ECLIPSE MV /4000™
/~ | System

Functional
¢ DataGeneral Characteristics

ECLIPSE MV /4000" System

Functional Characteristics

014-000736-00

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL., LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE-
IN IS THE PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN WHOLE OR IN PART
WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA, PRESENT,
ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, and MANAP are U.S. registered trademarks of Data
General Corporation, and AZ-TEXT, DG/L, ECLIPSE MV/4000, REV-UP, SWAT, XODIAC, GENAP, DEFINE,
CEO, SLATE, microECLIPSE, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks of Data General
Corporation.

ECLIPSE MV/4000™ System
Functional Characteristics
014-000736

Revision History:

Original Release - December 1982

Ordering No. 014-000736

©Data General Corporation, 1982

All Rights Reserved

Printed in the United States of America
Revision 00, December 1982

Preface

This manual addresses the assembly language programmers familiar with the Principles
of Operation, 32-Bit ECLIPSE® Systems manual. For ease of use, the manual maps by
chapters to the Principles of Operation, 32-Bit ECLIPSE® Systems manual.

The Organization of This Manual

The contents of each chapter and appendix of this manual are as follows:

Chapter 1, Technical Summary, explains the system components and functions that are
available on the ECLIPSE MV/4000™ computer.

Chapter 2, Fixed-Point Instruction Summary, summarizes fixed-point formats and
instructions.

Chapter 3, Floating-Point Instruction Summary, summarizes floating-point formats
and instructions.

Chapter 4, Stack Management Instruction Summary, summarizes the wide stack
instructions.

Chapter 5, Program Flow Management, explains program flow, interrupt handling, and
fault handling.

Chapter 6, Queue Management Instruction Summary, summarizes the queue instruc-
tions.

Chapter 7, Device Management, explains the MV /4000 I/0 devices and applicable
instructions.

Chapter 8, Memory and System Management, presents the MV /4000 privileged
instructions and related information for the operating system designer.

Chapter 9, C/350 Programming, explains ECLIPSE C/350 programming compatibility.

Appendix A, Instruction Summary, lists the unique MV /4000 instruction set alphabeti-
cally.

Appendix B, Instruction Execution Times, presents the typical execution time for each
MYV /4000 instruction.

v Preface

Appendix C, Register Fields, presents tabular data for the various programmer-accessible
registers.

Appendix D, Reserved Memory Locations and Context Block Format, lists the reserved
memory locations for page zero, and shows the format for the context block.

Appendix E, Standard I/O Device Codes, lists standard Data General device codes.

Appendix F, Fault Codes, is a tabulation of the contents of Accumulator 1 for protection
and nonprotection faults.

Appendix G, Load Control Store Instruction, presents the operation and format for this
instruction.

Related Manuals

Other manuals useful in conjunction with the MV /4000 computer system are as follows:

Principles of Operation, 32-Bit ECLIPSE® Systems, Programmer’s Reference Series
(DGC No. 014-000704)

ECLIPSE MV/4000T™, Product Summary (DGC No. 014-000708)

Intelligent Asynchronous Controller, Programmer’s Reference Series (DGC No.
014-000703)

ECLIPSE® MV/Family Instruction Reference Booklet (DGC No. 014-000702)

Data General Communications Subsystems, Product Summary Series (DGC No.
014-000635)

Programmer’s Reference Manual — Peripherals (DGC No. 015-000021)
Learning to Use AOS/VS (DGC No. 069-000031)

AOS/VS Macroassembler Reference Manual (DGC No. 093-000242)
AOS/VS Pro -rammer’s Manual (DGC No. 093-000241)

Preface v

Conventions and Abbreviations

This manual uses the following conventions and abbreviations:

(]

UPPERCASE
and/or
Bold

lowercase
and/or
Italic

ac
acs

acd

fac

facs

[
>

The square brackets indicate an optional argument. Omit the square
brackets when you include an optional argument with an Assembler
statement.

Uppercase or bold characters indicate a literal argument in an
Assembler statement. When you include a literal argument with an
Assembler statement, use the exact form.

Lowercase or italic characters indicate a variable argument in an
Assembler statement. When you include the argument with an
Assembler statement, substitute a literal value for the variable
argument.

The ac abbreviation indicates a fixed-point accumulator.
The acs abbreviation indicates a source fixed-point accumulator.

The acd abbreviation indicates a destination fixed-point accumula-
tor.

The fac abbreviation indicates a floating-point accumulator.
The facs abbreviation indicates a source floating-point accumulator.

The facd abbreviation indicates a destination fioating-point accumu-
lator.

Table of Contents

1 Technical Summary

System Overview

Central Processing Unit
Instruction Processor
Arithmetic Processor
Address Translator

Memory System

I/O System
I/O Transfers
Communications Controllers
Universal Power Supply Controller

System Control Program

C/350 Compatibility

Registers

Initialization
Power Up
System Microcode Loads
IORST Instruction

k.
1 U U [}

QYsdaadhhbddbidbddbbu~

ek ek ek el ek bk ek ek ek ek e ek ek bk ek
1

2 Fixed-Point Instruction Summary

Fixed-Point Data Formats 2-1
Fixed-Point Instructions 2-2
Processor Status Register 2-8
Decimal/Byte Operations 2-9

3 Floating-Point Instruction Summary

Floating-Point Data Formats 3-1
Floating-Point Instructions 3-2
Floating-Point Status Register 3-5

4 Stack Management Instruction Summary

S Program Flow Management

Program Counter 5-1
Address Space 5-2
Interrupts 5-2

Interrupt Sequence 5-2
Interrupting an Instruction 5-4
Program Flow Instructions 5-9
Fault Handling 5-11
Privileged Faults 5-11
Nonprivileged Faults 5-11
6 Queue Management
Instruction Summary
7 Device Management
General 1/0 Instructions 7-1
Central Processor 7-3
Device Flags 7-3
CPU Instructions 7-4
Programmable Interval Timer 7-7
Device Flags 7-8
PIT Instructions 7-8
Real-Time Clock 7-9
Device Flags 7-10
RTC Instructions 7-10
Primary Asynchronous Line Input/Output 7-11
Device Flags 7-12
TTI/TTO Instructions 7-12
System Control Program 7-13
Device Flags 7-13
SCP Instructions 7-14
Data Channel/Burst Multiplexor Channel 7-19
DCH/BMC Maps 7-19
DCH/BMC Registers 7-20
DCH/BMC Map Instructions 7-23
Universal Power Supply Controller 7-26
Device Flags 7-26
UPSC Instructions 7-26
8 Memory and System Management
Address Translator 8-1
Referenced and Modified Bits 8-3
Protection Validation 8-3
Memory/System Management Instructions 8-4
Privileged Faults 8-4
Page Faults 8-4
Address Protection Faults 8-6
Reserved Memory 8-6
9 C/350 Programming
Registers 9-1
Instruction Compatibility 9.2
Program Flow 9-6
Fault Handling 9-6
Reserved Memory 9-6

CPU Identification

9-6

A Instruction Summary

B Instruction Execution Times

C Register Fields

Program Counter C-1
Processor Status Register C-2
Floating-Point Status Register C-3
Segment Base Registers C-4
DCH/BMC Status Registers C-5
CPU Identification C-6
LCPID and ECLID Tnstructions C-6
NCLID Instruction C-7
D Reserved Memory Locations
and Context Block Format
Reserved Memory Locations D-1
Page Zero Locations for Segment D-1
Page Zero Locations for Segments 1 through 7 D-3
Context Block Format D-4
E Standard 1/0 Device Codes
F_ Fault Codes
Protection Faults F-1
Page Faults F-2
Stack Faults F-2
Decimal/ASCII Faults F-3
G Load Control Store Instruction
Microcode File Format G-2
Microcode Block Format G-4
LCS Implementation G-4
Microcode Blocks G-5
Error Return G-8
Kernel Functionality G-10
H Programming Considerations
Current Page of Execution H-1
Double-Word Alignment H-1

[llustrations

Figure Caption Page
1-1 The ECLIPSE/4000 system 1-2
5.1 Interrupt sequence 5-3
5.2 Noninterruptible instruction interrupt sequence 5-5
53 Restartable instruction interrupt sequence 3-6
5.4 Resumable instruction interrupt sequence 5-8
7.1 DCH/BMC registers 7-21
8.1 Page fault sequence 8-5
G.1 General formats for microcode files G-3
G.2 General form for microcode blocks G-5
Tables
Table Caption Page
2.1 Fixed-point precision conversion 2-2
2.2 Fixed-point data movement instructions 2-2
2.3 Fixed-point addition instructions 2-3
2.4 Fixed-point subtraction instructions -3
2.5 Fixed-point multiplication instructions ;’3
2.6 Fixed-point division instructions , 4
2.7 Initializing carry instructions 2-5
2.8 Fixed-point skip on condition instructions 2-6
2.9 Fixed-point increment or decrement word and skip instructions 2.6
2.10 Logical instructions 2-7
2.11 Logical shift instructions 2-7
2.12 Fixed-point logical skip instructions 2-8
2.13 PSR manipulation instructions 2-9
2.14 Fixed-point byte movement instructions 2-9
2.15 Fixed-point to floating-point conversion and store instructions 29
2.16 Load effective word and byte address instructions g':g
2.17 Edit subprogram instructions 2:10
2.18 BCD arithmetic instructions
2.19 Hex shift instructions
3.1 Floating-point addition instructions 32
3.2 Floating-point subtraction instructions 32
33 Floating-point multiplication instructions 3-2
34 Floating-point division instructions 3-3
3.5 Floating-point skip on condition instructions g’i
3.6 Floating-point binary conversion instructions 3: 4
3.7 Floating-point decimal conversion instructions 3-4
38 Floating-point data movement instructions 3-5

39 FPSR instructions

Table

4.1
4.2
4.3
4.4

7.1
7.2
7.3
7.4
1.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12

E.1l

F.1
F.2
F-3
F-4

Caption

Wide stack register instructions

Wide stack double-word access instructions
Wide stack return block instructions
Multiword wide stack instructions

Restartable or resumable instructions
State of PSR bits 2 and 3

Execute accumulator instruction
Jump instructions

Skip instructions

Subroutine instructions

Segment transfer instructions
Sequence of subroutine instructions

Queue instructions

General I/O instructions

Device flags for general devices
Device flags for skip instructions
I/0 instructions for CPU

I/0 instructions for PIT

I/O instructions for RTC

I/O instructions for TTI and TTO
SCP instructions

Device map registers 0000-7777
DCH/BMC map instructions
I/0O instructions for UPSC
UPSC fault codes

Memory/system management instructions

C/350 fixed-point computing instructions
C/350 floating-point computing instructions
C/350 program float management insiructions
C/350 stack management instructions

Page zero locations for segment 0
Page zero locations for segments 1 through 7
Context block format

Standard 1/O device codes

Protection fault codes
Page fault codes
Stack fault codes
Decimal/ASCII faults

7-2
7-2
7-2
7-4
7-8
7-10
7-12
7-14
7-20
7-23
7-26
7-31

Chapter 1

Technical Summary

The ECLIPSE MV /4000™ computer system is a general purpose 32-bit data processing
system that supports the complete 32-bit instruction set as presented in the Principles of
Operation, 32-Bit ECLIPSE® Systems manual. In addition, the ECLIPSE MV /4000
computer system retains substantial hardware and software compatibility with 16-bit
ECLIPSE systems. (However, kernel 16-bit operating system instructions (e.g., SYC,
VCT, and LMP) are not supported.)

The MV /4000 system operates in the manner described in the Principles of Operation,
32-Bit ECLIPSE® Systems, manual.

This chapter describes the physical MV /4000 system, and initial processor conditions.

System Overview

The physical MV /4000 system (see Figure 1.1) incorporates four main systems:

* The central processing unit, which consists of: the instruction processor for decoding
and executing instructions; the arithmetic processor for manipulation of data; and the
address translator for logical to physical address translation.

* The memory system, which consists of: a memory controller and up to four memory
modules of 0.5 Mbyte to 2 Mbytes each.

* The input/output system, which consists of: an integrated burst multiplexor chan-
nel/data channel/and programmed I/O controller; and a complement of standard
Data General peripherals.

* The system control program, which is a micro-coded soft system console that performs
diagnostic and operator-controlled functions.

1-2 Technical Summary

Synchronous
communications

Intelligent
memory synchronous

controller

Central
processor

On-line
Intelligent storage
asynchronous

controllor
Asynchronous

communications

DG-15310

Figure 1.1 The ECLIPSE MV/4000 system
Central Processing Unit

The central processing unit (CPU) of the MV /4000 system consists of a pipelined
instruction processor, a high-speed arithmetic processor, and an address translator.

Instruction Processor

The instruction processor decodes instructions for execution. The instruction processor
executes instructions in four steps:

1. It fetches an instruction from memory.

2. It parses the instruction opcode to obtain the starting address of the microcode
routine, and collects operand information.

3. It sets aside the parsed information to wait for execution (while it parses a new
instruction).

4. Tt initiates the microinstruction execution.

This four-stage sequence allows four instructions to be in the pipeline at any one time
(one 16-bit instruction per step).

Technical Summary 1-3

Arithmetic Processor

The arithmetic processor manipulates floating-poini numbers, fixed-point quantities,

and addresses.

The MV /4000 system contains four 32-bit fixed-point accumulators. The ECLIPSE
C/350 16-bit fixed-point accumulators correspond to bits 16 through 31 of the MV /4000
system accumulators.

The program counter (PC) is 31 bits wide. Bits 1 through 3 specify the current segment
of execution, and bits 4 through 31 specify an address in the segment.

Four floating-point accumulators, each 64 bits wide, contain the sign, the exponent, and
the mantissa of any single- or double-precision floating-point operand. These four registers
are identical to the C/350 floating-point registers. The MV /4000 system floating-point
status register (FPSR) is 64 bits wide.

Four 32-bit registers govern the MV /4000 wide stack: the wide stack pointer (WSP),
the wide frame pointer (WFP), the wide stack limit (WSL), and the wide stack base
(WSB). Maintaining the stack in hardware speeds up stack management operations.

Address Translator

The MV /4000 computer has 4 Gbytes of logical memory and from 0.5 Mbyte to 8
Mbytes of physical memory. Because the logical address space is so much larger than
the physical address space, the MV /4000 computer uses a demand-page system whereby
it can store units of logical memory called pages on disk until needed by a process. When
a process refers to a page (2 Kbytes) on disk, it moves the page to physical memory for
manipulation. In addition to the page-swapping mechanism, this system also contains an
address translator to convert the logical address into a physical address in memory.

The address translator also controls two memory management bits for each page: the

modified bit, and the referenced bit. The operating system uses these bits during page
faults.

The address translator performs all hardware checks required by the protection system.
These checks include access validation, page validation, ring crossing validation, and
others. If any of the checks fails, the address translator initiates a protection fault to the
operating system. For more information about the types of protection checks, refer to the
Principles of Operation, 32-Bit ECLIPSE® Systems manual.

Memory System

The MV /4000 memory system can support up to four dynamic random access memory
(RAM) modules of up to 2 Mbytes each. Each 2 Mbyte memory module contains 512K
double words, where each double word is 4 bytes long.

The 1-Mbyte and 2-Mbyte memory modules consist of two independent planes, each
containing 0.5 Mbyte or 1 Mbyte of double words. Each plane contains every other
double word. For instance with a 2-Mbyte memory module, plane 0 contains the double
words 0-1, 4-5; plane 1 contains the double words 2-3, 6-7; and so on. This arrangement
allows memory operations to consecutive double words to overlap.

1-4 Technical Summary

The MV /4000 computer transfers data at a rate of 13.3 Mbytes/s.

The ECLIPSE MV /4000 memory system provides for error detection and correction
with every double word read from memory or accessed during a memory refresh operation.
The memory system detects memory errors with the error checking and correction
(ERCC) logic when reading data from memory. (The memory controller calculates and
appends seven ERCC bits to each double word it sends to a memory module.) Each time
the controller reads a double word from a memory module, it checks the ERCC code. If
it detects an error, it corrects the single-bit error before transmitting the data through
the CPU or the 1/O port. The system control program can log all ERCC errors.

When the memory controller performs the refresh operations (required by the dynamic
random access memory (RAM) modules), the memory controller also checks for memory
errors. (This operation is called sniffing.) Sniffing verifies all memory locations,
correcting a single-bit error in memory even if that memory location is not being used by
a program. This prevents an unused area of memory from collecting single-bit errors,
and also prevents intermittent single-bit errors from becoming uncorrectable multiple-bit
errors. The system control program can log all sniffing errors.

I1/0 System

The MV /4000 1/0 system is electrically compatible and program compatible with the
ECLIPSE C/350. This means that the MV /4000 computer supports the full family of
standard Data General peripherals with high-speed burst multiplexor channel (BMC)

1/0, data channel 1/O (DCH), and programmed 1/0 (PIO).

I/0 Transfers

Both the BMC and the data channel transfer data to and from the system memory
directly, using the data path resources of the MV /4000 CPU.

NOTE: Since the MV/4000 performs the BMUC (and DCH) operations in the M V/4000
microcode, CPU operations must halt while the BMC (or DCH) transfers data.

e The BMC transfers blocks of data to and from memory at a rate of up to 5.0
Mbytes/s on output and up to 5.0 Mbytes/s on input.

o The data channel operates at rates up to 1.25 Mbytes/s on output and 2.5 Mbytes/s
on input.

The programmed 1/O system operates with a process transferring words or parts of
words between the accumulators and 1/O devices. These transfers are instrumental in
setting up the parameters of the transfers for the higher speed channels. The MV /4000
computer executes most C/350 programmed 1/0 instructions exactly as the ECLIPSE
C/350.

NOTE: The MV/4000 computer processes the 1/O instructions for device codes 3 and 5 like
other external devices (and not as internal ECLIPSE C/350 devices).

Communications Controllers

Two processors control the asynchronous and synchronous communications. The
intelligent asynchronous controller (IAC) handles asynchronous communications and
the intelligent synchronous controller (ISC) handles synchronous communications. (The
ISC can handle either asynchronous or synchronous communications.)

Technical Summary 1-5

Intelligent Asynchronous Controller

The TAC is a 16-bit processor connected to the MV /4000 computer, which features
standard facilities such as accumulators, stacks, a standard 1 /O bus, an ECLIPSE
C/350 instruction subset, a priority interrupt system, etc. The MV /4000 computer with
four IACs supports up to 64 asynchronous lines.

Communication between the MV /4000 central processor and the IAC is necessary to
coordinate their operation. For example, the IAC must be able to signal the host when it
has completed a task or needs more information. The IAC memory allocation and
protection unit and two groups of special instructions provide the MV /4000 computer
and the IAC with the necessary ability to communicate.

For further information, refer to the Intelligent Asynchronous Controller manual.

Intelligent Synchronous Controller

The ISC is a 16-bit processor connected to the MV /4000 computer, which features
standard facilities such as accumulators, stacks, a standard I/0 bus, an ECLIPSE
instruction subset, a priority interrupt system, etc. The ISC handles two asynchronous or
synchronous communications lines.

Communications between the MV /4000 central processor and the ISC is necessary to
coordinate their operation. For example, the ISC must be able to signal the host when it
has completed a task or needs more information. The ISC memory allocation and
protection unit and two groups of special instructions provide the MV /4000 computer
and the ISC with the necessary ability to communicate.

Universal Power Supply Controller

The universal power supply controller (UPSC) is a microprocessor- controlled power
system that performs diagnostic functions. The UPSC performs a power-up diagnostic
self test, monitors the system power, and reports failures, problems, and status to the
MYV /4000 computer. The UPSC is programmable and responds to a request for status or

if allowed to, can generate an interrupt request.

For further information, see the Device Management chapter.

System Control Program

The system control program (SCP) is a soft system console that also performs diagnostic
functions. The MV /4000 simulates the SCP operations in the MV /4000 microcode.
That is, when the SCP is to function, the MV /4000 computer temporarily halts the
CPU operations and performs the SCP function.

As a soft system console, the SCP performs system control functions under operator
control. It permits the operator to load or examine and modify main memory and the
processor state.

The SCP operator’s terminal gives the operator control over the MV /4000 system by
sending commands to the system and providing direct responses and reports.

For further information, see the Device Management chapter.

1-6 Technical Summary

C/350 Compatibility

Registers

The MV /4000 computer will fully support the instruction mnemonics and binary opcodes
of most instructions implemented on the ECLIPSE C/350. This means that most
programs that execute on the C/350 computer will also execute on the MV /4000
computer without recompiling or reassembling.

Note that you can use C/350 instructions that manipulate data between accumulators
(without referring to memory) in MV /4000-system-specific programs without modifica-
tion.

The Principles of Operation, 32-Bit ECLIPSE® Systems manual describes the compati-
bility of C/350 instructions, data types, and formats.

Appendix A contains a complete functional listing of the MV /4000 unique instructions.

The MV /4000 system implements the following registers, which the Principles of
Operation, 32-Bit ECLIPSE® systems manual describes in detail:

o Four 64-bit floating-point accumulators.
¢ Four 32-bit fixed-point accumulators.

» One 32-bit processor status register.

o One 64-bit floating-point status register.
» Four 32-bit stack management registers.
e One 31-bit program counter.

» FEight 32-bit segment base registers.

Initialization

Power Up

The processor assumes the physical mode upon power-up, a system reset, or the execution
the JORST instruction with the following conditions applying.

When the processor first powers up (and before the system microcode loads), the
following actions occur:

» The processor performs a power-up test.

o The processor initializes all of memory (ignoring irrelevant ERCC errors).
o The processor performs a system reset.

The system reset clears the registers and disables the logical address translation --
equating logical addresses to physical addresses.

e The processor performs an I/O reset.

The processor disables DCH mapping and the contents of the DCH and BMC maps
and are undefined.

Technical Summary 1-7

The remaining actions depend on the position of the front panel lock switch. If the switch
is locked, the processor automatically boots from the device specified by the front panel
switches. If the front panel lock switch is not locked, the processor executes the kernel
microcode. While executing the kernel microcode:

» The MV/4000 recognizes the NOVA®/800 instruction set (basic NOVA without
auto-increment/decrement).

* The kernel soft console is similar to the NOVA /4 console.
e The DCH and BMC operate in the unmapped mode at 2.5 Mbytes /s.

* Except for LCS (070077g) and NCLID (064077g) instructions, the 16-bit and 32-bit
ECLIPSE instructions are not available.

The microcode file can be loaded into memory with this kernel instruction set. The LCS
instruction can then load the microcode from memory.

System Microcode Loads

After the processor loads the system microcode (following the power-up sequence or
after a system reset), the following actions occur:

* The processor disables logical address translation.
e The values of the referenced and modified bits are indeterminate.

¢ The processor sets the processor status register (PSR) and bits 0 through 8 of the
floating-point status register (FPSR) to 0.

» The processor disables error reporting.
* The processor halts.
» The processor initializes the I/O devices.

IORST Instruction

* The processor disables logical address translation.

* The processor sets the PSR and bits 0 through 8 of the FPSR to 0.
» The processor disables error reporting.

* The processor disables data channel maps.

When in physical mode, effective address translation works the same way as it does
when logical address translation is enabled. However, because the logical address space
exceeds the physical address space, the processor truncates a number of the logical
address’s 31 most significant bits before referring to memory. The number of bits
truncated is dependent upon the amount of physical memory available. The maximum
length of the word address formed from this procedure will be 22 bits for 8 Mbytes of
physical memory.

Chapter 2

Fixed-Point Instruction Summary

This chapter summarizes the data formats and instructions for fixed-point and
decimal/byte operations, and the processor status register. For further information refer
to the Principles of Operation, 32-Bit ECLIPSE® Systems manual.

Fixed-Point Data Formats

The fixed-point accumulator formats for the 16- and 32-bit two’s complement numbers,
and for the 16- and 32-bit logical numbers are:

16-Bit Fixed-Point Two’s Complement Format

Zero or Sign Extend S Twao's Complement Number
[T35 T A S S A B S S e S e s s

32-Bit Fixed-Point Two’s Complement Format

S Two’s Complement Number

T T T T T T T T T T
R T T T T T T T T T T T T T T T T T T T 37

16-Bit Fixed-Point Logical Format

Undefined Logical Data
[A B AL B - - B S S S S S S S S H ST

Logical Data
I S S S S S S S B B B L s T

2-2 Fixed-Point Instruction Summary

Fixed-Point Instructions

Tables 2.1 through 2.12 list the fixed-point instructions.

