SR
ms‘ a
S WOV

V.-“f‘ﬂ,ﬂ'tad Stat

o “'tantsmc

S

SERIES 60 (LEVEL 66)/6000
COBOL USER’S GUIDE

SUBJECT

Explanation of Language Elements, Coding Examples, Deck Setups, and
‘Efficiency Techniques for Using Series 60 (Level 66) and Series 6000 COBOL

SPECIAL INSTRUCTIONS

This manual replaces COBOL User’s Guide, Order No. BS09, for Series 6000
system users. Order No. BS09 must be used by Series 600 system users and by
Series 6000 system users who are on prior software releases.

SOFTWARE SUPPORTED

Series 60 (Level 66) Software Release 2
Series 6000 Software Release H

ORDER NUMBER .
DD26, Rev. 0 July 1975

Honeywell

PREFACE

The COBOL User's. Guide is functionally organized into sections that provide:
informati®n concerning COBOL concepts, Series 60/6000 implementation techniques,
itternal compiler characteristics, and efficiency considerations. In -addition,
samplé” deck setups and jeb: ¢ontrol data are provided to assist the user in
interfacing with the operdting system. '

Series 60 Level 66 is hereafter referred to as Series 60. The technical
information contained in this manual refers to both the Series 6000 and Series
60 systems, unless otherwise specifically stated.

(:) 1975, Honeywell Information Systems Inc. o "File No.: 1723, 1p23

DD26

. ACKNOWLEDGMENT

This acknowledgment has been reproduced from the "Journal of - Development,

1968" as requested in that publication, prepared and published by the
COBOL Programming Language Committee.

"Any organization interested in reproducing the COBOL report
specifications in whole or in part, using ideas from this report
the basis for an instruction manual or for any other purpose 1is

CODASYL

and

as

free

to do so. However, all such organizations are requested to reproduce

the following acknowledgment paragraphs in their entirety as part

of

the preface to any such publication., Any organization wusing a short

passage from this document, such as in a book review, is requested

to

mention "COBOL" in acknowledgment of the source, but 'need not quote

the acknowledgment.

' COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee ‘as to the accuracy and
functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor,
or by the committee, in connection therewith.

The - authors and- copyright holders of the copyrighted
material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the Univac (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator
Form No. F 28-8013, copyrighted 1959 by IBM; FACT,
DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material 1in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL
specifications - in programming manuals or -similar
publications."

iii

DD26

FUNCTIONAL LISTING OF PUBLICATIONS

for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

'FUNCTION

Hardware reference:

- Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processor

Operating system:
Basic Operating System

"Job. Control Language
Table Definitions
I/0 Via MME GEINOS

System initialization:
System Startup
System Operation
Communications System

Commuynications System
DSS180 Subsystem :Startup

Data management:
File System
Integrated Data Store (I-D-S)
Integrated Data Store (I-D-S)
- File Processing
File Input/Output
File Input/Output

I-D-5 Data Query System
I-D-35 Data Query System

‘Prograh maintenance:
Object Program
System Editing

‘Test system:
Online Test Program
Test Descriptions

Error Analysis and Logging

Language. processors: ,
‘Macro Assembly Language
COBOL~68 Language
COBOL-68 Usage
JOVIAL Language
FORTRAN Language

‘Generators:
Sorting
Merging

APPLICABLE REFERENCE MANUAL

TITLE
Serles 60 (Level 66) /Series 6000-

Series 60 Level 66 Summary Description

Series 6000 Summary Description
DATANET 355 Systems Manual
DATANET 6600 Systems Manual

General Comprehensive Operatlng
Supervisor (GCOS)

Control Cards Reference Manual

System Tables

I/0 Programming

System Startup

System Operation Techniques

GRTS/355 and GRTS/6600 Startup
Procedures

NPS Startup

DSS180 Startup -

File Management Supervisor

I-D-S/I Programmer's Guide

I-D-S/I User's Guide

Indexed Sequential Processor

File and Record Control

Unified File Access System (UFAS)
(Series 60 only)

I-D~-S Data Query System Installation

I-D-S Data Query System User's Guide

Source and Object Library Edltor
System Library Editor

Total Online Test System (TOLTS)

Total Online Test System (TOLTS)
Test Pages

Honeywell Error Analysis and Logging
System (HEALS)

Macro Assembler‘Progfam

COBOL

COBOL User's Guide
JOVIAL

FORTRAN

Sort/Merge Program

Sort/Merge Program

iv

ORDER
NO. -

DC64
DA48
BS03
DC88

DD19
DL31
DD14
DBy 2

DD33
DD50

bLOS5
DD51
DD34

DD45
DC52
DC53
DD38
DDO7
DC89

DD47
DD46

DDO6
DD30
DD39
DD49
DD44
DDOS8
DD25
DD26

DD23
DDO2

DDO09
DDO09

DD26

FUNCTION

Simulators:
DATANET 355/6600 Simulation

Service and utility routines:
Loader
Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN
FNP Loader
Service Routines
Software Debugging

Time Sharing systems:
Operating System
System Programming
System Programming

BASIC Language
FORTRAN Language
Text Editing

Remote communications:
DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Transaction processing:

User's Procedures
Handbooks:

System-operator communication
Pocket guides:

" Control Card Formats
FORTRAN

‘Rev. 7412

APPLICABLE REFERENCE MANUAL

TITLE

'Serles'60 (Level 66)/Series 6000

DATANET 355/6600 Simulator

General Loader

Utility

UTL2 Utility Routine (Series 60 only)
Bulk Media Conversion

Summary Edit Program

FORTRAN Subroutine Libraries

DATANET 355/6600 Relocatable Loader
Service Routines

Debug and Trace Routines

TSS General Information

TSS Terminal/Batch Interface

TSS System Programmer s Reference
Manual :

Time Sharing BASIC

FORTRAN

Time Sharing Text Editor

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
RNP/FNP Interface

Transaction Proce551ng System User's
Guide

System'Console Messages

- Control Cards and Abort Codes

FORTRAN Pocket Guide

ORDER
NO.

DD32

DD10
Db1l2
DCI91
DD11l
DD24
DD20
DD35
DD42
DD43

DD22
DD21
DD17
DD16

DD02
DD18

DD40
DD48
DB92

DD41

DD13

DDL04
DD82

DD26

Séction I

““Section II

‘Section III

1777

~.File Descriptions . . .
SELECT Sentence. . .

‘RENAMING Phrase .

FOR BLANK COMMON Phrase

ACTUAL KEY Phrase
APPLY Phrase .« « ¢« ¢ ¢ o «

CONTENTS
Page
Jdntroduction. e o o s o o s o s 8 o e o e 1-1
General Descrlptlon of COBOL . « ¢ o« o & o o o« s @ 1-1
COBOL User's Guide Organization. . . « =2 « o ¢ ¢ & 1-2
Language FeatureS. . « ¢ ¢« ¢« ¢ ¢ ce o o ¢ o o o o 1-3
Representation of Data@. « o« « o o o o 5 » s o o o o » 2-1
Da&ta :Structures. . . . e o o & s e s a‘e o o o 2-1
Logical and Phy31cal Records. e e o o e o e o @ 2-1
Group Items and Elementary Items. . « « « « o . 2-1
Level=Numbers o« « « o« o o o o o o o o o o o o o 2-2.
Noncontiguous Elementary Items. . « « « « o« « & 2-3
REDEFINES Entries . « « o o o o « o o o o s o o 2-3
Condition-Name EntriesS. « o« « « s o o o o o o .o 2-4
RENAMES Entrie€S o« o« o ¢ ¢ o o 2 o s o o o« o o 2-4
Qualification . . e o o o s s s s s e s a o 2-4
Tables of Data Items. e o o & ¥ o o s s o o e o 2-6
Subscripting . ¢« 4 ¢ 4 4 4 6 4 e 4 0 e s e 2-9
Indexing ® 8 o e s o e 5 e a2 e e e o o o o 2-10
External and Internal Data Formats . . « « « o o » 2-11
External Data FOrmats . . o« o o s o o o o o o » 2-11
‘Logical Record Format. . « ¢« ¢ o o o ¢ o o & 2-12
Internal Data FOrmatsS « « o« o o o o o o o o o & 2-16
Position Numbering . « o « « o « o ¢ o .o o o« 2-16
The Machine Word . . « ¢ @« ¢ o o o o. 0 o o & 2~-16
Character-Strings. o « « o o o o o o o o o & 2-17
Binary NUMDEYS « & o o o o o o o o o o o o o 2-18
Decimal NUMDErS. « &« « s ¢ o s « o o o o o o 2-21
Data Description Entries . « ¢« « ¢ o o o o o o o & 2-22
DISPLAY Item FOrmatS. « o« « .2 o o o « o o o o 2-24
'COMPUTATIONAL Item Formats. . . e s s e 2-25
Binary Representatlon of Fractlonal)
Values. e ®© ® & e ® 6 ° o e ® & & © ° e o ® 2-26
COMPUTATIONAL FormatS. o« o o o o o 9 o o o o 2-27

OPTIONAL Phrase .
OVERLAY Phrase. .
File-Name Phrase.

o & o o o o o
U |

ASSIGN Phrase . .
FOR CARDS Phrase. .
FOR LISTING Phrase. -
FOR MULTIPLE REEL/UNIT P
RESERVE Phrase - . 3 . .
Integer Option . . .
NO Option. . . .o e

e o
o o
o e
. .o
e o
e o
LIS
e o
o o
I

ras

wwwwwwwwwt::wwwwwwwww
POONNNINAOANAUVTIEWN -

FILE-LIMIT(S) Phrase. .
ACCESS MODE Phrase. . .
PROCESSING MODE Phrase.

¢ * o o s o e s s Te. e e.6 & 0 o o e

. ; L] L] . L] . L] L[] ml . . L] L] . . [.
e o o o o o ¢ o o (D o « o o o o
® € & ® ¥ e e ® 8 8 e & & &6 e ° s o @
® 2 0 o 6 56 & ¢ ¥ B e 6 ° ° e s e
L] L] L] L]
‘ * L] . . L] . L] . L] .]‘ . . L] .
L4 L] L] L] L]
LI L I I R R I)
L] . . L] . . . L] . . L] . L] . . . L] L] .
e & & 6 ¢ ® ® © & © 5 o 6 * & o o * o
@ o o ® o s & & 6 0 s s 0 9 0 e s o »

vi DD26B

CONTENTS (cont)

PROCESS AREA Phrase . . .

BLOCK SERIAL NUMBER Phrase.
SYSTEM STANDARD FORMAT Phrase

VLR FORMAT Phrase
RERUN Phrase. « « « o « o
SAME AREA Phrase.
SAME RECORD AREA Phrase .

SAME SORT or SORT-MERGE AREA P

MULTIPLE FILE Phrase. . .
File Description Entries . .

SORT-MERGE File Description Entrl

.
.
.
.
-

Level Indicator and File-Name

BLOCK CONTAINS Clause .
DATA RECORD(S) Clause .
LABEL RECORD(S) Clause.

OMITTED Option . . .

STANDARD Option. . .

Label-Name Option. .
RECORD CONTAINS Clause.
RECORDING MODE Clause .
REPORT (S) Clause. . . .
VALUE OF Clause « . . .

e o o o o o o s o o

Section IV Record Descriptions . . « « . .

.

e e ¢ o o o o o e

.cooon-ooocmoop‘oo-o-.o

r

s

e o o o o o v 0+ e o o e o s e e o 9 s e

Elementary Item Description Entries.

BLANK WHEN ZERO Clause. .
Condition-Name Entry. . .
COPY ClausSe « « o o o o o
JUSTIFIED Clause. . . .

Level-Number/Data—Name Entries

OCCURS Clause . . .
PICTURE Clause. .
Editing Rules.
REDEFINES Clause.
RENAMES Clause. .
SYNCHRONIZED Clause
USAGE Clause. . . .
DISPLAY Items. .
COMPUTATIONAL Items
INDEX Items. . . .
VALUE Clause. . « « &
Groups of Elementary Items

e & o o o & o o o 9 o

"Section V . File Processing . « « o« « o« + &
: File Processing Concepts . .
File Declaration.

o e o o ¢ o o o o o

Sequential-Access Processing.

Random-Access Processing.

Open Status and Closed Status
Input, Output, and I-O Modes.

Special File Processing .

3

Processing Optional Files.
Processing Nonlabeled Multlple

Processing Stranger Files via COBOL.

@ o o 8 o 0 ¢ 0+ o & e o o o o o

-

* o e o .o o o o

0

Relationship of Reporting Verbs to File

Processing

Summary of File Property Relationships.

. Assignment of Files. . « . &
File Control Cards. . . .
System Standard Format. .
Peripheral Devices. . . .
Multiple File Tapes

/77 . vii

*e o & o
e e’ 0 @

* o o o

L] - . . L] L]
- . - L] . L]
. . L] L] .]
Q’
e o o o s o
e o o o o s
. L] . . Q’ -
€ . 4 e .
« e e e e
e e o o & »
- - . L d Ll .
L . L) . . .
e o o o & s
e e o o o o
e o e o o o
e e e.s o e
c e o o s o
c e e s e e
e e a4 o o
L 3 -
e e e s s e
L] - . . L] L]
L] - L] . - L]
« o o o o o
L] . L] . L] L)
- -. L] . . L]
- - . . . -
e o o s o
- . . L] . L]
L] - . . L] .
. . L] L] . L]
L] . . L] LR L]
e o o o o o
- - L] . - .
. L) L] - L] .
L3 []
. L] . . - .
. L] L] L] L] L]
. . L] L] L] L]
L3 L] L] . o (]
e o o o o o
. . L] - . L]
L] - L . . L]
> L] . L]
Reel Files.
. L] L]

L] . - . L]

. L]

L] e - [] L]

L] - [] L] -

. L] L] L] L]

L] - - L []

* o s s e o »
. e o o o o o

® © o o o ® 8 ° o o 8 o o s o e s o @

Page

3-8.1

w W
I

[S 3 V]
w w

1
00 B W W N

Lo S

-13

Uy Lt un
1

1
FHREREON UbWWWNN
vooo ‘

5-12

DD26B

CONTENTS (cont)

WRITE Statement
FROM Phrase. . « . .«
ADVANCING Phrase . .

Page

File Processing AXe€asS. « o s o o« o o o o s o o o 5-14
Buffer Ar€as. « « o o o o o o o o o o o o o o 5-14
ReCOYd AYCAS: o o o .o o o' o o o s o s o o o o 5-14
Sort Areas and Sort-Merge Areas o+ & o o 5-16
File Processing Statements s 5-16
OPEN Statement. . . . ¢« «. ¢« .+ « . @ e s e a = 5-18
INPUT Option .« + o« o« ¢ o o« o e e e o e s 5~19

I=0 Option ¢« « o « o o o o o & o e b e e e 5-19

NO REWIND Option . . ¢ « o « & e o & 5 o e 5-20

READ Statement. « ¢« ¢ o ¢ ¢ & o & e 4 s e o s 5-20
INTO Option. « o« 2 « o '« « « = e e s s o e 5=-21

AT END Phrase. . « « ¢« o o« o & e e x e s e 5-21
INVALID KEY Phrase o e 5~22

INVALID KEY Phrase
SEEK Statement. . . .
CLOSE Statement . . .
Standard Close File.
Standard Close Reel.
USE Statement
ERROR PROCEDURE Phrase
LABEIL PROCEDURE Phrase
USE BEFORE REPORTING Phra e
File Processing Examples . . .

e o o e o o o
o e o P o
¢« o o o @
.

« 8 o s ° e o

.

.
.

e ® ® e s e ¢ o
n

[NN T N R A B A |
N
w

¢ ® o ¢ o 8 o & @
¢ o o 0
.
.

o ¢ o &

s ® & o o e e o

l.clto..ao..l"..o.to'
[A

e o o o o e o o

.
S

« o o o o o
.
e o o s o o
e o o o o o
* s e & e o o
e o o o @
wn
LU
N
~

Section VI Low-Volume Data Transmission. . .
’ ACCEPT Statements. . . « .+ « &
DISPLAY Statements . . . « . &
Data Transmission Techniques .
System Input.
System Output & .
Transaction Processing Interfa
Remote Devices. « +« «. o« o &
Elapsed Processor Time. . .
Date and Time . . v '« « o o o o o o &

e o o o o o s
I

e e o o ¢ o
» e o o e ¢ o
o o e & o o o
e o o o o o

Qo o o o o o

e

- e o e

|
NHEFHRMHE OdAVTUBBWWWN R

Console or Typewriter . .
Switches.
Data Transmission Program Example. .« e e

® e o o ® e & 0o o o o o+ e

Section VII . Transaction Processing System«
: Transaction Processing Executive (TPE) . e
TPAP Profile Table. ¢« + o« ¢« o o o« o & .
Transaction Message Format. . . « « . .
Transaction Processing Applications Program
(TPAPS) & & v o « o s o o o o o o o o s o &
TPE/TPAP Interface .« « v i o o o o o o«
Intercom Input File Processing. . . .
Input Subroutine (COMMI)
COBOL Input Statement Processing .
" Intercom Output File Processing . . .
Output Subroutine (COMMO).
. COBOL Output Statement Processing.
Direct-Access (DAC) Mode Processing . . .
Transaction Processing Appllcatlons Program
Example. e o o o6 o 278 6 8 .8 s e s -a o o o

e * -0
s 9 o o
* s s e
e o o o
1]

NNNd
i

LI L |

e 8. s o o o o
[}

e o s & o o
o e s o e o o &

» o o o s . 0 o
e o o o & o o 0

'~ Section VIII Report erter e a8 e s s e e e s e e e e e e
: : Description of the: Report Writer « « ¢ o o o &

"Report FOrmat « o o o «.5 o o o o o o o @
Report Control in the Procedure Division.

3/717 vidd - DD26A

CONTENTS (cont)

Page
Skeletal Format for the Report Section 8-4-
RD ENtrieSe o« o« o o o o o o o o o = o ‘a o o o 8-5
Report Group Entries. « o « o o o o o s o o o o« 8-5
Elements of @ Report . o « o o ¢ ¢ o o o o o o o« o 8-6
REepOYt GXOUPS « o o o o o o o o s s s o o o o .o 8-6
Control Data ItemS. « « ¢ & o o o o o« o o o o = 8-7
Page Breaks and Overflow BreaksS « « « o« « o o = 8-8
File CharacteristicCS. « « « &+ o ¢« o o o o o o o« 8-9
Line Counter. . ¢« ¢« 4 « ¢« o o s o o o s°o o s = 8-9
Page COUNtEr. o« o« o o « « o o o o o o« s o o o 8-10
Report Writer Efficiency Techniques. « .« . 8-10
SUM Counter ManipulatioN. + « « « &+ « ¢ & o o = 8-10
Subtotalling + &« ¢ ¢« ¢ ¢ ¢« ¢ o+ 4 o e e o o 8-11
Rolling Forward. « « « o o« o « o o o o o o & 8-11
Crossfooting . . ¢ ¢ ¢ o ¢ ¢ ¢ o o o o o o 8-12
SOURCE/SUM CorrelationN. « « « « o o« o o o o o @ 8-13
Pre-Slew and Post-Slew Algorithms 8-14
Pre-Slew Calculations. . « « « « o« o o« o o & 8-14
Post-Slew Calculations . . « « « o« o« & .« . 8-15
Combinations of Pre-Slew and Post-Slew
Calculations. . o« « o o o o o o o o o « o & 8-15
Report Writer Table ConstraintsS. . « « o« o« o o« o 8~-16
SUM Operand Limitations . . +« o« « « o« o« « o « & 8-16
RESET Stack Limitations . « « & & ¢« ¢ ¢ ¢ o« & & 8-17
Report Table Capacity « « . ¢ o o o o o« o« o « o & 8-19
Report Group Entries . . « o « ¢ ¢ ¢ o ¢ o & 8-20
Group EntrieS. o o o o o o o o o o o o o o 8-21
SOURCE ENtri€sS . « o « o o o o o o o o o o 8-21
SUM Entries. o o« o o o« o o o o o o o o o o = 8~23
VALUE Entri@sS. o o o o o o o o o o o o o o » 8-24
Exceptions to Entry Sizes. . . ¢ v o« « o+ o« . 8-25
Calculation of. Report Group Size 8-25
Report Writer Program Example. . « « o « ¢ o o o o« 8~-27

.
.
.
.

. e e o . .

Section IX File Ordering - SORT and MERGE.
) o Concepts
SOorting o« « o o o o o o o
Merging
Oordering. « « « « o« o+ &
Program Organization. .
SORT Statement
The Sort File
Sort Key Declarations . . .
Variable-~Length Records.

. o« o e o .

.
.
.
.

¢ o e o
.

.
.
.
.
.

* o e o s o o
!

* & o o
e ¢ o s o
.

Dominant Record Length .
Sort Key Evaluation
Sort Equal Key Procedures e o o o o

s
u

e % & o o o o o
e & o & o e 6 o o o+ o
e & o o s e o ¢ e 3

" s+ e 0
.
.
.

Engagement of Equal Key Procedure
Changing Equal Key Procedures. .
Disengagement of Equal Key Procedur
Sort Equal Key Record Processing
Sort Input Processing . .
USING Option
INPUT PROCEDURE Option

s

e« o MDe o e o o

[}
HFHEWOWOVWWOWWOWWORITIAUT B BN

I

WO WWWIWWOWWWOWWYWWOWWOWYWWLWWIWWIO WYY
i

* o o o o o
* e ¢ o+ o
e o &
o e o o @
* e o o
e e e * o o e o o 8 e v v 8 4 o
.6 & & 8 e _© 8 s e 2 e s & 0 0 s o
® 6 o o o & * e e s o s o e
e 6 8 o * o o o e 0

RELEASE Statement -10
Sort Output Processing. . . . -11
GIVING Option. e e e e e . . 9-11
OUTPUT PROCEDURE Option. . . . « . . o 9-11
RETURN Statement. « ¢ « .« . . . 9-12
Sort Operational Considerations. . « 9-12
Flow of Control . . . ¢ v & o o o o o & P 9-12
Reserved File~=Codes .+ « 4+ o« ¢ o o« o o « o . 9-14

3/77 ‘ ' ix DD26A

Section X

Section XI

3/77

Arithmetic Computatlons . .

Arithmetic Statements. .

CONTENTS (cont)

Implicit File Assignments .
Input Files. . . + « . &
Output File.

Collation File-Codes .
Borrowed File-Codes. .
Collation File Manipulation
Sort Configuration.
Memory Assignment for Sort.
Dynamic Resource Allocation
Sort Examples

MERGE Statement.
The Merge File.
Merge Key Declarations. .

Variable-Length Records
Merge Key Evaluation. . . .
Merge Equal Key Procedures,
Engagement of Equal Key Procedures
Changing Equal Key Procedures. . .

* o o o o o =
e o o o » o ¢ o

e o o o ‘0 o s » o e ¥

s o & e ® s+ + e e o & & ¢ & &

¢ o o s o o o
e o o s » o

[I 3

Disengagement of Equal Key procedur

Merge Equal Key Record Processing.
Merge Input Processing. . .
Merge Output Processing . .

GIVING Option. . . .+ .

OUTPUT PROCEDURE Option.
RETURN Statement.

Merge Operational Consideration
Flow of Control
Reserved File-Codes . . .
Implicit File Assignments

Input Files.

" Output File.
Merge Configuration
Memory Assignment for Merge e e e o

. .

.
.
.
.

e o o o

e o o o ¢ o
.

¢ o o .

.
S

¢ o
. .
¢ o

e s
¢ o o

* o e ® o o
.
.
.
.
.

Merge EXampleS. + « « o o « o« o o
SORT-MERGE Elective Options.

Data Movement ProcedureS. « « « o « o o o &«

MOVE Statement ¢« ¢« « ¢ & & « & &
Examples of MOVE Statements.
MOVE CORRESPONDING Statement . .« . e

Examples of MOVE CORRESPONDING Statements

REPLACING Phrase (EXAMINE Statement) . .

Methods of Computation .

Formulas . « « « o o o &
Unary Operators . . .
Symbol Pairs. . . .« . N

Common Options in Statement Formats
‘ROUNDED Option. . « . . « . . .
SIZE ERROR Option . .
CORRESPONDING Option.

.
.
.
.

o‘..oc
* e s e
e o o o
s o o o
* o 8 e o+ e &
s & o o o
6 o . s o o

« o o o
* o s e

ADD Statement
COMPUTE Statement . . .
DIVIDE Statement.
MULTIPLY Statement.
SUBTRACT Statement. « . .

Multiple Results in Arithmetic Statement

Overlapping Operands. « '« +« « o« o« o« &
Precision in Arithmetic Calculations.
TALLYING Phrase (EXAMINE Statement). .. .

6 8 @ e 6 o+ o o & o o e o

.

.
.
.
.
.
-
3
.
.
.
3
.
.
0
.
-

es

. o

" o o o

.

o e o ¢ o »

oo.oo

. o s e e

* o. 0 o o o o

S

e e & o & 2 & o o »

® e o ¢ s e é e % o o o o e * o o

® e o ° o o e

¢ o o o o e o & % o & o e 0 0 o ¢ @

s ¢ ¢ e 8 o s ° 2 v o o

o o o

o & o 0

s s. & o . 8 o ° & e & e s =

o o o o o

e o o o 0 s o o o e o o s ¢ o

11-4
11-4
11-5
11-5
11-6
11-7
11-7
11-8
11-9
11-10
11-10
11-11

11-11 -

11-12

DD26A

" CONTENTS (cont)

Example of EXAMINE...TALLYING. . . « ¢ '« o &« o o = 11-13
VARYING Phrase (PERFORM Statement) . « ¢« ¢« ¢ o o 11-14

Section XII Conditional ProcedureS. « « o« o o o o o o o o s o o o 12-1
Conditions o« o« o o o o o o

Simple Conditions

Relation Condition . .

Sign Condition

Class Condition. . . .

Condition~Name Condition

Switch-Status Condition.

Compound Conditions

s o e s o
.
.
.
.
.
.
.
.
.
.
[
8]
[

® & o o o o @
.
.
.

s o o & o e o
—~
N
w

¢ e
.
.

LR A T)

Abbreviated Combined Relation Conditions. . . . 12-8
Abbreviation 1 « « ¢ o ¢ o o o« o o o o o o 12-8
Abbreviation 2 . . 4 ¢ ¢ 4 e 4 e o e 4 e e 12-9
Use of the NOT Operator . « o« « o o « o « o o & 12-11
Evaluation Rules for Conditions « « « . 12-14
Section XIII , Table Handling. « « o o« o o o o o o o o o o o o o o o 13-1
- Description of Table Handling. . « « o« o« ¢ « o « & 13-1
Subscripting o+ & ¢ 4 ¢ ¢ o 4 e 4 e 6 e e 4 0 e e s 13-2
Indexing . « « « « o « o s s e e e e e & s e 13-3
Rules for Subscripting and Indexing . o o e . 13-4

Subscripting and Indexing - Sample Problem. .« . 13-4
Size Restriction Upon Character-Oriented

AYYAYS o o o o o o o o s o s o s o o o o o o 13-6
SEARCH Statement o ¢ ¢ o o ¢ o s o o = o & 13-7
SET Statement., . . . e s e s s s s e e s e s s @ 13-9

SET Statement Rules © 6 e o e o s+ s s s e s o @ 13-9
Comparisons Involving Index-Names and/or

Index Data Items e o o o o o o o o a 13-10
SEARCH and SET Statement Examples

.
.
[
(O8]
!
=
()

Section XIV lerary Facility. . . . N
Description of the lerary Fac1llty.
COPY Functions . . « « & « + + &
HIS COPY v v v v o o o o o o o &

HIS COPY Source Library Format
Reference Listing Format. .
Missing Library-Name. . . .
Compressed Deck Options . .
" HIS COPY WITH COMDK. . .
HIS COPY WITH CCOMDK . .
American National Standard COPY
Library Format for American
Standard COPY. . « « & « &
Reference Listing Format. .
Missing Library-Name. . . .
Compressed Deck Options . .
American National Standard COPY
WITH COMDK. &« « o o o o o o o o o o o s s 14-12
American National Standard COPY _
WITH CCOMDK . 4 ¢ 4 o o o o o o o o o o o o« 14-12

" e o o o
*
o e
. o
e
¢ o & 8 o o

. L4

« o o s s s e o

e o o o o o o s o

.

. [] L[] L] [

. L] . L]
=
>
o

Qe ¢ o o o o o o

L]
nal
. L]
- [

ati

o o o o Ze o 0 o o

¢« o o o
D S
* o &
¢ o o
¢ s 0 o
e o o
=
-3
11
—
[

Section XV Segmentation and Modularization 15~1
' Terminology. « o « o o o o o s o o o o o o o o o o 15~-1

Description of Segmentation. . . « ¢« ¢« ¢ + ¢« ¢ o . 15-1

Organization. Y e o e o o e o o o o o e e e e o 15-1

Segments Y e o e o o e o e o e o . e o . e o * e 15-2

Segment Classification. . . . & « ¢« ¢ ¢ ¢ o o & 15-2

Segmentation Controle « &« ¢ ¢ o ¢ o« ¢ o o o » o 15-3

Structure of Program Segments . . « « ¢ ¢« + o . 15-3

3/77 . oxi DD26A

CONTENTS (cont)

Page

o e e 15-3
« o e . 15-4
o« o e e 15-5

Priority-Numbers . . « ... ¢ ¢« .
Segment-Limit. + « ¢« ¢ ¢ ¢ o o
Transfer of Control . . « . « o . .
Restrictions on Transfer of Control

. o

o
B
Die o o

Program Alteration . « « ¢ ¢ ¢« ¢ ¢« ¢ ¢« & 4 o . 15-5
Segmentation, Linhking, and Loading. 15-6 °
Effects of Segmentation on Listings 15-10
Summary of Segmentation Requirements. . . . « . 15-11

Description of Modularization. « + « . . 15-11
MOAULES & & o o o o o o o o o o o o o o' o o o & 15-12
SeCtionS. o ¢« o o o ¢ o o o e 4 o o e e o o . 15-12
Procedure Division Communications . « « « « & & 15-13

CALL Statement . . ¢ o o ¢ o ¢ o o o o o o =« 15-14:
ENTRY POINT Phrase . « o« o o s o o « o o » o 15=15
EXIT Statement . o« ¢ ¢ ¢ o ¢« o o o o o o o o« 15=-15
Data Compatibility. « « « & o« ¢« o o o o o« o o @ 15-16
File Compatibility. « « ¢« ¢ « « o « + 15-16

Linked Overlay Environment Constraints 15-17
File Processing . . c e s e e e e e e e e e 15-17
~ACCEPT and DISPLAY Statements e o o o o o o & & 15=-17.
Overlay Management and Memory Organization. . . 15-17.1
Multiple Module Program Example 15-17.2

Section XVI Efficiency Techniques . « « o ¢ o ¢ o o o o o o & o & l6-1
v Optional DEBUG Statements. . . . ¢« « + + ¢ ¢« & « & 16-1
Compilation Technigques . « « « « o o o o o o o & & 16-2
Unified Data Tables e o o s o o e s e o o s 16-3
Data-Name/FILLER Items e o e . s s s e e o o 16-4
Group IteMS. « o« o ¢ o o o o o o o o .8 o o 16-5
Elementary Items . o« « o « « s « o s o o o 16-5
Procedure Division Entries. « + « « « o o« o« « « .16=5
Resource Allocation . « ¢ ¢ ¢« ¢ ¢ o« o o 4 o o = 16~5
File Utilization. « « o« « o o o o o o o o o« o 16-7
Compilation AbOrts. ¢« o « o ¢ & ¢ o ¢ o o o o 16-8

Time-Saving and Space=-Saving Technlques. o o o o s 16- 9
Input-Output Techniques . « « o« ¢ o o o o o o & 16-9
Incremental Report Printing Techniques. 16-10 .
Data Manipulation Techniques. . « ¢« « « &« « o & l6-12
Data Description Techniques . « « o ¢ o « o o 3 16~-13.

Use Of Compressed DECKS.: o« o o o o o ¢ o o o o o o 16-14

Cross—-Reference Facility ¢« ¢ o ¢ ¢ ¢ o o o o o o @ 16-15.

Packed Decimal Efficiency Techniques . « o« « o o o« 16-15

Sample Business Program. « o+ « o « o o« o s o o o o 16-18

Section XVII Obsolete Language ElementsS. ¢ « ¢ « ¢ & o o o « o o &« 17~1
: Environment Division Elements. . « « « &« &« « & o« & 17-1.1
6000 WITH EIS Phras€. « « o« o« o o o o o o o o o 17-1.1

Data Division Elements . « ¢« o« ¢ « ¢ o o o o o « & 17-1.1
PREPARED Option .« .« o o o o « o o 2 o o o o o« o« . 17-1.1

Constant Section . . . e e e e e e ee e e e e 17-2
Noncontiguous Constant Storage. « ¢« o+ o o o o o 17-2
Constant RecOrdsS. « « o o o ¢ ¢ o o o o o o o o 17-3
VALUE of ConstantsS. ¢« « &« ¢« ¢ ¢ ¢ ¢ o o o o « &« 17-3
Condition=NameS .« « « o o o .o o o o o o o o o » 17-3
Tables of Constants + « ¢ &« o « o o s o o o o » 17-3

Data Description ENtrieS . « o« o o o o o o o o o 17-4.
CLASS ClauSE€. « « « s o o s o o-o o« o o o o« o 17-4
Editing Clauses « « « o« ¢« &+ ¢ o o o o o o o o 17-5
FILE CONTAINS ClauS€. o« « o o o o o o o o« o o & 17-6.
POINT LOCATION ClauS€ . « « o o s o s o o o o & 17=-7
RANGE ClauS€. « « = o o o o o s o o o s o o o « 17-7

e o &+ s = » o.a o & & o 17-8

SEQUENCED Clause. . .

3/77 oxiid ‘ DD26A.

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Index

Figure
Figure

Figure

Figure

Figure
Figure
Figure
Figure

Figure

- Figure

3/77

14-3

14-4

14-5

14-6

CONTENTS (cont)

SIGNED Clause . « « « o« « «

SIZE Clause . ¢« o + o o+ o &

USAGE COMP-3 PACKED SYN
Procedure Division Elements. .
Conditional Statements. . .

THEN Separator. . « « « «

Order of COBOL Source Program . .
COBOL Deck SetuUpS . « o o « o '« o«
Nonstandard Feature Flagging. . .
Collating Sequences . « « . « « o«
COBOL Abort CodeS .+ « o ¢ o o o o
Reserved GMAP Location Symbols. .

Compiler Limitations. . « « o« o« &

ILLUSTRATIONS
Ranges of Fixed-Point Numbers . .
Ranges of Floating-Point Numbers.
Sort Program Organization
Merge Program Organizatioﬁ.-. o .
Library for Figures 14-2 and 14-3
HIS COPY WITH COMDK Option. . . .
HIS COPY WITH CCOMDK Option . . .

Library for Figures 14-5 and 14-6

American National Standard COPY WITH

COMDK Option ¢« & o v o o o o« « =

American National Standard COPY WITH
CCOMDK OPtiON. o o« o o o o o o o o o

xiii

Clause

.

e e o o o &

e o o o o o

*. e o o o o

e o o o o o

e o o o ¢ o

¢ o & o o o

e o o o o o

2-19

2-20

DD26A

SECTION I

INTRODUCTION

GENERAL DESCRIPTION OF COBOL

COBOL is a computer language used primarily for programming business data
processing operations.

The COBOL language offers various advantages to the computer user:

e It provides a rapid method of implementing complex programs.

) It reduces the cost of converting programs from one computer system to
another,

[It reduces the time required to train personnel.

) It standardizes documentation.

Many changes and modifications have been introduced into the lanéuage since
its inception in 1960; these changes resulted from user experience with
practical applications. ' '

The Series 60/6000 compiler was originally designed to provide the features
of COBOL-61 Extended and was subsequently updated to conform to the COBOL-65
language specifications. Since then, it has been extended to provide most of the
features of COBOL-68 as specified in American National Standard COBOL revision
X3.23-1968. Consequently, whenever the term 'standard' is used in this document,
it refers to American National Standard revision X3.23-1968. The compiler also
provides some proprietary extensions as well -as certain additional features
specified in the CODASYL COBOL Journal of Development (JOD) and in the American
National Standard COBOL revision X3.23-1974. .

The Series 60/6000 COBOL Reference Manual, Order Number DD25, generally
reflects the format of the Journal of Development and presents the formats,
syntax rules, general rules, special considerations, and the strict
interpretation of the language elements required to construct a COBOL source
program. Unless otherwise indicated, the text of the reference manual conforms
to the terminology expressed in the Journal of Development ‘and/or the standard.
'In the reference manual, the formats and text describing extensions of the
language are indicated by shading. .

This COBOL User's Guide is a supplementary document -to be used .in
conjunction with the reference manual; it is a compilation of COBOL concepts and
programming techniques. It is organized into sections which are described below.
The user's guide is not constrained to the exact wording of the standard or the
Journal of Development although some of the text from these documents is . used
when it is meanlngful in the discussions. ' '

1-1 v ' DD26

Certain language elements contained in previous versions of COBOL were
deleted from the specifications prior to 1968 and are no longer included in the
standard. These elements are no longer documented in the COBOL Reference Manual
in order to discourage their continued use. For the betiefit of users who have
employed such features in the past, their implementation is retained in - the

~compiler, with no guarantee that they will be maintained in the future, These

obsolete elements are documented in Section XVII of this manual. It is
recommended that they not be utilized in new programs and that they be
eliminated from existing programs. To facilitate: this, the - compiler can
optionally flag obsolete and/or nonstandard items on the COBOL source listing.
The flagging feature is documented in Appendix C.

It is assumed that the reader of this wuser's guide has considerable
knowledge of the contents of the COBOL Reference Manual. It is also suggested
that the wreader refer to the COBOL Pocket Guide as a qulck referenc: source for
formats and reserved words.

COBOL USER'S GUIDE ORGANIZATION

"A brief summary of the contents of the sections contained in this manual is
given below: '

Section II provides an interpretation of data structures, ‘internal and
external data formats, and data descriptions.

Section III describes those language elements in the Environment and Data
Divisions that apply to file descriptions.

Section IV describes record description entries and related usagess

Section V presents file processing concépts, some programming techniques,
and the file processing statements.

Section VI describes low-volume data transmission wusing the ACCEPT and
DISPLAY statements.

‘Section VII describes the Transaction Processing System feature using the
ACCEPT MESSAGE and DISPLAY statements. :

Section VIII describes the Report Writer feature, including information on
report construction and table size restrictions.

‘ Sectibn IX is an overview of file ordering using the SORT and MERGE
statements. '

Séction X presents examples of data manipulation using the MOVE and EXAMINE
statements., ' '

‘Section XI describes arithmetic computations and related examples.

Section XII describes the conditional and branching procedures.

1-2 ' - bD26

Section XIIT summarizes the Table Handling feature and presents the rules
for subscripting and indexing.

‘Section XIV describes the COBOL Library Facility and 'presents related
examples.

Section XV describes segmentation and modularization.

Section XVI examines some‘techniqueé designed to improve the efficiency of
COBOL programs.

Section XVII contains a summary of language elements that have been deleted
from COBOL.

Appendix A outlines the order of a COBOL source program.

Appendix B lists the $ COBOL card system options and presents examples of
COBOL deck setups. .

Appendix C describes nonstandard feature flagging.
Appendix D lists the standard and commercial collating sequences.
Appendix E lists the COBOL abort codeé.

Appendix F lists the reserved GMAP location symbols,

LANGUAGE FEATURES

COBOL allows computers to be programmed in a language that is similar to
the English language. Paragraphs, sentences, and phrases are written, ' following
the conventions of a standard reference format, to describe the data to be
- processed and to speCLfy the required procedures. The resulting text is called a
COBOL 'source program'.

The source program text consists of 1lines containing a maximum of 80
characters and is often keypunched on 80-column cards. The source program is
submitted as input to the computer under the control of a special program known
as a compiler. As output, the compiler produces an object program on punched
cards, magnetic tape, or a mass storage device., The object program is the actual
sequence of machine instructions required to accomplish the functions specified
in the source program. In addition, the compiler produces an edited listing,
which includes an annotated printout of the source program in the reference
format. Another important function of the compiler is to analyze the source
program for correct COBOL syntax, and to print error comments for any syntax
errors, that are detected. The computer s operation under control of the compller
is called compilation,

1-3 ’ : DD26

SECTION II

REPRESENTATION OF DATA

DATA STRUCTURES

Logical and Physical Records

A ‘logical record, as described in the File Section or Working-Storage
Section, is any set of contiguous data items considered as related due to
content or usage. In an inventory transaction file, for example, each logical
record could contain the information for a single transaction, or for all
consecutive transactions pertaining to the same stock item, depending upon how
the file is planned. The object program obtains input data from a peripheral
file in units of one logical record each, and it prepares data for output in
units of one logical record.

It is important to distinguish between the concepts of logical record and
physical record. A physical record 1is the amount of data recorded by one
physical write operation on a peripheral storage device, and may contain one or
more logical records. In a COBOL ‘source program, data and procedures are
specified in terms of logical records., The compiler automatically supplies
object program mechanisms to relate logical records to the physical records.

A logical record is normally subdivided into subordinate items, each of
which is assigned a data-name. Each subordinate item may be further subdivided
to permit more detailed references. Such items are referred to as group items
and elementary items. :

Group Items and Elementary Items

The term 'item', as used in COBOL, denotes either a group item or an
elementary item. A logical record is usually a group item, since records are
normally subdivided into subordinate items, but a 1logical record may be an
elementary item. :

Items that are -themselves subdivided are called group items. In the
following example, NAME, CALENDAR-DATE, and TIME-CARD are groups. A droup
consists of a sequence of subordinate groups and/or elementary items.

Elementary items are data items that are not additionally subdivided. 1In
the following example, some of the elementary items are LAST-NAME,
EMPLOYEE-NUMBER, DAY-OF-MONTH, . and HOURS. :

2-1 : ' DD26

In"the example, a weekly time card, the record is divided into four major
itemss NAME, EMPLOYEE-NUMBER, CALENDARéDATE, and HOURS,. .If it is . assumed that
-the group 1tems CALENDAR-DATE and NAME are to be further: subd1v1ded, the record
might ‘be represented as follows: ’

Example:
3 LAST-NAME
NAME FIRST-INITIAL
‘MIDDLE-INITIAL
EMPLOYEE~-NUMBER
TIME‘CARD<
‘ ‘ v MONTH
CALENDAR~DATE DAY-OF -MONTH
YEAR
\. HOURS

Level-Numbers'

In the Data Division, each record description entry begins with a.
level-number. A level-number. is a one- or two-digit integer, whose value may
range from 1 to 49, or may be 66, 77, or 88. Levelfnumbers less than 10 . may be
_written with or without a leading zero (that 15, 01 and 1 are. equivalent). The
level~-numbers 66, 77, and 88 ‘are reserved for special purposes and are described
- later.

