FORTRAN
ADDENDUM A

SERIES 600/6000

SOFTWARE

SUBJECT:

additions and Changes to Series 600/6000 FORTRAN.

SPECTAL INSTRUCTIONS:
This update, Order Number BJ67A, is the first addendum to BJ67, Rev. 1,
dated March 1973. The attached pages are to be inserted into the manual as
shown in the collating instructions on the back of this cover. Change bars

in the margins indicate technical additions and changes; asterisks

indicate deletions. These changes will Dbe incorporated into the next
edition of the manual.

NOTE: This cover should be inserted following the manual cover to
indicate the updating of the document with Addendum A,

SOFTWARE SUPPORTED:

Series 600 Software Release 8.0
Series 6000 Software Release F

DATE :

July 1973

ORDER NUMBER:

BJ67A, Rev, 1

Printed in France

Ref : 19.30.222 a1

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

vii, viii
xi, xii
2-3, 2-4

3-31 through 3-34
3-43, 3-44

4-1 through 4-4
4-19 through 4-24
4-27, 4-28

4-41 through 4-44
4-53, 4-54

4-63, blank

5-13, 5-14

5-17, 5=18

5-21, 5=22

6~5, 6=6

6-9 through 6-12

6-13, 6-14
6~21, 6-22
6-29, 6~30
6-37, blank

A-1, A-2
B-1, B-2
B-25, B-26

B~27, blank
c-3, C-4

Insert
vii, viii
xi, xii
2-3, 2-4

[t B A
- = 0~
(o8]

i

=]

x

3-22

3-31 through 3-34
3-43, 3-44

4~1 through 4-4
4~19 through 4-24
4-27, 4-28

4-41 through 4-44
4~53, 4~54

4~-63, blank

5-13, 5-=14

5-17, 5~18

521, 5=22

6-5, 6=-6

6-6.1, blank

, 6=10

1. blank

1.1, 6-12

, 6-14
, 6=22
, 6-30
, blank
.1, 6=37.2
, blank

[oale)ie)Werie)Supley]
L

i H
WWwWwhNEFHY
NN o W

wtﬂUJ?ZVONG

FORTRAN is a coded program designed to extend the power of
in the area of program preparation and maintenance.

is supported by comprehensive documentation

Series

It

and training; periodic

program maintenance and, where feasible, improvements are furnished
for the current version of the program, provided it is not modified

by the user.

GD 1973, Honeywell Information Systems Inc.

7/73

Republique Cople 02-74

File

NO.:

1623,

1723

BJ67A

Section I

Section ITI

CONTENTS

Introduction. « « « s = o o o o« s o o =
General. o « o o 5 o s o o o o o o o
Capabilities e e e e o

Comparison of FORTRAN Compatlbllltles

Rules and Definitions . . « o o o o o =
Character Sets o o « o o o o o o o «
Special Characters. . . « « o o o«
Source Program Format. « o« « o « o o
Source File Types . « o o « o o =

Relationship of Statements to Lines

Format Rules for Lines.
FORM Formatted Lines
NFORM Formatted Lines - NLNO .
NFORM Formatted Lines - LNO., .

Format Rules Common To FORM/NFORM

Symbol Formation . . « o &« & o o »
Data TYPES ¢ « o o o o 5 o o s o o =
ConstantsS. « + o o o o o o « o o & =

Integer Constants . .« « « « o o &

Octal Constants . . « & & « o o

Real ConstantS. « « o o o o« o« & o

Double Precision Constants. . . .

Complex Constants . . + « « « o &

Logical Constants . .+ « « « « & o

Character Constants . « « « « « =«

Variables. e e o & o o o

Variable Type Deflnjtlon. e o e

Scalar Variable . « « « o « o &

External Variable . o+ o« & o & o o«

Parameter Symbols « « .« .

Character Variable. . . « & + « &

AFXYay « o o e o o o o o o o o o

Array Element o o « o o &

SubscriptSe « ¢ o & 2 s s 4 s o o

Form of Subscript + o« « o « o «

Subscripted Variables . . . « . .

Array Element Successor Function.

Array Declarator. « « o o o+ o o o

Adijustable Dimensions . . . « o .

EXPressions. . « o o o o o o s o o

Arithmetic. . « & ¢« ¢ o o o o o &

Logical o &« & o &« & o & « o « o

Relational. . & & & & & « « &« o &

Typeless. o« & o & & « « o o o o

Evaluation of Expressions

Unary Operators . + « o o o o o @

FORTRAN Statements « .

Types of FORTRAN Statements e e

Arithmetic Statements

Control Statements. . « + + o o .

Input/Output Statements

vii

®

)
i)
Q
o

[JE T T R T S A |

[J T T T N T A | H
0 000U U DWW R N

o

o

NN NDNODNDNDNDNDND NN R
i i

i
b
o

2-12
2-12
2-13
2-13
2=13
2-13
2-13
2-14
2—14
2=-14
2~14
2-14
2~15
2-15
2-16
2~-16
2-17
2~17
2-19
2-20
2-22
2-22
2-23
2-23
2-23
2-24
2=24
2-24

BJ67

CONTENTS (cont)

Subprogram Statements . . . o & o .
Specification Statements. . . .

Compiler Control Statement. . . . « « « » « & 2-25
Index of Statements . . . « + ¢« o« & s o o « o 2=-25
Section IIT User Interfaces . o + o o o o o s o o o o s o s o o -
Batch Mode o . ¢ ¢ ¢ o o o o o s s o s s o o o & -
Batch Call Card e e e e e

Sample Batch Deck Setup . . .+ . « .
Time Sharing System Operation. . . « « ¢ o « o o
Time Sharing System Command Language. .
Time Sharing Commands of the YFORTRAN and
FORTRAN Time Sharing Systems . . 3-4
Log=0n ProceduX@. « « « o o s o o o o o o o = 3-6
Entering Program-Statement Input. 3-8
3-8

3-9

© ® e ®

® ® B ® ®

Format of Program-Statement Input .
Significance of the Control Character. .
Blanks (or Spacing) Within a Line of

a s o ° ®

INPUL o« o o o o o o o o o« o & a2 s o o 3-10
Correcting or Modifying a Program . . « .« . . 3-11

Input Error RECOVELY. o « o « o o o o o « o o 3-12
The YFORTRAN Time Sharing System RUN Command. 3-12

The FORTRAN Time Sharing System RUN Command . 3-15
Information Common to the FORTRAN and

YFORTRAN Time Sharing Systems. . . . « o« o 3-18
Specify RUN Command as First Line of Source

File o o o o o & s e e s e s e e e s e e e 3-20

RUN ExampleS. o o o o o o o o s o o o o o o 3-21
Batch Activity Spawned by the YFORTRAN

Time Sharing System RUN Command. . . . « =« 3-22
Time Sharing System RUNL Command. . . « « » o 322
% Example of a Time Sharing Session 3-22.4
Supplying Direct-Mode Program Input 3-23
Emergency Termination of Execution. 3=-24
Paper Input. o « o o o o o « = ¢ o o o @ 3-24

Remote Batch Interface . . ¢« « &« o o o
File System Interface.+ o « + o &
Terminal Batch Interface . . ¢ « « o ¢ « o @
ASCII/BCD Considerations . . « o « « o

File Formats . « o « o & o o o a 2 o @
Global Optimization, . + « ¢ o o o« o =
Compilation stin and Reports« .

s
°
N
s
B
L)
i
[3e)
>

3
H

.
.
®
B
.
W L W
Y U U b

i
RN NN

Scurce Program Listing.« .
To-From Transfer Table.
Program Preface Summary . « « « » =
Storage Map . « o ¢ o o & s o @
Object Program Listing.

Cross Reference

Statistics Report . . . « - .+

H

1
W W W wwiwWw

List. & 2 o o o o o

B

B

o
Wi W wwwww
W W N e O N0

Section IV FORTRAN Statements. . . o o ¢ « « s s o o o o o o o
Assignment . . ¢ ¢ s+ 4 6 e o e 2 s & w4 s s e o

Arithmetic Assignment Statement

Logical Assignment Statement. . . .

Character Assignment Statement. . .

Label Assignment Statement.

i

.

.

.

.

.

.
PSSO SN SO SN

i
W N R

® ® @ @ . . ® ® ®

7/73 viii BJ6TA

Appendix
Appendix
Appendix
Appendix

Index .

Table
Table
Table
Table
Table
Table
Table
Table
Table

[
B W NN R

H

[

DO OY O W N
i

7/73

.

f

CONTENTS

(cont)

Executive Error Monitor.
OVERFLOW, DIVIDE
LINK AND

SETBUF
SETFCB
SETLGT
CNSLIO
RANSTIZ
FPARAM
CREATE
DETACH
ATTACH
FMEDIA

"

LLINK

ASCB, ASCBA

TRACE.,

Character Set .

Diagnostic Error Comments

CHECK

a

Introduction to Series 6000

FORTRAN

FORMAT GENERATOR and DEBUG Statements

TABLES

Comparison of FORTRAN Features.

Rules for Assignment of E to V.

Supplied Intrinsic Functions.
Supplied FUNCTION Subprograms, Mathematlcal N
Supplied FUNCTION Subprograms, Non-Mathematical

0

Supplied SUBROUTINE Subprograms
Error Codes and Meanings.

®i

°

Alphabetical Listing of FORTRAN Statements.
YFORTRAN and FORTRAN Time Sharing Systems Commands

-

.

°

-

°

Page

6-24
6-31
6-31
6-32
6-32
6-32
6-33
6-33
6-34
6-35
6-36
6-36
6-37
6-37
6-37

BJ67A

Table
Table
Table
Table
Table
Table
Table
Table

T T T
N N el el

AN O W N

TABLES

Comparison of FORTRAN Features. .

Alphabetical Listing of FORTRAN Statements,

YFORTRAN and FORTRAN Time Sharing
Rules for Assignment of E to V. .
Supplied Intrinsic Functions. . .
Supplied FUNCTION Subprograms . .
Supplied SUBROUTINE Subprograms .
Error Codes and Meanings.

xii

Systemns

Page

[
o

i

YO OOV L DN
i
NN H=JUTUTN W

O

BJ67

The slash (/) is used to indicate algebraic division, as a delimiter
for data lists, labeled common statements, and as a record terminator
in a format statement.

The semicolon (;) is used as a statement delimiter.

The equality sign (=) indicates the assignment operator in arithmetic
and logical assignment statements, Parameter statements, DO
statements, and implied DO statements in I/0 and data lists.

The asterisk (*) designates a comment line or an alternate return
argument in a subroutine statement. The asterisk is also used as the
multiplication operator, and a double asterisk (**) 1s one of the
exponentiation operators. The quantity to the left of the sign is
raised to the power indicated on the right.

The period (.) is used as a radix point, and serves as a delimiter for
symbolic logical, and relational operators and logical constants.

The up arrow and caret (1 orA) serve as additional exponentiation
operators. They are alternates to the double asterisk (**) and may be
freely used interchangeably.

The ampersand (&) serves as one of the continuation line indicators.

SOURCE PROGRAM FORMAT

Source File Types

Source programs generally originate as either punched cards or typed lines on a
teletypewriter. They may also be the product of (output from) the execution of
some program, Or one may be compressed in a compilation activity through use of
the COMDK option. These source programs may be kept in the form of decks, paper
tape, magnetic tape files, or permanent mass storage files. To be compiled,
decks and paper tape media programs must be copied to magnetic tape, or mass
storage first. The mass storage file need not be permanent; a normal deck setup
will produce the compiler input file (s*) on a temporary file. The source
program file must be recorded in Standard System Format (see the File and Record
Control manual). The Series 6000 FORTRAN compiler will accept magnetic tape or
mass storage files, in Standard System Format, with any of the following media
codes:

- formatted BCD line images, without slew control for the printer
compressed BCD card images

- (uncompressed) BCD card images

- formatted BCD line images, with trailing printer slew control
information

0ld time sharing ASCII format

- new time sharing ASCII standard system format

WO
i

o Ut
i

2-3 BJ67

Card images are limited to eighty (80) characters, while line images are limited
according to the device on which they were prepared. For simplification,
wherever "card images"” and "line images" could both be used, this document will
simply use the term "line”.

Relationship of Statements to Lines

A source program file is made up of statements and comments. A statement may be
contained on from one to twenty lines., The first is called an initial line and
the rest are called continuation lines. A comment is contained on one line, it
is not considered as a statement, and merely provides information for
documentary purposes, Comment lines may be placed freely in the program file,
even between consecutive continuation lines.

Every program unit (subprogram, main program, etc.) must terminate with an end
line. This line contains an END statement and serves to separate individual
program units. Any subsequent units must begin on a new line.

When the first line of a program unit is a comment line, page titles and object
deck labels are extracted from that line as follows:

Characters 2«7 identification label of
the object deck

Characters 8-72 page title for listings

When the first line of a program unit is not a comment line, or columns 2
through 7 are blank on the first comment card, the deck label will be the
subroutine name (0r 1f a main program). No page title will be generated.

Format Rules for Lines

A variety of source line formats are acceptable to Series 6000 FORTRAN, ranging
from the ANSI standard 80 character fixed format to the standard line formats
used with the time sharing system. Specification of which format has been used
is via two options: FORM/NFORM and LNO/NLNO. These options may appear on the
$ FORTY or § FORTRAN control card or in the option list of the YFORTRAN or
FORTRAN RUN command.

Source files in ANSI stancdard format should be run using the FORM option. Time
sharing source files should normally use NFORM+LNO. These are the default
options when joks originate from batch and time sharing, respectively.

FORM FORMATTED LINES
Lines in FORM format have the following characteristics:
1. Comment lines are recognized by a C or * in character position 1.