Instruction

Operation

CVWN
SEX
ZEX

Convert from 32-bit to 16-bit
Sign extend 16-bits to 32-bits
Zero extend 16-bits to 32-bits

Table 2.1 Fixed-point precision conversion

Instruction

Operation

LDATS
LNLDA
LNSTA
LWLDA
LWSTA
MOV *
NLDAI
STATS
WBLM
WLDAI
WMOV
WPOP
WPSH
WXCH
XCH *
XNLDA
XNSTA
XWLDA
XWSTA

Load accumulator with double word addressed by WSP
Narrow load accumulator

Narrow store accumulator

Wide load accumulator

Wide store accumulator

Move and skip

Narrow load immediate

Store accumulator into double word addressed by WSP
Wide block move

Wide load with wide immediate

Wide move

Wide pop accumulators

Wide push accumulators

Wide exchange accumulators

Exchange accumulators

Narrow load accumulator

Narrow store accumulator

Wide load accumulator

Wide store accumulator

Table 2.2 Fixed-point data movement instructions

* ECLIPSE C/350 compatible instruction

Fixed-Point Instruction Summary

2-3

Instruction Operation

ADC * Add complement and skip

ADD * Add and skip
ADDI * Extended add immediate

ADI * Add immediate

INC* Increment and skip
LNADD Narrow add memory word to accumulator
LNADI Narrow add immediate
LWADD Wide add memory word to accumulator
LWADI Wide add immediate

NADD Narrow add

NADDI Narrow extended add immediate

NADI Narrow add immediate

WADC Wide add complement

WADD Wide add
WADDI Wide add with wide immediate

WADI Wide add immediate

WINC Wide increment (no skip)
WNADI Wide add with narrow immediate
XNADD Narrow add accumulator to memory word
XNADI Narrow add immediate
XWADD Wide add memory word to accumulator
XWADI Wide add immediate

Table 2.3 Fixed-point addition instructions

*

ECLIPSE C/350 compatible instruction

Instruction Operation
LNSBI Narrow subtract immediate
LNSUB Narrow subtract memory word
LWSBI Wide subtract immediate
LWSUB Wide subtract memory word

NSBI Narrow subtract immediate
NSUB Narrow subtract

SBI * Subtract immediate

SUB * Subtract and skip

WSBI Wide subtract immediate
WSUB Wide subtract

XNSBI Narrow subtract immediate
XNSUB Narrow subtract memory word
XWSBI Wide subtract immediate
XWSUB Wide subtract memory word

Table 2.4 Fixed-point subtraction instructions

*

ECLIPSE C/350 compatible instruction

2-4 Fixed-Point {nstruction Summary

Instruction

Operation

LNMUL
LWMUL
MUL *
MULS *
NMUL
WMUL
WMULS
XNMUL
XWMUL

Wide multiply memory word
Wide multiply memory word
Unsigned multiply

Signed multiply

Narrow sign extend muitiply
Wide multiply

Wide signed multiply

Narrow multiply memory word

Wide multiply memory word

Table 2.5 Fixed-point multiplication instructions

*

ECLIPSE C/350 compatible instruction

Instruction Operation

DIV * Unsigned divide

DIVS * Signed divide

DIVX * Sign extend and divide

HLV * Halve (AC/2)

LNDIV Narrow divide memory word

LWDIV Wide divide memory word
NDIV Narrow sign extend divide
WDIV Wide divide

WDIVS Wide signed divide

WHLV Wide halve

XNDIV Narrow divide memory word
XWDIV Wide divide memory word

Table 2.6 Fixed-point division instructions

*

ECLIPSE C/350 compatible instruction

Instruction Operation
ADC* Add complement with optional CARRY initialization
ADD* Add with optional CARRY initialization
AND* AND with optional CARRY initialization
[6(0)\% & One’s complement with optional CARRY initialization
CRYTC Complement CARRY
CRYTO Set CARRY to 1
CRYTZ Set CARRY to O
INC * Increment with optional CARRY initialization
MOV * Move with optional CARRY initialization
NEG* Negate with optional CARRY initialization
SUB * Subtract with optional CARRY initialization

Table 2.7 Initializing carry instructions

*

ECLIPSE C/350 compatible instruction

Fixed-Point Instruction Summary

2-5

Instruction Operation
ADC* Add complement with optional skip
ADD* Add with optional skip
INC * Increment with optional skip
MOV * Move with optional skip
NSALA Narrow skip on all bits set in accumulator
NSALM Narrow skip on all bits set in memory location
NSANA Narrow skip on any bit set in accumulator
NSANM Narrow skip on any bit set in memory location
SGE * Skip if ACS greater than or equal to ACD
SGT * Skip if ACS greater than ACD
SNOVR Skip on OVR reset
SUB * Subtract with optional skip
WCLM Wide compare to limits and skip
WSALA Wide skip on all bits set in accumulator
WSALM Wide skip on all bits set in double word memory location
WSANA Wide skip on any bit set in accumulator
WSANM Wide skip on any bit set in double word memory location
WSEQ Wide skip if ACS equal to ACD
WSEQI Wide skip if equal to immediate
WSGE Wide signed skip if ACS greater than or equal to ACD
WSGT Wide signed skip if ACS greater than ACD
WSGTI Wide skip if AC greater than immediate
WSKBO Wide skip on AC bit set to 1
WSKBZ Wide skip on AC bit set to O
WSLE Wide signed skip if ACS less than or equal to ACD
WSLEI Wide skip if AC less than or equal to immediate
WSLT Wide signed skip if ACS less than ACD
WSNB Wide skip on addressed bit set to 1
WSNE Wide skip if ACS not equal to ACD
WSNEI Wide skip if AC not equal to immediate
WSZB Wide skip on addressed bit set to O
WSZBO Wide skip on addressed bit set to O and set bit to 1
WUGTI Wide unsigned skip if AC greater than immediate
WULEI Wide unsigned skip if AC less than or equal to immediate
WUSGE Wide unsigned skip if ACS greater than or equal to ACD
WUSGT Wide unsigned skip if ACS greater than ACD

Table 2.8 Fixed-point skip on condition instructions

* ECLIPSE C/350 compatible instruction

2-6

Fixed-Point Instruction Summary

Instruction Operation

DSZTS Decrement the double word addressed by WSP (skip if O)
INC * Increment and skip

ISZTS Increment the double word addressed by WSP (skip if O)
LNDSZ Narrow decrement and skip if O

LNISZ Narrow increment and skip if O

LWDSZ Wide decrement and skip if O

LWISZ Wide increment and skip if O

XNDSZ Narrow decrement and skip if O

XNISZ Narrow increment and skip if O

XWDSZ Wide decrement and skip if O

XWISZ Wide increment and skip if O

Table 2.9 Fixed-point increment or decrement word and skip instructions

* ECLIPSE C/350 compatible instruction

Instruction Operation
ANC * AND with complemented source
AND * AND
ANDI * AND immediate
COM * Complement
IOR * Inclusive OR
IORI * Inclusive OR immediate
LOB * Locate lead bit
LRB * Locate and reset lead bit
NEG * Negate
NNEG Narrow negate
WANC Wide AND with complemented source
WAND Wide AND
WANDI Wide AND immediate
WBTO Wide set bit to 1
WBTZ Wide set bit to O
WCOB Wide count bits
WwWCOM Wide complement (one’s complement)
WIOR Wide inclusive OR
WIORI Wide inclusive OR immediate
WLOB Wide locate lead bit
WLRB Wide locate and reset lead bit
WLSN Wide load sign
WNEG Wide negate
WXOR Wide exclusive OR
WXORI Wide exclusive OR immediate
XOR * Exclusive OR
XORI * Exclusive OR immediate

Table 2.10 Logical instructions

* ECLIPSE C/350 compatible instruction

Fixed-Point Instruction Summary 2-7

Instruction Operation
AND * Logical AND with optional shift
COM * Logical one’s complement with optional shift
DLSH * Double logical shift
LSH * Logical shift
NEG * Logical negate with optional shift
WLSH Wide logical shift
WLSHI Wide logical shift immediate
WLSI Wide logical shift left immediate

Table 2.11 Logical shift instructions

* ECLIPSE C/350 compatible instruction

Instruction Operation
AND * AND with optional skip
COM * One’s complement with optional skip
NEG * Negate with optional skip
WSNB Wide skip on nonzero bit
WSZB Wide skip on O bit
WSZBO Wide skip on O bit and set bit to 1

Table 2.12 Fixed-point logical skip instructions

* ECLIPSE C/350 compatible instruction

2-8 Fixed-Point Instruction Summary

Processor Status Register

Table 2.13 lists the PSR manipulation instructions. The format for the PSR is:

Software
OVK | OVR | IRES | IXCT Reserved Reserved
[1 2 3 4 7 T T ! i T ! T T3 14 7 15

Argument Count

T T T T T T T T T T y T T T ™33

Bits 4 through 15 of the PSR are set to zero in a return block. When the PSR is loaded
or restored, bits 4 through 15 are ignored.

The argument count appears as the second word of the PSR in a wide return block.

Instruction Operation
FXTD Disable fixed-point trap (resets OVK and disables trap)
FXTE Enable fixed-point trap (sets OVK and enables trap)
LCALL Call subroutine
LPSR Load PSR into ACO
SPSR Store PSR from ACO
WPOPB Wide pop block
WRSTR Wide restore
WDPOP Wide pop context block
WRTN Wide return
WSAVR Wide save and set OVK to O
WSAVS Wide save and set OVK to 1
WSSVR Wide special save and set OVK to O
WSSVS Wide special save and set OVK to 1
XCALL Call subroutine
XVCT 1/O vector interrupt

Table 2.13 PSR manipulation instructions

* ECLIPSE C/350 compatible instruction

Fixed-Point Instruction Summary

2-9

Tables 2.14 through 2.19 list the decimal/byte instructions.

Decimal /Byte Operations

Instruction Operation

LLDB Load byte

LSTB Store byte

WCMT Wide character move until true
WCMV Wide character move

WCTR Wide character translate and compare
WEDIT Convert and insert string of decimal or ASCIl characters
WLDB Wide load byte

WSTB Wide store byte

XLDB Load byte

XSTB Store byte

Table 2.14 Fixed-point byte movement instructions

Instruction Operation
WLDI Convert a decimal and load into FPAC
WLDIX Convert a decimal, extend, and load it into four FPACs
WSTI Convert FPAC data and load into memory
WSTIX Convert the four FPACs and load into memory

Table 2.15 Fixed-point to floating-point conversion and store instructions

Instruction Operation
LLEF Load effective address
LLEFB Load effective byte address
LPEF Push address
LPEFB Push byte address
WMOVR Wide move right {convert byte pointer to word pointer)
XLEF Load effective address
XLEFB Load effective byte address
XPEF Push effective address
XPEFB Push effective byte address

Table 2.16 Load effective word and byte address instructions

2-10

Fixed-Point Instruction Summary

Instruction Operation
DADI Add signed integer to destination indicator
DAPS Add signed integer to opcode pointer if sign flag is O
DAPT Add signed integer to opcode pointer if trigger is 1
DAPU Add signed integer to opcode pointer
DASI Add signed integer to source indicator
DDTK Decrement a word in the stack by one and jump if word is
nonzero
DEND End edit subprogram
DICI Insert characters immediate
DIMC Insert character j times
DINC Insert character once
DINS Insert character a or character b depending on sign flag
DINT Insert character a or character b depending on trigger
DMVA Move j alphabetical characters
DMVC Move j characters
DMVF Move |j float
DMVN Move j numerics
DMVO Move digit with overpunch
DMVS Move numeric with zero suppression
DNDF End float
DSSO Set sign flag to 1
DSSZ Set sign flag to O
DSTK Store in stack
DSTO Set trigger to 1
DSTZ Set trigger to O

Table 2.17 Edit subprogram instructions

Instruction

Operation

DAD *
DSB *

Add two unsigned BCD numbers in two accumulators
Subtract two unsigned BCD numbers in two accumulators

Table 2.18 BCD arithmetic instructions

* ECLIPSE C/350 compatible instruction

Instruction

Operation

DHXL *
DHXR *
HXL *
HXR *

Double hex shift left
Double hex shift right
Hex shift left

Hex shift right

Table 2.19 Hex shift instructions

* ECLIPSE C/350 compatible instruction

Chapter 3

Floating-Point Instruction Summary

This chapter summarizes the floating-point data formats, floating-point instructions,
and the floating-point status register. For further information, refer to the Principles of
Operation, 32-Bit ECLIPSE® Systems manual.

Floating-Point Data Formats

The floating-point accumulator formats for single and double precision floating-point
numbers are:

Single Precision

Double Word

S Exponent Mantissa

o' 1+ 1 T3tgr T —FT/T"m ™—/m/4mMmmm™F———1 CX
Undefined

5 T T T " 31

Double Precision

Double Word 0

Exponent Mantissa

Double Word 1

Mantissa

3-2 Fioating-Point Instruction Summary

Floating-Point Instructions

Tables 3.1 through 3.8 list the floating-point instructions.

Instruction Operation

FAD * Add double {(FPAC to FPAC)

FAS * Add single (FPAC to FPAC)
LFAMD Add double {memory to FPAC)
LFAMS Add single (memory to FPAC)
XFAMD Add double (memory to FPAC)
XFAMS Add single (memory to FPAC)

Table 3.1 Floating-point addition instructions

* ECLIPSE C/350 compatible instruction

Instruction Operation
FSD * Subtract double {FPAC from FPAC)
FSS * Subtract single (FPAC from FPAC)

LFSMD Subtract double (memory from FPAC)
LFSMS Subtract single (memory from FPAC)
XFSMD Subtract double (memory from FPAC)
XFSMS Subtract single (memory from FPAC)

Table 3.2 Floating-point subtraction instructions

* ECLIPSE C/350 compatible instruction

Instruction Operation
FMD * Multiply double (FPAC by FPAC)
FMS * Multiply single (FPAC by FPAC)

LFMMD Multiply double (FPAC by memory)
LFMMS Multiply single (FPAC by memory)
XFMMD Multiply double (FPAC by memory)
XFMMS Multiply single (FPAC by memory)

Table 3.3 Floating-point multiplication instructions

* ECLIPSE C/350 compatible instruction

Floating-Point Instruction Summary

3-3

Instruction Operation
FDD * Divide doubie (FPAC by FPAC)
FDS * Divide single (FPAC by FPAC)
FHLV * Halve (FPAC/2)

LFDMD Divide double (FPAC by memory)
LFDMS Divide single (FPAC by memory)
XFDMD Divide double (FPAC by memory)
XFDMS Divide single (FPAC by memory)

Table 3.4 Floating-point division instructions

* ECLIPSE C/350 compatible instruction

Instruction Operation
FCMP * Compare two floating-point numbers (set N and Z)
FSEQ * Skip on 0 (Z = 1)
FSGE * Skip on greater than or equal to O (N = 0)
FSGT * Skip on greater than O (N and Z = 0)
FSLE * Skip on less than or equal to O (N and Z = 1)
FSLT * Skip on less than O (N = 1)
FSND * Skip on no O divide (DVZ = 0)
FSNE * Skip on nonzero (Z = 0)
FSNER * Skip on no error (ANY = 0)
FSNM * Skip on no mantissa overflow (MOF = 0)
FSNO * Skip on no overflow (OVF = 0)
FSNOD * Skip on no overflow and no O divide {OVF and DVZ = 0)
FSNU * Skip on no underflow (UNF = 0)
FSNUD * Skip on no underflow and no O divide {UNF and DVZ = 0)
FSNUO * Skip on no underflow and no overflow (UNF and OVF = Q)

Table 3.5 Floating-point skip on condition instructions

* ECLIPSE C/350 compatible instruction

3-4 Floating-Point Instruction Summary

Instruction Operation
FEXP * Load exponent (ACO 17-23 to FPAC 1-7)
FAB * Compute absolute value (set sign of FPAC to 0}
FFAS * Fix to AC (FPAC to AC)
FINT * Integerize (FPAC)
FLAS * Float from AC (AC to FPAC)
FNEG * Negate
FNOM * Normalize (FPAC)
FRDS Floating-point round double to single
FRH * Read high word (FPAC 0-15 to ACO 16-31)
FSCAL * Scale floating point
WFFAD Wide fix from FPAC
WFLAD Wide float from AC

Table 3.6 Floating-point binary conversion instructions

* ECLIPSE C/350 compatible instruction

Instruction Operation
WLDI Convert a decimal and load into FPAC
WLDIX Convert a decimal, extend, and load it into four FPACs
WSTI Convert FPAC data and load into memory
WSTIX Convert the four FPACs and load into memory

Table 3.7 Floating-point decimal conversion instructions

Instruction Operation

FMOV * Move floating point (FPAC to FPAC)
LFLDD Load floating-point double

LFLDS Load floating-point single

LFSTD Store floating-point double

LFSTS Store floating-point single

WFPOP Wide floating-point pop

WFPSH Wide floating-point push

XFLDD Load floating-point double

XFLDS Load floating-point single

XFSTD Store floating-point double

XFSTS Store floating-point single

Table 3.8 Floating-point data movement instructions

* ECLIPSE C/350 compatible instruction

Floating-Point Instruction Summary

3-5

Floating-Point Status Register

Table 3.9 lists the FPSR manipulation instructions. The format for the FPSR is:

Table 3.9 FPSR instrt

* ECLIPSE C/350 compatible instruction

ctions

ANY | OVF | UNF | DVZ | MOF | TE Z N RND | Res [o] [0} FPMOD
0 T 2 3 7 5 G)] 0 11 2 T 5
Reserved
R - T T T r y T T T T =
o] Floating-Point Program Counter
5 T r T T T T T T T y T
Floating-Point Program Counter
R T T T T T r r T T T 3
Instruction Operation
FCLE * Clear errors (FPSR)
FTD * Floating-point trap disable (resets TE)
FTE * Floating-point trap enable (sets TE)
LFLST Load FPSR
LFSST Store FPSR
WFPSH Push floating-point state
WFPOP Pop floating-point state

Chapter 4

Stack Management
Instruction Summary

This chapter summarizes the instructions that affect the wide stack. For further
information, refer to the Principles of Operation, 32-Bit ECLIPSE® Systems manual.

Table 4.1 lists the wide stack register instructions; Table 4.2 lists the instructions that
access the wide stack; Table 4.3 lists the instructions that push or pop wide stack return
blocks; and Table 4.4 lists the instructions that push or pop one or more double words
onto the wide stack. Table 4.4 also lists the number of words that the instructions require
beyond the wide stack limit for a stack fault return block.

Instruction Action

LDAFP Load accumulator with the WFP register contents
LDASB Load accumulator with the WSB register contents
LDASL Load accumulator with the WSL register contents
LDASP Load accumulator with the WSP register conienis
STAFP Store accumulator in the WFP register

STASB Store accumulator in the WSB register

STASL Store accumulator in the WSL register

STASP Store accumulator in the WSP register

WMSP Wide modify WSP register

Table 4.1 Wide stack register instructions

4-2 Stack Management Instruction Summary

Instruction

Action

DSZTS
ISZTS
LDATS
LPEF
LPEFB
LPSHJ
STATS
WFPOP
WFPSH
WPOP
WPOPJ
WPSH
XPEF
XPEFB
XPSHJ

Decrement the double word addressed by WSP (skip if O)
Increment the double word addressed by WSP (skip if O)
Load accumulator with double word addressed by WSP
Push address

Push byte address

Push jump to subroutine {pop with WPOPJ)

Store accumulator into double word addressed by WSP
Wide floating-point pop

Wide floating-point push

Wide pop accumulators (push with WPSH)

Wide pop PC and jump (push with LPSHJ or XPSHJ)
Wide push accumulators (pop with WPOP)

Push address

Push byte address

Push jump to subroutine (pop with WPOPJ)

Table 4.2 Wide stack double-word access instructions

Instruction

Action

BKPT

LCALL
PBX
WPOPB
WRSTR
WRTN

WSAVR

WSAVS
WSSVR

WSSVS

WwXopP

XCALL

Breakpoint handler (return from breakpoint handler with
PBX)

Call subroutine {return from call with WRTN)

Pop block and execute (return from breakpoint handler}
Wide pop block

Wide restore from an interrupt

Wide return via wide save (WSAVR, WSAVS, WSSVR, and
WSSVS)

Wide save/reset overflow mask {used with LCALL and
XCALL)

Wide save/set overflow mask (used with LCALL and XCALL)

Wide special save/reset overflow mask (used with LJSR &
XJSR)

Wide special save/set overflow mask (used with LUSR &
XJSR)

Extended operation (return with WPOPB; used to expand
instruction set)

Call subroutine {return from call with WRTN)

Table 4.3 Wide stack return block instructions

Stack Management Instruction Summary

4-3

Double Words
instruction Description Pushed or Required Beyond
(Popped) WSL for Stack
Fault
ADD, etc. Arithmetic with OVK enabled 0 11
FAD, etc. Arithmetic with TE enabled 0 1"
BKPT Breakpoint handler 6 11
LCALL Subroutine call 1 6
LPEF Push address 1 6
LPEFB Push byte address 1 6
LPSHJ Push jum; 1 6
PBX Pop block and execute (6) 5
WEDIT Wide edit 16 27
WFPOP Wide floating-point pop (10) 5
WFPSH Wide floating-point push 10 15
WPOP Wide pop accumulators (1-4) 5
WPOPB Wide pop block (6) 5
WPOPJ Wide pop PC and jump (1) 5
WPSH Wide push accumulators 1-4 9
WRSTR Wide restore (10) 5
WRTN Wide return (6) 5
WSAVR Wide save/reset OVK 5 10
WSAVS Wide save/set OVK 5 10
WSSVR Wide special save/reset OVK 6 11
WSSVS Wide special save/set OVK 6 11
WXOP Extended operation 6 11
XCALL Subroutine call 1 6
XPEF Push address 1 5
XPEFB Push byte address 1 5
XPSHJ Push jump to subroutine 1 5
XVCT Vector on 1/0 interrupt 6 11

Table 4.4 Multiword wide stack instructions

Chapter 5

Program Flow Management

Program flow management consists of program flow, interrupt handling, and fault
handling.

Program flow management occurs with the MV /4000 address translator enabled, or
without the MV /4000 address translator enabled (physical mode). The Principles of
Operation, 32-Bit ECLIPSE® Systems manual describes program flow management for
these conditions.

This chapter presents the program counter, address space available, the sequence of

events upon an interrupt, a listing of program flow instructions, and a summary of fault
handling.

Program Counter

The program counter (PC), which specifies the logical address of the instruction,
controls the sequence of executing instructions. Address wraparound occurs within the
current segment since only bits 4 through 31 take part in incrementing the PC.

To address the next instruction (for normal program flow), the processor either increments
the PC or forces an address into the PC. The processor increments the PC by:

* One when executing a one-word instruction (such as NADI)

» Two when executing a two-word instruction (such as NADDI)

» Three when executing a three-word instruction (such as LNADI)
* Four when executing a four-word instruction (such as LCALL)

When the processor forces an address into the PC, the processor clears the instruction
processor pipeline and initiates a different program sequence. Any of the following
events alter the normal program sequence:

» Executing the XCT instruction
* Executing a jump instruction
» Executing a skip instruction

5-2 Program Flow Management

» Executing a subroutine call or return instruction
e Detecting a fault
o Detecting an I/O interrupt request

Program flow is further described in the Principles of Operation, 32-Bit ECLIPSE®
Systems manual.

Address Space

Interrupts

MYV /4000 main memory physical address space can range from 0.5 Mbyte to 8 Mbytes.

The address translator has a 4-Gbyte logical address space, divided into eight segments
of 512 Mbytes each. The Principles of Operation, 32-Bit ECLIPSE® Systems manual
describes segmentation and MV /4000 system addressing. The MV /4000 computer uses
31-bit word addresses and 32-bit byte addresses that can refer to all 4 Gbytes of the
logical address space.

When an interrupt occurs, the processor disables further interrupts by setting the
interrupt on (ION) flag to 0. The state of the address translator determines the actions
that follow.

Interrupt Sequence

With the address translator disabled, the processor fetches the contents of physical
location 1 and prepares to resolve any indirection. The processor is operating in physical
mode and treats this address as the address of the interrupt handler.

With the address translator enabled, the processor fetches the contents of logical location
1 in page zero of segment 0. This location contains the address of the interrupt handler.
The processor then determines the current segment of execution. If it is not segment 0,
the processor performs a ring crossing to segment 0. Next, the processor must resolve the
interrupt handler address.

If the fetched address of the interrupt handler is indirect, the processor resolves it to a
final direct address. This address refers to the first instruction of the handler.

The first instruction of the interrupt handler will be one of the following three types:

e An XVCT instruction.
» Any other MV /4000-system-specific instruction (Type 1).

« C/350 instructions, WBR, and some MV /4000-system-specific memory to accumula-
tor instructions (Type 2).

Program Flow Management

5-3

The flow chart in Figure 5.1 summarizes the interrupt sequence.

Store current stack
register values in
current page

zero locations

Y

Cross to
segment O

Y

Load segment O
stack location
values into stack
registers

L

Interrupt
occurs

Set ION to O

Address
transiation
enabled?

Current
segment

= segment
0?

Yes

Y

inierrupt

segment O

Fetch pointer to

handler from
location 1, page zero,

.

[

Fetch pointer to
interrupt handler
from physical
location 1

Resolve indirect
chain (if neces-
sary). Examine
first word of
interrupt handler

+ Type 2 instructions

Store PC in
location 0, page
zero, segment O

Y

Jump @ 1

DG-15311

Y Type 1 instructions

* Type 3 instructions

Store PC in
locations 2-3 of
segment O

Y

XVCT
vectored
interrupt

Jump @ 1

Figure 5.1 Interrupt sequence

5-4 Program Flow Management

Interrupting an Instruction

When the processor honors an interrupt, program execution stops. How the processor
halts program execution to service the interrupt depends upon the instruction currently
executing within the program. The currently executing instruction will be one of the
following three kinds:

* A noninterruptible instruction.
e A restartable instruction.
e A resumable instruction.

Refer to Table 5.1 for a listing of restartable or resumable instructions. Any instruction
not listed as either restartable or resumable is noninterruptible.

Restartable (From Beginning) Restartable (With Updated Values) Resumable
*FMD *LSN *BAM WBLM *EDIT WEDIT
*FMMD ORFB *BLM WCMP *LDI WLDI
*FDD PATU *CMP WCMT *LDIX WLDIX
*FDMD RRFB *CMT WCMVY *STI WSTI
LCALL WDPOP *CMV WCTR *STIX WSTIX
LFMD XCALL *CTR WLMP NBStc WBStc
LFDMD XFDMD NFSte WFSte
LSBRA XFMMD

LSBRS

Table 5.1 Restartable or resumable instructions

* Denotes a C/350 instruction.

Noninterruptible Instructions

If an instruction is noninterruptible, the processor finishes executing that instruction
before it services the interrupt (refer to Figure 5.2). Examples of noninterruptible
instructions are Add, Load Accumulator, and Complement.

The processor does not set any bits in the PSR if an interrupt occurs during a
noninterruptible instruction.

Program Flow Management 5-5

< Interrupt ’

Finish executing
instruction

y

Service interrupt

Resume
interrupted
program

DG-15081

Figure 5.2 Noninterruptible instruction interrupt sequence

Restartable Instructions

If an instruction is restartable, the processor services the interrupt before the instruction
finishes. When an interrupt occurs, the processor saves the address of the interrupted
instruction in the PC, and then services the interrupt. When servicing is complete, the
processor can restart the interrupted instruction in one of the following two ways.

» If the parameters of the restartable instruction have not changed, then the processor
will restart the instruction from the beginning. That is, if an interrupt occurs during a
Floating-Point Divide instruction, the processor will restart the instruction from the
beginning because the accumulators containing the operands have not changed.

» If the parameters of the interrupted instruction have changed, the processor will
restart execution with the updated values. This type of instruction (Block Move, for
example) uses pointers to source and destination locations and updates them after
each one-word move. After servicing the interrupt, the processor restarts execution
with the current values of the source and destination pointers, not the original values.

Note that the processor sets bit 2 of the PSR to 1 when an interrupt occurs during a
restartable instruction.

Figure 5.3 summarizes the interrupt sequence for a restartable instruction.

5-6

Program Flow Management

‘ Interrupt ’

\

Save PC
Set PSR (2) to 1

Y

Service interrupt

Instruction
parameters

changed
?

Restart
instruction with
updated values

Restart
instruction from
beginning

DG-15082

Figure 5.3 Restartable instruction interrupt sequence

Resumable Instructions

As with restartable instructions, the processor services an interrupt before finishing a
resumable instruction. The processor must save a copy of internal processor state if it is
to restart a resumable instruction correctly.

The following discussion describes what happens when an interrupt occurs during
execution of a resumable instruction.

Before interrupting resumable instructions, you should ensure that:

¢ You define a stack.

o The interrupt handler uses WPOPB, WRSTR, WRTN, or LPSR to return to the
interrupted program. These instructions restore the PSR when interrupt service
completes.

When an interrupt occurs, the processor saves the address of the interrupted instruction,
and pushes a copy of all necessary processor information (the microstate block) onto the
current stack.

The information needed depends upon the interrupted instruction. If the processor is
interrupted during execution of a WEDIT instruction, the processor sets bit 2 of the PSR
(IRES) to 1. If the processor is interrupted during execution of a resumable or restartable
instruction resulting from a PBX instruction, the processor sets bit 3 of the PSR (IXCT)
to 1.

Program Flow Management 5-7

After pushing the block, the processor checks for stack overflow. If it detects a stack
overflow, the processor:

1. Services the interrupt.

2. Returns to the interrupted program.
3. Services the stack fault (if necessary).
4. Resumes the interrupted instruction.

Next, the processor restores the PSR using the appropriate return instruction. If a
resumable instruction was interrupted, then the processor tests bits 2 and 3. If either bit
contains a I, the processor examines the microstate block on the current wide stack to
determine the type of microinterrupt.

If the microstate block is valid, the processor resumes executing the interrupted
instruction.

¢ If the block is invalid, the actions taken depend on the interrupted instruction:

— An MV/4000-system-specific instruction causes a protection fault to occur.
Accumulator 1 (AC1) will contain the code 12 to indicate the invalid microstate
block.

- A C/350 floating-point instruction causes a floating-point fault to occur.

— A C/350 Decimal/ASCII instruction causes a narrow decimal/ASCII fault to
occur. AC1 will contain the code 5 to indicate the invalid microstate block.

* A PBX type instruction. If the interrupted instruction was inserted into the instruction
stream, (e.g., PBX), then the processor had set the IXCT flag in the PSR and pushed
the op-code of the executing instruction onto the wide stack.

Table 5.2 shows the processor settings of bit 2 of the PSR and bit 3 of the PSR when an
interrupt occurs during execution of a resumable instruction. Figure 5.4 summarizes the
sequence of events upon the interruption of a resumable instruction.

NOTE: When an interrupt occurs during a ring crossing, the saved PC points to the first
instruction of the called procedure.

