IGOINTENVATIEILIL

CP-6

APL

REFERENCE

MANUAL

SOIFINAAIKIE

CONTROL PROGRAM-SIX (CP-6)
APL REFERENCE MANUAL

SUBJECT

Description of the APL Programming Language Elements, Statements, Func-
tions, and System Commands

SOFTWARE SUPPORTED
APL D00 on CP-6 Operating System Release D00.

ORDER NUMBER
- CE38-04 : May 1986

Honeywell

Preface

This document contains reference information for the DO@ release version of CP-6 APL.

The Los Angeles Development Center (L.A.D.C.) of Honeywell Information Systems, Inc.
has developed Computer Aided Publications (CAP). CAP is an advanced text processing
system providing automatic table of contents, automatic indexing, format control,
automatic output of camera—ready mosters, and other features. This manual is a
product of CP-6 CAP, with special handling for APL characters.

Readers of this document may report errors or suggest changes through a STAR on the
CP-6 STARLOG system. Prompt response is made to any STAR against a CP-6 manual, and
changes will be incorporated into subsequent releases and/or revisions of the
manuals.

The information in this publication is believed to be accurate in all respects.
Honeywel| Information Systems cannot assume responsibility for any consequences
resulting from unauthorized use thereof. The information contained herein is subject
to change. New editions of this publication may be issued to incorporate such
changes.

The information and specification in this document are subject to change
without notice. Consult your Honeywell Marketing Representative for
product or service availability.

(© Honeywell Information Sysstems Inc., 1986 File No.:1W13

ii Preface CE38-04

CONTENTS

Page

Section 1 Intreduction. L L L 0L e e e e e e e e e 1-1
Section 2 Using APL « o v v v v v e e e e e e e e e e e e e e 2-1
Logging On. . . e 2-1
General APL Input e 2-2
Character Set « L Lo oo e e e e e e e e e e e 2-2
Names . . . e e e e e e e e e e e e e e e e e e 2-3

User Input versus Computer Output e e e e e e e e e e e e e e e e e e 2-3

Line Corrections during Input o000 2-3
Execution and Definition Modes. 0.0 2-4

Prompts . . e 2-4
Durect-Llne Prompt . . e e e e e e e e e e e 2-5
Function—-Line Prompt. . e e e e e e e e e e e 2-5
Quad Prompt . . . N e e e e e e e 2-5
Quote—Quad Prompt 2-6

Comments. .o 2-6

Control Keys. . . e e e e e e e 2-6

Statements ond System Commands e e e e e e 2-6
Variables and Functions . . e e e e e e e e e e .. . 2-7
Defined Functions . . . e e e e e e e e e .. . 2-7

Section 3 Common Elements in APL 3-1

Constants . . e e e e 3-1

Numeric Constants c e e e e . . . 3-1

Character Constents e e e e e e e e .
Vector Notation« . i L 0t et e e e e e e e e e e e e 3=-2

Names . . . e 3-3

Name Format - e e e e e et e e e e e e e e e e e e e e e e e e e 3=3

} Nome Usage. . e e . .. 3-4
Variables 3-5

Local and Globol Varlubles. 3-5

Local Variables 3-6

Arrays and Indexing L . L L 0 v e e e e e e e e e e e e e 3-8
Indexing of Arrays. « « ¢« « t b i i e v e e e e e e e e e 3-9
Functions and Arguments 0 L0 0 e e e e e e e e e 3-13
Axis Operator . . . e 3-14
APL Functions and Operotors e 3-14
Scalar Function Summary L 000 b e e e e e e e e 3-14
Mixed Function Summary. o e s e e e e e e e e e e e 3-22
Operator Summary. e e e e e e e e e e e e e e 3-31
Defined Function References . e e e e e e e 3-35
Assignment.

. e e e e 3-36
Simple Assngnment .

L 338

e e e e & s s

Multiple Assignments. . B 3-37
Vector Assignment . e e e e e e e e e e e 3-37
Indexed Assignment. 3-37
Selective Assignment. 3-38
Input/Output. 3-38
Input/Output DeV|ces. e 3-38
General Input/Output. e e e e e e e e e e e 3-39
Types of Input. . . e e e e e e e e e e e 3-39
Direct Input. . . e e e e e e e e e e 3-39
Evaluated Input 3-39
Quote—Quad Input e e e 3-41
Output. e e e e e e e e e e e e . e e e e 3—-41
Section 4 Expresslon Evoluatlon e e e e e e e e e e . e e e e 4~-1
Order of Evaluation . . . e e e e e e e e e e e . .. 4-1
Right to Left o ¢ oo o . . 4-1
Precedence of Functions 4-1
Parentheses . . . e e e e e e e e e e e e 4-1
Precedence of Operators e e e e e e e e e e e e 4-2

CE38-94 Table of Contents iii

Va
Defa
Er

CONTENTS (cont)

lue of a Variable versus its Name
ult Qutput.
rors and Breaks . . . e e e e e e

Section 5§ APL Primitive Functlons e e e e e e :

Scal
Ar

ar Functions. . . e e e e e e e e e
ithmetic Functnons

+ Function (Conjugate, Add:tlong

- Function (Negate, Subtraction e

X Function (Signum, Multiplication) . .

+ Function (Reciprocal, Division) .

* Function Exponentlol Exponentlotlon)

@ Function (Natural Logarithm, Logorﬁthm)

[Function (Ceiling, Maximum) .

L Function (Floor, Minimum) . .

| Function EAbsolute Value, Residue). ..

O Function (Pi Times, Circular)

! Function (Factorial, Binomiol). e e
Relational Functions. e e e e e e

< Function (Less Than). Ce .

< Function (Less Than or Equol) ..

= Function (Equals) .

2 Function (Greater Than or Equol)

> Function (Greater Than) e e e

Function (Not Equal) e e e e e
Logical Functions . . e e e e e e

Function (And, LCM) e e e e e
Function (Or, GCD). e e e e e e

Function (Nand)
Function Nor;. e e e e e e e e e e
Function (Not

Mixed Functions . . o e e e e e e
Function (Roll, Deol) ..
Function (Index Generator, Index Of)

Op

Function (Enclose). e e e e
Function (Disclose, Plck)

Function (Depth, Equnvalence)

Function (Ravel, Catenation, Lamnnotuon)
Function Shape, Reshape)
Function (Reversal, Rotatlon)

Function ETronspose)

o Mesd 40000 nvul\s-ox X < >

Function (Grade-up)

Function (Grade—Down)

Function (Base Value, Decode)

Function Representotlon, Encode)
Function (Format)
Function (First, Toke) ..
Function (Drop) . e e .
Function (Type, Membershlp)

Function (Execute). . . .

B Function (Matrix Inverse, Matrix DlVlde)
erators . . e e e e e e e e
Reduction d/ Operotor . ..
Compression A/ Operotor (Repllcate) ..
Scan d\ Operator. e e
Expansion A\ Operator

Inner Product f.g Operator. e e .
Outer Product o.d Operator.
Each Operator

Section 6 APL Statements.

Comment Statements. e e e
Branch Statements
Statement Labels. . . .

Assignment and Non-assugnm;nt Stét;menis:

Compound Statements
Section 7 Defined Functions . . . e
User-Defined Functions.

iv Table of Contents

D Y

D S T S S D S T T

L T R Y

Page

4-2
4-3
5-1

5-3
55

5-8
5-8
5-9
. 5-10
. 5-11
. 5-12
5-13
5-13
. 513
. 5-14
. 5-14
. 5-15
. 5-15
5-16
5-16
5-16
517
5-18
5-18
5-19
. 5-19
. 519
. 5-20
. 5-21
. 522
. 5-23
5-26
5-26
5-27
5-31
5-33
5-34
5-35
5-37
5-39

5-40
5-41
5-43
. 5-45
. 5-45
. 5-47
. 5-48
5-49
. 5-50
. 5-53
. 5-63

6-1
6-2

6-5
6-6
7-1
7-1

CE38—-04

CONTENTS (cont)

Function Definition Mode.
Syntax of Defined Functions . . Coe e .
Variables Local to a Defined Functlon .

Dummies . e
Body of a Functlon e e e e e e e e e e e e
Locals. « o v v vt e e e e e e e e

Labels. .

Changing Suspended Functnons

Directives.

Search and Replocement Strlngs e

Displaying User—defined Functions
Displaying All Lines.

Displaying One Line . e e e e e e e e e
Displaying a Range of Llnes .. e e e
Displaying Lines Containing a Strlng .
Displaying the Next Occurrence of a Strlng

Editing User—defined Functions. e e e e
Deleting a Line
Inserting a Line. e e e e e e e e e e
Replacing a Line. . . e e e e e e e e e
Issuing Multiple Dlrectlves . C e e e .
Modifying a Line. . . e e e e e e
Changing a Function Heoder e e e e e e

Screen Editing. . . e e e e e e e e e e

Issuing System Commonds e e e e e e e e e

Function Execution.

Recursive Functions .
Suspending Execution.

Locking Functions . .

System Functions Controlllng Defuned Functuons
OTRACE System Function (Tracing Executlon;
OsToP System Function (Stopping Execution
OCR System Function (Canonical Representotnon)
OFx System Function éle Definition). .
DAT System Function (Function Attrlbutes)

Section 8 System Commands . . e .
Workspace Concept

Active Workspace. o . .

Saved Workspace . e e e e e

Continue Workspace.

Initiating an APL Session
User Accounts
Command Processor . e e e e

System Command Summary. . . .

CATCH Intercepting Assugnments .
CLEAR Clearing Workspace . . .

o s e s 4 e s e

CONTINUE Saving Active Workspace ond Leovnng APL .

COPY Copying from Saved Workspace.
DIGITS Specifying Numeric Print Precnsuon .
DROP Dropping a Saved Workspace. . . .
EDITOR Selecting the APL Function Edntor . .
END Exiting APL. . . . ‘e e
ERASE Deleting Objects From Actlve Workspoce ..
ERROR Selecting Error Message Information Level.
FNS Listing Global Function Names.
GO Resume Execution.
GROUP Creating a Group . . . e e e e e e e
GRP Listing Members of a Group e e e e e e e e
GRPS Listing Names of Groups
IBEX Issuing CP-6 Commands
LIB Listing Nomes of Saved WOrkspoces .

o

LOAD Retrieving a Saved Workspace. . : :
NMS Displaying Global Names. . . e
OBSERVE Observing Intermediate Results . e .

OFF Logging Off. . . . e .
OPR Communicating with Computer Center Operat

CE38—-04 Table of Contents

.

e e e e & s s e

® 6 & 4 4 e+ e+ e e & 6 e s s e s s s e e s e s 4 @

P T T

o e o s e e

o 4 e e o

« e s s e

e o e o o e

L T R T

e o & o o

o e e e o s s e

s e & s e s+ s e s e

Page

7-1
7-2
7-4
7-4
7-5
7-5
7-5
7-6
7-6
7-8
7-8
7-8
7-9
7-9
7-10
7-10
7-11
7-12
7-13
7-14
7-15
7-15
7-17
7-18
7-18
7-20
7-20
7-20
7-22
7-22
7-23
7-25
7-26
7-27
7-28
8~1
8-2
8-2
8-2

8-3

8-4

8-4

8-4

8-10
8-13
8-13
8-15
8-16
8-17
8-18
8-19
8-19
8-20
8-21
8-21
8-22
8-23
8-24
8-24
8-25
8-26
8-27
8-27
8-29
8-30

CONTENTS (cont)

OPRN Communicating with Computer Center Operotor .

ORIGIN Setting Index Origin. . . .

PCOPY Copying from Saved Workspoce . .
QLOAD,)QCOPY, and)QPCOPY Quiet Commands .
QUIT Leaving APL
REPORT Selecting the Functlon Stop Dlsploy .
SALVAGE Copying from Saved Workspace . .
SAVE Saving a Workspace. e e

SEAL Saving a Sealed Workspoce .

SET Changing Assignments of Input)Output Streoms :

SI Controlling the State Indicator .
SIC Clearing the State Indicator . .
SIL Listing the State Indicator Lines.
SINL Listing the State Indicator .
STEP Single Step Execution . . .
TERMINAL Specifying Input/Output Devuce
VARS Listing Global Variable Names .
WIDTH Setting Line Width . .
WSID Identifying the Active WOrkspoce
Section 9 Report Formatting
Format Specifications . .
Format Specifications versus Doto Types .
Formot Statement gLeft Argument). . . .
Format Data List (Right Argument) -
Operation of OFMT e e
Formatting Scalar Arguments
Formatting Vector Arguments
Formatting a Vector on One Line .
Formatting Matrix Arguments . ..
Picture Format.
Forms of Output Values.
Format Qualifier and Afflxture Codes.

D S T

Format Symbo! Substitution. : :
Format Result . . e e e e e c e e
Format Error Reports e e e e e e e e e e

Formatting Aids . . .
OPCGE Function Sk:p to New Output Poge)
ONLS Function (Number of Lines Remonnlng)
OHDR Function (Set Page Headlng; e
OVFC Function (Set Line Spacing
OXL Function (Transliate Text)
Section 10 Execution Stops .
Normal Stop
Execution Break

.

.«

D Y
.
.

Stop For User Input . . .
Stop Control Vector . . .
Error Stop.
Sidetracking On Errors And Breoks
0SM Function (Set/Query Sidetrack Matrix).
Dynamics of Sidetracking. . ..
Considerations after Gaining a Sldetrock. o e
Aids for Sidetrack Users. . . e e e e e
OERN Function Error Number) . e
OERF Function (Error Functlon)
OERM Function (Error Message). .
OFRL Function (Error Line)
OERP Function (Error Position) e e e e e
(JERX Function (I/0 Error). e e e e e
OERH Function (Error Help) . e e e e
OERS Function (Error Slmulotlon) e e e
Section 11 System Functions and Varuobles e e e e
0OCT variable (Comparison Toleronce) . e
070 variable (Index Origin). e e
0LX Variable (Latent Expresslon) e
OPW Variable (Platen Width). . ..
0PS variable (Positioning and Spocnng) ..

.
o o
.

o e e v o

vi Table of Contents

« e s o o

o e o s e s

e ¢ o e s s e

o e e o s s s

Page

8-30
8-31
8-31
8-32
8-32
8-33
8-33
8~-34
8-35
8-35
8-36
8-38
8-38
8-38
8-39
8-40
8-41
8-42
8-43
9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-3
9-4
9-4
9-5
9-5
9-6
9-7
9-7
9-7
9-8
9-8
9-8
9-8
9-9
9-1@
10-1
10-1
101
10-2
10-2
10-3
104
10-7
10-8
10-9
10-10
ie-1e
1e-10
10-10
10-11
10-11
10-11
1e-11
10-12
11-1
11-2
11-2
11-2
11-2
11-2

CE38-04

0rPP Variable
ORL Variable
0sP variable
s4 variable
System Functions.

CONTENTS (cont)

Print Precision) . Lo
Random Link) . . e e
Session Parameter)

Stop Actlon)

o e e

Workspace Monogement Functlons
Namel ist and Canonical Representotlons)
System Functions for Function Definition.

OLoK Function
OST Function
OTR Function

(Lock Functlong
(Set/Query Stop
(Set/Query Trace) .

Workspace Management System Functlons .

04v Function
OCPU Function
OCVT Function
OpL Function
OEX Function
BEXG Function
OF! Function
OGRP Function

OIBEX Function

(Atomic Vector) .
SCPU Time Used)
Convert)

(Delay) . . e
(Expunge)

(Expunge Globuls)
(Fix Input)

(Return Group Members)
(IBEX Expunge).

OIBLET Function (Set/Query IBEX-VorlobIe)

0IBNL Function

(IBEX Name!list)

QIDLOC Function (Identlfler Locotlon)

OLC Function
OLGT Function
ONC Function
ONCG Function
ONL Function
0oNL Function
0ovH Function
ORM Function
ORMG Function
0SCT Function
OS! Function

(Line Chain).
(Logon Time) .
(Name Classuflcotaon)

(Name Correspondence of Globol)

(Namel ist). e e e e e
éOnlnne) e e e .
Overhead Tlme)
(Room). . .
EGIobol Room)
Session Tlme)

(State Indicotor) .

OSITEID Function (Site ID) :

OSITENAME Func

tion (Site Nome)

(OSTEPCC Function (Step Condition Codes)
OSYSID Function (Sysid). .. .

0TS Function
OTT Function
DUA Function
OUL Function
VI Function
OVERSION Functi
WA Function
WSID Function

(Time Stomp) e e e
Terminal Type) .
User Account). ..
User Load)
(Ver:fy Inputg ..
ion (Version). .
(Workspace Avonlable)
(Workspace Identnfner)

e e s

Shared Variabie System Functions.

OSvC Function
OSV0 Function
0svg Function
OSVR Function
OsvS Function
OSvN Function
OSC Function

Shared Variable Controls) .
Shared Variable Offer; ..
Shared Variable Query
Shared Variable Retroct)
Shared Variable State).
Shared Variable Process Name)
(State Change). ..

Text Editing System Functions

OTIX Function
OTLEX Function
[SSS Function
(OSSR Function
OSRP Function
[OSCP Function

(Text Index) . ..
(Text Lexemes) .
Substring Seorch)

String Search and Reploce)
Substring Replace).
String Compare)

Terminal 1/0 System Functions

OTIN Function

(Terminal Input)

OTATTR Function zTermlnal Attrlbutes)

OTTIME Function

CE38-04

Terminal Timeout) .

Table of Contents

.

e e s o a4 s+ »

e e s e s s e

Page

11-3

11-3

11-3

11-3

11-3

11-3

11-4

11-4

11-4

11-5

11-5

11-6

11-6

11-7

11-7

11-8

11-8

11-9

11-9

11-10
11-11
11-1
11-12
11-12
11-13
11-14
11-14
11-15
11-15
11-16
11-17
11-17
11-18
11-18
11-19
11-20
11-20
11-20
11-21
11-21
11-22
11-22
11-23
11-23
11-24
11-24
11-25
11-25
11-26
11-27
11-28
11-29
11-30
11-30
11-31
11=-31
11-32
11-34
11-34
11-35
11-36
11-37
11-37
11-38
11-38
11-39

vii

CONTENTS (cont)

OTECHO Function (Terminal Echo).

0OTSQ@Z Function (Terminal Mnemonic Tronslotton) .

DTWINDOW Function (Terminal Windows) ..
Section 12 CP-6 APL File I/0.
File Information Functions. . .
OFNUMS Function gNumbers of Open Flles)
OFNAMS Function (Names of Open Files).
OFID Function (File Identifier).
Opening, Closing, and Deleting Files.
OFOPEN Function (Open File).
OFCLOSE Function $CIoS|ng and Renomlng Flles)
OFERASE Function (Close aond Delete Flle)
OFCLEAR Function (Close All Open Files).
Reading and Writing Records .
OFAPPEND Function (Append Record to Flle)
OFREAD Function (Read a Record).
OFWRITE Function (Write or Reploce a Record)
OFDROP Function 2Delete Record from File).
OFRDCI Function
File Access Controls. . e e e e e
File Access Matrix. . . .
OFRDAC Function EReturn File Access Motrlx) .
OFSTAC Function (Store File Access Controls) .
Coordinating Shared Files . . . e e e
OFENQ Function EHold o Record) ..
OFDEQ Function (Release Record or Flle)
File Status Functions .
OFRKEY Function 2Return Ke Values)
OFSIZE Function (File Size
OFKEYINT Function (Set Key Intervol)
OFKEYS Function (Return File Keys) .
OFCRPT Function (Set File Encryptlon Seed)

0OFMA Function (Return File Monogement "Account
OFLIB Function (Return File Nomes)
Record Field Descriptions . . .
DFFLDS Function (Return Record Flelds) .
Alternate Indexed Files
Specialized File Options. . . .
Section 13 CP-6 APL I-D-S/I1 System Functlons .
Subschema Informotion Functions
ODBNAMES Function ngst Subschema Nomesg .
ODBTYPES Function Subschema Name Types .
I-D-S/I1 Function Arguments
Name and Set Information. . .
DDBANLZ Function (Anelyze Subschema Nomes) .
[DBOWNER Function (Set Owner). e .
ODBMEMBER Function §Set Member) . .
ODBINFORM Function (Database Reglster) .
Accessing Data.
ODBFROM Function (Retrieving Dota) e e
ODBTO Function (Storing Data). ..
Stondard I-D-S/I1 Functions . . .
1-D-S/11 Error Reporting and Handling .
ODBUSE Function (Use Proceduresg
Section 14 Packages . . . e e .

e 4 s s e s s e s s e s e

L T T

e s s s

Package System Functlons . : : : : . : : .
OPACK Function gPockoge Creote; e e e e
OPINS Function (Package Insert e e e

OPNAMES Function (Package Names) .

OPNC Function (Package Name Correspondence)
OPVAL Function éPockoge Value) . ..
OPDEF Function (Package Deflnltlon)

OPPDEF Function (Protected Peckdge Deflnltlon))

OPSEL Function (Package Select).

viii Table of Contents

Return Component Information) :

Library or Account Information. . . 5 .

s e e

R S S S S S A Y

e e s e s

CT R IY

I S S S Y

e s e e 4 s s e .

« s e o s e

T S S S

L T TS

e s e e o e s e s s e

e e e e e o o s e s o

o e e e e e o

s s e e o s e s e

e o e s s e o

e s & s & o e

e s s e e e »

o 6 4+ & 4 e s e e & o

R S A S A R)

Page

. 11=-39
. 11=39
. 11-40
12-1
12-3
. 12=3
. 12-3
. 12-4
12-4
12—-4
12-6
12-7
12-7
12-8
12-8
12-9
12-10
12-1@
12-11
12-11
12-12
12-12
12-13
12-14
. 12-14
. 12-14
12-15
12-15
. 12-16
. 12-16
. 12-16
. 12-17
. 12-18

L S T L T T Y

. 12-18
. 12-18
. 12-20
12-22
12-23
12-23
13-1
13-2
13-2
13-2
13-4
13-5
13-5
13-5
13-5
13-6
13-6
13-7
13-7
13-7
13-9
13-9
141
14-1
14-2
14-2
14-3
14-3
14-4
14-5
. 14-5
. 14-6

e e e 8 e e e e o o @

e e s+ s s s s e s e s e s o s o

CE38-04

CONTENTS (cont)

OPEX Function (Package Expunge).
OPLOCK Function (Package Lock)

Section 15 CP-6 APL Graphics. . .

Graphics Output Functions . .

OGRLINE Function (Draw Llne)
OGRMARK Function (DPraw Marker Symbols)
OGRPOLYGON Function (Draw Polygon)
OGRDRAW Function (Draw Picture).
OGRTEXT Function (Draw Text)

DOGRWORLDC Function (Map to World Coordlnates)

OGRNDC Function (Map to NDC) .

OGRTEXTX Function (Inquire Text Extent)

OGRCP Function (Current Posutnon)
Graphics Segment Functions.

OGRSEGOPEN Function (Creote a Retolned Segment)
OGRSEGCLOSE Function (Close Retained Segment).
OGRSEGDEL Function gDelete Retained Segment)
Rename Retained Segment)
OGRSEGSURFS Function (Inquire Segment Surfaces)
OGRSEGS Function (Inquire Retained Segment Names).

OGRSEGREN Function

OGRSEGCURR Function (Inquire Open Segment)

OGRTSEGO Function §Creote Temporary Segment) .

OGRTSEGC Function (Close Temporary Segment)

OGRTSEG Function (Inquire Open Temporary Segment):

OGRSEGVISIBILITY Function §Segment Visibilit
OCRSEGHIGHLIGHT Function (Segment Highlight

OGRVISIBILITY Variable (Set/Inquire VISlblllty
OGRHIGHLIGHT Variable (Set/lnqulre nghllghtlng)

Graphics Attribute Variables. .
OGRMARKER Variable (Marker Symbol)
OGRPINS Variable (Polygon Interior Style)
OGRPES Variable (Polygon Edge Style)
OGRLW Variable §L|ne Width). .
OGRLI Variable (Line Index;

OGRLS Variable (Line Style). .
OGRPEN Variable (Pen).
OCGRFONT Variable (Font) . .

OGRTEXT!I Variable iText Index)
(OGRCHSIZE Variable (Character Slze)
OGRCHPLANE Variable (Character Plane)
OCRCHUP Variable (Character Up).
OGRCHPATH Variable (Character Poth)
OGRCHSPACE Variabie (Character Spoce)

OGRCHJUST Variable ECharocter Justlflcotlon)

OGRCHPREC Variable Character Precnsnon)
OGRFILL Variable (Fill Index).
OGRVERTEX Variable (Vertex Indlces)
Graphics Viewing Variables. . e
OGRWINDOW Variable (Wlndow) e e
OCRUP Variable (View Up) . e e e
OGRSPACE Variable (NDC Spoce) ce .
OGRVIEWPORT Variable (Vlewport)
OGRVREFPT Variable (View Reference Polnt)
OGRVPLNORM Variable £V|ew Plane Normal).
OGRVPLNDIS Variable (View Plane Distonce)
OGRVDEPTH Variabie (View Depth). .
OGRPROJECTION Variable (Projection Type)
Window Clipping Variables . . .
OGRCLIP Variable (Window Cllppnng)
OGRFCLIP Variable Front Plane Cllppln)
OGRBCLIP Variable (Back Plane Clippingg
OGRCOORD Variable (Coordinate System Ty e)
OGRWORLD Variable (World Transformation
Graphics Control Functions and Variables.

QOGRINIT Function Elnltlollze APL Grophlos) :

OGRDONE Function (Terminate APL Graphics).

CE38—-04 Table of Contents

D R T O R

o e e s e . e e e o o a4 s e

e & s e e &+ s ¢ o s .

L A)

T S S S R S)

e e s s e

e & o & 2 e & o @

e s s s e .

4 e & & o e + & & 2 a4 s e e s s s s s s e s o

Page

14-7

14-7

15-1

15-2

15-3

15-3

15—4

15-5

15-6

15-7

15-8

15—-9

15-10
15-10
15—-10
15—-11
15-12
15—-13
16-13
15-14
15-15
15-15
15-16
15—-16
15-17
15-18
15—-19
15-1¢
15-20
15-21
15-21
15-22
15-22
15-23
15-23
15-24
15-24
15-25
15-25
15-26
15-26
15-27
15-27
15-28
15-28
15-29
15-29
15-30
15-30
15-31
15-31
15-32
15-33
15-34
15-34
15-35
15-36
15-37
15-37
15-38
15-38
15-39
15—-40
15—-41
15—41
15—-42

CONTENTS (cont)

OGRINITSURF Function glnltnolnze View Surface) .
OGRTERMSURF Function (Terminate View Surface).
OGRCAPABILITIES Function (Inquire Capobllltues)
OCRSURFACE Function (Select View Surface). .
OGRUNSURFACE Function (Deselect View Surfcce).
OGRSURFACES Function (Inquire Selected Surfoces;
OGRIMMVISIBILITY Function (Immediate Visibility
OGRCURRENT Function (Make Picture Current) .
OGRBATCH Function (Control Batching of Updutes)
OGRCSTATUS Function (Inquire Control Stotus)
OGRFRAME Function (New Frame). C
(GRCOLMODEL Function %Color Model)

OGRCOLINDEX Function (Set/Inquire Color Ind»ces)
OGRINTINDEX Function (Set/Inquire Intensity Ind»ces)
OGRBACKGROUND Variable (Bockground Index).

OGRPIXEL Variable (Pixel Array).

OGRPIXELORG Variable (P:xel Pattern Orlgln)

Section 16 Blind 1/0. . . . S
Using Blind I/O « .« o oo ...
Blind I/0 on a Device

Accessing Files with Blind I/O ..
Blind I/0 System Functions. . . .
OBBIN Function (Set and Query Blnory Mode)
OBSIZE Function (Read Size). . . .

OBVFC Function (Set and Query VFC)

OBTRANS Function (Set and Query Tronsparency)
(OBLINES Function (Lines Remaining) .

OBKEY Function (Return Key). .
OBPRECORD Function (Position Record) .
OBPFILE Function (Position File) . .

OBREW Function (Rewind).

OBREWRITE Function (Rewrite Record)
0OBSEED Function (Encryption Seed).

.

L Y

OBRR Function (Re—Read Mode)

OBRS Function (Record Size). .. e e e

[OBKR Function (Key Returned) e e
OBCLOSE Function (Close Blind I/O Chonnel) e
OBPAGE Function (Skip to New Page). . . . e e e e
OBDELREC Function (Delete Record)
OUNSET Function (Unset DCB) e e e e e e e e e e

Forms Mode. e e

Field Defunltuon Matrlx . .
Field Definition Matrix Columns .
OBFLD Function (Field Definition).
OBMFLD Function (Modify Fieldg .
OBSFLD Function (Select Field
OBRFLD Function (Release Field;.
OBXFLD Function (Expunge Field).

Appendix A CP-6 APL Parameters. e e e .
Arithmetic Limits C e e e e
Array Limits.

System Variables. . .
Implementation Defoned System Vorloblos

e e e e
* e e

.
D Y

Trigonometric and Hyperboluc Algornthms .
Numeric Algorithms.

Defined Functions e e e e e e . .
APL Input aond Output.
Miscel laneous Limits. e
File System

e 5 e & 4 o s+ e s+ 4 4 e 0 e s e .
.

Semi Numeric Algorithms
Pseudo—random Number Generction I . .
Deal Function . . e e e e e e e P .

CP-6 Dependent Algorlthms C e e e e e e e e e e .
Array Representation.

Consistent Extensions to the ISO APL Stondard N
Nested Arrays e e e e e e e e e e e

e e e e
.

x Table of Contents

Page

15-42
15-43
15—-44
15-45
15—-46
15—-47
15-47
15—-48
15-48
15-49
15-50
15-50
15-51
156-62
15-53
15-63
15-54
16~1
16-1
16-2
16-3
16-4
16—-4
16-5
16-5
16-6
16-6
16—-6
16-7
16-7
16-8
16-8
16-8
16-9
16-9
16-10
16—-10
16-11
16-11
16-12
16-12
16-13
16-13
16-14
16-16
16-17
16-18
16-18
A-1
A-1
A-1
A-1
A-2
A-2
A-2
A-2
A-2
A-2
A-3
A-3
A-3
A-4
. A4
. A5
. A5
A-5

CE38-04

CONTENTS (cont)

Additional Primitive Functions. .

Extensions to Primitive Functions .

Additional Primitive Operators. .

Extensions to Primitive Operators .

Additional System Functions .

Extensi

Extensions to Defined Functions . . .

ons to System Functions. .

Additional System Variables . .

Extensi

ons to System Variables.

Additional System Commands.

Extensi

Miscell
Appendix B
Appendix C

ons to System Commands .
aneous Extensions. e .
CP-6 APL Character Set . .
Error Messages .

.

e e e e e
.
D)

.

Appendix D CP-V Compatible Workapuce Functtons

Appendix E

Honeyweli! CP—-6 APL Summary .

Scalar Primitive Functions.
Mixed Functions
Primitive Operators .
System Variables.
Special Symbols .)

Function

Definition .

Defined Function Contrels :

Sidetracking on Errors and Interrupte . : :

Error Control Functions

CP—-6 APL

System Functions

Shared Variable Functions . . .

File 1/0.

. . ¢ e & e s e

Text Editing Functlons

I-D-S/11 Functions. . .

Terminal Control System Functlons .

Report Formatting Functions

Blind I/0 Functions

Index . . e e e e e e e e
TABLES
Table 3-1. Effect of Shadowing. . .
Table 3-2. Scalar Functions
Table 3-3. Mixed Functions.
Toble 3-4. Operators. . . . e e e .
Table 5-1. Circular Functlons .
Table 5-2. Default Collating Sequence
Table 5-3. 1Identity Values for Scalar
Table 7-1. Function Header Syntax .
Table 7-2. Defined Function Examples.
Table 7-3. Displaying and Editing Defined Functuon
Table 7-4. Screen Editing Control Charaocters.
Table 7-5. Screen Editing Directives.
Table 8-1. System Command Summary .
Table 9-1. Format Specifications. . . .
Table 9-2. Default Formatting Symbols
Table 10-1. Events Subject to Sidetracking. . . .
Taoble 106-2. Sidetracking Special Action Table .
Table 11-1. System Variables. . .
Table 11-2. CP-6 APL Terminal Types . .
Table 11-3. Window Column Descriptions. . .
Table 12-1. File 1/0 Record Types . . .
Table 12-2. File Open Options . .
Table 12-3. CP-6 APL File Access Permnssuons.
Table 12—4. Record Field Datatypes and Ruies. .
Table 16-1. Blind 1/0 Field Rendition
Table 16—~2. Blind I1/0 Field Input Attributes. .
Table B-1. CP-6 APL Character Set . . .
Table C-1. Error Messages

CE38-04

Table

. .

e ¢ e e o

e o s e

o e

e s e o e s
.
.

s e s e & e

« e s e

Array e
Functions .

-

. .
.
e e e e .

.

o e e
.« .
. -

.

Y

Attributes.

.

of Contents

Y

.
.

.« .
s .

o« s e e .

L R T)

e e 4 e s s e s e s

R S S)

Page

A-5
A-6
A-7
A-7
A-7
A-7
A-8
A-8
A-8
A-8
A-8
A-9
B-1
C-1
D—1
E-1
E-1
E-3
£-4
E-4
E-5
E-6
E-6
E-7
E~7
E-8
E-8
E-9
E-10
E-11
E-11
E-12
E-13
i-1

3-7
14
3-22
3-31
5-11
5-32
5-46
7-2
7-3
7-11
7-18
7-19
8-4
9-1
9-7
10-6
10-9
11-1
11-22
11-40
12-2
12-5
12-12
12-21
16-13
16-14
B-2
c-1

xi

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

FIGURES

Figure
Figure
Figure
Figure
Figure

xii

E-1.
E-2.
E-3.
E-4.
E-S.
E-6.
E-7.
E-8.
E-9.
E-10.
E-11.
E-12.
E-13.
E-14.
E-15.
E-16.
E-17.
E-18.
E-19.
E-20.
E-21.
E-22.
E-23.
E-24.
E-25.

2-1.
6-1.

12-1.
15-1.
16-1.

CONTENTS (cont)

Scalar Monadic Functions
Scalar Dyadic Functions. . . e e e e e e
Relational and Logical Functlons e e e e e e
Mixed Functions.

