

36-71 

Word Pair 1 

0-27 

f 28-31 

9 32-35 

36-71 

Function 

Start of activity 

Port 

COmmand 

Data-in activity shift register summation 

Data-out activity shift register summation 

Port priority 

Activity number 

Write data, lower (previous cycle) 

Real memory address 

ZOne 

Memory select 

Write data, upper 

4-50 DZ5l-00 



( 

( 

( 

MEMORY ERROR STA'l'US REX:;! S'l'ER (MSR) 

Format: 72 bits 

o 3 
o 6 
////////////////////////////////////////////////////////////////// 
////////////////////////////////////////////////////////////////// 
////////////////////////////////////////////////////////////////// 

3 
6 
/////// 
/////// 
/////// 

Description: 

4 4 4 4 4 4 4 4 4 
o 1 2 3 4 567 B 

a b c d e f g h Zeros 

Figure 4-43. Memory Error Status Register Format 

36 

7 
1 

Eight bits in a 72-bit register hold the error status of each memory board. 
The error conditions occurring on each active board memory cycle are entered 
in the error status register. Indication of the error is given on the error 
output line. 

Function: 

An error output is issued when any error occurs on the current cycle or when 
the error-register refresh-fault bit was set on an earlier cycle. The 
memory-error-status register is read and set by the Privileged Master Mode 
instructions, RMR and SMR, respectively. The memory error status register 
is reset when a read or write status command cycle occurs, or when memory is 
initialized. 

4-51 DZ5l-00 



The contents of the eight status bits is as follows: 

Key Bits Function 

a 40 Al5-A22 address parity error 

b 41 A7-A14 address parity error 

c 42 AD-A6address parity error 

d 43 CMO-cM3 command parity error 

e 44 Refresh fault 

f 45 Timing generator parity error 

g 46 Unit selected during a busy error 

h 47 I llegal command or wi te in logical mode 
select parity error 

48-71 All other bits are zero. 

IIBMORY IDENTIFICATION R!GISTBR (MID) 

Format: 72 bits 

o 0 000 0 0 0 0 
o 1 2 3 456 7 8 

1 1 
1 2 

1 I 
5 6 

(WMID) error or 

3 
6 

1111111111111111/111111/11111111111 
a b c d e f g h 

3 
6 

4 4 4 5 5 
7 8 901 

11111111111111111111111 
11111111111111111111111 i j k 
11111111111111111111111 

1111111111111111111111/111/11111111 
11111111111111111111111111111111111 

1 

5 5 
4 5 

111111111111 
111111111111 
111111111111 

6 
4 

m 

6 6 
7 8 

n 

36 

7 
1 

Figure 4-44. Memory Identification Register (MID) 

Description: 

A 72-bit memory identification (MID) register is located on each memory 
board to indicate whether or not the board is present, to reflect status, 
and define physical characteristics of the board. 

4-52 DZ5l-00 

(I'" '\ 
\ ,~_/ 



( 

( 

(-

Function: 

The MID register is read and set by the Privileged Master mode instructions 
RMID and SMID, respectively. 

The contents of the constituent fields are as follows: 

b 

c 

d 

e 

f 

9 

h 

1 

2-3 

4-5 

6 

7 

8-11 

12-15 

16-35 

36-47 

Function 

Memory board present 

o = not present 
1 = present 

Memory clear status 

o = complete 
1 = clear is active 

Number of memory units per l:x:ard. 

00 = 1 
01 = 4 
10 = 2 
11 = 8 

size of memory unit 

00 = 1M 
01 = 4M 
10 = 2M 
11 = 8M 

ID select 

o = physical ID select 
1 = logical ID select 

These bits reflect the memory select ID definer of the 
configuration register. 

Memory unit 0 enable 

o = enable 
1 = mask 

Memory unit 0 logical ID code 

Physical ID. This value is equal to the slot number. 

unused 

Unused 

4-53 DZ51-00 



Key Bits Function 

i 48 Memory unit 1 enable 

j 49 Memory unit 2 enable 

k 50 Memory unit 3 enable 

1 51-54 Memory unit 1 logical ID code 

m 64-67 Memory unit 2 logical ID code 

n 68-71 Memory unit 3 logical ID ccxle 

Bits 7-11, 48-54, 64-71 are set by the SMID instruction. The enable bits 
apply only for a logical ID select. 

4-54 DZ51-00 

\, 
,~ . ./ 



SBCnOif 5 

ADDRESS IDlIFICA'l'IOH AID DBYBLOPIIBIIT 

ADDRESS MODIFI CAnON FBA"l'URES 

Address modification features permit the user to alter an address contained in 
an instruction (or in an indirect word referenced by an instruction). The 
address modification procedure is generally directed by the tag field of the 
instruction or indirect word. Address generation differs between the 
Non-extended (NS) and Extended (ES) modes depending upon the setting of ISR bit 
24. (0 = NS; 1 = ES). 

ADDRESS GBRBRAn ON I Ii '!'BE liS MODE 

Basic Modification 

Address modification is performed in four basic ways: Register (R), Register 
Then Indirect (RI), Indirect Then Register (IR), Indirect Then Tally (IT). A 
fifth way, address register modification, is discussed later in this section 
under "Address Modification With Address Registers". Each of these basic types 
has variations in which selectable registers can be substituted for R in R, RI, 
and IR and in which various tallying or other substitutions can be made for T 
in IT. I indicates indirect address modification and is represented by the 
asterisk placed in the variable field of the program statement as *R or R* when 
IR or RI is specified. To indicate IT modification, only the substitution for 
T appears in the variable field; the asterisk is not used. 

Indirect Addressing 

Generally, in indirect addressing, the content of bits 0-17 in the word 
addressed by the instruction address (y) is treated as another address, rather 
than as the operand of the instruction. Indirect address modification is 
performed by the hardware whenever called for by a program instruction. When I 
modification is called for by a program instruction, an indirect word is always 
obtained from memory. This indirect word may call for I modification again, or 
it may specify the effective address (y) to be used for the original 
instruction. Indirect addressing for RI, IR, and IT modification is indicated 
by a binary 1 in either position of the tag modifier field (bit positions 30 
and 31) of an instruction or indirect word. 

NOTE: A "1" in bit position 30 or 31 of an indirect word does not necessarily 
mean further indirection. 

5-1 DZ51-00 



'rag Field 

An address modification procedure generally takes place as directed by the tag 
field of an instruction and the tag field of an indirect word. Repeat mode 
instructions and character store instructions do not provide for address 
modification. 

The tag field consists of two parts, tag modifier (tm) and tag designator (td), 
as follows: 

Bit = 

where: 

< 

3 
o 

tm 

3 
1 

>1< 

3 
2 

3 
3 

td 

3 
4 

3 
5 

> 

<----tag fie1d,---'---> 

tm specifies one of four possible modification types: Register (R), 
Register Then Indirect (RI), Indirect Then Register (IR), and Indirect 
Then Tally (IT). 

td specifies the activity for each modification type: 

1. When tm = R, RI, or IR, td is called the register designator and 
generally specifies the register to be used in indexing. 

2. When tm = IT, td is called the tally designator and specifies the 
tallying in detail. 

The following table shows the valid assembler mnemonics for address 
modification and their relationship to the classes R, RI, IR, and IT. 

tm=OO 
td R 

00 Blank 
00 N 
01 AU 
02 QU 
03 DU 
04 IC 
05 AL 
06 QL 
07 DL 
10 0 
11 1 
12 2 
13 3 
14 4 
15 5 
16 6 
17 7 

tm=Ol 
RI 

* 
N* 
AU* 
QU* 

IC* 
AL* 
QL* 

0* 
1* 
2* 
3* 
4* 
5* 
6* 
7* 

tm=ll 
IR 

*N 
*AU 
*QU 
*DU 
*IC 
*AL 
*QL 
*DL 
*0 
*1 
*2 
*3 
*4 
*5 
*6 
*7 

5-2 

tm=lO 
IT 

F 

SD 
SCR 

Cl 
I 
SC 
AD 
DI 
DIe 
1D 
IOC 

DZ5l-00 



( 

( 

"l'ypeS Of Address Modification 

The four basic modification types, their mnemonic substitutions as used in the 
variable field of the program statement, and their binary forms are as follows: 

Modification Variable Binary 
Type Field Forms Example 

3 3 3 3 
0 1 2 5 

Itm I td I 
3 3 3 3 
0 1 2 5 

R BETA, (R) I 0 0 11 1 o 11 BETA,S 

3 3 3 3 
0 1 2 5 

RI BETA, (R)* I 0 11 1 0 1 01 BETA, 2* 

3 3 3 3 
0 1 2 5 

IR BETA,*(R) I 111 1 1 1 11 BETA, *7 

3 3 3 3 
0 1 2 5 

IT BETA, (T) I 1 01 1 0 1 01 BETA,SC 

The parentheses enclosing R and T indicate that substitutions should be made by 
the user for Rand T as explained under the separate discussions of R, IR, RI, 
and IT modification below. Binary equivalents of the substitution are used in 
the tIn subfield. 

RB'iI S"l'BR (R ) 

The processor performs register address modification whenever an R-type 
variation is coded. The assembler places binary zeros in both positions of the 
tm subfield of the instruction. Accordingly, 1 of 16 variations under R are 
performed by the processor, depending upon bit configurations generated by the 
assembler, and placed in the designator subfield (td) of the general 
instruction. The 16 variations, their mnemonic substitutions used on the 
assembler coding sheet, the td field binary forms presented to the processor, 
and the effective address Y generated by the processor are indicated below. 

5-3 DZ51-00 



R modification allows for the use of the instruction address field as the 
operand. This is called direct operand address modification, of which there 
are two types: Direct Upper (DU) and Direct Lower (DL). With the DU variation, 
the address field of the instruction serves as bit positions 0-17 of the 
operand and zeros serve as bit positions 18-35 of the operand. With the DL 
variation, the address field of the instruction serves as bit positions 18-35 
of the operand and zeros serve as bit positions 0-17 of the operand. 

IC modification should only be used with an absolute operand. A relative 
operand that has IC modification is flagged with a possible relocation error 
(R) by the assembler. 

Modification Mnemonic 
variation Substitution 

(R)=XO 0 

=Xl 1 

=X2 2 

=X3 3 

=X4 4 

=X5 5 

=X6 6 

=X7 7 

=A AU 
0-17 

=A AL 
18-35 

=Q QU 
0-17 

=Q QL 
18-35 

=IC IC 

direct upper DU 

direct lower DL 

=None Blank or N 
=Any symbolic Any defined 

index register symbol 1 

Binary 
Form 

(td field) 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

0001 

0101 

0010 

0110 

0100 

0011 

0111 

0000 

Effective 
Address 

Y-y+C(XO) 

Y=y+C(X1} 

Y-y+C(X2} 

Y=y+C(X3) 

Y=y+C(X4) 

Y=y+C(X5) 

Y-y+C(X6} 

Y=y+C(X7) 

Y=y+C(A) 
0-17 

Y=y+C(A) 
18-35 

Y=y+C(Q) 
0-17 

Y=y+C(Q) 
18-35 

Y=y+cOC) 

Bits 0-17 of operand = y; 

bits 18-35 of operand = 0 

Bits 0-17 of operand = 0; 

bits 18-35 of operand = y 

Y=y 

1. Symbol must be defined as one of the index registers by using an applicable 
pseudo-operation (EQU or BOOL). 

5-4 DZ5l-00 



The following examples show how R-type modification variations are entered 
and how they affect effective addresses. 

f EXAMPLES: 

Effective 
1 8 16 Address 

(1) EAXO 1 
LDA B,O Y=B+~ 

(2) LDA =2,DL 
LOA C,A!. Y=C+2 

(3) EAQ 3 
LDA M,QU Y-M+3 

1 8 16 Address 

(4) ABC LDA -2,IC Y=ABC-2 

(5) XYZ LDA *,DU operand =XYZ, operand =0 
0-17 18-35 

(6) EAX7 ABC 
LDA 1,7 Y=ABC+1 

(7 ) LDA 2,DL operand =O,operand =2 

( 
0-17 18-35 

(8) LOA B Y=B 

(9) LDA B,N Y-B 

(10) EAX ALPHA, 10 
LDA C,ALPHA' 

ALPHA ~U 2 Y=C+10 

Coding examples of R-type modification follow: 

0 (R) = N 

ALPHA LDA ADRES1,N 

is equivalent to 

ALPHA LDA ADRES1 

No address modification results; ADRESl is the effective operand. 

5-5 DZ5l-00 



o (R) = X!} where n = 0 to 7 

ALPHA LOA ADRES2,5 

X5 contains the value 2. 

ADRES2 DEC 

OCT 

OCT 

12 

7777 

123456765432 

ADRES2+2 becomes the effective address and its contents (octal 
123456765432) are loaded into the A-register. 

A-register X5 

Before 773412315026 000002 

After l23456765432 000002 

o (R) = AU, AL, QU, QL 

ALPHA LOA ADRES3,QU 

Bits 0-17 of the Q-register contain the value 3. 

ADRES3 DEC 10 

OCT 12 

OCT 14 

OCT 16 

ADRES3+3 becomes the effective address and its contents (octal 16) are 
loaded into the A-register. 

A-register Q-register 

Before 123456765432 000003 123456 

After 000000000016 000003 123456 

5-6 DZ51-00 



( 

( 

o (R) = DU,DL 

ALPHA LDA ADRES4,DU 

There is no memory access to obtain modification of ADRES4. The address 
represented by the symbol ADRES4 is placed in bits 0-17 of the 
A-register; bits 18-35 are filled with zeros. 

ADRES4 OCT 10 (assume ADRES4 is at location 001002 octal) 

Before 10 0 0 0 0 0 0 0 0 0 1 6 

After 10 0 1 0 0 2 0 0 0 0 0 0 

A simple program segment, the movement of 50 words from ABC to XYZ, may help 
illustrate the power of address modification. 

Without Address Modification With Address Modification 

1 8 16 1 8 16 

START LOXl =OB17,DU START LOX1 O,DU 
LOA ABC LOA ABC, 1 
STA XYZ STA XYZ,l 
LOA =lB17 ADLXl 1,DU 
ASA START+1 CMPXl 50,DU 
ASA START+2 TNC START+1 
ADLXl =lBl7 
CMPX1 =50Bl7 
TNC START+l 

JUG: S'1'BR THEN I JmIREC'l' (RI ) 

Register Then Indirect address modification is a combination in which both 
indexing (register modification) and indirect addressing are performed. For 
indexing modification under Rl, the mnemonic substitutions for R are the same 
as those given under the discussion of register (R) modification with the 
exception that DU and DL are invalid for RI usage. For indirect addressing 
(I), the processor interprets the contents of the operand address associated 
with the original instruction or with an indirect word. 

5-7 DZ5l-00 



Under RI modification, the effective address Y is found by first performing the 
specified register modification on the operand address of the instruction; the 
result of this R modification under Rl is the address of an indirect word which 
is then retrieved. (Refer to Figure 5-1.) 

After the indirect word has been accessed from memory and decoded, the 
processor carries out the address modification specified by this indirect 
word. If the indirect word specifies Rl, IR, or IT modification (any type 
specifying indirection), the indirect sequence is continued. When an indirect 
word is found that specifies R modification, the processor performs R 
modification, using the register specified by the td field of this 
last-encountered indirect word and the address field of the same word, to form 
the effective address Y. .. 

The variations DU and DL of register modification (R), when used with Register 
Then Indirect modification (RI), cause an Illegal Procedure (IPR) fault. 

To refer to an indirect word from the instruction itself without including 
register modification of the operand address, the "no modification" variation 
should be specified; under RI modification, this is indicated by placing only 
an asterisk (*) in the tag position. 

The following examples illustrate the use of RI modification, including the use 
of (R) c N (no register modification). The asterisk appearing in the modifier 
subfield is the assembler symbol for I (Indirect). The acidress-subfield, 
single-symbol expressions shown are not intended as realistic coding examples, 
but to show the relation between operand addresses, indirect addressing, and 
register modification. 

EXAMPLES: 

Modification Effective 
1 8 16 Type Address 

(1) EAA 1 
EAXl 2 
STA Z,AU* (RI ) ycB+2 

Z ORG Z+l 
ARG B,l (R) 

(2 ) EAQ 3 
MPY Z,* (RI ) Y=B+3 

Z ARG B,QU (R) 

(3 ) EAX3 3 
EAX5 5 
STQ Z,* (RI ) Y=M 

Z ARG B,5* (RI ) 
ORG B+5 
ARG C,3* (RI ) 
ORG C+3 
ZERO M (R) 

5-8 DZ51-00 

r-". 
\"0"/ 

---~ . ... , 

"-, 



( 

Coding examples of RI modification follow: 

o (RI) = N* 

ALPHA LDA ADRESl,N* 

is equivalent to 

ALPHA LDA ADRESl,* 

The indirect word at ADRESI is obtained; if this indirect word 
specifies further indirect modification, the process continues 
until an indirect word is obtained with (R) modification. 

o (RI) = (Xn)'" 

EAX5 
EAX2 

ALPHA LDA 

where n = 0 to 7 

5 
2 
ADRES2,5* 

The indirect word at ADRES2+5 is obtained. If the indirect word at 
this location is 

LDQ ADRES3, 2 

the effective address is ADRES3+2. 

rHDlu:T THBH RGSTBR (rR) 

Indirect Then Register address modification is a combination in which both 
indirect addressing and indexing (register modification) are performed. IR 
modification is not a simple inverse of RI; several important differences 
exist. 

Under IR modification, the processor first fetches an indirect word from the 
memory location specified by the address field y of the machine instruction; 
the C(R) of IR are safe stored for use in making the final index modification 
to develop the effective address Y. 

Next, the address modification, if any, specified by this first indirect word 
is examined. If this modification is again IR, another indirect word is 
retrieved from storage immediately; and the new C(R) are safe stored, replacing 
the previously safe stored C(R). If an IR loop develops, the above process 
continues, each new C(R) replacing the previously safe stored C(R), until a 
type other than IR is encountered in the sequence. 

5-9 DZ5l-00 



If the indirect sequence produces an RI indirect word, the R-type modificatioi. 
is performed immediately to form another address; but the I of this RI treats 
the contents of the address as an indirect word. The chain then continues with 
the C(R) of the last IR still safe stored, awaiting final use. At this point 
the new indirect word might specify IR-type modification, possibly renewing the 
IR loop noted above; or it might initiate an RI loop. In the latter case, when 
this loop is broken, the remaining modification type is R or IT. 

When either R or IT is encountered, it is treated as type R, where R is the 
last safe stored C(R) of an IR modification. At this point the safe stored 
C(R} is combined with the y of the indirect word that produced R or IT, and the 
effective address Y is developed. 

If an indirect modification without register modification is desired, the "no 
modification" variation (N) of register modification should be specified in the 
instruction. This normally will be entered on coding sheets as *N in the 
modifier part of the variable field. (The entry * alone is equivalent to N* 
under RI modification and must be used in that way.) 

EXAMPLE 1: 

(IR) = *N 

ALPHA LDA ADRES1,*N 

The indirect word at ADRESl is obtained. If the indirect word at this 
location is: 

AnRESl LDQ ADRES2 

the effective address is ADRES2 

EXAMPLE 2: 

IR and then R or IT 

(IR) = *(XB) where B = 0 to 7 

EAX5 15 

ALPHA LDA ADRES1,*5 

The indirect word at ADRESl is obtained. I f the indirect word is: 

ADRESl LDQ ADRES2, (R) 

or 

AnRESl LDQ ADRES2, (T) 

the effective address is ADRES2+15 

5-10 DZ51-00 



( 

( 

EKAMPLE 3: 

I R and then Rl 

(IR) = *(Xn) where n = o to 7 

EAX5 16 

EAX2 17 

ALPHA LDA ADRES1,*5 

ADRES1 LDQ ADRES2,2* 

LOA ADRES4 ( in ADRES2+17) 

the effective address is ADRES4+16 

EXAMPLE 4: 

IR and then IR 

(IR) = *(Xn) where n = 0 to 7 

EAX5 18 

EAX3 

ALPHA LOA 

ADRESI LOA 

ADRES2 LDA 

19 

ADRES1, *5 

ADRES2,*3 

ADRES3 

the effective address is ADRES3+19 

The following examples illustrate the use of IR-type modification, intermixed 
with Rand RI types, under the several conditions noted above. 

EXAMPLES: 

Modi! ication Effective 
1 8 16 Type Address 

(1) LDQ 1,DL 
LDA Z,*QL (IR) Y=M+l 

z ARG M (R) 

5-11 DZ51-00 



Modification Effective 
1 8 16 Tvoe Address 

(2) EAX3 2 " 

""-
EAX5 3 

ABC LDA Z,*3 (IR) Y=C+2 

Z ARG B,5* (RI ) 
ORG B+3 
ARG C,IC (R) 

(3) EAX3 4, 
EAX5 5 
EAQ 6 
EAX7 7 
LOA Z,*3 (IR) Y=M+6 

Z ARG B,*5 (IR) 
B ARG C,*QU (IR) 
C ARG N,7 (R) 

(4,) EAX3 8 
LDQ 9,DL 
LOA Z,*DL {IR} 

C(A}18-35)=M 

Z ARG B,3* {RI } 
ORG B+8 
ARG N,QL (R) .. ",-~. 

(5) LOA 10,DL 
LOA Z,*AL {IR} Y=B+10 

Z ARG B,AD (IT) 

(6) EAX3 11 
LOA Z,*N (lR) Y-B 

Z ARG B,3 (R) 

5-12 DZ51-00 



( 

( 

1 8 

(7) EAX5 
LDA 

Z ARG 
B ARG 

(8) EAX5 
LDA 

Z ARG 
B ARG 

(9) EAX1 
LDA 

X ARG 
B ARG 
Z TALLY 

IRDIRD' THBN TALLY (IT) 

16 

12 
Z,*N 

B,*5 
M,DU 

13 
Z,* 

B,*5 
M,DU 

14 
X,* 

B,*l 
Z,ID 
A,lO 

Modification 
Type 

(IR) 

(IR) 
(R) 

(RI ) 

(IR) 
(R) 

(RI ) 

(IR) 
(IT) 
(IT) 

Effective 
Address 

Y=M+13 

Y=Z+14 

I ndirect Then Tally address modification is a combination in which both 
indirect addressing and automatic incrementing/decrementing of fields in the 
indirect word are performed as hardware features, thus relieving the user of 
these responsibilities. The automatic tallying and other functions of IT 
modification allow processing of tabular data in memory, provide a means for 
working upon character data, and allow termination on user-selectable numeric 
tally conditions. When tally runout occurs, bit 25 in the indicator register 
is set. I f an unassigned IT tag is used, an Illegal Procedure (IPR) fault 
occurs. 

The variations under IT modification are summarized below. The mnemonic 
substitution for IT is ('1'): the designator I for indirect addressing in IT is 
not represented. (Note that one of the substitutions forTis I.) 

5-13 DZ51-00 



variation 

Fault 

Character indirect 

sequence character 

sequence character 
reversed 

Indirect 

Increment address, 
decrement tally 

Decrement address, 
increment tally 

Binary 
Mnemonic Form 

Substitution (td Field) 

F 

CI 

SC 

SCR 

I 

ID 

DI 

0000 

1000 

1010 

0101 

1001 

1110 

1100 

5-14 

Effect on Processor and Indirect 
(Tally) Word for Each Reference 

None. A Fault Tag fault is 
generated. The indirect word is 
not examined. 

None. Applies to TALLY, TALLYB. 

Obtain the operand address from the 
tally word: then add 1 to the 
character position value in the tag 
field and subtract 1 fran the tally 
count field; add 1 to the address 
field and set the character 
position value to zero when the 
character position crosses a word 
boundary. Applies to TALLY, 
TALLYB. 

Subtract 1 from the character 
position value in the tag field and 
add 1 to the tally count field; 
subtract 1 from the address field 
and set the character position 
value to 3 (TALLYB) or 5 (TALLY) 
when the character position crosses 
a word boundary. Then obtain the 
operand address from the tally 
word. Applies to TALLY, TALLYB. 

None. The operand address is the 
word to which the tally word 
address field refers. Applies to 
all tally pseudo-operations. 

Obtain the operand address fran 
the tally word; add 1 to the 
address field and subtract 1 from 
the tally count field. Applies to 
all tally pseudo-operations. 

Subtract 1 from the address 
field, add 1 to the tally count 
field, and then obtain the operand 
address from the tally word. 
Applies to all tally 
pseudo-operations. 

DZ5l-00 



( 

( 

( 

variation 

Increment address, 
decrement tally, 
and continue 

Decrement address, 
increment tally, 
and continue 

Add delta 

Subtract delta 

Binary 
Mnemonic Form 

Substitution (td Field) 

IOC 1111 

DIC 1101 

AD 1011 

SD 0100 

5-15 

Effect on Processor and Indirect 
(Tally) Word for Each Reference 

Obtain the operand address from the 
tally word, add 1 to the address 
field, and subtract 1 from the 
tally count field. Additional 
address modification will be 
performed as specif ied by the tag 
field. Applies to TALLYC. Results 
in IPR fault in ES mcxie. 

Subtract 1 from the address field, 
add 1 to the tally count field, and 
then obtain the operand address 
from the tally word. Additional 
address modification will be 
performed as specif ied by the tag 
field. Applies to TALLYC. Results 
in IPR fault in FS mcxie. 

Obtain the operand address from the 
tally word, add an increment to the 
address field, and subtract 1 from 
the tally count field. Applies to 
TALLYD. 

Subtract an increment from the 
address field, add 1 to the tally 
count field, and then obtain the 
operand address from the tally 
word. Applies to TALLYD. 

DZS1-00 



I ndirect Word Format 

The location of the indirect word is specified by the address field (y) of the 
instruction or previous indirect word (IDC or DIC). IT modification causes the 
indirect word to be fetched and interpreted as specified by the td subfield of the 
instruction or previous indirect word that referred to the indirect word. 

The format of the indirect word .is shown in Figure 5-l. 

0 
0 

I 

1 1 
7 8 

y I Tally 

Figure 5-1. Indirect Word Format 

where: 

y - address field 

Tally - tally field (ignored except for tally modification) 

Tag - tag field 

2 3 3 
9 0 5 

I Tag I 

Depending upon the prior tally designator, the tag field for the indirect word is 
used in one of the following ways: 

Tally Designators 

I,DI,ID,F 

DI C, I DC , I R, RI 

CI ,SC,SCR 

AD,SD 

where: 

tm - tag modifier 

3 3 
1 

o 

Tag Field 

3 3 
2 3 

Ignored 

o 

Delta 

5-16 

td 

3 
4 

cf 

3 

DZ5l-00 

(.~ 

~.j 



( 

( 

td - tag designator 

tb - character size indicator (O=6-bit, 1=9-bit) 

cf - character position field 

Delta - delta field (Size of increment) 

Variations Under IT Modification 

Fault (T) = F variation. The Fault variation enables the user to force 
program transfers to operating system routines or to corrective routines dur~ng 
the execution of an address modification sequence by causing a Fault Tag 
fault. (This will usually indicate some abnormal condition for which the user 
desires protection.) 

Character Indirect (T) = CI variation. The Character Indirect (CI) variation 
allows operations on the A register or Q register where repeated reference to a 
single character in memory is required. The character size field (tb) of the 
indirect word specifies the character size. 

For this variation, the effective address is the address field of the CI 
indirect word obtained via the tentative operand address of the instruction or 
preceding indirect word that specified the Cl variation. The character 
positi~n field (cf) of the indirect word is used to specify the character to be 
involved in the operation. 

This variation is similar to the sc variation except that no incrementing or 
decrementing of the address, tally, or character position is performed. 

EXAMPLES: 

Z TALLY B, ,4 6-bit char. addressing 

1 8 16 

(2) LDA ADDR,Cl 

ADDR TALLY ADD, ,3 6-bit char. addressing 

or 

ADDR TALLYB ADD, ,3 9-bit char. addressing 

5-17 DZ5l-00 



The effective address is ADD. The character in character position 3 is 
loaded into the A-register in character position 5 for 6-bit characters or 
into position 3 for 9-bit characters. The remainder of the A-register is 
loaded with all zero bits. . 

sequence Character (T) = SC variation. The Sequence Character (SC) 
variation is provided for sequential access to 6-bit or 9-bit characters. 
The character size field (tb) of the indirect word is used to specify the 
character size. Processor instructions that do not allow SC operations are 
so indicated in the individual instruction descriptions. The operand 
address is obtained from the address field of the indirect word referenced 
by the word containing the SC tag. 

Characters are operated on in sequence from left to right within the machine 
word. The character position field (cf) of the indirect word is used to 
specify the character position to be involved in the operation. The Tally 
Runout indicator is set when the tally field of the indirect word reaches 
O. 

EXAMPLE: 

1 

A 

8 16 

LDA A,SC 

TALLY TABLE,70,4 

TABLE BSS 13 

32 

6-bit char. addressing 

in which 70 is the count and 4 designates the character position of the 
tally start. 

For register loads using the SC variation, a character is· fetched from the 
indicated position of the memory location and is written into the lower end 
of the register; the remaining bits of the register are set to zero. For 
stores under the SC variation, a character is fetched from the lower end of 
the register and written into the indicated position in the memory 
location; the remaining character positions in the memory location remain 
unchanged. 

The tally field of the indirect word is used to count the number of times a 
reference is made to a character. Each time an SC reference is made to the 
indirect word, the tally is decremented by 1, and the character position is 
incremented by 1 to specify the next character position. The tally runout 
indicator is set when the tally reaches O. When character position 5 (for 
6-bit characters) or 3 (for 9-bit characters) is incremented, it is changed 
to position 0 and the address field of the indirect word is incremented by 
1. All incrementing and decrementing are done after the effective address 
has been provided for the current instruction execution. The effect of 
successive references using SC modification is shown in the following 
examples. 

5-18 DZ5l-00 



( 

( 

EXAMPLES: 

Effective Character 
1 8 16 Address Position Reference 

LDA Z,SC B 0 1 

Z TALLY B,80,0 B 1 2 
B BSS 14 

B 5 6 
B+1 0 7 

The Tally Runout indicator 
is set on the 80th reference. 

B+!! 0 6!!+1 

1 8 16 

ADD1 LDA ADDR,SC 

TTF ADDl 

ADDR TALLY ADD,12,3 (6-bit characters) 

or 

ADDR TALLYB ADD, 12,3 (9-bit characters) 

ADD BSS 4 

The first effective address is ADD. The character in character position 3 
is loaded into the A-register in position 5 (for 6-bit characters) or into 
position 3 (for 9-bit characters). The second reference will load ADD 
character 4 (if 6-bit) or ADD+l character 0 (if 9-bit), etc. The tally is 
decremented from 12 to O. The destination in the A-register does not 
change. 

Seouence Character Reverse (T) = SCR Variation. The SCR variation is the 
reverse of se. The character position is decremented h¥ 1 and the tally is 
incremented by 1 before the indirect word address field and character 
position are used as the operand character address. When the character 
position attempts to go negative, it is set to the maximum value (3 or 5) 
and the address is decremented by 1. 

Indirect (T) =I Variation. The Indirect (I) variation of IT modification 
is, in effect, a subset of the ID and DI variations described below in that 
all three -- I, ID, and DI - make use of one indirect word in order to 
refer to the operand. The I variation is functionally unique, however, in 
that the indirect word accessed by an instruction remains unaltered; no 

5-19 DZ51-00 



incrementing/decrementing of the address field or tallyoccurs. Since the 
tag field of the indirect word under I is not interrogated, this word will 
always terminate the indirect chain. /,r-

The following differences in the coding and the effects of *, *N, and I 
should be observed: 

1. Rl modif ication is coded as R* for all cases, excluding R=N. 

For R=N under RI, the modifier subfield can be written as N* or as * 
alone, according to preference. 

When N* or just * is coded, the assembler generates a machine word 
with octal 20 in bit positions 30-35: octal 20 causes the processor to 
add 0 to the address field y of the word containing the N* or * and 
then to access the indirect word at memory location y. 

2. 1R modification is coded as *R for all cases, including R=N. 

For R=N under 1R, the modifier subfield must be written as *N. 

When *N is coded, the assembler generates octal 60 in bit positions 
30-35 of the associated machine word: octal 60 causes the processor to 
(1) retrieve the indirect word at the location (y) specified by the 
machine word, and (2) effectively safe store zeros (for possible final 
index modification of the last indirect word). 

3. IT modification is coded using only a variation designator (I, ID, DI, 
SC, SCR, a, AD, 50 , F, I DC, or D1 C): that is, no aster isk (*) is /' "" 
written. Thus, a written IT address modification appears as ALPH,DI: 
BETA,AD; etc. 

For the variation I under IT, the assembler generates a machine word 
with octal 51 in bit positions 30-35: 51 causes the processor to 
examine one, and only one, indirect word to be retrieved from memory 
to obtain the effective address Y. 

EXAMPLE: 

Modification Effective 
1 8 16 Type Address 

EAX5 1 
LDA Z,I (IT) Y=B 

Z ARG B,*5 (IR) 

Increment Address, Decrement Tally (T) = ID variation. The ID variation 
under IT modification provides automatic (hardware) incrementing or 
decrementing of an indirect word that is best used for processing tabular 
operands (data located at consecutive memory addresses). The indirect word 
always terminates the indirect chain. 

5-20 DZ51-00 



( 

In the ID variation, the effective address is the address field of the 
indirect word obtained via the tentative operand address of the instruction 
or preceding indirect word, whichever specified the ID variation. Each time 
such a reference is made to the indirect word, the address field of the 
indirect word is incremented by 1 and the tally portion of the indirect word 
is decremented by 1. The incrementing and decrementing are performed after 
the effective address is provided for the instruction operation. When the 
tally reaches zero, the Tally Runout indicator is set. 

EXAMPLES: 

1 

Z 
B 

8 

LDA 

TALLY 
BSS 

Modification 
16 Type 

Z,ID (IT) 

B,12 word addressing 
12 

The Tally Runout indicator is 
set on the 12th reference. 

1 8 

ADRESl LDA 

TTF 

16 

ADRES2,ID 

ADRESl 

ADRES2 TALLY ADRES3, 10 word addressing 

ADRES3 BSS 10 

Effective 
Address 

B 

B+l 

• 
B+!! 

Reference 

1 

2 

!!+l 

The first effective address is AORES3; the second is ADRES3 plus 1, etc. The 
tally is decremented from 10 to zero. The TTF instruction checks the Tally 
Runout indicator. If the tally is not zero, transfer is made to ADRESl. If 
the tally is zero, processing continues with the instruction following TTF. 
Without the TTF instruction, only one effective address is obtained. 

Decrement Address, Increment Tally ('1') + DI variation. The DI variation 
under IT modification provides automatic (hardware) incrementing and 
decrementing of an indirect word that is best used for processing tabular 
operands (data located at consecutive memory addresses). The indirect word 
always terminates the indirect chain. 

In the DI variation, the effective address is the modified address field (1 
less than the value before modification) of the indirect word obtained via 
the tentative operand address of the instruction or preceding indirect word, 
whichever specified the D1 variation. Each time a DI reference is made to 
the indirect word, the address field of the indirect word is decremented by 
1 and the tally portion is incremented by l. When the tally is incremented 
from 7777 to 0, the tally runout indicator is set. The incrementing and 
decrementing are performed prior to providing the effective address for the 
current instruction operation. 

5-21 DZ5l-00 



EXAMPLES: 

Modification 
1 8 16 Type 

LDA Z,DI (IT) 

z TALLY B,-18 word addressing . 
B BFS 18 

The Tally Runout indicator 
is set on the 18th reference~ 
there, the 12-bit tally field 
in the indirect word overflows 
and becomes all zeros. 

1 8 16 

ADRESI LDA ADRES2,DI 

TTF ADRESl 

. 

Modification 
Type 

ADRES2 TALLY ADRES3,-10 word addressing 
ADRES3 BFS 10 

Effective 
Address 

B-1 

B-2 
• 

B-a 

Effective 
Address 

Reference 

1 

2 

• 

Reference 

The first effective address is ADRES3 -1; the second is ADRES3 -2: etc. The 
tally increases from -10 to O. 

Increment Address, Decrement Tally, and Continue (T) = IOC variation. The 
IOC variation under IT modification functions in a manner similar to the ID 
variation except that, in addition to automatic incrementing/decrementing, 
it permits the user to continue the indirect chain in obtaining the 
instruction operand. Where the ID variation is useful for processing 
tabular data, the IOC variation permits processing of scattered data by a 
table of indirect pointers. More specifically, the ID portion of this 
variation provides the ability to sequentially step through a table and the 
C portion (continuation) allows indirection through the tabular items. The 
tabular items may be data pointers, subroutine pointers, or .a transfer 
vector. 

The address and tally fields are used as described under the ID variation. 
The tag field uses the set of instruction address modification variations 
under the following restrictions: no variation is permitted that requires an 
indexing modification in the IOC cycle since the indexing adder is in use by 
the tally phase of the operation. Thus, permissible variations are any 
allowable form of IT or IRi but if RI or R is used, R must equal N. 

5-22 DZ5l-00 

i-'" 
I : 

\'~,./ 

r'~ " ( . 
\,-,j 



( 

( 

( 

EXAMPLES: 

1 8 

LOA 

Z TALLYC 
B ARG 

ARG 
ARG 

The Tally Runout 

1 8 

ADRES1 LOA 
TTF 

ADRES2 TALLYC 
ADRES3 ARG 

ARG 
ARG 
ARG 

Modification Effective 
16 Type Address 

Z,IOC X 1 

B,10,I Y 2 
X Z 3 
Y 
Z 

indicator is set on the 10th reference. 

16 

ADRES2,IOC 
ADRESI 

32 

Reference 

ADRES3,4,* 
AD1 

word addressing and indirect 

AD2 
AD3 
AD4 

AD1 is the first effective address, AD2 is the second, AD3 is the third, and 
AD4 is the fourth. 

Decrement Address, Increment Tally, and Continue (T) = DIC variation. The 
DIC variation under IT modification perfonns in much the same way as the DI 
variation except that, in addition to automatic decrementing or 
incrementing, it pennits the user to continue the indirect chain in 
obtaining an instruction operand. The continuation function of DIC operates 
in the same manner and under the same restrictions as IOC except that (1) it 
increments in the reverse direction, and (2) decrementing/incrementing is 
performed prior to obtaining the-effective address from the tally word. 
(Refer to the first example under IOC; work from the bottom of the table to 
the top.) DIC is especially useful in processing last-in, first-out lists. 
SOme examples follow: 

Modification Effective 
1 8 16 Type Address Reference 

LOA Z,DIC (IT) 

Z TALLYC B,-10,I (IT) Y 1 
ARG Z X 2 
ARG X Z 3 
ARG Y 

B NULL 

5-23 DZ51-00 



Assuming an initial tally of -10, the Tally Runout indicator is set on the 
lOth reference; there, the 12-bit tally field in the indirect word overflows 
and becomes all zeros. 

EXAMPLES: 

1 8 

ADRESl LDA 
TTF 

ADRES2 TALLYC 
ARG 
ARG 
ARG 
ARG 

ADRES3 BSS 
ADI ARG 
AD2 ARG 
AD4 ARG 

16 

ADRES2,DIC 
ADRESl 

ADRES3 , -4, *N 
AD4,* 
AD3 
AD2,*N 
ADl,*N 
1 
A 
B 
C 

32 

word addressing and indirect 

A is the first effective address, B is the second, AD3 is the third, and C 
is the fourth. 

Add Delta (T) = AD variation. The Add Delta (AD) variation is provided 
for programmingsi tuations where tabular data to be processed is stored at 
equally spaced locations, such as data items, each occupying two or more 
consecutive memory addresses. It functions in a manner similar to the ID 
variation, but the incrementing (delta) of the address field is selectable 
by the user. 

Each time such a reference is made to the indirect word, the address field 
of the indirect word is increased by delta and the tally portion of the 
indirect word is decremented by 1. The addition of delta and decrementing 
are done after the effective address is provided for the instruction 
operation. 

The following examples show the effect of successive references using AD 
modification: 

1 

Z 
B 

78 

LDAQ 

ETALLY 
EBSS 

16 

Z,AD 

B,20,2 
40 

The Tally Runout indicator 

Modification 
Type 

(IT) 

is set on the 20th reference. 

5-24 

Effective 
Address Reference 

B 1 

B+2 2 
B+4 3 

• . 
B+2n Jl+l 

DZ51-00 



( 

(,-

1 78 16 32 

ADRESl LDAQ ADRES2, AD 
TTF ADRESl 

. 
ADRES2 ET ALLYD ADRES3, 10 , 2 word addressing with DELTA 
ADRES3 EBSS 20 

The first effective address is ADRES3; the second is ADRES3';.2. The tally 
decreases from 10 to O. 

Subtract Delta (T) = SO Variation. The Subtract Delta (SO) variation is 
useful in processing tabular data in a manner similar to the AD variation 
except that the table can easily be scanned from back to front using a 
programmer-specified increment. The effective address from the indirect 
word is decreased by delta and the tally is increased by 1 each time an SO 
reference is made to the indirect word. This is done before supplying the 
operand address to the current instruction, making the SO variation 
analogous to the DI variation. 

Address Modification OCtal Codes 

Address modification and 2-digit octal codes for each type of modification are 
listed in Table 5-1. 

Table 5-1. Address Modification Octal Codes 

LOW ORDER OCTAL DIGIT 

o 1 2 3 4 5 6 7 

H 0 N AU QU DU IC AL QL DL 
I 
G 
H 1 0 1 2 3 4 5 6 7 

0 
R 2 N* AU* QU* IC* AL* QL* 
D 
E 
R 3 0* 1* 2* 3* 4* 5* 6* 7* 

0 
C 4 F SO SCR 
T 
A 
L 5 CI I SC AD DI DIC ID IOC 

D 
I 6 *N *AU *QU *DU *IC *AL QL *DL 
G 
I 
T 7 *0 *1 *2 *3 *4 *5 *6 *7 

5-25 DZ5l-00 



Address Modification Flowchart 

The process of address modification is illustrated in flowchart form in Figure 
5-2. Address register modification is not included in this example. 

G 

Reg. it unci to 
_dify oPe,otld 
oddr." to obtoin 
.ffectlve odd' ••• 
of indirect wo,d. 

P.,form inc,ew.nt 
in9/dec,ementing. 
Get i"di,ect word 
ond e.omine reg. 

Pe,form other IT 
Wodificotionl (I. 
ID.Di .SC.S~.CI. 
PD, SO). Obtain 
indirect w.,d. 
Obtain eftective 
odd,en from 
Indirect word. 

Foult Rout i "-

Re •• o".er fie, 
"0"-. Modi fy 
odd,e .. wr th 
loved '89. to 
obtoln effective 
ope,ond odd, •• , 

E .. cdutive 
in.truct ion 

Add contellh of 
,e9i,te' ,pecified 
by td to oDerond 
odd,.as toa to t 
.ftectiye odd' e., 
Y. 

Figure 5-2. Address Modification Flowchart 

5-26 DZ51-00 

\ , 
"- ,./ 



( 

( 

Floatable Code 

Program statements may be written in floatable code. Such statements may then 
be executed from any location in memory without relocation at load time. 
Floatable code is created by use of instruction counter (I C) modification in 
all references to locations within a program. Thus, to transfer to location 
SYM, the following statement can be written: 

TRA SYM-*,IC 

or 

TRA SYM,$ 

The assembler accepts the currency symbol <$> as a valid IC register 
designator. The following tag fields in a machine instruction are permitted: 

Mnemonic 

$ 

$* 

Octal COde 

04 

24 

The assembler computes the difference between the value of the address location 
argument of the variable field and the current location as the content of the 
address field of the instruction word. The IC is then supplied for 
modification. *$ is illegal and will be assembled as *IC. 

NOTE: The FLOAT pseudo-operation or $ modification does not apply when used 
with SYMREF symbols or within the range of a BLOCK pseudo-operation. 

Address Modification With Address Registers 

Address registers <ARn) provide a second-level indexing capability. The 
address register format allows addressing on a character or bit basis and is 
used by the character and bit manipulation instructions of the processor. When 
an address register is used to modify an address in which character and/or bit 
addressing is not used, the character and bit positions of the address register 
are ignored. 

SI NGLE-woRD ADDRESS MODIFICA'l'ION 

When an address register is to be used in address preparation, its application 
is specified in the instruction word. All single-word instructions to which 
address modification is applicable have the same instruction word format as 
shown in Figure 5-3. 

5-27 DZ51-00 



000 0 1 1 222 3 3 

AR# 

S 

y 

OP CODE -

I 

AR 

TAG 

y OP CODE 

Figure 5-3. Single-Word Instruction Format 

Address register number, if bit 29 = 1 

Sign bit, if bit 29 = 1 

Address field bits 0-17 or bits 3-17, depending on the state of 
bit 29. Must be an absolute value if AR mode is used. 

lo-bit operation code field 

Program interrupt inhibit bit 

Address register bit. If bit 29 = 1, use address register 
specified in bits 0, 1, and 2 of y field for address modification 
and use operand descriptor register specification in bits 0,1, and 
2 of y field as the segment descriptor. Bit 3 (sign) is then 
extended to bits 0, 1, and 2. If bit 29 = 0, no address register 
modification is performed and the ISR is used as the segment 
descriptor. 

Tag field: Used to control address modification 

TIn - (Bits 30-31): Type of address modification 

Td - (Bits 32-35): Index register or modification variation 
designator 

NOTE: With some instructions, certain address modification is not permitted, 
and if such modification is specified, an Illegal Procedure fault (IPR) 
occurs. (Refer to the individual instruction specifications in Section 
8.) 

The address preparation for a single-word instruction with bit 29 = 1 proceeds 
as follows: 

1. The three most-significant bits of y (0, 1, 2) are decoded to determine 
which of the eight address registers is to be used. 

2. Bit 3 of the y field is extended to fill bit positions 2, 1, and 0, thus 
forming a two's complement signed number. 

3. The two's complement y field is then added to the contents of the 
specified address register. The character and bit positions of the 
address register are ignored and the contents of the address register 
remain unchanged. 

5-28 DZ51-00 

// '" 
\ . 
"-. .. / 



( 

( 

( 

4. Address modification continues as specified by the tag field of the 
instruction word. 

Diagramatically, address preparation for a single-word instruction is 
described below in Figure 5-4. 

o 000 
o 234 

o 
o 

0 
0 

+ 

AR 

Y + AR 

Continue modification 
as specified by 

tag field 

0 
0 

Effective Address 

.. 

1 1 1 2 
789 0 

B 
18 2 

111 2 
7 8 9 0 

B 
18 2 

111 2 
7 8 9 0 

B 
18 2 

Bit 

Bit 

Bit 

2 
3 

4 

2 
3 

4 

2 
3 

4 

y field of instruction 
with bit 3 extended 

Contents of an address 
register 

Sum of y field and 
address register 

All legal modification 
'allowed. Indirect 

words cannot specify 
address register 

Operand address 

Figure 5-4. Address Preparation For Single-Word Instruction 

When bit 29 = 0, the first step of the address modification procedure using the 
address register is omitted and the only address modification performed is that 
specified by the tag field. 

When an address register is specified, extending bit 3 of the y field to form a 
two's complement signed number effectively designates bit 3 as a sign bit. 
This leaves 14 bits, 4 through 17, with which to designate an address offset. 
Thus an address offset with values between -2**14 and 2**14-1 can be 
specified. An address register, then, contains a complete 18-bit memory 
address which may be offset ! 16K by the partial address contained in the y 
field of the instruction, as shown below. 

5-29 DZ51-00 



AR 
Points Here 
-----> 

Coding Examples: 

1. LDQ 4,N,2 

o 

I I 
. . 

MEMORY 

- 16K Offset Range 

+ 16K Offset Range 

I 
256K 

Effective Address = 4 + C(AR2)0-17 

2. LDQ -4,N,2 

Effective Address = -4 + bits 0-17 of C(AR2) 

MULTlWORD ADDRESS MODIFlCATlOH 

I 

y field, bit 3 = 1 

y field, bit 3 = 0 

I 

The general format of a multiword instruction is shown in Figure 5-5. 

Memory 
Loc. 0 

o 
1 1 
7 8 

2 2 
8 9 

3 
5 

variable Field OP CODE I NFl o Instruction 
Word 

Operand Descriptor 1 or Indirect Word 1 Descriptor 1 

Operand Descriptor 2 or Indirect Word 2 Descriptor 2 

Operand Descriptor 3 or Indirect Word 3 Descriptor 3 

Figure 5-5. Mu1tiword Instruction Format 

5-30 DZ5l-00 



( 

( 

where: 

Variable Field - Contains additional information concerning the operation 
to be performed, depending on the particular instruction. 
When descriptors 2 and 3 are present, most instructions 
provide a corresponding MF2 (bits 11-17) and MF3 (bits 
2-8) within the variable field to describe the address 
modification to be performed on these operands when 
present. Exceptions to this are the CMPCI', MVT, SCD, SCDR, 
SCM, SCMR, TCT, and TCTR instructions. 

OP CODE 

I 

- The 10-bit operation code field; octal representation 
consists of three octal digits corresponding to bit 
positions 18-26 and a 1 for bit position 27. 

- The program interrupt inhibit bit 

NFl - Modification field 1 (NFl) describes address modification 
that is to be performed for descriptor 1. 

MULTItDU> MODIFICATION FIELD 

Each modification field (NF) contained in a mu1tiword instruction is a 7-bit 
field specifying address modification to be performed on the operand 
descriptors. The modification field is interpreted as follows: 

2 3 4 5 through 8 <- bits (MF3) 

11 12 13 14 through 17 <- bits (MF2) 

29 30 31 32 through 35 <- bits (NFl) 

I AR I RL I ID I rum 1<-- subf ield 
""--~1~-1=-"""-~1""""--------4~<-- number of bits 

AR - Address Register Specifier 

0- No address register used. 

1- Bits 0-2 of the operand descriptor address field specify the 
address register to be used in computing the effective address of 
the operand. Bits 0 - 2 also specify the operand descriptor 
register that defines the segment containing the operand. 

5-31 DZ5l-00 



RL - Register or Length 

0- Operand length is specified in the N field (bits 32-35) of the 
operand descriptor. 

1- Length of operand is contained in the register that is specified by 
code in the N field (bits 32-35) of the operand descriptor, in the 
machine format of REG (the coding format is different). 

ID - Indirect Operand Des=riptor 

0- The operand descriptor follows the instruction word in its 
. sequential memory location. 

1- The operand descriptor location contains an indirect word that 
points to the operand descriptor. Only one level of indirection is 
allowed. 

REG - Address modification register selection for R-type modification of 
the operand descriptor address field. The REG codes are 
approximately the same as the single-word modifications. In 
addition, for indirect string length specification (RL = 1), the N 
field codes are similar to the REG field. A comparison of these 
codes is shown in Table 5-2. 

5-32 DZ5l-00 

('\ 



( 

( 

Table 5-2. Register Codes 

REG In Bits 32-35 td Field 
Octal REG Indirect Of N When Of 
Code In MF Word When RL = 1 Tag 

(l) ID = 1 (2) 

0000 None None I IPR Fault None 

0001 AU AU AU AU 

0010 QU QU QU QU 

0011 DU IPR Fault IPR Fault DU 

0100 IC IC IPR Fault IC 

0101 A (3) A (3) A (3) AL 

0110 Q (3) Q (3) Q (3) QL 

0111 IPR Fault IPR Fault IPR Fault DL 

1000 XO XO XO XO 

1001 Xl Xl Xl Xl 

1010 X2 X2 X2 X2 

1011 X3 X3 X3 X3 

1100 X4 X4 X4 X4 

1101 X5 X5 X5 X5 

1110 X6 X6 X6 X6 

1111 X7 X7 X7 X7 

(1) Register content is interpreted as a character or bit index. For an 
alphanumeric descriptor, this index is the number of 9-bit, 6-bit, 
or 4-bit characters, depending upon the data type specified in the 
descriptor. For a numeric descriptor, it is the number of 9-bit or 
4-bit characters, also dependent upon the data type specified. For a 
bit descriptor, it is the number of bits. 

(2) Register contents are interpreted as a word index. 

5-33 DZ51-00 

----.-.---.--~-~~--~~~----



Table 5-2 cont. Register Codes 

(3) The A- and Q-registers provide for indexing by a number greater than 
2**18-1. When the A or Q register is specified, the number of 
right-justified bits for indexing depends on the type of unit ~ .. j" 

reference specified in the operand referring to the A- or 
Q-register, as follows: 

18 bits for full';'word (36-bit) operations 

21 bits for 9-bit and 6-bit character operations 

22 bits for 4-bit character operations 

24 bits for bit operations 

All addressing is modulo addressing. For example, when software desires to 
index backwards by N words, it indexes forward by 2**l8-N words. This same 
method is also used in character and bit indexing. 

Unit No. of UnitslWord No. to Effectively yield -N 

Word 1 2**18 - N 

9-bit 4 4 * 2**18 - N (2**20 - N) 

4-bit 8 8 * 2**18 - N (2**21 - N) 

6-bit 6 6 * 2**18 - N 

1 bit 36 36 * 2**18 - N 

For I-bit and 6-bit, 4-bit, and 9-bit characters, A and Q can be 
respectively loaded with 36,DU; 6,DU: 8,DU; or 4,DU: and N can then be 
subtracted. 

The index register designations may be specified by a symbol defined by the user 
to have a value in the octal range of 0, 1, ••• ,7 (or 10, 11, ••• ,17 when the RL 
usage is in a descriptor that does not immediately follow the multiword 
instruction - an indirect descriptor). 

Example: 

1 . 8 16 

XA BOOL 17 

MLR (0,1),(0,1) 
ADSC9 A,O,XA 
ADSC9 B,O,XA 

is used to specify a move of the number of characters specified by the current 
value of index register 7. 

5-34 DZ51-00 

'\ 



-

( 

( 

Similarly, 

1 8 16 

MLR <0,1,1),(0,1) 
ARG LA 
ADSC9 B,O,XA 

LA ADSC9 A,O,XA 

provides for the sending address of the move to be specified indirectly in the 
word labeled LA. 

As a precautionary measure, all index register symbols should be defined with 
octal values in the range 10, 11, ••• ,17, since the assembler uses only the 
low-order 3 bits in all contexts except the indirect descriptor where the symbol 
cannot be identified from context as an index register designation. 

The content of the IC is always interpreted as a word address when used in 
address modification. During the entire execution of a multiword instruction, 
the IC points to the instruction word. Thus, if Ie address modification is 
involved with a descriptor word, the instruction word address is used. 

Specifying DU or DL type address modification in the REG field of an indirect 
operand descriptor is illegal and causes an IPR fault. 

DU address modification is legal for MF2 of the SCO, SCOR, SCM, and SCMR 
instructions; for all other instructions, an IPR fault occurs. 

Operand Descriptors 

The operand descriptors describe the data to be used in the operation and provide 
the basic address for obtaining the .data from memory. A unique operand descriptor 
format is required for each of the three data types: bit string, alphanumeric, 
and numeric. The operand descriptor machine formats are as shown in Figures 5-6, 
5-7, and 5-8. 

BIT STRI HG OPERAND D!SCRIPl'OR 

000 
023 

y 

111 2 2 2 

N 

Figure 5-6. Bit String Operand Descriptor Format 

5-35 

3 

DZ5l-00 



Coding format for the bit string descriptor, BDSC, is: 

BDSC - Bi t descriptor "\ 

1 8 16 

BDSC LOCSYM,N,c,b,AM 

ALPJWfDMBRIC OPBIWID DESClUPl'ORS 

000 
023 

y 

1 1 2 2 222 
7 8 0 1 234 

N 

Figure 5-7. Alphanumeric Operand Descriptor Format 

Goding formats for the alphanumeric descriptors are: 

ADSC9 - ASCII alphanumeric descriptor 

1 8 16 

ADSC9 LOCSYM, CN , N ,AM 

ADSC9 sets the TA field for 9-bit ASCII characters. 

ADSC6 - Bel alphanumeric descriptor 

1 8 16 

ADSC6 LOCSYM, CN ,N ,AM 

ADSC6 sets the TA field for 6-bit Bel characters. 

ADSC4 - Packed decimal alphanumeric descriptor 

1 8 16 

ADSC4 LOCSYM, CN, N ,AM 

ADSC4 sets the TA field for 4-bit packed decimal characters. 

5-36 

3 

DZ51-00 

/" 
( 

\ I " -/ ..... -~ 



( 

( 

HUMBRIC OPERAHD DESCRIPTORS 

000 

y 

1 1 2 2 2 2 2 2 3 

Figure 5-S. Numeric Operand Descriptor Format 

Coding formats for the numeric descriptors are: 

NDSC9 - ASClI numeric descriptor 

1 8 16 

NDSC9 LOCSYM,CN,N,S,SF,AM 

NDSC9 sets the TN field for 9-bit ASCII characters. 

NDSC4 - Packed decimal numeric descriptor 

1 B 16 

NDSC4 LOCSYM,CN,N,S,SF,AM 

NOSC4 sets the TN field for 4-bit packed decimal characters. 

3 

The legend for the machine and coding formats of the descriptors is as follows: 

y = 

c = 

starting data word address 
18 bits (0-17) if address register not specified in MY; 15 bits (3-17) 
if address register specified in MY, with bit 3 extended; 
15 bits (3-17) if address register specified in NF, with bit 3 extended 
(i.e., if bit 3 is zero, bits 0-2 are also considered to be zero; if bit 
3 is 1, bits 0-2 are also considered to be 1s). 

starting character position within a word of 9-bit characters. 

Code . Char. 

00 0 
01 1 
10 2 
11 3 

5-37 DZ51-00 



b = starting bit position within a 9-bit character. 

Code Bit Code Bit 

0000 0 0101 5 All other combinations of 
0001 1 0110 6 these 4 bits are illegal 
0010 2 0111 7 codes and will cause an I PR 
0011 3 1000 8 fault. 
0100 4 

N = either the number of characters or bits in the data string if RL = a in 
MF: or a 4-bit code (bits 32-35) that specifies a register (see Table 
5-2) that contains the number of characters or bits if RL = 1 in MF 

CN = starting character number within the data word specified by the starting 
data word address. Legal codes for the CN depends on the data type as 
shown below. Coding entry is by the character shown under CN 
Character. 

Data 
~ 

9-bit 

6-bit 

4-bit 

CN 
Character 

a 
1 
2 
3 

a 
1 
2 
3 
4 
5 

a 
1 
2 
3 
4 
5 
6 
7 

Legal Illegal 
Codes Codes 

000 001 
010 all 
100 101 
110 111 

000 110 
001 III 
010 
all 
100 
101 

000 
001 
010 
all 
100 
101 
110 
111 

TA = a code that defines which type of alphanumeric character is used in the 
data 

Code 

00 
01 
10 
11 

Data 
~ 

9-bit 
6-bit 
4-bit 
Illegal - causes IPR fault 

5-38 DZ5l-00 

\. ,,:;/ 

/ ... " 
<j 



( 

( 

TN = 

S = 

a code that defines which type of numeric character is specified. 

Data 
Code ~ 

0 9-bit 
1 4-bit 

sign and decimal type (coding entry is by character) 

Character 

o 
1 
2 
3 

00 
01 
10 
11 

Description 

Floating-point, leading sign 
Scaled fixed-point, leading sign 
Scaled fixed-point, trailing sign 
Scaled fixed-point, unsigned 

SX = sign and scaling (for X operation codes) 

I f TN = 0 (unpacked data) 
00 leading sign, overpunched, scaled 
01 leading sign, separate, scaled 
10 trailing sign, separate, scaled 
11 trailing sign, overpunched, scaled 

If TN = 1 (packed data) 
00 leading sign, separate, floating-point 
01 leading sign, separate, scaled 
10 trailing sign, separate, scaled 
11 no sign, scaled 

SF = scaling factor 

A two's complement binary number that gives the scale point position for 
scaled decimal numbers. The decimal point is assumed to be immediately 
to the right of the least-significant digit. The scaling factor is 
treated as a power of ten exponent where a positive number moves the 
scaled decimal point to the right and a negative number moves it to the 
left. Since the SF field is 6 bits, the largest number expressible is M 
x 10**31 and the smallest number is M x 10**-32, where M is the value of 
the data described by the numeric operand descriptor. 

This field is ignored if S = 00. 

Example: If data = 12345, S is not 00, and SF = -3, the value is 12.345. 

AM = address register modification, used when AR = 1 in MF field 

5-39 DZ51-00 



I HDIR.m:"l' WORD 

The basic instruction word containing the operation code is followed by either 
zero, two, or three descriptor words, with the number of descriptor words 
determined by the particular instruction. The descriptor words contain either 
the operand descriptor or an indirect word that points to the operand 
descriptor. When an indirect word points to the descriptor, the format of the 
indirect word is shown in Figure 5-9. 

000 
023 

AR# 

3 

Address 

1 1 
7 8 

15 

Ignored 

22333 
89012 

AR 00 

11 1 2 

REG 

.1 
Reglster 

3 
5 

4 

-->Address Register Number Modification 
(if bit 29 specifies address register 
register modification) 

Specifier 

Address Register Modification 
Specifier 

Figure 5-9. I ndirect Word Format 

The AR and REG fields are identical in function to the corresponding modification 
fields in the instruction word, except that the register content specified by the 
REG field of an indirect word is interpreted as word index only. 

Indirect words can be generated with the ARG pseudo-operation as follows: 

1 8 16 

ARG LOCSYM, RM, AM 

where: 

LOCSYM - address 

RM - register modification 

AM - address register modification 

for example: 

1 8 16 

ARG DFPRSS, ,4 

5-40 DZ51-00 

/--', 

~~-// 



( 

( 

OPERAND DESCRIPTOR ADDRESS PREPARATION 

A flowchart of the operations involved in operand descriptor address preparation 
is shown in Figure 5-10. The chart depicts the address preparation for operand 
descriptor 1 of a multiword instruction as described by modification field 1 
(MFl). A similar type address preparation would be carried out for each operand 
descriptor as specified by its MF code. A detailed description of the flowchart 
follows: 

1. The multiword in~truction is obtained from memory. 

2. The indirect' (ID) bit of NFl is queried to determine if the descriptor for 
operand 1 is present or is an indirect word. 

3. This step is reached only if an indirect word was in the operand descriptor 
location. Address modification for the indirect word is now performed. If 
the AR bit of the indirect word is 1, address register modification step 4 
is performed. 

4. The y field of the indirect word is added to the contents of the specified 
address register. 

5. A check is now made to determine if the REG field of the indirect word 
specifies that a register type modification be performed. 

6. The indirect address as modified by the address register is now modified by 
the contents of the specified register, producing the effective address of 
the operand descriptor. 

7. The operand descriptor is obtained from the location determined by the 
generated effective address in item 6. 

8. Modification of the operand descriptor address begins. This step is reached 
directly from 2 if no indirection is involved. The AR bit of NFl is checked 
to determine if address register modification is specified. 

9. Address register modification is performed on the operand descriptor as 
described under "Address Modification with Address Registers" above. The 
character and bit positions of the specified address register are used in 
one of two ways depending upon the type of operand descriptor (i.e., 
whether the type is a bit string descriptor or a numeric or alphanumeric 
descriptor). 

10. The REG field of MFI is checked for a legal code. If DU is specified in the 
REG field of NF2 in one of the four multiword instructions (SCO, SCDR, SCM, 
or SCMR) for which DU is legal, the CN field is ignored and the character 
or characters are arranged within the 18 bits of the word address portion 
of the operand descriptor. 

11. The count contained in the register specified by the REG field code is 
appropriately converted and added to the operand address. 

12. The operand is retrieved from the calculated effective address location. 

5-41 ~ DZSl-OO 



No 

No 

Ves 

Fetch 
Instruction 
fran ~r)' 

Mod if)' 'I of 
Operand 

Descriptor 
by AR 

Modify '/ of 
Operand 

Descriptor 
wi th REC 

Fetch 
Operand fran 

Memor)' 

@ 

Ves 

No 

Ves 

Mod i f,/ '/ of 
Indi rect Word 

wi th AR 

Modi f,/ )' of 
Indi rect Word 

wi th REC 

Fetch Oper. 
Descriptor 
fr an Memo r )' 

Figure 5-10. Flowchart For Operand Descriptor Address Preparation 

5-42 DZ5l-00 

i 
\~ 



~ ... 

( 

Operand descriptor address preparation is illustrated in the flowchart of Figure 
5-10. Procedures for the preparation of bit string addresses and 
alphanumeric/numeric addresses follow. 

Bit String Address Preparation 

0 o 0 
0 2 3 

1< 3: 
+ 

0 
0 

y 

WORD 

1 1 122 

1 1 122 
7 8 9 0 3 

y, c, and b fields 
of descriptor with bit 
3 of y extended 

1 
I I I contents of address 

18 CHAR2 BIT 4 register specified by 
..L.-___________________ :;.;::;..o.'----= ..... __ --.... bits 0, 1, 2, of Y 

0 
0 

I 

yields 

y 

where: 

Y = WORD + Y 

c = CHAR + c 

B = BIT + b 

1 1 1 2 
7 8 9 0 

181 21 

B 

2 
3 

I modified descriptor 
address 

41 

l. If (BIT + b) exceeds 8, a carry is generated to character position C and B 
= (BIT + b) -9: 

BIT = 7 
b = 5 

BIT + b = 12, carry 1 to C and B = 12 -9 = 3 

2. If (CHAR + c + carry from B) exceeds 3, a carry is generated to the word 
address and C = (CHAR + c + carry from B) -4: 

CHAR = 2 
c = 3 

carry + 1 
= 6, carry 1 to word address and 

C = 6 -4 = 2 

5-43 DZ51-00 



First the data type designator (TA for alphanumeric, TN for numeric) is checked to (-" 
determine the character size. If the data is in 9-bit characters, then the ' 
descriptor address and CN fields can be added directly to the address register \~ 
contents as follows: 

000 0 

+ 

o 

yields 

o 

y 

WORD 

WORD + Y 

1 1 1 2 
7 8 9 0 

111 
7 8 9 

1 1 1 
7 8 9 

y al1d CN fields of the 
numeric or alphanumeric 
descriptor, bit 3 
extended 

contents of WORD " CHAR 
positions of address 
register designated by 
bits 0, 1, 2 of Y 

modified character 
address 

Bits 20-23 of the address register are ignored. CHAR is added to bits 18 and 19 
of CN. Bit 20 of the descriptor is zero and is not used. If CHAR + CN is 
greater than 3, a carry is generated to WORD + Y and CHAR + CN = (CHAR + CN) 
-4. 

If the data is in 4- or 6-bit characters, the 9-bit character representation 
contained in the CHAR and BIT portions of the specified address register is 
interpreted to determine the corresponding 4- or 6-bit character position 
within the memory word. Translation to a 4-bit character location can be 
accomplished as follows: 

C = 2 (CHAR) + [(BIT + 4)/9 truncated ] 

If CHAR = 3 and BIT = 7, 

then C = 2(3) + 1 = 7 

If CHAR = 3 and BIT = 4, 

then C = 2(3) + 0 = 6 

5-44 DZ5l-00 

I,: " \\_- .. / 



( 

( 

Translation to a 6-bit character location can be accomplished as follows: 

9 (CHAR) + BIT 
C = 6 (truncated) 

If CHAR = 3 and BIT = 7, 

9 (3) + 7 
then C = 6 = 5 

The remainder of 4 which represents the bit position within character position 
5 is ignored. This means forcing the address register to point to the next 
lower character boundary. 

The address modification can now take place. 

000 0 

+ 

o 

yields 

o 

y 

WORD 

WORD + Y 

1 1 
7 B 

2 

1 1 2 

1 1 2 

y and CN fields of the 
numeric or alphanumeric 
descriptor, bit 3 extended 

contents of WORD position 
of address register ind­
icated by bits 0,1,2 of y 
CAR is the char. loca­
tion translated from 
CHAR and BIT of address 
register 

For 4-bit character mode, if CN + CAR is greater than 7, a carry is generated 
to WORD + Y and CN + CAR = (CN + CAR) -B. 

For 6-bit character mode, a carry is generated to WORD + Y when CN + CAR is 
greater than 5 and eN + CAR = (CN + CAR) -6. 

In the next step of operand descriptor address preparation, as indicated in 
item 10 in the flowchart of Figure 5-10, the REG field is checked for a legal 
code. If DU is specified in the REG field of MF2 in one of the four multiword 
instructions (SCO, SCDR, SCM, or SCMR) for which DU is legal, the CN field is 
ignored and the character or characters are arranged within the lB bits of the 
word address portion of the operand descriptor as follows: 

5-45 DZ5l-00 

--""'·'---'"'"-_'"·0-



Operand descriptor word address field (y) 

o o 0 

CHAR 0 

o 0 0 1 1 

CHAR 1 

o 0 0 0 0 0 

CHAR 1 

ignored 

ignored 

1 
7 

1 
7 

1 

Character type (TA) 

9-bit characters 

6-bit characters 

4-bit characters 

Where only one character is involved (SCM, SCMR), only character 0 is used. 

In step 11, in the flowchart of Figure 5-10, the count contained in the 
register specified by the REG field code is appropriately converted and added 
to the operand address. The count conversion required depends upon the type of 
data. 

Bit Operations. The bit count contained in the register is effectively 
divided by 36 to give a word count (WO) with a bit remainder (BR). Dividing 
the bit remainder by 9 gives a character count with a bit remainder. Thus 
the original bit count (BC) is converted to a word count, 9-bit character <j' 
count (ee) and bit remainder, and is in proper form to add to the bit 
operand address. An example of the effective conversion is shown below: 

bit count from register/36 = we and BR 

BR/9 = CC and Be 

5-46 DZ5l-00 

~''''\I 
\ ; '--j 



( 

( 

Expressed as a 24-bit address modifier 

0 1 1 1 2 2 
0 7 8 9 0 3 

I I I I WD CC BC converted bit 
count 

+ 

0 1 1 1 2 2 
0 7 8 9 0 3 modified bit 

I I I I 
descriptor 

em bm operand 
address 

yields YCB: 

0 1 1 1 2 2 
0 7 8 9 0 3 

I I 
CC+ 

I 
BC+ 

I 
effective bit 

WD+ym em bm address 

carries may occur from (Be + bin) to (CC + em) and from (CC + em) to (WD + 
ym). 

There are two conditions to note in forming WD: 

1. If WD is a small number (expressible in less than 18 bits), it is 
right-justified in the 18-bit word area with zero-fill in the 
most-significant bit positions. Thus bit counts are always positive; 
they are not two's complement and there are no bit extensions. 

2. If the bit count comes from the A- or Q-registers, division by 36 may 
produce a WD greater than 2**18-1. I n such a case, the result is 
interpreted modulo 2**18. For example, if the bit count is (2**24)-1: 

(2**24)-1 
36 = 466,033 with BR = 27 

Thus, WD = 466,033 - 262,144 = 203,889 

And, BR/9 = 27/9 = 3 with 0 remainder 

so that, WD = 203,889 

CC = 3 

Be = 0 

No errors occur; the operation is legal and the results are predictable. 

5-47 DZ5l-00 



Character Operations. The character count contained in the register is 
di vided by 4, 6 I or 8 (depending upon the data type) I which gives a word 
count with a character remainder. The word and character counts are then / " 
appropriately arranged in 21 bits (18-word address and 3 for character 
position) and added to the modified descriptor operand address. The 
appropriate carries occur from the character positions to the word when the 
summed character counts exceed the number of characters in a 36-bit word. 
When the A- or Q-registers are specified, large counts can cause the result 
of the division to be greater than 2**18-1, which is interpreted modulo 
2**18, the same as for bit addressing. 

AS the final step, (12 in flowchart in Figure 5-10) the calculated effective 
address location is used to retrieve the operand. 

EXAMPLES: 

1 8 16 32 

* OPERAND DESCRIPTOR EXAMPLES 

MLR 
ADSC6 
ADSC6 

MLR 
ADSC6 
ADSC6 

LDX7 
LDX6 
LAR5 
LAR4 

MLR 
ADSC6 
ADSC6 

LAR5 
LAR4 
LDX3 

MLR 
ADSC6 
ADSC6 

,,020,1 move blanks to output record 
,,0 
PRTOUT,0,55+80-3l 

move columns 3l-S0 
RDWRK+5,0,SO-3l+1 to print columns 55-104 
PRTOUT+9,0,SO-3l+1 

31-1,DU ditto 
55-l,DU 
=Vl8/RDWRK 
=V1SIPRTOUT 

(1",7), (1" ,6) 
, ,80-31+1,5 
, ,SO-31+1,4 

=V18/RDWRK ditto 
=V1S/PRTOUT 
SO-31+1,DU 

(1,1),(1,1) 
5,0,X3,5 
9,O,X3,4 

5-48 DZ51-00 



( 

( 

( 

ADDRESS GENERATION IN '!'HE ES MODE 

This subsection discusses the generation of effective addresses only insofar as it 
differs from the NS mode. 

Instruction Address Field ADd Register FonIats 

The instruction field and register used in the generation of an effective address 
arc: interpreted as follows. 

I lfS'.l'RUC".l'ION ADDRESS FI ELD 

Address preparation for all instructions starts with the address field of an 
instruction word (or the address field of an indirect word or data descriptor). 
All instruction words have the same format as shown in Figure 5-3. 

Definitions for the individual fields of this format are found under "Single-Word 
Address Modification" in this section. The diagrams that follow start with only 
the address portion of an instruction field (bits ° - 17). 

Address Modification With Ho AR Indicated 

When bit 29 = 0, no AR modification is specified. The sign (S) of (y) is extended 
16 bits to the left, starting at bit ° (rather than bit 3) as indicated below. 

° 17 

y 1 
Bit 29=0. No AR 

<-mod. Address fleld 
.L.-__________ .:.1:::..L.B. +bits 0-17 

+ 

A/Q/GXn Register Contents 

= 
33 34 39 

Effective Address 10---6°1 34 . 

5-49 DZ5l-00 



The y field of an instruction/indirect word/data descriptor is interpreted as 
given in the two's complement form. Bit 0 is assumed as a sign. To generate 
the effective address, bit 0 is extended 16 bits to the left. Bit 17 expresses 
the word location. The effective address (y) field is +/- 12BKW-1. When the 
A, Q, or a GXn register is used in the R modification of a basic instruction 
(single-word) or a vector instruction, bits 2 through 35 are treated as word 
address and bits 0 and 1 are ignored. An AL/QL specification in the tag field 
modification specifies 36-bit AlQ registers. An AU/QU specification results in 
an IPR fault. Address modification specified by the tag field is performed 
resulting in the effective address. 

EXAMPLES: 

1 

(1) 

B 

(2) 

C 

(3) 

B 

B 

EAX4 
LDA 

LDA 
LDQ 

EAQ 
STA 

16 

1 
B,4 

=4,DL 
C,AL 

3 
B,QL 

Effective 
Address 

Y .. B+1 

Y = C+4 

Y = B+3 

With no AR modification specified, address modification is processed in the 
same way as address modification in NS mode, with the exception of the AU/QU 
modification. 

Address Modification with AR Indicated 

Address register modification is performed when instruction word bit 29 = 1 or 
when the AR bit of a multiword instruction's MF field is 1. 

5-50 DZ51-00 

(" 



( 

( 

o 2' 3 4 17 

I II I Bit 29 = 1 with AR mod. 
.I._AR--=3:..t.-=~..I.. ___ y ___ --=1::.::4;..L<-AddreSS held = bits 3-17 

19 bits 
/ ~0~2~3\r-__________ ~1~7~ 

I II I As seen by 
s-------s~J~ y l4.<-EA Adder 

.0 33 <-EA bit positions 
+ 

ARn 0 1 29 30 32 35 

~.l.I~~I ______ w_o_rd __ va __ l_u_e_o_f __ AR __ n __________ ~2~8~IB_y_t-=~~I __ B_i_t~~41 
33 39 

+ 

A/Q/GXn Register Contents 

.0 33 
= 

1° Effective Address 

33 34 35 36 39 

AR+y carry is ignored 

Contents 
of AR!! 

Bits 3 through 17 of an instruction/indirect word/data descriptor are interpreted 
as given in a two's complement form. Bit 3 is assumed as a sign. Thus, the 
range of Y is +/- 16KW-l. To generate an effective address, bit 3 is extended 19 
bits to the left. Bit 17 expresses the word location. 

The address register (ARn) is extended to 36 bits as indicated in the previous 
format. ARn is interpreted as given in a two's complement form with bit 0 as a 
sign bit. In effective address generation, bit 0 is extended 4 bits to the 
left. Bits 0 through 29 are interpreted as a word address, bits 30 and 31 as a 
byte address within the word, and bits 32 through 35 as a bit address within the 
byte. If BIT> 8, BIT = 8 is assumed. 

Every specification of an index register (Xn) is interpreted as specifying a 
36-bit GXn. An AL/QL specification in the register modification (R modification, 
REG modification, N when RL = 1) specifies the 36-bit A/Q registers. Any AU/QU 
specification results in an IPR fault. When GXn is used in the R modification of 
a basic instruction (single-word instruction), bits 2 through 35 are treated as a 
word address. 

When GX/A/Q is used in the REG modification of a multiword instruction, bits 0 
through 35 are treated as the number of characters specified by the bit number in 
the data descriptor. 

Because effective address generation in ES mode involves sign extension, an 
instruction such as LOA LOCSYM causes a Bound fault if LOCSYM is greater than or 
equal to l28K words, regardless of the instruction segment bound. 

5-51 DZ51-00 



EXAMPLES: 

Effective 
1 8 16 Address 

(1) EAX2 2 (X2=2) 
AWDX 1,2,3 AR3 = 31010 
STZ B,2,3 Y = B+5 

(2) EAX3 1 (X3=1) 
AWDX 2,3,1 AR1=31010 
LDA B, ,1 Y=B+3 

(3) AWDX 4,,3 AR3=41010 
EAX4 B X4= address of B 
STA 1,4,3 Y=B+5 

(4) EAX4 B 
AWDX 0,4,2 AR2= address of B 
STA 2,,2 Y=B+2 

rag Field Modification 

In a basic instruction (single-word instruction), a tag field modification is 
performed after the AR modification. The tag field format follows: 

Instruction -> 30 31 32 35 
bi ts ""'1 =-tm-----r""1 ----tdOO::O---~...,. 

tag field 

The interpretation of a tag field and the accompanying modification method are 
the same as in the NS mode except that the address modification by the register 
A/Q/GXn/IC is altered as illustrated below. This applies to generation of the 
following: 

an operand address in R modification (tm = 00) 

an indirect word address in RI modification (tm = 01) 

an operand address in IR modification (tm = 10) 

The following should be noted with AlQ/GXn modification: 

1. EA (effective address) may be represented as Y. 

2. The GXn specification code is identical to the XB specification code •. 

3. The AlQ specification code is identical to the AL/QL specification code. 

4. An AU/QU specification results in an IPR fault. 

5-52 DZ5l-00 

".--- ~'" 

(~~ 



EXAMPLES: 

( Effective 
1 8 16 Address 

R-Type 
(1) EAX2 1 

LOA B,2 Y=B+1 

(2) LDQ =3,DL 
LOA B,QL Y=B+3 

RI-Type 

Z ARG B 
ARG A,2* 
ORG A+5 

A" ARG B,5* 
ORG B+1 

. 
(1) EAX2 1 

LOA Z,2* Y=B+1 

(2) EAX1 0 
STQ Z,l* Y=B 

(3) EAX2 3 
STA Z,2* Y=A+5 

IR-Type 

Effective 
1 8 16 Address 

(1) LDQ 3,DL 
LDA Z,*QL Y=B+4 

Z ORG B+1 

(2) EAX4 3 
EAX5 6 
STA C,*4 Y=Z+9 

C ARG B,*5 
B ORG Z+3 

5-53 DZ51-00 



Effective 
1 8 16 Address 

(3) EAXl 3 
LDQ X,*l Y=B+8 

x ORG B+5 

When IC modification is specified, effective address development is as follows: 

0 33 34 36 39 

AR + y I Word Value 341 B 21 BITJ 
• 

+ 
16 bits 

/ \ 0 17 • • 

I lsi 00------ 0 IC • 
• 

• 
= • . • • 

0 33 34 36 39 

EA (y) I Effective Address 341 B 21 BI\I 
carry ignored 

The contents of the instruction counter extended on the left with 16 bits 
zero-filled is added to the contents of AR + y. 

EXAMPLFS: 

1 8 

I C added to AR 

(1 ) AWDX 
AWDX 
AWDX 
SZN 
TZE 
TN! 
TRA 

(2) AWDX 
LDA 

16 

0,QL,3 
1,QL,4 
2,QL,2 
TEST 
TEST 
0,$,4 
0,$,2 

1,AL,2 
2,$,2 

5-54 

Effective 
Address 

Y=IC+AR3 
Y=IC+AR4 
Y=IC+AR2 

Y=IC+AR2 

DZ51-00 

---,\ 

/ 

'\ 

,,--/j 



( 

( 

When DU/DL modification is specified, effective address modification interprets 
the operand data as follows: 

For DU 

0 17 18 35 

1 
AR+y(16-33) 18 I 00------------1~ I 

For DL 

o 1 2 35 

10 01 
0 

AR+y I 
~ __ ~ ________________________________________ ~~<-AR+y bit 

33 positions 

EXAMPLES: 

(1) 

(2) 

1 8 16 

Compare .GX1 to AR3 

EAX1 
CMPX 

A 
1,DL,3 

Load AU with contents of AR2 

EAX3 
AWDX 
LDA 

B 
0,3,2 
0,DU,2 

Operand Descriptor Modification 

Effective 
Address 

GX1 = address of A 

AR2=address of B 

When REG modification is specified in the MF field of a multiword instruction, 
it is processed as follows. 

When AlQ/GXn is specified 

The 36 bits of A/Q/GXn are used as the character number which is the 
character address. 

An AU/QU specification results in an IPR fault. 

5-55 DZ51-00 



EXAMPLES: 

1 S 16 
Effective 

Address 

(1) This moves the string "SOURCE" to the first six characters 
of TO. The contents of X3 act as an offset into the source text. 

LDX3 

MLR 
ADSC9 
ADSC9 

=ll,DL 

( , , , 3 ) , , 040 
FROM,1,6 
TO,0,6 

FROM ASCI I 9, THIS I S THE SOURCE TEXT 
TO BSS 2 

(2) The string "LE " is moved to XB, starting at the third 
character of XB. The Q register can be used in the same way. 

EXAMPLES: 

LDA =4,DL 

• 
MLR (",A),(",,),040 
ADSC9 XA,0,3 
ADSC9 XB,2,3 

XA ASCII 5,SAMPLE TEXT TO MOVE 
XB BSS 3 

When IC is specified in the REG modification, it is treated as an 
lS-bit word address. 

1 S 16 
Effective 

Address 

The string "HIS IS" is moved to Y, beginning with the 
first character. 

x 
Y 

EAX3 
AWDX 

MLR 
ADSC9 
ADSC9 
ASCII 
BSS 

Y 
0,3,2 

(",IC),(1",),040 
3,1,6 
0,0,6,2 
4, THIS IS THE TEXT 
2 

5-56 

AR2=address of Y 

DZ51-00 



( 

( 

When OU/OL is specified 

OL - An IPR fault occurs. 

OU - Permitted only in the SCO, SCDR, SCM, and SCMR 
instructions. 

The effective address (EA(y» generated by the operand 
descriptor is treated as follows. 

Bits 16 through 33 of the effective address (EA(y» are 
interpreted as character data according to its data format (TA 
or TN field of the descriptor). 

o 15 16 24 25 33 34 35 
\\\\\\\\\\\\\\\\\\\\\\\ \\\\\ 
\\\\\\\\\\\\\\\\\\\\\\\ CharO CharI \\\\\ 
\\\\\\\\\\\\\\\\\\\\\16 9 9 \\\\\ 

o 15 16 21 22 27 28 35 
\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\ 
\\\\\\\\\\\\\\\\\\\\\\\ CharO CharI \\\\\\\\\\\\\ 
\\\\\\\\\\\\\\\\\\\\\16 6 6 \\\\\\\\\\\\\ 

o 15 16 17 20 21 24 25 35 
\\\\\\\\\\\\\\\\\\\\\\\ \\ \\\\\\\\\\\\\\\\ 
\\\\\\\\\\\\\\\\\\\\\\\ \\ CharO CharI \\\\\\\\\\\\\\\\ 
\\\\\\\\\\\\\\\\\\\\\16 \1 4 4 \\\\\\\\\\\\\\11 

9-bit 
characters 

6-bit 
characters 

4-bit 
character 

For the SCM or SCMR instructions, only CHARO indicated in the diagrams is 
used. The shaded portions are ignored during effective address 
generation. 

ADDRESS DEVELOPMENT 

virtual Memory Addressing 

Virtual memory provides the processor with a virtual memory capability, consisting 
of a directly addressable virtual space of 2**43 bytes and the mechanisms for 
translating this virtual memory address to a real memory address. Memory paging is 
an integral part of the translation process for this conversion. An absolute 
addressing mode that allows bypassing the translation process is also provided. 
When the processor is operating in the absolute addressing mode, the virtual memory 
address and the real memory address are the same. 

5-57 DZ5l-00 



To provide for virtual memory management, assignment, and control, the 2**43 byte 
virtual memory space is divided into smaller units called working spaces, and 
segments. 

o Working Spaces (WS) 

The 2**43 bytes of virtual memory space are divided into 512 2**34-byte 
working spaces (WS). WS numbers used to generate a particular virtual memory 
address are obtained from one of the eight WS registers or a segment 
descriptor register (DRn). The WS number is represented in a segment 
descriptor register either by the content ofa specified WSR or by a 9-bit 
WSN field. 

o Segments 

A segment is part of a working space and may be as small as one byte or as 
large as 2**32 bytes for an extended segment. (GCOS disallows the use of 
contiguous working spaces for a single segment.) Thus, unlike the fixed size 
of a WS, a segment size is variable. Segments are described by a 72-bit 
descriptor. 

When a virtual address is generated, the descriptor (more commonly referred 
to as the segment descriptor) is contained in a register such as the 
instruction segment register (ISR). For operands, the descriptor may be 
contained in other segment descriptor registers. The area of virtual memory 
constituting a segment is "framed" by the segment descriptor by defining a 
base value relative to the base of the WS and a bound value relative to the 
base of the segment. _ 

Virtual memory affects memory address development for both instructions and 
operands in Privileged Master, Master and Slave modes of operation. 

OPERAHD ADDRESS PROCEDURE 

In the first phase of address generation, the effective address (EA) of the operand 
is generated as previously described for effective address generation. The EA is 
that address obtained after all register modification and indirect processing has 
taken place. It is an 18-bit word, 20-bit byte, or 24-bit bit address in the NS 
mode, and a 3D-bit word, 32-bit byte, or 36-bit bit address in the ES mode. 

After the EA has been formed, the processor hardware forms the virtual memory 
address of the operand using the base, bound, and WS values from 1 of .9 segment 
descriptors. If bit 29 of the instruction for which the operand address is being 
prepared is zero, then the operand resides in the instruction segment and the base, 
bound, and WS from the instruction segment register (ISR) are used to form the 
virtual address of the operand: if bit 29 of the instruction is 1, then descriptor 
register B (DRB) specified by bits 0, 1, and 2 of the address field of the 
instruction is used. Note that specifying DRB constitutes specifying ~ and vice 
versa. 

5-58 DZ51-DD 



( 

When indirect EA development is involved, the following rules apply: 

a. When ORn and ARg are involved (instruction bit 29 = 1), ARg is applied only 
to the first address in a chain of indirect addresses. However, the base, 
bound, and WS from ORn are applied to each memory reference in the indirect 
chain. 

b. When no DRn/ARn is specified (instruction bit 29 = 0), the base, bound, and 
WS of the ISR are applied to each memory reference in an indirect chain. 

c. A word in an indirect chain cannot specify a ORne 

d. An XEC or XED1 instruction does not constitute an indirect chain; therefore, 
the instruction executed may specify a different ORn than the XEC/XED 
instruction, or no ORn. If the instruction executed by the XEC/XED does not 
specify a ORn, the base, bound, and WS from the ISR are used to form the 
virtual address of the operand. 

I HSTRUC'lIOH ADDRESS PROCBDURE 

Virtual addresses for instructions are always formed using the value in the 
instruction counter (Ie) and the base, bound, and WS from the ISR. 

Virtual Address Generation Per HS Mcxle 

For all memory accesses, a virtual address must be generated. The mechanics of 
generating the virtual memory address depend on whether the involved segment 
descriptor is a standard descriptor or a super descriptor. Thus, the procedure 
described below for generating the operand virtual address with a standard 
descriptor also applies to virtual address generation for accessing the 
instruction, argument, parameter, and linkage segments (the registers holding the 
descriptors that define these segments may only contain standard descriptors). 

1. XED executes in NS mode only. 

5-59 DZ51-00 

-------------,,----~~-



STAJlDARD D&SCJUP.rOR HS MODE 

The method of forming an operand virtual address with a standard descriptor is 
shown in Figure 5-11. If instruction bit 29=0, the ISR is used~ if bit 29=1, then 
DRn is used. 

o 17 18 20 23 

IO~ ~ ~Ol EF~~~ 181 B21 BI~I 
, ______ r-______ ,I. 

+ ----->------,----- >--(-) 

Bound Fault If 
carry Is 
Generated 

1 
ke 

Bits 0 and 
saved to Ma 
WSN Access 

Control 
Cleck 

WSN 

0 

· · · 0 

o 
<- SEX;MENT BASE 

FROM DRn OR I SR 

· · 
• 

· · · · 0 2 
<-- EA + BASE 

2 

· · · · · · .OR. 

· · · · 678 

7 2 

· · · 8 9 
EFFECTIVE WORD ADDRESS 

• 

· 33 34 35 · 
341 B2 • 

· · · · · · · • • 

· · · · · • 
33 34 35 · 

341 B2 · · · • 
· · · • 
· · · · 
• · · · · · · · · · · · · · · · 40 42 43 46 

WORKING WI THI N WORK! NG SPACE B BIT 
SPACE 9 32 2 4 

where: B - page byte 
WSN - working space number 

. . 
1 Bound Cleek I 

If EA(O-19) > Bound 
then Bound Fault 

Occurs 

<-Relative Virtual 
Address 

Resulting 
<-Virtual Address 

Figure 5-11. Virtual Address Generation Using Standard Descriptor (NS Mode) 

5-60 DZ51-00 



( 

The bound check is applied to the effective address at the byte level. The bound 
check is shown for byte or bit instructions; the checks for single-word or 
multiword instructions require inclusion of the base in upper- and lower-bound 
algori thIns. 

If a carry is generated when the EA is added to the base, an out-of-bound situation 
exists, resulting in a Bound fault. 

The effective WSN is formed by ORing the low-order two bits of the working space 
number with bits 0 and 1 of the sum of EA + BASE. 

The bit address from the EA becomes the bit address of the virtual address. 

SUPER DESClUPl'OR RS MODE 

The method of forming an operand virtual address with a super descriptor is shown 
in Figure 5-12. 

5-61 DZ51-00 



o 17 19 20 23 0 19 20 I o~ ~ ~ -_-= _= _ = _"="0T'1, ~EFFECT~AD~D~RES=I~~E~--1";"8-r1 ~B;"'2':;:I~BI~~~1 DR Bound 1- -

Bound Fault I f 
carry Is 
Generated 

+ 

· . . 
.0 33. 35. I .LOCATION FROM DRn I B 21 

· o 33 35. • 

<--~I ____ ~ ___ T_IO_N __ +_EA ____ ~3~4.I_B~2~1 
· '---1-+ ========::.:/ .-"':.-~=;!~:---r 1-

35. 

Bits 0 and 1 
saved to Make 
WSN Access 

Control 
Check 

WSN 

0 

. 
0 

DRn BASE 

· • 01 2 
<- EA = LOC + BASE 

2 

· · · · .OR. 

· · 678 

7 2 

I · 8 9 
EFFECTIVE WORD ADDRESS 

• 
• 

• • 
• 

33 35 • • 

341 B2 
• 

< --- Relative Virtual Address 

· · 
• • 
• • 
· · · • 

· • 

· · 
• • 

· · 40 42 46 

WORKING WITH! N WORKI NG SPACE B BIT 
Resulting 

<-Virtual Address 
SPACE 9 32 2 4 

where: B - page byte 
WSN - working space number 

Figure 5-12. Virtual Address Generation Using Super Descriptor (NS Mode) 

5-62 D~5l-00 



( 

( 

EXTBHDED SFX;MENT DESClUPTOR NS MODE 

The method of forming an operand virtual address with an extended segment 
descriptor is shown in Figure 5-13. It is the same as that using a standard 
segment descriptor except in the bound check. 

16 Bits 4 bits 12 Bits 
I \ 0 17 18 20 23 10-~ - 0"" :"'--EFAD-F-~~R~~~V:~--1--8""'~B 2....,I~BI~T~4-r1 

/ \ 0 19 

IO~O~ DRn Bound 20 11~ ~ ~11 
.\- I. 

1--->-,-·_- • 

+ 
• • 

· • o 33 35 
SEGMENT BASE FROM DRn B 

34 2 

· · · • Bound Fault If • · • carry Is • · • Generated • · · · · · • · ts 0-1 012 33 35 
ved to 

Bi 
Sa 
Mak 
Ac 
Co 
Ch 

Effective Address + Base B 
e WSN 2 32 2 

cess · · · · ntrol · • • · eck · • · · • OR. · · · · · · · • · · 0 678 · · · · WSN · · . - 7 2 · · · • · · · · 0 8 9 40 41 
EFFECTIVE 

WORKING WORD ADDRESS WI THI N B 
SPACE 9 WORKI NG SPACE 32 2 

where: B - page byte 
WSN - working space number 

• 

· 
• 

· · · · · · <-R 

· · · · 
• 

· · · · · · · · 43 46 

BIT 
4 

>>-------( -) 

Bounds Check 
of EA 

Bound FIt If 
OUt of Bound 

e1ative Virtual Address 

<-Resulting 
Virtual Address 

Figure 5-13. Virtual Address Generation Using Extended Segment Descriptor 
(NS Mode) 

5-63 - DZ51-00 



Virtual Address Generation Par ES Mode 

In the ES mode, a 36-bit effective address is added to a segment descriptor to 
generate a virtual address. The method used for generation of virtual addresses 
differs depending upon whether the related segment descriptor is a standard segment 
descriptor or an extended segment descriptor. Super descriptors must not be used 
for address generation in ES m~e as any attempt to do so results in an IPR fault. 

S'J.'ABDARD DESClUPTOR IS MODE 

The method of forming an operand virtual address with a standard descriptor in ES 
mode is shown in Figure 5-14. If instruction bit 29=0, the ISR is used; if bit 
29=1, then DRn is used. 

5-64 DZ51-00 



( 

o 33 35 36 39 
EFFECTIVE ADDRESS 

.\-------------------------------/. . 
I ... 
----->------------> ---(-) 

+ 

o 33 35 
SEGMENT BASE B 
FROM DRn OR 1 SR 34 2 

· · • Bound Fault If · • carry is • 
• Generated · · • 

· · · · ts 0-1 o 1 33 35 
ved to 

Bi 
sa 
Malt 
Ac 
Co 
Ch 

Effective Address + Base B 
e WSN 2 32 2 

cess · · • 
ntrol · · • 
eck · · · · OR. · · · · · · · 0 678 · 

• 
WSN · 7 2 · · · · · · · 0 8 9 40 41 

EFFECTIVE 
WORKING WORD ADDRESS WI THI N B 

SPACE 9 WORKI NG SPACE 32 2 

where: B - page byte 
WSN - working space number 

· · · · · • · 
• · · · · · 
• · · · · <-R 

· 
• · · · · · · · 
• · · · · · · · · · · · · · · · · · 43 46 

BIT 
4 

Bounds Check 
of EA 

Bound Flt.If 
Out of Bound 

elative Virtual Address 

<-Resulting 
Virtual Address 

Figure 5-14. Virtual Address Generation Using Standard Descriptor (ES Mode) 

EXTENDED SlGmNT DESCRIP'l'OR ES MODE 

The method of forming an operand virtual address with an extended segment 
descriptor (T = 12) is shown in Figure 5-15. It is the same as that using a 
standard segment descriptor except in the bound check. 

5-65 DZ51-00 



o 33 35 39 

I B I BIT41 
34 2 . . \- -I . 

1-->>-------->--·-------( -) 
+ • 

· o 33 35 · 
Bounds Check 

of EA 
SEGMENT BASE FROM DRn 

34 

· • Bound Fault I f 
• carry Is 
• Generated 

· · 
• 

ts 0-1 o 1 33 
ved to 

Bi 
sa 
Malt 
Ac 
Co 
Ch 

Effective Address + Base 
e WSN 2 32 

cess · · ntrol • · eck · · • OR. 
· • 

· · 0 678 

WSN 
7 2 

· · · 0 8 9 40 
EFFECTIVE 

WORKING WORD ADDRESS WI THI N 
SPACE 9 WORKING SPACE 32 

where: B - page byte 
WSN - working space number 

· · · · · 
• 

· 

· · · · · · · · · · · · · 

B 
2 

· 
• 
• 
• 
• 
• 

· 35 
B 

2 
• 

· · · · 
• 

· 
• 
· · 
• 

· · 42 43 

· · 
• 

· 
• 

· · · · 
• 

Bound FIt If 
OUt of Bound 

elative Virtual Address <-R 

· · 
• 

· · 
• 

· · · · · · · · 46 

B BIT 
<-Resulting 

Virtual Address 
2 4 

Figure 5-15. Virtual Address Generation Using Extended Segment Descriptor 
(ES Mode) 

5-66 DZ5l-00 



( 

Absolute Addressing Mode 

Virtual memory provides an absolute addressing mode. When the processor uses the 
absolute addressing mode, a virtual address is generated. However, the virtual 
address is not mapped to a real address; it is used as the real address with a 
maximum size limitation of 2**28 words (256 megabytes). 

The processor utilizes the absolute addressing mode when the referenced working 
space regi~ter or descriptor (with working space number) contains WSN = O. In 
these cases, the upper two bits of the segment base are not OR' ed with the 
working space number. The absolute address mode is fully set by the direct value 
of the WSN. 

To use the absolute addresing mode, the CPU must be in Privileged Master Mode. 
If these conditions are not satisfied, a Command fault occurs when an attempt is 
made to reference working space zero. The housekeeping bit is assumed ON when 
working space zero is referenced. 

When the processor is in the absolute addressing mode, address preparation 
proceeds as in normal virtual address development. (Refer to Figure 5-16.) 

o 
o 

\ 
\ 

EFFECTI VE 
WORKING 

SPACE 

o 0 
8 9 

9 

Bits 9 - 12 are 
ignored 

1 1 
2 3 

4 

EFFEC'1'I VE WORK! NG SPACE 
WORD ADDRESS 

4 4 
2 6 

B 
30 4 

/\ / 
/ \ Used as a 3D-bit absolute byte address of real / 

memory for the operating system. However, 
paging is performed by the hardware. 

Figure 5-16. Effective Absolute Address 

5-67 DZ51-00 



Paging 

After generation of a virtual address, an address translation process for mapping 
a virtual memory address to a real memory address is performed by paging, in 
order to create a real memory address for accessing the real memory. 

Paging does not differ between the NS or ES mode. 

ADDRESS 'l'RAHSLA'l'ION PROCESS 

Memory paging is an integral part of the address translation process for mapping 
a virtual memory address to a real memory address. Each of the 512 working 
spaces is supported by one page table or one section table (SCI'). The working 
space page table directory (WSPTD) is a 512-word table, indexed by a 9-bit WSN. 
A WSPTD entry contains the real memory address of a page table or section table. 
The section table consists of up to 4K words called page table base words (PBW). 
Each PBW def ines the real memory address of a page table. When paging is 
performed using section tables, PBWs cause the page table to be divided into 1K 
blocks and allow them to be distributed throughout memory. 

PAGE TABLE DIRl!C1'ORY WORD PORHA'l' 

The format of the page table directory word is given in Figure 5-17. 

o 
o 

111 2 222 2 
7 890 1 234 

R 

2 3 
9 0 

3 
5 

PT/SCT Base (MODI024W) Q p I '1' F PT/SC'I' SIZE 
18 2 1 1 1 U 12 

I ~ND 
__ Type of PT 

_Present 
Bits 24-29 

-ignored 

_WS Access Control 

Figure 5-17. Page Table Directory Word (PTDW) Format 

5-68 DZ5l-00 



( 

Bits Description 

0-17 

18,19 

20 

21 

22 

23 

24-35 

The modulo 1024 base address (real memory address) of a page table 
(PT) or a section table (SCT). 

Provide a hardware method to force the isolation of the loiS. When 
one or more loiS is allocated to a process, software will record in 
these bit positions of the associated PTDW, the relative WSN within 
the set of up to four possible numbers. These bits are used to 
check the WSN at translation from a virtual memory address to a 
real memory address. An SCL2 fault occurs if the check. fails. 

= 0, the PT/SCT is not present. (A missing working space fault 
occurs. ) 

= 1, the PT/SCT is present. 

Ignored 

o = indicates a dense PT. 

1 = indicates an SCT. 

Reserved for future use. 

The size of the PT/SCT. 

o For a dense page table, bits 24 to 35 indicate the modulo 64 
size of the PT. 

o For a section table, bits 30 to 35 indicate the modulo 64 size 
of the SCT. Bits 24-29 are ignored. 

o If bits 30 to 35 are zero, the size of 64 words is assumed. 

PAGE TABLE BASE WORD FORMAT 

The format of the page table base word is given in Figure 5-18. 

o 1 1 2 2 2 2 3 3 3 
1 2 5 

PT Base (MOD1024W) RFU 

Figure 5-18. Page Table Base Word (PBW) Format 

5-69 DZ5l-00 



0-17 

18,19 

Description 

Indicate the modulo 1024 base address (real memory address) of a 
dense page table. 

Reserved for future use. 

20 . = 0, the PT is not present. (A missing working space fault 

21,22 

23 to 31 

32 to 35 

occurs. ) 
= 1, the PT is present. 

Must be zero. 

Reserved for future use. 

Define the modulo 64 size of a dense page table. If 0, the size of 
64 words is assumed. 

PAGE TABLE WORD PORIIAT 

The format of the page table word is given in Figure 5-19. 

o 
o 

1 1 
7 8 

2 2 2 3 
7 8 9 0 

3 
5 

PAGE ADDRESS (MOD 1024) RESERVED FOR RHO CONTROL 

0-17 

18-27 

28,29 

Control Field: 

30 

31 

18 SOFTWARE 10 2 FIELD 6 

Figure 5-19. Page Table Word (P'l'W) Format 

Description 

The page modulo 1024 base address (real memory address). 

Reserved for software use and may not be altered by the hardware. 

Reserved for hardware use and may be changed by the hardware. 

- Processor page present/missing bit 
= 0, page is not in memory (missing) 
= 1, page is in memory {present} 

- Write control bit 
= 0, page can not be written 
= 1, page can be written 

5-70 

J 
} I nterpreted only 
J by processor 

J Bit 31 is 
} interpreted by 
J processor and 
J lOP 

DZS1-00 



( 

Control Field: 

32 

33 

34 

35 

- Housekeeping bit 
= 0, nonhousekeeping page 
= 1, housekeeping page 

- lOP page present/missing bit 

} 
} Interpreted only by processor 
} 

= 0, page is not in memory (missing) 
= 1, page is in memory (present) 

} Not inter­
} preted by 
} processor 

- Page modified bit 
= 0, page was not modified 
= 1, page was modified 

- Page access bit 
= 0, page was not accessed 
= 1, page was accessed 

} 
} Interpreted only by processor 
] 

} 
} Interpreted only by processor 
} 

When the processor accesses the page table word (PTW), the hardware checks bit 
30. If bit 30 = 0, a Missing Page fault occurs and no other faults that might 
be caused by the page table word are checked. Refer to the discussion of "Page 
Table Word Control Field Faults" in Section 6. 

Note that the processor and the lOP have separate bits to indicate a missing 
page. Thus, during I/O, a page may be present to the lOP but missing to the 
processor or vice-versa. When a page is accessed by the processor, and the PTW 
is accessed in main memory by hardware, bit 35 of the PTW is set to 1 by the 
hardware. 

When a write occurs to a page, and the modified bit in the page table word in 
associative memory is 0, this bit is set to 1 and bits 34 and 35 of the page 
table word in main memory are set to 1 by the hardware. 

Note that if a write occurs to a page, and the modified bit in the page table 
word in associative memory is 1, no changes are made to the page bits. SOftware 
may have reset the page access bit, -bit 35, to zero. This bit remains zero 
under this condition. 

NAPPI NG THE VIRTUAL ADDRESS TO A REAL ADDRESS 

If a prior memory reference to the same page has already mapped that page to 
real memory, and if that mapping is still present in the associative memory of 
the processor, then the mapping is accomplished by concatenating the Word field 
of the virtual address to the modulo 1024 real address of the page, to produce 
the real addres~ for the memory reference. Otherwise, the mapping proceeds by 
locating and obtaining the Page Table Directory Word (PTDW). 

If the PTDW indicates that the page table is not present (PTDW.P=O), then the 
mapping is not completed, and a Missing Working Space fault is generated. If 
the page table is present (PTDW.P=l) but PTDW.Q¢l, bits 0-1 of the relative 
virtual address are compared and if they are not equal, then the mapping is not 
completed, and a Class 2 Security Fault is generated. 

5-71 DZ51-00 



DENSE PAGE TABLE 

When a dense page table is used, the CPU interprets the virtual address as shown 
in Figure 5-20. 

o 
0 

EFFPX:TIVE 
WSN 

0-8 

9-12 

13-30 

31-40 

41-46 

o 0 1 1 3 3 444 4 
8 

9 

9 2 3 o 1 

I PAGE NUMBER 
4 18 

Figure 5-20. Virtual Address 

Description 

Working space to be accessed. 

Ignored 

0 2 3 6 

WORD B BIT 
10 2 ,; 

Page number is used as an offset or index into the PT for this 
WSN, for locating the P'l'W. The page number is relative to the PT 
base address (real memory address) which comes from the PTDW. 

Determines which word wi thin the 1024-word page is being 
addressed. 

Byte and bit positions within the word, if applicable. 

LOCA'l'IHG '!'BE PAGE TABLE DIRll:"l'ORY WORD 

The Page Directory Base Register (PDBR) contains the modulo 512 word address of 
the Working Space Page Table Directory (WSPTD). Figure 5-21 shows how the 
hardware uses the effective WS number from the virtual .address as an offset into 
the WSPTD to obtain the Page Table Directory Word (PTDW) for address translation 
using a dense page table. 

Figures 5-21, 5-22, 5-23, and 5-24 illustrate virtual to real mapping using a 
dense page table. I n Figure 5-21 below, the dense page table base address in the 
P'l'DW is modulo 1024 words. PTW bits 0 to 17 are the modulo 1024W page start 
address. 

5-72 DZ51-00 



( 

o 18 Mod 

~-=~----> 
WSPTD 

+------t 9-bi t WSN# ---> 
PTDW 

Page table base 
(Mod l024W) PT 

-..,.-----> 

lS-bit Page# ---> PTW 

(All addresses = = 
are real) 

Paoe Base 
(MOd 1024W) 

Paae 

Word within Addressed 
the page -> Word 

......-,;=-:;;;.......,.---+ 

1KW 

Figure 5-21. Address Mapping Using A Dense Page Table 

In Figure 5-22, the PDBR indicates the base (mod 512 words)of the 512-word 
WSPTD. The 9-bit effective WS number is combined with the 19 bits from the PDBR 
to generate the real memory address to access the WSPTD. The PTDW includes the 
real memory address (mod 1024 words) of the page table. The PT entry location is 
determined by the 18-bit page number of the virtual address. The PTW includes 
the real memory address (mod 1024 words) of the page. The 10-bit word address 
field of the virtual address is combined with the lS-bit real memory address of 
the page to generate a 2S-bit real memory word address. This generation is 
illustrated in Figures 5-22, 5-23, and 5-24. 

o 

I 
o 

1 

Real memory address 
from PDBR 

lS 0 S 
I
r-I-:E~f=-=f~ec-t~i:-v-e-~I 

19 WSN 91 

27 

PTDW Word Address 

Figure 5-22. PTDW Address 

5-73 DZ5l-00 



Virtual to real mapping through a Dense PT is shown in Figure 5-23. 

The PTDW contains the base address (0 modulo 1024W) of the PT. The address of 
the PTW is equal to the base address plus the lB-bit page number. The mapping of 
the virtual address to the real address is completed when the PTW is obtained. 
The mapping is then saved by the hardware in the associative memory. The PTW 
contains the real address (0 modulo 1024) of the page. The 10-bit word field of 
the virtual address is concatenated with the page real address to form the real 
word address. 

o 

· .0 

· o 

0 

1 1 2 
7 8 7 

P'l' BASE ADDRESS FROM PTDW I ~----O I 
18 lQ 

-0 

1 1 
2 3 

+ 

lB-BIT PAGE # FROM 
VI RTUAL ADDRESS 

13 

· 3. 
o · 

17 
• (carry Ignored) \- --- ---I. 

I · • 
• >-

· · • 0 2 • 
• 0 7 • 

PTW ADDRESS 
28 

2 
4 

PT BOUND FROIf 

3 
5 

PTDW (MOD 64) 1-1 
12 6 

: I 
--->-(-) 

· 
• 

· · · 
• 

SIZE CHECK 

I 
I f page size > 

PT Bound/l1lllll then 
a bound fault occurs 

• 

• 
• 
• 

· · · 

Figure 5-23. PTW Address 

5-74 DZ5l-00 



( 
o 
o 

0 
0 

PAGE ADDRESS FROM PTW 
Bits 0 to 17 

1 
7 

18 

3 
1 

WORD PART OF 

4 
o 

VIRTUAL ADDRESS 
Bits 31-40 10 

2 
7 

WORD ADDRESS I N REAL MEMORY 
28 

Figure 5-24. Word Address 

Real address 
from PTW 

The section table allows the page table for a working space to be fragmented 
into sections. The PTDW specifies the base of the section table, which 
contains up to 4K of page table base words (PBW), each of which defines a page 
table for a section. When a section table (seT) is specified by the PTDW, the 
virtual address is interpreted as shown in Figure 5-25: 

o 
0 

EF'F'&:TI VE 
WSN 

0-8 

9-20 

21-30 

31-40 

41-46 

o 0 2 2 3 3 444 4 
8 

9 

9 o 1 o 1 0 2 3 6 

SECTION NUMBER PAGE NUMBER WORD B BIT 
12 10 10 2 4 

Figure 5-25. Virtual Address 

Description 

Working space to be accessed 

Section number. An offset of the SCT base for accessing the PBW 
in the SCI'. The SC number is a value relative to the seT base 
indicated by the PTDW. 

Page number is used as an offset or index into the PT for this 
WSN, for locating the PTW. The page number is relative to the 
PT base address (real memory address) indicated by the PBW. 

Determines which word within the 1024-word page is being 
addressed 

Byte and bit positions within the word, if applicable 

5-75 DZ51-00 



Figure 5-26 illustrates virtual to real mapping when using a section table. 

o 18 Mod 
EI_51~_> 

9-bit WSN -----> 

All addresses 
are real 

WSPTD 
Sectio 
(Mod 1 

PTDW 

12-bit SCI -

n table base 
024W) SCT 

SCT 
> 

>4---=:.P.::B;:.:.W_ ... 

= = 

Page Base 
(Mod l024W) 

PI' 
--> 

Page Base 
(Mod l024K) 

Max. 4KW Paae 

lO-bit Page# --> PTW 

Max. lKW 

-> 

Addr'sed 
-> Word 

Figure 5-26. Address Mapping Using A Section Table 

5-76 DZ51-00 



( 

Development of a word address from a section table is illustrated in Figures 5-27, 
5-28, and 5-29. 

o 

I 0 SCT BASE ADDRESS FROM PTDW 

1 1 2 
787 

16 bits 
/ \ 

0----------0 

(carry 1 gnored ) 

o 

· o ... 2. 3 
T9~ ________________ ~0~. 0 

SCI FROM 
VI RTUAL ADDRESS 

12 
\---------/ . · · 

SC'l' SIZE 
FROM P'l'W 

I 

3 
5 

6 

----->~---------->---(-) 
2 
7 · · · · · 

1 1 
6 

PBW WORD ADDRESS I · 28 · 
SIZE CHECK 

If SC#>SC'l' Bound/Illllll 
then a Bound Fl t. occurs 

Figure 5-27. PBW Address 

5-77 DZ5l-00 

· · 
· 
• 

· · · 



o 

11 PT BASE ADDRESS FROM PBW 

1 1 
7 8 

2 
7 

----0 101 
· .0 

· o 

0 - ---- - 0 

1 2 
7 1 

18 

+ 

PAGE # FROM 
VI RTUAL ADDRESS 

3 
o 

10 
(carry Ignored) \- I. 

I · . -• 
.0 2. 
.0 7. 

PTW WORD ADDRESS 
28 

Figure 5-28. PTW Address 

o 1 3 4 
0 7 1 0 

PAGE ADDRESS FROM PTW WORD PART OF 
(Bits 2-17) VI RTUAL ADDRESS 

18 (Bits 31-40) 10 . . . • 
• 0 2 • 
• 0 7 • 

WORD ADDRESS I N REAL MEMORY 
28 

Figure 5-29. Word Address 

5-78 

3 
2 

PT 
SIZE 
FROM 
PBW 

3 
5 

4 
11 

I 
----(-} 

SIZE CHECK 

1 
6 

· · 
· · 
• 

· · 

If PG#>PT Sizelll11111 
then a Bound fault 

occurs 

DZ51-00 



( 

ASSOCIATIVE MEMORY 

After a virtual address has been mapped to a real address as described earlier, 
page table word information is stored in the associative memory (AM) in such a 
way that a subsequent reference to this page can be mapped in one step. The 
format of the data stored by an SCPR 16 from the associative memory is shown in 
Figure 5-30. 

o 

0-17 

18-30 

31-35 

1 1 3 3 3 333 

Page Number Zeros 

Figure 5-30. Page Table Word Associative Memory (P'l'WAM) Format 

Description 

The first 17 bits hold the page number 

Zeros 

Page control bits: 

W - write 

H - housekeeping 

M - modified 

P - parity on PTWAM storage 

5-79 DZ5l-00 



When an operand virtual address is mapped from an associative 
memory entry and the operation modifies the page, the hardware 
checks the modi fied (M) control bit. 1 f the M bit in the AM 
entry is OFF, the processor turns the M bit of the AM entry ON, 
ref etches the page table word for this AM entry from main 
memory, and turns the M control bi t in the page table word ON. 
The access bit in the page table word is also set ON at this 
time, since it may have been turned OFF by the software. 1 f the 
M bit of the AM entry is ON at the beginning of the mapping, no 
change is required. 

The associative memory is arranged in 64 rows by 2 columns. Each intersection 
of a row and a column contains a 35-bit entry like the one shown above. 

Page table directory words from associative memory are stored b¥ SCPR 16 with 
the following format. 

o o 0 2 2 2 2 223 3 3 3 3 3 

WSN RVA (Bits 2-17) 

Figure 5-31. Associative Memory Directory Word 

Bits Description 

0-8 Working space number 

9-24 Real virtual address (RVA) bits 2-17 

25 When set = 1 indicates parity error 

26 When set = 1 indicates full; 0 indicates empty 

27 Round robin counter 

o = level 0 
1 = level 1 

28 Status of level A 

o = ON 
1 = OFF 

29 Status of level B 

o = ON 

1 = OFF 

30 When set = 1 indicates enable associative memory 

5-80 DZ5l-00 

;' 
/' 



( 

( 

The PTWAM directory word is obtained from the directory with its contents 
placed into the A register by the Store Central Processor Register instruction 
SCPR with tag = 17. The word is loaded from the A register and put into the 
PTWAM directory by the Load Central Processor Register (LCPR) instruction. 
Both of these instructions must be used in Privileged ~ter mode. 

The PTWAM has two levels, A and B, and 64 columns from a total of 128 entries. 
The LCPR ,17 instruction causes the following A-register bits to be loaded into 
the directory word pointed to by the effective address: 

o --> Full/empty bit 

C(A)27 --> Round robin counter (RRO) 

C(A)28 --> Level A set OFF 

D(A)29 -> Level B set OFF 

The PTWAM has only one full/empty(F/E) bit. When FIE = 1, both Level A and 
Level B are full. When FIE = 0, the round robin counter (RRO) specifies 
whether or not Level A is full. A typical operation sequence following 
execution of LCPR 17 specifies the full/empty states as follows: 

1 

2 

3 

4 

FIE RRO Level A 

o 
o 
1 

1 

1 

o 

1 

o 

1 

o 

Empty 

Full 

Full 

Full 

Full 

Level B 

Empty 

Empty 

Full 

Full 

Full 

When a new address not contained in the associative memory has been mapped and 
the associative memory is full, the new entry replaces the older entry in the 
row (using the RRO algorithm). 

The associative memory may be disabled (any further comparisons or matches are 
ignored) by: 

a. Executing a CAMP instruction with effective address bits 16-17 = 1. 

b. Encountering an address compare of two or more columns in one of the 64 
rows. 

If one of the levels is OFF, the entry is still made in that level 
corresponding to the state of the RRO counter. On a subsequent PTW search, the 
OFF state of the level is recognized and a match is not permitted. 

5-81 DZ5l-00 



The associative memory is cleared whenever the following occurs: 

a. The processor is manually initialized. 

b. The processor is enabled, and the CAMP instruction is executed with 
effective addrss bits 16-17 equal to 00, 10, or 11. If EA bits 16-17 = 
01, the associative memory is disabled but not cleared. 

c. The processor is disabled, and the CAMP instruction is executed with 
effective address bits 16-17 = 10. 

d. The processor is disabled, and the Load Page Table Directory Base 
Register (LPDBR) instruction is executed. 

CACHE KBNORY 

A description of the visible portion of cache memory control follows. cache 
directory data is returned to the A register on the instruction SCPR 15 from 
the entry selected by the effective address. 

1 1 111 1 1 1 2 2 2 2 222 2 2 2 3 3 3 3 3 3 
2 3 456 7 8 9 0 123 456 7 890 123 4 5 

0-12 

13-14 

15 

16 

III I III 
Real Memory Address III I III 

III I III 

Figure 5-32. cache Directory Word 

Description 

Most significant 13 bits of the real memory address 

Not used 

Parity on bits 0-9 of the real memory address 

cache block fulliempty bit (normal mode) 

IIIIIIIII 
IIIIIIIII 
IIIIIIIII 

NOTE: When certain cache blocks are used by PATROL, these blocks are 
set to empty prior to normal use by the CPU. 

17 Selected level parity error 

18 Cache enable bit (1 = enable) 

19 cache block fulliempty bit (PATROL mode) 

20 Unused 

21 cache enabled for instruction fetch (1 = enabled) 

22 

23 

Parity on bits 10-12 of the real memory address 

cache to register flag (1 = ON) 

5-82 DZ51-00 



( 

( 

Bits Description 

24-25 Level 0,1 ON when = 1 

26-27 Unused 

28 Least recently used (LRU) register 

29-33 Unused 

34-34 Lockup fault register 

Address Truncation 

The instruction set contains instructions that operate on words, double-words, 
9-bit bytes, 6-bit characters, 4-bit characters, and bits. Instructions and 
indirect and tally words that specify 6- or 9-bit characters are considered 
word instructions. In accessing the operand, the full byte level virtual 
address is determined. The address is then truncated in accordance with the 
address type of the instruction, and the access is also in accordance with the 
type of instruction. . 

An exception to this procedure applies to the 8-word instructions, such as LREG 
and SREX;. The effective address is truncated to a modulo 8 word address prior 
to adding the base. Following the addition of the base, the virtual address is 
then truncated to a double-word address. 

The user is responsible for ascertaining correctness of operation of an 
instruction as influenced by such address truncation. 

Bounds Checking 

Virtual memory allows specifying the base~ bound of a segment to the 9-bit 
byte level, enabling a finer level of 'security control. Because the processor 
interfaces with word-oriented main memories, certain restrictions are also 
imposed to minimize the impact on performance and hardware complexity. The 
size of a segment described by a super descriptor is modulo 2**26 bytes; 
therefore, the bounds checking is always the same: BOUND (lower extended with 
26 one bits) ~ LOCATION + EFFECTIVE ADDRESS. The following information applies 
only to standard descriptors and extended descriptors. 

5-83 DZ5l-00 



WORD AHD DOtJBLE-WORD OPERATIONS 

Word, double-word, or a succession of word accesses as in the LREG and SREG 
instructions are made to real memory word or double-word boundaries. Segments 
that begin or end on byte or word positions and that do not correspond to word 
or double-word boundaries may be accessed by word or double-ward instructions. 
The processor adds the 2-bit byte position held in an address register (if 
selected) to the byte position of the base before truncating the final virtual 
address to point to a word or double-word. If this truncation results in the 
virtual address dropping below the base value, a lower bound check will declare 
an out-of-bounds condition in this case and a Bound fault occurs. Thus, the 
first word or double-word of a segment may be accessed with word-oriented 
instructions only when the word or double-word is entirely within the segment. 

Half-word accesses, such as the LXLn instruction, are treated as word accesses 
in both the lower-and upper-bounds check. If a segment begins in the middle of 
a word, the LXLn and SXLn instructions cannot be used to access the lower 
half-word. I f the segment ends in the middle of a word, the LDXB, STXn, LXLn, 
ADX!!, etc., instructions cannot be used to access the upper half-word. 

The STCA, STCQ, STBA, and STBQ instructions store 6-bit or 9-bit characters 
into characterlbyte locations within a word. These are considered as word 
accesses and require the entire word to be within the segment. 

Indirect and tally words that specify characterlbyte locations are considered 
as addressing words that must be fully contained in the segment. The virtual 
address is truncated to the next lowest word boundary (i.e., the character 
position in the base is not added to the character position held in the 
indirect and tally word). 

NOTE: This information is included to provide a warning for users of the 
operating system and user software. If segments are "shrunk" (see the 
LDDn and CLIMB instructions), and the byte portion of the virtual base is 
changed, a word or double-word access to the new segment may be truncated 
to a different location within the segment. 

All instruction segments must begin at a 0 modulo 8 location and end at a 7 
modulo 8 location. Any transfer or CLIMB instruction that attempts to load the 
instruction segment register must specify a segment base whose 5 
least-significant bits are Os, and a segment bound whose five least-significant 
bits are Is. This condition allows the processor to access blocks of eight 
words fo:- LPL, SPL, LREG, SREG, LAREG, and SAREG instructions with the 
assurance that if the first word is on an assigned page and is within the 
segment boundary, the other words will also be so located. 

All descriptors loaded into the SSR, PSR, LSR, ASR , or DSDR registers must 
begin and end on double-word boundaries (the three least-significant bits of 
the base are Os and the three least-significant bits of the bound are Is). 

5-84 DZ5l-00 



( 
BYTE OPBRATI OMS 

For all 9-bit and 4-bit character operations using multiword instructions, the 
upper-bound check is made at the 9-bit byte level. A lower-bound check is not 
required since the effective address is always greater than or equal to zero. 

For all 6-bit character operations using multiword instructions, the boundary 
checking is on a double-word basis, meaning that a double-word containing any 
6-bit character of the operand must be fully in bounds. If access is attempted 
to a segment with a base or bound not on a double-word boundary, a Bound fault 
is generated. 

mT S'l'RI1f~ AND TABLE OF 'l'RAKSLATE IRS'rRUC'l'IOIf 

Multiword bit string instructions and the index table of the translate 
instructions (MVT, TCT, and 'l'CTR) have double-word bound checking applied. 
Thus, a double-word that includes any part of these operands must be fully in 
bounds. If access is attempted to a segment that has a base or bound not on a 
double-word boundary, a Bound fault is generated. 

00UIfD CBK:K B'JUATIOIfS 

The address truncation procedure described previously forces bounds checking to 
vary depending upon the type of instruction specified. The resulting three 
upper-bound and lower-bound checks are listed in Table 5-3. A Bound fault is 
generated if the bound checks are violated. 

5-85 DZ51-00 



Table 5-3. Bound Check Equations 

Instruction Bound Check 

Double-Word 
(includes bit Upper (BASE + EA)0-32I 111l~ BASE + BOUND 
string and 6-

(BASE + EA)0-32 I 1000~ BASE bit character Lower 
instructions) 

Single-Word Upper (BASE + EA)o-33 I III ~ BASE + BOUND 

Lower (BASE + EA)0-33I 100 ~ BASE 

Byte Upper EA 0-19 ~ BOUND 
(includes 
9-bit byte, 
4-bit byte) Lower Always satisfied 

The base, bound, and effective address (EA) addresses represented in the bound 
check equations are for 9-bit bytes. For 4-bit byte and bit instructions, the 
effective address represents the 9-bit byte in which these small quantities are 
contained. The single- and double-word bound check equations include the 
effect of address truncation: the truncated address is then extended to the 
largest byte contained therein for the upper-bound check and to the lowest byte 
for the lower-bound check. The byte checks refer to the byte accessed; in 
multibyte instructions such as NU, the access checks are applied to each byte. 

Physical accesses, which may be larger than those corresponding to a given 
instruction (and which therefore may include bytes not contained in the 
segment), are not bound checked beyond the byte range corresponding to the 
instruction. 

5-86 DZ5l-00 



( 

SBCrIOH 6 

FAULTS AIID IIITBRRDP'I'S 

Faults and interrupts both result in an interruption of normal sequential 
processing, but there is a difference in how they originate. Generally, faults 
are caused by events or conditions that are internal to the processor; but 
interrupts are caused by events or conditions that are external to the 
processor. Faults and interrupts enable the processor to respond promptly when 
conditions occur that require system attention. 

DESCRIPfiON OF FAULTS AIm INTERRUPTS 

When the processor responds to a fault, interrupt, or special systems entry 
(PMME), the ICLINE version of the CLIMB instruction is executed. Because this is 
an inter-domain transfer of control, an entry descriptor is required; the entry 
descriptor is obtained from a fixed memory location •. The interrupt, fault, 
special systems entry, and Backup fault entry descriptor locations (in real 
memory) are as follows: 

Location (octal) 

30-31 
32-33 
34-35 
40-41 

FAULT PROCEDURES 

Entry Descriptor 

Interrupt 
Fault 
Special systems entry 
Backup fault 

When a fault occurs, the processor generates the appropriate fault code and 
executes the ICLIMB version of the CLIMB instruction. During the safe store part 
of the rCLINE, the generated fault code is stored along with a flag to indicate 
that the safe store frame is the result of the occurrence of a fault (bit 11 of 
word 5 is set to 0). 

If the fault occurred during a multiword instruction, the pointer and length 
registers will be saved in the safe store frame. 

The second word of the "wired-in" ICLINE instruction is assumed as described for 
interrupts. (Refer to "Interrupt Procedure" later in this section.) 

6-1 DZSl-OO 



If an entry descriptor is not found in the fixed fault vector location or if 
another fault should occur (e.g., a parity error) while the processor is 
attempting to ClJMB to the fault handler, the processo~ attempts to obtain an 
entry descriptor from the Backup fault vector location. If this second location 
does not contain an entry descriptor, the processor enters the HALT state. If 
the second fault occurs prior to the transfer of control to the new domain at the 
end of the ICIJMB, then the safe store frame will overlay the original frame 
(wi th the same information execpt, for fault code). I f the second fault occurs 
during the transfer of domains, such as a page fault when obtaining the next 
instruction, then a second frame is filled specifying the new domain and the 
fault code of the type fault that caused the backup condition. 

The processor is placed in the Privileged Master mode for the execution of the 
"wired-in" ICIJMB instruction. Upon exiting the ICLIMB, the processor remains in 
the Privileged Master mode if flag bit 26 of the new instruction segment register 
(ISR) is 1. If flag bit 26 of the new ISR is 0, the processor cycles to Master 
mode. 

FAULT PRIORITY 

Faults are organized into five groups to establish priority for the recognition 
of a specific fault when two or more faults occur at the same time in different 
groups. (Refer to Table 6-1.) 

Only one fault within a priority group can be active at anyone time. If two or 
more faults occur concurrently within a priority group, only the fault that 
occurs first through normal program sequence is recognized. 

FAULT RB:OGHITION 

Processor-detected faults can be categorized in several ways. Table 6-1 lists 
the faults in order of the octal fault code, shows the priority assigned by the 
processor, and lists the priority group number. 

Faults in Groups I and II cause the operations in the processor to terminate 
unconditionally. 

Faults in Group V are recognized under the same conditions that program 
interrupts are recognized. Faults in Group V have priority over program 
interrupts and also can be inhibited from recognition by engaging the inhibit bit 
in the instruction word. 

6-2 DZSl-OO 



( 

( 

( 

Table 6-1. Processor Faults By Fault Code 

Octal 
Fault Code Code Fault Name Priority Group 

00001 02 Bound (BND) 9 IV 

00010 04 Master mode entry (MME) 10 IV 

00011 06 Fault tag (FTAG) 13 IV 

00100 10 Timer runout (TRO) 23 V 

00101 12 Command (CND) 8 IV 

00110 14 Derail (DRL) 11 IV 

00111 16 Lockup (LUF) 4 II 

01000 20 Connect (CON) 22 v 

01001 22 Parity (PAR) 7 IV 

01010 24 Illegal procedure (IPR) 12 IV 

01011 26 Operation not completed (ONC) 3 II 

01101 32 Overflow (OVF) 6 III 

01110 34 Divide check (DIV) 5 III 

01111 36 Execute (EXF) 2 I 

10000 40 Security class, 1 (SCLl) 14 IV 

10001 42 Dynamic linking (DYN) 15 IV 

10010 44 Missing segment (MSG) 16 IV 

10011 46 Missing working space (MWS) 17 IV 

10100 50 Missing page (MPG) 18 IV 

10101 52 Security class 2 (SCL2) 19 IV 

10110 54 Address trap (AnT) 21 IV 

(See NOTE) -- Safe store stack (SSSF) 20 IV 

NOTE: The safe store stack overflow fault has no fault code because it may occur 
with any other fault. If a safe store stack fault occurs, the fault code 
is contained in bits 12-16 of safe store stack frame word 5. (Refer to 
Figures 8-7 and 8-8 for a description of the safe store stack). 

6-3 DZ51-00 



FAULT CA'l')g)RI ES 

There are four general categories of faults: 

1. Instruction-generated faults 

2. Program-generated faults 

3. Virtual memory-generated faults 

4. Hardware-generated faults 

Instruction-Generated Paul ts 

An instruction generated fault can be traced to the execution of a particular 
instruction. It may be an operating system service request or an illegally 
coded instruction. The instruction-generated faults are the following. 

1. Master Mode Entry (MNE) 

A Master Mode Entry instruction was executed. 

2. Derail (DRL) 

A Derail instruction was executed. 

3. Fault Tag 

A fault tag address modifier (F) was recognized. Fault tag is a 
variation of the Indirect then Tally modification. Indirect cycles 
terminate upon recognition of F, and the operation is not completed. The 
tag field (bits 30-35) of the instruction or indirect word is set to 40 
(octal) to cause the Fault Tag fault. 

4. Connect (CON) 

The processor received a signal from a system controller indicating that 
some processor in the system executed a CIOC instruction directed to this 
processor. 

5. Illegal Procedure (IPR) 

The attempted execution of an illegal instruction sequence or 
modification generates an IPR fault. The attempted execution of a legal 
Master mode instruction in the Slave mode causes a Command (eND) fault. 

The attempted execution of any of the unassigned instruction operation 
codes generates an Illegal Procedure fault. 

An IPR fault occurs for any register specification that contains a tag 
defined as illegal. 

6-4 DZ51-00 

('~", 

'~ .. ~/ 



( 

An IPR fault occurs when an attempt is made to repeat any multiword 
instruction with the use of the RPT, RPD, or RPL instructions1 or to XEC 
or XED2 any mu1tiword instruction. (An XEC instruction may point to a 
multiword instruction; however, the descriptors for the multiword 
instruction must be stored in memory immediately following the XEC 
instruction.) 

An IPR fault occurs for: 

a. any attempt to address through a descriptor of type T = 7, 10, or 
12-15 by any instruction 

b. any attempt to address through a descriptor of type T = 5, 8, 9, or 11 
by any instruction other than ClJMB 

c. any attempt to address through a descriptor of type T = 1 or 3 by any 
instruction other than ClJMB, LDDn, or STDn 

d. any attempt to address through a descriptor of type T = 1, 3, 5, 8, 9, 
or 11 for vectors by the LDD or ClJMB instruction 

An IPR fault occurs when a CLIMB instruction is passing parameters (E = 
1, ORO = 0, 2, 4, or 6) and attempts to use a vector that has S and D 
fields = 00, 1760 (octal) or 00, 1761 (octal) or V = 10 binary. 

An IPR fault occurs when a LD~ instruction attempts to use a vector that 
has Sand 0 fields = 00, 1760 (octal), or V = 10 binary. 

An IPR fault occurs when a LDp!! instruction attempts to use an operand 
that has Sand 0 fields = 00, 1760 (octal). 

An IPR fault occurs when the Sand D fields of a CLlMB instruction have S 
= 00 and D = 1761, or 1763 through 1767 (octal). 

An IPR fault occurs if the LOOn or CLIMB instruction specifies a shrink 
operation (normal or data stack) of a descriptor with T = 5 or 7-15. 

An IPR fault occurs during a CLlMB instruction when a valid entry 
descriptor does not refer to a standard descriptor (T = O). 

An IPR fault occurs if the OCLIMB version of the CLIMB instruction is 
specified and the safe Store Bypass Flag is zero. 

An IPR fault occurs during a CLIMB instruction that either was initiated 
by a fault or interrupt or encounters the special systems entry and the 
descriptor accessed from the fixed location is not T = 5, 8, 9, or 11. 

1. RPT, RPO, RPL execute in NS mode only. 

2. XED executes in NS mode only. 

6-5 DZ5l-00 



An IPR fault occurs during the CLIMB instruction when the descriptor 
referenced by the S and D fields is not T = 0, 1, 2, 3, 8, 9, or 11. 
Also, if this descriptor has T = 1 or 3, it must refer to a descriptor 
with T = 5, 8, 9, or 11 or the fault will occur. 

An IPR fault occurs during a Load Safe Store Register (LDSS) instruction 
if the descriptor to be loaded into the safe store register register 
(SSR): 

a. does not have T = 1 or 3 

b. has T = 1, but does not have flag bits 20, 21, 27, and 28 = 1 and flag 
bits 25 and 26 = a 

c. has T = 3 but does not have flag bits 20 and 21 = 1 

d. bas a base that is not modulo-2 words (bits 33-35 are not equal to 
000) 

An IPR fault occurs during the Load Data Stack Descriptor Register 
(LDDSD) instruction if the descriptor to be loaded into the data stack 
descriptor register (DSDR): 

a. does not have T = 0 

b. bas a base that is not modulo-2 words (bits 33-35 are not equal to 
000) 

c. has a bound that is not 7 modu1o-8 bytes (bits 17-19 are not equal to 
111)· '-- / 

d. has flag bit 22 (store) = 1 

An IPR fault occurs during the Load Extended Address n (LD~) 
instruction if the descriptor to be loaded does not have T = 4 or 6 
(super descriptor). 

An IPR fault occurs during the Load Argument Stack Register (LDAS) and 
Load Parameter Segment Register (LDPS) instruction if the descriptor to 
be loaded: 

a. does not have T = 1 

b. has a base that is not modu1o-2 words (bits 33-35 are not equal to 
000) 

c. has flag bit 27 equal to 1 and a bound that is not 7 modulo-8 bytes 
(bits 17-19 are not equal to 111) 

An IPR fault occurs when an unconditional transfer (TRA, TSXn), or a 
satisfied conditional transfer (TNZ, TPL, etc.) attempts to load a 
descriptor into the instruction segment register (ISR) that either does 
not have type T = a or does not have a modulo-8 word base and bound. If 
this fault is detected, the ISR is not changed. ?, 

I 

~-j 

6-6 DZ51-00 



f 
An IPR fault occurs in the ClJMB instruction when a standard descriptor 
(T = 0) that is to become a new ISR descriptor does not have a modulo-B 
word base and bound. This fault occurs before the domain register are 
changed. 

Progru-Generated Faults 

The program-generated faults occur through some action under the control of 
either the process itself or the operating system. There are four major 
categories of program generated faults, each of which has several 
subcategories: 

1. Arithmetic Faults 

a. Overflow (OVF). An Arithmetic overflow, exponent overflow, or 
exponent underflow has been generated. The generation of this fault 
is inhibited when the overflow mask is in the masked state. 
Subsequent clearing of the overflow mask to the unmasked state does 
not generate this fault from previously set indicators. The Overflow 
fault mask state does not affect the setting, testing, or storing of 
indicators. 

For the automatic fault on truncation, the procesor executes the 
Overflow fault. Note that the overflow mask bit (indicator register) 
does not affect automatic fault on truncation. 

b. Divide Check (DIV). A Divide Check fault is generated when the actual 
division cannot be carried out for one of the reasons specified below: 

1) DIV instruction - if the dividend equals -2**35 and the divisor 
equals zero or minus 1 

2) DVF instruction - if the absolute value of the dividend is greater 
than or equal to the absolute value of the 
divisor or if the divisor equals zero 

3) FDV, FDI, DFDV - if the mantissa of the divisor equals 
DFDI instr's. zero 

4) DV2D, DV3D 
instructions 

- if the divisor equals zero or if the 
quotient is to be stored in scaled format and the 
calculated length required for the quotient is 
greater than 63. 

