
Hone~well

LEVEL 66
SOFTWARE

USS Engineers and Consultants, Inc. .
a Subsidiary of United States Steel Corporation

COBOt
USER'S GUIDE

SUBJECT

SERIES 60 (LEVEL 66)/6000

COBOL USER'S GUIDE

Explanation of Language Elements, Coding Examples, Deck Setups, and
Efficiency TechniquPs for Using Series 60 (Level 66) and Series 6000 COBOL

SPECIAL INSTRUCTIONS

This manual replaces COBOL User's Guide, Order No. BS09, for Series 6000
system users. Order No. BS09 must be used by Series 600 system users and by
Series 6000 system users who are on prior software releases.

SOFrWARE SUPPORTED

Series 60 (Level 66) Software Release 2
Series 6000 Software Release H

ORDER NUMBER

DD26, Rev. 0 July 1975

Honeywell

PREFACE

The:, ,COBOL User' i;t. Guid§, is functionally organized into sections that provid,e:
ii'l•formati'on concerning COBOL concepts, Series 60/6000 implementation techniques,
ifilernal compiler characteristics, and efficiency ccmsider.at±ons.. In addi ti cm,
sample' deck setups and j0rlvcohtr:ol data are provided to, assist the user in
int~rfacing with the operating, system.

Series 60 Level 66 is hereafter referred to as Series 60. The technical
information contained in th~s manual refers to both the Series 6000 and Series
60 systems, unless otherwise specifically stated.

@ 1975, Honeywell ·Information. Systems Inc. File No.: 1723, l.P23.

DD26

ACKNOWLEDGMENT

Th.is acknowledgment has been reproduced from the "Journal of
1968" as requested in that publication, prepared and published by
COBOL Programming Language Committee.

Development,
the CODASYL

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas from this report as
the basis for an instruction manual or for any other purpose is free
to do so. However, all such organizations are requested to reproduce
the following acknowledgment paragraphs in their entirety as part of
the preface to any such publication. Any organization using a short
passage from this document, such as in a book review, is requested to
mention "COBOL" in acknowledgment of the source, but ·need not quote
the acknowledgment.

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the accuracy and
functioning of the programming system arid language.
Moreover, no responsibility is assumed by any contributor,
or by the committee, in connection therewith.

The authors and copyright holders of the
material used herein

copyrighted

FLOW-MATIC (Trademark of Sperry Rand Corporation) ,
Programming for the Univac (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial 'l'ransla tor
Form No. F 28-8013, copyrighted 1959 by IBM; FACT,
DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL
specifications ·in programming manuals or similar
publications."

iii DD26

FUNCTION.AL L:ISTING OF PUBLICATIONS
for

SERIES 6'0 (LEVEL 66) and SERIES ·6000 SY~STEMS

FUNCTION

Hardware reference:
Series 60 Level 66 System
Series 6000 System
DATANET 355 Proce,s,,sor
DATANE{l1 6600 Proce.ssor

0p·era.Ung sy.stem:
Basi~ Operating System

Job Control Language
Tabl~ Def inifions
I/O Via MME GEINOS

System initialization:
System Startup
System Operation
Communications System

Cornm~nications System
DSS.180 Sub.system .:Startup

Data manag.ement:
File System
Integrated Data Store (I-D-S)
Integrated Data Store (I-D-S)
File Processing
File.Input/Output
File Input/Output

I-D-S Data Query System
I-D-S Data Query System

Program maintenance:
Obje.ct Program
System Editing

Test system:
Online Test Program
Test Descriptions

Error Ana.lysis and Logging

Language processors:
·Macro Assembly Language
COBOL-68 Language
COBOL-68 Usage
JOVIAL Language
FORTRAN Language

Generators:
Sorting
Merging

APP LI CABLE REFERENCE . UANUAL .

TITLE
Series 60. (Level 66)/serie.s 6000:

Series 60 Level 66 Summary Description
Series 6000 Summary Description
DATANET 355 Systems Manual
DATANET 6600 Systems ;lv,lanual

General Comprehensive .Operating
Supervisor (GCOS)

Control Cards Reference Manual
System Tables
I/O Progranuning

System Startup
System Operation Techniques
GRTS/355 and GRTS/6.600 Startup

Procedures
NPS Startup
DSS180 .Startup

File Management Supervisor
I-D-S/I Programmer's Guide
I-D-S/I User's Guide
Indexed Sequential Processor
File and Record Control
Unified File Access System {UFAS)

(Series 60 only)
I-D-S Data Query System Installation
I-D-S Dat~ Query System User's Guide

Source and Object Library Editor
System Library Editor

Total Online Test System {TOLTS)
Total Online Test System (TOLTS)

Test Pages
Honeywell Error Analysis and Logging

System (H~ALS)

Macro Assembler Program
COBOL
COBOL User's Guide
JOVIAL
FORTRAN

So.rt/Merge Program
Sort/Merqe Program

iv

ORDER
NO.

DC64
DA48
BS03
DC.88

DD19
OU31
D014
OB~2

DD33
DDSO

rn.>05
DD51
DD34

U045
DC52
DC53
0036
D007
OC89

0047
0046

ooo·~

0030

D039

DD49

DL>44

D00.8
0025
DD2.6
0023
0002

0009
OD09

0026

FUNCTIO~ APPLICABLE REFERENCE MANUAL

Simulators:
DATANET 355/6600 Simulation

Service and utility routines:
Loader
Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN

.FNP Loader
Service Routines
Software Debugging

Time Sharing systems:
Operating System
System Programming
System Pr~gramming

BASIC Language
FORTRAN Language
Text Editing

Remote communications:
DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Transaction processing:
User's Procedures

Handbooks:
System-operator communication

Pocket guides:
Control Card Formats
FORTRAN

Rev. 7412

ORDER
TITLE NO.
·series 60 (Level 66)/Series 6000:

DATANET 355/6600 Simulator

General Loader
Utility
UTL2 Utility Routine (Series 60 only)
Bulk Media Conversion
Summary Edit Program
FORTRAN' Subroutine Libraries
DATANET 355/6600 Relocatable Loader
Service Routines
Debug and Trace Routines

TSS General Information
TSS Terminal/Batch Interface ·
TSS System Programmer's Reference

Manual
Time· Sharing BASIC
FORTRAN
Time Sharing Text Editor

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
RNP/FNP Interface

Transaction Processing System User's
Guide

System Console Messages

Control Cards and Abort Codes
FORTRAN Pocket Guide

v

DD32

DDlO
DD12
DC91
DDll
DD24
DD20
lJD35
DD42
DD43

DD22
DD21

DD17
DD16
DD02
DD18

DD40
DD48
DB92

DD41

DD13

DD04
DD82

DD26

Section I

· Sect'ion II

Section III

I

7/77.

CONTENTS

,Introduction. • • • • • • • • •
General Description of COBOL • • •
COBOL User's Guide Organization ••
Language Features. • • • • • ••

.

Representation of Data.
Dfll:ta :.Structures. • •

Logical and Physical . .Records.
Group Items and Elementary Items.
Level-Numbers • • • • • • •

.. . .

Noncontiguous Elementary Items ••••••
REDEFINES Entries • • •
Condition-Name Entries.
RENAMES Entries • • • • • • • • • • • • •
Qualification • • • • •
Tables of Data Items.

Subscripting • • • •
Indexing • ,. • • •

External and Internal Data Fo~mats
Exuernal Data Formats • • • • • •

Logical Record Format. •
Internal Data Formats •

Position Numbering • . • • •
The Machine Word • •
Character-Strings ••
Binary Numbers • • •
Decimal Numbers. • · •

Data Description Entries •
DISPLAY Item Formats ••
COMPUTAT~ONAL Item Formats ••

Binary Representation of Fractional
Values. • • • • • • •

COMPUTATIONAL Formats. • · • • • • • · •. •

.File Descriptions .• • • • • • • • • • • •
SELECT Sentence •••

OPTIONAL Phrase •
OVERLAY Phrase ••••.••
File-Name .Phrase.
RENAMING Phrase • •
ASSIGN Phrase • • • • • • •
FOR CARDS Phrase.
FOR LISTING Phrase.;. • • • •
fOR MULTIPLE REEL/UNIT Phrase •
RESERVE Phrase. • •

Integer Option • • • • • • •
NO Option. • • • ••

FOR BLANK COMMON Phrase •
FILE-LIMIT(S) Phrase.
ACCESS MODE Phrase. • •
PROCESSING MODE Phrase.
·ACTUAL KEY 'Phrase •

APPLY Phrase • • • • • • •. .• • • • •

vi

. .. .

. .. .

Page

1-1
1-1
1-2
1-3

2-1
2-1
2-1
2-1
2-2.
2-3
2-3
2-4
2-4
2-4
2-6
2-9
2-10
2-11
2-11
2-12
2-16
2-16
2-16
2-17
2-18
2-21
2-22
2-24
2-25

2-26
2-27

3-1
3-1
3-1
3-1
3-2
·3-,3
3-4
3-5
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3~7

3-8
3-8
,3-8 .. ~1

DD26B

Section IV

·section v

7/77

CONTENTS (cont)

PROCESS AREA Phrase • • • • • •
BLOCK SERIAL NUMBER Phrase. • •
SYSTEM STANDARD FORMAT Phrase •
VLR FORMAT Phrase • • • •
RERUN Phrase. • • • • •
SAME AREA Phrase. • • • • • • • •
SAME RECORD AREA Phrase • • • • •
SAME SORT or SORT-MERGE AREA Phrase •
MULTIPLE FILE Phrase. • • • • • •

File Description Entries • • • • • • •
SORT-MERGE File Description Entries •••

Level Indicator and File-Name •
BLOCK CONTAINS Clause •
DATA RECORD(S) Clause ••
LABEL RECORD(S) Clause ••

OMITTED Option • • • •
STANDARD Option. • •
Label-Name Option ••

RECORD CONTAINS Clause.
RECORDING MODE Clause • • • • •
REPORT(S) Clause.
VALUE OF Clause •

Record Descriptions • • • •
Elementary Item Description Entries ••

BLANK WHEN ZERO Clause. • • • • • • •
Condition-Name Entry. • • • • • •
COPY Clause • • • • • • • • • • •
JUSTIFIED Clause. • • • • • • •
Level-Number/Data-Name Entries.
OCCURS Clause • • •
PICTURE Clause •••

Editing Rules. • • •••••
REDEFINES Clause. • • • • • • •
RENAMES Clause •••
SYNCHRONIZED Clause
USAGE Clause ••••

DISPLAY Items ••
COMPUTATIONAL Items. •
INDEX Items •••••••••••

VALUE Clause. • • • • • •
Groups of Elementary Items • • • • • • • • • •

File Processing • • • • • • • •
File Processing Concepts •

File Declaration. • • • • • • •
Sequential-Access Processing •••
Random-Access Processing ••••••••••••
Open Status and Closed Status •
Input, Output, and I-0 Modes ••
Special File Processing • • • •

Processing Optional Files. • •
Processing Nonlabeled Multiple Reel Files. •
Processing Stranger Files via COBOL. •

Relationship of Reporting Verbs to File
Processing • • • • • • • • • • • • • • •

Summary of File Property Relationships.
Assignment of Files. • • • • ••••

File Control Cards. • • • • • ••.•
System Standard Format. • • • • •
Peripheral Devices. • • • • • • • •
Multiple File Tapes •••

vii

Page

3-8.l
3-9

I
3-9
3-10
3-10
3-10
3-10
3-11
3-11
3-12
3-13
3-13
3-13
3-16
3~17

3-17
3-17
3-21
3-21.2
3-21.2
3-23
3-23

4-1
4-1
4-1
4-1
4-2
4-3
4-3
4-4
4-8
4-10
4-10
4-13
4-14
4-17
4-18
4-18.l
4-18.3
4-19
4-20

5-1
5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-3
5-4
5-5

5-7
5-8
5-10
5-10
5-10
5-12
5-12

DD26B

Section VI

Section VII

Section VIII

3/77

CONTENTS (cont)

File Processing Areas ••
Buffer Areas •••••
Record Areas •••••
Sort Areas and Sort-Merge Areas •

File Processing Statements
OPEN Statement. •

INPUT Option • • •
I...;O Option • • • • • • • •
NO REWIND Option • •

READ Statement. • •
INTO Option. • • • •
AT END Phrase. • •
INVALID KEY Phrase •

WRITE Statement • • •
FROM Phrase. • • • •
ADVANCING Phrase • •
INVALID KEY Phrase •

SEEK Statement. • • • • •
CLOSE Statement •

Standard Close File. • •
Standard Close Reel.

USE Statement • •
ERROR PROCEDURE Phrase •
LABEL PROCEDURE Phrase •
USE BEFORE REPORTING Phrase•

File Processing Examples •

Low-Volume Data Transmission.
ACCEPT Statements •••••
DISPLAY Statements • • • •
Data Transmission Techniques •

System Input. • • • • • • •
System Output • • • • • • •
Transaction Processing Interface.
Remote Devices ••
Elapsed Processor Time.
Date and Time • • • ·•
Console or Typewriter •

. . . .

Switches •• ~ • • • • • • • • •••
Data Transmission Program Example ••••••

Transaction Processing System • • • •
Transaction Processing Executive (TPE) • • • •

TPAP Profile Table. • • • • • • • • •
Transaction Message Format. • • • • •

Transaction Processing Applications Programs
(TPAPs) • • • • • • • • • • • • •

TPE/TPAP Interface • • • • • • •
Intercom Input File Processing.

. Input Subroutine (COMMI)
COBOL Input Statement Processing • • • • • •

Intercom Output File Processing • •
Output Subroutine (COMMO) • • • •
COBOL Output Statement Processing.

Direct-Access (DAC) Mode Processing
Transaction ~recessing Applications Program

Example ••

Report Writer • • • • • • • • • • •
Description of the Report Writer ••

· Report Format.. • • . • • • • • • • •
Report Control in the Procedure Division. •

viii

Page

5-14
5-14
5-14
5-16
5-16
5-18
5-19
5-19
5-20
5-20
5...;21
5-21
5-22
5-22
5-23
5-23
5-25
5-25
5-25
5-26
5-26
5-2·6
5-27
5-27
5-28
5-29

6-1
6-1
6-2
6-3
6-3
6-3
6-4
6-4
6-5
6-5
6-6
6-7
6-9

7-1
7-1
7...;1
7-2·

7-3
7-3·
7-3
7-4
7-5
1-s·
7-6
7-7
7-8

7-9

8-1
8-1
8-1
a--2

DD26A

Section IX

3/77

CONTENTS (cont)

Skeletal Format for the Report Section·
RD Entries. • • • • • •
Report Group Entries.

Elements of a Report • • • •
Report Groups • • • •
Control Data Items ••••
Page Breaks and Overflow Breaks • •
File Characteristics ••
Line Counter ••••••••••
Page Counter ••••••••••

Report Writer Efficiency Techniques.
SUM Counter Manipulation. •

Subtotalling • • • •
Rolling Forward. • • • • • • • • •
Crossfooting • • • • •

SOURCE/SUM Correlation. • • • • •
Pre-Slew and Post-Slew Algorithms •

Pre-Slew Calculations ••
Post-Slew Calculations •
Combinations of Pre-Slew and Post-Slew
Calculations. • • • • •

Report Writer Table Constraints.
SUM Operand Limitations
RESET Stack Limitations •••••
Report Table Capacity • • . • • • • • • •

Report Group Entries • • • • •
Group Entries ••••••
SOURCE Entries •
SUM Entries. • •
VALUE Entries.
Exceptions to Entry Sizes ••
Calculation of. Report Group Size •

Report Writer Program Example.

File Ordering - SORT and MERGE.
Concepts • •

Sorting
Merging
Ordering. • •
Program Organization.

SORT Statement • • • • •
The Sort File • • • •
Sort Key Declarations • •

Variable-Length Records.
Dominant Record Length • • • • • •

Sort Key Evaluation • • • •
Sort Equal Key Procedures • •

Engagement of Equal Key Procedures •
Changing Equal Key Procedures •••
Disengagement of Equal Key Procedures ••
Sort Equal Key Record Processing •

Sort Input Processing • •
USING Option • • • • • •
INPUT PROCEDURE Option

RELEASE Statement • • • •
Sort Output Processing •••

GIVING Option. • • • • •
OUTPUT PROCEDURE Option.

RETURN Statement. • • • • •
Sort Operational Considerations ••

Flow of Control • •
Reserved File-Codes • • • • •

ix

Page

8-4·
8-5
8-5
8-6
8-6
8-7
8-8
8-9
8-9
8-10
8-10
8-10
8-11
8-11
8-12
8-13
8-14
8-14
8-15

8-15
8-16
8-16
8-17
8-19
8-20
8-21
8-21
8-23
8-24
8-25
8-25
8-27

9-1
9-1
9-1
9-1
9-1
9-2
9-4
9-4
9-5
9-6
9-7
9-7
9-8
9-8
9-8
9-9
9-9
9-9
9-9
9-10
9-10
9-11
9-11
9-11
9-12
9-12
9-12
9-14

DD26A

Section· x

Section XI

3/77

CONJ.'•ENTS (cont)

Implicit File Assignments •
Input Files •.••••
Output File. • • • • • •
Collation File-Codes •
Borrowed File-Codes ••••

Collation File Manipulation •
Sort Config~ration. • • • •
Memory Assignment for Sort.
Dynamic Resource Allocation •
Sort Examples • • • • •

MERGE Statement. • • • • • •
The Merge File. • • • • • • • •
Merge Key Declarations ••

Variable-Length Records.
Merge Key Evaluation. • ••
Merge Equal Key Procedures. . . .

Engagement of Equal Key Procedures • •
Changing Equal Key Procedures ••••••••
Disengagement of Equal Key procedures ••
Merge Equal Key Record Processing •••

Merge Input Processing •••
Merge Output Processing •

GIVING Option. • • • ~
OUTPUT PROCEDURE Option. •

RETURN Statement. • • • • • •
Merge Operational Considerations •

Flow of Control •.•••••
Reserved File-Codes • • • •
Implicit File Assignments •

Input Files •••••
Output File. • • •

Merge Configuration •
Memory Assignment for Merge •
Merge Examples ••••

SORT-MERGE Elective Options ••

Data Movement Procedures •••••
MOVE Statement • • • • • • • •
Examples of MOVE Statements ••
MOVE CORRESPONDING Statement • • • • •
Examples of MOVE CORRESPONDING Statements.
REPLACING Phrase (EXAMINE Statement) • • • •

Arithmetic Computations •
Methods of Computation • •
Formulas • • • • •

Unary Operators • • •
Symbol Pairs. • • • • •

Conunon Options in Statement Formats ••
ROUNDED Option. • • • • • • • • • • •
SIZE ERROR Option • •
CORRESPONDING Option.

Arithmetic Statements ••
ADD Statement • • •
COMPUTE Statement • • • • • • •
DIVIDE Statement. • • • • • •
MULTIPLY Statement. • • • • • • • • • •
SUBTRACT Statement. • • • • •
Multiple Results in Arithmetic Statements •
Over lapping Operands. • • • • • • • •
Precisiori in Arithmetic Calculations.

TALLYING Phrase (EXAMINE ptatement) ••••

·x

Page

9-15
9-15
9-15
9-15
9-15
9-15
9-17
9-18
9-19
9-20
9-22
9 ... 22
9-22
9-22
9-23
9-23
9-24
9-24
9-24
9-25
9-25
9-25
9-25
9-26
9-26
9-27
9-27
9-28
9-28
9-28
9-28
9-28
9-28
9-29
9-31

10-1
10-l
10-3
10-5
10 7
10-8

11-1
11-1
11-2
11-3
11-3
11-4
11-4
11•5
11-5
11-6
11-7
11-7
11-8
11-9
11-10
11-10
11-11
11-11
11•12

DD26A

Section XII

Section XIII

Section XIV

Section XV

3/77

CONTENTS (cont)

Example of EXAMINE ••• TALLYING ••••
VARYING Phrase (PERFORM Statement)

Conditional Procedures ••
Conditions ••••••

Simple Conditions • •
Relation Condition •
Sign Condition ~ • • • • •
Class Condition. • • •••
Condition-Name Condition ••••
Switch-Status Condition ••

Compound Conditions • • • •
Abbreviated Combined Relation Conditions.

Abbreviation 1 • • • • •
Abbreviation 2 • • • • • • •

Use of the NOT Operator • • •
Evaluation Rules for Conditions •

Table Handling. • • • • • • • • ••••••
Description of Table Handling. • • • • •
Subscripting • • • • • • • • • • •
Indexing • • • • • • • •

Rules for Subscripting and Indexing •
Subscripting and Indexing ~ Sample Problem.
Size Restriction Upon Character-Oriented

Arrays • • • • • • • •
SEARCH Statement • • • •
SET Statement. • • • • •

SET Statement Rules •
comparisons Involving Index-Names and/or

Index Data Items • • • • • • • • •
SEARCH and SET Statement Examples •

Library Facility. • • • • • • • • • •
Description of the Library Facility.
COPY Functions • • • • • • • •
HIS COPY • • • • • • • • • • • • • • •

HIS COPY Source Library Format. •
Reference Listing Format.
Missing Library-Name •••
Compressed Deck Options •

HIS COPY WITH COMDK ••
HIS COPY WITH CCOMDK •

American National Standard COPY ••
Library Format for American National
Standard COPY. • • • • • •

Reference Listing Format. •
Missing Library-Name. • •••
Compressed Deck Options • • •

American National Standard COPY
WITH COMDK. • • • • • • •

American National Standard COPY
WITH CCOMDK • • • • •

Segmentation and Modularization •
Terminology. • • • • • • • •
Description of Segmentation. •

Organization. • • • • • •
Segments. • • • • • • •••
Segment Classification ••
Segmentation Control. • • • • • •
Structure of Program Segments •

xi

Page

11-13
11-14

12-1
12-1
12-1
12-1
12-3
12-3
12-4
12-5
12-5
12-8
12-8
12-9
12-11
12-14

13-1
13-1
13-2
13-3
13-4
13-4

13-6
13-7
11-9
1.3-9

13-10
13-10

14-1
14-1
14-1
14-1
14~2

14-4
14-4
14-4
14-5
14-5
14-10

14-10
14-11
14-11
H-12

14-12

14-12

15-1
15-1
15-1
15-1
15-2
15-2
15-3
15-3

DD26A

Section XVI

Section XVII

I

3/77

CONTENTS (cont)

Priority-Numbers • • • • • • • • •
Se.gment-Limit~ • • • • • • • • •

Transfer of Control • • • • • • • • • • •
Restrictions on Transfer of Control and

Program Alteration • • • • • • • •
Segmentation, Linking, and Loading.
Effects of Segmentation.on Listings •
Summary of Segmentation Requirements •.•

Description of .Modularization •••••
Mod·ules • • • • • • • • • . • • • • • • • •
Sections ••••• • •••••••
Procedure Division Communications •

CALL Statement • • • • • • • • • •
ENTRY POINT Phrase • ._ • • • •
EXIT Statement • • • • • •

Data Compatibility ••
File Compatibility. • •

Linked Overlay Environment Cons.tra.ints •
File Processing • • • • • • • •
ACCEPT and DISPLAY Statements • • • • •
Overlay Management and Memory Organization.
Multiple Module Program Example

Efficiency Techniques • • • • •
Optional DEBUG Statements ••
Compilation Techniques

Unified Data Tables
Data-Name/FILLER Items •
Group Items ••••••••••••••.
Elementary Items • •

Procedure Division Entries.
Resource Allocation
File Utilization ••••••
Compilation Aborts ••••••••

Time-S.aving and Space-Saving Techniques.
. . . . •.

Input-Output Techniques • • • • • • •
Incremental Report Printing Techniques ••
Data Manipulation Techniques. • • •••
Data Description Techniques • ~ •

Use of Compressed Decks •••••••
Cross-Reference Facility • • • • • • •
Packed Decimal Efficiency Techniques •
Sample Business Program. • • • • • • • •

Obsolete Language Elements •••••
Environment Division Elements.

6QOO WITH EIS Phrase ••••••
Data Division Elements •

PREPARED Option • • • •
Constel;nt Section • • • • •

Noncontiguous Constant Storage.
Constant Records ••••••
VALUE of Constants.
Condition-Names ••
Tables of Constants •

DatA Description Entries •
CLASS Clause. • • • • •
Editirig Clauses • • •
FILE CONTAINS Clause.
POINT LOCATION Clause • •
RANGE Clause. • • •
SEQUENCED Cla~se •••

xii

Page

15-3
15-4
15-5

15-5
15-6
15-10
15-11
15-11
15"'.'"12
15-12
15-:13
15-14,

· 15-15:
15-15
15-16
15-16
15...;.17
15-.17
15.-17
15-17.1
15-17.2

16-1
16-1
16-2
16-3
16--4
16-5
16-5'
16 5
16-5
16-7
16-8
16-9
16-9
16-10 .
16-12
16-13
16-14
16..,.,,J;.5.
16-15
16-18

17-1
17-1.1
17-1.1
17-1.1
17-1.1
17-2
17-2
17-3
17-3
17-3
17-3
17-4.
17-4
17-5
17-6.
17-7
17-7•
17-8

DD26A;

Appendix A

Appendix B

~ppendix c

Appendix D

Appendix E

Appendix F

Appendix G

Index • • •

Figure 2-1

Figure 2·-2

Figure 9-1

Figure 9-2

Figure 14-1

Figure 14-2

Figure 14-3

Figure 14-4

Figure 14-5

Figure 14-6

3/77

CONTENTS (cont)

SIGNED Clause • • • • • • • • •
SIZE Clause • • • • • • • • • • • •
USAGE COMP-3 PACKED SYNC Clause

Procedure Division Elements ••
Conditional Statements ••
THEN Separator ••••••

Order of COBOL Source Program .
COBOL Deck Setups
Nonstandard Feature Flagging. .
Collating Sequences
COBOL Abort Codes .
Reserved GMAP Location Symbols.

Compiler Limitations. .

ILLUSTRATIONS

Ranges of Fixed-Point Numbers

Ranges of Floating-Point Numbers. .
Sort program Organization .
Merge Program Organization.

Library for Figures 14-2 and 14-3 . .
HIS COPY WITH COMDK Option.

HIS COPY WITH CCOMDK Option
Library for Figures 14-5 and 14-6

American National Standard COPY WITH
COMDK Option

American National Standard COPY WITH
CCOMDK Option.

xiii

. .

. .

. .

Page

17-8
17-9
17-10

I 17-11
17-11
17-11

A-1

B-1

c-1

D-1

E-1

F-1

G-1 I
i-1

2-19

. 2-20

9-3

9-3

14-5

. . . . 14-6

. . . 14-8

14-13

. 14-14

. 14-16

DD26A

SECTION I

INTRODUCTION

GENERAL DESCRIPTION OF COBOL

COBOL is a computer language used primarily for programming business data
processing operations.

The COBOL language offers various advantages to the computer user:

• It provides a rapid method of implementing complex programs.

• It reduces the cost of converting programs from one computer system to
another.

• It reduces the time required to train personnel.

• It standardizes documentation.

Many changes and modifications have been introduced into the language since
its inception in 1960; these changes resulted frbm user experience ~ith
practical applications.

The Series 60/6000 compiler was originally designed to provide the features
of COBOL-61 Extended and was subsequently updated to conform to the COBOL-65
language specifications. Since then, it has been extended to provide most of the
features of COBOL-68 as specified in American National Standard COBOL revision
X3.23-1968. Consequently, whenever the term 'standard' is used in this document,
it refers to American National Standard revision X3.23-1968. The compiler also
provides some proprietary extensions as well as certain additional features
specified in the CODASYL COBOL Journal of Development (JOD) and in the American
National Standard COBOL revision X3.23-1974.

The Series 60/6000 COBOL Reference Manual, Order Number DD25, generally
reflects the format of the Journal of Development and presents the formats,
syntax rules, general rules, special considerations, and the strict
interpretation of the language elements required to construct a COBOL source
program. Unless otherwise indicated, the text of the reference manual conforms
to the terminology expressed in the Journal of Development·and/or the standard.
In the reference manual, the formats and text describing e~tensions of the
language are indicated by shading.

This COBOL User's Guide is a supplementary document to be used in
conjunction with the reference manual; it is a compilation of COBOL concepts and
programming techniques. It is organi.zed into sections which are described below.
The user's guide is not constrained to the exact wording of the standard or the
Journal of Development although some of the text from these documents is used
when it is meaningful in the discussions.

1-1 DD26

Certain language elements contained in previous ve:rsions of COBbL were
deleted from the specifications prior to 1968 and are no >longer included in the
sta.Rdard. These elements are no longer documented in the, j;~bBQL Reference Manual
in order to discourage their continued use. For the ·ben:efit of users who have
employed such features in the past, their implementabion is :retai:ned in the

·compiler, with no guarantee that they will be maintained in the future. These
obsolete elements are documented in Section XVII of this manual. It is
recommended that they not be utilized in new programs antl that they be
eliminated from existing programs. To facilitate this, the compiler can
optionally flag obsolete .·and/or nonstandard items on the COBOL source listing.
The flagging feature is documented in Appendix c.

It is assumed that the reader of this user's guide has considerable
knowled.ge of the contents of the COBOL Reference Manual. It is also suggested

· tha:t the ~reader refer to the COBOL Pocket Guide as a quick referenc(source for
foil!mats and reserved words.

COBOL USER'S GUIDE ORGANIZATION

·A brief summary of the contents of the sections contained in this manual is
given below:

Section II provides an inteipretation of data structures, internal and
external data formats, and data descriptions.

Section III describes those language elements in the Environment and Data
Divisions that apply to file descriptions.

Seption IV describes record description entries and related usages.

Section v presents file processing concepts, some programming techniques,
and the file prc>cessing statements.

Section VI describes low-volume data transmission using the ACCEPT and
DISPLAY statements.

Section VLI describes the Transaction Processing System feature using the
ACCE·PT .MESSAGE and DISPLAY statements.

Section VIII describes the Report Writer feature, including information on
report construction and table size restrictions.

Section IX is an overview of file ordering using the SORT and MERGE
statements.

Section x presents examples of data manipulation using the MOVE and EXAMINE
statements.

Section XI describes arithmetic computations and related examples.

Section XII describes the conditional and branching procedures.

1-2 DD26

Section XIIT summarizes the Table Handling feature and presents the rules
for subscripting and indexing.

Section· XIV describes the COBOL Library Facility and presents related
examples.

Section XV describes segmentation and modularization.

Section XVI examines some techniques designed to improve the efficiency of
COBOL programs.

Section XVII contains a summary of language elements that have been deleted
from COBOL.

Appendix A outlines the order of a COBOL source program.

Appendix B lists the $ COBOL card system options and presents examples of
COBOL deck setups.

Appendix C describes nonstandard feature flagging.

Appendix D lists the standard and commercial collating sequences.

Appendix E lists the COBOL abort codes.

Appendix F lists the reserved GMAP location symbols.

LANGUAGE FEATURES

COBOL allows computers to be programmed in a language that is similar to
the English language. Paragraphs, sentences, and phrases are written, following
the conventions of a standard reference format, to describe the data to be
processed and to specify the required procedures. The resulting text is called a
COBOL 'source program'.

The source program text consists of lines containing a maximum of 80
characters and is often keypunched on 80-column cards. The source program is
submitted as input to the computer under the control of a special program known
as a compiler. As output, the compiler produces an object program on punched
cards, magnetic tape, or a mass storage device. The object program is the actual
sequence of machine instructions required to accomplish the functions specified
in the source program. In addition, the compiler produces an edited listing,
which includes an annotated printout of the source prbgram in the reference
format.. Another important function of the compiler is to analyze the source
progra~ for correct COBOL syntax, and to print error comments for any syntax
errors:•that are detected. The computer's operation under control of the compiler
is cal;led compilation.

1-3 DD26

SECTION II

REPRESENTATION OF DATA

DATA STRUCTURES

Logical and Physical Records

A logical record, as described in the File Ser.tion or Working-Storage
Section, is any set of contiguous data items considered as related due to
content or usage. In an inventory transaction file, for example, each logical
record could contain the information for a single transaction, or for all
consecutive transactions pertaining to the same stock item, depending upon how
the file is planned. The object program obtains input data from a peripheral
file in units of one logical record each, and it prepares data for output in
units of one logical record.

It is important to distinguish between the concepts of logical record and
physical record. A physical record is the amount of data recorded by one
physical write operation on a peripheral storage device, and may contain one or
more logical records. In a COBOL source program, data and procedures are
specified in terms of logical records. The compiler automatically supplies
object program mechanisms to relate logical records to the physical records.

A logical record is normally subdivided into subordinate items, each of
which is assigned a data-name. Each subordinate item may be further subdivided
to permit more detailed references. Such items are referred to as group items
and elementary items.

Group Items and Elementary Items

The term 'item', as used in COBOL, denotes either a
elementary item. A logical record is usually a group item,
normally subdivided into ~ubordinate items, but a logical
elementary item.

group
since
recOrd

item or
records

may be

an
are

an

Items that are themselves subdivided are called group items.
following example, NAME, CALENDAR-DATE, and 'l'IME-CARD are groups.
consists of a sequence of subordinate groups and/or elementary items.

In the
A group

Elementary items are data items that are not additionally
the following example, some of the elementary items
EMPLOYEE-NUMBER, DAY-OF-MONTH, arid HOURS.

2-1

subdivided. In
are LAST-NAME,

DD26

In the example, a weekly time ca.rd, the record is divided· into four maj·or
items:·' NAME, EMPLOYEE-NUMBER, CALENDAR..;.DATE; and HOURS'. If it is assumed that

·the group items CALEN.OAR-DATE .and NAME are·to be further.subdivided, the record
might be represented as follows:

Example:

TIME:.;;;CARD·

Level-Numbers·

NAME

EMPLOYEE-NUMBER

CALENDAR""" DATE

HOURS

{

LAST-NAME
FIRST-INITIAL.
·MIDDLE-INITIAL

{

MONTH
DAY-eF-MONTH
YEAR

In the Data Division, each record description. entry begins with a
level ... number. A level-number is a one- or two-digit integer, whose value may
range from 1 to 49; or may be 66, 77, or 88;. Level:-numbers less than 10. may be
written with or without a leading zero (that is, 01 and 1 are equivalent). The
level-numbers 66, 77, and 88 are.reserved for special purposes and are described
later. ·

Level-numbers show the organization of elementary items intb groups and
records. Records are· ·the most inclusive groups possi.ble, and are always assigned
level-number 01 (or 1).

Less inclusive groups and elementary items within a record are assigned·
higher level-numbers, not greater than 49. Subordinate level-numbers need not bi!«
given successive numerical values.

Referring to the TIME-CARD example. discussed previously, the hierarchical
structure of the record can be described as follows:

01 TIME-CARD
02 NAME

03 LAST-NAME
03 FIRST-INITIAL
03 MIDDLE~INITIAL

02 EMPLOYEE-NUMBER
02 CALENDAR-DATE

03 MONTH
03 DAY.;..OF\""MONTH
03 . YEAR

02 HOURS

2-2 DD26

A group includes all groups and elementary items described after it until a
level-number less than or equal to the level-number of that group is
encountered. In the above example, MONTH, DAY-OF-MONTH, and YEAR make up a group
called CALENDAR-DATE, because they are described immediately under it and have
higher level-numbers. HOURS, however, is not a part of the group called
CALENDAR-DATE, because its level-number is not greater than that of
CALENDAR-DATE. The example shows that a group item (CALENDAR-DATE) and an
elementary item (HOURS) may have the same level-number. It also shows that
successive entries may be indented 'in a natural way, to make the hierarchical
organization obvious.

An item ma.y belong to more than one group. In the above example, the
elementary item YEAR belongs to the group CALENDAR-DATE and also to the group
TIME-CARD.

An entry immediately following the last elementary item of a
have the same level-number as one of the groups to which the prior
item belongs. The following example is incorrect, because this rule
the level-number for EASY to be either 03 or 01:

01 ABLE.
03 BAKER

04 CHARLIE
04 DOG

02 EASY

group must
elementary
restricts

Except in the Report Section, any level 01 item is considered a
whether it is a group item or an elementary item, and its data-name is a
name.

record,
record

Noncontiguous Elementary Items

Some elementary items in the Working-Storage Section have no relationship
to one another and are not further subdivided. These items are called
noncontiguous elementary items and are assigned the special level-number 77.
When they are used, they must be the first entries in the section, preceding any
record or group entries. Noncontiguous elementary items must not appear in the
File Section or the Report Section.

REDEFINES Entries

A REDEFINES clause in a data description entry is used to apply a new
description to the same memory area. The same memory area can be redefined as
many times as necessary. Each REDEFINES clause describes a new data structure
for.the referenced area. The data items within that area may or may not
correspond to any one of the described structures. For additional information on
the use of the REDEFINES clause; refer to·section IV.

2-3 DD26

Condition-Name Entries

For some data items, certain values have signif1cance. COBOL permits a
condition-name to be used to determine that an item has a particular value or
falls within a certain set of values. For example, the condition-name.
OUT--OF-STOCK might be associated with the value 0 for the item SUPPLY-ON-HAND in
an inventory program. In the Procedure Division, the condition-name then
provides a convenient and meaningful way to test ·the value of· the i tern (that is:
IF OUT-OF-STOCK •••). .

An elementary or group item in the File Section or Working-Storage Section
may have condition-names ass-igned to ·any or all o.f its values. The
condition-names are specified in entries immediately following the item to which
they a:pp1"y. Each condition,...name entry is given level-numJbe·r 88. An item with.
suordinate condition-name· entries is called a con<Witional variable·. A.
noncor:l:t:ig.uous elementary item (with level-number 77). may be a conditional.
variable. Condition-name entries must not appear in the Report Section.

The following example illustrates the formation of condition:..name entries:

03 GRADE PICTURE 99.
88 FIRST-GRADE VALUE IS 1.
88 SECOND-GRA:DE VALUE IS 2.

88 HI-SCHOOL VALUE 9 THRU 12.

RENAMES Entrie.s

One or more RENAMES entries may be written as the last record description
entry subordinate to a level 1 entry, for renaming or regrouping the items
within the record. All RENAMES entrie·s are assigned the special level-number 66.
For additional information concerning the use of the RENAMES clause, refer to
Section IV.

Qualif.ication

The same data-name or condition-name may be assigned to two or
items. The. qualification feature of COBOL permits· an item to be
uniquely by appending the names of hierarchically more inclusive
qualifiers to the data-name.

more data
designated

items as

In any reference to a data item, its data-name may be qualified by the name
of a group or file to which it belongs. The data-name is followed by either of
the words IN or OF, and then by the group or file-name. The words IN· and OF are
consid.ered synonymous •. One or more such prepositional phrases may be required to
uniquely identify the desired data item.

In any reference to a data item, although enough qualifiers must be written
to make the data-name unique, it is not necessary to mention all of the
data-names in a hierarchy unless they are needed to make the name unique. For a
data-name which is unique in itself, no qualifiers are necessary •.

2-4 DD26

A file-name is the highest level qualifier available. File-names must be
unique in themselves; the same rule applies to report-names and noncontiguous
elementary item names, and to record-names in the Working-Storage Section.

Assume that two records named MASTER and NEW-MASTER have the following
hierarchical structures:

1 MASTER •••
2 CURRENT-DATE •••

3 MONTH •••
3 DAY-OF-MONTH ..•
3 YEAR •••

2 LAST-TRANSACTION-DATE •••
3 MONTH •••
3 DAY-OF-MONTH •••
3 YEAR •••

01 NEW-MASTER •.•
02 CURRENT-DATE •. ~

03 MONTH •••
03 DAY-OF-MONTH ...
03 YEAR •••

02 LAST-TRANSACTION-DATE •.•
03 MONTH •••
03 DAY-OF-MONTH .••
03 YEAR •••

In the above example, two of the several data-names which must be qualified
in all references are MONTH and DAY-OF-MONTH. The format of the qualified names
would be:

MONTH (:: } CURRENT-DATE (:: } NEW-MASTER

. (IN} DAY-OF-MONTH . OF LAST-TRANSACTION-DATE

The specific rules for the use of qualification are:

• A qualifier must be the name of a group, record, or file that contains
the item being qualified. Qualifiers must appear in ascending
hierarchical order (that is, from elementary item-name up to
record-name or file-name), and be separated by IN or OF.

• The same name must not appear at two levels in a hierarchy.

• If a data-name or condition-name is assigned to more than one data
item in a source program, all references to the name require
qualification, e~cept where the COBOL rules specifically state that
qualification is unnecessary.

2-5 DD26

• Any data-name requiring qualification must be qualified i.n every.
reference.

• A name may be qualified even if it is uniqu!e without qualification •.
Similarly / more qualifiers may be used than .al.",e actually · needed for
uniqueness. I·f more- than one combination of qualifiers can ensure
uniqueness, then any valid combination may be used.

e The data-name of a conditional variable may be used as a qualifier for
any of its condition-names.

• Report data-names cannot be qualified. by the file-name of· .the f.ile to
~hich the report is assigned.

'fables of Data Items

A table or array of data items is often required. The distinction betwe.en a
table and an array is that an array is composed of elementary data items having
identical data descriptions while a table may be composed of both elementary
items and group items having differing data descriptions. Since the definition
of array is a subset of the definition of table, the term 'table' will be used
exclusively in tpe following discussion.

Successive item positions in a table may be numbered 1, 2, 3, 4, ••• ,
therefore, any particular item can be identified by its position numb.er. To
refer to any particular item in the table., the data-name and the desired item's
position number are given. The data-name would be ambiguous if a specific
position number were not given.

A ,table described in a single entry is said to be 'one-dimensional'. COBOL
permits the use of one-, two-, or three-dimensional tab,les, which are described,
respectively, in one, two, or three data description entries. The n~mber of
occurrences in each dimension is specified via the OCCURS clause.

In a one-dimensional table, the number of occurrences of table items is
specified in a single entry.

Example:

02 A; OCCURS •••

In a two-dimensional table, the number of occurrences is specified in two
entries; a·group entry and a subordinate entry. The total number of occurrences
of the elementary ·,.table it.ems is the product of the numbers speci·f ied in .the two
ent·ries.

Example:

02 MAJOR, OCCURS •••
03 MINOR; OCCURS •••

2-6 DD26

In a three-dimensional table, the number of occurrences is specified in
three entries; a group entr~ containing a subordinate group entry, which in turn
contains another subordinate entry. The total number of occurrences of the
elementary table items is the product of the numbers specified in the three
entries which define the table.

Example:

02 MAJOR; OCCURS •••
03 INTERMEDIATE; OCCURS •••

04 MINOR; OCCURS •••

The term 'dimensions' refers ta the organization of the table. For example,
suppose a two-dimensional table has three occurrences specified in the group
entry and four occurrences in the elementary entry. The total table then has 12
items, of which the first four make up the first group, the second four make up
the second group, etc. The tenth item in the table is actually the second item
of the third group. The whole table resembles a·page which is ruled into three
horizontal rows and four vertical columns, and the tenth item appears in the
third row, second column:

Col l Col 2 Col 3 Col 4

Row l 0 0 0 0

Row 2 0 0 0 0

Row 3 0 0 0 0

' tenth item

The reference to any item is by its name, row number, and column number. In
COBOL, such numbers are separated by a conuna and enclosed in parentheses; that
is, .the tenth item position would be referred to by the data-name followed by
(3,2). Such an expression is called a subscript.

Similarly, a three-dimensional table resembles a stack of ruled planes. The
more inclusive group entry specifies the number of planes; the subordinate group
specifies the number of rows in each plane, and the elementary entry specifies
the number of columns in each row. Consider, for example, a table described as
follows:

02 A OCCURS 3 TIMES.
03 B OCCURS 3 TIMES.

04 C OCCURS 4 TIMES.

2-7 DD26

The table described may be visualized as a stack qf tibree ruled planes:

c (1~.l,1) 0 0 0 0

0 0 0 0 Plane 1

0 0 0 0

'---- te~th item C(l,3,2)

c (21<1., 1) 0 0 0 0

0 0 0 0 Plane 2

0 0 0 0

C(3,l,l) 6 o o o

o o o o Plane 3

0 0 0 0

Note that item position~ in plane 1 correspond exactly
prior example, except that the plane number (1) must also be
the subscript. The tenth ite'm of this table is C(l,3,2).

to those
specified

in the
within

Consider a three-dimensional table which has two occurrences of the most
inclusive group, five occurrences of the subordinate group, and 20 odcurrences
of the elementary item. Then:

i. The total table has 200 elementary items.

2. The first 20 items are the first row of the first plane.

3. The first 100 items make up the first plane.

4. The ~eventieth item in the table has position (1, 4, 10); that is,
first plane, fourth row, tenth column.

5. References ·to successive table items after .the seventieth item are
made by incrementing the column number by unity up to (1, 4, 20). The
next item is in a different row, so its position is (1, 5, 1).

6. The item following (1, 5, 20) has position (2, 1, 1).

7. The last table item has position (2, 5, 20).

DD~6

COBOL permits table structures much more complicated than the examples
described above, as long as no more than three dimensions are used. The minor
(or only) OCCURS entry may be a group item:

02 A OCCURS 50 TIMES.
03 B •••
03 c ...

In the definition of a two- or three-dimensional table, other entries may
intervene within the hierarchy of OCCURS entries:

02 ·D OCCURS 50 TIMES.
03 E. • •
03 F OCCURS 6 TIMES.

04 G • ••
04 H • • •
04 I OCCURS 3 TIMES.

05 J •••
05 K • • •

04 L OCCURS 7 TIMES.
03 M. • •
03 N • • •

04 p •••
04 Q •••

05 R OCCURS 2 TIMES.
03 s OCCURS 12 TIMES.

Sometimes the number of significant items in a table varies throughout
execution of the object program. The variable number of occurrences is
specified via the DEPENDING option of the OCCURS clause. Such a table can
be a one-di~ensional table.

SUBSCRIPTING

the
then
only

A subscript is a parenthesized expression whose value identifies the
position of a particular table item. The subscript formats for references to
table items depend upon the dimensions of the table, as follows:

One dimensional:
Two dimensional:
Three dimensional:

(position-number)
(major, minor)

·(major, intermediate, minor)

Subscripts must be enclosed in parentheses, as shown above, and commas or
blanks must appear b~tween the indicated items. In any reference to a table
item, the parenthesized subscript must follow immediately after the terminal
space of the table item's data-name. Multilevel subscripts are always written
from left to right in the following order; major, intermediate, minor.

Column number, row number, and plan~ number must be positive integers or
data-names. If data-names are used, they must specify items which will have
positive integral values when the object program is executed. Integers are used
when the desired table position is known in advance; data-names are used when
the position depends upon data accessed or developed in the object program. A
data-name within a subscript may not itself be subscripted, but it may be
qualified if necessary for uniqueness.

2-9 DD26

A\data item is said to be 'repeated' if the OCCURS'"cl~use·is speci~ied in
the·it.em's own description entry or in that' of a grou~ to which· the item
belongs. Any reference. to a repeated item requires a sul;>:script. 'l_lhe subscript
must be one-, two-, or three-dimensional, reflecting.: the number· of OCCURS
entries. affecting the desired i tern. Use of more· than, or less than, the correct
number of subscripts ·is illegal. A data-name can be subsoripted·only if the item
is repeated. If a conditional variable is repeated, then refe·rences to. its
condition-names also require subscripts.

The first occurrence of an item or group is one~ the second is two, etc. A
subscript of (1,2) denotes the-secohd item within the first group of the table.
If a table consists of ten planes, each containing five rows., each containing;
three columns, the table is· .clearly three-dimensional, and its last item
positi6n is identified by subscript (10,5,3).

Tlue follow'ing ·escampies .. · show some of the ways of ref~rring to a particular'
i tern in ·a ,three-dimensiorU.lJi) table· of rates:

RATE (REGION, STATE, CITY)
RATE (3, STATE, CITY}
RATE (3 I 5 I 6)

In .the third case,. the 'actual table· position of the•. i tern is computed during
the compilation process. In other cases, the object program calculates the·
values, since the. values of REGION, STATE, and CITY will .become known only when
the object program is executed.

The name of a repeated item may require qualification in' refe.rehces. If so,
the entire subscript .follows the last qualifier. Suppose group A occurs five·
times; within each occurrence, a subordinate group B occurs four times; and each
group B contains an elementary i tern C with . two occurrences. Several correct··
methods may be used to refer·to the last.table item, including.the following:

C IN B IN A (5,4 1 2)
C IN B (5,4,2)
C IN A (5,4,2)
C (S,4 1 2)

(The last example assumes that no other item is named c.) The following.
references would violate therule for combining subscripts and qualifiers:

C (5,4,2) IN B IN A
C (2) IN B (4) ·IN A (5)
C (4,2). IN A (5)
C (2). IN B (5,4}-

INDEXING

Another method of specifying occurrence numbers is to affix· one· or more
index-names to an item whose data descriptibn includes an OCCURS cl.ause·by using
the opt.ional INDEXED BY phrase. At object program execution, the cohtents of an
index-name will correspond to an occurrence number for the specific dimension ·of
the table with which the index-name is associated. Index-names must, be:
initialized by· using"\SET .suatemehts in. the Procedure Division before being used·:
as tabl~, references• .

2-10

References are made to individual items in a table by specifying the name
of the item folJ~wed by its related index-name in parentheses. The occurrence
numbers required to complete the reference are obtained from the. respective
index-name; the index-name acting as a subscript. For references requiring more
than one occurrence number, index-names and literals may be mixed but
index-.names and data-name subscripts may not be mixed. Thus, if indexing is to
be used, each OCCURS clause within the hierarchy must contain an INDEXED BY
phrase.

The value of an index-name can be modified only by using the PERFORM,
SEARCH, and SET statements. If a data item is described with USAGE INDEX, the
SET statement may be used to move data between the data item and an index-name.
Data items described with USAGE INDEX are called index data items.

Table items can be accessed through direct or. relative indexing. Direct
indexing is using index-names in the same manner as subscripts are used.
Relative indexing is the practice of inserting a space delimited operator (+ or
-) and an integer following the index-name. The occurrence number to which the
setting of the index-name corresponds is effectively incremented or decremented
by the value of the integer. Relative indexing does not, however, alter the
value of the index-name.

EXTERNAL AND INTERNAL DATA FORMATS

In COBOL, the representafion of data within memory is called the 'internal'
format, while the representation of data on peripheral devices is called the
'external' format.

External Data Formats

The external format of a file is the manner in which it is represented on a
peripheral device.

\

Certain general considerations apply to the file:

1. The actual peripheral device used.

2. The MULTIPLE FILE option (applicable only to magnetic tape files).

3. Recording mode (which on magnetic tape may be binary or BCD, with high
or low density) •

4. Presence or absence 6f label records.

Other considerations pertain to.the contents of each data block (physical
record) of the file:

1. Presence or absence of a block serial number.

2. Blocking factor (number of logical records per block) or block size
(number of data characters or computer words per block).

2-11 DD26

3. Logical record format;
(variable-lerigth records) .

FLR (fixed-length records) or VLR

A special external format is used for records in a file when
OCCURS ••• DEPENDING has been specified in record description entries. Otherwise,
t;.he external format on disk or a magnetic tape recorded in binary mode is
exactly the same as the inte.rnal format.

on BCD tape, the formats are the same except that the s~x-bit binary codes·
representing t~e data characters are generally different from the codes used in
memory.

on_printer listings, e~ternal and- internal formats
characters, ? q.nd ! , are nonprinting characters r·eserved
cont:r;pl.)

are equivalent. (Two
for· printer carriage

External and internal formats are equivalent for punched cards~

LOGICAL RECORD FORMAT

In Series 60/6000 COBOL, each logical record in a .file begins in the
char~cter position of a computer word. A logical record consisting of a
21-character item would be stored as follows:

d d d d d d First word

d d d d d d

d d d d d d

d d d x x x La~t word

In this example, the character positions represented by d contain
while those represented by x are unused. Unused positions appear as shown
inmemory and on the peripheral device.

2-12

first
single

data,
both

DD26

Fixed-Length Records

The fixed-length record (FLR) format may be used for files whose logical
records require the same number of computer words. In the FLR format, the
uniform record size is established from the record description entry. In a block
of several FLR records, the successive records are adjacent to each other, with
no intervening control information. A FLR block composed of records similar to
that shown in the preceding Logical Record Format paragraph would . appear as
follows:

d d d d d d

d d d d d d
First record

d d d d d d

d d d x x x

d d d d d d

d d d d d d
Second record

d d d d d d

d d d x x ·x

Variable-Length Records

Circumstances requiring the variable-length record (VLR) format are:

1. · 'I'wo or more data records of unequal sizes (in computer words) have
been described for the file. In this case, the size of each record
type is fixed, but the record type may vary from one record to the
next in the file.

2. The file is to receive one or more reports generated by the Report
Writer.

3. The file is to reside on a mass storage device.

4. The file is to have system standard format.

5. The OCCURS ••• DEPENDING clause appears in the description of one or
more of the data records of the file. The size of an
OCCURS ••• DEPENDING table varies from one record to the next, causing
the record size to vary, even if only one data record type has been
Specified for the file.

Each logical record in a VLR file is preceded by a record control word on
the peripheral device and in the input-output buffers. The record control word
is sup·p.lied and interpreted automatically by the input-output routines and is
not accessible to the object program. The record control word occupies one
computer.word and has the following format:

0 17 18 23 24 29 30 35

record size in zero media report
words (binary integer) code code

2-13 DD26

The record control word is not considered to be a, part of the· logical
record and is not counted in the record size.

The media code is determined1 as follows:

2 - The record is intended to be treated as a card image even though it may
appear on any peripheral device except a random-access mass storage
device.

3 - Either this record is a report line gener.ated by a Report Writer or it
is intended to be treated as a printed line image even though it may
appear on any peripheral devic~ except a random-access mass storage
device.

0 - The media code is. zero except under the circum.s:t:ances described above.

Except in ce:ttain Report Writer functions, the report code is zero, % for
system output, or the la~t character of the two-character file-code for files
intended to be treated as printed line images. The Report Writer applications of
the report code are described in Section VIII and the remaining applications are
described unde~ the WRITE statement in Section V.

In a block of VLR records, the record control word intervenes between the
sucsessive records. A VLR block beginning with a 12-character record followed by
a 30•character record would appear as follows:

binary 2 0 0 0 RCW for .first record

d - - -d }
First record (two words)

d - - ... d

binary 5 0 0 0 RCW for second record

d -d

d - - -d

d - - - - - -d Second record (five words)

d - - -d

d - - -d

binary number 0 0 0 RCW for third record

The recording mode must be binary for any file utilizing VLR format.

2-14 DD26

Partitioned Records

A partitioned record is a logical record that is larger than the size of
the physical record available to contain it. The input-output routines process
such large records automatically by splitting them over 320-word blocks using a
record control word for each block to control the splitting and reconstruction
of large logical records~

To use this facility, the APPLY SYSTEM STANDARD FORMAT and APPLY PROCESS
AREA phrases must be specified either explicitly or implicitly for the file.
(See Section v.) Partitioned records are not required for random-access files
because the logical records in these files are not limited by a block size of
320 words. The partitioning.of records is not allowed for records that contain
OCCURS ••• DEPENDING ON fields.

When a record is partitioned, each physical block of 320 words is termed a
logical record segment and a logical record segment number is placed in each
record control word except the first. A logical record segment code is placed in
bits 24 and 25 of each record control· word. Except for the logical record
segment code and number fields, the rules governing record control words also
apply to partitioned files.

The format of the first record control word for a partitioned record is:

0 18 23 25 26 30 35

segment size in words zero 01 media report
code code

Intermediate logical record segments of a partitioned record have record
control ~ords with the following format:

0 18 23 25 26 35

segment size in words zero 10 segment number

The. last logical record segment of a partitioned record has a control word
with the following. format:

0 18 23 25 26 35

segment size in words zero 11 segment number

7/77 2-15 DD26B

Internal Data Formats

The processor is functionally organized to process 36-bit groupings of
information. Special features are also included for ease in manipulating
four-bit grou~s, six-bit groups, nine~bit groups, 18-bit groups~ and 72-bit
double-precisitin groups. These bit groupings are used by the hardware and
software to represent a variety of forms of information.

POSITION NUMBERING

The numbering of bit positions, character positions, words, etc., increases
in the direction of conventional reading and writing: from the most to the
least significant digit of a number,· and from left to right .. in conventional
alphanumeric text.

THE MACHINE WORD

The· machine word consists of 36 bits arranged as follows:

0 17 18
t

One Mac~ine Word

Upper Half-Word.

I
I

Lower· Half-Word

35

Data transfers between the processor and memory are word oriented; 36 bits
are transferred at a time for single-precision data and two successive 36-bit
word transfers occur for double-precision data.

The processor has many built-in features for transferring and processing
pairs of words. In transferring a pair of ~ords to or from memory, a pair of
memory·locations is accessed; these addresses are an even number and the next
"higher odd number. A pair of machine words is arranged as follows:

0 35 36 71

.· ... I ___________ A __ P_a_i_r_o_f_M_a_c_h..:.;: _i_n_e_w_o_r_d_s _____________ __.I

Even Address Odd Address.

2-16 DD26

CHARACTER-STRINGS

Character Positions

Alphanumeric data is represented by four-bit, six-bit, or nine-bit
characters. A machine word contains either eight, six, or four characters,
respectively. The character positions within the word are as follows:

·9-Bit Characters:

Bit positions
within word

0 1718 2621 35... I

I
Jharac:er !osit:ons ~
within word

6-Bit Characters:

0 56 1112 1718 2324 2930

I 0 I 1 I 2 I 3 I 4 I

4-Bit Characters:

l 45 8 10 1314 17 19 2223

Fl 0. I 1 H 2 I 3 H 4 I 5

Bit Positions

Bit positions within a character are as follows:

1011 2 3 4-bit character

101112 3l4l5l 6~bit character

o 1 2 3 I 4 I 5 I 6 1 I s I 9-bit character

35

5 I

26 28 3132 35

H 6 I 7 I

Thus, bit and character positions increase from left to right as in riorrnal
reading.

2-17 DD26

BINARY NUMBERS

'Fixed-Point Numbers

Binary fixed-point numbers are represented with half-word, single-word, and
doub~e-word precision as shown below.

Pre.cision ' Repres.ent.ation

Upper Hal''f 0 17

Half-word· r _- = = = = = =] __________ _
Lower Ha'l'f 18 35

I
assumed

Single-word 0 35 decimal

point l
Double-word

0 Even Address· 35 36 Odd Address 71

For algebraic ope·rations, operands and results are regarded as signed
binary n.umbers, and the leftmost bit is used as a· sign bit (a·O·being,,plus and .. l'
minus) . When the sign is positive I all the bi ts represent the absolute value· of
the nu:mter; when the· sign is negative, they represent the two's· complement of
the absolute value of the number.

In the case of addition and subtraction, the occurrence of an overflow is.
reflected by the carties into and out of the leftmost bit position (the sign
position). If ·the carry int6 the leftmost bit position does not equal the carry
out of that position; then overflow has occurred. If overflow has been detected
and if· the sign bit ~quals 0 1 the resultant is· below range; if with overflow the
sign bit equals 1, tne resultant is above range.

In integer ari"ehmetic, the location of the.decimal point is assumed to
right of the least significant bit position; that is, depending on.
precision, to the right of bit position 35 or 71.

2-18

the·:
the

DD2B:

The number ranges for the various cases of precision, interpretation, and
arithmetic are given in Figure 2-1.

Precision

Inter-
Arithmetic Half-Word pretation Single-Word Double-Word

(Xn, Yo ... 11> (A,Q, Y) {AQ, Y-pair)

Algebraic
Integra 1 -217 ~N ~ (217-1) -2

35 ~ N S (2 35 -1) -2
71

SNS (2
71-U

Fractional -1 S N $ (1-2- 17) -1 ~ N S(l-2-35) -1 SN ~ (1-2-7l)

Integral 0 SNS (2
18

-1) 0 $ N S (2 36 -1) 0 SN s (2
7 2

-1)
Logic

Fractional 0 S N $ (1-2-T8) ~ N S (1-2-'1"6") s (1-2- 72) 0 0 SN

Figure 2-1. Ranges of Fixed-Point Numbers

Floating-Point Numbers

Binary floating-point numbers are represented with single-word and
double-word precision. The upper eight bits represent the integral exponent in
two's complement form, and the lower 28 or 64 bits represent the fractional
mantissa in two's complement form. The format for a floating-point number is:

Single-Word
Precision:

0 1

~

7

assumed
.- decimal point

s~,9

s

t.-Exponentk•~---~- Mantissa

Double-Word
Precision:

a

~

1

where s = sign bit

7

r- decimal point
assumed

s~r9

s

2-19

35

71

Mantissa . ___ ..,.._ ___ ____.,

DD26

Bef.ore performing floating-point additions or subtractions, the processor
aligns the number that has the smaller positive exponent. To maintain accuracy,
the lowest permissible exponent of -128 together with the mantissa equal to
0. O'O •••• 0 has been defined as the machine representation of the number zero
(which has no unique flo~ting.;.point representation). Whenever a floating-point
operation yields a resultant untruncated machine mantissa equal tb zero (71 bits
plus sigrt because of extended precision) , the e~ponent is automatibally set · to
-128. .

.Normalized Floating"""..Point Numbers

For normalized floating-point numbers, the binary point is placed at the
left of ;the most significant bit of the mantissa (to the_ .right of the sign bit} .
Numbers 'a:·re normalized by shifting the mantissa (and c.o.rrespondingly adjusting
the e~ponent) until no leading zeros are present in the mantissa for positive
numbers, or until no leacl:ing ones are present in the mantissa for ne.gative
numbers. Ze.ros f il:l in the vacated bit positions.

The number ranges resulting from the various cases
normalization~ and sign are given in Figure 2-2.

of precision,

S:ign Single Precision Double Precision

Positive 2-129
~N =:: (1-2-27) 2 127

2 -129 =:: N '.'.:. (1-2 -63) 2 127

!Normalized

Negative -(1+2-26) 2 -129
.2 N 2.:.2127 -(1 +2 -62 -129) 2 2 N .i::-2127

Positive 2-155 :S N ·::: (1-2-27) 2 127 2-191 :::_ N :::. (1-2-63) 2127
Unnormalized

Negative
_

2
-155

2
N

2
_

2
127 -191

-2 . 2 N .2 -2127

NOTE: The floating-point number zero is not included in the figure.

Figure 2-2. Ranges of Floating-Point Numbers

2-20 DD26

DECIMAL NUMBERS

Scaled decimal numbers are expressed as decimal digits in either the
four-bit or nine-bit character formats. They are expressed as unsigned numbers

.or as sigried numbers using a separate sign character.

Decimal data utilizes the following formats:

13 14 17 18 19 22 23 31 32 35

2
I

3 I zl 4

I
5 6 I 7 I

Packed Decimal (4-bit)

0 1 17 18 19 26 27 28 35

0 1 2 H 3

ASCII (9-bit)

The· 'Z' in the bit positions represents the bit value 0 while other numbers
in .the fields represent the character positions.

Decimal Data Character Codes

During arithmetic operations, digits and signs are checked by the hardware
as four-bit data (the four least significant bits from a nine-bit numeric). The
following interpretations are made:

Bit Pattern for
Character Interpreted as Abort if

0000 0
0001 1
0010 2 found where
0011 3 descriptor
0100 4 specifies sign
0101 5
0110 6·
0111 7
1000 8
1001 9
1010 +
1011 + found where
1100 + descriptor
1101 - specifies digits
1110 +
1111 +

2-21 DD26

Because of the above interpretations, the movement of SPACES to a group
item-containing decimal data will result in object program aborts· wh~n that data
is referenced in arithmetic. statements.

The.following codes (n1ne-bit zones are created by prefixing binary 00010)
are generated for output signs; the values are in octal:

\

Plus Minus"

4-bit 14 15

9~·Joit 053 o·ss

DATA DESCRIPTION ENTRIES

In COBOL, data items are described in terms of a standard data format. The
description of each data item states its 6onceptual properties, rather than its
representation within the computer. This conce-ptual description will imply
specific physical representations in the co~puter.

Each data ite~ is described as a string of characters. The basic properties
of a data item are its size and its class. The size is the number of characters
the item contains. The class may be alphabetic, numeric, or alphanumeric,
depending upon the type of characters .of which it. is composed. In addition, the
description may specify the placement- of an assumed sign or decimal point; or
how the data item should be edited for printing.

Every data item is described by a record descriptioP entry. The record
description entry begins with a level-number and a data-name. (If no reference
is to be made to the item, the reserved word FILLER may ~ppear instead of a
user-supplied data-name.) The functions of the level-numbe1 and the data-name·
are as follows: \

• The level-number indicates any relationship this item may have with
the items described in adjacent entries.

• The data-name provides a means whereby the item can be referred to
elsewhera in·the program.

The remainder of the entry consists of descriptive clauses chosen from the
following list (in which the clauses appear in approximate order of importance) :

• PICTURE - Gives the detailed format of the elementary item.

• VALUE - Specifies the initial value of the item (applicable only in
the Working-Storage Section) •

• OCCURS - Indicates that the item is repeated several times.

• INDEXED phrase - Indicates that the subject of this entry, or an entry
subordinate to this entry, is~' to be re·ferred to by indexi'ng.

2-22 DD26

• COPY - Indicates that the entire predicate of the description is
actually to be found in a location other than in this data description
entry.

• REDEFINES - Indicates that the item occupies the same memory area as a
prior item.

• USAGE - Specifies which of several possible machine formats applies to
this item.

• RENAMES - Permits alternative, possibly overlapping, groupings of
elementary items.

• SYNCHRONIZED Indicates that the item is to have a special
orientation to computer word boundaries.

• JUSTIFIED - Overrides the normal item alignment rules when other items
are moved to an item described with this clause.

• KEY phrase ~ Specifies the location of a record, or a set of data
items, that serve to identify the ordering of ·data.

• BLANK WHEN ZERO - Results in the blanking of an item when the value of
that item is zero.

For an elementary item, the PICTURE clause can specify all format details;
consequently, other clauses are usually unnecessary.

Every elementary item except an index'data item may be said to have a
picture; that is, it has a set of properties which are expressed in a PICTURE.
clausea Accordingly, this manual often refers to an item's PICTURE, without
regard to the actual clauses used in its record description entry. Similarly,·
every item has a definite size, class, and usage, regardless of how it has been
defined.

For a group item, the record description entry may omit all descriptive
clauses, or it may include any of the following descriptive clauses:

VALUE } OCCURS
COPY
REDEFINES

USAGE }

If any of these clauses are used in
a group entry, the entire group
is affected.

If this clause is specified in a group entry, each
subordinate elementary entry inherits the specified property.

It is essential that an item's data description be consistent with the
values the item may actually assume. For example, an item whose values may
actually be negative may be handled improperly in the object program if its
description omits an operational sign. Similarly, an item described as numeric
may be handled improperly if its values actually contain space characters. (In
practical data processing applications, some situations are commonly encountered
which are improper according to COBOL rules; one example is a numeric item with
leading spaces instead of zeros.)

2-23 DD26

DISPLAY Item Formats

.Any DISPLAY-n item occupies an integral nurobe:;J:" of adjacent internal
character positions, and has no particular relationship to machine words except
when the SYNCHRONIZED clause is specified in its reco:i:-d description entry. 'I1he
significance of the respective DISPLAY-n usage is as follows:

· • DISPLAY signifies that the item's actual machine format corresponds to
the standard data format.

• DISPLAY-1 signifies that the item has an edited floating-point format
(described below). The item's class is implicitly alphanumeric.

• DISPLAY-2 signifies that the commercial collat.ing sequence is to be
applied to the i tern.

For an item whose usage is DISPLAY or DISPLAY-1, the standard binary code
is used within memory to represent each data character, except in the case of
signed numeric items. If the value of a signed numeric item is nonnegative, the
data characters employ the standard binary codes. If the value is negative, the
sign is expressed by a variation in the binary code of the least significant
digit; specifically, all bits except the 25 bit have the usual values, but the
2 5 bit is set to 1. (This convention corresponds to the punched card· convention
of no overpunch on nonnegative values, with an 'eleven' overpunch over the
low-order digit of a negative value.)

The only respect in which the internal representqtion of · DISPLAY-2 items
differs from that of DISPLAY.items is that a special six-bit binary code is used
for each DISPLAY-2 character instead of the stand.ard code. The special codes are
chosen so that the result of comparing two DISPLAY-2 items is consistent with
the commercial collating sequence rather than the machine's standard collating
sequence.

The following special format is provided for DISPLAY-1 i terns. (This. option
is not a standard COBOL feature.)

'(
+_ }_ 9.9(n)E (:} 99

The first character is the report sign for the mantissa. The next
characters represent the actual value of the mantissa; n may be a one- or
two-digit integer from one to 17. The E represents an E .insertion character,
which is counted in the item's size. The remaining characters are the report
sign for £he exponent and the two 9s represent the exponent itself.

The value represented by a DISPLAY-1 item is equal to the manti~sa value
multiplied by the power of ten indicated by the exponent. This format is useful
only for very large or very small values which, in a· normal DISPLAY format,
would begin or end with a long string of zeros. In particular, computations
involving COMPUTATIONAL-2 items (see below) may sometimes produce results for
which the DISPLAY-1 format is needed.

2-24 DD2fi

The format of a DISPLAY-1 item must be specified via the PICTURE clause.
The item's size equals 7+n. For example, a DISPLAY-! item whose PICTURE is
+9.9(3)E+99 has size 10. If the value 0.000001724 were moved to this item, the
result would be +l.724E-06.

COMPUTATIONAL Item Formats

The internal data formats for COMPUTATIONAL items are described below.
COMPUTATIONAL item formats are used to obtain both internal and external
space-saving and performance advantages.

The functions of the various COMPUTATIONAL options are:

• COMPUTATIONAL - Results in the decimal-precision format. This is the
preferred usage for items involved in calculations within a processor
that does not contain the Extended Instruction Set (EIS)l.

• COMPUTATIONAL-! - Results in the fixed-point binary integer format.
This usage is applicable for items having only integral values, and is
the preferred usage for items used. as subscripts or referred to in
DEPENDING options.

• COMPUTATIONAL-2 - Results in the floating-point binary format. This
usage is appropriate for items whose absolute values may potentially
exceed 1018 or be less than lo-18 ; it is also useful for data
communication with non-COBOL programs.

• COMPUTATIONAL-3 - Results in the single-precision fixed-point binary
integer format. This usage should be employed only for data
communication with non-COBOL programs; even then, COMPUTATIONAL-1 or
COMPUTATIONAL-2 should be used instead if the application permits.

• COMPUTATIONAL-4 - Results in the packed decimal format. This usage,
available only with EIS processors, provides performanc~ advantages
but may require additional data space.

An implicit sign is assumed in the formats for all COMPUTATIONAL options.

When data items are described as COMPUTATIONAL or COMPUTATIONAL-2, ultimate
accuracy for maximum length composite of operands (18 digits) in arithmetic
statements may not be attainable due to floating-point hardware limitations.

COMPUTATIONAL-n items are not stored in a manner related to the character
position subdivisions of a computer word. Instead, such items are stored as
follows:

• COMPUTATIONAL and COMPUTATIONAL-2
floating-point format.

items utilize the binary

• COMPUTATIONAL-! items are stored as one-word or two-word binary
integers.

I

lExtended Instruction Set (EIS) refers to an extension to the original Series I
6000 in'struction set. EIS is the standard instruction repertoire for models
6025, 6040, 6060, and 6080 of the Series 6000 system and for all models of the
Series 60 system. ·

3/77 2-25 DD26A

·since a stored COMPUTATIONAL•n item has no char.acter · ·orientation, an
attempt to manipulate it as if it were made up of characters i's me·aningless.
Thus, the storage area may be redefined for some distirn:::t purpose but not, for
example,· to give separate access to the integral and ft"actional parts of the·
COMPUTATIONAL item. For similar reasons, a group ·MOVE statement ~involving
.COMPUTATIONAL-n items should normally entail only sending and r.eceiving groups
with similar descriptions; a MOVE CORRESPONDING .statement should be used
otherwise. COBOL rules do not require adherence to the suggestions given in this
paragraph, but the user must . assure that the application of a group MOVE
statement or of a redefinition is legal.

BINARY REPRESENTATION OF FRACTIONAL VALUES

An iimportant feature of the COMPUTATIONAL usage .i::S a provision. for tlt~
fractional part of an item. For a COMPUTATIONAL item, the fractional part a:ntl
integral part are jointly ~epresented as a binary integer, which correspond~
exactly to the conceptual decimal value of the i tern. For a COMPUTATIONAL-2 i·tem,
however, the fractional part of the value is, represented as a pure binary
fraction of a limited number of bits. (A COMPUTATIONAL-1 item is an integer and
therefore has no fractional part.)

A decimal fraction of a given number of digits cannot be represented
exactly by a binary fraction of any finite number of bits. Consider, for
example, the value 1/5, which is represented in decimal notation as 0.2. Trying
to represent it by a four-bit binary fraction, one obtains (.0011)2 or 3/16;
with eight bits, one obtains (.00110011)2 or 51/256. In fact, the exact value
must be written ~s

(0.·2) 10 {0.0011)2

which means that the bit pattern 0011 in the binary expansion keeps repeating
indefinitely. If the decimal value 0.2 is converted to a binary expansion of 71
bits and then converted back~ the one-digit result would be 0.1, quite different
from 0.2. The four-digit result would be 0.1999, whi.ch is almost (but not quite')
equal to 0.2. If computations.were involved instead of only conversions, the
imprecision in the decimal result could be much greater.

Various adjustments can be made to binary fractional values to make exact
decimal results highly probable. The sure way, however, is to use binary integer
notation to represent all values, whether· integral or fractional. A consequence
of doing so is that multiplication or division of an ope·rand by a power of ten
is som~times necessary in the course of a computation. COMPUTATIONAL items use
the equivalent of binary integer notation, and the compiler automatically
supplies any required multiplications or divisions by powers of ten. (The
formats and conventions governing COMPUTATIONAL items are described below.)

In most commercial data processing applications, particularly where dolla.rs
and cents are- involved, a high degree of decimal precision is expected. For th~s
reason, the COMPUTATIONAL. and COMPUTATIONAL-! usages are recommended over
COMPUTATIONAL~2.

2-26 DD26 .

COMPUTATIONAL FORMATS

COMPUTATIONAL Data Items

The machine format for computational data items
floating-point binary format (single or double precision) :

Single
Precision
(one word)

Double
Precision
(two words)

0 l 7 8 9

[Is!
'4-Exponent ~ Mantissa

0 1. 7 8 9

k- Exponent ------------

35

I .,

Mantissa

is the standard

71

COMPUTATIONAL items utilize the above format in a special way. The exponent
indicates how many bits of significant information are present in the mantissa.
Bits to the right of the point indicated by the exponent are not significant;
these bi.ts are normally all zero for COMPUTATIONAL items.

The sign of the exponent is normally nonnegative. The sign of the mantissa
is the algebraic sign of the COMPUTATIONAL item.

The value stored in the mantissa is a binary integer, obtained as
follows: if the item's data description specifies fractional places, the
mantissa is stored as if the value had been multiplied by a sufficiently high
power of 10 to make the value an integer. (The power of ten is called the 'span
multiQlier'.) Thus, 3.142 would be stored as 3142, as if it had been multiplied
by 10~.

In general, if an item's picture is 9(p)V9(q), a suitable span multiplier
is lOq or any higher power of 10. If the span multiplier actually chosen is 10 8

(withs=:: q), thesis called the 'span number'. The 'span' of a decimal­
precision item is defined as the number of fractional digits permitted for an
item in view of its span multiplier. Referring to the above example, 3.142 would
be assigned 'span 3', allowing three fractional digits.

Th~ significance of the conventions described is that a binary fraction or
mixed number 'equivalent' to the decimal value could in general only be
approximate, not exact, but the span·multiplier permits the value stored to be
exact in the decimal-precision format.

2-27 DD26

The compiler selects the span multiplier for each COMPUTATIONAL item and
supplies appropriate coding to align the operands and the results in all
computations. A 'span conversion' is sometimes requi~ed for this purpose; this
means multiplication or division by a suitable power of 10 (always with a
positive exponent). The general rules for COMPUTATIONAL item_alignment are:

1. If .a MOVE statement, or an addition or subtraction function, involves
operands with the same span number, they are properly aligned without
span conversion. Otherwise, one or more span conversions are
necessary.

2. The span number of a product equals the sum of the span ~umbers of the
-Operands, so span conversion via division is usually necessary to
obtain proper alignment of the result.

3. The span number of a quotient equals the difference of the span number
of the dividend and that of the divisor, so span conversion via
multiplication is usually ~ecessary to obtain proper ali~nment of the
result.

Because of rule 1 above, it is desirable to have summands in the same span,
to avoid span conversions. Here, another decimal-precision format convention
becomes important; since a given item's span number can ·in principle be any
number equal to or greater than the number of fractional places in the item's
description, items with widely different PICTUREs can often be assigned the same
span~

For example, span 3 in single-word precision can permit one to three·
fractional places and zero to five integral places. In double-word precision,
span 3 can permit one to three fractional places and six to 15 integral places.
Since i terns with no· more than three fractional places are very common in
commercial data processing applications, it is desirable to assign span 3 to
items· whenever possible, even if they have only one or two fractional places, to
optimize their formats for addition and subtraction. This reasoning leads
naturally to the concept of preferred spans.

To reduce span conversions, certain spans, each of which is a~plicable to a
wide range of PICTUREs, are assigned preferentially. Thus, an ·item which could
be assigned either to the span which is 'preferred l' or to that which is
'preferred 2' would be assigned to the former. When the span has been assigned,
it can be determined whether the item's PICTURE requires sing.le or double
precision, with single precision chosen whenever possible.·The following rules
apply for span and precision number assignments:

Single-Precision Items:

Integral
Places

1-8
0-5
0-3

0

Fractional
Places

0
1-3
4-5

8

Span
Number

0
3
5
8

Comment

Preferred 1
Preferred 2
Preferred 3
Preferred 4

2-2.8 DD26

Double-Precision Items:

Integral Fractional Span
Places Places Number Comment

9-18 0 0 Preferred 1
16-17 1 1

16 2 2
6-15 1-3 3 Preferred 2

14 4 4
4-13 4-5 5 Preferred 3

11-12 6 6
11 7 7

1-10 8 :} Preferred 4
0-10 6-7
7-9 9
7-8 10 10

7 11 11
0-6 9-12 12 Preferred 5
4-5 13 13

4 14 14
0-3 13-15 15 Preferred 6
1-2 16 16

1 17 17
0 16-18 18 Preferred 7

For the best results, it is recommended that the items in a program occur
primarily in span 0 and span 3, and that the single-precision format be selected
whenever possible. As shown in the preceding rules, most practical PICTUREs that
specify eight or less digits will result in single-precision formats. Utilizing
these rules, the assignment of a given span and precision value can be forced by
supplying an appropriate PICTURE.

The following examples illustrate the results of various span combinations:

l. Given: A with PICTURE 9V99 and B with PICTURE 9{S)V9{3); the sum of A
and B must be computed. The rules indicate that both are
single-precision span 3 items;· therefore, no span conversion is
necessary.

2. Given: C with PICTURE 9(6) and D with PICTURE 9{6)V99. C is then a
single-precision span 0 item and D is a double-precision span 3 item.
If the sum of C and D is desired, a span conversion will be necessary.
If their product, however, is to be a double-precision span 3 number,
no span conversion•is required for the multiplication.

3. Given: E with PICTURE 9{3)V9{3) and F with PICTURE 9(10)V9{3). Both
are assigned span 3, but E is a single-precision item and F is a
double-precision item. E and F may be added without conversion to
produce a span 3 sum. Suppose, however, the product is to be stored in
a span 3 item. The product of two span 3 numbers is a span 6 number.
Therefore, a span conversion from span 6 to span 3 must follow the
multiplication. Specifically, the span 6 product must be divided by
103. If a span 3 quotient is desired, division of two span 3 numbers
results in a span 0 quotient that must be converted to a span 3 number
via multiplication by 103.

2-29 DD26

·If machine floating-point format is used for COMPUTATIONAL items, many
operand alignment procedures occur automatically via floating-point hardware.
Another convenience is that ~ingle- .and double-precision operands can be mixed
arbitrarily in a floating-point computation witli\0u.t the requirement for
programmed conversions. A cOIµputation proceeds in double precision only when at
lea~t one of the operands is a double-precision item.

Another important advantage gained by using the floating-point format is
that in a computation involving several arithmetic operations (resulting from a
complex COBOL formula, for example), the hardware retains extra significant data
in each intermediate step, .so that the conceptual 18-digit limit on operands may
occasionally be meaningful~y exceeded on intermediate results. The overall
significance, however, never e.xceeds 21 digits (so that the result of
multiplying two 18-digit numbers, for example, cannot be 36 digits, even in an
inter.idiate result). The 18-digit limit always appli~s.:,to stored values.

COMPUTATIONAL-1 Data Items

. The machine format for COMPUTATIONAL-! data i terns
double-precision :fixed-point binary integer format:

Single
Precision
(one word)

Double
Precision
(two words)

.0 1 35

0 l

is single- or

71

I
Although it is stored as a binary number, a COMPUTATIONAL-! item's value is

equal to the decl.mal value of the item because COMPUTATIONAL-! items are
restricted to integral values.

The precision assignment rules for COMPUTATIONAL-! items are:

Number of Digits
in PICTURE

1-8
9-18

Precision

Single
Double

2~30 D026

COMPUTATIONAL•2 Data Items

The machine format for COMPUTATIONAL-2 data items is the single- or
double-precision floating-point binary format:

0 1 7 8 9 35

Single

Is i Is: I Precision
{one word)

If-Exponent 11111 Mantissa .,

0 1 7 8 9 71

Double

Is: Is: I
Precision
(two words)

k-Exponent Mantissa

The mantissa of a COMPUTATIONAL-2 item is a pure binary fraction and
consequently is not necessarily exactly equivalent to the item's decimal value.
The equivalence may be sufficiently close, however, for practical purposes.

The COMPUTATIONAL-2 usage is especially effective for the operands
elaborate formula. Should an operand value or an intermediate or final
exceed 10 18~ or be less than lo- 18 , only the floating-point binary
provides enough significance to yield meaningful results.

The precision assignment rules for COMPUTATIONAL-2 items are:

Number of Digits
in PICTURE

1-8
9-18

COMPUTATIONAL-3 Data Items

Precision

Single
Double

in an
result
format

The machine format for COMPUTATIONAL-3 data items is single-precision
fixed-point binary integer format:

Single
Precision
(one word)

0 1

2-31

35

DD26

A COMPUTATIO;NA;L-3 item is stored in the same format as a COMPUTAl'JONl\L!""l
itern since both usag.es are restricted to integral values only. A COMPUTATIONAL-3
~tern,· however, may contain a ten-digit integral value. This usage is intended
to permit data communicat.i~ons with programs c:reating b-;\n~ry integer values which
are ·single~precision numbers bµt, are larger than eight integral digits.

I(~ . CO~UTATIONAL-4 Data. Items

I The machine fo;rmat for COMJ;>UTATIONAL-4 data items is packed decimal format:

I

I

0 l:. 4 5 8 9 10 J.3 14 17 18 19 22 23 ~·f?,., 27 28 31 32 35

H~· 0 I +I 2 J 3 I z I 4 I 5 J zJ' 6 l 7 I
Pac~ed Decimal (4-bit)

The 'Z' in the bit positions represents the bit value 0 while other numbers
in the fields represent the character positions.

A COMPUTATIONAL-4 item sign;i.fies that two four-bit digits are to occupy one
nine-bit byte (packed decimal). Data using this format can be processed only on
a compu~er that has the Extended Instruction S~t (EIS) cap~bility. If the
I>ICTURE character-string specifies an operational sign, the item will be one
four-bit . digit larger thaQ the number of '9's in the PICTURE cbaracter-string
would imply. ·

The_ use of this data type may res'l,Jlt in implicit ch.araqter positions being
allocated by the compiler s:i,nce a COMPUTATIONAL-4 item may only start and end on
a word or half-word boundary.

The packed decimal format can be defined independently or within a record
that also contains six-bit Hollerith characters, binary integer fields, or
floating-point . fields. When files containing such records are v;ritten to ta,Pe.
handlers, extra care should be taken. The RECORDING MODE IS BINARY clause can be.
specified safely. If a mixed Hollerith/packed decimal file is written in the"BCD
or in the nine-track mode, bits.will be lost from the data.

3/77· 2-32

SECTION III

FILE DESCRIPTIONS

This section presents the language elements in the Environment Division and
the Data Division that are used to describe files. Refer to the COBOL
Reference Manual for the specific formats, rules, and special considerations
applicable to these language elements.

SELECT SENTENCE

The SELECT sentence in the FILE-CONTROL paragraph of the · Environment
Division is used to name a file, identify the file medium, or describe some of
the file properties. Each file named in each SELECT sentence must have a unique
name.

OPTIONAL Phrase

The OPTIONAL phrase is used to indicate that the input file described will
not necessarily be present each time the object program is executed. This
feature can be utilized for describing files which may be present only during
special periods such as the end of month or the end of year.

The OPTIONAL phrase may be specified only for input files which are to be
accessed in a sequential manner. (Refer to the discussion of Sequential-Access
Processing in Section V for additional information.)

OVERLAY Phrase

The OVERLAY phrase is used in run units that contain more than one COBOL
object program. The OVERLAY phrase must be used whenever the same file-code is
specif,ied in more than on·e of the programs.

If more than one COBOL program in a run unit defines a file using the same
file-cod~, the following restrictions apply:

1. The file definitions must be identical.

2. All but one of the file definitions must specify, the OVERLAY phrase in
the SELECT sentence of the FILE-CONTROL paragraph. This restriction
applies even if no overlays are contained in the run unit.

3-1 DD26

If / during the execution of an object program, an overlay module is loa.ded
into a memory location that is already occupied b>y a currently active
input-output subroutine, the p,rogram may abort in an undefined manner. In this
context, 'currently active' indicates that the s·ubroutine is one of the routines

.being used ·t.p service the Hle. Therefore, the ·following two general
prohiQit1ons must be observed: .

i. When a file is in the open state, no overlq,y module may be loaded into
a memory location occupied by that file's file control information.

2. When a file is in the open state, no overlay module may be loaded into
a memory location· occupied by any of the· subroutines that are
servicing that file.

The file properties (including any RERUN phrases) muat be identical in eqch
program which is to reference the file.·

Example:

Program A

SELECT OVERLAY
RESERVE l

Program B

FILE-A ASSIGN TO
ALTERNATE AREA.

AO FOR CARDS

SELECT FILE-A ASSIGN TO AO FOR CARDS RESERVE 1 ALTERNATE AREA.

Although the two programs are described differently, the file properties of
FILE-A are identical. Program B must have been loaded into memory to establish
FILE-A's file properties before program A references FILE-A.

If one program is recompiled, all programs in the module overlay
environment sl)ould be recompiled using t~ same Software Release version of th.e
COBOL compiler to ensure that the file properties remain the same.

File-Name fhrase

Each file to be processed by the COBOL program must be named only once as a
file-name following the keyword SELECT. Each selected file must have a file
<;iescription (FD) entry or sort-merge file des.cription (SD) entry in. the Data
t>ivision, except when the RENAMING phrase is used.

3-2 ·DD26

Example:

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-1 ASSIGN TO Bl.
SELECT FILE-2 ASSIGN TO B2.
SELECT FILE-3 ASSIGN TO BJ.

DATA DIVISION.
FILE SECTION.
FD FILE-3 LABEL RECORD IS STANDARD.

SD FILE-2.

FD FILE-1 LABEL RECORD IS OMITTED.

Although each selected file must have an FD or SD described in the Data
Division, the order of description need not be the same for each file.

RENAMING Phrase

The RENAMING phrase provides a shorthand method of describing the same file
twice. This feature can be useful when a COBOL program requires two identical
descriptions of a file for purposes such as updating a master file.

When the RENAMING phra~e i? used, the COPY option must be included on the
$ COBOL card and the LIBCPY option must not be included on the $ COBOL card.

When the RENAMING phrase i~ used, the file description (FD) entry and
related record description entries associated with the file-name being renamed
are applied to the renaming file; therefore, the latter must not be described in
the File Section of the Data Division.

Example:

UfPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT ABC ASSIGN TO ·cl.
SELECT DEF RENAMING ABC ASSIGN TO C2.
SELECT GHI ASSIGN TO XY.

D~TA DIVISION.
FILE SECTION.
FD . ABC LABEL RECORD IS STANDARD.
Oi REC-A PIC X(80).
FD GHI LABEL RECORD IS OMITTED.
01 REC-B PIC X(lOO).
WORKING-STORAGE SECTION.

3-3

•

DD26

The SELECT sentence for the renamed file must ;net contain a ·RENAMING
phrase. The renamed file must not have a sort-merge file description. The file
des'crip·tion for the renamed file. must not be the last faiJ,l·e desc·rirption entry in
the ~ile Section of the Data Division.

ASSIGN Phrase

Wh.en the object program is submitted for execution, it is accompanied by
peripheral assignment ca.rds which are used to specify the peripheral devices for
each file. The file-code in the ·peripheral as,signment card must be the same as
that assigned by the COBOL object ·program.

Each file ·named .in a SE'LECT sentence must be a~i'S•igned . to a peripheran.
devi~ "··by specifying the .. f,.i1le-code option in the ASSIGN :Phrase.

