VMS Workstation
Software

Graphics Programming
Guide

Order Number: AA-GI10C-TE

May 1988

This document provides programming information about the VMS
Workstation Software graphics. It describes the general concepts and
specific routine calls used to write application programs.

Revision/Update Information: This manual supersedes the MicroVYMS
Workstation Graphics Programming
Guide, Version 3.0.

Software Version: This manual contains information for
both VWS Version 3.3 and VWS Version
4.0

Operating System: For.systems running VMS Version 4.6

and later, VWS Version 3.3.

For systems running VMS Version
5.0, VWS Version 4.0.

digital equipment corporation maynard, massachusetts

May 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A,

The postpaid READER'S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP

DECSYSTEM-20 PDT

VT
™
DECUS RSTS ﬂﬂaﬂan
DECwriter RSX

This document was prepared using VAX DOCUMENT, Version 1.0

Contents

PREFACE

xxix

NEW AND CHANGED FEATURES

XXXV

PARTI VMS WORKSTATION SOFTWARE GRAPHICS
CONCEPTS

CHAPTER 1 SYSTEM DESCRIPTION 1-1
1.1 OVERVIEW 1-1
1.2 VAXSTATION HARDWARE 1-1

1.2.1 System Cabinet or Box 1-2
1.2.2 Monitor 1-2
1.2.3 Keyboard 1-2
1.2.4 Mouse 1-3
1.2.5 Tablet 1-3
1.2.6 Communications Board 1-3
1.2.7 Printer 1-3
1.3 SOFTWARE 1-3
1.3.1 Graphics Routine Types 1-4
1.3.2 Human Interface 1-4
1.3.2.1 Terminal Emulation ¢ 1-5
1.3.2.2 Communication Tools ¢ 1-5
1.3.3 Windowing Feature 1-6
1.3.4 Graphics Capabilities 1-6

Contents

CHAPTER 2 DISPLAY MANAGEMENT CONCEPTS 2-1
2.1 OVERVIEW 2-1
2.1.1 Summary 2-1
2.2 COORDINATE SYSTEMS 2-2
2.2.1 Device-Independent Coordinate Systems 2-3
2211 World Coordinates ¢ 2-3
2.21.2 Normalized Coordinates » 2-4
2.2.2 Device-Dependent Coordinate Systems 2-5
2.2.2.1 Absolute Device Coordinates ¢ 2-5
2222 Viewport-Relative Device Coordinates * 2-6
2.3 VIRTUAL DISPLAYS 2-7
2.4 DISPLAY WINDOWS 2-8
2.5 DISPLAY VIEWPORTS 2-8
2.6 DISPLAY WINDOW AND VIEWPORT SCALING 2-9
2.6.1 Distortion of Graphic Objects 2-10
2.7 DISPLAY LISTS 2-11
2.8 GENERIC ENCODING AND UIS METAFILES 2-11
CHAPTER 3 GRAPHIC OBJECTS AND ATTRIBUTES 3-1
3.1 OVERVIEW 3-1
3.2 SUMMARY 3-1
3.3 GRAPHICS AND TEXT ROUTINES 3-2
3.4 ATTRIBUTES 3-2
3.41 General Attributes 3-2
3.4.2 Text Attributes 3-3
3.4.3 Graphics Attributes 3-4

iv

Contents

3.4.4 Window Attribute 3-5
3.5 ATTRIBUTE BLOCKS 3-5
3.5.1 Attribute Block 0 3-5
3.6 SEGMENTS 3-6
3.7 VIEWING TRANSFORMATIONS 3-6
3.8 TWO-DIMENSIONAL GEOMETRIC TRANSFORMATIONS 3-6
CHAPTER 4 COLOR CONCEPTS 4-1
4.1 OVERVIEW 4-1
4.2 COLOR HARDWARE SYSTEMS 4-1
4.3 RASTER GRAPHICS CONCEPTS 4-1
4.3.1 Hardware Interpretation of Pixel Values 4-1
4.3.2 Color Representation Models 4-5
4.3.3 Color Palette 4-6
4.4 UIS VIRTUAL COLOR MAPS 4-7
4.4.1 Reserved Hardware Color Map Entries 4-9
4.5 UIS COLOR MAP SEGMENTS 4-10
4.6 SHAREABLE VIRTUAL COLOR MAPS 4-11
4.7 MISCELLANEOUS UIS COLOR CONCEPTS 4-11
4.71 Standard and Preferred Colors 4-11

4.7.2 Monochrome (Bitonal), Intensity, and Color Compatibility
Features 4-11
4.7.3 Color Value Conversion 4-12
4.7.4 Set Colors and Realized Colors 4-12
4.7.5 Color Regeneration Characteristics 4-13

Contents

CHAPTER 5 INPUT DEVICES 5-1
5.1 OVERVIEW 5-1

5.1.1 VAXstation input Devices 5-1

5.2 POINTERS 5-1

5.2.1 Mouse 5-2

5.2.2 Tablet 5-2

5.3 KEYBOARDS 5-3

5.3.1 Virtual Keyboards 5-3

PARTII HOWTO PROGRAM WITH VMS
WORKSTATION SOFTWARE GRAPHICS

CHAPTER 6 PROGRAMMING CONSIDERATIONS 6-1
6.1 OVERVIEW 6-1

6.2 CALLING UIS ROUTINES 6-1

6.2.1 Calling Sequences 6-1

6.2.1.1 Call Type ¢ 6-2
6.2.1.2 Routine Name ¢ 6-2
6.2.1.3 Argument List and Argument Characteristics ¢ 6-2

6.2.2 VMS Usage 6-2

6.2.3 Type 6-3
6.2.3.1 VAX Standard Data Types * 6-3

6.2.4 Access 6-4

6.2.5 Mechanism 6-5

6.2.5.1 VAX FORTRAN Built-In Functions ¢ 6-6

6.3 UIS CONSTANTS 6-7

6.4 CONDITION VALUES SIGNALED 6-8

6.5 ADDITIONAL PROGRAM COMPONENTS ' 6-8 ‘

vi

Contents

6.6 NOTES TO PROGRAMMERS , 6-9
6.6.1 VAX ADA Programmers 6-9

6.6.2 VAX C Programmers 6-10

6.6.3 VAX PASCAL Programmers 6-10

6.6.4 VAX PL/I Programmers 6-11

6.7 PROGRAMMING EXAMPLES ' 6-11
6.7.1 Structure of Programming Tutorial 6-12

6.8 PROGRAM EXECUTION ' 6-12
6.8.1 Compiling Your Program 6-12

6.8.2 Linking the Object Module 6-13

6.8.3 Running the Executable Image 6-13
CHAPTER7 CREATING BASIC GRAPHIC OBJECTS 7-1
7.1 OVERVIEW 7-1
7.2 STEP 1—CREATING A VIRTUAL DISPLAY ; 7-1
7.21 Specifying Coordinate Values 7-1

7.2.2 Creating and Deleting a Virtual Display 7-2

7.2.3 Program Development . 7-2

7.3 STEP 2—CREATING GRAPHICS AND TEXT 7-3
7.3.1 Graphics Drawing Operation Specifications 7-3

7.3.2 Programming Options 7-4

7.3.3 Program Development 7-5

7.4 STEP 3—CREATING A DISPLAY WINDOW 7-6
7.4.1 Programming Options 7-6

7.4.2 . Program Development 7-6

7.4.3 Calling UIS$CIRCLE, UISSELLIPSE, UISSPLOT, UISSTEXT,
and UISSCREATE_WINDOW 7-7

vii

Contents

CHAPTER 8 DISPLAY WINDOWS AND VIEWPORTS 8-1
8.1 OVERVIEW 8-1
8.2 WINDOWING ROUTINES 8-1
8.3 STEP 1—CREATING MANY DISPLAY WINDOWS 8-2

8.3.1 Programming Options 8-2

8.3.2 - Program Development 8-3

8.3.3 Calling UISSCREATE_WINDOW 8-4

8.4 STEP 2—DELETING AND ERASING DISPLAY WINDOWS 8-5
8.4.1 Programming Options 8-6

8.4.2 Program Development 8-6

8.4.3 Calling UISSDELETE_WINDOW . 8-7

8.5 STEP 3—MANIPULATING DISPLAY WINDOWS AND VIEWPORTS 8-9
‘ 8.5.1 Programming Options 8-10
8.5.2 Program Development | 8-11

8.5.3 Calling UISSMOVE_WINDOW 8-12

8.5.4 Program Development Il 8-14

8.5.5 Calling UISSPOP_VIEWPORT and UIS$PUSH_VIEWPORT 8-16

8.5.6 Program Development il 8-19

8.5.7 Requesting General Placement and No Border 8-21

8.5.8 Program Development IV 8-22

8.5.9 - Calling UISSMOVE_AREA 8-23

8.6 WORLD COORDINATE TRANSFORMATIONS 8-24
8.6.1 Programming Options 8-25

8.6.2 Program Development 8-25

8.6.3 Calling UISSCREATE_TRANSFORMATION 8-26

CHAPTER 9 GENERAL ATTRIBUTES 9-1
9.1 OVERVIEW 9-1
9.2 ATTRIBUTES 9-1

9.2.1 Attribute Blocks 9-1
9.2.2 Modifying General Attributes 9-2

viii

Contents

9.3 STRUCTURE OF GRAPHIC OBJECTS 9-3
9.4 UIS WRITING MODES 9-4
9.4.1 Using General Attributes 9-7
9.4.1.4 Programming Options ¢ 9-8
9.4.1.5 Program Development | ¢ 9-8
9.4.1.6 Calling UIS$SET_BACKGROUND_INDEX,
UIS$SET_WRITING_INDEX, and
UIS$SET_WRITING_MODE ¢ 9-10
9.4.1.7 Program Development Il ¢ 9-13
9.4.1.8 Using Device-Dependent Writing Modes * 9-15
CHAPTER 10 TEXT ATTRIBUTES 10-1
10.1 OVERVIEW 10-1
10.2 STRUCTURE OF TEXT 10-1
10.2.1 Monospaced and Proportionally Spaced Fonts 10-1
10.2.2 Lines of Text : 10-2
10.2.3 - Character Strings 10-3
10.2.4 Character Cell 10-7
10.3 USING TEXT ATTRIBUTES 10-18
10.3.1 Modifying Text Attributes 10-19
10.4 PROGRAMMING OPTIONS 10-20
10.4.1 Program Development | 10-22
10.4.2 Calling UIS$SET_FONT and UISSNEW_TEXT_LINE 10-24
10.4.3 Program Development Il 10-24
10.4.4 Calling UIS$SET_CHAR_SPACING 10-26
10.4.5 Program Development Ili 10-27
10.4.6 Calling UISSSET_POSITION and
UIS$SET_ALIGNED_POSITION 10-28
10.4.7 Program Development IV 10-28
10.4.8 Calling UIS$SET_CHAR_SLANT 10-29
10.4.9 Program Development V 10-29
10.4.10 Calling UIS$SET_TEXT_SLOPE 10-30
10.4.11 Program Development Vi 10-31
10.4.12 Calling UIS$SET_CHAR_ROTATION 10-32
10.4.13 Program Development Vil 10-32
10.4.14 Calling UIS$SET_CHAR_SIZE 10-35

ix

Contents

CHAPTER 11 GRAPHICS AND WINDOWING ATTRIBUTES 11-1
111 OVERVIEW 11-1

11.2 USING GRAPHICS ATTRIBUTES 11-1

11.2.1 Modifying Graphics and Windowing Attributes 11-1

11.2.2 Programming Options 11-2

11.2.2.1 Program Development | » 11-3
11.2.2.2 Calling UIS$SET_ARC_TYPE and Using Fill Patterns ¢ 11-5
11.2.2.3 Program Development || ¢ 11-6
11.2.24 Calling UIS$SET_LINE_WIDTH » 11-8
11.2.2.5 Program Development Ill ¢ 11-8
11.2.2.6 Calling UIS$SET_LINE_WIDTH and
UIS$SET_LINE_STYLE ¢ 11-9
11.2.2.7 Program Development IV ¢ 11-9
11.2.2.8 Calling VIS$SET_FONT and
UIS$SET_FILL_PATTERN ¢ 11-11
11.2.3 Using the Windowing Attribute 11-11
11.2.3.1 Programming Options ¢ 11-12
11.2.3.2 Program Development ¢ 11-13
11.2.3.3 Calling UIS$SET_CLIP ¢ 11-14

CHAPTER 12 INQUIRY ROUTINES 12-1
12.1 OVERVIEW 12-1

12.2 USING INQUIRY ROUTINES 12-1

12.2.1 Using Inquiry Routines 12-1

12.2.1.1 Programming Options ¢ 12-1

12.2.1.2 Program Development | ¢ 12-4

12.2.1.3 Invoking UISSGET_FONT_SIZE, UIS$SGET_DISPLAY_SIZE,
and UIS$GET_VIEWPORT_SIZE ¢ 12-5

.4 Program Development Il » 12-6

5 Invoking UISSGET_ARC_TYPE, UISSGET_FILL_PATTERN,

and UISSGET_FONT e 12-8

Contents

CHAPTER 13 DISPLAY LISTS AND SEGMENTATION 13-1
13.1 OVERVIEW 13-1
13.2 DISPLAY LISTS 13-1
13.3 SEGMENTS 13-2

13.3.1 Identifiers and Object Types 13-3
13.3.2 Programming Options 13-4
13.3.3 Program Development | 13-6
13.3.3.1 Calling UIS$DISABLE_DISPLAY_LIST and
UISSENABLE_DISPLAY_LIST » 13-7
13.3.3.2 Program Development || » 13-8
13.3.3.3 Calling UIS$GET_NEXT_OBJECT,
UIS$GET_OBJECT_ATTRIBUTES, and
UIS$SGET_ROOT_SEGMENT o 13-11
13.3.3.4 Program Development Il ¢ 13-12
13.3.3.5 Calling UIS$GET_PARENT_SEGMENT e 13-15
13.4 MORE ABOUT SEGMENTS 13-16
13.4.1 Programming Options 13-16
13.4.2 Program Development | 13-18
13.4.2.1 Calling UIS$SET_INSERTION_POSITION * 13-21
13.4.2.2 Program Development Il ¢ 13-21
13.4.2.3 Calling UIS$BEGIN_SEGMENT and
UISSEND_SEGMENT e 13-25

CHAPTER 14 GEOMETRIC AND ATTRIBUTE TRANSFORMATIONS 14-1
14.1 OVERVIEW 14-1
14.2 GEOMETRIC TRANSFORMATIONS 14-1

14.2.1 Translating Graphic Objects 14-1
14.2.2 Scaling Graphic Objects 14-1
14.2.2.1 Uniformly Scaled Graphic Objects ¢ 14-4
14.2.2.2 Differentially Scaled Graphic Objects ¢ 14-5
14.2.3 Rotating Graphic Objects : 14-6
14.2.4 PRrogramming Options 14-9
14.2.5 Program Development | 14-9
14.2.6 Calling UISSTRANSFORMATION_OBJECT 14-10
14.2.7 Program Development Il 14-11
14.2.8 Calling UIS$COPY_OBJECT 14-12

xi

Contents

14.3 ATTRIBUTE TRANSFORMATIONS 14-12
14.3.1 Programming Options 14-12
14.3.2 Program Development 14-14
14.3.3 Requesting Attribute Transformations 14-14
CHAPTER 15 METAFILES AND PRIVATE DATA 15-1
15.1 OVERVIEW 15-2
15.2 DISPLAY LISTS AND UIS METAFILES 15-3
15.2.1 Generic Encoding of Graphics and Attribute Routines _ 15-3
15.2.1.1 Normalized Coordinates ¢ 15-4
156.2.1.2 Interpreting the User Buffer ¢ 15-4
15.2.2 Creating UIS Metafiles 15-11
15.2.3 Structure of a UIS Metafile 15-12
15.2.4 Programming Options 15-13
15.2.5 Program Development | 15-14
15.2.5.1 Calling UIS$SEXTRACT_HEADER, UIS$EXTRACT_REGION,
and UISSEXTRACT_TRAILER ¢ 15-16
15.3 DISPLAY LISTS AND PRIVATE DATA 15-18
15.3.1 Using Private Data 15-18
15.3.2 Programming Options 15-18
15.3.3 Program Development I 15-19
15.3.3.1 Calling UIS$PRIVATE and
UISSEXTRACT_PRIVATE » 15-22
CHAPTER 16 PROGRAMMING IN COLOR 16-1
16.1 OVERVIEW 16-1
16.2 COLOR AND INTENSITY ROUTINES 16-1
16.2.1 Programming Options 16-1
16.2.2 Step 1—Creating a Virtual Color Map 16-2
16.2.3 Step 2—Setting Virtual Color Map Attributes 16-2
16.2.4 Step 3—Setting Entries in the Virtual Color Map 16-3
16.2.5 Program Development | 16-3
16.2.6 Program Development i 16-4