2. Elapsed Time Interval Faults 

a. Timer Runout (TRO). This fault is generated when the count in the 
timer register reaches zero and cycles to minus 1. If the processor 
is in Privileged Master mode, the recognition of this fault will be 
delayed until the processor returns to the Master or Slave mode. This 
delay does not inhibit the counting in the timer register. (Refer to 
the Disconnect (DIS) instruction in Section B for the exception to 
this action.) 

6-7 DZ51-00 



b. Lockup (LUF). The processor remains inhibited for greater than the 
lockup time. Examples of this condition are the coding TRA * or the 
continuous use of the inhibit bit. 

Master mode lockup time is set at 128 milliseconds and Slave mode 
lockup time is specified by the lockup fault register as seen in the 
settings below. These times can be loaded in Privileged Master mode 
using the Load Central Processor Register (LCPR) instruction with the 
register specified in the tag field. 

Settings of the Lockup fault register are as follows: 

Bits 34-35 Milliseconds 

00 8.0 
01 16.0 
10 32.0 
11 64.0 

c. Operation Not Completed (ONC) This fault is generated due to one of 
the following conditions: 

1) No system controller is attached to the processor for the address 
specified. 

2) Operation is not completed. An ONC fault can be generated by 
disabling the SCU ports via program control while the program is 
being executed. 

NOTE: A ONe fault can also be generated by hardware malfunction. 

3. Command Faults 

a. Attempted execution of instructions requiring Privileged Master mode 
when the processor is not in Privileged Master mode. 

b. Attempted use of working space register zero in Slave mode, or attempt 
access to working space zero when the processor is not in the 
Privileged Master mode. 

c. Used a vector in Master mode or Slave mode with an LDDn or LDPn 
instruction that specifies S = 00 and D = 1761, 1763, or 1764 (octal) 
. (type change, DSDR or SSR). 

d. A connect instruction addressed to a halted or disabled port. An 
entry is made in the port's connect queue even though the port is 
halted or disabled. 

NOTES: 1. A fault or interrupt places the processor in the 
Privileged Master mode for the execution of the "wired-in" 
IClJMB instruction. 

2. I f a ClJMB instruction specifies the special system entry 
version (PMME), this fault is not checked for the access 
of the new lSR. 

6-8 DZ5l-00 

/' -

I 
I 



{ 

( 

( 

4. Bound (BND) This fault is generated when: 

a. No physical memory exists for the effective address. 

b. An address is outside the segment boundary. 

c. An attempt is made to use absolute addressing or dense paging with a 
relative virtual address ~ 2**28 words. 

d. An attempt is made to access the contents of an empty segment (flag 
bit 27 = 0) of a type T = 0, 1, or 4 segment. 

NOTES: 1. When "pushing" descriptors on the argument segment during 
the execution of the SDRn or ClJMB instruction, the fault 
does not occur if flag bit 27=0 but does occur if ASR 
bound plus 8 bytes> 8192 bytes (2K words). 

2. If this fault occurs for any version of the ClJMB 
instruction, it is generated when the new descriptor for 
the instruction segment register (ISR) is obtained. 

e. An attempt is made to access the contents of a type T = 0, 1, 2, or 3 
segment and: 

1) The upper or lower bound is exceeded. 

2) The addition of the base and the effective address fields produces 
a carry. 

f. An attempt is made to access the contents of a type T = 4 or 6 segment 
and: 

1) The bound field is exceeded. 

2) The addition of either the location and effective address fields or 
the location, effective address, and base fields produces a carry. 

g. The E field equals 1 during the execution of the ClJMB instruction, 
descriptor register 0 contains a T = 1 descriptor (parameters are 
framed by descriptor register 0), and P+1 > DRO bound, or DRO flag bit 
27 = 0 (bound not valid). 

h. Boundary violations occur in the shrink operation as indicated in the 
description of the LDDn instruction in section S, or when preparing 
descriptors during a CLIMB instruction. 

i. An attempt is made to execute a multiword instruCtion that specifies 
6-bit or bit string data in a segment whose base or bound is not 
modulo-2 words. 

6-9 DZSI-00 



virtual Memorv-Generated Faults 

Virtual memory-generated faults are: 

1. Security FaulL, Class 1 (SCLl) occurs as follows: 

a. Upon an attempt to obtain instructions via a sequential instruction 
fetch, an unconditional transfer, a satisfied conditional transfer, or 
a CLIMB instruction in one of the illegal processor modes specified in 
Table 6-2. 

Table 6-2. Processor Modes 

Privileged Master Slave Illegal 
Bit Status Master Mode Mode Mode Combinations(l) 

Master Mode bit in 
indicator register (IR) ON ON OFF ON OFF OFF OFF 

Privileged bit in 
instruction segment 
register ON OFF OFF ON ON ON OFF 

Housekeeping bit 32 in 
page table word (PTW) 
for the instruction(2) ON ON OFF OFF OFF ON OFF ON 

(I) Results in a Security Fault, Class 1 

(2) The housekeeping bit is assumed to be ON when working space zero 
is referenced and the processor addresses real memory directly. 
{There is no page table from which to retrieve the housekeeping 
bit. } 

b. Upon attempt to modify a housekeeping page of a type T = 0, 2, 4, or 6 
segment in Master mode 

Housekeeping pages of type T = 1 or 3 segments may be modified in 
Master mode under the following conditions: 

1) CLIMB instruction - safe store and push parameters on the argument 
stack 

2) SDRn instruction - Push to the argument stack 

3) STDn instruction - If instruction bit 29 = 1 and DRm is T = 1 or 3 

c. Upon an attempt to access or modify a housekeeping page of a type T = 
0, 2, 2, 4, 6 segment in Slave mode. 

6-10 DZ51-00 

/ 



( 

( 

NOTE: When a CLIMB instruction is executed in Slave mode and it 
invokes the special systems entry (PMME), the Security fault, 
class 1 occurs if E = 1, DRO = 0, 2, 4, or 6, and a housekeeping 
page is accessed. 

This condition cannot occur for the SDRn instruction but occurs for 
the LDPn, LDDn, CLIMB, and STDn instructions as follows: 

1) LDPn - operand accass 

2) LDDn - vector access (es) and data stack clear 

3) CLI MB - vector access (es) and the access for the second word of the 
instruction If the system entry (PMME) is invoked, the fault 
detection is not overwritten. 

4) STDn - instruction bit 29 = 1; DRm type T = 0, 2, 4, or 6 

d. Upon an attempt to access or alter a nonhousekeeping page of a type T 
= 1, 3, 8, 9, or 11 segment 

This condition only occurs for the LDDn, LDp!!, CLIMB, SDRn, and STDn 
instructions. Any other reference to a type T = 1 or 3 segment causes 
an IPR fault. The conditions under which the Security Fault, class 1, 
can occur are: 

LDDn or LDp!! - accesses of descriptor from parameter segment 

LDI>!! 

CLIMB 

STDn 

STRn 

(S = 00, D < 1760), argument segment (S = 10), or 
linkage segment (S = -1 or 11) 

- instruction bit 29 = 1, DRm is type T = 1 or 3 

- accesses to obtain the new LSR and ISR descriptors 

- accesses for safe store or restore 

- accesses to the parameter, argument, or linkage 
segments for descriptors to be passed 

- accesses to the argument segment to store parameters 

- instruction bit 29 = 1 and DRm is type T = 1 or 3 

- write to argument segment 

2. Dynamic Linking Fault (DYN) 

A Dynamic Linking fault occurs if the S, D field of a programmed CLIMB 
(CALL, LTRAS, LTRAD) points to a dynamic linking descriptor (T = 5), or 
to an indirect descriptor (T = 1 or 3) which points to a dynamic linking 
descriptor. Any attempt by any other instruction to address through a 
dynamic linking descriptor causes an IPR fault. 

6-11 DZ51-00 



3. Missing Segment Fault (MSG) 

A Missing Segment fault is generated when an attempt is made to access 
memory using a segment descriptor whose flag bit 28 equals zero. This 
condition can occur only with descriptor types T = 0, 1, or 4. 

4. Missing Working Space Fault (MWS) 

A Missing Working Space fault is generated during virtual to real memory 
mapping when the word obtained from the working space page table 
directory has bit 20 (page table or section table missing/present) equal 
to zero. 

5. Missing Page Fault (MPG) 

A Missing Page fault is generated during virtual to real memory mapping 
when the page table word has bit 30 (page missing/present) equal to zero 
When a Missing Page fault occurs, the processor stores an appropriate 
value in FRTRY to indicate whether or not the fault is recoverable if 
software supplies the missing page and returns to the program. 

o = Missing Page fault is not recoverable 

1 = Missing Page fault is recoverable 

Word 5, bit 0 of the safe store frame is defined as the retry flag 
(FRTRY). FRTRY has a defined value only when a Missing Page fault 
occurs. The value of FRTRY is undefined for all other faults. 

When a Missing Page fault occurs, the processor stores an appropriate 
value in FRTRY to indicate whether or not the fault is recoverable if 
software supplies the missing page and returns to the program. 

o = Missing Page fault is recoverable 

1 = Missing Page fault is not recoverable 

Recoverable means that if the faulting instruction did not modify the 
instruction being executed or any of its string descriptors, and if 
software pages in the missing page updates the PTW and OCLIMBs, then 
execution is resumed exactly as if the fault had not occurred, except for 
the time delay. 

The only reasons for which the processor sets FRTRY = 1 (not recoverable) 
in the safe store frame are: 

1) Occurrence of a Missing Page fault while executing an RPT, RPD, or 
RPL instructionl • 

2) Occurrence of a Missing Page fault while executing an instruction 
pointed to by an XEC or XED2 instruction 

1. RPT, RPD, RPL execute in NS mode only. 

2. XED executes in NS mode only. 

6-12 DZ5l-00 

fi~ '\ 

~) 



3) Occurrence of a Missing Page fault during an indirect and tally 
operation 

Before the EIS numeric, MVE, DTB, or BTD instructions execute, all pages 
containing parts of the operands and pages in which the results are to be 
stored must be in memory concurrently. Thus, in processing a Missing 
Page fault on one of these instructions, the paging software should not 
remove one of the pages referenced by the instruction; otherwise, upon 
return to the instruction, another Missing Page fault will occur. 

6. security Fault, Class 2 (SQ.2) 

A security Fault, class 2, is generated for the following field 
violations on descriptors and page table words: 

a. In a segment descriptor, if an attempt is made to violate flag bits 
20, 21, 22, or 25 (read, write, store, or execute) as follows: 

1) An attempt is made to read any type of data (except instructions 
for execution and for the I SR in the eLI MB instruction) from a 
segment whose descriptor has flag bit 20 = 0 (read not allowed) 

2) An attempt is made to alter (write) a segment whose flag bit 21 = 
0, except when pushing descriptors on the argument stack during the 
CLIMB or SDRn instructions 

3) An attempt is made to store data into type T = 1 or 3 segments 
using the STDn instruction and the descriptor being stored does not 
have store permission (bit 18 of an entry descriptor with type T = 
8, 9, or 11; bit 22 for all other descriptor types) 

4) An attempt is made to execute a transfer instruction to a segment 
in which the execute control flag (bit 25) does not equal 1. This 
fault is also detected in the CLIMB instruction when the new ISR is 
obtained before any registers have changed 

b. In a page table word, if an attempt is made to violate flag bit 31 
(write control) 

A Security fault, class 2, is generated when bits 18 and 19 (working 
space access control) of the page table directory word do not match bits 
o and 1 of the 36-bit relative virtual address (attempt to violate 
working space). 

This fault is also generated during the execution of the OClJMB version 
of the eLI ME instruction if the data being loaded from the safe store 
frame is incorrect as follows: 

a. The descriptor to be loaded into the ISR does not have the following 
format: 

1) Type field T = 0 

2) Flag field bits 25, 27, and 28 = 1 

6-13 DZ51-00 



3) Base field = 0 modulo-32 bytes 

4) Bound field. = 31 modulo-32 bytes 

'b. The descriptors to be loaded into the PSR and ASR do not have the 
following format: 

1) Type field T - 1 

2) Base = 0 modulo-8 bytes 

3) Bound = 7 modulo-8 bytes when flag bit 27 = 1 

c. The descriptor to be loaded into the LSR does not have the following 
format: 

1) Type field T = 1 

2) Flags field bits 20, 23, 27, and 28 = 1, and bits 21, 24, 25, and 
26 = O. 

3) Base field = 0 module-8 bytes 

4) Bound field = 7 modulo-8 bytes 

A Security Fault, class 2, is generated on intersegment transfers when 
flag bit 25 = 0 in the descriptor for the target segment. 

7. safe Store Stack Fault (SSSF) 

The safe Store Stack fault occurs to report to the operating system that 
the safe store stack has only one or two 64-word or BO-word frames 
remaining. Two different conditions cause a safe Store fault. 

a. If the safe store stack overflow occurs as a result of a CIJMB 
instruction, two frames are stored: 

1) The first frame is the normal calling domain frame without the 
overflow flag set. 

2) The second frame is set up to return control to the first 
instruction of the called domain. 

The overflow flag is set. Control passes to the fault processor via 
the entry descriptor at real memory address 32-33 (octal). 

6-14 DZ5l-00 

() 
"'---



The ha~dware detects a safe store overflow condition by assuming a 
worst case condition -- two full frames must remain available after a 
normal, successful CLIMB, or overflow will be reported. Thus, if in 
the NS mode the SSR bound --

< 191 words ~ 3 bytes (allows three more 64-word frames) 

safe store overflow occurs. 

I f the processor is in ES mode, the formula for the SSR bound is 

< 239 words ~ 3 bytes (allows three more BO-word frames) 

b. While generating the safe store frame, the hardware updates the SSR 
base and bound to determine whether a Safe Store Stack fault should be 
indicated in the safe store frame together with the original fault or 
interrupt. If the fault or interrupt exhausts the safe store stack, 
the frame is stored with the safe store overflow flag set to 1 in word 
5 bit 10. The original fault code or interrupt cell number is stored 
in word 5, bits 12-16. Control is passed through the entry vector at 
real memory address 32-33 (octal) to the fault processor. (The safe 
Store Stack fault is not executed: a separate safe store stack frame 
is not stored.) The SSR points to the current stack frame <i.e., the 
one just laid down). The bound includes the current frame plus any 
available stack space. 

NOTE: GeOS monitors the SSSF bit in each fault or interrupt frame in 
the safe store stack and initiates appropriate action whenever 
this bit is set to 1. 

c. Refer to Figures 8-7 and 8-8 for a description of the safe store 
stack. 

8. Backup Fault 

A Backup fault occurs if a fault or interrrupt occurs during the 
initiation of a "wired-in" ICLIMB instruction, of if any fault occurs 
during the execution of this ICLIMB. 

A Backup fault also occurs if there is an SSR Bound fault. A succession 
of Safe Store Stack faults without any increase in the safe store frame 
bound, causes an SSR Bound fault. 

A safe store frame is not laid down for the Backup fault. However, the 
Backup fault flag is set in the CPU mode register. 1 f another fault, of 
any type, occurs with the Backup fault flag set, the CPU will halt. When 
a Backup fault occurs, software is advised to initiate a memory dump. 
SOftware is also responsible for resetting the Backup fault flag. 

6-15 DZ5l-00 



Bardware-Generated Paul ts 

The hardware generated faults generally occur because a failure occurred in the 
hardware. Hardware generated faults are: 

1. Operation Not Completed (ONC). This fault is generated because one of 
the following conditions occurred: 

a. The processor did not generate a memory operation within 1 to 2 
milliseconds and is not executing the Delay Until Interrupt Signal 
(DIS) instruction. 

b. The system controller terminated a double-precision cycle. 

c. When returning to an interrupted multiword instruction, incorrect data 
is loaded into the Pointer and Length Registers. 

2. Parity (PAR). This fault is generated when a parity error is detected in 
any of the following: 

a. Single- or double-word fetch. I f the odd instruction contains a 
parity error, the instruction counter retains the location of the even 
instruction. 

b. I ndirect word fetch. I f a parity error exists in an indirect then 
tally word in which the word is normally altered and replaced, the 
contents of the memory location are unaffected. 

c. Operand fetch. When a single-precision operand, C(y), is requested, 
the contents of the memory pair at Y and Y+l, where Y is even, or Y-l 
and Y, where Y is odd, are read from memory. The system controller 
does not report a parity error if it occurs in C(Y+l) or C(Y-l), but 
restores the C(Y+l} or C(Y-l) with its parity bit unchanged. 

d. On any instruction for which the C(Y) are taken from a memory location 
(this includes the "to storage" instructions such as ASA and ANSA), 
the processor operation is completed with the faulty operand before 
entering the fault routing. 

e. On data from the system controller 

f. On data from the processor data bus 

g. On zone-address-command (ZAC) lines in the system controller and 
memory units 

The generation of this fault is inhibited when the parity mask indicator 
is in the masked state. Subsequent clearing of the parity mask to the 
unmasked state does not generate this fault from a previously set parity 
error indicator. The parity mask does not affect the setting, testing, 
or storing of the parity error indicator. 

6-16 DZ5l-00 



( 
3. Execute Fault (EXF). An Execute fault is generated by the maintenance 

interface and the command ElF (Execute Fault) that forces the fault. 

MODE FAULTS 

Pri vileqed Master Mode Paul ts 

When the processor is in Priviliged Master (nonabsolute addressing) mode, all 
instructions must be fetched from housekeeping pages of type T = 0 segments. 
An attempt to obtain an instruction from a nonhousekeeping page causes a 
security Fault, class l. An exception applies for those instructions executed 
by an XEC or XEDl. Such instructions may be accessed from either housekeeping 
or nonhousekeeping pages. 

References to type T = 0, 2, 4, and 6 segments to access or alter data other 
than instructions may be to either housekeeping or nonhousekeeping pages. 
References to type T = 1 and 3 segments for descriptors must be to housekeeping 
pages or a security fault, class 1, is generated. 

Master Mode Paul ts 

When the processor is in Master mode, instructions may be fetched from 
housekeeping or nonhousekeeping pages of type T = 0 segments; operands may be 
fetched from housekeeping or nonhousekeeping pages of type T = 0, 2, 4, or 6 
segments. However, operands may not be stored on housekeeping pages (only 
Privileged Master mode instructions may modify these housekeeping pages); any 
attempt to modify a housekeeping page in Master mode causes a security fault, 
class l. 

The only instructions that may modify type T = 1 or 3 segments without 
generating an IPR fault are the CLIMB (safe store and pushing parameters on the 
argument stack), the SDRn, and the STD!! instructions. For these operations, 
housekeeping pages must be referenced or a security fault, class 1, is 
generated. 

Slave Mcxle Paul ts 

When the processor is in Slave mode, instructions must be fetched from 
nonhousekeeping pages of type T = 0 segments. Attempt to obtain an instruction 
from a housekeeping page results in a Security fault, class 1. Operands must 
be fetched from or stored into nonhousekeeping pages of type T = 0, 2, 4, or 6 
segments. Since descriptors in type T = 1 or 3 segments are not treated as 
operands, they may be stored or fetched from housekeeping pages in Slave mode. 
Thus, the SDRn and STDg instructions may store the contents of a DR!! in a type 
T = 1 or 3 segment, but the page must be a housekeeping page; otherwise, a 
Security fault, class 1 is generated. Also, the LDDn, LDPn, and CLIMB 
instructions may obtain descriptors from a type T = 1 or 3 segment, but the 
page must be a housekeeping page; otherwise, a Security fault, class 1, is 
generated. 

1. XED executes in NS mode only. 

6-17 DZS1-00 



Any Mode Paul ts 

Instructions that may refer to type T = 1 or 3 segments (LPPn, LODB, SORB, 
STDB, and ClJMB) must refer to a housekeeping page when obtaining or storing 
the identified descriptor or safe store data; otherwise, a Security fault, 
class 1, is generated. 

Privileged instructions (such as LOSS, LOAS, and STSS) that load descriptors 
from type T = a, 2, 4, or 6 segments into registers, or store descriptors from 
registers into segments, do not require the housekeeping bit. 

Nonpri vileged instructions (such as STAS, STPS, and STDn) that store 
descriptors from registers into T = a, 2, 4, or 6 segments do not require the 
housekeeping bit. (However, the STDn instruction may refer to either main 
memory or descriptor memory.) 

Nonprivileged instructions (such as STAS, STPS, and STDn) that store 
descriptors from registers into T = 0, 2, 4, or 6 segments do not require the 
housekeeping bit. (However, the STDn. instruction may refer to either main 
memory or descriptor memory.) 

MI SCBI..LAN'JDJS FAULIJ.'S 

Segment Descriptor Flag Paults 

The flags field in a segment descriptor provides the operating system software 
a procedure for assigning use attributes to the address space framed Of the 
segment descriptor. Once assigned by software, these attributes defined Of the 
flags field are hardware-enforced. The following is a discussion of the use of 
the flags field and the manner in which faults are generated upon an attempt to 
"violate" one of the flags. The definition of the flags field is described in 
Section 3 "Memory Organization". 

1. Read/Write Permission Flags (bits 20-21). The read/write flags apply to 
memory accesses for operands, descriptors, and indirect words from T = 0, 
1, 2, 3, 4, and 6 segments (obtaining instructions from a segment is 
controlled by the execute flag). Thus, in preparing the operand address 
for a read-from-memory instruction (e.g., LOA), the hardware checks the 
read flag to determine whether or not a read from memory is allowed, the 
hardware terminates the operation with a Security fault, class 2, and the 
page accessed bit in the PTW is not set. In a similar manner, when 
preparing the operand address for store-to-memory instructions (e.g., 
STA), the hardware checks the write flag to determine whether or not a 
store operation is allowed in the segment; if not, a Security fault, 
class 2, is generated, the page accessed and modified bits in the P'l'W are 
not set, and the operand is not stored. 

6-18 DZ5l-00 

/-



(-

( 

Write permission is not needed for the SDRg instruction, for pushing 
descriptors on the argument segment in the CLIMB instruction, or for the 
STDn instruction when bit 29 = 1 ~ the descriptor in DRm has T = 1 or 
3. 

When a read-alter-rewrite (RAR) operation (e.g., AOS instruction) is 
performed, the write flag is checked on the read cycle. Thus, if write 
permission is not allowed, a Security fault, class 2, occurs before the 
read portion is executed, preventing any change in the indicators. 

All indirect operand address preparation requires that the segment have 
read permission to obtain the indirect word. For an Indirect then Tally 
operation, the segment must have both read and write permission; read 
permission to obtain the indirect word and write permission to store. If 
these permissions are not granted, a Security fault, class 2, is 
generated. 

The segment descriptor contained in the instruction segment register 
(ISR) must have execute permission (see following description of execute 
flag) • 

Read permission is not required to access a current instruction segment. 
Thus, in preparing an operand address using the ISR (bit 29 of 
instruction = 0 or, for multiword instruction, the AR bit of the MF field 
= 0), a read-from-memory is always permitted independent of the read flag 
(write flag must still be checked as described above for a store 
operation). The execute flag overrides the read flag only when the 
descriptor is in the ISR. 

When an XEC or XEDl instruction refers to its operand with bit 29 ON 
(using some DRg), the operand d~scriptor in the DRg must provide read 
,permission (execute permission is not required). 

2. Store By STDg Permission Flag (bit 22; or bit 18 of T = 8, 9, and 11 
descriptors). This flag is checked by the hardware only during the 
execution of an STDn instruction that is to store a DRn in a T = 1 or 3 
segment. An attempt to save a DRg in a T = 1 or 3 segMent with the DRn 
store flag bit = 0 causes a Security Fault, class 2. 

3. Bit 23. This flag is undefined. The DPS 8000 does not support a bypass 
cache flag. Instead, the two instructions Store A Conditional On Q 
(STACQ) and Store A Conditional (STAC) should be used by software when 
modifying PTWs. These instructions cause a read-lock/write-unlock 
sequence from/to memory. Cache is bypassed; if a cache hit occurs and 
the conditional test is satisfied, then the cache block is updated. 
(Refer the individual descriptions of STACQ and STAC in Section 8.) 

4. Execute Flag (bit 25). The execute flag determines whether instructions 
from the segment may be executed. A segment that has execute permission 
does not require read permission in order to execute instructions; to 
execute instructions encompasses reading them from memory (instruction 
fetch) • 

f-- 1. XED executes in NS mode only. 

6-19 DZS1-OO 



The execute flag is checked by the hardware before a new instruction 
segment descriptor is loaded into the ISR during execution of the CLIMB 
instruction or one of the transfer instructions that has bit 29 = 1. 
Thus, if an attempt is made to load the I SR with a descriptor of type T = 
o that has flag bit 25 = 0 (no execute), a Security fault, class 2, 
occurs. 

5. Privileged Flag (bit 26). The privileged flag applies only to 
instruction segments. To load the ISR with a descriptor of type T = 0 
that has flag bit 26 = 1 (privileged), the Master mode indicator bit must 
be ON (except during an OCLIMB, ICLIMB, PCLIMB, or GCLIMB instruction 
that either invokes the special systems entry or is the result of a fault 
or interrupt); otherwise, a Security fault, class 1, occurs. With the 
processor executing in Privileged Master mode, operands and instructions 
executed by an XEC or XEDl may originate from nonprivileged segments. 
When the processor is in Master mode or Slave mode I the instructions 
executed by an XEC or XED may originate from a privileged segment; that 
is, the hardware does not check the privileged bit of the segment from 
which the XEC or XED instruction obtains the instructions to be executed. 

6. Bound Valid Flag (bit 27). The bound valid flag specifies that the bound 
field of the descriptor is valid (the descriptor describes a nonempty 
segment). Any attempt to access an empty segment of type T = 0, 1, or 4 
(flag bit 27 = 0) results in a BND fault. The hardware does not allow 
the ISR to be loaded with the descriptor in which the bound is not 
valid. The bound valid flag has a somewhat different use with respect to 
the ASR in that descriptors may be pushed on the argument stack when the 
stack descriptor indicates not valid and ASR flag bit 27 is set to 1 by 
the hardware (see the CLIMB and SDR!l instructions in section 8). 

7. Available Segment Flag (bit 28). The available segment flag indicates 
whether or not the segment is present in real memory (bit 28 = 1). Any 
attempt to generate a memory address using a type T = 0, 1, or 4 segment 
descriptor that has bit 28 = 0 (segment not availaable) causes a Missing 
Segment fault. The hardware does not allow the ISR to be loaded with a 
"missing" segment descriptor. For type T = 2, 3, or 6 descriptor's, the 
segment present bit is assumed to be 1 and the segment must be available. 

Page '!'able Word Control Field Faults 

Certain control field bits of the page table word (PTW) are monitored by the 
hardware and may cause particular faults to occur. Each bit of the PTW control 
field and associated faulting is discussed below (the PTW) format is described 
in Section 5. 

1. Processor Page Present/Missing Control Field (bit 30). Each time the 
processor hardware fetches a PTW in mapping a virtual address to a real 
address, control field bit 30 is checked. If bit 30 = 0 (page missing), 
a Missing Page fault is generated; if bit 30 = 1 (page present), the 
operation continues. 

1. XED executes in NS mode only. 

6-20 DZ51-00 



( 

( 

2. Write Control Field (bit 31). The PTW control field bit 31 provides for 
controlling a memory write operation to the page level by processors and 
IMX. Even though the segment containing the page may have flag field 
write per~ssion, writing (altering) the page may be denied at the page 
level. Thus, a memory store (write) operation requires both segment 
descriptor flag field write permission and PTW control field write 
permission. If a PTW has write permission, but the segment descriptor 
does not, the segment write condition takes precedence, causing a 
security fault, class 2. 

The segment descriptor write flag is checked during operand address 
preparation for a store-to-memory operation; if write'permission is 
denied, the instruction is terminated and the PTW write control field is 
not checked. 

Thus, when a store-to-memory operation proceeds to the point where the 
PTW is obtained, PTW bit 31 is checked. If bit 31 = 1 (write 
permission), the operation continues; if bit 31 = 0 (write denied), the 
operation terminates with a Security fault, class 2. 

3. Housekeeping Control Field (bit 32). (Processor only) - The PTW 
housekeeping bit is used by the operating system to enable allocation in 
page units of use attributes depending upon the processor mode. 
(Allocations in the three processor modes are described below.) The 
hardware checks the PTW housekeeping bit on all instruction fetches and 
stores, and all segment descriptor fetches and stores. Instructions and 
operands must be contained in a segment described with type T = 0, 2, 4, 
6, 12, or 14 segment descriptor. The page may be either a housekeeping 
or nonhousekeeping page. The segment descriptors must be contained in a 
type T = 1 or 3 segment, and the page must be a housekeeping page. 

a. Privileged Master Mode 

When the processor is in privileged Master mode, all instructions must 
be fetched from housekeeping pages of type T = 0 segments. An attempt 
to obtain an instruction from a nonhousekeeping page causes a Class 1 
security Fault. An exception applies for those instructions executed 
by an XEC or XED. Fetching and storing of operands may be performed 
for both housekeeping and nonhousekeeping pages. 

References to a type T = 0, 2, 4, 6, 12, or 14 segment to access or 
alter data other than instructions may be to either housekeeping or 
nonhousekeeping pages. The segment descriptors must be contained in a 
type T = 1 or 3 segment and the page must be a housekeeping page or a 
Class 1 Security Fault will be generated. 

6-21 DZ51-00 



b. Master Mode 

When the processor is in Master mode, instructions may be fetched from 
housekeeping or nonhousekeeping pages of type T = 0 segments; operands 
may be fetched from housekeeping or nonhousekeeping pages of type T = 
0, 2, 4, 6, 12 or 14 segment. However, operands may not be stored on 
housekeeping pages (only Privileged Master mode instructions may 
modifiy ~ese housekeeping pages); any attempt to modify a 
housekeeping page in Master mode causes a Class 1 Security Fault. 

Because segment descriptors are not processed as operands, the SORn 
and STDninstructions may be used to store DRn content in type T = 1 
or 3 segments in housekeeping pages. All segment descriptor segment 
pages must be housekeeping pages or a Class 1 Security Fault occurs 
and the instruction is terminated. 

c. Slave Mode 

When the processor is in Slave mode, instructions must be fetched from 
nonhousekeeping pages of type T = 0 segments. Attempt to obtain an 
instruction from a housekeeping page results 'in a Class Security 
Faul t. Operands must be fetched from or stored into nonhousekeeping 
pages of type T = 0, 2, 4, 6, 12, or 14 segments. Since descriptors 
in type T = 1 or 3 segments are not treated as operands, they may be 
stored or fetched from housekeeping pages in Slave mode. Thus, the 
SORn and STDn instructions may store the contents of a DR!! in a type T 
= 1 or 3 segment. In this case, the page must be a housekeeping page 
or a Class 1 security Fault occurs. With the LODn, LOPn, and CLIMB 
instructions, segment descriptors may be obtained from a type T = 1 or 

I 
I 

3 segment. I n this case, the page must be a housekeeping page or a " 
Class 1 security fault occurs. 

d. All Modes 

Instructions that may refer. to type T = 1 or 3 segments (LOPn, WDn, 
SORn STDn, and CLIMB) must refer to a housekeeping page when fetching 
or storing the identified descriptor or safe store data; otherwise, a 
Class 1 Security Fault is generated. 

Privileged instructions (such as LOSS, WAS, and STSS) that load 
descriptors from type T = 0, 2, 4, 6, 12 or 14 segments into register, 
or store descriptors from registers into segments, do not require that 
the housekeeping bit be set ON. 

Non privileged instructions <such as STAS, STPS, and STDn) that store 
descriptors from registers into T = 0, 2, 4, 6, 12, or 14 segments 
access normal memory areas and do not require the housekeeping bit. 
The STDn instruction accesses both normal memory areas and memory 
areas which contain segment descriptors. 

6-22 DZ51-00 



4. IMX Page Present/Missing Control Field (bit 33). This bit is not 
monitored or changed by the processor hardware. 

5. Page Modified Control Field (bit 34). Each time a processor performs a 
write (store) on a page and bit 34 of the PTW = 0, the hardware sets bit 
34 of the associated PTW = I to indicate that the page has been 
modified. No fault is associated with bit 34. 

6. Page Access Control Field (bit 35). Each time a page is accessed by a 
processor (either read or Wl-ite) and bit 35 of the PTW = 0, the hardware 
sets PTW bit 35 = 1 to indicate that the page has been accessed. No 
fault is associatd with bit 35. 

IlI'l'ERRUP'l' PROCEDURES 

The following is intended as a brief overview of the DPS 8000 interrupt 
procedures. 

Systea Controller Interrupts 

The SCU has an interrupt mask register and eight interrupt level queues. There 
are eight mask bits, one bit for each interrupt level, plus one "all" mask 
bit. The SCU maintains a queue for each interrupt level. The queue lengths 
are fixed at 256 entries per level. The SCU "senses" the interrupt level field 
of the received interrupt words to determine which queue to use and places the 
interrupt words in the selected queue. Interrupt words are normally sent by 
the IMX upon completion of an I/O service. A CPU can also initiate an 
interrupt. 

The queueing scheme used by the SCU is based on a first-in first-out rule at 
each interrupt level. The SCU processes the queue in response to the Read 
Interrupt Word (RIW) instruction. Interrupt level queue zero has the highest 
priority and seven the lowest. 

The SCU sends an interrupt to all CPUs that are unmasked when there are entries 
in the queue. The SCU fetches one queue entry per RIW request, starting with 
the oldest entry of the highest priority interrupt level that is not masked. 

When GCOS issues the RIW command it obtains the interrupt queue words. The CPU 
receives each 2-word queue entry in the A and Q registers. With each RIW, GeOS 
tests the CPU's A and Q registers to determine whether all unmasked interrupt 
queue entries have been serviced. 

6-23 DZ51-00 



Inward· Ct.I MB Interrupts 

An entry descriptor is "wired-in" to support the ICLIMB instruct.ion for 
interupts. The second word of this ICLIMB instruction has the following 
parameters: 

E bit (no parameters) 

C field 

bit 18 - 0 (index register 0 is not changed) 

bit 19 - Ignored. The Master mode bit of the indicator register is 
set ON but DO descriptors are prepared. 

bit 20 - Unused 

bit 21 - Ignored 

bit 22-23 - 0 (ICLIMB version) 

S,D fields - Ignored. I f an entry descriptor is not found at a fixed 
memory location, the processor generates a Backup fault. 

(Refer to the CLIMB' instruction format in Section 8.) 

If an entry descriptor is not found at the fixed interrrupt vector location or 
if another fault occurs (e.g., a parity error) while the processor is 
attempting to CLIMB to the interrupt handler, the processor attempts to obtain 
an entry descriptor from the Backup fault vector location. If this second 
location does not contain an entry descriptor, the processor enters the HALT 
state. If the second fault occurs prior to the transfer of control to the new 
domain at the end of the ICLIMB, then the safe store frame will overlay the 
original frame (with the same information except for fault code). If the 
second fault occurs during the transfer of domains, such as a page fault when 
obtaining the next instruction, then a second frame will be filled specifying 
the new domain and the fault code of the type of fault that caused the backup 
condition. 

The processor is placed in the Privileged Master mode for the execution of the 
"wired-in" ICLIMB instruction. Upon exiting the ICLIMB instruction, the 
processor will remain in the Privileged Master mode if flag bit 26 of the new 
instruction segment register (ISR) equals 1. If flag bit 26 of the new ISR 
equals 0, the processor will cycle to Master mode. 

Multi word Instruction Interrupts 

If an interrupt occurs during a multiword instruction, the processor sets bit 
30 of the indicator register to l. If the entry descriptor is type T = 11, the 
pointer and length registers are saved in the safe store frame. Indicator 
register bit 30 is reset to zero (OFF), but is safe stored as a 1 (ON) in word 
4. 

6-24 DZSI-OO 

/ 
\ ' 
,j 



( 

(~ 

Eight 36-bit registers are used to . store and load pointers for sending and 
receiving addresses and field lengths, and for other control information when a 
multiword instruction is interrupted. 

Ie VALUES STORED ON FAULTS AND INTERRUPTS 

If the safe store bypass flag in the option register equals 0, a safe store is 
executed for any fault or interrupt. A description of the safe store stack is 
given in Figures 8-7 and 8-8. 

The instruction is stored in word 2. Words 0,1 are defined as illustrated. In 
word 5, bit 8 is not used, but bits 17-18 contain 00. Word 47 is used for the 
timer register; word 5, bit 0 is for FRTRY; and words 48-51 contain 
mid-instruction interrupt recovery data for firmware. 

The classes of faults and interrupts found in the safe store stack frame 
following a fault or interupt are described in Table 6-3. The designation of 
the fault group priorities is given in Table 6-1. 

6-25 DZ51-00 



en 
I 

N en 

~ 
01 ...... 
I o 

o 

SAFE STORE 
DATA 

WORDS 0-] 

!~HB-P 

lR woaB 4 

SEGID (IS) 
WORD 5 

DSAR, ENSN 
RVA 
WORDS 6-7 

ISR 
WORDS 8-9 

ASR 
WORDS 10-11 
LSR 
WORDS 12-13 
PSR 
WORDS 14-15 

REGISTERS 
WORDS 16-47 

SAFE STORE 
OF P L 
WORDS ta-49 

EVEN INSTR 
IS FAULTING 
INSTR. IF 
SAFE STORED 
IC IS 

NOTEt 

Table 6-3. Classes Of Faults And Interrupts CDPS 80) 

FAULT GROUP II - V 
INTERRUPT rlitlLT 1 FAULT l fAULT.] IFAULT .4 tAULT ~ fAULT 6 

FAULT ALL OTHERS DURING DURING DURING DURING. tN-LINE lINTER. I lINTER. ~ PROGRAMr-IED GROUP I NOT IN 2-6 EIS TRANSFER TRANSFER CLIMB INSTR. NOT DURING rtS CLIMB . 
IN CLIMB FETCH DURING EIS 

INFORMATION REQUIRED BY PROCESSOR FOR RESTART AFTER FAULTS N/A 

Ie or FAULTING 
I!~~~SFERRED H; I~~T~~~~I~:G I~~~~E~~~T I~~s~~. EIS I~~I~~ UNDEFINED INSTRUCTION 
TO" INSTR. INSTR •• 1 INSTR •• 2 

1 OR 0 0 1 0 I 0 

CURRENT IS IS OF 15 PRIOR CURRENT IS 
NEW INSTR. TO CLIMB 

LAST VALUE or DSAR: EWSN AND PVA CORRESPOND TO LAST SEGMENT ACCESSED 

CURRENT ISR or NEW ISR PRIOR CURRENT I~RC~~~~R DOMAIN TO CLIMB 

CURRENT OF NEW PRIOR TO CUIUtENT PRIOR TO 
DOMAIN CLtMB CLIMB 

LAST VALUE OF REGISTERS 

IF ENTRY DESCRIPTOR T-ll 

!F.!t: -0 
IC17-O IC17-O CLIMB 17 

RIA WAS EVEN UNDEFINED 

- .-

In general, UPS 80 will not change any regleter values on a feul ting Instruction (lnclucHng TSS or RET). The one 
encption III a hult occurring on a trensfu at the end of the CLIMB. In this ease, the Safelton "Ilta will 
reflect the new domein. 

~ / 
" 



( 

( 

( 

The definition of the classes of faults and interrupts contained in Table 6-3 
follows: 

FAULT 1 - A group II to V fault not covered by FAULT 2 through FAULT 6, 
including XECs and RPTs1. For XECs and RPTs, if a fault occurs 
on the "to" ins~ruction, the faulting instruction is the XEC or 
RPT instruction 

FAULT 2 - A group II to V fault caused by a multiword instruction 

FAULT 3 - A group II to V fault that occurs while attempting to fetch 
"transferred to" instructions resulting from a TRA, TSX!l, TSS, 
RET, or a satisfied conditional transfer 

FAULT 4 - A group II to V fault that occurs while attempting to fetch 
"transferred to" instructions resulting from a CLIMB instruction 

FAULT 5 - A group II to V fault that occurs on a CLIMB instruction prior 
to fetching "transferred to" instructions 

FAULT 6 - A group II to V fault that occurs on an inline instruction fetch 

INTER 1 - An interrupt that occurs any time except during an interruptible 
multiword instruction 

INTER 2 - An interrupt that occurs during an interruptible multiword 
instruction 

The effective working space number (EWSN) and relative virtual address (RVA) 
are not valid for MME and DRL instructions for faults and interrupts that are 
not generated by the virtual memory hardware, since the EWSN and RVA always 
reflect the last segment accessed and the last indirect word for the fault 
tag. If the virtual memory hardware detects the fault, the EWSN and RVA will 
reflect the faulting segment that is referenced. 

The instruction counter (IC) values stored in bits 0-17 of word 4 of the safe 
store stack during faults and interrupts are described below: 

1. Programmed CLI MB 

IC of CLIMB + 2 

2. Interrupt during multiword instruction or Connect, or Timer Runout faults 
during multiword instruction 

IC of the first word of the multiword instruction 

3. Interrupt after completed multiword or single-word instruction 

IC of the next instruction 

1. RPT, RPD, RPL execute in NS mode only. 

6-27 DZ51-00 



4. Fault while attempting to fetch "transferred to" instructions resulting 
from a CLIMB instruction 

Ie of "transferred to" instruction 

5. safestore stack fault on programmed CLIMB 

Ie of "transferred to" instruction 

6. Execute fault 

Ie undefined 

7. Operation Not COmpleted, Lockup, or Bound faults 

Ie of faulting instruction + 1 

8. Connect or Timet Runout faults after completed multiword or single-word 
instruction 

IC of next instruction 

9. Any other fault 

IC of faulting instruction + 1 

6-28 DZ51-00 

i 
l \., / 

.......... -...:-.-' 



( 

( 

SlC'rION 7 

IIACBI lIE I HS'l"RUC"J.'ION FUIIC"l'IOHS 

Many of the instructions available in the instruction repertoire are familiar 
to experienced users of large-scale computers. However, additional 
instructions have been provided to supply extended capability for character 
handling, decision making, and advanced programming techniques involving list 
processing. In addition, numerous instructions are provided that have 
capabilities for processing and moving bytes, BCD characters, packed decimal 
data, and bit strings, for vector operations, and for performing register to 
register operations. 

SI NG4B-woRD I HSTRUC"l'I OKS 

Single-word instructions provide for multiple variations by permitting the user 
to specify not only the type of address modification desired, but also the 
source and/or destination registers associated with particular operation 
codes. For example, the operation field for a Transfer and set Index Register 
n (TSXB) instruction specifies the index in the operation field, leaving full 
address modification capability free for destination calculation. 

The processor performs efficient operations on 6-, 9-, 18-, 36-, and 72-bit 
operands. 

The following operations are performed by single-word instructions: 

o Address Register Instructions 
o Boolean Operations 
o Gomparison Operations 
o Data Movement 1 nstructions 
o Data Shifting Instructions 
o Effective Address to Register Instructions 
o Fixed-Point Arithmetic Instructions 
o Floating-Point Arithmetic Instructions 
o Quadruple-Precision Instructions 
o Master Mode Instructions 
o Miscellaneous Instructions 
o ES Mode Instructions 
o Special Processor Instructions 
o Transfer Instructions 

7-1 DZ51-00 



Address Register Instructions 

Address register instructions allow for loading and storing of address ,/ '\ 
registers. The number of bits loaded or stored depends upon whether the NS or 
ES mode is being used. Alter address register instructions are used to 
replace, increment, and decrement the content of the address register in word, 
character, or bit. These instructions perform operations between registers: 
they do not refer to memory. Special address register instructions, executable 
only in the NS mode, use the address registers to manipulate the address 
portion of numeric and alphanumeric operand descriptors. (Refer to the 
instructions specifications in section 8). 

Boolean Operations 

The logical operations AND, OR, and EXCLUSIVE OR are permitted between storage 
and the index registers, A- and Q-registers, and the AQ-register. 

Comparison Operations 

Comparison operations do not alter the contents of storage or the specified 
register, but merely set or clear the appropriate indicators as the result 
dictates. The compare instructions enable the user to make many types of 
program decisions. 

Fixed-point compare instructions permit comparison of absolute values, 
(algebraic or characters); provide for tests of word fields; permit searches 
for identical, selectable word fields; and permit searches for a value within / '\ 
selectable limits. . .. ~ ~ 

Floating-point compare instructions are included for single- and 
double-precision operations on absolute values and algebraic values. All 
compare instructions are repeatable using the RPT, RPD, or RPL instructions. 
(Repeat instructions execute in NS mode only.) 

Data Movement Instructions 

Character handling and manipulation are facilitated by ftindirect and tallyft 
(IT) address modification and by instructions for directly storing selected 
characters of the accumulator or quotient register. Instructions are also 
included for directly loading the index registers from either memory or the A­
and Q-registers, directly storing any register into memory, and loading 
registers with the two's complement (negative) of the contents of the memory 
location specified. 

7-2 DZ5l-00 

/ 
( 
~/ 



( 

( 

(' 

Data Shifting Instructions 

Shifting is accomplished using an algorithm in which long shifts are executed 
essentially as fast as short shifts. The A- and Q-registers can be shifted 
individually or as one unit. The shift commands include right- or left-shift 
arithmetic, right-shift logical, and left-shift rotate, (right-shift rotate is 
omitted because the high speed of the left-shift rotate makes the right-shift 
rotate unnecessary). 

Effective Address To Register Instructions 

The Effective Address to Register instructions permit the effective address of 
such an instruction to be placed in any of the index registers, in the 
A-register, or in the Q-register. Thus, any effective address referenced 
frequently in a program can be stored in a register and used without lost 
processing time in repeatedly redeveloping the effective address. Furthermore, 
the instructions provide the user with the capability of transferring data 
among any of the index registers and to the A-register and the Q-register. 

Fixed-Point Arithmetic Instructions 

Instructions for both fractional and integral multiplication and division 
afford the programmer freedom from scaling the results of such operations. 
Fractional multiplications are performed with the multiplicand in the 
A-register; the result appears in bit positions 0 through 70 of the 
AQ-register, automatically scaled with the binary point to the right of 
position O. Integral multiplications are performed with the multiplicand in 
the Q-register: the result appears in bit positions 1 through 71 of the 
AQ-register, automatically scaled with the binary point to the right of 
position 7l. 

Fractional divisions use the full range of the AQ-register for the dividend; 
the quotient appears in the A-register with the remainder in the Q-register. 
The binary point is automatically scaled to the right of position O. Integral 
divisions have the dividend in the Q-register, with the binary point to the 
right of position 35. After division, the quotient is in the Q-register with 
the binary point automatically placed to the right of position 35: the 
remainder is in the A-register. 

Normally, integer operations of divide and multiply occur in the Q-register, 
and fractional operations of divide and multiply occur in the A-register. This 
convention permits easy programming of fixed-point arithmetic operations. 

7-3 DZ5l-00 



Instructions are provided for combining the contents of memory locations 
directly with the contents of registers and storing the results in the same 
locations, without recourse to separate store instructions. In all such cases, 
the programmer can use the lB-bit indexing registers, Xo through X7 in the NS 
mc:xie, the 36-bi t general indexing registers, GXO through GX7 in the ES mode, 
and the 36-bit A- and Q-registers. In effect, the Add and Subtract to Storage 
instructions make arithmetic accumulators of all available memory locations. 
In all such cases, the register contents are undisturbed. 

Floating-Point Ari tbmetic Instructions 

Floating-point operations can be performed on both single- and double-precision 
data words; complete sets of data movement, arithmetic, and control 
instructions are provided for use in both types of operations. Unless 
otherwise specified by the programmer, the mantissas of all floating-point 
operation results, except divides, are automatically normalized by the 
hardware. In additions and subtractions, the operands are automatically 
aligned. 

Operations on flOating-point numbers are performed using an extended register 
composed of a 72-bit AQ-register, which holds the mantissa, and a separate 
B-bit exponent register; operations on the exponent and mantissa are performed 
by two separate adders. The existence of separate exponent and mantissa 
registers and adders enables the programmer to efficiently intermix single- and 
double-precision instructions. 

The floating-point instruction repertoire includes two special divide 
instructions: Floating Divide Inverted (FOI) and Double-Precision Floating 
Divide Inverted (DFDI). These instructions cause the contents of the memory 
location to be divided by the contents of the AQ-registers, the reciprocal of " ./ 
other divide instructions in the repertoire. Thus, regardless of whether the 
contents of the AQ-register must be a dividend or a divisor, the programmer can 
always perform a division without recourse to wasteful data movement 
operations. 

Floating Negate, Normalize, Add to Exponent, and Single- and Double-Precision 
Compare instructions further facilitate effective programming. 

The slave mode instructions providing rounded floating-point results include: 
FRD, DFRD, FSTR, and DFSTR. 

The hexadecimal option may be used in floating-point operations to declare 
hexadecimal constants, either explicitly or by default. {Refer to Hexadecimal 
Floating-point Number in Section 2.} 

Quadruple-Precision Floating-Point Instructions 

Quadruple-precision floating-point instructions provide arithmetic operations 
for which the exponents are handled as powers of 16. I n these operations, the 
AQ register and the operand register (LDR) handle mantissas and the E register 
handles exponents. Results of these operations are automatically normalized. 

7-4 DZSl-OO 



Privileged Master Mode Instructions 

( The following conditions must be satisfied for execution of these instructions. 

( 

o The Master Mode bit in the Indicator Register is ON. 

o The privileged bit in the Instruction Segment Register (ISR) is ON. 

o The housekeeping bit in the page t~le word for the instruction is ON. 
This bit is assumed as being ON in the Working Space 0 Addressing mode. 

When these conditions are not met a COmmand fault or a Class 1 security fault 
occurs. (Refer to the instruction specifications in Section 8.) 

Miscellaneous Instructions 

This catagory includes instructions which perform operations such as 
Binary-to-BCD conversion, programmed faults, repeat instructions, and 
no-operation instructions (e.g., NOP). 

Special Processor Instructions 

Slave mode instructions available to provide the operating system with program 
gating for multiprocessor configurations include: LDAC, LDQC, and SZNC. They 
provide for clearing the referenced memory cell to zero after the contents are 
transferred to the processor. The instruction STACQ provides for conditional 
storing in the referenced memory cell, based on the comparison of Q with the 
operand word. 

Privileged master mode instructions providing system information and control 
are !.CPR, S.CPR, RSCR, SSCR, STTA, and STTD. 

MULTIWORD INSTRUCTIONS 

Multiword instructions fall into six general categories: 

o Alphanumeric instructions 

o Numeric instructions 

o Bit string instructions 

o COnversion instructions 

o Edited Move Instructions 

7-5 DZ51-00 



AlpbanUlleric Instructions 

Alphanumeric instructions permit moving, transliteration, editingi and 
comparing of alphanumeric data. The operands for these instructions (with the 
exception of comparisons) can be ~ny combination of alphanumeric types (9-bit, 
6-bit, or 4-bit) and are translated as part of the instruction execution to 
permit the different types of character strings to be manipulated in the same 
instruction. 

Ruaeric Instructions 

Numeric instructions include decimal arithmetic functions in addition to 
moving, comparing, and editing of numeric data. Decimal add, subtract, 
multiply, and divide operations are permitted. The numeric instructions can be' 
2- or 3-operand instructions. The operands themselves can be either 9-bit or 
4-bi t packed decimal. The numbers employed as data can be floating-point with 
leading sign, scaled fixed-point with trailing sign, leading sign, or no sign. 
As with alphanumeric instructions, numeric instructions achieve these various 
characteristics within a single multiword instruction (in conjunction with 
associated operand descriptors). 

Bit String Instructions 

Bit string instructions allow two bit strings to be compared on a bit-by-bit 
basis and Boolean operations to be performed to combine strings and set 
indicators. 

Conversion Instructions 

Conversion instructions provide for decimal/binary and binary/decimal 
conversion. 

Edi ted Move Instructions 

Both alphanumeric and numeric edited move instructions (WE, MVNE, and MVNEX) 
utilize micro operations (MOPS) to perform editing functions. The sequence of 
micro-steps to be executed is contained in memory and is referenced by the 
second operand descriptor of the edited move instructions. 

Micro operations provide alphanumeric and numeric edited move instructions with 
the capability to edit strings on a character-by-character or digit-by-digit 
basis, or in concatenated series of characters and digits. 

Micro operations are not altered by their execution: therefore, a sequence of 
micro operations can be set to describe a data field and then can be used 
repeatedly by the edit instructions. A single instruction can perform a 
complicated edit function with great speed. 

7-6 DZ51-00 

( 



( 

( 

( 

The special edit characters are contained in a hardware edit table and table 
entries are modified using micro operations designed for this purpose. Refer to 
"Micro Operations For Edit 1 nstructions MYE, MVNE, and MVNEX" later in this 
section for detailed information. ~ 

Multiword Instruction capabilities 

The capabilities of the multiword instructions are given below. 

1. Decimal Arithmetic Capability 

a. Data types as packed decimal and direct ASCII (may be intermixed) 

b. Decimal arithmetic operands of 1 to 63 digits in length (including 
sign) 

c. Numeric data as fixed-point and/or floating-point (intermixed fixed­
and floating-point data is allowed) 

d. A full set of decimal arithmetic instructions (each is a multiword 
instruction with either two or three descriptor words) including add, 
subtract, multiply, and divide 

e. All numeric instructions with a hardware rounding option 

2. Data Manipulation Capability 

Five native data modes - ASCII, BCD, packed decimal (numeric only), bit 
string, and EBCDIC 

3. Data Movement Capability 

a. Alphanumeric movement from left or right with character-fill 

b. Character moves from 9-bit-byte or 8-bit-byte fields 

c. Numeric move with fill and/or rounding and scale change 

d. Bit string manipulation using any of 16 different Boolean operations 

e. Radix conversion and transliteration instructions 

4. Data Comparison Capability 

a. Alphanumeric comparison with fill 

b. Numeric comparisons between fields of the same or different format and 
character type 

7-7 DZSI-OO 



c. Bit string comparisons with fill 

d. String scan for a match of one or two characters 

5. Second-Level Indexing capability 

Eight address registers providing for second-level indexing for all 
instructions (including single-word instructions> 

7-8 DZ51-00 



( 
ADDRESS REGI STER I NSTRUCTI ONS ADDRESS REGI STER I NSTRUC'I'I ONS 

ADDRESS RBGI S'I'ER I RSTRUCTI ORS 

This set of instructions provides the capability for using address registers to 
manipulate the address portion of numeric and alphanumeric descriptors. I f an 
address register is to be used in address preparation, its usage is specified 
in the instruction word. All single-word instructions, to which address 
modification is applicable, have essentially the same machine instruction word 
format which hardware interprets differently depending on whether the processor 
is in the NS or the ES mode. (Refer to Section S.) 

000 
023 

AR#I 

LOCSYM 

01 SPLACEMENT (y) 

1 1 
7 8 

OP CODE 

2 2 2 3 3 3 
7 8 901 2 

TIn 
I AR 

Td 

TAG 

3 
S 

Figure 7-1. Single-word Instruction With Address Modification 

AR# 

LOCSYM 

DI SPLACEMENT 

OP CODE 

I 

AR 

TAG 

- One of eight address registers (0-7) 

- Represents either address of operand or displacement from a 
base 

(y) IS-bit displacement from the address register address 
(two's complement: values from -16,384 to +16,383) 

- A 10-bit operation code field 

- Program interrupt inhibit bit 

- If bit 29 is 1, an address register is to be used and is 
specified by bits 0, 1, and 2 of the y field. If bit 29 is 
0, no address register is used. 

- Tag field that controls all other address modification. If 
an address register is used on an instruction with indirect 
addressing, it is applied only on the fetch of the indirect 
word. 

TIn - tag modifier 
Td - tag designator 

7-9 DZ51-00 



ADDRESS REGI STER I NSTRUCTI ONS ADDRESS REG! STER I NSTRUCTI ONS 

Address Register Load 

LARn 76n (1) 
LAREG 463 (1) 

Address Register Store 

SARn 74n (1) 
SAREG 443 (1) 

Load Address Register n 
Load Address Registers 

Store Address Register n 
Store Address Registers 

AI. ter Address Register Contents 

This set of instructions provides the capability for replacing, incrementing, 
and decrementing the contents of an address register on either a word, 
character, or bit address basis. The operation is register-to-register, with 
no memory fetch involved. 

The special instructions have the same instruction format: 

0 0 o 0 
0 2 3 4 

I AR# I 51 

AR# 

S 

y 

OP CODE -

I 

AR 

1 1 2 2 2 3 3 3 
7 8 7 8 9 0 1 2 

y I OP CODE IIH mzl DR 

Figure 7-2. Alter Address Register Contents 

Selects address register to be altered. 

Sign bit. (Refer to section 5 for differences betwen NS and ES 
modes. ) 

3 
5 

I 

A word displacement (no character or bit position included) used 
along with the contents specified in the DR field to alter the 
contents of the specified address register. Bit 3 provides negative 
(two's complement) or positive word displacement. 

10-bit operation code field. 

Program interrupt inhibit bit. 

Address register bit. 

7-10 DZ5l-00 

.j 



( 

( 

ADDRESS REG! STER I NSTRUCTI ONS ADDRESS REGI STER I NSTRUCl'I ONS 

MBZ 

DR 

If bit 29 = 1, the sum of the DR (in characters, words, or bits) 
and the y field (in words) are added to or subtracted from the 
contents of the ARspecified in bits 0-2. 

If bit 29 = 0, the above described sum or its two's complement is 
loaded into the AR for addition or subtraction, respectively. 

I f the mnemonic is coded with :x (for example, AWDX} , bi t 29 is 
forced to zero. 

Bits 30-31 must be zero. 

Displacement register. Specifies which register contains the 
displacement value. The register codes and register lengths are 
the same as those used in MF fields except that IC modification is . 
illegal. (Refer to Table 5-2.) (Refer to "Multiword Modification 
Field" in this section.). 

The operations for adding a value to the contents of an address register 
proceed as with effective operand address preparation from an operand 
descriptor, with the final results being stored in the specified address 
register. 

The subtract operation differs only in that the contents of the register 
specified by the code in the DR field are first added to the y field. This 
result is then subtracted from the actual contents of the address register or 
from the implied zero contents and the result is placed in the address 
register. The codes for DU, DL, and IC are illegal for the DR field and cause 
an IPR fault. 

The indicators are unaffected by these instructions. 

A4BD(X) 502 (l) Add 4-Bit Displacement to Address Register 
A6BD(X) 501 (1) Add 6-Bit Displacement to Address Register 
A9BD(X) 500 (1) Add 9-Bit Displacement to Address Register 
ABD(X) 503 (1) Add Bit Displacement to Address Register 
AWO(X) 507 (1) Add Word Displacement to Address Register 
S4BD(X) 522 (l) Subtract 4-Bit Displacement from Address 

Register 
S6BD(X) 521 (l) Subtract 6-Bit Displacement from Address 

Register 
S9BD(X) 520 (1) Subtract 9-Bit Displacement from Address 

Register 
SBD(X) 523 (1) Subtract Bit Displacement from Address Register 
SWO(X) 527 (l) Subtract Word Displacement from Address Register 

7-11 DZ5l-00 



ADDRESS REG! STER I NSTRUCTI ONS ADDRESS REG! STER I NSTRUCTI ONS 

Special Address Register Instructions 

Special instructions provide use of address registers to manipulate the address 
portion of numeric and alphanumeric operand descriptors. These instructions 
may be used only in the NS mode. If an attempt is made to execute these 
instructions in the ES mode, an IPR fault occurs. 

These special instructions have the following instruction format: 

o 

AARn 
ARAn 
ARNn 
NARn 

1 1 222 3 3 3 

y OP CODE 

Figure 7-3. special Address Register Instructions 

56n (1) 
54n (1) 
64n (1) 
66n (1) 

Alphanumeric Descriptor to ARn 
ARn to Alphanumeric Descriptor 
ARn to Numeric Descriptor 
Numeric Descriptor to ARn 

7-12 

3 

DZ5l-00 



( 

( 

BOOLEAN OPERATIONS BOOLEAN OPERATIONS 

BCX>LEAH OPERATION I NSTRUC'l'IOlfS 

The logical operations AND, OR, and EXCLUSIVE OR are permitted between storage 
and the index registers, A- and Q-registers, and the AQ-register. These 
instructions use th~ single-word instruction format. 

Boolean Expressions 

A Boolean expression is defined similarly to an algebraic expression except 
that the operators *, I, +, and - are interpreted as Boolean operators. 'l'wo 
types of boolean expressions are defined below: 

1. The expression that appears in the variable field of a BOOL 
pseudo-operation uses Boolean operators. 

2. The expression that appears in the octal subfield of the variable field 
of a VFD pseudo-operation uses Boolean operators. 

Evaluation Of Boolean Expressions 

A Boolean expression is evaluated following the same procedure used for an 
algebraic expression except that the operators are interpreted as Boolean. 

I n a Boolean express ion, the operators +, -, *, and I have Boolean meanings, 
rather than their normal arithmetic meanings, as follows: 

Operator 

+ 

Meaning 

OR, inclusive OR, 
union 

EXCLUSI VE OR 
symmetric difference 

7-13 

Definition 

o + 0 = 0 
o + 1 = 1 
1 + 0 = 1 
1 + 1 = 1 

o - 0 = 0 
o - 1 = 1 
1 - 0 = 1 
1 - 1 = 0 

DZ51-00 



BOOLEAN OPERATIONS 

Operator 

* 

I 

Meaning 

AND, intersection 

one's complement, 
complement, NOT 

BOOLEAN OPERATIONS 

Definition 

o * 0 = 0 
o * 1 == 0 
1 * 0 = 0 
1 * 1 == 1 

10 
11 

== 1 
== a 

Although I is a unary operation involving only one term, by convention AlB is 
taken to mean A*/B. This is not regarded as an error by the assembler. Thus, 
the table for I as a two-term operation is: 

010 = a 
Oil = a 
1/0 = 1 
III == 0 

and other conventions are: 

+A = A+ = A 
-A = A- = A 
*A = A* = 0 
AI = Ala = A 

Boolean AND 

ANA 
ANAQ 
ANQ 
ANSA 
ANSQ 
ANSXn 
ANXn 

375 (0) 
377 (0) 
376 (0) 
355 (0) 
356 (0) 
34n (0) 
36n (0) 

(possible error, operand missing) 

AND to A-Register 
AND to AQ-Register 
AND to Q-Register 
AND to Storage from A-Register 
AND to Storage from Q-Register 
AND to Storage from Index Register n 
AND to Index Register n 

7-14 DZ51-00 



( 
BOOLEAN OPERATIONS 

Boolean OR 

ORA 275 (0) 
OUQ 277 (0) 
ORQ 276 (0) 
ORSA 255 (0) 
ORSQ 256 (0) 
ORSXn 24n (0) 
ORXn 26n (0) 

Boolean EXCLUSIVE OR 

ERA 675 (0) 
ERAQ 677 (0) 
ERQ 676 (0) 
ERSA 655 (0) 
ERSQ 656 (0) 
ERSXn 64n (0) 
ERXn 66n (0) 

Boolean CDMPARATIVE AND --

( CANA 315 (0) 
CANAQ 317 (0) 
CANQ 316 (0) 
CANXn 30n (0) 

Boolean CDMPARATIVE HOT AND 

CNAA 215 (0) 
CNAAQ 217 (0) 
CNAQ 216 (0) 
CNAXn 20n (0) 

( 

BOOLEAN OPERATIONS 

OR to A-Register 
OR to AQ-Register 
OR to Q-Register 
OR to Storage from A-Register 
OR to Storage from Q-Register 
OR to Storage from Index Register n 
OR to Index Register n 

EXCLUSIVE OR to A-Register 
EXCLUSIVE OR to AQ-Register 
EXCLUSIVE OR to Q-Register 
EXCLUSIVE OR to Storage with A-Register 
EXCLUSIVE OR to Storage with Q-Register 
EXCLUSIVE OR to Storage with Index Register n 
EXCLUSIVE OR to Index Register n 

Comparative AND with A-Register 
Comparative AND with AQ-Register 
Comparative AND with Q-Register 
Comparative AND with Index Register n 

Comparative NOT AND with A-Register -
Comparative NOT AND with AQ-Register 
Comparative NOT AND with Q-Register 
Comparative NOT AND with Index Register n 

7-15 DZ51-00 



FI XED POI NT I NSTRUCTI ONS FI XED POI NT I NSTRUCTI ONS 
,f' \, 
I 

,) 

FIXED-POI 1fT I RS'l'RUCTI ONS 

Data lIoYement Load 

EAA 635 (0) Effective Address to A-Register 
EAQ 636 (0) Effective Address to Q-Register 
EAXn 62n (0) Effective Address to Index Register n 
LCA 335 (0 ) Load Complement into A-Register 
LCAQ 337 (0 ) Load Complement into AQ-Register 
LCQ 336 (0) Load Complement into Q-Register 
LCXn 32n (0) Load Complement into Index Register n 
LDA 235 (0) Load A-Register 
LDAC 034 (0 ) Load A-Register and Clear 
LDAQ 237 (0) Load AQ-Register 
LDI 634 (0 ) Load Indicator Register 
LD;2 236 (0) Load Q-Register 
LDQC 032 (0) Load Q-Register and Clear 
LDXn 22n (0 ) Load Index Register n from Upper 
LREG 073 (0) Load Registers 
LXI..n 72n (0 ) Load I ndex Register. n from Lower 

Data Movement Store / , 

SBAR 550 (0) Store Base Address Register 
"'---- /' 

SREG 753 (0) Store Registers 
STA 755 (0) Store A-Register 
STAC 354(0) Store A Conditional 
STACQ 654 (0) Store A Conditional on Q 
STAQ 757 (0) Store AQ-Register 
STBA 551 (O) Store 9-bit Bytes of A-Register 
STBQ 552 (0) Store 9-bit Bytes of Q-Register 
STCl 554 {O} Store Instruction Counter Plus 1 
STC2 750 (0) Store I nstruction Counter Plus 2 
STCA 751 (0) Store 6-bit Characters of A-Register 
STCQ 752 (0) Store 6-bit Characters of Q-Register 
STI 754 (0) Store Indicator Register 
STQ 756 to} Store Q-Register 
STT 454 (0) Store Timer Register 
STXn 74n (0) Store Index Register n in Upper 
STZ 450 (0) Store Zero 
SXLn 44n (O) Store I ndex Register n in Lower 

7-16 DZ51-00 



FI XED-POI NT I NSTRUCl'I ONS FI XED-POI NT I NSTRUCl'I ONS 

( 
Data Movement Shift 

ALR 775 (0) A-Register Left Rotate 
ALS 735 (0) A-Register Left Shift 
ARL 771 (0) A-Register Right Logical Shift 
ARS 731 (0) A-Register Right Shift 
LLR 777 (0) Long Left Rotate 
LLS 737 (0 ) Long Left Shift 
LRL 773 (0 ) Long Right Logical Shift 
LRS 733 CO) Long Right Shift 
QLR 776 CO) Q-Register Left Rotate 
QLS 736 (0) Q-Register Left Shift 
QRL 772 (0) Q-Register Right Logical Shift 
QRS 732 CO) Q-Register Right Shift 

Fixed-Point Addition 

ADA 075 (0) Add to A-Register 
ADAQ 077 CO) Add to AQ-Register 
ADL 033 (0) Add Low to AQ-Register 
ADLA 035 (0) Add Logical to A-Register 
ADLAQ 037 (0) Add Logical to AQ-Register 

if ADLQ 036 (0) Add Logical to Q-Register 
ADLXn 02n (O ) Add Logical to Index Register n 
ADO 076 (0) Add to Q-Register 
ADxn 06n (0) Add to Index Register n 
AOS 054 <D) Add 1 to Storage 
ASA 055 (0) Add to Storage from A-Register 
ASQ 056 (0) Add to Storage from Q-Register 
ASxn 04n CO) Add to Storage from Index Register n 
AWCA 071 CO) Add With carry to A-Register 
AWCQ 072 (0) Add With carry to Q-Register 

( 

7-17 DZ5l-00 



FI XED-POI NT I NSTRUCTI ONS 

Fixed-Point Subtraction 

SBA 
SBAQ 
SBLA 
SBLAQ 
SBLQ 
SBLXn 
SBQ 
SBXn 
SSA 
SSQ 
S5Xn 
SWCA 
SWCQ 

175 (O) 
177 (0) 
135 (0) 
137 (0) 
136 (0) 
12n CO} 
176 (0) 
16n (0) 
155 (0) 
156 (0) 
14n (0) 
171 (0) 
172 (0) 

Fixed-Point Multiplication 

MPF 
MPY 

401 (O) 
402 (0) 

Fixed-Point Division 

DIV 
DVF 

506 (0) 
507 (0) 

FI XED-POI NT I NSTRUCTI ONS 

Subtract from A-Register 
Subtract from AQ-Register 
Subtract Logical from A-Register 
Subtract Logical from AQ-Register 
Subtract Logical from Q-Register 
Subtract Logical from Index Register n 
Subtract from Q-Register 
Subtract from Index Register n 
Subtract Stored from A-Register 
Subtract Stored from Q-Register 
Subtract Stored from I ndex Register n 
Subtract With carry from A-Register 
Subtract With carry from Q-Register 

Multiply Fraction 
Multiply Integer 

Divide Integer 
Divide Fraction 

7-18 DZ51-00 



( 

( 

FI XED POI NT I NSTRUCTI ONS FI XED POI NT I NSTRUCTI ONS 

Fixed-Point Comparison 

Fixed-point compare instructions permit comparison of absolute values, 
algebraic values, or characters~ provide for test of word fields~ permit 
searches for identical, selectable word fields; and permit searches for a value 
within selectable limits. Comparison instructions are repeatable using the 
RPT, RPD, or RPL instruction. (Repeat instructions are executable in NS mode 
only. ) 

CMG 
CMK 
CMPA 
CMPAQ 
CMPQ 
CMPXn 
CWL 
SZN 
SZNC 

405 (0) 
211 (0) 
115 (0) 
117 to) 
116 to) 
10n (0) 
111 (0) 
234 (0) 
214 (0) 

Fixed-Point Negate 

NEG 
NEGL 

531 to) 
533 (0) 

Compare Magnitude 
Compare Masked 
Compare with A-Register 
COmpare with AQ-Register 
COmpare with Q-Register 
COmpare with Index Register n 
Compare with Limits 
set Zero and Negative Indicators from Storage 
Set Zero and Negative Indicators from Storage 
and Clear 

Negate (A-Register) 
Negate Long (AQ-Register) 

7-19 DZ51-00 



FLOATI NG POI NT I NSTRUCl'I ONS 

FLOA'1'IHG-POI NT I NS'l'RUC'l'IONS 

Data IIoveIDent Load 

DFLO 433 (0) 
DFLP 532 (0) 
FLO 431 (0) 
FLP 530 (0) 
LDE 411 (0) 

Data Movement Store 

DFST 457 (0) 
DFSTR 472 (0) 
FST 455 (0) 
FSTR 470 (0) 
STE 456 (0) 

Floating-Point Addition 

ADE 415 (0) 
DFAD 477 (0) 
DUFA 437 (0) 
FAD 475 (0) 
UFA 435 (0) 

Floating-Point Subtraction 

DFSB 577 (0) 
DFSBI 467 (0) 
DUFS 537 (0) 
FSB 575 (0) 
FSBI 465 (0) 
UFS 535 (0) 
UFTR 434 (0) 

FLOATI NG POI NT I NSTRUCTI ONS 

Double-Precision Floating Load 
Double-Precision Floating Load Positive 
Floating Load 
Floating Load Positive 
Load Exponent Register 

Double-Precision Floating Store 
Double-Precision Floating Store Rounded 
Floating Store 
Floating Store Rounded 
Store Exponent Register 

Add to Exponent Register 
Double-Precision Floating Add (Normalized) 
Double-Precision Floating Add (Unnormalized) 
Floating Add (Normalized) 
Floating Add (Unnormalized) 

Double-Precision Floating Subtract 
Double-Precision Floating Subtract Inverted 
Double-Precision Unnormalized Floating Subtract 
Floating Subtract 
Floating Subtract Inverted 
Unnormalized Floating Subtract 
Unnormalized Floating Truncate Fraction 

7-20 DZ5l-00 

'~j' 



( 

( 

( 

FLOATI NG-POI NT I NSTRUcrI ONS 

Floating-Point Multiplication 

DFMP 
DUFM 
FMP 
UFM 

463 (0) 
423 (0) 
461 (0) 
421 (0) 

Floating-Point Division 

DFDI 
DFDV 
FD! 
FDV 

527 (0) 
567 (0) 
525 (0) 
565 (0) 

Floating-Point COmparison 

FLOATI NG-POI NT I NSTRUcrI ONS 

Double-Precision Floating Multiply 
Double-Precision Unnormalized Floating Multiply 
Floating Multiply 
Unnormalized Floating Multiply 

Double-Precision Floating Divide Inverted 
Double-Precision Floating Divide 
Floating Divide Inverted 
Floating Divide 

Floating-point compare instructions are used for single- and double-precision 
operations on absolute values and algebraic values. Compare instructions are 
repeatable using the RPT, RPD, or RPL instruction. 

DFCMG 
DFCMP 
FCMG 
FCMP 
FSZN 

427 (0) 
517 (0) 
425 (0) 
515 (0) 
430 (0) 

Floating-Point Negate 

FNEG 513 (0) 

Floating-Point Normalize 

FNO 573 (0) 

Floating-Point Round 

DFRD 
FRO 

473 (0) 
471 (0) 

Double-Precision Floating Compare Magnitude 
Double-Precis.ion Floating Compare 
Floating COmpare Magnitude 
Floating COmpare 
Floating set Zero and Negative Indicators from 
Storage 

Floating Negate 

Floating Normalize 

Double-Precision Floating Round 
Floating Round 

Floating-Point Truncate Fraction 

FTR 474 (0) Floating Truncate Fraction 

7-21 DZ5l-00 



QUADRUPLE-PRECI 51 ON I NSTRUCT1 ONS QUADRUPLE-PRECI SI ON I NSTRUCTI ONS 

QUADRUPLE-PRlO:SI ON INS'l'RUC'l'IONS 

The quadruple-precision instructions permit exponents to be handled as powers 
of 16. The AQ register and LOR register handle the mantissas and the E 
register handles the exponents. The results of these operations are 
automatically normalized. 

"QFAD 
QFLD 
QFMP 
QFSB 
QFST 
QFSTR 
QSMP 

476 (0) 
432 (0) 
462 (0) 
576 (0) 
453 (0) 
466 (0) 
460 (0) 

Quadruple-Precision Floating Add 
Quadruple-Precision Floating Load 
Quadruple-Precision Floading Multiply 
Quadruple-Precision Floating Subtract 
Quadruple-Precision Floating Store 
Quadruple-Precision Floating Store Rounded 
Quadruple-Precision Floating Multiply with 
Double-Precision Operands 

7-22 DZ5l-00 



( 

( 

MULTI WORD I NSTRUcrI ONS MULTI WORD I NSTRUcrI ONS 

MULTIWORD INSTRUCTIONS 

The format and terms which are common to all multiword instructions are 
described below. 

Multiword Instruction PorIIat 

Data 
Descr. 

1 
Data 
Descr. 

2 
Data 
Descr. 

3 

o 
o 

VARI ABLE FI ELD 

1 1 
7 8 

OP CODE 

DATA DESCRlPTOR 1 

DATA DESCRlPTOR 2 

DATA DESCRIPTOR 3 

Figure 7-4. Multiword Instruction Format 

Bits Desc~iption 

222 3 3 3 
789 0 1 2 

I MFl 

3 
5 

0-17 Contains variable information for the executed instruction 
function. The format of this field differs with each instruction. 
When data descriptors 2 and 3 exist, the corresponding MF2 and MF3 
are located in bits 11-17 and 1-8, respectively, of the variable 
field to describe the address modification executed for the data 
descriptors. Refer to the individual instruction specifications in 
Section 8. 

18-27 10-bit operation code 

28 Interrupt inhibit bit 

29-35 Modification field 1. Describes the address modification executed 
for data descriptor 1. 

Data descriptors (2 or 3) follow the basic instruction word. The number of 
data descriptors is determined by each instruction. Data descriptors consist 
of the operand descriptor or the indirect word which points to the operand 
descriptor. 

7-23 DZ51-00 



MULTI WORD I NSTRUCTI ONS MULTI WORD I NSTRUCTI ONS 

IlULTIWORD MODI FI CATION FIELD 

Each modification field (NF) contained in a multiword instruction is a 7-bit 
field specifying address modification to be performed on the operand 
descriptors. The modification field is interpreted as follows: 

2 3 4 5 through 8 <--- bits (NF3) 

11 12 13 14 through 17 <--- bits (NF2) 

29 30 31 32 through 35 <--- bits (NFl) 

I AR I RL 1 1D I ~ 1<- subfield 
.I-.---=1-'----:l~-":"'1J----------4~<- number of bits 

AR - Address Register Specifier 

0- No address register used. 

1- Bits 0-2 of the operand descriptor address field specify the 
address register to be used in computing the effective address 
of the operand. Bits 0 - 2 also specify the operand descriptor 
register that defines the segment containing the operand. 

RL - Register or Length 

0- Operand length is specified in the N field (bits 32-35) of the 
operand descriptor. .. . 

1- Length of operand is contained in the register specified by code 
in the N field (bits 32-35) of the operand descriptor, in the 
machine format of REG (the coding format is different). 

ID - Indirect Operand Descriptor 

0- The operand descriptor follows the instruction word in its 
sequential memory location. 

1- The operand descriptor location contains an indirect word that 
points to the operand descriptor. Only one level of indirection 
is allowed. 

7-24 DZ51-00 



( 

( 

MULTI WORD I NSTRUCTI ONS MULTI WORD I NSTRUCTI ONS 

REG - Address modification register selection for R-type modification of 
the operand descriptor address field. The REG codes are 
approximately the same as the single-word modifications. In 
addition, for indirect string length specification (RL = 1), the N 
field codes are similar to the REG field. A comparison of these 
codes is shown in Table 5-2. 

Operand Descriptors And IDdirect Words 

The words following a multiword instruction word are either operand descriptors 
or indirect words to the operand descriptors. The interpretation of the words 
is performed according to the settings of the control bits in the associated 
modification field (MF). 

OPERAND DESClUP'l'OR IHDI~ WORD FORMAT 

An indirect pointer to an operand descriptor 
7-5 (also see "Indirect Word" in section 5): 

is interpreted as shown in Figure 

0 o 0 1 1 2 2 3 3 3 3 
0 2 3 7 8 8 9 0 1 2 5 

I 
AR.# I 

y 
I H 00 

I 
REG 

Figure 7-5. Operand Descriptor Indirect Word Format 

AR.# - A 3-bit pointer register number 

y - An 18-bit main memory address or a IS-bit word offset 

AR. - I ndirect via bit 29 flag that controls the interpretation of the y 
field of the indirect pointer 

REG - The address modifier for the y field 

Alphanumeric Instructions 

I 

Alphanumeric instructions permit moving, transliteration, editing, and comparing 
of alphanumeric data. 

7-25 DZ51-00 



MULTI WORD I NSTRUCTI ONS MULTI WORD I NSTRUCTI ONS 

ALPBAJIOMBRIC OPERAND DESCRIPTOR PORMA'l' 

For any operand of a multiword instruction that requires alphanumeric data, the 
operand descriptor is interpreted as shown In Figure 7-6 (also S1!e 
"Alphanumeric Operand Descriptors" in Section 5): 

o 
o 

AR# 

o 0 
2 3 

y 

DI SPLACEMENT (y) 

18 

1 1 
7 8 

CN 

3 

2 2 222 
o 1 2 3 4 

TA 0 

2 1 

N 

ZEROS 

3 3 
1 2 

(LENGTH) 

8 

Figure 7-6. Alphanumeric Operand Descriptor Format 

REG 

3 
S 

4 

AR# - A 3-bit address register number 

Y - Location or displacement value 

DISPLACEMENT- (y) An l8-bit main memory address or a lS-bit word offset 
relative to the address register's content 

CN - Character number. This field gives the character position within 
the word at y of the first operand character. Its interpretation 
depends on the data type (see TA below) of the operand. Table 7-1 
shows the interpretation of the field. A digit in the table 
indicates the corresponding character position (see section 2 for 
data formats). Invalid codes cause IPR faults. 

7-26 DZS1-OO 



( 

( 

MULTI WORD I NSTRUCTI ONS MULTI WORD I NSTRUCTI ONS 

TA 

N 

Table 7-1. Alphanumeric Character Number (CN) Codes 

Data type 
C(CN) 

4-bit 6-bit 9-bit 

000 a 0 a 
001 1 1 IPR 
010 2 2 1 
011 3 3 IPR 
100 4 4 2 
101 5 5 IPR 
110 6 IPR 3 
III 7 IPR IPR 

- Type alphanumeric. This is the data type code for the 
operand. The interpretation of the field is shown in Table 
7-2. The code shown as Invalid causes an IPR fault. 

Table 7-2. Alphanumeric Data Type (TA) Codes 

C(TA) Data type 

00 9-bit 
01 6-bit 
10 4-bit 
11 IPR 

- Operand length. If RL = 0 in the corresponding MF, this 
field contains the string length of the operand. (Refer to 
Multiword Modification Field in this section.) If RL = 1, 
this field contains the code for a register holding the 
operand string length (See "Register Codes", Table 5-2). 

7-27 DZ51-00 



MULTI WORD I NSTRUCTI ONS MULTIWORD INSTRUCTIONS 

The alphanumeric operand descriptor is coded as follows: 

1 8 16 

{ADSC9} LOCSYM,CN,N,AM 
{ADSC6} 
{ADSC4) 

(braces indicate a choice) 

where: 

LOCSYM - An expression containing either the location of the data or 
an offset from the base. 

CN . - Character number (see above) 

N - Symbol or decimal value containing either length or a 
register code 

AM - Address register containing the base 

ALPBAHUMERI C CDMPARE 

CMPC 106 (1) 
CMPCT 166 (1) 
SCD 120 (1) 
SCDR 121 (1) 
SCM 124 (1) 
SCMR 125 (1) 
TCT 164 (1) 
TCTR 165 (1) 

ALPHAHUMERI C MOVE 

MLR 100 (1) 
MRL 101 (1) 
MVE 020 (1) 
MVT 160 (1) 

Compare Alphanumeric Character Strings 
Compare Characters and Translate 
Scan Characters Double 
Scan Characters Double in Reverse 
Scan with Mask 
Scan with Mask in Reverse 
Test Character and Translate 
Test Character and Translate in Reverse 

Move Alphanumeric Left to Right 
Move Alphanumeric Right to Left 
Move Alphanumeric Edited 
Move Alphanumeric with Translation 

Olaracter Move To/From Register Instructions 

Two instructions permit moves of one, two, three, or four 9-bit characters from 
a memory location to a register or from a register to memory. An indirect word 
cannot be used for the data descriptor of this instruction. 

7-28 DZ51-00 

/ 



( 

( 

"WLTI WORD I NSTRUCTI ONS MULTI WORD I NSTRUCTI ONS 

OPERAHD DESCRIPl'OR POR CBARAC'l'ER MOVE INSTRUC'l'lONS 

The word following the character move instruction word is the operand 
descriptor which specifies the origin or destination of the move, indicates the 
number of characters to be moved, and specifies whether 9-bit characters or 
8-bit bytes are to be moved. This word is illustrated in Figure 7-7. 

0 o 0 1 1 2 2 2 2 333 3 
0 2 3 7 8 o 1 2 3 123 5 

I 

Y 

I 
ISEI BI 0--------------0 I 

I 
CN L 

AR4I DISPLACEMENT (y) 

3 15 3 1 1 9 

Figure 7-7. Character Move Descriptor Format 

The character move operand descriptor is created by entering a one-line pseudo 
operation coded, SDSCn, following an MTR or MTM instruction. This descriptor 
serves a similar purpose as operand descriptors used with other multiword 
instructions. SDSCn creates a descriptor word to transfer 9-bit characters or 
8-bit bytes for the MTR/MTM instruction depending upon the specification in n 
as described below. 

1 8 16 

SDSCn LOCSYM,CN,L,SE,AM 

where: 

n - when = 9, B (see descriptor format above) is set to 0 
indicating 9-bit characters 

when = 8, B is set to 1 indicating 8-bit bytes 

LOCSYM - Address of word containing first character to be moved 

eN - Character position of left end of operand within a word. 
Must be 0-3. 

L - Number of characters to be moved. Must be 0-4. Defaults to 
o. 

4 

SE - State of enlargement for character positions. Applies to MTR 
move only. 

7-29 DZ51-00 



MULTI WORD I NSTRUCTI ONS MULTI WORD INSTRUCTIONS 

AM - Optional address register modification (AR#) 

NOTE: Refer to specifications for MTR and MTM in Section 8. 

The method of generating a start address for a character move by using the Y 
field is the same as in other multiword instructions. However, A, Q,XO-X7 or 
GXO-GX7 must be specified for REG modification when REG modification is used. 

CBARAC'l'BR MOVE INS"l'RUcnOH RBPBR'1'OIRE 

MTM 
MTR 

365 (1) 
361 (1) 

Numeric Instructions 

Move to Memory 
Move to Register 

The set of numeric instructions deals with sign and magnitude operands. 
Floating-point decimal zero is represented as + 0 * 10**127. If any 
computation is performed that would result in a zero representation other than 
this, the hardware forces the zero representation to this format, thus 
preventing loss of data during decimal point alignment. 

All numeric operations are limited to final results not to exceed 63 characters 
(sign, digits, exponent). If any numeric move, compare, or calculation is ,,----j 

specified involving either a number with more than 63 characters or a final 
product with more than 63 characters, the operation is performed as though 63 
characters were specified and no fault occurs unless the specific description 
of an instruction states that such a fault occurs and/or that operation does 
not take place. 

All characters are carried internally as 4 bits. The upper 5 bits of any 9-bit 
input character (TN = 0) are truncated. If a 9-bit output is specified, 00011 
(ASCII numeric zone) is appended to form the numeric digits; standard ASCII 
plus minus characters (octal 053 and 055, respectively) are generated. 

7-30 DZ5l-00 

I 

~ 



( 

MULTI WORD I NSTRUCTI ONS MULTI WORD I NSTRUCTI ONS 

JmMBRIC OPBRAHD DESCRIPTOR PORMAT 

For any operand of a multiword instruction that requires numeric data, the 
opera:nd descriptor is interpreted as shown in Figure 7-S (also see "Numeric 
Operand Descriptors" in Section S): 

o 00 11 22222 2 3 

AR# 

y 

SF 

lS 3 1 2 

Figure 7-S. Numeric Operand Descriptor Format 

- A 3-bit address register number 

- Location or displacement value 

6 

DISPLACEMENT - (y) An lS-bit main memory address or a 1S-bit word offset 
relative to the address register's content. 

CN 

TN 

- Character number. This field gives the character position 
within the word at y of the first operand digit. Its 
interpretation depends on the data type (see TN below) of 
the "operand. 

- Type numeric. This is the data type code for the operand. 
The codes are: 

C{T) Data Type 

o 9-bit 
1 4-bit 

6 

S - Sign and decimal type of data. The interpretation of the field 
is shown in Table 7-3. 

7-31 DZS1-00 



MULTI WORD I NSTRUCTI ONS MULTI WORD INSTRUCT! ONS 

sx 

SF 

N 

Table 7-3. Sign And Decimal Type (S) Codes 

C(S) Sign and Decimal type 

00 Floating-point, leading sign 
01 Scaled fixed-point, leading sign 
10 Scaled fixed-point, trailing sign 
11 Scaled fixed-point, unsigned 

- Sign and scaling 

I f TN = 0 (unpacked data) 
00 leading sign, overpunched, fixed-point 
01 leading sign, separate, fixed-point 
10 trailing sign, separate, fixed-point 
11 trailing sign, overpunched, fixed-point 

If TN = I, (packed data) 
00 leading sign, separate, floating point 
01 leading sign, separate, fixed-point 
10 trailing sign, separate, fixed-point 
11 no sign, fixed-point 

(Refer to description of overpunched signs under MVNX in 
section 8.) 

- Scaling factor. This field contains the two's complement 
value of the base 10 scaling factor(i.e., the value of ! for 
numbers represented as n * 10**!). The decimal point is 
assumed to the right of the least significant digit of n. 
Negative values of m move the decimal point to the left; 

.positive values, to the right. The range of ! is -32 to 31 
treated as the powers of 10. 

- Operand length. If RL = 0 in MF, this field contains the 
operand length in digits. If RL = I, it contains the REG 
code for the register holding the operand length and C(REG) 
is treated as a 0 modulo 64 number. 

7-32 DZ51-00 



( 

( 

MULTIWORD INSTRUCTIONS MULTIWORD INSTRUCTIONS 

The numeric operand descriptor is coded as follows: 

1 8 16 

{NOSC9) LOCSYM,CN,N ,S,SF,AM 
{NOSC4} 

where: 

LOCSYM - An expression containing either the location of the data or an 
offset from the base 

CN - Character number (see above) 

N - A symbol or decimal value containing either the length for a 
register code. 

S - The sign and decimal type in two bits: 

Code Description 

o 
1 
2 
3 

Floating-point, leading sign 
Sealed fixed-point, leading sign 
Sealed fixed-point, trailing sign 
Sealed fixed-point, unsigned 

SX - Sign and seal ing (see above). 

SF - The sealing factor for sealed decimal numbers; range is -31 to 
+32 treated as the powers of 10 

AM - Address register containing the base (AR#) 

NUMERIC· CDMPARE 

CMPN 303 (1) Compare Numeric 
CMPNX 343 (1) 

NUMERIC MOVE 

MVN 
MVNX 
MVNE 
MVNEX 

300 (1) 
340 (1) 
024 (1) 
004 (1) 

Compare Numeric Extended 

Move Numeric 
Move Numeric Extended 
Move Numeric Edited 
Move Numeric Edited Extended 

7-33 DZ5l-00 



MULTI WORD I NSTRUCTI ONS MULTI WORD I NSTRUCTI ONS 

Bit String Instructions 

These instructions provide the capability of performing Boolean operations on 
bit strings. The Boolean Result (BOLR) contr.ol field (bits 5, 6, 7, and B of 
the instruction word) defines one of 16 possible logical operations to be 
performed. The four bits in this field are associated with the four possible 
combinations of bits from the two operands. The association rule is: 

I f first operand and second operand then result 
bit is: bit is: is from bit: 

0 0 5 

0 1 6 

1 0 7 

1 1 B 

Boolean operations most commonly used are: 

BOLR Field Bits 
Operation 5 6 7 B 

MOVE 0 0 1 1 

AND 0 0 0 1 

OR 0 1 1 1 

NAND 1 1 1 0 

EXCLUSIVE OR 0 1 1 0 

Clear 0 0 0 0 

Invert 1 1 0 0 

The four bits contained in the Boolean control field .are represented in the 
instruction format by one or two octal digits. 

7-34 DZ51-00 

" 

'", 

:," ". 
'\,--j' 



( 

( 

MULTI WORD I NSTRUC'I'I ONS MULTI WORD I NSTRUCTI ONS 

BIT STRING OPERAND DESCRIPTOR PORMAT 

For any operand of a multiword instruction that requires bit string data, the 
operand descriptor is interpreted as shown in Figure 7-9 (also see "Bit String 
Operand Descriptor" in section 5): 

o 00 111222 33 

AR# 

Y 

Figure 7-9. Bit String Operand Descriptor Format 

- A 3-bit address register number 

- Location or displacement value 

DISPLACEMENT - (y) An l8-bit main memory address or a l5-bit word offset 
relative to the address register's content 

C 

B 

N 

R 

- The character number of the 9-bit character within the y 
field containing the first bit of the operand 

- The bit number within the 9-bit character, C, of the first 
bit of the operand 

- Operand length. If RL = 0 in NF, this field contains the 
string length of the operand. If RL = 1, this field 
contains the code for a register holding the operand string 
length. 

- Register containing data length 

The bit string operand descriptor is coded as follows: 

1 B 16 

BDSC LOCSYM,N,C,B,AM 

where: 

LOCSYM - An expression containing either the location of the data or an 
offset from the base 

7-35 DZ5l-00 



MULTI WORD I NSTRUCTI ONS MULTI WORD I NSTRUCTI ONS 

N - Symbol or decimal value containing either length or a register 
code 

C - Character position (0-3) 

B - Bit within character (O-B) 

AM - Address register containing the base (AR#) 

BIT STRI NG CDIlBI HE 

CSL 
CSR 

060 (1) 
061 (1) 

BIT STRING CDMPARE 

CMPB 066 (1) 

BI T STRI NG SET I IiDI CA'l'ORS 

SZTL 

SZTR 

064 (1) 

065 (1) 

Data Conversion Instructions 

Combine Bit Strings Left 
Combine Bit Strings Right 

Compare Bit String 

Set Zero and Truncation Indicators with Bit 
Strings Left 
Set Zero and Truncation Indicators with Bit 
Strings Right 

Conversion instructions are used for conversions between binary and decimal 
numbers where the binary number is stored as a character string, starting and 
ending on 9-bi t character boundaries, and the decimal number is stored as a 
character string. 

BTD 
DTB 

301 (1) 
305 (1) 

Binary-to-Decimal Convert 
Decimal-to-Binary Convert 

7-36 DZ51-00 



( 
... MULTI WORD I NSTRUCTI ONS 

Ari tlmetic Instructions 

Dl!O IIAL ADD! ".rI ON 

AD2D 202 (1 ) 
AD2DX 242 (1) 
AD3D 222 (1) 
AD3DX 262 (1) 

Dl!OlIAL SUBTRAC'l'ION 

SB2D 203 (1 ) 
SB2DX 243 (1) 
SB3D 223 (1) 
SB3DX 263 (I) 

Dl!OlIAL MULTIPLICATION 

MP2D 206 (1) 
MP2DX 246 (1) 

C MP3D 226 (1) 
MP3DX 266 (1) 

Dl!O IIAL D1 VISI ON 

DV2D 207 (1) 
DV2DX 247 (1) 
DV3D 227 (1 ) 
DV3DX 267 (1 ) 

( 

MULTI WORD I NSTRUCTI ONS 

Add Using Two Decimal Operands 
Add Using Two Decimal Operands Extended 
Add Using Three Decimal Operands 
Add Using Three Decimal Operands Extended 

Subtract Using Two Decimal Operands 
Subtract Using Two Decimal Operands Extended 
Subtract Using Three Decimal Operands 
Subtract Using Three Decimal Operands Extended 

Multiply Using Two Decimal Operands 
Multiply Using Two Decimal Operands Extended 
Multiply Using Three Decimal Operands 
Multiply Using Three Decimal Operands Extended 

Divide Using Two Decimal Operands 
Divide Using Two Decimal Operands Extended 
Divide Using Three Decimal Operands 
Divide Using Three Decimal Operands Extended 

7-37 DZ5l-00 



MlCRO OPERATIONS MI CRO OPERATlONS 

HI CRO OPERATION'S FOR ED! '1' I N'S'l'RUC'l'ION'S WE, MVNE, AND MVHEX 

The Move Alphanumeric Edited (MVE), Move Numeric Edited (WilE), and Move 
Numeric Edited Extended (MVNEX) instructions require micro operations to 
perform the editing functions in an efficient manner. The sequence of micro 
operation steps to be executed is contained in memory and is referenced by the 
second operand descriptor of the instruction. Some micro operations require 
special characters for insertion into the string of characters being edited. 
These special characters are shown in the edit insertion tables in this 
section. 

Micro Operation sequence 

The micro operation string operand descriptor points to a string of 9-bit bytes 
that specifies the micro operations to be performed during an edited move. 
Each of the 9-bit bytes defines a micro operation and has the format shown in 
Figure 7-10: 

o o 0 0 

5 4 

Figure 7-10. Micro Operation (MOP) Character Format 

MOP 5-bit code specifying the micro operator 
(Refer to the Micro Operation Repertoire.) 

IF Information field containing one of the following: 

1. A sending string character count. A value of 0 is interpreted as 
16. 

2. The index of an entry in the edit insertion table to be used. 
Permissible values are 1 through 8. 

3. An interpretation of the "b1ank-when-zero" operation 

7-38 DZ51-00 



( 

( 

MICRO OPERATIONS MICRO OPERATIONS 

Mit Insertion Tables 

While executing an edit instruction, the processor provides a register of eight 
9-bit bytes to hold insertion information. This register, called the edit 
insertion table, is not maintained after execution of an edit instruction. At 
the start of each edit instruction, the processor initializes the table to the 
values given in Table 7-4. For MVE and WNE, the ASCII ccxie is used for each 
initial value. For MVNEK, the BIT field in the instruction word determines the 
character set (ASCII, BCD, or EBCDIC) to be used for the initial values. 
(Refer to the Edit Insertion Table Entries in Table 7-5.) 

Table 7-4. Default Edit Insertion Table Characters For MVE And MVNX 

Table Entry 
Number Character 

1 space 
2 * 
3 + 
4 -
5 $ 
6 , 
7 . 
8 0 (zero) 

The relationship between the ASCII character bit positions and the table 
character positions is as follows: 

o 1 2 3 4 5 6 7 8 Table character bit positions 

9 8 7 6 5 4 3 2 1 ASCII character bit positions 

where unused high-order bit positions of the character are zero-filled. One or 
all of the table entries may be changed by the Load Table Entry (LTE) or the 
Change Table (CHT) micro operation to provide different insertion characters. 

7-39 DZ5l-00 



MICRO OPERATIONS MI CRO OPERATIONS 

Table 7-5. Edit Insertion Table Entries For MVNEK 

Edit Insertion Table Octal Code 

No. Character EBCDIC BCD ASCI 

1 b (space) 100 020 040 

2 * (asterisk) 134 054 052 

3 + (plus) 116 060 053 

4 - (minus) 140 052 055 

5 $ (dollar sign) 133 053 044 

6 , (comma) 153 073 054 

7 • (period) 113 033 056 

8 0 (zero) 360 000 060 

NOTE: The table entries may be changed by use of the Load 
Table Entry (LTE) or Change Table Entry (CHT) micro 
operations described on following pages. 

MVNE, MVE, And MVHEK Differences 

The processor executes MVNE and MVNEX in a slightly different manner than it 
executes MVE because of inherent differences in how numeric and alphanumeric 
data is handled. The following are brief descriptions of the basic operations. 

HUMERI C EDl T (MVNE AND MVHEK) 

1. Load the entire sending string number (maximum length 63 characters) into 
the decimal unit input buffer as 4-bit digits (high-order truncating 
9-bit data). Strip the sign and exponent characters (if any), put them 
aside into special holding registers, and decrease the input buffer count 
accordingly. 

2. Test sign and, if required, set the SN flag. 

3. Execute micro operation string, starting with the first (4-bit) digit. 

7-40 DZ51-00 



( 

( 

MICRO OPERATIONS MICRO OPERATIONS 

4. If an edit insertion table entry or MOP insertion character is to be 
stored, ANDed, or ORed into a receiving string of 4- or 6-bit characters, 
high-order truncate the character accordingly. 

5. If the receiving string is 9-bit characters, high-order fill the (4-bit) 
digits from the input buffer with bits 0-4 of character B of the edit 
insertion table. If the receiving string is 6-bit characters, high-order 
fill the digits with "00". 

ALPBAJf1DIBRI C EDI T (MVB) 

1. Load the decimal unit input buffer with sending string characters. Data 
is read from memory in unaligned units (not modulo B boundary) of four 
double-words. The number of characters loaded is the minimum of the 
remaining sending string count, the remaining receiving string count, and 
64. 

2. Perform tests for zero on the four least significant bits of each 
character. 

3. Execute micro operation string, starting with the first receiving string 
character. 

4. If an edit insertion table entry or MOP insertion character is to be 
stored, ANDed, or ORed into a receiving string of 4- or 6-bit characters, 
use the lower 4 or 6 bits. 

5. If the receiving string is 6- or 9-bit characters, the zero-fill is 
already supplied; do not append bits of any edit insertion table entry as 
the most significant bits. 

Micro Operation Repertoire 

MOP 

CRT 
ENF 
IGN 
INSA 
INSB 
INSM 

Octal Binary 

21 10001 
02 00010 
14 01100 
11 01001 
10 01000 
01 00001 

Operation 

Change Table 
End Floating Suppression 
Ignore Source Characters 
Insert Asterisk on Suppression 
Insert Blank on Suppression 
Insert Table Entry One Multiple 

7-41 DZ51-00 



M1 CRO OPERATIONS M1 CRO OPERATIONS 

MOP Octal Binary Operation 

INSN 12 01010 Insert On Negative 
INSP 13 01011 I nsert On Positive 
LTE 20 10000 Load Table Entry 
MFLC 07 00111 Move With Floating CUrrency Symbol Insertion 
MFLS 06 00110 Move With Floating Sign Insertion 
MORS 17 01111 Move and OR Sign 
MSES 16 01110. Move and Set Sign 
MVC 15 01101 Move SOurce Characters 
MVZA 05 00101 Move with Zero Suppression and Asterisk 

Replacement 
MVZB 04 00100 Move With Zero Suppression and Blank Replacement 
SES 03 00011 Set End Suppresion 

Micro Operations Descriptions 

A description of the 17 micro operations (MOPs) follows. The descriptions are 
presented in the format shown below. 

MOP Operation 

EXPLANATION: Describes how the operation functions 

FLAGS: Describes the setting of the affected flags 

NOTES: Describes any fault conditions 

Checks for termination are made ,during and after each micro operation. All 
MOPs that make a zero test of a sending-string character, test only the four 
least-significant bits of the character. 

Mit Flags 

The processor provides the following four edit flags for use by the micro 
operations. 

ES End suppression flag: initially OFF and set ON by a micro operation 
when zero-suppression ends. (This ES should not be confused with the 
ES mode.) 

7-42 DZ51-00 

, / 



( 

( 

( 

MICRO OPERATIONS MI CRO OPERATIONS 

SN Sign flag: initially set OFF if the sending string has an alphanumeric 
descriptor or an unsigned numeric descriptor. If the sending string has 
a signed numeric descriptor, the sign is initially read from the sending 
string from the digit position defined by the sign and the decimal type 
field (S or SX>: SN is set OFF if positive, ON if negative. If all 
digits are zero, the data is assumed positive and the SN flag is set 
OFF, even when the sign is negative. 

Z Zero flag: initially set ON and set OFF whenever a sending string 
character that is not decimal zero is moved into the receiving string. 

BZ Blank-when-zero flag; initially set OFF and set ON by either the ENF or 
SES micro operation. If, at the completion of a move (Ll exhausted), 
both the Z and BZ flags are ON, the receiving string is filled with 
character 1 of the edit insertion table. 

7-43 DZ51-00 



MICRO OPERATIONS MICRO OPERATIONS 

CRT Change Table 10001 .1 

EXPLANATION: The edit insertion table is replaced by the string of eight 
9-bit characters immediately following the CRT micro operation. 

FLAGS: None affected 

NOTE: C{!F) is not interpreted for this operation. 

ENF End Floating Suppression 00010 

EXPLANATION: Bit 0 of IF (IFO) specifies the nature of the floating 
suppression. 

FLAGS: 

Bit 1 of IF (IF1) specifies if blank when zero option is used. 

For IFO = 0 (end floating-sign operation): 

If ES is OFF and SN is OFF, then edit insertion table entry 3 
is moved to the receiving field and ES is set ON. 

If ES is OFF and SN is ON, then edit insertion table entry 4 
is moved to the receiving field and ES is set ON. 

If ES is ON, no action is taken. 

For 1FO = 1 (end floating currency symbol operation): 

If ES is OFF, then edit insertion table entry 5 is moved to 
the receiving field and ES is set ON. 

If ES is ON, no action is taken. 

For IFl = 1 (blank when zero): the BZ flag is set ON. 

For IFl = a (no blank when zero): no action is taken. 

(Flags not listed are not affected) 

ES - I f OFF, then set ON 

BZ - If bit 1 of C{IF) = 1, then set ON; otherwise, unchanged 

7-44 DZ51-00 



( 

MICRO OPERATIONS MICRO OPERATIONS 

IGN Ignore SOurce Characters 01100 

EXPLANATION: IF specifies the number of characters to be ignored, where IF = 
o specifies 16 characters. 

FLAGS: 

INSA 

The next IF characters in the source data field are ignored and 
the sending tally is reduced accordingly. 

None affected 

Insert Asterisk on Suppression 01001 

EXPLANATION: same as INSB except that if ES is OFF, then edit insertion table 
entry 2 is moved to the receiving field. 

FLAGS: None affected 

NOTE: If C(IF) = 9-15, an IPR fault occurs. 

7-45 DZSI-OO 



MICRO OPERATIONS MItRO OPERATIONS 

INSB Insert Blank on Suppression 01000 ] 

EXPLANATION: IF specifies which edit insertion table entry is inserted. 

FLAGS: 

NOTE: 

INSM 

If IF = 0, the 9 bits immediately following the INSB micro 
operation are treated as a 9-bit character (not a MOP) and are 
moved or skipped according to ES: 

1 f ES is OFF, then edit insertion table entry 1 is moved to 
the receiving field. If IF = 0, then the next 9 bits are also 
skipped. If IF is not 0, the next 9 bits are treated as a 
MOP. 

If ES is ON and IF = 0, then the 9-bit character immediately 
following the INSB micro-instruction is moved to the 
receiving field. 

If ES is ON and IF F- 0, then IF specifies which edit 
insertion table entry (1-8) is to be moved to the receiving 
field. 

None affected 

If C(IF) = 9-15, an IPR fault occurs. 

Insert Table Entry One Multiple 00001 

EXPLANATION: IF specifies the number of receiving characters affected, where 
IF = 0 specifies 16 characters. 

FLAGS: 

Edit insertion table entry 1 is moved to the next IF (1-16) 
receiving field characters. 

None affected 

7-46 DZ51-00 



( 

( 

( ..... 

MICRO OPERATIONS MICRO OPERATIONS 

INSN 

EXPLANATION: 

FLAGS: 

NOTE: 

INSP 

EXPLANATION: 

FLAGS: 

NOTE: 

Insert On Negative 01010 

IF specifies which edit insertion table entry is inserted. If 
IF = 0, the 9 bits immediately following the INSN micro 
operation are treated as a 9-bit character (not a MOP) and are 
moved or skipped according to SN: 

If SN is OFF, then edit insertion table entry 1 is moved to the 
receiving field. If IF = 0, then the next 9 bits are also 
skipped. If IF is not 0, the next 9 bits are treated as a MOP. 

If SN is ON and IF = 0, then the 9-bit character immediately 
following the INSN micro-instruction is moved to the receiving 
field. 

If SN is ON and IF # 0, then IF specifies which edit insertion 
table entry (1-8) is to be moved to the receiving field. 

None affected 

If C{IF) = 9-15, an IPR fault occurs. 

Insert On positive 01011 

Same as INSN except that the responses for the SN values are 
reversed. 

None affected 

If C{IF) = 9-15, an IPR fault occurs. 

7-47 DZ51-00 



MICRO OPERATIONS MICRO OPERATIONS 

LTE Load Table Entry 10000 

EXPLANATION: IF specifies the edit insertion table entry to be replaced. 

FLAGS: 

NOTE: 

MFLC 

The edit insertion table entry specified by IF is replaced by 
the 9-bit character immediately following the LTE micro 
instruction. 

None affected 

If C(IF) = a or C(IF) = 9-15, an Illegal Procedure fault occurs. 

Move with Floating Currency Symbol Insertion 00111 

EXPLANATION: IF specifies the number of characters of the sending field upon 
which the operation is performed, where IF = 0 specifies 16 
characters. 

Starting with the next available sending field character, the 
next IF characters are individually fetched and the following 
conditional actions occur: 

If ES is OFF and the character is zero, edit insertion table 
entry 1 is moved to the receiving field in place of the 
character. 

If ES is OFF and the character is not zero, then edit 
insertion table entry 5 is moved to the receiving field, the 
character is also moved to the receiving field, and ES is set 
ON. 

If ES is ON, the character is moved to the receiving field. 

7-48 DZ51-00 



( 

( 

MICRO OPERATIONS MICRO OPERATIONS 

FLAGS: 

NOTE: 

The number of characters placed in the receiving field is 
data-dependent. If the entire sending field is zero, IF 
characters are placed in the receiving field. However, if the 
sending field contains a nonzero character, IF+l characters (the 
insertion character plus the characters from the sending field) 
are placed in the receiving field. 

An IPR fault occurs when the sending field is exhausted before 
the receiving field is filled. In order to provide space in the 
receiving field for an inserted currency symbol, the receiving 
field must have a string length one character longer than the 
sending field. When the sending field is all zeros, no 
currency symbol is inserted by the MFLC micro operation and the 
receiving field is not filled when the sending field is 
exhausted. The user should provide an ENF (ENF,l2) micro 
operation after a MFLC micro operation that has as its character 
count the number of characters in the sending field. The ENF 
micro operation is engaged only when the MFLC micro operation 
fails to fill the receiving field; then, it supplies a currency 
symbol to fill the receiving field and blanks out the entire 
field. 

(Flags not listed are not affected) 

ES - If OFF and any of C{Y) is less than decimal zero, then ON; 
otherwise, unchanged 

Since the number of characters moved to the receiving string is 
data-dependent, a possible IPR fault may be avoided by ensuring 
that the Z and BZ flags are ON. 

7-49 DZS1-00 



MICRO OPERATIONS MICRO OPERATIONS 

Move with Floating Sign Insertion 00110 

EXPLANATION: IF specifies the number of characters of the sending field upon 
which the operation is performed, where IF = 0 specifies 16 
characters. 

Starting with the next available sending field character, the 
next IF characters are individually fetched and the following 
conditional actions occur: 

If ES is OFF and the character is zero, edit insertion table 
entry 1 is moved to the receiving field in place of the 
character. 

If ES is OFF, the character is not zero, and SN is OFF: then 
edit insertion table entry 3 is moved to the receiving 
field. The character is also moved to the receiving field, 
and ES is set ON. 

If ES is OFF, the character is nonzero, and SN is ON; edit 
insertion table entry 4 is moved to the receiving field; the 
character is also moved to the receiving field, and ES is set 
ON. 

If ES is ON, the character is moved to the receiving field. 

7-50 DZ51-00 

/ 



( 

( 

MICRO OPERATIONS MICRO OPERATIONS 

FLAGS: 

NOTE: 

The number of characters placed in the receiving field is 
data-dependent. If the entire sending field is zero, IF 
characters are placed in the receiving field. However, if the 
sending field contains a nonzero character, IF+l characters (the 
insertion character plus the characters from the sending field) 
are placed in the receiving field. 

An IPR fault occurs when the sending field is exhausted before 
the receiving field is filled. In order to provide space in the 
receiving field for an inserted sign, the receiving field must 
have a string length one character longer than the sending 
field. When the sending field is all zeros, no sign is inserted 
by the MFLS micro operation and the receiving field is not 
filled when the sending field is exhausted. The user should 
provide an ENF (ENF,4) micro operation after a MFLS micro 
operation that has as its character count the number of 
characters in the sending field. The ENF micro operation is 
engaged only when the MFLS micro operation fails to fill the 
receiving field: then, it supplies a sign character to fill the 
receiving field and blanks out the entire field. 

(Flags not listed are not affected) 

ES - If OFF and. any of C{Y) is less than decimal zero, then ON; 
otherwise, unchanged 

Since the number of charact~rs moved to the receiving string is 
data-dependent, a possible Illegal Procedure fault may be 
avoided by ensuring that the Z and BZ flags are ON. 

7-51 DZ51-00 



MICRO OPERATIONS MICRO OPERATIONS 

MORS Move and OR Sign 01111 

EXPLANATION: IF specifies the number of characters of the sending field upon 
which the operation is performed, where IF = 0 specifies 16 
characters. 

FLAGS: 

Starting with the next available sending field character, the 
next IF characters are individually fetched and the following 
conditional actions occur: 

If SN is OFF, the next I F characters in the source data field 
are moved to the receiving data field and, during the move, 
edit insertion table entry 3 is ORed to each character. 

If SN is ON, the next IF characters in the source data field 
are moved to the receiving data field and, during the move, 
edit insertion table entry 4 is ORed to each character. 

MORS can be used to generate a negative overpunch for a 
receiving field to be used later as a sending field. 

None affected 

7-52 DZSI-OO 



( 

( 

( 

MICRO OPERATIONS MI CRO OPERATIONS 

EXPLANATION: 

FLAGS: 

Move and Set Sign 01110 

IF specifies the number of characters of the sending field upon 
which the operation is performed, where IF = 0 specifies 16 
characters. 

For MVE, starting with the next available sending field 
character, the next IF characters are individually fetched and 
the following conditional actions occur: 

Starting with the first character during the move, a 
comparative AND is made first with edit insertion table entry 
3. I f the result is nonzero, the first character and the 
rest of the characters are moved without further comparative 
ANDs. If the result is zero, a comparative AND is made 
between the character being moved and edit insertion table 
entry 4 If that result is nonzero, the SN indicator is set 
ON (indicating negative) and the first character and the rest 
of the characters are moved without further comparative 
ANDs. If the result is zero, the second character is treated 
like the first. This continues until one of the comparative 
AND results is nonzero or until all characters are moved. 

For MVNE and MVNEX instructions, the sign (SN) flag is already 
set and IF characters are moved to the destination field (MSES 
is equivalent to the MVC instruction). 

(Flags not listed are not affected) 

SN - If edit insertion table entry 4 is found in C(Y-l), then ON: 
otherwise, unchanged 

7-53 DZ5l-00 



MICRO OPERATIONS MICRO OPERATIONS 

MVC Move SOurce Characters 01101 

EXPLANATION: IF specifies the number of characters to be moved, where IF = 0 
specifies 16 characters. 

The next I F characters in the source data field are moved to the. 
receiving data field. 

FLAGS: None affected 

MVZA Move with Zero Suppression and Asterisk 00101 
Replacement 

EXPLANATION: same as MVZB except that: 

FLAGS: 

If ES is OFF and the character is zero, then edit insertion 
table entry 2 is moved to the receiving field. 

(Flags not listed are not affected) 

ES - If OFF and any ofC(Y) is less than decimal zero, then ON; 
otherwise, unchanged 

7-54 DZ5l-00 

./ 



( 

( 

( 

MICRO OPERATIONS MICRO OPERATIONS 

EXPLANATION: 

FLAGS: 

Move with Zero Suppression and Blank Replacement 00100 

IF specifies the number of characters of the sending field upon 
which the operation is performed, where IF = a specifies 16 
characters. 

Starting with the next available sending field character, the 
next IF characters are individually fetched and the following 
conditional actions occur: 

If ES is OFF and the character is zero, then edit insertion 
table entry 1 is moved to the receiving field in place of the 
character. 

If ES is OFF and the character is not zero, then the 
character is moved to the receiving field and ES is set ON. 

If ES is ON, the character is moved to the receiving field. 

(Flags not listed are not affected) 

ES - If OFF and any of C(Y) is less than decimal zero, then 
ON; otherwise, unchanged 

7-55 DZ51-00 



MICRO OPERATIONS M1 CRO OPERATIONS 

SES Set Ene Suppression 00011 

EXPLANATION: Bit 0 of IF UFO) specifies the setting of the ES switch. 

FLAGS: 

Bit 1 of IF (IF1) specifies the setting of the b1ank-when-zero 
option. 

If IFO = 0, the ES flag is set OFF. 

IF IFO = 1, the ES flag is set ON. 

If IF1 = 1, the BZ flag is set ON. 

If IFl = 0, no action is taken. 

(Flags not listed are not affected) 

ES - Set by this micro operation 

BZ - If bit 1 of C(IF) = 1, then ON; otherwise, unchanged 

7-56 DZ51-00 



MICRO OPERATIONS MICRO OPERATIONS 

Micro Operation COde Assignment Map 

Operation code assignments for the micro operations are shown in Table 7-6. 
Dashes (---) indicate an unassigned code. Unassigned codes cause an Illegal 
Procedure fault. 

Table 7-6. Micro Operation COde Assignment Map 

\B2 B3 B4 
\ 000 
\ 

BO Bl \ 
00 
01 
10 
11 

--
IHSB 
LTE 
--

001 

IHSM 
IHSA 
CRT 
---

Terminating Micro Operations 

010 

ENF 
INSN 
---
----

011 100 101 110 

SES MVZB MVZA MFLS 
IHSP IGN MVC MSES -- - -- ---- -- ---- --

111 

MFLC 
MORS 
--
---

The micro-operation sequence is terminated normally when the receiving string 
length is exhausted. The micro-operation sequence is terminated abnormally 
(with an IPR fault) if an attempt is made to move from an exhausted sending 
string or to use an exhausted MOP string. 

MICRO OPERATIONS EXAMPLES: 

1 8 

MVNE 
. NOSC4 

ADSC9 
ADSC6 
USE 

MOPLST MI CROP 
MICROP 
MICROP 
USE 

MVNE 
NDSC4 
ADSC9 
ADSC6 
MVNE 
NOSC4 
ADSC9 
ADSC6 

16 32 

EPACK,5,11,2 PIC S9(10) 
MOPLST,0,9 
PRTOUT+3,0,12 PIC Z(7).999-
DETOUR 
(LTE,l},lH ,(MVZB,7),(SES,8) 
(INSB),lH.,(MVC,3),(INSN) 
1H-,(LTE,1},18 ,(MVZB,2),(MVC,1) 

FPACK,5,11,2 PIC S9(10) 
MOPLST,0,9 
PRTOUT+6,0,12 PIC Z(7} .999-

SEQPAK,5,3,3 PIC 999 
MOPLST+2,1,4 
PRTOUT+1,3,3 PIC ZZ9 

7-57 DZ5l-00 



VIRTUAL MEMORY INSTRUCTIONS VIRTUAL MEMORY INSTRUCTIONS 

VIRTUAL MEMORY INSTRUCT! ONS 

These instructions support segmentation and paging in the virtual memory 
environment. Except in the case of the CLIMB instruction, the format of these 
instructions is the same as the other single-word instructions. 

Descriptor Register Instructions 

These instructions provide the capability of loading or storing a descriptor 
register (DRB) with a new descriptor or modifying the descriptor currently 
contained in DRn. The LODn instruction has a direct load option and a vector 
option. 

LODn 
SDRn 
STDn 

67n (l) 
lln (l) 
OSn (1) 

Pointer Register Instructions 

LDPn 
STPn 
EPPRn 
LDEAn 

47n (l) 
4Sn (1) 
63n (1) 
61n (1) 

Domain Transfer (CLIMB) 

Load Descriptor Register n 
save Descriptor Register n 
Store Descriptor Register n 

Load Pointer Register n 
Store Pointer n 
Effective Pointer to Pointer Register n 
Load Extended Address n 

The ClJMB domain transfer instruction provides the software with a hardware 
mechanism for transferring control from one software function to another with a 
high level of software security. This 2-word instruction, described in detail 
in Section 8, has four versions which perform the functions of call, return, 
and co-routine invocations for intra- and inter-instruction segments and intra-
and inter-domain references. . 

CLIMB 713 (1) Domain Transfer 

7-58 DZSl-OO 

, 
\ 



( 

PRJ VI LEGED I NSTRUCTI ONS PRIVILEGED INSTRUCTIONS 

PRIVI I..lGm I NSTRUCl'I ONS 

Privileged instructions are executed in Privileged Master mcxie. Three 
conditions must be met before the instructions can be executed: 

1. The master mcxie bit in the indicator register must be ON. 

2. The privileged bit in the instruction segment register must be ON. 

3. The housekeeping bit in the page table word for the page containing the 
instruction must be ON; if the processor is in the working space zero 
addressing mode, this bit is assumed ON. 

If any of the above conditions does not exist upon the attempted execution of a . 
privileged instruction, a Command fault occurs. 

CLEAR ASSOCIATIVE MEMORY PAGES 

532 (1) 

CLEAR CACHE 

CCAC all (1) 

RB:;I S'l'BR LOAD 

LDAS 770 (1) 
LDDSA 170 (1) 
LDDSD 571 (1) 
LDPS 771 (1) 
LDSS 773 (1) 
LDWS 772 (1) 
LPDBR 171 (1) 

Clear Associative Memory Pages 

Clear cache 

Load Argument Stack Register 
Load Data Stack Address Register 
Load Data Stack Descriptor Register 
Load Parameter Segment Register 
Load safe Store Register 
Load Working Space Registers 
Load Page Table Directory Base Register 

7-59 DZ51-00 



PRI VI LEGED I NSTRUCTI ONS PRIVILEGED INSTRUCTIONS 

Rm;I S'tBR S'l'ORE 

SPDBR 151 (1) Store Page Table Directory Base Register 
STAS 750 (1) Store Argument Stack Register 
STDSA 150 (1) Store Data Stack Address Register 
STDSD 551 (1) Store Data Stack Descriptor Register 
STPDW 155 (1) Store PTWAM Directory Word 
STPS 751 (1) Store Parameter Segment Register 
STPTW 157 (1) Store PTWAM Register 
STSS 753 (1) Store safe Store Register 
STWS 752 (1) Store Working Space Registers 

MEMORY CDNTROL 

LIMR 553 (0) Load I nterrupt Mask Register 
RIMR 233 (0) Read I nterrupt Mask Register 

SYS'l'BM CDNTROL 

CIOC 015 (0) Connect I nput/OUtput Olannel 
DIS 616 (0) Delay Until Interrupt Signal 
LCON 016 (0) Load Connect Table / 

LCPR 674 (0) Load Central Processor Register 
LDAT 336 (1) Load Address Trap Register 
LDT 637 (0) Load Timer Register 
LRMB 712 (0) Load Reserve Memory Base 
RCW 250 (0) Read Connect Word Pair 
RICHR 156 (1) Restart IC History Register 
RIW 412 (0) Read Interrupt Word Pair 
RMID 273 (0) Read Memory ID Register 
RMR 270 (0) Read Memory Register 
RPAT 611 (0) Run PATROL 
RRES 231 (0) Read Reserved Memory 
RSCR 413 (0) Read System Control Register 
SCPR 452 (0) Store Central Processor Register 
SICHR 154 (1) Store IC History Register 
SIW 451 (0) Set Interrupt Word Pair 
SMID 272 (0) Set Memory ID Register 
SMR 271 (0) Set Memory Register 
SSCR 057 (0) Set System Control Register 
STTA 553 (1) Store Test Address Registers 
STTD 550 (1) Store Test Descriptor Registers 

7-60 DZ51-00 



( 

( 

ALL MODE I NSTRUCTI ONS ALL MODE I NSTRUCTI ONS 

ALL MODE I KSTRUC'l'IOKS 

All mode instructions may be executed in any processor mode. 

EPAT 
PAS 
RSW 

412 (1) 
176 (1) 
231 (0) 

Effective Pointer and Address to Test 
Pop Argument Stack 
Read Processor Model Characteristics 

7-61 DZ51-00 



ES MODE I NSTRUCTI ONS ES MODE I NSTRUCTI ONS 

~ MODE I HS'I'RUC'l'IONS 

ES mode instructions are valid only in the ES mode (ISR bit 24=1). AN IPR 
fault occurs if an attempt is made to ~xecute these instructions in the NS 
mode. Although these instructions are generated by some compilers in this 
release, they are not supported by the GMAP assembler. 

Except for the AARn, NARn, ARAn, and ARN instructions, all instructions are 
valid in the ES mode. An IPR fault occurs if an attempt is made to execute 
these four instructions in the ES mode. 

Register-to-Register Instructions 

Register to Register instructions known as "RR" type instructions are valid 
only in the ES mode. An attempt to execute these instructions in the NS mode 
results in an IPR fault. RR type instructions permit movement, arithmetic 
operation, and shift of fixed-point data using the GXn, A and Q registers. An 
attempt to execute any RR type instruction by the RPT, RPD, or RPL instructions 
results in an IPR fault. 

RR TYPE I HS'I'RUC'l'ION FORMAT 

0 o 0 1 1 1 1 222 3 3 3 
0 3 4 o 1 7 B 7 B 9 1 2 5 

I Rl I NU I (J) I OP CODE III MBZ I R2 I 

7-62 DZ51-00 

~ 

."\,,-~- ./ 



( ES MODE I NSTRUCTI ONS 

0-3 

4 -10 

11-17 

18-27 

28 

29-31 

32-35 

Rl 

NU 

J 

OP 

I 

MBZ 

R2 

ES MODE I NSTRUCTI ONS 

Description 

specifies a code indicating a register to be the 
destination of the result. The allowable codes follow: 

Register Code Result 

0000 IPR 
0001 IPR 
0010 IPR 
0011 IPR 
0100 IPR 
0101 A 
0110 Q 
0111 IPR 
1000 GXO 
1001 GX1 
1010 GX2 
1011 GX3 
1100 GX4 
1101 GX5 
1110 GX6 
1111 GX7 

Not used. Should be set to O. 

Used only in a shift instruction. Specifies the shift 
number (immediate value). Must be 0 in all but shift 
instructions. 

Operation code 

Interrupt inhibit bit 

Must be zero or an IPR fault occurs 

Specifies a code that indicates a source register. The 
codes for this register are the same as for Rl. 

7-63 DZ51-00 



ES MODE I NSTRUCTI ONS ES MODE I NSTRUCTI ONS 

NOTES: 1. Specifying a register code of 0000 in a shift instruction does 
not result in an IPR fault. 

2. If a register pair appears in an instruction specification, the 
two registers are handled as linked. The list below indicates 
the register codes to be assocciated with the register pair. 

Register Code Result 

0000 IPR 
0001 IPR 
0010 IPR 
0011 IPR 
0100 IPR 
0101 A, Q 
0110 A, Q 
0111 I~R 
100x GXO I GX1 
101x GX2 I GX3 
110x GX4 I GX5 
111x GX6, GX7 

where x means this bit is ignored by the hardware. 

MOVEMEH'l' AND ARI TBME'l'I C I NSTRUCTI OKS 

ADLR 
ADRR 
ANRR 
CMRR 
DVRR 
ERRR 
LDCR 
LDDR 
LDPR 
LDRR 
MPRR 
MPRS 
ORRR 
SBLR 
SBRR 

435 (1) 
434 (1) 
535 (1) 
534 (1) 
533 (1) 
537 (1) 
431 (1) 
433 (1) 
432 (1) 
430 (1) 
530 (1) 
531 (1) 
536 (1) 
437 (1) 
436 (1) 

Add Logical to Register 
Add Register to Register 
AND Register to Register 
Compare Register to Register 
Divide Register to Register 
Exclusive OR Register to Register 
Load Complement to Register 
Load Double Register to Register 
Load Positive Register to Register 
Load Register to Register 
Multiply Register-Pair to Register 
Multiply Register-Single to Register 
OR Register to Register 
Subtract Logical to Register 
Subtract Register to Register 

7-64 DZ5l-00 



( 

( 

ES MODE I NSTRUCTI ONS 

sm P'T I HSTRUC'l'I OKS 

GLLS 466 (1) 
GLRL 465 (1) 
GLRS 464 (1) 
GLS 462 (1) 
GRL 461 (1) 
GRS 460 (1) 

Fixed-Point Instructions 

GXn Long Left Shift 
GXn Long Right Logic 
GXn Long Right Shift 
GXn Left Shift 
GXn Right Logic 
GXn Right Shift 

ES MODE I NSTRUCTI ONS 

The fixed-point instructions concern movement and arithmetic operations on data 
in the GXn registers and memory. These instructions are valid only in the ES 
mode. An attempt to execute these instructions in the NS mode results in an IPR 
fault. 

GLDD 
GSTD 
MPX 

32n (1) 
14n (1) 
04n (1) 

Load Double to GXn ( n = 0,2,4,6> 
Store Double ·from GXn (n = 0,2,4,6) 
Multiply GXn (n = 0,1, ••• ,7) 

7-65 DZ51-00 



TRANSFER I NSTRUCTI ONS TRANSFER I NSTRUCTI ONS 

TRANSFER I NS'I'RUCTI ONS 

The program transfer instructions permit conditional and unconditional 
transfers. TSXn also permits the instruction counter to be stored in index 
registers xo through X7 COnditional transfers on zero, plus, and carry also 
have the corollary transfers nonzero, minus, and no carry. The transfers on 
overflows and underflows are made to maskable fault routines. If the normal 
fault routine is masked, transfer is optional. As described in the individual 
descriptions in Section 8, the ISR and S~D(IS) are affected by transfer of 
control instructions. 

Conditional Transfer 

TEO 614 (0) 
TEU 615 (0) 
TMI 604 (0) 
TMOZ 604 (1) 
TNC 602 (0 ) 
TNZ 601 (0) 
TOV 617 (0) 
TPL 605 (0) 
TPNZ 605 (1) 
TRC 603 (O) 
TRCTn 54n (1 ) 
TRTF 601 (1) 
TRTN 600 (1) 
TTF 607 (o) 
TTN 606 (1) 
TZE 600 (0) 

unconditional Transfer 

RET 630 (0 ) 
TRA 710 (0) 
TSS 715 (0) 
TSXn 70n (0) 

Transfer on Exponent Overflow 
Transfer on Exponent Underflow 
Transfer on Minus 
Transfer on Minus or Zero 
Transfer on No carry 
Transfer on Nonzero 
Transfer on Overflow 
Transfer on Plus 
Transfer on Plus and Nonzero 
Transfer on carry 
Transfer on Count 
Transfer on Truncation Indicator OFF 
Transfer on Truncation Indicator ON 
Transfer on Tally Runout Indicator OFF 
Trans.f~r on Tally Runout Indicator ON 
Transfer on Zero 

Return 
Transfer Unconditionally 
Transfer after Setting Slave 
Transfer and Set Index Register n 

7-66 DZ51-00 



( 

( 

MISCELLANEOUS INSTRUCTIONS 

Xl SCEI..I..AHmUS I HS'l'RUC'l'I ONS 

Option Register Instructions 

LOO 
STO 

172 (1) 
152 (1) 

Binary-'1'o-1O> Conversion 

Load Option Register 
Store Option Register 

Ml ~LLANEOUS I NSTRUCTI ONS 

The Binary to Binary-Ceded-Decimal (BCD) instruction converts the magnitude of 
a 33-bit or smaller binary number to its decimal equivalent in BCD form. The 
conversion is made automatically, one decimal digit per instruction execution, 
using previously stored conversion constants. The BCD form of the converted 
number is readily available for further operations. 

BCD 505 (0) Binary-to-BCD Convert 

Execute Instructions 

The Execute and Execute Double (XEC and XED) instructions allow remote 
instructions to be executed singly or in pairs. (XED executes only in NS 
mode.) A program will continue sequentially after the XEC or XED instructions 
are executed, as long as the referenced instructions do not alter the 
instruction counter. If a referenced instruction affects the instruction 
counter, a program transfer occurs. 

XEC 
XED 

716 (0) 
717 (0) 

GraV-TO-B inary-Gonvers ion 

Execute 
Execute Double 

The Gray-to-Binary (GTB) instruction converts a 36-bit word containing data in the 
Gray code (for example, coded analog information from an analog-to-digital input 
device) to its binary equivalent in only one execution of the instruction. This 
instruction enhances the use of the information system in real-time applications, 
such as telemetry. (This instruction executes in NS mode only.) 

GTB 774 (0) 

Programmed Fault 

DRL 
NNE 

002 (0) 
001 (0) 

Gray-to-Binary Convert 

Derail 
Master Mode Entry 

7-67 DZ5l-00 



MI SCELLANEOUS I NSTRUCTI ONS 

No Operation 

NOP 
PULS1 
PULS2 
SYNC 

011 (0) 
012 (0) 
013 (0) 
014 (0) 

Repeat Instructions 

No Operation 
Pulse One 
Pulse Two 
Gate Synchronize 

MI SCELLANEOUS I NSTRUCTI ONS 

The RPT and RPD instructions permit execution of the next one or two 
instructions a selected number of times according to program requirements; they 
are especially useful for operating upon sequential lists in memory. (The 
repeat instructions execute only in NS mode.) For example, if RPT is used with 
any of several compare instructions to search a list, termination occurs when a 
"hit" is made according to conditions specified in the RPT instruction. The 
"hit" causes transfer to the next sequential instruction. 

RPD 
RPL 
RPT 

560 (0) 
500 (0) 
520 (0) 

Repeat Double 
Repeat Link 
Repeat 

Pointer And Length Instructions 

LPL 
SPL 

467 (1) 
447 (1) 

Load Pointer and Length 
Store Pointer and Length 

7-68 DZ5l-00 



( 

COOl NG LI MI TATI ONS CODING LIMITATIONS 

CDDIBG LIMITATIONS 

Supplementary specification items and notes relating to the software that 
operates in the DPS 8000 is provided below. 

1. Result of Fault Detection in the MLR/MRL instruction 

When an SCLI/SCL2/BND fault is detectd in the MLR/MRL instruction, the 
last several words (up to four words) preceding the fault may not be 
stored into memory. 

2. Tally Runout Indicator 

If any instruction involving a tally word causes the tally count to be 
zero and sets the tally runout indicator to OFF, and a page fault 
subsequently occurs in this execution of this instruction, the value 
of the tally runout indicator in the safe store frame will represent 
the state of the indicator prior to the instructions. This permits 
the instruction to be retried. The value of the tally runout in the 
indicator register will indicate OFF. 

3. Interrupt and Fault Entry Descriptor Locations 

The software-visible, fixed absolute memory locations for the 
interrupt and fault entry descriptors are defined by firmware values. 
These locations may be altered corresponding to the ECS firmware 
loaded into a CPU. 

The current entry descriptor locations are as follows: 

Entry Descriptors 

Interrupt 

Fault 

Word Location 

308 - 318 

328 - 338 

System Entry (PMME) 348 - 358 

Backup Fault 408 - 418 

The word location range available for these entry descriptors is 
0-778. 

7-69 DZ5l-00 



CODING LIMITATIONS CODING LIMITATIONS 

4. Timer Related Instructions 

Instructions which store the timer register affect this value because 
the timer is stopped for one cycle. These instructions are 

STT 

CLIMB 

DIS when PATROL is enabled 

7-70 DZ51-00 

I 
./ 



( 
SICrIOH 8 

MACHI HE I NSTRUC'l'ION DESCRIPTIONS 

FORMAT OF I NS'l'RUC'l'I ON DBSCRI PTI ON 

Each instruction in the repertoire is described in this section. The 
descriptions are presented in the formats shown below. 

The format for all instructions except vector instructions follows: 

I MNEMONIC INSTRUCTION NAME OPCODE 

FORMAT: Figure or figure reference 

COD! NG FORMAT: Text 

PROCESSOR MODE: Text 

SUMMARY: Text and/or bit transfer equations 

EXPLANATION: Text 

ILLEGAL ADDRESS 
MODI F! CATIONS: Text 

I LLEGAL REPEATS: Text 

INDICATORS: Text and/or logic statements 

NOTE: Text 

EXAMPLE(S): I f applicable 

Line 1: MNEMONIC, INSTRUCTION NAME, OPCODE 

This line has three parts that contain the following: 

1. MNEMONIC -- The mnemonic code for the operation field of the assembler 
statement. The assembler recognizes this character string value and maps 
it into the appropriate binary pattern when generating the actual object 
code. 

8-1 DZ51-00 ) 



2. INSTRUCTION NAME -- The name of the machine instruction from which the 
mnemonic was derived. 

3. OPCODE -- The octal value of the operation code for the instruction. A 0 
or a 1 in parentheses following an octal code indicates whether bit 27 
(opcode extension bit) of the instruction word is OFF or ON. 

Line 2: FORMAT 

The layout and definition of the subfields of the instruction word or words 
either as a figure or as a reference to a figure. 

Line 3: CODING FORMAT 

The format to be used in coding the instruction. 

Line 4: OPERATING MODES 

The modes in which the processor should be to execute the instruction. (Refer 
to Sectionl, "Operating Modes".) 

Line 5: SUMMARY 

The change in the state of the processor affected by the execution of the 
instruction described in a short, symbolic form. If reference is made to the 
state of an indicator, it is the state of the indicator before the instruction 
is executed. 

Line 6: EXPLANATION 

In instances where more details are needed than supplied in a concise summary, 
this section describes how the operation functions. 

Line 7: ILLEGAL ADDRESS MODIFICATIONS 

A list of those modifiers that cannot be used with the instruction. An Illegal 
Procedure fault occurs when illegal address modification is used. 

Line 8: ILLEGAL REPEATS 

A list of the repeat instructions that cannot be used with the instruction. 

Line 9: ILLEGAL EXECUTES 

A list of operations or conditions that are prohibited with the instruction. 

8-2 DZSl-OO 



( 

(. 

Line 10: INDICATORS 

A list of only those indicators whose state can be changed by the execution of 
the instruction. In most cases, a condition for setting ON as well as one for 
setting OFF is stated. If only one of the two is stated, then the indicator 
remains unchanged if the condition is not met. Unless stated otherwise, the 
conditions refer to the contents of registers existing after instruction 
execution. 

Line 11: NOTES 

Notes regarding specific conditions, faults, and exceptions that affect the 
operation of the instruction upon the data. 

Line 12: EXAMPLES 

Any coding examples, if required for clarity. 

ABBREVIATI ONS AND SYMBOLS 

The following abbreviations and symbols are used in the descriptions of the 
machine operations. 

Symbol 

AM 

AND 

ARn 

b 

BOLR 

:(BOLR): 

c 

C{ 

C(R} 

C(R} i 

C{R)i-j 

Meaning 

Address register modification 

The Boolean connective AND 

Address register n specifier in operand descriptor (n = 0, 1, ••• ,7) 

The original bit position within a 9-bit character 

Boolean results (4 bits). The BOLR field is used in bit string 
operations. The bits specify the resultant octal value for four 
combinations of two input sources. 