Instruction PSR Bit 2 (IRES) PSR Bit 3 (IXCT)
C/350 Unchanged Unchanged
MV/4000 -specific Function of instruction Function of instruction

Table 5.2 State of PSR bits 2 and 3

5-8 Program Flow Management
!
PSR {2) N
Save PC PSR (3) .
Push mucrostate
block onto stack
Set PSR (bit 2) Examine
to 1 microstate block
on stack
instruction s
— PBX microstate
? valid
?
Set PSR (bit 3)
to 1 MV/4000
instruction
= fault
‘ AC1 = code 12 C/350 .
floating- point
Service interrupt fault
and return to ?
interrupted Go to protection 4
program fault handler AC1 = code 5
Go to floating- Go to decimal/
No Yes point fault ASCI fault
handler handler
Service stack l
fault Continue
instruction
execution
Restore PSR
DG-15312

Figure 5.4 Resumable instruction interrupt sequence

Program Flow Management 5-9

Program Flow Instructions

Tables 5.3 through 5.8 list the instructions that affect program flow. For further
information, refer to the Principles of Operation, 32-Bit ECLIPSE® Systems manual.

Instruction Action

XCT * Execute bits 16-31 of an accumulator as an instruction.

Tabie 5.3 Execute accumuiator instruction

* ECLIPSE C/350 compatible instruction

Instruction Action
LDSP Dispatch
LIMP Jump {with long displacement)
WBR Branch (PC relative jump)
XJMP Jump (with extended displacement)

Table 5.4 Jump instructions

Instruction Action
FNS * No skip
FSA * Skip always
LNDO Narrow do until greater than
LWDO Wide do until greater than
XNDO Narrow do until greater than
XWDO Wide do until greater than
NBStc Narrow search queue backward
NFSte Narrow search queue forward
WBStc Wide search queue backward
WEFEStc Wide search queue forward

Table 5.5 Skip instructions

* ECLIPSE C/350 compatible instruction

5-10 Program Flow Management

Instruction Action
BKPT Breakpoint handler
LCALL Call subroutine
LJSR Jump to subroutine
LPSHJ Push jump
PBX Pop block and execute
WEDIT Wide edit of alphanumeric
WPOPB Wide pop block
WPOPJ Wide pop PC and jump
WRTN Wide return
WSAVR Wide save/reset overflow mask
WSAVS Wide save/set overflow mask
WSSVR Wide special save/reset overflow mask
WSSVS Wide special save/set overflow mask
wWXOoP Wide extended operation
XCALL Call subroutine
XJSR Jump to subroutine
XPSHJ Push jump

Table 5.6 Subroutine instructions

Instruction Action
LCALL Call subroutine
WPOPB Wide pop block
WRTN Wide return
XCALL Call subroutine
WRSTR Wide restore from an 1/0 interrupt

Table 5.7 Segment transfer instructions

Call Instruction | Segment Cross- | Associated Save | Return Instruc-

or Sequence ing Permitted Instruction tion
BKPT no PBX

LCALL yes WSAVR WRTN

yes WSAVS WRTN

LJSR no WSSVR WRTN

no WSSVS WRTN

LPSHJ no WPOPJ

WEDIT no DEND

WXOP no WPOPB

XCALL yes WSAVR WRTN

yes WSAVS WRTN

XJSR no WSSVR WRTN

no WSSVS WRTN

XPSHJ no WPOPJ

Table 5.8 Sequence of subroutine instructions

Program Flow Management 5-11

Fault Handling

While executing an instruction, the processor performs certain checks on the operation
and the data. If the processor detects an error, a privileged or nonprivileged fault occurs
before execution of the next instruction.

With the address translator enabled, the processor detects the following faults (also refer
to the Principles of Operation, 32-Bit ECLIPSE® Systems manual):

Fault Generated Fault Type
Protection Violation Fault Privileged
Page Fault Privileged
Stack Fault Nonprivileged
Fixed-Point Overflow Nonprivileged
Floating-Point Fault Nonprivileged
Decimal/ASCII Fault Nonprivileged

Appendix F lists the error codes returned to AC1, and denotes the type of fault
generated.

Privileged Faults

The Memory and System Management chapter explains page faults. The Principles of
Operation, 32-Bit ECLIPSE® Systems manual describes the handling of protection
violation faults.

Nonprivileged Faults
The Principles of Operation, 32-Bit ECLIPSE® Systems manual describes the handling

of nonprivileged faults.

Execution of C/350 instructions does not generate fixed-point faults. Certain C/350
arithmetic instructions (ADD, DIV, etc.) set the state of the carry bit. If detection of the
appropriate fault is desired, it is necessary to set up a subroutine that checks the state of
the carry bit upon completion of these instructions. A carry-out from accumulator bit 16
affects the MV /6000 system’s carry bit upon execution of these C/350 instructions. The
instruction dictionary in the Principles of Operation, 32-Bit ECLIPSE® Systems manual
describes the C/350 instruction set and which instructions affect the carry bit.

Note that all faults that occur with the execution of C/350 instructions use the narrow
stack.

Chapter 6

Queue Management
Instruction Summary

This chapter summarizes the queue instructions. For further information, refer to the
Principles of Operation, 32-Bit ECLIPSE® Systems manual.

Table 6.1 lists the queue instructions.

Instruction Action

ENQH Queue towards the head; add a data element to queue
ENQT Queue towards the tail; add a data element to queue
DEQUE Dequeue a queue data element; delete a data element
NBStc Narrow search queue backward; 16-bit test condition
NFStc Narrow search queue forward; 16-bit test condition
WBStc Wide search queue backward; 32-bit test condition
WEStc Wide search queue forward; 32-bit test condition

WMESS Wide mask, skip and store if equal

Table 6.1 Queue instructions

Chapter 7

Device Management

This chapter summarizes the general I/O instructions, and presents the instructions for
the manipulation of the following devices:

Central Processing Unit

Programmable Interval Timer

Real-Time Clock

Primary Asynchronous Line Input/Output
System Control Program

Data Channel and Burst Multiplexor Channel
Universal Power Supply Controller

Refer to Appendix E for all the device codes, device mnemonics and priority mask bit
assignments.

General I/0 Instructions

Table 7.1 lists the general 1/0 instructions; Tables 7.2 and 7.3 list the device flags
mnemonics. For further information, refer to the Principles of Operation, 32-Bit
ECLIPSE® Systems manual.

7-2

Device Management

Instruction Operation
DIA/f] * Data in A (from A buffer of device)
DIB/f] * Data in B {from B buffer of device)
DIC/f] * Data in C (from C buffer of device)
DOA/f] * Data out A (to A buffer of device)
DOB/f] * Data out B (to B buffer of device)
DOC/f] * Data out C (to C buffer of device)
IORST * 1/0 reset
NIO/f] * No I/O transfer (initialize a BUSY/DONE flag)
PIO Issue a programmed /O command to a device
SKP: * i/0 skip (test a BUSY/DONE flag and skip on condition)

Table 7.1 General I/0 instructions

The /f] or t defines the optional device flag handling.

The * identifies ECLIPSE C/350 compatible instructions.

1/0
Assembler Bits BUSY DONE CPU
Code for f 89 ION
(option omitted) 00 No effect No effect No effect
S 01 Set to 1 Set to O Set to 1
C 10 |SettoO Set to O Set to O
P 11 Pulses a special 1/0 bus control | No effect
line
Table 7.2 Device flags for general devices
Assembler Code Bits 1/0 CPU
for ¢ 89
BN 00 Test for BUSY = 1 Test for ION = 1
BZ 01 Test for BUSY = 0 Test for ION = 0
DN 10 Test for DONE = 1 Test for power fail =
DZ 11 Test for DONE = O Test for power fail =

Table 7.3 Device flags for skip instruction

Device Management 7-3

Central Processor

Device Code
174

Assembler Mnemonic

CPU

Priority Mask Bit
None

Device Flags

Device flag commands to the CPU determine whether or not the processor can interrupt
the current program with a program interrupt request. When the interrupt enable flag
(ION) equals 1, the processor can interrupt the program (once the instruction following
the enable has begun). When the interrupt enable flag equals 0, the processor cannot
interrupt the program. The CPU interrupt enable flag is controlled by the device flag
commands for device 77 as follows:

S=S Sets the interrupt enable flag to 1.
S=C Sets the interrupt enable flag to 0.
S=P The P flag causes an unimplemented instruction interrupt.

The assembler interprets the I/O instructions for the CPU using either the standard or
a special I/O instruction format. Referring to Table 7.4, the instruction that initializes
the devices and sets the priority mask bits to 0 uses the standard form of

DIC/f] ac,CPU

or the special form of

IORST

The special IORST assembler statement equates to the standard assembler statement of
DICC 0,CPU

which sets all the BUSY and DONE flags to 0. You cannot append a device flag (S, C, or
P) to the special form of a CPU instruction.

NOTE: The assembler detects a fatal format error if you append a device flag to a special
CPU instruction.

7-4 Device Management

CPU Instructions
Table 7.4 lists the [/O i

nstructions that affect the CPU device.

Assembler Statement

Operation

READS ac
DIA/f] ac, CPU

INTA ac
DIB/f] ac,CPU

IORST
DIC/f] ac,CPU

MSKO ac
DOB/f] ac,CPU

HALT
DOC/f] ac,CPU

INTDS
NIOC CPU

INTEN
NIOS CPU

SKPt CPU

Reads console switches (places the contents of the soft console data switch
register into an accumulator)

Returns the device code of the interrupting device (interrupt acknowledge)

Initializes the I/O system (resets the BUSY and DONE flags and all the priority
mask bits to O; clears certain CPU registers, and disables the DCH mapping and
address translator)

Initializes or changes the priority mask

Stops the processor

Sets ION flag to O (interrupt disable)

Sets ION flag to 1 (interrupt enable)

Tests the condition of the ION flag or power fail flag, and when true, it skips the
next word in the program

Table 7.4 1/0O instructions for CPU

Read Switches
READS ac
DIA/f] ac,CPU

The Read Switches instruction places the contents of the console switches into bits 16
through 31 of the specified accumulator. After the transfer, the instruction sets the ION
flag according to the function specified by [f].

NOTES: The assembler recognizes the special mnemonic READS ac to be equivalent to

DIA ac,CPU.

The format of the specified accumulator after instruction execution is:

Undefined

Console Switches

0" T T T T T T T

T T T T T 516" T T T T T T T L— T T T T 31

Console Switches: 1 =0ON; 0=0FF

Device Management 7-5

Interrupt Acknowledge

INTA ac

DIB/f] ac,CPU

Reset
IORST

The Interrupt Acknowledge instruction places the 6-bit device code of that device
requesting an interrupt that is physically closest to the CPU on the I/O bus into bits 26
through 31 of the specified accumulator, setting bits O through 25 to 0. After the
transfer, the instruction sets the ION flag according to the function specified by /f].

NOTES: The assembler recognizes the special mnemonic INTA ac to be equivalent to
DIB ac,CPU.

Do not use the DIBP ac,CPU instruction on a 32-bit processor. The instruction is reserved for
(and used as a VCT instruction} on the ECLIPSE C/350.

The format of the specified accumulator after instruction execution is:

0-0 Device Code

Bits Name Contents or Function

0-25 |0-0
26-31 | Device Code 6-bit device code of highest priority interrupting device.

DIC/f] ac,CPU

0 1 1 ac 1] 1 f 1 1 1 1 1 1
[1 2 3 T4 5 6 7 8 ' 9 10 1 12 13 14 15

The 1/O Reset instruction sends a reset signal to all devices to clear their states. The
instruction sets the 16-bit priority mask to 0, disables logical address translation, sets the
PSR to 0, sets bits O through 9 of FPSR to 0, sets bits in the IOC status register, and sets
the ION flag according to the function specified by /f].

If you use the standard form (DIC/f] ac,CPU), you must code an accumulator to avoid
assembly errors. During execution, the processor ignores the accumulator field and the
contents of the accumulator remain unchanged.

NOTE: The assembler recognizes the special mnemonic IORST to be equivalent to DICC 0,CPU.
This instruction sets the BUSY and DONE flags as described above and sets the [ON flag
to 0.

7-6 Device Management

Mask Out

MSKO ac

DOB/f] ac,CPU
0 1 1 ac 1 (o) 0 f 1 1 1 1 1 1
0 1 2 3 ' 4 5 6 7 8 ' 9 10 1" 12 13 14 15

The Mask Out instruction places the contents of bits 16 through 31 of the specified
accumulator in the priority mask. After the transfer, the instruction sets the ION flag
according to the function specified by /f/. The contents of the specified accumulator
remain unchanged. A 1 in a bit position disables interrupt requests for devices that use
that bit as a mask.

NOTES: Masking out a device when interrupts are enabled is not recommended.

The assembler recognizes the special mnemonic MSKO ac to be equivalent to DOB ac,CPU.

The contents of the specified accumulator is:

Unused Priority Mask
OB e e e L S T T R A LA ¥
Halt
HALT
DOC/f] ac,CPU
1 1 ac 1 1 [0] f 1 1 1 1 1 1
1 2 3 7 4 5 6 7 8 ' 9 10 (] 12 13 14 15

The Halt instruction sets the ION flag according to the function specified by /f], and
then stops the processor.

NOTE: The assembler recognizes the special mnemonic HALT to be equivalent to DOC 0,CPU.

Interrupt Disable
INTDS
NIOC CPU

The Interrupt Disable instruction sets the ION flag to 0.

Device Management 7-7

Interrupt Enable

INTEN
NIOS CPU

CPU Skip
SKP: CPU

The Interrupt Enable instruction sets the ION flag to 1.

If the instruction changes the state of the ION flag, the CPU allows one more instruction
to execute before the first 1/O interrupt can occur. However, if the instruction is
interruptible, then interrupts can occur as soon as the instruction begins to execute.

The CPU Skip instruction tests the specified flag. If the test condition is true, the
processor skips the next sequential word. (Table 7.3 lists the possible test conditions.)

Programmable Interval Timer

Device Code
43g

Assembler Mnemonic
PIT

Priority Mask Bit
6

The programmable interval timer (PIT) is a CPU-independent time base that you can
set to initiate program interrupts at fixed intervals ranging from 100 microseconds to
6.5536 seconds in increments of 100 microseconds. It can also be sampled with I/O
instructions at any point in its cycle to determine the time until the next interrupt. You
use the PIT in multiprogram operating systems to allocate CPU time to different
programs on a “time-slice” basis.

The PIT consists of a 16-bit initial count register and a 16-bit counter. During operation,
the processor loads the PIT counter with the contents of the initial count register. The
processor then increments the counter at 100-microsecond intervals until the count
reaches 177777g. The PIT then initiates a program interrupt request. At the end of the
next 100-microsecond interval, the processor again loads the PIT counter with the
contents of the initial count register and the counting process is repeated. A BUSY flag
and a DONE flag control the operation of the device.

7-8 Device Management

In order to obtain a particular time interval between program interrupt requests, load
the two’s complement of the number of 100-microsecond intervals between interrupt
requests into the initial count register. When you first start the PIT, the processor
immediately loads the count into the counter. At the first 100-microsecond pulse, the
processor again loads the count into the counter. This is done to synchronize the program
and the counter.

Device Flags

Device flag commands to the PIT determine the starting or stopping of the counting
cycle for program interrupts.

f=S Sets the BUSY flag to 1 and the DONE flag and interrupt request flag to 0;
begins the counting cycle.

f=C Sets the BUSY and DONE flags and the interrupt request flag to 0; stops the
counting cycle.

f=P No effect.

PIT Instructions
Table 7.5 lists the I/O instructions that affect the PIT device.

Assembler Operation
Statement
DIA/f] ac,PIT Reads the counter value into the accumulator
DOA/f] ac,PIT Loads the counter with a value (PIT initializes the counter with the value each time

the counter starts or overflows)

IORST Stops the counting cycle and sets the BUSY and DONE flags, the interrupt mask bit
6 and the counter to O

Table 7.5 1/0 instructions for PIT

Read Count
DIA/f] acPIT

[}] 1 2 3 7T a4 5 6 7 8 T 9 10 1" 12 13 14 15

The Read Count instruction places the value of the PIT counter in bits 16 through 31 of
the specified accumulator, destroying the accumulator’s previous contents. After the
data transfer, the instruction performs the function specified by /f]. The format of the
specified accumulator is as follows:

Device Management 7-9

Reserved Count
FT—T—T—T—r—T—— AT 37
Bits Name Contents or Function
0-19 | Reserved Reserved for future use
20-31 | Count Current value of the PIT counter within one count cycle (two's
complement)
Specify Initial Count
DOA/f] ac,PIT
0 1 1 ac 0 1 0 f 1 0 0 0 1 1
7 pl 3 7 3 8 9 0 T 11 T 12 ' 13 T 14 T 15

The Specify Initial Count instruction loads bits 16 through 31 of the specified
accumulator into the PIT’s initial count register. After the data transfer, the instruction
performs the function specified by /f]. The contents of the specified accumulator remain
unchanged. The format of the accumulator is as follows:

Reserved Initial Count
o T T T T T T T T T T T T i 3
Bits Name Contents or Function
0-19 | Reserved Reserved for future use
20-31 | Initial Count The number of 100-microsecond intervals between interrupts
(two’s complement)

Real-Time Clock

Device Code
14¢

Assembler Mnemonic

RTC

Priority Mask Bit
13

The real-time clock (RTC) generates low-frequency I /O interrupts for performing time
calculations independent of CPU timing. You can use these interrupts as a time base in
programs that require it. The frequency of the clock is program selectable to ac-line
frequency, 10, 100, and 1000 Hz. Both a BUSY and a DONE flag control the operation
of the device.

7-10 Device Management

Once you start the RTC, the first program interrupt request can come at any time up to
the selected clock period. After the fir-t interrupt has occurred, succeeding interrupts
come at the clock frequency. provided that the program always sets the BUSY flag to 1
before the clock period expires. After power up or the issuance of an IORST instruction,
the processor sets -he clock to the line frequency. After power up, the line frequency
pulses are available .mmcdiately, but 5 seconds must elapse before a steady pulse train is
available from the clock for other frequencies.

Device Flags

Device flag commands to the RTC determine the enabling or disabling of RTC interrupts.

f=S Sets the BUSY flag to 1, and the DONE flag and interrupt request flag to 0;
enables RTC interrupts.

f=C Sets the BUSY and DONE flags and the interrupt request flag to O; disables
RTC interrupts.

f=P No effect.
RTC Instructions
Table 7.6 lists the 1/O instructions that affect the RTC device.

Assembler Statement Operation
DOA/f] acRTC Selects a clock frequency with a value from an accumulator
IORST Disables RTC interrupts and selects the ac-line frequency; also, sets the BUSY and|
DONE flags and the interrupt mask bit 13 to O

Table 7.6 1/0O instructions for RTC

Select RTC Frequency
DOA/f] acRTC

0 1 1 ac 0 1 0 f o] o 1 1 0 0
0 1 2 3 7 4 5 6 7 8 ' 9 10 1 12 13 14 15

The Select RTC Frequency instruction sets the clock frequency according to bits 30 and
31 of the specified accumulator. The contents of the specified accumulator remain
unchanged with bits 0 through 29 ignored. The format of the specified accumulator is as
follows:

Device Management 7-11

Reserved RTC
o T ! T 257 30 31
Bits Name Contents or Function
0-29 |Reserved Reserved for future use (set to 0)
30-31 | RTC Selects the clock frequency as follows:

Bits Frequency Selected
00 ac-line frequency

01 10 Hz
10 100 Hz
11 1000 Hz

Primary Asynchronous Line Input/Output

INPUT Device Code OUTPUT Device Code
10g 11g

Assembler Mnemonic Assembler Mnemonic
TTI TTO

Priority Mask Bit Priority Mask Bit

14 15

The asynchronous line controller (ALC) is the communication link between the processor
and the master terminal. It supports asynchronous communication at selected rates from
110 to 9600 baud in 7-bit codes with program-generated parity, or 8-bit codes with no
parity. You can use one or two stop bits with either format.

Because the asynchronous communications input and output can generate program
interrupts independently, each has its own device code and is controlled by its own set of
BUSY and DONE flags. The ALC is program-compatible with Data General’s Model
4010 controller.

The ALC is set up to transmit and receive 8-bit characters without parity checking. A
process may send or receive 7-bit characters with even, odd, or mark parity by using the
high-order bit in the 8-bit character (bit 8 in the accumulator) as a parity bit. On
transmission, the program that drives the ALC calculates and inserts the correct parity
bit. On reception, the program calculates and checks parity on the received character.

There are timing constraints on the receive portion of the controller. As the ALC
receives each character, it places the character in an input character buffer, sets the
DONE flag to 1, and the BUSY flag to 0. If the program controlling the receiver does
not transfer the character before receiving the next character, the contents of the input
character buffer are overwritten and the previous character is lost. Typically, the
intercharacter time at 110 baud is 100 milliseconds, and at 4800 baud the intercharacter
time is approximately 2.08 milliseconds.

7-12 Device Management

Device Flags

Device flag commands to the TTI/TTO determine the flag settings and the transmission
of an output character.

f=S Sets the BUSY flag to | and the DONE flag to 0. When the S flag is used with
the TTO device, the ALC transfers the character from the output buffer to the
shifter and begins transmission of the character. The ALC sets the BUSY flag
to 0 and the DONE flag to 1 when the character passes from the output buffer
to the shifter.

f=C Sets the BUSY and DONE flags and the interrupt request flag to 0.
f=P No effect.
TTI/TTO Instructions

Table 7.7 lists the I/O instructions that affect the TTI/TTO device.

Assembler Operation
Statement

DIA/f] ac,TTI Reads a character from the device into an accumulator
DOA/f] ac,TTO |Sends a character from an accumulator to the device
IORST Sets the BUSY and DONE flags and the interrupt mask bit 14 and 15 to O

Table 7.7 1/0 instructions for TTl and TTO

Read Character Buffer
DIA/f] acTTI

1 2 3 T 4 5 6 7 g ' 9 10 11 12 13 14 15

The Read Character Buffer instruction places the contents of the controller’s input
buffer in bits 24 through 31 of the specified accumulator. After the data transfer, the
instruction sets the controller’s BUSY and DONE flags according to the function
specified by /f]. The format of the specified accumulator is as follows:

Reserved Character
T T T T T T T T T T T Tyt T T T T T T3
Bits Name Contents or Function
0-23 | Reserved Reserved for future use
24-31 | Character The 8-bit character (or 7-bit character with parity in bit position
8) read from the input buffer

Device Management 7-13

Load Character Buffer

DOA/f] ac, TTO
0 1 1 ac 0 1 1 f 0 0 1 o] 4] 1
0 1 2 3 T a4 5 6 7 8 T 9 10 11 12 13 14 15

The Load Character Buffer instruction loads bits 24 through 31 of the specified
accumulator into the controller’s output buffer. After the data transfer, the instruction
sets the controller’s BUSY and DONE flags according to the function specified by /f].
The contents of the specified accumulator remain unchanged. The format of the specified
accumulator is as follows:

Reserved Character
5 e e e L e e I s a2 T
Bits Name Contents or Function
0-23 | Reserved Reserved for future use
24-31 | Character The 8-bit character (or 7-bit character with parity in bit position
8) to be placed in the output buffer

System Control Program
Device Code
454

Assembler Mnemonic

SCP

The SCP, as described in the Technical Summary chapter, is a microcoded soft system
console within the MV /4000 computer. Through the MV /4000 microcode, the SCP

isolates hardware problems.

Device Flags
Device flag commands to the SCP determine the settings of the BUSY and DONE flags.

f=S The SCP BUSY flag is never set for the MV /4000 because each operation
completes within the instruction execution.

S=C Sets the DONE flag to 0.

f=P No effect.

NOTE: For compatibility purposes with other MV/Family processors, the SCP instruction
descriptions include the BUSY flag conditionals.

7-14 Device Management

SCP Instructions
Table 7.8 lists the instructions that provide the CPU communication with the SCP.

Mnemonic Name Action

DOBS ac,SCP |Enable/Disable Error Reporting Enables/disables CPU error reporting, and performs
indicated command

DIBC ac,SCP Return SCP Status Returns the current status of the SCP

SKPt SCP Skip Test Tests the SCP BUSY/DONE flag and skips next
instruction if true

NIOC SCP Clear SCP DONE Flag Clears SCP DONE flag, but the SCP remains in
diagnostic mode

IORST 1/0 Reset Disables CPU error reporting or clears diagnostic
mode and clears the flags

Table 7.8 SCP instructions

The SKP, NIOC, and IORST instructions are described earlier in this chapter. Note that
the NIOC SCP instruction clears the SCP DONE flag, but does not take the SCP out of
diagnostic mode.

Before issuing a DOBS SCP instruction, the process should check the SCP BUSY flag. If
the BUSY flag is 0, the SCP is ready to accept the next DOBS SCP instruction.

Device Management

7-15

Enable/Disable Error Reporting
DOBS ac,SCP

ac

The Enable/Disable Error Reporting instruction sets the SCP BUSY flag and uses the
contents of the specified accumulator to enable or disable CPU error reporting and to
perform the command contained in the command field. Following is the accumulator

format:
Reserved £ Command interface Biock
gT—T—T—T—T—T— T ETRETAET A Tt T35
Bits Name Contents or Function
0-15 [Reserved These bits are reserved for future use
16 E The E flag enables the SCP error reporting
= enable; O = disable
17-23 | Command The SCP performs the function defined by these bits
Command Name
(octal)
000 No-op
001 Undefined
002 Select SCP Power Down mode
003 Disable SCP Power Down mode
004 Set block
005 Enable All ERCC
006 Undefined
007 Mask Soft ERCC
010 Mask All Sniff
011 Undefined
thru
176 Undefined
177 Enter Diagnostic Sequence
24-31 | Interface Block | Depending on the command, the CPU or SCP uses bits 24
through 31 as a physical address pointer to a multiword block in|
page zero

7-16 Device Management

0,1

2,3

The E flag (or enable command) enables CPU error reporting. When the CPU or SCP
wishes to report an error, it will use the page zero address specified by the last set block
command as a pointer to a double-word physical address. This address will, in turn,
point to a 16-word block that the CPU or SCP may use to report error data. The first
word of the block will receive the error code. The remaining 15 words are available for
reporting extended error status.

If the SCP should interrupt the CPU, the SCP disables error reporting until the process
issues a new enable command.

For instance, under a Data General operating system, the CPU uses the first word of the
error block as the SYSLOG code number. Any error that requires extended error status
will also cause the entire 16-word block (including the code number) to be logged as the
data area of the SYSLOG entry.

The command definitions are as follows:
o Select SCP Power-Down Mode (command 002g)

The SCP does not use the page zero address entered with this command. The
command places the SCP in the power-down mode with power fails reported as
maskable SCP interrupts.

. Disable SCP Power-Down Mode (command 003g)

The command removes the SCP from the power-down mode. The SCP no longer
intercepts powerfail interrupts.

o Set block (command 004g)

The command specifies to the SCP the address of the SCP/CPU interface block.
The address points to a four-word block in page zero. The format of the four-word
block is as follows:

Physical address of SCP to CPU buffer
—T—T T T T T

3

Physical address of CPU to SCP buffer
— T T T T T T

NOTE: The SCP restricts word 0 of the four-word block to be in the range of 0 to 3775

A command that requires a CPU/SCP interface block (16-word block) specifies it
with the command.

Device Management 7-17

Enable All ERCC Error Reporting (command 005g)

The command enabies the SCP to detect and report any memory error.

— Single-bit -- 1-bit ERCC error detected during memory read

— Multibit -- 2-bit (or more) ERCC error detected during memory read
— Soft-sniff -- 1-bit ERCC error detected during memory refresh

— Hard-sniff -- 2-bit (or more) ERCC error detected during memory refresh

Mask Soft ERCC Error Reporting (command 007g)

The command disables all of memory from single-bit, soft-sniff, and hard-sniff
error reporting; detection and correction remain enabled. The processor reports
multibit memory errors.

Mask All Sniff Error Reporting (command 010g)

The command disables all of memory from soft-sniff and hard-sniff error reporting;
detection and correction remain enabled. The processor reports single-bit and
multibit memory errors.

Enter Diagnostic Sequence (command 177g)

Disable CPU error reporting. The SCP does not use the page zero address entered
with this DOBS SCP instruction. The SCP uses the previous page zero address as a
pointer to the SCP/CPU interface block. The SCP clears its BUSY flag. The SCP
remains in diagnostic mode until either a console reset occurs or the process issues
another DOBS SCP instruction.