Operators. . . e e e e e e e e e e e
System Vorlubles .
Special Symbols.
Function Header Syntax .
Directive Summary. .
Defined Function Controls . P
Error Numbers . . . e e e e e e
Error Control Functlons -
CP-6 APL System Functions . .
Shared Variable System Functions.
File 1/0 Example Names.
File Functions. . . e e .
File 1/0 Open Optlons e e e e e e e
Text Editing Functions.
1-D-S/11 System Functions . e e e
Terminal System Functions
OFMT Format Controls. ..
Report Formatting Functions . .
Blind 1/0 Example Variable Names.
Blind 1/0 Functions
CP—-6 APL Character Set.

Sampie APL Session. . .
Summary of Common Formats for Bronchlng .
File 1/0 Component Record Format . .
Graphics Output Example.
Forms Mode Screen Display.

Table of Contents

Page

E-1
E-1
E-2
E-3
E-4
E-4
E-5
E-6
E-6
E-6
E-7
E-7
E-8
E-8
E-9
E-9
E-10
.. E-10
.. E-11
. E-11
E-12
E-12
E-13
E-13
E-14

P N)

L T T Y

2-2
12-2

15-2
. . 16-15

CE38-04

About This Manual

This manual

Section 1 presents an overview of CP-6 APL,

is organized in the following manner:

compatibility with the CP—6 operating system.

Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section

Section

2

3
4
5
6
7
8
9

describes
describes
describes
describes
describes
describes
describes

describes

the use of APL.

common elements of APL.

APL expression evaluation.

APL primitive functions.

APL statements.

APL defined functions.

system commands and APL workspace concepts.

APL report formatting.

1@ describes APL execution stops.

11 describes system defined functions and variables.

12 describes APL file 1/0.

13 describes APL I-D-S/I1 system functions.

14 describes system functions for manipulating packages.

15 describes functions and variables used in APL graphics.

16 describes blind I/0.

Appendix A contains information on APL parometers.

Appendix B contains a comprehensive list of APL symbols.

Appendix C contains information on error messages.

Appendix D contains information on APL’s compatibility with CP-V workspace
management, information on APL’'s compatibility with CP-V file input/output, and

summarizes CP-V APL intrinsic functions.

Appendix E contains a summary of CP-6 APL.

CE38-04

Abcut This Manual

its features, capabilities, and

xiii

On-Line HELP Facility

CP—6 APL has an on—line HELP facility.
parameters, and function or command descriptions at the terminal.
topics from the system level (!), enter:

HELP (APL) TOPICS

xiv On—Line HELP Facility

APL users can list syntax formats,

For a list of HELP

CE38—e4

Section 1

Introduction

APL is an acronym for A Programming Language, the language created by Kenneth
Iverson. It is a problem—solving language the symbology of which closely
approximates mathematical notation, making the language extremely attractive for use
by engineers, financial planners, scientists, and statisticians. APL is an
interpretive language designed for use on time—sharing computers. The term
"interpretive language" means that APL does not wait to receive a complete program
prior to compiling each statement into object code and executing it; instead APL
interprets each statement as it is entered and immediately executes it. An answer is
received by the user each time a portion of the total problem is stated.

APL is a powerful language: concise in notation, easy to learn and easy to use. It
has many features that make it attractive for use in business applications where user
interaction and rapid feedback are key requirements. One of APL’s major strengths is
its ability to maonipulate vectors and multi—-dimensional arrays as easily as it does
scalar (single) values. For example, a matrix addition that might require a number
of statements and several loops in other languages can be accomplished as A+B in APL.
It is this type of simplification which best exemplifies APL's concise power.

This enhanced version of the processor is designed for operaotion under Control
Program—6 and is hereafter referred to as CP-6 APL. This manual is intended
primarily for use as a reference document by experienced APL programmers. Beginning
APL users may find it useful to consult an APL primer to augment the information
contained in this manual. Three such publications are "APL—-An Interactive Approach”
by Leonard Gilman and Allen J. Rose (John Wiley Sons, Inc., New York), "A Course in
APL with Applications” by Louis D. Grey (Addison-Wesley Publishing Company, Inc.,
Reading, Mass), and "APL User’'s Guide" by Harry Katzan, Jr. (Van Nostrand and
Reinhold Company, New York).

CP-6 APL incorporates a broad range of improvements, including a number of

improvements that are unavailable on other APL systems. Some highlights of CP-6 APL

include:

o APL Standards Compatibility
CP-6 APL is a superset of the 1SO APL standard.

o On—line and Batch Operation
Complete flexibility of operation is provided. Programs may be developed and
executed in any mode. The batch mode is advantageous for either long execution
times or voluminous output. On—line mode is more advantageous for interactive
program development and moderate amounts of execution time and output.

o Operation from Terminals without APL Characters
APL characters may be represented by combinations of alphanumeric and special
characters in order to allow programs to be created or modified on any terminal
supported by CP-6.

o Input/Output Assignment Control
The CP-6 APL system command,)SET, allows the assignment of normal and 'blind’
1/0 to files and devices such as line printers or magnetic tapes. It is also
used to establish format control over printed output.

o Formatted Output

Three separate formatting functions are available (monadic ¥, dyadic v, and OFNT)
to facilitate the preparation of reports and tables.

CE38-04 Introduction 1-1

File Input/Output

A program—controlled mechanism is provided for file input/output. Any variable
in an APL workspace may be written to a file and later retrieved for subsequent
processing, permitting an APL program to operate on more data than can be
contained in o workspace. APL entities may also be written as data records
without their APL attributes, and non-APL records can be read.

The CP-6 APL file I/0 system operates with all CP-6 file types. File access may
be with numeric keys or character keys. Files may be accessed in shared update
mode, using the CP-6 Enqueue-Dequeue feature to coordinate shared access control.

Compound Statements

More than one statement can be included on o line using diamonds for separation.
Since an item of a compound statement can be a branch, this feature permits
conditional execution control within o single statement of a function.

Blind Input/Output

Blind input/output is o form of device input/output that permits input and output
of character data. It is designed to facilitate the use of screen access modes,
graphics terminals or other special devices with CP-6 APL. Using the)SET
command, blind I/0 may be used to create or access sequential files or to access
devices such as line printers or magnetic tapes.

Easy Function Copying

An entire function can be copied simply by changing the name of an already
defined function.

Replicate

The / function has been extended to permit non—-negative integers in the left
argument. The selected items of the right argument are "replicated" the number
of times indicated in the left argument.

Powerful Function Editor
CP—6 APL permits o range of lines to be specified for display or editing. Within
the range specification, it is possible to request a display of all lines

containing a string or identifier, or to replace all occurrences of a string with
another string.

Enhancements to System Commands

o The)SEAL command provides protected workspaces. When)SEAL is executed, the
current workspace is saved with all user functions locked. A sealed
workspace cannot be accessed by other users unless they are running APL. The
workspace owner retains full access.

o The)TERMINAL command allows independent setting of input and output terminal
translation tables.

o The Quiet commaonds ()QLOAD,)QCOPY ond)QPCOPY) suppress the SAVED message
when loading or copying successfully.

o Options have been added to the)SI command to control function suspension due
to errors.

o The)COPY and)PCOPY commands allow system variables to be copied if named
explicitly.

o The)}SIL command lists the lines in execution within the state indicator.
Availability of Other CP=6 Facilities
A user of CP—-6 APL may use other CP-6 processors such as EDIT, PCL, and FORTRAN

from the same terminal during the same session. An APL workspace may pass
commands to a command processor (e.g., IBEX) ond may link to other run units.

Introduction CE38-04

o The Execute Function
The execute function has been extended to allow the execution of system commands.
o Observation of Intermediate Resulits

The)OBSERVE command permits the user to view intermediate results as APL
executes o statement.

o Single Stepping

The)STEP command is used as a debugging aid. This command causes execution of
one line of a defined function, and then immediately suspends execution.

o Catching Assignments
The)CATCH command is a debugging aid which permits the user to catch (or
intercept momentarily) every assignment to a named varioble immediately following
each assignment. The assignment is "caught" by means of a function defined by
the user according to their debugging requirements.

o Error and Break Control
CP—6 APL has a facility to provide the user with selective and dynamic control
over errors and breaks. Since this facility permits bypassing of standard APL
handling of breaks and errors, it is called the "sidetracking" capability.

o Text Editing Functions

Five system functions are available to facilitate the manipulation of character
vectors in CP-6 APL.

o Shared Variable System Functions

Nine system functions are provided to support the sharing of variables between
the workspaces of consenting CP-6 users. Any CP-6 user may access this facility.

o Defined Function Extensions
A dyadic defined function may be used monadically or dyadically. If used
monadically, the dummy name that references the missing left argument will be
undefined.

o Database Access
System functions are provided to access I-D-S/II datobases. All of the standard
Codasy! DML functions are provided and they are augmented by unique information
functions tailored to the APL environment.

o Packages

Packages provide the ability to manipulate aggregates containing variables and
functions.

o Extended Error Messages

Additional information concerning an error that APL has detected may be displayed
with the)? command.

0 Nested Arrays
Items of an array in CP-6 APL may themselves contain APL arrays. In addition to
extending most existing functions to accept nested arrays, new functions
genclose. disclose, equivalence, type, first, and depth) and o new operator
each) have been aodded. Defined functions, system functions, ond derived
functions are permitted as arguments to operators.
o Vector Notation

CP-6 APL syntaox has been extended to provide a simple notation for the entry of
nested arrays.

CE38-04 Introduction 1-3

Vector Assignment

This mechanism is used to assign each item of a vector to a different name in a
single operation.

Selective Assignment

This capability allows items of an array that are selected by an APL expression
to be assigned new values.

Sorting

The grade—-up and grade—down functions have been extended to sort character arrays
and arrays of any rank.

Least Common Multiple Function

The OR primitive function (v) has been extended to provide the Least Common
Multiple function.

Greatest Common Divisor Function

The And (A) primitive function has been extended to provide the Greatest Common
Divisor function.

Introduction CE38-04

Section 2
Using APL

Logging On
The user must first prepare the terminal for use, establish a connection with the
CP-6 system, and then invoke the APL processor. This is done as follows:
1. Connecting to the CP—6 system:
a. Press the number 8 several times until CP-6 responds with:
PLEASE TYPE A LEFT PARENTHESIS
b. The system requesté that the user enter a left parenthesis. Once a left
parenthesis is entered, a salutation is printed after which the system
requests a logon. At this time o valid logon should be entered. A logon
consists of an account, name, and optional password, separated by commas.
This information is not echoed (printed) on the terminal to provide privacy.
*%% CP-6 AT YOUR SERVICE, LADC L664
14:30 THU OCT 17 '85 LINE 8(L6VI)-1480
LOGON PLEASE:

c. The CP-6 system will then allow the user to log on to the system with an
attendant greeting, or inform the user of the reason for not logging on.

d. When the CP-6 system prompts with !, the user is at the IBEX Command
Processor level and moy invoke APL by typing APL and pressing RETURN.

Figure 2—1 shows a sample APL session including logon and logoff, as performed from a
Diablo 1620 or equivalent terminal with an APL typewheel.

CE38—-04 Logging On 2-1

%%k CP-6 AT YOUR SERVICE,LADC L66B
14:00 SAT MAY 22 '82 LINE 8(L6VII)-1480
LOGON PLEASE:<E+>MYACCT ,MYACNAME<E->

*k% SYSIDx 12077 ON LADC L66B AT 14:00:17.71 SAT MAY 22 'B2.

1APL
APL C02
CLEAR WS

A8

A
12345678
A+QA
99898998989
A,A+A
1234567824618 1012 14 16

JEND
DI
USERS = 37
ETMF = |
80p RESPONSE < 50 MSECS
MAY 22 '82 14:01
'0FF
CON=00:00:49 [EX=00:00:00:18 SRV=00:00:01.15 PMME= 147 CHG= .00

Figure 2—1. Sample APL Session

General APL Input

The following paragraphs define the APL charocter set, APL nomes, and various
input/output characteristics.

Character Set

One of CP-6 APL’s unique characteristics is the richness of its character set. An
APL keyboard normally has 94 printing graphics. All of these are legal characters.
In addition, backspacing may be used to create the following overstrikes, all of
which are legal characters:

ABCDEEGCHIJEKLMNOQEQRBSTUVHXYZ

0R20@vVvd!'INBavaniyg
x$A000P0BEBE0ODBEB TV

Other legal characters are blank (the space bar), tab (the TAB key, treated as one or
more blanks), and carriage return (the RETURN key). Two other characters are also
accepted for control purposes: the <CTL-D> sequence and the BREAK key discussed
below under "Line Corrections during Input" and “Control Keys".

2-2 Character Set CE38-04

Names

Names are used to identify certain CP-6 APL constructs. All variables, functions,
groups, workspaces, and statement labels have names; the following restrictions apply
to these names:

1. All names except workspace names can contain from 1 to 79 characters. Workspace
names can contain from 1 to 31 characters (see Section B).

2. Names may be composed of letters, numbers, A, underlined letters, underlined 4,
and underscore.

3. Names cannot begin with a number or underscore.

4. There can be no blanks embedded within a name.

5. A particular kind of name, called a distinguished name, begins with 0.
Some exampies of names are:

& PAYROLL Bal S1234 TEMPERATURE (PW

User Input versus Computer Output

The user can enter input whenever the carrier or cursor is indented six spaces from
the left margin. As soon as the user has typed any input and pressed the RETURN key,
APL takes control. Characters entered by the user while APL is processing will be
"stored" until APL has completed processing the previous input, printed any results,
and prompted for more input (usually by indenting six spaces from the left margin).

User input and computer output are easily distinguished. Computer output usually
begins at the left margin while user input is usually indented six spaces. For
example:

JDIGITS 2
WAS 10
3+9
0.33
242
4
§+2
2

Everything at the left margin in this example is printed by APL, while everything
which is indented is typed by the user.

Line Corrections during Input

A line can be corrected during input as long as the RETURN key has not been struck.

Simply strike the RUBOUT key, to delete characters up to the error and enter <ESC> R
to retype the correct portion of the line. Then proceed with the entry of the line.
For example, suppose the user mistakenly types 30-20 instead of 30+20. The user can

correct this as follows:

30-20\\\<R> enter three RUBOUTS and <ESC> R
30+20 the system displays 30; user enters +20
50 system responds with 50.

CE38-04 Line Corrections during Input 2-3

Perhaps the simplest line correction method is to delete all of the input with the
control X character. Another correction method can be employed if the user discovers
that a charaocter has been omitted. As long as the RETURN key has not been struck,
the user can simply backspace to where the character is to be inserted (or enter
<ESC> V followed by the character at which to position), enter <ESC> J, and type it.
For example, suppose the user types the following line and notices that one left
parenthesis is missing:

(10H)*2)+(20H)*2

By simply backspacing and typing the required left parenthesis, the user can enter

((10H)*2)+(20H) %2
This illustrates that it is not always necessary to enter characters in order. The
user can leave blanks in a line, then backspace and fill them in. As a rule, APL

interprets what the user sees at the terminal; this is known as visual fidelity. For
more information on standard CP-6 input line editing, see the CP-6 Programmer
Reference Manual (CE40).

Execution and Definition Modes

From the user’s viewpoint, CP-6 APL operates in two modes, execution mode and
definition mode. In execution mode, the processor responds to each line of input by
taking a specified action or by performing requested calculations and printing a
result. In the following printout, for example, the first line is a system command
that causes the processor to take some action and to respond with a message, and the
third line (3%9) performs a calculation, printing the results on the fourth line:

)DIGITS 2
WAS 10

3+9
0.33

System commands can be entered during execution or definition mode. Calculations are
performed only in execution mode.

In definition mode, statements (that is, calculations) are saved as part of a defined
function instead of being executed immediately. System commands issued in this mode,
however, are executed immediately. After functions are defined, they can be
referenced in other defined functions or in stotements entered in execution mode.

The user must type the del symbol Vv to begin definition mode, and another Vv to return
to execution mode. See section 7 under Defined Functions, for a detailed description
of definition mode.

Prompts

CP-6 APL has four ways of prompting for (that is, requesting) input: direct line
prompt, function line prompt, evaluated input prompt, and quote—quad prompt. These
are described below.

2-4 Prompts CE38-04

Direct-Line Prompt

When APL is ready for user input in immediate execution mode, it automatically moves
six spaces in from the left margin. This is a signal to the user to enter a
statement or system command. Direct-line prompts are shown in the following example:

2+2
&

42
2

In this example, APL indented six spaces to prompt for user input, and the user
entered the statement 2+2. The processor then printed the result of the calculation
at the left margin, moved to the next line, and again indented six spaces to prompt
for more input.

Function-Line Prompt

Within definition mode (that is, when a function is being defined) CP-6 APL prompts
for user input by printing a line number in brackets at the left margin. After
printing the line number, it moves three spaces to the right and waits for user
input. As an example, look at the following portion of a function definition:

VSQUARE
(1) A«(BxB)
(2]
In this example, the user entered a function header (VSQUARE), and APL typed the [1]
and moved three spaces to the right to prompt for user input. The user then entered

the statement A«(BxB), and APL typed the [2] to prompt for more user input. This
continues unti! the user ends the function definition with another de! symbol V.

Quad Prompt

The quad symbol [0 can be used in a statement to indicate evaluated input. When APL
encounters the quad on execution of the statement, it halts and requests input by
printing the symbols [J:, moving to the next line, and indenting six spaces. The user
can enter any valid APL expression. This expression will be evaluated, and its value
substituted for the quad contained in the statement. Execution of the statement then
resumes. Examples of the quad prompt are shown below:

A<[)+8
0:

7X2%4

A

ANSWER<Q
0:

'YES!

ANSWER
YES

CE38-04 Quad Prompt 2-5

Quote-Quad Prompt

The quote—quad symbol [l (o0 quote symbol overstruck with a quod) is used to enter
character data. It is executed similarly to the quod symbol except that nothing is
printed to signal the user, and no six—space indentation taokes place. The user
enters character data without enclosing it in quotes. For example:

Atel
YES

At
YES
Comments

Comments can be written on separate lines or can follow (that is, be tacked onto)
statements. They may be included on any line except a system command line or a
function edit control line. To enter o comment, type the symbol A and follow it with
the comment. This symbol is produced by typing a n symbol! (upper shift C) and
overstriking it with a o symbol (upper shift J). Any valid APL characters may appear
to the right of the a symbol. The A and any characters to the right are ignored in
APL expression evaluation, but will be printed if the line is displayed. Examples of
comments are shown below:

a THIS 1S A COMMENT.
A«BxB aSET A = B-SQUARED.
(3) XeY+S a COMMENT: X IS SET TO Y45

Control Keys

The BREAK key is used to interrupt execution or stop a lengthy display on the
terminal.

Statements and System Commands

Each completed line of input in CP-6 APL is classified as either o statement or a
system command. Statements specify the operations to be performed by APL, such as
calculations, branching, and assignments of values or expressions. Some examples of
statements are:

442
BeAs2
+START
VA PLUS B
(3) 'ENTER VALUES FOR A!

System commands are used to communicate directly with the APL system itself. They
are concerned primarily with the mechanical aspects of the processor, such as logging
on and off, saving, loading, and deleting workspaces. System commands always begin
with a right parenthesis. A few examples of system commands follow:

)JSAVE NEWJOB
JLOAD OLDJOB
JEND

DIGITS

Statements and system commands are described in detail in sections 6 aond 8,
respectively.

2-6 Statements and System Commands CE38-04

Variables and Functions

Data (numeric or choracter) can be assigned a name and stored in the active
workspace. The name and the associated value are collectively known as a variabie.
The value may be a single data item (scatar) or a group of data items (array), and
may be changed as needed during the course of a program. Examples of assignments of
variables are shown below:

A€S

B2¢1 2 3
ABC«5+4
B3«A+B2

Some character symbols indicate that basic APL operations, such as addition or
multiplication, ore to be performed. These symbols are called primitive functions.
Functions can be monadic (have one argument) or dyadic (have two arguments). Some
examples of functions are:

4=+ x

The domain and range of function arguments aoand a list of all the functions are
presented in Section 3 under Primitive Functions. Section 5 is devoted to a detailed
discussion of each function.

Defined Functions

In addition to the primitive functions, APL permits users to define new functions,
name them, and store them in a workspace. Defined functions can then be referenced
by name in subsequent statements, either as programs by themselves or as mathematical
operations used in a formula. To define a function, the user enters it statement by
statement while APL is in definition mode. This mode begins when the user types a
del symbol V and ends when another Vv is typed.

CE38-04 Defined Functions 2-7

Section 3

Common Elements in APL

Constants

Constants are either numeric or character.

Numeric Constants

Numeric constants can take the form of integer or real numbers. An integer is a
whole number, requiring neither decimal point nor exponential form. A real number is
a number, usually with a decimal point, expressed in either exponential form or
decimal form. The user need not generally be concerned with whether a number is
integer or real, or exponential or decimal, since APL automatically takes care of any
necessary conversions. The representation of numeric data is accomplished with the
following characters:

01234567889 ."F

The numbers are the ordinary keyboard digits, and the decimal point is the keyboard
period. The ~ character, called the negative sign, is found over the digit 2 on an
APL keyboard and is used to indicate negative numbers. It should be distinguished
from the - character, which is found over the + symbo!l and is used for subtraction.
The negative sign is only valid for numeric constants; it is not valid in any other
context. The £ is the letter E on the keyboard and is used to indicate an exponent.
Embedded blanks, commas, and other punctuation are not allowed in APL numbers.

APL ignores leading and trailing zeros, so that the user need enter only the parts of
numbers required for calculations. Thus, there is no need for the user to enter data
as all integer or all fractional. For examplie, the number one may be entered as
1.00, 001.0, 1, etc. Examples of numeric constants entered in decimal form are shown
below:

S + 5.55
10.55

6.8 = 20
0.34

The negative symbol (7) can be used only with a numeric constant to indicate a
negative number; it can never be used with a name. The symbo! immediately precedes
the applicable number; that is, no blanks are allowed between the symbol and the
number. The use of the negative symbol is shown below:

2

It is often easier to enter very large numbers in exponential form rather than
decimal form. Exponential representation is written as a number, followed by E,
followed by an integer indicating a power of 18. (E can be interpreted as "times 10
to the following power".) The exponent (the number following the E) can be a
positive or negative number. Following are some examples of numeric data in
exponential form:

CE38-04 Numeric Constants 31

APL Exponential Notation Mathematical Notation

14

“8.37E14 -8.37 x 10
-6

4.2E76 4.2 x 10

5

.99ES .99 x 10
-60

3.8E760 3.8 x 10

The maximum and minimum magnitude representable numbers in CP—6 APL are
approximately:

8.378879856£152
4.661462957E7156

Note that non—-integer values are handled internally as “"double precision floating
point" numbers. Fractions that are representable exactly in decimal notation, such
as .1, are not exactly representable in this internal form. In some instances, this
will cause results of operations to deviate from expected results, particularly if
the anticipated result is displayed to 20 decimal places or is a value near zero.

Character Constants

Character constants are enclosed in quote symbols and can contain any keyboard
character including legal overstrikes and the space character. The quote symbols are
used to distinguish a character constant from a number, the name of something, or a
constant in the language. They are not printed in the display of the literal. For
example:

A€t

A
?

In this exampie, the name 4 has been assigned the value of a character constant.

Vector Notation

When two or more values appear together separated by one or more blanks, a vector is
formed. The vector that is formed has the properties of length (the number of
items), type (numeric, character or nested), and rank (vector). Some examples of
numeric vectors are:

113
1 2.5 "726E12

Character vectors may be formed either as o series of character scalars with each
item enclosed in quotes, or by enclosing the entire string in quotes. For example:

'S TR CRY TR T RS TR Y-V I)
HI THERE

'HI THERE'
HI THERE

Both character vectors are equivalent. If a quote is to be used within text, it must
be represented by two quotes. The use of the quote character is shown below:

A«'THE ''a'' CHARACTER IS USED FOR COMMENTS.'
A
THE *n' CHARACTER IS USED FOR COMMENTS.

3-2 Vector Notation CE38-04

Character arrays may be generated, compared for equality, indexed and catenated just
{ike any other arrays.

A character constant may contain one or more carriage returns. If a carriage return
is entered before the closing quote is given, APL wil! automatically type the closing
quote at the beginning of the next line to indicate that a closing quote is required
to end this string. If the constant is to be extended, a RUBOUT may be entered to
delete the closing quote.

Parentheses may also be used to separate items in vector notation. For example:

A4+1(2)
A«(1) 2
A+(1) (2)

The three examples above are al! equivalent ways of forming the two item vector 1 2.
Multiple blanks and extra parenthesis are also clways permitted:

A«19 20
A<((18)) (((20)))

The use of parenthesis in vector notation is used to produce a single item out of any
array that they enclose. The parenthesis may also enclose any array. For exampie:

A+«('YEAR') 1883 ('SALES') (2619 5250)

In this example, vector notation has produced a four item vector which contains the
vector 'YEAR' as the first item, the scalar 1983 as the second item, the vector
'SALES' as the third item, and the numeric vector 2619 5250 as the final item.
Parentheses are not required around character vectors because the enclosing quotes
are already grouping them. For example:

A<'YEAR' 1983 'SALES' (2619 5250)

This example produces the same four item vector as the previous example.

All of the following constituents of the APL language have nomes (sometimes known as
identifiers) so that they may be easily referenced: variables, functions, groups,
statement iabels, and workspaces.

Name Format

A name can include only letters, the letters underscored, digits, 4, A, and _
characters. A nome cannot start with a digit or an underscore. Distinguished names
follow the other rules for names, but always start with o single 0 character.

Lengths of names may vary, depending on their use. The names of variables,
functions, groups, and statement labels can be of any length up to 79 characters.
Workspace names (also known as fids in CP—6 APL) can be up to 31 characters in
length.

CE38-04 Name Format 3-3

Name Usage

The uses of APL nomes are described below:

1.

A variable refers to the name given to scalar or array values by the assignment
symbo! (the character '«') described later in this section under Assignment.

Defined function names are treated briefly later in this section under Function
References, and in detail in Section 7, Defined Functions.

A collection of names can be referenced using groups. Included in the group can
be the names of variables, functions, and other groups (see the)GRP command in
Section 8).

A label is given to a statement within a user~defined function so that it may be
referenced by other statements of that function. Statement labels are used as
branch reference points.

A workspace name is used to identify an active workspace so that it can be saved
ond later recalled. Workspace names are referenced in system commands which are
described in Section 8 (also see item 8).

A password is assigned to a workspace or file to prevent other users from
accessing it. The password must always be used in order to access the workspace
or file. Passwords are described in Section 8 (also see item 8, below).
Passwords may contain any characters.

An account is the identifier of a recognized user’s account. The account must be
specified when logging on to the CP—6 system and when accessing a workspace or
file in another user’s account. The use of accounts is described in Section 8
(also see item B, next). Accounts may be, but are not restricted to, letters or
digits.

In CP-6 APL, a saved workspace is a CP-6 file. A file identifier (fid) refers to
the information needed in a system command to save a workspace or to reference it
after it has been saved. A file identifier takes the following form:

workspace[.[acct][.[password]]]
where

workspace is the name assigned to the workspace, or file. It can consist of
up to 31 characters from the set 4-Z, A-Z, -, :, _, $, and 0-9.

acct is the identifier of o recognized user’'s account. It can consists of up
to eight characters from the set of accounts authorized by the installation
manager.

password is assigned to a workspace, or file, in order to restrict user
access. It can consist of up to eight characters.

The bracketed items in the above form indicate optional items. File identifiers
are used in the following system commands, all of which are described in Section
?: JLIB,)COPY,)DROP,)LOAD,)PCOPY,)QCOPY,)QLOAD,)QPCOPY,)SAVE,)SET, and
WSID.

Accounts and Passwords may include any characters except the period, comma,
semicolon, or embedded blanks.

For further information on file identifiers, see the the documentation on the

command processor IBEX in the CP-6 Programmer Reference Manual (CE4Q). Set names
and serial numbers are aiso discussed there.

Name Usage CE38-04

Variables

A variable must be assigned a value before it can be used. The value assigned can be
numeric, character, or nested and can be a scalar or an array (a vector, a matrix, or
a higher—order array). The user can display the value of a variable at any time
simply by typing the variable name. Examples of the assignment and use of variables
are shown below:

A€2
Be2 3 4 5
A+B

4 567
Cel 5p220
4

1 2 3 & 5§
6 7 8 910
11 12 13 14 15
16 17 18 19 20
D«B+2
D
11.52 2.5

A variable can be respecified at any time simply by assigning a new value to the
variable name. The most recent value specification replaces any previous value. For
example, notice the following:

ABC«1

ABCx0 1 2 3 4 5
012345

ABC«2

ABCx0 1 2 3 4 5
02461810

In this example, ABC is first ossigned a value of 1 and calculations are performed
with that value. The variable ABC is then assigned a value of 2 and the calculations
are performed using this new value.

Another way of respecifying o variable value is to decrease or increase its value by
a certain amount. For example, suppose variable A has a value of 4 has a value of 2
and the user want to increase this value by 1. This can be accomplished as follows:

A«A+l
A
3

Notice that the calculation 2+1 is performed first, and then the result 3 is assigned
to a variable 4. This type of operation is particulariy useful for setting up a
counter to test the number of occurrences of an event, such as the number of passes
through a program loop. Each time through the loop the counter can be increased or
decreased by 1 and then tested against a desired value to determine further aoction.

Local and Global Variables

Local variables exist while user—defined functions (Section 7) are active, that is,
while the function is pendent or suspended. Local variables, described below, are
classified as follows:

o Dummies
o Result
o Locals
o Labels

Dummies, result, and locals are indicated by their presence in the header of a
defined function. Labels are indicated on statements within a defined function.

CE38—-04 Local and Global Variables 3-5

At a given point in time if a variable is not local, it is global. It is possible
(in fact useful) to allow global variablies to be identified by the same name as local
variables (or local variablies for one function to use the same name as local
variables for another function). This concept is useful in APL because it allows a
defined function to be formed without regard to nome conflicts. Its local variables
are totally independent of any previously assigned variables. Furthermore, if the
function calls itself, a new set of variables exist independent of the original local
varicbles. As each such function call exits (that is, becomes inactive again), the
current set of local variables disappear and the earlier values associated with their
names once more become accessible.

When a function call occurs, its local voriables are said to "shadow" previous
definitions for the names used by the local variables. Shadowing can be repeated
extensively as functions are called. As these functions exit, their shadowing effect

is removed. Only globals will exist when no function is active. Global variables
also exist if their names are not shadowed by any currently active functions (for
example, the local variables use unique nomes). Shadowing is illustrated in Figure
3-1.

Local Variables

The following local variables are named in a function header: result, dummies, and
locals. These are al!l optional; a function is not required to use any local
varicbles. Notice the following example:

VReY F X;A4;8;C

In this example, the function F names the following local variables in its header
line: '

R (result) — note that R is followed by a « symbol, which designates that R is the
result name.

X (dummy) — one name to the right of F separated by blanks(s), designates the right
dummy. When F is called, the right argument’s value is automatically assigned to
local variable X.

Y (dummy) — one name to the left of F, separated by blank(s), designates the left
dummy. When F is called, the left argument’s value is automatically assigned to
local variable Y.

A, B, and C (locals) — note that each local nome is preceded by a semicolon.

The remaining type of local variable is the label. 1Its name appears in a function
line as in the example below.

[3) L:a THIS LINE IS LABELED.
Notice that the label’s name, L, follows the 1ine number, [3], and is in turn
followed by a colon. Although labels are classified as local variables, it is more
appropriate to consider them local constants. They cannot be assigned values; that
is, the following expression is a syntax error when L is a lagbel:

Lek

The value of a label is the line number of its function line (which cannot change
during execution of the function).

The example in Table 3-1 illustrates the effect of shadowing as functions F1 and F2
become active and inactive.

3—6 Local Variables CE38-04

Table 3-1.

Effect of Shadowing

Example Description
JCLEAR

CLEAR WS
Ve'V=GLOBAL" Set V, W, X, Y
We'WN=GLOBAL' to be global variables.
X¢'X=GLOBAL"
Y€'Y=GLOBAL'
v Fl;X;Y

[1) LN F1 CALLED......'

[2) 14

[3) 1 Define F1, naming X and

(4] 2X¢'X=L0CAL (F1)'
(5} ,Y€'Y=LOCAL (F1)'
(6] F2 n CALL F2

(7} LR F1 EXITS...... 'y
VF2;:W;

[1) LIS F2 CALLED...... !
(2] v

[3) yWe'W=L0CAL (F2)*

(4] »X€'X=LOCAL (F2)*

(5] Y

(6l 'F2 EXITS......'V

VNHXY
V=GLOBAL W=GLOBAL X=GLOBAL Y=GLOBAL

F2
«eo...F2 CALLED......
V=GLOBAL
W=LOCAL (F2)
X=LOCAL (F2)
Y=CLOBAL

VWXY ‘
V=GLOBAL W=GLOBAL X=GLOBAL Y=GLOBAL

F1
..... F1 CALLED......
V=GLOBAL
W=GLOBAL
X=LOCAL (F1)
Y=LOCAL (F1)
..... F2 CALLED......
V=GLOBAL
W=LOCAL (F2)
X=LOCAL (F2)
Y=LOCAL (F1)
eov oo F2 EXITS. ...
ee..oF1 EXITS......

VNXY
V=GLOBAL W=GLOBAL X=GLOBAL Y=GLOBAL

Y as its locals.

Define F2, naming W
and X as its locals.

Verify V, W, X, Y.

Call F2.

V and Y are still global.
W and X are local to F2.

V, W, X, Y are global again.

Call Ft.

V and w are still global.
X and Y are local to F1.
F1 calls F2.

V is still global.

W and X are local to F2.
Y is still local to F1.

V, W, X, Y are again global.

CE38-04 Local Variables

3-7

Arrays and Indexing

As mentioned earlier, a variable may represent o scalar or on array. A scalar is
always a single item, an item being a character, number, or nested array. One
example of a scalar is:

SCLR«33
SCLR
33

Although an array may be made up of more than one item, it can also consist of a
single item or even no items. An array with no items is called an empty array.

In addition, arrays can be classified as vectors, matrices, or higher—order arrays.
A vector is an array of one dimension, and is displayed as a collection of items
arranged on one line. As a typical example, notice the vector named VECT which has
four items:

VECT«5 7 8 11
VECT
57911

A matrix is an array with two dimensions, (a dimension is sometimes called a
coordinate) and is displayed as a collection of items arranged in a rectangular
pattern. An example of a two—dimensional matrix, nomed MAT, is shown below:

MAT
1 2 3 &4 5
6 7 8 910
11 12 13 14 15

Notice that this matrix has three rows aond five columns. It is two—-dimensional
because it is made up of rows and columns.

A higher—order array is an array with three or more dimensions, displayed os a
collection of items in a set of rectangular patterns. An example of a higher—order
array is:

CUBE
1 2 3 & 5
6 7 8 910
11 12 13 14 15

16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

This higher—order array is three-dimensional. It has two planes, and eaoch plane has
three rows and five columns.

