Honeywell Bull JoviaL

SERIES 600/6000
SOFTWARE

BS 06, Rev. 1

Ref.: 19.30.221 A

Honeywell Bull ova

SERIES 600/6000

SUBJECT :

Description and Use of the JOVIAL Programming Language in Both Batch
and Time-Sharing Environments.

SPECIAL INSTRUCTIONS:

This manual supersedes the previous edition dated November 1971 and its
Addendum A, dated June 1972. New and changed information is indicated
by marginal change bars; asterisks indicate deletions.

SOFTWARE SUPPORTED:

Series 600 Software Release 7.0
Series 6000 Software Release E

DATE

January 1973

ORDER NUMBER:

BS06, Rev. 1

Printed in France Ref :19.30.2

PREFACE

This manual is intended as a reference for the programmer of the

Series 600/6000 JOVIAL language.

&

Honeywell

Series 600/6000 in the area of program preparation

program, provided it is not modified by the user.

JOVIAL is a coded program designed to extend the power of

and

maintenance. It is supported by comprehensive documentation
and training; periodic program maintenance and, where feasible,
improvements are furnished for the current version of the

1965, 1966, 1970, General Electric Company, U.S.A. File No.:
1971, 1972, 1973, Honeywell Information Systems, Inc.

1623,

1723

BS06

FUNCTIONAL LISTING OF PUBLICATIONS

FUNCTION

for
SERIES 600 SYSTEM

APPLICABLE REFERENCE MANUAL
FORMER ORDER
TITLE PUB. NO. NO.

Hardware reference:
Series 600
DATANET 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System

Storage Subsystem Startup

Data management:
File System
Integrated Data Store
(I-D-S)
File Processing
Multi-Access I-D-&

File Input/Output
I-D-S Data Query System

I-D-S Data Query System

Program maintenance:
Object Program
System Editing

Test system:
On-Line Peripheral testing

Total On-Line testing

Language processors:
Macro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAN Language
FORTRAN IV Language
DATANET 355

Generators:
Sorting
Merging

Simulators:
DATANET 355 Simulation

Series 600:

System Manual 371 BM78
DATANET 355 Systems Manual 1645 BSO03

General Comprehensive Operating

Supervisor (GCOS) 1518 BR43
Control Cards Reference Manual 1688 BS19
System Operating Techniques DALO DALO
GRTS /355 Startup Procedures

Reference Manual 1715 BJ70
DSS180 Disk Storage Subsystem

Startup Procedures DA1l DALL
File Management Supervisor DB54 DB54
Integrated Data Store 1565 BR69
Indexed Segquential Processor DA37 DA37
Multi-Access I-D-5

Implemertstion Guide DABO DABO
General File and Record Control

System 1003 BN85
1-D-S Data Query System

Installation DB57 DB57
I-D-S Data Query System

User's Guide ’ DB56 DB56
Source and Object Library Editor 1723 BJ71
System Library Editor 1687 BS18

GCOS On-Line Peripheral Test

System (OPTS-600) 1573 BR76
Total On-Line Test System

(TOLTS) DA49 DA49
Macro Assembler Program 1004 BN86
COBOL Compiler 1652 BS08
COBOL User's Guide 1653 BS09
ALGOL 1657 BS11
JOVIAL 1650 BS06
FORTRAN 1686 BJ67
FORTRAN IV 1006 BN88
DATANET 355 Macro-Assembler

Program 1660 BB98
Sort/Merge Program 1005 BN87
Sort/Merge Program 1005 BN87

DATANET 355 Simulator
Reference Manual 1663 BW23

iii BS06

FUNCTION

APPLICABLE REFERENCE MANUAL

TITLE

Remote terminal system:
DATANET 30

DATANET 30/305/355

Service and utility routines:
Loader
Utility Programs
Conversion
System Accounting

FORTRAN

Controller Loader
Service Routines
Software Debugging

Time-sharing systems:
Operating System

System Programming

System Programming

BASIC Language
FORTRAN Language
Text Editing

Transaction processing:
User's Procedures

Handbooks :
Console Messages
Index

Pocket guides:
Time=Sharing Programming
Macro Assembly Language
COBOL Language
Control Card Formats

Software maintenance (SMD) :
Table Definitions

Startup program
Input System
Peripheral Allocation

Core Allocation/Rollcall

Fault Processing
Channel Modules
Error Processing
Output System

File System Modules
Utility Programs
Time-Sharing System

Rev. 7303

Series 600:

NPS/30 Programming
Reference Manual
GRTS Programming Reference

General Loader

Utility

Bulk Media Conversion

GCOS Accounting Summary
Edit Programs

FORTRAN Subroutine Libraries
Reference Manual

Relocatable Loader

Service Routines

Trace and Debug Routines

GCOS Time~Sharing System
General Information

GCOS Time-Sharing Terminal/Batch
Interface Facility

GCOS Time-Sharing System
Programmers' Reference
Manual

Time-Sharing BASIC

Time=Sharing FORTRAN

Time-Sharing Text Editor

Transaction Processing System
User's Guide

Console Typewriter Messages
Comprehensive Index

GCOS Time-Sharing System

GMAP

COBOL

GCOS Control Cards & Abort Codes

GCOS Introduction & System
Tables SMD

Startup (INIT) SMD

System Input SMD

Dispatcher and Peripheral
Allocation SMD

Rollcall, Core Allocation and
Operator Interface SMD

Fault Processing SMD

I/0 Supervisor (IOS) SMD

GCOS Exception Processing SMD

Termination and System Output SMD

File System Maintenance SMD

GCOS Utility Routines SMD

Time-Sharing Executive SMD

iv

FORMER ORDER
PUB. NO. NO.

1558 BR68
DA79 DA79
1008 BN90
1422 BQ66
1096 BP30
1651 BSO7
1620 BRS5
DA1Z DAl2
DA97 DA97
DB20 DB20
1643 BSO1
1642 BRY99
1514 BR39
1510 BR36
1566 BR70
1515 BR40
DAB2 DA82
1477 BROY9
1499 BR28
le6l BS12
1673 BS16
1689 BJ68
1691 BJ69
1488 BR17
1489 BR18
1490 BR19
1491 BR20
1492 BR21
1493 BR22
1494 BR23
1495 BR24
1496 BR25
1497 BR26
1498 BR27
1501 BR29
BS06

FUNCTIONAL LISTING OF PUBLICATIONS
for
SERIES 6000 SYSTEM

FUNCTION APPLICABLE REFERENCE MANUAL

FORMER ORDER

TITLE PUB., NO. NO,

Hardware reference:

Series 6000

Series 6000 Series 6000 Summary Description DA48 DA48
DATANET 355 DATANET 355. Systems Manual 1645 BS03
Operating system:
Basic Operating System General Comprehensive Operating
Supervisor (GCOS) 1518 BR43
Control Card Formats Control Cards Reference Manual 1688 BS19
System initialization:
GCOS Startup System Startup and Operation DAOG6 DAO6
Communications System GRTS/355 Startup Procedures
Reference Manual 1715 BJ70
Storage Subsystem Startup DSS180 Disk Storage Subsystem
Startup Procedures DAll DAll
Data management:
File System File Management Supervisor DB54 DB54
Integrated Data Store Integrated Data Store 1565 BR69
(I-D=S)
File Processing Indexed Sequential Processor DA37 DA37
Multi-Access I-D-S Multi-Access I-D=-S
Implementation Guide DASO DABO
File Input/Output General File and Record
Control System 1003 BN85
I-D-S Data Query System I-D-S Data Query System
Installation DB57 DB57
I-D-S Data Query System I-D-S Data Query System
' User's Guide DB56 DB56
Program maintenance:
Object Program Source and Object Library Editor 1723 BJ71
System Editing System Library Editor 1687 BS18
Test system:
On-Line Peripheral Testing GCOS On-Line Peripheral Test
System (OPTS-600) 1573 BR76
Total On-Line Testing Total On-Line Test System
(TOLTS) DA49S DA4S
Error Analysis and Honeywell Error Analysis DB50 DB50
Logging and Logging System
Language processors:
Macro Assembly Language Macro Assembler Program 1004 BN86
COBOL Language COBOL Compiler 1652 BS08
COBOL Usage COBOL User's Guide 1653 BS09
ALGOL Language ALGOL 1657 BS1l1
JOVIAL Language JOVIAL 1650 BS06
FORTRAN Language FORTRAN 1686 BJ67
DATANET 355 DATANET 355 Macro-Assembler
Program 1660 BB98
- Generators:
Sorting Sort/Merge Program 1005 BN87
Merging Sort/Merge Program 1005 BN87

B506

FUNCTION

APPLICABLE REFERENCE MANUAL

TITLE

Simulatorss
DATANET 355 Simulation

Service and utility routines:
Loaderxr
Utility Programs
Conversion
System Accounting

FORTRAN

Controller Loader
Service Routines
Software Debugging

Time~sharing systems:
Operating System

System Programming

System Programming

BASIC Language
FORTRAN Language
Text Editing

Remote terminal system:
DATANET 30
DATANET 30/305/355

Transaction processing:
User's Procedures

Handbooks :
Console Messages
Index

Pocket guides:
Time-Sharing Programming
Macro Assembly Language
COBOL Language
Control Card Formats

Rev., 7303

Series 6U00:

DATANET 355 Simulator
Reference Manual

General Loader

Utility

Bulk Media Conversion

GCOS Accounting Summary
Edit Programs

FORTRAN Subroutine Libraries
Reference Manual

Relocatable Loader

Service Routines

Trace and Debug Routines

GCOS Time=Sharing System
General Information

GCOS Time-Sharing Terminal/Batch
Interface Facility

GCOS Time-Sharing System

Programmers' Reference
Manual
Time-Sharing BASIC
FORTRAN

Time-Sharing Text Editor

NPS/30 Programming Reference
GRTS Programming Reference

Transaction Processing System
User's Guide

Console Typewriter Messages
Comprehensive Index

GCOS Time-Sharing System

GMAP

COBOL

GCOS Control Cards and Abort
Codes

vi

FORMER OKDER
PUB. NO, NO.
1663 BW23
1008 BN90O
1422 BQ66
1096 BP30
1651 BS07
1620 BRI5
DAL12 DAl2
DAYS7 DA97
DB20 DB20
1643 BSO1
1642 BR99
1514 BR39
1510 BR36
1686 BJ67
1515 BR40
1558 BR68
DA79 DA79
DA82 DA82
1477 BRO9
1499 BR28
1661 BS12
1673 BS16
1689 BJ68
1691 BJ69

BS06

Section I

Section II

Section III

Section IV

Section V

Section VI

CONTENTS

Introduction. « « « o o o
General., . .

Series 600/6000 Computer Characteristics

Source Language Format
Source Program Format,
Program Listings . . .
Source Code Listing
Object Code Listing

Signs and Constants . . .
SignNSe o o o o o o o

Arithmetic Operators,

Logical Operators .

°

Relational Operators.

Separators. . . o o
Enclosures, . .« .« o
Type Descriptor .

Reserved JOVIAL Words

Constants. . « » « o &
Numeric « o o « o o
Boolean . . « + «
Literal . . . o« o
Status. « « « + o
Octal . « ¢ « o o &

Variables and Functions .
Variables,
Special Variables. . .
FunctionsS. « « o« o o o

Simple Statements
Statement Name
Assignment Statement .
Exchange Statement . .
GOTO Statement . . . =
Switch Statement . . .
Stop Statement
Compound Statement . .

Complex Statements. . . .
IF Statement . . « « o
IFEITH Statement . . &
FOR Statement. . « « =
TEST Statement . . - o

Data Declarations . « . .
Item Descriptions. . .
MODE Declaration . . .
Present Data List. . .
DEFINE Declaration . .
'PROGRAM Declaration .

vii

®

s = e e

)
o]
[te]
o

[}

P‘HFJPJTFJPJH
WWWN N

| I A T B

Nioth)Nlth?)Nroh)Mruh)N
AU UTUT B D WWN N

wwww
[I | | I |
N

PN NN
1 Pororor
O U D

Tcnu1uxm
1 11
BN

A OO D
i
Y U1 U

BSO06

Section

Section

Section

Section

Section

Appendix
Appendix
Appendix
Appendix

Appendix

VII

VIII

IX

XI

CONTENTS (cont)

TABLE Declaration. . « o« « s s o o

ARRAY Declaration. . .« « « o o o
OVERLAY Declaration. . o « o o o»

Ordinary Table Declaration. . .
Specified Table Declaration . .

°

Symbols Relating to Table Declaratlons.

Tables and Subordinate Overlays
STRING Table Item Declaration
LIKE Table Declaration., . . .

e e & o

Direct Code and Process Declarations.
Direct Cod@. « ¢ o s o o o s o o &

Direct Code Restrictions and

Assign Statement.

CLOSE Declaration. . ¢ o o s « o o
FUNCTION Declaration . . « o« o+ « &
PROCEDURE Declaration. . « o « « &

Interprocedure Communication. .
System Supplied Subprograms . .
Closed Subroutines,

COMPOOL & ¢ &« o « = & o s o o o s o @
Communications Pool. « « o « « & &
COMPOOL Structure. . . « » o @ .
Accessing of COMPOOL Deflnltlons B
COMPOOL Assembly o « o & o o o o o
COMPOOL Disassembly. « « « o o« o o
Sample Coding. . « « & o « o o o

Input and Output Operations
FILE OperationNS. « « o « s o s o &
FILE Statement . « . « « & o o «
IOn Statement. . . o+ & ¢ o o o &
IN Statement . . ¢ o ¢ o o o o o @
OUT Statement. . o « &« ¢ ¢ « « « @
WAIT Statement . . o ¢ « ¢ o o o &

Object Code Debug « o+ o o « « & o« o =
Debug Option . « « o & « o o o o =

Control Cards o « « o o o o o o o o o

$

$
$
$
$
$
$
*

SNUMB. « « « « ¢ o o« ¢ ¢ o & o« @
IDENT. . ¢ v ¢ ¢ ¢ o o o o o o @
OPTION . . ¢ ¢« & ¢ o o o o o o =
JOVIAL ¢« ¢ ¢ o o o o o o o o o =
EXECUTE: . o o o o o o o o o o =
LIMITS . « o o o o o o o o« o s =
ENDJOB « « o ¢ o o o o o o o o =

FXEOF & o o o o o o o o s o o o o

JOVIAL Compilation Error Messages . .

Machine Language (GMAP) Error Flags .

Encoding of Signs . . « o ¢ o o o o o

JOVIAL Language Restrictions.

JOVIAL Use MemoS. o o« o o o o o o o s

viii

Conventions

o
1<
[Te]
®

[«2 e Ws AN 2N s) W o) Mo A s 2 &5)
1
=l =N BRI

-10
-11
=12
-14
7-1
7-1
7=-1
7-3
7-5
76
7=7
7-10
7-11
7-12
8-1
8-1
8~-1
§-2
8-3
8-6
8=-7

W W WO WO W WOWw
1
U N e b

et

oo
1

[y

11-1
11-1
11-1
11-2
11-3
11-4
11-4
11-5
11-6

A-1
B-1
c-1

D-1

BS06

Appendix F
Appendix G
Appendix H
Appendix I
Index

Figure 1l-1
Figure 1-2
Figure 4-1
Figure 7-1
Figure 8-1
Figure 8-2
Figure 9-1

CONTENTS (cont)

Time~Sharing JOVIAL . . « « &« o & o
Time~Sharing JOVIAL Subsystem., .
RUN Command. . o o o o s o o o =
Usag@. « « o a o a o o o o o o o
FILE Characteristics . . . « o &
RUN Examples

®
®
°
°
®
°

Accessing the TimemShaang JQVIAL Subngt Mo o

Terminal . . . e o o o

®

®

®

°

®

®

®

®

®

°

®

Paper Tape I/0 1n Tlme Sharlng JQVIALQ

Restrictions. . o o« o o o o o o
Time-Sharing Abort Messages . .
Faults in Time-Sharing Execution .
Interpreting Error Diagnostics . .
Time-Sharing JOVIAL Source Program

System Editor Interface « . &
JOVIAL Compile Abort Codes. . . o o o

Cross~Reference Table . . ¢« o o o o o

ILLUSTRATIONS

Syntax Example. . . o o o o o o o o o
Usage Error Example . . « « o o o o o
valid Assign Statement Combination. .

Sample JOVIAL Program with Mixed Subroutmnes. . o

Generating a COMPOOL Tape . . . - o =
Use of the COMPOOL Tape o « o o o o o
Example of I/0 Print Information. . .

ix

o

®

°

®

Re

®

®

o
°
.
o

s

o
°

°

°

®

& o © e ® o
e

°
°
®
°
®

o

(=)

° e o o

o o o e

e o © ®

g
&
Q
]

§

¢

§
oo ~SUIN
o

i

]

v e

§

F=-10
F=-12
F-12
F=12
F=13
F=13
F=15

G-1

H=1

i=-1

Page

[}

§

i

© 00 00 <1k
cwvoHWLW
w

[
¥

§

BS06

e

SECTION I

INTRODUCTION

GENERAL

The JOVIAL (Jules Own Version International Algebraic Language) programming
language consists, basically, of statements and declarations.

® Statements specify computations to be performed
® Declarations name and describe data on which the program is to operate
Statements and declarations, in turn, are composed of symbols «- words of

the JOVIAL language. And symbols are composed of signs that congtitute the
JOVIAL alphabet.

Statements and declarations are translated by the JOVIAL compiler and the
program is executed by the Comprehensive Operating Supervisor. Only those rules
and symbols which govern JOVIAL programming on a Series 600/6000 computer system
are considered in this manual.

Series 600/6000 Computer Characteristics

JOVIAL is not entirely a computer-independent programming language. Certain
features of the language depend for their interpretation on characteristics of
the computer for which the programs are to be written. Language restrictions for
JOVIAL are listed in Appendix D.

The following characteristics of the computer system should be considered
when programming in JOVIAL:

® Word size = 36 bits, The left-most bit is considered bit position 0;
the right-most bit is considered bit position 35,

® Internal core storage - 36=-bit, fixed length binary word, maximum 256k
words, using an 18-~bit address.
® Arithmetic - two's complement.

a., Fiwxed point: 36-bit signed full word; 72-bit signed double word.

1-1 BS06

b. Floating point: 8-bit signed exponent, 28-bit signed mantissa.

c. Numbers are interpreted as binary coded decimal unless programmer

specified.
® Character representation - 6=bit encoding.
® External storage - magnetic tape, drum, disk, punched cards, and

printed material.

SOURCE LANGUAGE FORMAT

The source program is keypunched from an 80-column coding sheet, each line
representing one card of JOVIAL source code, The JOVIAL statement may begin in
any column from column 1-72 as free field format. Columns 73 through 80 are
reserved for deck identification and sequencing, and are listed by the compiler.
A $ must never appear in column 1 of a JOVIAL source program card.

Since the end of a JOVIAL statement is indicated by a 3, it is possible for
several statements to occupy the same punched card. If the last statement on
the card was not completed prior to column 73, the statement may be continued on
the next card. The compiler recognizes column 1 as following column 72 of the
preceding card.

Blanks are used as separators; wherever one is permitted, any number are
allowed.

Comments may be added to or embedded in any JOVIAL statement simply by
enclosing the comment with a double apostrophe at the beginning and ending of
the comment.

SOURCE PROGRAM FORMAT

The first card of the source program deck must be an identification card.
The compiler uses this card to create a SYMDEF to be used by the loader. There
are three types of source input to the compiler -- a program, a procedure, and
data to generate a COMPOOL (COMmunications POOL). The format of the
identification card for each of these is as follows:

Program

Columns 1 to 6 contain PROGRM. Columns 8 to 13 may be blank or may contain
a name comprised of six characters or less, left-~justified, to be wused as
the SYMDEF. If columns 8 to 13 are blank, a SYMDEF, NONAME, is created.
Procedure (External)

Columns 1 to 6 contain PROCED. Columns 8 to 13 may be blank or may contain
a name comprised of six characters or less, left-justified, to be used as
the SYMDEF. If columns 8 to 13 are blank, a SYMDEF, NONAME, is created.