A Boolean operation defined by the BOLR field 

The original character position within a data word of 9-bit 
characters 

The contents of ( ). C(string l} represents the contents of string 
1 

The complete contents of register R 

The contents of bit i of register R 

The contents of bits i through j of register R 

8-3 DZ5l-00 j 

\ 
I 



Symbol 

CN 

Meaning 

The original character number within the data word referred to by 
the original data word address 

CS Character set definition, EBCDIC (0) or ASCII (1) 

DR Displacement register (bits 32-35) 

F Bit value specifier (0 or 1) for bit string fill. Used when 
combining/comparing a short bit string with a long bit string to 
make the shorter string appear to be the same length as the longer 
string. 

FILL A character used when moving or comparing a short string of 
characters to a longer string to make the short string appear to be 
the same length as the longer string. (See note under MASK.) 

GKn General Index Registers 0,1, ••• 7 (ES Mode only) 

I Program interrupt inhibit bit 

ID Indirect operand descriptor indicator 

L The actual length of the character or bit string, as determined by 
the register or length (RL) bit in the modification field and by N 

LOCSYM A symbol representing either the address of the operand or the 
displacement from a base 

MASK Bit pattern used in an instruction word. Each 1 bit in the mask 
causes that bit position in the two characters not to enter into 
the comparison (coded as octal digits). . 

NOTE: FILL and MASK are 9-bit fields. When using 6- or 4-bit 
characters, the character must be right-justified in the 
9-bit field. 

MBZ Must be zero 

MFn Modification field n describing address modification to be 
performed in operand descriptor n: 

N 

MFl = modification field 1 (bits 29-35) 
MF2 = modification field 2 (bits 11-17), if operand descriptor 2 is 

specified 
MF3 = modification field 3 (bits 2-8), if operand descriptor 3 is 

specified 

Either the number of characters or bits in the data string or a 
4-bit code (bits 32-35) that specifies a register that contains the 
number of characters or bits. (See Labove.) 

8-4 DZ5l-00 



( 
Symbol 

n 

NS 

OP CODE 

OR 

P 

R1,R2 

R' 1 

Meaning 

Register designation for those instructions that require a register 
specification to determine operation code. 

If 0, there is no effect upon the operation of the instruction. 
If 1, there is no effect upon the instruction unless TN = 0 and SX 
= 00 or 11, in which case (output is supposed to be overpunched 
sign) the appropriate ~verpunched sign character will not be placed 
in the specified field. Instead, the appropriate numeric (0-9) 
character will be placed in the specified field, independent of 
whether the calculated sign would have been plus or minus. This 
results in a no sign output. For other values of TN and SX, the NS 
bit is ignored. This procedure applies to both EBO>IC and ASOI. 
This usage of NS is not to be confused with NS used for Normal 
segmentation mode. 

Operation code field 

The Boolean connective OR (symbol V) 

If P = 0, positive signed 4-bit results are stored with octal 14 as 
the plus sign 
If P = 1, positive signed 4-bit results are stored with octal 13 as 
the plus sign 

General index registers, specified in ES mode only for register to 
register instructions 

The ith bit, character, or byte position of R 

Ri-j Bit, character, or byte positions i through j of R 

RD Rounding numeric indicator flag: 

REG 

RI 

RL 

RM 

RN 

S 

If RD = 0, no rounding takes place 
If RD = 1, rounding takes place as the final operation: the stored 

result is incremented by 1 at the least significant 
character if the most significant character of the 
truncated part is 5 or more 

Address modification register selection for R-type modification of 
the operand descriptor address field 

Distance between elements of vector data in vector operations 

Register or length indicator 

Register modification 

The register that holds the number of elements of vector data in 
vector operations 

Sign and decimal type 

8-5 DZ5l-00 j 



Symbol 

SF 

SX 

T 

Meanina 

Scaling factor 

Sign and scaling 

Truncation fault enable indicator: 

If T = 0, the truncation fault is disabled 
If T = 1, the truncation fault is enabled 

TA A code that defines the type of alphanumeric character used in the 
data 

TAG Tag field used to control address modification (bits 30-35) 

TN A code that defines which type of numeric character is used in the 
data 

TR Timer register 

VA Virtual address 

Xn Index Registers (0,1, ••• 7) 

XOR The Boolean connective EXECLUSIVE OR 

y 

Y 

Y-pair 

YC 

YCB 

Z 

--> 

. . . . 

A 15-bit displacement from the address register address (with bit 
29 = 1) or 18-bit address (with bit 29 = 0) 

The effective word address (18 bits for NS mode and 34-bits for ES 
mode) to the word level of the designated instruction 

A symbol denoting that the effective address Y designates a pair of 
main memory locations (72 bits) with successive addresses, the 
smaller address being even. When Y is even, it designates the pair 
(Y, Y+l); when Y is odd, it designates the pair (Y-l, y). The main 
memory location with the smaller (even) address contains the most 
significant part of a double-word operand or the first of a pair of 
instructions. . 

The effective address for character data 

The effective address for bit string data 

The temporary pseudo-result of a nonstore comparison operation 

Replace(s) 

Is compared with • C(R) :: C(Y) means 
C(R) - C«Y)-->C(Z), C(R) and C(Y) 
unchanged invisible result C(Z) sets 
zero, negative and carry indicator as 
indicated in the instruction descriptions 

8-6 DZ51-00 

(~, 
I 
\.. ;" 
"--.--,'" 



( 

( 

Symbol Meaning 

Not equal 

> Sigma sign indicates summary. 

CDMMON ATTRI BOTES OF I KS'l'RUC'l'IOKS 

Illegal Modification 

If an illegal modifier is used with any instruction, an illegal procedure fault 
with a subcode class of illegal modifier occurs. 

Parity Indicator 

The parity indicator is turned ON at the end of a main memory access that has 
incorrect parity. 

I KS'l'RUC'l'ION WORD FORMATS 

Single-Word Instructions 

The single-word instruction format is displayed in Figure 8-1. 

o 000 
o 1 2 3 

AR# S 

CODING FORMATS: 

LOCSYM 

LOCSYM 

1 1 
7 8 

OP CODE 

2 2 2 3 
7 8 9 0 

I AR 

Figure 8-1. Single-Word Instruction Format 

1 8 16 32 

Tm 

3 3 
1 2 

TAG 

OPCODE LOCSYM,RM,AM 
OPCODEn LOCSYM,RM,AM 
OPCODE n,LOCSYM,RM,AM 

Cn = 0,1, ••• ,7) 

Td 

3 
5 

8-7 DZ51-00 



EXAMPLES: 

LDA 

LDXl 

LDX 

AB OCT 

AB,X3,AR2 

AB,X3,AR2 

1,AB,X3,AR2 

o 

Instruction with no index 
involved 

Format 1: instruction 
with index involved 

Format 2: instruction 
with index involved 

AR# - Address register number, if bit 29 = 1. 

S - Sign bit, if bit 29 = 1. 

LOCSYM - Address field: bits 0-17 or bits 3-17, depending on the state of 
bit 29 

OP CODE - 10-bit operation code field stated as a 3-digit octal number 
followed by the content of bit 27 (0 or 1) in parentheses 

I - Program interrupt inhibit bit 

AR - Address register bit. If bit 29 = 1, use address register 
specified in bits 0, 1, and 2 of Y field for address modification. 
Bit 3 (sign) is then extended to bits 0, 1, and 2. If bit 29 = 0, 
no address register modification is performed. 

TAG - Tag field: used to control address modification. 

Tm - (Bits 30-31) Type of address modification. 
Td - (Bits 32-35) Index Register or modification variation 

designator 

The Repeat (RPT), Repeat Double (RPD) , and Repeat Link (RPL) machine 
instructions and variations of these instructions use special formats and have 
special tally, terminate, repeat, and other conditions associated with them. 
(The repeat instructions execute in NS mode only.) There is no address 
modification for the Repeat instructions. Address modifications for the 
repeated instructions are limited to Rand RI with designators specifying 
Xl, ••• ,X7/GXl, ••• ,GX7. XO/GXO is used to control terminate conditions and 
tally. Address Register (AR) modification is also permitted. 

The Character Move and Translate instructions (MTR and MTM) use a variation of 
the single-word instruction format in which two registers are specified. 

Indirect words, used for address modification, have the same general format as 
the instruction words; however, the fields are used in a somewhat different 
way. 

8-8 DZSl-OO 



( 
Nul ti word I nstruct ions 

Alphanumeric, numeric, and bit string multiword instructions have the general 
machine format described in Figure 8-2. 

000 
012 

F 
0 

o 0 011 
58901 

MF3 or FILL 
T R 

111 
478 

MF2 or FILL 

~ I~ I~ I REG 
D ~ I~ I~ I REG P 

OP CODE 

222 3 3 3 3 
789 0 1 2 5 

MFI 
I 

~ I~ I~ IREG 
The number of words and fields within the descriptor words will vary by 
instruction, but use the following general format. 

o 17 18 

Operand Descriptor or Indirect Pointer to 
Operand Descriptor 1 

Operand Descriptor or Indirect Pointer to 

35 

_______________ ~ra!!d_~s£riPior ~ ____________ _ 

Operand Descriptor or Indirect Pointer to . 
_______________ ~ra!!d_~s£rmor J ____________ _ 

Figure 8-2. Multiword Instruction Format 

The fields in the instruction word are defined below. The data fields in the 
operand descriptor words and the indirect word are discussed in detail in 
Section 5 under Operand Descriptors and additional detail including coding 
formats, is provided in Section 7 under Multiword Instructions. 

F - Bit value specifier for bit string fill 

P - Plus sign indicator (octal 13 or 14) 

FILL - Fill character specifier 

T - Truncation fault enable indicator 

RD - Rounding indicator 

MFI - Modification field 1 (bits 29-35) denotes address modiflcation to 
be performed for operand descriptor 1. (see "Multi word Modification 
Field" in Section 7.) 

MF2 - Bits 11-17 describe address modification to be performed on this 
operand for operand descriptor 2 

8-9 DZ51-00 



MF3 - Bits 2-8 describe address modification to be performed on this 
operand for operand descriptor 3 

OP CODE - 10-bit operation code field. Octal representation consisting of 
three octal digits followed by the content of bit 27 (1) in 
parentheses. 

I - Program interrupt inhibit bit 

AR - Address register indicator 

RL - Register containing length indicator 

ID - Indirect operand descriptor indicator 

REG - Type of register modification (A, AU, Q, QU, IC, DU, XB/GXg) 

Address Register Special Arithmetic Instructions 

These instructions provide the capability for replacing, adding to, or 
subtracting from the contents of an address register on either a word, 
character, or bit address basis. The operation is register-to-register, with 
no memory fetch involved. 

The special arithmetic instructions have the format shown in Figure 8-3: 

000 1 1 222 333 3 

y OP CODE 

Figure 8-3. Address Register Special Arithmetic 
Instruction Format 

AR# Selects address register to be altered 

S - Sign bit 

y Used as a word displacement (no character or bit position included) 
along with the contents specified in the DR field to alter the 
contents of the specified address register. Bit 3 provides 
negative or positive word displacement. 

OP CODE - lO-bit operation code field. Octal representation consisting of 
three octal digits followed by the content of bit 27 (1) in 
parentheses. 

I - Program interrupt inhibit bit 

8-10 DZ51-00 

/ 



( 

(~ 

AR - Address register bit. If bit 29 = 1, the sum of the DR (in 
characters, words, or bits) and the y field (in words) are added to 
or subtracted from the contents of the AR specified in bits 0-2. If 
bit 29 = 0, the described sum or its two's complement is loaded 
into the AR for addition or subtraction, respectively. If the 
mnemonic is coded with X (for example, AWDX), bit 29 is forced to 
zero. 

MHZ - Bits 30-31 must be zero. The operand length is contained in the 

DR 

register specified by DR. 

Displacement register. Specifies which register contains the 
displacement value. The register codes and register lengths are 
the same as those used in MF fields except that IC modification is 
illegal. 

The operations for adding a value to the contents of an address register 
proceed identically as with effective operand address preparation from an 
operand descriptor, with the final results stored in the specified address 
register. The subtract operation differs only in that the contents of the 
register specified by the code in the DR field are first added to the y field. 
This result is then subtracted from the actual contents of the address register 
or from the implied zero contents and the result is placed in the address 
register. The codes for DU, DL, and IC are illegal for the DR field and cause 
an IPR fault. 

No indicators are affected by these instructions. 

Character Move To/From Register Instructions 

Two instructions permit moves of one, two, three, or four 9-bit characters from 
a memory location to a register or from a register to memory. These 
instructions have the format shown in Figure 8-4. 

o 1 1 1 1 2 2 2 3 

1° 
Not Used 

Figure 8-4. Character Move To/From Register Instruction Format 

RECR - Specifies the register to which characters are moved (MTR), or from 
which characters are moved (MTM). (Refer to MTR/MTM instructions.) 

OP CODE - 10-bit operation code field. Octal representation consisting of 
three octal digits followed by the content of bit 27 (1) in 
parentheses. 

I - Program interrupt inhibit bit 

8-11 DZ51-00 



AR - Address register indicator 

RL - This field is ignored 

ID - Indirect operand descriptor indicator 

REG - Type of register modification (A, AU, Q, QU, IC, DU, xnJGXn) 

These instructions move one, two, three, or four 9-oit characters from (MTR) or 
to (MTM) a memory location to or from a register specified by the RECR field. 

Register-to-Register I DStructions 

Register to Register instructions known as "RRIt type instructions are valid 
only in the ES mode. An attempt to execute these instructions in the NS mode 
results in an IPR fault. RR type instructions permit movement, arithmetic 
operation, and shift of fixed-point data using the GXn, A and Q registers. An 
attempt to execute any RR type instruction by the RPT, RPD, or RPL instructions 
results in an IPR fault. The format for register to register instructions is 
shown in Figure 8-5. 

a 
a 

I 

a a 1 1 1 1 222 3 3 3 
3 4 a 1 7 8 789 1 2 5 

Rl I NU I 
(J) 

I OP CODE II I MBZ I R2 I 
Figure 8-5. Register To Register Instruction Format 

Bits Field DescriQtion 

a - 3 Rl A code indicating a register to be the destination of the 
result. The allowable codes follow: 

Register Code Result 

0000 IPR 
0001 IPR 
0010 IPR 
0011 IPR 
0100 IPR 
0101 A 
0110 Q 
0111 IPR 
1000 GXO 
1001 GX1 
1010 GX2 
1011 GX3 
1100 GX4 
1101 GX5 
1110 GX6 
1111 GX7 

8-12 DZ5l-00 

,/ ~'\ 

. '~~ 



( 

( 

4 -10 NU 

11-17 J 

18-27 OP 

28 I 

Not used. Should be set to O. 

Used only in a shift instruction. Specifies the shift number 
(immediate value). Must be 0 in all but shift instructions. 

Operation code 

Interrupt inhibit bit 

29-31 MHZ Must be zero or an IPR fault occurs 

32-35 R2 

NOTES: 

A code indicating the source register. The codes for this 
register are the same as for Rl. 

1. Specifying a register code of 0000 in a shift instruction 
does not result in an IPR fault. 

2. If a register pair appears in an instruction specification, 
the two registers are handled as linked. The list below 
indicates the register codes to be assocciated with the 
register pair. 

Register Code Result 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
100x 
101x 
110x 
l11x 

IPR 
IPR 
IPR 
IPR 
IPR 
A, Q 
A, Q 
IPR 
GXO, GXl 
GX2, GX3 
GX4, GX5 
GX6, GX7 

where x means this bit is ignored by the hardware. 

8-13 DZ51-00 

, 



I NS'l'RUCTI ON REPER'l'OI RE 

The processor interprets a 10-bit field of the instruction word as the operation 
code. This field size yields 1024 possible instructions codes of which over half 
are implemented. 

Detailed on the following pages are the processor instructions and operation codes 
sorted alphabetically on the mnemonic by function. 

8-14 DZ51-00 

/ 
! 



A4BD 
A4BDX 

A4BD 
A4BDX 

FORMAT: 

CODING FORMAT: 

OPERATING MODES: 

EXPLANATION: 

Add 4-Bit Displacement to Address Register 

A4BD 
A4BDX 

502 (1) 

Special arithmetic instruction format (see Figure 8-3) 

1 8 16 

{A4BD ) 
{A4BDX) word displacement,R,AR 

When the mnemonic is coded with an "X" (A4BDX), bit 29 is 
forced to zero. 

Any 

NS Mode 

The count of 4-bit characters contained in the register 
specified by the DR field is effectively divided by 8, 
producing a word count and a character count. The word count 
is added to the y field (bit 3 extended). 

If bit 29 = 0, this sum replaces bits 0-17 of the specified 
AR, with the character count (from the divide) translated 
into bit string representation and replacing bits 18-23 of 
AR. 

If bit 29 = 1, the sum of the word count (from the divide) 
and y field is added to bits 0-17 of the specified AR. The 
CHAR and BIT portions (bits l8-23) of the specified AR are 
forced to point to a 4-bit character boundary in bit string 
representation. The resulting character count is added to 
the character count from the divide operation, with the 
result being translated back into bit string representation. 
These formed values for the WORD, CHAR, and BIT fields are 
stored in bits 0-23 of the specified AR. With this addition, 
carry from the CHAR field is transferred to the WORD field. 

ES Mode 

The count of 4-bit characters contained in the register 
specified by the DR field is effectively divided by 8, 
producing a word count and a character count. The word count 
is added to the y field (bit 3 extended). 

8-15 DZ51-00 



A4BD 
A4BDX 

ILLEGAL ADDRESS 

A4BD 
A4BDX 

If bit 29 = 0, this sum replaces bits 0-29 of the specified 
AR, with the character count (from the divide) translated 
into bit string representation and replacing bits 30-35 of 
AR. 

IF bit 29 = 1, the sum of the word count (from the divide) 
and y field is added to bits 0-29 of the specified AR. The 
CHAR and BIT portions (bits 30-35) of the specified AR are 
forced to point to a 4-bit character boundary. The resulting 
character count is added to the character count from the 
divide operation, with the result translated back into bit 
string representation. These formed values for the WORD, 
CHAR, and BIT fields are stored in bits 0-35 of the specified 
AR. With this addition, carry from the CHAR field is 
transferred to the WORD field. 

Effectively, the two bit string representations are added and 
the result is translated back to a format allowing 2 bits to 
represent the characters and 4 bits to represent bits. Any 
overflow of the 2 bits increments the address field and the 
4-bit field is handled as mod-9. Any overflow of the 2-bit 
field increments the character (2-bit) field. 

MODIFICATIONS: When DU, DL, and IC are specified in the DR. 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8 

EAX3 
A4BDX 
A4BD 

EAX4 
A4BDX 
EAX5 
A4BD 

16 

9 
2,3,5 
0,3,5 

6 
0,4,3 
9 
4,5,3 

AR5 octal contents - 0 0 0 0 0 3 0 5 
AR5 octal contents - 0 0 0 0 0 4 2 0 

AR3 octal contents - 0 0 0 0 0 0 6 0 

AR3 octal contents - 0 0 0 0 0 5 6 5 

8-16 DZ51-00 



A6BD 
A6BDX 

A6BD 
A6BDX 

FORMAT: 

CODING FORMAT: 

OPERATING MODES: 

EXPLANATION: 

A6BD 
A6BDX 

Add 6-Bit Displacement to Address Register 501 (1) 

Special arithmetic instruction format (see Figure 8-3) 

1 8 16 

{A6BD } 
{A6BDX} word disp1acement,R,AR 

When the mnemonic is coded with an X (A6BDX), bit 29 is 
forced to zero. 

Any 

NS Mode 

The count of 6-bit characters contained in the register 
specified by the DR field is effectively divided by 6, 
producing a word count anp a character count. The word count 
is added to the y field (bit 3 extended). 

If bit 29 = 0, this sum replaces bits 0-17 of the specified 
AR, with the character count (from the divide) being 
translated into bit string representation and replacing bits 
18-23 of AR. 

If bit 29 = 1, the sum of the word count (from the divide) 
and y field is added to bits 0-17 of the specified AR. The 
CHAR and BIT portions (bits 18-23) of the specified AR are 
forced to point to a 6-bit character boundary. The resulting 
6-bit character count is added to the character count from 
the divide operation, with the result being translated back 
into bit string representation. These formed values for the 
WORD, CHAR, and BIT fields are stored in bits 0-23 of the 
specified AR. With this addition, carry from the CHAR field 
(when carry + character count> 5) is transferred to the WORD 
field. 

8-17 DZ5l-00 i 



A6BD 
A6BDX 

ES Mode 

A6BD 
A6BDX 

The count of 6-bit characters contained in the register 
specified by the DR field is effectively divided by 6, 
producing a word count and a character count. The word count 
is added to the y field (bit 3 extended). 

If bit 29 = 0, this sum replaces bits 0-29 of the specified 
AR, with the character count (from the divide) translated 
into bit string representation and replacing bits 30-35 of 
AR. 

If bit 29 = 1, the sum of the word count (from the divide> 
and y field is added to bits 0-29 of the specified AR. The 
CHAR and BIT portions (bits 30-35) of the specified AR are 
forced to point to a 6-bit character boundary. The resulting 
6-bit character count is added to the character count from 
the divide operation, with the result translated back into 
bit string representation. These formed values for the WORD, 
CHAR, and BIT fields are stored in bits 0-35 of the specified 
AR. With this addition, carry from the CHAR field (when 
carry + character count> 5) is transferred to the WORD 
field. 

I LLEGAL ADDRESS 
MODIFICATIONS: When DU, DL, or IC are specified in DR. 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None Affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modification is used. 

EXAMPLES: (Applies to NS mode only) 

1- 8 16 32 

EAX2 8 
A6BDX 3,2,6 AR6 octal contents - o 000 0 423 
A6BD 2,2,6 AR6 octal contents - o 0 000 746 

EAX4 15 
A6BDX 0,4,7 AR7 octal contents - o 000 0 2 4 0 
A6BD 2,4,7 AR7 octal contents - o 000 0 7 0 0 

8-18 DZ5l-00 



(/ 

( 

A9BD 
A9BDX 

A9BD 
A9BDX 

FORMAT: 

CODING FORMAT: 

OPERATING MODES: 

EXPLANATION: 

Add 9-Bit Displacement to Address Register 

A9BD 
A9BDX 

SOD (1) 

Special arithmetic instruction format (see Figure 8-3) 

1 8 16 

{A9BD } 
{A9BDX} word displacement,R,AR 

When the mnemonic is coded with an X (A9BDX), bit 29 is forced to 
zero. 

Any 

NS Mode 

The count of 9-bit characters contained in the register specified 
by the DR field is effectively divided by 4, producing a word 
count and a character count. This word count is then added to 
the y field (bit 3 extended). 

If bit 29 = 0, the resulting sum of the word addresses and the 
character count (from the divide operation) replaces bits 0-19 of 
the specified AR. 

If bit 29 = 1, the resulting sum of the word addresses is added 
to bits 0-17 of the specified AR and the character count (from 
the divide operation) is added to bits 18-19 of C(AR). These 
results are then stored in bits 0-19 of the specified AR. In 
either case, bits 20-23 of the specified AR are zeroed. carry is 
transferred from bit 18 to bit 17 with this addition. 

ES Mode 

The count of 9-bit characters contained in the register specified 
by the DR field is effectively divided by 4, producing a word 
count and a character count. This word count is then added to 
the y field (bit 3 extended). 

If bit 29 = 0, the resulting sum of the word addresses and the 
character count (from the divide operation) replaces bits 0-31 of 
the specified AR. 

8-19 DZ51-00 



A9BD 
A9BDX 

I LLEGAL ADDRESS 

A9BD 
A9BDX 

If bit 29 = 1, the resulting sum of the word addresses is 
added to bits 0-29 of the specified AR and the character 
count (from the divide operation) is added to bits 30-31 of 
C(AR). These results are then stored in bits 0-31 of the 
specified AR. In either case, bits 32-35 of the specified AR 
are zeroed. carry is transferred from bit 30 to bit 29 with 
this addition. 

MODIFICATIONS: When DU, DL, or IC are specified in the DR. 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modification is used. 

EXAMPLES: (Applies to NS mode only) 

1 8 16 32 

!AX1 6 
A9BDX 2,1,2 AR2 octal contents - o 0 0 0 0 34 0 
A9BD 2,,2 AR2 octal contents - o 0 0 0 054 0 

EAX2 15 
A9BDX 4,2,6 AR6 octal contents - o 0 0 007 6 0 
A9BD 0,2,6 AR6 octal contents - o 0 0 0 1 340 

8-20 DZ51-00 



(-

( 

AARn AARn 

Alphanumeric Descriptor To Address Register !! 56!! (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 

1 8 16 

MR.!! LOCSYM, RM, AM 

OPERATI NG MODES: Any 

SUMMARY: For n = 0, 1, ••• or 7 as determined by op code 

EXPLANATION: 

I LLEGAL ADDRESS 

C(Y)0-17 --> C(ARn)0-17 

C(Y)18-20 translated C(ARn)18-23 

The alphanumeric descriptor is fetched from the computed 
effective address Y. The TA field, bits 21 and 22, is examined 
to determine the type of data described. If the TA code 
indicates 9-bit character data, bits 18 and 19 of the descriptor 
CN field go to the corresponding bit positions of AR!! and zeros 
fill bits 20-23 of ARn. If the TA code indicates 6- or 4-bit 
character data, the descriptor CN field is appropriately 
translated into bit string representation and goes to bits 18-23 
of AR!!. In all cases, the word portion of the fetched descriptor 
is placed in the word portion (bits 0-17) of ARn. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

ILLEGAL EXECUTES: If this instruction is executed in ES mode. 

INDICATORS: 

NOTES: 

None affected 

1. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used or if the descriptor 
TA field contains code 11. 

8-21 DZ5l-00 



AARn AARn 

2. A:::, IPR fault occurs if descriptor CN field contains xxl for 
TA = 00, or llx for TA = 01. 

3. An IPR fault occurs if an attempt is made to execute this 
instruction in the ES mode. 

EXAMPLES: (Applies to NS mode only) 

1 8 16 

AAR4 DESCR 

. 
DESCR ADSC9 FLD1, 3 , 1 

32 

load data string address into AR4 
memory contents in octal 

001023600001 - descriptor 
AR4 octal contents - 0 0 1 0 2 3 6 0 

8-22 DZS1-00 



( 

( 

ABD 
ABDX 

ABD 
ABDX 

FORMAT: 

COOl NG FORMAT: 

OPERATING MODES: 

EXPLANATION: 

Add Bit Displacement to Address Register 

ABD 
ABDX 

503 (1) 

special arithmetic instruction format (see Figure 8-3). 

1 8 16 

{ABD } 
{ABDX} word displacement,RM,AR 

When the mnemonic is coded with an X (ABDX) , bit 29 is forced to 
zero. 

Any 

NS Mode 

The bit string count in the register specified in the DR field is 
divided by 36. The quotient is taken as the word count and the 
remainder is taken as the bit count. The word count is added to 
the y field for which bit 3 of the instruction word is extended 
and the sum is taken. 

If bit 29=0, the sum is loaded into bits 0-17 of the specified 
AR, and the character portion and the bit portion of the 
remainder are loaded into bits 18-23 of the specified AR. 

If bit 29=1, the sum is added to bits 0-17 of the specified AR. 
The CHAR and BIT fields (bits 18-23) of the specified AR are 
added to the character portion and the bit portion of the 
remainder. WORD, CHAR and BIT fields generated in this manner 
are loaded into bits 0-23 of the specified AR. with this 
addition, carry from the BIT field (bit 20) and the CHAR field 
(bit 18) is transferred (when BIT field >8, CHAR field >3). 

8-23 DZSl-OO 



ABD 
ABDX 

ES Mode 

ABO 
ABDX 

The bit string count in the register specified in the DR 
field is divided by 36. The quotient is taken as the word 
count and the remainder is taken as the bit count. The word 
count is added to the y field for which bit 3 of the 
instruction word is extended and the sum is taken. 

If bit 29=0, the sum is loaded into bits 0-29 of the 
specified AR, and the character portion and the bit portion 
of the remainder are loaded into bits 30-35 of the specified 
AR. 

If bit 29=1, the sum is added to the sign extended value of 
bits 0-29 of the specified AR. The CHAR and BIT fields (bits 
30-35) of the specified AR are added to the character portion 
and the bit portion of the remainder. WORD, CHAR, and BIT 
fields generated in this manner are loaded into bits 0-35 of 
the specified AR. with this addition, carry from the BIT 
field (bit 30) and the CHAR field (bit 32) is transferred 
(when BIT field >8, CHAR field >3). 

I LLEGAL ADDRESS 
MODIFICATIONS: When DU, DL, or Ie are specified in the DR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

EXAMPLES: (Applies to NS mode only) 

1 8 16 

EAX6 85 
ABDX 7,6,2 
ABD 2,6,2 

EAXI 74 
EAX2 30 
ABDK 4,1,3 
ABD 0,2,3 

32 

AR2 octal contents - 0 0 0 0 1 1 2 4 
AR2 octal contents - 0 0 0 0 1 5 5 0 

AR3 octal contents - 0 0 0 0 0 6 0 2 
AR3 octal contents - 0 0 0 0 0 6 6 5 

8-24 DZ51-00 



( 

( 

AD2D 

AD2D Add Using Two Decimal Operands 

FORMAT: 

o 0 001 
o 1 890 

Iploo------------OITIRDI 

0 0 
a 2 

AR# 

o 0 
a 2 

AR# 

CODING FORMAT: 

Y1 

Y1 

Y2 

Y2 

1 

1 
1 

MF2 

8 

AD2D 
NOSCn 
NOSCn 

1 1 Op Code 
7 8 

I 
202(1) 

1 1 2 2 222 
780 1 234 

CN1 TN1 Sl 

1 1 2 2 222 
780 1 234 

CN2 TN2 S2 
.. 

16 

MF1),(MF2),RD,P,T 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 

SF1 

SF2 

222 
789 

II I 

2 3 
9 0 

2 3 
9 0 

AD2D 

202 (1) 

MF1 

N1 

N2 

3 
5 " 

3 
5 

3 
5 

I 

(Refer to Section 7 under Mu1tiword Instructions for 
description of Multiword Modification Field.) 

OPERATI NG MODES: Any 

8-25 DZ51-00 



AD2D AD2D 

SUMMARY: C(string 2) + (string 1) --> C(string 2) 

Same as AD3D, except that the sum is stored using YC2, TN2, 
S2 and, if S2 indicates a scaled format, SF2. 

ILLEGAL ADDRESS 
MODI FI CATl ONS : DU, DL for MF1 and MF2 

ILLEGAL REPEATS: RPT, RPD, RPL 

I ND! CATORS: Same as for AD3D 

NOTES: 1. All notes for AD3D apply also to AD2D. 

EXAMPLES: 

1 8 

AD2D 
NDSC4 
NDSC9 
USE 

FLDl EDEC 
FLD2 EDEC 

USE 

AD2D 
NDSC9 
NDSC4 
USE 

FLDl EDEC 
FLD2 EDEC 

USE 

2. Illegal Procedure fault same as for MVN. 

3. An I llega1 Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

16 32 

, , , ,1 with truncation enable option 
FLDl,O,8,2,-2 FL01 addend operand descriptor 
FLD2,O,6 FLD2 addend operand descriptor 
CONST. memory contents 
8P123456+ o 1 2 3 456 + 
6A+1E+2 + 0 0 0 1 2 

+ 1 3 3 4 0 (Sum) (truncation fault) 

, , ,1 with plus sign octal 13 option 
FLD1,O,4 FL01 addend operand descriptor 
FLD2,1,7,2,-4 FLD2 addend operand descriptor 
CONST. memory contents 
41\+99. + 9 9 0 
8Pl23456+ o 1 2 3 456 + 

o 1 1 3 4 56+ (Sum) (overflow fault) 

8-26 DZ5l-00 

". 



( 

AD2D AD2D 

EXAMPLE ~~TH ADDRESS MODIFICATION: 

1 8 

EAXl 
EAX7 
EAX4 
AWDX 
AD2D 
NDSC4 
NDSC9 

USE 
FLDl EDEe 
FLD2 EDEe 
I NDSC2 NDSC9 

USE 

16 32 

1 load character modifier into Xl 
7 load FLDl length into X7 
FLDl load FLDl address into X4 
0,4,4 put FLDl address into AR4 
(l,l"Xl),(,,1),l,1 rounding and plus sign options 
0"X7,2,-2,4 FLDl operand descriptor (FLDl,1,7,2,-2) 
INDSC2 pointer to FLD2 indirect operand descriptor 

CONST. 
8P123450-
8A+9876E+2 
FLD2,0,8 

memory contents ° 1 2 3 4 5 ° -
+ ° ° 9 8 7 6 2 
FLD2 indirect operand descriptor 
+ 9 8 6 3 6 6 ° (Sum) 

8-27 DZ5l-00 



AD2DX AD2DX 

AD2DX Add Using Two Decimal Operands Extended 242 (1) 

FORMAT: 

000 0011 1 1 Op COde 222 3 

MF2 242(1) NFl 

o 0 
o 2 

o 
o 

AR# 

AR# 

CODING FORMAT: 

Y1 

Y1 

Y2 

Y2 

1 8 

AD2DX 
NOSen 
NOSCn 

16 

1 122 222 
7 801 234 

CN1 TN2 SX1 

1 122 222 
7 801 234 

CN2 TN2 SX2 

(MF1),(MF2),RD,CS,T,NS 
LOCSYM,CN,N,SX,SF ,AM 
LOCSYM,CN,N,SX,SF,AM 

SF1 

SF2 

2 3 
9 0 

2 3 
9 0 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

OPERATING MODES: Any 

SUMMARY: C(string 2} + C(string 1) --> C(string 2) 

8-28 

N1 

N2 

3 
5 

3 
5 

DZ51-00 



( 

AD2DX 

EXPLANATION: 

ILLEGAL ADDRESS 

AD2DX 

The decimal number of data type TNl, sign and decimal type SXl, 
and starting location YCl, is added to the decimal number of 
data type TN2, sign and decimal type SX2, and starting location 
YC2. The sum is stored starting in location YC2 as a d~cimal 
number of data type TN2 and sign and decimal type SX2. 

o If SX2 indicates a fixed-point format, the results are 
stored using scale factor SF2, which causes leading or 
trailing zeros (4 bits - 0000, 9 bits - 000110000) to be 
supplied and/or most significant digit overflow or least 
significant digit truncation to occur. 

o If SX2 indicates a floating-point format, the result is 
right-justified to preserve the most significant nonzero 
digits even if this causes least significant truncation. 

o The character set is defined by CS. Placement of an 
overpunched sign in the output is controlled by NS. (Refer 
to the introductory pages of this section for definition of 
NS.) If RD is 1, rounding takes place prior to storage. 
Provided that strings 1 and 2 are not overlapped, the 
contents of the decimal number that starts in location YCl 
remains unchanged. 

MODIFICATIONS: DU, DL for MFl and MF2 

I LLEGAL REPEATS: 

I NDI CATORS : 

RPT, RPD, RPL 

Zero - If result equals zero, then ONi otherwise, OFF 

Negative - If result is negative, then ONi otherwise, OFF 

Truncation - If in the preparation of the final result, one 
or more least significant digits (zero or 
nonzero) are lost and rounding is not 
specified, then ON; otherwise (i.e., no least 
significant digits lost or rounding specified), 
OFF. 

Overflow - If data is lost in most significant positions, 
then ONi otherwise, unchanged 

Exponent 
Overflow - If exponent of floating point result> 127, 

then ON; otherwise, unchanged 

8-29 DZ5l-00 



AD2DX 

NOTES: 

AD2DX 

Exponent 
Underflow If exponent of floating point result < - 128, 

then ON; otherwise, unchanged 

1. Truncation fault occurs if the truncation indicator is 
set and the truncation fault enable (T) bit is a 1. 

2. Illegal procedure faults occur when 

a. DU or DL modification in NFl or MF2. 

b. The sign and numeric digits contains an unpermitted 
code. 

c. Though the operand descriptor indicates the presence 
of a sign or exponent, the value of Nl or N2 does not 
contain the number of characters required for the sign 
and exponent (when at least one digit is required). 

d. An illegal repeat is used. 

3. Independent of the data type being used, either packed 
decimal or 9-bit numeric, floating point or fixed-point, 
significant digits of the result may be lost if the 
result field as defined by the result descriptor is not 
large enough to contain the calculated result after it 
has been aligned. 

4. If an illegal digit or sign is detected, part or all of 
the receiving field may be changed before the IPR fault 
occurs. 

5. All notes for AD3D apply to AD2DX. 

6. Refer to the specifications on MVNX for information on 
coding of overpunched signs. 

7. An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-30 DZ5l-00 



( 

( 

AD3D 

AD3D 

FORMAT: 

000 
012 

1+1 
0 
0 

o 
o 

0 
2 

AR# 

AR# 

o 0 
o 2 

AR# 

MF3 

Add Using Three Decimal Operands 

001 1 
890 1 

HRDI MF2 

Yl 

Yl 

Y2 

Y2 

Y3 

Y3 

1 1 Op Code 
7 8 

.. 

I 222(1) 

1 1 2 2 222 
7 801 234 

CNl TNl Sl 

1 122 222 
780 1 234 

CN2 TN2 S2 

1 1 2 2 222 
780 1 234 

CN3 TN3 S3 

8-31 

SFl 

SF2 

SF3 

222 
789 

H 
2 3 
9 0 

2 3 
9 0 

2 3 
9 0 

AD3D 

222 (1) 

MFl 

Nl 

N2 

N3 

3 
5 

3 
5 

3 
5 

3 
5 

I 

DZ51-00 



AD3D 

CODING FORMAT: The AD3D instruction is coded as follows: 

1 8 

AD3D 
NOSCD 
NOSCD 
NOSCD 

16 

(MF1),(MF2),(MF3),RD,P,T 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN ,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

AD3D 

OPERATI NG MODES: Any 

SUMMARY: C(string 2) + C(string 1)--> C(string 3) 

EXPLANATION: The decimal number of data type TNl, sign and decimal type 
Sl, and starting location yel, is added to the decimal number 
of data type TN2, sign and decimal type S2, and starting 
location YC2. The sum is stored starting in location YC3 as 
a decimal number of data type TN3 and sign and decimal type 
S3. 

If S3 indicates a fixed-point format, the results are stored 
using scale factor SF3, which causes leading or trailing 
zeros (4 bits - 0000, 9 bits - 000110000) to be supplied 
and/or most significant digit overflow or least significant 
digit truncation to occur. 

If S3 indicates a floating-point format, the result is 
right-justified to preserve the most significant nonzero 
digits even if this causes least significant truncation. 

If P = 1, positive signed 4-bit results are stored using 
octal 13 as the plus sign. If P = 0, positive signed 4-bit 
results are stored with octal 14 as the plus sign. If RD is 
1, rounding takes place prior to storage. 

Provided that strings 1, 2, and 3 are not overlapped, the 
contents of the decimal numbers that start in locations YCl 
and YC2 remai~ unchanged. 

The zero indicator is set when the decimal number is zero; it 
does not indicate the case in which all bits are zero. 

8-32 DZ51-00 

\ 

j 



AD3D 

I LLEGAL ADDRESS 

AD3D 

If the result is given by a fixed-point, operations are 
performed by justifying the scaling factors (SFl, SF2, and 
SF3) of the operands 1, 2, and 3 as follows: 

If SFl > SF2 

SFI > SF2 >= SF3 --> Justify to SF2 

SF3 > SFl > SF2 --> Justify to SFl 

SFI >= SF3 > SFl --> Justify to SF3 - I 

If SF2 > SFl 

SF2 > SFl >= SF3 --> Justify to SFl 

SF3 > SF2 > SFl --> Justify to SF2 

SF2 >= SF3 > SFl --> Justify to SF3 - 1 

MODIFICATIONS: DU, DL for MF1, MF2, and MF3 

I LLEGAL REPEATS: RPT ,RPD, RPL 
INDICATORS: Zero - If result equals zero, then ON: otherwise, OFF 

Negative - If result is negative, then ON: otherwise, OFF 

Truncation - If, in the preparation of the final result, 
one or more least significant digits (zero or 
nonzero) are lost and rounding is not 
specified, then ON. Otherwise (i.e., no least 
significant digits lost or rounding is 
specified), OFF 

Exponent 
Overflow If exponent of floating-point result is > 127, 

then ON; otherwise, unchanged 

Exponent 
Underflow If exponent of floating point result < - 128, 

then ON: otherwise, unchanged 

Overflow - If data is lost in most significant positions, 
then ON: otherwise, unchanged 

8-33 DZS1-OO 



AD3D 

NOTES: 

EXAMPLES: 

1 

FLDl 
FLD2 
FLD3 

AD3D 

1. Truncation fault occurs if the Truncation indicator is set 
and the truncation fault enable (T) bit is 1. 

2. Illegal procedure faults occur when 

a. DU or DL modification in NFl or NF2. 

b. The sign and numeric digits contains an unpermitted 
code. 

c. Though the operand descriptor indicates the presence 
of a sign or exponent, the value of Nl or N2 
does not contain the number of characters required 
for the sign and exponent (when at least one digit 
is required). 

3. Independent of the data type being used (either packed 
decimal or 9-bit numeric floating-point or scaled) 
significant digits in the result may be lost if: 

a. The difference between the scaling factors (exponents) 
of the source operands is large enough to cause the 
expected length of the intermediate result to exceed 63 
digits after decimal point alignment of source 
operands, followed by addition. \, ~j 

b. The result field as defined by the result descriptor is 
not large enough to contain the calculated result after 
it has been aligned. 

4. If an illegal digit or sign is detected, part or all of 
the receiving field may be changed before the IPR fault 
occurs. 

8 

AD3D 
NOSC9 
NOSe9 
NOSC4 
USE 
EDEC 
EDEC 
BSS 
USE 

16 

, , ,1, 1 
FLD1,0,4,3,-2 
FLD2,0,8,2,-2 
FLD3,2,6,1 
CONST. 
4Al234 
8A65432l+ 
1 

32 

with rounding and plus sign options 
FLDl addend operand descriptor 
FLD2 addend operand descriptor 
operand descriptor for sum field 
memory contents 
1 2 3 4 
0654321+ 
x.x+06556 (Sum ) 
instruction fault? no 

8-34 DZ5l-00 



( AD3D AD3D 

EXAMPLE v,TI TH ADDRESS MODI n CATl ON: 

1 8 16 32 

EAX2 2 load character modifier into X2 
EAX6 6 load FLDI length into X6 
EAX4 FLDI load FLDI address into X4 
AWDX 0,4,4 put FLDI address into AR4 
AD3D (1),(,l"X2),{,,1),1,1 
NDSC9 0,0,4, FLDl operand descriptor (FLD1,0,4,0) 
NDSC4 FLD2"X6,3,-2 FLD2 operand descriptor (FLD2,2,6,3,-2) 
ARC DFLD3 pointer to FLD3 operand descriptor 
USE CONST. memory contents 

FLDl EDEC 4A-12E+2 - 122 
FLD2 EDEC 8P123456 00123456 
FLD3 BSS 1 xxx+0346 (Sum) 
DFLD3 NDSC4 FLD3,3,5,1,-1 FLD3 sum operand descriptor 

USE instruction fault? no 

( 

8-35 DZ51-00 



AD3DX 

AD3DX 

FORMAT: 

0 o 0 
012 

IcsH MF3 

0 0 
0 2 

AR# 

o 0 
o 2 

AR# 

o 0 
o 2 

AR# 

Add using Three Decimal Operands Extended 

001 1 
890 1 

HRDI MF2 

Y1 

Y1 

Y2 

Y2 

Y3 

Y3 

1 1 Op Code 
7 8 

I 262(1) 

1 1 2 2 222 
7 8 0 1 234 

CN1 TN1 SXI 

1 122 222 
7 801 234 

CN2 TN2 SX2 

1 1 2 2 222 
780 1 234 

CN3 TN3 SX3 

8-36 

SF1 

SF2 

SF3 

222 
789 

II I 
2 3 
9 0 

2 3 
9 0 

2 3 
9 0 

AD3DX 

262 (1) 

NFl 

N1 

N2 

N3 

3 

3 
5 

3 
5 

3 
5 

DZ51-00 



( 

AD3DX 

CODING FORMAT: 

OPERATl NG MODES: 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

1 8 

AD3DX 
NOSCn 
NOSen 
NDSCn 

16 

(MF1),(MF2),(MF3),RD,CS,T,NS 
LOCSYM,CN ,N ,SX,SF,AM 
LOCSYM,CN ,N ,SX,SF,AM 
LOCSYM,CN,N ,SX,SF ,AM 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

Any 

C(string 2) + C(string 1) --> C(string 3) 

AD3DX 

The decimal number of data type TNI, sign and decimal type 
SKI, and starting location yel, is added to the decimal 
number of data type TN2, sign and decimal type SX2, and 
starting location YC2. The sum is stored starting in 
location YC3 as a decimal number of data type TN3 and sign 
and decimal type SX3. 

If SX3 indicates a fixed-point format, the results are stored 
using scale factor SF3, which causes leading or trailing 
zeros (4 bits - 0000, 9 bits - 000110000) to be supplied 
and/or most significant digit overflow or least significant 
digit truncation to occur. 

If SX3 indicates a floating-point format, the result is 
right-justified to preserve the most significant nonzero 
digits even if this-causes least significant truncation. The 
character set is defined by CS. Placement of overpunched 
sign in the output is controlled by NS. (Refer to the 
introductory pages of this section for definition of NS.) If 
RD is 1, rounding takes place prior to storage. Provided 
that strings 1, 2, and 3 are not overlapped, the contents of 
the decimal numbers that start in locations YCI and YC2 . 
remain unchanged. 

MODIFICATIONS: DU, DL for MF1, MF2 and MF3 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: Zero - If result equals zero, then ON: otherwise, OFF 

Negative - If result is negative, then ON: otherwise, OFF 

8-37 DZ51-00 



AD3DX AD3DX 

NOTES: 

Truncation - If, in the preparation of the final result, 
one or more least significant digits (zero or 
nonzero) are lost and rounding is not 
specified, then ON. Otherwise (i.e., no least 
significant digits lost or rounding 
specified) I OFF. 

Overflow - If data is lost in most significant positions, 
then ON ~ otherwise, unchanged. 

Exponent 
Overflow - If exponent of floating-point result> 127, 

then ON ~ otherwise, unchanged. 

Exponent 
Underflow If exponent of floating point result < - 128, 

then ON; otherwise, unchanged 

1. Truncation fault occurs if the truncation indicator is set 
and the truncation fault enable (T) bit equals l. 

2. Illegal procedure faults occur when: 

a. DU or DL modification in NFl or MF2. 

b. The sign and numeric digits contains an unpermitted 
code. 

c. Though the operand descriptor indicates the presence 
of a sign or exponent, the value of Nl or N2 
does not contain the number of characters required 
for the sign and exponent (when at least one digit 
is required). 

3. Independently of the data type being used (either packed 
decimal or 9-bit numeric, floating-point or scaled) 
significant digits of the result may be lost if the result 
field as defined by the result descriptor is not large 
enough to contain the actual calculated result after it 
has been aligned. 

4. If an illegal digit or sign is detected, part or all of 
the receiving field may be changed before the IPR fault 
occurs. 

5. For coding of overpunched signs, refer to MVNX. 

6. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-38 DZ51-00 



( 

ADA 

ADA Add to A-Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(A) + C(Y) --> C(A)i C(Y) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: None 

INDICATORS: Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

Overflow - I f range of A is exceeded, then ON 

075 (0) I 

carry - If a carry out of bit ° of C(A) is generated, 
then ON; otherwise, OFF 

8-39 DZ51-00 



ADAQ 

ADAQ Add to AQ-Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: C(AQ) + C(Y-pair) -> C(AQ): C(Y-pair) unchanged 

I LLEGAL ADDRESS 
MODI PI CATl ONS: DU, DL, CI, SC I SCR 

I LLEGAL REPEATS: None 

INDICATORS: zero - If C(AQ) = 0, then ON: otherwise, OFF 

Negative - If C{AQ)O = 1, then ON: otherwise, OFF 

Overflow - If range of AQ is exceeded, then ON 

ADAQ 

077 (0) 

carry - If a carry out of bit 0 of C(AQ) is generated, 
then ON; otherwise, OFF 

NOTE: An Illegal Procedure fault occurs if an illegal address 
modification is used. 

8-40 DZ5l-00 



( 
ADE 

ADE Add to Exponent Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: C(E) + C(Y)O-7 --> C(E) 

I LLEGAL ADDRESS 
MODIFICATIONS: a, SC, SCR 

ILLEGAL REPEATS: None 

I NDI CATORS: Zero 

Negative 

Exponent 
Overflow 

- Set OFF 

- Set OFF 

- If exponent is > +127, then ON 

}.DE 

415 (0) 

Exponent 
Underflow If exponent of floating point result < - 128, 

then ON; otherwise, unchanged 

NOTES: 1. An Illegal Procedure fault occurs if illegal address 
modification is used. 

2. All data is handled as 0 when DL modification is 
specified in the NS mode. 

8-41 DZ51-00 



ADL ADL 

ADL Add Low to AQ-Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

ILLEGAL ADDRESS 

C{AQ) + C(Y, right-adjusted) --> C(AQ) 

This instruction forms the following 72-bit number: 

o 3 3 7 
o 5 6 

I C(y)O------------C(y)Oi C(Y) 

The lower half (bits 36 through 71) is C(Y). The bits in the 
upper half (bits 0 through 35) are equal to the C(Y) sign bit 
(C(Y)O)' This value is added to the AQ. If a carry is 
generated from Q as a result of this addition, it is passed 
on to A. 

MODIFICATIONS: CI, SC, SCR 

I LLEGAL REPEATS: None 

INDICATORS: 

NOTE: 

Zero - If C(AQ) = 0, then ONi otherwise, OFF 

Negative - If C(AQ)O = 1, then ON: otherwise, OFF 

Overflow - I f range of AQ is exceeded, then ON 

Carry - If a carry out of bit 0 of C(AQ) is generated, 
then ONi otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-42 DZS1-00 



( 

( 

ADLA ADLA 

ADLA Add Logical to A-Register 035 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(A) + C(Y) --> C(A): C(Y) unchanged 

EXPLANATION: This in~truction is identical to ADA with the exception that 
the overflow indicator is not affected and an Overflow fault 
does not occur. Operands and results are treated as 
unsigned, positive binary integers. 

ILLEGAL ADDRESS 
MODIFICATIONS: None 

I LLEGAL REPEATS: None 

INDICATORS: Zero - If C(A) = 0, then ON: otherwise, OFF 

Negative - If C(A)O = 1, then ONi otherwise, OFF 

carry - If a carry out of bit 0 of C(A) is generated, 
then ON: otherwise, OFF. When the carry 
indicator is ON, the range of A has been 
exceeded. . 

8-43 DZ51-00 



ADLAQ ADLAQ 

ADLAQ Add Logical to AQ-Register 037 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

C(AQ) + C(Y-pair) -> C(AQ); C(Y-pair) unchanged 

This instruction is identical to ADAQ except that the 
overflow indicator is not affected and an overflow fault does 
not occur. Operands and results are treated as unsigned, 
positive binary integers. 

MODIFICATIONS: DU, DL, CI I SC, SCR 

I LLEGAL REPEATS: None 

I NDI CATORS: 

NOTE: 

Zero - If C(AQ) = 0, then ONi otherwise, OFF 

Negative - If C(AQ)O = 1, then ON; otherwise, OFF 

carry - If a carry out of bit 0 of C(AQ) is generated, 
then ON; otherwise, OFF. When the carry 
indicator is ON, the range of AQ has been 
exceeded. 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-44 DZ5l-00 

'\ 

/ 



( 

ADLQ ADLQ 

ADLQ Add Logical to Q-Register 036 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C<Q) + C(Y) --> C(Q); C(Y) unchanged 

EXPLANATION: This instruction is identical to ADQ except that the overflow 
indicator is not affected and an Overflow fault does not 
occur. Operands and results are treated as unsigned, 
positive binary integers. 

ILLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATORS: Zero - If C(Q) = 0, then ON; otherwise, OFF 

Negative - If C(Q)o = 1, then ON; otherwise, OFF 

carry - If a carry out of bit 0 of C(Q) is generated, 
then ON; otherwise, OFF. When the carry 
indicator is ON, the range of Q has been 
exceeded. 

8-45 DZ5l-00 



ADLR ADLR 

ADLR Add Logical Register to Register 435 (1) 

FORMAT: 

000 1 1 222 3 3 3 
7 8 789 1 2 5 

Not Used I OP CODE II I NEZ I R2 I 
CODING FORMAT: 1 8 16 

ADLR Rl, ,R2 

OPERATING MODES: Executes in ES mode only 

SUMMARY: Rl, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q 

C(Rl) + C(R2) -> C(Rl); C(R2) unchanged 

ILLEGAL ADDRESS 
MODIFlCATIONS: None. The address modification is not executed. 

I LLEGAL REPEATS: RPT, RPD, RPL 

I LLEGAL EXECUTES: Execution in NS mode 

I NDl CATORS: 

NOTES: 

Zero - If C(Rl) = 0, then ON; otherwise, OFF 

Negative - If C(Rl)O = 1, then ON; otherwise, OFF 

carry - If a carry out of bit 0 of C(Rl) is generated, then 
ON; otherwise, OFF. 

1. An IPR fault occurs if illegal repeats are executed or if the 
instruction is executed in NS mode. 

2. Refer to Register to Register Instructions in section 7 for a 
description of the fields in the instruction word. 

8-46 DZ51-00 



( 

( 

( 

ADLXn ADLXn 

ADLXn Add Logical to Index Register !! 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

EXPLANATION: 

ILLEGAL ADDRESS 

For n = 0,1 ••• , 7 as determined by op code 

C(X!!) + C(Y)O-17 -> C(X!!); C(Y) unchanged 

ES Mode 

For n = 0,1 ••• , 7 as determined by op code 

C(GXn) + C(Y) -> C(GXn); C(Y) unchanged 

This instruction is identical to ADX!! with the exception that 
the overflow indicator is not affected and an Overflow fault 
does not occur. Operands and results are treated as 
unsigned, positive binary integers. 

MODIFICATIONS: CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL of ADLXO 

I NDI CATORS: 

NOTES: 

Zero - If C(X!!)/(GXn) = 0, then ON: otherwise, OFF 

Negative - If C(Xn)/{GXn)o = 1, then ON: otherwise, OFF 

carry - If a carry out of bit 0 of C(Xn)/(GX!!) is 
generated, then ON: otherwise, OFF. When the 
carry indicator is ON, the range of Xn/GXn been 
exceeded 

1. All data is handled as a when DL modification is specified 
for the NS mode. 

2. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-47 DZSl-OO 



ADO 

ADO Add to Q-Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C<Q) + C(Y) -> C<Q): C<Y) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATeRS: Zero - If C<Q) = 0, then ON; otherwise, OFF 

Negative - If C<Q>o = 1, then ON; otherwise, OFF 

Overflow - I f range of Q is exceeded, then ON 

076 (0) 

carry - If a carry out of bit 0 of C<Q) is generated, 
then ON; otherwise, OFF 

ADQ 

8-48 DZ51-00 

J 
/ 

;'~- --..." 

i ' 
"",_./l 



( 

( 

ADRR ADRR 

ADRR Add Register to Register 

FORMAT: 

000 1 1 222 
7 8 789 

Not Used I OP CODE II I 
CODING FORMAT: 1 8 16 

ADRR R1, ,R2 

OPERATING MODES: Executes in ES mode only 

SUMMARY: Rl, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q 

C(R1) + C(R2) --> C(R1): C(R2) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: None. The address modification is not executed. 

ILLEGAL REPEATS: RPT, RPD, RPL 

ILLEGAL EXECUTES: Execution in NS mod,e 

I NDI CATORS: Zero - If C(R1) = 0, then ON: otherwise, OFF 

Negative - If C(R1)0 = 1, then ON: otherwise, OFF 

Overflow - If the range of R1 is exceeded, ON. 

434 (1) 

3 3 
1 2 

MBZ I R2 

carry - If a carry out of bit 0 of C(R1) is generated, 
then ON: otherwise, OFF. 

3 
5 

NOTES: 1. An I PR fault occurs if illegal repeats are executed or if 
the instruction is executed in NS mode. 

2. Refer to Register to Register Instructions in Section 7 
for a description of the fields in the instruction word. 

I 

8-49 DZ51-00 



ADXn ADXn 

Add to Index Register n 06n 10) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

NS Mode 

For n = 0, 1 ••• , or 7 as determined by op code 

C(Xn) + C(Y)0-17--> C(Xn}: C(Y) unchanged 

ES Mode 

For n = 0, 1 ••• , or 7 as determined by op code 

C(GXn) + C(y)--> C(GXn): C(Y) unchanged 

MODIFICATIONS: CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL of ADXO 

I NDI CATORS: 

NOTES: 

Zero - If C(Xn)/(GXn) = 0, then ON: otherwise, OFF 

Negative - If C(Xn)/(GXn)o = 1, then ON: otherwise, OFF 

Overflow - I f range of Xn/GXn is exceeded, then ON 

carry If a carry out of bit 0 of C(~/GXn) is 
generated, then ON: otherwise, OFF 

1. All data is handled as 0 when DL modification is specified 
in the NS mode. 

2. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-50 DZ5l-00 

/ 



( 

( 

ALR 

ALR A-Register Left Rotate 775 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

EXPLANATION: NS Mode 

ILLEGAL ADDRESS 

Rotate C(A) left the number of positions indicated by bits 
11-17 of Y (Y modulo 128); enter each bit leaving bit 
position 0 in bit position 35. 

ES Mode 

Rotate C(A) left the number of positions indicated by bits 
27-33 of Y (y modulo 128): enter each bit leaving bit 
position zero in bit position 35. 

The rotate count in the instruction must be a decimal 
number. To "right-rotate" n bits, use ALR 36-n. 

MODIFICATIONS: DU, DL, a, SC, SCR 

ILLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

Zero - If C(A) = 0, then ON: otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

ALR 

8-51 DZ51-00 



ALS ALS 

ALS A-Register Left Shift 735 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

EXPLANATION: 

I LLEGAL ADDRESS 

NS Mode 

Shift C(A) left the number of positions indicated by bits 
11-17 of Y (y modulo 128); fill vacated positions with zeros. 

ES Mode 

Shift C(A) left the number of positions indicated by bits 
27-33 of Y (y modulo 128); fill vacated positions with zero. 

The shift count in the instruction must be a decimal number. 

MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPL 

INDICATORS: 

NOTE: 

Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

carry - If C(A}O changes during the shift, then ON; 
otherwise, OFF. When the carry indicator is ON, 
the algebraic range of A has been exceeded. 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-52 DZ51-00 

-" 



( ANA ANA 

ANA AND to A-Register 375 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For i = 0 to 35, C(A)i AND C(Y)i --> C(A)i: 

C(Y) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATORS : Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

8-53 DZ51-00 



ANAQ 

ANAQ AND to AQ-Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For i = 0 to 71, C(AQ)i AND C(Y-pair)i --> C(AQ)i: 

C(Y-pair) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: None 

I NDI CATORS: 

NOTE: 

Zero - If C(AQ) = 0, then ON: otherwise, OFF 

Negative - If C(AQ)O = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-54 

ANAQ 

377 (0) 

) 

DZ5l-00 



ANQ ANQ 

ANQ AND to Q-Register 376 <0> 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For i = 0 to 35, C<Q>i AND C(Y)i --> C(Q>i: 

ILLEGAL ADDRESS 
MODIFICATIONS: None 

I LLEGAL REPEATS: None 

INDICATORS: Zero - If C<Q) = 0, then ON: otherwise, OFF 

Negative - If C<Q>O = 1, then ON: otherwise, OFF 

( 

8-55 DZ51-00 



ANRR ANRR 

AND Register to Register 535 (0) 

FORMA'l': 

o 0 0 1 1 222 3 3 
7 8 789 1 2 

Not Used I OP CODE II I MHZ I 
CODI NG FORMAT: 1 8 16 

ANRR Rl, ,R2 

OPERA'l'I NG MODES: Executes in ES mode only 

SUMMARY: R1, R2, = 0, 1, 2, 3, 4, 5, 6, 7, A, Q 

ILLEGAL ADDRESS 

C(R1)i AND C(R2)i --> C(Rl)I i = 0, 1, 2, ••• , 35 

C( R2) unchanged 

MODIFICATIONS: None. The address modification is not executed. 

I LLEGAL REPEATS: RPT, RPD, RPL 

ILLEGAL EXECUTES: Execution in NS mode 

I NDI CA'l'ORS: Zero - If C(R1) = 0, then ON; otherwise, OFF 

Negative - If C(Rl)O = 1, then ON; otherwise, OFF 

R2 

3 
5 

NOTES: 1. An IPR fault occurs if illegal repeats are executed or if 
the instruction is executed in ItS mode. 

2. Refer to Register to Register Instructions in Sectiqn 7 
for a description of the fields in the instruction word. 

I 

8-56 DZ51-00 



( 

(~ 

ANSA ANSA 

.1 ANSA 
AND to Storage from A-Register 355 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATl NG MODES: Any 

SUMMARY: For i = 0 to 35, C(A)i AND C(Y)i --> C(Y)i: 

C (A) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

zero - If C(Y) = 0, then ON: otherwise, OFF 

Negative - If C(Y)O = 1, then ON: otherwise, OFF 

An I llegal Procedure fault occurs if illegal address 
modification or if an illegal repeat is used. 

8-57 DZ51-00 



ANSQ ANSQ 

ANSQ AND to Storage from Q-Register 356 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY 

I LLEGAL ADDRESS 

For i = 0 to 35, C(Q)i AND C(Y)i --> C(Y)i; 

C (Q) unchanged 

MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPL 

I NDI CA'I'ORS : 

NOTE: 

Zero - If C(Y) = 0, then ON; otherwise, OFF 

Negative - If C(Y)o = 1, then ON: otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-58 DZ51-00 

.~\ 



( 
ANSXn 

AND to Storage from Index Register n 

FORMAT: Single-word instruction fonnat (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

For n = 0, 1, ••• , 7 as determined by op code 

For i = 0 to 17, C(Xn)i AND C(Y)i --> C(Y)i: 

C(Xn} and C{Y)18-35 unchanged 

ES Mode 

For n = 0, 1, ••• , 7 as determined by op code 

For i = 0 to 35, C(GXn}i AND C(Y)i --> C(Y)i; 

( C (GXn ) is unchanged. 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPL, RPT, or RPD of ANSXO 

I NDI CATORS: NS Mode 

ANSXn 

34n (0) 

Zero - If bits C(Y}0-17 = 0, then ON; otherwise, OFF 

NOTE: 

( 

Negative - If C(Y}O = 1, then ON; otherwise, OFF 

ES Mode 

. Zero - If C(Y) = 0, then ON; otherwise, OFF 

Negative - If C(Y)O = 1, then ON; otherwise, OFF. 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-59 DZ51-00 



ANXn ANXn 

AND to 1 ndex 'Reg ister n .j 36n(O) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATl NG MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

NS Mode 

For n = 0, 1, ••• , or 7 as determined by op code 

For i = 0 to 17, C<xn)i AND C(Y)i --> C(Xn)i 

ES Mode 

For n = 0, 1, ••• , or 7 as determined by op code 

For i = 0 to 35, C(GXn)i AND C(Y)i --> C(GX)i 

MODIFICATIONS: CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL of ANXO 

I NDI CATeRS: 

NOTES: 

NS Mode 

zero - If C(Xn) = 0, then ON; otherwise, OFF 

Negative - If C<xn)O = 1, then ON: otherwise, OFF 

ES Mode 

zero - If C(GXn) = 0, then ONi otherwise, OFF 

Negative - If C(GXn)O = 1, then ON: otherwise, OFF 

1. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

2. All data is handled as 0 when DL modification is specified in 
the NS mode. 

8-60 DZ51-00 

'", . .J 

;' ""\ 



( 

( 

AOS 

AOS Add One to Storage 054 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(Y) + 0 ••• 01 --> C(Y) 

I LLEGAL ADDRESS 
MODI Fl CATIONS: DU, DL, CI, st, SCR 

I LLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

Zero - If C(Y) = 0, then ON; otherwise, OFF 

Negative - If C(Y)O = 1, then ON; otherwise, OFF 

Overflow - If range of Y is exceeded, then ON 

carry - If a carry out of bit 0 of C(Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

AOS 

8-61 DZ51-00 



ARAn 

Address Register n to Alphanumeric Descriptor 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

ARA!! LOCSYM, RM, AM 

OPERATI NG MODES: Any 

SUMMARY: For n = 0, 1, ••• , or 7 as determined by op code 

C(ARn)0-17 --> C(Y)0-17 

/trans1ated\ 
C(ARn)18-23 - > C(Y)18-20 

C(Y)21-35 unchanged 

ARAn 

EXPLANATION: This instruction is the converse of AARn. The alphanumeric 
descriptor is fetched from the computed effective address Y. 
The TA field code is examined to determine the type of data. 
Bits 18-23 of ARn are appropriately translated and replace 
bits 18-20 of the descriptor, and the word address (0-17) of 
ARn replaces bits 0-17. The updated descriptor is then 
stored back into location Y. 

I LLEGAL ADDRESS 
MODI F1 CATIONS: DU, DL, CI, SC, 50 

I LLEGAL REPEATS: RPD, RPT, RPL 

I LLEGAL EXECUTES: Execut ion in ES mode 

I NDI CATORS : 

NOTES: 

None 

1. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used, or if the 
descriptor TA field contains code 11. 

2. AN IPR fault occurs if an attempt is made to execute this 
instruction in the ES mode. 

8-62 DZ51-00 



f ARAn ARAn 

EXAMPLE: 

1 8 16 32 

ARA6 DESCR AR6 octal contents - 5 0 1 0 2 4 0 7 

memory contents in octal 
DESCR ADSC9 , ,4 5 0 1 0 2 4 0 0 0 0 0 4 - DESCR after 

( 

8-63 DZ51-00 



ARL ARL 

ARL A-Register Right Logical Shift 771 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

ILLEGAL ADDRESS 

NS Mode 

Shift C(A) right the number of positions indicated by bits 
11-17 of Y (y modulo 128); fill vacated positions with zeros 

ES Mode 

Shift C(A) right the number of positions indicated by bits 
27-33 of Y (y modulo 128); fill vacated positions with zeros. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPL 

I NDI CATORS : 

NOTES: 

Zero - If C(A} = 0, then ON; otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

1. The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-64 DZ5l-00 

\ 



( 

( 

ARNn ARNn 

Address Register n to Numeric Descriptor 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODING FORMAT: 1 8 16 

ARNn LOCSYM, RM, AM 

OPERATING MODES: Any 

SUMMARY: For n = 0,1, ••• ,7 as determined by op code 

C{ARn)0-17 --> C(Y}0-17 

EXPLANATION: 

I LLEGAL ADDRESS 

/trans1ated\ 
C(ARn)18-23 ----------> C(Y)18-20 

Bits 21-35 of C(Y) unchanged 

This instruction is the converse of NARD. The numeric 
descriptor is fetched from the computed-effective address Y 
and the TN field bit is examined. Bits 0-17 of ARn replace 
the descriptor bits 0-17. Bits 18-23 of ARn are 
appropriately translated and replace bits 18-20 of the 
descriptor. The updated descriptor is then stored back in 
location Y. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

ILLEGAL EXECUTES: Execution in NS mode 

I NDI CATORS : 

NOTES: 

None affected 

1. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

2. An IPR fault occurs if an attempt is made to execute this 
instruction in ES mode. 

8-65 DZ51-00 



ARS ARS 

ARS A-Register Right Shift 731 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

NS Mode 

Shift C(A) right the number of positions indicated by bits 
11-17 of Y (y modulo 128): fill vacated positions with bit 0 
of C(A). 

ES Mode 

Shift C(A) right the number of positions indicated by bits 
27-33 of Y (y modulo 128): fill vacated positions with bit 0 
of C(A). 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPL 

INDICATORS: 

NOTES: 

Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

1. The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-66 DZS1-00 

j 



( 

(~ 

ASA 

ASA Add To Storage From A-Register 055 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(A) + C(Y) -> C(y); C(A) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

Zero - If C(Y) = 0, then ON: otherwise, OFF 

Negative - If C(Y)O = 1, then ON; otherwise, OFF 

Overflow - I f range of Y is exceeded, then ON 

carry - If a carry out of bit 0 of C(Y) is generated, 
then ON: otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

ASA 

8-67 DZ5l-00 



ASQ 

ASQ Add To Storage From Q-Register 056 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C<Q} ... C(Y) -> C(Y); C<Q) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPL 

INDICATORS: 

NOTE: 

zero - If C(Y} = 0, then ON; otherwise, OFF 

Negative - If C(Y)o = 1, then ON; otherwise, OFF 

Overflow - If range of Y is exceeded, then ON 

carry - If a carry out of bit 0 of C(Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

ASQ 

8-68 DZS1-00 

I 
/ 



( 

( 

(' 

ASXn ASXn 

Add To Storage From Index Register !! 04!! (0) 

FORMAT: Single-word instruction format (see Figure B-1) 

OPERATI NG MODES: Any 

SUMMARY: 

ILLEGAL ADDRESS 

NS Mode 

For n = 0,1, ••• ,7 as determined b¥ op code 

C(Xn) + C(Y)0-17 -> C(Y)0-17: C(Xn) and C(Y)lB-35 unchanged 

ES Mode 

For n = 0,1, ••• ,7 as determined b¥ op code 

C(GXn) + C(y} -> C(Y); C(GXn) unchanged 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL of ASXO 

INDICATORS: NS Mode 

Zero - If C(Y)0-17 = 0, then ON; otherwise, OFF 

Negative - If C(Y)O = 1, then ON: otherwise, OFF 

Overflow - If range of YO-17 is exceeded, then ON 

Carry - If a carry out of bit 0 of C(Y) is generated, 
then ON; otherwise, OFF 

B-69 DZ5l-00 



ASXn 

I NDI CATORS: 

NOTE: 

ES Mode 

Zero - If C(Y) = 0, then ON; otherwise, OFF 

Negative - If C(Y}O = 1, then ON; otherwise, OFF 

Overflow - If range of Y is exceeded, then ON 

carry - If a carry out of bit 0 of C(Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

ASXn 

8-70 DZ51-00 

,/ "\ 



( 

( 

AWCA AWCA 

AWCA Add with Carry to A-Register 071 (O) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: If carry indicator is OFF, then C(A) + C(Y) --> C(A): 

EXPLANATION: 

I LLEGAL ADDRESS 
MODI FI CATIONS: 

I LLEGAL REPEATS: 

I NDI CATORS: 

C (y) unchanged 

If carry indicator is ON, then C(A) + C(Y) + 00 ••• 01 --> 
C(A): C(Y) unchanged 

This instruction operates similarly to the ADA instruction 
except that if the carry indicator is ON prior to the 
execution of the instruction, a 1 is added to the least 
significant position of the A-register. 

This instruction is intended for use with mu1tiword precision 
binary arithmetic and for calculating checksums. The 
positive 1 added when the carry indicator is ON represents 
the carry from the next less significant word of the 
multiword addition. 

None 

None 

Zero - If C(A) = 0, then ON: otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

Overflow - I f range of A is exceeded, then ON 

carry - If a carry out of bit 0 of C(A) is generated, 
then ON: otherwise, OFF 

8-71 DZ51-00 



AWCA Awe}. 

EXAMPLE: (Checksum calculation) 

1 8 16 32 

LDI =11324,DL 
LDA INCARD 
EAX2 INCARD+2 
EAX3 =0 
RPDA 22,1 
ADLA 0,2 
AWCA 0,3 
CMPA INCAAD+l 
TNZ ERROR 
LDI =0500000,DL 

8-72 DZ51-00 



( AWCQ AWCQ 

AWCQ Add with carry to Q-Register 072 (0) 

FORMAT: Single-word instruction format <see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

If carry indicator is OFF, then C<Q) + C(Y) --> C(Q>; 
C (y) unchanged 

If carry indicator is ON, then C(Q) + C(y) + 00 ••• 01 --> C<Q); 
C (y) unchanged 

This instruction operates similarly to the ADQ instruction 
except that if the carry indicator is ON prior to the 
execution of the instruction, a 1 is added to the least 
significant position of the Q-register. 

This instruction is intended for use with multiword precision 
binary arithmetic and for calculating checksums. The 
positive 1 added when the carry indicator is ON represents 
the carry from the next less significant word of the 
multiword addition. 

MODIFICATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATORS: Zero - If C<Q> = 0, then ON; otherwise, OFF 

Negative - If C(Q)O = 1, then ON; otherwise, OFF 

Overflow - I f range of Q is exceeded, then ON 

carry - If a carry out of QO is generated, then ON; 
otherwise, OFF 

8-73 DZ5l-00 



AWCQ AWCQ 

EXAMPLE: (Triple-precision Binary Fixed-point Addition) 

1 8 16 32 

STI C save overflow and overflow mask 
LXLO C 
ANXO =OO44000,DU 
STXO REST 
LDA =lB24,DL set overflow mask ON 
ORSA C 
LDI C 
LDQ A+2 add low-order bits 
ADLQ B+2 
STQ C+2 
LDQ A+l add intermediate bits 
AWCQ B+l 
STQ C+l 
STI C restore overflow and overflow mask 
LDA =0733777,DL 
ANA C 

REST ORA **,DL 
STA C 
LDI C 
LDQ A add high-order bits 
AWCQ B ~, ;/ 

STQ C 

8-74 DZ51-00 



( 

( 

AWD 
AWDX 

AWD 
AWDX 

FORMAT: 

CODING FORMAT: 

Add Word Displacement to Address Register 

AWD 
AWDX 

507 (1) 

Special arithmetic instruction format (see Figure B-3) 

1 8 16 

{AWD } 
{AWDX} word displacement,R,AR 

When the mnemonic is coded with X (AWDX), bit 29 is forced to 
zero. 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If bit 29 = 0: y + C(DR} --> ARnO-17 

If bit 29 = 1: C(ARn)0-17 + y + C(DR) --> ARnO-17 

In either case, zeros --> ARn1B-23 

ES Mode 

If bit 29 = 0: [(se)y + C(DR)]6-35 --> C(AR)0-29 

If bit 29 = 1: [(se)C(ARn) + (se)y + C(DR)]6-35 --> 
C(AR)0-29 

(se) indicates sign extension. 

In either case, zeros --> ARn30-35 

NS Mode 

The y field (with bit 3 extended) is added to the contents of 
the register specified by the code in the DR field. Then, if 
bit 29 = 0, this value replaces bits 0-17 of the AR specified 
by bits 0-2 of the y field. If bit 29 = 1, this value is 
added to bits 0-17 of the specified AR and the resulting sum 
is stored in bits 0-17 of the specified AR. In either case, 
bits 18-23 of the specified AR are zeroed. 

8-75 DZ51-00 



AWD 
AWDX 

ES Mode 

AWD 
AWDX 

The y field (with bit 3 extended) is added to the contents of 
the register specified by the code in the DR field. Then, if 
bit 29 = 0, this value replaces bits 0-29 of the AR specified 
by bits 0-2 of the y field. If bit 29 = 1, this value is 
added to the sign extended value of the specified AR bits 
0-29 and the sum loaded into the specified AR bits 0-29. In 
either case, bits 30-35 of the specified AR are zeroed. 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, and Ic specified in DR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

EXAMPLES: (Example applies to NS mode only) 

1 8 16 32 

FLDl BOOL 20100 
EAX4 FLPl X4 octal contents - o 2 0 1 0 0 
AWDX 0,4,7 AR7 octal contents - 020 1 0 0 0 0 
AVID 2,,7 AR7 octal contents - o 2 0 1 0 2 0 0 

FLD2 . BOOL 10000 
EAX2 FLD2 X2 octal contents - 010 0 0 0 
EAX3 512 X3 octal contents - 001 000 
AWDX 0,2,4 AR4 octal contents - 010 0 0 0 0 0 
AVID 1,3,4 AR4 octal contents - 011 001 0 0 

8-76 DZ5l-00 

./ 



( 

( 

( 

BCD BCD 

BCD Binary-to-BCD Convert 505 (0) 1 
FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: Shift C(A) left 3 positions; 
IC(A)I / C(Y} --> 4-bit quotient; 

EXPLANATION: 

C(A) - ( C(Y) * quotient) --> remainder 

Shift C<Q) left 6 positions: 
00 --> C(Q)30-31 
4-bit quotient --> C<Q)32-35 
remainder --> C(A) 

The BCD instruction carries out one step of an algorithm for 
the conversion of a binary number to the equivalent 
binary-coded decimal, which requires the repeated short 
division of the binary number or last remainder by a 36-bit 
constant from memory. 

ci = 8i * 10n- i (for i = 1, 2, ••• ), 

with n being defined by 10n-1 ~ I number ~ 10n- 1 

For base K other than 10: 

ci = 8i * Kn-l, where Kn-1 ~ I number I ~ Kn-1. 

One 6-bit character is produced each time the BCD instruction 
is executed. The character produced represents a decimal 
digit from 0 to 9. 

The BCD instruction converts the magnitude of the contents of 
the accumulator to the binary-coded decimal equivalent. The 
method employed is to effectively divide a number by a 
constant, place the result in bits 30-35 of the quotient 
register, and leave the remainder in the accumulator. The 
execution of the BCD instruction allows the user to convert a 
binary number to BCD, one digit at a time, with each digit 
coming from the high-order part of the number. The address 
of the BCD instruction refers to a constant to be used in the 
division; a different constant is needed for each digit. In 
the process of the conversion, the number in the accumulator 
is shifted left three positions. The quotient register is 
shifted left six positions before the new digit is stored. 

8-77 DZ51-00 



BCD 

Starting 
Range 

of 
C(AR) 

Conversion 

Step 

BCD 

The values in Table 8-1 are the conversion constants to be used 
with the binary-to-BCD instruction. Each vertical column 
represents the set of constants to be used depending on the 
initial value of the binary number to be converted to its decimal 
equivalent. The instruction is executed once per digit, using 
the constant appropriate to the conversion step with each 
execution. 

An alternate use of the table for conversion involves the use of 
the constants in the row corresponding to conversion step 1. If, 
after each conversion, the contents of the accumulator are 
shifted right three positions, the constants in the conversion 
step 1 row may be used one at a time in order of decreasing value 
until the conversion is complete. 

Table 8-1. Binary-to-BCD COnversion COnstants 

10 
-10 +1-> 9 -10 +1-> _10 8 +1 -> 

, 
-10 +1 -> 

10 10 -1 10 9 -1 10 8 -1 10 '_1 

1 8 ' )( 10 9 8 • 108 8 • 10 7 8 • 10 6 

2 8 2 )( 108 8 2 • 10 7 8 2 )( 10 6 82 x 10 5 

3 83 x 10 7 8 3 • 10 6 8 3 
• 105 83 x 10 4 

4 8 4 • 106 8 4 x 105 8 4 
• 10 4 8 4 It 103 

5 8 5 x 10 5 8 5 • 10 4 8 5 
• 10 3 8 5 )( 10 2 

6 8 6 x 10 4 8 6 • 10 3 8 6 x 10 2 8 6 x '0 ' 

7 8 7 • 10 3 8 7 It 10 2 8 7 x 10 ' 8' 
; 

8 8 8 x 10 2 88 • 10 1 88 

9 8 9 x 10 ' 8 9 

10 8 '0 

8-78 DZ5l-00 

... / 



( BCD 

Table 8-1 (cont). Binary-To-BCD Conversion Constants 

_10 6 +1 -> -10 5 +1 -> _10 4 +1 -> _10 3+1 -> -10 ' +, -> -10 ' +1 -> 

10 6 -1 10 5 -1 104 -1 103 _1 10 2 _1 10' -1 

8 ' x 10 5 8 x 10 4 8 x 10 3 8 x 10 2 8 x 10 ' 
8 

8 2 x 104 8 2 • 103 8 2 x 102 8 2 x 10' 8 2 

8 3 x 10 3 8 3 x 102 8 3 x 10' 8 3 

8 4 x 10 2 8 4 • 10 ' 8 4 

8 5 x 10 ' 8 5 

8 6 

I LLEGAL ADDRESS 
MODI FI CATIONS: CI, SC, SCR 

ILLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTES: 

Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If prior to execution bit 0 of C(A) = 1, then ON; 
otherwise, OFF 

1. The largest number that can be converted with the BCD 
instruction is that represented by 33 bits. 

2. A 6-bit character is generated in the Q-register each time 
this instruction is executed. 

3. The generated character represents one digit of the values 
0-9. 

4. One full 36-bit word cannot be directly converted by the 
BCD instruction. 

5. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-79 DZ5l-00 

BCD 



BCD BCD 

EXAMPLE: 

1 8 16 

LOA =15,DL 
LDQ O,DL 
BCD =80,DL 
BCD =64,DL 

8-80 DZ51-00 



( 

BTD BTD 

BTD Binary-to-Decima1 Convert 301 (1) 

FORMAT: 

0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 o 1 7 8 7 8 9 5 

I pi 0---------0 I MF2 
I 

301(1) II I MFl I 
0 0 
0 2 

AR# 

o 0 
o 2 

AR# 

CODING FORMAT: 

Yl 

Y1 

Y2 

Yl 

1 

1 1 
o 1 

1 1 
o 1 

1 1 2 2 
7 8 o 1 

T 
CNI N 0 

1 

1 1 222 2 2 
7 8 0 1 234 

T 

2 3 
9 0 

0 

2 3 
9 0 

CN2 N S2 0------ 0 
2 

8 16 

B10 (MF1),(MF2),P 
NDSC9 LOCSYM, CN , N, , , AM 
NDSCg LOCSYM,CN,N,S"AM 

Nl 

00 

N2 

00 

R1 

R2 

3 
5 

3 
5 

(Refer to Section 7 under Mu1tiword Instructions for description 
of Multiword Modification Field.) 

8-81 DZ51-00 



BTD BTD 

OPERATING MODES: Any 

SUMMARY: converted 
C(string 1) ---------> C(string 2) 

EXPLANATION: The two's complement binary integer starting at location YC1 
is converted into a signed string of decimal characters of 
data type TN2, sign and decimal type 52 (52 = 00 is 
illegal), and scale factor 0: and is stored, 
right-justified, as a string of length L2 starting at 
location YC2. If the string generated is longer than L2, 
the high-order excess is truncated and the overflow 
indicator is set. If strings 1 and 2 are not overlapped, 
the contents of string 1 remain unchanged. The length of 
string 1 (Ll) is given as the number of 9-bit segments that 
make up the string. L1 is equal to or is less than B. 

ILLEGAL ADDRESS 
MODI FI CATI ON5: 

Thus, the binary string to be converted can be 9, 1B, 27, 
36, 45, 54, 63, or 72 bits long. CN1 designates a 9-bit 
character boundary. If P=1, positive signed 4-bit results 
are stored using octal 13 as the plus sign. If P=O, 
positive signed 4-bit results are stored with octal 14 as 
the plus sign. 

DU, DL for NFl and MF2 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTES: 

Zero - If the result is zero, then ON: otherwise, OFF 

Negative - If the resultant sign is negative, then ON; 
otherwise, OFF 

Overflow - If L2 is less than the length of the string 
generated, then .ON; otherwise, unchanged 

1. An Illegal Procedure fault occurs if DU or DL 
modification is used for NFl or MF2 or if an illegal 
repeat is used. 

2. An IPR fault occurs if L1 is less than 1 or greater than 
B, if CN1 does not contain a legal code, if 52 = 00, or 
if N2 is not large enough to specify at least one digit 
excluding sign. 

8-82 DZ51-00 



( 
BTD BTD 

EXAMPLES: 

1 8 16 32 

BTD 
NDSC9 FLDl,2,2 binary operand descriptor 
NDSC9 FLD2,0,4,1 decimal operand descriptor 
USE CONST. memory contents in octal 

FLDI DEC -512 7 7 7 7 7 7 7 7 7 000 
FLD2 BSS 1 o 5 5 0 6 5 0 610 6 2 

USE any indicators set? negative 

BTD 
NDSC9 FLDl,3,1 binary operand descriptor 
NDSC9 FLD2,1,3,2 decimal operand descriptor 
USE CONST. memory contents in octal 

FLDl DEC 255 o 0 0 000 0 0 0 3 7 7 
FLD2 BSS 1 o 0 0 0 6 506 5 0 5 3 

USE any indicators set? overflow 

( 

8-83 DZ51-00 



CAMP CAMP 

Clear Associative Memory Pages 532 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode. 

EXPLANATION: This instruction provides the capability to set the PTWAM ON 
or OFF, to clear the entire PTWAM, and to selectively clear 
the PTWAM. The instructions options are based on the 
instruction word tag, the effective address bits 16, and 17, 
and the ON/OFF state of the PTWAM. 

When the instruction tag = 00 the following is executed 
within the CPU that is executing the instruction. 

o When PTWAM is ON 

If EA16,17 = 00 or 10, the PTWAM is cleared. 

If EA16 17 = 01, the PTWAM is set OFF: 
the PTWAM is not cleared. 

If EA16,17 = 11, the PTWAM is not affected. 

o When PTWAM is OFF 

If EA16 17 = 10, the PTWAM is cleared: 
the PTWAM is set ON. 

If EA16,17 = 00, 01, or 11, the PTWAM is not affected. 

When the instruction word tag = 01 a selective clear is done 
within the processor that executes this instruction according 
to the contents of the A and Q registers. 

8-84 DZ51-00 



( 
CAMP 

0 
0 

C(A) I 
0 
0 

C<Q} 

( 

CAMP 

2 3 3 
9 0 5 

Reserved for Hardware Use I VA(25-30) I 
2 3 3 
9 0 5 

Clear 
Reserved for Hardware Use Count 

(CC) 

The VA corresponds to the lower six bits of the page 
number. 

PTWAM entries having the lower 6 bits of the page number 
beginning at C(A) through C(A) + the CC in C<Q) are 
cleared. 

When the instruction word tag = 2 

A selective clearing of PTWAM is done in all processors 
depending upon the contents of the A and Q registers as 
shown above. 

If clearing of all processors does not occur within l6ms, 
bit 0 of the A register is set to 1 in the processor that 
executes this instruction: otherwise this bit is 
unchanged. 

The CAMP instruction is transmitted to the other procesors 
through the control SCU. The SCU selected is the control 
SCU. 

When the instruction word tag = 3 

The entire contents of PTWAM in all processors are 
cleared. 

If clearing of all processors does not occur within 16 ms, 
bit 0 of the A register is set to 1 in the processot that 
executes this instruction: otherwise, this bit is 
unchanged. 

The CAMP instruction is transmitted to the other 
processors through the control SCU. 

8-85 DZ51-00 



CAMP 

I LLEGAL ADDRESS 
MODIFICATION: Only 00, 01, 02, or 03 allowed 

. ILLEGAL REPEATS: RPD, RPL, RPT 

I NDI CATORS: None 

NOTES: 1. The issuing CPU firmware builds an address that is 
transmitted to the SCU. This address is developed from 
the contents of the A and Q registers and the CAMP 
instruction type. 

2. The issuing CPU also stores data, based on the contents of 
the A and Q registers and the CAMP instruction type, in 
reserved memory location 13x and resets reserved memory 
location l2x (where x is the processor number). 

l3x contains data which is read by the receiving CPU, 
defining the clear operation. Each receiving CPU executes 
the CAMP instruction when the next interruptible point in 
its instruction stream is reached. The interrupt inhibit 
bit of the instruction is disregarded in this 
determination. If a receiving CPU determines that the 
contents of l3x are null, no action is taken in the 
execution of the CAMP instruction and a return is made to 
the next instruction. l2x is set by the receiving 
processors when their clear is complete. The CPU that 
issued the CAMP monitors the contents of l2x. 

3. The reserved memory locations are accessed in absolute 
address mode relative to the Reserve Memory Base Register 
(RMBR). The RMBR also defines which CPUs are currently 
active, and thus from which CPU numbers, responses are 
anticipated in memory location l2x. Initialization 
firmware loads the RMBR with zero. On release of a CPU, 
software should also set the RMBR in that CPU to zero. If 
the RMBR is zero, a CPU will not respond to a broadcast 
CAMP. Thus the released CPU is not called upon to execute 
CAMPs. 

4. A Command fault results when Slave or Master mode is used 
for execution of this instruction. 

5. An IPR fault results when illegal address modification or 
illegal repeats are executed. 

8-86 DZ5l-00 

\ 



( 

( 

CANA 

CANA Comparative AND with A-Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY 

ILLEGAL ADDRESS 

For i = 0 to 35, C(Z)i = C(A)i AND C(Y)i 

C(A) and C(Y) unchanged 

MODI FI CATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATORS: Zero - If C(Z) = 0, then ON~ otherwise, OFF 

Negative - If C(Z)O = 1, then ON: otherwise, OFF 

8-87 

CANA 

315 (0) 

DZ5l-00 



CANAQ CANAQ 

CANAQ Comparative AND with AQ-Register 1.317 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

For i = 0 to 71, C(Z)i = C(AQ)i AND C(Y-pair)i 

C(AQ) and C(Y-pair) unchanged 

MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: None 

INDICATORS: 

NOTE: 

Zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-88 DZ51-00 



( CANQ 

CANQ Comparative AND with Q-Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For i = 0 to 35, C(Z)i = C(Q)i AND C(Y)i 

C(Q) and C(Y) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

ILLEGAL REPEATS: None 

I NDI CATORS: Zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON: otherwise, OFF 

8-89 

CANQ 

316 (0) 

DZ51-00 



CANXn CANXn 

Comparative AND with Index Register n 30n (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERA'l'I NG MODES: Any 

SUMMARY: 

1 LLEGAL ADDRESS 

NS Mode 

For n = 0,1, ••• ,7 as determined by op code 

For i = 0 to 17, C(Z)i = C(Xn)i AND C(Y)i 
C( Xn) and C (y) unchanged 

ES Mode 

For n = 0,1, ••• ,7 as determined by op code 

For i = 0 to 35, C(Z)i = C(GXn)i AND C(Y)i 
C(GXn) and C(Y) unchanged 

MODI Fl CATl ONS: Cl, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL of CAmW 

I NOI CATORS : 

NOTES: 

Zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON; otherwise, OFF 

1. DL modification is flagged illegal by the assembler but 
executes with all zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-90 DZ51-00 

,/ "\ 



(-

( 

( 

CCAC CCAC 

CCAC Clear cache 011 (1) 

FORMAT: single-word instruction format (see Figure B-1) 

OPERATING MODES: Privileged Master Mode 

SUMMARY: This instruction functions as NOP. 

EXPLANATION: The presence of CCAC in the instruction repertoire is for 
compatability only. All instructions reference cache except 
for the load and clear and the store compare instructions. 
These always bypass the cache and do not cause a block load 
on a directory hit. 

I LLEGAL ADDRESS 
MODIFICATIONS: None. Address modification is not executed. 

I LLEGAL REPEATS: None 

I NDI CATORS: 

NOTE: 

None affected 

A Command fault occurs if the processor is not in the 
Privileged Master mode for the execution of this instruction. 

B-91 DZ51-00 



CIOC aoc 

coc Connect Input/Output Channel 015 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privi1edged Master mode 

SUMMARY: C(A)O-SII09-10//Log.Ch.No.1l-17//Scratch Pad24-35 --> Connect 
Word 1 

EXPLANATION: 

Abs. Addr. YO-27//0028-35 ---> Connect Word 2 

C(A)O-8 = a control field 
C(A)9-17 = unused 
C(A)l8-35 = a logical channel number and a table entry 

When C{A)18-35 = 0-7, the logical channel number field = O. 

A double-word write to the designated control SCU occurs. 
The SCU stores the double-word in the port connect queue and 
informs the receiving port. The double-word is formed from 
the contents of the CPU A register, an entry in the CPU 
scratch pad, and the developed absolute address. The scratch 
pad content known as the connect table, consists of twelve 
12-bit entries. The connect table is created external to 
software at initialization time. 

The connect table entries are selected based on the contents 
of A18-35 as follows. 

C(A)lS-35 

0-3 
4 
5 
6 
7 

8-135 
136-263 
264-391 
392-519 

Recv'g 
Unit 

Unused 
CPU-O 
CPU-1 
CPU-2 
CPU-3 
IMX-O 
IMX-l 
IMX-2 
IMX-3 

Table Entry 
Log. Chan. No. Number 

N/A 4-7 
N/A 8 
N/A 9 
N/A 10 
N/A 11 

0-127 0 
0-127 1 
0-127 2 
0-127 3 

8-92 DZ5l-00 

// "" 

~-j 



( croc 

I LLEGAL ADDRESS 

croc 

The connect table entries are located in the PATROL half of 
scratch pad memory at locations 74-77. A secondary connect 
table is located at 0-3 and is used to support system 
component reconfiguI·ation. These entries define the 
following: 

SCU PORT - Port and queue number of the unit that is to 
receive the connect 

IMX ID - Used by the central systems software 

SYS ID - Reserved for the central systems software 

VALID - Valid connect word; 1 = valid. 

The four primary entry words contain three 12-bit scratch 
entries in bits 0-11, 12-23, and 24-35. The format of the 
scratch pad data follows: 

o 
o 

1 
2 

o 0 
2 3 

1 1 
4 5 

o 
4 

1 
6 

222 2 

3 1 

o 
5 

1 
7 

'0 
6 

1 
e 

o 0 
7 8 

1 2 
9 0 

2 3 3 3 

1 1 2 

SYS ID 

1 
1 

2 
3 

3 

4 

MODI FI CATIONS: DU, DL, cr, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

8-93 DZ5l-00 



CIOC 

NOTES: 

CIOC 

1. An IPR fault occurs if the use of this instruction is 
attempted by a processor in the Slave mode or Master mode. 

2. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

3. If the VAlJD bit in the connect table entry does not equal 
1, a Command fault occurs. 

4. The developed absolute address points to a 24-word mail 
box in main memory beginning at a 0 mod 8 address. The 
entire mailbox must reside within the same page. The 
first 8 words of this mailbox contain the basic 
information needed to execute the I/O, including a List 
Pointer Word (LPW) that points to the relative address of 
a Data Control Word (OCW) list. The new list is located 
in main memory. The mailbox also provides four different 
base addresses or Pointer Words (PTW) and related 
size/bounds information to be applied to the address 
fields of the various control words during address 
develoipment by the IMX. There may also be an optional 
"link word" to another mailbox. 

Upon termination of any I/O, the IMX stores the 
termination status word, DeW residue information, LPW " / 
residue, word counts, and extended status in the same 
24-word mailbox. Table 8-6 illustrates the format of the 
standard mailbox for an indirect channel. 

8-94 DZ5l-00 



( 

( 

CIOC 

Word 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

CIOC 

o 17 18 35 
Pointer to PTW List or Base Address 0 
Pointer to PTW List or Base Address 1 
Pointer to PTW List or Base Address 2 
Pointer to PTW List or Base Address 3 
Size 0 I Size 1 
Size 2 I Size 3 

Channel Link Word 
LPW 

Subsystem Status Word 
LPW Residue 

LPW Used to Fetch Last I DCW 
DCW Residue 

Data Count Since Last IDCW 
Data Count for Total 1/0 

1111////////////1///////////////////////////////////////////// 
////////////////////////////////////////////////////////////// 

Extended Status 

Figure 8-6. Standard I/O Mailbox 

8-95 DZ5l-00 



CLIMB CLIMB 

CLIMB Domain Transfer I 
713 (1) 

FORMAT: 

0 1 1 Op Code 222 3 3 
0 7 8 789 0 5 

I 
ADDRESS 

1 

713(1) IrH TAG 
1 

First Word 

o 0 o 1 1 1 2 2 2 2 3 
o 1 9 0 7 8 3 4 5 6 5 

H p 

1 

UNUSED 
1 

C 
1 

sl D 
1 

second Word 

The first word has the standard single-word instruction format (see Figure 
8-1). The second word of the CLIMB instruction contains four control fields: C 
(actually made up of two fields, C22-23 , and C18-19), E and P, and Sand D. 
Bits 10-17 and 20-21 are not interpreted. 

OPERAT! NG MODES: Any 

EXPLANATION: This instruction has four variations and performs functions 
of call, return, and common routine calls both within the 
same instruction segment and to a different instruction 
segment and also within the same domain and to a different 
domain reference. 

The instruction word bit 28 (interrupt inhibit bit) does not 
accept interrupt for three of the four functions whether it 
is set to zero or to one. Bit 28 determines acceptance of 
interrupt for the other function. 

The AR bit (bit 29) specifies whether or not the address 
register is to be used for generation of effective 
addresses. The tag field is also for address generation. 

8-96 DZS1-00 



CLIMB 

( 

CLIMB 

versions of the CLIMB instruction include: 

Mnemonic Meaning 

IClJMB call another procedure which 
(Inward CLIMB - CALL) may reside in another domain 

OCLIMB Return to calling domain 
(Outward CLIMB - RET) 

GCLIMB Transfer to another procedure 
(Lateral Transfer - LTRAS) with passed arguments and 

parameters which may reside in 
another domain 

PCLIMB Transfer to another procedure 
(Lateral Transfer - LTRAD) which may be in another domain 

PMME 
(System Entry CLI MB) 

Privileged Master mode entry 
(This is a form of Inward 
CLIMB. ) 

The four control fields of the second word are defined as 
follows: 

C22,23 Instruction version 

This field determines one of the five (counting PMME) 
versions of the instruction to be executed: 

00: Inward CLIMB (ICLIMB) Version - functions as a CALL, 
( i • e., a procedure invokes another procedure to . 
accomplish a task and expects return of control from 
that other procedure.) Additional descriptors may be 
passed in a new parameter segment~ an empty argument 
segment is created and placed in the argument stack. 
The processor state is saved (safe stored) if the SSF 
flag of the option register = 1. If S,D = 0,1760, this 
is the PMME version (system Entry). If S,D F 0,1760, 
this is the ICLIMB version. 

01: OUtward CLIMB (OCLIMB) Version (RET) - functions as a 
return to the caller. The processor state is restored 
to the last safe store frame. 

8-97 DZ51-00 



CLIMB CLIMB 

10: Lateral Transfer with same Parameter and Argument 
Segments (LTRAS). This version functions as an 
unconditional transfer, giving the cal lee the same 
visibility as the caller. The processor state is not 
saved. LTRAS is also called GCLIMB. 

11: Lateral Transfer with new Parameter and Argument 
Segments (LTRAD). This version functions the same as 
the CALL version, except that the processor state is 
not saved. LTRAD is also called PCLIMB. 

The terms inward, outward, and lateral refer to use of the 
stack segments. Inward means push the safe store frame on 
the safe store stack (saving the present processor state), 
frame a new parameter segment (PS), and open a new (empty) 
argument segment (AS). OUtward means pop the safe store 
frame off the safe store stack (restoring the former 
processor state) and return PSR, ASR, LSR, ISR, IC, IR, 
SEGID(IS), DSAR, and, if specified, ARO-AR7, SEGI DO-SEGI D7 , 
DRO-DR7, XO-X7, A, Q, E, and the Pointer/Length registers to 
their prior settings. Lateral means leave the safe store 
stack unchanged. The LTRAS version (10) keeps the PSR and 
ASR unchanged, while the LTRAD version (11) activates new PSR 
and ASR values in the same manner as an Inward CU ME. 

C18 XO/GXO Control 

For a CALL, LTRAS, or LTRAD, the C18 bit allows the caller 
to load the effective address of the CLIMB instruction into 
XO/GXO if C18 = 1 and if an entry descriptor is referenced 
during execution of the CLIMB. For a RET, only the condition 
C18 = 1 is required to load XO/GXO with the effective address 
of the CLI ME. If C18 = 0, XO/GXO is not loaded, regardless 
of CU ME vers ion. 

If the mode changes during a CLIMB (CALL, LTRAS, and LTRAD) 
the contents of XO or GXO are changed at the end of the 
CU MB I to track each other. If bit 18 of the C field of the 
CLIMB instruction equals zero, or if the CUMB was not an 
inter-domain transfer (an entry descriptor was not accessed) 
the register modifications are as follows: 

Mode Change 

NS to ES 

ES to NS 

Register Load 

o -> C(GXO)O-17 

C(XO) ---> C(GXO)1B-35 

C(GXO)1835 ---> C(XO) 

8-98 DZ5l-00 



CLIMB 

( 

CUMB 

If bit 18 of the C field equals 1 and the CUMB is a domain 
transfer, the effective address specified by the CUMB is 
loaded into Xo or GXO. 

Mode 

NS to NS 

ES to NS 

NS to ES 

ES to ES 

Register Load 

BAO-17 -> C(XO) 

BA16-33 -> C(XO) 

o ---> C{GXOO>0-17 

BAO-17 -> C(GXO )18-35 

o ---> C{GXO>O-l 

BAO-33 ---> C(GX)2-35 

The XO or GXO loading is also done for a RETURN CUMB. 

In any CLIMB or RETURN CLIMB instruction in which the mode 
changes and the loading of Xn or GXn, (n = 1-7), is not 
specified, the contents of these registers are undefined. 

o C19, Slave Mode 

For a CALL, LTRAS, or LTRAD, the C19 bit allows Slave mode to 
be set. For an RET, C19 is ignored. If the CLIMB is the 
result of a fault interrupt, or invokes the System Entry 
(PMME), the C19 bit is overridden, and the Master Mode 
indicator is set. 

Otherwise, for CALL, LTRAS, or LTRAD 

if C19 = 0; 0 --->C(IR)28 
if C19 = 1; no change to C(IR)28 

If a CALL, LTRAS, or LTRAD attempts to transfer to a 
privileged segment (flag bit 26 = 1) and C19 = 0, an SCL1 or 
Security Fault, class 1 occurs. 

8-99 DZ51-00 



CLIMB -' CLIMB 

o E and P Argument Passing 

The E and P fields are interpreted only for the ICLIMB 
(CALL) and PCLIMB (LTRAD) versions of the CLIMB 
instruction. 

If E = 1, P+l descriptors are passed to the called 
routine. These descriptors are either prepared (shrunk 
and pushed onto the argument stack) by the instruction, or 
found in a descriptor segment, depending on the contents 
preset by the caller in ORO. When ORO refers to an operand 
segment, a vector list is interpreted by the instruction 
to prepare descriptors: when ORO refers to a descriptor 
segment, the descriptors are in the segment. In both 
cases, the PSR is loaded with a type 1 descriptor, framing 
the P+l descriptors of parameters (or one parameter, if 
the P field is zero). 

If E = 0, no parameters are passed. The P field is 
ignored. 

In both cases, the ASR is updated in such a way that it 
locates the next available even-word location of the 
descriptor stack. The bound field is set to zero. The 
flag bit 27 is set to zero to indicate an empty segment. 
Details related to the PSR and the ASR are provided later 
in the CLIMB discussion. 

The E and P fields are not interpreted for the RET and 
LTRAS versions of the CLlMB instruction. 

o S, D Field 

For CALL, LTRAS, or LTRAD, this field indicates the origin 
(SEGlD) of the the descriptor that determines the 
destination of the CLIMB, or that the CLIMB is a System 
Entry (PMME). 

For the outward climb (RET), this field is ignored. 

Instruction Variations 

CLIMB variations determined by the settings in bits 22 and 23 of the 
C field are described below. When the CLIMB instruction is executed, 
a number of checks must be performed before the CPU state is altered. 

8-100 DZ51-00 



CLIMB 

( 

( 

CLIMB 

Inward CLIMB (CALL/ICLIMB) C field bits 22 and 23 = 00 

1. The Sand D fields are interpreted in the same manner as the 
Sand D fields of the vector in the LDDg instruction, except 
that, in this instance, the values S = 0 and D = 1760 (octal) 
define a PMME. If S = 0 and D = 1761 or 1763-1767 (octal), an 
IPR fault occurs. 

a. When S = 0, D = 17608, a special system entry is started 
at the same level as fault and interrupt. Hardware 
obtains the segment descriptor (this must be an Entry 
Descriptor) from a fixed memory location. The Master Mode 
indicator is always set to ON and the C field bit 19 is 
ignored. After the entry descriptor is obtained from the 
fixed memory location, execution of the CLIMB instruction 
is continued as when a normal entry descriptor is 
obtained. When there is no entry descriptor in the fixed 
memory location, an IPR fault occurs. 

b. If the CLIMB is a result of a fault or interrupt, this is 
an interdomain transfer, requiring an entry descriptor, 
which is obtained from locations in the operating system 
as follows: 

Interrupt: 30-31 octal 
Fault: 32-33 octal 
PMME: 34-35 octal 

2. The CLIMB instruction Sand D fields are used to access the 
specified segment descriptor segment or register and obtain 
the segment descriptor. The referenced descriptor must be 
one of the following types in order to continue execution of 
the CLIMB instruction: 

o Standard Descriptor (T = 0) 

o Descriptor Segment Descriptor (T = 1 or 3) 

o Entry Descriptor (T = 8, 9, or 11) 

If the CLIMB instruction is a result of an interrupt, the 
processor will attempt to obtain an entry descriptor from the 
operating system location 30-31 (octal). 

8-101 DZ5l-00 



CLIMB CLIMB 

If the CLIMB instruction has not yet been linked to one of 
the preceding descriptors, the obtained descriptor may be a 
dynamic linking descriptor (T = 5). In this case, the CLIMB 
instruction is terminated and a Dynamic Linking fault is 
generated. All other descriptor types (T = 2, 4, 6, 7, 10, 
or 12-15) terminate the CLIMB instruction and cause an IPR 
fault. 

Given a descriptor segment descriptor, an entry descriptor, 
or a standard descriptor, the activity varies as follows: 

a. Standard Descriptor' (T=O) 

When the descriptor referenced by the S and D fields is a 
standard descriptor, the CLIMB instruction is an 
intradomain transfer and the linkage segment register is 
not changed. 

The obtained descriptor becomes the new instruction 
segment descriptor. Flag bits 25, 27, and 28 are checked 
and must be 1; otherwise, an appropriate fault occurs. 
The base and bound are checked for modulo 32 bytes; if the 
test fails, an IPR fault occurs. 

b. Descriptor Segment Descriptor (T = 1 or 3) 

When a type 1 or 3 descriptor is referenced by the Sand D 
fields of the CLIMB instruction, the base of the type 1 or 
3 descriptor is used as a pointer to an entry descriptor. 
Flag bits 20, 27, and 28 must be 1 and the bound field 
must be >= 7 bytes; otherwise, a Bound fault occurs. If 
the obtained descriptor is not an entry descriptor nor a 
dynamic linking descriptor, an IPR fault occurs. 

If a dynamic linking descriptor is obtained, a Dynamic 
Linking fault occurs. 

c. Entry Descriptor (T = 8, 9, or 11) 

When an entry descriptor is referenced by the S and D 
fields of the CLIMB instruction (either directly or 
indirectly), the CLIMB instruction is an interdomain 
transfer. Entry descriptors may be of type T = 8, 9, or 
11. The type of entry descriptor determines how much data 
(register contents) will be safe stored, and how the 
renewal of the pointer register will be processed. 

8-102 DZ51-00 

/ 
( 



( CLIMB 

( 

CLIMB 

Using the entry descriptor, the new instruction segment 
descriptor is obtained from the new linkage segment 
described by the entry descriptor. The new linkage 
segment is assumed to be present in real memory, because 
the entry descriptor does not have a flags field to 
indicate this, and the hardware attempts to obtain the new 
instruction segment descriptor. 

The obtained instruction segment descriptor must be a 
standard descriptor with T = 0 and flag bits 25, 27, and 
28 must be 1. If flag bit 25 is 0, a Security Fault, 
Class 2 occurs: if flag bit 28 = 0, a Missing Segment 
fault occurs: if flag bit 27 = 0, an STR fault occurs. 
The hardware also checks the base and bound of the new 
instruction segment descriptor for modulo 32 bytes; if the 
test fails, the instruction terminates in an IPR fault. 
If T is not 0, an IPR fault occurs. 

3. A new parameter segment is prepared as described below. 

The E bit of the second word of the ClJMB instruction is 
checked. If the E bit = 0, the segment descriptor is not 
passed (no parameter segment is prepared) and the operation 
proceeds to the safe store. 

If the E bit = 1, the segment descriptor is passed. The 
operation that follows depends upon the type of the segment 
descriptor in DRO. An IPR fault occurs if the type for this 
segment is 3, 5, 7-11, 13 or 15. 

a. Descriptor Type in DRO = 1 

If the descriptor type contained in DRO is 1, the 
descriptors to be passed as parameters have already been 
prepared and are the last P+1 descriptors in this 
descriptor segment. Thus, the hardware does not prepare 
any descriptors but frames these last P+l descriptors with 
the parameter segment register. I n this case, hardware 
performs a bound check and if P + 111 > DRO, a bound fault 
occurs. 

b. Descriptor Type in DRO = 0, 2, 4, 6, 12, or 14 

If the descriptor type contained in DRO is 0, 2, 4, 6, 12, 
or 14, the hardware prepares descriptors. The vector list 
is located by pointer register zero (i.e., ARO and DRO 
combined). The descriptor identified by the S and D 
fields of each vector is obtained, prepared exactly as 
described in the definition of the LDDn instruction, and 
placed in the next available location In the argument 

8-103 DZ51-00 



CLIMB CLIMB 

segment as described in the defini~ion of the SDRn 
instruction. This procedure is continued until all P+1 
descriptors have been prepared and placed in the argument 
segment. various faults may occur during this operation 
as described in the definitions of the LDDn and SDRn 
instructions. Note that a vector with an S-and D field of 
S = 0, D = 1760 or 1761 (octal) causes an IPR fault: S and 
D field values of S = 0, D = 1763 or 1764 (octal) require 
that the processor be in Privileged Master mode (as 
described in LDDn), which in this case refers to the 
processor mode at the beginning of the CIJMB instruction. 

If a vector specifies that a data stack descriptor is to 
be formed and the associated bit in the option register 
specifies that the stack space is to be cleared, the CLIMB 
instruction performs the clear function. 

If several data stack shrinks are specified, the second 
and subsequent data stack shrink operations are performed 
using the previously changed new value of the data stack 
address register (DGAR). 

4. Safe Store Operation 

The safe store operation differs depending upon the type of 
the segment descriptor referenced with the ICIJMB Sand D 
fields. The size of the generated safe store frame and the 
stored data is determined by the referenced segment 
descriptor. The SSR base indicates the starting address of 
the last frame of the stored data prior to this CIJMB. The 
size of the last frame must therefore be added to the SSR 
base before the new frame is stored. In relation to the SSR, 
a 2-bit hardware control register, called the stack control 
register (SCR) is used. The SCR contains a code indicating 
the size of the last frame placed in the safe store 
stack. (The SCR, is initialized to 112 or 102 (binary) when 
the LDSS instruction is executed.} (Refer to details for the 
LDSS instruction.) The following displays the flow of safe 
store operation. When the safe store bypass flag (option 
register bit 19) is ON (zero), safe store is bypassed and 
processing proceeds to change the register contents as 
described under Loading the Registers. 

8-104 DZ51-00 



CLIMB 

a. 

( 

CLIMB 

The SSR base is increased, and the bound decreased, as 
follows based on the SCR content. 

SCR SSR Base SSR Bound 

002 +16 words -16 words 

012 +24 words -24 words 

102 +80 words -80 words 

112 +64 words -64 words 

The SSR base indicates the start of the newly generated 
safe store frame as a result of this operation. 

NOTE: When hardware adds the SSR base, no check is 
performed to check for carry. SOftware must ensure 
that the base value initially loaded into the SSR is 
not at the end of the working space. 

A safe store stack fault occurs in conjunction with a 
Inward (programmed) climb instruction, or in conjunction 
with the wired-in CLIMB instruction that results from a 
fault or interrupt. This fault indicates that the safe 
store stack has only one or two 64-word frames remaining. 

After completing the safe store on a Inward CLIMB (SSR 
base and bound have been updat~), if the SSR bound < 239 
+ 3 bytes, the hardware will not access the instruction 
pointed bo by the new ISR and Ie, but will execute the 
safe Store Stack fault. This causes another safe store 
stack frame to be stored. This frame will contain the 
"transferred to" domain registers from the inward CLIMB. 
Word 5, bit 10 (SSSF) will be set to 1 and the fault code 
in bits 12-16 of word 5 will be set to 00000. 

When executing a fault or interrupt CLIMB, the hardware 
updates the SSR base and bound while generating the safe 
store frame, to determine whether a Safe Store Stack fault 
should be indicated in the safe store frame with the 
original fault or interrupt. If the SSR bound < 239 words 
+ 3 bytes, the hardware will set word 5, bit 10 (SSSF) = 1 
and leave the original fault code or interrupt cell number 
in word 5, bits 12-16. The safestore Stack fault will not 
be executed; a separate safestore stack frame will not be 
stored. 

8-105 DZ5l-00 



CLIMB CLIMB 

NOTE: The operating system software must monitor word 5, bit 
10 (SSSF) in each fault or interrupt frame in the safe 
store stack and to initiate appropriate action whenever 
this bit = 1. 

b. The SCR content is saved in the new safe store frame. 

c. The new SCR value is determined as follows, with the lower 
two bits of the type field (T) of the first word of the 
last segment descriptor referenced by the ClJMB 
instruction S and D fields, and the value of bit 24 of the 
ISR prior to the start of the CLIMB instruction. 

T Field ISR Bit 24 SCR 

o or 8 0 or 1 002 

9 0 or 1 012 

11 0 112 

11 1 102 

d. The amount of stored data (register content) is determined ',,_ ... / 
by the SCR value at this time (as described in item c 
above). The value of the SCR at this time is determined 
by the type of segment descriptor referenced by this CLIMB 
instruction and the ISR bit 24). As illustrated in 
Figures 8-7 and 8-8, 16, 24, 64, or 80 words are stored in 
accordance with the SCR content. 

When the frame size is 64 or 80 words, the actual number 
of words stored may depend on the state of the indicator 
register bit 30 (multiword instruction interrupt or 
fault). The processor hardware sets IR bit 30 = 1 when a 
multiword EIS instruction is interrupted or faulted. IR 
bit 30 may also be set to 1 by the operating system 
software. The actual number of words stored when the 
frame size is 64 words is 48 words, unless IR bit 30 = 1, 
in which case 52 words are stored. When 52 words are 
stored, the pointer and length registers are included in 
the 64-word frame starting at word 48. Word 4, bit 30 is 
stored as a 1, and then IR bit 30 is set to 0, as though 
an SPL instruction had been executed. 

e. Since the SCR is created by the hardware on the ICLIMB, 
the mode and SCR should be consistent on the RETURN 
CLIMB. If software modifies the SCR content of the safe 
store frame such that the mode, NS or ES, is inconsistent 
with the safe store frame size, an IPR fault will occur. 

8-106 DZ51-00 



CLIMB 

(-
11 01 00 <-SCR 
o 0/1 0/1 <-ISR Bit 24 

· · 
• 
• 
• 
• 
• 
• 

· · · · · • 

· · 4 
8 

· W 
0 
r 
d 
s 

· · 
• 

· 6 
4 

W 
0 
r 
d 
s 

· • 0 HWMR 191Extended Fault Reaister 

· · 1 CPU Fault Reqister 

· 1 2 Imaae of Faultina Instruction 

· 6 3 ////////////////////////////////////////////////// 

· 6 4 IC 18 IR 151//// 
2 · 5 *11*21/////1*31*41 *5 10 RHUICP#ISCRI SEGID 12 
4 W 6 17 DSAR 1//////////////1 EWSN# 9 

· 0 7 Relative Virtual Address 
W r 8 - 9 ISR 
0 d 10 - 11 ASR 
r s 12 - 13 LSR 
d • 14 - 15 PSR 
s 16 ARO SEGIDO 

· to to 

· AR7 SEGID7 

· 23 
24 ORO 

to 
DR7 .. 

39 
40 XO Xl 
41 X2 X3 
42 X4 X5 
43 X6 X7 
44 A 
45 0 
46 8 E J////////////////////////////////////// 
47 27 Timer Reqister 1////////// 
48 Mid-instruction Interrupt Data 
51 (Stored on~y if IR bit 30 = 1) 
52 ////////////////////////////////////////////////// 

54 - 55 LOR 
56 ////////////////////////////////////////////////// 

////////////////////////////////////////////////// 
////////////////////////////////////////////////// 

63 ////////////////////////////////////////////////// 

Figure 8-7. safe Store Stack Format - NS Mode 

*1: Fault Retry Flag - bit 1 
*2: Fault Tally Flag - bit 2 
*3: safe Store Stack Fault Flag - bit 9 
*4: Fault/Interrupt - bit 10 

a = fault 
1 = interrupt 

*5: Fault/Interrupt Code - bits 11-17 

CLIMB 

Octal 
o 
1 
2 
3 
4 
5 
6 
7 
10-11 
12-13 
14-15 
16-17 
20 

27 
30 

47 
50 
51 
52 
53 
54 
55 
56 
57 
60 

65 
66-67 
70 

77 

8-107 DZSl-OO 



CLIMB CLIMB 

10 01 00 <-SCR 
1 Oil Oil <-ISR Bi 24 Octal 

· · · 0 HWMR 19JExtended Fault Reqister 0 

· • • 1 CPU Fault Reqister 1 

· • 1 2 Imaae of Fau1tina Instruction 2 

· • 6 3 11111111111111111////1/1111/111111111/1111/1/11/11 3 
, · 4 Ie 181 IR 15/1/11 4 

· 2 • 5 *11*21111111*31*41 *5 10IRHUICP#ISCRI SEGID 12 5 

· 4 W 6 17 DSAR 111111111/111111 EWSN# 9 6 

· · 0 7 Relative Virtual Address 7 
• W r 8- 9 ISR 10-11 

· 0 d 10 - 11 ASR 12-13 

· r s12-13 LSR 14-15 

· d • 14 - 15 PSR 16-17 

· s 16 00000000000000000000000000000000000 SEGIDO 20 

· · 00000000000000000000000000000000000 to 

· · 00000000000000000000000000000000000 SEGID7 

· · 23 00000000000000000000000000000000000 27 

· 24 DRO 30 

· · to 
· 39 DR7 47 

· 40 1111111111111111111111111111111111111/111111111111 50 

· 41 11/1111111111111111111/1111/1111/111111111/1111111 51 

· 42 111111111111/111111111111111111111111/1111/1111111 52 
8 43 111111111111111111111111111/11111111111111/1111111 53 
0 44 A 54 

· 45 Q 55 
W 46 8 E 111111111111111111111111111111111111/11 56 
0 47 27 Timer Reqister 11111111111 57 
r 48 Mid-instruction Interrupt Data 60 
d 51 (Stored on1v if IR bit 30 = 1) 
s 52 11111111111111111111111111111111111111111111111111 65 

· 54 - 55 LOR 66-67 
· 56 GXO 70 

· · to 

· 63 GX7 77 

· 64 ARO 100 

· · to 

· 71 AR7 107 
• 72 111111111111111111111111111111111111//11/1/1111111 110 
• II/IIIIIIII//Reserved for Future Usel/IIIIII/I/III 
· 79 11111111111111111/11111111111111111111111111111111 117 

Figure 8-8. safe Store Stack Format - ES Mode 

*4: Fau1tlInterrupt - bit 10 
o = fault 1 = interrupt 

*1: Fault Retry Flag - bit 1 
*2: Fault Tally Flag - bit 2 
*3: SSSF Flag - bit 9 *5: FaultlInterrupt COde - bits 11-17 

8-108 DZ5l-00 

'\ 

"'--j 

'" 



CLIMB 

( 

ruMB 

SOme of the fields shown in Figures 8-7 and 8-8 are stored 
only with a CLIMB instruction executed by hardware in 
response to faults or interrupts, and are meaningless when 
using the ~rogrammed ClJME instruction. 

The following discussion explains the contents of the safe 
store stack as illustrated in Figures 8-7 and 8-8. 

Word 0 Bits 0-19 

High Water Mark Register (HWMR) stored. The content 
of the HWMR is the value in the register when the 
ClJ ME instruct ion started. 

Bits 20 to 35 Extended Fault Register 

Word 1: 

Upon occurrence of a fault, the CPU fault register 

Word 2: 

Upon occurrence of a fault, the image of the 
faulting instruction 

Word 3: 

Reserved for hardware use 

Word 4: Bits 0 to 17 

The instruction counter (IC) value is stored as 
follows: 

IC = IC + 2 

Refer to section 6 for the description of the value 
stored when a fault or interrupt occurs. 

Bits 18 to 32 

Indicator register (IR) contents. 

Bits 33 to 35 Not used. 

Word 5: Bits 0 to 9, 18, 19 

8-109 DZ5l-00 



CLIMB CLIMB 

Reserved for hardware use. When an interrupt or a 
Connect, Timer Runout, Shutdown, or Missing Page 
fault occurs, a 1 is stored in word 5, bit 9 to 
indicate the· recoverable type. When other faults 
occur, a 0 is stored in word 5, bit 9~ 

Bit 10 

SSF (safe Store Stack fault flag). Refer to Section 
6 for description of faults. 

Bit 11 to 17 

These bits are meaningful only when faults or 
interrupts occur. (Refer to Section 6, Faults and 
Interrupts for details.) 

Bits 19 to 20 

CPU number 

Bits 22, 23 

Stack Control Register (SCR) 
Bits 24 to 35 

SEGIDOS) 

Word 6: Bits 0 to 16 

The value stored here is the DSAR content when the 
CLIMB instruction started. 

Bits 17 to 26 

Reserved for hardware use. 

Bits 27 to 35 

When a Missing Page fault occurs, the hardware 
stores the effective working space number of the 
virtual address which caused the fault. It is not 
used in other cases. 

Word 7: 

When a missing page fault occurs, the hardware 
stores the relative virtual address which caused the 
fault. It is not used in other cases. 

8-110 DZSI-OO 

\. .. ~ 



(- CLIMB 

( 

( 

CLIMB 

Words 8-47, 54-71: 

As illustrated in Figure 8-7 for NS mode and Figure 
8-8 for ES mode, the hardware stores register 
contents. These contents consist solely of values 
at the beginning of the CLIMB instruction. In 
particular, when a segment descriptor is pushed onto 
the argument stack during execution of the CLIMB 
instruction, the safe stored ASR bound value is that 
before the push operation. 

When SCR = 10, bits 0 to 23 of the words 16 - 23, 
are all zero, and the values of words 40 to 43 are 
undefined. 

When the ISR bit 24 immediately before the CLIMB 
instruction equals 1 with the 24-word stack, bits 0 
to 23 of words 16 to 23 are all zero. 

Words 48-53: 

Hardware stores information for restart of 
instruction execution only in response to faults and 
interrupts. 

The information stored in this area is normally the 
content of the pointers and lengths register when a 
fault or interrupt occurs during execution of an 
interruptible multiword instruction (when saved with 
the IR bit. 30 set to ON). Even when the IR bit 30 
is not set to ON, information is stored in this 
area, for example, for a Missing Page fault. The 
content of this area must not be changed by 
software. 

When software does not specify type T = 11 as the 
entry descriptor for a fault or interrupt, the 
system cannot return correctly. 

Words 72-79: Reserved for future used. 

5. Loading the Registers 

After the state is saved in the safe store stack, the 
registers are changed as described below. 

8-111 DZ51-00 



CLIMB CLIMB 

a. Loading the Instruction Segment Register (ISR) 

For an intradomain transfer, the standard descriptor 
referenced by the Sand 0 fields of the instruction is 
placed in the ISR. If the Sand D fields referenced a DRQ 
(177n), then SEGIOn -> SEGIO(IS); otherwise, S and 0 
--> SEGID(IS). 

For an interdomain transfer, the descriptor pointed to by 
the ISEGNO field of the entry descriptor is loaded into 
the ISR. SEGID(IS) is set to S = 3, D = ISEGNO. 

b. Loading the Instruction Counter (Ie) 

For an intradomain transfer, an effective address is 
formed using the address field of the CLIMB instruction 
and applying the indicated AR and/or tag field 
modification. This 18-bit effective address is placed in 
the instruction counter. 

c. Loading the Linkage Segment Register (LSR) 

For an intradomain transfer, the linkage segment does not 
change. 

For an interdomain transfer, a standard descriptor from 
the entry descriptor is placed in the LSR as follows: 

o Base = Linkage base (LBASE) with zeros in the 10 most 
significant bit positions 

o Size = Linkage bound (LBOUND) extended with three 1 
bits on the right and with zeros in the 7 most 
significant bit positions 

o WSR = WSR (working space register) 

o T = 1 

o Flags - Bits 20, 22, 23, 27, and 28 = 1 
Bits 21, 24, 25, and 26 = 0 

For an interdomain transfer, the 1S-bit entry location 
contained in the entry descriptor is placed in the 
instruction counter. 

d. Argument Stack Register (ASR) and Parameter Segment 
Register (PSR Generation 

When E bit = 0 (pass no parameters) or when E bit = 1 
(pass parameters) and ORO type T = 1 

8-112 DZ51-00 



( 
CLIMB 

( 

CLIMB 

o The new PSR is generated as follows. 

ASR Base 10001 
+ 

0 19 
I ASR Bound 11111 

0 8 11 

I P 11111 
= 

0 35 

I New PSR Base I 
0 7 8 16 19 

10------01 P 11111 
o The new ASR base is generated as follows. (The new ASR 

generation is independent of ASR flag bit 27.) 

o When C(HWMR) = 0 

ASR base -> New ASR base 

o When C(HWMR) ':F 0 

Araument Seqment (AS ) 

10001 
Double-word 

ASR Base boundary 
+ 

11111 \ 
= 

11111 
Bound fault 

>OCcurs with 4-____ --+<---------..I.I __ -=La=s:::..t:::....!.AS=...;A~d:.::d:!r..::e:.::::s:::.s _ ___L.::::=~ 
\ + 

= = 

\ 
\ 

\ 
\ 

carry 

= 
\ Next avail. 

\-1 __ -:.:.:::.!:.....!!:::.:.:.-!:::.:::.:::-__ 1':::":::":::..L1 double-word . New ASR Base 000 word location 

8-113 DZ5l-00 



CLIMB 

ASR 

HWMR 

CLIMB 

The new ASR bound and flat bit 27 are set to O. 

When E bit = 1 (pass parameters) and ORO type = 0, 2, 4, 
6, 12, or 14 

o The segment descriptor described with the PSR is 
prepared by hardware as with the last P + 1 segment 
descriptors in the argument segment as follows. 

ASR Base Ar ·aument s earnen t (AS) , , , , , , 
\ 
\ 
\ 
\ 

Bound ---->\ 

----------> 
P+l 

--------

<--New PSR base 
is set here 

<-New PSR bound 
, is set here 

\ 
'New ASR base is set so as 
to indicate next available 
double-word location 

o The descriptors to be framed by the PSR are the last 
P+l descriptors in the descriptor segment pointed to by 
ORO. 

8-114 DZ51-00 

"\ 

j 



CLIMB CLIMB 

The new PSR base is generated as follows. 

o When COMm) = a 

ASR base -> new PSR base 

o When C(HWMR) # a 

ASR Base 10001' 
+ Bound 

a 19 fault 

I~~~~~I 11111 
occurs 

HWMR with 
+ carry 

= 
a 35 

New PSR Base 10001 

The new PSR base shown above works as the start address in 
the area where the segment descriptor is prepared as a 
parameter. 

8-115 DZ51-00 



CLIMB CLIMB 

o The new PSR base is set to the value DRO base + DRO 
bound - P as shown below. 

o 32 35 

DRO Base 10001 
+ 

0 19 

I DRO Bound 11111 

0 8 11 

I P 11111 
= 

o 35 

New PSR Base 10001 

The new PSR bound is generated as follows. 

o 7 8 16 19 

100---------01 P 11111 

o The new base and bound values formed are loaded into 
the PSR, framing the last P+1 descriptors of the 
segment. Bits 20-35 of the first word of DRO (flags 
field, WSR or WSN field, and T field) are copied to 
the corresponding bit positions of the PSR. 

The new ASR base is generated as follows: 

o When C(HWMR) = 0 

ASR Base 10001' 
+ 

o 11 

I ---------------------I~I/ 

----------------------= 
o 35 

New ASR Base 10001 

8-116 

Bound 
fault 
occurs 
with 
carry 

DZ51-00 

" / 



( 
CLIMB 

EXAMPLE: 

( 

o When C{HWMR) ~ 0 

ASR Base 10001' 
+ 

o 19 

+ 

I ~--------------------------------------o-I~I ----------------------
o 35 

New ASR Base 10001 

CLIMB 

Bound 
fault 
occurs 
with 
carry 

The new ASR bound and flag bit 27 are set to O. 

Independent of the E bit setting and DRO type, the HWMR is 
set to o. 

This example illustrates how the HWMR protects the program 
descriptors from one program from being accessed by 
another program. 

1. Program A 
stores four 
descriptors 
on the argument 
stack (SDRn) 

~ ______ ~ __ ~ <-------------ASR Base 
A - Dl /------- Bound 

/ 
A - D2 / 

/ 
A - D3 / 

/ 
A - D4 / 

~ __________ ~ <-I <---------HWMR 

8-117 DZ51-00 



CLIMB CLIMB 

2. Executes an LDDn to copy the ASR to DRn 

3. Executes a PAS ......-___ ~-..,.. <-------ASR Base 
instr. to modify A - Dl /- Bound 
the ASR bound / 

4. calls program B 

5. Program B 
stores three 
descriptors 
on the 
argument stack 

A - D2 / 
01-----.."....---1- <--------/ 

A - D3 

A - D4 
..L..-_____ ...... <----HWMR 

<---- ASR Base 
-r---A::--_~D=-:l:-----r- / -- Bound (Prog • A) 

/ 
A - D2 / 

+-----~~--~ <-------/ 
A - D3 

A - D4 

A - Dl 

A - D2 

A - D3 

A - D4 

B - DI 

B - D2 

B - D3 

8-118 

<--ASR Base/Bound/HWMR 
(Prog. B) 

<------------ASR Base 
/-- Bound (Prog. A) 

/ 
/ 

<---- ---I 

<--- --- ASR Base 
/----- Bound (Prog. B) 

/ 
/ 

/ 
/ 

<-I <----- HWMR 

DZ51-00 



CLIMB CLIMB 

6. Return to Program A 
ORn Base-------> <-------------ASR Base 
Bound 

\ 
\ 

\ 
\ 
\ 

\ 
\--> 

A - 01 

A - D2 

A - D3 

A - D4 

B - Dl 

B - D2 

B - D3 

/- Bound (Prog. A) 
/ 

/ 
<-----/ 

<---------HWMR 

Because the HWMR remembers the highest level reached in 
the argument stack by an individual program, and uses it 
to generate the ASR base for a new program, there can be 
no overlap of descriptors in the argument stack. Security 
cannot be violated. 

e. Loading the Pointer Registers 

If type 11 entry descriptor was referenced by the Sand D 
fields of the IClJMB instruction, all pointer registers 
are set to the value of the target IS as follows: 

ISR --> DRO through DR7 

SEGI D (I S) -> SEGI DO through SEGI 07 

00 •••• 0 --> ARO through AR7 

NOTE: When the entry descriptor type is other than T = 11, 
the pointer register content remains unchanged. 
However, unless the ISR is copied into the DRn with 
the ICLIMB instruction altering the ISR bit 24, the 
content of ARn, and SEGIDn is undefined. 

f. Loading Xa/GXo 

o If bit 18 of the C field of a ClJMB instruction is 1 
and the operation is an interdomain transfer, the load 
is as follows. 

8-119 DZ51-00 



CLIMB 

Old ISR 
Bit 24 

0 

0 

1 

1 

Old ISR 
Bit 24 

0 

0 

1 

1 

CLIMB 

New ISR 
Bit 24 

0 

1 

0 

1 

XO GXO 
Undefined 

*C(XO> <-YO-17 (meaningless) 

*Undefined C(GXO>0-17 <-- 0 
(meaningless) C(GXO>l8-35 <-- YO-17 

**Undefined 
C(XO> <--Yl6-33 (meaningless) 

Undefined **C(GXO)o-l <-- 0 
(meaningless) C(GXO)2-35 <-- YO-33 

o If xo is to be stored in the safe store stack, the content 
of XO at the start of a CLIMB instruction is stored. 

o If GXO is to be stored in the safe store stack, the 
content of GXO at the start of a CLIMB instruction is 
stored. 

o If bits 18 of the C field of a CLIMB instruction is 0, or 
the operation is not an interdomain transfer, the load is 
as shown below. 

New ISR 
Bit 24 XO GXO 

Unchanged 
0 Unchanaed (meaninaless) 

Unchanged C(GXO)0-17 <- 0 
1 (meaningless) C(GXO>l8-35 <- C(XO) 

Unchanged 
0 C(XO)<-- C(GXO>l8-35 (meaningless) 

Unchanged 
1 (meaninaless) Unchanaed 

The above table also applies to the fault/interrupt CLIMB. 

8-120 DZ51-00 



( 

( 

( 

CLIMB CLIMB 

NOTE: When the CLIMB instruction alters bit 24 of the ISR, the 
content of XI-X7/GXI-GX7 is undefined. 

6. Settina Mode Indicators for System Entry CLIMB 

When the CLIMB is a system entry (PMME) where S = 0 and D = 
1760 (octal), the Master mode indicator is set to ON. If it 
is not a system entry and bit 19 of the C field equals 0, the 
processor is set to Slave mode and the Master mode indicator 
is set to OFF. If it is neither, the mode remains 
unchanged. When this CLIMB is executed as a response to a 
fault or an interrupt, the Master mode indicator is always 
set to ON. 

Outward CLIMB (RET/OCLIMB) C Field Bits 22 and 23 = 01 

DSDR Base 
\ 

\ 
\ 

\ 
\ 

Bound \ 
\ 

1. In the OCLIMB version of the CLIMB instruction, a return 
occurs according to the last frame stored in the safe store 
stack. 

2. The E, P, S, and D fields, and bits 19, 20, and 21 of the C 
field are ignored. 

3. The data stack clear flag (DSCF) of the option register is 
checked. When DSCF = 1, the data stack area used with the 
procedure executing the outword CLIMB is cleared. The 
cleared area is shown by shading in the diagram below. 