2. Continuation lines are recognized by a non~blank, non-zero character in
position 6.

7/73 2-4 BJ67A

4, A complex datum is a processor approximation to the value of a complex
number. The representation of the approximation is in the form of an
ordered pailr of real data. The first of the pair represents the real
part and the second, the imaginary part. Each part has, accordingly,
the same degree of approximation as for a real datum. A complex datum
requires two consecutive words of storage, each in floating point
format. Each part of a complex datum has the same range of wvalues and
precision as a real datum.

5. A logical datum is a representation of a logical value of true or
false. The source representation of the logical value "true" may be
either ,TRUE. or .T., and in DATA statements, the single character "T"
may also be used. For the wvalue "false", LFALSE. and .F. may be
generally used with "F" being allowable in DATA statements. A logical
datum requires one 36-bit word of storage with the wvalue zero
representing "false", and non-zero representing "true". Where
input/output is involved, the external representations of "true" and
"false" are the single letters "T" and "F".

6. A character datum is a processor representation of a string of ASCII or
BCD characters. This string may consist of any characters capable of
being represented in the processor. The space character is a valid and
significant character in a character datum. Character strings are
delimited by quotes, apostrophes, or by preceding the string by nH. The
character set (BCD or ASCII) is declared by an option on the $ FORTY
or $ FORTRAN control card or the YFORTRAN or FORTRAN RUN command.,

The term "reference" is used to indicate an identification of a datum implying
that the current value of the datum will be made available during the execution
of the statement containing the reference. If the datum is identified but not
necessarily made available, the datum is said to be "named". One case of special
interest in which the datum is named is that of assigning a value to a datum,
thus defining or redefining the datum.

CONSTANTS
There are three general types of constants -~ character, single word, and double
word. Each of these types is divided as follows:
1. Single Word Constants
a. Integer
b. Octal
c, Real
d. Logical
2., Double Word Constants

a., Double Precision
b. Complex

3. Character Constants

A constant is a value that is known prior to writing a FORTRAN statement and
which does not change during program execution.

2-9 BJe7

Integer Constants

An integer constant consists of 1 to 11 decimal digits with an accuracy of 10
digits. The decimal point of the integer is always omitted; however, it is
always assumed to be immediately to the right of the last digit in the string.
An integer constant may be as large as (235)-1 (=3, 4x1019) , except when used for
the value of a subscript or as an index of a DO or a DO_. parameter, in which
case the maximum value of the integer is (218)-1 (=2.6x10°).

Example:

-7
152
843517

Octal Constants

An octal constant is written as a non-empty string of up to 12 octal digits
preceded by the letter O and an optional sign. The sign affects only bit 0 of
the resulting literal (complementation does not take place). Octal constants may
be used in preset data lists only (e.g., DATA statement).

Example:

@ 777000
@ - 377777777

Real Constants

A real constant is in floating-point mode and is contained in one computer word
(single precision). This constant consists of one of the following:

1. One to nine significant decimal digits written with a decimal point,
but not followed by a decimal exponent.

2. One to nine significant decimal digits written with or without a
decimal point, followed by a decimal exponent written as the letter E
followed by a signed or unsigned one or two digit integer constant.
When the decimal point is omitted, it 1is always assumed to be
immediately to the right of the rightmost digit., The exponent value may
be explicitly 0, and the field following the E may not be blank.

7/73 2=-10 BJ6T7A

The relational operators must always be preceded and followed by a period. The
following are the rules for constructing logical and relational expressions:

l. Figure 2~-4 indicates which constants, variables, functions, and
arithmetic expressions may be combined by the relational operators to
form a relational expression. In Figure 2-4, L indicates a valid
combination and N indicates an invalid combination. The relational
expression will have the value .TRUE. if the condition expressed by the
relational operator is met; otherwise, the relational expression will
have the value .FALSE.

.GT.,.GE.,.LT., || I R D c L S T
.LE.,.EQ.,.NE. Legend
I L L L ® N L L C = Complex
D - Double~
R L L L N N N N Precision
I - Integer
D L L L N N N N L - Logical
N - Nonvalid
cC * N N * N N N R - Real
S = Character
L N N N N N N N T - Typeless
* - LEQ.,.NE.
S L N N N N L N only
T L N N N N N L
Figure 2-4. Use of Relational Operators

2. The numeric relationships that determine the true or false evaluation
of relational expressions are:

a. For numeric values having wunlike signs, the positive value is
considered larger than a negative value, regardless of the
respective magnitude. E.g., +3> -5 and +5> -5,

b. For numeric values having like signs, the magnitude of the wvalues
determines the relationship. E.g., +3> +2 and -8< -4,

3. A logical term may consist of a relational expression, a single logical
constant, a logical variable, or a reference to a logical function. A
logical expression is a series of logical terms or logical expressions
connected by the logical operators .AND.,.OR., and .NOT.

4. The logical operator .NOT. must be followed by a logical or relational
expression, and the logical operators ,AND. and .OR., must be preceded
and followed by logical or relational expressions.

5. Any logical expression may be enclosed in parentheses,

2-21 BJ67

6. 1In the hierarchy of operations, parentheses may be wused in logical,
relational, and arithmetic expressions to specify the order in which
operations are to be computed, Where parentheses are omitted, the order
is understood to be as follows (from innermost operation to outermost
operations) :

a. Function Reference

b, ** 4orna Exponentiation

c. + and - Unary addition and
subtraction

d. * and / Multiplication and
Division

e, + and - Addition and Subtraction

£, .LT.,.LE.,.EQ.,.NE.,.GT.,.GE,

g. .NOT.

h. «AND.

i. . OR.

This hierarchy is applied first to the expression within the innermost
set of parentheses in the statement; this procedure continues through
the outer parentheses until the entire expression has been evaluated.

Typeless

The following functions are considered as typeless:

FLD
AND
OR
XOR
BOOL
COMP L,

A typeless result is regarded as a special form of integer. Typeless entities
may be combined with integer or other typeless entities. With the arithmetic
operators the result is typeless; with relational operators the result is
logical; the logical operations may not be used on typeless entities. Whenever
the right of equals yields a typeless result, the assignment operation is
integer. For example, if R is real, the statement

R = BOOL(R)+1
adds one to the least significant bit of the real value of R, using integer-add,

and stores a new value in R, using integer-store. This usage is not recommended
but is illustrated here to explain the properties of typeless entities.

Evaluation of Expressions

A part of an expression need be evaluated only if such action 1is necessary to
establish the value of the expression. The rules for formation of expressions
imply the binding strength of operators. It should be noted that the range of
the subtraction operator is the term that immediately succeeds it.

7/73 2-22 BJ6TA

When two elements are combined by an operator, the order of evaluation of the
elements is undefined because of possible reordering during optimization. If
mathematical use of operators is associative, commutative, or both, full use of
these facts may be made to revise orders of combinations, provided only that
integrity of parenthesized expressions is not violated. The value of an integer
element is the nearest integer whose magnitude does not exceed the magnitude of
the mathematical value represented by that element. The associative and
commutative laws do not apply in the evaluation of integer terms containing

division, hence the evaluation of such terms must effectively proceed from left
to right.

7/73 2-22.1 BJ67A

NOPT?Z - Global optimization of the object program will not be performed.

DUMP - Slave core dump will be given if the compilation activity terminates
abnormally.

NDUMP - Program registers upper SSA, and slave program prefix will be
dumped if the compilation activity terminates abnormally.

NOTE: Independent of the DUMP/NDUMP option, Series 6000 FORTRAN has built in
the capability of producing a symbolic dump of the internal tables in the
event of a compiler abort, The presence of a ¢ S8YSOUT *F control card
will activate this process.

Sample Batch Deck Setup

The following are the required control cards for the compilation and execution
of a batch FORTRAN activity. The $ control cards are fully ‘described in the
Control Cards Reference Manual.

1 8 16
$ SNUMB
S IDENT
$ OPTION FORTRAN
$ FORTY Options or $ FORTRAN Options
. FORTRAN Source Deck(s)
$ EXECUTE Options
S File Cards
] ENDJOB
ER *EOF

TIME SHARING SYSTEM OPERATION

From a user point of view there are two time sharing versions of the Series 6000
FORTRAN compiler. Each version is invoked by a di fferent call. These versions
and the language call for each are as follows:

Language Call

Compiler Version (at system level)
Batch based time sharing compiler YFORTRAN
Time sharing based compiler FORTRAN

In this document, the batch based time sharing system is referred to as the
YFORTRAN Time Sharing System and the time sharing based system is referred to as
the FORTRAN Time Sharing System. The time sharing based Series 6000 FORTRAN
compiler compiles under the time sharing system (rather than being spawned as in
the case of the batch based time sharing compiler) and differs from the batch
based time sharing compiler in the following areas.

1. Compiles under the GCOS Time Sharing System.

2. Eliminates the need for configuring batch core for YFORTRAN compiles
through DRL TASK.

7/73 3-3 BJ6T7A

3. Retains essentially the current RUN syntax with modifications as noted
in this section.

4, Interfaces with a new 4K Time Sharing loader module.

5, Significant overhead reduction in FORTRAN time sharing system.

6. Blank common allocation is common.

7. "CORE=" clause is not required for compiles.

8. Compilers are identical except for the executive phase (YEXC vs YTEX) »
The only user differences, other than the ones noted above, are the I/0 device
assignments for the system output and input files, the presence of necessary

user GCOS communication via control cards or command language, and the assumed
compiler options for the compilation process.

Time Sharing System Command Language

The standard means of communication with the Series 600/6000 GCOS Time Sharing
System (TSS) is by way of a teletypewriter used as a remote terminal., Other
compatible devices may also be used, but use of a teletypewriter is assumed in
this manual. The user may choose either the keyboard/printer or paper-tape
teletypewriter unit for input/output, or combine Dboth. In either case, the
information transmitted to and from the system is displayed on the
terminal-printer. Keyboard input will Dbe used for purposes of description;

instructions for the use of paper tape are given under "Paper Tape Input” in
this section.

The user "controls" the time sharing system primarily by means of a command
language, a language distinct from any of the specialized programming languages
that are recognized by the individual time sharing compilers/processors (e.g.,
the Time Sharing FORTRAN language). The command language is, for the most part,
the same for users of any component of the time sharing system; i.e., FORTRAN,
BASIC, Text Editor, etc. A few of the commands pertain to only one or another of
the component time sharing systems, but the majority of them are, in form and
meaning, common to all component systems.

The commands relate to the generation, modification, and disposition of program
and data files, and program compilation/execution requests. The complete time

sharing command language is described in Time Sharing General Information
Manual.

Once communication with the system has been established, any gquestion or request
from the system must be answered within ten minutes, except for the initial
requests for user identification (user-ID) and sign=-on password, which must be
given within one minute, If these time limits are exceeded, the user's terminal
will be disconnected.

Time Sharing Commands of the YFORTRAN and FORTRAN Time Sharing Systems

The valid time sharing system commands are listed in Table 3-1., These commands
are fully described in the Time Sharing General Information Manual. The RUN
command for the YFORTRAN and FORITRAN Time Sharing Systems 1s more fully
described in this manual.

3-4 BJ67

7/73

fh

fc

opt

is a single file descriptor of a random file into which the system
loadable file produced by General Loader will be saved 1if the
compilation is successful. This file will be written i1f no fatal
errors occur during compilation. If the named file does not exist, a
permanent random file of 36 blocks will be created and added to the
user's catalog. If the field is missing, the H* file 1s generated
into a temporary file. The presence of this option is valid only when
the program indicated by the list fs, the FORTRAN library, and the
user library (if any) 1is bindable (no outstanding SYMREFs). If
General Loader indicates that outstanding SYMREFs exist, an
executable H* file will be created, but any reference to an
unsatisfied SYMREF will cause the program execution to be abnormally
terminated (General Loader inserts a MME GEBORT at references to
unsatisfied SYMREFs. When a MME is encountered during the execution
of a time sharing subsystem, GCOS and the Time Sharing Executive
simulate an illegal operation fault.)

is a single file descriptor of a sequential file into which the
compiler is to place the binary (c*) result of any indicated
compilation(s). One object module is written to this file for each
source program in the file(s) given by fs, If the named file does not
exist, a permanent linked file of 3 blocks will be created and added
to the user's catalog. This file will expand as necessary to hold the
object decks. In this case the field fs plus the libraries need not
indicate a complete program (individual or collections of subroutines
may be compiled and saved). When this optional field is missing, a c*
file will not be generated. When present the DECK option is turned on
for the compilation process.

is a list of options. Some of these options affect the compilation
process, and some the loading. The following compiler options are
available for time sharing; they are described under the $ FORTY
card; underlined is default.

DEBUG ~- Generate run-time debug symbol table

NOTE: This debug symbol table is used for run-time debugging in the
batch mode only. Refer to the General Loader manual for use of
the debug feature and the debug symbol table.,

NDEBUG - No run-time debug symbol table is generated

BCD ~ Object character set is BCD. If applicable, this option must
be specified whenever General Loader is to be called. This
is required for «compile, compile and load, and load
activities: it is not required for execute only runs (run H*
file) .

ASCII =~ Object character set is ASCII

FORM - Source is in "fixed" format

NFORM =~ Source is in "free" format

LNO - Source is line numbered

NLNO - Source is not line numbered

OPT?Z -~ Optimize the object module

NOPTZ =~ Optimization of the object module will not be done

3-13 BJ6T7A

The remaining options have to do with the loading process. The
underlined option is the default case.

GO - The program will be executed at the completion of
compilation.
NOGO - The program will not be executed at the completion of the

compilation. If specified, the object program will be saved.
If no object (H*) save file 1is specified, only the
compilation will be performed (General Loader will not be
called) .

ULIB - File descriptors exist following the end of the options
field which locate user libraries which are to be searched
for missing routines prior to searching for them in the
system library. ‘

NOLIB

No user libraries are to be used.

