- Honeywell Bull ALcoL

SERIES 600/6000
SOFTWARE

BS 11, Rev.0 Ref.: 19.30.220 A

Honeywell Buli ALGOL

SERIES 600/6000

SUBJECT:

SPECT

Description and Use of The ALGOL Language.

AL INSTRUCTIONS:

This manual, Order Number BS11l, Rev. 0, supersedes CPB-1657, dated
March 1970 and its Addendum No. 1, dated October 1971. The new order
number is assigned to be consistent with the overall Honeywell pub-
lications numbering system. Additions and changes from the previous
editions are indicated by change bars in the margins.

SOFTWARE SUPPORTED:

DATE :

Series 600 Software Release 5.0
Series 6000 Software Release C

June 1972

ORDER NUMBER:

Print

BS11l, Rev. 0 (Formerly CPB=-1657)

«2 19,30,
ed in France Ref.: 19.30.220 A

PREFACE

This manual is intended as a reference for the programmer of the Series
600/6000 ALGOL language. The language is defined and instructions are given as
to methods of writing ALGOL programs for both batch and time=-sharing

environments.

@ 1966,1970,1971,1972, Honeywell Information Systems Inc. File No.: 1623,1723

BS11

FUNCTIONAL LISTING OF PUBLICATIONS

FUNCTION

for
SERIES 600 SYSTEM

APPLICABLE REFERENCE MANUAL
FORMER ORDER
TITLE PUB., NO, NO.

Hardware reference:
Series 600
DATANET 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System

Storage Subsystem Startup

Data management:
File System
Integrated Data Store
(I-D=-8)
File Processing
Multi-Access I-D-S

File Input/Output

Program maintenance:
Object Program
System Editing

Test system:
On-Line Peripheral testing

Total On~Line testing

Language processors:
Macro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAN Language
FORTRAN IV Language
DATANET 355

Generators:
Sorting
Merging

Simulators:
DATANET 355 Simulation

series o0003:

System Manual 371 BM78
DATANET 355 Systems Manual 1645 BS03

General Comprehensive Operating

Supervisor (GCOS) 1518 BR43
Control Cards Reference Manual 1688 BS19
System Operating Techniques DALO DALO
GRTS/355 Startup Procedures

Reference Manual 1715 BJ70
DSS180 Disk Storage Subsystem

Startup Procedures DAll DA1lL
GCOS File System 1513 BR38
Integrated Data Store 1565 BR6Y
Indexed Sequential Processor DA37 DA37
Multi-Access I-D=8S

Implementation Guide DASBO DASO
General File and Record Control

System 1003 BN85
Source and Object Library Editor 1723 BJ71
System Library Editor 1687 BS1s8

GCOS On-Line Peripheral Test

System (OPTS-600) 1573 BR76
Total On-Line Test System

(TOLTS) DA4S DA4Y
Macro Assembler Program 1004 BN86
COBOL Compiler 1652 BSO8
COBOL User's Guide 1653 BS09
ALGOL 1657 BS1l1
JOVIAL 1650 BSO6
FORTRAN 1686 BJ67
FORTRAN IV 1006 BN8S
DATANET 355 Macro-Assembler

Program : 1660 BB98
Sort/Merge Program 1005 BN87
Sort/Merge Program 1005 BNG7

DATANET 355 Simulator
Reference Manual 1663 BW23

iii BS11

FUNCTION

APPLICABLE REFERENCE MANUAL

TITLE

Remote terminal system:
DATANET 30

DATANET 30/305/355

Service and utility routines:

Loader

Utility Programs
Conversion

System Accounting

FORTRAN

Controller Loader
Service Routines

Time-sharing systems:
Operating System

System Programming

System Programming

BASIC Languags
FORTRAN Language
Text Editing

Transaction processing:
User's Procedures

Site Operations

Handbooks:
Console Messa-
Index

Pocket guides:
Time-Sharing Programming
Macro Assembly Language
COBOL Language
Control Card Formats

Software maintenance (SMD):
Table Definitions

Startup program
Input System
Peripheral Allocation

Core Allocation/Rollcall

Fault Processing
Channel Modules
Error Processing
Output System

File System Modules
Utility Programs
Time-Sharing System

Rev, 7207

Series 600:

NPS/30 Programming
Reference Manual
GRTS Programming Reference

General Loader

Utility

Bulk Media Conversion

GCOS Accounting Summary
Edit Programs

FORTRAN Subroutine Libraries
Reference Manual

Relocatable Loader

Service Routines

GCOS Time=Sharing System
General Information

GCOS Time-Sharing Terminal/Batch
Interface Facility

GCOS Time-Sharing System
Programmers' Reference
Manual

Time-Sharing BASIC

Time-Sharing FORTRAN

Time-Sharing Tert Editor

Transaction Processing System
User's Guide

Transaction Processing System
Site Manual

Console Typewriter Messages
Comprehensive Index

GCOS Time-Sharing System

(",M A ‘k:‘:

COBOL

GCOS Control Cards & Abort Codes

GCOS Introduction & System
Tables SMD

Startup (INIT) SMD

System Input SMD

Dispatcher and Peripheral
Allocation SMD

Rollcall, Core Allocation and
Operator Interface SMD

Fault Processing SMD

I/0 Supervisor (IOS) SMD

GCOS Exception Processing SMD

Termination and System Output SMD

File System Maintenance SMD
GCOS Utility Routines SMD
Time-~Sharing Executive SMD

iv

FORMER ORDER
PUB. NO. WO,

1558 BR68
DA79 DAT79
1008 BN90
1422 BQ66
1096 BP30
1651 BSO07
1620 BRY95
DAl2 DAL2
DAZ7 DA97
1643 BSO1
1642 BR99
1514 BR39
1510 BR36
1566 BR70
1515 BR40
DAB2 DAB2
DA13 DA13
1477 BROY
1499 BR28
1661 BS12
1673 BS16
1689 BJ68
1691 BJ69
1488 BR17
1489 BR18
1490 BR19
1491 BR20
1492 BR21
1493 BR22
1494 BR23
1495 BR24
1498 BR25
1497 BR26
1498 BR27
1501 BR29
BS11

FUNCTIONAL LISTING OF PUBLICATIONS

FUNCTION

for
SERIES 6000 SYSTEM

APPLICABLE REFERENCE MANUAL

TITLE

Hardware reference:
Series 6000
DATANET 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System

Storage Subsystem Startup

Data management:
File System
Integrated Data Store
(I-D=-8)
File Processing
Multi-Access I=D-S

File Input/Output
Program maintenance:

Object Program

System Editing

Test system:

On-Line Peripheral Testing

Total On-Line testing

Language processors:
Macro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAN Language
DATANET 355

Generators:
Sorting
Merging

Simulators:
DATANET 355 Simulation

Series 6000:

Series 6000 Summary Description
DATANET 355 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)
Control Cards Reference Manual

System Startup and Operation

GRTS/355 Startup Procedures
Reference Manual

DSS180 Disk Storage Subsystem
Startup Procedures

GCOS File System
Integrated Data Store

Indexed Sequential Processor

Multi-Access I-D=8S
Implementation Guide

General File and Record
Control System

Source and Object Library Editor
System Library Editor

.

GCOS On-Line Peripheral Test
System (OPTS=600)

Total On-Line Test System
(TOLTS)

Macro Assembler Program

COBOL Compiler

COBOL User's Guide

ALGOL

JOVIAL

FORTRAN

DATANET 355 Macro-Assembler
Program

Sort/Merge Program
Sort/Merge Program

DATANET 355 Simulator
Reference Manual

FORMER ORDER
PUB. NO, NO,

DA48 DA48
1645 BSO02
1518 BR43
le688 BS19
DAOG DAO6
1715 BJ70
DAll DAll
1513 BR38
1565 BR69Y
£a37 DA37
DABO DA8O
1003 BN85
1723 BJ71
1687 BS18
1573 BR76
DA49 DA4S
1004 BN86
1652 BS08
1653 BS09
1657 BS1l
1650 BSO6
1686 BJ67
1660 BB98
1005 BN87
1005 BN87
1663 BW23
BS1l1

FUNCTIOHN

APPLICABLE REFERENCE MANUAL

FORMER ORDER
TITLE PUP. NO. NO.
Seriec 6000:
Servics and utility routines:
lLoader General Loader 1008 BNOO
Urility Proorams Utility 1422 BQo66
Conversion Rulk Media Conversion 109¢ BP30
System accounting G0S Accounting Summary
Edit Programs 1651 BSG7
FORTRAN FORTRAN Subroutine Libraries
Reference Manual 1620 BP2L
Centroller Toader Relocatable Load=av DAL2 DAl 2
Service Routines Service Routines DAYST DAS”
Time-~sharing systems:
Cpcwating Uystaon GCOS Time-Shaving Svstem
weneral Information 1643 BS01
System Programming GCO5 Time-Sharing Terminal/Batch
Interface Facility 1642 BRSY
System Programming GCOS Time-Sharing System
Programmers' Reference
Manual 1514 BR39
BASIC Language Time=-Sharing BASIC 1510 BR36
FORTRAN Language FORTRAN 1686 BT67
Tevt Editing Time-Sharing Text Editor 1515 BE40
Remcte +terminal system:
DATANET 30 NPS/30 Programming Reference 1558 BR68
DATANET 30/305/355 GRTS Programming Reference DA79 nAa79
Transaction processing:
Useir's Procedures Transaction Processing System
User's Guide DA82 DA82
Site Operations Transaction Processing System
Site Manual DA12 DAL3
Handbooks:
Console Messages Console Typewriter Messages 1477 BRO29
Index Comprehensive Index 1499 BRZ8
Pocket guides:
Time-Sharing Programming GCOS Time~Sharing System 1661 BS1Z
Macro Assembly Language GMAP 1673 BS16
COBOL Language COBOL 1689 BJ68
Control Card Formats GCOS Contrel Cards and Abort
Codes 1621 BJEY
Rev, 7207
vi B511

CONTENTS

Section I Introducation., . . .
Definition of ALGOL R
Structure of ALGOL. .
Basic Symbols . . ., .

Operator Symbols. . .

Arithmetic Operators
Relational Operators

Logical Operators.
Punctuation Symbols .,
Reserved Words. . . .
Statement Types . . .
Declaration Types . .
Combining Statements.
Input/Output Process.

Section II Writing an ALGOL Program .

e o o e

Form of an ALGOL Program.
Writing Rules and Techniques.

Coding . . « o o
Punctuation. . . .

®

°

Insertion of Comments.
A Sample ALGOL Program,

Section III
Identifier.
Number. « o« o o o o o
Integer
Real Number ,
Extended Real Number.
String.
Variable., . . . R
Subscripted Varlable.

ALGOL Language Definitions

®

©

@

@

e

®

Simple Arithmetic Expression.
'IF' Clause Arithmetic Expression

Arithmetic Expression

Simple Boolean Expression .
'IF' Clause Boolean Expression.

Boolean Expression. .
Expression.
Statement Label . . .
Switch Designator . .
Conditional Designator
Simple Statement. . .

Section IV
Assignment Statements
Conditional Statements
Dummy Statement . . .
'FOR' Statements. . .
"GO TO' Statements, .
Procedure Statement .
'"ARRAY' Declarations.

°

®

°

°

®

®

°

°

e

'"PROCEDURE' Declarations.

'SWITCH' Declaration.

vii

Statement and Declaration Forms.

®

®

g
'3
0
®

el el
g RN
B W W N B W W W RN R R R b et e

NMNNNN‘;\!} B = e et et e

WWWWWWWLwWwWWwWwwwwwwwwww
| 2 T T T R B B |
NNNNOOUTUTUT e W W W NN R e

LI T I |

i

L L. - -
i
W W RN BN NN

BS11

Section V

Section VI

Section VIX

Section VIII

CONTENTS (cont)

Type Declarations . . .

'LINK'®

Declaration. . .

Statements . .
Descriptive
Assignment,
Assignment,
Assignment,

Format. o o
Simple” o e
"IF' Clause
Two

®

®

® ® @ . e

® ® s e ®

YIF' Clauses. e e a

Assignment, N "IF' Clauses. . . . «

Conditional,
Conditional,
Conditional,
Conditional,
Conditional,
Conditional,

Simple . .
'ELSE' . .
Two 'IF'
Two 'IF°®
N IR
N ‘IF°'

Dummy Statement

'FOR',
'FOR',
"FOR',
"FOR'
"GO TO',
"GO TO',
"30 TO',

Expression . . o«
'STEP'
"WHILE'
General . « « o o
Label., . &+ o o
Switch Designator. o s+ .
Conditional DeSLgnator . .

Clause. .
Clause .

Procedure Statement . .

Declarztions .
Descriptive
“ARRAY' . .
“ARRAY',
"PROCEDURE "
"PROCEDURE"
”PROCEDURE'

= ®

wPROL.OURE'
"PROCELURE'
'SWITCH®

Format. . .

® °© o ° @

”OWN’m o s o e

Declaration,
Declaration,
Declaration,
Declaration,
Declaration,

Declaration. .

Type Declarations . . .

Type, 'OWN'

'LINK'

° ® s o ® ®

Declaration. . .

Clauses .
Clauses,
Clauses . .« o«
Clauses,

®

Compound Statement and Block

Descriptive

Format. . o

Compound Statement. . .

BLOCK . . .

Input/Output .

® ® e ® ° ®

° ° ® ° ® ®

Input/Output Procedures
Input/Output Devices.

Destination
Bad Data. .
Format. . o

Code. . .« -

° ° e o ® ®

® ® ° ® ® ®

Number Formats . .
Truncation for Number Formats. .
Insertions in Number Formats . .
Numbers for Input. .
String Format. . .
Insertions in String Format. . .
Alpha Format
Boolean Format . .« o
Insertions in Boolean Format . .

Standard

Format., . o

viii

e

®

°

°

®

s o ° . ®

® ® - ® ®

o ® ® o ®

Simple . .
Specificati

value and QPELLfJu&thD

o o o @
e e o
e o s e
« o s »
« o o s
e e e e
e o e o
e s e e
e s o s
e o o
1]
e e e
o e e
e s e o
e o e
e o s
e o s e
e o e e
e o o =
e s o e
e o o
o . .
. . e
-
e e
o & o o
e e o
e o s
on Part

® ® ° ®

Function Definition.
Compiled.

Separately

e ° ® ® ©

® ° ® ® ®

® @ @ ® ®

® o ° ° ®

® ° ® ° ©

° ° ® ® ®

® ° ° ®

e @ s o

® ® ® @

° ® . ®

®

H

¥

1

A NANRNTE VD
LI
~1UT e N

0O 0O 0 0
[T T T O T I A
B B B

i

i

i
= A0 WD O 0000 0 ~d 1 B W

oo 0D 00 00 00 00 ©O 00 00 OO
i

BS11

CONTENTS (cont)

Page
Hollerith Format . . o o s o o o o o o o s o 8-11
Alignment MarkS. » « o o o 5 o s o o o s o o o 8=-11
Title Format . ¢ o o o o o s o o o o o o o o o 8=11
Format N o o o« o o s o o o o o o s s o a s o o 8=12
HEND o & o o o o o o s s o s a s o o s o o & o 8-14

HLIM ¢ o o o o o o 2 o o o o o o« o o s o o o = 8-14
NO DATA. -« = 5 o o s s o o o o o

TABULATION o o o o s o o s o s o o o o o o o = 8-16
VEND o ¢ ¢ o o o o o « 5 5 s s a o o o s o o s 8-17
VLIM o o o o o o o o o 5 o o s o o s s s o o o 8-17
Examples of Layout Procedure€s . . « o s s o o o = 8-18
Data Transmission Procedure€sS. o« « o« o o o o o o o 8=-19
INLIST & o o o o o o o s s o o s a o o s a o @ 8-19
INPUT No ¢ o o o o o o s o s o o o o s o o o @ 8=20
OUTLIST. o o o o o o o o o o o o s s o o o o o 8=-21
OQUTPUT N o . ¢ o o o o o s o o o o o o o o o o 8§=22
WIREC. o o o s o o s o » s s o 5 s 5 o s o o o 8-23
WICHAR ¢ ¢« ¢ 5 o o o o o o a2 o 5 o s o o s o5 o 8=-25
RDPEC: o 5 5 5 o o s o s o o s a o s s o s s 8-25
RDOCHAR o o o 5 o o o s o o o o s & o s o o o » 8-26
TRANSMIT o o e s o & s & s s o @ 8=-26
Ihbut/Output Controi Pmocedure. s e s e e e & e s 8-28
SYSPARAM . & 5 o o o o 5 o o o o o s o o s o o 8-29
Primitive ProceduresS. . . « - o o o o o o o o s = 8-31
INSYMBOL o o o o o o o o o 5 5 o a o s o s o @ 8-31
LENGTH o o o o o o o s o o s o 5 o s o s o o 8=32
NAME . & o o o o o o o o a o o o o5 o+ o o o o o 8-32
OUTSYMBOL. « &+ o o o o o o o s o » o o s o s = 8-33
STRING ELEMENT . . ¢ ¢ o o o o o s o o s s « o 8-34
TYPE & o o o o o o o o o o s o o o o o o o o 8-34
List Procedure€. . o« o o o o o o o o o o o s o o o 8~35
Appendix A, Reserved Identifiers ¢ o o o o o o o « o o o A-1
Appendix B, Mathematical and Miscellaneous Functions B-1
Mathematical Functions. . . « ¢« o & « o s o o o B-1
Miscellaneous Functions . . « o o o o o o o o o = B-1
PACK ¢ ¢ o o o o o o s o o s o o o o o o s o o B-2
UNPACK & o o o o o o o o o o o o o o o o o o B-3
Appondix C. Detailed Explanation of Inlist and Outlist & c-1
INLIST. &= o o 5 5 o o o o o o o o o o o o o o o a C=-1
OUTLIST ¢ o & o o o s o o 2 s o s o o o o o s o s c-5

Avpendix D, Procedures for Preparing ALGOL Programs for
Compilation and Execution « & & o o « o o @
Batch Mode. . . . ¢« ¢« ¢ ¢ ¢ o o o o o o o o o o
Batch Call Card . . . « « ¢ ¢« o o o s o o s o o =
Sample Batch Deck Setup . . o « « « ¢ o o o o o &

Time=Sharing Operation. « « o« « o o o 2 o 5 o 2 -
Command Language e e 6 s e e o -

Time=Sharing Commands for ALGOTQ e« s & s &
Log=On Procedure . . o o o o o o s s o o o o o
Entering Program - Statement Input
Format of Program - Statement Input.
Correcting or Modifying a Program. . . « « « o
The ALGOL RUN Command. « o+ o s s o o o o o o
Log~0ff Procedure. . . . e s s s a o & o o
Batch Activity sSpawned by RUN e o e s o s s @
Supplying Direct-Mode Program Input.

[I T I |

§

GCUUGGG?UUGUUUU
= b= = 0 00 00 OV UT W W N

WO

ix BS11

Appendix

Appendix

Appendix

Appendix

Index. .

Figure 2-

1.

Table D=1,

CONTENTS {cont)

Emergency Termination of Execution . . .

Paper Tape Input . . « « ¢« & « =«

Example of a Time=-Sharing Session. . . .

Remote Batch Interface.«
File System Interface . . . « « .« .
Terminal/Batch Interface.
File FormatsS. . o« « o« « o o o o s o
Basic Symbols with Equivalent Internal
Valu€S. o« o o o o o s« s o s o o o o
Stack Tracing Routine. . « « o « « » o
Purpose . « « o o o o o o o o o o @
USGgEe &+ o o o o s o o s o o o o o o

Alternate Symbol Representations . . .

The % Option Card. « « « o ¢ o o o s o

ILLUSTRATION

Outline of Conditional Statement . . .

TABLE

ALGOL Time-Sharing System Commands . .

BS11

SECTION I

INTRODUCTION

DEFINITION OF ALGOL

ALGOL (ALGOrithmic Language) is a computer language with the unigue
capability for expressing problem solutions as efficient and precise procedures.

The ALGOL language can be considered an international algorithmic language
for computing, for it appears to be universal in concept and is effective for
stating a wide class of algorithms for numerical mathematics and for some
logical processes.

ALGOL is comprised of a set of symbols and a set of rules. Associated with
these are a set of definitions which are peculiar to a description of the
language, its form, and use. :

STRUCTURE OF ALGOL

ALGOL is composed of statements and declarations.

® Statements are used to specify operations to be performed by the
computer in solving a problem.

® Declarations provide the ALGOL compiler with information needed to
define and link together various elements of the computer program
during processing. In addition, the existence of declarations within
the language facilitates the definition of program parameters.

The statements and declarations in turn are composed of symbols. Some
ALGOL symbols might conventionally be termed "character strings”; however, the
definition of a symbol in ALGOL does not imply a single character. Certain
symbols are enclosed in apostrophes. These apostrophes are a part of the symbol
and must always appear when the symbol is used.

Statements and declarations are translated by the ALGOL compiler and the
program is executed under the control of the Comprehensive Operating Supervisor
(GCOS) . Only those rules and symbols which govern ALGOL programming on a Series
£00/6000 computer system are considered in this manual.

1-1 BS11

BASIC SYMBOLS

The basic symbols utilized for writing ALGOL programs are as follows:

® uppercase letters A to 2
® digits 0 to 9
® logical values - 'TRUE', 'FALSE’

@ special symbols

OPERATOR SYMBOLS

Arithmetic Operators

S ol Definitionl

addition
subtraction
multiplication
division
division
exponentiation

- g0 * 1+

Relational Operators

S ol Definition
'Ls’ less than (<)
'LQ° less than or equal to (<)
'EQ’ equal to (=)
'GQ?' greater than or equal to (2)
'GR' greater than (>)
'NQT not equal to (#)

Logical Operators

Symbol Definition
YEQV? equivalent (&)
TIMP! implies (D)

"OR' or (A)

PAND" and (v)

"NOT® negation (M)

lThe symbols shown in this column are not necessarily available to the user

foor coding. They are included to show the mathematical meaning of the
corresponding ALGOL symbol.

1-2 BS11

- PUNCTUATION SYMBOLS

The following symbols have definite functions in the ALGOL language.

Symbol Definition
. period
’ comma
: colon
: semicolon

—

left parenthesis

right parenthesis
left bracket
right bracket
left string quote

T I

\ right string quote |
! apostrophe
- arrow

blank space

RESERVED WORDS

These special symbols have a

'ARRAY'
'BEGIN’
'BOOLEAN'
'CODE"
'COMMENT'

'END'’
'EXTENDED
"FOR'
'GOTO?!
EIFvl
'INTEGER”
"LABEL’

REAL"

STATEMENT TYPES

Use

decimal point
separator for
separator for
separator for

in numbers
items in a list
statement label
statements

enclose parameter lists:
indicate
expression evaluation
} enclose subscripts
} enclose strings

indicate exponent
assignment operator
space within strings

fixed meaning in the ALGCL language.

'LINK'
'NONLOCAL'
"OWN'
'PROCEDURE'*
'REAL'

' RENAME'
'STEP'
'STRING'
'SWITCH'
'THEN'
"UNTIL'
'VALUE®
'"WHILE'

There are six types of statements available in ALGOL. Their names and a
brief description of their functions follow:
Statement Types
Name Function
Assignment To perform calculations and to assign a value to a
variable or a group of variables
Conditional To control the execution of individual statements or
groups of statements
Dummy To satisfy a programming protocol but it in itself

performs no operation

'FOR’® To iterate a sequence of statements
'GoTO"! To transfer control

Procedure To call a previously defined sequence of statements
(e.g., a subroutine)

DECLARATION TYPES

There are five types of declarations available in ALGOL. Their names and a
brief description of their functions follow:

Declaration Types

Name Function
*ARRAY’ »To define an array, specify its dimensions and its type
'PROCEDURE" To define a subset of the computer program {e.g., a
subroutine)
"SWITCH® To specify control parameters which govern the sequence

of program execution

Type To specify the kind of value which a wvariable is to
represent
'LINK' To permit separate compilation of parts of a program

COMBINING STATEMENTS

The ALGOL language is structured in such a way as to impose rules of
combining statements and segregating these as programs or subprograms in their
own right. These concepts are presented in "Compound Statement and Block",
Section VII. .

INPUT/OUTPUT PROCESS

ALGOL does not contain statements which allow direct control of the
input/output process. Thus, no statements or declarations exist for reading from

or writing on external devices (e.qg., READ, WRITE, etc., as in FORTRAN). To
accomplish the usual input/output operations, procedures are provided which may
be "called" by the user as subroutines. These procedures are described in

"Input/Output", Section VIII.

1-4 BS11

SECTION II

WRITING AN ALGOL PROGRAM

FORM OF AN ALGOL PROGRAM

ALGOL programs are divided into logical sections called blocks. The entire
program is also a block and must be enclosed within the symbols 'BEGIN' and
'END'. A block may contain any number of sub-blocks within it.

Variables, arrays, procedures and switches which are used in a block are
defined in declarations at the beginning of the block. These declarations are
followed by the statements of the block., Any statement of a block may in itself
be a block (i.e., it must have block format as described in Section VII) and
thus blocks may be nested to any depth.

Al

All ALGOL statements may be labelled with one or more statement labels;
i.e., simple statements, compound statements, and blocks may be labelled.

Execution of an ALGOL program starts with the first statement and continues
successively from statement to statement. However, certain statements in the
language have the power to change the sequence of statement execution.

Execution of the program is terminated when control reaches the 'END®
symbol of the outermost block of the program.

The following diagram portrays visually the structure of a typical (though
arbitrary) ALGOL program, Each bracket denoted by

['BEGIN'

"END*
represents a block.

The blocks are composed of declarations and statements (as discussed
above). The declarations must precede the statements. This diagram represents an
ALGOL program with three block levels and four blocks.

2-1 BS11

'BEGIN'

'BEGIN®
'ENDF
™~ 'BEGIN'
X
'BEGIN'
'END? x declarations
. . statements
L. 'END?

WRITING RULES AND TECHNIQUES

Coding

The ALGOL pyogram may be written on any 72-column coding form but writing

will be facilitated if the program is writien on forms designed specifically for
the language.

Columns 1-72 of the coding form may be used for ALGOL statements and
declerations. ALGOL code may appear anywhere within these columns.

The coding may be free-form. That is, any number of statements and /or
declarations may appear on a single line.

A single statement or declaration may occupy as many lines as is required.

Blanks may be used freely throughout the ALGOL code to improve the
readability of the text. The only place in ALGOL in which blanks are significant
is in strings. In all other instances they are disregarded by the compiler.

Since the line format of ALGOL programs is very flexible, it is suggested
that statement levels be indented on a new line to improve ease of reading and
understanding a program,

Thus each new 'BEGIN' symbol may be indented at a new margin, and the 'END'
corresponding to the 'BEGIN' may be placed at the same margin. Since statements
may contain other statements, each lower statement level may be indented. When
a higher level is resumed, statements for that level may be placed at the proper
level margin (see form of the sample program given at the end of this Section) .

Line indenting will in no way affect program execution but tends to make
the program structure easier to follow.

Punctuation

When writing ALGOL statements and declarations, there are two important
rules of punctuation which must be observed.

L. The semicolon is used as the symbol between statements and between
declarations, However, the semicolon may be omitted after the last
simple statement of a compound statement or block. The symbol TEND'

serves as a statement separator in this case.

Examples:
1. Ae 2; 'GOTO' Z
2. SBEGIN' ‘INTEGER® A; 'REAL' B; A« 5,3; B« 7.2 ‘END'

2. The colon is used as the symbol to ssparate a statement label from a
statement.

Examples:
1. L: R« B+C; P: 'GOTH' R

2. T: "BEGIN' I+~ I+l; J«J+1 °*

53]
=
o

Insertion of Comments

If it is desired to place comments within the text of an ALGOL program, it
may be done as follows:

1. To insert a comment between statements or declarations, ov at the
beginning of a compound statement or a block, the comment must Dbe
enclosed within the symbols 'COMMENT® and semicolon.

Examples:
1. A« B; '"COMMENT' COMPUTING C; C+ A

2. '"BEGIN' 'COMMENT' COMPUTING C; A« B; C+= A 'END'

2. To place a comment after a compound statement or a block (i.e., after
the symbol 'END') the symbol 'COMMENT' is not necessary. A semicolon
must be used after the text if an 'END' or 'ELSE' symbol does not
appear.

Examples:

1. 'BEGIN' A+ B; C+= A "END' COMPUTING D; D« C

2. 'IF' A 'LS' B "THEN' 'BEGIN' A « B;
C~A '"END' COMPUTING C D IF A LS B "ELSE' B« A

A SAMPLE ALGOL PROGRAM

To illustrate the fundamentals of ALGOL, a sample ALGOL program is
provided.

The purpose of this sample program is to merge two sets of numbers. The
two sets are contained in lo dons a(l), af(2),...,a(i),..., ai(n) and b(l),
b(2),...,b(3),...,b(m). The numbers in each set are assumed +o be arranged in
increasing order. The merged set is contained in locations cl(l), c(2),.c..
c(k),eue &

»

The program operates as follows. The elements of arrays a and b are
compared. At each comparison, the smaller element is put into the " result ~array
c. When the end of either array a or b is reached, any remaining elements in the
Other array are put into the result array.

symbols used in the program:

E

DescriEtion

Identifier of input array

Identifier of input array

Identifier of output array

Subscript bound for array A

Subscript bound for array B

Subscript bound for array C

Subscript for array A

Subscript for array B

Subscript for array C

Controlled variable of 'FOR' statement

URUHTDEZOQW

A listing of the program follows. The program is assumed to be a block
contained in a larger block wherein the value of N, M, and R are assigned, and
wherein P is defined.