Level-numbers show .the organizatloh of elementary items 1into groups and
records. Records are ‘the most inclusive groups possible, and are always assigned
level-number 01 (or 1).

Less inclusive groups and elementary items within a record are assigned-
higher level-numbers, not greater than 49. Subordinate level-numbers need not be-
given successive numerical values.

Referring to the TIME-CARD example discussed previously, the hierarchical
structure of the record can be described as follows:

01. TIME-CARD
02 NAME
03 LAST-NAME
03 FIRST-INITIAL
© 03 MIDDLE-INITIAL
02 EMPLOYEE~NUMBER
02 CALENDAR-DATE

03 MONTH
03 DAY=OF~MONTH
03 | YEAR

02 HOURS

2-2 ' Db26.

A group includes all groups and elementary items described after it until a
level-number 1less than or equal to the level-number of that group is
encountered. In the above example, MONTH, DAY-OF-MONTH, and YEAR make up a group
called CALENDAR-DATE, because they are described immediately under it and have
higher level-numbers. HOURS, however, is not a part of the group called
CALENDAR-DATE, because its level~number is not greater than that of
CALENDAR-DATE. The example shows - that a group item (CALENDAR-DATE) and an
elementary item (HOURS) may have the same level-number, It also shows that
successive entries may be indented in a natural way, to make the hierarchical
organization obvious,

An item may belong to more than one group. In the above example, the
elementary item YEAR belongs to the group CALENDAR-DATE and also to the group
TIME-CARD.

An entry immediately following the last elementary item of a group must
have the same level-number as one of the groups to which the prior elementary
item belongs. The following example is incorrect, because this rule restricts
the level-number for EASY to be either 03 or 01:

0l1. ABLE.
03 BAKER
04 CHARLIE
04 DOG
02 EASY

Except in the Report Section, any level 01 item is considered a record,
whether it is a group item or an elementary item, and its data-name is a record
name.

Noncontiguous Elementary Items

Some elementary items in the Working-Storage Section have no relationship
to one another and are not further subdivided., These items are called
noncontiguous elementary items and are assigned the special level-number 77,
When they are used, they must be the first entries in the section, preceding any
record or group entries. Noncontiguous elementary items must not appear in the
File Section or the Report Section. '

REDEFINES Entries

A REDEFINES clause in a data description entry is wused to apply a new
description to the same memory area. The same memory area can be redefined as
many times as necessary. Each REDEFINES clause describes a new data structure
for the referenced area. The data items within that area may or may ‘' not
correspond to any one of the described structures. For additional 1nformat10n on
the use of the REDEFINES clause, refer to Section 1V,

2-3 | . DD26

Condition-Name Entries

For some data items, certain values have significance. COBOL permits a
condition-name to be used to determine that an item has a particular wvalue or
falls within a certain set of values. For example, the condition-name
OUT-OF-STOCK might be associated with the value 0 for the item SUPPLY-ON-HAND in
an inventory program. In the Procedure Division, the 'condition-name then
provides a convenient and meanlngful way to test the value of the 1tem (that is:
IF OUT-OF-STOCK...).

. An elementary or group item in the File Section or Working-Storage Section
may have ~condition-names assigned to any or all of its values. The
condition-names are specified in entries immediately following the item to which
they apply. Each condition+name entry is given level-number 88. An item with
subordinate condition-name. entries is called a conditional variable. A
noncorifiguous elementary item (with level=-number 77) may be a conditional.
variable, Condition-name emtries must not appear in the Report Section.

The following ekample illustrates the formation of condition-name entries:

03 GRADE PICTURE 99,
88 FIRST-GRADE VALUE IS 1.
88 SECOND-GRADE VALUE IS 2.

88 HI-SCHOOL VALUE 9 THRU 12,

RENAMES Entrieé

One or more RENAMES entries may be written as the last record description
entry subordinate to a level 1 entry, for renaming or regrouping the items
within the record. All RENAMES entries are assigned the special level-number 66.
For additional 1nformatlon concernlng the use of the RENAMES clause, refer to
Section IV.

Qualification

The same data-name or condition-name may be assigned to two or more data
items.. The qualification feature of COBOL permits - an item to be designated
uniquely by appending the names of hierarchically more inclusive items as
qualifiers to the data=-name. ‘ '

In any reference to a data item, its data-name may be qualified by the name
of a group or file to which it belongs. The data-name is followed by either of
the words IN or OF, and then by the group or file-name. The words IN.and OF are
considered synonymous. One or more such prepositional phrases may be required to
uniquely 1dent1fy the desired data item.

In any reference to a data item, although enough qualifiers must be written -
to make the data-name unique, it is not necessary to mention all of the
data-names in ‘a hierarchy unless they are needed to make the name unique. For a
data-name which is unique in itself, no gualifiers are necessary.

2=-4 ' v DD26

A file-name is the highest level qualifier available. File-names must be
unique in themselves; the same rule applies to report-names and noncontiguous
elementary item names, and to record-names in the Working-Storage Section,

Assume that two records named MASTER and NEW-MASTER have the following
hlerarchlcal structures:

0l

MASTER...
2 CURRENT-DATE...
3 MONTH...
3 DAY-OF-MONTH...
3 YEAR...
2 LAST-TRANSACTION-DATE...
3 < MONTH...
3 DAY~OF-MONTH...
3 YEAR...

NEW-MASTER...
02 CURRENT-DATE..,
03 MONTH...
03 DAY-OF-MONTH...
03 YEAR...
02 LAST-TRANSACTION-DATE...
03 MONTH...
03 DAY-OF-MONTH...
03 . YEAR...

" In the above example, two of the several data-names which must be qualified
in all references are MONTH and DAY-OF-MONTH. The format of the qualified names

would be:

MONTH" { } CURRENT-DATE { } NEW—MASTER

DAY~OF-MONTH { } LAST-TRANSACTION-DATE { ""} MASTER

The specific rules for the use of qualification are:

A qualifier must be the name of a group, record, or file that contains
the item being qualified. Qualifiers must appear in ascending
hierarchical order (that 4is, from elementary item-name up to
record-name or file-name), and be separated by IN or OF. .

The same name must not appear at two levels in a hierarchy.
If a data-name or condition-name is assigned to more than one data
item in a source program, all references to the name require

qualification, except where the COBOL rules specifically state that
qualification is unnecessary.

2=-5 . DD26

° Any data-name requiring quallflcatlon must be gqualified in every
reference.

° A name may be qualified even if it is unigue without qualification.
Similarly, more qualifiers may be used than are actually needed for
uniquenéss. If more than one combination of qualifiers can ensure
uniqueness, then any valid combination may be used. '

[The data-name of a conditional variable may be used as a qualifier for
any of its condition-names.

® Report data-names cannot be gqualified by the file-name of the file to
which the report is assigned. ,

Tables of Data Items

: A table or array of data items is often required. The distinction between a
table and an array is that an array is composed of elementary data items having
identical data descriptions while a table may be composed of both elementary
items. and group items having differing data descriptions. Since the definition
of array is a subset of the definition of table, the term 'table' will be used
exclusively in the following discussion,

Successive item positions in a table may be numbered 1, 2, 3, 4, ...;
therefore, any particular item can be identified by its position number. To
refer to any particular item in the table, the data-name and the desired item's
~ position number are given. The data-name would be ambiguous if a specific
position nunber were not given.,

' A table described in a single entry is said to be 'one-dimensional'. COBOL
permits the use of one-, two-, or three-dimensional tables, which are described,
respectively, in one, two, or three data description entries. The number of
occurrences in each dimension is specified via the OCCURS clause.

In a one-dimensional table, the number of occurrences of table items is
specified in a single entry. :

Example:
02 A; OCCURS...

In a two-dimensional table, the number of occurrences is specified in two
entries; a ‘group entry and a subordinate entry. The total number of occurrences
of the elementary #table items is the product of the numbers spec;fled in the two
entrles. ’

' Example:

02 MAJOR, OCCURS...
03 MINOR; OCCURS...

2-6 ' DD26

In a three-dimensional table, the number of occurrences is specified in
three entries; a group entry containing a subordinate group entry, which in turn
contains another subordinate entry. The total number of occurrences of the
elementary table items is the product of the numbers specified in the three
entries which define the table.

Example:

02 MAJOR; OCCURS...
03 INTERMEDIATE; OCCURS...
04 MINOR; OCCURS...

The term 'dimensions' refers to the organization of the table. For example,
suppose a two-dimensional table has three occurrences specified in the group
entry and four occurrences in the elementary entry. The total table then has 12
items, of which the first four make up the first group, the second four make up
the second group, etc. The tenth item in the table is actually the second item
of the third group. The whole table resembles a page which is ruled into three
horizontal rows and four vertical columns, and the tenth item appears in the
third row, second column:

Col 1 Col 2 Col 3 Col 4

Row 1 (o} o o) o
Row 2 o) B} e) o
Row 3 o) le) o o)

\ tenth item

The reference to any item is by its name, row number, and column number., In
COBOL, such numbers are separated by a comma and enclosed in parentheses; that
is, the tenth item position would be referred to by the data-name followed by
(3,2). Such an expression is called a subscript.

Similarly, a three-dimensional table resembles a stack of ruled planes. The
more inclusive group entry specifies the number of planes; the subordinate group
specifies the number of rows in each plane, and the elementary entry specifies
the number of columns in each row. Consider, for example, a table described as
follows: '

02 A OCCURS 3 TIMES. ,
03 B OCCURS 3 TIMES.
04 C OCCURS 4 TIMES.

2=7 'DD26

The table described may be‘VisualiZ¢d as a stack of three ruled planes:

C(l,l,l)f B o + o o o

o o o o - , Plane 1

c(2,1,1) o q‘ o o
o o o o Plane 2
o o o) o |
c(3,1,1) _ o o o - o©
o o] o ' Plaﬁe 3
o o o o)

. Note that item positions in pléne 1 correspond exactly to those in
prior example, except that the plane number (1) must also be specified within
the subscript. The tenth item of this table is C(1,3,2).

Consider a three-dimensional table which has two occurrences
inclusive group, five occurrences of the subordinate group, and 20
of the elementary item. Then: :

The total table has 200 - elementary items.
The first 20 items are the first row of the first plane.
The first 100 items make up the first plane.

The Séventieth item in the table has position (l,b 4, 10); that
first plane, fourth row, tenth column.

References to successive table items after the seventieth item
made by incrementing the column number by unity up to (1, 4, 20).
next item is in a different row, so its position is (1, 5, 1).

The item following (1, 5, 20) has position (2, 1, 1).

The last table item has position (2; 5, 20).

the

of the most
océturreneces

iS’

are
The

DD26

COBOL permits table structures much more complicated than the examples
described above, as long as no more than three dlmen31ons are used. The minor
(or only) OCCURS entry may be a group item:

02 A OCCURS 50 TIMES.
03 B...
03 C...

In the deflnltlon of a two- or three-dimensional table, other entries may
" intervene within the hierarchy of OCCURS entries:

02 D OCCURS 50 TIMES.

03 E...
03 F OCCURS 6 TIMES.
04 G...
04 H...
04 I OCCURS 3 TIMES.
05 J...
05 K...
04 L OCCURS 7 TIMES.
03 M... :
03 N...
04 P...
04 Q...

05 R OCCURS 2 TIMES.
03 s OCCURS 12 TIMES.

Sometimes the number of significant items in a table varies throughout the
execution of the object program. The variable number of occurrences is then
specified via the DEPENDING option of the OCCURS clause. Such a table can only
be a one-dimensional table.

SUBSCRIPTING

A subscript is a parenthesized expression whose value identifies the
position of a particular table item. The subscript formats for references to
table items depend upon the dimensions of the table, as follows:

One dimensional: (position-number)
Two dimensional: (major, minor)
Three dimensional: (major, intermediate, minor)

Subscripts must be enclosed in parentheses, as shown above, and commas or
blanks must appear béetween the indicated items. In any reference to a table
item, the parenthesized subscript must follow immediately after the terminal
space of the table item's data-name., Multilevel subscripts are always written
from left to right in the following order; major, intermediate, minor.

Column number, row number, and plane number must be positive integers or
data-names. If data-names are used, they must specify items which will have
positive integral values when the object program is executed. Integers are ‘used
when the desired table position is known in advance; data-names are . used - when
the position depends upon data accessed or developed in the object program. A
data~-name within a subscript may not itself be subscripted, - but it may be
qualified if necessary for uniqueness, ‘ : '

2-9 : , DD26

Adata item is said to be 'repeated' if the OCCURS .clause-is specified in-
the 'item's own description entry or'in that” of a group to which" the item
belongs. Any reference-to a repeated item requires a. subscrlpt.. The subscript
must be one-, two-, or three-dimensional, reflecting- the- number of OCCURS
entries.affecting the desired item. Use of more than, or less than, the correct
number of subscripts - is illegal. A data-name can be subscripted -only if the item
is repeated. If a conditional variable is- repeated, then references to its
condition=names also require subscripts.

The first occurrence of an item or group is one;, the second is two, etec. A
subscript of (1,2) denotes .the.second item within the first group of the- table.
If a table consists of ten planes, each containing five rows, each containing.
three columns, the table is- clearly three-dimensional, and its 1last-. item
position is identified by subscript (10,5,3).

The following ‘ekamples show some of the ways of reférrlng té a- particular
item in.a three-dlmen51ona& table-of rates:

RATE (REGION, STATE, CITY)
RATE' (3, STATE, CITY)
RATE (3, 5, 6)

In the third case, the’actual table position of the:item is computed during -
the compilation process. In other cases, the object program calculates the-
values, since the vdlues of REGION, STATE, and CITY will become known only when
the object program is executed,

The name of a repeatéed item may require qualification in'references. If so,
the entire subscript follows the last qualifier. Suppose: group A occurs five"
times; within each occurrence, a subordinate group B occurs four times; and each’
group B contains an elementary item C. with . two occurrences. Several correct-
methods may be used to refer to the last table item, including the following:

C IN B IN'A (5,4,2)
C IN B (5,4,2)
C IN A (5,4,2)

(The last example assumes that no other item is named C.) The follow1ng
references would violate the-rule for comblnlng subscripts and qualifiers:

(5,4,2) IN B-IN A

(2) IN B (4)-IN A (5).
(4,2) IN A (5)

(2) IN B (5,4)

[oXeNoXe!

INDEXING

Another method of specifying occurrence numbers is to affix. one - or more
index-names to an item whose ‘data description includes an OCCURS clause by using
the optional INDEXED BY phrase. At object program execution, the contents of an
index~name will corréspond to an occurrence number for the specific'dimension of-
the table with which: the’ index-name' is associated., Index-names must- be-
initialized by using“SET ‘statements’ in the Procedure Division before being used"
as table-references. - :

2-10 ' ‘ DD26

References are made to individual items in a table by specifying the name
of the item follnwed by its related index-name in parentheses. The occurrence
numbers required to complete the reference are obtained from the respective
index-name; the index~-name acting as a subscript. For references requiring more
than one occurrence number, index-names and 1literals may be mixed but
index-names and data-name subscripts may not be mixed. Thus, if indexing is to
be used, each OCCURS clause within the hierarchy must contain an INDEXED BY
phrase.

The value of an index-name can be modified only by using the PERFORM,
SEARCH, and SET statements. If a data item is described with USAGE INDEX, the
SET statement may be used to move data between the data item and an index-name.
Data items described with USAGE INDEX are called index data items.,

Table items can be accessed through direct or relative indexing. Direct
indexing is using index~-names in the same manner . as subscripts are used.
Relative indexing is the practice of inserting a space delimited operator (+ or
-) and an integer following the index-name. The occurrence number to which the
setting of the index-name corresponds is effectively incremented or decremented
by the value of the 1nteger. Relative 1ndex1ng does not, however, alter the
value of the index-name.

EXTERNAL AND INTERNAL DATA FORMATS

In COBOL, the representation of data within memory is called the 'internal'’
format, while the representation of data on perlpheral dev1ces is called the
'external' format. :

External Data Formats

The external format of a file is the manner in which it is represented on a
peripheral device.

- Certain general considerations apply to the file:

1. The actual peripheral device used.
2. The MULTIPLE FILE option (applicable only to magnetic tape files).

3. Recording mode (which on magnetic tape may be binary or BCD, with high
or low density).

4. Presence or absence of label records.

Other considerations pertain to the contents of each data block (physical
record) of the file:

1. Presence or absence of a block serial number. .

2, Blocking factor (number of logical records per block) or block size
(number of data characters or computer words per block).

2-11 , o ' DD26

3. Logical record format; FLR (fixed-length reqords) or VLR
(variable-length records). ' : '

A special external format is wused for ‘records in a file when
OCCURS...DEPENDING has been specified in record description entries. Otherwise,
the external format on disk or a magnetic tape recorded in . binary mode is
exactly the same as the internal format. 3 -

, On BCD tape,‘the formats are the éame exéept that the six-bit binary codes
representing the data characters are generally different from the codes used in
memory. » :

On printer listings, external and internal formats are equivalent. (Two
characters, ? and !, are nonprinting characters reserved for printer carriage
contxol.) a

External and internal formats are equivalent for punched cards.

LOGICAL RECORD FORMAT

In Series 60/6000 COBOL, each logical record in a file begins in the first
character position of a computer word. A logical record consisting of a single
2l~character item would be stored as follows:

d d d‘ d d 4 First word
d 4 4 4da 4 4 |

d d 4d 4 4 4

d d a

X x x Last word

In this example, the character positions represented by d contain data,
while those represented by x are unused. Unused positions appear as shown both
in- memory and on the peripheral device.

2-12 ' DD26

Fixed-Length Records

The fixed-length record (FLR) format may be used for files whose logical
records require the same number of computer words. In the FLR format, the
uniform record size is established from the record description entry. In a block
of several FLR records, the successive records are adjacent to each other, with
no.intervening control information. A FLR block composed of records similar to
that shown in the preceding Logical Record Format paragraph would appear as
follows: : :

d d a a4 4 4 A

d 4 4 4 4 d
? First record

d 4d a d 4 d

d d4d d x x x J

d 4 4 d d 4)

d 4 4 4 4 d :
5 Second record

d 4 4d 4 4 4d

d 4 d x x x J

Variable-Length Records
Circumstances requiring the variable-length record (VLR) format are:

l. . Two or more data records of unequal sizes (in computer words) have
been described for the file, In this case, the size of each record
type is fixed, but the record type may vary from one record to the
next in the file.

2. The file is to receive one or more reports generated by the Report

Writer.
‘3. The file is to reside on a mass storage device,
4, The file is to have system standard format.

5. The OCCURS...DEPENDING clause appears in the description of one or

" more of the data records of the file. The size of an

OCCURS...DEPENDING table varies from one record to the next, causing

the record size to vary, even if only one data record type has been
specified for the file.,

Each logical record in a VLR file is preceded by a record control word on
. the peripheral device and in the input=-output buffers. The record control word
is supplied and interpreted automatically by the input-output routines and ‘is
not accessible to the object program. The record control word occupies ~ one
-computer word and has the following format: ,

3

0 17 18 23 24 29 30 35

record size in . zero media report
words (binary integer) code code

2-13 ‘ ' DD26

The record control word is not considered to be .a part of the logical
record and is not coéunted in the record size. '

The media‘céde is determined as follows:

2 - The record is intended to be treated as a card image even though it may
appear on any peripheral device except a random-access mass storage
device.

3 - Either this record is a report line generated by a Report Writer or it

is intended to be treated as a printed line image even though it may

- appear on any peripheral device except a random-access mass. storage
device.

0 - The media code is .zero except under the circumgtances described above.

Except in ceftain Report Writer functions, the report code is zero, % for
system output, or the last character of the two-character file-code for files
intended to be treated as printed line images. The Report Writer applications of
the report code are described in Section VIII and the remaining applications are
described under the WRITE statement in Section V.

In a block of VLR records, the record control word intervenes between the
suceessive records. A VLR block beginning with a l2-character record followed by
a 30-character record would appear as follows:

binary 2 0 0 0 RCW for first record
d === = = = = = - - -d
_ First record (two words)
d====== === -4
binary 5 0o o0 0 RCW for second record
, S :
d == =% = == - - d
s T d
d == === e = -~ - d.> Second record (five words)
d = === = « = = = = -d
@ === === - d
J

binary number 0 0 0 RCW for third record

The recording mode must be binary for any file utilizing VLR format..

2-14 , DD26

Partitioned Records

A partitioned record is a logical record that is larger than the size of
the physical record available to contain it. The input-output routines process
such large records automatically by splitting them over 320-word blocks using a
record control word for each block to control the splitting and reconstruction
of large logical records.

To use this facility, the APPLY SYSTEM STANDARD FORMAT and APPLY PROCESS
AREA phrases must be specified either explicitly or implicitly for the file.
(See Section V.) Partitioned records are not required for random-access files
because the 1logical records in these files are not limited by a block size of
320 words. The partitioning of records is not allowed for records that contain
OCCURS. ..DEPENDING ON fields.

When a record is partitioned, each physical block of 320 words is termed a
logical record segment and a logical record segment number is placed in each
record control word except the first. A logical record segment code is placed in
bits 24 and 25 of each record control word. Except for the logical record
segment code ‘and number fields, the rules governing record control words also
apply to partitioned files.

The format of the first record control word for a partitioned record is:

0 18 23 25 26 30 35

segment size in words zZero 01 media report
code code

Intermediate 1logical vrecord segments of a partitioned record have record
control words with the following format:

0 18 23 25 26 35

segment size in words zZero 10 segment number

The last logical record segment of a partitioned record has a control word
with the following. format:

0 18 23. 25 26 35

segment size in words zero 11 segment number

7/77 - 2-15 DD26B

Internal Data Formats

The processor is functionally organized to process 36-bit groupings of
information. Special features are also included for ease in manipulating
four-bit groups, six-bit groups, nine-=bit groups, 18-bit groups, -and 72-bit
double-precision groups. These bit groupings ‘are used by +the hardware and
. software to represent a variety of forms of information. ‘ ‘ .

POSITION NUMBERING

The numbering of bit positions, character positions, words, etc., increases
in the direction of conventional reading and writing: from the most to the
least significant digit of a number, and from 1left to right. . in conventional
dlphanumeric text. ' : o

 THE MACHINE WORD

The machine word consists of 36 bits arranged as follows:

0o : 17 18 35

One Machine Word

Upper Half-word Lower Half-Word

- Data transfers between the processor and memory are word oriented; 36 " bits
are transferred at a time for single-precision data and two successive 36-bit
word transfers occur for double-precision data.

"The processor has many built-in features for transferring and processing
pairs of words. In transferring a pair of words to or from memory, a pair of
memory ‘locations is accessed; these addresses are an even number. -and the next
‘higher odd number. A pair of machine words is arranged as follows: ’

o 35 36 | 71
A Pair of Machine Words

Even Address : 0dd Address‘

2-16 : ‘ . DD26

CHARACTER-STRINGS

Character Positions

Alphanumeric data 1is represented by four-bit, six-bit, or nine-bit
characters. A machine word contains . either eight, six, or four characters,
respectively. The character positions within the word are as follows:

'9-Bit Characters:

Bit positions
within word

0 89 1718 2627 354—-l

0 1 2 3 ——

Character positions
»within word

6~Bit Characters:

0 56 1112 1718 2324 2930 35

4-Bit Characters:

1 45 8 10 1314 17 19 2223 26 28 3132 35

Bit Positions

Bit positions within a character are as follows:

0 213 . 4-bit chafacter

(0117 2].3 [4]5] 6-bit character
[OTIJ2]3TJ4aJ5]6]718] 9-bit character

Thus, bit and character positions increase from left to right-as in riormal
reading. :)

2-17 . ' : . DD26

BINARY NUMBERS
' Fixed-Point Numbers

Blnary flxed-polnt numbers - are represented with half-word, sxngle-word, and
double-word precision as shown below.

 Precision . Representation
| I ;
. - -)
Upper Hal:if 0 17
Hal f-word -
. e
1 . .
e |]
Lower Half" ’ 18 35
. ‘ . [; , L) .] assumed -
Single-word 0 : 35 decimal
point
'Doub1e~word
0 Even Address: 35 36 0dd Address . 71

For algebraic operations, operands and results are regarded as signed-
binary numbers, and the leftmost bit is used as a sign bit (a 0 being-plus and .l:
minus). When the sign is positlve, all the bits represent the absolute value of
the numker; when the sign is negative, they represent the two's complement of
the absclute value of the number.

In the case of addition and subtraction, the occurrence of an overflow is:
reflected by the carries into and out of ‘the leftmost bit position (the sign
position). If the carry into the leftmost bit position does not equal the carry
out of that position, then overflow has occurred. If overflow has been detected .
and if the sign bit equals 0, the resultant is below range; if with overflow the
sign bit equals 1, the resultant is above range.,

In integer arithmetic, the location of the decimal ‘point is assumed to the'
rlght of the least significant bit position; that is, depending on. the
precision, to the right of bit position 35 or 71. -

2-18 B _ DD26

The number ranges for the various cases of precision, interpretation, and
arithmetic are given in Figure 2-1.

ll Precision
Inter-
pr:tzzion Arithmetic Half-Word Single=-Word Double-Word
(Xn, Yo 17 (A,Q,Y) (AQ, Y-pair)
- | Integra1 |[-2}7 = = (2'7-1 2P <y s 23 2lsys 'y
Algebraic 17 =35 =71
Fractional|{-1 < N g (1-2 ") -1 SN =(1-2) -1sN=@-2"Y
‘ Integral sv = By <~ < (2%%-) s § s (2%
Logic : < -18 =36 -72
Fractional SN E(1-2) SN=(1-2 7)) SN =(1-2 79

Figure 2-1,

Floating-Point Numbers

Ranges of Fixed~Point Numbers

Binary . floating~point numbers are represented with single-word and
double-word precision., The upper eight bits represent the integral exponent in
two's complement form, and the lower 28 or 64 bits represent the fractional

mantissa in two's complement form. The format for a floating-point number is:

__assumed
decimal point
01 -7

8¢9 35

Single-Word
Precision: S S

lExponentje———— Mantissa ———)

__assumed
decimal point
01 7 849 71
., Double-Word
-Precision: S S
je- Exponent je— Mantissa »
~where S #vsign bit

DD26

Before performing floating=-point additions or subtractions, the processor
aligns the number that has the smaller positive exponent. To maintain accuracy,
the lowest permissible -exponent of -128 together with +the mantissa equal to
0.00....0 has been defined as the machine representation of the number =zero
(which has no unique floating-point representation). Whenever a floating-point’
operation. yields a resultant untruncated machine mantissa equal to zero (71 bits
plus sign because of extended precision), the exponent is automatically set - to
=128, - : ' ‘ h

‘Normalized Floating-Point Numbers;

For normalized floating-point numbers, the binary -point is placed at the
left of the most significant bit of the mantissa (to the.right of the sign bit).
Numbers ‘are normalized by shifting the mantissa (and correspondingly adjusting
the exponent) until no leading zeros are present in the mantissa for positive
numbers, or until no leading ones are present in the mantissa - for negative
numbers. Zeros fill in the wvacated bit positions.

" The number ranges resulting from the various cases of precision,
normalization, and sign are given in Figure 2-2,

Sign Single Precision Double Precision
' - - - - 127
Positive 27129 ey 5 (1-27%y, 177 2 7129 a2 12 703, 12
_FNormalized - - -
; _ ey ‘ : _ i
Negative | -(1+27%%)2 7129 2 y221% ~(142 "8%,7129 5 g > ,p127
- .- - -63, .1
o Positive 715 <y s (1-2 27)2 127 2l <y < 1-2 3)2 27
[|Unnormalized
Negative 27135 » N 2 17 2P sy -2?27

'~ NOTE: The floating-point number zero is not included in the figure:

Figure 2-2. Ranges of Floating-Point Numbers

2-20 : , . DD26

DECIMAL NUMBERS

Scaled decimal numbers are expressed as decimal digits in either the
four-bit or nine-bit character formats. They are expressed as unsigned numbers
or as signed numbers using a separate sign character.

Decimal data utilizes the following formats:

01 4 5 .89 10 13 14 17 18 19 22 23 26 27 28 31 32 35

Z 0 1z 2 3 z| 4 5 2l 6 7

" Packed Decimal (4-bit)

01 8 910 17 18 19 26 27 28 35

Y/ 0 Z 1 2 2 Z 3

ASCII (9-bit)

The 'Z' in the bit positions represents the bit value 0 while other numbers
in .the fields represent the character positions. '

Decimal Data Character Codes

During arithmetic operations, digits and signs are checked'by the hardware
as four-bit data (the four least significant bltS from a nlne-blt numeric). The
following interpretations are made:

Bit Pattern for
Character Interpreted as Abort if

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1lo0l
1110
1111

found where
descriptor
specifies sign

found where
descriptor
specifies digits

++ 1 +++HOoOoNOUBRWNHO

2-21 , ' : DD26

Because of the above interpretations, the movement of SPACES to a group
item: contalnlng decimal data will result in object program aborts when that data.
is referenced in arithmetic statements.

The following codes (nine-bit zones are created by prefixing binary 00010)
are generated for output signs; the values are in octal: o

. . {
Plus Minus.
4-bit | 14 15
9-pit | 053 055

DATA DESCRIPTION ENTRIES

;
In COBOL, data items are described in terms of a standard data format. The
description of each data item states its conceptual properties, rather than its

representation within the computer. This conceptual description will imply
specific physical representations in the computer..

Each data item' is described as a string of characters. The basic properties
of a data item are its size and its class. The size is the number of characters
- the item contains. The «class may be alphabetic, numeric, or alphanumeric,
depending upon the type of characters of which it is composed. In addition, the
description may specify the placement of an assumed sign or decimal point, or
how the data item should be edited for printing.

Every data item is described by a record descriptior entry. The record
description entry begins with a level-number and a data-name. (If no reference
is to be made to the item, the reserved word FILLER may ¢ppear instead of a
user-supplied data-name.) The functions of the level-numbe: and the data-name
are as follows: \

o The level-number indicates any relationship this item may have with
the items described in adjacent entries.

[The data=-name prov1des a means whereby the 1tem can be referred to
elsewhere in- the program, : '

The remainder of the entry consists of descrlptlve clauses chosen from the
follow1ng list (in: which the clauses appear in approximate order of 1mportance)

° PICTURE - Gives the detailed format of the elementary item.

) VALUE - Specifies the initial value of the item (applicable only in
the Working-Storage Section). :

e OCCURS - Indicates that the item is repeated several times.

° " INDEXED phrase - Indicates that the subject of this entry, or an entry

subordinate to this entry,: isito be referred to by indexing.

2-22 A DD26

° COPY - Indicates that the entire predicate of the description is
actually to be found in a location other than in this data description
entry.

° REDEFINES - Indicates that the item occupies the same memory area as a
prior item.

° USAGE - Specifies which of several possible machine formats applies to
this item.

° RENAMES - Permits alternative, possibly overlapping, groupings of
elementary items.

® SYNCHRONIZED - Indicates that the item 1is to have a special
orientation to computer word boundaries.

L) JUSTIFIED - Overrides the normal item alignment rules when other items
are moved to an item described with this clause. '

°® KEY phrase - Specifies the location of a record, or a set of data
items, that serve to identify the ordering of -data.

° BLANK WHEN ZERO - Results in the blanking of an item when the value of
that item is zero.

For .an elementary item, the PICTURE clause can specify all format details;
consequently, other clauses are usually unnecessary.

Every elementary item except an index ‘data item may be said to have a
picture; that is, it has a set of properties which are expressed in a PICTURE
clause. Accordingly, this manual often refers to an item's PICTURE, without
regard to the actual clauses used in its record description entry. Similarly,’
every item has a definite size, class, and usage, regardless of how it has been
defined.

For a group item, the record description entry may omit all descriptive
clauses, or it may include any of the following descriptive clauses:

VALUE If any of these clauses are used in

OCCURS a group entry, the entire group

COPY is affected.

REDEFINES :

USAGE If this clause 1is specified in a group entry, each
subordinate elementary entry inherits the specified property.

It is essential that an item's data description be consistent with the
values the item may actually assume. For example, an item whose values may
actually be negative may be handled improperly in the object program if its
description omits an operational sign. Similarly, an item described as numeric
may be handled improperly if its values actually contain space characters. (In
practical data processing applications, some situations are commonly encountered
which are improper according to COBOL rules; one example is a numeric item with
leading spaces instead of zeros.)

2-23 : o DD26

DISPLAY Item Formats

.Any DISPLAY-n item occupies an integral number of adjacent internal
character positions, and has no particular relationship to machine words except
when the SYNCHRONIZED clause is specified in its record description entry. The
51gn1f1cance of the respective DISPLAY-n usage is as follows: .)

e DISPLAY signifies that the item's actual machine format corresponds to
: the standard data format. '

e DISPLAY-1 signifies that the item has an edited floating-point format
(described below). The item's class is implicitly alphanumeric.

(B DISPLAY-2 signifies that the commercial collating sequence 1is to be
-applied to the item.

For an item whose usage is DISPLAY or DISPLAY~1l, the standard binary code
is used within memory to represent each data character, except in the case of
signed numeric items, If the value of a signed numeric item is nonnegative, the
data characters employ the standard binary codes. If the value is negative, the
sign is expressed by a variation in the binary code of the 1least significant
digit; specifically, all bits except the 2° bit have the usual values, but the
2”2 bit is set to l. (This convention corresponds to the punched card convention
of no overpunch on nonnegative values, with an ‘'eleven' overpunch over the
low-order digit of a negative value.)

The only respect in which the internal representation of DISPLAY-2 items
differs from that of DISPLAY items is that a special six-~bit binary code is used
for each DISPLAY-2 character instead of the standard code. The special codes are
chosen so that the result of comparing two DISPLAY-2 items is consistent with
the commercial collating sequence rather than the machine's standard collating
sequence.,

The following special format is provided for DISPLAY-1 items. (This . option
is not a standard COBOL feature.)

(Josn ()

The first character is the report sign for the mantissa. The next
characters represent the actual value of the mantissa; n may be a one- or
two-digit integer from one to 17. The E represents an E insertion character,
which is counted in the item's size. The remaining characters are the report
sign for the exponent and the two 9s represent the exponent itself.

The value represented by a DISPLAY-1 item is equal to the mantissa value
multiplied by the power of ten indicated by the exponent. This format is useful
~only for very large or very small values which, in a normal DISPLAY format,
would begin or end with a long string of zeros. In particular, computations
involving COMPUTATIONAL-~2 items (see below) may sometimes produce results for
which the DISPLAY -1 format is needed.

2-24 | ~ DD26

The format of a DISPLAY-l item must be specified via the PICTURE clause.
The item's size equals 7+n. For example, a DISPLAY-1l item whose PICTURE is
+9.9(3)E+99 has size 10. If the value 0.000001724 were moved to this item, the
result would be +1.724E-06. :

COMPUTATIONAL Item Formats

The internal data formats for COMPUTATIONAL items are described below.
COMPUTATIONAL item formats are used to obtain 'both internal and external
space-saving and performance advantages.

The functions of the various COMPUTATIONAL options are:

] COMPUTATIONAL ~ Results in the decimal-precision format. This 1is the
preferred usage for items involved in calculations w1th1n a processor
that does not contain the Extended Instruction Set (EIS)!

° COMPUTATIONAL~1 - Results in the fixed-point binary integer format.
This usage is applicable for items having only integral values, and is
the preferred usage for items used as subscripts or referred to in
DEPENDING options.

e COMPUTATIONAL~-2 - Results in the floating-point binary format. This
usage is_ _appropriate for items whose absolute values may potentlally
exceed 1018 or be 1less than 10-18; it is also useful for data

communication with non-COBOL programs,

) COMPUTATIONAL-3 - Results in the single-precision fixed-point ' binary
integer format. This usage should be employed only for data
communication with non-COBOL programs; even then, COMPUTATIONAL~-1 or
COMPUTATIONAL-2 should be used instead if the application permits.

[] COMPUTATIONAL~4 - Results in the packed decimal format. This usage,
available only with EIS processors, provides performance advantages
but may require additional data space.

An implicit sign is assumed in the formats for all COMPUTATIONAL options.

When data items are described as COMPUTATIONAL or COMPUTATIONAL-2, ultimate
accuracy for maximum length composite of operands (18 digits) in arithmetic
statements may not be attainable due to floating-point hardware limitations.

COMPUTATIONAL-n items are not stored in a manner related to the character
position subdivisions of a computer word. Instead, such items are stored as
follows: ’ :

) COMPUTATIONAL and COMPUTATIONAL-2 items utilize the binary
floating~point format.

) COMPUTATIONAL-1 items are stored as one-word or two-word binary
integers. o .

1 Extended 1Instruction Set (EIS) refers to an extension to the orlqlnal Series
6000 instruction set. EIS is the standard instruction repertoire for models
- 6025, 6040, 6060, and 6080 of the Series 6000 system and for all models of the
Serles 60 system.

3/77 2-25 - ‘ . DD26A

‘Since a stored COMPUTATIONAL-n item has. no character orientation, an
attempt to manipulate it as if it were made up of characters is meaningless.
Thus, the storage area may be redefined for some distincet purpose but not, for
example, to give separate ‘access to. the integral and fr¥actional parts of the:
COMPUTATIONAL item. For similar reasons, a group '‘MOVE -statement ‘involving
.COMPUTATIONAL~-n items should normally entail only sending and receiving groups
with similar descriptions; a MOVE CORRESPONDING ‘statement should be ' used
otherwise. COBOL rules do not require adherence to the suggestions given in this
paragraph, but the user must assure that. the ‘application of a group MOVE
statement or of a redefinition is legal, ‘ :

BINARY REPRESENTATION OF FRACTIONAL VALUES

An idmportant feature of the COMPUTATIONAL usage 45 a provision for the
fractional part of .an item. For a COMPUTATIONAL item, the fractional part 4and
‘integral part are jointly represented as a binary integer, which corresponds
exactly to the conceptual decimal value of the item. For a COMPUTATIONAL-2 item,:
however, the fractional part of the value is. represented as 'a pure binary
fraction of a limited number of bits. (A COMPUTATIONAL-1l item is an integer and
therefore has no fractional part.)

A decimal fraction of a given number of digits cannot be represented
exactly by a binary fraction of any £finite number of bits. . Consider, for
example, the value 1/5, which is represented in decimal notation as 0.2. Trying
to represent it by a four-bit binary fraction, one obtains (.001ll), or 3/16;
with eight bits, one obtains (.00110011)p or 51/256. In fact, the exact value
must be written as ' :

(0.2) 39 = (0.0011),

which means that the bit pattern 0011 in the binary expansion keeps frepeating
indefinitely. If the decimal value 0.2 is converted to a binary ‘expansion of 71
bits and then converted back, the one=-digit result would be 0.1, guite different
from 0.2, The four~digit result would be 0.1999, which is almost (but not guite)
equal to 0.,2. If computations were involved instead of only conversions, the
imprecision in the decimal result could be much greater.

Various adjustments can be made to binary fractional values to make exact
decimal results highly probable. The sure way, however, is to use binary integer
notation to represent all values, whether integral or fractional. A conseguence
of doing so is that multiplication or division of an operand by a power of ten
is sometimes necessary in the course of a computation., COMPUTATIONAL items use
the equivalent of binary integer notation, and the compiler automatically
supplies any required multiplications or divisions by powers of ten. (The
- formats and conventions governing COMPUTATIONAL items are described below.)

In most commercial data processing applications, particularly where dollats
and cents are. involved, a high degree of decimal precision is expected. For this
reason, the COMPUTATIONAL and COMPUTATIONAL-1l usages are recommended " over
COMPUTATIONAL-2. \ : :

2-26 . DD26

COMPUTATIONAL FORMATS
COMPUTATIONAL Data Items
The machine format for computational data items is the standard

floating-point binary format (single or double precision):

0 1 789 35

i i
Single : i
Precision S 1 S:
(one word) ! '

le-Exponent j¢——— Mantissa ——|

01 7 8 9) 71
. ! | .
Double B '
Precision S: s:
(two words) ! |
le- Exponent |e Mantissa o

COMPUTATIONAL items utilize the above format in a special way. The exponent
indicates how many bits of significant information are present in the mantissa.
Bits to the right of the point indicated by the exponent are not significant;
these bits are normally all zero for COMPUTATIONAL items.

The sign of the exponent is normally nonnegative. The sign of the mantissa
is the ‘algebraic sign of the COMPUTATIONAL item,

/

The value stored in the mantissa is a binary integer, obtained as
follows: if the item's data description specifies fractional places, the
mantissa is stored as if the value had been multiplied by a sufficiently high
‘power of 10 to make the value an integer, (The power of ten is called the 'span
multiplier',) Thus, 3.142 would be stored as 3142, as if it had been multiplied
by 102, .

In general, if an item's picture is 9(p)V9(g), a suitable span multiplier
is 10" or any higher power of 10. If the span multiplier actually chosen is 108
(with s = q), the s is called the ‘'span number'. The 'span' of a .decimal-
precision item is defined as the number of fractional digits permitted for an
item in view of its span multiplier. Referring to the above example, 3,142 would
be assigned 'span 3', allowing three fractional digits.

The significance of the conventions described is that a binary fraction or
mixed number 'equivalent' to the decimal ‘value could in general only be
approximate, not exact, but the span multiplier permits the value stored to be
exact in the decimal-precision format. - :

2-27 : DD26

The compiler selects the span multiplier for each COMPUTATIONAL item and
supplies appropriate coding to align the operands and the results in all
computations. A 'span conversion' is sometimes required for this purpose; this
means multiplication or division by a suitable power of 10 (always with a
"positive exponent). The general rules for. COMPUTATIONAL item alignment are: -

1. If a MOVE statement, or an addition or subtraction function, involves
operands with the same span number, they are properly aligned without-
span conversion., Otherwise, one or more span conversions are
necessary.