TIME=nnn The batch compilation and/or General Loader activity time
limits will be set to nnn seconds; where nnn < 180. If not
specified, nnn is set to 60.

CORE=nn The batch compilation activity core requirement will be set
to nnK+6K or 24K, whichever is larger. If not specified, nn
is set to 16.

URGC=nn - The urgency for +the batch compilation and/or General
Loader activity will be set to nn, where nn < 40. If not
specified, nn is set to 40.

TEST - A test version of the compiler and/or General Loader is to
be used for the batch activity. There must be an accessed
file (in the AFT) of the name FORTRANY. If these two
conditions are met, then file FORTRANY will be allocated as
file code ** in the batch activity.

REMO ~ Temporary files created for the batch process will be
removed from the AFT as they are no longer needed. This
option keeps the number of files in the AFT down to a
minimum but causes more time to be spent processing each RUN
command.

NAME=name- Provides a name for the main link of the saved H* file.
May be used both at time of creation of this file and
subsequently as it is reused. This name is placed in the
SAVE/field of the § OPTION card.

ulib is a sequence of file descriptors pointing to random files containing
user libraries to be searched before the system library.

3~-14 BJ67

CORE

ulib

fe

Example:

1.

nn where nn is additional core (mod 1024) to be added to the
standard time sharing loader allocation of 22K. This should be done
if the message "<F> PROGRAM EXCEEDS STORE SIZE" appears. The
compiler will attempt to "second guess" the space requirements for
the load process by accumulating the size of the generated code,
.DATA, region, labeled common and blank common for each subprogram
compiled; then adding a constant (11K for the standard library) to
this to arrive at the size of a load space requirement. If the
message "NOT ENQUGH CORE TO RUN JOB" appears, TSS allocation is too
small to compile/load this program.

is a list of file descriptors (separated by semi-colon) pointing to
file(s) containing subprograms that have SYMDEF symbols which
satisfy the undefined SYMREF's in the load table. The user library
or 1libraries are searched in the order in which they are
encountered and before the system subroutine library. The user may
create his own library files using UTILITY, RANLIB, and the Object
File Editor.

The user library file must be a random permanent file when creating
a user library file through the batch procedure. -

is a set of file descriptors for files which will be required
during execution. Each catalog/file description is separated by a
semicolon (see Time Sharing Command Language and File Usage in the
Time Sharing General Information Manual). The file description may
be in any of the following formats:

filename specifying a filename in the form nn where 0ls<nns44 and nn
represents a logical file code referenced by the I/0 statements in
the program.

file descr specifying a full description

a. filename
b. filename §$ password
c. userid/catalog $ password

Create a random file to contain the wuser's library with the ACCESS
subsystem. ACCESS CF,/ULIB1,B/50,50/,R,MODE/R/

Deck setup for creation and saving a user library file (through CARDIN
or batch).

1 8 16

$ IDENT

$ USERID UMCS$PASSWD

$ UTILITY

$ LIMIT , 9K

$ FILE AA,F15, 101

$ PRMFL Al,R,5,UMC/OBJDECK]L

$ PRMFL A2 ,R,5,UMC/OBIDECK2

$ PRMFL A3, R,5,UMC/0OBIDECK3

$ FUTIL Al,AA,MCOPY/L1F,HOLD/AA/
$ FUTIL A2 ,AA,MCOPY/1F/,HOLD/AA/
$ FUTIL A3,AA,COPY/1F/,REW/AA/

$ FILEDIT NOSOURCE, OBJECT, INITIALIZE
$ FILE R*,J1C, 10L

$ FILE *C,F1R,10L

$ PROGRAM RANLIB

$ PRMFL A4,R/W,R,UMC/ULIR1

$ FILE R*,J1R,10L

$ ENDJOB

3-17 BJ67

Information Common To The FORTRAN And YFORTRAN Time Sharing Systems

Descriptions of compiler diagnostics are included in Appendix B.
The user will, most commonly, apply the alternate nanme specified in the
following format.

filedescr "altname" where altname = nn; attaching the logical file code nn
to the specified file.

File codes 05, 06, 41, 42, and 43 are implicitly defined for teletypewriter
directed I/0 and need not be mentioned in the RUN command unless I/0 1is to be
directed to a file. Other logical file codes may be teletypewriter directed by
specifying a descriptor of the form "nn". For example:

RUN#"10"

7/73 3-18 BJ6TA

The following examples illustrate this capability.

*SYSTEM? YFORTRAN or FORTRAN

OLD OR NEW? NEW

010#RUN *(20,30)=HSTAR (BCD,NOGO)
*020 PRINT, "HELLO DOLLY..."

*030 __STOP:; END

*RUN[INVOKES FIRST LINE SYNTAX |

Run Examples

1.

RUN
The current *SRC FORTRAN source file will be compiled and executed.
RUNH-20 FROO1=HSTAR; CSTAR1 (ULIB) ABC; XYZ #

INPUT "01" ; OUTPUT "O0O2"

FORTRAN program file FR001l is to be compiled and executed, The H* will
be saved on file HSTAR and C* on file CSTAR1l. For the execution, the
random user libraries ABC and XYZ will be scanned for outstanding
SYMREFs in FRO01l, Logical file codes 01 and 02 have been used as
alternate names for the quick-access permanent files INPUT and OUTPUT.
A heading line for date, time, and SNUMB will be displayed and the
object program will be limited to 20 seconds of execution time.

RUN #"10"

The current *SRC file will be compiled and executed and I/0 through
logical file code 10 will be directed to/from the teletypewriter.

RUN BCDIOM = ; CSTAR2 (BCD,NOGO)

FORTRAN file BCDIOM will be compiled and the object deck will be saved

on file CSTAR2. The user intends to execute the object file in the BCD
mode.

RUN HSTAR #02

Execute a previously bound and saved H* file. The quick=-access file
"02" is accessed by the RUN subsystem. If no such file exists a
temporary is created.

RUN = HSTAR (TIME=60, CORE=18, URGC=10, ULIB,
COMMON=50) SEARCH

Compile and execute the CURRENT *SRC file, saving the bound H* on
random file HSTAR. Limit the compile time to 60 seconds, increase the
General Loader limits to 18,000 words, and enter the batch compile
activity with an urgency of 10 (default urgency = 40). The random user
library "SEARCH" is searched by the General Loader to satisfy
outstanding SYMREFs prior to searching the standard system library. The
RUN subsystem causes a $ LOWLOAD 86 (50 + 36) to be placed on the R*
file from the COMMON = option.

3-21 BJ67

7. RUN *; CSTARl; CSTAR2
Compile and execute the current *SRC file and bind it with two

previously saved C* files: CSTARL and CSTAR2.

Additional examples are given in Section V under File Designation.

Batch Activity Spawned by the YFORTRAN Time Sharing System RUN Command

As an example of the simplest case, consider that some source file is current in
*SRC, and a RUN command is typed with none of the optional fields. A Job setup
comparable to the following will be dispatched to the batch system.

S SNUMB nnnnT, 40

$ USERID

$ IDENT

$ LOWLOAD

S USE .GRBG. /36 /36

$ OPTION NOFCB

S OPTION NOGO ,NOSREF ,NOMAP , SAVE /OBJECT

$ USE .GTLIT,.TSGF.,.FTSU.,.FXEMA

$ FORTY NLSTIN,NFORM,ASCII

$ LIMITS 2,25K

$ FILE S* ,X1R source file *SRC
$ FILE P*,X28 diagnostic report only
S EXECUTE

$ FILE P*,X2R

S FILE H* ,X3R ,3R bound program

S ENDJOB

The results of compilation and loading are returned on files P* and H*. P* is
read and scanned for compiler and/or loader diagnostics. These are displayed on
the teletypewriter and if there have been no fatal errors, the fully bound
program will be loaded from H* and execution will proceed.

Time Sharing System RUNL Command

A special form of the RUN command, RUNL, permits link/overlay H* files to be
constructed. When a bound object program is too large for execution under time
sharing, segmentation by the way of the RUNL command offers an alternative.
The RUNL command has the form:

RUNL C*file list = H*file (options) ulib/CORE=nn/NAME=name/MAP/GO; link list

RUNL - can be also RUNLH, RUNHL,RUNYLH, or RUNYHL (no embedded blanks
permitted)

C* file list - is set of file descriptions for binary object image files
H* file - is a single file descriptor of a random file into which the
system loadable file produced by the loader is saved 1f the

load process is successful. If the named file does not exist,
a file of 216 1llinks (random temporary) is created.

7/73 3=22 BJ6T7A

options =~ available options:

CORE

ulib - file descriptors exist following the end of the options
field that locate user libraries to be searched prior to
searching the system library. The load process for each
link involves searching the same set of wuser libraries

first.

= nn - the batch loader core requirements are set to nn+6K or
23K, whichever is larger. If not specified, nn is set to
16.
The time sharing 1link loader core reguirement is nnK
if < 23K or 23K+nnK if nn > 23.

name - provides a name for the main link of the saved H* file,

when not provided, the name "//////" is used.

MAP - If the user has previously defined a file with the name
PSTR, a load map of the link/overlay save file is written
to that file. Otherwise, a temporary file is created by
that name and is written to. This feature 1is currently
available only under the YFORTRAN system.

GO - allows a user to enter execution directly from the RUNL
command; default is NOGO. The user must provide for
run-time file definition and dynamic attaching through
"CALL ATTACH", etc. If it is necessary to specify through
RUN the necessary object time files, the user must
explicitly wuse the RUN syntax after creating the
link/overlay H*, For example,

RUN HSTAR#INPUT"OL1";OUTPUT"OZ2"

link list - is a sequence of link phrases wherein each link phrase is used to

7/73

specify the position at which segmentation is to take place. When
the link phrase is encountered in the RUNL command, all object
deck files for the link being terminated have been copied to the
loader input file R*, The link phrase is parsed, resulting in the
generation of a $ LINK card image and possibly a §$ ENTRY card
image being written to R*, The 1link phrase has the following
formats:

LINK (namel,name2)C*file list
LINK (namel,name2 ,entry) C*file list
LINK (newl, ,entry)C*file list

Namel is a unique identifier for the new link; name2, if present,
is identifier of previously loaded link to be overlayed. The new
link assumes the origin of the old link. All 1links to be
overlayed are written in system loadable format. Entry, 1if
specified, is name of desired primary or secondary SYMDEF entry
point of a subprogram in the current link.

Cubprograms contained in any other link can always reference
subprograms in the main link. Only cross-reference between
subprograms in links that reside in memory at the same time can
reference each other, For example, if link B is loaded as an
overlay of link A (Link (B,27)), the subprograms of link B cannot
reference subprograms of link A,

3~-22.1 BJ67A

Notes on Use of RUNL Command

7/73

1.

To ascertain the size required to allocate to a permanent H* save
file, create a temporary file by means of RUNL. Then use the LENGTH
command to display "used" number of llinks. This number can be used as
a current size on the permanent H* save file creation. A temporary H*
file created by RUNL has a size of 216 1links.

The "PSTR" load map generated by the General Loader can be sent to a
remote station or central site printer, provided it is a permanent
file. For example;

PERM PSTR;PS Make file permanent if temp used

SCAN PS

FORM? LOAD Print number of errors

000 ERRORS

EDIT? YES For multiple-blank suppression

?BATCH

STATION CODE Reply XX or carriage return
XX - remote station code
carriage return - central site
printer

$ IDENT Input batch $ IDENT card

Alternatively, a BMC run in batch can print the file.

A temporary H* save file cannot be command~-loaded; use the LODT
command (not LODX). The YFORTRAN or FORTRAN RUN command should be
used, for run~time files can then be specified.

The name of the main link is //////. unless NAME=name is used as an
option. The user must specify the name when he loads the H* save file.

Creating a multiple-line embedded RUNL command is the best way to deal
with a long, complex command. For example:

1*#RUNHL MAIN; SUBL;SUB2=HSTAR (ULIB,MAP)
2*#FY/SDL7LIB,R;

3*$LINK (A)SUB3;SUB4;

4*$TINK (B,A,ENTRY5) SUB5;SUB6

5*#LINK (C,B)SUB7;SUBS

Observe rules for line termination.

After the loader builds the H* save file containing the links, it is
necessary to reload these links in the order required to achieve the
program function. Reloading is done by means of a time sharing library
routine (FTLK) that has two entries, LINK and LLINK. LINK is callable
from the FORTRAN source to load a particular link and transfer control
to a predesignated entry within that link. This SYMDEF must be
specified in "entry" field of the link phrase. LLINK can be called to
load a particular link and return control to the part in the program
at which LLINK has been called. The two calls are as follows:

CALL LINK (Axxxx)
CALL LLINK (Bxxxx)

The link names must be either five or sixzx characters in length.
When using FORTRAN random I/0, the CALL RANSIZ statement must be

placed in the main link., This assures proper file wrapup by forcing

the random I/0 subroutine FRRD to reside with the main link in core at
all times.

3-22.2 BJ67A

Example of RUNL Inputs and Link H* Creation

Ten subroutines plus a main program are to be executed under time sharing. The
first overlay, link A, is to have three subroutines. The second overlay, link B,
four subroutines, and the third overlay, link C, three subroutines.

1. Compile and save the C* object deck files for each program.
RUN MAIN = ;CSTAR1 (NOGO)
RUN SUBA;SUBB;SUBC =;CSTAR2 (NOGO)
RUN SUBD;SUBE; SUBF;SUBG =;CSTAR3(NOGO)
RUN SUBH;SUBI;SUBJ =;CSTAR4 (NOGO)
2. Create a link overlay H* file using RUNL.