'!'he file-code option must be a two-charac.ter word consisting either of two
letters or one letter and one digit.

Example:

SELECT FILE-T ASSIGN TO I4.

The integer-1 option·, which is intended to
input-output units :assigned to a given fi.le-naine, is
since the assignment of multiple devices is handled
using control cards.

indicate the number of
treated as .documentation
by the operat±ng system

Integer-! must· not be specified when f ile-code-2, f ile-code-3, ••.• , is also
specified in the ASSIGN phrase.

Multiple file-codes in the ASSIGN phrase are treated as documentation only.

File-codes beginning with the letters, such as Sl, S2, ••• ,SA, SB, -~~-~
should not be used in programs utilizing either the sort or the· merge featur·e,
since these file-codes have a special meaning .in the ·sort or the .mer-<Je
operation.

A COBOL reserved word, such as NO or OR, must not be specified as a
file-code.

If the ACCESS MODE phrase is not specified in conjunction with the
f il:e-code option, .the following statements are applicable:

1. If the physical record size is not specified by a
clause in the Data Division file description entry
this file, it will be presumed to ·be 320 words.

BLOCK CONTAINS
associated with

2~ An implicit process area, block serial number, or variable-length
record may not be presumed for the file; therefore, the appropriate
APPLY phrase must be specified in the I-0-CONTROL paragraph for ·the
option de·sired.

3 .. 4 DD26

If the ACCESS MODE IS RANDOM phrase is specified in conjunction with the
file-code option, the following statements are applicable:

1. The file must be assigned to a randomly addressed mass
space at object program execution. Refer to the $ FILE
Control Cards reference manual.

storage
card in

file
the

2. If the physical record size specified in a Data Division file
description entry BLOCK CONTAINS integer CHARACTERS clause exceeds the
size of the logical record, the space between the end of the logical
record and the end of the physical record will not be utilized. This
area is referred to as padding.

3. A process area will be implicitly reserved for the
APPLY PROCESS AREA phrase need not be specified in
paragraph.

file.
the

Thus, the·
I-0-CONTROL

4. The ACTUAL KEY IS phrase must be specified. The value of the data item
referenced as the actual key must indicate the relative position of
the logical record within the file, starting with the value zero for
the first record.

If. the ACCESS MODE IS SEQUENTIAL phrase is specified in conjunction with
the file-code option, the following statements are applicable:

1. The file must be assigned to a linked mass storage file space at
object program execution.

2. SYSTEM STANDARD FORMAT (I-0-CONTROL paragraph) must be specified,
explicitly or implicitly.

3. A process area will be implicitly reserved for the
APPLY PROCESS AREA phrase need not be specified in
paragraph.

file.
the

Thus, the
I-0-CONTROL

4. The ACTUAL KEY IS phrase need not be specified. However, the contents
of the data item referenced as the actual key will be updated when the
ACTUAL KEY phrase is specified.

FOR CARDS Phrase

To avoid format errors, output files intended for eventual punching in card
form by either system output (SYSOUT) or by Bulk Media Conversion must be
identified as such by specifying the FOR CARDS phrase. The file format will be
presumed to be the Series 60/6000 system standard format and each logical record
will be assigned the Hollerith card image media code. The direct allocation of a
card reader or card punch to a COBOL program will have an adverse affect on
system performance and is not recommended.

When the FOR CARDS phrase is specified, the compiler will automatically
apply a process area to the file.

3-5 DD26

FOR LISTING Phrase

To avoid format errors, output files intended fJ()r eventual printing by
''either system output (SYSOUT) or by Bulk Media Conversion must be identified as
such ·by specifying the FOR LISTING phrase. The file format will be presumed to
be the Series 60/6000 system standard format and each logical record will be
a$signed the Hollerith print_ line media code. The direct allocat±·on of a printer
to a COBOL program will have an adverse affect on system performdirce and is · not
recommended.

.......
When the FOR LISTING phrase is spec~fied, the compiler . will automatically

apply a process area to the file.

Pril\1ter advancement control characters and a repor.t code ~e automatically
provided for each pri·nt lli.ne.

Since current printer hardware will process ·print lines containing as many
as 160 columns, it is no lon<jer practical for the compiler to perform compile
time checks on maximum print line sizes for the various printe·rs that may be
configured on the system. Therefore, the user is responsible for allocating
printers that are compatible with the files assigned to them. For example, if a
production COBOL program that requires a 160-column printer is assigned a 132-
coluirin o·r 136-column printer, data alerts should be expected •.

'F.OR MULTIPLE REEL/U~:IT Phr:a:se

In Series 60/6000 COBOL, the MULTIPLE REEL/UNIT options are treated .as
documentation only •

. RESERVE, Phrase

The RESERVE phrase allows the user to modify the number of input-output
memory areas allocated by the compiler.

I~ the RESERVE phrase is omitted, the compiler automatically allocates two
buffer areas for fil~ proceBsing.

IN.TEGER OPTION

If integer is specified, the compiler will assign· a maximum of two buffer
areas.

;Example:

SELECT FILE-G ASSIGN MN RESERVE 3 ALTERNATE AREAS.

The compiler will reserve two input~output buffer areas for :FILE-G.

3-6 DD26

NO OPTION

If the RESERVE phrase is used and NO is specified, one input-output buffer
area will be reserved by the compiler.

FOR.BLANK COMMON Phrase

Although buffer space is normally allocated to the Labeled Common storage
area, it is possible, by specifying the FOR BLANK COMMON phrase, to force the
allocation of buffer space to the Blank Common sto·rage area. A ·run unit
containing more than one object program that utilizes the Blank Common feature
may require explicit control card directives to ensure the correct positioning
and extent of the Blank Common storage area. Refer to the description of the
$ LOWLOAD card in the General Loader reference manual for the operational
characteristics of the Labeled Common and Blank Common storage areas.

requires
overlay
another

Blank
it is

each

The FOR BLANK COMMON phrase must not be used in any program that
segmentation. It can, however, be used with caution in a module
environment program in which files using this feature may be common to
program. If a file common to two or more programs is to be assigned to
Common storage, the file must be so assigned in each program in which
common. An id~ntical ordering of files by SELECT sentences is required in
program when more than one such file is involved.

FILE-LIMIT(S) Phrase

The FILE-LIMIT(S) phrase in the FILE-CONTROL . paragraph is included for
program documentation only. The actual limits are established by the file space
allocated by the file control cards for the run unit~

Attempts to access a logical record outside the logical ·segments of the
file wi.11 result in the execution of either the AT END or INVALID KEY phrase.

ACCESS MODE Phrase

The ACCESS MODE phrase must be specified for files that will be assigned to
a mass storage device at object program execution.

When ACCESS MODE IS SEQUENTIAL is specified, the mass storage logical
records are read or written starting with the first record in the file and
proceeding to the last record in the file. ~efer to the discussion of
Sequential~Access Processing in Section V for additional information.

When ACCESS MODE IS RANDOM is specified, the mass storage logical records
are read or written in the order indicated by the contents of the data-name
designated in the ACTUAL KEY phrase. Refer to the discussion of Random-Access
Proc~ssing in Section V for additional information.

3-7 DD26

PROCESSING MODE Phrase

The PROCESSING MODE .phrase must be specl.f·ied for mass storage files to
indtcate that the 19cgical records are to be processed in the order in which they
are accessed. ·

ACTUAL KEY Phrase

The ACTUAL KEY data item must be a single-precision binary integer
described with USAGE COMP-1. In addition, the ACTUAL KEY data item must be
describe.Q;, as either a level 01 or level 77 data description entry in the·
Working_,S,·torage Section of the Data Division.

The ACTUAL KEY phrase is required for mass storage files- for which the
ACCESS , MODE IS RANDO~ pl'.);rase is specified. The ACTUAL KEY phrase identifies
that data item whose value controls the access to the logical records on mass
s.torage file space. When a READ, WRITE, or SEEK statement is executed, the
·~CTUAL KEY data item contains the integer value of the ordinal record position
that is to be accessed.

The ACTUAL KEY phrase may be optionally specified for a file for which the
~CCESS MODE IS SEQUENTIAL phrase is specified. In this case, the data item
identified in the ACTUAL KEY phrase does not control the access to the mass
storage, file space. However, the ACTUAL KEY data item. will be updated during
the execution of a READ or WRITE statement with the integer value that
represents the ordinal record position of the logica.l record accessed by the
program. ·In particular:

1. If the last input-output action was an OPEN statement, the actµal key
value represents the lowest accessible ordinal record position on the
file.

2. If the last input-output action was a successful READ statement, the
actual key value represents the ordinal record position of the record
obtained.

3. If the next input~output action may legitimately be a WRITE statement~
. the actual key value ;J:"epresents that ordinal record position into
which the WRITE statement will attempt to place a record.

4. The actual key value associated with the execution of either the AT
END phrase of a READ statement or the INVALID KEY phrase of a WRITE
statement represents the ordinal record position . at which the
exception condition was detected.

5. The CLOSE statement has no effect upon the actual key value.

The first ordinal record position on a sequential mass storage file is
associated with an actual key value of one (1). The first ordinal record
position on a random mass storage file is associated with an actual key value of
zero (0) • However, even when an actual key value of zero is availabl.e,
programmed use of the value one (1) as, the lowest actual key is preferred, since
it allows a simple 6orrespondence between subscript (and index) values and the
ordinal record positions on a file. ·

7/77 3,-8. pD26B

APPLY PHRASE

The APPLY phrase in the I-0-CONTROL paragraph of the Environment Division
is used to specify special input-output techniques which are to be applied to
files defined in the FILE-CONTROL paragraph.

Contradictory input-output techniques must not be specified for a
file-name. Refer to the Summary of File Property Relationships in Section v.

PROCESS AREA Phrase

The APPLY PROCESS AREA phrase can be used to increase object program
efficiency for files which have heavy processing activity and are described
either as having more than one logical record per physical record with the BLOCK
CONTAINS clause in the file description entry or at least one alternate
input-output area with the RESERVE .Phrase in the SELECT sentence of the
FILE-CONTROL paragraph.

When the APPLY PROCESS AREA phrase is included, each logical record of an
input file is moved to the 'process area' for processing when it is read and
each logical record of an output file is developed in the 'process area' and
moved to the buffer when it is written. Otherwise, the standard method is to
process both input and output files in the buffer area.

The APPLY PROCESS AREA phrase may be redundantly specified even though an
implicit process area has been reserved, by using another option such as the FOR
CARDS or FOR LISTING option.

7/77 3-8.1 DD26B

BLOCK SERIAL NUMBER Phrase

The APPLY BLOCK SERIAL NUMBER phrase indicates that each physical record is
to be prefixed with a word containing the relative position of the physical
record within the file.

The SYSTEM STANDARD FORMAT option imposes block serial numbers. In
addition, block serial numbers may optionally be used on files which do not have
the system standard format, provided that the recording mode is binary.

Sort files and merge files are implicitly given. block serial numbers;
therefore, the APPLY BLOCK SERIAL NUMBER phrase would be redundant for files
defined with a sort-merge file description entry in the Data Division.

The explicit or implicit specification of· the APPLY BLOCK SERIAL NUMBER
phrase in the source program must match the physical· presence or absence of
block serial numbers on the file. If there is no match between the file
description and its physical format, an error condition will result when that
file is read.

When applied to a file, block serial numbers use the first computer word of
each physical record. This word has the following format:

0

block serial number
(binary integer)

17 18

block size in words
(binary integer)

35

The block serial number is the sequential number of this physical record
within the current reel of this file (the current reel pertains only to magnetic
tape files) •

The block size is the actual size of this physical record, excluding the
block serial number control word itself.

COBOL procedural.statements cannot access the block serial number control
word.

SYSTEM STANDARD FORMAT Phrase

The APPLY SYSTEM STANDARD FORMAT phrase provides a shorthand method for
describing the file properties of a file which may be processed on different
hardware devices each time the object program is to be executed. Refer to the
description of system standard format in Section V for further details.

The Data Division file description entry clauses must not contradict the
file properties having the system standard format.

3-9 DD26

V~R FORMAT.Phrase

The APPLY VLR FORMAT phrase causes the logical records of the file to be
preceded by a record control word which contains·the record size in ·words and
other control information. The recording mode will be presumed to be binary.

Depending on the BLOCK CONTAINS, RECORD CONTAINS, and LABEL RECORD
of the file description entry, the VLR format may or may not apply to
that conforms to the system st.andard format. ·

RERUN Phr.;ase

clauses
a file

Th'e RERUN phras·e causes ·checkpoint memory dumps to be taken. That portien
. of· . the phrase used is RERUN ON file-name-7 EVERY integer-! RECORDS OF
file-name.;.8.

If 'ON file-name-7' is specified, the output. device allocated to
file-name-7 receives the checkpoint dump; otherwise, the output device allocated
to file-name-8 receives the checkpoint dump. If 'ON file~name-7' is specified,
file-name-8 may be either an input or an output file.

The number of records specified by integer-! may not exceed 250,000.

The output device must be opened as an output file. at every point in .the
program where ·a READ or a WRI.TE statement references file-name-7, if specified,
or file··name-8 so that the output device can receive the checkpoint dump.

SAME.AREA Phrase

The SAME AREA phrase indicates that two or more files are to use the same
memory area during object program execution. The memory area to be shared
includes all storage areas and alternate input-output areas assigned to the
referenced files.

Only one of the files may be opened at a time.

A file-name must not be used in more than one SAME AREA phrase.

SAME RECORD AREA Phrase

Th~ SAME RECORD AREA phrase indicates that two or more files are to use the
same memory area for processing the current logical record and implies a process
area for the named files. All the files named in the SAME RECORD AREA phrase can
be open at the same time. Each logical record processed in the record area is
considered to be the current logical record o.f each file named. A file may be
·specif i~d in only one SAME RECORD AREA phrase. ·

There is no re·<Juirement that the logical record descriptions :be identical
for each file that shares the same record area; however, undesirable results
could occur if their record descriptions were different and this feature wer-e
not used with discration.

3-10 DD26

SAME SORT or SORT-MERGE AREA Phrase

The SAME SORT-MERGE AREA phrase is equivalent to the SAME SORT AREA phrase
and both_ are treated as documentation only. The space used by the sort or ·merge
process is determined dynamically at execution time.

MULTIPLE FILE Phrase

The MULTIPLE FILE TAPE phrase is required when two or more files share the
same reel of tape.

Only those files on a multiple file tape that.are referenced in the source
program need be named in a MULTIPLE FILE phrase.

If all files on the tape are referenced in the order in which they appear
on the tape, the POSITION option may be omitted.

Examp.~.a.:

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-C ASSI.GN TO Tl.
SELECT FILE-A ASSIGN TO T2.
SELECT FILE-B ASSIGN TO T3.

I-0-CONTROL.
SAME AREA FOR FILE-B FILE-C FILE-A.
MULTIPLE FILE TAPE CONTAINS FILE-A FILE-B FILE-C.

Although the files may be referenced in other phrases differently than they
appear on the tape, they must be listed in their exact consecutive order in the
MULTIPLE FILE phrase when the POSITION option is omitted.

If any file in the sequence of files on the tape is not included in the
MULTIPLE FILE phrase, then the position relative to the beginning of the tape of
each file named in the phr~se must be given.

Example:

MULTIPLE FILE FILE-C POSITION 3 FILE-E POSITION 5
FILE-F POSITION 6 FILE-Z POSITION 26.

All of the files on a multiple file tape must have labels present or,
conversely, all of the files must have labels omitted.

3-11 DD26

Example:

I-0-CONTROL.
MULTIPLE FILE FILE-1 .FILE-2~
MULTIPLE FILE FILE-3 FILE.-4.
DATA DIVISION.
FILE SEC'l'ION.
FD FILE-1 LABEL RECORDS ARE STANDARD.
01 REC-1 PIC X(320).
FD FILE-2 LABEL RECORD IS STANDARD.
01 · REC-2 PIC X(320).
FD FILE-3 LABEL RECORD IS OMITTED.
01 RE.;C-3. PICTURE X(l32).
FD FILE-4 LABEL RECORD IS OMITTED.
01 ·REC-4 PICTURE X(80).

Each MULTIPLJ:i; FILE ph,rase describes one multiple file tape. In the
preceding example, two m~ltiple file tapes are described. There can be any
number of multiple file input or output tapes (each having a corresponding
MULTIPL~ FILE phrase}; however, all files listed· for each tape must be contained
on a single reel.

Only one file of a multiple file tiipe can be open at any given time.

Files referenced in a MULTIPLE FILE phrase cannot be described ·with the
·OPTIONAL phrase of the SELECT sentence in the. FILE-CONTROL paragraph.

All files on a multiple file ta~e must have the same recording mode.

FILE DESCRIPTION ·ENTRIES

The File Section header is followed by, a file description entry or a
sort~merge file description entry.

A file description entry consists of a level indicator (FD) , followed by a
dat~-name (the name of the file) which corresponds to a data-name specified in a
SELECT sentence in the FILE-CONTROL paragraph of the Environment Division, and a
series of independent clauses. The clauses specify the manner in which the data
is to be recorded on the file, the size of the logical and physical records, the
names of the label records contained in the file, the values of specific label
data items, and the names of the data records which compose the file.

If the RENAMING option has been sp,ecified in a file's SELECT sentence
the Environment Division, its de.scription is implicitly provided, and must
be given explicitly in the File Section. When th~ RENAMING option is used,
mu.st b~ included on the $ COBOL. card and the LIBCPY option cannot be used.
other files require explicit descriptions in the File Section.

in
not

COP¥
All

If a file is intended to have system standard format, .the LABEL RECORD (S)
IS/ARE STANDARD clause is recommended for its file description entry. The DATA
RECORD(S), VALUE OF, and/or REPORT(S) clauses may be used optionally. -When the
BLOCK CONTAINS and RECORDING MODE clauses are omitted, the system standard
format is assumed.

DD~6

SORT-MERGE FILE DESCRIPTION ENTRIES

For sort or merge file description entries, the level indicator SD is
followed by a data-name (the name of the file) which corresponds to a data-name
specified in a SELECT sentence and a series of independent clauses. The clauses
specify the name, size, and number of data records in the sort or JPerge file. A
sort or merge file is a set of records to be ordered in ascending or descending
sequence based on the specification of keys in a SORT or MERGE statement in the
Procedure Division. No label procedures are under the control of the user and
the rules for blocking and internal stor'age are peculiar to. the SORT or MERGh
statement.

Level Indicator and File-Name

The level indicator identifies the entry as a file description entry (FD) ,
a sort-merge file description entry (SD) , or a report description entry (RD) .

The file-name identifies the file for subsequent references
Environment Division and the Procedure Division. The file-name is the
level qualifier available for data-names belonging to the file.

in the
highest

If the level indicator SD is used, the file-name must be the name
associated with a sort-merge file. Except when used as a qualifier, the
sort-merge file-name can appear in the Procedure Division only in SORT, MERGE,
and RETURN statements.

Refer to Section VIII, Report Writer, for a detailed explanation of the
report description entry (RD) .

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause is optional and may be omitted when the file has
the. standard physical record _size of 32 0 computer words. When system standard
format is intended, the clause should be omitted.

If integer-1 and integer-2 are both specified in the BLOCK CONTAINS clause,
they refer to the minimum and mpximum size of the physical record, respectively.
In this case, integer-1 is understood to be for documentation only. If only
integer:2 is specified, it represents the exact size of the physical record.
Integer-1 (when used) and integer-2.must be unsigned nonzero integers.

Regardless of whether the physical record size is given in terms of
characters or records, each logical record will begin in a new computer word.

Whenever the keywords RECORDS or CHARACTERS are not specifically written in
the clause, the CHARACTERS option is presumed.

When the CHARACTERS option is used, the physical record size is specified
in terms of the number of standard characters contained in the physical record,
regardless of the types of characters used to represent the items within the
physical record.

3-13 DD26

When the SYSTEM STANDARD FORMAT option is designated, explicitly or
imp'lici tly, the compiler allocates a physical .record siz·e of 3 2 0 computer words.
If the CHARACTERS option is specified, integer-2 must not exceed a value· of
1920.

Unless system standard format is indicated, explicitly or implicitly, a
magnetic tape file may have .any desired physical .record size not exceeding 4095
words.

Calculation of the physical record size for sequential~access files musf
reflect the basic record format (fixed or variable) and the number of .logical
records in the physical record.· The physical record size conventions, in terms
of the number of computer words, are presented below. The formulas yield 'net'
physiCa·ll record sizes, and do not reflect block serial numbers. If block serial
numbers are desired,.the 'net' physical record size must be increased by one
word.

There are three cases 'for fixed-length record (FLR) files:

1. BLOCK CONTAINS clause o~itted. The overall block size will not exceed
320 words. Net block size is the largest multiple of the .record size
not exceeding 320 words (319 words if block serial numbers are
applied}. If an FLR file has 30-word records, net block size (with the
BLOCK CONTAINS clause omitted) would be 300 words.

2. BLOCK CONTAINS integ.er-2 RECORDS. The net block size is integer-2
times the record size. In the example given for case 1 above, the same
result would be obtained by specifying BLOCK CONTAINS 10 RECORDS.

3. BLOCK CONTAINS integer-2 CHARACTERS. The block size will be as close
to integer-2 divided by six words as possible. The net block size is
the largest multiple of the record size not exceeding {integer-2
divided by six). In the example given for case 1 above, the same
result would be obtained by specifying BLOCK CONTAINS 1800 C-HARACTERS.
Integ~r-2 should be exactly six times the overall record size in
words, multiplied by the desired blocking factor, plus six if block
serial numbers are applied.

There are also three cases for variable-length record (VLR} files:·

l. BLOCK CONTAINS clause omitted. The maximum block size is 320 words
(including block serial number, if applied}. The actual block size
will vary from one block to the next. In each output bloc~, successive
records are added until the remaining space is insufficient to hold
another record; the current block is then physically written out and a
new block is begun. The physical block ends with the last word of the
last record. If record sizes are 200 words and 70 words, respectively,
a block .might appear as shown in the following diagram.

3-14 DD26

binary 200 0 0 0 RCW 1st record

d d

200 words of data

d d

binary 70 0 0 0 RCW 2nd record

d d

70 words of data

d d

Thus, the actual block size in this example is (1 + 200) + (1 + 70)
272 words.

2. BLOCK CONTAINS integer-2 RECORDS. The maximum net block size is
(maximum record size in words + 1) times integer-2. The increment of
one (1) to maximum rec6rd size allows for record control words. This
convention allows at least integer-2 records per·block, but the blocks
are still constructed as described for case 1 (under VLR files) above.
If not all records in a block are of the maximum size, more than
integer-2 records may be included.

If the file has two record types, with sizes (in words) of 5 and 75,
respectively, and BLOCK CONTAINS 2 RECORDS, maximum block size is 2 x
(75 + 1) = 152; the block might, however, contain as many as 25 of the
small records.

3. BLOCK CONTAINS integer-2 CHARACTERS. The maximum block size is the
largest integer not exceeding (integer-2 divided by six), including
block serial number, if applied. Integer-2 should be a multiple of
six. Blocking conventions proceed as described for case 1 (under VLR
files) above.

The use of the word CHARACTERS in the clause is optional. Whenever the
keyword RECORDS is not specifically written in the clause, the word CHARACTERS
can be omitted with the understanding that integer-1 (if used) and integer-~
represent the number of characters in the block. The word RECORDS cannot be used
for a file for which REPORT(S) is also specified.

When the word RECORDS is used with variable-length records, the block size
is equal to the maximum record size (in computer words) multiplied by the.number
of rec6rds plcis one.

3-15 DD26

For mass storage files assigned to a file-code and described with ACCESS
MODE IS RANDOM, the physical record size associated with the CHARACTERS option
is considered identical with the logical record size. Depending on the. mass
storage device normally intended for the file, the physical record size may be
adjusted for efficiency by using the BLOCK CO~TAINS clause with the CHARACTERS
option. Integer-2 may range from 384 to 24,570 characters (which resu.lts in
record sizes in the range 64 to 4095 words). A size that is ntit modulo 384 ..
characters will result in wasted space.

Regardless of which BLOCK CONTAINS option is specified, the input-output
system a.utomatically adjusts to single record blocks at program execution if the
file is actua,lly assigned to. a printer, remote terminal, card reader, or c~rd·
punch.

DATA RECORD(S) Clause

The data-names specified in this optional clause.must be level 01 items
whose. record description entries, together with their subordinate entries,
follow the FD or SD entry. Standard label record-names must not be mentioned in
this clause. If record descriptions for label records within an FD are included,
they must appear between the FD entry and the data record descriptions.

The presence of more than one data-name indicates that the file contains
more than one type of data record. If the record sizes in words are not equal,
the file will be assigned the variable-length record format and its recording
mode must be binary. The records of the file are not required to have the same
description.

Example:

FD FILE-Y LABEL RECORDS ARE STANDARD DATA RECORDS ARE REC-Y
REC-W REC-X.

01 REC-W PIC X(80).
01 REC-X.

02 DN-1 PIC 9(6) COMP.
02 DN-2 PIC 9(18).
02 DN-3 PIC 9(18).
02 DN-4 PIC 9(18).
02 DN-5 PIC X(20).

01 REC-Y PIC X(lOO).

Conceptually, all data records in a file share the same area. This
is not altered by the presence of more than one type of data record in
In the preceding example, REC-W, REC-X, and REC-Y would be
redefinitions of the same area whose size would be 100 characters.

concept
a file.
implicit

The order in which the record de~cription entries occur as 01 entries is
not significant, with the exception of sort files. For a sort file with more
than one size data record description, the first record description entry after
the SD entry is assumed to be the dominant type. Its size is considered to be
the most common in the sort file. Sort optimization is based on this assumption.
Therefore, a careful choice in ordering record description entries for a sort
file enhances object program efficiency.

3-1.6 DD26.

LABEL RECORD(S) Clause

The LABEL RECORD(S) clause is the only required clause within the file
description (FD) entry. This clause is used to designate whether or not labels
are associated with the file and, therefore, whether or not the input-output
system must be prepared to process labels for the file •. A label record is a
special type of log~ 11 record that contains information about the file or about
the medium on which •e file is recorded. Label records are not part of the
data area of a file 1 1u t appear as separate records at the logical beginning and
ending of .a file. On ~ome media, such as magnetic tape, the label records are
physically recorded preceding and following the physical beginning and ending of
the file •. On other medj ·, such as mass storage, the label records might not be
physically adjacent to the:· file.

On a magnetic tape, label records are separated from data records by a file
mark and successive files are separated by a file mark. On a multiple file tape,
file positioning is accomplished by counting the number of file marks passed.
Therefore, the labels must be consistent for all of the files on such a tape.
That is, either every file on the tape must be labeled or all of the files on
the tape must be unlabeled. This is true whether or not all of the files are
referenced in the COBOL program. Those files on a multiple file tape that are
referenced in the program must have consistent descriptions. That is, either
all of .the referenced files must have the OMITTED option specified or each
referenced file must specify either the STANDARD option or the label-name
option.

OMITTED OPTION

The use of· the OMITTED option signifies that no labels exist for the file.
The input-output system will not expect to process labels for the file and, on
input, will not check for the possible existence of a label.

The OMITTED option must not be specified if system standard format has been
assigned for a file, explicitly or implicitly. System standard format invokes
special processing conventions that presume labels, even though the physical
device to which the file is assigned does ·not support the physical recording of
labels. ·

If the OMITTED option is specified on an output file, each output tape is
terminated with an end-of-file mark when the end-of-tape foil is detected and a
tape swap occurs.

I(the OMITTED option is specified on an input file, the standard means of
recognizing the logical end of the file is not available. Unless the file is a
single-reel file, the user must determine via explicit p~ocedures which reel
terminates the file. When an end-of-file mark is detected, the READ statement's
AT END procedure is executed. If a subsequent READ statement is executed, a
tape swap takes place and the first record of the next reel is obtained. If the
reel just ended is the last reel on the file, the file should be closed.

STANDARD OPTION

The use of the STANDARD option signifies that logical labels that conform
to the Series 60/6000 label format specifications are considered to exist for
t.he file even though they may not be recorded on some of the physical devices to
which the file may be assigned.

3/77 3-17 DD26A

Th'e STANDARD option must be specified if system standard format has- been
assigned for a file, explicitly or implicitly.

When the STAN.OARD option is specified, the Series 60/6000 standard
·beginning label format is inferred automatically by the compiler and donsi~ts of·
the following group item structure:

01 (fixed label-name)
02 LABEL-IDENTIFIER PICTURE X(l2).
02 INSTALLATION PICTURE X(6).
02 REEL-SERIAL-NUMBER PICTURE BX(5).
02 FILE-SERIAL-NUMBER PICTURE BX(S).
02 REEL-NUMBER PICTURE BB9999.
02 DATE-WRITTEN, ..

03 LABEL-YEAR PICTURE B99.
03 LABEL-DAY PICTURE 999.

02 FILLER PICTU'.RE BBB.
02 RETENTION-PERIOD PICTURE 9.99 •

. 02 IDENTIFICATION PICTURE X (12) •
02 FILLER PIC X(24).
66 ID RENAMES IDENTIFICATION.

The items within Series 60/6000 standard beginning labels have the
following significance:

3/77

1. The implied value of LABEL-IDENTIFIER is GE)S)S600)SBTLJ6,.

2. INSTALLATION contains constant. information for €ach user installation~
This item is supplied automatically in output labels, but is ignored
by input label checking routines.

3. REEL-SERIAL-NUMBER contains the serial number of the physical tape
reel. This number is also recorded externally on the ree.tJ. i tselL
This item is supplied automatically in output labels.

4. FILE-SERIAL-NUMBER contains the serial number of the first reel of the
file. On the first reel, therefore, the values of FILE-SERIAL-NUMBER
and REEL-SERIAL-NUMBER are identical. This item is supplied
automatically in output labels. On input, it may be checked against
an expected value.

5. REEL-NUMBER contains the number of the reel within the file. The
first reel is number 0001, the second is 0002, etc. This item is
automatically supplied in output labels and checked on input.

6. DATE-WRITTEN contains the day of the year on which the object program.
has been executed to produce this file. This item is automatically
supplied in output labels, but is ignored on input.

7. RETENTION-PERIOD contains the number of days the file is. to be
retained. This item is proc·essed in two distinct phases on each output
file:

(a) Every tape upon which an output file is to be written is expected
to have a prior label, which may be either a blank reel label or
a beginning label on which the RETENTION-PERIOD has expired
(current date minus DATE-WRITTEN exceeds RETEN'l'IQN...;PERIOD-).
These conditions are checked and operator action is requested if
they are not met.

3"'"18 DD26A

(b) If a value has been specified for the RETENTION-PERIOD via the
VALUE OF clause in the FD entry, this value is automatically
supplied in the new output label, which replaces the prior
beginning label on the output tape. When RETENTION-PERIOD
appears in the VALUE OF clause, a numeric literal not exceeding
999 must be specified. The value 999 signifies permanent
retention.

8. IDENTIFICATION or ID contains a 12-character name assigned to the file
£or external identification. On input, this item is automatically
checked against the value specified in the VALUE OF clause, if this
clause is present in the FD entry. On output, the value specified in
the VALUE OF clause, if present, is automatically supplied in the
output label. If the VALUE OF IDENTIFIC.ATION clause is not specified,
this field will be checked against the value of the file-name field on
the file assignment control card. If neither the VALUE OF clause nor
the file-name field is specified, the identification field is ignored.

The beginning tape label and the beginning file label have identical
formats. The fixed label-name for a beginning file label is
BEGINNING-FILE-LABEL.
BEGINNING-TAPE-LABEL.

The fixed label-name for a beginning reel label is

When the STANDARD option is specified, the Series 60/6000 standard ending
label format is inferred automatically by ·the compiler and consists of the
following group item structure:

01 (fixed label-name)
02 SENTINEL PICTURE X (6) •

88 END-OF-TAPE VALUE IS
88 END-OF-FILE VALUE IS

02 BLOCK-COUNT PICTURE 9(6).
02 FILLER PICTURE X(72).

II)SEOR)6)S'' .
")6EOF)6)S".

The items within Series 60/6000 standard ending labels have the following
significance:

1. The END-OF-TAPE condition of SENTINEL causes an automatic tape swap on
input.

2. The END-OF-FILE condition of SENTINEL signifies the end of the file.

3. BLOCK-COUNT is always described with USAGE COMPUTATIONAL-!, except
when the recording mode is BCD; in this case, BLOCK-COUNT is
implicitly USAGE DISPLAY, as shown above. BLOCK-COUNT is
automatically supplied in output labels and is checked on input labels
against the computed block count.

4. An ending tape label is automatically produced on output tapes when an
end-of~tape foil is encountered. It may also be produced by a CLOSE
REEL statement. The production of this label is automatically
followed by a tape swap.

5. A CLOSE statement (without the REEL option) causes an ending file
label to be produced, together with any other CLOSE .statement options
that may be specified.

The ending tape label and the ending file label have identical
The fixed label-name for an ending file label is ENDING-FILE-LABEL.
label-name for an ending reel label is ENDING-TAPE-LABEL.

formats.
The fixed

3/77 3-19 DD26A

Lt is not nece$sary to describe the formats of the Series 60/6000 standard
beginning and ending label records in the source program, since the c6mpiler
infers their descriptions when the STANDARD option is specified. However, when
the STANDARD option is used, these descriptions may also be included as record
descriptions in the source program by utilizing the four fixed label-names
identified above. These record descriptions must not be named. in the DATA
RECORDS clause. When such explicit label record descriptions are specified, the
standard label contents mu~t be described exactly as shown in the above formats
with respect to dat9--names, PICTURE character-string$, and positions. There are
two exceptions to this ·rule:

a. The FILLER data items at the end of each of the abov~ standard label
·formats may be replaced by descriptions of additional data items to be
included in the label records. These additional data items~ if
present, may be processed in USE procedures. ·

b. The VALUE clauses within the above label record descriptions do not
result in automatic moves of the specified literals to output labels.
All standard items within Series 60/6000 standard labels are
automatically processed by the input-output system.

Example:

3/77

SPECIAL-NAMES.
GTIME IS TIME-VALUE.
GIN IS CONTROL-INPUT.

FILE-CONTROL.
SELECT PAYROLL-ACTIONS 7\SSIGN TO Al FOR MULTIPLE REEL.
SELECT NEW-PAY-MASTER ASSIGN TO Nl FOR MULTIPLE REEL.

FD PAYROLL-ACTIONS
DATA RECORD IS ACTION-ITEM
LABEL RECORDS ARE STANDARD
VALUE OF ID IS ACTION-IDENT.

01 ACTION-ITEM

FD NEW-PAY-MASTER
DATA RECORD IS NEW-MASTER-RECORD
LABEL RECORDS ARE STANDARD.

01 NEW-MASTER-RECORD

WORKING-STORAGE SECTION.
01 ACTION-IDENT.

02 FILLER PIC X(6) VALUE· "PAYACT".
02 ACTION-DATE PIC 9 (6).

01 NEW-MASTER-IDENT.
02 FILLER PIC X (6) VALUE "PAYMST".
02 NEW-DATE PIC 9(6).

01 RUN-TIME.
02 RUN-DATE PIC 9 (6) •
02 RUN-CLOCK· PIC 9(6) USAGE COMP-3.

3-20 DD26A-

Example (cont) :

PROCEDURE DIVISION.
DECLARATIVES.
NEW-MASTER-FILE-HEADER SECTION.

USE AFTER BEGINNING Ll\BF.L ON NEW...;Pl\Y-Ml\S'l'EH.

MOVE NEW-MASTER-IDENT. TO IDENTIFICATION.
MOVE 32 TO RETENTION_;PERIOD.

END DECLARATIVES.

ACCEPT ACTION-DATE FROM CONTROL-INPUT.
OPEN INPUT PAYROLL-ACTIONS.

~·
.•
ACCEPT RUN-TIME FROM TIME-VALUE.
MOVE RUN-DATE TO NEW-DATE.
OPEN OUTPUT NEW-PAY-MASTER.

If the system input file (GIN) contained a record with the six-digit date
in columns 1 through 6, each header label on the PAYROLL-ACTIONS file would be
checked for a file identification (title) of the form "PAYACTrnmddyy".

Each header label of the NEW-PAY-MASTER file will have a file
identification of the form "PAYMSTrnmddyy" and a retention period of 32 days.

LABEL-NAME OPTION

A label-name in the LABEL RECORD(S) clause must be one of the set of four
.fixed label-names associated with the Series 60/6000 standard label format
specifications. (Ref er to the STANDARD option.)

All Procedure Division references to label-name-1, or to any itGms
subordinate to label-name-1, must appear within US~ procedures.

If more than one label-name is specified, it is an implicit redefinition of
the same label area.

The fixed label-names and their associated Series 60/6000 standard label
records are described below:

3/77

a. BEGINNING-FILE-LABEL: Appears only once for a file, precedinq the
first data record of the file, and contains information about the
file.

b. BEGINNING-TAPE-LABEL: Appears at the physical beqinninq of each reel,
with the exception of the first reel on the file, preceding all other
information, and contains information ahout the reel.

c. ENDING-FILE-LABEL: Appears only once for a file, following the last
data record on the last reel of a file, and contains informatiort about
the file.

3-21 Db26A

d. ENDING-TAPE-LABEL: Appears at the physical end of a reel, with the
exception of the last reel of the file,. following the last data
record, and contains information about the reel.

Since these fixed label-names are associated with the Series 60/6000
standard label . descriptions, their formats are inferred by the compiler and it
is not necessary to define· them within the file description. Omitting the label
record descriptions within this application is operationally equivalent to using
the STANDARD option. .

However, user-defined label record descriptions may be associated with
these four fixed label-names and the compiler will use these descriptions in the
source program. The input-output system will recognize only four types of label
process::li.ng; BEFORE BEGINN:ING LABEL' AFTER BEGINNING LAB'EL' BEFORE ENDING LABEL'
and AF'l1ER ENDING LABEL. . Due to this restriction, it is the responsibility o'f
the us:er to determine whether the file being processed is a reel label or a file
label.

Example:

3/77

FILE-CONTROL.
SELECT TRANSIT-FILE ASSIGN TO TR FOR MULTIPLE. REEL.

FD TRANSIT-FILE
DATA RECORDS ARE TRANSIT-A, TRANSIT-B
LABEL RECORDS ARE

BEGINNING-FILE-LABEL
BEGINNING--TAPE-LABEL
ENDING-FILE-LABEL
ENDING-TAPE-LABEL.

01 ENDING-FILE-LABEL.
02 SENTINEL PIC X(6).
02 BLOCK~COUNT P1C 9(6).
02 REEL-PROOF-TOTAL PIC 9(16)V99.
02 FILE-PROOF-TOTAL PIC 9(16)V99.
02 FILLER PIC X(36).

01 ENDING-TAPE-LABEL.
02 SENTINEL PIC X(6).
02 BLOCK-COUNT· PIC 9(6).
02 REEL-PROOF-TOTAL PIC 9(16)V99.
02 FILLER PIC X(54).

PROCEDURE DIVISION.
DECLARATIVES.
FILE-TRAILER SECTION.

USE AFTER ENDING LABEL ON TRANSIT-FILE.
IF SENTINEL EQUALS "J&EOFJ&)S" MOVE

WORKING-REEL-PROOF-TOTAL 'TO REEL-PROOF-TOTAL
ADD WORKING-REEL-PROOF-TOTAL TO WORKING-FILE-PROOF-TOTAL
MOVE WORKING-FILE-PROOF-TOTAL TO FILE-PROOF-TOTAL
ELSE MOVE WORKING-REEL-PROOF-TOTAL. TO REEL-PROOF-TOTAL
ADD WORKING-REEL-PROOF-TOTAL TO WORKING-FILE-PROOF--TOTAL
MOVE 0 TO WORKING-REEL-PROOF-TOTAL.

END DECLARATIVES.

3-21.1 DD26A

The above example describes a file that utilizes some of the unused space I
in the Series 60/6000 standard labels. Since the input-output system is unable
to differentiate among the label formats, the VALUE OF clause should not be used
to set the IDENTIFICATION field.

RECORD CONTAINS Clause

This optional clause may be used for documentation. The size of each record
type is determined from information in its record description entries, and is
not affected by this clause. Integer-1 is the number of characters in the
smallest. data record, and integer-2 is the number of characters in the largest
data record. If the data records in the file are of uniform size, integer-1 is
omitted and integer-2 is the exact number of characters in each record.

The size is specified in terms of the number of standard characters
contained within the logical record, regardless of the actual method used to
represent the items within the logical record. The sizes of the records are
established according to the rules for determining the size of a group item.

RECORDING MODE Clause

The RECORDING MODE clause is used to specify the format or organization of
data on magnetic tape.

Whenever an APPLY SYSTEM STANDARD phrase is specified ih the I-0-CONTROL
paragraph for a file, the RECORDING MODE clause, if one is given for the file,
must specify BINARY HIGH DENSITY.

If any data item or report item associated with a file has any usage other
than USAGE DISPLAY, the BCD option must not be used.

3/77 3-21.2 DD26A

*

It is not necessary to specify the BCD and LOW DENSITY options, except for
magnetic tape files, and these options .are recommended anly for compatibiii ty on
magnetic tape. If the actual ·'peripheral device used is a:,printer, a card reader,

'Or a punch, the input-output subroutines in the object program automatically use
the. density appropriate to the device •. If a file is. intended ·for cards o·r
printer via media conversion (either input or output) , the recording mode
utilized should be binary .high density. ·

If the .RECORDING MODE clause is omitted, the·file·will be assumed to be
recorded in binary high density mode.

J;n the computer, all data values are represented either by binary numbers
or by '!:binary--coded internal 'characters'. For example, the .l·etter A is
r~presenbed internally by the six-bit binary code 010-001. Use of the term
'·:binary' in describing the recording mode reflects the fact that in that mode
the peripheral medium repres·ents the data with exactly the same binary bit
configuration as in memory. Any data which can be -stored in memory can be
written to and retrieved· from a peripheral in the same configuration via binary
mode. This is not true of BCD mode. .BCD mode on magnetic tape permits only
binary-. coded characters, not binary numbers. For example, the character with
internal binary code 001010, whose graphic is ' [' (left bracket), cannot be
represented in BCD' mode on.magnetic tape. ·

Series 60/6000 computers provide BCD mode for compatibility with other
computers. Of the 64 possible binary-coded characters, a certain subs.et has wide
usage for data processing applications in many machines. Included are the
-letters, the space character, the digits, and certain editing characters. These
characters are represented by diffenent binary codes on various machines, but
their representation on BCD magnetic ta.pe is standardized. For example, a space
or blank has binary code 110000 in some machines, but has binary code 010000 in
Series 60/6000 computers. If a space character is written to magnetic tape in
BCD mode on such a 'stranger' machine,· it will be read as a ~pace character by
the Series 60/6000 computer. · ·

Space character
in 'stranger'
computer

Space .character
on BCD tape

Space character
in Series 60/6000

110000 --"--•- 010000
_____ ,.._ 010000

If the recording mode is binary, each record in the file m.:iy co1.c.ai1· an
arbitrary mixture of binary (COMPUTATIONAL or COMPUTATIONAL-n) and BCD or
character-oriented data. Only BCD information may appear in the BCD mode.

In Series 60/6000 COBOL, the ~allowing language elements require the binary
recording mode on the file .affected:

3/77

ACCESS MODE SEQUENTIAL/RANDOM
Block serial.numbers
FOR CARDS or FOR LiSTING
OCCURS •.. DEPENDING
REPORT (S)
System Standard .Format
USAGE COMPUTATIONAL or COMPUTATIONAL-n
USAGE DISPLAY-2
VLR format

3-22. DD26A

All files on a multiple file tape must have the same recording mode.

Label records have the same recording mode as data records.

REPORT(S) Clause

The optional REPORT(S) clause specifies which report(s), described in the
Report Section of the Data Division, belong to this file.

Each data-name entered in this clause must be a report-name specified in an
RD entry in the Report Section. A report cannot be assigned to more than one
file. ·

Multiple data-names listed in the REPORT(S) clause indicate that the file
contains more than one report. The order in which the report-names are listed is
not significant. If a file contains multiple reports which are not produced
sequentially, then each report must be assigned a unique report code using the
CODE clause in the RD entry. Each report line on the output device will then be
labeled with the appropriate report code so that lines from the various reports
can be easily distinguished. ·

At program execution, a file containing reports should be assigned to
SYSOUT (system output) or to a high-speed peripheral device, normally magnetic
tape, to be printed later via media conversion.

VALUE OF Clause

The VALUE OF clause in a file description entry is used to particularize
the description of a data item in the label records associated with a file.

The referenced data-name should be qualified when necessary; however, the
data-nci.mes cannot be subscripted, indexed, or described with the USAGE IS INDEX
clause. The data-names which will be checked or modified in the label processing
must be contained in one of the label records.

If the file is opened as input, the appropriate label routine verifies that
the value of the label record data item is equal to the value of the specified
literal.

If the file is opened as output, the value of .the label record data item is
made equal to the va!"ue of the specified literal at the appropriate time.

Data-name-1 and data-name-3 can only be the fixed label item names
IDENTIFICATION and RETENTION-PERIOD. -Either or both names may be given.

3-23 DD26

If IDENTI·FICATION is specified,· the action in the object . program depends
.µpon the use -of the file. For an input file, the object :,program's label check
rout~_ne verifies that the value of the IDENTIFICATION· im. beginning labels of the
file is equal to the given literal. For an output file, the literal is

'implicitly moved to IDENTIFICATION before a beginning· label is written. ·The
literal associated with IDENTI.FICATION must be a nonm1meric literal·· of no more
than 12 characters.

For mass storage files, the VALUE OF IDENTIFICATION clause is ignored s.ince
a label record is not present on:. the external device. However, the st·andard
label USE procedures are engaged at OPEN and CLOSE for such files.

RE.TENTION-PERIOD' has no significance for input files. For an output file,
the given literal is·. implicitly moved to RETENTION-PERIOD . before a beginning
._1~bel is1;,;..written. The lite-ral associated with RETENTION-PERIOD must be .a
. positive integer not exceeding 999. The value 999 signifies -permanent :tetenti.on.

If a magnetic tape »to 'be used for output has a RETENTION-PERIOD given in
its beginning label, ~he object program's output routine checks that value
against the current date to assure that the RETENTION-PERIOD has.expired before
it begins writing new data on the tape.

If the label records are user~defined, the referenced label record data
items must be described in· the same position within each label record associated
with the file. It is not required that the data-names be·the·.same in.all of the·
records.

For additional information, refer to the description of the LABEL RECORD(S)
. clause in this section.

3-24 DD.26

SECTION IV

RECORD DESCRIPTIONS

ELEMENTARY .ITEM DESCRIPTION ENTRIES

Elementary items are data items that are not further subdivided. Refer to
the COBOL Reference Manual for specific elementary item record formats. The
following rules must be observed:

1. Each elementary entry must contain a PICTURE clause except for index
data items (USAGE INDEX).

2. Level-number must be an integer in the range 1-49 or 77.

3. Data-name-1 or FILLER must inunediately follow level-number •.

4:. If the RED.EFINES clause is specified, it must be written immediately
after data-name-1. The other clauses may be written in any order.

5. Only one of the two possible OCCURS clause formats can be present in a
data description entry.

BLANK WHEN ZERO Clause

The optional BLANK WHEN ZERO clause is used in a data description entry to
enable the blanking 0£ an item when that item's value is zero.

This clause. may be used only for an elementary item whose PICTURE is
specified as numeric edited. It may not be used for variable-length items.

When this clause is used, the item contains only spaces when the
the item is zero. When used for an item whose PICTURE is numeric, the
of the item is considered to be numeric edited.

Condition-Name Entry

value of
category

Format 5 of the data description skeleton is used for each condition-name
(refer to the COBOL Reference Manual). Each condition-name requires a separate
entry with level-number 88. The condition-name entry specifies thename of the
condition and the value, values, or range of values associated with the
condition-name.

4-1 DD26

Condition-names are ass:ociated with a group or elementary i tern. The
'c.ondi ti on' is the truth ·Or falsity of the proposi tio.n tha,:t the value ot the
item equals the value (or one of ·the values) associated with the condition-name,
or falls wi.thin the specified i-ange of values.

If condition-names are associated with a data item, the item is called a
cond.i tional variable. The condition-name entries for a particular conditional
variable must follow the entry describing the data item with which the
condition-name is associated. A condition-name can be associated with any data
description entry that contains a level-number except for the follQwing:

1. Another condition-name.

2. A level 66 item.

3. A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZ'ED, or USAGE (other than USAGE' IS DISPLAY).

4.. An index data item.

The following example illustrates a method in which a condition-name entry
can be written:

03 GRADE PIC 9 (2) •

88 PRIMARY VALUE IS 1.
88 SECOND VALUE IS 2.

88 GRADE-SCHOOL VALUES ARE 1 THRU 6.
88 JUNIOR-HIGH VALUES ARE 7 THRU 9.
88 HIGH-SCHOOL VALQES ARE 10 THRU 12.
88 GRADE-ERROR VALUE.S ARE 0, AND 13 THRU . 99.

The application of condition-names in the Procedure Division is described
in Section XII of th.is manual.

Condition-name entries may appear only
Working-Storage Section of the Data Division.

in the File Section or

The condition-names described in the Data Division
equivalent to those associated with the ON or OFF status of
SPECIAL-NAMES parag,:r;aph of the Environment Div is ion. The
condition-name is not defined in a condition-name entry·.

COPY Clause

are functionally
switches in the
latter type of

The COPY clause is used in association with a file-name or a data-name in
FD, SD, RD, data description,. and report group description entries. The COPY
clause is used to direct the compiler to duplicate text from the source program
or a library into th~ source program.

DD26.

COBOL provides two distinct and mutually exclusive COPY functions. The
first function, referred to.as HIS COPY, has been available in the pre-standard
version of COBOL. The second function, referred to as the American National
Standard COPY, represents Level 2 of the American National Standard COBOL
X3.23-1968 library facility.

Section VIII of the COBOL Reference Manual contains the descriptions,
formats, and syntax rules for the COPY functions. Section XIV of this manual
describes the COBOL library facility with associated source library formats and
related examples of the COPY options.

JUSTIFIED Clause

The JUSTIFIED clause in a data description entry is used to specify
nonstandard positioning of data within a receiving data item.

When the storage area of a data item receives data resulting from an
arithmetic or data movement procedure, the standard rules for· positioning the
value within the receiving area are:

1. If the receiving item is numeric, the assumed decimal point of the
sending dat~ item is aligned with that of the receiving data item, and
each end of the value is zero-filled or truncated, as required.

2. If the receiving item is an edited numeric item with an· actual or
implied decimal point, the value is aligned by decimal point with fill
or truncation on either end, as required.

3. If the receiving item is alphanumeric (other than a numeric edited
data item) or alphabetic, the sending data item is moved to the
receiving character positions and aligned at the leftmost character
position in the data item with space-fill or truncation to the right.

The JUSTIFIED clause can be used to reverse the
nonnumeric i~ems (rule 3 above) • This causes the value to
with space-fill or truncation on the left.

standard rule for
be right-justified

The JUSTIFIED clause can be specified only at the elementary item level. It
must not be specified for an item that has any of the following properties:

1. Class numeric or numeric edited.

2. Usage other than DISPLAY.

3. Actual or assumed decimal point.

Level-Number/Data-Name Entries

Level-number entries show the hierarchy of data within a logical record or
report group. They are also used to identify entries for condition-names,
working-storage data items, noncontiguous data items, and the RENAMES clause.

A level-numbe.r is required as the first element in each data description
entry.·

4-3 DD26

_Data description entries that are subordinate to FD or SD entries may use
level-numbers with values in the range 01 (or 1) through 49, or level-number 66,
or level-number 88. Report grolilp description entries that are subordinate to' an
RD entry may only use level-numbers whose values are in the range 01 through 49.

Multiple.level 01 entries that are subordinate to a level indicator (FD,
SD) represent implicit redefinitions of the same area. The first occurrence
defines an area and all subsequent occurrences redefine the same area.

A level 01 entry must be used to identify the first entry in each
desCriptiori and in each report group description. When no real concept of
exists, ·the special level-numbers 66, 77, and 88 are assigned as follows:

record
level ·

L Level-n.umb'er 66 is used in a data description
RENAMES entrie·s·~ Fbrmat 4 of the data description
in the C(;)BOL R~f er~mce Manual mhlst be used.·

entry to
skeleton

identify
described

2. Level-number 77 entries may be used in the Working-Storage Section to
identify noncontiguous data items. The level-number 77 entry must be
specified as shown in Format 3 of the data description skeleton.

3. Level-number 88 entries are used to define condition-names associated
with conditional variables and may be used in the Working-Storage
se·ction and the Fiie Section. Format 5 of the data description
.skeleton must be used.

OCCURS Clause

The OCCURS clause in a data description entry is used to define tables of
repeated items. It is required when the data. either might not exist or might
occur more than once. When the QC.CURS clause is not specified, one occurrence is
assumed. This clause must not appear in entries with level-numbers 01, 66, 77,
or 88, nor with entries which have subordinate variable occurrence data items.

If an item is described with the OCCURS clause, its data-name must be
subscripted or indexed in all references. If it is a group item, then each
data-name belonging to the group must be subscripted or indexed in ea·ch
reference except for the SEARCH statement. If an· item's record description entry
includes an OCCURS elause, the other descriptive clauses apply to each
occurrence ~f the item being destribed.

A table item may be a conditional variable. The condition-name
follow the conditional variable, as usual, and do not contain OCCURS
Any references to such condition-names require subscripts or indexing.

entries
clauses.

The INDEXED phrase is required when the subject of this data description
entry (or an entiy subordinate to this entry if it is a group item) is to be
referred to by indexing. The index-names identified in the OCCURS clause are not
defined elsewhere since the allocatioh and format of these index-names is
hardware dependent. Not being data, these index-n.ames cannot be associated with
any data hierarchy. The index-names must be unique within the progr.am.

4-4 DD26

The KEY phrase is used to indicate that the repeated data is arranged in
ascending or descending order according to the values contained in the
data-names referenced by the phrase. The data-names are listed in their
descending order of significance, from most significant to least significant.

If the data-name in the KEY phrase is not the subject of this entry, then:

a. All of the items identified by the data-names used in the KEY phrase
must be contained in the group item that is the subject of this entry.

b. The items identified by the data-names in the KEY phrase may not be
described by an entry that contains an OCCURS clause or be subordinate
to an entry containing an OCCURS clause.

If the number of occurrences may vary, Format 2 must be
Integer-1 indicates th~ minimum number of occurrences and integer-2
the maximum number of occurrences. Integer-! may be zero to indicate
data might not exist. In any case, integer-2 must not be a zero.

specified.
specifies
that the

The DEPENDING phiase in Format 2 is required only when the end ot the
occurrences of the item cannot otherwise be determined.

A group or record is said to have 'variable length' if any item subordinate
to it is described with Format 2. The following restrictions apply to any item
with a variable number of occurrences and to any group containing such an item:

1. It cannot be subordinate to an OCCURS item.

2. It cannot be redefined or be subordinate to an item which is
redefined.

3. It cannot appear in a redefinition.

4. It must not be used for partitioned records.

Unless the DEPENDING phrase is also specified, the
not affect the object program. (The DEPENDING phrase
unless integer-! is also specified.)

integer-!
must not

option does
be specified

The results obtained from the use of OCCURS ••• DEPENDING are generally
different from one computer to another.

The DEPENDING phrase may not be specified in the record descriptions of a
sort file or a merge file.

In its internal format, an OCCURS ••• DEPENDING table has a memory area of
sufficient size to hold the maximum number of occurrences. The significant items
are understood to appear in successive positions at the beginning of the table;
unused item positions at the end of the table are called table residue. The
contents of the residue area are unpredictable. The table residue is suppressed
on the peripheral device.

4-5 DD26

In the File Section,
residue on the peripheral
criteria are met:

OCCURS' ••• DEPENDING results in suppressing table
device, as described below,, when the following

1. Data-name~l.is described as COMP-1.

2. Data.;,..name-1 is subordinate to the same record description entry.

3. Data-name-!· precedes the data. description entry containing
OCCURS ••• DEPENDING clause.

the

When compression·is to take place, the compiler will automatically generate·
a process area for the file / regardless· of whether or- not the A·PPLY PROCESS AREA
phrase i~ specified.in the I-0-CONTROL paragraph.

When a WRITE statement references a re~ord that may be compressed, the·
object program examines. the output record for opportunities for residue
suppression. Such opportunities are rejected unless two ·or more machine words
can be suppressed. In the latter case, suppression proceeds on a machine word
basis; the whole-word portion of the residue of each table is replaced by a
single control word. Each variable-length table in the record presents an
opportunity for residue suppression. Actual suppression takes place in an
implicit move from the process area to the output buffer.·

When a READ statement references a file containing records that may be
compressed, the record is implicitly moved from the input buffer to the process
area and expanded to the format it had in memory prior to residue suppression.

Consider a data record described as follows:

01 SAMPLE-RECORD.
02 FIXED-PORTION.

03 MISCELLANEOUS; PICTURE X (20) •
03 ENTRY-COUNT; PIC 99 COMPUTATIONAL-1.
03 OTHER-DATAt PICTURE X{l6).

02 VARIABLE-LENGTH-TABLE.
03 ENTRY; PICTURE X{4); OCCURS ! TO

15 TIMES DEPENDING ON ENTRY-COUNT.
02 MORE-FIXED; PICTURE X { 2 0) •

4-6 DD2fr

The ~ollowing illustration shows the relationship of the internal and
external formats of SAMPLE-RECORD whe.n the value of ENTRY-COUNT happens to be
seven:

Internal Format
for

SAMPLE-RECORD

MISCELLANEOUS

implied fi 11

ENTRY-COUNT: 7

OTHER-DATA

ENTRY (1)
through
ENTRY (7)

VLR
control
word~

External Format

previous
records

19 l 0

occurs
control word

MISCELLANEOUS

limp lied f i 11

ENTRY-COUNT: 7

OTHER-DATA

1

:.lllll·l.il"l!IJl:IJ!~:,111:::1111111··1 ~---I

wo~ds{ l.l.1.!.l.:.11.i.1.'.1.l .. 1.1.i.,,',,.1,l.-.... :.'.:.:.:.:: .. :.: •. :_;_:.: .. ::_m.-.:···~···j·: .• Res:~~~m~mt
. ~}:._,.:::::::::=:·~

MORE-FIXED

(Shaded area
represents
table residue)

Internal format
restored

automatically
at READ time

ENTRY (1)
through

ENTRY (7)

JJ!lllllllllllllll·lllllillilli~~ .
residue 1

control word

1\i,.:lllli:;.1110,1~;,111111.1111
MORE-FIXED

Subsequent

~
lThe occurs and residue control words contain a word count in ·the lower half and
a relative beginning word position in the upper half.

4-7 DD26

When the OCCURS ••.• DEPENDING clause is specified for any record of a file
that may be' compressed, the data format of the file is affected as follows:

1. The variable-length record (VLR) format is automatically applied.

2. The recording mode must be binary (explicitly or implicitly).

3. In addition to any residue suppression control words
.record on the peripheral device begins with a control
£or reconstruction.

needed, each
word required

In the DEPENDING phrase, data-name may he· qualified hut must not be·
. subscripted •

. T01 enhance object program efficiency, table i terns' should be referenc'ed ..
using indexes or refere:ridi'e'd.' · using· subscripts described with USAGE COMP-I.
Erroneous data will be obtained if the subscript value is greater than zero but
less than the minimum occurrence number spe.cified in the OCCURS clause. In the
EIS mode, subscripts must contain a value greater than zero; otherwise, an FO
memory address fault will occur.

If ·the OCCURS clause is used, there is no ·implication that the data item is
synchronized. To obtain improved object program efficiency, consideration should
be. given to specifying the SYNCHRONIZED clause for table items.

PICTURE Clause

The function of the PICTURE clause is to represent the stanqard data format
of an elementary item, to describe the general characteristics of the item, and
to enable special report editing.

A PICTURE clause may be specified only at the elementary item level.

The PICTURE clause must be specified .for every elementary data: item e.xcept
an index data item, in which case the use of this clause is prohibited.

A charactet-string consists of any allowable combinations of characters in
the COBOL character· set used as symbols. These combinations determine the
category of the elementary item~

The maximum number of symbols allowed in a PICTURE character-string is 30.

·If a PICTURE clause specifies insertion editing, part of the receiving item
is subject to a siz~ limitation. The limited part of the receiving item consists
of that portion of the item bounded on the left by the leftmost. noninsertion
character and bounded on the right by the rightmost noninsertion character.

4-8 DOW

Example:

PICTURE

BBB999,999.99000
B(n)X(n)B(n)X(n)B(n)
X (n) B (n) 9 (n)

Limited Part

999,999.99
X(n)B(n)X(n)
X(n)B(n)9(n)

The maximum size of the limited part of the receiving item may be
determined from the following relationship:

108:;:::::... 3e+n

where:

e represents the number of simple and/or special
(',', 'B', 'O', '.')exclusive of leadlng and
symbols.

insertion symbols
trailing insertion

n represents the number of nonirtsertion symbols ('X' , '9' , 'A') •

Example:

Limit
PICTURE e n 3e+n Exceeded?

X.B(35)XX 35 3 108 No
B(5)XB(35)XXB(5) 35 3 108 No
X(55)BX(SO) 1 105 108 No
B(5)X(55)BX(50)B(5) 1 105 108 No
XB(lO)XB(25)X 35 3 108 No
XB(35)X 35 2 107 No
XB(36)X 36 2 110 Yes
XB(lO)XB(20)XB(S)X 35 4 109 Yes
B(lO)XB(20)XB(5)XXB(lO) 25 4 79 No

rf the maximum size of the limited part of the receiving item is exceeded,
the compiler will issue the following error message:

ITEM IS TOO LARGE. FOR EMBEDDED INSERTION
CHARACTERS-TRUNCATED BUT ALSO REGARDED AS UNUSABLE.

The allowable characters (or symbols) which may appear in a
character-string are defined and described in the COBOL Reference: Manual
according to the category definition of the data item being described by the
PICTURE clause and according to the associated MOVE category of the data item.
Five categories of data may be described with a PICTURE clause; alphabetic data
items, numeric data items, alphanumeric data items, alphanumeric edited data
items, and numeric edited data items.

4-9 DD26

EDITING RULES

Two general methods are used to perform
eit.her by insertion or by su.ppression and
insertion editing are:

editing in
re pl ac·ernen t.

the
The

PICTURE clause,
four. types of

a. Simple insertion.

b. Special insertion.

c. Fixed insertion.

d. Floating insertion.

Whe two types of su11u?x;,.e.ssion and repla·cement editing are:

a. Zero suppression .and replacement with spaces.

b. Zero suppression and replacement ·with asterisks.

The type of editing which may be performed upon an item qepends
CCJ.tegory to which. the i tern -belongs. Th·e following list indicates which
editdng may be perf,ormed upon· a given category:

Category

Alphabetic
Numeric
Alphanumeric
Alphanumeric Edited
Numeric Edited

Any Variable­
Ldngth Item

Type of Ed,iting

None
None
None
Simple insertion, '0' and · 'B'
All, subject to the floating insertion
rule given below

None

on
ty:p'e

the
of

Floating ins.ertion editing and editing by zero suppression and replacement
are mutually exclusive in a PICTURE clause. Only one type of replacement may .b.e
used with zero suppression in a PICTURE clause.

.. Refer to the PICTURE clause in the COBOL Reference .Manual for detailed
descriptions of the six types of editing listed above and to determine the.order
of precedence when using characters as symbols in a PICTURE character..;.string •.

REDEFINES Clause

The REDEFINES clause is used to apply alternative descriptions to the same
memory prea. When it appears in a record description entry, the REDEFINES clause
must inunediately follow data-name-1 (the :subject data--name). The level-numbers
of data'!"'name-1 and data-name-2 must be identical. but must n:ot be level-number 66
or level-number 8_8.

4-10

The REDEFINES clause must not be specified in level 01 entries in the
Section. The same memory area is implicitly.redefined by each successive
01 entry belonging to the file.

File
level

Data-name-2 is the data-name of the item which occupies the memory area
being redefined. Redefinition begins at data-name-2 and continues until a
level-number less than or equal to that of data-name-2 is encountered. The
record description entries giving the new descriptions of the memory· area must
immediately follow the entries giving the prior definition.

Example:

02 A •••
03
03

02 B REDEFINES A •••

If several alternative descriptions are to be applied to
each new REDEFINES clause must refer to the data-name of
originally defined the memory area.

a memory area,
the entry that

Continuing the above example:

.02 B REDEFINES A
02 C REDEFINES A

The level-number of data-name-1 must be the same as that of data-name-2.
rhe area being redefined is that described by the data-name-2 entry and all of
its subordinate entries, terminated by the data-name-1 entry.

The following restrictions must be observed:

1. The .data description entry for data-name-2 cannot contain an OCCURS
clause nor can data-name-2 be subordinate to an entry containing an
OCCURS clause. Neither the original definition nor any subsequent
redefinitions of the area can include an item whose size is variable
as defined for the OCCURS clause.

2. The VALUE clause must not appear in the record description
data-name-1, nor in any of its subordinate entries,
condition-name entries.

entry for
except in

3. If a numeric data item is redefined by an alphanumeric data item or
vice versa in the EIS mode, the numeric item must contain only numeric
data when it is referenced in an arithmetic statement. A reference to
a numeric item that contains nonnumeric data will result in the abort
message ILLEGAL EIS DATA at execution time.

4-11 DD26

4. When the REOEFINES cl.ause is ·specif,ie.d in the WonJdng""".Storage S.ection
and more than fifty noncontiguous data items (le:v,el 77) are defined,
the REDEFINES clause an.d the i tern it redefines .. filU;St be included in the
same group.of fifty items; that is, in the first·fifty level 77 items,
or the second fifty level 77 i terns, . etc. ·

5. Redefinition of an alphabetic or alphanumeric data item by a
. double-precision nume;ric COMPUTATIONAL, COMPUTATIONAL-.1, or
COMPUTATIONAL-2 data item may result in an incorrect· (odd) adaress for
the numeric i tern and the following error messa·ge:

ER REDEFINITION EXCEEDS CAPACITY OF ORIGINAL DE'FINITION

Example:

77 DBLP PI.C 9 (18} COMP 1.
77 lWORD PIC X(6).
77 DBLWD PIC X{l2).
77 D918CMP1 EE.OEl"INES DBLWD PIC 9(18) COMP-1.

In the above example, an odd address would be assigned to D918CMP1. If
the redefine.a and the rectef ining i tern entries are reversed ,in the
above example, a corr.ect address will be assigned as -shown below:

77 D918CMP1 PIC 9 (18) C,C)MP-1.
77 DBLWD REDE·FINES D918CMP1 PIC X (.12).

The following combinations are permitted:

1. The record oescription entry for data-name""".2 or entries subordinate to
it may contain the VALt.JE clause without violating t,,.e above rules. (If
an initial val.ue is to be specified, it must be given in the first
definition of the memory area.)

2. The record description entry for data-name-1 or entries subordinate to
it may contain the OCCURS clause without violating the above rules.
Furthermore, entries subordinate to data-name-! may contain the OCCURS
clause {an item containing a table can be redefined, or a redefinition
can contain a table, but an item within akable cannot be redefined).

When initial values are to b~ specified for the items in a working-storage
table, a combination of the VALUE, REDEFINES, and OCCURS clauses is often used .

. l?xa~ple:

02 TAX-RATES.
03 FILLER
03 FILLER
03 FILLER
03 FILLER

PICTURE V99
PICTURE V99
PICTURE V99
PICTURE V99

VALUE
VALUE
VALUE
VALUE

(21 addi .. tional entries)

.14.

.15.

.16.

.17.

02 RATE-TABLE ~DEFINES· TAX-RATES.
03 RATE PI.CTURE V99 OCCURS 25 TIMES.

DD26

The REDEFINES clause specifies only the redefinition of a memory area, not
of the data items occupying the area. If the SYNCHRONIZED clause resulted in
nnused c~aracter positions in the original definition of the area, other than to
the left of the First item being red~fined, the new definition must account for
all such character positions. If the first item in the original definition is
synchronized, unused character positions to its left are not considered a part
of the area being re~efined.

Noncontiguous da ~ items are automatically synchronized to produce more
efficient coding. If a ~oncontiguous data item is redefined, the redefining data
description entry will t~'- assigned the same . synchronization as the redefined
data description entry.

RENAMES Clause

The RENAMES clause is a level-number 66 data description entry that may be
used to supply an alternative data-name for an elementary item, or to indicate
regrouping of items. One or more RENAMES entries may be applied to the data
items within a·logical record. They must be specified as the last entries
subordinate to the level 01 entry, and cannot themselves have subordinate
entries.

Data-.name-2 and data-name-3 must be names of elementary i terns or groups of
elementary items in the associated logical record, and cannot be the same
data-name. A level 66 entry may not be used to rename another level 66 entry nor
may it be used to rename a level 01, 77, or 88 entry.

Data-name-1 may not be used as a qualifier, and may only be qualified by
the names of the level 01,. FD, or SD entries. Neither data-name-2 !'tor
data-name-3 may be a repeated item (that is, neither may have an OCCURS clause
in its data description entry nor be subordinate to an item that has an OCCURS
clause in its data description entry) • Data-name-2 and data~name-3 may be
qualified.

If data-name-3 is specified, dat2-name-l is a group item that includes all
the elementary items starting with da a-name-2 (if data-name-2 is an elementary
item) or starting with the first elemtntary item in data-name-2 (if data-name-2
is a group item), and concluding with data-name-3 (if data-name-3 is an
elementary item) or concluding with the l.ast elementary item in data-name-3 {if
data-name-3 is a group item). The data description entry for data-name-2 must
precede that of data-name-3. If. data-name-2 is a group it~m, data-name-3 must
not belong to that group.

If data-name-3 is not specified,
data-name-2; its group or elementary
data-name-2 is an elementary item,
description.

data-name-1 assumes
status is thereby
then data-name-1

4-13

the properties of
determined, and if
assumes the same

DD26

I

SYNCHRQNIZED Clause

The optional SYNCHRONIZED clause in a data description entry is used to
specify the alignment of an elementary item within a co;mputer word or words. It
may appear only in an elementary entry.

The SYNCHRONIZED clause indicates that the item's storage area is organized.
in integral computer. word lengths. The SYNCHRONIZED clause depends upon the
particular characteristics. of a computer. In Series 60/6000 COBOL, SYNCHRONIZED
relates the item's position to the six-character word length of the machine~ See
Section II.

A synchronized data item utilizes the smal.1est number of consecutive whole
words t:bat can contain it. Its position in the words i-.t, •Occupies is independent
of the preceding and following record· description entri.es,.

The SYNCHRONIZED LEFT option causes th.e data item to.be oriented in such a
way that its first character occupies the first position of the.initial word.
Fill characters follow the last data character of the item in the unused
positions of the last ·word, as the following example illustrates:

Description Resulting
of Item Orientation

03 D PIC x (2) SYNCHR,ONIZED LEFT. D D (fill)

03 E PIC x (6) SYNCHRONIZED LEFT. E E E E E E

03 F PIC x (7) SYNCHRONIZED LEFT. F F F F F F
F (fill)

The SYNCHRONIZED RIGHT option causes the data item to be oriented in such a
way that its last character occupies the last position. of the final word. Fill
characters precede the first data character of the item in the unused posi tion.s
of· the first word, as the following example illustrates:

Description Resulting
Of Item Orientation

03 A PIC x (2) SYNCHRONIZED RIGHT. (fill) A A

03 B PIC x (6) SYNCHRONIZED RIGHT. B B B B B B

03 c PIC x (7) SYNCHRONIZED RIGHT. (fill) c
. c c c c c c

A reference . to any group item, regardless of its level-number., does not
include the unused characte:r: positions of the first elementary item in the group
if the group item is synchronized right.

3/n 4-14 DD26A

Since synchronized items never share the words they occupy with other
items, fill characters may be required in the word preceding the first word of a
synchronized item, as the following example illustrates:

Description Resulting
of Item Orientation

01 G.
02 H PIC x (8) • H H H H H H
02 I PIC x. H H I (fill)
02 J PIC x (3) SYNCHRONIZED RIGHT. (fill)J J J
02 K PIC x (4) • K K K K L (one fill)
02 L PIC x. MM MM M M
02 M PIC x (6) SYNCHRONIZED LEFT.

The fill characters noted above are implied by the
item's size and the SYNCHRONIZED clause. The fill character
described (except with the REDEFINES clause). An attempt to
characters via FILLER will cause undesired results, as the
illustrates:

combination of the
positions cannot be

specify such fill
following example

Description
of Item

01 P.
02
02
02
02

Q PIC X(8}.
R PIC X.
FILLER PIC X(6).
S PIC X(3) SYNCHRONIZED RIGHT.

Resulting
Orientation

Q Q Q Q Q Q
Q Q R F I L.
L E R (fill)
(fill) s s s

A special type of word synchronization is applied to COMPUTATIONAL-n items.
Each COMPUTATIONAL-n item monopolizes the computer word or words that contain
it, so that fill characters may be required to complete the word preceding a
COMPUTATIONAL-n item. Unlike DISPLAY-n items, however, COMPUTATIONAL-n items
fully occupy the word or words which contain them. Thus, fill characters will
never be present within a word that is used as a COMPUTATIONAL-n item.

The size of a synchronized data item excludes unused (fill) character
positions.

COMPUTATIONAL-n items occupying one word are:

l. COMPUTATIONAL items in one of the following categories:

·Number of
Integral
Digits

1-8
0-5
0-3
0

Number of
Fractional

Digits

0
1-3
4-5
6-8

2. COMPUTATIONAL-! or COMPUTATIONAL-2 items with no more than eight
digits specified in their data descriptions.

· 3. COMPUTATIONAL-3 i terns.

4-15 0026

I

t

COMPUTATIONAL-n items occupying two words are:

i. COMPUTATIONAL items not in one of the above categories.

2. COMPUTATIONAL-! or COMPUTATIONAL-2 items with' more than eight digits
specified in their data descriptions.

A one-word COMPUTATIONAL-n item may occupy any word of a record. A
two~word COMPUTATIONAL-n item, however, must begin an even number of words from
the beginning of the record which contains it. Fill characters may precede such
a two-word· item as the following example illustrates:

Description
of. Item

01 A.
02
02

B PICTURE 99V99 COMPUTATIONAL.
C PICTURE 9i(il10)N99 COMPUTATIONAL.

Res.ulting
Orientation

- - B' B B B
- (fill) ...
c c c c c c
cc cc cc

Packed decimal items are aligned on word or half-word boundaries whereas
the other computational USAGE items are aligned on full-word boundaries. The
following is an example of . space allocation for a record description entry
containing packed decimal data items:

01 REC-NAME.
02 FIELD!· PIC X (4.).
02 PACK! PIC S9(7)V9 USAGE' COMP-4.
02 FIELD2 PIC X.
02 PACK2 PIC S9 or COMP-4.
02 PACK3 PIC 9 (7) COMP-4.
02 FIELD3 PIC 89 (6) COMP-1.

Word 0 56 9 1112 1718 2324 27 2930 35

0 x I x
I

x· I x
I

unused

I

unused I

1 I 0 1

9 9 H 9 9 H 9 9 H 9 9

2
·I

0
1

Sign I u H unused I unused I x unused unused

3

I

0

1

9
I

9 H 9 Sign H 9· ·9 H 9 J 9

4
I

0
1

9 9
I

0
1

9 I unused I unused

5 I si binary integer
1·

3/77 4-16 DD26~

To minimize the amount of leading fill resulting from synchronized items,
such items should be grouped together within a record description, rather than
scattering synchronized items among nonsynchronized items. Two-word
COMPUTATIONAL-n items should be grouped together and all COMPUTATIONAL-n items
should be grouped with synchronized items.

The fill characters resulting from the SYNCHRONIZED clause or
COMPUTATIONAL-n usage appear in both the record's internal format and its
external format. Otherwise, when the SYNCHRONIZED clause is omitted, data
storage areas are assigned without regard to computer word length. The last
character position of a given item is adjacent to the first character position
of the next item. However, a level 01 or level 77 item always begins in a new
word; it starts in the leftmost character position unless the SYNCHRONIZED RIGHT
option is specified or the class of the item is numeric. In the latter cases,
the data item is aligned to end in the rightmost character position in a word. A
redefinition. of the data item will be aligned to correspond with the
synchronization of the level 01 or level 77 data item.

If a synchronized area is being redefined and the first item in the
original definition is SYNCHRONIZED RIGHT, the area being redefined begins in
the leftmost character position of the first word allocated to the original
item. If the last item of the original definition is SYNCHRONIZED LEFT, the area
being redefined extends to the rightmost character position of the last word
allocated to the original item.

If the data description of an item contains the SYNCHRONIZED clause and an
operational sign, the sign of the data item will appear in the least significant
character position of the data item, regardless of whether the item is
SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

If an OCCURS data item is synchronized, each occurrence of the item will be
synchronized.

USAGE Clause

The USAGE clause in a data description entry is used to indicate the
dominant use of a data item or the manner in which a data item is to be
represented in memory. It does not affect the use of the data item, although the
rules for some statements in the Procedure Division may restrict the use of the
USAGE clause for the operands referenced.

If the usage of a data item is not specified, it is assumed to be USAGE
DISPLAY.

The USAGE clause may be specified at any level of a hierarchical structure.
If this clause is specified at a group level, it applies to all of the·
subordinate elementary items in the group and no subordinate item may specify a
different usage.

The external format of a data item (as it is stored on a peripheral device)
and its internal format (as it is stored in memory} are.always the same.

3/77 4-17 DD26A

DISPLA'Y ITEMS

When the USAGE clause specifi.es a display item, ·the' data item is stored. in
the f6rm of one or more standard data format characters. The USAGE clause
permits a choice of the following internal formats for display data items.

USAGE DISPLAY Items

USAGE DISPLAY represents character-oriented data. The·data item is stored.
in the native (Series 60/6000) six~bit characteit' set. The PICTURE. clause
description may imply alphabetic, alphanume_ric, numeric,_ or numeric edited data
items.

USAGE DISPLAY is preferred for data that is to be printed or punched.

USAGE DISPLAY-1 Items

us;l\GE DISPLAY-1 represents edited floating-point data. The data item is
st6red in the native (Series 60/6000) six-bit character set. The class of' the
item is implicitly alphanumeric, and it is formatted as a Numeric Representation
Set 3 character-string as specified in the American National Standard.for the
Representation of Numeric Values in Character Strings for Information
Interchange (X3.42-l975).

The format of a DISPLAY-1 data item must be specified via the PICTURE
clause using the following special format of the PICTURE character-string:

(:}9.9(n)E
The edited floating-point construct, similar to the D- and E-conversions of

the FORTRAN language, is useful only for very large or very small values which, ..
in a normal DISPLAY format, would begin or end with a long string of zeros. In·
particular, computations involving COMPUTATIONAL-2 items (see below) may
sometimes produce results for which the DISPLAY-1 format is needed. ·

USAGE DISPLAY-2 Items

USAGE DISPLAY-2 represents character-oriented data. The
stored in a nonnative six-bit character set. The character
commercial collating character set described in Appendix D.

data i tern is'"
set is the

The PICTURE clause description must imply a class of alphabetic or
alphanumeric for the data item.

Although a DISPLAY-2 data item may not be compared to an item having any
other USAGE, it may be compared to literals and figurative constants.

3/77 4-18 DD26A

DISPLAY-2 data items must be explicitly moved to USAGE DISPLAY items if
they are to appear on punched cards, printer listings, or similar external
media. This function cannot be accomplished with a REDEFINES clause.

The PICTURE of a DISPLAY-2 data item must not specify editing.

COMPUTATIONAL ITEMS

Computational data item formats are used
external space-saving and performance advantages.
for a computational item must not conflict
specified for the item in the PICTURE clause.

to obtain both internal and
The internal format invoked

with the data characteristics

Computational items are not stored in a manner related to the character
position subdivisions of a computer word. The storage techniques are described
in the preceding SYNCHRONIZED Clause discussion and in Section II.

Since a stored computational item has no character orientation, an attempt
to manipulate it as if it were made up of characters is meaningles~. Thus, the
storage area may be redefined for some distinct purpose but not, for example, to
give separate access to the integral and fractional parts of the computational
item. For similar reasons, a group MOVE statement involving computational items
should normally entail only sending and receiving groups with similar
descriptions; a MOVE CORRESPONDING statement should be used otherwise. COBOL
rules do not require adherence to the suggestions given in this paragraph, but
the user must ensure that the application of a group MOVE statement or of a·
redefinition is legal.

The preferred format for all items used as subscripts or as objects of the
DEPENDING phrase in the OCCURS clause is either COMPUTATIONAL-3 or
COMPUTATIONAL-1 with a PICTURE containing eight or less digits.

In most commercial data processing applications, particularly where dollars
and cents are involved, a high degree of decimal precision is expected. Since
the ultimate accuracy for maximum length composite of operands (18 digits) in
arithmetic statements may not be attainable due to floating-point hardware
limitations, COMPUTATIONAL-2 should not be used where decimal precision is
required~ The special decimal-precision processing applied to computational
items compensates for the floating-point hardware limitations in most cases.

The USAGE clause permits a choice of the following internal formats for
computational data items.

USAGE COMPUTATIONAL Items

USAGE COMPUTATIONAL represents decimal-precision binary data. The data
item is stored as a synchronized signed floating-point binary number. The
PICTURE clause description must conform to the rules· for numeric items.
Computational is the preferred usage for items involved in calculations within a
processo;r that does not contain the Extended Instruction Set (EIS) •

3/77 4-.18.l DD26A

USAGE COMPUTATIONAL-! Items

USAGE COMPUTATIONAL-! rep:re,sents binary integer data., The data i tern is
stored as a synchronized signed fixed-point binary integer. The PICTURE clause
description must conform to the rules for numeric items and the assumed decimal
point must be immediately to the right of the rightmost digit position.

If the PICTURE clause specifies eight or less digits, the item is stored as
a singl~-precision binary integer; otherwise, it is stored as a double-precision
binary integer. It is the responsibility of the user to ensure that a
double-precision binary integer begins in an even word storage location.

Altht:>ugh it is .stored as a binary number, a COMPUTATIONAL-! item's value is
eqµ~l to the. decimal value of the item because COMPUTATIONAL-! items are'
restricted to integral values.

USAGE COMPUTATIONAL-2 Items

USAGE COMPUTATIONAL~2 represents floating-point binary data. The data· item
is stored as a synchronized signed floating-point binary number. The PICTURE
clause description must conform to the rules for numeric items.

If the PICTURE clause specifies eight or less digits, the item is stored as
a.. single-precision floating-point number; otherwise, it is stored as , a
double~precision floating-point number. It is the responsibility of the user to
ensure that a double-precision floating-point number begins in an even word
storage location.

The COMPUTATIONAL-2 usage is especially effective for the operands in an
elaborate formula. Should an operand value or an intermediate or fina.l result
exceed tol8, or be less than lo•18., only the floating-point binary format ·
pfovides· enough significance, to yi~ld meaningful results.

The mantissa of a COMPUTATIONAL-2 item is a pure binary fraction and
consequently is not necessarily. exactly equivalent to the item·' s decimal value.
The equivalence may be sufficiently close, however, for practical purposes.

USAGE COMPUTATIONAL-3 Items

USAGE COMPUTATIONAL-3 represents single-precision binary integer data. The
data item is stored as a synchronized signed single-precision fixed-point binary ,
integer. The PICTURE clause description must conform to the rules for numeric
items and the assumed decimal point must be irrunediately to the right of the
rightmost digit position. The PICTURE c.lause may specify at mo.st ten digits.

USAGE COMPUTATIONAL-4 Items

USAGE CO.MPUTATIONAL-4 represents packed decimal data. The data item is
stored as a synchronized fixed-point packed decimal number. The PICTURE clause
description must conform to the rules for numeric items. If the PICTURE
character-string specifies an operational sign, the sign will be stored as a
separate digi.t; tha.J:~; is, the. data item:will be one digit larger than the number
of character positions descril:)ed in the PICTURE character-string.. If USAGE-..
COMPUTATIONAL-4 is specified for a group item, the group item itself will be
considered to be alphanumeric.

3/77 4-18.2 DD26A

Data using this format can be processed only on a computer that has the
Extended Instruction Set (EIS) capability.

INDEX ITEMS

The USAGE INDEX clause can be written at any level. When it is used to
describe an elementary item, the item is called an index data item. If the
USAGE INDEX clause describes a group, the elementary items that make up· the
group are all index data items. An index data item is used to contain a value
that corresponds to the occurrence number of a table element. The actual
content of the index data item may depend upon the description of the table
element. In any case, the method of representation of this value is
single-precision binary integer.

An index data item must not be a conditional variable.

An index data item can be referenced directly only in a SEARCH statement, a
SET statement, or in a relation condition. An index data item can be part of a
group that is referenced in a MOVE statement or an input-output statement, in
which case no conversion takes place. ·

The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SYNCHRONIZED, and VALUE clauses
must not be used to describe group items or elementary items described with the
USAGE INDEX clause. If a group item is described with the USAGE INDEX clause,
the elementary items in the group are all index data items. The group item
itself is not an index data item and must not be used in SEARCH statements, .SET
statements, or in a relation condition.

3/77 4-18. 3 DD26A

VALUE Clause

The VALUE clause in a data description entry may be used to define the
initial value of working-storage data items, or the values associated with a
condition-name. Rules governing its use differ with the respective sections of
the Data Divis~on:

1. In the File Section, the VALUE clause is meaningful only in
condition-name entries. A VALUE clause in a record description entry
in the File Section does not cause the item to assume the given value
in an output record. Instead, the value must be moved into the output
record via Procedure Division statements.

2. In the Working-Storage Section, the VALUE clause may be used in
condition-name entries, and it may also be used to specify the initial
value of any other data item. In the latter case, it causes the item
to assume the specified value at the start of object program
execution. If the VALUE clause is not used in an item's description,
the initial value is undefined.

3. In the Report Section, the VALUE clause causes the report data item to
assume the specified value each time its report group is presented.
This clause may be used only at the elementary level in the Report
Section.

A figurative constant may be substituted wherever a literal is specified in
the formats of the VALUE clause.

The VALUE clause must be consistent with the other elements of the item's
description. If the category of an elementary item is specified as numeric or
alphabetic, it does not contradict the alphanumeric category of group items. The
following rules apply to each literal in the VALUE clause:

1. If the category of the item is numeric, each literal must be a numeric
literal. It is aligned according to the item's description and the
rules given under the JUSTIFIED clause. The literal must not have a
value that would require truncation of nonzero digits. A signed
numeric literal must be associated only with a signed numeric (S9)
PICTURE character-string.

If the data description entry of a numeric item also contains the
BLANK WHEN ZERO clause, the literal must be a nonnumeric literal.

2. If the category of the item is alphabetic, alphanumeric, alphanumeric
edited, or numeric edited, all literals must be nonnumeric literals.
The literal is aligned according to the item's description and the
rules given under the JUSTIFIED clause. The number of characters in
the literal must not exceed the size of the item. If the item's
description specifies editing, the editing does not cause special
treatment of the value; instead, the literal is treated as if the item
had a simple alphanumeric description.

3. All numeric literals in a VALUE clause of an item must have a value
which is within the range- of values indicated by the PICTURE clause1
for example, for PICTURE PPP99, the literal must be within the range
.00000 to .00099.

4-19 DD26

4. The ·function of the BLANK WHEN ZERO clause or of any editing
characters in a PICTURE clause has no effect on the initialization of
the item~ The VALUE clause is the only clause that may (depending on.·
its usage) provide initialization. Editing characters are included,
however, in determining the size of the item. Therefore, the value for
an edited item must be presented in an edited form.

Format 2 of the VALUE clause is used only in condition-name entries. In a
condition-name entry, the VALUE clause is required; the VALUE clause and the
condition-name itself are the only two entries permitted. Both the conditional
variable and the condition-name entries may have VALUE clauses .•

Some of the possible ways of writing condition-name entries are:

nn data-name.
88 condition-name-1 VALUE
88 condition-name~2 VALUES
88 condition-name-3 VALUES

literal-5 AND •••
88 condition-name--4 VALUES

IS li teral-1.
ARE literal-2,
ARE literal-4

ARE literal-6

literal-3.
AND

THRU literal-7.

If the VALUE clause appears in an entry at the group level, the literal
must be a figurative constant or a nonnumeric literal. The literal is aligned
without consideration for the subordinate items belonging to the grciup. The
VALUE clause cannot be stated at the subordinate levels within this group.

Under certain conditions, a data entry must not contain a VALUE clause:

1. The VALUE clause must not appear in a data description entry that
contains an OCCURS clause or a REDEFINES clause.

2. Except in a condition-name entry, the VALUE clause must not appear in
an entry that is subordinate to an entry that contains an OCCURS,
REDEFINES, or VALUE claus.e.

3. The VALUE clause cannot be used for an item whose USAGE IS INDEX. Such
an item cannot be a conditional variable.

· 4. The VALUE clause must not be specified for a group i tern containing
items with different usages, or for a group containing items which are
synchronized, justified, or which have usages other than DISPLAY.

5. Within a given record description, the VALU~ clause must not be stated
in a data description entry that is subsequent to a data description
entry in which an OCCURS clause with a DEPENDING ON phrase appears.