2, - The span number of a product equals the sum of the span numbers of the
’ operands, so span conversion via division is ‘usually necessary to
obtain proper alignment of the result.

3. The span number of a quotient equals the difference of the span number
of the dividend and that of the divisor, so span <conversion via
multiplication is usually necessary to obtain proper alignment of the
result. o : '

Because of rule 1 above, it is desirable to have summands in the same span,
to avoid span conversions. Here, another decimal-precision format convention
becomes important; since a given item's span number can ‘in principle be any
number equal to or greater than the number of fractional places in the item's
description, items with widely different PICTUREs can often be assigned the same
span,

For example, span 3 in single-word precision can permit one to three’
fractional places and zero to five integral places. In double-word precision,
span 3 can permit one to three fractional places and six to 15 integral places.
Since items with no more than three fractional places are very common in
commercial data processing applications, it is desirable to assign span 3 to
items whenever possible, even if they have only one or two fractional places, to
optimize their formats for addition and subtraction. This reasoning leads
naturally to the concept of preferred spans.

To reduce span conversions, certain spans, each of which is applicable to a
wide range of PICTUREs, are assigned preferentially. Thus, an ‘item which could
be assigned either to the span which is ‘'preferred 1' or to that which is
'preferred 2' would be assigned to the former., When the span has been ‘assigned,
it can be determined whether the item's PICTURE reguires single or double
precision, with single precision chosen whenever possible. The following rules
apply for span and precision number assignments: :

Single-Precision Items:

Integral Fractional Span
Places . Places Number Comment
1-8 - 0 0 Preferred 1
- 0=5 1-3 -3 Preferred 2
0-3 4-5 5 Preferred 3 : ‘
0 8 8 Preferred 4

2-28 - DD26

Double=-Precision Items:

Integral Fractional Span
Places Places Number Comment
9-~18 0 0 Preferred 1
l6-17 1 1
16 - 2 2
6-15 1-3 3 Preferred 2
14 4 4
4-13 4-5 5 Preferred 3
11-12 6 6
11 7 7
1-10 8 8 Preferred 4
0-10 6=7 }
7-9 9 9
7-8 10 10
7 11 11
0-6 9-12 12 Preferred 5
4-5 13 13
4 14 14
0-3 13-15 . 15 Preferred 6
1-2 16 16
1 17 17
0 le-18 18 Preferred 7

For the best results, it is recommended that the items in a program occur
primarily in span 0 and span 3, and that the single-precision format be selected
whenever possible. As shown in the preceding rules, most practical PICTUREs that
specify eight or less digits will result in single-precision formats. Utilizing
these rules, the assignment of a given span and precision value can be forced by
supplying an appropriate PICTURE,

The following examples illustrate the results of various span combinations:

l‘

Given: A with PICTURE 9V99 and B with PICTURE 9(5)V9(3); the sum of A
and B must be . computed. The rules indicate that both are
single-precision span 3 items; therefore, no span conversion is
necessary.

Given: C with PICTURE 9(6) and D with PICTURE 9(6)V99. C 1is then a
single-precision span 0 item and D is a double-precision span 3 item.
If the sum of C and D is desired, a span conversion will be necessary.
If their product, however, is to be a double-precision span 3 number,
no span conversion‘is required for the multiplication.

Given: E with PICTURE 9(3)V9(3) and F with PICTURE 9(10)V9(3). Both
are assigned span 3, but E is a single-precision item and F 1is a
double-precision item. E and F may be added without conversion to
produce a span 3 sum, Suppose, however, the product is to be stored in
a span 3 item. The product of two span 3 numbers is a span 6 number.
Therefore, a span conversion from span 6 to span 3 must - follow the
multiplication. Spec1f1cally, the span 6 product must be divided by
103, If a . span 3 quotient is desired, division of two span 3 numbers
results in a span 0 quotlent that must be converted to a span 3 number
via multiplication by 10

2-29 - " DD26

‘If machine floating-point format is used for COMPUTATIONAL items, many
operand alignment procedures occur automatically via -floating-point ‘“hardware.
‘Another convenience is that single- and double-precision operands can be mixed
arbitrarily in a floating=-point computation without the requirement for
.programmed conversions. A computation proceeds in double precision only when .at
least one of the operands is a double-precision item.

‘Another important advantage gained by using the ‘floating-point format .is
that in a computation involving several arithmetic operations (resulting from a
complex COBOL formula, for. example), the hardware retains extra significant data
in each intermediate step, .so that the conceptual 18~digit ‘limit on operands may
:occasionally be meaningfully exceeded on intermediate results. The overall
significance, however, never -exceeds 21 digits (so' ‘that the. result of
multiplying two 18-digit numbers, for example, cannot be 36 digits, even in ‘an
- intermediate result). The 18-digit limit always applies:to stored values. ‘

COMPUTATIONAL-1 Data Items

The machine format for COMPUTATIONAL-1 data items is single- or
double-precxslon :fixed-point binary integer format: : : '

01 35
Single H
Precision B
(one word)]
01 71
. ; .
Double. '
Precision B
(two words) '

Although it is stored as a binary number, a COMPUTATIONAL-1 item's value is
equal to the decimal value of the item because COMPUTATIONAL-1l ' items -are
- restricted to integral values. ' '

The precision assignment rules for COMPUTATIONAL-1 items are:

Number of Digits

in PICTURE' Precision'
1-8 ' Single

9-18 Double

. 2=30 DD26

COMPUTATIONAL-2 Data Items

The machine format for COMPUTATIONAL-2 data items is the single- or
double-precision floating-point binary format: .

01 7 8 9 . 35
1 ' .
Single ' :
. Precision S ! S:
(one word) | '

01 789 71
! |
Double ' '
Precision S: s;
(two words) \ i
le-Exponent |e ‘ : Mantissa »

~ The mantissa of a COMPUTATIONAL-2 item is a pure binary fraction and
consequently is not necessarily exactly equivalent to the item's decimal value.
The equivalence may be sufficiently close, however, for practical purposes.

The COMPUTATIONAL-2 usage 1s especially effective for the operands in an
elaborate_ formula. Should an operand value or an intermediate or final result
exceed 1018, or be less than 10°*®, only the floating-point binary format
provides enough significance to yield meaningful results. '

‘'The precision assignment rules for COMPUTATIONAL-2 items are:

Number of Digits

in PICTURE . Precision
1-8 Single

9-18 o Double

COMPUTATIONAL-3 Data Items

The machine format for COMPUTATIONAL-3 data items is single-precision
fixed-point binary integer format:

01 35 g
3)

Single '

Precision S:

(one word) !

2-31 , DD26

A COMPUTATIONAL~-3 item is stored in the same format as a COMPUTATIONAL-1l:
item since both usages are restricted to integral values only. A COMPUTATIONAL-3
item, however, may contain a ten-digit integral value. This usage is intended
to permit data communications with programs creating bihary integer values which
-are single-precision numbers but are larger than eight integral digits.

COMPUTATIONAL-4 Data Items

" The machine format for COMPUTATIONAL-4 data items is .packed decimal format:

e

01: 45 8910 1314 171819 2223 262728 3132 35

gl o 1z 2 | 3 z| 4 5 |zl 6 | 7

Packed Decimal (4-bit)

The ‘Z'vin the bit positions represents the bit value 0 while other numbers
in the fields represent the character positions.

A COMPUTATIONAL-4 item signifies that two. four-bit digits are to occupy one
nine-bit byte (packed decimal). Data using this format can be processed only on
a computer that has the Extended Instruction Set (EIS) capability. If the
PICTURE character-string specifies an operational sign, the item will be one
four-bit = digit larger than the number of '9's in the PICTURE character~string
would imply. S

The use of. this data type may result in implicit character positions. being
-allocated by the compiler since a COMPUTATIONAL-4 item may only start and end on
a word or half-word boundary.

The packed decimal format can be defined independently or within a record
that also contains six~bit Hollerith characters, binary integer fields, or
floating-point . fields. When files containing such records are written to tape
handlers, extra care should be taken. The RECORDING MODE IS BINARY clause can be.
specified safely. If a mixed Hollerith/packed decimal file is written in the BCD
or .in the nine-track mode, bits will be lost from the data.

/11 , 2-32 , - 'DD26A

SECTION III

FILE DESCRIPTIONS

This section presents the language elements in the Environment Division and
the Data Division that are wused +to . describe files, Refer to the COBOL
Reference Manual for the specific formats, rules, and special considerations
applicable to these language elements.

SELECT SENTENCE

The SELECT sentence in the FILE-CONTROL paragraph of the Environment
Division is used to name a file, identify the file medium, or describe some of
the file properties. Each file named in each SELECT sentence must have a unique
name.

OPTIONAL Phrase

The OPTIONAL phrase is used to indicate that the input file described will
not necessarily be present each time the object program is executed. This
feature can be utilized for describing files which may be present only during
special periods such as the end of month or the end of year.

The OPTIONAL phrase may be specified only for input files which are to be
accessed in a sequential manner. (Refer to the discussion of Sequential-Access
Processing in Section V for additional information.)

OVERLAY Phrase.-

~ The OVERLAY phrase is used in run units that contain more than one COBOL
object: program, The OVERLAY phrase must be used whenever the same file-code is
specified in more than one of the programs.

If more than one COBOL program in a run unit defines a file using the same
file-code, the following restrictions apply: '

1. The file definitions must be identical,

2. All but one of the file definitions must specify the OVERLAY phrase in

the SELECT sentence of the FILE-CONTROL paragraph., This restriction
applies even if no overlays are contained in the run unit,

3-1 DD26

If, during the execution of an object program, an overlay module is loaded
into a memory location that is already occupled by a currently active
input-output subroutine, the program may abort in an undefined manper. 1In this

context, 'currently active!' indicates that the subroutine is one of the routines
-being used to service the file. Therefore, the -following two general
" prohibitions must be observed:

e

1. . Whenva file is in the open state, no overiay module may be loaded into
a memory location occupied by that file's file control information.

2. When a file is in the open state, no GVerlay module may be loaded into
a memory location’ occupied by any of the subroutines that are
servicing that file. : o

The f11e propertles (including any RERUN phrases) muat be 1dentlcal in each
program whlch is to reference the file.

Example:

Program a

SELECT OVERLAY FILE-A ASSIGN - TO A0 FOR CARDS
RESERVE 1 ALTERNATE AREA,

. Program B

SELECT FILE-A ASSIGN TO A0 FOR CARDS RESERVE 1 ALTERNATE AREA.

Although the two programs are described differently, the file properties of
"FILE-A are identical. Program B must have been loaded into memory to establish
FILE-A's file prOpertles before program A references FILE-A,

\

If one program is recomplled, all programs in the module overlay
environment should be recompiled using the same Software Release version of the
COBOL compiler to ensure that the file properties remain the same,

File-Name Phrase

Each file to be processed by the COBOL program must be named only once as a
file-name following the keyword SELECT., Each selected file must ‘have 'a file
description (FD) entry or sort-merge file description (SD) entry in: the Data
D1v151on, except when the RENAMING phrase is used.

3-2 e - . DD26

Example:

INPUT-QUTPUT SECTION.

FILE-CONTROL.
SELECT FILE-1 ASSIGN TO Bl.
SELECT FILE-2 ASSIGN TO B2.
SELECT FILE-3 ASSIGN TO B3.

DATA DIVISION.

FILE SECTION.

FD FILE-3 LABEL RECORD IS STANDARD.

SD FILE-2,

FD FILE-1 LABEL RECORD IS OMITTED.

Although each selected file must have an FD or SD described in the Data
Division, the order of description need not be the same for each file.

RENAMING Phrase

The RENAMING phrase provides a shorthand method of describing the same file
twice. This feature can be useful when a COBOL program regquires two identical
descriptions of a file for purposes such as updating a master file,

When the RENAMING phrase is used, the COPY option must be included on . the
$§ COBOL card and the LIBCPY option must not be included on the $ COBOL card.

When the RENAMING phrase is used, the file description (FD) entry and
related record description entries associated with the file-name being renamed
are applied to the renaming file; therefore, the latter must not be described in
the File Section of the Data Division.

Example:

INPUT-OUTPUT SECTION.
FILE-CONTROL. ,
SELECT ABC ASSIGN TO Cl.
SELECT DEF RENAMING ABC ASSIGN TO C2.
. SELECT GHI ASSIGN TO XY.
DATA DIVISION. : .
FILE SECTION.
FD . ABC LABEL RECORD IS STANDARD.
01 REC-A PIC X(80).
"FD GHI LABEL RECORD IS OMITTED.
01 REC-B PIC X(100).
WORKING-STORAGE SECTION.

.

3-3 \ . : © DD26

The SELECT sentence for the renamed file must net contain a -RENAMING
phrase. The renamed file must not have a sort~merge file description. The file
description for the renamed file must not be the last fille description entry in
the File Section of the Data Division.

ASSIGN Phrase

When the object program is submitted for execution, it is accompanied by
peripheral assignment cards which are used to spec¢ify the peripheral devices for
each file. The file-code in the peripheral assignment card must be the same as
that assigned by the COBOL object ‘program.

. Each file named in a SELECT sentence must be ‘as®igned . to a peripheral
- device by specifying the .file-code option in the ASSIGN .phrase,

The file-code option must be a two-character word con51st1ng either of two
letters or one letter and one dlglt.

Example:
 SELECT FILE-T ASSIGN TO I4.

The integer=-l option, which is intended to indicate the number :of
input-oUtput units ‘assigned to a given file-name, is treated ' as .documentation
since the assignment of multlple devices is handled by the operating system
using control cards. :

Integer-1l must not be specified when file-code-2, file-code-3, ..., is.also
specified in the ASSIGN phrase,

Multiple file-codes in the ASSIGN phrase are treated as documentation only.

File~codes beginning with the letter S, such as S1, S2, ..., SA, SB, .
should not be used in programs utilizing either the sort or the merge ‘feature,
since these file-codes have a special meaning .in the "sort or the merge
operation. '

, A COBOL reserved word, such as NO or OR, must not be specified as a
flle-code.

If the ACCESS MODE phraseliis rnot specified in cbnjunction with -the
file-code option, ithe following statements are applicable: '

1. If the physical record size is not specified by a BLOCK CONTAINS
i clause in the Data Division file description -entry associated with
this file, it will be presumed to be 320 words, ‘

2, An implicit process area, block serial number, or ‘variable-length
record may not be presumed for the file; therefore, the appropriate
APPLY phrase -must be speclfled in the I—O—CONTROL paragraph for ‘the
option desired.

3-4 - : DD26

If the ACCESS MODE IS RANDOM phrase is specified in conjunction with the
file-code option, the following statements are applicable:

1. The file must be assigned to a randomly addressed mass storage file
"space at object program execution, Refer to the § FILE card in the
Control Cards reference manual.

2. If the physical record size specified in a Data Division file
description entry BLOCK CONTAINS integer CHARACTERS clause exceeds the
size of the logical record, the space between the end of the logical
record and the end of the physical record will not be wutilized, This
area is referred to as padding.

3. A process area will be implicitly reserved for the file. Thus, the
APPLY PROCESS AREA phrase need not be specified in the I-0-CONTROL
paragraph, ‘

4, The ACTUAL KEY IS phrase must be specified. The value of the data item
referenced as the actual key must indicate the relative position of
the logical record within the file, starting with the value =zero for
the first record. '

If the ACCESS MODE IS SEQUENTIAL phrase is specified in conjunction with
the file-code option, the following statements are applicable: ' '

1. The file must be assigned to a linked mass storage file spacé at
object program execution.

2.. SYSTEM STANDARD FORMAT (I-O-CONTROL paragraph) must be specified,
explicitly or implicitly.

3. A process area will be implicitly reserved for the file, Thus, the
APPLY PROCESS AREA phrase need not be specified in the I-0-CONTROL
paragraph.

4. The ACTUAL KEY IS phrase need not be specified. However, the contents

of the data item referenced as the actual key will be updated when the
ACTUAL KEY phrase is specified.

FOR CARDS Phrase

To avoid format errors, output files intended for eventual punching in card
form by either system output (SYSOUT) or by Bulk Media Conversion must be
identified as such by specifying the FOR CARDS phrase. The file format will be-
presumed to be the Series 60/6000 system standard format and each logical record
will be assigned the Hollerith card image media code. The direct allocation of a
card reader or card punch to a COBOL program will have an adverse affect on
system performance and is not recommended. ‘

When the FOR CARDS phrase is specified, the compiler will automatically
apply a process area to the file, .

3-5 - . . : DD26

FOR LISTING Phrase

To avoid format errors, output files intended ‘for eventual printing by
‘either system output (SYSOUT) or by Bulk Media Conversion must be identified as
such by specifying the FOR LISTING phrase. The file format will be presumed to
‘be the Series 60/6000 system standard format and each logical record will be
assigned the Hollerith print line media code. The direct allocation of a prlnter
to a COBOL program will have an adverse affect on system performghce and is ' not
recommended. :

N -
When the FOR LISTING phrase is specifled, the compller. will automatically
apply a process area to the file,

Prifiter advancement control characters and a report code are - automatically
provided for each print line. .

Since current printer hardware will process print lines containing as many
as 160 columns, it is no longer practical for the compiler to perform compile
time checks on maximum print line sizes for the various printers that may be
configured on the system. Therefore, the wuser 1is responsible for allocating
printers that are compatible with the files assigned to them. For example, if a
production COBOL program that requires a 160-column printer is a551gned a 132~
column or l36-column printer, data alerts should be expected.

'FOR MULTIPLE REEL/UNIT Phrase

In Series 60/6000 COBOL, the MULTIPLE REEL/UNIT options are treated as
documentation -only. ‘

_RESERVE. Phrase

‘The RESERVE phrase allows the user to modify the number = of input-output
memory areas allocated by the compiler.

If the: RESERVE phrase is omitted,'the compilér automatically allocates two
buffer areas for file processing. o

INTEGER OPTION

If 1nteger is specified, the compller will assign a max1mum of two buffer
areas. . : .

»Examplé:
SELECT FILE-G ASSIGN MN RESERVE 3 ALTERNATE AREAS.

‘The compiler will réserve two inputéoutput buffer areas for :FILE-G.

3-6. - : DD26

NO OPTION

, If the RESERVE phrase is used and NO is specified, one 1nput—output buffer.
area will be reserved by the compiler,

FOR BLANK COMMON Phrase

: Although buffer space is normally allocated to the Labeled Common storage
area, it is possible, by specifying the FOR BLANK COMMON phrase, to force the
allocation of buffer space to the Blank Common storage area. A run unit
containing more than one object program that utilizes the Blank Common feature
may require explicit control card directives to ensure the correct positioning
and extent of the Blank Common storage area. Refer to the description of the
$ LOWLOAD card in the General Loader reference manual for the operational
characteristics of the Labeled Common and Blank Common storage areas.

The FOR BLANK COMMON phrase must not be used in any program that requires
segmentation. It can, however, be wused with caution in a module overlay
environment program in which files using this feature may be common to another
program. If a file common to two or more programs is to be assigned to Blank
Common storage, the file must be so assigned in each program in which it is
common. An identical ordering of files by SELECT sentences is requlred in each
program when more than one such file is involved.

FILE-LIMIT(S) Phrase

The FILE-LIMIT(S) phrase in the FILE-CONTROL .paragraph is included for
program documentation only. The actual limits are establlshed by the flle space
allocated by the file control cards for the run unit,

Attempts to access a logical record outside the 1logical Ssegments of the
file will result in the execution of either the AT END or INVALID KEY phrase.

ACCESS MODE Phrase

The ACCESS MODE phrase must be specified for files that will be aSSLgned to
a mass storage device at object program execution,

When ACCESS MODE IS SEQUENTIAL is specified, the mass storage logical
records are read or written starting with the first record in the file and
proceeding to the 1last record in the file. Refer to the discussion of
Sequential-Access Processing in Section V for additional information.

When ACCESS MODE IS RANDOM is specified, the mass storage logical records
are read or written in the order indicated by the contents of the data-name
designated in the ACTUAL KEY plirase. Refer to the discussion of Random-Access
Processing in Section V for additional information. :

3-7 o ‘ . DD26

- PROCESSING MODE Phrase

The PROCESSING MODE phrése must be specified for mass stofage files to
indicate that the logical records are to be processed in the order in which they
are accessed '

ACTUAL KEY Phrase

The ACTUAL KEY data item must be a single-precision binary integer -
described with USAGE COMP-1l., In addition, the ACTUAL KEY data item must be
described as either a 1level 01 or 1level 77 data description entry 1n the
Working- Storage Section of the Data Division.

The ACTUAL KEY phrase is required for mass storage files: for which the
ACCESS , MODE IS RANDOM: phrase is specified. The ACTUAL KEY phrase identifies
that data item whose value controls the access to the logical records on mass
‘storage file space. When a READ, WRITE, or SEEK statement is executed, the
ACTUAL KEY data item contains the integer value of the ord1na1 record position
that is to be accessed.

The ACTUAL KEY phrase may be optionally specified for a file for which the
ACCESS MODE IS SEQUENTIAL phrase is specified. 1In this case, the data item
identified in the ACTUAL KXEY ' phrase does not control the access to the mass
storage file space. However, the ACTUAL KEY data item will be updated during
the execution of a READ or WRITE statement with the integer value that
represents the ordinal record 9031t10n of the logical record accessed by the
program, -‘In particular: :

1, If the last input-output action was an OPEN statement, the actual key
value represents the lowest accessible ordinal record position on the
file. - ' '

2, If the last input-output action was a successful READ statement, the
actual key value represents the ordinal record position of the record
obtained.

3. If the next input-output action may legitimately be a WRITE statement;,
.the actual key value represents that ordinal record position ' into
which the WRITE statement will attempt to place a record.

4. The actual key value associated with the execution of either the AT
END phrase of a READ statement or the INVALID KEY phrase of a WRITE
statement represents the ordinal record position at which the
exception condition was detected. :

5. .The CLOSE statement has no effect upon the actual key value.

The first ordinal record position on a sequential mass storage file is
associated with an actual key value of one (1). The first ordinal record:
position on a random mass storage file is associated with an actual key value of
zero (0). However, even when an actual key value of zero is available,
programmed use of the value one (1) as the lowest actual key is preferred, since
it allows a simple correspondence between subscript (and index) values and the

~ordinal record p051t10ns on a file.

/77 ‘ 3-8 . N DD26B

APPLY PHRASE

The APPLY phrase in the I-O-CONTROL paragraph of the Environment Division
is used to speclfy special input-output techniques which are to be applied to
files defined in the FILE-CONTROL paragraph.

Contradictory input-output techniques must not be specified for a
file-name. Refer to the Summary of File Property Relationships in Section V.

PROCESS AREA Phrase

The APPLY PROCESS AREA phrase can be used to increase object program
efficiency for files which have heavy processing activity and are described
either as having more than one logical record per physical record with the BLOCK
_CONTAINS clause in the file description entry or at least one alternate
input-output area with the RESERVE phrase in the SELECT sentence of the
FILE-CONTROL paragraph. '

When the APPLY PROCESS AREA phrase is included, each logical record of an
input file is moved to the 'process area' for processing when it is read and
each logical record of an output file is developed in the ‘'process area' and
moved to the buffer when it is written. Otherwise, the standard method is to
process both input and output files in the buffer area.

The APPLY PROCESS AREA phrase may be redundantly specified even though an
implicit process area has been reserved, by using another option such as the FOR
CARDS or FOR LISTING option. :

711 o 3-8.1 | DD26B

BLOCK SERIAL NUMBER Phrase

The APPLY BLOCK SERIAL NUMBER phrase indicates that each physical record is
to be prefixed with a word containing the relative position of the physical
record within the file.

The SYSTEM STANDARD FORMAT option imposes block serial numbers. In
" addition, block serial numbers may optionally be used on files which do not have
the system standard format, provided that the recording mode is binary.

Sort files and merge files are implicitly given block serial numbers;
therefore, the APPLY BLOCK SERIAL NUMBER phrase would be redundant for files
defined with a sort-merge file description entry in the Data Division.

The explicit or implicit specification of the APPLY BLOCK SERIAL NUMBER
phrase in the source program must match the physical presence or absence of
block serial numbers on the file, If there is no match between the file
descrlptlon and its phy51cal format, an error condition will result when that
file is read.

when applied to a file, block serial numbers use the first computer word of
each physical record. This word has the following format:

0 ’ 17 18 35

block serial number block size in words
(binary integer) (binary integer)

The block serial number is the sequential number of this physical record
within the current reel of this file (the current reel pertains only to magnetic
tape files).

‘'The block size is the actual size of this physical record, excluding’' the
block serial number control word itself,

COBOL'procédural_statements cannot access the block serial number control
word. ’ '

SYSTEM STANDARD FORMAT Phrase

The APPLY SYSTEM STANDARD FORMAT phrase provides a shorthand method for
describing the file properties of a file which may be processed on different
hardware devices each time the object program is to be executed, Refer to the
description of system standard format in Section V for further details.

The Data Division file description entry clauses must not ‘contradict - the
file properties having the system standard format. '

3-9 . o DD26

VLR FORMAT Phrase

- The APPLY VLR FORMAT phrase causes the logical records of the file to be
preceded by a record control word which contains the record size in -words and
other control information. The recording mode will be presumed to be binary.

Depending on the BLOCK CONTAINS, RECORD CONTAINS, and LABEL RECORD clauses
of the file description entry, the VLR format may or may not ~apply to a file
that conforms to the system standard format. :

RERUN Phggse

The RERUN phrase- causes checkpoint memory dumps to be.taken.v That portien
.of .the . phrase used is RERUN ON file-name-7 EVERY ‘integer-1 RECORDS OF
file-name-8. ,

If 'ON - file-name-7' is specified, the output. dev1ce allocated to
file-name-7 receives the checkpoint dump; otherwise, the output device allocated
to file-name-8 receives the checkpoint dump. If 'ON file-name-7' is specified,
file~name-8 may be either an input or an output file.

- The number of records specified by integer-1 may not exceed 250,000,

The output deviceé must be opened as an ohtput file at every point in the
program where -a READ or a WRITE statement references file-name-7, if .specified,
or file-name-8 so that the output device can receive the checkpoint dump.

SAME AREA Phrase

The SAME AREA phrase indicates that two or more files are to use the same
memory area during object program execution. The memory area to be :shared
includes all storage areas and alternate input-output areas assigned to the
referenced files.

Only one of the files may be opened at a time.

'A file-name must not be used in more than one SAME AREA phrase.

SAME RECORD AREA Phrase

The SAME ‘RECORD AREA phrase indicates that two or more files are to use the
same memory area for processing the current logical record and implies a process
area for the named files. All the files named in the SAME RECORD AREA phrase can
be open at the same time. Each logical record processed in the record area is
considered to be the current logical record of -each file named. A file may be
. specified in only one SAME RECORD AREA phrase. '

There is no reguirement that the logical record descriptions be identical
for each file that 'shares the same record area; however, undesirable results
"could occur if their record descriptions were dlfferent and this feature were
not used with discretion.

3-10 . P - DD26

SAME SORT or SORT-MERGE AREA Phrase

The SAME SORT-MERGE AREA phrase is equivalent to the SAME SORT AREA phrase
and both are treated as documentation only. The space used by the sort or merge
"process is determined dynamlcally at execution time.

MULTIPLE FILE Phrase

The MULTIPLE FILE TAPE phrase is required when two or more files share ‘the
same reel of tape.

Only those files on a multiple file tape that are referenced in the source
program need be named in a MULTIPLE FILE phrase.

If all files on the tape are referenced in the order in which they appear
on the tape, the POSITION option may be omitted.

Example:

.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-C ASSIGN TO Ti.
SELECT ~ FILE-A ASSIGN TO T2.
SELECT FILE-B ASSIGN TO T3.
I-0-CONTROL.
SAME AREA FOR FILE-B - FILE-C FILE-A,
MULTIPLE FILE TAPE CONTAINS FILE-A FILE- B FILE-C.

Although the files may be referenced in other‘phrases.differently than they
appear on the tape, they must be listed in their exact consecutive order in the
MULTIPLE FILE phrase when the POSITION option is omitted.

If any file in the sequence of files on the tape is not included in the
MULTIPLE FILE phrase, then the position relative to the beginning of the tape of
each file named in the phrase must be given.

Example:

MULTIPLE FILE FILE-C POSITION 3 FILE-E POSITION 5
FILE-F POSITION 6 FILE-Z POSITION 26,

All of the files on a multiple file tape must have labels present or,
conversely, all of the files must have labels omitted. :

3-11 . DD26

,EXample:

I-0O-CONTROL.

“MULTIPLE FILE FILE-1l FILE -2,
MULTIPLE FILE FILE-3 FILE-4.
DATA DIVISION.

FILE SECTION.

- FD FILE-1 LABEL RECORDS ARE STANDARD.
01 REC-1 PIC X(320). .
FD FILE-2 LABEL RECORD IS STANDARD,
01 -REC-2 PIC X(320). ,

FD FILE-3 LABEL RECORD IS OMITTED.
01 REC-3 PICTURE X(132). S

FD FILE-4 LABEL "RECORD IS OMITTED.
01 REC-4 PICTURE X(80).

Each MULTIPLE FILE phrase describes one multiple file tape. In the
preceding example, two multiple file tapes are described. There can be any
number of multiple file input or output tapes (each having a corresponding
MULTIPLE FILE phrase); however, all files listed for each tape must be contained
on a single reel.

Only one filé of a multiple file tape can be open at any given time.

Files referenced in a MULTIPLE FILE phrase cannot be described 'with the
‘OPTIONAL phrase of the SELECT sentence in the FILE-CONTROL paragraph.

All files on a multiple file tape must have the same redording-modé.

FILE-DESCRIPTIONfENTRIES

The File Section header is followed by a file description. entry or a
sort-merge file description entry.

A file description entry consists of a level indicator (FD), followed by a
data-name (the name of the file) which corresponds to a data-name specified in a
SELECT sentence in the FILE-CONTROL paragraph of the Environment Division, and a
series of independent clauses. The clauses specify the manner in which the data
- 1s to be recorded on the file, the size of the logical and physical records, the
names. of the label records contained in the file, the values of specific label
data 1tems, and the names of the data records which compose the file.

If the RENAMING option has been specified in a file's SELECT sentence 1in
the Environment Division, its description. is implicitly provided, and .must not
be given explicitly in the File Section. When the RENAMING option is used, COPY
must be included on the § COBOL card and the LIBCPY option cannot be used. All
other files require explicit descriptions in the File Section. '

If a file is intended to have system standard format, the LABEL - RECORD(S).
IS/ARE STANDARD clause is recommended for its file description entry. The DATA
‘'RECORD(S), VALUE OF, and/or REPORT(S) clauses may be used optionally. -When the
BLOCK. CONTAINS and RECORDING MODE clauses are omitted, the system standard
format is .assumed. ' '

S 3=12 . , N DD26

SORT-MERGE FILE DESCRIPTION ENTRIES

For sort or merge file description entries, the 1level 1indicator SD is
followed by a data-name (the name of the file) which corresponds to a data-name
specified in a SELECT sentence and a series of independent clauses. The - clauses
specify the name, size, and number of data records in the sort or merge file. A
sort or merge file is a set of records to be ordered in ascending or descending
sequence based on the specification of keys in a SORT or MERGE statement in the
Procedure Division. No label procedures are under the control of the user and
the rules for blocking and internal storage are peculiar to the SORT or MERGE
statement. : .

Level Indicator and File-Name

The level indicator identifies the entry as a file description entry (FD),
a sort-merge file description entry (SD), or a report description entry (RD).

The file-name identifies the file for subsequent references in the
Environment Division and the Procedure Division. The file-name is the highest
level qualifier available for data=-names belonging to the file,

If the level indicator SD is wused, the file-name must be the name
associated with a sort-merge file. Except when used as a gqualifier, the
- sort-merge file~-name can appear in the Procedure Division only in SORT, . MERGE,
and RETURN statements.

Refer to Section VIII, Report Writer, for a detailed explanation of the
report description entry (RD).

BLOCK CONTAINS Clause

The BLOCK CONTAINS c¢lause is optional and may be omitted when the file has
the standard physical record size of 320 computer words. When system standard
format is intended, the clause should be omitted. -

If integer-l and integer-2 are both specified in the BLOCK CONTAINS clause,
they refer to the minimum and maximum size of the physical record, respectively.
In this case, integer-1l is understood to be for documentation only. If only
integer-2 is specified, it represents the exact size of the physical record.
Integer-1 (when used) and integer-2 must be unsigned nonzero integers.

Regardless of whether the physical record size 1is given in terms of
characters or records, each logical record will begin in a new computer word.

Whenever the keywords RECORDS or CHARACTERS are not spec1f1cally written in
the clause, the CHARACTERS option is presumed

When the CHARACTERS option is used, the physical record size is specified
in terms of the number of standard characters contained in the physical record,
regardless of the types of characters used to represent the items within the
phy51cal record, : .

3-13 » : . DD26

v When the SYSTEM STANDARD FORMAT option is designated, explicitly or
implicitly, the compiler allocates a physical record size of 320 computer words.
If the CHARACTERS option is specified, integer-2 must not exceed a value' of
1920. : ' :

UnleSs system standard format_is indicated, explicitly or implicitly, a.
magnetic tape file may have .any desired physical record size not exceeding 4095
words. -

. Calculation of the physical record size for sequential-access files must
reflect the basic record format (fixed or variable) and the number of logical
records in the physical record. The physical record size conventions,. in terms
of the number of computer words, are presented below. The formulas yield ‘'net'
physicail- record sizes, and do not reflect block serial numbers. If block serial
numbers are desired, the 'net' physical record size must be increased by one
word. ‘

There are three cases for fixéd-length record (FLR) files:

1. BLOCK CONTAINS clause omitted. The overall block size will not exceed
320 words. Net block size is the largest multiple of the .record size
not exceeding 320 words . (319 words if Dblock serial numbers are
applied). If an FLR file has 30-word records, net block size (with the
BLOCK CONTAINS clause omitted) would be 300 words.

2. BLOCK CONTAINS integer-2 RECORDS. The net block size is integer-2
" times the recoxrd size. In the example given for case 1 above, the same
result would be obtained by specifying BLOCK CONTAINS 10 RECORDS.

3. BLOCK CONTAINS integer-2 CHARACTERS. The block size will be as close
to integer-2 divided by six words as possible, The net block size is
the largest multiple of the record size not exceeding (integer-2
divided by six). In the example given for <case 1 above, the same
result would be obtained by specifying BLOCK CONTAINS 1800 CHARACTERS.
Integer=-2 should be exactly six times the overall record size in
words, multiplied by the desired blocking factor, plus six if block
serial numbers are applied. ’ :

There are also three cases for variable-length record (VLR) files:

1. BLOCK ‘CONTAINS clause omitted. The maximum block size is 320 words
(including block serial number, if applied). The actual block size
will vary from one block to the next. In each output block, successive
records are added until the remaining space is insufficient to. hold
another record; the current block is then physically written out and a
new block is begun. The physical block ends with the last word of the
last record. If record sizes are 200 words and 70 words, respectively,
a block might appear as shown in the following diagram.

3-14 . DD26 -

binary 200 0 0 0 RCW 1lst record
3N
d d
j:::::::::=’*=:::::::::: >200 words of data
d d
J
binary 70 | 0 0 0 RCW 2nd record
)
d d
i::::::::::;—::::::::::j’ 70 words of data
d d
J

Thus, the actual block size in this example is (1 + 200) + (1 + 70) =
272 words.

2, BLOCK CONTAINS integer-2 RECORDS., The maximum net block size is
(maximum record size in words + 1) times integer-2. The increment of
one (1) to maximum record size allows for record control words. This
convention allows at least integer-2 records per block, but the blocks
are still constructed as described for case 1 (under VLR files) above.
.If not all records in a block are of the maximum size, more than
integer~2 records may be included.

If the file has two record types, with sizes (in words) of 5 and 75,
respectively, and BLOCK CONTAINS 2 RECORDS, maximum block size is 2 x
(75 + 1) = 152; the block might, however, contain as many as 25 of the
small records.

3. BLOCK CONTAINS integer=2 CHARACTERS. The maximum block size 1is the.
largest integer not exceeding (integer-2 divided by six), including
block serial number, if applied. Integer-2 should be a multiple of
six. Blocking conventlons proceed as described for case 1 (under VLR
files) above.

The use of the word CHARACTERS in the «clause 1is optional. Whenever the
keyword RECORDS is not specifically written in the clause, the word CHARACTERS
can be omitted with the understandlng that integer-1 (if wused) and integer-2
represent the number of characters in the block. The word RECORDS cannot be used
for a file for which REPORT(S) is also specified.

When the word RECORDS is used with variable-length records, the block size
is equal to the maximum record size (in computer words) multlplled by the number
of records plus one.

3-15 L - DD26

For mass storage files assigned to a file-code and described with ACCESS
MODE IS RANDOM, the physical record size associated with the CHARACTERS option .
is considered identical with the logical record size. Depending on the mass
storage device normally intended for the file, the physical record size may be
adjusted for efficiency by using the BLOCK CONTAINS clause with _.the CHARACTERS
option. Integer-2 may range from 384 to 24,570 -characters (which results in
record sizes in the range 64 to 4095 words). A size that is not modulo 384 .
characters will result in wasted space. ‘

Regardless of .which BLOCK CONTAINS option is specified, the input-output
system automatically adjusts to single record blocks at program execution if the
file is actually assigned to a printer, remote terminal, card reader, or card
punch : . :

DATA RECORD(S) Clause

The data-names specified in this optional clause must be 1level 01 items
whose record description entries, together with their subordinate entries,
follow the FD or SD entry. Standard label record-names must not be mentioned in
this clause. If record descriptions for label records within an FD are included,
- they must appear between the FD entry and the data record descriptions.

The presence of more than one data-name indicates that the file contains
more than one type of data record. If the record sizes in words are not equal,
the file will be assigned the variable-length record format and its recording
mode must be binary. The records of the file are not required to have the same
descrlptlon. i

Example:

FD FILE-Y LABEL RECORDS ARE STANDARD DATA RECORDS ARE REC-Y
‘ ' REC-W REC-X.
01 REC-W PIC X(80).
01 REC-X.
02 DN-1 PIC 9(6) COMP.
02 DN-2 'PIC 9(18).
02 'DN-3 PIC 9(18).
.02 DN-4 PIC 9(18).
. .02 DN-5. PIC X(20).
0l REC-Y PIC x(100)

Conceptually, all data records in a file share the same area. This concept
is not altered by the presence of more than one type of data record in a file.
In the preceding example, REC-W, REC-X, and REC-Y would be implicit
redefinitions of the same area whose size would be 100 characters.

The order in which the record descrlptlon entries occur as 0l entries is
not significant, with the exception of sort files. For a sort file with more
than one size data record description, the first record description entry after
the SD entry is assumed to be the dominant type. Its size is considered to. be
the most common in the sort file. Sort optimization is based on this assumption.
Therefore, a careful choice in ordering record descrlptlon entries for 'a sort
file enhances object program efficiency.

3-16 DD26

LABEL RECORD(S) Clause

The LABEL RECORD(S) clause is the only required clause within the file
description (FD) entry. This clause is used to designate whether or not labels
are associated with the file and, therefore, whether or not the input-output
system must be prepared to process labels for the file. A label record is a
special type of log: 1l record that contains information about the file or about
the medium on which e file is recorded. Label records are not part of the
data area of a file i'ut appear as separate records at the logical beginning and
ending of a file. On -ome media, such as magnetic tape, the label records are
physically recorded preceding and following the physical beginning and ending of
the file. On other med! :, such as mass storage, the label records might not be
physically adjacent to the file.

On a magnetic tape, label records are separated from data records by a file
mark and successive files are separated by a file mark. On a multiple file tape,
file positioning is accomplished by counting the number of file marks passed.
Therefore, the 1labels must be consistent for all of the files on such a tape.
That is, either every file on the tape must be labeled or all of the files on
the tape must be unlabeled. This is true whether or not all of the files are
referenced in the COBOL program. Those files on a multiple file tape that are
referenced in the program must have consistent descriptions. That is, either
all of the referenced files must have the OMITTED option specified or each
referenced file must specify either the STANDARD option or the label-name
option.

3

OMITTED OPTION

The use of the OMITTED option signifies that no labels exist for the file.
The input-output system will not expect to process labels for the file and, on
input, will not check for the possible existence of a label.

The OMITTED option must not be specified if system standard format has been
assigned for a file, explicitly or implicitly. System standard format invokes
special processing conventions that presume labels, even though the physical
device to which the file is assigned does not support the phys1cal recording of
labels.

If the OMITTED option is specified on an output file, each output tape is
terminated with an end-of-file mark when the end-of-tape foil is detected and a
tape swap occurs. -

If. the OMITTED option is specified on an input file, the standard means of
recognizing the logical end of the file is not available. Unless the file is a
single~reel file, the user must determine via explicit procedures which reel
terminates the file. When an end-of-file mark is detected, the READ statement's
AT END procedure is executed. If a subsequent READ statement is .executed, a
tape swap takes place and the first record of the next reel is obtained. If the
reel just ended is the last reel on the file, the file should be closed.

STANDARD OPTION

The use of the STANDARD option signifies that logical labels that conform
to the Series 60/6000 label format specifications are considered to exist for
the file even though they may not be recorded on some of the phy51cal devices to
which the file may be assigned. ‘

3/77 , _ : 3-17 , : DD26A

. The STANDARD option must be specified if system standard format has been
assigned for a file, explicitly or implicitly.

When

the STANDARD. option is specified, the Series 60/6000 stahdard

"beginning label format is inferred automatically by the COmpller and :consists of-
the following. group . item structure: : :

following

3777

01

The

1.

2.

v(flxed label-name)

02 LABEL~IDENTIFIER PICTURE X(12)
02 INSTALLATION PICTURE X(6).

02 REEL-SERIAL-NUMBER PICTURE BX(5).
02 FILE-SERIAL-NUMBER PICTURE BX(5).

02 REEL-NUMBER PICTURE BB9999,
02 DATE-WRITTEN.
03 LABEL-YEAR PICTURE B99.
03 LABEL-DAY PICTURE 999.

02 FILLER PICTURE BBB.
02 RETENTION-PERIOD - PICTURE 999.
"02 IDENTIFICATION PICTURE X(lZ).

02 FILLER PIC X(24).

.66 ID RENAMES IDENTIFICATION.

items within Series 60/6000 standard beginhing labels have the
significance: ’

The implied value of LABEL-IDENTIFIER is GEPBPB600KBTLJY.