2=-4 B511

Line
100

110

120

130

140

160

"END’

Program Line

'BEGIN' 'ARRAY' A[1:N], B[1:M], C[1l:R]; 'INTEGER' I, 100
J, Ky I+~ J=Ke1; 110
START: 'IF' I "GR' N 'THEN' 120

'"BEGIN' P« 0; Q: C[K+P]«B[J+P]; P+~ P+1; 130

'IF' P 'LQ' M=J '"THEN' 'GOTO' Q 'END'
'"ELSE' '"IF' J 'GR' M 'THEN' 140
'"BEGIN' P+« 0; S: C[K+P] «A[I+P]; P~ P+1; 150

'IF' P 'LQ' N-I 'THEN' 'GOTO' S 'END'
'"ELSE' 'BEGIN' 160
'1F' aAl1] 'Go' B[J] 'THEN' 170
"BEGIN' C[x] ~BLI]; 180

J - J+1 'END'
"ELSE' 'BEGIN' C[K1«~2al[I]; 190
I~ I+1 "END';

K« K+1; 'GOTO' START 200
'"END' 210

3]
2]
O

A line by line description of this program is given below.

Description
Contains 'BEGIN' for the block, and declarations of variables used.

Contains an assignment statement which sets I, J, and K to the value
1.

Contains statement label "START" and the beginninag of a conditional
statement which extends to line 210. The 'IF' clause checks whether
all of the elements of array A have been compared.

Contains the true branch of the 'IF' clause of line 120. The true
branch is a compound statement which moves the remainina o¢lements,
if any, of array B to array C.

Contains the start of the false branch of the 'IF' clause of line
120. The false branch extends to line 210. The 'IF' clause 1in this
line checks whether all of the <lements of array B have been
compared.

Contains the true branch of the 'IF' clause of line 140. The true
branch is a compound statement which moves the remaining elements of
array A to array C.

Contains the start of the false branch of the 'IF' clause of line
140, The false branch 1s a compound statement enclosed within
"TBEGIN' and 'END' and extends to line 210,

170 Contains an 'IF' clause which compares elements of arrays & and B,

180 Contains the true branch of the "IF' clause of line 170. 7The <rue
branch is a compound statement which moves an element of array B to
array C and then updates the B array subscript, J.

1%0 Contains the false branch of the 'IF' clause of line 170. The false
branch is a compound statement which moves an element of array 2 to
array C and then updates the A array subscript, I.

200 Contains an assignment statement to update the C array subscript, K,
and a 'GOTO' statement to transfer control to the statement labellied
"START."

210 Containg 'END' for the compound statement startimg on line 160.

220 Contains 'END' for the block starting on line 100,

The structure of the conditional statement of the program is shown in

Figure 2=-1,

and
tne

the

and
the

If the condition of line 120 is true, the true branch, line 130, is taken
subsequent control goes to line 210; i.e., the false branch is skipped. If
condition of line 120 is false, control goes to the false branch, line 140.

I1f the condition of line 140 is true, the true branch, line 150, is taken
subsequent control goes to line 210; i.e., the false branch is skipped. If
condition of line 140 is false, control goes to the false branch, line 160,

If the condition of line 170 is true, the true branch, line 180, is taken
subsequent control goes to line 210; i.e., the false branch is skipped. If
condition of line 170 is false, control goes to the false branch, line 190.

START: 'IF' ., ., . 'THEN' 120

130

. « . "THEN' 140

L 150
J 'IF' . . . 'THEN' 160-170

180

"ELSE' 190

200

210

'ELSE’ "IF'

Figure 2-~1, Outline of Conditional Statement

2=6 BS11

SECTION IIIX

ALGOT. LANGUAGE DEFINITIONS

The following terms are defined as they apply to the ALGOL language.,

IDENTIFIER

A name given to a varviable, an arrayv, a label, a switch, and a procedure.
The name may be composed of any number of letters aud digits. However, the name
must begin with a letter,

Example:

A, BETA, M12, T12C7, TCTALAMOUNY

Blanks are not consiiered significant in ALCOL except in strinmgs, and they
may be used freely withir identifiers,

Example:

AB LE is considered the same identifier as ABLE or ARL E.

Two different quantities may not have the same identifier unless they
appear in different blocks. (See "Compound Statement and Block", Section VII for
clarification.) Certain identifiers are recognized as standard procedures by the
ALGOL compiler. (See the list of reserved identifiers in Appendix A).

NUMBER

Integer, real number, extended real aumber.

INTEGER

A whole number written without a decimal point consisting of 1 to 11
decimal digits. The range of an iuteger n is:
235 < 235

n < =1

The precision is to 10 decimal digits.

Positive integers may have no sign. Negative integers must be preceded by a
minus sign.

Examples:

0,-452,+7586421,33

REAIL NUMBER

A series of from 1 to 9 decimal digits written with or without a decimal
point. If the decimal point appears, it must not be the last character.

An exponent part may be added to specify the integral power of 10 to which
the number must be raised. The exponent part is separated from the digits by an
apostrophe ('). The exponent may also appear alone.

The range of a real number n is:

_p127 5127

< nh <

The precision is to 8 decimal digits. Positive real numbers do not reguire
a sign. However, a plus sign is permitted. Negative real numbers require =&
minus sign.

Examples:

i5.7, -.0045, +25.0, 1.7'=3, 5'3

EXTENDED REAL NUMBER

A series of from 1 to 19 decimal digits written with or without a decimal
point. If the decimal point appears, it may not be the last character.

An exponent part may be added to specify the integral power of 10 to which
the number must be raised.

The exponent part may also appear alone,

The range of an extended real number is:

o127 _ 127

The precision is to 18 decimal digits.

Positive extended real numbers do not require a sign, However a plus sign
is permitted. Negative extended real numbers require a minus sign.

Examples:

135982,7834, 21.762'-19

3-2 BS11

STRING

A sequence cf basic symbols enclosed in the left and right string quotes ("
and \); or a sequence of basic symbols and strings enclosed in the string
gquotes.

Strings may be used as actual parameters of procedures.

Examples of strings:
"A B C\

" A B " CDE\FG\

VARIABLE

A quantity referred to by a name (the variable identifier) whose value may
be changed.

The kind of quantity a variable may represent is determined by a type
declaration and may be either integer, real, extended real, or Boolean.

Exanmple:
X, ABC, YZ5N,

THIS IS A VARIABLE

SUBSCRIPTED VARIABLE

A subscripted variable has the form alby,bp,...,bp] where a is an array
identifier and bl,b2,o.0,bn are arithmetic eXpressions.

The number of subscripts n must be the same as the number of dimensions
declared for a.

Each subscript bj acts like a variable of type 'INTEGER' and the evaluation
of the subscript is understood to be equivalent to an assignment to this integer
variable.,

Evaluation of subscripts within a subscript 1list proceeds from left to
right. The value of the subscripted variable is defined only if the value of
each subscript expression is within the subscript bounds of the array.

Example:

AB[1,3), BOY['IF' B 'EQ' C 'THEN' 1 'ELSE' 2]

3-3 BS11

SIMPLE ARITHMETIC EXPRESSION

A sequence of numbers, variables, subscripted variables, or function calls
separated by arithmetic operators and parentheses, which represents a rule for
computing a numerical value.

1.

All guantities used in an arithmetic expression must be of type real,
extended real, or integer.

For operators +, -, or *, the result of calculation will be integer if
both operands are integer; real if both operands are real; and
extended real for all other cases.

There are two operators which denote division-- / and %. Both are
defined for all combinations of real, extended real, and integer
guantities; however,

a, / will give a result of type real only if both operands are real.
In all other cases, the result will be of type extended real.

b % will give the same results as / except that the value will
always ke integral. The result is truncated not rounded to an
integer; i.e., 5 % 3 = 1,

Exponentiation -

a. atbtc is equivalent to (aP)c,

b. The types of the base and the exponent may be any combination of
real, extended real, and integer.

c. If the exponent is an integer, the result is as follows:
exp. base result
>0 all same type as base
=0 #0 same type as base
=() =0 operation is undefined
<0 #0 real if base is real,
otherwise extended real
<0 =() operation is undefined
d. If exponent is real or extended real, the result is as follows:
eXp. base result
>0 real if base is real,
=0 >0 otherwise extended real
<0
>0 =0 real if base is real,
otherwise extended real
<0 =0 operation is undefined
>0
=0 § <0 operation is undefined
<0

3-4 BS11

5 Hierarchy of Operators

a. exponentiation t
b. multiplication and division * / %
c. addition and subtraction + -
6. Expressions inside parentheses are evaluated first.
7. Evaluation proceeds basically from left to right within the hierarchy

and within parentheses. Function calls and parenthesized quantities
are evaluated from left to right.

"IF' CLAUSE ARITHMETIC EXPRESSION

"IF' a 'THEN' b 'ELSE' ¢, where a is a Boolean expression, b is a simple
arithmetic expression, and ¢ is either a simple arithmetic expression or an 'IF?
clause arithmetic expression.

The 'IF' clause arithmetic expression causes one of several arithmetic
expressions to be evaluated on the basis of the value of Boolean expressions.
The expression to be evaluated is selected as follows:

1. The Boolean expressions are evaluated one by one in sequence from left
to right until one having a value 'TRUE' is found.

2. The value of the 'IF' clause arithmetic expression is the value of the
first simple arithmetic expression following this Boolean expression.

ARITHMETIC EXPRESSION

Either a simple arithmetic expression or an 'IF' clause arithmetic
expression.

SIMPLE BOOLEAN EXPRESSION

A sequence of variables, subscripted variables, function calls, and
relations possibly separated by logical operators and parentheses, which
represents a rule for computing a logical value (i.e., 'TRUE' or 'FALSE').

1. Variables and functions used with the logical operators must be
declared to be of type Boolean.

2. A relation is composed of two arithmetic expressions separated by a
relational operator.

Example:
A=B*C 'EQ' Z*Y

3. A relation has a value of 'TRUE' if the relation 1is satisfied;
otherwise it has a value of 'FALSE'.

3=5 BS11

4, The logical operators are defined as follows:

a. 'NOT' a is true or false if a is false or true, respectively.

b, a 'AND' b is true if both a and b are true, otherwise it is
false.

Co a 'OR' b is false if both a and b are false, otherwise it is
true, :

d. a 'IMP' b is false if a is true and b is false, otherwise it is
true.

e. a 'EQV' b is true if either both a and b are true or both are

false, otherwise it is false.

5, The hierarchy of operations in evaluating a Boolean expression 1s as
follows:
a. arithmetic operators - same order as for arithmetic expressions
b. relational operators
c. logical operators
6. The hierarchy of logical operators is:
a. 'NOT'
b. 'AND'
c. 'OR'
d. PIMPY
e, 'EQV!
7. Expressions inside parentheses are evaluated first.

'IF' CLAUSE BOOLEAN EXPRESSION

"IF' a 'THEN' b 'ELSE' ¢, where b is a simple Boolean expression and a and
¢ are either simple Boolean expressions or 'IF' clause Boolean expressions.,

The 'IF' clause Boolean expression is evaluated in the same way as an 'IF!'
clause arithmetic expression.

BOOLEAN EXPRESSION

Either a simple Boolean expression or an 'IF' clause Boolean expression.

EXPRESSION

Either an arithmetic expression or a Boolean expression.

3-6 BS11

STATEMENT LABEL

An identifier placed before a statement.

A statement label must be fcocllowed by a colon to separate the label from
the statement.

A statement may have more than one label, each one followed by a colon.

Statement labels are used so that a statement may be referenced.
Examples:

1. AB: A+~ B;

2. AC: 'BEGIN' A+« C 'END'

3. AD: '"BEGIN' AE: A« E 'END'

4, AF: AG: AH: A+« H;

SWITCH DESIGNATOR

swla], where sw represents a switch identifier and a represents an
arithmetic expression.

CONDITIONAL DESIGNATOR

A clause of the form 'IF' b "THEN' ¢ 'ELSE' d, where b represents a Boolean
expression, ¢ may be either a statement label, a switch designator, or a
conditional designator enclosed within parentheses, and d may be either a

statement label, a switch designator, or a conditional designator (which need
not be enclosed within parentheses).

DESIGNATIONAL EXPRESSION

A statement label, a switch designator, or a conditional designator.

SIMPLE STATEMENT

A statement which is not a compound statement or a block.

Examples:

assignment
conditional
dummy

'FOR"

"GO TO'
procedure

3-7 BS11

SECTION IV

STATEMENT AND DECLARATION FORMS

The form of each statement and
describes each statement in detail;

detail.

ASSIGNMENT STATEMENTS

Nar=
Assigument, simple

Assignment, 'IFf' clause

Assignment, two 'IF' clauces

Assignment, n "IF' clauses

CONDITIONAL STATEMENTS

Name
Conditional, simple
Conditional, 'ELSE’
Conditional, two 'IF' clauses
Conditional, two °"IF' clauses,
'ELSE’

Conditional, n 'IF' clauses

Conditional, u 'IF' clauses,
'ELSE"

declaration is listed below.
Section VI describes each declaration in

Section V

Form
Al A2+ soeoman+=€

A1~ a2 o0o0~apn« 'IF' bl 'THEN'
"ELSE' ej

®
=

4] <@ « ...=ap+ 'IF' bl 'THEN' el
'ELSE' 'IF' by 'THEN' e2 'ELSE’ ej

a]~a2e ... +-ap < '"IF' by 'THEN' e]

"ULSE' 'IF' by '"THEN' ep 'ELSE' ...
VIR bn "THEN"' en 'ELSE’ en¢l

Form
"IF' b 'THEN' s
"IF' b 'THEN' sy 'ELSE' s)

'"IF' bl 'THEN' sy 'ELSE' 'IF’ by
"THEN' sj

'IF' bl 'THEN' s3] 'ELSE' 'IF'" b
'"THEN' s 'ELSE' s3

"IF' by 'THEN' s; 'ELSE' 'IF' b2
"THEN' s2 'ELSE' ... 'IF' bp-1
"THEN' sp-] "ELSE' 'IF' bp 'THEN' sp

'"IF' by 'THEN' s3 'ELSE' 'IF' by

"THEN' s, 'ELSE' ... 'IF' bp.j
"THEN' sp.j 'ELSE' sp

4-1 BS11

DUMMY STATEMENT

Name

Dummy

'FOR' STATEMENTS

Name

'"FOR', expression
'FOR', 'STEP' clause
'"FOR', 'WHILE' clause

'FOR'", general

'GO TO' STATEMENTS

Name

'GO TO', label
‘GO TO', switch designator

'GO TO', conditional designator

PROCEDURE STATEMENT

Name

Procedure statement

'ARRAY' DECLARATIONS

Name

'ARRAY'

"ARRAY', 'OWN'

Form
(null form)
Form
'FOR! vee 'DO' s
'FOR' v~ ey 'STEP' ej 'UNTIL' ej
'FOR' vee '"WHILE' b 'I'D s
'"FOR' Veaj,a3,...,ay '00' s
Form
'GO TO' a

'GO TO' sw [a]

lDol

'GO TO' 'IF' b 'THEN' dj '"ELSE' do

Form
name (aj t a; t ... t ap)
Form
type ‘ARRAY’ a31,39500.,8p
'OWN' type 'ARRAY') ,89,.0.4ap
4-2

BS11

'PROCEDURE' DECLARATIONS

Name
"PROCEDURE' declaration, simple

'PROCEDURE' declaration,
specification part

"PROCEDURE' declaration, value
and specification part

'PROCEDURE"' declaration,
function definition

'PROCEDURE' declaration,
separately compiled

'SWITCH' DECLARATION

Name

"SWITCH'

TYPE DECLARATIONS

Name
Type

Type, 'OWN'

'LINK' DECLARATION

Name

'LINK'

Form

"PROCEDURE' name (aj t ag t ... t ap); s

'PROCEDURE' name
sp list; sp list;...; sp list; s

'PROCEDURE' name (aj t a t ... t an):

'VALUE' list; sp list; sp list;...:
sp list; s

type 'PROCEDURE' name (a] t as t ...

an) ;
sp list; s

"CODE' 'BEGIN' djd3;...;dn 'END?

Form

'SWITCH' swe«d1,d2,...,dn

Form
type v1,V2,..-,Vn

"OWN' type V1,V2,..0,Vn

Form

'LINK® string;

(a; t ag t ... t an);

'"VALUE' list; sp list sp list;..

.
o g

BS11

SECTION V

STATEMENTS

DESCRIPTIVE FORMAT

The description of each statement in the ALGOL language 1is presented in
this Section. Each statement description starts on a new page, with the format
of its descriptive material given as shown below:

Descriptive name

(A brief statement of the purpose of the statement)

Form

(Form of the statement)

(Definition of symbols used in the form line)

Rules

(A list of rules governing the correct wusage of the statement;

includes restrictions, suggestions, etc.)

Examples

(A list of examples illustrating the use of the statement)

5-1 BS11

ASSIGNMENT ASSIGNMENT

ASSIGNMENT, SIMPLE

To perform numerical calculations; to perform Boolean operations; to assign
a value to one or more variables or procedure identifiers in a single statement.

Form

al«-az«—.nwanwe

Ay 89y 000 ,ap: variables, subscripted variables or procedure identifier

e: arithmetic or Boolean expression
Rules

1. This statement causes expression "e" to be evaluated and the result to
be assigned to aj,a,...,38p. (Note. There need be only one variable;
€.9., alone).

2. The character "+« " signifies assignment of the value of the expression
to the variable(s).

3. The process of assignment is as follows:

a. Subscripts, if any, occurring in the variables are evaluated from
left to right.

b. The expression "e" is evaluated.

c. The value of the expression is assigned to all the variables
aj,ag,...,ap from right to left across the left side as follows:
The value of e is assigned to ayp, the value of ap is assigned to
ap.1s etc. Finally, the value of a3 is assigned to aj.

4, The types of the variables must be as follows:

a. The types may be all Boolean. In this case, the expression "e"
must be Boolean.

b. The types may be real, extended real, or integer. In this case,
the expressicn "e" must be arithmetic.

C. Boolean types may not be mixed with the other types.

5. When "e" is an arithmetic expression and its type and the type of
variable ap is different, the value of "e" 1s changed +to the type
specified by ap before it is assigned to ap. (See "ALGOL Language
Definitions™, Section III, for forms of integers, real numbers, and
extended real numbers.)

6. In the case in which "e"” is real or extended real and ap is an

integer, "e" is operated upon by the function ENTIER (e+.5). The
result of ENTIER is the largest integer not greater than the value of
the argument, This value is then assigned to ap.

5=2 BS11

ASSIGNMENT ASSIGNMENT

Exameles

When the type of aj and aj.] is different, the value of aj, is changed
before it is assigned to aj_y-
The case of an aj being a procedure identifier is only used in
defining functions. (See 'PROCEDURE'" declaration, function
definition.)

In these examples, A, B, C, and D identify 'REAL' type variables. R AND S

identify

1.

'INTEGER' type variables, and W identifies a 'BOOLEAN' type variable.

A« B+C

The value of B + C is assigned to A.

A+ D «B+C

The value of B + C is assigned to A and D.
A+«R+« 3,9

4 is assigned to R and A,

R+~ A+ 3.9

3.9 is assigned to A and 4 is assigned to R.
J<1; s[g) ~g+2

First, 1 is assigned to J. Then 2 is assigned to J and s[1].
W+eA 'GR' B

If the value of A is greater than the value of B, W 1is assigned the
value 'TRUE'; otherwise, W is assigned the value 'FALSE',

5-3 BS11

ASSIGNMENT ASSIGNMENT

ASSIGNMENT, 'IF' CLAUSE

To permit a choice to be made as to which of two expressions is to be
evaluated, based on the value of a Boolean expression; to assign the value of
the evaluated expression to one or more variables or procedure identifiers.

Form
a] +a2+...+ap 'IF'" b 'THEN' e} 'ELSE' e2
a1,a82,...,ap: variables, subscripted variables or procedure identifier
b: Boolean expression
el,e2: arithmetic or Boolean expression
Rules

1. Subscripts, if any, occurring in the variables aj,a,...,ap evaluated

from left to right.

2. The Boolean expression "b" is evaluated.

3. If the value of b is 'TRUE' expression, e] is evaluated; if 'FALSE',

ey is evaluated.

4, After el or e is evaluated, this statement operates as a simple

assignment statement with the evaluated expression.
Examples
1. P+« 'IF' Q 'LS" 10.0 "THEN' R 'ELSE' S + 17.5
If Q < 10, P receives the value of R, otherwise S + 17.5.
2. A«~B+«C+«'IF' D '"THEN' E 'OR' F 'ELSE' G 'AND' H
If D is true, the value of E 'OR' F 1is assigned to A, B, and C.

Otherwise, the value of G 'AND’ H is assigned.

BS11

ASSIGNMENT v ASSIGNMENT

ASSIGNMENT, TWO 'IF' CLAUSES

To permit a choice to be made as to which of three expressions 1is to be
evaluated, based on the values of two Boolean expressions; to assign the value
of the evaluated expression to one or more variables or procedure identifiers.

Form
aj~ag«...-ap«'IF' by 'THEN' e 'ELSE' 'IF' b, 'THEN' e, 'ELSE' e,
aj,ag,...,anp: variables, subscripted variables or procedure identifier
bl,bza Boolean expressions
ej,eg,e3: arithmetic or Boolean expressions
Rules
1. Subscripts, if any, occurring in <the variables aj,89,...,a, are
evaluated from left to right.
2. The Boolean expression "bl" is evaluated.
3. If by is true, ej is evaluated; if by is false, by is evaluated.
4, If bp is true, ep is evaluated; if by is false, ey is evaluated.
5, After an expression is evaluated, this statement operates as a simple
assignment statement with the evaluated expression.
Example

R« 'IF' T 'THEN' B-6.2 'ELSE' 'I¥' U 'THEN' C-7 'ELSE' D%3.5

If T is true, R is assigned the value of B=6.2. If T is false and U is
true, C-7 is assigned to R. Otherwise, D%3.5 is assigned to R.

ASSIGNMENT ASSIGNMENT

ASSIGNMENT, n '"IF' CLAUSES

To permit a choice to be made as to which of a number of expressions is to
be evaluated, based on the value of Boolean expressions; to assign the value of
the evaluated expression to one or more variables or procedure idehtifiers.

Form
aj ~ag«...w~an 'IF' by 'THEN' ej 'ELSE' 'IF' bj
"THEN' e 'ELSE" ... '"IF' b '"THEN' e '"ELSE' ep+
2 n n n+l
aj,an,...,an: variables, subscripted variables or procedure identifier
by ,b3,...,bp: Boolean expressions

€1,€257€pn41t arithmetic or Boolean expressions

Rules
1. Subscripts, if any, occurring in the variables aj,az,...,anp are
evaluated from left to right.
2. The Boolean expressions bj,bz,...,bn are evaluated from left to right
until one is found which has a value of 'TRUE'.
3. If bj is found to be true, then ej is evaluated.
4. If all the Boolean expressions are false, ep4] will be evaluated.
5. After step 3 or 4 above, this statement operates as &a simple
assignment statement with the evaluated expression.
Example

c [D 4,2,2] - 'IF' B 'OR' E 'THEN' 5 'ELSE' 'IF' T 'THEN'
7.5 'ELSE' 'IF' A 'LS' C 'THEN' G 'ELSE' L

¢ and D [4,2,2] may be assigned the following values: 5 if either B or E is
true; 7.5 if T is true; the value of G if the value of A is less than the value
of C; the value of L if none of the above conditions are true.

5-6 BS11

CONDITIONAL

CONDITIONAL

CONDITIONAL, SIMPLE

To permit a statement to be executed or skipped, depending on the value of
a Boolean expression,

Form

DIFI

b 'THEN' s

b: Boolean expression

Rules

1.

statement

Statement s may be any one of the following:

a. assignment statement
b. ‘GO TO' statement

Ce dummy statement

d. 'FOR' statement

e, procedure statement
f. compound statement
g-. block

Statement s may have a label,

If the Boolean expression has a value of 'TRUE', statement s is
executed. If s does not explicitly specify its successor, the
statement following will be executed next.

If the Boolean expression has a value of 'FALSE', statement s is
skipped and the following statement will be executed next.

5=7 BS11

CONDITIONAL

Examples

CONDITIONAL

'IF' A 'GR' B '"THEN' D« E*F

If the value of A is greater than the value of B, then the
E*F is assigned to D. Otherwise, the assignment statement
and the statement following it is executed.

value of
is skipped

"IF' L 'THEN' 'BEGIN' P+«P+3; R+ 17.5-T; L+« 'FALSE’ 'END'; 'GO TO' S9

If L is true, the compound statement enclosed between 'BEGIN'
'END' will be executed; followed by 'GO TO' S9; if L
'GO TO' S9 will be executed.

and
is false, only

BS11

CONDITIONAL CONDITIONAL

CONDITIONAL, 'ELSE'

Form

To permit a choice to be made as to which one of two specified statements
is to be executed. The decision 1is based on the value of a Boolean expression.

'IF'

b "THEN' s3] "ELSE' 53

b: Boolean expression

5153 statements

Rules

The statements sj and s may be any cne of the following:

a, assignment statement
b. 'GO TO" statement

C. procedure statement
d. dummy statement

e. compound statement
£. block

Statement sy may also bes a 'FOR' statement
Statements s] and sp may be labelled.

If the Boolean expression has a wvalue of 'TRUE', statement s; is
executed. If sj; does not explicitly specify its successcr, then the
statement following the conditional statement is executed next; i.e.,
so is skipped.

If the Boolean expression has a value of 'FALSE', statement s2 is
executed. If s does not explicitly specify its successor the
statement following the conditional statement is executed neixt.

CONDITIONAL CONDITIONAL

Examples

1.

TIFY A 'LS" B "THEN' T+ T+l 'ELSE' B« B+1l; ‘GO TO' L1

If A is less than B,T+- T+l is executed, followed by 'GO TO' Ll. If A
is greater than or equal to B, B« B+l is executed, followed by 'GO TO'
IJ}. L

'IF' R 'AND' S 'THEN' 'GO TO' BOB 'ELSE' JOE: M «~N+P:; 'GO TO' BOB

If the expression is true, control is transferred +to the statement

labelled BOB; if false, the statement labelled JOE is executed and
then control goes to the statement labelled BOE.

5-10 BS11

R s ——————)

CONDITIONAL CONDITIONAL

CONDITIONAL, TWO 'IF' CLAUSES

To permit a choice to be made as %o which of two statements is to be
executed or whether neither is to be executed, depending on the values of two
Doolean expressions,

Form

"IF' by 'THEN' sy ‘ELSE' 'IF' by 'THEN' s3
b1l,bp: Boolean expressions

s1,82: statements

Rules

1. Statements sj and s may be any one of the following:
a. assignment statement
b, 'GO TO' statement
C. dummy statement
d. procedure statement
e, compound statement
f. block

2. Statement sy may also be a 'FOR’ statement.

3. Statements s] and s may be labelled.

4, If by has a value of 'TRUE', statement s1 is executed. If s] does not
explicitly specify 1its successor, the statement following the
conditional statement is executed next.

5. If bl has a value of 'FALSE', b2 is evaluated.
5. If bz has a value of 'TRUE', statement sy is executed. If s does not
explicitly specify its successor, the statement following the

conditional statement is executed next.

. If b2 has a value of 'FALSE', then s is skipped and the statement
following the complete conditional statement is executed next.

5-11 BS11

CONDITIONAL CONDITIONAL

Examgle

"IF' A 'EQ' B 'THEN' MODE (C,D) 'ELSE' 'IF' A 'GR' B
"THEN' MEAN (T,D); Re D*F

1f A=B, procedure MODE is executed, followed by R+ D*F. If A#B but A>B,
then procedure MEAN is executed followed by R+ D*F, If A<B, then only R«D*F is
executed.

E~12 BS11

CONDITIONAL CONDITIONAL

CONDITIONAL, TWO 'IF' CLAUSES, 'ELSE'

To permit a choice to be made as to which of three statements is to be
executed, depending upon the value of two Boolean expressions.

Form

'IF' by 'THEN' sj 'ELSE' 'IF' by 'THEN' s, 'ELSE' sj
bl,b2: Boolean expressions

$3,82,833 statements

Rules

1. Statements sj, s,, and s3 may be any one of the following:
a. assignment statement
b. 'GO TO' statement
C. dummy statement
d. procedure statement
e, compound statement
£. block

2. Statement s3 may also be a 'FOR' statement.

3. Statements sj, s, and s3 may be labelled.

4. If bl has a value of 'TRUE', statement sj is executed. If s does not
explicitly specify its successor, the statement following the
conditional statement is executed next.

5. If by is false, b is evaluated.

6. If by has a value of 'TRUE', statement sp is executed. If s does not
explicitly specify its successor, the statement following the
conditional statement is executed next.

7. If b2 has a value of 'FALSE', statement s3 is executed. If s3 does not

explicitly specify its successor, the statement following the
conditional statement is executed next.

5-13 BS1l

[EE— [ENPY——————————

CONDITIONAL CONDITIONAL

ExamE e

"IF' L "THEN® 'GO TO' BOY 'ELSE' ‘IF' R 'GR' S 'THEN'
'"BEGIN' A« A+l; CALC (F,10) 'END' 'ELSE' 'GO TO' CAT; Re R+1

If L is true, control goes to the statement labelled BOY; if L is false, X
is compared to S; if R»S, the compound statement is executed followed hy Re R+1.
If Rg¢S, control goes to the statement labelled CAT.

-14 BS11

Ut

CONDITIONAL CONDITIONAL

CONDITIONAL, n 'IF' CLAUSES

To permit a choice to be made among a number of statements as which one
should be executed, or whether none is to be executed, depending upon the value
of Boolean expressions.