GROUPS OF ELEMENTARY ITEMS

Data items that are further subdivided are called group items. A group
consists of a sequence of subordinate groups and/or elementary items. Refer to
the COBOL Reference Manual (Format 3 of the data description skeleton) for a
description of the specific format entries.

4-20 0026·

The group record format is used for group item record description entries.
The following rules must be observed:

1. Level-number must be an integer in the range 1-49 or 77.

2. If the REDEFINES clause is specified, it must be written immediately
after .data-name-1. The other clauses may be written in any order.

3. The OCCURS clause cannot be used with level-number 01.

A group entry may consist of only the level-number and data-name or FILLER,
with all descriptive clauses omitted. The BLANK WHEN ZERO, JUSTIFIED, PICTURE,
SYNCHRONIZED, and editing clauses are ·permitted in an eleme·ntary record
description entry but must not be specified in a group record description entry.

4-21 DD26

SECTION V

FILE PROCESSING

FILE PROCESSING CONCEPTS

File Declaration

Every data file to be processed by a COBOL program requires source program
statements in the Environment Division, Data Division, and Procedure Division.

A SELECT sentence for the file must be written in the FILE-CONTROL
paragraph of the Environment Division.

Various options relating to the file's format and processing techniques may
be specified in the I-0-CONTROL paragraph of the Environment Division.

An FD entry for the file must be written in the File Section of the Data
Division, unless the file has been described implicitly via the RENAMING phrase
in the SELECT sentence.

Record description entries must follow the FD entry, fully describing
data record mentioned in the FD entry. The records . may be described in
order. E~ch data record's description must begin with a level 01 entry.

each
any

If USE procedures are employed in connection with label manipulation,
peripheral device errors, or report group presentations, each USE procedure must
appear as a separate section in the declarative portion at the beginning of the
Procedure Division.

Sequential-Access Processing

The, sequential-access technique applies to files stored on all types of
media su~h as magnetic tape, cards, and mass storage devices. Except for mass
stora~e devices, the sequential accessing of records has been the usual
technique available for file processing. This technique is also applied to mass
storage devices such as disk storage subsystems. Since mass storage devices also
have random-access capabilities, their use for sequential access must be
designated by phrases in the FILE-CONTROL paragraph of the Environment Division.
To establish that a mass storage file is to be accessed sequentially (similar to
tape file processing) , the ACCESS MODE IS SEQUENTIAL and PROCESSING MODE IS
SEQUENTIAL phrases are required in the SELECT sentence for the file.

5-1 DD26

With the sequential.;,..access technique, the READ statement accesses the next
logical record from the file and the WRITE statement releases a logical record::
for output. Therefore, the logical records appear on the: peripheral device in
the order in which they are read, processed, and/or written.

Random-Access Processing

The random-access teqhnique applies only to· files that have been assigned.
to mass storage devices such as disk storage subsystems. The ACCESS MODE IS
RANDOM and PROCESSING MODE IS SEQUENTIAL phrases in the FILE-CONTROL paragraph
establish that a random-access technique is to be applied to the manipulationof
records on that file~

'Ji,l'h~ random-access technique differs from the sequential-acC'ess technique in ..
1;:hq.t re,ferences to logiccll records in the file are not necessarily in the order
of their appearance on the external device •. Rather than spending time passing
over records of a file which may not be applicable to the. current problem, the
user directly accesses a logical record in the file by specifying a key value
associated with that logical record. The ACTUAL KEY phrase in the FILE-CONTROL
paragraph provides the data-name of the field containing the key value; the
phrase must be specified for random-access files.

Series 60/6000,: COBOL requires that the data-name specified in the ACTUAL
KEY phrase must be defined in a level 01 or level 77 entry in the
Working-Storage Section as a single-precision binary integer.. That is, the
data-nam~ must loe described with: USAGE COMPUTATIONAL-3 or with USAGE
COMPUTATIONAL-1 with a PICTURE containing eight or less. digits. The value of the
actual key data item must indicate the relative position of the logical record
within the file. The posi,tioning of logical records is relative to· the value
zero, although the use of the value zero itself is not re.commended. The user is
responsible for controlling the contents of the ACTUAL KEY field.

The READ and WRITE statements access a specific addressable· record from a
mass storage file-. In Series 60/6000: COBOL, there is one addressable record in a,
block. The record size may be adjusted within limits for a mass storaEJe devic.e
by using the BLOCK CONTAINS clause in the file description entry for the file.

Open ~tatus and Closed Status

A file is either open or closed at any given time.. A file is open if an.
OPE:N statement has been executed and no CLOSE. statement without the REEL option.
has. intervened; otherwise, it is closed. Therefore, a f.ile is implicitly in the
closed status at the· sta,rt of object program execution, and returns to the
closed .status when it is explicitly closed.

The following rules assoc.iate the file processing statements. to the open Qr"

closed1 status of a file:

3/7,7

1,. A file mentioned in an OPEN statement must be.' in the closed state when
the OPEN statement is executed.

2. A file mentioned in any other input-output statement (such as REAa,.
WRITE, or CLOSE.) must be in the open state when the, statement· is.
execu tea .• ,

3. ThC3 contents of a· fi.le may no.t be referenced exc.ept· when the file i~s
open.

5-2

4. Any closed file can be opened, unless it has been closed with lock.
This means that a file can be reopened after it has previously . been
processed and closed.

S. Only one file of a multiple file.tape can be in the open state at any
given time.

Input, Output, and I-0 Modes

The OPEN statement specifies whether each file is to be opened in the INPUT
mode, the OUTPUT mode, or the I-0 mode. The mode of a file that is· not open is
indeterminate. Only mass storage files may be opened in the I-0 mode.

The following rules associate the file processing statements to the input,
output, or input-output status of a file:

1.. A READ statement may refer only to an open input file or to an open
I-0 file.

2.

3.

A WRITE statement may refer only to records of an open output file
to records of an open I-0 file.

If a file is closed, it may be opened either as input, output,
input-output. Thus, a file can be processed as output, closed,
then reopened for processing as input. (If desired, the file can
be closed, reopened as output, and the old data values can
overwritten with new values.)

or

or
and

then
be

4. The I-0 mode cannot be used to initially establish ·a file, but rather
may only be used to manipulate a file that has previously been
established in the OUTPUT mode.

5,. On a file that is open in the I-0 mode, the records may only be
modified; no insertions or deletions are allowed. To modify a record,
procedures are inserted between the READ and WRITE statements. A READ
statement followed immediately by another READ statement does not
affect the contents of the first record ori the mass storage file.

Special File Processing

'PROCESSING OPTIONAL FILES

A file may be optional in the sense that it may or may not be present for
processing, depending upon an option specified at object program execution.
COBOL has a special provision for processing optional input files but not for
option'al output files.

5"'.'3 "DD26

·An optional inp~t .file .must be described as such .ua.ing the OPTIONAL phrase
,in ·t:ll;e ~ILE-CONTROL paragrap}\. At program execution, the 1'.>PEN statement for .. the
file verifies wheth_e-r a file control carQ. has been incltttted for :.the '.file, among
the other GCOS control cards. If the card .ha.s been lincluded, . the ifile .is
understood to be present, and the file is processed. in the normal manner •. If the
qard is omitted, the f.ile is __ µnderstood to be omitte.d, and the OPEN statement
activates the .. end-o"f-.file condition instead of :a·ttemptin.g ,the " normal" open
actions; the first .READ statement produces no dat.a record, but instead causes
the relevant l\,T.END or INVALID KEY procedure to be executed; and a ·subsequen.t

, C.I,.QSE statement restpre~ the Ule to the closed status.-. ·

To establish a conditiqnally existent output file, .the ~user mus.t provide
. explicit tests .to determine whether or not the file i,s to .. be produced at program
execµtiop. 'J:'he simpl~st way is to associate the file ·.with one of the software
.s~i tches1provided by ~the qpe:rating system (see Section ·\.:VJl1J • The switch-status
:9.9Pdi tiop test may be used. Just before execution ·re&.c.he-s the ·relevant . OPEN
·,s·ta:te~~;t, tesj: the scWitcp. Tf it is .ON, continue proce'S:Sing., producing the <ffile
, 1~.s usual:• Tf .. the switch '~ ~~,F"F, exe.cute ALTER statements", causing :appropriate :GO
· .. TO ·stateme~t~ .to J::w:p,~ss ,~he ·OPEN, MOVE, WRITE, and CLOSE :s.tatements referring to
the file.

PROCESSING NONLABELED MULTIPLE REEL FILES

co:aoL rules stp;j:e that a file must not be read after an AT END return
unl.ess it has first 1been closed .and then reopened. The JJQmpiier itself cannot
~9etect violat,;Lons of t:his nature, so no such check is .. attempted. A special
-tfeatu~e makes the ~~:.,Pf READ statements ~fter AT END :phrases very important
·under c~rtain circuIJ!#itances.

Consider a multiple reel file on which· label records.are .omitted. When the
obje.ct program is execut~d., the final reel cannot be identified automatically
from the tape contents. Ho:we:v.er, this condition can be ·det.ermined with COBOL
_procedure~. First, ascertain .how many. reel_s are. expe.cte.d; .a suitable method
wo.uld b.e to optain a parameter giving the reel count frolll an ACCEPT statement.
,The ·following. example illµs'ti,rates how to achieve ,,proper .tape swappin9 .and true
end.;.of-·file detection.

Example:.

A. READ fil~-pame AT E.ND GO TO EOF-CHECK •

.
Eor-CHECK. SUB~RACT 1 FROM REEL.,..COUNT; IF REEL-COUNT IS 'NOT

ZERO GO T.O A ELSE CLOSE file-name
GO TO EN.DING-ROUTINE.

i
When the physic~! end~of-file mark at the end of each r.eel of the file is

,~eached, it will result in the execution of the .AT END p.rocedure for the activ:e
·;READ st,te~ent. Exeqution of :~nothe·r READ statement then causes a tap.e swap, and
.gbtain$ the ,first da-ta record from the next reel. E.xecution of ·the .CLOSE
statement, on the other hand, entails. standard non.labeled file closeout
.conventions.

·s-• ;01)26

A nonlabeled tape is often terminated simply with a physical· end-of-file
mark. For a multiple reel file which is so constructed, the technique outlined
above is the only practical way to accomplish tape swapping. If, however, each
reel is terminated with a special data record whose value signals end of reel,
tape swapping can be accomplished via the CLOSE REEL feature, used in connection
with suitable IF tests.

Tape swapping via READ statements executed after AT END
feature provided by the Series 60/6000 software, and may not be
other computers.

is a special
available on

PROCESSING STRANGER FILES VIA COBOL

A stranger file is one which cannot be fully described ·to COBOL; the
possible reasons are:

l. The character set of the dat~ as stored on the peripheral device does
not coincide with the character sets available to Series 60/6000
COBOL.

2. Data records are not arranged to occupy multiples of six characters.

3. Binary fixed- or floating-point numbers were produced on a computer
system using signed magnitude arithmetic or exponent sizes that differ
from Series 60/6000 requirements.

4. Variable-length records do not have record control words in the format
required by the Series 60/6000 software; that .is, variable-length
records appear on a BCD mode tape.

5. Bit-coded parameters exist in the file.

A file with any of the properties listed above is probably produced
for a computer other than the Series 60/6000 computers. Files with any of
properties, or many others, are nevertheless accessible to COBOL
programs.

by or
these

object

GFRC provides dual entry point names (SYMDEFs) for many
functions:

important

Standard Symbol

OPEN
CLOSE
GET
PUT
PUTSZ
WT REC
I QED IT
PRINT
PUNCH

Alternate Symbol

.GAOPE

.GACLS

.GAGET

.GAPUT

.GAPTS

.GAWTR

.GAEDI

.GAPRN

.GAPNC

The two symbols for each entry point are entirely equivalent. By
convention, however, COBO~ object programs utilize the alternate symbols· shown
above rather than the standard symbols.

5-5 0026

Each alternate symbol utilized by a COBOL object program defines a point at
which a special subroutine may be inserted between the COBOL object program and
the GFRC module. The insertion is accomplished by using; the appropriate GFRC
alternate symbol as the entry symbol for the special subroutine. When such a
subroutine is present, it automatically intercepts all objec:::t program calls to
the GFRC entry point in question.

For example, consider the GET, function · of
statements. The object time execution sequence may
circumstances.

GFRC., used for
be diagrammed

COBOL . READ
for various

1. Normally, no special subroutine is present.

Object
-----Program READ----·

Statement

1--------------Get Function
of GFRC

2. A simple format conversion subroutine supplie·d by the user might
require GET.

3.

Object
Program READ
Statement

Special .GAGET
Subroutine

Supplied by the Use~

1---~--------a.iGET Function
of GFRC

A complicated stranger file format might require the special
subroutine to use GFRC services other than GET; when the
program calls the subroutine .GAGET, it does not engage GET.

Object
Progr~m R,EADt-------t•
Statement

Special .GAGET
Subroutine

Supplied by the User

READ Function
1-------------of GFRC used

Instead of GET

5-6

.GAGET
object

DD26

A special subroutine of this kind is developed via GMAP as
binary subroutine, having as its entry symbol the appropriate
entry symbol.

Relationship of Reporting Verbs to File Processing

a relocatable
GFRC alternate

Reporting statements are closely related to WRITE statements. Each report
described in the Report Section of the Data Division must be referenced in an FD
statement in the File Section. This indicates that the report is to be produced
on the referencing file. Execution of INITIATE, GENERATE, and TERMINATE
statements referring to the report then causes report lines to be written to the
file, just as WRITE statements cause data records to be written to a file.
Therefo~e, a file whi~h is to receive a report must be open as output whenever a
relevant reporting statement is executed.

5-7 DD26

Summary of File.Property Relationships

The following charts summarize the re.lationships of the various options for
. COBOL files.

-fll
"'O - ...

(D 0
"'O () ... Q.I I 0,
() fll·· e Q.I .c "'Oµ Q)

bO 0 0 "'O
.c r::), IZ4 0

"" Q.I ,::::i Q). u
bO i:ii::: o· "'O "'O

§ r:: t ;g CN ,... 0
cu cu M CIS. u

Impli'es or a E ~ VI "'O CIS
I .0 Q) r:: s "'O G>

Requires "'O Cd "'O E-4 G> CIS ~
,...

i:ii::: Q) 0 Cll Cll N ...,. <
i:z:I ~ ... 13 ~

. .,.,, Cll "'O
Cll QS . Ul ~

,... Ul
'M > ~ ,::::i 13 Q) Ul

~ - - ~ ~ Q) .µ Q)

Property 8 ~ s u .µ "'O r:: u
i:ii::: ix: ~ 0 (I) 0

s ~ ~ :s ~ >- "'
IZ4 ~ :x: ~ Cll u ~ p.,.

SEQUENTIAL ACCESS I R I I

RANDOM ACCESS I R I

FOR CARDS I R I I I

FOR LISTING I R I ·1 I

BLOCK SERIAL I R

SYSTEM STANDARD I I R R R R I

VLR (variable le~gth
records) I R

RECORDING H>DE
omitted I I

BINARY HIGH DENSITY I I

BCD (either. density) R

BLOCK clause omitted I

VALUE OF label item R

Single DATA RECORD 11

· Several DATA RECORDS.
I R sizes unequal

REPORT@ I R I

REPORT~ and DATA
RECORD(s}

I R I I

USAGE not DISPLAY f: iJ R

OCCURS ••• DEPENDING I R I

USAGE COMPtJTATIONALfiJ
requiring double- I
word precision

SAME RECORD AREA I

1FLR is implied in the absence of overriding properties.

5-8 0026

-U)

"O
....
0
u
Qj
.... "O

cu
..c: .µ

3 "C

~
.µ

E~
cu ~o Conflicts ·~ .µ Cf.)

Cll r::: s ·~ .µ i:t:: .µ i:t::

With Cll Qj 0 C/lH Cl) ·~ r..l 0 ot4 0
µ,J § r-1 ffi Cll r::: 5 Cf.) E-t i:t:: 0 (.)
(.) I r..l Qj §U ~ r..l ~~ (.)Cf.)

M~ cu ~o 0 ffi "C o~ Ci E-t
<Cf.) r-1 ~~ 0 Qj :a t:: .0

r..l ~ i!i ~ .0 rs~ Cl) (.) =a cu<
MU cu ~ Qj ;:j t; $ r-1 E-t

;S ~ tl.lH i:t::E-t ·~ µ,J~ HO ..c: cu ~(.) ~ 2S § t; r..l Cll $.I ::C:M .µ r-1

E-t ;:E::
Cf.) cu MH ·~ u 0

4!H ~ ffi > P-4 0 ~~
Qj

~~
cu

Specified ~8 U...:I - H CX: -~ ...:I~ ~~ (.) E-t E-t 0 ~~
(.) (.)(.) r..l µ,J

Property ~~
i:t:: i:t:: 0 Cll i:t::

~~
0 8 00 IXI IXI ...:I r:::

00 M~ s HH (.) ...:IM ~ :s < ·~
~~ IXI Cl) IXl IXI IXI IXI IXl IXI :> Cll

SEQUENTIAL ACCES·s xx x x xx x
RANOOM ACCESS x xx xx xx xx
FOR CARDS xx x x

FOR LISTING xx x x
BLOCK SERIAL x
SYSTEM STANDARD x xx x
VLR (variable-length x x

records)

MULTIPLE FILE xx
BINARY" LOW DENSITY xx x xx x
BCD (either

density) xx xx xx x xx x
BLOCK ••• RECORDS x x
LABEL ••• OMITTED x x x x
VALUE OF label item x
Several DATA RECORD, x 1 x sizes -1'

REPORT[SJ xx x x 1

REPORT[S]and DATA xxx x 1 RECORD(S]

USAGE xx x COMPUTATIONAL (-n]

OCCURS ••• xx x 1 DEPENDING

1 Use of the CHARACTERS option is preferred when record sizes
are not uniform.

2 Must also apply VLR and binary mode.

3 Must also apply Block Serial and binary mode.

5-9

if.. n
U) Cll
Qj u
N 0

ot4 i:t:: n
Cl) 0 r:::

(.) I ..
~ u Cf.)

~ 0 Cl)
ix: ~ ~ 0 0 i:t:: (.) 2S H 0
~ E-t 0 (.)

~ "C ~ ~
~ r::: P-4

cu r..l 0
2Sn ~

0 ~ n z Cl) a 0 0 r-1 L.J H cu E-t tl Cll £:-t i:t:: ~ i:t:: H
Q) 0 ~ ~ :::::> t: > ll.i (.)

~~ ~ Cll (.)

~ ::> 0

xx
xx x
xx xx x

xx x
2

3

xx xx x x

1 1 1 1
x

x

x

xx

x

0026

.AS$IGNMENT OF FILES

File Control Cards

Each COBOL file-name .must be explicitly assigned to one or more
twe-character symbolic file-codes. When the object program is scheduled· for
execution, each file-code must be 'associated with a peripheral device via a file
9ontrol card. There will be one such card for each file selected.

When used with GOBOL object programs, each file control card must contain
the file~code to which the file is assigned, explicitly or implicitly. Most
ca:rds otl'l@r than $ DATA, $ PRINT, $ PUNCH, $ READ, and $ SYSOUT require more
p·al!'amet:.ers to provide additional information about the peripheral device arid the
~ode of processing.

Files intended only for $ DATA, $ SYSOUT, or linked mass storage must
system standard format. Other files entering or leaving the system via
media conversion normally utilize magne~ic tape as the intermediate device,
consequently require $ TAPE cards. Any file having a block size exceeding
words must utilize magnetic tape or a random-access mass storage device.

have
bulk

and
320

Each file must be processed in a manner consistent with .the nature of the
peripheral device. Files intended for $ PRINT, $ PUNCH, or $ SYSOUT must be
gutput files and those intended for $ DATA or $ READ must be input files. If

· $ TAPE is used, the file may be processed as either input or output and, after
it is closed, it may be reopened as either input or output regardless of the
method J.n which it was previously processed. This capability is particularly
useful when a scratch file is needed ~ithin a program; the file may be processed
as output and then be reopened and processed as input within the same program.

A ~ass storage file may be either input, output, or input-output. When the
file st;atus is input-output, the preferred file control card is $ FILE or
$ PRMFL. The permanent data files must have both read and write permissions. If
$ DATA or $ TAPE cards are used for the input-output mode, ari abort will occur.

To engage the Incremental Report Printing (backdoor file) fac-ility, specif'y
the $ USE, $ FILE, $ FUTIL, and $ DATA cards as described in Section XVI.

Fo~ additional information concerning file control cards and deck setups,
refer to the Control Cards reference manual and to Appendix B.

System ~tandard Format

When the APPLY SYSTEM STANDARD FORMAT phrase in the I-0-CONTROL paragraph
has been specified for a file, a substantial degree of peripheral device
independence is obtained at the expense of processing efficiency. The file may
be assigned to different peripheral devices from one execution of the object
programto the next. The following example illustrates the potential flexibility
of a da~ly report file:

1.. On Monday, the file is assigned to an online printer.

2. · On Tuesday, the file is assigned to mass storage, and a subsequent
media convE?:tsion to_ printer is_scheduled.

5-10 DD2 .. 6

3. On Wednesday, the file is assigned to magnetic tape, and again a
subsequent media conversion is scheduled.

4. On Thursday, the file is assigned to SYSOUT, so that subsequent media
conversion is automatically scheduled.

If a file is ultimately intended for a printer or a card device, the file
may be visualized in terms of the selected device, even though an intermediate
conversion to or from tape or mass storage may be desired. In this case, the FOR
CARDS or FOR LISTING option should be specified in the SELECT sentence of the
FILE-CONtROL paragraph. System standard format will then be automatically
applied and the records ·will be identified as print-line or card images with the
appropriate media codes. ·

A Series 60/6000 data file having system standard format has the following
properties:

1. Data blocks may vary in length, not exceeding 320 words, including
block serial numbers.

2.. Block serial numbers are applied.

3 ., The recording mode is binary high density.

4. Variable-length record (VLR) format is applied.

5. Label records are standard.

Files having logical records larger than the block size of 320
nevertheless be processed in system standard format by the oper~ting
the requirements for partitioned records are met. (Refer to the
Records paragraph in Section II.)

words may
i;;ystem if

Partitioned

When system standard format is used, the BLOCK CONTAINS and RECORDING MODE
clauses may be omitted, and it is unnecessary to specify APPLY VLR or APPLY
BLOCK SERIAL NUMBER. However, according to COBOL rules, the LABEL RECORDS clause
must appear in every FD entry in the File Section.

To increase efficiency, files may deviate from the system standard format.
For example, a large master file which is assigned to magnetic tape might use
block sizes larger than 320 words. A block size three times as large (960 words)

·would increase the capacity of a tape by approximately 20 percent.

The system standard format must be used when device independence is
intended.

Label records, although conceptually standard, do not actually appear in
mass storage.

System standard format must be used for files intended for system output
{SYSOUT).

5-11 0026

Peripheral Devices

Series 60/6000 COBOL files may be assigned to di$k, magnetic. tape, card
reade~, card punch, or printer peripheral devices.

The preferred media for object program access are the disk and magnetic
tape devices, since the operating speed of this equipment is better matched to
the capability of the central processor. Although the printer, card reader, and
card.punch can be accessed directly by object programs, it is preferable to
utilize the media conversion procedure, so that a file intended· for cards or
l.isting nevertheless uses a high-speed peripheral device when the object program
is e.xecuted. Standard media conversion programs are provided as part of the
software system.

In Series 60/6000 COBOL, the SELECT sentence in the FILE-CONTROL paragraph
is used to assign each file to a symbolic file-code, not to a specific
.peripheral device. In this ca.se, the actual device is indicated separately with
control cards when the object program is scheduled for execution.

If a file is intended for a printer or a card device, the FOR
FOR CARDS option should be specified in the SELECT sentence of the

·paragraph. Specification of the FOR LISTING or FOR CARDS option
implies system standard format.

LISTING or
FILE-CONTROL

automatically

Some data description opt~ons, such as USAGE DISPLAY-2 or USAGE
COMPUTATIONAL (or COMPUTATIONAL-n}, are not suitable for card or printer files.

It is preferable to use standard label records for all magnetic tape files,
including those intended for cards or listing; however, the tiser may wish to
describe and process label records which are more meaningful to the specific
computer installation.

Multiple File·Tapes

The MULTIPLE FILE ·phrase in the I-0-CONTROL paragraph applies only to
magnet~c tapes. It permits two or more files to appear successively on the sa:m.e
physical reel of tape. For COBOL object programs, all files of a multiple file
tape must actually be present. The tape is automatically positioned to the
proper point each time a file is opened (as either input or output).
Multiple file tape positioning is based on counting the. number of logical files
interve.ning between the desired file and the beginn.ing of the tape, not on a
label search. Therefore, a file in position 5 ':"1tlst be preceded on the tape by
four prior files. ·

order in which
file cannot be

files may be

On an output tape, files must actually be written in the
they are to appear on the tape. For example, the position 4
writteri before the position 2 file. However,. the successiYe
produced by separate. object programs. On an input tape, files may
in any,order.

be processed

Two files on a multiple file tape cannot be open concurrently. When an
output file in a given position has been opened, any data which might have been
previously recorded beyond that point on the tape is unavailable.

All of the files on a multiple file ~ape must have .the same recording mode.

5-12 DD26

Either all of the files on a multiple file tape must be labeled, or else
none may be labeled.

Since each file referenced in the MULTIPLE FILE TAPE phrase must
assigned to a unique file-code in the ASSIGN phrase of the SELECT sentence,
different file-codes thus assigned for files contained on the same multiple
tape must then be assigned to the same logical unit designator (LUD) by $
control cards when the object program is to be executed.

Example:

INPUT-OUTPUT SECTION.
FI'LE-CONTROL.

SELECT FILE-C ASSIGN TO Tl.
SELECT FILE-A ASSIGN TO T2.
SELECT FILE-B ASSIGN TO T3.

I9'.0-CONTROL.
SAME AREA FOR FILE-B FILE-C FILE-A.
MULTIPLE FILE TAPE CONTAINS FILE-A FILE-B FILE-C.

Control Cards Example:

$
$
$

TAPE
TAPE
TAPE

Tl,A2S
T2,A2S
T3,A2S

When the files are labeled, the tape layout is as follows:

Beginning of tape indicator (load point reflective foil)
BEG. INNING-FILE-LABEL }
End-of-file mark
Data blocks First file
End-of-file mark
ENDING-FILE-LABEL
End-of-file mark
BEGINNING-FILE-LABEL
End-of-file mark
Data blocks Second file
End-of-file mark
ENDING-FILE-LABEL
End-of-file mark

Etc.

When the files are not labeled, the tape layout is as follows:

~eginning of tape
Data blocks
End-of-file mark
Data blocks
En4-of-file mark

Etc.

indicator
) First file

) Second file

be
the

file
TAPE

COBOL rules imply that all of the files on a multiple file tape must
actually fit on one physical reel of tape.

5-13 DD26

FILE PROCESSING AREAS

Buffer Areas

At least one buffer area must be available for each file in
program. Two .buffer areas are automatically assigned to each file
the source program.

the object
selected in

A single buffer area may be allocated to any file by using the RESERVE NO
~LTERNATE AREA phrase in the SELECT sentence. If only one buffer is employed,
input or output operations for the file cannot proceed concurrently with the
procedural manipulation of its records in the object program. During
input-output operations on such a file, control is therefore passed to the
ope.rating system to allow other active object programs to utilize the central
processor. However, if an alternate buffer is reserved, the object. program can
continue to process data in the current buffer concurrently with the execution
of input-output operations involving the alternate buffer. Alternating buffers
can therefore contribute to object .program efficiency, particularly when
high-volume files are being processed. The decision to buffer a file should be
based upon considerations such as the size and activity of the file and the
effective use of memory within a multiprogranuning environment.

A buffer area, or a pair of alternating buffer areas, can be shared by two
or more files by specifying the SAME AREA phrase in the I-0-CONTROL paragraph.
The cbmpiler then evaluates the maximum buffer requirements of all of the files,
and allocates adequate aggregate buffer space to the first file to handle any of
the other files, but the single buffering or double buffering for each file

1

is
still determined by the RESERVE phrase of each individual file.

The SAME AREA phrase should not be used ·for files which are open
concurrently.

·'
Record Areas

The APPLY PROCESS AREA phrase in the I-0-CONTROL paragraph is used as an
alterna.te method of processing files. A process area is a memory area outside
the buf~ers, and of sufficient size to hold the largest logical record of a
file. When a file using a process area is read, each logical rec.ord is
implicitly moved to the process area from the input buffer when the READ
statement is executed, and all subsequent procedures refer to the record in the
process are~. When such a file is written, each logical record 'is implicitly
moved from the process area to the output buffer when the WRITE statement is
executed, and all subsequent procedures similarly refer to the record in the
process, area.

A process area may be applied regardless of the number of
allocated. Several source language options direct the compiler
process area:

l. APPLY PROCESS AREA

2. FOR CARDS or FOR LISTING

3. Random access or sequential access

4. OCCURS ••• DEPENDING

5-14

buffer areas
to apply a

DD26

5. SAME RECORD AREA (see below)

6. Both lEPORTS and DATA RECORDS (the data records utilize the process
area)

7. Double-precision COMPUTATIONAL(-n) data items in records

8. Sort or merge files

When no process area is applied, explicitly or implicitly, the current data
record is processed in the buffer. Since the origination of records in the
buffer usually differs from one record to another, the record contents must be
addressed relatively with respect to the current record origi~. Extra
housekeeping is required when processing such a record, because of the necessity
for relative addressing.

A considerable savings in. both space and time may often be realized by
applying a process area on those files whose data records are involved in a
large number of procedural references in a program. These economies are
attributable to the simplification of the object code generated for each of the
references to a fixed process area without the indirect addressing and related
overhead involved in referencing the record in the buffer area. Usually these
economies in data reference will overshadow the amount of time required to move
the records between the buffer and process area. However, the WRITE ••. FROM and
READ .•. INTO statements are not efficient when used with a process area since a
double move of the data would result. That is, these statements would cause a
move from the buffer to the process area followed by a move from the process
area to the identifier referenced in the READ ..• INTO statement in the case of an
input file, or a move from the identifier referenced in the WRITE .•. FROM
statement to the process area followed by a move from the process area to the
buffer in the case of an output file.

Ai process area must be applied, explicitly o~ implicitly, for files with
logical records larger than 320 words and which require the partitioned record
.cap~bility of the operating system~

When a process area is used, more effective blocking on variable-length
record output files occurs. If no process area is applied to such files, each
output block is physically written when the remaining buffer space is not of
sufficient size to hold the largest record of the file; thus, actual block sizes
can be substantially smaller than the maximum block size of the file. When a
procesp area is applied, however, the output block is physically written only
when the remaining area is too small for the current logical record. If a
process area is used, therefore, one or more extra records can often be placed
into an output block.

A process area may be shared by two or more files by specifying the SAME
RECORD AREA phrase. The compiler then allocates a process area to the first file
that is of sufficient size for the largest logical record of all of the files
involved, and causes all of the files to share this process area. (In this case,
the process area is applied whether or not it has been explicitly specified.)
Files utilizing the FOR CARDS or FOR LISTING option may not be referenced in a
SAME RECORD AREA phrase.

The SAME RECORD AREA phrase does
a shared process area. This phrase is
master file that is being updated. If
for this purpose, special procedures
records when insertions are required.

not result in buffer sharing, but implies
recommended for minimizing moves on a
the SAME RECORD AREA phrase is specified
must be used to avoid deleting input

5-15 DD26

A file may have one or more buffer areas in any objec:t program, regardless
of how many it may have in .other object programs. Similarly, a file may
participate in SAME AREA or SAME RECORD AREA phrases in a .. given program, whether
or not it is involved in these options in other ·progra,ms.

If the rules for modularization are followed, the compiler arranges
interfaces so that a single set of memory areas is allocated to each file in a
modularized program, and each subprogram refers to the same memory area at
object program execution.

Sort Areas and Sort-Merge Areas

The SAME SORT AREA and/or SAME SORT-MERGE AREA phraaes .allow: the user to .
designa.'lz\e. memory area.s. tha:t .may be shared,. or reused, during the sorting or
merg.;ing of several sort or .·merge files.. In the. implementation of the Series
60/6000 sort-merge feature., such optimization is automatically provided in that
all the sort·or merge processes in a run unit share a single common memory area.

In addition, the SAME SORT AREA and/or SAME SORT-MERGE AREA phrase allows
the user to designate memory areas associated with non-sort (merge) files that
may be used in the sorting or merging of specified s.ort ·ox merge files to the
extent defined by the implementor. In the Series 60/6000 sort-merge
impl.ementation, such sharing does riot take. place.

Since the functionality of the SAME SORT AREA and SAME SORT-MERGE AREA
phrases is fully satisfied within the sort-merge implementa:tion itself, the
presence or absence of either of these phrases will have no functional effect on
the program.

FILE PROCESSING STATEMENTS

The following verbs (statements) describe file processing in the source
program:

OPEN
READ
WRITE
SEEK
CLOSE

USE

ACCEPT
DISPLAY

ACCEPT MESSAGE
DISPLAY

INITIATE
GENERATE
TERMINATE

}
)

)
)

)

File processing verbs

Compiler-directing verb

Low-volume data transmission verbs
(see Section VI)

Transaction Processing verbs
(see Section VII)

Reporting verbs
(see Section VIII)

5:-16 0026

SORT
MERGE
RELEASE
RETURN

} File ordering verbs
(see Section IX)

The functions of the file processing statements are briefly sununarized
below:

OPEN

READ

Initiates the processing of each file, and provides initial rewinds,
beginning label handling, and initialization of ;_nput buffer
contents.

Obtains a logical record from an input or I-0 file, and executes a
specified imperative-statement when an end-of-file or INVALID KEY
condition is detected.

WRITE Transmits a logical record to an output or I-0 file for storage on a
peripheral device.

SEEK Initiates the accessing of a mass storage record, which
accomplished automatically in READ and WRITE statements.

is

CLOSE Terminates the processing of each file, and provides ending label
handling, as well as the final rewind and lock capability.

The USE statement specifies procedures for input-output label and error
handling that serve as supplements to the standard procedures provided by the
input-output system. It also provides the mechanism for specifying out-of-line
procedu~al statements for processing mass storage files.

The relationship of the file processing statements is illustrated by a
schematic flow chart of a COBOL program:

Start

OPEN INPUT, I-0,
and OUTPUT

Files

READ I-0 or AT END INVALID KEY
I n put Files

Process Data
and Edit
Output

WRITE I-0
or Output
Records·

1--------~--------------~-------

5-17

CLOSE
All Files

DD26

The file processing activities described in the precetling flow chart must
.c;:onform to the following rules:

l.. Each file must be explicitly opened with an OPEN statement before any
other procedures (such as REAP, WRITE, or CLOSE statements) referring
to it are executed. ·

2. The first record of a file ,is available only afte.r an initial READ
statement has been executed.

o3. Each READ statement must include an AT END or INVALID KEY provision,
so that the input-output routine can signa·l J.o the object program when
an invalid access.occurs or the end of the file is.reached.

4. ';_$ach file must be explicitly closed with a CLOSE statement after all
proce$.sing on it is completed.

5. When the.end-of-file condition is reached, the AT END operation is
effected and no ';-record is obtained.

OPEN Statement

The OPEN statem~nt in the Pro.cedure Division is used to initiat.e the
processing of files. An OPEN statement also causes label checking/writing and
~<+~her input-optput activities to be performed. Each of the format choices
(''INPUT, OUTPUT, I-0) may be specified only once in an OPEN statement.

Example:

OPEN INPUT FILE-D OUTPUT FILE-.E I-0 FILE_.F.

The OPEN statement must not be used for sort files or merge files, but must
be used for all other files. The OPEN statement for a file must be executed
prior to the first READ, WRITE, or SEEK statement .for that file.

A second OPEN statement for a file executed prior to a CLOSE statement for
that file will cause a CK abort to occur.

The object program must not attempt to place data in the current record of
an output file before the file has been opened. Failu~e to .observe this rule may
lead to unpredictable results in the NEIS mode and to an abort condition in the
EIS mode. An OPEN statement for an output file, in addition to its other
~rntivities, establishes a memory area in which the first data record of the file
can be built.

The OPEN statement does not obtain or release the first data record. A READ
or WRITE statement must be executed to obtain or release, respectively, the
first data record. Input data cannot be referenced until ·the first READ
statement has been executed for the file. Unless an APPLY PROCESS .. AREA phrase
·has been specified for a file, no referend~ to th~ record area should be made
until data is obtained.

For files described ·with the FOR LISTING
:automati~ally posi tio,ned at the top of the page
e;xecuted.

5-18

.option, the report is
when the. OPEN statement

not
is

DD.26

For a multiple file tape, an OPEN statement causes automatic positioning to
the proper file. The positioning technique varies with different computers; for
Series·G0/6000, the positioning is based on counting files as they are bypassed.

If a label record is specified for a file, the label is processed according
to the standard beginning label convention. If specified by the USE statement,
the user's label procedure is executed. The order of execution of these two
processes is specified by the USE statement. The behavior of the OPEN statement
when a label record is specified but is not present, or when a label record is
not specified but is present, is undefined.

When processing mass storage files for which the access mode is sequential,
the OPEN statement supplies the initial value for the actual key associated,
expli6itly or implicitly, with the file.

INPUT OPTION

If. an input file is designated with the OPTIONAL phrase, the object program
causes an interrogation for the presence of this file. If the file is not
present, the· first READ statement for this file causes the imperative-statement
in the AT END phrase to be executed.

I-0 OPTION

The I-0 phrase pertains only to mass storage files.

The I-0 phrase permits the opening of a mass storage file for both input
and output operations. Since this phrase implies the existence of the file, it
·cannot be used if the mass storage file is being initially created.

When the I-0 phrase is specified and the LABEL RECORDS clause
that label records are present, the following procedures are included
OPEN statement is executed:

indicates
when the

a. The label (if it exists) is checked in accordance with the standard
conventions for input-output label checking.

b. The user's beginning label procedure, if one is specified by the USE
statement, is executed.

c. The new label is written in accordance with the standard conventions
for input-output label writing.

Only the current record of a file is available at any given time for either
an INPUT, an OUTPUT, or an I-0 file. Although several record types may have been
defined for a file, only the information which is present in the current record
is accessible to the program. As records are successively processed, they
conceptually share the same memory area. If any executed procedural statement
attempts to access in'formation which is not part of the current record, the
results are unpredictable. In addition, any attempt to access the current record
when no current record exists, such as during or after execution of AT END or
INVALID KEY procedures, may also yield unpredictable results.

5-19 DD26

NO REWIND OPTION·

The NO REWIND phrase does not apply to mass stora:ge processing.

The NO REWIND phrase can be used only with a sequential single reel.

If the external device for the file permits rewinding, the following rules
apply:

a. When the NO REWIND phrase is not specified,.. execution of the OPEN
statement causes the file to be positioned at its beginning.

b. When the NO REWIND phrase is specified, e.:x,ecution of the
statement does not cause the file to be repositioned. Therefore,
the NO REWIND pli:i~ase is specified, the-file must have previously
positioned at its beginning.

READ Statement

OPEN
when
been

A file must be opened as either INPUT or I-0 before a READ statement can be
executed.

The READ statement processes only one logical record at a time, regardles,s
of the method in which the file is blocked or buffered. An OPEN statement does
not implicitly READ the first data record of an input file. Only one record of a
file is available at a time; however, a record may be saved by moving it into
working~storage.

For sequential-access file processing, the READ statement makes available
the next logical record from an input or input-output file and allows a
specified imperative-statement to be performed when the end-of-file condition is
detected.

For the sequential-access technique, the READ statement requires tn,E:l
file-name as its operand rather than a record-name. The reason is that a file
mayh(lve several record types, but READ delivers the next available record in
sequence regardless of type. A READ statement that references a specif.ic
record-name is therefore illogical.

For the random-access techn~quP-, the READ statement delivers a logical
record associated with the value in the ACTUAL KEY data-name for the file. If
this value is found to be outside the number of links/llinks assigned to the
file on the file control card, the INVALID KEY procedures are engaged by the
input-output routine. Similarly, the WRITE statement causes a check to b~ made
on the contents of the ACTUAL KEY before the logical record is written to
determine.if the INVALID KEY procedures are to be engaged. When an INVALID KEY
condition exists, no writing takes place and the current record is available to
the program.

Regardless of the method used to overlap access time with processing time,
a record is available prior to· the execution of any statement following the READ
s.tatement.

5..;20 DD26

When a file has more than one record description, these records share the
same. memory area. Only the information that is present in the current re·cord is
accessible. An explicit test should follow each READ statement to determine the
cu~·~ent record type. It is often convenient to plan the record formats of the
fjl~ so that a single item, common to all records, can be tested to determine
the current record type.

Example:

FD FILEA. LABEL RECORDS ARE STANDARD.
01 REC-A.

02 DN-1 PIC 9 (4) •
02 DN-2 PIC X(l20).

01 REC-B.
02 DN-3 PIC 9 (4) •
02 DN-4 PIC X(60).
02 DN-5 PIC X(60).

The contents of DN-1 and DN-3 can be used to determine whether REC-A or
REC-B has just been read.

Each READ statement must include an AT END or INVALID KEY phrase. The
imperative-statement that follows each phrase may include one or more verbs and
is delimited by a period.

INTO OPTION

The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The memory
area associated with 'identifier' and the record area associated with file-name
must not be the same memory area. File-name must not represent a sort file or a
merge file.

If the INTO phrase is specified, the current record is moved from
area to the area specified by identifier according to the rules for
statement without the CORRESPONDING phrase. Any subscripting or
associated with identifier is evaluated after the record has been
immediately before it is moved to the data item.

the input
the MOVE
indexing

read and

When the INTO phrase is used, the record being read is available in both
the input record area and the data area associated with identifier.

AT END PHRASE

The AT END phrase is used for non-mass-storage files and for mass storage
files in the sequential-access mode.

If, after reading the last logical record of a file, another READ statement
is initiated for that file, that last logical record is no longer available in
its record area and the READ statement is completed by the execution of the AT
END phrase. After the AT END condition has been recognized for a file, a READ
statement for that file must not be specified without prior execution of a CLOSE
statement and an OPEN statement for that file. The logical end of the file is
recognized when an end-of-file mark or physical end of unit has been encountered
on the file.

5-21 DDi6

The program must not execute statements referencing data items in an input
file either b~fore the initial READ. statement for the file has been executed, or
after the AT END phrase has be.en executed. Failure to observe this rule may lead
to unpredictable results in the NEIS mode or to an abort condition in the EIS
mode.

If a file described with the OPTIONAL phrase
imperative-statement in the AT END phrase is executed on
standard end-of-file procedures are not performed.

is
the

not present,
first READ.

the
The

If the end of a tape reel is recognized during execution of a READ
statement, and the logical end of the file has not been reached, the following
operations are performed:

a. The system ending reel label procedure and the user's ending
label procedure, if the latter procedure is specif~ed by the
statement. The order o.f execution of these . two procedures
determined by tbe USE statement.

b. A reel swap.

reel
USE
is

c. The system beginning reel label procedure and the user's beginning
reel label .prodedure, if the latter procedure is specified. The order
of execution is again determined by the USE statement.

d. The first data record of the new reel is made available.

INVALID KEY PHRASE

The INVALID KEY phrase is used for mass storage files that are processed in
the r~ndom-acce$s mode.

The READ statement implicitly performs the function of the SEEK statement
for a specific mass storage file. If such a file is accessed for a specified
mass storage record and the contents of the associated ACTUAL KEY data item are
invalid, the INVALID KEY phrase is executed. The maximum value for an ACTUAL KEY
data item is 262,142 .•

WRITE Statement

An OPEN statement specifying either OUTPUT or I-0 must be executed
file prior to referencing a data item in the file or executing the first
statement for that file. The OPEN statement does not implicitly WRITE the
data record of an O\ltput file.

for a
WRITE
first

The WRITE statement is used to place a logical record on the file named in
the associated file descrip"j:ion. The record-name is the name of a logical record
in the File Section of the Data Division and may be qualified. The record~name
must not be part of a sort file or a merge file.

The WRITE statement requires a specific record-name, rather than a
file-name, as its operand. The program steps leading to the WRITE statement may
have prepared any record type defined for the file tor output. Therefore, the
exact record type that has b~en prepared must be specified in t.he WRITE

-statement to permit the appropriate housekeeping to occur in the output-process.

5-22 0026

The WRITE statement performs the following operations after recognizing the
end-of-reel condition on files assigned to a magnetic tape:

a. The system ending reel label procedure and the· user's ending reel
label procedure if the latter procedure is specified by the USE
statement. The order of execution of these two procedures is specified
by the USE statement.

b. A tape swap. (This includes rewinding the completed reel and placing
it in the standby condition.)

c. The system beginning reel label procedure and the user's beginning
reel label procedure if the latter procedure is specified by the USE
statement. The order of execution of these two procedures is specified
by the USE statement.

The previous data content of an output record is not available for further
internal processing after the execution of a WRITE statement referencing that
record unless a process area exists for the file. After a WRITE statement is
ex~cuted, the current record of the file has yet to be built, and the data
values within the current record are consequently unpredictable until the
execution of additional statements causes new values to be transmitted to the
current record. If a process~rea exists for the file, the WRITE statement may
be used repetitively to duplicate records on the peripheral device without
executing any intervening program statements. ·

FROM PHRASE

The FROM phrase causes the value of identifier to be implicitly moved to
record-name (that is, to the current output record area). The identifier must be
the name of a data item within the Working-Storage Section or in an input record
area. If the format of the identifier differs from that of the record-name,
moving will take place according to the rules specified for the MOVE statement
without the CORRESPONDING phrase. Normally, the information in the record-name
area is no longer available, but the information in the identifier area is
available. It is illegal for record-name and identifier to be the same name.

ADVANCING PHRASE

The ADVANCING phrase provides control of the vertical positioning of each
record (line) on the printed page. For printed output, vertical format control
is provided for each line, either by the slewing of one line before pririting,
which is ·automatically provided for files described with the FOR LISTING option
in the SELECT sentence, or by specifying the desired vertical 'Slew control in
the ADVANCING phrase. Otherwise, the output format will not meet printer
requirements and the printout will be unsatisfactory. If the ADVANCING phrase is
not specified, or the AFTER ADVANCING phrase is specified, the time required to
print the report will be twice as long as that required if the BEFORE ADVANCING
phrase is specified. In the ADVANCING phrase, the following rules apply:

a. When a WRITE statement is executed, the value of identifier-2 will
determine the number of lines the listing will be advanced. To avoid
unnecessary numeric conversions, it is recommended that identifier-2
be described as a single-precision binary integer. (That is, it should
be described with USAGE COMPUTATIONAL-3 or USAGE COMPUTATIONAL-! with
a PICTURE containing less than nine digits.)

5-23 DD26

. I

b. When integer is specified, it must be a nonnegative·integer. The value
of integer will determine the number of lines the listing will be
advanced.

c. TOP causes the listing to be advanced to the top of the page. If the
mnemonic-name assigned to the special name 'TOP' is specified, the
effect is the same as if the TOP OF PAGE option is used.

d. The ADVANCING phrase may be used only when the FOR LISTING option has
been specified in the SELECT sentence. It cannot be used for a file
described with OCCURS ••• DEPENDING. The APPLY SYSTEM STANDARD FORMAT
phrase should generally be specified for a file to which
WRITE ••• ADVAN<;ING is applied.

e. When the ADVANCING mnemonic-name phrase is specified, any
mnemonic-name defined in the SPECIAL-NAMES paragraph is a1...ceptable.

The following example illustrates the line spacing of contiguous WRITE
statements with and without the ADVANCING phrase:

Present WRITE AFTER WRITE BEFORE
WRITE WRITE ADVANCING ADVANCING

1 LINE 1 LINE

Previous
WRITE

WRITE Single space Single space overprint

WRITE AFTER
ADVANCING Single space Single space Overprint
1 LINE

WRITE BEFORE
ADVANCING Double space Double space Single space
1 LINE

The.following example illustrates the page spacing of contiguo:us WRITE
statements with the ADVANCING TO TOP OF PAGE phrase:

Previous
WRITE

Present
WRITE

WRITE AFTER
ADVANCING TO
TOP OF PAGE

WRITE BEFORE
ADVANCING TO
TOP OF.PAGE

WRITE AFTER
ADVANCING TO
TOP OF PAGE

One line printed
before advancing
to top of page.

Blank page.

5-24

WRITE BEFORE
ADVANCING TO
TOP OF PAGE

Two lines printed
before advancing
to top of page.

One line printed
before advancing
to top of ·page.

DD26

INVALID KEY PHRAS"•i:

The INVALID KEY phrase is used for processing mass storage files.

For mass storage files in the sequential-access mode, the
imperative-statement in the INVALID KEY phrase is executed when the end of the
allocated space is reached and an attempt is made to execute a WRITE statement
for that f.ile.

For files in the random-access mode, the imperative-statement in
INVALID KEY phrase is executed when the content of the actual key being used
obtain the mass storage record is found to be invalid. When an INVALID
condition exists, no writing takes place and the information in the record
is available. The maximum value for an ACTUAL KEY data item is 262,142.

SEEK Statement

the
to

KEY
area

An explicit SEEK statement is not required for processing mass storage
files. The function of the SEEK statement is performed implicitly by a READ or
WRITE statement. The contents of the actual key are used to determine the
relative location of the desired record within the file when the implicit seek
function is executed.

CLOSE Statement

All files that have been opened must be closed before a STOP RUN statement
is executed.

A CLOSE statement is used to terminate the processing of reels and files,
with optional rewind and/or lock capabilities available where .applicable. A
CLOSE statement must not reference a sort file or a merge file.

If the records of a file are blocked and/or buffered, some output data may
remain in a memory buffer after the last WRITE statement has been executed for
the file. The CLOSE statement causes such data to be written to the peripheral
device, following the appropriate conventions in the case of partially filled
data blocks. This condition emphasizes the requirement that each file be
explicitly closed when processing is completed.

If a file has been specified with the OPTIONAL phrase in the FILE-CONTROL
paragraph and this file is not present, the standard end-of-file processing is
not performed.

For a multiple reel magnetic tape file, standard tape swap procedures are
automatically applied to each reel except the last reel of the f~le, unless
explicit CLOSE REEL statements intervene. The CLOSE statement for the overall
file may affect the position of the final reel, but has no effect on the prior
reels. Similarly, a CLOSE REEL statement affects only the current reel, not
prior or subsequent reels of the file. A CLOSE REEL statement may refer only to
a multiple reel magnetic tape file.

For files described with the FOR LISTING
automatically positioned at the top of the page
executed.

5-25

option,
when the

the report is
CLOSE statement

not
is

DD26

STANDARD CLOSE FILE

If the file is allocated to magnetic tape, the current reel is rewound to
its beginning.

If a CLOSE statement without the REEL option has been executed for a file,
a :READ, WRITE, or SEEK statement for that file must not be executed unless an
intervening OPEN statement for that file is executed.

If the MULTIPLE REEL or MULTIPLE UNIT phrase was specified in the SELECT
sentence of the FILE-CONTROL paragraph for a sequential-access mode input file,
all reels in the file prior to the current reel are processed according to the
standard r~el swap procedure, except for those reels controlled by a prior CLOSE
:REEL statement. If the current reel is not the last in the file, the reels in
the file following the cur,ren·t one are not processed in any manner.

If the MULTIPLE REEL or MULTIPLE UNIT phrase was specified in the SELECT
s.entence of the FILE-CONTROL paragraph for a sequential-access mode output file,
all reels in the file prior to the current reel are processed according to the
standard reel ·swap procedure, except for those reels .controlled by a prior CLOSE
REEL statement.

Standard Close File With Lock Option:
ensure that this file cannot be opened
object pr·ogram.

An appropriate technique is supplied to
again during this execution of this

Standard Close File.With No Rewind Option: The NO REWIND option applies only to
files allocat~d to a magnetic tape. The current reel is left in its current
position.

STANDARD CLOSE REEL

The REEL option applies only to files stored on tape devices. The current
reel is rewound to its beginning position.

Standara Close Reel With Lock Option: An appropriate technique is supplied to
ensure that the current reel cannot be processed again as a part of this file
during ~his ex~cution of this. object program. The current reel is rewotind to its
beginning position and the device is placed in the standby status.

Standard Close Reel With No Rewind Option: The current reel is left ·in its
current position.

USE Statement

The USE statement specifies procedures for input-output label and error
handling that serve as supplements to the standard procedures provided by the
input-output system. It is also used to specify Procedure Division statements
that are executed just before a report group named in the Report Section of the
Data Division is produced. ·

The USE statement in the Procedure Division provides tl:ie mechanism for
.specifying out-of-line procedP·:al statements for processin.g mass stora_ge files.

5-26 DD2.6

A USE statement, when present, must immediately follow a section header in
the declarative portion of the Procedure Division and must .be followed •by a
period followed by a space. The remainder of the section must consist of one or
more procedural paragraphs that define the procedures to be used. The USE
statement itself is never executed; rather, it defines the conditions calling
·for the execution of the USE procedures.

The same file-name can appear in a different specific arrangement of a
format. However, the appearance of a file-name in a USE statement must not cause
the simultaneous request for execution of more than one USE declarative.

A file-name representing a sort file or a merge file may not appear in a
USE statement.

Within a USE procedure, th~re must be no reference to nondeclarative
procedures. Conversely, in the nondeclarative portion, there must be no
reference to procedure-names that appear in the declarative portion, except that
PERFORM statements may refer to a USE declarative or to the procedures
associated with such a USE declarative.

ERROR PROCEDURE PHRASE

The · designated error procedures are executed
input-output error procedures have been executed.

LABEL PROCEDURE PHRASE

The designated label procedures are executed:

after the standard

a. Before or after a beginning or ending input label check procedure is
executed.

b. Before a beginning or ending output label is created.

c. After a beginning or ending output label is created, but before it is
written.

d. Before or after a beginning or ending input-output label check
procedure is executed.

If the file-name phrase is used, the file description entry for each
file-name must not specify a LABEL RECORDS ARE OMITTED clause.

If the words BEGINNING or ENDING are not included, the designated
procedures are executed for both beginning and ending labels.

If the REEL or FILE option is not included, the designated
executed for both REEL and FILE labels. The REEL phrase is not
mass storage files.

5-27

procedures
applicable

are
to

DD26

*

.Within the procedures of a USE declarative in which the USE statement
specifies · a phrase other than the file-name phrase, references to common label
items need not be qualified by a file-name. A common label item is an elementary
data item that appears in every label record of the program, but at the same
time does not appear in any data record of this program. Furthermore, a common

·label item must have the same name,· description, and relative position in every
label record.

If the INPUT, OUTPUT, or I-0 option is specified, the USE procedures do not
apply respectively to input, output, or input-output files that are described
with the LABEL RECORDS ARE OMITTED clause.

The label procedures must not execute any input or output statement.

USE BEFORE REPORTING PHRASE

The designated procedures are executed by the Report Writer just before the
hamed report group is produced, reg~rdless of page, overflow, oi control break
associations with report groups. The report group may be any type except DETAIL.

The indicated identifier represents a nondetail report group named in the
Report Section of the Data Division. The identifier must not appear in more than
one USE statement.

No Report Writer statement (INITIATE, GENERATE, or TERMINATE) may be
written in a procedural paragraph or paragraphs following the USE sentence in
the declarative portion.

3/77 5-28

FILE PROCESSING EXAMPLES

The following codiµg describes the sequencial accessing of
assigned in the SELECT sentence of the FILE-CONTROL paragraph,
will be associated with a mass storage device on the control
program execution.

Example:

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT MASTER-FILE
. ACCESS MODE IS

PROCESSING MODE
DATA DIVISION.
FILE SECTION.

ASSIGN TO MF
SEQUENTIAL
IS SEQUENTIAL.

FD MASTER-FILE LABEL
01 M-RECORD.

RECORDS ARE STANDARD.

PROCEDURE DIVISION.
A. OPEN
B. READ

I-0 MASTER-FILE.
MASTER-FILE AT END GO TO DONE.

} process M-RECORD

IF (no change in contents of M-RECORD)
C. WRITE M-RECORD INVALID KEY PERFORM

GO TO B.
DONE. CLOSE MASTER-FILE.

GO TO B.
(user routine).

a master file
whose file-code
card at object

A file opened in the I-0 state must be read initially and each logical
record is either bypassed with no change or else modified and then written back
on the storage device. If a WRITE statement is immediately followed by another
WRITE statement, the file is positioned to the next logical record before the
second WRITE. An ACTUAL KEY phrase may be included for the mass storage file
but, in the sequential-access mode, its value does not control the records
accessed. The ACTUAL KEY contents are automatically updated, for information
only, as the file is sequentially processed through the values 1, 2, 3, ••• ,
until an end-of-file condition is reached. The standard end-of-file mark (octal
17) is then placed in the ACTUAL KEY data-name.

5-29 0026

Tbe following coding describes the random accessing in a sequential manner
of a master file assigned in the SELECT sentence of the FILE-CONTROL paragraph
whose file-code will be associated with a mass storage device on the control
card at object program execution.

Example:

ENVIRONME~T DIVISION.
l?ILE-CONTROL.

SELECT MASTER-FILE
FILE-LIMITS ARE
ACCESS MODE IS
PROCESSING MODE
ACTUAL KEY IS

DATA DIVISION.
FILE SECTION.

ASSIGN TO MF
0 THRU 179
RANDOM
IS SEQUENTIAL

ACTUAL-KEY-1.

FD MASTER-FILE LAB'EL RECORDS ARE STANDA,RD
BLOCK CONTAINS 384 CHARACTERS.

01 M-RECORD.
02 REC-KEY PIC 9(6).
02 OTHER-DATA PIC X(378).

WORKING-STORAGE SECTION.
77 ACTUAL-KEY-1 PIC 9(6) COMP-1, VALUE O.
PROCEDURE DIVISION.
A. OPEN I-0 MASTER-FILE.
B. READ MASTER-FILE INVALID KEY GO TO INVALID-ROUTINE.

} process M-RECORD

IF (no change in contents of M-RECORD) ADD 1 TO ACTUAL-KEY-1
GO TO B.

C. WRITE M-RECORD INVALID KEY GO TO INVALID-ROUTINE.
ADD 1 TO ACTUAL-KEY-1 GO TO B.

INVALID-ROUTINE.
IF ACTUAL-KEY-1 IS LESS THAN 180 PERFORM (user routine) ~

DONE. CLOSE MASTER-FILE.

This example presumes that the master file has been assigned three random
links on a disk device by means of a file control card. It is this provision and
not the FILE-LIMITS phrase in the FILE-CONTROL paragraph that determines the
size of the file on the mass storage devi6e. The BLOCK CONTAINS clause in the FD
entry establishes a record block size of 64 words which is the logical record

·size in this example. Then the number of record blocks per link is 3840/64=60 o.r
180 for three links. Since the ACTUAL KEY is incremented by 1, from 0 through
17 9, over the three links,· the INVALID KEY procedures are engaged when the value
180 is reached. If the .BLOCK CONTAINS clause were omitted, the maximum record
size is used as the block size for each access.

Although the example shows the updating of current records on a
random-access file, other possibilities are not precluded. That is, it is
possible to insert new records within a file if file space exists within the
number of links available. However, deletion of records may only be accomplished
by writing over the record space which no longer contains pertinent information.

Even though the qperating system does not provide for label records on a
random-access mass storage device, it is still necessary to include the LABEL
RECORDS ARE STANDARD clause in the FD entry.

5-30 DD26

SECTION VI

LOW-VOLUME DATA TRANSMISSION

ACCEPT STATEMENTS

The ACCEPT statements provide access to various low-volume input character
data sources.

The specific devices accessed by ACCEPT statements vary considerably among
the COBOL compilers of different computers, depending upon the availability of
external devices and the characteristics of the operating system. Therefore, the
language allows ACCEPT statements to be as machine independent as possible. In
an ACCEPT statement, the desired source of the data is specified by a
mnemonic-name originated by the user. This mnemonic-name must in turn be
associated with a specific data source in the SPECIAL-NAMES paragraph of the
Environment Division. Thus, the medium to be used is actually mentioned only in
the Environment Division, which is recognized to be highly machine dependent.

The ACCEPT statement permits input access to:

1. GIN (the system input feature of the operating system).

2. COMMUNICAT.ION-DEVICE (the
Section VII) •

Transaction Processing interface; see

3. REMOTE (a terminal not operating under the control of the Transaction
Processing System).

4. GLAPS (an operating system feature that provides accumulated processor
time for the current run unit).

5. GTIME (an operating system feature that provides the system date and
the system .clock time) •

6. CONSOLE and TYPEWRITER (the system operator interface).

7. SWITCH (a portion of the program switch word, a special software
feature provided by the operating system) •

When the FROM mnemonic-name phrase is not used in an ACCEPT statement, the
input source is considered to be system input (GIN). The FROM phrase must be
specified for any other input source. Specific conventions for the various
ACCEP~ sources are described throughout this section.

6-1 DD26

"DISPLAY STATEMENTS

The DISPLAY statements provide access to va:ri0us low-volume
character data destinations.

output

The specific devices accessed by DISPLAY statements vary considerably among
the COB~L compilers of different computers, depending upon the availability of

.external devices and the characteristics of the oper,ating system. Therefore, the
language allows DISPLAY statements to be as machine independent as possible. In
a DISPLAY statement, the desired destination of the data is specified with a
mnemonic-name originated by the user. This mnemonic-name must in turn be
associated w.:i,.th a specific data destination in the SPECIAL-NAMES paragraph of
the Environment Division. Thus, the medium to be used is actually mentioned only
in. the En'wironment Division, which is recognized to be highly machine dependent.

The DISPLAY statement ipermits output access to:

1. SYSOUT (the low-volume system output feature of the operating system).

2. , COMMUNICATION-DEVICE (the Transaction Processing
Section VI I) .

interface; see

·3., REMOTE (a terminal not operating under the control of the Transaction
Processing System) .

4.i CONSOLE and TYPEWRITER (the system operator interface).

5. · SWITCH (a portion .of the program switch word, a special software
feature provided by the operating system).

When the UPON mnemonic-name phrase is not used in a DISPLAY statement, the
output destination is considered to be system output (SYSOUT) • The UPON phrase
must be specified for any other output destination. Specific conventions for the
various DISPLAY destinations are described throughout this section.

The following rules apply to all DISPLAY statements:

1. When the DISPLAY statement specifies multiple operands, the data
characters associated with each operand are concatenated in the order
of the occurrence of the operands. Operands are not automatically
separated by spaces.

2. The first character of the first operand is positioned in the first
character position of a line, subject to the effects of any horizontal
and vertical tabulation control characters embedded in the data. If
such characters are used, line length limits must not be exceeded.

3. Identifiers must have been described with USAGE DISPLAY (explicitl~ or
implicitly) or DISPLAX-1. Literals may be figurative constants, in
which case their size is understood to be one character. ALL has no
significance.

6--2 DD26

DATA TRANSMISSION TECHNIQUES

System Input

System input (GIN) is a special card image input provision of the operating
system. Along with the control cards submitted to schedule an activity for
execution, the user may submit data cards intended as input for the program.
Such a collection of data cards may be formally regarded as an input file, in
which case the program must include the provisions described for input files in
the File Declaration paragraph in Section v. Alternatively, each card may be
regarded as an independent item of input data, to be accessed via an · ACCEPT
statement. The latter approach is applicable when the card format is suitable
and the volume is limited.

To utilize GIN via ACCEPT statements, the user may either omit the FROM
phrase, or associate a mnemonic-name with GIN in the SPECIAL-NAMES paragraph of
the Environment Division. ·The data item mentioned in the ACCEPT statement must
then be a USAGE DISPLAY item. The input item is assumed to occupy the leftmost
character positions of the card. No automatic format check or conversion is
provided, so it is recommended that the user employ IF statements to assure that
th~ input card contents satisfy the receiving item~s description. Similarly, no
automatic end-of-file provision is available, so the user must provide an
end-of~file test if the volume of system input data can vary. However, each
ACCEPT statement executed after the system input is exhausted obtains all
spaces~ as if a blank card had been read.

The utilization of ACCEPT statements that receive data from GIN in a module
ove~lay environment must be carefully planned to avoid possible overlay loading
on top of the COBOL subroutine that controls input from GIN. One method that may
be used to avoid such an overlay is to place at least one ACCEPT statement in
the mairi module that will never be overlayed. That statement need not actually
be executed.

System: Output

System output .(SYSOUT) is a special output collecting provision of the
operating system. The object program and system programs can transmit printer
line images to SYSOUT, where they are collected on a storage device. After the
execution of the object program is terminated, media conversion of the SYSOUT
data to the printer is automatically scheduled and accomplished.

Unless overridden by the options specified in the variable field of the
$ LIMI:TS card, the operating system limits the total volume of data that SYSOUT
can receive from a single execute activity to 5000 unit records (corresponding
to print lines). In addition, SYSOUT has only limited provision for structuring
special preprinted or multiple-part forms on the printer. Subject to these
limitations, an activity may transmit as many as eight intermixed reports to
SYSOUT, one of which may be the result of DISPLAY statements. For reports having
considerable complexity, the Report Writer feature is recommended. For a l,imited
number, of lines of miscellaneous information, however, the use of SYSOUT via
DISPLAY statements may be more practical.

Tp utilize SYSOUT via DISPLAY statements, the user may either omit the UPON
·phrqse, or associate a mnemonic-name with SYSOUT in the SPECIAL-NAMES paragraph
of the Environment Division. A printer line is considered to contain 132
character ·positions •. The DISPLAY statement may produce more than one line of
printing to SYSOUT if the cumulative size of the referenced operands exceeds a
total ·of 132 characters.

6-3 DD26

To maintain machine independence, printer control characters should not be
used in SYSOUT lines. However, hardware dependent slew control can be e.xercised
with. the figurative constc;i,nt HIGH-VALUE which, in a DISPLAY statement,
represents a single format control 'escape.' charac.t.e:t'.. Thus, the DISPLAY
HIGH-VALUE 1 1 1 statement slews one line, DISPLAY HIGH-VALUE 1 2 1 slews two lines,
etc., up to a maximum of nine lines. The DISPLAY HIGH-VALUE SPACE statement
causes the printer to slew to the top of the next· page~

The utilization of DISPLAY statements that transmit data to SYSOUT in a
module overlay environment must be carefull,y planned to avoid possible overlay
loading. on top of the COBOL subrqu·tine that controls output for SYSOUT displays.
One method that may be used to avoid such an overlay is to place at .least one
DISPLAY statement in the main module that will never be· overlayed·. That
statement need not actually be executed.

Transac:&ion Processing Int:~x.:f-ace
~%'\• .. ~· ®™

The Transaction Processing System interface is accessed by specifying the
]\CCEPT MESSAGE and DISPLAY s.tatements using a mnemonic-name that corresponds to
the mnemonic-name associated with COMMUNICATION-DEVICE in the SPECIAL-NAMES
paragraph. Refer to Section VII for a description of the COBOL and Transaction
Processing System interface, and to the Transaction Processing System User's
Guide for specific format conventions·and programming applications.

Re.mote Devices

By. specifying a :mhe.monic-name associated with REMOTE in the SPECIAL-NAMES
paragra~h of the Environment Division, a COBOL program that interacts with a
remote terminal device can be produced. The resulting object program is
submitted for execution in the same manner as a program that uses the
direct-;access file interface. The ter.minal ape.rater may t:h~n request connection
to the, executing program through the operating system's time sharing or
direct-access interfaces~ In order to establish interaction with the program's
ACCEPT and DISPLAY stat,ements, the inquiry name must be limited to the job
number .associated with the executing program.

A remote terminal is treated as a type of unit record device.
purposes, the unit record is assumed to be 80 characters in length.
purposes, the unit record. is assumed to be 72 characters in length.

For inpu.t~
For: output

Each ACCEPT statement whose mnemonic-name is associated with REMOTE will
cause a single interaction with the. remote terminal. The system ope·rator is
notified that a response is expected by a carriage return followed by the
display of the character '?' and the ringing of the terminal's bell, if the
terminal is so equipped. The input cparacters, if any, . are converted to
Hollerith, USAGE. DISPLAY characters and are moved int,o the data item referenced
in the ACCEPT stateme,nt. The refere:pced .. data item should be. described, either
explicitly .or implicitly, as US.AGE DISPLAY. No automatic format check or radix
conversion is performed.

Each DISPLAY statement whose mnemonio~name is associated with REMOTE will
cause from one to four lines to be displayed on the remote terminal:, depending
upon the size of the referenced data items. Each line will_ contain at most 72
charact~rs, thereby limiting the total size of the referenced items to 288
characters~

. I

6-4 DD26

Elapsed Processor Time

GLAPS is a special operating system feature that provides
time accumulated by the current run unit. The increments of time
units of 1/64 millisecond.

the processor
are given in

To utilize GLAPS via ACCEPT statements, GLAPS must be associated with a
mnemonic-name in the SPECIAL-NAMES paragraph of the Environment Division, and
that name must be referenced in the FROM mnemonic-name phrase of .an ACCEPT
.statement.

To obtain time resolution in units of
identifier item must be a working-storage
equivalent to the following:

1/64
data

millisecond,
item whose

77 data-name PICTURE 9(10) USAGE 'COMPUTATIONAL-3.

Date and Time

the receiving
description is

GTIME is a special operating system feature that provides the current
system date and system clock time. The date is given in terms of the month, the
day, and the year. If the HMS option is specified for the mnemonic-name
definition, the time is given in hours, minutes, and seconds; otherwise, the
time is given in units of 1/64 millisecond.

To utilize GTIME via ACCEPT statements, GTIME must be associated with a
mnemonic-name in the SPECIAL-NAMES paragraph of the Environment Division, and
that name must be referenced in the FROM mnemonic-name phrase of an ACCEPT
statement.

To obtain time resolution in units of
identifier item must be a working-storage
equi val.ent to the following:

01 data-name.
02 MONTH PICTURE 99.
02 DAY-OF-MONTH PICTURE 99.
02 YEAR PICTURE 99.

1/64
data

millisecond,
item whose

02 TYME PICTURE 9(10) USAGE COMPUTATIONAL-3.

the receiving
description is

If HMS is specified in the GTIME phrase to obtain time resolution in terms
of hours, minutes, and seconds, the identifier item must be described
differently. The receiving data item for the time must not be described as USAGE
COMPUTATIONAL-3 but rather as USAGE DISPLAY (explicitly or implicitly). For
exampl~, the receiving identifier could be described as:

01 data-name.
02 MONTH PICTURE 99.
·02 DAY-OF-MONTH PICTURE 99.
02 YEAR PICTURE 99.
02 TYME PICTURE 9(6).

NOTE: The data-names used in these examples are for illustration only.

6-5 0026

Console or Typewriter

Because of the overall demands on the system operator, undisciplined
interaction with the operator's console may have an adverse affect on system
performance. The use of ACCEPT· and DISPLAY statements for system operator
console interaction is not recommended in a multiprogramming environment.

The implementor-names TYPEWRITER and CONSOLE are both associated
.. system operator console. However, their use implies different
interaction with that console.

with
types

the
of

In some cases, communication with the operator either does not require a
response from the operator or the response from the operator is not necessarily
associated with a previous message sent to the operator. The implementor-name
TYPEWRITER is provided for this type of conununication with the operator. The us.e
of the implementor-name TYPEWRITER emphasizes the treatment of the console as a
unit record device. SucceE;;'.$ive interactions are treated as unrelated program
steps. In the multiprogramming environment, interactions that are caused by two
successi;ve statements in the source program may be widely separated by other
console interactions initiated by other programs or· by the operating system.

S~nce there are many sources and types of operator messages in a
multiprogranuning environment, it is usually necessary to ensure that a message
that requires a response is closely associated with the request for that
response. The implementor-name CONSOLE provides this capability. The use of the
i 1mplementor-name CONSOLE .emphasizes interactive conununication with the system
operator. Successive DISPLAY and ACCEPT statements, even when widely separated
in the source program, are treated as interrelated parts of a single
console interaction that occµrs when the ACCEPT statement is executed. In this
manner, the displayed text is able. to immediately precede a relate.a request for
input. It is suggested that the DISPLAY statement be used to inform the operator
of the nature of the expected response .•

Physically, the operator console is treated as a type of unit record
device. For input purposes, the unit record is ass~ed to be 80 characters in
length •. For output purposes, the record is assumed to be 72 characters in
le.ngth. •

Each ACCEPT statement whose mnemonic-name is associated with TYPEWRITER
~~11 caµse a single interaction with the operator's console. The system operator
is notified that a response is expected by a carriage return followed by the
message 'TYPEIN EXPECTED ••. '. The input characters, if any, are treated as
Hollerith, USAGE DISPLAY characters and are moved into the data item referenced
in the ACCEPT statement. The referenced data item should be described,
explicitly or implicitly, as USAGE DISPLAY. No automatic format check or radix
conversion is performed.

Each DISPLAY statement whose mnemonic-name is associated with TYPEWRITER
will cause from one to four lines to be display~d on the system console,
depending on the size of the referenced data items. Each line will contain at
most 72 characters, thereby limiting the total size of the referenced items to
288 characters. If more than one line is emitted for a given DISPLAY statement,
there is no assurance, in a multiprogramming environment, that the lines will be
juxtaposed on the console display.

6-6 DD26

Each ACCEPT statement whose mnemonic-name is associated with
cause a single interaction with the operator's console. The system
notified that a respons·e is expected by the display of a message.
will have one of the following forms:

CONSOLE will
operator is
The message

a. If a DISPLAY statement associated with CONSOLE has been executed, the
message will be the text of the last line associated with the latest
prior DISPLAY statement. The message will be followed by tfie
characters '???'.

b. If no prior DISPLAY statement associated with CONSOLE has been
executed, the message will be 'TYPEIN gXPECTED ..• '.

The input characters, if any, are treated as Hollerith, USAGE DISPLAY
characters and are moved into the data item referenced by the ACCEPT statement.
The referenced data item should be described, explicitly or implicitly, as USAGE
DISPLAY. No automatic format check or radix conversion is performed.

Each DISPLAY statement whose mnemonic-name is associated with CONSOLE will
allow from one to four lines to be displayed on the system console, depending on
the size of the referenced data items. Each line will contain at most 72
characters, thereby limiting the total size of the referenced items to 288
characters. The output line (or, if mor~ than one line results from the
statement, the last output line) is held in a buffer until the next execution of
an ACCEPT statement associated with CONSOLE. At that time~ the line will be used
to inform the operator of a pending need for a response.

The ACCEPT and DISPLAY statements need not appear together. in the source
program, provided that the DISPLAY statement is executed first. Should no ACCEPT.
statement be executed after the DISPLAY statement, the output data is not
displayed. Two DISPLAY statements of this kind with no intervening ACCEPT
statement would result in the suppression of the output from the first DISPLAY
statement. If more than one line results from an execution of a DISPLAY
statement associated with CONSOLE, all lines except the last line are emitted at
once and, in a multiprogramming environment, there is no assurance that any of
the lin~s wi~l be juxtaposed on the cbnsole dispLay.

Switches

The operating system establishes a 'program switch word' for each activity.
The 36 pits of each program switch word represent 36 software 'sense switches'.
For COBOL purposes, the switches are numbered O, 1, 2, ••• , 35. Switches 0-5 and
12-17 are reserved for the use of the operating system. Switches 18-35 may be
used for communicating between activities. Switches 6-11 are reset at the
beginning of each activity using the ON option of the $ EXECUTE card. (Refer to
the Control Cards reference manual.) Each of the switches 6-11 is set OFF at the
beginnl.;ngof each activity unless an option· of the$ EXECUTE card causes it to
be set ;ON, as shown below:

ON Setting
for switch

$ EXECUTE
Card Option

ONl
ON2
ON3
ON4
ONS
ONG

6-7 DD26

A switch is ON if its value is ·one (1) and OFF if its value is zero (0).

Each switch to be used must be associated with a mnemonic-name in the
SPECIAL-NAMES paragraph of the Environment Division. In the Procedure Division,
an ACCE;PT ••• FROM statement may cause a data item to receive the switch s·ettinq,
or a DTSPLAY ••• UPON statement may cause the switch to be set ON or OFF according
to the following rules:

1. Only one operand is permitted in a DISPLAY statement thnt transmits
data to the .switches; that is, if a DISPLAY statement refers to a
mnemonic-name associated with a switch, only one operand (data-name,
literal, or the figurative constant ZERO) may be given. If the value
of the operand is 1, the switch will be set ON; if the value is O, the
switch will be set OFF. If a literal is used, it must be an integer
that has a value of 1 or O. If a data-name is sp~cified, it must be a
COMPUTATIONAL-I data item in the Working-Storage Section, with a size
not exceeding eight digits. The fbllowing data description is

· recommended :

77 data-name PICTURE 9 COMPUTATIONAL-I.

If the value of the item exceeds one (1), the value modulo 2
determines the switch setting.

2. If a mnemonic-name associated with SWITCH is specified, the ACCEPT
statement causes the value 'of data-name to be set to 1 if the switch
is ON, or set to 0 if the switch is OFF. The data-name must be a data
item in the·working-Storage Section whose description ·is equivalent to
the following:

77 data-name PICTURE 9 COMPUTATIONAL-1.

An alternative method of testil'.lg a switch is provided by the switch-status
condition test (see Section VII in the COBOL Reference Manual). In this
application, a mnemonic-name must.be specifically associated with either the ON
or OFF setting of a switch.

To illustrate the use of switches, consider that one program must determine
whether or not a subsequent program is to produce a certain report. The report
is to be produced only if switch 35 is set ON. The setting of the switch can be
programmed as follows:

3/77

Program 1 (Setting switches):

SPECIAL-NAMES phrase: .

SWITCH 35 IS REPORT-CONTROL

{
ON STATUS IS ••• }
OFF STATUS IS •• ~ ·

Procedure Division statement:

IF • • • DISPLAY 1 ON REPORT-CONTROL

ELSE DISPLAY 0 ON REPORT-CONTROL.

6-8 DD26A

The decision to produce the report or not can be progranuned in one of the
following two ways:

Program 2 (Sensing switches) :

SPECIAL-NAMES phrase: SPECIAL-NAMES phrase:

SWITCH 35 IS REPORT-CONTROL SWITCH 35 IS REPORT-CONTROL

ON STATUS IS ON STATUS IS

DO-REPORT. DO-REPORT.

Procedure Division statement: Data Division syntax:

IF DO-REPORT 77 SWITCH-VALUE PIC 9 COMP-1.

PERFORM •••

Procedure Division statements:

ACCEPT SWITCH-VALUE FROM

REPORT-CONTROL.

IF SWITCH-VALUE = 1

PERFORM •••

3/77 6-8.l DD26A

DATA TRANSMISSION PROGRAM EXAMPLE

An example of a conversational
program is entered as a CARDIN job
TSS Terminal/Batch Interface manual
is caused to first compile and then
to the batch job by a request to
(underlined in the example).

COBOL program is presented below. The
from a remote terminal. (Refer to the

for details concerning CARDIN.) The program
execute with the user's terminal connection

RUN followed by the operator responses

Example:

10$;IDENT;VHA73,STATION-F
20$;COBOL;NDECK,LSTOU,ON6
30;IDENTIFICATION DIVISION.
40 ;;PROGRAM-ID. TALK.
SOiENVIRONMENT DIVISION.
60;CONFIGURATION SECTION.
70;SOURCE-COMPUTER. 6000 WITH EIS.
80;0BJECT-COMPUTER. 6000 WITH EIS.
90;SPECIAL-NAMES.
lOO;;REMOTE IS REM.
lSO;FILE-CONTROL.
160;I-O-CONTROL.
200;DATA DIVISION.
210;FILE SECTION.
300;WORKING-STORAGE SECTION.
310;77 MESSAGE-RQST PIC 9 COMP-1.
320;77 END-RQST PIC X(3).
lOOO;PROCEDURE DIVISION.
1010;START SECTION.
1020;TELL-ON-THE-AIR.
1030;;DISPLAY 'START OF EXAMPLE TALK RUN' UPON REM.
1040;;DISPLAY 'INPUT CHOICE OF TASK BY TYPING 001,002, OR 003'
1045;; UPON REM.
1050;TAKE-MESS. ACCEPT END-RQST FROM REM.
lO(iO;;IF END-RQST 'END' GO TO DONE.
1065;;MOVE END-RQST TO. MESSAGE-RQST.
1070;;GO TO TASKl, TASK2, TASK3
1080;; DEPENDING ON MESSAGE-RQST.
1090;;DISPLAY 'BAD REQUEST--RETRY OR TYPE END' UPON REM.
llOO;;GO TO TAKE-MESS.
lllO;TASKl.
1120;;DISPLAY 'TASKl IS COMPLETED' UPON REM.
ll30;;GO TO ASK-FOR-MORE.
1140;TASK2.
llSO;;DISPLAY 'TASK2 IS COMPLETED' UPON REM.
1160;;GO TO ASK-FOR-MORE.
1170;TASK3.
1180; ; DISPLAY 'TASK3 IS COMPLETED' UPON REM.
1190;ASK-FOR-MORE.
1200;;DISPLAY 'READY FO.R NEXT--TYPE 001,002,003 OR END'
1210;; UPON REM GO TO TAKE-MESS.
12~0;DONE. DISPLAY 'TALK RUN COMPLETED' UPON REM.
12;30; STOP RUN.
9000$ EXECUTE;DUMP
9009$ ENDJOB

READY

6-9 DD26

Exampl~ {cont):

*RUN
SNUMB # 5532T

CARD FORMAT,DISPOSITION .?
M,T
TAB CHARACTER AND SETTINGS?
i '8' 16
START OF EXAMPLE TALK
INPUT CHOICE OF TASK
?001
TASKl IS COMPLETED
READY FOR NEXT--TYPE
?002
TA§i'.~ IS COMPL.ETED
REAL)~ FOR NEXT--TYPE
?0,03
TASK3 IS COMPLETE:Q)
READY FOR N$:XT--T'¥;P'E
?999

RUN
B¥ TYPING

00,l, 002 '003

001, 002 ~ 003

001,on2,003

BAP REQUEST--RET,RY OR TYPE ENO
?END
TALK RUN COMPLETED
ACTIVITY TERMINATED
*NORMAL TERMINATION

001,002,

OR END

OR END

OR END

6-10

OR 003

QD26

SECTION VII

TRANSACTION PROCESSING SYSTEM

The Transaction Processing System (TPS} consists of the Transaction
Processing Executive (TPE) that is part of the operating system, and the

·Transaction Processing Appliqations Programs (TPAPs) that are written by the
user to process transactions.

Some of the features of the Transaction Processing Executive are discussed
in this section in general terms to assist the user to understand the interface
between the user-supplied TPAP and the Transaction Processing System •. However,
to obtain specific format conventions and programming details, refer to the
Transaction Processing System User's Guide.

TRANSACTION PROCESSING EXECUTIVE. (TPE)

The Transaction ~recessing Executive controls the receipt of transactions
from terminals and delivers the transactions to appropriate Transaction
Processing Applications Programs for processing. The TPE also. directs output
messages to terminals from the TPAPs. If a requested terminal is not accessible,
the TPE holds the output for later transmission.

If direct coriununication between a user at a .terminal and a
requir~d, the TPE sc~edules the TPAP and performs the line switching
for direct•access coriununication. ·

TPAP Profile Table

TPAP is
necessary

The user must provide the Transaction Processing Executive with information
that will enable the TPE to associate an input message with the appropriate
TPAP. This information is assembled into the TPE using a macro.

The user-supplied parameters for the macro that are applicable to a COBOL
TPAP are:

1. A unique three-character TPAP identifier (ID} that matches
three characters of the program-name in the TPAP's
paragraph.

the first
PROGRAM-ID

2~ Nine binary digits (bits), used to indicate whether or not:

a. The TPAP is to be called into execution with the special message
***STRT and possibly terminated with the special message ***TERM.

7-1 DD26

b. The TPAJ? input is in BCD format (ASClI forrpat is not supported by
COBOL).

c. The TPAP output is in BCD format.

d. Me·ssage input oz;-der is to be maintained.

e~ A line switch is required (direct-access mode).

f. A.journal of the transaction messages is" required.

g. The TPAP is to remain in memory. and be available·.

3. The TPAP input buffer size.

4. T:he TPAP output bt;tffer size (assigned in the TEE;)~'·

5. The type of buffe~r assignment; fixed o:r dynamic·;.

6. The priorii\:ty of the TPAP (optional) to indicate· qµeueing order.

7. A list of ke.ywords. and their associated priorities (optional).

8. The number of keywords.

Trq.nsaction Message Fo.rmat

The format of thE} tra;nsaction messag~ accepted by the TPE is flexible. The
only required field in the .. message is the keyword that the TPE uses to identify
and schedule the appropriate TPAP. The format of the transaction message is:·

Field 1 Field 2 Field 3

(xxx) kkkkkkkk mm ••• m

Field 1 (xxx) is the optional logical terminal identifier (ID) • This
logical ID is composed of three alphanumeric characters enclosed in parentheses.
It is used primarily to identify the termin-al to the TPAP for directing the
transac~ion output. If the logical ID is not specified, the physical line ID i~
used. However, the physical line ID is only valid while the terminal ie:
connected. If the terminal ~s disconnected before the output is delivered, there
will be no valid destination ID, and the 6utptit will be undeliverable.

Field 2 (kkkkkkkk) describes the transaction keyword. The keyword may be
from· one to eight characters in length and must be followed by a blank or comma
i£ it is less than eight characters. The keyword identifies and~ in effect,
se,lects : the TPAP to be. used to process the transaction. A TPAP may have one or
more keywords; these.keywords may carry priorities in order to establish the
queueing priority structure in the TPE. If the keyword in the incoming
t,ransact;.ion message cannot be matched with a keyword associated with one of the
TPAPs, the transaction input is rejected. An entry for an acceptable transaction
r:e.quest ,is placed in a. queue depending on the priority associated with the
k~yword and.the TPAP.

Field 3 (mm ••• m) contains the message text. The format of this message is
determined by the TPAP. The message must be terminated with a special
end-of-message symbc;>l defined by the user installation. The message. length must·
meet. the: requirements for th,e type of terminal being: utilized.

7-2 DD26

TRANSACTION PROCESSING APPLICATIONS PROGRAMS (TPAPS)

The TPAPs are user-supplied programs that are written to process any number
of different functions. These functions can be differentiated by keywords (TPAP
identifiers). Any number of keywords can be associated with a TPAP.

Since the applications programs are 4esigned and developed by the user, the
functions performed by the TPAP are at the discretion of the user.

TPE/TPAP Interface

The TPE and the TPAP do not communicate directly with one another. All
conununication between the two modules is accomplished through the intercom input
and output files.

If the TPAP is written in COBOL, the compiler provides the necessary
interface for conununicating with the TPE using the COMMI and COMMO subroutines.
The communication of information between the TPE and each TPAP is through a
buffer-to-buffer exchange.of data.

The COBOL PROGRAM-ID for a TPAP must contain a unique program-name in the
first three characters of the maximum six-character name. The program-name is
used to identify a given TPAP to the system, and is the name associated with the
keywords used in the transaction input. The sta.ndard method of generating
file-names to ensure a linkage between the files of the TPE and the intercom
files.of the TPAP that are generated by the COBOL compiler is described below:

1. The input file (called the intercom input file) is created with the
name ZxxxI, in which xxx represents the first th~ee characters of the
program-name specified in the COBOL PROGRAM-ID paragraph. The TPAP
receives input data via this file from a correspondingly named file in
the. TPE.

2. The output file (called the intercom output file) is created with the
name ZxxxO. The TPAP will transmit data from this file to a file in
the TPE that has a corresponding name.

Iptercom Input File Processing

Each input to the TPAP via the intercom input (intercom I) file contains
the entire text of the message from the terminal plus an input header. The
length of the text is limited to the length that the Transaction Processing
Executive is capable of processing and to the defined buffer sizes. The input
message may not be segmented.

7-3 DD26

The input header descriE>tion has the following implied COBOL record
description:

01 INPUT-HOR.
02 INPUT-TRANS-NO PICTURE 9 (8) .COMP-1.
02 INPUT-STATUS PICTURE 9(8) COMP-1.
02 INPUT-SIZE PICTURE 9 (8) COMP-1 .•
02 SOURCE-ID PICTURE X(3) SYNC LEFT.
02 MESSAGE-DATE PICTURE 9(6).
02 MESSAGE-TIME PICTURE 9 (B) COMP.;_l.
02 QUEUE-DEPTH PICTURE 9 (8) COMP-1.

The,s:e implicit descriptions provide access to data pertaining to the input
messages. ·The user can spe·cify these names (except INPUT..-'HDR) for other purposes
wit.bin t.he program as long as each· reference within the program (including a:ny
referen:ce to the elementary i,tems within the input header) is qualified.

For example, if the TPAP contains a transit number table described as:

01 TRANSIT.
02 INPUT-TRANS-NO OCCURS 10 TIMES

INDEXED BY INPUT-TRANS-NDX.
03 DISTRICT-1 PIC 9(4) DISPLAY.

03 DISTRICT-10 PIC 9(4) DISPLAY.

The user must specify INPUT-TRANS-NO of TRANSIT {INPUT-TRANS-NDX) to access
the appropriate transit number within the table.

The user must specify INPUT-TRANS-NO 'of INPUT.:.HDR to access the transaction
number within the message input header.

INPUT SUBROUTINE (COMMI)

The input subroutine (COMM!) is called for an ACCEPT MESSAGE statement that
implies input from a termina.l.