Xii

16.2.6.1 Program Development Ill * 16-6

Contents

16.3 COLOR MAP SEGMENTS 16-7
-, 16.3.1 Programming Options 16-8
16.3.2 Program Development 16-8
16.3.3 Calling UIS$CREATE_COLOR_MAP_SEG 16-8
16.4 COLOR AND INTENSITY INQUIRY ROUTINES 16-8
16.4.1 Programming Options 16-9
16.4.2 Program Development | 16-9
16.4.2.1 Calling UISGET_COLORS, UISGET_HW_COLOR_INFO,
UISSGET_WRITING_INDEX ¢ 16-11
16.4.3 Program li—Creating an HSV Color Wheel 16-11
CHAPTER 17 ASYNCHRONOUS SYSTEM TRAP ROUTINES 17-1
17.1 OVERVIEW 17-1
17.1.1 Using AST Routines 17-1
17.1.2 AST-Enabling Routines 17-2
17.2 KEYBOARD AND POINTER DEVICES 17-2
17.2.1 Using AST Routines with Virtual Keyboards 17-3
17.2.2 Controlling Keyboards 17-4
17.2.3 Program Development 17-4
17.2.4 Calling Keyboard Routines 17-6
17.2.5 Using AST Routines with Pointer Devices = 17-7
17.2.5.1 Mouse * 17-7
17.2.5.2 Tablet ¢ 17-7
17.2.5.3 Step 1—Create an AST Routine * 17-8
17.2.5.4 Step 2—Enable the AST Routine ¢ 17-8
17.2.6 Programming Options 17-8
17.2.7 Program Development 17-9
17.2.8 Calling UIS$SSET_POINTER_AST and
UIS$SET_POINTER_PATTERN 17-10
17.3 MANIPULATING DISPLAY WINDOWS AND VIEWPORTS 17-11
17.3.1 Using AST Routines to Modify the Window Options

17.3.2
17.3.3
17.3.4
17.3.5
17.3.6

Menu 17-12
17.3.1.1 Step 1—Create an AST Routine » 17-12
17.3.1.2 Step 2—Enable the AST Routine ® 17-12

Programming Options 17-13
Program Development ; 17-14
Calling UIS$SET_RESIZE_AST 17-17
Calling UIS$SET_SHRINK_TO_ICON_AST 17-19
Calling UIS$SSET_CLOSE_AST 17-19

xiii

Contents

PARTIII UIS ROUTINE DESCRIPTIONS

CHAPTER 18 UIS ROUTINE DESCRIPTIONS 18-1
18.1 OVERVIEW 18-1
18.1.1 Format Heading 18-2
18.1.2 Returns Heading 18-5
18.1.3 Arguments Heading 18-5
18.2 FUNCTIONAL ORGANIZATION OF UIS ROUTINES 18-5
18.3 ROUTINE ARGUMENTS QUICK REFERENCE 18-7
18.3.1 vd_id 18-8
18.3.2 wd_id 18-8
18.3.3 obj_id 18-8
18.3.4 seg_id 18-9
18.3.5 iatb 18-9
18.3.6 oatb 18-9 (
18.3.7 astprm 18-9
18.3.8 kb_id 18-10
18.3.9 devnam 18-10
18.4 UIS ROUTINES AND ARGUMENTS 18-10
UISSBEGIN_SEGMENT 18-16
UIS$CIRCLE 18-18
UISSCLOSE_WINDOW 18-21
UISSCOPY_OBJECT 18-22
UISSCREATE_COLOR_MAP 18-26
UIS$CREATE_COLOR_MAP_SEG 18-29
UIS$SCREATE_DISPLAY 18-32
UIS$SCREATE_KB 18-34
UISSCREATE_TB 18-37
UIS$SCREATE_TERMINAL 18-38
UISSCREATE_TRANSFORMATION 18-40
UISSCREATE_WINDOW 18-43
UISSDELETE_COLOR_MAP 18-52
UISSDELETE_COLOR_MAP_SEG 18-53
UISSDELETE_DISPLAY 18-54 . ‘
UISSDELETE_KB 18-55 ‘

xiv

UIS$DELETE_OBJECT
UIS$DELETE_PRIVATE
UIS$DELETE_TB
UISSDELETE_TRANSFORMATION
UIS$DELETE_WINDOW
UIS$DISABLE_DISPLAY_LIST
UIS$DISABLE_KB
UIS$DISABLE_TB
UIS$DISABLE_VIEWPORT_KB
UISSELLIPSE
UISSENABLE_DISPLAY_LIST
UISSENABLE_KB
UISSENABLE_TB
UISSENABLE_VIEWPORT_KB
UISSEND_SEGMENT
UISSERASE

UISSEXECUTE
UISSEXECUTE_DISPLAY
UISSEXPAND_ICON
UISSEXTRACT_HEADER
UISSEXTRACT_OBJECT
UISSEXTRACT_PRIVATE
UISSEXTRACT_REGION
UISSEXTRACT_TRAILER
UIS$FIND_PRIMITIVE
UISSFIND_SEGMENT
UIS$GET_ABS_POINTER_POS
UIS$GET_ALIGNED_POSITION
UIS$GET_ARC_TYPE
UIS$GET_BACKGROUND_INDEX
UIS$GET_BUTTONS
UIS$GET_CHAR_ROTATION
UIS$GET_CHAR_SIZE
UIS$GET_CHAR_SLANT
UIS$GET_CHAR_SPACING
UIS$GET_CLIP
UIS$GET_COLOR
UIS$GET_COLORS
UIS$GET_CURRENT_OBJECT
UIS$GET_DISPLAY_SIZE
UIS$GET_FILL_PATTERN
UIS$GET_FONT

Contents

18-56
18-57
18-58
18-59
18-60
18-61
18-63
18-64
18-65
18-66
18-69
18-71
18-72
18-73
18-74
18-75
18-76
18-77
18-78
18-81
18-83
18-85
18-87
18-89
18-91
18-93
18-95
18-96
18-98
18-99
18-100
18-101
18-102
18-104
18-106
18-108
18-110
18-112
18-114
18-116
18-119
18-121

XV

Contents

xvi

UISSGET_FONT_ATTRIBUTES
UIS$SGET_FONT_SIZE
UISSGET_HW_COLOR_INFO
UISSGET_INTENSITIES
UISSGET_INTENSITY
UISSGET_KB_ATTRIBUTES
UISSGET_LINE_STYLE
UISSGET_LINE_WIDTH
UISSGET_NEXT_OBJECT
UISSGET_OBJECT_ATTRIBUTES
UISSGET_PARENT_SEGMENT
UIS$GET_POINTER_POSITION
UISSGET_POSITION
UIS$GET_PREVIOUS_OBJECT
UISSGET_ROOT_SEGMENT
UIS$SGET_TB_INFO
UISSGET_TB_POSITION
UISSGET_TEXT_FORMATTING
UISSGET_TEXT_MARGINS
UISSGET_TEXT_PATH
UISSGET_TEXT_SLOPE
UIS$SGET_VCM_ID
UISSGET_VIEWPORT_ICON
UISSGET_VIEWPORT_POSITION
UISSGET_VIEWPORT_SIZE
UISSGET_VISIBILITY
UISSGET_WINDOW_ATTRIBUTES
UISSGET_WINDOW_SIZE
UISSGET_WRITING_INDEX
UISSGET_WRITING_MODE
UISSGET_WS_COLOR
UISSGET_WS_INTENSITY
UIS$SHLS_TO_RGB
UIS$HSV_TO_RGB
UISSIMAGE
UISSINSERT_OBJECT
UISSLINE '
UISSLINE_ARRAY
UISSMEASURE_TEXT
UISSMOVE_AREA
UISSMOVE_VIEWPORT
UISSMOVE_WINDOW

18-123
18-126
18-128
18-131
18-133
18-135
18-137
18-139
18-141
18~-142
18-145
18-146
18-147
18-149
18-151
18-153
18-155
18-156
18-157
18-159
18-161
18-163
18-164
18-165
18-166
18-168
18-169
18-170
18-171
18-173
18-174
18-176
18-178
18-180
18-182
18-186
18-187
18-190
18-192
18-197
18-199
18-200

Contents

UISSNEW_TEXT_LINE , 18-201
UIS$PLOT 18-202
UIS$PLOT_ARRAY 18-205
UIS$POP_VIEWPORT 18-207
UIS$PRESENT 18-209
UIS$PRIVATE 18-210
UIS$PUSH_VIEWPORT 18-211
UIS$READ_CHAR 18-213
UIS$RESIZE_WINDOW 18-215
UISSRESTORE_CMS_COLORS 18-218
UIS$RGB_TO_HLS 18-219
UISSRGB_TO_HSV 18-221
UIS$SET_ADDOPT_AST 18-223
UIS$SET_ALIGNED_POSITION 18-224
UIS$SET_ARC_TYPE 18-226
UIS$SET_BACKGROUND_INDEX 18-228
UIS$SET_BUTTON_AST 18-229
UIS$SET_CHAR_ROTATION 18-232
UIS$SET_CHAR_SIZE 18-234
UIS$SET_CHAR_SLANT 18-237
UIS$SET_CHAR_SPACING 18-239
UIS$SET_CLIP 18-243
UIS$SET_CLOSE_AST 18-246
UIS$SET_COLOR 18-247
UIS$SET_COLORS 18-249
UIS$SET_EXPAND_ICON_AST 18-251
UIS$SET_FILL_PATTERN 18-252
UIS$SET_FONT 18-256
UIS$SET_GAIN_KB_AST , 18-257
UIS$SET_INSERTION_POSITION 18-258
UIS$SET_INTENSITIES 18-260
UIS$SET_INTENSITY 18-262
UIS$SET_KB_AST 18-264
UIS$SET_KB_ATTRIBUTES 18-266
UIS$SET_KB_COMPOSE2 18-269
UIS$SET_KB_COMPOSE3 18-271
UIS$SET_KB_KEYTABLE 18-272
UIS$SET_LINE_STYLE 18-274
UIS$SET_LINE_WIDTH 18-277
UIS$SET_LOSE_KB_AST 18-280
UIS$SET_MOVE_INFO_AST 18-281

UISSSET_POINTER_AST 18-282

xvii

Contents

UIS$SET_POINTER_PATTERN
UIS$SET_POINTER_POSITION
UIS$SET_POSITION
UIS$SET_RESIZE_AST
UIS$SET_SHRINK_TO_ICON_AST
UIS$SET_TB_AST
UIS$SET_TEXT_FORMATTING
UIS$SET_TEXT_MARGINS
UIS$SET_TEXT_PATH
UIS$SET_TEXT_SLOPE
UIS$SET_WRITING_INDEX
UIS$SET_WRITING_MODE
UIS$SHRINK_TO_ICON
UIS$SOUND_BELL
UIS$SOUND_CLICK
UISSTEST KB

UISSTEXT
UIS$TRANSFORM_OBJECT

18-285
18-287
18-288
18-290
18-293
18~294
18-297
18-300
18-302
18-304
18-307
18-308
18-309
18-312
18-313
18-314

~18-315

18-318

PARTIV UISDEVICE COORDINATE (UISDC)

ROUTINES
CHAPTER 19 UIS DEVICE COORDINATE GRAPHICS ROUTINES 19-1
19.1 OVERVIEW 191
19.2 UISDC ROUTINES—HOW TO USE THEM 19-1
19.3 ROUTINE ARGUMENTS QUICK REFERENCE 19-2
19.4 UISDC ROUTINES AND ARGUMENTS 19-2

xviii

UISDCSALLOCATE_DOP
UISDC$CIRCLE

UISDCSELLIPSE

UISDCSERASE
UISDC$SEXECUTE_DOP_ASYNCH
UISDCSEXECUTE_DOP_SYNCH

19-4
19-6
19-8
19-10
19-11
19-12

Contents

UISDC$GET_ALIGNED_POSITION 19-13
UISDC$GET_CHAR_SIZE ‘ 19-14
UISDC$GET_CLIP 19-16
UISDC$GET_POINTER_POSITION 19-17
UISDC$GET_POSITION 19-18
UISDC$GET_TEXT_MARGINS 19-19
UISDC$GET_VISIBILITY 19-20
UISDCSIMAGE 19-21
UISDCS$LINE 19-24
UISDCSLINE_ARRAY 19-25
UISDC$LOAD_BITMAP 19-27
UISDC$MEASURE_TEXT 19-29
UISDC$MOVE_AREA 19-31
UISDC$NEW_TEXT_LINE 19-32
UISDC$PLOT : 19-33
UISDC$PLOT_ARRAY 19-34
UISDC$QUEUE_DOP 19-36
UISDC$READ_IMAGE 19-37
UISDC$SET_ALIGNED_POSITION 19-39
UISDC$SET_BUTTON_AST 19-40
UISDC$SET_CHAR_SIZE 19-42
UISDC$SET_CLIP 19-44
UISDC$SET_POINTER_AST 19-45
UISDC$SET_POINTER_PATTERN 19-47
UISDCS$SET_POINTER_POSITION 19-49
UISDC$SET_POSITION 19-50
UISDC$SET_TEXT_MARGINS 19-51
UISDCS$TEXT 19-52
APPENDIX A UIS CALLING SEQUENCES SUMMARY A-1
APPENDIX B UISDC CALLING SEQUENCES SUMMARY B-1

Xix

Contents

APPENDIX C UIS MULTINATIONAL CHARACTER AND TECHNICAL

FONTS C-1
C.1 OVERVIEW C-1

C.2 UIS MULTINATIONAL CHARACTER SET FONTS AND FONT
SPECIFICATIONS C-1
C3 UIS TECHNICAL CHARACTER SET FONTS C-16
APPENDIX D FILL PATTERNS D-1
ZT’FENDlX E ERROR MESSAGES E-1
APPENDIXF VMS DATA TYPES F-1
F.1 VMS DATA TYPES F-1
F.2 VAX BLISS IMPLEMENTATION F-13
F.3 VAX C IMPLEMENTATION F-16
F.4 VAX FORTRAN IMPLEMENTATION ' F-19
F.5 VAX MACRO IMPLEMENTATION F-23
F.6 VAX PASCAL IMPLEMENTATION F-25
F.7 VAX PL/I IMPLEMENTATION F-30

XX

Contents

INDEX
GLOSSARY Glossary-1
INDEX
FIGURES
1-1 Typical VMS Workstation Hardware 1-2
2-1 Virtual Display, Display Window, and Display Viewport 2~2
2-2 World Coordinate System and Virtual Display 2-4
2-3 Absolute Device Coordinates 2-6
2-4 Mapping a Display Window to a Display Viewport 2-7
2-5 Display Window in a Virtual Display 2-8
2-6 Displaying a Graphic Object 2-9
2-7 Display List Extraction 2-12
4-1 Bitplane Configuration in Single and Multiplane Systems 4-2
4-2 Direct Color Values 4-3
4-3 Hardware Color Map 4-4
4-4 Mapped Color Values in Four-Plane System 4-5
4-5 RGB and Intensity Color Values as Hardware Color Map Entries . 4-6
4-6 Swapping Virtual Color Maps : 4-8
4-7 Reserved Hardware Color Map Entries in a Four-Plane Color
System 4-10
6-1 Passing Arguments 6-7

7-1 Mapping a Bitmap to a Raster
7-2 Display Viewport and Graphic Oblects

7-5

7-7
8-1 Aspect Ratios of the Display Window and Display Vlewport - 8-3
8-2 Four Display Viewports 8-5
8-3 Objects Within Different Windows 8-8
8-4 Display Window Deletion 8-9
8-5 Before Panning the Virtual Display : 8-13
8-6 Panning the Virtual Display 8-14
8-7 Occluding a Display Viewport 8-17
8-8 Popping a Display Viewport 8-18
8-9 Pushing a Display Viewport 8-19
8-10 General Placement and No Border 8-22
8-11 Moving Graphic Objects Within the Virtual Display -~ 8-24
8-12 World Coordinate Transformations : 8-27
9-1 Structure of Graphic Objects 9-5
9-2 UIS Device-Independent Writing Modes 9-11

xXi

Contents

9-3 Bit Set Mode 9-16
9-4 Bit Clear Mode 9-17
9-5 Bit Clear Negate Mode 9-18
9-6 Bit Set Negate Mode 9-18
9-7 Copy Mode 9-19
9-8 Copy Negate Mode 9-20
10-1 Character Cell 10-2
10-2 Monospaced and Proportionally Spaced Characters 10-2
10-3 Text Path 10-3
10-4 Text Slope 10-4
10-5 Character Spacing 10-5
10-6 Simple Character Rotation 10-8
10-7 Character Rotation with Slope Manipulation 10-9
10-8 Text Path Manipulation Without Character Rotation = 10-11
10-9 Character Slanting _- 10-15
10-10 Character Slanting and Rotation with Slope Manipulation 10-16
10-11 Character Scaling 10-18
10-12 UIS Fonts 10-24
10-13 Character and Line Spacing 10-26
10-14 Baseline and Top of Character Cell i 10-28
10-15 Character Slanting 10-29
10-16 Manipulating the Text Baseline 10-31
10-17 Character Rotation Without Slanting 10-33
10-18 Character Rotation with Slanting : 10-34
10-19 Manipulating Character Size 10-35
11-1 Closing an Arc 11-5
11-2 Filling a Closed Arc 11-6
11-3 Line Width 11-8
11-4 Modifying Line Width and Style 11-9
11-5 Vertical Bar Graph 11-12
11-6 Clipping rectangles 11-14
12-1 Centering Text 12-6
12-2 Pie Graph 12-9
13-1 Binary Encoded Instruction 13-1
13-2 Nested Segments 13-3
13-3 Disabling a Display List 13-7
13-4 After Display List Execution 13-8
13-5 Tree Diagram—Program WALK 13-9
13-6 Display List Elements 13-11
13-7 Contents of the Display List 13-12
13-8 Display List Structure in Program HOP 13-13
13-9 Traversing Upward Along the Segment Path 13-15
13-10 Searching Downward Through a Segment 13-16
13-11 Contents of the Display List Drawn in the Virtual Display 13-17