Note

The utility of an unnamed procedure is questionable.

1-2 B506

COMPOOL Generation

Columns 1 to 6 contain GENCOM. Columns 8 to 13 may be_blank or may contain
a name comprised of six characters or less, left-justified, to be wused as
the SYMDEF. If columns 8 to 13 are blank, a SYMDEF, NONAME, 1is created.

Immediately following the identification card is the START card, the first
statement in every JOVIAL program. START is not followed by a $: JOVIAL
statements which make up the program then follow. The last statement 1n every
JOVIAL program must be

TERM $
or
TERM _ statement name $

The statement name, if used, will be that of the first statement in the
program to be executed.

The effect of the TERM statement is to generate a subprogram epilogue,
restoring index registers and returning control to the calling routine. In the
case of a main program, control is returned to the operating system for wrapup
and termination of execution.

PROGRAM LISTINGS

Source Code Listing

Source language statements are printed out after each compilation. The
printout is representative of the punched card image and has a one line per one
punched card format. There is, in addition to the JOVIAL statement information
on each line, a corresponding number appended to each margin. The number in the
left margin is the statement number of the last statement begun on that line.

The number in the right margin represents a sequence number for each punched
caré, (See Figure 1-1.)

Syntactical (construction or grammatic) errors are identified at the time
of the infraction or as soon thereafter as they are detected and an error
message 1s printed. The error message appears in the stream of source code.
Semantic (usage) error messages are printed immediately following the source
listing and are associated with the statement in error by the identifying
statement number. Appendix A lists compilation error messages.

Object Code Listing

The LSTOU option must be selected on the $ JOVIAL control card in order to
have an object code listing produced after a compilation. If a JOVIAL statement
has not been compiled because of a generated error or because of code not

acceptable, the object code will be flagged with an alpha character on the left
margin.

1-3 BS06

Figure 1-1 illustrates an example of a TABLE declaration without a
corresponding END statement. The compiler discovers the error upon encountering
the symbol DEFINE in statement 6. The arrow indicates the point of discovery, as
does the error character count 000000. In this particular occurrence, there is
no affect on the compilation, since the compiler assumes that the TABLE
declaration is finished (which it is).

Figure 1-2 illustrates a sample of JOVIAL source code, semantic error
messages, and machine-generated code (GMAP) with error flags. Appendix B lists
all possible GMAP error flag codes.

The machine-generated code is numbered in Figure 1-2 for purposes of
describing the printout format and is as follows:

1. Storage location in octal.
2. Octal representation of the instruction (12 digits).
3. Octal representation of the relocation bits.

4. Label field. If there is a label, it will be the programmer's own
label or a compiler generated label of the form (N)G. The term (N) is
some integer value.

5. Machine operation mnemonic.

6. Operand (s) .

7. Source statement line number.

1-4 BS06

0002 TABLE TABA V 5 P § GE080220 0021
0003 BEGIN ITEM TAA A 10 S 5 $ GE080230 0022
0003 BEGIN 1.0A5 2,0A5 3.00A5 4.0A5 END GE080240 0023
0004 ITEM TAB A 20 S 5 $ GE080250 0024
0004 BEGIN 1084 .80A5 1084.89A5 END GE080260 0025
0005 ITEM TAC A 10 S 5 8 GE080270 0026
0005 BEGIN -8.0A5 END GE080280 0027
0006 DEFINE IFEITHER ''IFEITH'' $ GE080290 0028
000000
kkkx*k*ERROR., .STA..0006 MISSING END
Figure 1-1, Syntax Example
0211 BEGIN WS9 = WS9 + RANGE $ 0196
0212 WS10 = wWsS1lo + 1 S 0197
0213 WS1l = (RANGE*10) /RAD-.4999 $ 0198
0214 FREA(SWS11$) = FREA(SWS11lS$)+1 S 0199

kkk*k**ERROR....STA

khk kX *ERROR. .

. .STA

kk**X*XERROR. . . . STA
kkkx**ERROR. ...STA
kkk*k* *KERROR....STA
k*k***ERROR. .. .STA

®

001255
001256
E 001257
E 001260
001261
001262

©)

1216000
1 021367
1 206502
1 000010
1 006400
1021350

Source Listing Excerpt

0086
0089
0158
0214
0214
0283

TOO FEW SUBSCRIPTS
TOO FEW SUBSCRIPTS

PRECLUDED

NOT TABLE
NOT TABLE
NOT TABLE

BY CONTEXT
ITEM
ITEM
ITEM

Semantic Errors Found in Phase Two

4350 03
7560 00
2360 00
0010 00
4310 03
5650 00

® ® 06

O OO OO
—=Oo OO
SO OO o

8G

©

Machine Code Generated

{UFA}

| sTQ ! Ws11

| LDQ | 206502
| MME | 10
:FLDI 6400,DU
| FoV | RANGE

@

216000,pul 000213

1000213
1000214
1000214
1000215
1000215

Figure 1-2.

Usage Error Example

BS06

SECTION II

SIGNS AND CONSTANTS

SIGNS

All JOVIAL symbols are constructed by various combinations of the
following signs a sign being defined as a letter, numeral, or character:

® Letters:
A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,2Z
® Numerals:
0,1,2,3,4,5,6,7,8,9
® Characters:

+-* /=0, () s ¢

Arithmetic Operators

Arithmetic Operators Definition
+ addition
- subtraction
* multiplication
/ division
ok exponentiation

The order of operations in a given formula would be: exponentiation,
multiplication and division, addition and subtraction, relational, logical.

2-1 BS06

Logical Operators

Logical Operators Definition
AND 0 *0 =20
0*1=20
1 *0=0
1*1=1
OR 0+ 0=20
0+1=1
1+0=1
1+ 1=1
NOT 1 =20
0 =1
Relational Operators
Relational Operators Definition
EQ equal to
NQ not equal to
GR greater than
LS less than
GQ greater than
LQ less than or

or equal to

equal to

BS06

Separators

Segarators

, (comma)

(underscore)

Enclosures

Enclosures

/)

(*

*)

BEGIN

END

— e e

Definition

decimal point in numbers

separate parameters

equate

exchange

terminate JOVIAL statement
explicit denotation of a single
blank space; separating blanks
may be omitted provided the omis-
sion does not join two letters,

two numbers, or a letter and a
number

Definition

enclose parameter list

enclose subscripts

enclose numeric formula producing an
absolute value

enclose numeric formula;
same as **, Exponentiation.

enclose comments - two concatenated
apostrophes

bracket items

2=3

BS06

Type Descriptor

Type Descriptors

Reserved JOVIAL Words

Definition

integer item

arithmetic fixed point item
floating point item

Boolean item

Hollerith item

transmission item

status item

The following are reserved words and have a fixed meaning in the
language; these words may not be used as names.

ABS
ALL
AND
ARRAY
ASSIGN
BEGIN
BIT
BYTE
CHAR
CLOSE
COMMON
COMPOOL
DEFINE
DIRECT
END
ENT
ENTRY
EQ
FALSE

FILE
FOR
GOTO
GQ

GR

IFr
IFEITH
IN

I0
ITEM
JOVIAL
LOocC

LQ

Ls
MANT
MODE
NENT
NOT

NQ
NWDSEN
ODD

OR

ORIF
ouT
OVERLAY
PROC
PROGRAM
RETURN
START
STOP
STRING
SWITCH
TABLE
TERM
TEST
TRUE
WAIT

JOVIAL

BS06

CONSTANTS

JOVIAL makes use of five primary +types of wvalues: numeric, boolean,
literal, status, and octal.

Numeric

Numeric values may further be catagorized into integer, fixed, and floating
values.

Integer values are integer numbers right-justified in one or two words.

Fixed values are decimal numbers written with or without a decimal point,
followed by a decimal exponent written as the letter E, followed by a signed or
unsigned integer constant. This may be followed by the letter A and a signed or
unsigned integer constant to indicate the number of bits to reserve for the
decimal fraction. A negative A will cause bits to the left of the decimal to be
truncated. One word will give a precision of 8 digits. Two words will give a
precision of 18 digits.

Floating values are decimal numbers written with or without a decimal
point, followed by a decimal exponent written as the letter E, followed by a
signed or unsigned integer constant. Internally, a floating value is defined as
a sign bit, a 7-bit characteristic, a mantissa sign bit, and a 27-bit mantissa;

i.e., a precision of 8 digits. A floating point value is always contained in one
computer word.,

Boolean

Boolean values are single bit, 0 or 1; 0 indicating false, 1 indicating
true,

Literal

Literal values represent strings of signs: alphabetic, numeric, or
special. Hollerith or transmission code may be selected. Each uses a different
type of 6=bit encoding. Appendix C lists the octal representation for encoding
of the signs.

The number of words necessary to contain a literal varies directly with the
number of characters represented., Examples of literals are as follows:

5H(ABCDE) or 3T (ABC)

2-5 BS06

Status

Status values are members of ordered sets of unsigned integer wvalues. A
set may contain one or more members. The first member of a set is the value 0;
the second, 1; the third, 2; and so forth. Values are carried as integer values
and may be referenced symbolically.

Octal

Octal values represent a numeric value of 1 to 12 digits constructed by the
use of the following numbers: 0,1,2,3,4,5,6,7. The numeric value may represent
an unsigned octal integer, Hollerith, or transmission code.

2=6 B506

SECTION ITIX

VARIABLES AND FUNCTIONS

VARIABLES

Values assigned to variables may bey of the following types;

numeric,
Boolean, literal, status.

Type variable Assigned value

Subscripts may be represented by numeric formula. If the value

BIT Integer
BYTE Literal
CHAR Integer, implicitly defined as I 8 S.
HOLLERITH Literal
INDEX Integer, implicitly defined as I 18 S.
LOoC Integer
MANT Fixed
NENT Integer
ODD Boolean
TRANSMISSION Literal
BASIC Integer, floating, fixed, Boolean,
Hollerith, transmission, status.
The basic variable is comprised of
a simple or subscripted variable.
SIMPLE Simple item name
Subscripted Array name ($subscript, subscript,....$)
Table item name ($subscript$)
REM Integer
REMQUO None |

produced

by the numeric formula is floating, it will be truncated to an integer value.

3=1 BS06

SPECIAL VARIABLES

BIT - used to manipulate bits in a defined word, usually in
numeric values.
General case
BIT (a) (item name) $
BIT (Sa,b$) (item name ($index$)) $
BIT (a,b) (array name($c,d,e,...5)) §
a = initial bit
b = number of consecutive bits

c,d,e - elements of an array

Examples
BIT (AS) (ALPHA)=BIT ($AS) (BETA) §$
BIT($0,1%) (GAMMA ($0$))=BIT ($0$) (GAMMA ($48)) 5
BYTE - used to manipulate 6-bit bytes from a defined word,
word.
General case
BYTE (Sa,b$) (item name) $
BYTE (Sa,b$) (item name ($index$)) S
BYTE (a,b) (array name ($c,d,e,...$)) $
a = initial byte
b - number of consecutive bytes

c,d,e - elements of an array

Examples
BYTE (SAS) (PHI)=BYTE (AS) (DELTA) $

BYTE ($0,1$) (SIGMA (1))==BYTE (1) (SIGMA(S$1%)) $

conjunction with

usually a literal

BS06

CHAR - an integer value, implicitly declared as I 8 S, having a value between
-127 and +127, inclusive. It is wused as the exponent portion of a
floating point value,

General case
CHAR(floating point item name ($index$)) §
CHAR (floating point item name ($a,b,c,...$)) $

a,b,c - elements of an array

Example

il

EXPONT CHAR (FLOAT ($AS)) §

MANT - represents the significant bits of a declared floating point value. MANT
has an implicit declaration of A 28 S 27 and a fixed value less than or
equal to 227-1 and greater than or equal to 2-27,
General case
MANT (floating point item name ($index$)) $
MANT (floating point item name ($a,b,c,...$)) $

a,b,c - elements of an array.

Example
MANTIS = MANT (FLOAT (1)) §

ODD - represents the least significant bit of a numeric basic variable. If the
basic variable is fixed or floating, its bit pattern will be treated as
though it were an integer.

General case

ODD (item name ($index$)) $
ODD (item name ($a,b,c,...8)) $

a,b,c - elements of an array.

Example
IF ODD(UNKNW(AS)) $
If UNKNW is odd, the statement will be true.
BOLEN = ODD(UNKNW (A)) $

If UNKNW is odd, the Boolean term BOLEN will have
a value of 1,

FUNCT IONS

ABS - produces on output some unsigned numeric value representing the magnitude
of a given numeric formula. The type assigned to the ABS value shall be
the same as the type of the numeric formula.

General case

a = ABS(b) $
a= (/b/) $
Examples

ALPHA = ABS (BETA) $
ALPHA = (/BETA/) $

IF {(/ALPHA*BETA/) GR 2 §

ALL - may be used in conjunction with a FOR statement when it is desired to
process tables entry-by-entry. Tables having a rigid structure or tables
having a variable structure, for which the nent words have been preset,
may be processed. Processing begins with the last entry and continues
until entry zero is processed (takes the form FOR I = NENT (TBL)=-1, =1,0 §
for its generated code).

General case

FOR _ a = ALL(table name) $

FOR _ a = ALL(table item name) $
Examples

FOR A = ALL (TABNAM) $

FOR I ALL(TIN2) $

i

ENTRY or ENT - is used to select an entire entry within a declared table and to
use this specified entry in relational, assignment, or exchange
statements. The structure of the selected entry is dependent on
the structure and relationships of the table items making up the
entry.

Caution must be used when ENTRY operations are being carried out
to insure against the loss of information. The assignment of an
entry value larger than the maximum defined for the value being
assigned to, will cause truncation of the excess bits.

General case

ENTRY (table name ($index$)) $

ENT (table name ($index$)) $

3-4 BS06

Examples
ENTRY (TN (SA$)) = 0 $
ENT {(TN1 (AS)) = ENT (TN2(AS)) $§
ENTRY (TNL1 (A)) == ENTRY(TN2(0)) $
LOC or 'LOC - produces an integer number which represents the’ relative address
of the

(address with respect to the beginning of slave storage)
input argument. The argument may be an item name, array name,

table name, or table item name.

General case

LOC (name)

Examples
ALPHA = LOC(TABNAM) $

BETA = GAMMA + LOC (ALPHA) $

ENT = entries) identifies the NENT word of a variable
of tha MENT variable may
ne designated

b

NENT - (N = number, (of),
length table as the NENT variable. The magnitude
not exceed the declared maximum number of entries on

table.

General case
NENT (table name) $

NENT (table item name) $

Examples
NENT (TNAME) = 0 $
IF NENT (TINS) NQ 4 §
FOR A = 0, 1, NENT(TABNAM) - 1 §

NWDSEN - (N = number, (of), WDS = words, (per), EN = entry) an unsigned integer
value representing the number of words per entry of the declared table.

General case

NWDSEN (table name)

Examples
ALPH1 = NWDSEN (TNAME) $
GAMMA = NWDSEN (TNAME) *NENT (TABNA) $

BS06

REM - generated as in-line code, yields remainder of a division of two integers.
The integers may be integer constants, item names, or table names, oI
mode~defined items that have been defined as single-precision integer data
types.

General case

ALPHA = REM(name,name) $

Example
ALPHA = REM(NUM,DEM) §$
REMQUO - generated as in-line code, yields both remainder and quotient of a
division of two integers. The integers may be integer constants, item
names, or table names, or mode-defined items that have been defined as
single-precision integers.
General case

REMQUO (name ,name=name ,name) $

Example

REMQUO (NUM, DEM=QUO , REM) §

SECTION IV

SIMPLE STATEMENTS

STATEMENT NAME

Names may be attached to statements that are referred to from other parts
of the program. Each name is a unique, two to six alphanumeric character
identifier. The first character may not be numeric and the last character must
be followed by a period in the statement for which it is the name. A statement
name defined within a FOR statement must not be referenced from outside that FOR
statement. For example:

FIRST. ALPHA = BETA * DELTA §$

ASSIGNMENT STATEMENT

Assignment statements consist of a variable name to the left of an equal
sign with an expression to the right of the equal sign. Since the expression on
the right is assigned to the variable on the left and the mode of the result is
that of the variable, certain rules must be set down.

1. The precision of the result will be that of the variable.

2. If by the declaration of the variable the precision is decreased, the
least significant bits will be truncated.

3. If by the declaration of the wvariable the precision is increased,
least significant bits having a zero value are added.

4. The magnitude of the expression to the right of the equal sign is not
permitted to exceed the magnitude of the declared variable.

5, A negative expression must not be assigned to a variable declared to
be unsigned.

6. If a declared literal variable has assigned to it a literal expression
which does not agree in size, excess bytes will be truncated from the
left of the expression if it is larger. For the case where the literal
expression is smaller than the declared variable, blanks will be added
to the left of the expression.

4-1 BS06

7 The declared variable may represent a status value, providing the
expression to the right of the equal sign is an unsigned integer,
compatible with the status constants of the declared variable.

8. A declared Boolean variable may have assigned to it an expression
which represents an unsigned 0 or 1.

Figure 4-1 indicates valid assign statement combinations. The symbol in
each block indicates the mode after the assignment has been made.

4-2 BS06

UOTIRUTqUWO) JuUswelels ubIsSsy PITeA °"T-p 2Inbtag

I
sn3eis : 3N3e33S
uesToOg uesyoog ueaTOoOg
UOTSSTW UOTSSTW UOTSSTW
~sueI], ~sueIy, ~3URI]
YITISTIOH|YITISTIOH YITISTICH
Isbequr| xsbajur| xebojur| xsbsiur Isdojur
JuTod
butqeorg|burieorg|buryeotd |butieoT.s| HuT3reold
P3XTd P3XTA POXT4 PSXTa JIuTod
DPOXTJ
TqeTaeA

UOTSSTW jutod jutog

snijels | uesToog ~-sueIy (U3 TISTIOH 1ea100| I8bsjur (burtieOoTd PoXTJa
uoTlssaxdxyg

ubtrs Tenba 30 °pTIs 3ybTy

ubTs
1enba
Jjo
SpTS
33971

BS06

EXCHANGE STATEMENT

The exchange statement is similar to the assignment statement. There is a
left variable followed by two equal signs and a right variable. Effectively, the
left term is replaced by the right term; the right term is replaced by the left
term. Hence an exchange is made. Rules for the assignment statement also apply
to the exchange statement.

General case

Example
ALPHA ($AS) == ALPHA(SBS) S

GOTO STATEMENT

A GOTO statement allows a controlled interruption of the normal sequence in
which operations are executed and causes a transfer to the statement with the
name following the GOTO. The name may be a statement name, close name, or switch
name., :

General case

GOTO a $

Example

GOTO ALPHA §

SWITCH STATEMENT

Switch statements provide associated GOTO statements with the capability of
testing various conditions and selecting specific branches to follow when a
given condition exists. A switch statement defined within a FOR statement must
not be referred to by a GOTO outside of the FOR statement.

The ITEM switch tests the contents of the item referred to against a number
of given values and exits when the test is satisfied.

General case

SWITCH _ switch name (declared item name) = (first term data 1is tested
against = exit, ... nth term data is tested against = exit) $

4-4 BS06

Associated GOTO formats
GOTO _ switch name §
GOTO _ switch name(L) $

L is a single letter variable indicating a table entry.

GOTO _ switch name (L,M,N) §

L,M,N are components of an array.