RUNL CSTARl = HSTAR(ULIB,MAP) ULIB1;
LINK(A) CSTAR2; LINK(B,A,ENTRYB)CSTAR3;
LINK(C,B) CSTAR4

3. Load and execute the H* save file and specify run-time files.

RUN HSTAR#INPUT"41" ;O0UTPUT"13"

Example of use of LINK/LLINK

010 PRINT,"MAIN EXECUTING"
020 CALL LLINK ("Axxxx")
030 CALL SUBA

040 CALL LINK ("Bxxxx")
050 STOP;END

RUN =;MAIN(NOGO)

010 SUBROUTINE SUBA

020 PRINT,"LINKA EXECUTING"
030 RETURN; END

RUN=; ALINK (NOGO)

010 SUBROUTINE SUBB

020 PRINT, "LINKB EXECUTING"
030 RETURN; END

RUN= ; BLINK (NOGO)

RUNL MAIN=HSTAR;LINK(A) ALINK;
LINK(B,A,SUBB)BLINK

7/73 3-22.3 BJ67A

Example of Loader Input File

The following control card setup would appear on R* for the example above
illustrating use of LINK/LLINK.

$ LOWLOAD

$ USE .GRGB./36/
$ USE .GTLIT,.TSGF.,.FTSO.,.FXEMA,.FTAK
$ OPTION NOMAP

$ OPTION NOGO

$ OBJECT

$ DKEND

$ LINK A

$ OBJECT SUBA

$ DKEND SUBA

$ LINK B,A

$ ENTRY SUBB

$ OBJECT SUBB

$ DKEND SUBB

$ EXECUTE

Example of a Time Sharing Session

A comprehensive example of program creation, testing, correction and
modification follows. Replies to the user from the system are underlined here;
in actual use, no underlining is done. Explanations are enclosed in parentheses;
they are not part of the printout.

7/73 3-22.4 BJ6T7A

To-From Transfer Table

This table, page 2 of Figure 3-1, lists the transfers‘that exist in the source
program logic. The report is sorted into descending line pumber sequence, keying
on the originating line number, and will display up.to. five transfers on one
report line. The destination line number field may indicate the word EXI? or
RETURN if the transfer statement is a STOP or RETURN statement. For assigned
GOTO statements, where no label list is provided, the label variable name is
displayed. In Figure 3-1, page 2, lines 28 and 29 contain transfers. Line ?9
includes the statement GOTO 7; statement 7 begins on line 10; the first entry in
the transfer report indicates this path. Line 28 contains a STOP statement; the
second entry in the transfer report indicates this. A From~To table 1is also
provided in the same format.

Program Preface Summary

The Program Preface summary, page 3 of Figure 3-1, documents the object module
preface (card) information in a format similar to that printed by GMAP.

The Program Break and Common Length are displayed in octal followed by the width
of the V Count Bits as used in instructions with special (type 3) relocation.

The SYMDEFs entry shows the relative offset of the internal location
corresponding to that SYMDEF, in octal.

Next is a list of LABELLED COMMON blocks known or referenced by this module.
Agsociated with each symbol are two octal fields. The first gives the global
symbol number associated, for this compilation, with the common name. This 1is
the number that will appear in the V field of any instruction referencing 'this
labelled common region. The number will appear justified according to the V
field. Thus if labelled common SPACE is global symbol 2, and the V field is five
bits wide, the display will be 020000 (bit zero is the sign bit). If the V field
is six bits wide, the display will be 010000. The second field contains the
size, in octal, of the labelled common region.

Two labelled common regions, .DATA. and .STAB., receive special treatment by the
loader. Although they are not actually labelled common names, they are included
in this portion of the Program Preface summary. The first, .DATA., is allocated
space to contain all local data required by the program. This includes arrays
and scalars not appearing in common or as arguments, constants, encoded FORMAT
information, NAMELIST lists, temporary storage for intermediate results,
argument pointers, the error linkage pair (.E.L..), etc. The second, .STAB., is
generated when the DEBUG option is employed. This block contains a symbol table
for all program variables and statement numbers and may be used for symbolic
debugging.

A list of SYMREFs is also included with their associated global symbol number,
justified as described above, for LABELLED COMMON names.

Storage Map

This repqrt, page 4 of Figure 3~1, provides information on the allocation of
storage fo; identifiable program elements. This report is divided into three
parts: variables and arrays, statement numbers, and constants.

7773 3~-31 BJ6TA

The first part of the report lists all program variables and arrays in
alphabetical order. It contains four fields as follows:

1. The first field contains the global symbol name relative to which the
variable is defined. Local variables and arrays are defined relative to
the origin of the ,DATA. space. When a variable or array belongs to
some labelled common block, the name of its common is shown; when it
belongs to blank common, the field is empty. Argument variables and
arrays appear as variables of .DATA.; the indicated location is
reserved for a pointer to the actual argument and is initialized on
entry to the procedure,

2. The two OFFSET fields provide the location relative to the origin of
the indicated global name assigned to this wvariable or array. For
arrays, this is the starting location; subsequent elements of the array
are allocated higher order locations. The offset is provided in Dboth
octal and decimal for the convenience of the programmer.

3. The MODE field provides the type associated with each identifier.
Sswitch variables are indicated by an empty field.

The second part of the report lists all referenced statement numbers in
numerical order. The four fields to the right of each entry are the same as
defined above. The ORIGIN fields for FORMAT statement numbers will always be
.DATA. and the MODE field will indicate FORMAT. For executable statement
numbers, the MODE field will always be blank; the ORIGIN field will be either
eight dots (........), if this is a main program, or the first SYMDEF if this is
a subprogram. The OFFSET field is as described above.

The third part of this report lists all numeric and character constants
requiring unique storage. All constants are allocated storage relative to the
.DATA. block. The two OFFSET fields and the MODE field are as described for
variables and arrays. Only the first 17 characters are displayed for character
constants.

Object Program Listing

This report, pages 5-9 of Figure 3~1, gives a full listing of the generated
object program. The original source statement is identified in the object
listing by "SOURCE LINE xxx" and the source line. The individual instruction
line format is similar to that produced by GMAP. The first field is the location
field; next is the compiled machine language instruction, usually divided into
address, operation code, and modifier field. The location field and machine
language instruction field are in octal. The next three digits are the
relocation bits applicable to the instruction.

Following these is the symbolic equivalent of the generated instruction. This
consists of a label field, an operation code field, and a variable field for
address and modifier symbols. Referenced statement numbers appear in the label
field prefixed by the characters ".S", SYMDEF symbols (such as ENTRY names) also
appear in the label field. Operation code and modifier mnemonics are the same as
the standard GMAP mnemonics except for some of the pseudo-operation codes.

pata initialization, constants, formats, symbol table entries, etc, are
displayed at the end of the report following the source END line. No object END
instruction is produced.

BJ67

Cross Reference List

This report, page 10 of Figure 3-1, lists in alphabetical order all referenced
variables, arrays, statement numbers, SYMREFs and SYMDEFs., Each element results
in four or more entries being produced across the line. The first field is the
octal location of the item relative to its global symbol. The second field is
the item name. Statement numbers are shown with a prefix of ".S". The third
field is the applicable global symbol. The fourth field is the line number of
the first reference. When there are more references, additional line numbers are
displayed across the line. Where required, additional lines are written.

This report is divided into two parts: the second part for statement numbers,
the first part for everything else.

Statistics Report

This report, page 11 of Figure 3-1, is produced if any other report is produced
or if either the DECK or COMDK option is selected. It contains the edit date and
the software release level of the compiler; processor time and rated lines per
minute for each compiler phase; the compilation time for this program; the total
compile time for all programs in this run; a count of the number of diagnostics;
and the core used for the compilation.

7/73 3-33 BJ67A

33437 01

07-30-71

DE.51e

LGGLCAL GIDSORT

COMMON CIDSURTZ7SPACEYS
CHARACTER A¥72(100),8%72
OATA U717

ASSIGN 1 TO tOF

1293 EOF IS USELD AS A SWITCH IN ASSIGN STATLMENT AND 15 NOT TYPED INTEGER
1

30
77
12

149
150

DO S I=1,100

REAC(5,11,END=150) A(I)

IF(ACT) JNE"**SENG¥¥S™) GOTO §

FORMAT (AZ2)

N = I~-1

GOTC 13 . T
CONTINUE

N o= 100 o T T
UIOSORT = JFALSa.

00 96 I=1gN~1

IF(A(I+1).GELA(I)) GOTO 30

DIOSORT = YRUL.

g = ALD)

ALI) = A(I+1)

A(I+1) = 8

CONTINUE :

IF(GIDSCRT) GOTO 13

WRLITE(9,12) Jy (ACL) 5 I=4,N)

JEJEL

FORMAT (™1 ALPHABLTIC "SORT - LIST™,IS//7(" “;A500)
GO TO £OF, (1,149)

I=1

IFCL «EG. 1) STOP “END ALPHABETIC SORT™
ASSIGNM 149 TO COFj GO 707

END

LABEL

cerens

0gu00100
0000110
00000120
00000130
00088140

00000150

f0u8d168

00000172

- 90000160

L0u001L9d
cveo0zo08
Q0000210
00080220
000060230
06000240
00000250
06000260
00000270

Be8082BE -

00006290
oog0e38cC
GG000310
40000320
04000330

B00003%0 -

03000350
80000360
00000370
00000360
36000390

PAGE

Figure 3-1 Compilation Listings and Reports

BJ67

33437 01

ORIGIN

-
NV F VPO

2¢o1

2264
2263
2263
225

oo

G4
2210
2331

XS

12
164
tos

SYMBULLIC

IEEEEEEE

s FONVC
«FONVI
«FCOM,
SFCXT.
W FRIL.
s FGERR
»FROD.
«FRTN,
+FHRD.
eEaian
A

8
DICSORT
EOF

i

J

N

.50
»S51
2 S7
259
«511
.312
+ 513
«ST7
598
251449
5158

07~30-71

08.51¢

REFERENCES BY AcTeR NuMBZR

sasanaasa

sUKTA,
SOATAL
SPACE

SOATA,
SDATA.
SUATA,
COATA G

FORMAT

FORMAT
FORMAT

23

17
20

23
T3

29
12

14

27
26

23
ie

2z
29
10
ok

15 -

ce

29

26
18

23

LAoel

<8
19 <0 23
a7 28

srecen

PAGE

10

Figure 3-1 {cont)

Compilation Listings and Reports

BJ67

LABEL ceansn PAGE 11
33497 01 07-00-71 0be51c

ICIT DATE Ub=43-71 *SRE/F
CLAPSEL LINES/
timMe (SeC) MINUTL

OVERHEAD eel

5 W % 19104
00 182270
L3S 49098
] ilzas
0k 3235
1.0% 1704
TOTAL TIMe 1048
THERE WoRZ 3 DIWGNOSTICS IN ApOVE COMPILATIUN

23552 WORDS WeRb USED FOR THIS CUMPI-ATIUN

Figure 3-1 (cont). Compilation Listings and Reports

7/73 3-44 BJI6TA

SECTION IV

FORTRAN STATEMENTS

This section contains a description of FORTRAN statements arranged in
alphabetical order.

4-1 BJ67

e e —

ASSIGNMENT ASSIGNMENT

ASSIGNMENT

Arithmetic Assignment Statement

The arithmetic assignment statement has the general form v = e, where v is an
unsigned variable name or array element name of an arithmetic type (integer,
real, double-precision, complex) and e is an arithmetic expression. An
arithmetic assignment statement causes FORTRAN to compute the value of the
expression on the right and to give that value to the variable on the left of
the equal sign. Execution of this statement causes the evaluation of the
expression e and the altering of v according to Table 4-1.

Figure 4-1 indicates the legitimate combinations of expressions and variables in
arithmetic assignment statements.

C = Complex
D = Double-~Precision
I = Integer
R = Real
N = Invalid
T = Typeless
L = Logical
H = Character
expression
I R D C T L H
I T I I I I N N
R R R R R R N N
variable D D b D D D N N
C ¢ ¢ C C N N N
L N N N N L L N
H N N N N N N H

Figure 4-1. Arithmetic Assignment Statement Combinations

The Ffollowing examples show various arithmetic assignment statements:

where

Rl and R2 are real variables
Ccl and C2 are complex variables

D is a double~precision variable
T is an integer variable
Rl = R2 R2 replaces RI1
I = R2 R2 is truncated to an integer, and stored in I.
RL = I I is converted to a real variable and stored in RIl.

7/73 4-2 BJ6T7A

ASSTIGNMENT

R1 = 3*R2

Rl = R2*D+I

Cl = C2* (3.7,2.0)
C2 = R2

ASSIGNMENT

The Expression contains a real variable and an integer
constant. The statement will be compiled as Rl = 3.%*R2.

Multiply R2 by D using double precision arithmetic, add the
double precision equivalent of I to that result, store the
most significant part (rounded) of the result as a real
variable RI1.

Multiply using complex arithmetic and store the result in Cl
as a complex number,

Replace the real part of C2 by the current value of R2. Set
the imaginary part of C2 to zero.

Logical Assignment Statement

A logical assignment statement has the form

where v is a logical variable name or logical array element and e is a logical

expression.

Thus 1f

Ll,L.2, etc. are logical variables, logical assignment

statements can be written:

Ll
L2
L3
L4
L5

1]

i

The first

. TRUE.
JF.

A.GT.25.0

I.EQ.0 .OR.A.GT.25.0

L6

two are the logical equivalent of statements of the form

variable =

constant

L3 would be set .TRUE. if the value of the real variable A is greater than 25.0,
and to .FALSE. 1f A is equal to or less than 25.0. L4 would be set to .TRUE. if
the value of I was zeroc or A is greater than 25.0 and to .FALSE. otherwise. L5
would be set to the same truth value as L6 currently has.