13-12 Pre-Edit Display List Structure 13-19

xxii

| T N A |
a s w

== O 0O ~N O

CPOOOOOOO
o

Contents

Post-Edit Structure of the Display List 13-21
Before Display List Modification 13-22
Executing the Modified Display List 13-23
Verifying the Contents of the Display List 13-24
Text Output During Execution 13-25
Final Text Output 13-26
Translating a Graphic Object : 14-2
Simple Scaling 14-3
Complex Scaling 14-4
Uniformly Scaling a Graphic Object , 14-5
Differentially Scaling a Graphic Object 14-6
Simple Rotation of a Graphic Object 14-7
Complex Rotation of a Rectangle 14-8
Complex Rotation of a Triangle 14-13
Modifying Attributes with a Transformation 15-1
Modifying Attributes with a Copy 15-2
Binary Encoded Instruction 15-3
Extended Binary Encoded Instruction 15-4
Format of Attribute-Related Argument 15-6
Format of Graphics- and Text-Related Argument 15-6
Structure of UIS Metafile 15-13
Original Objects Drawn in the Virtual Display 15-17
After Buffer Execution 15-18
Private Data 15-23
Verifying the Contents of the Temporary Array and User Buffer _ 15-24
Hot Air Balloon 15-25
Different Types of Information Returned from Inquiry Routines _ 16-12
Writing Characters to a Display Viewport 17-7
Default Pointer Pattern 17-10
New Pointer Pattern 17-11
Unresized Window and Viewport 17-18
Resized Window and Viewport 17-19
lcon 17-19
Functional Categories of UIS Routines 18-6
Bit Setting in the Bitmap 19-23
Font 1 Cc-2
Font 2 C-3
Font 3 C-4
Font 4 C-5
Font 5 : C-6
Font 6 Cc-7
Font 7 Cc-8
Font 8 C-9
Font 9 ; Cc-10
Font 10 : Cc-1

xxiii

Contents

XXiv

Cc-11
C-12
C-13
C-14
C-15
C-16
C-17
Cc-18
C-19
C-20
C-21
C-22
C-23
C-24
C-25
C-26
D-1

D-2

D-3

D-5
D-6
D-7
D-8
D-9

D-10

D-11
D-12
D-13
D-14
D-15
D-16
D-17
D-18
D-19
D-20
D-21
D-22
D-23
D-24
D-25
D-29
D-27
D-28
D-29

Font 11

Font 12

Font 13

Font 14

Font 15

Font 16

Font 17

Font 18

Font 19

Font 20

Font 21

Font 22

Font 23

Font 24

Font 25

Font 26

PATT$C_VERT1_1 and PATT$C_VERT1_3

PATT$C_VERT2_2 and PATT$C_VERT3_1

PATT$C_VERT1_7 and PATT$C_VERT2_6

PATTC_VERT_4 and PATT$C_VERT6_2

PATT$C_HORIZ1_1 and PATT$C_HORIZ1_3

PATT$C_HORIZ2_2 and PATT$C_HORIZ3_1

PATT$C_HORIZ1_7 and PATT$C_HORIZ2_6

PATT$SC_HORIZ4_4 and PATT$C_HORIZ6_2

PATT$C_GRID4 and PATT$C_GRID8
PATT$C_UPDIAG1_3 and PATT$C_UPDIAG2_2

PATT$C_UPDIAG3_1 and PATT$C_UPDIAG1_7

PATT$C_UPDIAG2_6 and PATT$C_UPDIAG4_4

PATT$C_UPDIAGS6_2 and PATT$C_DOWNDIAG1_3

PATT$C_DOWNDIAG2_2 and PATT$C_DOWNDIAG3_1
PATT$C_DOWNDIAG1_7 and PATT$SC_DOWNDIAG2_6
PATT$C_DOWNDIAG4_4 and PATT$C_DOWNDIAG6_2
PATT$C_BRICK_HORIZ and PATT$C_BRICK_VERT

PATT$C_BRICK_DOWNDIAG and PATT$C_BRICK_UPDIAG
PATT$C_GREY4_16D and PATT$C_GREY12_16D

PATT$C_BASKET_WEAVE and PATT$C_SCALE_DOWN
PATT$C_SCALE_UP and PATT$C_SCALE_RIGHT

PATT$C_SCALE_LEFT and PATT$C_GREY1_16

PATT$SC_GREY2_16 AND PATT$SC_GREY3_16

PATT$C_GREY4_16 and PATT$C_GREY5_16

PATT$C_GREY6_16 and PATT$C_GREY7_16
PATT$C_GREY8_16 and PATT$C_GREY9_16

PATT$C_GREY10_16 and PATT$SC_GREY11_16
PATT$C_GREY12_16 and PATT$C_GREY13_16

PATT$C_GREY14_16 and PATT$C_GREY15_16

C-12
Cc-13
C-14
C-15
C-16
C-17
C-18
C-19
Cc-20
Cc-21
C-22
C-23
C-24
C-25
C-26
c-27

D-1

D-2

D-2

D-3

D-3

D-4

D-5
D-5
D-6
D-6
D-7
D-7
D-8
D-8
D-9
D-9
D-10
D-10
D-11
D-11
D-12
D-12
D-13
D-13
D-14
D-14
D-15
D-15

Contents

D-30 PATT$C_FOREGROUND D-16
D-31 PATT$C_BACKGROUND D-16
TABLES
4-1 Hardware Color Map Characteristics 4-4
4-2 Color Palette 4-6
6-1 VAX Standard Data Types 6-3
6-2 Entry Point and Symbol Definition Files 6-8
7-1 Coordinate Types and Values 7-2
8-1 UIS Windowing Routines 8-1
9-1 Attribute Block 0 9-1
9-2 Default Settings of General Attributes 9-2
9-3 UIS Writing Modes 9-6
10-1 Default Settings of Text Attributes in Attribute Block 0 10-19
11-1 Default Settings of Graphics and Windowing Attributes 11-1
12-1 Inquiry Routines 12-2
15-1 Generic Encoding Symbols and Opcodes 15-4
15-2 Arguments of Binary Encoded Instructions 15-7
15-3 Structure of UIS Metafiles 15-11
16-1 Color and Intensity Routines 16-1
16-2 Color and Intensity Inquiry Routines 16-9
17-1 AST-Enabling Routines 17-2
17-2 AST Routines and Descriptions 17-4
17-3 Pointer AST-Enabling Routines 17-8
17-4 Tasks and Corresponding UIS Routines 17-12
17-5 AST-Enabling Routines that Trigger AST Routine Execution 17-13
17-6 AST Routine Execution Programming Options 17-13
18-1 Main Headings in the Routine Template 18-1
18-2 General Rules of Syntax 18-4
18-3 Routine Arguments 18-11
19-1 Routine Arguments 19-2
A-1 UIS Calling Sequences A-1
B-1 UISDC Calling Sequences B-1
C-1 Font 1 Cc-2
C-2 Font 2 C-3
Cc-3 Font 3 C-4
C-4 Font 4 C-5
C-5 Font 5 C-6
C-6 Font 6 Cc-7
Cc-7 Font 7 C-8
C-8 Font 8 C-9
Cc-9 Font 9 Cc-10
C-10 Font 10 Cc-11

XXv

Contents

xxvi

c-11
c-12
Cc-13
C-14
c-15
C-16
c-17
Cc-18
C-19
C-20
Cc-21
C-22
Cc-23
C-24
C-25
C-26
F-1
F-2

F-3

F-4

F-5

F-6

F-7

Font 11

Font 12

Font 13

Font 14

Font 15

Font 16

Font 17

Font 18

Font 19

Font 20

Font 21

Font 22

Font 23

Font 24

Font 25

Font 26

VMS Data Types

VAX BLISS Implementation

VAX C Implementation

VAX FORTRAN Implementation
VAX MACRO Implementation

VAX PASCAL Implementation
VAX PL/I Implementation

C-12
C-13
Cc-14
C-15
C-16
C-17
Cc-18
Cc-19
C-20
C-21
C-22
c-23
C-24
C-25
C-26
c-27

F-2
F-14
F-16
F-19
F-23
F-26
F-30

Preface

This programming guide describes the VMS workstation graphics software.
It contains general information about basic VMS graphics concepts,

a tutorial for learning to program with VMS graphics, and complete
descriptions and reference information about the system routines for

all callable functions. ’

Intended Audience

This guide is intended for general users and programmers who want to
learn the concepts and use appropriate routines in graphics application
programs.

Document Structure

This guide is divided into four major sections, VMS Workstation Software
Graphics Concepts, How to Program with VMS Workstation Software -

Graphics, UIS Routine Descriptions, and UIS Device Coordinate (UISDC)
Routines. These sections are briefly described in the following paragraphs.

Part | — VMS Workstation Software Graphics Concepts

This section contains five chapters with a general overview of the basic
concepts of VMS workstation graphics.

¢ Chapter 1 — System Description

This chapter briefly describes the hardware, software, and options that
are parts of the VMS workstation system.

¢ Chapter 2 — Display Management Concepts

This chapter discusses the concepts of world coordinates, device
coordinates, virtual displays, windows, viewports, window and
viewport scaling, and distortion of graphic objects.

* Chapter 3 — Graphic Objects and Attributes

This chapter describes and shows the relationship between graphics
routines, attribute blocks, text attributes, graphics attributes, and
segments.

¢ Chapter 4 — Color Concepts

This chapter discusses the various color and intensity environments
supported by the VAXstation color systems. '

¢ Chapter 5 — Input Devices

This chapter shows how the workstation input devices relate to the
workstation graphics system.

xxvii

Preface

xxviii

Part Il — How to Program with VMS Workstation Software Graphics

This section contains step-by-step tutorial information about writing
application programs using VMS workstation software graphics. Practical
programming examples are provided throughout this section. It is divided
according to routine functions into the following chapters:

Chapter 6 — Programming Considerations

This chapter describes the programming interface and topics relating to
program execution.

Chapter 7 — Creating Basic Graphic Objects

This chapter describes the underlying structures and shows how to
create graphic objects.

Chapter 8 — Display Windows and Viewports

- This chapter shows how to create and manipulate display windows and

display viewports.
Chapter 9 — General Attributes

This chapter describes writing modes, display background and
foreground, and the writing index.

Chapter 10 — Text Attributes

This chapter describes how attributes may be used to enhance and
modify text.

Chapter 11 — Graphics Attributes

This chapter describes how attributes may be used to enhance and
modify the appearance of graphic objects.

Chapter 12 — Inquiry Routines

This chapter discusses how information can be returned to the
application program.

Chapter 13 — Display Lists and Segmentation

This chapter describes how to create and manipulate display lists and
segments.

Chapter 14 — Geometric and Attribute Transformations

This chapter describes the various ways graphic objects and
components of graphic objects can be manipulated with the respect
to the coordinate space.

Chapter 15 — Metafiles and Private Data

This chapter discusses how to extract the contents of a display list
and store the data in a buffer or external file. There is additional
information about how to associate private data with a graphics display.

Chapter 16 — Programming in Color

The chapter describes how to create and dlsplay graphic objects in
color.

Chapter 17 — Asynchronous System Trap Routines

Preface

This chapter discusses how to make use of program-related events to
increase the interactive nature of your applications.

Part il — UIS Routine Descriptions

This section contains reference material about the device-independent VMS
workstation software graphics routines.

¢ Chapter 18 — UIS Routine Descriptions

* UIS Routine Descriptions

Part IV — UIS Device Coordinate (UISDC) Routines

This section contains reference material about device-dependent VMS
workstation software graphics routines.

¢ Chapter 19 — UIS Device Coordinate Graphics Routines
¢ UISDC Routines

Appendix A — Summary of UIS Calling Sequences
Appendix B — Summary of UISDC Calling Sequences
Appendix C — UIS Fonts '
Appendix D — UIS Fill Patterns

Appendix E — Error Messages

Appendix F — VMS Data Types

Glossary

How To Use This Guide

This guide is designed so that different types of users can benefit by its
information:

¢ General users and programmers new to graphics software and VMS
workstation software graphics can use it as a learning tool.

* Programmers already familiar with graphics software in general and/or
VMS workstation software graphics can use it as a reference tool.

Inexperienced Users

If you are unfamiliar with the VMS workstation software graphics system,
you should begin by reading Part I of this guide. It gives you an overview
of the graphics concepts discussed in subsequent sections of the book.

The programming tutorial in Part II provides a step-by-step approach for
learning how to write applications that take advantage of the graphics
capabilities of the VMS workstation.

Part III provides you with reference information about all of the UIS
routinies used in VMS workstation software graphics. It is easier to use
after you have read Part II of this guide.

Part IV contains appendices that provide reference material about UISDC
graphics routines and error messages.

XxXix

Preface

Experienced Users

Once you have become familiar with VMS workstation graphics, you will
seldom need to refer to Part I of this gulde, except when reviewing basic
concepts.

Refer to Part II for examples and suggestions on the proper use of VMS
workstation software graphics routines.

Part III is an alphabetically arranged reference section that you can use to
get detailed descriptions of VMS workstation software graphics routines.
Before using this section, you should already be familiar with Parts I and 1I
of this guide.

Part IV contains appendices that provide reference material about UISDC
graphics routines and error messages.

Associated Documents

XXX

The following VMS manuals are related to this guide:
¢ VMS Workstation Software Release Notes

o VMS Workstation Software Installation Guide

* VMS Workstation Software Guide to Printing Graphics
® VMS Workstation Software User’s Guide

o VMS Workstation Software Video Device Driver Manual
e VMS User’s Manual

* VMS User’s Primer

s VMS Programmer’s Manual

* VMS FORTRAN Programmer’s Primer

® VMS Programming Pocket Reference

e VMS Programming Support Manual

* Installing or Upgrading VMS from Diskettes

¢ Installing or Upgrading VMS from a Tape Cartridge

Preface

Documentation Conventions

This manual uses the following conventions:

Convention

Meaning

RET

$ SHOW TIME
05-JUN-1986 11:55:22

$ TYPE MYFILE.DAT

file-spec,...

[logical-name]

quotation marks
apostrophes

A symbol with a one- to six-character
abbreviation indicates that you press a key
on the terminal, for example, .

The phrase CTRL/x indicates that you

must press the key labeled CTRL while you
simultaneously press another key, for example,
CTRLU/C, CTRL/Y, CTRL/O.

Command examples show all output fines
orprompting characters that the system prints
or displays in black letters. All user-entered
commands are shown in red letters.

Vertical series of periods, or ellipsis, mean either
that not all the data that the system would
display in response to the particular command is
shown or that not all the data a user would enter
is shown.

Horizontal ellipsis indicates that additional
parameters, values, or information can be
entered.

Square brackets indicate that the enclosed item
is optional. (Square brackets are not, however,

optional in the syntax of a directory name in a

file specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used torefer
to double quotation marks (). The term
apostrophe (/) is used to refer to a single
quotation mark.

XXXi

New and Changed Features

(New and Changed Features) The following sections describe changes to the programming interface

since UIS Version 2.0.

New UIS Routines

The following UIS routines were added.

Function

Routine

AST-enabling

Color

Display list

Graphics

UIS$SET_ADDOPT_AST
UIS$SET_EXPAND_ICON_AST
UIS$SET_TB_AST
UIS$SET_SHRINK_TO_ICON_AST

UIS$CREATE_COLOR_MAP
UIS$CREATE_COLOR_MAP_SEG
UIS$DELETE_COLOR_MAP
UIS$DELETE_COLOR_MAP_SEG
UIS$GET_COLORS
UIS$GET_HW_COLOR_INFO
UIS$GET_INTENSITIES
UIS$GET_VCM_ID
UIS$HLS_TO_RGB
UIS$HSV_TO_RGB
UIS$RESTORE_CMS_COLORS
UIS$RGB_TO_HLS
UIS$RGB_TO_HSV
UIS$SET_INTENSITIES

UIS$COPY_OBJECT
UIS$DELETE_OBJECT
UIS$DELETE_PRIVATE
UIS$SEXECUTE
UIS$EXECUTE_DISPLAY
UIS$EXTRACT_HEADER
UIS$EXTRACT_OBJECT
UIS$SEXTRACT _PRIVATE
UIS$SEXTRACT_REGION
UISSEXTRACT_TRAILER
UISSFIND_PRIMITIVE
UIS$FIND_SEGMENT
UIS$GET_CURRENT_OBJECT
UIS$GET_NEXT_OBJECT
UIS$GET_OBJECT_ATTRIBUTES
UIS$GET_PARENT_SEGMENT
UIS$GET_PREVIOUS_OBJECT
UIS$GET_ROOT_SEGMENT
UIS$SINSERT_OBJECT
UIS$PRIVATE
UIS$SET_INSERTION_POSITION
UIS$TRANSFORM_OBJECT

UISSLINE
UIS$LINE_ARRAY

Xxxiii

New and Changed Features

Function Routine

Keyboard and pointer UISSCREATE_TB
UIS$DELETE_TB

UIS$DISABLE_TB
UIS$ENABLE_TB
UIS$GET_TB_INFO
UIS$GET_TB_POSITION

Text UIS$GET_CHAR_ROTATION
UIS$GET_CHAR_SIZE
UISSGET_CHAR_SLANT
UISSGET_FONT_ATTRIBUTES
UIS$GET_TEXT_FORMATTING
UIS$GET_TEXT_MARGINS
UIS$GET_TEXT_PATH
UIS$GET_TEXT_SLOPE
UIS$SET_CHAR_ROTATION
UIS$SET_CHAR_SIZE
UIS$SET_CHAR_SLANT
UIS$SET_TEXT_FORMATTING
UIS$SET_TEXT_MARGINS
UIS$SET_TEXT_PATH
UIS$SET_TEXT_SLOPE

Windowing UIS$EXPAND_ICON
UIS$GET_VIEWPORT_ICON
UIS$GET_WINDOW_SIZE
UIS$SHRINK_TO_ICON

New UISDC Routines
The following UISDC routines were new for Version 3.0.
e UISDC$ALLOCATE_DOP
* UISDC$EXECUTE_DOP_ASYNCH
¢ UISDC$EXECUTE_DOP_SYNCH
e UISDC$GET_CHAR_SIZE
* UISDC$GET_TEXT_MARGINS
* UISDCSLINE
e UISDCS$LINE_ARRAY
* UISDC$SLOAD_BITMAP
¢ UISDC$QUEUE_DOP
¢ UISDC$SET_CHAR_SIZE
» UISDCS$SET_TEXT_MARGINS

XXXiv

New and Changed Features

New Chapfers

Three new chapters describing color concepts and color programming
considerations have been added since Version 2.0.