INSTALLATION contains constant' information' for each user installation.
This item is supplied automatically in output labels, but is ignored
by input label checking routines.

REEL-SERIAL-NUMBER contains the serial number of the physical tape
reel. This number 1is also recorded externally on the reel itself;
This item is supplled automatically in output labels.

FILE- SERIAL—NUMBER contalns the serial number of the first reel of the
file. On the first reel, therefore, the values of FILE-SERIAL-NUMBER
and REEL—SERIAL—NUMBERV are identical. "This. item is supplied
automatically in output labels. On input, it may be checked against
an expected value. o '

REEL-NUMBER contains the number of the reel within the file. The:
first reel 1is number 0001, the second is 0002, etc. This item is
automatically supplied in output labels and checked on input.

DATE-WRITTEN contains the day of the year on which the object program

‘has. been executed to produce this file. This item is automatically

supplied in output. labels, but is ignored on input.

RETENTION-PERIOD cOntalns the number of days the file is to be

retained. This item is processed in two distinct phases on each output
file:

(a) Every tape upon which an output file is to be written is expected
to have a prior label, which may be either a blank reel label or

a beginning label on which the RETENTION-PERIOD has expired
(current date minus DATE~WRITTEN exceeds RETENTION-PERIOD).

. These conditions are checked and operator action is requested if
they are not met. - :

3-18 ’ ' DD26A

(b) If a value has been specified for the RETENTION-PERIOD via the
VALUE OF clause 1in the FD entry, this value is automatically
-supplied in the new output label, which replaces the prior
beginning label on the output tape. When RETENTION-PERIOD
appears in the VALUE OF clause, a numeric literal not exceeding
999 must be specified. The value 999 signifies permanent
retention.

8. IDENTIFICATION or ID contains a l2-character name assigned to the file
for external identification. On input, this item 1is automatically
checked against the value specified in the VALUE OF clause, if this.
clause is present in the FD entry. On output, the value specified in
the VALUE OF clause, if present, is automatically supplied in the
output label. If the VALUE OF IDENTIFICATION clause is not specified,
this field will be checked against the value of the file-name field on
the file assignment control card. If neither the VALUE OF clause nor
the file-name field is specified, the identification field is ignored.

The beginning tape label and the beginning file label have identical
formats. The fixed label-name for a beginning file label is
 BEGINNING-FILE-LABEL. The fixed 1label-name for a beginning reel label is
BEGINNING-TAPE-LABEL.,

When the STANDARD option is specified, the Series 60/6000 standard ending
label format is inferred automatically by °the compiler and consists of the
following group item structure: ‘ :

0l (fixed label-name)
02 SENTINEL PICTURE X(6). :
88 END-OF-TAPE VALUE IS "BEORYK".
88 END-OF-FILE VALUE IS "YEOFBK".
02 BLOCK=COUNT PICTURE 9(6).
02 FILLER PICTURE X(72).

The items within Series 60/6000 standard ending labels have the . following
significance:

1. The END-OF-TAPE condition of SENTINEL causes an automatic tape swap on
input. i

2, The END-OF-FILE condition of SENTINEL signifies the end of the file.

3. BLOCK~COUNT is always described with USAGE COMPUTATIONAL-l, except
when the recording mode is BCD; in this case, BLOCK-COUNT is
implicitly USAGE DISPLAY, as shown above. BLOCK~COUNT is
automatically supplied in output labels and is checked on input labels
against the computed block count.

4, An ending tape label is automatically produced on output tapes when an
end-of-tape foil is encountered. It may also be produced by a CLOSE
REEL statement. The production of this 1label is automatically
followed by a tape swap. :

5. A CLOSE statement (without the REEL "option) causes an ending file
label to be produced, together with any other CLOSE statement options-
that may be specified.

The ending tape label and the ending file label have identical formats.
The fixed label-name for an ending file label is ENDING-FILE-LABEL. The fixed
label-name for an ending reel label is ENDING~-TAPE-~LABEL.

3/71 : o 3-19 ' DD26A

It is not necessary to. describe the formats of the Series 60/6000 standard
beginning and ending label vrecords in the source program, since the cémpiler
“infers their descriptions when the STANDARD option is specified. However, when
the STANDARD option is used, these descriptiorns may also be included as record
descriptions in the source program by utilizing the four fixed label-names
identified above. These record descriptions must not be named in the DATA
- RECORDS clause. When such explicit label record descriptions are specified, the
standard label contents must be described exactly as shown in the above formats
with respect to data-names, PICTURE character- strlngs, and pOSltlonS. There are
two chpptlons to this rule:

a. The FILLER data items at the end of each of the above standard label
"formats may be replaced by descriptions of additional data items to be
included - in the 1label ' records. These additional data items, if
present, may be processed in USE procedures. ‘ :

b. The VALUE clauses within the above label record descriptions do not

o result in automatic moves of the specified literals to output labels,
All _standard items within Series 60/6000 standard labels are
automatically processed by the input-output system. :

Example:

- SPECIAL-NAMES.
GTIME IS TIME-VALUE.
GIN IS CONTROL-INPUT.

FILE-CONTROL. _
SELECT PAYROLL-ACTIONS ASSIGN TO Al FOR MULTIPLE ~REEL.
SELECT NEW-PAY-MASTER ASSIGN TO N1 FOR MULTIPLE REEL.

FD PAYROLL-ACTIONS

o DATA RECORD IS . ACTION-ITEM
LABEL RECORDS ARE STANDARD

: VALUE OF ID IS ACTION-IDENT.

01 ACTION-ITEM ...

.

FD -NEW~PAY-MASTER
DATA RECORD IS NEW-MASTER-RECORD
LABEL RECORDS ARE STANDARD.

01 NEW—MASTER—RECORD cen

WORKING-STORAGE SECTION.

01 ACTION-IDENT.
02 FILLER PIC X(6) VALUE ™ "PAYACT".
02 ACTION-DATE PIC 9(6).

01 NEW-MASTER-IDENT.
02 FILLER. PIC X(6) VALUE "PAYMST".
02 NEW-DATE PIC 9(6).

61, RUN-TIME.
02 RUN-DATE PIC 9(6). :
02 RUN-CLOCK - PIC . 9(6) USAGE COMP-3.

3/77 3-20 ' DD26A:

Example (cont):

PROCEDURE DIVISION.
DECLARATIVES.
NEW-MASTER-FILE~-HEADER SECTION,
USE AFTER BEGINNING LABEL ON NEW-PAY-MASTER.

-

MOVE NEW~-MASTER-IDENT TO IDENTIFICATION.
MOVE 32 TO RETENTION-PERIOD.

END DECLARATIVES.

ACCEPT ACTION-DATE FROM CONTROL-INPUT.
OPEN INPUT PAYROLL-ACTIONS.

'ACCEPT RUN-TIME FROM TIME-VALUE.
MOVE RUN-DATE- TO NEW-DATE.
. OPEN OUTPUT NEW-PAY-MASTER.

If the system input file (GIN) contained a record with the six-digit date
in columns 1 through 6, each header label on the PAYROLL-ACTIONS file would be
checked for a file identification (title) of the form "PAYACTmmddyy".

Each header label of the NEW-PAY-MASTER file .will have a file
identification of the form "PAYMSTmmddyy" and a retention period of 32 days.

LABEL-NAME OPTION

A label-name in the LABEL RECORD(S) clause must be one of the set - of four
.fixed 1label-names associated with the Series 60/6000 standard label format
specifications. (Refer to the STANDARD option.) :

All Procedure Division references to label-name-1, or. to any items
subordinate to label-name-1, must appear within USL procedures.

If more than one label-name is specified, it is an implicit redefinition of
the same label area..

The fixed' label-names and their associated Series 60/6000 standard label
records are described below:

a. . BEGINNING-~-FILE-LABEL: Appears only once for a file, preceding .the
first data record of the file, and contains information about the
file.

b. "BEGINNING-TAPE-LABEL: Appears at the physical beginning of each reel,
i with the exception of the first reel on the file, preceding all other
information, and contains information about the reel.

Ce. ENDING-FILE-LABEL: Appears only once for a file, following the last
i data record on the last reel of a file, and contains information about
the file. ’ :

3/77 : 3-21 DD26A

d. ENDING-TAPE-LABEL: Appears at the physical end of a reel, with the
exception of the 1last reel of the file, following the last data
recprd, and contains information about the reel. .

Since these fixed label-names are associated with the Series 60/6000.
standard label = descriptions, their formats are inferred by the compiler and it
is not necessary to define them within the file description. Omitting the label
record descriptions within this appllcatlon is operationally equivalent to using
the STANDARD option.

However, user-defined label record descriptions may be associated with
these four fixed label-names and the compiler will use these descriptions in the
- .source program. The input-output system will recognize only four types of label

processing; - BEFORE BEGINNING LABEL, AFTER BEGINNING LABEL, BEFORE ENDING LABEL,
and AFTER ENDING LABEL.. .Due to this restriction, it is ‘the responsibility of
the user to determine whether the file being processed is a reel label or a file
label.

Example:

FILE-CONTROL.)
SELECT TRANSIT-FILE ASSIGN TO TR FOR MULTIPLE REEL.

.

FD TRANSIT-FILE -
DATA RECORDS ARE TRANSIT-A, TRANSIT-B
LABEL RECORDS ARE :
BEGINNING-FILE-LABEL
BEGINNING-TAPE-LABEL
ENDING-FILE-LABEL
ENDING-TAPE-LABEL.
01 ENDING-FILE-LABEL.
02 SENTINEL PIC X(6).
02 BLOCK~COUNT PIC 9(6).
02 REEL-PROOF-TOTAL PIC 9(16)V99.
02 FILE-PROOF-TOTAL PIC 9(16)V99.
02 FILLER PIC X(36).
01 ENDING-TAPE-LABEL.
' 02 SENTINEL PIC X(6).
02 BLOCK-COUNT - PIC 9(6). ~
" 02 REEL-PROOF-TOTAL PIC 9(16)V99.
02 FILLER PIC X(54).

e

PROCEDURE DIVISION.
DECLARATIVES.
FILE-TRAILER SECTION.
USE AFTER ENDING LABEL ON TRANSIT-FILE.
IF SENTINEL EQUALS "PEOFPB" MOVE
WORKING-REEL-PROOF-TOTAL ‘TO REEL-PROOF-TOTAL
ADD' WORKING-REEL-PROOF-TOTAL TO WORKING-FILE~PROOF-TOTAL
MOVE WORKING-FILE-PROOF~TOTAL TO FILE-PROOF-TOTAL
ELSE MOVE WORKING-REEL-PROOF-TOTAL TO REEL-PROOF-TOTAL
ADD WORKING-REEL~-PROOF-TOTAL TO WORKING-FILE-PROOF-TOTAL
MOVE 0 TO WORKING-REEL-PROOF-TOTAL.
END DECLARATIVES.

3/77 ' ' . 3-21.1 ' e DD26A

The above - example describes a file that utilizes some of the unused space
in the Series 60/6000 standard labels. Since the input-output system is unable
to differentiate among the label formats, the VALUE OF clause should not be used
to set the IDENTIFICATION field.

RECORD CONTAINS Clause

This optional clause may be used for documentation. The size of each record
type is determined from information in its record description entries, and is
not affected by this clause. Integer-1l 1is the number of characters in the
smallest data record, and integer-2 is the number of characters in the largest
data record. If the data records in the file are of uniform size, integer-l1 1is
omitted and integer-2 is the exact number of characters in each record.

The size 1is specified in terms of the number of standard characters
contained within the logical record, regardless of the actual method used to
represent the items within the 1logical record. The sizes of the records are
established according to the rules for determining the size of a group item.

RECORDING MODE Clause

The RECORDING MODE clause is used to specify the format or organization of
data on magnetic tape.

Whenever an APPLY SYSTEM STANDARD phrase is specified in the I-O-CONTROL
paragraph for a file, the RECORDING MODE clause, if one is given for the file,
must specify BINARY HIGH DENSITY.

If any data item or report ‘item associated with a file has any usage other
than USAGE DISPLAY, the BCD option must not be used .

377 3-21.2 Do o DD26A

It is not necessary to specify the BCD :and LOW DENSITY options, .except for
magnetic tape files, and these options are recommended enly for compatibility on
magnetic tape. If the actual 'peripheral device used is a:printer, a card reader,
sor a punch, the input-output subroutines -in the object. program automatically use
the density appropriate to ‘the device. .If a file is intended for cards or
printer wvia media conversion . (either input or output), the recording mode
utilized -should be binary high density. S ‘

If the . RECORDING. MODE clause is omitted, the file:will be éssumed to be
recorded in binary high density mode.

In the computer, all data values are represented either by binary numbers
-~ or by wbinary-coded internal ‘'characters'. For example, the .letter A 'is
-represented internally by the six-bit. binary code 010001. Use of the term
*Binary' in describing = the recording mode reflects the fact that in that mode
ithe peripheral medium represents the data with exactly the .same ‘binary .bit
‘configuration as in memory. Any data which can be stored in memory can be
" written to and retrieved: from a peripheral in the same configuration wvia binary
"mode. This is not true of BCD mode. BCD mode on magnetic tape permits only
binary-coded characters, not binary numbers. For example, the character with
internal binary code 001010, whose graphic is '[' (left bracket), cannot be
represented in BCD mode on magnetic tape. o

Series+60/6000 computers provide BCD mode for compatibility with other
computers. Of the 64 possible binary-coded characters, a certain subset has wide
usage for data processing applications in many machines. Included are the
_~letters, the space character, the digits, and certain editing characters. These
- characters are represented by different binary codes on various machines, but
their representation on BCD:magnetic tape is standardized. For example, a . space
or blank has binary code 110000 in some machines, but has binary code 010000 in
Series 50/6000 computers. If a space character is written to magnetic tape in
BCD mode on such a 'stranger' machine, it w1ll be read as a space character by
the Series 60/6000 computer. :

Space character
in 'stranger' Space .character . - 'Space character
computer . on BCD tape in Series 60/6000

110000 ———— 3% 010000 ————3 010000

If the recording mode is binary, each record in the file may co.calr an
arbitrary mixture of binary (COMPUTATIONAL or COMPUTATIONAL-n) and BCD or
character-oriented data. Only BCD information may appear in the BCD mode.

In Series 60/6000 COBOL, the following lahguage elements” require the binary
- recording mode on the file affected:

" ACCESS MODE SEQUENTIAL/RANDOM
Block serial. numbers
FOR CARDS or FOR LISTING
OCCURS...DEPENDING
REPORT (S)

- System Standard Format

- USAGE COMPUTATIONAL or COMPUTATIONAL -n
‘USAGE DISPLAY-2
VLR format

371 | C3-22 ~ pp2ea

All files on a multiple file tape must have the same recording mode.

Label records have the same recording mode as data records.

REPORT (5) Clause

The optional REPORT(S) clause specifies which report(s), described in the
Report Section of the Data Division, belong to this file,

Each data-name entered in this clause must be a report-name specified in an
RD entry in the Report Section. A report cannot be ass1gned to more than one
file.

Multiple data-names listed in the REPORT(S) clause indicate that the file
contains more than one report. The order in which the report-names are listed is
not significant. If a file contains multiple reports which are not produced
sequentially, then each report must be assigned a unique report code wusing the
CODE clause in the RD entry. Each report line on the output device will then be
labeled with the appropriate report code so that lines from the varlous reports
can be easily distinguished. .

At program execution, a file containing reports should be assigned to
SYSOUT (system output) or to a high-speed peripheral device, normally magnetic
tape, to be printed later via media conversion.

VALUE OF Clause

The VALUE OF clause in a file description entry is used to particularize
the description of a data item in the label records associated with a file.

The referenced data-name should be qualified when necessary; however, the
data-nemes cannot be subscripted, indexed, or described with the USAGE IS INDEX
clause., The data-names which will be checked or modified in the label processing
must be contained in one of the label records.

If the file is opened as input, the appropriate label routine verifies that
- the value of the label record data item is equal to the value of the specified
llteral

If the file is opened as output, the value of the label record data item is
made equal to the value of the specified literal at the appropriate time,

Data-name-1 and data-name-3 can only be the fixed label .item names
IDENTIFICATION and RETENTION-PERIOD, Either or both names may be given.

3-23 o DD26

If IDENTIFICATION is specified, the action in the object program depends
-upon. the use of the file. For an input file, the object uprogram's label check
routine verifies that the value:of the IDENTIFICATION:inzbeginning labéls of the
file is equal to the given literal. For an output ffile, the .literal is
‘implicitly moved to IDENTIFICATION before a beginning " label is written. "The
~literal associated with IDENTIFICATION must be a nonnumeric literal-of no more
than 12 characters. ' '

For mass storage files, the VALUE OF IDENTIFICATION clause is ignored since
.'a label record is not present on. the external device. However, .the standard
label USE procedures are engaged-at OPEN and CLOSE for such files.

RETENTION-PERIOD has no significance .for input files. For an output file,
the given literal is implicitly moved to RETENTION-PERIOD -before -a beginning
.label iswwritten. The literal associated with RETENTION-PERIOD must be .a
“positive integer not. exceeding 999. The value 999 signifies permanent retention.

If a magnetic tape to:be used for output has a RETENTION-PERIOD given - in
its beginning label, the object program's output routine checks that value
against the current date to .assure that the RETENTION-PERIOD. has.expired before
.it begins writing new data ‘on the tape. ' ' - '

. If the label records are user~defined, the referenced 1label record data
items must be described in the same position within each label record associated
-with the file. It is not required that the data-names be’ the same in.all of the
. records. :

For additional information, refer to the description of the LABEL RECORD(S)
. clause in this section. ' .

3-24 : - bD26

SECTION IV

RECORD DESCRIPTIONS

ELEMENTARY ITEM DESCRIPTION ENTRIES

Elementary items are data items that are not further subdivided. Refer to
the COBOL Reference Manual for specific elementary item record formats. The
following rules must be observed: '

1. Each elementary entry must contain a PICTURE clause except for index
data items (USAGE INDEX).

2. Level-number must be an integer in the range 1-49 or 77,
3. Data-name~l or FILLER must immediately follow level-number..

4, 'If the REDEFINES clause is specified, it must be written immediately
after data-name-l. The other clauses may be written in any order.

5. Only one of the two possible OCCURS clause formats can be present in a
data description entry.

BLANK WHEN ZERO Clause

The optional BLANK WHEN ZERO clause is used in a data description entry to
enable the blanking of an item when that item's value is zero.

This clause may be used only for an elementary item whose PICTURE 1is
specified as numeric edited. It may not be used for variable-length items.

When this clause is used, the item contains only spaces when the value of
the item is zero. When used for an item whose PICTURE is numeric, the category
of the item is considered to be numeric edited..

Condition=-Name Entry

Format 5 of the data description skeleton is used for each condition-name
(refer to the COBOL Reference Manual). Each condition-name requires a separate
entry with level-number 88. The condition-name entry specifies the name of the
condition and the wvalue, values, or range of values associated with the
condition-name. '

4-1 DD26

Condition-names are associated with a group or elementary item. The .

‘condition' is the truth or falsity of the proposition that the value of - the

item equals the value (or one of -the values) associated with the condltxon—name,,
or falls within the specified range of values.

If condition-names are associated with a data item, .the item is . called a
conditional variable, The condition-name entries for a particular conditional
variable must follow the entry describing the ‘data item with which the
condition~name is associated. A condition-name can be associated with any data
descrlptlon entry that contains a level-number except for the follow1ng

1. Another condition~name.
2. A level 66 item,

3. A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED,,or USAGE (other than USAGE IS DISPLAY).

4. An ‘index data item.

\fThe following example illustrates'a method in which a condition-name entry
.can be written:

03 GRADE PIC 9(2).

88 PRIMARY VALUE IS 1.
88 SECOND VALUE IS 2.

88 GRADE-SCHOOL VALUES ARE 1 THRU 6,
88 JUNIOR-HIGH VALUES ARE 7 THRU 9.
88 HIGH-SCHOOL VALUES ARE 10 THRU 12. ‘
88 GRADE-ERROR VALUES ARE 0, AND 13 THRU 99,

The application of condition-names in the Procedure D1v1sxon is déscribed B
in Section XII of this manual. '

Condition-name entries may appear - only in the File Section or
Working-Storage Section of the Data Division.

The condition-names described in the Data Division are functionally
equivalent to those associated with the ON or OFF status of switches in the .
SPECIAL~NAMES paragraph of the Environment. Division. The ' latter type of
condltlon—name is net defined in a condltlon-name entry. o : ,

‘ CQP¥ Clause

The . COPY clause is used in association with a file-name or a data-name in
FD, SD, RD, data description, and report group description entries. The COPY
clause is used to direct the compiler to duplicate text from the source program
‘or a llbrary into the source.program. :

4-2 ' j DpD26

COBOL provides two distinct and mutually exclusive COPY functions. The
first function, referred ta as HIS COPY, has been available in the pre-standard
version of COBOL. The second function, referred to as the American National
Standard COPY, represents Level 2 of the American National Standard COBOL
X3.23-1968 library facility.

Section VIII of the COBOL Reference Manual contains the descriptions,
formats, and syntax rules for the COPY functions. Section XIV of this manual
describes the COBOL library facility with associated source library formats and
related examples of the COPY options.

JUSTIFIED Clause

The JUSTIFIED clause in a data description entry is used to specify
nonstandard positioning of data within a receiving data item.

When the storage area of a data item receives data resulting from an
arithmetic or data movement procedure, the standard rules for positioning the
value within the receiving area are:

1. If the receiving item is numeric, the assumed decimal point of the
‘'sending data item is aligned with that of the receiving data item, and
each end of the value is zero-filled or truncated, as required.

2. If the receiving item is an edited numeric item with an’ actual or
- implied decimal point, the value is aligned by decimal point with fill
or truncation on either end, as required.

3. If the receiving item is alphanumeric (other than a numeric edited
data item) or alphabetic, the sending data item is moved to the

receiving character positions and aligned at the leftmost character
position in the data item with space-fill or truncation to the right.

The JUSTIFIED clause can be used to reverse the standard rule for
nonnumeric items (rule 3 above). This causes the value to be right-justified
with space~fill or truncation on the left.

The JUSTIFIED clause can be specified only at the elementary item level, It
must not be specified for an item that has any of the following properties:

1. Class numeric or numeric edited.

2. Usage other than DISPLAY.

3. Actual or assumed decimal point.

Level-Number/Data-Name Entries

Level-number entries show the hierarchy of data within a logical record or
report group. They are also used to identify entries for condition-names,
working-storage data items, noncontiguous data items, and the ‘RENAMES clause.

A level-number is required as the first element in each data description
entry.’’ : -

4-3 L DD26

_Data description entries that are subordinate to FD or SD entries may use
level-numbers with values in the range 01 (or 1) through: 49, or level-number 66,
or level-number 88. Report group description entries that are subordinate to- an.
RD ‘entry may only use level-numbers whose values are in the range 0l through 49.

Multiple level 0l entries that are subordinate to a level indicator (FD,
'SD) represent implicit redefinitions of the same area. The first occurrence
defines an area and all subsequent occurrences redefine the same area.

A level 0l entry must be used to identify the first entry in each record
description and in each report group description. When no real concept of level
exists, the special level-numbers 66, 77, and 88 are assigned as follows:

1. Level-number 66 is used in a data -description entry to identify
RENAMES entriedgs: Format 4 of the data description skeleton described .

2. Level-number 77 entries may be used in the Working-Storage Section to
identify noncontiguous data.items. The level-number 77 entry must be
specified as shown in Format 3 of the data description skeleton.

3. Level-number 88 entries are used to define condition-names associated
with conditional variables and may be wused in the Working-Storage
Section and the File Sec¢tion. Format 5 of the data description
.skeleton must be used. ‘ :

OCCURS Clause

‘ The OCCURS clause in a data description entry is used to define tables of
repeated items. It is required when the data either might mnot exist or might
occur more than once. When the OCCURS clause is not specified, one occurrence is
assumed. This clause must not appear in entries with level-numbers 01, 66, 77,
or 88, nor with entries which have subordinate variable occurrence data items.

If an item is described with the OCCURS clause, its data=-name must be
subscripted or indexed in ‘all references, If it 1is a group item, then each
data-name belonging to the group must be subscripted or indexed in each
reference except for the SEARCH statement. If an item's record description entry
includes an OCCURS <clause, the other descriptive clauses apply to each
occurrence of the item being described. ‘

A table item may be a conditional variable. The condition=name entries
follow the conditional variable, as usual, and do not contain OCCURS clauses.
Any references to such condition-names require subscripts or indexing.

The INDEXED phrase is required when the subject of this data description
entry (or an entry subordinate to this entry if it is a group item) is to be
referred to by indexing. The index-names identified in the OCCURS clause are not
defined elsewhere since the allocation and format of these index-names is
‘hardware dependent. Not being data, these index-names cannot be associated with
any data hierarchy. The index-~names must be unique within the program.

4-4 , DD26

The KEY phrase is used to indicate that the repeated data is arranged in
ascending or descending order according to the values contained in - the
data-names referenced by the phrase. The data-names are listed in their
descending order of significance, from most significant to least significant,

If the data-name in the KEY phrase is not the subject of this entry, then:

a. All of the items identified by the data-names used in the KEY phrase
must be contained in the group item that is the subject of this entry.

b. The items identified by the data-names in the KEY phrase may not be
described by an entry that contains an OCCURS clause or be subordlnate
to an entry containing an OCCURS clause.

If the number of occurrences may vary, Format 2 must Dbe specified.
Integer-1l indicates the minimum number of occurrences and integer-2 specifies
" the maximum number of occurrences. Integer-l may be zero to ‘indicate that the
. data might not exist. In any case, integer-2 must not be a zero.

The DEPENDING phrase in Format 2 is required‘ only when the end of the
occurrences of the item cannot otherwise be determined.

A group or record is said to have 'variable length' if any item subordinate
to it is described with Format 2. The following restrictions apply to any 1tem
with a variable number of occurrences and to any group containing such an item:

1. It cannot be subordinate to an OCCURS item.

2, It cannot be redefined or be subordinate to an item which is
redefined.

3. It cannot appear in a redefinition.

4. It must not be used for partitioned records.

Unless the DEPENDING phrase is also specified, the integer~1 option does
not affect the object program. (The DEPENDING phrase must not be specified
unless integer-1l is also specified.)

The results obtained from the use of OCCURS...DEPENDING are generally
. different from one computer to another.

The DEPENDING phrase may not be specified in the record descriptions of a
sort file or a merge file.

In its internal format, an OCCURS...DEPENDING table has a memory area of
sufficient size to hold the maximum number of occurrences. The significant items
are understood to appear in successive positions at the beginning of the table;
unused item positions at the end of the table are called table residue. The
contents of the residue area are unpredlctable. The table residue is suppressed
on the peripheral device.-

4-5 : DD26

In the File Section, OCCURS...DEPENDING results in suppressing table
residue on the peripheral dev1ce, as described below, when the following
criteria are met: :) ')

1. Data-name-l is described as COMP-1,
2, Data~name~l1 is subordinate to the same record description entry.

3. Data-name-l precedes the data .description entry containing the
OCCURS. . .DEPENDING clause. :

When compression 'is to take place, the compiler will automatically generate’
a process area for the file, regardless of whether or not the APPLY PROCESS AREA
phrase is specified in the I-~0-CONTROL paragraph.

- When a WRITE statement references a record that may be compressed, the:
object program examines: the output record for opportunities for residue
suppression. Such opportunities are rejected unless two or more machine words
can be suppressed. In the latter case, suppression proceeds on a machine word
basis; the whole-word portion of the residue of each table is replaced by a
single control word. Each variable~length table 1in the record presents an
. opportunity for residue suppression. Actual suppression takes place in an
implicit move from the process area to the output buffer.’) ‘

When a READ stateément references a file containing records that may be
compressed, the record is implicitly moved from the input buffer to the process
area and expanded to the format it had in memory prior to residue suppression.

Consider a data record described as follows:

01 SAMPLE-RECORD.
02 FIXED-PORTION.

03 MISCELLANEOUS; PICTURE X(20).
03 ENTRY-COUNT; PIC 99 COMPUTATIONAL-1.
03 OTHER-DATA; PICTURE X(16).

02 VARIABLE-LENGTH-TABLE.
03 ENTRY; PICTURE X(4); OCCURS 1 TO

15 TIMES DEPENDING ON ENTRY-COUNT.
02 MORE-FIXED; PICTURE X(20).

4-6 o DD26 -

The ﬁéllowing illustration shows the
external formats of SAMPLE-RECORD when the value of ENTRY-COUNT happens

Internal Format
' for
SAMPLE~-RECORD

MISCELLANEOUS

implied fill

ENTRY-COUNT: 7

OTHER-DATA

ENTRY (1)
through
ENTRY (7)

"MORE-FIXED

(Shaded area
represents
table residue)

VLR
control

word
\'

~——— A

Residue suppressed

automatically
at WRITE time

—

Internal format
restored
automatically
at READ time

4-7

relationship of the

External Format

]

previous
records

19 0

occurs
control word

MISCELLANEOUS

implied £ill

ENTRY-COUNT: 7

OTHER-DATA

S

ENTRY (1)
through
ENTRY (7)

» residue
control word

MORE-FIXED

Subsequent

records

internal
to be

and

IThe occurs and re51due control words contain a word count in the lower half and
a relative beginning word position in the upper half. ‘

DD26

When the OCCURS...DEPENDING clause is specified for any record of a file
; that may be compressed, the data format of the flle is aff9cted as follows-_

1. The variable-length record (VLR) format is automatically applied.
2. The recording mode must be binary (explicitly or implicitly).

3. In addition to any residue ~suppression control words needed, = each
record on the peripheral device begins with a control word required
for reconstruction,

) In the DEPENDING phrase, data-name may be qualified but must not be-
subscripted. ' '

-T¢"enhance object program eff1c1ency, table items should be referenced:
using indexes or referenddéd using subscripts described with USAGE COMP-1.
Erroneous data will be obtained if the subscript value is greater than zero but.
less than the minimum occurrence number specified in the OCCURS clause. 1In the
EIS mode, subscripts must contain a value greater than zero; otherwise, an FO
memory -address fault will occur.

If the OCCURS clause is used, there is no implication that the data item is
synchronized., To obtain improved object program efficiency, consideration should
be given to specifying the SYNCHRONIZED clause for table items.

PICTURE Clause

The function of the PICTURE clause is to represent the standard data format
of an elementary item, to describe the general characteristics of -the item, and
to énable special report editing.

‘A PICTURE clause may be specified only at the elementary item level.

The PICTURE clause must be specified for every elementary data item except
~an index data item, in which case the use of this clause is prohibited.

_ A character-string consists of any allowable combinations of characters in
the COBOL character set used as symbols. These combinations determine ‘the
category of the elementary item.

The maximum number of symbols allowed in a PICTURE charactefrstring is 30.

-If a PICTURE clause specifies insertion editing, part of the receiving item
is subject to a size limitation. The limited part of the receiving item consists
of that portion of the item bounded on the left by the leftmost noninsertion
character and bounded on the right by the rightmost noninsertion character.

4-8 | ' DD26

Example:

PICTURE Limited Part
BBB999,999.99000 999,999.99

B(n)X(n)B(n)X(n)B(n) X(n)B(n)X(n)
X(n)B(n)9(n) ‘ X{n)B(n)9(n)

The maximum size of - the 1limited part of the receiving item may be
determined from the following relationship:

108 == 3e+n
where:

e represents the number of simple and/or - special insertion symbols
(',', 'B', '0', '.') exclusive of leading and trailing insertion
symbols.

n represents the number of noninsertion symbols ('X', '9', 'A').

Example:

Limit
PICTURE _e n 3e+n Exceeded?
XB(35) XX 35 3 108 No
B(5) XB(35) XXB (5) 35 3 108 No
X(55)BX(50) 1 105 108 No
B(5)X(55)BX(50)B(5) 1 105 108 No
XB(10)XB(25)X 35 3 108 No
X8(35)X 35 2 107 No
XB(36)X 36 2 110 Yes
XB(10)XB(20)XB(5)X : 35 4 109 Yes
B(10)XB(20)XB(5)XXB(10) 25 4 79 No

If the maximum size of the limited part of the receiving item is exceeded,
the compiler will issue the following error message:

ITEM IS TOO LARGE FOR EMBEDDED = INSERTION
CHARACTERS-TRUNCATED BUT 'ALSO REGARDED AS UNUSABLE.

The allowable characters (or symbols) which may appear in a
character-string are defined and described in the COBOL Reference Manual
according to the category definition of the data item being described by the
'PICTURE clause and according to the associated MOVE category of the data item.
Five categories of data may be described with a PICTURE .clause; alphabetic data
items, numeric data items, alphanumeric data items, - alphanumeric edited data
items, and numeric edited data items.

4-9 | ; | ~ DD26

EDITING RULES

. Two general methods are used to perform editing in the PICTURE clause,
either by insertion or by suppression and replacement. The four types of
insertion editing are: o

S a. Simple insertion.
b. Special insertion.
c.‘v_Fixed insertion.

d. Floating insertion.
The two types of suppression and replacement editing are:

a. Zero suppression ‘and replacement with spaces.
b. Zero suppression and replacemect'with asterisks.
The type of editing which may be performed upon an item depends on the

category to which the item belongs. The following list indicates which type of
editing may be performed upon a given category: :

Category Type of Editing

Alphabetic None

Numeric : None

Alphanumeric None

Alphanumeric Edited Simple insertion, '0' and 'B'

Numeric Edited All, subject to the floating 1nsertlon
' ' rule given below

‘Any Variable- : None

Length Item

Flcating insertion editing and editing by zero suppression and replacement
:are mutually exclusive in a PICTURE clause. Only one type of replacement may :be
used with zero suppression in a PICTURE clause.

Refer to the PICTURE clause in the COBOL Reference Manual for detailed
‘descriptions of the six types of editing listed above and to determine the. order
of precedence when us1ng characters as symbols in a PICTURE character-string.. '

REDEFINES Clause

The REDEFINES clause is used to apply alternative descriptions to the same
memory area. When it appears in a record description entry, the REDEFINES clause
must immediately follow data-name-1 (the :subject data-name). The level-numbers
of data-name-l1 and data-name-2 must be 1dent1ca1 but must not be level-number 66
. or level—number 88. .

4-10 : . ' DD26.

The REDEFINES clause must not be specified in level 0l entries in the File
Section. The same memory area is implicitly.redefined by each successive level
01 entry belonging to the file.

Data-name-2 is the data-name of the item which occupies the memory area
being redefined. Redefinition begins at data-name-2 and continues until a
level-number less than or equal to that of data-name-2 is encountered. The
record description entries giving the new descriptions of the memory area ' must
immediately follow the entries giving the prior definition. '

Example:

02 A ...
03 ...
03 ...

02 B REDEFINES A ...

If several alternative descriptions are to be applied to a memory area,
each new REDEFINES clause must refer to the data-name of the entry that
originally defined the memory area. : '

Continuing the above example:

02 B REDEFINES A ...
02 C REDEFINES A ...

The level-number of data-name-l1 must be the same as that of data-name-2.
The area being redefined is that described by the data-name-2 entry and all of
its subordinate entries, terminated by the data-name-1l entry.

The following restrictions must be observed:

1. The data description entry for data-name-2 cannot contain an OCCURS
" clause nor can data-name-2 be subordinate to an entry c¢ontaining an
OCCURS clause, Neither the original definition nor any subsequent
redefinitions of the area can include an item whose size is variable

as defined for the OCCURS clause.

2. The VALUE clause must not appear in the record description entry for
data-name-l, nor in any of ‘its subordinate entries, except in
condition-name entries.

3. If a numeric data item is redefined by an alphanumeric data item or
vice versa in the EIS mode, the numeric item must contain only numeric
data when it is referenced in an arithmetic statement. A reference to
a numeric item that contains nonnumeric data will result in the abort
message ILLEGAL EIsS DATA at execution time,

4-11 » : ‘ DD26

When the REDEFINES clause is -specified in the Working-Storage ' Section
-and:-‘more than fifty noncontiguous data items (lewvel 77) .are -defined,
the REDEFINES clause and the item it redefines must be included in the
same group.of fifty items; that is, in the first - fifty level 77 items,
or the second flfty level 77 items, etc.

Redefinition of an alphabetlc or alphanumerlc data ‘item. by a
‘double~precision numeric COMPUTATIONAL, COMPUTATIONAL-1, or
COMPUTATIONAL-2 data item may result in an incorrect (odd) address for
the numeric item and the following error message: ,

ER REDEFINITION EXCEEDS CAPACITY OF ORIGINAL DEFINITION

Exémple{

77 DBLP PIC 9(18) COMP-1.

77 1WORD PIC X(6).

"77 DBLWD PIC X(12).

77 D918CMP1 REDEFINES DBLWD PIC 9(18) COMP-l.

In the above example, an odd address would be assigned to D918CMP1l. If
the redefined and the redefining item entries are reversed in the
above example, a correct address will be assigned as -shown below:

77 D918CMPl PIC 9(18) CoMP-1.
77. DBLWD REDEFINES D918CMP1l PIC X(12).

. ‘The following combinations are permitted:

1.

The record description entry for data-name-2 or entries subordinate to
it may contain the VALUE clause without violating t..e above rules. (If
an initial value is to be specified, it must be given in +the first
definition of the memory area.)

The record description entry for data-name-1 or entries subordinate to
it may contain the OCCURS clause without violating the. above rules.
Furthermore, entries subordinate to data-name-1 may contain the OCCURS
clause (an item containing a table can be redefined, or a redefinition
can contain a table, but an item within a -table cannot be redefined).

_ When initial values are to bé specified for the items in a working-storage
table, a combination of the VALUE, REDEFINES, and OCCURS clauses is often used.

Example:

02

02

TAX-RATES. : :
03 FILLER PICTURE V99 VALUE .l14.

03 - FILLER PICTURE V99 VALUE .15,

03 FPFILLER PICTURE V99 VALUE .1l6.
03 FILLER 'PICTURE V99 VALUE .17.

.

. (21 additional entries)

"RATE-TABLE REDEFINES ' TAX-RATES.

03 RATE PICTURE V99 OCCURS 25 TIMES.

4-12 ' DD26

The REDEFINES clause specifies only the redefinition of a memory area, not
of the data items occupying the area. If the SYNCHRONIZED clause resulted in
nnused character positions in the original definition of the area, other than to
the left of the first item being redefined, the new definition must account for
all such character positions. If the first item in the original definition is
synchronlzed unused character p051tlons to 1ts left are not con51dered a part
of the area being re 'efined. '

Noncontiguous da 2 items are automatically synchronized to produce more
efficient coding. If a noncontiguous data item is redefined, the redefining data
description entry will I assigned the same - synchronization as the redefined
data description entry.

RENAMES Clause

The RENAMES clause is a level-number 66 data description entry that may be
used to supply an alternative data-name for an elementary item, or to indicate
regrouping of items., One or more RENAMES entries may be applied to the data
items within a logical record. They must be specified as the last entries
subordinate to the level 01 entry, and cannot themselves have subordinate
entries.

Data-name-2 and data-name-3 must be names of elementary items or groups of
elementary items in the associated 1logical record, and cannot. be the same
data-name. A level 66 entry may not be used to rename another level €6 entry nor
may it be used to rename a level 01, 77, or 88 entry.

Data-name=~1 may not be used as a qualifier, and may only be qualified by
the names of the level 01,. FD, or SD entries. Neither data-name-2 nor
data-name-3 may be a repeated item (that is, neither may have an OCCURS clause
in its data description entry nor be subordinate to an item that has an OCCURS
clause in its data description entry). Data-name-2 and data-name-3 may be

“qualified. '

If data-name-3 is specified, data-name-1l is a group item that includes all
the elementary items starting with da a-name-2 (if data-name-2 is an elementary
item) cr starting with the first elem¢ntary item in data-name-2 (if data-name-2
is a group item), and concluding with data-name-3 (if data-name-3 1is an
elementary item) or concluding with the last elementary item in data-name-3 (if
data-name-3 is a group item). The data description entry for data-name-2 must
precede that of data-name-3, If data-name-2 is a group item, data-name-3 must
not belong to that group. '

If data-name-3 is not specified, data-name-l assumes the properties of
data-name-2; its group or elementary status is. thereby determined, and if
data-name-2 is .an elementary item, then data-name-1 ‘assumes the same
description. ' ' :

4-13 ' ' . DD26

SYNCHRONIZED Clause -

The optional SYNCHRONIZED clause in a data description entry is used to
specify - the allgnment of an elementary item w1th1n a gomputer word or words. It
~may appear only in an elementary entry.

The SYNCHRONIZED clause indicates that the item's storage area is organized
in integral computer word lengths. The SYNCHRONIZED clause depends upon the
particular characteristics of a computer. In Series 60/6000 COBOL, SYNCHRONIZED

-relates the item's p031t10n to the 51x—character word lenqth of the machine. See
Section 1II.

_ A synchronized data item utilizes the smallest number of consecutive whole
‘words that can contain it, Its p051t10n in the words it .occupies is independent
of the preceding and following record’ descrlptlon entries.

The SYNCHRONIZED LEFT option causes the data item to be oriented in such a
way that its first character occupies the first position of the initial woxd.
Fill characters follow the last data character of the item in the unused
positions of the last word, as the following example illustrates:

Description ' ' Resulting
of Item) Orientation
03 D PIC X(2) SYNCHRONIZED LEFT. D D (fill)
03 E PIC X(6) SYNCHRONIZED LEFT. EEEETEE
03 F ©PIC X(7) SYNCHRONIZED LEFT. FPFFFFPF
’ . , F (£fill)

. The SYNCHRONIZED RIGHT option causes the data item to be oriented in such a
way: that its last character occupies the last position of the final word. Fill
characters precede the first data character of the item in the unused posxtlons
of the first word, as the following example illustrates:

Description Resulting
of Item . Orientation

03 A PIC X(2) SYNCHRONIZED RIGHT. (£ill1) A A
03. B PIC X(6) SYNCHRONIZED RIGHT. BBBBBB

03 C PIC X(7) SYNCHRONIZED RIGHT. (£il11) C
; ‘ccccecc

A reference .to any group item, regardless of its level-number, does noé
include the unused character positions of the first elementary item in the group
1f the group ltem is synchronized right.