Examples
SWITCH FCFIXS (CPFIXI) = (6H(OPMODE) =
FCXMOD, 6H (ORBIT) = FCXRDN,6H
(GENNUM) = FCXRDN,6H{COMMON) = FCXRDN) $

GOTO FCFIXS (SFCXX$) $

INDEX switches use the value of the index to determine the exit to be
taken. Each term in the INDEX switch exit list has an implicit value assigned.
The first exit is 0, the second 1, and so forth. If no exit is provided for a
given position in the list, a null term is indicated by adding the comma and
continuing,

GeneraL case
SWITCH _ switch name = {exit name~1, exit name-2, ,
exit name-4,. . exit name=~n) %

Associated GOTO formats GOTO _ switch name ($index$) $

GOTO _ switch name($item name ($index$) $) $

GOTO _ switch name($arithmetic expression$) §

Examples
SWITCH BETAL = (BO1, B02,,B04) $

GOTO BETAL (B) $

STOP STATEMENT

STOP $, or STOP_label $, is used to specify the operational end of a
program or subprogram. The optional label has no effect on processing.

4-5 BS06

Execution of a STOP statement in the context of a main program, a
procedure, function or «close internal to a main program, or an external
procedure or function will effect a return to the operating system for wrapup
and termination of execution.

Execution of a STOP statement in the context of a closed subroutine, or a
procedure, function or close internal to a closed subroutine will effect a
return from the closed subroutine to the calling routine.

COMPOUND STATEMENT

A compound statement is identified as at least one statement included
between BEGIN, END brackets. Compound statements may exist within compound
statements., The set of statements making up the compound statement serve to
jointly satisfy an isclated operation.

Example
I SALES GR QU Ora $

BEGIN ''COMPOUND STATEMENT '

ANNUAL = V(STEP 1) $
PROF IT = V(Percent) $
BONUS = V (PLUS) $

END ''COMPOUND STATEMENT''

GOTO REVIEW §

When the IF statement is true, the compound statement will be executed. A
false condition would cause the compound statement to be bypassed and the next
statement to be executed would be GOTO REVIEW $.

4-6 BS06

SECTION V

COMPLEX STATEMENTS

IF STATEMENT

An IF statement is a decision or conditional statement using Boolean
formula, relational operators, or logical operators to provide a means of
arriving at a true or false result during execution. Logical operators used in
conjunction with relational operators allow a single IF statement to test
several conditions. If the result is declared true, the next statement is
executed. If the result is declared false, the next statement is ignored and
execution continues from there, ‘

General case

IF_A EQ B §

Example

IF ALPHA EQ BETA $

IFEITH STATEMENT

The IFEITH statement is similar to the IF statement with the addition of
alternative statements to be executed if the initial condition is not satisfied.
An END statement must follow the last ORIF clause.

General case
IFEITH_A GR_B $
Al = 2§
ORIF_ C_LS D §
A2 = 1§

END

5-1 BS06

Example
IFEITH TEMP($08%) GR HOT ($18) $
TL = 1 $

ORIF TEMP (50$) EQ COLD($1$) $

BEGIN

T2 = 1§

T3 = 1 $

END

ORIF TEMP ($0%) LS SUBZ ($1$) §
T3 = 0 §

END *'IFEITH'"'

FOR STATEMENT

In JOVIAL programming, the FOR statement provides an iteration capability
when it is desirable to loop through sets of instructions, repeat execution of a
single instruction, or progress through tables in either direction. There are
three types of FOR statements.

1. One-factor FOR statements are used primarily as counters. The single
letter variable is initialized in the FOR statement and then is added
to or deleted from and tested by the programmer with each pass through
the given instructions.

General case

FOR_ A = M §
Example
FOR A =0 3

A=A+ 1S5
IF A GR 10 ¢
2. Two-factor FOR statements have not only the initial value of the one
letter variable but also have as a second parameter a term used as the

increment or decrement of the variable. In this case, the programmer
need only add a test for some maximum value,

General case

FOR A = B,C §

5-2 BsS06

Example
FOR A= 0,28

BEGIN '*'A'"?

°

Ir A EQ 200 S
GOTO EXIT S
END IDABI
EXIT. NEW = OLD + TOTAL $
3. Three-factor FOR statements have the same format as the one-fact:
two~factor FOR statements as well as a third parameter which

the limit or range of the FOR statement. No additional code
necessary to increment, decrement, or test for a limit.

General case

FOR _ A = B,C,D $

Example
-FOR A =0, 1, 200 $

BEGIN "'A'T

END IIA&!F‘

Each of the parameters appearing on the right of the equal sign in a FOR
statement may occur as a variable, constant, or arithmetic expression.

BEGIN, END brackets must follow the declared FOR statement in each case or
the simple letter alphabetic subscript will be wvalid only for the next
statement.

Use of more than one declared FOR statement with a corresponding set of
BEGIN, END brackets allows several levels of iteration to be carried on. During
execution, the END bracket returns control to the statement following its
matching BEGIN.

Several FOR statements may be declared in sequence preceding a single set
of BEGIN, END brackets. The iteration 1is controlled by the first three-or
two-factor FOR statement. If several three-factor FOR statements have been
declared in sequence, only the first will control iteration. The others will be
treated as two-factor FOR statements.

B3 BSO06

TEST STATEMENT

TEST $ or TEST _a $, where a represents a single letter subscript,
provides a means of controlled interruption of operations within a two- or
three-factor FOR statement.

Use of a TEST § statement generates an implied GOTO statement directed to
the operating END bracket of the innermost FOR statement (in which TEST $ is
contained) that increments or decrements an index.

If TEST _a $ is used, an implied GOTO statement is directed to the
operating END bracket of the FOR statement (in which TEST _a $ is contained)
that increments or decrements the single letter subscript corresponding to a.

5~4 BS06

SECTION VI

DATA DECLARATIONS

ITEM DESCRIPTIONS

Item descriptions are an important part of the JOVIAL language insomuch as
give distinct features to the structure of the data being processed and
i pulated by the program. The format of a declared item statement is
basically:

ITEM _ item description $.

The various types of items and corresponding formats are presented in the
following material.

Simple Item - is a variable that has but one occurrence and is not defined in a
table. The format for a simple item is as follows:

General case

ITEM _ item name _ constant §$
ITEM _ item name _ item description §
ITEM _ item name _ item description _ P _ constant $
P - indicates the item will be preset to some value
Examples

ITEM ALPHA 30.5 $
ITEM BETA B $

ITEM GAMMA A P 7 $

Fixed point item - is a variable represented by decimal digits with or without a
decimal point.

6-1 BsOe

General case

ITEM _ item name _ A _ size _ S/U _ brecision _ R $

ITEM _ item name A _ size _ S/U _ precision _P
preset value $

A - indicates arithmetic

size = indicates number of consecutive bits

S/U - signed or unsigned (should be one letter)

precision - indicates number of bits after the
decimal

R - rounding to the specified precision

P - preset to some value

Examples
ITEM FIX1 A 36 S 0 P 0 S

ITEM FIX2 A 19 S 9 R 17 §

Note: ©Unsigned fixed point item should not exceed 35 bits if only one woxrd

of storage is desired, i.e., (ITEM ALPHA I 35 U §).

Floating point item - always requires a full 36-bit word and is always signed.

General case
ITEM _ item name _ F R §
ITEM _ item name _ F _ P _ preset value $
F - indicates floating point

R - rounding

P - preset to some value

Examples
ITEM FLT1 F R §

ITEM FLOT F P =-1.,23 §

Integer item - is a signed or unsigned value without a decimal point. The
decimal point is assumed to be to the right of the rightmost
digit.

6-2 BS06

General case
ITEM _ item name _ I _size _S/u _ R _ 3§
ITEM _ item name _ I _ size _8/U _ P preset value $
I - indicates an integer item
size - indicates number of consecutive bits
S/U - signed or unsigned (should be one letter)

R = rounding to the specified precision

P - preset to some value

Examples
ITEM INTE I 36 S R $
ITEM INTER I 18 U P 0 $

Note: Unsigned integer item should not exceed 35 bits if only one word of
storage is desired, i.e. (ITEM ALPHA T 35 U S).

Literal items - describe 6-~bit alphabetic, numeric, or special signs represented
in Hollerith or transmission code (see Appendix C).
General case
ITEM _ item name _ H/T _ nhumber of 6-bit characters $

H/T - use one letter to indicate type literal

Examples
ITEM HOLlL H 3 §
ITEM TRAN T 18 §
ITEM HOLL H 4 P 4H(HOLl) $
Boolean item - is a l-bit item used to indicate true or false conditions. If the

value is 1, the item indicates a true condition. If the value is
0, the item indicates a false condition.

General case
~ITEM _ item name _ B §

B = indicates a Boolean item

Examples
ITEM BOL B $
ITEM BOOL B P 0 $
Status items - provide a test panel for the program. Various conditions may be
indicated by the status item. The status list contains a status
quantity for each condition. Each quantity is represented by an
unsigned integer value. The first is assigned 0; the second, 1;
the third, 2; etc.
The size term indicates the number of bits required to represent
the largest integer value assigned a status gquantity. It must not
exceed 71 bits. This is an optional field and the compiler will
determine the size required if this field is omitted.

General case

ITEM item name _ S _ size V{status-1)
Vistatus-2). . . T _ V(status-n) $

S - indicates a status item

Examples
ITEM STAT S V(JAN) V(FEB) V(MAR) $

ITEM STA2 S V(JAN) V(FEB) V(MAR) $

MODE DECLARATION

An undeclared variable may appear in a program. If it is not preceded by a
MODE description, the compiler will implicitly assign a mode of I 36 S. It is
the function of the MODE description to append a definition to all wundeclared
variables following it. This definition will remain in effect until another MODE
description is encountered or until a TERM §$ is reached. A MODE description
appearing in a PROCEDURE will define all undeclared variables appearing between
it and the next MODE description or TERM $.

6-4 B506

General case
MODE _ type of item _ size _S/uU s
MODE _ type of item _ P _ preset value $
type of item - A, F, B, H, T
size - indicates number of consecutive bitsa
S/U - signed or unsigned (should be one letter)

P - preset to some value

Examples
MODE A 36 S §

MODE A 36 S P 100 $

PRESET DATA LISTS

With the use of BEGIN, END brackets it is possible to set lists of data to
given values in a format corresponding to a related declaration. If there is no
related declaration, the data list values will assume the standard mode, I 36 S.
General case

BEGIN _ value-l _ value=-2 _ value-3 ., . . .
value-n _ END
Examples
BEGIN 0 1 2 3456 7 8 9 10 END
BEGIN 0(212223) 0(242526) END

BEGIN V(YES) V(NO) V(YES) V(NO) END

DEFINE DECLARATION

The DEFINE declaration is a means of declaring an alphanumeric name which
represents a given value or description. If this name is not used in a DEFINE
statement again, the originally assigned description will apply throughout the
program. The value or description represented may not contain a comment.

6-5 BS06

General case

DEFINE _ alphanumeric name _ '‘value or description
the name is to represent enclosed in
concatenated apostrophes'’ $

Examples

DEFINE LESS ''LS'' §

DEFINE STANDARD ''A 36 S'' S

'PROGRAM DECLARATION

The 'PROGRAM declaration serves to establish communication between the
present program and another program named in the 'PROGRAM declaration and
compiled independently as a closed subroutine. A 'PROGRAM declaration 1is a
processing declaration since it names a group of statements to which control can
be transferred. However, it shares with data declarations the property of not
directly generating machine language coding; it can occur among the statements
of a program without affecting the order of execution.

In a 'PROGRAM declaration, when transfer to a program name is specified by
means of a GOTO statement, the compiler assumes that the program name is a
subroutine which returns control to the statement following the invoking GOTO by
means of a RETURN statement.

General case

'PROGRAM Program Name §

Example

'"PROGRAM SUBR $

.

GOTO SUBR $

TABLE DECLARATION

The JOVIAL language has available two distinct table structures -- SERIAL
or PARALLEL. Either structure may be selected for use with an ordinary TABLE
declaration or a specified TABLE declaration. The component parts of either
table structure are entries and items.

A SERIAL table is so arranged that all items which comprise an entry are
located consecutively (serially). Consequently, entries as well as items are
consecutively ordered.

(o))
i
(o)}
joe)
w0
o
[ea}

A PARALLEL table is so arranged that all items, of each entry, having
common information are located consecutively. Therefore, PARALLEL table entries
are not consecutive but are located throughout the table as multiples of the
number of common items.

Tables have other properties as well. They may be rigid, with a fixed
number of entries specified during the table declaration. Variable tables are
also allowed. The maximum number of entries the variable table may have must be
indicated at the time of declaration. All tables have as the first word of the
table a NENT (number of entries) word.

Items within a table may be densely packed, medium packed, or not packed at
all. Dense packing may be used to conserve space., Items are packed as closely
as possible in a computer word. Medium packing is wused similarly to dense
packing with the exception that separate items do not share the same 6-bit byte.
If no packing is desired, the field is left blank when the table is declared and
each item will be allocated a different computer word.

Ordinary Table Declaration

When an ordinary table declaration is made, the table items declared are
arranged within an entry by the compiler. The compiler provides the word
location and the bit construction of each item.

Specified Table Declaration

Table items declared in a specified table hav:, as parameters, terms which
specifically locate the ditem withian an entry. It is the programmer 's
responsibility to declare the word within +he entry and the starting bit
position of the item. The number of words per entry must be indicated when the
table is declared.

Symbols Relating To Table Declarations

Table name - 2 to 6 alphanumeric digits
V - variable length table

R = rigid length table

67 BS06

Number of entries - maximum value for variable length tables;

rigid length tables.

o
§

S - serial table structure

o
§

dense pack items

M - treat as dense packing

=z
i

do not pack

parallel table structure; if left blank, parallel is selected

actual value

for

Number of words per entry - used in place of packing term when it is a specified

table.

General case

Ordinary table declaration

TABLE _ table name _ V/R _ # of entries _ P/S _ D/M/N $

BEGIN ''table'’

ITEM _ item name _ item description _ size _ s/U
BEGIN preset value/s END

END ''table'!

Example
TABLE TABEL R 7 S §
BEGIN ''TABEL®'
ITEM TABlL A 36 S $
BEGIN 0 1 2 3 4 5 6 END
ITEM TAB2 F §
BEGIN 0 1. 2. .3El 4.E0 19 .2E2 END

END °''TABEL''

General case
Specified table declaration

TABLE table name _ V/R _ # of entries _ P/S
¥ of words per entry $

BEGIN ''table'’

ITEM _ item name _ item description ize S/U

s
__ word number _ starting bit _D/M/N 3

END 'Ttable'’

$

B506

Example
TABLE ABLE R 2 S 4 $
BEGIN '"'ABLE’’
ITEM HOL H 4 0 12 §
BEGIN 4H(JOV) 4H(IAL) END
ITEM TRANS T 4 1 12 $
BEGIN 4T{LAI) 4T(VOJ) END
ITEM OCT A 21 U 2 15 §
BEGIN 0(2222222) 0(3333333) END
ITEM ARITH A 19 8 9 3 17 $
BEGIN -100.5A9 0.5A9 END
ITEM STAT S 1 V(ON) V(OFF) 3 14 $
BEGIN V(OFF) V(ON) END
ITEM BOO B 3 11 $
BEGIN 1 0 END

END ''ABLE'’

Tables and Subordinate Overlays

Subordinate overlays provide a means of ordering and overlaying table items
within the table declaration itself. The subordinate overlay statement must
appear within the BEGIN-END brackets of the table declaration.

General Case

OVERLAY table item LIST $
OVERLAY_table item LIST = table item list =

6-9 BS06

Example

TABLE OVLYl1 R 4 S §

BEGIN
ITEM OlA I 36 S §
ITEM O1B I 35 U $
ITEM OlC H 6 $
ITEM OlD B $
ITEM OlE S V(OK) V(BAD) $

OVERLAY 0Ol1A,0l1B = 01C,0lD §
END

NENT

OIAT{O0) | — — —[oIcTo)
OLB(0) O1lD(0)
OLETOY | T T T

OIA(IY |~ — ~ [oIc(Ly
olB(1Y |~ 7 T foip(D)
OIETIY 1~ — &

STRING Table Item Declaration

The STRING table item declaration provides the means by which a programmer
may describe and structure a table item. STRING permits the programmer to
describe the occurrence of more than one item per table entry. Each occurrence
of a STRING item is called a "bead". To refer to a particular "bead", the table
item name is used, followed by a 2-component index.

General case

STRING name_item_description n3n ndn
optionalmpackingwgpecificationwpghmnﬁn $

which can be followed by

optional-two-dimensional-constant-list

used for desired presetting of each entry of the table.

The arguments n3n and ndn indicate in which word of the entry and in which
bit of the word the first "bead" of the item begins, Additionally, nb5n
declares the frequency of occurrence of the STRING item in the words of the
entry; i.e., there are beads of the STRING in every nbnth word of the entry

starting with word n3n. The last parameter of the declaration, nén, declares
the number of beads in each word of the entry.

6-10 BS06

Example
TABLE STR R 10 S 10 $
BEGIN
STRING HERA I 9 U 0 1 D 2 3 8
BEGIN BEGIN 1 2 3 END
BEGIN 4 5 6 END

END
declares that the beads of HERA are 9-bit unsigned integers, that the first
bead starts in word 0, bit 1 of the entry, that there are beads in every
second word of the entry, that there are three beads in each word of the
entry containing beads, and that these three beads are dense-packed (maximum
compaction takes place) in the words in which they occur. The 2-dimensional

constant list presets the first three beads of the first and second entries
of the table.

To reference a particular bead within a table entry, a 2-component index is
utilized:

HERA ($SK-3,7%) $
where the first component, K-=3, indicates the bead within the table entry

and the second component, 7, indicates in which entry of the table the bead
is located.

LIKE Table Declaration

The LIKE table declaration allows, by the use of a single statement, the
construction of a table similar to one which has been declared previously in the
program.,

If the two tables are to be identical, the LIKE table declaration is simply

TABLE original table name (X)_ L §

The X represents an arbitrary letter or number. This same letter or number
is affixed to the end of each LIKE table item name associated with the original
table item names.

It may be desirable to make a change to a given area of the LIKE table. Any
change in number of entries, parallel or serial structure, or type of packing in
the LIKE table declaration, will be reflected in the LIKE table composition. It
is important to note that any items which are preset in the original table will
not be assigned to preset values in the LIKE table.

6-11 BS06

General case
TABLE _ original table name (X} L §
TABLE _ original table name (X) _ # of entries _ L $

TABLE _ original table name (X) _ D/M/N _ L §

Example
TABLE LYKE V 4 $
BEGIN ''LYKE'"'
ITEM AA I 18 S
ITEM BB I 18 S

ITEM CC I 36 S

“wr A W »n

ITEM DD I 36 S

END "'LYKE''®

(LIKE Table format)
TABLE LYKEl L $
TABLE LYKElL R 1 L $
TABLE LYKEl P L §

The items associated with table (LYKEl) are referred to as AAl, BBl, CC1,
and DDl.

ARRAY DECLARAT ION

ARRAY declarations provide a program with multi-dimensional arrangements of
values, each having a unique position within the array. A single value occupies
an element of a particular row, in a particular column of a particular plane.
Those elements which do not contain some value will be said to contain a dummy
value,

Elements of a column are stored in consecutive locations. The entire array
is stored column by column in consecutive locations beginning with element zero,
column zero, plane zero and ending with the nth element of the nth column of the
nth plane.

The item description following the number of planes is a description of the
values to be contained in the array. Each wvalue must adhere to the given
description.

BEGIN, END brackets must enclose the entire array, each plane and each row
within each plane.

6-12 BS06

General

ARRAY

BEGIN

END '

Example

ARRAY

case

array name

columns _ # of planes

sS/U $

""ARRAY "'

of elements per column

BEGIN ''PLANE 0''°

_ type of item _

-
51z

of
e

BEGIN '"'ROW 0''....preset values....END '"'ROW Q"'

END ''PLANE O'°

BEGIN ''PLANE 1''

BEGIN *'ROW 0'',...preset values....END

END ''PLANE 1°°

BEGIN ''PLANE 2'°

BEGIN ''ROW 0''....preset values....END

END ''PLANE 2'°

'ARRAY "'

ARAY3 3 3

BEGIN 'ARAY3'

END

"TARAY 3'"!