¢ Color Concepts
¢ Geometric and Attribute Transformations

¢ Programming in Color

New UIS Writing Modes
Five new writing modes have been added since Version 2.0.
e UIS$C_MODE_BIC
e UIS$C_MODE_BICN
e UIS$C_MODE_BIS
e UIS$C_MODE_BISN
¢ UIS$C_MODE_COPYN

New Technical Character Set Fonts

Twelve new technical character set fonts have been added since Version
2.0.

New Text Attributes

The following new text attributes have been added to the programming
interface. '

e Character rotation
¢ Character scaling
¢ Character slant

¢ Text formatting

¢ Text margins

¢ Text path

e Text slope

XXXV

New and Changed Features

Changes to Existing UIS Routines
UISSBEGIN_SEGMENT

UIS$BEGIN_SEGMENT now returns segment identifier that can be
referenced by other display list routines. For example, this allows
traversing segments and segment paths.

UISSMEASURE_TEXT and UISSTEXT
You can now use control lists with UIS$TEXT and UISSMEASURE_TEXT.
UIS$SDISABLE_DISPLAY_LIST and UISSENABLE_DISPLAY_LIST

Additional arguments have been included that control display screen and
display list updates.

UIS$SET_POINTER_PATTERN and UISDC$SET_POINTER_PATTERN

If you are using a color system, you can now specify a pointer pattern
outline.

Display Lists and Segmentation

The chapter on display lists and segmentation has been expanded with
more examples.

UIS Metafiles

You can create and store metafiles of generically encoded instructions as
files and reexecute the file.

Shrinking Viewports and Expanding Icons

Applications can now shrink display viewports and expand icons.

Obsolete Version 2.0 UIS Routines
The following routines are obsolete.
e UIS$GET_LEFT_MARGIN
e UIS$SET_LEFT_MARGIN
e UISDC$GET_LEFT_MARGIN
e UISDC$SET_LEFT_MARGIN

XXXVi

Partl VMS Workstation Software Graphics Concepts

1 System Description

1.1 Overview

This chapter introduces the VMS Workstation Software graphics system.
The chapter has two parts:

L]

L

A summary of typical workstation hardware

A description of the graphics software

1.2 VAXstation Hardware

The VMS workstation can be used as a sfandalone system. It has all the
components necessary to run programs and perform tasks without being
connected to a host computer. It can also be connected to a host computer
and used as a part of a network in a larger system.

The VMS workstation typically consists of a configuration of the following
hardware:

System cabinets or boxes

Display monitor

Keyboard

Tablet with puck and stylus or three-button mouse
Communications board

Printer

Figure 1-1 shows typical VMS workstation hardware.

1.2.1

1.2.2

1.2.3

System Description

Figure 1-1 Typical VMS Workstation Hardware

Stylus

Processor

Keyboard

Display Monitor

Mouse

Puck

ZK-4616-85

System Cabinet or Box

The system cabinet (box) is the heart of the VMS workstation system. The
system cabinet contains the CPU, disk drives, memory, any options, and
communications hardware for the system. Usually, the cabinet or box
houses both fixed and flexible disk drives. The amount of memory can
vary, depending on the options installed.

Monitor

The workstation monitor is a high-resolution, bitmap device that displays
text and graphics information. Depending on the model, you can use the
workstation monitor to display black and white (bitonal), grey scale, or
color graphics.

!

Keyboard

The workstation uses the DIGITAL LK201, a standard low-profile style
keyboard that consists of:

* A top row of user-definable function keys
* A user-definable numeric keypad
* A special keypad with arrow keys and function keys

¢ A standard alphanumeric keypad

1.2.4

1.2.5

1.2.6

1.2.7

1.3

System Description

Some of the top-row function keys are control keys that allow you to:
* Hold the screen

¢ Display the operator window

¢ Switch the windowing system

¢ Change the active window

The top row also has editing keys and keys that call functions such as
cancel, exit, and help.

You can program the function keys and numeric keypad keys to perform

functions suited to a particular application. You can use the arrow keys to
move the keyboard cursor within applications. The alphanumeric keypad
is similar in function to a typewriter keyboard.

Mouse

The three-button mouse is a medium-resolution, relative pointing device.
The mouse is the primary means for pointing to an object on the screen.
When you roll the mouse on a flat surface, the pointer on the screen moves
the same way. You use the buttons to make selections.

Tablet

The tablet is a high-resolution, absolute positioning device. It consists of a
flat tablet, a puck with buttons, and a stylus with buttons. When you move
the puck or stylus on the tablet, the pointer on the display screen moves
the same way. You use the buttons to make selections.

Communications Board

The communications board connects the system to other computers.

Printer
The VMS workstation can have a printer connected to the processor
console port or can access printers located at remote locations through the
network. You can print any rectangular portion of display screen.
Software

The VMS workstation graphics software is a versatile graphics and
windowing interface. It is designed to be used on any of the MicroVAX
family of workstation products (such as VAXstations). This graphics
interface allows you to write application programs in VAX MACRO, VAX
BLISS, and many other high-level languages. Application programs written
to use graphics software can create and manipulate windows, display
multiple styles of text and sizes, receive input, and draw graphic objects in
the windows.

1-3

System Description

1.3.1 Graphics Routine Types

The VMS workstation graphics software contains callable routines that
can be accessed from a high-level programming language. An application
program can perform graphics and windowing functions by making calls
to appropriate routines. Routines create display windows, draw lines and
text, and build graphic objects. This software contains the following types
of routines:

¢ AST-enabling

¢ Attribute

¢ Color

* Display list

* Graphics and text

¢ Inquiry

¢ Keyboard

¢ DPointer .
¢ Sound

* Windowing

¢ Device coordinate

1.3.2 Human Interface

The VMS workstation provides an interface between you and the graphics
software. This feature is called the human inferface because it helps you use
the workstation.

This interface makes it easy to create new terminal windows on the screen.
The VMS workstation provides you with the ability to have the equivalent
of many terminals at your disposal. You can easily create emulated Digital
VT200 series or Tektronix TEK4014 terminals simply by selecting a menu
item that creates a window on the screen.

To control the placement of windows on the screen, you can move them
anywhere on the screen (or even partially off it), hide them from view,
push them behind or pop them in front of other windows, and so on. The
following list shows some possible operations.

¢ Create a new VT200 series or TEK4014 terminal window
* Move a window to a different part of the screen

¢ Push a window behind other windows

* Pop a window in front of other windows

¢ Shrink a viewport to a icon

* Change the size of a window

"¢ Delete a window

* Switch the keyboard from one window to another

System Description

e Suspend all screen activity (hold screen)
e Print any portion (or all) of a window or the screen
¢ Set workstation attributes

* Get online help

You can create emulated terminals on the VMS workstation. The
programming interface and the capabilities of emulated terminals are the
same as the programming interface and capabilities of the corresponding
real terminal. The appearance of an emulated terminal on the VMS
workstation screen is similar to that of the corresponding real terminal.
(It will not be completely identical because of hardware differences.)

If you have several terminal windows, you can start a job on one terminal
window, leave it running, then start a job on another terminal window.
Based on available resources, you create as many terminal windows as you
need and switch back and forth among them at will.

The VAXstation can emulate the Digital VT200 series or Tektronix TEK4014
terminal. Any number of VT200 series or TEK4014 windows can appear
on the screen simultaneously. However, only one window can use the
keyboard at any one time. You assign the keyboard to the window of your

VT200 ANSI and Digital private escape sequences, and TEK4014 escape
sequences, are interpreted and translated into the appropriate graphics

Programs that run under the VAX/VMS operating system will operate in a
VT100 or VT200 series workstation window without modification.

1.3.2.1 Terminal Emulation
VT200 Series/TEK4014
choice.
routines.

1.3.2.2 Communication Tools

You can communicate with the software interface through the mouse,
tablet, or keyboard.

Mouse and Tablet

The mouse and tablet control a cursor called a pointer on the screen. When
you manipulate the mouse or tablet, the pointer moves on the screen. Use
the pointer to choose objects on the screen, such as an item in a menu.
Use the buttons to make selections.

Use the pointer, in combination with buttons on the mouse, to perform the
following tasks:

e Point to objects on the screen

® Select objects on the screen

¢ Move objects around on the screen

* Push and pop windows on the screen
e Call menus to the screen

e Switch the keyboard between emulated terminals or windows

System Description

* Perform application designated functions

Keyboard

Use the keyboard to perform the following functions:

* Respond to system prompts

* Provide control keys, such as [HOLD SCREEN] and [CYCLE]
® Provide special keys, such as

e Enter data and information into a screen window

e Move a cursor in a window on the screen

¢ Perform application specific functions

1.3.3 Windowing Feature

The graphics software allows you to create and maintain many windows

at the same time (based on available resources). Graphics routines create,
delete, and manipulate overlapping windows. You can pop windows to
the front of the screen, push them to the background, move them around
the screen to a new position, or delete them from the screen. You can also
control the amount and size of information that appears in a window.

1.3.4 Graphics Capabilities

Routines create new displays and draw graphics within created displays.
A display list, which is an encoded description of routines that create
the contents of a display, is kept in memory. The display list enables a
program to pan and zoom portions of a display easily without redrawing
the entire display. Graphics software automatically scales the display.
A display, or a portion of a display, can be mapped into one or more
windows on the screen.

2

2.1

2.1.1

Display Management Concepts

This chapter discusses basic concepts involved in creating a graphic object
and displaying it on the workstation screen. This chapter covers:

e World and device coordinates

¢ Display window and viewport scaling

Overview
* Virtual displays
¢ Display windows
¢ Display viewports
Summary

VMS workstation graphics software enables application programs to build
graphic objects and display them on the workstation screen.

An application program that takes full advantage of VMS workstation
graphics capabilities can perform the following tasks:

¢ Create a virtual display

* Draw graphics and text into the virtual display

* Open windows into the virtual display for viewing on an output device
* Map windows into display viewports on the workstation screen

* Manipulate windows and viewports to display as much or as little of
the virtual display as desired

* Pan, zoom in and out, resize, and duplicate display windows

* Manipulate display lists

The application program must first create a virtual display in which to build
the object. Think of a virtual display as a conceptual display space that has
no actual physical size or shape. This conceptual display space, called the
world coordinate system, is defined by the application program in terms of
world coordinates. World coordinates are arbitrary units of measure selected
by the application program that specify locations (or points) in the world
coordinate system using values convenient to the application.

The graphlcs software automatically translates world coordinates to
normalized coordinates before it maps them to an output device. Normalized
coordinates convert world coordinates into a single device-independent
coordinate system so you do not have to deal with several coordinate
systems. Normalized coordinates are automatically mapped to the device-
dependent coordinates of the physical output device.

2-1

2.2

Display Management Concepts

A graphic object constructed in a virtual display is not available for display
on an output device until the application creates a display window and

display viewport.

A display window defines what portion of the virtual display graphic object
is visible. By creating the display window, the program makes information
in the virtual display potentially visible to the user. Information in the
display window is not actually visible until the display window is mapped

to a display viewport.

A display viewport is the user-controlled, physical region on a screen
created by VMS workstation software. The display viewport is the physical
representation of the display window mapped to it. It enables you to
view the graphic object inside the display window. Figure 2-1 illustrates
the relationships among the virtual display, display window, and display

viewport.

You use physical device coordinates to map a display window to a display
viewport. Physical device coordinates are points on the display screen
used to locate the graphic object. Viewing transformation is the process

by which the system maps a graphic object from world coordinates of

the display window to device coordinates of the display viewport. The
graphics software automatically processes viewing transformations.

To pan and zoom the graphic object in the display viewport, you can
manipulate the world coordinates of the display window in relation to

the world coordinates of the virtual display.

Figure 2-1 Virtual Display, Display Window, and Display Viewport

Display Viewport

Display Window

Coordinates

Virtual
Display

\Juew"‘,g/ -

on
,ans‘O’f‘iu’ -

-

Device
Coordinates

2ZK-2090-84

Coordinate Systems

Think of the VMS workstation graphics environment as a two-dimensional
plane. Within this environment, use the Cartesian coordinate system to

describe points. Cartesian coordinates take the form of x,y, where x is the
horizonal axis and y is the vertical axis. Use a coordinate pair to specify a

(

Display Management Concepts

point on this plane. Coordinate space is the area of this plane specified by
coordinate pairs.

The VMS workstation graphics software uses four Cartesian coordinate
systems: world, normalized, absolute, and viewport-relative device
coordinates.

2.2.1 Device-Independent Coordinate Systems

Device-independent coordinate systems mediate between the requirements
of the application program and graphics subsystem versus those of the
output device.

2211

World Coordinates

An application program uses world coordinates to describe a virtual display
and to build a graphic object within it. Initially, the ap Fllcation program
creates a virtual display and specifies a convenient world coordinate system
to use when referring to the virtual display. Next, the program uses the
same coordinates to specify size and location of objects to be created
within the virtual display.

World coordinates are device-independent Cartesian coordinates specified
by the application program. They provide a means of locating points in a
virtual display. The range of world coordinate values is specified when the
virtual display is created. Thus, the virtual display can be created to any
proportions selected by the application program. World coordinate values
are given as floating-point numbers.

The world coordinate system can represent any unit of measure. When
application programs construct a graphic object, world coordinates enable
them to use convenient increments of measurement. If the program
accesses information from a data base, it could specify meaningful world
coordinates for the data used. For instance, if an application draws a
chart that shows holiday season product sales, the application could use
convenient measurements that represent units sold in thousands versus
time in weeks. Or, if the application program draws a graphic object, it
could use measurements that make sense for the object. Logically, a virtual
display with a map of the United States might use world coordinates that
represent measurements in miles or kilometers. A floor plan of a house
might use world coordinates that represent feet and inches or meters and
centimeters. :

Figure 2-2 shows a world coordinate system that describes a virtual display
in which an object has been constructed.

Display Management Concepts

Figure 2-2 World Coordinate System and Virtual Display

(-1.1) 1 (2.1)
fm-—————- T T m———— - 1
| |
| |
| |
1 |
| 1

o (

-1 ! (0.0 1 ' 2 X

-— } 4 >
| |
| |
: |
Virtual | |
Display | :

| 47 l
| (1.-1) |
: World
| Coordinates
|
I
|
L— ——————— o an wm w aw mn wn em cm o w— - = - —n-‘

(-1.-2) -2 (2.-2)

ZK-4617-85
2.2.1.2 Normalized Coordinates

Normalized coordinates are device-independent coordinates defined by the
graphics software. They describe the virtual display in physical terms that
any output device can use. An output device cannot use the arbitrary world
coordinates that an application program uses to describe a virtual display.
Instead, each type of output device has its own device-specific coordinates
to locate and build the graphic object. Normalized coordinates provide a
means for the graphics software to normalize these different coordinate
systems so that a graphic object can be mapped from a virtual display to
any output device.

Application programs do not directly manipulate normalized coordinates.
Rather, the graphics software internally uses normalized coordinates,
mapping them into device-specific display coordinates.

Normalized coordinates provide a way to delay the mapping of application
program world coordinates to device-specific coordinates until the actual
output device is established.

Display Management Concepts

2.2.2 Device-Dependent Coordinate Systems

Output devices use device-dependent coordinate systems to map graphic
objects on the display screen or to print objects on a printer. Device-
dependent coordinates are physical device coordinates that denote some
physical unit of measure such as pixels, centimeters, or inches. Such
physical device coordinates reflect device-dependent mapping and drawing
characteristics of the output device.

2.2.2.1

Absolute Device Coordinates

Absolute device coordinates are physical, device-dependent Cartesian
coordinates that specify a position on the VMS workstation display screen.
The position is specified in centimeters relative to the lower-left corner of
the display screen. Typically, viewport placement, pointer position, and
tablet placement use absolute coordinates. Figure 2-3 illustrates viewport
placement on the VAXstation screen.

-Display Management Concepts

Figure 2-3 Absolute Device Coordinates

[,)

\ Lower-Left
Corner of Viewport

Origin of
Display Screen 7K-5429-86

2.2.2.2

Viewport-Relative Device Coordinates

Many VMS workstation graphics software routines use a special type of
physical device coordinates called viewport-relative device coordinates,
which specify positions within a display viewport relative to the lower-left
corner of the viewport. Viewport-relative device coordinates are always
positive and specified in pixel units. A pixel is the smallest unit displayed
on a screen. VMS workstation graphics software maps display windows to
the display screen.

Viewport-relative device coordinates are used to map graphic objects from
a display window to a display viewport on a physical display device.

Before you can display a graphic object in a display viewport on a screen,
you must transform the world coordinates of the object to the viewport-
relative device coordinates of the screen.

Display Management Concepts

Figure 2-4 shows an object in a display window being mapped to a display
viewport on a physical display device. In this figure, the world coordinates
of the display window undergo a viewing transformation to the physical
device coordinates of the display device.