3/771 v 4-14 ' DD26A

Since synchronized items never share the words they occupy . with other
items, fill characters may be required in the word preceding the first word of a
synchronized item, as the following example illustrates:

Description , ' Resulting
of Item ' Orientation
01 G.
02 H PIC X(8). HHHHHH
02 I PIC X. HHI (fill)
02 J PIC X(3) SYNCHRONIZED RIGHT. (£il11)0 J J
02 K PIC X(4). K KK KL (one fill)
02 L PIC X. ' MMMMMM
02 M PIC X(6) SYNCHRONIZED LEFT.

The fill characters noted above are implied by the combination of the
item's size and the SYNCHRONIZED clause. The fill character positions cannot be
described (except with the REDEFINES clause). An attempt to specify such £fill
characters via FILLER will cause undesired results, as the following example
illustrates: . :

Description : ’ Resulting

of Item ‘Orientation
01 pP.
02 Q PIC X(8). . QOO QQQQ
02 R PIC X. QQRFIL
02 FILLER PIC X(6). : L E R (fill)
02 S PIC X(3) SYNCHRONIZED RIGHT. (£fill) s s S

A special type of word synchronization is applied to COMPUTATIONAL-n items.
Each COMPUTATIONAL-n item monopolizes the computer word or words that contain
it, so that fill characters may be required to complete the word preceding a
COMPUTATIONAL-n item., Unlike DISPLAY-n items, however, COMPUTATIONAL~n items
fully occupy the word or words which contain them. Thus, fill characters will
never be present within a word that is used as a COMPUTATIONAL-n item.

; The size of a synchronized data item ‘excludes unused (£i11) - character
positions. : :

COMPUTATIONAL-n items occupying one word are:
1. COMPUTATIONAL items in one of the following categories:

"Number of ’ Number of

Integral Fractional
Digits Digits
1-8 0
0-5 1-3
0-3 - 4-5
0 6-8

2. COMPUTATIONAL-1 or COMPUTATIONAL-2 items with no more than eight
digits specified in their data descriptions.

'3, . COMPUTATIONAL-3 items.

4-15 N ' ; DD26

COMPUTATIONAL-n items occupying two words are:

1. COMPUTATIOMAL items not in one of the above categories.

. 2. COMPUTATIONAL-1 or COMPUTATIONAL-2 items with more than

specified in their data descriptions.’

eight digits

‘A one-word COMPUTATIONAL-n. item may occupy any word of a record. A
two~word COMPUTATIONAL-n item, however, must begin an even number of words from

the beginning of the record which contains it..

a two-word item as the following example illustrates:

‘Description
of Item

01 A&,
02
02
Packed

the other computational USAGE items. are aligned on

following

Resulting
Orientation
B PICTURE 99V99 COMPUTATIONAL. - ~-BBBB
C PICTURE 9i(10)V99 COMPUTATIONAL. - (fill) -
s ccccecce
ccccc

o Yol

Fill characters may precede such

decimal items are aligned on word or half-word boundaries whereas

containing packed decimal data items:

01 REC-NAME.

full-word boundaries. The
is an example of space allocation for a record description entry

02 FIELDl PIC X(4).
02 PACK1 PIC S9(7)V9 USAGE COMP-4.
02 FIELDZ PIC X.
02 PACK2 PIC S9(3) COMP-4.
02 PACK3 PIC 9(7) cCoOMP-4.
02 FIELD3 -PIC S9(6) COMP~-1.
Word O 56 9 1112 1718 2324 27 2930 35
0 X X X X unused unused
1 o 9 |9 Jo 9 9 o] o 9 |of 9
2 | 0f Sign{ u 0 |unused | unused X unused unuéed
3 ol 9 |9 |ol 9 | sign jo| o 9 o 9
4 0] 9 9 0 9 unused unused
5 S{(‘* — ~ binary integer »
H .
3/77 4-16 DD26&

To minimize the amount of leading fill resulting from synchronized items,
such items should be grouped together within a record description, rather than
scattering synchronized items among nonsynchronized items, Two-word
COMPUTATIONAL-n items should be grouped together and all COMPUTATIONAL-n items
should be grouped with synchronized items.

The £ill characters resulting from the SYNCHRONIZED clause or
COMPUTATIONAL-n usage appear in both the record's internal format and its
external format. Otherwise, when the SYNCHRONIZED clause is omitted, data
storage areas are assigned without regard to computer word length. The last
character position of a given item is adjacent to the first character position
of the next item. However, a level 01 or level 77 item always begins in a new
word; it starts in the leftmost character position unless the SYNCHRONIZED RIGHT
option is specified or the class of the item is numeric. In the latter cases,
the data item is aligned to end in the rightmost character position in a word. A
redefinition. of the data item will be aligned to correspond with the
synchronization of the level 01 or level 77 data item.

If a synchronized area is being redefined and the first item in the
original definition 1is SYNCHRONIZED RIGHT, the area being redefined begins in
the leftmost character position of the first word allocated to the original
item. If the last item of the original definition is SYNCHRONIZED LEFT, the area
being redefined extends to the rightmost character position of the last word
allocated to the original item.

If the data description of an item contains the SYNCHRONIZED clause and an
operational sign, the sign of the data item will appear in the least significant
character position of the data item, regardless of whether the item is
SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

‘ If an OCCURS data item is synchronized, each occurrence of the item will be
synchronized. :

USAGE Clause

The USAGE clause in a data description entry is wused +to indicate the
dominant use of a data item or the manner in which a data item is to be
represented in memory. It does not affect the use of the data item, although the
rules for some statements in the Procedure Division may restrict the use of the
USAGE clause for the operands referenced.

If the usage of a data item is not specified, it is assumed to be USAGE
DISPLAY.) ' i

The USAGE clause may be specified at any level of a hierarchical structure.
If this clause is specified at a group level, it applies to all of the-
subordinate elementary items in the group and no subordinate item may specify a
different usage. '

The external format of a data item (as it is stored on a peripheral device)
and its internal format (as it is stored in memory) are always the same.

3/77 . o 4-17 ‘ : o DD26A

" DISPLAY ITEMS

When the USAGE clause specifies a display item;‘therdata item is stored in
the: form of one or more standard data format characters. The USAGE clause
permits a choice of the following internal formats for display data items.

USAGE DISPLAY Items

USAGE DISPLAY represents character-oriented data.. The data item is stored
in the: native (Series 60/6000) six-bit character set. The PICTURE clause
description may imply alphabetic, alphanumeric, numeric, or numeric edited data -
items. : ' o

USAGE DISPLAY is preéfeérred for data that is to be printed or punched.

USAGE DISPLAY-1 Items

USAGE DISPLAY-1l represents edited floating~-point data. The data item is
stored in the native (Series 60/6000) six-bit character set. The class of’ the
item is implicitly alphanumeric, and it is formatted as a Numeric Representation
Set 3 character-string as specified in the American National Standard.for the
Representation of ‘Numeric Values in - Character Strings for Information
Interchange (X3.42-1975). ‘ '

The format of a DISPLAY-1 data item must be specified via the PICTURE
clause using the following special format of the PICTURE character-string:

+ +

9.9(n)E 99

The edited floating-point construct, similar to the D- and E-conversions of
the FORTRAN language, is useful only for very large or very small values which,
in a normal DISPLAY format, would begin or end with a long string of zeros. In
particular, computations involving COMPUTATIONAL-2 .items (see below) may
sometimes produce results for which the DISPLAY-1 format' is needed. °

USAGE DISPLAY-2 Items

"USAGE DISPLAY-2 represents character-oriented data. The data item is ~
stored in a nonnative six-bit character set. The character set is the
commercial collating character set described in Appendix D. '

The PICTURE clause descfiption must imply a «class of alphabetic or. .
alphanumeric for the data item. ’ . :

‘Although a DISPLAY-2 data item may not be compared to an item having ‘any
other USAGE, it may be compared to literals-and figurative constants.

3770 . 4-18 ‘ ~ DD26A.

DISPLAY-2 data items must be explicitly moved to USAGE DISPLAY items if
they are to appear on punched cards, printer 1listings, or similar external
media. This function cannot be accomplished with a REDEFINES clause.

The PICTURE of a DISPLAYFZ data item must. not specify editing.

COMPUTATIONAL ITEMS-:

Computational data item formats are used to obtain both internal and
external space-saving and performance advantages. The internal format invoked
for a computational item: must not conflict with the data characteristics
specified for the item in the PICTURE clause. : :

Computational items are not stored in a manner related to the character
position subdivisions of a computer word. The storage techniques are described
in the preceding SYNCHRONIZED Clause discussion and in Section IT.

Since a stored computational item has no character orientation, an attempt
to manipulate it as if it were made up of characters is meaningless. Thus, the
‘storage area may be redefined for some distinct purpose but not, for example, to
give separate access to the integral and fractional parts of the computational
item., For similar reasons, a group MOVE statement involving computational items
should normally entail only sending and receiving groups with similar
descriptions; a MOVE CORRESPONDING statement should be used otherwise. . COBOL
rules do not require adherence to the suggestions given in this paragraph, but
the user must ensure that the application of a group MOVE statement or of a-
redefinition is legal.

The preferred format for all items used as subscripts or as objects of the
DEPENDING phrase in the OCCURS clause is either COMPUTATIONAL-3 or
COMPUTATIONAL~1 with a PICTURE containing eight or less digits.

In most commercial data processing applications, particularly where dollars
and cents are involved, a high degree of decimal precision is expected. Since
the ultimate accuracy for maximum length composite of operands (18 digits) in
arithmetic statements may not be attainable due to floating-point hardware
limitations, COMPUTATIONAL-2 should not be used where decimal precision is

required. The special decimal-precision processing applied to computational
" items compensates for the floating-point hardware limitations in most cases.

The USAGE clause permits a choice of the following internal formats for
computational data items. :

USAGE COMPUTATIONAL Items

USAGE COMPUTATIONAL represents decimal~precision binary data. The data
item is stored as a synchronized signed floating-point binary number. The
PICTURE clause description must conform to the rules for numeric items.
Computational is the preferred usage for items involved in calculations w1th1n a
processor that does not contain the Extended Instruction Set (EIS)

.

3/717 " . 4-18.1 : - E DD26A

USAGE COMPUTATIONAL-1 Items

USAGE COMPUTATIONAL-1l represents binary integer data.. The data item is
stored as a synchronized signed fixed-point binary integer. The PICTURE clause
description must conform to the. rules for numeric items and the assumed decimal
point must be immediately to the right of the rightmost digit position.

If the PICTURE clause specifies eight or less'diglts, the item is stored as
a single-precision blnary integer; otherwise, it is stored as a double—pre0151on
binary integer. It is the responsibility of the wuser +to 'ensure that a
double=-precision binary integer begins in an even word storage location.

_ Altheugh it is stored as a binary number,'a COMPUTATIONAL~1 item's value is
egual to the decimal "value of the 'item because COMPUTATIONAL-1 items are-
restricted to integral values. : : :

USAGE COMPUTATIONAL-2 Items

USAGE COMPUTATIONAL-2 represents floating-point binary data. The data item
is stored as a synchronized signed floating-point binary number., The PICTURE
clause description must conform to the rules for numeric items.

If the PICTURE clause specifies eight or less digits, the item is stored as
a. single-precision floating-point number; otherwise, it 1is stored as a
double-precision floating-point number. It is the responsibility of the user to
ensure -that a double-precision floating-point number begins in an even word
storage location. ’

The COMPUTATIONAL-2 usage is especially effective for the operands in an
elaborate formula. Should an operand value or an intermediate or final result
exceed 10 18 or be 1less than 10~18, * only the floating= point binary format
provides enough significance-to yield meaningful results., ;

The mantissa of a COMPUTATIONAL-2 item is a pure binary fraction and
consequently is not necessarily. exactly equivalent to the item’s decimal value.
The equivalence may be sufficiently close, however, for practical purposes.

USAGE COMPUTATIONAL-3 Items

USAGE COMPUTATIONAL-3 represents. single-precision binary integer data. The
data item is stored as a synchronized signed single-precision fixed=-point binary .
integer. The PICTURE clause description must conform to the rules for numeric
items. and the assumed decimal point must be immediately to the right of the
rightmost digit position. The PICTURE clause may specify at most ten digits.

USAGE COMPUTATIONAL-4 Items

USAGE COMPUTATIONAL-4 represents packed decimal data. The data item is
stored as a synchronized fixed-point packed decimal number. The PICTURE clause’
description must conform to the rules for numeric items. If the PICTURE
character-string specifies an operational sign, the sign will be stored as a.
separate = digit; that is, the data item.will be one digit larger than the number
of character positions described in the PICTURE. character-string.. If USAGE-.
COMPUTATIONAL-4 is specified for a group item, the group item itself will be:
considered to be alphanumeric. ' '

3/77 , ‘ 4-18.2 o ' DD26A

Data using this format can be processed only on a computer that has the
Extended Instruction Set (EIS) capability.

INDEX ITEMS

The USAGE INDEX clause can be written at any level. When it is used to
describe an elementary item, the item is called an index data item. If the
USAGE INDEX clause describes a group, the elementary items that make up the
group are all index data items. An index data item is used to contain a value
that corresponds to the occurrence number of a table element. The actual
content of the index data item may depend upon the description of the table
element. In any case, the method of representation of this wvalue 1is
single-precision binary integer.

An index data item must not be a conditional variable.

An index data item can be referenced directly only in a SEARCH statement, a
SET statement, or in a relation condition. An index data item can be part of a
group that is referenced in a MOVE statement or an input-output statement, in
which case no conversion takes place.

The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SYNCHRONIZED, and VALUE clauses
must not be used to describe group items or elementary items described with the
USAGE INDEX clause. If a group item is described with the USAGE INDEX clause,
the elementary items in the group are all index data items. The group item
itself is not an index data item and must not be used in SEARCH statements, SET
statements, or in a relation condltlon.

/77 : 4-18.3 v ' DD26A

VALUE Clause

The VALUE clause in a data description entry may be used to define the
initial value of working-storage data items, or the values associated with a
condition~name. Rules governlng its use differ with the respective sections of
the Data Division:

1l. In the File Section, the VALUE clause is meaningful only in
condition-name entries. A VALUE clause in a record description entry
in the File Section does not cause the item to assume the given value
in an output record. Instead, the value must be moved into the output
record via Procedure Division statements.

2, In the Working-Storage Section, the VALUE clause may be used in
condition~name entries, and it may also be used to specify the initial
value of any other data item. In the latter case, it causes the item
to assume the specified value at the start of object program
execution. If the VALUE clause is not used in an item's description,
the initial value is undefined.

3. In the Report Section, the VALUE clause causes the report data item to
assume the specified value each time its report group is presented.
This clause may be used only at the elementary 1level in the Report
Section.

A figurative constant may be substituted wherever a literal is specified in
the formats of the VALUE clause.

The VALUE clause must be consistent with the other elements of the item's
description., If the category of an elementary item is specified as numeric or
alphabetic, it does not contradict the alphanumeric category of group items. The
following rules apply to each literal in the VALUE clause:

1. If the category of the item is numeric, each literal must be a numeric
literal., It is aligned according to the item's description and the
rules given under the JUSTIFIED clause. The literal must not have a-
value that would require truncation of nonzero digits., A signed
numeric literal must be associated only with a signed numeric (S9)
PICTURE character=-string.

If the data description entry of a numeric item also contains the
BLANK WHEN ZERO clause, the literal must be a nonnumeric literal.

2, If the category of the item is alphabetic, alphanumeric, alphanumeric
edited, or numeric edited, all literals must be nonnumeric literals.
The literal is aligned according to the item's description and the
rules given under the JUSTIFIED clause. The number of characters in
the literal must not exceed the size of the item. If the item's
description specifies editing, the editing does not cause special
treatment of the value; instead, the literal is treated as if the item
had a simple alphanumeric description.

3. All numeric literals in a VALUE clause of an item must have a value

. .which is within the range of values indicated by the PICTURE clause;
for example, for PICTURE PPP99 the llteral must be within the range
.00000 to .00099.

4-19 ‘ . DD26

4. The function of the BLANK WHEN ZERO clause or of any editing
" characters in a PICTURE clause has no effect-on the initialization of
the item. The VALUE clause is the only clause:that may (depending on.
its usage) provide initialization. Editing: characters are included,
~ however, in determining the size of the item. Therefore, the value for

. an edited item must be presented in an edited form.

Format 2 of the VALUE clause is used only in condition~name entries. In a..:
condition-name entry, the VALUE clause is required; the VALUE clause. and the
condition-name itself are the only two entries permitted. Both the conditional
" variable and the condition-name entries may have VALUE clauses. .

Some of the possible ways of writing condition-name entries are:

nn “data~name.
88 condition-name-~l VALUE 1IS. literal-1l. .
'88 condition-name=2 VALUES ARE literal-2, 1literal-3.
- 88 condition-name-3 VALUES ARE llteral 4 AND
literal-5 AND...
88 condition~name~-4 VALUES ARE literal-6 THRU literal-7.

If the VALUE clause appears in an entry at the group 1level, the literal
must be a figurative constant or a nonnumeric literal. The literal is aligned
without consideration for the subordinate items belonging to the group. The.
" VALUE clause cannot be stated at the subordinate levels within this group.

Under certain conditions, a data entry must not contain a VALUE clause:

1. The VALUE clause must not appear in a data description entry that
contains an OCCURS clause or a REDEFINES clause,

2. Except in a condition-name entry, the VALUE clause must not appear in-
an entry that 'is subordinate to an entry that contains an OCCURS,
"REDEFINES, or VALUE clause. '

3. The VALUE clause cannot be used for an item whose USAGE IS INDEX. Such
‘ an item cannot be a conditional wvariable.

T4, The VALUE clause must not be specified for a group item containing
items with different usages, or for a group containing items which are
synchronized, justified, or which have usages other than DISPLAY.

‘5. Within a given record description, the VALUE clause must not be stated

‘in a data description entry that is subsequent to a . data description
entry in which an OCCURS clause with a DEPENDING ON phrase appears.

GROUPS OF ELEMENTARY ITEMS

Data items that are further subdivided are <called group items. A group
consists of a sequence of subordinate groups and/or elementary items. Refer to
. the COBOL Reference Manual (Format 3 of the data. description skeleton) for a

‘description of the specific format entries. : T

4-20 v : . DD26

The group record format is used for group item record description entries.
The following rules must be observed:
1. Level-number must be an integer in the range 1-49 or 77.

2. ' If the REDEFINES clause is specified, it must be written immediately
after data-name~1l. The other clauses may be written in any order.

3. The OCCURS clause cannot be used with level-number O01l.
A group entry may consist of only the level-number and data-name or FILLER,
with all descriptive clauses omitted. The BLANK WHEN ZERO, JUSTIFIED, PICTURE,

SYNCHRONIZED, and editing clauses are permitted in an elementary record
description entry but must not be specified in a group record description entry.

4-21 - S DD26

SECTION V

FILE PROCESSING

FILE PROCESSING CONCEPTS

File Declaration

Every data file to be processed by a COBOL program requires source program
statements in the Environment Division, Data Division, and Procedure Division.

A SELECT sentence for the file must be written in the FILE-CONTROL
paragraph of the Environment Division.

Various options relating to the file's format and processing techniques may
be specified in the I-O-CONTROL paragraph of the Environment Division,

An FD entry for the file must be written in the File Section of the Data
Division, unless the file has been described implicitly via the RENAMING phrase
in the SELECT sentence.

Record description entries must follow the FD entry, fully describing each
data record mentioned in the FD entry. The records may be described in any
order. Each data record's description must begin with a level 01l entry.

If USE procedures are employed in connection with label manipulation,
peripheral device errors, or report group presentations, each USE procedure must
appear as a separate section in the declarative portion at the beginning of the
Procedure Division.

Sequential-Access Processing

The, sequential-access technique applies to files stored on all types of
media such as magnetic tape, cards, and mass storage devices. Except for mass
storage devices, the sequential accessing of records has been the usual
technique available for file processing. This technique is also applied to mass
storage devices such as disk storage subsystems. Since mass storage devices also
have random-access capabilities, their use for sequential access must be
designated by phrases in the FILE-CONTROL paragraph of the Environment Division.
To establish that a mass storage file is to be accessed sequentially (similar to
tape file processing), the ACCESS MODE IS SEQUENTIAL and PROCESSING MODE @ IS
SEQUENTIAL phrases are required in the SELECT sentence for the file.

5-1 DD26

With the sequential-access technique, the READ statement accesses the next
logical record from the file and the WRITE statement releases a logical record:
for output. Therefore, the logical records appear on the peripheral device in
the order in which they are read, processed, and/or written.

Random=-Access Processing

The random-access technique applies only to' files that have been assigned.
to mass storage devices such as disk storage subsystems. The ACCESS MODE IS
RANDOM and PROCESSING MODE IS SEQUENTIAL phrases in the FILE-CONTROL paragraph
establish that a random-access technique is to be applied to the manipulation of .
records on that file.

The random-access technique differs from the sequential-access technique in
that references to logical records in the file are not necessarily in the ordex
of their appearance on the external device. Rather than spending time passing
over records of a file which may not be appllcable to the current problem, the
user directly accesses a logical record in the file by spe01fy1ng a key value
associated with that logical record. The ACTUAL KEY phrase in the FILE-CONTROL-
paragraph provides the data-name of the field containing the key value; the

hrase must be specified for random-access files,

Series 60/6000. COBOL reguires that the data-name specified in the ACTUAL
KEY phrase must be defined in a. level 01 or level 77 entry in the
Working-Storage Section as a single-precision binary integer. That is, the
.data~name must be described with: USAGE COMPUTATIONAL-3 or with USAGE
COMPUTATIONAL-1 with a PICTURE containing eight or less digits. The value of the
actual’ key data item must indicate the relative position of the 1logical record
within the file. The positioning of logical records is relative to the value
zero, although the use of the value zero itself is not recommended. The user is
responsible for controlling the contents of the ACTUAL KEY field. :

The READ and WRITE statements access a specific addressable record from a
mass storage file. In Series 60/6000 COBOL, there is one addressable record in a
block. The record size may be adjusted within limits for a mass storage device
by using the BLOCK CONTAINS clause in the file description entry for the file,

Open Status and Closed_Status

. A file is either open or closed at any given time. A file is open if an
OPEN statement has been executed and no CLOSE statement without the REEL option
has intervened; otherwise, it is closed. Therefore, a file is implicitly in the
closed status ‘at the start of object program execution, and returns to the
closed status when it is explicitly closed. ’

The follow1ng rules a83001ate the flle processing statements to the open or
closed; status of a file:

l. A file mentioned in an OPEN statement must be in the closed state when
- the OPEN statement is executed.

2, A file mentioned in any other input-output statement (such as READ,

- WRITE, or CLOSE) must be in - the open state when the statement 'is

executed.,

3. ~ The contents of a flle may not be referenced except when the file is
open. :

3/717 | s-2. ~ DD26E.

Any closed file can be opened, unless it has been closed with lock.
This means that a file can be reopened after it has previously been
processed and closed.

Only one file of a multiple file tape can be in the open state at any
given time, .

Input, Output, and I-O Modes

The OPEN statement specifies whether each file is to be opened in the INPUT
mode, the OUTPUT mode, or the I-O mode. The mode of a file that is not open is
indeterminate. Only mass storage files may be opened in the I-O mode.

The following rules associate the file processing statements to the ihput,
output, or input-output status of a file:

1.

Special

A READ statement may refer only to an open input file or to an open
I-0 file.

A WRITE statement may refer only to records of an open output file or
to records of an open I-O file.

If a file is closed, it may be opened either as input, output, or
input-output. Thus, a file can be processed as output, closed, and
then reopened for processing as input. (If desired, the file can then
be closed, reopened as output, and the o0ld data values can be
overwritten with new values.) ' ‘

'~ The I-O mode cannot be used to initially establish a file, but rather

may only be used to manipulate a file that has previdusly been
established in the OUTPUT mode.

On a file that is open in the I-O mode, the records may only be
modified; no insertions or deletions are allowed. To modify a record,
procedures are inserted between the READ and WRITE statements. A READ
statement followed immediately by another READ statement does not
affect the contents of the first record on the mass storage file.

File Processing

‘PROCESSING OPTIONAL FILES

A file may be optional in the sense that it may or may not be present for
processing, depending upon an option spec1f1ed at object program execution.
COBOL has a special -provision for processing optlonal input files but not for
optlonal output flles. ;

5=3 "DD26

An optional input file must be described as such using the OPTIONAL phrase
in the FILE-CONTROL paragraph. At program execution, the “OPEN statement for ‘the
file verifies whether a file control card has been included for :the ‘file, -‘among
‘the other GCOS control cards. If the card 'has been included, the file is
‘understood to be present, and. the file is processed in the normal manner. If the
card is omitted, the file is understood to be omitted, and the OPEN statement
activates the .end-of-file condition instead of .attempting ;the normal open
actions; the flrst READ statement produces no data record, ‘but ‘instead causes
the relevant AT END or INVALID KEY procedure to be .executed; and a 'subsequent
CLOSE statement restores the file to the closed status. ’ . o

To establish a conditionally existent output file, the .user must provide
.explicit tests to determine whether or not the file 1is to be produced at program
execution. The simplest way is to associate the file .with one of the software
;switchesgprovided_by sthe gperating system (see Section “WI). The .switch-status
cendition test may be used. Just before execution -reaches the relevant ' OPEN
statement, test the sw1tch If it is ON, continue processing, producing the file
@as usual. If the switch s :OFF, execute ALTER statements,, causing :appropriate ‘GO
'TO statements to bypass @he OPEN, MOVE, WRITE, and ‘CLOSE :statements referring to

PROCESSING NONLABELED MULTIPLE REEL FILES

_ COBOL rules state that a file must not be read after .an AT END return
unless it has first :been closed and then reopened. The -compiler itself cannot
detect violations of this nature, so no 'such check is .attempted, A special
feature makes the use pf READ statements after AT END .phrases very important
- .under certain circumstances. v S

Consider a multiple reel file on which label records are omitted. When the
object program is executed, the final reel cannot be identified automatically
‘from the tape contents. However, this condition can be determined with COBOL

- procedures, First, ascertain how many reels are .expected; .a suitable method
would be to obtain a,parameter giving the reel count from an ACCEPT statement.

. The following example illustrates how to achieve proper tape swapping -and true
.end-of-file detection.

’ Exampleﬁ

A. READ file-name AT END GO TO EOF-CHECK.

EOF-CHECK. SUBTRACT 1 FROM REEL-COUNT; IF REEL-COUNT IS NOT
D ZERO GO TO A ELSE CLOSE file-name
GO TO ENDING-ROUTINE.

}

When the physical end~of-~file mark at the end of each reel of the file is
reached, it will result in the execution of the AT END procedure for the active
‘READ statement. Execution of another READ statement then causes a tape swap, and
obtains the first data record from the next reel. Execution of -the .CLOSE
- ‘statement, on the other hand, entails standard nonlabeled file closeout

.conventions, : ' U S :

5-4 R - DD26

A nonlabeled tape is often terminated simply with a physical: end-of-file
mark. For a multiple reel file which is so constructed, the technique outlined
above is the only practical way to accomplish tape swapping. If, however, each
reel is terminated with a special data record whose value signals end of reel,
tape swapping can be accomplished via the CLOSE REEL feature, used in connection
with suitable IF tests, v

Tape swapping via READ statements executed after AT END is a special
feature provided by the Series 60/6000 software, and ma not be available on
other computers. :

PROCESSING STRANGER FILES VIA COBOL

A Stranger file is one which cannot be fully described ‘to COBOL; the
possible reasons are: ‘

1. The character set of the data as stored on the peripheral device does
not coincide with the character sets available to Series 60/6000
COBOL,

. V)
2., Data records are not arranged to occupy multiples of six characters.

3. Binary fixed- or floating-point numbers were produced on a computer
system using signed magnitude arithmetic or exponent sizes that differ
from Series 60/6000 requirements.

4., - Variable-length records do not have record control words in the format
required by the Series 60/6000 software; that is, variable-length
records appear on a BCD mode tape. ‘ v

5. Bit-coded parameters exist in the file.

A file with any of the properties listed above is probably produced by or
for a computer other than the Series 60/6000 computers. Files with any of these
properties, or many others, are nevertheless accessible to COBOL object
programs. .

GFRC provides dual entry point names (SYMDEFs) for many important
functions: ’

Standard Symbol Alternate Symbol
OPEN .GAOPE

CLOSE . +GACLS

GET) +GAGET

PUT .GAPUT

PUTSZ) : .GAPTS

WTREC +GAWTR

IOEDIT .GAEDI

PRINT .- +GAPRN

PUNCH « GAPNC

The two symbols for each entry point are entirely equivalent. By
convention, however, COBOL object programs utilize the alternate symbols- shown
above rather than the standard symbols. : .

5-5 . o DD26

Each alternate symbol utilized by a COBOL object program defines a point at
which a special subroutine may be inserted between the COBOL object program- and
the GFRC module. The insertion is accomplished by using the appropriate GFRC
alternate symbol as the entry symbol for the special subroutine. When such a
subroutine is present, it automatically intercepts all obJect program calls to
the GFRC entry point in question.

. 'For example, consider the GET function of GFRC, used for COBOL READ

statements. The object time execution sequence may be diagrammed for various -
circumstances. :

-1, Normally, no special subroutine is present.

Object
———»fProgram READ———P
Statement A’\\\
. GAGET Get Function
: of GFRC

2, A s1mple format conversion subroutine supplied by the user might
require GET. :

Object
—————®Program READ|—»
Statement)

Special .GAGET
.GAGET P Subroutine
Supplied by the User

+

GET GET Function
‘ of GFRC

3. A complicatéed stranger file format might requife the special .GAGET
subroutine to use GFRC services other than GET; when the object
program calls the subroutine .GAGET, it does not engage GET.

Object
—————PProgram READp———P
. Statement -

] Special .GAGET
«GAGET —p Subroutine
Supplied by the User

Tf

, _ READ Function
READ of GFRC used
Instead of GET

5-6 ‘ . DD26

A special subroutine of this kind is developed via GMAP as a relocatable
binary subroutine, having as its entry symbol the appropriate GFRC alternate
entry symbol. . :

Relationship of Reporting Verbs to File Processing

Reporting statements are closely related to WRITE statements. Each report
described in the Report Section of the Data Division must be referenced in an FD
statement in the File Section., This indicates that the report is to be produced
on the referencing file, Execution of INITIATE, GENERATE, and TERMINATE
statements referring to the report then causes report lines to be written to the
file, just as WRITE statements cause data records to be written to a file.
Therefore, a file which is to receive a report must be open as output whenever a
relevant reporting statement is executed.

5-7 . | o ~ DD26

Summary of FilefProperty'Relationships‘k

The . following charts summarize the relationships of the various options for
"COBOL files. , . .

Implies or
Requires

Property

BLOCK SERIAL

FLR (fixed-length records)
VLR (variable-length iecords)
BINARY mode

HIGH DENSITY
LABEL...STANDARD

BLOCK size $320 words
System Standérd Format
Card Medium Code

Printer Medium Code
Process Area

t

Pt | P]

L]

SEQUENTTAL ACCESS
RANDOM ACCESS 1

FOR CARDS

- FOR LISTING
BLOCK SERIAL
SYSTEM STANDARD I I

VLR (variable length
records) ‘ I

RECORDING MODE
‘ omitted I|1

BINARY HIGH DENSITY ' I
BCD (either density) B | R
BLOCK clause omitted I
VALUE OF label item ' : R
Single DATA RECORD 1l ’

~Several -DATA RECORDS,
sizes unequal

REPORT(S ' IR I
REPORT| S| and DATA
RECORD{S]
USAGE not DISPLAY(-1] R
OCCURS. . . DEPENDING T 1w 1

USAGE COMPUTATIONAL [-n}
requiring double- ' . 1
word precision

SAME RECORD AREA i : I
1 ;

-
Dl RiIR|R|m
o
(2]

=

FLR is implied in the absence of overriding properties.

5-8 : ‘ : - DD26

Must also apply Block Serial and binéry mode. .

0 o |
¥ o &
] S 18Im
o] I °l 18§
= 3 r;v e é &j :1‘
k) .J-J Q [7,)
Conflicts || o B EEREE (el (2eE B8
With & g#«'l’ m%m@'gmsgég'_‘oﬁ ARIa|8
3lw gl elxiala &l3|°|2 3181ee = <S8 |2
<l =] R B B] B r:E &
Al % ST] oo Gl ot P B L s o o O s I 2 =
el S A R M EY = R =1 7 R I e e o
= Nl R < =l E e B R R S
2| el = i M e e 1 1 M
Specified SIR[CIF B RIS IZE IS IEIR|12B+ 5(S|8[S8|E |2
Property =B EE R e e R R E e
AN HARE R E AR EHEEE R RN EHE EEEE
SEQUENTIAL ACCESS XXX XX X XX
RANDOM ACCESS X XIXIX|x|x XiX X X
FOR CARDS X X X X [X
FOR LISTING XiXiX X XX X
BLOCK SERIAL X 2
SYSTEM STANDARD X XX X
VLR (variable-length 3
X X
records)
MULTIPLE FILE X|x
BINARY LOW DENSITY XX X XX} X
BCD (either X
density) X[XIX|X|X]|X{X X|X|X X
BLOCK. . . RECORDS X X 1l
LABEL. . .OMITTED X X x| [x X
VALUE OF 1label item X
Severa} DATA RECORD, X 1 X
sizes # v
REPORT[S] X |x[x x| |1 X
REPORT S]and DATA
RECORD[S] XXX XL X
USAGE '
COMPUTATIONAL [-n] X)X X IR
OCCURS. .. X
DEPENDING | X[y
1 Use of the CHARACTERS option is preferred when record sizes
are not uniform. :
2 Must also apply VLR and binary mode.
3 '

DD26

'ASSIGNMENT OF FILES

File Control Cards

_ Each - COBOL file-name K must be explicitly assigned to. one or more
two-character symbolic file-codes., When the object program is scheduled for
execution, each file-code must be associated with a peripheral device via a file
control card. There will be one such card for each file selected.

When used with COBOL object programs, each file control card must contain
the filewcode to which the file is assigned, explicitly or lmpllCltly. Most
cards other than $ DATA, $ PRINT, $ PUNCH, $ READ, and $ SYSOUT ' require more

 parameters to provide addltional 1nformat10n about the peripheral device and the
mode of processing.

» Files intended only for $ DATA, $ SYSOUT, or linked mass storage must have

system standard format. Other files entering or leaving the system via bulk
media conversion normally utilize magnetic tape as the intermediate device, and
consequently require $ TAPE cards. Any file having a block 'size exceeding 320
words must utilize magnetic tape or a random-access mass storage device.

Each file must be processed in a manner consistent with the nature of the
peripheral device. Files intended for $ PRINT, $ PUNCH, or $ SYSOUT must be
ogutput files and those intended for $ DATA or $ READ must be input files. If

'$ TAPE is used, the file may be processed as either input or output and, after

it is closed, it may be reopened as either input or output regardless of the
method in. which it was previously processed. This capability is particularly-
useful when a scratch file is needed within a program; the file may be processed
as output and then be reopened and processed as input within the same program.

A mass storage file may be either input, output, or input-output. When the
~file status- is input-output, the preferred file control card is $ FILE or
$ PRMFL. The permanent data files must have both read and write permissions. If
$ DATA or $ TAPE cards are used for the input-output mode, an abort will occur.

To. engage the Incremental Report Printing (backdoor file) facility, spec1fy
the $ USE, $ FILE, §$ FUTIL, and § DATA cards as descrlbed in Section XVI.

For additional information concerning flle control cards and deck setups,
refer to the Control Cards reference manual and to Appendix B.-

- System Standard Format

_ .. When the APPLY SYSTEM STANDARD FORMAT phrase in the I-O~CONTROL paragraph
has been specified for a file, a substantial degree . of peripheral device
independence is obtained at the expense of processing efficiency. The file may
be assigned to different peripheral devices from one ‘execution of the object
- program: to the next. The following example 1llustrates the potential. flexibility
of a daily report file: ,

l.. On Monday, the file is assigned to an online printer,

2. On Tuesday,dthe file is assigned to mass storage, and a subsequent
media conversion to: printer is scheduled. :

5-10 , DD26 -

3. On Wednesday, the file is assigned to magnetic tape, and again a
subsequent media conversion is scheduled. '

4, On Thursday, the file is assigned to SYSOUT, so that subsequent media
- conversion is automatically scheduled.

If a file is ultimately intended for a printer or a card device, the file
may be visualized in terms of the selected device, even though an intermediate
conversion to or from tape or mass storage may be desired. In this case, the FOR
CARDS or FOR LISTING option should be specified in the SELECT sentence of the
FILE-CONTROL paragraph. System standard format will then be automatically
applied and the records will be identified as print-line or card images with the
appropriate media codes.

A Series 60/6000 data file having system standard format has the following’
properties:

1. Data blocks may vary in length, not exceeding 320 words, including
block serial numbers.

2. Block serial numbers are applied.
3., The recording mode is binary high density.
4, Variable-length record (VLR) format is applied.

5. Label'records are standard.

Files having logical records larger than the block size of 320 words may
nevertheless be processed in system standard format by the operating system if
the requirements for partitioned records are met. (Refer to - the Partitioned
Records paragraph in Section II.)

_ When system standard format is used, the BLOCK CONTAINS and RECORDING MODE
clauses may be omitted, and it is unnecessary to specify APPLY VLR or APPLY
BLOCK SERIAL NUMBER. However, according to COBOL rules, the LABEL RECORDS clause
must appear in every FD entry in the File Section.

To increase efficiency, files may deviate from the system standard format.
For example, a large master file which is aSSlgned to magnetic tape might use
block sizes larger than 320 words. A block size three times as large (960 words)
‘would increase the capacity of a tape by approximately 20 percent.

The system standard format must be used when device independence is
intended.

Label records, although conceptually standard do not actually appear in
mass storage.

System standard format must be used for files intended for system output
(sysour) .

5-11 ~ ' ~ DD26

- Peripheral Devices

. Serles 60/6000 COBOL files may be assigned to disk, magnetic,_tape, card
reader, card punch, or printer peripheral dev1ces. ' o

The preferred media for object program access are the disk and magnetic
tape devices, since the operating speed of this equipment is better matched to
- the capability of the central processor. Although the printer, card reader, and
‘card punch can be accessed directly by object programs, it is preferable to
utilize the media conversion procedure, so that a file intended for cards or
llstlng nevertheless uses a hlgh-speed peripheral device when the object program
is ‘executed. Standard media conver51on ‘programs are prdvided as part of the
software system. ' C

In Series 60/6000 COBOL, the SELECT sentence in the FILE-CONTROL paragraph
is used to assign each file to a symbolic flle—code, not to a specific
peripheral device. In this case, the actual device is indicated separately with
control cards when the object program is scheduled for execution.

If a file is intended for a printer or a card device, the FOR LISTING or
FOR CARDS option should be specified in the SELECT sentence of the FILE-CONTROL
‘paragraph. Specification of the FOR LISTING or FOR CARDS option automatically
implies system standard format.

Some data description options, such as USAGE DISPLAY-2 or USAGE
COMPUTATIONAL (or COMPUTATIONAL-n), are not suitable for card or printer files.,

v it is preferable to use standard label records for all magnetic tape: files,
1nc1ud1ng those intended for cards or listing; however, the user may wish to
describe "and process label records which are more meaningful to the specific

- computer installation.

Multipie File Tapes

The MULTIPLE FILE phrase in the I-O0-CONTROL paragraph applies only ¢to
magnetic tapes. It permits two or more files to appear successively on the same
physical reel of tape. For COBOL object programs, all files of a multiple file
tape must actually be present. The tape is automatically positioned to the
proper point each time a file is opened (as either input "or output).
Multiple file tape positioning is based on counting the number of logical files
intervening between the desired file and the beginning of the tape, not on a
label search. Therefore, a file in position 5 must be preceded on the. tape by
four prior files. ~

On an output tape, files must actually be written in the order in which
they are to appear on the tape. For example, the position 4 file .cannot be-
written before the position 2 file, - However, ' the successive files may - be
produced by separate object programs. On an input tape, files may be processed
in any order,

Two files on a multiple file tape cannot be open concurrently. When an
output file in a given position has been opened, any data which might have been
previously recorded beyond that point on the tape is unavailable.

All of the files on a multiple file tape must have the same recording mode.

5-12 , . DD26

Either all of the files on a multiple file tape must be labeled, or else
none may be labeled. '

Since each file referenced in the MULTIPLE FILE TAPE phrase must be
assigned to a unique file-code in the ASSIGN phrase of the SELECT sentence, the
different file-codes thus assigned for files contained on the same multiple file
tape must then be assigned to the same logical unit designator (LUD) by §$ TAPE
control cards when the object program is to be executed.

Example:

INPUT-OUTPUT SECTION.
FILE-CONTROL,
SELECT FILE-C ASSIGN TO TIl.
SELECT FILE-A ASSIGN TO T2.
SELECT FILE-B ASSIGN TO T3.
I-O-CONTROL.
SAME AREA FOR FILE-B FILE-C FILE-A.
MULTIPLE FILE TAPE CONTAINS FILE-A FILE-B FILE-C.

Control Cards Example:

TAPE T1,A2S
TAPE T2,A2S
TAPE T3,A2S

“rnn

When the files are labeled, the tape layout is as follows:

Beginning of tape indicator (load point reflective foil)
BEGINNING~-FILE-LABEL
End-of-file mark
Data blocks First file
End-of-file mark
ENDING-FILE-LABEL
End-of-file mark
BEGINNING-FILE~LABEL
End-of-file mark ,
Data blocks Second file
End~-of-file mark
ENDING-FILE~LABEL
End~of~file mark

Etc.

When the files are not labeled, the tape layout is as follows:

Beginning of tape indicator

Data blocks } First file
End-of-file mark o

Data blocks

"End-of~-file mark } Second file

Etc.