3 I 36 58S s

BEGIN

''"PLANE O''

BEGIN '"ROW O°

BEGIN ‘''ROW 1’

BEGIN ''ROW 2°'

END

'"PLANE 0°°

BEGIN ''PLANE 1'

BEGIN ''ROW OF

BEGIN ''ROW 1°'

BEGIN '‘'ROW 2°'

END

YYPLANE 1''

BEGIN ''PLANE 2'

BEGIN ''ROW Q'

BEGIN ‘'ROW 1°

BEGIN ''ROW 2°'

END

''"PLANE 2°''

1

L]

]

0 3 6 END
1 4 7 END

2 5 8 END

9 12 15 E
10 13 16

11 14 17

18 21 24
19 22 25

20 23 26

''ROW 0"

"'ROW 0"

"'ROW 0"

"'ROW 1'"

BGROW 2!5

ND

END

END

END

END

END

"'ROW 0"’

?

?

'ROW 1°

'ROW 2°'

'ROW 0
'ROW 1'

'ROW 2°'

B506

Since ARRAY data is stored column by column consecutively,
the example would appear in memory as 0, 1, 2, 3, 4, ..., 26,

OVERLAY DECLARATION

The OVERLAY declaration is used when it is desirable
arrange declared simple items, tables, or arrays and to
operations.

the wvalues in

to specifically
perform overlay

It is important to consider the NENT word of a table if it is to overlay,

or be overlayed, by a series of simple items or an array.

General case
OVERLAY _ VARIABLE LIST §$

OVERLAY _ VARIABLE LIST = VARIABLE LIST = ... =
VARIABLE LIST $

OVERLAY “‘OCTAL NUMBER = VARIABLE LIST $
OVERLAY = INTEGER NUMBER = VARIABLE LIST §
where a VARIABLE LIST consists of:

I/T/A name (or)
1/T/A name, I/T/A name, ..., L1/T/A name

I = (simple) item name
T = table name
A = array name

BS06

Example

ITEM ALPHA I 36 S §

®

ITEM BETA I 72 S §

ITEM GAMMA I 36 S §

®

@

OVERLAY BETA = GAMMA, ALPHA $

OVERLAY GAMMA, BETA, ALPHA $

TABLE TAB1 R 4 S §$

®

TABLE TAB2 R 8 S $

TABLE TAB3 R 4 S s

TABLE TAB4 R 10 S $

OVERLAY TAB4 = TAB2, ALPHA, GAMMA $

15

GAMMA
BETA ALPHA
GAMMA
BETA
ALPHA
- -
- -
/// NENT
w‘/ A P
-7 7 ~
P -] -
NENT Pl
TAB2
ALPHA
TAB4
GAMMA
M’wﬂ o P -

=" | _NENT™
OVERLAY TABl = TAB3 $ - == —
// "//
NENT -
— TAB3
-
TABL |-—" =T
///
-
_—=—" | _ arpEa
OVERLAY TABl = ALPHA, GAMMA $ - - i
o l;/ //
o —
NENT T
_— GAMMA
T™Bl |-—" -7
-
>
-
NENT
OVERLAY TAB2, TAB4 $
TAB2
NENT
TAB4
OVERLAY 0(10001) = ALPHA, BETA, GAMMA $
OVERLAY 4101 = TABL = TAB2 §
Octal
10001
ALPHA
10002
BETA
10004
GAMMA
10005
NENT
TABL
and
TAB2

BS06

NOTES

When using an OVERLAY with an integer or octal number:

1.

The integer or octal number (address) given in the OVERLAY statement
must be thought of as a absolute address--relative to the base address
register.

If the given integer or octal number (address) falls outside the
limits of the program being compiled (program size), variables in the
associated variable list cannot be preset (GELOAD will return an L3
abort when attempting to go beyond program length at load time). When
the address falls outside the allocated core limits, the program will
abort with an F0 fault if any variable in the associated variable list
is referenced.

When specifying a double precision item as the first element of a
variable list, the integer or octal number (address) must be specified
as even or the item will not Dbe positioned beginning at an even
address to obtain proper accessing of data.

Once it appears as an element on a variable list of an OVERLAY to a
fixed location, a variable cannot appear in another OVERLAY statement
with proper results guaranteed.

Any use of this feature is potentially dangerous because the specified
addresses, being relative to the base address register, may fall
outside the bounds of memory allocated for the JOVIAL ¢ i.e., the
slave prefix and the library routine areas are accessibli

Concerning the OVERLAY statement in general, it must be remembered:

1.

When double precision items are contained in a variable 1list, the
beginning address can no longer be guaranteed even. This should be
checked and changes made so that the beginning address falls in an
even location for proper accessing of data.

All elements in variable lists of a single OVERLAY statement must be
unique.

If an element in a variable list occurs in more than one OVERLAY

statement, it must be in each occurrence after the first occurrence,
the first element of the variable list in the statement.

6=17 BSO6

% Emzesmms

SECTION VII

DIRECT CODE AND PROCESS DECLARATIONS

DIRECT CODE

Direct code provides the JOVIAL programmer with a means of coding in
machine language while remaining in the main stream of JOVIAL code. The only
restrictions while in Direct code are that no macros, no master mode
instructions, and only the SYMREF, ZERO, BSS, and OCT pseudo=-operations may be
used., The Macro Assembler Program (GMAP) manual contains references pertaining
to machine code instructions.

Direct code is considered as a complex statement and may not follow
immediately after an IF statement unless bracketed by a BEGIN, END.

Index registers used while in Direct code should be saved wupon entering
DIRECT and should be restored prior to leaving DIRECT.

Direct code instructions may reference locations within the JOVIAL code
provided the locations have user defined names of not more than six characters.

The main stream of JOVIAL code may be interrupted by a l-word statement - -
DIRECT. To re-enter the JOVIAL code after having been in DIRECT, all that is
required is another l-word statement - - JOVIAL.

DIRECT CODE RESTRICTIONS AND CONVENTIONS

All op codes must start in card column 8 and all variable fields must start
in card column 16.

Alphanumeric expressions containing two or more symbols (e.g., NAMEl-NAMEZ2)
are not permitted in the variable field. Expressions of the type "NAMEL-5" are
permitted.

7-1 BSQ€

Pgeudo-operations:

SYMREF

ZERO

BSS

The SYMREF pseudo-operation allows the user to reference symbols in Direct
code which are defined outside the program environment. Thus the user may
reference any of the system library routines. The routines should be
accessed only with the proper argument strings. If a routine is given the
same name as a system library routine, it must always be included in the
load at execution time or else the loader will link to the system routine.

Only one name per SYMREF statement is allowed.

The first field of the variable field may not be implicitly nulled.

The expression n=Q" may be used to define an octal value in the variable
field.

Only one numeric entry is allowed in the variable field; alphanumerics are
not permitted.

only plus (+) and minus (-) operators are permitted in numeric expressions.

only the first entry in the variable field (delimited by the first
character not an octal digit) is processed. Subsequent entries are ignored.

If the entry is less than 12 octal digits, the number is right-justified
when compiled.

If the entry is greater than 12 octal digits, high-order digits are
truncated.

7=2 BSO06

Assign Statement

The ASSIGN statement is used only within DIRECT code. Its purpose is to
assign the value of a variable to the machine accumulator (general case 1) or to

assign the contents of the machine accumulator to some variable (general case
2) .

If the value to be assigned to the accumulator (or from it) is Boolean,
Hollerith, transmission encoding or status, the precision value should be zero.

Floating point has no precision value; however, the parentheses are used.
A() =V,

Fixed point or integer values have a precision value of 0-71. A zero will
cause a precision of 72 bits to be assigned.

General case

DIRECT

Machine Language

(1) ASSIGN _ A(P) _ = _ V(Sindex$) $
Machine L;nguage
(2) ASSIGN :_V($index$) _ = _A(P) s

JOVIAL
A - machine accumulator

P - precision; number of bits representing the
fractional portion.

V - basic variable

7-3 BS06

Example

Col.8 Col.l6

ITEM NOGO B P 0 §

IF NOGO §
BEGIN
DIRECT
LDA SIGMA
STA SIGMAT
LDA SIGMA
ALS 6
STA SIGMAL
ASSIGN A(4) = ALPHA §
ASSIGN ALPHA = A(4) $
LDQ 777444, DU
ANQ SOMVAL
QRS 27
QLS 1
STQ GONOW
JOVIAL
END
IF CNT NQ 0(000033) §

s
®
®
®
®

BS06

CLOSE DECLARATION

It is sometimes useful to have a fixed set of statements which perform a
given operation and may be accessed from several points within the main program.
A CLOSE declaration is referred to by a GOTO statement directed to a particular
CLOSE name, More than one CLOSE declaration may be used in a program.

A RETURN $ statement used within a CLOSE declaration will return the
execution activity to the statement immediately following the invoking GOTO
statement,

1. CLOSE declarations may be entered by an associated GOTO only.

2. A CLOSE declaration appearing in a PROCEDURE must be referred to only
by an associated GOTO also appearing within the PROCEDURE.

3. Declared FOR statements may contain CLOSE declarations providing the
associated GOTO is within the FOR structure.

4, CLOSE declarations are not recursive and may not contain any invoking
statements.
5. CLOSE declarations may be nested within another CLOSE.

General case

GOTO _ close name $

®

GOTO _ close name $

®

CLOSE _ close name $

BEGIN "CLOSE CODE"

®

END "CLOSE CODE"

7-5 BSQ6

Example

GOTO AAAA $

GOTO AARAA §

CLOSE ARAR $

BEGIN '°AARAA"’
IF CNT EQ 0 $
ALPHA = ALPHA - 1 §
RETURN $

END '"AAAA'"'

©

FUNCTION DECLARATION

A FUNCTION declaration is a simple PROCEDURE declaration having only an
input parameter list. During execution it generates a single output value
assigned to the PROCEDURE name, which may then be used as a term in the invoking
equation.,

General case

name = formula _ function name (actual input parameters)
_ formula $
name = formula _ function name (actual input parameters)

_ formula $

PROC function name (formal input parameters) $.
ITEM _ function name _ item description $ "DECLARATION LIST"

BEGIN "FUNCTION BODY"

END "FUNCTION BODY"

7-6 BS06

Example

IF TIME (MIN, SEC) GR 24 §
PROC TIME (AA, BB) $
ITEM TIME F §
ITEM AA F §
ITEM BB F §
BEGIN ''TIME'’

TIME = (AA + (BB/60))/60 S

END "'TIME"?
1. The FUNCTION declaration PROCEDURE name must be the same as that of a
declared item within the PROCEDURE declaration.
2. The value of a literal function must not exceed 12 bytes.
3. RETURN $ must not be used within a FUNCTION declaration.

PROCEDURE DECLARAT ION

A PROCEDURE declaration is a block of JOVIAL code which may be accessed
from one or more areas within the main program. It has a specified operation to
perform; input and output parameter values may be exchanged with the main
program. Four major components make up a PROCEDURE declaration: procedure name,
input-output parameters, declaration list, and the procedure body.

procedure name - a unique name given to a particular procedure and referred to
when the procedure is to be accessed.

input-output parameters - also referred to as formal parameters. All formal
parameters must correspond to a similar actual parameter.
Formal simple items refer to actual simple items. Formal tables
refer to actual tables, etc.

7-1 BSO&

declaration list = contains declarations for all formal parameters, simple
items, table names and array names.

procedure body - is made wup of the code necessary to utilize the formal
parameters and provide the PROCEDURE with a capability of
performing a given operation,

A RETURN $, if used within a PROCEDURE, has the effect of restoring the
registers, setting the output parameters, and causing an exit to the statement.

General case

B

[l
i

procedure name (actual input parameters = actual
output parameters) $

®

procedure name (actual input parameters = actual
output parameters) §$

®

PROC _ procedure name(formal input parameters =
formal output parameters) $

ITEM _ item name _ item description $ ''DECLARATION LIST''

®
@

BEGIN ''PROCEDURE BODY''

END '"'PROCEDURE BODY''

7-8 BS06

Example

ALPHA (Al

A2) §

]

ALPHA (Al

A2) §

PROC ALPHA (MPENT PREXIT) $

ITEM MPENT H 12 $
ITEM PREXIT I 36 S §
ITEM AAA I 6 U $
ITEM BBB B $

BEGIN ‘'ALPHA''

PREXIT = 0 $ AAA = 0 §

i

FOR A = 66, -6, 6 §
FOR B = 0,1 §
BEGIN ''FOR A, B'!
BIT ($0,63) (AAA) = BIT(S$ Y, 63) (MPENT) §
IF AAA EQ 0 OR AAA EQ 0O(20) OR AAA EQ 0(60) $
TEST $
IF AAA EQ 0(52) §
BEGIN ''IF TRUE''
BBB = 1 $ TEST $
END '*IF TRUE''
PREXIT = PREXIT + AAA * 10 ** B §
END ''FOR A,B'!
IF BYTE(0) (MPENT) EQ lH(-) $ BBB = 1 §
IF BBB $

PREXIT = = PREXIT $

END ''ALPHA''

7-9 BS06

1. The declaration list and procedure body must not contain another
procedure declaration.

2. The procedure body must not contain a statement which directly or
indirectly invokes this procedure declaration (no recursion).

3. The procedure name must not appear as a simple item in the declaration
list.

Interprocedure Communication

When the attributes of a procedure or function are available, argument
validation and conversion, and function result conversion will be automatically
performed for each invocation. These attributes will be known when the procedure
or function is defined within the same compile unit as the calling routine, or
when there exists a COMPOOL declaration for the procedure or function.

A correspondence is made between actual and formal arguments. If the number
of input and/or output arguments does not agree, the call 1is rejected with a
diagnostic. Where actual and formal parameters are correspondingly table names,
file names, close names, or statement names, the actual arguments are passed
without modification. Where formal input parameters corresponds to actual
formulae, variables, array names, or simple item names, the matching parameters

are processed according to the rules for assignment statements. (valid
combinations are indicated in Figure 4-1; substitute the words ‘formal
parameter' for 'variable' and ‘'actual parameter' for ‘'expression'.) If any

correspondence is invalid, the call is rejected with a diagnostic. If all are
valid, then conversion and/or scaling will be performed as required, and the
resultant actual arguments passed to the procedure or function. Where actual and
formal output parameters are correspondingly variables, array names, or simple
item names, the actual arguments are passed without modification. If they do not
correspond the call is rejected and a diagnostic issued.

Formal input parameters which are declared as simple items follow
conventions for pass by value; all other parameters follow pass by name
conventions. Thus, redefinition of a simple formal dinput item will have no
affect on the corresponding actual input parameter.

Function results are validated with respect to their use in a formula or as
a right of equals operand. If the result is valid in context, then conversion
and/or scaling will be performed as required.

It is permissible to access external subroutines from a routine coded in
JOVIAL. The external subroutine may be coded in JOVIAL, FORTRAN, or GMAP.

7-10 BS06

System Supplied Subprograms

It is also possible to access system supplied subprograms from a JOVIAL
routine. A complete list of subprograms available to FORTRAN programs is given
in manual Series 6000 FORTRAN. Many of these subprograms can be readily used by
JOVIAL programs. Procedure type subprograms which are particularly useful in
JOVIAL include DUMP, PDUMP, LINK, LLINK, JEXIT, and CNSLIO. Function type
subprograms include EXP, ALOG, ALOGl0, SIN, COS, TANH, SQRT, ATAN, and ATANZ2.

The following illustrates the use of DUMP and PDUMP:

System subroutines DUMP and PDUMP may be called directly from a JOVIAL
coded program,

DUMP - causes the indicated limits of core storage to be dumped and execution to
be terminated,

PDUMP = causes the indicated limits of core storage to be dumped and execution
to be continued.
General case
DUMP (start location, stop location, dump format) $

PDUMP (start location, stop location, dump format) $

dump formats

0, dump in octal

1, dump as integer

2, dump as real

3, dump as double precision (not valid in JOVIAL).
4, dump as complex (not valid in JOVIAL).

5, dump as logical

Example
DUMP (ALPHA ,GAMMA,2) §$

PDUMP (ALPHA (0) ,ALPHA ($20%) ,0) $
1., If no arguments are given, all of core storage is dumped in octal.

2. If no dump format is given, it is assumed zero and the dump will be
octal.,

7=11 BSO6

Figure 7-1 illustrates a JOVIAL main program which calls subprograms
written in JOVIAL, FORTRAN, and GMAP. Control cards which might be reguired to
compile and/or execute such a combination are not shown. Refer to the manual,
Control Cards, for descriptions of control cards.

Closed Subroutines

A closed subroutine is a parameterless procedure that is callable, and
which returns to its caller via STOP statements in the procedure body or in the
body of a nested procedure, or via the TERM statement for the closed subprogram
body. In terms of Series 600/6000 programming concepts, it 1is a named main
program which can return to an invoking (sub) program. When invoked by the
system, return is synonymous with termination.

The PROGRM directive may be used to name the closed subroutine. An unnamed
closed subroutine is given the name of 'NONAME' by default. A closed subroutine
named name may be invoked (called) in one of the following two ways:

GOTO name §$ Where name is declared as a prime program.
LINK (6H (lkname)) $ Where lkname is the name of the 1link overlay
containing name as its entry point. lkname and

name may be ldentical symbols.

7-12 BS06

PROGRM JOV
START

JéVPRo(R=s) $

PDUMP (L, P, 1) §

FORPRO(A, B, C = D,E,F) §

GMAPRO (=X, Y, Z) $

TERM $

PROCED JOVPRO
START

PROC JOVPRO (U=V) §

RETURN §
END

TERM $

SUBROUTINE FORPRO(X, Y, 2, XX, YY,

»

RETURN

END

z2z)

SYMDEF GMAPRO
GMAPRO SAVE 1,5,6,7

RETURN GMAPRO
END

Figure 7-1. Sample JOVIAL Program With Mixed Subroutines

BSO6

SECTION VIII

COMPOOL

COMMUNICATIONS POOL

One of the requisites of a programming language intended for large scale
data processing systems is that it include the capability of designating and
manipulating system data. The Communications Pool (COMPOOL) facility of the
Series 600/6000 JOVIAL meets this requirement.

A COMPOOL serves as a central source of data and procedure descriptions,
facilitating the communication of changes in design by supplying the compiler
with the current descriptive parameters, thus allowing automatic modification of
references through recompilation.

The COMPOOL facility is accomplished through use of a COMPOOL file. The
file may reside on tape or mass storage and contains a table or dictionary of
names and associated definitions for use by a system of related programs. If a
program is to be entered into the system, the descriptions and locations of
common data, procedures, functions, and programs are found on the COMPOOL file.

If a program written in JOVIAL makes reference to a name defined in the
allocated COMPOOL file, and if this reference is compatible with the COMPOOL
definition, then the reference is taken to be a reference to the COMPOOL defined
name. If, however, the program explicitly and properly defines such a name (one
which is defined in the COMPOOL) this definition takes precedence and the
COMPOOL definition is disregarded. "Proper" definition has reference to the
necessity of placing declarations ahead of references.

COMPOOL STRUCTURE

The COMPOOL is a file containing binary recorded computer representations
of descriptions of simple items, table items and/or strings, arrays, tables,
files, external programs, procedures and functions. These descriptions will
include the following information:

1. item - name, location, item declaration information.
2. table - name, location, table declaration information
including name, location and declaration

information for subordinate items and strings.

8-1 BSO06

3. array - name, location, array declaration information.

4, file - name, file declaration information.
5. external program = name, location
6. procedure - name, location, formal parameter list with a

description of each parameter.

7. function - name, location, formal parameter list with a
description of each parameter, function type.