When the process issues the DOBS SCP instruction, the SCP first places the
contents of bits 16 through 31 of the specified accumulator into word 0 of the SCP
to CPU buffer. The SCP then reads words 1 through 7 from the CPU to SCP
buffer, inverts them, and writes them back to their respective locations in the SCP
to CPU buffer. Upon completion, the SCP transmits a status 0 to the host, sets the

DONE flag, and interrupts the CPU.

NOTE: The NIOC SCP will clear the DONE flag, but will not take the SCP out of diagnostic
mode.

7-18 Device Management

Return SCP Status
DIBC ac,SCP

NOTE: The DIBC ac, SCP and the DIB ac, SCP instructions are equivalent. The DIBS ac, SCP
instruction is a no-op.

The Return SCP Status instruction clears the SCP DONE flag and returns a code to the
specified accumulator denoting the current status of the SCP. Following is the
accumulator format:

Reserved Status
g T T T T T T T T T T T T Tt T T T T T T T T T T
Bits Name Contents or Function
0-15 | Reserved These bits are reserved for future use
16-31 | Status The codes returned to these bits denote the current status of the SCP as follows:

Code Meaning
000000 Error information is in current error block

The CPU error status codes and their definitions returned to the first word
(word 0) of the error block are:

Status
(octal) Definition

007 Power fail detected
053 Single-bit or soft-sniff ERCC detected
054 Multibit ERCC detected

055 Hard-sniff ERCC detected Extended error status is used for ERCC as|
follows:

Word Contents
0 Status (53, 54, 55)
1 Bit 13 = other
Bit 15 = sniff
2 Physical page number
Double-word on module

4 Syndrome bits

Device Management 7-19

Bits Name Contents or Function

000001 SCP reset: the SCP is reset and must be reinitialized with the DOBS ac,SCP|
instruction and a command 4.

000002 Request acknowledge for any undefined command.

000003 SCP-requested function is in error; The SCP reports an unknown error with
this code. For instance, if a required SCP/HOST interface block has not been
defined, or if an undefined function request is made, or if invalid data is passed
to the SCP (through the HOST to SCP buffer), the SCP issues this code.

177777 SCP is in diagnostic sequence.

Data Channel/Burst Multiplexor Channel

The data channel (DCH) provides I/O communication for medium-speed devices and
synchronous communications. The burst multiplexor channel (BMC) is a high-speed
communications pathway that transfers data directly between main memory and
high-speed peripherals. I/O-to-memory transfers for both DCH and BMC always bypass
the address translator.

A map controls a DCH or BMC. This map is a series of contiguous map slots, each of
which contains a pair of map registers (one even-numbered register and its corresponding
odd-numbered register).

DCH/BMC Maps

The MV /4000 computer supports 512 DCH device map slots and 1024 BMC device
map slots. The DCH or BMC sends to the processor a logical address with each data
transfer. The processor translates the logical address to a physical address using the
appropriate map slot for that address.

The device controller performing the data transfer controls the BMC. No program
control or CPU interaction is required except to set up the BMC’s map table.

NOTE: Since the MV/4000 computer performs the BMC or DCH operations in the MV/4000
microcode, CPU operations must halt while the BMC or DCH transfers data.

BMC Address Modes
The BMC operates in either the unmapped (physical) mode or the mapped (logical)
mode.

In the unmapped mode, the BMC receives 21-bit addresses from the device controllers,
and passes them directly to memory. As the BMC transfers each data word to or from
memory, it increments the destination address, causing successive words to move to or

from consecutive locations in memory.

If the controller specifies the mapped mode for a data transfer, a 20-bit address is used.
The high-order 10 bits of the logical address form a logical page number, which the
BMC map translates into a 12-bit physical page number. This page number, combined
with the 10 low-order bits from the logical address, forms a 22-bit physical address,
which the BMC uses to access memory.

7-20

Device Management

BMC Map

The BMC uses its own map to translate logical page numbers to physical ones. (The
SSPT instruction defines the memory locations of the BMC map.) The map contains
1024 map registers, the odd-numbered registers each containing a 10-bit physical page
number. The BMC uses the logical page number as an index into the map, and the
contents of the selected map register become the high-order 10 bits of the physical
address.

Note that when the BMC performs a mapped transfer, it increments the destination
address after it moves each data word. If the increment causes an overflow out of the 10
low-order bits, this selects a new map register for subsequent address translation.
Depending on the contents of the map table, this could mean that the BMC may not
transfer successive words to or from consecutive physical pages in memory.

NOTE: For each BMC device, the MV/4000 computer contains a one-address translation
cache.

DCH/BMC Registers

The MV /4000 system contains 512 DCH map registers and 1024 BMC map registers.
The map registers are numbered from 0 through 7777, as explained in Table 7.9 and
depicted in Figure 7.1.

Registers Description
(Octal)

0000-3776 Even-numbered registers are the most significant half of the BMC map positions 0-1777
0001-3777 Odd-numbered registers are the least significant half of the BMC map positions 0-1777
4000-5776 Even-numbered registers are the most significant half of the DCH map positions 0-777
4001-5777 Odd-numbered registers are the least significant half of the DCH map positions 0-777

6000 Port Definition Register
6001-7677 Reserved
7700 Port Status Register

7701-7777 Reserved

Table 7.9 Device map registers 0000-7777

Device Management 7-21

0000 N T T~
\ Slot O -- high 0000
BMC \\
\ Slot 0 -- low 0001
slots \\
3777 \\ Slot 1 -- high | 0002
4000 \
\ -
DCH \ Slot t -- low 0003
slots
5777
6000 Port Definition Register
6001
Reserved
7677
7700 Port Status Register
7701
Reserved
7777
DG-15313

Figure 7.1 DCH/BMC registers
The device map registers and their formats follow:

BMC/DCH Even-Numbered Register Formats

The processor translates the contents of the BMC and DCH even address registers
(0000-3776g, 4000-57764 respectively) as:

\" D Hardware Reserved
5 7 > T T T T T T r r T T T T3
Bits Name Contents or Function

0 \% Validity bit; if 1, the processor denies access

1 D Data bit

If O, the channel transfers data
If 1, the channel transfers zeros

2-15 | Hardware Undefined when read
Reserved

7-22 Device Management

BMC/DCH Odd-Numbered Register Formats
The processor translates the contents of the BMC and DCH odd address registers
(0000-3777g, 4001-5777¢ respectively) as:

Reserved Physical Page Number
T T —3 T v T r T T T T T T —E
Bits Name Contents or Function
0-3 Res Hardware reserved; reading these bits returns an undefined state
4-15 | Physical Page | Physical page number associated with the logical page that
Number referred to that particular slot

DCH/BMC Port Definition Register (6000g)

E Reserve BV | DV Reserve A P Reserved M 1
0 T ' 2 3) 5 ' 6 7 g g 7 T T ™13 ' 14 ' 15
Bits Name Contents or Function
0 E Error flag; if 1, an error has occurred on the I/0 port (O only
when all other error bits are 0)
1,2 Reserve Bits 1 and 2 are reserved for future use and returned as zero
3 BV BMC validity error flag; if 1, BMC validity protect error has
occurred
4 DV DCH validity error flag; if 1, DCH validity protect error has
occurred
5,6 Reserve Bits 5 and 6 are reserved for future use and returned as zero
7 A BMC address error; if 1, the channel has detected an address
parity error
8 P BMC data error; if 1, the channel has detected a data parity error|
9-13 | Reserved Bits 9 through 13 are reserved for future use and returned as
zero
14 M DCH mode; if 1, DCH mapping is enabled
15 1 Always set to 1

NOTES: Setting bit 3, 4, 7, or 8 to a one with the CIO instruction complements these bits.

The C/350 10RST instruction clears bits 0, 3,4, 7, 8, and 14.

Device Management 7-23

Port Status Register Format
The read-only port status register (7700g) provides status information. The format for
the register follows:

DCH/BMC Port Status Register (7700g)

ERR Reserved 1 1 Res | INT
0 T T T T T T T T T R 12 13 ' 14 ' 15 |
Bits Name Contents or Function

0 ERR If 1, the port has detected an error indicated by the port definition

register

1-11 | Reserved Bits 1 through 11 are reserved for future use

12-13 11,1 Always set to 1

14 Reserved Bit 14 is reserved for future use and returned as zero

15 INT Interrupt pending if 1

DCH/BMC Map Instructions

The CIO, CIOL, or WLMP instruction control DCH/BMC map loads and reads. Table
7.10 lists the instructions that affect the DCH and BMC maps.

Assembler Operation

Statement
WLMP Loads BMC/DCH map siots from memory

CI0, CI0I Returns BMC/DCH status or loads map registers (1/2 slot) from accumulators
IORST Clears bits 0, 3, 4, 7, 8, and 14 of the port definition register

Table 7.10 DCH/BMC map instructions

The CIO, CIOL, and WLMP instructions are described in the Principles of Operation,
32-Bit ECLIPSE® Systems manual. The IORST instruction is presented earlier in this
chapter.

7-24 Device Management

Wide Load Map
WLMP

The WLMP instruction in conjunction with three accumulators loads successive double

words from memory into successive DCH or BMC map slots.

The double word contained in ACO refers to the first map slot in the specified I/O
channel that the WLMP instruction will load. AC1 contains a 16-bit unsigned count of
the number of map slots in the 1/O channel to be loaded. AC2 contains the effective
address of the first double word to be loaded into the referenced 1/O channel slots.

For each map slot loaded:

ACO is incremented by one;
ACI1 is decremented by one;
AC2 is incremented by two.

Upon completion of the WLMP instruction:

ACO references the map slot following the last slot loaded;

AC]1 contains a 0 in the 16 least significant bits;

AC?2 contains the address of the word following the last double word loaded.

NOTE: If ACI is initially 0, a no-op is performed.

The accumulator formats for the WLMP instruction are as follows:

ACO contains a double word:

Reserved

p—o

T ! ! MEFAREN T207 217

T

T

Map Slot Number

Number
0-1777g
2000-27774

Bits Name Contents or Function
0-17 |Reserved Bits O through 17 are reserved for future use
18-20({0-0 Must be O
21-31 | Map Slot Num- | Indicates which map slot the instruction will load

ber

Meaning
Loads a BMC slot
Loads a DCH slot

ER

Device Management

7-25

AC1 contains a 16-bit unsigned count:

Number of Map Siots

T15

16" T T T T T T T T T T T T T

31

Bits Name Contents or Function
0-15 |Ignored Bits O through 15 are ignored by the WLMP instruction
16-31 | Number of Unsigned count of the number of map slots, which the WLMP
Map Slots instruction will load

AC2 contains an effective address that refers to the first double word that the WLMP

instruction will load.

The contents of these double words are in the following format:

vV|D Reserved Physical Page Number
L S A A e e T L e e
Bits Name Contents or Function
0 v Valid; set to O implies valid; set to 1 implies access denied
1 D Data; set to O implies transfer data; set to 1 implies transfer
zeros
2-19 | Reserved Bits 2 through 19 are reserved and must be set to 0
20-31 | Physical Page | The translation for the logical map slot
Number

The effect of the setting of the V and D bits and the direction of the transfer are:

\" D Transfer Direction Action

0 0 From 1/0 Port Transfer data

0 1 From 1/0 Port Transfer Os from either DCH or BMC device
1 - From 1/0 Port Transfer aborted — flag error

0 0 To I/0O Port Transfer data

0 1 To 1/0 Port Transfer Os to memory

1 - To 1/0 Port Transfer aborted -- flag error

NOTE: From I/O Port implies memory to device; To 1/0 Port implies device to memory.

Upon detection of an invalid map entry due to an active device:

For the BMC -- The active BMC requesting device is flagged.
For the DCH -- Bit 4 of the Port Definition Register is set to 1.

WLMP is a privileged and interruptible instruction.

7-26 Device Management

Universal Power Supply Controller
Device Code
43

Assembler Mnemonic

UPSC

Priority Mask Bit
13

The universal power supply controller (UPSC) is a daughter board containing a
microprocessor. The UPSC performs a power-up diagnostic self test, monitors the
system power, and reports failures, problems, and status to the MV /4000 computer.

The UPSC monitors: problems on the power supplies (such as, over-temperature and
over-current), AC over-voltage or under-voltage, reed switches for sensing overload on
+5V (or the power switch was turned off), battery backup fault, and fan failure.

Device Flags

Device flag commands to the UPSC determine the enabling or disabling of UPSC
interrupts.

f=Ss Sets the BUSY flag to 1, and the DONE flag to 0.
f=C Sets the BUSY and DONE flags to 0
f=P No effect.
UPSC Instructions
Table 7.11 lists the I/O instructions that affect the UPSC device.

Assembler Operation
Statement

DOAS ac,UPSC Write data to UPSC
DOAP ac,UPSC Request data from USPC
DIA/f] ac,UPSC |Read data from UPSC
IORST Clears BUSY and DONE flags and interrupt mask bit 13

Table 7.11 1/0 instructions for UPSC

Write Data to UPSC

DOAS/f] ac,UPSC
0 1 1 ac 0 1 0 0 1 0 0 0 1 0 o]
0 1 2 3 T 4 5 6 7 8 9 10 1 12 13 14 15

When the MV /4000 computer issues the DOAS, the UPSC sets the BUSY flag. The
UPSC resets the BUSY flag and sets the DONE flag when the UPSC completes the
operation.

Device Management 7-27

The Write data to UPSC instruction sends the contents of the accumulator to the UPSC.
The four registers that can be written on the UPSC are defined as follows:

Register Name Contents or Function
0 Control register Selects reporting mode, power margining, and enable/disable
battery backup
1 Power margining When the backpanel is jumpered for margining or margining
register is selected using the control register, the +5V logic, +5V

memory, -5V memory, and + 12V memory voltages can be
increased or decreased

Reserved Reserved for future use
3 Diagnostic test Verify the data path between the MV/4000 computer and
register UPSC or enable battery test

The bit descriptions in the following tables explain the bit function when a bit is set.

Register 0
Control Register
Undefined s} O | Res | BT | ALT [COMM BBU | PFM
0 T T T T T 7 8 S 0 " 11 1z ' 13 ' 14 ' 15
Bits Name Contents or Function
0-7 Undefined Bits O through 7 are undefined
8,9 Register O The control register bits 8 and 9 equal zero
10 Res Bit 10 is reserved for future use
11 BT Remove AC power to allow battery testing
12 ALT Mask out powerfail interrupts. When ALT is 1, powerfail skips
(SKPDN and SKPD2) will always behave as if there is no powerfail
13 COMM UPSC can interrupt MV/4000 when a fault occurs
14 BBU Disables the battery backup unit
15 PFM Enable power margining

Register 1
Power Margining Register
Undefined (o] 1 +5LI|+5LD| ALLI | ALLD +5MI|+5MD
[! 4 ' ! N 7 8 9 10 11 12 13 14 7 15

A voltage is in the nominal state when the corresponding bit is 0. The voltage is
margined when the corresponding bit is 1 and the MV /4000 computer is jumpered or
programmed for margining.

All percentages are additive. For instance, when bits 12 and 15 are used together, the
voltage for +5V memory increases approximately 5 percent; while the -5V memory and
+12V memory increase approximately 8 percent.

7-28 Device Management

Bits Name Contents or Function

0-7 Undefined Bits O through 7 are undefined

8,9 Register 1 The power margining register bits 8 and 9 equal 01,

10 +5LlI Increase +5V logic approximately 2.2%

11 +5LD Decrease + 5V logic approximately 5%

12 ALLI Increase + 5V memory, -5V memory, and + 12V memory
voltages approximately 8%

13 ALLD Decrease -+ 5V memory, -6V memory, and + 12V memo-
ry voltages approximately 8%

14 +5MI Increase + 5V memory approximately 2.2%

15 +5MD Decrease +5V memory approximately 2.2%

Register 3

Diagnostic Test Register

0 0 (o} 0o 0 o] 0 1 1 0 o] 0 0 BTE |COMP
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

The UPSC performs the battery test or bit test as specified by bits 14 and 15 of the
accumulator. To complete the command, the UPSC requires a second DOAS ac,UPSC
instruction.

If UPSC fails to detect the second DOAS instruction, the UPSC will automatically exit
the diagnostic test. The UPSC indicates a timeout by setting the DONE flag and the
appropriate fault code in the fault code register.

Bits Name Contents or Function
0-7 0—o0 Bits O through 7 are reserved and must be zero
8,9 Register 3 The diagnostic test register bits equal 11,
10-13 (0 — O Bits 10 through 13 are reserved and must be zero
14 BTE Battery Test Enable. If the accumulator contains 2g, the

battery test is enabled. You initiate the test with the
second DOAS to bit 11 of register O (BT)

NOTE: The BTE bit must be set before the BT
bit.

15 comp Complement. If the accumulator contains Og or 1g, the
UPSC reads the data from the second DOAS (A buffer),
complements it if COMP is 1, and then returns the data to
the A buffer. The A buffer can then be read with the DIA
instruction

Device Management

7-29

Request Data from UPSC

DOAP/f] ac,UPSC

0 1 1

ac

] 1 2 3

The Request Data From UPSC instruction uses bits 13 through 15 of the accumulator to
request specific information from the UPSC.

0 0 0 ¢} 0 0 0 0 ¢} [¢] 0 0 o} octal value
) T 2 3 3 7 8] 0 " 11 ' 1z '3 T T
Bits Name Contents or Function
0-12 |Reserved
13-15 | Octal value
0 Read control bits
1 Read battery backup and margining bits
2 Read power supply system status
3 Read fault code register
4 Read UPSC code revision number
Read data from UPSC
DIA/f] ac,UPSC
0 1 1 ac 0 5} 1 0 0 0 0 0 1 0 0
0 [2 3 " 4 5 3 7] 10~ 11 12 ' 13 ' 14 ' 15

The Read Data From UPSC instruction loads the data from the UPSC A Buffer into the
accumuiator. The previous Request Data from UPSC instruction defines the data read
from the A Buffer.

Read Control Bits

0 s} 0 0 [¢} 0 0 0 s} 0 0 0 | ALT [coMM BBU | PFM
0 T 2 3 2 3 8 10 ' 11 " 12 " 13 ' 14 T 15
Bits Name Contents or Function

0-11 |Reserved Returned as zero

12 ALT Power fail is masked out

13 COMM UPSC can interrupt the MV/4000 computer when a fault occurs|

14 BBU The battery backup unit is disabled

15 PFM Power margining is enabled

7-30 Device Management

Read Battery Backup and Margining Bits

0] 0 0 0 0 0 | BAT| O |+5LI|+5LD| ALLI [ALLD [+5MI|+5MD
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Bits Name Contents or Function

0-7 Reserved

8 BAT The battery backup is connected and in use. (The bit is cleared if]
system is not running on batteries, a battery fault occurs, or the
BBU flag is set)

9 Reserved

10 +5Li increase + 5V logic approximately 2.2%

1 +5LD Decrease +5V logic approximately 5%

12 ALLI Increase +5V memory, -5V memory, and + 12V memory
voltages approximately 8%

13 ALLD Decrease +5V memory, -5V memory, and + 12V memory
voltages approximately 8%

14 +5Mi Increase + 5V memory approximately 2.2%

15 +5MD Decrease + 5V memory approximately 2.2%

Read Power Supply System Status

o] 0 0 0 0 0 0 0 0 0 0 |PART|FULL | RUN |CHAR
1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15

Bits Name Contents or Function

0-11 | Reserved

12 PART The system is equipped with partial battery backup
13 FULL The system is equipped with full battery backup
14 RUN The system is running on the batteries

15 CHAR The batteries are recharging

Read Fault Code Register

0 0 0 0 0 0 o] [0 Fault Code Fault Category
0 T 2 3 2 5 3 7 8 3 T Tz ' 13 | BB
Bits Name Contents or Function

0-8 Reserved
9-12 | Fault Code Specifies the fault code for a specific fault category (Table 7.1 2)
12-15 | Fault Category | Specifies the fault categories (in a range of O through 7)

The UPSC power system displays a fault category by flashing the MV /4000 front panel
LEDs. The power system also loads the fault code into the fault code register. Table 7.12
lists the fault codes by fault category.

NOTE: Codes not shown are unused.

Device Management

7-31

Fault Category
and Fault Code

Operation

Bits 9 - 158
Category O System off or no fault or UPSC software fault
000 System off or no fault
170 Diagnostic mode timeout
Category 1 Environment Fault
011 VNR under-voltage (Voltage Nonregulated Unit)
021 VNR over-voltage
031 Power supply over-temperature
041 Chassis over temperature
Category 2 Fan Failure
002 Blower or multiple fan failure
012 Failure of Fan #1
022 Failure of Fan #2
032 Failure of Fan #3
042 Failure of Fan #4
052 Failure of Fan #5
062 Failure of Fan #6
072 UPSC cannot set fan signals
Category 3 VNR Fault
013 Battery backup fault indicated
Category 4 Power supply fault (includes under-voltages)
004 + 5V logic under-voitage
014 +5V logic current not sharing, PS1
024 =+ 5V logic current not sharing, PS2
034 +5V logic current not sharing, PS3
044 + 5V memory under-voltage, PS1
054 +5V memory under-voltage, PS2
064 + 5V memory under-voltage, PS3
074 + 12V memory or + 12V under-voltage, PS1
104 + 12V memory or + 12V under-voltage, PS2
114 + 12V memory or + 12V under-voltage, PS3
124 -5V memory or -5V under-voltage, PS1
134 -5V memory or -5V under-voltage, PS2
144 -bV memory or -5V under-voltage, PS3
154 under-voltage PS1, voltage unknown
161 under-voltage PS2, voltage unknown
174 under-voltage PS3, voltage unknown
Category 5 Over-voltage fault
005 Over-voltage on +5V, "+ 5VOV-NOT’ low
045 Over-voltage on +5V memory, PS1
055 Over-voltage on +5V memory, PS2
065 Over-voltage on +5V memory, PS3
075 Over-voltage on + 12V or + 12V memory, PS1
105 Over-voltage on + 12V or + 12V memory, PS2
115 Over-voltage on + 12V or + 12V memory, PS3
125 Over-voltage on -5V or -5V memory, PS1
135 Over-voltage on -5V or -5V memory, PS2
145 Over-voltage on -5V or -5V memory, PS3
155 Over-voltage PS1, voltage unknown
165 Over-voltage PS2, voltage unknown
175 Over-voltage PS3, voltage unknown

Table 7.12 UPSC fault codes

(continues)

7-32

Device Management

Fault Category Operation
and Fauit Code

Bits 9 - 154

Category 6 Over-current fault
006 Reed switch sense low, +5V output
016 Over-current on +5V, PS1
026 Over-current on +5V, PS2
036 Over-current on +5V, PS3
046 Over-current on + 5V memory, PS1
156 Over-current on + 5V memory, PS2
166 Over-current on + 5V memory, PS3
167 Over-current on + 12V or + 12V memory, PS1
106 Qver-current on + 12V or + 12V memory, PS2
116 Qver-current on + 12V or + 12V memory, PS3
126 Over-current on -5V or -5V memory, PS1
136 Over-current on -5V or -5V memory, PS2
146 Over-current on -5V or -5V memory, PS3
156 Over-current PS1, voltage unknown
166 Over-current PS2, voltage unknown
167 Over-current PS3, voltage unknown

Category 7 UPSC fault
177 LED lamp test at power-up

Table 7.12 UPSC fault codes

(concluded)

Chapter 8

Memory and System Management

This chapter describes the address translator, the memory and system management
instructions, the sequence of events initiated by a privileged fault, and the reserved
memory.

Address Translator

The CPU address translator converts the logical address of a piece of data into a
physical address in memory.

To perform the translation, the address translator uses a series of page tables containing
information about the pages of logical memory. These tables contain one entry for each
page. The tables indicate whether or not the page is currently in physical memory,
whether or not the page is valid (and the process can access it), and the information
needed for logical-to-physical address translation.

To avoid referring to a page table for every memory reference, the address translator
maintains a table of address translations and access privileges for 64 recently referenced
pages. The hardware checks the address translator’s table for entries before referring to
a page table in memory.

8-2

Memory and System Management

Page Table Entry Format

VIM|R|WIE Reserved Physical Page Address

e A S e P A — T 57
Bits Name Contents or Function
0 \ Valid access flag.

0 indicates invalid page.
1 indicates valid page.

1 M Memory resident page.
0 indicates disk-resident page.
1 indicates memory-resident page.
2 R Read access flag.
0 indicates read access denied.
1 indicates read access.
3 w Write access flag.
0 indicates write access denied.
1 indicates write access.
4 E Execute access flag.

0 indicates execute access denied.
1 indicates execute access.
5-12 | Reserved

13-31 | Physical Page | The physical address of a page in memory.
Address

Bits 5 through 12 are reserved for future use.

Because the memory references for a procedure tend to cluster in several pages, a needed
page translation is likely to be in the address translator’s table of address translations.
The address translator updates the entries in this table as execution continues.

Memory and System Management 8-3

Referenced and Modified Bits

. o traralator olos cmbeale $ur
The address translator also controls t

i WO its for each page: ihe
modified bit, and the referenced bit. The operating system uses these bits during page
faults.

A page fault occurs when a process refers to a page that is not currently in physical
memory. Each time a page fault occurs, the page fault handler must transfer a new page
from disk to physical memory. This could also mean that the page fault handler might
remove a page from physical memory to make room for the new page. The modified bit
indicates whether or not the old page is the same as it was when it came into physical
memory.

« If the modified bit for the old page is 1, it indicates that it is a modified page, and the
page fault handler must save the modified page on the disk before it can bring in the
new page.

» If the modified bit is 0, the copy of the old page on disk is still valid, and the page fault
handler can move the new page immediately into memory.

The referenced bit helps determine which page in memory the page fault handler can
replace with a new page from disk. In general, the page the processor least frequently
refers to is the page replaced. The referenced bit allows the operating system to determine
the frequency of references to individual pages.

Protection Validation

The address translator performs all protection system hardware checks. These checks
include access validation, page validation, segment crossing validation, and others. If
any of the checks fails, the address translator initiates a protection fault to the operating
system. For more information about the types of protection checks, refer to the Principles
of Operation, 32-Bit ECLIPSE® Systems manual.

8-4 Memory and System Management

Memory/System Management Instructions

Table 8.1 lists the memory/system management instructions. For further information,
refer to the Principles of Operation, 32-Bit ECLIPSE® Systems manual. The accumula-
tor formats for the Load CPU Identification and Narrow Load CPU Identification
instructions are listed in Appendix C.

Instruction Operation

ECLID Load CPU identification

LCPID Load CPU identification

LMRF Load modified and referenced bits

LPHY Translates logical addresses to physical addresses
LSBRA Load all segment base registers

LSBRS Load segment base registers 1 through 7
NCLID Narrow load CPU identification

ORFB OR referenced bits

PATU Purge address translator

RRFB Reset referenced bits

SMRF Store modified and referenced bits
WDPOP Pop context block (return from page fault)

Table 8.1 Memory/system management instructions

Privileged Faults

Upon detection of a privileged fault, the address translator generates either a page or
protection fault. The interpretation of the validity and appropriate access bits in a page
table entry, coupled with the occurrence of one of the following conditions, initiates a
page fault.

o An attempt to refer to a location that is part of the logical address space, but is not
part of the physical address space.

o The result of a logical address reference that requires a two-level page table, but is
allocated only a one-level page table.

Page Faults

When a page fault occurs, the following actions result:

o If the current segment is not 0, the processor stores the frame pointer and stack
pointer in their respective locations in page zero of the current segment, and performs
a segment crossing to segment 0.

« The processor uses the contents of locations 32g and 333 of segment 0 as a base
address to store a context block, (the internal state of the machine) in memory, (see
Appendix D for context block structure).

o The processor initializes the segment 0 stack from page zero of segment 0.

Memory and System Management 8-5

» The processor stores the fault code in ACI.