\ 
\ 

\ 

~~~~~~~~~~<--DSAR value restored with OC1JMB 
11111111111111111/// \
1111111111/11/1/1111 I Cleared area
111111111/111/111/1/
1111111111111/1111/1 I

<--DSAR value when this OCLIMB started

\~----------------~
o In this case, a security fault, class 1 occurs if the DSAR

at the start of the CLIMB is less than the restored DSAR.

o If a missing page fault occurs while the data stack is
being cleared, the hardware saves the state at the time
the fault occurred. When the operating system loads this
missing page and returns to the executing procedure, the
clearing of the data stack area is re-executed correctly.

8-121 DZSl-OO

CLIMB CLIMB

4. When an OClJMB starts, the SCR value determines the number of
registers allowed. Registers are restored with the SCR
content indicated in the list below.

An IPR fault occurs if the option register safe store bypass
flag (SSBF) is ON at the time.

When the SCR = 00 (binary), the following registers are
restored:

Instruction Counter (IC)

Indicator Register (IR)

Stack Control Register (SCR)

Instruction Segment Identity Register - ~D(IS)

Data Stack Address Register (DSAR)

Instruction Segment Register (ISR)

Linkage Segment Register (LSR)

Argument Stack Register (ASR)

Parameter Segment Register (PSR)

When SCR = 01 (binary), all the registers that meet the
checks for SCR = 00 (binary) are restored, plus AR 0-7 and
SEGID 0-7.

When SCR = 10 or 11 (binary), the registers for SCR = 01
(binary), the DRO-DR7, XO-X7/GXO-GX7, A, Q, E, and LOR are
restored. When word 5, bit 9 of the safe store stack is 1,
the pointers and lengths register and the fault recovery
information are restored.

In all cases, the processor number and the timer register are
not restored.

8-122 DZ51-00

(CLIMB

(

(

CLIMB

5. The base and bound values of the safe store register (SSR)
are adjusted according to the new values placed in the SCR
from the safe store stack as follows:

6.

SCR(bin.) Base SSR Bound

00 -16 words +16 words

01 -24 words +24 words

10 -80 words +80 words

11 -64 words +64 words

Loading DRO-DR7

When an OClJMB uses 16 or 24 words for the safe store stack
(i.e., the old SCR value = 00 or 01) and then transfers to
Slave mode, the new ISR value is loaded into ORO-OR7.

7. Loading XO/GXO

When the OCLIMB instruction C field bit 18 = 1, the effective
address specified with the instruction, in accordance with
bit 24 of the ISR restored from the safe store stack, is
loaded into XO/GXO. (Refer to table for loading XO/GXO when
bit 18 = 1 under ICLIMB.)

When the OClJMB instruction C field bit 18 = 0, with a
64-word or 80-word safe store stack, the safe store stack
content is restored into XO/GXO. with other than a 64-word
or 80-word safe store stack, the content of XO/GXO is
determined as shown in the table for loading XO/GXO when bit
18 = 0 under the ICLIMB discussion.

NOTE: When the contents of XI-X7/GXI-GX7, ARn, and SEGIDn are
not restored with the OClJMB instruction that alters
bit 24 of the ISR, those contents are undefined.

8. The IC is restored from the safe store stack as follows:

From NS or ES to NS or ES mode

Word 40-17 --> C(IC)0-17

The HWMR is restored from word 00-19

8-123 DZ51-00

CLIMB CLIMB

9. Control is passed to the instruction indicated by the IC and
ISR.

10. When the indicator register is restored (with the value
stored in the safe store stack), the Master mode bit may be
set to ON.

11. Outward CLIMB is interruptible during execution when the
following conditions are satisfied.

o The option register data stack clear flag (DSCF) = l.
o The interrupt inhibit bit = 0 (bit 28 of the first word of

the instruction).

o If the interrupt inhibit bit = 1, interrupt is not
permitted for this instruction during execution.
Interpretation of bit 28 is only valid at the time of
outward CLIMB. With the other three CLIMB variations,
interrupt is not accepted during execution and the value
of bit 28 is not affected by execution of the instruction.

o The procedure executing this outward CLIMB used the data
stack area.

If there is no area to be cleared (i.e., if the restored
DSAR value is equal to the current DSAR value) despite the
above two conditions being satisfied, this OCLIMB is not
interruptible during execution.

When the OCLIMB is being executed and the above three
conditions are satisfied, the processor samples interrupt
at suitable times and responds to any interrupt received,
to ensure that a Lockup fault does not occur while the
data stack is being cleared. At response to the
interrupt, the processor saves the current state in the
safe store stack and the interrupted OCLIMB is re-executed
normally. The clear operation is restarted correctly from
the point at which it was interrupted.

8-124 DZ51-00

« CLIMB

c:

CLIMB

Lateral Transfer (LTRAS/GCLIMB) C Field Bits 22 and 23 = 10

In the GClJMB version of the ClJMB instruction, the safe store
register and the parameter segment register remain unchanged.
Also, the base and bound of the argument stack register remain
unchanged. The HWMR is not stored in the safe store stack.

1. The bit in the E field is not interpreted and the SCR remains
unchanged.

2. The GCLIMB may be an inter- or intradomain transfer that is
determined by the descriptor referenced in the S and D
fields. This version functions as the IClJMB, except as
indicated. since the state of the processor is not saved,
control cannot return to an instruction executing the GCLIMB.

3. Because the processor state is not Saved, the procedure
executing the GCLIMB cannot return correctly with an OCLIMB.

If the descriptor referenced by the Sand D fields of the GCLIMB
instruction is a type 11 descriptor, the pointer registers are
set to the state of the target instruction segment. When the
type is not 11, the pointer register remains unchanged. If T is
not 11 when the GCLIMB instruction is altering bit 24 of the
ISR, the pointer registers are undefined.

Lateral Transfer (PCLIMB/LTRAD) C Field Bits 22 and 23 = 11

The execution of the PCLIMB version is identical with that of
ICLIMB, except for the following:

1. The CPU state is not saved in the safe store stack.

2. The HWMR is not saved in the safe store stack.

3. The SCR remains unchanged.

8-125 DZ51-00

CLIMB CLIMB

If the descriptor referenced by the Sand D fields is a type 11
descriptor, the pointer registers are set to the state of the
target instruction segment. When the type is not 11, the
pointer register remains unchanged. If T is not 11 when the
PCLIMB instruction is altering bit 24 of the ISR, the pointer
registers are undefined.

I LLEGAL ADDRESS
MODI FI CATIONS: DU, DL, CI, SC, SCR

ILLEGAL REPEATS: RPT, RPD, RPL

I LLEX;AL EXECUTES: XEC or XED

I NDI CATORS:

NOTES:

Master Mode - See notes below and discussion of "C19, Slave
Mode" in earlier pages of the CLIMB explanation.

1. Any of the following conditions cause an IPR fault:

o If illegal repeats or executes precede modifications

o If illegal address modification is used

o I f the base and bound fields of the instruction segment
descriptor are not modulo 32 bytes, of if flag bit 27 = \, j

1 (bound valid) and the bound is not 31 modulo 32 bytes

o If the Sand D fields are S = 0 and D = 1760 or 1761
(octal), and the descriptor from the system entry
location is not an entry descriptor

o If the descriptor referenced in the Sand D fields is
not a standard, entry, or dynamic linking descriptor (T
= 0, 5, 8, 9, or 11)

o If the type of the descriptor referenced with the Sand
D fields is T = 1 or 3, and the segment descriptor
obtained from this descriptor is not an entry or
dynamic linking descriptor

o If the Sand D fields of the vector or the CLIMB
instruction are S = 0 and D = 1761 (octal)

o If the transfer destination ISO type T is not 0

8-126 DZ51-00

(
CLIMB

(

(

CLIMB

o If a normal or extended shrink is specified for a
segment descriptor placed in the address segment and
the pushed segment descriptor type is illegal (T = 5, 7
to 11, 13, 15)

o If a Return Climb is specified and the safe store
bypass flag in the Option Register = 0

o If E = 1 and DRO contains a descriptor of type T = 3,
5, or 7-11, 13, or 15

o If the Sand D fields of the vector are S = 0 and D =
1760 (octal)

2. A Command fault may occur as follows.

o If the Sand D fields of the vector are S = 0 and D =
1763 or 1764 (octal) and the processor is not in
Privileged Master mode

o If WS 0 is specified and the processor is not in the
Privileged Master mode

o If WSR 0 is specified and the processor is in Slave
mode (except during the access for the ISO when the
system entry (PMME) is specified)

3. A Bound fault may occur as follows:

o If in the ICLINB version of the instruction, field E =
1, DRO type = 1, and (p + 1) is greater than the DRO
bound

o If the transfer destination ISO flag (bit 27) of the
instruction segment descriptor is 0 (empty segment)

o I f a carry occurs in forming a new argument stack
register (ASR) or parameter segment register (PSR)
base

o If an access for a vector or a descriptor exceeds the
upper or lower bounds of the specified segment, or if
the bound is not valid (flag bit 27 = 0), or if there
is an attempt to address the argument (for the push)
and the temporary ASR bound + 1 byte > 8192 bytes

8-127 DZ51-00

CLIMB CLIMB

o If on an access to memory an associative memory error
occurs

4. A Security Fault, Class 1 may occur as follows.

o If the ISD flag bit 26 = 1 (Privileged mode) and the
processor is in Slave mode and the ClJMB did not result
from a fault, interrupt, or system entry (PMME)

o If, at the end of the CLIMB, ISR flag bit 26 = 1
(Privileged) and either indicator register bit 28 = 0
(Slave) or a nonhousekeeping page is accessed for the
next instruction

o If at the end of the CLIMB, indicator register bit 28 =
o (Slave) and a housekeeping page is accessed for a
vector

o I f the page to be accessed is a nonhousekeeping page
(PTW flag bit 32 = 0)

5. A Security Fault, Class 2 may occur as follows:

o I f flag bit 25 of the instruction segment descriptor is /
o (no execute permission)

o If read flag bit 20 of the descriptor = 0 for any
access to a segment for a vector or descriptor (but not
ASR)

o I f a working space violation occurs

o If the specified page (for the push to ASR) does not
have write permission

NOTE: In the SDRg instruction, the ASR needs neither write
nor store permission.

6. A Missing Segment fault occurs if flag bit 28 of the
descriptor = 0 for any access to the ASR, or to a segment
for a vector or descriptor.

7. A Missing Page fault occurs for any access to the ASR, or
to a segment for a vector or descriptor, if flag bit 30 of
the PTW for the accessed page = O.

8-128 DZ51-00

(

(

CLIMB CLIMB

8. A Missing Space fault occurs for any access to the ASR, or
to a segment for a vector or descriptor, if bit 20 of the
PTDW = O.

9. A Safe Store Stack fault occurs if the SSR bound < 239
words + 3 bytes as a result of the SSR update adjustment.

10. When the access of the 150 from the LSD formed from the
entry descriptor, the same fault checks are made as listed
above, except that if the CLIMB resulted from a fault,
interrupt, or system entry (PMME), the WS = and WSR 0
Command fault checks are not made. (The entry descriptor
does not contain flag bits 20, or 27.)

SUMMARY OF CLI MB I NSTRUCTI ON FORMAT:

o 0 0
023

I I
o 0
o 1

H P

3
6

The control

E

E

P

XO/GXO

XO/GXO

1 1 Op Code 2 2 2 2 3 3
7 8 6 7 8 9 0 5

ADDRESS I 713(1) I+H TAG

First Word

o 1 1 1 1 2 2 2 2 222 3
9 0 7 8 9 o 1 2 3 456 5

I UNUSED I~I ~: I ~ I S I D

Second Word 7
2

fields are defined as follows:

= 0 - No parameters are passed

= 1 - Pass P+l parameters (ICLIMB, PCLIMB only)

= N-l - Number (minus 1) of descriptions or vectors to pass
if E = 1

= 0 - CLIMB will not affect XO/GXO.

= 1 - If entry descriptor (T = 8, 9, or 11) is referenced
or OCLI MB is executed, XO/GXO is loaded with the
effective address designated by the address tag and
AR fields of the CLIMB instruction.

I

I

8-129 DZ51-00

CLIMB CLIMB

SSLV = 0 - set Slave mode

SLV = 1 - Do not change Master mode indicator

TYP = 00 - ICLIMB (or PMME)

TYP = 01 - OCLI MB

TYP = 10 - GCLIMB (LTRAS) - Transfer with same ASR and PSR. Do
not save processor state.

TYP = 11 - PCLIMB (LTRAD) - Transfer with new ASR and PSR. Do
not save processor state.

S, D - Target SEGI D

CODING FORMAT:

Coding of a CLIMB varies with the version of the ClJMB
instruction being executed.

The following list contains each of the five versions of the
CLIMB instruction with their respective fields, which are
defined below. The underlined fields are required; all

(\
\)

"""------_/

others are optional. \.~

ICLIMB - entry, count, effective address, flags

PCLIMB - entry, count, effective address, flags

GCLIMB - entry, effective address, flags

OCLIMB - effective address

PMME - effective address, count, flags

The fields in the CLJMB instruction are described below:

entry - Name of an entry or a 12-bit number (SEGID) that
identifies a descriptor specifying a new linkage
segment and instruction segment or the same
linkage segment and an instruction segment.

8-130 DZ51-00

(CLIMB

(

(

count

CLIMB

- Decimal expression representing a value in the
range 0 <= count <= 512. This value indicates
the number of parameters or descriptors (one for
each argument) pointed to by PRO. The fir-st of
these is at the location indicated by pointer
register zero. A value of zero means that no
arguments, and consequently no vectors or
descriptors, are present. If no value is given,
zero is assumed.

effective - The effective address may include a tag
address pointer designation. When this occurs, the field

must be enclosed by parentheses; e.g., (address,
tag) or (address, tag, pointer). The effective
address is used to establish the next instruction
location, but only when the entry identifies a
descriptor that does not specify a linkage
segment. The effective address is a requirement
only for the PMME version to designate the Master
mode entry.

If the entry identifies a descriptor that
specifies a linkage segment (entry descriptor),
index register 0 may be loaded with the effective
address. If the entry identifies a descriptor
that does not specify a linkage segment (standard
descriptor), this address is added to the base of
the instruction segment (described in the
descriptor) to establish the next instruction
location and may be loaded in index register O.
If bit 18 of field C is zero or this address is
omitted, the content of the effective address
field is not loaded in index register O. Note
that an explicit zero is required to load index
register 0 with a zero, since a null field
prevents register loading.

MASTER - Sets bit 19 of the second word

No flags are used for the OCLIMa version.

NOTE: PMME is synonymous with ICLINB with 17608 coded in the
entry field.

8-131 DZ51-00

CLIMB CLIMB

flags EAXO - Sets bit 18 of the second word

EXAMPLES:

1

*

8

INHIB
ODDF . NULL
NEPRl LDD

SDR
LDD
SDR
LDD
SDR
LDD
MLR
ADSC9
ADSC9
LDP
ICLIMB

* VFD
* VFD

The keyword BAKO indicates that the
effective address field is to be loaded
in index register 0 or general index
register o.

NEAXO - Clears bit 18 of the second word

SLAVE - Clears bit 19 of the second word (for
PMME, bit 18 of the second word is
forced on, bit 19 is ignored by the
hardware)

16

OFF

PO,DSTKS
PO
Pl,ODRSH
Pl
Pl,IALPS
Pl
Pl,ISRS
(1),(1)
O,O,256,P.SSR
O,O,256,PO

The keyword SLAVE indicates that the
processor will enter Slave mode upon
change of domain. If this field is
omitted, the mode is not changed, except
for the PMME version which is always set
to Privileged Master mode.

I f both keywords are needed, the field
must be enclosed by parentheses with a
comma separating the keywords: (e.g.,
BAKO, SLAVE).

32

ICLIMB

shrink data stack (64 words)

shrink safe store

ISR,ASR,LSR,PSR

ISR (R,W)
copy safe store frame to data stack

PO,.ASR,DL copy ASR to PO
.DR+4,3"SLAVE climb exception procedure
l8/,09/7l3,l/l,l/O,l/O,6/M.
1/l,9/3-1,8/0,l/.N,l/.O,2/0,2/0,12/.DR+4

8-132 DZ5l-00

j

(CLIMB

(

1 8

*
INHIB

TRVCEL NULL
TRA
NOP
EPPRO
TRA
EPPRO
TRA
EPPRO
TRA

TRVCOI LDP7
TRA
NOP
NOP

TRVC03 GCLIMB
* VFD
* VFD

LDD6
ICLIMB

* VFD
* VFD

TRA

16

ON

2,IC
,DL

32

GCLI MB/I eLI MB

1,IC .TROPN (system domain only)
.CRTRV+12, ,P.CR

CLIMB

1,IC .TROPN none (system domain only)
2,IC
1,IC .TROPN all (slave domain)
.CRTRV+14"P.CR
**,DL .TRPUT (system domain)
TPUTSY- •• DISP"P7
, DL * . TROPN all macros removed
,DL
**,TOPNG .TROPN extension
lS/TOPNG,09/713,1/1,1/O,1/0,6/M.
1/O,9/0,S/O,1/.N,1/.O,2/0,2/2,12/**
DP.OTE"P.SSL .TROPN all for slave domain extension
.DR6
lS/,09/7l3,1/1,1/O,1/O,6/M.
1/O,9/0,S/O,1/.N,1/.O,2/0,2/0,12/.DR6
0, ,PO

S-133 DZSl-OO

CMG CMG

CMG Compare Magnitude I 405 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS
MODI FI CATIONS:

I LLEGAL REPEATS:

I NDI CATORS:

IC(A)I :: IC(y)l: C(A), C(Y) unchanged

This instruction compares the magnitude of signed algebraic
numbers. For example, if -1 and +1 are compared, they are
considered equal and the zero indicator is set ON.

None

None

Zero Negative Relationship

0 0 C(A) > C(Y)
1 0 C(A) = C(y)
0 1 C(A) < C(y)

8-134 DZ51-00

, .. "".

(

(

CMK CMK

CMK Compare Masked 211 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: For i = 0 to 35,

EXPLANATION:

ILLEGAL ADDRESS

C(Z)i = C(Q)i AND [C(A)i XOR C(Y)i]

C(A), C(Q), C(Y) unchanged

This instruction compares the corresponding bit positions in
C(A) and C(Y) to determine whether they are equal or not.
Bits for which the corresponding bit of Q is I are masked and
not compared.

The zero indicator is set ON if the comparison is successful
for all bit positions:

if for all i = 0,1, ••• ,35
either C(A)i = C(Y)i
or
C(Q)i = 1 is established.
otherwise, the zero indicator is set OFF.

The negative indicator is set ON if the comparison is
unsuccessful for bit position 0:

if for C(A)O # C(Y)O
and
C(Q)O = 0
otherwise, the negative indicator is set OFF.

MODI FI CATIONS: None

I LLEGAL REPEATS: None

INDICATORS: Zero - If C(Z) = 0, then ON: otherwise, OFF

Negative - If bit 0 of C(Z) = 1, then ON; otherwise, OFF

8-135 DZ51-00

CMK

EXAMPLE:

CMK

In the following example, the comparison is equal after
execution of CMK, and the TZE exit is taken. Only the 2s in
NUMBER and DATA are compared; all other bits are masked by Is
in the Q-register.

1 8 16

LDQ MASK
LDA NUMBER
CMK DATA
TZE OUT

MASK OCT 777777777707
NUMBER OCT 300333333326
DATA OCT 666666666625

8-136 DZ5l-00

/

CMPA CMPA

CMPA Compare with A-Register 115 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(A) :: C(Y); C(A) and C(Y) unchanged

I LLEGAL ADDRESS
MODI FI CATIONS: None

I LLEGAL REPEATS: None

INDICATORS: Algebraic comparison (Signed Binary Operands)

Zero Negative

o
o
1
o
o

o
o
o
1
1.

carry

o
1
1
o
1

Re1at ionsh i P _---.:S::;.:i:.;::gna:::

. C(A) > C(Y) C(A)0=O,C(Y)1=1
C{A) > C{Y}\
C{A) = C(Y) >C(A)O=C(Y)o
C{A) < C(Y)/
C(A) < C(Y) C(A)O=1,C(Y)0=O

Logical comparison (Unsigned positive Binary Operands)

o
1
o

carry

1
1
o

8-137

Relationship

C(A) > C{Y)
C(A) = C(Y)
C(A) < C(Y)

DZ5l-00

CMPAQ CMPAQ

CMPAQ Compare with AQ-Register 117 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Any

SUMMARY: C(AQ) :: C(Y-pair); C(AQ) and C(Y-pair) unchanged

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

INDICATORS: Algebraic comparison (Signed Binary Operands)

NOTE:

zero Negative carry

o
o
1
o
o

o
o
o
1
1

o
1
1
o
1

Relationship Sign

C(AQ) > C(Y) C(AQ)O=O,C{Y-pr)O=l
C(AQ) > C(Y)\
C{AQ) = C(Y) >C(AQ)o=C(Y-pr)O
C(AQ) < C(Y)/
C(AQ) < C(Y) C(AQ)O=l,C(Y-pr)O=O

Logical comparison (Unsigned Positive Binary Operands)

o
1
o

carry

1
1
o

Relationship

C(AQ) > C(Y-pr)
C(AQ) = C(Y-pr)
C(AQ) < C(Y-pr)

An Illegal Procedure fault occurs if illegal address
modification is used.

8-138 DZSI-OO

(

(

(...

CMPB CMPB

CMPB Compare Bit Strings 066 (1)

FORMAT:
0 a 1 1

a 1 a 1

I FI 0---------------0 I
a a 0
a 2 3

AR#

a a a
023

Y1

Y1

Y2

MF2

1 1 Op Code 2

7 8 7 8

I
066(1)

I I
1 1 1 2 2 2
7 8 9 0 3 4

N1
C1 B1

0-------

1 1 1 2 2 2
7 8 9 a 3 4

C2 B2
N2

2 2

9

I

5

NFl

0

3 3
2 5

R1

3 3
2 5

3

I

AR# Y2 0-------------0 R2

CODING FORMAT: The CMPB instruction is coded as follows:

1 8 16

CMPB (NF1),(MF2),F
BDSC LOCSYM,N,C,B,AM
BDSC LOCSYM,N,C,B,AM

(Refer to section 7 under Multiword Instructions for
description of Multiword Modification Field.)

OPERATI NG MODES: Any

SUMMARY: C(string 1) :: C(string 2)

8-139 DZ51-00

CMPB CMPB

EXPLANATION: The string of bits starting at location YCBl is logically
compared with the string of bits starting at location YCB2
until an inequality is found or until the larger tally (Ll or
L2) is exhausted. If Ll is not equal to L2, th~ fill bit (F)
is used to pad the least significant bits of the shorter
string. The contents of both strings remain unchanged.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL for NFl and MF2

I LLEGAL REPEATS: RPT, RPD, RPL

I NDI CA'l'ORS:

NOTES:

o

1

o

Carry

o

1

1

Relationship

C(string 1) < C(string 2)

C(string 1) = C(string 2)

C(string 1) > C(string 2)

1. If L1 or L2 = 0, both the Zero and carry indicators are
turned ON, but no Illegal Procedure fault occurs.

2. An Illegal Procedure fault occurs if DU or DL
modifications are used for NFl or NF2 or if an illegal
repeat is used.

8-140 DZ51-00

I",

(

(

CMPB

EXAMPLES:

1

FLD1
FLD2

FLD1
FLD2

8

CMPB
BDSC
BDSC
TRC
USE
OCT
OCT
USE

CMPB
BDSC
BDSC
TZE
TRC
TRA
USE
VFD
VFD
USE

16

, ,I
FLD1,4S,O,O
FLD2,48
EQU.GR
CONST.
0,777000000000
0,777000000000

FLD1,36,O,O
FLD2,19,l,3
EQUAL
FLD1GR
FLD1LS
CONST.
18/-1
12/0,19/-1

32

fill bit 1 option
FLDl operand descriptor
FLD2 operand descriptor
FLD1 equal/greater than FLD2
bits compared (octal representation)
o 0 000 0 0 0 0 0 0 0 7 7 7 7
o 000 0 0 0 0 0 0 0 0 777 0
Result - FLD1 > FLD2

no options
FLD1 operand descriptor
FLD2 operand descriptor
FLD1 = FLD2
FLD1 > FLD2
FLD1 < FLD2
bits compared (octal representation)
7 7 777 7 0 0 0 000
7 7 777 7 400 000
Result - FLD1 < FLD2

CMPB

EXAMPLE WITH ADDRESS MODIFICATION:

1 8

EAX2
EAX6
EAX4
AWDX
CMPB
BDSC
ARG
TZE
USE

FLD1 VFD
FLD2 VFD
INDSCR BDSC

USE

16 32

12 load FLD1's bit modifier into X2
6 load FLD1's length into X6
FLD1 load FLD1's address into X4
0,4,4 put FLD1's address into AR4
(l,l"X2},(,,1) with modification
O,X6,O,O,4 FLD1 operand descriptor
INDSCR pointer to FLD2's indirect descriptor
EQUAL FLD1 = FLD2
CONST. bits compared memory contents
12/0,6/1 7 7 0 000077000000
24/0,6/1 7 7 0 000000007700
FLD2,9,2,6 FLD2 indirect operand descriptor

Result - FLD1 = FLD2

8-141 DZS1-00

CMPC

FORMAT:

o

(FILL

000
o 2 3

AR

a a a
023

AR

0 0
8 9

I 0

CODING FORMAT:

1
0

I 0

Compare Alphanumeric Character Strings 106 (1)

1 1 1 Op Code 2 3
1 7 8

I MF2 I 106(1) MF1

Y1

Y1

Y2

1 1 2 2
7 8 o 1

CNl TAl

1 1 2 2
7 8 a 1

CN2

222
234

0

2 2
3 4

0--

N1

0

N2

Y2 0-----------------0

The CMPC instruction is coded as follows:

1 8

CMPC
AD5Cn
ADSCn

16

(MFl) I (MF2) ,FI LL
LOCSYM,CN ,N ,AM
LOCSYM,CN IN,AM

(Refer to Section 7 under Mu1tiword Instructions for
description of Mu1tiword Modification Field.)

8-142

3 3
2 5

R1

3 3
2 5

R2

DZ51-00

/

(
CMPC CMPC

OPERATI NG MODES: Any

SUMMARY: C(string 1) :: C(string 2)

EXPLANATION: starting at location yel, the string of alphanumeric
characters of type TAl is logically compared with the string
of alphanumeric characters of assumed type TAl that starts at
location YC2 until either an inequality is found or until the­
larger tally (Ll or L2) is exhausted. If Ll is not equal to
L2, the FILL character is used to pad the least significant
characters of the shorter string. The contents of both
strings remain unchanged. Bits 21-23 of descriptor 2 are not
interpreted.

I LLEGAL ADDRESS

Bits 0-8 are compared for the FILL character to be used to
pad the least significant characters of the shorter string.
If a character string is a 6- or 4-bit character, zeros are
inserted at the left of each to produce 9-bit characters for
comparison.

MODIFICATIONS: DU, DL for MFI and MF2

(I LLEGAL REPEATS: RPT, RPD, RPL

I NDI CATORS:

NOTES:

('

o

1

o

Carry

o

1

1

Relation

C(string 1) < C(string 2)

C(string 1) = C(string 2)

C(string 1) > C(string 2)

1. An Illegal Procedure fault occurs if DU or DL modification
is used for MF1 or MF2 and if there are illegal repeats.

2. If Ll or L2 = 0, the zero and carry indicators are
affected as illustrated under Indicators.

8-143 DZ51-00

CMPC

EXAMPLE:

1 8

CMPC
ADSC6
ADSC6
TZE
TRC
NULL
USE

FLOI Bel
FLD2 Bel

USE

16

, ,020
FLOl,O,6
FL02,4,4
D;JUAL
FLOIGR

CONST.
l,ABCJ)
2, XXXXABCDXXXX

8-144

32

compare with blank fill
field 1 operand descriptor
field 2 operand descriptor
both fields equal
field 1 greater
field 1 less
characters compared
ABCDlSiS
ABCDiSiS
Result - FLOI = FL02

CMPC

DZ51-00

(

CMPCT

CMPCI'

FORMAT:

I
0
0

0 0
0 2

AR#

o 0
o 2

o
o

AR#

AR#

FILL

0
8

CMPCT

Compare Characters and Translate

0 1 1
9 o 1

IdlH NF2

Y1

Y1

Y2

Y2

1 1 Op COde
7 8

I 166(1)

1 1 222 2 2
7 8 0 1 2 3 4

CN1 TAllO

1 1 2 2 2 2 2
7801234

CN2 0 0

222
789

H

N1

N2

166 (1)

NFl

3
5

3
5

3
5

1 1 2 2 2 2 2
7801234

22333 3
89012 5

Y3
0----------------0 AR 0--0

Y3

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

REG

I

8-145 DZ51-00

CMPCT CMPCT

OPERATl NG MODES: Any

EXPLANATION: Starting at lOcation YCl, the string of alphanumeric
characters of type TAl is logically compared with the string
of alphanumeric characters of assumed type TAl that starts at
location YC2, until either an inequality is found or until
the larger tally (L1 or L2) is exhausted.

If an inequality is found, the next action depends on d1 and
d2. If dl and d2 = 0 I then both characters are
transliterated and the resulting characters compared. This
is accomplished as follows.

The character from the string starting at YCl and the
character from the string starting at YC2 are each used as an
index to a table of 9-bit characters starting at location
Y3. The two characters thus taken from the table are
compared, the indicators set as indicated below, and the
instruction terminates. For the case dl = d2 = 1, no
transliteration takes place: the indicators are set according
to the way the two original characters compared. When dl F
d2, one character is translated and the other is not, and
then the two characters are compared. For example, if dl = 1
and d2 = 0, the character from the string starting at YC2 is
transliterated (as described above> and compared with the
character from the string starting at YCl and the indicators
are set accordingly.

Note that a 9-bit compare is always made. If dl F d2 and the
nontranslated character is a 4- or 6-bit character, then the
upper bit positions of the character are zero-filled for the
9-bit compare.

If Ll F L2, fill characters are used to fill the low-order
character positions of the shorter string. The contents of
both strings remain unchanged.

The transliteration table must begin at a word boundary at
character position O. The index,' which is expressed by the
number of 9-bit characters, is added to the starting word
address of the table. The beginning address of the table is
calculated in the same manner as is any normal address
modification. However, the computed address is used as word
address, with character position ignored, and the index is
added to this word address as a 9-bit character number.

Refer to the MVT instruction specifications for details on
generating the transliteration table address when address
register modification is specified. /"',

I

""'.--/

8-146 DZ51-00

(

CMPCT CMPCT

ILLEGAL ADDRESS
NODI Fl CATIONS: DU, DL for NFl or MF2

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: Let Cl = C(last char from string 1, translated if dl = 0)
Let C2 = C(last char from string 2, translated if d2 = 0>

NOTES:

o
1
o

carry

o
1
1

Relationship

Cl < C2
Cl = C2
Cl > C2

1. When L1 or L2 = 0, the zero and carry indicators are still
affected as indicated in the above table. If L1=L2=O, both
the zero and carry indicators are turned ON.

2. A 9-bit character (zero-filled as appropriate) and/or the
full 9 bits of the table entry are used in all
comparisons.

3. The CMPCT instruction is intended for comparisons in
situations where the character collating sequence is
different from the sequence of character codes.

4. If L1 < L2, and type TAl is 4- or 6-bit, the low-order 4
or 6 bits of the 9-bit FILL character in the instruction
are defined as a table index, respectively.

5. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-147 DZ5l-00

CMPN

CMPN

FORMAT:

0 1
0 0

I 0--------------0

0 o 0
0 2 3

AR#

000
023

AR#

Compare Numer ic

1 1 1
1 7 8

MF2 I

Yl

Yl

Y2

Y2

Op Code

303{l)

1 1 2 2 222
7 8 0 1 234

CNl TNl Sl

1 1 2 2 222
7 8 0 1 234

CN2 TN2 52

CODING The CMPN instruction is coded as follows:

1 8

CMPN
NDSC!!
NDSC!!

16

(MF1) , (MF2)
LOCSYM,CN,N,S,SF,AM
LOCSYM,CN,N,S,SF,AM

2
8

I I

SFl

SF2

I
2
9

2
9

CMPN

303 (1)

MFl

Nl

N2

3
5

3
5

3
5

I

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

OPERA'!'I NG MODES: Any

8-148 DZSI-OO

(

(

CMPN CMPN

SUMMARY: C(string 2) :: C(string 1)

EXPLANATION: Starting at location YC1, the decimal number of data type TNl
and sign and decimal type Sl is algebraically compared with
the decimal number of data type TN2 and sign and decimal type
S2 that starts at location YC2. The comparison effectively
subtracts number 1 from number 2. Zeros (4 bits - 0000) are
used to pad the integral and fractional parts of the shorter
field. Both nUr:lbers remain unchanged.

ILLEGAL ADDRESS
MODI FI CAT! ONS: DU, DL for MF1 and MF2

ILLEGAL REPEATS: RPT, RPD, RPL

I NDI CATORS :

NOTES:

Zero N~ative Relationshi12

a 1 C(number 1) > C(number 2)
1 a C(number 1) = C(number 2)
a a C(number 1) < C(number 2)

Zero Carry Relationshi12

a a C(number 1) > C(number 2)
1 1 C{number 1) = C(number 2)
0 1 C(number 1) < C(number 2)

1. An IPR fault occurs if any character (least four bits)
other than 0000 - 1001 is detected where digits are
defined, or any character (least four bits) other than
1010 - 1111 is detected where the sign is defined by the
numeric descriptor.

2. An IPR fault occurs if the values for the number of
characters (Ni) of the data descriptors are not large
enough to hold the number of characters required for the
specified sign and/or exponent, plus at least one digit.

3. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-149 DZSI-OO

CMPN CMPN r-'"
~-,)

EXAMPLES:

1 8 16 32

CMPN no modification
NDSC4 FLD1,O,8,1,-2 FLDl operand descriptor
NDSC4 FLD2,O,8,O FLD2 operand descriptor
TZE EQUAL FLD2 = FLDl
TM! LESS FLD2 < FLOl
TNC ABS.LT IFLD21 < IFLD11
USE CONST. numbers compared

FLDl EDEe 8P-12345 - 0 0 123 4 5
FLD2 EDEe 8P-123.45 - 0 0 1 2 3 4 5

USE Result - FLD2 = FLDl

CMPN no modification
NDSC9 FLD1,2,2,3 FLDl operand descriptor
NDSC4 FLD2,O,8,2,-3 FLD2 operand descriptor
TZE EQUAL FLD2 = FLDl
TN! LESS FLD2 < FLDl
TRA GREATER FLD2 > FLDl
USE CONST. numbers compared

FLDl EDEe 4AOOl2 + 0 0 1 2 0 0 0
FLD2 EDEe 8Pl2000+ + 0 012 0 0 0

USE Result - FLD2 = FLDl j

EXAMPLE WI TH ADDRESS MODI FI CATION:

1 8 16 32

EAX2 2 load character modifier into X2
EAX6 6 load FLDl length into X6
EAX4 FLDl load FLD1 address into X4
AWDX 0,4,4 put FLDl address into AR4
CMPN (1,l"X2),(,,1) with address modification
NDSC4 O,O,X6,3,-3,4 FLDl operand descriptor (FLDl,2,6,3,-3)
ARG FLD2.I pointer to FLD2 operand descriptor
TZE EQUAL FLD2 = FLDl
TPL MORE FLD2 > FLDl
TRA LESS FLD2 < FLDl
USE CONST. numbers compared

FLD1 EDEe 8P123456 + 0 0 1 2 345 6
FLD2 EDEe 8Pl23456+ + 0 1 2 3 456 0
FLD2.I NDSC4 FLD2,O,8,2,-2

USE Result - FLD2 > FLDl

-""

8-150 DZ51-00

(- CMPNX CMPNX

CMPNX Compare Numeric Extended 343 (1)

FORMAT:

0 0 0 1 1 1 1 Op Code 222
0 1 2 o 1 7 8 789

H 01 00-------------00 1
MF2 I 343(1) II I

0 0
0 2

AR#

o 0
o 2

AR#

CODING FORMAT:

Yl

Yl

Y2

Y2

1 8 16

1 1 2 2 222
7 8 0 1 234

CN1 TN1 SX1

1 1 2 2 222
7 8 0 1 234

CN2 TN2 SX2

CMPNX (MFI) , (MF2) ,CS
NDsCn LOCSYM, CN ,N ,SX , SF ,AM
NDSCn LOCSYM, CN ,N ,SX, SF ,AM

SF1

SF2

2 3
9 0

2 3
9 0

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

OPERATI NG MODES: Any

SUMMARY: C(string 1) :: C(string 2)

8-151

MF1

N1

N2

3
5

3
5

3
5

I

DZS1-OO

CMPNX

EXPLANATION:

I LLEGAL ADDRESS

CMPNX

Starting at location YC1, the decimal number of data type TNl
and sign and decimal type SKl is ~lgebraically compared with
the decimal number of data type TN2 and sign and decimal type
SK2 that starts at location YC2. The comparison effectively
subtracts number 1 from number 2. Zeros (4 bits - 0000) are
used to pad the integral and fractional parts of the shorter
field. Both numbers remain unchanged.

The character set is defined by CS (EBCDIC/ASClI).

MODIFICATIONS: DU , DL for NFl or .MF2

I LLEGAL REPEATS: RPT I RPD I RPL

I NDI CATORS :

NOTES:

~ Negative RelationshiQ

0 1 C(number I} > C(number 2)
1 0 C(number 1) = C(number 2}
0 0 C(number 1) < C(number 2)

Carry RelationshiQ

0 IC(number 1) I > IC(number 2) I
1 C(number 1) ~ C(number 2)

1. An IPR fault occurs if any character (least four bits)
other than 0000 - 1001 is detected where digits are
defined, or if any character (least four bits) other than
1010 - 1111 is detected where the sign is defined by the
numeric descriptor.

2. An IPR fault occurs if the values for the number of
characters (Ni) of the data descriptors are not large
enough to hold the number of characters required for the
specified sign and/or exponent, plus at least one digit.

3. Refer to the specifications on MVNX for information on
coding of overpunched signs.

4. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-152 DZ5l-00

/ "'\
I

/'

(

(

CMPQ CMPQ

CMPQ Compare with Q-Register 116 (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERATING MODES: Any

SUMMARY: C(Q) :: C(Y); C(Q) and C(Y) unchanged

ILLEGAL ADDRESS
MODI FI CATIONS: None

I LLEGAL REPEATS: None

INDICATORS: Algebraic comparison (Signed Binary Operands)

Zero Negat i ve Carry Relationship Sign

o
o
1
o
o

o
o
o
1
1

o
1
1
o
1

C(Q) > C(Y) C(Q)o=0,C(Y)0=1
C(Q) > C(Y)\
C(Q) = C(Y) > C(Q)o=C(Y)o
C(Q) < C(Y)/
C(Q) < C(Y) C(Q)O=1,C(Y)0=0

Logical comparison (Unsigned Positive Binary Operands)

o
1
o

1
1
o

8-153

Relationship

C(Q) > C(Y)
C(Q> = C(Y)
C(Q) < C(Y)

DZ5l-00

CMPXn CMPXn

Compare with Index Register !! I I 10!! (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

ILLEGAL ADDRESS

NS Mode

For n = 0,1, ••• , or 7 as determined by op code

C(Xn) :: C(Y)0-17: C(Xn) and C(Y) unchanged

ES Mode

For n = O,l, ••• ,or 7 as determined by op code

C(GXn) :: C(Y): C(GXn) and C(Y) unchanged

MODI Fl CATl ONS : CI, SC, SCR

ILLEGAL REPEATS: RPT, RPD, RPL of CMPXO

I NDI CATeRS: Algebraic (signed binary) comparison:

NS Mode
Zero Negative carry Relationship Sign

o
o
1
o
o

ES Mode

o
o
o
1
1

Zero N~ative

0 0
0 0
1 0
0 1
0 1

o
1
1
o
1

C(Xn) > C(Y)0-17 C(Xn)O=O,C(Y)O=l
C(Xn) > C(Y)O-17\
C(Xn) = C(Y)0-17 >C(Xn)O=C(Y)O
C(Xn) < C(Y)O-171
C(Xn) < C(Y)O-17 C(Xn)O=l,C(Y)O=O

carry Relationship Sign

0 C(GXn) > C(Y) C(GXn)O=O,C(Y)O=l
1 C(GXn) > C(Y) \
1 C(GXn) = C(Y) >e(GXn)o=C(Y)O
0 C(GXn) < C(Y) I
1 C(GXn) < C(Y) C(GXn)O=l,C(Y)O=O

8-154 DZSI-00

(CMPXn CMPXn

Logical comparison (Unsigned Positive Binary Operands)

NS Mode
Zero carry Relationship

0 1 C(Xn) > C{Y)O-17
1 1 C(Xn) = C{Y)O-17
0 0 C(Xn) < C(Y)O-17

ES Mode
Zero carry Relationship

0 1 C(GXn) > C(y)
1 1 C(GXn) = C(Y)
0 0 C(GXn) < C(Y)

NOTES: l. When DL modification is specified in the NS Mode I it is
executed with all zeros for data.

2. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

(

(
8-155 DZ5l-00

CMRR CMRR

CMRR Compare Register to Register 534 (1)

FORMAT:

a a 1 1 222 3 3
7 8 789 1 2

Not Used I OP CODE II I MBZ I R2

CODING FORMAT: 1 8 16

CMRR R1, ,R2

OPERATING MODES: Executes in ES mode only

SUMMARY: Rl, R2, = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

C(R1) : : C(R2)

C(R1), C(R2) unchanged

EXPLANATION: C(R1) is compared with C(R2) and the indicators are set as
indicated below.

ILLEGAL ADDRESS
MODIFICATIONS None. The address modification is not executed.

I LLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

INDICATORS: Algebraic (signed fixed-point) Comparison

Zero N~ative carry RelationshiQ Sign

3
5

0 0 a C(Rl) > C(R2) C(Rl)O=O, C(R2)O=1
C(Rl) > C(R2) 0 0 1 \

1 0 1 C(Rl) = C(R2) > C(Rl)0=C(R2)o
a 1 0 C(Rl) < C(R2) I
0 i 1 C(Rl) < C(R2) C(Rl)O=l, C(R2)O=O

I

8-156 DZ51-00

(CMRR

NOTES:

Logic (unsigned fixed-point) Comparison

o
1
o

Carry Relationship

o C(R1) < C(R2)
1 C(Rl) = C(R2)
1 C(Rl) > C(R2)

CMRR

1. An IPR fault occurs if illegal repeats are executed or if the
instruction is executed in NS mode.

2. Refer to Register to Register Instructions in Section 7 for a
description of the fields in the instruction word.

8-157 DZ5l-00

CNAA

CNAA Comparative NOT AND with A-Register

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NGMODES: Any

SUMMARY:

ILLEGAL ADDRESS

For i = 0 to 35, C(Z)i = C(A)i AND C(Y)i

C(Q) ~nd C(Y) unchanged

MODIFICATIONS: None

I LLEGAL REPEATS: None

I NDI CATORS: Zero - If cCZ) = 0, then ON; otherwise, OFF

CNAA

I 215 {OJ

Negative - If CCZ)O = 1, then ON; otherwise, OFF

8-158 DZ51-00

(

(

CNAAQ CNAAQ

CNAAQ Comparative NOT AND with AQ-Register 217 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: For i = 0 to 71, C(Z)i = C(AQ)i AND C(Y-pair)i

C(AQ) and C(Y-pair) unchanged

I LLEGAL ADDRESS
MODI FI CATIONS: DU, DL, CI, SC, SCR

ILLEGAL REPEATS: None

I NDI CATORS:

NOTE:

Zero - If C(Z) = 0, then ON; otherwise, OFF

Negative - If C(Z)O = 1, then ON; otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-159 DZ51-00

CNAQ CNAQ

CNAQ Comparative NOT AND with Q-Register 216 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY For i = 0 to 35, C(Z)i = C(Q)i AND C(Y)i

I LLEGAL ADDRESS
MODIFICATIONS: None

I LLEGAL REPEATS: None

I NDI CATORS : Zero - If C(Z) = 0, then ONi otherwise, OFF

Negative -If C(Z)O = 1, thenONi otherwise, OFF

8-160 DZ51-00

(

(

(

CNAXn CNAXn

Comparati ve NOT AND with I ndex Register n 20n (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

ILLEGAL ADDRESS

NS Mode

For n = O,l, ••• ,or 7 as determined by op code

For i = 0 to 17, C(Z)i = C(Xn)i AND C(Y)i
C (Xn) and C (y) unchanged

ES Mode

For n = O,l, ••• ,or 7 as determined by op code

For i = 0 to 35, C(Z)i = C(GXn)i AND C(Y)i
C (GXn) and C (y) unchanged

MODIFICATIONS: CI, SC, SO

ILLEGAL REPEATS: RPT, RPD, RPL of CNAXO

INDICATORS:

NOTES:

Zero - If C(Z) = 0, then ON: otherwise, OFF

Negative - If C(Z)o = 1, then ON: otherwise, OFF

1. DL modification is flagged illegal but executes with all
zeros for data.

2. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-161 DZ51-00

CSL CSL

CSL Combine Bit Strings Left 060 (l)

FORMAT:

o 0 0 0 0 0 I I I I Op Code 2 2

o 0 0
023

AR#

000
o 2 3

AR#

CODING FORMAT:

MF2

Y1

Y1

Y2

060(1)

I 1 2 2 222
7 8 0 I 234

CI B1

I I 2 2 222
7 8 0 I 234

C2 B2

NI

0-------

N2

0

Y2 0--------0

The CSL instruction is coded as follows:

1 8 16

CSL (MF1),(MF2),BOLR,F,T
BDSC LOCSYM,N,C,B,AM
BDSC LOCSYM,N,C,B,AM

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

8-162

NFl

3
2

3
2

RI

R2

3

3
5

3
5

DZS1-00

CSL CSL

OPERATING MODES: Any

SUMMARY: C(string 1) : (BOLR) : C(string 2) --> C(string 2)

EXPLANATION: The string of bits starting at location YCBl is evaluated,
bit by bit, with the string starting at location YCB2 and the
appropriate bit from the BOLR control field is placed into
each corresponding bit of the string starting at location
YCB2. If Ll is greater than L2, the least significant L1-L2
bits of string 1 are truncated and the Truncation indicator
is set. If L1 is less than L2, the fill bit (F) is used as
the L2-L1 least significant bits of string 1. The contents
of string 1 remain unchanged.

ILLEGAL ADDRESS
MODI FI CATIONS: DU, DL for MFl and MF2

ILLEGAL REPEATS: RPT, RPD, RPL

I NDI CATORS :

NOTES:

Zero If all the resultant bits generated are zero,
then ON if L2=0 and L1 ~ 0; otherwise, OFF

Truncation - If L1 is > L2, then ON; otherwise, OFF
If Ll>O and L2=O, then ON. If Ll=L2=O, then
OFF.

1. An Illegal Procedure fault occurs if illegal address
modification is used or if an illegal repeat is used.

2. An IPR fault does not occur even when Ll = 0 or L2 = O.
In this case, the zero and truncation indicators are
affected.

8-163 DZS1-00

eSL

EXAMPLES:

8 16 32

REM BITS 0-17 OF F102 FORCED ON
CSL ,,07,,1 "ORING" with truncation enable option
BDSC F101,24,1,3 F101 operand descriptor
BDSC F102,18,0,0 F102 operand descriptor
USE CONST memory contents in octal

FLD1 VFD 12/0,18/-1,6/0
00007 7 7 7 7 7 0 0

FLD2 10A 0,2 0 0 0 0 0 0 2 3 5 0 1 2

FLD2

USE 7 7 7 7 7 7 2 3 5 0 1 2 (Resu1 t)

REM
CSL
BDSC
BDSC
USE
DEC
USE

BITS 18-35 OF FLD2 INVERTED
, ,06,1. exclusive OR with fill bit 1 option
,0 F101 operand descriptor
FLD2,18,2,0 F102 operand descriptor
CONST. memory contents in octal
o 000000000000

o 0 0 0 0 0 7 7 7 7 7 7 (Result)

EXAMPLE -'."'1 TH ADDRESS MODI FI CATION:

1 8 16 32

CSL

EAX6 12 load char and bit address modifier into X6
EAX7 54 load FLD2 length into X7
EAX4 F102 load F102 address into X4
AWDX 0,4,4 put FLD2 address into AR4
CSL (,,1),00,(1,1,,6),00 clear operation with address
modification ARG 2,4

pointer to FLD1 indirect operand descriptor
BDse 0,X7",4 FLD2 operand descriptor (FLD2,54,1,3)
USE CONST. memory contents in octal

FLD2 VFD 36/-1,36/-1 777777777777 777777777777
BDSe,O F101 operand descriptor (control field zeros)
USE 777700000000 000000000077 (Result)

8-164 DZ51-00

(..

(

CSR CSR

CSR Combine Bit Strings Right 061 (1)

FORMAT:

o 0 o 0 001 1 1 1 Op Code 2 3
o 1 4 5 890 1 7 8 8 5

Heeee ImLR 1+ 1 MF2 1 060(1) H MF1 1
0 o 0
0 2 3

AR#

000
023

AR#

CODING FORMAT:

YI

Y1

Y2

Y2

1 1 2 2 222
7 8 o I 234

CI B1

1 1 2 2 222
7 8 0 1 234

C2 B2

NI

0----------0

N2

0-------0

The CSR instruction is coded as follows:

1 8 16

CSR (MF1),(MF2),BOLR,F,T
BDSC LOCSYM,N,C,B,AM
BDSC LOCSYM,N,C,B,AM

3
2

3
2

R1

R2

3
5

3
5

(Refer to Section 7 under Multiword Instructions for description
of Multiword Modification Field.)

OPERAT! NG MODES: Any

SUMMARY: C(string 1) (BOLR) C(string 2) --> C(string 2)

8-165 DZ51-00

CSR

EXPLANATION: This instruction operates the same as CSL except that the
starting locations are YCBl + (Ll-l) and YCB2 + (L2-l) and
the evaluation is from right to left (least to most
significant bits). Any truncation or fill is of most
significant bits.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL for NFl and MF2

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: same as for CSL

NOTES: 1. An Illegal Procedure fault occurs if illegal address

EXAMPLES:

1 8

modification is used or if an illegal repeat is used.

2. An IPR fault does not occur even when Ll = 0 or L2 = O.
In this case, the zero and trunctaion indicators are
affected.

16 32

CSR

CSR , ,14, ,1 invert with truncation fault enable option

FLDl
FLD2

FLD2

BDse
BDse
USE
OCT
DEe
USE

CSR
BDse
BDse
USE
BSS
USE

FLDl,18,2,0
FLI>2,12,O,O
CONST.
444444
0

,,17
,0
FLI>2,36,O,O
CONST.
1

FLDl operand descriptor
FLI>2 operand descriptor
memory contents in octal
000000444444
333300000000 (Result)
truncation

force ones operation
FL01 operand descriptor
FLD2 operand descriptor
memory contents in octal
77777 7 7 7 7 777 (Result)
none

8-166 DZ5l-00

'- "_./

(

(

CWL CWL

CWL Compare with Limits 111 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS
MODIFICATIONS:

I LLEGAL REPEATS:

I NDI CATORS:

C(Y) :: closed (algebraic) interval [C(A), C(Q)] and
(algebraic comparison) C(Y) :: C(Q)

C(y), C(A), C(Q) are unchanged

This instruction tests the algebraic value of C(Y) to
determine if it is within the range of algebraic values
bounded by C(A) and C(Q). The indicators are then set to
reflect the result. This instruction is not recommended for
logical (unsigned) comparisons.

None

None

Zero

N~ative

0
0

1
1

- If C(Y) is contained in the closed interval
[C(A), C(Q)] i.e., either C(A) ~ C(Y) ~ C(Q) or
C(A) ~ C(Y) ~ C(Q), then ON; otherwise, OFF

carry Relationshil2 Sign

0 C(Q) > C(Y) C(Q)o = 0, C(Y)o = 1
1 C<Q) ~ C(y) }

} C(Q)o = C(Y)o
0 C(Q) < C(y) }
1 C(Q) < c(y) C(Q)o = 1, C(y)o = 0

8-167 DZSI-OO

DFAD DFAD

I DFAD Double-Precision Floating Add 477 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: [C(EAQ) + C(Y-pair)] normalized -> C(EAQ):

C{Y-pair) unchanged

I LLEGAL ADDRESS
MODIFICATIONS: OU, DL, a, SC, SCR

ILLEGAL REPEATS: None

I NDI CATORS:

NOTES:

Zero - If C{AQ) = 0, then ON: otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - If exponent is > +127, then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

carry - If a carry out of bit 0 ofC(AQ) is generated,
then ON; otherwise, OFF

1. The definition of normalization is located under the
description of the FNO instruction.

2. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is CPU
mode register, bit 33.

3. An Illegal Procedure fault occurs if illegal address
modification is used.

8-168 DZS1 OO

(-

DFCMG DFCMG

DFCMG Double-Precision Floating COmpare Magnitude 427 (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS
MODI FI CATIONS:

ILLEGAL REPEATS:

INDICATORS:

NOTES:

IC(E,AQO-63>I :: IC(Y-pair)l; magnitude comparison

C (EAQ), C (Y-pa ir) unchanged

This comparison is executed as follows:

1. Compare C(E) :: C(Y)0-7, select the number with the lower
exponent, and shift its mantissa right as many places as
the difference of the exponents. If the number of shifts
equals or exceeds 72, the number with the lower exponent
is defined as zero.

2. Compare the absolute values of the mantissas and set the
indicators accordingly.

The DFCMG instruction is identical to the DFCMP instruction
except that the magnitudes of the mantissas are compared
instead of the algebraic values.

DU, DL, CI, SC, SCR

None

Zero N~ative Relationshi:Q

0 0 C(E,AQO-63) > C(Y-pair)
1 0 C(E,AQO-63) = C(Y-pair)
0 1 C(E,AQO-63) < C(Y-pair)

1. When indicator bit 32 = 1 and hex permission flag = 1, the
floating-point alignment is hexadecimal. Otherwise, the
floating-point alignment is binary. The hex permission
flag is CPU mode register, bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-169 DZS1-00

DFCMP DFCMP

DFCMP Double-Precision Floating COmpare 517 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS
MODI FI CATIONS:

I LLEGAL REPEATS:

INDICATORS:

NOTES:

C(E,AQO-63) :: C(Y-pair); C(EAQ), C(Y-pair) unchanged

This comparison is executed as follows:

a. Compare C(E) :: C(Y)O-7, select the number with the lower
exponent, and shift its mantissa right as many places as
the difference of the exponents. If the number of shifts
equals or exceeds 72, the number with the lower exponent
is defined as zero.

b. Compare the mantissas and set the indicators accordingly.

The DFCMP instruction is identical to the FCMP instruction
except for the precision of the mantissas actually compared.

DU, DL, CI, SC, SCR

None

Zero Negative Relationshi:Q

0 0 IC(E,AQO-63) I > IC(Y-pair) I

1 0 IC(E,AQO-63) I = IC(Y-pair)I

0 1 IC(E,AQO-63) I < IC(Y-pair) I

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment is hexadecimal. Otherwise,
the floating-point alignment is binary. The hex
permission flag is Mode register, bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-170 DZ51-00

"

(

(

(

DFDl DFDI

DFDI Double-Precision Floating Divide Inverted 527 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(Y-pair) / C(EAQ) -> C(EAQ): C(Y-pair) unchanged

EXPLANATION: If AQ64-7l is not = 0 and AO = 0, a 1 is added to AQ63. zero is
moved to AQ64-7l, unconditionally. AQO-63 is then used as the
divisor mantissa. The 8-bit dividend exponent and 72-bit
mantissa are placed in working registers. The dividend mantissa
is shifted right, and the dividend exponent is increased
accordingly until: IDividend mantissa I < IC(AQ)0-631. When
such a shift occurs, significant bits from the dividend may be
lost.

ILLEGAL ADDRESS

C(AQ)0-63 is used as the divisor mantissa. 64 bits of quotient
mantissa are placed in AQO-63. Zeros are placed in AQ64-7l.

MODI FI CATIONS: DU, DL, Cl, SC, SCR

ILLEGAL REPEATS: None

I NDI CATORS :

Zero

Negative

Exponent

When Division Occurs

If C(A) = 0, then ON:
otherwise, OFF

If C{AQ)O = 1, then
ONi otherwise, OFF

Overflow If quotient exponent
is > +127, then ON

Exponent
Underflow If exponent of floating

When No Division Occurs

If divisor mantissa =0,
then ON: otherwise, OFF

If dividend < 0, then
ON: otherwise, OFF

point result < - 128, then ON

8-171 DZ5l-00

DroI

NOTES:

DroI

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is Hode
register bit 33.

2. If the divisor mantissa C(AQ) is zero, the division does
not take place. Instead, a Divide Check fault occurs and
all registers remain unchanged. The dividend and divisor
are not normalized by the hardware prior to division.

3. An Illegal Procedure fault occurs if illegal address
modification is used.

8-172 DZSl-OO

/

(

DFDV DFDV

DFDV Double-Precision Floating Divide 567 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

C(EAQ) I C(Y-pair) -> C(EAQ); C(Y-pair) unchanged

C(AQ)0-7l are used by this instruction. If the divisor
mantissa C(Y-pair)8-7l is zero, then the division does not
take place. Instead, a Divide Check fault occurs. The
divisor C(Y) remains unchanged, C(AQ) contains the dividend
magnitude in absolute, and the Negative indicator reflects
the dividend sign. Dividend and divisor are not normalized
by the hardware prior to division.

The dividend mantissa C(AQ) is shifted right and the dividend
exponent is increased accordingly until

IC(AQ)o-63I < IC(y-pair)8-7t' with zero filli.
C(E) - C{Y-pair)O-7 --> C E)

When such a shift occurs, significant bits from the dividend
may be lost. 64 bits of the quotient mantissa are placed in
AQO-63. Zeros are placed in AQ64-7l.

When the divisor mantissa is a, division is not executed and
a Divide Check fault occurs. The absolute value of the
dividend is loaded into AQ, and the Negative indicator is set
in accordance with the sign of the dividend.

Refer to the FDV instruction for details of the method of
shifting the dividend.

MODI FI CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

8-173 DZ51-00

DFDV

I NDI CATORS :

NOTES:

Zero

Negative

Exponent

When Division Occurs

If C(A) = 0, then ON;
otherwise, OFF

If C(AQ)O = 1, then

ON: otherwise, OFF

Overflow If quotient exponent
is > +127, then ON

Exponent
Underflow If exponent of floating

DFDV

When No Division Occurs

If divisor mantissa =0,
then ON: otherwise, OFF

If dividend < 0,
then ON: otherwise, OFF

point result < - 128, then ON

1. When indicator bit 32=1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is Mode
register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-174 DZSI-00

(DFLD DFLD

DFLD Double-Precision Floating Load 433 <D)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

I LLEGAL ADDRESS

C(Y-pair), 00 ••• 0 --> C(EAQ); C(Y-pair) unchanged

C(Y)0-7 --> C(E)

C(Y-pair)S-71 --> C(AQ)0-63

00 ••• 0 --> C(AQ)64-71

MODI FI CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTE:

zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-175 DZ5l-00

DFLP DFLP

DFLP Double-Precision F10C1ting Load Positive 532 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EKPLANATION:

ILLEGAL ADDRESS

IC(Y-pair)l, normalized --> Z

ZO-7 --> C(E)

ZS-71 --> C(AQ)0-63

00 ••• 0 --> C(AQ)64-71

The memory operand C(Y) is processed as double-precision
floating-point data. The absolute value of this data is
normalized and its exponent, mantissa (bits 8-71), and 0 are
loaded into C(E), C(AQ)O-63, and C(AQ)64-7l, respectively.

MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTE:

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - I f exponent > +127, then ON.

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

An Illegal Procedure fault occurs if illegal address
modification is used.

8-176 DZ51-00

(

(

DFMP DFMP

DFMP Double-Precision Floating Multiply 463 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: [C(EAQ) * C(Y-pair}] normalized --> C(EAQ}i
C (Y-pair) unchanged

EXPLANATION: This multiplication is executed as follows:

ILLEGAL ADDRESS

C(E) + C(Y-pair)0-7 --> C(E}.

C(AQ) * C(Y-pair}S-71 results in a 134-bit product plus
sign. This sign plus the leading 71 bits are loaded into the
AQ. C(EAQ} normalized --> C(EAQ).

The definition of normalization is located under the
description of the FNO instruction.

MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTES:

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - If exponent> +127, then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

1. When indicator bit 32 = 1 and the hex permission flag = 1,
floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is Mode
register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-177 DZS1-OO

DFRD DFRD

DFRD Double-Precision Floating Round 473 (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERA'l'I KG MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS

C(EAQ) rounded to 64 bits and normalized --> C(EAQ)

A true round is performed on C(EAQ) to reduce the mantissa of the
floating-point number to 64 bits. The exponent is set to -128 if
the rounded mantissa = O.

This instruction is identical with FRO except that the rounding
constant is added to bits 65-71 and the results are rounded to 64
bits of precision. Bits 64-71 of C(AQ) are replaced by zeros.

The definition of normalization is located under the description
of the FNO instruction.

MODI FI CAT! ONS : DU, DL, CI, SC, SCR

ILLEGAL REPEATS: None

INDICATORS

NOTES:

Zero

Negative

Exponent
Overflow

EXponent
Underflow

- If C(AQ) = 0, then ON: otherwise, OFF

- If C(AQ)O = 1, then ON; otherwise, OFF

- If exponent> +127, then ON

- If exponent of floating point result < - 128, then
ON

1. When indicator bit 32 = 1 and the hex permission flag = 1, the
floating-point alignment and normalization are hexadecimal.
Otherwise, the floating-point alignment and normalization are
binary. The hex permission flag is mode register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-178 DZ5l-00

(

(

DFSB DFSB

DFSB Double-Precision Floating Subtract 577 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: [C(EAQ) - C(Y-pair)] normalized -> C(EAQ):
C(Y-pair) unchanged

EXPLANATION: The definition of normalization is located under the
description of the FNO instruction.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

INDICATORS

NOTES:

Zero

Negative

Exponent
Overflow

Exponent

- If C(AQ) = 0, then ON; otherwise, OFF

- If C(AQ)O = 1, then ON; otherwise, OFF

- If exponent> +127, then ON

Underflow - If exponent of floating point result < - 128,
then ON

carry - If a carry out of bit 0 of C(AQ) is generated,
then ON; otherwise, OFF

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is mode
register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-179 DZS1-OO

DFSBI DFSBI

DFSBI Double-Precision Floating Subtract Inverted 467 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Any

SUMMARY:

EXPLAHATION:

I LLEGAL ADDRESS

[C(Y-pair) - C(EAQ)] normalized -> C(EAQ):
C(Y-pair) unchanged

The two's complement of the subtrahend is first taken and the
smaller value is then right shifted to equalize it. The
shifted portion is truncated and the addition is executed.
After addition, the sum is normalized and the 72 bits of the
mantissa are loaded into AQ.

The order of execution of the operation conforms to that of
the DFSB instruction. Normalization is defined under FNO.

·MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATeRS Zero - If C(AQ) = 0, then ON; otherwise, OFF

NOTE:

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - I f exponent is > +127, then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

carry - If a carry out of bit 0 of C(AQ) is generated,
then ON; otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-180 DZSI-OO

(

DFST DFST

DFST Double-Precision Floating Store 457 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

ILLEGAL ADDRESS

C(E) --> C(Y-pair)0-7

C(AQ)0-63 --> C(Y-pair)8-71

C (EAQ) unchanged

MODIFICATIONS: DU, DL, a, SC, SCR

I LLEGAL REPEATS: RPL

I NDI CATORS:

NOTE:

None affected

An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-181 DZ51-00

DFSTR DFSTR

DFSTR Double-Precision Floating Store Rounded 472 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(EAQ)0-7l rounded, normalized --> C(Y-pair):

EXPLANATION:

ILLEGAL ADDRESS

C (EAQ) unchanged

This instruction performs a true round on C(EAQ) to 64 bits
of precision in C(AQ). The result is normalized and stored
in the Y-pair •. C(EAQ) is unchanged. The exponent is stored
as -128 if the rounded mantissa = o. (See the FRO
instruction for the definition of true round.)

Except for precision, this instruction is identical with the
FSTR instruction.

The definition of normalization is located under the
description of the FNO instruction.

MODIFICATIONS: DU, DL, CI, SC, SCR

ILLEGAL REPEATS: RPL

I NDI CATORS: Zero - If C(Y-pair) = floating-point zero, then ON:
otherwise, OFF

Negative - If C(Y-pair)a = 1, then ON: otherwise, OFF

Exponent
Overflow - If exponent> +127, then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

8-182 DZS1-OO

(DFSTR

NOTES:

(

DFSTR

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is Mode
register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-183 DZ51-00

DIS DIS

DIS Delay Until Interrupt Signal 616 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Executes in NS mode only with Privileged Master mode

SUMMARY:

ILLEGAL ADDRESS

No operation takes place other if enabled, PATROL is
invoked. The processor does not continue with the next
instruction, but waits for a program interrupt signal. When
an interrupt occurs, PATROL is stopped.

MODIFICATIONS: None. Modification is performed, including modification of
any indirect words specified. However, the effective address
has no effect on the operation, including the final value of
the instruction counter.

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTES: 1. The inhibit bit in this instruction only affects the
recognition of a Timer Runout (TRO) fault as follows:

o Inhibit ON delays the recognition of a TRO. until the
processor enters Slave mode.

o Inhibit OFF allows the TRO to interrupt the DIS state

For all other faults and interrupts, the inhibit bit is
ignored.

2. A Command fault occurs if execution is attempted in Slave
or Master mode.

3. An IPR fault occurs if this instruction is used in the ES
mode.

8-184 DZ5l-00

(

(

DIV DIV

DIV Divide Integer 506 (0)

FORMAT: Single-word instruction format <see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

C<Q) / C(Y)
integral quotient --> C(Q), right-adjusted
integral remainder --> C(A), right-adjusted
C (y) unchanged

C(Q) and C(Y) are considered as 36-bit integers (including
sign). The integer quotient of C<Q) divided by C<Y) is loaded
into the Q register and the integer remainder is loaded into
the A register. The remainder sign is the same as that of the
dividend unless the remainder is zero.

o 0

Dividend

Q register

yielding:

o 0

Remainder

Q Register

3

3

o 0

/

o 0

Divisor

C(Y)

Quotient

Q Register

3

3
5

MODI FI CATIONS: None

I LLEGAL REPEATS: None

I NDI CATORS :

Zero

If division takes place

If C<Q) = 0, ON:
otherwise, OFF

Negative If bit 0 of C<Q) = 1,ON:
otherwise, OFF

8-185

If no division takes place

If divisor = 0, ON:
otherwise, OFF

If dividend < 0, ON;
otherwise, OFF

DZSI-OO

DIV

NOTE:

DIV

If the dividend = -2**35 and the divisor = +/-1, or if the
divisor is 0 under any condition, division does not take
place. Instead, a Divide Check fault occurs, C{Y> remains
unchanged, C<Q> contains the jividend magnitude, and the
Negative indicator reflects the dividend sign, and C(A) is set
to zero.

8-186 DZ51-00

\

T /

(

(

(

DRL DRL

DRL Dera il Fault 002 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES Any

EXPLANATION: DRL generates a Derail fault, which causes the processor to
switch to Privileged Master mode and execute an Inward CLIMB
instruction using the entry descriptor obtained from the word
pair in memory locations 32 and 33 octal.

ILLEGAL ADDRESS

If the safestore bypass flag in the option register = 1, a
safestore frame is generated. The size of this safestore
frame is determined by the type of the entry descriptor. The
occurrence of the DRL fault is indicated in the safestore
frame by a code of 00110 in bits 12-16 of word 5.

The wired-in CLIMB instruction functions as though the second
word of the CLIMB instruction had the following
characteristics:

E = 0
C18
C19
C22-23
S, D

No parameters
Do not load XO
No effect. Turn Master Mode indicator ON.
= a Inward CLI MB
No effect

The entry descriptor specifies a descriptor to be ob~ined
from the linkage segment for loading into the instruction
segment register (ISR). The entry descriptor also specifies
the value to be loaded into the instruction counter (ID).

The processor is placed in Privileged Master mode for the
execution of the wired-in CLIMB. Upon completion of the
CLIMB, the processor remains in Privileged Master mode if
flag bit 26 of the new ISR = 1 (privileged): otherwise, the
processor changes to Master Mode.

MODIFICATIONS: Not executed

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: Master Mode - ON

8-187 DZ5l-00

DTB

DTB

FORMAT:

0
0

I 0

0 o 0
0 2 3

AR#

000
023

AR#

-----0

COOl NG FORMAT:

Decima1-to-Binary Convert 305 (1)

1 1 1 1 Op. Code 2 2 2
o 1 7 8 7 8 9

I MF2 I 305(1) I I I NFl

1 1 2 2 222 2 3 3
7 8 0 1 234 9 0 2

Y1
CNl TNl Sl 0-----0 Nl

Yl

Y2

Y2

1 1 2 2
7 8 0 1

00

233
902

CN2 0--------------0

00

The DTB instruction is coded as follows:

1 8

DTB
NDsCn
NDSeS

16

(NFl) , (MF2)
LOCSYM,CN,N,S"AM
LOCSYM,CN,N",AM

R1

N2

R2

DTB

3
5

3
5

3
5

I

(Refer to Section 7 under Mu1tiword Instructions for description
of Mu1tiword Modification Field.)

OPERATI NG MODES: Any

8-188 DZ5l-00

,/

(-

(

DTB

SUMMARY:

I LLEGAL ADDRESS
MODI FI CATIONS:

I LLEGAL REPEATS:

I NDI CATORS :

DTB

converted
C(string 1) -------> C(string 2)

The string of decimal characters of data type TNl, sign and
decimal type S1 (S1 = 00 is illegal), and scale factor 0 that
starts at YC1 is converted into a two's complement binary
integer and stored, right-justified, as a character string of
length L2, starting at location YC2. If the string generated
is longer than 12, the high-order excess is truncated and the
overflow indicator is set. CN2 is given in the 9-bit
character format with legal codes of 000, 010, 100, and 110.

If string 1 contains more than 32, when the generated binary
string is longer than L2, the upper bits are truncated and
the overflow indicator is set.

CN2 specifies the value for the 9-bit character format, the
correct codes being 000, 010, 100, or 110. L2 specifies the
length of .the stored binary value in 9-bit units, and must be
equal to or less than 8. The length of the stored binary
value is 9, 18, 27, 36, 45, 54, 63, or 72 bits.

Provided that string 1 and string 2 are not overlapped, the
contents of string 1 remain unchanged.

DU, DL for MF1 and MF2

RPT, RPD, RPL

Zero - If all the resultant bits generated are zero,
then ON; otherwise, OFF

Negative - If the resultant sign is negative, then ON:
otherwise, OFF

Overflow - If L2 is less than the number of 9-bit segments
generated, then ON; otherwise, unchanged

8-189 DZ51-00

DTB

NOTES: 1. An Illegal Procedure fault occurs for the following
reasons:

o If DU or DL modifications are used for NFl or MF2

o If L2 is less than 1 or > 8

o If CN2 does not contain a legal code

o If Sl = 00

o If illegal digit or sign is detected in string 1

o If Nl is not large enough to specify the number of
characters required for the specified sign and/or
exponent, plus at least one digit

2. An IPR fault occurs if illegal address modification is
specified or if an illegal repeat is used.

3. If string 1 has the value -2**(9*L2-l), the result is zero
and the overflow indicator is turned ON.

DTB

4. If string 1 contains more than 22 significant digits, an \
incorrect result is produced and the overflow indicator is ~ .. .-/
turned ON.

5. If the binary result is longer than L2 9-bit characters,
the most significant nontruncated bit is forced to agree
with the result sign.

8-190 DZ5l,:",00

f DTB DTB

EXAMPLES:

1 8 16 32

DTB
NDSC4 FLD1,3,5,2 decimal operand descriptor
NDSC9 FLD2,O,4 binary operand descriptor
USE CONST. memory contents in octal

FLD1 EDEC 8P1234- o 0 0 0 0 1 0 4 3 1 1 5
FLD2 BSS 1 7 7 7 7 7 7 7 7 545 6 (Result)

USE any indicators set? negative

DTB
NDSC9 FLD1,O,22,3 decimal operand descriptor
NDSC9 FLD2,O,8 binary operand descriptor
USE CONST. memory contents

FLD1 EDEC 22A2361183241434822606847 (maximum decimal value)
FLD2 BSS 2 377777777777777777777777 (Result)

USE any indicators set? none

DTB
NDSC4 FLD1,3,3,3 decimal operand descriptor
NDSC9 FLD2,2,2 binary operand descriptor

(USE CONST. memory contents in octal
FDL1 EDEC 8P51200 000 0 0 502 200 0
FLD2 DEC -1 7 7 7 777 0 0 1 000

USE any indicators set? none

DTB
NDSC9 FLD1,O,4,3 decimal operand descriptor
NDSC9 FLD2,3,1 binary operand descriptor
USE CONST. memory contents in octal

FLD1 EDEC 4AlO23 061 060 062 063
FLD2 DEC 0 o 0 0 0 0 0 0 0 0 7 7 7

USE any indicators set? overflow

(

8-191 DZ51-00

DTB

EXAMPLE WITH ADDRESS MODIFICATION:

1

FLD1
FLD2

8

EAXO
EAX2
EAX7
AWDX
DTB
ARG
NDSC9
TZE
TMI
TOV
USE
EDEC
OCT
NDSC4
USE

16

° 2
FLD2
0,7,4
(,,1),(1,1,,0)
1,,4
0"X2",4
*+3
*+2
*+1
CONST.
4PL-512
111111
FLD1,0,4,1

DTB

32

load FLD character modifier into xo
load FLD2 length into X4
load FLD2 address modifier into X7
put FLD2 address modifier into AR4
with modification
pointer to FLDl indirect descriptor
binary FLD2 descriptor (FLD2,0,2)
zeros was the result
negative result
high-order bit truncated
memory contents in octal
3 250 220 ° ° ° 0 ° 7 7 7 0 0 0 1 1 1 1 1 1
decimal operand descriptor
any indicators set? negative

8-192 DZ51-00

('--\
...... ,/

(

(

DUFA DUFA

DUFA Double-Precision Unnormalized Floating Add 437 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: [C(EAQ) + C(Y-pair)] not normalized --> C(EAQ)
C(Y-pair) unchanged

I LLEGAL ADDRESS
MODI FI CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS :

NOTES:

Zero

Negative

Exponent
Overflow

Exponent

- If C(AQ) = 0, then ON; otherwise, OFF

- If C(AQ)O = 1, then ON; otherwise, OFF

- If exponent is > +127, then ON

Underflow - If exponent of floating point result < - 128,
then ON

carry - If a carry out of bit 0 of C(AQ) is generated,
then ON; otherwise, OFF

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment is hexadecimal. Otherwise,
the floating-point alignment is binary. The hex
permission flag is Mode register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-193 DZ51-00

DUFM DUFM

DUFM Double-Precision Unnormalized Floating Multiply 423 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATI ON:

I LLBGAL ADDRESS

[C(EAQ) * C(Y-pair)] not normalized --> C(EAQ)
C(Y-pair) unchanged

This multiplication is executed like the DFMP instruction, except
that the final normalization is performed only if both factor
mantissas are • -1.00 ••• 0.

Except for the precision of the mantissa of the operand from main
memory, the DUFM instruction is identical to the UFN instruction.

MODIFICATIONS: DU, DL, a, SC, SCR

I LLBGAL REPEATS: None

I NDI CATORS: Zero - If C(AQ) = 0, then ON; otherwise, OFF

NOTES:

Negative - If C(AQ)O = 1, then ON: otherwise, OFF

Exponent
OVerflow - 1 f exponent is > +127, then ON

Exponent
Underflow- If exponent of floating point result < - 128, then ON

1. When indicator bit 32 = 1 the the hex permission flag = 1, the
floating-point alignment and normalization are hexadecimal.
Otherwise, the floating-point alignment and normalization are
binary. The hex permission flag is Mode register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-194 DZSI-00

(DUFS DUFS

DUFS Double-Precision Unnormalized Floating Subtract 537 (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: [C(EAQ) - C(Y-pair)] not normalized -> C(EAQ)
C (y -pa i r) unchanged

EXPLANATION: The two's complement of the subtrahend is first taken and the
smaller value is then right-shifted to equalize it. The
portion shifted out is truncated and addition is executed.

I LLEGAL ADDRESS
MODI FI CATIONS: DU, DL, CI, SC, SCR

ILLEGAL REPEATS: None

I NDI CATORS:

NOTES:

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - If exponent is > +127, then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON" .

carry - If a carry out of bit 0 of C(AQ) is generated,
then ON: otherwise, OFF

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment is hexadecimal. Otherwise,
the floating-point alignment is binary. The hex .
permission flag is Mode register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-195 DZSI-OO

DV2D DV2D

FORMAT:

DV2D Divide Using Two Decimal Operands 207 (1)

o 0 1 1 1 1 Op Code 222
o 1 o 1 7 8 789

Ipl 0 - - - - - - - - 01~1 MF2 I 207(1) H
0 0
0 2

o 0
o 2

COD! NG FORMAT:

Yl

Yl

Y2

Y2

1 1 2 2 2 2 2
7 8 0 1 2 3 4

CN1 TN1 Sl

1 1 2 2 2 2 2
7 8 0 1 234

CN2 TN2 S2

SF1

SF2

The DV2D instruction is coded as follows:

1 8

DV2D
NOSCn
NOSCn

16

(MF1),(MF2),RD,P
LOCSYM,CN,N ,S,SF,AM
LOCSYM,CN,N,S,SF,AM

2
9

2
9

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

OPERATI NG MODES: Any

8-196

MF1

N1

N2

3

3
5

3
5

DZ51-00

(DV2D DV2D

SUMMARY: C(string 2) / C(string 1) --> C(string 2)

EXPLANATION: same as for DV3D except that the quotient is sto~ed using
YC2, TN2, S2 and, if S2 indicates a scaled format, SF2.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL for MFl and MF2

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: same as for DV3D

NOTE: The notes of DV3D apply.

EXAMPLES:

1

FLDl
FLD2

FLDl
FLD2

*

8

DV2D
NDSC4
NDSC4
USE
EDEC
EDEC
USE

DV2D
NDSC9
NDSC4
USE
EDEC
EDEC
USE

16

FLD1,4,4,2,-4
FLD2,0,8,0
CONST.
8P2+
8P+8642EO

, ,1
FLD1,0,4,1,-3
FLD2,O,8,1,-2
CONST.
4A+5
8P+1234

32

divisor operand descriptor
dividend operand descriptor
memory contents

0002+
+08642 +0
+43210 +3 (Quotient)

with rounding option
divisor operand descriptor
dividend operand descriptor
memory contents
+ 005
+0001234
+0246800 (Quotient)
indicators on? none

8-197 DZ51-00

DV2DX DV2DX

DV2DX Divide Using Two Decimal Operands Extended 247 (1)

FORMA'l':

o 0 0 1 1

o 0
o 2

Y1

AR# Y1

o 0
o 2

Y2

AR# Y2

COD!NG FORMAT: 1

MF2

B 16

1 1 Op Code

247(1)

1 1 2 2 222
7 8 0 1 234

CN1 TN1 SX1

1 1 2 2 222
7 8 0 1 234

CN2 TN2 SX2

DV2DX (MF1),(NF2),RD,CS,NS
NDSCn LOCSYM, CN , N , SX, SF , AM
NDSCn LOCSYM, CN , N , SX, SF , AM

222

SFl

SF2

2 3
9 0

2 3
9 0

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

OPERATI NG MODES: Any

8-198

NFl

Nl

N2

3

3
5

3
5

DZ51-00

(

(

DV2DX DV2DX

SUMMARY: C(string 2) / C(string 1) --> C(string 2)

EXPLANATION: Same as for Dv3DX except that the quotient is stored using
YC2, TN2, Sx2 and, if SX2 indicates a scaled format, SF2.

I LLEGAL ADDRESS
MODI FI CATIONS: DU, DL for MFl or MF2

I LLEGAL REPEATS: RPT, RPD, RPL

I NDI CATORS: Same as for Dv3D

NOTES: 1. Notes of Dv3D apply.

2. See WNX for information about coding of overpunched
signs.

8-199 DZS1-OO

DV3D

DV3D

FORMAT:

000
012

1+1 MF3

0 0
0 2

AR#

o 0
o 2

AR#

CODI NG FORMAT:

DV3D

Divide Using Three Decimal Operands 227 (1)

001 1
890 1

HRDI MF2

Y2

Y2

Y3

Y3

1 1 Op Code
7 8

I 227(1)

1 1 2 2 2 2 2
7 8 o 1 234

CN2 TN2 S2

1 1 2 2 222
7 8 0 1 234

CN3 TN3 S3

The DV3D instruction is coded as follows:

1 8

DV3D
NOSC,!!
NOSC,!!
NOSC,!!

16

(MF1),(NF2),(MF3),RD,P
LOCSYM,CN,N,S,SF,AM
LOCSYM,CN,N ,S,SF,AM
LOCSYM,CN,N ,S,SF ,AM

222
789

II I

SF2

SF3

2 3
9 0

2 3
9 0

(Refer to Section 7 under Multiword Instructions for
description of Mu1tiword Modification Field.)

8-200

NFl

N2

N3

3
5

3
5

3
5

I

DZ51-00

«

(

(

Dv3D DV3D

OPERATI NG MODES: Any

SUMMARY: C(string 2) / C(string 1) --> C(string 3)

EXPLANATION: The decimal number of data type TNl, sign and decimal type
S1, and starting location YC1, is divided into the decimal
number of data type TN2, sign and decimal type S2, and
starting location YC2. The quotient is stored starting in
location YC3 as a decimal number of data type TN3 and sign
and decimal type S3.

If S3 indicates a fixed-point format, the quotient is stored
using scale factor SF3, which may cause leading or trailing
zeros (4 bits - 0000, 9 bits - 000110000) to be supplied
and/or most-significant-digit overflow or
least-significant-digit truncation to occur.

If S3 indicates a floating-point format, the quotient is
right-justified to preserve the most significant nonzero
digits; this may cause least-significant-digit truncation.

If P=l, positive signed 4-bit results are stored using octal
13 as the plus sign. If P=O, positive signed 4-bit results
are stored with octal 14 as the plus sign.

If RD is a 1, the quotient is rounded prior to storage.

Provided that strings 1, 2, and 3 are not overlapped, the
contents of the decimal numbers that start in locations YC1
and YC2 remain unch?~ged.

The divide operation stops when the number of required digits
have been formed or, in the case where rounding is specified
(RD = 1), when the required number of quotient digits plus 1
have been formed. In fixed-point operations or
floating-point operations where the quotient is stored in
fixed-point format, the required number of quotient digits is
determined as follows:

When the quotient descriptor specifies that the quotient
is to be stored in fixed-point format, the necessary
number of quotient digits to form is calculated as
follows:

#QD = (LD-#LZD+l)-(LDR-#LZR}+(ED-EDR-EQ)

8-201 DZ5l-00

DV3D

I LLEGAL ADDRESS

where:

#LZD = number of leading zeros in dividend

#QD = number of quotient digits to form

LD = length of dividend

LDR = length of divisor

#LZR = number of leading zeros in divisor

ED = exponent of dividend

EDR = exponent of divisor

EQ = scale factor for quotient

DV3D

The hardware performs this calculation prior to beginning
the divide operation and, if #QD > 63, the divide
operation does not take place; a Divide Check fault
occurs. If #QD<=O, then zero is stored.

In a floating-point divide operation, the required number
of quotient digits is determined as follows. With the
divisor greater than the dividend, a leading zero is
generated in the quotient. The leading zero counts as one
of the generated output digits. For example, if 4-digit
output accuracy is specified and the above relationship
exists between the divisor and the dividend, only 3-digit
accuracy will be attained. Under this condition, it would
be necessary to specify a 5-digit output to achieve
4-digit accuracy.

MODIFICATIONS: DU, DL for MFl, MF2, and MF3

I LLEGAL REPEATS: RPT, RPD, RPL

8-202 DZ51-00

(DV3D

I NDI CATORS :

NOTES:

:(

DV3D

Zero - If result equals zero, then ON: otherwise, OFF

Negative - If result is negative, then ON; otherwise, OFF

Exponent
Overflow - If exponent of floating-point result is > 127,

then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

Overflow - If fixed-point integer overflow, then ON;
otherwise, unchanged

Truncation - If the least significant digits are truncated
without rounding, then ON; otherwise, OFF

1. An Illegal Procedure fault occurs if:

o DU or DL modification is specified for NFl or NF2.

o Any character (least four bits) other than 0000 - 1001
is detected where digits are defined, or any character
(least four bits) other than 1010 - 1111 is detected
where the sign is defined by the numeric descriptor.

o The values for the number of characters (N1 or N2) of
the data descriptors are not large enough to hold the
number of characters required for the specified sign
and/or exponent, plus at least one digit.

2. A Divide Check fault occurs under either of the following
two conditions.

o I f the divisor equals zero. The divisor is the number
starting at YC1.

o If 53 specifies that the quotient be stored in scaled
format and the calculated lerigth required for the
quotient is greater than 63 (refer to length
requirements above).

3. If an illegal digit or sign is detected, the receive field
is not changed before the IPR fault occurs.

8-203 DZSI-OO

DV3D

EXAMPLE:

1

FLD1
FLD2
FLD3

B

DV3D
NDSC9
NDSC4
NDSC4
USE
!DEC
!DEC
BSS
USE

16

" ,1,1
FLD1,1,3,2,-2
FLD2,0,9,0
FLD3,2,6,1,-1
CONST.
4A2-
9P-B76543E-3
1

DV3D

32

with rounding and plus sign options
divisor operand descriptor
dividend operand descriptor
quotient operand descriptor
memory contents
002-
-B76543-3
xx+3B272 (Quotient)
instruction fault? overflow

EXAMPLE WI TH ADDRESS MODI FI CATION:

1 B 16 32

EAX2 2 load character modifier into X2
EAX7 B load FLD2 length into X7
EAX4 FLD1 load FL01 address into X4
AWDX 0,4,4 put FLD1 address into AR4
DV3D (1" ,2), (,1), (, ,1) ,1,1 with address modification

options
divisor operand descriptor NDSC9 0,0,2,3,-2,4

(FLD1,2,2,3,-2)
NDSC9 FLD2,0,X7,0 dividend operand descriptor

(FLD2,0,B,0)
ARG 2,2,4 pointer to quotient operand descriptor

USE CONST. memory contents
FLD1 !DEC 4A2 0002
FLD2 !DEC BA+B76543E-3 +B76543-3
FLD3 BSS 1 x+438272

NDSC4 FLD3,1,7,1,-1 quotient operand descriptor
USE instruction fault? none

B-204 DZ51-00

./

DV3DX

DV3DX

FORMAT:

0 0 0
0 1 2

IcsH MF3

0 0
0 2

AR#

(o 0
o 2

AR#

o 0
o :2

AR#

CODING FORMAT:

(

Divide Using Three Decimal Operands Extended

1 1
o 1

I

Yl

Yl

Y:2

Y2

Y3

Y3

1

MF2

8 16

1 1 Op Code
7 8

I 227(1)

1 1 2 2 22:2
7 8 0 1 :2 3 4

CNl TN1 SXl

1 1 2 2 222
7 801 234

CN:2 TN2 SX:2

1 1 2 2 222
7 801 234

CN3 TN3 SX3

SFl

SF2

SF3

DV3DX (MF1),(MF:2),(MF3),RD,CS,NS
NDSCn LOCSYM,CN,N,SX;SF,AM
NDsCn LOCSYM,CN,N,SX,SF,AM
NDSCn LOCSYM, CN , N , SX, SF ,AM

8-205

222
789

II I
2 3
9 0

:2 3
9 0

2 3
9 0

DV3DX

267 (1)

MFl

Nl

N2

N3

3
5

3
5

3
5

3
5

I

DZ5l-00

DV3DX

(Refer to Section 7 under Multiword Instructions for
description of Nultiword Modification Field.)

DV3DX

OPERATI NG MODES: Any

SUMMARY: C(string 2) I C(string 1) --> C(string 3)

EXPLANATION: The decimal number of data type TN1, sign and decimal type
SXl, and starting location YCl, is divided into the decimal
number of data type TN2, sign and decimal type SX2, and
starting location YC2. The quotient is stored starting in
location YC3 as a decimal number of data type TN3 and sign
and decimal type SX3.

ILLEGAL ADDRESS

If SX3 indicates a fixed-point format, the quotient is stored
using scale factor SF3, which may cause leading or trailing
zeros (4 bits - 0000, 9 bits - 000110000) to be supplied,
most-significant-digit overflow, or least-significant-digit
truncation.

If SX3 indicates a floating-point format, the quotient is
right-justified to preserve the most-significant nonzero
digits; this may cause least-significant-digit truncation.

The character set is defined by CS (EBCDIC/ASClI). Placement
of overpunched sign in the output is controlled by NS.
(Refer to the introductory pages of this section for
definition of the NS field.) If RD is 1, the quotient is
rounded prior to storage. The contents of the decimal
numbers that start in locations YCl and YC2 remain unchanged.

MODIFICATIONS: DU, DL for MFl, MF2, or MF3

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: same as for DV3D.

8-206 DZ51-00

(DV3DX

NOTES:

(

f

1. Explanation of the divide operation in the DV3D
description apply.

DV3DX

2. A divide check fault occurs under either of the following
two conditions:

o If the divisor (the number starting at YC1) equals
zero.

o If SX3 specifies that the quotient be stored in
fixed-point format and the calculated length required
for the quotient is greater than 63 (see Note 2 of
DV3D).

3. Refer to specifications on MVNX for information about
coding of overpunched signs.

4. IPR fault conditions are the same as for DV3D.

8-207 DZSI-OO

DVF DVF

DVF Divide Fraction 507 (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EKPLANATION:

C(AQ) I C(Y)

fractional quotient --> C(A), left-adjusted
fractional remainder --> C(Q), left-adjusted
C (y) unchanged

This instruction divides a 7l-bit fractional dividend
(including sign) by a 36-bit fractional divisor (including
sign) to form a 36-bit fractional quotient (including sign)
and a 36-bit fractional remainder (including sign). Bit 35
of the remainder corresponds to bit 70 of the dividend. The
remainder sign is equal to the dividend sign unless the
remainder is zero. Bit 71 of C(AQ) is not used.

0 0 7 7
0 1 0 1

I 51 dividend I xl
C(AQ)

I

o 0 3

divisor

C(Y)

yielding:

o 0 3 o 0 3

quotient remainder

C(A) C<Q)

8-208 DZ51-00

,
' /'

./

(

(

DVF

I LLEGAL ADDRESS

DVF

If I dividend I >= Idivisorl or if the divisor = 0,
division does not take place. Instead, a Divide Check fault
occurs, C(Y) remains unchanged, C(AQ) contains the dividend
magnitude as an absolute value, and the negative indicator
reflects the dividend sign.

MODIFICATIONS: None

I LLEGAL REPEATS: None

INDICATORS:

zero

If division takes place:

If C(A) = 0, then ON:
otherwise, OFF

Negative If C(A)O = 1, then ON;
otherwise, OFF

8-209

If no division takes place:

If divisor = 0, then ON:
otherwise, OFF

If dividend < 0, then ON:
otherwise, OFF

DZ51-00

DVRR

DVRR Divide Register by Register

FORMAT:

o 0 0 1 1

Not Used OP CODE

CODING FORMAT: 1 8 16

DVRR R1"R2

OPERATING MODES: Executes in ES mode only

SUMMARY: When "register pair" is implied

Rl, R2 = 0, 2, 4, 6, AQ

otherwise

Rl, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

Quotient of C(Rl-odd) / C(R2) --> C(R1-odd)

Remainder of C(Rl-odd) / C(R2) --> C(R1-even)

C (R2) unchanged

DVRR

533 (1)

22233 3

EXPLANATION: A register pair is specified in R1. The content of the
odd-numbered register, or Q if AQ is specified, is divided by
C(R2). The resulting quotient is loaded into Rl-odd and the
remainder into Rl-even.

I LLEGAL ADDRESS
MODIFICATIONS: None. The address modification is not executed.

ILLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

8-210 DZS1-OO

(DVRR

I NDI CATORS :

NOTES:

(

DVRR

If division takes place: If no division takes place:

Zero If C(Rl-odd) = 0, then ON; If divisor = 0, then ON;
otherwise, OFF otherwise, OFF

Negative If C(Rl-odd)O = 1,
then ON; otherwise, OFF

If dividend < 0, then ON;
otherwise, OFF

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to Register to Register Instructions in Section 7
for a description of the fields in the instruction word.

3. Both the dividend and divisor are regarded as a 36-bit
signed integer. The sign of the remainder is the same as
that of the dividend unless the remainder is O.

4. A Divide Check fault occurs in the following cases:

o Dividend = -235 and divisor + -1

o Divisor = 0

In these cases, the instruction is not executed. C(R2)
remains unchanged, C(Rl-odd) takes the absolute value of
the dividend, and C(Rl-even) is O. If the dividend is
-235 , then -235 is loaded into Rl-odd.

8-211 DZSI-OO

BAA BAA

BAA Effective Address to A-Register 635 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERA'l'I NG MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

NS mode

Y --> C(A)O-17

0 ••• 0 --> C(A)18-35: C(Y) unchanged

ES mode

00 --> C(A)O-l

YO-33 --> C(A)2-35; C(Y) unchanged

This instruction permits inter-register data movement. The
data source is specified by the address modification and the
data destination by the operation code of the instruction.

MODIFICATIONS: DU, DL

ILLEGAL REPEATS: RPL

I NDI CA'l'ORS:

NOTES:

Zero - If C(A) = 0, then ON; otherwise, OFF

Negative - If C(A)O = 1, then ON: otherwise, OFF

1. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

2. In the ES mode, the negative indicator is always set to
OFF.

8-212 DZ51-00

/

EAQ

EAQ Effective Address to Q-Register

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: NS Mode

Y -> C(Q)O-17i

00 ••• 0 --> C(Q)18-3Si C(Y) unchanged

ES Mode

00 ••• 0 --> C(Q}O-l

YO-33 -->C(Q)2-3S)

EAQ

636 (0)

EXPLANATION: This instruction permits inter-register data movement. The
data source is specified by the address modification and the
data destination by the operation code of the instruction.

I LLEGAL ADDRESS
MODI FI CATIONS: DU, DL

ILLEGAL REPEATS: RPL

I NOI CATORS:

NOTES:

Zero - If C(Q)" = 0, then ONi otherwise, OFF

Negative - If C(Q)O = 1, then ONi otherwise, OFF

1. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

2. In the ES mode, the negative indicator is always set to
OFF.

8-213 DZSI-OO

EAXn EAXn

Effective Address to Index Register n 62n (O)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: NS Mode

For n = 0,1, ••• ,7 as determined by opcode

YO-33 --> (Xn); C(Y) unchanged

ES Mode

For n = 0,1, ••• ,7 as determined by opcode

00 --> C(GKn) 0-1

YO-33 --> C(GKn)2-35

EXPLANATION: This instruction permits inter-register data movement. The
data source is specified by the address modification and the
data destination by the operation code of the instruction.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL

I LLEGAL REPEATS: RPT, RPD, or RPL of EAXO

I NDI CATORS:

NOTES:

Zero - If C(Xn/GKn) = 0, then ON: otherwise, OFF

Negative - If C(xn/GKn)o = 1, then ON: otherwise, OFF

1. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

2. In the ES mode, the negative indicator is always set to
OFF.

8-214 DZ51-00

(

(

EPAT EPAT

EPAT Effective Pointer and Address to Test 412 (1)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

EXPLANATION: This instruction tests the virtual address to real memory address
mapping function of the hardware. Addresses are generated in the
normal sequence and stored in four special test registers instead
of accessing memory.

ILLEGAL ADDRESS
MODI FI CATIONS:

I LLEGAL REPEATS:

I NDI CATORS:

NOTES:

Real memory addressl-27 --> C(Test Reg 0)0-26

Effective WSN --> C(Test Reg 0)27-35

Relative Virtual address --> C(Test Reg 1)0-35

C(DR}effective --> C(Test Reg 2,3)

The high-order real address bit is not placed in the test
register.

DU, DL, CI, SC, SCR

RPT, RPD, RPL

None affected

l. Illegal address modifications and illegal repeats cause an IPR
fault.

2. This instruction is only intended for use with Test and
Diagnosis (T&D) programs.

8-215 DZ5l-00

EPPRn EPPRn

Effective Pointer to Pointer Register n

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: This set of eight instructions generates an effective address
(EA) and loads it into the pointer register (ARn, SEGaDn,
DRn).

NS Mode

If instruction bit 29 = 0 then

SEGID{IS)

C{ISR)

-> SEGIDn

--> C(DRn)

If instruction bit 29 = 1 and indirection is not used in
forming EA, then

Effective address (EA) -->C(AR)O-23

Effective SEGID ->C(SEGIDn)

Effective DR ->C(DRn)

If instruction bit 29 = 1 and indirection is used in forming
EA, then

EAO-17 -->C(ARn)O-17

O ••• 0 -->C(ARn)18-23

SEGIDm ->SEGIDn

C(DRm) -->DRn

8-216 DZ51-00

(EPPRn

(

EXPLANATION:

EPPRn

ES Mode

If instruction bit 29 = 0, then

EA4-33 ->C(AR)O-29

EA34-39 ->C(AR)30-35

Effecti ve SEGI D ->C(SEGIDn)

Effective DR -->C(DRn)

If instruction bit 29 = 1 and indirection is not used in
forming EA, then

EA4-39 ->C(AR)0-35

SEGIDm ->SEGIDn

C(DRm) ->C(DRn)

If instruction bit 29 = 1 and indirection is used in forming
EA, then

EA4-33 ->C(ARn)0-29

EA34-39=O ->C(ARn30-35

SEGIDm ->SEGIDn

C(DRm) ->C(DRn)

If the instruction bit 29 = 0, AR is not used for generation
of the effective address and the ARn byte and bit portions
are set to zero.

When the instruction bit 29 = 0, the generated operand
address is in the instruction segment. The ISR and SEGID(IS)
content are loaded into DRn and SEGIDn, respectively.

If the instruction bit 29 = 1, the Address Register ARm
specified with bits 0, 1, and 2 of the in~truction word are
used to generate the effective address. Provided that
indirect modification is not specified, the ARn byte and bit
portions are preserved during computation of the effective
address and loaded into the byte and bit portions of the
corresponding ARn. If indirect modification is specified,
zero is loaded into the ARn byte and bit portions.

8-217 DZ51-00

EPPRn

I LLEGAL ADDRESS
MODI FI CATIONS: DU, DL, CI, SC, SCR

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTE: An IPR fault occurs if illegal address modification or
illegal repeats are used.

EXAMPLE:

1 8

ADO
ORQ
EPPRO
PPME

ALEPRF VEe
VEC

16

=3HOBI,OC
=0400000,DL
ALCPRF
ALPRMF,2

32

file codef ile
read permissions
allocate file command block
allocate file

.ISR,NAME,NAMEX,(R,W,S)

.ISR,CBUFF,CBUFFX,(R,W,S)

NAME BCI 4

NAMEX EQU
CBUFF BSS
CBUFFX EQU

*-NAME
355
*-CBUFF

EPPRn

8-218 DZ5l-00

ERA EXCLUSIVE OR to A-Register

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: For i = 0 to 35, C(A)i XOR C(Y)i --> C(A)ii
C (y) unchanged

ILLEGAL ADDRESS
MODIFICATIONS: None

I LLEGAL REPEATS: None

I NDI CATORS : Zero - If C(A} = 0, then ONi otherwise, OFF

Negative - If C(A}O = 1, then ON: otherwise, OFF

8-219

ERA

675 (0)

DZ51-00

ERAQ ERAQ

ERAQ EXCLUSIVE OR to AQ-Register 677 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATl NG MODES: Any

SUMMARY: For i = 0 to 71, C(AQ)i XOR C(Y-pair)i --> C(AQ)ii
C(Y-pair) unchanged

ILLEGAL ADDRESS
MODIFICATIONS: DU, DL, a, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTE:

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ONi otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-220 DZ51-00

ERQ ERQ

ERO EXCLUSIVE OR to Q-Register 676 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: For i = 0 to 35, C(Q)i XOR C(Y)i --> C(Q)i:
C (y) unchanged

I LLEGAL ADDRESS
MODIFICATIONS: None

ILLEGAL REPEATS: None

I NDI CATORS : Zero - If C(Q) = 0, then ON: otherwise, OFF

Negative - If C{Q)O = 1, then ON: otherwise, OFF

8-221 DZ5l-00

ERRR ERRR

ERRR

FORMAT:

000

CODING FORMAT:

EXCLUSIVE OR Register to Register

1 1
7 8

Not Used I
1 8 16

ERRR Rl, ,R2

222
789

OP CODE H

OPERATING MODES: Executes in ES mode only.

SUMMARY: Rl, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

I LLEGAL ADDRESS

C(Rl)i XOR C(R2)i --> C(Rl)I i = 0, 1, 2, ••• ,35

C (R2) unchanged

MODIFICATIONS: None. The address modification is not executed.

ILLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

I NDI CATORS : Zero - If C(Rl) = 0, then ON; otherwise, OFF

Negative - If C(Rl)O = 1, then ON; otherwise, OFF

537 (1)

3 3 3
1 2 5

MBZ I R2

NOTES: 1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to "Register to Register Instructions" in Section 7
for a description of the fields in the instruction word.

I

8-222 DZ51-00

(-'-

ERSA

ERSA EXCLUSIVE OR to Storage with A-Register

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: For i = 0 to 35, C(A)i XOR C(Y)i --> C(Y)i;
C (A) unchanged

ILLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPL

INDICATORS: Zero - If C(Y) = 0, then ON; otherwise, OFF

Negative - If C{Y)O = 1, then ON; otherwise, OFF

ERSA

655 (0)

NOTES: 1. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

2. See Examples under ERA.

8-223 DZ51-00

ERSQ ERSQ

ERSQ EXCLUSIVE OR to Storage with Q-Register 656 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: For i = 0 to 35, C(Q)i XOR C(Y)i --> C(Y}i;
C (Q) unchanged

I LLEGAL ADDRESS
MODI Fl CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPL

I NDI CATeRS:

NOTE:

EXAMPLE:

zero

Negative

If C(Y) = 0, then ON: otherwise, OFF

- If C(Y)O = 1, then ON: otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

1 8 16

LDQ =l,DL
ERSQ FLAG

* If bit 35 of FLAG is ON, then set to zero

8-224 DZ51-00

,
\

(

(

ERSXn ERSXn

EXCLUSIVE OR to Storage with Index Register n 64n (O)

FORMAT: single-word instruction format (see Figure 8-l)

OPERATI NG MODES: Any

SUMMARY:

I LLEGAL ADDRESS
MODI Fl CATIONS:

I LLEGAL REPEATS:

I NDI CATORS:

NOTE:

NS Mode

For n = 0,1, ••• ,7 as determined by op code

For i = 0 to 17, C(Xn}i XOR C(Y)i --> C(Y)i;

C(Xn) and C(Y)18-35 unchanged

ES Mode

For n = 0,1, ••• ,7 as determined by op code

For i = 0 to 35, C(GXn)i XOR C(Y)i --> C{Y)i;

C (GXn) is unchanged

DU, DL, CI, SC, SCR

RPT, RPD, or RPL of ERSXO

NS Mode

Zero - If C(Y)0-17 = 0, then ON; otherwise, OFF

Negative - If C(Y)O = 1, then ON; otherwise, OFF

ES Mode

Zero - If C(Y) = 0, then ON; otherwise, OFF

Negative - If C(Y)O = 1, then ON; otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-225 DZSI-OO

ERXn ERXn

EXCLUSI VE OR to Index Register g 66g (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

ILLEGAL ADDRESS

NS Mode

For n = O,l, ••• ,or 7 as determined by op code

For i = 0 to 17, C(Xn)i XOR C(Y)i --> C(Xn)i:

C(Y) unchanged

ES Mode

For n = O,l, ••• ,or 7 as determined by op code

For i = 0 to 35, C(GXn)i XOR C(Y)i --> C(GXn)ii

C (y) unchanged

MODI F1 CATIONS: CI, SC I SCR

I LLEGAL REPEATS: RPT, RPD, RPL of ERXO

I NDI CATORS:

NOTES:

NS Mode

Zero - If C(Xg) = 0, then ON: otherwise, OFF

Negative - If C(xg)O = 1, then ON; otherwise, OFF

ES Mode

Zero - If C(GXg) = 0, then ON: otherwise, OFF

Negative - If C(GXg)O = 1, then ON; otherwise, OFF

1. DL modification is flagged illegal but executes with all
zeros for data.

2. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-226 DZ5l-00

(

FAD FAD

FAD Floating Add 475 (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: [C(EAQ) + C(Y)] normalized -> C(EAQ); C(Y) unchanged

ILLEGAL ADDRESS
MODIFICATIONS: CI, se, SCR

I LLEGAL REPEATS: None

I NDI CATORS :

NOTES:

Zero

Negative

Exponent
Overflow

Exponent

- If C(AQ) = 0, then ON; otherwise, OFF

- If C(AQ)O = 1, then ON; otherwise, OFF

- If exponent is > +127, then ON

Underflow - If exponent of floating point result < - 128,
then ON

Carry - If a carry out of bit 0 of C(AQ) is generated,
then ON; otherwise, OFF

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. ,The hex permission flag is Mode
register bit 33.

2~ See the FNO instruction for a definition of normalization.

3. An Illegal Procedure fault occurs if illegal address
modification is used.

8-227 DZ51-00

FCMG FCMG

FCMG Floating Compare Magnitude 425 (a)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS
NODI FI CATIONS:

ILLEGAL REPEATS:

INDICATORS:

NOTES:

IC(E,AQO-27)I :: IC(y)l; magnitude comparison;

C{EAQ), C{Y) unchanged.

This comparison is executed as follows:

1. Compare C{E) :: C{Y)O-7, select the number with the lower
exponent, and shift its mantissa right by the number of
places (binary or hex) determined by the difference of the
exponents. If the number of shifts equals or exceeds 72,
the number with the lower exponent is defined as zero.

2. Compare the absolute values of the mantissas and set the
indicators accordingly.

The FCMG instruction is identical to the FCMP instruction
except that the magnitudes of the mantissas are compared­
instead of the algebraic values.

a, SC, SCR

None

Zero N~ative RelationshiQ

0 0 IC(E,AQO-27I > IC(Y) I

1 0 IC(E,AQO-27I = IC(Y) I

0 1 IC(E,AQO-27I < IC(Y) I

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment is hexadecimal. Otherwise,
the floating-point alignment is binary. The hex
permission flag is Mode register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-228 DZ5l-00

<.

(

FCMP FCMP

FCMP Floating Compare 515 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS

C(E,AQO-27):: C(Y); algebraic comparison

This comparison is executed as follows:

1. Compare C(E) :: C(Y)Q-7, select the number with the lower
exponent, and shift lts mantissa right by the number of
places (binary or hex) determined by the difference of the
exponents. If the number of shifts equals or exceeds 72,­
the number with the lower exponent is defined as zero.

2. Compare the mantissas and set the indicators accordingly.

MODIFICATIONS: CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTES:

zero N~ative Relationshi~

0 0 C(E,AQO-27 > C(Y)

1 0 C(E,AQO-27 = C(Y)

0 1 C(E,AQO-27 < C{Y)

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment is hexadecimal. Otherwise,
the floating-point alignment is binary. The hex
permission flag is Mode register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-229 DZSI-OO

FOr FOr

FDr Floating Divide Inverted 525 (O)

FORMAT: Single-word instruction format (see Figure 8-l)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

C(Y} / C(EAQ} --> C(EA}: 00 ••• 0 --> C(Q);
contents of C(Y) unchanged

The dividend mantissa is shifted right and the dividend
exponent is increased accordingly until:

IDividend mantissa I < IC(AQO-27)I

When such a shift occurs, only zeros from the dividend will be
lost.

C(AQ)0-27 is used as the divisor mantissa.

36 bits of quotient mantissa are placed in A.

If AQ28-71 is not equal to 0 and AO = 0, then 1 is added to
AQ27. 0 --> AQ28-7l unconditionally. AQO-27 is then used as
the divisor mantissa. The 8-bit dividend exponent and 72-bit
mantissa are placed in working registers.

MODIFICATIONS: CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

Zero

If division occurs:

- If C(A) = 0, then ON;
otherwise, OFF

Negative - If C(A)O = 1, then
ON: otherwise, OFF

Exponent
Overflow - If exponent is > +127,

then ON

Exponent
Underflow- If exponent of floating

If no division occurs:

If divisor mantissa = 0,
then ON: otherwise, OFF

If dividend < 0, then
ON: otherwise, OFF

point result < - 128, then ON

8-230 DZ51-00

FDr

NOTES:

(

FDr

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is Mode
register bit 33.

2. If the divisor mantissa C(AQ) is zero, division does not
take place. Instead, a Divide Check fault occurs and all
registers remain unchanged. Dividend and divisor are not
normalized by the hardware prior to division.

3. An Illegal Procedure fault occurs if illegal address
modification is used.

8-231 DZ51-00

FDV FDV

FDV Floating Divide 565 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

C(EAQ) / C(Y) --> C(EA); 00 ••• 0 --> C(Q); C(Y) unchanged

This division is executed as follows:

The dividend mantissa C(AQ) is shifted right and the
dividend exponent C(E) is increased accordingly until

IC(AQ}0-271 < IC(Y}8-35 with zero filll

When such a shift occurs, significant bits from the dividend
may be lost.

Dividend and divisor are not normalized by the hardware
prior to division.

36 bits of quotient mantissa are placed in A.

MODIFICATIONS: CI, SC, SCR

ILLEGAL REPEATS: None

I NDI CATORS :

Zero

If division occurs:

- If C(A) = 0, then ON;
otherwise, OFF

Negative - If C(A)O = 1, then
ON; otherwise, OFF

Exponent
Overflow - If exponent is > +127,

then ON

Exponent
Underflow- If exponent of floating

If no division occurs:

If divisor mantissa = 0,
then ON: otherwise, OFF

If dividend < 0, then
ON; otherwise, OFF

point result < - 128, then ON

8-232 DZ51-00

FDV

NOTES:

(

FDV

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is Mode
register bit 33.

2. If the divisor mantissa (bits 8-35 of C(Y» is zero,
division does not take place. Instead, a Divide Check
fault occurs. The divisor C(Y) remains unchanged, C(AQ)
contains the dividend's magnitude as an absolute value,
and the negative indicator reflects the dividend's sign.

3. An Illegal Procedure fault occurs if illegal address
modification is used.

8-233 DZ51-00

FLD FLD

FLO Floating Load 431 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

I LLEGAL ADDRESS

CCY>O-7 --> C(E)

C(Y)8-35 --> C(AQ)0-27

MODI PI CATIONS: a, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS :

NOTE:

Zero - If C(AQ) = 0, then ONi otherwise, OFF

Negative - If C(AQ)O = 1, then ONi otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-234 DZS1-00

j

(

(

(

FLP

FLP Floating Load Positive

FORMAT: single-word instruction format (see Figure 8-1)

OPERATING MODES: Any

SUMMARY: I C (y) I, normal ized -> Z

ZO-7 --> C(E)

Z8-35 -> C(AQ)0-27

00 ••• 0 --> C(AQ)28-7l

530 (0)

EXPLANATION: The memory operand C(Y) is processed as single-precision
floating-point data. The absolute value of this data is
normalized and its exponent, mantissa (bits 8-35) and 0 are
loaded into C(E), C(AQ)0-27 and C(AQ)28-7l, respectively.

I LLEGAL ADDRESS
MODI FI CATIONS: CI, SC, SCR

I LLEGAL REPEATS: None

INDICATORS: Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - If exponent> +127, then ON

Exponent

FLP

Underflow If exponent of floating point result < - 128, then
ON

NOTE: An Illegal Procedure fault occurs if illegal address
modification is used.

8-235 DZSI-OO

FMP

FMP Floating Multiply I 461 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS

[C(EAQ) * C(Y)] normalized -> C(EAQ); C(Y) unchanged

This multiplication is executed as follows:

C(E) + C(Y)0-7 --> C(E)

C(AQ) * C(Y)8-35 results in a 98-bit product plus sign,
the leading 71 bits plus sign of which --> C(AQ).

C (EAQ) normalized --> C (EAQ) •

The definition of normalization is located under the
description of the FNO instruction.

MODIFICATIONS: CI, SC, SCR

I LLEGAL REPEATS: None

I NDl CATORS:

NOTES:

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - I f exponent is > +127, then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is Mode
register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-236 DZ5l-00

" \

(

(

FNEG FNEG

FNEG Floating Negate 513 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: -C (EAQ) normal ized -> C (EAQ)

EXPLANATION:

ILLEGAL ADDRESS

This instruction changes the number in C(EAQ) to its
normalized negative (if C(AQ) ~ 0). The operation is
executed by first forming the two's complement of C(AQ), and
then normalizing C(EAQ).

Even if C(EAQ) is already normalized, an exponent overflow
can still occur, namely when C(E) = +127 and C(AQ) = -100 ••• 0
(the two's complement representation for the decimal value
-1.0).

The definition of normalization is located under the
description of the FHO instruction.

MODI FI CATIONS: None

I LLEGAL REPEATS: RPL

I NDI CATORS:

NOTES:

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ}O = 1, then ON; otherwise, OFF

Exponent
Overflow - I f exponent is > +127, then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flag is Mode
register bit 33.

2. An Illegal Procedure fault occurs if an illegal repeat is
used.

8-237 DZ5l-00

FNO FNO

FNO Floating Normalize 573 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

C(EAQ) normalized -> C(EAQ)

The instruction normalizes the number in C(EAQ). If the
overflow indicator is ON, the number in EAQ is normalized one
place to the right: the sign bit 0 of C(AQ) is then inverted
to reconstitute the actual sign. The Overflow indicator is
set OFF.

A normalized floating binary number is defined as one whose
mantissa lies in the interval (0.5, 1.0) such that

0.5 ~ IC(AQ)I < 1.0

which, in turn, requires that C(AQ)O F C(AQ)l

A normalized floating hexadecimal number is defined as one
whose mantissa lies in the interval (0.0625,1.0) such that

0.0625 ~ IC(AQ)I < 1.0

which, in turn, requires that

if C(AQ)O = 0, then C(AQ)1-4 F 0000, and
if C(AQ)O = 1, then C(AQ)1-4 F 1111

Normalization is performed by shifting C(AQ)1-7l to the left
(one place if binary, four places if hex) and reducing C(E)
by 1, repeatedly, until the conditions for C(AQ)O and C(AQ)l
or C(AQ)1-4 are met. Bits shifted out of AQ1 are lost.

If C(AQ)=O, then C(E) is set to -128 and the zero indicator
is set ON.

8-238 DZ51-00

(

(

(

FNO

I LLEGAL ADDRESS

FNO

This instruction can be used to correct overflows that occur
with fixed-point numbers:

1 8 16

TOV 1,IC
LDAQ M
ADAQ N
LDE =71B25,DU
FNO

will normalize C(M-pair) + C(N-pair) correctly, whether or
not the addition caused an overflow (assuming overflow masked
or successful recovery from Overflow fault).

MODI FI CATIONS: None

I LLEGAL REPEATS: None

I NDI CATORS:

NOTE:

Zero

Negative

Exponent
Overflow

Exponent

- If C(AQ) = 0, then ON; otherwise, OFF

- If C(AQ)O = 1, then ON; otherwise, OFF

- If exponent is > +127, then ON

Underflow - If exponent of floating point result < - 128,
then ON

Overflow - Set OFF

When indicator bit 32 = 1 and the hex permission flat = 1,
the floating-point alignment and normalization are
heXadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flat is Mode
register bit 33.

8-239 DZ51-00

FRD FRD

FRD . Floating Round 471 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

C(EAQ) rounded to 28 mantissa bits and normalized -> C(EAQ)

This instruction performs a true round of C(EAQ) to a
precision of 28 bits in C(AQ). The result is then normalized
and restored to the EAQ registers. A true round means that
the same rounding operation applied to a number of the same
magnitude and with an opposite sign would result in a sum of
the two rounded numbers of exactly zero.

The rounding operation is performed as follows:

a. A constant (all 1s) is added to bits 29-71 of the
mantissa.

b. If the number being rounded is positive, a carry is
inserted into the least significant bit position of the
adder.

c. If the number being rounded is negative, the carry is not
inserted.

d. Bits 28-71 of C(AQ) are replaced by zeros.

If the mantissa overflows upon rounding, it is shifted right
one place and a corresponding correction is made to the
exponent.

If the mantissa does not overflow and is nonzero upon
rounding, normalization is performed.

If the resultant mantissa is all zeros, the exponent is
forced to -128 and the zero indicator is set.

If the exponent resulting from the operation is greater than
+127, the exponent overflow indicator is set.

The definition of normalization is located under the
description of the FNO instruction.

8-240 DZ5l-00

('
I :

''''--../

(

FRD FRD

ILLEGAL ADDRESS
MODI FI CATIONS: None

ILLEGAL REPEATS: RPL

I NDI CATORS:

NOTES:

Zero

Negative

Exponent
Overflow

- If C(AQ) = zero, then ON; otherwise, OFF

- If C(AQ)O = 1, then ON; otherwise, OFF

- If exponent is > +127, then ON

1. When indicator bit 32 = 1 and the hex permission flag = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flat is Mode
register bit 33.

2. An Illegal Proceduree fault occurs if an illegal repeat is
used.

8-241 DZSl-OO

FSB FSB

FSB Floating Subtract 575 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: [C(EAQ) - C{Y)] normalized -> C(EAQ); C(Y) unchanged

EXPLANATION: The two's complement of the subtrahend is first taken and the
smaller value is then right-shifted to equalize it. The
shifted portion is truncated and the addition is executed.
The definition of normalization is located under the
description of the FNO instruction.

ILLEGAL ADDRESS
MODI FI CATIONS: CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTES:

Zero - If C{AQ} = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - If exponent is > +127, then ON

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

carry - If a carry out of bit 0 of C(AQ) is generated,
then ON; otherwise, OFF

1. When indicator bit 32 = 1 and the hex permission flat = 1,
the floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flat is Mode
register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification is used.

8-242 DZSI-00

,
)

FSBI FSBI

FSBI Floating Subtract Inverted 465 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: [C (Y) - C (EAQ)] normalized -> C (EAQ); C (y) unchanged

EXPLANATION: The two's complement of the subtrahend is first taken and the
smaller value is then right-shifted to equalize it. The
shifted portion is truncated and the addition is executed.
After addition, the sum is normalized and the 72 bits of the
mantissa are loaded into AQ.

I LLEGAL ADDRESS

The order of execution of the operation conforms to that of
the FSB instruction. Normalization is defined under FNO.

MODI FI CATIONS: CI, SC, SCR

(I LLEGAL REPEATS: None

I NDI CATeRS:

NOTE:

(

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

Exponent
Overflow - I f exponent is > +127, then ON

Exponent
Underflow If exponent of floating point result < - 128,

then ON

carry - If a carry out of bit 0 of C(AQ) is generated,
then ON; otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-243 DZ5l-00

FST FST

PST Floating Store 455 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

I LLEGAL ADDRESS

C(E) --> C(Y)O-7

C(A)O-27 --> C(Y)8-35

C(E), C(A) unchanged

MODI FI CAT! ONS: DU, DL, CI, SC, SCR

I LLEXiAL REPEATS: RPL

INDICATORS:

NOTE:

None affected

An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-244 DZ5l-00

(

(

FSTR FSTR

FSTR Floating Store Rounded 470 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS

C(EAQ) rounded and normalized -> C(Y); C(EAQ) unchanged

This instruction performs a true round of C(EAQ) to a
precision of 28 bits in C(AQ). The result is then normalized
and stored in Y. A true round means that the same rounding
operation applied to a number of the same magnitude and
opposite sign would result in a sum of the two rounded
numbers of exactly zero.

Upon completion of the rounding and normalization, the
exponent and truncated mantissa are stored as follows:

a. Exponent in bits 0-7 of C(Y)
Bits 0-27 of mantissa in bits 8-35 of C(Y)

b. If the resultant mantissa bits 0-27 are all zero, the
exponent is forced to -128 and the zero indicator is set
(floating-point zero).

The rounding and normalization operation of this instruction
is identical with FRO.

The definition of normalization is located under the
description of the FNO instruction.

MODI FI CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPL

I NDI CATORS: zero

Negative

Exponent
Overflow

- If C(Y) = floating-point zero, then ON;
otherwise, OFF

- If C(Y)8 = 1, then ON; otherwise, OFF

- If exponent is > +127, then ON

8-245 DZ51-00

FSTR FSTR

NOTES:

Exponent
Underflow - If exponent of floating point result < - 128,

then ON

1. When indicator bit 32 = 1 and hex permission flag = 1, the
floating-point alignment and normalization are
hexadecimal. Otherwise, the floating-point alignment and
normalization are binary. The hex permission flat is Mode
register bit 33.

2. An Illegal Procedure fault occurs if illegal address
modification or an ill~al repeat is used.

8-246 DZSl-OO

(

(

(-,

FSZN FSZN

FSZN Floating Set zero and Negative Indicators
from Storage

430 (O) I

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: Test C(Y); C(Y) unchanged

I LLEGAL ADDRESS
MODIFICATIONS: CI, SC, SCR

ILLEGAL REPEATS: None

I NDI CATORS: Zero N~ative Relationshi12

0 0 Mantissa C(Y)8-35 > 0

1 0 Mantissa C(Y)8-35 = 0

0 1 Mantissa C(Y)8-35 < 0

(bit 8 of C(Y) = l}

NOTE: An Illegal Procedure fault occurs if illegal address
modification is used.

8-247

I

DZ5l-00

FTR

P'TR Floating Truncate Fraction 474 (o)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(EAQ) fraction-truncated and normalized --> C(EAQ}

EXPLANATION: This instruction truncates the fraction part of the
floating-point data of C(EAQ} to obtain an integer. The
result is normalized and stored into C(EAQ}. A proper
truncation to an integer is such that truncating the
fractional parts of two numbers with the same absolute and
different sign and adding the results produces O.

! LLEGAL ADDRESS

FTR

MODIFICATIONS: None. The address modification does not affect instruction
operations, but the modification is executed.

! LlJX,;AL REPEATS: RPL

INDICATORS:

NOTE:

zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

An Illegal Procedure fault occurs if an illegal repeat is
used.

8-248 DZSI-OO

(.

(

GLDD GLDD

GLDD Load Double to GXn 32n (1)

FORMAT: Single-word instruction format (see Figure 8-1)

CODI NG FORMAT: 1 8 16

GLDD n,Y,R,AM

OPERATING MODES: Only ES mode.

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS
MODI FI CATIONS:

C(Y-pair) -> C(GXn-pair)

C(Y-pair) is loaded into the GXn-pair specified by bits 24-26
of the op code. The contents of bits 24-26(n) of the op code
determines the load destination of the GXn-pair as follows:

n (octal) GXn-pair

0 GXO, GXl
2 GX2, GX3
4 GX4, GX5
6 GX6, GX7

DU, DL, 0, SC, SCR

ILLEGAL REPEATS: The same GXn used as an address modification register in an
RPL.

ILLEGAL EXECUTES: Execution in NS mode.

INDICATORS :

NOTES:

Zero - If C (GXn-pair) = 0, then ON; otherwise, OFF

Negative - If C (GXn-pair) 0 = 1, then ON; otherwise, OFF

1. An IPR fault occurs if illegal address modifications or
repeats are used or if this instruction is executed in the
NS mode.

2. An IPR fault occurs if N = 1, 3, 5, or, 7.

8-249 DZ5l-00

GLLS GLLS

GLLS GXn Long Left Shift 466 (1)

FORMAT:

000 1 1 1 1 22233 3

Not Used J OP CODE

COOl NG FORMAT: 1 8 16

GLLS Rl,J,R2

OPERATI NG MODES: Only ES mode

SUMMARY:

EXPLANATION:

C(R2)

J

Rl = 0, 2, 4, 6, AQ

C(RI-pair) is shifted left. Vacated positions in C(Rl-pair)
are filled with zeros.

The number of bits to be shifted is given by the following:

0 28 29 35

I
+

I
.

11 17.

///////////////////////////////////////
///////////////////////////////////////
///////////////////////////////////////

Shift Number

J is added to C(R2)29-35 and the low-order 7 bits of the sum
specify the shift number.

I

8-250 DZ51-00

/

./

(

(

GLLS

I LlJlXiAL ADDRESS

GLLS

If the R2 field is 0000, the addition of C(R2) and J is not
performed and the value of J specifies the shift number.

MODIFICATIONS: None. The address modification is not executed.

ILLEGAL REPEATS: RPT, RPD, RPL

ILLEXiAL EXECUTES: Execution in NS mode

I NDI CATORS :

NOTES:

Zero - If C(Rl) = 0, then ON: otherwise, OFF

Negative - If C(Rl)O = 1, then ON; otherwise, OFF

carry - If a carry out of bit 0 of C(R1) is generated,
then ON; otherwise, OFF.

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to "Register to Register Instructions" in Section 7
for a description of the fields in the instruction word.

8-251 DZ5l-00

GLRL GLRL

GLRL GXn Long Right Logic 465 (1)

FORMAT:

o 0 0 1 1 1 1 22233 3
78912 5

J OP CODE III MBZI R21

COOl NG FORMAT: 1 8 16

GLRL R1,J,R2

OPERATING MODES: Only ES mode

SUMMARY:

EXPLANATION:

Rl = 0, 2, 4, 6, AQ

C(RI-pair) is shifted right. vacated positions in C(RI-pair)
are filled with zeros.

The number of bits to be shifted is given by the following:

C{R2) ~IO _____________________________ 2_8~12_9 ___________ 3_5~1

J

//////////f////////////////////////////
///////////////////////////////////////
///////////////////////////////////////

+

Shift Number

J is added to C{R2}29-35 and the low-order 7 bits of the sum
specify the shift number.

8-252 DZ5l-00

(

(

GLRL

I LLEGAL ADDRESS

GLRL

If the R2 field is 0000, the addition of C(R2) and J is not
performed and the value of J specifies the shift number.

MODIFICATIONS: None. The address modification is not executed.

I LLEGAL REPEATS: RPT, RPD, RPL

I LLEGAL EXECUTES: Execution in NS mode

I NDI CATORS :

NOTES:

zero - If C(Rl) = 0, then ON: otherwise, OFF

Negative - If C(Rl)O = 1, then ON: otherwise, OFF

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to "Register to Register Instructions- in Section 7
for a description of the fields in the instruction word.

8-253 DZ51-00

GLRS GLRS

GLRS GXn Long Right Shift 464 (1)

FORMAT:

a 0 0 1 1 1 1 22233 3

J OP CODE

CODING FORMAT: 1 8 16

GLRS Rl,J,R2

OPERATING MODES: Only ES mode.

SUMMARY: Rl = 0, 2, 4, 6, AQ

C(RI-pair) is shifted right. Vacated positions in
C(RI-pair) are filled with bits equal to bit 0 of
C(RI-pair) •

EXPLANATION: The number of bits to be shifted is given by the following:

C(R2) I

J

a 28 29

///////////////////////////////////////
///////////////////////////////////////
///////////////////////////////////////

8-254

11

35

I
+ .

17.

I

Shift Number

DZ5l-00

(

(

GLRS

I LLEX;AL ADDRESS

J is added to C(R2)29-35 and the low-order 7 bits of the sum
specify the shift number.

If the R2 field is 0000, the addition 0: C(R2) and J is not
performed and the value of J specifies the shift number.

GLRS

MODIFICATIONS: None. The address modification is not executed.

1 LLEXiAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

I NDI CATORS:

NOTES:

Zero - If C(R1) = 0, then ON; otherwise, OFF

Negative - If C(R1)0 = 1, then ON; otherwise, OFF

1. An IPR fault occurs if illegal repeats are executed or if the
instruction is executed in NS mode.

2. Refer to "Register to Register Instructions" in Section 7_for
a description of the fields in the instruction word.

8-255 DZ51-00

GLS GLS

GLS GXn Left Shift 462 (1)

FORMAT:

o 0 0 1 1 1 1 22233 3

J OP CODE

CODING FORMAT: 1 8 16

GLS Rl,J,R2

OPERATING MODES: Only ES mode.

SUMMARY:

EXPLANATION:

C(R2)

J

Rl = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

C(Rl) is shifted left. Vacated positions in C(Rl) are filled
with zeros.

The number of bits to be shifted is given by the following:

0 28 29 35

I I
+ .

11 17.

///////////////////////////////////////
///////////////////////////////////////
///////////////////////////////////////

Shift Number

J is added to C(R2)29-35 and the low-order 7 bits of the sum
specify the shift number.

I

8-256 DZ5l-00

/

(

(

GLS

I LLEGAL ADDRESS

GLS

If the R2 field is 0000, the addition of C(R2) and J is not
performed and the value of J specifies the shift number.

MODIFICATIONS: None. The address modification is not executed.

I LLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

I NDI CATORS :

NOTES:

Zero - If C(Rl) = 0, thenONi otherwise, OFF

Negative - If C(Rl)O = 1, then ONi otherwise, OFF

carry - If a carry out of bit 0 of C(Rl) is generated,
then ON; otherwise, OFF.

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to "Register to Register Instructions" in Section 7
for a description of the fields in the instruction word.

8-257 DZ5l-00

GRL GRL

GRL GXn Right Logic

FORMAT:

o 0 0 1 1 1 1 22233 3

J OP CODE

CODI NG FORMAT: 1 8 16

GRL R:j.,J,R2

OPERATING MODES: Only ES mode.

SUMMARY:

EXPLANATION:

R1 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

C(R1) is shifted right. Vacated positions in C(R1) are filled
with zeros.

The number of bits to be shifted is given by the following:

28 29 35

I I C(R2) .IO ____________________________ ~ ____________ ~

J

///////////////////////////////////////
///////////////////////////////////////
///////////////////////////////////////

.

.11

I

+ .
17.

I

Shift Number

J is added to C(R2)29-35 and the low-order 7 bits of the sum
specify the shift number.

8-258 DZ5l-00

\
',,-

(

(

GRL

I LLEGAL ADDRESS

GRL

If the R2 field is 0000, the addition of C(R2) and J is not
performed and the value of J specifies the shift number.

MODIFICATIONS: None. The address modification is not executed.

ILLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

I NDI CATORS:

NOTES:

Zero - If C(Rl) = 0, then ON; otherwise, OFF

Negative - If C(Rl)O = 1, then ON; otherwise, OFF

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to "Register to Register Instructions" in Section 7
for a description of the fields in the instruction word.

8-259 DZSI-00

GRS GRS

GRS GKn Right Shift 460 (1)

FORMAT:

o 0 0 1 1 1 1 22233 3

Not Used J OP CODE

CODING FORMAT: 1 8 16

GRS R1,J,R2

OPERATI NG MODES: Only ES mode.

SUMMARY:

EXPLANATION:

R1 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

C(R1) is shifted right. Vacated positions in C(Rl) are
filled with bits equal to bit 0 of C(Rl) •.

The number of bits to be shifted is given by the following:

C(R2) ~IO ____________________________ ~ ____________ ~
28 29 35

I I

J

. + .

.11 17.

///////////////////////////////////////
///////////////////////////////////////
//1111//////////1/////1/////////1//////

I

Shift Number

J is added to C(R2)29-35 and the low-order 7 bits of the sum
specify the shift number.

If the R2 field is 0000, the addition of C(R2) and J is not
performed and the value of J specifies the shift number.

I

8-260 DZ5l-00

(

GRS GRS

ILLEGAL ADDRESS
MODIFICATIONS: None. The addr~ss modification is not executed.

ILLEGAL RE?EATS: RPT, RPD, RPL

ILLEGAL EKECUTES: Execution in NS mode

I NDI CATORS:

NOTES:

Zero - If C(Rl) = 0, then ON; otherwise, OFF

Negative - If C(Rl}O = 1, then ON; otherwise, OFF

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to Register to Register Instructions in Section 7
for a description of the fields in the instruction word.

8-261 DZSI-OO

GSTD GSTD

GSTD Store Double from GXn 14n (0)

FORMAT: Single-word instruction format (see Figure 8-1)

CODI NG FORMAT: 1 8 16

GSTD n,Y,R,AM

OPERATI NG MODES: Only ES mode.

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

C(GXn-pair) --> C(Y-pair)

The content of the GXn-pair specified -by bits 24-26 of the op
code is stored in the memory location of Y-pair. The
GXn-pair whose contents are to be stored is specified as
follows:

n (octal)

o
2
4
6

GXn-pair

GXO, GXl
GX2, GX3
GX4, GX5
GX6, GX7

MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPL

ILLEGAL EXECUTES: Execution in NS mode.

I NDI CATeRS:

NOTE:

None affected.

An IPR fault occurs if illegal address modifications or
repeats are used or if this instruction is executed in the NS
mode.

8-262 DZ5l-00

\

'\
I

(

(

GTB GTB

G'l'B Gray-to-Binary Convert 774 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: NS mode only

SUMMARY: C(A) is converted from Gray code to a 36-bit binary number

EXPLANATION: This conversion is defined by the following algorithm in
which Rand S denote the contents of bit position i of the A
register before and after the conversion:

I LLEGAL ADDRESS

So = RO

Sl = (RO AND Si-l) OR (Ri AND Si-l)

where: i = 1, ••• ,35.

Gray code is a method of transmitting numeric code
cyclically, one bit at a time, to eliminate transmission
errors and is defined as follows:

a. A positional binary notation for numbers in which any two
sequential numbers whose difference is 1 are represented
by expressions that are the same except in one place or
column, and in that place or column differ by only one
unit.

b. A type of cyclic unit-distance binary code evolved from
the 4-word, 2-bit unit distance code (00, 01, 11, 10)
according to the following rule:

To construct an (n+1)-bit reflected binary code from an
n-bit reflected binary code, write the n-bit code twice
in sequence, first in forward and then in reverse
sequence of code words. Prefix an extra bit to each
word, assigning the value a to the forward version and
the value 1 to the backward version of the n-bit code.

MODI FI CATIONS: None

ILLEGAL REPEATS: RPL

INDICATORS:

NOTE:

Zero - If C(A) = 0, then ON; otherwise, OFF

Negative - If C(A}O = 1, then ON; otherwise, OFF

An Illegal Procedure fault occurs if an illegal repeat is
used.

8-263 DZ51-00

LARn LARn

LARn Load Address Register n 76n (1)

FORMAT: Single-word instruction format (see Figure 8-1)

CODING FORMAT: 1 8 16

LARn LOCSYM, RM, AR

OPERATl NG MODES: Any

SUMMARY:

I LLEGAL ADDRESS

NS Mode

For n=0,1, ••• ,7 as determined by op code

C(Y)0-23 --> C(ARn); C(Y) unchanged

ES Mode

For n=0,1, ••• ,7 as determined by op code

C(Y) -> C(ARn); C(Y) unchanged

MODI FI CATIONS: DU, DL, Cl, SC, SCR

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTE: An Illegal Procedure fault occurs if illegal address
modifications or illegal repeats are used.

EXAMPLE:

1 8 16 32

LAR7 ADDR load bits 0-23 of address into AR7

ADDR BOSC 512,,8,8 o 0 1 0 0 0 7 0 0 0 0 0 memory contents

*CONTENTS OF J..R7 AFTER: o 0 1 0 007 0

8-264 DZ51-00

(

(

LAREG LAREG

Load Address Registers 463 (1)

FORMAT: Single-word instruction format (see Figure 8-1)

CODIIJG FORMAT: 1 8 16

LAREG LOCSYM,R,AR

OPERATI NG NODES: Any

SUMMARY: NS Node

EXPLANATION:

ILLEGAL ADDRESS

C(Y,Y+1, ••• ,Y+7)O-23 --> C(ARO,ARl, ••• ,AR7)

ES Node

C(Y,Y+l, ••• ,Y+7) --> C(ARO,AR1, ••• ,AR7)

The hardware assumes that the lower 3 bits of address Y = 000
and the 8 words beginning from the 8-word boundary are
accessed. No check is performed to determine whether the
lower 3 bits of Y = 000. Location Y must be forced to a
multiple of 8 by entering an 8 in column 7 of the statement
that defines Y, or by using the EIGHT pseudo-operation.

MODI FI CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTE: An Illegal Procedure fault occurs if illegal address
modifications or illegal repeats are used.

8-265 DZ5l-00

LAREG

EXAMPLE:

LAREG

1 8 16 32

LAREG REGW load ARO ••• AR7 from REGW ••• REGW+7

EIGHT
REGW DEC 0,0,0,0,0,0,0,0
* * Result is that all address Registers are
* cleared.

8-266 DZ51-00

(

It

LCA LCA

Load Complement into A-Register 335 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: -C(Y) --> C(A); C(Y) unchanged

EXPLANATION: This instruction changes the number to its negative (if # 0)
while moving it from Y to A. The operation is executed by
forming the two's complement of the string of 36 bits. An
overflow condition exists if C(Y) = 2**35.

I LLEGAL ADDRESS
MODI FI CATIONS: None

I LLEGAL REPEATS: None

INDICATORS: Zero - If C(A) = 0, then ON; otherwise, OFF

Negative - If C(A)O = 1, then ON; otherwise, OFF

Overflow - I f range of A is exceeded, then ON

8-267 DZ51-00

LCAQ LCAQ

LCAQ Load Complement into AQ-Register 337 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: -C(Y-pair) --> (AQ)i C(Y-pair) unchanged

EXPLANATION: This instruction changes the number to its negative (if ~ 0)
while moving it from Y-pair to AQ. The operation is executed
by forming the two's complement of the string of 72 bits. An
overflow condition exists if C(Y)-pair) = -2**71.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTE:

Zero

Negative

Overflow

- If C(AQ) = 0, then ONi otherwise, OFF

- If C(AQ)O = 1, then ONi otherwise, OFF

- I f range of AQ is exceeded, then ON

An Illegal Procedure fault occurs if illegal address
modifications are used.

8-268 DZS1-00

LeON LeON

LCON Load Connect Table 016 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master mode

SUMMARY: C(Y, Y+l, Y+2, Y+3 -->C(Connect Table)

C(Y+4, Y+5, Y+5, Y+7) -->(Secondary Connect Table)

EXPLANATION: The connect table is located in the CPU scratch pad memory at
locations 74-77. The secondary connect table is at locations
0-3. (Refer to the description of CIOC in this section.)

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, and SCR

ILLEGAL REPEATS: RPD, RPL, and RPT

I ND! CATORS:

NOTES:

None affected

1. An IPR fault occurs if this instruction is executed in
Slave or Master mode.

2. An IPR fault occurs if illegal address modification or an
illegal repeat is used.

3. The SCPR tag 07 instruction stores the connect table.

8-269 DZ51-00

LCPR LCPR

LCPR Load Central Processor Register 674 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master Mode

SUMMARY: The operation has several forms depending upon the tag field:

C(Y) -->C(CPU Register)

Operand -->C(CPU Register)

C(A) -->C(PTWAM)

Tag C(Y) Bits CPU Register

02 18, 21, 23-25 -->cache Mode Register
34-35 -->Lockup Fault Register

04 0-35 -->CPU Mode Register

11 0-17 -->Port Configuration Register

12 5-35 -->Real Address Trap Register

13 33-35 -->CPU Number Register

14 0-35 -->virtual Address Trap Register

Tag Operand CPU Register

03 0-35 = O ••• O} -->History Registers
59-99= O ••• O}

07 0-35 = 1. •• l} -->History Registers
59-99= 1. •• l}

(Refer to Section 4 for register format.)

8-270 DZ51-00

(

(

LCPR

EXPLANATION:

I LLEGAL ADDRESS

LCPR

The following tag loads the contents of the PTWAM directory
from the A-register. The entry location is specified by the
Y address field in the instruction.

Tag Column Row C(A) Bits Entry

17 Yll-16 Y17 28,29 PTWAM DirectorY

This instruction provides the capability to load the Central -
Processor registers. The registers are selected by the
instruction tag field. The operation has several forms as
indicated under summary.

For LCPR Tag 02, cache is flushed when bit 18 is set to the
enable state and when a cache mode changes from disable to
enable. If an enable condition corresponding to bits 21, 24,
and 25 requires a cache flush, software must manipulate bit
18 to cause a cache flush.

For LCPR tag 17, if bit 29 is ON, C(AR) is added to the Y
field and the sum forms the entry select. The full virtual
address development is not used.

The real and virtual address trap values are also loaded into
processor scratch pad at locations 66,67.

MODIFICATIONS: None. Tag field defines function.

I LLEGAL REPEATS: RPT, RPD, RPL

I NDI CATORS : None

NOTES: 1. Attempted execution of LCPR in the Slave or Master mode
results in a Command fault.

2. An Illegal Procedure fault occurs if an illegal tag field
or an illegal repeat is used.

3. See the SCPR instruction for selecting the central
processor registers to be set.

8-271 DZ51-00

LCQ LeQ

LeQ Load Complement into Q-Register 336 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: -C(Y) --> C(Q>; C(Y) unchanged

EXPLANATION: This instruction changes the number to its negative value <if
F 0) while moving it from Y to Q. The operation is executed
by forming the two's complement of the string of 36 bits. An
overflow condition exists if C(Y> = -2**35.

ILLEGAL ADDRESS
MODI PI CATIONS: None

I LLEGAL REPEATS: None

INDICATORS: Zero - If C<Q) = 0, then ON: otherwise, OFF

Negative - If C<Q>o = 1, then ON: otherwise, OFF

Overflow - If range of Q is exceeded, then ON

EXAMPLE: 1 8 16 32

LeQ =5,DL Loads -5 into the Q-register

8-272 DZ5l-00

I
~/

(

(

LCXn LCXn

Load Complement into Index Register n 32n (0)

FORMAT: Single-word instruction format (see Figure 8-1)

. OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS

NS Mode

For n=O,l •••• or 7 as determined by opcode

-C(Y)0-17 --> (Xn); C(Y) unchanged

ES Mode

For n=O,l •••• or 7 as determined by opcode

-C(y) -> (GXn): C(Y) unchanged

This instruction changes the number to its negative value (if
0) while moving it from bits 0-17 of Y to Xn or from Y to
GXn. The operation is executed by forming the two's
complement of the string of 18 bits.

MODI FI CATIONS: CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, or RPL of LOCO

INDICATORS:

NOTES:

Zero

Negative

Overflow

- If C(Xn/GXn) = 0, then ON; otherwise, OFF

- I f C (Xn/GXn) 0 = 1, then ON; otherwise, OFF

- I f range of X!!/GX!! is exceeded, then ON

1. In the NS mode, if DL modificatiion is used, the hardware
executes with all zeros for data.

2. An Illegal Procedure fault occurs if illegal address
modification or illegal repeats are used.

8-273 DZ51-00

LDA LDA

LDA Load A-Register 235 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(Y) --> C(A); C(Y) unchanged

I LLEGAL ADDRESS
MODI FI CATIONS:· None

I LLEGAL REPEATS: None

I NDI CATeRS: zero - If C(A) = 0, then ON; otherwise, OFF

Negative - If C(A)O = 1, then ON; otherwise, OFF

8-274 DZ51-00

(

(

LDAC LDAC

LDAC Load A-Register and Clear 034 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(Y) --> C(A): 0 ••• 0 --> C(Y)

EXPLANATION: This instruction is used for a gating operation in multiple
CPU systems. Execution of the next instruction is delayed
until the cache-flush request applied to all CPUs has
completed.

ILLEGAL ADDRESS
MODI FI CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: None

INDICATORS:

NOTE:

Zero - If C(A) = 0, then ON: otherwise, OFF

Negative - If C(A)O = 1, then ON; otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-275 DZ51-00

LDAQ LDA.Q

LDAQ Load AQ-Register 237 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(Y-pair) --> C(AQ): C(Y-pair) unchanged

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, 'SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTE:

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-276 DZ51-00

j

(

(

LDAS LDAS

LDAS Load Argument Stack Register 770 (I)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master mode

SUMMARY: C(Y-pair} --> C(ASR}; C(Y-pair) unchanged

EXPLANATION: A descriptor is fetched from even/odd memory locations Y and
Y+l and the following checks are performed on the descriptor:

ILLEGAL ADDRESS

a. Type field T = 1.

b. Base and bound are modulo 2 words (the three least
significant bits of base must be zeros; the three least
significant bits of bound must be ones if flag bit 27 is
l) •

If these conditions are met, the descriptor is loaded into
the argument stack register (ASR) and, in addition, the bound
is loaded into the High Water Mark Register (HWMR). During
ASR loading, bits 0-6 of the ASR bound field are forced to
zero by the processor instead of being loaded from the memory
operand. If flag bit 27 of the operand descriptor is zero,
the entire bound field is forced to zero, regardless of any
value the operand descriptor bound field may contain, and the
bound check is bypassed.

(Refer to the description of the PAS instruction for further
information concerning the HWMR.)

MODIFICATIONS: DU, DL, 0, sc, SCR

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

8-277 DZ5l-00

WAS

NOTES:

EXAMPLE:

1

*
*

8

1. Any of the following conditions cause an IPR fault:

o Illegal address modifications

o Illegal repeats

o segment descriptor type field T is not 1

WAS

o If the base and bound limits of the operand descriptor
are not modulo 2 words.

o If flag bit 27 = 1 (bound valid) and the bound is not
modulo two words

2. If the processor is in Slave or Master mode, the execution
of ·this instruction causes an Command fault.

16 32

ROUTINE TO LOAD REGISTERS - ASR,
CALLING TSX Z,RDSPRG

PSR, DSAR

POST LOST PO, Z
RDSPRG EQU *

WP PO,.SSR,DL
WP PO, .CTYP ,DL
WDSA .WDSAR"PO
WAS • WASR, , PO
WPS • WPSR, , PO
TRA ,Z

*safestore frame access
*change type
*DSAR
*ASR
*PSR
*OK

8-278 DZ51-00

(

(

LDCR LDCR

LOCR Load Complement Register from Register 431 (1)

FORMAT:

000 1 1
7 8

Not Used I OP CODE

CODING FORMAT: 1 8 16

LOCR R1, ,R2

OPERATING MODES: Executes in ES mode only.

SUMMARY: Rl, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

ILLEGAL ADDRESS

-C(R2) --> C(Rl)

C (R2) unchanged

22233
78912

III HBZI

MODIFICATIONS: None. The address modification is not executed.

ILI&;AL REPEATS: RPT, RPD, RPL

I LLEGAL EXECUTES: Execution in NS mode

I NDI CATORS: Zero - If C(Rl) = 0, then ON; otherwise, OFF

Negative - If C(Rl)O = 1, then ON; otherwise, OFF

Overflow - I f the range of Rl is exceeded, ON.

R2

3
5

NOTES: 1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to Register to Register Instructions in Section 7
for a description of the fields in the instruction word.

I

8-279 DZ51-00

LDDn LDDn

LDI>!! Load Descriptor Register n

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

EXPLANATION: This set of eight instructions provides the capability of
loading a descriptor register (DRg) with a new descriptor or
modifying the descriptor currently contained in DRg. The
segment type referenced by the generated address determines
the function to be executed.

In this discussion, DRn represents the specified descriptor,
whereas, DRm represents the descriptor register indicated by
the y field that is used to load a new segment descriptor.

When the instruction word bit 29 = 1 and the descriptor
register specified by bits 0, 1, and 2 of the y field
includes a type T = 1 or 3 segment descriptor, the segment
descriptor is loaded into the DRn from the segment descriptor
segment specified by DRm.

When the instruction word bit 29 = 1 and the type for the
segment descriptor in DRm is T = 0, 2, 4, 6, 12, or 14, or
when the instruction word bit 29 = 0, a vector operation is
performed.

Descriptions of the two types of operations follow. An IPR
fault occurs when DRm includes a type T = 7 - 11, 13, or 15
segment descriptor.

Instruction Word Bit 29 = 1; DRm Type T = 1 or 3

The segment descriptor from the segment descriptor segment
indicated by DRm is loaded into DRn. When the effective
address is generated, only R type modification and DU/DL
modification are permitted. The effective address is the
offset from the segment descriptor segment indicated by DRm.
The segment descriptor from the even/odd location indicated
by this address is loaded into DRn and the same checks are
performed as for any normal memory reference.

o A check is made to determine whether a segment is present
and whether read is permitted.

8-280 DZ51-00

/

LDDn

(

Y

Y+l

Y+2

Y+3

o
o

20

20

20

LDDn

o A bound check is made.

The housekeeping bit for that page must be ON because the
segment descriptor segment is referenced. If it is OFF, the
instruction execution is terminated and a Secur i ty Fault, Class
1 occurs. The housekeeping page access for access of the
segment descriptor is not dependent upon the CPU mode; it may
also be executed in Slave mode.

The ARg and S~Dg which correspond to the DRn are affected as
follows:

o ARg is set to zero.

o SEGIDg is set to be self-identifying, i.e., S = 0, 0 = 177n.

Instruction Word Bit 29 = 0; ORrn Type T = 0, 2, 4, 6, 12, or 14

The memory operand vector, consisting of one or two double-words
determines the operation to be performed by the instruction.
When this vector is obtained from memory, all address
modification is permitted except for DU, OL, SC, SCR, and CI.

1. VECTOR FORMAT

a. Vector for Standard Segment Descriptor, Super segment
Descriptor

SIZE

BASE ADDER

SUBSCRIPT

1 2
9 0

9
\\\
\\\
\\\

FLAG

S
2 10

2
9

5

0

V

333
345

\\\
\\\
\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\

\ \
I
>2-Word I Vector

/ >4-Word
Vector

\\
\\
\\ /

8-281 DZ51-00

LDDn LDDn

The contents of bits 29-33 (the V field) determine the
function to be performed as follows. (XXX for bits
indicates that these bits are ignored.)

V = OOXXX Copy: 2-word vector

Copy (load) the selected segment descriptor into
DRn. SEGIDn is set to indicate the location from
which the segment descriptor was obtained~ ARn is
set to zero.

V = OlXXX Normal Shrink: 2-word vector

Shrink the selected segment descriptor and load it
into DRn. SEDIDn is set to indicate DRn~ ARn is set
to zero.

V = 10000 Extended Shrink: 4-word vector

V = 10001 Special Extended Shrink: 4-word vector

Shrink the selected segment descriptor with the
4-word vector and load it into DRn. SE(rrDn is set
to indicate DRn~ ARn is set to zero. (Refer to
details below for difference between Extended Shrink
and special Extended Shrink.)

V = llXXX Data Stack Shrink: 2-word vector

Use DSDR and DSAR to generate the data stack segment
descriptor~ load this segment descriptor into DRn.
DSAR is updated and ARn is set to zero. SE(rrD is
set to indicate DRn.

8-282 DZ5l-00

//----,,\

!

\...j

LDDn

(

Y

Y+l

Y+2

Y+3

(

LDDn

b. Vector for Extended Segment Descriptor

o
o

20
SIZE

1 2
9 0

9
FLAG

2
9

5
V

333
345

\\\
\\\
\\\

\

\\\\\\\\\\\\\\\\\\\\\\\ \\\
\\\\\\\\\\\\\\\\\\\\\\\ \\\
20\\\\\\\\\\\\\\\\\\\\\ \\\ 2

BASE ADDER

SUBSCRIPT

S D
10

/

>4-Word
Vector

The contents of bits 29 - 33 determine the function to
be performed with the format illustrated above as
follows:

V = 10100 Normal Shrink with Type Change

Shrink the selected segment descriptor (T = 12 or l4)
and change to a Standard Segment Descriptor. S~Dn
is set to indicate DRn: ARn is set to zero.

V = 10101 Normal Shrink with No Type Change

Shrink the selected segment.descriptor (T = 12 or
14). SEGlDn is set to indicate DRn: ARn is set to
zero.

V = 10110 Extended Shrink with Type Change

Shrink the selected segment descriptor (T = 12 or
14), by using a subscript, and change to a Standard
Segment Descriptor. SEGIDn is set to indicate DRn:
ARn is set to zero.

V = 10111 Extended Shrink with No Type Change

Shrink the selected segment descriptor (T = 12 or 14)
by using a subscript. SEGIDn is set to indicate DRn;
ARn is set to zero.

8-283 DZ5l-00

LDDn LDDn

v = 10010 Normal Base Shrink with No Type Change

Shrink the base of a selected segment descriptor (T
= 0, 2, 12, 14) and reduce the bound by as much as
the base shrinkage. The type remains unchanged,
SEGID is set to indicate DRn: ARn is set to zero.

v = 10011 Extended Base Shrink with No Type Change

The same as the normal base shrink, except that the·
subscript is used. SEGIDn is set to indicate DR!!
and ARn is set to zero.

2. SHRI NK FOR STANDARD AND SUPER SEGMENT DESOOPTORS

a. V = 00>00(Copy (bits indicated by X ignored)

The Sand D fields of the vector indicate the
location of the segment descriptor to be loaded into
DRn. Definition of these two fields follows.

When S = 0:

For D = 0000 through 1757 (octal), the descriptor is
loaded from the parameter segment and D is used as "
an index to the desired descriptor. The value in D
is the number of the descriptor to be loaded and can
be treated as a modulo 8 byte index; that is, D can
be converted to a byte address by appending three
zeros as the three least-significant bits.

D is bound checked against the PSR (parameter
Segment Register) bound field. If D > PSR bound, a
Bound fault occurs. IF D <= PSR bound, D is added
to the PSR base and is used as the segment
descriptor address. This address is used to obtain
the segment descriptor which is then loaded into
DRn.

8-284 DZ5l-00

./ "

LDDn

(

(

LDDn

For D = 1760 through 1777 (octal), the descriptors
referenced by S, D are contained in selected
registers and copied to the DRg.

D = 1760
D = 1761
D = 1762
D = 1763
D = 1764
D = 1765
D = 1766
D = 1767
D = 1770
D = 1771
D = 1772
D = 1773
D = 1774
D = 1775
D = 1776
D = 1777

Undefined, IPR fault
Change Descriptor Type Field in DRn·
Instruction segment Register (ISR)
Data Stack Descriptor Register (DSDR)
Safe Store Register (SSR)
Linkage Segment Register (LSR)
Argument Stack Register (ASR)
Parameter segment Register (PSR)
DRO, Descriptor Register 0
DRl, Descriptor Register 1
DR2, Descriptor Register 2
DR3, Descriptor Register 3
DR4, Descriptor Register 4
DRS, Descriptor Register 5
DR6, Descriptor Register 6
DR7, Descriptor Register 7

NOTE: When S = 0 with D = 1761 (octal) and the
processor is in the Privileged Master mode, if
the descriptor contained in DRg is type 1 or
3, the type is changed to 0 or 2,
respecti vely. SEGIDn is set to be
self-identifying. However, if the descriptor
is not type 1 or 3, no fault occurs and no
operation is performed.

When S = 0 with D = 1761, 1763, or 1764
(octal), a command fault occurs unless the CPU
is in the Privileged Master mode.

When S = 2

The Dth descriptor of the current argument segment
is selected. A relative byte offset is formed by
extending the D field by 3 zeros. D is
bound-checked against the ASR bound field. If D >
the ASR bound, a bound fault occurs. 1 f D <= the
bound, D is added to the ASR base, and the segment
descriptor is obtained with this address and then
loaded into DRn.

8-285 DZ51-00

LDDn LDDn

When 5 = 1 or 3

The Dg descriptor of the current linkage segment is
selected. A relative byte offset is formed by
extending the 0 field by three zeros. 0 is
bound-checked against the LSR bound field. If D >
bound. a Bound fault occurs. If 0 <= the bound , 0
is added to the LSR base, and the segment descriptor
is obtained with this address and then loaded into
ORne

For all values of 5, the loading of D~ affects the
gth address register (ARn) and the nth segment
identity register (SEGrrDg) as follows:

o ARg is set to zero.

o I f DRn was loaded from another OR or the
instruction segment register (ISR), the
associated segment identity content is
transferred to SEGrrDn; otherwise, SEGlDn is set
to the 5 and D value-contained in the vector.
When 5 = 0 and D = 1761 (octal), SEGlDn is set to
be self-identifying. -

o If an IPR or an Bound fault occurs, DRn, ARg, and
5EGlDg are not changed.

b. V = OlXXX Normal Shrink

When bits 29 and 30 of the first word in the vector are
01, the specified segment descriptor is obtained, the
shrink operation is performed, and the descriptor is
then loaded into DRn a§ with copy. When S = 0 and D =
1761 (octal) in the Privileged Master mode, the segment
descriptors for type T = 1 or 3 are changed to T = 0 or
2, respectively. The shrink operation is then
performed.

In order to perform the shrink operation, the segment
descriptors indicated by 5 and D must be Standard or
Super Segment descriptors. An IPR fault occurs if T =
5 or 7 - 15. If a fault, such as a Bound fault, occurs
during the shrink operation, D~, SEGrrDn, and ARn are
not changed.

8-286 DZ5l-00

/' .. "

(
LDDn LDDn

Standard Seament Descriptors

with standard segment descriptors, the shrink operation
is performed as follows.

o The vector BASE ADDER and SIZE fields are the relative
values for the selected segment descriptor base and
bound fields. The following check is performed for
these values.

BASE ADDER + SI ZE <= bound

' ___ Bound fault occurs with carry.

A Bound fault occurs when the sum of the BASE ADDER
and SIZE exceeds the bound or when carry occurs with
this addition. Flag bit 27 is not checked.

o When the check is terminated, a new base and bound are
generated.

New Base = old base + BASE ADDER

'_Bound fault occurs with carry.

New Bound = size

The new base and bound are loaded into DRn.

o The vector flag field indicates the attributes given
to the segment. I t is combined with the flag field
of the selected segment descriptor to generate a new
flag field. The permission conditions for these new
flags are such that they are not increased from the
previous conditions (i.e., a bit-by-bit logical AND
operation of two flag fields takes place). A fault
does not occur even if the vector permission
conditions are greater than those for the segment
descriptors. The result produced by the combination
of these two flag fields is loaded into the DRg flag
field. As the type T = 2 or 3 segment descriptor
flag field are three bits in lengtli, the AND
operation is performed for these three bits and the
corresponding three bits from the vector.

The corresponding ARn is set to zero.

8-287 DZSl-OO

LODn

SEGlDn is set to be self-identifying (ORn); for
example, when this instruction references OR3
(LDD#), S~03 is set as follows:

17738

Two Bits Ten Bits

Super segment Descriptors

LDDn

When shrink operation is performed for a super segment
descriptor, a standard segment descriptor is
generated. Type T = 4 super segment descriptor becomes
type T = 0 standard segment descriptor, and type T = 6
super segment descriptor becomes type T = 2 standard
segment descriptor.

The shrink operation is performed as follows:

o A check is performed to determine whether the
following expression is satisfied.

Location + (BASE ADDER + SIZE) <= bound L '_NO fault with carry

Bound fault occurs with carry

Flag bit 27 is not checked.

I f this check is passed, a new base and bound are
generated.

New base = base + (location + BASE ADDER)

' ___ Bound fault occurs
with carry

___ Bound fault occurs with carry

The processing is described in the diagram that
follows relative to the base and bound fields of the
selected descriptor.

8-288 DZ51-00

LDDn

(

(

(

· · · · • 0

· · · · · .0

LDDn

Location (selected segment Descriptor)

9. .16 35.
+

+ . o 19 · · · BASE ADDER (From Vector)

· 9 . · Base (Selected · segment •
Descriotor) · · ·

•

· · 35.

New Segment Descriptor Base

The new bound = SIZE. The new base and size field from
the vector are loaded in the base and bound field of
DRn·

The new flags field is fomed in the same manner as for
the standard descriptor. SEGrrDn is set as for the
standard descriptor shrink; ARn is zero-filled.

c. V = 10000 Extended Shrink

For extended shrink operations, the same conditions which
exists for normal shrink operations must be satisfied. If
a fault occurs during a shrink operation, DRn, ARn, and
SEG[Dn remain unchanged.

Standard Segment Descriptors

A 4-word vector subscript (SCPT) is used when the new
segment descriptor base and bound are generated.

8-289 DZ5l-00

LDDn LDDn

o The following check is performed.

(BASE ADDER + SCPT) + (SI ZE - SCPT) <= bound

I_Bound fault occurs
with borrow

_Bound fault occurs with carry

_carry is ignored: a negative value is
permi t ted as the BASE ADDER (i. e., a
very large positive value).

o If this check is passed, a new base and bound are
generated.

New base = base + (BASE ADDER + SCPT)

I_carry is ignored.

__ Bound fault occurs with carry.

New bound = SIZE - SCPT

I_Bound fault occurs with borrow •.

The new base and bound are loaded into DRn.

As described in the discussion on normal shrink of a
standard segment descriptor, a new flag field is
generated. SEGIDn and ARn are set in the same way.

Super Segment Descriptors

The SCPT field is used as described in the discussion
on standard segment descriptors.

The following check is performed.

8-290 DZS1-00

,
/

(

LDDn LDDn

Location + (BASE ADDER + ACPT) + (SIZE - SCPT) <= bound

I_Bound fault
occurs with
borrow.

__ carry transferred to
the location field.

_carry is ignored.

_Bound fault occurs with carry.

If this check is passed, a new base and bound are
generated.

New Base = base + (location + (BASE ADDER + SCPT»

I_carry is
ignored.

Bound fault occurs with
carry.

_Bound fault occurs with carry.

New bound = SIZE - SCPT

' __ Bound fault occurs with borrow.

The new base and bound are loaded into DRn.

o A new flag field is generated as with a standard
segment descriptor.

o DRg type T is set as follows.

1) If old T = 4, then new T = 0

2) If old T = 6, then new T = 2.

o The corresponding ARg is set to zero.

o S~Dn is set to be self-identifying (DRg). The
flag bit 27 of the selected segment descriptor is
not checked.

8-291 DZ5l-00

LDDn LDDn

d. v = 10001 Special Extended Shrink

The differences between the special extended shrink and
the extended shrink (v = 10000> are as follows.

If the type T of the fetched segment descriptor is not
equal to 0, 1, 2, or 3, an IPR fault occurs. The SIZE
field (bits 0 - 17) of the vector is ignored, and the
following check is made.

BASE ADDER + SCPT <= old bound

I_carry is ignored.

A new base and bound are created as follows.

New base = old base - (BASE ADDER + SCPT)

I_carry is ignored

Bound fault occurs if a borrow
-is generated.

New bound = old bound - (BASE ADDER + SCPT)

8-292

I_carry is ignored

Bound fault occurs if a borrow
-is generated.

DZ5l-00

LDDn LDDn

e. v = llXXX Data Stack Shrink

When bits 29 and 30 of the first word in the vector are
11, the instruction performs the data stack shrink
operation. The second word in the vector is ignored.
DSDR, OSAR, and the SIZE and flag field of the first
word in the vector are used to generate the new segment
descriptor.

o The value in the SIZE field of the vector is checked
to determine whether the area between the location
currently specified by the OSAR and the value
specified by the OSDR bound is equal or greater than
the SIZE field. The lower three bits of the vector
SIZE field are set to 1 to indicate an even-word
boundary (i.e., it is rounded to a double-word
expression as the OSAR always specifies an even-word
boundary.) DSAR + SIZE (rounded-up) <= DSDR bound
is then checked. I f the left portion of this
expression exceeds the OSDR bound, or if carry
occurs as a result of the addition to the left, a
Bound fault is generated. In this case ORB, ARB,
and SEGIOB are not changed.

o I f this check is passed, the OSAR content is added
to the OSDR base and a new base is generated. If
carry occurs, a bound fault occurs and the register
content is not changed.

o The new base (OSAR + OSDR base) is then loaded into
the ORn base field and the vector SIZE (before
rounding) is loaded into the ORn bound field.

o The new flag field values are generated from the
vector flag field and the DSDR flag field following
the same method as that described for normal shrink
of standard segment descriptors.

o The content of the DSDR W and T fields are moved to
the ORn W and T fields.

o The corresponding ARn is set to zero.

o SEGIDB is set to be self-identifying (ORn), as with
normal shrink.

8-293 OZSl-00

LDDn LDDn

o The following value is loaded into DSAR.

New DSAR = DSAR + SIZE (rounded-up) + 1 (byte)

As wraparound is not permitted for the DSAR, a bound
faul t occurs if carry occurs with the above
addition.

3. SHR1 NK FOR EXTENDED SEGMENT DESCR1 PTORS

a. V = 10100 Normal Shrink with Type Change

The segment descriptor indicated by the S, D fields of
a vector is fetched in the same way as by the copy
function. I f the type T of the fetched segment
descriptor is not 12 or 14, an IPR fault occurs. For a
valid segment descriptor, the shrink operation is
performed as follows.

o The following check is made.
12 bits

BASE ADDER + SIZE <= bound (ll ••••••••• l)

I f the sum of the BASE ADDER and SIZE exceeds the
value obtained by extending the bound of the fetched
segment descriptor 12 "1" bits to the right, or if
the addition produces a carry from the most
significant bit, a bound fault occurs.

o After this check, a new base and bound are created.

New base = old base + BASE ADDER

New bound = SIZE

I_Bound fault occurs
is generated.

if carry

o A new flag field is created in the same way as for

V = OlXXX normal shrink.

o A new type T is set as follows.

If old T = 12, then new T = O.

If old T = 14, then new T = 2.

8-294 DZ5l-00

)

/

(' '\
--/

LDDn LDDn

o S~Dn and ARn are set in the same way as for normal
shrink.

b. v = 10101 Normal Shrink with No Type Change

The segment descriptor indicated by the S, D fields of
a vector is obtained in the same way as for the copy
function. An IPR fault occurs if the type T of the
fetched segment descriptor is not 12 or 14. For a
valid descriptor, the shrink operation is performed as
follows.

12 bits
BASE ADDER + (SIZE OO ••••••• O+base lower-order 12 bits)

12 bits
<= bound 11 •••••••• 1

where the base denotes the value of the base field of
the fetched segment descriptor.

First, the sum of the value obtained by extending the
SIZE 12 bits to the right and the low-order 12 bits of
the base is obtained. I f this sum plus the BASE ADDER
exceeds the value obtained by extending the bound of
the descriptor 12 bits to the right, or if a carry is
generated by the addition, a Bound fault occurs.

o After the check, a new base and bound are created.

New base = old base + BASE ADDER

New bound = SIZE

LBound fault occurs
is generated.

if carry

o SEG[Dn and ARn are set in the same way as for normal
shrink. -

8-295 DZ51-00

LDDn LDDn

c. V = 10110 Extended S~rink with Type Change

The segment descriptor indicated by the S, D fields of a
vector is obtained in the same way as for the copy
function. An 1PR fault occurs if the type T of the
fetched segment descriptor is not 12 or 14. For a valid
segment descriptor, the shrink operation is performed as
follows.

o The following checks are made on the BASE ADDER and
SIZE fields of the vector.

12 bits
(BASE ADDER + SCPT) + (SI ZE - SCPT) <= bound 1l. ..••• l

'_Bound fault occurs if '.
a borrow is generated.

Bound fault occurs if
-a carry is generated

_carry is ignored.

o After the check, a new base and bound are created.

New base = old base + (BASE AnDEER + SCPT)

'_carry is
ignored.

_Bound fault occurs if a carry
is generated.

New bound = S1 ZE - sePT

I_Bound fault occurs
is generated.

if a borrow

o A new flag field is created in the same way as for a
normal shrink (v = OlXXX).

o A new type is set as follows.

If old T = 12, then new T = O.

IF old T = 14, then new T = 2.

o SEGIDn and ARn are set in the same way as for a normal
shrink. -

8-296 DZ51-00

)
/'

LDDn LDDr;

d. v = 10111 Extended Shrink with No Type Change

The segment descriptor indicated by the S, D fields of a
vector is obtained as for the copy function. An IPR
fault occurs if the type T of the fetched segment
descriptor is not 12 or 14. For a valid descriptor the
shrink operation is performed as follows.

o The following check is made on the BASE ADDER and
SIZE fields of the vector.

(BASE ADDER + SCPT)

I __ carry is ignored.

12 bits
+ [(SIZE 00 •••••••• 0 + base low-order 12 bits)-SCPT]

Bound fault occurs iL I
a borrow is generated.

__ Bound fault occurs if a carry is generated.

12 bits
<= bound 11 •••••••• 1

I

First, the sum of the value obtained by extending
SIZE 12 bits to the right and the low-order 12 bits
of the base of the fetched segment descriptor is
obtained. The difference between this sum and SCPT
is obtained. The difference is added to the sum of
the BASE ADDER and SCPT.

second, this sum is compared to the value obtained by
extending the bound of the fetched descriptor 12 bits
to the right. This operation is illustrated as
follows.

8-297 DZ5l-00

LDDn

1 ___ B_AS_E_AD_D_ER ___ 3...1.110:0(SIZE

+ +

= = o 35 .:r-0 ________;3~5

BASE ADDER + SCPT I SIZE 00 ••• 0 + BASEl2b1

Alcarry is
ignored

\
\

\
\
\

\
\
\

1
o

\

(-)

SCPT

=
35

(SIZE 00 ••• 0 + BASE12b
-SCPT

4b 0

0000

\
\

I f borrow, Bound fault occu rs

\1
+

BASE ADDER + SCPT 31
=

(SIZE 00 ••• 0 + BASEl2b
- SCPT + (BASE ADDER -­
+ SCPT)

---->

If a carry is generated, Bound fault occurs.

LDDn

19 12b

BOUND 11 •• 1

BOUND
CHECK

o After the check, a new base and bound are created.

8-298 DZ51-00

LDDn

(
LDDn

New base = old base + (BASE ADDER + SCPT)

I_carry is
ignored.

I_BoUnd fault occurs if a carry
is generated.

12 bits
New bound = [{SIZE 11 •••••••• 1

- (old baselow-order 12 bits
+ BASE ADDERlow order 12 bits}
- SCPT]4-23

I_Bound fault occurs if a borrow
is generated.

The following illustrates locating the new bound.

8-299 DZ5l-00

LDDn

_____ ~1*2
(-)

SCPT

=

Ignored ___ > 1 O--:-_______ 2_3-"-:12:-4_~r
I . . \ I

I f borrow I _I. . --r...l gnored
Bound fault. •
occurs. 0 19

1 NEW BOUND I

*1: (Old base + BASE ADDR)low-order 12 bits
12 bits

LDDn

*2: SIZE 11 •••••••• 1 - (old base + BASE ADDER)low 12 bits
Flag fields are handled as a normal shrink.

o A new type T is the same as the original (old) type T.

o SEGIDn and ARn are set in the same way as for normal
shrink. -

8-300 DZ51-00

(
LDDn

(

(

LDDn

e. v = 10010 Normal Base Shrink with No Type Change

The segment descriptor indicated by the S, D fields-of a
vector is obtained in the same way as for the copy
function. An IPR fault occurs if the type T of the
fetched segment descriptor is not 0, 2, 12, -or 14.

The SIZE field of the vector is ignored in the
processing for a valid descriptor illustrated below.

o The following check is made on the BASE ADDER of the
vector.

16 bits
BASE ADDER <= 00 ••••••••• 0 bound

If the condition in the abgve check is not met, a
Bound fault occurs.

o After the check, a new base and bound are created as
follows.

New base = old base + BASE ADDER

'_Bound fault occurs
is generated.

16 bits
New bound = [00 ••••••••••• 0 bound - BASE ADDER]l6-35

o A new flag field is created the same as for a normal
shrink (v = OlXXX).

o A new type T is the same as the original (old) type
T.

o SEGJDn and ARn are set in the same way as for a
normal shrink.

For a segment descriptor with T = 12 or 14, the shrink
operation is performed as follows.

8-301 DZ51-00

LDDn

o The following check is made on BASE ADDER of the
vector.

LDOn

4 bits 12 bits
BASE ADDER+baselow-ord 12 bit~=OOOO bound 11 •••• 11

I_Bound fault occurs if a
carry is generated.

where the low-order 12 bits of base are the low-order
12-bits of the base field of the fetched segment
descriptor.

If the above condition is not met, a Bound fault occurs.

o After the check, a new base and bound are created as
follows.

New base = old base + BASE ADDER

1 __ Bound fault occurs
generated.

4 bits 12 bits
New bound = [(0000 old bound 11 ••••••• 1

if a carry is

- old base low-order 12 bits)
- BASE ADDER]4-23

o A new flag field is created in the same way as for a
normal shrink (v = OlXXX).

o The new type T is the same as the original (old) type
T.

o SEGIDn and ARn are set in the same way as for the
normal shrink.

f. v = 10011 Extended Base Shrink with No Type Change

The segment descriptor indicated by the S, D fields of a
vector is located in the same way as for the copy
function. An IPR fault occurs if the type T of the
fetched descriptor is not 0, 2, 12, or 14.

8-302 DZ51-00

/" '~

I

LDDn LDDn

The SIZE field of the vector is ignored in the processing
described below.

For a segment descriptor with T = 0 or 2, the shrink
operation is performed as follows.

o The following check is made on the BASE ADDER and the
SCPT of the vector.

16 bits
BASE ADDER + SCPT<= 00 •••••••••• 0 bound

I_carry is ignored.

If these conditions are not met, a Bound fault occurs.

o After the check, a new base and bound are created as
follows.

New base = old base + (BASE ADDER + sePT)

I_carry is ignored.

Bound fault occurs if a carry
-is generated.

16 bits
New bound = 00 •••••••••• 0 bound - (BASE ADDER +
SCPT)l6-35

carry is ignored._1

A new flag field is created in the same way as for a
normal shrink (v = OlXXX).

The new type T is the same as the original (old) type
T.

SEGIDn and ARn are set in the same way as for normal
shrink.

For a segment descriptor with T = 12 or 14, the shrink
operation is performed as follows.

o The following check is made on the BASE ADDER and
SUBSCRI PT (SCPT) of the vector.

8-303 DZ51-00

LDDn LDDn

(BASE ADDER + SCPT) + base low-order 12 bits

I_Bound fault occurs if a carry
is generated.

_Carry is ignored.

4 bits 12 bits
<= 0000 bound 11 •••••••• 1 * (Referred to by NOTE
below.)

Where the base low-order 12 bits are the low-order 12
bits of the base field of the fetched segment
descriptor. If this condition is not met, a bound
fault occurs.

o After the check, a new base and bound are created as
follows.

New base = old base + (BASE ADDER + SCPT)

I_carry is ignored.

Bound fault occurs if a carry
-is generated.

4 bits 12 bits
New bound = [(0000 old bound 11 •••••••• 1

old base low-order 12 bits)
- (BASE ADDER + SCPT)] 4-23

I_carry is ignored.

Bound fault occurs if a borrow is
-generated.

NOTE: This Bound fault will never occur
if the starred (*) check condition
above has been met.

o A new flag field is created in the same way as for a
normal shrink (v = OlXXX).

o A new type T is the same as the original type T.

o SEGIDn and ARn are set in the same way as for a normal
shrink. -

8-304 DZ51-00

LODn LODn

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, IR, RI, IT, CI, SC, SCR (See NOTES for explanation.)

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTES: 1. Illegal Procedure (IPR) Faults can be caused by any of the
following conditions:

a. Modifications RI, IR, IT, DU, and DL when the DRm
segment descriptor type T = 1 or 3

b. Modifications DU, DL, CI, SC, SCR when the DRm segment
descriptor type T = 0, 2, 4, 6, 12, or 14

c. Illegal repeats

d. Vector fields S = 0 and D = 1760 (octal)

e. If vector bits 29 and 30 are 01 or 10 and descriptor
obtained is type T=5 or 7-15

f. If a carry occurs when a T = 4 or 6 super descriptor is
loaded into DRn, and it is converted by hardware to a
standard segment descriptor. (Refer to description of
"Super Descriptors" in Section 3.>

g. When instruction word bit 29 = 1 and DRm segment
descriptor is type T = 5 or 7-11, 13, 15

2. Command Faults can be caused by any of the following
conditions:

a. If the CPU is not in Privileged Master mode, when S = 0
and D = 1761, 1763, or 1764 (octal)

b. If the CPU is not in Privileged Master mode, when bits
29 and 30 of the first word in the vector do not
specify data stack shrink (v = llXXX) and the vector S
and D fields specify DSDR .

NOTE: When CPU is in the Privileged Master mode, the
segment descriptor from DSDR is used to execute
the specified operation. In this instance, DSDR
and DSAR remain unchanged.

8-305 DZ51-00

LDDn

3.

4.

LDDn

Bound Faults can be caused by any of the following
conditions:

a. When S = 0 and D > PSR bound

b. When S = 2 and D > ASR bound

c. When S = 1 or 3 and D > l.SR bound

d. When BASE ADDER + vector SIZE> DRn bound with shrink
operation for standard descriptors

e. When DRn location + vector BASE ADDER + vector SIZE >
DRn bound with shrink operation for super descriptors

f. When an illegal carry or borrow occurs while a base and
bound are generated, while a size check is performed,
or while a new DSAR is generated

g. In addition, general fault conditions also apply when
segment descriptors and page tables are accessed.
These conditions are noted in the individual vector
procedures descriptions.

Security Fault, Class 1 can be caused by the following
condition:

a. If the housekeeping bit of the page which includes the
selected descriptor is OFF when a descriptor is loaded
with the LDD instruction -

8-306 DZSl-OO

"r'-\
j

~

\

\,

LDDn

EXAMPLES:

(

(-- .

Direct Load:

1 8

LDDO

Copy:

1 8

LDDO

.
CRYDR7 CVEC

Normal Shrink:

1 8

LDDO

BUFFER BSS
BUFLEN EQU
BUFVEC VEC

16

0,,7

16

CPYDR7

.DR7

16

BUFVEC

320
*-BUFFER

LDDn

32

Load ORO from location zero
of descriptor segment
framed by DR7 1770 -> SEGIDO
zeros --> ARO

32

Copy DR7 into DRO 1777-->SEGIDO
zeros-->ARO

32

. I SR, BUFFER, BUFLEN , READ

8-307 DZ51-00

LDDR LDDR

LDDR Load Double Register to Register Pair 433 (1)

FORMAT:

o 0 0 1 1
7 B

Not Used I
CODI NG FORMAT: 1 B 16

LDDR Rl, ,R2

OPERATI NG MODES: Executes in ES mode only

SUMMARY: Rl, R2, = 0, 2, 4, 6, AQ

ILLEGAL ADDRESS

C(R2-pair) --> C(Rl-pair)

C (R2) unchanged

222 3 3
7 B 9 1 2

OP CODE III MHZ I

MODIFICATIONS: None. The address modification is not executed.

ILLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

I NDI CATORS: zero - If C(Rl-pair) = 0, then ON: otherwise, OFF

Negative - If C(Rl-pair)O = 1, then ON; otherwise, OFF

R2

3
5

NOTES: 1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to Register to Register Instructions in Section 7
for a description of the fields in the instruction word.

I

B-30B DZ51-00

',,-

/

(

LDDSA

LDDSA Load Data Stack Address Register

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master Mode

SUMMARY: Bits 0-16 of C(Y) -> C(DSAR)

ILLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: 'None affected

LDDSA

170 (1)

NOTES: 1. The DSAR is a 17-bit register that holds an even-word

EXAMPLE:

1

address.

2. An IPR fault occurs if illegal address modifications and
illegal repeats are executed.

3. If the processor is not in the Privileged Master mode, the
execution of this instruction causes a Command fault.

8

LDP
LDP
LDDSD
STZ
LDDSA

16

P,PSH,SD.PSH,DL
P,PSH,.CTYP,DL
PH.ADS"P.PSH
TEMP, ,P.DSR
TEMP, ,P.DSR

8-309 DZ51-00

LDDSD LDDSD

LDDSD Load Data Stack Descriptor Register 571 (1)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master Mode

SUMMARY: C(Y-pair) --> C(DSDR)

EXPLANATION: The double-word memory operand is fetched from even and odd
memory locations Y and Y+l. The operand must be in standard
descriptor format with a type field of T = O. The lower
three bits of the base of this segment descriptor must be
zero (i.e., the descriptor in the DSDR specifies the segment
beginning from the boundary of an even word). The flag bit
22 must be zero.

ILLEGAL ADDRESS

When these conditions are met, the obtained descriptor is
loaded into the DSDR. If one or more of the above conditions
are not met, an IPR fault occurs and the DSDR content remains
unchanged.

The lower three bits of the descriptor bound field should all
be ones to ensure that the area specified with the DSDR is a
multiple of word pairs. Hardware does not check these three
bits.

MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTES: 1. Any of the following conditions causes an IPR fault (the
DSDR remains unchanged):

a. Illegal address modification

b. Illegal repeats

c. If type field T is not equal to O.

d. If the base is not modulo 2 words.

e. If the descriptor flag bit 22 is not = O.

8-310 DZ5l-00

LDDSD LDDSD
(-

2. If the processor is Master or Slave mode, the execution of
this instruction causes a Command fault.

EXAMPLE:

1 8 16 32

EKP LDP PO,SD.PSH,DL
LDD PO ,PH. USL, ,PO
LDP PO , • crY? , DL
ADLA UL.ISR+1, ,PO
STA S.ISR+1,QU,P4
LDD P1,S.ISR,QU,P3 P1 = sub-dispatch I SR
LDAS S.APR, ,P4 load special registers
LDPS S.APR, ,P4
LDDSD S.DSR, ,P4
LDDSA SBDH
LDSS .KLSDS,PN*,P.KL load SSR for sub-disp by processor number

STX6 .KLPRG,7,P.KL set processor flags for sub-disp
SXL3 .KLPRG,7,P.KL
LDD P2,S.ENT,QU,P3 P2 = entry descriptor to climb with
LCQ =0204020,DL

(ANSQ .QFST,3,P6 clear fault status bits

(

8-311 DZ51-00

WE WE

WE Load Exponent Register 411 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(Y)0-7 -> C(E); C(Y) unchanged

I LLEGAL ADDRESS
MODI FI CATl ONS: CI, SC, SCR

I LLEGAL REPEATS: None

I NDI CATORS:

NOTE:

Zero - setOFF

Negative - setOFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-312 DZ5l-00

(

(

LDEAn LDEAn

Load Extended Address n 61n (1)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

I LLEGAL ADDRESS
MODI FI CATIONS:

ILLEGAL REPEATS:

I NDI CA'TORS :

NOTES:

C(Y) --> location field of Descriptor Register (DR!!)

DU, DL, CI, SC, SCR

RPT, RPD, RPL

None affected

1. This set of eight instructions enables the loading of the
location field of a descriptor register (DRn) from memory
address Y. The DR!! must contain a super descriptor (type
field T must be 4 or 6): otherwise, an IPR fault occurs.

2. If T = 4 or 6, if a carry occurs when creating the base (DRn
base+location field) or, if a borrow occurs when creating the
bound (DRn bound-location field), an IPR fault occurs.

3. Any of the following conditions causes an IPR fault:

a. Illegal address modifications·

b. Illegal repeats

c. If descriptor type field T of DRn is not 4 or 6

8-313 DZ5l-00

EXAMPLE:

1 8

MSCN7 NULL
EAX2
CMPX2
TZE
LDA
ANA
AOS
CMPA
TZE
LDEA
LDA
ASA
TRA

16

1,2
4,DU
ESCN
• KLMSZ, , KLS
=0777777,DL
ADDRS
ADDRS
ESCN
RMS,SUPAD
1K*4,DL
SUPAD
MSCN2

32

is defective memory table full?
yes
no
isolate real memory size
advance page number
is this page the last?
yes
loading location field of super descriptor
adjust byte

next page scan

8-314 DZ51-00

(

(

LDI LDI

LDI Load I ndicator Register 634 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

C(Y)18-32 --> C(IR); C(Y) unchanged

The relation between bit positions of C(Y) and the indicators
is as follows:

Bit Position

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33-35

Indicator (or Mask)

Zero
Negative
carry
Overflow
Exponent overflow
Exponent underflow
Overflow mask
Tally runout
Parity error
Parity mask
Master mode
Truncation
Multiword instruction interrupt
Reserved for exponent underflow mask
Hexadecimal mode
Undefined

MODI FI CATIONS: CI, SC, SCR

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: Master mode (IR bit 28) not affected

All others: If corresponding bit in C(Y) = 1, then ON; otherwise,
OFF

8-315 DZ5l-00

LDI

NOTES: 1. The Tally Runout indicator reflects bit 25 of C(Y)
regardless of what address modification is performed on
the LDI instruction for tally operations.

2. Master Mode cannot be changed by the LO! instruct ion.

3. An Overflow Fault does not occur when the overflow
indicator, exponent overflow indicator, or exponent
underflow indicator is set ON via the LDI instruction,
even if the overflow mask indicator is OFF.

4. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is uSed.

5. Hexadecimal mode is controlled by bit 32 of the IR and
bit 33 of the mode register.

LDI

6. The parity mask, bit 27, masks SCU interface parity
errors and internal CPU parity errors in Master mode. In
Slave mode, only SCU interface parity errors are masked.
The test mode register control can be used to mask
internal parity errors.

8-316 DZ5l-00

(
LDO LDO

LDO Load Option Register 172 (1)

FORMAT: Single-word instruction format (see Figure 8-1).

OPERATING MODES: Any. See Explanation below.

EXPLANATION:

I LLEGAL ADDRESS
MODI FI CATIONS:

I LLEGAL REPEATS:

INDICATORS:

NOTES:

When the CPU is in Privileged Master mode:

Data Stack Clear Flag (DSCF) is loaded from C(Y)18.
DSCF controls memory clear operation when data stack
shrink is executed with the CLIMB instruction.

o = do not clear
1 = clear

safe Store Bypass Flag (SSBF) is loaded from C(Y)19.
SSBF controls ICLIMB safe store bypass.

o = bypass safe store
1 = perform safe store

If the CPU is in Master or Slave mode, DSCF and SSBF are
unchanged.

CI, SC, SCR

RPT, RPD, RPL

None affected

1. Although this instruction is legal in all processor modes,
the setting of the two flag bits occurs only in Privileged
Master mode.

2. An IPR fault occurs if illegal address modification or
illegal repeats are executed.3l9

8-317 DZ5l-00

LOO LOO

EXAMPLE:

1 8 16 32

* LOAD SAFE STORE REGISTER AND OPTION REGISTER; Privileged Master

LOSS
LOO
TRA

SLVSS LOSS
LOO

cross
=0200000,DL
MSFRM
CPNOSS
=0400000,DL

mode only

SSBF ON

DSCF ON

8-318 DZ51-00

(
LDPn LDPn

Load Pointer Register n

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

EXPLANATION: This set of eight instructions is similar to the LODg
instruction with the copy option; however, no vector is
required and ARn may be loaded with a value other than all
zeros.

Processing for these instructions differs between NS and ES
modes.

NS Mode

If DU or DL modifications are not used

C(Y)0-23 --> C(ARn)

C(descriptor specified by S, D) --> C(DRn)

C(Y)24-35 interpreted as S,D field

If DU modification is used

YO-17 --> C(ARn)0-17

00 ••• 0 --> C(ARn)18-23

or the DRn type field
is changed.

00 ••• 0 interpreted as S,D field

If DL modification is used

00 ••• 0 --> C(ARn)0-17

YO-5 --> C(ARn)18-23

Y6-l7 interpreted as S,D field

8-319 DZ51-00

LDPn LDPn

ES Mode

If DU or DL modifications are not used

C(Y)0-35 --> C(ARn)

C(descriptor specified by S, D) --> C{DRn)
or the DRn type field
is changed.

C{Y+l)O-ll interpreted as S,D field

C(Y+l)12-35 ignored

If DU modification is used

Y16-33 --> C{ARn)0-17

00 ••• 0 --> C{ARn)18-35

00 ••• 0 interpreted as S,D field

If DL modification is used

YO-2l --> .C{AR)14-35

00 ••• 0 --> C(ARn)0-13

Y22-33 interpreted as Sand D

In both the NS and ES modes, interpretation of the S and D
fields and the corresponding operation is the same as that
for the LDDn instruction vector Sand D fields specified by
the copy function. The descriptor is loaded into DRn.
(When S = 0 and D = 1761, the type in DRn is changed; the
value described with the LDDn instruction copy function is
loaded into SEGIDn.)

The Sand D fields of the pointer locate the descriptor to be
loaded into DRn as follows:

8-320 DZ51-00

LDPn

(

(..

LDPn

When S = 0:

For D = 0000 through 1757 (octal) and D <= PSR bound, the
descriptor is loaded from the ~\Tameter segment and D is used
as an index to the desired descriptor. The value in D is the
number of the descriptor to be loaded and can be treated as a
modulo 8 index; that is, D can be converted to a byte address
by appending three zeros as the three least significant bits. -

For D = 1760 through 1777 (octal), the descriptors referenced
by S, D are contained in selected registers and copied to
DRg.

D = 1760
D = 1761
D = 1762
D = 1763
D = 1764
D = 1765
D = 1766
D = 1767
D = 1770
D = 1771
D = 1772
D = 1773
D = 1774
D = 1775
D = 1776
D = 1777

Undefined, IPR fault
Change Descriptor Type Field in DRn
Instruction Segment Register (ISR)
Data Stack Descriptor Register (DSDR)
safe Store Register (SSR)
Linkage Segment Register (LSR)
Argument Stack Register (ASR)
Parameter Segment Register (PSR)
DRO, Descriptor Register 0
DR1, Descriptor Register 1
DR2, Descriptor Register 2
DR3, Descriptor Register 3
DR4, Descriptor Register 4
DRS, Descriptor Register 5
DR6, Descriptor Register 6
DR7, Descriptor Register 7

NOTE: when D = 1761 (octal) and the processor is in
Privileged Master mode, if the descriptor contained
in DRg is type 1 or 3, the type is changed to 0 or
2, respectively; however, if the descriptor is not
type 1 or 3, no change is made and no fault occurs.

When S = 2:

The Dg descriptor of the current argument segment is
selected. A relative byte offset is formed by extending the
D field by 3 zeros.

8-321 DZ51-00

LDPn LDPn

When S = 1 or 3:

The Dn descriptor of the current linkage segment is selected.
A relative byte offset is formed by extending the D field by
3 zeros.

For all values of S, the loading of DRg affects the nth
address register (ARn) and the nth segment identity register
(S~Dn) as follows:

a. ARn is set to zero.

b. If DRn was loaded from another DR or the instruction
segment register (lSR), the associated segment identity
content is transferred to S~Dn; otherwise, s~Dn is set
to the S and D value contained in the poin~er.

c. If an IPR or Bound fault occurs, DRg, ARn, and SEGIDn are
not changed.

The segment descriptor (SD) compare funtionality increases
the averrage speed of this instruction in both NS and ES
modes. A comparison is made between the SD number of the
instruction and the SD number in the SEGIDn register. If a
match occurs, the memory access for the descriptor and the \, /
descriptor register load is bypassed, because the match
indicates that the descriptor register is already correctly
loaded. The address register level load is independent of a
match.

The compare is not done if SD - 00,1760 to 00,1777.

A compare flag is provided for each descriptor register. All
flags are set OFF, disallowing compares by instructions which
can store descriptors, change characteristics of virtual
spac, or change mode to slave. No provision is made for
broadcasting this action to other processors within these
instructions.

8-322 DZ5l-00

(

(-

LDPn

I LLEGAL ADDRESS
MODI FI CATIONS:

ILLEGAL REPEATS:

I NDI CATORS:

NOTES:

The instructions which set these flags off follow.

ICLIMB
LTRAS
LTRAD
OCLIMB
LDAS
LDPS
LDWS
LPDBR
PAS
STDn if DRm type = 1,3
RET
TSS

Flag n is set ON by execution of LDPn.

In addition, the instruction, SPCF, turns the flags OFF.

LDPn

The compare function is enabled or disabled under control of
the CPU mode registers bits 24 and 25. Bit 24 enables
compares in Slave mode: bit 25 enables compare in Master and
Privileged Master modes. (Two controls are provided to allow
the GODS 8 software flexibility in removing code which would
cause erroneous SD number matches.)

CI, SC, SCR

RPT, RPD, RPL

None affected

1. An IPR fault occurs if bit 29=1 and the operand segment is
not type T = 0, 2, 4, or 6.

2. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

3. A Command fault occurs as with the LDDn instruction copy
function.

4. Other faults occur as with the LDDn copy function.

8-323 DZ51-00

LDPn

EXAMPLE:

1 8

'l'PUTEX SZN
TZE
LOP6

SAR6
LDP6
LOA
ANA
CMPA
TZE

TRAPOK LOP6
*

TRA

16

TRAPTR
TRAPOK
TRAPTR

TRAPCT
TRAPCT
0, ,P6
TRAPMK
TRAPVL
GOTCHA
SD.SSA,DL

0,4

32

test for trap in use
no trap enabled

LOPn

trapping -- get location (ensuring that
address register has offset and
descriptor is type 0) of cell to be
monitored in AR via P6: mask it for
desired pattern, and compare it with bad
value

trap has sprung
reload P.SSA (here if no/OK trap)
TRA monitor if monitor active
exit

8-324 DZ51-00

(

(

LDPR LDPR

LDPR Load Positive Register to Register 432 (1)

FORMAT:

000 1 1 22233 3

Not Used OP CODE

CODI NG FORMAT: 1 8 16

LDPR Rl, ,R2

OPERATING MODES: Executes only in ES mode.

SUMMARY: Rl, R2 : 0, 1, 2, 3, 4, 5, 6, 7, A, Q

IC(R2)1 --> C(Rl)

C (R2) unchanged

ILLEGAL ADDRESS
MODIFICATIONS: None. The address modification is not executed.

ILLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

I NDI CATORS:

NOTES:

Zero - If C(Rl) = 0, then ON; otherwise, OFF

Negative - Set to OFF

l. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to Register to Register Instructions in Section 7
for a description of the fields in the instruction word.

8-325 DZ51-00

LDPS LDPS

LDPS Load Parameter Segment Register 771 (l)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master mode

SUMMARY: C('!l-pair} --> C(PSR): C(Y-pair) unchanged

EXPLANATION: The descriptor is fetched from even/odd memory locations Y
and Y+l. The hardware performs the following checks on the
descriptor.

I LLEGAL ADDRESS

o Type field must have a value of T = 1.

o Base must be 0 modulo B bytes.

o If flag bit 27 = 1 (bound valid), bound must be 7 modulo 8
bytes.

If these conditions are met, the descriptor is loaded into
PSR. During PSR load, PSR bound field bits 0-6 are forced to
zero by the hardware rather than being loaded from the memory)
operand. Also, if flag bit 27 of the operand descriptor is
equal to zero, the entire bound field of the PSR is forced to
zero, independent of any value the operand descriptor bound
field may contain, and the bound check is bypassed.

This instruction is identical with LDAS, except that it loads
the parameter segment register (PSR) instead of the argument
stack register (ASR).

MODI FI CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

8-326 DZS1-00

LDPS

NOTES:

EXAMPLE:

1

(

LDPS

1. Any of the following conditions cause an IPR fault:

8

LDP

LDP
LDAS
LDPS

a. Illegal. address modifications

b. Illegal repeats

c. Descriptor type field T is not 1

d. If the base and bound limits of the operand descriptor
are not modulo 2 words (only when flag bit 27 = 1).

2. If the processor is in Master or Slave mode, the execution
of this instruction causes a Command fault.

16

P.SSR, .SSR,DL

P.SSR, .CTYP ,DL
.WASR, ,P.SSR
.WPSR, ,P.SSR

32

(Load descriptor of fault
frame in safe store stack)

(Change to type 0>
(Restore ASR from safe store)
(Restore PSR from safe store)

8-327 DZ5l-00

LDQ LDQ

LDQ Load Q-Register 236 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: C(Y) --> C(Q); C(Y) unchanged

I LLEGAL ADDRESS
MODI FI CATIONS: None

ILLEGAL REPEATS: None

I NDI CATORS: Zero - If C<Q) = 0, then ON; otherwise, OFF

Negative - If C(Q)O = 1, then ON; otherwise, OFF

8-328 DZ51-00

(

(

(

LDRR LDRR

LDRR I Load Register from Register

FORMAT:

o a a 1 1 22233 3

Not Used OP CODE

CODING FORMAT: 1 8 16

LDRR Rl,R2

OPERATING MODES: Executes in ES mode only.

SUMMARY: Rl, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

C(R2) --> C(Rl)

C (R2) unchanged

I LLEGAL ADDRESS
MODIFICATIONS: None. The address modification is not executed.

I LLEGAL REPEATS: RPT, RPD I RPL

ILLEGAL EXECUTES: Execution in NS mode

I NDI CATORS:

NOTES:

Zero - If C(Rl) = 0, .then ON; otherwise, OFF

Negative - If C(Rl)O = 1, then ON: otherwise, OFF

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to Register to Register Instructions in Section 7
for a description of the fields in the instruction word.

8-329 DZ5l-00

LOSS LOSS

LDSS Load safe Store Register 773 (1)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERA'l'1 NG MODES: Pr i vileged Master Mode

SUMMARY:

EXPLANATION:

C(Y)O-35 --> C(SSR)O-35

C(Y+l)O-32 --> C(SSR)36-68

000 --> C(SSR)69-7l

The operand is fetched from even and odd memory locations Y
and Y+l. The operand must be a standard descriptor with type
T = 1 or 3. The following checks are performed on the
descriptor:

a. For T = 1, flag bits 20, 21, 27, and 28 = 1 and flag bits
25 and 26 = O.

b. For T = 3, flag bits 20 and 21 = 1.

If these conditions are met, the descriptor is loaded into
the safe store register (SSR). The lower three bits of the
SSR base are forcibly set to zero. If one or more of the
above conditions is not satisfied, the instruction is
terminated and an IPR fault is generated. In this case, the
SSR remains unchanged.

Each successful execution of LOSS initializes the 2-bit stack
control register (SCR) as follows. (The SCR is associated
with the SSR and contains a code that denotes the size of the
last frame on the stack.)

If C(Y+l)34 35 = 00/01/11, then 11 --> C(SCR)
(size'of save store frame = 64 words)

If C(Y+1)34 35 = 10, then 10 --> C(SCR)
(size'of save store frame = 80 words)

(Refer to safe Store Stack in discussion of ClJMB
instruction.)

8-330 DZ5l-00

I
,7

(

(

LDSS

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, a, SC, SCR

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTES: 1. Any of the following conditions causes an IPR fault:

EXAMPLE:

1 8

a. Illegal address modification

b. Illegal repeats

c. If T is not equal to 1 nor 3.

d. If either the flag bit or the base checks fail.

2. If the processor is not in Master or Slave mode, the
execution of this instruction causes a Command fault.

16 32

FANY STZ .SVFLT, ,P.SSA
.ST2CS, ,P.SSA LDXO

TZE
STSS
LDAQ
ADLAQ
STAQ

. LDSS

LDP
LDXO
STXO
TRA

NEPRA Not type 2 critical
.STEMP+6"P.SSA
SSRXX
.STEMP+6"P.SSA backup safe store to prior frame
.STEMP+6"P.SSA
.STEMP+6"P.SSA
PO,.SSR,DL
=0377001,DU
.WREGS, ,PO
RETOUT

LDSS

8-331 DZ5l-00

LOT

LOT Load Timer Register

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master mode

SUMMARY: C(Y)0-26 -> C(TR); C(Y) unchanged

I LL!X;AL ADDRESS
MODI FI CATI ONS : Cl, SC, SCR

ILL!X;AL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

637 (0)

NOTES: 1. The use of this instruction in the Master or Slave mode
causes a Command fault.

2. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

LOT

8-332 DZ51-00

/\

(

(

(

LOWS LOWS

LDWS Load Working.Space Registers 772 (1)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master mode

SUMMARY: When EA17 (NS Mode) or EA33 (ES Mode) = 0

C(Y)O-8 --> C(WSRO)

C(Y)9-17 --> C(WSR1)

C(Y)18-26 --> C(WSR2)

C(Y)27-35 --> C(WSR3)

When EA17 (NS Mode) or EA33 (ES Mode) = 1

C(Y)O-8 --> C(WSR4)

C(Y)9-17 --> C(WSR5)

C(Y)18-26 --> C(WSR6)

C(Y)27-35 --> C(WSR7)

EXPLANATION: The contents of memory location Y replace the contents of
working space registers (WSRs) 0, 1, 2, and 3 or WSR 4, 5, 6,
and 7 based on the value of bit 17 (NS mode) or 33 (ES mode)
of the effective address.

ILLEGAL ADDRESS
MODI FI CATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

8-333 DZ51-00

LDWS

NOTES: 1. An IPR fault occurs if illegal address modification or
illegal repeats are used.

LDWS

2. If the processor is not in the Privileged Master mode, the
execution of this instruction causes a COmmand fault.

3. If the LDWS instruction is used to change the contents of
the WSR that is currently the WSR for the instruction
segment, then the LOWS must be followed immediately by a
TRA *+1 to ensure that the new contents of the WSR take
effect immediately.

EXAMPLE:

1 8

EVEN
WS03 VFD
WS47 VFD.

LDWS
LDWS

16 32

9/001, 9/001, 9/013, 9/27
9/45, 9/45, 9/63, 9/510

WS03
WS47

8-334

Load WSR 0-3 from EVEN word
Load WSR 4-7 from Odd word

DZ51-00

\.

\

(

(

LDXn LDXn

Load Index Register n from Upper 22n (O)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

ILLEGAL ADDRESS

NS Mode

For n = 0,1, ••• ,7 as determined by op code

C(Y}0-17 --> C(Xn): C(Y) unchanged

ES Mode

For n = 0,1, ••• ,7 as determined by op code

C(Y)0-35 --> C(GXn): C(Y) unchanged

MODI FI CATIONS: CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, or RPL of LDXO

I NDI CATORS:

NOTES:

Zero - If C(Xn/GXn) = 0, then ON: otherwise, OFF

Negative - If C(Xn/GXn)o = 1, then ON: otherwise, OFF

1. DL modification executes with all zeros for data in the NS
mode.

2. An Illegal Procedure fault occurs if illegal address
modification or illegal repeats are used.

8-335 DZSI-OO

LIMR LIMR

LIMR Load I nterrupt Mask Register 553 (0)

FORMAT: single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master mode

SUMMARY:

EXPLANATION:

C(A)O-7 --> Port interrupt level masks: 1 enables
interrrupts

C(A)8 --> All mask, conditionally as described in
Explanation below: 1 enables interrupts

C(A)9 --> Port connect mask: 1 enables connects

C(A)lO --> All mask load control

C(A), C(Y) --> Unchanged

The SCU is selected by the control SCU bit. (Refer to SCU
configuration register in Section 4.)

The operation of the All mask control is as follows:

C(A)lO

x

o

1

C(A)8

1

o

o

1 --> All mask

All mask is unchanged

o --> All mask

The effective address (y) is not used by the LIMR instruction.

Orily masks associated with the issuing port are loaded.

The all mask bit is a single. mask, associated with all ports.
All masks are set to enable interrupts and connects at
initialization.

Processor behavior on the next and all other instructions
following the execution of LIMR is consistent with the mask
setting indicated by the LIMR.

8-336 DZ51-00

(

LIMR LIMR

ILLEGAL ADDRESS
MODI FI CATIONS: DU, DL, C1, SC, SCR

ILLEGAL REPEATS: RPT, RPD, RPL

I NDI CATORS:

NOTES:

None affected

1. Prior to executing this instruction, the SCU must be
"selected" by using the LCPR instruction to set or reset
bi t 22 in the CPU mode register.

2. The use of this instruction in other than Privileged Master
mode causes an IPR fault.

3. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-337 DZ51-00

, -----~-~.-----.... ~ -- -.-.-----.-~------ .. --.. , ~--.. --- - -._-._.' ,_ ... ~--

LLR

LLR Long Left Rotate 777 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

EXPLANATION: Rotate C(AQ) left by the number of positions indicated by
bits 11-17 of Y (y modulo 128) (NS mode) or Y27-33 (ES
mode). Enter each bit leaving bit position 0 of AQ in bit
position 71 of AQ.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPL

INDICATORS:

NOTES:

Zero - If C(AQ) = 0, then ON: otherwise, OFF

Negative - If C(AQ)O = 1, then ON: otherwise, OFF

1. The rotate count comes from the value of Y. To
"right-rotate" n bits, use LLR 72-n.

2. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

LLR

8-338 DZ5l-00

\~

(

(

LLS LLS

LLS Long Left Shift 737 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: Shift C(AQ) left by the number of positions indicated by bits
11-17 of Y (y modulo 128) (NS mode) or Y27-33 (ES mode): fill
vacated positions with zeros.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, SCR

ILLEGAL REPEATS: RPL

I NDI CATORS:

NOTES:

Zero - If C(A} = 0, then ON: otherwise, OFF

Negative - If C(A)O = 1, then ON: otherwise, OFF

carry - If bit a of C(AQ) changes during the shift,
then ON: otherwise OFF.

1. The shift count in the instruction must be a decimal
number.

2. An Illegal Procedure fault occurs if illegal address
modifications or illegal repeats are used.

8-339 DZ51-00

LPDBR LPDBR

LPDBR Load Page Table Directory Base Register 171 (1»

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master mode

SUMMARY: C(Y)0-18 --> C(PDBR) (Mod 512)

EXPLANATION: The contents of bits 0-18 of Yare loaded into the 19-bit
PDBR. Associative memory (AM) is cleared, if it is enabled,
and C(Y) is unchanged.

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTES: 1. An IPR fault occurs when illegal address modifications or
illegal repeats are used.

2. If the processor is in Master or Slave mode, the execution
of this instruction causes a Command fault.

8-340 DZ5l-00

/

(

(

(

LPL LPL

LPL Load Pointers and Lengths 467 (1)

FORMAT: Single-word instruction format (see Figure 8-1)

COOl NG FORMAT: 1 8 16

LPL LOCSYM, R,AM

OPERATI NG MODES: Any

SUMMARY: C(Y}, C(Y+l}, ••• ,C(Y+5) --> C(P&L)

EXPLANATION:

ILLEGAL ADDRESS
MODI FI CATIONS:

I LLEGAL REPEATS:

I ND! CATORS:

NOTES:

C(Y+6), C(Y+7) --> C(LOR}

Pointer and length storage (P&L) is used by hardware to store
control information to continue execution after an
interruptible multiword instruction has been interrupted
during execution. The low operand register (LOR) is a
register used with quadruple-precision instructions.

The location of Y must be a multiple of 8. A fault does not
occur when the lower 3 bits of Yare not 000. Forpurposes
of execution, the hardware forces these bits to 000 (modulo
8) •

In the LPL instruction, the contents of the eight words
beginning at location Yare stored into scratch pad memory.
(Refer to SPL for a description of the contents of these
words.)

DU, DL, RI, IR, IT

RPT, RPD, RPL

None affected

1. An I llegal Procedure fault occurs if illegal address
modifications or illegal repeats are used. The contents
of the pointer and lengths storage is changed when the
illegal execution of RPT, RPD, RPL, XEC, XED, and indirect
modification IT occurs.

2. The pointer and length storage is used to recover from an
interrupt or a Missing Page fault. Because the content
depends upon hardware, the software must not change the
contents of the pointer and lengths storage.

8-341 DZ51-00

LREG !.REG

LREG Load Registers 073 (O)J
FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

NS Mode

Bits 0-17 of C(Y) --> C(XO)
Bits 18-35 of C(Y) --> C(Xl)
Bits 0-17 of C(Y+l) --> C(X2)
Bits 18-35 of C(Y+l) --> C(X3)
Bits 0-17 of C(Y+2) --> C(X4)
Bits 18-35 of C(Y+2) --> C(X5)
Bits 0-17 of C(Y+3) --> C(X6)
Bits 18-35 of C(Y+3) --> C(X7)
Bits 0-35 of C(Y+4) --> C{A)
Bits 0-35 of C(Y+5) --> C(Q)
Bits 0-7 of C(Y+6) --> C(E)

ES Mode

C(Y) --> C(XO)
C(Y+I) --> C(XI)
C(Y+2) --> C(X2)
C(Y+3) --> C(X3)
C(Y+4) --> C(X4}
C(Y+5) --> C(X5)
C(Y+6) --> C(X6)
C(Y+7) --> C(X7)
C(Y+8) --> C(A)
C{Y+9) --> C(Q)
Bits 0-7 of C(Y+IO) --> C(E)

Memory (location y) is accessed on a double-word boundary by
setting the lower three bits of the effective address Y to
zero, adding a base address to it, and truncating the
least-significant word address bit.

8-342 DZ51-00

(

(

LREG

I LLEGAL ADDRESS
MODIFICATIONS: DU, DL, Q, SC, SCR

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTE: An Illegal Procedure fault occurs if illegal address
modifications or illegal repeats are used.

8-343

LREG

DZ5l-00

LRL LRL

LRL Long Right Logical Shift 773 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

EXPLANATI ON:

ILLEGAL ADDRESS

NS Mode

Shift C(AQ) right by the number of positions indicated by
bits 11-17 of Y (y modulo 128): fill vacated positions with
zeros.

ES Mode

Shift C(AQ) right by the number of positions indicated by
bits 27-33 of Y (y modulo 128); fill vacated positions with
zeros.

MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPL

I NDI CATORS:

NOTES:

Zero - If C(AQ) = 0, then ON: otherwise, OFF

Negative - If C(AQ)O = 1, then ON; otherwise, OFF

1. The shift count in the instruction must be a decimal
number.

2. An Illegal Procedure fault occurs if illegal address
modifications or illegal repeats are used.

8-344 DZ51-00

(

(

(

LRMB LRMB

Load Reserve.Memory Base 712 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Privileged Master mode

SUMMARY: C(Y) --> C(RMBR)

EXPLANATION: This instruction places the contents of the effective address
into the Reserve Memory Base Register (RMBR). The RMBR is
located in the PATROL half of processor scratch pad memory at
location 73. Initialization firmware sets RMBR to zero.

I LLEGAL ADDRESS

GODS software sets the RMBR to zero when the processor is
released as required by the CAMP instruction. (Refer to RMBR
in Section 4.)

MODIFICATIONS: DU, DL, a, SC, SCR

ILLEGAL REPEATS: RPD, RPL, and RPT

INDICATORS:

NOTES:

None affected

1. An IPR fault occurs if execution is attempted in Master or
Slave mode.

2. An Illegal Procedure fault occurs if illegal address
modifications or illegal repeats are used.

8-345 DZ51-00

LRS LRS

~~ __ ~ __ ~ ____ Lo __ n_g_R_i_9_h_t_S_h_i_ft ____ ~ __________________ ~ __ 7_3_3 __ (0_> __ •

FORMAT: . Single-word instruction format (see Figure 8-1>

OPERATI NG MODES: Any

SUMMARY:

I LLEGAL ADDRESS

NS Mode

Shift C(AQ) right by the number of positions indicated by
bits 11-17 of Y (y modulo 128): fill vacated positions with
the content of bit 0 of C(AQ).

ES Mode

Shift C(AQ) right by the number of positions indicated by
bits 27-35 of Y (y modulo 128): fill vacated positions with
the content of bit 0 of (AQ).

MODIFICATIONS: DU, DL, CI, SC, SCR

I LLEGAL REPEATS: RPL

INDICATORS:

NOTES:

Zero - If C(AQ) = 0, then ON: otherwise, OFF

Negative - If C(AQ)O = 1, then ONi otherwise, OFF

1. The shift count in the instruction must be a decimal
number.

2. An Illegal Procedure fault occurs if illegal address
modifications or illegal repeats are used.

8-346 DZ51-00

(LKLn LXLn

Load Index Register g from Lower 72n (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY: NS Mode

For n = 0,1, ••• ,7 as determined by op code

C(Y)l8-35 --> C(Xg): C(Y) unchanged

ES Mode

For n = 0,1 •••• ,7 as determined by op code

C(Y)18-35 with sign extended --> C(GXg): C(Y) unchanged

Bit 18 of C(Y) is extended to bits 0-17 and loaded into GXn.

C ILLEGAL ADDRESS

(

MODIFICATIONS: CI, SC, SCR

I LLEGAL REPEATS: RPT, RPD, or RPL of LKLO·

I ND! CATORS:

NOTES:

Zero - If C(Xg/GXn} = 0, then ON: otherwise, OFF

Negative - If C(Xg/GXn}0 = 1, then ON: otherwise, OFF

1. DU modification executes with all zeros for data.

2. An Illegal Procedure fault occurs if illegal address
modification or an illegal repeat is used.

8-347 DZ5l-00

MLR

MLR

FORMAT:

a

FILL

a 0 a
a 2 3

AR#

a a a
023

AR#

a a
8 9

I T

CODI NG FORMAT:

1
a

I a

Move Alphanumeric Left to Right

1 1 1
1 7 8

I MF2 I

Y1

Yl

Y2

Y2

Op Code

100(1}

1 1 2 2 222
7 8 o 1 234

CN1 TAl 0

1122222
7 B 0 1 234

CN2 TA2 0

The MLR instruction is coded as follows:

1 B 16

(NFl), (MF2) ,FILL, T
LOCSYM,CN,N,AM
LOCSYM,CN,N,AM

2
8

I I I

N1

N2

100 (1)

NFl

3
2

3
2

R1

R2

3

3
5

3
5

MLR

(Refer to Section 7 under Mu1tiword Instructions for description
of Mu1tiword Modification Field.)

OPERATI NG MODES: Any

SUMMARY: C(string 1) --> C(string 2)

8-348 DZ51-00

\""

\----

MLR

EXPLANATION:

(

MLR

Starting at location yel, the alphanumeric characters of data
type TAl of string 1 replace, from left to right, the
alphanumeric characters of data typeTA2 of string 2 that
starts at location YC2. If TAl and TA2 differ, each
character has high-order truncation or zero-fill, as
appropriate.

If Ll is greater than L2, the least significant (Ll-L2)
characters are not moved and the Truncation indicator is
set. If Ll is less than L2, bits 0-8, 3-8, or 5-8 of the
FILL character (depending on TA2) are inserted as the least
significant (L2-Ll) characters. If Ll is less than L2, bit 0
of C(FILL) = 1, TAl = 01, and TA2 = 10 (6-4 move); the
hardware looks for a 6-bit overpunched sign. If a negative
overpunch sign is found, a negative sign (octal 15) is
inserted as the last FILL character. If a negative overpunch
sign is not found, a positive sign (octal 14) is inserted as
the last FI LL character.

L2 = 0 does not necessarily mean that the instruction
functions as a no-op, because the Truncation indicator may be
affected.

The contents of string 1 remain unchanged except in cases of
string overlap.

MFI and MF2 (Multiword Modification Fields) are 7-bit fields
specifying address modifications to be performed on the
operand descriptors. They are broken into four subfields
represented as (bitl, bit2, bit3, Index-register) in the
instruction. They may be coded as follows:

If bitl = 0

bitl = 1

If bit2 == 0

bit2 = 1

No address register is used

The address register is defined in the
operand descriptor address field (e.g.,
ADSC9 ,,, AR)

Operand length is specified in the N
field of the operand descriptor (e.g.,
ADSC6 , ,24,)

Operand length is contained in the
register specified by the code in the N
field of the operand descriptor (e.g.,
ADSC4 , ,X4,)

8-349 DZ5l-00

MLR MLR

If bit3 = 0 The operand descriptor follows the
instruction word in its memory location.

bit3 = 1

Index-register

The operand descriptor location
following the instruction in memory
points to the operand descriptor.

The address modification register is
defined as 0, 1, 2, 3, 4, 5, 6, 7, AU,
QU, A, or Q.

See "Multiword Modification Field" and "Alphanumeric Operand
Descriptors" in Section 5, and "Alphanumeric Instructions"
under "Multiword Instructions" in Section 7 for additional
information.

For speed, the MLR and MRL instructions operate 6n four
double-words at a time. This mode of operation does not
cause a problem when moving between either nonoverlapped
strings or between any normal combination of any length
overlapped strings. (In the latter case, software must
choose between MLR and MRL to ensure that the overlapped
sending characters are moved before they are moved into
because they are also receiving characters.) This mode of
operation can cause a problem when MLR or MRL is used to
replicate a pattern across a string.

For example, one procedure used to replicate a pattern of K
characters across a string of L characters is to

o store the K characters into character positions 1 through
K of the string

o move" a string of length L - K and starting position 1 to
the same length string starting at position K + 1. In
this way, the last L - K sending characters are created
"on the fly".

The mode of operating on four double-words at a time does not
allow this creation "on the fly" for K less than four
double-words of characters (when K starts on a word boundary
or is less than eight double-words of characters and does not
start on a word boundary).

8-350 DZ5l-00

(

(

MLR MLR

To replicate a pattern between two characters and four
double-words of characters, additional instructions must be
used to initialize the first four double-words -of the string
of L characters. To replicate a I-character pattern (most
common application), a simple move with fill from a
zero-length string can be used. (See examples below.)

ILLEGAL ADDRFSS
MODIFICATIONS: DU, DL for MFI and NF2

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: Truncation - If Ll is > L2, then ON; otherwise, OFF

NOTE: An Illegal Procedure fault occurs if DU or DL modification is
used for NFl or MF2 or if illegal repeats are used. A
Truncation fault occurs if the Truncation indicator is set
and the truncation fault enable (T) bit is a 1. A fault does
not occur even when L2 = 0. L2 = ° does not mean NOP; the
truncation indicator may be affected.

EXAMPLES:

1

FLDI
FLD2

FLOI
FLD2

1

8

MLR
ADSC6
ADSC6
USE
BCI
BSS
USE

MLR
ADSC6
ADSC4
USE

BCl
BSS
USE

8

MLR
ADSC9
ADSC9

16 32

,,20 move with blank fill
FLDl, ,12 sending descriptor
FLD2,4,l4 receiving descriptor
CONST. memory contents
2, ABCDEFGHI JKL
3 xxxxABCDEFGHIJ~ (Result)

, ,400 move with sign captured
FLDl,3,9 sending descriptor
FLD2,6,lO receiving descriptor
CONST.

2,~l2345678R
2 xxxxxxl23456789- (Result)

16 32

(1,O,O,),(",QU) move 24 words from P.IOQ to A+QU bytes.
0,0,24,P.IOQ
A, ,24

8-351 DZ51-00

MME MME

NNE Master Mode Entry Fault 001 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERA'l'I NG MODES: Any

EXPLANATION: This instruction generates a MNE fault which causes the
processor to switch to Privileged Master mode and to execute
an Inward CLIMB using the entry descriptor from the word pair
in memory locations 32 and 33 (octal).

If the safe store bypass flag in the option register = 1, a
safe store frame is generated. The size of this safestore
frame is determined by the type of the entry descriptor. A
code of 00010 in bits 12-16 of word 5 in the safe store frame
indicates the occurrence of the MME fault.

The wired-in CLIMB instruction functions as though the second
word of the CLIMB instruction had the following
characteristics:

E = 0
C18
C19

C22-23
S, D

No parameters
Do not load XO
No effect. Turn Master mode indicator
ON.
= 0 Inward CLI MB
No effect

The entry descriptor specifies a descriptor to be obtained
from the linkage segment for loading into the instruction
segment register (ISR). The entry descriptor also specifies
the value to be loaded into the instruction counter (ID).

The processor is placed in Privileged Master mode for the
execution of the wired-in CLIMB. Upon completion of the
CLI MB I the processor remains in Privileged Master mode if
flag bit 26 of the new ISR = 1 (privileged); otherwise, the
processor changes to Master mode.

8-352 DZSl-OO

(

MME MNE

I LLEGAL ADDRESS
MODIFICATIONS: Not executed. CI, SC, SCR generate an illegal condition that

causes the history registers to be locked if mode register
bit 31 = 1. No IPR fault occurs because the MME fault has
higher priority.

I LLEGAL REPEATS: RPT I RPD I RPL

I NDI CATeRS: Master mode - ON

NOTE: An IPR fault occurs if an illegal repeat is used.

8-353 DZ51-00

MP2D MP2D

MP2D Multiply Using Two Decimal Operands 206 (l)

FORMAT:

0 0 001 1 1 1 Op Code 222 3
0 1 890 1 7 8 789

Iploo--+H MF2 I 206(1) II I MFl

5

I
0 0
0 2

AR#

o 0
o 2

AR#

CODING FORMAT:

Yl

Yl

Y2

Y2

1 1 2 2 222
7 8 o 1 234

CNl TNl Sl

1 1 2 2 222
7 8 0 1 234

CN2 TN2 S2

The MP2D instruction is coded as follows:

1 8 16

MP2D (MF1),(MF2),RD,P,T
NDSCn LOCSYM,CN,N,S,SF,AM
NDSCn LOCSYM,CN,N,S,SF,AM

SFl

SF2

2 3
9 0

2 3
9 0

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

8-354

Nl

N2

3
5

3
5

DZ51-00

(

(

MP2D MP2D

OPERATI NG MODES: Any

SUMMARY: C(string 2) *·C(string 1) --> C(string 2)

EXPLANATION: Same as for MP3D except that the product is stored using YC2,
TN2, S2 and, if S2 indicates a scaled format, SF2.

I LLl!X7AL ADDRESS
MODIFICATIONS: DU, DL for NFl and MF2

I LLEGAL REPEATS: RPT L RPD, RPL

I NDI CATORS:

NOTES:

Zero - If result equals zero, then ON; otherwise, OFF

Negative - If result is negative, then ON; otherwise, OFF

Truncation - If, in the preparation of the final result,
one or more least significant digits (zero or
nonzero) are lost and rounding is not
specified, then ON. Otherwise (i.e., no least
significant digits lost or rounding is
specified), OFF

Exponent
Overflow

Exponent

- If exponent of floating-point result is > 127,
then ON; otherwise, unchanged

Underflow If exponent of floating-point result is <
-128, then ON; otherwise, unchanged

Overflow - If data is lost in most significant positions
then ON; otherwise, unchanged

1. A Truncation fault occurs if the Truncation indicator is
set and the truncation fault enable (T) bit is a 1.

2. An Illegal Procedure fault OCcurs if:

a. Illegal address modification is specified for NFl or
MF2, or illegal repeats are used.

b. Any character (least four bits) other than 0000 - 1001
is detected where digits are defined, or any character
(least four bits) other than 1010 - 1111 is detected
where the sign is defined by the numeric descriptor.

8-355 DZ51-00

MP2D

EXAMPLES:

1

FLDl
FLD2

*

FLDl
FLD2

*

MP2D

The values for the number of characters (Nl or N2) of
the data descriptors are not large enough to hold the
number of characters required for the specified sign
and/or exponent, plu~ at least one digit.

3. If an illegal digit or sign is detected, part or all of
the receive field may be changed before the IPR fault
occurs.

8 16 32

MP2D , ,1,1 rounding and plus sign options
NDSC9 FLDl,0,4,2,-3 multiplier operand descriptor
NDSC4 . FLD2, 0,8,1,-2 multiplicand operand descriptor
USE CONST. memory contents
EDEC 4A2+ o 02+
EDEC 8P+l234567 +1234567
USE +0002469 (Product)

indicators on? none

MP2D ,,1 rounding option
NDSC4 FLD1,0,8,3,-2 multiplier operand descriptor
NDSC4 FLD2,0,8 multiplicand operand descriptor
USE CONST. memory contents
EDEe 8P10 00000010
EDEC 8P+123.45 +12345-2
USE +12345-3 (Product)

' indicators on? none

8-356 DZ51-00

\"

"--

(

,:

(

MP2DX MP2DX

MP2DX Multiply Using Two Decimal Operands Extended 246 (1)

FORMAT:

0 o 0 o 0 I I I 1 Op Code 222 3
0 1 2 890 1 7 8 789 5

Icslasloo---------OINIRDI MF2
I

246(1) !xl MFI
I

0 0
0 2

AR#

o 0
o 2

AR#

CODING FORMAT:

Yl

Yl

Y2

Y2

1 8 16

I 1 2 2 222
7 8 o 1 234

CNI TNI SXl

1 1 2 2 222
7 8 0 1 234

CN2 TN2 SX2

MP2DX (MFl},(MF2),RD,CS,T,NS
NOSen LOCSYM,CN,N,SX,SF,AM
NDSCn LOCSYM, CN , N , SX, SF , AM

SFI

SF2

2 3
9 0

2 3
9 0

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

8-357

Nl

N2

3
5

3
5

DZ5l-00

MP2DX MP2DX

OPERATI NG MODES: Any

SUMMARY: C(string 2) * C(string 1) --> C(string 2)

EXPLANATION: same as for MP3DX except that the product is stored using
YC2, TN2, SX2 and, if SX2 indicates a scaled fonnat, SF2.

ILLEGAL ADDRESS
MODI FI CATIONS: DU, DL for NFl or NF2

ILLEGAL REPEATS: RPT, RPD, RPL

I NDI CATeRS: same as for MP2D.

NOTES: 1. Notes of MP3D apply.

2. See MVNX for information about coding of overpunched
signs.

8-358 DZ5l-00

',,- /

(
MP3D

MP3D

FORMAT:

0 0 0
0 1 2

Ip 10 I MF3

0 0
0 2

AR#

o 0
!(o 2

AR#

o 0
o 2

AR#

CODI NG FORMAT:

Multiply Using Three Decimal Operands

o 0 1 1 1 1 Op Code
890 1 7 8

HRDI MF2

Yl

Y1

Y2

Y2

Y3

Y3

I 226(1)

1 1 2 2 222
7 8 o 1 234

CN1 TNl Sl

1 1 2 2 222
7 8 0 1 234

CN2 TN2 S2

1 1 2 2 222
7 8 0 1 234

CN3 TN3 S3

The MP3D instruction is coded as follows:

1 8 16

MP3D (MFl), (MF2), (MF3),RD,P,T
NOSC!! LOCSYM , CN , N , S, SF , AM
NOSC!! LOCSYM,CN,N,S,SF,AM
NOse!! LOCSYM ,CN , N , S, SF , AM

8-359

222
789

H

SF1

SF2

SF3

2 3
9 0

2 3
9 0

2 3
9 0

MP3D

226 (1)

MFl

Nl

N2

N3

3
5

3
5

3
5

3
6

I

DZ51-:00

MP3D

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

MP3D

OPERATI NG MODES: Any

SUMMARY: C(string 2) * C(string 1) --> C(string 3)

EXPLANATION: The decimal number of ~ta type TN2, sign and decimal type
S2, and starting location YC2, is multiplied by the decimal
number of data type TN1, sign and decimal type Sl, and
starting location YC1. The product is stored starting in
location YC3 as a decimal number of data type TN3 and sign
and decimal type S3.

ILLEGAL ADDRESS

If S3 indicates a fixed-point format, the results are stored
using SF3, which may cause leading or trailing zeros (4 bits
- 0000, 9 bits - 000110000) to be supplied and/or
most-significant digit overflow or least-significant digit
truncation to occur •.

If S3 indicates a floating-point format, the result is
right-justified to preserve the most significant nonzero
digits even if this causes least significant truncation. In
this case, the most-significant-digit of the mantissa (except
for the sign digit) is set to a number digit other than O.

If P=l, positive signed 4-bit results are stored using octal
13 as the plus sign. If P=O, positive signed 4-bit results
are stored with octal 14 as the plus sign. If RD is a 1,
rounding takes place prior to storage.

Provided that string 1, string 2, and string 3 are not
overlapped, the contents of strings 1 and 2 remain unchanged.

MODIFICATIONS: DU, DL for MF1, MF2,· and MF3

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: Zero - If result equals zero, then ON; otherwise, OFF

Negative - If result is negative, then ON; otherwise, OFF

8-360 DZ51-00

MP3D

(

NOTES:

MP3D

Truncation - If, in the preparation of the final result,
one or more least-significant digits (zero or
nonzero) are lost and rounding is not
specified, then ON; otherwise (i.e., no
least-significant digits lost or rounding
specified), OFF

Exponent
Overflow - If exponent of floating-point result is > 127,

then ON; otherwise, unchanged

Exponent
Underflow - If exponent of floating-point result is <

-128, then ON; otherwise, unchanged

Overflow - If data is lost in most-significant positions,
then ON; otherwise, unchanged

1. A Truncation fault occurs if the Truncation indicator is
set and the truncation fault enable (T) bit is a 1.

2. An Illegal Procedure fault occurs if:

a. DU or DL modification is specified for NFl, MF2, or
MF3, or if illegal repeats are used.

b. Any character (least four bits) other than 0000 - 1001
is detected where digits are defined, or any character
(least four bits) other than 1010 - 1111 is detected
where the sign is defined by the numeric descriptor.

c. The values for the number of characters (Hl or H2) of
the data descriptors are not large enough to hold the
number of characters required for the specified sign
and/or exponent, plus at least one digit.

3. If an illegal digit or sign is detected, part or all of
the receive field may be changed before the IPR fault
occurs.

8-361 DZ51-00

MP3D MP3D

EXAMPLES:

1 8 16 32

MP3D , , ,1 with rounding option
NDSC4 FLDl,6,2,2 multiplier operand descriptor
NDSC4 FLD2,0,8,1,-3 multiplicand operand descriptor
NDSC9 FLD3,1,7,1,-2 product operand descriptor
USE CONST. memory contents

FLDl EDEC 8P5+ 0000005+
FLD2 EDEC 8P+1234567 +1234567
FLD3 BSS 2 +617284 (Product)

USE indicators on? none

MP3D , , , ,1
NDSC4 FLD1,0,2,3,-2 multiplier operand descriptor
NDSC4 FLD2,0,8,1,-3 multiplicand operand descriptor
NDSC4 FLD3,1,7 product operand descriptor
USE CONST. memory contents

FLDl EDEC 2PL25 25000000
FLD2 EDEC 8P-1234567 -1234567
FDL3 EDEC 8P+0 +-3086-1 (Product)

USE instruction fault? no
* indicators on? truncation and negative

\, .. / ..

8-362 DZ5l-00

MP3DX

MP3DX

FORMAT:

000

MF3

o 0
o 2

AR.#

o 0
o 2

AR.#

o 0
o 2

AR.#

CODI NG FORMAT:

Multiply Using Three Decimal Operands Extended

001 1 1 1 Op Code
890 1 7 8

HRDI

Yl

Yl

Y2

Y2

Y3

Y3

1

MF2

8 16

I 266(1)

1 1 2 2 222
7 8 o 1 234

CNl TNI SXl

1 1 2 2 222
7 8 0 1 234

CN2 TN2 SX2

1 1 2 2 222
7 8 0 1 234

CN3 TN3 SX3

SF1

SF2

SF3

MP3DX (MF1), (MF2), (MF3),RD,CS,T,NS
NDSCn LOCSYM,CN,N,SX,SF,AM
NDSCn LOCSYM,CN,N,SX,SF,AM
NDSCn LOCSYM,CN,N,SX,SF,AM

8-363

222
789

II I
2 3
9 0

2 3
9 0

2 3
9 0

MP3DX

266 (1)

MF1

Nl

N2

N3

3

3
5

3
5

3
5

DZ51-00

MP3DX

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

MP3DX

OPERATING MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

C(string 2} * C(string 1) --> C(string 3)

The decimal number of data type TN2, sign and decimal type
S2, and starting location YC2, is multiplied by the decimal
number of data type TNl, sign and decimal type Sl, and
starting location YC1. The product is stored starting in
location YC3 as a decimal number of data type TN3 and sign
and decimal type S3.

If SX3 indicates a fixed-point format, the results are stored
using SF3, which may cause leading or trailing zeros (4 bits
- 0000, 9 bits - 000110000) to be supplied and/or
most-significant-digit overflow or least-significant-digit
truncation to occur.

If SX3 indicates a floating-point format, the result is
right-justified to preserve the most-significant-nonzero
digits even if this causes least-significant truncation. In
this case, the most-significant digit of the mantissa (except
for the sign digit) is set to a number digit other than O.

The character set is defined by CS. Placement of over
punched sign in the output is controlled by NS. (Refer to
introductory pages of this section for definition of NS.) If
RD is 1, rounding takes place prior to storage.

Provided that string 1, string 2, and string 3 are not
overlapped, the contents of strings 1 and 2 remain unchanged.

MODIFICATIONS: DU, DL for MFl, MF2

ILLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: Same as for MP3D.

NOTES: 1. Notes of MP3D apply.

2. See MVNX for information about coding of overpunched
signs.

8-364 DZ5l-00

)

(

(

(

MPF MPF

MPF Multiply Fraction 401 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATING MODES: Any

SUMMARY:

EXPLANATION:

ILLEGAL ADDRESS

C(A) * C(Y) --> C(AQ), left justified: C(Y) unchanged

This instruction multiplies two 36-bit fractional factors
(including sign) to form a 7l-bit fractional product
(including sign). The product is stored in AQ,
left-justified. Bit 71 of C(AQ) is filled with a zero bit.

Overflow can occur only when A and Y both = -1 and the result
exceeds the range of the AQ-register.

o 0 3 o 0 3

factor * factor

C(A) C(Y)

yielding:

o 0 7 7

product

C(AQ)

MODI FI CATIONS: CI, SC, SCR

I LLEGAL REPEATS: None

INDICATORS:

NOTE:

zero - If C(AQ) = 0, .then ON; otherwise, OFF

Negative - If bit 0 of C(AQ) = 1, then ON; otherwise, OFF

Overflow - I f range of AQ is exceeded, then ON

An Illegal Procedure fault occurs if illegal address
modification is used.

8-365

-- -------- ----

DZ5l-00

MPRR MPRR

Multiply Register Pair by Register 530 (1)

FORMAT:

000 1 1 22233 3

Not Used OP CODE

CODING FORMAT: 1 8 16

MPRR Rl, ,R2

OPERATING MODES: Executes only in ES mode.

SUMMARY: for Rl-odd Rl: 1, 3, 5, 7, Q
for Rl-pair Rl: 0, 2, 4, 6, A

EXPLANATION

C(Rl-odd) x C(R2) --> C(Rl-pair)

C (R2) unchanged

A register pair is specified in Rl. The product of the
content of the odd-numbered register (Q if A,Q specified) and
that of R2 is taken and the result is loaded, right-justified
into the Rl-pair.

x

C{Rl-odd) C(R2)

0 71

S S Product

C(Rl-pau)

8-366 DZ51-00

MPRR MPRR

I LLEGAL ADDRESS
MODIFICATIONS: None. The address modification is not executed.

ILLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

INDICATORS:

NOTES:

Zero - If C(Rl-pair) = 0, then ON: otherwise, OFF

Negative - If C(Rl-pair)O = 1, then ON: otherwise, OFF

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to "Register to Register Instructions" in Section 7
for a description of the fields in the instruction word.

8-367 DZ5l-00

MPRS MPRS

MPRS Multiply Single Register by Register 531 (l)

FORMAT:

000 1 1 22233 3

Not Used OP CODE

CODING FORMAT: 1 8 16

MPRS R1, ,R2

OPERATING MODES: Executes in ES mode only

SUMMARY: R1, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q

C(R1) x C(R2) --> C(R1)

C(R2} unchanged

EXPLANATION The product of the content of Rl and R2 is taken. The
low-order 36 bits of the result are loaded into R1.

In;:~~iatel:1 34,:1
\, _________ _ --------1.

I
Truncated
(TR bits>

Resultant C(R1)

8-368 DZ51-00

(

(

MPRS

I LLEGAL ADDRESS

MPRS

The multiplication is performed on the two's complement data
to obtain 7l-bit two's complement data as an intermediate
result. The low-order 36 bits of this intermediate result
are loaded into Rl.

MODIFICATIONS: None. The address modification is not executed.

I LLEGAL REPEATS: RPT, RPD, RPL

ILLEGAL EXECUTES: Execution in NS mode

INDICATORS:

NOTES:

Zero - If the intermediate result is 0, then ON;
otherwise OFF

Negative - If the intermediate result)O is 1, then ON,
otherwise, OFF

1. An IPR fault occurs if illegal repeats are executed or if
the instruction is executed in NS mode.

2. Refer to "Register to Register Instructions" in Section 7
for a description of the fields in the instruction word.

3. No overflow check for the final result is performed;
therefore, the Zero and Negative indicators are set by the
state of the intermediate result.

8-369 DZ51-00

MPX MPX

MPX Multiply GXn

FORMAT: Single-word instruction format (see Figure 8-1)

CODING FORMAT: 1 8 16

MPX n,Y,R,AM

OPERATING MODES: Executes in ES mode only

SUMMARY: C(GXn} x C(Y) --> GXn

EXPLANATION: The product of the content of GXn and that of the one word at
memory location Y is taken. The low-order 36 bits of the
resul t is loaded into GXn •

Intermediate
result

C(Y)

\.----------~----------

The multiplication is performed on the two's complement data
to obtain 71-bit two's complement data as an intermediate
result. The low-order 36 bits of this intermediate result
are loaded into the GXn.

8-370 DZ5l-00

(
MPX MPX

ILLEGAL ADDRESS
MODI FI CATIONS: 0, SC, SCR

I LLEGAL REPEATS: None

ILLEGAL EXECUTES: If the instruction is executed in NS mode

I NDI CATORS:

NOTES:

Zero

Negative

If the intermediate result is 0, then ON;
otherwise OFF.

If the <intermediate result)O is 1, then ON;
otherwise OFF.

1. An IPR fault occurs if illegal address modification are
used or if the instruction is executed in NS mode.

2. No overflow check for the final result is performed,
therefore, the Zero and Negative indicators are set by the
state of the intermediate result.

8-371 DZ5l-00

MPY MPY

MPY Multiply Integer 402 (0)

FORMAT: Single-word instruction format (see Figure 8-1)

OPERATI NG MODES: Any

SUMMARY:

EXPLANATION:

I LLEGAL ADDRESS

C(Q) * C(Y) --> C(AQ}, right justified; C(Y) unchanged

This instruction multiplies two 36-bit integral factors
(including sign) to form a 7l-bit integral product (including
sign). The product is stored in AQ, right-justified. Bit 0
of C(AQ) is filled with an "extended sign" bit.

0 0 3 0 0 3
0 1 5 0 1 5

I 51 factor I * I 51 factor I
C(A) C(Y)

yielding:

0 0 0 7 7
0 1 2 0 1

I 51 51 product

C(AQ)
I 01

When (-2**35) * (-2**35) = +2**70, bit 1 of AQ is used to
represent the product rather than the sign and no overflow
occurs.

MODIFICATIONS: CI, SC, SCR

I LLEGAL REPEATS: None

INDICATORS:

NOTE:

Zero - If C(AQ) = 0, then ON; otherwise, OFF

Negative - If bit 0 of C(AQ) = 1, then ON; otherwise, OFF

An Illegal Procedure fault occurs if illegal address
modification is used.

8-372 DZ5l-00

/

MRL MRL

Move Alphanumeric Right to Left 101 (1)

FORMAT:

o

FILL

000
023

AR#

000
023

AR#

CODING FORMAT:

o 0 1 1
890 1

1+1 MF2

Yl

Yl

Y2

Y2

1 1 Op Code
7 8

1 101(1)

1 1 2 2 222
7 8 o 1 234

CNI TAl 0

1 1 2 2 222
7 8 0 1 234

CN2 TA2 0

The MRL instruction is coded as follows:

1 8

MRL
ADSCg
ADSCg

16

(NFl), (MF2),FILL,T
LOCSYN,CN,N,AM
LOCSYN, CN , N ,AM

2

Nl

N2

(Refer to Section 7 under Multiword Instructions for
description of Multiword Modification Field.)

OPERAT! NG NODES: Any

SUMMARY: C(string 1) --> C(string 2)

8-373

NFl

3
2

3
2

Rl

R2

3 _

3
5

3
5

DZ51-00

MRL MRL

EXPLANATION: This instruction is identical with MLR except that the
starting locations are YCI + (Ll-l) and YC2 + (L2-1) and the
movement is from right to left (from least-significant
character towar.d most-significant character). Consequently,
any truncation or fill is of the most-significant characters.

ILLEGAL ADDRESS
MODIFICATIONS: DU, DL for NFl and MF2

I LLEGAL REPEATS: RPT, RPD, RPL

I NDI CATORS:

NOTES:

EXAMPLE:

1

FLDl
FLD2

FLDl
FLD2

8

MRL

Truncation - If Ll is > L2, then ON; otherwise, OFF

1. An Illegal Procedure fault occurs if illegal address
modification or illegal repeats are used.

2. A Truncation fault occurs if the Truncation indicator is
set and the truncation fault enable (T) bit is a 1.

3. Refer to Note 3 of the MLR instruction for information on
string replication.

4. L2 = 0 does not necessarily mean that the instruction
functions is a no-op because the truncation indicator may·
be affected. ''-.._ j

16 32

,,20 move with blank fill
ADSC6 FLD1,,12 sending descriptor
ADSC6 FLD2,4,14 receiving descriptor
USE CONST. memory contents
BCI 2,ABCDEFGHIJKL
BSS 3 xxxxti~ABCDEFGHIJKL (Result)
USE

MRL , ,400 move with sign and fill
ADSC6 FLD1,3,9 sending descriptor
ADSC4 FLD2,4,12 receiving descriptor
USE CONST. memory contents
Bel 2,~~~12345678R
BSS 2 xxxx-00123456789 (Result)
USE

8-374 DZ51-00

MTM

(

MTM

FORMAT:

o

000

CODING FORMAT:

EXPLANATION:

-----.~~~.

MTM

Move to Memory 365 (1)

1 1 1 1 Op Code 222 3
3 4 7 8 789 5

I RECR I 365(1) !xl MFl I
1 1 2 2 2 2 3 3
7 8 o 1 2 3 3 5

Y I CN I lsi I L I
The MTM instruction is coded as follows:

1 8 16

MTM (MF1) ,RECR
SDSCn Y,CN,L, ,AM

This instruction moves one, two, three, or four 9-bit characters
into memory from the register specified in the RECR field of the
instruction. MTM is the inverse of MTR.

The move from the register into memory is done from right to left
beginning at YCN + (L-l). (L must be 0-4.)

The setting of the B field shown in the descriptor diagram above,
is determined by the contents of the n in SDSCn. (A 9 in the n
field sets B = 0; an 8 sets B = 1.) This setting determines the
functions of the move operation as follows.

o If B = 0 The 9-bit characters are fetched at once from the
specified register and moved into memory without
modification.

8-375 DZ5l-00

MTM

I LLEGAL ADDRESS

o If B = 1

MTM

8-bits (1 byte) are fetched from the specified
register and 0 is concatenated to the
most-significant bit position to form a 9-bit
character. Then the character is moved to
memory. Up to L characters can be moved.

An A, Q, or XO-X7, GXO-GX7 register may be specified in the
RECR field.

MODIFICATIONS: DU, DL specified in MF

I LLEGAL REPEATS: RPT, RPD, RPL

INDICATORS: None affected

NOTES: 1. Refer to "Character Move To/From Register Instructions" in
section 7 for a description of the fields in the operand
descriptor (SDSC).

2. An IPR fault occurs under the following conditions.

o If RECR specifies XO-X7 and L > 2. (XO-X7 can only
hold 2 bytes.)

o I f RECR spec if ies A or Q or GX-GX7 and L > 4.

o If illegal address modifications or illegal repeats are
used.

3. The RL bit of the MF field is ignored. The character
length must be specified in the L field of the operand
descriptor.

4. When L = 0, the MTMinstruction functions as a NOP.

5. Refer to Explanation under the MTR instruction for the
codes allowed in the RECR field.

8-376 DZSI-00

(
MTR MTR

Move to Register 361 (1)

FORMAT:

o 1 1 1 Op Code 222 3
4 7 8 7 8 9 . 5

I RECR I 361(1) II I NFl I 1
0

Hot Used

o 0

CODING FORMAT:

EXPLANATION:

1 1 2 2 2 2 3 3 3
7 8 012 3 2 3 5

Y I CN 1;181 0-----------------0 I L I
The MTR instruction is coded as follows:

1 8 16

MTR (MF1),RECR
SDSCn Y,CN,L,SE,AM

This instruction moves one, two, three, or four 9-bit characters
from the memory location beginning at YCN + (L-1) to a register
specified by the RECR field (bits 14-17) of the instruction
word. MTR is the inverse of MTM.

The moved characters are right-justified in the specified
register.

The setting of the B field shown in the descriptor diagram above,
is determined by the contents of the n in SDSCn. (SOSC9 sets B =
0: SDSC8 sets B = I.> The SE field is specified by the user.
These settings determine the character positioning functions of
the move operation as follows.

o If B = 0 The 9-bit characters from memory are moved to the
specified register without modification. If L is
less than the character size capacity of the
specified register, the vacant high-order
character positions of the register are filled as
follows.

8-377 DZ51-00