The user can find out if o variable is o scalar, a vector, a matrix, or a
higher—order array by using pp to test for the rank (that is, number of dimensions)
of the variable. For example, testing the previous variables SCLR, VECT, MAT, and
CUBE will give

ppSCLR

ppVECT
1

PpMAT
2

ppCUBE

A 0 indicates a scalar, a 1 indicates a vector, a 2 indicates a two~dimensional
array, a 3 indicates a three-dimensional array, and so on, up to a maximum of 62
dimensions.

3-8 Arrays and Indexing CE38-04

The user can also determine the size of each dimension in an arroy (that is, the
“shape" of the array) by using p. For example, testing the same variables SCLR, VECT,
MAT, and CUBE will give

pSCLR

pVECT
4

pMAT
35

pCUBE
235

Since a scalar has no dimensions, p of a scalar produces an empty (vector) result;
nothing is displayed (other than the next input prompt). The above example confirms
that SCLR is a scalar (no dimension); that VECT is a vector with four items; that MAT
is a two~dimensional matrix with three rows and five columns (15 items); and that
CUBE is a three-dimensional array with two planes, each with three rows and five
columns. One other situation should be noted, p of an empty vector will return the
value zero, and p of an empty array will return one or more zeros depending on which
dimension or dimensions have length zero.

Indexing of Arrays

Items in an array can be referenced by their positions within the array. The
position number is called an index. The index can also be used for several items,
and to index other indexed arguments. The following topics are discussed in this
subsection:

Referencing a Single Item
Referencing More Than One Item
Assigning a Value to an Array
Indexing an Indexed Argument

0000

Referencing a Single Item

An item in an array is referenced by its position within the array, which is
indicated by one or more numbers called indexes. One number is used as the index of
an item in a vector array; two numbers, as the index of an item in a two—-dimensional
matrix; three numbers, as the index of an item in a three—dimensional array; and so
on, with one number for each dimension.

The indexes of all arrays start with 0 or 1, depending on the index origin. When the
user first enters APL, the index origin is 1 by default. It can be set to 0 by
assigning the [JJ0O system variable to 0, and reset to 1 by reassigning the 0I0
variable to 1.

Ve' ABCDE'
D10<1
via)

70«0

viz}
[

Vil

Qro«1

B

The indexes of o two—dimensional matrix also start with 0 or 1, depending on the
index origin, but two numbers are used in each index. The first number selects the
items from a row, and the second number selects the items from a column. The indexes
are ordered with the rightmost position varying the fastest, then the next rightmost,
and so on. For purposes of iliustration, consider the matrix named MAT3:

MAT3
J 111212
13 15 4 8 14
610 79 S

CE38-04 Indexing of Arrays 3-9

The indexes for this matrix, with index origin 1, will be

[1;1) [1;2) 11;3)1 (1;4) (1;5)
[2;11 [2;2) (2;3) (2;4) [(2;5)
(3;1) (3;2] 1(3;3) 1(3;4) [(3;5)

Thus MAT3(1;1) is 3; MAT3[1;2) is 1; MAT3[1;3) is 11; MAT3(1;4) is 2; and so on.
Notice that semicolons must be used to separate the numbers of each dimension.

An item in an array of more than two dimensions is selected in the same way os an
item of o two—dimensional array, except that more numbers are included in the index.
An index contains one number for each coordinate of the associated array. For
example, consider the following three—dimensional array:

MATG
1 & 14 7
1513 2 8

11 12 6 16
5 3 810

To reference the value 8 in this array, one uses the index MAT4(1;2;4], where 1
denotes the first plane, 2 denotes the second row, and 4 denotes the fourth column.
Notice that each additional coordinate always adds a number to the beginning of an
index. The rightmost number of an index always refers to a column; the next
rightmost to a row; the next rightmost to a plane; the next to o panel of planes; and
so on.

Referencing More Than One Item

To reference items within an array, simply include the index of each desired item in
brackets aofter the array name. For example, notice the following vector:

A5 4 71 398 7274

To select the items 5, "1, and 3 from this vector (assuming on index origin of 1),
one uses the expression A[1 3 4] as shown here:

All 3 4]
5713

Other examples of referencing several items in vector A are shown beiow. Notice in
the second example that indexing can be used to create larger and differently shaped
arrays:

All1 1 8 8 8]
556 4 ¢4

Al3 2p1 3 & 2 6 5]

nNnNwowm
[Y

There aore ¢ variety of ways to reference several items in a matrix. Consider the
following matrix:

MATS
110 9 811
215 &4 5 6
15 312 13 7

Examples of referencing several items in this matrix are shown below. These examples
assume an index origin of 1.)

NATS[1;4 § 2]
8 i1 10
MATS[1 2;)
1109 8 11
21545 €
MATS[1 2;1 2 3 & 5)
110968611

3-10 Indexing of Arrays CE38-04

~—

21545 6

MATS[1 2 3;4)
85 13

MATS(1 2;4 S)

S
MATS(;2 &)
10 8
15 §
3 13
MATS[1 2 3;2 4)
10 8
15 S
3 13

In fact, the shaope of the indexing result has a ronk equal to the shape of each of
the index expressions joined together. If an index expression is elided, the result
shape has the length of the elided coordinate inserted.

Several items in o three—dimensional array are referenced similarly to a matrix,
except that the third coordinate must also be added to the index. Consider the
following three-dimensional array:

MAT6
1 2 3 & 5§
6 7 8 910

11 12 13 14 15
16 17 18 19 20

Examples of referencing several items in this array are shown
below. These examples assume an index origin-of 1.

MAT6(1;2;5]
10
MAT6(;2;]
6 7 8 910
16 17 18 19 20
MAT6([;2;1 3]

6 8
16 18
MATE[1 1 2;1 2 151 2 4)

1 2 &
6 7 9
1 2 &
1 2 &
6 7 9
1 2 &
11 12 14
16 17 19
11 12 14

Assigning a Value into an Array

One or more items in an already existing array can be assigned values via the
assignment symbol ¢. The user simply places the variable name and the index
designation to the left of the symbol, and the new value to the right. Examples
follow, all of which assume an index origin of 1.

Example of vector:

CE38—-04 Indexing of Arrays 3-11

Ve3+210

14
456789 101112 13
3 65)¢1 01

=

150 9 10 11 12 13

357 9]«0

~—
——

050 89011013

OPS«V[]2

Fo i B

H

0

0
2222222222
0

HOOPS

no<

2
Example of matrix:

MAT?7€2 Spt10

MAT?
1234 5
67889 10

MAT?(2;51«0

MAT?
12345
67890

MAT?(1 2;3 5)¢71

MAT?
1271471
67°719°"1

MAT?(; }¢2

MAT?
22222
22222

Notice from examples above (MAT6(;2;], V[)«2, and MAT?(;1¢2) that if an index
position is not filled, all index values for that position are assumed to be
appiicable. Assigning a new value to on indexed variable does not change the rank or
shape of the variable, it merely changes some items in the variable.

The value that is assigned to o variable or indexed variable is also the "result" of
the assignment. This is illustrated by the example WHOOPS+V[]+2. Since V is a
10—item vector, ali 12 index values received the value 2. But the result as far as
the assignment operation is concerned is the scalar 2. Thus, WHOOPS becomes a scalar
variable having the value 2. When analyzing APL expressions, it is helpful to
imagine that assignments are "invisible". For example,

J+M[;4])€5
can be analyzed as if the assignment were not present, i.e.,
3+ B

making the result (8) apparent.

Indexing an Indexed Argument
In APL, an indexed argument may itself be indexed. For example:

Al1;)102)
which is equivalent to the expression (A[1;1){2) and is interpreted as follows.
Obtain the first row of matrix A. This row temporarily forms a vector, call it T,
whose length is the number of columns originally given for 4. Select the second item
from vector T, and (in this case) display the value of that item.

Only arguments can be followed by multiple indexes. Specifications and coordinates
cannot; thus the following is o syntax error:

All;102])eX
LINESCAN ERR A

3-12 Indexing of Arrays CE38-04

The user instead is advised in this case to use

Al1;2)¢X

Functions and Arguments

APL expressions are derived from three fundamental entities: operators, functions,
and values. Functions may be formed by the user (see section 7 under Defined
Functions) or are included as an inherent part of the language. In the latter case,
they are called primitive functions. Most primitive functions are represented by a
single character. A general treatment of these functions is given in this section;
for o detailed treatment, see Section 5, APL Functions.

Operators usually take APL functions as arguments and return a new (or derived)
function. The derived function typically applies the function arguments to the value
arguments in an operator defined order. Examples of APL operators include axis,
inner product, and outer product.

Values are APL arrays and have certain attributes: type, rank, depth, and length or
shape. The domain of an array may be character type, numeric type, or nested type.
There are three numeric domains: logical, integer, or real; however, the user seldom
needs to be concerned with this distinction. Logical data represents 1's or ©'s and
is stored in bit form. Integer data represents positive and negative numbers (using
neither decimal point nor exponential form) whose range is |imited to the size of one
computer word. Real data is stored in doubleword form (thot is, in floating—point
form). Text or character data is stored in byte form. The nested domain type can
have an array item which contains other APL arrays or both character and numeric data
items. If a numeric argument contains numbers that could fit in more than one
domain, it is made to uniformly contain numbers in the largest size domain necessary.
Thus the following vector argument has integer domain since that is necessary to
represent the 2:

10102

The rank of an array is the number of its dimensions (or coordinates). A scalar has
a rank of zero, a vector has a rank of one, a matrix has a rank of two, and so forth.
The maximum al iowed rank in CP-6 APL is 62.

The length of a vector is its number of items or components (zero for an empty
vector). The shape or dimension of an array (including a vector) is an ordered
vector containing the lengths of its coordinates. Single-item vectors and
single—item arroys of higher order (for instance, a 1 1 1 reshape of 5 is a
single—item three—dimensional array) are not equivalent to scalars but may be used
interchangeably with scalars in many operations. Vectors and arrays of higher ranks
may also be 'empty’. This is the case when the length of a coordinate is zero.

The depth of an array indicates the maoximum level of nesting of items within the
array. A simple scalar character or number has depth ©. An array containing only
simple scalar character or scalar numeric items has depth 1. An array containing
items of depth @ and 1 has depth 2. 1In general, an array containing items of depth
less than or equal to N has a depth of N+1. Simple arrays have depth @ or 1. Nested
arrays have depth 2 or more.

Functions are classified as monadic or dyadic according to the number of their
arquments. A monadic function haos one argument to the right of the function. A
dyadic function has two arguments, one to the right of the function and one to the
left.

In many coses, the same function can be used both monadically and dyadically, but the
resulting functions are different, although usuaily related in a natural way. Each
function has its own domain, rank, and length or shape requirements, and the result
of a function may have o new set of these characteristics.

CE38-04 Functions and Arguments 313

Axis Operator

Certain functions are coordinate—dependent. For example, a matrix rotation can occur
about the first coordinate (rotation of rows) or about the second coordinate
(rotation of columns). For such functions, the user has the option of specifying
this coordinate in the form of a bracketed expression to the right of the function.
The value of this expression must be an integer of appropriate range. These
coordinate specifications are called the Axis operator. The Axis operator takes the
coordinate specified and the function to its left ond creates a new "derived"
function which operates on the requested coordinate. The following functions may use
a coordinate specification:

Reduction Compression Enclose

Reversal Expansion Disclose
Rotation Catenation
Scan

NOTE: Catenation may also use a fractional coordinate specification. This form of
catenation is called lamination. Enclose and disclose permit the
specification of o vector of axes.

APL Functions and Operators

Tables 3-2, 3~3, and 3-4 include summary information about Scalar Functions, Mixed
Functions and Operators, respectively. Each table |ists dyadic and monadic
operations, if any, and gives simple examples. For a detailed description of these
functions and operators, see Section 5.

Scalar Function Summary

Scalar functions are pervasive. That is, when they are aopplied to nested arrays, the
function is applied to every numeric and every character scalar in the array.

Table 3-2. Scalar Functions

Function Usage
+
Monadic - Conjugate:
Leaves argument unchanged. Example:
+10
10
Dyadic - Addition:

Adds two arguments. Example:

10+20
30

314 Scalar Function Summary CE38-04

Table 3-2. Scalar Functions (cont.)

Function

Usage

Monadic

Dyadic

- Minus:
Negates the argument that follows it. Example:

-(10+5)

15
— Subtraction:

Subtracts the right argument from the left argument.
Example:

10-5

Monadic

Dyadic

- Signum:

Returns ~1, 0, or 1, depending on whether its argument is
negative, zero or positive. Example:

_ x"15

1
- Multiplication:

Multiplies the left argument by the right argument.
Example:

10x15 150
150 1500

Monadic

Dyadic

- Reciprocal:
Divides 1 by the value of its argument. Example:

+1 36
1 0.3333333333 0.2

Note that this is equivalent to the dyadic use:
1+1 3 5.
~ Division:

Divides the left argument by the right argument.
Example:

106 2 1 .5
251020

CE38-04

Scalar Function Summary 3-15

Table 3-2. Scalar Functions (cont.)

Function

Usage

Monadic

Dyadic

Exponential:

Roises e (i.e., the base of the natural logarithms,
having the value of approximately 2.71828...) to the

‘power of its argument. Examples:

*1
2.718281828

*10
22026.46579

*2.2
9.025013499

Exponentiation:

Raises the left argument to the power indicated by the
right argument. Examples:

10 10 2%2 10 3
100 1£10 8

Monadic

Dyadic

Natural logarithm:

Computes the natural logarithm of its argument (that is,
log base e of the argument). Examples:

@1

@2
0.6831471806
€3 10
1.098612289 2.302585093

0

Logarithm:

Computes the logarithm of the right argument to the base
indicated by the left argument; that is, computes the
power to which the left argument must be raised to equal
the right argument. Examples:

100100

1001 10 100 1000
0123

204

201 24 8
0123

2

Monadic

Floor:

Returns the greatest integer less or equal to its
arguments. Examples:

L 10.7
10

l2 4.1 78.9 "2
2479 72

3-16

Scalar Function Summary CE38-04

Table 3-2. Scalar Functions (cont.)

Function

Usage

Dyadic

Minimum:

Compares two arguments and returns the value of the
smaller argument. Examples:

S5L2
2

8l3 11 8
3Jgs

4 3 213
332

Monadic

Dyadic

Ceiling:

Returns the least integer greater than or equal to its
argument. Examples: .

r 10.7
11

24.178.9 72
2578 "2

Maximum:

Compares two arguments and returns the value of the
larger argument. Exomples:

S5r2
5

83 11 8 "2 10
8119910

Monadic

Dyadic

Absolute value:
Returns the absolute value of its argument. Example:

1710
10

Residue:

Returns the remainder from dividing the right argument by
the left argument. Examples:

2le

5115 16 17 18
0123

2 317
11

CE38—-04

Scalar Function Summary 3-17

Table 3-2. Scalar Functions (cont.)

Function Usage
'
Monadic - Generalized factorial:
For integer arguments, returns the factorial of its
argument. The argument may not be a negative integer.
(See Section 5 for explanation of ! with non—integer
argument.) Examples:
'3
6
012
112
Dyadic — Generalized combination:
For positive integer arguments, the right argument
represents a population size and the left argument
represents a sample size. The result is the number of
different samples that can be drawn from the population
(see Section 5 for explanation of ! with non—integer
arguments.) Exomples:
13!52
6.350135586E11
2110
45
310
120
0]
Monadic - Pi times:
Multipiies the value of pi (approximately
3.14159265353589793) times its argument. Examples:
01
3.141592654
o2 .1
6.283185307 0.3141592654
Dyadic - Circular:
Returns the result of any of a number of trigonometric
functions. The left argument specifies the trigonometric
function and must be one of the integers from -7 to 7, as
fol lows:
0 (1-X%2)%0.5
1 sine X -1 arcsine X
2 cosine X -2 arccos X
3 tangent X -3 arctan X
4 (1+X%2)%0.5 -4 Bx(1-B*"2)%0.5
5 sinh X =5 arcsinh X
6 cosh X -6 arccosh X
7 tonh X -7 arctanh X
Examples:
20(10x2.5)
0.8912028119
102 &
0.9092974268 ~0.7568024953
3-18 Scalar Function Summary CE38--04

Table 3-2. Scalar Functions (cont.)

Function Usage
<
Dyadic - Less than:
Tests if the left argument is less than the right
argument. Returns 1 if the test is true, and @ if the
test is false. (See Section 5 for effect of comparison
tolerance on relationai functions.) Examples:
2<3
1
<4 125
1001
<
Dyadic - Less than or equal to:
Tests if the left argument is less than or equal to the
right argument. Returns 1 if the test is true, and @ if
the test is false. (See Section 5 for effect of
comparison tolerance on relotional functions.) Examples:
2s3
1
251 2 3 &
0111
>
Dyadic - Greater than:
Tests if the left argument is greater than the right
argument. Returns 1 if the test is true, ond @ if the
test is false. (See Section 5 for effect of comparison
tolerance on relational functions.) Examples:
2>3
0
2>"2 023
1100
2
Dyadic - Greater than or equal to:
Tests if the left argument is greater than or equal to
the right argument. Returns 1 if the test is true, and @
if the test is false. Examples:
223
0
2272023
1110
CE38-04 Scalar Function Summary 3-19

Table 3-2. Scalar Functions (cont.)

Function

Usage

Dyadic

Equal to:

Tests if the left argument is equal to the right
argument. Returns 1 if the test is true, and @ if the
test is false. (See Section 5 for effect of comparison
tolerance on relational functions.) Examples:

1=0
0

2=0 123
0010

'A'="'CANADA!
010101

Dyadic

Not equal:

Tests if the left and right arguments are unequal.
Returns 1 if the test is true, and @ if the test is
false. (See Section 5 for effect of comparison tolerance
on relational functions.) Examples:

2¥1
1

3¥"3 03 6
1101

YA'¥'CANADA®
101010

Dyadic

And:

(The arguments must be © or 1.) Returns 1 if both
arguments are 1, and @ for any other combination of
arguments. Examples:

0A0

(1=2)A(3<4)

(1<2)A3<t

o O o

(1=1)A3<4
1

Least Common Multiple:

Returns the least common multiple of the left and right
arguments. The LCM of o set of numbers is defined as
their product divided by the GCD of the numbers.
Examples:

Ja2
(-]

4A6
12

0.5A0.3
1.5

3-20

Scalar Function Summary CE38-04

Table 3-2. Scalar Functions (cont.)

Function Usage
v
Dyadic - Or:
Returns 1 if either or both arguments are 1, and @ if
neither argument is 1. Examples:
ovi
t
(1=2)v(4<3)
0
(3<4)v4<5
1
Greatest Common Divisor:
Returns the greatest common divisor of the left and right
arguments. The GCD of o pair of numbers is defined as
the largest divisor of both which produces an integer or
near—integer result. Examples:
.Sv+3
0.1666666667
2ve
2
2v3
1
&
Dyadic - Nand:
Returns @ if both arguments are 1, and 1 for all other
combinations. Examples:
040
1
(2<1)+(5<1)
(1<2)4(1<5)
0
v
Dyadic =~ Nor:
Returns 1 if both arguments are ©, and returns © for all
other combinations. Examples:
0v0
1
Ov1
[
(1=2)%(2<1)
1
(1=2)+v2<3
0
CE38-04 Scalar Function Summary 3~21

Table 3-2. Scalar Functions (cont.)

Function

Usage

Dyadic -

Not:

Returns 0 if the argument is 1, and returns a 1 if the
argument is ©. Exaomples:

~0 1
10

~(6>4)
0

~1010
0101

Mixed Function Summary

The mixed functions produce results with a structure that is different from that of
Mixed functions can be sub—divided into the structural mixed
functions ond the transformation mixed functions:

its arguments.

o The structural mixed function subset re—orders the array right argument under the
optional contro! of a left argument. The re—ordering is generally dependent on
the right argument’s rank and shape but independent of the actual elements within

it.

o The transformation mixed functions produce results which typically depend upon
the value of the array arguments.

The following table is o summary of APL mixed functions.

Table 3-3. Mixed Functions
Function Usage
1
Monadic - Index generator:
Generates a vector whose length is the value of the
argument. If the index origin (0I0) is 1, the vector
will contain positive integers 1 through value of the
argument. If the index origin is @, the vector will
contain the positive integers @ through the value of the
argument minus 1. Examples:
15
12345
0I10«0
15
01234
0r10«1
Dyadic - Index of:
Returns the position of the right argument in the left
argument. If the right argument is not found in the left
argument, it is given a value of the last index position
of the left argument plus 1. Examples:
3-22 Mixed Function Summary CE38-04

Table 3-3. Mixed Functions (cont.)

Function

Usage

6 & 316

1
6 4 313 5 4
J &2

Monadic

Dyadic

Ravel:

Generates a vector from either a scalar or an array of
higher dimension. Examples:

O¢4«2 4p18

~w
o &

A
345678

— N
n o N

Catenation:

Joins together scalars or arrays of conforming dimension.
Examples:

A¢1 2 3

Beh 5 6 7

A,B
1234567

Ce3

(C+2),0x3-2
1.5 3

Monadic

Dyadic

Shape:

Returns an empty vector if the argument is a scalar, the
length (or number of items) if the argument is a vector,
or a vector containing the length of each dimension if
the argument is a higher—order array. Examples:

pA€2

pB¢1 5 6 7
4

pC«3 3p19
33

ppA
0

Reshape (restructure):

Generates an array whose dimensions are the left
arguments and whose items are taken from the right
argument. Examples:

Spl
11111
2 4p8

@ @

@ o
[V- X .

4p1B

[, g
AN oo
~

CES8-04

Mixed Function Summary 3=~23

Table 3-3. Mixed Functions (cont.)

Function Usage
I
Monadic - Grade-up:
Ranks the components of its argument in ascending order,
and returns the positions (i.e., indexes of the
components). Example:
A€l 4 1 231
&4
136452
Dyadic — Grade—up:
Ranks the components of its right argument in ascending
order defined by the collating sequence given by the left
argument. Similor to the monadic grade—up function
except that both arguments must be character and the
ordering is defined by the left argument. Examples:
A«3 4p'ABRACODEBACK'
'ABCDEFGHIJK' bA
132
¥
Monadic — Grade—down:
Similar to Grade—up, except that it returns the indexes
in descending order. Examples:
A€l 4 1231
Y4
254136
Dyadic — Grode—down:
Ranks the components of its right argument in the
descending order defined by the collating sequence given
by the left argument. This is similar to the monadic
grade—down function except that both arguments must be
character and the ordering is defined by the left
argument. Examples:
A«3 b4p'ABRACODEBACK'
'ABCDEFGHIJK' YA
231
?
Monadic - Roll:
Returns an integer pseudorandomly selected from t B.
Examples:
?5
3
2333
321
?5 8 11 13
2582
Note that this function is modified by 0/0 (index
origin).
3-24 Mixed Function Summary _ CE38-04

Table 3-3. Mixed Functions (cont.)

Function Usage
Dyadic — Deal:
Returns the number of integers specified in the left
argument, each pseudorandomly selected from the integers
specified in the right argument, aond with no repetition
of numbers in the resuit. Exomples:
478
8342
424
1324
Note that this function is modified by 0/0 (index
origin).
1
Dyadic - Base value:
Switches from one number system to another. The right
argument contains the numbers to be converted and the
left argument contains the increments needed to convert
from one unit to another. The left argument, usually
called the radix vector, can be thought of as the base of
the number system. Examples:
10 10 1015 6 S
565
0 60110 20
620
222211001
9
211 00 1
9
T
Dyadic -~ Encode:
Converts a number to some predetermined representation.
It works in reverse of the base value operation above.
The following shows how to reconvert to the initial
arguments used above in the base value. Examples:
10 10 107565
5665
0 607620
10 20
22228
1001
v
Monadic - Format:
Converts numeric arrays to character arrays. The result
is the same as if the argument were printed. Examples:
v 3 3.1
3 3.1
CE38-04 Mixed Function Summary 3-25

Table 3-3. Mixed Functions (cont.)

Function Usage
Dyadic - Format:
Converts numeric orrays to character arrays while
controlling the format with the left argument. The left
argument specifies the width and precision to be used in
the display of the right argument. Examples:
2 093 4.1 5
345 ,
§ 2v 3 0.61 5.5
3.00 0.61 5.50
)
Monadic — First
Returns an array whose value is the first item of the
right argument. If the right argument is empty, then the
result is the prototype of the right argument.
For a scalar right argument, this function is the inverse
of the enclose function. Examples:
4110
1
¢'ONE' 'TWO' 'THREE'
ONE
Dyadic - Take:
Selects the number of components indicated by the left
argument from the right argument. If the left argument
is positive, the take function selects the components
from the beginning of the right argument. If the left
argument is negative, the take function selects the
components from the end of the right argument. Examples:
A¢2 4 6 B
344
246
344
4 68
4
Dyadic = Drop:
Similar to take except that the indicated items are
dropped instead of selected. Examples:
A¢2 4 6 B
244
6 8
144
246
3-26 Mixed Function Summary CE38-04

Table 3-3. Mixed Functions (cont.)

Function

Usage

Monadic

Dyadic

Type:

Returns an array containing 0 where argument items are
numeric or blank where argument items are text. Example:

€1 'BRUCE' 2 (3 &)
0 0 00

' t=e) 'HI' 2
0 11 0

Membership:

Returns 1 if a given item of the left argument is an item
of the right argument, and 0 if it is not. The result
has the same dimensions as the left argument. Examples:

A<18
Be2x1h
Be4g

1110
C«'ABCDEFGHIJK'
D«3 3p'HOWAREYOU'
DeC

Q-
coo
OO

Monadic

Execute:

Treats its argument (a character scalar or vector) as an
APL stcotement. Examples:

212+3"

Monadic

Enclose:

Increases the depth of the argument by 1 and decreases
the rank. If an aoxis is not specified, all axes are
enclosed and the result is a scalar. When an axis is
specified, the rank of the result is the rank of the
argument minus the number of axes being enclosed.

The enclose of o simple scalar yields the scalar
unchanged. Exampies:

)1
B

pld«<'VENICE!'
VENICE

c[1])3 3p:9
123 456 789

CE38-04

Mixed Function Summary 3-27

Table 3-3. Mixed Functions (cont.)

Function Usage
2
Monadic — Disclose:
Decreases the depth of the argument by 1 and increases
the rank. If the axes are not specified, the new axes
are inserted after the last axis of the argument.
The disclose of o simple array yields the array
unchanged. Examples:
ole¢ocHI!
HI
2
od¢>(1 2) (3 & 5)
120
3465
23
Dyodic - Pick:
Select an item from the right argument specified by the
path indices in the left argument. Each item of the left
argument must be a simple scalar or vector of integer
indices which selects an item to be indexed by the next
item of the left argument. Example:
2°789
21 (21)>1((22p3456)7)8
5
1159
9
Monadic - Depth:
Returns a simple non—-negative integer scalar indicating
the maximum depth of nesting in the right argument.
A simple scalar number or character hos depth ©. Arrays
containing simple scalar numbers or characters have depth
1. Examples:
E'A'
0
=123
1
='ABC*' (4 (5 6)) 7
3
Dyadic - Equivalence:
Returns a simple logical scalar. The result is 1 if the
left argument is identical to the right argument,
otherwise the result is 0.
Arrays are identical if they have the same shape and the
same values in all corresponding positions. Empty arrays
are identical only if their prototypes are identical.
Examples:
3-28 Mixed Function Summary CE38-04

Table 3-3. Mixed Functions (cont.)

Function

Usage

'APPLE'="'APPLE"
'CPE'='CPV'
9=,9

o o

11240

Monadic

Dyadic

Matrix Inverse:
Used to invert matrices. Examples:

A«3 3p4 2 755 T4 4 2 2 T20
OppPe2
B4

0.17 0.072 ~0.029

0.26 ~0.17 ~0.099

0.043 ~0.0087 ~0.063

Matrix Divide:
Used for solving systems of |linear equations. Examples:

4
4 2 75
5 74 4
2 2720
Be22 T7 80
_BB4

171 74

Monadic

Dyadic

Transpose:

Performs row column transposition on its matrix argument.
Examples:

4
1 2 3 & 5§
6 7 8 910
11 12 13 14 15
Q4
1 611
2 712
3 813
& 9 14
5 10 15

Transpose:

Returns an array similar to the right argument except
that the coordinates gdimensions) are changed according
to the left argument (that is, the left argument
specifies the new position of the original coordinates).
Examples:

B«2 & 3p124
2 1388

1 2 3

13 14 15

CE38-04

Mixed Function Summary 3-29

Table 3-3. Mixed Functions (cont.)

Function Usage

4 5 6
16 17 18

78 8
18 20 21

10 11 12
22 23 24

Monadic — Reversal:

Reverses the order of the components of a vector, or the
components of each each row of a matrix. Examples:

A1 2 4 6
04
6421
®15
54321

Dyadic - Rotation:

Rotates the items in the right argument as specified by
the left argument (i.e. according to the number of places
specified in the left argument). .Examples:

A«1 2 & 6

104
2461

204
4612

Monadic - Reversal along the first coordinate:

Same as @ above except along the first coordinate instead
of the last. This is equivalent to ¢0[0/0). Example:

OeMAT«3 4p112
1 2 3 &
S 6 7 8
9 10 11 12
OMAT
9 10 11 12
5 6 7 8
1 2 3 &

Dyadic - Rotation along the first coordinate:

Same as @ above, except along the first coordinate
instead of the last. This is equivalent to ®(0I0].
Examples:

(«MAT«3 &pr12
1 2 3 &
S 6 7 8
9 10 11 12
1OMAT
5 6 7 8
9 10 11 12
1 2 3 &

3-30 Mixed Function Summary CE38-04

Operator Summary

APL operators usually take functions (primitive, system, or user—defined) and produce
a derived function which is then applied to array arguments. The maonner in which the
function argument is applied to the array arguments distinguishes the various

operators.

The letters f and g in the following table represent any functions.

Table 3—4. Operators
Function Usage
f/
Monadic - Reduction:
Inserts the APL function specified to the left of the /
between each item of the right argument, performs the
operation from right to left, and returns a value with
one less coordinate than the right argument. Examples:
+/123 45
15
-/1 2345
3
O¢N¢3 4pr12
1 2 3 &
5 6 7 8
9 10 11 12
+/N
10 26 &2
-/N
T2 T2 T2
Dyadic — Compression and Replicate:
Suppresses some items of a vector and retains others.
Items of the right argument corresponding to a 1 in the
left argument are retained while those corresponding to a
0 are dropped. If either argument contains just one
item, it applies to all items of the other arguments.
Examples:
A5 7 8 11
Be'ABCD'
101 1/4
59 11
101 1/B
ACD
OeMAT«3 4pr12
1 2 3 &
§ 6 7 8
9 10 11 12
1 0 1 O/MAT
1 3
5 7
9 11
Replicate is |like compression but this function will
repiicate items as well as suppress. In this case, the
left argument is an integer vector, whose items are
greater than or equal to zero. Each item of the left
argument indicates the number of times the corresponding
item in the right argument is to be replicated.
Examples:
CE38-04 Operator Summary 3-31

Table 3-4. Operators (cont.)

Function Usage
2/'APPLE'
AAPPPPLLEE
12 3/'Wow!
WOOWWW
21 0/'ITS!
IIT
f#
Monadic - Reduction along the first coordinate:
Same as f/ above except reduction occurs along the first
coordinate rather than the last (equivalent to f/(070].
Examples:
OeN€3 4pr12
1 2 3 &
S 6 7 8
910 11 12
+#N
15 18 21 24
~#N
56 78
Dyadic -~ Compression along the first coordinate:
Same as above except that compression or replication is
along the the first coordinate instead of the last.
Equivalent to /{0I0). Examples:
O«MAT«3 4pr12
1 2 3 &
5 6 7 8
910 11 12
0 1 OFMAT
5678
f.g
Dyadic - Generalized inner product:
This operator is a generalized form of the inner product
of matrix multiplication. The particular form that
corresponds to traditional matrix multiplication is
A+.xB, where the second dimension of matrix A is the same
as the first dimension of B. The result has the same
first dimension as A4 and the same second dimension as B.
. In the conventional matrix inner product, each item of
the result is the sum of products of items from 4 and B
(see Section 5 for detailed description). The APL
generalized inner product allows different forms such as
the sum of equality tests, the maximum of sums, etc.
Examples:
A«2 3p16
B¢3 2p-18
A
123
458
B
172
"3 74
"5 76
A+.xB
3-32 Operator Summary CE38-04

Table 3-4. Operators (cont.)

Function Usage
22 "28
49 T64
A+.=B
00
00
Al .+B
01
3 2
The general form is Af.gB where f and g represent any
function. 4 and B may be vectors, matrices, or higher
order arrays, subject to conformability rules described
in Section 5.
o.f
Dyadic ~ Generalized outer product:
This operator is a generalization of matrix outer
product, Ao.xB. The conventional form multiplies each
item of A by each item of B. The shape of the result is
the catenation of the shapes of 4 and B. 1In the
generalized form, muitiplication may be replaced by any
APL function. Examples:
A€ 1415
A0 . +4
01234
12345
234586
34567
456178
Ao.x4
000 0 O
012 3 &
024 6 8
036 912
048 12 18
A0.<4
01111
00111
00011
00001
00000
f\
Monadic - Scan:
Returns value of same shape as argument. For vectors,
the i’'th result item is formed by taking the first i
argument items, placing f between them, and evaluating
right to left. For example:
+\N13579
1 491625
-\3115
323 72
A coordinate specification [K] may be used; if omitted,
the last coordinate is assumed.
+\[1]2 3p16
123
579
CE38-04 Operator Summary 3-33

Table 3-4. Operators (cont.)

Function

Usage

Dyadic

Expansion:

Inserts additional items into an array. For each @ in
the left argument, a prototype item (blank for character,
zero for numeric) is inserted in the result, which
otherwise is the same as the right argument. Examples:

A1 2 3 &4
B«'ABCD'
101010 1\4
1020304
101010 I\B
ABCD
O«Me3 4p0AVIES+1r12)
ABCD
EFGH
IJKL
01010 1\M

fx

Monadic

Dyadic

Scan along the first coordinotes:

Same as f\[0/0). Thus, as above,
+%2 3pt6

123

5789

Expansion along the first coordinate:

Same as \ above, except expansion occurs along the first

coordinate rather than the last. This is equivalent to
\(0I0}. Example:

O«M«3 4p0AV[65+212)
ABCD
EFGH
IJKL

1010 1%x¥
ABCD

EFGH
IJKL

Monadic

Each:

Returns a value of the same shape as the argument. Each
item of the result is formed by applying the monadic
function to the corresponding item of the right argument.
Examples:

p"'ABC' ‘HAPPY'
3 5

172 3
12 123

O"rxrz' 'MOOD'
ZYX DOOM

3-34

Operator Summary CE38-04

Table 3—-4. Operators (cont.)