CQBOL rules imply that all of the files on a multiple file tape must
actually fit on one physical reel of tape. ' ' '

5-13 S R DD26

FILE'PROCESSING AREAS

Buffer Areas

At least one buffer area must be available for each file “in the object
program. Two buffer areas are automatically a551gned to each flle selected in
the source program, o

A single buffer area may be allocated to any file by using the RESERVE NO
ALTERNATE AREA phrase in the SELECT sentence. If only one buffer is employed,
input or output operations for the file cannot proceed concurrently with the
procedural manipulation of its records in the object program. During
input-output operations on such a file, control 1is therefore passed to the
operating system to allow other active object programs to utilize the central
processor. However, 'if an alternate buffer is reserved, the object 'program can
continue to process data in the current buffer concurrently with the ‘execution
of input-output operations involving the alternate buffer. Alternating buffers
can therefore contribute :to object .program efficiency, particularly when
high-volume files are being processed. The decision to buffer a file should be
based upon considerations such as the size and activity of the file and the
effective use of memory within a multiprogramming environment, :

A buffer area, or a pair of alternating buffer areas, can be shared by two
or more files by specifying the SAME AREA phrase in the I-O~CONTROL paragraph.
The compiler then evaluates the maximum buffer requirements of all of the files,
and allocates adequate aggregate buffer space to the first file to handle any of
the other files, but the single buffering or double buffering for each file is
still determined by the RESERVE phrase of each individual file.

‘ The SAME AREA phrase should not be used for files which are open
concurrently. .

i

Record Areas

The APPLY PROCESS AREA phrase in the I-O-CONTROL paragraph is used as an
alternate method of processing files. A process area is a memory area outside
the buffers, and of sufficient size to hold the largest logical record of a
file. When a file wusing a process area is read, each logical record is
implicitly moved to the process area from the input buffer when the READ
statement is executed, and all subsequent procedures refer to the record in the
process area. When such a file is written, each logical record ‘is implicitly
- moved from the process area to the output buffer when the WRITE statement is
executed, and all subsequent procedures similarly refer to the record in the
process. area.

. A process area may be applied regardless of the number of buffer areas
allocated. Several source language options direct the compiler to apply a
process area: :

1. APPLY PROCESS AREA
2. FOR CARDS or FOR LISTING.

3. Random access or sequential access

4, OCCURS. . .DEPENDING

5-14 , DD26

5. SAME RECORD AREA (see below)

6. Both IEPORTS and DATA RECORDS (the data records wutilize the process
area)

7. Double-precision COMPUTATIONAL(-n) data items in records

8. Sort or merge files

When no process area is applied, explicitly or implicitly, the current data
record is processed in the buffer. Since the origination of records in the
buffer usually differs from one record to another, the record contents must be
addressed relatively with respect to the current record origin. Extra
housekeeping is required when processing such a record, because of the necessity
for relative addressing, ' '

A considerable savings in both space and time may often be realized by
applying a process area on those files whose data records are involved in a
large number of procedural references in a program. These economies are
attributable to the simplification of the object code generated for each of the
references to a fixed process area without the indirect addressing and related
overhead involved in referencing the record in the buffer area. Usually these
economies in data reference will overshadow the amount of time required to move
the records between the buffer and process area. However, the WRITE...FROM and
READ...INTO statements are not efficient when used with a process area since a
double move of the data would result. That is, these statements would cause a
move from the buffer to the process area followed by a move from the process
area to the identifier referenced in the READ...INTO statement in the case of an
input file, or a move from the identifier referenced in the WRITE...FROM
statement to the process area followed by a move from the process area to the
buffer in the case of an output file.

A process area must be applied, explicitly or implicitly, for files with
logical records larger than 320 words and which require the partitioned record
.capability of the operating system.

When a process area is used, more effective blocking on variable-length
record output files occurs. If no process area is applied to such files, each
output block is physically written when the remaining buffer space 1is not of
sufficient size to hold the largest record of the file; thus, actual block sizes
can be substantially smaller than the maximum block size of the file. When a
process area. is applied, however, the output block is physically written only
when thée remaining area is too small for +the current 1logical record. If a
process area is used, therefore, one or more extra records can often be placed
into an output block.

A process area may be shared by two or more files by specifying the SAME
RECORD AREA phrase. The compiler then allocates a process area to the first file
that is of sufficient size for the largest logical record of all of the files
involved, and causes all of the files to share this process area. (In this case,
the process area is applied whether or not it has been explicitly -specified.)
Files utilizing the FOR CARDS or FOR LISTING option may not be referenced in a
SAME RECORD AREA phrase.

The SAME RECORD AREA phrase does not result in buffer sharing, but implies
a shared process area. This phrase is recommended for minimizing moves on a
master file that is being updated. If the SAME RECORD AREA phrase is specified
for this purpose, special procedures must be used to avoid deéleting - input
records when insertions are required. : :

5-15 : DD26

A file may have one or more buffer areas in any objeet program, regardless
of how many it may have in other object programs. Slmllarly, a file may
part1c1pate in SAME AREA or SAME RECORD AREA phrases in a.given program, whether
or not 1t is involved in these options in other programs.

If the rules for modularization are followed, the compiler arranges
interfaces so that a single set of memory areas is allocated to each file in. a
modularized program, and each subprOgram refers to the same memory area at
object program execution. i

Sort Areas and Sort~Merge Areas

The SAME SORT AREA and/or SAME SORT-MERGE AREA phrases allow the user to-
designate memory areas that may be shared, or reused, during the sorting or
merging of several sort or-merge files. In the implementation of the Series
60/6000. sort-merge feature, such optimization is automatically provided in that
all the sort:or merge processes in a run unit share a single common memory area.

In addition, the SAME SORT AREA and/or SAME SORT-MERGE AREA phrase allows
the user to designate memory areas associated with non-sort (merge) files that
may be used in the sorting or merging of specified sort or merge files to the
extent defined by the implementor. In the Series 60/6000 sort-merge
implementation, such sharing does not take place.

Since the functionality of the SAME SORT AREA and- SAME SORT-MERGE AREA
phrases is fully satisfied within the sort-merge implementation itself, the
' presence or absence of either of these phrases will have no functional effect on
‘the program.

FILE PROCESSING STATEMENTS

, The follow1ng verbs (statements) describe file processing in the source
program. : - '

OPEN
READ
WRITE : File processing verbs -
- SEEK: .)
.CLOSE
USE Compiler-directing verb
" ACCEPT Low-volume data transm1551on verbs
DISPLAY (see Section VI)

ACCEPT MESSAGE Transaction Processing verbs

v N’ . N’ -/

DISPLAY (see Section VII)
INITIATE Reporting verbs

" GENERATE " (see Section VIII)
TERMINATE

5-16 DD26 -

SORT
MERGE

RELEASE -

RETURN

File ordering verbs
(see Section IX)

The functions of the file processing statements are briefly summarized

below:
OPEN
READ

WRITE
SEEK

CLOSE

Initiates the processing of each file, and provides initial rewinds,
beginning label handling, and initialization of input buffer
contents,

Obtains a logical record from an input or I-O file, and executes a
specified imperative~statement when an end-of-file or INVALID KEY
condition is detected.

Transmits a logical record to an output or I-O file for storage on a
peripheral device.

Initiates the accessing of a mass storage record, which is
accomplished automatically in READ and WRITE statements,

Terminates the processing of each file, and provides ending label
handling, as well as the final rewind and lock capability.

The USE statement specifies procedures for input-output label and error
handling that serve as supplements to the standard procedures provided by the
input-output system. It also provides the mechanism for specifying out-of-line
procedural statements for processing mass storage files. '

The relationship of the file procéssing statements is illustrated by a
schematic flow chart of a COBOL program:

OPEN INPUT, I-O,

and OUTPUT

Files
READ I-O or AT END/INVALID KEY > CLOSE
Input Files 7| All Files

'

Process Data
and Edit
Output

I

WRITE I-O
or Output
Records -

STOP - RUN

5-17 ; ' v DD26

The file processing activities described ln .the precedlng flow chart must
conform to the following rules:

l.. Each file must be explicitly opened with an OPEN statement before any
. other procedures (such as READ, WRITE, or CLOSE statements) referring
to it are executed. ' ’

2. The first record of a file is available only after an initial READ
statement has been executed. i)

3. Each READ statement must include an AT END -or INVALID KEY provision,
so. that the input-output routine can signal to the object program when
an invalid access occurs or the end of the file is reached.

4, :Each file must be explicitly closed with a CLOSE statement after all
" - processing on it is completed.

5. When the end-of-file condition is reached, the AT END operation is
effected and no :record is obtained.

OPEN Statement

The OPEN statement in the Procedure Division is used to initiate the
processing of files. An OPEN statement also causes label checking/writing and
;other input-output activities to be performed. Each of the format choices
(INPUT, OUTPUT, I~-O) may be specified only once in an OPEN statement.

Example:
OPEN INPUT FILE-D OUTPUT FILE-E I-0 FILE-F,

The OPEN statement must not be used for sort files or merge files, but must
be used for all other files. The OPEN statement for a file must be executed
prior to the first READ, WRITE, or SEEK statement for that file.

~ A second OPEN statement for a file executed prior to a CLOSE statement for
that file will cause a CK abort to occur.-

The object program must not attempt to place data in the current record of

- an output file before the file has been opened. Failure to observe this rule may

lead to unpredictable results in the NEIS mode and to an abort condition in = the

EIS mode. An OPEN statement for an output file, in addition to its other

. activities, establishes a memory area in which the first data record of the file
can be built.

The OPEN statement does not obtain or release the first data record. A READ
.or WRITE statement must be executed to obtain or release, respectively, the
first data record. . Input data cannot be referenced until +the first READ
statement has been executed for the file. Unless an APPLY PROCESS. AREA phrase
‘has been specified for a file, no reference to the record area - should be made
until data is obtained.

For files described with the FOR LISTING .option, the report is not
-automatically p081tloned at the top of the . page when the OPEN statement 1is
executed. : »

5-18 ' ~ DD26

For a multiple file tape, an OPEN statement causes automatic positioning to
the proper file. The positioning technique varies with different computers; for
Series 60/6000, the positioning is based on counting files as they are bypassed.

If a label record is specified for a file, the label is processed according
to the standard beginning label convention. If specified by the USE statement,
the user's label procedure is executed. The order of execution of these two
processes is specified by the USE statement. The behavior of the OPEN statement
when a label record is specified but is not present, or when a label record is
not specified but is present, is undefined.

When processing mass storage files for which the access mode is sequential,
the OPEN statement supplies the initial value for the actual key associated,
explicitly or implicitly, with the file.

INPUT OPTION

If an input file is designated with the OPTIONAL phrase, the object program
causes an interrogation for the presence of this file. If the file is not
present, the first READ statement for this file causes the imperative-statement
in the AT END phrase to be executed.

I-O0 OPTION
The I-O phrase pertains only to mass storage files,

The I-O phrase permits the opening of a mass storage file for both input
and output operations. Since this phrase implies the existence of the file, it
cannot ‘be used if the mass storage file is being initially created.

When the I-O phrase is specified and the LABEL RECORDS clause indicates
that label records are present, the following procedures are included when the
OPEN statement is executed:

a. The label (if it exists) is checked in accordance with the standard
conventions for input-output label checking.

b. The user's beginning label procedure, if one is specified by the USE
statement, is executed.

C. The new label is written in accordance with the standard conventions
for input-output label writing.

Only the current record of a file is available at any given time for either
an INPUT, an OUTPUT, or an I-O file. Although several record types may have been
defined for a file, only the information which is present in the current record
is accessible to the program. As records are successively processed, - they '
conceptually share the same memory area. If any executed procedural statement
attempts to access information which is not part of the current record, the
results are unpredictable. In addition, any attempt to access the current record
when no current record exists, such as during or after execution of AT END or
INVALID KEY procedures, may also yield unpredictable results.

5-19 DD26

NO REWINDiOPTION‘
- The NO REWIND phrase does not apply to mass storage processing.
- The ‘NO REWIND-phrase can be used only with a sequential single reel.

If the external device for the file permits rewinding, the following rules
apply:

a. When the NO REWIND phrase is not specified, execution of the OPEN
statement causes the file to be positioned at its beginning.

b. ° When the NO REWIND phrase is specified, execution of ~the OPEN:

o statement does not cause the file to be repositioned. Therefore, when

the NO REWIND plixase is specified, the file must have prev1ously been
posztloned at its beginning.

READ Statement

A file must be opened as elther INPUT or I-O before a READ statement can be
executed,

The READ statement processes only one logical record at a time, regardless
of the method in which the file is blocked or buffered. An OPEN statement does
not implicitly READ the first data record of an input file. Only one record of a
file is available at a time; however, a record may be saved by moving it into
working=storage.

For sequential-access file processing, the READ statement makes available
the next logical record from an . input or input-output file and allows a
specified imperative-statement to be performed when the end-of-file condition is
detected

For the sequential-access technique, the READ statement requires the
file-name as its operand rather than a record-name. The reason is that a file
may. have several record types, but READ delivers the next available record in
sequence regardless of type. A READ statement that references a specific
record-name is therefore illogical, '

For the random-access technique, the READ statement delivers a logical
- record associated with the value in the ACTUAL KEY data-name for the file. If
this value is found to be outside the number of 1links/llinks assigned to the
file on the file control card, the INVALID KEY procedures are engaged by the
input-output routine. Similarly, the WRITE statement causes a check to be made
on the contents of the ACTUAL KEY before the logical record is written to
determine if the INVALID KEY procedures are to be engaged. When an INVALID KEY
condition exists, no wrltlng takes place and the current record is available to
the program. ,

Regardless of the method used to overlap access time with prdce351ng time,
a record is avallable prior to the execution of any statement follow1ng the READ
statement.

5=20 v : DD26

When a file has more than one record description, these records share the
same memory area. Only the information that is present in the current record is
accessible. An explicit test should follow each READ statement to determine the
cu.vent record type. It is often convenient to plan the record formats of the
filez so that a single item, common to all records, can be tested to determine
the current record type.

Example:

FD FILEA LABEL RECORDS ARE STANDARD.
01 REC-A.
02 DN-1 PIC 9(4).
02 DN-2 PIC X(120).
. 02 DN-3 PIC 9(4).
02 DN-4 PIC X{(60).
02 DN=5 PIC X(60).

- The contents of DN-1 and DN-3 can be used to determine whether REC-A or
REC-B has just been read. :

Each READ statement must include an AT END or INVALID KEY phrase. The
1mperat1ve statement that follows each phrase may 1nclude one or more verbs and
is delimited by a pericd.

INTO OPTION

The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The memory
area associated with 'identifier' and the record area associated with file-name
.must not be the same memory area., File~name must not represent a sort file or a
merge file.

If the INTO phrase is specified, the current record is moved from the input
area to the area specified by identifier according to the rules for the MOVE
statement without +the CORRESPONDING phrase. Any subscripting or indexing
associated with identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available "in both
the input record area and the data area associated with identifier.

AT END PHRASE

The AT END phrase is used for non-mass- storage files and for mass storage
files in the sequential-~access mode. '

If, after reading the last logical record of a file, another READ statement
is initiated for that file, that last logical record is no longer available in
its record area and the READ statement is completed by the execution of the AT
END phrase. After the AT END condition has been recognized for a file, a READ
statement for that file must not be specified without prior execution of a CLOSE
statement and an OPEN statement for that file. The logical end of 'the file is
recognized when an end-of-file mark or physical end of unit has been encountered
on the file. '

5-21 ' ~ DD26

» The program must not execute statements referencing data items in an input
file either before the initial READ statement for the file has been executed, or
after the AT END phrase has been executed. Failure to obsgerve this rule may lead
“to unpredlctable results in the NEIS mode or to an abort condition -in the EIS
mode. :

'If ‘a file described with the OPTIONAL phrase is not present, the
imperative-statement in the AT END phrase is executed on the first . READ. The
standard -end-of-file procedures are hot performed. '

If the end of a tape reel is recognized during execution of a READ
statement, and the logical end of the file has not been reached, the following
operations are performed: -

a. The system ending reel label procedure and the user's ending reel.
label procedure, if the latter procedure is specified by the USE
statement, The order of execution of these two ' procedures is

- determined by the USE statement. :

b. A reel swap.
‘c. The system beginning reel label procedure and the user's beginning
reel label procedure, if the latter procedure is specified. The order

of execution is again determined by the USE statement.

vd. "The first data record of the new reel. is made available.

INVALID KEY PHRASE

The INVALID KEY phrase is used for mass storage files that are processed in
the random-access mode. .

The READ statement implicitly performs the function of the SEEK statement
for a specific mass storage file, If such a file is accessed for a specified
mass storage record and the contents of the associated ACTUAL KEY data item are
invalid, the INVALID KEY phrase is executed. The maximum value for an ACTUAL KEY
data 1tem 1s 262,142, ;

WRITE Statement

An. OPEN statement specifying either OUTPUT or I-O must be executed for a
file prior to referencing a data item in the file or executing the . first WRITE
‘statement for that file. The OPEN statement does not implicitly WRITE the first
‘data record of an output file.

The WRITE statement is used to place a logical record on the file named - in
the associated file description. The record-name is the name of a logical record
in the File Section of the Data Division and may be qualified. The record-name
must not be part.of a sort file or a merge file.

The " WRITE statement requires a specific record-name, rather than a
file-name, as its operand. The program steps leading to the WRITE statement may
have prepared any record type defined for the file for output. Therefore, the
exact record type that has been prepared must be specified in the WRITE
-statement to permit the appropriate housekeeping to occur in the output process,

5-22 - , DD26

The WRITE statement performs the following operations after recognizing the
end-of-reel condition on files assigned to a magnetic tape:

a. The system ending reel label procedure and the user's ending reel
label procedure if the latter procedure is specified by the USE
statement. The order of execution of these two procedures is specified
by the USE statement. : ’

b. A tape swap. (This includes rewinding the completed reel and placing
it in the standby condition.)

c. The system beginning reel label procedure and the user's beginning
reel label procedure if the latter procedure is specified by the USE
statement. The order of execution of these two procedures is specified
by the USE statement. '

The previous data content of an output record is not available for further
internal processing after the execution of a WRITE statement referencing that
record unless a process area exists for the file, After a WRITE statement is
executed, the current record of the file has yet to be built, and the data
values within the current record are consequently unpredictable until the
execution of additional statements causes new values to be transmitted to the
current record. If a process rarea exists for the file, the WRITE statement may
be used repetitively to duplicate = records on the peripheral device without
executing any intervening program statements. '

FROM PHRASE

The FROM phrase causes the value of identifier to be implicitly moved to
record-name (that is, to the current output record area). The identifier must be
the name of a data item within the Working-Storage Section or in an input record
area., If the format of the identifier differs from that of the record-name,
moving will take place according to the rules specified for the MOVE = statement
without the CORRESPONDING phrase. Normally, the information in. the. record-name
area is no longer available, but the information in the identifier area is
available. It is illegal for record-name and identifier to be the same name.-

ADVANCING PHRASE

The ADVANCING phrase provides control of the vertical positioning of each
tecord (line) on the printed page. For printed output, vertical format control
is provided for each line, either by the slewing of one line before printing,
which is ‘automatically provided for files described with the FOR LISTING option
in the SELECT sentence, or by specifying the desired vertical 'slew control in
the ADVANCING phrase. Otherwise, the output format will not meet printer
requirements and the printout will be unsatisfactory. If the ADVANCING phrase is
not specified, or the AFTER ADVANCING phrase is specified, the time required to
print the report will be twice as long as that required if the BEFORE ADVANCING
phrase is specified. In the ADVANCING phrase, the following rules apply:

a. When a WRITE statement is executed, the value of identifier-2 will
determine the number of lines the listing will be advanced. To avoid
unnecessary numeric conversions, it is recommended that identifier-2
be described as a single-precision binary integer. (That is, it should
be described with USAGE COMPUTATIONAL-3 or USAGE COMPUTATIONAL-1 with
a PICTURE containing less than nine digits.)

5-23 = DD26

b. When integer is specified, it must be a nonnegative ‘integer. The value
of integer will determine the number of 1lines the "listing will be
advanced., ‘ c

'c¢. TOP causes the listing to be advanced to the top of the page. If the
mnemonic-name assigned to the special name 'TOP' is 'specified, the
effect is the same as if the TOP OF PAGE option is used. :

d. The ADVANCING phrase may be used only when the FOR LISTING option has
" been specified in the SELECT sentence. It cannot be used for a file
described with OCCURS...DEPENDING. The APPLY SYSTEM STANDARD FORMAT
phrase should generally be specified for a file to which
WRITE,..ADVANCING is applied.

e. When ‘the ADVANCING mnemonic-name phrase is specified, any
mnemonic-name defined in the SPECIAL~-NAMES pardgraph is acceptable.

. The following example illustrates the 1line spacing of contiguous WRITE
statements with and without the ADVANCING phrase:

Present k WRITE AFTER WRITE BEFORE
WRITE WRITE ADVANCING ADVANCING
1 LINE .1 LINE
Previous
WRITE
WRITE | k Single space Single space | Overprint

WRITE AFTER)
ADVANCING Single space Single space | Overprint
1l LINE

WRITE BEFORE

ADVANCING. | Double space Double space | Single space
1 LINE :

The following example illustrates the page spacing of contighous WRITE
statements with the ADVANCING TO TOP OF PAGE phrase:

Present WRITE AFTER WRITE BEFORE
WRITE ADVANCING TO ADVANCING TO
) TOP OF PAGE TOP OF PAGE
Previous
WRITE
WRITE AFTER One line printed Two lines printed
' ADVANCING TO - before advancing before advancing
TOP - OF PAGE to top of page. to top of page.
WRITE BEFORE | One line printed
ADVANCING TO Blank page. before advancing
‘TOP OF PAGE : to top of ‘page.

5-24 ' DD26

INVALID KEY PHRAS:
The INVALID KEY phrase‘is used for processing mass storage files,

For mass storage files in the sequential-access mode, the
imperative-statement in the INVALID KEY phrase is executed when the end of the
allocated space is reached and an attempt is made to execute a WRITE statement
for that file. '

For files in the random-access mode, the imperative-statement in the
INVALID KEY phrase is executed when the content of the actual key being used to
obtain the mass storage record is found to be invalid. When an INVALID KEY
condition exists, no writing takes place and the information in the record area
is available. The maximum value for an ACTUAL KEY data item is 262,142,

SEEK Statement

An explicit SEEK statement is not required for processing mass storage
files. The function of the SEEK statement is performed implicitly by a READ or
WRITE statement. The contents of the actual key are used to determine the
relative location of the desired record within the file when the implicit seek
function is executed.

CLOSE Statement

All files that have been opened must be closed before a STOP RUN statement
is executed.

A CLOSE statement is used to terminate the processing of reels and files,
with optional rewind and/or lock capabilities available where applicable. A
CLOSE statement must not reference a sort file or a merge file.

If the records of a file are blocked and/or buffered, some output data may
remain in a memory buffer after the last WRITE statement has been executed for
the file. The CLOSE statement causes such data to be written to the peripheral
device, following the appropriate conventions in the case of partially filled
data blocks. This condition emphasizes the requirement that each file be
explicitly closed when processing is completed.

If a file has been specified with the OPTIONAL phrase in the FILE-CONTROL
paragraph and this file is not present, the standard end-of-file processing is
not performed.

For a multiple reel magnetic tape file, standard tape swap procedures are
automatically applied to each reel except the last reel of the file, unless
explicit CLOSE REEL statements intervene. The CLOSE statement for the overall
file may affect the position of the final reel, but has no effect on the prior
reels., Similarly, a CLOSE REEL statement affects only the current reel, not
prior or subsequent reels of the file. A CLOSE REEL statement may refer only to
a multiple reel magnetic tape file.

For files described with the FOR LISTING optidn, the report is not
automatically positioned at the top of the page when the CLOSE statement is
executed. : ‘ o ‘

5-25 ‘ ' DD26

‘STANDARD CLOSE FILE

If the file is allocated to magnetic tape, the current reel is rewound to
lts beglnnlng.

"'If a CLOSE statement without the REEL option has been executed for a file,
a READ, WRITE, or SEEK statement for that file must not be 'executed - unless an
“intervening OPEN statement for that flle is executed. -

'If the MULTIPLE REEL or MULTIPLE UNIT phrase was specified in the SELECT
sentence of the FILE-CONTROL paragraph for a sequential-access mode input file,
all reels in the file prior to the current reel are processed according to the
standard reel swap procedure, except for those reels controlled by a prior CLOSE
REEL statement. If the current reel is not the last in the file, the -reels in
the file following the current one are not processed in any manner. C

, If the MULTIPLE REEL or MULTIPLE UNIT phrase was specified in the SELECT
"sentence of the FILE-CONTROL paragraph for a sequential-access mode output file,
all reels in the file prior to the current reel are processed according to the
standard reel ‘swap procedure, except for those reels controlled by a prior CLOSE
REEL statement

Standard Close File With Lock Optlon' An appropriate technique is supplied to
ensure that this file cannot be opened again during this execution of this
object program. :

‘Standard Close File With No Rewind Option: The NO REWIND optlon applies only to
files allocatéd to a magnetic tape, The current reel is left in its current
’p051tlon,

' STANDARD CLOSE REEL

The REEL option applies only to flles stored on tape devices. The current
reel is' rewound to its beginning position. . : ’

Standard Close Reel With Lock Option: An appropriate technigue is supplied to
ensure that the current reel cannot be processed again as a part of this file
during ithis execution of this object program. The current reel is rewound to its
beginning position and the device is placed in the standby status.

Standard Close Reel With No Rewind Optlon-' The current reel 1is. left in .its
current p051t10n. o :
i

'USE Statement

The USE statement specifies procedures for input-output label and error
handling that serve as supplements to the standard procedures provided by the:
input-output system. It is also used to specify Procedure Division statements
that are executed just before a report group named in the Report Section of the
Data Division is produced.

_TheUSE statement in the Procedure Division provides the mechanism for
specifying out-of-line procedv:al statements for processing mass storage files.

5-26 - - ’ DD26

A USE statement, when present, must immediately follow a section header in
the declarative portion of the Procedure Division and must _be followed sby a
period followed by a space. The remainder of the section must consist of one or
more procedural paragraphs that define the procedures to be used. The USE
statement itself is never executed; rather, it defines the conditions calling
‘for the execution of the USE procedures. :

‘ The same file-name can appear in a different specific arrangement of a
format. However, the appearance of a file-name in a USE statement must not cause
the simultaneous. request for execution of more than one USE declarative.

A file-name representing a sort file or a merge file may not appear. in a
USE statement. ’

Within a USE procedure, there must be no reference to nondeclarative
procedures. Conversely, in the nondeclarative portion, there must be no
reference to procedure-names that appear in the declarative portion, except that
PERFORM statements may refer to a USE declarative or to the procedures
associated with such a USE declarative,

ERROR PROCEDURE PHRASE

The - designated error procedures are executed after the standard
input-output error procedures have been executed.

LABEL PROCEDURE PHRASE
The designated label procedures are executed:
a. Before or after a begihning or ending input label check procedure is
executed.

b. Before a beginning or ending output label is created.

c. After a beginning or ending output label is created, but before it is
written. '

d. Before or after a beginning or ending input-output 1abe1 check

procedure is executed.

If the file-name phrase is wused, the file description entry for each
file-name must not specify a LABEL RECORDS ARE OMITTED clause.

If the words BEGINNING or ENDING are not included, the designated
procedures are executed for both beginning and ending labels.

If the REEL or FILE option is not included, the designated procedures are
executed for both REEL and FILE labels. The REEL phrase is . not applicable to
mass storage files. : : :

5-27 .. DD26

‘.-

_ Within the procedures of a USE declarative in which the USE statement
specifies - a phrase other than the file-name phrase, references to common label
items need not be qualified by a file-name. A common label item is an elementary
data item that appears in every label record of the program, but at the same
~time does not appear in any data record of this program. Furthermore, a common
label item must have the same name, descrlptlon, and relative p051t10n in - every
label record.

If the INPUT, OUTPUT, or I-O option is specified, the USE%procedures do not
apply ‘respectively to input, output, or input-output files that are described
.w1th the LABEL RECORDS ARE OMITTED clause.

Thé label procedures must not execute any input or output statément,

USE BEFORE REPORTING PHRASE

The designated procedures are executed by the Report Write: just before the
hamed report group is produced, regardless of page, overflow, or control break
associations with report groups. The report group may be any type except DETAIL.

The indicated identifier represents a nondetail report group named in the
Report. Section of the Data Division. The identifier must not appear in more than
one USE statement. .

No Report Writer statement (INITIATE, GENERATE, or TERMINATE) may be’
written in a procedural paragraph or paragraphs following the USE sentence in
the declarative portion.

3/717 ~ 5-28 , DD26A

FILE PROCESSING EXAMPLES

The following coding describes the sequential accessing of a master file
assigned in the SELECT sentence of the FILE-CONTROL paragraph, whose file-code
will be associated with a mass storage device on the control card at object
program execution.

Example:

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO MF
"ACCESS MODE IS SEQUENTIAL »
PROCESSING MODE IS SEQUENTIAL.

DATA DIVISION,

FILE SECTION,

FD MASTER-FILE LABEL RECORDS ARE STANDARD.
01 M-RECORD,

PROCEDURE DIVISION.
A. OPEN I-0 MASTER-FILE.
B. READ MASTER-FILE AT END GO TO DONE.

. process M-RECORD

IF (no change in contents of M-RECORD) GO TO B.

C. WRITE M-RECORD INVALID KEY PERFORM (user routine).
GO TO B.

DONE. CLOSE MASTER-FILE, -

A file opened in the I-O state must be read initially and each 1logical
record is either bypassed with no change or else modified and then written back
on the storage device. If a WRITE statement is immediately followed by another
WRITE statement, the file is positioned to the next logical record before the
second WRITE. An ACTUAL KEY phrase may be included for the mass storage file
but, in the sequential~access mode, its value does not control the records
accessed. The ACTUAL KEY contents are automatically updated, for information
only, as the file is sequentially processed through the values 1, 2, 3, ...,
until an end-of-file condition is reached. The standard end—of file mark (octal
17) is then placed in the ACTUAL KEY data-name.

5-29 ' » DD26

The following coding describes the random accessing in a sequential manner
of a master file assigned in the SELECT sentence of the FILE-CONTROL paragraph
whose file-code will be associated with a mass storage device on the control
- card at object program execution, :

Examplez

ENVIRONMENT DIVISION.
FILE~CONTROL.
SELECT MASTER~FILE ASSIGN TO MF
FILE-LIMITS ARE 0 THRU 179
ACCESS MODE - IS RANDOM
" PROCESSING MODE IS SEQUENTIAL
ACTUAL KEY IS ACTUAL-KEY-1.
DATA DIVISION.
FILE SECTION.
FD MASTER-FILE LABEL RECORDS ARE. STANDARD
BLOCK CONTAINS 384 CHARACTERS.
01l. M-RECORD. ‘
02 REC-KEY PIC 9(6).

, 02 OTHER-DATA PIC X(378).
WORKING-STORAGE SECTION. ,
77 ACTUAL-KEY-1 PIC 9(6) COMP-1, VALUE O.
PROCEDURE DIVISION.

" A. OPEN I~-0 MASTER-FILE,

B. READ MASTER-FILE JINVALID KEY GO TO INVALID-ROUTINE.

e } process M~RECORD

IF (no change in contents of M-RECORD) ADD 1 TO ACTUAL-KEY-1
GO TO B.
C. WRITE . M-RECORD INVALID KEY GO TO INVALID- ROUTINE
ADD 1 TO ACTUAL-KEY-1 GO TO B.
INVALID-ROUTINE.
" IF ACTUAL-KEY-1 IS LESS THAN 180 PERFORM (user routine).
DONE. CLOSE MASTER-FILE.

This example presumes that the master file has been assigned three random
links on a disk device by means of a file control card. It is this provision and
not the FILE-LIMITS phrase in the FILE-CONTROL paragraph that determines the
size of the file on the mass storage device. The BLOCK CONTAINS clause in the FD
entry establishes a record block size of 64 words which is the 1logical record
size in this example. Then the number of record blocks per link is 3840/64=60 or
180 for three links. Since the ACTUAL KEY is incremented by 1, from 0 .through
179, over the three links, the INVALID KEY procedures are engaged when the value .
180 is reached. If the BLOCK CONTAINS clause were omitted, the maximum record
size is used as the block size for each access.

Although "the example shows the wupdating of current records on a
random-access file, other possibilities . are not precluded. That 1is, it is
possible to insert new records within a file if file space exists within the
number of links available. However, deletion of records may only be accomplished
by wrltlng over the record space which no longer contains pertinent information.

Even though the operating system does not provide for label records on a
random-access mass storage device, it is still necessary to include the LABEL
RECORDS "ARE STANDARD clause in the FD entry. . .

5-30 . _ - DD26

SECTION VI

LOW-VOLUME DATA TRANSMISSION

ACCEPT STATEMENTS

The ACCEPT statements provide access to various low-volume input character
data sources.

The specific devices accessed by ACCEPT statements vary considerably among
the COBOL compilers of different computers, depending upon the availability of
external devices and the characteristics of the operating system. Therefore, the
language allows ACCEPT statements to be as machine independent as possible. 1In
an ACCEPT statement, the desired source of the data 1is specified by a
mnemonic-name originated by the wuser. This mnemonic-name must in turn be
associated with a specific data source in the SPECIAL-NAMES paragraph of the
Environment Division. Thus, the medium to be used is actually mentioned only in
the Environment Division, which is recognized to be highly machine dependent.

The ACCEPT statement permits input access to:

1. GIN (the system input feature of the operating system).

2. COMMUNICATION~DEVICE (the Transaction Processing interface; see
: Section VII).

3. REMOTE (a terminal not operating under the control of the Transaction
Processing System).

4, GLAPS (an operating system feature that provides accumulated processor
time for the current run unit).

5. GTIME (an operating system feature that provides the system date and
the system clock time). : '

6. CONSOLE and TYPEWRITER (the system operator interface).

7. SWITCH (a portion of the program switch word, a special software
feature provided by the operating system).

When the FROM mnemonic-name phrase is not used in an ACCEPT statement, the
input source is considered to be system input (GIN). The FROM phrase must be
specified for any other input source. Specific conventions for the various
ACCEPT sources are described throughout this section.

6-1 ' DD26

‘DISPLAY STATEMENTS

The DISPLAY statements provide access to various . low-volume output
character data destinations.

. The specific devices accessed by DISPLAY statements vary considerably among
the COBOL compilers of different computers, depending upon the availability of
.external devices and the characteristics of the operating system. Therefore, the
language allows DISPLAY statements to be as machine lndependent as possible., 1In
a DISPLAY statement, the desired destination of the data is specified with a
' mnemonic-namevoriginated by the wuser. This mnemonic-name must in turn be
associated with a specific data destination in the SPECIAL-NAMES paragraph of
the Environment Division. Thus, the medium to be used is actually mentioned only
in the Emwvironment Division, which is recognized to be highly machine dependent.

The DISPLAY statementkpermits\output‘acceés to:

1. SYSOUT (the low-volume system output feature of the operating system).

2. . COMMUNICATION-DEVICE (the Transaction Processing interface; see
" Section VII).

3., REMOTE (a terminal not operating under the control of the Transaction
Processing System).

4., CONSOLE and TYPEWRITER (the system operator interface).

5. SWITCH (a portion of the progfam switch word, a special software
feature provided by the operating system).

When the UPON mnemonic-name phrase is not used in a DISPLAY statement, the
output destination is considered to be system output (SYSOUT). The UPON - phrase
must be specified for any other output destination. Specific conventions for the
various DISPLAY destinations are described throughout this section.

The following rules apply to all DISPLAY statements:

l.. When the DISPLAY statement specifies multiple operands, the data

‘ characters associated with each operand are concatenated in the order

of the occurrence of the operands. Operands are not automatically
separated by spaces.

2. The first character of the first operand is positioned in the first
. character position of a line, subject to the effects of any horizontal
and vertical tabulation control characters embedded in the data. If

such characters are used, line length limits must not be exceeded.

3. Identifiers must have been described with USAGE DISPLAY (explicitly or

- . implicitly) or DISPLAY-1l, Literals may be figurative constants, in

which case their size is understood to be one character. ALL has no
significance.

6-2 « DD26

DATA TRANSMISSION TECHNIQUES

System Input

System input (GIN) is a special card image input provision of the operating
system. Along with the control cards submitted to schedule an activity for
execution, the user may submit data cards intended as input for the program.
Such a collection of data cards may be formally regarded as an input file, in
which case the program must include the provisions described for input files in
the File Declaration paragraph in Section V. Alternatively, each card may be
regarded as an independent item of input data, to be accessed via an - ACCEPT
statement. The latter approach is applicable when the card format is suitable
and the volume is limited.

To utilize GIN via ACCEPT statements, the user may either omit the FROM
phrase, or associate a mnemonic-name with GIN in the SPECIAL-NAMES paragraph of
the Environment Division. ‘The data item mentioned in the ACCEPT statement must
then be a USAGE DISPLAY item. The input item is assumed to occupy the leftmost
character positions of the card. No automatic format check or conversion is
provided, so it is recommended that the user employ IF statements to assure that
the input card contents satisfy the receiving item's description. Similarly, no
automatic end-of-file provision is available, so the user must provide an
end-of-file test if the volume of system input data can vary. However, each
ACCEPT statement executed after the system input is exhausted obtains all
spaces; as if a blank card had been read.

The utilization of ACCEPT statements that receive data from GIN in a module
overlay environment must be carefully planned to avoid possible overlay loading
on top of the COBOL subroutine that controls input from GIN., One method that may
be used to avoid such an overlay is to place at least one ACCEPT statement in
the main module that will never be overlayed. That statement need not actually
be executed. '

System Output

System output (SYSOUT) is a special output collecting provision of the
operating system. The object program and system programs can transmit printer
line images to SYSOUT, where they are collected on a storage device. After the
execution of the object program is terminated, media conversion of the SYSOUT
data to the printer is automatically scheduled and accomplished.

Unless overridden by the options specified in the variable field of ' the
$ LIMITS card, the operating system limits the total volume of data that SYSOUT
can receive from a single execute activity to 5000 unit records (corresponding
to print lines). In addition, SYSOUT has only limited provision for structuring
special preprinted or multiple-part forms on the printer. Subject to these
limitations, an activity may transmit as many as eight intermixed reports to
SYSOUT, one of which may be the result of DISPLAY statements. For reports having
considerable complexity, the Report Writer feature is recommended. For a limited.
number, of lines of miscellaneous information, however, the use of SYSOUT via
DISPLAY statements may be more practlcal.

|

To utilize SYSOUT via DISPLAY statements, the user may either omit the UPON
‘'phrase, or associate a mnemonic-name with SYSOUT in the SPECIAL-NAMES paragraph
of the Environment Division. A printer 1line is considered to c¢ontain 132
character positions. The DISPLAY statement may produce more than one line of
printing to SYSOUT if the cumulative size of the referenced operands exceeds a
-total of 132 characters.

- 6-3 : DD26

» To maintain machine independence, printer control characters should not be

used in SYSOUT lines. However, hardware dependent slew.control can be. exercised
-with the figurative constant HIGH-VALUE which, in a DISPLAY statement,
represents a single format control - 'escape' character. Thus, the DISPLAY
HIGH-VALUE 'l' statement slews one line, DISPLAY HIGH-VALUE '2' slews two lines,
etc., up to a maximum of nine lines, The DISPLAY HIGH-VALUE SPACE statement
~causes the printer to slew to the top of the next page.

. The utilization of DISPLAY statements that transmit data to SYSOUT 'in a
module overlay environment must be carefully planned to. avoid possible overlay
loading.on top of the COBOL subroutine that controls output for SYSOUT displays.
One method that may be used to avoid such an overlay is to place at least one
‘DISPLAY statement in the . main module that will never. "be “overlayed. 'That
statement need not actually be executed

Transaction Processing Interface.

) The Transaction Processing System interface is accessed by specifying the

ACCEPT MESSAGE and DISPLAY statements using a mnemonic-name that corresponds to
the mnemonic-name associated with COMMUNICATION-DEVICE in - the SPECIAL-NAMES
paragraph. Refer to Section VII for a description of the COBOL and " Transaction
Processing System interface, and to the Transaction Processing System User's
Guide for specific format conventions and programming applications.

Remote Devices

By. specifying a mnemonic-name associated with REMOTE in the SPECIAL~-NAMES
paragraph of the Environment Division, a COBOL program that interacts with a
remote terminal device can be produced. The resulting object program is
submitted for execution in the same manprer as a program that wuses the -
direct-access file interface. The terminal operator may then request connection
to the | executing program through the operating system's time sharing or
direct-access interfaces. In order to establish interaction with the - program's
ACCEPT and DISPLAY statements, the inquiry name must be 1limited to the Jjob
number .associated with the executing program.

‘A remote terminal is treated as a type of unit record device. For input
purposes, the unit record is assumed to be 80 characters in length. For output
purposes, the unit record is assumed to be 72 characters in length.

Each ACCEPT statement whose mnemonic-name is associated with REMOTE will
cause a single interaction with the remote terminal. The - system operator - is
notified that a response is expected by a carriage return followed by the
display of the character '?' and the ringing of the -terminal's bell, if the’
terminal is so equipped. The input characters, if any, . are converted to
Hollerith, USAGE DISPLAY characters and are moved into the data item referenced
in the ACCEPT. statement. The referenced, data item should be described, ~either
exp11c1t1y or implicitly, as USAGE DISPLAY. No automatic format check or radix
conversion is performed.

- Each DISPLAY statement whose mnemonic-name is associated with REMOTE will
‘cause from one to four lines to be displayed on the remote terminal, depending
upon the size of the referenced data items. Each line will contain at most 72
characters, thereby limiting the total 51ze of the referenced items to 288
characters. o :

6=4. : ' DD26

Elapsed Processor Time

GLAPS is a special operating system feature that provides the processor
time accumulated by the current run unit., The increments of time are given in
units of 1/64 millisecond.

To utilize GLAPS via ACCEPT statements, GLAPS must be associated with a
mnemonic-name in the SPECIAL-NAMES paragraph of the Environment Division, and
that name must be referenced in the FROM mnemonic-name phrase of .an ACCEPT
statement. - '

To obtain time resolution in units of 1/64 milliSecond, the receiving
identifier item must be a working-storage data item whose description is
equivalent to the following:

77 data-name PICTURE 9(10) USAGE . COMPUTATIONAL-3,

Date and Time

GTIME is a special operating system feature that provides the current
system date and system clock time. The date is given in terms of the month, the
day, and the year. If the HMS option 1is specified for the mnemonic-name
definition, the time is given in hours, minutes, and seconds; otherwise, the
time is given in units of 1/64 millisecond.