Form
"IF' by 'THEN' sy 'ELSE' 'IF' by 'THEN' s2 'ELSE' ...
"IF' bp-] 'THEN' sp.) 'ELSE' 'IF' by 'THEN' sp
by,bg,...,bn: Boolean expressions

$1s89,...,5p: statements

Rules

1. Each statement sj, sj;,...,S5py may be any one of the following:

a. assignment statement
b. 'GO TO' statement

c. dummy statement

d. procedure statement
e. compound statement
f. block

2. Statement sp may be a 'FOR' statement.

3. Statements sj, Sp,...,S, may be labelled.

4, The Boolean expressions are evaluated in the order by, Dbs,..., until
one having a value of 'TRUE' is found. If bj is true, statement sji is
executed. If statement sj does not explicitly specify its successor,
the statement following the conditional statement is executed next.

5. If none of the Boolean expressions is true, the statement following

the complete conditional statement is executed next.

5-15 BS11

CONDITIONAL CONDITIONAL

Example

'IF' M 'THEN' Ae A+l 'ELSE' 'IF' N 'THEN' 'GO TO' R1
'ELSE' 'IF' P 'THEN' 'FOR' 1 1 'STEP' 1 'UNTIL' 10 'DO‘
A[I] « I; L+e=M 'OR' P

If M is true, the value of A is increased by 1. If M is false and

N is

true, then 'GO TO' Rl is executed. If M and N are false and P is true, the 'FOR'

statement is executed. If M, N and P are all false, the statement L+«M
is executed.

'OR' P

BS11

CONDITIONAL CONDITIONAL

CONDITIONAL, n 'IF' CLAUSES, 'ELSE'

To permit a choice to be made among a number of statements as to which one
should be executed, depending upon the value of Boolean expressions.

Form

"IF' b} 'THEN' sy 'ELSE' 'IF' by 'THEN' sy 'ELSE ...
"IF' bp-l 'THEN' sp.1 'ELSE' sp

by,b3,...,bp : Boolean expressions

81,82s.00¢s5p2 statements

Ruleg

1. gach statement sj, sj,...,Sp may be any one of the following:
a, assignment statement
b. ‘GO TO' statement
Co dummy statement
d, procedure statement
e, compound statement
f. block

2. Statement sy may be a 'FOR' statement,

3. Statements sy, $3,...,Sp may be labelled.

4, The Boolean expressions are evaluated in the order b1, bz,..., until
one having a value of "TRUE' is found. If by is true, statement sj is
executed. If statement s; does not explicitly specify its successor,
the statement following the complete conditional statement is executed

5. ??xgéne of the Boolean expressions is true, statement Sp will be

executed. If it does not explicitly specify its successor, the
statement following the conditional statement is executed next.

5-17 BS11

s e A s

CONDITIONAL CONDITIONAL

e

Example

'IF' A "THEN' I+« I+l 'ELSE' '"IF' B '"THEN' Je« J+1 'ELSE'
'IF' C "THEN' Ke K+1 'ELSE' Le L+l; 'IF' D 'THEN®
'GO TO' BAD

If A is true, the value of I is increased by one. If A is false and B is
true, the value of J is increased by one. If A and B are false and C is true,
the value of K is increased by one. If A, B, and C are false, the value of L is
increased by one. If D is true then 'GO TO' BAD is executed, Otherwise, the
statement following it is executed.

DUMMY DUMMY

DUMMY STATEMENT

To place a label at a particular point in the program.,

Form

(null form}

Rule

This statement causes no operation.

Examples

=
o

COUNT: ;
COUNT is the label of a dummy statement,
2. B3: ; ABC: E« E+1
B3 is the label of a dummy statement.,
3. 'BEGIN®,.,.; TOY: 'END'

TOY is the label of a dummy statement,

5-19 BS11

'FOR’

‘FOR’

'FOR', EXPRESSION

To permit a statement to be executed for a specified value of a controlled

variable.

Form

'FOR'

vee 'DO'" s

v: variable or subscripted variable

e: arithmetic expression

s: statement

Rules

Examples

1.

Variable v is called the controlled variable of the 'FOR' statement.
e represents a value which is assigned to v.

Statement s may be a simple statement, a compound statement, or a
block.

The 'FOR' statement causes the expression e to be evaluated and its
value assigned to v. Then statement s is executed.

After statement s is executed with v having the value of e, the 'FOR!
statement has been executed. If s does not explicitly specify its
successor, the statement following the 'FOR' statement is executed
next.

After execution of the 'FOR' statement, the value of v is undefined.

If control is transferred from the 'FOR' statement by a statement
(within statement s), the value of v is available.

A 'GO TO' statement outside the 'FOR' statement may not refer to a
label within the 'FOR' statement.

'"FOR' J« 1 'DO' A[J]+~ 0.0
This statement causes zero to be assigned to location A[I].

'FOR' R 2*BOY t 2 'DO' 'BEGIN' T+ T+l;
B[R]« ~C[R] '"END'

This statement results in -C[2* BOY t 2] assigned to B[2*BOY t 2]. Also,
the value of T is increased by one.

5-20 BS11

'FOR'

'FOR®

'FOR', 'STEP' CLAUSE

Form

To permit a statement to be executed repeatedly for a specified initial
value,

increment, and final value of a controlled variable.

'FOR' Ve eq 'STEP' ey 'UNTIL' eq 'DO' s

v: variable or subscripted variable

el,ez,e3: arithmetic expression(s)

Rules

s: statement

Variable v is called the controlled variable of the 'FOR' statement.

ey represents the initial value for v: €9 is the increment of v; e3 is
the final value for v.

Statement s may be a simple statement, a compound stat ment or a
block.

The first step in the operation of the 'FOR' statement is that v is
assigned the value of ey.

Statement s may be executed a number of times as follows:

a. A test is made to see if the value of v is beyond the bound
specified by eq. If it is, statement s will not be executed. The
statement after s 1is executed next and the wvalue of v is
undefined,

b. If v is within the bound, statement s is executed.

Q

If s does not explicitly specify its successor, the valuve o9 i=
then added to v (i.e., ve vtes). If the value of ep is positivs,
this will have the effect of increasing v. If the value of 25 is
negative, v will be reduced. The process is then repeated at step
a.

If control is transferred from the 'FOR' statement by a statement
(within statement s), the value of v is available.

The value of the controlled variable, the increment and the final
value may be changed by statement s. Therefore, they are evaluated
every time reference is made to them.

A 'GO TO' statement outside a 'FOR' statement may not refer to a label
within the 'FOR' statement.

"FOR'

Examples

1.

2.

3.

"FOR'
These
"FOR'

These
x[7],

"FOR'

@ I“OR ®
'END’

L‘j:\ORI

I+~1 "STEP’ 1 'UNTIL' 10 'DO' A[I1I]+ B[I]
statements cause B[1] to B[10] to be assigned to a[1] to a[10].
K=9 "STEP' -2 'UNTIL' 5 'DO' X[K] « Kt2

statements cause 81 to be assigned to X[9], 49 to be assigned to
and 25 to be assigned to X[5].

L1 "STEP' 1 'UNTIL' 5 'DO' 'BEGIN’

A[L)~ 6 'STEP' 1 'UNTIL' 10 'DO' B[A[L],L]« L

The order of assignments caused by these statements is as follows:

6 to 10 is assigned to A[1] as 1 is assigned to B[6,1] to B[10,1],
6 to 10 is assigned to A[2) as 2 is assigned to B[6,2] to B[1l0,2],

etc.

Finall
B (10,5

{, 6 to 10 is assigned to A[5] as 5 is assigned to B[6,5] to

'FOR?

'FOR'
'FOR', 'WHILE' CLAUSE
To permit a statement to be executed repeatedly for assigned values of a
controlled variable, with repetition controlled by the value of a Boolean
expression.
Form
'FOR' v+ e "WHILE' b 'DO' s
v: variable or subscripted variable
e: arithmetic expression
b: Boolean expression
s: statement
Rules
1. Variable v is called the controlled variable of the 'FOR' statement.
2. Statement s may be a simple statement, a compound statement or a
block.
3. This statement causes statement s to be executed repeatedly as long as
the value of the Boolean expression b is true.
4, This statement operates as follows:

a. e is evaluated and its value is assigned to v.

b. The Boolean expression b is evaluated.

. If b is true, statement s is executed. If s does not explicitly
specify its successor, the process is repeated at step a.

d, If b is false, statement s is not executed and the statement
following statement s is executed next. The value of v is
undefined in this case.

5. If control is transferred from the 'FOR' statement by a 'GO TO'
statement (within statement s), the value of v is available.
6. The values of either e or b may be changed by statement s.
7. A 'GO TO' statement outside a 'FOR' statement may not refer to a label
within the 'FOR' statement.
5-23 BS11

'"FOR' 'FOR'

ExamEle

J+1; 'FOR' I+ J 'WHILE' I 'LS' 10 'DO' 'BEGIN'
A[Il~I; J+ J+1 'END'

These statements cause 1 to 9 to be assigned to A[1l] to A[9].

[+

'FOR' 'FOR'

'FOR' GENERAL

To permit a statement to be executed repeatedly for various conditions
governing a controlled variable.

Form

'"FOR' Vea),as;...,ap 'DOY s
v: variable or subscripted variable

a1s89re00,8p8 arithmetic expression, 'STEP' clause,
or 'WHILE' clause

s: statement
Rules

1. Variable v is called the controlled variable of the 'FOR' statement.

2. aj,az,...,ap May be any combination of arithmetic expressions, 'STEP'
clauses, or '"WHILE' clauses.

3. s may be a simple statement, a compound statement or a block.

4, If aj is an arithmetic expression, a 'STEP' «clause or a ‘'WHILE®
clause, the 'FOR' statement operates as previously described. The
order of operation is Ay y89,e00,ap,

Example

'FOR' X+ 3, 2 "STEP' 1 ‘UNTIL' 5, 70, 60, A 'WHILE' Z, 80 °DO‘ P(X)

First, 3 is assigned to X and procedure P(X) is executed.

Then the 'STEP' clause causes the following action: 2 is assigned to X and
P(X) is executed. X is stepped by 1 three times causing it to assume the values
3, 4, and 5. P(X) is executed after each step of X, Next, X is assigned the
value 70, and P(X) is executed.

Then X is assigned the value 60, and P(X) is executed.

The 'WHILE' clause causes the value of A to be assigned to X. If 7 is true,
P(X) is executed. This is repeated until 27 becomes false. (The values of A and
Z may be changed by execution of P(X)).

Finally, 80 is assigned to X and P(X) is executed.

5-25 BS11

'GO TO®

S

‘GO TO®

GO TO®

LABEL

To interrupt the normal sequence of statement execution by defining
explicitly the successor of the current statement.

Form

'GO TO' a

a: statement label

Examples

1.

The statement, 'GO TO' a, causes control to go to the statement with
label a.

A "GO TO' statement outside a 'FOR' statement may not refer to a label
within the "FOR' statement.

A 'GO TO' statement outside a block may not refer to a label within
that block.

A 'GO TO' statement outside a compound statement may refer to label
within that compound statement.

'GO TO' BOY
This statement causes control to go to a statement labelled BOY.

"GO TO' T12; M15: A+ A+l; 'IF' L 'THEN' 'BEGIN'
C D*Et2; Tl12: A+ B+C*F 'END'

The "GO TO' statement causes control to go to a statement within a
compound statement.

5-26 BSll

‘GO T

o',

'GO TO'

SWITCH DESIGNATOR

Form

To interrupt the normal sequence of statement execution by causing control
to be transferred to one of a number of possible statements, depending on the
value of an arithmetic expression.

'GO TO' sw [a)]

SWe

as

Rules

switch identifier

arithmetic expression

The switch identifier "sw" must have been defined by a switch
declaration in the current block or in an enclosing block.

The form sw [a] is called a switch designator.

The next statement to be executed is the one whose label is referenced
through the switch declaration defining "sw".

This "GO TO' statement operates as follows:

a. The expression denoted by a is evaluated. From this value an
integer k is established where k is the result of +the function
ENTIER (a+.5). That is, the largest integer not greater than the
value of the argument, i.e., if a iz 3.7, k=4.

b. k specifies which element in the list of the switch declaration
will be referenced; i.e., the leftmost element is numbered 1; the
next is 2, etc.

c. If k is not within the range 1 to n (where n is the number of
elements in the switch designator), control goes to the next
statement in normal sequence.

A "GO TO' statement outside a °‘FOR' statement may not refer to a label
within that 'FOR' statement.

A "GO TO' statement outside a block may not refer to a label within
that block.

A 'GO TO' statement outside a compound statement may refer to a label
within that compound statement.

5-27 BS11

IGO TO' ’GO TO’

Example

'BEGIN' 'SWITCH' AB<+ PB, QB;
'SWITCH' AC+ PC, QC, AB[X];
'Go TO' AB[T];
'Go TO' AC[Y];

'END’

If T has the value 1 when the 'GO TO' for switch AB is executed, control
goes to the statement labelled PB. If T has the value 2, control goes to the
statement labelled QB. If T has any other value, control goes to the statement
following the "GO TO' statement. When the 'GO TO' for switch AC is executed,
control will go to statements labelled PC or QC if Y has the value one or two,
respectively. If Y has the value three, then execution is equivalent to 'GO TO®
AB(X]. If Y has any other value, control goes to the next sequential statement.

5-28 BS1l

'GO TO! GO TO!

'GO TO', CONDITIONAL DESIGNATOR

To interrupt the normal sequence of statement execution by causing control
to be transferred to one of a number of possible statements; the statement
chosen will depend on the value of a Boolean expression.

Form

'GO TO' 'IF' b 'THEN' dj 'ELSE' dj
b: Boolean expression

dy,d2: designational expressions

Rules

1. A designation expression (dj,d2) is any one of the following:
a, Statement label

b. Switch designator. This has the form sw[a], where sw represents a
switch identifier and a represents an arithmetic expression.

c. Conditional designator. This has the form
'IF'" b "THEN' c¢ 'ELSE' d
where
b represents a Boolean expressions;

c may be either a statement label, a switch designator, or a
conditional designator enclosed within parentheses;

d may be either a statement label, a switch designator, or a
conditional designator (not necessarily enclosed within

parentheses) .
2. This statement operates as follows:
a. The Boolean expression b is evaluated;
b. If b is true, control is transferred as specified by dj.
c. If the Boolean expression b is false, control is transferred as

specified by ds.

3. A "GO TO' statement outside a 'FOR' statement may not refer to a label
within that 'FOR' statement.

4. A 'GO TO' statement outside a compound statement may refer to a label
within that compound statement.

5-29 BS1l1

'GO TO'

@xamgles

1.

'GO TO?

‘GO TO' 'IF' A 'THEN' B 'ELSE' C[I]

If the Boolean expression A is true, control goes to the statement
labellerd B. Otherwise, control goes to the statement referenced by the
Ith item in the switch declaration defining C. .

"GO TO' 'IF' BA 'THEN' LA 'ELSE' 'IF' BB 'THEN'
LB 'ELSE' LC

If the Boolean expression BA is true, control goes to the statement
labelled LA, If expression BA is false and Boolean expression BB is
true, control goes to the statement labelled LB. If both expressions
BA and BB are false, control goes to the statement labelled LC. (Note:
dy in this case is a statement label while d3z is a conditional
designator.)

'GO TO' 'IF' BA 'THEN' ('IF' BB 'THEN' LB
'ELSE' LC) 'ELSE' LA

If both BA and BB ars true, control goes to the statement labelled LB.
If BA is true and BB is false; control goes to the statement labelled
LC. If BA is false, control goes to the statement labelled LA. (Note.
dj is a conditional designator, and therefore, must be enclosed iun
parentheses.)

5=30 Bs1l

PROCEDURE

PROCEDURE

PROCEDURE STATEMENT

Form

To call for the execution of a procedure defined by a 'PROCEDURE'
declaration.

(1) name

(2) name (al tat... ta

n)

name: procedure identifier

aj,ag,...,an: actual parameters

Rules

t: separator

A procedure statement may have no parameters, as shown in Form (1).

When there are parameters (Form (2)), each separator t may be either
""" or ")b: (" where b is only descriptive; i.e., it may be used as
comments to describe actual parameters. b Thas no operational
significance,

The procedure identifier must appear in a procedure declaration.

The number of actual parameters must be the same as the number of
formal parameters in the procedure declaration. However, the method of
parameter separation need not be the same in a procedure statement and
the corresponding declaration. That is, where a comma was used in a
procedure statement, the form ")b: (" may be used in the declaration
and vice versa.

The actual parameters may be any one of the following:

a. arithmetic expression

b. Boolean expression

C. string

d. array identifier

e. switch identifier

f. procedure identifier

g designational expression

5-31 BS11

PROCEDURE

10.

11.

ExamEles

PROCEDURE

The correspondence between the actual parameters of the procedure
statement and the formal parameters of the procedure declaration is by
their appearance in the respective parameter lists. The two sets of
parameters must have the same number of items.

The execution of a procedure statement is as follows:

a. The formal parameters which appear in a value 1list of the
procedure declaration are replaced by the values of the
corresponding actual parameters. '

b. These actual parameters are evaluated from left to right
according to their appearance in the parameter list.

C. Formal parameters which are not part of a value list are replaced
throughout the procedure by the corresponding actual parameters.

d. If the identifier of an actual parameter and an identifier
already in the procedure are the same, adjustments will
automatically be made to the latter so that no conflicts occur.

e. After the procedure has been modified as above, it is executed.

If an actual parameter is a string, it may only be used in a procedure
written in non-ALGOL code. In an ALGOL procedure, a string may appear
only as an actual parameter for a further procedure call.

If a formal parameter is an array identifier, the corresponding actual
parameter must also be an array identifier of the same dimension.

A switch identifier or string may not be an actual parameter
corresponding to a formal parameter which is called by wvalue. A
procedure identifier may not be used as a value parameter unless it
designates a function with no arguments.

HIGHVAL (Z, P*(P+1)/2, V, I)

The procedure which this statement calls is defined in the section
'PROCEDURE' declaration, simple. In this procedure statement 7 denotes
the number of elements. The value of the largest element of Z will be
found in V after the procedure call, and I will contain the value of
the subscript of the largest element.

SQUAREROOT (At2+Bt2, .000001, C)
The procedure which this statement calls is defined in the section
'PROCEDURE' declaracion, specification part. After this procedure

statement is executed, C will contain the square root of A +B with an
accuracy of .000001.

5-32 BS1l

PROCEDURE

b

34

o

PROCEDURE

T™OT (X, A, 1, N, 1L/A%*(A+1))
The procedure which this statement calls is defined in the section

'PROCEDURE® declaration, value and specification part. This procedure
statement will result in the following computation:

N
X =3 1/A(A+1)
A=l

SUM« ADD (A, I, N) FUNCTION: (1L/a* (A+1))

The procedure which this statement calls is defined in the section
"PROCEDURE' declaration, function definition. This function call will
result in the summation of example 3 in ADD and in SUM. The symbol
FUNCTION is used as text and has no operational significance.

SUM ADD(P,Q,N* (N+1), ADD(Q,1,N,P/Q))

This statement results in the value of the following computation
placed in ADD and in SUM:

N(N+1) N
3 p/Q
P=Q Q=1

This is an example of a recursive procedure call.

5-33 BS1i

SECTION VI

DECLARATIONS

DESCRIPTIVE FORMAT

The description of each declaration in the ALGOL language is presented in
this Section. Each declaration description starts on a new page, with the format
of its descriptive material given as shown below:

Descriptive name

(A brief statement of the purpose of the declaration)

Form

(Form of the declaration)
(Definition of symbols used in the form line)

Rules

(A list of rules governing the correct usage of the declaration;
includes restrictions, suggestions, etc.)

Examples

(A list of examples illustrating the use of the declaration)

6-1 BS11

'ARRAY’

'ARRAY '

types

Form

"ARRAY"

To specify array identifiers, dimensions, bounds cf subscripts and array

«

type 'ARRAY'® aj,&@ﬁ,;ﬁya

e

type: tvpe word

aj,8gs..,apt array specifier (s)

Rules

The type word may be any one of the following:

a. 'INTEGER'

b. "REAL’

Ce. 'EXTENDED REAL®
d. 'BOOLEAN

Type is optional. If it is not used, 'REAL' is assumed. The type is
assigned to each array identifier in the declaration.

An array specifier may be either of the form b or b[c], where b
represents an array identifier and c represents a dimension specifier.
A dimension specifier has the form dj: ej,d2: e2,...,dp: ep, where
each dj and ej may be an arithmetic expression. n is the number of
dimensions. di and ej represent the lower and upper subscript bounds
of dimension i, respectively. The value of a lower bound may not
exceed the value of an upper bound.

If an array identifier does not have a dimension specifier, the next
dimension specifier is assigned. That is, the form bj,b2,...,bn [dy:
ey, d2: €2,...,dnt en) is equivalent to the form by [dy: e3, di:s
e3,...,dn: en], by [d3: ey, dy: egse.esdpt eplyee. by [dy: ep, dy:
ez,.:.,dn: en].

Lower and upper bounds will be evaluated from left to right. The
bounds can only depend on variables and procedures which have been
defined in a block enclosing the block for which the array declaration
is valid. Consequently, in the outermost block of a program, only
array declarations with constant bounds may be used.

The bounds will be evaluated each time the block is entered.

Every array used in a program must appear in an array declaration.

An array identifier may not appear with subscripts whose values do not
lie within the bounds specified by the array declaration.

6-2 BS11

'ARRAY'

ExamEles

1.

"ARRAY'

"ARRAY' A[1:10]

The array A is one-dimensional and has a lower subscript bound of 1
and an upper subscript bound of 10. A is assumed to be of 'REAL' type.

'"ARRAY' A,B [1:10,1:20]

Arrays A and B are two-dimensional and have subscript bounds 1 and 10
and 1 and 20. The arrays are assumed to be 'REAL' type.

'INTEGER' 'ARRAY' A[P:Q], B [1:2*P, 3:5, 1:5]
The array A is of 'INTEGER' type and has subscript bounds P and Q. B

is of 'INTEGER' type and is three-dimensional. The bounds of the
dimensions are 1 and 2*P, 3 and 5, and 1 and 5, respectively.

6-3 BS11

"ARRAY'®

'ARRAY', 'OWN'

To specify array identifiers, dimensions, bounds of subscripts and array
types; also to specify the condition of arrays upon re-entry into a block.

Form

'OWN' type 'ARRAY' ajsa9,000 8y
type: type word

a31,89,...,ap? array specifier(s)

Rules

1. The array specifiers may be in any of the forms permissible for the
array declaration.

2, All the rules which pertain to array declarations are wvalid for the
'OWN' array declaration except:

a. On re-entry into the block in which the 'OWN' array declaration
appears the array elements will have their previous values.
b. The subscript bounds must be integer constants.

3. When exit is made from the block (by 'END' or by a 'GO TO' statement),
the identifiers are inaccessible even though their values have been
saved.

Example

"OWN' 'BOOLEAN' 'ARRAY' BA[1:20, 5:15, 1:10]

The array BA is three-dimensional and is of 'BOOLEAN' type. The bounds of
the dimensions are 1 and 20, 5 and 15, and 1 and 10, respectively.

6-4 BS1l

'PROCEDURE’ 'PROCEDURE'’

'PROCEDURE’' DECLARATION, SIMPLE

To define a statement or series of statements as being associated with a
procedure identifier; to provide a means by which a procedure may be executed
any number of times in the course of a program although the steps of the
procedure appear only once.

Form

1) '"PROCEDURE' name; s
2) '"PROCEDURE' name (aj t ap t ... t ap); s

name: procedure identifier

aj,agses0,ant formal parameters
t: separator
s: statement
Rules
1. A procedure declaration may have no parameters, as shown in Form (1).
2. When there are parameters (Form (2)), each separator t may be either
"," or ")b: (" where b represents any sequence of letters. The function

of b is only descriptive, i.e., it may be used as comments to describe
actual parameters. b has no operational significance.

3. The formal parameters may be any of the following:
a. variable
b. array identifier
c. switch identifier
d. label
e. procedure identifier
4, The formal parameters usually appear somewhere in statement s. They

will be replaced by or assigned the values of the actual parameters of
the particular procedure statement which calls the procedure.

5. Statement s may be
a. a simple statement
b. a compound statement
C. a block

6-5 BS11

"PROCEDURE' 'PROCEDURE"®

6. Identifiers which are not formal parameters may appear in s if either
of the following conditions exists:

a. s is in the form of a block and the identifiers are declared at
the beginning of this block.

b. the identifiers are declared in the block in which the procedure
declaration appears.

7. Statement s always acts like a block insofar as the scope of its
identifiers is concerned; i.e., a label appearing in s is not defined
outside the procedure declaration.

8. The procedure specified may be executed anywhere in the block in which
the declaration appears by writing a procedure statement containing
the procedure identifier and the actual parameters, if any.

Example

"PROCEDURE' HIGHVAL (A,N) ANS: (X,Y):

'BEGIN'

Xea[l]; Y« 1l; "FOR' I+2 "STEP' 1 ‘UNTIL' N 'DO'
IF' A[I] 'GR' X 'THEN'

"BEGIN'

XeAl1]; Y1

"END®

"END°®

This procedure determines the largest element of an array. Input formal
parameters are: array identifier A and number N of elements. Output formal
parameters are: value X of largest element and value Y of subscript of largest
element. The symbol ANS is used as text and has no operational significance.

6-6 BS11

'"PROCEDURE’ 'PROCEDURE’

'PROCEDURE' DECLARATION, SPECIFICATION PART

To define a statement or series of statements as being associated with a
procedure identifier; to provide a means by which a procedure may be executed
any number of times in the course of a program although the steps of the
procedure appear only once; to specify the kinds of gquantities actual parameters
may represent,

Form

'PROCEDURE' name (aj; t ag t ... t ap)
sp list; sp list;...; sp list; s
name: procedure identifier
21,8900 ,ap3 formal parameters
t: separator
sp: specifier

list: formal parameters separated
by commas

s: statement
Rules

1. Each separator t may be either "," or ")b:(" where b represents any
sequence of letters. The function of b is only descriptive; i.e., it
may be used as comments to describe actual parameters. b has no
operational significance.

2. The formal parameters may be any of the following:
a. variable
b. array identifier
C. label
d. switch identifier
e. procedure identifier

3. The formal parameters usually appear somewhere in statement s. They

are replaced at the time of execution by the actual parameters of the
procedure statement.

6-7 BS11

T

'PROCEDURE’ 'PROCEDURE*

4, The specifiers may be any of the following:

‘ARRAY "INTEGER' 'ARRAY'®
'"BOOLEAN' 'INTEGER' ‘PROCEDURE'
'"BOOLEAN' 'ARRAY' 'LABEL"’
'"BOOLEAN' 'PROCEDURE' "PROCEDURE®
'"EXTENDED REAL' '"REAL'’
'"EXTENDED REAL' 'ARRAY' "REAL" 'ARRAY'
"EXTENDED REAL' 'PROCEDURE' 'REAL"' "PROCEDURE'
'INTEGER® "STRING'

"SWITCH'

5. The specifiers indicate for the parameters in their "list"™ what form
the corresponding actual parameters should take. (Note: *INTEGER®,
'REAL', and 'EXTENDED REAL' may be used interchangeably and the proper
transformations will take place automatically.)

6. A formal parameter may appear in no more than one "list.” However, a
formal parameter need not appear in a "list," except for switches
which must be specified.

7. Statement s may be
a. a simple statement
b. a compound statement
C. a block

8. Identifiers which are not formal parameters may appear in s if either
of the following conditions exists:

a. s is a block and the identifiers are declared at the beginning of
this block.

b. the identifiers are declared in the block in which the procedure
declaration appears.

9. Statement s always acts like a block insofar as the scope of its
identifiers is concerned; i.e., a label appearing in s is not defined
outside the procedure declaration.

10. The procedure specified may be executed anywhere in the block in which

the declaration appears by writing a procedure statement
the procedure identifier and the actual parameters,

containing

6-8 BsS1ll

'PROCEDURE" 'PROCEDURE’

;E:e{amEle

'PROCEDURE' SQUAREROOT (X,E +S):
'REAL' X, E, S'
'BEGIN" "REAL'" SA;
"IF' X 'LS' 0 "THEN'
"BEGIN' S«=1; "GO TO' B
SA <« 1;
A: S« (SA+X/SA)/2;
'IF" ABS(SA-S) 'GR' E 'THEN'

"BEGIN' SA«S; "GO TO' A "END';
B: 'END'

'END';

This procedure computes the square root. Input formal parameters are:
number X whose square root is wanted and accuracy E. Output formal parameter is
square root S of X.

BS11

'PROCEDURE® ' PROCEDURE"

' PROCEDURE® DECLARATION, VALUE AND SPECIFICATION PART

To define a statement or series of statements as being associated with a
procedure identifier; to provide a means by which a procedure may be executed
any number of times in the course of a program although the steps of the
procedure appear only once; to specify which formal parameters are replaced by
the value of the corresponding actual parameters; to specify the kinds of
quantities actual parameters may represent,

Form
'PROCEDURE' name (a3 tapgt ... t ap)
'VALUE' 1list;
sp list; sp list;,..; sp list; s

name: procedure identifier
al,az,...,an: formal parameters
t: separator
sp: specifier
s: statement
list: formal parameters separated
by commas
Rules

1. Each separator t may be either "," or ")b: (" where b represents any
sequence of letters. The function of b is only descriptive; i.e., it
may be used as comments to describe actual parameters, b has no
operational significance.