Function Usage

Dyadic - Each:

Returns a value of the same shape as the left and right
arguments (a singleton argument is extended to the shape
of the higher ranked argument).

Each item of the result is formed by applying the dyadic
function to the corresponding items of the left and right
argument. Examples:

20" 'ABC' 'HAPPY'
AB HA

197 'BCA' (4)
CAB 2 3 41

Defined Function References

Defined functions are used in much the same way as primitive functions, but defined
functions must first be formed by the user instead of being an inherent part of the
language. Once a defined function has been formed, or "defined", it is referenced by
its assigned name. (Naming conventions are described earlier in this section under
Nomes.) A general discussion of functions is given in this section; for a detailed
discussion, see Section 7, Defined Functions.

Like primitive functions, defined functions can have arguments which in turn have
attributes of domain, rank, length, and shape (see Functions and Arguments above).
Functions are classified as monadic, dyadic, or niladic, according to their number of
arguments. A monadic function has one argument to the right of the function name. A
dyadic function may have one or two arguments, one to the right of the function name
and one optionally to the left. A niladic function has no arguments; the function
name is referenced by itself.

The right argument is the value of the largest, complete APL expression immediately
to the right of a function. For the exampie below, F is a function whose right
argument is 2+13.

(F 2+:3) 'POUNDS'

In this case, the character vector 'POUNDS' is not included in the argument since the
parenthesis splits the example into two distinct expressions.

The left argument is the value of the smallest complete APL expression to the left of
a fgnction. In the example below, D is a dyadic function whose left argument is
(3).

2+ (W3) D &
In this case, the parenthetical expression (13) is the smallest compiete APL
expression immediately to the left of D. 2+(t3) is also an APL expression, but it is
larger. Therefore, the above example is interpreted as

2+result
where "result" is the result supplied by the function reference

(t3) D &
In addition, any of the classes of defined functions may specify an implicit or

explicit result. Thus there are actually six types of defined functions: monadic,
dyadic, and niladic each of which may optionally produce a result.

CE38-04 Defined Function References 3-35

The class is determined by the way o function is defined (that is, the function
header), and it affects the way a function is referenced in an expression. Defined
functions with explicit results may appear in compound expressions, much like
primitive functions. Defined functions without results may appear alone; they cannot
appear in compound expressions except as the last function to be executed.

A defined function may reference itself; that is, it may be recursive. A recursive
function is one that references itself in the process of its execution.

When o function is invoked, it may complete execution and return o result or it may
become suspended or pendent during execution. A suspended function is one in which
execution has been stopped before completion (the reasons for stopping execution are
given under Suspending Execution in Section 7). A pendent function is usually one
that has referenced o suspended function and is unable to complete execution because
of the suspended function. Suspended functions are clways stopped "between" lines,
but a pendent function is stopped in the process of executing o line. A function can
be both suspended (stopped at some point) and pendent (in execution at some point).
For instance, if a recursive function is stopped aofter it calls itself, it is
suspended (at the stop) and pendent (where it called itself).

Assignment

The following paragraphs define simple assignment, multiple assignment, and indexed
assignments.

Simple Assignment

The assignment symbol, denoted by a left—pointing arrow, is used to assign values to

named variables or to o system variable. (Some programmers may refer to this symbol

as the specification symbol or the replacement symbol, but the term assignment symbol
is used throughout this manual.) It is the assignment that causes a variable to be a
scalar, a vector, a matrix, or a higher—order array. The ossignment of a value or an
expression to a quad displays the value. Examples of assignments are shown below:

A€532x4

Assigns the value of the expression §$+2x4 to variable 4.
Be1 2 3 &5

Indicates that B is to be a vector with the values 1, 2, 3, &, and 5.
Be1rS

Another way of assigning the numbers 1 through 5 to variable B. (Assuming an index
origin of 1.) :

C«2 4p1r8

Indicates that C is to be o matrix (with two rows and four columns) and that it is to
be made up of the values 1 through 8 (assuming an index origin of 1), as shown here:

1 2 3 &
5 6 7 8

De2 3p5 6 128 9

Indicates that D is to be ¢ matrix (with two rows and three columns) and that it is
to be made up of the values 5, 6, 1, 2, 8, and 8, as shown here:

5 6 1
2 8 9
E«D

Indicates that the value of D is assigned to E.

3~36 Simple Assignment CE38-04

Multiple Assignments

APL allows repeated use of assignment, or multiple assignments, in a single
statement. Examples of multiple assignment are shown as follows:

A€5,B«6
A,B
566
Z€2+Y+2+ €5
X,Y,2
5§79
O«C¢2 3 4 &
2345

Vector Assignment

This notation may be used to assign each item of a vector to a name in a list of
names. In this case, the specification symbol («) is preceded by the list of names
enclosed in parentheses. The specification symbol must be followed by an APL
expression which produces a vector having the same length as the number of names.

Examples:
(A BC)l 23
AOBOC¢C

1

2

3
(NAME ADDRESS)«'JOE WHO' '21 CENTURY BLVD, LOS ANGELES'
NAME

JOE WHO
oO0«ADDRESS

21 CENTURY BLVD, LOS ANGELES

28

Indexed Assignment

One or more items of an already established array may be assigned new values. This

is done by placing the variable name and the index designation(s) to the left of the
assignment symbol, and the new value(s) to the right, as shown below (these examples
all assume an index origin of 1):

04«1 5 4 3 2
15432

All 212 3

A
23432

Al)€0

A
00000
O¢B¢2 3p16
3
6

—
n

Bll;2)«4
B

—
>

3

6
Bl; 1«0
B

CE38-04 Indexed Assignment 3-37

Selective Assignment

This operation permits selected elements of a named array to be given new values
while leaving the shape and the unselected elements unchanged. Bracket indexing or
use of the selection functions are used to select the array elements to be changed.
The selection functions that are used with selective specification are ravel
gmonadic ,). reshape (monadic p), take (dyadic ¢), drop (+), first (¢), tronspose
Q). reversal (monadic 0), rotate (dyadic ®), compression (/), pick (dyadic :9 and
disclose (monadic >).

The result of the selection expression must be a subset or re—arrangement (or both)
of selected element locations. Only those selected locations receive the new value.
The value being assigned must have the same shape as the selection expression after
skipping all dimensions of length 1 in both.

Examples:
Ne¢S 5p 1 2 4 3
((&=,N)/ ,N)«0 A REPLACE ALL 4S WITH ©
N

12031

20312

03120

31203

12031
(1 1Q9N)¢55 A REPLACE DIAGONAL
N

55 2 0 3 1

255 3 1 2

0 355 2 0

3 1 285 3

1 2 0 355

Input/Output

This subsection describes how the user can enter input and display output.

Input/Output Devices

The CP-6 APL system gives the user a choice of five input/output methods:

0 APL/ASCII terminal input/output: a terminal with either bit paired or typewriter
paired APL/ASCI] character transmission codes.

o ASCII terminal input/output.
o Batch input/output.

o File input/output.

o Blind input/output.

The input/output described in this section refers to terminals with the APL character
set.

3-38 Input/Output Devices CE38-04

General Input/Output

After logging on to CP-6 and invoking APL, the user is in immediate execution mode
and can enter input whenever the carriage or cursor is indented six spaces. The
fundamental item of input to APL is the line. A line is a collection of characters
that does not include the carriage return. Striking the RETURN key completes a line,
and APL attempts to interpret it and perhaps output dota. An incomplete line can be
corrected as described in Section 2. User input and computer output are easily
distinguished at the terminal; computer output usually begins at the left margin
while user input is usually indented six spaces from the left margin. An input line
is limited to 390 characters in length, not counting the carriage return (overstrikes
count as single characters).

Types of Input

CP-6 APL acknowledges four kinds of input: direct, evaluated, quote quad, and blind.
Direct input occurs when APL is not executing the user’s program, evaluated input
results from quad-input execution, quote-quad input results from quote~quad
execution, and blind input results from quad—@ through quad-9 execution. Direct
input, evaluated input, and quote—quad input are described below and are considered
to exist only after input transiotion and current—-line editing. Blind input is
covered in Section 16.

Direct Input

Direct input is entered during execution mode. APL is ready to accept direct input
when it skips to a new line and indents six spaces. Evaluation of direct input
occurs immediately, and the response is either printed at the left margin (if the
input was o non—assignment statement) or assigned to o variable (if the input was an

assignment statement). Examples of direct input follow:

§+2x4

0.825
AtA€S

10
OeB¢3 tpr12

1 2 3 4

5§ 6 7 8

g 10 11 12

Evaluated Input

The quad symbol [can be used as an argument in a statement, to denote that input is
desired. When APL encounters the quad during stotement execution it halts execution
and requests input by printing the symbols (: at the left margin. A response of any
valid APL expression causes execution to continue, using the value obtained in
response to the quad symbol. Examples:

80
0:
2
4
5x0
O:
1234
5 10 15 20

CE38-04 Evaluated Input 3-39

If the quad symbol is built into an input loop, the user can terminate the input
requested by entering the symbol + (not followed by an argument). Simply entering
nothing and pressing the RETURN key is not sufficient to terminate the input request;
it will merely cause the J: to reappear at the left margin. An example of escaping
from an input request is shown below:

VCUBE; A
(1] LOOP: A<Q]
[21] AcAXAXA

(3] A
(4] +L00P
v
CUBE
3
27
0:
4
64
0:
S
125
0:
->
Entering any of the following system commands will terminate an input request:

JCLEAR,)LOAD,)OFF,)END,)SIC, or)CONTINUE. Entering other system commands merely
causes the [J: to reappear after the command is executed.

Functions can be defined during evaluated input. This is similar to function
definition during normal (direct) input except that at the conclusion of the
definition, APL re—-requests evaluated input. This is to be expected since when APL
originally requested evaluated input it needed o value, and defining a function
provides no value. This enhancement is not limited to just providing definition
capability. The full range of function definition mode features are available during
evaluated input:

o Creating a new function

0 Revising an existing non—pendent function (If o function makes an evaluated input
request, the function becomes pendent. Therefore, that function cannot be opened
during the evaluated input request): inserting o line, deleting a line,
replacing a line, and editing characters of a line.

o Displaying one or more lines of the open function.

Entering an)SI or)SINL command in response to an input request will cause the state
indicator to contain a 0. For example:

1040
)SsI

o OO O

3~40 Evaluated Input CE38-04

Quote-Quad Input

The quote—quad symbol [l (except when to the left of an assignment arrow) denotes
literal input. When APL encounters this symbol during statement execution, it awaits
user input (nothing is printed to prompt for input). Literal character strings are
entered without beginning and ending quote symbols, and a quote within a string is
represented by one quote. Quote-quad input always produces a vector result. To
terminate o request for literal input without having any value associated with the
variable being requested, press the BREAK key twice.

Note that if the request for literal input is initiated from within an executing
function and o double break is entered, execution of the defined function is
suspended at that point. Examples of quote-quad input are:

A<l)

pA
0
B<{]
QUOTES AREN'T NEEDED

B
QUOTES AREN'T NEEDED

X«'CALIFORNIA' <[]
ABCDEFGHIJKLMN

X
1111100111

Output

As previously mentioned, the display of most computer output begins at the left
margin. Important output characteristics aore described below.

1. Width of line. The user can change the number of characters displayed on a line
to any number from 32 to 390 via the)WIDTH system command (see Section 8), or
the 0PV system varioble (see Section 11). Output processing always assumes that
the left and right margin stops are placed full left and full right.

2. Fractional number. A fractional number is displayed with one leading zero to the
left of the decimal point, even if the number was entered without zero. Examples
of fractional numbers are:

.2+.4
0.6

2+3
0.6666666667

.123
0.123

3. Exponential notation. APL usually uses exponential form for printing numbers
less than 1E™5, or greater than 1EN where ¥ is the value of the (PP system
variable. Decimal form is used for other cases. Numbers printed in exponential
form have a magnitude between one and ten followed by an appropriate exponent.

When an array is displayed, some numbers may be printed in exponential form and
some in decimal form, depending on the size of each number. Numbers in a vector
are printed with one space between each number, as shown below:

1234567.89 1234567890 1.23456789E10

When a matrix is displayed, each column of numbers is printed all in exponential
form or all in decimal form. One number requiring exponential form in a column
will cause all the numbers in that column to be printed in exponential form. One

column of blanks separates columns of numbers. Numbers in a matrix are printed
with decimal points aligned, as shown below:

CE38-04 Output 3-41

A
0.0100003 1.2345E12 ~1.99032
12.3456703 3.0000E0 7.76767676

Ax11
1.000330050E722 1.014850423E133 T1941.5651895
1.015456727F12 1.77147000085 6211587288

Significant digits. CP-6 APL carries out all calculaotions to approximately 18
significant digits, and displays the result rounded off to the value of 0PP
digits. Any trailing zeros are suppressed in the display. Examples are shown
below:

§+3
1.333333333

52
2.5

The user can use the)DIGITS system command (see Section 8) or the OPP system
variable to change the number of significant digits displayed, to a number
ranging from 1 to 20. Examples are shown below:

OpPes
4+3
1.333
5:2
2.5

Comparison Tolerance. The arithmetic functions (addition, subtraction,
multiplication, and division) are implemented in the computer as functions which
represent real numbers through a set of discrete numbers. In CP-6 APL,
calculations are carried out to approximately 18 decimal digits. Comparison
tolerance is provided by APL to partly disguise the fact that only 18 digits of
precision are available. The default value of comparison tolerance in a clear
workspace is 1E"13 which couses the equals function to return 1 if the numbers
being compared are equal in the first 13 digits. An example of comparison
tolerance in comparison is:

1=1+72E713 "9E714 0 9E"14 2E713
01110

Numeric and character vectors. Numeric vectors are disployéd with one blank
between items, while character vectors are displayed with no blanks between
items, as shown:

2+16
345678

'ABCXYZ'
ABCXYZ

If an array contains both numeric and character scalar values, a trailing blank
column is included after each numeric column (except the last column).

1 '4' 2
1 A2

Arrays of two or more dimensions. The components of a two—dimensional array
(i.e., a matrix) are displayed in a rectangular arrangement. The components of
an array of more than two dimensions (i.e., a higher—order array) are displayed
as a set of rectangles. Character arrays of two or more dimensions are displayed
with no spaces between columns. 1In addition, arrays of more than two dimensions
are displayed with extra blank lines separating planes. Examples are shown
below:

3—-42 Output CE38-04

3 5p72+115

1 0 1 2 3
4 5§ 6 7 8
9 10 11 12 13
2 3 bph+r24
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
3 4p'NOWISTHETIME'
NOWI
STHE
TIME
2 2 Sp'ABCDEF GHIJKL MNOPQR'
ABCDE
F GHI
JKL M
NOPQR

Simple. An APL array is simple if every item of the array is either a scalar
character or a scalar number.

Nested Arrays. An array is nested if it is not simple. That is, an array is
nested if an item of the array contains another APL array of rank greater than 0.
Nested arrays, like other APL arrays, are displayed with columns aligned. The
column width is determined by the widest formatted representation of the items in
the column.

The space required to display non—-simple items is controlled by the system
variable OPS. The column width for a non-simple item may be stated as the width
of the formatted value plus the value ([7140PS). The row depth for a non-simple
item can be staoted as the number of rows required to display the value plus the
value (|1¢7240pPS).

The first two items in OPS control the placement of the arrays within the column

and row. The first item controls the vertical placement of the formatted array

and the second item controls the columnar placement of the formatted array. The

first item of OPS can be "1 (top), @ (center), or 1 (bottom). The second item of
* 0PS can be "1 (left), @ (center), or 1 (right).

The last two items of [PS can be negative to indicate that a vertical bar or box
be drawn around the border of the array. The magnitude of the value must be
greater than 1 for the box to be drawn.

The following is an example of displaying nested arrays:
0PS«0 0 ™3 “3 a CENTER AND DRAW BOXES

A€2 2pt4 O B«3 4p'ABCDEFGHIJVKL'
Ce«2 3pAB 7 '2Z' A B
c

e IR s
l1 21 lABCDl 7
I3 4| |EFGH|
+--—+ | IJKL|
s
+=——t -t
Z 11 2] |4BCDI
13 41 |EFGHI
+--—+ | IJKLI|

et

CE38-04 Output 3-43

1.

1.

12.

13.

14.

15.

0pPS«™1 1 0 2 a DEFAULT VALUE
c
1 2 ABCD 7
3 & EFGH
IJKL
Z 1 2 ABCD
3 & EFGH
IJKL

Prototypes. Every APL array contains a prototype which is the type of the first
item of the array. For an array whose first item is a simple scalar number, the
prototype is @; for an array whose first item is a simple scalar character, the
prototype is a blank. For all arrays, the prototype has the same structure
(shape and depth) as the first item and contains zeroes where the corresponding
item is numeric, and blanks where the corresponding item is character.

Empty arrays. An empty array (an array of no components) can take the form of a
vector or an array of two or more dimensions. An empty array produces no display
(just another prompt for input). An empty vector (aiso known as a null vector)
can be entered in one of the following ways: 0 or '' or 0p0. Similarly,
examples of entering empty arrays of two or more dimensions are 0 2p4 and 0 0
0p0. The display of an empty vector and an empty matrix are shown below:

10
0 206
2+2

4

Note that an empty numeric vector is represented by the expression t0 and any
empty character vector is represented by the expression ''. These expressions
cannot always be used interchangeably because their prototypes differ. An
example is in their use as the right argument in an expansion operation:

0\"

0\t0
0

Empty vectors are useful in initializing vectors, in branching, and in the
limiting cases of some algorithms.

Note that the use of an empty array as the argument of a scalar function will
result in an empty array:

34+p0
0#2 005

Blind output. Blind output (see in Section 16) is output as one record of
character (literal) data.

Stopping a display. The user can stop display of output by pressing the BREAK
key.

Quad output. When O appears immediotely to the left of an assignment arrow, the
value of the expression to the right of the arrow is output. Exomple:

O«4e243
5

Bare output. Normal output includes a concluding carriage return in order that
the succeeding entry (whether it is input or output) will begin at the first
position on the following line. Bare output, denoted by expressions of the form
(l<X, does not include o carriage return if the expression is followed either by
onother expression denoting bare output or character input (of the form X«{1). For
exomple:

v F
(1] [«'TRUE OR FALSE: THE SQUARE OF '
(2] 74
(3} M IS
(4] [e(?4)%2
(s} xf@v

3—-44 Output CE38-04

F
TRUE OR FALSE: THE SQUARE OF 2 IS 9FALSE
X
FALSE

The carriage returns normaliy caused by the width setting (0PW) are still present
in bare output.

Because any expression of the form [«X entered at the keyboard (rather than being
executed within a defined function) is followed by another keyboard entry,
(concluded by a carriage return), its effect is indistinguishable from the effect
of the corresponding normal output.

CE38-04 Output 3-45

Section 4

Expression Evaluation

Order of Evaluation

The following subsections describe the order in which APL evaluates expressions.

Right to Left

APL evaluates expressions from right to left, not from left to right as in most
written languages. Each function or assignment symbol in an expression operates on
the entire expression to the right of it, with the rightmost expression evaluated

first, then the next rightmost, and so on. 1In illustration, notice the following
expression:

20x4+5+2
130

In this expression the result of 5+2 is added to 4, and the result of that is
multiplied by 20, thereby yielding the value 130.

Precedence of Functions

Unlike most programming languages (and un!like common algebraic usage) no APL function
has precedence over another function. A division operation, for example, is not
performed before an adjacent addition unless, of course, the division appears to the
right of the addition. Note that in the example cited above, the conventional
algebraic function hierarchy would have treated the expression as equivalent to
(20x4) + (5+2), which would have resulted in the value 82.5.

Parentheses

Parentheses can be used in an expression to depart from the right—to—left rule for
function execution or left—~to-right order for operator execution. They are used just
as they are in mathematics for grouping. APL evaluates everything within a pair of
parentheses (from right to left) before evaluating the expression of which they are a
part. There must be an equal number of left and right parentheses. The beginning
APL user may find parentheses convenient to avoid confusion over the difference
between APL and conventional algebraic notation.

Some examples of the use of parentheses are shown below:
(3+15)x2+1

12 15 18 21 24
((6+2)x5x4)=3+12
6+2x5x4+3+12

(20x4)(+)(5+2)

2.25
82.5

CE38-04 Parentheses 4-1

Precedence of Operators

Operators have higher precedence than functions. They may be monadic or dyadic (but
not both); they always produce a function which may be monadic, dyadic or both. The
left operand of an operator is the expression to the left of the operator up to o
function (or array) with an array or function to its left. The right operand of a
dyadic operator is the first function or array to its right. Monadic operators have
their only argument on their left.

Unlike functions, operators aore permitted to have arguments that are functions.

Operators and their arguments combine to produce functions (called "derived
functions") which are then executed like all other APL functions. In fact, the
derived function that is produced by an operator may be used as an argument to
another operator.

A<to.+/ (0 100)(0 10 20)(1 2 3 &)
A
1 2 3 &
11 12 13 14
21 22 23 24

101 102 103 104
111 112 113 114
121 122 123 124

In this example, the plus—outer—product reduction is performed on the vector argument
to produce the scalar enclosed matrix (which is subsequently disclosed by the first
function). Notice that the + is the argument to the outer product operator °o. and
that this derived function (called plus outer product or ©0.+) is the argument to the
reduction operator (/).

Value of a Variable versus its Name

When APL encounters a name, it obtains the associated value immediately. This vaolue
becomes an argument, and the argument will not change value even if the named
variable is aossigned a new value. The following example illustrates this evaluation
procedure:

(K«2)+K¢1
The K to the right of the plus sign was evaluated to the argument having, at that

time, value 1. This argument did not change even through X's value changed before
the addition was completed.

Default Output

Default output occurs when a non-assignment stotement is evaluated. That is, the
result is displayed instead of being stored in memory. For example, 2x4 gives
default output: :

2x4
8

Default output is killed by assignment. For example, the expression 4¢«2x&4 prints no
output at the terminal.

Ae2xh
Instead, the value 8 is assigned to variable A and stored in computer memory.
When a compound statement (Section 6) includes both non—assignment and assignment

expressions, the non—assignment expressions produce output while the assignment
expressions do not. Some examples are:

4-2 Default Output CE38-04

05

&

4 0 '4' ¢S5

442 0 A€5+2 O 443

-~ O Dn &

Xe1S O Ye244

Errors and Breaks

If the user discovers an error in a statement before the RETURN key is pressed, the
user can RUBOUT to the error and retype the rest of the line as described in Section
2. (On all terminals, the standard CP-6 input |line editing mechanism is applicable.
See the CP-6 Programmer Reference Manual (CE40)). An example (using the RUBOUT key)
is:

A«5xBe8x\<R> (<R> indicates <ESC> R.)
A«S5xBe8+4
A

10

If the user has entered a |line and APL detects an error or double break during
statement execution, execution of the statement is terminated. If the statement in
execution contains multiple assignments or is a compound statement, the assignments
and expressions to the right of the termination point (denoted by o caret) will be
completed. The current expression and any expressions to the left of the termination
point will usually not be completed. If a dyadic operator or function is indicated,
however, its left argument expression (possibly containing assignments) will have
been completed before the function or operator was invoked. Examples are shown below
(it is assumed that sidetracking, see Section 10, is not applicable in these
examples).

Ce4+(De0)xZeS

DOMAIN ERR
Cel:(De0)XxZ+S
A
c
UNDEFINED
c
A
D
0
Z
5
A¢4+2%.5 O FeQ O E€f+2+1 O E+F
DOMAIN ERR
A€432%.5 0 Fe0 ¢ E€432+1 0 E+F
A
E
1.333333333
F
0

In both of these examples the user has attempted to divide by zero, thus producing a
DOMAIN ERR message. In the first example the error is detected before variable C is
assigned a value, so C remains UNDEFINED as shown. In the second example, F and F
had values assigned to them before the error was detected.

If the user has entered a line and APL detects a simple error before any part of the
line is executed, APL displays the message LINESCAN ERR and a caret at the error
point. The user can type <ESC> D to recall the line in error and edit it to correct
the problem. For example:

CE38-04 Errors and Breaks 4-3

A«234 + () x[(O%3
LINESCAN ERR A

<D>

A«234 + (Ix[O¥3

\13<R>

A«234 + (13)x[0%3
O:

4

A
298 362 426

Note that the difference between a LINESCAN ERROR and o BAD CHAR error is that the
former involves an error in expression logic or syntax, while the latter involves the
typing of an illegal APL character.

4-4 Errors and Breaks . CE38-04

Section 5

APL Primitive Functions

A primitive function is a symbo! indicating that a basic APL function, such as
addition or division, is to be performed. A symbol denoting a primitive function is
either a non—alphanumeric character or a combination of such characters. For
example, addition is denoted by the + symbol and division is denoted by the * symbol.

Some of the basic primitive functions are "monadic" ond others are "dyadic". That
is, some require a single argument and others require two. For example, the
reciprocal function is monadic (e.g., *4) and the division function is dyadic (e.g.,
A+B). Most of the symbols denoting functions are used for both monadic and dyadic
functions. APL distinguishes between the monodic and dyadic use of any given
function by testing for the absence or presence of a left argument.
o Syntax Conventions

Syntax conventions used throughout this section are as follows:

R denotes the result of a function.

« denotes the replacement of any previous value of the symbolic variable to the
left of the arrow.

denotes a left argument.

denotes a right argument.

x W

denotes a monadic function.
D denotes a dyadic function.
Following are some examples of the use of these conventions:
ReM B R¢A D B
o Argument Characteristics

In discussing functions, certain argument characteristics will be referenced
frequently. The terms used are described below.

Domain — In general, the type of data item such as integer data or
floating-point data. For some functions the domain of an argument
may be especially restricted (see the example for the circular
function later in this section).

Rank — The number of coordinates in an array argument. (A rank of
zero indicates a scalar.)

Length — The number of items in a coordinate of an argument.

Shape — The vector made up of the lengths of all coordinates of an
argument.

[Domain Tables

In the tables listing the domains of the results for various types of argument
data, the following symbology is used:

N denotes numeric data.

Cc denotes character data.

CE38-04 APL Primitive Functions 5-1

L denotes logical data (1 or 0).
I denotes integer datoa.
F denotes floating—point data.
DE denotes a DOMAIN ERR.

RE denotes o rank error.

Scalar Functions

APL functions vary considerably in how they reference the items of array arguments
and in the characteristics (rank and dimensions) of the result compared with those of
the arguments. A group of functions called scalar functions follow a common set of
rules with respect to the characteristics of the arguments and results. These
functions, comprising the arithmetic group, the relational group, and the logical
group, are so named becouse they are defined in terms of scalar arguments.

Extensions of scalar functions to array arguments are equivalent to performing
item—by—item scalar functions.

If an item of an array contains onother APL array, the operation is performed on each
item within the nested array repeatedly, unti! the operation selects a simple scalar
numeric or character item. All of the rank, length and domain checks are made at
each level of nesting. The shape of the resulting structure follows the rules at
each function application level.

o Monadic Scalar Functions

The argument used with o monadic scalar function may have any rank and
dimensions. The result has the rank and dimensions of the argument. The domain
of the result may differ from the domain of the argument.

o Dyadic Scalar Functions

If the rank aond dimensions of the argument used with a dyadic scalar function are
the same, the function is performed on corresponding items of the two arguments
and the result has the same rank and dimensions. If the arguments have different
ranks or dimensions and both contain other than one item, o rank or length error
will be reported.

If one argument has multiple items and the other is a scalar or single item
array, the function is performed on the single item with each item of the
multiple item argument. The result has the rank aond dimensions of the multiple
item argument. If neither argument has multiple items, the result is given the
shape of the higher ranked argument. The shapes of results of scalaor functions
for various arguments are tabulated below.

5-2 Scalar Functions CE38-04

Right Argument

S Vi M HI V M H

S|]S vi M Hl V M H

Vi vivi M Ht V M H

M1| M1 M1 M1 Ht V M H

Left H1| H1 H1 H1 H1 V M H

Argument Resul t

Vv v V V V~RERE

MMM M M REM RE
HHH H H H RE RE Hw

~ Dimensions of arguments must be identical.
~~Rank and dimensions of arguments must be identical.

where

S denotes a scalar.

v denotes a vector.

M denotes a matrix.

H denotes a higher order array.

RE denotes a rank error.
Vi denotes a single item vector.
M1 denotes a single item matrix.

H1 denotes a single item higher order array.

Arithmetic Functions

Each function in the arithmetic group has a monadic and dyadic form. If any argument
is in the character domain, a DOMAIN ERR is reported. Results are always in the
numeric (integer or floating) domain. If during the execution of any function a
numeric result exceeds the range of CP-6 APL numbers, a DOMAIN ERR is reported.

CE38-04 Arithmetic Functions 5-3

+ Function (Conjugate, Addition)

Monadic + is the Conjugate function.

Re+B

Domain Table:

Bl|C L I F

R|C L I F

Examples:

+5
]

+(73 2 t.1)

321.

+0 10

010

Dyadic + is the Addition function.

ReA+B

Domain Table:

\B

ANlc L 1 F
C|DE DE DE DE
L ' DE I I F
1 |DE I I/f~F
FIDE F F F

~ The result is floating—point if the value exceeds the integer range.

Exomples:

2 3 145

721

10

2.5+1 2 3

3.5 4.5 5.

5

2.5 3.5+1 2 3

LENGTH ERR

2.5 3.5+41 2 3
A

- Function (Negate, Subtraction)

(o]

Monadic -~ is the Negate function.

Re-B

Domain Table:

B|C L

I F

R|DEI

I/F F

Function (Negate, Subtraction)

CE38-04

Examples:

_ -5

5

_ =3z
3 72 "1.1

o Dyadic - is the Subtraction function.
ReA-B
Domain Table:

\B
AlCc L 1 F

C | DE DE DE DE
L | DE I I F
I DE 1 1/F~ F
F|IDE F F F
~ The result is floating—point if the value exceeds the integer range.
Examples:
231-5710
34 1
2.5-1 2 3
1.5 0.5 70.5

1 2 3-2.5
1.5 70.5 0.5

x Function (Signum, Multiplication)

o Monadic x is the Signum function.
RexB
If B is positive, R is 1. If B is zero, R is 0. If B is negative, R is -1.
Domain Table:

B|C L I F

R|DEL I I
Examples:

x"2 3.5 0 .001
1101

o Dyadic x is the Multiplication function.

ReAxB

CE38—-04 x
Function (Signum, Multiplication)

Domain Table:

\B
A|JC L 1 F

C| DE DE DE DE
L{DE L I F
I DE I 1/F~ F
F|IDE F F F

~ The result is floating—point if the value exceeds the integer range.

Examples:

5x1 71 7
5 75 35

"1 2 0x1.5 2.5 3.5
“1.550

2.5 3x1.7 12 .01
LENGTH ERR

2.5 3x1.7 12 0.01
A

<+ Function (Reciprocal, Division)

o Monadic * is the Reciprocal function.
Re+B
Domain Table:

BlJ]c L I F

RJDEF F F -
If B is zero, the error DOMAIN ERR is reported.
Examples:
*1 26
1 0.50.2
+.01
100
o Dyadic + is the Division function.
R«A=B

Domain Table:

\B
AA|C L 1 F

C|DE DE DE DE
L | DE 1/F~ I/F~ F
1 | DE I/F~ I/F~F
FIDEF F F

~ The quotient is integer if B is an exact multiple of 4; otherwise, it is
floating—point.

‘

5-6 * CE38-04
Function (Reciprocal, Division)

If B is zero and A is other than zero, the error DOMAIN ERR is reported. If both
B and A4 are zero, R is 1. If R exceeds the range of floating—point numbers,
DOMAIN ERR is reported.
Examples:

7 8 8:2 10 18
3.5 0.8 0.5

0+12
0

00
1

* Function (Exponential, Exponentiation)

o Monadic ¥ is the Exponential function.
The monadic * is the equivalent of the dyadic form with e (the base of the
natural logarithms) supplied as a left argument. The value used for e is
approximately 2.71828182845904524.
RexB
Domain Table:

B|C L 1 F
R|DEF F F

If B exceeds 352.1187677244522173, DOMAIN ERR is reported. If B is less than
~355.2379300369718713, R is 0.

Examples:

1 .5 0 190
2.718281828 1.648721271 1 3.048234951E£783

o Dyadic + is the Exponentiation function.
R¢A%B
Domain Table:

\B
A\ | DE L I F

C| DE DE DE DE

L|DE L I F

1 |DE 1 1I/F F

F|DE F F F
If both 4 and B are zero, R is 1. If A is zero ond B is less than zero, DOMAIN
ERR is reported. If A4 is less than zero and B is not an integer, DONAIN ERR is
reported. If R exceeds range of floating—point numbers, DOMAIN ERR is reported.

Examples:

012 "2%0 5.3 0.5 3
11 1.414213562 78

“2+".3
DOMAIN ERR
~2+70.3
A
CE38-04 * 5-7

Function (Exponential, Exponentiation)

® Function (Natural Logarithm, Logarithm)

o Monadic @ is the Natural Logarithm (base e) function.
R«®B
Domain Table
Bl]C L 1 F
R|DEF F F

If B is not a positive number, DOMAIN ERR is reported.
Example:

® 2.718281828459 1 .049787068367893943
1073

o Dyadic ® is the Generalized Logarithm (base A) function.
ReA®B

If A or B is not a positive number, DOMAIN ERR is reported. If A is | and B is
other than 1, DOMAIN ERR is reported.

Domain Table:

\B
AA|lC L 1 F

C | OE DE DE ©DE
L|DE F F F

1|DEF F F
FIDE F F F

Examples:

2 3 1661 27 .25
03 70.5

10810 .1 250

1 71 2.397940009

[Function (Ceiling, Maximum)

o Monadic I is the Ceiling function.
ReIB

For I, R is the algebraically smallest integer greater than B-0CTx1IB. [CT is
1£713 unless it has been reassigned.