~~~ . -~---.--------- ----------- ------- --- --------



MTR 

SE = 0 

SE = 1 

o If B = 1 

SE = 0 

SE = 1 

MTR 

The remaining character positions are filled 
with O. 

Bi t 0 of the last character moved is regarded 
as a sign and the value of this bit is 
extended to fill the remaining character 
positions of the register. 

Bit 0 of each 9-bit character moved from 
memory is removed and the resulting 8-bit 
bytes are moved in a right-justified string 
into the specified register. The SE field 
affects the result of the move as follows. 

The remaining bit positions of the specified 
register are filled with O. 

Bit 0 of the last 8-bit byte moved to the 
specified register is extended to fill the 
remaining high-order bits of the register. 

An A, Q, or XO-X7 I GXO-GX7 register may be specified in the 
RECR field. The code of these registers is the same as for 
the register code specified in the REG portion of the MF 
field. An invalid specification results in an IPR fault. \.~j 

The RECR codes are displayed below. 

RECR Code 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

8-378 

Register 
(NS Mode) (BS Mode) 

IPR 
A 
Q 
IPR 
IPR 
IPR 
IPR 
IPR 
XO 
Xl 
X2 
X3 
X4 
X5 
X6 
X7 

IPR 
A 
Q 
IPR 
IPR 
IPR 
IPR 
IPR 
GXO 
GX1 
GX2 
GX3 
GX4 
GX5 
GX6 
GX7 

DZ51-00 



MTR 

I LLEX;AL ADDRESS 

The number of characters to be moved is specified in the L 
field of the operand descriptor. 

MTR 

MODIFICATIONS: DU, DL specified in MF 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTES: 

Zero - ON if C(register) = 0; otherwise, OFF. 

Negative - ON if bit ° of C(register) = 1; otherwise, 
OFF. 

1. Refer to "Character Move To/From Register Instructions" in 
Section 7 for a description of the fields in the operand 
descriptor (SOSC). 

2. An IPR fault occurs under the following conditions. 

o If RECR specifies XO-X7 and L > 2. (XO-X7 can only 
hold 2 bytes.) 

o If RECR specifies A or Q or GX-GX7 and L > 4. 

'0 If illegal address modifications or illegal repeats are 
used. 

2. The RL bit of the MF field is ignored. The character 
length must be specified in the L field of the operand 
descriptor. 

3. If L = 0, the contents of the receiving register is set to 
0, the Zero indicator to ON, and the Negative indicator to 
OFF. 

8-379 DZ51-00 



MVE 

MVE 

FORMAT: 

1 

a a a 
o 1 2 

00 1 
a a 0 
0 2 3 

AR# 

000 
023 

AR# 

000 
023 

AR# 

NF3 

CODING FORMAT: 

Move Alphanumeric Edited 020 (1) 

a 0 1 1 1 1 Op Code 222 
890 1 

1+1 
NF2 

Yl 

Yl 

Y2 

Y2 

Y3 

Y3 

7 8 

I 020(1) 

1 1 2 2 2 2 2 
7 8 o 1 234 

CNl TAl a 

1 1 2 2 2 2 2 
7 8 a 1 2 3 4 

CN2 TA2 a 

1 1 222 2 2 
7 8 a 1 2 3 4 

CN3 TA3 a 

789 

III NFl 

2 3 3 
9 a 2 

not 
interpreted 

not 

233 
9 a 2 

interpreted 

not 

233 
9 a 2 

interpreted 

Nl 

Rl 

N2 

R2 

N3 

R3 

The MVE instruction is coded as follows: 

1 8 16 

MVE (MF1),(MF2),(MF3) 
ADSCn LOCSYM,CN,N,AM 
ADSC9 LOCSYM,CN ,·N,AM 
ADSCn LOCSYM,CN,N,AM 

MVE 

3 
5 

3 
5 

3 
5 

3 
5 

I 

8-380 DZ5l-00 



( 
MVE 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

MVE 

OPERATI NG MODES: Any 

SUMMARY: string 2 control 
C(string 1) ----------> C(string 3) 

EXPLANATION: Starting at location YC1, the string of alphanumeric 
characters of data type TAl is moved to the string of 
alphanumeric characters of data type TA3 starting at location 
YC3. The move is under control of the micro operation 
sequence of length 12 and type TA2 = 00 that starts at 
location YC2. (Refer to "Micro Operations" in this section.) 

1 LLEGAL ADDRESS 

Maximum allowable length for Ll, L2, and L3 is 63: they are 
not checked for length greater than 63. Only the rightmost 
six bits (30-3S) are interpreted for length. Likewise, when 
a register is specified as containing the length, only the 
rightmost six bits of the register are interpreted. 

The operation stops when L3 is exhausted. 

The result is unpredictable when strings are overlapped. 

The contents of the alphanumeric character string that starts 
at YCI and the micro operation sequence that starts at YC2 
remain unchanged. 

On the processor, L3 = 0 is the normal termination: thus, at 
the start of the instruction, if L3 = 0 and there are no 
faults (see Note), no operation is performed and the 
instruction terminates normally, independently of whether Ll 
or L2 equals zero, because the hardware does not access these 
fields when L3 = O. 

MODIFICATIONS: DU, DL for MFl, MF2, and MF3 

1 LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

8-381 DZS1-OO 

-_._---_._._-.--- -.. ---~. ~~. 



MVE 

NOTE: 1. An Illegal Procedure fault occurs under the following 
conditions. 

o If illegal address modification is used 

o I f illegal repeats are used. 

o If an illegal mirco operation is executed. 

o If TA2 is not = O. 

MVE 

o If an attempt is made to access string 2 when L2 = O. 

2. Refer to "Micro Operations for Edit Instructions" in 
Section 7. 

8-382 DZ5l-00 

\ . '-- -~-./ 



<-
MVE MVE 

EXAMPLES: 

1 8 16 32 

MVE move alphanumeric edited 
ADSC6 FLDl,2,20 sending field operand descriptor 
ADSC9 FLD2,0,2S micro-op string operand descriptor 
ADSC6 FLD3,O,30 receiving field operand descriptor 
USE CONST. 

FLOI BCI 4, l2SKI THROGERWI LLI AMS25AB 
FLD2 MICROP (CHT,0),8H*,.-~~~,(SES,8),(INSB,1),(INSB,S) 

MICROP (MVC,lO),(INSB,2),(INSB,S),(MVC,7) 
KICROP (INSB,5),(MVC,1),(INSB,3),(INSB,S) 
KICROP ( I NSB , 4) , (I NSB , 5 ) , (I NSB , 0 ) , lH# , (MCV , 2 ) 

* 
* The following table explains the above micro-operation sequence 

* (CHT,O),8H*,.-~~~~ - Change Edit Table to these 8 Hollerith 
characters 

* (SES,8) - set End Suppression Flag ON 
* (INSB,l) - Insert Edit Table Entry #1 (*) 
* (INSB,S) - Insert Edit Table Entry #S (~) 
* (MVC,lO) - Move 10 characters from FLDl (SMITHROGER) 

( * (INSB,2) - Insert Edit Table Entry #2 (,) 
* (INSB,S) - Insert Edit Table Entry #S (~) 
* (MVC,7) - Move 7 characters from FLDI (WILLIAM) 
* (INSB,S) - Insert Edit Table Entry #S (~) 
* (MVC,l) - Move 1 character from FLDI (S) 
* (INSB,3) - Insert Edit Table Entry #3 (.) 
* (INSB,S) - Insert Edit Table Entry #S (~) 
* . (INSB,4) - Insert Edit Table Entry #4 (-) 
* (INSB,S) - Insert Edit Table Entry #S (b) 
* (INSB,O),lH# - Insert specified character (#) 
* (MVC,2) - Move 2 characters from FLDI (25) 
* memory contents in BCD characters 
FLD BSS 5 *~SMI THROGER, ~WI LLI AMbS .li-~2S 

USE 

MVE move alphanumeric edited 
ADSC9 FLDl,O,7 sending field operand descriptor 
ADSC9 FLD2,O,6 micro-op string operand descriptor 
ADSC9 FLD3+l,1,7 receiving field operand descriptor 
USE CONST. 

FLDl ASCII 2,ERROR-2 
FLD2 MICROP (LTE,1),LA#,(MVC,5),(INSM,1),(IGN,1),(MVC,1) 
* memory contents in ASCII characters 
FLD3 ASCII 3,CODE code~error#2 (Result) 

(-

8-383 DZ5l-OO 



MVE MVE 

1 8 16 32 

MVE 
ADSC9 RDWRK,2,6 
ADSC9 MOPSC,0,11 
ADSC9 A9,1,7 
MVT 
ADSC9 A9,1,7 
ADSC9 A,1,7 NOSC9 A,1,7,2 
ARG TABLE-12 
USE CONST. 

MOPSC MICROP (LTE,3),10000,(LTE,4),10100 
MICROP (MSES,6), (LTE,3),lA+, (LTE,4),lA-, (SES),(ENF) 
OCT 000000000053,000055000000 05X 

TABLE OCT 060061062063,064065066067 06X 
OCT 070071000000,000000000000 07X 
OCT 000000000000,000000000000 lOX 
OCT 000000061062,063064065066 11X 
OCT 067070071000,000000000000 12X 
OCT 000000000000,000000060000 13X 
OCT 000000000000,000000000000 14X 
OCT 000000061062,063064065066 15X 
OCT 067070071000,000000000000 16X 
OCT 000000000000,000000000000 17X 
USE "'~--~/ 

/ 

8-384 DZ51-00 



( 

MVN 

MVN Move Numeric' 300 (1) 

FORMAT: 

o 0 001 1 1 1 Op Code 222 
o 1 890 1 7 8 789 

Ipl 0----------00 ITIRDI MF2 I 300(1) H NFl 

0 o 0 
0 2 3 

AR# 

000 
023 

AR# 

CODI NG FORMAT: 

Y1 

Y1 

Y2 

Y2 

1 1 2 2 222 
7 8 o 1 234 

CN1 TN1 Sl 

1 1 2 2 222 
7 8 0 1 234 

CN2 TN2 S2 

SF1 

SF2 

The MVN instruction is coded as follows: 

1 8 

MVN 
NDSCn 
NOsen 

16 

(MFl),(MF2),RD,P,T 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 

2 
9 

2 
9 

(Refer to Section 7 under Mu1tiword Instructions for 
description of Mu1tiword Modification Field.) 

OPERATI NG MODES: Any 

SUMMARY: C(string 1) --> C(string 2) 

N1 

N2 

MVN 

3 

3 
5 

3 
5 

8-385 DZ51-00 



MVN 

EXPLANATION: 

I LLEGAL ADDRESS 

MVN 

starting at location YC1, the decimal number of data type TNl 
and sign and decimal type Sl is moved, properly scaled, to 
the decimal number of data type TN2 and sign and decimal type 
S2 that starts at location YC2. 

If S2 indicates a fixed-point format, the results are stored 
as L2 digits using scale factor SF2, and thereby may cause 
most-significant-digit overflow and/or 
least-significant-digit truncation. 

If P = 1, positive signed 4-bit results are stored using 
octal 13 as the plus sign. Rounding is legal for both 
fixed-point and floating-point formats. If P = 0, positive 
signed 4-bit results are stored using octal 14 as the plus 
sign. 

Provided that string 1 and string 2 are not overlapped, the 
contents of the decimal number that starts in location YCl 
remain unchanged. 

MODIFICATIONS: DU, DL for MFl and MF2 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: 

NOTES: 

Zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON: otherwise, OFF 

Truncation - If least significant truncation without 
rounding, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent of floating-point result is > 127, 

then ON; otherwise, unchanged 

Exponent 
Underflow - If exponent of floating-point result is < 

-128, then ON; otherwise, unchanged 

Overflow - If fixed point integer overflow, then ON: 
otherwise, unchanged. 

1. Truncation fault occurs if the truncation indicator is set 
and the truncation fault enable (T) bit is 1. 

8-386 DZ51-00 

j 



MVN MVN 
.-

( 
2. An Illegal Procedure fault occurs if: 

0 Illegal address modification is specified or illegal 
repeat is used. 

0 Any character (least four bits) other than 0000 - 1001 
is detected where digits are defined, or any character 
(least four bits) other than 1010 - 1111 is detected 
where the sign is defined by the numeric descriptor. 

0 The values for the number of characters (Nl or N2) of 
the data descriptors are not large enough to hold the 
number of characters required for the specified sign 
and/or exponent, plus at least one digit. 

3. Refer to Explanation of the MLR instruction for 
information on string replication. 

4. If an illegal digit or sign is detected, part or all of 
the receive field may be changed before the IPR fault 
occurs. 

EXAMPLES: 

I( 1 8 16 32 

MVN , ,1 with rounding option 
NDSC4 FLD1,0,8,2,-3 sending field operand descriptor 
NDSC4 FLD2,l,7,1,-2 receiving field operand descriptor 
USE CONST. memory contents 

FLDl IDEC 8P1234567+ 1 2 3 456 7 + 
FLD2 IDEe 8PO o + 1 2 3 457 (Result) 

USE no indicators set ON 

MVN , , , , 1 with truncation fault enable option 
NDSC9 FLDl,3,9,2,-2 sending field operand descriptor 
NDSC4 FLD2,0,8,O receiving field operand descriptor 
USE CONST. memory contents 

FLDl IDEC l2A12345678- o 0 0 1 2 3 4 567 8 -
FLD2 BSS 1 - 1 2 3 4 5 + 1 (Result) 

USE negative and truncation set ON 

8-387 DZSl-OO 



MVN MVN 

EXAMPLE WI TH ADDRESS MOD! FI CAT! ON: 

1 8 

EAX1 
EAX2 
EAX7 
EAX4 
AWDX 
NVN 
NDSC9 

ARG 
USE 

FLD1 EDEe 
FLD2 EDEe 

NDSC4 
USE 

16 32 

1 load character address into Xl 
2 load address modifier into X2 
7 load FLD1 length into X7 
FLD1 load FLDl address into X4 
0,4,4 put FLD1 address into AR4 
(1,1,,1),(,,1),1,1 - with rounding and plus sign options 
0"X7,2,-2,4 FLD1's operand descriptor (FLD1,1,7,2,-2) 

FLD2+1 
CONST. 
8Al23456+ 
8PO 
FLD2,2,6,3,-2 

pointer to indirect operand descriptor 
memory contents 
o 1 2 3 4 5 6 + 
o 0 0 0 1 2 3 5 (Result) 
recg. field indirect operand descriptor 
no indicators set ON 

8-388 DZ51-00 



( 

AR# 

000 
023 

AR# 

000 
023 

AR# 

CODING FORMAT: 

Y1 

Y1 

Y2 

Y2 

Y3 

Y3 

CN1 TN1 Sl 

1 1 222 2 2 
7 8 0 1 2 3 4 

CN2 TA2 0 

1 1 222 2 2 
7 8 0 1 2 3 4 

CN3 TA3 0 

not 
interpreted 

not 

233 
9 0 2 

interpreted 

not 

233 
9 0 2 

interpreted 

N1 

R1 

N2 

R2 

N3 

R3 

3 
5 

3 
5 

The MVNE instruction is coded as follows: 

1 8 16 

MVNE (MFl),(MF2),(MF3) 
NDSCn LOCSYM,CN,N,S"AM 
ADSC9 LOCSYM,CN,N,AM 
ADSCn LOCSYM,CN,N,AM 

8-389 DZ5l-00 



!NNE 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

!NNE 

OPERATI NG MODES: Any 

string 2 control 
SUMMARY: C(string 1) . . ---> (string 3) 

EXPLANATION: Starting at location YC1, the string of numeric characters of 
data type TNl is moved to the string of alphanumeric 
characters of data type TA3 starting at location YC3. The 
move is under control of the micro-operation sequence of 
length L2 and type TA2 = 00 that starts at location YC2. 
(Refer to "Micro Operations" in this section). 

ILLEGAL ADDRESS 

Maximum allowable length for Ll, L2, and L3 is 63; they are 
not checked for length greater than 63. Only the rightmost 6 
bits (30-35) are interpreted for length. Likewise when a 
register is specified as containing the length, only the 
rightmost 6 bits of the register are interpreted. 

The operation stops when L3 is exhausted. 

The results are not guaranteed when strings are overlapped. 

The sign and decimal type of the sending field is given by 
51. The contents of the numeric character string that starts 
at YCl and the micro-operation sequence that starts at YC2 
remain unchanged. 

On the processor, L3 = 0 is the normal termination; thus, at 
the start of the instruction, if L3 = a and there are no 
faults (see Note 1), no operation is performed and the 
instruction terminates normally, independently of whether L1 
or L2 equals zero, because the hardware does not access these 
fields when L3 = O. 

MODIFICATIONS: OU, OL for MF1, MF2, and MF3 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: None affected 

8-390 OZ51-00 



( 
MVNE 

NOTES: 1. An Illegal Procedure fault occurs under the following 
conditions. 

o If illegal address modification is used 

o I f illegal repeats are used 

o I f an illegal micro operation is used 

o If TA2 is not = 0 

MVNE 

o If an attempt is made to access string 2 when L2 = 0 

2. Refer to Micro Operations for Edit Instructions in Section 
7. 

8-391 DZ51-00 



MVNE 

EXAMPLES: 

1 

FLOl 
FL02 

8 

MVNE 
NOSC9 
ADSC9 
ADSC6 
USE 
EDEC 
MICROP 
MICROP 

FL03 BSS 

FLOl 
FL02 

* 
FL03 

USE 

MVNE 
NOSC4 
ADSC9 
ADSC9 
USE 
EDEC 
MICROP 
MICROP 

BSS 
USE 

MVNE 
NDSC4 
ADSC9 
ADSC6 
MVT 
ADSC6 
ADSC9 
ARG 
USE 

MOPS MICROP 
TABLE ASCII 

VFD 
OCT 
OCT 
UASCI 
VFD 
OCT 
OCT 
USE 

16 32 

with ($) float and (.) inserted 
FLDl,0,10,2 sending field operand descriptor 
FLD2,0,14 micro-op string operand descriptor 
FLD3,0,12 receiving field operand descriptor 
CONST. memory contents in ASCI I characters 
10A300405- 000300405-00 
(CHT,0),8HM*+-$,.0,(MFLC,7),(ENF,8),(INSB,7) 
(MVC,2) , (I NSN , 4) memory contents in BCD characters 

2 ~ ~ ~ $ 3 004 • 05- (Result) 

with (*) protection and (.) insertion 
FLDl,0,8,2 sending field operand descriptor 
FLD2,0,6 micro-op string operand descriptor 
FLD3,0,12 receiving field operand descriptor 
CONST. memory contents in packed decimal 
8P250509- 025059-
(MVZA,5),(SES,8),(INSA,7),{MVC,2) 
(INSN,4), (INSM,3) 

memory contents in ASCII characters 
3 * 2 5 ° 5 • ° 9 - ~ ~ ~ (Result) 

6PACK,3,5,1 
MOPS,0,6 
PRTOUT,0,4 

PRTOUT,0,4 
APRINT,0,4 
TABLE 
CONST. 

+1234 ----> 1234 
. -1234 ----> 123M 

(MVC,3), (LTE,3),10000, (LTE,4),10040,(MORS,1) 
2,01234567 OX 
Al8/89,18/0,36/0 lX 
0,0 2X 
0,0 3X 
2, JKLMNOP 4X 
U18/QR,18/0,36/0 5X 
0,0 6X 
0,0 7X 

8-392 DZ51-00 

./ 



( 
MVNEX 

MVNEK 

FORMAT: 

000 
012 

I E I MF3 

0 0 
0 2 

AR# 

o 0 
( o 2 

AR# 

o 0 
o 2 

AR# 

COD! NG FORMAT: 

Move Numeric Edited Extended 

o 0 1 1 1 1 Op Code 222 
890 1 

I 001 

Y1 

Y1 

Y2 

Y2 

Y3 

Y3 

1 

MF2 

8 16 

7 8 

I 004(1) 

1 1 222 2 2 
7 8 0 1 2 3 4 

CN1 TN1 SX1 

1 1 222 2 2 
7 801 2 3 4 

CN2 TA2 0 

1 1 222 2 2 
7 B 012 3 4 

CN3 TA3 0 

MVNEX (MF1),(MF2),(MF3),E 
NDSCn LOCSYM,CN,N,S"AM 
ADSC9 LOCSYM, CN , N , AM 
NOSCn LOCSYM,CN,N,AM 

8-393 

789 

H 

not 
interpreted 

not 
interpreted 

not 
interpreted 

3 
0 

3 
o 

3 
o 

MVNEX 

004 (1) 

NFl 

N1 

N2 

N3 

3 -

3 
5 

3 
5 

3 
5 

DZ51-00 



MVNEX 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

MVNEX 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

string 2 control 
C(string 1) -------> (string 3) 

The function of this instruction is similar to the MVNE 
instruction, but with the added capability of initializing an 
edit insertion table. (see Table 7-2). A 2-bit code entered 
in field E (bits 0 and 1) specifies the character set 
associated with the edit insertion table as follows. 

E-Bits 0 and 1 

00 EBCDIC 
01 BCD 
10 ASCII 
.11 Illegal, IPR fault 

TNI determines whether the input data is unpacked (0) or 
packed (I). TA3 determines the character size (9, 6, or 4 
bits) of the output data. It is the user's responsibility to 
make TA3 consistent with bits 0 and 1 of the instruction. S 
determines the location of the sign of the input data 
(leading, trailing, overpunched, separate). Refer to the 
Explanation for MVNE for additional information. 

MODI FI CATIONS: DU, DL for MFl, MF2, and MF3 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTES: 

None affected 

1. Notes for MVNE apply to MVNEX. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

3. Refer to "Micro Operations for Edit Instructions" in 
Section 7. 

8-394 DZ51-00 



( 

( 

MVNX 

MVNX Move Numeric Extended 

FORMAT: 

000 0 011 

o 0 
o 2 

Y1 

AR# Y1 

o 0 
o 2 

Y2 

AR# Y2 

CODING FORMAT: 1 

MF2 

8 16 

1 1 Op Code 

340(1) 

1 1 2 2 222 
780 1 234 

CN1 TN1 SX1 

1 1 2 2 222 
780 1 234 

CN2 TN2 SX2 

WNX (MF1 ) , (MF2) , RD , C:S, T , NS 
NDSCn LOCSYM , CN , N , SX ,SF, AM 
NDSCn LOCSYM, CN , N ,SX, SF, AM 

SF1 

SF2 

222 

2 3 
9 0 

2 3 
9 0 

MVNX 

340 (1) 

MF1 

N1 

N2 

3 

3 
5 

3 
5 

(Refer to Section 7 under Multiword Instructions for description 
of Multiword Modification Field.) 

OPERATI NG MODES: Any 

8-395 DZ51-00 



MVNX 

SUMMARY: 

EXPLANATION: 

MVNX 

C(string 1) --> C(string 2) 

Starting at location YC1, the decimal number of data type TNl 
and sign and decimal type SXl is moved, properly scaled, to 
the decimal number of data type TN2 and sign and decimal type 
SX2 that starts at location YC2. 

The character set is defined by CS (EBCDIC/ASCII). Placement 
of an overpunched sign in the output is controlled by NS. 
(Refer to the definition of the NS field in the beginning of 
Section 8.) 

If SX2 indicates a fixed-point format, the result is stored 
as L2 digits using scale factor SF2, and thereby may cause 
most-significant-digit overflow and/or 
least-significant-digit truncation. 

Rounding is legal for both floating and scaled formats. The 
contents of the decimal number that starts in location YCl 
remain unchanged. 

The SX field is interpreted as follows: 

TN = 0: Unpacked data (9 bits) 

SX 

00: LS*, OVP*, scaled 
01: LS, separate, scaled 
10: TS*, separate, scaled 
11: TS, OVP, scaled 

TN = 1: Packed data (4 bits) 

SX 

00: LS, separate, floating-point 
01: LS, separate, scaled 
10: TS, separate, scaled 
11: No sign, scaled 

* LS •••• Leading sign 
OVP. •• Overpunched 
TS •••• Trailing sign 

Bits 0 and 1 of the instruction word are interpreted as 
follows: 

8-396 DZ51-00 



MVNX 

( 

( 

Bit 0 of instruction word: Specifies the character set. 

=0: EBCDIC data (but not the strict EBCDIC sign) 
=1: ASCII data (but not the strict ASCII sign) 

Bit 1 of instruction word: Specifies no-sign output. 

=0: The instruction execution is not affected. 

MVNX 

=1: The sign character in the receive field where the 
result is to be placed is affected as follows: 

If the operand descriptor of the receive field contains 
TN = 0 and SX = 00 or 11 (indicating that output is an 
overpunched sign), the overpunched sign is not placed 
in the specified field. Instead, an appropriate 
decimal number (0-9) is placed in the receive field 
irrespective of whether the sign of the calculated 
result is positive or negative. This is a no-sign 
output. 

For values of SX and TN, bit 1 is ignored. This 
applies both to EBCDIC and ASCII. 

The hardware recognizes an implied plus sign on input data. 
For unpacked data (TN=O) with indicated overpunched sign (SXl 
= 00 or 11), if the hardware does not find a plus or minus 
overpunched sign character in the overpunched sign character 
position, the hardware checks for a numeric digit (0-9). The 
zone bits are not included in the check; only the lower-order 
4 bits are checked. If this check indicates a numeric digit 
from the appropriate character set, the hardware accepts the 
digit and assumes the sign to be plus. Oth~rwise an IPR 
fault is generated. 

Table 8-2 shows the character codes for ASCII and EBCDIC 
overpunched signs. 

8-397 DZS1-00 



MVNX MVNX 

Table 8-2. Character Codes For ASCI 1 and EBCD! C Overpunched Signs 

card Punch Normal Ovrpnch ASCII EBCDIC 
Code Interp. Interp. Code Code 

0 0 0 060 360 
1 1 1 061 361 
2 2 2 062 362 
3 3 3 063 363 
4 4 4 064 364 
5 5 5 065 365 
6 6 6 066 366 
7 7 7 067 367 
8 8 8 070 370 
9 9 9 071 371 

12 + +0 053 NA 
space space +0 040 NA 
12-0 { +0 173 300 
12-1 A +1 101 301 
12-2 B +2 102 302 
12-3 C +3 103 303 
12-4 D +4 104 304 / 

12-5 E +5 105 305 
12-6 F +6 106 306 
12-7 G +7 107 307 
12-8 H +8 110 310 
12-9 I +9 111 311 

11 -0 055 NA 
11-0 (GBCD) 1\ -0 136 NA 
11-0 (ASCII ) } -0 175 320 
11-1 J -1 112 321 
11-2 K -2 113 322 
11-3 L -3 114 323 
11-4 M -4 115 324 
11-5 N -5 116 325 
11-6 0 -6 117 326 
11-7 p -7 120 327 
11-8 Q -8 121 330 
11-9 R -9 122 331 

8-398 DZ51-00 



( 

MVNX MVNX 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL for MFl or MF2 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTES: 

zero - If result is zero, then ON~ otherwise, OFF 

Negative - If result is negative, then ON~ otherwise, OFF 

Truncation - If least-significant truncation without 
rounding, then ON~ otherwise, OFF 

Overflow - If fixed-point integer overflow, then ON~ 
otherwise, unchanged 

Exponent 
Overflow - If exponent of floating-point result> 127, 

then ON~ otherwise, unchanged 

Exponent 
Underflow - If exponent of floating-point result < -128, 

then ON~ otherwise, unchanged 

1. A Truncation fault occurs if the truncation indicator is 
set and the truncation fault enable bit (T) is a 1. 

2. An IPR fault occurs if any character (least four bits) 
other than 0000 - 1001 is detected where digits are 
defined, or any character (least four bits) other than 
1010 - 1111 is detected where the sign is defined by the 
numeric descriptor. 

3. An IPR fault occurs if the values for the number of 
characters (Nl or N2) of the data descriptors are not 
large enough to hold the number of characters required for 
the specified sign and/or exponent, plus at least one 
digit. 

4. An IPR fault occurs illegal address modifications or 
illegal repeats are used. 

5. Refer to Note 3 of MLR for information on string 
replication. 

6. If an illegal digit or sign is detected, part or all of 
the receive field may be changed before the IPR fault 
occurs. 

8-399 DZ51-00 



MVT 

MVT 

FORMAT: 

1 

0 
0 

FILL 

0 o 0 
0 2 3 

AR# 

000 
023 

AR# 

000 
023 

AR# 

CODING FORMAT: 

Move Alphanumeric with Translation 160 (1) 

o 0 1 1 
8 9 o 1 

1+1 
MF2 

Yl 

Yl 

Y2 

Y2 

Y3 

Y3 

1 1 Op. Code 222 
7 8 789 

1 
160(1) H NFl 

1 1 2 2 222 
7 8 o 1 234 

CNl TAl 0 

1 1 2 2 222 
7 8 0 1 234 

CN2 TA2 0 

Nl 

00---------0 

N2 

3 
2 

3 
2 

00-------0 

1 1 2 2 222 
7 8 0 1 234 

00-------------0 

2 2 333 
8 9 012 

A 
R 00 

Rl 

R2 

REG 

The MVT instruction is coded as follows: 

1 8 16 

MVT (MF1),(MF2),FILL,T 
ADSCn LOCSYM, CN ,N , AM 
ADSCn LOCSYM, CN , N , AM 
ARG TABLE, REG, AM 

3 
5 

3 
5 

3 
5 

3 
5 

1 

OPERATI NG MODES: kny 

8-400 DZ51-00 



MVT 

EXPLANATION: 

(-

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

MVT 

starting at location YC1, the alphanumeric characters of data 
type TAl are used as an index to a table of contiguous 9-bit 
characters that start at location Y3 (character position 0). 
The octal code of the character of string-l is used as an 
index to string-3. The indexed 9-bit characters (or 
right-justified 4- or 6-bit characters) of string-3 replace 
the contents of string 2, starting at location YC2. If TAl 
and TA2 are dissimilar, each character will have higb-order 
truncation. If Ll is less than L2, the FILL character (the 
entire 9 bits) is used as the index to the table to replace 
the L2-Ll least significant characters of string 2. The 
contents of string 1 remain unchanged except in cases of 
string overlap. When the 9-bit character translate table and 
the string are overlapped, the result is unpredictable. 

L2 = 0 does not necessarily mean that the instruction 
functions as a NOP because the truncation indicator may be 
affected. 

If Ll < L2, and type TAl is 4 or 6-bit, the low-order 4 or 6 
bits of the fill character (9-bit) in the instruction word 
are defined as a table index. 

The translation table must begin at a word boundary at 
character position O. The index (expressed by the number of 
9-bit characters) is added to the starting word address of 
the table. It is computed in the same way as for normal 
address modification: however, the computed address is then 
used as a word address (with character position ignored). 
The index is added to this word address as a 9-bit number. 

The translation table length is determined by the highest 
possible index character octal value that may be found in the 
indexing data string. The table is always indexed in 9-bit 
increments, regardless of the data type being moved. The 
9-bit character represented in the table must be the same 
data type as the receiving field. (See Examples for MVT.) 

When address register modification is specified, the 
translation table address is generated as follows. 

8-401 DZ5l-00 



MVT 

I LLEGAL ADDRESS 

1<-1 y 

+ 

WORD 

+ 

WB 

\/ 

W=y+WORD+WB 

. 
The above character position 
O. 

W 

+ 

Iw 

\/ 

W + Iw 

MVT 

Operand descriptor 
y field 

CHAR Address Register 
WORD and CHAR 

CB Segment descriptor 
BASE 

CHAR Addition result. If a 
+CB carry occurs as result 

of CHAR+CB, it is trans-
ferred to word portion • 

is then forcibly set to 

Ic 

Ic 

The translage table 
start address 

Index (9-bit character 
number) 

\ 
Word address I 

W + Iw Specifies 
> content of 

Olaracter I translate 
position Ic table used 

/ 

When index register modification is specified, the content of 
that register is added to the word portion. 

MODIFICATIONS: DU, DL for MF1, MF2, and REG field for Y3 

I LLEGAL REPEATS: RPT, RPD, RPL 

8-402 DZ5l-00 



MVT MVT 

( 
I NDI CATORS : Truncation - If Ll is > L2, then ON; otherwise, OFF 

NOTES: l. An Illegal.Procedure fault occurs if illegal address 
modification or illegal repeats are executed. 

2. A Truncation fault occurs if the truncation indicator is 
set and the truncation fault enable (T) bit is a 1. 

3. Refer to Explanation of the MLR instruction for 
information on string replication. 

EXAMPLES: 

1 8 16 32 

MVT ,,52 with fill index a minus 
ADSC6 FLDl,4,7 indexing operand descriptor 
ADSC4 FLD2,O,8 receiving operand descriptor 
ARG TABLE pointer to 4-bit table 
USE CONST. memory contents 

FLDI BCl 2,kSkSkSkSkS123456 202020202001020304050620 
FLD2 BSS 1 0123456- (Result) 
TABLE NULL 

( OCT 000001002003,004005006007 OX 
OCT 010011017017,017017017017 IX 

". 

OCT 000017017017,017017017017 2X 
OCT 017017017017,017017017017 3X 
OCT 017017017017,017017017017 4X 
OCT 017017015017,017017017017 5X 
OCT 014017017017,017017017017 6X 
OCT 017017017017,017017017017 7X 
USE 
MVT 
ADSC4 FLD3,,8 
ADSC4 FLD4,,8 
ARG TAB 
USE CONST. 