2. The formal parameters may be any of the following:

a. variable
b. array identifier
c. label)

d. switch identifier
e, procedure identifier
3. The formal parameters usually appear somewhere in statement s. They

are replaced at the time the procedure is called upon by the actual
parameters of the procedure statement.

6-10 BS11

'PROCEDURE" 'PROCEDURE'

10.

11.

12.

However those formal parameters which are listed in the 'VALUE' part
of the declaration are assigned the current values of the
corresponding actual parameters before statement s is executed. The
order of assignment is from left to right according to the order of
appearance in the formal parameter list.

The specifier may be any of the following:

'ARRAY' 'INTEGER' 'ARRAY'
'BOOLEAN' 'INTEGER' 'PROCEDURE'
'BOOLEAN' 'ARRAY' 'LABEL"'
'BOOLEAN' 'PROCEDURE' 'PROCEDURE'
'EXTENDED REAL' 'REAL'
'EXTENDED REAL' 'ARRAY' 'REAL' ‘'ARRAY'
'EXTENDED REAL' 'PROCEDURE’ 'REAL' 'PROCEDURE'
'INTEGER' 'STRING'

'SWITCH'

The specifiers indicate, for the parameters in their list, what form
the corresponding actual parameters should take. (Note: 'INTEGER',
'REAL' and 'EXTENDED REAL' may be used interchangeably and the proper
transformations will be made automatically.)

A formal parameter may appear in no more than one specification list.
However, a formal parameter need not appear in a 1list, except for
switches which must be specified.

A formal parameter appearing in the 'VALUE' list must also appear in
one of the specification lists.

Statement s may be:

a. a simple statement
b. a compound statement
C. a block

Identifiers which are not formal parameters may appear in s if either
of the following conditions exists:

a. s is a block and the identifiers are declared at the beginning of
this block.
b. the identifiers are declared in the block in which the procedure

declaration appears.

Statement s always acts like a block insofar as the scope of its
identifiers 1is concerned; i.,e., a label appearing in s is not defined
outside the procedure declaration.

The procedure specified may be executed anywhere in the block in which

the declaration appears by writing a procedure statement containing
the procedure identifier and the actual parameters.

6-11 BS11

'PROCEDURE' 'PROCEDURE'

Examgle

'"PROCEDURE' TOT (T,K,L,M,U
'VALUE' L,M; "INTEGER' L,M
'"BEGIN'
T«0;
'FOR' K« L 'STEP' 1 'UNTIL' M 'DOY
T« T+U
"END’

)i

This procedure computes the sum of values of a function U between the
limits of summation L and M. The function U may depend on the summation index K.
The sum is generated in formal parameter T.

6-12 BS11

'PROCEDURE’ '"PROCEDURE'

'PROCEDURE' DECLARATION, FUNCTION DEFINITION

To define a statement or series of statements associated with a specific
procedure identifier as being a function; to provide a means by which the
appearance of the procedure identifier will cause the function to be performed
and a value to be given to the identifier although the. steps of the function
appear only once,

Form
(1) type 'PROCEDURE' name; s
(2) type 'PROCEDURE' name (ag t agt ... t ap);s
(3) type 'PROCEDURE' name (aj t az t ... t ap);
sp list; sp list;...; sp list; s
(4) type 'PROCEDURE' name (aj t ap t ... t ap);
'"VALUE' list;
sp list; sp list;...; sp list; s
type: type word
name: procedure identifier
8148900 ,aps formal parameters
t: separator
sp: specifier
s: statement
list: formal parameters separated
by commas
Rules
1. A procedure declaration may have no parameters, as shown in Form (1).
2. When there are parameters (Forms (2), (3), and (4)), each separator t
may be either "," or ")b:(" where b represents any sequence of
letters. The function of b is only descriptive; i.e., it may be used
as comments to describe actual parameters. b has no operational

significance.,

6-13 BS11

'PROCEDURE' '"PROCEDURE’

10.

11.

The type word may be any of the following:

a, 'INTEGER'

b. 'BOOLEAN'®

c. 'REAL'

d. 'EXTENDED REAL' -

The type word identifies the type of the procedure identifier.

At some point in the procedure body, i.e., in statement s, the
procedure identifier must appear on the left side of an assignment
statement. When this statement is executed, the function receives a
value, and it is this wvalue which is wused when the procedure
identifier appears in an expression. The function receives a value
according to the type specified by the type word.

The procedure identifier may appear on the left side of any number of
assignment statements. It is the last one to be executed from which
the function receives its value.

The formal parameters may be any of the following:

a. variable

b. array identifier

C. label

d. switch identifier

e. procedure identifier

The formal parameters usually appear in statement s, They are replaced
at the time the procedure is called upon by the actual parameters of
the function call.

There may or may not be a ‘VALUE' declaration in a function
definition. If there is, the rules which apply are the same for all
procedure declarations.

The specifiers which may be included, and the rules which apply are
the same for all procedure declarations.

Statement s may be

a. a simple statement
b. a compound statement
C. a block

Identifiers which are not formal parameters may appear in s if either
of the following conditions exist:

a. s 1is a block and the identifiers are declared at the beginning of
this block.

6~-14 ' BS11

s

'PROCEDURE' 'PROCEDURE’

12.

13.

@Eamgles

b, the identifiers are declared in the block in which the procedure
declaration appears.

Statement s always acts like a block insofar as the scope of its
identifiers is concerned, i.e., a label appearing in s is not defined
outside the procedure declaration.

The function which this declaration defines may be executed anywhere
in the block in which this declaration appears by writing in an
arithmetic or Boolean expression, the procedure identifier, and the
actual parameters, if any.

'REAL' °PROCEDURE' ADD (K,L,M,U);
"BEGIN' 'REAL' W;

We0:

'FOR" K« L '"STEP' 1 'UNTIL'

M 'DO?

W W+U;

ADD <« W

'END"

This function computes the sum of values of a function U between the
limits of summation L. and M. The function U may depend on the
summation index K. Upon exit from the function, the sum is contained
in ADD which is of type 'REAL'.

'"INTEGER' 'PROCEDURE' FACT (X);
"IF' X '"EQ' 1 'THEN' FACT <+« 1 'ELSE'
FACT « X*FACT (X-1)

This is an example of a racursive prcocedure declaration. Executlon of
FACT (2) causes FACT(l) to be executed because of the statement
FACT < 2* FACT(1l). Then FACT will have the wvalue 2*1, Execution of
FACT (3) causes FACT to have the value 3%*2*1, If this procedure is
called n times, FACT will have the value n factorial.

6-15 BSll

'PROCEDURE’

'PROCEDURE' DECLARATION, SEPARATELY COMPILED

'PROCEDURE’

To provide a technique for communicating with separately compiled
procedures,
Form
(1) 'CODE'
(2) 'CODE' 'BEGIN' dj;dgj...;dp "END'
dy,dgs...,dn: code declarations
Rules
1. Form (1) or Form (2) above are to be used in a procedure declaration
in place of statement s when it 1is desired to write a procedure
outside an ALGOL program. The procedure may be written either as a
separately compiled ALGOL program or as a procedure compiled in some
other language (e.g., GMAP).
2. Each d4 may have any one of the following forms:

a. "OWN' type *ARRAY' aj,a2,...;an

where type and aj,a2,...,an have the same meaning as
under Array declaration, 'OWN'. This code declaration
'OWN'® arrays whose storage will be reserved in the
program but whose identifiers will be wvalid only
separately compiled procedure.

b. 'OWN' type V1,V2,e.«,;Vpn
where type and vi,v2,...,vn have the same meaning as
under Type declaration, 'OWN' This code declaration
TOWN' variables whose storage will be reserved with the
program but whose identifiers will be wvalid only
separately compiled procedure.

c. "NONLOCAL' aj,ag,-..,an

where aj,as,...,ap may be any of the following:

1) variable

2) procedure identifier
3) array identifier

4) switch identifier

5) label

described
declares
declaring
in the

described
declares
declaring
in the

BS11

"PROCEDURE’ "PROCEDURE"

Examgle

This code declaration makes the specified identifiers of the
declaring procedure available to the separately compiled
procedure.

The procedure identifier of a separately compiled procedure and all
the identifiers specified in a, b, and c¢ above must be unigque in 6
characters. (A character is either a letter or a digit.)

For all procedures defined as 'CODE', a SYMREF will be produced in the
declaring program,

SYMDEFS will be produced for all *OWN' variables and arrays. In the
case of an 'OWN' variable, the BSYMDEF will point to the storage
location for the variable; in the case of an 'OWN' array it will point
to the first word of the alpha vector for the array.

There will be a SYMDEF associated with each entry in a 'NONLOCAL'

list.

ae. For a procedure identifier, the SYMDEF will point to the entry
! location of the procedure.

b. For a switch identifier, the SYMDEF will point to the antry
location for the body of code which evaluates the switch,

C. For a variable identifier, the SYMDEF will define either the
absolute location or the stack relative location of the variable,
depending on whether the variable is nonprocedural or procedural.

d. For a label, the SYMDEF will point to the location of the label.

e. For an array identifier, the SYMDEF will point to the first word
in the alpha vector for the array. The pointer will be absolute
or stack relative, depending on the point of definition of the
array.

The user of a 'CODE' procedure is completely responsible for proper
manipulation of the stack pointer, for setting of the available space
pointer, and for correct usage of the various ALGOL constructs made
available to him. :

It is possible to remap the internal name of a separately compiled
procedure into a different set of 6 or fewer characters which will be
used as its SYMREF, This is accomplished with the ALGOL word 'RENAME'
followed by a string containing the desired external name. This
construct follows the formal parameter 1list and precedes the word
'CODE'., The 'RENAME' string may consist of any combination of 6 or
fewer characters and/or decimal points.

'PROCEDURE® INPUT 0 (a, string); "RENAME'".A0IPT\; 'CODE'

6-17 BS1l

'SWITCH'

'SWITCH' DECLARATION

'SWITCH®

To set up a list of statement labels and/or switch designators which will

be referred to by subsequent 'GO TO' statements.

Form

'SWITCH' swedy,do,...,dp
sw: switch identifier

dy,dg,...,dy,: designational expression(s)

Rules

1. This statement defines the switch identifier sw as being associated

with a list of designational expressions separated by commas.
2. A designational expression (dj) is any one of the following:

a. a statement label

b. a switch designator. This has the form sw[a], where sw represents
a switch identifier and a represents an arithmetic expression.

C. a conditional designator. This has the form
'"IF’' b 'THEN' ¢ 'ELSE' d
where

b represents a Boolean expression;

¢ may be either a statement label, a switch designator or a

conditional designator enclosed within parentheses;

d may be either a statement label, a switch designator, or a
conditional designator (not necessarily enclosed within

parentheses) .

3. Each designational expression is identifier by a positive integer -

the leftmost with 1, the next with 2, etc.

4., When a 'GO TO' statement involving a switch designator is encountered

in the program, the subscript of the switch designator is

given an

integral value. It is this value which determines which element of the

list is referenced.

5. If the list item referenced is a conditional designator,

the 'IF'

clauses are evaluated until a designational expression involving only

a label or a switch designator is reached.

BS11

'"SWITCH' 'SWITCH'

6. If the list element referenced is a label, it specifies directly the
next statement to be executed.

7. If the element is a switch designator, it in turn references another
'SWITCH' declaration. The subscript of the switch designator is
evaluated to locate the correct 1list element of the new 'SWITCH'
declaration.

8. This process may be repeated through any number of "SWITCH'
declarations until reference is made directly to a statement label.

9. Each time an element in the 1list of a ‘SWITCH' declaration is
referenced, any expressions the element may contain are re-evaluated.

ExamEle

"SWITCH' BA« PA, 'IF' S 'THEN' PB 'ELSE' PC, AC[X]

This switch may be called by a statement such as 'G0O TO' BA[D] which
operates as follows: If D has the value 1, operation is equivalent to operation
of 'GO TO' PA, where PA is a statement label. If D has the value 2, operation is
equivalent to operation of 'GO TO' '"IF' S 'THEN' PB 'ELSE' ©PC, where S is a
noolean expression and PB and PC are statement labhels. If D has the value 3,
operation is eqguivalent to operation of 'GO TO' AC[X] where AC is a switch
identifier and X is an arithmetic expression., If D has any other wvalue, the
statement following the 'GO TO' is executed next.

BS11

G
b
(s

TYPE

TYPE

TYPE DECLARATIONS

To specify which variables represent integer, real, extended real, or
Boolean gquantities.

Form

type V1,V9rs-.:Vp

type: type word

V1sVoseeerVpt variable(s)

Rules

1.

The type word may be one of the following:
"REAL', 'EXTENDED REAL®', 'INTEGER', or 'BOOLEAN" .
The type word specifies the type of the variables vy,Vy,...:Vp-

Each variable wused in a program must be declared in a type
declaration.

No variable may appear in more than one type declaration in a single
block.

The type declaraticn is wvalid only for the block in which the
declaration appears. Outside this block the identifiers may be used
for other purposes.

The type declaration is valid for any blocks contained within the
block containing the type declaration. However, variables may be
redeclared in sub-blocks, in which case the previous declaration 1is
superseded.

When exit is made from a block (by 'END' or by a ‘GO TO' statement)
all identifiers which were declared for the block are undefined.

6-20 BS11

TYPE

Examgle

'BEGIN' 'INTEGER' P,Q; 'INTEGER' 'ARRAY' S[1:5];

P+3; Q«2;

'BEGIN' 'REAL' P,R;
R+~ 03
P+1;
s{1] ~p;
SEZJ -Q;
s3] -R

'END';

s[4] «~p;

sl5] «0

"TEND'

TYPE

These statements assign the numbers 1,2,2,3,2 in this order to elements of

the array S.

BS11

TYPE TYPE

TYPE, 'OWN'

To specify which variables represent integer, real, extended real, or
Boolean quantities; to provide a means for retaining previous values of certain
variables upon re-—entry into a block.

Form

'OWN' type Vi,V2,000,Vp
type: type word

V1sV2,0..,Vpt variable(s)

Rules
L. The type word may ke one of tre following:
'REAL', 'EXTENDED REAL', 'INTEGER', or 'BOOLEAN'.
The type wori cpecifies the cype of the variables Vi sVgreoosVpe

2. Each variable used in a program must appear in a type declarationm.

3. No variable may appear in more than one type declaration in a single
block. '

4. Only variables whose values are to be preserved for possible re-entry
into a block should be specified by an 'OWN' +type declaration. 2ll
other variables should be declared in a regular type declaration,

5. The variable identifiers declared in any type declaration are defined

only for the block in which they appear. Outside the block the
identifiers may be used for other purposes.

6. When an exit is made from a block (by 'END' or by a 'GO TC' statement)
the identifiers are inaccessible although their values have beaen
saved.

Example

B: YBEGIN'" 'REAL'" C; 'OWN' 'REAL' D;
YIF' A 'EQ' 6 "THEN'
'BEGIN'
C+~7;
D«8;
A«~9;
'GO TO' E
'END';
A+ D=2
'END';
E: YIF' A 'NQ' 6 'THEN' 'GO TO' B

6=22 BS11

TYPE TYPE

During the first execution of block B, 7 is assigned to C, 8 is assigned
D and 9 is assigned to A. Execution of the conditional statement labelled
causes block B to be executed again. During this execution, A 1is set to
because the previous value of 'OWN' variable D is saved. However, variable
could not be used in this way because not being 'OWN', its value is not saved.

Qoo

6-23 BS11

] LINK L] ' LINK !

'LINK' DECLARATION

To permit separate compilation of parts of a program while retaining the
"environment" of the entire program; to allow different parts of a program to
occupy the same area of storage at object execution time.

Form

'LINK' s;

s: string

Rules

1. Links may be blocks, procedures, or function procedures.

2. Links may have sublinks which may have sublinks, etc.

3. Links must be separately compiled.

4. All identifiers which would have been known to a link, had its coding
appeared in the program, will be known to the 1ink without special
indication.

Note, Currently the one exception is a code-body procedure. This must
be redeclared in the link.

5. The declaration for a block link is:

'"BEGIN' 'LINK' "NAME\; 'END'
The declaration for a procedure link is:
"PROCEDURE' ABC (X,Y); 'LINK' "NAME\ ;

6., The string following the declarator 'LINK' may contain up to five
alphanumeric characters. (A period may also be used.)

7. The name following 'LINK' must be unique within a program. Here a
program means a main program plus all links and sublinks pertaining to
it.

8. For a link compilation, the first basic symbol must be 'LINK'. This
must be followed by the name string which appeared in the declaring
program.,

For a block link compilation:

'LINK' "NAME\; 'BEGIN' declarations and statements
'END'

6-24 BS11

'LINK'

10.

11.

12,

13.

14,

'LINK'

For 'a procedural link compilation:

'LINK' "NAME\; 'PROCEDURE'

'OWN' declarations are allocated storage in the declaring program. It
is the programmer's responsibility to ensure that 'OWN' values, which

are to be saved, are not overlayed by another link.

No special calling sequence is necessary to invoke a block link or a
procedure link.,

For programs which are links or which contain 1link declarations, a
link file (file code LF) must be provided with a GCOS file control
card. This file may be assigned to magnetic tape, 1linked disk, or

linked drum,

When compiling a link the environment of the main program must be
known to the link. This is provided by the link file LF. This means
that the link file which was prepared by a program in which a link was
declared must be used when that link is compiled.

The name following 'LINK' is the name which will appear on the $§ LINK
control card.

A $ ENTRY control card must also be provided for each link. The name
on this card must be the 'LINK' name preceded by a period.

'LINK'

Example

Ly U Uy U Uy

Oy - A

N n

Ur

OPTION ALGOL
ALGOL

DISC LF,X1S,5L
'BEGIN'

°

'"BEGIN' 'LINK' "NAMEA\;
"BEGIN' 'IINK' "NAMEB\;

@

"END'

LINK NAMEA
ALGOL

DISC LF,X1S,5L
"LINK' "NAMEA\;
"BEGIN'

'PROCEDURE' ABC; ‘LINK'

"END*

ENTRY . NAMEA

LINK NAMEC

ALGOL

DISC LF,X1S,5L
'LINK' "NAMEC\;
"PROCEDURE' ABC; 'BEGIN'....
ENTRY ,NAMEC

LINK NAMEB,NAMEA
ALGOL

DISC LF,X1R,5L
'LINK' "NAMEB\;
'BEGIN'

"END"
ENTRY . NAMEB
EXECUTE
TAPE H*,X1R

'END’ ;
'"END';

"NAMEC\ ;

‘END'

'LINK®

BS11

'LINRY 'LINK'

These would appear in memory at execution time as

Main program plus
library routines

Link NAMEA

Link NAMEB

Link NAMEC

Link NAMEC is a sublink of link NAMEA. When link NAMEB is called, it would
overlay memory occupied by links NAMEA and NAMEC.

6=27 BS1l

SECTION VII

COMPOUND STATEMENT AND BLOCK

DESCRIPTIVE FORMAT

The description of the compound statement and block is presented in this
Section. Each description starts on a new page, with the format of its
descriptive material given as shown below:

Descriptive name

(A brief statement of the purpose of the statement)

Form

(Form of the statement)
(Definition of symbols used in the form line)

Rules
(A list of rules governing the correct usage of the statement; 1includes

restrictions, suggestions, etc.)

Examples

(A list of examples illustrating the use of the statement)

7-1 BS11

COMPOUND STATEMENT COMPOUND STATEMENT

COMPOUND STATEMENT

To permit a series of statements to be joined together in such a way as to
act as a unit,

Form

'BEGIN' $13iS97..iSp "END’

81r8psee0s8pt statements

Rules

A compound statement may have a label and may contain any number of
statements (sj).

Each statement S$1152¢e+4,5py may be
a. a simple statement

b. a compound statement

C. a block

Each statement may have a label.,

A 'GO TO' statement may transfer control to a statement within a
compound statement.

I+~1;
T: 'IF' I 'LQ" 19 ‘THEN'
'BEGIN'
AlI] « 1;
I «I+1;
'GO TO' T
'END'

These statements assign the numbers one to ten to elements of the
array A. This example contains a compound statement as the true branch
of a conditional statement.

7-2 BS11

COMPOUND STATEMENT COMPOUND STATEMENT

2. 'FOR' I+ 1 'STEP' 1 'UNTIL®' 10 'DO°’
'BEGIN'
'FOR' Je~ 1 'STEP® 1 'UNTIL' 10 'DO’
‘BEGIN'
YIF' I "EQ' J 'THEN'
'BEGIN'
B[I,J] «1; 'GO TO' S
'END';
B[1,J) « 0;
S: "END'
'END'

These statements generate a ten by ten unit matrix in +the array B.
Eaclr "FOR' statement has a compound statement as its object. Also, the
true kranch of the 'IF' statement is a compound statement.

7=3 BS11

BLOCK BLOCK

BLOCK

To permit statements and declarations to be grouped together in such a way
as toube independent of other parts of a program. This permits labels and
identifiers to be used in different sections of a program without conflicts.

Form

'BEGIN' dl;dz?o,,;dn;sl;szyoaq;sn '"END'

dy,dg,...,du: declarations

S]1¢S9reeesSpt statements
Rules

1. A block may have a label, and may contain any number of declarations
and statements.

2. Each statement S$1sS9s+0. /Sy May be
a. a simple statement
b. a compound statement
C. a block

3. Each statement may have a label.

4. When a block is entered through 'BEGIN®, the identifiers which are
declared for the block are newly defined and lose any significance
they may have had prior to entry.

5. All labels within a block are local to the block and may not be
referred to from outside.

6. When exit is made from a block, all identifiers which were declared
for the block are undefined and may be used for other purposes,
including those declared as 'OWN'.

7. If a declaration is prefaced with 'OWN', the identifiers so defined
will retain their previous values upon re-entry into the block., If
"OWN' is not specified, the values will be lost when exit is made from
the block and will be undefined upon re-entry.

8. All identifiers used in a program must be declared in one of the
blocks comprising the program. No identifier may be declared more than
once in a single block.

9. If blocks are nested, a statement label has meaning only in the
smallest block containing that statement.

BLOCK BLOCK

Example

'BEGIN' 'REAL' X,Y; 'ARRAY' A[l:57];
Kel; Yo 2
'BEGIN' 'REAL' X,Z;
Z Y
X« 3;
All] - X
A[2] « v;
A[3] ~ 7
"END’®
Al4] - X
A5]evY
"END’

These statements assign the numbers 3,2,2,1,2 in this order to elements of
the array A.

7-5 BS11

SECTION VIII

INPUT/OUTPUT

INPUT/OUTPUT PROCEDURES

The ALGOL language itself provides no input/output statements. However,
the ALGOL compiler contains within it a number of procedures which handle the
I/0. All a programmer need do is to call the existing procedures using an ALGOL
procedure statement, and through the procedure parameters, transmit the
information required for the input and/or output process.

The procedure identifiers used by ALGOL are reserved and act as though declared
in a block enclosing the program. If a programmer redeclares one of these
identifiers in his program his declaration supersedes the standard definition.
The procedures provided are listed below:

® Procedures pertaining to the layout of the I/0 information on the
external device:

BAD DATA

FORMAT

FORMAT n (n=0,1,2,...,9)
HEND

HLIM

NO DATA

TABULATION

VEND

VLIM

@ Procedures dealing with the actual transmission of data:

INLIST
INPUT n (n=0,1,2,...,9)
OUTLIST
ouTPUT n (n=0,1,2,...,9)

® Procedure allowing fine control over the input and output processes:
SYSPARAM
® Primitive procedures:
INSYMBOL
LENGTH
NAME
OUTSYMBOL

STRING ELEMENT
TYPE

® List procedure:

A user~declared procedure providing a list of the data items to be
transmitted.

Each procedure is discussed in detail below, and the form of the procedure
call is given.

INPUT/OUTPUT DEVICES

The procedures to be described in this section deal with the appearance of
the data on an input or output device. All of the procedures describe a printed
page. However, the concepts may be generalized to include any external device.

Listed below are the physical characteristics of the I/0 devices. The number of
characters per line is referred to as P. The number of lines per page is
referred to as P'.

P Pt

Device {characters) (lines)
Line Printer 120 55
Card Reader (binarvy) 160 no limit
Card Reader (decimal) 80 no limit
Card Punch (binary) 160 no limit
Card Punch (decimal) 80 no limit
Magnetic Tape, Disk, 120 no limit

Drum
These device characteristics may be altered where applicable (e.g., number of

characters per line for magnetic tape may be reduced) by wusing the procedure
SYSPARAM,

DESTINATION CODE

The Series 600/6000 ALGOL system uses a symbolic destination code which
indicates the medium to which +the information is intended to go (final
destination) or from which it is to come. Destination codes are required because
information is often stored temporarily on an intermediate device such as
magnetic tape or disk. The destination code indica"es the format of the data on
the external device. For example, a common case is when information which will
eventually be printed is temporarily stored on tape. In this case the
destination code indicates that the data is to be formatted as if it were going
to the printer, in spite of the fact that it is going to magnetic tape. Another
case is when a card image is read from disk. In this case the destination code
indicates that the data is to be read in the same format as when reading
directly from the card reader.

The destination code defines the type of logical device to be associated with a
file, independent of the physical device. In this way the system limits (that
is, P and P') for a file are defined. When the destination code is absent, the
logical device will be the same as the physical device.

§-2 BS11

The destination code is specified on a $ FFILE control card by the option
DSTCOD/ (XXX), where XXX may be any of the following:

Mnemonic Definition

MTAPE magnetic tape

DIsC disk

DRUM drum

BCRDR card reader, binary mode
DCRDR card reader, decimal mode
BCPNCH card punch, binary mode
DCPNCH card punch, decimal mode
PRNTR printer

PTMODS 5/6 channel paper tape
PTMODD 7/8 channel paper tape

The layout procedures are used to describe nonstandard operations which are
to take place during input and output. The procedures need not be called, in
which case certain standard operations (described with each procedure) will be
in effect. The technique for using the layout procedures is as follows:

The programmer declares a setup procedure containing any or all of the
eight layout procedures (FORMAT, HLIM, VLIM, HEND, VEND, NO DATA, TABULATION,
BAD DATA). At some point in the program there is a call to an I/0 transmission
procedure which has as one of its parameters the procedure identifier of this
setup procedure. At the time the I/0 procedure is called it causes the setup
procedure to be executed, thus establishing the nonstandard operations. Each
time a new I1I/0 transmission is called, the standard layout operations will be
resumed until changed by a new setup procedure.

BAD DATA

To indicate the procedure which is to be called when a request s made for
an item to be transmitted, and the item is incompatible with the format
character.

Form

BAD DATA (p)

p: procedure identifier

Rules
1. This procedure applies only to input.
2. If the referenced field is not compatible, control will be transferred
to procedure p.
3. If BAD DATA is not used and the condition described in Rule 2 arises,

control will be transferred to the end of the program as though a
dummy label had been placed just before the final 'END'.

8-3 BS11

FORMAT

BAD DATA (CHECK)

The procedure CHECX is used when incorrect data appears on the dinput
device.

‘BEGIN' 'PROCEDURE' REDO; OUTLIST (6,LAY,LIST);
.+ BAD DATA (REDO);... 'END'

When an incompatibility occurs, control goes to procedure REDD® which
outputs an error message.

To describe the form in which data appears on the input device or is to
appear on the output device.

Form

FORMAT (string)

string: a string with a special form

Rules

The format string is compcsed of a series of items separated by
commas .

The string is interpreted from left to right in conjunction with a
list of data items which are to be transmitted.

These data items usually appear in a separate procedure called a 1list
procedure,

An item in the format string may describe a number, a string, or a
Boolean quantity, or it may simply cause a title to be written or page
alignment to take place.

All the format items listed above constitute a format string.

Any format item or any group of format items can be repeated any
number of times by enclosing in parentheses those items to be repeated
and preceding the parentheses by an integer n indicating the number of
repetitions desired; i.e., 3(22.D) causes 3 decimal numbers to be
transmitted. If no integer precedes the parentheses an infinite number
of repetitions is indicated,

Number Formats

1.

Integers. This format item consists of a sexies of 2's, a series of
D's, or a series of Z's followed by D's, each corresponding to a digit
position of the number, and an optional sign.

8-4 BS11

The letter D is used *o indicate a digit which is always to be
printed. (For example, 385 when written with format DDDD will appear
axternally as 0385.)

The letter Z is used to indicate that the corresponding digit is to be
suppressed if it is a leading zero. In this case, a zero digit will
be replaced by a blank space when all the digits to its left are
zeros. (For example, 21 when written with format 2722 will appear
externally as P21.)

A series of Z's or D's may be written in a shorthand notation as
follows: nZ or nD (where n is an integer) is equivalent to 2Z2...Z2 or
DDD...D (n times). (For example, 32 and 22Z are equivalent. 4D and
DDDD are equivalent.)

An optional sign may precede or follow the Z's and D's of a number
format. If no sign appears, the number is assumed to be positive.
Note: If a negative number is output with no sign position, the first
digit position will print as P,A,B,...,I representing the digits
0,1,2,...,9 respectively. If a plus sign appears, the correct sign of
the number appears on the external medium. If a minus sign appears,
positive numbers will be unsigned and negative numbers will have a
minus sign on the external medium.

If a preceding sign is to appear externally with a number which has
had leading zeros suppressed, the sign will be placed immediately to
the left of the first non=-zero digit.

The total number of positions which an integer occupies on the
external medium is the sum of the Z's and D's (plus one 1if the
optional sign appears). If the field width is insufficient to hold the
complete number, the complete number will be transmitted; but the rest
of the line may be moved to the right.