Domain Table:
B|]C L I F
R|DEL I I/F~

~ The result is floating—point if the value exceeds the integer range.
Examples:

ra2.1 2.01 ~2.01 2.00000000000000001
33722

5-8 [Function (Ceiling, Maximum) CE38-04

o Dyadic I is the Maximum function.
ReAlB
R is the larger value of 4 and B.
Domain Table:

\B
AA|]cCc L 1 F

C | DE DE DE DE
L|DE L I F
I DE I I F
F|]DE F F F
Examples:
5ri2
12
("1 5 0I5
557

“123.5[73 72 7.1
“127.1

L Function (Floor, Minimum)

o Monadic L is the Floor function.
RelB
LB is the largest integer less than B+CTx1[B
Domain Table:
B|l|C L I F
RIDEL I I/f~

~ The result is floating—point if the value exceeds the integer range.
Examplies:

L 2.9 2.99 "2.99 2.99999999999999999
22733

o Dyadic Ll is the Minimum function.
ReAlB
R is the smaller value of 4 and B.
Domain Table:

\Bl
ANlC L 1 F

C| OE DE DE OE
L|DE L I F

I IDE 1 I F
DE F F F

CE38-04 L Function (Floor, Minimum)

Examples:
SL12
]

517157
165

| Function (Absolute Value, Residue)

o Monadic | is the Absolute Value function.
Re|B
Domain Table:

B|J]C L I F

R|IDEL I F

Examples:
172.15
2.15
1”1 74.3 5 7.2
14.357.2
o Dyadic | is the Residue function.
ReA|B

1. If A=0 then A|B is B.

2. If A#O then R lies between 4 and zero (being permitted to equoi zero but not
A) and is equal to B-NxA for some integer X.

3. If A=AlB (using OCT) then R is 0.

Examples:

|
oo
J
N -
|
- N
J

0.004

The definition of residue can be stated formally as follows:
A|B €+ B-Ax|B+A+4=0

Domain Table:

\B
AA|C L I F

C | DE DE DE DE
L|DE L I F
I | DE I I F
F|DE F F F

5-10 | CE38-04
Function (Absolute Value, Residue)

O Function (Pi Times, Circular)

o Monadic O is the Pi Times function.
R<OB
The result is 3.14159265358979324 times B.
Domain Table:
B|]C L I F
R|DEF F F

Examples:

01
3.141592654
02 .5
6.283185307 1.570796327

o Dyadic O is the Circular function.
R+«AOB

The value of 4 determines the computed function of B according to the following
convention.

Table 5~1. Circular Functions

A R Domain of B~ Range of R~

-7 Archtanh
-6 Arccosh
-5 Archsinh

-4 | Bx(1-B%x"2)%0.5

-3 Arctan

-2 Arccos

-1 Arcsin
(1-B%2)%.5
Sine
Cosine
Tangent
(14B%2)*%.5
Sinh

Cosh

Tanh

NOOALGN—-O

1218
(1<B)ABSMAX% . 5~~
(MAX*.5)2| B~
1s|B
MAX28
12|18
12|58
1218
4096>18
4096>|B
4086>|B
(MAX*.5)21B
352.8118149052|8
352.811914805218
MAX2|B

24.9532985 to ~24.9532985
3.292722539E710 to O
+352.811914905 to O
+352.811914905 to 0
Pi/2 to Pi/2
0 to Pi
-Pi/2 to Pi/2
0 to 1
"1 to 1
"1 to 1
approximately “6E18 to B6E18
1 to MAX%.S
-MAX to MAX
i to MAX
"1 to 1

~The domains of B and ranges of R are narrower than those theoretically possible.
The limitations reflect the precision with which real numbers are represented and

with which computations are made in the computer.

~~MAX=8.379879956E152
MAX*.5=2.894802231E76

For sine, cosine, and tangent functions and their hyperbolic counterparts, B is
expressed in radians. For the inverse trigonometric functions, the value of R is
in radians. The domain of the result is always floating—point.

Examples:

1002

T2.064961208E718
00.4 .5 .6

0.916515139 0.8660254038 0.8
~70.5

0.5483061443

CE38-04

o)
Function (Pi Times, Circular)

5-11

Notice in the first example that the result (the sine of 2xPi) should actually be
zero. The actual result reflects the effect of computing with approximately 18
decimal—place precision.

! Function (Factorial, Binomial)

o Monadic ! is the Generalized Factorial function.
Re¢'B

The result is B factorial for non—negative integral value of B. If B is not an
integer, the result is the gamma function of B+l.

Domain Table:

B|]C L I F

R|DEL I/FF

Examples:
'7
5040
'.66 .75 0

0.9016683712 3.625609908 1

o Dyadic ! is the Binomial function.
ReA'B
If the arguments are positive integers and 4 is less than or equal to B, the
result is the number of combinations of B things taken 4 at a time. 1In general,
(A'B) is:
Re(!B)+(14)x1B-4A

Domain Table:

\B
AA|C L 1 F

C | DE DE DE DE
L|DE L I F
I |{DOE I I1/F F

F|DE F F F

Examples:
112
2
1.5!2
1.697652726
1.5!2.5
2.5
5152
2598960
5-12 ! CE38-04

Function (Focto}ial. Binomial)

Relational Functions

The six relational functions are used to compare two values and return a value of 1
if the relation is true or a value of 0 if the relation is false. The truth value
can be used in calculations in the same way as any other value of 1 or 0. The
relational functions are strictly dyadic, requiring o left argument.

The expressions used below to define the relational functions includes a value DELTA.
This is a relative tolerance value related to the user—established comparison
tolerance in the following way:

DELTA«QOCTx(1A)[1B

< Function (Less Than)

o Dyadic < is the Less Than function.
ReA<B
The result is 1| if (4~B)<-DELTA, and is 0 otherwise.
Domain Table:

\B
AA|C L 1 F

C | DE DE DE ©DE
L|DE L L L
1 J]DE L L L
FIDE L L L
Examples:
2<4.5
1

123321
100

<€ Function (Less Than or Equal)

o Dyadic < is the Less Than or Equal function.
ReAsB
The result is 1 if (A-B)<SDELTA, and is 0 otherwise.

Domain Table:

B
AA|C L I F

C | DE DE DE ©DE
L{DE L L L
I |DE L L L
F{DE L L L

CE38-04 < 5-13
Function (Less Than or Equal)

Examples:
152
1

123321
110

= Function (Equals)

o Dyadic = is the Equals function.
ReA=B
If A and B are numeric, the result is 1 if (|A-B)<DELTA, ond is 0 otherwise. If
A and B are charocters, R is 1 if A and B are the same, and 0 if they are not.
If one argument is character and the other numeric, R is 0.

Domain Table:

\B
AA | C L I F
c L L L L
L L L L L
I L L L L
F|lL L L L
Examples:
123=321
010
'THIS'='THAT'
1100
t4A1=5

0

2 Function (Greater Than or Equal)

o Dyadic 2 is the Greater Thaon or Equal function.
Re¢A2B
The result is 1 if (A-B)2-DELTA, and is 0 otherwise.

Domain Table:

\B
AA|lC L I F

C | DE DE DE DE
L|IDE L L L
1 |DE L L L
F]J]DE L L L
Examples:
122
0

123321
011

5-14 2 CE38-04
Function (Greater Than or Equal)

> Function (Greater Than)

o Dyadic > is the Greater Than function.
R«A>B
The result is 1 if (A-B)>DELTA, ond is 0 otherwise.
Domain Table:

\B
AA|lC L I F

[DE DE DE DE
L | DE L L L
1 I DE L L L
FIDE L L L
Examples:
2>3.4
0
123321
001

Function (Not Equal)

o Dyadic # is the Not Equal function.
ReA¥B
If A and B are numeric, the result is | if (|4-B)>DELTA, aoand is 0 otherwise. If
A and B are characters, R is 0 if 4 and B are the same, 1 if they are not. If
one argument is character and the other numeric, R is 1.

Domain Table:

\B
A\ |C L 1 F
C L L L L
L L L L L
1 L L L L
FJ]L L L L
Examples:
1238321
101
'THIS'#'THAT'
0011t :
'A'¥S

1

CE38-04 # Function (Not Equal) 5-15

Logical Functions

The five logical functions are used to perform logical operations, returning a result
of 0 or 1. The first four operations are strictly dyadic, and the last (the "not"
operator) is strictly monadic.

A Function (And, LCM)

o Dyadic A is the And function.
ReAAB

For logical values of A and B (0,1) the result is 1 if 4 and B are both 1, and is
0 otherwise. Otherwise, the result is the least common multiple of 4 and B.

Domain Table:

\B |
A\ | C L 1 F

c I DE DE DE DE
L|DE L I F

I |DE I 1/F F
FIDE F F F
Examples:
1a1
1
(1<2)A(3=4)
0
1100010
1000
32
6
0.2A0.7
1.4

v Function (Or, GCD)

o Dyadic v is the Or function.
R¢AvE
For logical values of 4 and B (0,1) the result is 1 if either 4 or B are both 1,
and is 0 otherwise. Otherwise, the result is the greatest common divisor of 4
and B.
The greatest common divisor of two values will always be less than or equal (in

magnitude) to each of the values. The result of this function is always
non—negative.

5-16 v Function (Or, GCD) CE38-04

Domain Table:

\B
AlC L 1 F

C | DE DE DE DE
L{DE L I F
1|DE T 1 F
FIDE F F F

Examples:
ivl
1
(1<1)v(3=4)
0
1100v1010
1110
4vé
2

Function (Nand)

o Dyadic + is the Nand function.
ReA~B
The result is 0 if A and B are both 1, and is | otherwise.
Domain Table: |

\B |
AAjc L 1 F

C | DE DE DE DE
L|DE L L L
1 |DE L L L
F|IDE L L L
A DOMAIN ERR results if both A and B are not equal to either 1 or 0.
Examples:
1ol
0
. (1<2)4(3=4)

110041010
0111

CE38-04 ~ Function (Nand) 5-17

¥ Function (Nor)

o Dyadic # is the Nor function.

ReA~B

The result is 0 if either 4 or B, or both, are 1, and is 1 otherwise.

Domain Table:

\B

AN\ | C L I F
C | DE DE DE DE
LIDE L L L
I |DE L L L
F|DE L L L

A DOMAIN ERR

Examples:

1+1
0

results if both 4 and B are not equal to either 1 or O.

(1>2)%(3=4)

1

1 100~1 010

0001

~ Function (Not)

o Monadic ~ is the Not function.

Re~B

The result is 1 if B is 0, and is 0 if B is 1.

Domain Table:

Bl]CcC L I F

RIDEL L L

A DOMAIN ERR results if B is not equal to either 1 or 0.

Examples:
~1
0
~0
1
~(2.5-1.5)
0
5-18 ~ Function (Not)

CE38-04

Mixed Functions

Functions not categorized previously as monadic or dyadic scalar functions are called
mixed functions. Rules for shapes and domains of the arguments and results vary and
are described for the individual functions.

? Function (Roll, Deal)

o Monadic ? is the Roll function.
Re?B

Each item R[I] of the result is an integer selected pseudorandomly from (v BlI]).
The range of the result depends on the value of the index origin (see the deal
operator beiow). The shape of the result is the same as that of the right
argument.

Examples:

?5
3

?22 4 6
241

23333
1231

o Dyadic ? is the Deal function.
R¢A?B
The result is a vector of integers comprising A components pseudorandomly
selected from (¢ B) without replacement, preventing the duplication of integers
in R. The range of the result depends on the index origin. If the index origin
is 0, the range is 0 through B-1. If the index origin is 1, the range is 1
through B.

A may not exceed B, and both must be simple numeric items.

Examples:
274
4 2
676
2135486
A+«10 20 30 40 SO0 60 70 80
A(478)
70 20 10 40

t Function (Index Generator, Index 0f)

o Monadic ¢ is the Index Generator function.
Re¢v B

B must be a single simple numeric item, equal to an integer. The result is a
simple integer vector comprising B items, beginning with the index origin and
incrementing monotonically by 1. The index origin can be changed by assigning a
value to 0I0. If B is 0 the result is an empty numeric vector.

CE38-04 v 519
Function (Index Generator, Index Of)

Examples:

O«Rery
1234

0ro«o

O«Ret
0123

o Dyadic v is the Index Of function.
ReAv B

The value of each item of the result is the smallest index I such that A{I] is
equivalent to the corresponding item in B. The left argument must be a vector.
The right argument may have any rank. If no match for an item of B is found in
A, that item of the result is set to (p4)+0/0. The shape of the result is the

same as the shape of the right argument. The result is simple and in the integer
domain.

Note that 4 may be an empty vector and the value of the result depends on whether
the index origin is 1 (the default case) or 0. 4 and B may be of any domain.
Note, however, that if 4 is all character data, for example, and B is all
numeric, the result will be entirely "no match" values.
Examples:

2 4 6 813

lezl L'

DOG* L' COT!
46 24

tXYz* 'DoG':'0' 'XYz* ‘X' 'DOG'
3132

c Function (Enclose)

o Monadic < is the Enclose function.
RecB
Rec[K)B

B may be any APL array. This function increases the depth of B by ! and
decreases the rank. If an axis is not specified, the result is a scalar whose

only item is the array B. If B is a simple scalar character or number, the result
is B unchanged.

If an axis is specified, all of the axes specified by K are enclosed, resulting
in an array of rank (ppB)-p,K, containing items of rank p,X. The shape of the
result is (pB)[(~(tppBleK)/pB] and the shape of each item of B is (pB)I[K].

Examples:
0Ops«0 0 "3 73
<6
6
c,6
+-+
]|
=+
C'SENATE'
o +
ISENATE|
$m————e +

5-20 ¢ Function (Enclose) CE38-04

ct1)2 3p'ABCDEF'
t=—t f=ed b=t
14D} |BEIl ICFI|
to=t de=t +-=+
gps«"1 102
A«'STEVE' 'MARK' 'TOM' 'BRUCE'
A[3)«c'THOMAS'

A
STEVE MARK THOMAS BRUCE

> Function (Disclose, Pick)

Monadic > is the Disclose function.
Re>B
Re>[K)B

The result is an array whose depth is one less than that of B and whose rank has
increased by the rank of the non-scalar items of B. All of the non-scalar items
of B must have the same rank although they may vary in shape. If B is a simple
array then the result is 5.

If B is a simple scalar, the result is B. Otherwise if B is a scalar, the result
is the array contained in B.

If axes are specified, they indicate where to insert the axes of the items of B
into the result. When no axes are specified, the new axes are inserted after the
axes of B. The number of axes specified must equal the rank of the non-scalar
items of B.

Examples:

o0¢>'WHO' 'WHAT' ‘'WHEN' 'WHERE'
WHO
WHAT
WHEN
WHERE
45
oO¢>[11'STEVE' 'MARK' 'TOM' 'BRUCE'
SHTB
TAOR
ERMU
VK ¢
E E
54
>1CP-6'
CcP-6

Dyadic > is the Pick function.

ReA>H

The result is an item from the (pd)’th leve! of nesting in B selected by the path
specified in A. A4 must be a scalar or vector containing only simple integer
scalars or vectors. ‘

The first item of A must contain valid indices of B. These indices select an
item of B which is then indexed by the next item of 4 until all items of 4 have
been used. The final array is the result of this function.

If A is empty, the result is B.

CE38-04 > Function (Disclose, Pick) 5-21

Examples:
3 >YABCDEFGHIJ'
23 (21)>1(12(22p1234)4)321
2 (+0)> 90 91 92

Function (Depth, Equivalence)

o Monadic = is the Depth function.
Re=H
The result is a simple non—-negative integer scalar indicating the maximum depth
of nesting in B. B may ‘be any APL array.
The depth of a simple scalar character or number is defined as 0. Non—scalar
arrays containing only depth 0 items have depth 1. All other arrays have a depth
of 1+I/="B.
A depth greater than 1| indicates that an array is not simple.
Examples:
=29
0
=23 29 31
1
='ABC' 4 (5 (6 7))
='CABLE' 'CARS'
2
o Dyadic = is the Equivalence function.
ReA=B
The result is a simple logical scalar indicating whether every item of the left
argument is equivalent to every item of the right argument. The result is 0 if
any item of 4 is not equivalent to the corresponding item of B.
Comparison tolerance is used if corresponding items of 4 and B are numeric.
Arrays are equivalent if they have the same shape and structure, and if all
corresponding values in each structure are equal.
Empty arrays are equivalent only if their prototypes are also equivalent.
Examples:
1984=,1984
0
YAPPLE'="PIE"
0
10 20=9+1 11
1
10 (9 8)=4 (3 2)+6
1
5-22 = CE38-04

Function (Depth, Equivalence)

7

Function (Ravel, Catenation, Lamination)

Monadic , is the Ravel function.
Re,B

The result is a vector comprising the components of the argument B in index
sequence. The argument can have any shape and dimensions.

Examples:
B¢2 2p14
B

B

3 4
Bl1;1)¢cB
B

—
N

B
12 23%
3 4
0¢C+2 4p'LEVELSIX'
LEVE
LSIX
,C
LEVELSIX

Dyadic , is the Catenation and Lamination function.
ReA,[(K1B

The catenation coordinate K is acceptable if ([K)e¢t(ppAd)lppB. The catenation
coordinate is K.

If A and B are vectors or scalars, the result is a vector comprising all items of
A followed by all items of B.

Examples:

A«l 2 3
B¢t 5 6
A,B
123458
Ce'STR!
D«'AND!
C,D,A
STRAND]1 2 3

Catenation

Arguments A and B are conformable for catenation if:

1. The ranks are equal and all coordinates except the catenation coordinate are
equal.

2. The rank of one argument is one less than the other and all coordinates
except the catenation coordinate of the higher rank argument are equal to ail
coordinates of the lower rank argument. The lower rank argument is
subsequently treated as if its rank were equal to the other argument and its
catenation coordinate length were 1.

3. Either 4 or B is a scalar. The scalar argument is subsequently treated as if
its shape were equal to the other argument with a catenation coordinate
length of 1.

CE38-04 » Function 5-23

(Ravel, Catenation, Lamination)

If A and B have conformable shopes and one or both are of higher rank than
vector, catenation joins 4 and B along an existing coordinate. If no coordinate
is specified, catenaotion occurs along the last coordinate. Scalar arguments are
extended for catenation in this case.

Examples:

OeMet T0'M'
MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM

Xe2 Tp'X!

Ye11234567"

Z«'1234"

Weto!

M,[1)X
MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM
XXXXXXX
XXXXXXX

M, [1)Y
MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM
1234567

M,Z
MMMMMMM1
MMMMMMM2
MMMMMMM3
MMMMMMM4

M, L1V
MMMMMMM
MMMMMMM
MMMMMMM
MMMMMMM
0000000

M,V
MMMMMMMo
MMMMMMMo
MMMMMMMo
MHMMMMM 0

Lomination

I1f a non—-integer coordinate value is indicated in catenation, and its ceiling is
a valid coordinate, the function performed is termed lamination. In this case
the variable 4 and B are joined on a new coordinate. The length of the new
coordinate is always 2.

In the following examples, the index origin is 1. If a coordinate of zero or
less, or three or more, were specified, RANK ERR would be reported.

Examples:

M,[.5)V
MMMMMMM
MMMMMMM
-MMMMMMM
MMMMMMM

5-24 , Function CE38-04
(Ravel, Catenation, Lamination)

0000000
0000000
0000000
0000000

oM,[.5IW
2 47

M,[1.5]F
MMMMMMM

0000000

MMMMMMM

0000000

MMMMMMM

0oco00000

MMMMMMM

0000000

oM,[1.51W

4 27 '
M,[2.5]W

Mo

Mo

Mo

Mo

Mo

Mo

Mo

Mo
Mo
Mo
Mo
Mo
Mo
o

Mo
Mo
Mo
Mo
Mo
Mo
Mo

Mo
Mo
Mo
Mo
Mo
Mo
Mo
oM
4 7
oM,[2.51W
4 72

CE38-04 , Function 5-25
(Ravel, Catenation, Lamination)

p Function (Shape, Reshape)

o Monadic p is the Shape function.
RepB

The result is an integer vector comprising the number of items each index of B
contains. That is, R contains the highest index in each coordinate of B in
origin 1. Thus, the expression ppB represents the rank (number of dimensions) of
B. If B is a scalar, pB results in an empty vector.

Examples:
Be2 4 6 B
pB

4

C«2 3p'PIFFLE'
pC
23

o Dyadic p is the Reshape function.
ReApB

The result is an array with the dimensions specified by vector 4 and the contents
of B. Items of 4 may be positive integers or zero. If any component of 4 is
zero, R is empty. If A is empty, R is a scalar. If B is empty, the prototype of
B is used to fiil the result. If the reshape requires fewer items than B
contains, only the required items are in the result. If the result requires more
items than B contains, B is cyclically reused as required. B may be of any rank
or domain.

Examples:

203 4 5 6

«
&

2 bpi5

- N

3 &
23

) -

3 3p'AB' 'CDE' 'FGHI' 'JKLMN'
AB CDE FGHI
JKLMN AB CDE
FGHI JKLMN AB

- Function (Reversal, Rotation)

o Monadic ¢ is the Reversal function.
R«Q(K1B

The result is a reversal along the K'th coordinate of B. If K is omitted, the
last coordinate is .assumed. (If © is used instead of ¢, the first coordinate is
assumed) .

Examples:

O'EMIT!
TIME

00113 3p18
7809
456

5-26 (v} CE38—-04
Function (Reversal, Rotation)

-
(&]

93 3p:9

o Dw
oonNn N
-] &

O'FOX' ‘'WOLVERINE' 'DOG' ‘'CAT'
CAT DOG WOLVERINE FOX

o Dyadic 9 is the Rotation function.
R+AQLK]1B
The result is a cyclic rotation of B by the number of components determined by 4.
If A is positive, rotation is to the left; if A is negative, rotation is to the
right. Rotation is performed along the K'th coordinate of B. If X is omitted,

the last coordinate is assumed. (If © is used instead of Q, the first coordinate
is assumed).

Arguments 4 and B are conformable for rotation if:
1. A is o scalar or one element vector.

2. The rank of 4 is one less than the rank of B and the shape of 4 is equal to
the shape of B omitting axis K.

A must be o simple integer array.
Exomples:‘
30'LEAP!
203 4pr12
3 41 2
7 85 6

11 12 9 10
T103 4pr12

PLEA

N oE

—
nNo O © U -

e Gpei2

(AR)
FENDWe—JW

-
-

Q Function (Transpose)

o The monadic Transposition function has the following syntax:
R«RB

The result is an array comprising the items of B with the order of all
coordinates reversed. For any B, (p®B)=(0pB). If B is a matrix, for example, the
result is a matrix whose rows are the columns of B and whose columns are the rows
of B. Monadic transpose of a scalar or vector yieids Re¢B.

Examples:
OcA«3 S5p'AGENTVIGORAGONY'
AGENT

VIGOR
AGONY

CE38-04 ® Function (Transpose) 5-27

R4
AVA
GICG
EGO
NON
TRY
O¢B¢2 3 4p(212),100+212
1 2 3 4
5 6 7 8
9 10 11 12

101 102 103 104
105 106 107 108
109 110 111 112
pQB
4 32
85
101
105
109

102
106
110

_
—gw OON ©WU-—

103
107
111

—

4 104

8 108

12 112
The dyadic Transposition function has the following syntax:
ReARE

The result is an array similar to B except that the coordinates of B are permuted
according to A. The shape of 4 and B must be related by

(pA)=ppB
There are two cases of dyadic transposition:
Case 1:
A is a permutation of tppB (the coordinates of B). A is described as the inverse
permutation vector. The A[I)’th component of pR is the I'th component of pB, and
thus the All)’'th coordinate of the result is the I'th coordinate of B.

Examples:

2 182 3p16

N -
[X4

3 2 182 2 3p'EXASPERATION!
ER
SI

XA
PO

AT
EN

Case 2:
A satisfies the relationship (t[/4)€4; that is, A is a dense set of the first K
coordinates of B, permuted, with some coordinates duplicated. If B is a matrix,

the one possible form for 4 is (1 1), and the result is the principal diagonal of
the matrix.

5-28 ® Function (Transpose) CE38-04

Example:

O¢X«3 3p'GETEARTRY!

GET
EAR
TRY

118

GAY

If B has rank 3 or more, the rule is that the rank of R equals the highest value
in A. If 1<+/A[1)=4 and N«(A[I)€A)/vpA, then the AIN[I)]'th coordinate of R is

made up of those components of B whose N'th coordinate indices are the same.
other coordinates of the result are structured as in Case 1.

All

For higher order arrays, the generalized “diagonal" case of dyadic transpose is

varied and somewhat difficult to visualize.
for Case 2:

Ze2
o}«2
ABCD
EFGH
IJKL
MNOP
QRST
Uvwx
ABCD
EFGH
24 4
A€l
A
AV
pA
2
Bel
B
AFKP
QVCH
o B
2 4
Ce2
Cc
AQ
FV
KC
PH
p C
4 2
De2
D
AR
EV
1B
MF
p D
§ 2
Eel
E
AEIM
RVBF
oE
24
Fe2
F
AU
BV
cwW
DX
oF
4 2
CE38-04

182

282

187

Rz

18 2

182

4 4p'ABCDEFGHIJKLMNOPQRSTUVWX'

® Function (Transpose)

The examples below show some forms

5-29

Gel 2
G
AFKP
QVCH
oG
2 &
Xe2 3
1 1
1 87
1 1
1 2 4
86 87 88 89
222
1 86
2 87
3 88
4 88
5 80
112
1 713189
81 87 93 98
221
1 81
7 87
13 93
18 99
122
1 2 3
26 27 28
51 52 83
61 62 63
86 87 88
111 112 113
322
1 61
26 ©86
51 111
2 62
27 87
52 112
3 63
28 88
53 113
4L 64
29 89
54 114
S 65
30 80
55 115
5-30

202

& 5p1120
19x
20x

5
80
10X
28X
19x
3

& S
29 30
54 SS
64 65
89 90
114 115
18x

® Function (Transpose)

CE38-04 \

4 Function (Grade-up)

o Monadic & is the Grade-up function.
R<dB

The result is a vector of indices (index origin sensitive) of the first
coordinate of B ranked in ascending order of magnitude. B may be any simple
non—scalar array containing only numbers or only character items. Identical
components of B are ranked in index order.

If B is a vector, then the result values are the indices of the individual items
of B. If B is a matrix, the result values are indices of rows of B, and the rows
are ranked such that a difference in the first column of B is more significant
than o difference in the remaining columns. This ranking extends to higher
ranked arrays by sorting on the first coordinate and treating all other
dimensions in ravel order.

Ranking Numeric Arrays

4 510 15 20
1234%
43141
2413
5202819234214
$§2314%

Ranking Character Arrays

If B is a character array, then &F is treated as AbB where A is the default
collating sequence shown in Table 5-2. For this default array, difference in
case (lower or uppercase) is less significant than a difference in spelling.
Also, numeric suffixes sort in numeric order.

Examples:

A«11 3p'L10LY L3 L9 L33L LX L7 L3OLL L6 '
6 10 7‘2 31184185

ALd4;)

LL
Lx
L1
L3
L6
L7
L9
L10
L30
L33

CE38-04 & Function (Grade-up) ’ 5-31

Table 5~2. Default Colloting Sequence Array

(10 2 274' ',1 2 26p[JAV(65 970.+126)),'0123456789',[1.5]" '
ABCDEFGHIJKLMNOPQRSTUVWXYZO
ABCDEFGHIJKLMNOPQRSTUVNXYZ

1

o Dyadic & is the Grade—up function.
ReAbB

The result is a vector of indices ([JI0 sensitive) of the first coordinate of B
ranked in ascending order of magnitude using the collating sequence specified by
the array A. 4 and B must be simple non—scalar arrays containing only character
items.

The left argument collating sequence array is arranged such that the indices of
the first occurrence of each character determines the significance and order for
the ranking operation. When two characters differ in their indices along the
columnar axis (the last dimension), this difference is more significant than a
difference in indices along the row axis or plane axis.

For example, to sort an array containing letters and underscored letters, a
matrix might be used. In this case, if the first row of the matrix contained the
letters and the second row contained the underscored letters, the sort would rank
a difference in speliing (letters) higher than o difference in case. The result
would cause all similarly spelled words to sort together regardiess of their
case.

Any characters occurring in B but not in A are treated as though their index
position in A is beyond the end of each axis of 4.

Examples:
O«A«' ABCDEFGHIJKLMNOP® ,1.5)' ABCDEFGHIJKLMNOP®
ABCDEECHIJKLMNOP
ABCDEFGHIJKLMNOP
O¢B+5 3p'AMAAMAPL AMAAMYM'
AM4
AMA
el
AMA
AMM

5-32 4 Function (Grade—up) CE38-04

Ab B
41253
*ABCDEFGHIJKLYNOPABCDEFGHIJKLMNOP'A B
45312
' AABBCCDDEEFFGGHHI I JUKKLLMMNNQOFP'A B
45123

¥ Function (Grade-Down)

) Monadic ¥ is the Grade—~down function.
R«YB

The result is a vector of indices (0I0 sensitive) of the first coordinate of B

ranked in descending order of magnitude. B may be any simple non-scalar array

containing only numbers or only character items. Identical components of B are
ranked in index order.

If B is a vector, the result values are the indices of the individual items of B.
If B is a matrix, the result values are the indices of rows of B and the rows are
ranked such that a difference in the first column of B is more significant than
the remaining columns. This raonking extends to higher ranked arrays by sorting
on the first coordinate and treating ali other dimensions in ravel order.

Examples:

¥314158
653124
¥7203113273461571
5641372 .

Ranking Character Arrays

If B is o character array, ¥B is treated as A¥YB where 4 is the default collating
sequence shown in Tablie 5-2. For this default array difference in case (letter
or underscored letters) is less significant than o difference in spelling. Also,
numeric suffixes sort in numeric order.

Examples:

A«12 Jp'NFDNS NB PEIQUEONTMANSASALBBC NWTYUK'
AlO«v4;)

128546 1121371089

YUK

SAS

QUE

PEI

ONT

NNT

NS

NFD

NB

MAN

BC

ALB

o Dyadic ¥ is the Grade—down function.
ReAY5
The result is a vector of the indices of the first coordinate of B arranged such
that B is ranked in descending order of magnitude using the collating sequence

specified by the array 4. A and B must be simple non—scalar arrays containing
only character items.

CE38-04 ¥ Function (Grade-Down) 5-33

The left argument collating sequence is arranged such that the indices of the
first occurrence of each character determines the significant and order of the
ranking. When two characters differ in their indices along the columnar axis
(the last dimension), this difference is more significant than a difference in
indices along the row axis or plane axis.

Any characters occurring in B but not in A are treated as though their index
position in A is beyond the end of each axis of 4.

Examples:

A0« ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVNXYZ"
Al«' AABBCCDDEEFFGGHHI I JUKKLLMMNNOOPPQQRRSSTTUUVVNWXXYYZZ"
A2¢2 26pA0

Be? 6p'TQSQONTRUDGEPHOTO UNDER TOSOONTRUDGETEK '

AOYB
6173425

A1YE
46172253

A2YB
4621573

BLAOYB;),' ',BLA1Y¥B;)," ',BlA2YB;])

TRUDGE YNDER UNDER
TOSOON TRUDGE TRUDGE
TEK TOS00ON TRUDGE
PHOTO TEK TOSO0N
UNDER TRUDGE TOS00N
TRUDGE TOSQON TEK

TOSOQN PHOTO PHOTO

1 Function (Base Value, Decode)

) Dyadic 1l is the Base Value function.
R«ALB

The argument 4 is referred to as the radix or radix vector. If 4 is a scalar, it
is conceptually expanded to a vector. 4 and B must be simple and numeric; R is
numeric.

The argument 4 is used internally to generate a set of weights, W, to operate on
B as follows. Let | be the length of B. Then:

Wil
WUI-1)«ALIIxWL])
NUI-210ALI-11xW(I-1])
Wl1)«Al2)xN[2]

Note that Al1] has no effect on the result.
Example:

A<0 60 6011 2 3
W(3] is 1

Wi2] is W[3])xA(3], or 60
Wi1l] is W[2})xAl2], or 3600

5-34 1 CE38-04
Function (Base Value, Decode)

The result is formed by W+.xW:

1x3600 2x60 3x1

WxB is 3600 120 3
R is 3723

If A is a vector and B is an array, pA must be the same as the length of the
first coordinate of B. If B is o matrix for example, B must have the same number
of rows as the length of A. Each column of B is decoded to provide one item of
the result. If 4 is also an array, each row of A represents a different radix
vector. The shape of R is the catenation of the shape of all but the last
coordinate of A with all but the first coordinate of B. (Structure rules for 4,
B, and R are the same as for inner product.)

Examples:
211 01 1
11
413210
228
1019 8 7
987
1 2 31 45 67 89
560
@ X IS A TABLE OF TIMES REPRESENTED IN DAYS (ROW 1),
A HOURS (ROW 2), MINUTES (ROW 3), AND SECONDS.
+K+«4 6p0 0 0 0 1 11 0 0 023 13 0 1 16 46 46 46 10,Sp40
0 0 0 0 111
0 0 0 2 313
0 1 16 46 46 46
10 40 40 40 40 40
A EACH COLUMN OF K REPRESENTS A TIME VALUE.
a IF K IS OPERATED ON BY THE 'BASE VALUE' FUNCTION,
a THE RESULT IS A VECTOR OF TIMES IN SECONDS.
a THE RADIX VECTOR IS -- 365 24 60 60

365 24 60 601K
10 100 1000 10000 100000 1000000

T Function (Representation, Encode)

o Dyadic T is the Encode function.
Re¢ATH

R is a "base A" representation of B. R satisfies the relationship
((x/A)|B~-ALR)=0. A and B must be simple and numeric, R is numeric. Note that
the T and L functions are inverses (opposites). Note also that since Encode
carries out a residue operation, its values are subject to the rules for that
function. ’

If vector 4 contains too few items for B to be represented, the most significant
digits of the result are truncated. If A[l] is 0, any unencodeable portion of B
‘will be returned as R(1] rather than being truncated. Note that 4 and B may be

negative or non—integer values. In this case, the result is as well defined but
not as intuitively clear as for positive integer values.

B may be an array rother than a scalar, and the shape of the result will be the
catenation of the shapes of the arguments. (The structure rules for R, 4, and B
are the same as for outer product.

CE38-04 T 5-35
Function (Representation, Encode)

Examples:
A BINARY REPRESENTATION

(B8p2)775
01001011

A OCTAL REPRESENTATION
(308)775

A DECIMAL REPRESENTATION

{(5p10)731415
31415

@ VARIED UNIT REPRESENTATION
24 60 60775432
20 57 12

a EXAMPLE OF TRUNCATION
10 10731415
15

A THE ARGUMENTS FOR REPRESENTATION NEED NOT BE INTEGER
(8p1.5)732.75
10.51000.501.25

A H IS A VECTOR OF TIME VALUES IN SECONDS
He10 100 1000 10000 100000 1000000
A H CAN BE ENCODED IN TERMS OF DAYS,HOURS ,MINUTES AND SECONDS.
365 24 60 60TH
0 0 111
0 2 313
16 46 46 46
40 40 40 40

oo o
[= N =]

A IN THE RESULT, EACH COLUMN REPRESENTS ONE ELEMENT OF H
A ROW 1 IS DAYS, ROW 2 IS HOURS, ROW 3 IS MINUTES AND
A ROW & IS SECONDS.