The three-character PROGRAM-ID is used by the input subroutine to form a
file-name (ZxxxI) needed to communicate with the intercom file. The input
subroutine contains one 210-word buffer {ZINBUF) that is of sufficient size to
hold a full screen of data (26 lines) from a keyboard display terminal. (The TPE
always sends complete messages, that may be up to a full screen in size.) The
first nine words of the b.uf fe.r contain the message· header after input; message
text always begins in tne tenth word. The COBOL compiler generates the implicit
r:ecord. description to describe this input header contained in the transaction
~eqtiest. · ·

After issuing a read to the intercom file, the COMMI delays for a status
'c.ondition on the read. If data is available, it is moved ·to the· internal ·work
area specified in.th~ ACCEPT MESSAGE statement. The message is transferred to
the rece.iving area (referenced by identifier) left-justified without. space-fill.

7-4 DD26

There is no end-of-segment indicator, since an end-of-message indicator is
included with each transmission from the TPE.

COBOL INPUT STATEMENT PROCESSING

The user need not reference the input header directly. The appropriate
references will be made automatically by the COBOL compiler when the ACCEPT
MESSAGE identifier FROM mnemonic-name statement is specified. Identifier is the
name of the record area within the TPAP program that is to receive the
transaction message (excluding the input header information) • The identifier
must be a level 01 or a level 77 data item in the Working-Storage Section.

The mnemonic-name in the ACCEPT MESSAGE statement must be
the mnemonic-name specified in the COMMUNICATION-DEVICE
SPECIAL-NAMES paragraph. Th~ compiler generates the implicit
header descriptions and places them into the data-name
COMMUNICATION-DEVICE phrase is processed.

associated with
phrase of the

input and output
table when the

When no data is ready to be processed by the TPAP, the statements
executed can be specified by including the NO DATA imperative-statement
with the ACCEPT MESSAGE statement. The input subroutine COMM! . provides
DATA return. The specified imperative-statement is executed when no
available.

to be
phrase

the NO
data is

If the NO DATA phrase is omitted from a TPAP,.control is returned to the
statement immediately following the ACCEPT MESSAGE statement when data is
received; however, if no data is available, the prog~am is suspended until data
is available. At that time control is returned to the statement following the
ACCEPT MESSAGE. statement.

Intereom Outptit File Processing

There is no limit to the number of DISPLAY statements a TPAP may issue to
send a complete transaction message, although each complete message should not
exceed the limit imposed by the type of terminal that is to receive the message.
The Transaction Processing Executive accepts only 128 words at a time;
therefore, long messages must be segmented by the Transaction Processing
Applications Program. Each segment must contain the output header.

The output header desc:ription has the following implied COBOL record
description entry:

01 OUTPUT-HOR.
02 OUTPUT-TRANS-NO PICTURE 9(8) COMP-1.
02 OUTPUT-STATUS PICTURE 9(8) COMP-1.
02 OUTPUT-SIZE PICTURE 9(4) COMP-1.
02 DEST~coUNT PICTURE 9(4) COMP-1.
02 DESTINATION PICTURE X(3) SYNC LEFT

OCCURS 12 TIMES•

·7-5 DD26

These implicit descriptions provide access to information which is used to
build an output header for a message prior to releasing i1:. to the TPE. These
names (except OUTPUT-HOR) may be us·ed for other purposes within a program as
long as each reference within the program (including any reference to the
elementary items within the output header) is qualified. The program at the end
of this section includes an example of the multiple use of DESTINATION within
the program for purposes other than the output header. DESTINATION of OUTPU'l'-HDR
(subscript) must be specified to reference the appropriate terminal destination
in the messag·e output header •.

Wh.en the output message.is to be transmitted to the same ,logical identifier
and transaction number as the input message, the compiler will automatically
initialize the output header description for the TPAP ..

When the output message is to be transmitted either to a destination oth6fz;
than ti'bat of the input message or to more than one destination, the user must
;pe·rform the following ste:p:s prior to the execution of ~ DISPLA:Y statement:

l~ Move the transaction numbe,r
(OUTPUT-TRANS-NO) if it differs
(INPUT-TRANS-NO) •

to the output
from the input

transaction
transaction

number
number

2. Indicate the number of terminals that are to receive the output
message by moving a value from one (1) to twelve (12), inclusive, to
the DEST-COUNT field.

3. Move the logical identifier for each receiving terminal into
DESTINATI0N(x), where x is a literal or subscript containing a value
from one (1) to twelve (12), inclusive, but not exceeding the value in
DEST-COUNT.

The length of the message to be transmitted will be moved automatically by
the COBOL object program to the output message size (OUTPUT-SIZE) field·
regardless of the destination.Cs) of the message unless it is user specified. In.
this case, if a vaiue larger than the data field is specified, a ex abort is
generated.

OUTPUT SUBROUTINE (COMMO)

The output subroutine (COMMO) is cailed to transmit output (processed:
transaction data) from the TPAP to the TPE.

The oritput su~routine in COBOL provides the following capabilities:

1. When a DLSPLAY to a communication device is executed, the subroutine
first moves the output header information to the intercom O file in
the TPE, and then moves the message text to that file. The move of the
message text is controlled by the number of characters · specified in
the OUTPUT-SIZE field.

Each message moved to the intercom o
containing a character count which
message.

file is
specifies

pref aced by
the l.ength

a wo:r:d
of the

3. If the OtJ;TPUT-SIZE field contains zeros, the size of the .sending field
containin~g the -data will be u<sed.

7-6 DD2~

4. If the contents of the OUTPUT-SIZE field contain a message larger than
the ·message that can be contained in the sending field, a ex abort is
generated. This field is zeroed after usage by COMMO.

5. If the OUTPUT•STATUS field contains zero, the value generated in the
CALL is inserted.

6. If the contents of the OUTPUT-STATUS field are nonzero, then this
field will not be modified. This field is zeroed after usage by COMMO.

7. The subroutine generates an END-OF-SEGMENT,
END-OF-TRANSACTION, depending on the contents of
subroutine.

COBOL OUTPUT STATEMENT PROCESSING

END-OF-MESSAGE,
the entry to

or
the

The output transaction number in the output header must be initialized by
the TPAP prior to the execution of each DISPLAY statement if it is different
from the input transaction number in the input header.

The END-OF-SEGMENT, -MESSAGE, -TRANSACTION options may only be used when
data is to be displayed upon a communication device spe-cified by mnemonic-name.
One of these three modes and a COMMUNICATION-DEVICE (mnemonic-name) must be used
to display data to the TPE, regardless of the destination IDs in the header.

text of a segment within a long
.•• END-OF-SEGMENT UPON mnemonic-name

an appropriate abbreviation for
option is to be used when the

too small to contain the entire

When a TPAP is ready to transmit the
message, the DISPLAY literal (identifier)
statement should be specified. ESI is
END-OF-SEGMENT. The ES! or END-OF-SEGMENT
Transaction Processing Executive buffer is
message.

The mnemonic-name in the UPON phrase must correspond to the mnemonic-name
specified in the COMMUNICATION-DEVICE phrase of the SPECIAL-NAMES paragraph. The
compiler generates the implicit input and output header descriptions and places
.them into the data-name table when the COMMUNICATION-DEVICE phrase is processed.

When a TPAP is ready to transmit the text of the last segment of a long
message, or all of the text of a short message, the DISPLAY literal (identifier)
••• END~OF-MESSAGE UPON mnemonic-name statement should be specified. EMI is an

,appropriate abreviation for END-OF-MESSAGE. The EMI or END-OF-MESSAGE option
(whether included in the DISPLAY statement or generated by the COBOL compiler)
indicates that more messages may follow using the same transaction number. If
EMI or END-OF-MESSAGE is not included in the DISPLAY statement and mnemonic-name
corresponds to the mnemon:i,c-name specified in the COMMUNICATION-DEVICE phrase of
the SPECIAL-NAMES paragraph, the COBOL compiler will automatically transmit an
END-OF-MESSAGE symbol at the end of the transaction message.

When a TPAP is ready to indicate that the message text is the end of the
last message for the specified transaction number, the DISPLAY literal
(identifier) ··• END-OF-TRANSACTION UPON mnemonic-name statement should be
specified. ETI is an appropriate abbreviation for END-OF-TRANSACTION. It is
required to specify a DISPLAY ••• END-OF-TRANSACTION statement in order to begin
processing another transaction. The TPAP must send an ETI to remove a
transaction from execution; the ETI is not automatically generated in the next
ACCEPT MESSAGE statement.

7-7 DD26

When data is to be transmitted to a terminal, the destination ID in the
output header (DESTINATION) is used as the logical terminal ID ·by the TPE.
DEST-COUNT will be set to one (1) and DESTINATION (1) wi.11 be initialized to the
input ider:itifier (SOURCE-ID) if the TPAP does not initialize these fields prior

.to the execution of each DISPLAY statement.

One TPAP may call another TPAP into execution by specifying the COBOL
statements MOVE ·l .TO DEST-COUNT. MOVE''***' TO DESTINATION (1). , followed by
one of the DISPLAY statement options ESI, EMI, or ETI. The output of the first
TPAP will be used as input to the second TPAP. The format of. the message must be
that of the ·input file format from the conununication device to the first TPAP.
The keyword· in.the message identifies the second TPAP that is to be called into
execution.

An:example of the method used to call another TPAP into execution ·follows:

.Example:

SPECIAL-NAMES.
COMMUNICATION-DEVICE IS TFS-TERMINAL.

DA'J:'.A DIVISION.
WORKING-STORAGE SEC.TION.
01 TPAP-SPAWN.

02 LOGICAL-ID.
X VALUE ' ('. 03 FILLER PIC

03 TERMINAL-ID
03 FILLER PIC X

02 TPA.P-KEYWORD PIC
02 TPAP-MESSAGE PIC

PROCEDURE DIVISION.
PAR-NAME.

PIC XXX. ·
VALUE ') '·

X(8) VALUE
X(80).

'ACCTOO"l4 I •

ACCEPT MESSAGE TPAP-SPAWN UPON TPS TERMINAL.
MOVE 1 TO DEST-COUNT.
MOVE '***' TO DESTINATION(l).
MOVE SOURCE-~D .TO TERMINAL-ID.
DISPLAY TPAP-SPAWN ETI UPON TPS-TERMINAL.

Direct-Access (DAC) Mode Processing.

The COBOL interface may also be used for direct-access (DAC) transaction
processing. A TPAP may contain .ACCEPT MESSAGE. and DISPLAY statements that
reference mnemonic-names used in the DAC.processing mode. DAC mode processing is
specified with the REMOTE IS mnemonic-name phrase in the SPECIAL-NAMES
paragraph.

When a TPAP requires direct interactive communication with a terminal, a
line switching bit must be set in the TPAP profile table in the TPE. When t:qe
line sw:itch is made, the line is logically disconnected from the TPE and a
direct connection is established between the terminal and the TPAP. The TPAP can
be in direct communication only with the originating terminal. At least one
ACCEPT MESSAGE statement must be executed before the TPAP ·requests a line
switch.-When the TPAP is ready to accept a message directly from the terminal,
the line switch· will · be established by the TPE when the ACCEPT l.iteral
(identifier) ••• FROM mnemonic-name statement is specified.

7-8 DD26

In the DAC mode, a program may accept or display any number of messages to
or from the remote device. When the program is ready to accept another
transaction from the TPE, it transmits an ACCEPT MESSAGE statement. The
int~rface subroutine recognizes that the last message from the TPAP was in the
DAC mode and performs a line switch to return the line to the TPE. When the
terminal is returned to the TPE, the previous logical ID(s) of the terminal must
be redefined before they can receive output. When the line is switched, the next
transaction request is received, and the TPE again switches the line, if
requested, to the TPAP so . that it can process the transaction in the
direct-access mode.

When the TPAP is ready to transmit a message directly to the terminal, the
DISPLAY literal (identifier) UPON mnemonic-name statement should be
specified.

The direct-access transaction operation ends when the TPAP disconnects the
line or switches it back to the TPE.

A Transaction Processing Applications
direct-access mode must not terminate without
message for the transaction being processed.

Program
sending

The Transaction Processing Executive must receive
message for each transaction before it will release the
subsequent transactions.

Transaction Processing Applications Program Example

executing . in the
an END-OF-TRANSACTION

an END-OF-TRANSACTION
TPAP for processing

The following program is a simplified version of a TPAP, written in COBOL,
that could be tised for airline scheduling. In addition to the TPAP, the user
would.have to supply a data base for the TPAP to apply against the transaction.

7-9 0026.

1

000010
000020
000030
000040
000050
000060
000070
000080
000085
000090
000110
000120
0002.0.0
00021'0
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000500
000501
000502
000503
000504
000505
000506
000507
000510
000520
000530
000540
000550
000560
000570
oopsao
000590
000600
000610
000620
000630
000640
OOQ642
000700
000710
000720
000726
000730
000740
000748
00()750
00()751
000752
OOQ753

8 12

IDENTIFICAT:t'ON DIVISION.
PROGRAM-ID. XXX.
AUTHOR.
DATE-WRITTEN. SEPTEMBER 19 7.4 •
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTE·R. 600,0 WITH EIS.
OBJECT-COMPUTER. 6000 WITH EIS.
SPECIAL-NAMES.

COMMUNICATION-DEVICE IS TERM-3.
FILE-CONTROL. ,

SELECT SCHEDULE ASSIGN TO CR FO.R CARDS.
DATA DIVISION.
FILE SECTION.
FD SCHEDULE;
LABEL RECORDS ARE STANDARD;
DATA RECORDS ARE FLIGHT-SCHED.
01 FLIGHT-SCHEI:>.

02 .FLIGHT; P'ICTURE X(4).
02 FILLER; PICTURE AAAA.
02 DESTINATION; PICTURE X(20).
02 FILLER; PICTURE AA.
02 AIRMILES; PICTURE X(S).
02 FILLER; PICTURE AAA.
02 DEPTIME; PICTURE X(8).
02 FILLER; PICTURE AAA.
02 ARRIVE; PICTURE X(8).
02 FILLER; PICTURE X(27).

WORKING-STORAGE SECTION.
77 N; PICTURE 99 COMPUTATIONAL-1.
77 I; PICTURE 99 COMPUTATIONAL-1.
77 SW; PICTURE 9.

01 INPUT-REQUEST.
02 NME PIC XXX.
02 CMA PIC X.
02 CHECK-REQUEST PIC X(20).

01 END-STATEMENT.
02 JOBDONE; PICTURE A(20) VALUE "DONE".

01 DATA-SPACE.
02 DATA-FILE; OCCURS 20 TIMES.

03 FLIGHT; PICTURE X(4).
03 DESTINATION; PICTURE X(20).
03 AIRMILES; PICTURE X(5).
03 DEPTIME; PICTURE X(S).
03 ARRIVE; PICTURE X (8) •

01 TEMP-FILE.
02 FLIGHT; PICTURE X(4).
02 DESTINATION; PICTURE X(20}.
02 AIRMILES; PICTURE X(S).
02 DEPTIME; PICTURE X(8).
02 ARRIVE; PICTURE X(8).

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT SCHEDULE.
STORER.

PERFORM DATA-STORAGE VARYING N FROM 1 BY
UNTIL N GREATER THAN 20.

GO TO PROCESS.
PROCESSA.

ENTER LINKAGE MODE.
POPUP DATA-STORAGE.
ENTER COBOL.

7-10

l·

DD26

1

000754
000755
000770

000775
000790
000795
000800
000801
000814
000815
000816
000820
000830
000840·
000850
000900
090910
000920
000930
000940
0·00950
0100960
0.00962
000963
000964
000965
000966
000970
000980
000990-
001010
0,01025
0;01026-
001030
001035

' 001200
$
***EOF

8 12

PROCESS.
MOVE SPACES TO INPUT-REQUEST.
ACCEPT MESSAGE INPUT-REQUEST FROM TERM-3

GO TO WAIT.
EXAMINE CHECK-REQUEST REPLACING ALL
IF CHECK-REQUEST = JOBDONE GO TO
MOVE 0 TO SW.
PERFORM DATA-COMPARE

N GREATER THAN
· IF SW = 1 GO TO

VARYING N FROM
20 OR SW = 1.
WRITER.

ZEROS
ENDO.

1 BY

NO DATA

BY SPACES.

1 UNTIL

DISPLAY "NO COMPARE ON CHECK-REQUEST END-OF-TRANSACTION"

GO
ENDO.

UPON TERM-3 •
TO PROCESS.

CLOSE SCHEDULE.
STOP RUN.

DATA-STORAGE.
READ SCHEDULE; AT
MOVE CORRESPONDING
MOVE TEMP-FILE TO

DATA-COMPARE.
IF CHECK-REQUEST

DATA-FILE (N.)
WAIT.

ENTER GMAP.
MME GERELC

ENTER COBOL.
GO TO PROCESS.

WRITER.

=

END GO TO PROCESSA.
FLIGHT-SCHED TO TEMP-FILE.

DATA-FILE (N).

DESTINATION IN
MOVE 1 · TO SW.

DISPLAY "FLIGHT# DESTINATION # AIR-MILES DE
"PT TIME AR-TIME "

FLIGHT IN DATA-FILE (N)," ",DESTINATION IN
DATA-FILE (N), 11 ",AIRMILES IN DATA-FILE (N)," ",DEP
TIME IN DATA-FILE (N) ," ",ARRIVE IN DATA-FILE (N)
"END-OF-TRANSACTION" UPON TERM-3.
GO TO PROCESS.

END PROGRAM.
ENDJOB

7-11 0026

SECTION VIII

REPORT WRITER

DESCRIPTION OF THE REPORT WRITER

The Report Writer provides the facility for producing reports by specifying
the physical appearance of a report instead of specifying the detailed
procedures necessary to produce the report.

A hierarchy of levels is used to define the logical organization of a
report. Each report is divided into report groups, which in turn are divided
into seq~ences of items. This hierarchical structure permits explicit reference
to a report group with implicit reference to other levels in the hierarchy. A
report group contains one or more items to be presented on one or more lines.

The Report Writer feature places emphasis on the organization, format, and
contents of an output report. Although a report can be produced using the
standard COBOL language, the Report Writer language characteristics provide a
more concise method for report structuring and report production. Much of the
Procedure Division coding which would normally be supplied by the user is
instead provided automatically by the Report Writer Control System. Thus, the
user is relieved of writing procedures for moving data, constructing print
lines, counting lines on a page, numbering pages, producing heading and footing
lines, recognizing the end of logical data subdivisions, updating sum counters,
etc. All of these operations are accomplished by the Repo~t Writer Control
System from source language statements that appear primarily in the Report
Section of the Data Division of the source program.

Data movement to a report is directed by the Report Section clauses SOURCE,
SUM, and VALUE. Fields of data are positioned on a print line by means of the
COLUMN NUMBER clause. The PAGE clause specifies the length of the page, the size
of the heading and footing areas, and the size of the area in which the detail
lines will appear. Data items may be specified to form a control hierarchy.
During the execution of a GENERATE statement, the Report Writer Control System
uses the control hierarchy to check automatically for control breaks. When a
control break occurs, summary information (subtotals) can be presented.

Report Format

A report may consist of any meaningful combination of the following syntax
selections:

• REPORT HEADING (one for each report)

• PAGE HEADING (one format for each report)

8-1 DD26

• OVERFLOW HEADING (one format for each repox:tJ

• CONTROL HE~ING (one format for each contJtol level)

• DETAIL (no limit for each repol;t)

• CONTROL FOOTING (one format for each control level)

• OVERFLOW FOOTING ·(one format for each :r:eport)

• PAGE FOOTING Cone format for each report)

• REPORT FOOTING Cone for each report)

In Q~,BOL, each report. is d,escribed· in the Report.; Section of the Data
Q.~v.i14.sion. The user specif·ie~ the intended format of ~a;ch of the headings,.
footiJ?.Qi 1 and detail. line&, .t,n the report, as well as a.11 sour.ces of data. A
~ePJ~:i;-t "inay utilize data q~scribed in the File Secti<m. and:, Working-Storage
Section;. In addition, the ... u$e:t" specifies the overall organization and intended
page layout of the report".

The compiler provides the following functions in the ·object program:

1. Vertical format control, including line counting, page counting, and
productio~t of page headings and footings.

2. Detection of contrql breaks.

3. Production. of control heaQ.ings and footings.

4. Accumulation of c.ontrol totals to any number of control levels.

s. Exec\ltion of user-defined procedures be:eore presentation of control
headings and· footings.

6. Production of overflow headings and footings.

Report Contrql in tqe Proced~re Division
;,._

Theproduction of a report is controlled in the Procedure Division with
three report writing statements:

e INITIATE

e GENERATE

e TERMINAT~,

The .BEFORE REPORTING phrase of the USE statement may also be used to.
control the production of a report.

8-2 DD26 .. :

The relationship of the above statements
statements is illustrated by the following flow
program:

to other
chart of

Procedure
a simple

START

OPEN Input File
and Report File

INITIATE
Report

READ· Input AT END/INVALID KEY
File-~~~~~~--~~--~~~---4•

TERMINATE
Report

Normal

No

Yes

--~~~~--1 GENERATE
Detail

CLOSE Input
and Output

Files

STOP ·RUN

GENERATE causes tests for
control breaks and page breaks,
with appropriate actions, as
well as detail line presentation
and total accumulation.

Division
reporting

Before a GENERATE statement is executed, the report must be initiated. The
INIT.IATE statement causes initial housekeeping values to be established and
report and page headings to be presented.

The GENERATE statement provides for all aspects of report editing, writing,
and housekeeping, but GENERATE in itself makes no provision for reading input
data or deciding when detail lines should be produced. Instead, the user
explicitly obtains each input record via COBOL statements such as the READ
statement.

When the last GENERATE statement has been executed,
terminated. T.he TERMINATE statement causes final · control
footings to be presented.

8-3

the report must be
footings and report

DD26

The immediate destination of a report is always a file ·specified in the
File Section of the Data Division• The.file must be explicitly opened prior to
execution of the report's INITIATE statement, andthe file must be explicitly
closed after the TERMINATE. The report writing stateme.r.\'ts implicitly perform
whatever writing is required for the report.

Skeletal Format for the Report Section

The definition of each report includes two types of entries:

1. The RD entry specifies the basic page layout and the overall
organization of t.he report.

2 Report item des.;eription entries give the
elements of the J:.ep:ort and the sources of
report.

detailed formats
all. information

of
for

all
the

Ari RD entry in the Report Section is analogous to an FD entry in the File
Section; it is the highest level of hierarchical organi.zation for the report.
The report-name specified in each RO entry must be unique.

A level 01 report group description entry is analogous to a level Ol data
record description entry in the File Section. A level 01 report item is called a
~eport group. The hier.archical definition of the report group is completed with
a series of subordin.ate entries with levels 02-49.

-An item with no subordinate items (even if its level is. 01)
elementary item. Any report item whose entry is followed by subordinate
is a group item.

is an
entries

Since several reports may be defined in the Report Section, the skeletal
format of the Report Section is as follows:

REPORT SECTION.
RD r~port-name-1 •••
01 report-group-name •••

02 •••

01 •••

RD. report-name-2 •••
01 •••

RD report-name-n •••

Complete
description of
first report

8-4 0026

A GENERATE statement refers to the data-name of a level 01 detail report
item (a report group). For sununary reporting, GENERATE may refer instead to the
report-name of an RD entry instead of a detail report group data-name. The order
in-which level 01 report ~roups are specified for a· given report is not
significant.

Within each- report group, items to be printed must be described from left
to right. If the report group contains multiple lines, they must be described in
order from top to bottom.

The length of each line is determined by the compiler, and depends upon the
capacity of the line printers. Spaces are assumed except where a specific item
is to be printed. (In a data record, on the other hand, every character position
must be described.)

RD Entries

The description of each report begins with an RD ·entry. Except for
level indicator (RD) and the report-name, all clauses in an RD entry

the
are

optional. ·

TQe optional clauses . in an RD en tr:' a.ce:

Clause

CODE

CONTROL (S)

PAGE LIMIT (S)

HEADING

FIRST DETAIL

LAST DETAIL

FOOTING

Report Group Entries

Function

To assign a unique letter or digit to label each
of this report on intermediate storage. (The
character does not appear in the printed report.)

line
code

To specify data-names of control items, in the order
from most significant to least significant.

To specify the maximum number of lines per page.

To specify the line number at which page or overflow
headings may begin.

To specify the line number at which detail and control
lines may begin.

To specify the line number beyond which detail and
control heading lines must not be printed.

To specify the line number beyond which control footing
lines must not be printed.

Typically, the description of a report includes two or more level 01 report
group entries, each followed by a hierarchy of subordinate entries. Depending
upon a number of factors, most clauses (except the level-number clause) are
optional. In most entries, the data-name is optional and is normally omitted. A
data-name is specified in level 01 detail report group entries and in certain
other entries, described later. ·

8-5 DD26

At the 01 report, group level, the following clause is required:
\

Clause

TYPE

\

Function

To specify the purpose of this report group (detail,
page or control heading, etc.).

The optional clauses in a report group entry are:

Clause

LINE, NUMBER

NEXT GROUP

COLUMN NUMBER

BL1)NK WHEN ZERO

GROUP INDICATE

JUSTIFIED RIGHT

PICTURE

RESET

SOURCE, SUM, or
VALUE

USAGE

ELEMENTS OF A REPORT

Rei>ort Groups

Function

To specify vertical spacing ('.s'lewing.) that is to
preaede production of thi·s repoz;;t. group.

To. specify vertical spacing that
production of this report group.

is to follow

To specify that this item is to be printed, and to
specify its horizontal position on the line.

To cause. this item's value to. be 'spaces' when the
SOURCE or SUM with which it is associated has the value
zero.

To cause this item to be printed only at the top of the
page and just after each control break.

To override normal left justifica~ion when this ite~ is
edited for output.

To specify the desired output format for this item.

To specify control breaks where the control total is to
be reset to zero.

To sp.ecify the source of data for this item:

1. SOURCE - a data i tern.

2. SUM - a 'control total'.

3. VALUE - a literal.

To specify DISPLAY-! format when necessary.

Each integral unit of data presented in a report, such as a page heading or
fo9ting, control heading or footing, or detail line is called a report group. A
report group may consist of one or several actual lines in the printed report.
In the Report Section, the first entry of each report group has level 01.

group The TYPE clause is a required part of each level 01 report
description entry. The TYPE clause identifies the report group as detail or as
report, page, overflow, or control heading or footing. Each report must contain
at least one TYPE DETAIL report group. All other types are optional. A given
heading type may be used with or without the corresponding footing, and vice
versa. A report may have several distinct detail report groups or control
heading or footing report groups, but no more than one of each of the other
types.

Control Data Items

Each control heading or footing is associated with a specific control data
item. A control item may be any item described in the File Section or
Working-Storage Section.

Control items are related to the repo}:t by a list of control data-names
specified in the CON'l'ROL(S) clause of the RD entry. When control items are
specified, the reportihg procedures in the object program automatically monitor
all control items for changes in value.

The most significant possible control level is associated with the reserved
word FINAL, which may optionally be specified in the RD entry's CONTROL(S)
clause and in a control heading and/or a control footing report group
description entry.

Any control item may be associated with a specific control heading and/or a
specific control footing report group. (Control report groups may be specified
for each contr61 item, for none, or for any subset of control items.) Control
footings may call for automatic accumulation of control totals.

Control heading report groups are presented in the following hierarchical
order:

FINAL CONTROL HEADING
MAJOR CONTROL HEADING

MINOR CONTROL HEADING

Control footing report groups are presented in the following hierarchi-al
order:

~INOR CONTROL FOOTING

MAJOR CONTROL FOOTING
FINAL CONTROL FOOTING

A control break is recognized whenever a control item has changed in value
between execution of the previous GENERATE statement and the current · GENERATE
statement.

If the item producing a control break is
(rightmost) item in the list of a11·control items,
occurred at all less significant levels as well.

8-7

not the
then a

least
control

significant
break has

'DD26

A control break causes the following automatic. acti-ons:

l. Rolling forward of control totals.

2. Pr.esentation of control footings up through the control break level.

3. Resetting control totals to zero, up through.the control break level.

4. Presentation of control headings from the ·control break level ·down
through the least significant control level.

When it is specified,. a final control heading is;presented only once ·for
·the report, upon the first execution of a GENERATE statement. Similarly, a final
;.control <fiootihg is presented only once, upon execution of the TERMINATE
·Statement.

When the TERMINATE statement is ·executed, a final
.understood to have occurred, so all ·control footing report
presented, in order from. least significant through final.

control
groups

break is
are then

When-a control break occurs, control footings must use the old values of
the control data items, while control headings use the new value.s of the control
data items. A special provision causes old control item values to be retained
for control footings. No such provision exists for items which are not control
items.·

.Page Breaks and Overfiow Breaks

If page heading and/or page footing report groups are specified, they are
automatically presented at the top or bottom of each page .of the printed report.

A 'control group' consists of all control heading, detail, ·and control
footing report groups produced between two successive control breaks (including
the control footing(s) produced by the latter).

The bottom of a page may be reached either between control groups or within
a control _group. In some cases, one set of page heading and/or footing formats
can be specified if a page break occurs between control groups, and a different
set of headings and/or footings can be specified if a page break occurs within a
~control group. Headings and footings in the latter category are called
'overflow' headings and footings. If overflow headings and footings have ·been

. specified, a page .bi;::eak within a control group is considered to have produced an
'overflow' condition.

On a given page, either a page heading or an overflow heading may 'appear,
\.,but not both. Similarly, either a page footing or an. over£ low footing ma·y
:.:appear, but not both. (If overflow headings are not specified but page headings
~are specified, each page break produces a page heading. The equivalent rule
applies for overflow and page footings.)

If, overflow headings or footings are specified for a report, the RD entry
must include the ~S'l1 DETAIL,phrase of the PAGE LIMITS.clause.

8-8 '0026

If a report has both page and overflow headings and/or
overflow footings, the FOOTING phrase of the PAGE LIMITS
detection and results in an overflow condition as follows:

both page and
clause affects

1. If the FOOTING phrase is omitted, an overflow condition . exists
whenever the current detail or control footing report group cannot fit
on the current page.

2. If the FOOTING phrase is specified, an overflow condition exists if
the current report group is a detail which cannot fit within the LAST
DETAIL phrase limit. If the current report group is a control footing,
an overflow condition exists if the entire set of control footing
report groups produced by this control break cannot fit on the current
page (within the FOOTING phrase limit). This feature may be used· to
force all control footings to appear within a single page.

When an overflow condition occurs, it exists from the presentation of the
last elel\lent of the current control group on one page to the presentation of the
first element of the same control group on the next page.

Except when an overflow condition is determined as described above, a page
break causes presentation of page footings and headings.

File Characteristics

Each report is produced on an output file by the object program. The output
file must be described by at least an ~D entry in the File Section of the Data
Division plus associated Environment Division paragraphs and phrases.

A given output file may receive one or more reports. The REPORT(S) clause
of the FD entry lists the report or reports belonging to the file. This is the
only explicit relationship between a report and the file to which it belongs.
(Although a GENERATE statement does not mention the output file, any necessary
'writes' to the file are implied by each execution of a GENERATE statement.)

For a file receiving multiple reports, it is necessary to label each report
line uniquely so that the lines belonging to the respective reports can be
distinguished for printing. The CODE clause of the RD entry is used for that
purpose:. With the CODE clause, the user can associate a unique letter or numeric
digit w,i th each report; the compiler then causes every line of the report to be
labeled in a standard manner with the unique character assigned by the user. The
code character appears in intermediate storage only ·(e.g. , SYSOUT or magnetic
tape), not in the printed report.

All files referenced by Report Writer clauses or statements must have a
process area applied, either by explicitly specifying· the .APPLY PROCESS AREA
phrase or implicitly by specifying the FOR CARDS or FOR LISTING phrase.

Line Counter

A line counter is implicitly provided for each report. It is used
generated reporting procedures to recognize page (and overflow) breaks,
control vertical page format.

8-9

by
and

the
to

DD26

is reset to
reset, and
NEXT GROUP

The line counter is automatically set to zero initially, and it
zero whenever a page break occurs •1 It is automatically set'·
incremented on the basis of values specified in the LINE NUMBER and
clauses in the respective report groups. It is automatically tested
of values specified in the PAGE LIMITS clause of the RD entry.

on the basis

A page break occurs whenever a relative LINE NUMB~R.or relative·NEXT GROUP
value causes the line counter to exceed a relevant PAGE LIMITS value.

The fixed data-name LINE-COUNTER may be referred to if it is ·necessary. to·
access the line counter contents. The report-name may be used as a qualifier for

·LINE-COUNTER; such qualification is necessary whenever the Report Section
includes more than one.report.

If the last line produced had no relevant NEXT GROUP clause,
counte:r value is the number ot the last lin~ printed. Otherwise,
~ounter value- is the numb$r of the la.st line skipped.

the
the

1.ine
line

Procedure Division statements should never change the value of a line
counter •. Otherwise, an unpredictable loss of page format control may occur •.

P_~ge Counter

A page counter is implicitly provided for ·each report. It is primarily used
as a SOURCE data item within page heading report groups, to provide consecutive
page numbers for the report.

The initial value of the page counter is one. Its value is automatically
incremented by one each time a page break occurs. ('I'he increment follows
production of any page or overflow footing, but precedes production of any page
or overflow heading.)

The fixed data-name PAGE-COUNTER is referred to in a SOURCE clause or in
the Procedure Division to access the page counter value. The report-name may be
used as a qualifier fbr PAGE...;.COUNTER; such qualification is necessary whenever
the Report Section includes more than one report.

Normally, Procedure Division statements should not change the value of a
page counter. However, a Procedure.Division statement may change the starting
value of a page counte·r if an initial page number other than one (1) is desired.

REPORT WRITER EFFICIENCY TECHNIQUES

SUM Counter Manipulation

A function of the Report Writer that must be clarified to avoid producing
inefficient object code is the manipulation of SUM counters. There are three
distinct types of SOM counter manipulation; subtotalling, rolling forward, and
crossfodting. A definition and illustration of each type of manipulation is
presented below.

8-10 DD26

SUBTOTALLING

Subtotalling is the most basic type of SUM counter manipulation. In this
method, a SUM counter is augmented by the value of the SUM operand for each
execution of a GENERATE statement of the TYPE DETAIL report group which contains
the SOURCE counterpart of the SUM operand.

Example:·

01 DETAIL-1 TYPE DETAIL LINE PLUS 1.
02 SOURCE IS COST.

01 MINOR TYPE CF MINR LINE PLUS 1.
02 SCTR-1 COLUMN 50 PIC Z(6).99 SUM

01 INTERMEDIATE TYPE CF INT RM LINE PLUS
02 SCTR-2 COLUMN 50 PICZ(6).99 SUM

01 MAJOR TYPE CF MAJR LINE PLUS L
02 SCTR-3 COLUMN 50 PIC Z(6).99 SUM

01 FIN-TOT TYPE CF 'FINAL LINE PLUS 1
02 SCTR-4 COLUMN 50 PIC Z(6).99 SUM

COST.

L
COST.

COST.

NEXT GROUP NEXT PAGE.
COST.

At each execution of a GENERATE DETAIL-1, the value of COST will be added
into SUM counters SCTR-1, SCTR-2, SCTR-3, and SCTR-4. When a control break
occurs, no 'rolling forward' of c.ounters is necessary since all counters are
effectively 'subtotalled'. The only remaining actions to be performed are:

1. Presentation of the control
inclusive (MINOR) up through
control break level.

footing report groups
the control footing

from the least
representing the

2.. Res~tting the corresponding SUM counters to zero after each control
footing is presented.

ROLLING FORWARD

Rolling forward is a type of SUM counter manipulation in which SUM counters
defined ~n control footing report groups of lower control levels are added to
SUM counters defined in control footing report groups of higher control levels
during control break processing.

In the previous example, for instance, the identical results may be
obtained more efficiently by 'rolling f6rward' the SUM counters.

8-11 DD26

Example:

01 DETAIL-1 TYPE DETAIL LINE PLUS 1 •
. 02 SOURCE IS COST •.

01 LINE PLUS 1. MINOR TYPE
02 SCTR-1

CF MINR
COLUMN 50 P!C Z(6).99 SUM. COST.

01 INTERMEDIATE TYPE
02 SCTR-2 COLUMN

CF INTRM LINE
50 PIC Z(6).99

LINE PLUS 1.

PL.US 1.
SUM SCTR-1.

0 l "!MAJOR TYPE CF .;zMAJR
'"·02 SCTR-3 COLUMN 50 PI C Z (6) • 9 9 SUM ,S CT R~2 •

01 FIN-TOT TYPE :EF
02 SCTR...;4 COLUMN

FINAL LINE PLUS
50 PIC Z(G).99

1 NEXT GROUP
SUM SCTR~3.

.NEXT

The following sequence ·of events occurs in the above. example:

PAGE.

1. At each execution of a GENERATE DETAIL-! statement, the value of COST
is added into SUM counter SCTR-1 (subtotalling) •

2. When a control break occurs on control data-name MINR,
footing report group called MINOR is presented; then
SCTR-1 is added (rolled forward) to SUM counter SCTR-2.

the control
SUM counter

3. When a control break occurs at a higher control break level, the
control footing report groups are pre.sented in sequence from the
inclusive (MINOR) .up to and including the control £coting at which the

·control break occurred. After each control· footing is presented, the
SUM counters for that report group are· rolled forward to corresponding
SUM counters in higher level control footing report groups.

Thus, the subtotalling 6peration occu~s only at the least
(MINOR) control break level. The remaining SUM counters are
only when control break processing takes place •

. CROSSFOOTING

inclusive
augmenbed

Crossfooting is a type of SUM counter manipulation in which SUM counters
defined in a given control footing·report group are ·added to other SUM counters
in the same report group during control break processing.

8-12 DD26

Example:

01

01

01

DETAIL-1 TYPE
02 SOURCE IS
02 SOURCE IS

DETAIL LINE
COST-1.
COST-2.

MINOR TYPE CF MINR LINE
02 SCTR-1 COLUMN 50 PIC
02 SCTR-2 COLUMN 60 PIC
02 SCTR-3 COLUMN 70 PIC

PLUS

PLUS
Z(6) .99
Z(6) .99
Z(9).99

INTERMEDIATE TYPE CF INTRM LINE
02 SCTR-4 COLUMN 50 PIC Z(6) .99
02 SCTR-5 COLUMN 60 PIC Z(6) .99
02 SCTR-6 COLUMN 70 PIC Z(9).99

l.

1.
SUM COST-1.
SUM COST-2.
SUM SCTR-1, SCTR-2.

PLUS 1.
SUM SCTR-1.
SUM SCTR-2.
SUM SCTR-4, SCTR-5.

The following sequence of events occurs in the above example:

1. At each execution of a GENERATE DETAIL-1 statement, SUM counters
SCTR-1 and SCTR-2 are augmented by the corresponding values of COST-1
and COST-2 (subtotalling).

2. When a control break occurs for the control footing report group
called MINOR, SUM counters SCTR-1 and SCTR-2 are added into SUM
counter SCTR-3 before the report group is presented (crossfooting) •

3. After the report group called MINOR is presented, SUM counters SCTR-1
and SCTR-2 are added into SUM counters SCTR-4 and SCTR-5, respectively
(rolled forward).

4. SUM counters SCTR-1, SCTR-2, and SCTR-3 are reset to zero.

5. When a control break occurs for the control footing report group
called INTERMEDIATE, SUM counters SCTR-4 and SCTR-5 are added into SUM
counter SCTR-6 before the report group is presented (crossfooting) •

SOURCE/SUM Correlation

A conunon source of error in Report Writer programs
misunderstanding of the SOURCE/SUM correlation concept. This
stated, requires that a SUM operand must either be:

results from a
·concept, simply

1. The object of a SOURCE IS clause in a TYPE DETAIL report group, or

2Q The name of a SUM counter defined in a lower level control footing
report group.

The source error which occurs most frequently is that a given
description (RD) contains more than one TYPE DETAIL report group, and a
SUM operand appears as the object of a SOURCE IS clause in more than one
DETAIL report group.

8-13

report
given

TYPE

DD26

Example:

RD REPORT-! CONTROLS
0.1 DETAIL~l TYPE

02 SOURCE IS

ARE MINR •••
DE LINE PLUS
COST.

1.

01 DETAIL-2 TYPE DE LINE PLUS 1.
02 SOURCE IS COST.

01 MINOR TYPE
02 SCTR'."'"l

CF MINR LINE PLUS 1.
COLUMN 50- PIC Z (6). 99 SUM COST •. ·

For each execution of either a GENERATE DETAIL-! o.r a GENERATE DETAIL-2
statement, the SUM counte;r. S'CTR-1 will be augmented by th,e value of COST since
it is the object of _a SOURCE IS clause in both TYPE DETAiL report groups.

The UPON phrase of the SUM clause ·may be used to selectively augment a
given SUM counter.

If the previous {last) example is changed to read:

01 MINOR TYPE CF MINR LINE PL.US 1.
02 SCTR-1 COLUMN 50. PIC Z{6).99 SUM .COST UPON DETAIL-1.

this definition indicates that SUM counter SCTR-1 will be augmented only when a
GENERATE. statement is executed for DET~IL-1.

Pre-Slew and Post-Slew Algorithms

The algo.ri thms used by .the COBOL Report Writer in making pre- and post-slew
calculations are presented below, with related exa~ples.

PRE-SLEW CALCULATIONS

The basic algorithm is:

LINE PLUS N slews N-1 lines~

8-14. DD26

Therefore:

LINE PLUS 0--. pre-slew 0 lines.
LINE PLUS i-. pre-slew O lines.
LINE PLUS 2--+ pre...; slew 1 line.
LINE PLUS 3-.pre-slew 2 lines.

Exception:

LINE PLUS 0 --.pre-slew 0 lines NOT N-1 lines•

POST-SLEW CALCULATIONS

The basic algorithm is:

NEXT GROUP PLUS ·M slews M lines.

Therefore:

NEXT GROUP PLUS 0 -+post-slew 0 lines.
NEXT GROUP PLUS 1-+post-slew 1 line.
NEXT GROUP PLUS 2-.post-slew 2 lines.
NEXT GROUP PLUS 3 -.post-slew 3 lines •.

If NEXT GROUP not specified--.automatic post-slew 1 line.

COMBINATIONS OF PRE-SLEW AND POST-SLEW CALCULATIONS

The combinations of pre- and post-slew line calculations

LINE PLUS 0 -+pre-slew o, post-slew 1
LINE PLUS 1 _.pre-slew 0, post-slew 1
LINE PLUS 2 -+pre-slew 1, post...; slew 1
LINE PLUS 0

NEXT GROUP PLUS 0 -+pre-slew o, post-slew 0
LINE PLUS 1

NEXT GROUP PLUS o -.pre-slew o, post-slew 0
LINE PLUS :2

NEXT GROUP PLUS 0 -+pre-slew 1, post-slew 0
LINE PLUS 1

NEXT GROUP PLUS 1 --.pre;..slew o, post-slew 1
LINE PLUS 2

NEXT GROUP PLUS 1-+pre-slew 1, post-slew 1
LINE PLUS 1

NEXT GROUP PLUS 2 -+pre-slew o, post-slew 2
LINE PLUS 2

NEXT GROUP PLUS 2 -+pre-slew 1, post-slew 2

8-15

are.presented below:

DD26

·Thus:

1.

2.

For normal single spacing of a report, a LINE PLUS
most often used. It actually gives a pre-slew of
implicit ~ost-slew of 1 yields fhe desired result.

1 designation is
O; how~ver, the

For normal double spacing of a report, a LINE PLUS 2 gives a
of 1 which, when add~d to .implicit post•slew of 1 from the
line, results in a double-sp,a_ced report.

pre-slew
previous

3. If line overprint is desired, the detail line must be split into two
TYPE DETAIL report groups. This may be accomplished by using a LINE
PLUS 0 NEXT GROUP PLUS 0 on the first TYPE DETAIL to be generated. The
remainder of the detail line generated by·the second TYPE DETAIL would

: specify LINE PLUS o. This would result in both::.TYPE DETAIL -lines being
· printed on the same line •

. REPORT WRITER TABLE CON$''l'RAtNTS

Several fixed-length table restrictions apply due to the size and
cqmplexi ty of the Report ~ri ter syste·m. They are given below.

SUM Operand Limitations

l. In a given report, the same operand must not appear .in' over ten SUM
clauses·.

Example:

01 DETAIL-1 'TYPE
02 SOURCE IS

DE LINE PLUS
COST.

1.

If the identifier COST were to be used as.the object of a SUM clau:Se
in over ten separate statements, the following error message is
printed:

ER REFERENCES TO SUM OPERAND EXCEED LIMITS
NO SUMMING WILL TAKE PLACE FOR THIS SUM CLAUSE.

This limit may· be reached in cases where subtotalli.ng. is. being used in
many levels of control footings. Normally, ·the problem can be resolved
by· rolling forward the SUM counters.

. 8-16 DD26

2. In a given report, no more than 100 SOURCE/SUM correlations may be
specified. Specification of a SUM clause whose operand correlates
(matches) with the same operand that appears in more than one SOURCE
clause will result in a separate entry being placed in the SUM stack
for each SOURCE/SUM correlation. Similarly, SUM clauses that specify
multiple operands will result in a separate entry being placed into
the SUM stack for each SOURCE/SUM correlation. If a program exceeds
this limit, the following error message is printed:

ER NUMBER OF SOURCE/SUM CORRELATIONS IN THIS REPORT
EXCEEDS LIMIT - NO SUMMING OCCURS FOR THIS STATEMENT.

If this limitation is reached, the user may perform required
calculations in a USE BEFORE REPORTING statement for those SUM
counters over the limit. The user-defined (working-storage) SUM
counter may be presented at control break time by using it as the
object of a SOURCE clause in the control footing.

RESET Stack Limitations

The RESET clause, which is used in conjunction with the SUM clause, is
processed by an internal stack mechanism within the Report Writer. The RESET
stack handles a maximum of ten RESET clauses within a given report and has no
overflow capability. If the capacity of the RESET stack is exceeded, the error
message

***** ER NUMBER OF RESETS EXCEEDS STACK CAPACITY
RESET CLAUSE IS IGNORED.

is printed for each RESET clause encountered after the limit of ten has been
reached.

If this limitation is experienced, the user may circumvent the problem at
the source program level by using the following procedures:

1. Define working-storage SUM counters for all SUM counters that exceed
the RESET stack capacity.

2. Augment the working-storage SUM counters by Procedure Division
statements that are outside Report Writer control.

3. Refer to the working-storage SUM counters by specifying the SOURCE
clause in the control footing in which it is to be presented.

4. Define a USE BEFORE REPORTING declarative section for the control
break level at which resetting is desired.

s. Within the USE BEFORE REPORTING statement, move zeros to
working-storage SUM counters that require manual resetting.

8-17

the

DD26

Example:

REPORT SECTION.

01 MINOR-CONTROL TYPE CF · MINOR •• "'
02 LINE PLUS 1.

03 A COLUMN l PIC Z(6).99 SUM COST RESET ON 'INTERMEDIATE.

01 INTERMEDIATE-CONTROL TYPE CF INTERMEDIATE• ••
02 LINE PLUS 1.

03 B COLUMN l PIC Z(6).99 SUM COST RESET ON FINAL.

01 FINAL•CONTROL TYPE CF FINAL •••
02 LINE PLUS 1.

In case of RESET stack overflow, the automatic resetting for SUM counters A
and B may be accomplished manually by incorporating the following changes in the
source program:

WORKING-STORAGE SECTION.
77 A PIC 9(6)V99 VALUE 0.
77 B PIC 9(6)V99 VALUE O.

REPORT SECTION.

01 MINOR-CONTROL
02 LINE PLUS

03 COLUMN

TYPE CF MINOR •••
1.
1 PIC Z{6).99 SOURCE IS A.

01 INTERMEDIATE-CONTROL TYPE CF INTERMEDIATE •..
02 LINE PLUS 1.

03 COLUMN 1 PIC Z(6).99 SOURCE IS B.

01 FINAL-CONTROL TYPE CF FINAL •••

PROCEDURE DIVISION.
DECLARATIVES.
INT-CTL SECTION.

USE BEFORE REPORTING INTERMEDIATE-CONTROL.
PARA-1. MOVE ZEROS TO A.
FIN-CTL SECTION.

USE BEFORE REPORTING FINAL-CONTROL.
PARA-2. MOVE ZEROS TO B.
END DECLARATIVES.

BEGIN. READ INPUT-FILE.
COMPUTE A A + COST.
COMPUTE B = B + COST.
GENERATE •••

8-18 DD26

There is one significant difference in the manual reset method compared to
the automatic re~et method. Automatic resetting occurs after the control footing
print line has been presented. Manual resetting, at USE~RE REPORTING time,
occurs before the control footing print line is presented.

Report Table Capacity

The Report Table is a fixed-length memory area within the compiler in which
all Report Writer Data Division entries are constructed. The table has a total
capacity of 1900 words, consisting of a 640-word fixed entry portion and a
1260-word variable entry portion. The Report Table is designed so that data in
the fixed portion is inserted from the top to the bottom of the table and the
data in the variable portion is inserted from the bottom to the top. The Report
Table has no overflow capability.

When the RD l~vel indicator is encountered in the source program, a
ten-word entry is placeq into the fixed portion of the Report Table as the
report-name entry. If the CONTROL(S) clause is specified, a nine-word control
entry is placed into the fixed portion of the table, followed by an additional
13-word entry for each control data-name specified. When a report group level
indicator is encountered, a ten-word entry for that report group is placed into
the fixed portion. A corresponding entry for the report group description entry
is placed into the variable portion of the table.

Each individual report group entry must be small enough to be contained
within the variable portion of the table. When a given report group·is built in
its entirety, the data in the variable portion is written to an internal
intermediate Report Writer file and the next report group encountered is
inserted into the variable portion. The fixed portion must contain entries for
all report groups defined within a given RD and, consequently, is not written to
the intermediate file until a new RD or the Procedure Division header is
encountered. The variable portion of the Report Table is always at least 1260
words in length. However, the variable portion is automatically enabled to
utilize the unused portion of the fixed portion, up to a maximum size of 1650
words, if additional memory space is required to contain a very large report
group. Since the length of the fixed portion increases with each report group
encountered, it is reconunended that the largest report group descriptions be
described near the beginning of the report description entry.

If the combined capacity of the variable portion and fixed portion is
exhausted during the processing of a given report group, or if the variable
report group size exceeds 1650 words, the following error message is printed:

***** REPORT GROUP DESCRIPTION
REMAINING ENTRIES UNDER

EXCEEDS
CURRENT

COMPILER
01.

CAPACITY DELETED

When this error condition occurs, it is necessary to reduce the size of the
report group as described in the Calculation of Report Group Size paragraph in
this section.

8-19 DD26

The capacity of the fixed portion of the Report Table may also be exceeded
in cases where a report description contains a large number of report groups.
For example, a report having no CONTROL{S) clause can contain a maximum .of 62
report groups. This capacity is reduced if ·control data-names are specified. If
the fixed portion (640 words maximum) is exceeded, the following error message
is printed:

***** OVERALL REPORT DESCRIPTION EXCEEDS COMPILER CAPACITY
REMAINING ENTRIES UNDER CURRENT RD.

DELETED

When this error condition occurs, it is necessary to reduce the number of
specified report groups either by combining the groups or by dividing the RD
into two separate reports.

Since large report group description entries, normally TYPE DETAIL or
control footing, occasionally overflow the Report Table capacity, the following
discussion is intended to assist the user in structuring report group
descriptions to fit within the capacity of the Report Table.

REPORT GROUP ENTRIES

A report group entry is built for the 01 entry which contains
clause. Only one such entry appears per report group. The entry varies
minimum of eight words to a maximum of 11 words.

the TYPE
from a

A basic 01 report group entry containing only a TYPE statement is built as
an eight-word report group entry.

Example:

01 DET-L TYPE DE.

If a LINE or NEXT GROUP designation or a combination of both appear in the
01 report group statement, two additional words are required in the entry being
built.

Example:

01
01
01

DET-X
DET-Y
DET-Z

TYPE
TYPE
TYPE

DE
DE
DE

LINE
NEXT
LINE

PLUS
GROUP
PLUS

1. (or)
PLUS 2. (or)

l NEXT GROUP

All of these statements build a ten-word entry.

8-20

PLUS 2.

0026

If the report group is a control footing report group, one additional word
is required in tne entry being built, which is used as a total sum word count.

Example~

01 TYPE CF data-name LINE PLUS l NEXT GROUP NEXT PAGE.

This statement is built as an 11-word entry.

GROUP ENTRIES

When structuring a report group, the user may specify intervening group
levels. Each group entry at the 02 level or below requires a group entry that is
nearly identical to the report group entry described above. It may vary in size
from eight words minimum to ten words maximum. For example, consider the
following structure:

01 CTL-X TYPE CF
02 LINE PLUS

03 COLUMN
02 LINE PLUS

03

CNTRL NEXT GROUP NEXT PAGE.
1.
l PICTURE Z (6) ~;UM data-name.
2.

The 01 TYPE entry would build an entry 11 words in length since it has a
NEXT GROUP clause and is a TYPE control footing. The 02 group statement builds a
ten-word entry inheriting most of its data from the report group entry and
adding the word of data to describe the LINE clause.

SOURCE ENTRIES

A source entry is built for each elementary entry containing a SOURCE IS
clause. These entries can vary greatly in size, from a minimum entry of 27 words
to a maximum entry of 74 words.

The most basic SOURCE clause is found in a detail report group. It does not
contain a COLUMN clause and is therefore not printed. A SUM counter must be
defined for a control footing report group.

Example:

02 SOURCE IS data-name.

This statement is built as a 27-word entry.

a-21 DD26

When the SOURCE clause contains subscripted items, the number of. words
required increases rapidly •. One data-name subscript adds 12 additional words to
the entry built.

Example:

02 SOURCE IS data-name (data-name). 39 words

A single literal subscript requires nine additional words.

Example:

02 SOURCE IS data-name (literal). 36 words

Each subsequent subscript in the same entry adds 11 words in the case of a
data-name or eight words in the case of a li t.eral.

Example:

02 SOURCE IS data-name (dn,dn-1). 50 words
02 SOURCE IS data-name (lit,lit-1). 44 words
02 SOURCE IS data-name (dn I lit) • 47 words
02 SOURCE IS data-name (dn,dn-l,dn-2). 61 words
02 SOURCE IS data-name (lit,lit-l,lit-2). 52 words
02 SOURCE IS data-name (dn,dn-1,lit). 58 . words
02 SOURCE IS data-name (dn I lit I li t-1) • 55 words

When a COLUMN clause is added, it designates that a receiving field must be
provided in the source entry being built. The entry varies from ten to 13 words
in length, depending on whether or not editing is required in the receiving
field.

Example:

02 COLUMN 1 PICTURE 9(6) SOURCE IS data-name.

This entry would not require editing, so the total entry built would be 27
words plus ten or 37 wqrds. If the statement were

02 COLUMN 1 PICTURE ZZZ,ZZ9.99 SOURCE IS data-name.

editing is required; thus, the entry would require 27 words plus 13 or 40 words.

8-22 0026

The largest possible entry would therefore be of the type:

02 COLUMN l PICTURE ZZ,999 SOURCE IS dn (dn,dn-l,dn-2).

This would require 74 words.

SUM ENTRIES

A sum entry is built for each elementary entry containing a SUM clause. Sum
entries can vary in size from a minimum of 37 words to a maximum of 40 words.

The basic SUM clause is found in the TYPE control footing report group and
is usually of the format:

02 CTL-X COLUMN 1 PICTURE ZZZ,ZZ9.99 SUM data-name.

or

02 COLUMN l PICTURE ZZZ,ZZ9.99 SUM data-name.

Either of the above statements will be built as an entry 40 words in
length.

The addition of subscripts, either data-name or literal, does not increase
the size of the entry to be built. Thus, the statement

02 COLUMN l PICTURE Z(6).99 SUM dn (dn,dn-l,dn-2).

requires the same number of words as

02 COLUMN l PICTURE Z(6).99 SUM data-name.

The variance between 37- and 40-word entries is due to receiving field
editing requirements and is described above in the Source Entries paragraph.

8-23 DD26

VALUE ENTRIES

A VALUE entry is built for each elementary item that contains a
clause. Since the VALUE clause expresses a literal that can range from a
character to 132 characters in length, it follows that the entry built
VALUE clause varies in the same proportion. The example

02 COLUMN 1 PICTURE X VALUE "-"

VALUE
single
for a

represents a minimum entry and requires 26 words. On the other hand, the
statement

02 COLUMN 1 SIZE 132 VALUE "132 character literal---".

represents a maximum entry and requires a 48-word entry.

The entry sizes for the various literal sizes are listed below:

Literal Size
(Characters)

1-2
3-8
9-14
15-20
21-26
27-32
33-38
39-44
45-50
51-56
57-62
63-68
69-74
75-80
81-86
87-92
93-98
99-104
105-110
111-116
117-122
123-128
129-132

VALUE Entry
(Words)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

8-24 0026

EXCEPTIONS TO ENTRY SIZES

Two possible exceptions may change the maximum entry sizes as indicated in
this discussion. Both are rather remote in usage but should be clarified:

1. If an elementary SOURCE, SUM, or VALUE entry contains a LINE clause as
part of its description, the entry built is increased by two words.

Example:

02 LINE PLUS l COLUMN 1 PICTURE X(6) SOURCE dn.

This entry builds a source entry of 39 words as compared to 37 words
if the LINE clause does not appear at the elementary level.

SUM and VALUE entries reflect the same two-word increase in size.

2. If editing is required in the receiving field description designated
by the COLUMN and PICTURE clauses, and the receiving field is over 38
characters in length, one additional word is required. If the
receiving field is over 76 characters in length, two additional words
are required.

CALCULATION OF REPORT GROUP SIZE

The length of the variable entry portion of the Report Table in most cases
is 1650 words; however, in certain instances, it can be reduced to a minimum of
1260 words. This reduction occurs only when the following conditions exist:

1. The report description (RD) contains a large number of report groups.

2. The larger report groups appear near or at the end of the report
description.

A rule to follow in report description organization is to place the larger
report groups at the beginning of the report description. In this way, the
maximum variable Report Table size will nearly always be available.

8-25 DD26

The following example shows the calculation of report group size with a
table capacity of 1260 words:

01 DETL-X TYPE DE. 8
02 LINE PLUS 2. 10

03 COLUMN 1 PICTURE Z(6).99 SOURCE dn (dn,dn-l,dn-2). 74
03 COLUMN 15 PICTURE Z(6).99 SOURCE dn-1 (dn,dn-l,dn-2). 74
03 COLUMN 30 PICTURE Z(6).99 SOURCE dn-2 (dn,dn-l,dn-2). 74
03 COLUMN 45 PICTURE Z(G).99 SOURCE dn-3 (dn,dn-l,dn-2). 74
03 COLUMN 60 PICTURE Z(6).99 SOURCE dn-4 (dn,dn-l,dn-2). 74

02 LINE PLUS 3. 10
03 COLUMN 1 PICTURE Z(6).99 SOURCE dn-5 (dn,dn-l,dn-2). 74
03 COLUMN 15 PICTURE Z(6).99 SOURCE dn-6 (dn,dn-l,dn-2). 74
03 COLUMN 30 PICTURE z (6) .99 SOURCE dn-7 (dn,dn-l,dn-2). 74
03 COLUMN 45 PICTURE Z(6).99 SOURCE dn-8 (dn,dn-l,dn-2). 74
03 COLUMN 60 PICTURE Z(6).99 SOURCE dn-9 (dn,dn-l,dn-2). 74

02 LINE PLUS 4. 10
03 COLUMN l PICTURE Z(~).99 SOURCE dn-10 (dn,dn-l,dn-2). 74
03 COLUMN 15 PICTURE Z(6).99 SOURCE dn-11 (dn,dn-l,dn-2). 74
03 COLUMN 30 PICTURE z (6) .99 SOURCE dn-12 (dn,dn-l,dn-2). 74
03 COLUMN 45 PICTURE Z(6).99 SOURCE dn-13 (dn,dn-l,dn-2). 74
03 COLUMN 60 PICTURE Z(6).99 SOURCE dn-14 (dn,dn-l,dn-2). 74

02 LINE PLUS 5. 10
03 COLUMN l PICTURE Z(6).99 SOURCE dn-15 (dn,dn-l,dn-2). 74

---+ 03 COLUMN, 15 PICTURE z (6) .99 SOURCE dn-16 (dn,dn-l,dn-2). 74
03 COLUMN 30 PICTURE z (6) .99 SOURCE dn-17 (dn,dn-l,dn-2). 74

At this point, report group capacity is exceeded and the detail report
group must be subdivided into two detail report groups. Subdivision can be
accomplished by dividing the report group into two report groups of the same
type. In the case of the TYPE DETAIL report group, it requires insertion of an
"01 data-name TYPE DE." statement and an additional GENERATE statement in the
Procedure Division. If the overflowed group is control footing, the subdivision
is more complex. A dummy CONTROL data-name with the same PICTURE and USAGE as
the original must be defined in working-storage. Immediately after each READ of
the pertinent input file, the field which makes up the original CONTROL
data-name must be moved to the dummy CONTROL data-name in working-storage. The
dummy CONTROL data-name becomes the CONTROL data-name for the new 01 TYPE CF
report group and is also inserted in the CONTROLS ARE clause of the
corresponding RD entry.

For example, if the following TYPE CF report group is subdivided,

RD REPORT-X CONTROLS ARE FINAL, DNl, DN2.
01 TYPE CF DNl.

02

a dummy CONTROL data-name with the same PICTURE and USAGE as the original must
be defined in working-storage:

77 DNlA PICTURE 9(6).

8-26 DD26

After each READ of the pertinent input file containing
DNl, the new value of DNl must be moved to DNlA before
GENERATE statement for the report being produced:

READ INPUT-FILE AT END GO TO
MOVE DNl TO DNlA.
GENERATE DETAIL-1.

The subdivided report group would be:

RD REPORT-X CONTROLS ARE FINAL, DNlA, DNl, DN2.
01 TYPE CF DNl.

02

02
01 TYPE CF DNlA.

02

CONTROL data-name
the corresponding

The control break for DNl and DNlA will occur at the same time. The control
footing report groups are presented from minor to major; therefore, the report
group with DNl will be produced before the report group with DNlA. The order may
be adjusted as necessary for program requirements.

REPORT WRITER PROGRAM EXAMPLE

The following sample program (RPTW68) is a guide for explaining the Report
Writer feature in COBOL. The program produces one report utilizing three levels
of control breaks, and illustrates the interaction of the various report groups
that make up the report description. In addition, if the four-page report
produced by this program is examined, the effect of the vertical and horizontal
line formatting features becomes evident.

8-27 DD26'

CX>
I
tv
CX>

0
0
N

°'

COBOL
ALT •

00001
00002
00003
00004
000015
00006
00007
00008
00009
00010
00011
00012
00013
00014
000115
00016
00017
00018
00019
00020
00021

00022
00023

00024
000215

00026

00027

00028
00029

00030

00031
00032
00033

S 0 U R C E L I S T I N G

IDENTIFICATION DIVISION.
PROGRAM- ID. RPTW68.
REMARKS.

EXAMPLE COBOL REPORT WRITER SOURCE PROGRAM.
ENVIRONMENT DIVISION.
OBJECT-COMPUTER. 6000 WITH EIS.
SPECIAL-NAMES. "Q" IS KODE.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CARD-FILE ASSIGN TO BA FOR CARDS .
SELECT REPORT-FI LE ASSIGN TO AB FOR LIST I NG.

1-0-CONTROL.
APPLY SYSTEM STANDARD ON CARD-FILE REPORT-FILE

DATA DIVISION.
FILE SECTION.
FD CARD-FILE

LABEL RECORDS ARE STANDARD, DATA RECORD IS INPUT-R~CORO .
01 INPUT-RECORD.

02 FILLER PlC AA.
02 DEPT PIC XXX.

02 FILLER PIC AA.
02 NO-PURCHASES PIC 99.

02 FILLER PIC A.
02 TYPE-PURCHASE PIC 9.

02 MONTH PIC 99.

02 DAY PIC 99.

02 FILLER PIC A.
02 COST PIC S999V99.

02 COST1 REDEFINES COST PIC S999V99.

02 FILLER PIC XC59l.
FD REPORT-FILE

LABEL RECORDS ARE STANDARD, REPORT IS EXPENSE-REPORT .

PAGE 00001

REF C 0 M P I L E R C 0 M M E N T S
LINE #

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
000115
00016
00017
00018
00019
00020
00021

00022
00023

00024
00025

00026

00027

00028
00029

00030

00031
00032
00033

CONTAiNS 80 CHARACTERS
STARTS !N CHARACTER POSITION
STARTS IN CHARACTER POSITION

REF BY 00102
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

REF BY 00103 00113
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

REF BY 00104 00157
STARTS IN ~~~RACTER POSITION

14 WORDS
1
3

6
e

10
11

12
REF BY 00095 00099 00122 00144 0C)146

STARTS
REF BY

STARTS
STARTS

REF BY
STARTS

REF BY
STARTS

00156 00158 .
IN CHARACTER POSlT10N
00101 00112
IN CHARACTER POSITION
IN CHARACTER POSITION
00105 00114
IN CHARACTER POSITION
00116 00127 00133
IN CHARACTER POSiTION

14

16
17

17

22

co
I
tv
\0

0
0
tv
O'I

COBOL
ALT •

00034
0003e
00036
00037 -
00038
00039
00040
00041
00042
00043
00044
000415
00046
00047
00048
00049
000'50
000151
000152
000153
000'54

0001515
000'56
oooe?
000158
000!>9
00060
00061

00062

00063

00064
0006!5

00066
00067
00068
00069

S 0 U R C E L I S T I N G

WORKING-STORAGE SECTION.
77 SAVED-MONTH PICTURE 99 VALUE ZERO .
77 WORK-AREA-1 PICTURE XC78) VALUE "MONTH DAY DEPT.

"RCHASES TYPE COST CUMULATIVE-COSTS ..
01 STORAGE-TABLE-FOR.

02 RECORD-MONTH-NAMES.
03 FILLER PIC AC9> VALUE "JANUARY ..
03 FILLER PIC AC9> VALUE "FEBRUARY "
03 FILLER PIC AC9) VALUE "MARCH ..
03 FILLER PIC AC9> VALUE "APRIL "
03 FILLER PIC AC9) VALUE "MAY ..
03 FILLER PIC AC9) VALUE "JIJNE ..
03 FILLER PIC AC9) VALUE "JULY ..
03 FILLER PIC AC9> VALUE "AUGUST ..
03 FILLER PIC AC9> VALUE "SEPTEMBER"
03 FILLER PIC AC9> VALUE "OCTOBER ..
03 FILLER PIC AC9J VALUE "NOVEMBER "
03 FILLER PIC AC9) VALUE "DECEMBER "
03 FILLER PIC AC9> VALUE "MONTH-ERR"

02 RECORD-AREA REDEFINES RECORD-MONTH-NAMES
03 MONTHNAME PICTURE AC9> OCCURS 13 TIMES

01 PURCHASE-TYPE-TABLE.
02 VALUES-BELOW.

03 FILL£R PIC X<4> VALUE "CASH"
03 FILLER PIC X<4> VALUE " CR "
03 FILLER PIC XC4) VALUE " ** "

02 TX REDEFINES VALUES-BELOW
03 TY PIC XC4) OCCURS 3 TIMES

01 WORK-AREA.

02 MUN TH PIC XC9>

02 LI NE-OESC-1 PIC XC14> VALUE " EXPENDITURES "
02 CONTINUED PIC XC11> VALUE IS SPACE .

REPORT SECTION.
RD EXPENSE-REPORT

WITH CODE KODE
CONTROLS ARE FINAL, MONTH, DAY

PAGE 00002

REF C 0 M P I L E R C 0 M M E N T S
LINE#

00034
000;35 REF BY 00110 00144 00146

PU 00036
00037 REF BY 00091
000;38 CONTAINS 1 1 7 CHARACTER!.) 20 WORDS
00039
00040 STARTS IN CH~.RACTER PC'JSI TION 1
00041 STARTS IN Ct-IARAC1"£R Pt:ISlTION 10
00042 STAR rs IN CMARACTER POS l Tl ON 19
00043 STARTS IN CHARACTER POSITION 28
00044 STARTS IN CHAnACTER POSITION 37
00045 STARTS IN CH.4.RACTE~ Pf.ISi TIOi~ 46
00046 STARTS IN Cf~RAc·rLR ~lSITION 5~

00047 s·rART5 IN Ct-lARACTER PC'IS I Ti ON 64
00048 STARTS !N ~HARACTEI': POSIT!O"i 73
00049 STARTS IN CHARACTER PO!HTION 82
0005l"I STARTS ! N CHARACTER f'O~. IT l l!iN 91
00051 STARTS IN CHARACT!:f' ~"tJSITiON 100
00052 STARTS IN CHARACTER POSI TIOl'l 109
00053
00054 STARTS IM CHARACTER POSI fl ON

REF BY 00095 00099 00122 00158
00055 CONTAINS 1 2 CHARAGTEf~S 2 WORDS
00056
0005? STARTS IN CHARACTER POSITION 1
00058 STARTS IN CHARACTER POSITION 5
00059 STARTS IN CHARAC'fER POS I Tl ON 9
00060
00061 STARTS IN CHARACTER POSITION

REF BY 00104
00062 CONTAINS 34 CHARACTERS 6 WORDS

REF BY 00089
00063 STARTS IN CHARACTER POSITION

REF BY 00158
00064 STARTS IN ~HARACTER ~nSITl~N 10
00065 STAf<lS IN CliAR/'.CTER POS l TI !">N 24

REF BY 00144 00145
00066
00067
00068
00069

CX>
I

w
0

t:l
0
tv
O'\

COBOL
ALT #

00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00068
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

00105
00106
00107
00108

01

01

01

01

01

S 0 U R C E L I S T I N G

PAGE LIMIT IS 59 LINES
HEADING 1
FIRST DETAIL 9
LAST DETAIL 48
FOOTING 52
TYPE IS REPORT HEADING
02 LINE NUMBER 10 .
03 COLUMN 1 PICTURE AC26) VALUE IS

"BOLT MANUFACTURING COMPANY"
03 COLUMN 55 PICTURE A<16) VALUE IS

"PHOENIX DIVISION"
02 LINE NUMBER 13 .

03 COLUMN NUMBER 1
PICTURE IS AC29l VALUE IS

"QUARTERLY EXPENDITURES REPORT"
03 COLUMN NUMBER 59

PI:TURE IS ACS) VALUE IS "XYZ DEPT"
PAGE-HEAD TYPE IS PAGE HEADING
02 LINE NUMBER 1

COLUMN 30 PIC XC34) SOURCE IS WORK-AREA .
02 LINE NUMBER 7

CO.L.UMN 2 PlC XC78) SOURCE IS WORK-AREA-1
TYPE CONTROL HEADING MONTH NEXT GROUP PLUS 1.
02 LINE PLUS 1.

03 COLUMN 2 PI C X < 23) VALUE "TRANSACT! ON JOURNAL FOR" .
03 COLUMN 31 PIC AC9> SOURCE MONTHNAME CMONTH>.

DETAIL-LINE TYPE IS DETAIL
LINE NUMBER IS PLUS 1 .

02 COLUMN 2 GROUP INDICATE PICTURE AC9)
SOURCE IS MONTHNAME OF RECORD-AREA <MONTH>

02 COLUMN 13 GROUP INDICATE PICTURE 99

02
02
02

COLUMN 19
COLUMN 31
COLUMN 40

PIC XXX
PIC Z9
PIC XXXX

SOURCE IS DAY .
SOURCE IS DEPT .
SOURCE IS NO-PURCHASES
SOURCE IS TY CTYPE-PURCHASE>

02 COLUMN 50 PIC ZZ9.99- SOURCE IS COST .
02 PIC ZZ9.99- SOURCE COST1.
TYPE CONTROL FOOTING DAY NEXT GROUP PLUS 2 .
02 LINE NUMBER IS PLUS 2 .

•

PAGE 0000~

REF C 0 M P I L E R C Cl M M E N T S
LINE •

00070
00071
00072
00073
00074
0007'5
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
0.0094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

EF

00105
00106
00107
00108

REF TO

REF TO

REF TO

REF TO

00062

00037

00026

00026

REF TO 00027
REF TO 00021
REF TO 00023
REF TO 00025

FORMAT OR RADIX
CIN SUBSCRIPT

REF TO 00029

00054

00054

00061
CONVERSION REQUIRED

(X)

I
w
......

t:1
t:1
N
O'I

COBOL
ALT •

00109
00110
00111
00112
00113

00114

00115
00116

00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127

00128
00129
00130
00131
00132
00133

00134
00135
00136

00137
00138
00139

S 0 U R C E L I S T I N G

03 COLUMN 2 PIC XC22) VALUE "TRANSACTION TOTALS FOR".
03 COLUMN 24 PIC Z9 SOURCE SAVED-MONTH.
03 COLUMN 26 PIC X VALUE "-".
03 COLUMN 27 PIC 99 SOURCE DAY.
03 COLUMN 30 PIC ZZ9 SUM NO-PURCHASES.

03 MIN COLUMN 49 PIC $$$9.99- SUM COST.

03 COLUMN 60 PIC XC7> VALUE "TO-DATE".
03 COLUMN 68 PIC $$$$9.99- SUM COST1 RESET ON FINAL.

02 LI NE PLUS 1 •
03 COLUMN 1 PIC XC78) VALUE ALL "-".

01 TYPE CONTROL FOOTING MONTH
LINE NUMBER IS 51 NEXT GROUP NEXT PAGE
02 COLUMN 16 PIC AC14> VALUE "TOTAL COST FOR"
02 COLUMN 31 PIC AC9) SOURCE MONTHNAME <MONTH>
02 COLUMN 43 PIC AAA VALUE "WAS"
02 INT

COLUMN 48 PIC $$$$9.99 SUM MIN.
02 COLUMN 60 PIC XC7> VALUE "TO-DATE".
02 COLUMN 68 PIC $$$$9.99- SUM COSTl RESET ON FINAL.

01 TYPE CONTROL FOOTING FINAL LINE NEXT PAGE
02 COLUMN 16 PIC AC26) VALUE IS

"TOTAL COST FOR QUARTER WAS" .
02 COLUMN 45 PIC $$$$9.99 SUM INT
02 COLUMN 55 PIC XC12> VALUE "YEAR-TO-DATE".
02 COLUMN 68 PIC $$$$9.99- SUM COSTl.

01 TYPE PAGE FOOTING LINE 57
02 COLUMN 60 PIC XC12> VALUE "REPORT-PAGE-"
02 COLUMN 72 PIC 99 SOURCE PAGE-COUNTER

01 TYPE REPORT FOOTING LINE PLUS 1
COLUMN 62 PIC XC1DJ VALUE "END REPORT"

*EJECT

PAGE 00004

REF C 0 M P I L E R C 0 M M E N T 8
LINE •

00109
00110
00111
00112
00113

* EF
00114

* EF
00115
00116

* EF
00117

. 00118
00119
00120
00121
00122
00123
001-24
00125
00126
00127

* EF
00128
00129
00130
00131
00132
00133

* EF
00134
00135
00136

*** WA
00137
00138
00139

REF TO 00035

REF TO 00027
REF TO 00023

FORMAT OR RADIX CONVERSION REQUIRED.
REF TO 00029

FORMAT OR RADIX CONVERSION REQUIRED.

REF To 00030
FORMAT OR RADIX CONVERSION REQUIRED.

REF TO 00026 00054

"REF TO 00030
FORMAT OR RADIX CONVERSION REQUIRED.

REF TO 00030
FORMAT OR RADIX CONVERSION REQUIRED.

INTEGER TRUNCATION REQUIRED.

co
I
w
tv

0
0
tv
O'\

COBOL
ALT •

00140
00141
00142
00143
00144
001415
00146
00147
00148
00149
001!50
001!51
001!52
001!53

001!54
001!5!5

001!56
00157
OC1!58

001!59
00160

00161
00162

00163
00164
001615

S 0 U R C E L I S T I N G

PROCEDURE DIVISION.
DECLARATIVES.
PAGE-HEAD-OPTION SECTION. USE BEFORE REPORTING PAGE-HEAD .
PAGE-CONTINUATION-TEST.

IF MONTH = SAVED-MONTH, MOVE "C CONTINUED>" TO CONTINUED
ELSE MOVE SPACES TO CONTINUED

MOVE MONTH TO SAVED-MONTH
PAGE-CONTINUATION-EXIT.

EXIT .
END DECLARATIVES.

OPEN-FILES.
OPEN INPUT CARD-FILE, OUTPUT REPORT-FILE .
READ CARD-FILE AT END GO TO CLOSE-FILES .

INITIATE EXPENSE-REPORT
PROCESS-DATA.

IF MONTH > 12 OR LESS THAN 01, MOVE 13 TO MONTH
IF TYPE-PURCHASE > 3 OR < 1 MOVE 3 TO TYPE-PURCHASE
MOVE MONTHNAME OF RECORD-AREA <MONTH> TO MUNTH .

GENERATE DETAIL-LINE
READ CARD-FILE

GO TO PROCESS-DATA
CLOSE-FILES.

AT END GO TO CLOSE-FILES .

TERMINATE EXPENSE-REPORT
CLOSE CARD-FILE REPORT-FILE .
STOP RUN .

***** THE ABOVE LISTING CONTAINS 000 ERROR MESSAGES *****

* ** THE ABOVE LIS Tl NG CONT A I NS 001 WARN I NG MESSAGES * **

* THE ABOVE LISTING CONTAINS 007 EFFICIENCY MESSAGES *

COMPILATION TIME CMIN): ELAP CLOCK= 000.21 PROC= 000.11

00000 OVERFLOW READS 00000 OVERFLOW WRITES 22978 WORDS MEMORY USED

•

PAGE 000015

REF C 0 M P I L E R C 0 M M E N T S
LlNE #

00140
00141

U00142
P00143

00144
00145
00146

P00147
00148
00149
00150

P00151
00152

P00153

00154
P00155

00156
00157
00156

EF

00159
P00160

00161
P00162

00163
00164
0016!5

REF TO
REF TO
REF TO

REF TO

000~6 000~5 00065
00065
00026 00035

00162

REF BY 00161
REF TO 00026
REF TO 00025
REF TO 00026 00054 00063

FORMAT OR R.C-.D Ix co;·.JVERS I ON R!::QU I RED
ON SUBSCRIPT

REF TO
REF TO

REF BY

00162
00155

00153 00160

00007 LINKS USED ON *3 FILE

BOLT MP1NUF/\CTllf~ I NG COMPANY

QUARTERLY EXPENDITURES Rl::PORT

JANUARY

MONTH DAY DEPT. PURCHASES

TRANSACTION JOURNAL FOR JANUARY

TRANSACrlON TOTALS FOR 1-21

JANUARY 23 XYZ

TRANSACTION TOTALS FOR 1-23

JANUARY 24 XYZ

TRANSACTION TOTALS FOR 1-24

JANUARY 25 XYZ
XYZ

TRANSACTION TOTALS FOR 1-25 2

JANUARY 28 XYZ
XYZ

TRANSACTION TOTALS FOR 1-28 2

JANUARY 29 XYZ
XYZ

TRANSACTION TOTALS FOR 1-29 2

JANUARY 30 XYZ

TRANSACTION TOTALS FOR 1-30

JANUARY 31 XYZ

EXPENDITURES

TYPE

CR

CR

CASH
CASH

CR
CR

**
**

CR

CASH

8-33

COST

$16.00

32.00

$32.00

64.00

$64.00

32.00
32.00

$64.00

32.00
32.00

S64.00

16.00
16.00

S32.00

8.00

se.oo

4.00

PHOENiX DIVISION

XYZ DEPT

CUMULATIVE-COSTS

TO·D~TE S16.00

TO-DATE $48.00

TO-DATE S112.00

TO-DATE S176.00

TO-DATE $240.00

TO-DATE $272.00

TO-DATE S280.00

REPORT-PAGE-01

DD26

MONTH

JANUARY

DAY. DEPT.

31 XYZ
XYZ

JANUARY

PURCHASES

TRANSACTION TOTALS FOR 1,-31 3

TOTAL COST FOR JANUARY

EXPENDITURES <CONTINUED>

TYPE

CASH
CASH

COST

4.00-
64.00

S64.00

WAS S344.00

8-34

CUMULATIVE-COSTS

TO-DATE $344.00

TO-DATE $344.00

REPORT-PAGE-02

DD26

FEBRUARY EXPENDITURES

MCINTH DAY DEPT.

TRANSACTION JOURNAL FOR

PURCHASES

FEBRUARY

XYZ

TRANSACTION TOTALS FOR 2-01

FEBRUARY 02 XYZ

TRANSACTION TOTALS FOR 2-02

1
I

2

TOTAL COST FOR FEBRUARY

TYPE COST CUMULATIVE-COSTS

CASH 2.00

94.00 TCl-DATE S348.00

CR 128.00

1128.00 TO-DATE 1476.00

WAS 1132.00 TO-DATE 1476.00

REPORT-PAGE-03

FEBRUARY EXPENDITiJRES <CONTINUED>

MONTH DAY DEPT. PURCHASES TYPE

TOTAL COST FOR QUARTER WAS

8-35

COST CUMULATIVE-COSTS

$476.00 YEAR-TO-DATE $476.00

REPORT-f'AGE-04
ENO REPORT

DD26

SECTION IX

FILE ORDERING - SORT AND MERGE

CONCEPT~;

Sorting

Much data processing depends upon the order in which records appear in
files being processed. Such processing often depends upon the order of
records being sequenced according to the values of one or more fields
appear in each of the records. The fields upon which the ordering depends
called the 'keys' of the file.

the
the

that
are

Since data in its original form seldom occurs in well ordered sequences, a
technique, sorting, is provided by which the user can impose the desired
ordering upon the records in a file. A sorting procedure manipulates an input
file whose records are in an indeterminate sequence and produces an output file
containing the same set of data records rearranged into the desired sequence.
The number of records in the input file is usually unknown at the inception of
the sort procedure and is generally not relevant to the sorting procedure.

Merging

Some data processing operations are performed on a group of records that
are distributed on several files. If all of those several files are themselves
well ordered by the same rules, their contents may be merged into one composite
file which is itself well ordered. A merging procedure manipulates two or more
well ordered input files and produces an output file containing the total set of
data records in one well ordered sequence.

Orderin.s_

The sequencing of the output file in a sorting or merging procedure is
governed by the values of one or more fields in each of the records being
ordered. These fields, the keys, must appear in the same position, relative to
the start of the record, in every record being sorted or merged.

9-1 DD26

The order in which the keys are specified to the sort or merge procedure
determines their hierarchical relationship. The first key named, the major key,
is the mc>st significant field. Each successive key specified is of decreasing
significance until the last key, the most minor key, is reached.

Each key may also be specified as determining an ascending ordering
descending orde·ring. Ascending ordering means that those records with
values of that key will appear in the output file prior to the records
higher va.lues for that key. Descending ordering implies the inverse result.

or a
lower
with

Ordering is accomplished by comparing, from major to most minor, the
correspm1ding keys of two records until an inequality of value is found. The
output order is then determined by the ascending or descending rule which
applies to that particular key field. If there is no inequality of value in any
corresponding pair of keys, the ordering is determined by the sort or merge
procedure.

Program Organization

The COBOL language contains two verbs which initiate ordering procedures,
SORT and MERGE. Several additional language features are associated with both of
these verbs. The RELEASE verb may be used with the execution of a SORT verb and
the RETURN verb may be used with the execution of SORT and MERGE verbs. A
special form of the SELECT sentence in the FILE-CONTROL paragraph of the
Environm~nt Division is associated with the intermediate working files of the
sort procedure and the implicit working file of the merge procedure. In
addition, those files are described by a special type of file description (SD
rather than FD) in the Data Division.

The SORT verb invokes the execution of a set of sorting procedures
contained within the standard software library. These procedures operate with
the COBOL object program to perform the sort. During the execution of the
sorting .function, the object program and sorting procedures combine in the
organization pictured in Figure 9-1. The user can include several SORT
statements in the.source program. If several SORT statements are present, they
are completely independent of each other.

The MERGE verb invokes the execution of a set of merging procedures
contained within the standard software library. These procedures operate with
the COBOL object program to perform the merge. During the execution of the
merging function, the object program and merging procedures combine in the
organization pictured in Figure 9-2. The user can include several MERGE
statements in the source program. If several MERGE statements are present, they
are completely independent of each other.

9-2 DD26

Input
Processing

Ordering
Procedures

Output
Processing

Figure 9-1. Sort Program Organization

Ordering
Procedures

Output
Processing

"" - '"",,
I \

/,.. - , '
.f _ ..._ \ I

/ ' l I

I ' 1,/
I Input 1 /

\ File ;,./
I

Figure 9-2. Merge Program Organization

9-3 DD26

SORT STATEMENT

The purpose of the SORT statement is to invoke the execution of a sorting
procedure.

The Sort File

the definition of the sort file serves two purposes:

1. It is the vehicle for defining the working files associated with the
sorting procedure.

2. It is the location where all the keys for the' ordering are described.

The former role is required by both the syntax rules of the SORT statement
and the sorting procedures. The size of tpe data file being sorted cannot be
determined from within the sorting proced~re prior to the inception of the
procedure. Therefore, the sort must be prepared to manipulate an input file
containing many times the number of records that can be held in memory. The
sorting procedures handle such files by distributing subsets of the input data
upon working files and then collating these intermediate sets into the final
output file. The file space required by this procedure must be allocated by the
user.

Sort file allocation occurs on two levels; within the source program, and
at the system level. At the source program level, assignment is made in the
FILE-CONTROL paragraph with the ASSIGN phrase. One or more file-codes are
specified, each of them denoting one working file. The first file-code specified
must not appear in any other ASSIGN phrase. None of these file-codes should have
'S' as the first letter. This list of file-codes defines the set of user
collation files.

In addition to the set of user collation files specified in the SELECT
sentence, the sorting procedures supplied from the system library presume that
any of the reserved set of 16 file-codes Sl, S2, ••• , S~ denote system collation
files. If any files have been allocated with these file-codes, they will be used
for collation in any and all sorts which are executed within the activity. The
use of these 16 file-codes for any other purpose is not recommended.

At the system level, the user must provide peripheral assignment cards for
the sort's working files. The file-codes for which assignments are provided may
be any combination of the members of the set of user collation file-codes and
the members of the set of system collation file-codes. There is no need to make
peripheral assignments for all, or for any, of the user collation file-codes.
The sorting procedure checks for allocation before attempting to use any of
those files. In any case, a sorting procedure will utilize no more than 16
collation files. With the exceptions predicated on device type as described
below, user declared collation files will be utilized before system collation
files.

9-4 DD26

The sort working files may be assigned to either tape or random-access
devices o:r to a combination of both devices. If all the files are assigned to
tape, at least three files must be assigned. Under certain conditions, it is
possible t·:> include input and output tape files within the set of working files.
It is possible, although inefficient, to execute a sort with a total of only
three tapes assigned to the activity.

If the working files are assigned to random-access deviyes, only one file
need be ~ssigned. For efficiency, the total random-access file space assigned
should be sufficient to contain the entire input data file plus an overhead
factor of ten percent. If the size of the input data file exceeds the
random-access space assigned, the sorting procedures will attempt recovery
action, but efficiency will ·suffer. It is advisable to use more than one
file-code when assigning random-access working file space in order to improve
activity allocation at run time.

If the sort working files are assigned to a combination of tape and
random-access devices, the sorting procedure works with the rando~-access
devices. The tape files will not be utilized unless it is necessary to recover
from a collation file overflow condition caused by the amount of input data
exceeding the random-access space allocation. This preference for working with
the random-access devices will be maintained even if the tape files are part of
the set of user collation files.

Sort Key Declarations

The second purpose of the sort file is to provide a vehicle for the
definition of all the sort keys which determine the record ordering. This
definition is accomplished in a special type of file description in the File
Section of the Data Division.

The definition is prefaced with the level indicator SD. Each key data-name
associated with a SORT statement must be defined within the sort file-name
description referred to by the SORT statement. The keys are listed in the SORT
statement in order, from most significant (major key) to least significant (most
minor key), with the word 'ASCENDING' or 'DESCENDING' preceding key data-names
as appropriate. Key comparison coding is generated by the COBOL compiler, rather
than by the sorting procedure, on the basis of the key declarations in the SORT
statement.

When more than one record description entry appears in a sort file
description, the key data items need be described in only one of the record
description entries. Each key data item must occur in every data record of the
sort file. It must have the same relative position and actual format in all
records. The PICTURE and USAGE of a given key data item must be the same in all
records in the sort file. If a key item is synchronized or justified, it must be
identically synchronized or justified in all records in the sort file. The key
data item descriptions must not contain an OCCURS clause or be subordinate to
entries containing an OCCURS clause. A key data item may not be described with
USAGE COMPUTATIONAL-4. Keys must be data items that do not require subscripting I
or indexing.

3/77 9-5 DD26A

VARIABLE-LENGTH RECORDS

Although key items themselves may no€be of variable length, the records
within the sort file may be of variable length. Each record must be large enough
to contain the entire set of keys described in the .SORT statement.
Variable-length records may occur as the result of two separate ·syntactical
usages:

l. The sort file and the input file re~erenced by the USING option both
have two or more record descriptions of different sizes (variable size
01 descriptions), or both are specified as variable-length record
files in the APPLY phrase.