Examples of integer formats:

If +XXDDD is used with 2176, it appears as p+2176.
If -272ZDD is used with 3, it appears as PBEPEO03.

If =-DDDD is used with =45, it appears as =-0045.

If Zz2 is used with 0, it appears as Pp¥.

If 72D is used with 0, it appears as BEO.

If 2Z4D+ is used with 390, it appears as PBP0390+.

Decimal Numbers. This format item consists of 2's and/or D's each
corresponding to a digit position, a period (.) or the letter V to
indicate the position of the decimal point, and an optional sign.

The letter Z has the same function it did for integers and it may
appear only to the left of the decimal point.

The letter D may appear on both sides of the point and has the same
function as for integers.,

If a . is used to indicate the decimal point position, it will appear
on the external medium in that position. If the letter V is wused it
merely indicates where the decimal point should be, but no space 1is
unsed on the external medium.

The sign part functions as it did for integers.

The total number of positions which a decimal number occupies on the
external medium is the sum of the Z's and D's plus one for the sign,
plus one if the point is indicated by a . in the format. If the field
width is insufficient to hold the complete number, the complete number
will be transmitted; but the rest of the line may be moved to the
right.

Examples of decimal numbers:

If ZzDD.DD is used with 146.776, it appears as B146.78.

If =-3D.D is usad with 1.2, it appears as p001.2.

If +32.3D is used with .,0042, it appears as EPE+.004.

If ~27ZDVD is used with =142.78, it appears as =-1428.

If 724D.DD- is used with =3394.7, it appears as PE3394.70-,
If 72D is used with 29.756, it appears as ¥30.

If .3D= is used with =-.0254, it appears as ,025-,

Decimal Numbers with Exponent. This format item is the same as that
for a decimal number with the addition of an exponent part to indicate
the power of ten to which the number must be raised to give the true
decimal number.

The exponent part consists of an apostrophe to separate it from the
decimal number followed by an optional sign, a series of Z's, and/or a
series of D's.

The letter E will appear on the external medium in the proper position
to separate the decimal number and its exponent.

The rules for the exponent part are the same as those foxr integers.

A number using this format will appear externally with its leading
igit not zero. The exponent is adjusted accordingly. If the number is
zero the exponent is also set to zero.

If a nonzero number has a zero exponent which is specified by 2's the
apostrophe and the exponent sign are also suppressed.

The total number of positions needed on the external medium is the sum
of all the 7's and D's plus one for the =s=ign, plus one for the
exponent sign, plus one for the apostrophe plus one for the decimal
point (if the decimal point is specified).

Examples of decimal numbers with exponents:

If 3D.DD'4DD is used with 3075.2, it appears as 307.52'+01.
If D.DD'-Z7 is used with 7.1, it appears as 7.10PBFY.

1f 2ZD'+2ZD is used with .021758, it appears as 218'p-4.

If DD'ZZ is used with 35.649, it appears as 36p¥B.

If ,3D'+2D is used with 917.2, it appears as :917'+03.

If .DD'=7Z7%7 is used with .000312, it appears as :31'BE-3.

8-6 B511

4, Octal Numbers., The form of this item is nO or 00...0 (n times) where n
is an integer which specifies the number of digits in the octal field.

The octal format item may only be used for output.

For output of real and extended real numbers, if n « 12, the leftmost
n digits will be transmitted; if n > 12, twelve digits will be
tranmitted, followed by n - 12 blanks.

For output of integer and Boolean values, if n < 12, the rightmost n
digits will be transmitted. If n > 12, twelve digits will be
transmitted, followed by n = 12 blanks.

Examples of octal numbers:
If 50 is used with 447521767511 on output, it appears as 44752,

If 140 is wused with 712342165134 on output, it appears as
712342165134p1.

Truncation for Number Formats

The integer or decimal number formats described above may be followed by
the letter T to indicate that the output should be truncated instead of rounded.
Rounding occurs when truncation is not specified.

Examples of truncation:
If -22Z3D.2DT is used with =12.719, it appears as Bp-012.71.

If 3zDT+ is used with 145.6, it appears as B145+,
If -Z2.DT'+22 is used with .-12537, it appears as Pl.2°'p-2.

Insertions in Number Formats

All of the number formats may have either blanks or strings inserted
anywhere within the format item. The insertion will appear on the external
medium.,

A blank is denoted by the letter B. If more than one blank is desired it
may be expressed by a series of B's or by the short hand notation nB (n is an
integer specifying the number of blanks). 3B is equivalent to BBB.

A string which is to be inserted must be enclosed in string gquotes (i.e.
"string\). If the string is to be repeated it may appear as n"string\ wheras n is
an integer specifying the number of times the string is to appear. The
information in the string (not including the outermost quotes) 1s inserted in
the corresponding place in the number.

8-7 BS11

Examples of insertions:

If D2B3D is used with 3972, it appears as 3¥p972.

If "ANS=\4D is used with 271, it appears as ANS=0271.

If "INTEGERPPART\~4ZVB"FRACTION\B2D is used with -195.7634, it appears as
INTEGERPPARTE~195¥FRACTIONKET6 .

If 2ZB2D.DBT'+DD is used with 44865.5, it appears as 44¥86.5K'+01.
If "OCTALB\50 is used with 112233445566, it appears as OCTALY11223.

Numbers for Input

Numbers which are input using the above format codes should, in general,
appear the same as those which are output.

However, there are fewer restrictions on the form of input numbers.

1. Leading zeros may appear even if Z's are wused in the format code.
Leading blanks may appear even if D's are used.

2. If insertion strings or blanks are used in the format code the
corresponding number of characters on the input device are skipped.

3. If a sign is specified at the left in the format code it may appear in
any Z or D positions on the input device as long as it is to the left

of the first digit. If the sign is specified at the right, it must
appear exactly where it is indicated.

4. If a period is required, it must appear exactly where it is indicated.

String Format

This format item is used to output string quantities. It may not ke used
for input. Alpha format must be used instead.

The form of this item is nS or SS...S{n times), where n is an integer which
indicates the number of symbols in the string.

1. If the actual string is longer than the number of S's indicated, only
the leftmost symbols are transmitted.

2. If the string is shorter, blank symbols are added to the right of the
string.

3. Examples of string format:

If S is used with "A\, it appears as A.

If 6S is used with "TOTALS\, it appears as TOTALS.
If SSS is used with "ABC\, it appears as ABC.

If 4S is used with "PROGRAM\, it appears as PROG,
If 55 is used with "CAT\, it appears as CATEP.

Insertions in String Format

Blanks or strings may be inserted in the S format. The rules are the same
as described for number formats.

8-8 BS11

Examples:

If B3SBB2S is used with "12345\, it appears as B123FE45.
If 28"= 38B is used with "TI1ANS\, it appears as T1=ANSK.

Alpha Format

This format item is used to transmit ALGOL basic symbols. (See
"Introduction", Section I for a list of basic symbols.)

1. The form of this item is the letter A.

2. The appearance of the letter A as a format item causes transmission of

a single symbol from or to the data item specified in the 1list
procedure.

3. The symbol will be stored as an integer.
It may be desired to work with symbols transmitted by the A format.
Therefore, a function is provided which makes any ALGOL symbol +type 'INTEGER'

and causes the symbol to have the same value as if it had been read in using
Alpha format.

The function is called EQUIV. Its argument must be an ALGOL basic symbol
enclosed in string quotes; i.e., EQUIV (" "BEGIN'\).

Example:
If A format is used to read an "*" into variable ALG the statement 'IF' ALG

'EQ'T EQUIV ("*) 'THEN' 'GO TO' GOOD will check that "*" was in fact the
symbol which was read in.

Boolean Format

This format item is used to transmit Boolean quantities. The item may
consist of the letter P or the letter F. If P is used and the quantity is true,
the number 1 is transmitted; if false, 0 is transmitted.

On input if F is used, the next seven characters are examined. If they are
'TRUE', then the value of true is transmitted; if they are 'FALSE', the value of
false is transmitted. On output if F is used and the value is +true, then the
seven characters 'TRUE'P are transmitted; if the walue is false, then 'FALSE' is
transmitted.

Insertions in Bocolean Format

Blanks or stirings may be inserted in the Boolean format. The rules are the
same as described for number formats and for strings.

8-9 BS11

Examples:

If BBPB is used with a Boolean variable whose value is 'TRUE', it appears

as BYlP.

If "THEYRELATIONWIS\BF is used with a Boolean variable whose value is
'FALSE', it appears as THEPRELATIONPISE'FALSE'.

Standard Format

A number may be transmitted for input or output without specifying in a
format item the exact form the number is to take. The number appears on the I/0
device in "standard format."”

If the letter N appears as a format item, it specifies that a number with
standard format is to be transmitted.

Standard format for input may be defined as follows:

1. Any number of digits in any of the forms which are acceptable to
integer or decimal number formats may be input.

2. The number must be terminated by an illegal character; i.e., one not
normally permitted in a number, or by k blanks where k 1is a system
parameter initially set at one. k may be changed by calling the system
procedure SYSPARAM.

Note: The input medium will be positioned to pick up the illegal character
on the next read. Therefore the programmer must space over the illegal
character (by using RDCHAR or SYSPARAM) if the illegal character is not to
be used.

If standard format is invoked, and the first line referenced contains any
legal character for a number (i.e., digit, sign, decimal point or apostrophe)
the right hand margin will terminate the number. If, however, the first line
contains only blank characters, the subsequent lines will be searched until a
legal number character is found. At this point the right hand margin is not
significant, and only an illegal character or k Dblanks will terminate the
number .,

If standard format is used for output, the type of the variable determines
the format on the external device.

1. For extended real variables, the wvalue will appear as though the
decimal number format B-.16DE+DD had been used.

2, For real variables, the value will appear as though B~.8DE+DD had been
used,

3. For integer variables, the valus will appear as though E-87ZD had been
used.

4. For Boolean variables, the value will appear as though 8F had been
used.

Standard format will be assumed if the end of a format string is reached
while there are data items in the list procedure still to Dbe transmitted. In
this case all the remaining quantities will be transmitted with standard format.

8-10 BS11

If a list of variables is to be terminated but either
1. no reference is made to a FORMAT procedure, or
2. the format call has the form FORMAT ("\)

the items will be transmitted according to standard format,

Hollerith Format

The form of this item is nH, where n indicates the number of characters to
be transmitted. On input, up to six characters of code will be read. The
characters will be inserted in a word, left justified, with trailing blanks.

On output, up to six characters of code will be inserted in the output
record. If n is greater than six, then only the first six characters will be
used, but the medium will be spaced n characters.

Alignment Marks

These are single characters which cause specific page operations to occur.
The marks and operations are:

/ go to next line
t go to new page
J go to next tabulation position.

Alignment marks may appear at the left or the right of any format item. If
they appear at the left of the item, the actions take place before the format
operation. If they appear at thk right, they take place afterwards; i.e., /3S
causes a skip to a new line before the string is transmitted and a skip to a new
page after.

Alignment marks may appear as separate format items simply by enclosing
them in commas.

Any number of alignment marks may appear in succession, and this causes the
specified action to be repeated as many times as it 1is indicated; 1i.e.,
causes a page to be terminated and two pages to be skipped. Also any mark may be
preceded by an integer n, where n indicates the number of times the action is to
be done; i.e., 4J causes a skip to the fourth tab position and is equivalent to
JJJIJ .

Title Format

This format item is used when it is desired to cause page alignment and/or
the output of insertion strings without transmitting any ALGOL quantities. This
item consists entirely of insertions and alignment marks and refers to no data
items.

On input, this item causes characters to be skipped corresponding to the
insertion strings and causes the desired alignment operations to be performed,.
On output, the insertion strings are transmitted and the alignment operations
are performed.

ExamEles

FORMAT n

is called.

Form

Example of title format:

t"SUMMARY\// indicate a new page, an insertion, a line to be terminated and
a line to be skipped.

1.

FORMAT ("4D.2D,227, /P, "ISPTHEBANS\ t,A\)

This format string transmits a decimal number and an integer on one
line; on the next Iine is a Boolean gquantity specified by a 0 or a 1
followed by an insertion. Then a skip is made to a new page and an
ALGOL symbol is transmitted.

FORMAT ("75,2(52.D"+22Z,F) ,2J\)
A seven symbol string is transmitted followed by a decimal number, a
Boolean guantity, a decimal number, a Boolean guantity. Then two
tabulations occur.

FORMAT (" (ZZ .BDT=,BBB+27D)\ }

A decimal number and an integer are transmitted an indeterminate
number of times; i.e., until the list of data items is exhausted.

To describe the form in which data appears on the input device or is to
appear on the output device; to permit certain elements of the format string to
be variable and to have their values calculated at the time the FORMAT procedure

FORMAT n(string, Xj,X2,...,%n)

n: integer

string: string with a special form

X1,X2,4.0,4pn: €Xpression

Rules

1.

n may be 0,1,2,...,9. This value indicates the number of x's which
appear following the format string. (Note: The form FORMAT (string) as
discussed previously is simply a special case of this format call in
which n=0.)

The form of the string is the same as that discussed for the procedure
call FORMAT (string), with certain additional features.

The string may contain the letter X in wvarious format items. The

values of the x 's which follow the format string will replace each X
when the FORMAT procedure is called.

8~12 BS11

4. The letter X may appear in the format string as follows:

A, In a Number Format:

Any Z or D may be preceded by the letter X to indicate a variable
number of repetitions of the Z or D.

Examples:
XZXD - variable integer size
2%Z.XD - variable number of decimal places
:DDD'"XD - variable exponent size
b. In an Insertion:
The letter B may be preceded by an X to indicate a variable
number of blank spaces on output or a variable number of ignored
positions on input.

Example:

2ZXB3D.D

Q

In a String Format:

The letter S may be preceded by the 1letter X to indicate a
variable number of symbols in the string.

Examples:

XS
BXSB4S

d. With an Alignment Mark:

t,/ or J may be preceded by the letter X to indicate a variable
number of times the specified alignment action is to be taken.

Examples:
XJDD.DD - variable number of tabulations
382BX/ = variable number of lines to be
skipped
5. The X's may be used at most 9 times in a single format string. The
integer n in the format call indicates the number of X's which appear
in the string.
6o The x3,%X2,...,Xp in the format call represent the integral values o

t
be assigned to the X's in the string. xj,x3,...,xp must be positive.
%x] is assigned to the first X which appears; x3 to the second, etc.

Examglg

FORMAT 3 ("ZZXD.D,XBXS\,2,A-5,B)

The decimal number will be transmitted as though it had been written as
222D.D., A~5 blanks will precede the string which will contain B symbols.

To
reached
on what

Form

specify the procedures which are to be called when the end of a line
during input or output; to permit special action to be
situation causes the end-of=-line condition to occur.

HEND (pl,p2,p3)

pl,p2,p3:

Rules

1.

Examples

1.

HLIM

TO

procedure identifiers

pl is the name of the procedure to

is

taken depending

be called when a "/" appears in the

format call. This indicates that a new 1line 1is %o begin and is
considered the normal case.
p2 is the name of the procedure to be called when a group of
characters is to be transmitted or a tabulation is specified which
would pass the right margin of the current line as specified by HLIM.
p3 is the name of the procedure to be called when a group of
characters is to be transmitted or a tabulation 1is specified which
would pass the physical end of the line due to the characteristics of
the I/0 device being used, but would not pass the right margin as set
by HLIM. Note: This physical end is specified by standard 1limits set
within the system or a control card to the system, and may be altered
by procedure SYSPARAM.
If it is desired to take no special action when the end of a line is
reached this procedure call may be omitted.
If action is desired for some but not all of the conditions, dummy
procedure names may be used for those requiring no action.
HEND (NORM,OVER,END)
A "/" in the format call causes control to go to Procedure NORM; 1if
the right margin is reached control goes to OVER; 1if the physical
end-of=1line is reached control goes to END.
'"BEGIN'...'PROCEDURE' DUMMY; ;...
.+ HEND (DUMMY,FIN,NEXT);:...'END'

Since Procedure DUMMY contains no statements, no special action will
be taken when a "/" appears in the format call.

specify the left and right margins of the input or output lines.

Form

HLIM (left, right)

left, right: arithmetic expressions

Rules

NO DATA

To
data on

Form

NO

The first parameter specifies the left margin.
The second parameter specifies the right margin.

There is a restriction that 1 ¢ left ¢ right.

If this procedure call is not given, the left margin is set to one and

the right margin is set to infinity.

HLIM (5,50)
Left margin is 5, right margin is 50,
HLIM (J=4,K)

Left margin is value of J~4, right margin is value of K,

indicate the procedure which is to be called when a request is made
an input device but no more data remains.

DATA (p)

procedure identifier

This procedure call applies only to input.

If input data is requested by a data transmission procedure when
data remains on the input device, control will be transferred
procedure p.

If NO DATA is not used and the condition described in Rule 2 aris
control will be transferred to the end of the program as though
dummy label had been placed just before the final 'END'.

8-15 R

for

no
to

es,
a

S11

Exanples

1. NO DATA (EOF)
The procedure EOF is used when no data exists on the input device.

2. 'BEGIN’
‘PROCEDURE' LAST; 'GOTO' FIND;

NO DATA (LAST); ...
'END’

When no data is found on the input device, control goes to procedure
LAST which sends control to the statement labelled FIND.

TABULATION

To set the width of the tabulation field of the I/0 device; to permit the

skipping of a fixed number of positions whenever the alignment mark J appears in
a format call.

Form
TABULATION (a)
a: arithmetic expression
Rules
1. "a" specifies the number of characters of the foreign medium which
constitute the tabulation field.
2. If the left margin is at position X, the tab positions for a line are:
X, X+a, X+2a, X+3a, ... , X+ka
The last tab position occurs before or at the same point as the right
margin as specified by HLIM, or at the physical end of the line,
whichever is smaller.
3. When a "J" appears in a format call, the I/O device is spaced to the
next tab position.
4. If this procedure call is not given the tabulation spacing is one.
Examples
1. TABULATION (15)

A new tab position occurs every 15 spaces.
2. TABULATION (At2-B*C)

The value of A®-BC determines the tab spacing.

8=16 BS1l

VEND

To specify the procedures which are to be called when the end of a page is
reached during input or output; to permit special action to be taken depending
on what situation causes the end~of-page condition to occur.

Form

VEND (pl,p2,p3)

pl,p2,p3: procedure identifiers

Rules

VLIM

To set the vertical layout of a pag2; to specify how many lines on

pl is the name of the procedure to be called when a " 1" appears in the
format call. This indicates that the subsequent information is to
appear on a new page, and is considered the normal case.

p2 is the name of the procedure to be called when a group of
characters is to be transmitted which would appear on the 1line after
the one specified by VLIM as the bottom margin.

p3 is the name of the procedure to be called when a group of
characters is to be transmitted which would pass the physical end of
the page due to the characteristics of the I/0 device being used, but
would not pass the bottom margin set by VLIM. Note: This physical end
is specified by standard limits set within the system or a control
card to the system, and may be altered by procedure SYSPARAM.

If it is desired to take no special action when the end of a page is
reached this procedure call may be omitted.

If action is desired for some but not all of the conditions, dummy
procedure names may be used for those requiring no action.

VEND (NEW,PAGE 1,PAGE 2)

Control goes to procedure NEW when a " 1" appears in the format call;
to PAGE 1 when the bottom margin is reached and to PAGE 2 when the
physical end of the page is reached.

"BEGIN'.., 'PROCEDURE' EMPTY:;...
«+«.VEND (OK,FIX,EMPTY);...'END'

No action is taken if an attempt is made to write beyond the end of
the page.

[s1]

.
(s}
I

[t 8
(0]

are to be used.

Foq&

VLIM (top, bottom)

top,

ggles

EXAMPLES

bottom: arithmetic expressions

The top line of the page has a value of 1, the second, 2, etc,

The first parameter indicates the first line to be wused
transmission,

The second parameter indicates the last line to be used.
There is a restriction that 1 < top < bottom.

If this procedure call is not given, the first line is set to one
the last line is set to infinity.

VLIM (10,50)
Data transmission starts on line 10 and ends on line 50,
VLIM (1, TOTAL)

Data transmission starts on the first line of a page, and ends on
line specified by the wvalue of TOTAL.

OF LAYOUT PROCEDURES

1.

'"PROCEDURE' SET'
'"BEGIN®
FORMAT ("3D.2D\);
'IF' A 'EQ' Bt2 'THEN'
"BEGIN'
FORMAT ("2Z2Z\);
TABULATION (5)
"END';
VLIM ('IF' A "EQ' Bt2 'THEN' 5
"ELSE' 10,50)
"END!

If A=B2, the second format call will override the first, a TAB
will be set and the vertical margins will be (5,50). If A#B ,

of

for

and

the

5
the

first format will be in effect, the TAB will be 1 and the vertical

margins will be (10,50).

2. "PROCEDURE' LAYOUT;
"BEGIN'
FORMAT ("t,100(22ZD.D,BBD.D'DD),
/\):
HLIM(5,60);
HEND (GOOD, OVER, OVER)
"END';
"PROCEDURE' GOOD; HLIM(5,60);
"PROCEDURE' OVER; HLIM(15,60)

Whenever line overflow occurs procedure OVER will change the

horizontal margins. When the "/" in the format call is reached,
procedure GOOD will restore the original margins.

DATA TRANSMISSION PROCEDURES

These procedures handle the actual transmission of data for input and
outgut.

In calling these procedures it is necessary to specify the I/0 device which
is to be used for the transmission. File control cards are required to indicate
the devices to be used.

Files used by ALGOL are restricted to the numeric file codes 01 to 40
(decimal). 05 is the standard input file and 06 the standard output file. These
two files do not require file control cards in order to be wused. Unless
redefined, file 05 indicates file I*; 06 indicates file P*., Error messages will
thus be written on 06.

The point in a program at which the actual I/0 procedure is called is when
the transmission of data occurs. Layout procedures, if any, and a 1list
procedure, if any, will be called by the internal I/0 procedures.

INLIST

To indicate that data is to be transmitted for input; to specify the input
device, the setup procedure and the list procedure.

Form

INLIST (al,az,a3)
aj: arithmetic expression

ap,ag: procedure identifiers

Rules
1. ay is the file number from the file control card which indicates the
specific input device to be used.
2, as is the name of the setup procedure containing the layout procedure

calls,

8-19 BSLL

3. a+ is the name of the list procedure which contains the data items to
be transmitted.

4. When INLIST is executed, it first calls the layout procedures, then
transfers back and forth to the list procedure while the actual input
is taking place. See Appendix C for a detailed explanation of INLIST.

1. INLIST (05, ABC, INPT)

This statement causes input to take place on I/0 device 5 according to
the layout procedures in procedure ABC and according to the 1list
procedure INPT.

2. "BEGIN' ‘'PROCEDURE' START;

'BEGIN'
FORMAT (" t,A,D.D'DD/, ZDD,P\);
VLIM(2,50)

"END'; ...

"PROCEDURE" LIST (OK);

'"BEGIN'

OK (ALPHA); OK(BOY); OK(COUNT) :

OK (BOOL)

J'END'; ...

INLIST (7,START,LIST);...

'END'

This program transmits a symbol into ALPHA, a real number into BOY, an
integer into COUNT and a 0 or 1 into BOOL.

INPUT n

To indicate that data is to be transmitted for input; to provide for data
input without using layout procedures or a list procedure.

Form

INPUT n (a,string,el,ez,...,en)
n: integer
a: arithmetic expression
string: format string

€1,€9,...,€pnt variables or subscripted variables

Rules
1. a is the file number from the file control card which indicates the
input device to be used.
2. The format string is in the same form as the format call FORMAT

(string), i.e., no X's are allowed in the string.

8-20 BRS11

OUTLIST

45:"3 ;R

2 ..y€p are the actual data items to be transmitted according
the for

mat string given.

n may have the value 0,1,2,...,9 and indicates the number of
items.

The equivalent of this procedure call in terms of INLIST is
follows:

'BEGIN' 'PROCEDURE® LAYOUT; FORMAT (string);
"PROCEDURE'" LIST (ITEM):
"BEGIN' ITEM (el); ITEM (ez);...;
ITEM (ep)
'END";
INLIST (a,LAYOUT,LIST)
'"END?

When the only layout procedure required is FORMAT and when there

nine or fewer items to be transmitted, this simpler input call may
used instead of INLIST,

INPUT 6 (05, "(zZD.D)t\,
A1), al2], a[3], Aa(4], a(s), ale]

This transmits 6 values according to the repeated format ZD.D.
INPUT 2 (07,"p,F\, B[1], B[2])

This transmits 1 or 0 into By and 'TRUE' or 'FALSE' into Bj.

To indicate that data is to be transmitted for output; to specify
output device, the setup procedure and the list procedure.

Form

OUTLIST (al,az,aS)

ai

¢ arithmetic expression

ag,a,: procedure identifiers

Rules

aj is the file number from the file control card which indicates
specific output device to be used.

to

data

as

are

be

the

the

az is the name of the setup procedure containing the layout procedure

calls.

a3 is the name of the list procedure which contains the data items
be transmitted.

to

s11

Examples

OUTPUT n

Form

Rules

1.

When OUTLIST is executed, it first calls the layout procedures then
transfers back and forth to the list procedure while the actual output

is taking place. See Appendix C for a detailed explanation of
OUTLIST.

OUTLIST (10,PAGE,LIST)

This statement causes output to take place on I/0 device 10 according

to the layout procedures in procedure PAGE and according to the 1list
procedure LIST.

"BEGIN' 'PROCEDURE' SET;
FORMAT ("3D.D,BZZD,2B3S/\) ;

"PROCEDURE"® OUT (A);

"BEGIN'
A(TOTAL) ; A (INTEGER) ; A ("ANS\)
'"END'; ...
OUTLIST(6,SET,0UT) ;...
"END'

This program causes the values of the two variables TOTAL and INTEGER
and the string ANS to be written out on device 6.

To indicate that data is to be transmitted for output; to provide for data
output without using layout procedures or a list procedure.

OUTPUT n (a,string,ej,€2,...,€p)
n: integer
a: arithmetic expression
string: format string
€1,€2,...,€pn: arithmetic expressions, Boolean
expressions or string
1. a is the file number from the file control card which indicates the
output device to be used.
2. The format string is in the same form as the format call FORMAT
(string); i.e., no X's are allowed in the string.
3. e1,€2,...,6p are the actual data items to be transmitted according to

the format string given.

n may have the value 0,1,...,9 and indicates the number of data items.

8-22 BS1l

5. The equivalesnt of this procedure ¢all in
follows:

'BEGIN' *PROCEDURE' LAYOUT; FORMAT (string);

'PROCEDURE" LIST (ITEM):;
'BEGIN' ITEM (ey); ITEM (e2):...:

terms of OUTLIST is as

ITEM (ep)
'END"';
OUTLIST {(a,LAYOUT,LIST)
"END'
6. When the only layout procedure required is FORMAT and when there are

nine or fewer items to be transmitted, this simpler output call may be

used instead of OUTLIST.

1. OUTPUT 3 (06,"3(2zZD.DD)\,A,B,C)

This statement will cause 3 values of A, B and C to be transmitted +o

device 6 according to the format given.

2. OUTPUT 5 (09,"2(D.D'ZZ), 3S,
2BSS, I\, Xt2-3,Y12-3,"TOT\,
"Al1\, COUNT)

This statement will cause 2 decimal numbers, 2

notation integer to be transmitted.

WIREC

To transfer data from an array in core memory to an

logical record handling.

Form

WIREC (FC,A)
FC: arithmetic expression

A: array identifier

strings and an internal

external device using

Rules

1. FC is the logical file number.

2. A is a one~dimensional array which contains the information to be
transferred.

3, The array A must be declared with a lower bound of zero.

4. Before calling WTREC, the element A [0] must have been set to the
number of words to be written.

5. The words to be written are stored in A [1] through A [A[O]], The

contents of A are not altered by WTREC.

BS1l

10.

11.

12.

The array A will usually be of type 'INTEZGER', but in certain cases it
may be 'REAL' or 'EXTENDED REAL'.

Procedure WITREC controls the transfer via the File and Record Control
routines. It also performs any packing of the data as required by the
destination codes. The format of the data in memory is discussed for
each destination code. (See Appendix D.)

Printer - Each word of the array A corresponds to one character for
the printer. Each character is stored in the internal character code.
These codes are given in the table below. Numbers outside the range
0-63 are treated modulo 64.

A maximum of 136 characters may be written with each call to WTREC.

Character codes 15 and 63 have special meaning. Code 15 1is ignored

completely by the printer--i.e., nothing is printed. (Blank characters
have code 16).

Character code 63 is used to indicate the end of the print line, After
printing the actual line, the printer then examines the character
following the 63. This character is interpreted as follows:

0-15 the printer is spaced that (0-15) number
of lines.
16 the printer is spaced to the top of the
next page.
17=-63 see PRT201 Printer reference manual,
BQ39.

WIREC ends all lines with the spacing combination 63 and 1, indicating
spacing to the next line. However, if the user has given his own
spacing combination, his will be encountered first; and the one given
by WIREC will be ignored.

0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
10 { ¥ @ : > ? B A B C
200 b E F G H I & .] (
30 | < \ ? J X L M N O P
01 Q@ R - $ *) i ! + /
50 s T U vV W X Y Z @« ,
50 % = " :

Line Internal Character Codes

Card Punch, Decimal - This is the same as the description for the
orinter, with the exceptions that the maximum number of characters
ch may be written is 80 and that the character codes 15 and 63 have
special meaning.

1<

Card Punch, Binary = Each element of A corresponds to one column of
the punci=d card. Within each word, bit position 35 goes to row 9, bit
positicn ¥4 goes to row 8, etc.