F103 OCT 022064126317 123456++ 
FLD4 BSS 1 022064126314 (Result) 
TAB NULL 

OCT 000001002003,004005006007 
OCT 010011014014,014015014014 
USE 

8-403 DZ51-00 

---------_._-_. --.'-"'--~'- -------



MVT 

1 8 

MVT 
ADSC6 
ADSC9 
ARG 
USE 

FLDI BCI 
FLD2 ass 
TABLE9 EDI TP 

UASCI 
UASCI 
UASCI 
UASCI 
UASCI 
UASCI 
UASCI 
UASCI 
EDITP 
USE 

MVT 

16 32 

,,040 blank fill 
FLDl,0,18 
FLD2,0,20 
TABLE9 pointer to translation table 
CONST. 
3,TTYMESSAGE201 
5 
SAVE, ON 
2,01234567 OX 
2,89[#@:>? IX 
2, ~ABCDEFG 2X 
2,Hl'.](<\ 3X 
2,AJKLMNOP 4X 
2,QR-$*)i' 5X 
2,/STUVWX 6X 
2,YZ_,%="! 7X 
RESTORE 

NOTE: The translation table length in the above example is determined by 
the highest octal value for the characters of the indexing string 
(Field 1). The characters in the above translation table are / 
represented in 9-bit ASCII code, the same data type as the 
receiving field (Field 2). Also, the table is 64 characters in 
length, in direct relation to the BCD character set (highest value 
octal 77). 

8-404 DZ5l-00 



( 
NARn NARn 

NARn Numeric Descriptor to Address Register n 66n (1) ) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODING FORMAT: 1 8 16 

NARn LOCSYM,RM,AM 

OPERATING MODES: Execution in NS mode only 

SUMMARY: For n = O,l, ••• ,or 7 as determined by op code 

EXPLANATION: 

I LLEGAL ADDRESS 

C(Y)0-17 --> C(ARn)0-17 

translated 
C(Y)18-20 ---------> C(ARn)18-23i C(Y) unchanged 

The numeric descriptor is fetched from the computed effective 
address Y and the TN bit is examined. If TN = 0 (9-bit 
characters), bits 18 and 19 of the CN field go to the 
corresponding positions of ARn and zeros fill bits 20-23 of 
ARn. If TN = 1, the 4-bit character contained in the CN 
field, is converted to bit string representation and placed 
in bits 18-23 of ARn. In either case, the descriptor word 
address field (0-17) goes to bits 0-17 of ARn. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

2. An IPR occurs if an attempt is made to execute this 
instruction in the ES mode. 

8-405 DZ5l-00 



NARn 

EXAMPLES: 

1 8 16 

NAR2 DESCR 

. 
DESCR NDSC4 FLDl,7,8,3,2 .,.. 

NARn 

32 

load data string address into AR2 

o 3 2 4 2 6 7 7 0 2 1 0 - descriptor 
o 3 2 4 2 6 6 5 - result in AR2 

'''\ 

8-406 DZ51-00 



( 

NEG NEG 

NEG Negate (A-Register) 531 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: -C(A) --> C(A} if C(A) ~ 0 

EXPLANATION: This instruction changes the number in A to its negative (if 
~ 0). The operation is executed by forming the two's 
complement of the string of 36 bits. 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: RPL 

I NDI CATORS : Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)O = 1, then ON: otherwise, OFF 

Overflow - I f range of A is exceeded, then ON 

NOTE: An Illegal Procedure fault occurs when an illegal repeat is 
used. 

8-407 DZ5l-00 



NEGL NEGL 

NEGL Negate Long (AQ-Register) 533 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY - C(AQ) --> C(AQ) if C(AQ) F 0 

EXPLANATION: This instruction changes the number in AQ to its negative (if 
F 0). The operation is executed by forming the two's 
complement of the string of 72 bits. 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

ILLEGAL REPEATS: RPL 

I NDI CATORS: Zero 

Negative 

Overflow 

- If C(AQ) = 0, then ONi otherwise, OFF 

- If C(AQ)O = 1, then ONi otherwise, OFF 

- I f range of AQ is exceeded, then ON 

NOTE: An Illegal Procedure fault occurs when an illegal repeat is 
used. 

8-408 DZ51-00 



( 

( 

NOP NOP 

NOP No Operation· 011 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: No operation takes place; the effective address is always 
prepared. 

EXPLANATION: No operation takes place but address preparation is performed 
according to the specified modifier, if any. If modification· 
other than DU or DL is used, the generated addresses may 
cause faults. 

ILLEGAL ADDRESS 
MODIFICATIONS: None 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTES: 

The use of Indirect then Tally modifiers ID, DI, IDe, DIC, 
SCR, or SC changes the address and tally fields of the 
referenced indirect words; the Tally Runout indicator may be 
set ON. 

1. An Illegal Procedure fault occurs when an illegal repeat 
is used. 

2. Because address preparation takes place, modification may 
result in a Bounds fault. 

8-409 DZ51-00 



ORA ORA 

ORA OR to A-Register 275 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For i = 0 to 35, 

C(A)i OR C(Y)i --> C(A)i; C(Y) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: None 

ILLEGAL REPEATS: None 

I NDI CATeRS: Zero - If C(A) = 0, then ON: otherwise, OFF 

Negative - If C(A)O = 1, then ON: otherwise, OFF 

8-410 DZ51-00 



( 

( 

OUQ ORAQ 

OUQ OR to AQ-Register 277 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For i = 0 to 71, 

C(AQ)i OR C(Y-pair)i --> C(AQ)i: C(Y-pair) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: None 

I NDI CATORS: 

NOTE: 

Zero - If C(AQ) = 0, then ON; otherwise, OFF 

Negative - If C(AQ)O = 1, then ON: otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-411 DZ51-00 



ORQ ORQ 

ORQ OR to Q-Register 276 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For i = 0 to 35, 

C(Q)i OR C(Y)i --> C(Q>i; C(Y) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATORS: Zero - If C(Q> = 0, then ON; otherwise, OFF 

Negative - If C(Q)O = 1, then ON; otherwise, OFF 

8-412 DZ51-00 



( 

ORRR 

ORRR OR Register to Register 

FORMAT: 

000 1 1 

Not Used OP CODE 

CODI NG FORMAT: 1 8 16 

ORRR Rl, ,R2 

OPERATING MODES: Executes in ES mode only 

SUMMARY: Rl, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q 

I LLEGAL ADDRESS 

C(Rl)i OR C(R2)i --> C(Rl)I i = 0,1,2, ••• ,35 

C(R2) unchanged 

MODIFICATIONS: None. The address modification is not executed. 

ILLEGAL REPEATS: RPT, RPD, RPL 

ILLEGAL EXECUTES: Execution in NS mode 

I NDI CATORS : Zero - If C(Rl) = 0, then ON; otherwise, OFF 

Negative - If C(R1)0 = 1, then ON; otherwise, OFF 

ORRR 

536 (1) 

NOTES: 1. An IPR fault occurs if illegal repeats are executed or if the 
instruction is executed in NS mode. 

2. Refer to "Register to Register Instructions" in Section 7 for 
a description of the fields in the instruction word. 

8-413 DZ51-00 



ORSA ORSA 

ORSA OR to Storage from A-Register 255 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For 1 = 0 to 35, 

C(A)i OR C(Y)i --> C(Y)i; C(A) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

Zero - If C(Y) = 0, then ONi otherwise, OFF 

Negative - If C(Y)o = 1, then ONi otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-414 DZ51-00 

/ 

\ .. " ~/' 



( 
ORSQ ORSQ 

ORSQ OR to Storage from Q-Register 256 <a) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: For i = a to 35, 

C<Q)i OR C(Y)i --> C(Y)i~ C<Q) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

Zero - If C(Y) = 0, then ON; otherwise, OFF 

Negative - If C(Y)o = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-415 DZ51-00 



ORSXn ORSXn 

OR to Storage from Index Register n 24n (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

ILLEGAL ADDRESS 

NS Mode 

For n = O,l, ••• ,or 7 as determined by op code 

For i = 0 to 17, C(xn)i OR C(Y)i --> C(Y)i 

C(Xn} and C(Y)18-35 unchanged 

ES Mode 

For n = O,l, ••• ,or 7 as determined by op code 

For i = 0 to 35, C(GXn)i OR C(Y)i --> C(Y)i; 

C (GXn) unchanged 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, or RPL of ORSXO 

I NDI CATORS: NS Mode 

zero - If C(Y)0-17 = 0, then ON; otherwise, OFF 

NOTE: 

Negative - If C(Y)O = 1, then ON; otherwise, OFF 

ES Mode 

Zero - If C(Y) ~ 0, then ON; otherwise, OFF 

Negative - If C(Y)O = 1, then OFF; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-416 DZ5l-00 

',,--



( 
ORXn ORXn 

OR to Index Register g 26g (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES Any 

SUMMARY: NS Mode 

I LLEGAL ADDRESS 
MODI FI CA TI ONS: 

I LLEGAL REPEATS: 

INDICATORS: 

NOTES: 

For n=O,l, ••• ,or 7 as determined by op code 

For i = 0 to 17, C(Xn)i OR C(Y)i --> C(Xn)i; 

C (y) unchanged 

ES Mode 

For n=O,l, ••• ,or 7 as determined by op code 

For i = 0 to 35, C(GXn)i OR C(Y)i --> C(GXn)i; 

C (y) unchanged 

CI, SC, SCR 

RPT, RPD, or RPL of ORXO 

Zero - If C(Xn/GXn) = 0, then ON; otherwise, OFF 

Negative - If C(XN/GXn)O = 1, then ON; otherwise, OFF 

1. DL modification is flagged illegal but executes with all 
zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-417 DZ51-00 



PAS PAS 

PAS Pop Argument Stack 176 (1) 

FORMAT: Single-word instruction format (see Figure B-1) 

OPERATI NG MODES: Any 

SUMMARY: Modifies bound field of the argument stack register (ASR). 

EXPLANATION: This instruction provides a means of modifying the bound 
field of the ASR. The l-word operand is obtained from memory 
location Y. The memory operand has the following format: 

o 
o 

SIZE 

1 1 
6 7 

2 2 
6 7 

IIIIIIIII 0 
IIIIIIIII or 
IIIIIIIII 1 

3 
5 

IIIIIIII 
IIIIIIII 
IIIIIIII 

If ASR flag bit 27 = 0 nothing occurs. The argument segment 
is empty and the instruction terminates. 

If ASR flag bit 27 = 1, the instruction proceeds. The SIZE 
field is the number of descriptors to be framed, minus 1 
(i.e., the number of double-word memory locations). 

The descriptor SIZE field is converted to number of bytes by 
appending three 1-bits as the least-significant bits, 
producing a 20-bit byte size (SIZE-bytes). Accordingly, a 
memory operand SIZE field of zero means frame one 
descriptor. using the 20-bit SIZE-bytes, the instruction 
proceeds as follows (shaded area is ignored): 

II memory operand bit 27 = 0, ASR flag bit 27 and ASR bound 
field are set to zero and the instruction terminates. 

If memory operand bit 27 = 1, the SIZE-bytes is compared to 
the bound field of the ASR as follows: 

o If SIZE-bytes < Bound, then SIZE-bytes replaces 
contents of ASR Bound field. 

o I f SIZE-bytes >= Bound, then ASR remains unchanged. 

B-41B DZ51-00 

! -" /' 



( 

( 

( 

PAS 

I LLEGAL ADDRESS 

PAS 

o C(HWMR) is unchanged for all cases. 

oBits 17-26 and 28-35 of the operand are ignored by the 
hardware. 

MODIFICATIONS: DU, DL, 0, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An IPR fault occurs if illegal address modifications or 
illegal repeats are executed. 

EXAMPLE: 

1. 8 

INHIB 
SVPTRI STAS 

SDR 
STP 
TRA 

RTPTRI NULL 
LOP 
PAS 
TRA 

16 

ON 
SAVEl 
Pl,O 
Pl,SAVll 
0,5 

Pl,SAVll 
SAVEl 
0,5 

32 

store argument stack 
save descriptor register 1 
store pointer to descriptor register 1 

locates and restores descriptor register 1 
restores argument stack 

8-419 DZ51-00 



PULSl PULSl 

PULSl Pulse One 012 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERA'l'l NG MODES: Any 

SUMMARY: No operation takes place 

EXPLANATION: The PULSl instruction is identical to the NOP instruction 
except that it causes certain unique external hardware 
monitoring synchronization signals to appear in the processor 
logic circuitry. 

ILLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: The use of Indirect then Tally modifiers ID, DI, IOC, DIe, 
SCR, or SC changes the address and tally fields of the 
referenced indirect words; the Tally Runout indicator may be 
set ON. 

NOTES: 1. An Illegal Procedure fault occurs when illegal repeats are 
used. 

2. This instruction is for use only in external hardware 
monitoring equipment and not in normal coding. 

8-420 DZSl-OO 



( 

( 

PULS2 PULS2 

PULS2 Pulse Two 013 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: No operation takes place 

EXPLANATION: The PULS2 instruction is identical to the NOP instruction 
except that it causes certain unique external hardware 
monitoring synchronization signals to appear in the processor 
logic circuitry. . 

ILLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTES: 

The use of Indirect then Tally modifiers ID, DI, IOC, DIC, 
SCR, or SC changes the address and tally fields of the 
referenced indirect words: the Tally Runout indicator may be 
set ON. 

1. An Illegal Procedure fault occurs when illegal repeats are 
. used. 

2. This instruction is for use only in external hardware 
monitoring equipment and not in normal coding. 

8-421 DZ51-00 



QFAD QFAD 

QFAD Quadruple-Precision Floating Add 476 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: [C(EAQ, LOR) + C(Y 4 words)] normalized -> C(EAQ, LOR) 

EXPLANATION: The exponent underflow indicator is not set when the 
low-order exponent (EL) is in underflow (Eu-15 < -128). At 
this time, the correct value + 256 is loaded into EL and the 
correct value into the low-order mantissa (ML - LOR8-71). 

I LLEGAL ADDRESS 

When the mantissa (both the high-order and the low-order 
portions) of the operation result is 0, then -128 is loaded 
into EU and EL. 

When the low-order mantissa, but not the high-order mantissa, 
of the operation result = 0, then -128 is loaded into EL. 

In any other case, EU -15 is loaded into EL. 

In quadruple-precision arithmetic operations, an additional 
digit (4 bits) called a guard digit, is assumed next to the 
low-order position. An operation is performed in which the 
intermediate result that includes the guard digit is 
normalized. The high-order 124 bits are loaded into the EAQ 
and LOR registers. 

MODIFICATIONS: DU, DL, SC, SCR, CI 

I LLEGAL REPEATS: RPT, RPD, RPL 

8-422 DZ5l-00 



QFAD 

I NDI CATORS : 

NOTE: 

( 

( 

Zero - If [C(AQ)O-63, C(LOR)8-71] = O,then ON; 
otherwise, OFF 

Negative - If C(A)O = 1, then ON: otherwise OFF 

Exponent 
Overflow - If exponent> +127, then ON 

Exponent 
Underflow - If exponent < -128, then ON 

An Illegal Procedure fault occurs when illegal address 
modifications or illegal repeats are used. 

QFAD 

8-423 DZ51-00 



QFLD QFLD 

QFLD I Quadruple-Precision Floating Load 432 <O} 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

ILLEGAL ADDRESS 

[C(Y 4 words) --> C(EAQ, LOR) 

Bits 0-7 of C(Y 4 words) --> C(E) 

Bits 8-71 of C(Y 4 words) --> Bits 0-63 of C(AQ) 

00 ••••• 0 --> bits 64-71 of C(AQ) 

Bits 72-143 of C(Y 4 words) --> C(LOR) 

MODIFICATIONS: DU, DL, SC, SCR, Cl 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: Zero - If [C(AQ)0-71, C(LOR)l2-71'] = 0 ,then ON; 
otherwise OFF 

NOTE: 

Negative - If C(A)O = 1, then ON; otherwise OFF 

An Illegal Procedure fault occurs when illegal address 
modifications or illegal repeats are used. 

8-424 DZ5l-00 

I . 
,,~/ 



( 

QFMP QFMP 

QFMP Quadruple-Precision Floating Multiply 462 (0) 

FORMAT: Single-word instruction format (see Figure 8-1). 

OPERATI NG MODES: Any 

SUMMARY: [C (EAQ, LOR) x C (y 4 words)] normal ized -> C( EAQ, LOR) 

EXPLANATION: The exponent underflow indicator is not set when the 
low-order exponent (EL) is in underflow (EU-1S < -128). At 
this time, the correct value + 256 is loaded into EL and the 
correct value into the low-order mantissa (ML - LOR8-7l). 

I LLEGAL ADDRESS 

When the mantissa (both the high-order and the low-order 
portions) of the operation result is 0, then -128 is loaded 
into EU and EL' 

When the low-order mantissa, but not the high-order mantissa, 
of the operation result = 0, then -128 is loaded into EL. 

In any other case, EU -15 is loaded into EL. 

In quadruple-precision arithmetic operations, an additional 
digit (4 bits), called a guard digit, is assumed next to the 
low-order position. An operation is performed in which the 
intermediate result which includes the guard digit are 
normalized. The high-order 124 bits are loaded into the EAQ 
and LOR registers. 

NODI FI CATIONS: DU, DL, SC, SCR, CI 

ILLEGAL REPEATS: RPT, RPD, RPL 

8-425 DZS1-OO 

_. ----------~--------~ .... -. ~~ 



QFMP 

I NDI CATORS: 

NOTE: 

Zero - If [C(AQ)O-63, C(LOR)S-71] = a,then ON; 
otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise OFF 

Exponent 
Overflow - If exponent> +127, then ON 

Exponent 
Underflow - If exponent < - 128, then ON 

An Illegal Procedure fault occurs when illegal address 
modifications or illegal repeats are used. 

QFMP 

8-426 DZ51-0a 



( 

QFSB 

QFSB Quadruple-Precision Floating Subtract 576 (0) 

FORMAT: Single-word instruction format (see Figure 8-1). 

OPERATI NG MODES: Any 

SUMMARY: [C (EAQ, LOR) - C (y 4 words») normalized -> C (EAQ, LOR) 

EXPLANATION: The exponent underflow indicator is not set when the 
low-order exponent (EL) is in underflow (EU-15 < -128). At 
this time, the correct value + 256 is loaded into EL and the 
correct value into the low-order mantissa (ML - LOR8-71). 

ILLEGAL ADDRESS 
MODIFICATIONS: 

1 LLEGAL REPEATS: 

~~en the mantissa (both the high-order and the low-order 
portions) of the operation result is 0, then -128 is loaded 
into EU and EL. 

When the low-order mantissa, but not the high-order mantissa, 
of the operation result = 0, then -128 is loaded into EL. 

In any other case, EU -15 is loaded into EL. 

In quadruple-precision arithmetic operations, an additional 
digit (4 bits), called a guard digit, is assumed next to the 
low-order position. An operation is performed in which the 
intermediate result that includes the guard digit is 
normalized. The high-order 124 bits are loaded into the EAQ 
and LOR registers. 

During the operation, a two's complement of the subtrahend is 
justified and added. 

DU, DL, SC, SCR, C! 

RPT, RPD, RPL 

8-427 



QFSB 

I ND! CATORS: 

NOTE: 

Zero - If [C(AQ)O-63, C(LOR)S-71] =0 ,then ON; 
otherwise, OFF 

Negative - If C(A)O = 1, then ON: otherwise, OFF 

Exponent 
Overflow - I f exponent > +127, then ON 

Exponent 
Underflow - If exponent < - 128, then ON 

An Illegal Procedure fault occurs when illegal address 
modifications or illegal repeats are used. 

QFSB 

8-428 DZ51-00 

/ 



( 

QFST 

QFST Quadruple-Precision Floating Store 

FORMAT: single-word instruction format (see Figure 8-1). 

PROCEDURE MODE: Any 

SUMMARY: [C(EAQ, LOR} --> C(Y 4 words}] normalized 

C(E} --> bits 0-7 of C(Y 4 words) 

ILLl!XiAL ADDRESS 

Bits 0-63 pf C(AQ) --> bits 8-71 of C(Y 4 words) 

Bits 64-71 of C(AQ) are ignored 

C(LOR} --> bits 72-143 of C(Y 4 words) 

MODI FI CATIONS: DU, DL, SC, SCR, CI 

I LLl!XiAL REPEATS: RPT, RPD, RPL 

I NDr CATORS : None affected 

QFST 

453 (O) 

NOTE: An Illegal Procedure fault occurs when illegal address 
modifications or illegal repeats are used. 

8-429 DZ51-00 



QFSTR QFSTR 

QFSTR Quadruple-Precision Floating Store Rounded 466 (0) 

FORMAT: single-word instruction format (see Figure 8-1) 

PROCEDURE MODE: Any 

SUMMARY: [Bits 0-63 of C(AQ), bits 12-71 of C(LOR)] rounded, 
normalized --> C(Y-pair) 

EXPLANATION: Arithmetic operation procedure 

ILLEGAL ADDRESS 

[C(AQ)O~63 + carry] normalized --> C(Y-pair) 

If C(AQ, LOR) is positive then carry = 0 

If C(AQ, LOR) is negative; 

if C(LOR}13-71 = 0, then carry = 0 

if C(LOR)13-71 ~ 0, then carry = C(LOR}12 

Using the above processing, positive and. negative data with \,,-j 
an equal absolute value are rounded to glve values with equal 
absolute value. 

If the mantissa of the result = 0 by rounding, -128 is stored 
in C(Y-pair)0-7. 

MODI PI CATIONS: DU, DL, SC, SCR, CI 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTE: 

zero - If C(Y-pair)8-71 = O,then ONi 
otherwise, OFF 

Negative - If C(Y-pair)a = 1,then ON; otherwise, OFF 

Exponent 
Overflow - If exponent> +127, then ON 

Exponent 
Underflow - If exponent < -128, then ON 

An Illegal Procedure fault occurs when illegal address 
modifications or illegal repeats are used. 

8-430 DZ51-00 



'.( " 

( 

QLR QLR 

QLR Q-Register Left Rotate 776 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

EXPLANATION: Rotate C(Q) left by the number of positions indicated by bits 
11-17 (NS mode) or 27-33 (ES mode) of Y (y modulo 128). 

ILLEGAL ADDRESS 

Enter each bit leaving bit position 0 of Q into bit position 
35 of Q. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPL 

INDICATORS: 

NOTES: 

Zero - If C<Q) = 0, then ON: otherwise, OFF 

Negative - If C<Q)O = 1, then ON: otherwise, OFF 

1. The rotate count in the instruction must be a decimal 
number. To "right-rotate" g bits, use QLR 36-g. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-431 DZ51-00 



QLS QLS 

QI,S Q-Register Left Shift 736 (0) I 
FORMAT: Single-word instruction format {see Figure 8-1} 

OPERATI NG MODES: Any 

EXPLANATION: Shift C{Q} left by the number of positions indicated by bits 
11-17 <NS mode} or 27-33 <ES mode} of Y (y modulo 128). Fill 
vacated positions with zeros. The shift count in the 
instruction must be a decimal number. 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, 0, SC, SCR 

I LLEGAL REPEATS: RPL 

INDICATORS: 

NOTE: 

zero 

Negative 

carry 

- If C<Q) = 0, then ON; otherwise, OFF 

- If C<Q>O = 1, then ON; otherwise, OFF 

- If C<Q>O changes during the shift, then ON; 
otherwise, OFF. When the carry indicator is 
ON, the algebraic range of Q.has been exceeded. 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-432 DZ5l-00 

"'-j I 



( 

( 

QRL QRL 

QRL Q-Register Right Logical Shift 772 (0) 

FORMAT: single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

EXPLANATION: Shift C<Q) right by the number of positions indicated by bits 
11-17 (NS mode) or 27-33 (ES mode) of Y (y modulo 128). Fill 
vacated positions with zeros. The shift count in the 
instruction must be a decimal number. 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

Zero - If C{Q) = 0, then ON; otherwise, OFF 

Negative - If C(Q)O = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-433 DZ5l-00 



QRS QRS 

QRS Q-Register Right Shift 732 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

EXPLANATION: Shift C<Q> right by the number of positions indicated by bits 
11-17 or 27-33 (ES mode) of Y (y modulo 128). Fill vacated 
positions with bit 0 of C(Q). The shift count in the 
instruction must be a decimal number. 

I LLEGAL ADDRESS· 
MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPL 

INDICATORS: 

NOTE: 

zero - If C(Q) = 0, then ON; otherwise, OFF 

Negative - If C(Q)O = I, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-434 DZ51-00 

• 

./ , 



( 

QSMP QSMP 

QSMP Quadruple-Precision Floating Multiply 460 (0) 
with Double-Precision Operands 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATl NG MODES: Any 

SUMMARY: [C(EAQ) x C(Y 4 words)] normalized --> C(EAQ, LOR) 

EXPLANATION: The exponent underflow indicator is not set when the 
low-order exponent (EL) is in underflow (EU-15 < -128). At 
this time, the correct value + 256 is loaded into EL and the 
correct value into the low-order mantissa (ML - LOR8-71). 

ILLEGAL ADDRESS 

When the mantissa (both the high-order and the low-order 
portions) of the operation result is 0, then -128 is loaded 
into EU and EL. 

When the low-order mantissa, but not the high-order mantissa, 
of the operation result = 0, then -128 is loaded into EL. 

In any other case, EU -15 is loaded into EL. 

In quadruple-precision arithmetic operations, an additional 
digit (4 bits), called a guard digit, is assumed next to the 
low-order position. An operation is performed in which the 
intermediate result which includes the guard digit are 
normalized. The high-order 124 bits are loaded into the EAQ 
and LOR registers. 

The 72 bits of C(AQ)0-71 are used for the mantissa of the 
multiplicand. 

MODIFICATIONS: DU, DL, SC, SCR, CI 

ILLEGAL REPEATS: RPT, RPD, RPL 

8-435 DZ51-00 



QSMP 

I NDI CATORS: 

NOTE: 

Zero - If [C(AQ)O-63, CO.QR)8-7l1 = O,then ON: 
otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

Exponent 
OVerflow - I f exponent > +127, then ON 

Exponent 
Underflow - I f exponent < - 128, then ON 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

QSMP 

8-436 DZ51-00 



( 
RCW 

RCW Read Connect Word Pair 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: C (Connect Queue Entry) -> C (AQ) 

If the queue is empty 

o --> C(AQ) 

The SCU selected is the control SCU. 

250 (O) 

EXPLANATION; The SCU is selected by the control SCU bit. (Refer to SCU 
configuration register in Section4.) 

ILLEGAL ADDRESS 
MODIFICATIONS: DU, DL, 0, 

( ILLEGAL REPEATS: RPD, RPL, and RPT 

I NDI CATORS: 

NOTES: 

zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)O = 1, then ON; otherwise, OFF 

1. An Illegal Procedure fault occurs' if illegal address 
modification or an illegal repeat is used. 

2. An IPR fault occurs if this instruction is executed in 
Master or Slave modes. 

3. The SCU connect masks are not applied. 

4. Bound checks on the address are not made. 

8-437 DZ51-00 



RET RET 

IRFr Return 630 (0) 

~--------~--------------------------------------------~--------~ 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

C(Y)0-17 --> C(IC) 

C(Y)18-32 --> C(IR) 

C(Y)33-35 are ignored 

C(Y) unchanged 

This instruction loads the content of the location specified 
by y into the instruction counter and indicator register with 
bit 29 = O. The RET instruction does not load the 
instruction segment register (ISR) and the SEGID(IS). The 
return is then within the current instruction segment. The 
RET instruction may be thought of as an 101 instruction 
followed by a transfer to the location specified by C(Y)0-17. 

The relation between the bit positions of C(Y) and the 
indicators is as follows: 

C{Y) Bit Position 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33-35 

Indicator (or Mask) 

zero 
Negative 
carry 
Overflow 
Exponent overflow 
Exponent underflow 
Overflow mask 
Tally runout 
Parity error 
Parity mask 
Master mode 
Truncation 
Multiword instruction interrupt 
Reserved for exponent underflow mask 
Hexadecimal exponent mode 
000 

8-438 DZ5l-00 



( 

( 

( 

RET 

I LLEGAL ADDRESS 

RET 

With unconditional transfer of control instructions, bit 29 of 
the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not affected. An IPR fault does not occur. 

o When bit 29 of the instruction word = 1, and if any form 
of indirect addressing is specified in the tag field, then 
the base, bound, and working space from DR!! (not the ISR) 
are used in developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transter does not 
equal to bit 24 of the segment descriptor from the DRg, an IPR 
fault occurs. The ISR bit can be altered only with the CLIMB 
instruction. 

MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: 

NOTES: 

Master mode - If C(Y)28 is 1, then no change: otherwise, OFF 

All other 
indicators 

- If corresponding bit in C(Y) 
otherwise, OFF 

is 1, then ON; 

1. An Overflow Fault does not occur when the overflow 
indicator, exponent overflow indicator, or exponent 
underflow indicator is set ON via the RET instruction, even 
if the Overflow Mask Indicator is OFF. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-439 DZSl-OO 



RET RET 

3. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

4. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

5. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

8-440 DZS1-00 



( RIMR R1MR 

RIMR Read Interrupt Mask Register 233 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Privileged Master mode 

SUMMARY: Port interrupt level masks --> C(A)0-7 

All mask --> C(A)8 

Port connect mask --> C(A)9 

0 ••• 0 --> C(A)10-35 

EXPLANATION: This instruction reads the masks in the SCU corresponding to 
the issuing port; the All Mask is also read. 

ILLEGAL ADDRESS 
MODI F1 CATIONS: DU I DL, a, SC, and SCR 

( I LLEGAL REPEATS: RPT, RPD, RPL 

I ND1 CATORS: 

NOTES: 

None affected 

1. The SCU is selected by the control SCU bit. 

2. An IPR fault occurs when an attempt is made to execute 
this instruction in Slave or Master mode. 

3. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeats are used. 

8-441 DZ5l-00 



RIW RIW 

RIW Read I nterrupt Word Pair 412 CO) 

FORMAT: single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: I f an unmasked interupt queue in the SCU has an entry then, 

EXPLANATION: 

I LLEGAL ADDRESS 

C(Word Pair from queue) --> C(AQ) 

I f no unmasked queue has an entry then, 

0 •.• 0 --> C(AQ) 

If any unmasked interrupt queue in the control S:U has an 
entry, then the contents of the entry from the interrupt queue 
are moved into the AQ register. The entry from the 
interrupt queue contains the level number. If there is no 
unmasked queue from an entry, then zeros are moved into the AQ 
register. 

The SCU interrupt-connect mask register (ICMR) allows masking 
of each port's interrupts and connects. Queues are maintained 
in the SCU for each of the eight interrupt levels. The queues 
are circular, first-in/first-out priority. No CPU address 
information is used. 

MODIFICATION: DU, DL, CI 

I LLEGAL REPEATS: RPD, RPL, RPT 

INDICATORS: Zero - If C(A) = 0, then ON; otherwise OFF 

NOTES: 

Negative - If C(A)O = 1, then ON; otherwise OFF 

1. An IPR fault occurs if this instruction is executed in 
Master or Slave mode. 

2. An IPR fault occurs if illegal address modification or an 
illegal repeat is used. 

3. Bound checks on the address are not made. 

8-442 DZSl-OO 

/' 

\ 

) 



( 

RMID RMID 

RMID Read Memory ID Register 273 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

C(Memory ID Register) --> C(AQ) 

This instruction provides program access to the memory ID 
register. SCU selection is based on the Control SCU bit (22) 
in the CPU mode register. 

Address development is followed and transferred to the SCU to 
select the correct memory unit. The physical memory unit 
that is selected by the address is dependent upon the SCU's 
physical ID or logical ID based on the setting of the SCU 
configuration register. 

MODIFICATIONS: DU, DL, 0, SC, SCR 

ILLEGAL REPEATS: RPD, RPL, RPT 

INDICATORS: 

NOTES: 

None affected 

1. An IPR fault occurs if execution is attempted in the Slave 
or Master mode. 

2. An IPR fault occurs if illegal address modification or an 
illegal repeat is used. 

8-443 DZ5l-00 



RMR RMR 

RMR Read Memory Register 270 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: 

EXPLANATION: 

I LLEGAL ADDRESS 

C(Memory Status Register) --> C(AQ) 

0 ••• 0 --> C(Memory Status Register) 

This instruction provides program access to the memory status 
register. This register consists of 8 bits (40-47) in a 
72-bit register. (Refer to "Memory Error Status Register" in 
Section 4.) SCU selection is based on the control SCU bit in 
the CPU mode register. 

Address development is followed and transferred to the SCU to 
select the memory unit. The memory unit is selected by 
physical ID or logical ID based on the setting of the SCU 
configuration register. 

MODIFICATIONS: DU, DL, 0, sc, SCR 

ILLEGAL REPEATS: RPD, RPL, RPT 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if execution is attempted in the Slave 
or Master mode. 

2. An IPR fault occurs if illegal address modification or an 
illegal repeat is used. 

8-444 DZ51-00 

/ 
I 

/ 



( 

( 

(-

RPAT RPAT 

RPAT Run PATROL 611 (0) 

FORMAT: single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode and Master mode; NS mode only 

EXPLANATION: This instruction operates like the DIS instruction. When 
PATROL is enabled, a full cycle of all test pages is run. 
The sampling for interrupts at completion of each test page 
is not done. Upon completion of the full cycle, the CPU 
returns to the execution of the next instruction. 

I LLEGAL ADDRESS 

When PATROL is disabled, no operation takes place. The CPU 
continues with the next instruction. 

MODIFICATIONS: None. Modification is performed, including modification of 
any indirect words specified. However, the effective address 
has no effect on the operation, including the final value of 
the instruction counter. 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATeRS: 

NOTES: 

None affected 

1. A Command fault occurs if execution is attempted in the 
Slave or Master modes. 

2. An IPR fault occurs if this instruction is executed in ES 
mode. 

3. An IPR fault occurs if illegal repeats are executed. 

8-445 DZ51-00 



RPD RPD 

RPD Repeat Double 560 (0) 

FORMAT: 

000 0 1 1 1 1 Op Code 2 2 223 3 

TERM. CONDo 560(0) 

OPERATING MODES: Executes in NS mode only 

CODI NG FORMAT: 

EXPLANATION: 

RPD N,I,kl,k2, ••• ,k7. (A=B=C=l.) The command generated by 
the assembler from this format will cause the two 
instructions immediately following the RPD instruction to be 
iterated N times and the effective addresses of those two 
instructions to be incremented by the value I for each of N 
iterations. The meaning of the termination conditions of 
kl,k2, ••• ,k7 are the same as for the RPT instruction. Since 
the repeat-double must fall in an odd location, the assembler 
will force this condition and a NOP instruction is used for a 
filler when needed. 

RPDX ,I. (A=B=C=O.) This instruction operates just as the 
RPD instruction with the exception that A,B,N and the 
conditions for termination are loaded by the user into index 
register zero. 

RPDA N,I,kl,k2, ••• ,k7. (A=C=l. B=O.) This instruction 
operates just as the RPD instruction with the exception that 
only the effective address of the first instruction following 
the RPDA instruction will be incremented by the value of I 
for each of N iterations. 

RPDB N,I,kl,k2, ••• ,k7. (A=O. B=C=l.) This instruction 
operates just as the RPD instruction with the exception that 
only the effective address of the second instruction 
following the RPDB instruction will be incremented by the 
value I for each of N iterations. 

The instructions from the next Y-pair are fetched and saved 
in the processor; they are executed repeatedly until a 
specified termination condition is met. 

8-446 DZ51-00 



RPD 

( 

RPD 

1. The RPD instruction must be stored in an odd memory 
location except when accessed via the XEC or XED 
instructions. In this case, the RPD instruction can be 
either even or odd, but the XEC or XED instruction must be 
in an odd memory location. 

2. If C = 0, the tally and terminate conditions are loaded 
from XO/GXO. 

NS Mode 

Tally, terminate condition = C(XO)0-17 

ES Mode 

Tally, terminate condition = C(GXO)18-35 
C(GXO)0-17 unchanged 

3. If C = 1, then bits 0-17 of the RPD instruction are loaded 
into XO/GXO. 

NS Mode 

Bits 0-17 of the RPD instruction --> C(XO/GXO) 

ES Mode 

Bits 0-17 of the RPD instruction --> C(GXO>18-35 

00 •••• 0 --> C(GXO)0-17 

4. The terminate condition(s) and tally from Xo control the 
repetition for the instructions following the RPD 
instruction. An initial tally of zero is interpreted as 
256. A fault also causes an exit from the cycle. 

5. The repetition cycle consists of the following steps: 

a. Execute the pair of repeated instructions. 

b. C(XO)0-7 - 1 --> bits 0-7 of C(XO) 

or C(GXO)l8-25 - 1 --> C(GXO)l8-25 

c. If a terminate condition is met, set the Tally Runout 
indicator OFF and exit. 

8-447 DZ5l-00 



RPD RPD 

d. If bits 0-7 of C(XO) or bits 18-25 of C(GXO) = 0, set 
the Tally Runout indicator ON and exit. 

e. If conditions in c. or d. are not met, go to a. 

6. Many instructions cannot be repeated. If an instruction 
cannot be repeated, an illegal repeat causes on IPR fault 
to occur. Refer to the individual instruction 
descriptions to determine whether or not a particular 
instruction can be repeated. 

7. Address modification for the pair of repeated instructions 
is as follows. 

For each of the two repeated instructions, only the 
modifiers Rand RI and only the designators specifying 
Xl, ••• ,X7/GX1, ••• ,GX7 are permitted. Address register 
modification is also permitted. All other modifier 
designations result in an IPR fault. 

When the effective address for R modification is Y, and 
when the indirect word address for RI modification is 
YI, the address is determined as follows. 

a. When AR modification is not indicated (bit 29 = 0) 

o For the first execution of each of the two repeated 
instructions: 

Y + C(R) --> Yl or YIl 

Y1 or YI1 --> C(R) 

o For any subsequent execution of the two repeated 
instructions: 

For the first instruction of the pair 

If A=l, then DELTA + C(R) --> Yn or YIn 

Yn or YIn --> C(R) 

If A=O, then C(R) --> Yn or YIn' where n>l 

For the second instruction of the pair 

If B=l, then DELTA + C(R) --> Yn or YIn: 

Yn or YIn --> C(R) 

8-448 DZ51-00 



RPD 

( 

( 

( 

RPD 

If B=O, then C(R) --> Yn or YIn' where n>l 

b. When AR modification is indicated (bit 29 = 1) 

a For the first execution of each of the two repeated 
instructions: 

(se)Y + C(R) + C(ARm) -> Y1 or Yll 

(se)Y + C(R) --> C(R) 

(se) is the extended address with bit 3 of y. 

ARm is the address register m selected by 
instruction bits 0, 1, 2. 

o For any subsequent execution of the two repeated 
instructions: 

For the first instruction of the pair 

If A=l, then DELTA + C(R) + C(ARm) --> Yn or 
YIn; 

DELTA + C(R) --> C(R) 

If A=O, then C(R) + C(AR) --> Yn or YIn 

For the second instruction of the pair 

If B=l, then DELTA + C(R) + C(ARm) -> Yn or 
Yl n 

DELTA + C(R) --> C(R) 

If B=O, then C(R) + C(ARm) -> Yn or Yl n 

A and B are the contents of the XO bits 8 and 9 or 
the GXO bits 26 and 27. 

8-449 DZ51-00 



RPD RPD 

When RI modification is specified in the repeated 
instruction, indirect reference is performed only 
once for each repeat. The tag field of the indirect 
word is ignored and processed as R modification (R = 
N) • 

8. The Exit Conditions: 

An exit is made from the repeat cycle if one of the 
terminate conditions exists or if tally = 0 after the 
execution of the odd instruction of the repeated pair. 
Also, an exit is made when a fault occurs. 

The program-controlled exit conditions are: 

a. Tally = 0 

b. Terminate Conditions: 

The bit configuration in bit positions 11-17 of the RPD 
instruction defines the terminate conditions. If more 
than one condition is specified, the repeat terminates 
if anyone of the specified conditions is met. 

The carry, negative, and zero indicators each use two /i 

bits, one for the OFF condition and one for ON. A zero 
in both positions for one indicator causes this 
indicator to be ignored as a terminate condition. A 1 
in both positions causes an exit after the first 
execution of the repeated instruction pair. 

Bit 17 = 0: Ignore all overflows. The respective 
overflow indicator is not set ON, and 
an Overflow fault does not occur. 

Bit 17 = 1: Process overflows. If overflow mask 
indicator is ON when an overflow 
occurs, then exit from the repetition 
cycle. If the overflow mask indicator 
is OFF when an overflow occurs, then 
an Overflow fault occurs. 

8-450 . DZ5l-00 



( RPD 

c. 

RPD 

Bit 16 = 1: Terminate if carry indicator is OFF. 

Bit 15 = 1: Terminate if carry indicator is ON. 

Bit 14 = 1: Terminate if negative indicator is OFF. 

Bit 13 = 1: Terminate if negative indicator ON. 

Bit 12 = 1: Terminate if zero indicator OFF. 

Bit 11 = 1: Terminate if zero indicator ON. 

Overflow Fault: 

If bit 17 = 1 and an overflow occurs with the overflow 
mask indicator OFF, an Overflow fault occurs and an 
exit is made from the repetition cycle after the 
execution of the current instruction when the fault 
processor returns control. 

A non-program-controlled exit from the repetition cycle 
occurs if any fault other than an Overflow occurs. If 
any fault (Overflow, Divide Check, Parity error on 
indirect word or operand fetch, etc.) occurs on the 
even instruction, the odd instruction will not be 
executed. 

9. Status at termination of repeat 

Bits 0-7 of C(XO} or bits 18-25 of C(GXO} contain the 
tally residue (i.e., the number of repeats remaining until 
a tally runout would have occurred). The terminate 
conditions in bits 11-17 remain unchanged. 

If the exit was due to tally = 0 or a terminate condition, 
the Xn/GXn specified by the designator of each of the two 
repeated instructions will contain either: 

a. The contents of the designated Xg/GXn after the last 
execution of the repeated pair plus the DELTA 
associated with each instruction, as A or B, the DELTA 
designators (bits 8 and 9 of XO) = 1, or 

8-451 DZ5l-00 



RPD 

I LLEGAL ADDRESS 

RPD 

b. The contents of the designated Xg/GKg after the last 
execution of the repeated pair if A or B, respectively, 
is zero. 

10. When XOO-7/GK018-25 contain zeros and the terminate 
condition is not satisfied, the tally runout indicator set 
to ON: otherwise, it is set to OFF. 

MODIFICATIONS: None. Address modification is not executed. Bit 29 is 
ignored. 

ILL]!X;AL REPEATS: RPT, RPD, RPL 

INDICATORS: The RPD instruction itself does not affect any of the 
indicators. However, the execution of the repeated 
instructions may affect indicators. The repeat mode entered 
as a result of the instruction affects the Tally Runout 
indicator. 

NOTES: 1. A repeat-double of instructions that have long execution 
times may cause a Lockup fault (LUF) if the time involved 
is greater than the lockup time interval, which may be 2, 
4, 8, or 16 milliseconds. 

2. The repeated instruction must be modified by an index 
register. 

3. The following conditions cause an IPR fault to occur. 

o If illegal repeats are used. 

o If the repeated instruction uses XO/~O. 

o If R or RI modification is attempted with the repeated 
instruction with other than Xl-X7/GKl-GX7. 

o If the RPD instruction (or the XEC instruction 
accessing the RPD instruction) is not at an odd 
location. 

8-452 DZ5l-00 

'\, 

) 



( RPD 

EXAMPLE: 

I 8 

EAX6 
EAX7 
RPD 
LDAQ 
STAQ , 
EVEN 

FROM BSS 
TO BSS 

If the exit was due to a fault, the Xn/GXn specified by 
the designator of each of the two repeated instructions 
may contain either: 

a. The contents of the designated xn/GXn when the fault 
occurred plus the DELTA associated with each 
instruction A and B = 1, or 

b. The contents of the designated Xn/GXn when the fault 
occurred. 

16 

FROM 
TO 
100,2 
0,6 
0,7 

200 
200 

RPD 

8-453 DZ51-00 



RPL RPL 

RPL Repeat Link 500(0) 

FORMAT: 

o 0 0 011 1 1 Op Code 2 2 2 2 3 3 

TERM. CONDo 500(0) 

OPERATING MODES: Executes in NS mode only 

CODING FORMAT: RPL N,kl,k2, ••• ,k7. (C = 1.) This format causes the 
instruction immediately following the RPL instruction to be 
repeated N times or until one of the conditions specified in 
kl, ••• ,k7 is satisfied, or until the link address of zero is 
detected. The range of N is 0-255. If N = 0, the instruction 
will be iterated 256 times. If N is greater than 255, the 
instruction will cause an error flag (A) to be printed on the 
assembly listing. The fields kl, k2, ••• , k7 mayor may not 
be present. They represent conditions for termination which, 
when needed, are declared by the conditional transfer 
instructions TMI, TNC, TNZ, TOV, TPL, TRC, and TZE. These 
instructions affect the termination condition bits in 
position 11-17 of the Repeat instruction. 

EXPLANATION: 

An octal number can be used rather than the transfer 
instructions to denote termination conditions. Thus, if the 
field for kl, k2, ••• , k7 is found to be numeric, it will be 
interpreted as octal, and the low-order 7 bits will be ORed 
into bit positions 11-17 of the Repeat instruction. The 
variable field scan is terminated with the octal field. 

RPLX (C = O). This instruction operates just as the RPL 
instruction except that N and the conditions for termination 
are loaded by the user into index register zero. 

The next instruction is executed either a specified number of 
times until a specified termination condition is met, or 
until the link address of zero is detected. 

8-454 DZ5l-00 



( 
RPL 

( 

( 

1. If C = 0, the tally and terminate conditions are those 
loaded from XO/GXO. 

NS Mode 

Tally, terminate condition = C(XO)O-17 

ES Mode 

Tally, terminate condition = C(GKO)18-35 

C (GKO ) 0-:-17 is unchanged 

RPL 

2. If C = 1, then bits 0-17 of the RPL instruction--> C(XO)/(GKO) 

NS Mode 

Bits 0-17 of the RPD instruction --> C(XO/GKO) 

ES Mode 

Bits 0-17 of the RPD instruction --> (GKO)18-35 

00 ••• 0 --> C(GXO)0-17' 

3. The terminate condition(s) and tally from XO control the 
repetition for the instruction following the RPL 
instruction. An initial tally of zero is interpreted as 
256. A fault also causes an exit from" the cycle. 

4. The repetition cycle consists of the following steps: 

a. Execute the repeated instruction. 

b. C<XO)0-7 -1 --> bits 0-7 of C(XO) 

or C(GXO}18-25 -1 --. > C(GKO)18-35' 

c. If a terminate condition is met, set the Tally Runout 
indicator OFF and exit. 

d. If bits 0-7 of C(XO) or bits 18-25 of C(GXO} = 0, or 
the link address bits 0-17 of C(Y) = 0 and no terminate 
condition is met, set the Tally Runout indicator ON and 
exit. 

e. If conditions in c. or d. are not met, the effective 
address C(Y} is used as a link address to determine the 
C(Y) to be used in the next iteration. Go to a. 

8-455 DZ51-00 



RPL RPL 

5. Many instructions cannot be repeat-linked. I f an 
instruction cannot be repeated, an illegal repeat causes 
an IPR fault to occur. Refer to the individual 
instruction descriptions to determine whether or not a 
particular instruction can be repeated. 

6. Address modification for the repeated instruction is as 
follows. 

Only address register (AR) modification and R modification 
specifying Xl-X7/GX1-GX7 are permitted for repeated 
instructions. 

R modification is valid only for the first execution of 
the repeated instruction, AR modification is valid for all 
executions. 

The effective address is generated as follows. 

a. When AR modification is not indicated (bit 29 = 0) 

o For the first execution of the repeated instruction 

Yl = yl + C(R) 

Yl --> C(R) 

o For each successive execution of the repeated 
instruction 

Yn = C(Yn-l)O-17 

Yn --> C(R) (when YnO-17 does not contain zeros) 

8-456 DZ51-00 



RPL 

b. When AR modification is indicated (bit 29 = 1) 

o For the first execution of the repeated 
instruction 

Y1 = (se)y + C(R) + C(ARm) 

(se)y + C(R) --> C(R) 

RPL 

(se)y is the extended address with bit 3 of y. 

ARm is the address register m selected by 
instructions bits 0, 1, 2. 

o For each successive execution of the repeated 
instruction 

Yn = C(Yn-1)0-l7 + C(AR) 

C(Yn-l)0-17 --> C(R) 

when YnO-17 does not contain zeros 

The effective address Y is the address of the next 
list word. The lower portion of the list word 
contains the operand to be used for this execution 
of the repeated instruction. 

The operand is handled in one of the following 
formats. 

Bits 0-17: 00 ••• 0 

Bits 18-35: C{Y)18-35 for single-precision (1 
word) 

or as 

Bits 0-17: 00 ••• 0 

Bits 18-71: C{Y}18-71 for double precision (2 
words) 

The upper 18 bits of the list word contain the link 
address; that is, the address of the next successive 
list word, and thus the effective address for the 
next successive execution of the repeated 
instruction. 

8-457 DZ51-00 



RPL RPL 

7. Repeat Exit Conditions: 

An exit is made from the repeat cycle if one of the 
terminate conditions exists or if tally = 0 or link 
address = 0 after the execution of the repeated 
instruction. Also, an exit is made when a fault occurs. 

The program-controlled exit conditions are: 

a. Tally = 0 

b. Link Address = 0 

c. Terminate Conditions: 

The bit configuration in bit positions 11-17 of the RPL 
instruction defines the terminate conditions. If more 
than one condition is specified, the repeat terminates 
if any of the specified conditions is met. 

The carry, negative, and zero indicators each use two 
bits, one for the OFF condition and one for ON. A zero 
in both positions for one indicator causes this 
indicator to be ignored as a terminate condition. A 1 
in both positions causes an exit after the first 
execution of the repeated instruction. 

Bit 17 = 0: Ignore all overflows. The respective 
overflow indicator is not set ON, and 
an Overflow fault does not occur. 

Bit 17 = 1: Process overflows. If the overflow 

Bit 16 = 1: 

Bit 15 = 1: 

Bit 14 = 1: 

mask indicator is ON when an overflow 
occurs, exit from the repetition 
cycle. If the overflow mask indicator 
is OFF when an overflow occurs, then 
an Overflow fault occurs. 

Terminate if carry indicator is OFF. 

Terminate if carry indicator is ON. 

Terminate if negative indicator is 
OFF. 

Bit 13 = 1: Terminate if negative indicator is 
ON. 

8-458 DZ51-00 

/ ""\ 



( 

( 

RPL 

ILLEGAL ADDRESS 

RPL 

Bit 12 = 1: Terminate if zero indicator is OFF. 

Bit 11 = 1: Terminate if zero indicator is ON. 

d. Overflow Fault: 

If bit 17 = 1 and an overflow occurs with the overflow 
mask indicator OFF, an Overflow fault occurs and an 
exit is made from the repetition cycle when the fault 
processor returns control. 

A non-program-controlled exit from the repetition cycle 
occurs if any fault other than an Overflow occurs 
(Divide Check, Parity error on indirect word or operand 
fetch, etc.). 

8. Status at termination of repeat 

Bits 0-7 of C(XO) or bits 18-25 of C(GXO) contain the 
tally residue (i.e., the number of repeats remaining until 
a tally runout would have occurred). The terminate 
conditions in bits X01l-17/GX029-35 remain unchanged. 

The Xn/GXn specified by the designator of the repeated 
instruction contains the address of the list word that 
contains: 

a. In its lower-half, the operand used in the last 
execution of the repeated instruction 

b. In its upper-half, the address of the next list word. 

9. When XOO-7/GX018-25 contain zeros, or when the link 
address {Y)0-17 contains zeros, and the terminate 
condition is not satisfied, the Tally runout indicator is 
set to ON; otherwise, it is set to OFF. 

10. An exit will not occur if the effective address is 0 for 
the first execution of the linked instruction. This 
address specifies the location of the first word in the 
link table and is not interpreted as a link address. 

MODIFICATIONS: None. Address modification is not executed. Bits 29-35 are 
ignored. 

I LLEGAL REPEATS: RPT, RPD, RPL 

8-459 DZ5l-00 



RPL 

I NDI CATeRS : 

NOTES: 

EXAMPLE: 

1 

A 

B 

C 

D 

E 

TheRPL instruction itself does not affect any of the 
indicators. However, the execution of the repeated 
instruction may affect the indicators. The repeat mode 
entered as a result of the instruction affects the tally 
runout indicator. 

1. The repeated instruction must be modified by an index 
register. 

RPL 

2. The following conditions cause an Illegal Procedure fault. 

o I f illegal repeats are used. 

o If the repeated instruction uses xo/mw. 

o If other than AR or R modification is attempted with 
the repeated instruction. 

o If R modification other than Xl-X7/GX1-GX7 is attempted 
with the repeated instruction. 

S 16 

EAX7 A 
LDQ =0777777,DU 
LDA =3HIDD,DL 
RPL S,TZE 
CMK 0,7 
TNZ ERROR 

VFD lS/B,H1S/IDA 

VFD lS/C,H1S/IDB 

VFD lS/D,H1S/IOC 

VFD lS/E,H1S/IDD 

VFD lS/O,H1S/IDE 

S-460 DZS1-00 



RPT 

( 

RPT 

FORMAT: 

o 0 0 011 

OPERATING MODES: 

CODING FORMAT: 

( 

<: 

RPT 

Repeat 520 (O)] 

1 1 Op Code 2 222 3 3 
7 8 6 7 890 5 

TERM. CONDo I 520(0) II II DELTA I 
Executes in NS mode only 

RPT N,I,kl,k2, ••• ,k7. (Bit C=l.) The command generated by 
the assembler from this format will cause the instruction 
immediately following the RPT instruction to be iterated N 
times and that instruction's effective address to be 
incremented by the value I for each of N iterations. The 
range for N is 0-255. If N = 0, the instruction will be 
iterated 256 times. If N is greater than 256, the instruction 
will cause an error flag (A) to be printed on the assembly 
listing. The fields kl,k2, ••• k7 mayor may not be present. 
They represent conditions for termination which, when needed, 
are declared by the conditional transfer instructions TMI, 
TNC, TNZ, TOV, TPL, TRC, and TZE. These instructions affect 
the termination condition bits in positions 11-17 of the 
Repeat instruction. See discussion of terminate conditions 
below. 

In addition, an octal number can be used rather than the 
transfer instructions to denote termination conditions. 
Thus, if the field for kl,k2 ••• ,k7 is found to be numeric, it 
will be interpreted as octal and the low-order 7 bits will be 
ORed into bit positions 11-17 of the Repeat instruction. The 
variable-field scan will be terminated with the octal field. 

RPTX ,I (Bit C = 0). This instruction operates just as the 
RPT instruction with the exception that N and the conditions 
for termination are loaded by the user into bit positions 0-7 
and 11-17, respectively, of index register zero (instead of 
being embedded in the instruction). 

8-461 DZ51-00 



RPT 

EXPLANATION: 

RPT 

The next instruction is executed either a specified number of 
times or until a specified termination condition is met. 

1. If C = 0, the tally and terminate conditions are those 
loaded from XO/GXO. 

NS Mode 

Tally, terminate condition = C(XO)0-17 

ES Mode 

Tally, terminate condition = C(GXO)18-35 

C(GXO)0-17 unchanged 

2. If C = 1, then bits 0-17 of the RPT instruction are loaded 
into C(XO)/(GXO}. 

NS Mode 

Bits 0-17 of the RPT instruction --> C(XO/GXO) 

ES Mode 

Bits 0-17 of the RPT instruction --> (GXO)18-35 
00--0 --> C(GXO)0-17 

3. The terminate condition(s) and tally from XO control the 
repetition for the instruction following the RPT 
instruction. An initial tally of zero is interpreted as 
256. A fault also causes an exit from the cycle. 

4. The repetition cycle consists of the following steps: 

a. Execute the repeat instruction. 

b. C(XO)0-7 - 1 --> bits 0-7 of C(XO) 

or C(GXO)18-25 - 1 --> C(GXO)18-25 

c. If a terminate condition is met, set the tally runout 
indicator OFF and exit. 

d. If bits 0-7 of C(XO) or bits 18-25 of C(GXO) = 0, set 
the tally runout indicator ON and exit. 

e. If conditions in c. or d. are not met, go to a. 

8-462 DZ51-00 



RPT 

( 

(/ 

(_. 

5. Many instructions cannot be repeated. For such 
instruc~ions, an illegal repeat causes an IPR fault to 
occur. Refer to the individual instruction descriptions 
to determine whether or not a particular instruction can 
be repeated. 

6. Address modification for the repeated instruction is as 
follows. 

For the repeated instruction, only the modifiers Rand RI 
and only the designators specifying Xl, ••• ,X7/GXl, ••• ,GX7 
are permitted. Address register modification is also 
permitted. 

All other modifier designations result in an IPR fault. 

When the effective address for R modification is Y, and 
when the indirect word address for RI modification is YI, 
the address are determined as follows. 

When AR modification is not indicated (bit 29 = 0) 

a. For the first execution of the repeated instruction: 

Y + C(R) --> Yl or YIl 

Yl or YIl --> C(R) 

b. For each successive execution of the repeated 
instruction 

DELTA + C(R) --> Yn or YIn 

Yn or YIn --> C(R) 

DELTA is bits 30 to 35 of the RPT instruction. 

8-463 DZ51-00 

RPT 



RPT 

When AR modification is indicated (bit 29 = 1) 

a. For the first execution of the repeated instruction 

(se)Y + C(R) + C(ARm) --> Yl or Y1l 

(se)Y + C(R) --> C(R) 

(se) is the extended address with bit 3 of y. 

RPT 

ARm is the address register m selected by instruction 
bits 0, 1, 2. 

b. For any subsequent execution of the the repeated 
instruction 

DELTA + C(R) + C{ARm) --> Yn or YIn 

DELTA + C(R) --> C(R) 

When RI modification is specified in the repeated 
instruction, indirect reference is performed only once 
for each repeat. The tag field of the indirect word is 
ignored and processed as R modification (R = N). 

7. Repeat Exit Conditions: 

An exit is made from the repeat cycle if one of the 
terminate conditions exists or if tally = 0 after the 
execution of the odd instruction of the repeated pair. 
Also, an exit is made when a fault occurs. 

The program-controlled exit conditions are: 

a. Tally = 0 

8-464 DZ5l-00 



RPT 

( 

( 

RPT 

b. Terminate Conditions: 

The bit configuration in bit positions 11-17 of the RPT 
instruction defines the terminate conditions. If more 
than one condition is specified, the repeat terminates if 
any of the specified conditions is met. 

The carry, negative, and zero indicators each use two 
bits, one for the OFF condition and one for ON. A zero 
in both positions for one indicator causes this indicator 
to be ignored as a terminate condition. A 1 in both 
positions causes an exit after the first execution of the 
repeated instruction pair. 

Bit 17 = 0: Ignore all overflows. The respective 

Bit 

Bit 

overflow indicator is not set ON, and 
an Overflow fault does not occur. 

17 = 1: Process overflows. If the overflow 
mask indicator is ON when an overflow 
occurs, exit from the repetition cycle. 
I f the overflow mask indicator is OFF 
when an overflow occurs, an Overflow 
fault occurs. 

16 = 1: Terminate if carry indicator is OFF. 

Bit 15 = 1: Terminate if carry indicator is ON. 

Bit 14 = 1: Terminate if negative indicator is OFF. 

Bit 13 = 1: Terminate if negative indicator is ON. 

Bit 12 = 1: Terminate if zero indicator is OFF. 

Bit 11 = 1: Terminate if zero indicator is ON. 

c. Overflow Fault: 

If bit 17 = 1 and an overflow occurs with the Overflow 
Mask indicator OFF, an Overflow fault occurs and an 
exit is made from the repetition cycle when the fault 
processor returns control. 

A non-program-controlled exit from the repetition cycle 
occurs if any fault other than Overflow occurs. 

8-465 DZ5l-00 



RPT 

ILLEGAL ADDRESS 

RPT 

8. Status at termination of repeat 

Bits 0-7 of C(XO) or bits 18-25 of C(GXO) contain the 
tally residue <i.e., the number of repeats remaining until 
a tally runout would have occurred). The terminate 
conditions in bits 11-17 remain unchanged. 

If the exit was due to tally = 0 or a terminate condition, 
the xn/GXg specified by the designator of the repeated 
instruction will contain: 

The contents of the designated xn/GXg after the last 
execution of the repeated instruction plus the DELTA 
associated with each instruction. 

If the exit was due to a fault, the Xg/GXg specified by 
the designator of the repeated instruction may contain one 
of the following. 

o The contents of the designated Xg/GXg when the fault 
occurred plus the DELTA 

o The contents of the designated Xg/GXg when the fault 
occurred 

9. When XOO-7/GX018-25 contain zeros and the terminate' / 
condition is not satisfied, the tally runout indicator it 
set ON; otherwise, it is set OFF. 

MODIFICATIONS: None. Address modification is not executed. Bit 29 is 
ignored. 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: The RPT instruction itself does not affect any of the 
indicators; however, the execution of the repeated 
instruction may affect indicators. The repeat mode entered 
as a result of the instruction affects the Tally Runout 
indicator. 

8-466 DZ5l-00 



( 
RPT 

NOTES: 

EXAMPLE: 

1 

( 

TABLE 
KEY 

(/: 

8 

LDA 

1. The repeated instruction must be modified by an index 
register. 

2. The following conditions cause an IPR fault to occur. 

o I f illegal repeats are used. 

o I f the repeated instruction uses XO/GXO. 

RPT 

o If R or RI modification is attempted with the repeated 
instruction with other than Xl-X7/GXl-GX7. 

o I f other than R or RI modification or AR modification 
are attempted with the repeated instruction. 

16 

KEY 
EAX4 TABLE 
RPT 64,l,TZE 
CMPA 0,4 
TZE FOUND 

BSS 64 
BSS 1 

8-467 DZ51-00 



RSCR RSCR 

RSCR Read System Controller Register 413 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: 

EXPLANATION: 

I LLEGAL ADDRESS 
MODI FI CATIONS: 

I LLEGAL REPEATS: 

INDICATORS: 

C(AQ) --> C(SCU Register) 

This instruction provides program access to all system 
controller registers. SCU selection is based upon the control 
SCU bit in the CPU mode register. Address development is 
followed, and is transferred to the SCU to select the general. 
register. In Slave mode, the final address is forced to 
reference the calendar clock. 

In VMS Privileged Master mode,. if both SCU ports are enabled 
and the least-significant bit of the effective address (word 
address) is 1, the control SCU bit is temporarily changed to 
permit selection of the non-control SCU. (Reference section 4 
for CPU configuration register and ASR control.) The control 
SCU bit is then reset to its original value. 

Real Memory Address: 

Bits 
0 ••• 21 22-24 25-27 Function 

X ••• X 0 X Not used 

X ••• X 1 X Configuration 

X ••• X 2 X Fault 

X ••• X 3 X History 

X ••• X 4 X calendar Clock 

X ••• X 5 X Not used 

X ••• X 6 X Syndrome 

X ••• X 7 X Not used 

DU, DL, 0, SC, SCR 

RPD, RPL, RPT 

None affected 

8-468 DZ51-00 

" , 



RSCR 

( 
NOTES: 

RSCR 

1. A Command fault occurs if address bits 22-24 are 0, 5, or 7 
(octal). 

2. A Command fault occurs if execution is attempted in Slave 
or Master mode. 

3. The SCU registers are defined in Section 4. 

4. Bits 25-27 of the configuration register are the SCU port 
number. These bits must be zero in an SSCR instruction, in 
order that a subsequent RSCR instruction returns the port 
number; otherwise, the OR of bits 25-27 and the port number 
are returned. 

5. An IPR fault occurs if illegal address modification or 
illegal repeats are executed. 

8-469 DZ5l-00 



RSW RSW 

RSW Read Processor Model Characteristics 231 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUHMARY: 

EXPLANATION: 

I LLEGAL ADDRESS 

C(model char.) -> C(A) 

0 ••• 0 -> C(A)0-3 

Processor type --> C(A)4-6 (DPS 8000 type = 101) 

Test Mode Register Bit 13 (Transfer Trace Mode) -> C(A)30 
1 = enable 

Performance submodel type --> C(A)31-32 

CPU Number --> C(A)33-35 

This instruction reads system model characteristics previously 
set by the firmware and loads them into the A register. 

The submodel field is interpreted as follows: 

C(A)31-32 

00 

01 

10 

11 

Performance 

1,5 

2.3 

3.0 

Undefined 

MODIFICATIONS: DU, DL, Rt, IR, IT 

ILLEGAL REPEATS: None 

I NDI CATORS: None affected 

NOTES: 1. Address development occurs but has no effect on the 
execution of this instruction. 

2. Additional model characteristics may be defined by the 
firmware. 

3. An IPR fault occurs if illegal address modification is 
executed. 

8-470 DZS1-00 

I 
j 



( 

( 

S4BD 
S4BDX 

S4BD 
S4BDX 

FORMAT: 

CODI NG FORMAT: 

Subtract 4-Bit Displacement from Address Register 

S4BD 
S4BDX 

522 (1) 

special arithmetic instruction format (see Figure 8-3) 

1 8 16 

{S4BD 1 
{s4BDxl word displacement,R,AR 

OPERATI NG MODES: Any 

EXPLANATION: Description is the same as for A4BD except that y and C(DR) 
are added and the sum is subtracted from the content of ARn. 

When the mnemonic is cOded with an X (S4BDX), bit 29 is 
forced to O. If bit 29 is 0, the content of ARn is assumed 
as o. 

ILLEGAL ADDRESS 
MODIFICATIONS: If DU, DL, or Ie are specified in DR. 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

EXAMPLES: Applies to ~S mode only 

1 8 16 32 

EAX3 10 
S4BDX 2,3,4 AR4 octal contents - 7777746 0 
S4BD 0,3,4 AR4 octal contents - 77777 340 

EAX6 7 
S4BDX 3,6,2 AR2 octal contents - 77777 405 
S4BD 0,6,2 AR2 octal contents - 77777 320 

8-471 DZ5l-00 



S6BD 
S6BDX 

S6BD 
S6BDX 

FORMAT: 

CODI NG FORMAT: 

Subtract 6-Bit Displacement from Address Register 

S6BD 
SGBDX 

521 (1) 

Special arithmetic instruction format (see Figure 8-3) 

1 8 16 

{S6BD } 
{S6BDX} word displacement,R,AR 

OPERATI NG MODES: Any 

EXPLANATION: Description is the same as for A6BD except that y and C(DR) 
are added and the sum is subtracted from the content of ARn. 

When the mnemonic is coded with an X (S6BDX), bit 29 is 
forced to zero. If bit 29 is 0, the content of ARn is 
assumed as O. -

ILLEGAL ADDRESS 
MODIFICATIONS: DU, DL, or IC specified in DR. 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An I Hega1 Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

EXAMPLES: Applies to NS mode only 

1 8 16 32 

EAX5 14 
SGBDX 0,5,2 AR2 octal contents - 7 7 7 7 7 546 
S6BD 2,5,2 AR2 octal contents - 7 7 7 7 7 1 2 3 

EAX6 5 
SGBDX 1,6,7 AR7 octal contents - 7 7 7 7 7 6 0 5 
SGBD 0,6,7 AR7 octal contents - 7 7 777 523 

8-472 DZ51-00 

, 
,~ 

/ 



( 
S9BD 
S9BDX 

S9BD 
S9BDX 

FORMAT: 

CODING FORMAT: 

Subtract 9-Bit Displacement from Address Register 

S9BD 
S9BDX 

520 (1) 

Special arithmetic instruction format (see Figure 8-3) 

1 8 16 

{S9BD } 
{S9BDX} word displacement,R,AR 

OPERATI NG MODES: Any 

SUMMARY: Description is the same as for A9BD except that y and C(DR) 
are added and the sum is subtracted from the content of ARn. 
When the mnemonic is coded with an X (S9BDX), bit 29 is 
forced to zero. If bit 29 is 0, the content of ARn is 
assumed as O. -

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, or I C sped tied in DR. 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

EXAMPLES: Applies to NS mode only 

1 8 16 32 

EAX7 9 
S9BDX 1,7,5 AR5 octal contents - 7777746 0 
S9BD 1,,5 AR5 octal contents - 77777 360 

EAX2 7 
S9BDX 2,2,6 AR6 octal contents - 7 7 7 7 7 420 
S9BD 0,2,6 AR6 octal contents - 777 7 7 2 4 0 

8-473 DZ5l-00 

I 
II 
:i 
11 

I' 
I 



SARn 

Store Address Register n 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODING FORMAT: 1 8 16 

SAR£ LOCSYM,R,AM 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

For n=0,1, •• ,7 as determined by op code 

C(ARn) --> C(Y)0-23: C(Y)24-3S, C(ARn) unchanged 

ES Mode 

For n=0,1, •• ,7 as determined by op code 

C(ARn) -> C(Y), C(ARn) unchanged 

ILLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, "RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

EXAMPLES: Applies to NS mode only 

1 8 16 32 

SARS ADDRWS o 0 1 7 5 0 2 7 ARS contents 

SARn 

ADDRWS BSS 1 o 0 1 7 5 0 2 7 x x x x memory after 

8-474 DZSl-OO 



( SAREG 

SAREG Store Address Registers 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

SAREG LOCSYM,R,AR 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

C(ARO,ARl, ••• ,AR7) --> C(Y,Y+l, ••• ,Y+7)O-23 

Zeros --> C(Y,Y+l, ••• ,Y+7)24-35 

ES Mode 

C(ARO,ARl, ••• ,AR7) --> C{Y,Y+l, ••• ,Y+7) 

SAREG 

EXPLANATION: The lower 3 bits of Yare assumed as 000 and the 8 words 
beginning from the 8-word boundary are accessed for storage. 
No check is performed to determine whether the lower 3 bits 
of Yare actually 000. 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

EXAMPLE: 

1 8 16 32 

SAREG REGWS 

EIGHT 
REGWS BSS 8 

8-475 DZ51-00 



SB2D 

SB2D Subtract Using Two Decimal Operands 

FORMAT: 

00 0011 1 1 Op Code 

a a 
a 2 

AR# 

a 0 
a 2 

AR# 

CaDI NG FORMAT: 

MF2 

Yl 

Yl 

Y2 

Y2 

203(1) 

1 1 2 2 222 
7 8 a 1 234 

CNl TNl Sl 

1 1 2 2 222 
7 8 0 1 234 

CN2 TN2 S2 

The SB2D instruction is coded as follows: 

1 8 

SB2D 
NDSC!! 
NDSC!! 

16 

(MF1),(MF2),RD,P,T 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 

222 

SFl 

SF2 

2 3 
9 0 

2 3 
9 0 

SB2D 

203 (1) 

MFl 

Nl 

N2 

3 

3 
5 

3 
5 

(Refer to Section 7 under Multiword Instructions for description 
of Multiword Modification Field.) 

OPERATI NG MODES: Any 

8-476 DZ51-00 



(- / 

SB2D 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

SB2D 

C(string 2) - C(string 1) --> C(string 2) 

same as SB3D except that the difference is stored using YC2, 
TN2, S2, and, if S2 indicates a scaled format, SF2. 

The zero indicator is set when the decimal number is zero; it 
does not indicate that all bits are zeros. 

Refer to AD3D, for a description of justifying the scaling 
factors. 

Independent of the data type being used (either packed 
decimal or 9-bit numeric; floating-point or scaled) 
significant digits in the result may be lost if: 

1. The difference between the scaling factors (exponents) of 
the source operands is large enough to cause the expected 
length of the intermediate result to exceed 63 digits 
after decimal-point alignment of source operands, followed 
by subtraction. 

2. The result field as defined by the result descriptor is 
not large enough to contain the calculated result after it 
has been aligned. 

MODIFICATIONS: DU, DL for MFI and MF2 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CA TORS: Zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

Truncation - If, in the preparation of the final result, 
one or more least significant digits (zero or 
nonzero) are lost and rounding is not 
specified, then ON; otherwise (i.e., no least 
significant digits lost or rounding is 
specified), OFF 

Exponent 
Overflow If exponent of floating-point result is > 127, 

then ON; otherwise, unchanged 

8-477 DZSI-OO 



SB2D SB2D 

NOTES: 

Exponent 
Underflow - If exponent of floating-point result is < 

-128, then ON: otherwise, unchanged 

Overflow - Iff ixed-point in':eger, or internal register 
overflow, then ON ~ otherwise, unchanged 

1. Truncation fault same as for AD3D. 

2. Illegal Procedure fault same as for MVN. 

3. If an illegal digit or sign is detected, part or all of 
the receiving field may be changed before the IPR fault 
occurs. 

EXAMPLES: Applies to NS mode only 

1 8 16 32 

SB2D , ,1 with rounding option 
NDSC4 FLDl,O,4,2,-3 subtrahend operand descriptor 
NDSC9 FLD2,O,8 minuend operand descriptor 
USE CONST. memory contents 

FLD1 EDEC 4P125+ 125 + 
FLD2 EDEC 8A+6543.2l + 6 5 4 3 2 1 -2 

USE + 6 5 4 3 0 9 -2 (Result) 

SB2D , , ,1 with truncation enable option 
NDSC4 FLD1,0,8,3,-4 subtrahend operand descriptor 
NDSC9 FLD2,0,8,3,-2 minuend operand descriptor 
USE CONST. memory contents 

FLD1 EDEC 8P12345678 12345678 
FLD2 EDEC 8A8765432l 87654321 

USE 87530864 (Result) 
*INSTRUCTION FAULT? YES WHAT KIND? truncation fault 

8-478 DZ51-00 

/' 

"--



( 
SB2DX SB2DX 

SB2DX Subtract Using Two Decimal Operands Extended 243 (1) 

FORMAT: 

0 0 0 1 1 1 1 Op Code 222 3 
0 1 2 o 1 7 8 789 5 

Icslxsloo------------ool MF2 
I 

243(1) H NFl 
I 

0 0 
0 2 

AR# 

o 0 
o 2 

AR# 

CODl NG FORMAT: 

Yl 

Yl 

Y2 

Y2 

1 8 16 

1 1 2 2 222 
7 8 o 1 234 

CNl TNl SXl 

1 1 2 2 222 
7 8 0 1 234 

CN2 TN2 SX2 

SB2DX (MF1),(MF2),RD,CS,T,NS 
NDSCn LOCSYM, CN , N , SX , SF, AM 
NDSCn LOCSYM,CN,N,SX,SF ,AM . 

SFl 

SF2 

2 3 
9 0 

2 3 
9 0 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

8-479 

Nl 

N2 

3 
5 

3 
5 

DZ51-00 



SB2DX SB2DX 

OPERATl NG MODES: Any 

SUMMARY: C(string2) - ~(stringl) --> C(string2) 

EXPLANATION: same as for SB3DX except that the difference is stored using 
YC2, TN2, SX2 and, if SX2 indicates a scaled format, SF2. 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL for NFl or MF2 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: same as for AD3DX 

NOTES: 1. All notes for AD3DX apply to SBZDX. 

2. See MVNX for information about coding of overpunched 
signs. 

8-480 DZ5l-00 

\ J 
~" 



-

( 

( 

SB3D 

SB3D 

FORMAT: 

0 o 0 
a 1 2 

Ip H 
0 0 
0 2 

AR# 

a 0 
o 2 

AR# 

o 0 
o 2 

AR# 

MF3 

CODI NG FORMAT: 

Subtract Using Three Decimal Operands 

001 1 
890 1 

HRDI MF2 

Y1 

Y1 

Y2 

Y2 

Y3 

Y3 

1 1 Op Code 
7 8 

I 223(1) 

1 122 222 
7 801 234 

CN1 TNI Sl 

1 122 222 
7 801 234 

CN2 TN2 S2 

1 122 222 
7 801 234 

CN3 TN3 S3 

SF1 

SF2 

SF3 

The SB3D instruction is coded as follows: 

1 8 16 

SB3D (MF1),(MF2),(MF3),RD,P,T 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 

8-481 

222 
789 

II I 
2 3 
9 0 

2 3 
9 0 

2 3 
9 0 

SB3D 

223 (1) 

MF1 

N1 

N2 

N3 

3 
5 

3 
5 

3 
5 

3 
5 

I 

DZS1-00 

I 

it 

If 
,; 



SB3D 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

SB3D 

OPERATI NG MODES: lmy 

SUMMARY: C(string 2) - C(string 1) --> C(string 3) 

ILLEGAL ADDRESS 

The decimal number of data type TN1, sign and decimal type 
Sl, and starting location YC1, is subtracted from the decimal 
number of data type TN2, sign and decimal type S2, and 
starting location YC2. The difference is stored starting in 
location YC3 as a decimal number of data type TN3 and sign 
and decimal type S3. 

If S3 indicates a fixed-point format, the results are stored 
using scale factor SF3, which may cause leading or trailing 
zeros (4 bits - 0000, 9 bits - 000110000) to be supplied 
and/or most-significant-digit overflow or 
least-significant-digit truncation to occur. 

If S3 indicates a floating-point format, the result is 
right-justified to preserve the most significant nonzero 
digits even if this causes least-significant truncation. 

If P=1, positive signed 4-bit results are stored using octal 
13 as the plus sign. If P=O, positive signed 4-bit resu1ts_ 
are stored with octal 14 as the plus sign. If RD is a 1, 
rounding takes place prior to storage. 

Provided that strings 1, 2, and 3 are not overlapped, the 
contents of the decimal numbers that start in locations YCl 
and YC2 remain unchanged. 

MODIFICATIONS: DU, DL for MFl, MF2, and MF3 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: same as for SB2D 

NOTES: 1. Truncation fault same as for AD3D. 

2. Illegal Procedure fault same as for MVN. 

3. The zero indicator is set when the decimal number is zero. 

8-482 DZSl-OO 

) 



( 
SB3D 

4. Independent of the data type being used (either packed 
decimal or 9-bit numeric; floating-point or scaled) 
significant digits in the result may be lost if: 

SB3D 

a. The difference between the scaling factors (exponents) 
of the source operands is large enough to cause the 
expected length of the intermediate result to exceed 63 
digits after decimal-point alignment of source 
operands, followed by subtraction 

b. The result field as defined by the result descriptor is 
not large enough to contain the calculated result after 
it has been aligned 

5. If an illegal digit or sign is detected, part or all of 
the receiving field may be changed before the IPR fault 
occurs. 

EXAMPLES: Applies to NS mode only 

1 

FLOl 
FLD2 
FLD3 

1 

FLDl 
FLD2 
FLD3 

8 

SB3D 
NDSC4 
NDSC4 
NDSC9 
USE 
EDEe 
EDEC 
BSS 
USE 

8 

SB3D 
NDSC9 
NDSCS 
NDSC4 
USE 
EDEe 
EDEC 
BSS 
USE 

16 

, , ,1 
FLD1,O,4,2 
FLD2,O,4,l 
FLD3,3,5 
CONST. 
4P123-
4P-123 
2 

16 

FLD1,O,8 
FLD2,O,8 
FLD3,O,8,l,-2 
CONST. 
8A-123456E-3 
8A-987654E-3 
1 

32 

with rounding option 
subtrahend operand descriptor 
minuend operand descriptor 
operand descriptor for result field 
memory contents 
123-
-123 
X X X + 0 0 0 +127 (Result) 
zero indicator ON 

32 

with truncation enable option 
subtrahend operand descriptor 
minuend operand descriptor 
result operand descriptor 
memory contents 
- 1 2 3 4 5 6 -3 
- 9 8 7 6 5 4 -3 
-0086419 (Result) 
indicators on? - negative and truncation 

8-483 DZ5l-00 



SB3DX 

SB3DX 

FORMAT: 

0 o 0 
0 1 2 

HHSI MF3 

0 0 
0 2 

AR# 

o 0 
o 2 

AR# 

o 0 
o 2 

AR# 

CODING FORMAT: 

Subtract Using Three Decimal Operands Extended 

1 1 
o 1 

I 

Yl 

Yl 

Y2 

Yl 

Y3 

Y3 

1 

MF2 

8 16 

1 1 Op Code 
7 8 

I 263(1) 

1 1 2 2 222 
7 8 o 1 234 

CNl TNI SXl 

1 1 2 2 222 
7 8 0 1 234 

CN2 TN2 SX2 

1 1 2 2 222 
7 8 0 1 234 

CN3 TN3 SX3 

222 
789 

III 

SFI 

SF2 

SF3 

SB3DX (MF1),(MF2),(MF3),RD,CS,T,NS 
NDSCn LOCSYM, CN , N ,SX, SF, AM 
NDSCn LOCSYM,CN,N,SX,SF,AM 
NDSCn LOCSYM, CN , N, SX, SF , AM 

8-484 

2 3 
9 0 

2 3 
9 0 

2 3 
9 0 

SB3DX 

263 (1) 

MFI 

Nl 

N2 

N3 

3 
5 

3 
5 

3 
5 

3 
5 

I 

DZ51-00 



( 

( 

( 

SB3DX 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

SB3DX 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

C(string 2) - C(string 1) --> C(string 3) 

The decimal number of data type TN1, sign and decimal type 
SXl, and starting location YC1, is subtracted from the 
decimal number of data type TN2, sign and decimal type SX2, 
and starting location YC2. The difference is stored starting 
in location YC3 as a decimal number of data type TN3 and a 
sign and decimal type SX3. 

If SX3 indicates a fixed-point format, the difference is 
stored using scale factor SF3, which may cause leading or 
trailing zeros (4 bits - 0000, 9 bits - 000110000) to be 
supplied and/or most-significant-digit overflow or 
least-significant-digit truncation to occur. 

If SX3 indicates a floating-point format, the result is 
right-justified to preserve the most-significant-nonzero 
digits even if this causes least-significant truncation. The 
character set is defined by CS. Placement of overpunched 
sign in the output is controlled by NS. (Refer to definition 
of NS in introductory pages of this section.) 

If RD = 1, rounding takes place prior to storage. 

Provided strings 1, 2, and 3 are not overlapped, the contents 
of the decimal numbers that start in locations YC1 and YC2 
remain unchanged. 

MODIFICATIONS: DU, DL for NFl, MF2, or MF3 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NOI CATORS: Same as for AD3D 

NOTES: 1. All notes for AD3D apply to SB3DX. 

2. See MVNX for information about coding of overpunched 
signs. 

8-485 DZ5l-00 

I 
I 
I 
I 
! 
I 



SBA SBA 

SBA Subtract from A-Register 175 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(A) - C(Y) -> C(A); C(Y) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATORS: Zero 

Negative 

Overflow 

carry 

- If C(A) = 0, then ON; otherwise, OFF 

- If C(A)O = 1, then ON: otherwise, OFF 

- I f range of A is exceeded, then ON 

- If a carry out of bit 0 of C(A) is generated, 
then ON: otherwise, OFF 

8-486 DZ51-00 

/ 



(~/ 

SBAQ 

SBAQ Subtract from AQ-Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(AQ) - C(Y-pair) --> C(AQ): C(Y-pair) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: None 

I NDI CATORS : Zero 

Negative 

Overflow 

- If C(AQ) = 0, then ONi otherwise, OFF 

- If C(AQ)O = 1, then ON: otherwise, OFF 

- I f range of AQ is exceeded, then ON 

SBAQ 

177 (0) I 

carry - If a carry out of bit 0 of C(AQ) is generated, 

NOTE: 

then ON: otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-487 DZ51-00 



SBAR SBAR 

SBAR Store Base Address Register 550 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

C(BAR) -> C(Y)0-17 

C(Y)18-35 unchanges 

The relationship between C(Y) and the BAR follows. 

Bits Interpretation 

0-7 Base Address/l024 

8 Not used 

9-16 (Unrelocated Address Limit)/I024 

17 Not used 

The base address is a zero modulo 1024 word address that is 
the first valid address allocated to the slave program. The 
unrelocated address limit is a zero modulo 1024 word address 
that is the first invalid address relative, relative to the 
base address, beyond the memory space allocated to the slave 
program. (The unrelocated address limit/l024 is also the 
quantity of 1024-word blocks allocated to the slave program.) 

MODIFICATIONS: DU, DL, CI, SC, sea 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: None 

NOTE: An I llegal Procedure fault occurs if illegal address 
modifications or illegal repeats are executed. 

8-488 DZ51-00 

'\ 
/ 

"\ 



( 

(' 

SBD 
SBDX 

SBD 
SBDX 

FORMAT: 

CODING FORMAT: 

Subtract Bit Displacement from Address Register 

SBD 
SBDX 

523 (l) 

Special arithmetic instruction format (see Figure 8-3) 

1 8 16 

{SDB } 
{SBDXl word displacement,R,AR 

OPERATI NG MODES: Any 

EXPLANATION: Description is the same as for ABD except that y and C(DR) 
are added and the sum is subtracted from the AR. 

When the mnemonic is coded with an X (SBDX), bit 29 is forced 
to zero. If bit 29 is 0, the content of ARn is assumed as O. 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, and IC specified in DR. 

I LLEGAL REPEATS: RPT I RPD I RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

EXAMPLES: Applies to NS mode only 

1 8 

EAXI 
SBDX 
SBD 

EAX2 
SBDX 
SBD 

16 

48 
2,1,6 
0,1,6 

75 
1,2,3 
0,2,3 

32 

AR6 octal contents - 7 7 7 7 7 4 4 6 
AR6 octal contents - 7 7 7 7 7 3 2 3 

AR2 octal contents - 7 7 7 7 7 4 6 6 
AR2 octal contents - 7 7 7 7 7 2 6 3 

8-489 DZ51-00 



SBLA SBL].. 

SBLA Subtract Logical from A-Register 135 (0) I 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(A) - C(Y) -> C(A): C(Y) unchanged 

EXPLANATION: This instruction is identical to SBA except that the overflow 
indicator is not affected and an Overflow fault does not 
occur. Operands and results are treated as unsigned, 
positive binary integers. 

ILLEGAL ADDRESS 
MODI FI CATIONS: None 

ILLEGAL REPEATS: None 

INDICATORS: Zero 

Negative 

carry 

- If C(A) = 0, then ON; otherwise, OFF 

If C(A)O = 1, then ON; otherwise, OFF 

- If a carry out of bit 0 of C(A) is generated, 
then ON: otherwise, OFF. When the carry 
indicator is OFF, the range of A has been 
exceeded. 

8-490 DZ51-00 

/~\ 

/ 



( 
SBLAQ SBLAQ 

SBLAQ Subtract Logical from AQ-Register 137 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(AQ) - C(Y-pair) -> C(AQ); C(Y-pair) unchanged 

EXPLANATION: This instruction is identical to SBAQ except that the 
overflow indicator is not affected and an Overflow fault does 
not occur. Operands and results are treated as unsigned, 
positive binary integers. 

ILLEGAL ADDRESS 
MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: None 

INDICATORS: 

NOTE: 

Zero 

Negative 

carry 

- If C(AQ) = 0, then ON: otherwise, OFF 

- If C(AQ)O = 1, then ON; otherwise, OFF 

- If a carry out of bit 0 of C(AQ) is generated, 
then ON; otherwise, OFF. When the carry 
indicator is OFF, the range of AQ has been 
exceeded. 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-491 DZ51-00 



SBLQ SBLQ 

SBLQ Subtract Logical from Q-Register 136 (O) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: C(Q} - C(Y) --> C(Q}; C(Y} unchanged 

EXPLANATION: This instruction is identical to SBQ except that the overflow 
indicator is not affected and an Overflow fault does not 
occur. Operands and results are treated as unsigned, 
positive binary integers. 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: None 

I NDl CATORS: Zero 

Negative 

carry 

- If C(Q) = 0, then ON; otherwise, OFF 

- If C(Q)o = 1, then ON; otherwise, OFF 

If a carry out of bit 0 of C(Q) is generated, 
then ON; otherwise, OFF. When the carry 
indicator is OFF, the range of Q has been 
exceeded. 

8-492 DZ5l-00 

j 



( 

( 

SBLR SBLR 

SBLR Subtract Logical Register from Register 437 (1) 

FORMAT: 

000 1 1 222333, 

Not Used OP CODE 

CODING FORMAT: 1 8 16 

SBa R1, ,R2 

OPERATING MODES: Executes in ES mode only. 

SUMMARY: R1, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q 

C(R1) - C(R2) --> C(R1} 

C(R2) unchanged 

ILLEGAL ADDRESS 
MODIFICATIONS: None. The address modification is not executed. 

I LLEGAL REPEATS: RPT, RPD, RPL 

ILLEGAL EKECUTES: Execution in NS mode 

INDICATORS: 

NOTES: 

Zero - If C(R1} = 0, then ON; otherwise, OFF 

Negative - If C(R1}O = 1, then ON; otherwise, OFF 

carry - If a carry out of bit 0 of C(R1) is generated, 
then ON; otherwise, OFF 

1. An I PR fault occurs if illegal repeats are executed or if 
the instruction is executed in NS mode. 

2. Refer to Register to Register Instructions in Section 7 
for a description of the fields in the instruction word. 

8-493 DZS1-00 



SBLXn SBLXn 

Subtract Logical from Index Register n 12!! (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

For n = 0,1, ••• , or 7 as determined by op code 

C(Xn) - C(Y>0-17 --> C(Xn): C(Y} unchanged 

ES Mode 

For n = 0,1, ••• , or 7 as determined by op code 

C(GXn) - C(Y) --> C(GXn); C(Y} unchanged 

EXPLANATION: This instruction is identical to SBXn except that the 
overflow indicator is not affected and an Overflow fault does 
not occur. Operands and results are treated as unsigned, 
positive binary integers. 

ILLEGAL ADDRESS 
MODIFICATIONS: a, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL of SBLXO 

I NDI CATeRS: 

NOTES: 

Zero - If C(Xn/GXg) = 0, then ON; otherwise, OFF 

Negative - If C(Xn/GXn)o = 1, then ON; otherwise, OFF 

carry - If a carry out of bit 0 of C(Xn/GXn) is 
generated, then ON; otherwise, OFF 

1. If DL modification is specified in the NS mode, all data 
is processed as O. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-494 DZ51-00 

I 
/' 



( 

( 

SBO SSO 

SBQ subtract from Q-Register 176 (0) 

FORMA'!': Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: C<Q) - C(Y) -> C<Q): C(Y) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATORS: Zero - If C<Q) = 0, then ON: otherwise, OFF 

Negative 

Overflow 

- If C<Q)o = 1, then ON; otherwise, OFF 

- I f range of Q is exceeded, then ON 

carry - If a carry out of bit 0 of C<Q> is generated, 
then ON; otherwise, OFF 

8-495 DZ51-00 

I ; 

I 
I 
I 



SBRR SBRR 

SBRR Subtract Register from Register 436 (1) 

FORMAT: 

000 1 1 22233 3 

Not Used OP CODE 

CODING FORMAT: 1 8 16 

SBRR R1, ,R2 

OPERATING MODES: Executes in ES mode only. 

SUMMARY: R1, R2 = 0, 1, 2, 3, 4, 5, 6, 7, A, Q 

C(R1) - C(R2) --> C(R1) 

C (R2) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: None. The address modification is not executed. 

ILLEGAL REPEATS: RPT, RPD, RPL 

ILLEGAL EXECUTES: Execution in NS mode 

I NDI CATORS : 

NOTES: 

Zero - If C(R1) = 0, then ON; otherwise, OFF 

Negative - If C(R1)0 = 1, then ON; otherwise, OFF 

Overflow - If the range of R1 is exceeded, ON 

carry - If a carry out of bit 0 of C(R1) is generated, then 
ON; otherwise, OFF 

1. An IPR fault occurs if illegal repeats are executed or if the 
instruction is executed in NS mode. 

2. Refer to "Register to Register Instructions" in Section 7 for 
a description of the fields in the instruction word. 

8-496 DZ51-00 

/ 

/ 

,/ 



(~ 

SBXn SBXn 

Subtract from I ndex Register n 16n iO} 

FORMAT: single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

NS Mode 

For n = 0, 1, ••• ,7 as determined by op code 

C(Xn) - C(Y)0-17 --> C(Xn): C(Y) unchanged 

ES Mode 

For n = 0, 1, ••• ,7 as determined by op code 

C(GXn) - C(Y) -> C(GXn): C(Y) unchanged 

MODI FI CATIONS: a, SC, SCR 

I LLEGAL REPEATS: RPT, RPD I RPL of SBXO 

INDICATORS: 

NOTES: 

Zero - I f C (Xn/GXn) = 0 I then ON; otherwise I OFF 

Negative - If C(XnGXn)o = 1, then ON; otherwise, OFF 

Overflow - If range of Xn/GXn is exceeded, then ON 

carry - If a carry out of bit 0 of C(xnGXn) is 
generated, then ON: otherwise, OFF 

1. If DL modification is specified in the NS mode, all data 
is processed as O. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-497 DZ51-00 

, 

II 



SCD SCD 

sa> Scan Characters Double 120 (1) 

FORMAT: 

0 1 1 1 1 Op Code 222 3 
0 o 1 7 8 789 5 

1 00---0 1 MF2 I 120(1) H NFl I 
0 o 0 
0 2 3 

AR# 

000 
o 2 3 

AR# 

o 0 0 
o 2 3 

AR# 

CODING FORMAT: 

Y1 

Y1 

Y2 

Y2 

Y3 

Y3 

1 1 2 2 222 
7 8 o 1 234 

CNl TAl 0 

1 1 2 2 222 
7 8 0 1 234 

CN2 

1 1 2 2 222 
7 8 0 1 234 

2 3 
9 0 

N1 

00---------0 

not 
interpreted 

233 
902 

3 
2 

2 2 333 
8 9 012 

R1 

00---------------0 AR 00 REG 

3 
5 

3 
5 

3 
5 

The SCD instruction is coded as follows: 

1 8 16 

SCD (MFl ) , (NF2) 
ADSC!! LOCSYM, CN , N , AM 
ADSCn LOCSYM , CN I I AM 
ARG LOCSYM, RM I AM 

8-498 DZ5l-00 



( 

( 

( 

SCD 

(Refer to Section 7 under Mu1tiword Instructions for 
description of Mu1tiword Modification Field.) 

SCD 

OPERATI NG MODES: Any 

EXPLANATION: When N1 = 0 or 1, starting at location YC1, L1-1 concatenated 
pairs of type TAl characters are compared with the two 
assumed type TAl characters that are either stored in 
location YC2 and YC2 + 1 or contained in bits 0-7, bits 0-11, 
or; when the REG field of MF2 specifies DU modification, bits 
0-17 of the address field of operand descriptor 2. 

I LLEGAL ADDRESS 

The compare continues until an identical match is found or 
until the Ll-1 tally is exhausted. A count of compares is 
kept and for each unsuccessful match the count is incremented 
by 1. When a match is found or the tally is exhausted, the 
compare count is stored in bits 12-35 of Y3 and bits 0-11 of 
Y3 are zeroed. 

MODIFICATIONS: DU, OL for MF1 or the Y3 REG field; OL for MF2 

ILLEGAL REPEATS: 

I NDI CATORS: 

NOTES: 

RPT, RPO, RPL 

Tally - If the tally (L1-1) is exhausted without a 
successful match, then ON; otherwise, OFF 

1. The RL bit in the MF2 field is not used. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-499 OZ51-00 

I 

I 
II 

11 
~ .. 

I 



SCD 

EXAMPLES: 

* 
* 

1 8 

seD 
ADSC6 
ADSC6 
ZERO 
TTF 
USE 

FLD1 BCI 
FLD2 BCI 
FLD3 BSS 

USE 

1 8 

seD 
ADSC6 
ADSC6 

ARG 

DATA BCI 
BCI 

COUNT BSS 
COMP BCI 

16 

FLD1, ,6 
FLD2,3 
FLD3 
HAVEl 
CONST. 
1,123456 
1,654321 
1 

16 

DATA, ,24 
COMPmm2 

COUNT 

. 
2, AABBCCDDEEFF 
2, GGHHIIJJKKLL 

SeD 

32 

with no options 
scanned string operand descriptor 
character pair operand descriptor 
FLD3 operand descriptor pointer 
match found - tally runout OFF 
characters compared 
123456 
32 
unmatched count - 5 
Result - no match found 

32 

with no options 
24 characters fetched from lower DATA 
in units of 2 chars. and compared with 
HH. 
when HH found in DATA, count stored as 
binary number before HH detection and 
instruction terminated. 

1 COUNT countains decimal 14 
1,HH 

8-500 DZ51-00 



SCD 

( 

EXAMPLE WI TH ADDRESS MODI FI CATION: 

1 B 

EAX5 
EAX7 
EAX4 
AWOX 
seD 
ADSC9 

FLD2 VFD 
ARG 
TTN 
NULL 
USE 

FLDl EDEC 
FLD3 DEC 

USE 

16 32 

5 load 5 into X5 
7 load 7 into X7 
FLDl load FLDl address into X4 
0,4,4 put FLDl address into AR4 
(l,l"S),(",DU) - with address modification 
0,0,X7,4 FLOl operand pointer (FLD1+l,l,7) 
AlB/45 FLD2 operand 
FLD3 pointer to count FL03 
*+2 no match found 

CONST. 
l2Al234567 
o 

match found 
characters compared 
000001234567 
unmatched count - 3 
Result - match found on 4th pair 

8-501 

SCD 

DZ51-00 



SCDR 

SCDR 

FORMAT: 

CODING FORMAT: 

Scan Characters Double in Reverse 

same as Scan Characters Double (SCI» format 

The SCDR instruction is coded as follows: 

1 8 16 

SCDR (NFl), (NF2) 
ADSCn LOCSYM,CN,N,AM 
ADSen LOCSYM, CN , ,AM 
ARG LOCSYM, RM, AM 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

OPERATI NG MODES: Any 

EXPLANATION: 

ILLEGAL ADDRESS 

same as for SCD except that start is at location YCl + 
(L1-1) and pairs are scanned in reverse to location YC1. 

MODIFICATIONS: DU, DL for MF1 or the Y3 REG field; DL for MF2 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS : 

NOTES: 

Tally - If the tally (L1-l) is exhausted without a 
successful match, then ON; otherwise, OFF 

1. The RL bit in the MF2 field is not used. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

SCDR 

8-502 DZ51-00 

./ 

" \ 



SCDR SCDR 

( 
EXAMPLES: 

1 8 16 32 

SCDR ,(",DU) DU modification of FLD2 operand descriptor 
ADSC9 FLDl,0,8 scanned string operand descriptor 
VFD U18/AB FLD2 character pair - A B 
ARG FLD3 pointer count word 
TTF HAVEl match found - tally runout OFF 
USE CONST. characters compared 

FLDI UASCl 2,ABCDE A,B,C,D,E,l!\,l!\,l!\ 
FLD3 BSS 1 unmatched count - 6 

USE Result - match found on 7th pair 

EXAMPLE WI TH ADDRESS MODI FI CATION: 

1 8 16 32 

KO EQU ° K7 EQU 7 
EAX2 1 
EAX3 FLD1 load FLD1 address into X3 
AWDX 0,3,4 put FLDI address into AR4 

ie 
SCDR ( 1 , , , 2 ) , ( , , , DU ) - with address modification 
ADSC4 0,KO,K7,4 FLDI operand descriptor (FLO 1,1,7) 
EDEC 2PL23 FLD2 operand descriptor pointer 
ARG FLD3 pointer to count word 
TTN OOPS no match - tally runout ON 
NULL match found 
USE CONST. characters compared 

FLDI EDEe 8P123456 0123456 VS 23 
FLD3 BSS 1 unmatched count - 3 

USE Result - match found on 4th pair 

( 

8-503 DZ51-00 



SCM 

SCM 

FORMAT: 

o 

000 
023 

AR# 

000 
023 

AR# 

000 
023 

AR# 

CODING FORMAT: 

Scan with Mask 

o 0 1 1 
890 1 

1+1 MF2 

Y1 

Y1 

Y2 

Y2 

Y3 

Y3 

1 1 Op Code 
7 8 

I 120(1) 

1 1 2 2 222 
7 8 o 1 234 

CN1 TAl 0 

222 
789 

H 
H1 

124 (1) 

2 3 
9 0 

MF1 

3 
2 

00-- -0 R1 

1 1 2 2 222 
7 8 0 1 234 

CN2 not 

233 
902 

interpreted 

1 1 2 2 222 
7 8 0 1 234 

00--------------------0 

2 2 333 
8 9 012 

AR 00 REG 

SCM 

3 

3 
5 

3 
5 

3 
5 

The SCM instruction is coded as follows: 

1 8 16 

SCM (MF1), (MF2) ,MASK 
ADSQ! LOCSYM, CN, N, AM 
ADSCn LOCSYM, CN , ,AM 
ARG LOCSYM, RM, AM 

8-504 DZ51-00 



( 

( 

( 

SCM SCM 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

OPERATI NG MODES: Any 

EXPLANATION: Starting at location YC1, the Ll type TAl characters are 
masked and compared with the assumed type TAl character 
contained either in location YC2 or in bits 0-8 or 0-5 of the 
address field of operand descriptor 2 (when the REG field of 
MF2 specifies DU modification). The mask is right-justified 
in bit positions 0-8 of the instruction word. Each bit 
position of the mask that is a 1 prevents that bit position 
in the two characters from· entering into the compare. 

I LLEGAL ADDRESS 

The masked compare operation continues until either a match 
is found or the tally (Ll) is exhausted. For each 
unsuccessful match, a count is incremented by 1. When a 
match is found or when the Ll tally runs out, this count is 
stored right-justified in bits 12-35 of location Y3 and bits 
0-11 of Y3 are zeroed. The contents of location YC2 and the 
source string remain unchanged. The RL bit of the MF2 field 
is not used. 

MODIFICATIONS: DU, DL for MFl or Y3 REG field; DL for MF2 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATeRS: 

NOTES: 

Tally - If the tally (Ll) is exhausted without a 
successful match, then ON; otherwise, OFF 

1. If Ll = 0, zero is stored in Y3 (bits 12-35) and the tally 
indicator is affected. 

2. If Ll ~ 0 and a match is found in the first character, 
zero is stored in Y3 (bits 12-35) and the tally indicator 
is set to OFF. 

3. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-505 DZ51-00 

I 

II 
'1 
", 
i'l 
I~ 
I~ 

i 
1 



SC~ 

EXAMPLES: 

1 

FLD1 

FLD2 
FLD3 

8 

SCM 
ADS:9 
ADSC9 
ARG 
TTF 
NULL 
USE 
ASCII 

ASCII 
BSS 
USE 

SCM 
ADSC4 
EDEC 
ARG 
TTF 
NULL 
USE 

FLD1 EDEC 
FLD3 BSS 

USE 

16 

,,76O 
FLD1,0,4 
FLD2,3 
FLD3 
GOT .IT 

CONST. 
l,ABCD 

1,0004 
1 

, ( , , , DU) 
FLD1,3,5 
8PL-l 
FLD3 
GOT .IT 

CONST. 
8P-1234 
1 

SCM 

32 

mask to eliminate zone bits 
character string operand descriptor 
compare character operand descriptor 
pointer to unmatched count word 
match found 
no match - tal1yrunout ON 
octal representation of scanned characters 
141 142 143 144 (before masking) 
001 002 003 004 (after masking) 
octal representation of compare character 
064 (before masking) 
004 {after masking} 
unmatched compare count - 3 
Result - match found on 4th character 

DU type REG modifier on FLD2 
character string operand descriptor 
FLD2's compare character -
pointer to unmatched count word 
match found 
no match - tally runout ON 
character scanned 
0,1,2,3,4 
unmatched compare count - 5 
Result - no match found 

EXAMPLE ~~TH ADDRESS MODIFICATION: 

1 8 

EAXl 
EAX2 
EAX4 
AWDX 
SCM 
ARG 
ARG 
ARG 
TTN 
USE 

FLD1 EDEC 
FLD2 EDEC 
FLD3 BSS 
I NOSCl ADSC4 
I NOSC2 ADSC9' 

USE 

16 32 

1 load FLD2 character modifier into Xl 
2 load FLDl character modifier into X2 
FLDl load FLDl address into X4 
0,4,4 put FLD1 address into AR4 
(1,1,1,2), (1, ,1,1) ,010 with all options 
INOSC1 pointer to FLDl indirect descriptor 
INDSC2 pointer to FLD2 indirect descriptor 
FLD3 pointer to unmatched count word 
oy no match - tally runout ON 
CONST. character compared 
8PL4321 2 1 
4P0987 1 
1 unmatched compare count - 1 
0"X2,4 FLDl operand descriptor (FLD1,2,2) 
FLD2,0 FLD2 operand descriptor (FLD2,l) 

Result - match found on 2nd character 

8-506 DZ5l-00 

(-\ 

~ 

/ 



( 

( 

SCMR 

SCMR 

FORMAT: 

CODI NG FORMAT: 

SCMR 

Scan with Mask in Reverse 125 (1) 

same as Scan with Mask (saO format 

The SCMR instruction is coded as follows: 

1 

SCMR 
ADSCn. 
ADSCn. 
ARG 

8 16 

(MFl),(MF2),MASK 
LOCSYM,CN,N,AM 
LOCSYM, CN , , AM 
LOCSYM, RM, AM 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

OPERATI NG MODES: Any 

EXPLANATION: same as SCM except starts at location YCl + (Ll-l) and 
progresses toward location YC1. 

ILLEGAL ADDRESS 
MODIFICATIONS: DU, DL for MFl or the Y3 REG; DL for MF2 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTES: 

Tally - If the tally (Ll) is exhausted without a 
successful match, then ONi otherwise, OFF 

1. If Ll = 0, zer9 is stored in Y3 (bits 12-35) and the tally 
indicator is affected. 

2. If Ll > 0 and a match is found in the first character, 
zero is stored in Y3 (bits 12-35) and the tally indicator 
is set to OFF. 

3. The RL bit of the MF2 field is not used. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-507 DZ5l-00 



SCMR SCMR 

EXAMPLES: 

1 8 16 32 

SCMR ,(",DU),760 DU type register modification with mask 
ADSC4 FLDl,0,6 character string operand descriptor 
EDEC 1P4 FLD2 t s compare character - 4 
ARG FLD3 pointer to unmatched count word 
TTF *+2 match found 
NULL no match - tally runout ON 
USE CONST. characters scanned 

FLD1 EDEC 8PL654321- 6,5,4,3,2,1 
FLD3 DEC 0 unmatched count - 3 

USE Result - match found on 4th character 

EXAMPLE WI TH ADDRESS MODI FI CATION: 

1 8 16 32 

EAX6 6 load FLD1 length into X6 
EAX2 2 load character modifier into X2 
EAX4 FLD1 load FLD1 address into X4 
AWDX 0,4,4 put FLDl address into AR4 
SCMR (1,1,1,2),,760 with all options / " 

ARG FLD3+1 pointer to FLD1 indirect descriptor 
ADSC4 FLD2,0 pointer to compare character 
ARG FLD3 pointer to unmatched count word 
TTN OUCH no match - tally runout ON 
TRA WHEW match found 
USE CONST. characters compared 

FLD1 EDEC 8P0123456- 2,3,4,5,6,-
FLD3 DEC 0 unmatched compare count - 4 

ADSC4 0, ,X6, 4 FLD1 operand descriptor(FLD 1,2,6) 
FLD2 EDEC 4PL3 FLD2 compare character 3 

USE Result - match found on 5th compare 

8-508 DZ51-00 



( 

( 

( 

SCPR SCPR 

SCPR Store Central Processor Register 452 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: 

EXPLANATION: 

C(CPU Reg.) --> C(Y-pair}, or 
C(Y-Block 4), or 
C(A), or 
C(Y, Y+l, ••• Y+7) 

This instruction selects CPU registers based upon the 
instruction's tag field, and stores them in memory or loads 
them into the A register 

The tags and register/operand stored are as follows: 

Octal 
~ 

01 

03 

06 

10 

11 

12 

Register/Operand 

Fault Register 
0 ..•. 0 

Extended Fault Register 
O •••• 0 

CPU Mode Register 
O •••• 0 
cache Mode Register 
O •••• 0 
Lockup Fault Register 

Reserve Memory Base 
0 ..•• 0 

Port Configuration Register 
0 ..•• 0 

Address Trap Register 
o ..•. 0 

8-509 

C(Y-Pair) Bits 

0-35 
36-71 

0-7 
8-71 

0-35 
36-53 
54-61 
62-69 
70-71 

0-35 
36-71 

0-17 
18-71 

0-30 
31-71 

DZ51-00 



SCPR 

Octal 
~ 

13 

14 

20 

07 

Register/Operand 

0 •••• 0 
CPU Number Register 
0 •••• 0 

C(Y-Pair) Bits 

0-32 
33-35 
36-71 

Virtual Address Trap Register 0-35 
36-71 0 •••• 0 

History Register 
0 •••• 0 
History Register 
O • ••• 0 
History Register 
0 •••• 0 

Connect Table, 
secondary Connect Table 

C(Y-Block) 4 Bits 

0-35 
36-58 
59-71 
72-79 
80-107 

108-143 

C(Y,Y+1, ••• Y+7) Bits 

0-143 
144-287 

SCPR 

j 

The following tags load the contents of the cache ,,_/ 
directory, PTWAM directory I and PTWAM registers into the 
A-register. The entry location is specified by the Y 
address field in the instruction. 

Tag Ent~ Select Ent~ CCA} Bits 
Column Level 

15 Y3-14 Y2 cache Directory 0-35 

16 Yll-16 Y17 P'l'WAM Register 0-35 

17 Yll-16 Y17 PTWAM Directory 0-35 

ILLEGAL ADDRESS 
MODIFICATIONS: Tag field defines the operation. 

I LLEGAL REPEATS: RPD, RPL I RPT 

INDICATORS: None affected 

8-510 DZ51-00 



( S~R 

NOTES: 

( 

( 

S~R 

1. A Command fault occurs if execution is attempted in Slave 
or Master mode. 

2. For SCPR tags 15, 16, and 17, if bit 29 is ON, C(AR) is 
added to the Y field and the sum forms the entry select 
value. The full virtual address development is not used. 

3. The address trap register values are read from scratch 
pad locations 66, 67 rather than from the register 
itself. 

4. An IPR fault occurs if illegal tag fields or illegal 
repeats are executed. 

8-511 DZ5l-00 

I " 

II 

I 
~ 

I 
! 



SDRn SDRn 

save Descriptor Register ~ 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

C (DRn) -> Argument Stack (AS) 

Argument stack bound --> HWMR (Refer to Explanation 
item 4.) 

S~Dn is set to indicate the stored segment descriptor. 

This instruction stores the descriptor from DRn in the next 
available location of the argument stack, and adjusts the 
argument stack bound and high water mark register (HWMR). 
The y field of this instruction is not interpreted by the 
hardware. No address bound checks are made. The argument 
segment is the operand segment. 

The instructions are executed as follows. 

1. The following checks are performed. 

a. The ASR (Argument Stack Register) flag bit 28 is 
checked. If it is zero, the argument segment is not 
present, a Missing Segment fault occurs, and the 
instruction is terminated. 

b. If the ASR bound + 8 ~ 8192 bytes, a BND fault is 
generated. 

2. If the conditions described under (1) are satisfied, 
execution continues. It generates the effective byte 
address indicating the next available double-word location 
on the AS. The ASR flag bit 27 is then checked. 

a. If the ASR flag bit 27 = 0, the argument segment is 
empty. The ASR base indicates the first double-word 
location. 

b. If the ASR flag bit 27 = 1, ASR bound + base + 1 is 
executed to generate a virtual address. 

NOTE: The descriptor is stored relative to the argmuent 
stack bound. The HWMR does not influence this 
storage location. (Refer to the description of the 
ClJMB instruction for more information on the HWMR.) 

8-512 DZSI-OO 



( 

( 

SDRn 

I LLEGAL ADDRESS 

SDRn 

3. After the DRn content has been stored in AS, the following 
operations are executed and the instruction is completed. 

a. The ASR flag bit 27 is checked. 

If ASR bit 27 = 1, 8 is added to the ASR bound field. 
It indicates that the new segment has been stored and 
the segment size has increased. 

If ASR bit 27 = 0, the argument segment indicates that 
it was empty when the instruction was begun. The bound 
field is then set to seven bytes to indicate that a 
segment descriptor has been stored. The ASR flag bit 
27 is set to 1 to indicate that this segment is no 
longer empty. 

b. SEGIDn is set to indicate the location in which the 
segment descriptor is stored. 

For example, if the ASR bound field is 117 (octal) 
bytes (= 80 bytes = 20 words = 10 double-words) after 8 
is added, S~Dn is set as follows. 

S 

2 

. 

D 

9 . 
Indicates the tenth segment 
descriptor 

Indicates the argument segment 

4. The HWMR is set to indicate the maximum ASR bound 
following any sequence of SDRn and PAS instructions. 

I f the new ASR bound > C( HWMR), then the new ASR 
bound --> C(HWMR). 

MODIFICATIONS DU, DL, RI, IR, IT 

8-513 DZ51-00 

\ • 
j 
1 , 



SDRn SDRn 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. A Missing Working Space, Missing Segment, or Missing Page 
fault may occur. 

2. If a save is attempted to a nonhousekeeping page, a 
security Fault, Class 1 occurs. 

3. An BND fault occurs if the ASR bound + 1 byte ~ 8192 bytes 
(before the ASR is updated). 

4. A Security Fault, Class 2 fault occurs if a working space 
violation is attempted, or if the specified page does not 
have write permission. The descriptor itself is not 
required to have either write or store permission. 

5. An Illegal Procedure fault occurs if illegal address 
modification or illegal repeats are used. 

8-514 DZ5l-00 



t 

( 

SIW SIW 

SIW Set Interrupt Word Pair 451 (0) 

FORMAT: Single-word instruction forma~ (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 
MODI FI CA TI ONS : 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

C(AQ) --> C(Interrupt Queue)0-7l 

A double-word write occurs to the designated control SCU. 
The SCU stores the double word in the level interrupt queue 
and informs all of the receiving ports. The SCU looks at 
bits 27-30 of the data to determine the interrupt queue 
level. The eight queues are circular, first-in/first-out, 
with queue lengths of 256 word pairs per port. If the queue 
level number exceeds 256, a bit is set in the SCU fault 
register. 

DU, DL, CI, SC, SCR 

RPD, RPL, RPT 

None affected 

1. Prior to executing this instruction, the SCU must be 
"selected" by using the LCPR instruction to set or reset 
bit 22 in the CPU mode register. 

2. An IPR fault occurs if illegal address modification or an 
illegal repeat is used. 

3. An IPR fault occurs if execution is attempted in Slave or 
Master mode. 

8-515 DZ5l-00 



SMID SMID 

smD Set Memory 1D Register 272 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERA'l'ING MODES: Privileged Master mode 

SUMMARY: C(AQ) -> C(Memory 1D Register) 

EXPLANATION: This instruction sets the memory 1D registers. The physical 
memory unit that is selected by the address is dependent upon 
the SCU' s physical 1D or logical 1D based on the setting of 
the SCU configuration register. 

ILLPX;AL ADDRESS 
MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPD, RPL, RPT 

INDICATORS: None Affected 

NOTES: 1. scu selection is based upon the control SCU bit in the CPU 
mode register. 

2. An IPR fault occurs if illegal address modification or an 
illegal repeat is executed. 

3. An IPR fault occurs if execution is attempted in Slave or 
Master mode. 

8-516 DZ51-00 



( 

( 

SMR SMR 

SMR Set Memory Register 271 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: C(AQ) inverted --> C(Memory Status Register) 

EXPLANATION: This instruction provides a means of setting the memory 
status registers. SCU selection is based upon the control 
SCU bit in the CPU mode register. 

I LLEGAL ADDRESS 

Address development is followed and transferred to the SCU to 
select the memory unit. The physical memory unit that is 
selected by the address is dependent upon the SCU's physical 
ID or logical ID based on the setting of the SCU 
configuration register. 

MODI Fl CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPD, RPL, RPT 

I NDI CATORS : 

NOTES: 

None affected 

1. An IPR fault occurs if illegal address modification or an 
illegal repeat.is used. 

2. An IPR fault occurs if execution is attempted in Slave or 
Master mode. 

3. The contents of the AQ register are inverted (one's 
complement). 

8-517 DZ5l-00 



SPCF SPCF 

SPCF set Pointer Compare Flags Off 251 (l) I 
FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 1 --> SD Compare F1agn 

where n = 0, 1, ••• 7 

EXPLANATION: This instruction provides a means to turn segment descriptor 
(SD) compare flags OFF, and to inhibit the compare. 

ILLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None 

NOTE: Disabled by GODS 

8-518 DZS1-OO 



( 

SPDBR SPDBR 

SPDBR Store Page Table Directory Base Register lSl (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: C(PDBR) 

00 ••• 0 

--> C(Y)0-18 (Mod S12) 

--> C{Y)19-3S 

C (PDBR) unchanged 

EXPLANATION: The PDBR content is stored in bit 0-18 of location Y. Zero 
is stored in C(Y)19-3S. The PDBR content remains unchanged. 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: 

NOTES: 

None affected 

1. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

2. A Command fault occurs if execution of this instruction is 
attempted in Slave or Master Mode. 

8-Sl9 DZSl-OO 

~ 

I 
I 

I 



SPL SPL 

SPL Store Pointers and Lengths 447 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

SPL LOCSYM,R,AR 

OPERATI NG MODES: Any 

SUMMARY: C(Pointer and Length storage) --> C(Y), C(Y+1), ••• C(Y+S) 
C(LOR} --> C(Y+6), C(Y+7) 

EXPLANATION: The pointers and lengths storage are used by hardware to 
store control information when an interruptible mu1tiword 
instruction is interrupted during execution. These registers 
enable hardware to resume processing an interrupted 
instruction after a return from servicing the interrupt. 

Y must be a multiple of 8. However, a fault does not occur 
when the lower 3 bits of Yare not 000. For purposes of 
execution, the hardware forces these bits to 000 (modulo 8). 

The format of the eight words is the same as words 48 through 
55 of the safe Store Stack format (see Figures 8-7 and 8-8 
under CLIMB). The contents of the first four words depend 
upon whether the multiword instruction is alphanumeric or bit 
string. 

For an SPL execution, the eight words are stored into scratch 
pad memory and the first flag is set or reset. 

The format of the first four words follows. 

8-520 DZ5l-00 

/ 

, , 
"'-__ J 



( SPL 

( 

SPL 

Alphnumeric Instructions 

012 35 

F I~J ~ 10------ - - --- - _ .. -- - -0 

Ll (Riqht-;ustified zero f HIed on left) 

where 

F 

L2 (Riqht-justified zero f HIed on left) 

First Flag 

Not Used 

If = 1, indicates the start of a 
multiword instruction execution 
for which the data from the 
instruction operands is used. 

If = 0, if bit 30 in the indicator 
register is = 1, and, if the next 
instruction is an EIS instruction, 
the P&L data stored in scratch pad 
memory is used. (Refer to 
Indicator Register, Section 4.) 

L Length If = 0, only the length in 
Indicator Ll is valid . 

8-521 

If = 1, only the length in L2 is 
valid 

The firmware uses this bit to 
determine whether Ll or L2 
contains the valid length. 

The length of Ll and 12 varies 
depending upon whether NS or ES 
mode are being used. For NS mode 
alphanumeric, the length is 21 
bits for 4- and 6-bit characters 
and 20 bits for 9-bit characters. 
For ES mode the maximum length is 
36 bits. 

DZ51-00 

i 
t 

II 
11 

II 



SPL 

SN Sign 
Negative 

SPL 

This indicator is used only if 
the interrupted instruction is an 
MLR in which a 6- or4-bit move is 
being done. (Refer to Explanation 
under description of MRL for use 
of overpunch sign on 6-4 moves.) 

Bit String Instructions 

I LLEGAL ADDRESS 

o 17 18 35 
Temporary 111111111111111111111111 

Effective Address 111111111111111111111111 
Temporary 111111111111111111111111 

Effective Address 111111111111111111111111 

Ll (Ri~ht-iustified zero-filled on left) 

L2 (Richt-iustified zero-filled on left) 

The fi~st effective address relates to Ll: the 
second effective address relates to L2. 

The length of Ll and L2 varies, depending upon 
whether NS or ES mode are being used. For NS mode, / 
the length is 24 bits for bit strings. For ES mode 
the maximum length is 36 bits. 

MODIFICATIONS: DU, DL, Rl, IR, IT 

ILLEGAL REPEATS: RPT, RPD, RPL 

ILLEGAL 
EXECUTIONS: XEC, XED 

INDICATORS: Multiword Instruction Interrupt indicator (bit 3D), reset to 
OFF 

8-522 DZ51-00 



( 
SPL 

NOTES: 

( 

SPL 

1. An Illegal Procedure fault occurs if illegal address 
modifications, illegal repeats, or illegal executions are 
used. 

2. The content of the pointer and length storage is changed 
if RPT, RPD, RPL, XEC, or XED or indirect modification 
(I T) are executed. 

3. The SPL instruction is normally only used by routines that 
process interrupts. 

4. After an interrupt, the SPL must be executed before any 
multiword instruction to avoid destruction of the pointer 
and length information. 

8-523 DZ51-00 



SREG SREG 

SREG Store Registers 753 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: NS Mode 

The registers are stored as follows: 

C(XO) --> C(Y)0-l7 
C(Xl) --> C(Y)lS-35 
C(X2) --> C(Y+l)0-l7 
C(X3) --> C(Y+l)l8-35 
C(X4) --> C(Y+2}0-17 
C(XS) --> C(Y+2)l8-35 
C(X6) --> C(Y+3)0-17 
C(X7) --> C(Y+3)l8-35 
C(A) --> C(Y+4)0-35 
C(Q) --> C(Y+5)0-35 
C(E) --> C(Y+6)0-7i 0 ••• 0 --> C(Y+6)S-35 
C(TR) --> C(Y+7)0-26i 0 ••• 0 --> C(Y+7)27-35 

ES Mode 

The registers are stored as follows: 

C(GXO) -> C(Y) 
C(GX1) --> C(Y+l) 
C(GX2) --> C(Y+2) 
C(GX3) --> C(Y+3) 
C(GX4) --> C(Y+4) 
C(GX5) --> C(Y+5) 
C(GX6) --> C(Y+6) 
C(GX7) --> C(Y+7) 
C(A) -> C(Y+8) 
C(Q) --> C(Y+9) 
C(E) -> C(Y+10)0-7i 0 ••• 0 --> C(Y+IO)8-35 
C(TR) --> C(Y+ll): 0 ••• 0 --> C(Y+ll)27-35 

In both NS and ES modes the register content remains 
unchanged. 

8-524 DZ51-00 

/ 



(-

SREG SREG 

ILLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. Location Y must be forced to a multiple of 8 by entering 
an 8 in column 7 of the statement that defines Y, or by 
means of the EIGHT pseudo-operation. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-525 DZ51-00 



SSA SSA 

55A Subtract Stored from A-Register 155 (C) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C{A) - C(Y) -> C(Y); C(A) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPL 

I NDI CATORS: Zero 

Negative 

Overflow 

- If C(Y) = 0, then ON; otherwise, OFF 

- If C(Y)O = 1, then ON: otherwise, OFF 

- I f range of C(Y) is exceeded, then ON 

carry - If a carry out of bit 0 of C(Y) is generated, 

NOTE: 

then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-526 DZ5l-00 



( 

( 

( 

SSCR SSCR 

SSCR Set System Controller Register 057 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: 

EXPLANATION: 

I LLEGAL ADDRESS 
MODI Fl CATIONS: 

I LLEGAL REPEATS: 

INDICATORS: 

C(AQ} --> C(SCU Register) 

This instruction provides program access to all system 
controller registers. SCU selection is based upon the control 
SCU bit in the CPU mode register. Address development is 
followed, and is transferred to the SCU to select the general 
register. 

In VMS Privileged Master mode, if both SCU ports are enabled 
and the least-significant bit of the effective address (word 
address) is 1, the control SCU bit is temporarily changed to 
permit selection of the non-control SCU. (Reference Section 4 
for CPU configuration register and ASR control.) The control 
SCU bit is then reset to its original value. 

Real Memory: 

Bits 
0 ••• 21 22-24 25-27 Function 

X ••• X 0 X Not used 

X ••• x 1 X Configuration 

x ••• x 2 X Not used 

x ••• x 3 X Not used 

x ••• X 4 X calendar Clock 

X ••• x 5 X Not used 

x ••• x 6 X Not used 

x •.• X 7 X Not used 

DU, DL, CI, SC, SCR 

RPD, RPL, RPT 

None affected 

8-527 DZ51-00 



SSCR 

NOTES: 

SSCR 

l. A Command fault occurs if address bits 22-24 are 0, 2, 3, 
5, 6, or 7 (octal). 

2. A Command fault occurs if execution is attempted in Slave 
or Master mode. 

3. The SCU registers are defined in Section 4. 

4. Bits 25-27 of the configuration register are the SCU port 
number. These bits must hazero in an SSCR instruction, 
in order that a subsequent RSCR instruction returns the 
port number: otherwise bits 25-27 are OR'ed with the port 
number returned. 

5. An IPR fault occurs if illegal address modification or 
illegal repeats are executed. 

8-528 DZ51-00 

/" 



( 

( 

SSQ SSQ 

SSQ Subtract Stored from Q-Register 156 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 
OPERATI NG MODES: Any 

SUMMARY: C(Q) - c(y) --> C(y): C<Q> unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, a, SC, SCR. 

I LLEGAL REPEATS: RPL 

I NDI CATORS: Zero 

Negative 

Overflow 

- If C(Y) = 0, then ON: otherwise, OFF 

- If C(Y)o = 1, then ON: otherwise, OFF 

- If range of C(Y) is exceeded, then ON 

carry - If a carry out of bit 0 of C(Y) is generated, 

NOTE: 

then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-529 DZ51-00 

:. 

I 
I 
" I' 
I 

i 



SSXn ssXn 

Subtract Stored from I ndex Register n l4n (0) 

FORMAT: Single-word instruction format (see Figure B-1) 

OPERATI NG MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

NS Mode 

For n = 0,1, ••• ,7 as determined by op code 

C{Xn) - C(Y)0-17 --> C(Y)0-17; C(Xn) unchanged 

ES Mode 

For n = 0,1, ••• ,7 as determined by op code 

C(GXn) - C(Y} -> C(Y); C(GXn) unchanged 

MODIFICATIONS: DU, DL, 0, SC, sea 

ILLEGAL REPEATS: RPT, RPD, or RPL of SSXO 

I NDI CATORS: 

NOTE: 

NS Mode 

Zero 

Negative 

Overflow 

carry 

ES Mode 

Zero 

Negative 

Overflow 

carry 

- If C(y)0-17 = 0, then ON; otherwise, OFF 

- If C(Y)O = 1, then ON; otherwise, OFF 

- If range of C(Y) is exceeded, then ON 

- If a carry out of bit 0 of C(Y) is generated, 
then ON; otherwise, OFF 

- If C(Y) = 0, then ON; otherwise, OFF 

- If C(Y}O = 1, then ON: otherwise, OFF 

- If range of C(Y) is exceeded, then ON 

- If a carry out of bit 0 of C(Y) is generated, 
then ON: otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-530 DZ5l-00 



( 

( 

STA STA 

STA Store A-Register 755 (0) 

FORMAT: single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(A) -> C(Y): C(A) unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL 

ILLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-531 DZ51-00 



STAC STAC 

STAC Store A Conditional 354 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: If C(Y) = 0, C(A) --> C(Y) 

EXPLANATION: This instruction issues a read-lock, write-unlock sequence to 
memory. cache is bypassed; if a cache hit occurs and the 
conditional test is satisfied, the cache block is updated. 

I LLEGAL ADDRESS 

If write does not occur, the next command to memory from the 
same processor port performs unlock. . 

Execution of STAC is delayed until all outstanding stores to 
memory from the processor have been completed. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

Zero - If initial C(Y) = 0, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-532 DZ51-00 



( 

( 

STACQ STACQ 

STACQ Store A Conditional on Q 654 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

I LLEGAL ADDRESS 

If C(Y} = C(Q), C(A) --> C(Y) 

If C(Y) # C(Q), C(Y) is unchanged 

This instruction issues a read-lock, write-unlock sequence. 
cache is bypassed; if a cache hit occurs and the conditional 
test is satisfied, the cache block is updated. 

If write does not occur, the next command to memory from the 
same processor port.performs unlock. 

Execution of STACQ is delayed until all outstanding stores to 
memory from the processor have been completed. 

MODIFICATIONS: DU, DL, 0, SC, SCR 

ILLEGAL REPEATS: RPL 

INDICATORS: 

NOTE: 

Zero - If initial C(Y) = C(Q), then ON; otherwise, 
OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-533 DZ5l-00 



STAQ STAQ 

STAQ Store AQ-Register 757 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(AQ) --> C(Y-pair); C(AQ) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-534 DZSI-00 



STAS STAS 

STAS Store Argument Stack Register 750 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(ASR) -> C(Y-pair): C(ASR) unchanged 

EXPLANATION: The execution of this instruction causes the current contents 
of the argument stack register (ASR) to be stored in even and 
odd memory locations Y and Y+l. The contents of the ASR 
remain unchanged. 

I LLEX7AL ADDRESS 
MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEX7AL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

EXAMPLE: 

1 8 16 

STAS SVASR 
SDR PO 
STP PO,SVPO 
SDR PI 
STP Pl,SVPl 

. 
LOP PO,SVPO 
LOP Pl,SVPl 
PAS SVASR 

8-535 DZ5l-00 



STBA STBA 

STBA Store 9-bit Bytes of A-Register 551 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 9-bit bytes of C(A) -> corresponding characters of C(Y); the 
byte positions affected are specified in the tag field; C(A) 
is unchanged. 

EXPLANATION: Binary ones in the tag field specify the byte positions of A 
and Y affected as indicated in the diagram below. The tag 
field is entered as one 2-digit octal number. Bit positions 
34 and 35 are ignored. 

o 
9-Bit Byte 0 

Tag 
Field 

o 0 
8 9 

1 1 
7 8 

2 2 
6 7 

3 
5 

positions' of 
A and Y 

Character Character Character Character 
0 1 2 3 

I LLEGAL ADDRESS 
MODIFICATIONS: The tag field cannot be used for address modification. AR 

modification is permitted. 

I LLEGAL REPEATS: RPT I RPD I RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if an illegal repeat is 
used. 

EXAMPLE: The instruction 

STBA LOC,04 

moves byte 3 of C(A) to the corresponding byte position of 
C(LOC) <04 octal = 000100 binary). All other byte positions 
of C(LOC) are unaffected. 

8-536 DZ51-00 

-\ 



( 

( 

( 

STBQ STBQ 

STBQ Store 9-bit Bytes of Q-Register 552 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 9-bit bytes of C(Q> --> corresponding bytes of C(Y); the byte 
positions affected are specified in the tag field; C(Q) is 
unchanged 

EXPLANATION: Binary ones in the tag field specify the byte positions of Q 
and Y affected as indicated in the diagram below. The tag 
field is entered as one 2-digit octal number. Bit positions 
34 and 35 are ignored. 

Tag 
Field 

a a 
8 9 

1 1 
7 8 

2 2 
6 7 

3 
5 

a 
6-Bit Char. a 
positions of Character Character Character Character 

A and Y a 1 2 3 

I LLEGAL ADDRESS 
MODIFICATIONS: The TAG field cannot be used for address modification. AR 

modification is permitted. 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if an illegal repeat is 
used. 

EXAMPLE: The instruction STBQ LOC,04 moves byte 3 of C{Q) to the 
corresponding byte position of C(LOC) (04 octal = 000100 
binary). All other byte positions of C(LOC) are unaffected. 

8-537 DZ51-00 



STCI STCI 

STCl Store Instruction Counter Plus 1 554 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATl NG MODES: Any 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

C(IC) + 1 --> C(Y); C(IR) --> C(Y)18-32; 000 --> C(Y)33-35; 
C(IC), C(IR) unchanged 

The relation between bit positions of C(Y) and the indicators 
is as follows: 

Bit Position 

18 
19 
20 
.21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33-35 

Indicator 

zero 
Negative 
carry 
Overflow 
Exponent overflow 
Exponent underflow 
Overflow mask 
Tally runout 
Parity error 
Parity mask 
Master mode 
Truncation 
Multiword instruction interrupt 
Exponent underflow mask 
Hexadecimal exponent mode 
000 

The ON state corresponds to a 1 bit; the OFF state 
corresponds to a 0 bit. Bit 25 of C(Y) will contain the 
state of the Tally Runout indicator prior to address 
modification of the STCI instruction (for tally operations). 

MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-538 DZ5l-00 



( 

( 

STC2 STC2 

STC2 Store Instruction Counter Plus 2 750 (0) 

FORMAT: single-word instruction format _(see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C{IC) + 2 --> C(Y)0-17i C(Y)18-35, C(IC) unchanged 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDICA'l'ORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-539 DZ5l-00 



STCA STCA 

STCA Store 6-bit Characters of A-Register 751 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

6-bit characters of C(A) --> corresponding characters of C(Y); 
the character positions affected are specified in the tag 
field; C{A) is unchanged 

Binary (l) bits in the tag field specify the affected A and Y . 
character locations as follows. The TAG field is entered as 
one 2-digit octal number. (See Example below.) 

Tag 
Field 

o 0 
5 6 

1 1 
1 2 

o 
6-Bit Char. 0 
Positions of Character Character Character 

2 2 
3 4 

2 3 
9 0 

3 
5 

Character Character Character 
A and Y 0 1 2 3 4 5 

The CPU reads one word from memory, embeds a character 
specified in the CPU into the word, and writes this word back 
in memory. Therefore, while the CPU reads a word and writes 
it, the word's content can be lost if another CPU writes the 
same word. To prevent multiprocessor contention, gating is 
necessary. 

8-540 DZ51-00 

j' 



( 
STCA STCA 

I LLEGAL ADDRESS 
MODIFICATIONS: No modification except AR allowed. 

I LLEGAI J REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. The tag field cannot be used for address modification. AR 

EXAMPLE: 

modification is permitted. 

2. An Illegal Procedure fault occurs if illegal repeats are 
used. 

The instruction STCA LOC,07 moves characters 3, 4, and 5 of 
C(A) to corresponding character positions of C(LOC) (07 octal 
= 000111 binary). Character positions 0, 1, and 2 of C(LOC) 
are unaffected. 

8-541 DZ51-00 



STCQ STCQ 

STCQ Store 6-bit Characters of Q-Register 752 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

6-bit characters of C(Q> -> corresponding characters of 
C(Y): the character positions affected are specified in the 
tag field. 

Binary (1) bits in the tag field specify the affected Q and Y 
character locations as follows. The tag field is entered as 
one 2-digit octal number. (See Example below.) 

Tag 
Field 

o 0 
5 6 

1 1 
1 2 

1 1 
7 8 

2 2 
3 4 

2 3 
9 0 

3 
5 

o 
6-Bit Char. 0 
positions of Character Character Character Character Character Character 

A and Y 0 1 2 3 4 5 

The CPU reads one word from memory, embeds a character 
specified in the CPU into the word. and writes this word back 
in memory. Therefore, while the CPU reads a word and writes 
it, it is possible that the word's content can be lost if 
another CPU writes the same word. To prevent multiprocessor 
contention, gating is necessary. 

8-542 DZ51-00 



( 

( 

(. 

STCQ STCQ 

ILLEGAL ADDRESS 
MODIFICATIONS: No modification except AR allowed. 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 

EXAMPLE: 

1. The tag field cannot be used for address modification. AR 
modification is permitted. 

2. An lllegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

The instruction STCQ LOe,07 moves characters 3, 4, and 5 of 
C(Q) to corresponding character positions of C(LOe) (07 octal 
= 000111 binary). Character positions 0, 1, and 2 of C(LOC) 
are unaffected. 

8-543 DZ5l-00 



STDn 

FORMAT: 

OPERATI NG MODES: 

SUMMARY: 

EXPLANATION: 

STDn 

Store Descriptor Register n 05n (1) 

Single-word instruction format (see Figure 8-1) 

Any 

C(DRn) --> C(Y),C(Y+1): C(ORn) unchanged 

This instruction stores the ORn content in an even/odd 
location of the segment descriptor segment or the operand 
segment. 

If instruction bit 29 = 0 then C(DRn) --> C(Y-pair) in the 
instruction segment. 

If instruction bit 29 = 1 and ORm descriptor type T = 1,3 (m 
is selected by instruction bits 0,1,2) then C(DRn) --> 
C(Y-pair) of descriptor segment. 

NOTE: ORn store permission is required. 

If instruction bit 29 = 1 and ORm descriptor type T = 0, 2, 
4, 6, 12, 14 then C(DRn) --> C(Y-pair) in the operand 
segment. 

NOTE: ORn store permission is not required. 

To summarize the differences in processing performed due to 
the differing types of segment descriptors: 

o If the ORn segment descriptor is stored in a segment 
descriptor segment (T = 1 or 3), the page must be a 
housekeeping page (PTW bit 32 must = 1). When all other 
conditions (e.g., write permission) are satisfied, the 
segment descriptor is stored, irrespective of the CPU 
mode. 

o I f an attempt is made to store in the operand segment, the 
write operation for the housekeeping page is dependent 
upon the CPU mode as the store flag is not examined by 
hardware. 

8-544 DZ51-00 



( 

STDn STDn 

ILLEGAL ADDRESS 
MODIFICATIONS: If the DRm type T = 1 or 3, only R type modification is 

permitted. An IPR fault occurs if DU, DL, Rl, IR, or IT is 
specified. 