Each name in the dictionary must be unigque. Location information on the
COMPOOL is a function of whether the name is of data or subprogram. When the
name describes a program, procedure or function, the location information will
consist of linkage information for the automatic inclusion and communication
with the appropriate subprogram. When the name describes a datum, the location
information will be sufficient to effect the assignment of actual core storage
in one of two ways. If the name is defined relative to:

1. An unnamed COMPOOL region - storage will be allocated internal to the
program being compiled, as required.

2. A named COMPOOL region = storage will be allocated after compilation.
The datum has an associated relative location within the named region
such that references from different program units address the same
actual core storage location.

Unnamed and named COMPOOL regions are discussed in the paragraph "COMPOOL
ASSEMBLY" below, along with a thorough discussion of the storage allocation
algorithm of the Series 600/6000 General Loader.

ACCESSING OF COMPOOL DEFINITIONS

Use of the COMPOOL facility requires the allocation of a specific COMPOOL
file at compile time. Following the § JOVIAL control card, and prior to any
ensuing control cards which delimit activities (e.g., $ JOVIAL, $ FORTRAN, §$
EXECUTE) there must be a file allocation card, attaching the COMPOOL file with a
file code of '.L'. Following are two examples of such allocation cards:

$ TAPE .L,AlD,,6341,,MY-COMPOOL
$ PRMFL .L,R,,USERID/COMPOOLA4

Inclusion of a COMPOOL definition may be explicit or implicit. Explicit
inclusion is accomplished through use of the COMPOOL statement. This statement
may appear in the definitions section of the source program; it is followed by a
list of names bracketted by a BEGIN/END. Upon encountering this statement, the
compiler opens the .L file and institutes a search for all names. Associated
definitions are extracted from the file and incorporated into the current
program.

8-2 B506

Implicit inclusion is accomplished, through reference to COMPOOL names,
where no prior declaration has occurred. The COMPOOL file, if present, is
searched each time a new name 1is encountered in a wusage context (i.e.,
nondeclarative). If a definition exists on the COMPOOL for that name, it is
accepted. If no definition exists on the COMPOOL, or if there is no COMPOOQL file
allocated, MODE definitions will be applied to the undefined names.

Explicit inclusion offers a compile time efficiency advantage. The COMPOOL
file need only be searched once if all required names are listed. Implicit
inclusion offers the advantage of user convenience, at the expense of less
efficient compilation,

In any given program unit (compilation), it is unlikely that all COMPOOL
names will be referenced. Considering that the names of a COMPOOL may be divided
into named regions, it is also possible that not all named regions will be
referenced. The program unit is compiled such that only those named regions
required to support the referenced names will be defined. 1In a subsequent
loading process then, the amount of core allocated for Communications Pool
storage will be kept to a minimum.

COMPOOL ASSEMBLY

The COMPOOL assembly process involves the conversion of symbolic
descriptions of simple items, tables, table items and/or strings, arrays, files,
external programs, procedures and functions, the ordering of all names, and the
generation of a COMPOOL file. The symbolic format used for such descriptions is
natural JOVIAL. The assembly process is in fact a special kind of JOVIAL
compilation.

The first card of a COMPOOL aseembly activity must contain the word GENCOM
in columns 1 through 6. This serves as a signal to the JOVIAL compiler
indicating COMPOOL assembly. For this activity, allocation of a COMPOOL file is
mandatory; the file code '.L' is used. Following are two examples of allocation
control cards:

$ FILE .L,X3S,25L
$ PRMFL ,L,W,,USERID/COMPOOL4 _ .

During a GENCOM activity, first phase error checking is performed. If
errors exist, an output listing is generated showing where the errors occurred
and what kind of errors were made, and the compilation is terminated; the
COMPOOL file is not written. When the first phase runs error free, the COMPOOL
file (.L) will be written,

A limitation exists on COMPOOL names. Names which identify data and which
are 1l characters or less will be fully unigue. Data names which are 12 or more
characters in length and which are not unique within the first 11 must have a
unigue length to distinguish them from other data names beginning with the same
11 characters. Thus, NAMElL and NAME2 are unique, VERYLONGNAMEl and VERYLONGNAMEZ2
are not, but VERYLONGNAME3 and VERYLONGNAME30 are,

8-3 Bs06

External program, procedure, and function names must be unique within the
first six characters.

Another, more obvious, restriction applies to GENCOM activities: only data
and process declarations are permitted. This includes such language features as
DEFINE, OVERLAY, PROC, and 'PROGRAM. Procedures and functions declared on the
COMPOOL are coded with a null process body.

Data declarations for a given COMPOOL file may be divided and grouped into
named COMPOOL regions. Regions are named in one of +two ways: on the GENCOM
directive card or via a special naming statement, applicable only in GENCOM
activities, the COMMON statement. The region name on the GENCOM card is
optional. If COMMON statements are present, each must have a region name. All
region names must be unigue with respect to each other and with respect to other
data and process names, and are restricted to six characters.

Allocation of storage for data declared under an unnamed region will be
done at compile time and within internal process storage for any and all program
units referencing such names. Storage will only be allocated for referenced
names .

Determination of relative locations for data declared under a named region
is done at COMPOOL assembly time. Allocation of storage for referenced regions
(regions referenced by virtue of references to associated data names) is done at
load time, prior to execution.

Named regions are compiled as Labeled Common storage. As such, the output
of a GENCOM activity may include a BLOCK DATA object module. One such module
will be generated for each named region, hard copy of which will be punched if
the DECK option is specified on the $ JOVIAL control card.

Labeled Common is a common data area allocated by the General Loader and
given a specific name. The name, which the user supplies during his COMPOOL
generate activity, and the size of the data region needed for COMPOOL data, are
placed on the object file of any program referencing data declared for that
Common. When programs referencing a Labeled Common are loaded for execution, the
BLOCK DATA subprogram object file generated for that Common must also be present
if the COMPOOL contains preset information or rigid tables. Where this 1is not
the case, the BLOCK DATA object module need not be present.

When the Loader encounters the Labeled Common name on either the BLOCK DATA
subprogram object file or the object files of any programs referencing the
Common, it checks the load table for its definition. If this Labeled Common has
not been previously defined, it is assigned an amount of storage equivalent to
t1e size specified (on the object file where encountered), beginning with the
“ext available even memory location. An entry is then put in the load table for
chis Labeled Common name. If the Labeled Common name is found in tl > load table,
the existing allocated area will be used (shared). This feature allows a BLOCK
DATA subprogram and many COMPOOL utilizing programs to define the same Labeled
Common area and all will reference this one area at run-time.

8-4 BS06

When the BLOCK DATA suprogram is loaded, preset information is stored into
the specified Labeled Common region at the relative locations specified with the
presets. If no preset information exists in a Common or if, for a given load,
the user does not want the information preset, the BLOCK DATA subprogram object
file need not be present at load time. Information contained on the object files
of programs referencing a COMPOOL is sufficient to allocate storage for any
required Labeled Common region but not to preset it. References to Common data
are compiled as offsets relative to the Labeled Common region; this offset being
carried on the COMPOOL file as the location of data.

The BLOCK DATA subprogram, required for COMPOOL's wutilizing the preset
feature, may be introduced into the load stream from these sources:

1. It may be the product of a COMPOOL assembly activity preceding the
load activity, in which case the compiler will forward the object
module on B*,

2. It may be on an object (subroutine) library. The General Loader has
facilities for user libraries via the § LIBRARY control card; the
standard system library may be supplemented by a *L file; or it may be
on the standard library (L*) itself.

3. The object deck for the BLOCK DATA subprogram may be included in the
job stream. This inclusion may be physical, or the $ SELECT capability
may be used to extract the deck from a PERM FILE, inserting it into
the stream (R¥*).,

Depending upon applications, the user may desire to utilize a given COMPOOL
with different preset information in different runs. To obtain this facility,
the user need only assemble the COMPOOL as many times as there are different
sets of presets, and save the BLOCK DATA subprogram object files from each
generation. Then, for a given run, he uses one of the options described above to
include the BLOCK DATA subprogram object files which contain the desired
presets.

The COMMON statement enables the specification of multiple Labeled Common
regions for a single COMPOOL. Each Common statement is followed by a series of
declarations enclosed within BEGIN/END brackets. Allocation of storage for these
declarations is relative to the named common data space. Declarations appearing
outside the brackets for any COMMON statements are enclosed within the
START/TERM brackets of the GENCOM directive. Hence, allocation for these
declarations is either relative to the Labeled Common named in the GENCOM card
or relative to local storage if no name is supplied.

The following illustrates the organization of COMPOOL source for a single
common data area:

GENCOM POOL1
START

B declarations

TERM $

85 BS06

The following illustrates the organization of COMPOOL source for several
common data areas, and local storage:

GENCOM
START

B local declarations

COMMON POOL2 §
BEGIN

.:} declarations for Labeled Common POOLZ

. more local declarations

COMMON POOL3 $
BEGIN

. :} declarations for Labeled Common POOL3

. } more local declarations
$

TERM

Usage of Labeled Common for COMPOOL space introduces a broad functional
capability to Series 600/6000 JOVIAL. Control cards may be used to override the
default load/allocation algorithms. COMPOOL space can be shared with FORTRAN and
COBOL modules. In short, this choice insures that the implementation is well
integrated into the general software complex.

COMPOOL DISASSEMBLY

The COMPOOL Disassembly program will process a COMPOOL file, convert the
encoded information, and print the contents 1in a variety of reports. The
program, named DISCOM, is a JOVIAL utility invoked by a control card of the
form:

$ PROGRAM DISCOM

Upon input of a COMPOOL file, DISCOM will generate sorted listings
describing all COMPOOL names, their descriptions and the particular Labeled
Common to which they belong. Listings included are: All identifiers regardless
of type, Simple Items, Files, Arrays, Procedures and Functions, Subscripted
Items, Tables with their Subscripted Items.

8-6 BS06

The COMPOOL file, which must be allocated for proper execution, is assigned
to file code '0l1'. The following illustrates back-to-back assembly and
disassembly of a COMPOOL file:

S SNUMB ...
S IDENT ...
S JOVIAL
$ FILE .L,AlS,20L
GENCOM
. COMPOOL Declarations
TERM $

PROGRAM DISCOM
FILE 01,AlD
ENDJOB

Ly Uy

SAMPLE CODING

Figure 8-1 illustrates coding for the assembly of a simple COMPOOL file on
tape. Only one named region is defined, POOLl. Figure 8-2 illustrates coding for
use of the tape.

g7 BSO06

SNUMB « « o &
IDENT . . » o
JOVIAL

TAPE .L,AlD,,,,COMPOOL-TAPE

“©r v v W W©n

INCODE IBMF
GENCOM POOL1
START
TABLE CDNl V 50 s 1 §
BEGIN ''CDN1''
ITEM AA F 0 0 §
BEGIN 0.0 END

END ''CDN1''
TABLE CDN2 R 24 S 3 §

BEGIN '‘'cCDN2''
ITEM BB I 6 U 0 0 §

BEGIN 0 END

ITEM CC A 4 S 110§

BEGIN 0.0 Al END
ITEM DD H 6 2 0 $
END ''CDN2''®
ITEM CDN3 I 18 S P 0 $
ARRAY CDN4 3 3 3 I 18 S $
ITEM CDN5 B §
TERM $
$ ENDJOB

kkEkEOF

Figure 8=1, Generating A COMPOOL Tape

BSO¢€

SNUMB . « «
IDENT - « » &
JOVIAL

TAPE .L,AlD,,1234,,COMPOOL-TAPE

wr W 4 W A

INCODE IBMF (Not required if source is in
Honeywell format)

PROGRM PROGA
START ''PROGA''
ITEM NAME H 6 $
COMPOOL
BEGIN
CDN1 CDN2 CDN3
CDN4 CDN5
END
TABLE CDN1A L $§
IF CDN5 $
BEGIN ''BOOL TEST''
TEST1 $ ''CALL SUBROUTINE''
TEST2 $ ''CALL SUBROUTINE''
END ''BOOL TEST''
TERM $
$ ENDJOB

* % *TOF

Figure 8-2. Use Of The COMPOOL Tape

8-9 BS06

SECTION IX

INPUT AND OUTPUT OPERATIONS

FILE OPERATIONS

The following definitions define symbols used to explain the FILE, IO, IN,
OUT and WAIT statements below.

fn
fac

fc

I0n

ac

ta

dn

np

a declared file name of this file.
file status constants, each representing a fixed condition.

file code; is always preceded by an R and numeric code between 01 and
77 or an integer variable representing a value between 01 and 77,
Files 05 (I*) and 06 (P*) are reserved for system files. (Files 41,
42, and 43 are system reserved files.)

n represents any l- to 4-digit integer value which gives each IOn
statement a unigue identification.

action code, numeric value representing the action to be taken
pertaining to this file.

terminal action; either a procedure name or zero. If a procedure name
is used, it must not have parameters. The procedure will be executed
upon completion of the operation initiated by the IOn statement. A
zero indicates no associated procedure will follow the completion of
the IOn. In the current implementation, ta must equal zero.

declared name of an item, table, or array where data is stored. Table
name ($index$) and NENT (table name) are also valid parameters.

number parameter; a numeric value representing the number of words or
entries in the declared data storage area.

FILE STATEMENT

All files must be declared in a FILE statement prior to any reference to
the file. The FILE statement serves to define a file by name and file code. It
also allows a list of status values to be appended to the file for testing. The
initial status value represents an unsigned integer value of 0; the second a

value of 1;

the third a value of 2; etc.

9-1 BS06

The numeric value and its associated meaning for each of the file status
constants (fsc) are as follows:

Numeric
value Meaning

0 Normal termination after I/0.

1 Null

2 Segment mark. Read only=-- a l-character record other than octal 17
or 23 was encountered.

3 End=of-file. A l-character record (octal 17 or 23) was encountered,
or the file has been closed by an OUT statement.

4 Buffer length error. Input area smaller than logical record.

5 Parity error.

General case

FILE fn _ V{fsc-1) _ V(fsc-2) _ V{fsc=3)
e s o o »V{fsc-n) _ Rfc §

Examples

FILE REDER V (NORM) V (NULL) V(SEG) V(EOF) V (BUF)
V(PAR) RO5 § ''05-SYSIN''

FILE PRNT V(NORM) RO6 $ ''06=SYSOUT''

I0n STATEMENT

IOn statements permit the programmer to manipulate external storage devices
or transmit data to or from declared files. IOn statement action codes are
placed into two categories = - transmission and device manipulation,

9-2 BS06

Transmission:

Action Code Meaning
0 Read logical record.
1 Read segment up to the next one character record, not

23. Transmit data to storage.

2 Null.
3 Transmit print image.
4 Write logical record. (File and Record Control

partitions logical records which are longer than the

output buffer.)

5 Punch binary record.

6 Punch BCD record.

7 Write segment mark. A 1l- character record, not octal
76, oxr 77.

General case

IOn{ac,fn,ta,dn,np) $

Examples
1010(0, REDER,0,CARD,14) $ ''READ LOGICAL RFCORD OF 14 wWDps''?'

1020(3, PRNT,0,CARD,14) $ ''PRINT LOGICAL RECORD OF 14 WDS''

Device Manipulation:

Action Code Meaning
8 Move forward one logical record.
9 Move forward past segment mark or end-of-file mark.
10 Move backward one logical record.
11 Move backward over segment mark.
12 Null.
13 Rewind.

General case

IOn(ac,fn,ta) $

octal 17

or

automatically

the

75,

BSO06

Example
I0100(13,TAPE,0) § ''REWIND TAPE''
Defined combinations of a declared name and a numeric value representing the

number of words or entries are listed in the following table, "IOn Statement
Defined Combinations",.

Declared Number Words Entries NENT Word|Used with Used with
Name of words | Trans- Trans= Trans= Serial Parallel
mitted mitted mitted Structure Structure

Simple Item

Name n >0 n

Array Name n >0 n

Table Declared

Name Absent Number No Yes Yes
Table Name n >0 n No Yes No

Table Name
($subscripts$)| n > 0 n No Yes No

Table Item
Name
($subscripts$)! n > 0 n No Yes Yes

NENT (table Absent
name) or 0 Yes Yes Yes

NENT (table
name) n >20 n Yes Yes No

IOn Statement Defined Combinations

IN STATEMENT

The IN statement identifies a declared file which shall act as an input file.
The action code portion of the IN statement explicitly defines the action to be
performed on the file.

9-4 BSO6

Action Code Meaning

1 Open input file.

2 Close input file.

3 Null.

4 Close input file with rewind.

5 Release input reel.

6 Close input file and open output file.

General case

IN (ac, fn) §

Example

IN (1, REDER) $ ''OPEN READER FILE''

ouT STATEMENT

The OUT statement identifies a declared file which shall act as
The action code portion of the OUT statement explicitly defines
performed on the file,

Action Code Meaning
1 Open output file.
2 Close output file.
3 Close output file with rewind.
4 Force output end-of-reel.

General case

ouT (ac, fn) $

Example

OUT (1, PRNT) $ ''OPEN PRINTER OUTPUT FILE''

an output file.
the action to be

Figure 9-1 illustrates a portion of a program containing input/output coding.

WAIT STATEMENT

For compatibility with the parent I/0 set (NAVCOSSACT J3X), the WAIT statement
will compile; however, there is no code generated and, in fact, mome s needed
due to the technigue of interfacing with the standard I/0 routines.

General case

WAIT (IOn) §

Example

WAIT (I09) §

®

°

TABLE ALPHA R 100 § §
BEGIN '"'ALPHA'’
ITEM DATA H 6 $

END '‘'ALPHA'’

.

FILE PRT V(YES) R 06 §
OUT (1, PRT) §
FOR A = 1,2,100 $
BEGIN ''FOR A''
I01(3,PRT,0,DATA(S$AS) ,14) $

END ''FOR A''

oUT (2, PRT) $
ENDALL. STOP $

TERM $

Figure 9=1. Example Of I/0 Print Information

9-6 B506

SECTION X

OBJECT CODE DEBUG

DEBUG OPTION

To initiate object code debug, the DEBUG option must be selected on the §
JOVIAL control card. From that point on, the debug procedure is automatic. The
JOVIAL compiler analyzes the source program as it is being compiled to determine
the importance of variables, to recognize loops, and to understand the "general
flow of the program. Using this information, it inserts code to provide for:

1. Dumps of key variables, such as FOR, assignment and I/O variables, as
they change.

2. A program trace, which is a list of program transfers.
3. A listing of procedure entrances and exits.
All debug information starts with the mname of the program. The main

program is signified by an asterisk. Each statement trace starts with the
compiler-assigned statement number followed by a slash mark. In an assignment
statement, this is followed by the variable name (subscripted if necessary) and
the value assigned to it. For the FOR statements, the value of the induction
variable is given for each iteration.

Tracing automatically terminates after each statement has been executed n
times, where n is a system parameter. The format is (1) line number, (2) OrF,
(3) the number of statements executed prior to termination, and (4) the number
of statements executed during the trace-off mode. Automatic tracing resumes when
statements which have not been previously executed n times are encountered.

IF, IFEITH and SWITCH statements are followed by the wvalues of their
expressions. The final debug information supplied under post-mortem consists of
the results of the last three executions of each statement. The format is (1)
line number, (2) number of times the statement was executed, and (3) the last
three values. Statements not executed three times show values in accordance with
the number of executions.

The DEBUG feature is described in detail in the General Loader manual.

10-1 BS06

SECTION XI

CONTROL CARDS

All control cards that may be required for processing a JOVIAL program are

described in detail in the Control Cards Reference Manual. Those control cards
which are fundamental to the program are described briefly below.

£ _SNUMB

1 8 16

$ SNUMB Job identifier, urgency

The $ SNUMB control card is used by System Input to identify the job
internally and to assign an urgency to the Jjob for wuse by System Input in
allocating the job. The job identifier is from one to five characters in length
and must be present on the card. The urgency level is a number from 1 to 63 (at
present 40 is ''threshold'' level) and represents the relative importance of the
job. If the urgency is omitted, a value of 5 is assumed.