2. The sort file has a record containing an OCCURS .•. DEPENDING clause.

In the first case, multiple record descriptions or explicit variable-length
record specification, no special handling of the file is necessary to facilitate
sorting, assuming that all of the position and format rules are followed. The
first record description in the sort file determines the 'dominant record size'
parameter for the sort. If an input procedure is used, the record types must be
differentiated by separate RELEASE statements for each record size.

In the second case, an OCCURS .•• DEPENDING option, the file being
requires special handling. The simpler, but inefficient, method is to
input procedure. This technique will ensure that all records are fully
during input.

sorted
use an

expanded

When using the input procedure technique, a key field may
OCCURS item in a record, provided the basic rules on relative
formats within records are followed.

fall after an
positions and

A more efficient technique for processing the OCCURS ... DEPENDING files
utilizes the USING/GIVING option. The following special steps are taken:

1. The sort file is declared as a variable-length record file in the
APPLY phrase.

2. The OCCURS ••• DEPENDING clause is not used in the SD description.

3. The record description in the SD description is started with the
item: FILLER PIC X(6). This entry allows for the existence of the
occurs control word which appears on each record. The comparison
coding generated by the compiler is thereby properly aligned with the
described key fields.

4. The SD description is padded out with a filler item to achieve an
efficient dominant record length depending upon the characteristics of
the file.

s. Since the relative position of the key might shift from
record, no key field may follow any of the OCCURS items
records being sorted.

record
within

to
the

DD26

When this technique is used, the USING and GIVING
specified, since there is no way for the sort process to
its full form for the output procedure. Therefore, any
result of the sort requires another pass over the file.
more efficient than the sorting of the fully expanded
records.

DOMINANT RECORD LENGTH

phrases must both be
expand the record into
processing using the

However, this may be
but partially 'empty'

If the data being sorted. is in variable-length record format, the sort
procedure must also be given a dominant record size. In the sort procedure,
memory is divided into fixed-length packets that are used to handle record input
and output. In a fixed-length record sort, the packets are made equal to the
record size. Thus, there is no wasted space in memory during input and output
processing. However, in a variable-length record sort, the packets are made
equal to the dominant record·size. Records whi·ch are equal to or less than the
dominant record size fit into one packet. Records which are larger than the
dominant record size are divided into -as many packets as necessary to contain
the record.

When records deviate from the dominant record size, space in each packet is
wasted. Such waste reduces sorting efficiency. The dominant record size should
be chosen to minimize this waste space in memory and minimize the number of
packets used for any one record. The basis for this practice is that each
division of a record adds to the overhead cost of record handling. For example,
suppose the following record sizes and frequencies are present:

Size Frequency

15 words 50 percent

17 words 20 percent

30 words 30 percent

The optimum dominant record size would be 17 words. That value would result
in the least wasted space and fewest record divisions when the file is being
processed.

The dominant record size is set equal to the size of the first record
described in the sort file description entry (SD) in the Data Division.

Sort Key Evaluation

When the values of a key in a pair of sort file records are compared, one
value is found to be greater than, equal to, or less than the other according to
the rul.es given under the Relation Condition paragraph in Section XII. The key
comparison determines the order of the records in the sort output.

1. If all corresponding key values of a pair of sort file records are
identical, the record that appeared first in the input to the sorting
procedure will precede the other in the output.

9-7 DD26

2. If any key values of a pair of sort file records are unequal, the
output sequence is based upon the most significant key item for which
inequality is found.

a. If that key item is governed by the ASCENDING option,- the record
with the lower value will precede the other in the output.

b. If the item is governed by the DESCENDING option, the record with
the higher value wiLl precede the othet in the output.

Sort Equal Key Procedures

The COBOL sort interface
user-supplied procedures for
deletion of records with equal
sorting.

subroutine permits COBOL
analysis, summarization,

key values that may be

programs to contain
and/or conditional
encountered during

The label .CSEQK, a global symbol i~ the COBOL sort interface subroutine,
is associated with a word through which the entry point address of an equal key
procedure may be communicated to the sort process. The address of the equal key
procedure entry point must be placed in the lower half of that word without
disturbing the contents of the upper half. The additional coding required in the
COBOL program in order to use this facility consists of the following four
elements, all of which must be written in assembly language (GMAP):

1. Coding to set the equal key procedure address into .CSEQK.

2. Coding to change the address of the equal key procedure, if more than
one such procedure is used.

3. Coding to reset .CSEQK to zero, whenever further use of equal key
procedures is not desired.

4. Coding for the equal key procedure itself.

ENGAGEMENT OF EQUAL KEY PROCEDURES

If an equal key procedure is to be operative during the execution of a
particular SORT statement, then at some time prior to the execution of that SORT
statement the entry point address of the appropriate equal key procedure must be
placed in the lower half of the word identified by the global symbol .CSEQK,
without disturbing the contents of the upper half of that word. The address· of
the equal key procedure appearing in .CSEQK is not changed by the sorting
process. Thus, unless the content of .CSEQK is explicitly changed by the user's
coding, the same equal key procedure will be operative during all subsequent
COBOL SORT statement executions in the run unit.

CHANGING EQUAL KEY PROCEDURES

An alternate equal key procedure may be designated for use in conjunction
with subsequent SORT statement executions by changing the address in location
.CSEQK. This may only be accomplished between SORT statement executions; after
the completion of one SORT statement and before the execution of the next.

9-8 DD26

DISENGAGEMENT OF EQUAL KEY PROCEDURES

Resetting the lower half of location .CSEQK terminates further use of equal
key procedures. This may only be accomplished between SORT executions, and not
during the execution of a SORT statement. Equal key procedures may subsequently
be re-engaged, as described above.

SORT EQUAL KEY RECORD PROCESSING

Whenever two records having equal key values are encountered in the sorting
process, and an operative equal key procedure has been designated, control is
transferred to the designated procedure with index registers six and seven set
to refer to the two records involved. The equal key procedure must then
determine which record should be deleted. It may choose to delete neither.
Information may also be transferred to the preserved record from the one to be
deleted, but the contents of the key fields must not be changed, nor may the I
program reference any portion of a record that extends beyond the area contained
within the dominant record size. After processing the records, the equal key
procedure must report its decision to the sort process. The applicable
programming conventions are described in the User Squeeze Coding paragraph in
the Sort/Merge Program manual. ·

Sort Input Processing

A choice must be made between having the sorting process handle the input
processing of the file being sorted or having the user's program specify the
input processing procedures. In most cases the former technique is more
efficient but the latter may be necessary in order to accomplish selective
editing of the input records. If such editing would result in the deletion of a
significant portion of the input file, then the input procedure technique is
more appropriate.

USING OPTION

If the USING option is specified, the sorting process will handle the input
file processing. The file specified by file-name-2 must not be in an open state
when the SORT statement is executed. File-name-2 must have a file description
(FD) entry in the Data Division. The sort file and the file referenced in the
USING phrase are, in a sense, alternative descriptions of the same set of data.
Therefore, all file level properties (such as APPLY SYSTEM STANDARD) must be
identical for both files. In addition to the file explicitly referenced in the
USING phrase, the sorting procedure will presume that any of the reserved set of
16 file-codes SA, SB, ••• , SP denote system input files. If any of these files
have been allocated in a sorting activity, they will unconditionally be used as
input files in every sort process in the activity. Input is taken as the entire
content of the USING file and then as the contents of SA, SB, ••• , SP, in order.

3/77 9-9 DD26A

INPUT PROCEDURE OPTION

When the INPUT PROCEDURE option is specified, the user is responsible for
all the input processing for the sorting process. An input procedure must
consist of one or more sections. Since the input procedure is invoked by the
sorting procedur~ via the same techniques used in the PERFORM statement
execution, the structure of the input procedure must follow the same basic rules
as a set of sections which are the object of a PERFORM statement. Control must
not be passed to the input procedure except through the execution of a SORT
statement. The input procedure may contain any procedures needed to select,
create, or modify records for input to the sorting process. Three general
restrictions apply to the procedural statements within the input procedure:

1. An input procedure must not contain a SORT statement, a MERGE
statement, or a RETURN statement.

2. The input procedure must not contain transfers of control to points
outside the input procedure. This means that the ALTER, GO TO, and
PERFORM statements in the input procedure must not refer to
procedure-names outside the input procedure. COBOL statements are
allowed that will cause an implied transfer of control to USE
procedures.

3. The remainder of the Procedure Division must not contain transfers of
control to points inside the input procedure. This means that ALTER,
GO TO, and PERFORM statements in the remainder of the Procedure
Division must not refer to procedure-names within the input procedure.

RELEASE Statement

The RELEASE statement is used to transfer logical input records from an
input procedure to the initial phase of a sorting operation. The RELEASE
statement may appear only in an input procedure and every input procedure must
contain at least one RELEASE statement. Refer to the COBOL Reference Manual for
specific format conventions.

~he record-name must be the name of a record defined within a sort file;
that is, a file described with an SD level indicator. If the sort file
description contains more than one record description, and if the record
descriptions define records of different sizes, a separate RELEASE statement
must be specified for each record size. If the FROM phrase is used, the contents
of 'identifier' must be the name of a data item in working-storage or of an
input record area. If the format of identifier is different from that of the
record-name, moving takes place according to the rules specified for the MOVE
statement without the CORRESPONDING option. The information in the sort record
area is no longer available, but the information in the identifier area is
available. It is illegal to use the same name for both the record-name and the
identifier.

After the RELEASE statement is executed, the contents of record-name are no
longer available to the COBOL procedure. The execution of a RELEASE statement
causes the contents of record-name (after the contents of identifier have been
moved to it in the FROM phrase) to be made available to the initial phase of the
sort process. When control passes from the input procedure, the sort file
consists of all those records which were placed in it by the execution of
RELEASE statements. NQ OPEN, READ, WRITE, or CLOSE statements may be given for
the sort file.

9-10 DD26

Sort Output Processing

A choice must be made between having the sorting process handle the output
processing of the newly sorted file or having the user's program specify the
output processing procedures. The choice is not as easily made as in the case of
the input procedure since it involves the assessment between the efficiency of
giving the sorting process more memory to work with and the total system
efficiency of embedding the processing of the output file within an output
procedure. Any requirement for a copy of the file for later processing by other
procedures may also be a consideration.

The output file cannot be assigned to SYSOUT or REMOTE.

GIVING OPTION

If the GIVING option is specified, the sorting process will handle the
output file processing. The file specified by file-name-3 must not be in an open
state when the SORT statement is executed. File-name-3 must have a file
description (FD) entry in the Data Division. The file-name-2 and f ile-name-3
are, in a sense, alternative descriptions of the same set of data. Therefore,
all file level properties (such as APPLY SYSTEM STANDARD) must be identical for
both files. If both the USING and GIVING options are specified, they may refer
to the same file-name or to different file-names. In the special case in which
USING and GIVING refer to the same file-name, the sort procedure will not use
the GIVING file as a collation file. Otherwise, the sort procedure will use a
GIVING file as a collation tape fiie unless inhibited by the ELECT SORT OPTIONS
phrase (Field-7) in the SPECIAL-NAMES paragraph or by the collation being
perforn~d on random-access media.

OUTPUT PROCEDURE OPTION

When the OUTPUT PROCEDURE option is specified, the final output file
processing for the sorting process is the responsibility of the program. An
output procedure must consist of one or more sections. Since the output
procedure is invoked by the sorting procedure via the same techniques used in
the execution of a PERFORM statement, the structure of the output procedure must
follow the same basic rules as a set of sections which are the object of a
PERFORM statement. Control must not be passed to the output procedure except
through the execution of a SORT statement. The output procedure may contain any
procedures needed to select, modify, or copy the records which are being
returned from the sorting process. Three general restrictions apply to the
procedural statements within the output procedure:

1. An output procedure must not contain a SORT statement, a MERGE
statement, or a RELEASE statement.

2. The output procedure must not contain transfers of control to points
outside the output procedure; i.e., ALTER, GO TO, and PERFORM
statements in the o~tput procedure are not permitted to refer to
procedure-names outside the output procedure. COBOL statements are
allowed that will cause an implied transfer of control to USE
procedures.

3. The remainder of the Procedure Division must not contain transfers of
control to points inside the output procedure; i.e., ALTER, GO TO, and
PERFORM statements in the remainder of the Procedure Division are not
permitted to refer to procedure-names within the output procedure.

9-11 DD26

RETURN Statement

The RETURN statement is used to obtain logical output records from a sort
operation and to transfer them to an output procedure. The RETURN statement may
appear only·in an output procedure, and every output procedure must contain at
least one RETURN statement. Refer to the COBOL Reference Manual for specific
format conventions.

File-name must be described with an SD level indicator and must be the same
file-name that was referenced in the SORT statement currently being executed.

The INTO phrase may be used only when the file referred to by file-name
contains just one type of record. The identifier must be the name of a data item
in working-storage or of an output record area. If the format of the identifier
differs from that of the input record, moving is performed according to the
rules specified for the MOVE statement without the CORRESPONDING option. When
the INTO phrase is used, 'file-name RECORD' is still available in the file-name
record area.

The execution of the RETURN statement causes the next record in sorted
order (according to the keys listed in the SORT statement) to be made available
for processing in the record area associated with the sort file. No OPEN, READ,
WRITE, or CLOSE statements may be given for the sort file.

After the contents of the sort file are exhausted, the next execution of
the RETURN statement will result in the execution of the imperative-statement in
the AT END phrase.

After execution of the AT END imperative-statement, no RETURN statement may
be executed within the current output procedure. The results of such an error
are unpredictable.

SORT OPERATIONAL CONSIDERATIONS

Flow of Control

Any sequence of procedural statements may be executed before or after the
SO.RT statement is executed. When the SORT statement is executed, the sorting
process receives control.

9-12 DD26

If an input procedure has been specified, the sort transfers control to the
input procedure as soon as it is ready to start processing records. The input
procedure opens the input file and reads the first record. Each time that a
record is ready for the sort file, the input procedure executes a RELEASE
statement, causing the sort to place the record in the sort file. Control then
passes to the statement following the RELEASE statement. The input procedure
continues reading and releasing until all the input records have been given to
the sort, at which time the input procedure closes the input file and allows
control to pass to its exit point, thereby returning control to the sorting
process. A simple input procedure might be organized as follows:

INPUT
PROCEDURE

OPEN
Input File

READ
Input File

Normal

Edit Record
and MOVE to
Sort File

RELEASE
Sort File

Record

AT END

9-13

CLOSE
Input File

EXIT

(Fall through the
exit point of
.INPUT PROCEDURE)

0026

The sorting process orders the records, up to the point of determining
which record goes first in the final output sequence. If an output procedure has
been specified, the sorting process at this point transfers control to the
output procedure. The output procedure opens its output file, if any, and then
obtains the first record in the final sequence by executing a RETURN statement.
When the output procedure has disposed of the first record, it returns the next,
and thus continues returning records and processing them. After the last record
has been returned, the sorting process causes control to pass to the AT END
phrase the next time a RETURN statement is executed. The output procedure closes
its output file, if any, and allows control to pass to its exit point. The
sorting process then terminates its own procedures. Control then passes to the
statement following the SORT statement. A simple output procedure might be
organized as follows:

OUTPUT
PROCEDURE

OPEN
Output File

RETURN Sort
File Record

Normal

Edit Record
and MOVE to
Output File

WRITE
Output File

Record

AT END CLOSE
Output File

EXIT

(Fall through the
exit point of
OUTPUT PROCEDURE)

In effect, the sequence of events just described applies also
USING or GIVING option is used, except that the input or output
becomes implicit, rather than specified in detail by the user.

Reserved File-Codes

when the
procedure

File-codes beginning with the ch~racter 'S' have special meaning to the
sorting process. (Such file-codes include Sl, S2, ••• , SA, SB, ••• , SZ.) In any
COBOL program that utilizes the SORT statement, the file-codes specified in all
SELECT sentences must not begin with the character 'S'.

9-14 DD26

Implicit File Assignments

INPUT FILES

The sort process assumes that the file-codes in the series SA, SB, •.• , SP
designate only input files. If, during a sort execution, any file has been
allocated using one of these file-codes, that file will unconditionally be used
as input to the sort process. In no case, however, will more than a total of 16
files be used as input to a sort process.

OUTPUT FILE

The sort process. assumes that the file-code SZ designates only an output
file.

COLLATION FILE-CODES

The sort process assumes that the file-codes in the series Sl, S2, .•• , S~
designate only collation working files. If, during a sort execution, any file
has been allocated using one of these file-codes, that file will unconditionally
be used as a collation file.

in the SPECIAL-NAMES
output file-code is

provided an output
list of collation

used for the sort

Unless inhibited by Field-7 of the ELECT. phrase
paragraph or by the execution of a mass storage sort, the
added to the list of collation file-codes. If the user has
procedure, the file-code SZ is unconditionally added to the
file-codes. In no case, however, will more than 16 files be
collation process.

BORROWED FILE-CODES

If the sort process is allowed to borrow collation space from the operating
system, it assumes that file-codes in the series SQ, SR, ••• , SV are restricted
to this purpose. Explicit assignment of any of these restricted file-codes
during a sort process may cause unpredictable results.

Collation File Manipulation

If all collation files are assigned to tape devices, the tape sort is
engaged. If the output file is to be used as a collation file, it must be
assigned to a tape device. If the sort has from three to five collation tapes,
it manipulates them in the polyphase mode. At the end of each collation phase,
two of the collation tapes must be rewound before the program can continue. If
the sort has from six to 16 collation tapes, it manipulates them in the standby
mode. At least two of the tapes are rewound during the collation process, so
that no phase must wait for tapes to finish rewinding in order to begin.

9-15 DD26

If a mass storage random-access device is allocated for one or more of the
collation files, the mass storage sort is engaged. The allocated collation files
are manipulated as if they were one conglomerate random-access area. The
allocation of several files on different channels increases input-output
overlap, however. The output file cannot be used for collation.

If, during sorting, the mass storage area_ is exhausted, the sort procedure
will attempt two levels of recovery .• The first level of spill recovery attempts
to borrow more random file space from the operating system. This attempt is made
via newly created files. If the user has already allocated 16 mass storage files
for collation, the sort will not attempt the first spill recovery level. When
the area borrowed for recovery is exhausted, the sort attempts to borrow more
random file space on the same newly created files. If all requests for more
links are denied, the sort attempts the second level of spill recovery on tapes.
If the user has allocated collation files on tape devices, they wili be used. If
no files, or less than three files, have been allocated, the sort attempts to
borrow tapes from the operating system. If unsuccessful, the sort execution
aborts. Otherwise, the sort purges the current string to mass storage and
reconfigures itself as a tape sort. The remainder of the input is distributed on
tapes. The strings on tapes are collated to one string. The strings on mass
storage are collated to one string. These _two strings are then merged to the
output file.

If both tape and random-access devices are allocated, the sort will select
the random-access mode of operation. If necessary, the tape files are utilized
to recover from random file overflow.

The disposition of collation files is controlled by the file-code
assignment specified for the sort file. The following discussion presents
several alternative file-code strategies, and assumes knowledge of the functions
of the$ TAPE and$ NTAPE control cards (refer to the Control Cards manual).

A basic requirement is that· the tape sort must have at least three
collation tapes. Whatever file-code strategy is chosen, this requirement must be
satisfied. Sources of collation tapes are as follows:

1. A $ NTAPE card specifying file-code Sl may provide some or all of
collation tapes. Depending upon how many tapes the $ NTAPE
provides, file-codes in the series Sl, S2, ••• ,will be available
the sort.

the
card

for

2. As described above, the GIVING option may normally provide one
collation tape to the tape sort.

3. Additional collation tapes may be provided via extra file-codes
specified in the sort file SELECT sentence.

It is recommended that the first (or only) file-code mentioned in the sort
file SELECT sentence not be represented by a $ TAPE card when the object program
is executed. The $ NTAPE card approach is considered the standard means of
providing collation tapes.

The file-code strategy recommended for a tape oriented sort file is,
therefore, to assign a single file-code (thereby satisfying COBOL syntax rules);
to omit the $ TAPE card for that file-code when the object program is executed;
and to supply instead a $ NTAPE card specifying file-code Sl and at least three
tapes.

9-16 DD26

Multiple fil~-codes in the sort file SELECT sentence may be desired for
various reasons:

l. If an output procedure produces a magnetic tape output file, the
file-code assigned to that file may be the second specified in the
sort file SELECT sentence (the first file-code should not be
represented by a $ TAPE card during program execution) • This technique
puts the tape at the sort's disposal throughout the collation
activity, but guarantees that the tape will be free when the output
procedure is engaged.

2.

3.

If one or more tape files are totally processed before or after the
sort procedure, the tapes are therefore available as scratch tapes
throughout the sort execution. Listing their file-codes in the sort
file SELECT sentence leads to enhanced collating efficiency. Such
file-codes would also be specified in the SELECT sentences for the
files to which they are assigned.

If the $ NTAPE card is not desired, multiple file-codes
file SELECT sentence can.be employed to give the user
over the allocation of collation tapes via $ TAPE cards.

in the sort
full control

If the basic requirement for three collation tapes is satisfied, $ TAPE
cards for the extra sort file file-codes may optionally be omitted during
program execution. If $ TAPE cards are provided, the sort process assumes such
tapes are available for collation purposes.

The USING and GIVING file-codes must not be specified in the ASSIGN
of the SELECT. sentence for the sort file.

phrase

When sort file-codes are represented by $ TAPE cards during program
execution, each such file-code counts as only one tape toward the sort's minimum
requirement for three collation tapes even if the $ TAPE card calls for
alternating tape handlers. Similarly, the GIVING file-code (when applicable)
counts as only a single collation tape.

If the sort file is associated with disk devices, the same basic techniques
apply, with two major exceptions. First: Only one disk file need be provided
for the collation area. This file must be a random-access file and should define
sufficient space to hold all the records from the input file plus an overhead
faptor of ten percent. Second: In no case should the output file be associated
with the collation file space. If the GIVING option is used, file-name-3 will be
explicitly excluded from the collation file space. If an output procedure is
used, no attempt should be made to force sort's use of the output file during
collation. The file will not be free during the execution and, if used as
collation, would cause unpredictable results.

Sort Configuration

The memory requirements for a sort execution depend on the file description
and the amount of user coding. A sort of a system standard file, having little
user coding and utilizing mass storage or three tape collation files, will
execute in the 16,000 words of memory allocated as the loader default
assumption.

9-17 DD26

The sort process requires an appropriate collation file configuration
before it begins execution. The minimum configuration for a mass storage sort is
one file. Normally, more files are used. The total mass storage area should be
adequate to hold all the input file plus a ten percent overhead factor. If the
amount of data to be sorted is small enough to allow the sort to be memory
contained, execution may begin with only one assigned random link. If the sort
is memory contained, the file is not accessed. If the sort is not memory
contained, the sort control program tests for the availability of sufficient
mass storage to contain the tournament entries. If insufficient space has been
allocated, the sort attempts to borrow space from the operating system. If
unsuccessful, the program aborts.

The sort program can also be executed with a minimum of three tape files.
Such an execution requires the multiple use of tapes for input, collation, and
output. The sort process distributes information in an orderly manner on the
collation tapes. Since there must be a free tape for the succeeding collation
pass, at least one tape is not written on during the input process. This tape is
unconditionally the last tape in the specified series of collation files. The
series is composed of those allocated files specified in the ASSIGN phrase
followed by the allocated system files (Sl, S2, ••• ,).

In the same manner, a free tape must be available to receive the output of
the last collation pass. This tape is unconditionally the first tape in the
specified series of collation files. If the sort is allowed to collate on the
specified output tape, that tape is always assumed to be first in the collation
series.

Thus, it is possible to use one tape for both output and collation, another
for collation only, and another for both input and collation. The $ TAPE control
cards could be configured as follows:

$ TAPE SZ,XlR output file

$ TAPE Sl,X2R

$ TAPE SA,X3R input file

$ TAPE S2,X3R

Since file S2 and file SA have the same logical unit designator, only three
tape units will be used.

Memory Assignment for Sort

Normally, the sorting procedure utilizes the memory area designated as open
in the slave program prefix information. This information is provided by the
General Loader during program execution. The size of the area for any given
program may be defined with the $ LIMITS card. Conflicts will arise, however,
when another system program (e.g., I-D-S) is trying to utilize the same area. In
that circumstance, the user must have some means of dividing the free area of
memory among the system programs. Memory is easily divided by removing the area
assigned to the sorting procedure from the free area designated by the General
Loader.

9-18 DD26

The sorting procedure has been made sensitive to the locations of two
Labeled Common storage areas: .SMA and .SMC. During preliminary processing, the
location of these two areas is checked by the sorting procedures. If the
distance between the two areas exceeds four words, it is assumed that the
sorting procedures will operate entirely within the space between the two areas.

The position and size of the two Labeled Common areas are controlled by the
$ USE card. For example, the following deck setup defines the Labeled· Common
storage areas:

$ IDENT
$ LOWLOAD
$ USE .SMA/l/,.SMB/50000/,.SMC/1/

Object decks or compilations follow this point.

This method allows the user to reorganize memory at load time without
recompiling any programs.

Dynamic Resource Allocation

If a tape oriented sort has been engaged, the use of Field-5 and Field-9 of
the ELECT phrase makes the sorting procedure responsible for the dynamic
allocation of more memory and collation tapes to the current activity. The sort
first borrows more memory from the operating system, up to the limit set by the
user. If there is more than enough memory to provide double buffering of the
collation tapes at the largest possible block size, the sort borrows more tapes
from the operating system for collation. The sort will borrow tapes until one of
the following occurs:

1. The number of available tapes is exhausted.

2. The limit set by the user is reached.

3. The use of another tape would cause a decrease in collation block
size.

4. The maximum of 16 collation tapes is reached.

9-19 DD26

Sort Examples

The following example illustrates a basic SORT program:

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO AB.
SELECT SORT-FILE ASSIGN TO CD.
SELECT OUTPUT•FILE ASSIGN TO EF.

I-0-CONTROL. APPLY SYSTEM STANDARD ON
INPUT-FILE, SORT-FILE, OUTPUT-FILE.

DATA DIVISION.
FILE SE}CTION.
to INPUT-FILE •••

01 •••

SD. SORT-FILE •••
01 •••

FD OUTPUT-FILE •••
01 •••

PROCEDURE DIVISION.

Note that these files may have multiple
record types and sizes, provided the sort
file and USING fiie have the same records,
the sort file and GIVING file have the
same records, and key descriptions and
positions are equivalent for all record
types.

SORT-CALL. SORT SORT-FILE ON ••• USING
INPUT-FILE GIVING OUTPUT-FILE.

STOP RUN.

The control cards for program execution could be as follows:

$
$
$
$
$

EXECUTE
LIMITS
TAPE
TAPE
NTAPE

AB,AlD,,,,INPUT-LABEL
EF,BlS,,,,OUTPUT-LABEL
Sl,C,2 (Two or more tapes required in this example)

The control cards could also be as follows:

$
$
$
$
$

EXECUTE
LIMITS
TAPE
TAPE
FILE

AB,Alb,,,,INPUT-LABEL
EF,BlS,,,,ouTPUT-LABEL
Sl,ClR,nnnnR

9-20 0026

Another SORT feature entails the use of an output procedure to deliver a
report {on any suitable device) rather than an output tape as such:

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO GH.
SELECT SORT-FILE ASSIGN TO IJ, KL.
SELECT REPORT-OUTPUT ASSIGN TO KL FOR LISTING.

DA'rA DIVISION.
FILE SECTION.
FD INPUT-FILE •••

01 •••

SD SORT-FILE •••
01 •••

FD REPORT-OUTPUT; REPORT IS XYZ •.•

WORKING-STORAGE SECTION.

REPORT SECTION.
RD XYZ •••

01 DETAIL-LINE; TYPE DE •••

PROCEDURE DIVISION.
SORT-CALL SECTION.
DRIVER. SORT SORT-FILE ON USING INPUT-FILE

OUTPUT PROCEDURE IS EDIT. STOP RUN.
EDIT SECTION.
STARTUP. OPEN REPORT-OUTPUT; INITIATE XYZ.
LOOP. RETURN SORT-FILE RECORD; AT END GO TO QUIT.

GENERATE DETAIL-LINE; GO TO LOOP.
QUIT. TERMINATE XYZ; CLOSE REPORT-OUTPU'r.

Since file-code KL is used for the output procedure's output file and is
also mentioned in the sort file SELECT sentence, it must be associated with a
magnetic tape during program execution. The control cards should therefore be as
follows (assuming the sort is to use only three collation tapes) :

$
$
$
$
$

EXECUTE
LIMITS
TAPE
TAPE
NT APE

GH,AlD,,,,INPUT-LABEL
KL,BlS,,,,ouTPUT-LABEL
Sl,C,2

If KL were not mentioned in the sort file SELECT sentence, its control card
could specify any suitable output medium such as $ TAPE or $ SYSOUT. Except in
the latter case, the sort activity would presumably be followed by a Bulk Media
Conversion activity to print the report.

9-21 DD26

I

MERGE STATEMENT

The purpose of the MERGE statement is to invoke the execution of a merging
procedure.

The Merge File

The definition of the merge file serves only to provide a location where
all the keys for the ordering are described. There is no application of the
merge file which corresponds to the working file status of the sort file.
However, COBOL syntax rules require that an appropriate SELECT sentence be
specified for the merge file. A file assignment control card should not be
included fo0r the file-code assigned to the merge file.

Merge Key Declarations

The definition of the merge key fields is accomplished in a special type of
file description in the File Section of the Data Division. The definition is
prefaced with the level indicator SD. Each key data-name associated with a MERGE
statement must be defined within the merge file-name description referred to by
the MERGE statement. The keys are listed in the MERGE statement in order, from
most significant (major key) to least significant (most minor key) , with the
word 'ASCENDING' or 'DESCENDING' preceding key data-names as appropriate. Key
comparison coding is generated by the COBOL compiler, rather than by the merging
procedure, on the basis of the key declarations in the MERGE statement.

Each key data item must occur in every data record of the merge file. It
must have the same relative position and actual format in all records. The
PICTURE and USAGE of a given key item must be the same in all ~ecords in the
merge file. If a key item is synchronized or justified, it must be identically
synchronized or justified in all records in the merge file. A key data item may
not be described with USAGE COMPUTATIONAL-4. Keys must be data items which do
not require subscripting or indexing.

VARIABLE-LENGTH RECORDS

Although key items themselves may not be of variable length, the records
within the merge file may be of variable length. Each record must be large
enough to contain the entire set of keys described in the MERGE statement.
Variable-length records may occur as the result of two separate syntactical
usages:

1. The merge file and the input file referenced by the USING option both
have two or more record descriptions of different sizes (variable size
01 descriptions) , or both are specified as variable-length record
files in the APPLY phrase.

2. The input file has a record containing an OCCURS ••• DEPENDING clause.

In the first case, multiple record descriptions, no special handling of the
file is necessary to facilitate merging, assuming that all of the position and
format rules are followed.

3/77 9-22 DD26A

In the second case, an OCCURS ••• DEPENDING option, the files being
require special handling utilizing the GIVING option. The following
steps are taken:

merged
special

1. The merge file is declared as a variable-length record file in the
APPLY phrase.

2. The OCCURS ••• DEPENDING clause is not used in the SD description.

3. The record description in the SD description is started with the
item: FILLER PIC X(6). This entry allows for the existence of the
occurs control word which appears on each record. The comparison
coding generated by the compiler is thereby properly aligned with the
described key fields.

4. Since the relative position of the key might shift from
record, no key field may follow any of the OCCURS items
records being sorted.

record
within

to
the

When this technique is used, the GIVING phrase must be specified,
there is no way for the merge process to expand the record into its full
for the output procedure. Therefore, any processing using the result of
merge requires another pass over the file.

Merge Key Evaluation

since
form
the

When the values of a key in a pair of merge file records are compared, one
value is found to be greater than, equal to, or less than the other according to
the rules given under the Relation Condition paragraph in Section XII. The key
comparison determines the order of the records in the merge output.

1. If all corresponding key values of a pair of merge file records are
identical, the record that appeared first in the input to the merging
procedure will precede the other in the output.

2. If any key values of a pair of merge file records are unequal, the
output sequence is based upon the most significant key item for which
inequality is found.

a. If that key item is governed by the ASCENDING option, the record
with the lower value will precede the other in the output.

b. If the item is governed by the DESCENDING option, the record with
the higher value will precede the other in the output.

Merge Equal Key Procedures

The COBOL merge interface subroutine permits COBOL
user-supplied procedures for analysis, summarization,
deletion of records with equal key values that may be
merging.

9-23

programs to contain
and/or conditional

encountered during

DD26

The label .CMEQK, a global symbol in the COBOL merge interface subroutine,
is associated with a word through which the entry point address of an equal key
procedure may be communicated to the merge process. The address of the equal key
procedure entry point must be placed in the lower half of that word without
disturbing the contents of the upper half. The additional coding required in the
COBOL program in order to use this facility consists of the following four
elements, all of which must be written in assembly language (GMAP):

1. Coding to set the equal key procedure address into .CMEQK.

2. Coding to change the address of the equal key procedure, if more than
one such procedure is used.

3. Coding to reset .CMEQK to zero, whenever further use of equal key
procedures is not desired.

4. Coding for the equal key procedure itself.

ENGAGEMENT OF EQUAL KEY PROCEDURES

If an equal key procedure is to be operative during the execution of a
particular MERGE statement, then at some time prior to the execution of that
MERGE statement the entry point address of the appropriate equal key procedure
must be placed in the lower half of the word identified by the global symbol
.CMEQK, without disturbing the contents of the upper half of that word. The
address of the equal key procec_iure appearing in .CMEQK is not changed by the
merging process. Thus, unless the content of .CMEQK is explicitly changed by the
user's coding, the same equal key procedure will be operative during all
subsequent COBOL MERGE statement executions in the run unit.

CHANGING EQUAL KEY PROCEDURES

An alternate equal key procedure may be designated for use in conjunction
with subsequent MERGE statement executions by changing the address in location
.CMEQK. This may only be accomplished between MERGE statement executions; after
the completion of one MERGE statement and before the execution of the next.

DISENGAGEMENT OF EQUAL KEY PROCEDURES

Resetting the lower half of location .CMEQK terminates further use of equal
key procedures. This may only be accomplished between MERGE executions, and not
during the execution of a MERGE statement. Equal key procedures may subsequently
be re-engaged, as described above.

9-24 DD26

MERGE EQUAL KEY RECORD PROCESSING

Whenever two records having equal key values are encountered in the merging
process, and an operative equal key procedure has been designated, control is
transferred to the designated procedure with index registers six and seven set
to refer to the two records involved. The equal key procedure must then
determine which record should be deleted. It may choose to delete neither.
Information may also be transferred to the preserved record from the one to be
deleted, but the contents of the key fields must not be changed, nor may the I
program reference any portion of a record that extends beyond the area contained
within the dominant record size. After processing the records, the equal key
procedure must report its dec~sion to the merge process. The applicable
progranuning conventions are described ih the User Squeeze Coding paragraph in
the Sort/Merge Program manual.

Merge Input Processing

When a merging procedure is used, no options are available for handling
input files. The merging process will handle all of the processing of input
files. The USING phrase must be specified in the MERGE statement and must
identify at least two file-names. The referenced input files must not be in an
open state when the MERGE statement is executed. All of the specified file-names
must have file description (FD) entries in the Data Division. The merge file and
the files referenced in the USING phrase are, in a sense, alternative
descriptions of the same set of data. Therefore, all file level properties (such
as APPLY SYSTEM STANDARD) must be identical for all of the files. In addition to
the files explicitly referenced in the USING phrase, the merging procedure will
presume that any of the reserved set of 16 file-codes SA, SB, ••• , SP denote
system input files. If any of these files have been allocated in a merging
activity, they will unconditionally be used as input files in every merge
process in the activity. The hierarchy of input files is first the series of
files in the USING phrase followed by the files SA, SB, ••• , SP, in order.

Merge Output Processing

A choice must be made between having the merging process handle the output
processing of the newly merged file or having the user's program specify the
output processing procedures.

GIVING OPTION

If the GIVING option is specified, the merging process will handle the
output file processing. The file ~pecified by file-name-5 must not be in an open
state when the MERGE statement is executed. File-narne-5 must have a file
description {FD) entry in the Data Division. File-name-5 and the files specified
in the USING phrase are, in a sense, alternative descriptions of the same set of
data. Therefore, all file level properties {such as APPLY SYSTEM STANDARD) must
be identical for both files. ·

3/77 9-25 DD26A

OUTPUT PROCEDURE OPTION

When the OUTPUT PROCEDURE option ·is specified, the final output file
processing for the merging process is the responsibility of the program. An
output procedure must consist of one or more sections. Since the output
procedure is invoked by the merging process via the same techniques used in the
execution of a PERFORM statement, the structure of the output procedure must
follow the same basic rules as a set of sections which are the object of a
PERFORM statement. Control must not be passed to the output procedure except
through the execution of a MERGE statement. The output procedure may contain any
procedures needed to select, modify, or copy the records which are being
returned from the merging process. Three general restrictions apply t6 the
procedural statements within the output procedure:

1. An output procedure must not contain a MERGE statement, a SORT
statement, or a RELEASE statement.

2. The output procedure must not ~ontain transfers of control to points
outside the output procedure; i.e., ALTER, GO TO, and PERFORM
statements in the output procedure are not permitted to refer to
procedure-names outside the output procedure. COBOL statements are
allowed that will cause an implied transfer of control to USE
procedures.

3. The remainder of the Procedure Division must not contain transfers of
control to points inside the output procedure; i.e., ALTER, GO TO, and
PERFORM statements in the remainder of the Procedure Division are not
permitted to refer to procedure-names within the output procedure.

RETURN Statement

The RETURN statement is used to obtain logical output records from a merge
operation and to transfer them to an output procedure. The RETURN statement may
appear only in an ou~put procedure, and every output procedure must contain at
least one RETURN statement. Refer to the COBOL Reference Manual for specific
format conventions.

File-name must be described with an SD level indicator and must be the same
file-name that was referenced in the MERGE statement currently being executed.

The INTO phrase may be used only when the file referred to by file-name
contains just one type of record. The identifier must be the name of a data item
in working-storage or of an output record area. If the format of the identifier
differs from that of the input record, moving is performed according to the
rules specified for the MOVE statement without the CORRESPONDING option. When
the INTO phrase is used, 'file-name RECORD' is still available in the file-name
record area.

The execution of the RETURN statement causes the next record in merged
order (according to the keys listed in the MERGE statement) to be made available
for processing in the record area associated with the merge file. No OPEN, REAO,
WRITE, or CLOSE statements may be given for the merge file.

9-26 DD26

After the contents of the merge file are exhausted, the next execution of
the RE~URN statement will result in the execution of the imperative-statement in
the AT END phrase.

After execution of the A~ END imperative-statement, no RETURN statement may
be executed within the current output procedure. The results of such an error
are unpredictable.

MERGE OPERATIONAL CONSIDERATIONS

Flow of Control

Any sequence of procedural statements may be executed before or after the
MERGE statement is executed. When the MERGE statement is executed, the merging
process receives control.

The merging process performs initial housekeeping, up to the point of
determining which record is placed first in the final output sequence. If an
output procedure has been specified, the merging process at this point transfers
control to the output procedure. The output procedure opens its output file, if
any, and then obtains the first record in the final sequence by executing a
RETURN statement. When the output procedure has disposed of the first record, it
returns the next, and thus continues returning records and processing them.
After the last record has been returned, the merging process causes control to
pass to the AT END phrase the next time a RETURN statement is executed. The
output procedure closes its output file and allows control to pass to its exit
point. The merging process then terminates its own procedures. Control then
passes to the statement following the MERGE statement. A simple output procedure
might be organized as follows:

OUTPUT
PROCEDURE

OPEN
Output File

RETURN Merge
File Record

Normal

Edit Record
and MOVE to
Output File

WRITE
Output File

Record

AT END

9-27

CLOSE
Output File

EXIT

(Fall through the
exit point of
OUTPUT PROCEDURE)

DD26

In effect, the sequence of events just described applies also when the
GIVING option is used, except that the output procedure becomes implicit, rather
than specified in detail by the user.

Reserved File-Codes

File-codes beginning with the character 'S' have special meaning to the
merging process. (Such file-codes include SA, SB, ••• , SZ.) In any COBOL program
that uti.li.zes the MERGE statement, the file-codes specified in all SELECT
sent~nces mu~t ~begin with the character 'S'.

Implicit File Assignments

INPUT FILES

The merge process assumes that the file-codes in the series SA, SB, ••• , SP
designate only input files. If, during a merge execution, any file has been
allocated using one of these file-codes, that file will unconditionally be used
as input to the merge process. In no case, however, will more than a total of 16
files be used as input to a merge process.

OUTPUT FILE

The merge process assumes that the file-code SZ designates only an output
file.

Merge Configuration

The memory requirements for a merge execution depend on the file
descriptions and the amount of user coding. A merge of two system standard
files, having little user coding, will execute in the 16,000 words of memory
allocated as the loader default assumption.

Memory Assignment for Merge

Normally, the merging procedure utilizes the memory area designated as open
in the slave program prefix information. This information is provided by the
General Loader during program execution. The size of the area for any given
program may be defined with the $ LIMITS card. Conflicts will arise, however,
when another system program (e.g., I-D-S) is trying to utilize the same area. In
that circumstance, the user must have some means of dividing the free area of
memory among the system programs. Memory is easily divided by removing the area
assigned to the merging procedure from the free area designated by the General
Loader.

9-28 DD26

The merging procedure has been made sensitive to the locations of two
Labeled Common storage areas: .SMA and .SMC. During preliminary processing, the
location of these two areas is checked by the merging procedure. If the distance
between the two areas exceeds four words, it is assumed that the merging
procedure will operate entirely within the space between the two areas.

The position and size of the two Labeled Common areas are controlled by the
$ USE control card. For example, the following deck setup defines the Labeled
Common storage areas:

$ IDENT
$ LOWLOAD
$ USE .SMA/l/,.SMB/50000/,.SMC/l/

Object decks or compilations follow this point.

This method allows the user to reorganize memory at load time without
reassembling any programs.

Merge Examples

The following example illustrates a basic MERGE program:

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT INPUT-FILE-1 ASSIGN TO AB.
SELECT INPUT-FILE-2 ASSIGN TO CD.
SELECT MERGE-FILE ASSIGN TO EF.
SELECT OUTPUT-FILE ASSIGN TO GH.

I-0-CONTROL. APPLY SYSTEM STANDARD ON INPUT-FILE-1,
INPUT-FILE-2, MERGE-FILE, OUTPUT-FILE.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE-1~ ••

01 •••

FD INPUT-FILE-2 •••
01 •••

SD MERGE-FILE •••
01 •••

FD OUTPUT-FILE •••
01 •••

PROCEDURE DIVISION.

Note that these files may have multiple
record types and sizes, provided the
merge file and USING file have the same
records, the merge file and GIVING file
have the same records, and key descrip­
tions and positions are equivalent for
all record types.

MERGE-CALL. MERGE MERGE-FILE ON
GIVING OUTPUT-FILE.

USING INPUT-FILE-1, INPUT-FILE-2,

9-29 DD26

The control cards for program execution could be as follows:

$
$
$
$
$

EXECUTE
LIMITS
TAPE
TAPE
TAPE

AB,AlD,,,,INPUT-LABEL-1
CD,A2D,,,,INPUT-LABEL-2
GH,BlS,,,,OUTPUT-LABEL

Another MERGE feature entails the use of an output procedure to deliver a
report (on any suitable device) rather than an output tape as such:

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT INPUT-FILE-1 ASSIGN
SELECT INPUT-FILE-2 ASSIGN
SELECT MERGE-FILE ASSIGN TO
SELECT REPORT-OUTPUT ASSIGN

DATA DIVISION.
FILE SECTION.
FD INPUT-FiLE-1 •.•

01 •••

FD INPUT-FILE-2 •..
01 ...

SD MERGE-FILE •••
01 •••

TO AB.
TO CD.

EF.
TO GH

FD REPORT-OUTPUT, REPORT IS XYZ • ••

WORKING-STORAGE SECTION.

REPORT SECTION.
RD XYZ •••

01 DETAIL-LINE, TYPE DE •••

PROCEDURE DIVISION.
MERGE-CALL SECTION. ,
DRIVER. MERGE MERGE-FILE ON USING

INPUT-FILE-1, INPUT-FILE-2, OUTPUT
PROCEDURE IS EDIT.
STOP RUN.

EDIT SECTION.

FOR

STARTUP. OPEN REPORT-OUTPUT, INITIATE XYZ.
LOOP. RETURN MERGE-FILE RECORD, AT END

GO TO QUIT.

GENERATE DETAIL-LINE, GO TO LOOP.
QUIT. TERMINATE XYz,· CLOSE REPORT-OUTPUT.

9-30

LISTING.

DD26

The control cards for program execution could be as follows:

$
$
$
$
$

EXECUTE
LIMITS
TAPE
TAPE
TAPE

AB,AlD,,,,INPUT-LABEL-1
CD,A2D,,,,'INPUT-LABEL-2
GH,BlS,,,,ouTPUT-LABEL

The file control card for GH could specify any suitable output medium such
as tape, disk, or SYSOUT.

SORT-MERGE ELECTIVE OPTIONS

The ELECT SORT OPTIONS phrase in the SPECIAL-NAMES
Environment Division is a compiler-directing phrase that is
greater control over the sorting or merging process.

paragraph of the
used to exercise

The file-names in the ELECT phrase must be described in sort-merge file
description entries in the Data Division with the special level indicator SD. A
given file-name must not appear in more than one ELECT phrase.

Twelve options (fields) are provided, which correspond to the 12 fields of
the ELECT macro of the freestanding sort-merge system. The order and relative
position of the fields must be specified according to the definitions of the
f i~ld numbers listed in the SPECIAL-NAMES paragraph of the COBOL Reference
Manual. When the ELECT option is used, each field must be specified according to
field description or as a null field. In all cases, the first field must be
specified. For additional information, refer to the Sort/Merge Program manual.

9-31 0026

SECTION X

DATA MOVEMENT PROCEDURES

MOVE STATEMENT

In any MOVE statement, two or more receiving items may be specified. The
effect is equivalent to a serie~ of separate MOVE statements, each having
identifier-! as the sending item, with identifier-2, identifier-3, etc.,
respectively, as receiving items.

A MOVE statement whose sending and receiving data items are both elementary
items is considered to be an elementary MOVE statement. For elementary MOVE
statement rules, elementary data items are classified into the following
categories:

N - Numeric. This includes any item whose PICTURE
characters from the set 9, S, V, and P. It
figurative constant ZERO and any numeric literal.

consists solely
also includes

of
the

NE - Numeric Edited. An item has at least one of the following:

1. An editing clause (e.g., BLANK WHEN ZERO).

2. A PICTURE containing any of the numeric editing characters Z * $
, • + - CR and DB.

3. A PICTURE containing at least one insertion character B, and ·not
containing any of the characters A or x.

AE - Alphanumeric Edited. An item whose PICTURE contains at least one
insertion character B, and at least one character X.

AN - Alphanumeric. An item whose PICTURE contains only characters from the
set A, X, 9 treated as if all were the character x. It also includes
nonnurneric literals and the figurative constants except for ZERO and
SPACES.

AB - Alphabetic. An item whose PICTURE consists entirely of the character
A. It also includes the figurative constant SPACES.

The following rules apply to an elementary MOVE between the categories
defined above:

a. It is illegal to move an NE, AE, the figurative constant SPACE, or an
AB item to an N or NE item.

b. It is illegal to MOVE an N, the figurative constant ZERO, or an NE
item to an AB item.

10-1 DD26

c. It is illegal to MOVE an N item whose implicit decimal point is not
·immediately to the right of the least significant digit to an AN or AE
item.

d. A data item described with USAGE DISPLAY-2 can be moved only to a data
item described with USAGE DISPLAY or USAGE DISPLAY-2. When a DISPLAY-2
data ·item is a receiving item, the sending item must be described with
USAGE DISPLAY or DISPLAY-2 or be a literal or a figurative constant.

An elementary MOVE statement may be legal or illegal, depending upon the
categories to which the respective data items belong. The following chart shows
all of the possible elementary MOVE statements.

Category of Receiving Data Item
Category of Sending

Data Item
Alphanumeric Numeric Integer

Alphabetic Edited Num. Non integer
Alphanumeric Numeric Edited

Alphabetic Legal/l Legal/l Illegal

Alphanumeric Legal/3 Legal/l Legal/2

Alphanumeric Edited Legal/3 Legal/l Illegal

Integer Illegal Legal/l Legal/2
Numeric

Non integer tllegal Illegal Legal/2

Numeric Edited Illegal Legal/l Illegal

The results obtained w~th legal elementary MOVE statements are given below:

Case 1: When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and ar.y necessary space-filling takes place as
defined under the JUSTIFIED clause and the Standard Alignment
Rules. If the size of the sending item is greater than the size of
the receiving item, the excess characters are truncated on the
right after the receiving item is filled. If the sending item is
described as signed numeric, the operational sign will not be
moved.

10-2 DD26

Case 2: When a numeric or numeric edited item is the receiving
alignment by decimal point and any necessary zero-filling
place as defined under the Standard Alignment Rules, except
zeros are replaced because of editing requirements.

item,
takes
where

a. When a signed numeric item is the receiving item, the sign of
the sending item is placed in the receiving item. Conversion
of the representation of the sign takes place as necessary.
If the sending item is unsigned~ a positive sign is generated
for the receiving item.

b. When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

c. When a data item described as alphanumeric is the sending
item, data is moved as if the sending item were described as
an unsigned numeric integer.

Case 3: When a receiving field is described as alphabetic, justification
and any necessary space-filling takes place as defined under the
JUSTIFIED clause and the Standard Alignment Rules. If the size of
the sending item is greater than the size of the receiving item,
the excess characters are truncated on the right after the
receiving item is filled.

NOTE: Any necessary conversion of data from one form of internal
representation to another (binary to decimal, numeric mode to
alphanumeric mode, etc.) takes place during the move, along with any
specified editing in the receiving item such as suppressing zeros
with blanks, or inserting a dollar sign, commas, a decimal point,
etc.

EXAMPLES OF MOVE STATEMENTS

The data items referenced in the following examples are assumed to have the
data images shown below (V appears in the values of some numeric items to
illustrate assumed decimal point alignment; it does not actually appear in data
items in the object program):

Data-Name

A
B
E
D
c
F

PICTURE

999999V
9999V99
X(10)
x (6)
999V9
X(lO)

10-3 DD26

Statement Sendins Item Contents Result

MOVE 1000 TO B. 1000 lOOOVOO
MOVE 300 TO B. 300 0300VOO
MOVE 1.235 TO B. 1. 235 0001V23
MOVE C TO B. 024V5 0024V50
MOVE B TO c. 1234V56 234V5

MOVE F TO E. AA1673BBCC AA1673BBCC
MOVE D TO F. AA1673 AA1673JzSJzSJzSJzS

MOVE E TO D. AA1673BBCC AA1673

MOVE "123456" to D. 123456 123456
MOVE A TO D- 007340V 007340

MOVE D TO A. 653000 653000V

MOVE ALL "Z" TO E. zzzzzzzzzz

MOVE ALL "XY" TO E. XYXYXYXYXY
MOVE ALL "XYZ" TO E. XYZXYZXYZX

MOVE ZEROS TO C. ooovo

MOVE SPACES TO E. JzSJzSJzSJzSJzSJzSJzSJzSJzSJzS

Some examples of the editing features of the MOVE statement are given
below:

sen dins Item Receiving Item

Value of Value of
Data Image Sendins Item Data Image Receiving Item

9999V99 567891 9999V99 567891
9999V99 567891 9999V9 56789
9V9 78 999V99 00780
xxx M8N xxxxx M8N)6JzS
99V99 6789 999.99 067.89
AAJ>..AAA WARREN AAA WAR
99V99 6789 $ZZZ9.99 $JzSJzS67.89

(JzS = space or blank)

The following examples illustrate the results of various MOVE statements (V
is shown to illustrate the assumed decimal point position):

77 B PICTURE 9999V99.
77 C PICTURE 999V9.
77 D PICTURE X{6).

MOVE Sending

1000 TO B 1000
300 TO B 300

1.235 TO B 1. 235
c TO B 024V5
D TO B 12 3456

Value Receiving Value

lOOOVOO
0300VOO
0001V23
0024V50
3456VOO

10-4 DD26

\\

Sen dins Item Receivin2 Item

PIC1rURE Value PICTURE Resultin2 Value

9 (5) 45678 $ZZ,ZZ9.99 $45,678.00
9(3)V99 456.78 $ZZ,ZZ9.99 $ 456.78
9{3)V99 000.67 $ZZ,ZZ9.99 $ 0.67
9(3)V99 000.04 $ZZ,ZZZ.99 $.04
9 (5) 00000 $ZZ,ZZZ.ZZ
V9 (5) .12 345 $ZZ,ZZ9~99 $ 0.12
9 { 5) 12345 $**,**9.99 $12,345.00
9(5) 67890 $$$,$$9.99 $67,890.00
9{3)V99 678.90 $$$,$$9.99 $678.90
9(5) 00000 $$$,$$9.99 $0.00
V9 (5) .67890 $$$,$$9.99 $0.67

S9{5)V -56789. -ZZZZ9.99 -56789.00
S9{5) +56789 -ZZZZ9.99 56789.00
S9(5) -56789 +ZZZZ9.99 -56789.00
S9{5) +56789 +zZZZ9.99 +56789.00
S99V9(3) -56.789 ------. 9.9 -56.78
S9{5) -00567 zzzzz. 9'9- 567.00-
S9(5) -56789 $$$$$.$.99CR $56789.00CR
S9 (5) +56789 $$$$$$.99CR $56789.00

A MOVE statement is considered to be nonelernentary if the sending data item
and/or the receiving data item is a group item. A nonelernentary MOVE statement
produces the same effect as if the sending and receiving data items were simple
alphanumeric items.

An index data item cannot appear as an operand of a MOVE statement.

In the Extended Instruction Set (EIS) mode, movement of alphanumeric data
(such as#,[> to a numeric field may result in the abort message ILLEGAL EIS
DATA. This type of MOVE is accepted ih the non-EIS mode even though it violates
COBOL rules.

Cascading moves in which the sending and rece1v1ng character positions
occur within the same word-pair produce unpredictable results.

MOVE CORRESPONDING STATEMENT

The CORRESPONDING option causes selected items subordinate to
to be moved to corresponding items subordinate to identifier-2.
items are moved individually; editing, format conversion, fill,
take place as appropriate, item by item.

identif ier-1
The selected

or truncation

In a MOVE CORRESPONDING statement, identifier-I, identifier-2, ••• ,must be
group items. For each possible pair of items subordinate to identifier-1 and
identifier-2, a correspondence exists if the following rules.are satisfied:

1. The respective identifiers are the same, including all qualifiers up
to (but not including) identifier-1 and identifier-2.

2. One or both of the items in the pair are elementary. (One may be a
group i tern.)

10-5 DD26

3. Any data-names that are subordinate to identifier-1 or identifier-2
and which have REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clauses
are ignored, as well as any data-names that are subordinate to the
data-names containing REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX
clauses.

Identif ier-1 or identif ier-2 may have REDEFINES or OCCURS clauses and
may be subordinate to data-names that have REDEFINES or OCCURS
clauses.

4. Neither item has level-numbers 66, 77,.or 88 or is described with the
USAGE IS INDEX clause.

For each corresponding pair of items, the effect of a MOVE CORRESPONDING
statement is the same as if a separate MOVE statement had been written instead.
For example, consider the statement MOVE CORRESPONDING ABLE TO BAKER (I), where
the respective data descriptions are as follows:

03 ABLE ••• 02 BAKER; OCCURS 10 TIMES .••
04 p ••• 05 p
04 Q ••• 05 Q
04 R REDEFINES Q ••• 05 R
05 s ... 06 s

The effect is the same as if the following statements had been written:

MOVE P OF ABLE
MOVE Q OF ABLE

TO P OF
TO 'Q OF

BAKER
BAKER

(I)
(I)

Note that R is not moved (because neither R is elementary). S is not moved
because S of ABLE is subordinate to a group item within ABLE that is described
with the REDEFINES clause.

A correspondence never exists for FILLER items.

Since a MOVE CORRESPONDING statement expands into a series of separate
moves, the CORRESPONDING option should never be used for record-to-record or
group-to-group moves where the sending and receiving groups have the same
descriptions; a simple MOVE statement (without the CORRESPONDING option)
produces more efficient object program coding. The COBOL compiler may abort when
the MOVE CORRESPONDING statement is used in a program with a very large number
of Data Division entries or with very long record descriptions in which
'correspondences' would exist. The abort may be avoided in subsequent
compilations by increasing the memory limits. If the memory limits cannot be
increased, the abort can be circumvented by replacing the MOVE CORRESPONDING
statement with elementary MOVE statements to accomplish the desired functions.

10-6 DD26

EXAMPLES OF MOVE CORRESPONDING STATEMENTS

Examples of MOVE CORRESPONDING statements that reflect the hierarchy of
level structure are given below:

01 A
02 z
02 B
02 c

03 D
03 E

04 F
04 G

05 p

05 Q
02 H

03 I
03 J

02 K
02 L

01 x
02 y

03 L
04 M
04 N

03 c
04 D
04 E

05 F
05 G

06 u
06 v

03 H
03 B

02 z
02 Q

MOVE CORRESPONDING A TO x is equivalent to

MOVE z OF A TO z OF x

MOVE CORRESPONDING A TO y is equivalent to

MOVE B OF A TO B OF y (elementary)
MOVE D OF A Tu D OF y (elementary)
MOVE F OF A TO F OF y (elementary)
MOVE L OF A TO L OF y . (group)
MOVE H OF A TO H OF y (group)

MOVE CORRESPONDING y TO A is equivalent, with
sending and receiving items reversed, to

MOVE CORRESPONDING A TO y

10-7 DD26

REPLACING PHRASE (EXAMINE STATEMENT)

The REPLACING phrase of the EXAMINE statement is used to modify the value
of an item, by replacing certain characters in the original value with a new
character.

When the REPLACING phrase is used (Format 2), character replacement
proceeds according to the options specified:

Option

ALL

FIRST

LEADING

UNTIL FIRST

Substitute Literal-4 For

Each occurrence of literal-3.

The first occurrence of literal-3.

All occurrences of literal-3 prior
occurrence of any other character.

to the leftmost

All occurrences of other characters prior to (but not
including) the first occurrence of literal-3.

For nonnumeric data items, examination starts at the leftmost character and
proceeds to the right. Each character in the data item specified by the
identifier is examined in turn.

If .a data item referred to by the EXAMINE statement is numeric, it must
consist of numeric characters and may include an operational sign. Examination
starts at the leftmost character and proceeds to the right. Each character is
examined in turn. When the letter 'S' is used in the PICTURE character-string of
the data item description to indicate the presence of an operational sign, the
sign is ignored by the EXAMINE statement.

The item being examined must have been described with USAGE DISPLAY
(explicitly or implicitly). Literal-! and literal-2 must be one-character
literals; the actual characters must be consistent with the category of
identifier. If the ide~tifier is numeric, the literals must be single-digit
integers (written without quotation marks). If the identifier is nonnumeric, the
literals must be single characters, enclosed in quotation marks, consistent with
the category of identifier. Alternatively, figurative constants may be
specified, but the ALL literal option must not be used.

The TALLYING phrase of the EXAMINE statement is used for arithmetic
manipulation. The description of the TALLYING function and a related example is
given in Section XI, Arithmetic Computations.

10-8 0026

SECTION XI

ARITHMETIC COMPUTATIONS

METHODS OF COMPUTATION

The manipulation and/or computation of numeric operands may be specified in
COBOL:

1. In formulas within conditions.

2. With the arithmetic statements (ADD, COMPUTE, DIVIDE·, MULTIPLY, and
SUBTRACT).

3. With the TALLYING phrase of the EXAMINE statement.

4. With the VARYING phrase of the PERFORM statement.

5. With the SUM counter (see Section VIII, Report Writer).

The following general rules apply to all computations:

l. Any literals specified must be numeric literals.

2. Operands must be only elementary numeric data items.

3. The sizes and formats of operands may vary within a statement. The
compiler supplies object program coding for appropriate decimal point
alignment and any required format conversions.

4. Editing symbols must not be specified in any operand, except in an
item that receives the calculated result but is not used in the
computation itself. (The exception to this rule is described under the
Arithmetic Statements paragraph.)

5. The maximum size of any operand is 18 decimal digits.

6. In the Extended Instruction Set (EIS) mode, an arithmetic reference to
nonnumeric data will cause an ILLEGAL EIS DATA abort message.

For arithmetic statements, the calculated result may have more integral or
fractional digits than those provided by the description of the resultant data
item. Therefore, the arithmetic verbs offer the SIZE ERROR option, which is used
when excess high-order digits are expected, and the ROUNDED option, which is
used when excess low-order digits are expected.

11-1 DD26

FORMULAS

A formula is an algebraic expression consisting of
literals and arithmetic operators. Data items mentioned in
numeric elementary items.

identifiers and/or
formulas must be

A formula is evaluated from left to right. As in algebra, exponentiation
has priority over multiplication and division, and addition and subtraction have
the lowest priority. The arithmetic operators are expressed by symbols, which
are shown in the order of decreasing priority in the following list:

Operation Symbol English Equivalent

Unary + + (Multiplication by +l)

Unary - (Multiplication by -1)

Exponentiation ** EXPONENTIATED BY

Multiplication * MULTIPLIED BY or TIMES
(same priority)

Division I DIVIDED BY

Addition + PLUS

Subtraction MINUS

A formula must never begin with * or / or ** (or their English
equivalents), nor end with any arithmetic operator. Each symbol must be preceded
and followed immediately by one or more spaces.

Parentheses may be used to override the assumed priority order of
operations. The operations within a set of parentheses are performed, producing
a single number, before operations outside the parentheses are performed. An
expression is evaluated from the innermost to the outermost set of parentheses.
There must be exactly as many right parentheses as left parentheses~ The left
parenthesis may not be immediately followed by a blank and the right parenthesis
may not be preceded by a blank space.

Unless parentheses intervene, operations at a given priority level are
executed in the same order as they are written, from left to right. Certain
sequences of operations are considered ambiguous in algebra, but the rule just
stated makes them permissible in COBOL. The following examples illustrate this
convention:

Expression

A I B * c

A I B I c

A ** B ** C

Algebra

(A I B) * C or A I (B * C)

(A I B) /C or A I (B / C)

(A ** B) ** C or A ** (B ** C)

11-2

COBOL

(A I B) * c

(A I B) I c

(A ** B) ** C

DD26

Although such expressions are permitted in COBOL, parentheses should be
used instead, as in the last column, to make the source program clearer.

The following example is unambiguous without parentheses, and illustrates
the normal precedence of operations:

A + B I c + D ** E * F - G

is interpreted as if it were written

A + (B / C) + ((D ** E) * F) - G.

The following usages of exponentiation are not allowed and may produce
unpredictable results:

a. The value zero exponentiated by the value zero.

b. The value zero exponentiated by a negative value.

c. A negative value exponentiated by a nonintegral value.

If a data item to be exponentiated can assume
(IF •.•• NEGATIVE) should be arranged to bypass the
value is negative.

Unary Operators

a negative value, a
exponentiation in case

test
the

The symbols '+' and '-' (or their English equivalents) may be used to
specify 'unary' operations, and as such appear as the first symbol of a formula
or following the symbols (, **, *, or/. Unary plus causes no action, but unary
minus causes the negated value of the following operand to be used. (If a
negati~1e value is negated, it becomes positive.) When the plus and minus symbols
are used as unary operators, they take precedence over all other operators.

Symbol Pairs

The methods in which symbol pairs may be combined are summarized in the
following table. The letter 'P' indicates a permissible pair of symbols, the
character '-' represents an invalid pair, and the term 'variable' represents an
identifier or literal. In this context, symbols include data-names, numeric
literals, parentheses; and arithmetic operators.

11-3 0026

Formation of Symbol Pairs

Second Symbol

Pirst *,/, Unary
Symbol Variable ** ,+,- + or - ()

Variable - p - - p

* ,/,**,+,- p - p p -
Unary· + or - pl - - p -
(p - p p -
) - p - - p

COMMON OPTIONS IN STATEMENT FORMATS

In the statement formats of the Procedure Division, several options appear
frequently; the ROUNDED option, the SIZE ERROR option, and the CORRESPONDING
option.

The term resultant-identifier referenced in the following paragraphs is
defined as that identifier associated with a result of an arithmetic operation.

ROUNDED Option

After decimal point alignment, the significant digits in a calculated
result may extend to the right of the last digit in the resultant item's
description. (In COBOL, as in arithmetic, this situation is not regarded as an
error condition.) If the ROUNDED option is specified, the value stored in the
resultant data item is determined as follows:

l. The excess digits on the right are dropped.

2. If the most significant digit of the excess digits exceeds four,
absolute magnitude of the retained value is increased by one in
least significant retained digit.

the
the

3. If the most significant digit of the excess digits does not exceed
four, the retained value is unchanged.

When the low-order integer positions in a resultant-identifier are
represented by the character 'P' in the PICTURE for that resultant-identifier,
rounding or truncation occurs r~lative to the rightmost integer position for
which storage is allocated.

1
Permissible only if the variable is not a literal.

11-4 DD26

The following shows the effect of specifying the ROUNDED option:

Result of
Arithmetic
Operation

3.14
3.15

-3.14
-3.15

SIZE ERROR Option

PICTURE of
Resultant­
Identifier

S9V9
S9V9
S9V9
S9V9

Value Stored
in Resultant­
Identifier

3.1
3.2

-3.l
-3.2

If, after decimal point alignment, the value of the result exceeds the
largest value that can be contained in the resultant-identifier, a size error
condition exists. Division by zero always causes a size error condition. The
size error condition applies only to the final results of an arithmetic
operation and does not apply to intermediate results, except in the MULTIPLY and
DIVIDE statements, in which case the size error condition ·applies to the
intermediate results as well. If the ROUNDED option is specified, rounding takes
place before checking for size error.

1. If the SIZE ERROR option is not specified and a size error condition
occurs, the value of those resultant-identifier(s) affected is
undefined. Values of resultant-identifier(s) for which no size error
condition occurs are unaffected by size errors that occur for other
resultant-identifier(s) during execution of this operation.

2. If the SIZE ERROR option is specified and a size error condition
occurs, then the prior values of resultant-identifier(s) affected by
the size errors are not altered. Values of resultant-identifier(s) for
which no size error condition occurs are unaffected by size errors
that occur for other resultant-identifier(s) during execution of this
operation. After completion of the execution of this operation, the
imperative-statement in the SIZE ERROR option is executed.

For ADD and SUBTRACT CORRESPONDING, if any of the individual
operations produce a size error condition, the imperative-statement in
the SIZE ERROR phrase is not executed until all of the individual
additions or subtractions are completed.

CORRESPONDING Option

In this discussion, dl and d2 represent identifiers that refer to group
items. A pair of data items, one from dl and one from d2, correspond if the
following conditions exist:

1. A data item in dl and a data item in d2 have the same name and the
same qualification up to, but not including, dl and d2.

2. At least one of the data items is an elementary data item in the case
of a MOVE statement with the CORRESPONDING option; or both of the data
items are elementary numeric data items in the case of the ADD or
SUBTRACT statements with the CORRESPONDING option.

11-5 DD26

3. Neither dl nor d2 may be data items with level-number 66, 77, or 88 or
be described with the USAGE IS INDEX clause.

4. A data item that is subordinate to
RENAMES, OCCURS, or USAGE IS INDEX
data items subordinate to the data
RENAMES, OCCURS, or USAGE IS INDEX
REDEFINES or OCCURS clauses or be
REDEFINES or OCCURS clauses.

dl or d2 and contains a REDEFINES,
clause is ignored, as well as those
item that contains the REDEFINES,
clause. However, dl and d2 may have
subordinate to data items with

The COBOL compiler may abort when the ADD/SUBTRACT CORRESPONDING statement
is used in a program with a very large number of Data Division entries or with
very long record descriptions in which 'correspondences' would exist. This abort
may be avoided in subsequent compilations by increasing the memory limits. If
the memory limits cannot be increased, the abort can be circumvented by
replacing the ADD/SUBTRACT CORRESPONDING statement with elementary ADD/SUBTRACT
statements to accomplish the desired functions.

ARITHMETIC STATEMENTS

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, an.d
SUBTRACT statements. They have several common rules:

1. All literals used in arithmetic statements must be numeric literals.

2. The data description of each identifier used as an operand must be
that of an elementary numeric item.

3,. The data descriptions of the operands need not be
necessary conversion, format transformation, and/or
alignment is supplied throughout the calculation.

the same; any
decimal point

4. The maximum size of each operand is 18 decimal digits. The composite
of operands (a hypothetical data item resulting from the
superimposition of specified operands in a given statement, aligned on
their decimal points) must not contain more than 18 digits. The
compiler ensures that enough places are carried so that significant
digits are not lost during the calculation of intermediate results.

5. Editing symbols must not be specified in any operand, except
item that receives the calculated result but is not used
computation itself.

in
in

an
the

The resultant item of a COMPUTE statement may be an edited item. The
resultant item of an ADD, DIVIDE, MULTIPLY, or SUBTRACT statement may
be an edited item only when the GIVING option is specified. Operands
in a computation must not be edited items in any other circumstances.

6. When the number of decimal places in a result is greater than the
number of decimal places associated with the resultant-identifier,
truncation occurs. However, when the ROUNDED option is specified for a
resultant-identifier, the least significant digit of the
resultant-identifier is increased by 1 when the most significant digit
of the truncated excess is equal to or greater than 5.

7. A size error occurs when the magnitude of the calculated result
exceeds the largest magnitude that can be contained in the
resultant-identifier. When a size error occurs and the SIZE ERROR
option is specified, the value of the resultant-identifier is not
altered and the imperative-statement is executed.

11-6 DD26

ADD Statement

The ADD statement is used to sum two or more numeric operands and store the
result.

When Format 1 or Format 2 of the ADD statement is used, each identifier
must refer to an elementary numeric item, except that in Format 2 the identifier
following the word GIVING must refer either to an elementary numeric item or to
an elementary numeric edited item.

When Format 1 of the ADD statement is used, the values of the operands
preceding the word TO are added together. That sum is then added to the current
value of each identifier-m, identifier-n, ••• , and the result is stored in each
resultant-identifier: identifier-m, identifier-n, .•• , respectively.

When Format 2 of the ADD statement is specified, the values of the operands
preceding the word GIVING are added together. That sum is then stored as the new
value of each identifier-m, identifier-n, .•• , which are the
resultant-identifiers.

When Format 3 of the ADD statement is used, the data items in identifier-1
are added to and stored in corresponding data items in identifier-2.

Examples:

ADD 0.5, RATE OF PAY-FILE GIVING TOTAL.

ADD TOTAL-RECVE, TO ON-HAND-QTY ROUNDED.

ADD VALUE-1 OF
ON SIZE ERROR

FILE-A,
GO TO

VALUE-2 OF
ERROR-RTN.

FILE-B GIVING VALUE-3 OF FILE-C;

ADD CORRESPONDING ABLE TO BAKER (I) ROUNDED.

COMPUTE Statement

The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items
imposed by the arithmetic statements ADD, DIVIDE, MULTIPLY, or SUBTRACT.

The execution of a COMPUTE statement causes identifier-!
value of identifier-2, literal-!, or the computed value
whichever is specified.

to receive the
of the formula,

The reserved words FROM and EQUALS and the symbol '=' are synonymous in the
COMPUTE statement; they may be used interchangeably.

If the SIZE ERROR phrase is not specified, the final results will not be
truncated when the receiving identifier is described as COMPUTATIONAL or
COMPUTATIONAL-! unless more than one receiving identifier is specified in the
COMPUTE statement or span overflow has occurred.

11-7 DD26

Editing symbols must not be specified in any operand, except in an item
that receives the calculated result but is not used in the computation itst;;~f.

The resultant item of a COMPUTE statement may be an edited
resultant item of an ADD, DIVIDE, MULTIPLY, or SUBTRACT statement
edited item only when the GIV:I:NG option is specified. Operands in a
must not be edited items in any other circumstances.

!&lest

iterr. The
may be an
computation

COMPUTE GROSS-PAY OF PAY-F!T.1E ROUNDED = HRS-WORI<ED * RATE
WEEKLY-TAX.

COMPUTE QTY-ON-HAND = OLD-QTY + NO..;RECVD QTY-SHIPPED •.

COMPUTE AVG-INCREASE = (END-PAY START-PAY) / END-PAY.

COMPUTE YTD-FICA = YTD-FICA + {GROSS-PAY * 0.06).

DIVIDE Statement

The DIVIDE statement is used to divide one numeric data item into another
and to set the value of a data item equal to the result.

When Format 1 of the DIVIDE statement is used, the value of identifier-1 or
literal-! is divided into the value of identifier-2. The value of the dividend
(identifier-2) is replaced by this quotient; similarly for identifier-1 or
literal-! and identifier-3, etc.

When Format 2 is used, the value of identifier-! or literal-1 is divided
into identifier-2 or literal-2 and the result is stored in identifier-3,
identifier-4, etc.

When Format 3 is used, the value of identifier-1 or literal-1 is divided by
the value of identifier-2 or literal-2 and the result is ~tored in identifier-3,
identifier-4, etc.

Formats 4 and 5 are used when a remainder from the division operation is
desired, namely identifier-4. The remainder in COBOL is defined as the result of
subtracting the product of the quotient (identifier-3} and the divisor from the
dividend. If ROUNDED is· used, the quotient used to calculate the remainder is an
intermediate field that contains the quotient of the DIVIDE statement, truncated
rather than rounded.

'.
In a DIVIDE statement, the COBOL rules specified for

REMAINDER generally preclude the GIVING field (i<lentif ier-3)
designated as either the divisor or the dividend.

Example:·

DIVIDE B INTO A GIVING B REMAINDER X.

11-8

calculating the
from also being

DD26

The above coding should not be used unless the following conditions exist:

1. The values contained in all of the identifiers are single-precision
values.

2. The identifiers are all described with USAGE COMPUTATIONAL-1.

When the SIZE ERROR phrase is used in Formats 4 and s, the following rules
apply:

1. If the size error occurs on the quotient, the contents of identifier-3
will not be changed but the result of the divide will be used in
computing the remainder.

2. If the size error occurs on the remainder, the contents of the data
item referenced by identifier-4 will remain unchanged. However, as
with other instances of multiple results of arithmetic statements,
analysis· must be performed to determine which situation has occurred.

A nonstandard statement of the form 'DIVIDE identifier-! BY
will cause the object code compiled to replace the starting
dividend (identifier-1) with the computed value of the quotient
the division. This nonstandard application is not recommended.

Examples:

DIVIDE TOTAL BY NUMBER GIVING AVERAGE.

identifier-2'
value of the
obtained from

DIVIDE 100.00 INTO K2H GIVING VALUE-1 OF FILE-16 ROUNDED.

DIVIDE A26 INTO Rl7K.

MULTIPLY Statement

The MULTIPLY statement is used to multiply numeric data items and to set
the values of data items equal to the results.

When Format 1 of the MULTIPLY statement is used, the value of identifier~!
or literal-1 is multiplied by the value of identifier-2. The. value of
identifier-2 is then replaced by the product.· Similar action occurs for
identifier-1 or literal-1 and identifier-3, etc.

When Format 2 is used, the value. of identifier-! or literal-! is multiplied
by the value of identifier-2 or literal-2 and the product is stored in
identifier-2, identifier-4, etc.

. I

Examples:

MULTIPLY 0.18 BY PAY GIVING TAX, ON SIZE ERROR GO TO ERROR-RTN.

MULTIPLY A OF FILE-1 BY B OF FILE-2 GIVING C OF FILE-3.

MULTIPLY 3.1416 BY Rl.

11-9 DD26

SUBTRACT Statement

The SUBTRACT statement is used to subtract one, or the sum of two or more,
nume·ric data items from one or more items, and set the values of one or more
items equal to the results.

When Format 1 of the SUBTRACT statement is used, all literals or
identifiers preceding the word FROM are added together and this total is
subtracted from identifier-m, identifier-n, etc., and the differences are stored
as the new values of identifier-m, identifier-n, etc.

When Format 2 is used, all literals or identifiers preceding the word FROM
are added together, the sum is subtracted from literal-m or identifier-m, and
the result of the subtraction is stored as the new value of identifier-n,
identifier-a, etc.

When Format 3 is used, data items in identifier-! are subtracted from and
stored int~ corresponding data items in identifier-2.

Examples:

SUBTRACT UNION-DUES OF MASTR-PAYROL FROM ADJUSTED-PAY OF
MASTR-PAYROL.

SUBTRACT RECEIPTS
ORDER-FILE GIVING

OF TRANSAC-FILE
ADJ-ORDR-QTY,

FROM
SIZE

ON-ORDER-QTY
ERROR GO TO

OF
ZERO-RTN.

SUBTRACT A FROM B.

SUBTRACT CORRESPONDING ABLE FROM BAKER (I) ROUNDED.

Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results. Such statements behave as though they had been written as:

l. Statements that perform all arithmetic necessary to arrive at the
result to be stored in the receiving items, and store that result in a
temporary memory location.

2. A sequence of statements transferring or combining the value of this
temporary location with a single result. These statements are
considered to be written in the same left-to-right sequence in which
the multiple results are listed.

The result of the statement

ADD a, b, c, TO c, d (c), e

is equivalent to

ADD a, b, c, GIVING temp
ADD temp TO c
ADD temp TO d (c}
ADD temp TO e

where 'temp' is an intermediate result item provided by the
The data item d is subsc.ripted to show that the value
determined prior to its use as a subscript.

11""'.10

compiler.
of c is

DD26

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or
EXAMINE, MOVE, or SET statement share a part of their memory areas, the
of the.execution of such a statement is unde~ined.

Precision in Arithmetic Calculations

in an
result

The precision obtained in arithmetic calculations varies among
manufacturers. COBOL uses the COMPUTE statement to perform complex arithmetic
calculations which enhance precision. In a series of arithmetic operations
within a single COMPUTE statement, the precision of intermediate results
determines the precision of the results of each subsequent arithmetic operation.
Therefore, the compiler, in evaluating a complex arithmetic statement, maintains
decimal precision for all intermediate results. Truncation is carried out only
after the move to the final resultant field. This means that in a COMPUTE
statement, wherein all data items are described as integer values, a fractional
intermediate result may be obtained from a divide operation. That fractional
intermediate result is carried intact into subsequent arithmetic operations. The
fractional places are truncated only upon the move to the final resultant field.

Example:

where

COMPUTE A = B ((C + D) I 2) •

A = PIC 99.
B = PIC 99 VALUE 9.
c = PIC 99 VALUE 6.
D = PIC 99 VALUE 1.

The result of the above calculation would be:

1. 6+1 = 3. 5 .
-2-

2. 9 - 3.5 = s.s
3. MOVE 5.5 to A truncates the .s giving the final result s.

11-11 0026

The maintenance of decimal precision in COMPUTE statements also affects the
results that are obtained with the ROUNDED phrase. The rounding operation is
accoMplished on·the move to the final resultant field just before truncation.
Thus, in _the previous example

COMPUTE A ROUNDED = B ((C + D) I 2).

the sequence of operations would be:

1. 6+1 = 3.5 ,--
2. 9 - 3.5 = s.s
3. MOVE to A rounds 5.5 to 6.0; then the .o is truncated giving a final

result of 6.

When data items are described with USAGE COMPUTATIONAL or COMPUTATIONAL-2,
ultimate accuracy for maximum length composite of operands (18 digits) in
arithmetic statements may not be attainable due to floating-point hardware
limitations.

TALLYING PHRASE (EXAMINE STATEMENT)

The EXAMINE statement is used to replace and/or count the number of
occurrences of a given character in a data item. Two phrases, the REPLACING
phrase and the TALLYING phrase, may be specified in the statement. When Format
2, the EXAMINE ••• REPLACING statement is used, it is considered a data movement
procedure and, as such, is described in section x.

Thn EXAMINE ••• TALLYING statement may be used for either or both of two
basic purposes:

1. To scan a data item, counting the number of occurrences of a given
character (literal-1).

2. To modify the value of an item, by replacing certain characters in the
original value with a new character (literal-2).

The TALLYING phrase causes an integral count to be placed
special register). The significance of the count depends upon
specified:

in TALLY (a
the options

Option

ALL

LEADING

UNTIL FIRST

TALLY Value Represents

The number of occurrences of literal-! throughout the item.

The number of occurrences of literal-! prior to encountering a
character other than literal-1.

The number of occurrences of other
literal-1 encountered prior to
li teral-1.

11-12

characters not equal
the· first occurrence

to
of

DD26

. /

When both the TALLYING and REPLACING phrases are specified in Format 1,
each character tallied according to the rules given above is als.o replaced with
literal-2.

For nonnumeric data items,_ examination starts at the leftmost character and
proceeds to the right. Each character in the data item specified by the
identifier is examined in turn.

If a data item referred to by the EXAMINE statement is numeric, it must
consist of numeric characters and may possess an operational sign. Examination
starts at the leftmost character and proceeds to the right. Each character is
examined in turn. When the letter 'S' is used in the PICTURE character-string of
the data item description to indicate the presence of an operational sign, the
sign is ignored by the EXAMINE statement.

The item being examined must have been described with USAGE DISPLAY
(explicitly or implicitly). Literal-1 and literal-2 must be one-character
literals; the act·ual characters. must be ··consistent with the category of
identifier. If the identifier is numeric, the literals must be single-digit
integers (written without quotation marks1. If the identifier is nonnumeric, the
literals must be single characters, enclosed in quotation marks, consistent with
the category of identifier. Alternatively, figurative constants may be
specified, but the ALL literal option must not be used.

EXAMPLE OF EXAMINE ••• TALLYING

An example of. a basic EXAMINE statement that illustrates an application of
the tallying function is presented below:

WORKING-STORAGE SECTION.
01 EXAMINE-DATA.

02 E-1 PICTURE IS
02 E-2 PICTURE IS

A(lO)
9 (10)

VALUE
VALUE

IS
IS

"AB CAB CAB CD II •

0.150250350.

PROCEDURE DIVISION.
EXAMINE-TEST-1.

EXAMINE E-1 TALLYING
IF TALLY EQUAL TO 9

UNTIL FIRST II D11
•

PERFORM PASS, ELSE

EXAMINE-TEST-2.
EXAMINE E-2 TALLYING ALL 5
IF TALLY EQUAL TO 3 NEXT
IF E-2 EQUAL TO 0100200300

REPLACING
SENTENCE,

PERFORM

11-13

BY
ELSE

PASS,

GO TO

o.
GO TO
ELSE

FAIL.

FAIL.
GO TO FAIL •

DD26

VARYING PHRASE (PERFORM STATEMENT)

The VARYING phrase of the PE.RFORM statement allows the referenced numeric
operand to be manipulated during the execution of the PERFORM statement in such
a manner that its value remains in a changed state following the execution of
the PERFORM statement.

For a detailed description of the manner in which this VARYING manipulation
takes place, refer to the PERFORM statement in the COBOL Reference Manual.

11-14 DD26

SECTION XII

CONDITIONAL PROCEDURES

CONDITIONS

A condition enables the object program to select between alternate paths of
control, depending upon the truth value of a test. A condition is one of the
following:

a. Relation condition

b. Sign condition

c. Class condition

d. Condition-name condition

e. Switch-status condition

f. NOT condition

g. condition condition
{ ANORD} [{~D} condition J

Any condition may be enclosed in parentheses. The truth value of a
parenthesized condition is determined from the evaluation of the truth values of
its constituents. A parenthesized condition is a condition in the sense of the
last two items of the preceding list.

Simple Conditions

There are five types of simple condition tests·. These tests and some of the
acceptable formats for stating them are described below.

RELATION CONDITION

A relation condition involves a comparison of two operands, each of which
may be the data item referenced by an identifier, a literal, or the value
resulting from an arithmetic-expression. The comparison of two literals is not
permitted. Comparison of numeric operands is permitted regardless of their
individual usages. All other comparisons require that the USAGE of the operands
being compared is the same. If either of the operands is a group item, the
nonnumeric comparison rules apply.

12-1 DD26

Comparison of Numeric Operands

For numeric operands, a comparison results in the determination that
algebraic value of one of the operands is less than, equal to, or greater
the other. The operand length, in terms of the number of digits, is
significant. Zero is considered to represent a unique value regardless of
lerigth, sign, or implied decimal point location.

the
than
not
the

Comparison of these operands is permitted regardless of the manner in which
their usage is described. Unsigned numeric operands are c_onsidered to be
positive for comparison purposes.

Comparison of Nonnumeric Operands

For two nonnumeric operands, or one numeric (excluding the operational
sign) and one nonnumeric operand, a comp'arison results in the determination that
one of the operands is less than, equal to, or greater than the other with
respect to an ordered character set. If one of the operands is specified as
numeric, it must be an integer data item or an integer literal. Numeric and
nonnumeric operands may be compared only when their usage is the same,
implicitly or explicitly. Except when USAGE of the operands is DISPLAY-2, the
character set order is determined by the standard collating sequence. For
OISPLAY-2 operands, the order is determined by the commercial collating
sequence. The collating sequences are listed in Appendix D.

If the operands are of equal size, characters in corresponding character
positions are compared starting from the high-order end and continuing until
either a pair of unequal characters is encountered or the low-order end of the
itern is reached, whichever comes first. The items are determined to be equal
when the low-order end is reached.

The first encountered pair of unequal characters is compared for relative
location in the collating sequence. The operand containing that character which
is positioned higher in the collating sequence is determinec;i to be the greater
operand.

If the operands are of unequal size, comparison proceeds as though the
shorter operand were extended ori the right by sufficient spaces to make the
operands of equal size. If this process exhausts the characters of the · operand
of lesser size, then the operand of lesser size is less than the . operand of
larger size unless the remainder of the operand of larger size consists solely
of spaces, in which case the two operands are equal.

Comparisons Involving Index-Names and/or Index Data Items

Full relation tests may be made between:

a. Two index-names. The result is the same as if the corresponding
occurrence numbers are compared.

b. An index-name and a data item {other than an index data item) or a
literal. The occurrence number that corresponds to the value of the
index-name is compared to the data item or literal.

12-2 0026

c. An index data item and an index-name or another index data item. The
actual values are compared without conversion.

The result of the comparison of an index data item with any data item or
literal not specified in a, b, or c above is undefined.

SIGN CONDITION

The sign condition determines whether or not the algebraic value of an
elementary numeric data item or an arithmetic-expression is less than, equal to,
or greater than zero. (The word IF is not part of the condition but is included
in the formats to improve readability.) The general format for a sign condition
is:

{
identifier) { POSITIVE)

IF IS [~ J NEGATIVE
arithmetic-expression ZERO

An operand is POSITIVE only if its value is greater than zero, NEGATIVE if
its value is less than zero, and ZERO if its value is equal to zero. An operand
whose value is zero is NOT POSITIVE and an operand whose value is zero is NOT
NEGATIVE1 the value zero is considered neither positive nor negative.

CLASS CONDITION

The class of any item can be tested as follows:

IF identifier IS[~] {
NUMERIC)

ALPHABETIC

The usage of identifier must be explicitly or implicitly DISPLAY. ·The
ALPHABETIC test cannot be used with an item whose data description describes the
item as numeric. The item being tested is determined to be alphabetic only if
the contents consist of the alphabetic characters 'A' through 'Z' and the space.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of elementary items
whose data description indicates the presence of operational sign(s). If the
data description of the item being tested does not indicate the presence of an
operational sign, the item being tested is determined to be numeric only if the
contents are numeric and an operational sign is not present.

12-3 DD26

The following are examples of class tests:

77 A PIC X(l8) VALUE 11 00ABCD".
77 B REDEFINES A PIC S9(18).

77 c PIC X(2) VALUE II 22 II•

77 D PIC S9 VALUE -1.
77 E REDEFINES D PIC 9.

Condition

IF A NUMERIC False

IF B NUMERIC False

IF c NUMERIC True

IF E NUMERIC False

CONDITION-NAME CONDITION

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values associated with
a condition-name in the Data Division. The general format for the condition-name
condition is:

IF [NOT J condition-name

If the condition-name is associated with a range or ranges of values {that
is, the VALUES ARE clause contains at least one 'literal THRU literal' phrase),
then the conditional variable is tested to determine whether or not its value
falls in this range, including the end values.

The rules for comparing a conditional. variable with a condition-name value
are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the
c.ondition-name equals the value of its associated conditional variable.

Example:

Let MARRIED, SINGLE, WIDOW, WIDOWER, DIVORCED correspond to the actual
values l, 2, 3, 4 1 5, respectively, of a field called MARITAL-STATUS. The
conditional statement

IF SINGLE. • •

would generate in the object program a test of the value of the conditional
variable MARITAL-STATUS against the value '2'.

12-4 0026

SWITCH-STATUS CONDITION

In the SPECIAL-NAMES paragraph of the Environment Division, a
condition-name may be associated with the ON or OFF status of a software switch.
The switch is ON when its value is one (1) and OFF when its value is zero (0).
The status of such a switch may then be tested with a statement having the IF
NOT condition-name format. The results of this test are determined using the
parameters contained in the table in the switch-Status Condition paragraph in
the COBOL Reference Manual.