To utilize GTIME via ACCEPT statements, GTIME must be associated with a
mnemonic-name in the SPECIAL-NAMES paragraph of the Environment Division, and
that name must be referenced in the FROM mnemonic-name phrase of an ACCEPT
statement. :

To obtain time resoclution in wunits of 1/64 millisecond, the receiving
identifier item must be a working-storage data ' item whose description is
equivalent to the following: ‘

.01 data-name.
02 MONTH PICTURE 99,
02 DAY~OF-MONTH PICTURE 99.
02 YEAR PICTURE 99. _
02 TYME PICTURE 9(10) USAGE COMPUTATIONAL-3,

If HMS is specified in the GTIME phrase to obtain time resolution in terms
of hours, minutes, and seconds, the identifier item must be described
differently. The receiving data item for the time must not be described as USAGE
COMPUTATIONAL-3 but rather as USAGE. DISPLAY {explicitly or implicitly). For
example, the receiving identifier could be- described as: ,

01 data-name.
i 02 MONTH PICTURE 99,
‘02 DAY-OF-MONTH PICTURE 99.
02 YEAR PICTURE 99.
02 TYME PICTURE 9(6).

NOTE: The data-names used in these examples are for illustration enly.

6-5 . ; o DD26

Console or Typewriter

Because of the overall 'demands on the system operator, undisciplined
interaction with the operator's console may have an adverse - affect on system
performance. The use of ACCEPT and DISPLAY statements for system operator
console interaction is not recommended in a multiprogramming environment.

The implementor-names TYPEWRITER and CONSOLE are both associated with the
system - operator console. ‘However, their use implies different ' types of
interaction with that console. o

In some cases, communication with the operator either does not require a
response from the operator or the response from the operator is not necessarily
associated with a previous message sent to the operator. The implementor-name
TYPEWRITER is provided for this type of communication with the operator. The use
of the implementor-name TYPEWRITER emphasizes the treatment of the console as a
unit record device. Succesggive interactions are treated as unrelated program
steps. In the multiprogramming environment, interactions that are caused by two
successive statements in the source program may be widely separated by other
console. interactions initiated by other programs or by the operating system.

Since there are many sources and types of operator messages - in a
multiprogramming environment, it is usually necessary to ensure that a message
that requires a response 1is closely associated with the request for -that
response, The implementor-name CONSOLE provides this capability. The use of the
implementor-name CONSOLE emphasizes interactive communication with- the system
operator. Successive DISPLAY and ACCEPT statements, even when widely separated

~in the source program, are treated as interrelated parts of a single
console interaction that occurs when the ACCEPT statement is executed. In this
manner, the displayed text is able to immediately precede a related request for
input. It is suggested that the DISPLAY ‘statement be used to inform the operator
~of the nature of the expected response. :

Physically, the operator console is treated as a type of unit = record
device. For input purposes, the unit record is assumed to be 80 characters in
- length, For output purposes, the record is assumed to be 72 characters in

length.. ’ , ;

Each ACCEPT statement whose mnemonic-name is associated with TYPEWRITER
wi1ll cause a single interaction with the operator's console. The system operator
is notified that a response is expected by a carriage return followed . by the
message 'TYPEIN EXPECTED...'. The input characters, 1if any, are treated as
Hollerith, USAGE DISPLAY characters and are moved into the data item referenced
in the ~ACCEPT statement. The referenced data item. should be described,
explicitly or implicitly, as USAGE DISPLAY. No automatic format check or radix
conversion is performed. '

Each DISPLAY statement whose mnemonic-name is associated with TYPEWRITER
will cause from one to four 1lines to be displayed on the system -console,
-.depending on the size of the referenced data items. Each line will contain at
most 72 characters, thereby limiting the total size of the referenced items to
288 characters. If more than one line is. emitted for a given DISPLAY 'statement,
‘there is no assurance, in a multiprogramming environment, that the lines will be
juxtaposed on the console display.

6-6 ‘ DD26

Each ACCEPT statement whose mnemonic~name is associated with CONSOLE will
cause a single interaction with the operator's console, The system operator is
notified that a response is expected by the display of a message. The message
will have one of the following forms:

a. If a DISPLAY statement associated with CONSOLE has been executed, the
message will be the text of the last line associated with the lateSt
prior DISPLAY statement. The message will be followed by the
characters '?2?2?'.

b. If no prior DISPLAY statement associated with CONSOLE has been
executed, the message will be 'TYPEIN EXPECTED...'

The. input characters, if any, are treated as Hollerith, USAGE DISPLAY
characters and are moved into the data item referenced by the ACCEPT statement.
The referenced data item should be described, explicitly or implicitly, as USAGE
DISPLAY, No automatic format check or radix conversion is performed.

Each DISPLAY statement whose mnemonic-name is associated with CONSOLE will
allow from one to four lines to be displayed on the system console, depending on
the size of the referenced data items. Each 1line will contain at most 72
characters, thereby limiting the total size of the referenced items to 288
characters. The output line (or, if more than one 1line results from the
statement, the last output line) is held in a buffer until the next execution of
an ACCEPT statement associated with CONSOLE. At that time, the line will be used
to inform the operator of a pending need for a response, '

The ACCEPT and DISPLAY statements need not appear together. in the source
program, provided that the DISPLAY statement is executed first. Should no ACCEPT
statement be executed after the DISPLAY statement, the output data is not
displayed. Two DISPLAY statements of this kind with no intervening ACCEPT

" statement would result in the suppression of the output from the first DISPLAY
statement, If more than one 1line results from an execution of a DISPLAY
statement associated with CONSOLE, all lines except the last line are emitted at
once and, in a multiprogramming environment, there is no assurance that any of
the llnes will be juxtaposed on the console display.

‘Switches

The operating system establishes a 'program switch word' for each activity.
The 36 bits of each program switch word represent 36 software 'sense switches',
For COBOL purposes, the switches are numbered 0, 1, 2, ..., 35. Switches 0-5 and.
12-17 are reserved for the use of the operating system. Switches 18-35 may be
used for communicating between activities. Switches 6-11 are reset at the
beginning of each activity using the ON option of the $ EXECUTE card. (Refer to
the Control Cards reference manual.) Each of the switches 6-11 is set OFF at the
beginning of each activity unless an option of the $ EXECUTE card causes it to
be set ON, as shown below:

ON Setting $ EXECUTE
for Switch Card Option
6 ON1
7 ON2
8 ON3
9. ON4
10 - ONS5
11 ON6

6-7 - , DD26

A switch is ON if its value is one (1) and OFF if its value is zero (0).

, Each switch to be used must be associated with a . mnemonic-name in the
SPECIAL-NAMES paragraph of the Environment Division. In the Procedure Division,
an ACCEPT...FROM statement may cause a data item to receive- the switch setting,
or a DISPLAY...UPON statement may cause the switch to be set. ON or OFF according
to the followxng rules: ,

1. Only one operand is permitted in a DISPLAY statement that tran smits
data to the .switches; that is, if a DISPLAY statement refers to a
mnemonic-name associated with a switch, only one .operand (data-name,
literal, or the figurative constant ZERO) may be given. If the value
of the operand is 1, the switch will be set ON; if the value is 0, the
switch will be set OFF; If a literal is used, it must be an integer
that has a value of 1 or 0. If a data-name is specified, it must be a
COMPUTATIONAL-1 data item in the Working-Storage Section, with a size

“not exceeding eight digits. The following .data description is
recommended : Co .

77 data-name PICTURE 9 COMPUTATIONAL-1.

If the value of the ~itém exceeds one (1), the value modulo 2
-determines the switch setting.

2, If a mnemonic-name associated with SWITCH is specified, the ACCEPT
statement causes the value of data-name to be set to 1 if the switch
is ON, or set to 0 if the switch is OFF. The data-name must be a data

" item in the Working-Storage Section whose description 'is equivalent to
‘the following: ;

77 data-name PICTURE 9 COMPUTATIONAL-1.

An alternative method of testing a switch is provided by the switch-status
-condition test (see Section VII in the COBOL Reference Manual). In ' this
application, a mnemonic-name must be specifically associated with either the ON
or OFF setting of a switch.

To illustrate the use of switches, consider that one program must determine
whether or not a subsequent program is to produce a certain report. The report
is to be produced only if switch 35 is set ON., The settlng of the switch can be
programmed as follows:

Program 1 (Setting switches):

. SPECIAL-NAMES phrase:
SWITCH 35 IS REPORT—CONTROL

ON STATUS IS ...
OFF = STATUS 1IS...

Prodedure Division statement:
IF ... DISPLAY 1 ON REPORT—CONTROL

ELSE DISPLAY 0 ON REPORT-CONTROL.

3/717 - 6-8 ‘ - DD26A

The decision to produce the report
following two ways:

Program 2 (Sensing switches) :

SPECIAL-NAMES phrase:
SWITCH 35 IS REPORT~CONTROL
ON STATUS 1IS

DO-REPORT.
Procedure Division statement:

IF DO-REPORT

PERFORM ...

3/77

or not can be programmed in one of

SPECIAL-NAMES phrase:
SWITCH 35 IS REPORT-CONTROL
ON STATUS IS

DO-REPORT.
Data Division syntax:

77 SWITCH-VALUE 'PIC 9 COMP-1.

Procedure Division statements:

ACCEPT SWITCH-VALUE FROM
REPORT-CONTROL.
IF SWITCH-VALUE = 1

PERFORM ...

the

DD26A

DATA TRANSMISSION PROGRAM EXAMPLE

An example of a conversational COBOL program 1is presented below., The
program is entered as a CARDIN job from a remote terminal. (Refer to the
TSS Terminal/Batch Interface manual for details concerning CARDIN.) The program
is caused to first compile and then execute with the user's terminal ‘connection
to the batch job by a request to RUN followed by "the operator responses
(underlined in the example). o . :

Example:

10$;IDENT;VHA73,STATION-F

20$; COBOL; NDECK ,LSTOU,ON6

30; IDENTIFICATION DIVISION.

40;PROGRAM-ID, TALK.

50; ENVIRONMENT DIVISION,

60;CONFIGURATION SECTION,

70; SOURCE-COMPUTER. 6000 WITH EIS.
80;OBJECT~-COMPUTER. 6000 WITH EIS.

90; SPECIAL-~-NAMES.)

100; ;REMOTE' IS REM.

150; FILE-CONTROL.

160; I-0-CONTROL.

200;DATA DIVISION.

210;FILE SECTION.

300; WORKING~STORAGE SECTION.

310;77 MESSAGE~-RQST PIC 9 COMP-1.

320;77 END-RQST PIC X(3).

1000;PROCEDURE DIVISION.

1010;START SECTION.

1020; TELL-ON-THE-AIR.

1030; ;DISPLAY 'START OF EXAMPLE TALK RUN' UPON REM."
1040;;DISPLAY 'INPUT CHOICE OF TASK BY TYPING 001,002, OR 003'
1045;; UPON REM.

1050; TAKE-MESS. ACCEPT END-RQST FROM REM,

1060;;IF END-RQST = 'END' GO TO DONE.

1065; ;MOVE END-RQST TO A MESSAGE-RQST.

1070;;G0 TO TASKl1l, TASK2, TASK3

1080;; DEPENDING ON MESSAGE~RQST. i
1090;;DISPLAY 'BAD REQUEST--RETRY OR TYPE END' UPON REM.
1100;;G0 TO TAKE-MESS.

1110;TASK1.

1120;;DISPLAY 'TASK1l IS COMPLETED' UPON REM.
1130;;G0 TO ASK-FOR-MORE.

1140;TASK2. :

1150; ; DISPLAY 'TASK2 IS COMPLETED' UPON REM.
1160;;G0 TO ASK=FOR~MORE.

1170; TASK3.

1180; ;DISPLAY 'TASK3 IS COMPLETED' UPON REM.

1190; ASK~-FOR-MORE.

1200; ;DISPLAY *READY FOR NEXT--TYPE 001,002,003 OR END'
1210;; UPON REM GO TO TAKE-MESS.

1220;DONE. DISPLAY 'TALK RUN COMPLETED' UPON REM,
1230;;STOP RUN., .

9000$; EXECUTE ; DUMP

9009$;ENDJOB

READY

6-9 ’ DD26

Exaﬁple {cont) :

*RUN

SNUMB # 5532T
CARD =FORMAT,DISPOSITION ?

M,T

TAB- CHARACTER AND SETTINGS?

:.8,16

START
INPUT
2001
TASK1
READY
2002
TASER
READY
2003
TESK3
.READY
2999

OF EXAMPLE TALK RUN
CHOICE OF TASK BY TYPING

IS COMPLETED
FOR NEXT--TYPE 001,002,003

IS COMPLETED
FOR NEXT--TYPE 001,002,003

IS COMPLETEDR
FOR NEXT--TYPE = 001,002,003

BAD REQUEST--RETRY OR TYPE - END

?END

TALK ~ RUN COMPLETED
ACTIVITY TERMINATED
*NORMAL TERMINATION

001,002, OR

OR. END
OR END

OR. END

003

DD26

SECTION VII

TRANSACTION PROCESSING SYSTEM

The Transaction Processing System (TPS) consists of the Transaction
Processing Executive (TPE) that is part of the operating system, and the
-Transaction Processing Applications Programs (TPAPs) that are written by the
user to process transactions.

Some of the features of the Transaction Processing Executive are discussed
in this section in general terms to assist the user to understand the interface
between the user-supplied TPAP and the Transaction Processing System. However,
to obtain specific format conventions and programming details, refer to the
Transaction Processing System User's Guide.

TRANSACTION PROCESSING EXECUTIVE (TPE)

The Transaction Processing Executive controls the receipt of transactions
from terminals and delivers the transactions to appropriate Transaction
Processing Applications Programs for processing. The TPE also. directs output
messages to terminals from the TPAPs. If a requested terminal is not accessible,
the TPE holds the output for later transmission.

If direct communication between a user at a . terminal and a TPAP is
required, the TPE schedules the TPAP and performs the line switching necessary
for direct=access: communlcatlon.» ‘ i

TPAP Profile Table

The user must provide the Transaction Processing Executive with information
that will enable the TPE to associate an input message with the appropriate
TPAP., This information is assembled into the TPE using a macro.

The user—supplled parameters for the macro that are appllcable to a COBOL
TPAP are:

1. A unique three-character TPAP identifier (ID) that matches the first
three characters of the program-name in the TPAP's PROGRAM-ID
paragraph.] :

2{ -Nine binary digits (bits), used to indicate whether or not:

a. The TPAP 'is to be called into execution with the special message
***STRT and possibly terminated with the special message ***TERM.

7-1 o : . ' DD26

-~ b, The TPAP 1nput is in BCD format (ASCII format is not supported by
COBOL) .

C. The TPAP outpﬁt is in BCD format.
d. Message input order is to be maintained.
e. A line switbh\is required (direbt-access modé).
f. A,journal of the transaction meséages iSwréquired.
g. The TPAP is to femainvin memory- and be available.
3. The TPAP input buffer size,
4. The TPAP output buffer size (assigned invthe TRE);.
5. 'Theityée of:buffervassignment; fixed or dynamic.
6. The prioristty of the TPAP (optional) to 1nd1cate gueueing order.
7. . ‘A list of keywords and their assoc1ated priorities (optlonal)

8. The number of keywords.

Transaction Message Format

The»fdrmat of the transaction message accepted by the TPE is flexible. The
only required field in. the message is the keyword that the TPE uses to identify
and schedule the appropriate TPAP. The format of the transaction message is:

Field 1 Field 2 = Field 3

(xxx) kkkkkkkk mm, ..m

Field 1 (xxx) is the optional 1logical terminal identifier (ID). This
logical ID is composed of three alphanumeric characters enclosed in parentheses.
It is used primarily to identify the terminal to the TPAP for directing the
‘transaction output. If the logical ID is not specified, the physical line ID .is.
used. However, the physical 1line ID is -only valid while ' the terminal is:
connected. If the terminal is disconnected before the output is delivered, there
will be no valid destination ID, and the output will be undeliverable. :

Field 2 (kkkkkkkk) describes the transaction keyword. The keyword may be
from one to eight characters in length and must be followed by a blank or comma
if. it is less than eight characters. The keyword identifies .and, in effect,
selects the TPAP to be used to process the transaction. A TPAP may have .one or
more keywords; these.keywords may carry priorities in order to establish the
queueing priority ' structure in the TPE. If the keyword in the incoming
transaction message cannot be matched with a keyword associated with one of the .
TPAPs, the transaction input is rejected. An entry for an acceptable transaction
. request ;is placed in a. queue depending on the priority associated with the

keyword ‘and. the TPAP. . . ‘

Field 3 (mm...m) contains the message text. The format of this message is
determined ' by the TPAP, The message must be terminated with - a special
end-of-message symbol defined by the user installation. The message. length must’
. meet the requirements for the type of terminal being utilized. :

7-2 , - DD26

TRANSACTION PROCESSING APPLICATIONS PROGRAMS (TPAPS)

The TPAPs are user-supplied programs that are written to proéess any number
of different functions. These functions can be differentiated by keywords (TPAP
identifiers). Any number of keywords can be associated with a TPAP.

Since the applications programs are designed and developed by the user, the
functions performed by the TPAP are at the discretion of the user.

TPE/TPAP Interface

The TPE and the TPAP do not communicate directly with one another. All
communication between the two modules is accomplished through the intercom input
and output files.

If the TPAP is written in COBOL, the compiler provides the necessary
interface for communicating with the TPE using the COMMI and COMMO subroutines.
The communication of information between the TPE and each TPAP is +through a
buffer-to-buffer exchange of data.

The COBOL PROGRAM-ID for a TPAP must contain a unique program-name in the
first three characters of the maximum six-character name. The program-name 1is
used to 1dent1fy a given TPAP to the system, and is the name associated with the
keywords used in the transaction input. The standard method of generating
file-names to ensure a linkage between the files of the TPE and the intercom
files of the TPAP that are generated by the COBOL compiler is described below:

1. The input file (called the intercom input file) is created with the
; name. ZxxxI, in which xxx represents the first three characters of the
: program-name specified in the COBOL PROGRAM-ID paragraph.. The TPAP
receives input data via this file from a correspondingly named file in

. the TPE. .

2. The output file (called the intercom output file) is created with the
name ZxxxO. The TPAP will transmit data from thls file to a file in
the TPE that has a correspondlng name.

Intercom Input File Processing

Each input to the TPAP via the intercom input (intercom I) file contains
the entire text of the message from the terminal plus an input header. . The
length of the text is limited to the length that the Transaction Processing
Executive is capable of processing and to the defined buffer sizes. The input
message may not be segmented : :

7-3 v ‘ ' DD26

The input header description has ' the following implied COBOL record
description: . ‘ '

01 INPUT- HDR ' : ’
02 INPUT-TRANS-NO PICTURE 9(8) .COMP~1.

02 INPUT-STATUS PICTURE 9(8) COMP-1.
02 INPUT-SIZE PICTURE 9(8) COMP-1.
02 SOURCE-ID PICTURE X(3) SYNC LEFT.
02 MESSAGE-DATE PICTURE 9(6).
02 MESSAGE-TIME PICTURE 9(8) COMP-1.
02 QUEUE-DEPTH PICTURE 9(8) COMP-1.

Thege implicit descriptions provide access to data pertaining to the input
messages. The user can specify these names (except INPUT~HDR) for other purposes
within the program as long as each reference within the program (including any

reference to the elementary items within the input header) is qualified.

For example, if the TPAP contains a transit number table described as:

01 TRANSIT.
02 INPUT-TRANS-NO OCCURS 10 TIMES
« INDEXED BY INPUT-TRANS-NDX.

03 DISTRICT-1 PIC 9(4) DISPLAY.

03 'DISTRICT-10 PIC 9(4) DISPLAY.

The user must speCLfy INPUT-TRANS-NO of TRANSIT (INPUT-TRANS-NDX) to access
the appropriate transit number within the table. ,

The user: must specify INPUT-TRANS-NO ‘of INPUT- HDR to access the transactlon
number within the message 1nput header. .

INPUT SUBROUTINE (COMMI)

The -input subroutine (COMMI) is called for an ACCEPT MESSAGE statement that
implies 1nput from a terminal. :

The three-character PROGRAM-ID is used by the input subroutine to. form a
file-name (ZxxxI) needed to communicate with the intercom file. The input
subroutine contains one 210-word buffer (ZINBUF) that is of sufficient size - to
hold a full screen of data (26 lines) from a keyboard display terminal. (The TPE
always sends complete messages, that may be up to a full screen in size.) The
- first nine words of the buffer contain the message header after input; message
text always begins in the tenth word. The COBOL compiler generates the implicit .
‘record descrlptlon to describe this input header contalned in the . transaction
request ., E

After issuing a read to the intercom file, the COMMI delays for a status
condition on the read. If data is available, it is moved to the internal work
- area spec1f1ed in the ACCEPT MESSAGE statement. The message is transferred to
the rece1v1ng area (referenced by identifier) left-justified without space-fill.

7-4 - - DD26

There is no end-of-segment indicator, since an end-of-message 1nd1cator is
included with each transmission from the TPE.

COBOL INPUT STATEMENT PROCESSING

The user need not reference the input header directly. The appropriate
references will be made automatically by the COBOL compiler when the ACCEPT
MESSAGE identifier FROM mnemonic-name statement is specified. Identifier is the
name of the record area within the TPAP program that is to receive the
transaction message (excluding the input header information). The identifier
must be a level 01 or a level 77 data item in the Working-Storage Section.

The mnemonic-name in the ACCEPT MESSAGE statement must be associated with
the mnemonic-name specified in the COMMUNICATION-DEVICE phrase of the
SPECIAL-NAMES paragraph. The compiler generates the implicit input and output
header descriptions and places them into the data-name table when the
COMMUNICATION-DEVICE phrase is processed. ’

When no data is ready to be processed by the TPAP, the statements to be
executed can be specified by including the NO DATA imperative-statement phrase
with the ACCEPT MESSAGE statement. The input subroutine COMMI provides the NO
DATA return. The specified imperative-statement is executed when no data is
-available.

If the NO DATA phrase is omitted from a TPAP,. control is returned to the
statement immediately following the ACCEPT MESSAGE statement when data is
kreceived; however, if no data is available, the program is suspended until data
- is available. At that time control is returned to the statement following the
ACCEPT MESSAGE statement.

Intercom Output File Processing

There is no limit to the number of DISPLAY statements a TPAP may issue to
send a complete transaction message, although each complete message should not
exceed the limit imposed by the type of terminal that is to receive the message.
The Transaction Processing Executive accepts only 128 words at a time;
therefore, long messages must be segmented by the Transaction Processing
Applications Program. Each segment must contain the output header.

The output header description has the following implied COBOL record
description entry:) : :

01 OUTPUT-HDR.
02 OUTPUT~TRANS-NO PICTURE 9(8) COMP-1,.
02 OUTPUT-STATUS PICTURE 9(8) COMP-1.
02 OUTPUT-SIZE PICTURE 9(4) COMP-1.
02 DEST-COUNT PICTURE 9(4) COMP-1,
02 DESTINATION PICTURE X(3) SYNC LEFT
OCCURS 12 TIMES.

7-5 ‘ | , ~ DD26

These implicit descriptions provide access to information which is used to
build’ an output header for a message prior to releasing. it to the TPE. These
names (except OUTPUT-HDR) may be used for other purposes 'within a program as
long as each reference within the program (including any reference to - the
elementary items within the output header) is qualified. The program at the end
- of this section includes an example of the multiple use of DESTINATION within
" the program for purposes other than the output header. DESTINATION of OUTPUT-HDR
(subscript) must be specified to reference the appropriate terminal destination
in the message output header. .

When the output’message'is to be transmitted to the same[logical identifier
and transaction number as the input message, the compiler will ~automatically
initialize the output header description for the TPAP. '

When the output message is to be transmitted either to a destination other:
than that of the input message or to more than one destination, the wuser must
perform the following steps prior to the execution of each DISPLAY statement:

'l, Move ‘the transaction number to the output ' transaction number
(OUTPUT-TRANS-NO) if it differs from the input transaction number
"(INPUT-TRANS-NO) .

2. Indicate the number of terminals that are to receive the output
message by moving a value from one (1) to twelve (12), inclusive, to
the DEST-COUNT field.

3. Move the logical identifier for each receiving terminal into
DESTINATION (x) , where x is a literal or subscript containing a .value
from one (1) to twelve (12), inclusive, but not exceeding the value in-
DEST-COUNT. -

The length of the message to be transmitted will be moved automatically by
the COBOL object program +to the output message size (OUTPUT-SIZE) field:
regardless of the destination(s) of the message unless it is user specified. 1In.
this case, if a value larger than the data field is spec1f1ed, .a .CX abort is
generated. . ,

OUTPUT SUBROUTINE,(COMMO)

The output subroutine (COMMO) is called to transmit output (processed,.
transaction data) from the TPAP to the TPE.) :

The output subroutine in COBOL provides the following capabilities:

i. When a DEISPLAY to a communication device is executed, the subroutine

: first moves the output header information to the intercom O file in.
the TPE, and then moves the méssage text to that file. The move of the
message text is controlled by the number of characters: spec1f1ed in
‘the OUTPUT-SIZE field. o

2, Each message moved to the intercom O file is prefaced by a word.
containing a character count which specifies the 1length of the
message.)

3. If the OUTPUT-SIZE field contains zeros, the size of the sending field
’ contalnlng the data will be used.

7-6 : DD2‘6..::

4, If the contents of the OUTPUT-SIZE field contain a message larger than
the message that can be contained in the sending field, a CX abort is
generated. This field is zeroed after usage by COMMO.

5. If the OUTPUT~STATUS field contains zero, the value generated in the
CALL is inserted.

6. If the contents of the OUTPUT-STATUS field are nonzero, then this
field will not be modified. This field is zeroed after usage by COMMO.

7. The subroutine generates. an END-OF-SEGMENT, END-OF-MESSAGE, or
END—OF-TRANSACTION depending on the contents of the entry to the
subroutine. .

COBOL OUTPUT STATEMENT PROCESSING

The output transaction number in the output header must be initialized by
the TPAP prior to the execution of each DISPLAY statement if it 'is different
from the input transaction number in the input header.

The END-OF-SEGMENT, -MESSAGE, ~TRANSACTION options may only be wused when
data is to be displayed upon a communication device specified by mnemonic-name.
One of these three modes and a COMMUNICATION-DEVICE (mnemonic-name) must be used
to display data to the TPE, regardless of the destination IDs in the header.

When a TPAP is ready to transmit the text of a segment. within a long
message,. the DISPLAY literal (identifier) ... END-OF~SEGMENT UPON mnemonic=name
statement should be specified. ESI is an appropriate abbreviation for
END-OF-SEGMENT. The ESI or END-OF-SEGMENT option is to be wused when the
Transaction Processing Executive buffer is too small to contain the entire
message.

The mnemonic-name in the UPON phrase must correspond to the mnemonic-name
specified in the COMMUNICATION-DEVICE phrase of the SPECIAL-NAMES paragraph. The
compiler generates the implicit input and output header descriptions and places
them into the data~-name table when the COMMUNICATION-DEVICE phrase is processed.

When a TPAP is ready to transmit the text of the last segment of a 1long
message, or all of the text of a short message, the DISPLAY literal (identifier)
«+«. END-OF-MESSAGE UPON mnemonic-name statement should be specified. EMI is an
.appropriate abreviation for END-OF-MESSAGE. The EMI or END-OF-MESSAGE option
(whether included in the DISPLAY statement or generated by the COBOL compiler)
indicates that more messages may follow using the same transaction number. If
EMI or END-OF~-MESSAGE is not included in the DISPLAY statement and mnemonic-name
corresponds to the mnemonic-name specified in the COMMUNICATION-DEVICE phrase of
the SPECIAL-NAMES paragraph, the COBOL compiler will automatically transmit an
END-OF-MESSAGE symbol at the end of the transaction message.’ :

When a TPAP is ready to indicate that the message text is the end of the
last message for the specified transaction number, the DISPLAY literal
(identifier) ... END-OF-TRANSACTION UPON mnemonic-name statement should be
specified, ETI is an appropriate abbreviation for END-OF-TRANSACTION. It is
required to specify a DISPLAY ... END-OF-TRANSACTION statement in order to begin
processing another transaction. The TPAP must send an ETI to remove a
transaction from execution; the ETI is not automatlcally generated in the next
ACCEPT MESSAGE statement.

7-7 T . -~ DD26

When data is to be transmitted to a terminal, the destination 1ID in the
output header (DESTINATION) is used as the logical terminal ID by the TPE.
DEST~COUNT will be set to one (1) and DESTINATION (1) will be initialiZed to the .

input identifier (SOURCE-ID) .if the TPAP does not initialize these fields prior
.to the execution of each DISPLAY statement.

One TPAP may call another TPAP into execution by specifying the COBOL
statements MOVE 'l TO DEST-COUNT. MOVE '***! TO DESTINATION (1). , - followed by
one of the DISPLAY statement options ESI, EMI, or ETI. The output of the first
TPAP will be used as input to the second TPAP. The format of the message must be
that of the'input file format from the communication device to the first TPAP.
The keyword in the message 1dent1f1es the second TPAP that is to be called ' into
execution. .

An;BXamplé of the method used to call another TPAP into execution follows:

_Example:

SPECIAL~-NAMES.
. COMMUNICATION-DEVICE IS TPS-TERMINAL,
DATA DIVISION. i
WORKING-STORAGE SECTION
0l TPAP-SPAWN.
02 LOGICAL-ID.
03 FILLER PIC X VALUE '('.
03 TERMINAL-ID PIC XXX,
03 FILLER PIC X VALUE ')', .
02 TPAP~KEYWORD PIC X(8) VALUE 'ACCTO0014'.
. .02 TPAP-MESSAGE PIC X(80). :
PROCEDURE DIVISION.
PAR-NAME.
ACCEPT. MESSAGE TPAP-SPAWN UPON TPS*TERMINAL
MOVE 1 TO DEST-COUNT.
MOVE '***!' 70 DESTINATION(1).
:MOVE SOURCE-ID -TO TERMINAL-ID, ’
DISPLAY TPAP-SPAWN. -ETI UPON TPS-TERMINAL,

Direct-Access (DAC) Mode Processing .

The COBOL interface may also be used for direct-access (DAC) transaction
processing. A TPAP may contain ACCEPT MESSAGE. and DISPLAY statements that
reference mnemonic-names used in the DAC. processing mode. DAC mode processing is
specified with the REMOTE IS -mnemonic-name phrase in the SPECIAL-NAMES
paragraph. S - o ‘ ’ ‘ ‘

When a TPAP requires direct interactive communication with a ‘terminal, a
line switching bit must be set in the TPAP profile table in the TPE. When the.
line switch is made, the line is logically disconnected from the TPE and a
direct connection is established between the terminal and the TPAP. The TPAP can
be in direct communication only with the originating terminal. At ~least one
ACCEPT MESSAGE statement must be executed before the TPAP requests a line
.- switch. When the TPAP is ready to accept a message directly from the terminal,
the line switch' will be "established by the TPE when the ACCEPT literal
(identifier) ... FROM mnemonic-name statement is specified.,

7-8 e ~ DD26

In the DAC mode, a program may accept or display any number of messages to
or from the remote device. When the program is ready to accept another
transaction from the TPE, it transmits an ACCEPT MESSAGE statement. The
interface subroutine recognizes that the last message from the TPAP was in the
DAC mode and performs a line switch to return the line to the TPE. When the
terminal is returned to the TPE, the previous logical ID(s) of the terminal must
be redefined before they can receive output. When the line is switched, the next
transaction request is received, and the TPE again switches the 1line, 1if
requested, to the TPAP so that it can process the transaction in the
direct-access mode.

When the TPAP is ready to transmit a message directly to the terminal, the
DISPLAY literal (identifier) ... UPON mnemonic-name statement should ' be
specified.

The direct-access transaction operation ends when the TPAP disconnects the
line or switches it back to the TPE.

A Transaction Processing Appiications Program executing . in the
direct-access mode must not terminate without sending an END-OF-TRANSACTION
message for the transaction being processed.

The Transaction Processing Executive must receive an. END-OF-TRANSACTION
message for each transaction before it will release the TPAP for processing
subsequent transactions.

Transaction Processing Applications Progrém Example

The following program is a simplified version of a TPAP, written in COBOL,
that could be used for airline scheduling. In addition to the TPAP, the |user
would have to supply a data base for the TPAP to apply against the transaction.

7-9 - ' DD26

1

8 12

000753

¢

000010 IDENTIFICATION DIVISION,
000020 PROGRAM-ID. XXX.
000030 AUTHOR. v
000040 DATE-WRITTEN. SEPTEMBER 1974.
000050 ENVIRONMENT - DIVISION.
000060 CONFIGURATION SECTION. ; ‘
000070 SOQURCE-COMPUTER. 6000 WITH EIS.
000080 OBJECT-COMPUTER. 6000 WITH EIS.
000085 SPECIAL-NAMES.
000090 COMMUNICATION-DEVICE IS TERM-3,
000110 FILE-CONTROL. : ’ .
000120 SELECT SCHEDULE ASSIGN TO. CR FOR CARDS.
000200 DATA DIVISION. '
000210 FILE SECTION.
© 000220 FD SCHEDULE; :
000230 LABEL RECORDS: ARE STANDARD;
000240 DATA RECORDS ARE FLIGHT-SCHED.
000250 01 FLIGHT-SCHED.
000260 02 FLIGHT; PICTURE X(4).
‘000270 02 FILLER; PICTURE AAAA.
000280 02 DESTINATION; PICTURE X(20).
006290 02 FILLER; PICTURE AA.
000300 02 AIRMILES; PICTURE X(5).
000310 02 FILLER; PICTURE AAA.
000320 02 DEPTIME; PICTURE X(8).
000330 02 FILLER; PICTURE AAA.
000340 02 ARRIVE; PICTURE X(8).
000350 - 02 FILLER; PICTURE X(27).
000500 WORKING-STORAGE SECTION. ‘ B
000501 77 N; PICTURE 99 COMPUTATIONAL-1l.
000502 77 I; PICTURE 99 COMPUTATIONAL-1.
000503 77 SW; PICTURE 9. :
000504 01 INPUT-REQUEST.
000505 02 NME PIC XXX.
000506 02 CMA PIC X.
000507 02 CHECK-REQUEST PIC X(20).
000510 01 END-STATEMENT.
000520 02 JOBDONE; PICTURE A(20) VALUE "DONE".
000530 01 DATA-SPACE.
000540 02 DATA~-FILE; OCCURS 20 TIMES.
000550 03 FLIGHT; PICTURE X(4). .
000560 03 DESTINATION; PICTURE X(20).
000570 03 AIRMILES; PICTURE X(5). '
000580 03 DEPTIME; PICTURE X(8).
000590 03 ARRIVE; PICTURE X(8).
000600 01 TEMP-FILE. :
000610 02 FLIGHT; PICTURE X(4).
000620 02 DESTINATION; . PICTURE X(20).
000630 02 AIRMILES; PICTURE X(5).
000640 02 DEPTIME; PICTURE X(8).
000642 02 ARRIVE; PICTURE X(8).
000700 PROCEDURE DIVISION.
000710 BEGIN.
000720 OPEN INPUT SCHEDULE.
000726 STORER, ' : :
000730 PERFORM DATA-STORAGE ‘VARYING N FROM 1 BY
000740 UNTIL N GREATER THAN 20.
000748 . GO TO PROCESS.
000750 PROCESSA.
000751 ENTER LINKAGE MODE.
000752 POPUP DATA-STORAGE.
ENTER COBOL.

DD26

1 8 12

000754 PROCESS. ,

000755 MOVE SPACES TO INPUT-REQUEST.

000770 ACCEPT MESSAGE INPUT-REQUEST FROM TERM-3 NO DATA
GO TO WAIT.

000775 EXAMINE CHECK-REQUEST REPLACING ALL Z2EROS BY SPACES.

000790 IF CHECK-REQUEST = JOBDONE GO TO ENDD.

000795 MOVE 0 TO SW.

000800 PERFORM DATA-COMPARE VARYING N FROM 1 BY 1 UNTIL

000801 N GREATER THAN 20 OR SW = 1,

000814 'IF SW = 1 GO TO WRITER. v

000815 DISPLAY "NO COMPARE ON CHECK-REQUEST END-OF-TRANSACTION"

000816 UPON TERM-3.

000820 GO TO PROCESS.

000830 ENDD.

000840- CLOSE SCHEDULE.

000850 STOP RUN.

000900 DATA-STORAGE.

000910 READ SCHEDULE; AT END GO TO PROCESSA.

000920 MOVE CORRESPONDING FLIGHT-SCHED TO TEMP-FILE,

000930 MOVE TEMP-FILE TO DATA-FILE (N).

000940 DATA-COMPARE,

000950 IF CHECK-REQUEST = DESTINATION IN

000960 DATA-FILE (N) MOVE 1 TO SW.

000962 WAIT.

000963 ENTER GMAP.

000964 MME GERELC

000965 ENTER COBOL.

000966 GO TO PROCESS.

000970 WRITER.

000980 DISPLAY "FLIGHT# DESTINATION # AIR-MILES DE

000990~ "PT TIME AR-TIME "

001010 . FLIGHT 1IN DATA-FILE (N)," ",DESTINATION IN

001025 DATA-FILE (N)," ",AIRMILES IN DATA-FILE (N)," " ,DEP

001026- TIME IN DATA-FILE (N)," ",ARRIVE IN DATA-FILE (N)

001030 "END-OF-TRANSACTION" UPON TERM-3.

001035 GO TO PROCESS.

001200 END PROGRAM.

$ ENDJOB :

** *EOF

DD26

SECTION VIII

'REPORT WRITER

DESCRIPTION OF THE REPORT WRITER

The Report Writer provides the facility for producing reports by specifying
the physical appearance of a report instead of specifying. the detailed
procedures necessary to produce the report. '

A hierarchy of levels is used to define the logical organization of a
report. Each report is divided into report groups, which in turn are divided:
into sequences of items. This hierarchical structure permits explicit reference
to a report group with implicit reference to other levels in the hierarchy. A
report group contains one or more items to be presented on one or more lines.

The Report Writer feature places emphasis on the organization, format, and
contents of an output report. Although a report can be produced using ' the
standard COBOL language, the Report Writer language characteristics provide a
- more concise method for report structuring and report production. Much of the
Procedure Division coding which would normally be supplied by the user is
instead provided automatically by the Report Writer Control System. Thus, the
user is relieved of writing procedures for moving data, constructing print
lines, counting lines on a page, numbering pages, producing heading and footing
lines, recognizing the end of logical data subdivisions, updating sum counters,
etc. All of these operations are accomplished by the Report Writer Control
System from source language statements that appear primarily in the Report
Section of the Data Division of the source program.

Data movement to a report is directed by the Report Section clauses SOURCE,
SUM, and VALUE, Fields of data are positioned on a print line by means of the
COLUMN NUMBER clause. The PAGE clause specifies the length of the page, the size
of the heading and footing areas, and the size of the area in which the detail
lines will appear. Data items may be specified to form a control hierarchy.
During the execution of a GENERATE statement, the Report Writer Control System
uses the control hierarchy to check automatically for control breaks. When . a
control break occurs, summary information (subtotals) can be presenteéd.

Report Format

~ A report may consist of any meaningful combination of the folloWing syntax
selections: ' '

e | REPORT HEADING (one for each report)

e = PAGE HEADING ~ (one format for each report)

8-1 ' ' ~ DD26

° OVERFLOW HEADING (one format for each report)

o CONTROL HEADING (one format for each contyel level)
® : DETAIL (no limit for each report)

° ~ CONTROL FOOTING ‘(one'format for each control ievel)
o OVERFLOW FOOTING (one format for each report)

* '_PAGE FOOTING (one format for each report)

. REPORT FOOTING (one for each report)

In @OBOL, each report is described in the Reportt Section of the Data
Diwision. The user specmfies the intended format of each of the headings,.
footlngs, and detail lines in the report, as well as all sources of data. A
repert may utilize data described in the File Section and Working-Storage.
Section. In addition, the user spec1f1es the overall organization and intended
page layout of the report.

The compiler provides the following functions in the object program:
1. Vertical format control; including line counting, page eounting, and
productlon of page headings and footings.
2, Detection of control breaks.
- 3. Production of control headings and footings.:
4. Accumulation of control totals to any number of control levels.

5. Execution of user-defined procedures before ‘presentation of control
headings and footings. ‘

6. \'Production of overflow headings and footings.

Report Control in the Procedure Division

The production of a report is controlled in the. Procedure Division with
three report ertlng statements: -

o INITIATE
o GENERATE

. TERMINATE,

‘The BEFORE REPORTING phrase of the USE statement may also be used to
control the production of a report. .

8-2 » i DD26:

The relationship of the above statements to other Procedure Division
statements is illustrated by the following flow chart of a .simple reporting

~ program:
START .

OPEN Input File
and Report File

:

INITIATE

Report

READ Input AT END/INVALID KEY TERMINATE
File _ Report

Normal l

CLOSE Input
and Output
Files

IF...
(Is this
Input Record to.
be Reported

?) :

¢ No

Yes

STOP RUN

GENERATE GENERATE causes tests for
Detail control breaks and page breaks,

' with appropriate actions, as
well as detail line presentation
and total accumulation.

Before a GENERATE statement is executed, the report must be initiated. The
INITIATE statement causes initial housekeeping values to be established and
report and page headings to be presented.

The GENERATE statement provides for all aspects of report editing, writing,
and housekeeping, but GENERATE in itself makes no provision for reading input
data or deciding when detail 1lines should be produced. Instead, +the user
explicitly obtains each input record via COBOL statements such as the READ
statement, ' '

When the last GENERATE statement has been executed, the réport must be
terminated. The TERMINATE statement causes final control footings and report
footings to be presented. ' , :

8-3 o DD26

The immediate destination of a report is always a file ‘specified - in the
"File Section of the Data Division. The file must be explicitly opened prior to
execution of the report's INITIATE statement, and the file must be explicitly
closed after the TERMINATE. The report writing statements implicitly perform -
whatever writing is required for the report. '

-8keletal Format for the Report Section

_The’definition of each report includes two types of entries:

1. The RD entry specifies the basic page 1layout and the overall
organization of the report.

2. Report item description entries give the detailed formats of all
elements of the report and the sources of all information for the
report. v '

An RD entry in the Report Section is analogous to an FD entry in the File
Section; it is the highest level of hierarchical organization for - the report.
The report-name specified in each RD entry must be unique. ‘

A level 01 report group description entry is analogous to a level 01 data
record description entry in the File Section. A level 01 report item is called a
report group. The hierarchical definition of the report group is completed with
a series of subordinate entries with levels 02-49,

‘An item with no subordinate items (even if its level 1is. 0l1) is an

elementary item. Any report item whose entry is followed by subordinate entries
is a group 1tem.