Figure 2-4 Mapping a Display Window to a Display Viewport

Display Terminal

Display Display Viewport
Window i Po

World Physical Device
Coordinates Coordinates
(Pixels)

ZK-4624-85

2.3 Virtual Displays

A virtual display is a conceptual space an application program creates in
which to construct graphic objects. The application program writes all text
and graphics output to a virtual display.

A virtual display has no physical size (dimensions of length and width).
Therefore, objects constructed in a virtual display also have no actual
physical dimensions. You cannot measure a virtual display or the graphic
objects within it. Rather, a virtual display and the objects within it have
relative sizes and proportions. The aspect ratio of an object in a virtual
display is a comparison of the relative proportions of the object’s vertical
and horizontal components. Use aspect ratio to refer to an object’s relative
size in a virtual display.

To create a virtual display, an application program specifies a coordinate
range in the world coordinate system. The coordinate range establishes the
relative size, or aspect ratio, of the virtual display. Objects constructed in
the virtual display are specified in terms of world coordinates and have an
aspect ratio. Later, the aspect ratio affects how the virtual display and the
objects it contains map to the display window.

- Display Management Concepts

Refer to Figure 2-2, which shows a graphic object in a virtual display. Both
the virtual display and the graphics object are specified in terms of world
coordinates.

2.4 Display Windows

A display window shows all or part of the contents of a virtual display.
Display windows are created by an application program to control how
much of a virtual display is potentially available to view. A display window
can be the size of an entire virtual display or just a small portion of it. One
or several windows in a virtual display can be active at the same time.

An application uses world coordinates to specify the relative proportions
‘and location of a display window. Therefore, the amount of virtual display
encompassed by a display window is relative to the virtual display world
coordinates. When it specifies the proportions and location of the display
window, an application program determines what portion of the graphic
object within a virtual display is visible.

World coordinate boundaries of a display window define a clipping recfangle
Any graphic object inside the clipping rectangle is potentially visible in the
display viewport. Objects outside the clipping rectangle are not visible and
are clipped from the window as illustrated in Figure 2-5.

Figure 2-5 Display Window in a Virtual Display

Virtual Display

Display

Window
e Clipped -1
| | to —»! !
t | |
EH | m [|
F GRS S SR -4

World
Coordinates
ZK-4625-85

2.5 Display Viewports

A display viewport is the area of the display screen where a display
window is mapped. It can vary in size and shape and be anywhere on the
display screen.

Display Management Concepts

Based on available resources, you can have as many viewports as you want
on the screen at a time. Viewpotrts occlude in areas where they overlap.
The last viewport created is on top and visible. However, you can modify
which viewport is on top at any one time.

Normally, the graphics software automatically maps and scales the display
window to the display viewport on a one-to-one basis. That is, the
boundaries of the display viewport implicitly default to the same size

and shape as the display window. However, the application program can
explicitly set the display window (or display viewport) to a different size or
shape than that of the display viewport (or display window). The effects of
such manipulation are discussed in the following sections of this chapter.

Figure 2-6 illustrates the relationships among the virtual display, the
display window, and the display viewport. This figure shows how a
graphics object in a virtual display is clipped to the display window, scaled
and mapped into a display viewport, and displayed on a display device
such as a terminal screen.

Figure 2-6 Displaying a Graphic Object

Display Terminal

Virtual Display Display Viewport

Display
Window

==

Uses Uses
World Physical Device
Coordinates Coordinates

ZK-4618-85

2.6 Display Window and Viewport Scaling

You can manipulate the relative sizes of the display window and the
display viewport to magnify or reduce graphic objects. The following list
describes this manipulation.

Zooming
To zoom (magnify) the graphic object:
* Decrease display window size; do not alter viewport size

* Increase display viewport size; do not alter window size

Display Management Concepts

Reducing
To reduce the graphic object:
* Increase display window size; do not alter viewport size

* Decrease display viewport size; do not alter window size

Panning

To pan the graphic object, move the display window within the virtual
display; do not alter the display viewport.

Changing View Size

To change the area of the virtual display being viewed, without performing
scaling:

* To increase the virtual display area being viewed, expand both the
display window and the display viewport proportionately.

¢ To decrease the virtual display area being viewed, contract both the
display window and the display viewport proportionately.

2.6.1 Distortion of Graphic Objects

Factors that determine whether a graphic object is distorted when it is
mapped to the screen are:

¢ Virtual display aspect ratio
* Display window

¢ Display viewport

Width to height, the display viewport can have any specified proportions
(within the limits of the display device). If the proportions of the display
viewport do not match the proportions of the display window, the graphic
object appears to be stretched or squeezed as the graphics software
attempts to fit the display window to the display viewport. (The exact
effect depends on proportional differences between the viewport and
window.)

Transformation affects different objects in different ways.

® Straight lines remain straight, but can differ in length and slope,
depending on window size and coordinate system.

* Curved lines can change shape, dependmg on the characteristics of the
graphic object and the mapping (transformation) from display window
to viewport.

* Arcs change shape and size. For instance, an ellipse can change its
proportions.

* Graphics text (specifically character size and spacing) does not adjust
to fit the required number of characters into the display viewport.
The size and spacing of text characters is fixed and will not distort.
However, the starting text position might change, dependmg 'on the
transformation between window and viewport.

2-10

Display Management Concepts

You can correct distortion. The application program can create a display
viewport with proportions appropriate to a particular graphics window

in world coordinate space. Because the display window can have

any proportions in world coordinate space, you can create a properly-
proportioned display viewport for a window that is square, tall and narrow,
short and wide, or any other shape.

2.7 Display Lists

A display list is a device-independent encoding of the exact contents of a
virtual display. The graphics software maintains and uses display lists as
follows:

¢ Automatic management of panning, zooming, resizing, and duplicating
display windows

® Structuring virtual display objects

¢ Simultaneous viewing of objects in a virtual display within several
display viewports

* Storing and reexecuting UIS pictures

¢ Editing UIS pictures

) 2.8 Generic Encoding and UIS Metafiles

Whenever a graphic object is drawn in the virtual display or an attribute is
modified, an encoded entry of the object or attribute modification is added
to the display list.

Because of these list entries, an application can extract output from a
virtual display, transfer it to an intelligent application, or store it in a
metafile, which is a generically encoded file or buffer, then later execute the
generically-encoded binary stream into a new virtual display.

Generic encoding is device-independent.

When UIS routines execute, a binary-encoded packet of values is
constructed and stored as display list entries. When the binary-encoded
packet is extracted from the display list, it becomes a generically-encoded
UIS metafile. Such metafiles can be reexecuted to invoke the appropriate
generic encoding routines.

Figure 2-7 shows a display list extraction.

2-11

Display Management Concepts

Figure 2-7 Display List Extraction

UIS Routine Call

Binary Encoded Packet

Generic Encoding Primitive

ZK-5428-86

Many UIS routines have corresponding generic encoding primitives.
However, this does not ensure a one-to-one mapping between UIS routines
and generic encoding routines or between the UIS routine arguments and |
generic encoding routine arguments.

3

3.1

3.2

Graphic Objects and Attributes

Overview
This chapter discusses the basic building blocks used to construct graphic
objects in a virtual display:
* Text and graphics routines
e Attributes and attribute modification routines
¢ Attribute blocks
* Segments
Summary

Text and graphics routines (sometimes called output routines) are the
fundamental building blocks an application program uses to create graphic
objects. These routines specify lines, circles, text, or other graphic objects.

Attributes are values that define various characteristics about the appearance
of a text or graphic object. Attributes define how displayed text objects or
graphic objects look.

An attribute block is a set of attributes. Every text and graphics routine used
by an application program must specify an attribute block. The attribute
block defines an object’s attributes.

An application program uses atfribute routines to specify or change

the current value of an attribute. The changed attribute value affects
subsequent text and graphics routines that use the attribute block. You
must use an attribute routine to specify which attribute block is affected.

Application programs can group associated attribute, graphics, and text
routines together into a segment. Segments give the program a convenient
way to view several attribute, graphics, and text routines as a single unit.

An application program uses application-specific data to associate graphics

‘and text routines or even entire segments. The application program can

store application-specific data in the generic encoding stream. In this way,
if a portion of a display screen is copied, stored, and later used (restored),
the program will be able to associate internal information with the graphic
object.

3-1

Graphic Objects and Attributes

3.3 Graphics and Text Routines

Graphics and text routines map objects directly into the virtual display.
You can use these routines to create new objects or modify existing ones.
Application programs use graphics and text routines to draw lines, circles,
text, and other graphic objects. You can combine these routines to form a
desired graphic object.

Each graphics and text routine has two required arguments: one that
specifies the virtual display where you draw a graphic object and another
that specifies the attribute block to use when you draw the graphic object.

How a graphics or text routine draws a graphic object is strongly influenced
by the attributes associated with it.

3.4 Attributes

Attributes define the appearance characteristics of graphic objects created
by graphics and text routines. Attributes influence the way a graphic object
appears on a display device. Attributes can determine color intensity,
style, mode, and width, to name a few.

When you specify attribute values, they remain the same until you explicitly
change them. For example, if the application program changes line width,
all lines are drawn to the new thickness until the program changes the line
width again.

Each type of graphic and text object has a set of unique attributes. For
example, attributes that affect graphics do not affect text, and vice versa.

- Certain general attributes, however, affect all routines. For example,

the background has an attribute you can set to determine background
appearance. Think of the background as all parts of a display not covered
by an object created by a graphics or text routine.

Attributes fall into the following general categories:
* General attributes

e Text attributes

¢ Graphics attributes

¢ Window attributes

3.4.1 Gener‘aVIAttributes

All types of graphlcs and text routines have general attributes, which
include:

* Writing color
* Background color

*. Writing mode
Writing Color

This attribute assigns the writing color. It is used by all graphics and text
routines (such as lines, text, and so on). To express this attribute, specify
an index into a color map.

Graphic Objects and Attributes

Background Color

This attribute assigns the background color. To express it, specify an index
into a color map.

Writing Mode

This attribute assigns the mode of writing text or graphics. In particular,
writing mode determines how a text or graphics routine will use the writing
and background colors to display a graphic object.

3.4.2 Text Attributes

NOTE:

Font set

This attribute specifies the font set used to define text characters. Fonts
express the size and shape of the characters in physical dimensions. This
attribute uses display routines during text plotting to enable proper-size
text to display. You can choose from a variety of multinational character
set fonts and technical character set fonts.

Character spacing

This attribute defines character spacing for width and height of character
sizes. It is the additional unit of increment beyond the normal character
size for highly spaced characters. You specify this attribute as a floating-
point number. Multiply it by the normal character size to produce the
actual spacing distance. If you specify zeros, no additional spacing is
performed. If you use negative values, the spacing is reduced instead of
increased.

In some cases, negative values for this attribute cause the characters to
overlap. '

Text Path

Text path is the direction of text drawing. The text path attribute consists
of two parts—the major path and the minor path. Major path refers to the
direction in which characters are drawn on a line. Mjinor path refers to the
direction used for beginning a new line of text. The following table lists
available major and minor paths.

e Left to right (default major text path)
* Right to left
* Bottom to top

¢ Top to bottom (default minor text path)

Text Slope

Text slope is the angle between the actual path of text drawing and the major
text path. The actual path of text drawing connects the baseline points of
each character cell.

Text Margins

This attribute specifies a starting margin and the x coordinate distance to
the ending margin.

3-3

3.4.3

Graphic Objects and Attributes

Text Formatting

This attribute and the text margins attribute position text as follows:
¢ Flush against either or both margins

* Centered

* No formatting at all

UIS supports four types of text formatting modes:
* Left justification

* Right justification

 Center justification

¢ Full justification

Character Rotation

Individual characters rotate counterclockwise from 0 to 360 degrees. The
angle of rotation is the angle between the baseline vector of the character
cell and the actual path of the text drawing.

Character Slant

This attribute specifies the angle between the up vector and baseline vector
of the character cell. You can express the character slant angle as a negative
or positive value.

Character Size

Character scaling allows you to increase the height and width of characters
in the virtual display.

Graphics Attributes

3-4

Graphics or line attributes affect graphic objects such as lines, polylines,
polygons, rectangles, arcs, and curves. These attritubes control filling of
objects and determine line style and width.

Current Line Drawing Width

This attribute sets line width in terms of world or device coordinate units.
You specify line width as a floating-point number, either interpreted as

a world coordinate width or multiplied by the standard line width for a
device to produce the desired line width.

Line Style

This attribute, a bit vector that indicates the color of each pixel drawn, sets
the current line style of line routines. You can designate the color the same
as either the foreground or the background. You repeat bit vector as often

as necessary to draw all the pixels in the line.

Graphic Objects and Attributes

Fill Pattern

This attribute specifies the fill character to be used for filling closed figures
such as polygons, circles, and ellipses. Fill pattern is specified both as a
font file and as the index of a character in that font file. You use the pattern
defined by the character to fill the figure. Refer to Appendlx D for further
information about fill patterns.

Arc Type

This attribute specifies how to close an open arc of a circle or ellipse. This
attribute can have the following values:

¢ Open—The arc is not closed off.

¢ Pie—Two radii are drawn from the endpoints of the arc to the
centerpoint (forming a pie shape).

* Chord—A line is drawn between the two endpoints of the arc,
connecting them.

3.4.4 Window Attrlbute
Clipping Rectangle

The clipping rectangle is the visible area of a virtual display. Define the
clipping rectangle as the corners of a world coordinate rectangle to which
all drawing operations are clipped. Objects or parts of objects outside the
clipping rectangle are not visible.

3.5 Attribute Blocks

An attribute block is a set of attribute values that describe the appearance
of any graphic object created by an application program. Each

attribute block contains attributes for graphics, text, and general display
characteristics.

You can address up to 256 different attribute blocks at a time. You address
them with numbers from 0 to 255. Application programs assign and use
attribute block numbers.

3.5.1 Attribute Block 0

Attribute block 0 is a special attribute block specified by the graphics
software. This attribute block contains a standard set of text and graphics

attributes. The application program cannot modify the attributes in this
block.

Attribute block 0 is read only. There is no convention on the naming
and usage of attribute blocks, with the exception of attribute block 0. The
graphics software reserves it as a default attribute block.

Attribute block 0 provides default attribute values for an application
program to use. Also, you can use it as an attribute block template to
create alternate attribute blocks.

Graphic Objects and Attributes

3.6 Segments

A segment consists of an attribute block and graphics and text objects.
With a segment, an application program can use a special attribute
without knowing if particular attribute blocks are being used by other
parts of the program. Also, with a segment, an application program can
implement transformations either on a per-segment basis or on the entire
segment tree. Segments provide programming convenience and increased
modularity.

Nested Segments

You can nest a segments. Each nested segment uses the current set of
attribute blocks of higher level segments. This feature makes it easier to
create segments without having to redefine attribute blocks. However,
modifications of attribute blocks in a segment do not affect the attribute
blocks of higher-level segments.

Extracting and Re-executing Segments

An application program can take the contents of a file that contains a
display list of a virtual display and execute it into another virtual display as
a segment. The attributes of the original virtual display should not affect
the inserted virtual display segment.

3.7 Viewing Transformations
Viewing transformation is the mapping of the display window to the display ‘
viewport. It can affect the appearance of a graphic object on a screen. The

shape of the display window and display viewport affect the appearance of
displayed text and graphic objects.

3.8 Two-Dimensional Geometric Transformations

Geometric transformations can alter the appearance of graphic objects
through scaling, translation, and rotation. These methods all involve
manipulation of the object’s angular orientation or shape in the virtual ‘
display.

Scaling

Scaling is proportional expansion or reduction of graphic objects on the
screen. For example, if the display window and display viewport shapes
are disproportional, the graphics software must squeeze or stretch the
window to fit the viewport. Distortion of the graphics window causes
distortion of the graphic objects in that window. Different graphic objects
are affected in different ways. Chapter 2 provides further information
about the distortion of graphic objects.

3-6

Graphic Objects and Attributes

Translation

Points that define the position of graphic object in a coordinate system are
translated when the object coordinates are changed but the following occur:

¢ The object does not change its angular relationship with other objects.

¢ The object does not change its implied angular relationship with the
coordinate system.

For example, translation occurs when two lines move in the coordinate
system but remain parallel.

Rotation

A graphic object rotates when it turns on a pivotal point or axis. The object
can rotate with respect to some point on its surface, or it can revolve around
some external point. To give the appearance of rotation on the display
screen, you must first translate the axis of the object to the origin or center
of the coordinate system.

3-7

4.1

4.2

4.3

4.3.1

ColorConcepts

Overview

Depending on your VAXstation, you can display graphic objects in black
and white (bitonal), grey scale, or color. The VAXstation offers a number of
color options. This chapter discusses color concepts and color subsystem
features in the following topics:

* Color hardware systems
e UIS virtual color maps

¢ Miscellaneous color concepts

See Chapter 16 for more information about programming in color.

Color Hardware Systems
UIS supports three types of VAXstation hardware systems:
¢ Monochrome or bitonal-—Displayé black and white only
¢ Intensity—Displays shades of grey or achromatic color

¢ Color—Displays shades, tints, hues, or chromatic colors

Raster Graphics Concepts

The VAXstation display screen consists of a set of picture elements called
pixels. Pixels are the smallest displayable unit of a graphic object. The
rectangular set of pixels on the VAXstation screen is a raster. To write
graphic objects, you illuminate the necessary pixels along the path of
points that geometrically describe the object. Each pixel has an address
and a binary value associated with it. Pixel values determine graphic object
color.