7/73

4-3 BJ67A

ASSIGNMENT ASSIGNMENT

Character Assignment Statement

A character assignment statement is of the form

where v is a character variable name or character array element name and e is a
character constant, variable, function or array element. Characters are stored
left adjusted in the destination location with trailing blanks if applicable. If
the declared length of v is less than e, then e is truncated to the size of v
for the assignment, and the left-most characters are assigned. Thus if Cl, C2,
etc. are character variables, character assignment statements can be written.

Cl = "ABCD" The four characters are assigned to variable Cl.
cz = Cl

C3 = 'ABCDEFGHIJKLMNOP'®

C4 = CONCAT('ABC',C2)

Label Assignment Statement

A label assignment statement is of the form:
ASSIGN k TO i

where k is a statement number and i is a nonsubscripted integer variable. The
statement number must refer to an executable statement in the same program unit
in which the ASSIGN statement appears. For example:

ASSIGN 24 TO M

GO TO M, (1,22,41,24,36)

7/73 4-4 RJIGTA

DATA

10.

11.

12,

DATA

DATA statements appearing in a BLOCK DATA subprogram may pre-set data
into labeled COMMON storage only. A maximum of 63 such common areas may
be pre~set from any one BLOCK DATA subprogram.

DATA statements appearing in other than a BLOCK DATA subprogram may
pre~-set data into program storage local to that subprogram, or labeled
COMMON. A maximum of 62 such common areas are permitted.

The type statements, described later in this section, may also be used
to initialize data values, and are subject to the same rules as given
here for the DATA statement.

4-19 BJ67

DECODE DECODE

DECODE

A DECODE statement is of the following form:
DECODE (a,t) list

where t may be a FORMAT statement number, a character scalar, or an array name,
giving the format information for decoding; a 1is a character scalar, array
element, or an array of any type, which specifies the starting location c¢f the
internal buffer; and list is as specified for the READ statement.

The DECODE statement causes the character string beginning at location a to be
converted to data items according to the format specified by t; and stored in
the elements of the list.

The fermat information and list should not reguire more characters than are in
a.

For example:

A(l) = "ppyL’
DECODE (A,4)1I
4 FORMAT (I4)

After execution, the array A is not altered but the variable I contains an
integer one.

Additional information on the DECODE statement is contained in Section V under
Internal Data Conversion.

7/73 4-20 BJ6TA

DIMENSION DIMENSION

DIMENSION

The DIMENSION statement provides the information necessary to allocate storage
for arrays in the object program, and it defines the maximum size of the arrays.
An array may be declared to have from one to seven dimensions by placing it in a
DIMENSTON statement with the appropriate number of subscripts appended to the
variable. The DIMENSION statement has the form:

DIMENSION vy (iy)/d1/,v3(i2)/dp/,+.vy(in)/dn/

Each v i is an array declarator (see Arrays in Section II) with each v being an
array name., Each ii is composed of from one to seven unsigned integer constants,
integer parameters, or integer variables separated by commas. Integer variables
may be a component of i; only when the DIMENSION statement appears in a
subprogram, and the array may not be in COMMON. Each /dj/ represents optional
initial data values. The form for each /d;/ 1is as specified for the data
statement.

1. The DIMENSION statement must precede the first use of the array in any
executable statement.

2. A single DIMENSION statement may specify the dimensions of any number
of arrays.

3. If a variable is dimensioned in a DIMENSION statement, it must not Dbe
dimensioned elsewhere.

4., Dimensions may also be declared in a COMMON or a Type statement. If
this is done, these statements are subject to all the rules for the
DIMENSION statement.

5. The initial data value are optional, and if specified, apply to the
array immediately preceeding their declaration.

In the following examples A, B, and C are declared to be array variables with 4,
1, and 7 dimensions respectively. Note that each element of array B is
initialized to contain the value 1.

DIMENSION A{1l,2,3,4),B(10)/10 *1./
DIMENSION C(2,2,3,3,4,4,5)

4-21 BJ67

DO DO

Do

This statement enables the user to execute a section of a program repeatedly,
with automatic changes in the value of a variable between repetitions. The DO
statement may be written in either of these forms:

DO n i = ml,m2
or
DO n i = ml,mz;,m3
In these statements n must be a statement number of an executable statement, 1

must be a nonsubscripted integer variable, and mj,m,m3 may be any vglid
arithmetic expression. If mg is not stated, it is understood to be 1 (first
form) . These parameters (ml,mz,mB) are truncated to integers before use.

The statements following the DO up to and including the one with statement
number n are executed repeatedly. They are executed first with i = m ; Dbefore
each succeeding repetition i is increased by m 5 (when present, otherwise by 1};
when i exceeds m, execution of the DO is ended.

1. The terminal statement (n) may not be a GO TO (of any form), RETURN,
STOP, or DO statement.

2. The terminal statement (n) may be an arithmetic IF statement with at
least one null label field. The null path is a simulated CONTINUE
statement terminating the DO.

3, The range of a DO statement includes the executable statements from the
first executable statement following the DO to and including the
terminal statement (n) associated with the DO.

4, Another DO statement is permitted within the range of a DO statement.
In this case, the range of the inner DO must be a subset of the range
of the outer DO.

5. The values of m,, m; and m, must all be positive and m 5 may not be
Zero; m]‘cannot be the constant zero but can be a variable whose value
is zero, If mo, is less than or equal to mq the loop will be processed
once,

6. None of the control parameters, i, m,, or m3, may be redefined within
the loop or in the extended range of the loop, if such exists.

A completely nested set of DO statements is a set of DO statements and their
ranges such that the first occurring terminal statement of any of those DO
statements physically follows the last occurring DO statement.

7/73 4-22 BJ6TA

DO DO

If a statement is the terminal statement of more than one DO statement, the
statement number of that terminal statement may not be used in any GO TO or
arithmetic IF statement that occurs anywhere but in the range of the innermost
DO with that as its terminal statement.

A DO statement is used to define a loop. The action succeeding execution of a DO
statement is described in the following steps:

1. The induction variable, i, is assigned the value represented by the
initial parameter (mj).

2. Instructions in the range of the DO are executed.

3. After execution of the terminal statement the induction variable of the
most recently executed DO statement associated with the terminal
statement is changed by the value represented by the associated step
parameter (mj).

4. If the value of the induction variable after change 1is less than or
equal to the terminal value, then the action described starting at the
2nd step is repeated, with the understanding that the range in question
is that of the DO, whose induction variable has been most recently
changed. If the value of the induction variable is greater than the
terminal value, then the DO is said to have been satisfied. ‘

5. At this point, if there were one or more other DO statements referring
to the terminal statement in question, the induction variable of the
next most recently executed DO statement is changed by the value
represented by its associated step parameter and the action described
in the 4th step is repeated until all DO statements referring to the
particular termination statement are satisfied, at which time all such
nested DO's are said to be satisfied and the first executable statement
following the terminal statement is executed.

(In the remainder of this section a logical IF statement containing a
GO TO or an arithmetic IF as its conditional statement is regarded as a
GO TO or an arithmetic IF statement, respectively.)

6. Upon exiting from the range of a DO by the execution of a GO TO
statement or an arithmetic IF statement, that is, other than by
satisfying the DO, the induction variable of the DO is defined and 1is
equal to the most recent value attained as defined in the preceding
paragraphs.

4-23 BJ67

DO DO

Transfer of Control

The following configurations show permitted and nonpermitted transfers.

Permitted Not Permitted
oy | e e

= —> [
" SN

An examplé of the DO statement follows:

K=20

DO 10 T = 1,3
DO 10 J = 1,2
K=K+ I+ J

10 CONTINUE

where the K values are computed as:

OLD NEW

K I J K
K =20
K=20+4+14+1=2
K=24+1+2 =25
K=5+ 2+ 1= 8
K =8+ 2 4+ 2 = 12
K =12 + 3 + 1 = 16
K =16 + 3 + 2 = 21

Extended Range

A DO statement is said to have an extended range if the following two conditions
exist:

1. There exists at least one transfer statement inside a DO that can cause
control to pass out of this DO, or out of the nest if the DO is nested.

2. There exists at least one transfer statement, not inside any other DO,
which can cause control to return into the range of this DO.

7/73 424 BJ6TA

ENCODE ENCODE

ENCODE
The ENCODE statement is of the following form:
ENCODE (a,t) 1list

where t may be a format statement number, a character scalar, or an array name
giving the format information for encoding; a 1s a character scalar, array
element, or an array of any type, which specifies the starting location of the
internal buffer; the list is as specified for the WRITE statement.

The ENCODE statement causes the data items specified by list to be converted to
the character mode under control of the format specified by t; and placed in
storage beginning at location a.

The number of characters caused to be generated by the format information and
the list should not be greater than the size of a.

For examples:

I =1
ENCODE (A,3)T
3 FORMAT (I4)

After execution array a contains (beginning with the first character position of
A(l)):

prpl
where ¥ indicates a blank.

Additional information on the ENCODE statement is given in Section V under
Internal Data Conversion.

7/73 4-27 BJ67A

END END

END

The END statement specifies the physical end of the source program. It must be
the last statement of every program and must be completely contained on that
line. END creates no object-program instructions. It has the form:

END

4-28 BJ67

GO TO GO TO

For example:

ASSIGN 17 TO J
Go T0 J, (5,4,17,2)

Statement number 17 is executed next.

GO TO, Computed

The computed GO TO indicates the statement that will be executed next., This is
determined by using a computed integer value. It has the following form:

GO TO (K ,Kpse..,Kp) e

where the K. are statement labels or switch variables. The expression e 1is
truncated to an integer at the time of execution. The next statement to be
executed will be K; where i is the integral value of the expression e. If 1 is
out of range, a message is outputed and execution is terminated.

For example:
J =3

GO TO (5,4,17,1),J0

Statement 17 is executed next.

7/73 4-41 BJ6TA

IF, ARITHMETIC IF, ARITHMETIC

IF, ARITHMETIC

The arithmetic IF statement causes a change in the execution sequence of
statements depending on the value of an arithmetic expression. It has the
following form:

IF (e) ki,ky,kg

where e is an arithmetic expression and the k; are statement numbers, switch
variables or are null (not supplied). When ki is null, the statement referenced
is the next executable statement in the program.

The arithmetic IF is a three-way branch. Execution of this statement causes a
transfer to one of the statements ki, kp, or kj. The statement identified by ki,
ko, or kg is executed next depending on whether the value of e is less than
zery, %ero, or greater than zero, respectively. Any two of kg, kp, and k3 are
optional, and if null, cause the execution of the program to continue with the
next sequential executable statement after the IF statement.

Example:
IF (A(J,K)-B 10,4,30
I (A(J,K)~B) 0 control goes to statement 10

IF (A(J,K)=B) =0 control goes to statement 4
IF (A(J,K)=B) 0 control goes to statement 30

4-42 BJ67

IF, LOGICAL IF, LOGICAL

IF, LOGICAL

The logical IF statement causes conditional execution of a certain statement
depending on whether or not a logical expression is true or false. It has the
following form:

IF(e)s

where e is a logical or relational expression and s is any executable statement
except a DO statement or another logical IF statement. Upon execution of this
statement, the logical or relational expression e is evaluated. If the value of
e is true, statement s is executed. If the value of e 1is false, control is
transferred to the next sequential statement.

Example: IF(A.GT.B) GO TO 3

If A is arithmetically greater than B, the execution of the user program
continues with the statement labeled with 3. Otherwise execution continues with
the next sequential executable statement.

If e is true and s is a CALL statement that does not take a nonstandard return,
control is transferred to the next sequential statement upon return from the
subprogram.

The following examples illustrate several uses of the logical IF.

IF (A.AND.B) F = SIN (R)

IF (16.GT.L) GO TO 24

IF (D.OR.X,LE.Y) GO TO (18,10),I
. IF (Q) CALL SUB

s

B> W N
®

In example 1, if (A.AND.B) is true, compute F and return to the statement
following IF.

In example 2, if (16.GT.L), control transfers to statement 24.

In example 3, if (D.OR.X.LE.Y) is true, control transfers to statement 18 or 20
depending upon whether I is 1 or 2.

In example 4, Q must have been previously typed as LOGICAL. If its current value
is true, control goes to the subprogram SUB, Return is to the statement
following the IF,

If the operator .NE. or .EQ. is contained in a logical IF expression and both
operands are not type integer or character, a warning message will appear at the
end of the source listing. The error message indicates that the equality ox
non-equality relation between the operands may not be meaningful. This is due to
the fact that floating point arithmetic is not exact for certain fractions.

4-43 BJ67

IMPLICIT IMPLICIT

IMPLICIT
The IMPLICIT type statement is of the form:
IMPLICIT type*s(ll,lz,...),type*s(ll,ﬁz,...)

where each /n is a letter or pair of letters (separated by a dash) of the
alphabet.

Type is one of the following:

INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
LOGICAL, OR CHARACTER

*s is optional and designates a length specification for its associated data
type. Length specifications are ignored if type is INTEGER, DOUBLE PRECISION,
COMPLEX, or LOGICAL. When type is REAL, a length specification of 8 or more
implies DOUBLE PRECISION: when type is CHARACTER the length specification is as
defined for the CHARACTER statement.

The IMPLICIT statement is used to redefine the implicit typing. All variable
names beginning with a letter specified in the 1list or included in the
alphabetic interval defined by two letters separated by a dash are typed as
specified in the "Type" field. BAn IMPLICIT statement supersedes previous
implicit statements. The IMPLICIT statement must appear before any use of the
variable name being typed. It does not override any previous explicit type
statements.

For example:
IMPLICIT INTEGER(A-F,X,Y)

Any variable name first appearing in the program following this statement, which
begins with the letters A through F, X and Y are implicitly typed INTEGER. This
also applies to the lower case letters a through £, x, and vy.