The $ SNUMB card must be the first card of every job. The Jjob identifier
can be alphabetic, numeric, or alphanumeric. The job identifier must not contain
all zeros, SYSOUT interprets an all-zero SNUMB as error and the Jjob will be
ignored.

$ IDENT

1 8 16

S IDENT Account No., Identification

The $ IDENT control card is used to identify the user of a job or activity
and to supply accounting information. Each activity may be preceded by a $ IDENT
card or a single $ IDENT may be used for a series of activities.

11-1 BS06

The format of the operand is an option of the individual installation.
However, it is recommended that the first field not contain any alphanumeric
account number exceeding 12 characters. The operating system scans the field
looking for a comma and then takes the next nine columns to create a banner for
the execution report. If no comma is found before column 52, columns 52 through

60 are used for the banner. At least one $ IDENT must immediately follow the §
SNUMB card.

$ OPTION

1 8 16

$ OPTION Options

The $ OPTION control card is used to alter the standard loader options
during loading. It is placed after the $ IDENT card.

The operand field may contain one or more of the following options.
Standard options (those underlined) will be used when options are not specified.

MAP - A memory map will be produced.

NOMAP - No memory map will be produced.

CONGO = The job is executed regardless of any nonfatal errors detected
during loading.

GO - The job is executed only if no errors, fatal and nonfatal, are
detected during loading.

NOGO - The job is not executed after loading. When loading is com-
pleted, a slave memory dump is taken.

SET/N/ - Allocated memory is set to the octal pattern specified in (N)
(memory is normally set to zero). The number (N) may be any
octal pattern up to 12 octal characters ((N) will be
right-justified with leading zeros).

ERCNT/N/ = The number of fatal and nonfatal error messages, which are
printed, is limited to a total number (n) before loading is
aborted. The limit is normally set to 150.

SYMREF - SYMREFs used in each subprogram loaded are listed in the memory
map. This option may be set or reset at any time during loading.

NOSREF - No SYMREFs are printed.

JOVIAL - This option sets all options reguired for loading programs

generated by the JOVIAL compiler.

11-2 BS06

1. The options must be separated with commas.

2. The JOVIAL option must be specified for loading and executing JOVIAL
object decks.

3. Options may appear on the § OPTION control card in any sequence.

4, The $ OPTION control card must precede the object deck for which the
option is to take place.

5. For programs which include a mixture of JOVIAL with FORTRAN and/ox
COBOL modules, the elected option should correspond to the language
used for the main program. For example, if a FORTRAN main program
calls upon JOVIAL subprograms, $ OPTION FORTRAN is appropriate; if a
JOVIAL main program calls upon a FORTRAN subprogram, $ OPTION JOVIAL
is required.

§_JoviaL

1 B8 16

$ JOVIAL Options

The $ JOVIAL control card is used to call in the JOVIAL compiler. The
operand field may contain one or more of the following options. Standard options
{those underlined) will be used unless non-standard options are specified.

DECK - Produce a binary object deck for later execution.

NDECK - Do not produce a binary object deck.

LSTIN - Produce a listing of the source program.

NLSTIN - Do not produce a listing of the source program.,

LSTOU - Produce a machine language (GMAP) 1listout of the compiled
program.

NLSTOU -~ Do not produce a machine language (GMAP) listout of the compiled
program,

COMDK - Produce a compressed source deck of the input program.

NCOMDK -~ Do not produce a compressed source deck of the input program.

DEBUG - Produce a Debug Symbol Table for optional use by the system

loader at execution time.

11-3 BSO06

NDEBUG Do not produce a Debug Symbol Table.

SYMTAB - Produce a Set-Used Listing at compile time that is constructed to
indicate the occurrence of all program names, their statement
numbers, and whether the names are declared or used in particularx
statements.

NSYMTAB - No Set~-Used Listing is produced.

DUMP - Dump slave core if activity terminates abnormally.

NDUMP - Dump program registers, upper SSA, and slave program prefix if
activity terminates abnormally.

1. The opticns must be separated with commas.

2 Options may appear on the $ JOVIAL control card in any sequence.

3. The $ JOVIAL control card must immediately precede the JOVIAL source
program deck. If several JOVIAL source programs make up the job, each
must be preceded by a $ JOVIAL with the desired options for each
program.

4. If the source deck is punched using the IBM character set, a control
card, $ INCODE, must be placed between the $ JOVIAL control card and
the first card of the source deck. For FORTRAN, the operand field is
IBMF; for COBOL, the operand field is IBMC.

IR

=

SXECUTE

1 8 16

$ EXECUTE Option
The $ EXECUTE is used to request the loading of an object program,

The operand field may contain the word DUMP, which will force a memory dump
of the program if the execution does not terminate normally. The § EXECUTE
control card must appear after the main program and all subprograms to be
executed but prior to their data.

$ LIMITS

1 8 16

S LIMITS Time, Storage 1, Storage 2, Print Lines
The § LIMITS control card is used to extend standard activity limits.

Time - Specifies the maximum run time for the execution activity
expressed in hundredths of an hour. If the specified time is
exceeded, the job is aborted. The maximum value that may be
used in this field is 999.

11-4 BS06

Storage 1 - Denotes the maximum core storage requested for executing this
job. The units of storage are decimal digits representing
the number of words desired. (Actual memory allocation is
made in multiples of 1024 words.) The smallest reguest that
will be allocated is 1024 words.

Storage 2 - Indicates the amount of memory, assigned to a user job, that
may be shared with General Loader during loading. If all of
the memory requested in storage 1 will have data or other
information loaded into it by General Loader, then storage 2
will be omitted. Storage 2 will not be used with JOVIAL.

Print Lines - Specify the maximum number of lines to be writtem on SYSOUT
during program execution for later printing,
1. The $ LIMITS control card should follow the $ EXECUTE control card.

2. If no $ LIMITS control card is used for an execution, a standard set
is automatically provided. Standard limits for execution are:

3 minutes (.05 hundredths)
16k 16 x 1024 words
0 No Overlay
5000 Lines to SYSOUT
3. It is sometimes necessary, for extremely large compilations, to

increase the standard limit provided for compiling JOVIAL programs. To
do this, a $ LIMITS control card is placed immediately after the $
JOVIAL control card, ahead of the JOVIAL source program. It must be
remembered, this $ LIMITS control card has nothing to do with the
execution,
Standard compilation limits are:
.08 hundredths
28k 28 x 1024 words

0 No overlay

10000 Lines to SYSOUT

$ ENDJOB

1 8 16

$ ENDJOB Not Used

The $ ENDJOB control card is used to indicate to System Input that the job
being processed is a candidate for allocation and execution, provided errors
were not detected. If errors are detected, they are noted on the console
typewriter as they occur, System Input completes the processing, and the entire
job is deleted without being allocated.

The $ ENDJOB control card is the last card of every job.

11-5 BSO06

¥ % *EOF

1 8 16

***FEOF Not Used Not Used

The ***EQOF control card signals the card reader that an EOF status has
occurred and the card reader is released.

11-6 BSO06

APPENDIX A

JOVIAL COMPILATION ERROR MESSAGES

The following list containsg all current JOVIAL compilation error
and possible remedial action.

their meanings,

Error Message

ACTUAL=FORMAT PARAM LISTS DO

NOT AGREE

ARRAY EXCEEDS REASONABLE SIZE

BAD STATUS RELATIONSHIP

BAD XEC NAME

CIRCULAR DEF

COMPILER DUMMY BUFFER HAS

OVERFLOWED

COMPILER EXIT
OVERFLOWED

BUFFER HAS

COMPILER WORK BUFFER HAS

OVERFLOWED

COMPOOL FILE NOT PRESENT

COMPOOL FORMAT ERROR

CONFLICTING USE

messages,

Meaning and Action

The procedure or function call argument list
being processed does not agree in number with the

formal argument list description. The statement
is not compiled.

The space required for ARRAY 1is greater than
24,000, No space is allocated.

The status constant being compared to this status
variable is not one of the previously declared
legal values. The statement is not compiled.

The Terminal Action parameter is not a procedure
call or a zero. The statement is not compiled.

The expression being compiled contains a
redefinition (by the DEFINE declaration) which is
improperly constructed. The statement using this
definition is not compiled.

The compiler has exceeded the capacity of the

internal dummy buffer in this compile process.

The compiler has used up the allocated buffer
area for its recursive calls. Compilation is
terminated.

The compiler has exceeded the capacity of the
internal work buffer in this compile process.

No COMPOOL (.L) file has been allocated to this
activity Dbut a "COMPOOL" list has been
encountered.

An error in the COMPOOL (.L) file has been

detected while searching/processing an entry.

The variable being compiled is being used in an
improper context. The statement is not compiled.

BSO06

CONST OVFLO

FIELD TOO BIG

FILE NAME REQUIRED

FLOATING ITEM REQUIRED

ILLEGAL CHARACTER

ILLEGAL CONSEQ STATEMENTS

ILLEGAL CONVERSION

ILLEGAL DATA LENGTH PARAMETER

ILLEGAL FOR COMPOUND

ILLEGAL PRIMITIVE

ILLEGAL START BIT

ILLEGAL STATUS ASSIGNMENT

JUNK PROGRAM

LOOP CONTROL

MAX SYMBOL LENGTH EXCEEDED

MISSING ASTERISK

MISSING BEGIN

The exponent part of the constant being compiled
is larger than 2127, The exponent is set to zero.

An item has been declared too large for its type.
The declaration is not compiled.

An I/0 request has been found without a file name
in the parameter reserved for it. The I/0
statement is not compiled.

A floating point item 1is expected within a
floating point function. The statement is not
compiled.

A character input from the source deck is
illegal. It is ignored.

An "IF" or "IFEITH" statement is followed
immediately by a "FOR", "IF" or "IFEITH"
statement; or, a "FOR" statement is followed
immediately by an "IF" or "IFEITH" statement.
BEGIN-END construction should be used to separate
the consecutive statements.

In the assignment or exchange statement being
compiled, the data types are incompatible; that
is, no implied conversion is possible. The
statement is not compiled.

The parameter defining the length of the data in
the I/0 transfer is illegal. The statement is not
compiled.

An IF statement followed immediately by an END,
which is not associated with a FOR, is an illegal
construction. The IF statement is not compiled.

A name beginning with a prime character has been
encountered, but it is not among the allowable
primitives. The statement is not compiled.

An illegal attempt has been made to define a
literal field as starting at other than a byte
boundary (multiple of 6-bits).

The status constant being assigned to this status
variable is not one of the previously defined
legal values. The statement is not compiled.

A combination of errors so extensive that the
compilation cannot continue has been detected;
compilation terminates.

Multiple three-factor FOR statements are used in
parallel. Erroneous code may be generated.

A symbol exceeds 143 characters in length.

The asterisk (*) is omitted from the
exponentiation brackets. It is assumed.

There 1is an absence of a BEGIN in a PROG
declaration. The BEGIN is assumed,

A-2 BS06

MISSING DOLLAR

MISSING END

MISSING SLASH

MISSING START

MISSING TERM

MUL DEF

MULTI STA ERROR

MULTIPLE UNARIES

NAME NOT IN COMPOOL

NESTED PROC

NO PATTERN TABLE

NO PROC FOR RETURN

NOT IMPLEMENTED, PLEASE TRY
DIFFERENT CONSTRUCTION

NOT TABLE ITEM

NUMERIC TYPE REQUIRED

The dollar sign ($) is missing from a subscript
bracket or a statement terminator. It is assumed.

In processing a statement in which an END is
required, the compiler has encountered a symbol
that is not syntactically correct and that is not
an END. Or, the end of a program was reached
with a count of begins greater than the count of
ends. The effect on compilation depends on the
particular occurrence.

The slash (/) is omitted from the absolute value
brackets. It is assumed.

The START card does not appear first in the
JOVIAL program deck, It is assumed.

An end-of-file condition has been encountered on
the source (S*) file and no TERM $ statement has
been found.

The variable name currently being used has Dbeen
defined more than once in this program. Erroneous
references to this variable result.

This is a combination of errors in continuous
statements. The statements are not compiled.

Multiple arithmetic or Boolean unary operators
(-, +, NOT) occur in an expression, The
expression is evaluated as it stands.

A COMPOOL list contains a name that is not in
COMPOOL. The name is ignored.

The PROC statement being compiled is in the scope
of another procedure declaration. The PROC
statement is not compiled.

No pattern table was declared for this table,
which was declared as LIKE. The LIKE declaraticn
is not compiled.

A RETURN statement appears outside the scope of a
procedure declaration. The RETURN statement is
not compiled.

A compiler error is encountered which is probably
caused by an erroneous construction in the
indicated statement. If construction is altered
and compiler error persists, send dump to HISI,
PCO, Phoenix.

A name is subscripted that is not declared in a
table. The statement is not compiled.

A numeric argument is required during proce
of an absolute function. The statement 1is
compiled.

A-3 BS06

OVERLAY NAME ILLEGAL A name used in an overlay statement is not
allowed; or, a numeric has been encountered in a
subordinate overlay statement.

PARAMETER NOT PERMITTED IN

DIRECT CODE The arguments of a called procedure are
referenced within direct code. The statement is
not compiled.

PACKING REQUIRED A packing parameter is missing in the declaration
of a programmer specified table item.

PRECLUDED BY CONTEXT A comparison of the usage of this variable or
constant and its type indicates an inconsistency.
The statement is not compiled.

PRESET CONST ERROR Something other than a legal constant is in
PRESET LIST or there is a missing END, Remaining
preset constants are invalid.

RIGID TABLE - ILLEGAL TO SET

NENT The NENT of a rigid table is preset and cannot be
changed by the programmer. The statement 1is not
compiled.

SINGLE PRECISION MULT OVERFLOW,

SIGNIFICANT BITS LOST During the calculation of the indicated statement
consisting of single precision constants,
multiplication operation has returned a double
precision result. Since single precision is
indicated by the constant expression, the 36
least significant bits of the double precision
multiplication result will be saved and the most
significant bits will be lost. The compiler will
then continue processing the indicated statement.

SUBSCRIPT MULDEF The "FOR" loop variable being declared is already
defined in an open "FOR" loop.

SUBSCRIPT UNDEF INED The "FOR" loop variable used as a subscript does
not belong to an open "FOR" loop.

SUPERFLUOUS END There is an extra END or missing BEGIN in the
program, This can be an indication of possible
serious trouble. The effect on the compilation
depends on the particular occurrence.

SYNTAX An error is detected in the construction of the
statement currently being compiled. The statement
is not compiled.

TABLE ITEM NAMES NOT PERMITTED
"N DIRECT CODE A table item has been used in direct code. This
statement is not compiled.

TWO FEW ARGS The BIT or BYTE modifier being compiled does not
have any defining parameters. The statement is
not compiled.

TOO FEW ENDS END bracket(s) not found before end of program,

Compile terminates normally but results may not
be correct.

A-4 BsOe6

TOO FEW SUBSCRIPTS

TOO MANY ARGS

TOO MANY SUBSCRIPTS

UNDEF

WARNING-RECEIVING ARG SIZE
OF ZERO POSSIBLE FOR SPECIAL
VARIABLE

WARNING-THIS STA POSSIBLY
NON-ACCESSIBLE

$ IN COMMENT

XXXXX WORDS ADDITIONAL CORE

ALLOCATED FOR THIS
COMPILATION

The subscripted item being compiled has fewer
subscripts than were contained in its original
definition. The statement is not compiled.

The BIT or BYTE modifier being compiled has
than two defining parameters. The
not compiled.

more
statement is

The subscripted item being compiled has more
subscripts than were contained in its original
definition. The statement is not compiled.

The statement name currently being used has not
been defined in this program. Erroneous transfers
may result,

A JOVIAL special variable has been used in such a
way in the indicated statement that the receiving
argument for the data returned by the special
variable has an implied size of zero words. The
compiler continues execution, attempting to
generate code for the indicated statement.
Generated code may be bad.

Program statement is not accessible; statement is
flagged on compiled listing.

A § sign was encountered while processing a
comment, Everything up to the $ is considered a
comment, and the symbol after the $ is considered
the beginning of a new statement.

If more core is required for compilation than is
allocated, the compiler will request additional
core in 1024-word blocks. If requests are
satisfied as additional core is needed,
compilation will continue and this message will
appear at the end of compilation, advising the
programmer of the additional amount of memory
which was obtained during the entire compilation
process,

A-5 BS06

APPENDIX B

MACHINE LANGUAGE (GMAP) ERROR FLAGS

A list of error flags, which may appear on the left margin of an object code
listout, are as follows:

Flag Meaning
U Undefined symbol (s) appear in the variable field,
M Multiple defined symbol (s) appear in the location field and/or the

variable field.

A Address error. Illegal value or symbol appears in the variable field.
Also used to denote lack of a required field.

X Illegal index or address modification.

R Relocation error. Expression in the wvariable field will produce a
relocatable error upon loading.

P Phase error. This implies undetected machine error or symbols becoming
defined in pass two with a different value from pass one.

E (1) For DIRECT code, flags an illegal character in the E/0 field.

(2) For JOVIAL code, flags a statement which did not compile and for
which a MME GEBORT is inserted.

C Error conversion of either a literal constant or a subfield of a
data-generative pseudo-operation. Illegal character.

L Illegal operation.
T An assembly table overflowed not permitting proper processing of this

card completely. Table overflow error information will appear at the
end of testing.

B-1 BS06

First Octal Digit

Note

ENCODING OF SIGNS

Hollerith Encoding

Second Octal Digit

APPENDIX C

0 1 2 3 4 5 6
0 1 2 3 A 5 6
8 9 [# @ >
»| A B C D E F
H 1 &] (<
t J K | L M | N 0
Q R - $ *) ;
+ / S T U 4 W

First Octal Digit

(1) % indicates a blank space.

Transmission Encoding_

Second Octal Digit

0 1 2 3 4 5 7
V2NN B T B R PR B
C D E F G H J
K L M N 0 P R
S T U \ W X Z
)] - + < = >]
% (> 1 A #
0 1 2 3 4 5 7
8 9 i ; / =
BS06

APPENDIX D

JOVIAL LANGUAGE RESTRICTIONS

The following are language restrictions in JOVIAL:

® DUAL items are excluded.

® Medium table packing is treated like dense table packing.

® The J3X I/0 is implemented.

® GMAP assembly code (excluding all macro instructions) is the only

legal type of direct code.

® To conform with the conventions of the operating system, a $ must not
appear in column 1 of an input card.

® To conform with the conventions of the loader, procedure names for
which SYMREFs must be generated must not exceed six characters.

D-1 Bs06

APPENDIX E

JOVIAL USE MEMOS

This appendix contains a series of memos issued in response to JOVIAL user
problems. The intent is to update the appendix each time a new memo is issued.

USE MEMO 1

JOVIAL Source Passed Through CARDIN

Long literal items must be restricted to the space available on a single
line of TTY input.

If a user continues his long literal item to the next line he will end up
with a minimum of twelve embedded blanks din the long literal item thus
abrogating the item declaration. This will result in a syntax error,
multistation error, and a FO abort caused by the implied bounds of the
improperly expanded long literal item.

X

USE MEMO 2

Use Memo 2 is no longer applicable.

USE MEMO 3

Justification of Preset Data (Literals)

Simple Item - Preset data is right-justified within the declared field.
Any unused byte positions in the field and/or the
compiler—-allocated words are "filled" with blank
characters.

Ordinary Table Item - 1., Data is right-justified when the preset has fewer bytes
than the declared field. Any unused bytes are "filled"
with blank characters.

2. The declared field is right-justified in the
compiler~allocated field. (The declared field is a
given number of bytes but the compiler allocates the
minimum number of full words required.) Any unused
bytes (always preceding the preset) are "filled" with
blank characters.