Paper Tape =~ Output is always in the binary mode. Each element of
array A corresponds to one row on the tape. For further information
sea PTS200 Perforated Tape Subsystem reference manual, BP44.

Magnetic Tape - Output occurs word for word. For these destination
codes, the array A may be of type 'REAL' or 'EXTENDED REAL'. ©Note
that, for 'EXTENDED REAL', A [0] must contain twice the number of
elements to be transferred.

8-24 BS11

WIT'CHAR

To insert one character in the current logical output record.

Form

WICHAR (FC,A)

FC,A: arithmetic expression

Rules

1. FC is the logical file number.
2. The actual value of A is the character to be inserted.

3. The format of the character in A 1is determined by the final
destination code. The format is the same as discussed under Rule 7 of
WITREC. Of course, with WTCHAR, A represents only one value.

4. The end of the current logical record is indicated by calling WTREC
with a negative value of A. When the final destination code refers to
the printer and the value of A is negative, the absolute value of A is
the number of lines to be spaced.

RDREC

To transfer data from an external ,device to an array in memory using
logical record handling.

Form
RDREC (F(C,A)
FC: arithmetic expression
A: array identifier

Rules

1. FC is the logical file number.

2. A is a one-dimensional array which will contain the information to be
read.
3. The array must be declared with a lower bound of zero.

4, RDREC will set A [0] to the number of words read on each call.
5. A [0] will be set to -1 if RDREC encounters an end-~of-file condition.

6. The information read will be stored in A [1] through A[[A 0]].

8-25 Bs1ll

7. The array A will usually be of type 'INTEGER', but in certain cases it
may be 'REAL' or 'EXTENDED REAL'.

8. Procedure RDREC performs any packing of the data as required by the
destination code. The format of the data in memory is discussed for
each destination code. (See Appendix D.)

9. Card Reader = In reading from cards, column 1 goes into A (1], column
2 into A [27, etc. With BCD cards, the number value read ranges from 0
through 63 according to the table listed under WTREC. For Dbinary
cards the number ranges from 0 through 4095,

10. Paper Tape - Input is always in the binary mode. Each element of array
A corresponds to one row on the tape. For further information see

PTS200 Perforated Tape Subsystem reference manual, BP44,

11. Magnetic Tape - Input occurs word for word. For these destination
codes, the array A may be of type 'REAL' or 'EXTENDED REAL’. Note
that, for 'EXTENDED REAL', A [0] must contain twice the number of
elements to be transferred.

Note also that, when reading, the type of the array A must be the same as
that from which the information was written, as no type conversion is done by
RDREC or WTREC.

RDCHAR

To read one character from the current input logical record.

Form

A« RDCHAR (FC)

FC: arithmetic expression

Rules

1. FC is the logical file number.

2. The value returned will be the character read. The format of the
character is determined by the final destination code. The format 1is
the same as discussed under Rule 8 of RDREC.

3. When an end-of-file condition is encountered, RDCHAR returns a value
of -1.

TRANSMIT

To transfer data between core memory and an external device (magnetic tape,
disk, or drum) using physical record handling.

Form

I

FC,

ggleﬁ

10.

11.

TRANSMIT (FC, INDEX, MODE, LIST)
INDEX, MODE: arithmetic expressions

LIST: procedure identifier

FC is the logical file number.

INDEX is the number of the first word within the file from which
transferring is to begin. (INDEX > 0.)

MODE indicates whether this is input or output and also indicates the
type of the variables as they appear on the external device.

LIST is a procedure which specifies the variables to be transmitted.

File control block for files used with TRANSMIT must indicate physical
record handling--i.e., no buffers are used.

Files for disk and drum must be of type random.
The parameter MODE indicates the type of the variables as they exist

or are to exist on the external device. The possible values of MODE
are given in the following table.

Type Read Write
'REAL’ 0 1
'INTEGER' 2 3
'EXTENDED REAL' 4 5

The mode is entirely independent of the type of the variables as they
appear in memory, because the necessary conversion occurs in the 1list
procedure.

The beginning of the information to be referenced on the external
device is indicated by the value of the parameter INDEX. This is
simply a sequential counter of the words as they are written on or
read from the external device. The following two rules define the
value of INDEX.

a. For the first item (i.e., variable) to be referenced INDEX = 0.

b. INDEX is incremented by 1 for each single~-word variable
(*INTEGER" and 'REAL') and by 2 for each double-word variable
("EXTENDED REAL').

The function value returned by TRANSMIT is the next unused INDEX. This
can be used in a loop of the following type:

INDEX: = TRANSMIT (17, INDEX, 1, LIST)

Physical record handling is used. This means that data is transmitted
with each call to TRANSMIT. Therefore, buffers are not found for files
to be used with TRANSMIT. Temporary buffer space is reserved in the
stack with each call, and this space is released upon return. At the
time that the first reference to a file is made, it 1is opened by
calling .UOPEN. Upon termination of the program the file is closed by
JAEXIT,

8~27 BS11

The methods for positioning and the record format are slightly .different
for magnetic tape than for disk or drum.

Magnetic Tape

Each call to TRANSMIT results in transmitting at least one physical record.
Bach record begins with a control word. Data follows the contrcl word. The
contents of the control word are:

Bits 0-23 FNDEX for the next record
Bits 24-35 HODE for this record

-+ of any one physical record is 320 words, mnot counting
calls to TRANSMIT which indicate more than 320 words, the
-word records will be transmitted.

Before reading or writing, TRANSMIT checks the INDEX against the previous
value and then positions the tape accordingly.

The following restrictions must be observed:

1. Reading beyond the 1limits of the latest write operation is not
possible.
o beyond the limits of the latest write operation is not

2. Writin
. il 2, Writing occurs only with the next available INDEX--i.e., no
re allowed.

3. Reading and rewriting always start with an INDEX which is the same as
the INDEX from an earlier writer.

4. For the initial writing of data on tape, the INDEX must be zero.

Violation of any of the above rules causes TRANSMIT to print an error
message and to terminate the executiom.

Drum and Disk

The restrictions for tape handling are removed for disk and drum. The
parameter INDEX is used to calculate a starting address within the links
allocated for the disk or drum. Thereafter, transmission occurs from this point.

There is no special control word at the beginning of each record. This
means that the parameter MODE must have the same type representation when
reading a record as it had when the record was written. For example, a file may
not be written with the MODE as 'REAL' and then later read as 'INTEGER'.

INPUT/OUTPUT CONTROL PROCEDURE

The following input/output control procedure accesses system parameters and
allow some control over the positioning of the I/0 devices.

SYSPARAM

Form

To gain access to certain system parameters so that they may be modified.

SYSPARAM (aj,ap,a3)

aj,ag:

Rules

4.

a3:

arithmetic expressicn

integer variable

The system parameters which may be changed or read out are:

a.

The character, line and page pointers (p, p' and p")
respectively. p and p' have an initial value of zero. E.g., when
p=2, the third character is the next character to be accessed.

The "standard format" constant determining the number of spaces
between items (k).

The physical end of line (P) and the physical end of page (P')
which are characteristic of the I/0 device,

aj is the file number from the file control card specifying the I/0
device concerned.

ap may have a value of 1,2,...,11,

(S

b.

If the value of az is 1,3,5,7,9 or 11, the value of the system
parameter in question is assigned to variable aj.

If the value of ajp is 2,4,6,8 or 10, the value of a3 becomes the
new value of the system parameter.

The action is as follows:

if ag =1, ag«p if a2 = 2, p+aj3
if az = 3, az«p' if ap = 4, p'+ a3y
if ap = 5, az« P if a2 = 6, P« a3
if ap = 7, ay« P’ if ap = 8, P'+ a3
if ap = 9, a3+~ k if ap = 10, k+« a3

if ap = 11, az«p

p and p' represent actual positions on the I/0 device which are to be
changed when a, = 2 and a; = 4.

=1

If a; = 2, p is tested to see if p<a3z. If it 1is, blanks are
inserted until p = aj. If psaz, a skip to the next line is
performed, p is set equal to 0, and blanks are inserted until p =

a3.

b. If ap = 4, p' is tested to see if p‘<a3. If it 1is, 1lines are
advanced until p' = a3. If p'>aj3, a skip is made to a mnew page,
p' is set equal to 0, and lines are advanced until p' = ajg.

ap = 6 and ap = 8 change the physical limits of the I/0 device (P and
P') where this is possible (i.e., magnetic tape block length may be
changed and unit record devices may have physical limits reduced, but
not extended beyond the standard limits). If +the 1limits cannot be
changed and these actions are specified, the statement acts like a
dummy statement.

a; may also have a value of 21 or 22

a. If the value of a; is 21, the file denoted by aj is defined as an
input file.

b. If the value of aj is 22, the file denoted by aj is defined as an
output file.

c. If the value of ap is 21 or 22, the value of a; is not
significant.

The condition which requires ap = 21 or 22 only arises when the

intended first action on a particular file uses a primitive procedure
or procedure SYSPARAM. If this is the case, the system does mnot know
the nature of the file and thus a call to SYSPARAM with a5 = 21 or 22
would serve to define the file; e.g., if the first action with respect
to file 6 is to read out the value of p by a call to SYSPARAM such as

SYSPARAM (06, 1, CHAR)

This call would have to be preceded by a call to SYSPARAM defining 06
as an output file as follows:

SYSPARAM (06, 22, 0)

ap may also have a value of 23, If aj is 23 then the file will be
closed with the options indicated by ag. The value of ag (which is
treated modulo 4) indicates:

Rewind but do not lock the file

Do not rewind and do not lock the file

Lock and release the file.

Rewinding and/or locking is not appropriate for this device.

Wi~ O

ag may also have a value of 24. If ap is 24 then a may have a value
of 0 through 7. This function acts like the DSTCOD on the § FFILE
control card. The appropriate wvalues in the file parameter list
(maximum characters per line, number of characters per word, media
code, ASCII/BCD flag, etc.) will be set according to the value of ajy.

Value of a Action

0 Binary (MTAFPE, DISC, DRUM)
Binary card (BCRDR, BCPNCH)
BCD card (DCRDR, DCPNCH)
BCD printer (PRNTR)
ASCII printer
Paper tape single (PTMODS)
Paper tape double (PTMODD)
Paper tape edit (PTMODE)

oY U b W

8-30 BS11

Examples

1. SYSPARAM (8, 3, LINENO)
On device 8 the value of the line pointer is assigned to wvariable
LINENG,

2. SYSPARAM (5, 10, 3)

For device 5 the value of k is changed to 3; i.e., 3 or more blanks
must follow a number in standard format.

PRIMITIVE PROCEDURES

The following primitive procedures are available for use by the programmer
but are not intended to be general purpose routines,

INSYMBOL

To associate specific ALGOL symbols with specific integers; to read in a
basic symbol from an external device as an integer.

Form

INSYMBOL (e, s, V)

e: arithmetic expression
(called by value)

s: string

v: integer variable

Rules

1. The basic symbols contained in the string "s" are given integer
values.

2. The symbols are assigned from left to right to the positive integers
1,2,3, etc.

3. This procedure acts as follows:
a. It reads in the next symbol from the input device.
b. If it is a basic symbol which appears in the string "s", the

variable v will be assigned the integer value associated with
this symbol.,

[Pl

C. If it is a basic symbol which does not appear in the string s

v will receive a value of 0,

8-31 BS11

LENGTH

If the input symbol is not an ALGOL basic symbol, v will receive
a value of minus one.

If there is no more data on the input device, v will receive a
value of minus two.

If the string "s" is null, i.e., INSYMBOL (e,”"\,v), v will
receive the standard system value for the basic symbol. (See
Appendix E.)

To calculate the length of a given string.

Form
LENGTH (s)
s: string
Rules
1.
2.
NAME

The result of this procedure is an integer.

It is equal to the number of basic symbols in the string "s" not
including the outermost pair of string quotes.

To permit the saving or "remembering” of labels and prccedure identifiers.

Form

NAME (vq,v9,a,p)

V1,V
a:
p:
Rules
1.

integer variable
statement label

procedure identifier

If vy has a value of 1, the integer associated with a is assigned to

V2.

If vy has a value of 3, the integer associated with p is assigned to

V2.

8-32 BS11

If vy bhas a value of 2, control will be transferred to the label whose
value is the same as that of v,. (Note: vz must have been assigned
the value of a label by a previous NAME statement.) If v, = 0 the
program will be terminated.

4. If vy has a value of 4, control will be transferred to the procedure
whose identifier has the same value as v2. (Note: vy must have Dbeen
assigned the value of a procedure identifier by a previous NAME
statement.) If vy = 0 the procedure will be a dummy procedure.

5. The association of specific integers with labels and procedure
identifiers holds only in the block in which the labels or identifiers
are declared, i.e., the rules of scope for ALGOL block structure are
obeyed.

OUTSYMBOL
To associate ALGOL basic symbols with specific integers; to write out a

basic symbol on an external device from an internally stored integer.

Form

OUTSYMBOL (ey, s, e3)

Rules

§

5

21,89 arithmetic expression

{called by wvalue)

5: string

The basic symbols in the string "s" are given integer values.

The positive integers 1,2,3, etc. are assigned to the symbols from
left to right; leftmost = 1, next = 2, etc.

This procedure acts as follows:

a. It evaluates e, and determines the integer which 1is closest to
this value.

b. If the value has an equivalent in string "s", the basic symbol
corresponding to this value will be written on the output device.

c. If the value has no equivalent in string "s" by being outside the
bounds of the string, or if it is not a basic symbol, the P will
be written on the output device.

d. If the string "s" is null, i.e., OUTSYMBOL (ey,"\,e3), the

standard system values are used to determine the basic symbol
which will be written on the output device. (See Appendix E.)

8-33 BS1l

STRING ELEMENT

To enable the scanning of a given string (actual or formal) in a machine
independent manner.

Form

STRING ELEMENT (sy,v],S2,V2)

s1,sy: string

vy,v2: variable

Rules

TYPE

To d
format.

Form

TYPE
vl

v

Rules

Variable vj determines which symbol of s is referenced, i.e., if vy =
1 it is the leftmost symbol; if vy = 2, the next, etc.

Once the symbol is chosen, its associated integer 1is assigned to

variable v2. (Note: the associated integer is determined by encloding
string s, as was done with the string in the procedure INSYMBOL.)

etermine the type of a number which is to be written out in standard

(vi,v2)
variable

variable or string

If vy is a string, vj is set equal to 4.

If vy is a variable, vj] is assigned a different value depending on the
type of vy as follows:

a. If vy is 'INTEGER', vy «1.

b, If vp is 'REAL', vy =+ 2.

c. If vy is 'BOOLEAN', vy =~ 3.

d. If vy is 'EXTENDED REAL', vy« 8.

8-~34 BS11

LIST PROCEDURE

This procedure is written by the programmer +to be used with the I/0
procedures provided by ALGOL. It provides a 1list of the data items to be
transmitted. The identifier for this procedure is not reserved by ALGOL; thus,
any valid identifier may be chosen.

List Procedure

To list a seguence of quantities to be transmitted for input or output;
this list is used in conjunction with the format items of a FORMAT call.

Form

'"PROCEDURE' name (ident):; s
name: procedure identifier

ident: identifier

s: simple statement or block
Rules

1. The formal parameter "ident" appears in the body of the list procedure
as a procedure identifier.

2. Each item to be transmitted for input or output appears in the
procedure body as the parameter for procedure ident.

Example:
"PROCEDURE' A(X); ‘BEGIN' X(M); X(N)' X(P) 'END’
M, N and P are transmitted.

3. When the list procedure is called by a data transmission procedure
(INLIST or OUTLIST), an internal system procedure (INITEM or OUTITEM)
will be the actual parameter corresponding to the formal parameter
"ident," and thus will be substituted for "ident" in the 1list
procedure body.

4, Execution of the list procedure causes the internal system procedure
(INITEM or OUTITEM) to be executed. INITEM or OUTITEM has as its
parameter the item to be transmitted.

5. This parameter may be an arithmetic expression, Boolean expression or
a string for output. However, the parameter may be only a variable or
subscripted variable for input.

6, The item is called by name by the internal system procedure and its
value is transmitted for input or output.

7. The sequence of statements in the list procedure body determines the
sequence in which the items are transmitted for input or output.

8. All ALGOL statements are permissible in a list procedure including a

call to one or more of the layout procedures.

8-35 BS11

@x&mgles

1. '"PROCEDURE' LIST (NAME);
'BEGIN' NAME (X); NAME (Y{3*Z);
NAME ("TOTAL\) 'END'

The identifier NAME is replaced by a system procedure name when the
list procedure is called. X,Yt3*Z and "TOTAL\ are parameters to this
system procedure and their values will be transmitted.

2. "*PROCEDURE' MANY (ITEM);
'FOR' I« 1 'STEP' 1 'UNTIL'
10 *DO' 'BEGIN' ITEM (A[I]);
ITEM (B[I]) 'END'

The items to be transmitted are Aj,By,A2,B2,..., ALQ,BlO.

8-36 BS11

APPENDIX A.

RESERVED IDENTIFIERS

The following 1list enumerates reserved identifiers. These identify
functions and procedures which are available without explicit declarations.
These functions and procedures are assumed to be declared in a block external to
the program. However, a programmer may redeclare a reserved identifier, in
which case the reserved meaning is superseded.

The reserved identifiers are as follows:

ABS INLIST ouTPUT 7
ARCTAN INPUT O OUTPUT 8
BAD DATA INPUT 1 ouTPUT 9
CLOCK INPUT 2 OUTSYMBOL
Cos INPUT 3 PACK

DATE INPUT 4 RDCHAR
DUMP INPUT 5 RDREC
ENTIER INPUT 6 SENSE
EQUIV INPUT 7 SIGN
ERRNO INPUT 8 SIN

EXP INPUT 9 SPACE
FORMAT INSYMBOL SORT
FORMAT O LENGTH STRINGELEMENT
FORMAT 1 LN SYSPARAM
FORMAT 2 NAME TABULATION
FORMAT 3 NO DATA TIME
FORMAT 4 OUTLIST TRANSMIT
FORMAT 5 OUTPUT O TYPE
FORMAT 6 OUTPUT 1 UNPACK
FORMAT 7 OuUTPUT 2 VEND
FORMAT 8 oUuTPUT 3 VLIM
FORMAT 9 OUTPUT 4 WITCHAR
HEND OUTPUT 5 WIREC
HLIM OUTPUT &

A-1 BS11

APPENDIX B.

MATHEMATICAL AND MISCELLANEOUS FUNCTIONS

MATHEMATICAL FUNCTIONS

Form ‘ Description
ABS (e) absolute value of the expression e
ARCTAN (e) principal value of the arctangent of e
COS (e) cosine of e
ENTIER (e) the integral part of e
EXP (e) exponential function of e
LN (e) natural logarithm of e
SIGN (e) sign of e (+1 if e>0, 0 if e = 0, =1 if e<0)
SIN (e) sine of e
SQRT (e) square root of e
These functions are available without explicit declarations. They are
assumed to be declared in a block external to the program. However, a programmer
may redeclare a mathematical function identifier, in which «¢ase the standard

meaning is superseded.

These functions accept parameters of types 'REAL', 'EXTENDED REAL' and
'INTEGER'. They all yield values of type ‘EXTENDED REAL', except for ENTIER(e)
and SIGN(e) which yield values of type 'INTEGER'.

The parameters of these functions are treated as 'VALUE® parameters.

MISCELLANEOUS FUNCTIONS

DATE is an integer procedure which returns the current date expressed as an
integer. For example, August 1, 1968, would be returned as £0,168.

SPACE is an integer procedure which returns the number of words of memory
available in the stack.

CLOCK is an extended-real procedure which returns the time of day expressed in
hours past midnight,

TIME is an extended-real procedure which returns the amount of processor +ime
expended, expressed in seconds.

SENSE (e) is a Boolean procedure which returns the setting of the program
switch word for the bit indicated by the parameter e. The parameter is an
arithmetic expression. It has a value from 1 to 6 corresponding to the
options ON1 through ON6 on the $ EXECUTE card.

B-1 BS11

ERRNO

DUMP

PACK

Form

-

(e) performs one of two functions:

1. If the value of the parameter e is positive, a message of the form
< < < ERROR NUMBER XX > > » is printed, where XX is the value of the
parameter.

2. If the value is negative, it replaces the maximum error count (which

is the maximum number of error messages which may be printed before
the execution is aborted). The maximum error count is currently
five.

is a procedure which gives a trace of the procedural and nonprocedural
stacks. The ON6 option on the $ EXECUTE control card must also be used.
If the ON6 option has not been used, then the call is ignored. This
allows the user to call DUMP in the source program, but to determine the
need for the trace at execution time.

To pack bits together into a word.

PACK (S,I,L);

S:

I:

L:

Rules

string
identifier

list procedure

The routine packs bits coming from the list procedure into I according
to the string S.

I is the identifier of the resulting packed word.

L is a procedure which 1lists the values which are to be packed
together.

The string consists of a set of integers separated by commas.
"nl,n2,n3,...\

The rightmost nl bits of the first wvalue received from the list
procedure will be stored into the leftmost nl bits of the variable I.

The rightmost n2 bits of the second value received from the 1list
procedure will be stored into the next n2 bits (after mnl) of the
variable TI.

An integer in the string may have a trailing Z. This causes zeros to

be placed in that field in the output variable. In addition, the 1list
procedure is not invoked for that field.

B=-2 BS11

Examgles

1. 'PROCEDURE' LIST(P); 'BEGIN'

P(6);P(5);P(4);P(3);P(2);P(1); 'END';
'INTEGER' I;
PACK ("6,6,6,6,6,6\,I, LIST);

This would result in: I-060504030201

2. 'INTEGER' I,J,K;

"PROCEDURE' LIST(P); °‘BEGIN'
P(I);P(J); 'END'

T:e=T70:T:=42;

PACK("9,21\,K, LIST);

UNPACIL

Form

Rules

This would result in: K+106000005200 (remembering that 70 decimal is
106 octal, and 42 decimal is 52 octal).

3. "INTEGER' I,J,K;
*PROCEDURE' LIST(P); 'BEGIN'

P(I);P(J); 'END';

I:=63;J:=3;
PACK("3%,6,3\,K,LIST);
This would result in: K=077300000000 (again remembering that 63
decimal is 77 octal).

To unpack parts (bits) of a word into separate words.

UNPACK(S,I,L);

S: string

I: identifie:

L: list procedure

1. The routine unpacks bits from I into variables given by the list
procedure according to the string S.

2. I is the identifier of the word to be unpacked.

3. L is the procedure which lists the variables which are to receive the
unpacked bits.

4, The string consists of a set of integers separated by commas.

"nl,n2,n3,...\
5. The leftmost nl bits of the variable I are stored into the rightmost

nl bits of the first variable given in the list procedure.

.
S

6. Then the next n2 bits (after nl)

of the variable I are stored into the

rightmost nZ bits of the second variable given in the list procedure.

Example

'REAL'" X; 'INTEGER' I,J;

"PROCEDURE' LIST(P); 'BEGIN'
P(I);P(J); 'END';
Xe=1,5;

UNPACK ("9,27\,X,LIST);

This would result in:

I=000000000002
J=000600000000

APPENDIX C.

DETAILED EXPLANATION OF INLIST AND OUTLIST

INLIST
Assume:
1. INLIST has been called.
2. Lines 1,2,...,p" of the
3. Characters 1,2,...,p of
4, At the beginning of the

STEP

5. Symbols P and P' denote

current page have been read.

the current line (line p' + 1) have been read.

program p = p' = 0,

line size and page size respectively.

6. There are eight hidden variables H1l, H2,...H8 which correspond to the
eight layout procedures as follows:
H1 - FORMAT
H2 - HLIM
H3 - VLIM
H4 - HEND
H5 - VEND
H6 - TABULATION
H7 = NO DATA
H8 - BAD DATA
7. The left margin of HLIM is L.
The right margin of HLIM is R.
The top margin of VLIM is L'.
The bottom margin of VLIM is R'.
1. (Initialization)
The hidden variables are set to standard values:
H1 is set to the "standard" format.
H2 is set so that L = 1, R ==,
H3 is set so that L' = 1, R' == ,
H4 is set so that the three parameters are all effectively equal to the
dummy procedure defined as follows: 'PROCEDURE' DUMMY; ;.
H5 is set so that the three parameters are all effectively equal to the
dummy procedure, DUMMY.
Cc-1 BS11

H6 is set go that TAB = 1.
H7 is set to terminate the program in case the data ends.

H8 is set to terminate the program if an unacceptable character is
received fcr format translation.

STEP 2. (Layout)

The layout procedure is called; this may change some of the variables HI1,
H2, H3, H4, H5, H6, H7, H8. Set T to 'FALSE'. (T is a Boolean variable used to
control the sequencing of data with respect to title formats; T = "TRUE' means a
value has been requested of the procedure which has not yet been input.)

STEP 3. (Communication with List Procedure)

The next format item of the format string is examined. (Note: after the
format string is exhausted, "standard" format is used from then on until the end
of the procedure. 1In particular, if the format string is " , standard format is
used throughout.) Now if the next format item is a title format, that is,
reqguires no data item, we proceed directly to Step 4. If T = 'TRUE', proceed to

Step 4. Otherwise, the list procedure is activated. This is done the first time
by calling the list procedure, using as actual parameter a procedure named IN
ITEM.

This is done on all subsequent times by merely returning from the procedure
IN ITEM which will cause the list procedure to be continued from the latest 1IN
ITEM call. (Note: the identifier IN ITEM has scope Jlocal to IN LIST so a
programmer may not call this procedure directly.) After the list procedure has
been activated in this way, it will either terminate or will call the procedure
IN ITEM. In the former case, the input process is completed; in the latter case,
T is set to 'TRUE'. Then any assignments to hidden variables that the 1list
procedure may have invoked will cause adjustment to the variables H1, H2, H3,
H4, H5, H6, H7, H8, (which are local to IN ITEM). We then continue at Step 4.

STEP 4. (Alignment Marks)

If the next format item includes alignment marks at its left, remove them
from the format and execute process A (a subroutine below) for each "/", process
B for each "i", and process C for each "J".

STEP 5. (Get within Margins)

Execute process G to ensure proper page and line alignment.

STEP 6. (Formatting for Input)

Take the next item from the format string.

C-2 BS11

NOTES:

In unusual cases, the list procedure or an overflow procedure may have
called the descriptive procedure FORMAT thereby changing the format string. 1In
such cases, the new format string is examined from the beginning; and it is
conceivable that the format items examined in Steps 3, 4, and 6 might be three
different formats. But at this point the current format item is effectively
removed from the format string and copied elsewhere so that the format string
itself, possibly changed by further calls of FORMAT, will not be interrogated
until the next occurrence of Step 3.

Alignment marks at the left of the format item are ignored. If the format
item is not composed only of alignment marks and insertions, the value of T is
examined. If T = 'FALSE', undefined action takes place (the programmer has
substituted a nontitle format for a title format in an overflow procedure, and
this is not allowed). Otherwise, T is set to 'FALSE'. If the format item is "A"
or "N", set s = 1 and go to Step 7; otherwise, the number of characters, s,
needed to input the format item for the present medium is determined, and it is
assumed that the same number of character positions will be used in the input
medium for this item,

STEP 7., (Check for Overflow)

If the present item uses "N" format, the character positions p + 1, p +
2,... are examined until either a proper termination of the number has been
found, or position min (R,P) has been reached with no sign, digit, decimal
point, or "'" encountered. In the former case, set s to the number of character
positions occupied by the number, including preceding and embédded blanks and
the termination character, and then go to Step 9; in the latter case, go to Step
8 with p = min (R,P).

If the present item uses "A" format, the character position p + 1 is
examined, if it contains "Y", set p = min (R,P) and go to Step 8, otherwise
input characters starting from position P + 1 until a basic symbol has been
input. Set s to the number of characters denoting the basic symbol and go to
Step 9. Finally, if neither "N" nor "A" format is used, go to Step 8 or Step 9
according as p + s > min (R,P) or not.

STEP 8. (Processing of Overflow)

Perform process H (p + s). Then proceed as follows:

"N" format: Input characters until either finding a number followed by a
proper termination (go to Step 9) or until reaching position min (R,P). In the
latter case, a partial number may have been examined; repeat Step 8 until a
number properly terminated has been input. In the former case, set s to the
number of positions occupied by that portion of the number lying to the right' of
p, including embedded blanks and the termination character, then go to Step 9.

"A" format: Input characters as with "N" format until a basic symbol has
been input. (This basic symbol necessarily takes several character positions on
the medium.)

Other: If p+ s< R and p + s < P, go to Step 9; otherwise input kX = min
(R,P) - p characters, set p = min (R,P), decrease s by k, and repeat this step.

C-3 BS11

STEP 9. (Finish the Item)

If neither "A" nor "N" format is being used, input s characters. Determine
the value of the item that was input here, or Steps 7 and 8 in case of "A" or
"N" format, using the rules of format. Assign this value to the actual parameter
of IN ITEM unless a title format was specified. Increase p by s.

Any alignment marks at the right of the format item now cause activation of
process A for each "/", process B for each "t", and process C for each "J".
Return to Step 3.

PROCESS A. ("/" Operation)

Check page alignment with process F, then execute process D and call
procedure pl of HEND.

PROCESS B. ("t" Operation)

If p > 0, execute process D and call procedure pl of HEND. Then execute
process E and call procedure pl of VEND,

PROCESS C. ("J" Operation)

Check page and line alignment with process G. Then let k = ((p -~ L + 1)%
TAB + 1) x TAB + L = 1 (the next "tab" setting for p), where TAB is the "tab"
spacing for this chammel. If k > min (R,P), perform process H(k); otherwise skip
over character positions until p = k.