‘Hardware Interpretation of Pixel Values

The number of possible pixel values depends on the number of bit planes
or planes of memory that the system hardware supports. A plane is an
allocation of memory in which each bit maps to a pixel on the display
screen. Conversely, each pixel has an address in memory. The following
table shows the relationship between the number of hardware-supported
planes and the number of possible pixel values.

Color Concepts

Number of Number of

Workstation Planes Possible Values
Monochrome 1 2
Intensity or.color 40r8 16 or 256

Figure 4-1 shows how pixel values are represented in single and multiplane
systems.

Figure 4-1 Bitplane Configuration in Single and Multiplane Systems

Parallei Bit Planes

Low
Order
Plane

High-Order Plane

One Piane

Four Planes Eight Planes

2K 5242.86

4-2

In Figure 4-1, a pixel on the VAXstation screen correlates to four
corresponding bits in memory on each bit plane of a four-plane system. If ‘
the bit settings are arranged as a binary value corresponding to the high-
and low-order planes, they appear in the following order: 1011,.

Therefore, the pixel value is 111g. A pixel in a four-plane system can have
a maximum of 16 values. You can use the pixel value in two different ways,
as a direct color value or as a mapped color value.

Direct Color Value

If the pixel value is used as a direct color value, each possible pixel value
directly specifies a color. In other words, the pixel value goes directly to
system hardware (for example, a digital-to-analog converter), where it is
used as the actual color value of the graphic object. For instance, the one-
plane, VAXstation monochrome system interprets pixel values as direct
color values where 0 is black and 1 is white.

Figure 4-2 shows direct color values.

Color Concepts

Figure 4-2 Direct Color Values

Bit Setting

1
Digital-to-Analog i I
............_>. f
Converter | Display
One Plane
Each bit maps to a ‘ Corresponding pixel is
specific pixel on the illuminated using the
display screen. actual bit setting.

2K-5240-86

Mapped Color Value

When pixel values are interpreted as mapped color values, they indirectly
specify an actual color value located in a hardware color look-up table or
hardware color map. Figure 4-3 shows a hardware color map.

The pixel value is an index to an entry in the color map.

4-3

- Color Concepts

4-4

Figure 4-3 Hardware Color Map

/———- Color Map Entry

Color Vaiue 0= Color Map Index
Color Value 1
Color Value 2
Color Value 3
Color Value 4

.

[

.
Color Value
Color Value

ZK-5241.86

The hardware color map is the same size as the number of possible
pixel values; it has the maximum number of colors that can be displayed
simultaneously. Table 4-1 lists the size of the hardware color map in
intensity and color systems.

Table 4-1 Hardware Color Map'Characteristics

Number of Number of
System Planes Entries
Intensity Four 16

Eight 256
Color Four 16

Eight 256

For example, an eight-plane VAXstation intensity (color) system has a
hardware color map with 256 entries. Each color map entry contains color
values that are RGB color components and that define the desired color.
Each hardware color map entry contains a color value for each pixel.
Conversely, the value of each pixel is the hardware color map index of

a color map entry with the actual color value. Use this color value to
illuminate the pixel on the VAXstation screen. Figure 4-4 shows mapped
color values in a four-plane system.

Color Concepts

Figure 4-4 Mapped Color Values in Four-Plane System

Each bit maps 1
to the same
pixel on the
display screen. 1
0
1
Four Planes

Hardware Color Map

Color Value 0

Color Value 1

Color Value 2

Color Value 3

Color Value 4

Color Value 5

Color Value e

Color Value 7

Color Value 8

Color Value 9

Color Value - 10

Digital-to-Analog

Color Value 1 > Converter

Color Value 12

Color Value 13 Corresponding pixel
on the display screen

Color Value 14 is illuminated using the
color value located in

Color Vaiue 15 the eleventh hardware color map entry.

2K-5244.86

4.3.2 Color Representation Models

You express color values according to the requirements of the particular
color representation model used. Three well-known color representation
models are:

¢ Hue lightness saturation (HLS)
* Hue saturation value (HSV)

4-5

Color Concepts

* Red green blue (RGB)

The UIS base color model is the RGB model. RGB color values range from
0.0 to 1.0. Red, green, and blue color component values compose a single
color value on a VAXstation color system.

Specify intensity values (the color values associated with shades of grey), as
a single value in the range 0.0 to 1.0. Figure 4-5 shows RGB and intensity
color values as hardware color map entries.

Figure 4-5 RGB and Intensity Color Values as Hardware Color Map Entries

Blue Green Red 0 <+—— Color Map Index
" \ \ Color Component
Values
Intensity 0
\ Intensity Value
ZK-5239-86

4.3.3 ColorPalette

4-6

The color palette is the number of possible colors you can specify. Table 4-2
shows the color palette available on each color system.

Table 4-2 Color Palette

Possible
System Colors
Monochrome black and white
Intensity up to 22 shades of gray
Color up to 2% chromatic colors

Color Palette Size and Direct Color Systems

On direct color systems, palette size is identical to the number of
simultaneously displayable colors. For example, the size of the color
palette of a VAXstation monochrome system is two. You can display only
two possible colors, black and white, simultaneously on the screen.

Color Concepts

Color Palette Size and Mapped Color Systems

On mapped color systems, the palette size is typically much greater
than the number of simultaneously displayable colors. The palette size
is determined by the precision of color component specification. For
example, on a VAXstation color system, you can specify each color
component with eight binary bits of precision for each red, green, and

blue color component or 224 (16,177,216) possible colors.

4.4 UIS Virtual Color Maps

When an application uses hardware color resources, the hardware
color map must be aware of hardware system limitations and color
characteristics. It must know the answers to the following questions:

* Is the system direct color or mapped color?

e What is the precision of the color representation values for each RGB
color component?

* What is the range of possible pixel values?

The hardware color map contains a finite number of entries (for example,
16 entries in a four-plane system). Concurrent processes executing in the
same display space must somehow share system color resources.

Purpose of Virtual Color Maps

The virtualization of the hardware color map solves problems that
occur when individual applications require abundant system resources.
Virtualization also solves the problem that occurs when many processes
compete for finite color resources. The use of virtual color maps
is analogous to the use of virtual memory in a multiprogramming
environment where many processes must access physical memory.

When concurrent processes collectively require more color map entries
than exist in the hardware color map, the color values associated with
each competing process are swapped in and out of the hardware color
map as virtual color maps. Swapping virtual color maps in and out of the
hardware color map is a means of arbitrating hardware color map use
across applications.

The process of loading or writing values of the virtual color map into the
hardware lookup table is transparent to the user. Applications see only
a virtual color map, not the underlying hardware resources. Each virtual
display has a virtual color map associated with it.

Figure 4-6 illustrates the swapping of two 16-entry virtual color maps into a
16-entry hardware color map.

4-7

Color Concepts

Figure 4-6 Swapping Virtual Color Maps

Virtual Color Map 1

W O N OO v s W N =+ O

-
o

- s . = o
O s WN o
W @ N N W N = O

Hardware Color Map

Virtual Color Map 2

2ZK-5108-96

Characteristics of Virtual Color Maps

A virtual color map is flexible enough to serve a wide range of applications.
Virtual color map size can range from two to 32,768 entries. If you do

not specify a virtual color map, a two-entry virtual color map is created

by default. The virtual color map size does not have to match that of the
hardware color map. Although virtual color maps are potentially shareable
among applications, they are private by default. Virtual color maps are
resident; that is, you cannot swap them in the hardware color map. The
following table shows how virtual color map entries are initialized.

4-8

Color Concepts

Virtual

Color

Map Entry Color Value

0 Detault window background color
1 Default window foreground color

All other entries are undefined.

UIS transparently reconciles differences between the virtual color map
model and the hardware color resources. UIS manages the concurrent use
of these resources across applications.

For information about creating and using virtual color maps, see
Chapter 16.

4.4.1 Reserved Hardware Color Map Entries

Because of hardware limitations on mapped color systems, the hardware
color system or the UIS window management software preallocates some
of the hardware color map entries for special purposes. For example,
pointer colors, window background and foreground colors, and display
screen color are allocated reserved entries in the hardware color map.

Whenever a virtual color map exceeds the size of the hardware color
map less the reserved entries, the results are unpredictable. For more
information about how to use the programming interface to obtain the
hardware color map characteristics, see Chapter 16.

Figure 4-7 describes reserved entries in a hardware color map in a four-
plane system.

4-9

4.5

Color Concepts

Figure 4-7 Reserved Hardware Color Map Entries in a Four-Plane Color System

0

1

2

3

4

5

6

7

8

9

10

1

reserved 12

reserved 13

reserved 14
reserved 15 ‘

ZK-5430-86

UIS Color Map Segments

4-10

The use of color map segments represents a device-specific binding of a
virtual color map to the underlying hardware color resources, that is, the |
hardware color map. In a color-mapped color system, color map segments
are bound to specific hardware color map entries and swapped in and

out of the hardware color map based on system and user events. Usually,
applications need not worry about color map segments. UIS handles the
device-specific binding automatically. Applications might use color map
segments for the following reasons:

¢ Applications can explicitly control the binding of the virtual color map
and the hardware color map.

* Applications are not transported to different hardware configurations,
for example, four-plane to eight-plane systems or VAXstation color and
intensity systems to VAXstation monochrome systems.

Color Concepts

4.6 Shareable Virtual Color Maps

By default, virtual color maps are private. Yet, they can be shared among
cooperating application programs to define a uniform color regime and

to conserve hardware color map entries. Shared virtual color maps have
names, an ASCII string from 1 to 15 characters, and a name space (UIC
group or system). For example, UIS uses a system-wide, shared color map
to display terminal emulator windows and window and screen menus.

4.7 Miscellaneous UIS Color Concepts

The following sections contain additional information about the UIS color
subsystem.

4.7.1 Standard and Preferred Colors

VAXstation color and intensity systems support two sets of symbolically
defined colors. Workstation standard colors and intensity values are a set
of colors used for specific purposes within the workstation environment.
For example, the default window background and foreground, cursor
background and foreground colors, and the display screen color are the
workstation standard colors.

Workstation preferred colors are a set of colors that represent user
preference for the eight combinations of the RGB primary colors. For
example, workstation preferred colors can define a particular shade of red
rather than a full intensity red. In an intensity system, preferred colors can
define a base white level from which preferred shades of grey are derived.
Preferred values are simply a mechanism to conveniently maintain and
communicate color preferences to an application.

Use the workstation setup mechanism to set values for standard and
preferred colors. Use UIS$GET_WS_COLOR and UIS$GET_WS_
INTENSITY to return standard and preferred color and intensity values.

4.7.2 Monochrome (Bitonal), Intensity, and Color Compatibility Features

Use UIS$SET_COLOR or UIS$SET_INTENSITY to change or retrieve color
map entries. Both load a single color value in a color map entry and can
be used in any of the three hardware color environments—monochrome
(bitonal), intensity, or color.

4-11

- Color Concepts

Color Compatibility

System Feature

Monochrome (8]} chooses the color (black or white) closest to the color
{bitonal) specified by the application.

Intensity’ UIS$SET_COLOR converts the specified RGB values to an

equivalent gray level using an equation.

UIS$SET_INTENSITY sets the requested gray level directly.
Color? UIS$SET_COLOR sets the requested RGB color values

directly.

UISSSET_INTENSITY converts the specified intensity value

to an equivalent RGB value using an equation.

'The color-to-intensity equation is / = 0.30R + 0.59G + 0.11B. Color television
broadcasts transmitted for reception by noncolor television sets are processed in
this manner.

2The intensity-to-color equationis R =1, G =1,B = |.

4.7.3 Color Value Conversion

UIS provides routines to convert color values in applications that use other
color representation models.

¢ Hue lightness saturation (HLS)

¢ Hue saturation value (HSV)

Hue values range from 0.0 to 360.0, where red = 0.0. Values for lightness
and saturation range from 0.0 to 1.0.

4.7.4 Set Colors and Realized Colors

4-12

UIS routines that sef (load) color map entries in the virtual color map accept
F_floating point values between 0.0 and 1.0. The precision of the F_floating
point data type is approximately seven decimal places.

The precision for the color representation for a particular device might not
be accurate enough to represent the requested F_floating point value. In
this case, the set color value (F_floating) differs from the realized color value
(device precision). An application can determine realized color values
using UIS$GET_COLOR(S) and including the optional parameter. See
Chapter 16 for details.

Color Concepts

4.7.5 Color Regeneration Characteristics

The color regeneration hardware characteristic specifies whether changing
a color map entry affects the color of existing graphic objects (retroactive
regeneration) or only graphic objects drawn after the color map is changed
(sequential regeneration). :

The following table summarizes regeneration characteristics of direct and
mapped color systems. ' '

System Regeneration Characteristics
Direct color Usually sequential
Mapped color Usually retroactive

An application can determine the hardware color regeneration
characteristics by calling UISSGET_HW_INFO.

4-13

S

5.1

5.1.1

5.2

Input Devices

Overview

This chapter discusses the devices that enable user and application
program interaction. Some of the topics covered in this chapter are:

* Pointing devices
* Virtual keyboards
* Physical keyboards

VAXstation Input Devices

Application programs and users interact through input devices. Typical
VAXstation input devices are:

¢ Keyboard
¢ Mouse
e Tablet

With the keyboard, you can initiate program interaction and respond to
application program prompts by pressing a key or entering data. With the
mouse and tablet, you can communicate with an application program by
pointing to objects or items with a pointer and by making selections with
buttons. '

Pointers

You can use two types of pointing devices with the workstation, a mouse
and a tablet. You can use only one type of pointing device at a time.

Application programs receive input from a pointing device by polling or
soliciting interrupts from pointer input routines. Because only one pointer
input device can be used at a time, applications use the same set of pointer
input routines to receive input from either the mouse or the tablet. The
actual pointer input device used is transparent to an application.

The programming interface lets you set the pattern or the position of the
cursor that is synchronized with the pointing device.

5-1

Input Devices

5.2.1 Mouse

The mouse is a small, hand-held device with three buttons on the top and
a roller-ball on the bottom. Associated with the mouse, on the display
screen, is an arrow-shaped cursor (or pointer).

You manipulate items on the display screen by using the pointer and
buttons. When you move the mouse in any direction on a flat surface,
the ball on the bottom turns and the pointer on the screen moves in

any direction you choose. You can position the pointer anywhere on the
display screen. When you press the buttons on the mouse, you can select
items in a menu and perform a variety of other functions.

The mouse is a relative pointing device. The mouse reports only its relative
movement to the workstation. You can pick up the mouse and place it
in a different position without changing the position of the pointer on the
screen. Consequently, the workstation keeps track of the current mouse
position only when the mouse is moved on a surface.

Application programs can use the mouse pointer in the following ways:
¢ To create menus from which the user selects items

¢ To read the position of the pointer and the state of the mouse buttons

The workstation human interface implements menus that allow you to
create, select, move, and delete objects on the display screen. Application
programs can create menus that do the same things. To select a menu
item, move the pointer to the region of the desired item and press one ‘
of the mouse buttons. The application program predefines items and
specifies the action to be taken when you select an item.

Application programs can detect when the pointer is moved across the
boundary of a window or a mouse button is pressed within a window.
Programs can also read the current pointer location and current button
state. When you move the pointer to the border, or outside, of a screen
viewport, the human interface detects interrupts from the mouse. If you
position the pointer inside a viewport that is mapped to an application-
created window, the application program can receive these interrupts.

5.2.2 Tablet

The tablet is an optional input device that can be used with the workstation.
A tablet operates in much the same way as a mouse. An application
program uses the same routines to receive information from a tablet as

it does for the mouse. This is possible because the actual physical input
device being used is transparent to an application program.

The tablet is an absolute pointing device. That is, it reports all movement to
the workstation. For example, if the pen or stylus is picked up and moved
to another position on the tablet, the pointer changes its position on the
screen to match the movement.

A tablet is composed of the following parts:
* Tablet
* Puck

5-2

) 5.3

5.3.1

Input Devices

* Stylus
»Tablet

The tablet is a flat square device with a surface similar to a table top. It

is used in conjunction with a puck and/or stylus to locate points on the
display screen. When the puck and/or stylus are moved on the surface of
the tablet, the pointer on the display screen moves in an identical fashion.
If you pick up the puck and place it in different region of the tablet, the
pointer on the display screen reflects this change. The tablet has a grid that
senses a change in the position of the pen or stylus.

Puck

The puck is a hand-held device that you move on the tablet to locate points
on the display screen. The puck has cross-hair markings used for precision
in positioning it on the tablet. It also has four buttons that you can use for
various purposes, depending upon the application.

Stylus

The stylus is a hand-held device that resembles a pen. You move it on
the tablet to locate points on the display screen. The stylus has greater
precision than the puck in locating positions. The stylus can also have
buttons: usually one is located on the outside of the barrel and one on the
tip. The functions of these buttons are application-specific.

Keyboards

You should be able to distinguish between a physical keyboard (the
workstation keyboard) and a virtual keyboard (a simulated keyboard).

The physical keyboard is the workstation keyboard. You can press its keys
to respond to prompts from the application program, or you can type and

enter data into the currently active display window. A workstation can have
only one physical keyboard attached to it at any one time.

A virtual keyboard is a conceptual keyboard that does not have an actual
physical existence. Rather, a virtual keyboard is a simulated keyboard
that exists in software and is associated with a display window. Each
application can have one or more virtual keyboards attached to it. Virtual
keyboards provide the means for applications to share the single physical
keyboard.

Virtual Keyboards

A virtual keyboard is a simulated rather than an actual physical keyboard.
Virtual keyboards are conceptual in nature and exist only in software. A
virtual keyboard has the same relationship to the physical keyboard as a
virtual display has to the physical display screen.