7/73 4-44 BJ6TA

READ READ

READ

READ, list

This form of the READ statement is used for list directed formatted input from
the standard system input device. For a complete discussion of list directed
input/output see Section V of this document. A read after a write is illegal on
the same file.

READ t, list
or
READ t

This statement enables the user to read a list referencing format information
(t) that describes the type of conversion to be performed. A request is sent to
the standard input device. The input is converted according to the format
specified in t. The t field may be a FORMAT statement number, a character scalar
or an array name.

READ x

This is a NAMELIST input statement where x is a NAMELIST name. This statement
causes a read request to be sent to the standard input device. Input in NAMELIST
input format will be accepted. See Section V for a complete description of
NAMELIST input/output.

READ (f,t,optl,opt2)list

This statement, formatted file READ, includes a reference to format information
(t) and a file reference (f). It may include either or both options (optl and
opt2) and a list specification. The file reference (f) may be an integer
constant variable or expression. A file reference of 5 or 41 implies reference
to the standard system input device.

The end-of-file transfer (optl) option is designated as: END=S1., Where S1 is the
statement label that is to receive control upon encountering an end-of-file.

The Error Transfer (opt2) option is designated as: ERR=S2. Where S2 is the

statement label that 1is to receive control when an error condition is
encountered.

The options may appear in any order and Sl and S2 may be statement numbers or
switch variables.

7/73 4-53 BJET7A

READ READ

The format reference (t) may be the statement number of a FORMAT statement, a
character scalar, or an array name,

READ (f,optl,opt2)list

The unformatted file READ statement is the same as the formatted file READ
except the FORMAT reference is omitted. This statement applies to word oriented
serial access files (binary sequential files).

READ (f'n,opt2)list

This unformatted file READ is for random binary files. The n is an integer
constant, variable or expression that specifies the sequence number of the
logical record to be accessed.

READ (f,x,optl,opt2)

The NAMELIST file READ statement has a reference to some NAMELIST name (x) and
the list is omitted. This statement causes formatted input to be read in
accordance with NAMELIST group (x).

4~54 BJ67

WRITE WRITE

WRITE

WRITE (f,t,opt2) list

The formatted file WRITE statement must include a file reference (f) and a
FORMAT reference (t). It may include the option opt2 and a list reference.

The file reference may be an integer constant, variable, or expression. A
designation of 6 or 42 implies the system standard output printing device. A
designation of 43 implies the system standard output punching device.

The FORMAT reference (t) refers to the statement label of a FORMAT statement, a
character scalar, or an array name.

The error transfer (opt2) option is designated as: ERR=S2, where S2 1is the
statement label or switch variable that is to receive control when an error
condition is encountered. A write after a read on the same file is illegal.

WRITE (f,opt2) list

The unformatted file WRITE statement omits the format reference. It applies to
the output of word oriented serial access files (binary sequential files). The
£, opt2, and list fields are as specified for the formatted file WRITE.

WRITE (f'n,opt2) list

The random binary file WRITE statement contains a field (n) that specifies the
sequence number of the logical record to be written. n may be a constant,
variable, or expression and must be integer. The f,opt2, and list fields are as
specified for the formatted file WRITE.

WRITE (f,x,opt2)

The namelist file WRITE statement includes a reference to the NAMELIST name (x) .
This statement causes character oriented records to be written on the indicated
device. The f and opt2 fields are as specified for the formatted file WRITE; no
list field is included in the namelist file WRITE, See Section V for a complete
description of NAMELIST input/output.

7/73 4-673 BJ6TA

Formatted Input/Output Statements

These statements include a FORMAT reference, may include a file reference,
either or both options 1 and 2, and a list specification. These statements
pertain to character oriented sequential files. These formatted file statements
have the following forms:

READ t, list

PRINT t, list

PUNCH t, list

READ (f,t,optl,opt2)list
WRITE (f,t,opt2)list

The file reference, f, may be any integer expression. A designator of 5 or 41
for input or 6, 42 or 43 for output implies reference to the standard
input/output devices.

Unformatted Sequential File Input/Output Statements

The unformatted sequential file input/output statements have the following
forms

READ (f,optl,opt2) list
WRITE (f,opt2) list

The format designator is omitted and optl, opt2, and list are optional. These
statements apply to word oriented serial access files (binary sequential files).

Unformatted Random File Input/Output Statements

The forms for random binary file references are as follows:

READ (f'n,opt2)list
WRITE (f'n,opt2)list

where n is an integer constant, variable or expression that specifies the
sequence number of the logical record to be accessed.

The principal difference between the unformatted sequential and unformatted
random file operations is in the mode of access to the file. To write a file
with the random WRITE statement, the file must be accessed as random. Any
attempt to apply a random READ/WRITE statement to a file accessed as sequential
will result in the program aborting,

7/73 5~-13 BJ6TA

Linked files in time sharing may be accessed in a random mode using the ACCESS
subsystem. For example, at the build mode level:

*ACCESS AF,/X"02" ,MODE/RANDOM/, R
*RUN#02

This is particularly useful when reading a FORTRAN created, standard system

format, unformatted sequential file using random READ statements. Each record in
the sequential file must be the same length.

Unformatted random files created by FORTRAN are normally recorded in Standard
System Format (see File and Record Control re ference manual) .

Random files may also be written in a "pure data" format, without Dblock serial
numbers or record control words. This can be accomplished by one of the
following:

$ FFILE U,NOSRLS, FIXLNG/N
or
CALL RANSIZ (U,N,1)

U and N are the file unit number and logical record size parameters.

It is a requirement that FORTRAN random files have a constant record size.
Further, before any random I/O can be performed on any given file, its record
size must be defined. This is accomplished with either is a $ FFILE control card
or with a CALL to the (library) subroutine RANSIZ. Three arguments are required:
the first is a file reference, the second provides the record size. Both of
these arguments may be any integer expression. The third argument is zero or not
supplied when the file is in standard system format. A non-zero value specifies
a pure data file. For example:

CALL RANSIZ(08,50)

This statement specifies that file code 08 has a constant record size of 50 and
is in standard system format.

File Properties

Sequential Files - A sequential file may contain zero, one Or more records
accessed in a sequential manner.

Random Files

A random file consists of records each of which is
addressable i.e., each record may be accessed without
repositioning the file. Each record in the random file must
be of the same length.

File Updating - Input-output routines with Random files permit replacement of
individual records in a file. The execution of all random
file WRITE statements is considered a record replacment,

Record Sizes - Random files have records, all of the same length.

7/73 ' 5-14 BJ67A

CONDITIONAL FORMAT SELECTION

A problem common in FORTRAN programs arises when the format of the next record
cannot be determined without first reading it. This problem can be overcome
through the capability of the DECODE statement. As an example, consider that
input to a program is in card form, and the cards come in one of three formats.
When card column 1 contains a 0 the first format is to be applied; when it

contains a 1 the second; and 2 the third. The following subroutine could be
used:

SUBROUTINE READ (A,T,Z)
CHARACTER CARD*79
READ 101,KOLL,CARD
101 FORMAT (I1,A79)
GO TO (200,300,400) ,KOL1+1
200 DECODE (CARD,201) A,I,%
201 FORMAT (10X,F12.6,3X,I5,E12.6)
RETURN
300 DECODE (CARD,301) A,%Z,I
301 FORMAT (10X,2F12.6,3X,I5)
RETURN
400 DECODE (CARD,401)I,A,%
401 FORMAT (50X,I5,2El2.6)
RETURN ; END

CONSTRUCTION OF FORMATS WITH ENCODE

Another similar problem has to do with the building of format specifications at
run time for subsequent use in input processing. As an example, consider that
some data file is interpersed with control cards which specify the amount and
format of ensuing data. The first field of the control card gives the number of
data items that will be read; the second gives the number of fields per card (up
to 20) or is =zero indicating "use the previously developed format"; the
remaining fields on the control card come in pairs and provide "w" and "d" sizes
for "F" Format specifications needed for correct conversion of each data item;
the control card is in free-field format with comma separators. The following
subroutine will read and verify control cards, build format specifications, and
read a set of data:

SUBROUTINE READ (A,I)

DIMENSION A (I)

INTEGER WD (40)

CHARACTER FORM*141/" "/

READ,N,J, (WD (L) ,L=1, MINO(2*J,40))

IF (N.GT.I .OR. N,LT. 1)STOP "ITEM COUNT ERROR"
IF (J.GT.20 .OR J.LT.0) STOP "FIELD COUNT ERROR"

IF (J.EQ.0 .AND,FORM,EQ." ")STOP "UNFORMED FORMAT ERROR"
IF (J),200,
NCOL = 0

DO 50 L=1,2%J,2
IF (Wo(L+1l).LT. O .OR. WD(L+1).GT.8)GO TO 300
IF (WD(L).LT. WD(L+1)+2) GO TO 300

5-17 BJ67

50 NCOL =NCOL + WD(L)
IF (NCOL .GT. 80)STOP "COLUMN COUNT ERROR"
FORM=" "
ENCODE (FORM,101) ("F" ,WD(L) ,WD(L+1) ,",",

&L=1,2%J-2,2) ,"F" ,WD(2*J-1) ,WD(2*J) ,")"

101 FORMAT("(",20(Al,12,".",I2,A1))

200 READ(05,FORM) (A(L) ,L=1,N)
RETURN

300 PRINT 301, (L+1)/2, WD(L) ,WD(L+1)

301 FORMAT ("1 FORMAT SPEC #",I3," IN ERROR. W=",I5," D=",I5)
STOP" FIELD DESCRIPTOR ERROR"
END

The above examples also illustrate the use of a number of other Series 6000
FORTRAN language features, most notably:
1. Expressions used
a. As DO parameters
b. in an output list
c. as the index of a computed GO TO
2. The CHARACTER data type and A format specifiers for long strings
3. Adjustable dimensions
4. The T (tabulation) format specifier
5. Null label fields on an airthmetic IF
6. STOP with display
Note also that the use of CHARACTER scalars of arbitrary size eliminates program

dependency on character set. The above subroutine will run in ASCII or BCD mode,
without change.

OUTPUT DEVICE CONTROL

In the absence of a NO SLEW option on a FFILE control card, the spacing of the
printing on the output device is controlled by the first character of the line
of output. The first character is not printed but is examined to determine if it
is a control character to regulate the spacing of the output device. If the
first character is recognized as a control character, the line is printed after
the proper spacing has been effected. In any event, it is deleted when the line
is printed. This control affects printers, teletypewriters, and displays.

The effects produced by control characters are:

Character Effect
0 1 blank line prior to print
+ Overprint
1 Slew to top of page before printing
Any other Space to next line

7/73 5-18 BJ6T7A

If data items remain to be output after the format specification has been
completely "used", the format repeats from the last previous left parenthesis
which is at level 0 or 1. The following example illustrates the various levels
of parentheses,

FORMAT (3E10.3,(I2,2(F12.4,F10.3)),D28.17)
0 1 2) 21 0

The parentheses labeled 0 are zero level parentheses; those labeled 1 are first
level parentheses; and those labeled 2 are second level parentheses. If more
itemsg in the list are to be transmitted after the format statement has been
completely used, the FORMAT repeats from the last first-level left parenthesis;
that is, the parenthesis preceding I2.

As these examples show, both the slant and the final right parenthesis of the
FORMAT statement indicate a termination of a record.

Blank lines may be introduced into a multiline FORMAT statement by inserting
consecutive slants, When N+1 consecutive slants appear at the end of the FORMAT,
they are treated as follows: for input, n+l records are skipped; for output, n
blank lines are written. When n+l consecutive slants appear in the middle of the
FORMAT, n records are skipped for both input and output.

Carriage Control

The WRITE (f,t), PRINT, and PRINT t, statements prepare formatted fields in
edited format for the printer. The first character of each record is examined to
see if it is a control character to regulate the spacing of the printer. If the
first character is recognized as a control character, it is replaced by a' blank
in the printed line and the line printed after the proper spacing has Dbeen
effected. The interpretation of control characters is discussed under Output
Device Control., This control is wusually obtained by beginning a FORMAT
specification with 1H followed by the desired control character.

If a carriage control information is not desired, see $ FFILE/NOSLEW in the
Control Card manual.

Data Input Referring to a FORMAT Statement

These specifications must be followed when data input to the object program is
under format control:

1. The data must correspond in order, type, and field with the field
specifications in the FORMAT statement; or the field may be shortened
by using commas as delimiters. For example: for a format specification
of 316, an input data card containing 1, pYpBrerB3, is accepted. The
values 1, 2, and 3 are input. Note that the second field is a full six
characters wide and no comma appears; however, commas terminate the
first and third fields.

2, Plus signs may be omitted or indicated by a +. Minus signs must be
indicated.

3. Blanks in numeric fields are regarded as zeros.

5-21 BJ67

5,

Numbers for E- and F-conversion may contain any number of digits, but
only the high~order 8 digits of precision are retained. For
D-conversion, the high-order 18 digits of precision are retained. In
both cases, the number is rounded to 8 or 18 digits of accuracy, as
applicable.

Numeric data must be right justified in the field.

To permit greater ease in input preparation, certain relaxations in input data
format are permitted.

1,

Numbers for D- and E-conversion need not have four columns devoted to
the exponent field. The start of the exponent field must be marked by a
D or an E or, if that is omitted, by a plus or minus sign (not a
blank). For example, E2, E+2, +2, +02, and D+02 are all permissible
exponent fields.

Numbers for D-, E~-, and F-conversion need not supply a decimal point;
the format specification suffices. For example, the' number -09321+1
with the specification E12.4 is treated as though the decimal point had
been placed between the 0 and the 9. If the decimal point is included
in the field, its position overrides the position indicated in the
format specification.