E-1 BS06

Users are cautioned to use care in declaring and presetting items and
tables to ensure the proper positioning for later access of data. Data stored
into a declared field through use of the IOn statement is done only in full word
multiples and storage is begun at the location specified with the dn parameter
of the IOn statement. (See Section IX = I/0 Operations)

USE MEMO 4
Calls to External Subroutines

JOVIAL allows symbols to be of n length; however, GCOS constrains symbols
to a maximum of six characters.

Programmers are advised to utilize a maximum of six characters for any
JOVIAL symbol that is external to the user program. Violation of this rule, as
in the case of a missing external routine, will cause a TSX7 to a MME GEBORT to
be inserted as the first executable statement of the JOVIAL program to be
executed. The TSX7 is inserted by the Loader and is not a compiler malfunction.

USE MEMO 5

JOVIAL Binary on B*

To record the JOVIAL object (B*) file on magnetic tape the programmer must
ensure that the activity, in which he has declared B* as magnetic tape, has an $
EXECUTE card as one of the control cards.

If the $ EXECUTE card is omitted, the B* file will not be written.

USE MEMO 6
Maximum Length of Long Literal Items

A long literal item is defined as being more than six Hollerith characters.

The maximum length of a long literal item is twenty words or 120 Hollerith
characters.

Longer strings of data can be encoded through the use of concatenated table
items within a table entry.

E~-2 BS06

USE MEMO 7

IOn Statement Restrictions

Use of an IOn statement is restricted to the actual transfer of data, one
or more words. The user may not use zero as the number of words to Dbe
transmitted. The run time routine (JVLA) will indicate a buffer size error and
the I/0 will be ignored.

USE MEMO 8

JFEXIT - Program Abort

A $ USE .FEXIT/1l/ card may be used with a JOVIAL program to cause an
F7-abort to occur after program execution. It provides a method of obtaining a
core dump without inclusion of a MME GEBORT within the program when the program
would otherwise terminate normally.

The $ USE card is formatted as follows:

1 8 16

$ USE JFEXIT/1/

SAMPLE DECK SETUPS:

a. Compile and Execute b. Execute

$ SNUMB $ SNUMB

$ IDENT $ IDENT

$ OPTION JOVIAL $ OPTION JOVIAL

$ USE .FEXIT/l/ $ USE .FEXIT/1/

$ JOVIAL $ OBJECT

$ INCODE IBMF OBJECT DECK
JOVIAL SOURCE DECK $ DKEND

$ EXECUTE DUMP $ EXECUTE DUMP
DATA (if any) DATA (if any)

$ ENDJOB $ ENDJOB

E-3 BS06

USE MEMO 9

Maximum Amount of Preset Allowed for Table Items

TABLE item presetting is limited to 1024 words. Exceeding the limit will
recycle the table pointers to zero thus causing the loss of original preset
data. These restrictions apply to any single table item although it may occur
within many entries of the table.

(TABLE ITEM PRESET WORDS) (NUMBER OF ENTRIES) = WORDS OF Preset Data. (May
not exceed 1024.)

USE MEMO 10

Use Memo 10 is no longer applicable.

USE MEMO 11

Use Memo 11 is no longer applicable,

E~-4 BS06

APPENDIX F

TIME-SHARING JOVIAL

TIME-SHARING JOVIAL SUBSYSTEM

The time-sharing JOVIAL subsystem provides full

time=sharing

capabilities

with the JOVIAL language processor. The subsystem provides the time-sharing user

with all conventional time-sharing commands. The commands operate in the
environment in a manner compatible with other

subsystems.

A mechanism has been provided within the
which utilizes the batch JOVIAL compiler to
and perform a "pre-load” of the compilation results,
(H*) which is then loaded and
executive. The compilation and load process is a single activity which

leoadable

file

time=sharing

executed

time=-sharing JOVIAL
perform time=-sharing
resulting = in

under the

language

JOVIAL
processor

subsystem
compilations
a directly
time-sharing
involves

compilation and loading when a source program is submitted and a load~alone if a

binary file(s)

Commands

available

under

the

time=sharing JOVIAL

is submitted by means of the RUN command.

generation, modification, and utilization of JOVIAL programs and

Other commands involve program
are avallable:

commands

ABC
ACCESS
ASCASC
ASCBCD
AUTOMAT IC
BCDASC
BPUNCH
BPRINT
BYE
CATALOG
DELETE

DONE
EDIT
ERACE
FDUMP
GET
HELP
HOLD
JABT
JouT
JSTS
LENGTH

An explanation of each of these
System General Information Manual.

compilation=-execution

LIB
LIST
LUCID
NEW
NEWUSER
NOPARITY
OLD
PARITY
PERM
PRINT
PURGE
RELEASE

commands may

F-1

requests.

REMOVE
RESAVE
RESEQUENCE
ROLLBACK
RUN

SAVE
SCAN
SEND
STATUS
SYSTEM
TAPE

be found in

subsystem permit

data files.

The following

Time=Sharing

BS06

RUN COMMAND

The RUN command as used with time=sharing JOVIAL is different from most
other subsystem RUN commands in that it is a superset of these commands. The RUN
command in the time-sharing JOVIAL subsystem has the following format and

meaning:

RUN [H] [—-nnn:] fs = fh;fc (opts) flib # fe

where braces indicate optional fields and the following apply:

=nnn

fs

fh

causes the standard time-sharing header to be printed as the Jjob
begins to run., It is optional and, if omitted, the header will not
appear.

allows the user to specify the number of seconds he wishes to limit
the executing object program (not the compile and load activity) to
run. Execution time will be set to nnn seconds, where nnn is less
than or equal to 180. If omitted, unlimited program execution time
is allowed. Execution may be halted with the BREAK key.

is a set of file descriptors for input to the compiler and/or
loader. The set may consist of source codes as BCD card image files
(media code 3), time-sharing format source files (media code 6}, or
binary card image files (media code 1), or may consist of a single
file descriptor which points to a previously generated system
loadable file (H*). This field is optional, and if missing,
indicates that the current file (*SRC) is to be operated wupon. If
more than one file descriptor is desired (i.e., a compile and
necessary binary files of called subroutines or a series of binary
files to be executed) , multiple descriptors are
semicolon=-geparated.

must be included whenever the fh, fc, (opts), or flib options are
desired.

is a single file descriptor pointing to a random file into which
the system-loadable file (H*) produced by the loader will be saved
if the compilation is successful. If this field is absent, the H*
file is generated into a temporary file and released prior to the
program just compiled being placed into execution under the
time-sharing executive. The presence of this option is wvalid only
when the program indicated by the field fs, the time-sharing
library, and the user libraries (if any) are bindable (i.e., there
are no outstanding SYMREFs). If outstanding SYMREFs exist, the H*
file will be created and executable but any reference to an
unsatisfied SYMREF will cause an abort (the loader inserts a MME
GEBORT at unsatisfied references). The time=-sharing executive then
simulates an illegal operation fault.

Fe-2 BS06

e

fc

(opts)

must be included even when the fh option is omitted,

is a single file descriptor which points to a sequential file into
which the JOVIAL compiler is to place the binary (*C) result of an
indicated compilation. In this case, the field fg plus the
libraries need not indicate a complete program; i.e., individual or
collections of subroutines may be compiled and saved. This field is
optional and if missing, a C* file will not be generated.

is a set of options, contained within parentheses and
comma~separated, which are 1listed below. When omitted, the
underlined options are assumed.

LNO - the source input records are line=numbered beginning in column
1 and terminating with the first nonnumeric character.

NLNO - the JOVIAL source records are not line numbered.

GO - the program will be executed at the completion of compilation.
The object program will be saved if specified.

NOGO = the program will not be executed at the completion of the

compilation. If specified, the object program will be saved
(H*) but if not specified, only compilation will be done.

ULIB - File descriptors exist following the end of the options field

which 1locate wuser libraries. These libraries are to be
searched for missing routines prior to sending for them in the
system library.

NULIB - No user libraries are to be searched.

ASCII - character data to be utilized by the object program which is a

TIME =

result of this compile will be encoded in the 9-bit ASCII
character set; i.e., a time-sharing file or direct terminal
I/0.

BCD - character data to be utilized by the object program as a
result of this compile at execution time will be encoded in
6-bit BCD standard character set; i.e., a BCD file.

nnn - The batch compilation and/or the loader activity time limit
will be set to nnn seconds, where nnn is less than or equal to
180. If not specified, nnn will be set to 180.

nn - The batch compilation and/or the loader urgency will be set to

nn, where nn is less than or equal to 40. If not specified, nn
will be set to 40.

F-3 BSO06

flib

fe

CORE = nn = The batch compilation core requirement will be set to (1)

23k, nn 22; (2) nn + 6k, 22 nn 28; and (3) 23k,nn 28. The
loader core requirement will be set to nn + 6k, where nn
should reflect the size of the object program with the needed
library routines., The 6k reflects the space needed for the
loader., If not specified, nn will be set to 16,

This option is most useful in limiting or expanding the amount
of core allocated for the loader activity which follows
compilation and prepares the object program for time-sharing
execution. As noted, it is also useful if 28k 1is not large
enough.an allocation for the compilation, in which case the
allocation can be expanded to 34k.

REMO - Temporary files created for the batch process will be removed
from the AFT (Available File Table) after the termination of
the activity.

TEST = Test version of the JOVIAL compiler and/or the loader is to be
used for the batch activity. A file of the name JOVIAL4S
(which contains the test compiler) must be an accessed file
(in the AFT) before this argument is used in the RUN command.
If these two conditions are met, then the file JOVIAL49 will
be allocated as file code ** in the batch activity.

NAME = - This provides a name for the main link of the saved H* file.
It may be used both at the time of creation of this file and
subsequently as it is reused. The name is placed in the SAVE/
field of the $ OPTION card.

is a sequence of file descriptors pointing to random files containing
user libraries to be searched before the system library. These user
libraries must previously have been edited on the file as random system
library files by the object library editor. This field is optional but
must be present when the ULIB option is specified.

must be included whenever the fe option is desired.

is a set of file descriptors for files which will be required during
execution; i.e,, I/0 files. Each descriptor must specify a file name (or
an alternate name, if necessary) of the form nn, where nn ranges between
01 and 44 inclusive, This name, or alternate name, represents a logical
file code referenced by I/0 statements in the program. I/0 may be
terminal~-directed by specifying a descriptor in the form "nn". File
codes 05, 06, and 41-43 are implicitly defined for terminal I/O and need
not be mentioned in the RUN command unless I/0 through these file codes
is to be redirected to a file (see "Terminal I/0" below).

F-4 BS06

USAGE

For batch JOVIAL users, the BCD character set has been and is the way of
life. In the time-sharing environment, ASCII is the current character set. In
designing and implementing the time=-sharing JOVIAL subsystem, the need has been
to approach both worlds. Since both approaches have their particular advantages,
the user may now submit either ASCII or BCD source statements to the JOVIAL
compiler from either the time-sharing or batch environments. Before compile
time, the user is not required to specify the type of source to be submitted to
the compiler. but he is required to specify the desired orientation (ASCII or
BCD) for the object program which will result from the compile. If not
specified, the default in batch is BCD, and in time-sharing is ASCII.

From the time=-sharing JOVIAL subsystem, the user may enter a program from
the terminal and RUN it or he may RUN a program which has previously been saved
on a file. The saved program may be either ASCII- or BCD-type file. From the
batch environment, the user may submit a program in any of the wvarious methods
he now has available, including programs saved on files. These saved programs
may be of either ASCII or BCD form,

ASCII or BCD source files (programs saved on perm-files) supplied to the.
compiler in the batch environment are assumed to have no line numbers preceding
the source statements. If one wishes to compile in batch a source file with line
numbers (i.e., one created at the terminal), an additional control card must be
added to the deck setup within the compile activity. The additional card is the
$ SET control card and it must be used to set bit 15 of the switch word before
the compiler sees the source file. The format of the $ SET control card is as
follows:

1 8 16

$ SET 15

When running in the time=sharing JOVIAL environment, the object module will
normally have ASCII properties; i.e., it will accept and output data in ASCII
form only. If the user wishes the module to have BCD properties (i.e., accept
and/or output BCD characters), he has only to specify the BCD option on the RUN
command. When binding a JOVIAL program and various externally compiled
procedures, the modules may be of mixed modes; i.e., modules may have ASCII or
BCD or various combinations of properties (the only restriction is that a
particular module exhibit only one characteristic). They will run successfully
together, processing and outputting whatever mode designed for and communicating
with one another as procedures and main program normally communicate.

F-5 BS06

Note

All object modules, whether exhibiting ASCII or BCD
characteristics, work internally with the six~bit BCD byte
rather than the nine-bit ASCII byte. Therefore, it 1is
illegal to program in the JOVIAL source language for the
nine-bit ASCII byte when ASCII characteristics are desired;
i.e., program as usual with Hollerith characters. This
accounts for the reason why executing modules exhibiting
different characteristics can still communicate with one
another. The characteristics exhibited relate to the
specific I/0 routine library routines which are called from
within the compiled module(s).

When compiling in the batch environment, the object module will normally
have BCD properties; i.e., it will accept and/or output data in BCD form only.
If in the batch environment, the user desires the batch compiled object module
or modules to exhibit ASCII characteristics while executing, he is required to
add one additional control card, $ EQUATE, to the deck setup just prior to the $
EXECUTE card. The required format of the $ EQUATE card is

1 8 16

$ EQUATE LVIOT/.VIO/

Unlike the time-sharing environment, when binding together a main program
and procedures which have been compiled in batch for execution, the modules may
not exhibit mixed modes but must all be either BCD by default or ASCII by
choice., But the user may obtain the same ASCII-BCD mixed-mode data capabilites
in the batch environment at execution time as one has in the time-sharing
environment. At execution time, the user binds together object decks compiled
and saved in the time-sharing environment and exhibiting ASCII characteristics
with object decks compiled and saved either in time-sharing or batch
environments and exhibiting BCD characteristics. Such a procedure will allow the
executing program(s) to access both BCD and ASCII data.

BCD input/output capabilities in the time-sharing environment extend to
file and terminal I/O (i.e., routines with BCD characteristics can request from
or send to the terminal any desired information as well as writing and/or
reading file in a BCD format), but ASCII input/output capabilities in the batch
environment are restricted to file I/0. For maximum utility of both BCD and
ASCII files, a variety of on-line conversion routines exist in the time-sharing
JOVIAL subsystem for converting files between ASCII and BCD. All +the above
capabilities allow the user to compile and save C* files in both the batch and
time-sharing environments in either mode and later execute them in either
environment and be able to input properly to the modules and examine output.
fince there is no ASCII System Input or ASCII SYSOUT in batch, one cannot do
»SCII I/0 on standard system I/0 devices in that environment. Thus files 05, 06,
41, 42, and 43 cannot be linked to ASCII I/O routines in batch but a link can be
made to files =-- tape, disc, and drum.

F—6 BS06

With the inception of the time-sharing JOVIAL subsystem, ASCII files in
standard system format will appear. With the advent of the YFORTRAN system, a
file format for ASCII information which conforms in all ways to I/0 rules has
been defined. The new standard system format ASCII file is the format expected
in the ASCII environment. Data files in ASCII, and only data files (not source
files to be passed to the compiler for compilation), musct be converted from the
regular time-sharing format in which they were created at the terminal to the
new format before being utilized as data files for an object JOVIAL program.
This may be accomplished bv time~sharing command, ASCASC. The command converts
time-sharing ASCII format files to standard system format files and new standard
system format files (back) to time-sharing format files, based on the mode of
the input file to the command. The command is similar in all respects to the
BCDASC and ASCBCD commands, including all features, If ASCII 1is specified for
the object JOVIAL program mode, all output as well will be ASCII files in the
new standard system format unless output is directed to the terminal (in which
case the File and Record Control facility handles it directly). If the user at a
terminal wishes to examine an ASCII file written by an object JOVIAL program, he
must first convert it to the time-sharing format with the ASCASC command, after
which time he may examine the file at the terminal. However, if he wishes to use
it cdirectly as data to another ASCII mode program, he need not do any conversion
because it was created in a proper format for direct wusage by JOVIAL ASCII
modules.

Note
Direct terminal input does not have to be converted if data
is entered in direct response to the data call equals sign,

(=); the File and Record Control facility handles the data
directly.

FILE CHARACTERISTICS

Compile =~ Batch

BCD Files = Standard System Format (media code 3)

ASCII Files - Time-sharing Format (media code 5)

Compile - Time=sharing

BCD Files - Standard System Format (media code 3)

ASCII Files =~ Time=-sharing Format (media code 5)

Batch I/0 (Object Program)

BCD Files - Standard System Format (media code 3)
ASCII Files - Standard System Format (media code 6)

Binary Files = Standard System Format (media code 1)

F-7 BS06

Time-sharing I/0 (Object Program)

BCD Files - Standard System Format (media code 3)

ASCII Files -~ Standard System Format (media code 6)

Binary Files - Standard System Format (media code 1)

RUN EXAMPLES

1

e

[0%]

RUN
Current *SRC JOVIAL source file will be compiled and executed.

RUNH~-20 JV001l=HSTAR;CSTARL (ULIB) BCDIO;
ASCIO#INPUT" 01" ; OUTPUT" 02"

JOVIAL program file JV00l is to be compiled and executed. The H* will
be saved on file HSTAR and the C* on file CSTARL. For the execution,
the user libraries BCDIO and ASCIO will be scanned for outstanding
SYMREFs in JV00l. ASCIO contains routines which perform ASCII I/0 and
BCDIO contains routines which perform I/0 through logical file codes 01
and 02 which have been given alternate names here, in the AFT, of INPUT
and OUTPUT (files which actually exist). A header will precede the
execution report and the object program will be limited to 20 seconds
of execution time.

RUN # "10"

Current *SRC file will be compiled and executed and input or output
directed through logical file code 10 will be directed to/from the
terminal.

RUN # INPUT "05"

Current *SRC file will be compiled and executed and input normally
requested from the terminal (file code 05) will be channelled from file
INPUT instead.

RUN JV002=HSTAR (NOGO,NLNO)

JOVIAL file JV002 will be compiled and the H* saved on the file HSTAR.
File JV002 has no source statement line numbers.

RUN BCDIOM=;CSTAR2 (BCD,NOGO)

JOVIAL file BCDIOM will be compiled and the C* will be saved on the
file CSTAR2. It is desired that the object program have BCD
capabilities. The compiled program will not be executed and the H* will
not be saved.

RUN HSTAR

Execute a previously bound and saved H* file. The HSTAR file has no
outstanding SYMREF and does only terminal I/0.

F-8 BS06

8. RUN =(NLNO)#TAP"01";DISC"02" ;DRUM"03"

Compile and execute the current *SRC file which has three logical file
codes: 01,02, and 03. These file codes are equated to actual files TAP,
DISC, and DRUM which exist and have or will accept data.

9. RUN WRKBCD= (BCD) #INPUT"05"; OUTPUT" 06"

Compile and execute the JOVIAL program WRKBCD and desire the object
program to have BCD capabilities. WR KBCD has input (05) and output (06)
normally directed to the terminal but instead are here redirected to
the BCD files INPUT and OUTPUT.

10. RUN=60 =HSTAR(TIME=60,CORE=16,URGC=05,ULIB) SEARCH
Compile and executed the current *SRC file. Limit the compile time to
60 seconds, the core size to 16k, and urgency to 5. This limits the
object program execution time to 60 seconds. Finally, the user library
SEARCH is to be searched for outstanding SYMREF in the *SRC program.
The bound H* file is to be saved.

1l. RUN STEP;CSTAR1;CSTAR2

Compile and execute the JOVIAL program file STEP and bind it with two
previously saved C* files: CSTAR1 and CSTAR2.