By using routines that establish one or more virtual keyboards, application
programs can read from the physical (workstation) keyboard, assign the
physical keyboard to a display window, and modify the characteristics

of a physical keyboard associated with a window. To manipulate

the workstation keyboard, applications refer to the established virtual
keyboards.

5-3

Input Devices

5-4

The VAXstation supports multiple windows with multiple processes
running simultaneously. At various times, these windows and processes
require keyboard input. Consequently, each window needs a keyboard.
Because there is only one physical keyboard, applications use virtual
keyboard routines to share the physical keyboard among several windows.

With virtual keyboards, each window can have its own keyboard. One or
more display windows and virtual keyboards can be active on the display
screen at a time. However, the physical keyboard can be connected to only
one virtual keyboard at a time. A virtual keyboard can be attached to more
than one display window at a time. However, each display window can
have only one virtual keyboard attached to it.

You control the association between the physical keyboard and the various
virtual keyboards that exist at any point in time. To connect the workstation
keyboard to different windows, manipulate the display viewports to which
the virtual keyboards are connected. When you determine which window
the workstation keyboard is attached to, you know which process is
receiving keyboard input and thus, which window on the screen is currently
active.

The workstation places a small KB icon in the upper right corner of ali
windows that use the keyboard. This icon is highlighted in the currently
active window. An application can restrict windows from receiving
keyboard input. Display windows that do not interact with the keyboard do
not have the KB icon.

Partll How to Program with VMS Workstation
Software Graphics

6 Programming Considerations

6.1 Overview

The User Interface Services (UIS) graphics software package allows you

to create application programs that call system routines. With UIS system
routines, you can create virtual displays, display windows, viewports,
graphic images, and text. You can access these callable routines through
high-level programming languages, VAX MACRO, and VAX BLISS.

Note that the programming examples included in succeeding chapters

to illustrate the capabilities of the UIS graphics software are written in VAX
FORTRAN.

This chapter discusses the following topics:
e UIS routine calls

¢ Argument characteristics

¢ Constants

¢ Condition values

¢ Additional program components

¢ Program execution

Refer to the VMS Programming Support Manual for additional information
about other callable routines.

6.2 Calling UIS Routines

To draw and manipulate graphic images and text, application programs
must contain references or calls to specific UIS system routines. . Call
statements and language-specific function declarations invoke the UIS
system routines using the VAX Procedure Calling Standard.

6.2.1 Calling Sequences
The format of a call to UIS, or the calling sequence, consists of:
® The elements that make up the statement

¢ Their positional order

Tables A-1 and B-1 summarize UIS and UISDC calling sequences.

Programming Considerations

6.2.1.1 Call Type
Typically, application program calls to UIS system routines specify the
function name and an argument list as follows:

vd_id=UIS$CREATE_DISPLAY(-1.0,-1.0,+1.0,+1.0,width,height)

However, some UIS routines are functions and return values to the calling
program. The preceding example shows such a call from a VAX FORTRAN
program. It also returns a value, the virtual display identifier, to the vd_
id argument. Such return values are stored in variables that are often
arguments (where applicable) in subsequent routine calls.

UIS routines that are not functions must be called using an explicit VAX
FORTRAN CALL statement.

CALL UIS$PLOT(vd_id,1,-1.0,-1.0)

Programming languages have no standard call type to invoke UIS system
routines. This manual does not describe the syntax of each high-level
programming language call. It uses examples of VAX FORTRAN to
describe representative call syntax. For information about other language
call syntax, refer to the specific language user’s guide.

6.2.1.2 Routine Name
When you call a system routine, you must identify it by specifying its
routine (or entry point) name, for example, UISSMOVE_AREA. The routine
name consists of a symbol prefix that identifies the system facility (UIS$)

and a symbol name that indicates what operation it performs (MOVE_
AREA).

i

6.2.1.3 Argument List and Argument Characteristics
The argument list contains parameters to be passed to the UIS routine.
This list follows the routine name as a parenthetical expression containing
arguments separated by commas. You can substitute your own argument
names in place of the formal parameter names. However, whenever
you invoke a UIS routine, you must maintain the positional order of the
parameters in the argument list, as follows:

CALL UIS$CIRCLE(VD_ID,ATB,CENTER_X,CENTER_Y,XRADIUS,START_DEG,END_DEG)

You pass data to the called routine via the routine arguments. Keep
in mind the characteristics of arguments—VMS Usage, type, access,
mechanism.

6.2.2 VMS Usage

The VMS Usage entry contains the name of a VMS data type that has special
meaning in the VMS operating system environment.

The VMS Usage entry is not a traditional data type such as the VAX
standard data types byte, word, longword, and so on. It is significant
only within the context of the VMS operating system environment and is
intended solely to expedite data declarations within application programs.

Appendix F contains a complete listing of VMS usage entries and
implementation charts for each UlIS-supported VAX language. The
implementation charts describe how to code the VMS usage entry for
each programming language.

Programming Considerations

6.2.3 Type

The type characteristic refers to the standard argument data type, that is,
whether the argument is a word, longword, floating point number, and so
forth. Depending on the programming language, you might have to declare
certain data types locally within your program. These structures provide
data type definitions for the arguments in subsequent calls to UIS routines.

6.2.3.1

VAX Standard Data Types

When a calling program passes an argument to a system routine, the
routine expects the argument to be a particular data type. The routine
descriptions in Part III of this manual indicate the expected data types for
each argument.

Properly speaking, an argument does not have a data type; rather, the data
specified by an argument has a data type. The argument is merely the
vehicle to pass data to the called routine.

Nevertheless, the term ““argument data type” is frequently used to describe
the type of data specified by the argument. This terminology is simpler
and more straightforward than the strictly accurate phrase ‘‘data type of the
data specified by the argument.”’

Table 6-1 lists data types allowed by the VAX Procedure Calling Standard.

Table 6-1 VAX Standard Data Types

Data Type

Symbolic Code

Absolute date and time

Byte integer {signed)

Bound label value

Bound procedure value

Byte (unsigned)

COBOL intermediate temporary
D_fioating

D_floating complex

Descriptor

F_floating

F_floating complex

G_floating

G_floating complex

H_floating

H_floating complex

Longword integer (signed)
Longword (unsigned)

Numeric string, left separate sign
Numeric string, left overpunched sign
Numeric string, right separate sign

DSC$K_DTYPE_ADT
DSC$K_DTYPE_B
DSC$K_DTYPE_BLV
DSC$K_DTYPE_BPV
DSC$K_DTYPE_BU
DSC$K_DTYPE_CIT
DSC$K_DTYPE_D
DSC$K_DTYPE_DC
DSC$K_DTYPE_DSC
DSC$K_DTYPE_F
DSC$K_DTYPE_FC
DSC$K_DTYPE_G
DSC$K_DTYPE_GC
DSC$K_DTYPE_H
DSC$K_DTYPE_HC
DSC$K_DTYPE_L
DSC$K_DTYPE_LU
DSC$K_DTYPE_NL
DSC$K_DTYPE_NLO
DSC$K_DTYPE_NR

Programming Considerations

Table 6-1 (Cont.) VAX Standard Data Types

Data Type

Symbolic Code

Numeric string, right overpunched sign

Numeric string, unsigned
Numeric string, zoned sign
Octaword integer (signed)
Octaword (unsigned)
Packed decimal string
Quadword integer (signed)
Quadword (unsigned)
Character string

Aligned bit string

Varying character string
Unaligned bit string

Word integer (signed)
Word (unsigned)
Unspecified

Procedure entry mask
Sequence of instruction

DSC$K_DTYPE_NRO
DSC$K_DTYPE_NU
DSC$K_DTYPE_NZ
DSC$K_DTYPE_O
DSC$K_DTYPE_OU
DSC$K_DTYPE_P
DSC$K_DTYPE_Q
DSC$K_DTYPE_QU
DSC$K_DTYPE_T
DSC$K_DTYPE_V
DSC$K_DTYPE_VT
DSC$K_DTYPE_VU
DSC$K_DTYPE_W
DSC$K_DTYPE_WU
DSC$K_DTYPE_Z
DSC$K_DTYPE_ZEM
DSC$K_DTYPE_ZI

Refer to the VMS Programming Support Manual for more information about

VAX standard data types.

6.2.4 Access

6-4

The access characteristic describes how a calling routine uses argument-
specified data. A list of the most common types of argument access

follows. .

* Read only access—The UIS routine uses the data specified by the

argument as input only.

* Write only access—The UIS routine uses the argument as a location to

return data only.

* Modify access—The UIS routine uses the data specified by the
argument as input for its operation and then writes data to that

argument.

Programming Considerations

6.2.5 Mechanism

VAX language extensions provide the means to reconcile the various
argument-passing mechanisms within a programming language. The VAX
Procedure Calling Standard provides three ways for application programs
to pass arguments to a system routine.

* By value—The argument contains the actual data to be used by the
routine; the actual data is said to be passed to the routine by value.

* By reference—The argument contains the address of the location in
memory of the actual data to be used by the routine; the actual data is
said to be passed to the routine by reference.

* By descriptor—The argument contains the address of a descriptor; the
actual data is said to be passed by descriptor.

Depending on its type, a descriptor consists of two or more longwords
that describe the location, length, and data type of the data to be used
by the called routine.

All language processors (except VAX MACRO and VAX BLISS) pass
arguments by default by reference or by descriptor. Some high-level
languages, including VAX FORTRAN, set up the descriptors and arrays
individually.

The following table lists VAX Procedure Calling Standard passing
mechanisms.

Passing Mechanism Descriptor Code
By value

By reference
By reference, array reference
By descriptor

By descriptor, fixed-length DSC$K_CLASS_S
By descriptor, dynamic string DSC$K_CLASS_D
By descriptor, array DSC$K_CLASS_A
By descriptor, procedure DSC$K_CLASS_P
By descriptor, decimal string DSC$K_CLASS_SD
By descriptor, noncontiguous array DSC$K_CLASS_NCA
By descriptor, varying string DSC$K_CLASS_VS
By descriptor, varying string array DSC$K_CLASS_VSA
By descriptor, unaligned bit string DSC$K_CLASS_UBS
By descriptor, unaligned bit array DSC$K_CLASS_UBA
By descriptor, string with bounds DSC$K_CLASS_SB
By descriptor, unaligned bit string DSC$K_CLASS_UBSB
with bounds

Refer to the VMS Programming Support Manual for more information about
passing mechanisms.

Programming Considerations

6.2.5.1 VAX FORTRAN Built-In Functions
VAX FORTRAN also supports explicit argument-passing mechanisms, or
built-in functions, that do not require formal data declarations. Specify

built-in functions only in the argument list of the call (with one exception)!
and use them to pass data to subroutines written languages other than VAX
FORTRAN. The VAX FORTRAN built-in functions are:

* %VAL—Specifies that the argument must be passed as a value.

* %REF—Specifies that the argument must be passed as the address of
the actual data.

* %DESCR—Specifies that the argument must be passed as the address
of a descriptor that points to the actual data.

¢ %LOC—Returns the virtual address of the actual data.

By default, VAX FORTRAN passes numeric data by reference and character
string data by descriptor. The built-in functions override default argument-
passing mechanisms. You might occasionally encounter an external
procedure that passes data differently from the VAX FORTRAN default. In
that case, use the built-in functions in VAX FORTRAN code.

For specific information about similar procedure argument-passing
mechanisms for other high-level programming languages, refer to the
specific language user’s guide.

Figure 6-1 illustrates how arguments are placed on the stack and shows
how arguments are passed to the called routine. '

&

1 You can use the built-in function %LOC outside an argument list to obtain the address of a variable. For example,
use %LOC in an assignment statement where a longword in a character string descriptor is assigned the address of the
actual character string ‘

6-6

6.3

Programming Considerations

Figure 6-1 Passing Arguments

Pr d Arg t Passing Mech
ARGUMENT LIST PROCEDURE ARGUMENT
PASSING MECHANISMS
N (AP)
(a) ARGUMENT PASSED BY VALUE
ARG 1
ARG 2

ACTUAL VALUE

ARG N

(AP)

ARG 1

(b) ARGUMENT PASSED BY REFERENCE

ARG 2

POINTER TO

DATA

ACTUAL VALUE

ACTUAL VALUE

ARG N

Note: ARG 1. ARG

2. ARG N

can be passed by value, by
reterence. or by descriptor
in any of the above examples.

((AP) - argument pointer

N = number of arguments

DATA
A
] N | aP) 5

(¢) ARGUMENT PASSED BY DESCRIPTOR
ARG 1 c
D
LENGTH
ARG 2 DESCRIPTOR €
POINTER TO F
DESCRIPTOR CLASS|D TYPE| LENGTH A
. R SREE——
POINTER H
ARG N

UIS Constants

UIS constants are symbolic names for values that can be passed to, or
returned from, UIS routines. UIS constants are syntactically equivalent to

literal integer constants.

Use them as follows:

* As arguments to UIS functions

Programming Considerations

* As indices into array arguments passed to, or received from, the UIS
subsystem :

* As literals to compare to a returned value from an inquiry routine

Refer to Section 6.5 for information about UIS symbol definition files.

6.4 Condition Values Signaled

Occasionally hardware- or software-related events occur, causing errors
that could jeopardize successful program execution. Instead of returning
condition values to R0 (as in VAX MACRO) or to a status variable (as in
high-level languages), the UIS routines signal a condition. In such cases,
unless you explicitly arrange to handle the signaled condition, program
execution halts by setting up condition handlers.

6.5 Additional Program Components

In addition to the usual program entities, some UIS-specific and language-
specific program components affect program execution.

Subroutines and Functions

If it uses a subroutine name as an argument to other subprograms, a VAX
FORTRAN application program must use the EXTERNAL statement to
declare the subroutine an external procedure. The subprogram can then
use the corresponding dummy argument in a function reference or a CALL
statement.

Entry Point and Symbol Definition Files

All UIS and UISDC routines are declared in an entry point file supplied
with the graphics software. In addition, depending on the programming
language, you might have to include a data description file of UIS symbol
definitions. See the specific language user manual to determine whether
you must include data description files in your program data declarations.

Table 6-2 contains a list of entry point files and symbol definition files for ‘
each VAX programming language. All files are in SYS$LIBRARY.

Table 6-2 Entry Point and Symbol Definition Files

VAX Language Entry Point File Symbol Definition File
BLISS UISENTRY.R32 UISUSRDEF.R32

C ' UISENTRY.H UISUSRDEF .H
FORTRAN UISENTRY.FOR UISUSRDEF.FOR
MACRO UISUSRDEF.MAR
PASCAL UISENTRY.PAS UISUSRDEF.PAS

PL/ UISENTRY.PLI UISUSRDEF.PLI

ADA "~ UISENTRY.ADA UISUSRDEF.ADA

Programming Considerations

Message Definition File

A language-specific message definition file called UISMSG is included in
the directory SYS$LIBRARY. This file, which is similar to the entry point
file UISENTRY, defines all possible UIS error codes. For instance, to
define message symbols in a VAX FORTRAN condition handler, you add
the following line to your program.

INCLUDE ’SYSSLIBRARY:UISMSG'

Depending on the programming language options you choose, the
appropriate version of UISMSG is copied to your disk during the
installation procedure.

All messages symbols use the prefix UIS$_.

6.6 Notes to Programmers

The following sections desctibe language-specific issues that might affect
program execution.

6.6.1 VAXADA Programmers
Creating a Workable LIBRARY for VAX ADA To Use

Before you run VAX ADA application programs, you must perform the
following procedures: ’

1 Set your default directory as follows:
SET DEFAULT SYSSLIBRARY
2 Request a directory of .ADA files.

DIRECTORY SYS$SYSROOT:[SYSLIB]*.ADA
UISENTRY.ADA;1 UISUSRDEF.ADA;1 UISMSG.ADA;1 VWSSYSDEF.ADA;1l
Total of 4 files.

3 Copy the four files into one file as follows:

$COPY UISENTRY.ADA,UISUSRDEF.ADA,UISMSG.ADA,VWSSYSDEF.ADA UIS_.ADA
4 Edit the UIS_.ADA file.

$ EDIT UIS_.ADA

Insert the following four lines at the top of the file in the leftmost
column:

with STARLET; use STARLET;
with SYSTEM; use SYSTEM;
with CONDITION_HANDLING; use CONDITION_ HANDLING;
package UIS is
Place the body of the four entry-point files here.
Insert the last line in the UIS_.ADA file as follows:

end UIS;

6-9

Programming Considerations

5 To create a library that your VAX ADA programs can use, run the
command file ADD$ADA_PREDEFINED_UNIT.COM as follows:

@ADDSADA_PREDEFINED_UNIT.COM UIS_.ADA UIS

The compiled unit is placed in the library of predefined units for ADA
in a file called UIS.ADA.

If you create the new library, it will be available to you automatically.

6 If you have not created the new library, use the following command to
enter it into your own ADA library:

$ ACS ENTER UNIT ADASPREDEFINED UIS

7 To use the UIS entry points in your program, add the following
command to the beginning of your ADA program:

with UIS;

6.6.2 VAXC Programmers
Entry Point and Symbol Definition Files

The file UISENTRY.H defines all routine entry points in lowercase
characters, and UISUSRDEF.H defines all constants in uppercase
characters.

Floating-Point Constants

When you are programming UIS in C, it is recommended that you do not ‘
use floating-point constants in your C programs, UIS expects all values
passed to it to be F_floating, or single precision. In VAX C, all floating-

point constants are of type double (see Programming in VAX C, section

5.3.5).