The encode function T is based on the residue function in the manner specified by
the following function for vector 4 and scalar B:

V Z«A ENCODE B
(1] Z+«0x4
[2] l+pA
(31 L:»(I=0)/0
(6) Z(Il)«ALI)IB
(S) =+(ALI1=0)/0
[6) Be(B-Z(I))+All}

(7] lel-1
(8] =L
v
5-36 T CE38-04

Function (Representation, Encode)

¥ Function (Format)

o Monadic v is the Format function.
Re¢v® B

The symbol ® (T and o overstruck) defines two format functions which convert
numerical arrays to character arrays. The monadic function produces a character
array which is identical to the array which would be produced if the argument
were merely printed; the difference (and advantage) is that the result is made
explicitly available. The monadic format function can also be applied to a
character array and will return the same character array. When applied to
numeric arrays, however, the shape of the result is the same as the shape of the
argument except for the required expansion along the last coordinate, each number
being expanded, in general, to several characters. When applied to a nested
array, the result is a vector or o matrix.

Exampies:
PTABLE«2=?4 4p2
PTABLE
1101
0010
1000
0001
oPTABLE
4 &
p00«DFORMAT«%PTABLE
1101
0010
1000
0001
4 7
'LITERAL"
LITERAL

o Dyadic v is the Format function.
R¢4 © B

The dyadic format function accepts only simple numeric arrays for its right
argument, and uses the left argument to provide detailed control over the result.
In general, o pair (or pairs) of numbers in the left argument controls one or
more columns of the resuit. The first number of the pair determines the total
width of a number field and the second number specifies the desired precision.
For decimal form numbers, precision is defined as the number of digits to the
right of the decimal point; for scaled form it is defined as the number of digits
in the multiplier. The form to be used is defined by the sign of the precision
number in the control pair. Negotive numbers indicate scaled form. For example:

o[J«DMATRIX«3 2p12.34 ~34.567 0 12 ~.26 7123.45
12.34 ~34.587

0 12
T0.26 T123.45
3 2
o(¢12 3SDMATRIX
12.340 ~34.567
0.000 12.000
~0.260 T123.450

3 24

o[¢+SCALED«9 ~2SDMATRIX
1.2F1 ~3.5E1
0.0F0 1.2E1
T2.6E71 T1.2E2
3 18

A single control number may also be used, and is treated as a number pair with a

width indicator of zero. In this event, a field width is chosen such that at
least one space will appear between adjacent numbers. For example:

CE38—04 v Function (Format) 5-37

p0+2vDNATRIX

12.36 ~34.57
0.00 12.00
~6.26 "123.45
3 14
o0« " 2°DMATRIX
1.2E1 ~3.5F1
0.0E0 1.2E1
T2.6E71 T1.2E2
3 20

Each column of an array can be individually formatted by defining a left argument
containing a control pair for each column of the array. For example:

o0<0 2 0 2vDMATRIX
12.34 ~34.57

0.00 12.00
T0.26 T123.45
3 14

p(¢6 2 12 “3VDNATRIX
12.34 T3.46E1
0.00 1.20E1
0.26 T1.23F2
3 18

When applied to an array having a rank greater than two, the format
specifications apply to each of the planes defined by the last two coordinates.
For example:

MATRIX3D«2=22 2 502
MATRIX3D

11

10

oo
—

oo (=R
oo

11
00

Q -

4 1

oo oo

QO

oo oo
— e o
[N~) .OOB
'—'-;
. . ~
Qoo [~X-R_1
Oty

oo O -

0.
0

(=N
(=)
(=N

. .

Tabular displays which incorporate row and column headings or other information
between columns or rows, can be configured using the format function together
with extended catenation. For example:

ROWHEADS«4 30'JANAPRJULOCT'
YEARS+78+15
TABLE+.001x"4E5+?4 Sp8ES

(' ',[1IROWHEADS), (209 OVYEARS),[119 2%TABLE

79 80 81 82 83
JAN T159.97 153.85 269.01 208.60 788.20
APR 8.89 7T322.64 2983.61 297.76 213.28
JUL 254.56 73.44 255.15 T134.65 305.28
ocT 52.33 1.25 T6.41 T234.24 T314.15

A DOMAIN ERR results when the width indicator of the control pair does not
specify a size large enough to hold the requested form. The width need not,
however, provide for blanks between adjacent numbers.

5-38 v Function (Format) CE38-04

4 Function (First, Take)

) Monadic ¢ is the First function.
ResB

B may be any APL array. The result is the APL array which is within the first
item of B. If B is empty, the result is the prototype value of the array 5.

Examples:

+10 20 30
10

+'HIYAY
H

+'SASKATOON' 'MOOSE JAW'
SASKATOON
44 'SASKATOON' 'MOOSE JAW'

S

444 'SASKATOON' '"MOOSE JAW'
S

40p(1 2) 3 (& 5)
00

o Dyadic ¢ is the Take function.
ReA+B

A must be an integer scalar or vector, and the length of 4 must equal! the rank of
B. (If B is a scalor it is treated as though it were a 1 item array whose rank is
the length of A.) Each item of A controls the "take" from a coordinate of B. R
has the same rank as B. The shape of R is |A.

If A[I)20, then the I th coordinate of R is the first A[I) items in the I th
coordinote of B. If AlI]<0, the last |A[I]) items are used. If [A[I] indicates
more items than are present in the coordinate of B, R is padded with prototype
values of B.

Examples:

“3415
345
745
1234500
3#(1 2 3) (4 5)
123 445 000
! '=104'0LYMPICS'
000000011
+B¢2 2 2p18

o

1 2 348

-3 [X
&N [-- N &N

C)

CE38-04 4 Function (First, Take) 5-39

¢ Function (DProp)

Dyadic ¢ is the Drop function.
ReAVB

A must be integer scalar or vector, and the length of A must equal the rank of B.
(If B is o scalar it is treated as through it were a 1 item array whose rank is
the length of A.) Eaoch item of A controls the "drop'" from a coordinate of B. R
has the some rank as B. The shape of R is Ol(pB)-]A. If a dimension in the result
thus created would be negative it is set to zero.

If A[7)20, then the I'th coordinate of R is all but the first A[/] items of the
I'th coordinate of B; that is, the first A[!]) items are dropped. 1f A[I)<0, the
last |A[I]) items of the I'th coordinate of B are dropped.

Examples:
3415
12
3415
4 5
+B¢2 2 2p18
12
34
5 6
78
12 28 A NOTE: RESULT IS AN EMPTY ARRAY
2 2 148
11 148
8

€ Function (Type, Membership)

[}

Monadic € is the Type function.
ReeB

The result is an array with the same structure (shape and depth) as B with all
numbers replaced by zero and all characters replaced by blanks.

Examples:

€1 234
0000

' '=e¢'CHARACTER'
111111111

€1 (23) (4 (58) 7)
0 00 0 00 O

Dyadic € is the Membership function.

Re«A¢B

If an item of A is contained in B, the corresponding item of R is equal to 1;
otherwise, it is @. The result has the same shape as 4 and is in the logical

domain. B may have any rank. If 4 and B are numeric, [CT is used in the
equality test.

5-40 ¢ Function (Type, Membership) CE38-04

Examples:

A«'ALPHABET'

B« ABCDE'

C+2 4p1r8

A<B
10001110

1 5 10¢C

'TWO' ‘'TEN'€¢'ONE' 'TWO' ‘'THREE' 'FOUR'

a NOTE THAT MEMBERSHIP MAY BE USED WITH NUMERIC VERSUS
] TEXT ARGUMENTS, BUT THE RESULT IS ALWAYS ZERO

A<C

00000

Ced

0
0
1 2 3e't 2 3¢

o (=N =) o
o oo (=)
o oo o

¢ Function (Execute)

o Monadic ¢ is the Execute function.
ReoB

B must be a simple scalar or vector. The domain of B must be character uniess B
is an empty vector. Ordinarily, the argument B will be a small character vector.
If B contains unbalanced quotes, the error OPEN QUOTE is reported.

Once the argument has met the above requirements, the execute function departs
from the mold of the other functions. That is, the characters in its argument,
if any, are treated as if they were an APL statement to execute.

It is even possible in CP-6 APL to execute system commands. - Execute operations
can be applied so that an application can create its own variable names, or
compose new formulas and evaluate them.

The execute function is a powerful tool. It can, however, be costly in execution
time. The cost stems from the transiation process when accepting its argument as
if freshly input. This translation is repeated each time the same execute
operation is performed; o function line, on the other hand, is translated only
once regardless of the number of times it is invoked. Thus, ’execute’ should be
used sparingly in interactive or recursive processes.

As stated previousiy, the execute function permits formula evaluation, or system
command execution in the midst of any APL statement. As with evaluated input,
the result of executing an expression is the value resulting from evaluating that

expression. The following examples illustrate this:
!'24.2!
4
PXERVY:- IR
AB
3+e'2+2"
-
Xet240
Yet2t
3+eX,Y
-

Executing an empty vector yields an empty (numeric) vector result.

CE38-04 ¢ Function (Execute) 5-41

0\e':0"
0

O\e'!
0

There are three important differences between execute in CP-6 APL and execute in
most other APL's. These are:

1. System commands may be the object of execute statements in CP-6 APL.
2. Function editing is possible using the execute functions in CP-6 APL.
3. Executing an empty or all blank vector results in an empty numeric vector.

Executing some system commands yields no result. For example:)OFF,)YOFF HOLD,
JCLEAR, and)LOAD yield no display. In CP-6 APL, the "execute" of a system
command which produces a display is returned as a character vector. This
charaocter vector is directly usable by the program.

The argument to the execute function may contain a number of expressions
separated by diamonds. The result of such an argument is the result of the last
expression evaluated. For example:

k+e'l 0 2 0 3
1
2
7

prints the values 1 and 2, returns 3 as the result of execute, which is added to
4 to print 7. (The diamond separator is described in Section 6 under Compound
Statements.)

The execute function can also be used to access function definition mode, but
limitations are imposed. A basic |imitation exists since only one "statement"
(character vector) can be the argument of an execute function.

The result of executing function definition mode operation is an empty vector
unless a function display was requested, in which case the text of the display is
returned as the result.

When using the execute function, the argument cannot contain unbalanced quotes
(the error message OPEN QUOTE is issued in such cases).

Error handling is unique in the case of the execute function. After the
diagnostic message (such as DOMAIN ERR), the path leading to the error is
displayed until a normal suspension point is reached. The following example
illustrates error handiing during an involved execute function.

VZe«Y F X
] Ae'Y4!
1 Be'x?
] Ce'94,B"
] Z«100+¢C
S F &
S F 'FOUR'
DOMAIN ERR
Y+X
A
24,8
A
Fl4) Z«100+&C
A

5-42 ¢ Function (Execute) CE38-04

B Function (Matrix Inverse, Matrix Divide)

[}

B is the Matrix Inverse function.
This function is used to solve systems of linear equations and to invert
matrices. The monadic form is equivalent to the dyadic form with an identity
matrix as a left argument, and the function can best be explained in terms of the
dyadic form. The right argument must be matrix with at least as many rows as
columns; that is, 1=(</pB). The first coordinate of the left and right arguments
must have the same length; that is, (1¢p4) = 1¢pB. A vector argument is treated
as though it were a one—column matrix; and a scalar is treated as though it were
a one—by—one matrix, in terms of shape requirements. The shape of the result is
(pR) = (14pB),(14pA). For inversion, the shape of the result is (pR)=(0pB).
R«ABHB produces R such that the expression +/(,A-B+.xR)%*2 is minimized; that is,
R indicates the least-squares solution (or solutions) to a system (or systems) of
linear equations.
If B is a non-singular square matrix, then the minimum is (except for
computational round—off errors) zero, and R is the solution of a set of
simul taneous equations. If, in addition, 4 is an identity matrix, R is the
inverse of B (that is equivalent to R¢@B). If 4 is o vector, R is the solution to
one system of simultaneous equations. If A is a matrix, each column of 4
represents the constants for o linear system with coefficient matrix B, and each
column of R is the corresponding solution.
If B is non—-square, then the minimum of +/(,A-B+.xXR)%2 is not generally zero, and
R represent a solution in the least-squares sense.
If B is singular (has fewer linearly independent rows than columns), then a SING
MATRIX error is reported.
If B is non—square and 4 is an identity matrix, the result is the left inverse of
A and the function is equivalent to R«f5.
Examples:
A INVERSE OF A SQUARE MATRIX
O¢B¢3 3p3 1 4159265
3 1%
16589
265
OeReBB
_0.3222222222 "0.2111111111 0.1222222222
0.16444644644 ~0.07777777778 0.2555555556
0.04444444446 0.1777777778 70.1555555556
0pPpPes
a VERIFY THAT THE INNER PRODUCT OF R AND B IS
] ESSENTIALLY THE IDENTITY MATRIX.
R+.xB
_1.0000E0 ~5.4210E719 ~8.6736E"19
_4.3368E_19 1.0000E0 ~3.2526E718
2.7105E720 "8.1315E720 1.0000E0
A LEFT INVERSE OF A NONSQUARE MATRIX
DeB¢5 3p3 1 4 158274359876
314
158
274
359
8786
O«r<8B
_0.074106 "0.082157 ~0.072245 ~0.015323 0.13129
0.10492 0.011612 0.17084 ~0.048546 0.013386
0.061261 0.06862 ~0.073814 0.085902 ~0.04531
CE38-04 B 5-43

Function (Matrix Inverse, Matrix Divide)

a AGAIN, VERIFY THAT THE INNER PRODUCT OF R AND B IS
a VERY CLOSE TO THE IDENTITY MATRIX

R+.xB
1.0000E0 1.0842E719 ~“1.1926E"18
“1.5179E718 1.0000E0 ~1.4095E718
1.9516£718 8.6736E719 1.0000E0

a SOLUTION OF A SINGLE LINEAR SYSTEM

A B IS THE COEFFICIENT MATRIX
a A IS THE VECTOR OF CONSTANTS
O¢B¢3 303 1 4 159265

314

1589

2665
O<4«35 89 79

35 89 79
O«R«ABB

2.1444 8.2111 5.0889
A VERIFY THAT B+.xR APPROXIMATELY EQUALS A

A-B+ . xR
$.5511E717 1.1102E716 8.3267F" 17

a SOLUTION OF A SET OF LINEAR SYSTEMS

a B IS A COEFFICIENT MATRIX

a A IS A MATRIX; EACH COLUMN IS A SET

a OF CONSTANTS FOR B.

a EACH COLUMN OF R, WHICH IS A MATRIX, IS THE
a SOLUTION FOR THE CORRESPONDING COLUMN OF A.

(J<4¢3 2p35 36 89 88 79 75
35 36
89 88
79 75

R«ABB

R
L1444 2.1889
2111 7.1222
.0889 5.5778

aonN

A CHECKING. ..

A-B+.xR
.SS11E717 2.7756E"17
.1102E716 B.3267E"17
.3267E717 5.5511E717

[)

a LEAST-SQUARES SOLUTION
O¢B¢6 2p1 1 12131415186

e
DANF WN =

A+12.03 8.78 6.01 3.75 ~0.31 "2.79

A
12.03 8.78 6.01 3.75 ~0.31 ~2.78
ReABB

R
14.941 ~2.9609
A THE RESULT GIVES THE INTERCEPT AND SLOPE OF THE INE

5-44] CE38-04
Function (Matrix Inverse, Matrix Divide)

a THAT IS THE LEAST-SQUARES BEST FIT TO THE POINTS OF A.

B+.xR
11.98 9.0196 6.0588 3.0979 0.13705 ~2.8238
A-B+.xR
0.049524 ~0.23962 "0.048762 0.6521 ~0.44705 0.03381

To find the values of X, Y, and Z in the following |linear equations:
4X + 2Y - 52 = 22

SX - 4Y + 47 7
2K + 2Y - 202 = 80

assign the values of the coefficients to 4 and the constant vector to B, as in :

A
4 2 75
5 "4 4
2 2720

B
22 77 80

and then obtain the solution:

BE4
1 71 4

Thus in the linear equations provided above, X has the value 1, Y has the value
“1 aond Z hos the value “&.

Operators

The five operators in CP-6 APL extend functions to arrays. In the following
descriptions of these operations, the bracketed value X represents that coordinate of
the argument arroy along which the specified operator is to act. If K is
unspecified, the last coordinate of the array is assumed. The 'symbols d, f, and g
represent any dyadic function, including a primitive function, a system function, o
defined function, or o derived function.

Reduction d/ Operator

o Monadic d/ is the Reduction operator.
Red/(K1B

The result is an array having dimensions equa! to that of array B except that the
K’th component is not present. If # is used instead of /, the first coordinate
axis is used.

For a vector argument, the value of the result is that produced by placing the
function d between each pair of adjacent components of vector B. A minus
reduction results in an alternating sum and a divide reduction results in an
alternating product.

For o scalar or an array comprising a single component along the reduction
coordinate, the result has the same value as B. For an empty array the result has
the value of the identity item of function d as shown in the table below or a
DOMAIN ERR if no identity exists.

CE38-04 Reduction d/ Operator 5-45

Table 5-3.

Identity Values for Scalar Functions

d Identity Item Comment

x 1

+ 0

* 1 Right identity only.
- 0 Right identity only.
* 1 Right identity only.
I 0 Left identity oniy.
@ None

0 None

v 0

A 1

“ None

v None

! 1 Left identity only.
L 8.378879956E152

r ~8.379879956E152

> 0 Right identity only.
2 1 Right identity only.
< 0 Left identity only.
< 1 Left identity only.
= 1

0

Domain restrictions for function d apply. If the function argument d is not a
scalar function, then the result is o possibly nested array. If B has more than
one item, the domain of the result is the same as indicated in the domain tables
for the dyadic scalar functions, or a nested array for all other functions.

Examples:
Oe+/2 4 6 8
20
O«-/2 4 6 8
“4
Oet/10
10

=/"APPLE' 'APPLE'®
1
=/'APPLE' ‘'PEAR'

0

OcA+2 4p1r8
1234
5678

+/4
10 26

+£4A
68 10 12

+/+/4
36

0ps«0 0 ~3 ~3

oJ¢,/4 Sp'ONE TWO THREEFOUR !
- + b L T + dom———y
IONE | ITWNO | |THREE| |FOUR |
$mm——— + e + e + ot
4

/1 (23 4) 5 (67 8)

It 23 458678l

+

5-46

Reduction d/ Operator

CE38-04

p/2 3
-t
13 3]
-+

Opse"1 102
B«2 3 4pr24
B

1 2 3 &
S5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
+/B
10 26 42
58 74 90
+/(21B
15 18 21 24
51 54 57 60
+/+/B
78 222
+/+/+/B
300

«34p1 11011001000

——
OO -

c
c
0
0
0
A/C

ARC
00

o
o

1
1
0
0
10

Compression A/ Operator (Replicate)

o Monadic A/ is the Compression operator.

Re¢A/(K)B

The result includes all items in B that correspond to a 1 in 4. Those
corresponding to a 0 are suppressed. If either argument is scalar, it is applied
to all items of the other argument.

Compression is performed along the X'th coordinate of B. If K is omitted, the
last coordinate is assumed. If # is used instead of /, the first coordinate is
assumed.)

A may be a simple logical scalar or vector, and B may be of any rank or domain.
If A consists of more than one item, its length must be the same as that of the
coordinate of B being compressed.

Examples:

Be2 2p04
1 0/8

CE38—-04 Compression 5-47
A/ Operator (Repiicate)

The compression operator may be used in a test and branch situation. 1In this
case, when the left argument has a value 1, o branch is made to the statement
indicated by the right argument. If the left argument haos the value @, a branch
is not taken and execution proceeds with the next statement. For example, the
statement: .

+(2>3)/END 0 'NO BRANCH'
NO BRANCH

falls through to the next statement; whereas

+(3>2)/END ¢ 'BRANCH'

causes a branch to the statement labeled END.
o The Replicate operator.

Re«A/(K)B
Like compression, the result includes AlI] copies of each B[I]. That is, if
AlI1=0 then the corresponding item of B is suppressed, if A[I]=2 then the
corresponding item of B appears iwice and so on.

Replication follows all the rules of compression except that 4 may be an integer
scalar or vector of non-negative values.

Examples:

Scan d\ Operator

o Monadic d\ is the Scan operator.
Red\[K]B

The result has the same shape as that of B. If % is used instead of \, the first
coordinate axis is used.

For o vector argument, the resuit is a vector of the same length with values as

fol lows:

RI1)«B[1)

R(2)«B[1]) d Bl[2])
R(31«B(1] d Bl2]) d B3]

Thus the last component of the result is equal to d/5.

For a scalar or a one-component array, the result is the same as B. For an empty
argument, the result will be empty.

Domain restrictions for function d apply. If B has more than one item, the
result domain is that indicated in the domain table for d if d is a scalar
function; otherwise the result is a nested array.

Examples:

#\1 367
14 8 16

N\N50701
55223

-\3 86§61
376 "1 "2

x\1 2345

5-48 Scan d\ Operator CE38-04

1286 24 120

s\7 95 "%
7100
,\'"ABCD'
A AB ABC ABCD
=\"44"

a1l

Scan generalizes to higher ranked arguments in the same way reduction does, by
doing the operation along the K'th coordinate as shown by the example below:

B€2 3 4pr24
+\B
2 3 &
6 7 8
011 12

© -

14 16 18 20

22 24 26 28

30 32 34 36
+\[2]5

1 2 3 &

6 810 12

15 18 21 24

13 14 15 16

30 32 34 36

51 54 57 60
+\58

1 3 610

5 11 18 26

9 19 30 42

13 27 42 58
17 35 54 74
21 43 66 90

Expansion A\ Operator

o Monadic A\ is the Expansion operator.
ReA\(K)B

A must be a vector of 1's and 0’s and must include the same number of 1°s as the
length of the coordinate to be expanded. B may be of any rank and domain.
Expansion occurs along the K'th coordinate of B. If K is omitted, the last
coordinate is assumed. If X is used instead of \, the first coordinate is
assumed. Thus, the difference between \ and X is

R«A\B expands along the last coordinate of B.
ReANB expands along the first coordinate of B.

Expansion consists of extending the length of the affected coordinate of B by
insertion of prototype values in positions indicated by zeros in the argument 4.
The process is best described by example. The prototype for a simple numeric
array is 0. The prototype of o simple character array is * *. In general, the
prototype of an array B is (ce€>5B).

1 010 1\3
10203

1 0 IN(t 2) (3 & 5)
12 00 345

[THE FOLLOWING EXAMPLES SHOW EXPANSION ON EACH OF THE
a COORDINATES OF A RANK 3 ARRAY.

CE38-04 Expansion A\ Operator 5-49

Be2 2 2p18

1 0 ikB
12
3 &
00
00
56
78
1 0 1\[2)B
12
00
3 &4
56
00
78
1 0 I\B
102
304
506
708
A«2 2 2p'ABCDEFGH'
1 0 14
AB
ch
EF
GH
1 0 1\[21]4
AB
Cch
EF
GH
1 0 IN(3]4
A B
cD
EF
G H

Inner Product f.g Operator

o Dyadic f.g is the Inner Product operator.
R¢«A f.g B

The result is an array having shape equal to all except the last dimension of
array A catenated with all except the first dimension of array B. If the function
g is a scalar function, the length of the last dimension of A must be the same as
that of the first dimension of B, or one of those lengths must be 1. The domain
of the result is indicated by the functions f and g. Functions f and g may be
any dyadic functions. For example, R¢A+.xB gives the conventional matrix inner
product.

For vector arguments, the result is:

f/A g B

5-50 Inner Product f.g Operator CE38-04

Examples:

3 4+.x5 6
39

+/3 4x5 6
39

12 3+.x4 5 6
32

+/1 2 3x4 5 6
32

1010+.401 100
1

1010+.v11080
3

If A is a vector and B is a matrix, the I'th component of the result is:

f/A g B(;1)
Exaomple:

A€2 4

Be2 4p3 2 6 85 4 9 4

B
3268
54 9 4

A+ .xB
26 20 48 32

B(;11]
35

B(;2]
2 4

B(;3]
6 9

Bl;4)
8 &4

+/Ax3 5
26

+/4%x2 &4
20

+/A%x6 9
48

+/A%B(;4]
32

1 2 3+.13 3pr9
42 68 102

If A is a matrix and B a vector, the I'th component of the result is:
f/7AlI;]1 g B
Exaomple:

Cel 2 3 4
B+.xC
57 56
Bl1;)
3268
Bl2;]
5S4 9

&

+/B[1;1xC
57
+/B(2; 1xC
56
For matrix arguments, the I;J’th component of the result is:

f/ALI;) g B(;J)

CE38-04 Inner Product f.g Operator 5-51

Example:

50
114

O e

Inn

(2 4p v B)+.x4 2p v 8

60
140

X«3 3p'CANDIDATE'
Y«3 3p'DRAMATIZE'

X
0
0
1

X

X

er p

A=Y

ALEY

roduct also applies to higher order arrays.

For the example below, the

arguments are each three dimensional and the result has four dimensions. The
I;J;K;Lth item of the result is: +/AL1;J;1%xBl;K;L]

o= £ -

15

17
19

21
23

110
122

263
283
416
464

569
635

110
116
3os

5-52

A
A

- OnN

11

«2 2 3pr12

3
6
9
2

QeB¢3 2 2p12+112

14
16

18
20

22

24
A
116
128

278
308
440
488
602
668

+

+

+

+.xB

/Al1;1;1%xB(;1;1)
/AU1;1;)xB(;1;2)
/Al1;2;1xB(;2;2)

Inner Product f.g Operator

CE38-04

Outer Product o.d Operator

(o]

Dyadic ©o.d is the Outer Product operator.

Re¢A o.d B

The result is an array having a shape equal to the shape of 4 catenated with the
shape of B. The dyadic function d is performed for each item of A with respect to
all items of B. The domain of the result is determined by the rules for the
function d.

For vector arguments, the I;Jth component of the result is:

AlI) d BlJ])
Example:
1 2 30.x1 23 4%
123 &
246 8
368912
1 (2 3)o.x1 (2 3) &
1 23 4
23 49 812

'ABC'o.,'D'" 'DEF' (2 2p'DEFG')
AD ADEF ADE

AFG
BD BDEF BDE
BFG
Cb CDEF CDE
CFG

Outer product is valid for arguments of higher rank. If, for example, 4 has a
rank 3 and B has rank 2, the items of the result are defined by:

RUI;J;K;L:M) «> AUI;J:3K) d B(L;M)

Each Operator

Monadic d” is the Each operator.
Red”B

The result is an array with the same shape as B. Each item of the result contains
the result of applying the monadic function d to the corresponding item of B. d
may be any monadic function including a monadic primitive function, o monadic
system function, o monadic defined function, or a monadic derived function.

Examples:
p"'CENTURY' ‘DECADE' (1972 1974 1876 1979 1980)
?7 6 5

O"'NON' 'POOL' 'ON'
WON LOOP KO

172 3
12 123

eTTI+]! 'PN€BO' '4x3+12!
2 80 16 20

Dyadic d” is the Each operator.
ReA d” B

The result is an array where each item of the result contains the result of
applying the dyadic function d to the corresponding items of 4 aond B.

CE38-04 Each Operator 5-53

5-54

A RANK ERR is reported if both 4 and B are not singletons and their ranks differ.
A LENGTH ERR is reported if both A and B are not singletons and the lengths of 4
ond B are not the soame. If A or B is a singleton, it is reshaped to the rank of
the higher ranked argument before performing the Each operation.

d may be any dyadic function, including a dyadic primitive function, a dyadic
system function, or o dyadic defined function.

Examples:

1,710 20 30 40
110 120 130 1 40

20" 'CENTURY' 'DECADE' (1972 1974 1976 1979 1980)
NTURYCE CADEDE 1976 1979 1980 1972 1974

Each Operator CE38-04

~—

Section 6
APL Statements

As mentioned in Section 2, each completed line of input is classified as either a
statement or a system command. Statements specify the operations to be performed by
APL, such as calculations, branching, and assignment of values or expressions.
System commands (treated in Section 8) are concerned with the mechanical aspects of
the system, such as logging off and saving, loading, and deleting workspaces.
Statements caon be entered when the system is in either execution mode or function
definition mode. The user indicates the end of a statement by pressing the RETURN
key. In execution mode, the computer then executes the operations contained in the
statement. In definition mode, the computer stores the statements until the function
is invoked. Blanks may appear anywhere in o statement except embedded within a
number or a name. In general, an APL statement cannot be continued on another line.
A character constant, however, may include one or more carriage returns, thus
allowing multi—line statements.

When o character constant is being entered and APL detects a carriage return before
receiving the closing quote, it automatically types a closing quote at the beginning
of the next line. The assumption is that the user may simply have forgotten the
closing quote. If that is not the case, the user may delete the closing quote and
continue the text constant.

A+'LONG VECTOR, CLOSING QUOTE FORGOTTEN

A
LONG VECTOR, CLOSING QUOTE FORGOTTEN

A<LONG VECTOR, CLOSING QUOTE NOT FORGOTTEN,
L}
VECTOR CONTINUED ON SECOND LINE'

A
LONG VECTOR, CLOSING QUOTE NOT FORGOTTEN,
VECTOR CONTINUED ON SECOND LINE

In this example, note that APL cutomatically provides the closing quote in the first
specification of A. In the second specification, the user cancels APL’s action and
continues the character constant on the second line.

For all practical purposes there are four kinds of statements in CP—-6 APL: comment,
branch, assignment and non—assignment, and compound.

Comment Statements

To enter o comment statement, the user types the symbol A& at the beginning of a line
and follows it with a comment. The a symbol is produced by typing a n symbol (upper
shift C) and overstriking it with a © symbol (upper shift J). This symbol signals
APL that the line is o comment and is not to be executed. Any valid APL characters
may be included in a comment; invalid APL characters produce an error message. If a
comment extends over several |ines, each line must begin with the A symbol. Some
examples of comments are shown below:

ROOM AREA ROUTINE.

EACH LINE OF A MULTIPLE-LINE

A
A
-]
a
a COMMENT MUST BEGIN WITH A a.

CE38-04 Comment Stotements 6-1

A comment statement can be entered as a direct input line (during execution mode) or
it can be entered as part of a defined function. If o comment statement is entered
as a direct input line, it is not retained in the workspace. If o comment statement
is used in a function definition, however, the statement will have a line number,
will occupy workspace, and will be displayed like any other function line. Function
definition mode cannot be closed on a comment |ine, because the ciosing V symbol will
be treated as just another symbol in the comment. An example of a comment in a
function definition is shown below:

VA«H TRIAREA B
[1) a CALCULATES AREA OF TRIANGLE..
(2] A«HxB+2
(3] v

In CP-6 APL, any executable statement may include a comment to its right. Everything
to the left of a s character is considered executable. Everything to the right is
considered comment. Some examples are:

[10) COST«HOURSXRATE a COST FOR STRAIGHT TIME LABOR.
[15) 0COST«1.5xHOQURSXRATE a COST FOR OVERTIME LABOR.

When functions are displayed, comment |ines are highlighted by indenting them one
space less to the left of executable lines.

Branch Statements

Branch statements are generally used within defined functions to alter the sequential
execution of statements. Another form of branch statement, covered later, is the
branch arrow that is not followed by an expression. A branch arrow by itself can be
used to terminate execution of o suspended function and the functions that invoked
it, thus effectively clearing the state indicator to the next suspension (if any).
This application of the branch arrow is described in Section 7. A branch statement
has the general form

*exp

where exp stands for an integer value. The value determines the |ine number of the
statement to be executed next, as follows:

1. If the value is a ltine number within the current function, that line is executed
next. Thus the statement

(5] »(2>4)x3

where A has a value of zero, causes a branch to line 3 of the current function.
(The value 3 is derived as follows: the expression (2>4) returns a value of 1;
and this value is multipiied by 3.) ‘

2. If the volue is a line number outside the function being executed, then execution
of that function terminates. For example, the statement

(4} =0

indicates a branch to line 0, which is outside the function. Since functions
begin with line 1, branching to line 0 is an effective way to exit a function.

3. If the value is an empty vector, then no branch occurs and the next sequential
line is executed. If there are no more lines, execution of the function is
terminated. An empty vector can be created in any of the following ways:

0/8
0pS
0¢S

where 0 maoy be the result of a comparison expression, and S represents a line
number. (If the result of the comparison statement is 1 instead of 0, the next
line executed is the one indicated by the |line number.) Substituting the
comparison expression A4=4, which produces a value of 0 or 1, and line 2 in the
above expressions illustrates the simplicity of this type of branching:

6-2 Branch Statements CE38-04

(51 +(4=4)/2
[5] +(4=4)p2
[5] +(4=4)42

In each case if the value of A equals & (that is, the comparison expression
returns a 1), then line 2 is executed next. If A is any other value, then the
comparison expression returns o 0, yielding an empty vector, and line 6 will be
executed next if it exists; otherwise execution of the function terminates.

The expression indicating the |ine numbers can be a scalar or a vector. In other
words, the user can specify branching to one line, to one of two |lines, or to one of
any number of fines. Branching to one line is described above. Branching to one of
two lines can take either of the following forms:

*(S1,82)(1+X OP Y]
+((X OP Y),~X OP Y)/S1,52

where

S1 is the |line number to be branched to if the comparison expression yields a 0.
S2 is the line number to be branched to if the comparison expression yields a 1.
X O0PY is a comparison expression; X and Y are the values to be compared, and OP

is any of the following functions: <, <, =, 2, >, #, v, A, ¥, 4, €, or =,

Both of these forms cause a branch to the first line number if the comparison yields
0, or to the second line number if the comparison yields 1. In illustration, the
second form is entered in a defined function, and then executed with values for X and
Y.

VX FY
»((X<Y),~X<Y)/A1,A2
Al:'STEP Al'

+0

A2:'STEP A2'

+0

v

N EFE LN

1 F2
STEP Al

2 F 1
STEP A2

Clearly the second form can be expanded to include more line numbers. Similarly, a
branch to one of several statements can also take the form:

+>1QV
where
I is a counter.
L) is the rotation function.
14 is a vector of line numbers, the first of which must be a positive integer or
zero.