Fault
Code

0
1

2
3
4

Explanation
Multiple ERCC fault
Page table depth
Page table page fault
Reserved

Normal object reference

* The processor disables interrupts for one instruction, jumps indirect through locations
30g and 315 of segment 0, and executes the first instruction of the page fault handler.

NOTE: If an additional page fault occurs during any of these actions, the processor halts.

Once the page fault handler corrects the fault (e.g., brings the page into physical
memory, or creates a two-level page table), the execution of a WDPOP instruction
restarts the program. The WDPOP instruction restores the processor state from
information contained in the context block. Figure 8.1 summarizes the actions taken
upon detection of a page fault.

DG-15314

L System page fault]

Segment = 0 ?

Stored frame pointer
Yes and stack pointer
in current segment

Go to segment O

-~

4

Context block stored;
pointer at 32-33 of
segment O

!

Initialize
segment O stack

!

Store fault code
in AC1

!

Jump @30-31
(segment 0)

Figure 8.1 Page fault sequence

8-6

Memory and System Management

Address Protection Faults

With the address translator enabled, the following (in descending order of priority) will
produce a protection violation fault:

* Privileged or I/O instruction violation.
o Defer (indirect) address violation.

» Inward reference violation.

« Segment validity violation.

» Page table validity violation.

« Read, write, or execute access violation.
» Segment crossing violation.

When a fault occurs, AC1 receives a code indicating the type of fault (refer to Appendix
F). The Principles of Operation, 32-Bit ECLIPSE® Systems manual describes the
remainder of the protection violation fault procedure.

Reserved Memory

When a privileged /nonprivileged fault occurs, the processor transfers control to an
appropriate fault handler. A reserved storage location in page zero of each segment
contains the starting address of the fault handler.

The processor interprets page zero locations of segment 0 slightly different from the
page zero locations of segments 1 through 7. For instance, segment 0 contains pointers to
privileged fault handlers while segments 1 through 7 reserve these locations. Appendix D
describes the page zero locations for all the segments.

NOTE: The first instruction of the protection fault handler executes before the processor
honors interrupts.

In addition, the MV /4000 computer requires that a contiguous 4-Kbyte block of main
memory be allocated to the processor for control purposes. The privileged Store State
Pointer (SSPT) instruction places the base address, for the contiguous block, from ACO
into the state pointer in memory. The operating system then defines the size of the block.

Store State Pointer Instruction
SSPT

1 1 1 0 0 1 1 1 1 1 o 1 1 0 o 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The Store State Pointer instruction in conjunction with ACO and AC1 define the state
area in memory.

The instruction moves the physical page frame number (of the state area base) in ACO
to the state pointer. (ACO bits 20 through 31 contain the 12 bits of a physical page frame
number.) At the completion of the instruction, AC1 contains the number of consecutive
physical pages that the operating system must reserve in memory above this physical
page frame. ACO, AC2, and AC3 remain unchanged.

Memory and System Management 8-7

The state area is available for use by the processor as hardware reserved memory. For
the MV /4000, the state area contains the 1024 BMC map translations. The operating
system considers the area as unusable memory.

If during the course of operation it becomes necessary to move the state area (for
example as a result of a hard memory failure within the state area), the operating system
must stop operations that may change the contents of the state area, then perform the
move, and finally reload the state pointer by re-executing the Store State Pointer
instruction.

The operating system must execute the Store State Pointer instruction at system
initialization time, before the address translator is enabled. After execution, the state
area is available for use by the processor.

Registers

Chapter 9
C/350 Programming

The MV /4000 computer is capable of executing ECLIPSE C/350 16-bit programs with
only slight program instruction modification.

This chapter describes the operation of the MV /4000 system when it implements C/350
instructions. In this chapter we explain:

» Register implementation

e C/350 instruction compatibility
* Program flow management

¢ Fault handling

¢ Reserved memory

* CPU identification

The following C/350 registers are implemented on the MV /4000 computer:

» Four 64-bit floating-point accumulators
¢ Four 16-bit fixed-point accumulators

* One 32-bit floating-point status register
* One 15-bit program counter

* One 1-bit CARRY flag

The four 64-bit MV /4000 floating-point accumulators are identical to the C/350
floating-point accumulators.

The ECLIPSE C/350 16-bit fixed-point accumulators correspond to bits 16 through 31
of the MV /4000 accumulators.

The 32-bit floating-point status register (FPSR) corresponds to bits 0 through 15 and 49
through 63 of the 64-bit MV /4000 FPSR.

The C/350 15-bit program counter (PC) corresponds to bits 17 through 31 of the
MYV /4000 31-bit PC.

9-2

C/350 Programming

Execution of C/350 instructions does not generate fixed-point faults thereby leaving the
processor status register unaffected. Certain C/350 arithmetic instructions (ADD, D1V,
etc.) set the state of the carry bit. If you want detection of the appropriate fault, it is
necessary to set up a subroutine that checks the state of the carry bit upon completion of
these instructions. A carry from accumulator bit 16 affects the MV /4000 carry bit upon
execution of these C/350 instructions. The instruction dictionary of the Principles of
Operation, 32-Bit ECLIPSE® Systems manual describes the C/350 instruction set and
which instructions affect the carry bit.

C/350 instructions function with the narrow stack, and thus use reserved memory
locations for stack management without affecting the MV /4000 stack management
registers.

Appendix C illustrates the register fields.

Instruction Compatibility

C/350 program flow instructions maintain their limitations of a 64-Kbyte addressing
range.

C/350 instructions that load AC3 with the address of the next instruction (jump to
subroutine), or push the address of the next instruction onto the narrow stack (push and
jump), calculate effective addresses within the lower 64 Kbytes of the present segment.

The MV /4000 system does not support the following C/350 instructions:

e XOP, XOP1 (replaced by XOP0).

o Floating-point function instructions (FCOSD, FCOSS, FEXPD, FEXPS, FLOGD, FLOGS,
FSIND, FSINS, FPLYD, FPLYS, FSQRD, FSQRS).

e VCT, SYC, and LMP.

Tables 9.1 through 9.4 list the C/350 instructions and the equivalent 32-bit instructions.

C/350 Programming

9-3

C/350 C/350 Instruction Action Equivalent
Instruction Instruction
BAM Block add and move —
BLM Block move WBLM
BTO Set bit to 1 WBTO
BTZ Set bit to O WBTZ
CLM Compare to limits and skip WCLM
CMP Character compare WCMP
CMT Character move until true WCMT
CMV Character move WCMYV
COR Count bits WCOB
CTR Character translate and compare WCTR
DSZ Decrement and skip if O XNDSZ *
EDIT Edit decimal and alphanumeric 16-bit data WEDIT
EDSZ Extended decrement and skip if O XNDSZ
EISZ Extended increment and skip if O XNISZ
ELDA Extended load accumulator XNLDA
LDB Extended load byte {from memory to AC) XLDB
ESTA Extended store accumulator XNSTA
ESTB Extended store byte (right byte of AC to byte in memory) XSTB
ISZ Increment and skip if O XNISZ *
LDA Load accumulator XNLDA *
LDB Load byte (from memory to AC) WLDB
LSN Load sign WLSN
POP Pop multiple accumulators WPOP
PSH Push multiple accumulators WPSH
SNB Skip on nonzero bit WSNB
SZB Skip on O bit WSZB
SZBO Skip on O bit and set to 1 WSZBO
STA Store accumulator XNSTA *
STB Store byte (right byte of AC to byte in memory) WSTB

Table 9.1 C/350 fixed-point computing instructions

* The 32-bit processor equivalent instruction requires two words.

9-4 C/350 Programming

C/350 C /350 Instruction Action Equivalent
Instruction Instruction
FAMD Add double {memory to FPAC) XFAMD
FAMS Add single (memory to FPAC) XFAMS
FDMD Divide double (FPAC by memory) XFDMD
FDMS Divide single (FPAC by memory) XFDMS
FFMD Fix to memory (FPAC to memory) WFFAD *
FLDD Load floating-point double XFLDD
FLDS Load floating-point single XFLDS
FLMD Float from memory WFLAD *
FLST Load floating-point status register LFLST **
FMMD Multiply double (FPAC by memory) XFMMD
FMMS Multiply single (FPAC by memory) XFMMS
FPOP Pop floating-point state WFPOP
FPSH Push floating-point state WFPSH
FSMD Subtract double {(memory from FPAC) XFSMD
FSMS Subtract single (memory from FPAC) XFSMS
FSST Store floating-point status register LFSST **
FSTD Store floating-point double XFSTD
FSTS Store floating-point single XFSTS
LDI Load integer (memory to FPAC) WLDI
LDIX Load integer extended (memory to FPAC) WLDIX
STI Store integer (FPAC to memory) WSTI
STIX Store integer extended (FPAC to memory) WSTIX

Table 9.2 C/350 floating-point computing instructions

* The WFFAD and WFLAD instructions use a 32-bit accumulator, while the equivalent C/350 instruction uses two
memory words.

** The LFLST or LFSST instruction is a triple word instruction, while the C/350 instruction is a double-word
instruction.

C/350 Programming

9-5

C/350 C/350 Instruction Action Equivalent
Instruction Instruction
DSPA Dispatch LDSP
EJMP Extended jump XIMP
EJSR Extended jump to subroutine XJSR
ELEF Extended load effective address XLEF
JMP Jump —
JMP ,1 Jump, relative to the program counter WBR
JSR Jump to subroutine —
LEF Load effective address —
POPB Pop block and execute (returin from XOPO) WPOPB
POPJ Pop PC and jump (return with PSHJ) WPOPJ
PSHJ Push jump (return with POPJ) XPSHJ
PSHR Push return address (pop with POPJ) —
RSTR Restore (return from VCT -- mode E) WRSTR **
RTN Return WRTN *
SAVE Save (used with JSR) WSSVR, WSSVS *
SAVZ Save without arguments (used with JSR) WSSVR, WSSYVS *
XOPQ *** Extended operation (return with POPB) WXOP ***

Table 9.3 C/350 program flow management instructions

* The WRTN, WSSVS, and WSSVR instructions modify the OVK fixed-point overflow mask and use a return block of

six double words.

** The WRSTR instruction uses the wide stack, and is equivalent to RSTR.

*** The XOP0 and WXOP instructions are double-word instructions.

C/350 C/350 Instruction Action Equivalent
Instruction Instruction
MSP Modify stack pointer WMSP
POP Pop multiple accumulators WPOP
POPB Pop block and execute (return from XOP0) WPOPB
POPJ Pop PC and jump WPOPJ
PSH Push multiple accumulators WPSH
PSHJ Push jump XPSHJ
PSHR Push return address —
RSTR Restore WRSTR **
RTN Return WRTN *
SAVE Save {used with JSR) WSSVR, WSSVS *
SAVZ Save without arguments (used with JSR) WSSVR, WSSVS *
XOP(**+ Extended operation (return with POPB) WXOP **+

Table 9.4 C/350 stack management instructions

* The WRTN, WSSVS, and WSSVR instructions modify the OVK fixed-point overflow mask and use a return block of

six double words.

** The WRSTR instruction uses the wide stack, and is equivalent to RSTR.

*** The XOP0 and WXOP instructions are double-word instructions.

9-6 C/350 Programming

Program Flow

The program counter governs program flow management as described in the Program
Flow Management chapter.

For any C/350 program executing on the MV /4000 computer, when the PC contains
77777¢ and increments to refer to the next instruction, the PC does not wrap around to
0. The PC increments to 100000g, and the processor fetches the next instruction from
this location. This will affect certain data movement instructions (e.g., BAM, BLM, CMT,
CMV, CTR, EDIT). If data movement is backward (descending addresses) and the
process attempts a ring crossing, the address translator indicates a protection violation.

The C/350 program flow instructions load bits 17 through 31 of the PC with the address
generated by the program flow instruction. Bits 0 and 4 through 16 are set to 0; bits 1
through 3 remain unchanged.

Appendix C illustrates the PC contents.

Fault Handling

The handling of faults is identical to the handling of MV /4000 system nonprivileged
faults as described in the Principles of Operation, 32-Bit ECLIPSE® Systems manual.
Note that all faults that occur with the execution of C/350 instructions use the narrow
stack.

Appendix F lists the error codes returned to AC1 upon the occurrence of a decimal/ASCII
fault, and denotes the type of fault generated.

Reserved Memory

The MV /4000 computer does not implement C/350 auto-increment and auto-decrement
locations 20g through 37g, which the processor reserves for storage of certain system
parameters.

CPU Identification

The ECLID and NCLID instructions return central processor information.

The NCLID instruction loads the CPU identification into bits 16 through 31 of three
accumulators (ACO, AC1, and AC2). The NCLID instruction can execute only with the
LEF mode disabled. With the LEF bit enabled, this instruction becomes a LEF
instruction.

C/350 Programming

9-7

ECLID

The ECLID instruction loads a double word into ACO. The double word has the format:

Model Number FPU Microcode Rev 0|0 Memory Size
[P R T T R R B T B 7 B T3 e S e e
Bits Code Contents or Function
Name
0-14 [001000100011100 Binary representation of the machine’s model number
15 FPU 0 indicates no FPU option
1 indicates FPU option
16-23 | Microcode Revision Current microcode revision
24-25 (0 Must be O
26-31 | Memory Size Amount of physical memory available:
0O indicates 256 Kbytes of memory
1 indicates 512 Kbytes
to a maximum of 31, indicating 8 Mbytes

9-8 C/350 Programming

NCLID
0 1 1 s} 1 s} 0 0 0 1 1 1 1 1 1
[1 2 3 7 3 8] 0 ' 11 7 12 ' 13 ' 14 ' 15

The NCLID instruction loads CPU identification into bits 16 through 31 of the three
accumulators. Following is the three-word CPU identification.

ACO has the format:

Model Number FPU
-5 . T v T r . T r . T TR
AC]1 has the format:
1 Reserved Microcode Revision
IR r T . v v rERETTe . -+ . . v —3
AC?2 has the format:
Memory Size
T T Y T T . T . r . T r r 37

Code

Meaning

001000100011100
FPU

Microcode

Revision

Memory Size

Binary representation of the machine’s model number

0

1

Bits
16
17-23
24-31

indicates no FPU option
indicates FPU option
Meaning

Always 1

Reserved for future use.
Current microcode revision.

(Iif AC1 contains 177777, you should load the
microcode)

Amount of physical memory available:

0
1

indicates 32 Kbytes of memory

indicates 64 Kbytes
and so on

Appendix A

Instruction Summary

The instruction summary lists the machine-specific instructions alphabetically by
assembler-recognizable mnemonic, giving the format, data type used, action performed,
and location contents before and after instruction execution.

The C/350 compatible instructions are identified with an asterisk (*) located at the
beginning of the instruction mnemonic.

The Principles of Operation, 32-Bit ECLIPSE® Systems manual presents a summary of
instructions standard to all ECLIPSE MV /Family computers.

The following abbreviations are used throughout this summary:

Abbreviation Meaning
Integer
— Returned to
+ Addition
= Equality
OR Logical OR
? Unpredictable result
& Ties together two {of more) items o be operated upon as one
ac Fixed-point accumulator
acs Source ac
acd Destination ac
PSR Processor status register
sp Narrow stack pointer
fp Narrow frame pointer
sl Narrow stack limit
sa Narrow stack fault address
E Calculated effective address
(#)page zero Address in page zero
X Unknown and soon to be lost
displ. Displacement
PC Program counter

ION Interrupt on flag

Instruction Summary

NOTE: For all operations, unless specifically mentioned:

Before instruction execution:

Upon instruction completion:

OVR=x unchanged
CRY=x unchanged
overflow=x unchanged
FPSR bits=x updated

BUSY,DONE flags=x unchanged

AC2=E

Instruction Format Action Before After
(Location =) {Location =)

ECLID CPU id—ACO ACO=x CPU id

*HALT Stops the processor ION flag=x unchanged

NOTE: HALT=DOC 0,CPU

*INTA ac device code—ac ac=x device code

NOTE: INTA ac=DIB ac,CPU ION flag=x unchanged

*INTDS O—ION flag ION flag=x 0

NOTE: INTDS=NIOC CPU

*INTEN 1—ION flag ION flag=x 1

NOTE: INTEN=NIOS CPU

*IORST Clear all |/O devices ION flag=x 0]

NOTE: /JORST=DICC 0,CPU O—priority mask BUSY,DONE flags=x 0

*SSPT (ACO)—State Pointer ACO=base of unchanged
state pointer
AC1=x AC1=#pages
AC2=x unchanged
AC3=x unchanged

MSKO ac ac—priority mask ac=# unchanged

NOTE: MSKO ac=DOB ac,CPU ION flag=x unchanged
mask =x ac

NCLID CPU id—ACO&AC1&AC2 ACO=x model number
AC1=x microcode rev
AC2=x memory size

*READS ac console switches—ac ac=x result

NOTE: READS ac=DIA ac,CPU ION flag=x unchanged

*SKP! device If t=true =skip BUSY,DONE flags=x unchanged

WLMP {E)—map slots ACO=#(1st slot #) last
AC1=#(# slots) 0

lastE +2

Appendix B

Instruction Execution Times

The following data sheets give the average execution times of the instructions supported
by the ECLIPSE MV /4000 computer. Times throughout are in microseconds.

The instruction execution times listed assume that:

e Physical memory modules are 1 or 2 Mb

* All logical-to-physical address translations are resident in the address translator.

e There is no DCH or BMC activity.

» The EDIT and WEDIT subopcodes that process commercial numeric data assume a
data type of 4 and assume that the source pointer (j) into the data is never moved out

of the bounds of the data.

If such is not the case, add the following:

To Every Memory Reference

Add (microseconds)

=

tables in memory
For one-level page table
For two-level page table
If indirection is specified by the instruction
To Any Instruction
If any of the following fauits occurs

Stack overflow/underflow Fixed-point fault

Protection fault

1.2
1.8
0.8 per level of indirection
Add (microseconds)

8.6
9.0
16.2

The C/350 compatible instructions are identified with an asterisk (*) following the
instruction. Any instruction capable of specifying indirection is identified with a tilde (o).

B-2

Instruction Execution Times

Mnemonic Timing (microseconds)
ADC * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
ADD * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
ADDI * 0.4
ADI * 0.6
ANC * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
AND * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
ANDI * 0.4
BAM * 4.2 + 0.60 {(number of words moved) + 0.8 (each level of indirect addressing
BKPT 6.2 + 0.8 (each level of indirect addressing)
BLM * 4.2 + 0.5 (number of words moved) + 0.8 (each level of indirect addressing
BTO * 1.6 + 0.2 if indirect + 0.8 for each level of indirect addressing
BTZ * 1.6 + 0.2 if indirect + 0.8 for each level of indirect addressing
CLM * 1.6 (2.6 if ACS=ACD)
CMP * 6.2 + 2.0/byte min.
7.6 + 2.0/byte max.
CMT * 4.0 + 2.8/byte min.
3.6 + 3.6/byte max.
CMV * 8.2 + 0.1/byte min.
10.0 + 1.6/byte max.
COB * 2.8
COM * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
CRYTC 0.4
CRYTO 0.4
CRYTZ 0.4
CTR * Translate and move
2.4 + 2.6/byte
Translate and compare
4.4 + 4.2/byte
CVWN 0.6
DAD * 1.2
DEQUE 4.0
DHXL * 2.7
DHXR * 2.7
DIV * 5.4
DIVS * 6.2
DIVX * 6.8
DLSH * 3.8
DERR 4.2
DSB * 1.0
DSPA * 3.6 + 0.8 (each level of indirect addressing)
DSZ * 1.2 + 0.1 if skip
DSZTS 1.2 + 0.1 if skip
ECLID 0.4

Instruction Execution Times B-3

Mnemonic Timing (microseconds)
EDIT * 4.0 + sum of sub-op
execution times that are
processed
DADI 4.6
DAPS 2.6 (w/o add)
5.0 (with add)

DAPT 2.6 (w/o add)

5.0 (with add)
DAPU 4.8
DASI 5.2 (type 4)
6.6 (type 5)
DDTK 9.4
DEND 3.8
DICI 4.0

+ 2.6 per char. insert

DIMC 6.4
+ 1.4 per char. insert
+ 1.6 if parameter j
is located in the

narrow stack

DINC 4.6
DINS 4.8
DINT 4.4
DMVA 5.6

+ 3.2 per char. moved
+ 1.6 if parameter j
is located in the

narrow stack

DMVC 5.6
+ 2.8 per char. moved
+ 1.6 if parameter j

is located in the narrow stack

DMVF 5.8
+ 5.0 per digit moved
+ 1.6 if parameter j

is located in the narrow stack

DMVN 5.4
+ 4.2 per digit moved
+ 1.6 if parameter j

is located in the narrow stack

B-4

Instruction Execution Times

Mnemonic Timing {microseconds)
EDIT* (cont.) DMVO 9.0
DMVS 6.4
+ 4.6 per digit moved
+ 1.6 if parameter |
is located in the narrow stack
DNDF 5.2
DSSO 2.6
DSSz 2.6
DSTK 7.6
DSTO 2.6
DSTZ 2.6
EDSZ * 1.2 + 0.1 if skip ~
EISZ * 1.2 + 0.1 if skip ~
EJMP * 1.0 ~
EJSR * 1.2 ~
ELDA * 0.8 ~
ELDB * 1.2
ELEF * 0.8 ~
ENQH 5.6
ENQT 5.6
ESTA * 0.6 ~
ESTB * 1.0
FAB * 1.0
FAD * 8.4 (FPSR Bit 8=0)
8.8 (FPSR Bit 8=1)
FAMD * 9.2 (FPSR Bit 8=0)
9.6 {FPSR Bit 8=1)
FAMS * 6.8 (FPSR Bit 8=0)
7.0 (FPSR Bit 8=1)
FAS * 6.0 (FPSR Bit 8=0)
6.2 (FPSR Bit 8=1)
FCLE * 1.0
FCMP * 3.0
FDD * 29.8 (FPSR bit 8=0)
37.2 (FPSR bit 8=1)
FDMD * 30.6 (FPSR bit 8=0)
38.0 (FPSR bit 8=1)
FDMS * 11.0 (FPSR bit 8=0)
14.2 (FPSR bit 8=1)
FDS * 10.2 (FPSR bit 8=0)
13.4 (FPSR bit 8=1)
FEXP * 1.6
FFAS * 4.2
FFMD * 5.2 ~
FHLYV * 3.8 (FPSR bit 8=0)
4.4 (FPSR bit 8= 1)
FINT * 5.4
FLAS * 4.2
FLDD * 2.8 ~
FLDS * 2.6 ~

Instruction Execution Times

B-5

Mnemonic Timing (microseconds)
FLMD * 8.0 ~
FLST * 3.0
FMD * 32.2 (FPSR bit 8=0)
33.0 (FPSR bit 8=1)
FMMD * 33.0 (FPSR bit 8=0) ~
33.8 (FPSR bit 8=1) ~
FMMS * 11.6 (FPSR bit 8=0) ~
12.2 (FPSR bit 8=1) ~
FMOV * 2.2
FMS * 10.8 (FPSR bit 8=0)
11.4 (FPSR bit 8=1)
FNEG * 1.4
FNOM * 7.0
FNS * 0.4
FPOP * 12.0
FPSH * 10.6
FRDS * 3.4
FRH * 1.0
FSA * 0.4
FSCAL * 6.0
FSD * 8.8 (FPSR bit 8=0)
9.2 (FPSR bit 8=1)
FSEQ * 0.4 + 0.1 if skip
FSGE * 0.4 + 0.1 if skip
FSGT * 0.8
FSLE * 0.8
FSLT * 0.4 + 0.1 if skip
FSMD * 9.4 (FPSR bit 8=0) ~
9.8 (FPSR bit 8=1) ~
FSMS * 7.0 (FPSR bit 8=0) ~
7.2 (FPSR bit 8=1) ~
FSND * 0.6
FSNE * 0.4 + 0.1 if skip
FSNER * 0.6
FSNM * 0.6
FSNO * 0.6
FSNOD * 0.6
FSNU * 0.6
FSNUD * 0.6
FSNUO * 0.6
FSS * 6.4 (FPSR bit 8=0)
6.6 (FPSR bit 8=1)
FSST * 3.4 ~
FSTD * 2.2 ~
FSTS * 1.6 ~
FTD * 0.8

B-6

Instruction Execution Times

Mnemonic Timing (microseconds)
FTE * 0.8
FXTD 0.8
FXTE 1.0
HLV * 0.60
HXL * 0.95
HXR * 0.95
INC * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
IOR * 0.4
IORI * 0.6
ISZ * 1.2 + 0.1 if skip ~
ISZTS 1.2 + 0.1 if skip ~
JMP * 1.0 ~
JSR * 1.2 ~
LCALL 4.4 (no indirect, no ring crossing, and no gate checking) ~
5.6 (indirect, but noring crossing, and no gate checking) 13.8 + 0.8 (arg_count
{no indirect, but with ring crossing, and gate checking)
15.6 + 0.8(arg_count) (one indirect, with ring crossing, and gate checking)
NOTE: All indirections past the first indirection require an additional 0.8 for each
indirection.
LCPID 0.4
LDA * 0.8 ~
LDAFP 0.4
LDASB 0.4
LDASL 0.4
LDASP 0.4
LDATS 0.8
LDB * 1.0
LDI * 27.2 (Type 4, length 7)
LDIX * 117.8(Type 4, length 31)
LDSP 34 ~
LEF * 0.8 ~
LFAMD 9.2 (FPSR Bit 8=0) ~
9.6 (FPSR Bit 8=1) ~
LFAMS 6.8 (FPSR Bit 8=0) ~
7.0 (FPSR Bit 8=1) ~
LFDMD 30.6 (FPSR bit 8=0)
38.0 (FPSR bit 8=1)
LFDMS 11.0 (FPSR bit 8=0)
14.2 (FPSR bit 8=1)
LFLDD 2.8 ~
LFLDS 2.6 ~
LFLST 3.0 ~
LFMMD 33.0 (FPSR Bit 8=0) ~
33.8 (FPSR Bit 8=1) ~
LFMMS 11.6 (FPSR Bit 8=0) ~
12.2 (FPSR Bit 8=1) ~
LFSMD 9.4 (FPSR Bit 8=0) ~
9.8 (FPSR Bit 8=1) ~
LFSMS 7.0 (FPSR Bit 8=0) ~
7.2 (FPSR Bit 8=1) ~

Instruction Execution Times B-7

Mnemonic Timing (microseconds)
LFSST 3.6 ~
LFSTD 2.2 ~
LFSTS 1.6 ~
LIMP 1.0 ~
LJSR 1.0 ~
LLDB 1.2
LLEF 0.6 ~
LLEFB 0.6
LMRF 3.0
LNADD 1.2 ~
LNADI 1.2
LNDIV 7.0 ~
LNDO 2.8 (no termination)
4.6 (for termination)
LNDSZ 1.2 + 0.1 if skip
LNISZ 1.2 + 0.1 if skip
LNLDA 0.8 ~
LNMUL 56 ~
LNSBI 1.2
LNSTA 0.6 ~
LNSUB 1.2 ~
LOB * 1.0 (if no bit set)
1.2 + 0.2 (if no leading zeros)
LPEF 1.4 ~
LPEFB 1.4
LPHY 7.2 {valid and 2 level)
LPSHJ 1.8 ~
LPSR 0.6
LRB * 1.0 + 0.4 (number of leading zeros) acs<<>>acd 0.8 + 0.2 (number of
leading zeios) acs =acd
LSBRA 20.4
LSBRS 20.0
LSH * 2.0
LSN * 4.6 + 1.8/leading zero digit
LSTB 1.0
LWADD 1.2 ~
LWADI 1.2 ~
LWDIV 9.6 ~
LWDO 2.4 (no termination)
4.2 (for termination)
LWDSZ 1.2 + 0.1 if skip ~
LWISZ 1.2 + 0.1 if skip ~
LWLDA 0.8 ~
LWMUL 9.2 ~
LWSBI 1.2 ~
LWSTA 0.6 ~

B-8

Instruction Execution Times

Mnemonic Timing (microseconds)
LWSUB 1.2 ~
MOV * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
MSP * 1.8
MUL * 5.2
MULS * 5.2
NADD 0.6
NADDI 0.6
NADI 0.8
NBStc 3.6 + 1.4 per search
NCLID 3.0
NDIV 6.4
NEG * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
NFStc 3.6 + 1.4 per search
NLDAI 0.4
NMUL 5.0
NNEG 0.6
NSALA 0.6 + 0.1 if skip
NSALM 1.0 + 0.1 if skip
NSANA 0.2 + 0.1 if skip
NSANM 1.0 + 0.1 if skip
NSBI 0.8
NSUB 0.6
ORFB 1.2 + 5.2 {count),
count = ACO + 1
PATU 13.6
PBX 11.8 + executed instruction
POP * 2.0 + 0.4 per ac
POPB * 4.2
POPJ * 3.2
PSH * 2.0 + 0.4 per ac
PSHJ * 3.0
PSHR * 2.0
RRFB 0.8 + 2.6 (count) count = ACO +1
RSTR * 5.2
RTN * 4.4
SAVE * 5.2
SAVZ 5.2
SBI * 0.6
SEX 0.4
SGE * 0.4 + 0.1 if skip
SGT * 0.4 + 0.1 if skip
SMRF 3.8
SNB * 1.6 + 0.2 if indirect
SNOVR 0.6 + 0.1 if skip
SPSR 0.4
STA * 0.6 ~

Instruction Execution Times

B-9

Mnemonic Timing (microseconds)
STAFP 0.4
STASB 0.8
STASL 0.8
STASP 0.4
STATS 0.6
STB * 0.8
STI * 42.0 (Type 4, length 7)
STIX * 161.0 (Type 4, length 31)
SUB * 0.4 + 0.1 if skip
+ 0.2 if shift or swap
SZB * 1.6 + 0.1 if skip
+ 0.2 if indirect
SZBO * 2.0 + 0.1 if skip
+ 0.8 if indirect
WADC 0.4
WADD 0.4
WADDI 0.4
WADI 0.6
WANC 0.4
WAND 0.4
WANDI 0.4
WASH 4.25
WASHI 4.25
WBLM 7.2 + 0.5 (number of words moved) + 0.8 {each level of indirect addressing
WBR 1.0
WBStc 3.4 + 1.4 per search
WBTO 1.8
WBTZ 1.8
WCLM 1.6 (acs<<>>acd)
2.6 (acs=acd)
WCMP 7.4 + 2.0/byte min.
8.8 + 2.0/byte max.
WCMT 5.0 + 2.8/byte min.
5.4 + 3.6/byte max.
wWCMV 9.6 + 0.1/byte min.
11.4 + 1.6/byte max.
WCOB 5.2
WCOM 0.4
WCST 6.2 + 2.8/byte min.
7.2 + 2.8/byte max.
WCTR 2.4 + 2.6/byte min.
4.4 + 4.2/byte max.
WDIV 9.0
WDIVS 9.4
WDPOP 8.4 (no indirect and restart block size of 1) 15.2 (no indirect and resume blocK

size of 2)

20.2 (no indirect and resume block size of 3) 9.6 (one indirect and restart block
size of 1) 16.4 (one indirect and resume block size of 2) 21.4 (one indirect and
resume block size of 3} 12.0 (ring crossing and restart block size of 1)
18.8 (ring crossing and resume block size of 2) 23.8 (ring crossing and resumg
block size of 3) NOTE: All indirections past the first indirection require an
additional 0.8 for each indirection.