PROCESS D, (New Line)

Skip the input medium to the next "line", set p = 0, and set p' = p' + 1.

PROCESS E. (New Page)

Skip the input medium to the next "page", and set p = 0.

PROCESS F. (Page Alignment)

If p' + 1 < L', execute process D until p' = L' - 1.
If p' + 1 > R', execute process E, call procedure p2 of VEND and repeat process
F.
If p' + 1 > P', execute process D, call procedure p3 of VEND and repeat process
F.
This process must terminate because 1 < L' < R' and 1 < L' < P'. If a programmer
chooses a value of L' > P', L' is set equal to 1.

C=4 BS1l

PROCESS G. (Page and Line Alignment)

Execute process F. Then,
If p+ 1 <« L, skip over character positions until p+ 1
If p+1>Ror p+ 1 »P, perform process H (p + 1).
This process must terminate because 1 <L gRand 1 <L ¢ P. If a programmer
chooses a value of L > P, L is set equal to 1.

it
t

PROCESS H(k). (Line Overflow)

Perform process D. If k > R, call procedure p2 of HEND; otherwise call p3.
Then perform process G to ensure page and line alignment. Note: upon return
from any of the overflow procedures, and assignments to hidden variables that
have been made by calls on descriptive procedures will cause adjustment to the
corresponding variables H1, H2, H3, H4, H5, H6, H7, HS.

EXAMPLE:

Notice that the programmer has the ability to determine the presence of
absence of data on a card when using standard format, because of the way
overflow is defined. The following program, for example, will count the number n
of data ditems on a single input card and will read them into All],
Al2],...,A[n]. (Assume unit 5 is a card reader.)

'PROCEDURE' LAY; HEND (EXIT, EXIT, EXIT);
'PROCEDURE"® LIST (ITEM):; ITEM (A [N+l])
"PROCEDURE’ EXIT; 'GOTO' L2;

N+ 0; LI: INLIST (5, LAY, LIST);

N«~N + 1; 'GOTO" LI;

L2:;

OUTLIST

Assume:

1. OUTLIST has been called.

2, Lines 1,2,...,p" of the current page have been completed.

3. Characters 1,2,...,p of the current line (line p' + 1) have been
completed.

4. At the beginning of the program p = p' = 0,

5. Symbols P and P' denote the line size and page size respectively.

6. There are eight hidden variables H1,H2,...,H8 which correspond to the

eight layout procedures as follows:

H1 = FORMAT

H2 = HLIM
H3 - VLIM
H4 - HEND
H5 - VEND

H6 -~ TABULATION
H7 - NO DATA
H8 = BAD DATA

C-5 BS1l1

7. The left margin of HLIM is L.
The right margin of HLIM is R.
The top margin of VLIM is L'.
The bottom margin of VLIM is R'.

STEP 1. (Initialization)

The hidden variables are set to the following standard values:
H1 is set to the "standard" format.

H2 is set so that L = 1, R =,

H3 is set so that L' =1, R' =,

H4 is set so that the three parameters are all effectively equal to the
dummy procedure defined as follows: 'PROCEDURE' DUMMY::.

H5 is set so that the three parameters are all effectively equal to the
dummy procedure, DUMMY.

H6 is set so that TAB = 1.

STEP 2. (Set=Up)

The set-up procedure is called; this may change some of the variables H1,
H2, H3, H4, H5, H6. Set T to 'FALSE'. (T is a Boolean variable used to control
the sequencing of data with respect to title formats; T = 'TRUE' means a value
has been transmitted to the procedure which has not vet been output.)

STEP 3. (Communication with List Procedure)

The next format item of the format string is examined. (Note: after the
format string is exhausted, "standard" format is used from then on until the end
of the procedure. 1In particular, if the format string is " , standard format is
used throughout.) Now if the next format item is a title format, that is,
requires no data item, we proceed directly to Step 4. If T = 'TRUE' proceed to
Step 4. Otherwise, the list procedure is activated; this is done the first time
by calling the list procedure, using as actual parameter a procedure named OUT
ITEM; this is done on subsequent times by merely returning from the procedure

OUT ITEM, which will cause the list procedure to be continued from the latest
QUT ITEM call.

(Note. The identifier OUT ITEM has scope local to OUT LIST, so a
programmer may not call this procedure directly.) After the list procedure has
been activated in this way, it will either terminate or will call the procedure
OUT ITEM. In the former case, the output process is completed; in the latter
case, T is set to 'TRUE' and any assignments to hidden variables that the list
procedure may have invoked will cause adjustment to the variables H1, H2, H3,
H4, H5, H6 (which are local to OUT ITEM) and we then continue to Step 4.

C-6 BS11

STEP 4., (Alignmert Marks)

If the next format item includes alignment marks at its left remove them
from the format and execute process A (a subroutine below) for each "/", process
B for each "t", and process C for each "J".

STEP 5. (Get Within Margins)

Execute process G to ensure proper page and line alignment.

STEP 6. (Formatting the Output)

Take the next item from the format string.

NOTES:

In unusual cases, the list procedure or an overflow procedure may have
called the descriptive procedure FORMAT, thereby changing the format string. In
such cases, the new format string is examined from the beginning, and it 1is
conceivable that the format items examined in Steps 3, 4, 6 might be three
different formats. But at this point the current format item is effectively
removed from the format string and copied elsewhere, so that the format string
itself, possibly changed by further calls of FORMAT, will mnot be interrogated
until the next occurrence of Step 3,

Alignment marks at the left of the format item are ignored. If the format
item is not composed only of alignment marks and insertions, the va’ue of T 1is
examined., If T = 'FALSE', undefined action takes place (the pr. rammer has
substituted a nontitle format for a title format in an overflow procedure, and
this is not allowed). Otherwise, the output item is evaluated and T is set to
'FALSE'., Now the rules of format are applied, and the characters X X .,..X which
represent the formatted output on the external medium are determined. (Note
that the number of characters, s, may depend on the value being output, using
"A" or "S" format, as well as on the output medium.)

STEP 7. (Check for Overflow)

If p+ s < Rand p + s < P, where s is the size of the item as determined
in Step 6, the item will fit on this line, so go on to Step 3. Otherwise, if the
present item uses "A" format, output a special symbol "¥" which is recognizably
not a basic symbol; this is done to ensure the input will be inverse to output.
Go to Step 8.

STEP 8. (Processing of Overflow)

Perform process H (p + s). Then, if p + s < R and p + s < P, go to Step 9;
otherwise let k min (R,P) - p. Output X31X2...Xg, set p = min (R,P) and then
let X3X2...Xg=g = Xg+1 + Xg42...Xg. Decrease s by k and repeat Step 8.

Cc-7 Bsll

STEP 9. (Finish the Item)

Output XyXg9...Xg, and increase p by s. Any alignment marks at the right of
the format item now cause activation of process A for each "/", process B for
each "t", and process C for each "J". Return to Step 8.

PROCESS A, ("/" Operation)

Check page alignment with process F, then execute process D and call
procedure pl of HEND,

PROCESS B. ("t" Operation)

If p » 0, execute process D and call procedure pl of HEND. Then execute
process E and call procedure pl of VEND,

PROCESS C. ("J" Operation)

Check page and line alignment with process G. Then let k = ((p~L+l) % TAB
+ 1) x TAB + L - 1 (the next "tab" setting for p), where TAB is the "tab"
spacing for this channel. If k > min (R,P), perform process H(k); otherwise

effectively insert blanks until ™ p = k.

PROCESS D. (New Line)

Skip the output medium to the next "line", set p = 0, and set p' = p' + 1.

PROCESS E. (New Page)

Skip the output medium to the next "page”, and set p' = 0.

PROCESS F. (Page Alignment)

If p' + 1 < L' execute process D until p' = L' - 1. If p'* + 1 > R',
execute process E, call procedure p2 of VEND, and repeat process F.

If p' + 1 > P', execute process E, call procedure p3 of VEND and repeat process
F.

This process must terminate because 1 < L' < R' and 1 < L < P'. If a
programmer chooses a value of L' > P', L' is set equal to 1.

c-8 BS11

PROCESS G. (Page and Line Alignment)

Execute process F., Then if p + 1 < L, effectively output blank spaces
until p + 1 = L,

If p+ 1 >Ror p+ 1 >P, perform process H (p + 1).

This process must terminate because 1 < L < R and 1 € L g P, If a programmer
chooses a value of L »~ P, L is set equal to 1.)

PROCESS H({k). (Line Overflow)

Perform process D, If k > R, call procedure p2 of HEND; otherwise, call
procedure p3 of HEND. Then perform process G to ensure page and line alignment.
Note: upon return from any of the overflow procedures, any assignments to hidden
variables that have been made by calls on descriptive procedures will cause
adjustment to the corresponding variables H1l, H2, H3, H4, H5, H6.

APPENDIX D.

PROCEDURES FOR PREPARING ALGOL PROGRAMS FOR COMPILATION AND EXECUTION

An ALGOL compilation will consist of either a block or a procedure
declaration. In the first case, what is produced is a free-standing program
which may call external procedures but which is assumed to operate otherwise as
a free-standing program. In the second case the result is a sepavately compiled
procedure which may be called by another program.

Users create programs by entering ALGOL statements into remote and local
peripheral or terminal devices which are connected to a computer operating under
the operating system.

Three modes of operation are available to the user: local batch, remote
batch, and time-sharing. The only user differences among the three modes are the
I/0 device assignments for the system output and input files, the presence of
necessary user-GCOS communication via control cards or command language, and the
assumed compiler options for the compilation process.

BATCH MODE

In the local batch mode, the system I/0 devices are the card reader card
punch and line printer. The user communicates directly with the operating system
for system services via the control cards and the usable slave mode
instructions. The execution of user programs submitted via the local batch mode
is carried out directly under the operating system. The user's program exists as
a separate batch job. Input processing is performed by System Input.

The remote batch mode is equivalent to the local batch mode in capability.
The only difference is the assignment of the system I/0 device to the remote
terminal as remote files (not direct access) rather than to the local card
reader and local printer/punch.

BATCH CALL CARD

The system call card for ALGOL in batch mode is:

1 8 16 (operand field)

$ ALGOL Options

D-1 BS1l

Operand Field:

The operand field specifies the system opfions. The following options are
available with ALGOL (standard batch options are underlined):

LSTIN
NLSTIN
LETOU

NLSTOU

DECK

NDECK
COMDK
NCOMDK
SYMTAB

DEBUG

NDEBUG

DUMP

NDUMP

A listing of source input will be prepared by the ALGOL compiler.
No listing of the source input will be prepared.

A listing of the compiled object program output will be prepared.
No listing of the compiled object program output will be prepared.
A binary object program deck will be prepared as output.

No binary object program deck will be prepared.

A compressed source deck will be prepared as output.

No compressed source deck will be prepared as output.

A symbol cross reference report will be prepared as output.

Source line numbers will be printed with error messages at
execution time.

Source line numbers will not be printed with error messages at
execution time.

Slave core dump will be given if the compilation activity
terminates abnormally.

Program registers upper SSA, and slave program prefix will be
dumped if the compilation activity terminates abnormally.

SAMPLE BATCH DECK SETUP

The following are the reguired control cards for the compilation and
execution of a batch ALGOL activity. The $ control cards are fully described in
the Control Cards Reference Manual.

1 8 16
$ SNUMB
S IDENT
$ OPTION ALGOL
$ ALGOL Options
. ALGOL Source Deck(s)
$ EXECUTE Options
$ FFILE
S < physical device assignment > }
$ ENDJOB
*k*EOF

The $ OPTION card with option ALGOL is required for every execution
activity containing at least one deck produced by the ALGOL compiler. It must be
the first card of the execution activity. Other options, as desired, may be used
on this card but ALGOL is required.

D=2 BS11

The $ FFILE and physical device assignment cards are enclosed in braces to
indicate that they may or may not be required for a particular activity. Cards
of the form $ TAPE or $ FFILE option define physical devices which are to be
associated with files referenced in the ALGOL program through calls on the
input/output data transmission procedures. A card of this type is required for

everv referenced file other than 05 and 06 and input files produced with the
$ DATA card.,

The $ FFILE card provides fine control over the characteristics of each
logical field, The $ FFILE card option DSTCOD (used only with programs generated
by the ALGOL compiler) is of the form:

DSTCOD/ (XXX)

where XXX may be any of the following:

Mnemonic bevice
PRNTR Line Printer
BCRDR Card Reader (Binary)
DCRDR Card Reader (Decimal)
BCPNCH Card Punch (Binary)
DCPNCH Card Punch (Decimal)
MTAPE Magnetic Tape
DISC Disk
DRUM Drum
PTMODS 5/6 channel paper tape
PTMODD 7/8 chanrel paper tape

The destination code subfield (DSTCOD) defines the type of logical device
which is to be associated with a file, independent of the physical device on
which the file may reside. In this way the svstem limits, i.e., P and P', for a
file are defined. For example, to produce a listing file which must be saved on
tape for future reference, a $ TAPE DSTCOD/(PRNTR) would define the output as
destined for a line printer. In the absence of the $§ FFILE card or the DSTCOD
subfield the logical device will be assumed to be the same as the physical
device.

TIME~SHARING OPERATION

Command Language

The standard means of communication with the Time=Sharing System (TSS) is
by way of a teletypewriter used as a remote terminal.” Other compatible devices
may also be used, but use of a teletypewriter is assumed in this manual. The
user may choose either the keyboard/printer or paper-tape teletypewriter unit
for input/output, or combine both. In either‘'case, the information transmitted
to and from the system is displayed on the terminal-printer. Keyboard input will
be used for purposes of description; instructions for the use of paper tape are
given under "Paper Tape Input” in this appendix.

D-3 BS1ll

The user "controls" the time-sharing system primarily by means of a command
language, a language distinct from any of the specialized programming languages

that are recognized by the individual time~sharing compilers/processors (e.g.,
the Time-Sharing FORTRAN language). The command language is, for the most part,
the same for users of any component of the time-sharing system; i.e., FORTRAN,

BASIC, Text Editor, etc. A few of the commands pertain to only one or another of
the component time-sharing systems, but the majority of them are, in form and
meaning, common to all component systems.

The commands relate to the generation, modification, and disposition of
program and data files, and program compilation/execution requests. The complete
time~sharing command language 1is described in Time-Sharing System General
Information Manual.

Once communication with the system has been established, any question or
reguest from the system must be answered within ten minutes, except for the
initial requests for user identification (user-ID) and sign-on password, which
must be given within one minute. If these time limits are exceeded, the user's
terminal will be disconnected.

D-4 BS11

Time-Sharing Commands for ALGOL

These

Valid time-sharing system commands for ALGOL are
fully described

commands

are

Information Manual,

in

the

listed
Time-Sharing

in Table

System

D=-1.
General

Table D-1. ALGOL Time-Sharing System Commands
Applicable
At
Command Build Mode
ABC Yees
ACCESS Yes
ASCASC Yes
ASCBCD Yes
4 AUTOMATIC Yes
BCDASC Yes
BPRINT Yes
BPUNCH Yes
BYE Yes
CATALOG Yes
& DELETE Yes
DONE Yes
EDIT Yes
2 ERASE Yes
FDUMP Yes
GET Yes
HELP Yes
HOLD Yes
JABT Yes
JOouT Yes
JETS Yes
LENGTH Yes
a 1LIB Yes
LIST Yes
a NEW Yes
NEWUSER Yes
NO PARITY Yes
2 oLD Yes
PARITY Yes
3 PERM Yes
& PRINT Yes
& PURGE Yes
RECOVER Yes
#RECOVER No
a4 RELEASE Yes
a REMOVE Yes
RESAVE Yes
& RESEQUENCE Yes
ROLLBACK Yes
#ROLLBACK No
a4 RUN Yes
@ SAVE Yes
SCAN Yes
SEND Yes
STATUS Yes
4 SYSTEM Yes
a8 TAPE Yes

2 not applicable at subsystem=-selection level

BS11

Log-on Procedure

The user, to initiate communication with the time-sharing system, performs
the following steps:

@ Turns on the terminal unit
® Obtains a dial-tone
® Dials one of the numbers of his time-sharing center

The user will then receive either a high-pitched tone indicating that his
terminal has been connected to the computer or a busy signal. The busy signal
indicates, of course, that no free line is presently available.

Once the wuser's terminal has been connected to the computer, the
time-sharing system begins the log-on procedure by transmitting the following
message:

HIS SERIES 6000, SERIES 600 ON(date)AT (time)CHANNEL (nnnn)

where time is given in hours and thousandths of hours (hh.hhh), and nnnn is the
user's line number.

Following this message, the system asks for the user's identification:
USER ID ==-

The user responds, on the same line, with the user-ID that has been
assigned to him by the time-sharing installation management. This user-ID
uniguely identifies a particular user already known to the system, for the
purposes of locating his programs and files and accounting for his usage of the
time-sharing resources allocated to him. An example request and response might
be:

USER ID -- J.P.JONES

Note: A carriage return must be given following any complete response, command,
or line of information typed by the user.

(The user's response is underlined here for illustration). After the user
responds with his user-ID, the system asks for the sign-on password that was
assigned to him along with his user-ID, as follows:

PASSWORD
EKBEHEERHIIKE

The user types his password directly on the ‘"strikeover" mask provided
below the request PASSWORD. The password is used by the system as a check on the
legitimacy of the named user. The "strikeover” mask insures that the password,
when typed, cannot be read by another person. (In the event that either the
user-ID or password is twice given incorrectly, the wuser's terminal is
immediately disconnected from the system.) At this point, if the accumulated
charges for the user's past time-sharing usage equals or slightly exceeds 100
per cent of his current resource allocation, he will receive a warning message.
If his accumulated charges exceeds 110 per cent of his current resources, he
receives the message:

RESOURCES EXHAUSTED - CANNOT ACCEPT YOU

and his terminal is immediately disconnected. (The user may also receive the
following information message if his situation warrants it:

n BLOCKS FILE SPACE AVAILABLE

(This condition does not affect the log-on procedure.)

D-6 BS11

Assuming that the user has responded with a legitimate user-ID and password
and has not over-extended his resources, the time-sharing system then asks the
user to select the processing system that he wants to work with; this is called
the system-selection request. In this case, the user would respond with ALGOL:

SYSTEM ? ALGOL

The user is then asked whether he now wants to enter a new program (NEW) or
if he wants to retrieve and work with a previously entered and saved program
(OLD); the request message is:

OLD OR NEW =

If the user wishes to start a new program (i.e., build a new source file),
he responds simply with:

NEW

If, on the other hand, he wants to recall an old source-program file, he
responds with:

OLD filename

where filename is the name of the file on which the old program was saved during
a previous session at the terminal (see the SAVE command).

Following either response, the system types the message "READY", returns
the carriage, and prints an asterisk in the first character position of the next
line:

READY
*

An example of a complete log=-on procedure, up to the point where the ALGOL
system is ready to accept program input or control commands, might be as
follows:

HIS SERIES 6000, SERIES 600 ON 10/14/71 AT 14.768 CHANNEL 0012

USER ID - J,P.JONES

PASSWORD

AREREEBHXIKE = (user's password is typed over the mask)

SYSTEM - ALGOL

OLD OR NEW - NEW = (NEW is shown arbitrarily for
T illustration)

READY

* - (the user begins entering input on this

line)

D-7 BS11

Entering Program - Statement Input

After the message:

READY
*

the system is in build-mode (as indicated by the initial asterisk) and is ready
to accept ALGOL program-statement input or control commands. All lines of input
other than control commands are accumulated on the user's current file. Normally
the current file will be the file that contains the program he wants to compile
and run at this session. If he is building a new file (NEW response to OLD OR
NEW-~-), his current file will initially be empty. If he has recalled an old file
(OLD filename) the content of the named old file will initially be on his
current file, and any input typed by the user -~ excepting control commands --
will be either added to, merged into, or will replace lines in the current file,
depending upon the relative line numbering of the lines in the file and the new
input. (This process is explained under the heading "Correcting or Modifying a
Program," below.)

Following each 1line of noncommand-language input and the terminating
carriage response, the system will supply another initial asterisk, indicating
that it is ready to accept more input.

Format of Program - Statement Input

A line of ALGOL input == as distinct from a control command -- can contain
one of the following:

1. One or more ALGOL statements.

2. A partial statement.

3. A continuation of a statement left incomplete in the preceding line of
input.

4, A comment.,

5. A combination of (3) and (1) or (2), in . hat order.

6. A combination of (1) and (2).

A line of input must begin with a line-sequence number of from one to six
numeric characters. The line-segquence number facilitates correction and
modification of the source program (described below); hereinafter, the
line=sequence number will be referred to simply as the "line number".

The line number is always terminated (immediately followed by) a
non-numeric character. A line number must have a numeric value less than 2
(262144). If the user wants a numeric in column 1 of an ALGOL statement, a pound
sign (#) must immediately follow the line number. An input line consisting only
of numbers or of numbers followed by a pound sign will Le ignored by the
compiler. In order to insert blank lines into a program, the line number must be
followed by at least one blank,

D-8 BS11

Correcting or Modifying a Program

Keyboard input is sent to the computer and written onto the user's current
file in units of complete lines. A line of terminal input is terminated by a
carriage return and no part of the line is transmitted to the system until that
carriage return is given. Therefore, corrections or modifications can be done at
the terminal at two distinct levels:

1.

2.

Correction of a line-in-progress (i.e., a partial line not yvet
terminated) .

Correction or modification of the program (i.e., the contents of the
user's current source file) by the replacement or deletion of lines
contained therein, or the insertion of new lines.

The correction of a typing error that is detected by the user before the
line is terminated can be done in one of two ways. He may delete one or more
characters from the end of the partial line or he may cancel the incomplete line
and start over. The rules are as follows:

Use of the commercial "at"™ character (@) deletes from the line the
character preceding the @ character; use of n consecutive @ characters
deletes the n preceding characters (including blanks.)

Examples:
*ABCDF@E would result in ABCDE being transmitted to the program file,
*ABCYDEF @@@€@ GHJ would result in ABCGHJ being transmitted. (The

characters to be deleted are underlined for illustration.)

Use of the CTRL (control) and X keys, depressed simultaneously, causes
all of the line to be deleted. The characters DEL are printed to
indicate deletion and the carriage is automatically returned. For
example:

*ACDEFG CTRL/X DEL (all characters deleted)
* (ready for new input)

Correction or modification of the current source file is done on the basis
of line numbers and proceeds according to the following rules:

1.

Replacement.A numbered line will replace any identically numbered line
that was previously typed or contained on the current file (i.e., the
last entered line numbered nnn will be the only line numbered nnn in
the file).

Deletion. A "line" consisting of only a line number (i.e., nnn) will
cause the deletion of any identically numbered 1line that was
previously typed or contained on the current file.

Insertion. A line with a line-number value that falls between the
Tine=number values of two pre-existing lines will be inserted in the
file between those two lines. If the line number is less than the
first line number it is inserted at the beginning of the file; if
greater than the largest line number, it is inserted at the end of the
file.

D=9 BS1ll

At any point in the process of entering program-statement input, the LIST
command may be given, which results in a "clean", up-do-date copy of the current
file being printed. In this way, the results of any previous corrections or
modifications can be verified visually. Following the response (or command) OLD
filename, the LIST command can be used initially to inspect the contents of the
current source file (i.e., the "o0ld" program).

The ALGOL Run Command

The RUN command has the form:

RUN H

where:

fs

fh

-nnn fs = fh; fc(options) flib # fe

RUN H is the command RUN or RUN H. The latter form is used to

display a heading line on the terminal giving date,
time, and SNUMB.

=nnn nnn is the maximum time in seconds of processor time,

that the program is to be allowed for execution.

is the set of file descriptors for source files in the standard
BCD card image format, in compressed card image format (COMDK),
or in time=-sharing ASCII format and/or descriptors for binary
card image object files, These files serve as inputs to the
compiler and/or loader. Where a BCD or COMDK source file is
supplied, fs may also include a descriptor for an alter file in
BCD format. The alter file must begin with a $ UPDATE card and
must be in alter number sequence. If there are many BCD or COMDK
source files in the list, the alter file will update the first.
Alternatively, the list fs may consist of a single file
descriptor that points to a previously generated system loadable
(H*) file.

A file descriptor consisting of the single character * indicates
the current file (*SRC). The list is optional and, when missing,
indicates that only the current file (*SRC) is to be compiled.

is a single file descriptor of a random file into which the
system loadable file produced by the General Loader will be
saved if the compilation 1is successful. This file will be
written if no fatal errors occur during compilation. If the
named file does not exist, a permanent random file of 36 blocks
will be created and added to the user's catalog. If the field is
missing, the H* file is generated into a temporary file. The
presence of this option is valid only when the program indicated
by the list fs, the ALGOL library, and the user library (if any)
is bindable (no outstanding SYMREFs). If the General Loader
indicates that outstanding SYMREFs exist, an executable H* file
will be created, but any reference to an unsatisfied SYMREF will
cause the program execution to be abnormally terminated (the
General Loader inserts a MME GEBORT at references to unsatisfied
SYMREFs. When a MME is encountered during the execution of a
time~sharing subsystem, GCOS and the Time-Sharing Executive
simulate an illegal operation fault.)

must be included whenever fh, fc, (options), or flib options are
desired.

D=10 BS11

fc

(options)

is a single file descriptor of a sequential file into which the
compiler is to place the binary (C*) result of any indicated
compilation(s). One object module is written to this file for
each source program in the file(s) given by fs. If the named
file does not exist, a permanent linked file of 3 blocks will be
created and added to the user's catalog. This file will expand
as necessary to hold the object decks. In this case the field fs
plus the 1libraries need not indicate a complete program
(individual or collections of routines may be compiled and
saved) . When this optional field is missing, a C* file will not
be generated. When present, the DECK option is turned on for the
compilation process.

iz a list of options contained within parentheses and
comma-separated. Some of these options affect the compilation
process, and some the loading. The following compiler options
are available for time-sharing; they are described under the
$ ALGOL card; underlined is default.

DEBUG =~ Source line numbers will be printed with error messages
at execution time.

NDEBUG ~ Source line numbers will not be printed.

The remaining options have to do with the loading process. The
underlined option is the default case.

GO = The program will be executed at the completion of
compilation.
NOGO = The program will not be executed at the completion of

the compilation. If specified, the object program will
be saved. If no object (H*) save file is specified,
only the compilation will be performed (the General
Loader will not be called).

ULIB - File descriptors exist following the end of the
options field which locate user libraries which are
to be searched for missing routines prior to
searching for them in the system library.

NOLIB = No user libraries are to be used.
TIME=nnn - The batch compilation and/or General Loader activity

time limits will be set to nnn seconds; where nnn <
180. If not specified, nnn is set to 60.

CORE=nn - The batch compilation an/or General Loader activity
core requirment will be set to nnK+9XK or 23K,
whichever is larger. If not specified, nn is set to
16.

URGC=nn = The urgency for the batch compilation and/or General
Loader activity will be set to nn, where nn < 40. If
not specified, nn is set to 40.

TEST = A test version of the compiler and/or General Loader
is to be used for the batch activity. There must be
an accessed file (in the AFT) of the name ALGOL., If
these two conditions are met, then file ALGOL will
be allocated as file code ** in the batch activity.

REMO = Temporary files created for the batch process will
be removed from the AFT as they are no longer
needed. This option keeps the number of files in the
AFT down to a minimum but causes more time to be
spent processing each RUN command.

D-11 BS11

NAME=name = Provides a name for the main link of the saved H*
file. May be used both at time of creation of this
file and subsequently as it is used. This name 1is
placed in the SAVE/field of the $ OPTION card.

£1ib is a sequence of file descriptors pointing to random files
containing user libraries to Dbe searched before the system
library.

must be included whenever the fe option is desired.

fe is a set of file descriptors for files which will be required

during execution. Each descriptor must specify a file name (or
an alternate name, if necessary) of the form nn, where 01 <« nn <
40. This name represents a logical file code referenced by 1/0
statements in the program. I/0 may be teletypewriter-directed by
specifying a descriptor of the form "nn". File codes 05 and 06
are implicitly defined for teletypewriter I/0 and need not be
mentioned in the run command.

Log~0ff Procedure

To terminate one's current session with the time-sharing system and
disconnect the terminal, the BYE command may be given either in build-mode or at
the subsystem-selection level:

*BYE

or

SYSTEM ? BYE

In either case, a report of the user's time-sharing usage charges is given,
as illustrated by the following example, and the terminal is disconnected:

**RESOURCES USED $ 4.47, USED TO DATE $ 919.02= 92%

**TIME SHARING OFF AT 12.655 ON 10/14/71

Batch Activity Spawned by RUN

As an example of the simplest case, consider that some source file is
current in *SRC, and a RUN command is typed with none of the optional fields. A
job setup comparable to the following will be dispatched to the batch system.

S SNUMB nnnnT, 40

$ USERID

S IDENT

S LOWLOAD 36

$ OPTION ALGOL,NOMAP ,NOGO, SAVE/OBJECT

$ USE . TSGF

$ ALGOL NLSTIN,NDECK

S LIMITE 2,25K

S FILE S¥* ,X1R source file *SRC
$ FILE P*,X28 diagnostic report only
$ EXECUTE

$ FILE P* ,X2R

$ FILE H* ,X3R,3R bound program

$ ENDJOB

D-12 BS11

The results of compilation and loading are returned on files ©P* and H*, P*
s read and scanned for compiler and/or loader diagnostics. These are displayed
on the teletypewriter and if there have been no fatal errors, the fully bound
program will be loaded from H* and execution will proceed.