Numeric Field Descriptors

Six field descriptors are available for numeric data:

Internal Conversion Code External

Floating=point

(double-precision) D Real with D exponent
Floating=point E Real with E exponent
Floating=point F Real without exponent
Floating=point G Appropriate type
Integer I Decimal Integer
Integer or Floating-

point 0 Octal Integer

These numeric field descriptors are specified in the forms prDw.d, prEw.d,
prFw.d, prGw.d, riIw, rOw, where:

7/73

1.

2.

D, E, F, G, I, and O represent the type of conversion.

The w is an unsigned integer constant representing the field width for
converted data; this field width may be greater than required to
provide spacing between numbers.

The d is an unsigned integer or zero representing the number of digits
of the field that appear to the right of the decimal point. For
F-conversion, if d is specified > 9, it will be truncated at 8. For
E-conversion and D-conversion, if d is specified -~ 19, it will be
truncated at 18 and right-justified in the field.

Each p is optional and represents a scale factor designator.

Each r is an optional non=-zero integer constant indicating the number
of occurrences of the numeric field descriptor that follows.

5-22 BJ67A

Argument Checking and Conversion for Intrinsic Functions

A number of checks on arguments used in intrinsic functions are made by the
compiler. Due to the in line code expansion, the number of arguments specified
must agree with the number shown in Table 5. Except as noted in Table 5, the
argument type must agree with the type of the function. With the exception of
the typeless functions (described in this section), argument checking and/or
conversion is carried out by the compiler using the following general rules:

1. The hierarchy of argument types considered for conversion is: integer,
real, double precision, complex.

2. A generic intrinsic function call will be transformed to the function
type that supports the highest level argument type supplied to it.

3. Arguments to a non-generic form of intrinsic function are converted to

conform with the function type specified. This is within the
constraints of argument types integer through complex..

Automatic Typing of Intrinsic Functions

Use of the generic forms of the mathematical intrinsic functions (see Table 5)
allows for the type of the function's value to be determined automatically by

the type of the actual arguments supplied. This subset of dintrinsic functions
contains:

1. Absolute value - ABS
2. Remaindering - MOD
3. Maximum value - MAX
4, Minimum value - MIN
5. Positive difference - DIM
6. Transfer of sign - SIGN

This means that the in line code generated for DABS(D) and ABS(D) would Dbe the
same assuming that the type of the variable D is double precision.

When arguments of different types are specified (functions allowing more than
one argument) the type of the function itself is determined by the same rules

that govern mixed mode expressions. See Table 4-1, Rules for Assignment of E to
V.

FLD

FLD is used for bit string manipulation and has the following form:

FLD (i,k,e)

where:

i and k are INTEGER expressions where 0<i<35 and Il<k<36; e 1s any
INTEGER, REAL, or TYPELESS expression, a Hollerith word or one of the
typeless functions listed in Table 6-1.

This function extracts a field of k bits from a 36 bit string represented by e
starting with bit i (counted from left to right where the 0th bit is the
leftmost bit of e). The resulting field is right-justified and the remaining
bits are set to zero.

This intrinsic function may appear on the left hand side of the equal sign in an
assignment statement. This is defined as follows:

FLD (i,3,a) = b
where:

i and j are integer expressions egual to or less than 36; a is a
scalar or subscripted variable; and b is an expression.

For example:
A = "ABCD"

B

!|1234"
FLD (9,9,A) = B

PRINT, A

This would result in the printing of A4CD.

Typeless Intrinsic Functions

There are five typeless functions as follows:

AND (el,e2) Bit by bit logical product of el and e2.
OR (el,e2) Bit by bit logical sum of el and e2.
XOR (el,e2) Bit by bit "exclusive or" of el and eZ2.
BOOL (e) The type of e is disregarded.

COMPL (e) All bits of e are complemented and the

type of e is disregarded.

7/73 66 BJ6TA

The expressions of e may be of type INTEGER, REAL, or Type}ess; e may also be a
Hollerith word, the FLD word, or any of the typeless functions.

Examples:

M1 = AND(1,K)
M2 = OR(1,K)
M3 = XOR(1l,K)
M4 = BOOL(K)
M5 = COMPL (K)

If the receiving variables and K were integer, and the wvalues of K
were positive and odd, the following statements would have the same
effect as the preceding examples:

ML = 1; M2 = K; M3 = K -1; M4 = K; M5 = =K.

If the receiving variables were of logical type, all variable values
would be .TRUE. except M3 and M5 (only the rightmost bit 1is
significant). If the receiving variables were of type real, values are

stored in the locations of the receiving variables without conversion.

7/73 6-6.1 BJ67A

FUNCTION SUBPROGRAMS

Defining FUNCTION Subprograms

FUNCTION subprograms are defined external to the program unit that references
it., The computation desired in a FUNCTION subprogram is defined by writing the
necessary statements in a segment, writing the word FUNCTION and the name of
the function before the segment, and writing the word END after it. The
FUNCTION statement is of the form:

t FUNCTION £ (al,az,...,an)

where t is either INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
CHARACTER, or empty. The f is the symbolic name of the function to be defined.
The aj (called dummy arguments) are either variable names, array names, O
external procedure names.

The symbolic name of the function must appear at least once in the subprogram
as a variable name in some defining context (e.g., left of equals). The value
of the variable at the time of execution of any RETURN statement in this
subprogram is returned as the value of the function.

The symbolic name of the function must not appear in any nonexecutable
statement in this program unit, except as the symbolic name of the function in
the FUNCTION statement or in a TYPE statement.

An abnormal FUNCTION subprogram may define or redefine one or more of its
arguments to effectively return results in addition to the value of the
function.

The FUNCTION subprogram may contain any statements except BLOCK DATA,
SUBROUTINE, another FUNCTION statement, or any statement that directly or
indirectly references the function being defined. The Function Subprogram must
contain at least one RETURN statement.

If the function name appears in any of the following contexts, redefinition of
the function result is effected.

1. Left of equals in assignment statement

2. In the list of a READ statement

3. In the list of a DECODE statement

4, As the buffer name in an ENCODE statement
5., As the induction wvariable of a DO loop

Redefinition may also occur if the function name appears in the argument list of

a CALL statement or a reference to some abnormal external function, though not
necessarily.

6-9 BJ67

Supplied FUNCTION Subprograms

The functions listed in Table 6~2 are the basic external FUNCTION mathematical
subprograms supplied with the compiler. To use the functions, it is_ only
necessary to write their name where needed and enter the desired expression(s)
for argument(s). Except as indicated in Table 6-2, argument types must conform
with the type of the function. The compiler does some checking as to type of
arguments supplied and will make conversions in accordance with the following
rules:

1. The hierarchy of argument types considered for conversion is: integer,
real, double precision, complex.

2. A generic function call whose arguments do not conform as to type will
be transformed to the function type that supports the highest level
argument supplied to it.

3. Integer arguments are converted to the type of the function being
called.

4. Arguments to a non-generic form of external function will be converted
to conform to the function type specified. This is within the
constraints of argument types integer through complex.

A generic name is assigned to the set of functions in Table 6-2.

When the mathematical library functions are referenced by their generic names,
the type of the function is determined by the type of the argument(s) within the
constraints of the types described in Table 6-2. The one exception is when an
integer argument is specified to a generic function. In this case, the argument
is converted and the real form of the function is called. Note that the type of
ATAN2 is double precision if at least one of its arguments is double precision.

The functions listed in Table 6~2.1 are utilized in precisely the same manner as
those listed in Table 6-2; they differ only in that they are non-mathematical.

7/73 6-10 BJ67A

Table 6-2.

Supplied FUNCTION Subprograms, Mathematical

NO. OF| GENERIC TYPE QF:
FUNCTION DEFINITION ARG. NAME ARG. FUNCTION
Exponential e 1 |EXP Real Real
1 | DEXP Double Double
1 | CEXP Complex | Complex
Natural Logarithm logg(a) 1 | ALOG Real Real
1 | DLOG Double Double
1 | CLOG Complex | Complex
Common Logarithm loglo(a) 1 | ALOG10 |Real Real
1 | DLOG10 |Double Double
Trigonometric Sine sin(a) 1 | SIN Real Real
1 | DSIN Double Double
1 | CSIN Complex | Complex
Trigonometric Cosine cos (a) 1 | cos Real Real
1 | DCOs Double Double
1 |ccos Complex | Complex
Hyperbolic Tangent tanh (a) 1 | TANH Real Real
1
Square Root (a) ™ 1 | SQRT Real Real
1 | DSQRT Double Double
1 | CSQRT Complex | Complex
Arctangent tan™1 (a) 1 | ATAN Real Real
1 | DATAN Double Double
tan"l(al/az) 2 |ATAN2 Real Real
2 | DATANZ |Double Double
Arcsine sin"l(a) 1 |ARCSIN |Real Real
Arccos cos ™t (a) 1 |ARCCOS |Real Real
7/73 6-11

BJ6TA

Table 6~2.1 Supplied FUNCTION Subprograms, Non-Mathematical

NO. OF TYPE OF:

FUNCTION USAGE ARGS., ARG. FUNCTION
Left Shiftl ILS (aq,ay) 2 Integer |Integer
Right Shiftl IRS (al,az) 2 Integer |Integer
Left Rotatel ILR (aj,ay) 2 Integer |Integer
Right Logicall IRL (aq,a,) 2 Integer |Integer
Set Switch ISETSW (a) 1 Typeless | Integer

Word
Reset Switch IRETSW (a) 1 Typeless | Integer

Word ¢
Mode3 MODE (a) 1 Integer |Integer
Compare4 KOMPCH (aq,a,,a4,a,,as) 5 " |Integer
lal = typeless

an, = integer move contents of ay by a, places
2get switch word with bit configuration contained in a
3a = 1, Value is 0 for batch; 1 for time sharing

a = 2, Value is 0 for BCD; 1 for ASCII
4al,a3 = character Compare az to a

asray,ag = integer If az=aj, value = 0

az>ay, value = 1
az<ajy, value = -1

7/73 6-11.1 BJ67A

Referencing FUNCTION Subprograms

A FUNCTION subprogram is referenced by using its symbolic name with a list of
actual arguments in standard function notation as a primary in an expression.
The actual arguments, which constitute the argument list, must agree in order,
number, and type with the corresponding dummy arguments in the FUNCTION

subprogram definition. Actual arguments in the function reference may be one of
the following:

1. A variable name

2. An array element name

3. An array name

4, Any other expression

5. Name of an external procedure

6. Constant

If an actual argument is an external function name or a subroutine name, then
the corresponding dummy arguments must be used as an external function name or a
subroutine name, respectively.

If an actual argument corresponds to a dummy argument that is defined or
redefined in the referenced subprogram, the actual argument must be a variable
name, an array name, or an array element name.

Execution of a FUNCTION reference results in an association of actual arguments
with all appearances of dummy arguments in the defining subprogram. If the
actual argument is an expression, or constant then this association is by value
rather than by name. Following these associations, execution of the first
executable statement of the defining subprogram begins. An actual argument which
is an array element name containing variables in the subscript could in every
case be replaced by the same argument with a constant subscript containing the
same values as would be derived by computing the variable subscript just before
the association of arguments takes place.

If a dummy argument of a FUNCTION subprogram is an array name, the corresponding
actual argument must be an array name or array element name.

If a function reference causes a dummy argument in the referenced function to
become associated with another dummy argument in the same function or with an
entity in COMMON, a definition of either within the function is prohibited.

Unless it is a dummy argument, a FUNCTION subprogram is also referenced (in that
it must be defined) by the appearance of its symbolic name in an EXTERNAL
statement.

If a user FUNCTION subprogram is written in a language other than FORTRAN, it is
the user's responsibility to insure that the correct indicators, as well as the
correct numerical results, are returned to the calling program.

6-12 BJ67

Example of FUNCTION Subprogram

Definition

FUNCTION DIAG (A,N)
DIMENS ION A (N,N)
DIAG = A(l,1)
IF (N .LE. 1) RETURN
DO 61 = 2, N

6 DIAG = DIAG * A(I,I)
RETURN
END

Reference

DIMENSION X (8,8)
DET = DIAG (X,8)

SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram differs from a FUNCTION subprogram in three ways:

1. A SUBROUTINE has no value associated with its name. All results are
defined in terms of arguments or common; there may be any number of
results.

2. A SUBROUTINE is not called into action simply by writing its name,
since no value is associated with the name. A CALL statement brings it
into operation. The CALL statement specifies the arguments, and results
in storing all output values. '

3. There is no type or convention associated with the SUBROUTINE name. The
naming is otherwise the same as for the FUNCTION,

It is the user's responsibility to insure that the number and type of arguments
in the calling program statement corresponds with the number and type of
arguments expected by the called routine. This applies for all subroutines and
functions (library or other).

Defining SUBROUTINE Subprograms

A SUBROUTINE statement is of the form:

SUBROUTINE s (al,az,...,an)
or

SUBROUTINE s
where s is the symbolic name of the SUBROUTINE to be defined.

aj, called dummy arguments, are each a variable name, an array name, an external
procedure name, or an alternate return.

6~13 BJ67

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,
COMMON, NAMELIST or DATA statement.

The SUBROUTINE subprogram may define or redefine one or more of its arguments so
as to effectively return results.

The SUBROUTINE subprogram may contain any statements except BLOCK DATA,
FUNCTION, another SUBROUTINE statement, or any statement that directly or
indirectly references the subroutine being defined.

The SUBROUTINE subprogram must contain at least one RETURN statement.

Referencing SUBROUTINE Subprograms

A SUBROUTINE is referenced by a CALL statement. The actual arguments which
constitute the argument list, must agree in order, number, and type with the
corresponding dummy arguments in the defining subprogram. An actual argument in
the SUBROUTINE reference may be one of the following:

. A constant

A variable name

An array element name

An array name

Any other expression

. The name of an external procedure
. An alternate return.