Additional information is contained in the Switches paragraph in Section
VI.

Compound Conditions

Simple conditions can be combined with logical operators according to
specified rules to form compound conditions. The logical operators AND, OR, and
NOT must be preceded by a space and followed by a space. The meaning of the
logical operators follows:

OR Logical Inclusive Or

AND Logical Conjunction

NOT Logical Negation

Tte general format of a compound condition is:

IF condition-! (:D} condition-2 [(:D} condition-n J ...
The word IF is shown to improve readability. Each condition can be either a

relation condition, a sign condition, a class condition, a condition-name
condition.1 or a switch-status condition.

The following are examples of compound conditions:

AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20

AGE IS GREATER THAN 25 OR MARRIED

STOCK-ON-HAND IS LESS THAN DEMAND OR STK-SUPPLY IS GREATER THAN
DEMAND PLUS INVENTORY

A IS EQUAL TO B AND c IS NOT EQUAL TO D OR E IS UNEQUAL TO
F AND G IS POSITIVE OR H IS LESS THAN I· * J

STK-ACCT IS GREATER THAN 72 AND {STK-NUMBER IS LESS THAN 100 OR
STK-NUMBER EQUALS 76290)

12-5 DD26

Letting A and B represent simple conditions, the following table defines
the interpretation of AND, OR, and NOT in compound conditions:

Condition Condition and Value

A B NOT A A AND B A ORB

True True False True True
False True True False True
True False False False True
False False True False False

Thus, i£ A is true and B is false, the expression A AND B is false, while
the expression A OR B is true.

The following table indicates the methods in which conditions and logical
operators may be combined:

FIRST SYMBOL SECOND SYMBOL

Condition OR AND NOT ()

Condition - p p - - p

OR p - - p p -
AND p - - p p -
NOT pl - - - p -
(i? - - p p -
) - p p - - p

'P' indicates that the pair is permissible and '-' indicates that the
is not permissible. Thus, the pair 'OR NOT' is permissible, while the pair
OR' is not permissible.

1Permissible only if the condition itself does not contain a NOT.

12-6

pair
'NOT

DD26

The rules for determining the logical value (true or false) of a compound
condition are as follows:

l• If AND is the only logical connective used, then the compound
condition is true if each of the simple conditions is true.

2. If OR is the only logical connective used, then the compound condition
is true if one or more of the simple conditions is true.

3. If both AND and OR appear, then there are two cases to consider,
depending on whether or not parentheses are used.

a. Parentheses can be used to indicate grouping. They must always be
paired, as in algebra, and the expressions within the parentheses
will be evaluated first. The precedence of nested parenthetical
expressions is the same as in algebra. That is, the innermost
parenthetical expressions are evaluated first.

b. If parentheses are not used, then the conditions are grouped
first qCcording to AND, proc~ed~ng from left to right, and then
by OR, proceeding from left to right. The logical operator AND
has precedence over the logical operator OR in the same sense
that the arithmetic operator * (multiplication) has precedence
over the arithmetic operator + (addition) •

4. When NOT precedes a parenthesized condition, it reverses the logical
value of the parenthesized condition; that is, NOT (condition) is true
when (condition) is false. For example, NOT (A AND B) is true if
either A or B is false. Thus, NOT (A AND B) is equivalent to NOT A OR
NOT B, and is true when A and Bare not both true (i.e., wh~n either
is false or both are false). Similaily, NOT (A ORB) is equivalent to
NOT A AND NOT B, and is true only when .A and B are both false.

Examples:

1. To evaluate Cl AND (C2 OR NOT (C3 OR C4)), apply rule 3a (above) and
successively reduce this by substituting as follows:

Let CS equal "C3 OR C4" resulting in Cl AND (C2 OR NOT CS)

Let C6 equal "C2 OR NOT CS" resulting in Cl AND C6

This can be evaluated using the preceding Condition/Condition and
Value table.

2. To evaluate Cl OR C2 AND C3, apply rule 3b (above) and reduce this to·
Cl OR (C2 AND C3), which can then be reduced as in Example 1.

3. To evaluate Cl AND C2 OR NOT C3 AND C4, group first by AND from left
to right, resulting in:

(Cl AND C2) OR (NOT C3 AND C4)

which can now be evaluated as in the first example.

4. To evaluate Cl AND C2 AND C3 OR C4 OR CS AND C6 AND C7 OR CS, group
from the left by AND to produce:

((Cl AND C2) AND C3) OR C4 OR ((CS AND C6) AND C7) OR CS

which can now be evaluated as in Example l.

12-7 DD26

Abbreviated Combined Relation Conditions

Only conditions involving full relation tests have three terms (a subject,
a relatic.m, and an object) • To simplify writing lengthy expressions, COBOL
allows the omission of some of these terms in certain forms of compound
conditions.

In the following general format,

{
identifier-1}

operand-! represents literal-! •
formula-1

The general format of a compound condition containing only full relation
tests is as follows:

IF operand-! 0elation-0 operand-2 { :D} operand-3

(relation-2) operand-4 { :D} ... operand-nl

Gelation-n) operand-n2

Of the five examples given previously under the Compound Conditions
paragraph, only the first, third, and fifth examples are of this form.

ABBREVIATION l

When a relational compound condition has the same term immediately
preceding each relation, only the first term must be written. Thus:

IF operand-! (relation-0 operand-2 (:D} Eelation-2)

operand-3 (ANORD} (relation-3) • • • (:D} (operand-n)

is interpreted as if operand-1 had appeared immediately preceding
relation-n.

12-8

each

0026

This form of abbreviation is applicable regardless of the presence or
absence of parentheses.

Referring back to the first example, the example could also be written as:

IF AGE IS. LESS THAN MAX-AGE AND GREATER THAN 20

As another illustration of this abbreviation, note that

IF A EQUALS B OR EQUALS c AND IS GREATER THAN D

is an abbreviation for

IF. A EQUALS B OR A EQUALS c AND A IS GREATER THAN D

which is equivalent to:

IF A EQUALS B OR (A EQUALS c AND A IS GREATER THAN D) •

. ABBREVIATION 2

The second type of abbreviation allowed is where both the subject and the
relation are conunon. In this case, only the first occurrence of the subject and
the relation are written. Thus:

IF operand-! (relation) operand-2 (:D} operand-3

(:D } . . . (:D } operand-n

is equivalent to

IF operand-le relation) operand-2 (:D} operand-!

(relation) operand-3 (:D } . . . (:D} operand-!

(relation) operand-n

12-9 0026

This form of abbreviation is applicable regardless of the presence or
absence of parentheses.

As an illustration of this form, note that the expression

IF A = B OR C AND D

is equivalent to

IF A = B OR A = C AND A = D

which is in turn equiv~lent to:

IF A= B OR (A= C AND A= D).

Using both types of abbreviations, any sequence· of full relation tests can
be formed into a single sentence regardless of what verbs, keywords, or other
types of tests appear between them.

In summary, when relation conditions are written in a consecutive sequence,
any relation condition except the first may be abbreviated by:

l. Omitting the subject of the relation condition, or

2. Omitting the subject and ·relational operator of
condition.

the relation

Within a sequence of relation conditions, both forms of abbreviations may
be used. The effect of using them is as if the omitted subject were replaced by
the last preceding stated subject or the omitted relational operator were
replaced by the last preceding stated relational operator.

Ambiguity may result from using 'NOT' in conjunction with abbreviations. In
this event, NOT is interpreted as a logical operator rather than as part of a
relational operation. Thus:

a > b AND NOT > c . OR d

is equivalent to:

a> b AND NOT a> c OR a> d or

a>b AND (NOT a>c) OR a>d

12-10 DD26

The following examples show an abbreviated form followed by its equivalent
expansion:

1. IF A BAND C > D OR B MOVE X TO Y.
IF A= B AND C >DOR C = B MOVE X TO Y.

2. IF A = B MOVE X TO Y; ELSE IF GREATER THAN C ADD M TO N.
IF A = B MOVE X TO Y; ELSE IF A IS GREATER THAN C ADD M TO N.

3. IF A = B OR IS GREATER THAN B MOVE C TO A; IF GREATER THAN B ADD B TO
A.
IF A = B OR A IS GREATER THAN B MOVE C TO A; IF A IS GREATER THAN B
ADD B TO A.

4. IF A > B OR EQUALS B AND X EQUALS Y IF GREATER THAN B MOVE C TO D.
IF A > B OR (A EQUALS B AND X EQUALS Y) IF X IS GREATER THAN B MOVE C
TO D.

5. IF A EQUALS B AND (C OR D AND E IS GREATER THAN Y) OR LESS THAN Z MOVE
M TO N.
IF (A EQUALS B AND (A EQUALS € OR (A EQUALS D AND E IS GREAT~R THAN
Y))) ORE IS LESS THAN Z MOVE

1

M TON.

6. IF A B OR C AND D MOVE X TO Y.
IF A = B OR A= C AND A= D MOVE X TO Y.

Use of the NOT Operator

Simple IF sentences may be preferred when making a conditional test to
avoid the possibility of misusing the NOT logical operator and to interpret the
source language more clearly. When the NOT logical operator is used in IF
sentences, it must precede a left parenthesis or a simple condition which does
not contain a 'NOT'. The effect of the NOT logical operator is as if the
statement were interpreted by the compiler according to the following examples:

1. Relational operators, sign conditions, or class conditions are
complemented; i.e., EQUAL is interpreted as NOT EQUAL, NOT EQUAL is
interpreted as EQUAL:

IF A = B AND NOT (C = D)

is interpreted as:

IF A = B AND C NOT = D.

2. The logical operator OR is interpreted as AND:

IF E NOT = F AND NO~ (J = 4 OR 5)

is interpreted as:

IF E NOT = F AND (J NOT = 4 AND J NOT = 5) •

3. The logical operator AND is interpreted as OR:

IF E = F AND NOT (J = 4 AND 5)

is interpreted as:

IF E = F AND (J NOT= 4 OR J NOT= 5).

12-11 DD26

4. The NOT preceding a conditional variable is removed:

IF E = F AND NOT (GREEN AND NOT RED)

is interpreted as:

IF E = F AND (NOT GREEN OR RED) •

5. The NOT logical operator applies to the entire portion of the
statement within the parentheses which it precedes. Since many logical
relationship levels may be preceded by NOT, there is a net effect, at
each logical level, of all previous appearances of~OT in that
statement:

IF A = B OR NOT (B CORD AND NOT {E>FANDNOT (G H)))

is interpreted as:

IF A = B OR (B NOT = C AND D OR l (E > F AND (G NOT = H))) •

1NOTE: The NOT at level one and the NOT at level two cancel each
other, making the net effect at level two of no 'NOT'.

6. The following IF sentence illustrates a frequent misuse of the NOT
operator in relation to the OR and AND logical connectors:

IF C NOT= 9 OR 10 DISPLAY '9'.

This sentence always results in displaying '9', since the compiler
logic analysis is:

IF c NOT = 9 DISPLAY '9' or

IF C 9 AND C NOT 10 DISPLAY '9'.

If C is not equal to 9, a branch to DISPLAY '9' occurs and no check is
made against the remaining parameters. If C equals 9, it will not
equal 10 and a branch to DISPLAY '9' will result.

7. To achieve the result desired in the above sentence using the NOT
EQUAL operator, the sentence could read:

IF C NOT= 9 AND 10 DISPLAY '9'.

The compiler logic analysis is:

IF C NOT= 9 AND C NOT= 10 DISPLAY '9'.

In this case, if C is not equal to 9, a comparison will be made to 10.

A positive sentence to obtain the same result could read:

IF C = 9 OR 10 NEXT SENTENCE ELSE DISPLAY '9'.

12-12 0026

8. The following sentences are additional examples of the NOT logical
operator and compiler logic analyses.

Source Language Sentences

IF NOT (J = 4 OR 5} , GO TO X.

IF NOT (J = 4 AND 5) , GO TO X.

IF NOT (J NOT = 4 AND 5) , GO TO
x.

Compiler Logic Translation

IF J NOT = 4 AND J NOT = 5, GO TO
x.

IF J NOT = 4 OR J NOT = 5, GO TO
x.

IF J = 4 OR 5, GO TO X.

IF NOT (J NOT = 4 OR 5), GO TO X. IF J = 4 AND 5, GO TO X.

IF NOT (GREEN AND NOT RED), GO IF NOT GREEN OR RED, GO TO X.
TO X.

IF NOT (GREEN AND RED) / GO TO X. IF NOT GREEN OR NOT RED, GO TO X.

IF NOT (GREEN OR RED) , GO TO X.

IF NOT (GREEN OR RED AND L IS
POSITIVE) / GO TO X.

IF NOT (GREEN AND NOT RED AND L
IS NOT POSITIVE) / GO TO X.

IF NOT (GREEN OR RED AND BROWN),
GO TO X.

IF NOT (GREEN OR (RED OR BROWN)) /
GO TO X.

IF NOT (GREEN AND RED OR BROWN),
GO TO X.

IF NOT ((GREEN AND RED) OR
BROWN) / GO TO X.

IF NOT GREEN AND NOT RED, GO TO X.

IF NOT GREEN AND (NOT RED OR L IS
NOT POSITIVE) , GO TO X.

IF NOT GREEN OR RED OR L IS
POSITIVE, GO TO x.

IF NOT GREEN AND NOT RED OR NOT
BROWN, GO TO X.

IF NOT GREEN AND NOT RED AND NOT
BROWN, GO TO X.

IF (NOT GREEN OR NOT RED) AND NOT
BROWN, GO TO X.

IF (NOT GREEN OR NOT RED) AND NOT
BROWN, GO TO X.

9. The following positive IF sentences illustrate a frequent misuse of
the AND and OR logical connectors:

Source Language Sentences Compiler Logic Translation

IF E = F AND NOT GREEN OR RED IF (E = F AND NOT GREEN) OR (RED
AND L IS POSITIVE, GO TO x. AND L IS POSITIVE) / GO TO X.

IF E = F AND J = 4 OR 5, GO TO X. IF (E = F AND J = 4) OR (J = 5)
GO TO x.

IF NOT GREEN AND RED OR L IS NOT IF (NOT GREEN AND RED) OR (L IS
POSITIVE, GO TO X. NOT POSITIVE} , GO TO X.

12-13 DD26

Evaluation Rules for Conditions

The evaluation rules for conditions are similar ·to those given for
arithmetic-expressions except that the following hierarchy applies:

1. Arithmetic-expression

2. All relational operators

3. NOT

4. AND

5. OR

12-14 0026

SECTION XIII

TABLE HANDLING

/

DESCRIP'l1ION OF TABLE HANDLING

A table is a named set of data items arranged in some meaningful order.
COBOL tables are defined by including the OCCURS clause in the data description
entry.

The OCCURS clause specifies the number of times a data item is to be
repeated. A data item having an OCCURS clause is called a table element, and the
name and description of the table element applies to each repetition or
occurrence of the data item. Each repetition of the table element is associated
with an occurrence number.

When a table item is ref~renced, it is necessary to indicate either by
subscripting or by indexing which occurrence of the table item is intended. A
table item can be any of the following:

1. A table element.

2. An item within a group item which is a table element.

3. A condition-name associated with a table element.

4. A condition-name associated with an item within a group table element.

In COBOL, a table item with as many as three dimensions may be referenced
using either subscripting or indexing. The general format is:

data-name

where: each 'a' represents an occurrence number of a dimension of the table,
expressed in the form of an index-name or a subscript.

Subscripts are nonzero positive integer values expressed as numeric
literals or as data-names.

An index-name is a word containing at least one alphabetic character that
names an index (pointer) uniquely associated with a specific table.

One to three subscript or index levels may appear in the reference,
depending upon how many dimensions are in that table of which the data-name is
an element. There must be one subscript or index-name for each OCCURS clause in
the defined hierarchy that contains data-name, including data-name itself. The
data-name may be qualified.

13-1 DD26

Multiple subscripts and indexes are written from left to right in
descending order of inclusiveness, higher to lower. A multidimensional table may
be considered as a group of nested single-dimensional tables, with the outermost
table the most inclusive and the innermost table the least inclusive.

An example of a three-dimensional table is shown below with representative
subscript references to table elements:

01 TABLE.
02 STORE OCCURS 12 TIMES.

03 STORE-NO •••
03 DEPARTMENT OCCURS 7 TIMES.

04 · DEPT-NO •••
04 SALE OCCURS 4 TIMES.

STORE (11)
STORE-NO (12)

DEPARTMENT (10,5)
DEPT-NO (12,7) .

SAI,E (l , l , l)
SAiiE (12 I 7 I 4)

SUBSCRIPTING

One method of specifying occurrence numbers is to append one, two, or three
subscripts to the data-name of the table element. A subscript is an integer
value that specifies the occurrence number of an element within a table.

The subscript can be represented either as a numeric literal or as a
data-name that may be qualified but. not itself subscripted and is defined
elsewhe~e as an elementary numeric data item. Series 60/6000 COBOL handles
data-name subscripts more efficiently if they are described with USAGE COMP-1.
When subscripts are specified, it is the responsibility of the user to ensure
that the subscript is within the OCCURS range for the referenced table.

The lowest valid subscript is l. The highest valid subscript is the maximum
occurrence number of the item, as specified in the OCCURS clause. An invalid
subscript will cause unpredictable results at program execution.

Data-names may be used in place of numeric literal subscripts, and may be
mixed with literal subscripts within an item reference; e.g., SALE (l,DEPT,2)
references the second sale within the department (determined by the value of the
data-name DEPT) in the first store. A single data-name may be used to refer to
items in more than one table, and the tables need not have elements of the same
size. Also, the same data-name may be used to reference both a one-dimensional
table and another two- or three-dimensional table.

13-2 DD26

INDEXING

Another method of specifying occurrence numbers is to affix one or more
index-names to an item whose data description includes an OCCURS clause by using
the optional INDEXED BY phrase.

An index-name has no separate data description entry since its definition
is hardware oriented and it acts similar to an index register whose contents
correspond to an occurrence number. Because of its contents, an index-name can
be assigned to only one table. At object program execution, the contents of the
index-name will correspond to an occurrence number for that specific dimension
of the t~ble with which the index-name was associated. An index-name must be
initialized by a SET statement before being used as a table reference.
Index-name values must not be less than one nor greater than the maximum
occurrence number for the table element.

References are made to individual items within a table of elements by
specifying the name of the item, followed by its related index-name(s) in
parentheses. Each occurrence number required to complete the reference will be
obtained from the respective index-name, with the index-name acting as a
subscript.

When a reference requires more than one occurrence number for completeness,
the user must not mix index-names and data-name subscripts in the reference.
Therefore, if indexing is to be used, each OCCURS clause within the hierarchy
(each dimension of the table} must contain an INDEXED BY phrase. The user may,
however,• mix literals and inde~-names within one reference, just as literals and
data-name subscripts may also be mixed.

An index-name cannot be defined as part of a file;
index~name cannot be manipulated by input-output statements. Its
modified only by PERFORM, SEARCH, and SET statements. However, a
file can be described with USAGE INDEX; transfers may then be
conversion, between these data items and index-names using the
Such data items are called index data items.

therefore, the
value can be

data item in a
made, without

SET statement.

Direct indexing is the use of an index-name in the form of a subscript.
Relative indexing may also be specified by following the index-name with an
operator {+ or -} and an integer. (A space must precede and follow the
operator.} The occurrence number, then, is the same as if the integer were added
to or subtracted from the occurrence number to which the setting of the
index-name corresponds. Relative indexing does not cause altering of the
index-name value.

For example, in the reference

STORE {NAME + 2)

the index-name NAME does not change in value; however, if its value were set at
the third occurrence of STORE, the fifth occurrence will actually be addressed.
The advantage of relative indexing is that many different table elements may be
referenced without changing the value of the index-n~me. When necessary, the
value of an index-name may be temporarily stored without conversion into an
index data item.

13-3 DD26

Rules for Subscripting and Indexing

1. Index-names may not be combined with data-name subscripts in a single
data-name reference.

2. Where subscripting is not permitted, indexing is also not permitted.

3.. Tables may have one, two, or three dimensions. Thus, a reference to a
table element may require up to three subscripts or index-names.

4. The use of a data-name subscript in any reference to a table element
or to an item within a table element will not cause any index-name to
be altered by the object program.

5. A data-name may neither be subscripted nor indexed when tr.3
is itself used as a subscript or index-name in that
reference.

data-name
particular

6. An occurrence number specified by a subscript or implied
index-name must not be less than one or greater than the
permissible occurrence number for the table element.

by an
highest

7. When indexing is used to reference a table, the INDEXED BY phrase must
be employed in each OCCURS clause used to define the table. The SEARCH
and SET statements appear in the Procedure Division only in connection
with indexed table references.

Subscripting and Indexing -·sample Problem

To clarify the difference between subscripting and indexing
simple table handling problem will be solved by each method.
following two tables:

01 LIAB-RATES.
02 TERR-L OCCURS 9 TIMES.

03 PREM PIC IS 9(6).
03 CLAS OCCURS 7 TIMES.

04 L-LIMIT PIC 9(6) OCCURS 5 TIMES.

DAMG-RATES.
10 TERR-D OCCURS 9 TIMES.

15 COMP-SOD PIC IS 9(6).
15 COLL-SOD PIC IS 9(6).
15 COMPOSIT PIC 9(6) OCCURS 196 TIMES.

techniques, a
Consider the

These two tables are simplified versions of what might be used in
developing automobile insurance premiums. If it is known that the territorial
definition is the same for both liability and damage premiums, then both sets of
territorial values can be referenced by the same data-name subscript.

13-4 DD26

Assume that an input file record of an individual policy is to be updated,
and the input record contains the following data:

TERR-IN
CLASS-IN
LIMIT-IN

CODE-IN
AGE-IN

where: TERR-IN is the territory number; CLASS-IN is a class code in the range 1
to 7; and LIMIT-IN is a coverage limit code in the range 1 to 5.

CODE-IN and AGE-IN are code numbers which, when multiplied, produce an
occurrence number which points to l of 196 composite items (effectively, a table
within a table).

Although the two tables have diff~rent dimensions, TERR-IN can be used to
refer ~o the proper territorial occurrence in either .table.

Example:

L-LIMIT (TERR-IN, CLASS-IN, LIMIT-IN) or
TERR-D (TERR-IN)

are both valid uses of the contents of TERR-IN as a subscript.

The following procedure is also valid:

MULTIPLY CODE-IN BY AGE-IN G.IVING SCRATCH.

MULTIPLY COMPOSIT (TERR-IN, SCRATCH)
BY COLL-SOD (TERR-IN)
GIVING COLL-PREMIUM.

The first multiplication places the appropriate occurrence number for
COMPOSIT into SCRATCH. Then the proper COMPOSIT element is multiplied by the
$SO-deductible collision rate for the territory to get a final collision premium
into COLL-PREMIUM.

The above techniques describe some of the .organizational and technical
aspects of handling tables by the subscripting method.

13-5 DD26

If indexing rather than subscripting were used with the same table formats,
the tables might be defined as follows:

01

01

LIAB-RATES.
02 TERR-L OCCURS 9 TIMES

03 PREM PIC IS 9(6).
03 CLAS OCCURS 7 TIMES

04 L-LIMIT PIC 9(6)
INDEXED BY XLF.

DAMG-RATES.
10 TERR-D OCCURS 9 TIMES

15 COMP-SOD PIC IS 9 (6) •
lS COLL-SOD PIC IS 9 (6).

INDEXED BY

INDEXED
OCCURS 5

INDEXED BY

lS COMPOS IT PIC 9 (6) OCCURS 196
INDEXED BY XCF.

XTL.

BY XCD.
TIMES

XTD.

TIMES

Indexing cannot be used to reference a table element unless the INDEXED BY
phrase appears in the data description of the item and in any table group items
to-which the table element is subordinate. For example, COMPOSIT is INDEXED BY
XCF. Thus, TERR-D (which has nine occurrences, each containing 196 occurrences
of COMPOSIT) must also be indexed.

The handling of tables by indexing is similar to subscripting, except that
index-names must be modified and controlled by means of SET and SEARCH
statements. Data items that were used as subscripts in the subscripting example
(such as TERR-IN, .LIMIT-IN, SCRATCH, etc.) would have to be converted by means
of a SET statement.

Examplei

SET XTL, XTD TO TERR-IN.

If the data-name TERR-IN is described by a USAGE IS INDEX clause, it is
moved without conversion to index-names XTL and XTD. If TERR-IN is a data-name
not described by a USAGE IS INDEX clause, the compiler interprets the value in
TERR-IN as a subscript value which must be converted to the appropriate index
value.

Size Restriction Upon Character-Oriented Arrays

Because of the hardware restriction of 409S as the lar~est character count
in any sequence character operation, statements must not reference any part of a
character array that exceeds this restriction. Greater efficiency and nearly
unlimited lengths may be achieved by word orienting each array. This may be done
by either using the SYNCHRONIZED clause at the occurs level or by making the
size of each array a multiple of six characters. This restriction does not limit
a character array to 409S characters, but does limit references to arrays or
fields whose sizes exceed 4095 characters. A warning message will be issued if
any references to these fields are made. ·

Another limitation on arrays may require splitting very large records (01
levels) into several smaller records. The maximum number of characters that may
be allocated space in one record is 262,143.

13-6 DD26

SEARCH STATEMENT

The SEARCH statement is used to search a table
satisfies the specified condition and to adjust the
indicate that table element.

for a table element that
associated index-name to

In both Formats 1 and 2, identifier-1 must not ue subscripted or indexed,
but its description must contain an OCCURS clause and an INDEXED BY phrase. The
description of identifier-1 in Format 2 must also contain the KLY IS o~)tion in
its OCCURS clause.

Identifier-2, when specified, must be described with USAGE INDEX or as a
numeric elementary item with no positions to the right of the assumed decimal
point. Identifier-2 is incremented by the same amount as; and at the same time
as, the occurrence number represented by the index-name associated with
identifier-1 is incremented.

In Format 1, conditicin-1~ condition-2, etc., may be any condition as
defined in Section XII, Conditional Procedures.

In Format 2, condition-1 may consist of a relation condition incorporating
the relation EQUALS or EQUAL TO or equal sign, or a condition-name condition,
where the VALUE clause that describes the condition-name contains only a single
literal. Alternatively, condition-1 may be a compound condition formed from
simple conditions of the type just mentioned, with AND as the only connective.
Any data-name that appears in the KEY phrase of identif ier-1 may appear as the
subject or object of a test or be the name of the conditional variable with
which the tested condition-name is associated; however, all preceding data-names
in the KEY phrase must also be included within condition-1. No other tests may
appear within condition-1.

If Format l of the SEARCH statement is used, a serial type of search
operation takes place, starting with the current index setting. If the VARYING
phrase specifying index-name-1 is used and index-name-1 occµrs in the INDEXED BY
phrase associated with identifier-!, index-name-1 specifies the index which
controls the execution of the SEARCH statement. If the VARYING phrase is not
used or does not specify an index-name-! which occurs in the IlJDEXED BY phrase
associated with identifier-!, the index which ·controls the execution of the
SEARCH statement is specified by the first index-name that appears in the
INDEXED BY phrase associated with identifier-1.

a. If, at the start of execution of the ShARCH statement, the index-name
associated with identif ier-1 contains a value that corresponds to an
occurrence number tha~ is greater than the highest permissible
occurrence number for identif ier-1, the SEARCH is terminated
immediately. Then, if the AT END phrase is specified,
imperative-statement-! is executed; if the AT END phrase is not
specified, control passes to the next sentence.

13-7 DD26

b. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-1 contains a value that corresponds to an
occurrence number that is not greater than the highest permissible
occurrence number for identifier-!, the SEARCH statement operates by
evaluating the conditions in the order that they are written, making
use of the index settings, wherever specified, to determine the
occurrence of those items to be tested. If none of the conditions are
satisfied, the index-name for identifier-1 is incremented to obtain
reference to the next occurrence. The process is then repeated, using
the new index-name settings unless the new value of the index-name
settings for identif ier-1 corresponds to a table element which exceeds
the last element of the table by one or more occurrences, in which
case the search terminates as indicated in a. above. If one of the
conditions is satisfied upon its evaluation, the search terminates
immediately and the imperative-statement associated with that
condition is executed; the index-name remains set at the occurrence
which caused the condition to be satisfied.

If Form~t 2 of the SEARCH statement is used, a nonserial type of search
operation takes place, in which case the initial setting of the index-name for
identifier-! is ignored and its setting is varied dur~ng the search operation in
a manner which allows a 'binary' .search operation to be executed, with the
restriction that at no time is it set to a value that exceeds the value which
corresponds to the last element of the table, or that is less than the value
that corresponds to the first element of the table. The index that controls the
execution of the SEARCH statement is specified by the first index-name that
appears in the INDEXED BY phrase associated with identifier-!. If condition-!
cannot be satisfied for any setting of the index within this permitted range,
control is passed to imperative-statement-! when the AT END phrase appears, or
to the next sentence when the AT END phrase does not appear; in either case the
final setting of the index is not predictable. If condition-1 can be satisfied,
the index indicates an occurrence that allows condition-! to be satisfied, and
control passes to imperative-statement-2.

After the execution of an imperative-statement-1, imperative-statement-2,
or imperative-statement-3 that does not terminate· with a GO TO statement,
control passes to the next sentence.

In the VARYING index-name-1 phrase, if index-name-1 appears in the INDEXED
BY phrase of another table entry, the occurrence number repre.sented by
index-name-! is incremented by the same amount as, and at the same time as, the
occurrence number represented by the index-name associated with identifier-! is
incremented.

If identifier-! is a data item subordinate to a data item that contains an
OCCURS clause (providing for a two- or three-dimensional table) , an index-name
must be associated with each dimension of the table through the INDEXED BY
phrase of the OCCURS clause. Only the setting of the index-name associated with
identifier-! (and the data item identifier-2 or index-name-!, if present) is
modified by the execution of the SEARCH statement. To search an entire two- or
three-dimensional table, it is necessary to execute a SEARCH statement several
times. Prior to each execution of a SEARCH statement, SET statements must be
executed whenever index-names must be adjusted to appropriate settings.

13-8 DD26

SET STATEMENT

The SET statement is used to establish reference points for table handling
operations by setting index-names to values associated with table elements.

In the following rules for the SET
index-name-1, identifier-1, and index-name-4
identifier-2, and index-name-5, re'spectively.

SET Statement Rules

statement, all
apply equally

references to
to index-name-2,

1. All identifiers must name either index data items or elementary items
described as integers, except that identifier-4 in Format 2 must not
name an index data item. When a literal is used, it must be a positive
integer. Index-names are considered rel,ated to a given table and are
unique·ly defined by being specified in the INDEXED BY phrase of the
OCCURS clau.se.

2. In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table
element that corresponds in occurrence number to the table
element referred to by index-name-3, identifier-3, or literal-1.
If identif ier-3 is an index data item, or if index-name-3 is
related to the same table as index-name-1, no conversion takes
place. If the value contained in an index data item does not
correspond to an occurrence number of an element in. the table
indexed by index-name-1, the result is undefined.

b. If identifier-! is an index data item, it may be set equal to
either the contents of index-name-3 or identifier-3, where
identifier-3 is also an index data item. Literal-! cannot be used
in this case.

c. If identifier-1 is not an index data item, it may be set only to
an occurrence number that corresponds to the value of
index-name-3. Neither identifier-3 nor literal-1 can be used in
this case.

d. The process is repeated for index-name-2, identifier-2, etc., if
specified. Each time, the value of index-name-3 or identifier-3
is used as it was at the beginning of the execution of the
statement. Any subscripting or indexing associated with
identifier-1-, etc., is evaluated inunediately before the value of
the respective data item is changed.

3. In Format 2, the contents of index-name-4 are incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of
occurrences represented by the value of literal-2 or identifier-4;
thereafter, the process is repeated for index-name-5, etc. Each time,
the value of identif ier-4 is used as it was at the beginning of the
execution of the statement.

4o ,Data in the following chart represents the validity of various operand
combinations in the SET statement. The numeric reference indicates the
applicable rule (above).

13-9 DD26

Receiving Item

Sending Item
Integer Data Item Index-Name Index Data Item

Integer Literal Invalid/2c Valid/2a Invalid/ib

Integer Data Item . Invalid/2c Valid/2a Invalid/2b

Index-Name Valid/2c Valid/2a Va.i.id/2b l

Index Data Item Invalid/2c Valid/2a 1 Valid/2b l

Comparisons Involving Index-Names and/or Index Data Items

The comparison of two index-names is the same as if the corresponding
occurrence numbers were compared. Similarly, when an index-name is compared with
a data item (other than an index data item) or a literal, it is the same as if
their corresponding occurrence numbers were compared.

When a comparison between an index-name and an index data item is made, the
actual values .are compared without conversion. Any other comparison involving an
index data item is invalid and will cause unpredictable results.

SEARCH and SET Statement Examples

Some examples of SEARCH and SET statement usage are presented below.

Example:

SET IX-TABLE TO 3.

The index-name IX-TABLE is set to an index value that
occurrence number three for that table. If index-name IX-TABLE
using an INDEXED BY phrase, the statement is illegal.

Example:

SET LOOKUP TO KEY-POINT.

1
No conversion takes place.

13.,.10

corresponds to
is not defined

DD26

If LOOKUP is an index-name, it is set to the occurrence number that
corresponds to KEY-POINT. If KEY-POINT is an index-name that is not related to
the same table as LOOKUP, an appropriate conversion is performed; otherwise, no
conversion takes place. If LOOKUP is an index data item (that is, defined with a
USAGE INDEX clause) 1 it is set to the actual contents of KEY-POINT. KEY-POIN'l'
must be either an index data item or an index-name or the statement is illegal.

If LOOKUP is neither an index-name nor an index data item, KEY-POINT must
be an index-name. LOOKUP is then set to the occurrence value to which index-name
KEY-POINT corresponds.

Example:

SET DEPT-INDEX UP BY KEY-JUMP.

The index-name DLPT-INDEX is incremented by a value that corresponds to the
number of occurrences indicated by KEY-JUMP. That is, if the value of KEY-JUMP
is three, DEPT-INDEX is incremented by a value that is equivalent to three
occurrences.

Consider a hypothetical table of wholesale discount factors involved in
1etermining the total price of merchandise orders, such as:

01 DISCOUNT-TABLE.
02 RANGE-ENTRY, OCCURS 16 TIMES INDEXED BY XRANGE.

03 MAXRANGE PIC IS 9(6).
03- CLASS-ITEM OCCURS 12 TIMES INDEXED BY XCLASS PIC 9 (6) .

Each wholesale order input record is computed against a basic price
schedule catalog. An item in the wholesale order record, TOTAL-PRICE, is then
compared against the discount schedule to determine which set of discount rates
is to be applied to the particular order. Each occurrence of RANGE-El-JTRY
contains a field called MAXRANGE and 12 occurrences of CLASS-I'l'EM. MAXRANGE
specifies the maximum order amount for which the accompanying set of CLASS-ITLM
discount factors can be appli~d. Each CLASS-ITEM contains a discount factor for
a particular class of merchandise. The coding could be:

SET XRANGE TO 1.

SEARCH RANGE-ENT.RY A'l' END GO TO LRROR WHEH .MAXRANGE
(XRANGE) > TOTAL-PRICE GO TO RANGE-LOCATED.

When the search is completed, XRANGE will be set at the occurrence of
RANGE-ENTRY that contains the appropriate set of discount factors.

As another example, suppose there are two tables which contain calendar
information for the 12 months of the year. One table, JULIAN-VALUES, contains
the Julian day number for the first day of each month; another table,
INDEX~TABLE, contains month names ordered by ascending key of month numbers, as
follows:

01 JULIAN-VALUES.
02 JULIANS PIC X(36) VALUE

"001032060091121152182213244274305335".
02 JULIAN-TABLE REDEFINES JULIANS

OCCURS 12 TIMES INDEXED BY X2.
03 FIRST-JULIAN PIC 999.

13-11 "DD26

I

I

01 INDEX-TABLE.
02 CALENDAR.

03 QUARTER-I PIC X (21) VAL.UE
"JAN0131FEB0228MAR0331".

03 QUARTER-2 PIC X(21) VALUE
"APR0430MAY0531JUN0630".

03 QUARTER-3 PIC X(21) VALUE
"JUL0731AUG0831SEP0930".

03 QUARTER-4 PIC X(21) VALUE
"OCT1031NOV1130DEC1231".

02 CAL-TABLE REDEFINES CALENDAR
OCCURS 12 TIMES INDEXED BY Xl
ASCENDING KEY IS MONTH-NUM.
03 CAL-ITEM.

04 MONTH PIC XXX.
04 MONTH-NUM PIC 99.
04 . MAX-DAYS PIC 99.

If each input record contains some month number, INPUT-MONTH-NO, and the
matching month and beginning Julian day number are to be obtained from the
tables for reporting purposes, either a serial or binary search can be used.

For a binary search (Format 2), the example procedures are:

SEARCH ALL CAL-TABLE AT END DISPLAY
"BAD INPUT MONTH" GO TO ERROR-RTN
WHEN MONTH-NUM (Xl) INPUT-MONTH-NO
MOVE MONTH (Xl) TO REPORT-MONTH
SET X2 TO Xl
MOVE FIRST-JULIAN (X2) TO BEGIN-JULIAN-DATE.

The index-name Xl requires no SET statement prior to a binary search since
it is implicitly set upon entering the search operation. However, it is
necessary that the table, CAL-TABLE, be ordered on a key, MONTH-NUM in the
example, in order to use Format 2 of the SEARCH statement. When the condition
is satisfied, index-name Xl is left pointing to the table element which met the
condition. Therefore, its value may be used in a SET statement to adjust
index-name X2 so that a table element corresponding to the match in CAL-TABLE
may be obtained from JULIAN-TABLE.

The advantage of the Format 2 SEARCH statement is the relative speed of
operation which increases as the size of the tables to be searched increases.
However, with Format 2, data must be arranged in order of KEY values. Also, the
results of the binary search are unpredictable if a table contains any duplicate
items or items that are out of sequence.

The serial search technique (Format 1) may be used if a binary search is
not practical. It would be slower but, in the case of duplicate items, it would
be possible to locate all table elements which satisfy a condition by continuing
the search operation after first meeting the condition and then setting the
index-name up by 1.

3/77

The previous example with' a serial search (Format 1) is:

SET Xl, X2 TO 1.
SEARCH CAL-TABLE VARYING X2 AT END DISPLAY

"BAD INPUT MONTH" GO TO ERROR-RTN
WHEN MQNTH-NUM (Xl) = INPUT-MONTH-NO
MOVE MONTH (Xl) TO REPORT-MONTH
MOVE FIRST-JULIAN (X2) TO BEGIN-JULIAN-DATE.

13-12 DD26A

SECTION XIV

LIBRARY FACILITY

DESdRIPTION OF THE LIBRARY ·FACILITY

The library feature provides the capability for specifying text that is to
be copied from a library.

COBOL libraries contain source text ~aterial that is available to the
compiler for copying when the program is being compiled. A short phrase
utilizing the COPY statement can cause large portions of source library text to
be inserted into the source program where it is treated by the compiler as part
of the source program, thus eliminating repetitious coding. Once established, a
source library may be referenced many times by many programs.

COBOL library text is placed on the COBOL library as an
independent of the COBOL program. More than one COBOL library may be
at program compilation.

COPY FUNCTIONS

operation
available

COBOL provides two distinct and mutually exclusive COPY functions. The
first, referred to as HIS COPY, is the process that has been available in the
earlier (prestandard) version of COBOL. The second function, referred to as
American National Standard COPY, represents Level 2 of the Arn.erican National
Standard COBOL XJ.23-1968 library facility.

HIS COPY

To use the HIS COPY function, the COPY option must be included on the
$ COBOL control card at program compilation. This option allows the user to copy
source lines from an external library, utilize internal program copies, and use
the RENAMING phrase in the FILE-CONTROL paragraph of the Environment Division.

Data Division source lines may be repeated within a program
record-name or group-name. This operation is called an internal
and maybe accomplished using the following syntax:

level-number data-name-1 COPY data-name-2.

14-1

by
copy

copying a
procedure

DD26

Data-name-2 specifies a record-name or a group-name. Refer to Figure 14-2
for an example of the internal copy function.

COBOL source statements may be inserted into a program
library file (.L) at program compilation by specifying either of
in a source program:

The Data Division clause

from
the

the user
following·

.{
level. indicator }

data-name-1
level-number

COPY data;..name-2 [FROM LIBRARY] .

The Procedure Division statement

paragraph-name. COPY library-name FROM LIBRARY

When a user library file is created, the preparation of lengthy repetitions
of file, report, and record descriptions for the Data Division and paragraphs
for the Procedure Division may be avoided in programs that use common data or
procedures.

HIS COPY Source Library Format

The HIS COPY library consists of syntactically correct Data and Procedure
Division statements in card/line image format. The library entries to be
inserted into the source program must be present on a user library file (.L) at
program compilation. Library entries to be inserted into the Data Division b~gin
with a line containing a level indicator (FD, SD, RD) or a level-number (01, 66,
77, 88) starting in column 8. Library entries to be inserted into the Procedure
Division begin with a line containing a library-name in column 8. Refer to
Figure 14-1 for an example of a HIS COPY library.

Within the Data Division, the HIS COPY ••• FROM LIBRARY clause depends upon a
match between data-name-2 as specified in the COPY clause and a corresponding
data-name defined on the library. When a match occurs, an additional check is
made to determine the level-number relationship between the source line
containing the COPY clause and the matching library data-name. If the
level-numbers are the same, the library text is copied unchanged. If the
level-numbers are not equal, the COPY processor attempts to internally adjust
the level-numbers of the copied text by an amount equal to the difference
between the level-number of data-name-1 in the COPY clause and the level-number
of the matching library data-name. This procedure is transparent to the user
since the 'adjusted' level-numbers are not reflected in the compiled source
listing. Reliance upon this adjustment feature is not recommended since it may
result in an unusable level structure.

Within the Data Division, library text is copied beginning with the library
entry containing the data-name on which the match occurred and continuing until
a level-number is encountered that is equal to or less than the level-number of
the matching library data-name. If the library text to be copied is an FD, SD,
or RD entry, the copy procedure is terminated by the next level indicator or
level-number encountered. The copy procedure may also be terminated when the
Procedure Division header entry is encountered on the library.

14-2 0026

Within the Procedure Division, library text is copied beginning with the
library entry containing the library-name on which a match occurs and continuing
until the next library-name is encountered. On the COBOL library, library-name
is equivalent to paragraph-name in the HIS COPY format. See Figures 14-1, 14-2,
and 14-3.

The HIS COPY· feature may be used to copy library lines that are subordinate
to 01 level entries. However, a COPY statement specifying a subordinate level
data-name must include qualification of that data-name by its corresponding 01
level library data-name even though such qualification does not appear to be
necessary to ensure a unique reference. For example, Figure 14-2 contains the
statement

02 WORK-ACCNT COPY ACCNT-NO OF LIB-REC-2 FROM LIBRARY.

in which ACCNT-NO must be qualified by LIB-REC-2 in order to satisfy HIS COPY
requirements.

When Procedure Division statements refer to copied text that requires
qualification, the highest level qualifier is that data-narne-1 defined in the
source line containing the COPY statement. The library data-name on which the
match occurred, although copied into the source program, must not be used for
qualification. For example, Figure 14-2 contains the statement

MOVE TO ACCOUNT-NO OF WORK-REC-1

in which ACCOUNT-NO is qualified by WORK-REC-1, not by the library data-name
LIB-REC-1.

The following rules are applicable to the HIS COPY library format:

l. COPY library text contains two types of entries:

a. Data Division entries.

b. Procedure Division entries.

All Data Division text entries must appear on the library before the
first Procedure Division entry and must be separated from the first
Procedure Division entry by a line containing a Procedure Division
header starting in column a.

2. Each Data Division library- text entry starts with a line containing a
level indicator (FD, SD, RD) or a level-number (01, 66, 77, 88)
beginning in column 8 and continues until the next such line is
encountered. Lines beginning with level-numbers that are not in column
8 neither start nor terminate a library entry.

3. A Data Division library text entry may be partially copied by
specifying a data-name-2 that matches a library data-name subordinate
to a level 01 entry. In this instance, the library text is copied
until a level-number is encountered which is equal to or less than the
level-number of the matched library data-name.

4. If the library contains only Data Division library text entries, the
library must be terminated by a Procedure Division header.

14-3 DD26

s. A Procedure, Division library text entr~1 starts with a line
a library-name beginning i;n column 8 and followed by a
Procedure Division library text entry continues until
library-name beginning in column 8 is encountered.·

containing
period. A

the next

6. Library-names defined in the HIS COPY library must be unique.

7. If the library contains only Procedure Division library text
these entries must be preceded by a line containing a
Division header beginning in column 8.

entries,
Procedure

8. lf the HIS COPY library contains any Procedure Division entries, they
must be terminated with a dununy ending library-name beginning in
column a.

9. No COPY statements may appear in the HIS library text.

10. If format or syntax errors are encountered in source lines copied from
a library, compilation results are unpredictable.

11. If a record description containing multiple REDEFINES clauses is
copied from a library into FD or SD entries that are not defined in
the same order as the corresponding SELECT statements, error messages
may result.

Reference Listing Format

The result of merging the library or internal copy information may be
observed on the reference listing by locating those lines under the heading REF
LINE # which are of the form Cnnnnn, where each satisfied COPY starts with
COOOOl, C00002, ••• , Cnnnnn. Copied lines are cross-referenced in the COMPILER
COMMENTS column in the form 'REF TO aaaaa (Cnnnnn) ',where aaaaa is the alter
number and nnnnn is the number of the copied line that follows the alter number.

Missing Library-Name

If a library-name specified in a COPY ••• FROM LIBRARY statement does not
appear on the associated library, the following error message is printed:

***** COPY OR RENAMING OBJECT UNDEFINED DELETED REFERENCE

Compressed Deck Options

The compiler supports two compressed deck options, COMDK and CCOMDK. The
CCOMDK option allows the user to indicate that copied library text is to be
included in the compressed deck. Refer to the Use of Compressed Decks paragraph
iri Sect.i.on XVI.

14-4 DD26

HIS COPY WITH COMDK

If the COPY and COMDK options are specified on the $ COBOL card, the copied
text (from the library, an internal copy, or a RENAMING phrase) is not included
in the resultant compressed deck. The reference listing will show no COBOL alter
numbers (columns 1-5) for the copied text, which is identified by a 'C' prefix
in the reference line number field. The compressed deck may be altered for
subsequent compilations by using t.he COBOL alter number field. See Figures 14-1
and 14-2.

HIS COPY WITH CCOMDK

If the COPY and CCOMDK options are specified on the $ COBOL card, the
copied text as well as the COPY statement itself is included in the resultant
compressed deck. The reference listing will show corresponding COBOL alter
numbers for each of the copied statements, .which ~are identified by a 'C' prefix
in the reference line number field. To use' the resultant compressed deck in
subsequent compilations, it is necessary to remove the statement containing the
COPY clause, regardless of whether it i~ an internal data description COPY, a
COPY FROM LIBRARY statement, or a RENAMING phrase in a FILE-CONTROL paragraph.
This .can be accomplished by utilizing the COBOL alter number field.
Specification of the COPY and CCOMDK options together is discouraged due to the
complexity of subsequent compressed deck preparation and usage. See Figures 14-1
and 14-3.

1 8 12

$ DATA .L
01 LIB-REC-1.

03 ACCOUNT-NO PIC X(20).
03 BALANCE PIC 9(16)V99 VALUE O.

01 LIB-REC-2.
02 ACCOUNT-NO.

03 SUB-1 PIC X(lO).
03 SUB-2 PIC X(lO).

02 BALANCE PIC $,$$$,$$$,$$$,$$$,$$9.99 VALUE O.
02 ACCNT-NO. .

03 SUB-3 PIC X(lO).
03 SUB-4 PIC X(lO).

PROCEDURE DIVISION.
LIB-PARA.

OPEN INPUT MASTER-FILE.
MOVE SPACES TO WORK-ACCOUNT-NO.

DUMMY-PARAGRAPH-NAME•

Figure 14-1. Library for Figures 14-2 and 14-3

14-5 DD26

......

.i:..
I

O'\

0
0
N
O'\

COBOL
ALT #

00001
00002
00003
00004
00005
00006
00007
00008
00009

00010
00011

00012
00013
00014
00015
00016

00017

00018
00019
00020
00021

00022
00023

00024
00025

00026
00027
00028

S 0 U R C E L I S T I N G

IDENTIFICATION DIVISION.
PROGRAM-ID. HISCP1.
ENVIRONMENT DIVISIGN.
CONFIGURATION SECTION.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE ASSlGN TO Al.
DATA Dl\llSION.

FILE SECTION.
*EJECT

FD MASTER-FILE LABEL RECORDS ARE STANDARD.
01 REC-1.

02 NAME PIC XC38>.
02 FILLER PIC XX.
02 ACCOUNT-NO PIC XC20),

01 REC-2 COPY REC-1.
01 REC-1.

02 NAME PIC XC38).
02 FILLER PIC XX.
02 ACCOUNT-NO PIC XC20>.
02 DESCRIPTION PIC XC20>.

WORKING-STORAGE SECTION.
77 WORK-ACCOUNT-NO PIC XC20).
01 WORK-REC-1 COPY LIB-REC-1 FROM LIBRARY.
01 LIB-REC-1.

03 ACCOUNT-NO PIC XC20).

03 BALANCE PIC 9C16>V99 VALUE 0.
03 NAME PIC XC38) VALUE SPACES.

01 WORK-REC-2 COPY LIB-REC-2 FROM LIBRARY.
01 LI B-REC-2.

02 ACCOUNT-NO.
03 SUB-1 PIC XC10>.
03 SUB-2 PIC XClO>.

02 BALANCE PIC $,$$$,$$$,$$$,$$$,$$9.99 VALUE 0.
02 ACCNT-NO.

03 SUB-3 PIC XC10).
03 SUB-4 PIC XC10>.

01 WORK-REC-3.
02 WORK-ACCNT COPY ACCNT-NO OF LIB-REC-2 FROM LIBRARY.
02 ACCNT-NO.

03 SUB-3 PIC XClO>.
03 SUB-4 PIC XC10>.

PROCEDURE 0.1 VIS I ON.
START SECTION.
PARA-1. COPY LIB-PARA FROM LIBRARY~

LIB-PARA.
OPEN INPUT MASTER-FILE.
MOVE SPACES TO WORK-ACCOUNT-NO.

REF C 0 M P I L E R
LINE #

00001
00002
00003
00004
00005
00006
00007
00008
00009

C 0 M M E N T S

*** WA ~BJECT-COMPUTER PARAGRAPH MISSING-­
ASSUMED 6000 WITH EIS

00010
00011

00012
00013
00014
00015
00016

00017
C00001
C00002
C00003
C00004

00018
00019
00020
00021

COOOOl
COO<J02

coooo~

00022
00023

C00001
C00002
C00003
C00004
COOtl05
C00006
C00007
cooooe

00024
00025

C00001
C00002
C00003

00026
500027
P00028

C00001
C00002
C00003

CONTAINS 60 CHARACTERS
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

REF BY 00030
CONTAINS 80 CHARACTERS

STARTS IN CHARACTER POSITION
STARTS IN CHARACTER P~SITION
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

REF BY 00028
CONTAINS 76 CHARACTERS

STARTS IN CHARACTER POSITION
REF BY 00030

STARTS IN CHARACTER POS1TION
STARTS IN CHARACTER POSITION
Cl.JNTAINS 64 CH.A.RACTERS

REF BY 00030
ST /.\RTS IN CHAR.O,CTER POSIT I ON
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
CONTAINS 20 CHARACTERS

STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

REF TO 00020

10 WORDS
1

39
4i

14 WORDS

1
39
41
61

13 WORDS

21
39

11 WORDS

1
11
21

45
55

4 WORDS

1
11

Figure 14-2. HIS COPY WITH COMDK Option

I-'
~
I

""'1.

0
0

"' °'

\.

COBOL
ALT #

00029

00030
00031
00032

00033

S 0 U R C E L I S T I N G

PARA-2. READ MASTER-FILE AT END GO TO DONE.

MOVE ACCOUNT-NO OF REC-1 TO ACCOUNT-NO OF W(')RK-REC-1
ACCOUNT-NO OF WORK-REC-2.

DONE. STOP RUN.

END PROGRAM.

THE ABOVE LISTING CONTAINS 000 ERROR MESSAGES *****

THE ABOVE LISTING CONTAINS 001 WARNING MESSAGES ***

* THE ABOVE LISTING CONTAINS 000 EFFICIENCY MESSAGES *

COMPILATION TIME <MIN>: ELAP CLOCK= 000.22 PROC= 000.03

00000 OVERFLOW READS 00000 OVERFLOW WRITES 22475 WORDS MEMORY USED

REF C 0 M P I L E R C 0 M M E N T S
LINE #

P00029
REF TO 00032

00030 REF TO 00016 00021 COOC·02 00023 C00002
00031

·pooo32
REF BY 00029

00033

00003 LINKS USED ON •3 FILE

Figure 14-2. HIS COPY WITH COMDK Option (cont.)

COBOL
ALT #

00001
00002
00003
00004
00005
00006
00007
00008
00009

00010
00011

00012
00013
00014
00015
00016

00017
00018
00019
00020
00021
00022

......
00023

~ 00024
I 00025

00 00026
00027

00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046

00047
00048
00049

t?
t?
rv
CT\

S 0 U R C E L I S T I N G

IDENTIFtCATION DIVISION.
PROGRAM-ID. HISCP2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO Al.
DATA DIVISION.

FILE SECTION.
*EJECT

FD MASTER-FILE LABEL RECORDS ARE STANDARD.
01 REC-1.

02 NAME PIC XC38).
02 FILLER PIC XX.
02 ACCOUNT-NO PIC XC20).

01 REC-2 COPY REC-1.
01 REC-1.

02 NAME PIC XC38).
02 FILLER PIC XX.
02 ACCOUNT-NO PIC XC20).
02 DESCRIPTION PIC XC20).

WORKING-STORAGE SECTION.
77 WORK-ACCOUNT-NO PIC XC20).
01 · WORK-REC-1 COPY LIB-REC-1 FROM LIBRARY.
01 LI B-REC-1 .

03 ACCOUNT-NO PIC XC20).

03 BALANCE PIC 9C16>V99 VALUE O.
03 NAME PIC XC38) VALUE SPACES.

01 WORK~REC-2 COPY LIB~REC-2 FROM LIBRARY.
01 LI B - REC - 2 .

02 ACCOUNT-NO.
03 SUB-1 PIC XC10).
03 SUB-2 PIC XC10).

02 BALANCE PIC S,$$$,$$$,$$$,$$$,$$9.99 VALUE O.
02 ACCNT-NO.

03 SUB-3 PIC XC10>.
03 SUB-4 PIC XC10).

01 WORl<.-REC-3.
02 WORK-ACCNT COPY ACCNT-NO OF LIB-REC-2 FROM LIBRARY.
02 ACCNT-NO.

03 SUB-3 PIC XC10).
03 SUB-4 PIC XC10).

PROCEDURE DIVISION.
START SECTION.
PARA-1. COPY LIB-PARA FROM LIBRARY.

LIB-PARA.
OPEN INPUT MASTER-FILE.
MOVE SPACES TO WORK-ACCOUNT-NO.

REF C 0 M P I L E R C 0 M M E N T 8
LINE #

00001
~CC02
00003
00004
00005
00006
00007
00008
00009

*** WA OBJECT,":"COMPUTER PARAGRAPH Ml SSI NG-­
ASSUMEU 6000 WITH EIS

00010
00011

00012
00013
00014
00015
00016

00017
COOOOl
C00002
C00003
C00004

00018
00019
00020
00021

C00001
C00002

C00003
00022
00023

C00001
C00002
C00003
C00004
C00005
C00006
C00007
cooooa

00024
00025

COOOOl
C00002
000003

00026
S00027
P00028

C00001
C00002
C00003

CONTAINS 60 CHARACTERS
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

REF BY 00030
CONTAINS 80 CHARACTERS

STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

REF BY 00028
CONTAINS 76 CHARACTERS

STARTS IN CHARACTER POSITION
REF BY 00030

STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
CONTAINS 64 CHARACTERS

REF BY 00030
STARTS IN CHARACTER POS I Tl ON
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION

STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
CONTAINS 20 CHARACTERS

STARTS IN CHARACTER POSITION
ST ARTS I N CHARACTER POS ITJ ON

REF TO 00020

10 WORDS
1

39
41

14 WORDS

1
39
41
61

13 WORDS

21
39

11 WORDS

1
11
21

415
5'5

4 WORDS

1
11

Figure 14-3. HIS COPY WITH CCOMDK Option

~
~
I
\0

0
0
N
O'I

\

t~OBO!_

.ALT #

00050

00051
00052
00053

00054

*>~***

S 0 U R C E L I S T I N G

PARA- 2. READ MASTER-FI LE .t\ T END GO TO DONE.

MOVE ACCOUNT-NO OF REC- 1 TO ACCOUNT··NO OF .WORK-REC-1
ACCOUNT-NO OF WORK-REC-2.·

DONE. STOP RUN.

END PROGR.4.M .

THE ABOVE L1STING LONTAINS 000 ERROR MESSAGES *****

THE ABOVE LIST I NG CONT A I NS 001 WARN I NG MESSAGES * u

* THE ABOVE LISTING CONTAINS 000 EFFICIENCY MESSAGES *

COMPILATION TIME CMIN>: £LAP CLOCK= 000.21 PROC= 000.03

OOOCO OVERFLOW READS 00000 OVERFLOW WRITES 22475 WORDS MEMORY USED

REF C 0 M P I L E R COMMENTS
LINE #

P00029
REF TO 00032

00030 REF TO 00016. 00021 C00002 00023 C00002
00031

P00032
REF BY 00029

00033

00003 LINKS USED ON •3 FILE

Figure 14-3. HIS COPY WITH CCOMDK Option (cont.)

AMERICAN NATIONAL STANDARD COPY

The LIBCPY option must be specified on the $ COBOL card in order to engage
the American National Standard COPY function. ·

The American National Standard COPY function and the HIS COPY function are
mutually exclusive. The two functions have· different library formats. If a user
attempts to employ both functions, the LIBCPY option overrides the $ COBOL COPY
(i.e., HIS COPY) option.

The RENAMING phrase cannot be used in conjunction: with the American
National Standard COPY function.

Library Format for American National Standard COPY

The library entries to be inserted into the source program must be present
on a user library file (.L) at program compilation. Two library formats are
available for use with American National Standard COPY. 'i'heir usage is mutually
exclusive.

In the preferred format, asterisks in columns 1-6 on the library are used
to indicate that the name starting in column 8 of the same line is a
library-name. Information will be copied until the next record on the library
having asterisks in columns 1-6 is encountered or until the end of the library
file is reached. The preferred library format allows level indicators,
level-numbers, section-names, and/or paragraph-names to begin in column 8 on the
library. An example of the preferred format is:

l 6 8

****** LIB-NAME-1.

"'* LIB-NAME-2.
PERFORM PARA-2.

PARA-1. MOVE A TO B.
PARA-2. ADD c TO D •.

****** LIB•NAME-3.

14-10 DD26

$ DATA .L
****** LIB-REC-1.

03 ACCOUNT-NO PIC X(20).
03 BALANCE· PIC 9(16)V99 VALUE 0.

****** LIB-REC-2.
02 ACCOUNT-NO.

03 SUB-1 PIC X(lO).
03 SUB-2 PIC X(lO).

02 BALANCE PIC $,$$$,$$$,$$$,$$$,$$9.99 VALUE O.
****** LIB-PARA.

OPEN INPUT MASTER-FILE.
MOVE SPACES TO WORK-ACCOUNT-NO.

Figure 14-4 .' · Library for Figures 14-5 and 14-6

14-13 0026

......

.r:i.
I

......

.r:i.

0
0
N
O"I

COBOL
ALT 11t

00001
00002
00003
00004
00005
00006
00007
00008
00009

00010
00011

00012
00013
00014
00015
00016

00017
00018
00019

00020

00021
00022

00023

00024
00025
00026
00027

00028

00029
00030
00031
00032
00033

S 0 U R C E L I S T I N G

fOENTIFrCATION DIVISION.
PROGRAM- I D. ANSCP 1 .
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO Al.
DATA DIVISION.

FILE SECTION.
•EJECT

FD MASTER-FILE LABEL RECORDS ARE STANDARD.
01 REC-1.

02 NAME PIC XC38).
02 FILLER PIC XX.
02 ACCOUNT-NO PIC XC20>.

WORKING-STORAGE SECTION.
77 WORK-ACCOUNT-NO PIC XC20>.
01 WORK-REC-1 COPY LIB-REC-1.

03 ACCOUNT-NO PIC XC20).

03 BALANCE PIC 9C16>V99 VALUE 0.
01 WORK-REC-lA COPY LIB-REC-1.

03 ACCOUNT-NO .PIC XC20).

03 BALANCE PIC 9C16>V99 VALUE 0.
03 NAME PIC XC38> VALUE SPACES.

01 WORK-REC-2 COPY LIB-REC-2.
02 ACCOUNT-NO.

03 SUB-1 PIC XClO>.
03 SUB-2 PIC X<l~J.

02 BALANCE PIC $,$$$,$$$,$$$,$$$,$$9.99 VALUE 0.
01 WORK-REC-2A COPY LIB-REC-2.

02 ACCOUNT-NO.
03 SUB-1 PIC XClOJ.
03 SUB-2 PIC XClOJ.

02 BALANCE PIC $,$$$,$$5,$$$,$$$,$$9.99 VALUE 0.
02 NAME PIC XC38) VALUE SPACES.

PROCEDURE DIVISION.
START SECTION.
PARA-1. COPY LIB-PARA.

OPEN INPUT MASTER-FILE.
MOVE SPACES TO WORK-.ACCOUNT-NO.

PARA-2. READ MASTER-FILE AT END GO TO DONE.

MOVE ACCOUNT-NO OF REC-1 TO
ACCOUNT-NO OF WORK-REC-1
ACCOUNT-NO OF WORK-REC-lA
ACCOUNT-NO OF WORK~REC-2.

DONE.

REF C 0 M P I L E R
LINE #

00001
00002
00003
00004
00005
00006
0000"1
00008
00009

C 0 MME NT S

*** W~ OBJECT-COMPUTER PARAGRAPH MISSING-­
ASSUMED 6000 WITH EIS

00010
00011

00012
00013
00014
00015
00016

00017
00018
00019

C00020

C0002l
00022

C001J23

C00024
00025
00026

C00027
C00028
C00()29
C00030

00031
C0003'2
C00033
C00034
C00035

00036
00037

500038
P00039
C00040
C00041
P00042

CONTAINS 60 CMARACTERS
STARTS IN CHARACTF.r'1 f'03 I Tl ON
STARTS IN CHARACTER PO~ITION
STARTS IN CHARACTER POSITION

REF BY 00043

REF BY 00041
CONTAINS 38 CHARACTERS
STARTS IN CHARACTER POSITION

REF BY 00043
STARTS 1N CHARACTER POSITION
CONTAINS 76 CHARACTLRS
STARTS IN. CHARACTER POSITION

REF av 00043
STARTS IN CHARACTER POSITION
STARTS IN CH~RACTER POSITION
CONTAINS 44 CHARACTERS

REF BY 00043
STARTS IN CHARACTER POS!TION
STARTS IN CHARACTER POSITION
ST/\RTS IN CHAR.At:TER POSITION
CONTAINS 82 CHARACTERS

SlAfHS IN CHARACTER PC•S IT I rJN
:'.::TAP-TS IN ~HAR;:\C:: rEP. POS l TI ON
ST/\RT3 !N CHARACTER P03'.TION
STAFns IN CHAR/\Cr~R POSITIO~

REF TO 00018

Ou047

10 Wt'JROS
1

39
41

7 WORDS
1

21
13 WC1RDS

1

21
39

8 WORDS

1
11
21

14 WORDS

1
11
21
45

REF TO
00043 REF TO
00044

00016 00020 00023 00027

00045
00046

P00047
REF BY 00042

Figure 14-5. American National Standard COPY WITH COMDK Option

.... ..
'

U'I

0
0
N

°'

CCIBOL
ALT •

00034
Q003'5

S 0 U R C E L I S T I N G

STOP RUN.
END PROGRAM.

***** THE ABOVE LISTING CONTAINS 000 ERROR MESSAGES *****

*** THE ABOVE LISTING CONTAINS 001 WARNlNG MESSAGES ~**

* THE ABOVE LISTING CONTAINS 000 EFFICIENCY MESSAGES *

·COMPILATION TIME <MIN>: ELAP CLOCK• 000.21 PROC= 000.03

00000 OVERFLOW READS 00000 OVERFLOW WRITE~ 22445 WORDS MEMORY USED

REF C 0 M P I L E R
LINE #

00048
00049

C 0 M 11 E N T S

00002 LINKS USED ON *3 FILE

Figure 14-5. American National Standard COPY WITH COMDK Option (cont.)

COBOL
ALT #

00001
00002
00003
00004
00005
00006
00007
00008
00009

00010
00011

00012
00013
00014
00015
00016

00017
00018
00019
00020
00021

........ . 00022
il:lo 00023 I
..... 00024
O'\ 00025

00026
00027
00028
00029
ooo::w
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047

00048
0
0
rv
O'\

S 0 U R C E L I S T I N G

IDENTIFICATION DIVISION.
PROGRAM-ID. ANSCP2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CetNTROL.

SELECT MASTER-FILE ASSIGN TO Al.
DATA Dl\llSION.

FILE SECTION.
*EJECT

FD MASTER-FILE LABEL RECORDS ARE STANDARD.
01 REC-1.

02 NAME PIC XC38).
02 FILLER PIC XX.
02 ACCOUNT-NO PIC XC20>.

WORKING-STORAGE SECTION.
77 WORK-ACCOUNT-NO PIC XC20>.
01 WORK-REC-1.

*01 WORK~REC-1 COPY LIB-REC-1.
03 ACCOUNT-NO PIC XC20>.

03 BALANCE PIC 9C16>V99 VALUE 0 .
01 WORK-REC-lA.

*01 WORK-REC-1A COPY LIB-REC-1.
03 ACCOUNT-NO PIC X<20).

03 BALANCE PIC 9C16)V99 VALUE 0.
03 NAME PIC XC38) VALUE SPACES.

01 \./ORK-REC-2.
*01 WORK-REC-2 COPY LIB-REC-2.

02 ACCOUNT-NO.
03 SUB-1 PIC XC10).
03 SUS-2 PIC X\10>.

02 BALANCE P!C $,$$$,~$$,$$$,$$$,$$9.99 VALUE 0.
01 WORK··REC-2A.

~01 WORK-REC-2A COPY LiB-REC-2.
02 ACCeUNT-NO.

03 SUB-1 PIC XC10>.
03 SUB-2 PIC XC10).

02 BALANCE P!C $,$$$,$$$,$$$,$$$,$$9.99 VALUE 0.
02 NAME PIC X(38) VALUE SPACES.

PROCEDURE DIVISION.
START SECTle>N.
PARA-1.

*PARA-1. COPY LIB-PARA.
OPEN INPUT MASTER-FILE.
MOVE SPACES TO WORK-ACCOUNT-NO.

PARA-2. READ MASTER-FILE AT END GO TO DONE.

MOVE ACCOUl\IT-NO OF REC-1 TO

REF C 0 M P I L E R C 0 M M E N T S .
LINE #

00001
00002
00003
00004
00005
00006
00007
00008
00009

*** WA OBJECT-COMPUTER PARAGRAPH MISSING-­
ASSUMEU' 6000 WITH EIS

00010
00011

00012
00013
00014
00015
00016

00017
00018
00019
00020

C00021

C00022
00023
00024

C00025

C00026
00027
00028
00029

C00030
C00031
C00032
C00033

00034
00035

C00036
C00037
C00038
C00039

00040
00041

S00042
P00043

00044
C00045
C00046
P00047

00048

CONTAINS 60 CHARACTERS
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSIT10N
STARTS IN CHARACTER POSITION

REF BY 00048

REF BY 00046
CONTAINS 38 CHARACTERS

STARTS IN CHARACTER POSITION
REF· BY 00048

STARTS IN CHARACTER POSITION
CONTAINS 76 CHARACTERS

STARTS IN CHARACTER POSITION
REF BY 00048

STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
CONTAINS 44 CHARACTERS

REF BY 00048
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
CONTAINS 82 CHARACTERS

STARTS IN CHARACTER POSITION
SlARTS IN CHARACTER POSITION
STARTS IN CHARACTER POSITION
$TARTS IN CHARACTER POSITION

REF TO 00018

REF TO 00052
REF TO 00016 00021 00025

10 WORDS
1

39
41

7 WORDS

21
13 WORDS

21
39

8 WORDS

1
11
21

14 WORDS

1
11
21
4!5

00030

Figure 14-6. American National Standard COPY WITH CCOMDK Option

I-'
.a::..
I

.....

......

0
0
r-.>
O'\

COBOL S 0 U R C E L I S T I N G
ALT #

00049 ACCOUNT-NO OF WORK-REC-1
00050 ACCOUNT-NO OF WORK-REC-lA
00051 ACCOUNT-NO OF WORK-REC-2.
00052 DONE.

00053 STOP RUN.
00054 END PReJGRAM.

~**** THE ABOVE LISTING CONTAINS 000 ERROR MESSAGES *****

*** THE ABOVE LISTING CONTAINS 001 WARNING MESSAGES ***

* THE ABOVE LISTING CONTAINS 000 EFFICIENCY MESSAGES *

COMPILATION TIME <MIN>: ELAP CLOCK= 000.21 PROC= 000.03

00000 OVERFLOW READS 00000 OVERFLOW WRITES 22445 WORDS MEMORY USED

REF C 0 M P I L E R C a M M E N T S
LINE #

00049
000150
000151

POOOl52

000153
000154

REF BY 00047

00002 LINl<.S USED ON •3 FILE

Figure 14-6. American National Standard COPY WITH CCOMDK Option (cont.) •

SECTION XV

SEGMENTATION AND MODULARIZATION

TERMINOLOGY

When a standard concept of segmentation was extended to Series 60/6000
COBOL, it became necessary to revise terminology. Previously, the terms
'segmentation' and 'segments' were used to denote capabilities associated with
the operating system. Where these words are used now, the¥ will apply only to
the standard COBOL concept of segmentation as discussed in this section. The
term modularization will replace the previous usage of the term segmentation and
the term module will replace the term segment.

Modularization, then, is the facility of combining separately compiled
programs (modules) as building blocks to the solution of a problem using a
non-COBOL CALL statement to effect serial transfer of control. This concept is a
Series 60/6000 feature and therefore must be considered nonstandard.

Occurrences of the term 'segment-number' will be replaced by the term
'priority-number' in the COBOL Reference Manual and COBOL User's Guide in
conformance to American National Standard COBOL-1968. However, the term
'segment-number' is utilized in the CODASYL COBOL Journal of Development and in
Ainerican National Standard COBOL-1974. These terms may be considered
interchangeable in Series 60/6000 COBOL.

DESCRIPTION OF SEGMENTATION

COBOL segmentation is a facility that allows the. user to communicate with
the compiler to specify object program overlay requirements.

Segmentation is concerned only with segmentation of procedures. As such,
only the Procedure Division and the Environment Division are considered in
determining segmentation requirements for an object program.

Organization

Although it is not mandatory, the Procedure Division for a sourc•: program
is usually written as a consecutive group of sections, each of whi.. .. i1 ±_..:. composed
of a series of closely related operations that are designed to collectively
perform a particular function. However, when segmentation is used, the entire
Procedure Division must be in sections. In addition, each section must be
classified as belonging either to the fi~ed portion or to one of the independent
segments of the object program. (See Structure ' of Program Segments.)
Segmentation· in no way· affects the need for qualification of procedure-names to
ensure uniqueness.

15-1 DD26

Segments

The segmentation feature permits the user to physically subdivide the
Procedure Division of a COBOL object program. All source paragraphs that contain
the same priority-number in their section headers are considered to be one
segment at object program execution. Since priority-numbers can range from 00
through 99, it is possible to subdivide any object program into a maximum of 100
segments~

Program segments may be of three types, fixed permanent, fixed overlayable,
and independent.

Fixed permanent segments are always in memory during the execution of the
entire program; i.e., they cannot be overlayed except when the system is
executing another program, in which case fixed segments may be 'rolled out'
temporarily. ·

Fixed overlayable segments may be overlayed during program execution, but
any such overlaying is transparent; that is, fixed overlayable segments are
logically identical to, but physically different from, fixed segments. A fixed
overlayable segment, if called for by the program, is always made available in
its last used state.

Independent segments may be overlayed, but such overlaying will result in
the initialization of that segment. Therefore, independent segments are
logically different from fixed permanent/fixed overlayable segments, and
physically different from fixed segments. Independent segments are numbered 50
through 99.

The logical/physical characteristics of the three types of segments are
shown below, where L indicates that the segment types are logically identical,
and P indicates that they are physically identical.

Fixed Fixed
Permanent Overlayable Independent

Fixed Permanent -
Fixed Overlayable L
Independent None

Segment Classification ·

Sections which are to be
priority-numbers included with
following criteria:

segmented
Procedure

L None
- p
p -

are classified, using a system
Division section headers, and

of
the

1. Logic Requirements - Sections which must be available for reference at
all times, or which are referred to very frequently, are normally
classified as belonging to one of the fixed permanent segments;
sections which are used less frequently are normally classified as
belonging either to one of the fixed overlayable segments or to one of
the. independent segments, depending on logic requirements.

15-2 0026

2. Frequency of Use Generally, the more frequently a section is
referred to, the lower its priority-number; the less frequently it is
referred ·to, the higher its priority-number.

3. Relationship to Other Sections - Sections which frequently conununicate
with one another should be given the saine priority-numbers.

Segmentation Control

The logical sequence of the program is the same as the physical sequence
except for specific transfers of control. If the priority-numbers are not in
strict ascending order, a prepass must be made by the compiler. This procedure
is activated when the SEGMNT option is included in the variable field on the
$ COBOL card. (Refer to the segmentation deck setup example in Appendix·B.)

The SEGMNT option should not be used when sections are already in ascending
priority-number order.

If the segmented source program is an I-D-S program, the SEGMNT option must
be included in the variable field on the $ IDS card.

Control may be transferred within a source program to any paragraph in a
section; that is, it is not mandatory to transfer control to the beginning of a
section ..

Structure of Program Segments

PRIORITY-NUMBERS

Section classification is accomplished by means of a system of
priority-numbers. The priority-number is included· in the section header:

section-name SECTION [priority-number J .

The priority-number ·must be an integer ranging in value from 0 through 99.

If the priority-number is omitted from
priority-number is assumed to be o.

the section header, the

Sections in the d_eclarative portion must contain priority-numbers having a
value of O only.

All sections which have the same priority-number constitute
segment.

a program

S~gments with priority-number 0 through 49 belong to the fixed portion of
the object program.

Segments with priority-number 50 through 99 are independent segments.

15-3 DD26

SEGMENT-LIMIT

Unless overridden by the user, all segments numbered
fixed permanent segments, and s.egrnents numbered 50 through
segments.

00 through 49 are
99 are independent

If, however, the user req~ires fixed overlayable segments, they are
numbered from a user-specified value (01 through 49). The user specifies the
lowest numbered segment which is to be fixed overlayable in the SEGMENT-LIMIT
phrase of the Environment Division. Therefore, the more fixed overlayable
segments there are, the fewer fixed permanent segments there can be. Segment 00
is always fixed. The relationship between segment types and priority-numbers is
shown below.

00 01 •••••••••• ~ ••• 49 so •••••••••••••• 99

F. Fixed Permanent or
i .Fixed Overlayable,
x depending on Independent
e SEGMENT-LIMIT
d

4~

Default boundary between Fixed
._ and Independent

The logical relationship between all segments numbered 00 through 49 is
always the same, regardless of SEGMENT-LIMIT. For example, an altered GO TO
statement which appears in a segment numbered 27 will remain altered, whether
the segment is fixed permanent or fixed overlayable, until the execution of
another ALTER statement; intervening overlays of the segment will not result in
initialization of the segment. Therefore, COBOL paragraphs numbered 00 through
49 cc;i.n be written as if all such paragraphs were always fixed in memory, and
subsequent changes in SEGMENT-LIMIT will have no effect on program logic.

The SEGMENT-LIMIT phrase appears in the OBJECT-COMPUTER paragraph and· has
the following format:

[, SEGMENT-LIMIT IS priority-number]

Priority-number must be an integer ranging in value from 1 through 49.

When the SEGMENT-LIMIT phrase is specified, only those segments having
priority-numbers from 0 up to, but not including, the priority-number designated
as the SEGMENT-LIMIT, are considered. as permanent segments of the object
program.

Those segments having priority-numbers from the SEGMENT-LIMIT through 49
are considered as fixed overlayable segments.

When the SEGMENT-LIMIT phrase is omitted, all segments
priority-numbers from 0 through 49 are considered as permanent segments
object, program.

15-4

having
of the

0026

Transfer of Control

Four methods are used to transfer control within a program:

1. A GO TO statement.

2. A PERFORM statement.

3. An input procedure or output procedure associated with a SORT
statement.

4. An output procedure associated with a MERGE statement.

An input procedure or output procedure can be considered an implicit
PERFORM which is executed in conjunction with a SORT or MERGE statement. For
that reason, the restrictions on the PERFORM statement apply equally to input
procedures and output procedures.

The CALL statement transfers control from a calling program to a called
prog.ram and is not, therefore, relevant to a discussion of segmented programs.

The ALTER statement, while not in itself transferring
control transfer by altering a future control path. Its effect
control is included in this section for 'that reason.

control, affects
on transfer of

Restrictions on Transfer of Control and Program Alteration

The segmentation feature imposes no restrictions on transfer of control as
long as the control path remains within the range of fixed permanent and fixed
overlayable segments. These kinds of segments are logically identical and can be
treated by the user as though the program were not segmented. If, however,
independent segments are involved in the transfer of control, some restrictions
exist due to the transient nature of independent segments.

The restrictions imposed by segmentation occur only under the following
circumstances:

l. When a PERFORM, ALTER, SORT, or MERGE statement that is not
independent segment refers to a paragraph, input procedure, or
procedure that is in an independent segment.

in an
output

2. When a PERFORM, ALTER, SORT, or MERGE statement in an independent
segment refers to a paragraph, input procedure, or output procedure in
a different independent segment.

3. When a PERFORM, SORT, or MERGE statement in an independent segment
refers to a paragraph, input procedure, or output procedure that is
not in an independent segment, which in turn refers to an independent
segment.

Segmentation imposes no specific restrictions on GO TO statements, but it
does restrict the use of GO TO statements which transfer control in violation of
the restrictions on PERFORM, ALTER, MERGE, or SORT statements.

15-5 0026

Restrictions are required since independent segments are loaded into memory
under control of an operating system over which the user has no direct control.
(The user can never predict when any given independent se.gment will be loaded.)
Since memory may only be sufficient to contain one independent segment at a
time, the user must not execute statements that depend upon the presence, in
,memory, of any given independent ·segment (other than the ·one in which the
statements appear) at any given time •

a.re:
. The specific restrictions imposed on the PERFORM statement by segmentation

• A PERFORM statement tl:lat appears in a section whose priority-number is
less than the SEGMENT-LIMIT can have within its +ange only the
following:

a. Sections, each of which has a priority-number less than 50;.

b. Sections wholly contained in a single segment whose priority­
number is greater than 49.

• A PERFORM statement that appears in a section whose priority-number is
equal to or greater than the SEGMENT-LIMIT can have within its range
only the following:

a. Sections, each of which has the same priority-number as that
containing the PERFORM statement.

b. Sections with a priority-number that
SEGMENT-LIMIT.

is less than the

One restriction is imposed on the ALTER statement by segmentation. Since
the presence of independent segments in memory is unpredictable, paragraphs
whose priority-number is greater than or equal to 50 must not be referred to by
an ALTER statement in a section with a different priority-number.

The restrictions on the SORT or MERGE statements are identical to thos~
imposed on the PERFORM statement, because a SORT or MERGE statement is
considered to be an implied PERFORM of associated input procedures or output
procedures.

Segmentation, Linking, and Loading

COBOL segmented programs are loaded by the General Loader program.

Because of program size and complexity, it may be necessary to segment -a
program to make more efficient use of memory and available storage media. Each
of these segments may be referred to as a 'link'. When using links, the program
must be organized in such a way to retain the more commonly used subprograms in
the links that will .re.side in memory and the lesser used subprograms in links
that will be used as temporary overlays. All of the subprograms loaded that
precede the first $ LINK card and all subprograms loaded as a result of the
first library search are commonly referred to ·as being in the 'main link'.

15-6 DD26

The $ LINK cRrd is used to specify the positions in the output stream at
which segmentation is to take place. When this card is encountered, · all
requested library files are searched to satisfy any undefined references
(SYMREFs) in the link being terminated. The $ irNK card specifies, in its first
variable field, a unique identifier for the new link. When variable field 2 is
present on the card, it .indicates that the new link is to overlay a previously
loaded link{s) whose identifier appears in field 2. In this condition, the new
link assumes the origin of the link specified in field 2. All links which are to
be overlayed by the new link are written in system loadable format onto the file
that has the file-code H*.

The amount of cross-reference between the various subprograms that make up
the link program dictates the desired segmentation. The main link, as defined
above, should contain all high-usage subprograms because of its permanent status
in memory during program execution. Subprograms contained in any other link are
always able to reference subprograms in the main link.

COBOL s~gmented decks are identified by the numeral one (1) in bit
the third word of the preface card. S~ecial preface cards precede each
in the object deck and are similar in function to $ LINK cards.

20 of
segment

A COBOL segmented deck is loaded as described below:

1. When a segmented deck is detected, a test is made to determine if the
$ OPTION COBOL card is included. If this card is not present, loading
is terminated.

2. The symbols from the preface card are loaded into the load table. The
preface information is then saved in a pushdown stack.

3 •. Required library routines are loaded.

4. The saved preface information is restored to continue loading the
segmented program. Labeled Common storage areas are assigned, followed
by space for the program.

s. The coding that precedes the first special pref ace card
This coding, together with constants and working-storage,
fixed portion of the program that always resides in memory.

is loaded.
forms the

6. Load parameters from the special preface card are saved and the coding
that follows is loaded until another preface card is detected. The
instructions forming the current segment are written on the H* file
with MME GESAVE.

This process is . repeated until the special preface
identifies the last segment is detected. The last segment
on the H* file.

card that
is written

7. The remaining coding that is part of the fixed permanent portion is
loaded. When a $ EXECUTE or $ LINK card is encountered, ·the fixed
portion is written on the H* file.

15-7 DD26

The manner in which segmented programs are loaded requires the user to
follow the conventions listed below:

1. A·$ OPTION COBOL card must precede the first segmented program.

2. If present, the following cards must precede the segmented program:

$ LIBRARY
$ NLOAO
$ NOLIB

3. If several object decks are present in the load, and at least one of
the segmented overlays references another object program through a
SYMREF/SYMDEF. relationship, the object program containing the SYMOEF
must precede the segmented program.

4. If more than one segmented program is present, communication is
possible only between the fixed permanent portions.

5. If $ LINK cards are present, communication .is possible only between
the permanent portion of each link.

6.. Using $ EQUATE cards to define new SYMDEFs is restricted to SYMDEFs
that are already defined.

7. The variable field of the $EXECUTE card must contain the SEG option
if the user desires allocation of H* by GCOS. If the SEG option is not
present, a peripheral control card should be provided for the H* file.

8. If neither of the'conventions specified in item 7 are followed, the
General Loader attempts to create an H* file via GEMORE at the first
GESAVE. If the GEMORE is denied, the General Loader places an error
message on the P* file and aborts.

15-8 0026

The following diagram illustrates the memory layout for a segmented program
with additional subprograms.

High.address
limit for activity

Low address
limit for activity
(octal 14000)

Lower address
limit

I- -

0

Relocation Table

Other Fixed Storage

Overlayable .Segments

- - - - - - - - - -
Segmented Program

(Fixed)

Labeled Common for
Segmented Program

Library Routines

. . .

SUBPROGRAMl Labeled
Common

SUBPROGRAMl

Two-Word Link Vector

64-Word Slave Pref ix
(User)

General Loader

64-Word Slave Prefix

-

Segmented Program

Other
Programs

For additional information, refer to the General Loader Reference Manual.

15-9 DD26

Effects of Segmentation on Listings

The listing of cross-references between permanent segment procedures and
overlayable segment procedures can be made indirectly rather than directly by
using a so.urce card line number. The indirection involves a table in the GMAP
listing called the Procedure-Names Table which is located by the symbol
'.CTABL'. The following example describes the relationship between
cross-references for a segmented program with an independe.nt segment
(priority-numbe·r = 52). Note that the procedure with line number POOlOS has no
REF BY comment. Instead, its cross-reference is printed at line number 00007
which corresponds to the seventh entry in the Procedure-Names Table of the GMAP
listing. The GO TO statement at line number 00154 also has a REF TO comment that
points to line number 00007 (an indirect reference).

Example:

REMARKS. THIS IS A SEGMENTED PROGRAM.

START SECTION.

REF
LINE #

00007

COMPILER COMMENTS

REF BY 00154

PARA-A. READ IN-FILE AT END GO TO DONE. P00105

ERR SECTION 52.
(This is an independent segment)

GO TO PARA-A. 00154 REF TO 00007

Then, in GMAP:

PROCEDURE-NAMES TABLE

TTLS PROCEDURE-NAMES TABLE

.CTABLBSS 000000
BCI Ol,S00092 000001
ZERO 000000,500092
BCI 01,000001 000002
ZERO OOOOOO,P00094
BC! 01,000001 000003
ZERO OOOOOO,S00095
BC! 01,000001 000004
ZERO OOOOOO,P00097
BCI 01,000001 000005
ZERO 000000,SOOlOO
BCI 01,000061 000006
ZERO 000000,POOlOl
BCI 01,000001 000007 +-- entry

number
ZERO 000000,POOlOS

15-10 DD26

Summary of Segmentation Requirements

-The main features of segmentation are listed below:

1. COBOL segmentation is concerned only with the segmentation
procedures in the Procedure Division.

of

2. When used, the entire Procedure Division must be in sections.

3. Section classification is accomplished by means
priority-numbers ranging in value from 0 through 99
header format:

section-name SECTION [priority-number J .

O·f a set of
in the section

4. When a priority-number is omitted from a section header, it is assumed
to be zero, as are sections in the declarative portion.

5. Sections need not be divided physically into ascending logical order
of priority-number; however, such ordering is preferable since compile
times will be increased to rearrange the source program. (This is the
case when the SEGMNT option on the $COBOL card is required.)

6.

7.

The SEGMENT-LIMIT feature provides a means by
permanent segments of a program can be reduced
phrase is used in the OBJECT-COMPUTER paragraph

[SEGMENT-LIMIT ._!! priority-number]

which the number of
from 49 to 1. This
with the format:

When the SEGMENT-LIMIT phrase is omitted, all segments having
priority-numbers from O through 49 are considered as permanent
segments of the object program.

8. When the SEGMENT-LIMIT phrase is specified, only those segments having
priority-numbers from 0 up to, but not including, the priority-number
designated as the SEGMENT-LIMIT, are considered as permanent segments.

DESCRIPTION OF MODULARIZAT!ON

The objectives of COBOL program modularization are:

1. To permit practical separation of a data processing program into
distinct functional components (modules).

2. To permit the modules to be developed as separate COBOL source
programs that are compiled separately and may be debugged separately.

3. To permit programs to be linked by the object program loader.

4. To permit the functional modules to overlay other modules when called
into memory in order to execute large programs within a limited amount
of memory.

15-11 0026

Three distinc:::t communication problems arise in modularizing data processing
programs. The first is the communication of information contained in .the data
file buffers and housekeeping information that is common between two or more
modules. The second is the communication of working-storage data common to two
or more modules. The third is the communication of procedural control. Other
problems arise when a data processing program is modularized to function in an
overlay environment. One problem that must be considered when operating in an
overlay environment is how to control files which are common to the two or more
modules .. There should be.a communication capability that allows loading of an
overlay module which restores any common areas to their initial states or allows
them to remain in their current states.

As a special feature, the COBOL compiler provides solutions to all three
communication problems, as described below. It should be understood that source
program modularization (as ·specified for COBOL) must generally be rearranged
into a unified, nonmodularized form if it is to be subsequently compiled on a
different computer. Such rearrangement is not necessary for source programs that
do not use the modular~zation feature.

Modules

Modules are separate programs, compiled and tested independently, and
subsequently loaded together and executed as a total program. In this manner, a
large complex program may be divided into several parts (modules), each part
written as a separate source program, and each part compiled and tested
independently, thereby overlapping programming and checkout time. Another use of
modules is to facilitate writing common subroutines (installation . oriented) in
source language to be compiled as independent modules. ·

Sections

Sections consist of a section header followed by zero, one, or more
successive paragraphs. They generally contain a common function that is executed
from more than one location in a program. Any program may be partitioned into
sections. A section ends immediately before the next section-name or at the end
of the Procedure Division or, in the declarative portion of the Procedure
Division, at the keywords END DECLARATIVES.