In this case the branch function selects statement IOV as the next one to be
executed. The following illustration shows how this branch function is carried out
(see line number 3):

VNUMB I
(1] +(I24)/2 0 'LOW' ¢ +0
[(2) +(I<6)/3 ¢ "HIGH' ¢ +0
(3) »(I-4)04 5 6
(4] 'FOUR' 0 =0
[5) 'FIVE' ¢ 0
(6] 'SIX' ¢ +0V

CE38-04 Branch Statements 6-3

NUMB 3

LOW

NUMB &
FOUR

NUMB S
FIVE

NUMB 6
SIX

NUMB 7
HIGH

See Figure 6-1 for a summary of common branch function formats that can be used; APL
also offers many other forms of branching.

Branch to fine S or to next line:

*»(X 0P Y)/S
+(X 0P Y)p§
>(X 0P Y)¢§

Branch to line S1 or line S2:

+>(S1,52)[1+X OP Y]
+({(X OP Y),~X OP Y)/S1,S82

Branch to one of several lines:
+((X 0P Y),(X OP Y),X OP Y)/S1,82,S3

*IQv
+(S1 s2 s3)(1)

Figure 6-1. Summary of Common Formats for Branching

Statement Labels

Instead of referencing a line number in a branch statement, a statement label can be
assigned to the branch destination. Referencing that label will obtain the current
line number of the line. To assign a label to a line, precede the first statement
with a variable name and a coion, as shown:

[S5) END:A«B+2

The labe! END can now be used in a branch statement to transfer execution to this
statement. For example, the statement

(3] +(A<1)/END

will cause a branch to line 5 if A is less than 1, or o branch to line 4 if 4 is 1 or
more.

The value of a label is the line number with which it is associated at the close of
function definition. If new lines are inserted via function editing (see Section 7),
then the values of the labels are automatically respecified at the closing of the
function definition. The value of a label cannot be respecified by an assignment;
any attempt to do so will produce a SYNTAX ERR message.

Like local variables (Section 3), the integer values of labels in one function can be
accessed in other functions invoked by the function.

6—4 Statement Labels CE38-04

Use of o statement label in a branch statement is preferable to use of a line number,
since function editing may change the original line number. If any lines are
inserted or deleted during function editing, all lines will be renumbered at the
close of a function definition mode. For example, consider the following statement
which specifies a branch to line 5.

(3] +5

If two new statements are inserted between lines 3 and 4, the old line 5 is
renumbered as line 7 at the close of function definition. However, the branch
statement will still cause a branch to stotement 5 instead of line 7 as now desired.
This problem can be avoided if labels are used instead of statement numbers as branch
points. (See Changing Suspended Functions in Section 7 for other considerations
about labels.)

When labeled lines are displayed within a function, they are highlighted by indenting
them one space less than usual.

Assignment and Non-assignment Statements

An assignment statement assigns the result of an expression or a value to a variable
name. It has the general form:

name ¢ expression

where name can be any variable name and expression can be any APL expression. Three
examples of assignment statements are

B«6
A«B%2
Z«(B<1)+3x5

A non—assignment statement is similar to an assignment statement except that it does
not have the assignment arrow and the variable name to the left of it; however, a
non—-assignment statement can contain embedded assignments. Examples are:

B2
3

(B<1)+3x5
15

2%x4+4¢2
12

+4«]

1

Notice the differences between assignment and non—assignment statements: (1)
execution of an assignment statement ends on the assignment, and (2) an assignment
statement produces no display, while a non—-assignment statement displays the
resulting value of the statement.

CE38-04 Assignment 6-5
and Non—assignment Statements

Compound Statements

Using diamonds for separation, all of the preceding kinds of statements can be
combined in "compound" statements. Compound statements have the following
characteristics:

1.

6-6

The statements are evaluated in left—to-right order, with each individual
statement evaluated in the normal APL manner. Example:

A«2 & 6 0 oA 0 A,1

would produce two |ines of output, an integer 3 corresponding to the result of
the second statement, aoand a vector 2 4 6 1 corresponding to the third.

An assignment statement produces no display. Example:

5x4:2 0 Al
10

S5x4:2 0 +A«h
10
L}

A comment statement can have no statement to its right. All characters from the
comment symbol A up to the end of the line are considered to be commentary.
Example:

arz A SHOWS T FUNCTION O THIS IS STILL A COMMENT.
3

A branch statement implies no speéial display. In the no—branch case, statements
to the right of the branch will be executed; they are ignored if a branch occurs.
This provides conditional execution capability. Example:

VVERACITY X

+(X#1)/2 ¢ '"TRUE' ¢ »0
+(X#0)/3 ¢ 'FALSE' ¢ »0
'NEITHER TRUE NOR FALSE'

—_——
N —
——

v

VERACITY 4=2+42
TRUE

VERACITY 2+2=4
NEITHER TRUE NOR FALSE

2+2=4
2

VERACITY (2+2)=4
TRUE

If the statement is the subject of an execute function or evaluated input
request, then the result of the function (or input request) is the result of the
last expression executed. For example:

A€2'15 ¢ +/15'
12345

4
15

Compound Statements CE38-04

Section 7

Defined Functions

As mentioned in Section 3, defined functions are used in the same way as primitive
functions. Defined functions must first be formed by the user instead of being an
inherent part of the APL language.

User-Defined_Functions

The following tasks are handled in function definition mode:

Creating user—defined functions
Displaying user—defined functions
o Editing user—defined functions

[N}

Once created, most functions can be edited and displayed. Once a locked function is
created, however, it cannot be edited or displayed (see "Locking Functions" later in
this section). Locked function lines cannot even be displayed for error diagnosis.
It is possible, however, to erase a locked function.

User defined functions can be created or modified by function definition mode or by
the OFX system function. They can be loaded or copied from a library workspace or
"packaged” and read or written to a file (see Section 14).

Function definition mode begins when a function is opened and continues until a
function is closed or abandoned. (It is possible to close o different function than
was originally opened by revising the name of the function.) A function may be
"opened" during direct input or evaluated input (see Section 3), and it may be opened
briefly during execution (see the Execute Operator, ¢, Section 5). A function cannot
be opened during any other form of input, such as quote—quad input or blind input;
and a different existing function cannot be opened while still in function definition
mode. Until a function is closed during function definition mode, APL execution is
impossible except for system commands (which are executed and do not become part of
the function being defined). Most system commands leave the currently open function
intoct and return the user to definition mode; however, some system commands cause a
functio; definition to be abandoned (see Issuing System Commands later in this
section).

Function Definition Mode

A del symbol, Vv, followed by a function name specifies a change from execution mode
to function definition mode. A second V symbol ends function definition mode and
declares a change back to execution mode. No execution of statements occurs during
function definition, and no errors are reported except for linescan errors, character
errors, and definition errors. Instead, each statement is stored as part of the
function.

Upon entry to definition mode, the editor is selected depending upon the setting of
the last)EDITOR command. The default function editor is a line—oriented editor
similar to the editor provided by other APL systems. A screen editor is also
available and the capabilities unique to screen editing are described under the
heading Screen Editor later in this section.

CE38-04 Function Definition Mode 7-1

Each defined function has a header and a body. The function header is the opening
line of a function and declares the name (the identifier used to reference the
function) and type of a function. The body of a function is the rest of the
function. After the user enters a function header, APL responds with a statement
number as follows:

VCUBE
(1]

The line number [1) signifies that the first line of the function program may be
entered. Each line thereafter is numbered sequentially until the function is
completed. The statements are stored and are not executed until definition mode is
exited and the function named has been referenced.

Syntax of Defined Functions

A defined function con be niladic, monadic, or dyadic; thot is, it can have zero,
one, or two arguments. In addition, o defined function may return an explicit result
or no result. Thus, there are aoctually six types of defined functions as illustrated
by the following table of function header syntax possibilities:

Table 7-1. Function Header Syntax

Function No Explicit Result Explicit Result
Nitadic function Vname Vr < name
Monadic function Yname y Vr ¢« name y
Dyadic function Vx name y Vr ¢« x name y

where

name is the user—assigned function name.

r is a variable to which the result is returned.

x and y are dummy variable names.

The syntax of the function header affects the way a function can be referenced in a
statement; that is, whether the function requires zero, one, or two arguments for
execution. Defined functions with explicit results may appear in compound
expressions, much like primitive functions. Defined functions without an explicit
result must appear alone; they cannot appear in compound expressions except as the
last function to be executed. Examples of creation and use of each function type are
shown in Table 7-2.

Dyadic defined functions are not strictly dyadic. They may be executed monadically,
in which case the left argument will be undefined at execution time. The [ONC
function may be used to test for the presence of the left argument. (If the function
is being executed monadically, the name class of the left argument is 0).

The result name in the function header may optionally be enclosed in braces {i. If it

is enclosed, then the result of the function execution will not print if it is the
primary function on the line (the last function executed).

7-2 Syntax of Defined Functions CE38-04

Table 7-2.

Defined Function Examples

Function Type

Header Syntax

Examples

Niladic function
with explicit
result

Niladic function
with no explicit
result

Monadic function
with explicit
result

Monadic function
with no explicit
result

Vr ¢« name
(1}
(2}

3.1

(1}
(2]
(3)
{4)

20

VYname

———
LN -
—

3.1

Yr « name y

——
N »—

Lan Kanl
N =
—

VYname y

1

VRESULT«PI
RESULT+01
v

Pl
41592654

VRESULT+TRIANGLE

AREA«D .S5xBASEXHEIGHT
DIAGONAL«((HEIGHT%2)+BASE*2)%0.5
RESULT«AREA,DIAGONAL

v

BASE«5

HEIGHT«8

TRIANGLE
9.433981132

VPl
X<01
X
v

PI
41592654

VTRIANGLE

AREA«0 .5xBASEXHEIGHT

DIAGONAL« ((HEIGHT*2)+BASE*2)%0.5
'AREA IS ',VYAREA

'DIAGONAL IS ',vDIAGONAL

v

BASE«5
HEIGHT«8
TRIANGLE

AREA IS 20
DIAGONAL IS 8.433881132

VRETURN«EXPAND INPUT
RETURN«((2xpINPUT)p1 O)\INPUT
v

EXPAND 'COPY COMMAND'!

COPY COMMAND

VRETURN«DESCENDINGSORT INPUT
RETURN«INPUT(YINPUT]

v

DESCENDINGSORT ™5 ~
8 6 5 "3 75

3 10 568

VEXPAND INPUT

[1) Xe((2xpINPUT)pl O)\INPUT
2) x
[3) v
EXPAND 'COPY COMMAND'
coprPyY COMMAND
VDESCENDINGSORT INPUT
{11 X<«INPUTIYINPUT)
(21 X
[3) v

DESCENDINGSORT ~5 "3 10 56 8

8 6 5 "3 75

CE38-04

Syntax of Def

ined Functions

7-3

Table 7-2.

Defined Function Examples (cont.)

Function Type

Header Syntax

Examples

Dyadic function
with explicit
resuit

Dyadic function
with no explicit
result

Vr « x name y

Ux name y

VRESULT+BASE TRIANGLE HEIGHT
AREA«0.5xBASEXHEIGHT
DIAGONAL+((HEIGHT*2)+BASE*2)%0.5
RESULT+AREA,DIAGONAL

v

£ N -
— et st s

S5 TRIANGLE 8

20 9.433981132
VBASE TRIANGLE HEIGHT
[1) AREA<O.S5xBASEXHEIGHT
(2] DIAGONAL«((HEIGHT*2)+BASE%*2)%0.5
[3] 'AREA IS ',YAREA
(4] 'DIAGONAL IS ',°DIAGONAL
[5] V¥

S5 TRIANGLE B
AREA IS 20
DIAGONAL IS 9.433981132

VX PLUS Y
[1) ANS«X+Y
[2] ANS
(31 v
2 PLUS § 10 15 20
T 12 17 22

Variables Local to a Defined Function

The three types of variables that can be local to a defined function are:

Dummies
Locals
Labels

00O

Dummies and locals are named in the function header, while labels are named in the

body of the function.

Dummies

Dummies are used in the header of a defined function to indicate the syntax of a

function.

function calculates the area of a triangle):

VA<H TRIAREA B

[1] A«HxB+2vV

For example, notice the header of the following simple function (this

The dummies A, H, and B in the function header indicate that the function named
TRIAREA returns an explicit result and that the function operates on two arguments

which must be furnished by the user.

function with the statement

AREA«10 TRIAREA 5

7-4

Dummies

For example, suppose the user calls this

CE38-04

The dummy H in the function is assigned the value 19, and the dummy B is assigned the
value 5. The result is returned in the dummy 4, oand is finally assigned to the
variable AREA in the calling statement. Dummies possess values only within the
function. That is, the use of 4, H, and B as dummies does not affect their use as
variables outside the function. If variables A, H, and B have values assigned to
them before the function is called, they will have the same values after the function
is executed. For example, suppose the variable 4 (with value 21) existed in the
workspace before function TRIAREA was callied. A displiay of variable A after the
execution of TRIAREA demonstrates that 4 still has the value 21:

A«21
AREA«10 TRIAREA S
AREA
25
A
21

Body of a Function

After the opening statement, in which the user creates the function header, the
process of creating a function consists of inputting function statements and,
finally, closing function definition. The user is prompted with a function line
number each time the system is ready for further input. The process is ended by
typing a closing V followed by a RETURN key.

Locals

Locals are variables that retain their values only within the function in which they
are defined. While a function is active, its local variables take precedence over
any externally defined variabies of the same name. A list of a function’s local
variables is added to the end of the function header, with each variable in the list
preceded by a semicolon. For example, the function header

VR«A CIRCLE B;X;Y;2

indicates that the function named CIRCLE has locals X, Y, and Z. The values for these
variables are assigned within the function; if these variables are referenced without

having a value assigned within the function, an UNDEFINED error will be produced. If
variables X, Y, and Z have values assigned to them before the function is called,
they will revert to those values after the function has finished execution.

Labels

Function lines may be labeled to allow symbolically controlled branching (if a
function is edited, {ine numbers may change). A lcbeled line has the form

[n] name:statement

where n is the line number, name is the label, and statement is the content of the
line. For example:

(4) ERREXIT: 'ERROR EXIT' ¢ -0
In this example, the label ERREXIT has the value 4. If an attempt is made to assign
a value to ERREXIT during function execution, a syntax error message will be

reported. If the function is edited and the line number changes to (5], ERREXIT will
then have the value 5.

CE38-04 Labels 7-5

Changing Suspended Functions

At the time a function is suspended, its (current) local variables have been
determined by APL, and its fabels have already been assigned their values. Changing
the suspended function does not alter these assignments. Resuming execution of a
suspended function causes the determined items to remain in effect, regardless of how
the function was altered.

Directives
During function definition mode, editing directives are used to display, modify, and
add new lines. A directive may take any one of the following forms:

(1]
Directs APL to a line — here line 1.

(10
Directs APL to display a line and to stay
at that line for further editing — here
line 1.
(1-50)
Directs APL to display a range of lines,
here lines 1 through 5.
(D 21
(2-01
Directs APL to display from a line to the
end of the function — here beginning at line
2.
(m
Directs APL to display the entire function.
(3-9;/x/]
Directs APL to display lines containing a
string — here string "x" in lines 3 through 9.
{10 61

Directs APL to edit a line, starting at o
given column — here line 1 at column 6.

[1-20;2/x/S/y/)
Directs APL to change all occurrences of one
string to another string in the specified
range of lines ~ here the second occurrence
on each line of the string “x" is changed to
string "y" in lines 1 through 20.

The separator S may be replaced by the letter
F (in which case the replacement string will
follow the search string), the letter P (in
which case the replacement string will
precede the search string), or the tetter D
(in which case the replacement string may not
be specified and the search string will be
deieted).

If the occurrence number is omitted, only the
first occurrence is replaced. If the occurrence
number is @, then all occurrences on each line
are replaced.

[/7K/71
Directs APL to search for the next occurrence of
the string 'x’ starting at the current |ine number
through the end of the function.

7-6 Directives CE38-04

NN\
Directs APL to search for the next occurrence of
the string 'x’ starting at the current line to the
beginning of the function.

[a2]
Directs APL to delete a line — here line 2.
[a4-8)
Directs APL to delete a range of lines — here
lines 4 through 9.
[a5-8;/x/1]
Directs APL to delete lines from a range which
contain a string — here lines 5 through 8
containing string "x".
[+]
Directs APL to abandon definition mode and ignore
all editing changes made.
(§/3)]
In screen editing mode, APL will scroll down. If
not in screen editing mode, an error is reported.
()

In screen editing mode, APL will scroll up. If
not in screen editing mode, o DEFN ERR is reported.

A directive always starts with a left bracket and ends with a right bracket. With
the exception of search or replacement strings, only legal |ine numbers, o dash,
quad, delta, semicolon, slash or bockslash are permitted within directives.

A line number is a number in the range © through 9999.999 which contains at most
three digits after the decimal point. Scientific or E notation is not permitted. A
line number range contains o dash separating the first line number of the range and
the last line number of the range. At least one of the line numbers in a range
directive must be specified. If the first number of a range is omitted, it is
assumed to be @. If the second number is omitted, it is assumed to be 9999.999.
Examples of legal line numbers are:

0
123
0.899

A quad appearing within the directive indicates a display directive and a delta
appearing immediately following the left bracket indicates a line delete directive.

Directives must be the leftmost items input during function definition mode. Several
directives may be used on one line, however, the rightmost directive overrides all
directives to the left of it. For example, notice the following portion of a
function definition:

VFF
(1] XeY
[2) (1] YeX
(2] [5] A«B
(6]

The [1] directive on the third line overrides the [2] directive to its left and
causes the statement on line 1 to be replaced with Y+X; notice that the next prompt
is [2]. (It should be obvious by now that a function line prompt is a form of
directive.) Similarly, the [5] directive on the next line overrides the [2]
directive to its left and causes line 5 to become the expression A«B. The next line
prompt is then [6].

CE38-04 Directives 7-7

Search and Replacement Strings

Directive strings are delimited by either o slash or backslash. They may contain any
characters in the CP-6 APL character set, but if they contain the delimiting
character, it must be doubled. For example:

Delimited string String
/2+A%0.5/ 2+4%0.5
/B\C//D/ B\C/D
/NAME/ NAME

In the last example, the string NAME would be found in o line containing '1+NAME:2'
or in a line containing '1+VARNAMES=2'.

When a search string is specified, the final delimiter may be followed by the
character N, which is used to indicate that a string match should only be made if the
characters before and after the match are not in the permitted set of identifier name
characters. This option then allows searches for all occurrences of a specified
identifier nome. For example:

[3) [(0-4;/X/)

[0) ReA FUN B;EXTRA;X
[1) EXTRA<'TESTS'

[2) XeAxB

{3) EXTRA«EXTRA,v.,X

[5] [0-4;/X/N)

[0] Re«A FUN B;EXTRA;X
[2) Xe«A*B

%3; EXTRA«EXTRA,v ., X
5

In the first example above, every occurrence of the letter X is displayed, but in the
second example, only those occurrences of the identifier X are displayed. Note that
if the identifier X appears within quotes, that line is still displayed.

Displaying User—defined Functions

A user—defined function can be displayed in any of the following ways:

Display all lines of the function.
Display one line.

Display a range of |ines.

Display the next line.

Display lines containing a string.
Display the next line containing a string.

000000

Displaying ALl Lines

To display a function, the user opens the function with a de! symbol, names the
function, and specifies what is to be displayed, all on the same line. The user can
then either close the function with another del symbol (if no editing is to be done)
or leave the function open for further editing.

If the user wants to display all of a function, function TRIANGLE for example, the
procedure is as follows:

VTRIANGLE (Olv
V BASE TRIANGLE HEIGHT
1] AREA«0.5xXBASEXHEIGHT
2) DIAGONAL«((HEIGHT*2)+BASE¥2)%*0.5
3) 'AREA IS ',VAREA
4) 'DIAGONAL IS ',©DIAGONAL

7-8 Displaying All Lines CE38-04

Displaying One Line

If the user wants to display only one line of a function, say line 3 of function
TRIANGLE, the procedure is

VTRIANGLE(301v
[3]1 'AREA IS ',VAREA

Displaying a Range of Lines

If the user wants to display from one line to the end of o function, say from line 2
of a function TRIANGLE, the procedure is

VTRIANGLE [2-01v
(2] DIAGONAL+((HEIGHT*2)+BASE*2)%0.5
(3] 'AREA IS ",SAREA
{4] 'DIAGONAL IS ',°DI1AGONAL

If the user wants to display a range of lines, for example, lines 1 through 2 of
function TRIANGLE, the procedure is:

VTRIANGLE(1-201v
{1] AREA«0.S5xBASEXHEIGHT
(2] DIAGONAL<«((HEIGHT*2)+BASE*2)%0.5

The display of lengthy functions can be stopped at any point by pressing the BREAK
key. The user can request the display to start at line 1@ and then press the BREAK
key after line 15 has been displayed. If the display command is closed with a del
symbol, APL is in execution mode after the interruption. If the closing del is
omitted, APL is in function definition mode after the interruption.

Notice that the display commands in all of the above examples are closed with a del
symbol. This symbo! causes control to be returned to execution mode as soon as the
display is complete. To remain in function definition mode and edit the function
instead, the user merely omits the closing del in the display command. See how the
above examples appear without a closing del in each display command.

VTRIANGLE (0]
V BASE TRIANGLE HEIGHT

(11 AREA+0 .5XBASEXHEICHT
[21 DIAGONAL«((HEIGHT*2)+BASEX2)%0.5
(3] 'AREA IS ',SAREA
(4] '*DIAGONAL IS ' ,vDIAGONAL

v
(s}

VTRIANGLE [30)

131 'AREA IS ',SAREA
(3]

VTRIANGLE (0 21
(2] DIAGONAL<«((HEIGHT*2)XBASE*2)%0.5
(3] 'AREA IS ',%AREA
(4] 'DIAGONAL IS ',%DIAGONAL

‘Notice that after a single-line display, APL reprompts with the same |ine number; and
that aofter o multiple—line display, APL prompts with the next available |ine number.
The user can then edit the function as described below or can enter another del
symbol to close the function. Closing the function definition with a del symbol does
not alter the content of that line. For example, the following operation does not
change the value of line 3; it will still be "AREA IS ',%AREA:

VTRIANGLET(30]

(3} 'AREA IS ',SAREA
(3] v)

CE38-04 Displaying a Range of Lines 7-9

In order to find and display the line following a particular line, enter linefeed
after the closing bracket of a simple line number directive. For example, to display
the line following 1.5, the procedure is:

(4} [1.5]
[2} DIAGONAL«((HEIGHT*2)+BASE*2)%0.5

The entire function can be displayed one line at o time by entering linefeed after
each line is displayed. In summary remember that

)] displays entire function.
(2 displays a single line (here 2).
(0 21 displays from a line (here 2) to end of the function.

(1-20) displays a range of lines (here 1 through 2)

Displaying Lines Containing a String

In order to display all lines containing a particular string of characters, the line
range to search is followed by a semicolon, an optional count, and either o slash or
backslash delimited string. If the count is present, the line is displayed only if
it contains at least count occurrences of the string. When count is not present, 1
is assumed. For example, to display all lines in the function TRIANGLE containing
the string BASE, the procedure is:

VTRIANGLE(0-8;/BASE/]

[0)] BASE TRIANGLE HEIGHT

[t AREA«Q .5xBASEXHEIGHT

(2] DIAGONAL+((HEIGHT*2)+BASE*2)*0.5
(10}

I1f the search string is for a particular identifier, the closing slash or backslash
may be followed by the letter ¥ which causes APL to display only those lines in which
the string is both preceded and followed by characters that are not legal within a
name. For example, if the search is for all occurrences of the identifier A, then
the directive:

(7-20;/4/N)

will not display a line containing AREA (unless it also contains the name 4).

Displaying the Next Occurrence of a String

In order to search for the next occurrence of a string, (either forward or backward),
the directive must contain only a search string. If the search string is delimited
by a slash, the search begins at the next line through the end of the function. If
the search is delimited by a backsiash, the search begins at the previous line
through to line zero. If the string is found, APL displays that line and issues a
prompt for that line. If the string is not found, APL then prompts for the |ine at
which the search ended (either zero or 1+ the last line number in the function). For
example, if the search is for the first occurrence of the string D after line 2, the
procedure is:

VTRIANGLE(2)(/D/]
(4] 'DIAGONAL IS ',%DIAGONAL
(4)

7-10 Displaying CE38-04
the Next Occurrence of a String

N—

Editing User—defined Functions

Editing of user-defined functions is oriented to line—at—o—-time editing capabilities:

Deleting o line
Inserting a line
Replacing a line
Modifying a tine

0000

The first three capabilities can be performed as shown in Table 7-3. The last
capability, modifying a line, permits character editing (that is, deletion,
insertion, and replacement of characters), adding to a line, and overstriking
existing characters on a line. All of these capabilities are detailed below. Column
one of tablie 7-3 states the action to be performed. Column two gives on example of
the action within definition mode. Column three gives an example of the same action
when exiting definition mode. 1In both examples the functions are already open.

Table 7-3. Displaying and Editing Defined Functions

Action Within Definition Mode Exiting Definition Mode
Display entire 21 (O (2) (Dv
function v F v F

[t} 4 (11 4

(2] B (2] B

[3) (4 (3] c

v v

[4)
Display a line (41 (200 (41 (201w

(2) B (2) B

[2]
Display line (4) ([20)BeX+Y (4] (20)Bek+YV
and change (21 B [2] B

(3]
Display function {41 (O 2] (41 (0 21v
beginning with [2) BeX+Y [2]) BeX+Y
specified line (31 ¢ (31 ¢

v v

(4}
Delete a line [a2] [a21v

(3}
Delete o range (&) [a1-2] (41(a1-21v
of lines (3]
Insert a line [3} [0.5] X [(3) [0.5) xv

[0.6]
Replace a line 4} [2) Z [4) [212v

[31]
Override a line [41 (2] (4) (2]
number (2] 2y v
Display a range (&) [1-20) (4] (1-201v
of lines (1) 4 (1) 4

[2) B (2] B

(3]
Find occurrences [4]) (0-4;/B/) (4) (0-4;/B/)v
of a string (21 B (21 B

(4)

CE38-04

Editing User—defined Functions

7-11

Table 7-3. Displaying and Editing Defined Functions (cont.)
Action Within Definition Mode Exiting Definition Mode
Find occurrences (4] (0-4;/B/N) (4] (0-4;/B/N]V
of identifier [2] B (21 B
(4]
Find next occurrence (4) (11L/€C7) (4) [110/C/ 1V
of a string (3) ¢ {31 ¢
(3]
Find previous 4] (\B\} (4] [\B\)V
occurrence of a {(2) B (21 B
string [2}
Abort changes, restore (4] {»]
original version of
function
Change all occurrences | (4] [1-3;/4/S/AB/) (4) [1-3;/A/S/AB/ 1V
of a string ina (1) 4B (1} AB
range of lines (4]
Change function (4] [0] F;B [(4) [0) F;BV
header {1l
Erase current function [4]) YERASE F
Eraose another (4] YERASE G [4])ERASE G
function (4] (4} v

A simple three—line function named F has been assumed in the examples in this table
(see the first display entry in the table for the original content of function F).
Note: The example which illustrates changing a function header, adds a local
variable to the functional! header.

Deleting a Line

A statement in a defined function can be deleted by using the delete directive. A
delete directive may specify all of the line numbers to be deleted. For example, to
delete line 2 of the following function:

VBASE TRIANGLE HEIGHT

A THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
A BASE AND HEIGHT CANNOT EXCEED S AND 15 RESPECTIVELY
AREA«Q .S5xBASEXHEIGHT

DIAGONAL«+((HEIGHT*2)+BASE*2)%0.5

'AREA IS ',YAREA

'DIAGONAL IS ',°DIAGONAL

v

— - —
DN N -
— s et et et

First, the user opens the function and issues the delete directive:
VTRIANGLE([A2)
APL responds with a prompt for line 3.

The user can now either close the function with o del symbol or proceed with further
editing (including deleting the next line). (The user can also press the RETURN key
if nothing is to be done to the line. APL simply responds with the line number, in
this case [3]. A linefeed may be used in ploce of RETURN in which case APL displays
the next line of the function.) A display of the function at this point illustrates
thot line 2 is deleted:

7-12 Deleting a Line CE38-04

(31 {0l
V BASE TRIANGLE HEIGHT
] A THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
] AREA«Q .SxBASEXHEIGHT
} DIAGONAL«((HEIGHT*2)+BASE*2)*0.5
) YAREA IS ',YAREA
} 'DIAGONAL IS ',°DIAGONAL

—r—— - -
-3 DN FE L

v
]

(
The function can now be closed with a del symbol.
(7] v

Once definition mode is exited, APL renumbers the line in sequential order, as
illustroted by another display of the function

VTRIANGLELOV
V BASE TRIANGLE HEIGHT

(1) A THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
(2] AREA«OQ .5xBASEXHEIGHT
(3) DIAGONAL«((HEIGHT*2)+BASE*2)%0.5
(4) YAREA IS ',VARE4
(5] 'DIAGONAL IS ',vDIAGNOAL
v

Inserting a Line

A new line can be inserted in a defined function simply by reopening the function and
entering the statement as described below. The user reopens the function by typing a
del and the function name, to which APL responds by printing the line number of the
next statement to be entered. If the new line is to be inserted at the end of the
function, the user can now enter the new statement and close the function as shown:

VTRIANGLE
(6] a THIS FUNCTION IS USED IN ROUTINES 1 AND 2.
(71} v

If the new line is to be inserted between two existing lines, however, the user must
specify a line number between those two lines. For example, suppose the user wants
to add o comment as the first line of function TRIANGLE instead of the last line.
This can be done as follows:

VTRIANGLE
{61 [(0.5]
(0.5) a THIS FUNCTION IS USED IN ROUTINES | AND 2.

(0.6)

Notice the [0.6]) prompt in this example. After an insert statement is entered, APL
adds 1 to the last place of the number chosen for the insert, and prompts with the
new number. (The next prompt after {0.6) will be [0.7]; the next, [0.8]); and so on.)
This allows the user to insert several lines.

A display of function TRIANGLE illustrates that line [0.5) has been added

[0o.6) (0OIv
V BASE TRIANGLE HEIGHT
0.5) A THIS FUNCTION IS USED IN ROUTINES 1 AND 2.
] a THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
] AREA«0 .5xBASEXHEIGHT
] DIAGONAL<((HEIGHT*2)+BASE*x2)%0.5
; 'AREA IS ',VAREA

(
{
(
[
(
['DIAGONAL IS ',%DIAGONAL

D EWN -

v

After the function is closed, APL cutomatically renumbers the lines, as illustrated
by the following display:

CE38-04 Inserting a Line 7-13

VTRIANGLE(D)V
BASE TRIANGLE HEIGHT

THIS FUNCTION IS USED IN ROUTINES 1 AND 2.

THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
AREA«0.S5xBASEXHEIGHT
DIAGONAL«((HEIGHT*2)+BASEX*2)%0.5

'"AREA IS ',%AREA

'DIAGONAL IS ',©DIAGONAL

D bdq

—— . ——

AN FWN -
— et et ot et

Line Numbers

APL allows the user to type a line number with up to four numbers to the left of the
decimal point and up to three numbers to the right. As noted above, after each
insert line is entered, APL adds 1 to the last place of the insert. As illustrated
in the following portion of a printout, the next prompt after an [.88) insert will be
[0.89]; the next, [0.9]; the next, [0.91); and so on:

vF
(7] (.88]
[(0.88)
(0.89]
(0.9)
(0.91]

The highest integer line number printed by APL is [9999]); thus the highest possible
line number is [(9999.999]. If the user is prompted with [9989.998]) and enters a legal
statement, APL will prompt with the same |ine number since it cannot go any higher.

Replacing a Line

A line in a defined function can be replaced simply by reopening the function,
directing control to the statement that is to be replaced, and entering the desired
stotement. For example, line 1 of function TRIANGLE is to be replaced with another
statement. The user reopens the function by typing a del and the function name and
directs control to tine 1 by typing that line number in brackets. After the RETURN
key is pressed, APL responds to this entry by printing the specified |ine number at
the left margin, as shown:

VTRIANGLE(1)
(1)

Any statement the user enters ot this point will replace what previously existed at
that line. Suppose the user now enters the following comment statement:

(1) a [INPUT MUST BE IN FEET
(2]

Notice that the next prompt is at line 2. If no more editing is required, the user
can close the function by entering another del:

(2] v

This action has no effect on line 2; it merely closes the function. The following
display of function TRIANGLE illustrates the change to line 1:

VTRIANGLE 101V

V BASE TRIANGLE HEIGHT

a8 INPUT MUST BE IN FEET '

A THIS FUNCTION CALCULATES AREA AND HEIGHT OF TRIANGLE
AREA «0.S5xBASEXHEIGHT
DIAGONAL+«((HEIGHT*2)+BASE*2)%0.5
YAREA IS ',SAREA
'DIAGONAL IS ',%DIAGONAL

- —
DN WN -
— ittt s

7-14 Replacing a Line CE38-04

Issuing Multiple Directives

APL allows the user to open a function, change a line, and close the function all on
one line. For example:

verijralz.zv

In this case the user opens function G, issues o directive to line 1 (realizes line 2
was meant), changes the directive to line 2, replaces whatever exists on that line
with the value 2.2, and then closes the function. This shortcut operation allows the
user to change a function without having to interact extensively with the computer.
Another example is shown below:

vel1dlt.t1v

(1} 1.1
veiOlv
v e
(1} 1.11
[21 2.2
A

The first line requests that line 1 of function G be displayed, and the contents of
that line changed to the value of 1.11. The display of function G shows that line 1
has indeed been changed from 1.1 to 1.11. It should be noted that the user can
display one line and change it at the saome time, but cannot display an entire
function and change something at the same time.

Modifying a Line

As mentioned eartier, modifying a line involves character editing (that is, deletion,
insertion, and replacement of characters), adding to a line, and overstriking
existing characters in the line. Modifications to a Iine can be specified by
-overriding the present line number with the directive:

(n0c)

where n is the number of the line to be edited (0 for a function header), and ¢ is
the column at which to begin editing (the column position is the number of spaces
from the left margin). APL will normally display the specified line, and position to
the designated column. The editing column specified may be 0, in which case APL
displays the line and stops at the end. If the designated line does not fit on a
single line, no character editing can be done. In this case, APL simply displays the
line and then reprompts the user with the same |line number. The following is an
example of such a line:

(2] '4
BI
If the typing element is still not in the proper position, the user can backspace,

tab or use <CTL-R> to space forward until the desired position is reached.