®

e

If an actual argument corresponds to a dummy argument that is defined or
redefined in the referenced subprogram, the actual argument must be a variable
name, an array element name, or an array name.

Execution of a subroutine reference results 1in an association of actual
arguments with all appearances of dummy arguments in the defining subprogram.
This association is by name rather than by value.

Following these associations, execution of the first executable statement of the
defining subprogram is undertaken,

An actual argument which is an array element name containing variables in the
subscript could in every case be replaced by the same argument with a constant
subscript containing the same values as would be derived by computing the
variable subscript just before the association of arguments takes place.

If a dummy argument is an array name, the corresponding actual argument must be
an array name or array element name.

If a SUBROUTINE reference causes a dummy argument in the referenced subroutine
to become associated with another dummy argument in the same subroutine, or with
an entity in COMMON, a definition of either entity within the subprogram is
prohibited.

7/73 6=14 BJ67A

Table 6-3 (cont). Supplied SUBROUTINE Subprograms

SUBPROGRAM USE CALL
CREATE Create a Temporary Mass Storage CALL CREATE
or Teletypewriter File (LGU,ISIZE,MODE,
ISTAT)
DETACH Deaccess a Current File CALL DETACH (LGU,
ISTAT ,BUFFER)
ATTACH Access an Existing Permanent CALL ATTACH (LGU,
File CATFIL,IPRMIS,
MODE ,ISTAT, BUFFER)
FMEDIA Conforming Output Transliteration | CALL FMEDIA (FC,
’ MEDIA)
TRACE Invokes time sharing debug and CALL TRACE
trace package
CONCAT Move Character CALL CONCAT(A,N,B,M,L)
Substring, (Concatenate)
SORT Sort in Ascending Order CALL SORT (ARRAY,NREC,LRS,KEXD
ee. KEYR)
SORTD Sort in Descending Order CALL SORTD(ARRAY ,NREC,LRS,KEY;,
aeo (KEYD)
CORSEC Core Allocation x Processor Time CALL CORSEC (A)
TERMTM Hours of Log-On CALL TERMTM (A)
USRCOD User Identification CALL USRCOD (8)
PTIME Processor Time CALL PTIME (A)
MEMSIZ Memory Allocated CALL MEMSIZ (S)
TERMNO Station Code CALL TERMNO (A)
7/73 6-21 BJ67A

DUMP (DUMPA) , PDUMP (PDUMPA)

This SUBROUTINE subprogram dumps all or a designated area of core storage in a
specified format. If DUMP is called, execution is terminated by a call to EXIT.
If PDUMP is called, control is returned to the calling program.

Calling Seguence:

CALL DUMP or DUMPA (Ay,B2,F3,...,An,Bn,Fn)

CALL PDUMP or PDUMPA (A3 ,B2,F3,...,An,Bn,Fn)

where A and B indicate the limits of the core storage area to be dumped. A or B
may represent the upper or lower limit. F is an integer specifying the dunmp
format. If no arguments are given, all of core is dumped in octal. The values
for F are as follows:

Octal

Integer

Real

Double Precision
Complex

Logical
Character

L s B B s B s |
I
AUTE WO

[/ I I 1

DUMPA and PDUMPA are the ASCII versions.

EXIT

This SUBROUTINE purges all buffers and terminates the current activity. Control
is returned to the Comprehensive Operating Supervisor.

Calling Seqguence:

CALL EXIT

FCLOSE

This SUBROUTINE closes file I and releases the buffer(s) assigned, The buffer is
released only if it is the standard size (320 words). Return 1s +to the next
executable statement in the calling program.

Calling Sequence:
CALL FCLOSE(I)

where I is the logical file designator.

6-22 BJ67

Table 6-4. (cont) Error Codes and Meanings
51 Cc SENSE LIGHT INDEX NOT REFERENCE TO NON-EXISTENT |DECLARED OFF IF
SIMULATOR 0§n§35 SENSE LIGHT TESTING IGNORED
IF SETTING
52 C NAMELIST ILLEGAL ILLEGAL HOLLERITH SKIPPING TO NEXT
INPUT HOLLERITH FILED FIELD BELOW VARIABLE NAME
53 C SENSE SWITCH| INDEX NOT NON-EXISTENT SENSE SWITCH |SWITCH DECLARED
TEST l§n<6 TESTED OFF
54 A FILE OPENING| ATTEMPT TO WRITE ILLEGAL WRITE REQUEST NO OPTIONAL EXIT
I* ON SYSINL EXECUTION TERMINATED
55 FXEM NAMELIST INPUT ILLEGAL COMPUTED GO TO
56 A FILE OPENING| ATTEMPT TO READ ILLEGAL READ REQUEST ON
P* SYSOUl OR SYSPP1
57 C BCD I/0 ILLEGAL CHAR ILLEGAL CHAR FOR L TREAT ILLEGAL
FOR L CONVERSION CONVERSION IN DATA BELOW |CHARACTER AS SPACE
58 C BACKSPACE FILE NN IS CLOSED BACKSPACE REFUSED
RECORD
59 C NAMELIST EMPTY HOLLERITH EMPTY HOLLERITH FIELD
INPUT FIELD
60 (o) I**J I**J>2%*35 (2*%*35) -2+ QR | EXPONENT OVERFLOW SET RESULT=+
|1l >1,5>35 (2%%35) -2 QR ((2%%35)=2)
J IS EVEN
T<-1,J>35, - ((2%*35)-2)}=QR
J IS ODD
61
62
63 RESERVED FOR USERS
64
65
66
67 C FAULT EXPONENT UNDERFLOW EXPONENT UNDERFLOW AT LOCATION XXXXXX
68 C FAULT INTEGER OVERFLOW OVERFLOW AT LOCATION XXXXXX
69 C FAULT EXPONENT OVERFLOW EXPONENT OVERFLOW AT LOCATION XXXXXX
70 C FAULT INTEGER DIVIDE DIVIDE CHECK AT LOCATION XXXXXX
CHECK
71 C FAULT FLOATING POINT DIVIDE CHECK AT LOCATION XXXXXX

DIVIDE CHECK

BJ67

Table 6-4 (cont).

Error Codes and Meanings

72

73

74

75

76

77

78

79

80

81

82

83

84

87

88-141

RANDOM I/0

RANDOM I/0

RANDOM I/0O

RANDOM I/0

RANDOM I/0

RANDOM I/0

RANDOM I/0

RANDOM I1/0

RANDOM I/0

FORMAT I1/0
ENCODE /DECODE

FORMAT I/0
ENCODE /DECODE

ARCSINE
FORMAT I/0
ENCODE /DECODE
1/0

FORMAT I/0
ENCODE/DECODE

1/0

NOT PRESENTLY

LIST EXCEEDS LOGICAL
RECORD LENGTH

FILE NOT STANDARD
SYSTEM FORMAT. ZERO
BLOCK COUNT; BSN

NO DEVICE FOR FILE

BAD RECORD REFERENCE

CARD OR CALL RANSIZ
(FC,SIZE)

RANDOM I/0 TO LINKED
FILE ILLEGAL.

FILE LIMITS.

LIST EXCEEDS DECLARED
RECORD LENGTH

FILE IS NOT LARGE
ENOUGH TO CONTAIN
RECORD

LINE EXCEEDS SIZE OF
RECEIVING FIELD

FIRST NON~BLANK CHAR-
ACTER IS NOT (

| mntEGER | > 2%%35-1

"GFRC" ERROR
ENCODE/DECORD~1/0
MAY NOT BE USED
RECURSIVELY

SPACE/CORE OBTAINED

USED

ERROR; ZERO RECORD COUNT

RECORD SIZE NOT SPECIFIED
IN FCB. GIVE VIA $ FFILE

THE RECORD NO. GIVEN IN
THE RANDOM READ OR WRITE |
STATEMENT IS OUTSIDE THE |

LIST EXCEEDS LOGICAL
RECORD LENGTH

FILE NOT STANDARD
SYSTEM FORMAT
FILE # FC

LOGICAL FILE CODE FC
DOES NOT EXIST

ZERO OR NEGATIVE
REC #

REC SIZE NOT GIVEN
FOR RANDOM FILE

RANDOM I/0 TO
LINKED FILE ILLEGAL

REC # OUT-OF-BOUNDS-

LIST EXCEEDS DECLARED
RECORD LENGTH

FILE SPACE EXHAUSTED-

LINE EXCEEDS SIZE OF
RECEIVING FIELD

FIRST NON-BLANK CHAR-
ACTER IS NOT (

’ARG >1.0

}INTEGERI > 2%*35-]

"GFRC" ERROR
ENCODE/DECODE~
1/0 MAY

SPACE/CORE OBTAINED
FOR

STORE ZEROS IN
REMAINING LIST ITEMS
FC # XX

NO OPTIONAL EXIT
EXECUTION TERMINATED

FC # XX

FC # XX

FC # XX

FC # XX

TREAT AS END
OF FORMAT

TREAT AS END
OF FORMAT

EVALUTE FOR
ARG=1.0

LIMIT TO |

2%%35-1 i
|

FCH#xx

NOT BE USED

RECURSIVELY

LOG. FILE
CODE #xx

NOTATION:

I,J,K are integers

A,B,C are real numbers
DA,DB,DC are double-precision numbers

CA,CB,CC where CA=X,Y are complex numbers

7/73

BJ6TA

FMEDIA

This subroutine allows the user to cause transliteration to occur on files
directed to mass storage or tape.

Calling Sequence:
CALL FMEDIA (FC,MEDIA)

where MEDIA = (0 for BCD NOSLEW

2 for BCD CARD IMAGES

3 for BCD SLEW

5 for TSS ASCII FORMAT (Time Sharing Only)
6 for STANDARD SYSTEM ASCIIL FORMAT

others are ignored

FC = Logical File Code

The legal combinations are as follows:

0 to 2 3 to 0
0 to 3 3 to 2
0 to 5 3 to 5
0 to 6 3 to 6
2 to 0O 6 to O
2 to 3 6 to 2
2 to 5 6 to 3
2 to 6 6 to 5

Automatic file transliteration is provided and/or reformating on a logical
record basis permits the following:
1. Executing of a BCD program under time-sharing.
a. I/0 can be directed to the terminal.

b. Input files can be ASCII (media 5 or 6).

C. Output files can be media 0,2,3 BCD or 5,6 ASCII.
2. Execution of an ASCII program in batch.
a, I/0 can be directed to reader, printer, punch or SYSOUT.

b, Input files can be media 0,2,3 BCD or 5 ASCII.

C. Output files can be media 0,2,3 BCD or 6 ASCII.

7/73 6=-37 BJ6TA

3. Execution of a BCD program in batch.
a. Input files can be ASCII (either media 5 or 6) .

b. output files can be media 0,2,3 BCD or 6 ASCII.

4, Execution of an ASCII program under time-sharing.
a. Terminal I/0 is provided.

b. Input files can be media 5 ASCII or 0,2,3 BCD.

C. Output files can be media 0,2,3 BCD or 5,6 ASCII.

TRACE

This subroutine is callable from a FORTRAN cbject program in 'the time sharing
mode. It is useful in tracing and debugging an object module. See the Debug and
Trace Routines manual.

CONCAT
This subroutine is used to provide the user with the ability to move or compare
a character substring of arbitary length and position within a string.
Calling Sequence:
CALL CONCAT (A,N,B,M,L)
where:
A = string to be replaced
N = initial character of A
B = replacement string
M = initial character of B

L = number of characters to be replaced; if L. 1is not given, one replacement
character assumed

Causes the (N+L-1)th characters of A to be replaced with the (M+L-1)th
characters of B.

7/73 6-37.1 BJ6T7A

SORT
This subroutine provides the user with the means of sorting in an ascending
order.
Calling Sequence:
CALL SORT (ARRAY,NREC,LRS,KEYj,...,KEYp)
where:
ARRAY is the name of the array to be sorted;
NREC is the number of items, or logical records, in the array;
LRS is the logical record size, or the size of each item in the array;
KEY is the relative word number of the ith sort Key in each logical record and
must be such that 0 < KEY < LRS. Record comparisons are made starting with
KEY and either progress through to KEY, , or until a non-equal comparison is

made. Any number of sort keys may be specified; however, at least one must
always be specified.

SORTD
This subroutine provides the user with the means of sorting in a decending
order.
Calling Sequence:
CALL SORTD (ARRAY ,NREC,LRS,KEY],...,KEYp)
where:
ARRAY is the name of the array to be sorted;
NREC is the number of items, or logical records, in the array;
LRS is the logical record size, or the size of each item in the array;
KEY is the relative word number of the ith sort Key in each logical record and
must be such that 0 < KEY < LRS. Record comparisons are made starting with
KEY and either progress through to KEY, , or until a non-equal comparison is

made. Any number of sort keys may be specified; however, at least one must
always be specified.

CORSEC

This subroutine provides the user with the means of obtaining the product of
core allocation and processor time.

Calling Sequence:

CALL COKSEC(A)

where A, a real variable, is product of 1024-word blocks currently allocated and
processor time in seconds.

7/173 6~-37.2 BJ67A

TERMTM
This subroutine provides the user with the means of obtaining log-on time; the
call is ignored in batch.
Calling Sequence:
CALL TERMTM(A)

where A, a real variable, is in hours since log-on.

USRCOD
This subroutine provides the wuser with the means of obtaining user
identification,
Calling Sequence:
CALL USRCOD(S)

where 8 is l2-character user identification.

PTIME

This subroutine provides the user with the means of obtaining processor time.
Calling Sequence:
CALL PTIME (A)

where A, a real variable, is processor time in hours.

MEMSIZ

This subroutine prov<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>