The compiler provides segmentation of COBOL procedural sections as
specified in American National Standard COBOL specifications. However, through
modularization, it is possible to organize a group of COBOL modules functionally
to operate in the same manner as segmentation of American National Standard
COBOL-1968 procedural statements, with the exception that there is no way to
call a segment and have it made available in its last used state.

15-12 DD26

An explanation of the three methods of communication between modules
follows:

1. The COBOL compiler automatically places the file control blocks and
all buffers for each file named in the File Section into Labeled
Common storage. The name of the Labeled Common storage area is
assigned using the two-character file-code specified in the ASSIGN
phrase for the file. At load time, the loader will allocate all
Labeled Common storage areas having the same name to the same area of
memory. Therefore, if a file is referenced by two or more modules, it
must be described identically in the Data and Environment Division of
all source programs referencing it. Identical file properties include
such clauses as VALUE OF IDENTIFICATION IS literal-! in the FD entry,
since these clauses affect the length of Labeled Common storage for a
file. There may be times when it is desired to allocate the file
buffers to Blank Common storage rather than to Labeled Common storage.
This can be accomplished by using the BLANK COMMON phrase in the
FILE-CONTROL paragraph. This can be very useful if it is desired to
allow the loader to share the buffer areas of the file at load time to
decrease memory requirements for job allocation. For details on
loading the Blank Common storage area versus the Labeled Common
storage area, refer to the General Loader manual.

2. A report can be referenced only from within the module in which it is
described. If several reports going to a single file are to be
generated in separate modules, each report must be specified in the
module which contains the relevant Report Writer verbs, and may be
omitted from modules not containing relevant Report Writer verbs. The
complete file description, excluding unreferenced report descriptions,
must appear identically in each reporting module.

3. Files sharing the SAME AREA or SAME RECORD AREA must all be described
in any module referencing any of them. Files common. to two or more
modules may be defined to share buffer areas with other files common
to the same modules. However, when indicating this, the SAME AREA
phrase must be identical for all modules that share the common files.

A source program may include as many BLOCK clauses as needed. The sum of
the number of file~codes and BLOCK labels must not exceed 63 for a given module.

Procedure Division Communications

A PROGRAM-ID paragraph must be specified for each source program. The
PROGRAM-ID designator must be one to six characters in size and must be composed
of letters and/or digits, including at least one letter.

The compiler uses the PROGRAM-ID program-name for the implied entry symbol
for identifying the COBOL object program. The implied entry point for a source
program is the first procedural statement following the END DECLARATIVES
statement if declaratives are used, or the first statement of the Procedure
Division if de'Claratives are not used. The entry syrobol .(the PROGRAM-ID) is made
a global symbol which allows referencing by calls from other modules.

15-13 DD26

Each COBOL object program has the basic structure of a single-entry closed
subroutine. This is true even though any number of entry points may be defined
within each module. The compiler automatically generate.s the entry linkage
.coding at the entry point (the PROGRAM-ID), and the implied exit linkage coding
is generated at each entry point and exit point to save and restore all index
registers when an entry is called as a closed subroutine. Inter-communication
between COBOL object program modules does not require index register integrity
to be maintained. The Save and Restore index register feature is implemented in
COBOL to allow communication between COBOL modules and non-COBOL modules when
operating in a modularized environment. If a module has only one entry point
(the implied entry) , and it is to be executed as a closed subroutine by another
module, the program should be arranged to 'fall through' to the exit linkage at
the appropriate time. An EXIT· statement may be used for this purpose if
necessary.

CALL STATEMENT

The CALL statement may be used to transfer control to a separately compiled
program or to an entry point within a program, with a standard return mechanism
provided. An independently compiled COBOL program may be called as a closed
subroutine by a CALL statement, using the PROGRAM-ID that names the module. If
only a portion of a program taken from another program is required to be
executed, the CALL statement should reference one of the entry-names defined in
ail ENTRY POINT phrase (Format 4 of the ENTER statement). A CALL statement can
reference non-COBOL subprograms if the called routine-name has been established
as a global symbol within the called module.

It should be emphasized that the CALL statement provides
transfer of control and does not cause a program to be loaded
for overlay environments. If a program is submitted to the
together with a $ LINK control card, it must be loaded by CALL
COBOL source statement before it can be called using
program-name.

only a . means of
from an . H* file
operating system
LLINK coding in a
the PROGRAM•ID

If a COBOL program has a PROGRAM-ID named LINKA, and it has been loaded
with a $ LINK ALINK control card, control may be assigned as follows:

01 Ll

CALL
CALL

PIC X(6) VALUE "ALINK)!S".

LLINK USING
LINKA.

Ll.

For each CALL statement, USING arguments can be specified to provide
address pointers to data that is to be used by the entry-name being called. The
USING arguments are not meaningful if the CALL statement references the
PROGRAM-ID of a COBOL subprogram. The arguments provide indirect pointers to
input and output data fields whe~ a CALL statement references an entry~narne that
is defined using the ENTRY POINT phrase and includes USING and GIVING arguments.
Data~names specified as USING arguments must be level 77 or 01 data items
defined in the Working-Storage Section of the called· subprogram.

15-14 0026

/

The number of USING arguments specified with a CALL statement must
correspond exactly with the number of USING and GIVING arguments defined for the
entry-name that is referenced by the CALL statement. The data descriptions for
each of the corresponding arguments must be identical when a· CALL statement
references a COBOL program. If the CALL statement references a non-COBOL
program, the data descriptions should provide a data format that is compatible
with the called program •.

ENTRY POINT PHRASE

The ENTRY POINT feature is provided to define entry points that are in
addition to the implied entry point. Using this facility, a program may be
organized so that paragraphs, sections, or combinations of paragraphs and
sections can be called and executed from other modules.

Each entry-name must be unique and must not contain more than six
characters, with at least the first two characters letters and the remaining
characters defined as letters and/or digits. An ENTRY POINT phrase may be used
in any location in the Procedure Division except in the declarative portion.
Entry-names can be ·referenced only through calls from other modules. They must
not be referenced by a CALL statement from within the module in which they
reside. The compiler generates one nine-word 'save area' in each module for the
preservation of index registers and indicators. Therefore, a segment which has
been called may itself contain CALL statements. However, a called module or
entry point must not contain a CALL statement that directly or indirectly calls
the calling program.

EXIT STATEMENT

The compiler provides an EXIT entry-name option that defines an
unconditional exit for a given entry-name. Each entry-name (explicit) in a
module must have at least one exit defined using the EXIT entry-name statement.
Multiple exits may be defined for an entry-name if necessary. If control reaches
an EXIT entry-name statement, the linkage control stack is checked to determine
if the current EXIT corresponds to the called entry~name. If the EXIT
corresponds to the entry-name, the EXIT causes control to return to the calling
program immediately following the CALL statement. If it does not correspond to
the entry-name, control passes through the exit point to the first sentence of
the next paragraph. An entry-name with its associated EXIT and/or EXITS can be
nested within other entry-names and their associated EXITS. ENTRY POINTS and
EXITS may be placed so that they extend across other entry-names and/or exits.
Since the same pushdown stack is used for entry-names that are used to process
paragraphs, orderly pushdown and popup of the control stack should be provided
when processing paragraphs within coding for an entry-name. The EXIT PROGRAM
option is implemented to provide an unconditional exit from a module when
operating under the control of a CALL statement. This feature causes control to
return to the point in the calling program inunediately following the CALL
statement. If control reaches an EXIT PROGRAM statement and no CALL statement is
active, control passes through the exit point to the first sentence of the n~xt
paragraph.

15-15 DD26

Data Compatibility

COBOL provides excellent facilities for processing common data between
program modules. Since all files are assigned to Labeled Common storage areas,
considerable flexibility is provided for referencing common data when only COBOL
modules are involved.

An additional feature is available to allow the colIIITlunication of data
between non-COBOL modules and COBOL entry points, other than the implied entry
point, by means of arguments. USING and GIVING arguments may be specified with
the ENTRY POINT phrase. Any USING arguments associated with an entry-name

·reference data items within the module; these data items function as receiving
fields for moving input arguments that takes place when the entry-name is called
from another module. The compiler assumes that the external format of the item
is compatible with the data description specified for the item in the Data
Division. The order and descriptions of the arguments must conform to the
calling program's USING argument list. No more than ten USING and GIVING
arguments may be defined with an ENTRY POINT phrase. USING argument data-names
must reference level 77 or 01 data items described in the Working-Storage
Section. The Procedure Division statements that follow an ENTRY POINT phrase
are not executed until individual moves of the USING argument list have been
completed.

The GIVING arguments specified with an entry-name reference data items in
the Working-Storage Section that function as sending fields for moves of output
arguments which take place when an EXIT entry-name statement is encountered.
The compiler assumes that the desired external format is compatible with the
data description specified for the item in the Data Division. GIVING argument
data-names must reference level 77 or 01 data items described in the
Working-Storage Section. Control is not returned to a calling program when a
valid EXIT statement is encountered until individual moves of the GIVING
argument. list have been completed. The GIVING moves use the corresponding
argument address associated with the controlling CALL statement from the calling
program as a receiving field. A one-to-one correspondence must exist between
the CALL ••• USING arguments and the ENTRY POINT USING/GIVING arguments.

Data item format descriptions in COBOL that might be compatible with
external formats of non-COBOL modules are DISPLAY, COMPUTATIONAL-1,
COMPUTATIONAL-2, and COMPUTATIONAL-3. The COMPUTATIONAL format should not be
used to describe USING or GIVING data items. If it is desired to maintain a
high degree of decimal precision when performing computations involving USING
data-names, the required conversion can be accomplished by moving the data Ltem
to a field defined appropriately as COMPUTATIONAL.

I File Compatibility

If more than one COBOL program in a run unit defines a file using the same
file-code, the following restrictions apply:

3/77

1. The 1 file definitions must be identical.

2. All but one of the file definitions must specify the OVERLAY phrase in
the SELECT sentence of the FILE~CONTROL paragraph. This restriction
applies even if no overlays are contained in the run unit.

15-16 DD26A

LINKED OVERLAY ENVIRONMENT CONSTRAINTS

A run unit employing linked overlays must be carefully organized and
constructed in accordance with the "Link/Overlay Processing" discussion in the
General Loader manual. The following factors may require special consideration
in a linked overlay environment.

File Processing

The opening of a file causes the insertion of the associated file control
structure into a circular threaded list of open files. The closing of a file
causes the removal of the associated file control structure from the open file
list, and the relinking of that list to maintain its integrity. Both of these.
actions involve the manipulation of address pointers to and within the .file
control structures in the open file list in addition to those associated with
the file{s) being opened or closed.

Overlaying any active file control information (for any open files) may
destroy the continuity of the open file list and cause unpredictable behavior of
any input-output activity that may occur while such a discontinuity exists.

In certain instances, the file control structures for open files contain
address pointers to object program or subroutine procedures (for label or error
processing declaratives, for example) which may be engaged in response to
external events. or other program procedural interactions. The procedures
referenced by such pointers remain active as long as the associated file remains
open.

Overlaying active input-output procedures, whether contained in object
programs or system subroutines, may result in the indeterminate behavior of any
asynchronous or event-driven references to such ·procedures occurring while they
are not present in their established memory locations•

ACCEPT and DISPLAY Statements

ACCEPT and DISPLAY statements that reference system input (GIN) or system
output (SYSOUT) both involve the use of implicit file processing mechanisms and
control structures, and thus inherit the file processing considerations
discussed above. Additional limitations upon the use of ACCEPT and DISPLAY
statements in a linked overlay environment result from the lack of any explicit
source program syntax for the opening or closing of the implicit files
associated with those statements, or for the recognition of the end-of-file
condition on the system input file.

The first execution of a DISPLAY statement referencing the system output
facility causes automatic opening of the implicit system output file, thereby
inserting its file control structure into the open file list. Once opened; the
system output file remains open for the duration ·of the run unit, and is closed
only by the wrapup process during the execution of the STOP RUN statement.

Since the file control structure for the system output file resides in the
subroutine that services the associated DISPLAY statement, that subroutine
cannot be safely overlayed after the first execution of a DISPLAY statement in a
run unit.

3/77 15-17 DD26A

The first execution of an ACCEPT statement referencing the system input
facility causes automatic opening of the implicit system input file, ~thereby
inserting its file control structure into the open file list. Once opened, the
system input file remains open until the end-of-file condition is sensed on that
file, at which time it is automatically closed and removed from the open · file
list.

Since the file control structure for the system input file resides in the
subroutine that services the associated ACCEPT statement, thdt subroutine cannot
be safely overlayed while the file is open. In fact, lacking explicit COBOL
syntax for the recognition of the end-of-file condition or closure of the system
input file, the best alternative is to ensure that the subroutine that services
the associated ACCEPT statements is not overlayed at any time after the first
execution of an :ACCEPT statement in a run unit.

Overlay Management and Memory Organization

Whenever the overlay management strategy employed in a run unit can result
in one of the foregoing situations, consideration must be given to reorganizing
the run unit, either by rearranging the programs therein or by means of explicit
General Loader directives.

File control structures may be repositioned to any suitable link by
including a labeled. common definition in the desired link with a $ USE card:

$ USE fc/size/

where the symbol 'fc' is the file-code associated with the file (the first
file-code appearing in the ASSIGN phrase of the SELECT sentence for the file) ,
and 'size' is the number of words (in decimal) to be alloc.ated for the labeled
common area. The minimum size required may be determined from the load map or
from the BLOCK LENGTH information appearing in the Preface of the assembly
listing of the program.

User programs or subprograms may be placed in any suitable link in the
loader input stream, while the rearrangement of any programs or subprograms
obtained from user or system libraries may be accomplished by placing a
reference thereto within the desired link, either with source nrogram syntax or
with a $ USE card:

$ USE symbol

citing a primary SYMDEF in the desired module.

The ACCEPT and DISPLAY (system input and system output) subroutines and
their file control structures may be forced into any suitable link by inclvding
ACCEPT or DISPLAY statement(s) as appropriate in some COBOL program in the
desired link (the statement need not be executed), or by placing either or both
of the following control cards in that link:

or

3/77

$
$

USE
USE

.CIGIN

.COSYS
(for ACCEPT)
(for DISPLAY)

15-17.1 DD26A

Whenever optional processing facilities for direct access or
transliteration are to be included in a COBOL run unit, and that run unit is
operating as a linked overlay structure, the required $ USE control cards must
be included in the definition of the main module rather than in any of the
overlays. Any subsidiary modules, such as transliteration tables, must also be
positioned in the main module.

Whenever direct-access or transliteration features are to be used in a run
unit cont~ining a segmented COBOL program, $ USE control cards must be inserted
into the job stack prior to the COBOL program.

Multiple Module Program E·xample

An example of a three-module COBOL program follows. The example suggests
that the MAIN module (PROGRAM-ID is MAIN) has already been compiled and that two
other modules must be recompiled together with an execution activity of the
three modules. Since the General Loader would give control to the first primary
SYMDEF encountered in the deck setup, it is necessary in this example to use a
$ ENTRY card to force control to be given to the MAIN module. COBOL conventions
provide a primary SYMDEF for this purpose. It is a six~character symbol in
which the first two characters are always 'C.'1 the remaining four characters
are taken from the first four characters of the PROGRAM-ID program-name.

3/77 15-17.2 DD26A

Deck ·setup for Multiple Module Program:

Any required user files
and data

I

I
I $ ENDJOB

I
/ $ EXECUTE

Required for loader to
give control to 'MAIN'
COBOL module

~~~~-~ I $ ENTRY C.MAIN 

I 

I 
I 

I 
I 

/ $ IDENT 

I 
I 

I 

I 
I $ 

• • • 

I 
I 

I 
I 

I • • 

COBOL 

15-18 

I 

I 
I 

I 'Binary 
Deck 

I (PROGRAM-ID 
= MAIN.) 

• Source Deck 
(PROGRAM-ID 
= BSEGMT.) 

Source Deck 
(PROGRAM- ID 
= ASE GMT.) 

Any other control cards 
needed for compilation 

DD26 



SECTION XVI 

EFFICIENCY TECHNIQUES 

OPTIONAL DEBUG STATEMENTS 

Standard source program statements may be selectively compiled or bypassed 
during the debugging phase .of the compilation'. process. One of the digits 0 
through 9 may be placed in column 7 of.the source card on which the statement 
appears to indicate which statement(s') is to be compiled or bypassed. The 
compiler is then notified which statements are to be compiled or bypassed with 
an entry that is specified in the SPECIAL-NAMES paragraph of the Environment 
Division. 

This efficiency technique 
statements rather than memory or 
methods are: 

saves 
tape 

checkout 
dumps to 

time by 
trace 

using COBOL 
program· errors. 

source 
Some 

1. Special counters can be used to record test information1 the test 
results can be displayed online. 

2. Intermediate results or the status of selected records before and 
after processing can be written to SYSOUT or to a special test file. 

3. · Literal values can be moved to data items and logical sequences or 
computational results checked. 

4. The actual sequence of program execution can be traced by placing 
DISPLAY statements at strategic points.· 

By using these debugging features, much of the program checkout operation 
can be accomplished at the source language level. 

Column 7 of the source statement card is used to identify those 
that may be compiled or bypassed. Any of the digits 0-9 in column 7 can 
to identify debugging statements. Normally, a particular digit is 
identify groups of debugging statements used for different purposes. To 
to the compiler which debugging statements are to be compiled, one 
following options in the SPECIAL-NAMES paragraph IUUst be.specified: 

e PROCESS ALL DEBUG STATEMENTS. 

entries 
be used 
used to 
indicate 
of 1;:he 

• PROCESS LEVEL integer•l [ THRU integer-2] DEBUG STATEMENTS. 

0026 



The first format is used when all of the debugging statements (those 
identified as such by a single digit in column 7} are to be compiled. The second 
format is used when either a single group of statements (all statements 
identified by the same digit} is to be compiled or when a range of debugging 
statements is to be compiled. When the checkout phase is completeJ, the DEBUG 
option should be removed from the SPECIAL-NAMES paragraph and the program should 
be reco·mpiled to remove coding for debugging statements from the object program. 

This feature may be used in the Input-Output Section of 
Division, in the Data Division, or in the Procedure Division, 
entry containing a COPY clause or COPY statement. 

the Environment 
except in any 

Do not attempt to continue an optional compilation statement on a second 
line using a hyphen in column 7. These procedures are mutually exclusive. 

COMPILATION TECHNIQUES 

The process of compilation is divided into two broad phases of activity. In 
phase 1, the source program is analyzed to determine lexical, syntactic, and 
semantic accuracy and is translated into an intermediate language. In phase 2, 
the intermediate language is converted to the appropriate machine language and 
assembled into an executable object program. Since the diagnostic functions, 
error messages, and cross-referenced source listings are prepared in phase 1, it 
is not necessary to continue compilation into phase 2 when the object program is 
not desired or when the object program produced from an erroneous source program 
would be useless. 

If the object program is not desired, compilation time can be reduced by as 
much as 50 percent by specifying the following option in the SPECIAL-NAMES 
paragraph: 

COMPILE PHASEl ONLY [ WITH SOURCE ERRORS ] • 

If the WITH SOURCE ERRORS phrase is specified, object coding will not be 
generated if fatal errors are detected when the source program is being 
analyzed. Warning and efficiency messages do not terminate the compilation. A 
source program listing with cross-references and messages is always produced. ~f 
no source program errors are detected, compilation continues and an executable 
object program is produced. If the WITH SOURCE ERRORS phrase is not specified, 
object program coding is not available under any circumstances. 

The COMPILE PHASEl ONLY option can be implied by 
option in the variable field on the $ COBOL card. The 
option is the same as if the WITH SOURCE ERRORS phrase 
COMPILE PHASEl ONLY option. 

specifying the COMPhl 
effect of the COMPHl 

were omitted from the 

The NLSTIN option on the $ COBOL card may also be used to reduce 
compilation time. If the NLSTIN option is included, the source program listing 
will be suppressed. However, any statement flagged with a fatal error message 
(*****) will be listed and the total number of fatal errors will be printed. 

16-2 DD26 



The amount of time required to compile a COBOL program is subject to 
considerable variation, depending upon the syntactic accuracy with which the 
program is coded and the resources allocated to the compilation. The following 
recommendations specify techniques for operating the Series 60/6000 COBOL 
compiler at a high level of performance. These recommendations are 
compiler/machine dependent and may not have the desired effect in other 
compiler/machine configurations. 

Unified Data Tables 

The user can significantly affect the efficiency of the compilation in the 
Data Division of the source program. As the compiler processes Data Division 
entries, each entry is stored in a unified data table. The unified data table 
occupies all of the allocated memory not utilized by other portions of the 
compiler. If a $ LIMITS card is not included, approximately 600 data entries can 
be contained in the available memory area. Each table entry will vary in size 
from eight to 15 words; most of the variation in size depends upon the length of 
the data-name. The remainder of the space is used for assigned symbols, alter 
numbers, address chains, and the properties, usage, size, etc. of the data item. 

In the data table, the data entries are chained together via addresses so 
that either the whole table, or any entity within it, can be traversed. Up to 50 
level-number 77 data entries are chained to a dummy level 01 header and a new 
dummy header is then created, if necessary. As each new data-name is added to 
the table, the previously stored data entries are traversed. If duplicate 
data-names are discovered, both are annotated to require qualification if they 
are referenced in the Procedure Division. 

The compiler includes provisions for dynamically expanding the size of the 
data table. When the data table, as initially allocated, is full, the compiler 
attempts to obtain additional memory in 4096 (4K) word increments via the MME 
GEMORE function. If successful, the data table is increased by the amount of 
memory specified and the source program processing continues. If three denials 
are received, the data table enters an overflow status and the following 
discussion is applicable. 

If the amount of memory available is not sufficient to contain the entire 
data table, portions of the table are written as overflow to the *3 file. The *3 
file is the compiler address table, assigned by the operating system during 
source program compilation to be used as a temporary working area. 

7/77 

1. When additional memory 
subordinate entries, 
file. 

is required, a level 01 entry, with its 
is written from the available memory to the *3 

2. Sufficient level 01 group items are written to the *3 file so that 
enough memory is left in the compiler to store the remaining data 
entries. 

16-3 Dl),26B 





To obtain improved compilation performance, the following items should be 
considered: 

1. 

7/77 

When each compilation is completed, the compiler prints the number of 
data table overflow reads and writes. If the numbers are nonzero, 
conside~. increasing the allocated memory with a $ LIMITS card (if 
recompilations are necessary) until the numbers are zero. The overflow 
condition increases compilation time because: 

a. Portions of the data table must be written to a file. 

b. The portions of the data table that have overflowed must be 
retrieved if a specified data-name is not in memory. 

16-3.l DD26B 



I 

c. An 01 group item is read back into the same memory area from 
which it was written. Thus, the subsequent data entries stored 
in the same area must also be written out prior to being · written 
over. 

d. When the overflow mode is used, a data entry must be, moved to an 
alternate memory area since a search for a second operand may 
result in an overlay of the first operand. Additional table 
overflow may result if a statement contains numerous operands and 
the alternate memory area is not sufficient to contain the 
operands in the statement~ 

2. If a considerable part of the data table is written to the *3 file, 
this file may become full, causing a Cl abort. In this case, either 
additional links must be allocated to the *3 file and/or the G* and *l 
files must be assigned to tape. 

DATA-NAME/FILLER ITEMS 

FILLER is a reserved word; abbrevi~tions such as FILL or FLR should not be 
used. If an abbreviation is used, it is a data-name and, as such, it 
participates in all data table searches. 

Adjoining FILLER entries should be combined into one entry. This 
consideration is significant in a table of values where the tendency is usually 
to make a single entry for each. occurrence of the value. One entry in this case 
could cover several entries or possibly the entire table. 

A group having numerous FILLER entries and VALUE clauses should not be 
constructed to reinitialize another group using the MOVE statement; for example, 
to reset COMP-4 fields to zero. Rather, the initial values should be specified 
in the description of the original group, a reinitializing item should be 
specified containing one entry that is the total size of the group, and the 
reinitializing item should itsel~ be initialized by a move from the original 
group at the beginning of the execution of the program. 

The length of a data-name governs the amount of space it occupies in the 
data table and the amount of time required to compare it during a search 
operation. Unreferenced data-names should be kept to a minimum by changing them 
to FILLER items and, as noted above, adjoining FILLER entries should be 
combined •. FILLER is always a half-word. Data-names are built into the data table 
as follows: · 

1.· The first two characters of the data-name and the length of the 
data-name are stored in one half-word. 

2. The remaining characters, if any, occupy as many full words as 
required, up to a maximum of five full words. 

When the data table is searched for a data-name, the size of the data-name 
and the first two characters of the data-name are compared with the current 
table entry. If inequality occurs, the search proceeds to the next entry. If 
equality occurs, the remainder o.f the data-name is compared, character by 
character, until an unequal condition occurs or the character-string is 
exhausted. Variations in length or in spelling at the beginning of the data-name 
will reduce the time required to perform the search process. 

3/77 16--4 DD26A 



GROUP ITEMS 

The memory space for the data table must be sufficient to contain the 01 
level entry having the largest number of data items in its hierarchy. In the 
case of an implied or specified REDEFINES entry at the 01 level, sufficient data 
table memory must be available to contain all of the redefined entries. 

ELEMENTARY ITEMS 

Elementary items in working-storage should not be defined as level 01 
entries. They should either be included as part of a group or be defined as 
level 77 entries. Figurative constants, such as SPACES, should be used in 
preference to specifying literal values. If literals are required in the 
Procedure Division, such as in the construction IF A= "ABC", they should not be 
defined in the Data Division •. 

Procedure Division Entries 

The user can also affect the efficiency of the compilation in the Procedure 
Division. To obtain improved compilation performance, the following items should 
be considered: 

1. Avoid using identical data-names in the Data Division. 

2. If possible, avoid specifying multiple receiving fields in excess of 
six. 

3. Avoid using complex conditional statements and compound COMPUTL 
statements that are both difficult for the compiler to decode and for 
the user to debug. Instead, write several simple statements to produce 
the same results. 

4. Avoid MOVE CORRESPONDING. Write individual MOVE statements instead. 

5. If segmentation is used, design the program so that the 
numbers are in ascending sequence when they are submitted 
compiler. (Otherwise, a separate reordering pass is required 
compilation.) 

Resource Allocation 

segment 
to the 
during 

The user can affect the efficiency of the compilation by changing the 
resources allocated to the compilation. If the quantity of resources is not 
specified by the user, the following quantities are automatically. assigned by 
the operating system: 

Memory - 32, 767 (32K) 

SYSOUT - 20,000 printer lines 

*3 file - 15 random links 

Processor time - .15/hour 

16-5 DD26 



* 

A report containing the actual results of the compilation and the total 
number of error, warning, and efficiency messages is printed by the compiler and 
is different for each compilation. An example of the su:mmary report printed at 
the end of every compilation is given below. 

***** THE ABOVE LISTING CONTAINS 000 ERROR MESSAGES ***** 

*** THE ABOVE LISTING CONTAINS 013 WARNING MESSAGES *** 

* THE ABOVE LISTING CONTAINS 000 EFFICIENCY MESSAGES * 

COMPILATION TIME (MIN) : ELAP CLOCK 000.62 PROC 000.35 

00000 OVERFLOW READS 00000 OVERFLOW WRITES 27971 WORDS MEMORY USED 

00032 LINKS USED ON *3 FILE 

To determine when the arbitrary (default) resource alloca.tions should be 
modified by the user, the following guidelines are offered. These guidelines are 
expressed in terms of the number of COBOL source program lines without regard to 
the type of coded statement or the computer configuration upon which the 
compilation is to be executed. The actual requirements for a particular program 
could vary from the suggested guidelines and can be modified by the user· 
following the initial compilation. 

3/77 

1. Memory 

SY SO UT 

3. *3 File 

\ 

- Allocate 32,767 (32K) words of memory for the first 
600 source lines in the Data Division and an 
additional 8192 (BK) words for each additional 800 
Data Division lines or portion thereof. The 
allocation requirements can be determined from the 
compilation summary report and should be increased if 
any overflow condition occurs. Do not attempt to 
compile with less than 32,767 or more than 128,000 
words of memory. 

- If compiling with the standard option NLSTOU included 
on the $ COBOL card, allocate two printer lines for 
each source program line. This assignment allows 
additional lines for headings, error messages, 
cross-references, and the compilation summary report. 
If compiling with the LSTOU option, allocate 15 lines 
for each source program line. 

- Allocate 20 random links for each 1000 source lL,es. 
The total number of links used on the *3 file can be 
determined from the compilation summary report. The 
total number of source lines can be determined by the 
highest alter number printed on the compilation 
listing. (There is one alter number for each source 
line on the compilation listing.) 

4. Processor Time - Allocate 15 hundredths of an hour for each 5000 
source program lines or portion thereof. 

16-6 DD26A 



To compile a program having 6000 
located in the Data Division, the 
follows: 

source statements, of which 1200 are 
initial deck setup could be arranged as 

1 8 16· 

$ COBOL (options) 
$ LIMITS 30,40K,, 
$ FILE *3,XlR,lSOR 

(source program) 

$ EN DJ OB 
***EOF 

File Utilization 

The *3 file is used extensively by the COBOL compiler and contains several 
types of data. Data stored on this file at various times during program 
compilation includes: 

1. Data table overflow, if any. 

2. Cross-references and error messages. 

3. Procedure Division statements transformed to an internal analyzer 
language. 

4. The internal analyzer language transformed to an internal generator 
language. 

5. Parts of the generated GMAP coding of the object program. 

If an abnormal termination occurs for large COBOL programs and a Cl abort 
code is issued, this condition indicates that the *3 file is full and additional 
random links must be allocated to obtain a successful compilation. 

7/77 

NOTE: No maximum size limitation is currently imposed on the *3 file. 

Some additional steps may be performed to avoid a Cl abort condition: 

1. If any overflow writes are listed in the compilation summary report, 
increase the memory allocation by 8192 (SK) words and recompile the 
program. 

2. Direct the cross-reference/error sort program to employ 
device other than the *3 file for merge passes, 
cross-reference listing: 

a peripheral 
or delete the 

a. To sort on a different peripheral device, specify one of the 
following control cards in the source program: 

$ FILE Sl,XSR,30R 

or 

$ NTAPE Sl,C,3 

16-7 DD26B 

I 

I 



I 

b. To delete the cross-reference listing, specify the NOXREF option 
on the $ COBOL card. 

3. Direct some of the internal data to magnetic tape files (if as:signed 
by the user, these files must be tape files) by including the 
following control cards and recc;mpiling the program: 

NOTE: 

$ 

$ 

TAPE G*,X2R 

TAPE *l,X3R 

This step should be accomplished as a last 
allocation of the *l file and the G* 
significantly increase compilation time. 

resort, since the 
file to tape may 

'rf the program still does not compile, prepare and submit a software note 
and a memory dump to the Honeywell site representative. 

An example of the resource allocation required for a very large COBOL 
source program follows: 

1 8 16 

$ COBOL LSTOU 
$ LIMITS 30,75K,,89000 

·$ FILE *3,XlR,200R 
$ TAPE G* ,X2R 
$ TAPE *l,X3R 
$ FILE Sl,X4R,30R 

(source program) 

(• ... EN DJ OB 
i 1**EOF 

Compilation Aborts 

If the compiler is aborting with an abort code other than Cl and the 
problem cannot be resolved locally, prepare and submit a software note. It is 
requested that the information from one of the three options listed below be 
included with the software note: 

3/77 

1. Recompile the program and generate a special test monitor list/dump. 
This unique COBOL feature creates a dump listing especially formatted 
for debugging the COBOL compiler and is prepared as follows: 

a. Retain the control cards used when the compiler aborted but 
increase the amount of memory allocated by 5120 (SK) words. 

16-8 DD26A 



b. 

7/77 

Include the following additional control cards 
following the $ COBOL card: 

1 

$ 
$ 

$ 

8 

FILE 
FILE 

or 

TAPE 

16 

AD,X8R,10L 
AC,X9R,SOL 

. AC,X9R 

immediately 

and include the following cards immediately after the last 
source program cards but preceding the $ EXECUTE card (if 
specified) : 

$ 

*TMEOF 

DATA 
LIST 

CR 
DUMP 

16-8.l DD26B 

I 





A sample test monitor list/dump deck setup is shown below: 

1 

$ 
$ 
$ 
$ 
$ 

$ 

*TMEOF 

8 

COBOL 
FILE 
TAPE 
LIMITS 
FILE 

(source 

DATA 
LIST 

$ ENDJOB 
***EOF 

16 

(options) 
AD,X8R,10L 
AC,X9R 
30,37K 
*3,XlR,lOOR 

program) 

CR 
DUMP 

2. Recompile the program and include the DUMP option in the variable 
field on the $ COBOL card. 

3. Include a COMD.K copy of the source program with the software note, 
along with any necessary libraries. If the COMDK is submitted on 
magnetic tape, ensure that it is properly identified by including the 
name of the submitter, the number of the software note, type of data 
on the file, method of file preparation, tape density, and tracks. 

TIME-SAVING AND SPACE-SAVING TECHNIQUES 

The following techniques are recommended to obtain efficient COBOL object 
programs. Consideration is given to input-output, report printing, data 
manipulation, and data description techniques. 

Some of the suggestions are designed to conserve memory space, some are 
meant to save time, and some will do both. Each recommendation is followed by 
the designators (T} for time saving, (S) for space saving, or (T and S) for time 
saving and space saving, to indicate the anticipated type of efficiency. 

Input-Output Techniques 

3/77 

• The APPLY PROCESS AREA phrase can be used to reduce the number of 
generated instructions if many statements refer to data items within a 
file. The amount of memory saved may exceed the memory requirements 
needed for the 'process area'. Also significant is the amount of 
execution time saved if the statements referring to the contents of a 
file are heavily exercised. The implied move between the process area 
and the buffer, supplied by the File and Record Control program, is 
very efficient in reducing execution time. The APPLY PROCESS AREA 
phrase is especially recommended for files containing OCCURS data 
items. (T and S) 

• If it is known in advance that two or more files will not be open 
concurrently, use the SAME AREA phrase to conserve memory space. This 
option causes the specified files to utilize the same buffer area(s}. 
(S) 

16-9 DD26A 

I 



• In. a non-mass-storage· file maintenance progran1, consider usiny the 
SAME flliCOIW AH.EA phrase for the ''throuqhput' . or master file. 'l'nis 
option causes an implieJ µrocess area to be apfil iec.1 to both the ~input 
and output yersions of the file. · 

If the assignment of a procl'::-:;~:; area would not be efficient £.or a 
throughput file, process the records in the input buffer area Cwhere 
the PJ::AD statement leavE.~s them), and· then tranrc;mit thcll\ to output via 
WIU'l'E ... FEO.M statements. This approach simplifies tho .i1H>e~rtio11 of new 
records by reducing the nur;\DlT of moves rc<1uin~d when d process are<l 
is usec.1. The amount of processing to be accomplished 011 a yi~en record 
shoulc.1 be cbnsiclered when dccic..ling whether or not to ~;pccify a tyfocess 
area for that record. This Qethod is not allowed when hlass storage 
records are being processed; in this case a process area is reyuireJ 
and is supplied automatically by the compiler. (T and S) 

e Both READ ... INTO and WlU'l'E •.. FF.OM i111.t->lY I1:ovcs \':i thin memory. 1in 
explicit or implicit process urea also implies u 111<.Yh~ on each HEAD or 
WRITE statement. Therefore, avoid the combination of process area with 
READ ... INTO or WIU'l'E .•. FROM. For example, the:; least efficiency results 
from having a process area for both the .input and output muster files, 
and then using PEAD ... INTO a · working·-storaqe record area and 
WRITE .•. FRO.M that area: 

a. Because of the process area, the READ implies ci. move from l.Juffer 
to process area. 

b. The INTO option implies a move 
working-storage (in this example). 

from process area to 

c. The FROM option of WRITE implies a move from working-storage to 
the output file's µrocess area (in this example). 

d. Because of the process area, the WRITE implies a move from 
process area to output buffer. 

Four MOVEs here have done the work of one. ('r anc..l S) 

Incremental Report Printing •rechniques 

A report printing feature allows large, serially produced reports to be 
transmitted to a printer in increments, before the end of the activity in which 
the report is produced is reached. This incremental printing feature is attained 
by means of the backdoor file and is referred to as 'spinoff'. 

A $ USE .CGSPN card must be included in the card deck to indicate that the 
_spinoff feature is to be used~ 

A$ DATA P. card must precede any $ FUTIL card(s) for this feature. If the 
P. file is present, its contents are examined for the presenc~ of one or more 
$ FUTIL cards. The format of these' cards is: 

1 

$ 
$ 

8 

DATA 
FUT IL 

16 

P. 
f c 1, , DU.MP /m/ 

16-10 DD26 



where: fcl - Two-character file-code of the file for which spinoff 
The fcl field must not begin with the letter S; this 
is reserved for sort or merge file usage. 

is desired. 
designation 

m - Number of pages within a given file-code at which spinof f . to 
another printer is to be initiated. The number of pages specifieu 
must not exceed 999999. 

A maximum of ten files r.1ay be designated as spinoff f ilcs. 'l'rll.c user 
provides the initial allocation for the file for which spinof f is desired using 
a $ FILE card. The format of this control card is: 

1 lG 

$ FILE fcl,LUD,nnL,device type 

where: fcl - Two-character file-code of the file for which spinoff is desired. 
The fcl field must not begin with the letter S; this designation 
is reserved for sort or merge file us~ge. 

nn - l'-iurnber of links initially allocated to the file. This allocation 
must specify a LINKe<l file (L) . 

The automatic page counting is controlled by the WRITE ADVANCING .•. TOP OF 
PAGE statement in the source program. When the first report request is spun off 
to SYSOUT for a given file, the least significant character of the file-code is 
incremented by one. For example, if the original file-code specified on the 
$ FUTIL card was ZO, the first spinoff code calculated would be Zl. 

If the newly calculated file-code is unique, a new file is created for the 
spinoff procedure. The number of links requested is equal to the number of links 
allocated for the original file. 

Each file in a CLOSE statement is checked to determine if the file is a 
spinoff file. If the file is a spinoff file, the final report segment is spun 
off to SYSOUT. If a denial return is received, an inunediate abort is executed 
with COBOL abort code CH. If the SYSOUT backdoor file is not configured (005 
status}, an immediate abort is executed with COBOL abort code CI. ('11

) 

An example of the control cards used with the spinoff feature follows: 

1 

$ 
$ 
$ 
$ 
$ 

8 

USE 
EXECUTE 
FILE 
DATA 
FUT IL 

$ ENDCOPY 
$ EN DJ OB 

16 

.CGSPN 

Al,XlS,lOL 
p. I I COPY 
Al,,DUMP/10/ 

.16-.1.l DD26 



Data Manipulation Techniques 

• Avoid using the CORRESPONDING option when a simple MOVE stat,ement 
would suffice. MOVE CORRESPONDING results in a sen.es of moves of 
individual items; a simple MOVE is instead optimized for the group or 
record as a whole. Never use MOVE CORRESPONDING for such purposes as 
transmitting a master file record from the input buffer to the output 
buffer. Use MOVE CORRESPONDING when it will in fact cause selected 
items to be moved, or when editing or format conversion is needed on 
the respective items. (T and S) 

• Manipulate a group item or record as a whole whenever possible, rather 
than manipulating its elementary items separately. This rule is 
especially important for tables of data items; MOVE or clear a table 
as a whole whenever possible. For example, technique a. (below) is 
quite efficient, while b. is very inefficient: 

a. MOVE SPACES TO TABLE. 

b. COMPUTE I = 1. 
LOOP. MOVE SPACES TO TABLE-ITEM (I) • 

COMPUTE I = I + 1. 
IF I NOT > TABLE-SIZE GO TO LOOP. 

(T and S) 

• If a subscripted item is to be referred to more than once with the 
same subscript value(s), consiqer moving it to a temporary 
working-storage area just once for all processing. (T and S) 

• If a data item is to be used in several subscripts without a change in 
value, either make it a COMPUTATIONAL-1 item or else move it to a 
temporary area in working-storage (described as COMPUTATIONAL-!) and 
use the working-storage data item in the subscripts. (T and S) 

• For MOVEs, conditions, addition, and subtraction, give the items 
similar PICTURES and USAGEs whenever possible. (T) 

• In the UNTIL option of the PERFORM statement, use the simplest 
possible condition to terminate the loop. If necessary, achieve such 
simplicity by preceding the PERFORM with explicit MOVEs and COMPUTES. 
If numeric items are involved in the condition, give them similar 
PICTURES and .the same COMPUTATIONAL (-1 or -2) usage, not DISPLAY 
usage. (T) 

• Tend to utilize procedural literals rather than constant values in 
working-storage. The compiler can optimize the format and word 
orientation of procedural literals, but must resort to dynamic format 
conversions in the object program if working-storage items are not 
ideally aligned. (The us.er can accomplish ideal alignment by using 
exceptional care in coding·data descriptions, but this practice is not 
recommended for ordinary constant values.) However, duplicate literals 
do result in extra memory space requirements. (T) 

• Use GO TO .•• DEPENDING for decisions whenever possible. In any 
application for which .GO TO ••• DEPENDING can be used, more efficient 
object coding can be generated than using a succession of IF 
statements. (T and S) 

16-12 DD26 



Data Description Techniques 

e· Whenever possible, specify COMPUTATION~L(-n) usage for a numeric itent 

• 

that wil~ be involved in formulas, arithmetic statements, or ·numeric 
comparisons. External considerations sometimes dictate DISPLAY usJyc; 
in these cases, consider cxµlicitly n1ov;Lng Lhc itc~n1 lo d 

COMPU'I'ATIONAL{-n) workin0-sto.r..:i9e arc.:i just once for cJll prucessi11\J· 
(Such a move would be inappropriate· .i.f only C)lW p1~occdural stalcmcnl 
refers to the itc~m.) {T) 

COMPUTATIONAL(-n) usages should be employe~ 
preferential or<ler: 

i.n the fol low ins. 

a. Use COMPUTA'l'IONAL-1 if the item is an integer ancl is not involvecl 
arithmetically with COMPUTA'l'IONAL or COMPUTNl'ION!l.L-2 i terns. ( 'l') 

b. Use COMPU'l'Nl'IONAL if the item is not an integer or if it 
interacts with other COMPUTATIONAL items. Be sure to use 
COMPU'l'ATIONAL if precise fractional results are required. ('l') 

c. Us~ COMPUTATIONAL-2 if the advantages of binary f loatirty-point 
calculations are needed. (The main advantage is the capacity fbr 
accurate representation of very large or very small numeric 
values.) /\rithrnetic coding for COMPUTATIONAL-2 items is highly 
efficient, but it does not yield the exact decimal precision 
needed in most commercial applications. ('l') 

• Specify COMPUTJ\'l'IONAL-1 for a data item that will be used as a 
subscript or that will be a DEPENDING itorn in a GO 'l'O statement or in 
an OCCURS.clause. This rule is important if the item will Le 111ent:~oned 
as a 'subscript-name' in PERFORM ... VARYING or in any such loop. !<.<.},< i_n, 
consider moving the item explicitly to a COMPlJTA'l'IOlJAL-1 areC-1 , n 
working-storage if other considerations dictate USAGE DISPLAY. (T) 

• USAGE COMPUTA'l'IONAL-1 is also recommended for identif ier-2 data i terns 
in WRITE •.. ADVANCING statements to avoi<l unnecessary conversions. ('l') 

• For data items in working-storage that do not specifically re4uire 
close packing across computer words, specify SYNCHRONIZED. This rule 
is important for repeated items in a table (OCCURS) , and especially 
for any table which must be repeatedly searched. (T and S) 

• If a record contains COMPUTATIONAL(-n) and/or SYNCHRONIZED data items, 
place single-word items and double-word items together whenever 
possible. Considerable savinys in memory space can be obtained; this 
rule is most applicable for records in a file. (S) 

• 

• 

• 

For COMPUTA'l'IONAL(-n) data items, ensure that the 
single-word precision, rather than double-word 
single-word precision is sufficient. (S) 

PICTURE claµse is 
precision, wherever 

If the end of a record does not coincide with the end of a word, 
implied FILLER accounts for the unused character positions. Try to 
specify explicit FILLER for this purpose, rather than allowing 
implicit FILLER. (The result is specifically oriented to the 
60/6000 computer word size.) (T) 

Consider assigning an odd word length to all recordi 
variable-length file, and an even word length ·to all records 
fixed-length record file. (T) 

16-13 

Series 

in 
in 

a 
a 

DD26 



* 

I 

• It is often necessary to organize peripheral files in a highly 
efficient space-saving manner, even though it is also desired to save 
time while processing the data. In this case, describe each record in 
both the File Section and in the Working-Storage Section. In the File 
Section, pack the data as closely as possible, without regard to 
processing efficiency; in the Working-Storage Section, do exactly the 
opposite. Avoid using PROCESS ARE.l\. (if possible) and avoid 
READ ••• INTO and WRITE ••• FROM. Instead, READ each record and, while it 
is still in the input buffer, determine whether the record is to be 
involved in detailed processing. If detailed processing is required, 
employ the MOVE ••• CORRESPONDING statement to unpack either the entire 
record or the significant group{s) within it to the working-storage 
area and refer to the data in that location for all detailed 
processing. Similarly, use MOVE ••• CORRESPONDING as appropriate to 
construct .{or reconstruct) the output record. Perform a simpl·e MOVE 
£rom inp~t buffer to output buffer if detailed processing is not 
required. (T and S) 

• If reports are generated without. using the Report Writer facility, use 
skeleton lines in working-storage, with constant information 
initialized via the VALUE clause rather than by MOVE statements in the 
Procedure Division. (T and S) 

USE OF1COMPRESSED DECKS 

A compressed source program deck may be obtained from a COBOL compilation 
by specifying either the COMDK or CCOMDK option on the $ COBOL card. The CCOMDK 
option specifies that text copied from a library is to be included in the 
compre~.sed deck. For a complete description of the interaction of the compressed 
deck c1ptions (COMDK, CCOMDK) with the COPY options (COPY, LIBCPY), refer to 
Section XIV. · 

Each card of the compressed deck may be labeled in columns 73-80 by 
including the desired label in columns 73-80 of the first COBOL source card 
(IDENTIFICATION DIVISION card). Refer to the CALL IOEDI~ and COMDK Format 
paragraphs in the File and Record Control reference manual for labeling 
conventions. 

When an American National Standard segmented program is being compiled, 
with Procedure Division sections not in ascending priority-1. 1mber order, the 
compiV:~r rearranges the source program if SEGMNT has been specified in the 
variable field on the $ COBOL card. If the CCOMDK option is specified on the 
$ COBOL card, the new compressed deck will correspond to the rearranged source 
program as presented on the source listing. If the COMDK option is specified on 
the $ COBOL card, the new compressed deck will not correspond to the rearranged 
source program as presented on the source listing. 

3/77 16-14 DD26A 



CROSS-REFERENCE FACILITY 

In very large COBOL source programs, the compiler someti1,1es omits all REF 
TO entries from the listing, due to a limitation on the number of 
cross-references and error messages. If the number of cross-references and error 
messages is more than 16,383, the Iliff '11 0 entries ure omitted. l\n optional 
external sort process may be used when memory space is insufficient. The 
external sort process is not called automatically~ one or more collation files 
($ NTAPE Sl,A,3 or $FILE Sl,LUD,nnR, etc.) must be included for use by the 
sort. If one or more collation files are present, the external sort is called 
regardless of the size of the source program. The external sort option may be 
used as a site st~ndard for large source programs. However, the internal sort 
proces.3 is more efficient and therefore the external sort option should be used 
on an exception basis only. 

To facilitate compilation of very large COBOL programs, the 
cross-~eferences may also be omitted from the source listing by using the HOXR~F 
option in th~ variable field on the $ COBOL card. Since valuable information may 
be dele~ed when this option is used, it should only be employed as an aid in 
obtaining successful compilationwhen ordinary attempts fail. 

PACKEL DECIMAL EFFICIENCY TECHNIQUES 

Since the Series 60/6000 EIS processors do not operate directly on six-bit 
character-oriented data, any data item whose PICTURE is numeric and whose usage 
is DISPLAY must be moved implicitly by the COBOL compiler to a µackec.l decirual 
format in a temporary work area before it can be used in computations. For 
example, if the statement ADD A TO B is executed where A and B are .described as 
numeric DISPLAY items, the coding required to accomplish the ADD would be: 

J. Move A to a packed format temporary area. 

2. Move B to a packed format temporary area. 

J. Add A to B using the packed format temporary areas and store th~ 
result in a packed format temporary area. 

4. Move the resultant packed format temporary area to B using the numeric 
DISPLAY format. 

If the statement ADD A TO B is executed, where A and B are described as 
packed decimal items, the coding required to accomplish the ADD would be: 

Add A to B and store the result in B. 

As shown in the above descriptions, object coding efficiency can be 
attained using packed decimal formats for computations. 

The Series 60/6000 COBOL compiler will generate coding to 
decimal numbers that are either unsigned or contain a separate 
depending on the PICTURE description.of the number. 

l6-15 

process µackeci 
trailing sign 

DD26 



If. a packed decimal item is described with a PICTURE 99999 and a VALUb 
12437, the field would appear in memory as follows: 

0 9 18 27 

0 0001 0010 0 0100 0011 0 0111 0000 0 0000 0000 

l 2 4 3 7 0 0 0 

If a packed decimal item is described with a PICTURE S99999 and a VALUE 
12437, the item would include a separate trailing plus sign (octal 14) in memory 
as follows: 

0 9 18 27 

tE 001 0010 0 0100 0011 0 0111 1100 0 0000 0000 

1 2 4 3 7 + 0 0 

If a.packed decimal item is described with a PICTURE 
-12437, the item wouid include a separate trailing minus 
memory as follows: 

0 9 18 27 

~ 001 0010 0 0100 0011 0 0111 1101 0 0000 0000 

1 2 4 3 7 0 0 

599999 and 
sign (octal 

a VALUE 
15) in 

The fo.llowing suggestions are provided to assist the user in writing 
accurate and efficient programs using the packed decimal formats: 

• Packed decimal cannot be used with a PICTURE clause that contains a 
'p'. 

• Subscripts must contain a value greater than zero; otherwise, an FO 
memory address fault will occur. Erroneous data will be obtained if 
the subscript value is greater than zero but less than the minimum 
occurrence number specified in the OCCURS clause. 

• Differences in results may occur when using decimal arithmetic as 
opposed to floating-point ·arithmetic. The reason for this possible 
discrepancy is that a floating-point data item occupies an entire 
Series 60/6000 word, regardless of the PICTURE description, whereas a 
decimal data item occupies the exact nwnber of character positions 
indicated in the PICTURE description. 

16-16 DD26 



3/77 

Example: 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 REC-NAME. 
02 DN-1 PIC 9V9999 VALUE 12345. 
02 DN-2 PIC 9V999 VALUE 6789. 
02 DN-3 PIC 99V99. 
PROCEDURE DIVISION. 
PAR-NAME. 

DIVIDE DN-2 BY DN-1 GIVING DN-3. 
ADD DN-1 DN-2 TO DN-3. 

Decimal Arithmetic 

DN-3 will contain 5.49 after the DIVIDE statement has been 
executed and 13.51 after the ADD statement has been executed. 

Floating-Point Arithmetic 

If DN-1, DN-2, and DN-3 are described with USAGE COMP-2, DN-3 
will contain 5.49930902 ..• after the DIVIDE statement has been 
executed and 13.52280902 •.. after the ADD statement has been 
executed. 

• Possible truncation of the results may occur when working with decimal 
arithmetic rather than floating-point arithmetic. In the previous 
example, if DN-3 were described with PIC 9V99 rather than PIC 99V99, 
the following results would be obtained: 

Decimal Arithmetic 

DN-3 would contain 5.49 after the DIVIDE statement has been 
executed and 3.51 after the ADD statement has been executed. 

Floating-Point Arithmetic 

DN-3 would still contain 5.49930902 ••• after the DIVIDE statement 
has been executed and 13.52280902 ••. after the ADD statement has 
been executed. 

• Group packed decimal fields together in record formats wherever 
possible to improve memory space utilization. 

• Subscripts for arrays should be kept in binary integer format. Packed 
decimal formats for subscripts are more efficient than numeric 
DISPLAY, but not as efficient as COMP-1. 

• If a packed decimal field is signed, it must be initialized to contain 
a value with a proper sign. When a numeric descriptor indicates that a 
field is packed and signed, the sign must be an octal 14 or 15. If the 
sign is incorrect, an 'ILLEGAL EIS DATA' abort message is printed. 

• A field should always be signed (S9{4)) if there is any possibility 
that the field can become negative. If a sign is not specified, the 
absolute value is provided in case of a negative condition. 

• In an t-D-S program, a packed decimal data description cannot be 
specified at the 02 level of an I-D-S record description entry; 
however, the elementary and group items within the 02 field 
description can be specified with USAGE COMP-4. 

16-17 DD26A 

I 



SAMPLE BUSINESS PROGRAM 

'l'he following is a sample µrogram (UPDA'l'E) illustratinl::J a conm1011 tyi-;C of 
business application; namely, updating a master file with insertions, (!elcLic..>11s, 
and modifications of file records. 'l'hc problem definition is ovcrsir,1pJ i fit'u for 
the purpose of the example and no claims a.re r11.:1dc as Lo _i Ls er 1·0 L·-frcc cxccu L. iu11 
within thi~; context. However, liberal use is 1.1ade of dclJLHJ ~;ta Lemen Ls Lo Cul low 
the processing of input data and they may lJc hclµful <JS d <:_iuidc Lu tl1cir u~;e for 
debugging programs. 'l'his J?rogram may also )Je useful as a rcL~n.~ncl~ for Llw 111un; 
common usages of I-0, PERFORM, MOVE, and IP slaterncnt:c;. 

_QQQQ.Q.O IDENT_!fICATlQ.N_DJ~lSli>N.•.-----·-----·· _ --· ___ ..... 
000010 PROGRAM-ID. UPDATE. 
000020 REMARKS· THIS EXAMPLE UPDATES A MASTER FILE ANO 
boijo!5"•. ..... PRODUCES A COMPLETE LISTING OPTIONALLY BY 
000040 MEANS OF A CONTROL CARD· CHANGES TO A MASTER 

-000050 FILE ARE CARD INPUT ALONG WITH CERTAIN 
_Q0002.Q____ _________________ --~QNIRQ~-~A.~Q~.-~.l:!J_CJJ ill.QW.:. ___ _ 

000070 
000080 
000090 
000100 
000110· 
000120 

l• INSERTIONS AFTER GIVEN SEQUENCE NUMBER 
2· MODIFICATIONS OF DATA OR SEQUENCE NUMBERS ONLY 
J. DELETES DATA FROM ONE SEQUENCE NUMBER TO ANOTHER AND 

INSERTS FOLLOWING DATA CARDS· 

·-oooDO-coNTR6L-CXRo·s-·ARE-ASSliMfo"to-·aE· sorffEo -BY-SE·Q.n ON INPUT. 
000140 SEQUENCE NUMBERS NOT MODIFIED ARE LEFT UNCHANGED. 
000150 
000160 CONTROL-CARD FORMATS: COLl 7 19 
000170 LIS 999999 (LISTING REQUEST CARD WHERE 
000180 999999 DEFI_~(~- J_tlE; __ SEQ• __ IL_ -6oof9o·----- ·----··-· -- ------- ---· -·--- .. INSERTION INCREMENT> 
000200 
0·00210 
000220 
000230 

999999 <INSERTS FOLLOWING CARDS 
AFTER SEQ•n 999999> 

000240 •MF NNNNNN TO MMMMMM 
--o-002so ___ -- - --·------- ·-- - - - --- ·- - -----rMoofF'iE:s cA-Rb--wiTH sEQ:~ NNNNNN 

000260 WITH FOLLOWING CARD;.;IF PRESENT-
000270 ANO CHANGES sEa.n TO MMMMMMl 
000280 
000290 
ooo3oTf _______ ·---···--
ooo:no 
000320 
000330 ENVIRONMENT DIVISION. 
000340 CONFIGURATION SECTION. 
000350 SPECIAL-NAMES. 

*DE NNNNNN THRU MMMMMM 

· 10E:L"tTEs cA.R'os FROM SEQ. n NNNNNN 
THRU MMMMMM AND REPLACES WTTH ANY 
FOLLOWING CARDS) 

---·oao36o ______ -·---- sY-sour-·Is TYPr GTIM_E_ Is GTME, ··e; LAPS IS GLAP, 
000370 COMPILE PHASE! ONLY WITH ERRORS• 
000380 PROCESS ALL DEBUG STATEMENTS. 
000390•NOTE--ABOVE CLAUSE MAY BE VARIED OR REMOVED TO FACILITATE DEBUG 
000400 INPUT-OUTPUT SECTION• 
000410 FILE-CONTROL • 

. Oil0·~·20-··----·--··5ELECT CAR·o.:..:FILE -- ASSi'GN TO CD -· FOR CARDS. 
000430 SELECT LIST-FILE ASSIGN TO LM FOR LISTING. 
000440 SELECT OLD-MASTER ASSIGN TO OM. 
000450 ~ELECT NEW-~ASTER ASSIGN TO NM. 
000460--I-o;.;CONTROL. 
000470 APPLY STANDA~O ON OLO-MASTERr NEW-MASTER. -·--crn<r4ao oA ,.-n:fiYtsloN~---· ·· - -··· ·-- · · - -- - -- -·- -- - · - · - - · -

OOO&l-90. F-i[E SE-CT JON· 
0005Q~_fQ_ ~EW-MASTER LABEL RECORDS STANDARD• DATA RECORD IS MAS-OUT. 

16-18 lJD26 



_QQ.Q_~_l,.Q_J!.!_Ms::.®I! _____ -·---·-·----·--- ---·-----·---. _________ . __ __ ..... __ -· _ --····--
000520 02 MLINE PICTURE X(74l. 
000530 02 MSEQ PICTURE 9(6). 
000540 FD . OLD-MASTER LABEL RECORDS A~E STANDARD• DATA RECORD IS MAS-IN. 

000550 01 MAS-IN. 
000560 02 ILINE PICTURE X<74). ooc1sra····--o-r-1sfo ____ PiC--ruRe:--«ft&r. - -------··-
ooos8o FD CARD-FILE LABEL RECORDS STANDARD• DATA RECORD IS CARD-REC. 
000590 01 CARO-REC• 

000600 02 C-GR• 
000610 03 --~1-JNE ··- PICTURE X<74>. -·-oocf62o _____ ----6:5 CSEQ Pi°CTIJRE --··9f6) ~ 
000630 02 CR REDEFINES C-GR· 
000640 03 CARD-FLO PICTURE X(Jl OCCURS 26 TIMES. 
000650 03 FILLER PICTURE XX. 
000~60 02 CS REDEFINES CR. 
000670 03 ~ON-F~Q PICTURE 9(6) OCCURS 13 TIMES. 
000680·-·· -- · - ---o-:3 FILLER Pici'uRE: xx. 
000690 fD LIST-FILE LABEL RECORDS ARE STANDARD• DATA RECORDS ARE 
000700 LIST-REC• DATE-REC. 
000710 01 LIST-REC• 
000720 02 L-FLO PICTURE X<74l. 

___ 0.Q9.?~.~---9 .. ? .... .J,.~~9 _____ PI~T_Ln~_E .... 9<?> •. 
000740 02 FILL PICTURE X(4). 

000750 01 DATE-REC. 
000760 02 INDENT PICTURE X(28l. 
000770 02. DATE PICTURE X(6). 

__ 9007a_o_~ __ !__~_* __ !_• * _• • * * * .. !.*-~ *· • • * • * * • • • • • • • • • • • 

000790 WORKING-STORAGE SECTION• 
000800-77 OLD-MAS-IND PICTURE 9 VALUE O. 
oooa10 88 OLD-MAS-OPEN VALUE 1. 
000820 88 OLD-MAS-CLOSED VALUE 0• 
000830 77 LIST-ALL-IND PICTURE 9 VAL_U~. O. -·aoo~wo-· ·· ···aa ___ LTst-oN·· VALUE. r~· -
000850 88 LIST-OFF VALUE o. 
000860 77 WRITE-IND PICTURE 9 VALUE o. 
000870 88 W~IT-ON VALUE 1• 
000880 88 WRIT-OFF VALUE o. 
000890 77 DISPLAY-ERR PICTURE xc6>. 
-o·oo"<ioo77 ___ CURRENT.;;,SEQ . -p-fffDlfE :9 t 6f" VALUE 0. 
000910 77 INCR PICTURE 9(6) VALUE 1. 

-000920-77 ex PICTURE 9(3) USAGE COMP-1. 
000930 77 TIME-2 PICTURE 9(8) USAGE COMP-1. 
000940 77 ELAPSED-TIM PICTURE ZZZ9.9999 • 
000950 01 CON-REC• ·ooo96o ______ o2· . CRD:..fip~-
000910 03 C-TYP PIC X<12> VALUE " *IN•MF*DE"• 
000980 02 TYP-ARR REDEFINES CRD-Tvp. 
000990 03 CON-TYP PICTURE XXX OCCURS 4 TIMES. 

-.:0:::..;0~1,._,0<..:0o..:::O'--"'Q-=-1--=--'I N'-1"'0.Ali.!._ _________ _ 
001010 02 IDATE. 
001020 03 ~O PICTURE 99. 
001030 . 0-:5 DA - PICTURE 99. 

001040 03 YR PICTURE 99. 
001050 02 TIME-1 PICTURE 9(8) !)~~'.'.".h ________ _ 
001060 01 OTOATE· ---------
001070 02 ODATE. 
001080-. - . 03 MOT PICTURE 99. 
001090 03 FILLER PICTURE X VALUE "-"• 
001100 03 DAY PICTURE 99. 
001110 03 FILLER PICTURE X VALUE "-"• --o-61T2-o--·-----·1r3 -YRR -- . -- ·--PicTURE."99~---- -·--·---------
001130 PROCEDURE DIVISION• 
001140~-•• * * • * * • * * * ••• * * * •• * * ••• * • * ••• * * 

001150-START-UP SECTION. ACCEPT INDATE FROM GTME. 
001160 MOVE MO TO MOTo MOVE DA TO DAY• MOVE Y~_T9- __ r~~· -··0011 ~------·--Movt·-·-y1Mt..;;cr<f-1'l"ME:~z-; - -- --- ··-- ----- · 
001180 OPEN INPUT CARO-FILE• OLD-MASTER• 
001190 OUTPUT NEW-MASTER• LIST-FILE• 
001200 MOVE 1 TO OLD-MAS-IND. 
001210 MOVE SPACES TO INDENT• MOVE OOATE To DATE. 
001220 WRITE DATE-REC BEFORE ADVANCING 2 LINE.~~ . 
-,ro12~----MOVE-S-PACES-TO- FILle _____ . _____ -- - ----- . 

001240 PERFORM READ-co. 
001~5~ ~Ott - lHE FOLLO~ING IS A LEVEL 1 DEBUG STATEMENT. 

l6-19 DD26 



0012601. .. DIS_.1, DISPLAY CARD-REC UPON Typ. 
001270 IF CARD-FLO Cl> NOT : "LIS" GO TO CONTROL-CARO-TEST 

--(f(ii28o---------·-· ... -ELSE MOVE-··1 -·roL.ist~"Al.C.;.INO·. . . . . . -···· 
001290 IF CON-FLO C2> NOT : " " MOVE CON-FLO C2) TO INCR. 
00130~ ~£AD-CD· READ CARD-FILE AT END GO TO CLOSE-CARD• 
001310 NOTE - THE FOLLOWING IS A LEVEL 2 DEBUG STATEMENT. 
0013202 DIS-2o DISPLAY CARD-REC UPON Typ. 
001330 CONTROL-CARO-TEST. MOVE 2 TO ex. 

-6<H$ai08R-:;t~·. - fF . CARD-FLO (1) = ·coN;,;.yyp CCX> "60 io BRANCH· 

001350 
001360 
001:.no· ··· 

ADD 1 TO ex IF ex < 5 GO TO eR-c. 
MOVE CARO-FLO Cl) TO DISPLAY-ERR. 
DISPLAY "UNDEFINED CARD ", DISPLAY-ERR•· UPON TYP. 

··aoi:sao·--·----- Go To REAo--co. 
001390 BRANCH. SUBTRACT 1 FROM ex. 
OOi400 GO TO INS-RTN• MOO-RTN• OEL--RTN DEPENDING. ON ex. 
001410 STOP "DEAD END 11 • 

061420•. ~ ••.••••• ~ ••••••• ~ •••••••••••••• 
001430 INS-RTN SECTION• 

- "ITTil4401T.-·-·-- ····n:'"-- ·oi.,:o;.;MAS.;OP£°N ___ GO· ro -REAb--our. - .... . 
001450 OLD-MAS-ERR. ADD INCR• CON-FLO (2) GIVING CURRENT-SEQ• 
00146~·- . - - . MOVE l TO WAITE-IND GO TO INS~RT-CARD. . 
001470 R~AD-OLD• IF WRIT-ON MOVE 0 TO WRITE-IND GO TO TEST-OLD• 

__ 9_0JH..e.Q.._ __ ····--_R~.l\O -· QJ.O.-MA s. T.ER_ . .AL~P...MOY.E. .0. _J_Q_ O~D-MAS~ rno_..GQ . TO I 1 •_. 
001490 TEST-OLD• IF CON-FLO <2> < ISEQ GO TO OLD-MAS-ERR. 

ooisoo PERFORM PASS-ANO-WRITE GO TO READ-OLD· 
001510 INSERT-CAPO. PERFORM READ-co. 
001520 NOTE - THE FOLLOWING IS A LEVEL 2 DEBUG STATEMENT • 

.. .O_OJ.5.~Q.g__ ______ "'-- P.I?t:l::A )' _ C.AFW-:-RE<: UP_O_N _T_ye_! . ··-·. ___ _ _ .... ·- ·-··-
001540 IF CARD-FLO Cl) : CON-TYP C2> OR CON-TYP (3) OR 
001550 CON-TYP (4) GO TO CONTROL-CARD-TEST. 
001560 MOVE CURRENT-SEQ TO MSEQ, LSEQ. 

001570 M-LINo MOVE CLINE TO MLINE• L-FLD• 
_O_Q_!_~fill- ~RJI.:-.~!... WR IT.E. M~.?.-QUT •. WR.ITE L..IST:-RE.C Ai:TE~ A.DVANC H-IG .. 1 . LINE,. 
001590 ENO-IN. ADD INCR TO CURRENT-SEQ GO TO INSERT-CARO. 
001600• • * * • * • • • • • • • • • • • • * • * • * • • • • • • • • • • 
001610 ~oo-RTN SECTION. 
001620 Ml. IF OLD-MAS-OPEN GO TO TEST~READ• 
001630 MOO-ERR· MOVE CON-FLO <2> TO DISPLAY-ERR· 

_00.19-4.Q__ ____ DI$Pl.AY "BAD MODI_F'( CARO FOR "• DISPLAY-ERR VPON TYP .•. 
001650 GO TO READ-co. 
001660 TEST-READ. IF WRIT-ON MOVE 0 TO WRITE-IND GO TO TEST-SEQ. 
001670 Rf AO OLD-MASTER AT END MOVE 0 TO OLD-MAS-IND GO TO Ml• 
001680_TEST-SEQ. IF CON-FLO (2) NOT= ISEQ PERFORM PASS-ANO-WRITE 

. OO.H>-2..Q ______ ---·- GO TO TEST-REAOt __ 

001695 
001700 
001710 

MOVE CON-FLO (2) TO DISPLAY-ERR· 
IF CON-FLO C4l NOT = " " MOVE CON-FLO (4) TO 

ooi 720 ELSE 
MSEQr LSEQ GO TO READ-NEXT-CARO 

MOVE ISEQ TO MSEQ• LSEQ• 
__ O_Qp~_Q__BE;AD."'."t;!~)CJ_~CA80• 
001740 

RE.AO . CA~Q_-.fl L.E_ A.T ~ND PERFORM MOD-WARN 

001750 NOTE - THE FOLLOWING IS A 
0017603 DISPLAY CARD-REC 
001770 IF CARO-FLO Cll = 
001780 
001790 

--ooie-<fif- ·-IF CSEQ NOT-= " 

GO TO CLOSE-CARO. 
LEVEL 3 DEBUG STATEMENT. 
UPON Typ. 
CON-TYP <2> OR CON-TYP <3> OR 
CON-TYP (4) PERFORM MOD~WARN 

_ . GO TO CONTROL-CARO-TEST• 
" MOVE CARD-REC To MAS-OUT• LIST-REC 

00180S PERFORM WRIT-2 
001810 ELSE PERFORM M-LIN THRU WRIT-2• 
00182~ GO TO READ-CD• 
0_0..!~-~-9_'!_ ·-· • ... * .. '! .* .• ••. * * * •. ! *: -·-~ -~ • * ••.•• * * ••••••• 
001840 DEL-RTN SECTION. . 
001856 ~1.· . . I~ OLD-MAS-OPEN GO TO READ-TEST. 

00.1860 DEL-ERR·· MOVE CON-FLO (2) TO DISPLAY-ERR· 

ooi87·cr· ---·-···· ·-- DISPLAY "BAD DELETE .. c"Afi"o FoR ", DISPLAY-ERR• ·-uPoN TYP· 
001880 MOVE 1 TO WRITE-IND Go TO READ-CD. 
00189Cf-Rt:Ab-TEST. IF WRIT-ON MOVE 0 To WRITE-IND GO TO SEQ-TEST. 
001900 READ. OLD-MASTER AT ENO MOVE 0 TO OLD-MAS-IND GO TO Dl• 

16-20 DD26 



0019J6 IF CON-FLO <2> < ISEQ GO TO DEL-ERR. 

001940 PASS-NO-WRITE. READ OLD-MASTER AT END MOVE 0 TO OLD-MAS-IND 
001950 GO TO OLD-MAS-ERR. 

-OOT9-6o·- ------· .,..fF--CON:;;.·i=u;···r4,--)-ISEQ--OR"::fs[o -60" 't"O""" PASS;..NO;:WRlti::" --··· - -

001970 ELSE MOVE 1 TO WRITE-IND MOVE CON-FLO (2) TO CURRENT-SEQ 
001980 GO TO INSERT-CARO· 
001990* •• * ••••• * * •• * • * * * * • * • * ••••••••• * 
002000 PASS-AND-WRITE SECTION. MOVE MAS-IN To MAS-oUTr LIST-REC. 
0020To· ---·-wFfirt·--M-As·..;.our ·--iF'- c1sr:..-oi=F·-c;o -f0--pf; 
002020 WRITE LIST-REC AFTER ADVANCING 1 LINE. 
002030 Pl. MOVE "ISEQ TO CURRENT-SEQ. 
002040 NOTE - THIS IS EXIT. 
002050• • * * * * * * • * * * •• * • * * * * * * * •••• * •• * * • 
002060 MOO-WARN SECTION• 

-·1ro20·10 _____ --·-DISPLAY "n NO MODif::y -CARD TEXT FOUND "F"oR " DISPLAY.;;ERRr 
002080 UPON TYP. MOVE ILINE TO MLINE• L-FLO. 
002090 PERFORM WRIT-2· 
002100 NOTE - THIS IS EXIT. 
002110• * * * • * * * * * * * * * * * * * * ••••••• * • * •••• 
002120 CLOSE-CARO SECTION• CLOSE CARO-FILE IF OLD-MAS-CLOSED GO TO O~NE._ 
""d02l~"i""QC6PY.;:oco;·--I}'" 1-fFfif..;.6~.f· "MOVE- 0 "to·· ~R°IfE:.:iND GO TO cf. - ·-- --
002140 READ OLD-MASTER AT END MOVE 0 TO OLD-MAS-IND GO TO DONE. 

002150 c2. PERFORM PASS-AND-WRITE GO To COPY-OLD. 
002160 DONE. CLOSE OLD-MASTER• NEW-MASTERr _LISl_-FILE. 

·002176_ .. ___ -----··-ACCEPT INDATE . FROM - GfM·E· .. 

00218l) 
002190 
002200 
002210 
002226"" -·· 
002230 
002240 ENO 

COMPUTE ELAPSED-TIM RGUNDED : (TIME-1 - TIME-2) I 64000. 
otSPLAY "ELAP.CLOCK TJME<SEC): "• ELAPSED-TIM• UPON TYP. 
ACCEPT TIME-2 FROM GLAP. 
DIVIDE 64000 INTO TlME-2 GIVING ELAPSED-TIM. 
DISPLAY" ELAP.PRoC.TIME"fsE.Cl =-", ELAPSED-TIM• UPON TYP. 
STOP RUN• 

OF PROGRAM• 

16-21 DD26 





SECTION XVII 

OBSOLETE LANGUAGE ELEMENTS 

Some of the elements described in this section have been deleted from the 
COBOL ·language specifications but are still supported by the COBOL compiler in 
their last state of implementation. Other language elements contained in this I 
section represent extra-standard features offered in previous versions of the 
COBOL compiler; they are also supported in their last state of implementation. 
The use of any of these elements in new programs is strongly discouraged since 
the tran:5ferability of a program from one computer to another may thus be 
adversely affected. A listing of the obsolete language features follows: 

6000 WITH EIS phrase I 
PREPARED option 

Constant Section 

CLASS clause 

Editing clauses 

FIIE CONTAINS clause 

POINT LOCATION clause 

RANGE clause 

SEQUENCED clause 

SI-:;NED clause 

SIZE clause 

USAGE COMP-3 PACKED SYNC clause I 
Conditional state~ent IF ••• OTHERWISE ••• TIIF.N .•• 

The detailed syntax £or the obsolete language elements follows. 

3/77 17-1 DD26A 





ENVIRONMENT DIVISION ELEMENTS 

6000 WITH EIS Phrase 

The 6000 WITH EIS phrase was formerly 
SOURCE-COMPUTER paragraph and the OBJECT-COMPUTER 
computer upon which the program is to be compiled. 

General Format: 

[ 6000 [WITH EIS] J 
Rules: 

used in Format 2 of both the 
paragraph to desiqnate the 

1. When the 6000 WITH EIS entry is used in the SOURCE-COMPUTER paragraph 
or in the OBJECT-COMPUTER paragraph, the computer-name specified 
should be 6000 or 6000 WITH EIS. Series 60 users should specify 6000 
WITH EIS. 

DATA DIVISION ELEMENTS 

PREPARED Option 

The PREPARED FOR computer-name option is specified in the Data Division 
only when the data descriptions have been written for a computer other than the 
object computer. 

General Format: 

DATA DIVISION. [PREPARED FOR computer-name] 

This option is treated as d6cumentation only. 

3/77 17--1.1 DD26A 



C.ONSTANT SECTION 

Tl~ Constant Section is organized in the same manner as the Working-Storage 
Section, beginning with a section header, followed by data description entries 
for noncontiguous constants, and then followed by data description entries; in 
that order. A skeletal format for the Constant Section follows: 

General Format: 

CONSTANT SECTION. 

77 data-name-1 

77 data-name-n 
01 data-name-2 

02 data.:...name-3 

01 data-name..;..4 
02. data-name-5 

03 data-name-6 

The concepts of literals and figurative constants enable 
sp~cify the value of a constant by writing its actual value (or 
representation of that value). In coding, it is often desirable 
value and then refer to it by name. 

the user to 
a figurative 

to name this 

Example: 6 (.06) may be named as INTEREST-RATE and then be referred to by name 
(INTEREST-RATE) instead of its value (. 06). 

~onstant storage is the memory area that is reserved to save named 
constants for use in a given program. 

Noncontiguous Constant Storage 

Constants that have no relationship to one another need not be grouped into 
records provided they do not need to be further subdivided. Such items are 
called noncontiguous constants. Each of these constants is defined in a separate 
data description entry which begins with a special level-number 77. 

The following data description clauses are required in each level 77 entry: 

1. level-number. 

2. data-name. 

3. PICTURE. 

4. VALUE. 

17-2 DD26 



The OCCURS and REDEFINES clauses are not meaningful for level 77 entries 
and will cause an error at compilation time if used. Other data description 
clauses are optional and can be used to complete the description of the constant 
when necessary. 

Constant Records 

Named constants in the Constant Section that have a definite relationship 
to one another must be grouped into records according to the rules for formation 
of record descriptions. All record description clauses can be used in a Constant 
Section record description, including REDEFINES, OCCURS, and COPY. Each Constant 
Section record-name (01 level) must be unique since it cannot be qualified by a 
file-name or section-name. Subordinate data-names need not be unique if they can 
be made unique by qualification. 

VALUE of Constants 

In the definition of constants, the VALUE clause is required. VALUE cannot 
be specified in a group entry that contains items having different usages. All 
the rules for the expression of literals and figurative constants apply. The 
size of a literal used to specify the value of a constant can be equal to or 
less than ·the specified size of the item, but it cannot be greater. 

Condi ti·:m-Names 

Since a constant can have only one value, there can be no associated 
condition-names. The use of a condition-name entry (level 88) in the Constant 
Section is, therefore, illegal and will constitute an error in the source 
program. 

Tables 0f Constants 

T~lles of constants to be referenced by substripting are defined in one of 
the following ways: 

1. The table may be described as a record by a set of contiguous record 
description entries, each of which specifies the value of an element, 
or part of an element, of the table. In defining the record and its 
elements, any record description clause (i.e., SIZE, USAGE, PICTURE, 
editing information, etc.) may be used to complete the definition 
where required. This form is required when the elements of the table 
require separate handling due to synchronization, usage, etc. The 
structure of the table is then shown by use of .the REDEFINES entry and 
its associated subordinate entries. 

2. When the elements of the table do not require separate handling, the 
value of the entire table may be given in the entry that defines the 
entire table. The lower level entries will show the hierarchical 
structure of the table. 

17-3 DD26 



DATA DESCRIPTION ENTRIES 

CLASS Clause 

The CLASS clause is used.to indicate the type of data being described. 

·General Format: 

CLASS 

Rules: 

{ 

ALPHABET.IC } 
IS NUMERIC 

ALPHANUMERIC 
AN 

1.. AN is an acceptable abbreviation for ALPHANUMERIC. 

2. The CLASS clause can be written at any le~el. If the CLASS clause 
written at a group level, it applies to each elementary item in 
group. The CLASS of an item cannot contradict the CLASS of a group 
which the item belongs. ALPHABETIC or NUMERIC items within 
ALPHANUMERIC group are not considered contradictory. 

is 
the 
to 
an 

3. NUMERIC describes data composed of the numerals 0-9, with or without 
an operational sign. If there is no sign associated with a NUMERIC 
item, the item is considered positive. If the item is NUMERIC and no 
assumed decimal point is indicated, the item is considered positive. 
If the item is NUMERIC and no assumed decimal point is indicated, the 
item is considered to be an integer. 

4. ALPHABETIC describes data that contains any combination of the 
twenty-six (26) letters of the Roman alphabet and the space. No other 
characters can be used. 

5. ALPHANUMERIC describes data that may contain any allowable character 
in the object computer's character set, including alphabetics and 
numerics. Thus, data which is ALPHABETIC or NUMERIC is also 
ALPHANUMERIC. 

6 •. · If both the PICTURE clause and the CLASS clause are given in the same 
entry, the class of characters shown in PICTURE must not contradict 
the CLASS clause of an elementary item, or of a group to which the 
item belongs.· 

7. If the CLASS of an elementary item cannot be determined from any 
clause in the item's data description or from the data description of 
any group to which the item belongs, the CLASS of the item is assumed 
to be ALPHANUMERIC. 

17-4 DD26 



8. An item's CLASS may be implied by various other clauses. If a 
c9mbination of such clauses appears, either within an entry or between 
an entry and a group that contains it, they must not contradict each 
other. 

a. The CLASS is NUMERIC if any of the following clauses appear: 

CLASS NUMERIC 
USAGE COMPUTATIONAL 
USAGE COMPUTATIONAL-n 
SlZE integer NUMERIC 
SIZE integer COMPUTATIONAL 
SIZE integer COMPUTATIONAL-n 
SIGNED 
PICTURE containing no characters other than Os, 9s, Ps, S, and v. 

b. The CLASS is ALPHABETIC if any of the following clauses appear: 

CLASS ALPHABETIC 
SIZE integer ALPHABETIC 
PICTURE containing only As or a combination of As and Bs. 

c. The CLASS is ALPHANUMERIC if any of the following clauses appear: 

CLASS ALPHANUMERIC (or AN) 
SIZE integer ALPHANUMERIC (or AN) 
PICTURE containing X 
PICTURE containing 9 as well as either A or B 
PICTURE containing both A and zero (0). 
PICTURE containing A, *, $, comma (,), decimal point (.), +, 
CR, or DB. 

Editing Clauses 

The editing clauses are used to permit suppression of nonsignificant zeros 
and commas, and to permit floating dollar signs or check protection. 

General Format: 

{ 

ZERO SUPPRESS 

CHECK PROTECT 

FLOAT DOLLAR 

Rules: 

SIGJ 
[LEAVING integer (PLACES}] 

PLACE 

1. The editing clauses can be specified only at the elementary item 
level. 

2. The rules for editing specify that data items are moved in conformity 
with the.record description of the receiving item. 

17-5 DD26 



3. The three options, ZERO SUPPRESS, CHECK PROTECT, and FLOAT DO;LLAR 
SIGN, all permit suppression of leading zeros and commas. If the 
LEAVING option is not employed, suppression will stop as soon as 
either a nonzero digit or the decimal point (actual or assu~ed) is 
encountered. Specifically: 

a. When ZERO SUPPRESS is specified, leading zeros and commas will be 
replaced by spaces. 

b. When CHECK PROTECT is specified, leading zeros and commas will be 
replaced by asterisks. 

c. When FLOAT DOLLAR SIGN is specified, the rightmost character 
suppressed will be replaced by a dollar sign, and all other 
characters which are suppressed will be replaced by spaces. 

4. The LEAVING phrase may be employed to stop suppression before the 
decimal point (actual or assumed) is encountered. 'Integer' must be a 
numeric literal with an integral value. When used, suppression stops 
(leaving integer positions to the left of the real or assumed decimal 
point) unless stopped sooner by the conditions specified in rule 3. 
The integer position is a count of the number of characters, starting 
immediately at the left of the actual or assumed decimal point. 

5. When any of these clauses are used, the item is assumed to be 
alphanumeric because the $, *, and+ are alphanumeric. 

6. More comprehensive editing features are available in the PICTURE 
clause. When any of the above options are used, the format of the item 
is assumed to contain.editing symbols. 

7. If both a PICTURE and editing clauses are present for an entry,. the 
PICTURE clause takes precedence. 

FILE CONTAINS Clause 

The FILE CONTAINS clause is used to document the approximate number of 
logical records in a file. 

General Format: 

FILE CONTAINS ABOUT integer-1 RECORDS 

Rules: 

l. The FILE CON'TAINS clause has no ef feet ori the object program. 

17-6 DD26 



POINT LOCATION CJause 

The POINT LOCATION clause is used to define an assumed decimal point or 
binary point. 

General Format: 

POINT LOCATION 

Rules: 

IS { LEFT } 

RIGHT {

PLACES} 
integer 

BITS 

1. This optional clause may be used only at the elementary item level. 

2. The decimal point location is normally defined with the PICTURE 
clause, but an assumed decimal point may be specified via the PLACES 

.option of the POINT clause. If both are specified, they must agree. 

3. The POINT clause indicates the position of an assumed decimal point 
only, never the position of a~ a'~tual decimal point. Actual decimal 
points may only be specified with a PICTURE clause. 

4. When the PLACES option is used, the assumed decimal point is 
decimal places to the left or right of the least si~nif icant 
of the item. PLACES is implied when neither PLACES nor 
specified. 

'integer' 
position 
BITS is 

5. When the BITS option is specified, it is used for documentation only. 

6. If USAGE is COMPUTATIONAL-n, the point location must not be RIGHT and 
'integer' must not exceed the size of the item. 

·RANGE Clause 

The RANGE clause is used in a data description entry to indicate the 
potential range of the value of an item. 

General Format: 

RANGE IS 
{ 

THRU } 
literal-! ~~ literal-2 

THROUGH 

Rules: 

1. The RANGE clause may be specified only at the elementary i tern level. 

2. Literal-! and literal-2 may be figurative constants~ 

17-7 DD26 



3. The literals must not contain more digits than are specified in the 
PICTURE clause. 

4. The words THRU and THROUGH are equivalent. 

5. The RANGE clause is used only to document the source program. 

6. For numeric items, literal-1 and literal-2 represent the respective 
minimum and maximum values of tne item. 

7. For nonnumeric items, each character of literal-! and of 
represents the respective minimum and maximum values 
corresponding character position in the item. 

SEQUENCED Clause 

literal-2 
of the 

The SEQUENCED clause is used in an FD entry to tndicate the keys on which 
data records are sequenced. 

General Format: 

SEQUENCED ON data-name-1 [ , data-name-2 ] .•• 

Rules: 

1. The SEQUENCED clause is used only to document the source program and 
has no effect on object program activities; it cannot be used to cause 
an automatic sequence check. 

2. Data-name-1 represents the major key, data-name-2 represents the next 
highest key, etc. 

3. The data-names should be qualified when necessary, but subscripting is 
not permitted. 

SIGNED Clause 

The SIGNED clause is used to specify the presence of a standard operational 
s~gn in an elementary item. 

General Format: 

SIGNED 

17-8 DD26 



Rules: 

1. The. SIGNED clause may be specified only at the elementary item level. 

2. An item whose data description specifies an operational sign must be 
numeric. Therefore, its CLASS need not be specified. 

3. SIGNED indicates the presence of a standard operational sign. (The 
sign may also be indicated by using an 'S' in the PICTURE clause.) A 
standard operational sign is not considered in determining the size of 
the item. 

4. An item that contains any editing symbols other than 0 (zero} cannot 
have an operational sign. 

5. The operational sign is contained in the least significant character 
(two high-order bits) of a signed numeric data item. 

SIZE Clause 

The SIZE clause is used to specify the size of an item in terms of the 
number.of standard data format characters. 

General Format: 

SIZE IS 
. {CHARACTER[s]} 
integer [ J 

DIGIT S 

Rules: 

1. The size of the data item must be specified at the elementary item 
level by means of a SIZE clause or a PICTURE clause. A PICTURE clause 
and a SIZE clause need not both be given, but if both are specified 
they must agree. 

2. If the SIZE clause is specified at any level other than the elementary 
item level, it is optional. 

3. 

4. 

If the SIZE clause is specified at a group level, the size of 
group is the sum of the sizes (as determined from SIZE or PICTURE) 
the elementary items of which the group is composed. 

the 
of 

'Integer' represents the exact number of characters, 
operational signs. 

excluding 

5. Any of the keywords of the USAGE and/or CLASS clauses can be inserted 
between integer and the word CHARACTERS (or DIGITS) in ·the SIZE clause 
format. If this method is followed, separate USAGE and/or CLASS 
clauses must not be written. 

Example: 

02 PAGE-NO; SIZE IS 7 NUMERIC COMPUTATIONAL DIGITS; VALUE IS 
0000342. 

17-9 DD26 



USAGE COMP-3 PACKED.SYNC Clause 

The COMP-3 PACKED SYNC phrase was fonnerly included as Format 2 of the 
USAGE clause to indicate packed decimal data items. Since this syntax has now 
been replaced by the USAGE COMPUTATIONAL-4 format, it is considered obsolete. 

General Format: 

( 

COMPUTATIONAL-'3 } (PACKED } ( SYNCHRONIZED } 

COMP-3 _ PK SYNC 

Rules: 

3/77 

1. The 6000-EIS or 6000 WITH EIS phrase must be specified in the 
OBJECT-COMPUTER paragraph. 

2. COMPUTATIONAL-3 PACKED SYNCHRONIZED signifies that two four-bit digits 
will occupy one nine-bit byte (packed decimal). Data in this format 
can be processed only on a Series 60/6000 Extended Instruction Set 
(EIS) processor. If the PICTURE character-strin0 specifies an 
operational sign, the item will be one four-bit digit larger than the 
number of '9's in the PICTURE character-string would imply. 

3. In order to obtain a packed decimal data item, both of the words 
PACKED (or PK) and SYNCHRONIZED (or SYNC) must be specified, in that 
order, following COMPUTATIONAL-3 (or COMP-3) . 'I'he i tern will be. 
treated as a normal COMPUTATIONAL-3_ (or COMP-3) i tern if neither word 
is specified. 

4,, If the USAGE COMPUTATIONAL-3 PACKED SYNCHRONIZED clause is stated at a 
group level, each elementary item within the group will be treated as 
packed decimal. The group item itself will be considered to be 
alphanumeric. 

17-10 DD26A 



PROCEDURE DIVISION ELEMENTS 

Conditional Statements 

In the Procedure Division, 
OTHERWISE phrase has been deleted. 

the conditional sentence format using the 
The syntax of this feature is given below: 

IF condition 

In the conditional sentence above, the condition is an expression which is 
true or false. If the condition is true, then statement~l is ·executed and 
control. is transferred to the next sentence. If the condition is false, 
statement-2 is executed and then control is passed to the next sentence. 

If statement-1 is conditional, then the conditional statement should be the 
last (or only) statement comprising statement-1. For example, the conditional 
sentence could have the form: 

IF condition-1 imperative-~tatement-1 IF condition-2 statement-3 
OTHERWISE statement-4 OTHERWISE statement-2 

If condition-! is true, imperative-statement-! is executed; then, if 
condition-2 is true, statement-3 is executed and control is transferred to the 
next sentence. If condition-2 is false, then statement-4 is executed and 
control is transferred to the next sentence. If condition-1 is false, 
statement-2 is executed and control is passed to the next sentence. 

Statement-3 can in turn be either imperative or conditional and, if 
conditional, can in turn contain conditional statements in arbitrary depth. In 
an identical manner, statement-4 can be either imperative or conditional, as can 
statement-2. 

The execution of the OTHERWISE NEXT SENTENCE phrase causes a transfer of 
control to the next sentence as written, except when it appears in the last 
sentence ·of a procedure being performed, in which case control is passed to the 
return mechanism. 

THEN Separator 

Prior versions of COBOL allowed the separator THEN to be used between 
statements in the same manner that the semicolon is currently used. This syntax 
construction was normally specified in a conditional statement between the 
condition and statement-! or between statement-! and the word OTHERWISE. For 
example, the conditional sentence could have the form: 

3/77 

IF condition THEN imperative-statement-1 THEH OTHl~RWISE 
Imperative-stateinent-2. 

17-11 DD26A 

I 





APPENDIX A 

ORDER OF COBOL SOURCE PROGRAM 

An outline of the four divisions of a COBOL source program is given below. 
The grouping within each division is indicated by indention as follows: 

Division 
Section 

Paragraph 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITTEN. 
DATE-COMPILED. any order 
SECURITY. 
REMARKS. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 

SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 

INPUT-OUTPUT SECTION. 

FILE-CONTROL. 
I-0-CONTROL. 

DA'l'A DIVISION. 
FILE SECTION. · 

input files. 
output files. 
sort files. 
merge files. 

WORKING-STORAGE SECTION. 

REPORT SECTION. 

PROCEDURE DIVISION. 

DECLARATIVES. 1 

(USE Sections) 

END DECL~RATIVES. 1 

(all other procedures) 

END PROGRAM. 

order 

Required (X) 

x 
x 

x 

x 

x 

1 ' 
If used 1 both DECLARATIVES and END DECLARATIVES must be present. 

A-1 DD26 





APPENDIX B 

COBOL DECK SETUPS 

Appendix B contains the deck setups for compiling, compiling and executing, 
executing, creating a tape library using the Bulk Media Conversion (BMC) 
routines, and compiling using the library facility. 

For complete details on all control cards, refer to the Control Cards 
reference manual. 

An example of the $ COBOL card with options (operand field) is shown below: 

1 8 16 

$ COBOL options 

The $ COBOL card is used to bring the COBOL compiler into operation. 

By the use of options on the $ COBOL control card, the user can modify the 
source program processing. For example, options can be requested that limit or 
extend the amount of processing to be accomplished by the compiler, that request 
additional output information, or that specify the form of compiler input and 
output. 

The options are specified in the operand field on the $ COBOL card. The 
following options are available (default options are underlined) : 

3/77 

ND UMP 

DUMP 

LSTIN 

- Only program registers will be dumped if the compilation activity 
terminates abnormally. 

- A slave memory dump will be produced if the compilation activity 
terminates abnormally. 

- A listing of source input will be produced by the COBOL compiler. 

NLSTIN - No listing of source input will be produced; however, a listing 
of fatal error messages (*****}, if any, will be produced. I 

NLSTOU - No listing of the assembled object program output will be 
prepared. 

LSTOU - A listing of the assembled object program output will be prepared 
by GMAP. 

B-1 DD26A. 



I 
.I 

I 

3/77 

~ ·- Enable job restart. 

NJREST - Do not restart this job. 

REST - Enable activity restart. 

NREST - Do not restart this job with the current activity. 

DECK - A binary object program deck will be prepared as output by GMAP. 

NDECK - No binary object program deck will be prepared. 

NCOMDK - No compressed deck version of the source program will be 
prepared. 

COMDK - A compressed deck version of the source program will be prepared, 
excludl.ng 'any· source lines copied from a COBOL library. 

CCOMDK - A compressed deck version of the source program as presented on 
the listing, including any source lines copied from a COBOL 
library, will be prepared. 

NCO PY 

COPY 

- No copy prepass is performed. 

- A copy prepass is performed, allowing the user to copy source 
lines from an external library, utilize internal program copies, 
and to specify the RENAMING phrase in the FILE-CONTROL paragraph. 
The presence of a library file is assumed during compilation. 

LIBCPY - This option is required when_ any American National Standard COPY 
clauses or statements are used in a source program. The presence 
of a library file is assumed during compilation. 

NE I SF 

EISF 

COMPHl 

- Directs the compiler to specifically exclude the use of the 
Extended Instruction Set (EIS) in the generated object program, 
overriding the 6000-EIS phrase in the OBJECT-COMPUTER paragr:aph 
Of the cSOurce program. 

- Directs the compiler to specifically include the use of the EIS 
in the generated object program. ~his option is equivalent to 
specifying the 6000-EIS phrase in the OBJECT-COMPUTER paragraph 
of the source .program. 

- A source listing with cross-references and error messages (if 
any) is produced at the end of phase 1 of the compilation and the 
compilation process stops. No object program or assembly listing 
is produced. 

FLAGNA - Source program lines containing features not included in American 
National Standard COBOL (X3.23-1968) are flagged on the' output 
listing with the prefix 'NA' preceding the reference number. 

1NOXREF - No source listing cross-references are produced. This option may 
be included to avoid Cl aborts when compiling large program~ • 

. ON6 - A REF ON control pseudo-operation is generated by the COBOL 
compiler and a Symbol Reference Table is thereby appended to the 
GMAP 'listing. 

B-2 DD26A 



SYMTAB - GMAP will prepare a listing of the Symbol Reference Table (if one 
has been built), even though the NLSTOU option has also •been 
specified. 

SEGMNT - This option causes the compiler to reorder the 
Procedure Division sections into ascending 
sequence. 

source program 
priority-number 

CBL68 Invokes the compilation of those language elements represented in 
the highest level of implementation of the COBOL language as 
specified in American National Standard COBOL X3.23-1968. This 
option also allows the compilation of certain language elements 
based on later editions of the CODASYL COBOL Journal of 
Development or in American National Standard COBOL X3.23-1974. 
When the CBL68 mode of the compiler is used, the appropriate 
manuals to be referenced are the Standard COBOL-68 Reference 
Manual, DE17, and the Standard COBOL-68 User's Guide, DE18. 

SUBSET - Invokes the compilation of a restricted subset of COBOL language 
elements. In· general, this subset is based on pre-1968 editions 
of the CODASYL COBOL Journal of Development. In the SUBSET mode, 
some language elements may not function in the same manner as in 
the CBL68 mode. 

Rules: 

3/77 

1. The $ COBOL card must precede the source program cards of every COBOL 
program or subprogram to be processed and must precede any other 
control card associated with that compilation activity. 

2. The options can be listed in any order in the operand field, starting 
in column 16. 

3. If an option is not specified in the operand field, the corresponding 
underlined default option, if any, is assumed. 

4. Options may be continued by using the $ ETC card. 

s.· Standard activity limits are predefined. However, if these limits are 
to be modified, a $ LIMITS card must immediately follow the $ COBOL 
card (unless the $ ETC card is specified, in which case the $ LIMITS 
card must immediately follow the$ ETC card). 

6. If the NREST option is encountered in the first activity of a job, 
processing proceeds as if NJREST had been encountered. 

7. A blank terminates the scan of the operand field. 

8. If a source deck is to utilize the HIS COPY function, the COPY option 
must be specified ·on the $ COBOL card. If a source deck is to utilize 
the American National Standard COPY function, the LIBCPY option must 
be specified on the ~ COBOL card~ See Section XIV. 

9. 

NOTE: If both of the ~hove options are specified, the LIBCPY option 
overrides the COPY option. 

The CCOMDK optiori will override the COMDK option if the COMDK 
is also specified, so that only one compressed source 
obtainable from.a given compilation. 

B-3 

option 
deck is 

DD26A 



COMPILE ONLY 

To reduce compilation 
time, these two cards 
must be used with large 
source decks (2000 
cards). With smaller 
source decks, these 
cards are optional. 

'------------....... --------..-.) 
I 

I 

I 
I 

I 
I $ ENDJOB 

{ 

COBOL. 
source 
cards 

I 
t--------------------1-.~ I $ TAPE *l,X2R 

I 
------........... -------~· I $ TAPE G*,XlR 

I 

I 
I 

/ $ FILE 
{

Needed if the 
compiler aborts 

*3,AlR,106R with code Cl or 
if the source 
deck is large 

I $ NTAPE Sl,C,3 decks to obtain 
{ 

May be used on large 

complete source 
cross-references 

I 
/ $ COBOL 

I 
I $ IDENT 

An I-D-S/COBOL translate and compile deck is set up similarly and th~ 
$ COBOL card is replaced with the $ IDS card. 

B-4 DD26 



COMPILE AND EXECUTE 

I 
I $ EN DJ OB 

I Any required user 
I files and data 

I 
I $ 'l'APE xx,,,,USER-FILE 

I 
To reduce compilation 
time, these two cards 
must be used with large 
scurce decks (2000 cards) • 
With smaller source decks, 
these cards are optional. 

/ $ LIMITS (If needed) 

I 
/ $ EXECUTE 

I 

I 

I 

I 
I 

I 
I 

I $ TAPE *l,X2R 

I $ TAPE G*,XlR 

I 
I $ FILE *3,AlR,106R 

I 
/ $ COBOL 

I . 
/ $ OPTION COBOL l 

/ $ IDENT 

source cards 
{ 

COBOL 

{ 

Needed if the compiler 
aborts with code Cl or 
if the source deck is 
large 

1A $ OPTION COBOL card should be specified at object program execution to ensure 
that unnecessary subroutines are not loaded. 

B-5 DD26 



EXECUTE ONLY 

I 

I 

I 

I 
I 

I 
I 

I 

I 

I 

I 
I $ ENDJOB 

I Any required user 
I files and data 

I$ TAPE xx,,,,(user-file) 

/ $ LIMITS -4-- (If needed) 

I $ EXEC.UTE 

{ Binary decks 

/ $ OPTION COBOL 

/ $ LOWLOAO n 

I $ !DENT 

If a $ LOWLOAO card is required for sharing Blank Common with the loader, 
the $ LOWLOAO card must precede the $ OPTION COBOL card. 

B-6 0026 



CRhATING A TAPE LIBRARY ·(USING BMC) 

./ 
I 

I 

I 
I $ ENDJOB 

I 
I Source Data 

I for Library 

/ $ DATA IN 

I 
I $ TAPE 

I 

I 
/ $ CONVER 

I 
I $ !DENT 

{ 

File-code OT is 
OT,XlD specified as .L in 

subsequent comp­
ilation activi-

- ties 

COMPILE USING AMERICAN NATIONAL STAN°DARD COPY 

I 

I 

I 
I 

I 
I 

I 
I $ ENDJOB 

I 
I COBOL Source 

I or COMDK 

I {Note that file-
/$ TAPE .L,XlD,, code = .L by 

convention 

/ $ COBOL LIBCPY 

C 
Th.e LIBCPY option 
must be included 
on $ COBOL card 

I $ !DENT 

B-7 DD26 



COMPILE USING HIS COJ?Y 

COBOL Source 
or COMDK 

I 

I 

I 

I 

I 
I 

I 

I 
I $ ENDJOB 

Any other control 
cards needed for 

.____ compilation 

I $ TAPE .L,XlD 

/ $ COBOL COPY 
( 

The COPY option 
· must be included 

on $ COBOL card 

I $ IDENT 

B-8 DD26 



COMPILE USING AMERICAN NATIONAL STANDARD SEGMENTATION 

I 

I 

I 
I 

I 

I 
I 

I 
I 

I 
I $ ENDJOB 

I 
I Any required user 

I files and data 

I 
I $ FILE H*,LUD,nnL

1 

I 
I $ EXECUTE 

2 

{

COBOL 
cards 

source 

/ Any required binary 
I decks 

{

Any other required control 
cards including$ LIBRARY, 
$ ENTRY, $ NOLIB, $ NLOAD 

I 3{The SEGMNT option is required 
I $ COBOL SEGMNT only if sections are not in 

ascending order of priority­
number 

/ $ OPTION COBOL 

I $ IDENT 

1
LUD is the logical unit designator and nn is the number of sequential links 
required to store the program segments. 

2 
$ EXECUTE SEG may also be used; this option allocates an H* file of five 
sequential links. 

3 . . 
If the segmented program is an I-D-S program, the SEGMNT option must be 
included on the $ IDS card. 

B-9 DD26 





APPENDIX C 

NONSTANDARD FEATURE FLAGGING 

Nonstandard language features can be flagged on the COBOL source program 
listing by including the FLAGNA option in the operand field of the $ COBOL card. 

If FLAGNA is specified, the compiler inserts the prefix NA immediately 
preceding the reference number of any source line containing a language feature 
that is hot included in American National Standard COBOL (X3.23-1968). If the 
option .Ls specified and flagging occurs, the compiler also causes the following 
message to be printed at the end of the COBOL listing: 

NA NON ANS COBOL-1968 FEATURE· USED. 

If the FLAGNA option is not specified or if it is specified but no flagging 
occurs, the preceding message is omitted. 

This option has no other effect on the compilation process (i.e., 
nonstandard source lines are processed even if the option is specified). 

The following is a list of nonstandard language elements that are flagged 
if the FLAGNA option is specified: 

• Figurative Constants 

UPPER-BOUND(S) 

LOWER-BOUND(S) 

• HIS COPY Function 

C 
level. indicator } 

data-name-1 
level-number 

COPY data-name-2 [FROM 

paragraph-name. COPY library-name [ FROM LIBRARY J 

• Identification Division (None.)· 

C-1 

LIBRARY] 

DD26 



I 

I 

I 

3/77 

• Environment Division 

SOURCE-COMPUTER. 

[ 6000 [WITH EIS J J 
[WITH SUPERVISOR CONTROL] 

[MEMORY SIZE ••• ] 

[• [integer] hardware-name J 
OBJECT--COMI?UTER. 

[ 6000 [WITH EIS] J 
[WITH SUPERVISOR COUTROL] 

{ AD.ORES S ••• } 

[• [integer J hardware-m~me J 
SPECIAL-NAME_S. 

[HMS] 
[BLOCK ••• J 
[COLLATE COMMERCIAL] 

[ { 

COMPUTATIONAL } J 
OPTIMIZE 

COMP 

[PROCESS ~] 

[COMPILE PHASEl ••• J 
[ELECT SORT •• :J 

FILE-CONTROL. 

SELECT 

[OVERLAY] 

[ RENAMING •• ·] 

[FOR CARDS] 

[FOR LISTING ] 

[FOR BLA~K COMMON] 

C-2 DD26A 



I-0-CONTROL. 

[~ ... ] 

[~ ... J 

[SAME [ SORT~MERGE ] AREA ••• J 
• Data Division 

[ PREPARED FOR computer-name ] 

CONSTANT SECTION. 

File Descriptions: 

[RECORDING MODE ••• ] 

[ FILE CONTAINS ••• ] 

LABEL RECORD(S): 

[ SEQUENCED ON ••• ] 

BEGINNING-TAPE-LABEL 

BEGINNING-FILE-LABEL 

ENDING-FILE-LABEL 

ENDING-TAPE-LABEL 

Sort-Merge File Descriptions: 

[ FILE CONTAINS .•• ] 

C-3 DD26 



I -

3/77 

Data and Report Group Descriptions: 

Editing clauses: 

{

ZERO 

:::: 
SUPPRESS 

PROTECT 

DOLLAR SIGN } 

[CLASS IS ••• J 

{PICTURE } IS (symbols J or K in the PICTURE 
character-string) 

[POINT LOCATION . IS ••• ] 

[RANGE IS ••• ] 

(JIGNED] 

[srzE IS .. ·] 

{SOURCE IS [SELECTED] ... } 
OVERFLOW HEADING 

OH 
TYPE IS 

OVERFLOW FOOTING 

ov 

COMPUTATIONAL-1 

COMP-1 

COM.PUT ATIOtlAL-2 

COMP-2 

COMPUTATIONAL-3 

COMP-3 

COMPUTATIONAL-4 

COMP-4 

DISPLAY-1 

DISPLAY-2 

c....:4 DD26A 



3/77 

• Procedure Division 

ACCEPT MESSAGE 

ADD GIVING (series of result identifiers) 

CALL 

COMPUTE 

DISPLAY 

(

FROM } 
EQUALS • • • 

( END~OF-SEGMENT } 

l ES! 

( 

END-OF-MESSAGE } 

EM! 

( :::-OF-TRANSACTION } 

DIVIDE identif ier-1 BY identifier-2 

DIVIDE INTO (series of dividend/quotient identifiers) 

DIVIDE 

ENTER 

EXIT 

IF 

(::TO} • • • GIVING 

( TIME-SAVING } 

SPACE-SAVING 

DEFINITIONS. 

LINKAGE 

[ ( 
PROGRAM } J 
entry-name . 

UNEQUAL 

EQUALS 

EXCEEDS 

THEN 

OTHERWISE 

C-5 

(series of quotient identifiers) 

DD26A 

I 



INITIATE { ALL ) 

MERGE 

(
CORR } 

MOVE -- . 
-- . CORRESPONDING 

identif ier-1 TO (series of destination. 
identifiers) 

MULTIPLY BY (series of multiplier/product identifiers) 

MULTIPLY BY GIVING (series of product identifiers) 

SUBTRACT GIVING (series of difference identifiers) 

TERMINATE { ALL ) 

WRITE ADVANCING {TO TOP OF PAGE ) 

C-6 DD26 



APPENDIX D 

COLLATING SEQUENCES 

STANDARD COLLATING SEQUENCE 

Stan. Stan. Comm. Stan. Stan. Comm. 
Char. Octal Octal Card Char. Octal Octal Card 
~~- ----- ~--- ---- ~--- ---~ ~--- ----

0 00 60 0 40 35 11-0 
1 01 61 1 J 41 36 11-1 
2 02 62 2 K 42 37 11-2 
3 03 63 3 L 43 40 11-3 
4 04 64 4 M 44 41 11-4 

·5 05 65 5 N 45 42 11-5 
6 06 66 6 0 46 43 11-6 
7 07 67 7 p 47 44 11-7 
8 10 70 8 Q 50 45 11-8 
9 11 71 9 R 51 46 11-9 
[ 12 16 2-8 52 10 11 
# 13 17 3-8 $ 53 06 11-3-8 
@ 14 22 4-8 * 54 07 11-4-8 
: 15 72 5-8 55 03 11-5-8 
> 16 20 6-8 56 76 11-6-8 

Ignore 57 21 11-7-8 
or ? 17 73 7-8 + 60 23 12-0 

space 20 00 blank I 61 11 0-1 
A 21 24 12-1 s 62 50 0-2 
B 22 25 12-2 T 63 51 0-3 
c 23 26 12-3 u 64 52 o-4 
D 24 27 12-4 v 65 53 0-5 
E 25 30 12-5 w 66 54 0-6 
F 26 31 12-6 x 67 55 0-7 
G 27 32 12-7 y 70 56 0-8 
H 30 33 12-8 z 71 57 0-9 
I 31 34 12-9 +- 72 47 0-2-8 
& 32 05 12 I 73 12 0-3-8 

33 01 12-3-8 % 74 13 0-4-8 

J 34 02 12-4-8 75 14 0-5-8 
( 35 15 12-5-8 II 76 04 0-6-8 
< 36 74 12-6-8 77 77 0-7-8 

-/ \ 37 75 12-7-8 

Except for the control characters with standard octal codes 17 and 77, the 
Series 60/6000 printer characters are the same as the graphic symbols in this 
table. 

D-1 DD26 



COMMERCIAL COLLATING.SEQUENCE 

Comm. Comm. Stan. Comm. Comm. Stan. 
Char. ~ Octal Card Printer Char. Octal O.ctal Card Printer ---.----
Space 00 20 blank Space L 40 43 11-3 L 

01 33 12-3-8· . M 41 44 11-4 M 
) or l:f 02 34 12-4-8 J N 42 45 11-5 N 

03 55 11-5-8 ) 0 43 46 11-6 0 
04 76 0-6-8 " p 44 47 11-7 p 

05 32 12 & Q 45 50 11-8 Q 
$ 06 53 11-3-8 $ R 46 51 11-9 R 

* .07 54 11-4-8 * :f 47 72 0-2-8 +-
10 52 11 s 50 62 0-2 s 

I 11 61 0-1 I T 51 63 0-3 ;r 
I 12 73 0-3•8 

' 
u 52 64 0-4 u. 

or % 13 74 0-4-8 % v 53 65 0-5 v 
14 75 0-5-8 w 54 66 0-6 w 
15 35 12-5-8 ( x 55 67 0-7 x 
16 12 2-8 [ y 56 70 0-8 y 

# or 17 13 3-8 # z 57 71 0-9 z 
20 16 6-8 > 0 60 00 0 0 

or @ 21 57 11-7-8 l 61 01 1 1 
22 14 4-8 @ 2 62 02 2 2 

+ 23 60 12-0 + 3 63 03 3 3 
4 64 04 4 4 

A 24 21 12-1 A 5 65 05 5 5 
B 25 22 12-2 B 6 66 06 6 6 
c 26 23 12-3 c 7 67 07 7 7 
D 27 24 12-4 D 8 70 10 8 8 
E 30 25 12-5 E 9 71 11 9 9 
F 31 26 12-6 ·F 72 15 5-8 
G 32 27 12-7 G 73 17 7-8 ? 
H 33 30 12-8 H 74 36 12-6-8 < 
I 34 31 12-9 I 75 37 12-7-8 \ 
0 35 40 11-0 t 76 56 11-6-8 . 
J 36 41 11-1 J 77 77 0.;...7-8 
K 37 42 11-2 K 

D-2 DD26 



APPENDIX E 

COBOL ABORT CODES 

The following codes appear on the execution report listing to identify 
abort c~rror conditions detected during the compilation or execution of a COBOL 
program. These codes originate from within the compiler or from the COBOL 
software subroutines. When an abort error condition is detected, the appropriate 
two-character abort code (Cl, C2, CA, CH, etc.) appears in place of the NORMAL 
TERMINATION portion of the termination message on the execution report listing. 

Code 

co 

Cl 

C2 

C3 

7/77 

Abort Reason/Action Required 

A requested input or output file is not contained in the File 
Address Table when the COBOL source program is compiled. 

• A compiler problem is indicated; notify the Honeywell field 
representative. 

The compiler address table (*3 file) is full. 
assigned by the operating system during 
compilation for use as a temporary working area. 
space is fifteen 3840-word random links. 

This file is 
source program 
Its allocated 

• Check for misplacement of the $ FILE *3 card in the COBOL 
source deck (that is, in the execute activity rather than in 
the compile activity). 

• Increase the size of the *3 file with a $ FILE *3 card. 

• If the Cl abort still occurs after the size of the *3 file 
is increased, recompile the program and assign the *l 
(intermediate file) and the G* (GMAP source file) to tape. 

The fixed portion of the internal data-name table is filled to 
the point where the largest 01 record on the overflow file cannot 
be read back into memory. The number of overflow reads/writes is 
indicated in the summary report at the end of the source program 
listing. 

• Increase memory size on the $ LIMITS card by a minimum of 
SK. 

Invalid internal list structures in the Data Division. 

• Possibly caused by invalid level structures for some data 
items that have been processed by the compiler prior to this 
point. 

• Check placement of $ COBOL card (must precede the COBOL 
program source deck). 

E-1 DD26B 

* 



Code -·--

C4 

cs 

Abort Reason/Action Required 

Substantive stack build error in Report :Writer dur~ng source 
program compilation. 

• Compilation problem; notify Honeywell field representative. 

Invalid internal list structures of the Report Writer d~ring 
source program compilation. 

• Compilation problem; .notify Honeywell field representative. 

C6· The fixed portion of the Report Table has become full during 
source program compilation. 

C7 

cs 

C9 

Cl'. 

CB 

• Modify the Report Section (report descriptions) 
source program. See Section VIII, Report Writer. 

in the 

• . Since the Report Table is fixed length with no overflow 
capability, an increase in memory size has no effect. 

The fixed and variable portion of the Report Table has become 
full during source program compilation. 

• Modify the Report Section (report descriptions) 
source program. See Section VIII, Report Writer. 

in the 

• Since the Report Table is fixed length with no overflow 
capability, an increase in memory size has no effect. 

Invalid internal list structures of the Report Writer analyzers. 

• Compilation problem; notify Honeywell field representative. 

The Report Writer generator cannot build its COBOL 
(internal language). 

lists 

• Compilation problem; notify Honeywell field represenfative. 

Invalid internal list structures of the Report Writer generators. 

• Compilation problem; notify Honeywell field representative. 

NOTE: C4, .CS, CB, C9, and CA are generic error codes that 
are given when the compiler is unable to process 
st~tements using the Report Writer feature. Since. 
these aborts may reflect discrepancies within the 
compiler, the Honeywell field representative should 
be notified. 

Invalid end-of-file mark (not 17 or 23 octal) has been 
encountered in a COBOL object program. An immedi.ate MME GEBORT is 
executed. 

• Incorrectly formatted input tape. Check the tape for invalid 
data. When a CB abort occurs, the invalid tape mark will 
appear in index register zero, the associated file-code will 
be located in the A-register, and the file control block 
pointer will be contained in index register 2. 

CC· An internal syntax processing error has developed within the 
compiler. 

• CoI;npilation problem; notify Hon.eywell field representative. 

E-2 DD26 



Code 

CD 

CE 

CF 

CG 

CH 

CI 

CJ 

CK 

CL 

Abort Reason/Action Required 

The COPY module, which copies text from a COBOL library, requires 
more memory. 

• Specify additional memory via the $ LIMITS card, 
possible. Refer to Section XIV, Library Facility. 

if 

Stack overflow occurred while source program syntax was being 
processed. 

• Compilation problem; notify Honeywell field representative. 

The use of a RETURN statement was attempted without having a SORT 
or MERGE statement in control. 

• Examine the source program coding for a CALL, GO TO, 
PERFORM, or ALTER statement within the output section that 
references a statement or procedure not contained within the 
output section. 

• Check for omission of the word SECTION from the output 
section/procedure label. 

An object program has attempted to perform one of the following 
computations: 

• The value zero exponentiated by the value zero. 

• The value zero exponentiated by a negative value. 

• A negative value exponentiated by a nonintegral value. 

A MME GESYOT was executed to engage the backdoor file facility 
and a denial return was received (the return code 001 is given in 
the lower half of the A-register). 

• Compilation problem; notify Honeywell field representative. 

A backdoor file facility directive (a $ FUTIL card) has one of 
the following errors: 

• A missing or invalid field delimiter. 

• A missing operand or DUMP directive. 

• An attempt was made to engage the backdoor file facility and 
this feature is not included in the system configuration. 

Missing level-numbers have been detected on 25 data-names. 

• Check for misspelled or missing Procedure Division header 
card. 

An attempt is being made to open a file that is already op.en. 

• Check the logic flow of the user program. 

The internal language analyzers have encountered an unrecoverable 
error. 

• Possibly invalid list structures. Compilation 
notify Honeywell field representative. 

E-3 

problem; 

DD26 



Code 
-.-.-~ 

Abort Reason/Action.Required 

CR Input-output data .is incomplete for a random file in the COBOL 
object program. 

• All input-output d•ta was not .transmitt~d for a r~ndom file 
in the object program. 

CT An. attempt to load the· test monitor dummy link was unsuccessful. 

•· Compilation problem; notify Honeywell field representative. 

SM COBOL linkage is not in the stack for an object program. 

• ·The following messages are printed: 

D:ESIRED LJNKAGE NOT IN PUSHDOWN STACK. 

PUSHDOWN STACK EXCEEDS LIMIT OF ~O. 

Transaction Processing Abort Codes 

CX The contents of the OUTPUT-SIZE field specify a message that is 
too large to be contained in the data field. 

CZ No station/term:inal is currently .attempting 
direct-acces.s message. 

E~4 

to access a 

DD26 



APPENDIX F 

RESERVED GMAP LOCATION SYMBOLS 

SYMBOLS USING 'FC' 

'FC' is the file-code assigned in the FI.LE-CONTROL paragraph of the 
Environment Division: 

'FC'BUFA The origin of the secondary buffer area. 

'FC'BUFF The origin of the primary buffer area. 

'FC'CHEK The first word of the RERUN control packet. 

'FC'EDOF The entry point of the AT END coding. 

'FC'FICB The location symbol of the GFRC file-code block. 

'FC'RECD The origin of the 'process area'. 

'FC'TABL The location symbol. of the file slave table (mass storage) • 

V'FC'EOF The vector switch for the AT END coding. 

NONFILE DATA SYMBOLS 

(~NNN is the source alter number.) 

CNNNNN 

MOOOOi 

M00002 

M00003 

NMMMMM 

WNNNNN 

The first word of an 01 level or 77 data item defined in the 
Constant Section. 

The first word of an optional block of temporary storage for 
procedure coding. 

The first word of a block of temporary storage required for 
procedure coding. 

The first word of a block of temporary storage required for 
procedure coding. 

The index-name location symbol. 

The first word of an 01 level or 77 data item defined in the 
Working-Storage Section. 

F-1 DD26 



REPORT:.WRITER SYMBOLS 

(NNNNN is a report alter numbe.r.) 

DNNNNN 

INNNNN 

KNNNNN 

LNNNNN 

QNN.NNN 

RNNNNN 

TNNNNN 

DETAIL report group procedures; the alter number is the 
first card of the report group. 

INITIATE procedure symbol; the alter number is the first RD 
card of the report. 

Controller report procedures; the alter number is the first 
RD card of the report. 

Report line process·area; the alter number is the first RD 
card of the report. 

GENERATE report-name procedures; the alter number is the 
first RD card of the report. 

Location symbol of the report control block; the alter 
number is the first RD card of the report. 

Also, all nondetail report group procedures; the alter 
number is the first card of the report group. 

TERMINATE procedure symbol; the alter number is the first RD 
card of the report. 

PROCEDURE DIVISION SYMBOLS 

(NNNNN is a procedure alter number.) 

c.xxxx 

C.LDIN 

EOOOOl 

E00002 

E00003 

ONNNNN 

PNNNNN 

SNNNNN 

UNNNNN 

VNNNNN 

XNNNNN 

The program entrance symbol for object runs with any 
$ entry; XXXX represents the first four characters of the 
program-name as specified in the Identification Division. 

The program entrance symbol from the General Loader• 

Index register save area (local symbol). 

End of program (local symbol). 

Undefined location for missing ACTUAL KEY. 

The first word of an OCCURS ••• DEPENDING ON control packet; 
the alter number is that of an 01 level card preceding the 
elementary item with this clause. 

Paragraph-name; the alter number is that of the card 
defining the paragraph--name. 

Section-name; the alter number is that of the card defining 
the section-name. 

USE procedure entry; the alter number is that of the card 
defining the section-name. 

Switch vector; the alter number is that of the card defining 
the GO TO statement. 

EXIT mechanism symbol; the alter number is 
con~luding source card for the paragraph that 
exit point. 

p,...2 

that of 
precedes 

the 
the 

DD26. 



xx xx xx 

ZNNNNN 

UTILITY SYMBOLS 

The CALL program entrance symbol, which·is the program-name 
specified in the Identification Division. 

The first word of an ELECT SORT OPTIONS coding packet. 

(NNNNN is a generate<l number.) 

ANNNNN Any symbol required for Procedure Division analyzer action. 

BNNNNN 

GOOOOO 

GOOOOl 

GNNNNN 

HNNNNN 

ZINBUF 

ZOTHDR 

ZOUTBl 

ZOUTB2 

• CTABL 

.CTMPO 

• CTMPl 

Any subscript calculating subroutine location or temporary 
storage location. 

The location symbol for the base post link for execution 
with the test monitor, where the value of link is .xx (XX 
represents the first two characters of program-name). 

The location symbol for 
Applications Program (TPAP) 

tLe Transaction 
identifier. 

Any symbol· required for procedure coding. 

Any symbol required for procedure coding. 

Processing 

The location symbol for the Transaction Processing input 
buffer. 

The location symbol for the Transaction Processing output 
header. 

The location symbol for the Transaction Processing output 
buffer. 

The location symbol for the Transaction Processing output 
buffer. 

Procedure-names table (for segments) . 

Temporary storage . 

Temporary storage. 

F-3 DD26 





APPENDIX G 

COMPILER LIMITATIONS 

The COBOL-68 compiler has several operational limitations that are either 
not doc~nented in previous editions of the Honeywell user's manuals, or are 
discussed in obscure locations in the manuals. These restrictions are therefore 
recorded in this appendix. 

SOURCE PROGRAM SIZE LIMITATION 

The number of lines in a COBOL-68 source program may not exceed 32,767. 

MISPLACED ERROR MESSAGES 

An error message associated with an incorrect COBOL statement may appear 
next to an inappropriate alter number if the error is caused by any of the 
following conditions: 

1. The error is contained in the final word on a line. 

2. Text that should follow the final word on a line is omitted. 

3. ·The terminating period on a line is omitted. 

The alter number associated with the error message will be . that of the 
first noncomment line following the statement containing the error. 

If a comment line is present and is one of the special comment lines 
containing LSTOF, the error message is suppressed. Therefore, any diagnostic 
messages that are printed following a line containing LSTOF and before the next 
line containing LSTON are not printed; however, they are counted in the 
respective summary report totals. 

3/77 G-1 DD26A 



lDENTIFICATION DIVISION LIMITATIONS 

In the PROGRAM-ID paragraph, the first four characters of program-name must 
not be LOIN. If the program-name exceeds six characters, it will be truncated, 
and any invalid characters will be replaced by a period. If a program is to be 
utilized within the Transaction Processing System, the first three characters of 
program-name are used .as the TPAP identifier and must be unique within the 
Transaction Processing System. If a program is to be loaded into the same 
overlay as other COBOL programs, the first four characters of each program-name 
must be unique within that overl~y. 

In the REMARKS paragraph, all lines of the comment--entry are ·restricted to 
Area B of the reference format. 

ENVIRONMENT DIVISION LIMITATTONS 

All programs in the same run unit should be co~piled in either the EIS mode 
or the NEIS mode. 

In the BLOCK option of the SPECIAL-NAMES paragraph, a maximum of 63 Labeled 
Common. storage blocks are permitted in a given program. 

DATA DIVISION LIMITATIONS 

The maximum size of an ·01 level record description entry is 99,999 words. 

Data Division Compilation 

Wnen the Data Division is being compiled, data entries are stored in a 
unified data table. Approximately 600 entries can be contained in the available 
memory area if the .standard compilation memory limit ( 32K) is used. The 
compiler includes .provisions for dynamically expanding the size of the data 
table. When the data table, as initially allocated, is full, the compiler 
attempts to obtain additional memory in 4096 (4K) word increments via the MME 
GEMORE function. If successful, the data. table is increased by the amount of 
memory specified and the source program processing continues. If three denials 
are reqeived, the data table enters an overflow status and the following 
discussion is applicable. 

If the available memory area is not sufficient to contain the entire data 
·table, portions will be written to the overflow (*3) file. When the data table 
is in an overflow condition, spurious error messages and/or incomplete object 

,pro.gram coding may be produced if one of the following types of statements is 
·encountered: 

7/77 

1. An ADD, MOVE, or SUBTRACT statement that contains a CORRESPONDING 
phrase. 

2. A conditional statement that contains a subscripted data item in which 
the subscript is a data-name. 

3. A SEARCH ALL statement or a .SEARCH statement that specifies the 
VARYING .phrase. 

G-2 DD26B 



4. A REDEFINES clause describing large data record descriptions that are 
defined in the File Section. 

If spurious error messages are received and the summary report. listing 
indicates the presence of overflow reads or writes, additional memory should be 
allocated via a $ LIMITS card until the number of overflow reads and writes is 
reduced to zero. This causes the unified data table to be entirely memory 
contained and . most programs affected by overflow problems will then compile 
correctly. 

7/77 G-2.1 DD26B 





Report Group Entry 

A spurious warning message that indicates a requirement for fractional 
truncation is produced for a report group entry that specifies both a PICTURE 
clause having a trailing scaling character 'P' and the VALUE clause. The 
program executes correctly. 

Variable-length data items may not be defined in the Report Section of the 
Data Division. 

Table Handling 

The maximum size of a single-dimension array is 262,143 characters. 

The maximum size of a multiple-dimension array is 524,287 characters. 

A literal subscript calculation that yields an effective address ~qual to 
or greater than 262,143 may produce unpredictable results. 

The maximum value that can be specified in an OCCURS clause is 32,767. 

PICTURE Clause· 

The maximum size of a data item that can be specified with a PICTURE clause 
is 131,071 characters. 

REDEFINES Clause 

When the REDEFINES clause is specified in the Workin<J·-·Storage Section and 
more than fifty noncontiguous data items (level 77) are defined, the REDEFINES 
clause and the item it redefines must be included in the same group of fifty 
items; that is, in the first fifty level 77 items, or the second fifty level 77 
items, etc. 

VALUE Clause 

When Format 2 of the VALUE clause is specified (a level 88 condition-name 
entry), no more than 24 ranges of values (THRU phrases) may be used. 

If a data item has an ending character position within a record that is 
equal to or greater than 262,143, the data item must not be referenced by a 
Procedure Division statement and must not include a VALUE clause in its data 
description. 

3/77 G-3 DD26A 



PRO,CEDURE DIVISION LIMITATIONS 

Segmentation 

The first paragraph~name in a section within a segmented program must be 
contiguous to the section-name; that is, no intervening blank lines, comment 
lines, NOTE sentences, and/or EJECT lines are allowed. 

COPY Statement 

A bl;:(lnk line must not immediately follow a COPY statement. A maximum of 99 
COPY s.tatements are permitted within a given COBOL program. 

American National Standard COPY WITH CCOMDK Option 

An erroneous data structure may be produced when the following conditions 
exist: 

1. Both the LIBCPY option and the CCOMDK option are specified in the 
variable field on the $ COBOL card, and 

2. A COPY statement with a terminating period in column 72 is specified. 

These conditions cause the source statement following the COPY statement 
'that has a period in column 72 to be treated as a comment by incorrectly 
inserting an asterisk (*) in column 7 of the entry. 

IF Conditional Statements 

Undefined GMAP symbols may be produced when the following conditions exist: 

1. A single IF conditional statement contains references to more than 17 
conditional variables (level 88 items) which are connected by ei~her 
an AND or .an OR logical operator, and 

2·. Each conditional variable is de fined using the THRU phrase of the 
VALUE clause. 

A compiler abnormal termination may result when the following conditions 
exist: 

7/77 

1. More than 13 nested IF conditional statements are specified, and 

2. Each IF conditional statement references a conditional variable (level 
·8 8 i tern) which is defined using the THRU phrase of the VALUE- cl a:use. 

G-4 DD26B 



MOVE Statement 

A spurious warning message that indicates a requirement for fractional 
truncation is produced when an· inte·ger data i tern having a trailing scaling 
character 'P' is the subject of a MOVE statement. The program executes 
correctly. 

NOTE Paragraph 

If a NOTE paragraph contains more than one sentence, the appearance of the 
reserved word COPY in the second or subsequent sentences will produce the 
following extraneous error message during compilation: 

ER ILLEGAL CHARACTER IN COLUMN 7 -- DELE'I'ED CHARACTER 

The compiled program will execute correctly. 

OPEN Statement 

If the total number of files concurrently open in a COBOL program 
approache~ 25-JO, the amount of available space in the· peripheral allocation 
table (PAT) could become exhausted and an abnormal GCOS termination may occur. 
This is an operating system limitation. 

PERFORM Statement 

When a PERFORM ..• VARYING •.• AFTER .•• FROM ••. BY statement is compiled in 
the non-EIS mode, spurious GMAP 'M' flags may be produced if radix conversion is 
required for any operand specified in the AFTER, FROM, or BY phrases. The 
resultant object program will execute correctly. 

7/77 G-4.1 DD26B 



I: 
k 



If an incomplete condition is specified within a PERFORM statement which is 
itself the imperative portion of an IF conditional statement, no error message 
is produced. 

Example: IF A B PERFORM C VARYING D FROM 1 BY 1 UNTIL > E. 

In the above example, no error flag will be generated for the incomplete 
condition '> E'. ·coding is produced as if the condition were written as 
'A > E'. 

READ Statement 

If a. READ ••• AT END statement is specified as a part of the 
imperative-statement for another READ ••• AT END statement, no error message is 
printed and undefined GMAP symbols may appear on the source program listing. 

SORT-MERGE Statements 

The following comment does not represent a compiler limitation but is 
documented in this appendix because the implicit nature of the SORT input and 
output procedures and the MERGE output procedure is often misunderstood._ 

The input procedure and output procedure of a SORT statement, and the 
output procedure of a MERGE statement, are considered to he PERFORM mechanisms; 
they must conform to the rules for entering and exiting as specified for the 
PERFORM statement. If these rules are not followed, a GCOS or SORT error 
message will be printed and an abnormal termination will occur. 

USE Statement 

If Format 2 of the USE statement is specified, the label procedures must 
not execute any ACCEPT FROM GIN, CLOSE, DISPLAY, DISPLAY UPON SYSOUT, OPEN, 
READ, SEEK, or WRITE statements. 

WRITE Statement 

The ADVANCING phrase in Format 1 of the WRITE statement must not be 
specified for a file that contains an OCCURS ••• DEPENDING clause. 

3/77 G-5 DD26A 





INDEX 

$ COBOL 
$ COBOL card B-1 

$ ETC 
$ E'rC B-3 

$ EXECUTE 
$ EXECUTE 15-8 
$ EXECUTE 6-7 

$ LIMITS 
$ LIMITS 16-3 
$ LIMITS B-3 

$ LINK 
$ LINK 15-6 

$ NTAPE 
$ NTAPE 9-16 

$ TAPE 
$ TAPE 9-16 

'FC' 
SYMBOLS USING 'FC' F-1 

.CMEQK 
.CMEQK · 9-24 

.CSEQK 
.CSEQK 9-8 

66 
Level-number 66 4-4 
level-number 66 4-13 
level-number 66 2-4 

77 
Level-number 77 4-4 
level 77 entries 17-3 
level-number 77 2-3 

88 i 
Level-number 88 4-4 
level-number 88 4-1 
level-number 88 2-4 

i-1 DD26 



ABORiT CODES . 
ABOR'I' CODES 
Transaction Proc~ssing Abort Codes 

ABORTS 
Compilation Aborts 

ACCEPT 
ACCEPT STATEMENTS 

ACCEPT MESSAGE 
ACCEPT MESSAGE 

ACCESS MODE 
ACCESS. MODE Phr as,e 

ACTUAL. ,KE.Y 
ACTUAL KEY 
AC.TUAL KEY 
ACTUAL KEY Phr as·e 

ADD' 
ADD Statement 

ADVANCING 
ADVANCING PHRASE 

ALIGNMENT 
alignment 

ALLOCATION 
Resource Allocation 

ALPHABETIC 
ALPHABETIC 
ALPHABETIC 
Alphabetic 

ALPHANUMERIC 
ALPHANUMERIC 
Alphanumeric 

ALPHANUMERIC EDITED 
Alphanumeric Edited 

ALTER 
ALTER 
ALTER 
ALTER 

AMERICAN NATIONAL STANDARD 
AMERICAN NATIONAL STANDARD COPY 
AMERICAN NATIONAL. STANDARD COPY WITH CCOMDK 
AMERICAN NATIONAL: STANDARD COPY WITH COMDK 

AND 
AND 

APPLICATIONS 
TRANSACTION PROCESSING APPLICATIONS PROGRAMS (TPAPS} 
Transaction Processing Applications Program Example 

APPLY 
APPLY PHRASE 
APPLY PROCESS AREA phEase 

i-2 

E-1 
E-4 

16-8 

6-1 

7-5 

3-7 

5-20 
5-2 
3-8 

11-7 

5-23 

4-14 

16-5 

12-3 
17-4 
10-2 

. 17-4 
10-2 

10-2 

9-10 
15-5 

9-26 

14-10 
14-12 
14-12 

12~5 

7-3 
7-9 

3-8 
16-9 

DD26. 



AREA 
SAME AREA 
SAME AREA Phrase 
SAME AREA phrase 
SAME RECORD AREA 
SAME RECORD AREA Phrase 
SAME RECORD AREA phrase 
SAME SORT or SOH'I'-MimGE l\HEJ\ Phrase 
Buffer Areas 
FILE PROCESSING AHJ.:;AS 
Labeled Common areas 
Labeled. Common areas 
Record Areas 
Sort Areas and Sort~Merge Areas 

ARITHMETIC 
ARITHMETIC STATEMENTS 
arithmetic operators 
Multiple Results in Arithmetic Statements 

ASCENDING 
ASCENDING option 
ASCENDING option 

ASSIGN 
ASSIGN Phrase 
ASSIGN phrase 

AT END 
AT END 
AT END 
AT END 
AT END PHRASE 
AT END phra~e 

BACKDOOR FILE 
back¢ioor file 

BITS 
BITS option 

BLANK COMMON 
FOR BLANK COMMON Phrase 

BLANK WHEN ZERO 
BLANK WHEN ZERO Clause 

BLOCK CONTAINS 
BLOCK CONTAINS Clause 

BLOCK SERIAL NUMBER 
BLOC.K SERIAL NUMBER Phrase 

BLOCKING FACTOR 
blocking factor 

BREAK 
control break 
Over

1

flow Breaks 
Page Breaks 

i-3 

5-14 
3-10 

16-9 
5-15 
3-10 

16-10 
3-11 
5-14 
5-14 
9-19 
9-29 
5-14 
5-16 

11-6 
11-2 
11-10 

9-8 
9-23 

3-4 
9-4 

9-12 
9-27 
5-4 
5-21 

13-8 

16-10 

17-7 

3-7 

4-1 

3-13 

3-9 

3-14 

8-7 
ij-8 
8-8 

DD26 



BUFFER 
Buffer.Areas 

CALCULATIONS 
POST-SLEW CALCULATIONS 
·PRE-SLEW CALCULATIONS 

CA.LL 
CALL STATEMENT 

CARD 
$ COBOL card 
File Control Cards 

CCOMDl< 
AMERICAN NATIONAL STA:NDARD COPY WITH CCOMDK 
HIS COPYWI.TH CCOMDK 

CHARACTER~STRING 

character-string 

CHECK 
label check 

CHECK PROTECT 
CHECK PROTECT 

CHECKPOINT 
checkpoint dump 

CLASS 
CLASS Clause 
CLASS CONDITION 

CLASSIFICATION 
Segment Classification 

CLAUSES . 
Editing Clauses 

CLOSE 
CLOSE Statement 
STANDARD CLOSE FILE 
STANDARD CLOSE REEL 
Closed Status 

·COBOL 
COBOL INPUT STATEMENT PROCESSING 
COBOL OUTPUT STATEMENT PROCESSING 
COBOL USER'S GUIDE ORGANIZATION 
ORDER OF COBOL SOURCE PROGRAM 

CODE 
CODE clause 

COLL.ATING SEQUENCE 
COMMERCIAL COLLATING SEQUENCE 
commerc~al collating sequence 
commercial collating s.equence 
STANDARD COLLATING SEQUENCE 
collating sequences 

COLLATION 
collation files 

i-4 

5-14 

·a-1s 
&-14 

15-14 

B-1 
5-10 

14-12 
14-5 

4-8 

5-27 

17-6 

3-10 

17-4 
12-3 

15-2. 

17-5 

5-25 
5-26 
5-26 
5-2 

7-5 
7-7 
1-2 
A-1 

8-9 

D-2 
2-24 
4-18 
D-1 

12-2 

9-15 

DD26 



COMDK 
AMERICAN NATIONAL STANDARD COPY WITH COMDK 
HIS COPY WITH COMDK 

COMMERCIAL 
COMMERCIAL COLLATING SEQUENCE 
conunercial collating sequence 
commercial collating sequence 

COMMUNICATION-DEVICE 
COMMUNICATION-DEVICE 
COMMUNICATION-DEVICE 
COMMUNICATION-DEVICE 

COMMUNICATIONS 
Procedure Division Communications 

COMP-3 PK SYNC 
COMP-3 PK SYNC 

COMPARISONS 
Comparisons Involving ·rndex-Names and/or Index Data Items 

COMPILATION 
COMPILATION TECHNlQUES 
Compilation Aborts 

COMPILE PHASE! ONLY 
COMPILE PHASEl ONLY option 

COMPRESSED 
COMPRESSED DECKS 

COMP UT A'l1 ION 
METHODS OF COMPUTATION 

COMPUTATIONAL 
COMPUTATIONAL 
COMPUTATIONAL 
COMPUTATIONAL 
COMPUTATIONAL Data Items 
COMPUTATIONAL Item Formats 
COMPUTATIONAL items 

I 
COMPUTATIONAL-1 

COMPUTATIONAL-1 Data Items 

COMPUTA'l1 I ONAL-2 
COMPC)TATlONAL-2 Data Items 

COMPUTATIONAL-3 
COMPUTATIONAL-3 Data Items 
COMPUTATIONAL-3 PACKED SYNCHRONIZED Data Items 

COMPUTE 
COMPUTE Statement 

CONDITION 
CLASS CONDITION 
CONDlTION-NAME CONDITION 
overflow condition 
RELATION CONDITION 
SIGN :CONDITION 
SWITCH:-STATUS CONDITION 

i-5 

14-12 
14-5 

D-2 
4-18 
2-24 

6-4 
7-7 
7-5 

15-13 

4-18 

13-10 

16-2 
16-8 

16-2 

16-14 

11-1 

16-13 
15-16 

4-17 
2-27 
2-25 
4-15 

2-30 

2-31 

2-31 
2:-32 

11-7 

12-3 
12-4 

8-9 
12-1. 
12-3 
12-5 

DD26 



CONDITION-NAME 
CONDITION-NAME CONDITION 
Condition-Name Entries 
Condition-Name Entry 
condition-name entries 

CONDITIONAL 
CONDITIONAL PROCEDURES 
CONDITIONAL STATEMENTS 

CONDITIONAL VARIABLE 
conditional variable 
conditional variable 
conditional variable 

CONDITIONS 
·Abbreviated Combined Relation Conditions 
Compound Conditions 
Evaluation. Rules for Conditions 
Simple Condit~ons 

CONSOLE 
CONSOLE 

CONS0LE
1 

INTERACTION 
console interaction 

CONSTANT 
CONSTANT SECTION 
Constant Records 
Noncontiguous Constant Storage 
Tables of Constants 

CONSTRAINTS 
Linked Overlay Environment Constraints 
REPORT WRITER TABLE CONSTRAINTS 

CONTROL 
Control Data Items· 
cont'rol break 
File Control Cards 
Report Control 
Segmentation Control 
slew control 
slew control 
Transfer of Control 

CONVERSION 
span conversion 

COPY 
AMERICAN NATIONAL STANDARD COPY 
AMERICAN NATIONAL STANDARD COPY WITH CCOMDK 
AMERICAN NATIONAL STANDARD COPY WITH COMDK 
COPY; Clause 
COPY FUNCTIONS 
HIS COPY 
HIS ,COPY WITH CCOMDK 
HIS COPY WITH COMDK 

CCR.RELATION 
SOURCE/SUM Correlation 

i-6 

12-4 
2-4 
4-1 
4-20 

1.2-1 
17-10 

12-4 
4-20 
4-2 

12-8 
12-5 
12-14 
12-1 

6-6 

6-6 

17-2 
17-3 
17-2 
17-3 

15-16 
8-16· 

8-7 
8-7 
5-10 
8-2 

15-3 
6-4 
5-23 

15-5 

2-28 

.14-10 
14-12 
14-12 

4-2 
14-1 
14-1 
14-5 
14-5 

8-13 

DD26 



CORRESPONDING 
CORRESPONDING Option 

COUNTER 
Line Counter 
Page Counter 
SUM Counter Manipulation 

CROSS-REFERENCE 
CROSS-REFERENCE FACILITY 

CROSSFOOTING 
CROSSFOOTING 

DAC 
Direct-Access (DAC) Mode Processing 

DATA 
DATA STRUCTURES 
hierarchy of data 
NONFILE DATA SYMBOLS 
positioning of data 

DATA DESCRIPTION 
DATA DESCRIPTION ENTRIES 
Data Description Techniques 

DATA FORMATS 
External Data Formats 
Internal Data Formats 

DATA ITEMS 
COMPUTATIONAL Data Items 
COMPUTATIONAL-1 Data Items 
COMPUTATIONAL-2 Data Items 
COMPUTATIONAL-3 Data Items 
COMPUTATIONAL-3 PACKED SYNCHRONIZED Data Items 
Control Data Items 
Tables of Data Items 

DATA MANIPULATION 
Data Manipulation Techniques 

DATA MOVEMEN'l' 
DATA MOVEMENT 

DATA RECORDS 
DATA RECORD(S) Clause 

DATA TRANSMISSION 
DATA TRANSMISSION PROGRAM EXAMPLE 
DATA TRANSMISSION TECHNIQUES 
LOW-VOLUME DATA TRANSMISSION 

DATA-NAME 
DATA-NAME OPTION 

DATE 
Date and Time 

DEBUG 
DEBUG STATEMENTS 

DECIMAL·POINT 
assumed decimal point 

i-7 

11-5 

8-9 
8-10 
8-10 

16-15 

8-12 

7-8 

2-1 
4-3 
F-1 
4-3 

2-22 
16-13 

2-11 
2-16 

2-27 
2-30 
2-31 
2-31 
2-32 
8-7 
2.-6 

16-12 

10-1 

3-16 

6-9 
6-3 
6-1 

3-18 

6-5 

16-1 

17-7. 

DD26 



DE.C~, SETUPS 
DECK,· SETUPS 

DECKS 
COMPRESSED DECKS 

DECLARATIONS 
Merge Key Declarations 
Sort Key Declarations 

DEPEND:tNG 
DEPENDING phrase 

DESCENDING 
DESCENDING option 
DESC;t::Ni>ING option 

DEVICE 
device independence 
Peripheral Devices 
Remote Devices 

DIRECT-ACCESS 
Direct-Access (DAC) Mode Processing 

DISPLAY 
DISPLAY 
DISPLAY 
DISPLAY Item Formats 
DISP~AY.STATEMENTS 

DISPLAY-! 
DISPLAY-! 

DISPLAY-2 
DISI>LAY-2 

DIVIDE 
DIVIDE Statement 

DOWN BY 
DOWN BY 

DUMP 
cheokpoint dump 
DUMP option 

DUPLICATE 
duplicate text 

E'DITING 
EDITING RULES 
Editing Clauses 

ELECT 
ELECT 
ELECT 
ELECT phrase 
ELECT phrase 

i-8 

:S-1 

16-14 

9-22 
9-5 

4-5 

·9-8 
9-23 

s-10 
5-12 
6-4 

7-8 

4-17 
7-7 
2-24 
6-2 

2-24 

2-24 

11-8 

13-9 

3-LOi 
16-9 

4-2 

4-10 
17-5 

9-15" 
9-11 
9-31 
9-19 

DD26 



ELEMENTARY ITEM 
ELEMENTARY ITL'M DESCRIPTION ENTRIES 
elementary item 
r;:lementary item 
elementary item 
ELEMENTARY ITEMS 
GROUPS OF ELEMENTARY ITEMS 
Group Items and Elementary Items 
Noncontiguous Elementary Items 

ELEMENTARY MOVE 
elementary MOVE . 

ELEMENTS 
OBSOLETE LANGUAGE ELEMENTS 

END-OF-,MESSAGE 
.END-:oF-MESSAGE 

END~OF-,SEGMENT 

END-:OF-SEGMENT 

END-OF-TRANSACTION 
END-OF-TRANSACTION 

:E:NTRIES 
Condition-Name Entries 
condition-name entries 
DATA DESCRIPTION ENTRIES 
ELEMENTARY ITEM DESCRIPTION ENTRIES 
FILE DESCRIPTION ENTRIES 
GROUP ENTRIES 
Level-Number/Data-Name Entries 
level 77 entries 
RD Entries 
REDEFINES Entries 
RENAMES Entries 
REPORT GROUP ENTRIES 
Report Group Entries 
SORT-MERGE FILE DESCRIPTION ENTRIES 
SOURCE ENTRIES 
SUM ENTRIES 
VALUE ENTRIES 

ENTRY 
Condition-Name Entry 

ENTRY POINT 
ENTRY POINT PHRASE 

EQUAL ~EY 
MERGE EQUAL KEY RECORD PROCESSING 
Merge Equal Key Procedures 
SOR+ EQUAL KEY RECORD PROCESSING 
Sort Equal Key Procedures 

EQUALS 
EQUALS 

ERROR PROCEDURE 
ERROR PROCEDURE PHRASE 

EXAMINE 
REPLACING PHRA.SE (EXAMINE STATEMENT) 
TALLYING PHRASE (EXAMINE STATEMENT) 

i-9 

4-1 
4-13 
4-8 
8-4 

16-5 
4-20 
2-1 
2-3 

10-1 

17-1 

7-7 

7-7 

7-7 

2-4 
4-20 
2-22 
4-1 
3-12 
8-21 
4-3 

17-3 
8-5 
2-3 
2-4 
8-20 
8-5 
3-13 
8-21 
8-23 
8-24 

4-1 

15-15 

9-25 
9-23 
9-9 
9-8 

13-7 

5-27 

10-8 
11-12 

DD26 



EXAMPLE 
DATA; TRANSMISSION PROGRAM EXAMPLE 
Multiple Module Program Example 
REPORT WRITER PROGRAM EXAMPLE 
Transaction Processing Applications Program Example 
EXAMPLES OF MOVE CORRESPONDING STATEMENTS 
EXAMPLES OF MOVE STATEMENTS 
FILE PROCESSING EXAMPLES 
Merge Examples· 
SEARCH and SET Statement Examples 
Sort Examples 

EXIT 
EXIT 
EXIT STATEMENT 

EKBONENTIAT·ION 
exponentiation 

FIGURATIVE CONSTANTS 
figurative constants 

FILE 
* 3 File 
File Control Cards 
File Utilization 
STANDARD CLOSE FILE 
The Merge File 

·The Sort File 

FILE CONTAINS 
FILE CONTAINS Clause 

FILE DESCRIPTION 
FILE DESCRIPTION ENTRIES 
SORT-MERGE FILE DESCRIPTION ENTRIES 
FILE DESCRIPTIONS 

FILE PROCESSING 
FILE PROCESSING AREAS 
FILE PROCESSING CONCEPTS 
FILE PROCESSING EXAMPLES 
FILE PROCESSING STATEMENTS 
Intercom Input File Processing 
·Intercom Output File Processing 

FILE-CODES 
Reserved File-Codes 
Reserved File-Codes 

FlLE-LIMITS 
F~LE-LIMIT(S} Phrase 

FILE-N;\ME 
Fil~-Name Phrase 
Lev;el Indicator and File-Name 

FILES 
ASS,IGNMENT OF FILES 
collation files 
PROCESSING NONLABELED MULTIPLE REEL FILES 
PROCESSING OPTIONAL FILES 

i-10 

6-9 
15-17 

8-27 
7-9 

10-7 
10-3 

5-29 
9-29 

13-·10 
9-20 

15-14 
15-15 

11-3 

10-1 

16-6 
5-10 

16-7 
5-26 
9-22 
9-4 

17-6 

3-12 
3-13 
3-1 

5-14 
5-1 
5-29 
5-16 
7-3 
7-5 

9-14 
9-28 

3-7 

3-2 
3-13 

5-10 
9-15 
5-4 
5-3 

DD26 



FILLER 
FILLER 
FILLER 
FILLER 

FINAL 
FINAL 

FIXED OVERLAYABLE 
Fixed overlayable segments 

FIXED PERMANENT 
Fixed permanent seg~ents 

FIXED-LENGTH 
Fixed-Length Records 

FLAGGING 
NONSTANDARD FEATURE FLAGGING 

FLAGNA 
FLAGNA option 

FLOAT DOLLAR SIGN 
FLOAT DOLLAR SI.GN 

FOOTING 
FOOTING phrase 

FOR CARDS 
FOR CARDS Phrase 

FOR LISTING 
FOR LISTING Phrase 

FORMAT 
LOGI.CAL RECORD FORMAT 
Transaction Message Format 
VLR FORMAT Phrase 
COMMON OPTIONS IN STATEMENT FORMATS 
COMPUTATIONAL Item Formats 
DISPLAY Item Formats 

FORMULAS 
FORMULAS 

FROM 
FROM mnemonic-name phrase 
FROM PHRASE 
FROM phrase 

GENERATE 
GENERATE statement 

GET 
GET function 

GIN 
GIN, 

GIVING 
GIVING 
GIVING.OPTION 
GIVING OPTION 

i-11 

4-15 
16-13 
16-4 

'd-7 

15-2 

. 15-2 

2-13 

C-1 

C-1 

17-6 

8-9 

3-5 

3-6 

2-12 
7-2 
3-10 

11-4 
2-25 
2-24 

11-2 

6-1 
5-23 
9-10 

8-3 

. 5-6 

6-3 

15-16 
9-25 
9-11 

DD26 



GLAPS 
GLAPS 

GMAP 
RESERvEO GMAP LOCATION SYMBOLS 

GO TO 
GO TO 
GO TO 
GO TO 

'GROUP 
· GROUP ENTRIES 
group MOVE 

GROUP ITEM 
~rotip item 
grou~ item 
GROUP ITEMS 
Group Items and Elementary Items 

GROUP I.NG 
grouping 

GROUPS 
GROUPS OF ELEMENTARY ITEMS 

GTIME 
GTIME 

HIERARCHY 
hierarchy of data 

HIGH-VALUE 
HIGH-VALUE 

HIS 

HMS 

I-0 

IF 

HIS COPY 
HIS COPY WITH CCOMDK 
HIS COPY WITH COMDK 

HMS option 

I-0 mode 
I-0 OPTION 

IF 

INDEPENDENCE 
device independence 

INDEPENDENT 
Independent segments 

INDEX DATA ITEM 
index data item 
inde~ data item 
Comparisons Involving Index.:..Names and/or Index Data Items 
index data items 
inde·& data i terns 

i;..12 

6--5 

9-10 
9-26 

15-5 

8-21 
2-26 

4.-13 
4-5 

16-5 
2-1 

12-7 

4-20 

6-5 

4-3 

6-4 

14-1 
14-5 
14-5 

6-5 

5-3 
5-19 

12-5 

5-10 

15-2 

12-3 
4-18 

13-10 
13-3 
13-'9 

DD26 



INDEX-NAME 
index-name 
index-name 
Comparisons Involving Index~Names and/or Index Data Items 

INDEXED 
INDEXED phrase 

INDEXED BY 
. INDEXED BY 

INDEXED BY 
INDEXED BY 
INDEXED BY 

INDEXING 
INDEXING 
INDEXING 
Rules for Subscripting and Indexing 

INDICATOR 
Level Indicatox and File-Name 

INITIATE 
INITIATE statement 

INPUT 
COBOL INPUT STATEMENT PROCESSING 
INPUT mode 
INPUT OPTION 
Intercom Input File Processing 
Merge Input Processing 
Sort Input Processing 
System Input 

INPUT PROCEDURE 
INPUT PROCEDURE OPTION 

INPUT-OUTPUT 
Input-Output Techniques 

INTERFACE 
TPE/TPAP Interface 

INTO 
INTO OPTION 
INTO phrase 
INTO phrase 

INVALID KEY 
INVA+..ID KEY PHRASE 
INVALID KEY.PHRASE 

ITEMS 
COMPUTATIONAL items 
subordinate items 

JUSTIFIED 
JUSTIFIED 
JUSTIFIED Clause 

i-13 

13-1 
4-18 

13-10 

4-4 

2-10 
13-3 
13-7 
13-9 

13-3 
2-10 

13-4 

3-13 

8-3 

·7-5 
5-3 
5-19 
7-3 
9-25 
9-9 
6-3 

9-10 

16-9 

7-3 

5-21 
9-12 
9-26 

5-22 
5-25 

4-1.5 
2-1 

4-19 
4-3 

DD26 



KEY · 
KEY phrase 
KEY phrase 
Merge Key Declarations 
Merge Key Evaluation 
Sort Key Declarations 
Sort Key Evaluation 
keys 

LABEL 
label check 

LABEL PROCEDURE 
LABEL PRGCEDURE PHRASE 

LABEL RECORDS 
LABEL RECORD(S) Clause 

LA:BELED.COMMON 
Labeled Common 
Labeled Common areas 
Labeled Common areas 

LANGUAGE 
OBSOLETE LANGUAGE ELEMENTS 

LEAVING 
LEAVING phrase 

LEVEL 
Level Indicator and File-Name 
level 77 entries 

LEVEL-NUMBER 
Leve;l-number 66 
Level-number 77 
Level~number 88 
level-number 66 
level-number 66 
level-number 77 
level-number 88 
level-number 88 

LEVEL-NUMBER/DATA-NAME 
Level-Number/Data-Name Entries 

·LEVEL-NUMBERS 
Level-Numbers 

LIBCPY 
LIBCPY 

.LIBRARY 
DESCRIPTION OF THE LIBRARY FACILITY 
library text 

LIMITATIONS 
RESET Stack Limitations 
SUM Operand Limitations 

LINE 
Line Counter 
line spacing 

4-5 
13-7 

9-22 
9...;.23 
9-5 
9-7 
9-1 

5-27 

5-27 

3-17 

15-13 
9...;.19 
9-29 

17-1 

17-6 

3-13 
17-3 

4-4 
4-4 
4-4 
4-13 
2-4 
2-3 
2-4 
4-1 

4-3 

2-2 

14-10 

14-1 
14-3 

8-17 
8-16 

8-9 
5-24 

DD26 



LINE NUMBER 
LINE NUMBER 

LINE SWITCHING 
line switching 

LINKING 
Segmentation, Linking, and Loading 

LIST/DUMP 
test monitor list/dump 

LOADING 
Segmentation, Linking, and Loading 

LOCATION SYMBOLS 
RESERVED GMAP LOCATION SYMBOLS 

LOGICAL 
LOGICAL RECORD FORMAT 
logical record 

LOW-VOLUME 
LOW-VOLUME DATA TRANSMISSION 

MACHINE 
MACHINE WORD 

MERGE 
MERGE 
MERGE 
MERGE EQUAL KEY RECORD PROCESSING 
Merge Configuration 
Merge Equal Key Procedures 
Mer,ge Example_s 
Merge Input Processing 
Mer;ge Key Declarations 
Merge Key Evaluation 
Merge Output Processing 
The Merge File 

MERGING 
Merging 
merging process 

MNEMONIC-NAME 
FROM mnemonic-name phrase 
UPON mnemonic-name phrase 

M9DE 
Direct-Access (DAC) Mode Processing 
I-0 mode 
INPUT mode 
OUTPUT mode 

MODULARIZATION 
DESCRIPTION OF MODULARIZATION 

MODULE 
Multiple Module Program Example 
Modules 

i-15 

8-10 

7-'d 

15-6 

16-9 

15-6 

F-1 

2-12 
2-1 

6-1 

2-16 

9-2 
15-5 

9-25 
9-28 
9-23 
9-29 
9-25 
9-22 
9-23 
9-25 
9-22 

9-1 
9-27 

6-1 
6-2 

T-8 
5-3 
5-3 
5-3 

15-11 

15-17 
15-12 

DD26 



'MOVE 
E){AMfLES OF MOVE STATEMENTS 
group MOVE 
MOVE 
MOVE SPACES 
MOVE STATEMENT 

MOVE CORRESPONDING 
EXAMPLES OF MOVE CORRESPONDING STATEMENTS 
MOVE CORRESPONDING.STATEMENT 

MOVE ••• C.ORRESPONDING 
MOVE ••• CORRESPONDING 

MULTIPLE FlLE 
MULTIPtE.!.FILE Phrase 
Multip:be•;file tape positioning 

MULTIPLE ··REEL 
PROCJ:,:SSING NONLABELED MULTIPLE RE·EL FILES 

MULTIPLE REEL/UNIT 
FOR ,t-1ULTIPLE REEL/UNIT Phrase 

MULTIPLIER 
span multiplier 

MULTIPLY 
MULTIPLY Statement 

NEGATIVE 
NEGATIVE 

NEXT GROUP 
NEXT·GROUP 

NLSTIN 
NLST'IN option 

NO DATA 
NO DATA phrase 

NO REWIND 
NO REWIND OPTION 

NONSTANDARD 
NONSTANDARD FEATURE FLAGGING 

.NOT 
NOT 
NOT Operator 

·NOXREF. 
NOXREF option 

·NUMBERS 
BINARY NUMBERS 

·N\!1.t-IBRIC 
NUMERIC 
NUMERIC 
Numeric 
Numeric Operands 

i-16 

10-3 
2~26 

9-10 
16-12 
10~1 

10-7 
10-5 

16-14 

3-11 
s~12 

5-4 

3-6 

2-28 

11-9 

12-3 

8-10 

16-2 

7-5 

5-20 

C-1 

12-5 
12-11 

16-15' 

2-18 

17-4 
12-3 
10-2 
12-2 

DD26 



NUMERIC EDITED 
Numeric EditeJ. 

OBJECT PROGRAM 
object program 

OCCURRENCE NUMBER 
occurrence number 
occurrence numbers 

OCCURS 
occ·uRs 
OCCURS 
OCCURS 
OCCURS 
OCCURS Clause 

OMITTED 
OMITTED OPTION 

OPEN 
OPEN Statement 
Open Status 

OPERAND 
SUM Operand Limitations 
Nonnumeric Operands 
Numeric Operands 
Overlapping Operands 

OPERATQR 
NOT Operator 
arithmetic operators 
Unary Operators 

OPTIONAL 
OPTIONAL Phrase 
PROCESSING OPTIONAL FILES 

OPTIONS 

OR 

COMMON OPTIONS IN STATEMENT FORMATS 
SORT-MERGE ELECTIVE OPTIONS 
system options 

OR 

ORDER 
ORDER OF COBOL SOURCE PROGRAM 
Ordering 

OUTPUT 
COBOL OUTPUT STATEMENT PROCESSING 
Intercom Output File Processing 
Merge Output Processing 
OUTPUT mode 
Sort Output Processing 
Syst-em Output 

OUTPUT PROCEDURE 
OUTPUT PROCEDURE OPTION 
OUTPUT PROCEDURE OPTION 

OVERFLOW 
Overflow Breaks 
overflow condition 

i-17 

10-2 

1-3 

13-8 
13-2 

13-1 
2-6 
9-6 
9-23 
4-4 

3-17 

5-18 
5-2 

8-16 
12-2 
12-2 
11-11 

12-11 
11-2 
11-3 

3-1 
5-3 

11-4 
9-31 
B-1 

12-5 

A-1 
9-1 

7-7 
7-5 

.. 9-25 
5-3 
9-11 
6-3 

9-11 
9-26 

8-8 
8-9 

DD26 



OVERLAPPING 
Overlapping Operands 

OVERLAY 
Linked Overlay Environment Constraints 
OVERL~Y Phrase . 
overlay requirements 

PACKED DECIMAL 
PACKED DECIMAL EFFTCIENCY TECHNIQUES 
packed decimal 
packed decimal 

PACKED SYNCHRONIZED 
COMPUT.ATIONAL-3 PACKED SYNCHRONIZED Data Items 

·PADDING 
padding 

.PrAGE 
Page Breaks 
Page Counter 
page spacing 

PARENTHESES 
parentheses 
parentheses 

PARTITIONED 
Partitioned Records 

PERFORM 
PERFORM 
PERFORM 
PERFORM 
VARYING PHRASE (PERFORM STATEMENT) 

·PERIPHERAL 
Peripheral Devices 

PHYSICAL 
physical record 

PICTURE 
PICT;URE 
PICTURE 
PICTURE 
PIC~URE Clause 

PLACES 
PLACES option 

POINT LOCATION 
POINT LOCATION Clause 

POSITION 
POSITION option 
Multiple file tape positioning 
positioning of data 

i-18 

11-11 

15'.""16 
3-1 

15-1 

16-15 
2-32 
4-18 

2-32 

3-5 

8-8 
8-10 
5-24 

12-7 
11-2 

2-15 

9-26 
9-10 

15-5 
11-14 

5-12 

2-1 

17-9 
17;_6 
10-1 

4-8 

17-7 

17-7 

3-11 
5""."12 
4-3 

DD26 



POSITIVE 
POSITIVE 

PREFERRED 
pref erred spans 

PREPARED 
PREPARED OPTION 

PRIORITY-NUMBERS 
PRIORITY-NUMBERS 

PROCEDURE DIVISION 
PROCEDURE DIVISION SYMBOLS 
Procedure Division Communications 

PROCEDURES 
CONDITIONAL PROCEDURES 
Merge Equal Key Procedures 
Sort Equal Key Procedures 

PROCESS AREA 
APPLY PROCESS AREA phrase 
PROCESS AREA Phrase 
process area 
process area 

PROCESSING 
COBOL INPUT STATEMENT PROCESSING 
COBOL OUTPUT STATEMENT PROCESSING 
Direct-Access ·(DAC) Mode Processing 
MERGE EQUAL KEY RECORD PROCESSING 
Merge Input Processing 
Merge Output Processing 
PROCESSING NONLABELED MULTIPLE REEL FILES 
PROCESSING OPTIONAL FILES 
Random-Access Processing 
Sequential-Access Processing 
SORT EQUAL KEY RECORD PROCESSING 
Sort Input Processing 
Sort Output Processing 

PROCESSING MODE 
PROCESSING MODE Phrase 

PROCESSOR 
Processor Time 
Processor Time 

PROGRAM 
DATA TRANSMISSION PROGRAM EXAMPLE 
Multiple Module Program Example 
REPORT WRITER PROGRAM EXAMPLE 
Structure of Program Segments 
Transaction Processing Applications Program Example 

PROGRAM-in 
PROGRAM-ID 

QUALIFlCATION 
Qualification 

RANDOM-ACCESS 
Random-Access Processing 

i-19 

12-3 

2-28 

17-1 

15-3 

F-2 
15-13 

12-1 
9-23 
9-8 

16-9 
3-8 
4-6 
5-14 

7-5 
7-7 
7-8 
9-25 
9-25 
9-25 
5-4 
5-3 
5-2 
5-1 
9-9 
9-9 
9-11 

3-8 

6-5 
16-6 

6-9 
15-17 

8-27 
15-3 

7-9 

15-13 

2-4 

5-2 

DD26 



RANGE 
RANGE Clause 

RD 
RD Entries 

READ 
READ Statement 

RECORD 
LOGICAL .RECORD FORMAT 
logical record 
MERGE EQUAL KEY RECORD PROCESSING 
physical record 
Record :Ar-eas 
SAME RECORD AREA 

·:si:t·ME RECORD AREA Phrase 
SAME RECORD AREA phrase 
SORT EQUAL KEY RECORD PROCESSING 

RECORD CONTAINS 
RECORD CONTAINS Clause 

RECORD DESCRIPTIONS 
RECORD DESCRIPTIONS 

RECORDING MODE 
RECORDING MODE Claus-e 

t:IBCORDS 
Constant Records 
Fixed-Length Records 
Partitioned Records 
Variable-Length Records 

RECOVERY 
spill recovery 

REDEFINES 
REDEFINES 
REDEFINES Clause 
REDEFINES Entries 

REEL 
STANDARD CLOSE REEL 

•RELATION 
Abbreviated Combined Relation Conditions 
RELATION CONDITION 

RELEASE· 
RELE~SE Statement 

REMOTE I 

REMOTE 
Remote Devices 

·RENAMES 
RENAMES Clause 
RENAMES Entries 

RENAMING 
RENAMING 
RENAMING Phrase 
RENAMING phrase 

·±-20 

17-7 

8-5 

5-20 

2-12 
2-1 
9-25 
2-1 
5-14 
5-15 
3-10 

16-10 
9-9 

3-21 

4-1 

3-21 

17-3 
2-13 
2-15 
2-13 

9-16 

16-5 
4-10 
2-3 

5-26 

12-8 
12-1 

9-10 

6-4 
6-4 

4-13 
2-4 

3-12 
3-3 

14•5 

DD26 



REPLACING 
REPLACING PHRASE (EXAMINE STATEMENT) 

REPORT 
Report Control 
Report Table Capacity 
summary report 

REPORT GROUP 
CALCULATION OF REPORT GROUP SIZE 
REPORT GROUP ENTRIES 
Report Group Entries 
Report Groups 

REPORT PRINTING 
Incremental Report Printing Techniques 

REPORT WRITER 
DESCRIPTION OF THE REPORT WRITER 
REPORT WRITER EFFICIENCY TECHNIQlTES 
REPORT WRITER PROGRAM EXAMPLE 
REPORT WRITER SYMBOLS 
REPORT WRITER TABLE CONSTRAINTS 

REPORTS 
REPORT(S) Clause 

RERUN 
RERUN Phrase 

RESERVE 
RESERVE Phrase 
RESErRVE phrase 
RESERVED GMAP LOCATION SYMBOLS 
Reserved File-Codes 
Reserved File-Codes 

RESET 
RESET Stack Limitations 

RESOURCE 
Resource Allocation 

RESULTANT-IDENTIFIER 
resultant-identifier 

RETURN 
RETU,RN Statement 
RETURN Statement 

ROLLING FORWARD 
ROLLING FORWARD 

ROUNDEq 
ROUNDED Option 

SAME 
SAME AREA 
SAME AREA Phrase 
SAME AREA phrase 
SAME RECORD AREA 
SAME RECORD AREA Phrase 
SAME RECORD AREA.phrase 
SAME SORT or SORT-~RGE AREA Phrase 

i-21 

10-8 

8-2 
8-19 

16-6 

8-25 
8-20 
8-5 
8-6 

16-10 

8-1 
8-10 
8-27 
F-2 
8-16 

3-23 

3-10 

3-6 
5-14 
F-1 
9-14 
9-28 

8-17 

16-5 

11-4 

9-26 
9-12 

8-11 

11-4 

5-14 
3-.10 

16-9 
5-15 
3-10 

16-10 
3-11 

DD26 

• 



SD 
SD 
SD 

SEARCH 
SEARCH 
SEARCH and SET State.ment Examples 
SEARCH STATEMENT 

SEC'rION 
CONSTANT SECTION 
Sections 

SEEK 
SEEK Statement 

SEGMENT 
Segment Classification 

SEGMENT-LIMIT 
SEGMENT-LIMIT 

SEGMENTATION 
DESCRIPTION OF SEGMENTATION 
Effects of Segmentation on Listings 
Segmentation Control 
Segm

1
entation, Linking, and Loading 

SEGMENTS 
Fixed overlayable segments 
Fixed permanent segments 
Independent segments 
Structure of Program Segments 

SEGMNT. 
SEGMNT option 

SELECT 
SELECT SENTENCE 
SELECT sentence 
SELECT sentence 
SE1:-:fiCT sentence 

SEQUENCED 
SEQU:ENCED Clause 

SEQUENTIAL~ACCESS 
Seq~ential-Access Processing 

SET 
SEARCH and SET Statement Examples 
SET 
SET 
SET Statement Rules 

SIGN , 
SIGN CONDITION 
SIGNED Clause 

SIMPLE 
Simple Conditions 

SIZE 
CALCULATION OF RElt©RT GROUP SIZE 
SIZE Clause 

i•22 

9-22 
9-2 

4-18 
13-10 
13-7 

17-2 
15-12 

5-25 

15-2 

15-4 

15-1 
15-10 
15-3 
15-6 

15-2 
15-2 
15-2 
15-3 

15-3 

3-1 
9-2 
9-22 
5-1 

17-8 

5-1 

13-10 
4-18 
2-10 

13-9 

12-3 
17-8 

12-1 

8-25. 
17-9 

DD26 



SIZE ERROR 
SIZE ERROR Option 

SLEW 
slew control 
slew control 

SORT 
SAME SORT or SORT-MERGE AH.EA Phrase 
SORT 
SORT 
SORT EQUAL KEY RECORD PROCESSING 
Sort· Areas and Sort-Merge Areas 
Sort Configuration 
Sort Equal Key Procedures 
Sort Examples 
Sort Input Processing 
Sort Key Declarations 
Sort Key Evaluation 
Sort Output Processing 
The Sort File 

SORT-MERGE 
SAME SORT or SORT-MERGE AREA Phrase 
SORT-MERGE.ELECTIVE OPTIONS 
SORT-MERGE FILE DESCRIPTION ENTRIES 
Sort Areas and Sort-Merge Areas 

SORTING 
Sorting 
sorting process 

SOURCE 
SOURCE clause 
SOURCE ENTRIES 

SOURCE PROGRAM 
ORDER OF COBOL SOURCE PROGRAM 
source program 

SOURCE/SUM 
SOURCE/SUM· Correlation 

SPACE-SAVING 
TIME-SAVING AND SPACE-SAVING TECHNIQUES 

SPACES 
MOVE SPACES 
SPACES 

SPACING 
line spacing 
page spacing 

SPAN 
span conversion 
span multiplier 
pr.ef erred spans . 

SPECIAL-NAMES 
SPECIAL-NAMES 

SPILL 
spill recovery 

i-23 

11-5 

6-4 
5-23. 

3-11 
9-2 

15-5 
9-9 
5-16 
9-17 
9-8 
9-20 
9-9 
9-5 
9-7 
9-11 
9-4 

3-11 
9-31 
3-13 
5-16 

9-1 
9-14 

8-10 
8-21 

A-1 
1-3 

8-13 

16-9 

16-12 
16-5 

5-24 
5-24 

2-28 
2-28 
2-28 

6-1 

9-16 

DD26 



SPINOFF 
spinof f feature 

STANDARD 
STANDARD CLOSE FILE 
STANDARD CLOSE REEL 
STANDARD COLLATING SEQUENCE 
STANDARD OPTION 

S.TATEMENTS 
ACCEPT STATEMENTS 
AR!THME!TIC STATEMENTS 
CONDITIONAL STATEMENTS 
DEBUG STATEMENTS 
DISPLAY STATEMENTS 
EXAMPLES ·OF MOVE CORRESPONDING STATEMENTS 
EXAMPLES OF MOVE STATEMENTS 

. FILE P.ROCESSING STATEMENTS 
Multiple Results in Arithmetic Statements 

STATUS 
Closed Status 
Open· status 

STORAGE 
Nbncontiguous Constant Storage 

STRUCTURE 
Structure of Program Segments 
DATA STRUCTURES 

SUBORDINATE 
subordinate items 

SUBSCRIPTING 
Rules for Subscripting and Indexing 
SUB$CRIPTING 
SUBSCRIPTING 

SUBTOTALLING 
SUBTOTALLING 

SUBTRACT 
SUB':L'RACT Statement 

SUM 
SUM Counter Manipulation 
SUM ENTRIES 
SUM Operand Limitations 

SUMMARY 
su~ary report 

SWITCH-STATUS 
SWITCH-STATUS CONDI'TION 

SWITCHES 
Switches 

SYMBOL PAIRS 
Symbol Pairs 

i-24 

16-10 

5-26 
5-26 
D-1 
3-17 

6-1 
11-6 
17-10 
16-1 

6-2 
10-7 
10-3 

5-16 
11-10 

5-2 
5-2 

17-2 

15-3 
2-1 

2-l 

13-4 
2-9 

13-2 

8-11 

11-10 

8-10 
8-23 
8-16 

16-6 

12-5 

6-7 

11-3 



SYMBOLS 
NONFILE DATA SYMBOLS 
PROCEDURE DIVISION SYMBOLS 
REPORT WRITER SYMBOLS 
SYMBOLS USING 'FC' 
UTILITY SYMBOLS 

SYMDEFS 
SYMDEFs 

SYNCHRONIZED 
SYNCHRONIZED 

SYNCHRONIZED LEFT 
SYNCHRONIZED LEFT 

SYNCHRONIZED RIGHT 
SYNCHRONIZED RIGHT 

SY SO UT 
SY SO UT 
SYSOUT 

SYSTEM 
System Input 
System.Output 
syiptem options 

SYSTEM STANDARD FORMAT 
SYSTEM STANDARD FORMAT Phrase 
System Standard Format 

TABLE 
REPORT WRITER TABLE CONSTRAINTS 
Report Table Capacity 
TPAP Profile Table 

TABLE .. ELEMENT 
table element 
table element 

TABLE HANDLING 
DESCRIPTION OF TABLE HANDLING 

TABLE: RESIDUE 
table residue 

TABLES 
Tables of Constants 
Taples of Data Items 

TALLYING 
TALLYING PHRASE (EXAMINE STATEMENT) 

TAPE 
Multiple file tape positioning 

i-25 

F-1 
F-2 
F-2 
F-1 
F-3 

5-5 

16-13 

4-14 

4-14 

6-3 
16-6 

6-3 
6-3 
B-1 

8-16 
8-19 
7-1 

13-7 
13-1 

13-1 

4-6 

17-3 
2-6 

11-12 

5-12 

DD26 



TECHNIQUES 
COMPILATION TECHNIQUES 
DATA TRANSMISSION TECHNIQUES 
Data Description Techniques 
Data Manipulation Techniques 
EFFICIENCY TECHNIQUES 
Incremental Report Printing T.echniques 
Input-Output Techniques 
PACKED DECIMAL EFFICIENCY TECHNIQUES 
REPORT WRITER EFFICIENCY TECHNIQUES 
TIME-SAVING AND SPACE-SAVING 'l"'ECHNIQUES 

TERMINATE 
TERMINATE statement 

TES.T MONITOR 
teS;t ~onitor list/dump 

TEXT· 
duplicate text 
library text 

TIME 
Date and Time 
Processor Time 
Processor Time 

TIME-SAV!NG 
TIME-SAVING AND SPACE-SAVING 'l'ECHNIQUES 

TOP 
TOP 

TPAP 
TPAP Profile Table 
TRANS~CTION PROCESSING APPLICATIONS PROGRAMS (TPAPS) 

T.PE 
TRANSACTION PROCESSING EXECUTIVE (TPE) 

TRANSACTION PROCESSING 
TRANSACTION PROCESSING APPLICA'l'IONS PRO.GRAMS (TPAPS) 
TRANS}\\CTION PROCESSING EXECUTIVE (TPE) 
Transaction Process~ng 
Transaction Processing Abort Codes 
Transaction Processing Applications Program Example 

TRANSFER' 
Transfer of Control 

TRUTH VALUE 
truth'value 

.TYPE 
TYPE clause 

TYPEWRITER 
TYPEWRITER 

UNARY 
Unary Operators 

.UP BY 
UP BY 

i~26 

16-2 
6-3 

16-13 
16-12 
16-1 
16-10 
16-9 
16-15 

8-10 
16--9 

8-3 

16-9 

4-2 
14-3 

6-5 
6-5 

16-6 

16-9 

5-24 

7-1 
7-3 

7-1 

7-3 
7-1 
6-1 
E-4 
7-9 

15-5 

12-1 

8-7 

6-6 

11-3 

13-·9 

DD26 



UPON 
UPON nmemonic-name phrase 

USAGE 
USAGE Clause 

USAGE INDEX 
USAGE INDEX 

USAGE IS INDEX 
USAGE IS ;I:NDEX 

USE 
USE 
USE 
USE 
USE Statement 

USE BEFORE REPORTING 
USE BEFORE REPORTING 
USE BEFORE REPORTING PHRASE 

USING 
SYMBOLS USING 'FC' 
USING 
USING OPTION 

UTILITY 
UTILITY SYMBOLS 

VALUE: 
VALUE Clause 
VALUE clause 
VALUE ENTRIES 

VALUE OF 
VALUE OF Clause 

VARIABLE-LENGTH 
Variable-Length Records 

VARYING 
VARYING PHRASE {PERFORM STATEMENT} 
VARYING phrase 

VERTICAL POSITIONING 
ve~tical positioning 

VLR 
VLR FORMAT Phrase 

WORD 
MAC::HINE WORD 

WRITE 
WRITE Statement 

ZERO 
ZERO 

ZERO SUPPRESS 
ZERO SUPPRESS 

i-27 

6-2 

4-17 

2-11 

4-18 

5-19 
5-22 
5-23 
5-26 

8-17 
5-28 

F-1 
15-16 

9-9 

F-3 

4-19 
17-3 

8-24 

3-23 

2-13 

11-14 
13-7 

5-23 

3-10 

2-16 

5-22 

12-3 

17-6 

DD26 





) 
) 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE SERIES 60(LEVEL 66)/6000 COBOL USER'S GUIDE 
ADDENDUM B 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDERNO. I DD26B, REV. 0 

DATED I JULY 1977 

r\. Your co.· mments will be promptly investigated by appropriate technical personnel. and action will be taker1 o L/ as required. If you require a written reply, check here and furnish complete mailing address below. 

FROM: NAME~-~-~---.,.--'-~~-~~------~--~ 

TITLE -'---~:__~-------------------
COMPANY __ ----------------.,.-----

ADDRESS~--~----'--------~-~---~ 



PLEASE F.QLO AN1' T AP.E -
N,OTE: U. 0S. Postal Service will not deHver stetpledforms 

.......,..__,.,..---...--.-------------------------..+ 

ATTE:NTION: PUBLICATIONS, MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United Sta.tes 

Postage W.iU Be Paid By: 

HONEYWEL~ INFORMATION SYSTEMS 
200 SMITH.STREET 
WAL THAM, MA 02154 

Honeywell 

HRST CLASS. 
PERMIT NO. 39531 
WALTHAM, MA 
02154 

I 
I 
I 
J 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

------...- I 
I 
I 
I 
I 