The line-modifying capabilities of CP—-6 APL are identical to those described in the
CP-6 Programmer Reference Manual (CE4@). In summary, the user may enter escape
sequences to successively modify the content of function lines in a manner similar to
that afforded direct input.

NOTE: An escape sequence is generated by pressing the <ESC> key once and
then the appropriate key for the action desired (e.g., <ESC> fol lowed
by R for an escape—R sequence). The CP—6 system prints <R> on
the terminal in response to an <ESC> R sequence.

For example, suppose the following function had been previously defined by the user.

vV A PLUS B
(1] 'THE SUM OF ',(®4),' AND ',(®B),' IS ',VA+B
v

CE38-04 Modifying a Line 7-15

Now the user wants to change the function to perform a multiplication rather than an
addition. Suppose the function that will do this is called TIMES. To proceed with
the example, the user opens the function for editing with

VPLUS

and APL responds with [2]. The user types [10 0] to tell APL to display line 1 and
remain at the end to await new instructions.

(21 10 0}
(1) 'THE SUM OF ',(%A)}," AND ',(©B),' IS ',VA+B

APL waits at the end of the displayed line. The user presses RUBOUT twice to delete
the B and then the +, and enters <ESC> followed by R to retype the line. The line
appears as:

(1] 'THE SUM OF ',(®4),' AND ',(®B)},' IS ',vA+B\\<R>

The two backslashes indicate the rubouts and <R> indicates the <ESC> R sequence. APL
immediately types

(1} 'THE SUM OF ',(®A),' AND ',(®B),' IS ',v4A

and waits after the last A. Now the user types xB and enters <ESC> V S to move to the
S in SUM.

{1 ‘'THE SUM OF ',(%A},' AND ',(®B),' IS ',vAxB

The terminal now waits ot the S for more instructions. Now the user presses RUBOUT
three times to delete S then U then M enters <ESC> J to switch to CP—6 insert mode
types PRODUCT and then <ESC> R to show the line.

(11 'THE SUM OF ',(%A),' AND ',(%B),' IS ',vAxB
\\\PRODUCT<R>
(11 'THE PRODUCT OF ',(%4),' AND ',(%vB),' IS ',vAxB

APL now waits for input at the T in PRODUCT. The user has decided to change the name
of the function to TIMES. First, the user presses RETURN to tell APL that a new line
1 has been defined. APL responds with [2]. The user rewrites line 0 directly and
ends function definition all in one line.

(2] [0) A TIMES BV
Now the user demonstrates the new function.

4 TIMES 6

THE PRODUCT OF & AND € IS 24
0 TIMES 9

THE PRODUCT OF O AND 8 IS O

Adding Characters to End of Line

To add one or more characters to the end of o line, specify zero as the column at
which to begin editing. APL will then display the line unaltered and wait at the end
of the line for the user to add something. An example of adding local variables to a
function header is shown below:

(31 (o0 o)
[(0) RETURN«FUNC X;A;B
(1l

In this case APL typed the header as RETURN«FUNC X and waited at the end of the line,
and the user typed ;4;5.

7-16 Modifying a Line CE38—-04

Overstriking a Character

To edit a line ond create a legal overstrike, specify zero as the column at which to
begin editing. APL will display the line and wait at the end of it; the user can
then backspace to the character to be overstruck, and type the second character. An
example of overstriking a charocter is shown below:

(8) (s0 o]
[5]1 A<

In this case the first line coused statement 5, consisting of the expression A¢], to
be displayed and APL to wait at the end of the line. The user then backspaced to the
quad and typed an apostrophe, thus creating the legal overstrike [1.

Editing a Line Number

Line numbers may be edited in the same way that the content of a line is edited. One
application of editing line numbers is in repeating a statement at several different
lines. For example, the following procedure can be used to repeat the contents of
line 2 at line 4.1:

veiad 11
(2] A«30+12x4

APL waits under the [. The user presses <CTRL-R> to move under the 2, presses RUBOUT
to delete it, enters <ESC> J to switch to insert mode, types 4.1, and enters <ESC> R
to see the result.

(2] A+«30+12x4
\&.1<R>
[4.1] A«30+12x4

When the user now presses RETURN, a new line 4.1 has been defined. The contents of
line 2 remain the same; that line was merely copied to line 4.1.

Changing a Function Header

There are four changes the user can make to a function header (that is, to line
zero).

1. Change the name of the function. Suppose the user reopens an existing function
called FF1 and changes only the name of the function to Gl as shown below:

VFF110])
[0} RETURN«G1 ARG
(1)

This example assumes that G1 does not already exist. (If it did, a DEFN ERR
message would be reported.)

\
Changing the function name has no effect on function FF1, the function still
exists as it did before the reopen. Of course, FFl is no longer the open
function, G1 is. Gl is initially a copy of FF1 and any modifications
subsequently made while in function definition mode apply only to G1. This
feature allows synonymous function names as long as only the header is revised.
It is possible for a user to maoke a locked version of an uniocked function in
this manner, retaining the unlocked version only unti! satisfied that the locked
version is error—free. Erasing the original function does not affect a
synonymous function, nor does subsequent revision of the original. A synonymous
function retains the stop and trace vectors suppl!ied with the original function
when it was copied.

2. Change the nome of the result, change a function with a result to a no-result

function, or change a no—result function to a function with a result. The.
following illustrates the change of function FF1's result name from RETURN to R:

CE38-04 Changing a Function Header 7-17

VFF100)
(0] ReFF1 ARG
(1)

3. Change the name of an argument. An example is shown below, where function FFl's
argument is changed to X:

VFF1(0]
[0} ReFF1 X
(1)

4. Change the names of locals, insert locals, or delete locals. APL does not allow
the user to delete a function header. Any aottempt to do so will cause APL to
print an error message and reprompt the user with line zero. To get rid of the
current function, the user must issue an)ERASE command.

Screen Editing

CP-6 APL provides a screen—oriented editor for editing defined functions. The screen
editor is requested by the)EDITOR system command. In this mode, o portion of the
function being edited is always on the screen, and the bottom of the screen typically
contains an area for error messages and the output of system commands. To modify a
line, position to the character or characters to be changed and enter the appropriate
characters to be inserted or replaced. To position the cursor to a particular line,
enter <ESC> X and one of the line positioning directives listed below. In order to
leave screen editing mode, enter a V character at the end of a line or enter an <ESC>
XV sequence. Please note that in this section, the sequence "<ESC>" indicates
pressing of the escape key on the terminal.

Whenever the cursor moves off a line, APL determines whether the Iine is changed or
if a directive was entered. A directive can be entered at anytime by typing <ESC> X
followed by the directive. The line that was erased in order to enter the directive
reappears as soon as the directive is acted upon. Display directives are not
permitted in screen editing mode (mainly becouse the function is already being
displayed). If the screen does not contain the portion of the function requiring
modification, the line to be modified can be reached by entering |linefeed characters
to get to it, or by entering a bare line number directive such as [6] (which would
position the cursor to line 6).

Table 7-4 contains a list of character sequences to perform some common input
editing. For a complete list of screen editing input editing sequences, see the CP—6
Progrommer Reference Manual (CE4@). Table 7-5 contains a list of the directives that
may be entered in screen editing mode and their meaning.

Table 7-4. Screen Editing Control Characters

Input Meaning

<ESC>A Position one line up.

<ESC>P Restore line to its contents when the cursor arrived.

<ESC>N Position to the end of the line.

<ESC>~- Repaint the screen.

<ESC>V? Position the cursor to the next *?' character.

<ESC>J Toggle insertion mode.

<ESC>K Delete characters to the end of the line.

<ESC>X | Delete all characters on the line.

<ESC>=» Reme?ber the characters in the insertion window (or
line).

<ESC>: Copy characters remembered by <ESC>* into line.

<ESC>N<ESC><LF> Insert o line after the current line.

<ESC><BS> Join current line to previous or next line.

<ESC><LF> Split current line by inserting o new line following
the current line.

<BS> Position backward one choracter.

<CTL-R> Position forward one character.

<CTL-I> Position forward to next tab setting.

<tab> Position forward to next tab setting.

7-18 Screen Editing CE38-04

Table 7-5. Screen Editing Directives

Input Meaning

[n] Position to line n if directive has nothing following
it. Otherwise replace line n with the remaining
text.

[/string/] Position to the next higher line number which contains
the string ’string’.

[\string\] Position to the next lower line number which contains
the string ’string’.

[an] Deiete line number n.

[an-m] Delete line numbers n through line m.

[an-m;/str/] Delete line numbers n through line m if they

contain the string 'str’.

[+] Abandon screen editing mode ignoring all
editing changes.

[n-m;c/x/S/y/] Replace the c’th occurrence of the string 'x’
with the string 'y’ in lines n through m.

Issuing System Commands

CP-6 APL allows the user to enter any system command while in function definition
mode. Most system commands keep the user in function definition mode, while some
system commands (described below) return the user to execution mode or even exit APL.
After commands that keep the user in definition mode, APL will prompt with the same
line number at which the command was given. For example, suppose the user is at line
5 of a function and wants to find out the names of variables in the workspace:

(5))VARS
AAA BAT DDD
(5]

The system commands that exit function definition mode are:)CLEAR,)LOAD,)COPY,
JPCOPY,)QLOAD,)QCOPY,)QPCOPY,)CONTINUE,)CONTINUE HOLD,)YOFF,)OFF HOLD,)END,
)JSAVE, and an)ERASE of the current function. All of these commands force a close of
the definition mode as though the user had closed it, but the resulting disposition
of that function depends on the command. The)CLEAR,)LOAD,)QLOAD,)ERASE,)OFF,
and)END commands cause the function to be discarded; the)SAVE,)COPY,)PCOPY,
)JQCOPY,)QPCOPY,)CONTINUE, and)CONTINUE HOLD commands automatically reopen the
function aofter the command has finished. In the ilast situation, as soon as the
command has finished, APL signals the user of the reopening by printing the function
name (with an opening del) and prompting with the next available 1ine number. With
the)CONTINUE and)CONTINUE HOLD commands, of course, the function is not opened
until the next APL session. The user should display the function before doing any
more editing, since renumbering may have occurred because of the forced close.

CE38-04 Issuing System Commands 7-19

Function Execution

APL permits recursive functions (those which reference themselves when they are
executed). APL also allows the user to suspend function execution. These topics are
discussed in detail below.

Recursive Functions

Recursive functions reference themselves in the body of their definitions. As an
example, notice the following function which returns the factorial of its argument:

VZ«FAC N
(1) Z«1 0 +(NsS1)/0 0 Z¢«NXFAC N-1V
FAC O
1
FAC 1
1
FAC &
24

Suspending Execution

Execution of a function is suspended (stopped) before completion, if any of the
following occurs: the BREAK key is pressed, an error is encountered (unless
sidetracking occurs, see section 18), or a user—set stop control is reached (see
OSTOP). When a suspension occurs, APL prints the name of the suspended function and
the line number at which it was suspended. At this point, APL is in direct execution
mode (subject to any [OSA requirements, see Section 11). Any functions that can be
performed in execution mode are applicable during function suspension. As long as a
function is suspended, its local variables are active and can be examined and
modified.

The user can resume execution of o suspended function by specifying a branch.
Entering a branch arrow followed by a RETURN key clears that suspension, while
specifying a branch to a particular line number resumes execution at the beginning of
that line (that is, at the right end of that line). Branching to a line outside a
function’'s range of line numbers, or zero, terminates the execution of that function.

As a general rule, it is best not to leave a function suspended, because the
information about that function occupies workspace which is valuable to the APL user
(see State Indicator). 1In addition, each time the user attempts to execute an
already suspended function, even more information about that function is added to

~ computer memory. Thus, if the user has no specific reason to leave a function
suspended, it should be cleared before proceeding with the rest of the program. (See
also the)SIC command in Section 8.)

State Indicator

APL maintains a "state indicator" that gives a list of all suspended and pendent
functions (that is, all "active" functions). A suspended function is one where
execution is stopped before completion (see Suspending Execution). A function is
pendent unless specifically suspended. Most commonly, this is observed when one
(pendent) function has called a suspended function. As a rule, suspended functions
are stopped between lines, while pendent functions are stopped in the middie of a
line. Note, however, when o function is suspended due to an error, the error marker
may indicate the middle of the line; nevertheless, the function is stopped between
that line and its predecessor. A display of pendent and suspended functions can be
obtaoined via the)SI system command, with the most recent active function displayed
first.

7-20 Suspending Execution CE38-04

}SI

Z[2) *
Xig) *
Y(3])
zr2) +
X(2)
WiS] *

An asterisk after an entry indicates o suspended function; absence of an asterisk
indicates a pendent function. The bracketed number after a function name is the
number of the next line to be executed. If there are no suspended or pendent
functions in the state indicator, no report will result from the)S/ command. The
number of items in the state indicator can be determined by typing the expression

oOLC.

Unlike suspended functions, pendent functions cannot be erased, copied over, or
edited. As an example, look at the stote indicator |ist shown above. Functions Z
and W can be edited but functions X and Y cannot. Notice that function X is listed
as both pendent and suspended; it cannot be edited because it is pendent in one of
its states. Also notice that function Z has been suspended twice.

There is one instance in which a pendent function will not be listed in the state
indicator. Suppose a dyadic function is about to be executed, pending resolution of
its left argument. Assume that argument is obtained as the result of some function,
say F, and F is suspended. Then the dyadic function is pendent, because it is ready
to execute as soon as F is resumed. But the dyadic function is not listed in the
state indicator because it has not yet entered a state of execution. Fortunately,
this situation is rare and seldom will confuse the user.

The system command)SINL lists the contents of the state indicator, including a list
of variables local to pendent and suspended functions. Using the command)SINL lists
the following: :

)SINL
z[2] «* A B
X&) * AA

Y(3)

z[2) * A B
X(2) AA
WIiS] *

As with the)SI command, the most recent active function is displayed first. This
example indicates that variables 4 and B are local to function Z and that variable 44
is local to function X. Only the local variables of the most recent active functions
can be accessed by the user. Thus, the user can access local variables 4 and B of
the laost invocation of function Z, and variable A4 of the last invocation of X. But,
the user cannot access local variables A and B of the first invocation of function Z
or local variable AA of the earlier invocation of function X (see X[2]).

The user con clear the state indicator by using the branch arrow (that is, +). Each
branch arrow clears one suspended function and its associated pendent functions;
thus, to clear the entire state indicator, the user enters a branch arrow for each
asterisk in the list. For example, the user can clear the previous indicator.

>
)SINL
Xl4) +* AA
Y(3]
Z(2) * A B
X(2) AA
Wi5]) *
->
)SINL
Zl2} * A4 B
Xl(2l AA
W(5] =*
>
->
)SINL

CE38-04 Suspending Execution ' 7-21

The)SINL commands in this exomple show what is left in the state indicator after
each branch arrow. The user can also clear the some state indicator by entering four
successive branch arrows.

EY
>
>
>
)SINL

In this case, the)SINL command shows that nothing is left in the state indicator.
The easiest way to compietely clear the state indicator is to issue a)SIC command.

CP-6 APL provides limited protection against SI DAMAGE. As an example, suppose the
user opens function F and modifies the header, changing the function’'s type (e.g.,
monadic to dyadic, result to no—result) and then attempts to ciose function F. If F
is not suspended, the function is closed as usual. If F is suspended, APL issues a
warning (to the effect that references in the state indicator will be damaged by the
chonge to the header) and requests o response from the user. The user can either
order the close to occur with SI DAMAGE by typing YES followed by a RETURN, or cancel
the close in order to revise the function further, hopefully correcting the header.
Only a type change requires this protection. It is perfectly permissible to make
other changes to the header, such as adding locals or renaming the result or dummy
orgumgnts; however, this is seidom odvisable (see Changing Suspended Functions
above). ’

Locking Functions

A function can be locked during definition or editing by using an opening or closing
% (Vv overstruck with ~) instead of @ V. A locked function can be executed, copied,
or erased, but it cannot be displayed, suspended, or altered. After a function is
locked, any associated trace control or stop control is automatically reset.
Examples of locking functions are:

¥ HH VHH 9 HH
(] v (8] # (g) =

Once locked, if an error exists that is not sidetracked in the function, the error is
implicitly sidetracked by APL to the line on which the locked function was invoked
and the error report occurs on that line.

System Functions Controling Defined Functions

CP-6 APL provides system functions which have the ability to create, modify, display,
and set or query the attributes of defined functions. This section also introduces
the terms namelist and canonical representation which are defined in Section 11 under
the heading "Namelist and Canonical Representations". The system functions covered
in this section are:

OTRACE Set/query function trace attribute
Ostopr Set/query function stop attribute

Ocr Obtains function character representation
Orx Creates or modifies a function
0ar Query function attributes

Each function is discussed in detail below.

7-22 System CE38-04
Functions Controlling Defined Functions

OTRACE System Function (Tracing Execution)

Syntax:
Re(QTRACE F
RV OTRACE F

Parameters:
F is a namelist containing the name of a displayable defined function.
12 is an integer or vector of integers that specify the |line numbers for which

execution results are to be displayed. Only the integers that correspond to line
numbers in the named function are significant.

R is an integer vector containing the original trace settings.

Description:

Function execution can be traced by displaying the results of statements (some or
all) as execution of the function progresses. When any of the traced line numbers is
executed, the result of its statements are printed. If the specified line contains a

branch statement, a branch arrow followed by the new |line number is printed.
Specifying a trace vector of (10) discontinues the trace.

Examples:
(v0)OTRACE 'FAC'

stops trace of function FAC.

Below is an example of tracing the execution of a function. Notice that all output
resulting from a trace is identified by the function name and |ine number.

VZ¢FAC N
[1] 2«1}
(21 +(Ns1)/0
(3] Z«NxFAC N-1
[4) v
1 2 3 OQTRACE 'FAC'
FAC 0O
FAC(1) 1
-FAC(2]1 =0
1
FAC 1
FaCl1) 1
FAC(2) -0
1
FAC &
FACI1) 1
FAC(2]1 =10
FACI1] 1
FAC[2]) =0
FACI1) 1
FAC(2] -0
FACI1) 1
FACI2] =0
FAC(3]) 2
FAC(3) 6
FACI3] 2&
24
(20) JTRACE 'FAC'
123
CE38-04 OTRACE 7-23

System Function (Tracing Execution)

The same function written as a compound statement produces the following trace
output:

VZ«FAC N
(1) *(NsZ«1)/0 0 Z«NXFAC N-1V

1 OTRACE 'FAC'

FAC 0
FAC[1) =0
1

FAC 1
FAC[1] =0
1

FAC &
FAC[1] =10
FACI1] =0
FACI1] =0
FAC[1) =0
FAC[1) ¢ 2
FACI1) 0 6
FACI1] O 24
24

The dyadic OTRACE function requires that the right argument contain o valid name or a
DOMAIN ERR is reported. The explicit result of dyadic OTRACE is an integer vector
containing the original trace setting of the named function.

Setting o trace vector can also be included as part of o defined function. For
example, if the statement 1 OTRACE 'FAC' is included within the above function, line
1 will also be traced each time the function is invoked. More complex expressions
can be used to produce conditional tracing. In such cases, the condition produces
one or more values (line numbers) that are the left argument of OTRACE. This
generalization also applies to the stop vector described below.

The)OBSERVE command, described in Section 8, extends the tracing facility. It
permits the user to see not only the final result of a trace command, but every
intermediate result occurring as APL executes a traced statement.
The current trace settings may be obtained by the monadic execution of the OTRACE
system function. In this case, the right argument is the same as in the dyadic usage
of OTRACE and the result is an integer vector containing the current troce settings.
For example:

OTRACE ‘'FAC'

' UTRACE 'FAC!

OTRACE 'FAC!

Possible Errors:

A RANK ERR is reported if:

o the left argument (new trace settings) is not a scalar or vector.
A DOMAIN ERR is reported if:

o the left argument is not a simple array containing only integers.

7-24 OTRACE CE38-04
System Function (Tracing Execution)

OSTOP System Function (Stopping Execution)

Syntax:
ReQSTOP F
RV 0OSTOP F
Parameters:
F is a namelist containing the name of a displayable defined function.
v is an integer or vector of integers that specify the line numbers at which the

function is to stop. Of course, only the integers that correspond to line numbers in
the named function are significant. If 0 is an item of V, the function stops on
exit. :

R is an integer vector containing the original stop settings.

Description:

A planned suspension of function execution, called a function stop, can be
established by setting a stop control vector. This vector is set in the same manner
that a trace contro!l vector is set for a function trace.

When each specified line number is reached, APL stops execution and prints the
function name, the !line number, and optionally the line about to be executed.
Function execution is now in a normal suspended state (subject to (0S4 setting), and
can be terminated or resumed by appropriate branching (see Suspending Execution).
Specifying t0 discontinues the stop control vector; for example, (10) OSTOP 'FAC!
discontinues any function stops in function FAC. The)REPORT system command is used
to include the APL statements in the stop report.

Examples:
Below is an example of stopping execution of a function named CIRCLE:

2 5 OSTOP 'CIRCLE'
CIRCLE

CIRCLE(2)
Suspension activities
+2

13

10

30

CIRCLE(S)

The explicit result of [0STOP is an integer vector containing the original stop
settings of the named function. Like the trace control vector, the stop control
vector can also be used within o defined function to stop execution after a certain
number of loops. Editing a line that has a trace or stop control set removes the
control for that line. Deleting, copying the function from o saved workspace, or
locking ¢ function also deletes trace control and stop control vectors associated
with a function.

The current stop settings may be obtained by executing the OSTOP function
monadically. In this case, the right argument is the same as in the dyadic usage of
OSTOP and the result is a simple integer vector of the current stop settings. For
example:

CE38-04 gsror 7-25
System Function (Stopping Execution)

STOPS+[STOP 'CIRCLE'

oSTOPS
2

STOPS
25

** OSTOP 'CIRCLE'
25

DSToP 'CIRCLE'

Possible Errors:

A DOMAIN ERR is reported if:

[the right argument does not contain a valid name.

A RANK ERR is reported if:

[} the left argument (new stop settings) is not a scalar or vector.
A DOMAIN ERR is reported if:

o the left argument is not o simple array containing only integers.

[OCR System Function (Canonical Representation)

Syntax:
Re[CR F
Parameters:
F is a namelist containing the name of a displayable defined function.
R is o simple character matrix.

Description:

The OCR system function is used to obtain the character representation of a defined
function. The right argument must be a nomelist containing the name of a single
defined function. The result is a matrix containing the canonical representation of
the function (if it is displayable) or a 0 by 0 matrix if the nome is not a defined
function or not displayable.

The canonical representation of a function contains the function header in the first
row, followed by the function lines in the remaining rows.

Examples:

oR<JCR 'FAC'
& 11
R
ReFAC N
Rel
+(N<1)/0
ReNxFAC N-1

7-26 0cr CE38-04
System Function (Canonical Representation)

OFX System Function (Fix Definition)

Syntax:
R<QFX CR
R«AT OFX CR
Parameters:
CR is a simple character matrix (or vector with carriage returns) containing the
canonical representation of o defined function.
AT is a scalar or four—item vector containing only the scalor values 1 or O.
R is a simple character vector containing the name of the function established or

an integer scalar row index of CR.

Description:

The OFX system function creates a defined function from its canonical form. The
right argument must be a character matrix (or vector with carriage returns separating
lines). The first row of the matrix must be a valid function header and the
remaining rows must be valid function lines. The explicit result of this function is
the name of the function that was established, or the integer row index of the line
which caused the definition attempt to fail.

Before the function is established, APL makes sure that the name is not currently in
use for anything other than a defined function. A DOMAIN ERR is reported if the name
is in use and not a defined function or if the right argument is not a simple
character array. A RANK ERR is reported if the right argument is not a scalar,
vector or matrix. If the name is currently a local symbol to an active or executing
function, then this function will exist as a local function.

When OFX is used dyadically, the left argument must either be a scalar or four—isem
vector of simple booleans (1's and @’s). The left argument specifies the execution
properties of the defined function. The four properties in order are:

1. not displayable

2. not suspendable

3. not interruptable

4. execution errors converted to DOMAIN ERR

If a scalar is used as the left argument, all four properties are set to that value.
Setting all of the properties to 1 is the same as locking the function.

Examples:
pReJFX CR«(244'ReFAC N'),[0.5)'+(NSR¢1)/0 0 ReNXFAC N-1'
3
R
FAC
CR
Re«FAC N
+(NSR¢1)/0 0 ReNXFAC N-1
VFAC(OIv
ReFAC N
[1] +(N<SR«1)/0 0 ReNXFAC N-1
v
CE38-04 Orx 7-27

System Function (Fix Definition)

OAT System Function (Function Attributes)

Syntax:
Rel OAT NAMES

Parameters:

NAMES is o namelist containing the names of defined functions.

I is the simple scalar integer value 1, 2, 3, or 4.

R is a simple matrix containing the requested function attributes.

Description:

The system function UAT returns attributes for each function named in the right
argument. When o function is created by function definition or by the OFX system
function, four attributes specific to the function are defined. The attributes
include the valence of the function, the creation time, the execution properties, and
the account which created the function.

The right argument of the AT system function must be a name |ist containing the
names of the functions whose attributes are to be returned. The left argument is an
integer scalar in the range 1 through 4 whose value determines the attribute to be
returned. The result is a matrix (or vector if the namelist is a vector containing
one name) with one row for each name in the namelist.

The left argument value and the associated attributes are:
1 — Valences

Three items indicating whether o result may be produced and the number of arguments.
The first item is @ if there is no result, or 1 if there is a result. The second
item is @, 1, or 2 for niladic, monadic or dyadic functions. The third item is @ and
is reserved for future use.

2 — Creation Time

A seven—item vector indicating the time that the function was created. The items are
in the following order: year, month, day, hour, minute, second, and millisecond.

3 - Execution Properties

A four—item vector, indicating execution properties of this function. The first item
is 1 if the function may not be displayed (O0CR not permitted). The second item is 1
if the function may not be suspended (by double ottention or an error). The third
item is 1 if the function is not interruptable by a single attention. The fourth
item is 1 if any execution error (non-resource) produces a DOMAIN ERR report. The
action of locking a function sets all but the last of these properties to 1. The
dyadic use of the OFX system function permits each of these properties to be set
independently.

4 ~ Creator

An eight—item character vector, indicating the account that created
(or last modified) this function.

7-28 04T CE38-04
System Function (Function Attributes)

Examples:
pRe1 AT 'FAC!'

R
1 10

2 [0AT *F4aC’
1983 10 11 12 28 59 610

CE38-04 0Ar 7-29
System Function (Function Attributes)

Section 8

System Commands

System commands allow the user to control the mechanical aspects of APL, and can be
divided into three categories:

1. Workspace Control Commands — commands that affect the state of active and saved
workspaces.

2. Inquiry Commands — commands that supply information about the active workspace.

3. Communications Commands — commands that send messages to the computer operator
and log the user off APL.

System commands always begin with a right parenthesis and can be entered when the
system is in execution mode or definition mode. By using the Execute operator (see
Section 5), system commands can be embedded in an APL expression and in a function
line. Thus, o system command can be placed under control of such expressions or
functions. Only the first four letters of command names are significant. Name
characters after the fourth are ignored. Thus)CLEA and)CLEAVAGE are both
interpreted to be the)JCLEAR command. Note that o blank must separate the command
name and any following parameters; for example,)WIDTH 30 is not the same as
JWIDTH30. A number of conventions are used in this section to describe the command
formats.

1. Uppercase letters aond special symbols must be typed exactly as they appear
(except that only the first four letters of a command are required, as noted
above) .

2. Lowercase letters are employed to indicate where in a command to substitute a
name or numerical value. The meanings or the notations in lowercase letters are
as follows:

account User account.

fid CP-6 file identifier of the form:
name.account.password.
Name can consist of up to 31 characters.

Account and possword can consist of up
to 8 characters.

fname Name of a function.

grpname Name of a group.

list List of names (of functions, variables, groups),
separated by blanks.

message Actual message to computer operator.

n An integer value.

ob jname Name of function, variable, or group.

string Any sequence of characters not including a blank

or carriage return. If a string includes more
than 79 characters, those past the 79th are
ignored. Strings are used for range demarcation
in certain commands.

vhame Name of a variable.

CE38-04 System Commands 8-1

wsname A workspace name; can consist of up to 31 characters
(letters, underscored letters and numbers) as long
as the first character is not a number. It has
the same form as fid.

The actual system commands are detailed later in this section, but first
it is necessary to describe the concept of a workspace in order to understand
how certain commands are used.

Workspace Concept

Each user has a storage area containing control information which can be saved for
future use.

Active Workspace

Associated with each user is o storage area in the computer known as an active
workspace. This active workspace contains the following:

1. All control information currently applicable to the terminal session.

2. The variables, functions, and groups entered for calculations and still active
during the session.

3. A state indicator that keeps track of the names of suspended and pendent
functions and ot what point they were interrupted.

4. System variables that control several features of APL, such as index origin, seed
for random number generation, line width, and number of significant digits
(decimal places) printed. These system variables all assume default values when
the user first invokes APL, but they can be respecified with system commands, or
by assignment.

When APL is invoked, the active workspace is usually clear (that is, there is nothing
in it except the default values of the parameters mentioned above in item 4). An
active workspace can also be cleared with the system command)CLEAR.

Saved Workspace

An active workspace can be saved for future use with the)SAVE command. Once a
workspace is saved, any user who knows the workspace name can load it as an active
workspace using the)LOAD command. The workspace’s variables, functions, and groups
can be copied into an active workspace using the)}COPY command. The workspace can
also be dropped using the)DROP command (if file access controls permit). In
addition, the names of saved workspaces in an account can be listed with the)LIB
command.

8-2 Saved Workspace CE38—-04

Continue Workspace

A line disconnect or either of the following commands cause the active workspace to
be saved in the logon account:

JCONTINUE
JCONTINUE HOLD

The CONTINUE workspace is automatically loaded as an active workspace the next time
the user invokes APL unless it is directed to load another workspace. In general,
the CONTINUE workspace can be used the same as any other named workspace. It can be
saved, copied, loaded, etc. However, it should only be used for temporarily saving a
workspace, since another)CONTINUE command or line disconnect would save another
active workspace over what was previously saved. That is, the previous CONTINUE
workspace will be overwritten.

Since the CONTINUE workspace is part of the user’s logon account, it is subject to
the granule restrictions imposed by an installation. If the user’s account is near
that limit, the CONTINUE workspace may not be saved, and the information in the
active workspace may be lost if a line disconnect occurs (see User Accounts). The
CONTINUE workspace is saved with its access controls set to restrict access of the
workspace to the user who created it.

Initiating an APL Session

APL is invoked with the following IBEX command syntax:
IAPL [fid1] [{ON]JOVER|INTO} [fid2] [.,fid3]] [(options)]

Parameters:

fidi is a CP—6 file identifier designating either a workspace to be loaded, or a
file containing APL statements to be used as input. In either case, fidl indicates
“source input” (the current setting of M$SI). If fidl is a workspace file or if fidil
is not specified, then APL input will default to the terminal on—line or the default
input device in batch (ME). The APL)SET INPUT command may be used to redirect input
after entering APL.

ON specifies that if fid3 already exists, the file is not to be overwritten. An
error is reported.

OVER specifies that fid3 is to be overwritten even if it currently exists.

INTO) specifies that APL output is to be appended to the end of file fid3 (if it
exists).

fid2 is the CP-6 file name that is to be used by APL to designate the CONTINUE
workspace name (the current setting of MJOU). If not specified, the CONTINUE
workspace name defaults to the string 'APL:’ followed by the current user’s logon
name (established when logging onto CP~6). The account used to hold the CONTINUE
workspace is always the logon account. APL uses this file identifier in the event of
a line disconnect, an uncontrolled error, or a limit exceeded error in batch mode, or
if a JCONTINUE command is issued.

fid3 is the CP-6 file identifier that specifies the file containing output
generated by the APL session (the current M$LO setting). If fid3 is not specified,
then APL output will default to the terminal on—line and the line printer in batch.

The APL)SET OUTPUT command may be used to redirect output after entering APL.

options is the list of APL options to be used for this session separated by
commas. The options permitted are QUIET, WS, and CPV. The QUIET option invokes APL
without the initial version and either CLEAR WS or SAVED messages being displayed.
The WS option must be followed by = and o fid which identifies a workspace to be
automatically loaded. If the WS option is specified, then fidl must contain the APL
statements to be executed. The CPV option causes some of the primitive functions in
CP-6 APL to perform as their counterparts in CPV APL performed.

CE38-04 Initiating an APL Session 8-3

User Accounts

Accounts are specified when logging onto CP-6 or when accessing files in accounts
other than the default file management account for a user. CP-6 installations impose
restrictions on file allocation space (and file access) of file management accounts.
When an account is at (or very near) its space Iimit, other files (or workspaces) in
the account may need to be deleted to create or update a file (or workspoceg. In
this event, APL reports the error. The)? command can be used to obtain more
information about the error.

Command Processor

The material which follows assumes that the Command Processor in effect when APL is
invoked is the CP-6 IBEX processor. If this is not the cose, the commands)CONTINUE,
)!,)JOFF and)SET may operate in a manner other than specified here. 1In particular,
for the transaction processing command processor (TPCP), some of these commands will
result in the BAD COMMAND error.

System Command Summary

The system commands are detailed below in alphabetic order, and are summarized by
category in Table 8-1.

Table 8~1. System Command Summary

Command Description

Workspace Control Commands

JCATCH [vname VIA name]

Removes any current catches (i.e., intercepts of assignments to
specified variable names) or designates that assignments to vname are
to be "caught" (intercepted immediately after the assignment), and
that the test function name, a niladic function or character vector,
is to be executed.

JCLEAR

Clears active workspace and restores default width, print precision,
index origin, comparison tolerance, random number link, etc.

YCOPY fid [1ist]

Copies functions, variables, and groups from saved workspace. Any
password must be included, and so must the account if different than
the file management account. If list is present, then only those
named are copied. If list is not present, all names in fid are
copied.

8-4 System Command Summary CE38-04

Table 8-1. System Command Summary (cont.)

Command

Description

)DIGITS [n]

Displays the current value of PP (numeric print precision). If n is
agecified. sets the value of [0PP, and displays the previous value of
P.

YDROP [fid]

Deletes a saved workspace. If the file identifier is protected with
a password, the

YERASE |ist

Removes the named objects such as functions, variables, or groups
from active workspace.

YGROUP grpname [list]

Groups objects and names the group. If list is not specified,
disperses the named group.

JLOAD fid
Moves a copy of the saved workspace into the active workspace. If
the file identifier is protected with o password, the password must
be specifie