Supplying Direct-~Mode Program Input

During program execution, keyboard input may need to be supplied to satisfy
one or more input statements in the program. Each time input is required, the
equal-sign character, "=", will be printed at the terminal. The user begins
typing the input immediately following the equal sign. A carriage return signals
the end of the input ‘line.

An end-of-file condition will be generated when the eqgual sign is
immediately followed by a file separator character (control, shift, and L keys
depressed simultaneously), which must be immediately followed by a carriage
return.,

The ALGOL subroutine library allows multiple output statements to refer to
the same output line; i.e., line spacing occurs only when the library encounters
an alignment mark or when the line overflows. When both input from and output
to the teletype are required, the user must insure that any complete lines which
are to appear before an input line must be terminated with the proper alignment
marks.,

It is also possible to input data from a paper tape. The. actual characters
transmitted to the terminal from an input statement are: carriage return (CR),
rubout (RO), equal sign (=), and sign-on (X-ON). The sign-on character activates
the paper tape reader if the reader is in the ready state. A ready state is
achieved by having the paper tape "loaded" and the reader switches set to "AUTO"
or "TD-ON". Paper tapes which are to be used in this way should end each line
with the characters: carriage return (CR), sign off (X-OFF), 1line feed (LF),
rubout (RO). The sign-off character turns off the reader but leaves it in a
ready state for any subsequent READ's. Paper tapes must begin with an
appropriate leader of RO characters.

Emergency Termination of Execution

The use of the BREAK key will terminate program execution. All file output
buffers, including the teletypewriter buffer, will be flushed, the files will be
closed, and a NORMAL TERMINATION message will be generated. Control will return
to the build-mode after the use of the BREAK key.

Paper Tape Input

In order to supply build-mode input from paper tape, the user gives the
command TAPE. The system responds with READY. At this point, +the user should
position his tape in the reader and start the device. Input is terminated when
either the end-of-tape occurs, the wuser turns off the reader, and X-OFF
character is read by the paper tape reader, or a jammed tape causes a delay of
over one second between the transmission of characters.,

D-13 BS11

At present a maximum of 80 characters are permitted per line of paper tape
input. Excessive lines will be truncated at 80 characters with the remaining
data placed in the next line. A maximum of two disk links (7680 words) of paper
tape input will be collected during a single input procedure. All data in excess
of two disk links will be lost.

Example of a Time-Sharing Session

A comprehensive example of program creation, testing, correction and
modification follows. Explanations are enclosed in parentheses; they are not
part of the printout.

USER ID ~BALLARD
PASSWORD=-
KERRERBHXIKE
SYSTEM ?ALGOL

OLD OR NEW - NEW
READY
*0010'BEGIN'
*0020°COMMENT '

*0030 THIS IS THE OLD GAME OF THE TOWERS OF HANOI.

*0040 A NUMBER OF DIFFERENT RINGS @@@@Q@Q@ SIZED RINGS ARE
(typing correction)

*0050 TO BE MOVED FROM POLE 2@1 TO POLE 3 WITH

*0060 ASSISTANCE FROM POLE 2. ONE RING AT A TIME

*0070 IS MOVED AND A LARGER RING CAN NOT REST ON

*0070 IS MOVED AND A LARGER RING MAY NOT REST ON

(replace line 70)

*0080 A SMALLER;

*0090#

*0100#

*0110 "PROCEDURE' HANOI (N,P1,P2,P3);

*0120 "INTEGER' N,P1,P2,P3;

*0130 '"IF' N=0 'THEN' 'GOTO' EXIT;

*0140 HANOI (N-1,P1,P3,P2);

*0150 OUTPUT3(6,"/,"MOVE RING\,zZD," FROM POLE\,ZD," TO POLE\,

*0160 ZD\,N,P1,P2);

*0170 HANOI (N-1,P3,P2,P1);

*0180 EXIT:

*0190 'END';

*0125 '"BEGIN'

*0200#

*02104

*0220 HANOI
*0220 INPUTL1(5,"L@ ,N);
*Q015'INTEGER' N; (insert line between lines 10 and 20)

*0230#

*0240 HANOI(N,1,3,2);

*02504#

*0260'END' OF ENTIRE PROGRAM
*0190 'END' OF PROCEDURE HANOTI;
*LIST (list corrected program)

D=14 BS11

0010 'BEGIN'
0015'INTEGER' N;
0020 'COMMENT'

0030 THIS IS THE OLD GAME OF THE TOWERS OF HANOI.
0040 A NUMBER OF DIFFERENT SIZED RINGS ARE

0050 TO BE MOVED FROM POLE 1 TO POLE 3 WITH
0060 ASSISTANCE FROM POLE 2. ONE RING AT A TIME
0070 IS MOVED AND A LARGER RING MAY NOT REST ON
0080 A SMALLER;

0090#

0100%

0110 '"PROCEDURE' HANOI (N,P1,P2,P3);

0120 "INTEGER' N,P1,P2,P3;

0125 'BEGIN'

0130 'IF' N=0 ‘THEN' 'GOTO' EXIT;

0140 HANOI (N-1,P1,P3,P2);

0150 OUTPUT3 (6,"/, "MOVE RING\,2Z7%D," FROM POLE\,ZD," TO POLE\,
0160 ZD\,N,P2,P2);

0170 HANOI (N-1,P3,P2,Pl);

0180 EXIT:

0190 'END' OF PROCEDURE HANOTI;

02004#

0210%

0220 INPUTL(5," ,N);

0230#

0240 HANOI(N,1,3,2):

02504#

0260"END' OF ENTIRE PROGRAM
READY

*SAVE ALGTEST (save program)
DATA SAVED=--ALGTEST
*RUN (run program)
NO ERROR IN ABOVE COMPILATION
15098 WORDS WERE USED FOR THIS COMPILATION
=3 (type input data)
MOVE RING FROM POLE
MOVE RING FROM POLE
MOVE RING FROM POLE
MOVE RING FROM POLE
MOVE RING FROM POLE
MOVE RING FROM POLE TO POLE
MOVE RING FROM POLE TO POLE
7275(10) WAS THE HIGHEST USED

TO POLE 3
TO POLE 2
TO POLE 2
TO POLE 3
TO POLE 1
3
3
M

N W N
I N N N

EMORY LOCATION.

NORMAL TERMINATION

D-15 BS11

REMCTE BATCH INTERFACE

Refer to the GRTS Programming Reference Manual, for a description of the
deck setup required for submitting a batch job from a remote terminal.

FILE SYSTEM INTERFACE

The File System provides multiprocessor access to a common data base. The
file system allocates permanent file space and controls file access for users in
local and remote batch and time-sharing. The file system is fully described in
the manual File System.

TERMINAL/BATCH INTERFACE

The CARDIN time-sharing subsystem allows the user to submit a batch job
from a time-sharing terminal. This capability is fully described in the manual
Time-Sharing System Terminal/Batch Interface Facility.

FILE FORMATS

The compiler will accept either ASCII or BCD source input. ASCII source
input must be in the TSS format (media code 5) and is assumed to have line
numbers. An ASCII input line of only numbers (or only numbers followed by a
pound sign) will be ignored. In order to insert blank lines into the program,
the line number must be followed by at least one blank.

The subroutine library input routines will accept either ASCII or BCD
input. ASCII input may be either in the TSS format (media code 5) or in
"standard ASCII" format (media code 6). If an input file is in TSS format, it is
assumed to have line numbers. The line numbers will be removed by the input
routines.

The subroutine library will write either ASC1. or BCD output files. ASCII
output files will be in the "standard ASCII" format (media code 6). Each output
line will have one line feed appended to the end of the record. The last word of
a line will be filled with "rub-out" characters. The alignment mark for
restoring the page (t) will generate a record of 16 consecutive line feeds.

In the batch mode of operation, file codes 5 and 6 are assumed to be in BCD
format. File code 5 is for the card reader (I*) and file code 6 is for the
printer (P*). If I/O is to be performed on a file which is (or will be) in ASCII
format, a statement SYSPARAM (FC, 24, 4) must precede the first reference to
that file.

In the time-sharing mode of operation, file codes 5 and 6 are assumed +o
reference the teletype (i.e. in ASCII format). Since the destination code
(DSTCOD) capability is not available in time-sharing, if I/O is to be performed
on a file other than 5 or 6, a call to SYSPARAM with the appropriate parameters
must precede the first reference to that file.

APPENDIX E

BASIC SYMBOLS WITH EQUIVALENT INTERNAL INTEGER VALUES

SYMBOL VALUE SYMBOL VALUE
A 32 elo} 163
B 33 "GR" 164
c 34 'NQ' 159
D 35 "EQV! 154
E 36 "IMP' 155
F 37 "OR' 156
G 38 *AND 157
H 39 "NOT® 158
I 40 . 511
J 41 , 172
K 42 : 178
L 43 : 176
M 44 (152
N 45) 174
0 46 i 153
P 47] 173
0 48 " 182
R 49 AN 182
S 50 g 510
T 51 - 144
8] 52] 181
\% 53 "ARRAY® 134
W 54 'BEGIN' 128
X 55 'BOOLEAN 133
Y 56 "CODE' 140
Z 57 ' COMMENT ' 180
0 0 DO’ 148
1 1 '"ELSE"® 151
2 2 '"END® 175
3 3 '"EXTENDED REAL' 131
4 4 "FOR'® 143
5 5 "GO TO' 142
6 6 IR 149
7 7 ' INTEGER' 132
8 8 'LABEL' 138
9 9 ' NONLOCAL' 141
'TRUE 509 "OWN 129
'"FALSE' 508 "PROCEDURE" 135
+ 165 'REAL'’ 130
- 167 ' RENAME ' 184
* 168 'STEP'® 145
/ 169 'STRING' 139
& 170 "SWITCH' 136
t 171 "THEN ' 150
"LS! 160 TUNTIL® 146
"LQ°" 161 'VALUE' 137
'EQF 162 ‘WHILE? 147

E=-1 BS1l

APPENDIX F

STACK TRACING ROUTINE

PURPOSE

To print the stack and non=procedural variables and/or to give an octal
dump when an error is detected by the ALGOL run-time routines.

The action to be taken is governed by the options on a $ USE control card.
The two options are .ADUMP and .ADUMR.

The option .ADUMP gives a decimal dump when the first error is detected.
Also it gives a dump when the number of errors detected exceeds the maximum
number allowed (at which time the execution is terminated). It gives a dump when
the program is aborted by GCOS,

The option .ADUMR gives an octal dump of all of memory when the first error
is detected,

The $ USE card is placed after the $ OPTION card and preceding the program.
Both ,ADUMP and .ADUMR may be used in the same execution activity.

F-1 BS11

SYMBOL

‘LS
!GR!
"JLQI
iNQE

@

P
"

- g

APPENDIX G

ALTERNATE SYMBOL REPRESENTATIONS

ALTERNATE (S)

v LA

s LAY
it

]
¢}
2t

&

or **

BS11

APPENDIX H

THE % OPTION CARD

A special internal directive card is recognized by the ALGOL compiler. It
is indicated by the percent sign (%) in column 1 and blanks in columns 2-6.

Options begin in column 7 (or later) and are separated by commas.
Currently the following options are available:

NLSTIN Suppress listing of the source program beginning with the next
source card.
LSTIN Resume listing of the source program.

NXREF Suppress symbol cross reference information beginning with the next
source card.

Resume symbol cross reference information.

A binary deck of the link preset data will be punched.
BOUND Perform array subscript checking.

NBOUND Discontinue array subscript checking,

LSTOU Start producing an output listing.

NLSTOU Discontinue producing an output listing,

NAPOST Allows ALGOL basic symbol words to be blank delineated instead of
apostrophe delineated.

APOST Resume accepting only apostrophe delineated basic symbol words,
The LSTIN directive is inoperable unless the LSTIN option is in effect from

the $ ALGOL control card. The NLSTIN/LSTIN options allow listing only selected
portions of the source program.

The use of the XREF/NXREF options allow obtaining only selected portions of
the symbol cross reference table. They are not dependent on the SYMTAB option
on the $ ALGOL control card. ‘

The use of the LKDATA option causes the compiler to generate a binary deck
containing the link preset data which would normally be written on the LF file.

H-1 BS11

The BOUND option causes the compiler to generate coding which will test the
value of each subscript in an array reference. If the value is within the range,
defined by the lower and upper bounds in the array declaration, no action is
taken. If the value is too small, the error message

<< < SUBSCRIPT #XX IS TOO SMALL. LOWER BOUND USED. ALTER YYYYY >>>

is printed and the value of the subscript will be replaced by the value of the
lower bound. If the value of the subscript is too large, the error message

< << SUBSCRIPT #XX IS TOO LARGE. UPPER BOUND USED. ALTER YYYYY >>>

is printed and the value of the upper bound is used as the subscript. The option
NBOUND causes the compiler to stop generating coding for checking subscripts.
The BOUND/NBOUND options allow checking the value of subscripts in only selected
portions of a program.

The LSTOU/NLSTOU options are the same as used for the $ ALGOL control card.
However, when used on the % OPTION card, an output listing of selected portions
of the program is permitted.

The NAPOST option allows the ALGOL basic symbol words such as BEGIN and END
to be blank-separated instead of apostrophe-separated. The following rules

govern the recognition of these words by the compiler.

Blank Delineated

Preceded by at least one character,
Followed by at least one character.

Two basic symbol words need only one
blank character between them
(FBEGINBINTEGERY) .

Neither the seimicolon, the end of
card, nor any special character will
be preceding or trailing blank char-
ter.

The basic symbol must be completely
spelled out.

No blanks are permitted between
characters of a word (PBOTOP may not
be written as PBGOETOP) .

Apostrophe Delineated

Preceded by one and only one apostrophe.
Followed by one and only one apostrophe.

Two basic symbol words neced two apostro-
phes between them - one trailing and one
preceding ('BEGIN' 'INTEGER').

Neither the semicolon, the end of card,
nor any special character will be ac-
cepted in lieu of the preceding or
trailing apostrophe.

Only the first three characters are used
to compare (e.g., 'BEG' will be accepted
as 'BEGIN').

Blanks are not significant.

H-2 BS11

INDEX

'ARRAY'
'ARRAY' 6-2
'ARRAY' DECLARATIONS 4=2
"ARRAY', 'OWN' 6=4
'ELSE’
CONDITIONAL, 'ELSE' 5-9
CONDITIONAL, n 'IF’ CLAUSES, 'ELSE' 5-17
CONDITIONAL, TWO ‘IF' CLAUSES, 'ELSE’ 5-13
FOR'
'FOR' GENERAL 5-25
'"FOR' STATEMENTS 4-2
'FOR', 'STEP' CLAUSE 5-21
'FOR'", "WH1LE' CLAUSE 5-23
'FOR', EXPRESSION 5-20
GO TO!
'GO TO' STATEMENTS 4-2
'GO TO", CONDITIONAL DESIGNATOR 5=29
'GO TO', TABEL 5-26
GO TO', SWITCH DESIGNATOR 5=-27
IIF!

'IF' CLAUSE ARITHMETIC EXPRESSION
"IF' CLAUSE BOOLEAN EXPRESSION
ASSIGNMENT, 'IF' CLAUSE
ASSIGNMENT, n 'IF' CLAUSES
ASSIGNMENT, TWO 'IF' CLAUSES

CUTUT U Ul U1 Ut W W
i
U1 Oy s Oy U

CONDITIONAL, n 'IF' CLAUSES -15
CONDITIONAL, n 'IF' CLAUSES, 'ELSE' -17
CONDITIONAL, TWO 'IF' CLAUSES -11
CONDITIONAL, TWO 'IF' CLAUSES, 'ELSE' -12
'LINK'
"LINK® DECLARATION 6-24
'LINK' DECLARATION -3
"OWN '’
"ARRAY®, 'OWN' 6-4
TYPE, 'OWN® 6-22
' PROCEDURE'
'PROCEDURE' DECLARATION, FUNCTION DEFINITION 6-13
"PROCEDURE' DECLARATION, SEPARATELY COMPILED 6=16
'PROCEDURE' DECLARATION, SIMPLE 6=5
"PROCEDURE' DECLARATION, SPECIFICATION PART 67
'PROCEDURE' DECLARATION, VALUE AND SPECIFICATION PART 6-10
'PROCEDURE' DECLARATIONS 4-3

i-1 BS1l

'STEP'
'FOR', 'STEP' CLAUSE

'SWITCH'
'SWITCH' DECLARATION
'SWITCH' DECLARATION

"WHILE'
'FOR', 'WHILE' CLAUSE

ACTIVITY
Batch Activity Spawned by RUN

ALGOL
A SAMPLE ALGOL PROGRAM
DEFINITION OF ALGOL
FORM OF AN ALGOL PROGRAM
STRUCTURE OF ALGOL
The ALGOL Run Command
Time=Sharing Commands for ALGOL
WRITING AN ALGOL PROGRAM

ALIGNMENT
Alignment Marks

ALPHA
Alpha Format

ALTERNATE
ALTERNATE SYMBOL REPRESENTATIONS

ARITHMETIC
'IF' CLAUSE ARITHMETIC EXPRESSION
ARITHMETIC EXPRESSION
Arithmetic Operators
SIMPLE ARITHMETIC EXPRESSION

ASSIGNMENT
ASSIGNMENT STATEMENTS
ASSIGNMENT, 'IF' CLAUSE
ASSIGNMENT, n 'IF' CLAUSES
ASSIGNMENT, SIMPLE
ASSIGNMENT, TWO 'IF' CLAUSES

BAD
BAD DATA

BATCH
BATCH CALL CARD
BATCH MODE
Batch Activity Spawned by RUN
REMOTE BATCH INTERFACE
SAMPLE BATCH DECK SETUP

BLOCK
BLOCK

BOOLEAN
'"TF' CLAUSE BOOLEAN EXPRESSION
BOOLEAN EXPRESSION
Boolean Format
evaluating a Boolean expression
Insertions in Boolean Format
SIMPLE BOOLEAN EXPRESSION

&

BS1l

CALL
BATCH CALL CARD

CARD
% OPTION CARD
BATCH CALL CARD

CLAUSE
'FOR', 'STEP' CLAUSE
'FOR'", "WHILE' CLAUSE

'IF' CLAUSE ARITHMETIC EXPRESSION
"IF' CLAUSE BOOLEAN EXPRESSION
ASSIGNMENT, 'IF' CLAUSE

ASSICNM®ENT, n "IF' CLAUSES
ASSIGNMENT, TWO 'IF' CLAUSES
CONDITIONAL, n 'IF' CLAUSES
CONDITIONAL, n 'IF' CLAUSES, 'ELSE®
CONDITIONAL, TWO 'IF' CLAUSES
CONDITIONAL, TWO 'IF' CLAUSES, 'ELSE'

CODING
Coding

COMMAND
Command Language
The ALGOL Run Command
Time-Sharing Commands for ALGOL

COMMENTS
Insertion of Comments

COMPILED
'PROCEDURE" DECLARATIO!N, SEPARATELY COMPILED

COMPOUND
COMPOUND STATEMENT

CONDITIONAL ‘
'GO TO', CONDITIONAL DESIGNATOR
CONDITIONAL DESIGNATOR
CONDITIONAL STATEMENTS
CONDITIONAL, 'ELSE'
CONDITIONAL, n 'IF' CLAUSES
CONDITIONAL, n 'IF' CLAUSES, 'ELSE'
CONDITIONAL, SIMPLE
CONDITIONAL, TWO 'IF' CLAUSES
CONDITIONAL, TWO 'IF' CLAUSES, 'ELSE'

CONTROL
INPUT/OUTPUT CONTROL PROCEDURE

CORRECTING
Corrting or Modifying a Program

DATA
BAD DATA
DATA TRANSMISSION PROCEDURES
NO DATA
transmission of data

DECIMAL
Decimal Numbers
Decimal Numbers with Exponent

DECK
SAMPLE BATCH DECK SETUP

| I |
w

§
HFUodeOUITNN

(5]

U WWUUT L
i [

=

[

ut
i

=

w

[
g
b

(Xl

| J T R I R M |
~l U

i

Tt ot Ut ot s Ut
i
RO

w

[ee]
i
N
foe]

DECLARATION
'LINK' DECLARATION
'LINK' DECLARATION

'PROCEDURE' DECLARATION, FUNCTION DEFINITION
'PROCEDURE' DECLARATION, SEPARATELY COMPILED

'PROCEDURE"' DECLARATION, SIMPLE

'PROCEDURE' DECLARATION, SPECIFICATION PART
'"PROCEDURE' DECLARATION, VALUE AND SPECIFICATION PART

'SWITCH' DECLARATION

'SWITCH' DECLARATION
DECLARATION TYPES

STATEMENT AND DECLARATION FORMS
'ARRAY' DECLARATIONS
'PROCEDURE' DECLARATIONS

TYPE DECLARATIONS

TYPE DECLARATIONS

DESIGNATIONAL
DESIGNATIONAL EXPRESSION

DESIGNATOR
'GO TO', CONDITIONAL DESIGNATOR
'GO TO', SWITCH DESIGNATOR
CONDITIONAL DESIGNATOR
SWITCH DESIGNATOR

DESTINATION
DESTINATION CODE

DEVICES
INPUT/OUTPUT DEVICES

DIRECT-MODE
Supplying Direct=-Mode Program Input

DUMMY
DUMMY STATEMENT
DUMMY STATEMENT

ELEMENT
STRING ELEMENT

EXAMPLES
EXAMPLES OF LAYOUT PROCEDURES

EXPONENT
Decimal Numbers with Exponent

EXPRESSION
'FOR', EXPRESSION
'IF' CLAUSE ARITHMETIC EXPRESSION
'IF' CLAUSE BOOLEAN EXPRESSION
ARITHMETIC EXPRESSION
BOOLEAN EXPRESSION
DESIGNATIONAL EXPRESSION
EXPRESSION
evaluating a Boolean expression
SIMPLE ARITHMETIC EXPRESSION
SIMPLE BOOLEAN EXPRESSION

EXTENDED
EXTENDED REAL NUMBER

FILE
FILE FORMATS
FILE SYSTEM INTERFACE

=9

A B DD BTG
i
NWWR D WH SO WR
O W

| N T T T T T N T N
@ O

(=]

[O%]
i
~J

5-29
5-27
3-7
3-7

8-2

o

I | | I T T B
s ~Joauto Ut

WWwwwwwwwwwu,
i

BS11

FORMAT

FUN

HEN

Alpha Format

Boolean Format

DESCRIPTIVE FORMAT
DESCRIPTIVE FORMAT
DESCRIPTIVE FORMAT

FORMAT

FORMAT n

Format of Program - Statement Input
Hollerith Format

Insertions in Boolean Format
Insertions in String Format
Standard Format

String Format

Title Format

FILE FORMATS

Insertions in Number Formats
Number Formats

Truncation for Number Formats

CTION

'PROCEDURE' DECLARATION, FUNCTION DEFINITICN

MATHEMATICAL FUNCTIONS
MISCELLANEOUS FUNCTIONS

D
HEND

HLIM

HOL

I/0

IDE

INL

INP

INP

HLIM

LERITH
Hollerith Format

layout of the 1/0

NTIFIER
IDENTIFIER

ISsT

DETAILED EXPLANATION OF INLIST AND OUTLIST

INLIST
INLIST

uT

Entering Program - Statement Input
Format of Program - Statement Input
INPUT n

input and output processes

Numbers for Input

Paper Tape Input

Supplying Direct=Mode Program Input

UT/OUTPUT

INPUT/OUTPUT CONTROL PROCEDURE
INPUT/OUTPUT DEVICES
INPUT/OUTPUT PROCEDURES
INPUT/OUTPUT PROCESS

INSERTIONS

Insertions in Boolean Format
Insertions in Number Formats
Insertions in String Format

i=

| T I T I |

[
~I i ~J = 00 0O 00 O
'—J

N

| I T O B I T
= O

o000 00U o0 oo 0 oo T ~IohUl oo
i

BS1l1

INSYMBOL
INSYMBOL

INTEGER
INTEGER
Integers

LABEL]
'GO TO', LABEL
STATEMENT LABEL

LANGUAGE
Command Language

LAYOUT
EXAMPLES OF LAYOUT PROCEDURES
layout of the I/O

LENGTH
LENGTH

LIST
LIST PROCEDURE
List Procedure
List procedure

LOG~OFF
Log=-0ff Procedure

LOG-ON
Log=on Procedure

LOGICAL
hierarchy of logical operators
Logical Operators

MARKS
Alignment Marks

MATHEMATICAL
MATHEMATICAL FUNCTIONS

MODIFYING
Correcting or Modifying a Program

NUMBER
EXTENDED REAL NUMBER
Insertions in Number Formats
NUMBER
Number Formats
REAL NUMBER
Truncation for Number Formats
Decimal Numbers
Decimal Numbers with Exponent
Numbers for Input
Octal Numbers

OCTAL
Octal Numbers

00 00 00 00 0 W W W
[} §
NoOo O TN N

BS11

OPERATOR
OPERATOR SYMBOLS
Arithmetic Operators
Hierarchy of Operators
hierarchy of logical operators
Logical Operators
Relational Operators

OPTION
% OPTION CARD

QUTLIST
DETAILED EXPLANATION OF INLIST AND OUTLIST
OUTLIST
QUTLIST

ouTPUT
input and output processes
OUTPUT n

OUTSYMBOL
OUTSYMBOL

PACK
PACK

PAPER
Paper Tape Input

PART
'PROCEDURE' DECLARATION, SPECIFICATION PART
'"PROCEDURE' DECLARATION, VALUE AND SPECIFICATION PART

PRIMITIVE
PRIMITIVE PROCEDURES
Primitive procedures

PROCEDURE
INPUT/OUTPUT CONTROL PRCOCEDURE
LIST PROCEDURE
List Procedure
List procedure
Log~0ff Procedure
Log=-on Procedure
PROCEDURE STATEMENT
PROCEDURE STATEMENT
DATA TRANSMISSION PROCEDURES
EXAMPLES OF LAYOUT PROCEDURES
INPUT/OUTPUT PROCEDURES
PRIMITIVE PROCEDURES
Primitive procedures

PROCESS
INPUT/OUTPUT PROCESS
input and output processes

PUNCTUATION
PUNCTUATION SYMBOLS
Punctuation

RDCHAR
RDCHAR

RDREC
RDREC

i

§

il g
ISENE-NTESES

x,w
¥
N p
N

8-28
8-35
8-35
8-1

D-12

5-31
4-2
8-19
8-18
8-1
8-31

BS11

REA

L
EXTENDED REAL NUMBER
REAL NUMBER

RELATIONAL

Relational Operators

REMOTE

RES

ROU

RUN

SIM

SPE

STA

REMOTE BATCH INTERFACE

ERVED
RESERVED WORDS

TINE
STACK TRACING ROUTINE

Batch Activity Spawned by RUN
The ALGOL Run Command

PLE

'PROCEDURE' DECLARATION, SIMPLE
ASSIGNMENT, SIMPLE

CONDITIONAL, SIMPLE

SIMPLE ARITHMETIC EXPRESSION
SIMPLE BOOLEAN EXPRESSION
SIMPLE STATEMENT

CIFICATION

'PROCEDURE' DECLARATION, SPECIFICATION PART
'PROCEDURE' DECLARATION, VALUE AND SPECIFICATICN PART

CK
STACK TRACING ROUTINE

STATEMENT

COMPOUND STATEMENT

DUMMY STATEMENT

DUMMY STATEMENT

Entering Program - Statement Input
Format of Program - Statement Input
PROCEDURE STATEMENT

PROCEDURE STATEMENT

SIMPLE STATEMENT

STATEMENT AND DECLARATION FORMS
STATEMENT LABEL

STATEMENT TYPES

'FOR' STATEMENTS

‘GO TO' STATEMENTS

ASSIGNMENT STATEMENTS

COMBINING STATEMENTS

CONDITIONAL STATEMENTS

STRING

Insertions in String Format
STRING

STRING ELEMENT

String Format

SUBSCRIPTED

SWI

SUBSCRIPTED VARIABLE

TCH
‘GO TO', SWITCH DESIGNATOR
SWITCH DESIGNATOR

W W
i

L T T
-)

LR TR T I B

B D WD W UTO U0
i

o 0 W
LI
N

BS1l

SYMBOL
ALTERNATE SYMBOL REPRESENTATIONS
BASIC SYMBOLS
OPERATOR SYMBOLS
PUNCTUATION SYMBOLS

SYSPARAM
SYSPARAM

TABULATION
TABULATION

TAPE
Paper Tape Input

TERMINAL/BATCH
TERMINAL/BATCH INTERFACE

TERMINATION
Emergency Termination of Execution

TIME-SHARING
Example of a Time-Sharing Session
TIME~SHARING OPERATION
Time-Sharing Commands for ALGOL

TITLE
Title Format

TRACING
STACK TRACING ROUTINE

TRANSMISSION
DATA TRANSMISSION PROCEDURES
transmission of data

TRUNCATION
Truncation for Number Formats

TYPE
TYPE
TYPE DECLARATIONS
TYPE DECLARATIONS
TYPE, 'OWN'
DECLARATION TYPES
STATEMENT TYPES

8-16

D-13

BS11

UNPACK

UNPACK B-3
VALUE .

'PROCEDURE' DECLARATION, VALUE AND SPECIFICATION PART 6-10
VARIABLE

SUBSCRIPTED VARIABLE 3-3

VARIABLE 3-3
VEND

VEND 8-17
VLIM

VLIM 8-17
WITCHAR

WITCHAR 8=25
WITREC

WIREC 6-23

—
-,

P

BS 11, Rev. 0

Honeywell Bull

HONEYWELL INFORMATION SYSTEMS

Ref.:

19.30.220 A

Repro-Service 8-73