Slnce several reports may be defined in the Report Sectlon, the skeletal
format of the Report Sectlon is as follows~

REPORT SECTION,
RD. report-name~l...
01 report-group-name,..

02... Complete

. description of

. : first report
Ol. LN

.

" RD report-nameéZ...
010..

RD report-name-n...

.

8-4 : ' DD26

A GENERATE statement refers to the data-name of a level 01 detail report
item (a report group). For summary reporting, GENERATE may refer instead to the
report-name of an RD entry instead of a detail report group data-name. The order
in which level 01 report droups are specified for a given report is not
significant,

Within each report group, items to be printed must be described from left
to right. If the report group contains multiple lines, they must be described in
order from top to bottom.

The length of each line is determined by the compiler, and depends upon the
capacity of the line printers. Spaces are assumed except where a specific item
is to be printed. (In a data record, on the other hand, every character position
must be described.)

RD Entries

The description of each report begins with an RD - entry. Except for the
level indicator (RD) and the report-name, all clauses in an RD entry are
optional.

The optional clauses in an RD entr: ace:

Clause Function
CODE To assign a unique letter or digit to label each 1line

of this report on intermediate storage. (The code
character does not appear in the printed report.)

CONTROL (S) To specify data-names of control items, in the order
. from most significant to least significant.

PAGE LIMIT(S) To specify the maximum number of lines per page.

'HEADING To specify the line number at which page or overflow

headings may begin,

FIRST DETAIL To specify the line number at which detail and control
lines may begin.

LAST DETAIL To specify the line number beyond which detail and
control heading lines must not be printed. '

FOOTING , To specify the line number beyond which control footing
: » lines must not be printed.

Report Group Entries

Typically, the description of a report includes two or more level 01 report
group entries, each followed by a hierarchy of subordinate entries. Depending
upon a number of factors, most clauses (except the 1level-number clause) are
optional. In most entries, the data-name is optional and is normally omitted. A
‘data-name is specified in level 01 detail report group entries and in certain
other entries, described later. :

g-5 : ' DD26.

At qheVOl,report;grbup level, the following'clauSe is.requi:ed:

Clause - Functigﬂ
_ TYPE : To specify the purpose of this

page or control heading, etc.).

The optional clauses in a report group entry are:

Clause - Furiction
LINE; NUMBER To. specify vertical spacing

report group (detail,

(slewing) that is to

precede production of this repoxt. group.

NEXT GROUP To: specify vertical spacing

production of this report group.

that is to follow

COLUMN NUMBER " To specify that this item is to be printed, and to

specify its horizontal position

on the line.

be 'spaces' when the

'BLANK WHEN ZERO To cause this item's value to.
SOURCE or SUM with which it is associated has the value
zero,
GROUP INDICATE To cause this item to be printed only at the top of the
. page and just after each control break.
JUSTIFIED RIGHT To override normal left justification when this item is
: : edited for output. ’
PICTURE To specify the desired output format for this item.
RESET To specify control breaks where the control total is to
be reset to zero.
SOURCE,,SUM, or To‘specify the source of data for this item:

VALUE .
: 1. SOURCE - a data item.

2, SUM - a 'control total'.

3. VALUE - a literal.

USAGE ' To specify DISPLAY-1 format when necessary.

ELEMENTS OF A REPORT

Report Groups

Each integral unit of data presented in a report, such as a page heading or
footing, control heading or footing, or detail line is called a report group. A
report group may consist of one or several actual lines in-.the printed report.
In the Report Section, the first entry of each report group has level 0l.

8«6

DD26:

The TYPE clause is a required part of each level 01 report group
description entry. The TYPE clause identifies the report group as detail or as
report, page, overflow, or control heading or footing. Each report must contain
at least one TYPE DETAIL report group. All other types are optional. A given
heading type may be used with or without the corresponding footing, and vice
versa. A report may have several distinct detail report groups or control
heading or footing report groups, but no more than one of each of the other
types. - .

Control Data Items

) Each control heading or footing is associated with a specific control data
item. A control item may b any item described in the File Section or
Working-Storage Section. = =

Control items are related to the report by a 1list of control data-names
specified in the CONTROL(S) clause of the RD entry. When -control items are
specified, the reporting procedures in the object program automatically monitor
all control items for changes in value.

The most significant possible control level is associated with the reserved
word FINAL, which may optionally be specified in the RD entry's CONTROL(S)
clause and in a control heading and/or a control footing report group
description entry.

Any control item may be associated with a specific control heading and/or a
specific control footing report group. (Control report groups may be specified
for each control item, for none, or for any subset of control items.) Control
footings may call for automatic accumulation of control totals.

. Control heading report groups are presented in the following hierarchical
order: :

FINAL CONTROL HEADING
MAJOR CONTROL HEADING

MINOR CONTROL HEADING

Contréllfboting report groups are presented in the following hierarch.._al
order: : .

MINOR CONTROL FOOTING

MAJOR CONTROL FOOTING
FINAL CONTROL FOOTING

A céntrol break is recognized whenever a control item has changed in value
between execution of the previous GENERATE statement and the current GENERATE
statement.

If the item producing a control break is not the 1least significant
(rightmost) item in the list of all control items, then a control break has
occurred at all less significant levels as well. ’ :

8-7 , o ' , " 'DD26

A control break causes the following automatic. actions:

1. Rolling forward of control totals.
2, Presentation of control footings up thfough the control break level.
3. Resetting control totals to zero, up through:the control break level.

-4, Presentation of control headings from the -control bréak level down
through the least significant control level,

-When it is specified, a final control heading is:presented -only once ' for
~the report, upon the first execution of a GENERATE statement. Similarly, a final
scontrolifooting is “presented only 'once, upon execution of the TERMINATE
~statement. ‘ '

When the TERMINATE = statement is ~executed, a finél‘ control break is
-understood to have occurred, so all control footing 'report -groups .are then
presented, in order from. least significant through final. ’

When -a control break occurs, control footings must use the old values of
the control data items, while control headings use the new values of the control
data items. A special provision causes old control item values to be retained
for control footings. No such provision ex1sts for items which are not control
items. . . : '

. Page Breaks and Overflow Breaks

If page heading and/or page footing report groups are specified, they . are
automatically presented at the top or bottom of -each page of the printed report.

A 'control group' consists of all control heading, detail, ‘and controi
footing report groups produced between two successive control breaks (including
the control footing(s) produced by the latter).

The bottom of a page may be reached either between control groups or within
a control group. In some cases, one set of page heading and/or footing formats
can be specified if a page break occurs between control groups, and a different
‘'set of headings and/or footings can be spe01f1ed if a page break occurs within a
:control group. Headings and footings in the latter category are ~called
'overflow' headings and footings. If overflow headings and footings have -been
.specified, a page break within a control group is considered to have produced an
‘overflow' condition.

On a given page, either a page heading or an overflow heading may -appear,
sbut not both. Similarly, either a page footing or -an. overflow footing -may
:appear, but not both. (If overflow headings are not specified but page headings
sare specified, each page break produces.a page heading. The equivalent ‘rule
.applies for overflow and page footings.) o

If overflow headings or footings are specified for a report, .the RD entry
must include the LAST DETAIL.phrase of the PAGE LIMITS clause.

‘8-8 - "~ 'DD26

If a report has both page and overflow headings and/or both page and
overflow footings, the FOOTING phrase of the PAGE LIMITS clause affects
detection and results in an overflow condition as follows:

1. If the FOOTING phrase is -omitted, an overflow condition = exists
whenever the current detail or control footing report group cannot fit
on the current page.

2. If the FOOTING phrase is specified, an overflow condition exists if
the current report group is a detail which cannot fit within the LAST
DETAIL phrase limit. If the current report group is a control footing,
an overflow condition exists if the entire set of control footing
report groups produced by this control break cannot fit on the current
page (within the FOOTING phrase limit). This feature may be used to
force all control footings to appear within a single page.

When an overflow condition occurs, it exists from the presentation of the
last element of the current control group on one page to the presentation of the
first element of the same control group on the next page.

Except when an overflow condition is determined as descrlbed above, a page
break causes presentation of page footings and headings.

File Characteristics

Each report is produced on an output file by the object program., The output
file must be described by at least an FD entry in the File Section of the Data
Division plus associated Environment Division paragraphs and phrases.

A given output file may receive one or more reports. The REPORT(S) clause
of the FD entry lists the report or reports belonging to the file., This is the
only explicit relationship between a report and the file to which it belongs.
(Although a GENERATE statement does not mention the output file, any necessary
'writes' to the file are implied by each execution of a GENERATE statement.)

For a file receiving multiple reports, it is necessary to label each report
line uniquely so that the lines belonging to the respective reports can be
distinguished for printing. The CODE clause of the RD entry is used for that
purpose. With the CODE clause, the user can associate a unique letter or numeric
digit with each report; the compiler then causes every line of the report to be
labeled in a standard manner with the unique character assigned by the user. The
code character appears in intermediate storage only (e.g., SYSOUT or = magnetic

tape) , not in the printed report.

Ali files referenced by Report Writer clauses or statements must have a
process. area applied, either by explicitly specifying theé .APPLY PROCESS - AREA
phrase or implicitly by specifying the FOR CARDS or FOR LISTING phrase.

Line Counter

» A line counter is implicitly provxded for each report. It is ;hsed by thé
generated reporting procedures to recognize page (and overflow) breaks,. and to
control vertical page format.

8~9 _ - 'DD26

The line counter is automatically set to zero initially, and it is reset to
zero whenever a page break occurs, It is automatically set, reset, .and
incremented on the basis of values specified in the LINE NUMBER and NEXT GROUP
clauses in the respective report groups. It is automatically tested on the basis
of values specified in the PAGE LIMITS clause of the RD entry.

A page break occurs whenever a relative LINE NUMBER or relatlve NEXT GROUP
value causes the line counter to exceed a relevant PAGE LIMITS value.

The fixed data-name LINE-COUNTER may be referred to if it is 'necessdary to-
access the line counter contents. The report-name may be used as a qualifier for
‘-LINE-COUNTER; such qualification is necessary whenever the Report Section
~includes more than one report. ' o :

If the last line produced had no relevant NEXT GROUP ‘clause, the 1line
counter value is the number of the 1last 1line printed. Otherwise, the line
tounter value- is the number of the last line skipped.

Procedure Division statements should never - change the value of a line
- ¢counter. Otherwise, an unpredictable loss of page format control may occur.’

Page Counter

A page counter is implicitly provided for each report. It is primarily used
as a SOURCE data item within page heading report groups, to provide consecutive
page numbers for the report.

The initial value of the page counter is one, Its value 1is automatically
incremented by one each time a page break occurs. (The increment follows
production of any page or overflow footing, but precedes productlon of any page
or overflow heading.)

The fixed data-name PAGE-COUNTER is referred to in a SOURCE clause or in
the Procedure Division to access the page counter value. The report-name may be
used as a qualifier for PAGE-COUNTER; such qualification is necessary whenever
the Report Section includes more than one report, '

~Normally, Procedure Division statements should not change the value of a
page counter. However, a Procedure Division statement may change the starting
value of a page counter if an initial page number other than one (1) is desired.

REPORT WRITER EFFICIENCY TECHNIQUES

SUM Coﬁnter Manipulation

A function of the Report Writer that must be clarified to avoid producing
inefficient object code is the manipulation of SUM counters. There are three
distinct types of SUM counter manipulation; subtotalling, rolling ' forward, and
crossfooting., A definition and illustration of each type of manipulation is
presented below. : ’

8-10 , . DD26

SUBTOTALLING

Subtotalling is the most basic type of SUM counter manipulation. In this
method, a SUM counter is augmented by the value of the SUM operand for each
execution of a GENERATE statement of the TYPE DETAIL report group which contains
the SOURCE counterpart of the SUM operand.

Example:

Ol DETAIL-1 TYPE DETAIL LINE PLUS 1.
02 SOURCE IS COST.

01 MINOR TYPE CF MINR LINE PLUS 1.
. 02 SCTR-1 COLUMN 50 PIC zZ(6).99 SUM COST.

01 INTERMEDIATE TYPE CF INTRM LINE PLUS 1.
02 ©SCTR-2 COLUMN 50 PIC z(6).99 SUM COST.

01 MAJOR TYPE CF MAJR LiNE PLUS 1.
02 SCTR-3 COLUMN 50 PIC Z(6).99 SUM COST. .

01 FIN-TOT TYPE CF 'FINAL LINE PLUS 1 NEXT GROUP NEXT PAGE.
02 SCTR-4 COLUMN 50 PIC Z(6).99 SUM COST.

At each execution of a GENERATE DETAIL-1l, the value of COST will be added
into SUM counters SCTR-1, SCTR-2, SCTR-3, and SCTR-4. When a control break
occurs, no 'rolling forward' of counters is necessary since all counters are
effectively 'subtotalled'. The only remaining actions to be performed are:

1. Presentation of the control footing report groups from the least
inclusive (MINOR) up through the control footing representing the
control break level.

2.. Resétting the corresponding SUM counters to zero after each control
footing is presented. ' :

ROLLING FORWARD

Rolling forward is a type of SUM counter manipulation in which SUM counters
defined in control footing report groups of lower control levels are added to
SUM counters defined in control footing report groups of higher control levels
during control break processing.

. In the previous example, for instance, the ' identical results may be
obtained more efficiently by 'rolling forward' the SUM counters. ’

8-11 o : . DD26

Example:

01 DETAIL-1 TYPE DETAIL LINE PLUS 1.
02 SOURCE IS COST. *

01 MINOR TYPE CF MINR LINE PLUS 1. _ -
02 SCTR-1 COLUMN 50 PIC Z(6).99 SUM' COST.

01 INTERMEDIATE TYPE CF INTRM LINE PLUS. 1. »
02 SCTR-2 COLUMN 50 PIC Z(6).99 SUM SCTR-1.

01 “MAJOR TYPE CF “MAJR LINE PLUS 1.) ‘
02 '~ SCTR-3 COLUMN :50 PIC 2(6).99 SUM SCTR-2.

01 FIN-TOT 'TYPE €F - FINAL LINE PLUS 1 NEXT GROUP NEXT - PAGE.

02 SCTR-4 COLUMN 50 PIC Z(6).99 SUM 'SCTR-3.

The following sequence -of events occurs in the above. example:

1. At each execution of a GENERATE DETAIL-1l statement, the value of COST

‘is added into SUM counter SCTR-1 (subtotalling).

2. - When a control break occurs on control data-name MINR, - the
' footing report group called MINOR is presented; then SUM

‘SCTR~-1 is added (rolled forward) to. SUM counter SCTR-2.

control
counter

3. When a control break occurs at a higher control break 1level, the

control footing report groups = are presented in sequence

-from the

inclusive (MINOR) .up to and including the control footing at which the
"control break occurred. After each control footing is presented, the
SUM counters for that report group are rolled forward to corresponding

SUM counters in higher level control footing report groups.
Thus, the subtotalling operation occurs only at. the least

(MINOR) control break level., The remaining SUM counters are
only when control break processing takes place.

CROSSFOOTING

Crossfooting is a type of SUM counter manipulation in which SUM
defined in a given control footing report group are added to other SUM
in the same report group during control break process;ng.

.8-12

inclusive
augmented

counters
counters

DD26

Example:

01 DETAIL-1 TYPE DETAIL LINE PLUS 1.
02 SOURCE IS COSsT-1,
02 SOURCE IS COST-2,

01 MINOR TYPE CF MINR LINE PLUS 1.
02 SCTR-1 COLUMN 50 PIC Z{(6).99 SUM COST-1.
02 SCTR-2 COLUMN 60 PIC 2(6).99 SUM COST-2.
02 SCTR-3 COLUMN 70 PIC 2(9).99 SUM SCTR-1, SCTR-2.

01 INTERMEDIATE TYPE CF INTRM LINE PLUS 1.
02 SCTR-4 COLUMN 50 PIC z(6).99 SUM SCTR~-1.
02 SCTR-5 COLUMN 60 PIC Z(6).99 SUM SCTR-2.
02 SCTR=6 COLUMN 70 PIC Z(9).99 SUM SCTR-4, SCTR-5.

‘The following sequence of events occurs in the above example:

1. At each execution of a GENERATE DETAIL-1 statement, SUM counters
SCTR-1 and SCTR-2 are augmented by the corresponding values of COST-1
and COST-2 (subtotalling).

2. When a control break occurs for the control footing report group
called MINOR, SUM counters SCTR-1 and SCTR-2 are added into SUM
counter SCTR-3 before the report group is presented (crossfooting).

3. After the report group called MINOR is presented, SUM counters SCTR-1
and SCTR-2 are added into SUM counters SCTR-4 and SCTR-5, respectively
(rolled forward).

4, SUM counters SCTR-1, SCTR-2, and SCTR-3 are reset to zero.
5. . When a control break occurs for the control footing report group

called INTERMEDIATE, SUM counters SCTR-4 and SCTR-5 are added into SUM
counter SCTR-6 before the report group is presented (crossfooting).

SOURCE/SUM Correlation

A common source of error in Report Writer programs results from a
misunderstanding of the SOURCE/SUM correlation concept. This ‘concept, simply
stated, requires that a SUM operand must either be: :

1. The object of a SOURCE IS clause in a TYPE DETAIL report group, Or
2, The name of a SUM counter deflned in a lower ‘level control 'footing

report group.

" The source error which occurs most frequently 1is that a given report
description (RD) contains more than one TYPE DETAIL report group, and ‘a given
SUM operand appears as the object of a SOURCE IS clause 1n more than one TYPE
DETAIL report group.

8-13 » ’ DD26

Example:

RD REPORT-1 CONTROLS ARE MINR...
01 DETAIL-1 TYPE DE LINE PLUS 1.
: 02 SOURCE IS COST. '

01 DETAIL-2 TYPE DE LINE PLUS 1.
: 02 SOURCE IS COST. '

01 MINOR TYPE CF MINR LINE PLUS 1. :
- 02 SCTR-1 COLUMN 50 PIC Z(6).99 SUM COST.

For each execution of either a GENERATE DETAIL-1 or a GENERATE DETAIL-2
statement, the SUM counter SCTR-1 will be augmented by the value of COST

since
it is the object of a SOURCE IS clause in both TYPE DETAIL report groups.

The UPON phrase of the SUM clause may be used to selectively ahgment a
given SUM counter, '

If the previous (last) example is changed to read:

01 MINOR TYPE CF MINR LINE PLUS 1.
02 SCTR-1 COLUMN ' 50 @ PIC 2(6).99 SUM .COST UPON DETAIL-1,

this definition indicates that SUM counter SCTR-1 will be augmented only when

a
GENERATE . statement is executed for DETAIL-1.

Pre-Slew and Post-Slew Algorithms

The algorithms used by the COBOL Report Writer in maklng pre- and post-slew
calculations are presented below, with related examples.

PRE-SLEW CALCULATIONS
The basic algorithm is:

LINE PLUS N slews N-1 lines.

g-14 ' ‘ ~ DD26

Thereforé:

lines.
lines.
line.

lines.

LINE PLUS O0—p pre-slew
LINE PLUS 1l-—ppre-slew
LINE PLUS 2 —ppre=-slew
LINE PLUS 3 —ppre-slew

N OO

Exception:

LINE PLUS 0 —ppre-slew 0 lines NOT N-1 lines.

POST-SLEW CALCULATIONS
The basic algorithm is:
NEXT GROUP PLUS M slews M lines.
Therefore:

NEXT GROUP PLUS 0 —post-slew 0 lines.
NEXT GROUP PLUS 1 -—ppost-slew 1 line,
NEXT GROUP PLUS 2 —ppost-slew 2 lines.
NEXT GROUP PLUS 3 —ppost-slew 3 lines.,

Exception:

If NEXT GROUP not specified —#automatic post-slew 1 line.

COMBINATIONS OF PRE-SLEW AND POST-SLEW CALCULATIONS

The combinations of pre~- and post-slew line calculations are'p;esented below:

LINE PLUS O

-~ pre-slew 0, post-slew 1

LINE PLUS 1 —ppre-slew 0, post-slew 1
LINE PLUS 2 ~ppre-slew 1, post-slew 1
LINE PLUS 0) :

NEXT GROUP PLUS 0 —ppre-slew 0, post-slew 0
LINE PLUS 1

NEXT GROUP PLUS 0 —ppre-slew 0, post-slew 0
LINE PLUS 2
. NEXT GROUP PLUS 0 —¥pre-slew 1, post-slew 0
LINE PLUS 1 o) ‘

NEXT GROUP PLUS 1 -—Ppre-slew 0, post-slew 1
LINE PLUS 2
. NEXT GROUP PLUS 1 —ppre-slew 1, post-slew 1
LINE PLUS 1
- 'NEXT GROUP PLUS 2 —ppre-slew 0, post-slew 2
LINE PLUS 2 : v _ '

NEXT ‘GROUP PLUS 2 —ppre-slew 1, post-slew 2

DD26

For normal sihgle spacing of a report, a LINE PLUS 1 .designation is

" most often used. It actually gives a. pre-slew of 0; however, the

implicit ‘post-slew of 1 yields the desired result.

For normal double spacing of a report, a LINE PLUS 2'givés a pre-slew
of 1 which, when added to .implicit post-slew of 1 from the previous
line, results in a double-spaced report.

If line overprint is desired, the detail line must.be split into two
TYPE DETAIL report groups. This may be accomplished by wusing a LINE
PLUS 0 NEXT GROUP PLUS 0 on the first TYPE .DETAIL to be generated. The
remainder of the detail line generated by the.second TYPE DETAIL would

: specify LINE PLUS 0. This would result in both:TYPE. DETAIL lines being
“printed on the same line. : - : ‘

 REPORT WRITER TABLE CONSTRAINTS

Several fixed-length table restrictions apply due to the size and
complexity of the Report Writer system. They are given below.

suM Operand Limitations

1.

In a given report, the same operand must not appear in ' over ten SUM
clauses.

Example:

01 DETAIL-1 ‘TYPE DE LINE PLUS 1.
02 SOURCE IS COST.

If the identifier COST were to be used as”the-object of a SUM clause
in over ten separate statements, the following error. message is

printed:

ER =~ REFERENCES TO SUM OPERAND EXCEED LIMITS _
NO SUMMING WILL TAKE PLACE FOR THIS SUM CLAUSE.

This limit may be reached in cases where subtotalling is being used in
many levels of control footings. Normally, the problem can be resolved
by rolling forward the SUM counters. '

8-16 _ : DD26

2. In a given report, no more than 100 SOURCE/SUM correlations may be
specified. Specification of a SUM clause whose operand correlates
(matches) with the same operand that appears in more than one SOURCE
clause will result in a separate entry being placed in the SUM stack
for each SOURCE/SUM correlation, Similarly, SUM clauses that specify
multiple operands will result in a separate entry being placed into
the SUM stack for each SOURCE/SUM correlation. If a program exceeds
this limit, the following error message is printed:

ER - NUMBER OF SOURCE/SUM CORRELATIONS IN THIS REPORT
EXCEEDS LIMIT - NO SUMMING OCCURS FOR THIS STATEMENT.

If this 1limitation is reached, the user may perform required
calculations in a USE BEFORE REPORTING statement for those SUM
counters over the 1limit. The user-defined (working-storage) SUM
counter may be presented at control break time by wusing it as the
object of a SOURCE clause in the control footing.

RESET Stack Limitations

The RESET clause, which is used in conjunction with the SUM clause, is
processed by an internal stack mechanism within the Report Writer, The RESET
stack handles a maximum of ten RESET clauses within a given report and has no
overflow capability. If the capacity of the RESET stack is exceeded, the error
message

*%%x**x ER NUMBER OF RESETS EXCEEDS STACK CAPACITY
RESET CLAUSE IS IGNORED.

is printed for each RESET clause encountered after the limit of ten has been
reached. .

If this limitation is experienced, the user may circumvent the problem at
the source program level by using the following procedures:

1. Define working-storage SUM counters for all SUM counters that exceed
the RESET stack capacity.

2. Augment the working-storage SUM counters by Procedure Division
statements that are outside Report Writer control.

3. Refer to the working-storage SUM counters by specifying the SOURCE
~clause in the control footing in which it is to be presented.

4, Define a USE BEFORE REPORTING declarative section for the control
break level at which resetting is desired.

5. Within the USE BEFORE REPORTING statement, move =zeros to the
working-storage SUM counters that require manual resetting.

8=17 , DD26

Example:
'REPORT

0l
0l

0l

In case
and B may be

SECTION.
MINOR—CONTROL TYPE - CF- MINOR...

02 LINE ‘PLUS 1. -
03 A COLUMN 1 PIC Z(6).99 SUM COST RESET ON 'INTERMEDIATE,

INTERMEDIATE-CONTROL TYPE CF INTERMEDIATE...
02 LINE PLUS 1. » :
03 B COLUMN 1 PIC Z(6).99 SUM COST RESET ON FINAL.

FINAL CONTROL. TYPE CF FINAL...
02 LINE PLUS 1.

.

of RESET stack overflow, the automatic resetting for SUM counters A
accomplished manually by incorporating the following changes in the

source program:

WORKING-STORAGE 'SECTION.

77
77

REPORT

01

01

01

A PIC 9(6)V99 VALUE 0.
B PIC 9(6)V99 VALUE 0.

SECTION.

MINOR-CONTROL TYPE CF MINOR...
02 LINE PLUS 1.
03 COLUMN 1 PIC Z(6).99 SOURCE IS A,

INTERMEDIATE~-CONTROL TYPE CF INTERMEDIATE...
02 LINE PLUS 1.
03 COLUMN 1 PIC Z2(6).99 SOURCE IS B.

FINAL-CONTROL TYPE CF FINAL.,.

PROCEDURE. DIVISION.

DECLARATIVES. :
INT-CTL SECTION. -
) USE BEFORE REPORTING INTERMEDIATE-CONTROL.
PARA-1. MOVE ZEROS TO A.. .
FIN-CTL SECTION.
USE BEFORE REPORTING FINAL CONTROL.
PARA-2. MOVE ZEROS TO B.

END DECLARATIVES.

BEGIN.

READ INPUT-FILE.

COMPUTE A A + CoOSsT.
COMPUTE B B + COST.
GENERATE...

nn

.

8-18 DD26

There is one significant difference in the manual reset method compared to
the automatic reset method. Automatic resetting occurs after the control footing
print line has been presented, Manual resetting, at USE BEFORE REPORTING time,
occurs before the control footing print line is presented.

Report Table Capacity

The Report Table is a fixed-length memory area within the compiler in which
all Report Writer Data Division entries are constructed. The table has a total
capacity of 1900 words, consisting of a 640-word fixed entry portion and a
1260-word variable entry portion. The Report Table is designed so that data in
the fixed portion is inserted from the top to the bottom of the table and the
data in the variable portion is inserted from the bottom to the top. The Report
Table has no overflow capability.

When the RD level indicator is encountered in the source program, a
ten-word entry is placed into the fixed portion of the Report Table as the
report-name entry. If the CONTROL(S) clause is specified, a nine-word control
entry is placed into the fixed portion of the table, followed by an additional
13-word entry for each control data-name specified. When a report group level
indicator is encountered, a ten-word entry for that report group is placed into
the fixed portion. A corresponding entry for the report group description entry
is placed into the variable portion of the table,

Each individual report group entry must be small enough to be contained
within the variable portion of the table. When a given report group is built in
its entirety, the data in the wvariable portion is written to an internal
intermediate Report Writer file and the next report group encountered is
inserted into the variable portion. The fixed portion must contain entries for
all report groups defined within a given RD and, consequently, is not written to
the intermediate file until a new RD or the Procedure Division header is
encountered., The variable portion of the Report Table is always at least 1260
words in length. However, the variable portion is automatically enabled to
utilize the unused portion of the fixed portion, up to a maximum size of 1650
words, if additional memory space is required to contain a very large report
group. Since the length of the fixed portion increases with each report group
encountered, it is recommended that the largest report group descriptions be
described near the beginning of the report description entry.

If the combined capacity of the variable portion and fixed portion is
exhausted during the processing of a given report group, or if the wvariable
report group size exceeds 1650 words, the following error message is printed:

**%%% REPORT GROUP DESCRIPTION EXCEEDS COMPILER CAPACITY - DELETED
REMAINING ENTRIES UNDER CURRENT O01.

When this error condition occurs, it is necessary to reduce the size of the
report group as described in the Calculation of Report Group Size paragraph in
this section.

8-19 DD26

The capacity of the fixed portion of the Report Table may also be exceeded
in cases: where a report description contains a large number of report groups.
For example, a report having no CONTROL(S) clause can contain a- maximum . of 62
report groups. This capacity is reduced if control data-names are specified. If
the fixed portion (640 words: max1mum) is exceeded, the following error message
is printed:

*%%%% OVERALL REPORT DESCRIPTION EXCEEDS COMPILER CAPACITY - DELETED
REMAINING - ENTRIES UNDER CURRENT RD.

When this error condition occurs, it is necessary to reduce the number of
specified report groups either by comblnlng the groups or by dividing the RD
into two separate reports.

Since large report group description entries, normally TYPE DETAIL or
control footing, occasionally overflow the Report Table capacity, the following
discussion is intended to assist the wuser in structuring report group
descriptions to fit within the capacity of the Report Table.

REPORT GROUP ENTRIES

A report group entry is built for the 01 entry which contains the TYPE
clause. Only one such entry appears per report group. The entry varies from a
minimum of eight words to a maximum of 11 words.

A basic 01 report group entry containing only a TYPE statement is built as
an eight=-word report group entry.

Example:
0l DET-L TYPE DE.

If a LINE or NEXT GROUP designation or a combination of both appear in .the
01 report group statement, two additional words are required in the entry being
built.

Example:

01l DET-X TYPE DE LINE PLUS 1. . {(or)
01l DET-Y TYPE DE NEXT GROUP PLUS 2. (or)
01 DET-Z TYPE DE LINE PLUS 1 NEXT GROUP PLUS 2.

All of these statements build a ten-word entry.

8-20 DD26

If the report group is a control footing report group, one additional word
is required in the entry being built, which is used as a total sum word count.

Example:
01 TYPE CF data-name LINE PLUS 1 NEXT GROUP NEXT PAGE.

This statement is built as an ll-word entry.

GROUP ENTRIES

When structuring a report group, the user may specify intervening group
levels, Each group entry at the 02 level or below requires a group entry that is
nearly identical to the report group entry described above. It may vary in size
from eight words minimum to ten words maximum. For example, consider the
following structure:

0l CTL-X TYPE CF CNTRL NEXT GROUP NEXT PAGE,
02 LINE PLUS 1.
03 COLUMN 1 PICTURE Z(6) &UM data=-name.
02 LINE PLUS 2.
03 LN BN

The 01 TYPE entry would build an entry 11 words in length since it has a
NEXT GROUP clause and is a TYPE control footing. The 02 group statement builds a
ten-word entry inheriting most of its data from the report group entry and
adding the word of data to describe the LINE clause.

SOURCE ENTRIES

A source entry . is built for each elementary entry containing a SOURCE IS
clause. These entries can vary greatly in size, from a minimum entry of 27 words
to a maximum entry of 74 words.

The most basic SOURCE clause is found in a detail report group. It does not
contain a COLUMN clause and is therefore not printed. A SUM counter must be
defined for a control footing report group.

Example:
02 SOURCE IS data=-name.

This statement is built as a 27-word entry.

8~-21 DD26

, When the SOURCE clause contains subscripted : items, the number of . words
required increases rapidly. .One data-name subscript adds 12 additional words to
the entry built.

Example:
02 SOURCE 1S data-name (data—~name) . 39 words

A single literal subscript réquires nine additional words.

Example:
02 SOURCE IS data-name (literal). k 36 words

Each subsequent subscript in the same entry adds 11 words in the case of a
data-name or eight words in the case of a literal.

Example:
02 SOURCE IS data-name (dn,dn-1l). 50 worxds
02 SOURCE IS data-name (lit,lit-1). 44 words
02 SOURCE IS data-name (dn,lit). 47 words
02 SOURCE IS data-name (dn,dn-1,dn=2). 61 words
02 SOURCE IS data-name (lit,lit-1,1it=-2). 52 woxrds
02 SOURCE IS data-name - (dn,dn-1,1it). . 58 . words
02 SOURCE IS data=-name (dn,lit,lit-1). 55 words

When a COLUMN clause is added, it designates that a receiving field must be
provided in the source entry being built. The entry varies from ten to 13 words
in length, depending on whether or not editing is required in the receiving
field.

Example:
02 COLUMN 1 PICTURE 9(6) SOURCE IS data-name.

This entry would not require editing, so the total entry built would be 27
words plus ten or 37 words. If the statement were

02 COLUMN 1 PICTURE Z27%Z,229.99 SOURCE IS data-name.

editing is required; thus, the entry would require 27 words plus 13 or 40 words.

8-22 DD26

The largest possible entry would therefore be of the type:
02 COLUMN 1 PICTURE ZZ,999 SOURCE IS dn (dn,dn-1,dn-2),

This would require 74 words.

SUM ENTRIES

A sum entry is built for each elementary entry containing a SUM clause. Sum
entries can vary in size from a minimum of 37 words to a maximum of 40 words.

The basic SUM clause is found in the TYPE control footing report group and
is usually of the format:

02 CTL-X COLUMN 1 PICTURE Z2%Z,Z2Z9.99 SUM data-name.
or

02 COLUMN 1 PICTURE 22Z,2Z9.99 SUM data-name,

Either of the above statements will be built as an entry 40 words in
length.

The addition of subscripts, either data-name or literal, does not increase
the size of the entry to be built, Thus, the statement

02 COLUMN 1 PICTURE Z(6).99 SUM dn (dn,dn-1,dn-2).
requires the same number of words as
02 COLUMN 1 PICTURE 2(6).99 SUM data-name.

The variance between 37- and 40-word entries is due to receiving field
editing requirements and is described above in the Source Entries paragraph.

8~-23 : DD26

VALUE ENTRIES

, A VALUE entry is built for each elementary item that .contains a VALUE
clause. Since the VALUE clause expresses a. literal that can range from a single
character to 132 characters in length, it follows that the entry built for a
VALUE clause varies in the same proportion. The example ,

02 COLUMN 1 PICTURE X VALUE "-",

represents a minimum entry and requires 26 words. On the other hand, the
statement

02 COLUMN 1 SIZE 132 VALUE "132 character literal---".
represents a maximum entry and requires a 48-word entry.

The entry sizes for the various literal sizes are listed below:

Literal Size VALUE Entry
(Characters) (Words)
1-2 26
3-8] 27
9-14 28
15-20 29
21-26 30
27=32 31
33-38 32
39-44 33
45-50 34
51-56 35
57-62 36
63-68 : 37
69-74 38
75-80 39
81-86 40
87-92 41
93-98 42
29-104 43
105-110 44
111-116 45
117-122 . 46
123-128 - 47
129-132 48

8-24 ' DD26

EXCEPTIONS TO ENTRY SIZES

Two possible exceptions may change the maximum entry sizes as indicated in
this discussion. Both are rather remote in usage but should be clarified:

1. If an elementary SOURCE, SUM, or VALUE entry contains a LINE clause as
part of its description, the entry built is increased by two words.

Example:
02 LINE PLUS 1 COLUMN 1 PICTURE X(6) SOURCE dn.

This entry builds a source entry of 39 words as compared to 37 words
if the LINE clause does not appear at the elementary level.
SUM and VALUE entries reflect the same two-word increase in size.

2, ' If editing is required in the receiving field description designated
by the COLUMN and PICTURE clauses, and the receiving field is over 38
characters in length, one additional word is required. If the

receiving field is over 76 characters in length, two additional words
are required. :

CALCULATION OF REPORT GROUP SIZE

The length of the variable entry portion of the Report Table in most cases
is 1650 words; however, in certain instances, it can be reduced to a minimum of
1260 words. This reduction occurs only when the following conditions exist:

1. The report description (RD) contains a large number of report groups.
2, The larger report groups appear near or at the end of the report
description.

A rule to follow in report description organization is to place the larger
report groups at the beginning of the report description. In this way, the
maximum variable Report Table size will nearly always be available.

8-25 DD26

The following example shows the calculation of report group size with a
table capacity of 1260 words:

0l DETL-X TYPE DE. . | S 8
02 LINE PLUS 2. ‘ ~ 10
03 COLUMN 1 PICTURE Z(6).99 SOURCE dn (dn,dn-1,dn-2). 74

03 COLUMN 15 PICTURE Z(6).99 SOURCE dn-l1 (dn,dn-1,dn-2). 74
03 COLUMN 30 PICTURE Z(6).99 SOURCE dn-2 (dn,dn-1,dn-2). 74
03 COLUMN 45 PICTURE %Z(6).99 SOURCE dn-3 (dn,dn-1,dn-2). 74
03 COLUMN 60 PICTURE Z(6).99 SOURCE dn-4 (dn,dn-1,dn-2). 74

02 LINE PLUS 3. 10
03 COLUMN 1 PICTURE Z(6).99 SOURCE dn-5 (dn,dn-1,dn-2). 74
03 COLUMN 15 PICTURE Z(6).99 SOURCE dn-6 (dn,dn-1,dn-2). 74
03 COLUMN 30 PICTURE 2(6).99 SOURCE dn-7 (dn,dn-1,dn-2). 74
03 COLUMN 45 PICTURE Z(6).99 SOURCE dn-8 (dn,dn-1,dn-2). 74
03 COLUMN 60 PICTURE Z(6).99 SOURCE dn-9 (dn,dn-1,dn-2). 74

02 LINE PLUS 4. 10
03 COLUMN 1 PICTURE Z(6).99 SOURCE dn-10 (dn,dn-1,dn-2). 74
03 COLUMN 15 PICTURE Z(6).99 SOURCE dn-11 (dn,dn-1,dn-2). 74
03 COLUMN 30 PICTURE Z(6).99 SOURCE dn~12 (dn,dn=-1,dn-2). 74
03 COLUMN 45 PICTURE Z(6).99 SOURCE dn-13 (dn,dn-1l,dn-2)., 74
03 COLUMN 60 PICTURE Z(6).99 SOURCE dn-14 (dn,dn-1,dn-2). 74

02 LINE PLUS 5. 10
03 COLUMN 1 PICTURE 2%(6).99 SOURCE dn-15 (dn,dn-1,dn-2). 74

- —% 03 COLUMN:. 15 PICTURE Z(6).99 SOURCE dn-16 (dn,dn-1,dn-2). 74
03 COLUMN 30 PICTURE Z(6).99 SOURCE dn-17 (dn,dn-1,dn-2). 74

At this point, report group capacity is exceeded and the detail report
group must be subdivided into two detail report groups. Subdivision can be
accomplished by dividing the report group into two report groups of the same
type. In the case of the TYPE DETAIL report group, it requires insertion of an
"0l data-name TYPE DE." statement and an additional GENERATE statement in the
Procedure Division. If the overflowed group is control footing, the subdivision
is more complex. A dummy CONTROL data-name with the same PICTURE and USAGE as
the original must be defined in working-storage. Immediately after each READ of
the pertinent input file, the field which makes up the original CONTROL
data~name must be moved to the dummy CONTROL data-name in working-storage. The
dummy CONTROL data-name becomes the CONTROL data-name for the new 01 TYPE CF
report group and is ‘also inserted 1in the CONTROLS ARE clause of the
corresponding RD entry.

For example, if the following TYPE CF report group is subdivided,

RD REPORT-X CONTROLS ARE FINAL, DNl, DN2,.
01 TYPE CF DNl.
02 ...

a dummy CONTROL data-name with the same PICTURE and USAGE as the original must
be defined in working-storage:

77 DN1A PICTURE 9(6).

8~26 DD26

After each READ of the pertinent input file containing CONTROL data-name
DN1l, the new value of DN1 must be moved to DNlA before ' the corresponding

GENERATE statement for the report being produced:

READ INPUT-FILE AT END GO TO =---.
MOVE DNl TO DN1A,
GENERATE DETAIL-1.

The subdivided report group would be:

RD REPORT-X CONTROLS ARE FINAL, DN1A, DNl, DN2,
01 TYPE CF DN1.

02 ...
02 ...

01 TYPE CF DNI1A,
02 ...

The control break for DNl and DN1A will occur at the same time. The control

footing report groups are presented from minor to major; therefore, the

report

group with DNl will be produced before the report group with DN1A, The order may

be adjusted as necessary for program requirements,

REPORT WRITER PROGRAM EXAMPLE

The following sample program (RPTW68) is a guide for explaining the
Writer feature in COBOL. The program produces one report utilizing three
of control breaks, and illustrates the interaction of the various report
that make up the report description. In addition, if the four-page

Report
levels
groups
report

produced by this program is examined, the effect of the vertical and horizontal

line formatting features becomes evident.

DD26

8z-8

9zaa

COBOL
ALT »

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

00022
00023

00024
00023

000286

00027

00028
00029

00030
00031

00032
00033

SCOURCE LISTING

IDENTIFICATION DIVISIGN.
PROGRAM-1D. RPTWE8,
REMARKS .
EXAMPLE COBOL REPORT WRITER SOURCE PROGRAM.
ENVIRONMENT DIVISIGN.
OBJECT-COMPUTER. 6000 WITH EIS.
SPECIAL -NAMES. "Q" 18 KGDE .
INPUT-OUTPUT SECTION.
FILE-CONTROL..
SELECT CARD-FILE ASSIGN TGO BA FOR CARDS .
SELECT REPORT-FILE ASSIGN TO AB FOR LISTING.
1 -O~-CONTROL.) .
APPLY SYSTEM STANDARD ON CARD-FILE ' REPORT-FILE

DATA DIVISION,
FILE SECTION,
FD CARD-FILE

LABEL RECORDS ARE STANDARD, DATA RECORD 18 INFPUT-RECOGRD

01 INPUT-RECORD.

02 FILLER PIC = AA.

02 DEPT PIC XXX.

02 FILLER PIC AA.

02 NG-PURCHASES PI1C 99.

02 FILLER PIC A,

02 TYPE-PURCHASE PIC 9.

02 MONTH PIC 99,

02 DAY PIC 99,

02 FILLER PIC: A.

02 COsT PIC $S999Vvgs.

02 COST! REDEFINES COST PIC $S999Vv99.

02 FILLER PIC X(59).
FD R