If the DRm type T = 0, 2, 4, 6, 12, or 14, an IPR fault 
occurs when DU, DL, SC, SCR, or CI is specified. 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. 

2. 

3. 

4. 

5. 

6. 

7. 

An Illegal Procedure fault occurs when illegal address 
modification or an illegal repeat is used. 

If DRn does not have store permission (bit 18 for T = 8, 
9, 11: bit 22 for all other types), an SCL2 fault occurs. 

If DRm page is not housekeeping, an seLl fault occurs. 

If DRm segment or page does not have write permission, an 
SCL2 fault occurs. 

If processor is in Master or Slave mode and DRm page is 
housekeeping, an SCLl fault occurs. 

If DRm segment or page does not have write permission, an 
SCL2 fault occurs. 

If instruction bit 29 = 1 and DRm descriptor type T = 5 or 
7-11, 13, 15, an IPR fault occurs. 

8-545 DZ5l-00 



STDSA 

Store Data Stack Address Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: 

I LLEGAL ADDRESS 

C(DSAR) -> C(Y)0-16 

00 ••• 0 --> C(Y)17-35 

MODIFICATIONS: DU, DL, a, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

STDSA 

150 (1) 

NOTES: 1. An IPR fault occurs if illegal address modifications or 
illegal repeats are used. 

2. A Command fault occurs if this instruction is executed in 
Slave or Master mode. 

EXAMPLE: 

1 78 

STDSO 
STDSA 
LOXO 
ADLXO 
CMPXO 
TPNZ 
LOD 

SVREG 8BSS 
DSVEC NEe 

16 

SVREG 
SVREG+2 
SVREG+2 
NWPS,DU 
SVREG 
NOGOOD 
P.DS,DSVEe 

8 
NWDS, (ALL) 

8-546 DZ51-00 

/ 

,/ --,\ 



( 

( 

STDSD 

STDSD 

FORMAT: 

OPERATI NG MODES: 

SUMMARY: 

I LLEGAL ADDRESS 
MODI FI CATIONS: 

I LLEGAL REPEATS: 

I NDI CATeRS: 

NOTES: 

Store Data Stack Descriptor Register 

Single-word instruction format (see Figure 8-1) 

Privileged Master mode 

C(DSDR) --> C(Y-pair); C(DSDR) unchanged 

DU, DL, a, SC, SCR 

RPT, RPD, RPL 

None affected 

STDSD 

551 (1) 

1. An IPR fault occurs if illegal address modifications or 
illegal repeats are used. 

2. A Command fault occurs if this instruction executed in 
Slave or Master mode. 

8-547 DZ51-00 



STE STE 

STE Store Exponent Register 456 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

C(E) --> C(Y)0-7~ 00 •••• 0 --> C(Y)8-17~ 

C(Y)18-35, C(E) unchanged 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: . RPL 

I NDI CATeRS: 

NOTE: 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification or illegal repeats are used. 

8-548 DZ5l-00 



<-

( 

( 

STI STI 

STI Store I ndicator Register 754 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

C(IR) --> C(Y)18-32 

00 ••• 0--> C(Y)33-35i 

C(Y)0-171 C{IR) unchanged 

The content of the indicator register is stored in C(Y)18-32 
after address modification. The value stored in C(Y)25 is 
the Tally Runout status before address modification. The 
relation between bit positions of C(Y) and indicators is as 
follows: 

Bit Location 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33-35 

Indicator 

Zero 
Negative 
carry 
Overflow 
Exponent overflow 
Exponent underflow 
Overflow mask 
Tally runout 
Parity error 
Parity mask 
Master mode 
Truncation 
Multiword instruction interrupt 
Reserved for exponent underflow mask 
Hexadecimal exponent mode 
000 

The ON state corresponds to a 1 bit; the OFF state to a 0 
bit. 

8-549 DZ51-00 



STI 

ILLEGAL ADDRESS 
MODIFICATIONS: DU, DL, 0, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: None affected 

NOTE: An Illegal Procedure .fault occurs if illegal address 
modifications or illegal repeats are used. 

8-550 

STI 

DZ5l-00 



( 

( 

STO 

STO Store Option Register 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(DSCF) --> bit 18 of C(Y) 

C(SSBF) --> bit 19 of C(Y) 

00 ••• 0 --> remaining 34 bits of C(Y) 

152 (1) 

EXPLANATION: This instruction stores the two flag bits of the option 
register in memory. 

I LLEGAL ADDRESS 

DSCF Data stack clear flag 
o = do not clear 

SSBF 

1 = clear 

safe store bypass flag 
o = bypass safe store dur ing I CLl MB 
1 = perform safe store during ICLIMB 

MODIFICATIONS: DU I DL, CI I SC, SCR 

I LLEGAL REPEATS: RPT, RPD I RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

STO 

8-551 DZ51-00 



STO 

EXAMPLES: 

1 8 16 32 

ORNCHE BOOL 
MPOR EQU 

LDO 
S10 
STO 
LDA 
ERSA 
TRA 

4000 *CRCF bit of option register 
* 
.SORSV, ,P.SSA 
.CRORR,PN,P.CR *set with CRCF ON 
.CRORS,PN ,P.CR 
ORNCHE,DL 
• CRORS, PN I P. CR *reset CRCF to OFF 
X.RED+1 

• 

*SAVE VIRTUAL UNIT REGISTERS 
STREG NULL 

STWS REG+12 
STWS REG+13 
SPDBR REG+40 
STO REG+41 
SZN SSFALT+. WID safe store frame saved? 

8-552 

STO 

DZ51-00 



( 

STPn STPn 

Store Pointer n 45n (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

C(ARn) --> C(Y)0-23 

C(SEGIDn) --> C(Y)24-35 

ES Mode 

C(ARn) --> C(Y) 

C(SEGIDn) --> C(Y+l)O-ll 

'00 ••• 0 --> C(Y+l)12-35 

EXPLANATION: These instructions store the address register (ARn) and the 
associated segment identity register, (SEGIDn), in memory. 
The contents of the registers remain unchanged. 

ILLEGAL ADDRESS 
MODIFICATIONS: DU, DL, a, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

8-553 DZ5l-00 



STPn STPn 

EXAMPLE: 

1 8 16 32 

NEPR EPPR PO,FANY error handler 

STP PO,.SVFLT"P.SSA store pointer 0 
10P PO,.PS,OL old argument segment 
10P Pl,.SSR,OL safe store 
100 PO,O"PO get argument 0 
100 Pl,.WLSR"Pl get original linkage segment 
10A 0, ,PO get EPPA pointer 
CNAA =020160,OL test null descriptor 
TZE FANY 

/ 

8-554 OZ51-00 



( 

STPDW STPDW 

STPDW Store PTWAM Directory Word 155 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master Mode 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

C(PTWAM DirectorY)n 
00 ••• 0 

where: n = Yll-17 

-> C(Y)00-29 
-> C(Y)30-35 

Yll-16 specifies row 
Y17 specifies column of 
associative memory 

The contents of the PTWAM directory word n are stored in 
memory location Y bits 00-29; zeros are stored in bits 30-35. 
Bits 00-26 represent the combination of working space number 
and virtual address that is stored in the directory word for 
future association. Bits 28 and 29 specify the round robin 
counter for the row in which this directory word is stored in 
the AM. Bit 27 = 1 specifies that the row in which this 
directory word is stored is full. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: l. The PTWAM is 64 rows by 2 columns. Bits 25-30 of the 
virtual address select a row. Thus, the two entries in 
each row have the same six least-significant bits. 

2. This instruction functions whether the PTWAM is ON or OFF. 
(Refer to the CAMP instruction.> 

3. The STPDW instruction inhibits the CPU from carrying out 
the execute interrupt procedure when the STPDW instruction 
is executed from an odd memory location, even though the 
interrupt condition is present and waiting for execution. 

4. An IPR fault occurs if illegal address modifications or 
illegal repeats are used. 

5. A Command fault occurs if this instruction is executed in 
Slave or Master mode. 

8-555 DZ5l-00 



STPS STPS 

STPS Store Parameter Segment Register 751 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(PSR) -> C(Y, Y+l} 

EXPLANATION: This instruction stores the current contents of the parameter 
segment register (PSR) in even and odd memory locations Y and 
Y+l. The contents of the PSR remain unchanged. 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An IPR fault occurs if illegal address modifications or 
illegal repeats are used. 

EXAMPLE: 

1 8 

STPS 
LOA 
CANA 
TZE 
LOP 

(PMME processing> 

16 

.STEMP, ,P.SSA 
• STEMP "P • SSA 
.FBT27,DL 
NOPARM 
Pl, .PS 

32 

STASH PSR 

ANY PARAMETERS? 
NO,XFER 
o ,DL+YES, GET FIRST 

8-556 DZ5l-00 

I " / 



( 

STPTW STPTW 

Store PTWAM Register 157 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master Mode 

SUMMARY: 

EXPLANATION: 

I LLEGAL ADDRESS 

C(PTWAM)n --> C(Y)00-35 

where: n = Yll-17 Yll-16 specifies row 
Y17 specifies column of 
associative memory 

The contents of the PTWAM word n are stored in memory location 
Y. The absolute memory address (mod 1024) of the referenced 
page is stored in bits 4-17. Bits 0-3 and 18-29 are stored as 
zeros. Bits 30-35 are the hardware control field bits in the 
PTW (bits 30 and 35 are stored as ones). 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS : 

NOTES: 

None affected 

1. The PTWAM is 64 rows by 2 columns. Bits 25-30 of the 
virtual address select a row. Thus, the two entries in 
each row have the same six least-significant bits. 

2. This instruction functions whether the PTWAM is ON or OFF. 
(Refer to the CAMP instruction.) 

3. The STPTW instruction inhibits the CPU from carrying out 
the execute interrupt procedure when the STPTW instruction 
is executed from an odd memory location, even though the 
interrupt condition is present and waiting for execution. 

4. An IPR fault occurs if illegal address modifications or 
illegal repeats are used. 

5. A Command fault occurs if this instruction is executed in 
Slave or Master mode. 

8-557 DZ51-00 



STQ 

STQ Store Q-Register 756 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(Q> -> C(Y): C<Q> unchanged 

I LLEGAL ADDRESS 
MODI FI CATIONS: DU, DL 

ILLEGAL REPEATS: RPL 

I NDI CATeRS: None affected 

NOTE: An IPR fault occurs if illegal address modifications or an 
illegal repeats are used. 

STQ 

8-558 DZ5l-00 



( 

( 

STSS STSS 

STSS Store safe Store Register 753 (1) 

FORMAT: Single-word instruction format (see Figure B-1) 

OPERATING MODES: Privileged Master mode 

SUMMARY: 

ILLEGAL ADDRESS 

C(SSR)O-35 --> C(Y)O-35 

C(SSR)36-69 --> C(Y+l)0-33 

The following value is stored in C{Y+l)34,35 in accordance 
with the SCR value. 

If C(SCR) = 00101/11 

11 --> C(Y+l)34,35 (64-word frame) 

If C(SCR) = 10 

10 --> C(Y+l)34,35 (80-word frame) 

MODIFICATIONS: DU , DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT I RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An Illegal Procedure fault occurs when illegal address 
modification or an illegal repeat is used. 

2. A Command fault occurs if the processor is in Slave or 
Master mode and this instruction is executed. 

8-559 DZ51-00 



STSS 

EXAMPLES: 

1 8 

SOVTE NULL 
LOP 
LOP 
STSS 
LOA 
ADA 
ORA 
STA 
SBA 
EAX2 
LDQ 
QRL 
ADO 
CMPQ 
EAX2 
SBA 
ALS 
STA 
LOP 
LOP 
LOP 
LXLO 
LDAQ 
STAQ 
STSS 
LOA 
ANA 
ORA 
STA. 
LDD 

STSS 

16 32 

PO,SD.PSH,DL copy push segment descriptor to PO 
PO,.CTYP,DL change push descriptor type 
.SSSR"P.SSA store SSR 
.SSSR+1"P.SSA SSR base 
1K*4,DL + 1K words 
-07777,DL adjust page bound 
.SVFLT+1"P.SSA save it 
192*4,DL 
1,3 
PH.SS, ,PO 
16 

original SSR bound + base 

PH.SS+1"PO get max virtual address for safe store 
.SVFLT+1, ,P.SSA 
a 
.SSSR+1"P.SSA get new bound 
16 
.SVFLT+1"P.SSA store new bound 
P1,SD.DGS,DL load DGS segment descriptor 

change type GDS descriptor 

store current contents 

PO,SD.DGS,DL 
PO,.CTYP,DL 
POINT,7 
O,O,PO 
.SSSR, ,P.SSA 
O,O,PO 
O,O,PO 
=0177777,DL 

store SSR to generate page load segment 

.SVFLT+1"P.SSA set new bound 
O,O,PO 
P2,0,O,P1 load new safe store descriptor 

8-560 DZ51-00 



( 

( 

STT STT 

STT Store Timer Register 454 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

I NDI CATeRS: 

NOTES: 

C(TR) -> C(Y)0-26 

00 ••• 0 --> C(Y}27-35 

DU , DL, CI I SC, SCR 

RPT I RPD I RPL 

None affected 

1. Bit 26 has a significance of 1/512 millisecond. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-561 DZ51-00 



STTA STTA 

STTA Store Test Address Registers 553 (I) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master Mode 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

C{Test Register 0,1) --> C(Y-pair) 

Contents of test registers 0 and 1 are stored in even/odd 
memory locations Y and Y+l. Contents of test registers 
remain unchanged. 

This instruction inhibits the processor from carrying out the 
execute interrupt procedure when the STTA is executed from an 
odd memory location, even though the interrupt condition is 
present and waiting for execution. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NOI CATORS: 

NOTES: 

None affected 

1. An Illegal 'Procedure Fault occurs if illegal address 
modification or illegal repeats are executed. 

2. A Command fault occurs if execution is attempted in Master 
or Slave mode. 

8-562 DZ51-00 



( STTD STTD 

S'l"l'D Store Test Descriptor Registers 550 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master Mode 

SUMMARY: 

EXPLANATION: 

I LLEGAL ADDRESS 

C(Test Register 0,1) --> C(Y-pair) 

Contents of test registers 2 and 3 are stored in even/odd 
memory locations Y and Y+l. Contents of test registers 
remain unchanged. 

This instruction inhibits the processor from carrying out the 
execute interrupt procedure when the STTD is executed from an 
odd memory location, even though the interrupt condition is 
present and waiting for execution. 

MODIFICATIONS: DU, DL, CI, SC t SCR 

(. I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: 

NOTES: 

( 

None affected 

1. An Illegal Procedure Fault occurs if illegal address 
modification or illegal repeats are executed. 

2. A Command fault occurs if execution is attempted in Master 
or Slave mode. 

8-563 DZ51-00 



STWS STWS 

STWS Store Working Space Registers 752 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Privileged Master Mode 

SUMMARY: When EA17 (NS Mode) or EA33 (ES Mode) = 0 

C(WSRO) -> C(Y)O-8 

C(WSR1) -> C(Y)9-17 

C(WSR2) --> C(Y)18-26 

C(WSR3) --> C(Y)27-35 

When EA17 (NS Mode) or EA33 (ES Mode)= 1 

C(WSR4) -> C(Y)O-8 

C(WSR5) -> C(Y)9-17 

C(WSR6) --> C(Y)18-26 

C(WSR7) --> C(Y)27-35 

EXPLANATION: The contents of WSRO to WSR3, or WSR4 to WSR7 are stored in 
memory location Y, in accordance with the setting of the 
EA17/EA33 value. 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

8-564 DZ51-00 



STWS 

NOTES: 

EXAMPLE: 

1 

TODES 

WSR 

( 

( 

1. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

2. A Command fault occurs if the processor is in Slave or 
Master mode and this instruction is executed. 

8 16 32 

NULL 
STWS WSR store WSR 0-3 
STWS WSR+l store WSR 4-7, store contents 

EVEN 
BSS 2 

STWS 

8-565 DZ51-00 



STXn STXn 

Store Index Register B in Upper 74n (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Any 

SUMMARY: NS Mode 

For n c 0,1, ••• ,7 as determined by op code 

C(XB) --> C(Y)O-17 

C(Y)18-35 unchanged 

ES Mode 
I 

For n c 0,1, ••• ,7 as determined by op code 

ILLEGAL ADDRESS 
MODIFICATIONS: DU, DL, Cl, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, or RPL of STXO 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-566 DZ5l-00 



( 
STZ STZ 

STZ Store Zero 450 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 00 ••• 0 --> C(Y) 

I LLEGAL ADDRESS 
MODI PI CATIONS: DU, DL 

I LLEGAL REPEATS: RPL 

I NDI CATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-567 DZ51-00 



SWCA SWCA 

SWCA Subtract with carry from A-Register 171 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

If carry indicator is ON 

C(A) - C(Y) --> C(A) 

C (y) unchanged 

I f carry indicator is OFF 

C(A) - C(y) - 00 ••• 1 --> C{A) 

C C y) unchanged 

This instruction is identical to SBA except that, when the 
carry indicator is OFF at the beginning of the instruction, a 
positive 1 is subtracted from the least-significant position. 

This instruction is intended for use with multiword-precision 
arithmetic. Thus, the summary above can be reworded as 
follows: 

If carry indicator is ON, then C(A) + one's complement of 
C(y) + 00 ••• 1 --> C(A) 

If carry indicator is OFF, then CCA) + one's complement of 
C(y) -> CCA) 

The positive 1 is added when ON represents the carry from the 
next less-significant part of the multiword subtraction. 

MODIFICATIONS: None 

I LLEGAL REPEATS: None 

8-568 DZ51-00 



SWCA SWCA 

I NDI CA'l'ORS : Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)O = 1, then ON: otherwise, OFF 

Overflow - I f range of A is exceeded, then ON 

carry - If a carry out of bit 0 of C(A) is generated, 
then ON: otherwise, OFF 

(. 

( 

8-569 DZ51-00 



SWCQ SWCQ 

SWCQ Subtract with carry from Q-Register 172 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

If carry indicator is ON 

C(Q> - C(Y> --> C(Q> 

C (y > unchanged 

If carry indicator is OFF 

C(Q) - C<Y) - 0 ••• 1 --> C<Q> 

C (y > unchanged 

This instruction is identical to SBQ except that, when the 
carry indicator is OFF at the beginning of the instruction, a 
positive 1 is subtracted from the least-significant position. 

This instruction is intended for multiword-precision 
arithmetic. Thus, the summary above can be reworded as 
follows: 

If carry indicator is ON, then C<Q> + one's complement of 
C(Y> + 00 ••• 1 --> C<Q> 

If carry indicator is OFF, then C<Q> + one's complement of 
C(Y> --> C(Q> 

The positive 1 is added when ON represents the carry from the 
next less-significant part of the multiword subtraction. 

MODI FI CATl ONS: None 

I LLEGAL REPEATS: None 

8-570 DZ51-00 



( 
SWCQ SWCQ 

INDICATORS: Zero - If C<Q> = 0, then ON: otherwise, OFF 

Negative - If C(Q>O = 1, then ONi otherwise, OFF 

Overflow - If range of Q is exceeded, then ON 

carry - If a carry out of bit 0 of C<Q> is generated, 
then ONi otherwise, OFF 

EXAMPLE: (Triple-precision binary fixed-point subtraction) 

1 8 16 32 

STI C set overflow mask ON 
LDA =lB24,DL 
ORSA C 
LDI C 
LDQ A+2 subtract low-order bits 
SBLQ B+2 
STQ C+2 
LDQ A+l subtract intermediate bits 
SWCQ B+1 
STQ C+l 

( STI C set overflow and overflow mask OFF 
LDA =0733777,DL 
ANSA C 
LDI C 
LDQ A subtract high-order bits 
SWCQ B 
STQ C 

A DEC 9,8,7 
B DEC 6,5,4 
C BSS 3 

( 

8-571 DZ5l-00 



SWD 
SWDX 

SWD 
SWDX 

FORMAT: 

CODING FORMAT: 

Subtract Word Displacement from Address Register 

S~ 
SWDX 

527 (1) 

Special arithmetic instruction format (see Figure 8-3) 

1 8 16 

{SWD} word displacement,R,AR 
{SWDX} 

When the mnemonic is coded with X (AWDX), bit 29 is forced to 
zero. 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

ILLEGAL ADDRESS 

If bit 29 = 1: C(ARn)0-17 -(y + C(DR» --> ARnO-17 

If bit 29 = 0: - y + C(DR) --> ARnO-17 

In either case, 00 ••• 0 --> ARn18-23 

The y field (with bit 3 extended) is added to the contents of 
the register specified by the code in the DR field. Then, if 
bit 29 = 0, this value replaces bits 0-17 of the AR specified 
by bits 0-2 of the y field. If bit 29 = 1, this value is 
subtracted from bits 0-17 of the specified AR and the result 
is stored in bits 0-17 of the specified AR. In either case, 
bits 18-23 of the specified AR are zeroed. 

MODIFICATIONS: DU, DL, or Ie specified in DR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-572 DZ5l-00 

/ 



( 

( 

SWD 
SWDX 

EXAMPLE: Applies to NS mode only 

1 8 16 

EAX5 2 
SWDX 2,5,4 
SWD 0,5,4 

EAX4 1 
SWDX 4,4,7 
SWD 1,4,7 

SWD 
SWDX 

AR4 octal contents - 7 7 7 7 7 4 0 0 
AR4 octal contents - 7 7 7 7 7 2 0 0 

AR7 octal contents - 7 7 7 7 7 3 0 0 
AR7 octal contents - 7 7 7 7 7 1 0 0 

8-573 DZ51-00 



SXLn SXLn 

Store Index Register n in Lower 44n (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: 

I LLEGAL ADDRESS 

NS Mode 

For N=0,1, ••• ,7 as determined by op code 

C(Xn) --> C(Y)18-35 

C(Y)O-17 unchanged 

ES Mode 

For N=0,1, ••• ,7 as determined by op code 

C( GXn18-35) --> C(Y)18-35 

C(Y)O-17 unchanged 

MODIFICATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, or RPL of SXLO 

INDICATORS: None affected 

NOTE: An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-574 DZ5l-00 



( SYNC SYNC 

SYNC Gate Synchronize 014 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

EXPLANATION: This instruction operates as a NOP; no operation takes place. 

I LLEX;AL ADDRESS 
MODIFICATION: Address modifications are performed, but have no effect on 

the operation. 

ILLEX;AL REPEATS: RPD, RPL, RPT 

INDICATORS: Address modifications cause defined changes to address and 
tally. The tally runout indicator may be set ON as a result. 

NOTE: An IPR fault occurs if an illegal repeat is executed. 

8-575 DZ5l-00 



SZN SZN 

SZN Set Zero and Negative Indicators from Storage 234 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATl NG MODES: Any 

EXPLANATION: C(Y) is tested and the indicators are set in accordance with 
the result 

I LLEGAL ADDRESS 
MODIFICATIONS: None 

I LLEGAL REPEATS: None 

I NDI CATORS: Zero 

Negative 

o 
1 
o 

- If C(Z) = 0, then ON: otherwise, OFF 

- If C<Z)o = 1, then ON: otherwise, OFF 

Negative 

o 
o 
1 

Relationship 

Number C(Y) > 0 
Number C(Y) = 0 
Number C(Y) < 0 

8-576 DZ5l-00 



( 

( 

( 

SZNC SZNC 

SZNC Set zero and Negative Indicators from Storage 214 (0) 
and Clear 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

EXPLANATION: This instruction provides test-and-set operation, required 
for setting and releasing locks, or for closing and opening 
gates. C(Y) is tested and the indicators are set in 
accordance with the result. C(Y) is then zeroed. 

I LLEGAL ADDRESS 

This instruction is used for a gating operation in multiple 
CPU systems. Execution of the next instruction is delayed 
until the cache-flush request applied to all CPUs has 
completed. 

MODIFICATIONS: DU, DL, 0, SC, SCR 

I LLEGAL REPEATS: None 

I NDI CATORS : 

NOTE: 

Zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C(Z)O = 1, then ON; otherwise, OFF 

zero N~ative Relationshi12 

0 0 Number C(Y) > 0 
1 0 Number C(Y) = 0 
0 1 Number C{Y) < 0 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-577 DZ5l-00 



SZTL SZTL 

SZTL Set Zero and Truncation Indicators with Bit 064 (1) 
Strings Left 

FORMAT: 

o 0 000 o 011 1 1 Op Code 2 3 
o 1 4 5 8 901 7 8 8 5 

HDDDD IBOLR 1+1 MF2 1 064(1) H NFl 1 
0 o 0 
0 2 3 

AR# 

000 
023 

AR# 

CODING FORMAT: 

Y1 

Y1 

Y2 

Y2 

1 8 

1 1 1 2 
7 8 9 0 

C1 

1 1 1 2 
7 8 9 0 

C2 

16 

B1 

B2 

2 2 
3 4 

2 2 
3 4 

N1 

0----------------0 

N2 

0-------------0 

SZTL (NFl), (MF2),BOLR,F,T 
BDSC LOCSYM,N,C,B,AM 
BDSC LOCSYM,N,C,B,AM 

3 
2 

3 
2 

R1 

R2 

3 
5 

3 
5 

(Refer to Section 7 under Nultiword Instructions for description 
of Multiword Modification Field.) 

OPERATING MODES: Any 

SUMMARY: C(string 1) : (BOLR) : C(string 2) 

8-578 DZ5l-00 



( 

( 

( 

SZTL 

EXPLANATION: 

ILLEGAL ADDRESS 

The string of bits starting at location YCBl is evaluated, 
bit by bit, with the string starting at location YCB2 until 
either the resultant bit from the BOLR field is a 1 or until 
L2 is exhausted. If U is greater than 12, the Truncation 
indicator is set. 

If Ll is less than L2, the fill bit (F) is used as the L2-L1 
least-significant bits of string 1. The contents of both 
strings remain unchanged. 

MODI FI CATIONS: DU, DL for MFl and MF2 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: 

NOTES: 

Zero - If all the resultant bits generated are zero, 
then ON; otherwise, OFF 

Truncation - If Ll is > 12, then ON; otherwise, OFF 

1. An Illegal Procedure fault occurs when illegal address 
modification or illegal repeats are used. 

2. An IPR fault does not occur even when Ll = 0 or L2 = O. In 
this case, the zero and truncation indicators are affected. 

SZTL 

8-579 DZ5l-00 



SZTL SZTL 

EXAMPLES: 

1 8 16 32 

SZTL , ,6 exclusive OR operation 
Bose FLDl,36,O,O FLDI operand descriptor 
Bose FLD2,35,O,1 FLD2 operand descriptor 
TZE ALLOFF zero indicator ON 
TRTN TRUNe truncation indicator ON 
USE CONST. memory contents in octal 

FLOI OEC -1 777777777777 
FLD2 OEC -1 777777777777 

USE indicators set? - zero and truncation 

LDI O,OL 
LDX7 -l,OU load negative value into X7 
STI FLDI store processor indicators 
SZTL ,,1 AND operation 
Bose FLDl,1,2,1 FLDI operand descriptor 
Bose FLD2,1,2,1 FLD2 operand descriptor 
TNZ 190N not zero - negative indicator ON 
USE eONST. memory contents in octal 

FL01 BSS 1 x x x x x x 2 0 0 0 0 0 
FLD2 OEC IB19 o 0 0 0 0 020 0 0 0 0 

USE indicators set? - none " '-. 

8-580 OZ51-00 



SZTR SZTR 

SZTR Set zero and Truncation Indicators with Bit 065 (1) 
Strings Right 

FORMAT: 

o 0 o 0 001 1 1 1 Op Code 2 3 
o 1 4 5 B 9 0 1 7 B 

Hoooa IBOLR 1+ I MF2 I 065(1) NFl 

0 o 0 
0 2 3 

AR# 

000 
023 

AR# 

COD! NG FORMAT: 

Yl 

Yl 

Y2 

Y2 

1 8 16 

III 2 
789 0 

Cl 

III 2 
789 0 

C2 

Bl 

B2 

2 
3 

2 
3 

Nl 

0-------0 

N2 

0--- 0 

SZTR (MFl),(NF2),BOLR,F,T 
BDSC LOCSYM,N,C,B,AM 
BDSC LOCSYN,N,C,B,AM 

3 3 
2 5 

3 
2 

Rl 

R2 

3 
5 

(Refer to Section 7 under Multiword Instructions for description 
of Multiword Modification Field.) 

OPERATI NG MODES: Any 

SUMMARY: C(string 1) (BOLR) C(string 2) 

8-581 DZ51-00 



SZTR SZTR 

EXPLANATION: same as for SZTL except that starting locations are YCBl + 
(Ll-l) and YCB2 + (L2-1) and the evaluation is from right to 
left (least-significant bit to most significant bit). Any 
fill (used in comparison) is of most-significant bits. 

I LLEGAL ADDRESS 
MODIFICATIONS: DU, DL for MF1 and MF2 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: same as for SZTL 

NOTE: Notes for SZTR are the same as for SZTL. 

EXAMPLES: 

1 8 

SZTR 
BOSC 
BOse 
TNZ 
USE 

F101 DEC 
USE 

101 
LDX7 
STI 
SZTR 
BOSC 
BDSe 
TZE 
USE 

F10l BSS 
USE 

16 

,,3,1 
FLD1,1,2,1 
0,1 
190N 
eONST. 
1B19 

O,DL 
O,DU 
F10l 
1,14 
FLD1,1,2,0 
0,1 
l80N 
CONST. 
1 

32 

evaluate FLD1 as is (move) 
FLDl operand descriptor (bit 19) 
FLD2 operand descriptor 

memory contents in octal 
o 0 0 0 0 0 2 0 0 0 0 0 
indicators set? - none 

clear processor indicators 
load zeros into X7 
store processor indicators 
invert 
FLDl operand descriptor (bit 18) 
FLD2 operand descriptor 
zero indicator ON 
memory contents in octal 
xxxxxx400000 
indicators set? - zero 

8-582 DZ5l-00 



( 

( 

( 

TCT TCT 

TCT Test Character and Translate 164 (1) 

FORMAT: 

o 0 000 o a 1 1 1 1 Op Code 2 35 
o 1 4 5 890 1 7 8 8 

10 --------- -01 164(1) !xl MF1 

0 o 0 
0 2 3 

AR# 

000 
023 

AR# 

000 
023 

AR# 

CODING FORMAT: 

Y1 

Y1 

Y2 

Y2 

Y3 

Y3 

1 

1 1 2 2 222 
7 8 o 1 234 

CNl TAl 

8 16 

1 1 
7 8 

1 1 
7 8 

TCT (MF1) 

0----

0-----

ADSCn LOCSYM,CN,N,AM 
ARG LOCSYM, RM, AM 
ARG LOCSYM, RM, AM 

0 

3 
2 

Nl 

0------0 

-----0 

---0 

22333 
89012 

AR 00 

22333 
89012 

AR 00 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

8-583 

R1 

REG2 

REG3 

3 
5 

3 
5 

3 
5 

DZ51-00 



TCT TeI' 

OPERATI NG MODES: Any 

EXPLANATION: Starting at location Yel, each type TAl character is used as 
an index to a table of 9-bit characters that starts at 
location Y2. If the table entry is zero, a counter is 
incremented by 1. 

I LLEGAL ADDRESS 

The operation terminates if a nonzero table entry is found or 
if the tally (Ll) is exhausted. At the conclusion of the 
instruction, the counter contents are stored right-justified 
in bits 12-35 of Y3. The last accessed table entry is placed 
in bits 0-8 of Y3. Zeros are placed in bits 9-11 of Y3. 
Except in cases of string overlap, the contents of the source 
field and the table remain unchanged. (Refer to Explanation 
under MVT.) 

MODIFICATIONS: DU, DL for NFl, REG2, REG3 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: Tally - If the tally (Ll) is exhausted and table entry is 
zero, then ON; otherwise, OFF 

NOTES: 1. If Nl=O, zero is stored in Y3 (bits 12-35) and the tally 
indicator is affected. 

2. If Nl>O and a match is found in the first character, zero 
is stored in Y3 (bits 12-35) and the tally indicator is 
not affected. 

3. An Illegal procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-584 DZ51-00 



TCT 

EXAMPLE: 

1 

FLD1 
FLD3 

8 

TCT 
ADSC6 
ARG 
ARG 
TTF 
USE 
BCl 
BSS 

TABLE OCT 
OCT 
OCT 
USE 

16 

FLD1,0,12 
TABLE 
FLD3 
FOUND 
CONST. 
2, 1234567890# 
1 

32 

no modification 
indexing string operand descriptor 
pointer to table 
pointer to character and count word 
nonzero character found 
memory contents 
200102030405060710110013 (octal) 
character and count - 020000000013 

o 1 2 3 456 7 
000000000000,000000000000 
000000020020,020020020020 
000000000000 

Octal 
Index 

OX 
IX 
2X 

Result - nonzero character found 

NOTE: The highest possible value in FLD1 is an octal 20, a "blank". 

EXAMPLE WI TH ADDRESS MODI FI CATION: 

1 8 

X6 BOOL 
EAX2 
EAX3 
EAX6 
AWDX 
TCT 
ARG 
ARG 
ARG 
TTF 
NULL 
USE 

FLD1 ASOl 
FLD3 BSS 
INDSCR ADSC9 

TABLE BSS 
OCT 
OCT 
USE 

16 32 

16 
2 put 2 into X2 
FLDl put FLDl address into X3 
6 put FLD1 length into X6 
0,3,7 put FLD1 address into AR7 
{1,1,1,2} with all modification options 
INDSCR pointer indirect operand descriptor 
TABLE pointer to table 
FLD3 pointer to FLD3 
*+2 nonzero found 

tally runout ON 
CONST. memory contents 

2, 1234;5 040040061062063064073065 (octal) 
1 character and count 040000000004 
0,0,x6,7 indexing FLDl operand descriptor 

(FLD1,2,6) 
12 generate 60 (octal) table characters 
000000000000,000000000000 (060-067) 
000000000040 (070-073) 

Result - nonzero found 

NOTE: The highest possible value in FLDl is an octal 073, a "." , . 

TCT 

8-585 DZ5l-00 



TCTR TCTR 

TCTR Test Character and Translate in Reverse 165 (I) 

FORMAT: Same as Test Character and Translate (TCT) format 

COD! NG FORMAT: 1 8 16 

TCTR 
ADSCn 
ARG 
ARG 

(MF1) 
LOCSYM,CN,N,AM 
LOCSYM, RM, AM 
LOCSYM, RM, AM 

(Refer to Section 7 under Multiword Instructions for 
description of Multiword Modification Field.) 

OPERATI NG MODES: Any 

EXPLANATION: Same as TCT except start at location YC1 + (L1-1) and 
progress toward YC1. 

ILLEGAL ADDRESS 
MODIFICATIONS: DU, DL for MF1, REG2~ REG3 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: Tally - If the tally (L1) is exhausted and table entry is 
zero, then ON; otherwise, OFF 

NOTE: Notes for TCTR are the same as for TCT. 

EXAMPLE: 

1 8 

TCTR 
ADSC4 
ARG 
ARG 
TTF 
NULL 
USE 

FLD1 EDEC 
FLD3 BSS 

16 

FLD1,6,10 
TABLE 
FLD3 
*+2 

CONST. 
l6P1234567890 
1 

TABLE OCT 0,0 

32 

no modification 
indexing string operand descriptor 
pointer to table 
pointer to character and count word 
nonzero found 
nonzero not found - tally runout ON 
memory contents 
0000001234567890 
character and count 000000000012 (octal) 

OCT 000000014014,000000014014 
*Highest possible value (in 4-bit field) in FLDl is octal 17 

USE Result - no illegal character found 

8-586 DZ5l-00 



(-

( 

TEO TEO 

TOO Transfer on Exponent Overflow 614 (0) 

FORMAT: single-word instruction format (see Figure 8-1) 

CODING FORMAT: 1 8 16 

TEO LOCSYM, RM, AM 

OPERATING MODES: Any 

SUMMARY: NS Mode 

EXPLANATION: 

If exponent overflow indicator ON, then Y --> C(IC) 

If exponent overflow indicator ON and instruction bit 29=1 
then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn -> C(SEGID(IS» 

ES Mode 

If exponent overflow indicator ON, then Y16-33 --> C(IC) 

If exponent overflow indicator ON and instruction bit 29=1 
then 

n = YO-2 

C(DRn) -> C(ISR); C(SEGIDn -> C(SEGID(IS» 

with conditional transfer instructions, if the transfer 
condi tion is not satisfied (transfer does not occur), the I SR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGI D (I S) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn~ are 
loaded into the ISR and SEGID(IS). The transfer I in this 
case, is the transfer to another segment. 

8-587 DZ51-00 



TEO 

I LLEGAL ADDRESS 

TEO 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the I SR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRn, an 
IPR fault occurs. The ISR bit can be altered only with the 
eLI MB instruction. 

MODI FI CATl ONS : DU, DL I CI, sc, SCR 

I LLEGAL REPEATS: RPT ,RPD, RPL 

lNDlCA1ORS: Exponent Overflow - Set OFF 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the lSR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the lSR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-588 DZ51-00 

/ 

,/ 



( 

( 

TEU TEU 

TEO Transfer on Exponent Underflow 615 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TEU lOCSYM,RM, AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If exponent underflow indicator ON, then Y --> C(IC) 

If exponent underflow indicator ON and instruction bit 29=1 
then 

n = YO-2 

C(DRn) --> C(ISR): C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

If exponent underflow indicator ON, then Y16-33 --> C(IC) 

If exponent underflow indicator ON and instruction bit 29=1 
then 

n = YO-2 

C(DRn} --> C(ISR}; C(SEGIDn) --> C(SEGID(IS» 

with conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGI D (I S) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn, are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

8-589 DZ51-00 



TEV 

I LLPX;AL ADDRESS 

TEV 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the I SR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRB, an 
IPR fault occurs. The ISR bit can be altered only with the 
CLIMB instruction. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

ILLPXiAL REPEATS: RPT, RPD, RPL 

INDICATORS: Exponent Underflow - Set OFF 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-590 DZ51-00 

/ 



( 

( 

( 

TMI TMI 

TMI Transfer on Minus 604 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODING FORMAT: 1 8 16 

TMI LOCSYM,RM,AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If negative indicator ON, then Y --> C(IC) 

If negative indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR): C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

If negative indicator ON, then Y16-33 _> C(IC) 

If negative indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR): C(SEGIDn) -> C(SEGIDUS» 

With conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGIDCIs) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGI D ( IS) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn; are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

8-591 DZ51-00 



TMI 

I LLEGAL ADDRESS 

TID 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the I SR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DR!!, an 
IPR fault occurs. The ISR bit can be altered only with the 
CLIMB instruction. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O: or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the I SR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An I llegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-592 DZ5l-00 



( 

TMOZ TMOZ 

TMOZ Transfer on Minus or Zero 604 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TMOZ LOCSYM,RM,AM 

OPERATI NG MODES: Any 

SUMMMARY: 

EXPLANATION: 

NS Mode 

If negative indicator ON or Zero indicator ON, then 

Y --> C(IC) 

If negative indicator ON or Zero indicator ON; and instruction 
bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn) -> C(SEGID(IS» 

ES Mode 

If negative indicator ON or Zero indicator ON, then 

Y16-33 --> C(IC) 

If negative indicator ON or Zero indicator ONi and instruction 
bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn) -> C(SEGID(IS» 

With conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not changed. 

8-593 DZ51-00 



TMOZ 

I LLEGAL ADDRESS 

TMOZ 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn, are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRn, an 
!PR fault occurs. The ISR bit can be altered only with the 
CLIMB instruction. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATeRS: 

NOTES: 

None affected 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-594 DZ51-00 

''"- / 

'" / 



( 

TMCZ 

EXAMPLES: 

1 8 

LeQ 
TMOZ 
NULL 

16 

2,DL 
NOPLUS 

*DID TRANSFER OCCUR? YES 

32 

transfer on minus or zero 
plus routine 

TO WHAT LOCATION? NOPLUS 

8-595 

TMOZ 

DZ51-00 



TNC TNC 

THC Transfer on No carry 602 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODING FORMAT: 1 8 16 

TNC LOCSYN,RM,AM 

OPERA'l'I NG NODES: Any 

SUNMARY: 

EXPLANATION: 

NS Node 

If carry indicator OFF, then Y --> C(IC} 

If carry indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR}: C(SEGIDn} --> C(S~D(IS)} 

ES Node 

If carry indicator'OFF, then Y16-33 --> C(IC) 

If carry indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR}: C(S~Dn} -> C(S~D(IS)} 

with conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the ~D(IS} are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS} are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn:- are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

8-596 DZ51-00 



(~ 

( 

TNC 

I LLEGAL ADDRESS 

TNC 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the I SR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not -
equal to bit 24 of the segment descriptor from the DRB, an 
IPR fault occurs. The ISR bit can be altered only with the 
CLIMB instruction. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the I SR from a descriptor 
that is not type T=O: or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-597 DZ5l-00 



TNZ TNZ 

TNZ Transfer on Nonzero 601 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TNZ LOCSYM ,Rl-1, AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If zero indicator OFF, then Y --> C(IC) 

If zero indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR)i C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

If zero indicator OFF, then Y16-33 --> C(IC) 

If zero indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR)i C(SEGIDn) -> C(SEGID(IS» 

With conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
S~D(IS) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDB, are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

8-598 DZ51-00 

-/' 



(' 

TNZ 

ILLEGAL ADDRESS 

TNZ 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRB, an 
IPR fault occurs. The ISR bit can be altered only with the 
ClJMB instruction. 

MODIFICATIONS: DU, DL, CI, SC, S~ 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An I llegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-599 DZ51-00 



TOV TOV 

TOV Transfer on Overflow 617 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TOV LOCSYM, RM, AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If overflow indicator ON, then Y --> C(IC) 

If overflow indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR); C(SEGIDn) -> C(SEGID(IS» 

ES Mode 

If overflow indicator ON, then Y16-33 -> C(IC) 

If overflow indicator ON and inst~uction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR)i C<SEGIDn) --> C(SEGID(IS» 

With conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGI D (I S) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding ~Dn~ are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

8-600 DZ51-00 



( 

( 

TOV 

I LLEGAL ADDRESS 

TOV 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRg, an 
IPR fault occurs. The ISR bit can be altered only with the 
ClJMB instruction. 

MODIFICATIONS: DU, DL, a, SC, SCR 

ILLEGAL REPEATS: RPT ,RPD, RPL 

INDICATORS: Overflow - Set OFF 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag ·bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-601 DZ5l-00 



TPL TPL 

TPL Transfer on Plus 605 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TPL LOCSYM, RM, AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If negative indicator OFF,. then Y --> C(IC) 

If negative indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR): C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

If negative indicator OFF, then Y16-33 --> C(IC) 

If negative indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR): C(SEGIDn) --> C(SEGID(IS» 

With conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn~ are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

8-602 DZ5l-00 

/ 
I 

(j 



( 
---. 

TPL 

ILLEGAL ADDRESS 

TPL 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the I SR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRn, an 
IPR fault occurs. The ISR bit can be altered only with the 
CLIMB instruction. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT I RPD I RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bi~ 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-603 DZ5l-00 



TPNZ TPNZ 

TPNZ Transfer on Plus and Nonzero 605 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TPNZ LOCSYM, RM, AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If negative indicator OFF and Zero indicator OFF, then 

Y --> c(Ic) 

If negative indicator OFF and Zero indicator OFF 
and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR); C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

If negative indicator OFF and Zero indicator OFF, then 

Y16-33 --> C(IC) 

If negative indicator OFF and Zero indicator OFF 
and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR}; C(SEGIDn) --> C(SEGID(IS» 

with conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not changed. 

8-604 DZ51-00 

-" 
\ 



( 

( 

TPNZ 

I LLEGAL ADDRESS 

TPNZ 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGaD~~ are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DR~, an 
IPR fault occurs. The ISR bit can be altered only with the 
CLIMB instruction. 

MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: 

NOTES: 

None affected 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O: or has a base that is not 0 modulo 
32 bytes: or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-605 DZ5l-00 



TPNZ 

EXAMPLES: 

1 8 16 

EAX5 6 
EAX6 PLUSRT 
AWDX 0,6,6 
LDA 5,DL 
TPNZ 0,5,6 
NULL 

*DI D TRANSFER OCCUR? 

EAX2 
LDX? 
TPNZ 
NULL 

3 
4,DU 
TRANS, 2 

"'DID TRANSFER OCCUR? 

YES 

YES 

32 

load address modifier into X5 
load transfer address into X6 
put transfer address into AR6 
load +5 into A-register 
transfer on plus and nonzero 
zero and negative routine 

TO WHAT LOCATION? PLUSRT+6 

load address modifier into X2 
load +4 into X? 
transfer on plus and nonzero 
zero and negative routine 

TO WHAT LOCATION? TRANS+3 

8-606 

TPNZ 

DZ51-00 

/~-\ 

-,_ J 

I 
/ 



( TRA TRA 

TRA Transfer Unconditionally 710 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TRA LOCSYM, RM, AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

Y --> C(IC) 

If instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

Y16-33 --> C(IC) 

If instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR); C(SEGIDn) --> C(SEGID(IS» 

With unconditional transfer of control instructions, bit 29 
of the instruction word affects the operation as follows: 

a When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not affected. An IPR fault does not occur. 

a When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn~ are 
loaded into the ISR and SEGID(IS). The transfer in this 
case is the transfer to another segment. 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the ISR) are used in 
developing the addresses of indirect words. 

8-607 DZ51-00 



TRA 

I LLEGAL ADDRESS 

TRA 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRn, an 
IPR fault occurs. The ISR bit can be altered only with the 
CLI MB instruction. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type 1=0; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag-bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-608 DZ51-00 



TRC TRC 

TRC Transfer on carry 603 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TRC LOCSYN, RN, AN 

OPERATI NG NODES: My 

SUMMARY: 

EXPLANATION: 

NS Mode 

If carry indicator ON, then Y --> C(IC) 

If carry indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGIDUS» 

ES Node 

If carry indicator ON, then Y16-33 --> C(IC) 

If carry indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn) -> C(SEGID(IS» 

With conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits a, 1, 2, and the corresponding SEGIDg; are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

8-609 DZ51-00 



TRC 

I LLEGAL ADDRESS 

TRC 

If instruction bit 29=1, and if any form of indirect addressing 
is specified in the tag field, then the base, bound, and working 
space from DR!! (not the ISR) are used in developing the 
addresse:s of indirect words. 

When the transfer instruction attempts to load the ISR, the ISR 
bit 24 (NS/ES mode specification bit) cannot be altered. If bit 
24 of the ISR before execution of the transfer is not equal to 
bit 24 of the segment descriptor from the DR!!, an IPR fault 
occurs. The ISR bit can be altered only with the CLIMB 
instruction. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor that 
is not type T=O: or has a base that is not 0 modulo 32 bytes: 
or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor for 
which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-610 DZSI-OO 



(/ 

TRCTn 

TRC'l'n Transfer on COunt n 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TRCTn LOCSYM, RM, AM 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

For n = 0,1 ••• ,7 as determined by op code 

If zero indicator OFF and negative indicator ON 

then C(Xn) - 1 --> C(Xn) 

If C(Xn) # 0, Y --> C(IC) 

If zero indicator OFF and negative indicator ON 
and instruction bit 29=1 then 

m = YO-2 

C(DRm) --> C(ISR); C(SEGIDm) --> C(SEGID(IS» 

ES Mode 

For n = 0,1 ••• ,7 as determined by op code 

If zero indicator OFF and negative indicator ON 

then C(GXn) - 1 --> C(Xn) 

IF C(GXn) # 0, Y16-33 --> C(IC) 

If zero indicator OFF and negative indicator ON 
and instruction bit 29=1 then 

m = YO-2 

C(DRm) --> C(ISR); C(SEGIDm) --> C(SEGID(IS» 

8-611 

TRCTn 

54n (0) 

DZ51-00 



TRTCn 

EXPLANATION: 

I LLEGAL ADDRESS 
MODI FI CATIONS: 

I LLEGAL REPEATS: 

I LLEGAL EXECUTES: 

I NDI CATORS: 

NOTES: 

TRTCn 

A 1 is subtracted from the content of Xn/GXn and the result is 
loaded into Xn/GXn. Unless the content of the result in Xn/GXn 
is zero, control is transferred to the location specified by the 
y field. If the result is 0, the next instruction is executed. 

With conditional transfer' instructions, if the transfer condition 
is not satisfied (transfer does not occur), the ISR and the 
SEGID{IS) are not changed. When transfer occurs, bit 29 of the 
instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and SEGID(IS) 
are not changed. 

o When bit 29 of the instruction word = 1, the DRm selected with 
bits 0, 1, 2, and the corresponding S~Dm, are loaded into' 
the ISR and SEGID{S). The transfer, in this case, is the 
transfer to another segment. 

If instruction bit 29=1, and if any form of indirect addressing 
is specified in the tag field, then the base, bound, and working 
space from DRm (not the ISR) are used in developing the addresses 
of indirect words. 

When the transfer instruction attempts to load the ISR, the ISR 
bit 24 (NS/ES mode specification bit) cannot be altered. If bit 
24 of the ISR before execution of the transfer is not equal to 
bit 24 of the segment descriptor from the DRm, an IPR fault 
occurs. The ISR bit can be altered only with the CLIMB 
instruction. 

DU, DL, Cl, SC, SCR 

RPT, RPD, RPL 

XEC, XED 

Zero - If C(Xn/GXn) = 0, then ON; otherwise, OFF 

Negative - If C(Xn/GXn) = 1, then ON; otherwise, OFF 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor that is 
not type T=O; or has a base that is not 0 modulo 32 bytes; or 
has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor for 
which flag bit 25=0. 

8-612 DZ51-00 



( 

( 

TRTCn 

EXAMPLE: 

1 8 

TRTCn 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications, illegal repeats, or illegal executes are 
used. 

16 32 

LDXO 10,DU 

A LDA 

TRTCO A 

8-613 DZ51-00 



TRTF TRTF 

TRTF Transfer on Truncation I ndicator OFF 601 (1) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TRTF LOCSYM, RN, AN 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If truncation indicator OFF, then Y --> C(IC) 

If truncation indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR) i C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

If truncation indicator OFF, then Y16-33IC) 

If truncation indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR)i C(~Dn) --> C{SEGID(IS» 

with conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDg~ are 
loaded into the ISR and SEGID(S). The transfer, in this 
case, is the transfer to another segment. 

8-614 DZ51-00 



( 

( 

TRTF 

ILLEGAL ADDRESS 

TRTF 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the I SR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRn, an 
IPR fault occurs. The ISR bit can be altered only with the 
CLI ME instruction. 

MODIFICATIONS: DU, DL, 0, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-615 DZ51-00 



TRTF 

EXAMPLE: 

* 

* 

1 8 

MLR 
ADSC9 
ADSC4 
TRTF 
NULL 

16 

FLDl,O,4 
FLD2,O,4 
NTRUNC 

*Did transfer to NTRUNC occur? 

32 

move alphanumeric left to right 
sending operand descriptor 
receiving operand descriptor 
truncation indicator OFF 

YES 

TRTF 

*State of truncation indicator after? OFF 

8-616 DZ51-00 



( 

( 

TRTN TRTN 

TRTN Transfer on Truncation Indicator ON 600 (1) 

FORMAT: Single-word instruction format (see Figure a-I) 

CODING FORMAT: 1 8 16 

TRTN LOCSYM,RM,AM 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

EXPLANATION: 

If truncation indicator ON, then Y --> C(IC) 

If truncation indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn) -> C(SEGID(IS» 

ES Mode 

If truncation indicator ON, then Y16-33 --> C{IC) 

If truncation indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C{ISR); C(SEGlDn) -> C(SEGlD(IS» 

with conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS} are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGlDn: are 
loaded into the ISR and SEGlD(S). The transfer, in this 
case, is the transfer to another segment. 

8-617 DZ51-00 



TRTN 

I LLEX;AL ADDRESS 

TRTN 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the I SR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRn, an IPR 
fault occurs. The ISR bit can be altered only with the CLIMB 
instruction. 

MODI Fl CATIONS: DU, DL, Cl, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATeRS: Truncation - I f ON, it is turned OFF 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor that 
is not type T=O; or has a base that is not 0 modulo 32 
bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-618 DZ5l-00 

. -. / 

/ 
-' 



( 

( 

TRTN 

EXAMPLE: 

1 8 

MLR 
ADSC4 
ADSC6 
TRTN 
TRA 

16 

FLDl,O,8 
FLD2,O,6 
TRUNC 
TRUNC+6 

*To where was transfer? 

32 

move alphanumeric left to right 
sending operand descriptor 
receiving operand descriptor 
truncation indicator ON 
truncation indicator OFF 

TRUNC 

*State of truncation indicator after? OFF 

MLR 
ADSC9 
ADSC4 
TRTN 
NULL 

FLD1,O,8 
FLD2,O,4 
TRUNC 

*Did transfer of control occur? 

move alphanumeric left to right 
sending operand descriptor 
receiving operand descriptor 
truncation indicator ON 
no truncation routine 

yes where to? TRUNC 

*State of truncation indicator after? OFF 

8-619 

TRTN 

DZS1-OO 



TSS TSS 

TSS Transfer After Setting Slave 715 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TSS LOCSYM,RM,AM 

OPERA'!'I NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

Y -> C(IC) 

If instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR); C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

Y16-33 --> C(IC) 

If instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn) --> C{SEGID(IS» 

All outstanding memory requests are checked for completion 
before the Master Mode indicator is reset on the TSS 
instruction. 

with unconditional transfer of control instructions, bit 29 
of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not affected. An IPR fault does not occur 
even when bit 29 of the TSS instruction word is o. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGI~, are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

8-620 DZ51-00 



( 

( 

TSS 

I LLEX;AL ADDRESS 

TSS 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRB, an 
IPR fault occurs. The ISR bit can be altered only with the 
ClJMB instruction. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

I NDI CATORS: Master Mode - Set OFF 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-621 DZ51-00 



TSS TSS 

6. For a fault that occurs as a result of execution of a TSS 
instruction in Master mode, the state of bit 28 (Master 
Mode indicator) in the copy of the indicator register 
stored in the safe store frame is as follows: 

o If IPR or Fault Tag fault, caused by the tag field in 
the instruction or indirect word, then IR28 = 1. 

o If Bound fault, caused by attempt to access an indirect 
word, then IR28 = 1. 

o I f Bound fault, caused by attempt to access the target 
location then IR28 = 1. 

7. Use of the TSS instruction does not change the contents of 
the DR or AR registers which may have been set by previous 
Master Mode Entry (MNE/PMME) and/or user code. 

8-622 DZ51-00 



( ... 

( 

( 

TSXn TSXn 

Transfer and Set I ndex Register n 70n <D) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODI NG FORMAT: 1 8 16 

TSXn LOCSYM,RM,AM 

OPERATI NG MODES: Any 

SUMMARY: NS Mode 

For n = 0,1, ••• ,7 as determined by op code 

C(IC) + 0 ••• 01 --> C(Xn); Y --> C{IC) 

If instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(!SR); C(SEGlDn) -> C(SEGlD(rS» 

ES Mode 

For n = 0,1, ••• ,7 as determined by op code 

00 ••• 0--> C(GXn)O-17 

c(rc) + 0 ••• 01 --> C(GXn)18-35; 

(no transfer of a carry from bit 18 of GXn to high-order bit) 

Y16-33 --> C(IC) 

If instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGlDn) --> C(SEGlD{IS» 

8-623 DZ51-00 



TSXn 

EXPLANATION: 

ILLEGAL ADDRESS 

TSXn 

with unconditional transfer of control instructions, bit 29 
of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not affected. An IPR fault does not occur. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn~ are 
loaded into the ISR and SEGID(IS). The transfer, in this 
case, is the transfer to another segment. 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRB (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the D~, an 
IPR fault occurs. The ISR bit can be altered only with the 
CLI MB instruct ion. 

MODIFICATIONS: DU, DL, CI, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A'Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the I SR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-624 DZ5l-00 



( 

(-' 

TTF TTF 

TTF Transfer on Tally Runout Indicator OFF 607 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODING FORMAT: 1 8 16 

TTF LOCSYM,RM,AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If tally runout indicator OFF, then Y --> C(IC) 

If tally runout indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

If tally runout indicator OFF, then Y16-33 --> C(IC) 

If tally runout indicator OFF and instruction bit 29=1 then 

n = YO-2 

C(DRn) --> C(ISR): C(SEGIDn) --> C(SEGID(IS» 

With conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGI D (I S) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn~ are 
loaded into the ISR and SEGID(S). The transfer, in this 
case, is the transfer to another segment. 

8-625 DZ51-00 



TTF 

I LLEGAL ADDRESS 

TTF 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the I SR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRn, an 
IPR fault occurs. The ISR bit can be altered only with the 
ClJMB instruction. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O: or has a base that is not 0 modulo 
32 bytes: or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 2B=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

B-626 DZ51-00 

I 
\ , 
~j 



( .. 

( 

TTN 

TTN 

FORMAT: 

CODI NG FORMAT: 

Transfer on Tally Runout Indicator ON 

Single-word instruction format (see Figure 8-1) 

The TTN instruction is coded as follows: 

1 8 16 

TTN LOCSYM,RM,AM 

TTN 

606 (l) 

OPERATING MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If tally runout indicator ON, then Y --> C(IC) 

If tally runout indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR): C(SEGIDn} -> C(SEGID(IS» 

ES Mode 

If tally runout indicator ON, then Y16-33 -> C(IC) 

If tally runout indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) -' > C(ISR); C(SEGIDn) --> C(SEGID(IS» 

with conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGID(IS) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDg~ are 
loaded into the ISR and SEGID(S). The transfer, in this 
case, is the transfer to another segment. 

8-627 DZ5l-00 



TTN 

ILLEGAL ADDRESS 

If instruction bit 29=1, and if any form of indirect addressing 
is specified in the tag field, then the base, bound, and working 
space from D~ (not the ISR) are used in developing the 
addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the ISR 
bit 24 (NS/ES mode specification bit) cannot be altered. If bit 
24 of the ISR before execution of the transfer is not equal to 
bit 24 of the segment descriptor from the DRg, an IPR fault 
occurs. The ISR bit can be altered only with the CLIMB 
instruction. 

MODIFICATIONS: DU, DL, a, SC, SCR 

I LLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: None affected 

NOTES: 1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor that 
is not type T=O; or has a base that is not 0 modulo 32 bytes; 
or has a bound that is not 31 modulo 32 bytes. /' -\ 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 and \,- ) 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor for 
which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-628 DZ5l-00 



( TTN 

EXAMPLES: 

1 8 16 32 

TO test character and translate 
ADSC6 F101,0,12 indexing string operand descriptor 
ARG TABLE pointer to table 
ARG F103 operand pointer to count word 
TTN NMATCH tally runout ON - nonzero entry 
NULL tally runout OFF 
USE CONST. 

TABLE OCT ,,20020,020020020020,0 
FLD1 BCI 2, 1234567890# 
F103 BSS 1 

USE 

*Did transfer occur? no 

TCT 
ADSC4 
ARG 
ARG 
TTN 
TRA 
USE 

TABLE OCT 
F10l OCT 

USE 

F101,0,8 
TABLE 
F103 
CHAROK 
ERROR 
CONST. 
,,14014,14014 
022064126317 

test character and translate 
indexing string operand descriptor 
pointer to table 
pointer to character and count word 
tally runout ON 
tally runout OFF 

*To what location was transfer made? ERROR 

TTN 

8-629 DZ51-00 



TZE TZE 

TZE Transfer on Zero 600 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

CODING FORMAT: 1 8 16 

TZE LOCSYM,RM,AM 

OPERATI NG MODES: Any 

SUMMARY: 

EXPLANATION: 

NS Mode 

If zero indicator ON, then Y --> C(IC) 

If zero indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) ~-> C(ISR); C(SEGIDn) --> C(SEGID(IS» 

ES Mode 

If zero indicator ON, then Y16-33 --> C(IC) 

If zero indicator ON and instruction bit 29=1 then 

n = YO-2 

C(DRn) -> C(ISR); C(SEGIDn) -> C(SEGID(IS» 

With conditional transfer instructions, if the transfer 
condition is not satisfied (transfer does not occur), the ISR 
and the SEGID(IS) are not changed. When transfer occurs, bit 
29 of the instruction word affects the operation as follows: 

o When bit 29 of the instruction word = 0, the ISR and 
SEGI D (I S) are not changed. 

o When bit 29 of the instruction word = 1, the DRn selected 
with bits 0, 1, 2, and the corresponding SEGIDn~ are 
loaded into the ISR and SEGID(S). The transfer, in this 
case, is the transfer to another segment. 

8-630 DZ5l-00 



(~ 

TZE 

I LLEGAL ADDRESS 
MODI FI CATIONS: 

ILLEX;AL REPEATS: 

NOTES: 

TZE 

If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DR!! (not the ISR) are used in 
developing the addresses of indirect words. 

When the transfer instruction attempts to load the ISR, the 
ISR bit 24 (NS/ES mode specification bit) cannot be altered. 
If bit 24 of the ISR before execution of the transfer is not 
equal to bit 24 of the segment descriptor from the DRg, an 
IPR fault occurs. The ISR bit can be altered only with the 
ClJMB instruction. 

DU, DL, 0, SC, SCR 

RPT, RPD, RPL 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 modulo 
32 bytes; or has a bound that is not 31 modulo 32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 and 
the instruction attempts to load the ISR from a descriptor 
for which flag bit 28=0. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8-631 DZ51-00 



UFA UFA. 

UFA Unnormalized Floating Add 435 CO) 

FORMAT: single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: [C(EAQ) + C(Y)] not normalized --> C(EAQ) 

I LLEGAL ADDRESS 
MODIFICATIONS: CI, SC, SCR 

I LLEGAL REPEATS: None 

INDICATORS: 

NOTES: 

Zero 

Negative 

Exponent 
Overflow 

Exponent 

- If C(AQ) = 0, then ON; otherwise OFF 

- If C(AQ)O = 1, then ON; otherwise OFF 

- If exponent is > +127, then ON 

Underflow - If exponent is < -128, then ON 

Carry - If a carry out of bit 0 of C(AQ) is generated, 
then ON; otherwise, OFF 

1. When indicator "blt 32=1, the floating-point alignment is 
hexadecimal. Otherwise, the floating-point alignment is 
binary. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-632 DZS1-00 



( UFA UFA 

EXAMPLE: (Convert from floating to fixed) 

1 8 16 32 

FIXIT MACRO 
INE #1, '.EAQ. ' ,1 
FLD #1 
FCMP -Ol10400,DU 2**35 
TMI 2,IC 
NOP ,F 
FCMP =OlO7000,DU -2**35 
TMI 02,IC 
UFA =71B25,DU 
lHE #2, '.QR. ' ,1 
STQ #2 
ENDM FIXIT 
FIXIT X,I l=X 

8-633 DZ51-00 



UFM UFM 

UFM Unnormalized Floating Multiply 421 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERA'1'I NG MODES: Any 

SUMMARY: [C(EAQ) * C(Y)] not normalized --> C(EAQ) 

EXPLANATION: This multiplication is executed like the FMP instruction 
except that the final normalization is performed only if both 
factor mantissas are = - 1.00 ••• 0. The definition of 
normalization is located under the description of the FNO 
instruction. 

ILLEGAL ADDRESS 
MODI FI CAT1 ONS: a, SC, SCR 

I LLEGAL REPEATS: None 

1 NDI CATORS : 

NOTES: 

Zero - If C(AQ) = 0, then ON; otherwise, OFF 

Negative - If C(AQ)O = 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is > +127, then ON 

Exponent 
Underflow - I f exponent is < -128, then ON 

1. When indicator bit 32=1, the floating-point alignment and 
normalization is hexadecimal. Otherwise, the 
floating-point alignment and normalization are binary. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-634 DZ51-00 



(/ 

(- ~ 

UFS UFS 

UFS Unnormalized Floating Subtract 535 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: [C(EAQ) - C(Y)l not normalized --> C(EAQ) 

EXPLANATION: The two's complement of the subtrahend is first taken and the 
smaller value is then right-shifted to equalize it. The 
shifted-out portion is truncated and addition is executed. 

ILLEGAL ADDRESS 
MODI FI CATIONS: CI, SC, SCR 

I LLEGAL REPEATS: None 

INDICATORS: 

NOTES: 

Zero 

Negative 

Exponent 
Overflow 

Exponent 

- If C(AQ) = 0, then ON; otherwise, OFF 

- If C(AQ)O = I, then ON; otherwise, OFF 

- If exponent is > +127, then ON 

Underflow - If exponent is < -128, then ON 

carry - If a carry out of bit 0 of C(AQ} is generated, 
then ON; otherwise, OFF 

1. When indicator bit 32=1, the floating-point alignment is 
hexadecimal. Otherwise, the floating-point alignment is 
binary. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

8-635 DZ5l-00 



UFTR UFTR 

UFTR Unnormalized Floating Truncate Fraction 434 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: C(EAQ) fraction-truncated --> C(EAQ) 

EXPLANATION: This instruction truncates the fraction part of the 
floating-point data of C(EAQ) to obtain an integer. The 
result is unnormalized and stored into C(EAQ). A proper 
truncation to an integer is such that truncating the fraction 
parts of two numbers with the same absolute and different 
sign and adding the results produces O. 

I LLEGAL ADDRESS 
MODIFICATIONS: None. The address modification does not affect instruction 

operations, but the modification is executed. 

I LLEGAL REPEATS: RPL 

I NDI CATORS: 

NOTE: 

Zero 

Negative 

If C(AQ) = 0, then ON; otherwise, OFF 

- If C(AQ)O = 1, then ON: otherwise, OFF 

An Illegal Procedure fault occurs if an illegal repeat is 
used. 

8-636 DZ51-00 



( 

( 

XEC XEC 

XEC Execute 716 (0) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATI NG MODES: Any 

SUMMARY: Obtain and execute the instruction stored at memory location Y. 

EXPLANATION: The next instruction to be executed is obtained from C(IC)+l. 

I LLEGAL ADDRESS 

This is the instruction located in memory immediately following 
the location containing the XEC instruction. This does not 
apply if the execution of the instruction obtained from 
location Y changes the content of the IC. 

To execute a repeat instruction with the XEC instruction, the 
XEC must reside at an odd location. The instructions to be 
repeated using the RPT, RPD, or RPL instructions must 
immediately follow the XEC instruction. 

With the exceptions noted in Note 1, an XEC instruction may 
point to a multiword instruction. However, the descriptors for 
the multiword instruction must be stored immediately following 
the XEC instruction. The next instruction to be executed is 
obtained from C(IC)+n+l, where n is the number of descriptors 
for the multiword instruction. 

If IC modification is used with the instruction being executed, 
the value of IC will be the same as the location of the XEC 
instruction. 

MODI FI CATIONS: DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: The XEC instruction itself does not affect any indicator. 
However, the execution of the instruction from Y may affect 
indicators. 

NOTES: 1. An Illegal Procedure fault occurs if illegal address 
modification or illegal repeats are used when the XEC 
instruction is executing an SPL, LPL, CLIMB, or TRCTn 

2.'An Illegal Procedure fault occurs if a CLIMB is executed via 
an XEC instruction. 

8-637 DZ5l-00 



XEC 

EXAMPLE: 

1 8 

REM 
REM 
XEC 
USE 

DOlT ADO 
SBQ 
USE 
XEC 
USE 

BRANCH NOP 
AOS 
TRA 
TRA 
TRA 
USE 

16 

OOIT,7 
SMARTS 
FF 
FF 

BRANCH-l,6 
YERHED 

FLAG2 
.53 
.54 
WRAPUP 

32 

X7 has value 0 or 1 
X6 has value 1, 2, 3, 4 or 5 
add or subtract 

5-way branch 

8-638 

XEC 

DZ5l-00 



( ~ ... 
XED KED 

XED Execute Double 717 CO) 

FORMAT: Single-word instruction format (see Figure 8-1) 

OPERATING MODES: Executes in NS mode only 

SUMMARY: Obtain and execute the two instructions stored at the memory 
Y-pair locations (must be even and next odd location). 

EXPLANATION: The first instruction obtained from Y-pair must not alter the 
memory location from which the second instruction is 
obtained, and must not be another KED instruction. 

If the first instruction obtained from Y-pair alters the 
contents of the instruction counter, this transfer of control 
is effective immediately, and the second instruction of the 
pair is not executed. 

After execution of the two instructions obtained from the 
Y-pair, the next instruction to be executed is obtained from 
C(IC)+l. This location immediately follows the XED 
instruction. This does not apply if the execution of the two 
instructions obtained from the y-pair alters the content of 
the IC. 

To Execute Double (XED) the RPD instruction, the RPD must be 
the second instruction at an odd-numbered address. When RPD 
is at the odd-numbered address of the pair, the XED 
instruction must be at an odd location. In this case, the 
repeated instructions are those that immediately follow the 
XED instruction. If RPD is specified within a sequence of 
XEDs, the original and all subsequent XEDs in the sequence 
must be in odd locations. 

When repeat instructions RPT or RPL are executed with an XED 
instruction and the first instruction specified by the XED 
resides an an even-numbered location, the repeated 
instruction is that immediately following the RPT or RPL. 
When the RPT or RPL instruction resides at an odd-numbered 
address, the repeated instruction is that immediately 
following the XED instruction. 

8-639 DZ51-00 



XED 

I LLEGAL ADDRESS 

XED 

With the exceptions noted in Note 1, multiword instructions 
are executed with the XED instruction. The multiword 
instruction (second instruction) must be located at an 
odd-numbered address. I fit is not, an I PR fault occurs. 
The data descriptors for this multiword instruction 
immediately follow the XED instruction. 

If IC modification is used with either of the instructions 
being executed, the value of IC will be the same as the 
location of the XED instruction. 

MODI PI CATIONS: DU, DL, CI, SC, SCR 

I LI.J!XiAL REPEATS: RPT, RPD, RPL 

INDICATORS: The XED instruction itself does not affect any indicator. 
However, the execution of the two instructions from Y-pair 
may affect indicators. 

NOTES: 1. An IPR fault occurs if XED instruction is used with SPL, 
LPL, CLI MB, or TRCTn. 

2. When multiword instructions other than those indicated in 
Note 1 are executed with an XED instruction, the multiword 
instruction must be located at an odd-numbered address 
(second instruction). If it is not, an IPR fault occurs. 
The data descriptors for this multiword instruction are 
those immediately following the XED instruction as 
indicated below: 

-- XED 
Descriptor-l \ 
Descriptor-2 > as for an SB3D instruction 
Descriptor-3 / 

--> LDA 
SB3D 

3. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

4. An Illegal Procedure fault occurs if execution is 
attempted in ES mode. 

8-640 DZ51-00 

/" -........\ 



( 

XED 

EXAMPLES: 

1 8 

REM 
XED 

EVEN 
ENTRY NULL 

STC1 
TRA 
STC1 
TRA 
STC1 
TRA 
STC1 
TRA 

16 

ENTRY, 7 

SAVEl 
FIRST 
SAVE2 
SECOND 
SAVE3 
THIRD 
SAVE4 
FOURTH 

32 

X7 0 = 0,2,4, or 6 

8-641 

XED 

DZS1-00 





(~ ... 

.. ' 

APPENDIX A 

OPBRATI ON CODE MAPS 

The operation code maps for the processor are shown in in Tables A-l and A-2. 
The operation codes are separated into sections: the first section lists 
operation codes with bit 27 = 0 and the second section with bit 27 = 1. 

A-l DZ51-00 



Table A-1. Operation Code Map (Bit 27 = 0) 

\ Lower 
\3 bits 0 1 2 3 4 S 6 7 
\ 
\ 
\ 

Upper\ 
6 bits\ 

\ 

00 MME DRL 
01 NOP PULS1 PULS2 SYNC DOC LCON 
02 ADLXO ADLX1 ADLX2 ADLX3 ADLX4 ADLXS ADLX6 ADLX7 
03 LDQC ADL LDAC ADLA ADLQ ADLAQ 
04 ASXO ASX1 ASX2 ASX3 ASX4 ASXS ASX6 ASX7 
05 AOS ASA ASQ SSCR 
06 ADXO ADX1 ADX2 ADX3 ADX4 ADX5 ADX6 ADX7 
07 AWCA AWCQ LREG ADA ADO ADAQ 

10 CMPXO CMPX1 CMPX2 CMPX3 CMPX4 CMPX5 CMPX6 CMPX7 
11 CWL CMPA CMPQ CMPAQ 
12 SBLXO SBLX1 SBLX2 SBLX3 SBLX4 SBLXS SBLX6 SBLX7 
13 SBLA SBLQ SBLAQ 
14 SSXO SSX1 SSX2 SSX3 SSX4 SSX5 SSX6 SSX7 
15 SSA SSQ 
16 SBXO SBX1 SBX2 SBX3 SBX4 SBX5 SBX6 SBX7 
17 SWCA SWCQ SBA SBQ SBAQ 

20 CNAXO CNAX1 CNAX2 CNAX3 CNAX4 CNAXS CNAX6 ·CNAX7 
21 CMK SZNC CNAA CNAQ CNAAQ 
22 LDXO LDX1 LDX2 LDX3 LDX4 LDXS LDX6 LDX7 
23 RSW WRES RIMR SZN LDA LDQ LDAQ 
24 ORSXO ORSX1 ORSX2 ORSX3 ORSX4 ORSX5 ORSX6 ORSX7 
25 RCW ORSA ORSQ 
26 ORXO ORX1 ORX2 ORX3 ORX4 ORXS ORX6 ORX7 
27 RMR SMR SMID RMID ORA ORQ ORAQ 

30 CANXO CANX1 CANX2 CANX3 CANX4 CANXS CANX6 CANX7 
31 CANA CANQ CANAQ 
32 LOW LCX1 LCX2 LCX3 LCX4 LCXS LCX6 LCX7 
33 LCA LCQ LCAQ 
34 ANSXO ANSX1 ANSX2 ANSX3 ANSX4 ANSX5 ANSX6 ANSX7 
35 STAC ANSA ANSQ 
36 ANXO ANX1 ANX2 ANX3 ANX4 ANXS ANX6 ANX7 
37 ANA ANQ ANAQ 

A-2 DZ51-00 



Table A-I (cont). Operation Code Map (Bit 27 = 0) 

\ Lower 
\3 bits a I 2 3 4 5 6 7 
\ 
\ 
\ 

Upper\ 
6 bits\ 

\ 
40 MPF MPY CMG 
41 LDE RIW RSCR ADE 
42 UFM SCPR DUFM FCMG DFCMG 
43 FSZN FLO QFLO DFLO UFTR UFA DUFA 
44 SXLO SXLI SXL2 SXL3 SXL4 SXL5 SXL6 SXL7 
45 STZ SIW SFR QPST STT PST STE DPST 
46 QSMP FMP QFMP DFMP FSBI QFSTR DFSBI 
47 FSTR FRO DFSTR DFRO FTR FAD QFAD DFAD 

50 RPL BCD DIV DVF 
51 FNEG FCMP DFCMP 
52 RPT FDI DFDI 
53 FLP NEG DFLP NEGL UFS DUFS 
54 TRCTO TRCTI TRCT2 TRCT3 TRCT4 TRCT5 TRCT6 TRCT7 
55 SBAR STBA STBQ UMR STC1 
56 RPD FDV DFDV 
57 FNO FSB QFSB DFSB 

60 TZE TNZ TNC TRC TMI TPL TTF 
61 RPAT TEO TEO DIS TOV 
62 EAXO EAXI EAX2 EAX3 EAX4 EAX5 EAX6 EAX7 
63 RET LDI EAA EAQ LOT 
64 ERSXO ERSXI ERSX2 ERSX3 ERSX4 ERSX5 ERSX6 ERSX7 
65 STACQ ERSA ERSQ 
66 ERXO ERXI ERX2 ERX3 ERX4 ERX5 ERX6 ERX7 
67 LCPR ERA ERQ ERAQ 

70 TSXO TSX1 TSX2 TSX3 TSX4 TSX5 TSX6 TSX7 
71 TRA LRMB TSS XEC XED 
72 LXLO LXLI LXL2 LXL3 LXL4 LXL5 LXL6 LXL7 
73 ARS QRS LRS ALS QLS LLS 
74 STXO STX1 STX2 STX3 STX4 STX5 STX6 STX7 
75 STC2 STCA STCQ SREG STI STA STQ STAQ 
76 
77 ARt QRL LRL GTB ALR QLR LLR 

A-3 DZ51-00 



Table A-2. Operation Code Map (Bit 27 = 1) 

\ Lower 
\3 bits 0 1 2 3 4 5 6 7 ) 

\ 
\ 
\ 

Upper\ 
6 bits\ 

\ 

00 MVNEX 
01 CCAe 
02 MVE MVNE 
03 
04 MPXO MPX1 MPX2 MPX3 MPX4 MPXS MPX6 MPX7 
05 S100 STD1 STD2 STD3 STD4 S105 S106 STD7 
06 CSL CSR SZTL SZTR CMPB 
07 

10 MLR MRL CMPC 
11 SDRO SDR1 SDR2 SDR3 SDR4 SDRS SDR6 SDR7 
12 SCD SCDR SCM sam 
13 
14 GSTDO GS102 GS104 GSTD6 
15 S10SA SPDBR STO 
16 MVT TC'l' TCTR CMPC'l' 
17 LDDSA LPDBR LDO PAS 

20 AD2D SB2D MP2D DV2D 
21 
22 AD3D SB3D MP3D DV3D 
23 
24 AD2DX SB2DX MP2DX DV2DX 
25 SPCF 
26 AD3DX SB3DX MP3DX DV3DX 
27 

30 MVN B10 CMPN DTB 
31 
32 GLDDO GLDD2 GLDD4 GLDD6 
33 
34 MVNX CMPNX 
35 
36 MTR M'l'M 
37 

A-4 DZ51-00 



Table A-2 (cont). Operation Code Map (Bit 27 = 1) 

\ Lower 
\3 bits 0 1 2 3 4 5 6 7 
\ 

\ 
\ 

Upper\ 
6 bits\ 

\ 

40 
41 EPAT 
42 
43 LDRR LDCR LDPR LDDR ADRR ADLR SBRR SBLR 
44 SAREG SPL 
45 STPO STPI STP2 STP3 STP4 STP5 STP6 STP7 
46 GRS GRL GIS LAREG GLRS GLRL GLLS LPL 
47 LDPO LDPI LDP2 LDP3 LOP4 LOPS LOP6 LOP7 

50 A9BD A6BD A4DB ABD AWD 
51 
52 S9BD S6BD S4BD SBD SWD 
53 MPRR MPRS CAMP DVRR CMRR ANRR ORRR ERRR 

( 54 ARAO ARA1 ARA2 ARA3 ARA4 ARA5 ARA6 ARA7 
55 STTD STDSD STTA 
56 MRO AAR1 AAR2 AAR3 AAR4 MRS MR6 AAR7 
57 LODSD 

60 TRTN TRTF TMOZ TPNZ TTN 
61 LOEAO LOEAl LOEA2 LOW LOEA4 LOEA5 LOEA6 LDEA7 
62 
63 EPPRO EPPR1 EPPR2 EPPR3 EPPR4 EPPR5 EPPR6 EPPR7 
64 ARNO ARN1 ARN2 ARN3 ARN4 ARNS ARN6 ARN7 
65 
66 NARO NARI NAR2 NAR3 NAR4 NARS NAR6 NRA7 
67 LDDO LDD1 LDD2 LDD3 LOD4 LDD5 LDnG LOD7 

70 
71 CLIMB 
72 
73 
74 SARO SARI SAR2 SAR3 SAR4 SAR5 SAR6 SAR7 
75 STAS STPS STWS STSS 
76 LARO LARI LAR2 LAR3 LAR4 LARS LAR6 LAR7 
77 LDAS LDPS LOWS LDSS 

A-5 DZ51-00 





APPENDIX B 

OBSOLETE IHS'l'RUCl'IOH CDDES 

This appendix lists instruction mnemonic codes which have either (1) been 
obsoleted by new instructions or (2) been deleted from the DPS 8000 instruction 
repertoire. 

All hardware instructions pointed out with an (*) are not supported by the GMAP 
software. Use of these opcodes are only valid in ES mode. 

1. GMAP instructions which replace former instructions yielding the same opcode. 

Valid DPS 8000 Instruction Former Usage 

* AHRR 535(1) AND Register to Register CAMSl Clear Associative Memory 
Segment 

CAMP 532(1) Clear Associative Mem. Paged CAMP2 Clear Associative Memory 
Pages 

* CMRR 534(1) Compare Register to Register CAMSO Clear Associative Memory 
Segment 

* DVRR 533(1) Divide Register by Register CAMP3 Clear Associative Memory 
Pages 

SSCR 057 ( 0) set System Controller Reg. LeCL Load calendar Clock 

LIMR 553(0) Load Interrupt Mask Register SMCM Set Memory COntinuous Mask 
Reg. 

LCPR 674(0) Load Central Processor Reg. LLUF Load Lockup Fault Register 

* MPPR 530(1) Multiply Reg. Pair by Reg CAMPO Clear Associative Memory 
Pages 

* MPRS 531(1) Multiply Reg. by Reg CAMPl Clear Associative Memory 
Pages 

RSCR 413(0) Read System Controller Reg RCCL Read calendar Clock 

RI MR 233 ( 0) Read I nterrupt Mask Reg. RMCM Read Memory Controller Mask 
Reg. 

B-1 DZ5l-00 



Valid DPS 8000 Instruction Former Usage 

RSW 231 (0) Read Processor Model RRES Read Reserved Memory 
/ 

--
" 

Characteristics 
/ 

SCPR 452 (0) Store CPU Register SFR Store Fault Registers 

SIW 451(0) set Interrupt Word Pair SMIC set Memory Controller 
Interrupt Cells 

2. The GMAP instructions in the following list are not valid for DPS 8000 and 
if executed result in an IPR fault. 

ABSA 212(0) CCAC0376(1) CCAa 377 (1) LBAR 230(0) 

LBER 572(0) WAB 374(1) WAT 336(1) LDCB 375(1) 

LDFB 314(1) LDHB 334(1) LDBC 337(1) LFR 316(1) 

LGCOS 356(1) LBFER 317(1) LBPT 335(1) LBTR 315(1) 

LMBA 570(0) LMBB 571(0) LMSD 354(1) LVMS 355(1) 

MLDA 235(1} MLDAQ 237(1) MLDQ 236(1) MMF 364(1) 

MR.F 360(1) MSTA 755(1) MSTAQ 757(1) MSTQ 756(1) 

saER 157(O} 5MBA 555(0) 5MBB 556(0) STAC 354(0) 

157(0) 553{1} 550(1) 521(0) 
/ '\ 

STBZ STTA STTD TTFS 
,--j 

TTEZ 524(0) TTTL 522(0) TTTU 523(0) 

B-2 DZ51-00 



f( 
...... 

{:3 
U1 
I-' 
I o 

o 

~ 

MGTE 
SVPeat. 

HAft! 

~ , 

UNIFIED CHARACTER SET - ASCII SEQUENCE 

ASCII 
CtlOE 
t8 8 

ESCDIC 
CODE 
t8 8 

GeCD 
CODE 
t8 8 

HBCD 
CODE 
t8 • 

ASCII/E.CDIC GeCD 
CARD CODE CARD 

CtlOE 

HBCD 
CARD 
CtlOE 

-------------------------.-------------------------------------------------------------------------------------------
II NUL Hu" 00 000 00 000 'I" lI7 'E lI' '2-0-'·.·. 
II StlH I,.,., 0' Heeding . ot 00' Ot 00' 'I" lI7 IE lI. '2"" 
II Snt I,.,., 0' T ... t. 02 002 02 002 I .. 37 'E ,. t2'2" 
:t £TIC Ind 0' T ... t. Oll 003 03 003 II" 37 II[ lI. '2-:t·. 
3 EtlT End 0' T,..no~l.olon 04 004 37 087 II" 37 IE 3t 7" 
3 ENG E"qulr., 08 008 20 085 IF 37 tE 3. O·S·.·. 
3 ACK Ackno,",Iedge O. 008 2E 088 I" 37 IE 38 0'8-8-. 
:t BEL 1.11 (Audible Signel) 07 007 2F 087 IF 37 'E :t. 0'7'8" 
3 SS leekopee. O. Oto ,. 02. tl" :t7 IE :t. tl·.·. 
:t liT Horlzon,.1 Tab (~unch C.rd Skip) O. 0" 08 008 'I" lI7 IE :t. '2'8-' 
3 LI" Line I".ed OA 0,2 28 048 'I" :t7 IE 3t 0-8-' 
3 VT V.,.'lc.' Tabul."on OS Ot3 OS 0'3 'I" 37 'E :t. '2-3-.·. 
3 FI" I"o,.~ F.ed DC 0'4 DC 0'4 'I" :t7 IE lI. '2-4'.-' 
3 CR C.,.,.le .. R.t.u,.n 00 0'8 00 0'8 II" lI7 'E lI. '2-8'.-' 
et SO Shlf, 0U't DE 0'. OE 01. .F 31 .E 3. 12-.-'-' 
3 SI Ihlf' In 0 .. 0.7 OF 0" '1" 31 .E 3t 12-1-'-' 
3 OU De,. L I.. Eoc..,. .0 020 .0 020 '1" n .E lI. .2-11-.·.·. 
3 DC' Device Con,,.ol I 11 021 11 02' '1" lI1 .E lI. 11-'" 
3 DCIt Devlc. Con,,.ol I .1 022 .2 022 '1" 37 • E 3t I.-It- • 
3.8 DC3 Devlc. Cont.rol 3 tll 023 13 02:1 II" 37 IE 3. "'3-' 
It DC4 D.vlc. Con,,.ol 4 (S,op) .4 024 3C 074 II" lI7 ,E 3. 4-.·. 
3 HIIK Ho .. t.lv. Ackno,",Iodg. '8 028 3D 018 'I" 37 .E 3. 8-'" 
3 .VH SlInchronouo Idle ,. 028 32 082 'I"n IE 3t 1-' 
3 ETI End 0' T,.ena~laoion I.ock 17 Of7 2. 04. '1" 31 .E lI. 0-.·. 
3 CAH C.nce' ,. 030 • 8 030 II" 31 .E :t. .. -.-. :t Eft End 0' ....,,, .... ,. 0" II 0" '1" :t1 .E 3t 11"-.,, 
.3 SUI Suba,It.U'te .A 03f 3F 011 'I" lI7 1l3t 7"-' 
3 ESC Eac4Ipo '1 0" 17 041 'I" :t1 'E " 0-1-. 
3 IFS 1"1 'e Sapor.'er '0 034 'C 034 'I" 31 'E 3t 11'4-'" 
3 letS troup Soper.t.er '0 038 '0 Oll8 II" 31 IE lI. "'8-." 
3 IRS R.cord Sop.,..'or IE Oll. t! 03. II" lI1 ,E lI. ,,-.-... 
3 IUS Unl' Sop.,..,o,. ,,. 031 tl" 031 'I" 31 IE :t. 't-7-.·. 

epeee. BI ... 10 040 40 'DO 10 20 00 ,. BI." ., ... ..... 
E .. c'~.'lon '01", (ASCII) ., 04' 41" ", 01 lIl" 77 " liD 78 '2-7" 0'1-' 0-.-' 
Doubl. Guo'. 22 04f 7,. '17 3E 7. 10 .8 7-' 0"-. " .... 

I.' • HUIIIbor • I an III 0411 7B '73 OS 'li fA 82 lI-' lI-. 11'f-' 
f.' • 00' I.r SIgn 14 044 .. 133 2a 1J:I n 83 It'3-' "'3-' "-3-' 

I r.,.cen' Sign I. 048 .C "'4 3C 74 '0 lI8 0-4-' 0-4" '2-.-' • A"'PO,.o.nd I. 04. .0 120 IA 32 OF 17 12 'I 7-' 
2 ApoOt.ropho 27 047 70 1,. I,. 87 OA II .-. 1"7-' 1-' 

Le', ,.,..n,hool. 2. 0.0 40 "8 .0 3. 3C 74 '2-8" '1-.-' 0-4-' 
Rlgh, ,.,..n,hoala I. 0.1 .0 .38 20 .8 'C lI4 '1-5" 11-8'. 'f-4" 

• Aa,.rlo'" IA 082 8C "4 2C 84 2C 84 11-4-' 11-4'8 "'4-' 
7 • ~Iuo 18 083 4E II. 30 .0 10 10 '2-8-. '2-0 111-01( 'I) 

Co_ IC 084 88 183 :t8 13 :t8 13 0-3-8 0-3-. 0-3-' 
7 Hyph.". "In_ 10 088 80! '40 2A 82 20 40 11 11 (11'0)(1" 

~."Iod 2E 08. 48 113 18 33 lB 33 12-3-' 12-lI-' '2-3-' 
I .I.ah 2F 087 81 141 31 81 31 81 0-1 0-' 0-' 

~\ 

! I H 
~ 

~ n 



A'CII E!IC~OI C GeCO .. co ASCII,9COIC GeCO teeD 
HGT! NAME COD! CODE caDE CaD! CARD caDE CARD CARD 

SYPeat. 18 • Ie • , .. Ie • CODE eaDE 

---------------------------------------------------------------------------------------------------------------------
0 3D 010 '0 310 00 00 00 00 0 ° 0 
I 31 0.1 '1 "I 01 01 01 01 1 , I 
t 32 Ge2 '2 "2 02 02 02 02 a • • , 33 0.3 '3 383 03 03 03 03 3 3 3 .. 34 0.4 '4 "4 04 04 04 0 .. .. .. .. , 31' oe8 F8 38' 08 08 08 08 I I , 
• 3.088 F. ". oe 08 O' 08 • I • 7 37 081 " 381 01 01 01 01 7 7 7 • 38 010 F8 370 O' '0 O' 10 • • • • 31 011 FI 371 01 11 01 11 • I t 

Colon 3A 072 1A 172 OD 18 OC , .. 2" 8-. .. .. 
J '_I·Co'on 311 013 8E 138 2E 88 lA 32 II·.·. II·.·. 12-2-. 
( Lo •• Then 3C 014 4C 114 11 38 30 10 12-.. •• 12-1-' ••• 
• Equel 3D 078 7! 118 3D 78 0813 I·. 0-.·. 3-' 
) Gr_tor Then 3E 078 IE 188 DE 18 DE " 0-'-' ,., ••• 7 , QUe.tlon Mark 3F 071 8F HI? OF 17 'F 37 0-7-8 1-. (12HII-Ot 

2.t • At Sign 40 100 1C 174 OC 14 3A 72 4-' .... 0-2-. 
A .. I 101 CI 301 11 al 11 21 12-1 12-1 II-I 
B .. I 102 C2 302 11 II! la 22 12-a 12-' 11-1 
C 43 103 C3 303 13 23 13 23 12-3 11-3 12-3 
D 4 .. 104 C4 30 .. I" 24 14 24 12-.. 12-.. 12-" 

n £ 48 IDe ee :J08 " 28 II 21 12-' 12-1 1t·1 
I , 4e 101 CI 301 1. 2. " 21 12-. 11-. It·. 

N • .. , 101 C7 301 17 27 17 27 12-7 12-7 It-7 
H ... 110 e. 310 " 30 " 30 12-. 11-. II·. 
I ... 111 C' 311 Ie 31 II 31 12-e la·. 12-t 
J .. A 112 01 321 II .. I 11 .. 1 " -1 " -1 " ., 
It .. II 11 3 D2 322 22 .. 2 22 .. 1 11-1 "-1 U·I 
L "C 114 D3 323 23 .. 3 13 .. 3 II ., 11'3 11-3 

" .. D lH' D4 32 .. 24 .. 4 2 .. 4 .. II ... II· .. 11-... 

" .. E III 08 328 28 .. 8 2. ... II" 11-' 11-' G .. F It7 01 321 28 .. I 21 .. I 11-1 11-. 11-1 
I" 80 110 01 321 27 .. 7 27 .. , 11-7 11-' 11-7 
0 II 121 01 330 2. 10 28 10 II·. II·. II·. 
I' 82 122 O' 331 2. " II 81 "-1 II·e l1-e 
I 83 123 !2 342 31 .2 32 12 0-1 o·a 0-1 
T 8 .. 12 .. !3 3 .. 3 3:J 83 33 13 0-3 0-' 0-3 
U 81 III E" 344 34 .. 3 .. 14 0-" 0-.. 0-" v II 121 Ee 3 .. ' 38 18 3S 18 0-1 0-8 0-' 

" 87 127 !I 341 " .. " .. 0-' 0-1 0-1 
X 81 130 £1 '41 37 81 37 11 0-1 0-7 0-7 
y I,. 131 £1 380 ,. 10 3e 10 o-e 0'1 o·e 
2 8A 131 EI 3151 3. 71 3t 71 0-. 0" o·t • I Lo,t Brockot I 88 133 ... " 112 I OA 12 I: :IF 77 12-2-' 1-1 0-7-. 

2 , Rovorao S'ant , ee 134 , EO :'40 , 'F 37 , 2E 8. 0-1-' tt·,·. 11-.·. 
241' J Rlgh~ BrllCko~ J eo 138 1 8A 13a J Ie 341 I IF 87 11-2-e I.· .. •• (11)(11-0) • . Clrc~'lo" Aceont • BE 138 8F- '37 t aD 410 IE 38 "·7-e II '0 12-8-' 

Underline _ 8F 137 _ .0 1815 • 3" 72 3E 7. 0-8-e 0-2-e 0·.·. 

~ 
111 
I-' 
I 

0 
0 

/ 
" /\ 

'. 

j 
; / 



n 
I 

W 

~ 
U1 
I-' 
I 

o 
o 

(~ ~, 
, ' 

ASCII mtDlc _CD teCD ASCII/mCDIC GeCD teCD 
NaT! NAHI! CODE CODE COOl! CODE CARD CODE CARD CARD 

IIYHlIeL 18 • 18 • 18 8 18 8 CODE CODE 

---------------------------------------------------------------------------------------------------------------------, 
'.t _ 

'.' b 
'.' c I.' d 
' •• 0 ' .. , 
'.' D ' •• h 
'. t I 
'.' J 
'.' k 
' •• I '.' '" 
'.' n 
'.' 0 
'.' p 
'.' q '.t r '.' . 
'.' t I.' u 
'.' v 
'.' w 
'. I Ie '.' ~ ' ... 1.2 , 
2,' : 
127 ) 
'.3 ~ 
3 DEL 

Noto. 

Grevo Accont .0 ' .. 0 7. 17' 'F 37 'E 3. ., , .. , ., '0' "" "" 8. , ... .2 202 1222 12" 
'3 ' .. 3 83 203 

" 23 " 2' , .. , .... ... 20 .. , .. 2 .. , .. 2 .. " , .. , ., 205 Ie 2" '8 2" ., , .. , II 20' ,. 2. ,. 2. 
.7 1 .. 7 87 207 17 27 17 27 
,. '110 ,. 210 II '0 ,. '0 
,. 'III •• 21 I "" "" 'A 1112 " 221 21 .. , .1 "I 

It '"' 
.2 222 22 .. 2 " .. 2 8C III .. .3 223 23 .. , 2' .. , 

.0 11111 ... 2U 2.. .. .. 2.. .. .. 

.E I'" .S 225 ." .. " 28 .. " 
,F '''7 .. 228 2. ..8 28 "t 
70 ItO .7 227 27 .. 7 27 .. 7 
'71 "' .. 230 2t '0 2t 110 
.72 '.2 ., 231 II ., IItI 
73 '83 A2 242 32 .2 32 ., 
7 .. II .. A:I 2 .. 3 :1:1 83 33 ., 
711 ,.S A.. 2 .... :I ..... , ..... 
71 II. AS 24" ,,, ." :I" •• 
77 ,.7 A8 2 ... :til .. 3 ... 
71 170 A7 2 .. 7 37 t7 :17 t7 
7. 171 A8 2110 :I. 70 31 70 
7A '72 AI 2S1 3. 71 31 71 

Lo't Broco 7B 173 CO 300 o 00 00 • '0 20 
Brokon Vortlc.1 Line 7C 17 .. .A 'S' 'F 37 'I! ,. 
"Ight Broco 70 178 DO 320 t 20 .. 0 - 20 "0 
Tilde 7E 17. A' 2 .. ' 'F 37 'E :til 
o.I.to 7r: '77 07 007 'F 37 'I! :til 

,. FrOlll mCDIC or A.CII to HeCD or _CD th'. ,. _ one_w_~corro.pondonco. 
I. ,se do"no. tho.o ASCI' code. o. vorloblo 'or notlono' u.ogo. 

,-t 
12-0- , 
'2-0-' 
'2-0-' 
'2-0-" 
'2-0-8 
12-0-' 
'2-0-7 
'2-0-t 
12-0-' 
,a-H-' 
12- II-a 
"-11-3 
ta-II-" 
12-" -II 
ta- I1-t 
"-11-7 
II!- II-t 
12- H-' 
"-0-' 
"-0-3 
"-0-" 
"-0-" 
"-0-' 
" -0-7 
'I-O-t 
1'-0-' 
12-0 
12-' , 
" -0 , , -0-' 
12-7-' 

3. SInco thoro I. no corro.pondlng'choroctor _ do'ou't choroctor I •• ub.t'tutod hero, 
38 Cocto"Ca) 'or teCD end 37 Cocto"C\' 'or GeCO • 

... In HeCD tho code '7 Coctol' !!lOy ropro.ont "2 or I 
,. TH occuplo. tho • .-0 po.ltlon o. DC3. TH I. on E8CDIC control choroctor 

whl'o DC' I. on ASCI' control choroctor. 
e. Tho Intornol ond punchod cord codo •• hown 'or teCD ond GeCD oro 'or copltol _Iph~t'co. 

'2-7-t '2-t-t 
If-' 12-' 
'2-2 '2-2 
'2-3 12-' 
'2-" '2-" 
'2-11 '2-8 
'2-' '2-' 
'2-7 12-7 
l2-t If-t 
'2-' 12-' II -I 11-' 
" -a " -a II -3 " -3 
II - .. II - .. 
" -8 II -II 
II -t II-t 
II -7 11-7 
II -t II -t 
II -I II-I 
0-' 0-' 
0-3 0-3 
0-4 0-" 
0-' 0-' 
0-' 0-1 
0-7 0-1 
0-' o-t 
0-' 0-' 
0 "2-0HII' 
12-1-1 '2-'-1 
11-0 C H -OH "' 
'2-7-' '2-'-' 

7. Thoro oro tvo teeD cord code .ot. CHaCDI ond HeCD2'. tho dlf'erenco being tho cord punch ropro._tet'en 
'or c., ~nd C-'. ond 'or C" Ond CI'. For tho HeCDI .ot C., ond C-' oro 
ropro.ontod with punch codo. '2-0 Ond "-0. whl'o C" ond CI' oro ropre.entod b~ 12 Ond 1'. 
For thO HBCD2 .ot C., ond C-' oro repre.ented wIth punch code. I' ond 11, 
whIle I" ond I" oro repre.ented by 12-0 ond 11-0 . 

•. Tho.o oro E8CDIC control choroctor. ond ore not defined In thO ASCII .tenderd . 
•. IBM do'ine. the.e E8CDIC code. o. notlon.l olphebetlc eNtend.r •. 

~: 



UNIFIED CHARACTER SET - EBCDIC SEQUENCE 

mCDIC ASCII nco HltCD ASCll/mCDIC nco HltCD 
NeTE HAPfI! COD£ COOl! COol! COD£ CARD CODl!: CARD CARD 

SVPWlOL 18 8 18 I "I 18 I cool! COOl! 

---------------------------------------------------------------------------------------------------------------------
3 NUL Nu" 00000 00000 " 37 II! :tl 11-0-1-1-' 
3 ~H St.rt 0' HeedIng 01 001 01 001 " 31 IE :tl 12-1-' 
:t STI< .tert of T.lCt 02 002 02 002 l' 31 IE :tl 12-2-. 
$ I!TI< End 0' TelCt 03 003 0$ 003 

" :t1 
IE 3_ '2-:t-. 

:t,1 I"F I"unch 0" 04 004 .e 234 " :t1 It :t_ 12-4-1 
:t "T Horlzonte' Teb 08 008 0.011 I' 31 IE :t_ 12-8-' 
3,1 LC Low_ C •• e os 00. •• 20S " :t1 IE :t. 12-1-' 
:t DEL Delete 07 007 7F 111 " :t7 IE 31 12-7-' 
$ GI! Orephlc I!ec.- 01 010 ., t27 I' 37 IE 31 12-1-' 
:t,1 RL' Reveree LIne Feild O' OIl 10 2111 ., :t7 'E :la '1-1-1-. 
3, a SI1M Stert 0' Menuel He ..... 01' 012 8£ 2'. l' :t1 IE 3a 11-2"1-' 
3 VT Vertlcel Teb oe 013 011 013 " :t1 'E :t_ 12-3-1-' 
:t " Forlll Feild OC 014 DC 014 " :t7 1£ 38 12-4-1-. 
:t CR Cerrl ... Return 00 018 00 018 'I' 31 'I! 3_ 12-.-_-' 
:t so Sl:>lft Out OE 01S DE D'S ., 37 11 3a 12-8-'-' 
3 SI Shift In OF 011 OF 011 " :t1 II! 3e 12-1-S·' 
3 DLE Oete Link I!eo_e 10 020 10 020 IF :t7 II! 3e 12-11-1-.·. 
:t DCI Device Control I 11 021 II 021 I' 31 IE :te " -1-. :t DC2 DevIce Control I II 022 12 022 I' 37 II! :tS '1-1-. 
$,8 TM Tepe Merk 13 023 13 02:1 'I' 37 II! 3e " -So, n 3.1 RES Re.tore 14 024 .0 235 I' :t1 11 3_ "·4-. I S •• "'- New LIne 111 028 a8 208 " 37 II! 3e "-11-. p 
3 8S 8eckepece la 021 01 010 I' :t1 IE 31 1'-S-1 
3,1 IL Idle 17 021 17 207 " 37 II! 3e 11-1-1 
3 CAN Cenee' 11 030 II 030 I' 37 IE 3e 11-1-. 
:t EM End 0' MIld I UIII It 031 " 031 I' :t1 IE 3e 11-1-1-' 
3.1 CC Cureor Contro' lA 032 II 222 

" :t1 IE 3e 1'-1-1-' 
S.I CUI CuetOlller Uee 1 III 033 .F 217 l' :t7 IE 38 ll-S-I-' 
3 IfS Interchenge 'Ile leperator IC 034 IC 034 I' 31 IE 38 11-4-1-' 
3 lOS Interchange GrouP Seperetor 10 0311 10 038 l' 37 IE :te 11-11-1-' 
3 IRS Intercheng. Record Seperetor II! 03e IE 038 I' S7 IE 3S I.-e·I-' 
3 IUS Interchenge Unit Seperetor " 037 IF 037 " 37 IE 3S "-7-S-' 
3.' OS DIg" Select 20 040 10 200 IF 37 'E 3. "-0-1-.·' 
:t.S SOS Stert 0' Slgnl'lcence 2' 041 " 101 'I' 37 IE :te 0-1-. 
:t,. FS "eld Seper.tor 22 042 .2 202 l' 37 IE :tS 0-2-' 
3 UNOEFI NED CODES 23 043 13 R03 " :t1 'E 3S 0-3-' 
:t,. 8VI" 8¥Pe •• R4 044 .4 204 

" :t1 
IE 3. 0-4-. 

3 L' Line Feild 28 048 OA 012 l' :t1 IE 3. 0-8-' 
3 ETa End 0' Tren.IIII •• Ion 810ck 2. 04. 17 027 

" :t1 
IE :t. O-S-' 

S ESC Eecepe 27 041 18 033 " 37 IE :ts 0-7-' 
3 UNDEFINED CODl!:S 2. 080 •• 110 " 37 'E " 0-1-' 
3 UND£FINED coon 21 081 •• 211 l' 37 IE :t. 0-1-1-' 
3,' 8M S.t "ode 2/\ 082 ./\ 212 l' 37 'E 3. 0-1-.·. 
3,. CUI Cu.tOlll.r U.. 2 n 08:t ." 213 'I' 37 'E " 0-3-.-' 
3 UNOEF I NED CODES 2C 084 .C 214 'I' 37 IE 3. 0-4-1-' 
3 ENa I!nqulr)' 20 088 08 008 IF :t7 'E 3. 0-8-1-' 
3 ACK Aokn_tedge 2E 08S 08 008 IF 37 IE 3. 0-8-.-. 
:t BEL 8e" 2F 087 07 001 I' 37 IE 38 0-7-8'. 

~ 
U1 ..... 
I 

0 
0 

) 
" /J 



~ 

n 
I 

tn 

t=' 
N 
tn 
~ 
I 

0 
0 

/~ 

!eCDIC ASOII IJBCD HBCD ASCII/E8CDIC GBCD teCD 
NOTE: NAM: CODIt COD! CODE CODE CARD CODE CARD CARD 

SYMBOl. ,. • , . • , .. ,e • COD! CODE ________ 4 ____________________________________________________________________________________________________________ 

3 UNDIt,.INED CODES 3D DID 10 liD t .. " 'I! ,. '2-"-0-'-1-' 
3 UNDE,.INED CODES " De, II 221 , .. " II! ,. 1-' 
3 SYN Synchronou. Idle 32 oe2 Ie 021 ,,. 31 IE ,. t-I 
3 UND!FINED CODES 33 083 13 223 ,,. 31 'E 38 3-' 
3,' PM Punch On 3.. oe .. I .. 22 .. ,,. 31 'E ,. .. -. 
3,' RS "eeder Stop 31' oe8 lIS 225 , .. 31 'E 3e eo' 
3,1 UC Upper Ce.e 3e Dee Ie 22e ,,. 31 'E 38 .-. 3 I!OT End of Trene_l.elon 31 0., 0 .. 00 .. I .. 31 'E 3. 1-' 
3 UNDE,.I N!D cobn " 010 I. 230 , .. 31 lit 31 '-S 
3 UNDEFINED CODES 3t 011 II 23' ,,. 31 IE 3. 1-1-' 
3 UNDE,.INED CODES 3A 012 IA 232 IF 31 'I! 3. I-I'. 
3,1 CU3 Cu.t_er U.. 3 38 013 18 233 ,,. 31 'E 38 3-1-. 
3 DC4 DevIce Control 4 3C 014 '4 02" ,,. 31 'E 38 4-t-S 
3 NAI( Negetlve Acknowledge 3D 01" '" 02B 

,,. 31 'E 31 "-I-S 
3 UNDEFINED CODES 3E 011 .E 238 ,,. " lit ,. .-1-' 
3 SUB &ub.tltute 3F 011 'A 032 ,,. 31 

'E " 1-.-. 
Spece, "Ie,. "0 100 10 0"0 '0 10 OD I" 8'e" 8'e" 8'." 

3 UNDEFINED CODES '" 101 AD 2 .. 0 ,,. 31 IE 3. 'I-O-I-S 
3 UNDEFINED CODES '" 101 A, 241 , .. 31 'E 3. 'I-O-I-S 
3 UNDEFINED CODES "3 '03 AI 242 ,,. 31 'E 3' '1-0-3-S 
3 UNDEFINED CODES " .. '0" A3 2"3 1,. 31 IE 38 1t-0-4-8 
3 UNDEFINED CODES "B '08 A" 2 .... ,,. 31 'E 38 '2-0-8-S 
3 UNDEFINED CODES ... '0. AB 2 .. 1S ,,. 37 lit" '1-0-8-S 
3 UNDEFINED CODES '" '01 A. 2"8 , .. :11 'E 38 '1-0-7-S 
3 UNDEFINED CODES ... "0 A1 2 .. , , .. 31 n: 38 'I-O-S-' 
:I UNDEFINED CODES ... ", AI 2BO , .. 31 'E 38 '1-'-8 • ~ Cente SIgn " "A 112 BII 133 OA 'I " 3F 11 '1-1-8 1-' 0-7-' · PerIod, Decl_e' PoInt "8 .13 2E ose '8 33 .8 33 '1-3-' '1-'-1 12-'-' 

e Le.e Then 
"C "" 3C 01" • E 3" 3D 10 '1-4-S It-I-S ,,- • 

C Left Perentheel. .. 0 Its 21 0"0 lD 3B 
3C '" 

It-e-. It-e-I 0-4-1 
7 • P'u. SIgn "E 1'" 18 083 30 eo 10 20 It-I-' '2-0 (12-0J ClIJ , Loglce' OR 

"F '" 
21 0 .. , CI 3F 71 R 30 1e 11-1-1 0-1-1 o-e-I 

a A"'Per.end eo .10 tID". .A :12 OF 17 It II 7-. , UNDEFINED CODES " .21 AI 2BI IF 31 IE 3. It-It -1-S 
3 UNDEFINED CODES BI It I AA 252 , .. 31 IE 3. '1-\1-1-' 
3 UNDEFINED CODES 83 123 A8 1153 ,,. 31 IE 38 '1-11-3-. 
3 UNDEFINED CODES "" II .. AC IB" , .. 31 IE 3. 11-11-"-. 
3 UNDEFINED CODES 'B lIB AD IBIS 1,. 31 IE 3. 1t-\1-e-1 
3 UNDEFINED CODES B. II. AE 2'8 ,,. 31 'E 3. 1t-11-1-' • UNDEFINED CODES B1 117 A,. 2B1 ,,. 31 IE 38 'I-It-1-' 
3 UNDEFIN!D COD!S B •• 30 80 180 ,,. 31 IE 3. It-" -.-. 3 UNDEFINED COOES '8 '" .1 2., , .. " IE 38 11-1-. 
"7S I EMcI.-etlon PoInt E8CDIC BA 132 BO 131S IC '4 IF 81 "-1-1 11-4-1 """1-0' 
2,S • Doller SIgn 811 '33 14 044 18 83 211 83 '1-'-1 11-'-. 11-3-. 

• Aeterl.k 8C '34 2A OBI IC '4 2C B" "-"-1 ,,-,,-. 11-4-. 
I RIght Perenthe.l. 8D "8 II OBI 10 BIS 'C 3" l1-B-. "-8-. It-.. -. 

S.-I-Colon e! 13. 3B 013 2E ". 'A 32 11-.-1 'I -1-. It-I-I 
Loglc.' Not "F 137 SE 138 t 20 .0 IE 38 11-1-. 11-0 12-.-1 

~ 
\, I 



'BCDIC AS.II oeCD HeCD ASCI JlEBCDIC oeCD ""CD ..,T! NAM CODE CODE COD! CODE CARD CODE CARD CARD 
8Y""CIl. HI • " • '"~ 18. CODE CODE 

-------------------------------------.------.----------------------------------------------------------------.-------
7 I'1lnuo Slon, Hyphon .0 .40 20 088 IA t2 20 .. 0 11 11 CII-0ttlt) , Slooh ••• 41 2F 081 3 ... 3 ... 0-1 0-' 0-' 
3 UNDEFINED CODES .2· '42 82 262 '1" 31 .E 3. "-0-1-1 
3 UNDEFINED CODES ., 143 83 263 '1" 37 .E 36 "-0-3-1 
3 UNDEF I NED CODES 64 144 84 264 II" 37 .E 36 11-0-4-1 
3 UNDEF I NED CODES 68 '40 88 268 '1" 37 'E 3. "-0-8-1 
3 UNDEFINED CODES 6. '48 86 26. 'I" 37 'E 3. '1-0-'-1 
3 UNDEFINED CODES 67 .41 87 281 '1" 37 'E 3. 11-0-7-1 
:I UNDEFINED CODES ee "'0 8a 270 '1" 37 .E 38 "-0-6-1 
:I UNDEFINED CODES al "'. 8. 21. '1" 37 .E 36 0-' -t 
:I VorUce' LIne .A .82 1C 174 '1" 37 IE 3. II-tt '1-1-1 12-t-t 

i 
C_ 6B 183 2C 084 38 73 38 73 0-3-t 0-3-t 0-3-t 
P.rcent Ston 6C 184 28 048 3C 7 .. 10 38 0-4-' 0-4-t 11-8-t 

; Underocoro 60 "'8 8F 137 • 3A 12 3E 7. 0-8-' O-I-t O-t-. 
Grootor Thon Slon aE '8e 3E 018 DE 18 DE I. 0-'-' t-t t-. 

7 , Quoot'on "'ork .F .87 3F 077 01" 17 IF 31 0-7-' 7-' 112H.I-0' 
3 UNDEFINED CODES 70 ,eo BA 272 II" 37 IE 38 '2-11-0 
3 UNDEFINED CODES 11 181 BB 213 '1" 37 ,E 38 12-11-0-' -I 
3 UNDEFINED CODES 72 182 80 214 'I" 37 'E 38 12-11-0-1-1 
3 UNDEFINED CODES 73 183 80 218 'I" 37 'E 38 '2-" -0-3-1 

n 3 UNDEFINED CODES 74 114 8E 27. II" 37 IE 3t 12- 11-0-4-1 
I 3 UNDEFINED CODES 78 188 81" 277 II" 31 IE 3t 11-"-0-1-1 

CJ'\ 3 UNDEFINED CODES 18 ,ee CO 300 '1" 37 .E 3t 11-" -0-1-1 
3 UNDEFINED CODES 17 ,., CI 301 'I" 37 .E 3t '2-tl-0-7-1 
3 UNDEFINED CODES 16 '70 C2 302 '1" 37 .E 3. • 2- 11-0-t-1 
3 Greve Accont. 7. '" 10 '40 , .. 37 IE 3t '-I 12-7-' 11-1-' 

Colon 1A '72 3A 012 00 '" OC , .. 1-' 0-' 4-t 
2,1 • NUlllbor SIgn ,. 113 23 043 08 13 2A 8' 3-' 3-' '1-2-' 
2,' • At Slon 1C 114 40 100 OC 14 3A 12 4-' .. -. 0-2-' Pr ,_, Apootropho 70 118 21 041 21" 11 OA I' I-t '1-7-' 2-' • !quel Slon 7!: .78 3D 078 3D 78 0813 .-. 0-8-' 3-' 
I Quot.etlo" "'ark. 71" .77 22 042 3! 78 20 '" 7-' 0-'-' 1'-8-' 
:I UNDEFINED CODES 10 200 C3 303 IF 37 IE 31 12-0-1-' 
I,' e " 201 It '" "" 11 2t 12-0-1 11-1 11-1 
I,' b 82 202 t2 .42 12 22 12 22 12-0-1 12-1 12-1 
I,' c 83 203 13 .43 1323 .3 t3 '2-0-3 12-3 11-' 
',t d ... 204 .4 .44 14 24 .4 24 "-0-4 '2-4 '2-4 
• ,e e a8 208 .8 148 18 28 .11 211 '2-0-8 '2-8 11-8 
I,' f a. 20. ••• 4. 1. 2t 18 28 '2-0-t '2-' 12-' 
I.' 0 ., 207 t1 .41 11 27 11 21 11-0-7 '2-7 12-1 
1.' h a. 210 .e 180 18 30 18 30 12-0-' 12-t 12-t 
I,' I .. 211 

e. "" II 31 1831 IZ-O-' 12-1 11-' , UNDEFINED COD!I .A 212 C4 304 IF :J1 IE 31 12-0-2-1 
3 UNDEFINED CODES ea 213 C8 308 IF 31 IE 3e 12-0-3-e 
3 UNDEFINED CODES ec 214 C. 308 II" 31 IE 38 12-0-4-' 
3 UNDEFINED CODES aD 218 C7 307 '1" 37 IE 36 12-0-11-' 
3 UNDEFINED CODES .E 218 C' 310 IF 31 IE 3 • 12-0-'-' 
3 UNDEFINED CODES • F 2'7 C' 311 IF 37 

IE '" 12-0-7-' 

~ 
(J"I .... 
I 

0 
0 

\ 
) 



n 
I 

-...J 

t:1 
N 
lJ1 
I-' 
I 

a 
a 

; ...... 
\ ' 

~, /..-.." 

!8CDIC Asdll OBCD .. CD ASCII/!8CDIC OBCD .. CD 
NeTI! NAMI! C"DE C"DE CODE COOl! CARD CODI! CARD CARD 

SYI'I80L 18 8 18 8 18 8 18 8 C(JDE C(JOE 

---------------------------------------------------------------------------------------------------------------------
It UNDEFINED C"DES .0 220 CA :t12 IF :t1 II! 3. 12-11-1-' 
I,' J 11 221 eA le2 21 .. 1 21 .. I 12-11-1 " -1 " -1 "e k .2 122 e8 1113 21 42 22 .. 2 12-1I-a 11-2 II-a 
',. I 13 22:t ec III .. 23 43 23 .. :t '2- 11-3 1I-:t II-:t 
I,e III ... 22 .. eo 11111 24 .... 2.. .. .. 12-11-" 11-" II -.. 
I,' " .e 228 eE 11111 211 48 25 .. e 12-II-e l1-e l1-e 
1,. 0 • e 22e eF 1111 2e ... 2e ... 12-1 - • 11-' 11-' 
I,' p 11 221 10 leo 21 .. , 21 41 12-" -1 11-1 " -1 I,' q .. 230 11 '" 2.80 2. 80 12-11-' 11-. " -. I,e r II 231 12 182 21 81 2. el 12-11-' " -. " .. 3 UHDI!FINED CODES .A 232 C8 313 I I' :t1 IE :t. 12-11·2-' 
:t UNDEF I NED CODES 18 233 tt 314 

" :t1 
II! :t. I!·" -3-' 

3 UND!FINED CODES .C 23 .. CD 31 e I' :t1 II! :te 1!-I1-"-' 
3 UNDEFINED C(JDES .0 238 CE 31e I' :t1 II! 3e 12-I1-e-. 
:t UNDEFINED C(JDES 'I! 238 CF :t11 IF :t1 II! :te 12·" -e-a 
3 UNDEFINED CODES '1' 231 DO 320 I' :t1 IE :te 12-11-1-a 
:t UNDEFINED C(JDES AO 240 D. 321 IF :t1 II! :te 11-0-1-' 
It Tilde AI 241 1E 11e I' 31 IE 3e 11-0· I 12·7·. ,,-.·a 
1,' • A2 2.2 1:t 183 32., 32 e2 11-0-' o-a 0-1 
I,' , A3 2.3 , .. ". :t:t e3 :t:t .3 11-0·3 0-3 0·3 
I,' U A.. 2 .... ,., Ie., 3.. e. 3.. • .. 11-0-4 0-4 0· .. 
I,' v Ae 24., 18 lee 38 a., 3e e8 " ·0-8 o-e o-e 
l,e v Ae 2.e n le1 :te ee 3a .e 11-0-' 0-' 0-,' 
1, e Ie A1 2 .. , 71 110 :t1 81 :t1 e7 11-0-7 0-7 0-1 
I,' W' Aa 280 71 171 :te 10 :te 10 II-o-a 0-' 0-' 
I,' .: AI lei 1A 112 :tt 11 :tt 71 " -0-' 0-' 0-' 
3 UNDEFINED C"OE8 AA 1112 02 322 IF 37 IE :te It-0-2-' 
It UNDEFINED C(JDE. A8 283 D:t 323 tF 37 II! :te 11-0-3·' 
3 UNDEFINED C"DES AC 284 0.. 32. IF :t1 II! 3' 11-0-.. •• 
It UNDEF I NED C"CIE. AD 288 Oil 325 IF :t1 IE 31 'I-o·e·. 
3 UNDEFINED CODE. AE 2811 011 328 'I' 31 'I! 31 " -0·.·. 
It UNDEFINED CODES AI' 187 01 321 'I' :t1 II! 311 11·0·7-11 
3 UNDEF I NED C"DES 80 2110 DI :t:to 'I' :t1 II! :te 11·11-0-1-1 
It UNDEFINED CODES 81 1.1 O. :t31 ., 31 IE :te 12·11-0· , 
3 UNDEF. NED C"DES 82 2112 OA 332 IF :t7 IE :te 12-II·0·! 
3 UNDEFINED C"DES 8:t 2113 DB :t33 IF 31 IE :t. 12-" -D-3 
3 UNDEFINED C"DES 8.. 2114 DC 33 .. 

" :t1 
II! :tl 12-" -0-" 

3 UNDEF I NED C"CIES 8e 2e8 DO :t:te IF 37 U: 311 12·" ·0-8 
3 UNDEF I NED CODES 8. 21111 DI! 3311 IF 37 IE 311 12-" -0-11 
3 UNDEF I NED CODES 81 2111 OF 331 IF :t7 IE 311 12-" -0-7 
3 UNDEF I NED CODES 81 210 EO 3 .. 0 I' 31 IE 311 12-11·0·' 
3 UNDEFINED C"DES 8. 211 E I 3 .. I I' 31 IE 3. 12-11-0-' 
3 UNDEFINED C"DES 8A 212 EI :t .. 2 IF :t1 IE 311 12-11-0-2-' 
3 UND!FINED C"DES 88 213 E:t :t .. 3 I' 31 IE 311 12-II-O-:t-' 
3 UNDEFINED C"DES lie 21 .. E.. :t4" IF :t1 IE 311 12-" -0-"-' 
3 UNDEFINED C"DES 80 218 E8 :t .. s I' 31 IE 311 12-11-0-8-11 
3 UNDEFINED C"DES 8E 218 Ell 3411 l' 31 IE 311 12- II -o-e-I 
3 UNDEFINED C"DES III' 211 E1 341 .F 31 IE 311 12-11-0-7-1 



EBCDIC ASt:1 I "CD HeCD ASCI JlEBCDIC "CD teCD ...,TE NAHE CODE CODE COOlE CODE CARD CODE CARD CARD Syl't!lClL 18 8 18 8 18 8 18 8 CODE CODE 

---------------------------------------------------------------------------------------------------------------------
• Open I no Brece CO :tOO 7B 17:t o 00 00 • 10 20 12-0 0 (12-0H 11' 
A CI :t01 41 101 11 'I 11 21 12-1 12-1 12-1 
B C2 :t02 42 102 12 22 12 22 12-2 12-2 12-2 
C C3 303 4:t 10:t " 23 13 23 12-3 12-:t 12-3 
0 C.. 30" .... 10 .. 1" 2" , .. 2 .. 12-" 12-" tI-.. 
E C8 308 .. 8 108 18 28 "' 28 12-8 12-e 12-e 
P' C8 308 .. 8 108 18 28 1. 28 12-. 12-. 12-. 
II C7 307 .. 7 107 17 17 17 27 12-7 12-7 12-7 
H C8 310 .. 8 110 It :to II 30 II-t 12-t 12-t 
I C. 311 ... III I. 31 1831 12-. 12-. 12-. , UNDEF I HIED CODES CA "2 Ell 3eo 1F 37 1IE 3. 12-0-2-t-t 

3 UNOIEFI NED CCIOES Cit 3" U 3e1 I,. 37 'E :Ie '2-0-'-t-t 
3 UNDEFI NED COOES CC " .. EA 382 IF 37 'E :Ie 12-0-.. -.-t 
3 UNDEFlm:O CODES CO 318 IEB 383 I,. 37 IE 3. tI-0-a-8-. 
3 UNDEFINED CODES CIE 31. EC 38" I,. :t7 IE 3. tI-0-.-8-. 
3 UNDEFINED CODES CF 317 lEO 3"" I,. 37 11E 38 12-0-7-8-. 
1,1 I C\oelna Brece DO 320 70 1711 t 20 .. 0 - 20 .. 0 11-0 11-0 .11-0)(11) 

.J 01 321 .. A 112 21 "I 21 '" II - I 11-' H -, 
K 02 322 .. B 113 22 .. 2 22 .. 2 11-2 H -I H -I 
L 03 323 "C , ... 23 "3 23 .. 3 " -3 " -3 " -3 n H 0 .. 32" .. 0 1111 2.. 4 .. , ...... " -.. 11-" H-" I N 011 32S .. E 11. 211 .. a 2S "S lI-e 11-. 11-. CD 
CI D. 328 4,. 117 2 ... 8 2. "8 11-. 11-. 11-' ,. 07 327 eo 120 27 .. 7 27 .. 7 11-1 " -7 11-7 
Q D. 330 e1 121 21 eo 28 eo 11-1 " -I II -t 
R D. 331 S2 122 28 SI 2. SI 11-. " -. H-. 

3 UNDIEF I HIED coon DA 332 IEIE 3S. I,. 31 IE 3. 12-11-'-t-' 
3 UNDEFINIED CODES DB 333 IEF 387 I,. 31 11E 38 12-"-3-'-' 
3 UNDEFINED CODES DC 33" FO 3.0 I,. 31 IE 31 12-11-"-'-. 
3 UNDEFINED CODES 00 33S F' 381 ,,. 31 IE 3. , 2-11-S-'-. 
3 UNDEFINED CODES DIE 338 ,.2 382 ,,. 31 11E 38 '2-'1-8-1-. 
3 UNDEFINED CODES Of'" 331 P'3 3.3 I,. 37 .IE 3. 12-It-7-.-. , Reveree SIen~ \ EO 3 .. 0 \ SC 13 .. \ 'F 31 , 2E 8. 0-2-8 11-7-' It-.-t 
3 UNDEFINED CODES El 34. 'F 237 .,. 37 lIE 38 " -O-I-t 

S lEI 342 S3 tl3 32 et 32 .2 0-2 0-' 0-1 
T !3 3"3 S" 12" 33 t3 33 t3 0-' 0-' 0-3 
U E4 3 .... liS lIa 3.. I" ,.. . .. 0-4 0-" 0-" y IES 34e Sll '28 3' 'S '5 ., o-e 0-' 0-' W Ell 3 ... e7 127 38 •• 38 .1 o-e o-e o-e 
M 1E7 3 .. 7 el 130 37 87 37 81 0-7 0-7 0-7 y U 3eO ee 131 38 70 38 70 O-AI O-t o-t 
2 

U "" 
eA "2 3. 11 3811 0-. 0-. 0-' 3 UNDEFINIED COOIES EA 382 F.. , ... IF 31 IE 3. 1'-0-1-'-' , UNDEFINED COOES £8 3e3 Fe 38e IF 31 .IE 38 11-0-'-t-' , UNDEFINED CODES Ee 3e .. F8 3 •• IF 37 .E 3. 1'-0-.. -t-' , UNDEFINED CODES lEO 311e F1 387 IF 37 IE 38 It -O-II-t-t , UNDEFINED CODES !E 388 F. 310 'F 37 IE 38 1'-0-8-1·' 

3 UNDEFINED CODES IEF 387 

~ 
F. 371 .F 37 IE 38 '1-0-7-8-' 

U1 
~ 
I 

0 
0 

(' 
\ 

" ./ ./ 



n 
I 
~ 

~ 
U1 
I-' 
I 

o 
o 

.~ d"iii', 

~TI!: NAMP: 
SYI180l 

!8COIC 
CODE 
18 II 

Alltll 
CODE 
III II 

08CO 
CODE 
18 8 

HaCO 
CODE 
111 II 

ASCII/E8CDIC 08CD 
CARD CODE CARD 

CODE 

.. CD 
CARD 
coot!: 

0 

• e 
3 

• 8 
8 
7 

• • 3 
3 
3 
3 
3 
3 [Ill 

No~e. 

I'D 3110 30 080 00 00 00 00 0 
1'1 381 31 081 01 01 01 01 I 
1'2 382 32 082 02 02 02 02 2 
1'3 3113 33 083 03 03 03 03 3 
I'.3U 34 084 O. O. 04 O. 4 
1'8 388 38 088 08 08 Oll Oll 8 
1'8 388 38 086 08 08 08 08 8 
'7 387 37 087 07 07 07 07 7 
I'. 370 3. 070 O' 10 O' 10 • '1 371 31 071 01 11 01 11 • long Ver~Icel Herk I'A 372 FA 372 I' 37 IE 38 le-l'-O-I-II-' 

UNOE'" NED CODES '8 313 1'8 313 .,. 37 'E 38 '2-11-0-'-11-' 
UNOE'" NED CODES I'C 374 I'C 314 .,. 37 'E 31 '2-1'-0-.-'-' 
UNDE'" NED CODES I'D 318 I'D 31" 11' 31 .E 31 12-n -0-8-'-' 
UNDEFINED CODES I'E 378 FE 318 '1' 37 'E 38 12-1'-0-1-'-' 
Elah~ One. 1'1' 377 1'1' 377 '1' 37 IE 38 12-1'-0-7-'-1 

.: I'rOM [8CDIC or ASOII ~o HaCD or -BeCD ~hl. I. e one-wev corre.pondence. 
2. ISO de'ln •• ~h ••• ASCII cod •• e. v.rl.ble 'or ne~lonel u •• ge. 
3. SInce ~here I. no corre.pondlng ch.r.c~er e de'eul~ cherecter I •• ub.tl~uted here: 

38 loc~el'(~' for HeCD end 31 (octel'I\' 'or 08CD. 
•. In HaCD ~he code '" (octell mev repre.ent 1/2 or I 
8. TM occuple. the .eme po. It Ion e. DC3. TH I. en E8CDIC control cheracter 

while DC3 I. en ASCII control cherecter . 
•. The Internel end punched cerd code •• hown 'or HaCD end 08CD ere 'or cepltel elphebe~lc •• 

0 0 

• I 
e e 
3 3 
4 4 
8 It 
I I 
7 7 • • • 1 

7. There ere two HaCO cerd code .et. CHaCDI end HeCD21, ~he dl"erence being the cerd punch repre.entetlon 
'or 1+' end I-I, end for ITI end III. I'or ~he HeCOI .e~ 1+' end 1-' ere 
repre.ented with punch code. 12-0 end "-0, while IT' end (I) ere repre.ented bV .2 end ••. 
I'or the HeCD2 .e~ 1+1 end 1-' ere repre.en~ed wl~h punch code. 12 end 11, 
whIle '" end (!I ere repre.en~ed bV 12-0 end II-D . 

•. The.e ere EBCDIC con~rol cherecter. end ere not,de'lned In the ASCII .tenderd . 
•. IBM de'lne. ~he.e EBCDIC code. e. netlonel .Iph.betlc .M~ender •. 

..-... 



UNIFIED CHARACTER SET - GBCD SEQUENCE 

G8CO HBcd ASCII E8COIC IJ8CD HBCD ASCII/EBCDIC HClrr NAME CtlDE Ctlot CtlOE CtlDE CARD CARD CARD ccmE 
SVI18tn. 18 8 18 8 18 8 18 II CtlDE CODE 

---------------------------------------------------------------------------------------------------------------------
0 00 00 00 00 '0 oeo FO '80 0 0 0 , 01 01 01 01 31 081 Fl 381 , , , 
• 02 02 02 02 32 082 F2 382 t • • , 03 03 03 03 3' 083 F' 383 3 3 3 .. 04 04 04 04 34 084 F4 384 .. 4 4 
e 08 08 08 08 '" oln, 1'"11 365 e e e • De De 08 08 3. 088 1'"8 388 • • • 7 07 07 07 07 37 0.7 1'"7 387 7 7 7 • O' 10 De 10 " 070 1'". 370 • • • 8 O. 11 o. 11 3. 071 .... 371 8 8 • t Lett .r""'e~ OA 12 ~ 31'" 77 88 133 , 4A 112 t-II' 0-7-11 12-2-8 • NUlllber SID ... 08 13 2A 82 23 043 78 173 3-11 11-2-11 :J-II • A~ SIO'" OC 14 3A 72 40 100 7C '74 4-11 0-1-11 "-II 

Colon 00 18 OC 14 3A 072 7A 172 e-II 4-11 '-11 
) Greeter Then OE 1. OE 1. 3E 07e eE 11'. e-. II-II o-e-II 

7 ., Que.~lo ... Mark OF 17 IF 37 3 .. 077 eF 1117 7-. CltlClt-OJ 0-7-11 
Spece, 81 .... 11. 10 20 00 18 to 040 40 100 8t.,., .lenk .lenk 

A 11 21 11 II 41 101 Cl 301 It-I It-I 12-1 • 12 22 It 22 .. , lot CI 30t 1'-t 11-1 12-t 

n C 13 23 13 23 43 103 C3 303 12-3 It-3 11-3 
D 14 24 14 24 44 10 .. C4 304 12-4 12-" 12-" I It 18 28 '" 28 48 10e C8 308 1.-e 11-8 12-e I-' 

0 .. III 28 18 2e 4. 10. ce 30e 12-' 1.-' It-. 
G 17 27 17 27 .. 7 101 C1 301 11-7 11-1 11-1 
H III 30 18 30 411 110 CII 310 12-11 1.-' I.-II 
I I. 31 I. 31 48 III C. 31 I 12-. 12-. It-8 
a Al!lper •• nd lA 32 OF 17 211 0411 80 120 12 7·11 It 

".rlod 18 33 18 33 2t 0811 4. 1'3 11-3-8 '2-3-11 11-3-11 
4,7 RIOh~ 8reck.~ 'C 34 21" 87 80 '38 8A 132 12-4-11 (11)111-0) II-I-II 

Lef~ ".r.nthe.l. 10 38 3C 14 .11 080 40 118 12-8-11 0-4-11 12-8-' 
c L... Tha" It 311 30 .0 3C 074 4C 114 12-'-' 8-' U!-4-. 

" Rev.r •• St .... ~ , , ... 37 f 2£ 811 , 8C 134 , EO 340 11-7-11 11-11-' 0-2-11 
t Upward Arrow t 20 40 IE 38 • 8E 1311 8F 137 11-0 12-11-11 11-7-11 
J II 41 tl 41 4A 112 DI 321 11 -1 11 -1 11-1 
K 22 4. 22 42 48 113 Ot 321 11-t 11-' l1-t 
L 23 43 23 43 4C 114 03 323 11-3 11-3 11-3 

" 24 44 24 44 40 118 D4 324 11 -4 11-4 11-" 
N t8 48 28 48 4t 111 Oil 328 l1-e 11-8 l1-e ., 2. 4 • 28 4. 4F 117 De 328 11-' " -II II-II ,. 27 47 27 47 80 120 07 327 11-7 11-7 11-7 
Q 2880 28 80 81 121 0' 330 II-II 11-11 11 -II 
R 28 III 28 81 82 122 011 331 II-II 11-. 11-11 

7 Hyphan, .. I nus IA 82 20 40 20 0811 80 140 11 "'-0)(11) 11 • Dot tar lID ... 28 e3 28 113 24 044 118 133 '1-3-' 11-3-e 11-3-' 
• A.~.rl.k 2C 114 2C 114 2A 0112 IIC 134 11-4-11 11-4-' 11-4-11 
J RIOh~ Par."~ha.l. 20 1111 lC 34 211 081 80 1311 11-11-11 12-4-' '1-8-11 

I_I-Coto ... 2E 1111 lA 32 38 073 5! 138 II-II-II 12-2-11 11-.-11 
Apoatrophe 2F 87 OA 12 27 047 70 175 11-7-11 2-11 e-II 

~ 
01 
I-' 
I 

0 
0 

'" 



n 
I 

I-' 
I-' 

~ 
U1 
f-J 
I 

o 
o 

;,"--'\ 
/ ...... 

GeCO Hecl) ASCII EeCOIC IJ8CO HBCO ASCII/BCOIC 
tmTE NAME CODE COD6 CODE CODE CARD CARD CARD CODE 

SYt180l 18 8 18 8 18 8 18 8 CODE CODE 

---------------------------------------------------------------------------------------------------------------------, + 
I 
S 
T 
U 
V 
W 
II .., 
l .. 
, 
• 

Not •• 

"'U. 30 80 10 20 n 083 4E '" SI •• h 31 .1 31 .1 2F 081 .1 141 
32 82 32 .2 83 In E2 3 .. 2 
33 83 33 .3 84 12 .. E3 3"3 
3 ..... 3 ..... 

"" 128 E .. 3 .... 
38 .8 38 .8 S. 12' E" 3 .. 8 
38 8' 38 8' '" 127 E. 3 .. ' 
37 .7 37 87 S8 130 E7 3 .. , 
3' 70 3. 70 S8 131 E. 3"0 
38 71 38 71 "A 132 U 3"1 

l.ft A,.,.ow .. 3,. 12 3E 7. SF 137 .0 IS" 
C_. 38 73 38 73 2C 0"" '8 1"3 
p.,.c.nt SIgn 3C 7" 10 3" 2" 0 .. " 'C HI" 
Equ.I 30 78 08 13 30 0711 7E 17. 
Ooubl. Ouot. 3E 7e 20 88 22 0 .. 2 7F 177 
Exclam.tlon "oInt CASCIII 3F 77 .. 30 78 CI 21 04' 4F 1" 

1. F"~ EeCOIC or ASCII to HBCO or GeCO thl. I •• on.-w.v corr •• pond.nc •. 
I. ISO d.' In •• the •• ASCII cod •••• v.,.Iebl. fo,. n.tlon.' u •• ge. 

12-0 '12-01'121 
0-1 0- I 
0-2 0-2 
0-3 0-3 
0-" 0-" 
0-8 0-8 
0-. 0-. 
0-' 0-7 
0-1 0-1 
0-1 0-1 
0-2-1 o-e-I 
0-3-e 0-3-e 
0-"-. 12-8-1 
0-8-1 3-a 
o-e-e II-e-I 
0-7-. o-e-. 

3. Slnc. th.,.. I. no CO,.,. •• pondlng ch.,.ect.,. • de'.ult ch.,..ct.,. I •• ub.tltuted he,.e: 
38 Cocte'Icdl '0,. HeCO end 37 (oct.'I(\I for GBCO. 