12, RUN *;CSTAR1;CSTAR2
Compile and execute the current *SRC file and bind it with two
previously saved C* files: CSTAR1l and CSTAR2,
Note
As in many of the examples above where files are referenced in the RUN
command, users should remember to access these files (put them in the
AFT) before typing the RUN command. I/0 requests to unaccessed files

trigger time-sharing GFRC to output the message:

FILE fc NOT IN AFT. ACCESS CALLED

"fc" is the referenced file code. The time-sharing subsystem ACCESS is
then called to guery the user. The execution continues when the user
exits from ACCESS. Prior accessing of files creates better RUN
efficiency.

F-9 BS06

ACCESSING THE TIME-SHARING JOVIAL SUBSYSTEM

The time-sharing JOVIAL subsystem is a system-level language processor.
Therefore, it can be entered at the system level by responding to the guestion
as below:

SYSTEM? JOVIAL

Once having responded this way, all previously described commands are
available in the subsystem, including the special RUN command. JOVIAL programs
can be built and then compiled and executed once in this subsystem. It must be
noted, however, that JOVIAL programs can be compiled and executed only with the
RUN command peculiar to the subsystem JOVIAL (except for the terminal-batch
interface through CARDIN). RUN commands within other language subsystems are not
designed to accommodate JOVIAL compiles and executions.

TERMINAL I/0

The object program, the result of a JOVIAL compile, is placed in execution
under the time-sharing executive by the RUN subsystem. Once in execution, the
user can dynamically interact with the program in the time~sharing JOVIAL
subsystem. Communication is accomplished through time=-sharing I/0 -- a special
version of File and Record Control routines designed to allow dynamic
interaction through the terminal. The next few paragraphs are intended as an
introduction to means of interfacing with the executing object program through
time~sharing I/0.

Time-sharing I/0 has several special file codes which are implicitly
defined for terminal I/0 unless purposely directed elsewhere., They are:

"05" terminal input
"06" terminal output
"41" terminal input
"42% terminal output
"43" terminal punch.

As seen earlier in a RUN example, other file codes may be forced to the
terminal for I/0 although not implicitly defined as such.

When, in a JOVIAL program, the user requests terminal I/0, time-sharing I/0
will reflexively read input from the terminal. The equals sign will be issued
before the user inputs his response to satisfy the request. A carriage return
response only sends null input (blanks) back to the object JOVIAL program. A
carriage return following data signals the end of the current record of input.
The special character "CONTROL-SHIFT-L" followed by a carriage return as
response to an equals sign signifies an end-of-file on input.

For purposes of example, terminal I/O may be thought of as card I/0. There
are a maximum of 72 characters which may be reqguested per line and a maximum of
72 characters which may be output per line., Assume the object program of the
following source executing:

PROGRM VIOTST
START
ITEM BUFF H 72 §$
FILE READ V(OK) V(NULL) RO5 §
FILE PRNT V(OK) V(NULL) RO6 $
IN(1,READ) $ OUT (L,PRNT) §
XX. I0 @1(0,READ,0,BUFF,12) $
IF READ EQ V(EOF)$ GOTO YV &
I0 $2(3,PRNT,0,BUFF,12) $§ GOTO XX $
YY. OUT (2,PRNT) $ IN(2,READ) $
TERM $

Terminal interaction through time-sharing I/0 with this program while
executing might look like the following:

*RUN —
=ABCDEF -——————"] @
1/0 (user inputs logical record)™
prints
ABCDEF
I1/0 returns output

[0l @@=

(user inputs null line)
(null line)

I/0 outputs

={ CONTROL -
SHIFT

L

I/0
prints

NORMAL TERMINATION Program takes appropriate
EOF action

F-11 BS06

PAPER TAPE I/0 IN TIME-SHARING JOVIAL

This option applies to both ASCITI and BCD capabilities. On all read
statements issued to the terminal, paper tape input may be substituted.

Output directed tc file code 43 (punch file) and directed to the terminal
can be punched on paper tape. The user should prepare a leader on the tape and
turn the paper tape punch on. The punch routine will properly format the tape
from that point on.

To accomplish data input from paper tape, the tape lever must be set to the
start position. Data on the tape should adhere to the rules for entering data
from the terminal. A carriage return, LINE-FEED, RUBOUT must follow each line of
input data.

Restrictions
1. Attempts to direct binary I/0 to the terminal will result in an abort

with an appropriate message.

2, Attempts to REWIND or write an end-of-file on file codes 05, 06, 41,
42, 43 will cause an abort with an error message.

Time-Sharing Abort Messages

l. GET CODE 5 - fc Variable record size is zero.

2, PUT CODE 4 - fc Current logical record larger than buffer.
(JOVIAL, though, will partition when it can).

3. TELETYPE O/P NOT File media code not 6.
ASCII ON = fc

4, CLOSE CODE 3 = fc File to be closed is not in logical unit
table chain.

5. FILE SPACE EXHAUSTED = fc Attempts to grow the file being written have

failed.
6. PUTSZ CODE 2 - fc New size larger than available buffer space.
7. BACKSPACE ERROR = fc A bad status has been returned after attempt

to backspace, or, file is random, or file is
not open, or file has no EOQOF.

8., READ ERROR - fc Bad status returned after DRL to read file.
9. WRITE ERROR - fc¢ Bad status returned after DRL to write to a
file.

F-12 BSO6

FAULTS IN TIME-SHARING EXECUTION

Overflow and divide checks are processed by the library fault processor.

Op code, memory, and tag faults are trapped and one of the following
messages printed before the abort:

OP / MEMORY / TAG FAULT

The location of the fault may be obtained by routing the core dump file to
an "ABRT" file and snapping the fault vector locations from this file. See
Time-Sharing System—-Programmer's Reference manual, on DRL ABORT.

MME faults are detected and the message is printed:

MME FAULT

INTERPRETING ERROR DIAGNOSTICS

Special mention must be made of error diagnostics to avoid what might be a
potential problem for the time-sharing JOVIAL user. After the compilation of a
JOVIAL program, any source errors recognized by the compiler in the program are
returned to the user and listed at the terminal before the program is placed in
execution or the compile and load activity is terminated. Errors output from the
compiler are displayed in the following formats:

ERROR. ...STA XXXX Diagnostic of usage error

ERROR. .STA, . XX XX Diagnostic of syntax error

The diagnostic informs the user that an error occurred at a specified
statement number in the JOVIAL program and that the error is of the type

described in the message. Refer to Appendix A for a list of compilation
diagnostics (error messages).

F-13 BS06

The statement number given in the error diagnostic is not necessarily a
source statement line number which usually begins each source code line created
at the terminal. The statement number instead refers to a specified JOVIAL
source statement. It is, at times, likely that a JOVIAL source statement may not
fit on one line; it can therefore be extended to the next 1line(s), or the
statement may, at will, be spread out over more than one line. It is also
possible that more than one JOVIAL source statement may appear on one given
line. For these reasons, it is obvious that the source code line number is not
necessarily the same as the JOVIAL statement number. Further, JOVIAL source
statements are numbered beginning with the START statement, given the number
0000, and incremented by one for each successive JOVIAL source statement
encountered, To locate a statement in error in a program, the user counts down
in the program listing the number of JOVIAL source statements specified in the
error diagnostic, beginning with the START statement as statement zero. For
example, given a user's time=sharing JOVIAL program containing the following:

0oo0lo0 PROGRM TEST

00020 START

00030 TABLE TABA V 5 P $

00040 BEGIN ITEM TAA A 10 8§ 5 §

00050 BEGIN 1.0A5 2.02a5 3.00A5 4.0A5 END
00060 ITEM TAB A 20 S 5 3

00070 BEGIN 1084 .80A5 1084.89A5 END

00080 ITEM TAC A 10 8§ 5 §

00090 BEGIN -8.0A5 END

00100 DEFINE IFEITHER "IFEITH" §$

® .

When the RUN command is given, the following error diagnostic is generated:

ERROR. .STA..0005 MISSING END

There is no matched END for the BEGIN in line number 00040; the required
END should be inserted as statement 0005 (line number 00100).

The correlation between line numbers and statement (STA) numbers of this
sample program are as follows:

Line Numbers Statement Numbers
00020 . 0000
00030 0001
00040 0002
00050 0002
00060 0003
00070 0003
00080 0004
00090 0004
00100 0005

P-14 BSUG

TIME-SHARING JOVIAL SOURCE PROGRAM RESTRICTIONS

Source programs for time-sharing JOVIAL must adhere to

the

following

Line lengths (including line number) cannot exceed 72 characters.

COMDK source input is allowed.
alter cards to update COMDKs are allowed.
COMPOOL generation (GENCOM) is allowed.

dynamic patching for the compiler is permitted.

restrictions:
1.
2., No
3. No
4. No
5. No
6. No

STC (Standard Transmission Code) encoding is allowed.

BSO06

e

APPENDIX G

SYSTEM EDITOR INTERFACE

Version 49 of the JOVIAL compiler interfaces and interacts with the System
Editor in a manner that allows the user to do source and object level edits and
has the ability to create a variety of libraries and system files. Users are
directed to the System Library Editor manual for detailed explanation of the
various editing capabilities,

BS06

Q;J
b

APPENDIX H

JOVIAL COMPILE ABORT CODES

The following are JOVIAL compiler abort codes and their explanations.

Code

Vo

vl

V2

V3

v4

V5

Explanation

Compiler error abort. Fatal error is encountered when processing
direct code.

Compiler error abort. An alternate construction of the indicated
statement will probably allow it to compile.

Object program abort. The JOVIAL compiler generates a MME GEBORT
when replacing an erroneous JOVIAL statement.

Compiler memory exhausted abort. The compiler needs more storage
and its requests for additional memory have been denied. Therefore,
additional space is not available to continue compilatidn.

Compile activity has completed and preparation for the loader
activity (binding the object H*) has aborted because not enough
core is available to satisfy the CORE specification on the RUN
command. The H* file will not be bound but, if on the RUN command a
request was made to save a C* file, the C file for the object
JOVIAL program will be created. The object program will not be
placed in correction.

Compiler error abort. Fatal error; an illegal construct has been
encountered.,

H-1 BS06

APPENDIX I

CROSS~REFERENCE TABLE

The JOVIAL cross-reference table is an alphabetized listing, by symbol, of
a JOVIAL program's simple items, tables, table items (TITEM), arrays, files,

statement labels,

procedures (PROC), functions (FUNC), closes, and switch names.,

Each reference includes the following:

Symbol

Type

Address

References

The first 12 characters of the referenced name are included.
Those constructs with more than 12 characters are shown
truncated.

If the construct is an array, item, table, table item, file or
procedure, the programmers are so informed. Statement labels,
switch labels, constructs defined within procedures, and
external procedures are not identified under type.

Addresses relative to the generated code are supplied for
items, tables, arrays, files, and locally defined procedures.
Externally defined procedures have their symref numbers in the
address field. Table items, constructs defined within a
procedure, and statement labels currently do not contain
addresses.,

Items extracted from a compool segment have the prefix "CP" on
its address field. The address, if present, reflects its
location relative to the origin of the labeled common area in
which it is contained.

The references are JOVIAL source statement numbers. Statement
numbers contained by asterisks (e.g., *12*%) indicate that the
referenced construct was declared within that statement.
Numbers contained by dashes, (e.g., =12-) indicate that the

value of the construct was set or re-set. All other numbers
indicate that the construct was used in some fashion, but that
its value was unchanged. Procedures that have no declaration
reference are identified as external procedures and their
address field contains a symref number.

The JOVIAL cross-reference table 1s automatically generated for any JOVIAL
source program whenever the SYMTAB option is invoked on the $ JOVIAL control

card.

I-1 BS06

INDEX

$

$ ENDJOB 11-5

$ EXECUTE 11-4

$ IDENT 11-1

$ JOVIAL 11-3

$ LIMITS 11-4

$ OPTION 11-2

S SNUMB 11-1
!'PROGRAM

'PROGRAM DECLARATION 6-6
* **EOF

X% *EOF 11-6
ACCESSING

ACCESSING THE TIME-SHARING JOVIAL SUBSYSTEM F=10
ARITHMETIC

Arithmetic Operators 2-1
ARRAY

ARRAY DECLARATION 6-12
ASSIGN

Assign Statement 7-3

assign statement combinations 42
ASSIGNMENT

ASSIGNMENT STATEMENT 4-1
BATCH

Batch I/0 F=7

Compile -~ Batch Fe7
BODY

procedure body 7-8
BOOLEAN

Boolean 2-5

Boolean values 2=5
CLOSE

CLOSE DECLARATION 7-5

i=-1 BS06

CODE
DIRECT CODE
DIRECT CODE RESTRICTIONS AND CONVENTIONS
Object Code Listing
Source Code Listing

CODING
input/output coding

COMMUNICATIONS
COMMUNICATIONS POOL

COMPILE
Compile = Batch
Compile - Time-sharing

COMPOUND
COMPOUND STATEMENT

CONSTANTS
CONSTANTS

DATA
PRESET DATA LISTS

DEBUG
DEBUG OPTION

DECLARATION
'"PROGRAM DECLARATION
ARRAY DECLARATION
CLOSE DECLARATION
DEFINE DECLARATION
declaration list
FUNCTION DECLARATION
LIKE Table Declaration
MODE DECLARATION
Ordinary Table Declaration
OVERLAY DECLARATION
PROCEDURE DECLARATION
Specified Table Declaration
STRING Table Item Declaration
TABLE DECLARATION
Symbols Relating To Table Declarations

DEFINE
DEFINE DECLARATION

DEVICE
Device Manipulation

DIAGNOSTICS
INTERPRETING ERROR DIAGNOSTICS

DIRECT
DIRECT CODE
DIRECT CODE RESTRICTIONS AND CONVENTIONS

DUMP
dump formats

ENCLOSURES
Enclosures

=
o (=)}
H i
I 6]

A OO OO AN
LI I I N T R A O T B R B
NORRENNEHENREOOUUTOTEO
o = i o

(o2}
i
u

BS06

ENDJOB
$ ENDJOB

ERROR
INTERPRETING ERROR DIAGNOSTICS

EXCHANGE
EXCHANGE STATEMENT

EXECUTE
$ EXECUTE

EXTERNAL
external subroutines

FILE
FILE CHARACTERISTICS
FILE OPERATIONS
FILE STATEMENT

FIXED
Fixed point item
Fixed values

FLOATING
Floating point item
Floating values

FORMATS
dump formats

FUNCTION
FUNCTION DECLARATION
FUNCTIONS

GOTO
GOTO STATEMENT

1/0
Batch 1/0
PAPER TAPE I/0 IN TIME~SHARING JOVIAL
TERMINAL I/0
Time-sharing I/0

IDENT
$ IDENT

IFEITH
IFEITH STATEMENT

INPUT=-OQUTPUT
input=output parameters

INPUT/OQUTPUT
input/output coding

INTEGER
Integer item
Integer values

ION
IOn STATEMENT

11-4

7-10

BS06

ITEM
Fixed point item
Floating point item
Integer item
ITEM DESCRIPTIONS
ITEM switch
Simple Item
STRING Table Item Declaration
Literal items
Status items

LANGUAGE
SOURCE LANGUAGE FORMAT

LIKE
LIKE Table Declaration

LIMITS
$ LIMITS

LIST
declaration list
Object Code Listing
Source Code Listing

LISTINGS
PROGRAM LISTINGS

LISTS
PRESET DATA LISTS

LITERAL
Literal
Literal items
Literal values

LOGICAL
Logical Operators

MODE
MODE DECLARATION

NAME
procedure name
STATEMENT NAME

NUMERIC
Numeric
Numeric values

OBJECT
Object Code Listing

OCTAL
Octal
Octal values

ONE-FACTOR
One-factor FOR statements

E RSN ol e el SESE S

[|
(=]

BS06

OPERATIONS
FILE OPERATIONS

OPERATORS
Arithmetic Operators
Logical Operators
Relational Operators

ORDINARY
Ordinary Table Declaration

ouT
OouUT STATEMENT

OVERLAY
OVERLAY DECLARATION
Tables and Subordinate Overlays

PAPER
PAPER TAPE I/0 IN TIME~-SHARING JOVIAL

PARALLEL
PARALLEL table

PARAMETERS
input=~output parameters

POINT
Fixed point item
Floating point item

POOL
COMMUNICATIONS POOL

PRESET
PRESET DATA LISTS

PROCEDURE
PROCEDURE DECLARATION
procedure body
procedure name

PROGRAM
PROGRAM LISTINGS
SOURCE PROGRAM FORMAT

TIME-~SHARING JOVIAL SOURCE PROGRAM RESTRICTIONS

RELATIONAL
Relational Operators

RESERVED
Reserved JOVIAL Words

RUN
RUN COMMAND
RUN EXAMPLES

SEPARATORS
Separators

~ ~1~3
!
~J 00 ~J

%@?ka
=W

2=2

BSO6

SERIAL
SERIAL table

SIGNS
SIGNS

SIMPLE
Simple Item

SNUMB
$ SNUMB

SOURCE
SOURCE LANGUAGE FORMAT
SOURCE PROGRAM FORMAT
Source Code Listing

TIME-SHARING JOVIAL SOURCE PROGRAM RESTRICTIONS

SPECIAL
SPECIAL VARIABLES

SPECIFIED
Specified Table Declaration

STATEMENT
ASSIGNMENT STATEMENT
Assign Statement
assign statement combinations
COMPOUND STATEMENT
EXCHANGE STATEMENT
FILE STATEMENT
FOR STATEMENT
GOTO STATEMENT
IF STATEMENT
IFEITH STATEMENT
IN STATEMENT
IOn STATEMENT
OUT STATEMENT
STATEMENT NAME
STOP STATEMENT
SWITCH STATEMENT
TEST STATEMENT
WAIT STATEMENT
One-factor FOR statements
Three~-factor FOR statements
Two-factor FOR statements

STATUS
Status
Status items
Status values

STOP
STOP STATEMENT

STRING
STRING Table Item Declaration

SUBORDINATE
Tables and Subordinate Overlays

SUBROUTINES
external subroutines

6-6

&
H
-~

w&nuawcrfsf-?\f%:?«ntﬁa-m\oa-ha>\xh
]
BOLO R O B U1 UT R e b b e N o OY R L B

BS06

SWITCH
ITEM switch
SWITCH STATEMENT

SYMBOLS
Symbols Relating To Table Declarations

TABLE
LIKE Table Declaration
Ordinary Table Declaration
PARALLEL table
SERIAL table
Specified Table Declaration
STRING Table Item Declaration
Symbols Relating To Table Declarations
TABLE DECLARATION
Tables and Subordinate Overlays

TAPE
PAPER TAPE I/O IN TIME-SHARING JOVIAL

TERMINAL
TERMINAL I/0

TEST
TEST STATEMENT

THREE-FACTOR
Three-~factor FOR statements

TIME~-SHARING
Compile = Time-sharing
Time-~sharing I/0

TIME~SHARING JOVIAL
ACCESSING THE TIME-~SHARING JOVIAL SUBSYSTEM
PAPER TAPE I/0 IN TIME-SHARING JOVIAL
TIME-SHARING JOVIAL SOURCE PROGRAM RESTRICTIONS

TRANSMISSION
Transmission

TWO-FACTOR
Two=-factor FOR statements

TYPE
Type Descriptor

UNDECLARED
undeclared variable

VALUES
Boolean values
Fixed wvalues
Floating values
Integer values
Literal values
Numeric values
Octal values
Status values

VARIABLE
undeclared variable
SPECIAL VARIABLES
VARIABLES

P
[

L]
o

[l e Mo 0+ 0o) o2 W« s 0N 4 o)
i
OWAHANHFHE-N~NOI -

6-4

NN DN
i
[N NG, INC, NG, O, IO,]

wwo
1
(VR SIS

B506

WAILT

WAIT STATEMENT 9=6
WORDS
Reserved JOVIAL Words 2=4

i-8 BS06

e

Honeywell Bull

HONEYWELL INFORMATION SYSTEMS

BS 06, Rev. 1

Repro-Service 8-73