B-10

Instruction Execution Times

Mnemonic

Timing (microseconds)

WEDIT

4.0 + sum of sub-op
execution times that are

processed

DADI 4.6

DAPS 2.6 (w/o add)
5.0 (with add)

DAPT 2.6 (w/o add)

5.0 (with add)

DAPU 4.8

DASI 5.2 (type 4)
6.6 (type 5)

DDTK 8.8

DEND 3.8

DICI 4.0

+ 2.6 per char. insert
DIMC 6.4

+ 1.4 per char. insert

+ 1.0 if parameter j

is located in the wide stack

DINC 4.6
DINS 4.8
DINT 4.4
DMVA 5.6

+ 3.2 per char. moved
+ 1.0 if parameter j

is located in the wide stack

DMVC 5.6

+ 2.8 per char. moved

+ 1.0 if parameter j

is located in the wide stack
DMVF 5.8

+ 5.0 per digit moved

+ 1.0 if parameter j

is located in the wide stack

DMVN 5.4
+ 4.2 per digit moved
+ 1.0 if parameter j
is located in the wide stack

DMVO 9.0

Instruction Execution Times B-11

Mnemonic Timing (microseconds)
WEDIT (cont.} [DMVS 6.4
+ 4.6 per digit moved
+ 1.0 if parameter |
is located in the wide stack
DNDF 5.2
DSSO 2.6
DSSz 2.6
DSTK 7.0
DSTO 2.6
DSTZ 2.6
WFFAD 4.4
WFLAD 8.0
WFPOP 12.0
WFPSH 10.2
WFStc 3.4 + 1.4 per search
WHLV 0.6
WINC 0.4
WIOR 0.4
WIORI 0.4
WLDAI 0.4
WLDB 1.0
WLDI 27.2 (Type 4, length 7)
WLDIX 117.8 (Type 4, length 31)
WLDO 2.4 (no termination)
4.2 (for termination)
WLMP 3.2 + 1.6 (Number of BMC slots
2.6 + 1.6 (Number of DCH slots
WLOB 1.0 + 0.4 (number of leading zeros) acs<<>>acd 0.8 + 0.2 (number of
leading zeros) acs=acd
WLRB 1.0 + 0.4 (number of leading zeros) acs<<>>acd 0.8 + 0.2 (number of
leading zeros) acs =acd
WLSH 2.1
WLSHI 2.3
WLSI 0.6 + 2.0 per search
WLSN 4.6 + 1.8/leading zero digit
WMESS 1.8
WMOV 0.4
WMOVR 0.4
WMSP 1.4
WMUL 8.6
WMULS 8.4
WNADI 0.8
WNDO 2.8 (no termination)
4.6 (for termination)
WNEG 0.4
WPOP 1.2 + 0.4 per ac
WPOPB 4.8 intra ring
9.0 cross ring
WPOPJ 1.8
WPSH 1.0 + 0.4 per AC
WRSTR 9.0 intra ring
11.6 cross ring
WRTN 5.2 intra ring

9.2 cross ring

B-12

Instruction Execution Times

Mnemonic Timing (microseconds)
WSALA 0.6 + 0.1 if skip
WSALM 1.0 + 0.1 if skip
WSANA 0.4 + 0.1 if skip
WSANM 1.0 + 0.1 if skip
WSAVR 4.8
WSAVS 4.8
WSBI 0.6
WSEQ 0.4 + 0.1 if skip
+ 0.2 if compare to O
WSEQI 0.4 + 0.1 if skip
WSGE 0.4 + 0.1 if skip
+ 0.2 if compare to O
WSGT 0.4 + 0.1 if skip
+ 0.2 if compare to O
WSGTI 0.4 + 0.1 if skip
WSKBO 1.6 min. + 0.1 if skip
1.8 max. -+ 0.1 if skip
WSKBZ 1.6 min. + 0.1 if skip
1.8 max. + 0.1 if skip
WSLE 0.4 + 0.1 if skip
+ 0.2 if compare to O
WSLEI 0.4 + 0.1 if skip
WSLT 0.4 + 0.1 if skip
+ 0.2 if compare to O
WSNB 1.8 + 0.1 if skip
WSNE 0.4 + 0.1 if skip
+ 0.2 if compare to O
WSNEI 0.4 + 0.1 if skip
WSSVR 5.2
WSSVS 5.2
WSTB 0.8
WSTI 42.0 (Type 4, length 7)
WSTIX 161.0(Type 4, length 31)
WSUB 0.4
WSZB 1.8 + 0.1 if skip
WSZBO 2.2 + 0.1 if skip
WUGTI 0.4 + 0.1 if skip
WULEI 0.4 + 0.1 if skip
WUSGE 0.4 + 0.1 if skip
WUSGT 0.4 + 0.1 if skip
+ 0.2 if compare to O
WXCH 0.6
WXOP 7.6 + 0.8(indirect)
WXOR 0.4
WXORI 0.6
XCALL 4.4 (no indirect, no ring crossing, and no gate checking)
5.6 {indirect, but no ring crossing, and no gate checking)
13.8 + 0.8(arg_count) {no indirect, but with ring crossing, and gate checking
15.6 + 0.8{arg_count) (one indirect, with ring crossing, and gate checking)
NOTE: All indirections past the first indirection require an additional 0.8 for each
indirection.
XCH * 0.6

Instruction Execution Times

B-13

Mnemonic Timing (microseconds)
XCT * 3.0 + executed instruction
XFAMD 9.2 (FPSR bit 8=0) ~
9.6 (FPSR bit 8=1) ~
XFAMS 6.8 (FPSR bit 8=0) ~
7.0 (FPSR bit 8=1) ~
XFDMD 30.6 (FPSR bit 8=0) ~
38.0 (FPSR bit 8=1) ~
XFDMS 11.0 (FPSR bit 8=0) ~
14.2 (FPSR bit 8=1) ~
XFLDD 2.8 ~
XFLDS 2.6 ~
XFMMD 33.0 (FPSR bit 8=0) ~
33.8 (FPSR bit 8=1) ~
XFMMS 11.6 (FPSR bit 8=0) ~
12.2 (FPSR bit 8=1) ~
XFSMD 9.4 (FPSR bit 8=0) ~
9.8 (FPSR bit 8=1) ~
XFSMS 7.0 (FPSR bit 8=0) ~
7.2 (FPSR bit 8=1) ~
XFSTD 2.2 ~
XFSTS 1.6 ~
XJMP 1.0 ~
XJSR 1.0 ~
XLDB 1.4 ~
1.6 if absolute mode ~
XLEF 0.6 ~
XLEFB 0.8
1.6 if absolute mode
XNADD 1.2 ~
XNADI 1.2 ~
XNDIV 7.0 ~
XNDO 2.8 (no termination)
4.6 (for termination)
XNDSZ 1.2 + 0.1 if skip ~
XNISZ 1.2 + 0.1 if skip ~
XNLDA 0.8 ~
XNMUL 5.6 ~
XNSBI 1.2 ~
XNSTA 0.6 ~
XNSUB 1.2 ~
XOPO * 6.4 +0.8 (indirect)
XOR * 0.4
XORI * 0.4
XPEF 1.4 ~
XPEFB 1.6

2.6 if absolute mode

B-14

Instruction Execution Times

Mnemonic Timing (microseconds)
XPSHJ 1.8 ~
XSTB 1.0
XVCT 22.4 + 7.0 base level
+ 0.8 (indirect)
-+ 2.0 (from interrupt)
XWADD 1.2 ~
XWADI 1.2 ~
XWDIV 9.6 ~
XWDO 2.4 (no termination)
4.2 (for termination)
XWDSZ 1.2 + 0.1 if skip ~
XWISZ 1.2 + 0.1 if skip ~
XWLDA 0.8 ~
XWMUL 9.2 ~
XWSBI 1.2 ~
XWSTA 0.6 ~
XWSUB 1.2 ~
ZEX 0.4

. Instruction Execution Times B-15

The following data sheets give the average execution times of the floating-point
instructions affected by the optional hardware floating-point instruction set accelerator.

Mnemonic Timing {microseconds)
FAB * 1.0
FAD * 2.2 (FPSR Bit 8=0)

2.6 (FPSR Bit 8=1)

FAMD * 3.4 (FPSR Bit 8=0)
3.8 (FPSR Bit 8=1)

FAMS * 2.6 (FPSR Bit 8=0)
3.0 (FPSR Bit 8=1)
FAS * 2.2 (FPSR Bit 8=0)
2.6 (FPSR Bit 8=1)
FCLE * 2.2
FCMP * 2.0
FDD * 11.8 (FPSR bit 8=0)
12.6 (FPSR bit 8=1)
FDMD * 13.0 (FPSR bit 8=0)
13.8 (FPSR bit 8=1)
FDMS * 7.4 (FPSR bit 8=0)
8.2 (FPSR bit 8=1)
FDS * 7.0 (FPSR bit 8=0)
7.8 (FPSR bit 8=1)
FEXP * 2.2
FFAS * 3.0
FFMD * 2.6 ~
FHLV * 1.4 (FPSR bit 8=0)
1.6 (FPSR bit 8=1)
FINT * 1.8
FLAS * 2.2
FLDD * 2.2 ~
FLDS * 1.4 ~
FLMD * 2.8 ~
FLST * 3.0
4.2 (FPSR bit TE=0)
FMD * 11.2 (FPSR bit 8=0)
11.6 (FPSR bit 8=1)
FMMD * 12.4 (FPSR bit 8=0) ~

12.8 (FPSR bit 8= 1) ~

FMMS * 6.8 (FPSR bit 8=0) ~
7.2 (FPSR bit 8=1) ~

FMOV * 1.0
FMS * 6.4 (FPSR bit 8=0)
6.8 (FPSR bit 8=1)
FNEG * 1.0
FNOM * 1.6
FNS * 0.4
FPOP * 19.0

20.2 (FPSR bit TE=0)

B-16

Instruction Execution Times

Mnemonic Timing (microseconds)
FPSH * 13.2
FRDS * 1.4
FRH * 1.2
FSA * 0.4
FSCAL * 3.0
FSD * 2.2 (FPSR bit 8=0)
2.6 (FPSR bit 8= 1)}
FSEQ * 1.2
FSGE * 1.2
FSGT * 1.2
FSLE * 1.2
FSLT * 1.2
FSMD * 3.4 (FPSR bit 8=0) ~
3.8 (FPSR bit 8=1) ~
FSMS * 2.6 (FPSR bit 8=0) ~
3.0 (FPSR bit 8=1) ~
FSND * 1.2
FSNE * 1.2
FSNER * 1.2
FSNM * 1.2
FSNO * 1.2
FSNOD * 1.2
FSNU * 1.2
FSNUD * 1.2
FSNUO * 1.2
FSS * 2.2 (FPSR bit 8=0)
2.6 (FPSR bit 8=1)
FSST * 3.4 ~
FSTD * 2.6 ~
FSTS * 1.6 ~
FTD * 0.4
FTE * 1.2
LFAMD 3.4 (FPSR Bit 8=0) ~
3.8 (FPSR Bit 8=1) ~
LFAMS 2.6 (FPSR Bit 8=0) ~
3.0 (FPSR Bit 8=1) ~
LFDMD 13.0 (FPSR bit 8=0)
13.8 (FPSR bit 8=1)
LFDMS 7.4 (FPSR bit 8=0)
8.2 (FPSR bit 8=1)
LFLDD 2.2 ~
LFLDS 1.4 ~
LFLST 3.0 ~
4.2 {FPSR bit TE=0)
LFMMD 12.4 (FPSR Bit 8=0) ~
12.8 (FPSR Bit 8=1) ~
LFMMS 6.8 (FPSR Bit 8=0) ~
7.2 (FPSR Bit8=1) ~

Instruction Execution Times

B-17

Mnemonic Timing (microseconds)

LFSMD 3.4 (FPSR Bit 8=0) ~
3.8 (FPSR Bit 8=1) ~

LFSMS 2.6 (FPSR Bit 8=0) ~
3.0 (FPSR Bit 8=1) ~

LFSST 3.6 ~

LFSTD 2.6 ~

LFSTS 1.6 ~

WFFAD 3.0

WFLAD 2.6

WFPOP 18.2
19.4 (FPSR bit TE=0)

WFPSH 12.4

XFAMD 3.4 (FPSR bit 8=0) ~
3.8 (FPSRbit 8=1) ~

XFAMS 2.6 (FPSR bit 8=0) ~
3.0 (FPSR bit 8=1) ~

XFDMD 13.0 (FPSR bit 8=0) ~
13.8 (FPSR bit 8=1) ~

XFDMS 7.4 (FPSR bit 8=0) ~
8.2 (FPSR bit 8=1) ~

XFLDD 22 ~

XFLDS 1.4 ~

XFMMD 12.4 (FPSR bit 8=0) ~
12.8 (FPSR bit 8=1) ~

XFMMS 6.8 (FPSR bit 8=0) ~
7.2 (FPSR bit 8=1) ~

XFSMD 3.4 (FPSR bit 8=0) ~
3.8 (FPSR bit 8=1) ~

XFSMS 2.6 (FPSR bit 8=0) ~
3.0 (FPSR bit 8=1) ~

XFSTD 2.6 ~

XFSTS 1.6 ~

Appendix C
Register Fields

In this appendix, we present the formats for the programmer-accessible registers available
on the MV /4000 computer for both MV /4000-system-specific and C/350 compatible

formats.

Register

Purpose

Program Counter

Processor Status Register

Floating-Point Status
Register

Segment Base Registers

DCH/BMC Status
Registers

CPU lIdentification

Contains the logical address of the currently executing instruc-
tion

Contains information pertaining to fixed-point computations
Contains information pertaining to floating-point computations

Contain information pertaining to MV/4000 logical address
translation

Contain information pertaining to data channel and burst
multiplexor channel maps

Accumulators contain information pertaining to the CPU

Program Counter

The 31-bit PC contains the logical address of the currently executing instruction; the

formats follow:

PC Format for Execution of MV /4000-System-Specific Programs

Current Segment Address Offset
Ty
Bits Name Contents or Function
1-3 Current The current segment of program execution
Segment
4-31 | Address Offset | The 28-bit address of the currently executing instruction

'31

C-2 Register Fields

PC Format Altered by C/350 Program Flow Instructions

Current Segment 4] 0 Address Offset
T i e e e e LA e s o T e L A e S S S S T
Bits Name Contents or Function
1-3 Current The current segment of program execution
Segment
4-16 [0-0 Set to O by instruction
17-31 | Address Offset | The 15-bit address formed by the program flow instruction

Processor Status Register

Only MV /4000-system-specific instructions affect the 32-bit PSR. The format of the
PSR follows:

Software
OVK | OVR | IRES | IXCT Reserved Reserved
[[2 3 CO T T T T T T T T 13 ' 14 T 15
Argument Count
T r : T T T + T T T T T T . 5
Bits Name Contents or Function
0 OVK Overflow Mask
0 indicates no fixed-point overflow trap
1 indicates trap on OVR set to 1
1 OVR Fixed-point overflow indicator; set to 1 when calculating a two's|

complement number that does not fit in the specified location or|
register, or when attempting to divide by O

If OVK equals 1, then the setting of OVR to 1 results in a
fixed-point overflow fauit

2 IRES Micro-interrupt resume flag; set to 1 when the processor receives|
an |/0 interrupt request while executing a resumable interruptible
instruction (such as, WEDIT instruction)

3 IXCT Interrupt execute flag; set to 1 when the processor receives an
1/0O interrupt request while executing an instruction that was
inserted into the instruction stream (such as, a PBX instruction)

4-13 |Reserved Bits 4 through 13 are reserved for future use

14-15 | Software Bits 14 and 15 are software reserved in the return block
Reserved

16-31 | Argument Bits 16 through 31 contain the number of arguments to pass

Count with the LCALL or XCALL

Register Fields C-3

NOTE: Any instruction that loads the OVK and OVR bits as part of its execution, will not
cause an overflow fault even if both are set to 1.

For all C/350 instructions, overflow equals 0, thereby leaving OVR unchanged.

Floating-Point Status Register

MYV /4000-system-specific and C/350 instructions affect the 64-bit FPSR. The FPSR
format follows.

NOTE: When the C/350 FLST and FSST instructions write to or read from the FPSR, the
instructions ignore bits 16 through 48.

ANY | OVF [UNF | DVZ | MOF | TE z N |RND | Res | © 0 FPMOD
0 1 2 3 3 5 3 8 9 10 11 2 T ™15
Reserved (All 0)
0 T T N T i T ! ! ! ! ! T T T ™15
0 Floating-Point Program Counter (Bits 1-15)
0 T T T T T T T T T T T T T T 15
Floating-Point Program Counter (Bits 16-31)
5T T - - T r r T T T T T T v 5
Bits Name Contents or Function
0 ANY Indicates the setting to 1 of any of bits 1 through 4
1 OVF Exponent overflow indicator
2 UNF Exponent underflow indicator
3 bvz Divide by O
4 MOF Mantissa overflow
5 TE Trap enable; if set to 1, setting of any of bits 1 through 4 will
result in a floating-point fault
6 Y4 Zero bit
7 N Negative bit
8 RND Floating-point rounding mode.
9-11 | Reserved Bits 9 through 11 are reserved for future use and must be set to|
0
12-15 | FPMOD Floating-point model; should be set to 0111
16-31 | Reserved Bits 16 through 31 are reserved for future use; these should be]
setto O
32 [¢] Should be set to O
33-63 | Floating-Point [Floating-point program counter. In the event of a floating-point
Program fault, this is the address of the first floating-point instruction that|
Counter caused the fault

C-4 Register Fields

Segment Base Registers

The 32-bit segment base registers (SBR) contain information for the MV /4000-system-
specific logical address translation mechanism and for 1/O protection. The format

follows:
V LEN|LER IO Reserved Physical Address
o'i'2'3'a’ * ' ' T ' Tiz'i3g" ' ' ' T ' T T T T T T T T T
Bits Name Contents or Function
[¢] \% Segment validity bit -- indicates the process’ ability to refer to a
segment
0 indicates an invalid SBR
1 indicates a valid SBR
1 LEN Length bit — indicates the maximum range of the logical memory|
address
O indicates a one-level page table
1 indicates a two-level page table
2 LEF LEF enable -- indicates whether the processor will operate in LEF
or I/0 mode
0 indicates 1/0O mode
1 indicates LEF mode
3 10 1/0 enable -- indicates if an 1/0 protection violation will occur
upon an execution of an 1/0 instruction
0 indicates protection violation will occur
1 indicates the 1/0 instruction will execute
4-12 | Reserved Bits 4 through 12 are reserved for future use
13-31 | Physical Identifies the physical page address in memory of the indicated
Address page table

Register Fields

C-5

DCH/BMC Status Registers

The port definition register (6000g) provides status information. The format for the

register follows:

DCH/BMC Port Definition Register (6000g)

5,6 Reserved
7 A

8 P
9-13 | Reserved

14 M
15 1

E Reserve BV | DV Reserve A P Res 0-0 M 1
0 1T 2 3 4 5 ' 6 7 8 9 10 7 T '13 14 15
Bits Name Contents or Function
0 E Error flag; if 1, an error has occurred on the 1/0 port (O only
when all other error bits are 0)
1,2 Reserved Bits 1 and 2 are reserved for future use and returned as zero
3 BV BMC validity error flag; if 1, BMC validity protect error has
occurred
4 DV DCH validity error flag; if 1, DCH validity protect error has

occurred
Bits 5 and 6 are reserved for future use and returned as zero

BMC address error; if 1, the channel has detected an address
parity error

BMC data error; if 1, the channel has detected a data parity error

Bits 9 through 13 are reserved for future use and returned as
zero

DCH mode; if 1, DCH mapping is enabled
Always set to 1

NOTES: Setting bit 3, 4, 7, or 8 1o a one, with the CIO instruction complements these bits.

The C/350 10RST instruction clears bits 0, 3, 4, 7, 8, and 14.

The read-only port status register (7700g) provides status information. The format for
the register follows:

DCH/BMC Port Status Register (7700g)

1-11 | Reserved

12-13 |11
14 Reserved
15 INT

ERR Reserved Res 1 1 Res | INT
[} T 7 T T T T T T 10 ' 11 T2 ' 13 ' 14 T 15
Bits Name Contents or Function

(o] ERR If 1, the port has detected an error indicated by the port definition

register

Bits 1 through 11 are reserved for future use
Always set to 1

Bit 14 is reserved for future use and returned as zero
Interrupt pending if 1

C-6 Register Fields

CPU Identification

The three Load CPU Identification instructions return the information shown below to
the specified accumulators.

LCPID and ECLID Instructions
The LCPID and ECLID instructions load a 32-bit double word into ACO.

Model Number FPU Microcode Rev 0|0 Memory Size
OB e e e e S e S I L T R A S R BT LY BT A R R T

Bits Name Contents or Function

0-14 |001000100011100 Model Number; the binary value of the model number allocated
to the processor

15 FPU 0 indicates no FPU option
1 indicates FPU option

16,23 | Microcode Rev Current microcode revision
24-251(0 Set to O
26-31 | Memory Size Amount of physical memory available:

A O indicates 256 Kbytes
A 1 indicates 512 Kbytes
to a maximum of 31, indicating 8 Mbytes

Register Fields C-7

NCLID Instruction
The NCLiD instruction ioads the resuii into the iow-order 16 biis of the three
accumulators.

Returned in ACO:

Undefined Mode! Number FPU
T TR e e e e e N e e e T T e L s e e TR
Returned in AC1:
Lindefined 1 Reserved Micracode Revision
T e e e e s e e e T T e 7 e LT
Returned in AC2:
Undefined Memory Size
T T e e e e S e e T T A e e T
ACH Name Contents or Function
0 Model Number | Binary representation of the machine’s model number
(001000100011100,)
FPU 0 indicates no FPU option
1 indicates FPU option
1 Microcode Bits Meaning
Revision 16 Always set to 1
17-23 Reserved for future use
24-31 Current microcode revision
2 Memory Size | Amount of physical memory available:

A O indicates 32 Kbytes
A 1 indicates 64 Kbytes; etc.

NOTE: If ACI contains 177777g, you should load the microcode.

Appendix D

Reserved Memory Locations
and Context Block Format

This appendix describes the reserved memory locations (see Tables D.1 and D.2), and
the context block formats (see Table D.3).

Reserved Memory Locations

The processor reserves memory locations 0 through 47 of page zero (locations 0 through
377g) of each segment for storage of certain parameters and fault handler addresses.
The processor translates these locations as shown in Tables D.1 and D.2.

Some of the pointers are 16 bits long, which means that they can only refer to locations
in the first 64 Kbytes of the segment containing the pointer. If the pointer is indirect, all
pointers in the indirect chain can also only refer to the first 64 Kbytes of the segment.

Page Zero Locations for Segment 0

When an interrupt occurs, segment 0 locations 0 through 47 have the meanings listed in
Table D.1.

With the address translator enabled, the processor interprets all locations as logical.

D-2

Reserved Memory Locations and Context Block Format

Word

Name

Contents or Function

10-11
12-13

14
16-17
20-21
22-23
24-25
26-27
30-31
32-33
34-35
36
37
40
41

42
43
44
45
46
47

Interrupt Level

1/0 Handler
1/0 Return Address

Vector Stack Pointer

Current 1/0 Mask

Vector Stack Limit

Vector Stack Fault Address
Breakpoint Address

WXOP Origin Address

MV/4000 Stack Fault Address
Reserved

WFP

WSP

WSL

WSB

MV/4000 Page Fauit Handler
Context Block Pointer

WGP

Protection Fault Handler Address
Fixed-Point Fault Handler Address
Stack Pointer

Frame Pointer

Stack Limit

C/350 Stack Fault Address
XOPO Origin Address
Floating-Point Fault Address
Decimal/ASCIi Fault Handler
DERR Error Handler

Level of interrupt processing; O indicates base-level processing;
non-zero indicates intermediate-level processing

Address of the 1/0 interrupt handler; indirectable

Address of the I/0O interrupt return {word 2 contains the high order;
word 3 contains the low order)

Low-order 16 bits of vector stack pointer, base, and frame pointer;
high-order bits are zeroes

Current interrupt priority mask

Low-order 16 bits of vector stack limit

Address of the vector stack fault handler; indirectable
Address of the breakpoint handler; indirectable

Address of the beginning of the MV/4000 extended operations
table; indirectable

Address of the MV/4000 stack fault handler; indirectable
Reserved

MV/4000 frame pointer; nonindirectable

MV/4000 stack pointer; nonindirectable

MV/4000 stack limit; nonindirectable

MV/4000 stack base; nonindirectable

Address of the MV/4000 page fault handler; indirectable
Address of the base of context block save area; indirectable
Wide gate pointer; address of the gate array; nonindirectable
Address of the protection fault handler; indirectable
Address of the fixed-point fault handler; indirectable
Address of the top of the C/350 stack; nonindirectable

Address of the start of the current C/350 frame minus 1;
nonindirectable

Address of the last normally usable location in the C/350 stack
Address of the C/350 stack fault handler; indirectable

Address of the beginning of the C/350 extended operations table
Address of the floating-point fault handler; indirectable

Address of the Decimal/ASCI| fault handler; indirectable

Address of the DERR error/trap handler; nonindirectable

Table D.1 Page zer > locations for segment O

Reserved Memory Locations and Context Block Format

Page Zero Locations for Segments 1 through 7

Takla TY

Y chuss 1. .

translator enabled.