... In HeCO tho cod. e7 (octell Mev ,..p,. ••• nt 1/2 0,. I 
e. TH occupl •• the .am. po. It Ion •• DC:). TH I •• n EBCDIC control cherect.r 

whll.OC3 I •• n ASCII control ch.,..ct.,.. 
I. The Int.,.n.' .nd punch.d c.rd cod ••• hown '0,. HBCO .nd tJeCO er. 'or ceplt.1 elphebetlc •. 

12-e-8 
0-1 
0-2 
0-3 
0-" 
0-8 
o-e 
0-' 
0-1 
0-1 
0-"-1 
0-3-1 
0-"-. 
e-I 
7-8 
12-'-. 

1. Th.,. •• ,.. two HeCO c.,.d cod ••• t. CHBCDI .nd HBC02l, the dl".,..nc. b.lng the c.,.d punch repr ••• nt.tlon '0,. C+I .nd (-I, .nd '0,. ('I .nd (II. Fo,. the HeCOl •• t (+1 .nd (-I .,.. 
rep,. ••• nt.d with punch cod •• 12-0 .nd 11-0, whll. ('I .nd (II er. rep,. ••• nted bV 12 .nd II. 
Fo,. tho HBC02 •• t (+1 .nd (-I .r. ,..p,. ••• nt.d with punch cod •• 12 .nd 1', 
whll. (tl .nd (!I .,.. r.pr ••• nt.d by 12-0.nd 11-0. 

e. Th ••• • r. EBCDIC control ch.,..ct.,. •• nd .,.. not d.'ln.d In the ASCII .t.nd.,.d . 
•. IBH d.' In •• tho .. EBCDIC cod •••• n.tlon.I .Iph.b.tlc .Mt.nd.,. •. 

/"..,.. 



n 
I 

...... 
N 

~ 
U1 
I-' 
I 

0 
0 

r-" 
\" 

UNIFIED CHARACTER SET - BBeD SEQUENCE 

HeCO sectl ASCII E8COIC HeCD seco ASCII/BCOIC 
HaTE NAP'IE CODE coot CODE CODE CARD CARD CARD CODE 

SYMBOL •• e •• e I. e •• • CODE CODE 

---------------------------------------------------------------------------------------------------------------------
0 00 00 00 00 30 oeo FO 3.0 0 0 0 
1 01 01 01 01 31 0., Fl 3., 1 • 1 
a 0202 02 02 32 0.2 F2 3.2 2 a I 
3 03 03 03 03 33 083 '3 3.3 3 3 3 
4 04 04 04 04 34 084 F4 384 .. .. .. 
e 00 00 OS o. 3S 08e F. 38S It e e 
a 08 O. O. 0. 3. 088 F8 3 •• a a a 
1 01 01 01 01 31 0., F1 381 7 7 1 • O. 10 O. 10 3. 010 F. 310 • • • S 01 " 01 11 3S 011 FS 311 S • • · Apo.~"ophe OA 11 2F e1 21 041 10 l1e t· •. 11-1,' e·. 
• Ique' 08 13 30 111 30 0111 71 118 3-. 0"" ••• Colon OC 14 00 18 3A 012 7A 112 .... e·. 2-. 

Spltee, 81e .. 00 18 10 20 20 040 40 100 81." .1 ... .,enk 
~ Gree~er Then OE 18 01 18 Itt 01. .E 18. • •• ••• 0-.· • • Ah!per.end OF 11 1A3I t. 04. 00 120 1-. 11 11 

7 • ,.Iu. 10 20 30 .0 28 003 4E 118 '12'01,1t1 12'0 •••••• ,. 11 21 11 21 41 101 Cl 301 12-1 1.'1 1.-1 • II 22 11 22 .2 102 C2 302 12'2 11'1 II-a 
C 13 23 13 23 .3 102 C3 303 12'3 12-3 12-3 
0 14 2. 14 2. • 4 104 C4 30 • 12'4 11'4 11'4 
E III 20 10 til 40 108 CO 3011 II-e 12'& lZ" 
F 18 28 •• 2. 4. 108 C' 30. 12-a 12-a 12'. 
II 11 R1 11 27 41 107 C1 301 12-7 12-1 12-7 
H 18 30 1. 30 •• 110 C' 310 11" 12" Ilr-. 
I IS 31 It 'I 4S III CS 311 12-S II'S lI-S 

1_I'Coion I,. 32 2E " 31 013 8E "e 12'2-1 II-e·, "-S" 
,.."Iod ,. 33 18 33 2t 08S 48 113 12'3" 11'3" 11'3" 

) IUah~ "_.n~he.l. Ie 34 20 88 2S 081 '0 138 12'4" 11-8-. 11'8" • "."c.n~ Sign 10 3e 3C 14 2e o.e ae le4 12'8-' 0-4-. 0'4-. 
IS elo •• d 80M IE 3. t 20 40 • 8E 138 8F 131 12-8-. "-0 11-7-. 

7 , Que.~ I on "'rk IF 31 OF 11 3F 011 8F 187 Cl21 Cl2-0I 7-t 0-7" 
1 Hyphen, "Inu. 20 40 2A e2 20 oee .0 140 ,11-0IClIl II " J 21 41 21 41 4A III 01 321 " -1 11 ., 

" -1 
K 22 42 t2 U 48 113 02 322 11'2 11-a 11'2 
L 13 43 23 .3 4C " .. 03 323 11'3 11'3 11-3 

" 24 44 24 44 40 118 04 32. 11-4 11'4 "'4 
N 2e 4e 211 4e 4t 11. De 318 " -e 11'8 11-8 
D 28 .e 2. 48 4' 1t1 O. 328 " -. l1-e 11-. ,. 27 ., 21 41 eo 120 01 321 11'1 11-7 11-7 
Q 2. 80 2. 80 el 121 08 330 11-. 11'. 11-. 
R 21 el 2S el e2 122 Ot 331 l1-a l1'S l1-S 
• Nwober Sign 2A 82 

08 " 
23 043 18 173 11-2-' 3'. 3-a 

8 Ooller SIgn 28 e3 2& 83 2. 0 •• ee 133 11-3-' 11-3" 11,3-. 
• A.~.rl.k 2C 84 2C 8. 2A 082 .SC 13. 11-.·. 11'.-. 11-.·. 

Double Quo~e 20 81' 3E ,. 22 0.2 7F 117 11-0-. 0-.·. 7'. 
f No~ Equel f 2E oe \ IF 31 \ SC 13. \ EO 3.0 ll-e-8 12-7-. 0-2-t 

4,7 I EMcl.~.~lon Poln~ (E8COIC) I 2F 01 J IC .. J SO 13S I SA 132 111111'-0) 12-.-. I'-2-t 

""'- /) ',. 



n 
I 

I-' 
W 

~ 
U1 
I-' 
I 

<:) 
<:) 

........ : .~ . 

Ntln 
SYl'1I!IeL 

NAM~ 
HeCD 
ceDE 
18 8 

tHlcll 
coot: 
16 8 

ASCII 
ceDE 
18 8 

PlICDI C 
CODE 
16 8 

HeCD 
CARD 
CODE 

oeco 
CARD 
CODE 

ASCII/PlICDI C 
CARD CCO~ 

( 

I • T 
U 
V 
W 
)( 

Y 
Z 

• , 
C 
CR 

• 
ko~ •• 

L... Th.n 
SI •• h 

30 80 IE 38 3e 014 4C 114 8-8 12-8-8 12-4-1 

A~ 81an C_. 

31 81 
32 82 
33 83 
34 84 
3e 8e 
3" 88 
31 81 
38 10 
38 11 
3A 12 
38 13 

31 81 
32 82 
33 83 
34 "4 
3e "e 
3" "8 
31 81 
38 10 
38 71 
DC 14 
38 73 

2.. oe1 ., 141 
e3 123 [2 342 
e4 124 ~3 343 
88 12e ~4 344 
118 12" E8 3415 
81 121 E8 34" 
118 130 E7 341 
118 131 E8 380 
8A 132 U 381 
40 100 7C 114 
2C 0114 88 1113 

0-1 0-1 0-1 
0-2 0-1 0-1 
0-3 0-3 0-3 
0-4 0-4 0-4 
0-8 0-11 0-8 
o-e 0-8 0-' 
0-7 0-1 0-7 
0-1 0-1 0-' 
0-. 0-. 0-. 
0-2-. 4-" 4-' 
0-3-8 0-3-" 0-3-8 

L.,~ ~.r.nth •• I. 
C,.edl~ 81an 

3C 14 10 3e 2" 0110 40 1111 0-4-" 12-11-" 11-8-1 
R 30 111 3F" 11 CI 21 041 41' 111 

3E 78 .3A 12 _ II .. 131 _ eo 11111 
.. 31' 71 [ OA 12 [ e8 133 ~ "A 112 

Cp.n 80 .. 
C.nt. SIan 

,. ",.OM EBCDIC or A8CII ~o HeCD or oeco thl. I •• one-w.v corr •• pond.nc •. 
I. Ise <feflne. ~he •• ASCII cod •••• v.rl.bl. 'or n.tlon.1 u •• a •. 

0-8-' 
0-8-' 
0-1-e 

3. Slnc. ~h.r. I. no corr •• pondlna ch.r.ct.r • d.'.ul~ ch.ract.r I •• ub.tltuted her.: 
38 10ct.,)ID) 'or HeCO .nd 37 loc~.')I') for 08CD. 

4. In HltCD the cod. e1 10ct.11 ~v r.pr ••• nt 1/2 or I 
II. TM occupl •• ~h •• em. po. It Ion •• DC3. TM I •• n EBCDIC control chereet.r 

whll.DC3 I •• n ASCII control ch.r.ct.r . 

0-1-1 
0-2-e 
2-1 

•. Th. Int.rnel .nd punched c.rd cod ••• how" for HeCD .nd 08CO .r. for ceplt.1 .,phebe~lc •. 

12-7-8 
0-8-" 
12-2-1 

1. Th.r •• r. two HeCO c.,.d co<fe •• t. IHltCDI .nd HltCD2) , the dlff.r.nc. b.lng the c.rd punch repr ••• n~.tlon 
for (+) .nd (-), .nd 'or (f) .nd (I'. For the HltCDl •• t 1+) .nd 1-) .r. 
repr ••• nt.d wIth punch cod •• 12-0 .nd 11-0, whll. IT) .nd (I) .r. repr ••• nt.d bv 12 and II. 
I'or ~he HltC02 •• t (+, .nd 1-' .r. repr ••• nted wIth punch code. 12 .nd II, 
vhll. (T) .nd (!) .r. repr ••• nted bv 12-0 .nd 11-0 . 

•. The •• ar. EBCDIC con~rol ch.reet.r •• nd .r. not d.flned In ~he ASCII .~andard . 
•. IBM defIne. the •• EBCDIC code ••• n.tlon.1 .,p~betlc ... t.nd.r •. 

~ 





( 

IIIDEX 

4-BIT 
4-Bit Characters 2-2 
Add 4-Bit Displacement To Address 

Register 8-15 
Packed Decimal (4-bit) 2-9 
Subtract 4-Bit Displacement from 

Address Register 8-471 

6-BIT 
6-Bit Characters 2-2 
6-bit characters 5-19 
Add 6-Bit Displacement To Address 

Register 8-17 
Store 6-bit Characters of A-Register 

8-540 
Store 6-bit Characters of Q-Register 

8-542 
Subtract 6-Bit Displacement from 

Address Register 8-472 

9-BIT 
9-Bit Bytes 2-2 
9-bit output 7-30 
Add 9-Bit Displacement to Address 

Register 8-19 
ASCII (9-bit) 2-9 
Store 9-bit Bytes of A-Register 

8-536 
Store 9-bit Bytes of Q-Register 

8-537 
Subtract 9-Bit Displacement from 

Address Register 8-473 

A-REGISTER 
A-Register Left Rotate 8-51 
A-Register Left Shift 8-52 
A-Register Right Logical Shift 8-64 
A-Register Right Shift 8-66 
ACCUMULATOR REGISTER (A) 4-3 
Add Logical to A-Register 8-43 
Add to A-Register 8-39 
Add To Storage From A-Register 8-67 
Add with carry to A-Register 8-71 
AND to A-Register 8-53 
AND to Storage from A-Register 8-57 

A-REGISTER (cant) 
Comparative AND with A-Register 

8-87 
Comparative NOT AND with A-Register 

8-158 
Compare with A-Register 8-137 
Effective Address to A-Register 

8-212 
EXCLUSIVE OR to A-Register 8-219 
EXCLUSIVE OR to Storage with 

A-Register 8-223 
Load A-Register 8-274 
Load A-Register and Clear 8-275 
Load Complement into A-Register 

8-267 
Negate (A-Register) 8-407 
OR to A-Register 8-410 
OR to Storage from A-Register 8-414 
Store 6-bit Characters of A-Register 

8-540 
Store 9-bit Bytes of A-Register 

8-536 
Store A Conditional 8-532 
Store A Conditional on Q 8-533 
Store A-Register 8-531 
Subtract from A-Register 8-486 
Subtract Logical from A-Register 

8-490 
Subtract Stored from A-Register 

8-526 
Subtract with carry from A-Register 

8-568 

A/Q/GXn 
ES AlQ/GXn Modification 5-52 

A4BDOn 
A4BD(X} 8-15 

A6BD(X) 
A6BD(X} 8-17 

A9BD(X) 
A9BD(X} 8-19 

i-1 DZ51-00 



AARN 
AARn 8-21 

ABBREV! ATI ONS 
ABBREVIATIONS AND SYMBOLS 8-3 

ABDOn 
ABD(X) 8-23 

ABSOLUTE MODE 
Absolute Mode 5-67 

ACCESSIBLE 
PROCESSOR ACCESSIBLE REGISTERS 4-1 
Processor Accessible Registers 4-2 

ACCUMULATOR 
ACCUMULATOR REGISTER (A) 4-3 
EXPONENT ACCUMULATOR QUOTIENT 

REGI STER ( EAQ ) 4-5 

ACCUMULATOR-QUOTIENT 
ACCUMULATOR-QUOTIENT REGISTER (AQ) 

4-4 

ACTION CODES 

MJ 

System Controller Illegal Action 
Codes 4-38 

MJ variation 5-24 
Add Delta (AD) variation 5-24 

MJ2D 
MJ2D 8-25 

MJ2DX 
MJ2DX 8-28 

MJ3D 
MJ3D 8-31 

MJ3DX 
MJ3DX 8-36 

ADA 
ADA 8-39 

ADAQ 
ADAQ 8-40 

MJD 
Add 4-Bit Displacement To Address 

Register 8-15 
Add 6-Bit Displacement To Address 

Register 8-17 
Add 9-Bit Displacement to Address 

Register 8-19 
Add Bit Displacement To Address 

Register 8-23 
Add Delta (AD) variation 5-24 
Add Logical Register to Register 

8-46 
Add Logical to A-Register 8-43 
Add Logical to AQ-Register 8-44 
Add Logical to Index Register n 

8-47 
Add Logical to Q-Register 8-45 
Add Low to AQ-Register 8-42 
Add One to Storage 8-61 
Add Register to Register 8-49 
Add to A-Register 8-39 
Add to AQ-Register 8-40 
Add to Exponent Register 8-41 
Add to Index Register n 8-50 
Add to Q-Register 8-48 
Add To Storage From A-Register 8-67 
Add To Storage From I ndex Register n 

8-69 
Add To Storage From Q-Register 8-68. 
Add Using Three Decimal Operands 

8-31 
Add Using Three Decimal Operands 

Extended 8-36 
Add Using Two Decimal Operands 8-25 
Add Using Two Decimal Operands 

Extended 8-28 
Add with Carry to A-Register 8-71 
Add with carry to Q-Register 8-73 
Add Word Displacement To Address 

Register 8-75 
Double-Precision Floating Add 8-168 
Double-Precision Unnormalized 

Floating Add 8-193 
Floating Add 8-227 
Quadruple-Floating Add 8-422 
Unnormalized Floating Add 8-632 

MJDRESS 

i-2 

Add 4-Bit Displacement To Address 
Register 8-15 

Add 6-Bit Displacement To Address 
Register 8-17 

DZ51-00 



(/ 

ADDRESS (cont) 
Add 9-Bit Displacement to Address 

Register 8-19 
Add Bit Displacement To Address 

Register 8-23 
Add Word Displacement To Address 

Register 8-75 
Address Development 5-57 
address interleaving 3-1 
ADDRESS MODI FI CATl ON AND DEVELOPMENT 

5-1 
Address Modification Features 5-1 
Address Modification Flowchart 5-26 
ADDRESS MODI FI CATION OCTAL CODES 

5-25 
Address Modification with Address 

Register 5-27 
Address Register Alter Contents 

7-10 
Address Register Instructions 7-2 
ADDRESS REGI STER I NSTRUCTI ONS 7-9 
Address Register n to Alphanumeric 

Descriptor 8-62 
Address Register n to Numeric 

Descriptor 8-65 
Address Register Special Arithmetic 

Instructions 8-10 
Address Register Specifier 5-31, 

7-24 
ADDRESS REGI STERS (ARn) 4-13 
address translation 5-68 
Address Translation Process 5-68 
Address Trap Register 4-32 
Address Truncation 5-83 
Alphanumeric Descriptor To Address 

Register n 8-21 
Alphanumeric/Numeric Address 

Preparation 5-44 
alter an address 5-1 
Base address 3-11 
Base working space address 3-10 
BIT STRING ADDRESS PREPARATION 5-43 
Bound address 3-11 
DATA STACK ADDRESS REGISTER (DSAR) 

4-25 
Decrement address 5-14 
Decrement Address, Increment Tally 

(T) 5-21 
Decrement Address, Increment Tally, 

and Continue 5-23 
Decrement Address, Increment Tally, 

and Continue (T) 5-21 

ADDRESS (cont) 

i-3 

direct operand address modification 
5-4 

Effective Address Generation 5-51 
Effective Address to A-Register 

8-212 
Effective Address to Index Register 

n 8-214 
Effective Address to Q-Register 

8-213 
Effective Address to Register 

Instructions 7-3 
Effective Pointer and Address to 

Test 8-215 
ES Address Modification with AR 

5-50 
ES Address Modification with no AR 

5-49 
ES Instruction Address Field 5-49 
ES Mode Address Generation 5-49 
Increment address decrement tally 

5-14 
Increment Address, Decrement Tally 

(T) 5-20 
Increment address, decrement tally, 

and continue 5-15 
Increment Address, Decrement Tally, 

and Continue 5-22 
Instruction Address Procedure 5-59 
Load Address Register n 8-264 
Load Address Registers 8-265 
Load Data Stack Address Register 

8-309 
Load Extended Address n 8-313 
Mapping The Virtual Address To A 

Real Address 5-71 
Multiword Address Modification 5-30 
Numeric Descriptor to Address 

Register n 8-405 
Operand Address Procedure 5-58 
Operand Descriptor Address 

Preparation 5-41 
Real Address 3-2 
Single-Word Address Modification 

5-27 
Store Address Register n 8-474 
Store Address Registers 8-475 
Store Data Stack Address Register 

8-546 
Subtract 4-Bit Displacement from 

Address Register 8-471 
Subtract 6-Bit Displacement from 

Address Register 8-472 

DZ51-00 



ADDRESS (cont) 
Subtract 9-Bit Displacement from 

Address Register 6-473 
Subtract Eit Displaceme~t from 

Address Register 8-489 
Subtract Word Displacement from 

Address Register 8-572 
Types of Address Modification 5-3 
valid mnemonics for address 

modification 5-2 
Virtual address 3-2 
Virtual Address 5-72 
Virtual Address Generation (ES) 

5-64 
Virtual Address Generation (NS) 

5-59 
Virtual Address Generation, Super 

Descriptor 5-61 
Virtual Address Trap Register 4-33 
word address 5-35 

ADDRESS REGISTERS 
Store Test Address Registers 8-562 

ADDRESSING 
ADDRESSING MODES 1-7 
indirect addressing 5-7 
indirect addressing and indexing 

5-9 
NS Indirect Addressing 5-1 
NS Mode Address Generation 5-1 
Virtual Memory Addressing 5-57 

ADE 
ADE 8-41 

ADL 
ADL 8-42 

ADLA 
ADLA 8-43 

ADLAQ 
ADLAQ 8-44 

ADLQ 
ADLQ 8-45 

ADLR 
ADLR 8-46 

ADLXN 
ADLXn 8-47 

ADO 
ADO 8-48 

ADRR 
ADRR 8-49 

ADSC4 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-36 

ADSC6 
ADSC6 - Bel alphanumeric descriptor 

5-36 

ADSC9 
ADSC9 - ASCII alphanumeric 

descriptor 5-36 

ADXN 
ADXn 8-50 

ALPHANUMERI C 

i-4 

Address Register n to Alphanumeric 
Descriptor 8-62 

ADSC4 - Packed decimal alphanumeric 
descriptor 5-36 

ADSC6 - BCI alphanumeric descriptor 
5-36 

ADSC9 - ASCII alphanumeric 
descriptor 5-36 

Alphanumeric Character Number (CN) 
Codes 7-27 

Alphanumeric Data Type (TA) Codes 
7-27 

Alphanumeric Descriptor To Address 
Register n 8-21 

ALPHANUMERIC EDIT ONE) 7-41 
Alphanumeric Instructions 7-25 
ALPHANUMERI C OPERAND DESCRI PTOR 

FORMAT 7-26 
Alphanumeric Operand Descriptors 

5-36 
Alphanumeric/Numeric Address 

Preparation 5-44 
Compare Alphanumeric Character 

Strings 8-142 
Move Alphanumeric Edited 8-380 
Move Alphanumeric Left to Right 

8-348 
Move Alphanumeric Right to Left 

8-373 
Move Alphanumeric with Translation 

8-400 

DZ5l-00 

/ 

I 
/ 

/." 



ALR 
ALR 8-51 

ALS 
ALS 8-52 

ALTER 
Address Register Alter Contents 

7-10 
alter an address 5-1 

ANA 
ANA 8-53 

ANAQ 
ANAQ 8-54 

AND 
AND Register to Register 8-56 
AND to A-Register 8-53 
AND to AQ-Register 8-54 
AND to Index Register n 8-60 
AND to Q-Register 8-55 
AND to Storage from A-Register 8-57 
AND to Storage from Index Register n 

8-59 
AND to Storage from Q-Register 8-58 
Comparative AND with A-Register 

8-87 
Comparative AND with AQ-Register 

8-88 
Comparative AND with Index Register 

n 8-90 
Comparative AND with Q-Register 

8-89 
Comparative NOT AND with A-Register 

8-158 
Comparative NOT AND with AQ-Register 

8-159 
Comparative NOT AND with Index 

Register n 8-161 
Comparative NOT AND with Q-Register 

8-160 

ANQ 
ANQ 8-55 

ANRR 
ANRR 8-56 

ANSA 
ANSA 8-57 

ANSQ 
ANSQ 8-58 

ANSXN 
ANSXn 8-59 

ANXN 
ANXn 8-60 

AOS 
AOS 8-61 

AQ-REGI STER 
ACCUMULATOR-QUOTIENT REGISTER (AQ) 

4-4 
Add Logical to AQ-Register 8-44 
Add Low to AQ-Register 8-42 
Add to AQ-Register 8-40 
AND to AQ-Register 8-54 
Comparative AND with AQ-Register 

8-88 
Comparative NOT AND with AQ-Register 

8-159 
Compare with AQ 8-138 
EXCLUSIVE OR to AQ-Register 8-220 
Load AQ-Register 8-276 
Load Complement into AQ-Register 

8-268 
Negate Long (AQ-Register) 8-408 
OR to AQ-Register 8~41l 
Store AQ-Register 8-534 
Subtract from AQ-Register 8-487 
Subtract Logical from AQ-Register 

8-491 

ARAN 
ARAn 8-62 

ARGUMENT 
ARGUMENT STACK REGI STER (ASR) 4-23 
Load Argument Stack Register 8-277 
Pop Argument Stack 8-418 
Store Argument Stack Register 8-535 

ARITHMETIC 

i-5 

Address Register Special Arithmetic 
Instructions 8-10 

Arithmetic Instructions 7-37 
Decimal Arithmetic 7-7 
Fixed-Point Arithmetic Instructions 

7-3 
Floating-Point Arithmetic 

Instructions 7-4 

DZ5l-00 



ARL 
ARL 8-64 

ARN 
ADDRESS REGISTERS (ARn) 4-13 

ARNN 
ARNn 8-65 

ARS 
ARS 8-66 

ASA 
ASA 8-67 

ASCII 
ADSC9 - ASCII alphanumeric 

descriptor 5-36 
ASCII (S-bit) 2-9 
character codes for ASOI and EBCDIC 

overpunched sign 8-397 
NDSC9 - ASCII numeric descriptor 

5-37 

ASQ 
ASQ 8-68 

ASR 
ARGUMENT STACK REGI STER (ASR) 4-23 
ASR Generation 8-112 

ASSIGNMENT 
Configuration Register Port 

Assignment 4-30 

ASSOCIATIVE 
Clear Associative Memory Pages 8-84 

ASTERISK 
asterisk placed in the tag 5-8 
Insert Asterisk on Suppression 7-45 
Move with Zero Suppression and 

Asterisk Replacement 7-54 

ASXN 
ASXn 8-69 

ATTRIBUTES 
COMMON ATTRIBUTES OF INSTRUCTIONS 

8-7 

AWCA 
AWCA 8-71 

AWCQ 
AWCQ 8-73 

Ay,~(X ) 
Ay,l!) (X) 8-75 

BASE 
Base address 3-11 
base value 5-58 
Base working space address 3-10 
Linkage Base 3-15 
Load Page Table Directory Base 

Register 8-340 
Load Reserve Memory Base 8-345 
Page Directory Base Register (PDBR) 

1-7 
PAGE DIRECTORY BASE RE(aSTER (PDBR) 

4-26 
Page Table Base Register (PDBR) 

5-72 
Page Table Base Word (PBW) Format 

5-69 
Paging 5-68 
Reserve Memory Base Register 4-43 
segment base 3-1 
Store Base Address Register 8-488 
Store Page Table Directory Base 

Register 8-519 

BASIC 
NSBasic Modification 5-1 

BCD 
BCD 8-77 
Binary-To-BCD Conversion 7-67 
Binary-te-BCD Convert 8-77 

BCI 
ADSC6 - BCI alphanumeric descriptor 

5-36 

BDSC 
BDSC - Bit descriptor 5-36 
BDSC pseudo-operation 7-35 

BINARY 

i-6 

binary· expansion 2-8 
Binary Numbers 2-3 
Binary Representation of Fractional 

Values 2-8 
Binary to Decimal Convert 8-81 
Binary-To-BCD Conversion 7-67 
Binary-to-BCD Convert 8-77 

DZ51-00 



BINARY (cont) 
conversions between binary and 

decimal numbers 7-36 
Decimal to Binary Convert 8-188 

BIT 
Add Bit Displacement To Address 

Register 8-23 
BDse - Bit descriptor 5-36 
Bit Formats 2-1 
Bit Operations 5-46 
Bit Positions 2-3 
BIT STRING ADDRESS PREPARATION 5-43 
Bit string instructions 7-6 
Bit String Instructions 7-34 
Bit String Operand Descriptor 5-35 
BIT STRING OPERAND DESCRlPTOR FORMAT 

7-35 
Bit Strings and Index Table of 

Translate Instruction 5-85 
Combine Bit Strings Left 8-162 
Combine Bit Strings Right 8-165 
Compare Bit Strings 8-139 
housekeeping bit 7-59 
master mode bit 7-59 
Master Mode bit in the Indicator 

Register 1-6 
privileged bit 7-59 
Set Zero and Truncation Indicators 

with Bit Strings Left 8-578 
Set Zero and Truncation Indicators 

with Bit Strings Right 8-581 
Subtract Bit Displacement from 

Address Register 8-489 

BITS 
EDAC (Error Detection and 

Correction> bits 2-1 

BLANK 
Insert Blank on Suppression 7-46 
Move with Zero Suppression and Blank 

Replacement 7-55 

BLANK-WHEN-ZERO 
Blank-when-zero flag 7-43 

BOLR 
BOLR 7-34 
BOLR control field 8-163 

BOOL 
BOOL 7-13 

BOOLEAN 
Boolean Expressions 7-13 
Boolean Operation Instruc~ions 7-13 
Boolean Operations 7-2 
Boolean operations 7-34 
Evaluation of Boolean Expressions 

7-13 

BOUND 
Bound 3-8 
Bound address 3-11 
Bound Check Equations 5-85 
bound field 8-277 
bound value 5-58 
Bounds Checking 5-83 
Locating New Bound for Shrink 8-300 
modifying the bound field 8-418 

BOUND FAULTS 
Bound Faults 8-306 

BTD 
BTD 8-81 

BUFFER 
buffer instructions 1-1 
Translation look-aside buffer 5-71 

BYPASS 
Safe Store Bypass Flag (SSBF) 4-19 

BYTE 
byte checks 5-86 
Byte Operations 5-85 
byte positions 8-536, 8-537 

BYTES 
9-Bit Bytes 2-2 
Store 9-bit Bytes of A-Register 

8-536 
Store 9-bit Bytes of Q-Register 

8-537 

CACHE 
Clear cache 8-91 
CONTROL 5-82 

CALENDAR 
calendar Clock Register 4-20 

CAMP 
CAMP 8-84 

i-7 DZ5l-00 



CANA 
CANA 8-87 

CANAQ 
CANAQ 8-88 

CANQ 
CANQ 8-89 

CANXN 
CANXn 8-90 

CARRY 
Add with Carry to A-Register 8-71 
Add with Carry to Q-Register 8-73 
Carry 4-8 
Carry indicator 2-4 
Subtract with Carry from A-Register 

8-568 
Subtract with Carry from Q-Register 

8-570 
Transfer On Carry 8-609 
Transfer On No Carry 8-596 

CATEGORIES 
Fault Categories 6-4 

CC 
Calendar ClocK Register 4-20 

CCAC 
CCAC 8-91 

CENTRAL 
Load Central Processor Register 

8-270 

CHAIN 
indirect chain 5-59 

CHANGE 
Change Table 7-44 

CHANNEL 
Connect I/O Channel 8-92 

CHARACTER 
Alphanumeric Character Number (CN) 

Codes 7-27 
character codes for ASCII and EBCDIC 

overpunched sign 8-397 
Character indirect 5-14 

CHARACTER ( cont ) 
Character Indirect (0) variation 

5-17 
Character Move To/From Register. 

Instructions 8-11 
Character Operations 5-48 
Character Positions 2-2 
character positions 8-543 
Character-Strings 2-2 
Compare Alphanumeric Character 

Strings 8-142 
Decimal Data Character Codes 2-9 
Sequence character 5-14 
Sequence Character (SC) variation 

5-18 
Sequence character reverse 5-14 
Sequence Character Reverse (T) 5-19 
Test Character and Translate 8-583 

CHARACTER-MOVE 
Character Move to/from Register 

Instructions 7-28 
Descriptor for Character Move 

Instructions 7-29 

CHARACTER! STI CS 
Read Processor Model Characteristics 

8-470 

CHARACTERS 
4-Bit Characters 2-2 
6-Bit Characters 2-2 
6-bit characters 5-19 
Compare Characters and Translate 

8-145 
Ignore Source Characters 7-45 
Move SOurce Characters 7-54 
Scan Characters Double 8-498 
Scan Characters Double in Reverse 

8-502 
Store 6-bit Characters of A-Register 

8-540 
Store 6-bit Characters of Q-Register 

8-542 

CHT 
CHT 7-44 

o 

i-8 

Character Indirect (0) variation 
5-17 

o 5-14 
C1 variation 5-17 

DZ51-00 



( .• 

aoc 
CIOC 8-92 

CIRCUITRY 
processor logic circuitry 8-421 

CLEAP 
Clear Associative Memory Pages 8-84 
Clear cache 8-91 
Data Stack Clear Flag (DSCF) 4-19 
Load A-Register and Clear 8-275 
Set Zero and Negative Indicators 

from Storage and Clear 8-577 

CLIMB 
CLIMB 3-7, 4-15, 4-23, 4-24, 4-26, 

8-96 
Climb five versions fields 8-130 
Domain Transfer (CLIMB) 7-58 
ICLIMB (Inward CLIMB) - 00 8-101 
Inward CLIMB Interrupts 6-24 
OCLIMB (Outward CLIMB) - 01 8-121 
Outward CLIMB 8-121 

CLOCK 
Calendar Clock Register 4-20 
free running clock 4-12 

CMG 
CMG 8-134 

CMK 
CMK 8-135 

CMPA 
CMPA 8-137 

CMPAQ 
CMPAQ 8-138 

CMPB 
CMPB 8-139 

CMPC 
CMPC 8-142 

CMPer 
CMPCT 8-145 

CMPN 
CMPN 8-148 

CMPNX 
CMPNX 8-151 

CMPO 
CMPQ 8-153 

CMPXN 
CMPXn 8-15' 

CMRR 
CMRR 8-156 

CN 
Alphanumeric Character Number (CN) 

Codes 7-27 

CNAA 
CNAA 8-158 

CNAAQ 
CNAAQ 8-159 

C),AQ 
CNAQ 8-160 

CNAXN 
CNAXn 8-161 

CODE 
FLOATABLE CODE 5-27 

CODES 

i-9 

ADDRESS MODIFICATION OCTAL CODES 
5-25 

Alphanumeric Character Number (CN) 
Codes 7-27 

Alphanumeric Data Type (TA) Codes 
7-27 

character codes for ASClI and EBCDIC 
overpunched sign 8-397 

Decimal Data Character Codes 2-9 
Micro Operation Code Assignment Map 

7-57 
mnemonic code 8-1 
octal value of the operation code 

8-2 
Operation Code Map (Bit 27 = 0) A-2 
Operation Code Map (Bit 27 = 1) A-4 
Processor Faults By Fault Code 6-3 
Register Codes 5·33 
System Controller Illegal Action 

Codes 4-36 

DZ51-00 



COMBINE 
Combine Bit Strings Left 8-162 
Combine Bit Strings Right 8-165 

COMMAND 
Command Faults 8-305 

COMPARATIVE 
Comparative AND with A-Register 

8-87 
Comparative AND with AQ-Register 

8-88 
Comparative AND with Index Register 

n 8-90 
Comparative AND with Q-Register 

8-89 
Comparative NOT AND with A-Register 

8-158 
Comparative NOT AND with AQ-Register 

8-159 
Comparative NOT AND with Index 

Register n 8-161 
Comparative NOT AND with Q-Register 

8-160 

COMPARE 
Compare Alphanumeric Character 

Strings 8-142 
Compare Bit Strings 8-139 
Compare Characters and Translate 

8-145 
Compare Magnitude 8-134 
Compare Masked 8-135 
Compare Numeric 8-148 
Compare Numeric Extended 8-151 
Compare Register to Register 8-156 
Compare with A-Register 8-137 
Compare with AQ 8-138 
Compare with Index Register n 8-154 
Compare with Limits 8-167 
Compare with Q-Register 8-153 
Comparison Operations 7-2 
Data Comparison 7-7 
Double-Precision Floating Compare 

8-170 
Double-Precision Floating Compare 

Magnitude 8-169 
Floating Compare 8-229 
Floating Compare Magnitude 8-228 
Set Pointer Compare Flags Off 8-518 

COMPLEMENT 
Load Complement into A-Register 

8-267 
Load Complement intoAQ-Register 

8-268 
Load Complement into Index Register 

n 8-273 
Load Complement into Q-Register 

8-272 
Load Complement Register from 

Register 8-279 

CONFIGURATION 
Configuration Register Port 

Assignment 4-30 
SCU Configuration Register 4-47 

CONNECT 
Connect I/O Channel 8-92 
Load Connect Table Register 8-269 
Read Connect Word Pair 8-437 

CONSTANTS 
conversion constants 8-78 

CONTINUE 
Decrement Address, Increment Tally, 

and Continue 5-23 
Decrement Address, Increment Tally, 

and Continue (T) 5-21 
Increment Address, Decrement Tally, 

and Continue 5-22 

CONTROL 
Stack Control Register (SCR) 4-22 

CONTROLLER 
Read System Controller Register 

8-468 
Set System Controller Register 

8-527 
System Controller Illegal Action 

Codes 4-36, 4-38 
SYSTEM CONTROLLER INTERRUPTS 6-23 

CONVERSION 
Binary to Decimal Convert 8-81 
Binary-To-BCD Conversion 7-67 
Binary-to-BCD Convert 8-77 
conversion constants 8-78 
Conversion instructions 7-6 
conversions between binary and 

decimal numbers 7-36 

i-10 DZ5l-00 



<-" 

(/ 

CONVERSION (cont) 
Data Conversion InstTuctions 7-36 
Decimal to Binary Convert 8-188 
Radix conversion 7-7 

COpy 
Copy 8-284 
copy option 8-319 

COUNT 
Transfer On Count 8-611 

COUNTER 
I NSTRUCTI ON COUNTER (I C) 4-13 
Store Instruction Counter Plus 1 

8-538 
Store Instruction Counter Plus 2 

8-539 

CPU 
CPU Mode Register 4-26, 4-28 
CPU Number Register 4-34 
CPU SCU IMX 3-1 

CSL 
CSL 8-162 

CSR 
CSR 8-165 

CURRENCY 
Move with Floating Currency Symbol 

Insertion 7-48 

OiL 
CWL 8-167 

DATA 
Alphanumeric Data Type (TA) Codes 

7-27 
Data Comparison 7-7 
Data Conversion Instructions '7-36 
Data Manipulation 7-7 
Data Movement 7-7 
Data Movement Instructions 7-2 
Data Shifting Instructions 7-3 
DATA STACK ADDRESS REGISTER (DSAR) 

4-25 
Data Stack Clear Flag (DSCF) 4-19 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-25 
Decimal Data Character Codes 2-9 
double-precision data 2-1 

DATA (cont) 
Load Data Stack Address Register 

8-309 
Load Data Stack Descriptor Register 

8-310 
processing of scattered data 5-22 
processing of tabular data 5-13 
single-precision data 2-1 
Store Data Stack Address Register 

8-546 
Store Data Stack Descriptor Register 
. 8-547 

DECIMAL 
Add Using Three Decimal Operands 

8-31 
Add Using Three Decimal Operands 

Extended 8-36 
Add Using Two Decimal Operands 8-25 
Add Using Two Decimal Operands 

Extended 8-28 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-36 
Binary to Decimal Convert 8-81 
conversions between binary and 

decimal numbers 7-36 
Decimal Arithmetic 7-7 
Decimal Data Character Codes 2-9 
Decimal Number Ranges 2-11 
Decimal Numbers 2-8 
Decimal to Binary Convert 8-188 
Divide Using Three Decimal Operands 

8-200 
Divide Using Three Decimal Operands 

Extended 8-205 
Divide Using Two Decimal Operands 

8-196 
Divide Using Two Decimal Operands 

Extended 8-198 
Floating-Point Decimal Numbers 2-10 
Multiply Using Three Decimal 

Operands 8-359 
Multiply Using Three Decimal 

Operands Extended 8-363 
Multiply Using Two Decimal Operands 

8-354 
Multiply Using Two Decimal Operands 

Extended 8-357 
NDSC4 - Packed decimal numeric 

descriptor 5-37 
Packed Decimal 2-2 
Packed Decimal (4-bit) 2-9 

i-11 DZ5l-00 



DECIMAL (cont) 
Subtract Using Three Decimal 

Operands 8-481 
Subtract Using Three Decimal 

Operands Extended 8-484 
Subtract Using Two Decimal Operands 

8-476 
Subtract Using Two Decimal Operands 

Extended 8-479 

DECREMENT 
Decrement address 5-14 
Decrement Address, Increment Tally 

(T) 5-21 
Decrement Address, Increment Tally, 

and Continue 5-23 
Decrement Address, Increment Tally, 

and Continue (T) 5-21 
Increment address decrement tally 

5-14 
Increment Address, Decrement Tally 

(T) 5-20 
Increment address, decrement tally, 

and continue 5-15 
Increment Address, Decrement Tally, 

and Continue 5-22 

DELAY 
Delay Until Interrupt Signal 8-184 

DELTA 
Add Delta (AD) variation 5-24 
Subtract delta 5-15 
Subtract Delta (SO) variation 5-25 

DENSE 
Dense Page Table 5-72 

DERAIL 
Derail 8-187 

DESCRIPTOR 
Address Register n to Alphanumeric 

Descriptor 8-62 
Address Register n to Numeric 

Descriptor 8-65 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-36 
ADSC6 - BCI alphanumeric descriptor 

5-36 
ADSC9 - ASCII alphanumeric 

descriptor 5-36 

DESCRIPTOR (cont) 
Alphanume~ic Descriptor To Address 

Register n 8-21 
ALPHANUMERI C OPERAND DESCRI PTOR 

FORMAT 7-26 
Alphanumeric Operand Descriptors 

5-36 
BOSC - Bit descriptor - 5-36 
Bit String Operand Descriptor 5-35 
BI T STRI NG OPERAND DESCRI PTOR FORMAT 

7-35 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-25 
Descriptor for Character Move 

Instructions 7-29 
DESCRI PTOR REGI STER I NSTRUCTI ONS 

7-58 
Descriptor Segment Descriptor 8-101 
descriptor storage 3-6 
Descriptor Types 3-8 
Descriptors 3-6 
Dynamic Linking Descriptor 3-15 
Entry Descriptor 3-14, 8-101 
Extended Descriptor 3-12 
Extended Descriptor With Working 

Space Number 3-13 
ID - Indirect Operand Descriptor 

5-32, 7-24 
Load Data Stack Descriptor Register 

8-310 
Load Descriptor Register n 8-280 
NDSC4 - Packed decimal numeric 

descriptor 5-37 
NDSC9 - ASCII numeric descriptor 

5-37 
Numeric Descriptor to Address 

Register n 8-405 
NUMERIC OPERAND DESCRIPTOR FORMAT 

7-31 
Numeric Operand Descriptors 5-37 
Operand Descriptor Address 

Preparation 5-41 
OPERAND DESCRI PTOR I NDI RECT POI NTER 

FORMAT 7-25 
Operand Descriptor Modification (ES) 

5-55 
Operand Descriptors 5-35 
Operand Descriptors and Indirect 

Pointers 7-25 
Save Descriptor Register n 8-512 
segment descriptor 3-1, 5-58 
SEGMENT DESCRI PTOR REGI STERS (DRn) 

4-16 

i-12 DZ51-00 



DESCRIPTOR (cont) 
SEGMENTS 3-6 
Shrunken Descriptor 3-16 
Standard Descriptor 3-8, 5-60, 

8-101 
standard descriptor 8-330 
Standard Descriptor (ES) 5-64 
Standard Descriptor With Working 

Space Number 3-10 
Store Data Stack Descriptor Register 

8-547 
Store Descriptor Register n 8-544 
Super Descriptor 3-11 
Super Descriptor With Working Space 

Number 3-12 
Vector for Standard Descriptor, 

Super Descriptor 8-281 
Virtual Address Generation, Super 

Descriptor 5-61 

DESCRI PTOR REGI STERS 
Store Test Descriptor Registers 

8-563 

DESCRI PTORS 
Shrink for Extended Descriptors 

8-294 
Shrink for Standard and Super 

Descriptors 8-284 

DESIGNATOR 
register designator 5-2 
tag designator (td) 5-2 
tally designator 5-2 
Tally Designators 5-16 

DFAD 
DFAD 8-168 

DFCMG 
DFCMG 8-169 

DFCMP 
DFCMP 8-170 

DFDI 
DFDI 8-171 

DFDV 
DFDV 8-173 

DFLD 
DFLD 8-175 

DFLP 
D~·p • l."l 8-176 

DFMP 
DFMP 8-177 

DFRD 
DFRD 8-178 

DFSB 
DFSB 8-179 

DFSBI 
DFSBI 8-180 

DFST 
DFST 8-181 

DFSTR 
DFSTR 8-182 

DI 
DI 5-14 
DI Variation 5-21 

DIC 
DIC Variation 5-23 

DIRECT 
direct operand address modification 

5-4 
NS Direct Lower (DL) 5-4 
NS Direct Upper (DU) 5-4 

DIRECTORY 
Load Page Table Directory Base 

Register 8-340 
Locating the page table directory 

word 5-72 
Page Directory Base Register (PDBR) 

1-7 
PAGE DIRECTORY BASE REGISTER (PDBR) 

4-26 
page table directory 3-2 
Page Table Directory Word 5-72 
Page Table Directory Word (PTDW) 

Format 5-68 
Store Page Table Directory Base 

Register 8-519 
Store PTWAM Directory Word 8-555 

DIS 
DIS 4-13, 8-184 

i-13 DZ51-00 



DI SPLACEMENT 
Add 4-Bit Displacement To Address 

Register 8-15 
Add 6-Bit Displacement To Address 

Register 8-17 
Add 9-Bit Displacement to Address 

Register 8-19 
Add Bit Displacement To Address 

Register 8-23 
Add Word Displacement To Address 

Register 8-75 
Displacement register 8-11 
Subtract 4-Bit Displacement from 

Address Register 8-471 
Subtract 6-Bit Displacement from 

Address Register 8-472 
Subtract 9-Bit Displacement from 

Address Register 8-473 
Subtract Bit Displacement from 

Address Register 8-489 
Subtract Word Displacement from 

Address Register 8-572 

DIV 
DIV 8-185 

DIVIDE 
Divide Fraction 8-208 
Divide Integer 8-185 
Divide Register by Register 8-210 
Divide Using Three Decimal Operands 

8-200 
Divide Using Three Decimal Operands 

Extended 8-205 
Divide using Two Decimal Operands 

8-196 
Divide Using Two Decimal Operands 

Extended 8-198 
Double-Precision Floating Divide 

8-173 
Double-Precision Floating Divide 

Inverted 8-171 
Floating Divide 8-232 
Floating Divide Inverted 8-230 

DIVISION 
division 7-3 

DL 
NS Direct Lower (DL; 5-4 

DOMAIN 
domain registers 3-4 

DOMlJ N ( cont ) 
Domain Transfer 8-96 
Domain Transfer (ClJMB) 7-58 
Domains 3-3 
interdomain references 8-97 

OOUBLE 
Execute Double 8-639 
Load Double Register to Register 

Pair 8-308 
Load Double to GKn 8-249 
Repeat Double 8-446 
Scan Characters Double 8-498 
Scan Characters Double in Reverse 

8-502 
Store Double from GXn 8-262 

DOUBLE PREClSION OPERANDS 
Quadruple-Precision Floating 

Multiply with Double-Precision 
Operands 8-435 

DOUBLE-PRECISION 
double-precision data 2-1 
Double-Precision Floating Add 8-168 
Double-Precision Floating Compare 

8-170 
Double-Precision Floating Compare 

Magnitude 8-169 
Double-Precision Floating Divide 

8-173 
Double-Precision Floating Divide 

Inverted 8-171 
Double-Precision Floating Load 

8-175 
Double-Precision Floating Load 

Positive 8-176 
Double-Precision Floating Multiply 

8-177 
Double-Precision Floating Round 

8-178 
Double-Precision Floating Store 

8-181 
Double-Precision Floating Store 

Rounded 8-182 
Double-Precision Floating Subtract 

8-179 
Double-Precision Floating Subtract 

Inverted 8-180 
Double-Precision Unnorma1ized 

Floating Add 8-193 
Double-Precision Unnormalized 

Floating Multiply 8-194 

i-14 DZ5l-00 



(/ 

DOUBLE-PRECISION (cant) 
Double-Precision Unnormalized 

Floating Subtract 8-195 

DOUBLE-WORD 
Word and Double-Word Operations 

5-84 

DR 
DR 8-11 

DRL 
DRL 8-187 

DRn 
DRn 4-17 
Loading DRn 8-123 
SEGMENT DESCRI PTOR REGI STERS (DRn) 

4-16 

DSAR 
DATA STACK ADDRESS REGISTER (DSAR) 

4-25 

DSCF 
Data Stack Clear Flag (DSCF) 4-19 

DSDR 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-25 

DTB 
DTB 8-188 

DU 
NS Direct Upper (DU) 5-4 

DU/DL 
DU/DL Modification (ES) 5-55 

DUFA 
DUFA 8-193 

DUFM 
DUFM 8-194 

DUFS 
DUFS 8-195 

DV2D 
DV2D 8-196 

DV2DX 
DV2DX 8-198 

DV3D 
DV3D 8-200 

DV3DX 
DV3DX 8-205 

DVF 
DVF 8-208 

DVRR 
DVRR 8-210 

DYNAMIC 
Dynamic Linking Descriptor 3-15 

E 
EXPONENT REG! STER (E) 4-5 

EM 
EAA 8-212 

EAQ 
EAQ 8-213 
EXPONENT ACCUMULATOR QUOTIENT 

REGI STER (EAQ) 4-5 

EAXN 
EAXn 8-214 

EBCDIC 
character codes for ASCII and EBCDI C 

overpunched sign 8-397 

EDAC 
EDAC (Error Detection and 

Correction) bits 2-1 

EDIT 
ALPHANUMERI C EDI T (MVE) 7-41 
Edit Flags 7-42 
Edit Insertion Table 7-39 
Edited Move Micro Operations 7-6 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 7-38 
Move Alphanumeric Edited 8-380 
Move Numeric Edited 8-389 
Move Numeric Edited Extended 8-393 
NUMERI C EDI T (MVNE And MVNEX) 7-40 

i-15 DZ51-00 



EFFECTIVE 
Effective Address Generation 5-52 
Effective Address to A-Register 

8-212 
Effective Address to Index Register 

n 8-214 
Effective Address to Q-Register 

8-213 
Effective Address to Register 

Instructions 7-3 
Effective Pointer and Address to 

Test 8-215 
Effective Pointer To Pointer 

Register n 8-216 

EIGHT 
EIGHT 8-265, 8-341, 8-343, 8-525 

END 
End Floating Suppression 7-44 
End suppression flag 7-42 

ENF 
ENF 7-44 

ENTRY 
Entry Descriptor 3-14, 8-101 
Entry Location 3-14 
Insert Table Entry One Multiple 

7-46 
Master Mode Entry 8-352 

EPAT 
EPAT 8-215 

EPPRN 
EPPRn 8-216 

EQUATIONS 
Bound Check Equations 5-85 

ERA 
ERA 8-219 

ERAQ 
ERAQ 8-220 

ERQ 
ERQ 8-221 

ERROR 
Memory Error Status Register 4-51 
parity error 4-10 

ERRR 
ERRR 8-222 

ERSA 
ERSA 8-223 

ERSQ 
ERSQ 8-224 

ERSXN 
ERSXn 8-225 

ERXN 
ERXn 8-226 

ES 
DU/DL Modification (ES) 5-55 
Effective Address Generation 5-51 
ES A/Q/GXn Modification 5-52 
ES Address Modification with AR 

5-50 
ES Address Modification with no AR 

5-49 
ES Instruction Address Field 5-49 
ES Mode Address Generation 5-49 
ES Mode Instructions 7-62 
IC Modification ES 5-54 
NS ES Segmentation Modes 5-1 
Operand Descriptor Modification (ES) 

5-55 
Standard Descriptor (BS) 5-64 
Tag Field Modification ES 5-52 
Virtual Address Generation (ES) 

5-64 

EXCLUSIVE 
Exclusive OR Register to Register 

8-222 
EXCLUSIVE OR to A-Register 8-219 
EXCLUSIVE OR to AQ-Register. 8-220 
EXCLUSIVE OR to Index Register n 

8-226 
EXCLUSIVE OR to Q-Register 8-221 
EXCLUSIVE OR to Storage with 

A-Register 8-223 
EXCLUSIVE OR to Storage with Index 

Register n 8-225 
EXCLUSIVE OR to Storage with 

Q-Register 8-224 

EXECUTE 
Execute (XEC) 8-637 
Execute Double 8-639 

i-16 DZ51-00 



( 

EXECUTE (con t ) 
Execute Instructions 7-67 

EXPANSION 
binary expansion 2-8 

EXPONENT 
Add to Exponent Register 8-41 
exponent 2-5 
EXPONENT ACCUMULATOR QUOTI ENT 

REG! STER (EAQ) 4-5 
Exponent overflow 4-9 
EXPONENT REGI STER (E) 4-5 
Exponent underflow 4-9 
hexadecimal exponent mode 4-12 
Load Exponent Register 8-312 
Store Exponent Register 8-548 
Transfer On Exponent Overflow 8-587 
Transfer On Exponent Underflow 

8-589 

EXPRESSIONS 
Boolean Expressions 7-13 
Evaluation of Boolean Expressions 

7-13 

EXTENDED 
Add Using Three Decimal Operands 

Extended 8-36 
Add Using Two Decimal Operands 

Extended 8-28 
Compare Numeric Extended 8-151 
Divide Using Three Decimal Operands 

Extended 8-205 
Divide Using Two Decimal Operands 

Extended 8-198 
Extended Descriptor 3-12 
Extended Descriptor With Working 

Space Number 3-13 
Extended Fault Register 4-40 
Load Extended Address n 8-313 
Move Numeric Edited Extended 8-393 
Move Numeric Extended 8-395 
Multiply Using Three Decimal 

Operands Extended 8-363 
Multiply Using Two Decimal Operands 

Extended 8-357 
Shrink for Extended Descriptors 

8-294 
Subtract Using Three Decimal 

Operands Extended 8-484 
Subtract Using Two Decimal Operands 

Extended 8-479 

F 
F Variation 5-17 

FACTOR 
scaling factor 5-39, 8-34 
Scaling factor 7-32 

FAD 
FAD 8-227 

FAULT 
Extended Fault Register 4-40 
Fault categories 6-4 
Fault Priority 6-2 
Fault Procedures 6-1 
Fault Recognition 6-2 
FAULT REGISTER FORMAT 4-36 
Fault trap 5-14 
Fault variation 5-17 
Missing Page fault 5-71 
SCU FAULT REGISTER 4-44 

FAULTS 
Command Faults 8-305 
Faults And Interrupts 1-2 
Hardware-Generated Faults 6-16 
IC Values Stored on Faults and 

Interrupts 6-25 
Illegal Procedure (IPR) Faults 

8-305 
Instruction-Generated Faults 6-4 
Miscellaneous Faults 6-18 
Mode Faults 6-17 
Processor Faults By Fault Code 6-3 
Program-Generated Faults 6-7 
Virtual Memory-Generated Faults 

6-10 

FCMG 
FCMG 8-228 

FCMP 
FCMP 8-229 

FDI 
FDI 8-230 

FDV 
FDV 8-232 

FIELD 
BOLR control field 8-163 
bound field 8-277 

i-17 DZS1-OO 



FIELD (cant) 
ES Instruction Address Field 5-49 
flags field 3-8, 3-10, 3-11, 3-12 
modifying the bound field 8-418 
Mu1tiword Modification Field 5-31, 

7-24 
Tag Field 5-2 
Tag Field Modification ES 5-52 

FI XED-POI NT 
Fixed-Point Arithmetic Instructions 

7-3 
FIXED-POINT INSTRUcrlONS 7-16 
Fixed-point Instructions 7-65 
Fixed-Point Numbers 2-3 
Ranges Of Fixed-Point Numbers 2-4 

FLAG 
Blank-when-zero flag 7-43 
Data Stack Clear Flag (DSCF) 4-19 
Edit Flags 7-42 
End suppression flag 7-42 
flags field 3-8, 3-10, 3-11, 3-12 
Safe Store Bypass Flag (SSBF) 4-19 
Sign flag 7-43 
Zero flag 7-43 

FLAGS 
Set Pointer Compare Flags Off 8-518 

FLD 
FLD 8-234 

FLOATABLE 
FLOATABLE CODE 5-27 

FLOATING 
Double-Precision Floating Add 8-168 
Double-Precision Floating Compare 

8-170 
Double-Precision Floating Compare 

Magnitude 8-169 
Double-Precision Floating Divide 

8-173 
Double-Precision Floating Divide 

Inverted 8-171 
Double-Precision Floating Load 

8-175 
Double-Precision Floating Load 

Positive 8-176 
Double-Precision Floating ~!ultiply 

8-177 

FLOATING (cont) 
Double-Precision Floating Round 

8-178 
Double-Precision Floating Store 

8-181 
Double-Precision Floating Store 

Rounded 8-182 
Double-Precision Floating Subtract 

8-179 
Double-Precision Floating Subtract 

Inverted 8-180 
Double-Precis ion Unnormal ized 

Floating Add 8-193 
Double-Precision Unnormalized 

Floating Multiply 8-194 
Double-Precision Unnormalized 

Floating Subtract 8-195 
End Floating Suppression 7-44 
Floating Add 8-227 
Floating Compare 8-229 
Floating Compare Magnitude 8-228 
Floating Divide 8-232 
Floating Divide Inverted 8-230 
Floating Load 8-234 
Floating Load Positive 8-235 
Floating Multiply 8-236 
Floating Negate 8-237 
Floating Normalize 8-238 
Floating Round 8-240 
Floating Set Zero and Negative 

Indicators from Storage 8-247 
Floating Store 8-244 
Floating Store Rounded 8-245 
Floating Subtract 8-242 
Floating Subtract Inverted 8-243 
Floating Truncate Fraction 8-248 
Move with Floating Currency Symbol 

Insertion 7-48 
Move with Floating Sign Insertion 

7-50 
Quadruple-Floating Add 8-422 
Quadruple-Floating Load 8-424 
Quadruple-Precision Floating 

Multiply 8-425 
Quadruple-Precision Floating 

Multiply with Double-Precision 
Operands 8-435 

Quadruple-Precision Floating Store 
8-429 

Quadruple-Precision Floating Store 
Rounded 8-430 

Quadruple-Precision Floating 
Subtract 8-427 

i-18 DZ51-00 



FLOATING (cant) 
Unnormalized Floating Add 8-632 
Unnormalized Floating Multiply 

8-634 
Unnormalized Floating Subtract 

8-635 
Unnormalized Floating Truncate 

Fraction 8-636 

FLOATING-POINT 
Floating-Point Arithmetic 

Instructions 7-4 
Floating-Point Decimal Numbers 2-10 
FLOATING-POINT INSTRUCTIONS 7-20 
Floating-point Numbers 2-5 
Hexadecimal Floating-Point Numbers 

2-5 
Normalized Floating-Point Numbers 

2-7 
Quadruple-Precision Floating-Point 

Instructions 7-4 
Ranges of Binary Floating-Point 

Numbers 2-7 

FLOWCHART 

FORMAT (cant) 
Page Table Base Word (PBW) Format 

5-69 
Page Table Directory Word (PTDW) 

Format 5-68 
Page Table Word (PTW) Format 5-70 

FORMATS 
Bit Formats 2-1 

FOUR-STAGE 
Four-stage pipeline 1-2 

FRACTION 
Divide Fraction 8-208 
Floating Truncate Fraction 8-248 
Multiply Fraction 8-365 
Unnormalized Floating Truncate 

Fraction 8-636 

FRACTIONAL 
Binary Representation of Fractional 

Values 2-8 
fractional mantissa 2-5 

Address Modification Flowchart 5-26 FRAMED 

FLP 
FLP 8-235 

Ft.fl' 
FMP 8-236 

FNEG 
FNEG 8-237 

FNO 
FNO 8-238 

FORMAT 
ALPHANUMERIC OPERAND DESCRIPTOR 

FORMAT 7-26 
BIT STRING OPERAND DESCRIPTOR FORMAT 

7-35 
FAULT REGISTER FORMAT 4-36 
FORMAT OF INSTRUCTION DESCRIPTION 

8-1 
Indirect Word Format 5-16 
INSTRUCTION WORD FORMATS 8-7 
NUMERIC OPERAND DESCRIPTOR FORMAT 

7-31 
OPERAND DESCRI PTOR I NDI RECT POI NTER 

FORMAT 7-25 

framed stack space 8-104 

FRD 
FRD 8-240 

FREE 
free running clock 4-12 

FSB 
FSB 8-242 

FSBI 
FSBI 8-243 

FST 
FST 8-244 

FSTR 
FSTR 8-245 

FSZN 
FSZN 8-247 

FTR 
FTR 8-248, 8-636 

i-19 DZ5l-00 



GATE 
Gate Synchronize 8-575 

GCLIMB 
GCLIMB 8-125 
GCLIMB (Lateral Transfer LTRAS) - 10 

8-125 

GENERAL 
General Description· 3-1 

GENERAL INDEX REGI STERS 
General Index Registers (GXn) 4-7 

GENERATED 
Hardware-Generated Faults 6-16 
Instruction-Generated Faults 6-4 
Program-Generated Faults 6-7 
Virtual Memory-Generated Faults 

6-10 

GENERATION 
Effective Address Generation 5-51 
ES Mode Address Generation 5-49 
NS Mode Address Generation 5-1 
Virtual Address Generation (ES) 

5-64 
Virtual Address Generation, Super 

Descriptor 5-61 

GLDD 
GLDD 8-249 

GLLS 
GLLS 8-250 

GLRL 
GLRL 8-252 

GLRS 
GLRS 8-254 

GLS 
GLS 8-256 

GRAY-To-BINARY 
Gray-to-B i nary 7-67, 8-263 

GRL 
GRL 8-258 

GRS 
GRS 8-260 

GSTD 
GSTD 8-262 

GTB 
GTB 8-263 

GXN 
General Index Registers (GXn) 4-7 
Gr.n Left Shift 8-256 
GXn Long Left Shift 8-250 
GXn Long Right Logic 8-252 
GXn Long Right Shift 8-254 
GXn Register In R Modification 5-50 
GXn Right Logic 8-258 
GXn Right Shift 8-260 
Load Double to GXn 8-249 
Multiply GXn 8-370 
Store Double from GXn 8-262 

HARDWARE 
hardware rounding option 7-7 
Hardware-Generated Faults 6-16 

HEXADECl MAL 
hexadecimal exponent mode 4-12 
Hexadecimal Floating-Point Numbers 

2-5 

HIGH 
(HWMR) 4-24 
High Water Mark Register 8-109 

HISTORY 
History Register 4-49 
History Registers 4-41 

HOUSEKEEPING 

I 

housekeeping bit 7-59 
housekeeping pages 3-7 

I 5-14 
I Variation 5-19 
Indirect (I) variation 5-19 

I/O 
Connect I/O Channel 8-92 

IC 
IC Modification ES 5-54 
IC Values Stored on Faults and 

Interrupts 6-25 
INSTRUCTION COUNTER (Ie> 4-13 

i-20 DZ5l-00 



( 

IC <Cont) 
Loading the Instruction Counter (IC) 

8-112 

I CLI MB 

ID 

IClJMB (Inward CLIMB) - 00 8-101 

ID 5-14 
ID - Indirect Operand Descriptor 

5-32, 7-24 
ID Variation 5-20 
ID variation 5-21 

ID REGISTER 
Read Memory ID Register 8-443 
Set Memory ID Register 8-516 

IDe 
IDe Variation 5-22 

IDENTITY 
I NSTRUCTI ON SEGMENT I DENTI TY 

REGI STER - SEGID (IS) 4-18 
SEGMENT I DENTI TY REGI STERS (SEGI Dn ) 

4-17 

IGN 
IGN 7-45 

IGNORE 
Ignore Source Characters 7-45 

ILLEGAL 
Illegal Modification 8-7 
Illegal Procedure (IPR) Faults 

8-305 
System Controller Illegal Action 

Codes 4-36, 4-38 

IMR 
Interrupt Mask Register 4-35 

IMX 
CPU SCU IMX 3-1 

INCREMENT 
Decrement Address, Increment Tally 

(T) 5-21 
Decrement Address, Increment Tally, 

and Continue 5-23 
Decrement Address, Increment Tally, 

and Continue (T) 5-21 

INCREMENT (cont) 
Increment address decrement tally 

5-14 
Increment Address, Decrement Tally 

(T) 5-20 
Increment address, decrement tally, 

and continue 5-15 
Increment Address, Decrement Tally, 

and Continue 5-22 
increment tally 5-14 

INDEX 
Add Logical to I ndex Register n 

8-47 
Add to Index Register n 8-50 
Add To Storage From Index Register n 

8-69 
AND to Index Register n 8-60 
AND to Storage from Index Register n 

8-59 
Bit Strings and Index Table of 

Translate Instruction 5-85 
Comparative AND with Index Register 

n 8-90 
Comparative NOT AND with Index 

Register n 8-161 
Compare with Index Register n 8-154 
Effective Address to Index Register 

n 8-214 
EXCLUSIVE OR to Index Register n 

8-226 
EXCLUSIVE OR to Storage with Index 

Register n 8-225 
index register symbols 5-35 
I NDEX REG! STERS (Xn) 4-6 
Load Complement into Index Register 

n 8-273 
Load I ndex Register n from Lower 

8-347 
Load I ndex Register n from Upper 

8-335 
OR to Index Register n 8-417 
OR to Storage from Index Register n 

8-416 
Store Index Register n in Lower 

8-574 
Store Index Register n in Upper 

8-566 
Subtract from Index Register n 

8-497 
Subtract Logical from Index Register 

n 8-494 

i-21 DZ51-00 



INDEX (cont) 
Subtract Stored from I ndex Register 

n 8-530 
Transfer And Set Index Register n 

8-623 

INDEXING 
indirect addressing and indexing 

5-9 
second-level indexing 5-27 
Second-Level Indexing 7-8 

INDICATOR 
carry indicator 2-4 
Indicator Register 2-5 
INDICATOR REGISTER (IR) 4-8 
Load Indicator Register 8-315 
Master Mode bit in the Indicator 

Register 1-6 
Negative Indicator 4-8 
Parity Indicator 8-7 
Set Zero and Negative Indicators 

from Storage 8-576 
Set Zero and Negative Indicators 

from Storage and Clear 8-577 
Set Zero and Truncation Indicators 

with Bit Strings Left 8-578 
Set Zero and Truncation Indicators 

with Bit Strings Right 8-581 
Store Indicator Register 8-549 
Transfer on Tally Runout Indicator 

OFF 8-625 
Transfer On Tally Runout Indicator 

ON 8-627 
Transfer On Truncation Indicator OFF 

8-614 
Transfer On Truncation I ndicator ON 

8-617 

INDIRECT 
Character indirect 5-14 
Character Indirect (CI) variation 

5-17 
ID - Indirect Operand Descriptor 

5-32, 7-24 
Indirect 5-14 
Indirect (I) variation 5-19 
indirect addressing 5-7 
indirect addressing and indexing 

5-9 
indirect chain 5-59 
Indirect Then Register (IR) 5-1 
Indirect Then Tally (IT) 5-1 

INDIRECT (cont) 
1 ndirect Word ~40 
Indirect Word Format 5-16 
NS Indirect Addressing 5-1 
NS Indirect Then Register (IR) 5-9 
NS Indirect Then Tally (IT) 5-13 
NS REG! STER THEN I NDI lUi::."!' (Rl) 5-7 
OPERAND DESCRl PTOR 1 NDI RECT POI NTER 

FORMAT 7-25 
Operand Descriptors and Indirect 

Pointers 7-25 
Register then Indirect (Rl) 5-1 

INSA 
INSA 7-45 

INSB 
INSB 7-46 

INSERT 
Insert Asterisk on Suppression 7-45 
Insert Blank on Suppression 7-46 
Insert On Negative 7-47 
Insert On Positive 7-47 
Insert Table Entry One Multiple 

7-46 

INSERTION 
Edit Insertion Table 7-39 
Move with Floating Currency Symbol 

Insertion 7-48 
Move with Floating Sign Insertion 

7-50 

INSM 
INSM 7-46 

INSN 
INSN 7-47 

INSP 
INSP 7-47 

INSTRUCTION 
ES Instruction Address Field 5-49 
INSTRUCTION COUNTER (IC) 4-13 
INSTRUCTION SEGMENT IDENTITY 

REGISTER - SEGID (IS) 4-18 
INSTRUCTION SEGMENT REGISTER (ISR) 

4-15 
Instruction-Generated Faults 6-4 
Multiword Instruction Interrupts 

6-24 

i-22 DZ51-00 



INSTRUCTION (cont) 
Store Instruction Counter Plus 1 

8-538 
Store Instruction Counter Plus 2 

8-539 

INSTRUCTIONS 
Address Register Instructions 7-2 
ADDRESS REGISTER INSTRUCTIONS 7-9 
Address Register Special Arithmetic 

Instructions 8-10 
Alphanumeric Instructions 7-25 
Arithmetic Instructions 7-37 
Bit string instructions 7-6 
Bit String Instructions 7-34 
Bit Strings and Index Table of 

Translate Instruction 5-85 
Boolean Operation Instructions 7-13 
buffer instructions 1-1 
Character Move to/from Register 

Instructions 7-28 
Character Move To/From Register 

Instructions 8-11 
COMMON ATTRIBUTES OF INSTRUCTIONS 

8-7 
Conversion instructions 7-6 
Data Conversion Instructions 7-36 
Data Movement Instructions 7-2 
Data Shifting Instructions 7-3 
Descriptor for Character Move 

Instructions 7-29 
DESCRIPTOR REGISTER INSTRUCTIONS 

7-58 
Effective Address to Register 

Instructions 7-3 
ES Mode Instructions 7-62 
Execute Instructions 7-67 
Fixed-Point Arithmetic Instructions 

7-3 
FIXED-POINT INSTRUCTIONS 7-16 
Fixed-point Instructions 7-65 
Floating-Point Arithmetic 

Instructions 7-4 
FLOATING-POINT INSTRUCTIONS 7-20 
FORMAT OF INSTRUCTION DESCRIPTION 

8-1 
Instruction Address Procedure 5-59 
INSTRUCTION WORD FORMATS 8-7 
MACHINE INSTRUCTIONS 7-1 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 7-38 
Miscellaneous Operations 7-67 

INSTRUCTIONS (cont) 
Multiword Instruction capabilities 

7-7 
MULTI WORD INSTRUCTIONS 7-23 
Multiword Instructions 8-9 
Numeric instructions 7-6 
Numeric Instructions 7-30 
POI NTER REG! STER I NSTRUCTI ONS 7-58 
PRI VI LEGED I NSTRUCTI ONS 7-59 
Privileged Master Mode Instructions 

7-5 
Quadruple-Precision Instructions 

7-22 
Register to register Instructions 

7-62, 8-12 
Repeat Instructions 7-68 
SI NGLE-WORD I NSTRUCTI ONS 7-1 
Single-word Instructions 8-7 
Special Address Register 

Instructions 7-12 
Transfer Instructions 7-66 
Virtual Memory Instructions 7-58 

INTEGER 
Divide Integer 8-185 
Multiply Integer 8-372 

I NTEROOMAI N 
interdomain references 8-97 

I NTERLEA VI NG 
address interleaving 3-1 

INTERNAL 
internal offset 3-17 

INTERRUPT 
Delay Until Interrupt Signal 8-184 
Interrupt Mask Register 4-35 
Interrupt Procedures 6-23 
interrupt program execution 1-1 
Load Interrupt Mask Register 8-336 
Read Interrupt Mask Register 8-441 
Read Interrupt Word Pair 8-442 
Set Interrupt Word Pair 8-515 

INTERRUPTS 
Faults And Interrupts 1-2 
IC Values Stored on Faults and 

Interrupts 6-25 
Inward CLIMB Interrupts 6-24 
Multiword Instruction Interrupts 

6-24 

i-23 DZ51-00 



INTERRUPTS (cont) 
SYSTEM CONTROLLER INTERRUPTS 6-23 

INTERVAL 
Interval Timer 1-8 

INVERTED 
Double-Precision Floating Subtract 

Inverted 8-180 
Floating Subtract Inverted 8-243 

INWARD 
ICUMB (Inward CUMB) - 00 8-101 
Inward CLIMB Interrupts 6-24 

IPR 
Illegal Procedure (IPR) Faults 

8-305 

IR 
INDICATOR REGISTER (IR) 4-8 
Indirect Then Register (IR) 5-1 
NS Indirect Then Register (IR) 5-9 

IR-TYPE 
Use of IR-type modification 5-11 

IS 
INSTRUCTION SEGMENT IDENTITY 

REGISTER - SEGID (IS) 4-18 

ISR 

IT 

INSTRUCTION SEGMENT REGISTER (ISR) 
4-15 

Loading the Instruction Segment 
Register (ISR) 8-112 

Indirect Then Tally (IT) 5-1 
NS Indirect Then Tally (IT) 5-13 
variations under IT modification 

5-13 
variations Under IT Modification 

5-17 " 

LAREG 
LAREG 8-265 

LARN 
LARn 8-264 

LATERAL 
GCLIMB (Lateral Transfer LTRAS) - 10 

8-125 
Lateral Transfer - LTRAS 8-125 

LAYOUT 
Layout of Segments on Pages 3-5 

LBOUND 
LBOUND 3-14 

LCA 
LCA 8-267 

LCAQ 
LCAQ 8-268 

LeON 
LeON 8-269 

LCQ 
LeQ 8-272 

LCXN 
LCXn 8-273 

LDA 
LDA 8-274 

LDAC 
LDAC 8-275 

LDAQ 
LDAQ 8-276 

LDAS 
LDAS 8-277 

LOCR 
LOCR 8-279 

LDDN 
LDDn 3-17, 4-17, 4-18, 4-26, 8-280 

LDDR 
LDOR 8-308 

LDOSA 
LDOSA 4-26, 8-309 

LDDSD 
LDDSD 8-310 

i-24 DZ51-00 

" "" 



{ 

( 

LDE 
LDE 8-312 

LDEAN 
LDEAn 8-31? 

LDI 
LDI 8-315 

LDO 
LDO 4-19, 8-317 

LDPN 
LDPn 8-319 

LDPR 
LDPR 8-325 

LDPS 
LDPS 8-326 

LDQ 
LDQ 8-328 

LDRR 
LDRR 8-329 

LDSS 
LDSS 4-22, 8-330 

LDT 
LDT 4-13, 8-332 

LDWS 
LDWS 4-21, 8-333 

LDXN 
LDXn 8-335 

LEFT 
GXn Left Shift 8-256 
GXn Long Left Shift 8-250 

LENGTH 
Load Pointers and Lengths 8-341 
RL - Register or Length 5-32, 7-24 
Store Pointers and Lengths 8-520 
translation table length 8-401 

LIMITS 
Compare with Limits 8-167 

LIMR 
LIMR 8-336 

LINK 
Repeat Link 8-454 

LINKAGE 
Linkage Base 3-15 
LINKAGE SEGMENT REGISTER (LSR) 4-15 

LINKING 
Dynamic Linking Descriptor 3-15 

LITERALS 
Literals 2-3 

LLR 
LLR 8-338 

LLS 
LLS 8-339 

LOAD 
Double-Precision Floating Load 

8-175 
Double-Precision Floating Load 

Positive 8-176 
Floating Load 8-234 
Floating Load Positive 8-235 
Load A-Register 8-274 
L~d A-Register and Clear 8-275 
Load Address Register n 8-264 
Load Address Registers 8-265 
Load AQ-Register 8-276 
Load Argument Stack Register 8-277 
Load Central Processor Register 

8-270 
Load Complement into A-Register 

8-267 
Load Complement into AQ-Register 

8-268 
Load Complement into I ndex Register 

n 8-273 
Load Complement into Q-Register 

8-272 
Load Complement Register from 

Register 8-279 
Load Connect Table Register 8-269 
Load Data Stack Address Register 

8-309 
Load Data Stack Descriptor Register 

8-310 
Load Descriptor Register n 8-280 

i-25 DZ5l-00 



LOAD (cont) 
Load Double Register to Register 

Pair 8-308 
Load Double to GXn 8-249 
Load Exponent Register 8-312 
Load Extended Address n 8-313 
Load Index Register n from Lower 

8-347 
Load Index Register n from Upper 

8-335 
Load Indicator Register 8-315 
Load Interrupt Mask Register 8-336 
Load Option Register 8-317 
Load Page Table Directory Base 

Register 8-340 
Load Parameter Segment Register 

8-326 
Load Pointer Register n 8-319 
Load Pointers and Lengths 8-341 
Load Positive Register to Register 

8-325 
Load Q-Register 8-328 
Load Register from Register 8-329 
Load Registers 8-342 
Load Reserve Memory Base 8-345 
Load safe Store Register 8-330 
Load Table Entry 7-48 
Load Timer Register 8-332 
Load Working Space Registers 8-333 
Quadruple-Floating Load 8-424 

LOCATING 
Locating New Bound for Shrink 8-300 

LOCATION 
Entry Location 3-14 
Location relative to base 3-11 

LOGIC 
GXn Long Right Logic 8-252 
GXn Right Logic 8-258 
logic operations 2-4 
logical operations 7-2, 7-13 
processor logic circuitry 8-421 

LOGICAL 
A-Register Right Logical Shift 8-64 
Add Logical Register to Register 

8-46 
Add Logical to A-Register 8-43 
Add Logical to AQ-Register 8-44 
Add Logical to I ndex Register n 

8-47 

LOGl CAL (cont) 
Add Logical to Q-Register 8-45 
Long Right Logical Shift 8-344 
Q-Register Right Logical Shift 

8-433 
Subtract Logical from A-Register 

8-490 
Subtract Logical from AQ-Register 

8-491 
Subtract Logical from I ndex Register 

n 8-494 
Subtract Logical from Q-Register 

8-492 
Subtract Logical Register from 

Register 8-493 

LONG 
GXn Long Left Shift 8-250 
GXn Long Right Logic 8-252 
GXn Long Right Shift 8-254 
Long Left Rotate 8-338 
Long Left Shift 8-339 
Long Right Logical Shift 8-344 
Long Right Shift 8-346 
Negate Long (AQ-Register) 8-408 

LOOK-ASIDE 
Translation look-aside buffer 5-71 

LOW 
Add Low to AQ-Register 8-42 
Lower Operand Register (LOW) 4-6 

LOWER 
Load Index Register n from Lower 

8-347 
Lower Operand Register (LOW) 4-6 
NS Direct Lower (DL) 5-4 
Store Index Register n in Lower 

8-574 

LOWER-BOUND 
lower-bound check 5-85 

LPDBR 
LPDBR 8-340 

LPL 
LPL 8-341 

LPRL 
LCPR 8-270 

i-26 DZ51-00 



( 

LREG 
LREG 5-84, 8-342 

LRL 
LRL 8-344 

LRMB 
LRMB 8-345 

LRS 
LRS 8-346 

LSR 
L1 NKAGE SEGMENT REG! STER (LSR) 4-15 
Loading the Linkage Segment Register 

(LSR) 8-112 

LTE 
LTE 7-48 

LTRAS 
GClJMB (Lateral Transfer LTRAS) - 10 

8-125 
Lateral Transfer - LTRAS 8-125 

LXLN 
LXLn 8-347 

MACHINE 
MACHINE INSTRUCTIONS 7-1 
Machine Word 2-1 

MAGNITUDE 
Compare Magnitude 8-134 
sign and magnitude operands 7-30 

MAILBOX 
Standard I/O Mailbox 8-94 

MANTISSA 
fractional mantissa 2-5 

MAP 
Micro Operation Code Assignment Map 

7-57 
Operation Code Map (Bit 27 = 0) A-2 
Operation Code Map (Bit 27 = 1) A-4 

MAPPING 
Mapping The Virtual Address To A 

Real Address 5-71 

MARK 
(HWMR) 4-24 
High Water Mark Register 8-109 

MASK 
Interrupt Mask Register 4-35 
Load Interrupt Mask Register 8-336 
Overflow mask 4-10 
Parity mask 4-11 
Read Interrupt Mask Register 8-441 
Scan with Mask 8-504 
Scan with Mask in Reverse 8-507 

MASKED 
COmpare Masked 8-135 

MASTER 
Master mode 1-4 
master mode bit 7-59 
Master Mode bit in the Indicator 

Register 1-6 
Master Mode Entry 8-352 
Privileged Master mode 1-4 
Privileged Master Mode Instructions 

7-5 

MEMORY 
Clear Associative Memory Pages 8-84 
CONTROL 5-82 
Load Reserve Memory Base 8-345 
Memory Error Status Register 4-51 
Memory paging 5-68 
memory protection 1-1 
Move to Memory 8-375, 8-377 
Read Memory ID Register 8-443 
Read Memory Register 8-444 
Reserve Memory Base Register 4-43 
Reserved memory space 1-8 
Set Memory ID Register 8-516 
Virtual Memory 3-1 
Virtual Memory Addressing 5-57 
Virtual Memory Instructions 7-58 
Virtual Memory-Generated Faults 

6-10 

MEMORY REGISTER 
Set Memory Register 8-517 

MFLC 
MFLC 7-48 

MFLS 
MFLS 7-50 

i-27 DZS1-00 



MICRO 
Edited Move Micro Operations 7-6 
Micro Operation Code Assignment Map 

7-57 
Micro Operation Sequence 7-38 
Micro Operations 7-42 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 7-38 
Terminating Micro Operations 7-57 

MINUS 
Transfer On Minus 8-591 
Transfer On Minus Or Zero 8-593 

MISCELLANEOUS 
Miscellaneous Faults 6-18 
Miscellaneous Operations 7-67 

MISSING 
Missing Page fault 5-71 

MLR 
MLR 8-348 

MME 
MME 8-352 

MNEMONIC 
mnemonic code 8-1 

MNEMONICS 
valid mnemonics for address 

modification 5~2 

MODE 
ADDRESSING MODES 1-7 
CPU Mode Register 4-26, 4-28 
ES Extended Mode 1-6 
ES Mode Address Generation 5-49 
ES Mode Instructions 7-62 
hexadecimal exponent mode 4-12 
Master mode 1-4 
master mode bit 7-59 
Master Mode bit in the Indicator 

Register 1-6 
Master Mode Entry 8-352 
Mode Faults 6-17 
NS Mode Address Generation 5-1 
NS Non-Extended Mode 1-6 
Privileged Master mode 1-4 
Privileged Master Mode Instructions 

7-5 
Processor Mode Determinants 1-5 

MODE (cont) 
Processor Modes of Operation 1-4 
Slave mode 1-4 
Virtual Paging Mode 1-7 

MODEL 
Read Processor Model Characteristics 

8-470 

MODI FI CATION 
ADDRESS MODI FI CATION AND DEVELOPMENT 

5-1 
Address Modification Features 5-1 
Address Modification Flowchart 5-26 
ADDRESS MODIFICATION OCTAL CODES 

5-25 
Address Modification with Address 

Register 5-27 
direct operand address modification 

5-4 
DU/DL Modification (ES) . 5-55 
ES A/Q/GXn Modification 5-52 
ES Address Modification with AR 

5-50 
ES Address Modification with no AR 

5-49 
Ie Modification ES 5-54 
Illegal Modification 8-7 
Multiword Address Modification 5-30 
Multiword Modification Field 5-31, 

7-24 
NS Basic Modification 5-1 
Operand Descriptor Modification (ES) 

5-55 
Single-Word Address Modification 

5-27 
Tag Field Modification ES 5-52 
Types of Address Modification 5-3 
Use of IR-typemodification 5-11 
valid mnemonics for address 

modification 5-2 
variations under IT modification 

5-13 
variations Under IT Modification 

5-17 

MODIFIER 
tag modifier (tm) 5-2 

MOP 
MOP 7-42 

i-28 DZ51-00 



( 

( 

MORS 
MORS 7-52 

MOVE 
Character Move To/From Register 

Instructions 8-11 
Data Movement 7-7 
Data Movement Instructions 7-2 
Edited Move Micro Operations 7-6 
Move Alphanumeric Edited 8-380 
Move Alphanumeric Left to Right 

8-348 
Move Alphanumeric Right to Left 

8-373 
Move Alphanumeric with Translation 

8-400 
Move and OR Sign 7-52 
Move and Set Sign 7-53 
Move Numeric 8-385 
Move Numeric Edited 8-389 
Move Numeric Edited Extended 8-393 
Move Numeric Extended 8-395 
Move Source Characters 7-54 
Move to Memory 8-375, 8-377 
Move with Floating Currency Symbol 

Insertion 7-48 
Move with Floating Sign Insertion 

7-50 
Move with Zero Suppression and 

Asterisk Replacement 7-54 
Move with Zero Suppression and Blank 

Replacement 7-55 

MP2D 
MP2D 8-354 

MP2DX 
MP2DX 8-357 

MP3D 
MP3D 8-359 

MP3DX 
MP3DX 8-363 

MPF 
MPF instruction 8-365 

MPRR 
MPRR 8-366 

MPRS 
MPRS 8-368 

MPX 
MPX 8-370 

MPY 
MPY 8-372 

MRL 
MRL 8-373 

MSES 
MSES 7-53 

MTM 
MTM 8-375 

MTR 
MTR 8-377 

MULTIPLE 
Insert Table Entry One Multiple 

7-46 

MULTIPLICATION 
multiplication 7-3 

MULTIPLY 
Double-Precision Floating Multiply 

8-177 
Double-Precision Unnormalized 

Floating Multiply 8-194 
Floating Multiply 8-236 
Multiply Fraction 8-365 
Multiply GXn 8-370 
Multiply Integer 8-372 
Multiply Register Pair by Register 

by Register 8-366 
Multiply Single Register by Register 

8-368 
Multiply Using Three Decimal 

Operands 8-359 
Multiply Using Three Decimal 

Operands Extended 8-363 
Multiply Using Two Decimal Operands 

8-354 
Multiply Using Two Decimal Operands 

Extended 8-357 
Quadruple-Precision Floating 

Multiply 8-425 
Unnormalized Floating Multiply 

8-634 

i-29 DZ5l-00 



MULTIPLY WITH DOUBLE-PRECISION 
OPERANDS 

Quadruple-Precision Floating 
Multiply with Double-Precision 
Operands 8-435 

MULTI WORD 
Multiword Address Modification 5-30 
Multiword Instruction capabilities 

7-7 
Multiword Instruction Interrupts 

6-24 
MULTIWORD INSTRUCTIONS 7-23 
Multiword Instructions 8-9 
Multiword Modification Field 5-31, 

7-24 

MVC 
MVC 7-54 

MVE 
ALPHANUMERI C EDI T (MVE) 7-41 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 7-38 
MVE 8-380 
MVNE, MVNEX and MVE Differences 

7-40 

MVN 
MVN 8-385 

MVNE 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 7-38 
MVNE 8-389 
MVNE, MVNEX and MVE Differences 

7-40 
NUMERIC EDIT (MVNE And MVNEX) 7-40 

MVNEX 
MVNE, MVNEX and MVE Differences 

7-40 
MVNEX ·8-393 
NUMERIC EDIT (MVNE And MVNEX) 7-40 

MVNX 
MVNX 8-395 

MVT 
MVT 8-400 

MVZA 
MVZA 7-54 

MVZB 
MVZB 7-55 

NARN 
NARn 8-405 

NOse 
NOSC pseudo-operation 7-33 

NDSC4 
NOSC' - Packed decimal numeric 

descriptor 5-37 

NDSC9 
NOSC9 - ASCII numeric descriptor 

5-37 

NEG 
NEG 8-407 

NEGATE 
Floating Negate 8-237 
Negate (A-Register) 8-407 
Negate Long (AQ-Register) 8-408 

NEGATIVE 
Floating Set zero and Negative 

Indicators from Storage 8-247 
Insert On Negative 7-47 
Negative Indicator 4-8 
Set Zero and Negative Indicators 

from Storage 8-576 
Set Zero and Negative Indicators 

from Storage and Clear 8-577 

NEGL 
NEGL 8-408 

NON-EXTENDED 
ES Extended Mode 1-6 
NS Non-Extended Mode 1-6 

NONHOUSEKEEPING 
nonhousekeeping pages 3-6 

NONZERO 
Transfer on Nonzero 8-598 
Transfer On Plus And Nonzero 8-604 

NOP 
No Operation 8-409 
NOP 8-409 

i-30 DZ5l-00 



NORMALIZE 
Floating Normalize 8-238 

NOT 
Comparative NOT AND with A-Register 

8-156 

NS 

Comparative NOT AND with AQ-Register 
8-159 

Comparative NOT AND with Index 
Register n 8-161 

Comparative NOT AND with Q-Register 
8-160 

indirect addressing 5-7 
NS Basic Modification 5-1 
NS Direct Lower (DL) 5-4 
NS Direct Upper (DU) 5-4 
NS ES Segmentation Modes 5-1 
NS Indirect Addressing 5-1 
NS Indirect Then Register (IR) 5-9 
NS Indirect Then Tally (IT) 5-13 
NS Mode Address Generation 5-1 
NS REG! STER THEN I NDI RECT (RI) 5-7 
Virtual Address Generation (NS) 

5-59 

NUMBER 
CPU Number Register 4-34 

NUMBERING 
Position Numbering 2-1 

NUMBERS 
Floating-Point Decimal Numbers 2-10 
Quadruple-precision format 2-6 

NUMERIC 
Address Register n to Numeric 

Descriptor 8-65 
Alphanumeric/Numeric Address 

Preparation 5-44 
Compare Numeric 8-148 
Compare Numeric Extended 8-151 
Move Numeric 8-385 
Move Numeric Edited 8-389 
Move Numeric Edited Extended 8-393 
Move Numeric Extended 8-395 
NDSC4 - Packed decimal numeric 

descriptor 5-37 
NDSC9 - ASCII numeric descriptor 

5-37 

NUMERIC (cont) 
Numeric Descriptor to Address 

Register n 8-405 
NUMERIC EDIT (MVNE And MVNEX) 7-40 
Numeric instructions 7-6 
Numeric Instructions 7-30 
NUMERIC OPERAND DESCRIPTOR FORMAT 

7-31 
Numeric Operand Descriptors 5-37 

OCLIME 
OCLI ME 8-121 
OCL1MB (OUtward CLIMB) - 01 8-121 

OCTAL 
ADDRESS MODIFICATION OCTAL CODES 

5-25 
octal value of the operation code 

8-2 

OFFSET 
internal offset 3-17 
offset 3-2 

OPERAND 
Descriptor for Character Move 

Instructions 7-29 
Lower Operand Register (LOW) 4-6 
Operand Address Procedure 5-58 
Operand Descriptor Address 

Preparation 5-41 
OPERAND DESCRI PTOR I NDI RECT POI NTER 

FORMAT 7-25 
Operand Descriptor Modification (ES) 

5-55 
Operand Descriptors 5-35 
Operand Descriptors and Indirect 

Pointers 7-25 
Operand Segments 3-6 
operand storage 3-6 

OPERATION 
Operation Code Map (Bit 27 = 0) A-2 
Operation Code Map (Bit 27 = 1) A-4 
Safe Store Operation 8-104 
Shrink Operation 8-297 

OPERATIONS 
Boolean Operations 7-2 
Comparison Operations 7-2 
logic operations 2-4 
logical operations 7-2, 7-13 
rounding operation 8-240 

i-31 DZ51-00 



OPTION 
copy option 8-319 
hardware rounding option 7-7 
Load Option Register 8-317 
OPTION REGISTER (OR) 4-19 
Store Option Register 8-551 

OR 
Exclusive OR Register to Register 

8-222 
EXCLUSIVE OR to A-Register 8-219 
EXCLUSIVE OR to AQ-Register 8-220 
EXCLUSIVE OR to Index Register n 

8-226 
EXCLUSIVE OR to Q-Register 8-221 
EXCLUSIVE OR to Storage with 

A-Register 8-223 
EXCLUSIVE OR to Storage with Index 

Register n 8-225 
EXCLUSIVE OR to Storage with 

Q-Register 8-224 
Move and OR Sign 7-52 
OPTION REGISTER (OR) 4-19 
OR Register to Register 8-413 
OR to A-Register 8-410 
OR to AQ-Register 8-411 
OR to Index Register n 8-417 
OR to Q-Register 8-412 
OR to Storage from A-Register 8-414 
OR to Storage from Q-Register 8-415 
RL - Register or Length 5-32, 7-24 

ORA 
ORA 8-410 

ORAQ 
ORAQ 8-411 

ORQ 
ORQ 8-412 

ORR 
ODRR 8-413 

ORSA 
ORSA 8-414 

ORSQ 
ORSQ 8-415 

ORSXN 
ORSXn 8-416 

ORXN 
ORXn 8-417 

OUTPUT 
9-bit output 7-30 
output sign 2-10 

OUTWARD 
OCLIMB (OUtward CLIMB) - 01 8-121 
OUtward CLIMB 8-121 

OVERFLOW 
Exponent overflow 4-9 
Overflow mask 4-10 
Transfer On Exponent Overflow 8-587 
Transfer On Overflow 8-600 

OVERPUNCHED 
character codes for ASCII and EBCDIC 

overpunched sign 8-397 

PACKED 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-36 
NDSC4 - Packed decimal numeric 

descriptor 5-37 
Packed Decimal 2-2 
Packed Decimal (4-bit) 2-9 

PAGE 
Clear Associative Memory Pages 8-84 
Dense Page Table 5-72 
housekeeping pages 3-7 
Layout of Segments on Pages 3-5 
Load Page Table Directory Base 

Register 8-340 
Locating the page table directory 

word 5-72 
Missing Page fault 5-71 
nonhollsekeeping pages 3-6 
Page Directory Base Register (PDBR) 

1-7 
PAGE DIRECTORY BASE REGlSTER (PDBR) 

4-26 
Page Table Base Register (PDBR) 

5-72 
Page Table Base Word (PBW) Format 

5-69 
page table directory 3-2 
Page Table Directory Word 5-72 
Page Table Directory Word (PTDW) 

Format 5-68 
Page Table Word (PTW) Format 5-70 

i-32 DZ51-00 



( 

( 

PAGE (cant) 
Page Tables 3-2 
Store Page Table Directory Base 

Register 8-519 

PAGE TABLE 
Paging 5-68 

PAGES 
Working Spaces and Pages 3-2 

PAGING 
Memory paging 5-68 
Paging 5-68 
Virtual paging Mode 1-7 

PAIR 
Load Double Register to Register 

Pair 8-308 
Multiply Register Pair by Register 

by Register 8-366 

PARAMETER 
Load Parameter Segment Register 

8-326 
PARAMETER STACK REGI STER (PSR ) 4-23 
Store Parameter Segment Register 

8-556 

PARITY 
parity error 4-10 
Parity Indicator 8-7 
Parity mask 4-11 

PAS 
PAS 8-418 

PATROL 
Patrol <Online Processor Activity 

Testing) 1-4 
Run PATROL 8-445 

PATTERN 
replicate a pattern across a string 

8-350 

PBW 
Paging 5-E?8 

PDBR 
Page Directory Base Register (PDBR) 

1-7 

PDBR (cont) . 
PAGE DIRECTORY BASE REGISTER (PDBR) 

4-26 
Page Table Base Register (PDBR) 

5-72 
PDBR 8-340, 8-519 

PIPELINE 
Four-stage pipeline 1-2 

PLUS. 
Transfer On Plus 8-602 
Transfer On Plus And Nonzero 8-604 

POINTER 
Effective Pointer and Address to 

Test 8-215 
Effective Pointer To Pointer 

Register n 8-216 
Load Pointer Register n 8-319 
Load Pointers and Lengths 8-341 
OPERAND DESCRI PTOR I NDI REC'I' POI NTER 

FORMAT 7-25 
Operand Descriptors and Indirect 
. Pointers 7-25 

POINTER REGISTER INSTRUCTIONS 7-58 
POINTER REGISTERS (PRn) 4-19 
Set Pointer Compare Flags Off 8-518 
Store Pointer n 8-553 
Store Pointers and Lengths 8-520 

POP 
Pop Argument Stack 8-418 

PORT 
Configuration Register Port 

Assignment 4-30 

POSITIVE 
Double-Precision Floating Load 

Positive 8-176 
Floating Load positive 8-235 
Insert On Positive 7-47 
Load Positive Register to Register 

8-325 

PRIORITY 
Fault Priority 6-2 

PRIVILEGED 
privileged bit 7-59 
PRIVILEGED INSTRUCTIONS 7-59 
Privileged Master mode 1-4 

i-33 DZ5l-00 



PRIVILEGED (cont) 
Privileged Master Mode Instructions 

7-5 

PRN 
POINTER REGISTERS (PRn) 4-19 

PROCEDURES 
Faul t Procedures 6-1 
Interrupt Procedures 6-23 

PROCESS 
Address Translation Process 5-68 

PROCESSING 
processing of scattered data 5-22 
processing of tabular data 5-13 
processing tabular operands 5-20 

PROCESSOR 
DPS 90 1-1 
Four-stage pipeline 1-2 
Load Central Processor Register 

8-270 
PROCESSOR ACCESSIBLE REGISTERS 4-1 
Processor Accessible Registers 4-2 
Processor Features 1-1 
processor logic circuitry 8-421 
Processor Mode Determinants 1-5 
Processor Modes of Operation 1-4 
Read Processor Model Characteristics 

8-470 

PROGRAM 
Program-Generated Faults 6-7 

PROTECTION 
memory protection 1-1 

PSEUDO-OPERATION 
BDSC pseudo-operation 7-35 
NDSC pseudo-operation 7-33 

PSR 
PARAMETER STACK REGISTER (PSR) 4-23 
PSR Generation 8-112 

PTDW 
PTDW 5-72 

PTWAM 
Store PTWAM Directory Word 8-555 
Store PTWAM Register 8-557 

PULS1 
PULS1 8-420 

PULS2 
PULS2 8-421 

PULSE-ONE 
Pulse One 8-420 

PULSE-TWO 
Pulse Two 8-421 

Q-REGISTER 
Add Logical to Q-Register 8-45 
Add to Q-Register 8-48 
Add To Storage From Q-Register 8-68 
Add with carry to Q-Register 8-73 
AND to Q-Register 8-55 
AND to Storage from Q-Register 8-58 
Comparative AND with Q-Register 

8-89 
Comparative NOT AND with Q-Register 

8-160 
Compare with Q-Register 8-153 
Effective Address to Q-Register 

8-213 
EXCLUSIVE OR to Q-Register 8-221 
EXCLUSIVE OR to Storage with 

Q-Register 8-224 
Load Complement into Q-Register 

8-272 
Load Q-Register 8-328 
OR to Q-Register 8-412 
OR to Storage from Q-Register 8-415 
Q-Register Left Rotate 8-431 
Q-Register Left Shift 8-432 
Q-Register Right Logical Shift 

8-433 
Q-Register Right Shift 8-434 
QUOTI ENT REG! STER (Q) 4-4 
Store 6-bit Characters of Q-Register 

8-542 
Store 9-bit Bytes of Q-Register 

8-537 
Store A Conditional 8-532 
Store A Conditional on Q 8-533 
Store Q-Register 8-558 
Subtract from Q-Register 8-495 
Subtract Logical from Q-Register 

8-492 
Subtract Stored from Q-Register 

8-529 

i-34 DZ51-00 



( 

Q-REGI STER (cant) 
Subtract with carry from Q-Register 

8-570 

QFAD 
QFAD 8-422 

QFLD 
QFLD 8-424 

QFMP 
QFMP 8-425 

QFSB 
QFSB 8-427 

QFST 
QFST 8-429 

QFSTR 
QFSTR 8-430 

QLR 
QLR 8-431 

QLS 
QLS 8-432 

QRL 
QRL 8-433 

QRS 
QRS 8-434 

QSMP 
QSMP 8-435 

QUADRUPLE-PRECISION 
Quadruple-Floating Add 8-422 
Quadruple-Floating Load 8-424 
Quadruple-Precision Floating 

Multiply 8-425 
Quadruple-Precision Floating 

Multiply with Double-Precision 
Operands 8-435 

Quadruple-Precision Floating Store 
8-429 

Quadruple-Precision Floating Store 
Rounded 8-430 

Quadruple-Precision Floating 
Subtract 8-427 

Quadruple-Precision Floating-Point 
Instructions 7-4 

QUADRUPLE-PRECISION (cant) 
Quadruple-precision format 2-6 
Quadruple-Precision Instructions 

7-22 
Quadruple-precision value 2-7 

QUOTIENT 

R 

EXPONENT ACCUMULATOR QUOTIENT 
REG! STER (EAQ) 4-5 

QUOTI ENT REG! STER (Q) 4-4 

Register (R) 5-1, 5-3 

RADIX 
Radix conversion 7-7 

RANGES 
Decimal Number Ranges 2-11 

RCW 
RCW 8-437 

READ 
Read Connect Word Pair 8-437 
Read Interrupt Mask Register 8-441 
Read Interrupt Word Pair 8-442 
Read Memory ID Register 8-443 
Read Memory Register 8-444 
Read Processor Model Characteristics 

8-470 
Read System Controller Register 

8-468 

REAL 
Mapping The Virtual Address To A 

Real Address 5-71 
Real Address 3-2 

RECOGNITION 
Fault Recognition 6-2 

REG 
REG 5-32, 7-25 

REGISTER 
(HWMR) 4-24 
ACCUMULATOR REGI STER (A) 4-3 
ACCUMULATOR-QUOTI ENT REGI STER (AQ) 

4-4 
Add 4-Bit Displacement To Address 

Register 8-15 

i-35 DZ5l-00 



REGISTER (cont) 
Add 6-Bit Displacement To Address 

Register 8-17 
Add 9-Bit Displacement to Address 

Register 8-19 
Add Bit Displacement To Address 

Register 8-23 
Add Logical to Index Register. n 

8-47 
Add Register to Register 8-49 
Add to Exponent Register 8-41 
Add to Index Register n 8-50 
Add To Storage From I ndex Reg ister n 

8-69 
Add Word Displacement To Address 

Register 8-75 
Address Modification ~ith Address 

Register 5-27 
Address Register Alter Contents 

7-10 
Address Register Instructions 7-2 
ADDRESS REGI STER I NSTRUCTI ONS 7-9 
Address Register n to Alphanumeric 

Descriptor 8-62 
Address Register n to Numeric 

Descriptor 8-65 
J..ddress Register Special Arithmetic 

Instructions 8-10 
Address Register Specifier 5-31, 

7-24 
ADDRESS REGI STERS (ARn) 4-13 
Address Trap Register 4-32 
Alphanumeric Descriptor To Address 

Register n 8-21 
AND to Index Register n 8-60 
AND to Storage from Index Register n 

8-59 
ARGUMENT STACK REGI STER (ASR) 4-23 
calendar Clock Register 4-20 
Character Move to/from Register 

Instructions 7-28 
Character Move To/From Register 

Instructions 8-11 
Comparative AND with Index Register 

n 8-90 
Comparative NOT AND with Index 

Register n 8-161 
Compare with Index Register n 8-154 
Configuration Register Port 

Assignment 4-30 
CPU Mode Register 4-26, 4-28 
CPU Number Register 4-34 

REGISTER (cont) 
DATA STACK ADDRESS REGISTER (DSAR) 

4-25 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-25 
DESCRI PTOR REGI STER I NSTRUCTI ONS 

7-58 
Displacement register· 8-11 
domain registers 3-4 
Effective Address to Index Register 

n 8-214 
Effective Address to Register 

Instructions 7-3 
Effective Pointer To Pointer 

Register n 8-216 
EXCLUSIVE OR to Index Register n 

8-226 
EXCLUSIVE OR to Storage with-Index 

Register n 8-225 
EXPONENT ACCUMULATOR QUOTIENT 

REGISTER (EAQ) 4-5 
EXPONENT REGI STER (E) 4-5 
Extended Fault Register 4-40 
FAULT REGISTER FORMAT 4-36 
GXn Register In R Modification 5-50 
High Water Mark Register 8-109 
History Register 4-49 
index register symbols 5-35 
INDEX REGI STERS (Xn) 4-6 
Indicator Register 2-5 
INDICATOR REGISTER (IR) 4-8 
Indirect Then Register (IR) 5-1 
INSTRUCTION SEGMENT IDENTITY 

REGISTER - SEGID (IS) 4-18 
INSTRUCTION SEGMENT REGISTER (ISR) 

4-15 
Interrupt Mask Register 4-35 
LI NKAGE SEGMENT REGI STER (LSR) 4-15 
Load Address Register n 8-264 
Load Address Registers 8-265 
Load Argument Stack Register 8-277 
Load Central Processor Register 

8-270 
Load Complement into Index Register 

n 8-273 
Load Data Stack Address Register 

8-309 
Load Data Stack Descriptor Register 

8-310 
Load Descriptor Register n 8-280 
Load Exponent Register 8-312 
Load 1 ndex Register n from Lower 

8-347 

i-36 DZS1-00 



( 

REGISTER (cont) 
Load Index Register n from Upper 

8-335 
Load Indicator Register 8-315 
Load Interrupt Mask Register 8-336 
Load Option Register 8-317 
Load Page Table Directory Base 

Register 8-340 
Load Parameter Segment Register 

8-326 
Load Pointer Register n 8-319 
Load Registers 8-342 
Load safe Store Register 8-330 
Load Timer Register 8-332 
Load Working Space Registers 8-333 
Lower Operand Register (LOW) 4-6 
Master Mode bit in the Indicator 

Register 1-6 
Memory Error Status Register 4-51 
Multiply Register Pair by Register 

by Register 8-366 
NS Indirect Then Register (IR) 5-9 
NS REGI STER THEN I NDI RECT (RI) 5-7 
Numeric Descriptor to Address 

Register n 8-405 
OPTION REGISTER (OR) 4-19 
OR Register to Register 8-413 
OR to Index Register n 8-417 
OR to Storage from Index Register n 

8-416 
Page Directory Base Register (PDBR) 

1-7 
PAGE DIRECTORY BASE REGISTER (PDBR) 

4-26 
Page Table Base Register (PDBR) 

5-72 
PARAMETER STACK REGISTER (PSR) 4-23 
POINTER REGISTER INSTRUCTIONS 7-58 
POI NTER REGI STERS (PRn) 4-19 
PROCESSOR ACCESSIBLE REGISTERS 4-1 
Processor Accessible Registers 4-2 
OUOTIENT REGISTER (0) 4-4 
Read Interrupt Mask Register 8-441 
Read Memory Register 8-444 
Read System Controller Register 

8-468 
Register (R) 5-1, 5-3 
Register Codes 5-33 
register designator 5-2 
register selection 5-32, 7-25 
Register then Indirect (RI) 5-1 
Reserve Memory Base Register 4-43 
RL - Register or Length 5-32, 7-24 

REGI STER (cont) 
SAFE STORE REG! STER (SSR) 4-21 
save Descriptor Register n 8-512 
SCU Configuration Register 4-47 
SCU FAULT REGISTER 4-44 
SEGMENT DESCRI PTOR REGI STERS (DRn) 

4-16 
SEGMENT I DENTI TY REG! STERS (SEGI Dn > 

4-17 
Set System Controller Register 

8-527 
Special Address Register 

Instructions 7-12 
stack control register (SCR) 4-22, 

8-330 
Stack Control Register (SCR) 4-22 
Store Address Register n 8-474 
Store Address Registers 8-475 
Store Argument Stack Register 8-535 
Store Base Address Register 8-488 
Store Data Stack Address Register 

8-546 
Store Data Stack Descriptor Register 

8-547 
Store Descriptor Register n 8-544 
Store Exponent Register 8-548 
Store Index Register n in Lower 

8-574 
Store Index Register n in Upper 

8-566 
Store Indicator Register 8-549 
Store Option Register 8-551 
Store Page Table Directory Base 

Register 8-519 
Store Parameter Segment Register 

8-556 
Store PTWAM Register 8-557 
Store Registers 8-524 
Store safe Store Register 8-559 
Store Timer Register 8-561 
Store Working Space Registers .8-564 
Subtract 4-Bit Displacement from 

Address Register 8-471 
Subtract 6-Bit Displacement from 

Address Register 8-472 
Subtract 9-Bit Displacement from 

Address Register 8-473 
Subtract Bit Displacement from 

Address Register 8-489 
Subtract from Index Register n 

8-497 
Subtract Logical from Index Register 

n 8-494 

i-37 DZ51-00 

, 



REGI STER (cont) 
Subtract Logical Register from 

Register 8-493 
Subtract Register from Register 

8-496 
Subtract Stored from Index Register 

n 8-530 
Subtract Word Displacement from 

Address Register 8-572 
Syndrome Register 4-46 
TI MER REGI STER (TR) 4-12 
Transfer And Set Index Register n 

8-623 
Virtual Address Trap Register 4-33 
working space register 3-14 
working space registers 3-9 
WORK! NG SPACE REGI STERS (WSRn) 4-21 

REGI STER BY REG! STER 
Divide Register by Register 8-210 

REGI STER FROM REGI STER 
Load Complement Register from 

Register 8-279 
Load Register from Register 8-329 

REGISTER TO REGISTER 
Add Logical Register to Register 

8-46 
AND Register to Register 8-56 
Compare Register to Register 8-156 
Exclusive OR Register to Register 

8-222 
Load Double Register to Register 

Pair 8-308 
Load Positive Register to Register 

8-325 

REGISTER-To-REGISTER 
Register to register Instructions 

7-62, 8-12 

REGISTERS 
History Registers 4-41 

RELATIVE 
Location relative to base 3-11 

REPEAT 
Repeat 8-461 
Repeat Double 8-446 
Repeat Instructions 7-68 
Repeat Link 8-454 

REPLICATE 
replicate a pattern across a string 

8-350 

RESERVE 
Load Reserve Memory Base 8-345 
Reserve Memory Base Register 4-43 

RESERVED 
Reserved memory space 1-8 

RET 
RET 4-11, 4-16, 8-438 

RETURN 
Return 8-438 

REVERSE 
Scan Characters Double in Reverse 

8-502 
Scan with Mask in Reverse 8-507 
Sequence character reverse 5-14 
Sequence Character Reverse (T) 5-19 
Test Character and Translate in 

Reverse 8-586 

RI 
NS REGISTER THEN INDIRECT (RI) 5-7 
Register then Indirect (RI) 5-1 

RIGHT 
GXn Long Right Logic 8-252 
GXn Long Right Shift 8-254 
GXn Right Logic 8-258 
GXn Right Shift 8-260 

RIMR 
RIMR 8-441 

RIW 
RIW 8-442 

RL 
RL - Register or Length 5-32, 7-24 

RMID 
RMID 8-443 

RMR 
RMR 8-444 

ROTATE 
A-Register Left Rotate 8-51 

i-38 DZ51-00 



ROTATE (cont) 
Long Left Rotate 8-338 
Q-Register Left Rotate 8-431 

ROUND 
true round 8-182, 8-240, 8-245 

ROUNDED 
Quadruple-Precision Floating Store 

Rounded 8-430 

ROUNDING 
hardware rounding option 7-7 
rounding operation 8-240 

RPAT 
RPAT 8-445 

RPD 
RPD 8-446 

RPDA 
RPDA 8-446 

RPDB 
RPDB 8-446 

RPDX 
RPDX 8-446 

RPL 
RPL 4-10, 8-454 

RPT 
RPT 8-461 

RSCR 
RSCR 8-468 

RSW 
RSW 8~470 

RUN 
Run PATROL 8-445 

RUNOUT 
Tally runout 4-10 
Transfer on Tally Runout Indicator 

OFF 8-625 
Transfer an Tally Runout Indicator 

ON 8-627 

S4BD(X) 
S4BD(X) 8-471 

S6BD(X) 
S6BD ex) 8-472 

S9BD(X) 
S9BD(X) 8-473 

SAFE 
Load safe Store Register 8-330 
safe Store Bypass Flag (SSBF) 4-19 
safe Store Operation 8-104 
SAFE STORE REG! STER (SSR) 4-21 
safe Store Stack Format 8-107, 

8-108 
Store safe Store Register 8-559 

SAREG 
SAREG 8-475 

SARN 
SARn 8-474 

SAVE 
Save Descriptor Register n 8-512 

SB2D 
SB2D 8-476 

SB2DX 
SB2DX 8-479 

SB3D 
SB3D 8-481 

SB3DX 
SB3DX 8-484 

SBA 
SBA 8-486 

SBAQ 
SBAQ 8-487 

SBAR 
SBAR 8-488 

SBD 
SBD 8-489 

SBLA 
SBLA 8-490 

i-39 DZ5l-OO 



SBLAQ 
SBLAQ 8-491 

SBLQ 
SBLQ 8-492 

SBLR 
SBLR 8-493 

SBLXN 
SBLXn 8-494 

SBQ 
SBQ 8-495 

SBRR 
SBRR 8-496 

SBXN 
SBXn 8-497 

SC 
SC 5-14 
SC Variation 5-18 
Sequence Character (SC) variation 

5-18 

SCALING 
scaling factor 5-39, 8-34 
Scaling factor 7-32 

SCAN 
Scan Characters Double 8-498 
Scan Characters Double in Reverse 

8-502 
Scan with Mask 8-504 
Scan with Mask in Reverse 8-507 

SCD 
SCD 8-498 

SCDR 
SCDR 8-502 

SCM 
SCM 8-504 

SCMR 
SCMR 8-507 

SCPR 
SCPR 8-509 

SCR 
SCR 5-14 
SCR variation 5-19 
stack control register (SCR) 4-22, 

8-330 
Stack Control Register (SCR) 4-22 

scu 
CPU SCU 1M}{ 3-1 
History Register 4-49 
SCU Configuration Register 4-47 
SCU FAULT REGISTER 4-44 

SD 
SD 5-15 
SD variation 5-25 
Subtract Delta (SD) variation 5-25 

SDRN 
SDRn 4-23, 8-512 

SECOND-LEVEL 
second-level indexing 5-27 
Second-Level Indexing 7-8 

SECTION 
Section Table 5-75 

SEGID 
I NSTRUCTI ON SEGMENT I DENTI TY 

REGISTER - SEGID (IS) 4-18 

SEG!DN 
SEGMENT I DENTI TY REGI STERS (sn;r Dn ) 

4-17 

SEGMENT 
Descriptor Segment Descriptor 8-101 
I NSTRUCTI ON SEGMENT REG! STER (I SR ) 

4-15 
LI NKAGE SEGMENT REGI STER (LSR) 4-15 
Load Parameter Segment Register 

8-326 
segment base 3-1 
segment descriptor 3-1, 5-58 
SEG~!ENT DESCRI PTOR REG! STERS (DRn) 

4-16 
SEGMENT I DENTI TY REG! STERS (SEG! Dn ) 

4-17 
Store Parameter Segment Register 

8-556 

i-40 DZ5l-00 



(-

( 
'-

SEGMENTS 
Layout of Segments on Pages 3-5 
Operand Segments 3-6 
Segments 5-58 
Segments division of working space 

3-4 

SEQUENCE 
Sequence character 5-14 
Sequence Character (SC) variation 

5-18 
Sequence character reverse 5-14 
Sequence Character Reverse (T) 5-19 

SES 
SES 7-56 

SET 
Floating Set Zero and Negative 

Indicators from Storage 8-247 
Move and Set Sign 7-53 
Set Interrupt Word Pair 8-515 
set Memory ID Register 8-516 
set Memory Register 8-517 
Set Pointer Compare Flags Off 8-518 
Set System Controller Register 

8-527 
Set zero and Negative Indicators 

from Storage 8-576 
Set Zero and Negative Indicators 

from Storage and Clear 8-577 
Set Zero and Truncation Indicators 

with Bit Strings Left 8-578 
Set zero and Truncation Indicators 

with Bit Strings Right 8-581 
Transfer And Set Index Register n 

8-623 

SET END SUPPRESSSION 
Set End Suppression 7-56 

SHIFT 
A-Register Left Shift 8-52 
A-Register Right Logical Shift 8-64 
A-Register Right Shift 8-66 
Data Shifting Instructions 7-3 
GXn Left Shift 8-256 
GXn Long Left Shift 8-250 
GXn Long Right Shift 8-254 
GXn Right Shift 8-260 
Long Left Shift 8-339 
Long Right Logical Shift 8-344 
Long Right Shift 8-346 

SHIFT (cont) 
Q-Register Left Shift 8-432 
Q-Register Right Logical Shift 

8-433 
Q-Register Right Shift 8-434 

SHRINK 
Locating New Bound for Shrink 8-300 
Shrink for Extended Descriptors 

8-294 
Shrink for Standard and Super 

Descriptors 8-284 
Shrink Operation 8-297 
Shrunken Descriptor 3-16 

SHRINKING 
Shrinking 3-16 

SIGN 
sign and magnitude operands 7-30 
Sign flag 7-43 

SI NGLE REG! STER 
Multiply Single Register by Register 

8-368 

SINGLE-PRECISION 
single-precision data 2-1 

SINGLE-WORD 
Single-Word Address Modification 

5-27 
SINGLE-WORD INSTRUCTIONS 7-1 
Single-Word Instructions 8-7 

SIW 
SIW 8-515 

SLAVE 
Slave mode 1-4 
Transfer After Setting Slave 8-620 

SMID 
SMID 8-516 

SMR 
SMR 8-517 

SOURCE 
Ignore Source Characters 7-45 
Move Source Characters 7-54 

i-4l DZ51-00 



SPACE 
Base working space address 3-10 
framed stack space 8-104 
Load Working Space Registers 8-333 
Standard Descriptor With Working 

Space Number 3-10 
Store Working Space Registers 8-564 
Super Descriptor With Working.Space 

Number 3-12 
Working Space 0 1-8. 
working space number (WSN) 3-2 
working space register 3-14 
working space registers 3-9 
WORKING SPACE REGISTERS (WSRn) 4-21 
working spaces 3-1 
Working Spaces 5-58 
Working Spaces and Pages 3-2 

SPCF 
SPCF 8-518 

SPDBR 
SPDBR 8-519 

SPEC! AL-ADDRESS 
Special Address Register 

Instructions 7-12 

SPECIFIER 
Address Register Specifier 5-31, 

7-24 

SPL 
SPL 8-520 

SREG 
SREG 5-84, 8-524 

SSA 
SSA 8-526 

SSBF 
safe Store Bypass Flag (SSBF) 4-19 

SSCR 
SSCR 8-527 

SSQ 
SSQ 8-529 

SSR 
SAFE STORE REG! STER (SSR ) 4-21 

SSXN 
SSXn 8-530 

STA 
STA 8-531 

STAC 
STAC 8-532 

STACK 
ARGUMENT STACK REG! STER (ASR) 4-23 
DATA STACK ADDRESS REGISTER (DSAR) 

4-25 
Data Stack Clear Flag (DSCF) 4-19 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-25 
framed stack space 8-104 
Load Argument Stack Register 8-277 
Load Data Stack Address Register 

8-309 
Load Data Stack Descriptor Register 

8-310 
PARAMETER STACK REG! STER (PSR) 4-23 
Pop Argument Stack 8-418 
stack control register (SCR) 4-22, 

8-330 
Stack Control Register (SCR) 4-22 
Store Argument Stack Register 6-535 
Store Data Stack Address Register 

8-546 
Store Data Stack Descriptor Register 

8-547 

STACQ 
STACQ 8-533 

STANDARD 
Shrink for Standard and Super 

Descriptors 8-284 
Standard Descriptor 3-8, 5-60, 

8-101 
standard descriptor 8-330 
Standard Descriptor (ES) 5-64 
Standard Descriptor With Working 

Space Number 3-10 
Vector for Standard Descriptor, 

Super Descriptor 8-281 

STAQ 
STAQ 8-534 

STAS 
STAS 8-535 

i-42 DZ51-00 



(-

( 

STATUS 
Memory Error Status Register 4-51 

STBA 
STBA 8-536 

STBQ 
STBQ 8-537 

STC1 
STCl 8-538 

STC2 
STC2 8-539 

STCA 
STCA 8-540 

STCQ 
STCQ 8-542 

STDN 
STDn 8-544 

STDSA 
STDSA 8-546 

STDSD 
STDsn 8-547 

STE 
STE 8-548 

STI 
STI 8-549 

STO 
STO 4-19, 8-551 

STORAGE 
Add One to Storage 8-61 
Add To Storage From A-Register 8-67 
Add To Storage From Index Register n 

8-69 
Add To Storage Frorn Q-Register 8-68 
AND to Storage from A-Register 8-57 
AND to Storage frorn Index Register n 

8-59 
AND to Storage from Q-Register 8-58 
descriptor storage 3-6 
EXCLUSIVE OR to Storage with 

A-Register 8-223 

STORAGE (cont) 
EXCLUSIVE OR to Storage with Index 

Register n 8-225 
EXCLUSIVE OR to Storage with 

Q-Register 8-224 
Floating Set Zero and Negative 

Indicators frorn Storage 8-247 
operand storage 3-6 
OR to Storage from A-Register 8-414 
OR to Storage from Index Register n 

8-416 
OR to Storagefrorn Q-Register 8-415 
Set Zero and Negative Indicators 

from Storage 8-576 
Set Zero and Negative Indicators 

from Storage and Clear 8-577 

STORE 
Double-Precision Floating Store 

8-181 
Double-Precision Floating Store 

Rounded 8-182 
Floating Store 8-244 
Floating Store Rounded 8-245 
Load Safe Store Register 8-330 
Quadruple-Precision Floating Store 

8-429 
Quadruple-Precision Floating Store 

Rounded 8-430 
safe Store Bypass Flag (SSBF) 4-19 
safe Store Operation 8-104 
SAFE STORE REGI STER (SSR ) 4-21 
safe Store Stack Format 8-107, 

8-108 
Store 6-bit Characters of A-Register 

8-540 
Store 6-bit Characters of Q-Register 

8-542 
Store 9-bit Bytes of A-Register 

8-536 
Store 9-bit Bytes of Q-Register 

8-537 
Store A Conditional 8-532 
Store A Conditional on Q 8-533 
Store A-Register 8-531 
Store Address Register n 8-474 
Store Address Registers 8-475 
Store AQ-Register 8-534 
Store Argument Stack Register 8-535 
Store Base Address Register 8-488 
Store Data Stack Address Register 

8-546 

i-43 DZ51-00 



STORE (cont) 
Store Data Stack Descriptor Register 

8-547 
Store Descriptor Register n 8-544 
Store Double from GXn 8-262 
Store Exponent Register 8-548 
Store Index Register n in Lower 

8-574 
Store Index Register n in Upper 

8-566 
Store Indicator Register 8-549 
Store Instruction Counter Plus 1 

8-538 
Store Instruction Counter Plus 2 

8-539 
Store Option Register 8-551 
Store Page Table Directory Base 

Register 8-519 
Store Parameter Segment Register 

8-556 
Store Pointer n 8-553 
Store Pointers and Lengths 8-520 
Store PTWAM Directory Word 8-555 
Store PTWAM Register 8-557 
Store Q-Register 8-558 
Store Registers 8-524 
Store safe Store Register 8-559 
Store Test Address Registers 8-562 
Store Test Descriptor Registers 

8-563 
Store Timer Register 8-561 
Store Working Space Registers 8-564 
Store Zero 8-567 
Subtract Stored from A-Register 

8-526 
Subtract Stored from Index Register 

n 8-530 
Subtract Stored from Q-Register 

8-529 

STPDW 
STPDW 8-555 

STPN 
STPn 8-553 

STPS 
STPS 8-556 

STPTW 
STPTW 8-557 

STQ 
STQ 8-558 

STRING 
BIT STRING ADDRESS PREPARATION 5-43 
Bit string instructions 7-6 
Bit String Instructions 7-34 
Bit String Operand Descriptor 5-35 
BIT STRING OPERAND DESCRIPTOR FORMAT 

7-35 
Bit Strings and Index Table of 

Translate Instruction 5-85 
Character-S~rings 2-2 
Combine Bit Strings Left 8-162 
Combine Bit Strings Right 8-165 
Compare Alphanumeric Character 

Strings 8-142 
Compare Bit Strings 8-139 
replicate a pattern across a string 

8-350 
Set Zero and Truncation Indicators 

with Bit Strings Left 8-578 
Set Zero and Truncation Indicators 

with Bit Strings Right 8-581 

STSS 
STSS 4-22, 8-559 

STT 
STT 8-561 

STTA 
STTA 8-562 

STTD 
STTD 8-563 

STWS 
STWS 4-21, 8-564 

STXN 
STXn 8-566 

STZ 
STZ 8-567 

SUBTRACT 
Double-Precision Floating Subtract 

8-179 
Double-Precision Floating Subtract 

Inverted 8-180 
Double-Precision Unnormalized 

Floating Subtract 8-195 

i-44 DZSl-OO 



( 

( 

SUBTRACT ( can t ) 
Floating Subtract 8-242 
Floating Subtract Inverted 8-243 
Quadruple-Precision Floating 

Subtract 8-'27 
Subtract 4-Bit Displacement from 

Address Register 8-471 
Subtract 6-Bit Displacement from 

Address Register 8-472 
Subtract 9-Bit Displacement from 

Address Register 8-473 
Subtract Bit Displacement from 

Address Register 8-489 
Subtract delta 5-15 
Subtract Delta (SO) variation 5-25 
Subtract from A-Register 8-486 

. Subtract from AQ-Register 8-487 
Subtract from Index Register n 

8-497 
Subtract from Q-Register 8-495 
Subtract Logical from A-Register 

8-490 
Subtract Logical from AQ-Register 

8-491 
Subtract Logical from I ndex Register 

n 8-494 
Subtract Logical from Q-Register 

8-492 
Subtract Logical Register from 

Register 8-493 
Subtract Register from Register 

8-496 
Subtract Stored from A-Register 

8-526 
Subtract Stored from Index Register 

n 8-530 
Subtract Stored from Q-Register 

8-529 
Subtract Using Three Decimal 

Operands 8-481 
Subtract Using Three Decimal 

Operands Extended 8-484 
Subtract Using Two Decimal Operands 

8-476 
Subtract Using Two Decimal Operands 

Extended 8-479 
Subtract with Carry from A-Register 

8-568 
Subtract with carry from Q-Register 

8-570 
Subtract Word Displacement from 

Address Register 8-572 

SUBTRACT (cant) 
Unnormalized Floating Subtract 

8-635 

SUPER 
Shrink for Standard and Super 

Descriptors 8-284 
Super Descriptor 3-11 
Super Descriptor With Working Space 

Number 3-12 
Vector for Standard Descriptor, 

Super Descriptor 8-281 
Virtual Address Generation, Super 

Descriptor 5-61 

SUPPRESSION 
End Floating Suppression 7-44 
End suppression flag 7-42 
Insert Asterisk on Suppression 7-45 
Insert Blank on Suppression 7-46 
Move with Zero Suppression and 

Asterisk Replacement 7-54 
Move with Zero Suppression and Blank 

Replacement 7-55 

SWCA 
SWCA 8-568 

SWCQ 
SWCQ 8-570 

SWD(X) 
SWD(X) 8-572 

SXLN 
SXLn 8-574 

SYMBOLS 
ABBREVIATIONS AND SYMBOLS 8-3 
index register symbols 5-35 
Move with Floating Currency Symbol 

Insertion 7-48 

SYNC 
SYNC 8-575 

SYNCHRONIZE 
Gate Synchronize 8-575 

SYNDROM 
Syndrome Register 4-46 

i-45 DZ51-00 



SYR 
Syndrome Register 4-46 

SYSTElJ. 
Read System Controller Register 

8-468 
Set System Controller Register 

8-527 
System Controller Illegal Action 

COdes 4-36, 4-38 
SYSTEM CONTROLLER INTERRUPTS 6-23 

SZN 
SZN 8-576 

SZNC 
SZNC 8-577 

SZTL 
SZTL 8-578 

SZTR 

T 

'SZTR 8-581 

Decrement Address, Increment Tally 
(T) 5-21 

Decrement Address, 
and Continue (T) 

Increment Address, 
(T) 5-20 

Increment Tally, 
5-21 

Decrement Tally 

Sequence Character Reverse (T) 5-19 

TA 
Alphanumeric Data Type (TA) Codes 

7-27 

TABLE 
Bit Strings and Index Table of 

Translate Instruction 5-85 
Change Table 7-44 
Dense Page Table 5-72 
Edit Insertion Table 7-39 
Insert Table Entry One Multiple 

7-46 
Load Connect Table Register 8-269 
Load Page Table Directory Base 

Register 8-340 
Load Table Entry 7-48 
Locating the page table directory 

word 5-72 
Page Table Base Word (PBW) Format 

5-69 

TABLE (cont) 
page table directory 3-2 
Page Table Directory Word 5-72 
Page Table Directory Word (PTDW) 

Format. 5-68 
Page Table Word (PTW) Format 5-70 
Section Table 5-75 
Store Page Table Directory Base 

Register 8-519 
translation table length 8-401 

TABLES 
Page Tables 3-2 

TABULAR 
processing of tabular data 5-13 
processing tabular operands 5-20 

TAG 
asterisk placed in the tag 5-8 
tag designator (td) 5-2 
Tag Field 5-2 
Tag Field Modification ES 5-52 
tag modifier (tm) 5-2 

TALLY 
Decrement Address, Increment Tally 

(T) 5-21 
Decrement Address, Increment Tally, 

and Continue 5-23 
Decrement Address, Increment Tally, 

and Continue (T) 5-21 
Increment address decrement tally 

5-14 
Increment Address, Decrement Tally 

(T) 5-20 
Increment address, decrement tally, 

and continue 5-15 
Increment Address, Decrement Tally, 

and Continue 5-22 
increment tally 5-14 
Indirect Then Tally (IT) 5-1 
NS Indirect Then Tally (IT) 5-13 
TALLY 5-14 
tally designator 5-2 
Tally Designators 5-16 
Tally runout 4-10 
Transfer on Tally Runout Indicator 

OFF 8-625 
Transfer On Tally Runout Indicator 

ON 8-627 

i-46 DZ51-00 



(' 

C" 

(-

TALLYB 
TALLYB 5-14 

TALLYD 
TALLYD 5-15 

TCT 
TCT 8-583 

TCTR 
TCTR 8-586 

TD 
tag designator (td) 5-2 

TEO 
TEO 4-9, 8-587 

TEST 
Store Test Address Registers 8-562 
Store Test Descriptor Registers 

8-563 
Test Character and Translate 8-583 
Test Character and Translate in 

Reverse 8-586 

TEU 
TEO 4-9, 8-589 

TIMER 
Interval Timer 1-8 
Load Timer Register 8-332 
Store Timer Register 8-561 
T1 MER REGI STER ( TR ) 4-12 

'I'M 
tag modifier (tm) 5-2 

TMI 
'I'M! 8-591 

TMOZ 
TMOZ 8-593 

TNC 
TNC 8-596 

TNZ 
TNZ 8-598 

TOV 
TOV 8-600 

TPL 
TPL 8-602 

TPNZ 
TPl-o'Z 8-604 

TR 
TI MER REGI STER (TR) 4-12 

TRA 
TRA 8-607 

TRANSFER 
Domain Transfer 8-96 
Domain Transfer (ClJMB) 7-58 
GCLIMB (Lateral Transfer LTRAS) - 10 

8-125 
Lateral Transfer - LTRAS 8-125 
Transfer After setting Slave 8-620 
Transfer And Set Index Register n 

8-623 
Transfer Instructions 7-66 
Transfer On Garry 8-609 
Transfer On Count 8-611 
Transfer On Exponent Overflow 8-587 
Transfer On Exponent Underflow 

8-589 
Transfer On Minus 8-591 
Transfer On Minus Or Zero 8-593 
Transfer On No carry 8-596 
Transfer on Nonzero 8-598 
Transfer On Overflow 8-600 
Transfer On Plus 8-602 
Transfer On Plus And Nonzero 8-604 
Transfer on Tally Runout Indicator 

OFF 8-625 
Transfer On Tally Runout Indicator 

ON 8-627 
Transfer On Truncation Indicator OFF 

8-614 
Transfer On Truncation Indicator ON 

8-617 
Tra~sfer On Zero 8-630 
Transfer Unconditionally 8-607 

TRANSLATE 
Bit Strings and Index Table of 

Translate Instruction 5-85 
Compare Characters and Translate 

8-145 
Test Character and Translate 8-583 
Test Character and Translate in 

Reverse 8-586 

i-47 DZ5l-00 



TRANSLATION 
address translation 5-68 
Address Translation Process 5-68 
Move Alphanumeric with Translation 

8-400 
Translation look-aside buffer 5-71 
translation table length 8-401 

TRANSLI TERATION 
transliteration 7-7 

TRAP 
Address Trap Register 4-32 
Virtual Address Trap Register 4-33 

TRC 
TRC 8-609 

TRCTn 
TRCTn 8-611 

TRTF 
TRTF 8-614 

TRTN 
TRTN 8-617 

TRUE ROUND 
true round 8-182, 8-240, 8-245 

TRUNCATE 
Floating Truncate Fraction 8-248 
Unnormalized Floating Truncate 

Fraction 8-636 

TRUNCATION 
Address Truncation 5-83 
Set Zero and Truncation Indicators 

with Bit Strings Left 8-578 
Set Zero and Truncation Indicators 

with Bit Strings Right 8-581 
Transfer On Truncation Indicator OFF 

8-614 
Transfer On Truncation Indicator ON 

8-617 

TSS 
TSS 4-11, 8-620 

TSXN 
TSXn 8-623 

TTF 
TTF 8-625 

TTN 
TTN 8-627 

TYPE 
Alphanumeric Data Type (TA) Codes 

7-27 

'l'ZE 
TZE 8-630 

UFA 
UFA 8-632 

UFM 
UFM 8-634 

UFS 
UFS 8-635 

UNDERFLOW 
Exponent underflow 4-9 
Transfer on Exponent Underflow 

8-589 

UNNORt·~ALI ZED 
Unnormalized Floating Truncate 

Fraction 8-636 

UPPER 
Load Index Register n from Upper 

8-335 
NS Direct Upper (OU) 5-4 
Store Index Register n in Upper 

8-566 

UPPER-BOUND 
upper-bound check 5-85 

VALID 
valid mnemonics for address 

modification 5-2 

VALUE 
base value 5-58 
Binary ~epresentation of Fractional 

Values 2-8 
bound value 5-58 
octal value of the operation code 

8-2 

i-48 DZ5l-00 



( 

( 

( 

VALUES 
IC Values Stored on Faults and 

Interrupts 6-25 

VARIATION 
AD Variation 5-24 
Add Delta (AD) variation 5-24 
Character Indirect (CI) variation 

5-17 
CI Variation 5-17 
DI Variation 5-21 
DIC Variation 5-23 
F Variation 5-17 
Fault variation 5-17 
I Variation 5-19 
ID Variation 5-20 
ID variation 5-21 
IOC Variation 5-22 
Indirect (I) variation 5-19 
SC Variation 5-18 
SCR variation 5-19 
SO Variation 5-25 
Sequence Character (SC) variation 

5-18 
Subtract Delta (SD) variation 5-25 
variations under IT modification 

5-13 
variations Under IT t·iodif ication 

5-17 

VECTOR 
Vector for Standard Descriptor, 

Super Descriptor 8-281 
vectors 3-4 

VFD 
VFD 7-13 

VIRTUAL 
Mapping The Virtual Address To A 

Real Address 5-71 
Virtual address 3-2 
Virtual Address 5-72 
Virtual Address Generation (ES) 

5-64 
Virtual Address Generation (NS) 

5-59 
Virtual Address Generation, Super 

Descriptor 5-61 
Virtual Address Trap Register 4-33 
Virtual Memory 3-1 
Virtual Memory Addressing 5-57 
Virtual Memory Instructions 7-58 

VIRTUAL (cont) 
Virtual Memory-Generated Faults 

6-10 

WATER 
(HWMR) 4-24 
High Water Mark Register 8-109 

WORD 
Indirect Word 5-40 
Indirect Word Format 5-16 
INSTRUCTION WORD FORMATS 8-7 
Locating the page table directory 

word 5-72 
Machine Word 2-1 
Page Table Base Word (PBW) Format 

5-69 
Page Table Directory Word 5-72 
Page Table Directory Word (PTDW) 

Format 5-68 
Page Table Word (PTW) Format 5-70 
Store PTWAM Directory Word 8-555 
Subtract Word Displacement from 

Address Register 8-572 
word address 5-35 
Word and Double-Word Operations 

5-84 

WORD PAIR 
Read Connect Word Pair 8-437 
Read Interrupt Word Pair 8-442 
Set Interrupt Word Pair 8-515 

WORKING 
Base working space address 3-10 
Load Working Space Registers 8-333 
Standard Descriptor With Working 

Space Number 3-10 
Store working Space Registers 8-564 
Super Descriptor With working Space 

Number 3-12 
Working Space 0 1-8 
working space number (WSN) 3-2 
working space register 3-14 
working space registers 3-9 
WORKING SPACE REGISTERS (WSRn) 4-21 
working spaces 3-1 
Working Spaces 5-58 
Working Spaces and Pages 3-2 

WSN 
Extended Descriptor With Working 

Space Number 3-13 

i-49 DZ51-00 

\ 



WSN (cont) 
working space number (WSN) 3-2 
WSN 5-68 

WSPTD 
WSPTD 5-68, 5-72 

WSR 
WSR 3-9 

WSRN 
WORKING SPACE REGISTERS (WSRn) 4-21 

XO/GXO 
XO/GXO Loading Xn/GXn 8-123 

XEC 
XEC 8-637 

XED 
XED 8-639 

XN 
! NDEX REG! STERS (Xn) 4-6 

Y-PAIR 
Y-pair 2-2 

ZERO 
Floating Set Zero and Negative 

Indicators from Storage 8-247 
Move with Zero Suppression and 

Asterisk Replacement 7-54 
Move with Zero Suppression and Blank 

Replacement 7-55 
Set Zero and Negative Indicators 

from Storage 8-576 
Set Zero and Negative Indicators 

from Storage and Clear 8-577 
Set Zero and Truncation Indicators 

with Bit Strings Left 8-578 
Set Zero and Truncation Indicators 

with Bit Strings Right 8-581 
Store Zero 8-567 
Transfer On Minus Or Zero 8-593 
Transfer On Zero 8-630 
Working Space 0 1-8 
Zero flag 7-43 

\1. 

i-50 DZ51-00 



( 



( 

• 
' .. ". 

67 A2 DZ51-00 