6.6.3 VAXPASCAL Programmers
Entry Point Files ‘

Because VAX PASCAL references arguments as formal parameters, your
calls to UIS must specify the same parameter names as those in the entry
point file UISENTRY.PAS. Therefore, specify obj_id as the argument
whenever the routine descriptions in Parts III and IV allow a choice
between the obj_id and seg_id arguments. Refer to Tables A-1 and B-1 for
a summary of UIS and UISDC calling sequences.

Creating Environment Files

Before you run VAX PASCAL application programs, you must perform the
following procedure.

1 Set your default directory as follows:

$ SET DEFAULT SYSSLIBRARY

6-10

Programming Considerations

2 Invoke the VAX PASCAL compiler with the /[ENVIRONMENT and
INOOBJECT qualifiers to produce an environment file of symbolic
definitions and type declarations.

NOTE: In Version 3.4 of the VAX PASCAL compiler, a bug in a parameter
declaration checking was fixed. This bug uncovered an invalid
parameter declaration in the UISENTRY.PAS file shipped with
VWS Version 3.0 and later. To maintain compatibility with all other
versions of VMS Workstation Software and PASCAL, you must add
the /NOWARNING qualifier when you build the PASCAL environment
file.

$ PASCAL/ENVIRONMENT/NOOBJECT/NOWARNING UISENTRY
The result of the compilation is UISENTRY.PEN, an environment file.

3 Include the INHERIT attribute in the first line of the application
program or program module that specifies UISENTRY.PEN.

[INHERIT(UISENTRY.PEN’)]
4 Repeat this procedure for the symbol definition file UISUSRDEF.PAS.

Refer to Programming in VAX PASCAL for more information about the
[ENVIRONMENT and /NOOBJECT qualifiers and the INHERIT attribute.

Drawing Lines and Polygons

When you draw lines and polygons, use UISSPLOT_ARRAY instead of
’ UIS$PLOT and UIS$SLINE_ARRAY instead of UISSLINE.

6.6.4 VAXPL/I Programmers
Entry Point Files

Because VAX PL/I references arguments as formal parameters, your calls to
UIS must specify the same parameter names as those in the entry point file
UISENTRY.PLI Therefore, specify obj_id as the argument whenever the
routine descriptions in Parts III and IV allow a choice between the obj_id
and seg_id arguments. Refer to Tables A-1 and B-1 for a summary of UIS
and UISDC calling sequences. -

6.7 Programming Examples

The programming examples in Parts II and III of this manual use VAX
FORTRAN Version 4.4. In addition, some examples—particularly in Part
IMI—include ellipses to indicate omitted portions of code and to point out
places in the program where you can add code.

Many of the examples include the VAX FORTRAN PAUSE statement.
PAUSE suspends program execution and displays the DCL prompt ($).
A default message—FORTRAN PAUSE—is returned to the display screen.
The graphic images remain on the screen. Respond to the DCL prompt
($) by typing one of the following commands:

* CONTINUE—Resume program execution at the next executable
statement.

® EXIT—Terminate program execution.

6-11

Programming Considerations

e DEBUG—Resume program execution under the control of the
VAXI/VMS Symbolic Debugger.

NOTE: If your program is running in batch mode, program execution is not

suspended. All messages are written to the system output file.

6.7.1 Structure of Programming Tutorial

Each chapter in Part II uses a tutorial approach to explain UIS graphics
features and programming. After discussion of the main topics, each
chapter includes:

¢ Programming options—Lists available features. The addition of each
new group of programming options lets you progress from simple to
complex programming tasks.

® Program development—Lists current programming objective and tasks
needed to implement the objective successfully.

- Program—Contains the source module with embedded callouts.
Each callout refers to a programming feature.

- Program output—Displays and explains the output from the
program.

Each programming example uses some or all of the programming options
listed. Not all routines are illustrated in the accompanying example.

6.8 Program Execution

Your program can run in batch mode with predefined data or interactively,
accepting input as needed. However, to execute your application program
successfully, you must first store it as a file using a text editor.

Invoke the text editor on your workstation as follows:
$ EDIT MYPROG.FOR

Please note that in this example you must supply a file name, for example,
MYPROG. In addition, a VAX FORTRAN file type (FOR) is added to the
file name to identify the file as a VAX FORTRAN source file. Enter your
program according to the rules of your programming language. Refer to
the specific language reference manual for detailed information.

6.8.1 Compiling Your Program

6-12

You must compile the newly created source file MYPROG.FOR before
execution. The language compiler (in this case the VAX FORTRAN
compiler) checks for proper syntax and initiates code optimization where
appropriate. Invoke the language compiler as follows:

$ FORTRAN/LIST MYPROG

You need not include file type. By default, the system searches for

the latest version of the file, MYPROG, with a file type of FOR. If the
application source file contains syntax errors, you receive compile-time error
messages called diagnostics. These diagnostic messages indicate the portion

Programming Considerations

of code in error as well as an explanation. The /LIST qualifier specifies
the creation of a listing file of accounting information and diagnostics (if
present).

Some language compilers return a predetermined maximum number of
diagnostics before terminating compilation. You must correct these errors
and resubmit the source program for a successful compilation. Successful
compilation produces an object module with file type of OB].

Linking the Object Module

The Linker resolves references to subroutines and allocates memory to
variables within your program. Invoke the Linker as follows:

$ LINK MYPROG

You need not specify the file type of the program, MYPROG. By default,
the system searches for the latest version of the file MYPROG with the file

type OB]J.

In addition, you can link object modules of programs written in different
source code.

Running the Executable Image

The Linker produces an executable image with a file type of EXE. At this
point, you can run your program. However, if you receive run-time errors,
you must correct the errors in your source code, recompile the source
module, and relink the object modules. After you receive the $ prompt,
run the executable image as follows:

$ RUN MYPROG

6-13

7.1
)

7.2
) 7.2.1

Creating Basic Graphic Objects

Overview

This chapter describes how to create basic graphic objects — lines, circles,
ellipses, and text. It discusses the following topics:

* Creating a virtual display

* Creating graphics and text

* Creating a display window

You construct an interactive program to create graphic objects. You use
other windowing routines to manipulate these objects.

Refer to Section 6.7 for more information about the programming examples
in this manual.

Step 1—Creating a Virtual Display

When you use UIS to create graphic objects, you use a frame of reference
called a virtual display to establish the environment in which the graphic
objects exist.

Calls to UIS routines must reference points within the virtual display.
When you specify coordinates, the UIS subsystem generates a coordinate
system to create the virtual display and subsequent windows. You use this
coordinate system, or grid, to reference points as world coordinates along
two perpendicular axes labelled x and y. The virtual display is infinite and
you can draw graphic objects anywhere in it.

Specifying Coordinate Values

Many routines documented in this manual require coordinates to define
virtual displays, display windows, and extent rectangles. Table 7-1 lists
information about coordinate values.

Creating Basic Graphic Objects

Table 7-1° Coordinate Types and Values

Data
Coordinate Units Type Origin
Absolute cm F_floating' Lower-left corner of display screen or
tablet
Normalized Gutenbergs F_floating' Lower-left corner of virtual display
Viewport- Pixels Longword Lower-left corner of display viewport
relative (unsigned)
World User- F_floating' Lower-left corner of virtual display
specified

'F_fioating point numbers can have up to approximately seven decimal dlgits of
precision.

7.2.2 Creating and Deleting a Virtual Display

You use UIS$CREATE_DISPLAY to specify the world coordinate space

in which you will draw graphic objects. The world coordinate values you
specify establish mapping and scaling factors that the system can use later
in viewport creation. Do not think of the coordinate values as the absolute
boundaries of the virtual display.

You can create an unlimited number of virtual displays, subject to system
and process resources.

You can use UISSDELETE_DISPLAY anywhere in your program to delete
a virtual display. However, you should remember that when you delete a
virtual display you are throwing out the medium on which you have drawn
graphic objects.

7.2.3 Program Development
Programming Objective
To create an executable program using the VAX FORTRAN programming
language.
Programming Tasks
To create and delete a virtual display.
PROGRAM IMAGES_1
IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$SLIBRARY:UISENTRY’' B
INCLUDE ’SYSSLIBRARY:UISUSRDEF’ B

VD_ID=UIS$CREATE_DISPLAY(+1.0,+1.0,+20.0,+20.0,10.0,10.0) 8

PAUSE B
CALL UISSDELETE_DISPLAY(VD_iD) B

END

Creating Basic Graphic Objects

At this point the program contains UIS entry points 8 and definitions 8.
It also includes a call 8 to UISSCREATE_DISPLAY. The plus sign (+)
is optional for positive coordinates. The minus sign (-) is required for
negative coordinates.

Because world coordinates are f_floating numbers, you must use a decimal
point when you specify world coordinate pairs.

See Section 6.7 for information about the VAX FORTRAN PAUSE
statement 8. ‘

Call UIS$DELETE_DISPLAY B to remove the virtual display before the
program ends. You need not use UISSDELETE_DISPLAY to terminate an
application program.

Not only does UISSCREATE_DISPLAY specify the world coordinate
range of the virtual display, but also, in vd_id, it returns the value of
the virtual display identifier. This value, used in subsequent windowing
routines, uniquely identifies the newly created virtual display. Typically,
UIS$CREATE_DISPLAY is the first UIS routine called in an application
program.

If your application program invokes the UISSCREATE_DISPLAY only, the
workstation screen does not change.

7.3 Step 2—Creating Graphics and Text

You can now draw any of the following graphic objects anywhere on the
virtual display.

Graphic Object Example

Geometric shapes Point, line, polygon, circle, and ellipse

Text Characters

Raster images Any object constructed with a bitmap of varying size

7.3.1 Graphics Drawing Operation Specifications

¢ All line drawing operations are symmetrical and include both end
points.

* In the case of fill patterns, images, ellipses, moving windows, and so
forth, all region specifications include the region borders.

7-3

Creating Basic Graphic Objects

7.3.2 Programming Options
Creating Points, Lines, and Polygons

Depending on the number of times you repeat coordinate pairs in
UIS$PLOT or UIS$PLOT_ARRAY, you can draw a point, connected lines,
or a polygon.

You can draw more than one unconnected line in a single call to UIS$LINE
or UISSLINE_ARRAY. Each specified pair of world coordinate pairs
represents the end points of a line.

NOTE: VAX PASCAL application programs should use UISSPLOT_ARRAY or
UISSLINE_ARRAY to draw all lines, disconnected lines, and polygons.

Creating Circles

Use UIS$CIRCLE to create circles or circular arcs.

Creating Ellipses
Use UIS$SELLIPSE to create ellipses or elliptical arcs.

Drawing Images

Use the following procedure to create a bitmap image of a graphic object,
then draw the raster to the display screen with UIS$IMAGE.

1 Create a data structure such as an array or record in your program to
define the bitmap.

2 Set the bits in the structure to create the bitmap image by assigning
values to the elements of the structure.

3 Use UIS$IMAGE to specify pixel width and height of the raster image.
4 Use UIS$IMAGE to specify the name of the data structure.

Figure 7-1 illustrates how bitmap settings are mapped to raster images.

Raster image mapping occurs from left to right and from top to bottom.
See the UIS$IMAGE routine description for more information.

Text

Use UIS$TEXT to set the current position and create text anywhere within
a virtual display. You can use the text within a virtual display to label an
accompanying graphic object within the window. Only UIS$TEXT can write
characters in a virtual display.

7-4

) 7.3.3

Creating Basic Graphic Objects

Figure 7-1 Mapping a Bitmap to a Raster

151413121110 9 8 7 6 5 4 3 2 1 0
olrlofrfr]olrjo]rjojolr]|1|1]0O

\

Bitmap
Image
1
—>
2 1ol 1lololi]oli]ol
1lol1lo
Raster
image
ZK 462785

Program Development
Programming Objective

To create an executable program using the VAX FORTRAN programming
language.

Programming Tasks

1 Create a virtual display.

2 Draw four graphic objects in the virtual display.
3 Delete the virtual display.

PROGRAM IMAGES_2

IMPLICIT INTEGER(A-Z)

INCLUDE ‘SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF’
REAL WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,10.0,10.0)

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0)

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0) B

CALL UIS$ELLIPSE(VD_ID,0,15.0,15.0,1.0,2.0) B

CALL UISSTEXT(VD_ID,0,’This is a test.’,1.0,12.0) @

PAUSE
CALL UISSDELETE_DISPLAY(VD_ID)
END

7-5

Creating Basic Graphic Objects

In the preceding example, you specify world coordinate pairs that describe
the exact locations of the graphic objects (circle, line, ellipse, and text) in
the virtual display, explicitly to the UIS graphics routines 8

If you execute the program in its present form, the workstation display
screen shows no objects. Although your calls to the UIS graphics and text
routines are processed, you must create a window to view what is drawn.

7.4 Step 3—Creating a Display Window

You must now create a display window to define the world coordinate
range of the viewable portion of the virtual display. When you create a
display window, you also create a display viewport, an area on the physical
screen where the display window is mapped.

7.4.1 Programming Options

At this point, all the available programming options are provided through
UIS$CREATE_WINDOW. The full capabilities of UISSCREATE_WINDOW
are discussed in more detail in Chapter 8.

Creating a Display Window and Viewport

Use UIS$CREATE_WINDOW to create a display viewport and its
associated viewport.

7.4.2 Program Development

Programming Objective

To create an executable program that draws and displays graphic objects
on the VAXstation screen.

Programming Tasks

1 Create a virtual display.

2 Draw four graphic objects in the virtual display.
3 Create a display window and viewport.

4 Delete the virtual display.

PROGRAM IMAGES_2A

IMPLICIT INTEGER(A-Z)

INCLUDE ’SYS$LIBRARY:UISENTRY’
INCLUDE ’SYS$LIBRARY:UISUSRDEF'
REAL*4 WIDTH,HEIGHT

TYPE *,’'ENTER DESIRED VIEWPORT WIDTH AND HEIGHT’
ACCEPT *,WIDTH,HEIGHT

VD_ID=UIS$CREATE_DISPLAY(1.0,1.0,20.0,20.0,WIDTH,HEIGHT)

CALL UIS$CIRCLE(VD_ID,0,10.0,10.0,1.0) B

CALL UIS$PLOT(VD_ID,0,4.0,3.0,5.0,7.0)

CALL UIS$ELLIPSE(VD_1D,0,15.0,15.0,1.0,2.0) 4}
CALL UIS$TEXT(VD_ID,0,’This is a test.’,1.0,12.0)

WD_ID=UISSCREATE_WINDOW(VD_ID, 'SYS$SWORKSTATION') 6}

Creating Basic Graphic Objects

PAUSE
CALL UISSDELETE_DISPLAY(VD_ID)
END

Specify the world coordinate range of the virtual display and the default
dimensions of the display viewport in a call to UISSCREATE_DISPLAY 8.

NOTE: The display viewport is not mapped until a display window is created.
Next, call the graphics and text routines B 8 @ 8 to draw the graphic objects.

Create a display window and viewport in a call to UISSCREATE_WINDOW
8. The world coordinate range of the window and the viewport width and
height are not specified. Therefore, the world coordinate space of the
display window (that is, the viewable portion of the virtual display) defaults
to the entire virtual display. You see all objects drawn in the virtual display.

' 7.4.3 Calling UISSCIRCLE, UISSELLIPSE, UIS$PLOT, UISSTEXT, and

UISSCREATE_WINDOW

When you run the program IMAGES_2A, you should get a single, untitled
display viewport containing text, a circle, a line, and an ellipse as shown in
Figure 7-2.

Figure 7-2 Display Viewport and Graphic Objects

2K-4533-85

7-7

8

8.1

8.2
)

Display Windows and Viewports

Overview

Before you manipulate graphic objects, you should know about display
windows and viewports. These features allow you to see graphic objects
drawn in the virtual display. The UIS windowing routines perform the
following operations:

¢ Create display windows and viewports
* Move display windows

¢ Manipulate display viewports

® Delete display windows

* Erase the virtual display

¢ (Create transformations

Windowing Routines

You use windowing routines to create and delete virtual displays, display
windows, and display viewports. Table 8-1 lists windowing routines and

their functions.

Table 8-1 UIS Windowing Routines

Routine

Description

UIS$CREATE_DISPLAY

UIS$CREATE_WINDOW
UIS$EXPAND_ICON
UISSMOVE_AREA

UIS$MOVE_WINDOW
UIS$POP_VIEWPORT
UIS$PUSH_VIEWPORT
UIS$SHRINK_TO_ICON

UIS$CREATE _
TRANSFORMATION

UIS$ERASE

Creates a virtual display and defines default
viewport dimensions

Creates display window and viewport
Substitutes an associated viewport for an icon

Moves a specified rectangle and its contents in the
virtual display to another part of the virtual display

Pans the display window across the virtual display
Allows an occluded viewport to be fully displayed
Places a viewport behind another viewport
Substitutes an icon for a display viewport

Alters the world coordinate space of the virtual
display

Erases objects that lie completely within a specified
rectangle in the virtual display

Display Windows and Viewports

Table 8-1 (Cont.) ' UIS Windowing Routines

Routine Description
UIS$DELETE_DISPLAY Deletes a virtual display

UIS$DELETE_WINDOW Deletes a display window and viewport

These routines allow you to create and manage the display screen
environment and to perform certain housekeeping functions such as
erasing and deleting virtual displays and windows.

8.3 Step 1—Creating Many Display Windows

For every display window you create, you also create a display viewport.
A one-to-one relationship exists between each display window and its
associated viewport. An application program can create an unlimited
number of display windows and viewports, subject to system and process
resources.

8.3.1 Programming Options

Each display window can be unique wit