< " tan ey moawrs 1 inmo FAan camimamdis 1
1aoie U.2 snows e page zero locations for segments 1 through

Word

Name

Contents or Function

0-7
10-11
12-13

14
15-17
20-21
22-23
24-25
26-27
30-33
34-35
36
37
40
41

42
43
44
45
46
47

Reserved
MV/4000 Breakpoint Address
WXOP Origin Address

MV/4000 Stack Fault Address
Reserved

WFP

WSP

WSL

WSB

Reserved

WGP

Reserved

Fixed-Point Fault Handler Address
Stack Pointer

Frame Pointer

Stack Limit

C/350 Stack Fault Address
XOP0 Origin Address
Floating-Point Fault Address
Decimal/ASCII Fault Handler
DERR Error Handler

Reserved
Address of the MV/4000 breakpoint handler; indirectable

Address of the beginning of the MV/4000 extended operations
table; indirectable

Address of the MV/4000 stack fault handler; indirectable
Reserved

MV/4000 frame pointer; nonindirectable

MV/4000 stack pointer; nonindirectable

MV/4000 stack limit; nonindirectable

MV/4000 stack base; nonindirectable

Reserved

Wide gate pointer; address of the gate array; nonindirectable
Reserved

Address of the fixed-point fauit handler; indirectable
Address of the top of the C/350 stack; nonindirectable

Address of the start of the current C/3560 frame minus 1;
nonindirectable

Address of the last normally usable location in the C/350 stack
Address of the C/350 stack fault handler; indirectable

Address of the beginning of the C/350 extended operations table
Address of the floating-point fault handler; indirectable

Address of the Decimal/ASCI| fault handler; indirectable

Address of the DERR error/trap handler; nonindirectable

Table D.2 Page zero locations for segments 1

through 7

D-3

D-4 Reserved Memory Locations and Context Block Format

Context Block Format

The context block can be from 15 to 43 double words long. Table D.3 shows the format
of the context block.

Words in Contents
Block

0-1 PSR, argument count is zero
2-3 ACO
4-5 AC1
6-7 AC2
8-9 AC3
10-11 CARRY, PC of offending (i.e., executing) instruction
12-13 STATE1 — Doubleword containing segment of next instruction to be

executed in bits 1through 3. Bits 16 and 17 contain the context block
size. (see below)

14-15 LAR — Address that caused the page fault
16-17 PBXED_OPCODE

18-19 GRO

20-21 GR1

22-23 GR2

24-25 GR3

26-27 MDR

28-29 IR

30-31 STATE2

32-33 Number of micro stack entries

34-35 Contents of micro stack (up to 17 double words)
36-37 GR4

38-39 GR5

40-41 GR6

42-43 GR7

44-45 OREG

46-47 TREG

48-49 STATE3

Table D.3 Context block format

Reserved Memory Locations and Context Block Format D-5

The double word in 12-13 (STATE1) contains the segment of the next instruction to be
executed. The processor uses it to resolve on a microcycle basis the segment in which the
instruction is actually executing. Since most instructions cannot cross segment bound-
aries, this double word reflects the same segment as the program counter of the executing
instruction. STATE1:

IFAT] Next Seg Reserved Size Reserved
O T e T T T A T L S S S S St S S S 0

Size defines the context block size:

Bit 16 17 Meaning
1 1 Block size 1 (9 double words)
0 0 Block size 2 (18 - 34 double words)
0 1 Block size 3 (25 - 41 double words)
1 0 Block size 4 (reserved)
T FLG! FLG3 L;}RW
STATE2: FLG\O FliG2 / L}NK/ / ALUW
Reserved I
0 ' ' T T T T ! ' N N T T T T T T ! T T ! T ! 72472572627 728729730" 31
FLGO = FLAGO
FLG1 = FLAGI
FLG2 = FLAG2
FLG3 = FLAG3
LARW = LAR_WIDTH
ALUW = ALU_WIDTH
STATE3:
CRE ESR Reserved R Register
0'1' '3'a's5' ‘7'’ T ' ' ' ' ‘'i5'1e’ ' ' T ' T T T v T Tt T T T T3y

For instructions/operations that can cross inward segment boundaries (LCALL,
XCALL, and processor-initiated calls for interrupts, protection faults, etc.), the processor
changes the segment field to reflect the inner segment before the processor makes any
modification to that inner segment’s wide stack or its page zero parameters.

For instructions/operations that can cross outward segment boundaries (WRTN,
WRSTR, WPOPB, and processor-initiated returns from interrupts, protection faults,
etc.), the segment field reflects the inner segment until the processor makes all
modifications to that inner segment’s wide stack and its page zero parameters. The
processor then changes the segment field to reflect the outer segment before the processor
makes any modifications to the outer segment’s wide stack or its page zero parameters.

All other words in the context block contain information used by the microcode and
other internal systems. The context block does not save the floating-point state. To save
this information, use a Push Floating-Point State instruction.

Appendix E

S ' '
tandard I/0 Device Codes
Octal | Mnem | Priority Device Name Octal | Mnem | Priority Device Name
Device Mask Device Mask
Codes Bit Codes Bit

00 - - Reserved 40

01 41

02 42

03 - Reserved 43 PIT 6 Programmable interval timer

04 UPSC 13 Universal Power Supply Controller 44

05 - Reserved 45 SCp 14 System control program

06 MCAT 12 Multiprocessor adapter transmit- 46 MCAT1 12 Second multiprocessor transmit-

ter ter
07 MCAR 12 Multiprocessor adapter receiver 47 MCAR1 12 Second multiprocessor receiver
10 TTI 14 TTY input 50 IAC1 11 Intelligent asynchronous control-
ler 1

1 TTO 15 TTY output 51 IAC2 11 IAC2

12 52 IAC3 11 IAC3

13 53 IAC4 1M1 IAC4

14 RTC 13 Real-time clock 54 IACS 11 IAC5

15 55 IACe6 11 IAC6

16 56 TIAC7 11 IAC7

17 LPT 12 Line printer 57 LPT1 12 Second Line Printer

20 60

21 61

22 MTB 10 Magnetic tape 62 MTBI1 10 Second magnetic tape

23 63

24 64

25 65 TIAC 11 Host to IAC interface

26 DKB 9 Fixed-head DG/Disk 66 DKB1 9 Second fixed-head DG/Disk

27 DPF 7 DG/Disk storage subsystem 67 DPF1 7 Second DG/Disk storage subsys-

tem

30 70

31 71

32 72

33 DKP 7 Moving head disk 73 DKP1 7 Second moving head disk

34 ISC 4 Intelligent synchronous 74

controller

35 75

36 76 DCU to host interface

37 77 CPU - CPU and console functions

Table E.1 Standard |/O device codes

Appendix F
Fault Codes

Tables F.1 through F.3 contain an explanation of the fault codes returned in AC1 for
protection, page, stack, and decimal/ASCII faults.

Protection Faults

Table F.1 lists the meanings of the codes returned in AC1 when an MV /4000 address
translator protection fault occurs.

AC1 Code Meaning
(octal)
(o] Read violation
1 Write violation
2 Execute violation
3 Validity bit protection (SBR or PTE)
4 Inward address reference
5 Defer (indirect) violation
6 llegal gate -- out of bounds or gate bracket access
violation
7 Outward call
10 Inward return
11 Privileged instruction violation
12 1/0 protection violation
14 Invalid microinterrupt return block

Table F.1 Protection fault codes

F-2 Fault Codes

Page Faults

Table F.2 lists the page fault codes that the processor stores in AC1.

AC1 Code Meaning
0 Multiple ERCC FAULT
1 Page table depth
2 Page table page fault
3 Reserved
4 Normal object reference

Table F.2 Page fault codes

Stack Faults

Table F.3 lists the meanings of the wide stack fault codes. The processor does not return
an error code for a narrow stack fault.

AC1 Codes Meaning

000000 Oveflow on every stack operation other than SAVE, WMSP or ring crossing

000001 Underflow or overflow would occur if the instruction were executed — WMSP, WSSVR, WSSVS,
WSAVR, WSAVS (PC in return block refers to the instruction that caused the stack fault)

000002 Too many arguments on a cross ring call
000003 Stack underflow

000004 Overflow due to a return block pushed as a result of a microinterrupt or fault

Table F.3 Stack fault codes

Fault Codes

F-3

Decimal /ASCII Faults

Table F.4 lists the decimal/ASCII faults. The first and second columns give the code
that appears in AC1 when either a C/350 or MV /4000 computer fault occurs. The third
column lists the instruction that caused the fault, while the last column describes the
conditions that could cause the fault.

Code Returned

C/350 MV /4000 Faulting Instruction Meaning

000000 100000 EDIT, WEDIT An invalid digit or alphabetic character
encountered during execution of one of
the following subopcodes: DMVA,
DMVF, DMVN, DMVO, DMVS

000001 100001 LDIX, STIX Invalid data type (7)

EDIT, WEDIT Invalid data type (6 or 7)

000002 100002 EDIT, WEDIT DMVA or DMVC subopcode with source
data type 5; AC2 contains the data size
and precision

000003 100003 EDIT, WEDIT Invalid opcode; AC2 contains the data
size and precision

000004 100004 WLDI, WSTI, WSTIX Number too large to convert to specified
data type

000006 100006 WLSN, WLDI, WLDIX, Invalid sign code for this data type

EDIT, WEDIT
000007 100007 WLSN, WLDI, WLDIX Invalid digit

Table F.4 Decimal/ASCII faults

Appendix G

Load Control Store Instruction

This appendix presents the operation and format for the Load Control Store instruction
and its associated microcode file.

WARNING: The Load Control Store instruction changes various parts of the machine’s internal
state. This instruction is intended for diagnostic and special system applications.

Load Control Store

LCS
NIO 2,CPU

The Load Control Store instruction loads and verifies the soft internal states of the
machine (microstore, decode rams, scratch pad, etc.). In conjunction with bits 16
through 31 of three accumulators (AC0, AC1, AC2), the LCS instruction performs a
load and verify, or verify only, using the contents of a microcode file.

ACO contains the load and verify, or verify only, argument, and the destination code;
ACT1 contains the bit length of the code data; and AC2 contains a pointer to the first
block of data.

NOTE: The LCS instruction loads a maximum of 16K words with each instruction. Therefore,
it may be necessary to use multiple LCS instructions.

This instruction is noninterruptible.
The call sequence for the LCS instruction is:

LCS
error return
normal return

G-2 Load Control Store Instruction

The formats for the three accumulators arc as follows:

ACO
Unused L/v Destination Code
0 T 15 16 17 31
AC1
Unused Bit Length
0 15716 T T31
AC2
Unused Pointer
0 T 15 16 T T3

Meaning

AC # Contents
0 L/vV
Destination
Code
1 Bit Length
2 Pointer

Load/verify option

0 implies load and verify
1 implies verify only
Code for where the data is to be loaded.

Bit length of code data
Pointer to first block of data (nonindirectable)

The steps for LOAD and VERIFY are:

1. Parse microcode file blocks: Load Code blocks, fill Fill blocks, ignore Revision

blocks, print Comment blocks.

Repeat this sequence until an End block is encountered.

2. Verify Code blocks that were loaded in step 1, ignore Fill, Comment, and
Revision blocks.

If an End block is encountered, the LCS instruction is completed.

The sequence of events for the VERIFY ONLY is step 2 of the Load and Verify.

Microcode File Format

The microcode file format contains data for use in various parts of the machine’s state.
The microcode format is a block-oriented format (arranged into packets or blocks) that
contains a description of the size of the block and the type of data it contains.

The general format for each microcode file is shown in Figure G.1.

Load Control Store instruction

G-3

Revision
block

Comment
block

Title
block

Optional

Optional

Comment Code
block block

Fill
block

S

Comment Code
block block

Fill
block

End
block

Comment
block

Iterations of -

DG-15084

Optional

Choose one

Choose one

Figure G.1 General formats for microcode files

G-4

Load Control Store Instruction

Microcode Block Format

Each microcode file must begin with a Title block and finish with an End block
(Title/End block pair). Fill and Code blocks must be placed between the Title/End
block pair. The Revision block preceeds the first Title block. Comment blocks may
appear anywhere within the microcode file.

Title blocks contain data pertaining to the code word’s bit length, and the destination
code. The program issuing the LCS instruction should use the data from the Title block
as the data for ACO and ACl.

End blocks contain the necessary data to either continue execution or terminate the LCS
instruction.

Code blocks contain code words and the starting location for storing each code word.
Code blocks must appear between a Title/End block pair.

Fill blocks contain code words for use as background filler and the locations to receive
this data. Fill blocks must appear between a Title/End block pair.

Comment blocks contain data that may be output to the system console (or ignored).
Comment blocks may appear anywhere within the microcode file structure. If the
Comment block appears within the Title/End block pair (internal), the data is output to
the system console; if the Comment block appears outside the Title /End block pair
(external), the program issuing the LCS instruction decides whether to output or ignore
the data.

Revision blocks contain the target CPU model number and the microcode major and
minor revision numbers. Revision blocks should appear as the first block of the microcode
file. The program issuing the LCS instruction determines whether the Revision blocks
are ignored or output to the system console.

LCS Implementation

The LCS instruction performs the following functions:

« Recognizes Code blocks, and loads the data contained into the proper destination
addresses.

« Recognizes internal Comment blocks, and prints the text string on the system console.
+ Recognizes Fill blocks, and performs a fill operation of the proper destination.

« Recognizes End blocks, and performs a Verify operation upon the previqusly loaded
data.

+ Recognizes any of five error conditions (see Error Return) and returns the proper
error code to ACO.

NOTE: The LCS instruction operates on Code, Comment, Fill, and End blocks as described
above. The program issuing the LCS instruction must parse out, and set up, the information
from the Title, Revision, and any external Comment blocks.

Load Control Store Instruction G-5

Microcode Blocks

- H 1 c chown in Bigire {179
The general form of each microcode block is shown in Figure G.2.
N
Word count
Block type
Reserved
Data
Data
Length of Word Count
.
. (in 16-bit words)
.
L]
L]
*
.
L]
.
Data P
DG-15085

Figure G.2 General form for microcode blocks

The first word of each block is the Word Count (the number of 16-bit words in the
microcode block).

The second word of each block is the Block Type (Title, End, Code, Fill, Comment, and
Revision) indicating the type of data contained in the block.

The third word is Reserved for future use.
The remaining words contain the Data pertaining to the block type.

The formats for the specific blocks are:

TITLE

Format:

Word Count 7

Block Type 0

Reserved

Data Word 1 Code word’s bit length

DataWord 2 Reserved for future use

Data Word 3 Reserved for future use

DataWord 4 Destination (code for where the data is to be

loaded). Only positive, nonzero, 16-bit
integers, in the range 1 through 777774
are accepted by the processor.

The data from the first Title block is used by the program issuing the LCS instruction.
For example:

ACO — Data Word 4 (Destination)
ACl1 « Data Word 1 (Code word’s bit length)

G-6

Load Control Store Instruction

END
Format:
Word Count 5
Block Type 1
Reserved
Data Word 1 Control word
Bits Meaning
0-12 Reserved
13 Destination completion indicator
0 indicates more code of this destination may follow
1 indicates no more code
14 Switch from PROM to RAM Control Store
0 indicates to stay in current mode
1 indicates switch to RAM
15 Start designator
0 indicates start Host (and continue SCP)
1 indicates start Master (SCP); Data Word 2
must be an address
Data Word 2 Address that is to be started:

NOTE: If this is -1 (177777¢), continue execution with the
LCS normalferror return.

The following chart summarizes the combined actions of Data Word 1 (bit 15) and Data

Word 2:
Data Word 2 Data Word 1 (bit 15)
Contains
0 1
-1 Continue Host at LCS normal/error return | lllegal
Address Start Host at this address; continue Master | Start Master at this address; Host remains
halted

Load Control Store Instruction G-7

CODE

Format

Word Count Variable

Block Type 2

Reserved

Data Word 1 Location for storing the first code word in this block

Data Word 2 First code word of the block
to N+1

Data Word N+2 Code word for the next sequential address
to 2N+1

Data Word 2N+2 Code word for the next sequential address
to IN+1

Until end of block

NOTE: Code data is in a word-aligned format: N is the number of 16-bit words that contain
one code word [N = (word-bit-length + 15)/16]

FILL

Format:

Word Count N+35 [N=(word-bit-length + 15)/16]
Block Type 3

Reserved

Data Word 1 Starting location for storing code word
Data Word 2 Ending location for storing code word
Data Word 3 Code word to be used as background filler

tao N4+9
WUINTT &

The Fill block allows a method to “background fill” certain destinations of the machine;
e.g., zero-fill the control store to induce parity errors if an uninitialized location is
erroneously entered during execution.

NOTE: The Fill functionality may also be accomplished via code blocks of the appropriate
data.

G-8 Load Control Store Instruction

COMMENT

Format:

Word Count Variable

Block Type 4

Reserved

Data Word 1 String length
The length of the ASCII string (terminating NULL(s) are not
counted). An odd string length indicates one terminating NULL;
an even string length indicates two terminating NULLs.

Data Word 2 ASCII string (packed right to left) terminated by a NULL.

to X+2 [X = (String length + 1)/2]

REVISION

Format:

Word Count 6

Block Type 5

Reserved

Data Word 1 Target CPU model number

Data Word 2 Microcode major revision number

Data Word 3 Microcode minor revision number

Error Return

Upon encountering an error, the three accumulators (ACO, AC1, AC2) will contain an
indication of the problem.

The formats for the accumulators are:

ACO
Undefined Error Code
) T T 5776 T 37
ACl1
Undefined Error Code Dependent
Q T167 16 31
AC2
Undefined Pointer

Load Control Store Instruction

G-9

AC # Contents Meaning
o] Error Code Code returned denoting type of error (defined below)
Code Error

1 Verify error
2 lllegal code word length
3 Unexpected block type
4 llegal block length
5 Unknown destination

1 Error Code De- | If unspecified AC1 is left unchanged

pendent
2 Pointer Pointer to erroneous block

NOTE: If an error occurs because of initial erroneous information in
either ACO or ACI, then AC2 is left unchanged.

Error codes returned to ACO:

Code

Meaning

Definition {AC1 Contents)
(Possible Cause)

Verify error

lllegal code
word length

Unexpected
block type

Illegal block
length

Unknown
destination

Indicates that the data was not received properly by the destination.

(AC1 will contain the code word location that is in error)

(Possible hardware problem)

Code word bit length does not agree with length of code data as specified by the
destination word in the same Title block.

(AC1 is unchanged)

(Possible attempt to load the wrong model microcode)

Block type other than allowable types (Code, Fill, End, Revision, or Comment)
(AC1 is unchanged)

(Possible missing block, or out of sequence)

NOTE: If any Title biocks are encountered between the Title/End
block pair, the unexpected block type error will be returned.

Block length is in error

(AC1 is unchanged)

{Block length of less than four was specified, or the code block did not contain an
integral number of code words)

For example:
If the code word bit length is 80, then the length of all code blocks must be

4+N*(80+ 15)/16.

N = number of code words per code block
16 number of bits per word
4 = number of words at the beginning of each code block

i

For this example, all code blocks must be of length 4 +5*N

Unknown location for loading of code word
(AC1 is unchanged)
(Possible attempt to load an incorrect model machine microcode file)

G-10 Load Control Store Instruction

Kernel Functionality

The kernel is the minimum set of microcode necessary for the machine to function
properly. With the kernel instruction set (including the LCS instruction) the processor
may read in target microcode from an I/O device (using the kernel I1/O instructions)
and then load this microcode into the control store using the LCS instruction.

Since there is a 16K-word limit to the amount of data that may be loaded with a single
LCS instruction, it may take several iterations of accessing the 1/O device and executing
the LCS instruction to completely change the machine from the kernel to the target.

NOTE: Since the LCS instruction must return to the host after completion, the kernel instruction
set must exist (in working order) after each execution of the LCS instruction.

Appendix H

Programming Considerations

This appendix lists the machine specific programming/performance considerations.

Current Page of Execution

Writing to the current page of execution -- such as writing to the next word in the
instruction stream -- flushes the queue in the instruction prefetcher (within the instruction
pipeline).

Double-Word Alignment

The MV /4000 system operates more efficiently if double words are aligned on
double-word boundaries.

Index

Within the index, the letter “f” following a page entry
indicates “and the following page”; the letters “ff”
following a page entry indicate “and the following pages”.
The letter “t” following a page entry indicates that a
table resides on the page.

16-bit
fixed-point
accumulators 1-3
logical format 2-1
two’s complement format 2-1
initial count register 7-7
priority mask 7-5ff
32-bit
fixed-point
accumulators 1-3
logical format 2-1
two’s complement format 2-1
4010 controller, model 7-11

A

ACI1, error code in 5-7, 5-11, F-2
Access

bits 8-5

privileges 8-1

validation 1-3, 8-3

violation 8-6
Access, random memory 1-3
Accumulator instruction, execute 5-9t
Accumulators,

fixed-point 1-3, 1-6, 9-1f

floating-point 1-3, 1-6, 9-1
Acknowledge, interrupt 7-5ff
Ac-line frequency 7-9f
Addition instructions,

fixed-point 2-3t

floating-point 3-2t, 9-4t
Address

error, BMC 7-22, C-5

modes, BMC 7-19

offset C-1

protection fault 8-4ff

range, C/350 9-2

space,

logical 5-2, 8-5
physical 5-2, 8-5
translation 1-6, 7-5ff, 7-19, 8-1, C-4

translator 1-3, 1-6, 5-2, 5-11, 7-19, 8-1ff,
B-1, D-1
translator protection fault F-1
wraparound 5-1, 9-6
Address,
byte 5-2
fault handler D-1
logical 1-3, 5-1, 7-19, 8-1, C-1
page zero 7-16f
physical 1-3, 1-6, 7-15f, 7-19, 8-1
word 5-2
Addressing,
C/3509-2
indirect 5-2, D-1
ALC device 7-12
ANY flag 3-5, C-2
Area, state §8-8
Argument count 2-8, C-2
Arithmetic processor 1-3
Asynchronous
communications 1-5, 7-1, 7-11ff
line controller 1-5, 7-11, E-1
Auto-increment and auto-decrement, C/350 9-6
Available, physical memory 9-6ff

Base registers, segment C-1, C-4
Base, time 7-7, 7-9
Battery backup, UPSC 7-27, 7-29f
BCD arithmetic instructions 2-10t
Binary conversion instructions, floating-point 3-4t
Bit(s),

access 8-5

BMC validity 7-21

carry 2-4, 5-11, 9-2

memory management 1-3, 8-3

modified 1-3, 8-3

priority mask 7-1, E-1

referenced 1-3, 8-3

stop 7-12
Block

format, context D-4f

instructions, wide stack return 4-2t
Block,

context 8-5f, D-4f

data 7-16f

microstate 5-7

Index-1

BMC
address modes 7-19
error 7-22, C-5
map 7-19
instructions 7-23ff
loads/reads 7-23
slots 7-24
table 7-19
modes 7-19
registers 7-20ff
status register 7-22, C-5
transfer flag 7-22, C-5
transfer rate 1-4
validity 7-21f, C-5
Buffer,
load character 7-13
read character 7-12
TTI input character 7-11f
Burst multiplexor channel (see BMC)
BUSY flag 7-2f, 7-5ff, 7-15ff
Byte
address 5-2

address instructions, load effective word and 2-9

movement instructions, fixed-point 2-9
C

C/350
addressing range 9-2
auto-increment and auto-decrement 9-6
compatibility 1-6
compatible
formats C-1
instructions A-1f, B-1ff
equivalent instruction 9-4ff
fixed-point computing instructions 9-3t
floating-point computing instructions 9-4t
instruction set 5-11, 9-1ff
program flow management instructions 9-5t
programming 9-1ff
stack 5-11, 9-2, 9-6
Calculation, time 7-9
Carry bit 2-4, 5-11, 9-2
Carry-out 9-2
CDR device E-1
Central processor 1-2ff, 7-1, 7-3ff
Chain, indirect D-1
Channel,
data 1-4, 7-1, 7-19ff
I/0 7-24
Character buffer,
input and output 7-11ff
load 7-13
read 7-12
Checking, parity 7-11
Checks, hardware 1-3, 8-3
CIO and CIOI 7-23f
Clock frequency 7-9ff
Clock, real-time 7-1, 7-9f

Index-2

Code(s),
device 7-1, 7-5, 7-12, E-1
error 5-7, 5-11
fault F-1ff
in AC1, error 5-7
protection fault F-1t
register, UPSC fault 7-29ff
SCP error 7-15f
stack fault F-2
standard 1/O device E-1
Command field 7-15
Command, SCP 7-15f
Communications,
asynchronous 1-5, 7-1, 7-11ff
controllers 1-4
1/0 7-19
synchronous 1-5, 7-19
Compatibility, C/350 1-6, 9-2ff, A-1f, B-1ff, C-1
Complement, two’s 2-1, 7-8
Computing,
fixed-point 2-1ff, 9-3t
floating-point 3-1ff, 9-4t
Console
reset 7-16f
switches 7-4
Console, soft system 1-5
Context block 8-5f, D-4ff
Control
processor, system (see SCP)
register, UPSC 7-27
store, load G-1ff
Controller(s),
asynchronous line 1-5, 7-11, E-1
communications 1-4
device 7-19
intelligent synchronous 1-5, E-1
model 4010 7-11
synchronous line 1-5, 7-19
universal power supply 1-5, 7-1, 7-26ff, E-1
Conversion and store instructions, fixed-point to
floating-point 2-9
Count register, PIT 7-7f
Count,
argument 2-8, C-2°
specify C/350 BMC map word 7-9
Counter,
floating-point program 3-5, C-2
PIT 7-8f
program -3, 1-6, 5-1f, 5-7, 9-1f, 9-6, C-1f
Counting cycle 7-8
CPU
device 7-3ff, E-1
error reporting 7-15
identification 8-4, 9-6ff, C-1, C-6f
instructions 7-4ff
skip 7-7, A-2
CPU, I/0O instructions for 7-4t
Crossing,
ring 5-2, 5-7, 5-10t, 9-6
segment §8-3, 8-5

Current microcode revision 9-6ff, C-7
Cycle, counting 7-8

D

Data
block 7-16f
channel 1-4, 7-1, 7-19ff
transfer rate 1-4
error, BMC 7-22, C-5
format,
fixed-point 2-1
floating-point 3-1
movement instructions,
fixed-point 2-2, 9-3t
floating-point 3-4t, 9-4t
path between MV /4000 and UPSC, verify the 7-27
DCH 1-4, 7-19, 7-24
map
instructions 7-23ff
loads/reads 7-23
slots 7-24
mode 7-22, C-5
registers 7-20ff
status register 7-22, C-5
validity error flag 7-22, C-5
DCH/BMC
maps 7-19f
status register 7-21ff
Decimal conversion instructions, floating-point 3-4t
Decimal /ASCII fault 5-7, 5-11, F-3
Decimal/byte instructions 2-9
Decoder, instruction 1-2f
Defer violation 8-6
Definition register, port 7-21f, C-5
Demand paging 1-3
Depth, page table 8-5
Device
codes 7-1, 7-5, 7-12, E-1
controller 7-19
flags,
general 7-2t
CPU 7-3ff
PIT 7-8
RTC 7-10
SCP 7-13
TTI 7-12
TTO 7-12
UPSC 7-26ff
instructions, TTO 7-13
management 7-1ff
map registers 7-20t, 7-21
mnemonics 7-1, E-1
name E-1
Device,
ALC 7-12
CDR E-1
CPU 7-3ff, E-1
DCH 1-5
IAC 1-5, E-1

ISC 1-4f, E-1

PIT 7-7, E-1

PLT E-1

RTC 7-9f, E-1

SCP 1-5, 7-13, E-1

TTI 7-11, E-1

TTO 7-11, E-1

UPSC 1-5, 7-26ff, E-1
Diagnostic

functions, SCP 1-5

mode 7-15ff

sequence 7-15ff

test 7-16f

register, UPSC 7-27f

Diagnostic, power-up 1-5, 7-26ff
Disable CPU error reporting 7-16f
Disable, interrupt 7-6
Division instructions,

fixed-point 2-4t

floating-point 3-3t, 9-4t
DONE flag 7-2f, 7-5ff, 7-15ff, C-3
Double

precision floating-point 3-1

words 1-3
DVZ flag 3-5, C-2

ECLID 8-4, 9-6, A-2, C-6
EDIT subprogram instructions 2-10t
Enable

flag, interrupt 7-3

SCP command 7-15f
Enable, interrupt 7-7
Enable/disable error reporting instruction 7-15
Enter diagnostic sequence 7-15ff
Entry format, page table 8-2f
Entry, page table 8-5
Equivalent instruction, C/350 9-4ff
ERCC error 1-4, 7-18f, F-2
Error

code in AC1 5-7, 5-11, F-2

code, SCP 7-15f

flag, BMC and DCH validity 7-22, C-5

logging 7-18f

reporting, CPU 7-15

status, extended 7-15f
Error,

BMC 7-22, C-5

ERCC 1-4, 7-18f, F-2
Errors, isolate hardware 7-13
Execute

access violation 8-6

accumulator instruction 5-9t
Execution times, instruction B-1ff
Exponent 1-3, 3-1
Extended error status 7-15f

Index-3

F

Failure faults, power 1-5, 7-26ff

Fault

code register, UPSC 7-29ff
codes F-1ff

handler 8-3, D-1

sequence, page 8-6

Fault(s),

address

protection 8-4ff

translator protection F-1
decimal/ASCII 5-7, 5-11, F-3
fixed-point 5-11, 9-2, B-1, C-2
floating-point 5-7, 5-11, B-1, C-
handling 5-11, 8-8
nonprivileged 5-11
page 1-3, 5-11, 8-3, 8-5f, F-2
privileged 5-11, 8-4ff
protection 1-3, 5-7, 8-3, F-1
protection violation 5-11, 8-6
stack 5-7, 5-11, F-2
Faults, power failure 1-5, 7-26ff
Fixed-point
accumulators 1-3, 1-6, 9-1f
addition instructions 2-3t
byte movement instructions 2-9
computing 2-1ff
computing instructions, C/350 9-3t
data format 2-1
data movement instructions 2-2, 9-3t
division instructions 2-4t
fault 5-11, 9-2, B-1
increment or decrement word and skip instructions

2-6t

instructions 2-2ff
logical

formats 2-1

skip instructions 2-7t
multiplication instructions 2-4t
overflow fault 5-11
precision conversion instructions 2-2
skip on condition instructions 2-5t
subtraction instructions 2-3t
to floating-point conversion and store instructions 2-9
two’s complement formats 2-1
Flag(s),
ANY 3-5,C-2
BMC

transfer 7-22, C-5

validity error 7-22, C-5
BUSY 7-2f, 7-5ff, 7-15ff
CARRY 2-4, 9-2, D-4f
CPU device 7-3ff
DCH validity error 7-22, C-5
DONE 7-2f, 7-5ff, 7-15ff, C-5
DVZ 3-5, C-2
interrupt

enable 7-3, 7-7

on 7-2

Index-4

2

request 7-3, 7-8ff
ION 5-2, 7-2, 7-5ff, 9-6
IRES 2-8, 5-6f, C-2
IXCT 2-8, 5-6f, C-2
MOF 3-5, C-2
N 3-5,C-2
OVF 3-5,C-2
OVK 2-8, C-2
OVR 2-8, C-2
PIT device 7-8
RND 3-5, C-2
RTC device 7-10
SCP device 7-13
TE 3-5, C-2
TTI device 7-12
TTO device 7-12
UNF 3-5, C-2
Z 3-5,C-2
Flags for
general devices, device 7-2t
skip instruction, device 7-2t
Flags, UPSC device 7-26ff
Floating-point
accumulators 1-3, 1-6, 9-1
addition instructions 3-2t, 9-4t
binary conversion instructions 3-4t
computing 3-1ff, 9-4¢
conversion and store instructions, fixed-point to 2-9
data
format 3-1
movement instructions 3-4t, 9-4t
decimal conversion instructions 3-4t
division instructions 3-3t, 9-4t
fault 5-7, 5-11, B-1
function instructions 9-4
instructions 3-2ff
model identification C-2
multiplication instructions 3-2t, 9-4t
precision 3-1
program counter 3-5, C-2
skip on condition instructions 3-3t
state D-4f
status register 1-3, 1-6, 3-5t, 9-1f, C-1f
subtraction instructions 3-2t, 9-4t
unit 9-6ff, C-6f
Flow management instructions, C/350 program 9-5t
Flow, program 5-1ff, 9-6
Format(s),
C/350 compatible C-1
context block D-4f
fixed-point data 2-1
floating-point data 3-1
page table entry 8-2f
register C-1ff
FPMOD 3-5, C-2
FPSR 1-3, 3-5t, 7-5ff, 9-2, C-1
FPSR instructions 3-5t, 9-4t
Frame
number, page 8-8
pointer, wide 1-3, 8-5f

Frequency,

ac-line 7-9f

clock 7-9ff

select RTC 7-10f
Function instructions, floating-point 9-4
Functions,

SCP diagnostic 1-5

system control 1-5

G

General
devices, device flag

a r 7-2t
I/0O instructions 7-

s f
1f
H

HALT instruction 7-6, A-2
Halt, processor 8-5
Handler,

address D-1

fault 5-11, 8-8

interrupt 5-2, 5-7

page fault 8-3, 8-6

protection fault 8-8
Hardware

checks 1-3, 8-3

errors, isolate 7-13

reserved memory 8-8
Hex shift instructions 2-10t

IAC device 1-5, E-1
Identification,

CPU 8-4, 9-6ff, C-1, C-6f

floating-point model C-2
Increment or decrement word and skip instructions,

fixed-point 2-6t

Indirect

address 5-2, D-1

violation 8-6
Indirection B-1
Initial

count register, PIT 7-7ff

map register instruction, specify 7-22, C-5
Initialization 1-6
Initialize CARRY instructions 2-4t
Input character buffer, TTI 7-11f
Instruction

compatibility 9-2ff

decoder 1-2f

execution times B-1ff

processor 1-2f

set, C/350 5-11

summary A-1f

violation 8-6
Instruction(s),

BCD arithmetic 2-10t

BMC map 7-23ff

C/350

compatible A-1f, B-1ff

equivalent 9-4ff
fixed-point computing 9-3t
floating-point computing 9-4t
program flow management 9-5t
stack management 9-6
CPU 7-4ff
identification 9-6, C-6f
skip 7-7
DCH map 7-23ff
decimal/byte 2-9
device flags for skip 7-2t
enable/disable error reporting 7-15
execute accumulator 5-9t
fixed-point 2-2ff
addition 2-3t
byte movement 2-9
data movement 2-2, 9-3t
division 2-4t
increment or decrement word and skip 2-6t
logical skip 2-7t
multiplication 2-4t
precision conversion 2-2
skip on condition 2-5t
subtraction 2-3t
to floating-point conversion and store 2-9
floating-point 3-2ff
addition 3-2t, 9-4t
binary conversion 3-4t
data movement 3-4t, 9-4t
decimal conversion 3-4t
division 3-3t, 9-4t
function 9-4
multiplication 3-2t, 9-4t
skip on condition 3-3t
subtraction 3-2t, 9-4t
FPSR 3-5t, 9-4t
general [/O 7-1f
HALT 7-6, A-2
hex shift 2-10t
initializing CARRY 2-4t
INTA 7-5ff, 7-23, A-2, C-5, E-1
INTDS 7-6, A-2
INTEN 7-7, A-2
interrupt
acknowledge 7-5ff, 7-23, A-2, C-5, E-1
disable 7-6
enable 7-7
interrupting an 5-4ff
IORST 7-26ff, A-2
jump 5-9t
load
character buffer 7-13
CPU identification 8-4, C-6
effective word and byte address 2-9
logical 2-6t
logical shift 2-7t
mask out 7-6
memory/system management 8-4
MSKO 7-6, A-2
narrow load CPU identification 8-4

Index-5

NCLID A-2
NIO 7-2
noninterruptible 5-4
PBX 5-7
PIT 7-8ff
privileged 7-24
program flow 5-9ff
PSR manipulation 2-8
queue 6-1t
read
character buffer 7-12
count 7-8f
data from UPSC 7-29
switches 7-4
READS 7-4, A-2
request data from UPSC 7-29
reset 7-5ff, 7-10f, 7-14ff, 7-23, A-2, C-5
restartable 5-5
resumable 5-6ff
return SCP status 7-18f
RTC 7-10f
SCP 7-14ff
segment transfer 5-10t
select RTC frequency 7-10f
skip 5-9t
specify
initial count 7-9
initial map register 7-22, C-5
SSPT 7-19, 8-8, A-2
store state pointer 7-19, 8-8, A-2
subroutine 5-10t, 5-10t
TTI 7-12f
TTO device 7-13
type 1 or 2 5-2
UPSC 7-26ff
wide stack 4-1ff
WLMP A-2
write data to UPSC 7-26ff
Instructions for
CPU, I/0 7-4t
RTC, I/O 7-10t
TTI and TTO, [/O 7-12t
INTA instruction 7-5ff, 7-23, A-2, C-5, E-1
INTDS instruction 7-6, A-2
Intelligent
asynchronous controller 1-5, 7-11, E-1
synchronous controller 1-5, E-1
INTEN instruction 7-7, A-2
Internal processor state 5-7f
Interrupt(s) 5-2, 5-6f, 8-8, 9-6, C-6
acknowledge instruction 7-5ff, 7-23, A-2, C-5, E-1
disable instruction 7-6
enable
flag 7-3, 7-7
instruction 7-7
handler 5-2, 5-7
on flag 5-2, 7-2, 7-5ff, 9-6
request 7-6
request flag 7-3, 7-8ff
sequence 5-2f

Index-6

system 7-5ff
Interrupting an instruction 5-4ff
Interrupts,
[/07-9
program 7-7, 7-12
RTC 7-10
SCP 7-16f
UPSC power fail 7-27, 7-29
Interval timer, programmable 7-1, 7-7ff
Inward reference violation 8-6
I/0
channel 1-4, 7-24
communication 7-19
device codes, standard E-1
instruction violation 8-6
instructions for
CPU 7-4t
RTC 7-10t
TTI and TTO 7-12t
instructions, general 7-1f
interrupts 7-9
port 7-24
protection C-4
reset 1-6
system 1-4
transfers 1-4
I0C status register 7-5ff, 7-23, C-5
ION flag 5-2, 7-2, 7-5ff, 9-6
IORST 1-6, 7-5ff, 7-10f, 7-14ff, 7-23, C-5
IORST instructions 7-26ff, A-2
IRES flag 2-8, 5-6f, C-2
ISC device 1-4f, E-1
Isolate hardware errors 7-13
IXCT flag 2-8, 5-6f, C-2

J

Jump instructions 5-9t
L

LCPID 8-4, C-6
LCS G-1ff
LEDs, UPSC 7-30ff
LEF mode C-4
Line frequency 7-10
Line, asynchronous 7-11ff
Load
character buffer instruction 7-13
control store G-1ff
CPU identification instruction 8-4, C-6
effective word and byte address instructions 2-9
map, wide 7-24f
Loads/reads, BMC map or DCH map 7-23
Location 1, physical 5-2
Locations for
segment 0, page zero D-1
segments O through 7, page zero D-1
Locations, reserved memory 8-8, 9-2, D-1ff
Logging, error 7-18f

Logical

address 1-3, 5-1, 7-19, 8-1, C-1
space 5-2, 8-5
translation 1-6

format 2-1

instructions 2-6t

location 1 5-2

memory 1-3

mode, BMC 7-19

page 7-19

shift instructions 2-7t

skip instructions, fixed-point 2-7t

M
Main memory 7-19
Management
bits, memory 8-3
instructions,

C/350 program flow 9-5t
C/350 stack 9-6
registers, stack 9-2
Management,
device 7-1ff
memory and system 8-1ff
program flow 5-1ff
queue 6-1
stack 4-1ff
Mantissa 1-3, 3-1
Map
instructions, BMC and DCH 7-23ff
registers 7-19ff
registers, device 7-21
slots, BMC and DCH 7-19, 7-24
table, BMC 7-19

wide load 7-24
Mapped transfer 7-19
Maps, DCH/BMC 7-19f
Margining register, UPSC power 7-27, 7-29f
Mask
bit assignments 7-1, E-1
out instruction 7-6
Mask, interrupt 7-5ff
Memory
access, random 1-3
allocation and protection, IAC and ISC 1-5
and system management 8-1ff
available, physical 9-6ff
locations, reserved 8-8, 9-2, D-1ff
management bits 1-3, 8-3
modules 1-3
sniffing 1-4
system 1-3
Memory,
hardware reserved 8-8
logical 1-3
main 7-19
physical 1-3, 8-3, 8-6, 9-6ff, C-6

reserved 8-8f, 9-6
Memory/system mana
Microcode 9-6ff, C-6f, D-4f
Microcode, system 1-6
Microinterrupt 5-7
Microstate block 5-7
Mnemonic, device 7-1, E-1
Mode,

BMC logical and physical 7-19

DCH 7-22, C-5

diagnostic 7-15ff

LEF C-4

physical 1-6, 5-1f

SCP power down 7-15ff
Model

4010 controller 7-11

identification, floating-point C-2

number 9-6ff, C-6f
Modes, BMC address 7-19
Modified bits 1-3, 8-3
Module, memory 1-3
MOF flag 3-5, C-2
MSKO instruction 7-6, A-2
Multiplication instructions,

fixed-point 2-4t

floating-point 3-2t, 9-4t
Multiprogram operating systems 7-7

N

N flag 3-5, C-2

Name, device E-1

Narrow
load CPU identification instruction 8-4
stack 5-11, 9-2, 9-6

NIMTTIM O A O L A N M 7
INC LI 0-%, 7-011, A-2, L-0

NCPID 9-6ff

NIO instruction 7-2
Noninterruptible instruction 5-4
Nonprivileged faults 5-11, 8-8
No-op 7-24

o

Octal device code E-1

Odd-numbered register formats, BMC or DCH 7-21

Offset, address C-1

One-level page table B-1

Operating systems, multiprogram 7-7
Operations, decimal/byte 2-9
Operator’s terminal 1-5

Output character buffer, TTO 7-12f
Overflow fault C-2

Overflow, stack 5-7, B-1

Overview, system 1-1ff

OVF flag 3-5, C-2

OVK flag 2-8, C-2

OVR flag 2-8, C-2

Index-7

P

Page
fault 1-3, 5-11, 8-3, 8-5f, F-2
frame number 8-8
number 7-19, 7-21
table
entry format 8-2f
validity violation 8-6
table, one-level or two-level 8-6, B-1
tables 8-1, B-1
validation 1-3, 8-3
zero 5-2, 7-16f, 8-5, 8-8, D-1
address 7-16f
locations for segments O through 7 D-1
Page-swapping 1-3
Paging, demand 1-3
Parity checking 7-11

Path between MV /4000 and UPSC, verify the data 7-27

PBX instruction 5-7
PC 1-3, 1-6, 5-1f, 5-7, 9-1f, 9-6, C-1f, D-4f
Physical
address 1-3, 1-6, 7-15f, 7-19, 8-1
address space 5-2, 8-5
location 1 5-2
memory 1-3, 8-3, 8-6, 9-6ff, C-6
memory available 9-6ff
mode 1-6, 5-1f
mode, BMC 7-19
page 7-19
page number 7-19, 7-21
Pipeline 1-2f, 5-1
PIT
counter 7-8f
device 7-7, E-1
initial count register 7-7ff
instructions 7-8ff
PLT device E-1
Pointer D-1, D-4f
Pointer,
state 8-8
wide frame and stack 1-3, 8-5f
Port
definition register 7-21f, C-5
status register 7-21, 7-23, C-5
Port, 1/0O 7-24
Power
and status, system 1-5, 7-26ff
down mode, SCP 7-15ff
fail 7-16f
fail interrupts, UPSC 7-27, 7-29
failure faults 1-5, 7-26ff
margining register, UPSC 7-27, 7-29f
supply controller, universal 1-5, 7-1, 7-26ff, E-1
supply status, UPSC 7-30
up 1-6, 7-10
Power-up diagnostic 1-5, 7-26ff
Precision
conversion instructions, fixed-point 2-2
floating-point, double or single 3-1

Index-8

Primary asynchronous line 7-1, 7-11
Priority mask 7-1, 7-5ff, E-1
Privileged
faults 5-11, 8-4ff, 8-8
instruction 7-24
instruction violation 8-6
Privileges, access 8-1
Processor
halts 8-5
information 5-7
initialization 1-6
state 5-7, 8-5f
status register 1-6, 2-8, 5-6f, 9-2, C-1f
Processor,
arithmetic 1-3
central 1-2ff, 7-1, 7-3ff
instruction 1-2f
stop 7-6
Program
counter 1-3, 1-6, 5-1f, 5-7, 9-1f, 9-6, C-1f
counter, floating-point 3-5, C-2
flow 9-6
instructions 5-9ff
management 5-1ff
management instructions, C/350 9-5t
interrupt request 7-3
interrupts 7-7, 7-12
Program, system control 1-5, 7-1, 7-13ff
Programmable interval timer 7-1, 7-7ff, E-1
Programming, C/350 9-1ff
Protection
fault 1-3, 5-7, 8-3, F-1
codes F-1t
handler 8-8
fault,
address 8-4ff
address translator F-1
system hardware checks 8-3
validation 8-3
violation 5-11, 8-6, 9-6
Protection,
I/0 C-4
logical address translation 1-6
PSR 2-8, 5-6f, 7-5ff, 9-2, C-1f, D-4f
PSR manipulation instructions 2-8

Q

Queue
instructions 6-1t
management 6-1

R

RAM modules 1-3
Random memory access 1-3
Range, C/350 addressing 9-2

Read

accece viglation 8-6
aCCLss vitiatliohn 6-¢

character buffer instruction 7-12
count instruction 7-8f
data from UPSC instruction 7-29
switches instruction 7-4
READS instruction 7-4, A-2
Real-time clock 7-1, 7-9f
Reference violation, inward 8-6
Referenced bits 1-3, 8-3
Register
fields, summary of C-1ff
formats. BMC and DCH 7-21

i1als, LR 4 00 DL U2 & §

instruction, wide stack 4-1t
Register(s),
16-bit initial count 7-7
BMC 7-20ff
BMC status 7-22, C-5
C/3509-1f
DCH 7-20ff
DCH status 7-22, C-5
DCH/BMC status 7-21ff, C-5
device map 7-20t, 7-21
floating-point status 1-3, 1-6, 3-5t, 9-1f, C-1f
1/0 channel status 7-24
I10C status 7-5ff, 7-23, C-5
PIT initial count 7-9
port
definition 7-21f, C-5
status 7-21, 7-23
processor status 1-6, 2-8, 5-6f, 9-2, C-1f
segment base 1-6, C-1, C-4
specify initial map 7-22, C-5
stack management 1-6, 9-2
UPSC
control 7-27
diagnostic test 7-27f
fault code 7-29ff
power margining 7-27, 7-29f
wide stack 4-1t
Reporting, CPU error 7-15
Request
data from UPSC instruction 7-29
flag, interrupt 7-8, 7-10
Request, interrupt 7-3, 7-6, 7-8f
Reserved
memory 8-8f, 9-6
memory locations 8-8, 9-2, D-1ff
memory, hardware 8-8

Reset instruction 7-5ff, 7-10f, 7-14ff, 7-23, A-2, C-5

Reset,

console 7-16f

1/0 1-6

system 1-6
Restartable instruction 5-5
Resumable instruction 5-6ff

Return

bhlock instructions. wide stack 4-2t

CRUCK ST ULLIVHS, WIUU SLdlR -4t

SCP status instruction 7-18f
Revision, microcode 9-6ff, C-6
Ring

crossing 5-2, 5-7, 5-10t, 9-6

crossing validation 1-3
RND flag 3-5, C-2
RTC device 7-9f, E-1

S

SBR 1-6, C-1, C-4
SCP
commands 7-15ff
device 1-5, 7-13, E-1
error code 7-15f
instructions 7-14ff
interrupts 7-16f
power down mode, select 7-15ff
status instruction, return 7-18f
Segment
crossing 8-5
crossing validation 8-3
crossing violation 8-6
Segment(s) 1-3, 5-1f, 8-5, 8-8, C-1
0 5-2, 8-5f, 8-8, D-1
0 through 7, page zero locations for D-1
base registers 1-6, C-1, C-4
crossing (see ring crossing)
transfer instructions 5-10t
validity violation 8-6
zero (see segment 0)
Segmentation 5-2
Select
RTC frequency instruction 7-10f
SCP power down mode 7- 15ff
Sequence of subroutine instructions 5-10t
Sequence,
diagnostic 7-18f
enter diagnostic 7-15ff
interrupt 5-2f
page fault 8-6
Single precision floating-point 3-1
Size, physical memory 9-6ff
Skip
instructions 5-9t

instructions, fixed-point increment or decrement

word and 2-6t
on condition instructions,
fixed-point 2-5t
floating-point 3-3t
Skip, CPU 7-7, A-2
Slots, BMC and DCH map 7-19, 7-24
Sniffing, memory 1-4
Soft system console 1-5
Space, logical and physical address 5-2, 8-5
Specify initial
count instruction 7-9
map register instruction 7-22, C-5

Index-9

SSPT instruction 7-19, 8-8, A-2
Stack
access instructions, wide 4-2t, 4-4
base, wide 1-3
fault 5-7, 5-11
fault codes F-2
instructions, wide 4-1ff
limit, wide 1-3
management 4-1ff
instructions, C/350 9-6
registers 1-6, 9-2
overflow 5-7, B-1
pointer, wide 1-3, 8-5f
register instructions, wide 4-1t
return block instructions, wide 4-2t
underflow B-1
Stack,
narrow 5-11, 9-2, 9-6
wide 1-3, 5-7, 8-5f
Standard I/0O device codes E-1
State
area 8-8
pointer 8-8
pointer instruction, store 7-19, 8-8
State,
floating-point D-4f
processor 5-7, 8-5f
Status
field 8-5
register,
DCH/BMC 7-21ff, C-5
floating-point 1-3, 1-6, 3-5t, 9-1f, C-1f
I/O channel 7-24
10C 7-5ff, 7-23, C-5
port 7-21, 7-23, C-5
processor 1-6, 2-8, 5-6f, 9-2, C-1f
Status,
extended error 7-15f
return SCP 7-18f
system power and 1-5, 7-26ff
UPSC power supply 7-30
Stop
bits 7-12
processor 7-6
Storage location, reserved 8-8
Store state pointer instruction 7-19, 8-8
Store, load control G-1ff
Subprogram instructions, EDIT 2-10t
Subroutine
instructions 5-10t, 5-10t
instructions, sequence of 5-10t
Subtraction instructions,
fixed-point 2-3t
floating-point 3-2t, 9-4t
Summary of register fields C-1ff
Summary,
instruction A-1f
technical 1-1ff

Index-10

Switches, console 7-4
Synchronous
communications 1-5, 7-19
controller, intelligent 1-5, E-1
line controller 1-5
System
control
functions 1-5
program 1-5, 7-1, 7-13ff
hardware checks, protection §8-3
management, memory and §-1ff
microcode 1-6
overview 1-1ff
power and status 1-5, 7-26ff

reset 1-6
System,
interrupt 7-5ff
1/0 1-4
memory 1-3

multiprogram operating 7-7
T

Table
entry format, page 8-2f
entry, page 8-5
validity violation, page 8-6
Table,
BMC map 7-19
one-level or two-level page 8-6, B-1
Tables, page 8-1, B-1
TE flag 3-5, C-2
Technical summary 1-1ff
Terminal, operator’s 1-5
Test register, UPSC diagnostic 7-27f
Test, diagnostic 7-16f
Time
base 7-7, 7-9
calculations 7-9
Timeout, UPSC 7-27
Timer, programmable interval 7-1, 7-7ff, E-1
Times, instruction execution B-1ff
Time-slice 7-7
Transfer
flag, BMC 7-22, C-5
instructions, segment 5-10t
rates 1-4
Transfer,
I/0 14
mapped 7-19
Translation, address 7-5ff, 7-19, 8-1, C-4
Translator protection fault, address F-1

Translator, address 1-3, 1-6, 5-2, 5-11, 7-19, 8-1ff,

B-1, D-1
TTI
and TTO buffer 7-12
device 7-11, E-1
device flags 7-12
instructions 7-12f

TTO
device 7-11, 7-13, E-1
device flags 7-12
Two-level page table 8-6, B-1
Two’s complement 2-1, 7-8
Type 1 or 2 instruction 5-2

U

Underflow, stack B-1
UNF flag 3-5, C-2
Unit,
central processing 7-1
floating-point 9-6ff, C-6f
Universal power supply controller 1-5, 7-1, 7-26ff, E-1
UPSC
battery backup 7-27, 7-29f
control register 7-27
device 1-5, 7-26ff, E-1
device flags 7-26ff
diagnostic test register 7-27f
fault code register 7-29ft
instructions 7-26ff
LEDs 7-30ff
power fail interrupts 7-27, 7-29
power margining register 7-27, 7-29f
power supply status 7-30
timeout 7-27
UPSC, verify the data path between MV /4000 and 7-27

\'

Validation,
access 1-3, 8-3
page 1-3, 8-3

protection 8-3

ring crossing 1-3

segment crossing 8-3
Validity 8-5

bit, BMC 7-21

error flag, BMC and DCH 7-22, C-5
Verify the data path between MV /4000 and UPSC 7-27
Violation fault, protection 5-11, 8-6
Violation,

execute access 8-6

indirect 8-6

inward reference 8-6

I/O instruction 8-6

page table validity 8-6

privileged instruction 8-6

protection 9-6

read access 8-6

segment

crossing 8-6
validity 8-6
write access 8-6

w

WDPOP 8-6
Wide
frame pointer 1-3, 8-5f
load map 7-24f
stack 1-3, 5-7, 8-5f
access instructions 4-2t
base 1-3
instructions 4-1ff
limit 1-3
pointer 1-3, 8-5f
return biock instructions 4-2t
WLMP 7-23ff
WLMP instruction A-2
Word address 5-2
Word, double 1-3
Wraparound, address 5-1, 9-6
Write
access violation 8-6
data to UPSC instructions 7-26ff

X

XOP instruction 9-2
XOPO instruction 9-2
XOP1 instruction 9-2

z

Z flag 3-5, C-2

Zero address, page 7-16f

Zero,
page 5-2, 7-16f, 8-5, 8-8, D-1
segment (see segment 0)

Index-11

¢»DataGeneral

014-000736-00

Data General Corporation, Westboro, MA 01580

Copyright « Data Genreral Corporation 1982

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	H-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	xBack

